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Abstract

M. Colbourn and R. Mathon [45] asked: “Can Skolem’s partitioning problems be

generalized to yield cyclic BIBD(v, 4, 1)?”. Rosa [76] asked: “What is the format of

Skolem-type sequences that leads to cyclic BIBD(v, k, λ) for k ≥ 4?”. In this thesis,

we will address these two questions.

We introduce new Skolem-type sequences and then we use them to construct new

cyclic BIBD(v, k, λ) for k ≥ 3. Specifically, we use Skolem-type sequences to construct

new cyclic BIBD(v, 3, λ) for all admissible orders v and λ.

We use Skolem-type sequences to construct new cyclic BIBD(v, k, λ) for k ≥ 4 and

every v coprime with 6. We provide a complete set of examples of Skolem partitions

that induce one cyclic BIBD(v, 4, λ) for every admissible class.

We also use some known results and relative difference families to construct new

cyclic BIBD(v, 4, λ) for infinite values of v.

Moreover, we use Skolem-type sequences to construct cyclic, simple, and inde-

composable BIBD(v, 3, 3) for every v with some possible exceptions for v = 9 and

v = 24c + 9, c ≥ 4. We also construct infinitely many cyclically indecomposable but

decomposable BIBD(v, 3, 4) for some orders v.

Finally, we have many examples of simple and super-simple cyclic designs coming

from Skolem-type sequences that produce optical orthogonal codes.



ii

Acknowledgements

I would like to express sincere gratitude to my supervisor, Dr. Nabil Shalaby, for his

guidance, support and arranging of adequate financial support during my program.

I am grateful to the School of Graduate Studies for financial support in the form

of Graduate Fellowship. I would like to acknowledge the Department of Mathematics

and Statistics for financial support in the form of Teaching Assistanship and for

providing the opportunity to enhance my teaching experience during my studies.

Thanks go to all the staff members of the Mathematics Department for their help.

I must also mention my family and friends for the moral support and understand-

ing they provided when it was needed most. I deeply thank my husband Silviu for

his patience and encouragements, specifically when I encountered difficulties. I would

also like to mention my beautiful daughter Diana, whose smiling face and sweet voice

always make my life colourful and cheerful.



Table of Contents

1 Introduction 1

1.1 Definitions and Known Results . . . . . . . . . . . . . . . . . . . . . 4

1.2 Previous Work and Applications . . . . . . . . . . . . . . . . . . . . . 18

1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 New Skolem-type Arrays 25

2.1 Skolem-type Sequences with Three Hooks . . . . . . . . . . . . . . . . 26

2.2 m-fold Skolem Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 m-fold Hooked Skolem Arrays . . . . . . . . . . . . . . . . . . . . . . 33

2.4 m-fold Skolem Arrays with a hooked extension . . . . . . . . . . . . . 36

2.5 m-fold Rosa Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 m-fold Hooked Rosa Arrays . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 m-fold Rosa Arrays with a hooked extension . . . . . . . . . . . . . . 45

3 Cyclic BIBD(v, 3, λ) from Skolem-type Sequences 47

iii



iv

4 Cyclic BIBD(v, 4, λ) from Skolem-type Sequences 61

4.1 Necessary Conditions for Cyclic BIBD(v, 4, λ) . . . . . . . . . . . . . 62

4.2 Cyclic BIBD(v, 4, 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Heffter’s Problem for k = 4 . . . . . . . . . . . . . . . . . . . 66

4.2.2 Skolem Partitioning Problem for k = 4 and λ = 1 . . . . . . . 67

4.2.3 Cyclic BIBD(12n+ 1, 4, 1) . . . . . . . . . . . . . . . . . . . . 69

4.2.4 Cyclic BIBD(12n+ 4, 4, 1) . . . . . . . . . . . . . . . . . . . . 72

4.3 Cyclic BIBD(v, 4, 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 Cyclic BIBD(12n+ 1, 4, 2) . . . . . . . . . . . . . . . . . . . . 75

4.3.2 Cyclic BIBD(12n+ 4, 4, 2) . . . . . . . . . . . . . . . . . . . . 77

4.3.3 Cyclic BIBD(12n+ 7, 4, 2) . . . . . . . . . . . . . . . . . . . . 77

4.3.4 Cyclic BIBD(12n+ 10, 4, 2) . . . . . . . . . . . . . . . . . . . 78

4.4 Cyclic BIBD(v, 4, 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.1 Cyclic BIBD(12n, 4, 3) . . . . . . . . . . . . . . . . . . . . . . 80

4.4.2 Cyclic BIBD(12n+ 1, 4, 3) . . . . . . . . . . . . . . . . . . . . 81

4.4.3 Cyclic BIBD(12n+ 5, 4, 3) . . . . . . . . . . . . . . . . . . . . 82

4.4.4 Cyclic BIBD(12n+ 8, 4, 3) . . . . . . . . . . . . . . . . . . . . 83

4.4.5 Cyclic BIBD(12n+ 9, 4, 3) . . . . . . . . . . . . . . . . . . . . 85

4.5 Cyclic BIBD(v, 4, 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



v

4.5.1 Cyclic BIBD(v, 4, 6), v ≡ 1, 5, 7, 11(mod 12) . . . . . . . . . . 86

4.5.2 Cyclic BIBD(12n+ 2, 4, 6) . . . . . . . . . . . . . . . . . . . . 88

4.5.3 Cyclic BIBD(12n+ 3, 4, 6) . . . . . . . . . . . . . . . . . . . . 90

4.5.4 Cyclic BIBD(12n+ 6, 4, 6) . . . . . . . . . . . . . . . . . . . . 91

5 Cyclic BIBD(v, 4, λ) from Other Structures 94

5.1 Cyclic BIBD(v, 4, 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Cyclic BIBD(v, 4, λ) from Relative Difference Families . . . . . . . . . 96

5.2.1 Cyclic BIBD(v, 4, 2) for some values v ≡ 10(mod 12) . . . . . 99

5.2.2 Cyclic BIBD(v, 4, 3) for some values of v ≡ 0(mod 12) . . . . . 100

5.2.3 Cyclic BIBD(v, 4, 3) for some values of v ≡ 8(mod 12) . . . . . 102

5.2.4 Cyclic BIBD(v, 4, 3) for some values of v ≡ 9(mod 12) . . . . . 103

5.2.5 Cyclic BIBD(v, 4, 4) for some values of v ≡ 4(mod 12) . . . . . 105

5.2.6 Cyclic BIBD(v, 4, 6) for some values of v ≡ 2(mod 12) . . . . . 106

5.2.7 Cyclic BIBD(v, 4, 6) for some values of v ≡ 3(mod 12) . . . . . 107

5.2.8 Cyclic BIBD(v, 4, 6) for some values of v ≡ 6(mod 12) . . . . . 109

5.2.9 Cyclic BIBD(v, 4, 6) for some values of v ≡ 8(mod 12) . . . . . 114

5.3 Summary of Known Results for Cyclic BIBD(v, 4, λ) . . . . . . . . . . 115

6 Simple Cyclically Indecomposable BIBD (v, 3, λ) 120



vi

6.1 Cyclic, Simple and Indecomposable BIBD(v, 3, 3) . . . . . . . . . . . 122

6.1.1 Simple BIBD(v, 3, 3) . . . . . . . . . . . . . . . . . . . . . . . 125

6.1.2 Indecomposable BIBD(v, 3, 3) . . . . . . . . . . . . . . . . . . 140

6.1.3 Cyclic, Simple, and Indecomposable BIBD(v, 3, 3) . . . . . . . 144

6.2 Cyclically Indecomposable but Decomposable BIBD(v, 3, 4) . . . . . . 145

6.2.1 Examples of Cyclically Indecomposable but Decomposable

BIBD(v, 3, 4) for v ≤ 21 . . . . . . . . . . . . . . . . . . . . . 145

6.2.2 Cyclically Indecomposable BIBD(v, 3, 4) for infinite values of v 159

7 Applications to Optical Orthogonal Codes 165

7.1 Construction of (v, 3, 1)-OOC . . . . . . . . . . . . . . . . . . . . . . 166

7.2 Construction of (v, 4, 1)-OOC . . . . . . . . . . . . . . . . . . . . . . 167

7.2.1 Shell construction . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.2.2 Examples from Skolem-type sequences . . . . . . . . . . . . . 169

7.3 Construction of (v, 3, 2)-OOC . . . . . . . . . . . . . . . . . . . . . . 169

7.4 Construction of (v, 4, 2)-OOC . . . . . . . . . . . . . . . . . . . . . . 169

8 Conclusions and Future Research 171

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

8.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172



vii

8.2.1 New Skolem-type sequences . . . . . . . . . . . . . . . . . . . 172

8.2.2 Cyclic BIBD(v, 3, λ) . . . . . . . . . . . . . . . . . . . . . . . 173

8.2.3 Cyclic BIBD(v, 4, λ) . . . . . . . . . . . . . . . . . . . . . . . 174

8.2.4 Cyclically Indecomposable BIBD(v, 3, λ) . . . . . . . . . . . . 176

8.2.5 Optical Orthogonal Codes . . . . . . . . . . . . . . . . . . . . 176

Bibliography 178

A Examples of Cyclic Designs from Skolem-type Sequences 190

B Examples of Cyclic BIBD(v, 4, λ) for some values of v 196



List of Tables

2.1 m-near Skolem sequence of order 2m− 1, for m ≡ 2(mod 4) . . . . . 27

2.2 2-fold Skolem arrays of order n ≡ 2(mod 4) . . . . . . . . . . . . . . . 31

2.3 2-fold Skolem arrays of order n ≡ 3(mod 4) . . . . . . . . . . . . . . . 32

2.4 2-fold hooked Skolem array of order n ≡ 0(mod 4), n ≥ 8 . . . . . . . 35

2.5 2-fold hooked Skolem array of order n ≡ 1(mod 4), n ≥ 5 . . . . . . . 35

2.6 2-fold Rosa arrays of order n ≡ 1(mod 4) . . . . . . . . . . . . . . . . 38

2.7 2-fold Rosa arrays of order n ≡ 2(mod 4) . . . . . . . . . . . . . . . . 39

2.8 2-fold hooked Rosa arrays of order n ≡ 0(mod 8) . . . . . . . . . . . . 41

2.9 2-fold hooked Rosa arrays of order n ≡ 4(mod 8) . . . . . . . . . . . . 42

2.10 2-fold hooked Rosa arrays of order n ≡ 7(mod 8) . . . . . . . . . . . . 43

2.11 2-fold hooked Rosa arrays of order n ≡ 11(mod 8) . . . . . . . . . . . 44

3.1 Necessary conditions for the existence of a cyclic BIBD(v, 3, λ) . . . . 58

4.1 Necessary conditions for the existence of a cyclic BIBD(v, 4, λ) . . . . 65

viii



ix

6.1 hLn−34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2 hLn−23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.3 Ln−23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.4 Ln−23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138



Chapter 1

Introduction

Informally, a combinatorial design can be defined to be a way of selecting subsets

from a finite or infinite set such that specific conditions are satisfied. As an example,

suppose it is required to select 3-sets from the seven objects {a, b, c, d, e, f, g}, such

that each object occurs in three of the 3-sets and every intersection of two 3-sets has

precisely one member. The solution to such a problem is a combinatorial design. One

possible example is {{a, b, d}, {b, c, e}, {c, d, f}, {d, e, g}, {e, f, a}, {f, g, b}, {g, a, c}}.

This combinatorial design is also known as a balanced incomplete block design and

denoted by BIBD(7, 3, 1) (also known as a Steiner triple system of order 7 and denoted

by STS(7)).

Combinatorial designs have numerous applications. For example, in the statistical
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design of experiments, Fisher [51] laid out mathematical principles of experimental

designs and Yates [91] was the first to draw attention to the importance of block

designs for the statistical design of experiments. Fisher and Yates used block de-

signs to compare the effects of different treatments, the growth of different strains

of an organism, and other similar problems. When the number of treatments was

large, these designs helped to eliminate heterogeneity to a greater extent than was

possible with randomized blocks and Latin squares. The precision of the estimate of

a treatment effect depends on the number of replications of the treatment, i.e., the

larger the number of replications, the greater is the precision. Similar is the case for

the precision of estimates of the difference between two treatment effects. To ensure

equal precision when comparing different pairs of treatment effects, the treatments

are allocated to the experimental units in different blocks of equal sizes such that

each treatment occurs at most once in a block, each treatment has an equal number

of replications, and each pair of treatments has the same number of replications.

Various restrictions for block designs were considered in the hope that tools de-

veloped for restricted versions can be extended to the general cases. Restrictions are

also motivated by a desire to consider interesting designs. Typical restrictions that

were considered are those that constrain the automorphism group.

A design with v elements is cyclic when its automorphism group contains a v-cycle.
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A cyclic block design can be represented as a design with elements {0, 1, . . . , v − 1}

where if {b1, b2, . . . , bk} is a block, then {b1 +1, b2 +1, . . . , bk+1} (addition performed

mod v) is also a block. A cyclic design is always isomorphic to a design for which

V = Zv = {0, 1, . . . , v−1} and the mapping α : i→ i+1 (mod v) is an automorphism.

For example, our STS(7) is cyclic. One automorphism α, which is a 7-cycle, carries

g → a→ b→ c→ d→ e→ f → g → a. If we rename g as 0, and we map f(g) to 1,

f(f(g)) to 2, and so on, our STS(7) becomes:

{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 0}, {5, 6, 1}, {6, 0, 2}, {0, 1, 3}.

This way we obtain a block from another block by adding 1 to each entry (mod v).

This process provides a compact representation. Selecting one block under the cyclic

automorphism α, we can easily reconstruct the system. This property makes cyclic

designs attractive in applications and for testing purposes.

Moreover, cyclic designs with special properties (simple or super-simple) are equiv-

alent to optimal optical orthogonal codes. The study of optical orthogonal codes

(OOC for short) was motivated by an application in a fibre-optic code-division

multiple access channel. Many users wish to transmit information over a com-

mon wide-band optical channel. The objective is to design a system that allows

the users to share the common channel. For the construction of optimal opti-

cal orthogonal codes, cyclic block designs play an important role since a cyclic
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block design is equivalent to an optimal optical orthogonal code. As an example,

C = {1100100000000, 1010000100000} is a (13, 3, 1) code with two codewords. In set

theoretic notation C = {{0, 1, 4}, {0, 2, 7}} (mod 13), which gives a cyclic Steiner

triple system of order 13. A survey about cyclic designs and their applications to

optimal optical orthogonal codes is given in [11].

These applications, together with the obvious mathematical significance, illustrate

the importance of the construction of block designs, particularly those which are

cyclic.

1.1 Definitions and Known Results

In this section, we provide the basic definitions and known results necessary for the

further proven results.

Definition 1.1.1 A balanced incomplete block design, denoted by BIBD(v, k, λ) is

a pair (V,B) where V is a v-set of points and B is a set of k-subsets called blocks

such that any 2-subset of the v-set appears in exactly λ of the k-subsets.

Definition 1.1.2 Two set systems (V,B) and (W,D) are isomorphic if there is a

bijection (isomorphism) Φ from V to W so that the number of times B appears as a
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block in B is the same as the number of times Φ(B) = {Φ(x) : x ∈ B} appears as a

block in D.

Definition 1.1.3 An isomorphism from a set system to itself is an automorphism.

Definition 1.1.4 A BIBD(v, k, λ) is cyclic if it admits an automorphism of order v.

If (V,B) is a cyclic BIBD(v, k, λ), one may assume V = Zv, and α : i → i +

1(mod v) is its cyclic automorphism. Let B = {b1, b2, . . . , bk} be a block of a cyclic

BIBD(v, k, λ). The block orbit containing B is defined by the set of distinct blocks

B + i = {b1 + i, . . . , bk + i}(mod v)

for i ∈ Zv. If a block orbit has v blocks, then the block orbits is said to be full,

otherwise it is said to be short. An arbitrary block from a block orbit is called a base

block. A base block is also referred to as a starter block or an initial block. The block

orbit that contains the block {0, v
k
, 2v
k
, . . . , (k−1)v

k
} is called a regular short orbit.

Definition 1.1.5 If λ = 1 and k = 3 the design is called a Steiner triple system,

denoted by STS(v). A cyclic STS(v) is denoted by CSTS(v).

Definition 1.1.6 A BIBD(v, k, λ) is simple if it contains no repeated blocks.

Definition 1.1.7 A BIBD(v, k, λ) is super-simple if the intersection of any two

blocks has at most two elements.
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One way to build a block design with higher λ is to take the union of the sets

of blocks of smaller designs based on the same set V . In particular, the union of

a BIBD(v, k, λ1) with a BIBD(v, k, λ2) is a BIBD(v, k, λ1 + λ2) design. Conversely,

suppose that we can partition the blocks of a BIBD(v, k, λ) so that each part induces

a design with a strictly smaller λ. Then, we say the design is decomposable.

Definition 1.1.8 A BIBD(v, k, λ) is called indecomposable if its blocks set B cannot

be partitioned into sets B1, B2 of blocks of the form BIBD(v, k, λ1) and BIBD(v, k, λ2)

respectively, where λ1 + λ2 = λ with λ1, λ2 ≥ 1.

Definition 1.1.9 A cyclic BIBD(v, k, λ) is called cyclically indecomposable if its

block set B cannot be partitioned into sets B1, B2 of blocks to form a cyclic

BIBD(v, k, λ1) and cyclic BIBD(v, k, λ2) respectively, where λ1 +λ2 = λ with λ1, λ2 ≥

1.

Theorem 1.1.1 [46] An STS(v) exists if and only if v ≡ 1, 3 (mod 6).

Theorem 1.1.2 [46] A CSTS(v) exists whenever v ≡ 1, 3 (mod 6) and v 6= 9.

When v = nu, n > 1, u > 1, then the group of integers modulo v will have a

subgroup of order u and index n for each divisor u of v.

Definition 1.1.10 A cyclic subsystem of a CSTS(v) having order u and index n, is

a subsystem (H,Bu) where H is a subgroup of order u and index n which fixes Bu.
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Definition 1.1.11 Let K and H be sets of positive integers and let λ be a positive

integer. A group divisible design of index λ and order v, denoted by (K,λ)−GDD,

is a triple (V ,H,B), where V is a finite set of cardinality v, H is a partition of V into

parts called groups whose sizes lie in H, and B is a family of subsets called blocks,

of V that satisfy:

1. if B ∈ B then |B| ∈ K;

2. every pair of distinct elements of V occurs in exactly λ blocks or one group, but

not both;

3. |H| > 1.

If there are ai groups of size gi, i = 1, . . . , s, then the (K,λ) − GDD is of type

ga11 g
a2
2 . . . gass . If K = {k}, then the (K,λ)−GDD is a (k, λ)−GDD.

Example 1.1.1 A (3, 1)−GDD of type 24 has {{1, 5}, {2, 6}, {3, 7}, {4, 0}} as groups

and {i, 1 + i, 3 + i}, i = 0, . . . , 7 as blocks.

Remark 1.1.1 If a GD design is cyclic, then each group Gi must be the subgroup

mZn = {0,m, 2m, . . . , (n− 1)m} of Zmn or its coset.

Let G be an additive group and let B ⊆ G. Denote by ∆B the list of differences

from B, that is, the multiset of all differences between two distinct elements of B. In
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∆B an element g ∈ G appears µg|GB| times, where GB is the stabilizer of B in G

and µg is an integer. Denote by ∂B the list of partial differences from B, that is, the

multiset of all differences between two distinct elements of B, with the property that

an element g ∈ G appears µg times in ∂B. If GB is trivial, then ∆B = ∂B.

Definition 1.1.12 A (G, k, λ)-difference family, DF for short, is a family F=

{B1, . . . , Bt} of k-subsets of G such that, in ∂F= ∂B1 ∪ . . . ∪ ∂Bt every element

of G−{0G} appears exactly λ times. The elements of F are called base blocks. If G

is the cyclic group Zv, then a (G, k, λ)−DF is denoted by (v, k, λ)−DF .

Let F={B1, . . . , Bt} be a (G, k, λ) − DF . For Bi ∈ F denote by Si a complete

system of distinct representatives for the right cosets of GBi
in G and by Oi =

{Bi + si|si ∈ Si} the G-orbit of Bi; Oi is full or short according to whether GBi
is

trivial or not. The set O1∪. . .∪Ot is the set of blocks of a BIBD(v, k, λ) admitting G as

an automorphism group acting sharply transitively on V . Conversely, a BIBD(v, k, λ)

admitting a group G as an automorphism group acting sharply transitively on V is

generated by a suitable (G, k, λ)−DF . Hence, a cyclic BIBD(v, k, λ) is generated by

a suitable (v, k, λ)−DF .

Definition 1.1.13 If v = k(k − 1)t + 1, then t blocks Bi = {bi,1, bi,2, . . . , bi,k} form

a (v, k, 1) perfect difference family over Zv ((v, k, 1)-PDF for short) if the differences
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bi,m − bi,n, i = 1, . . . , t, 1 ≤ m < n ≤ k cover the set {1, 2, . . . , (v − 1)/2}.

Definition 1.1.14 A (vg, g, k, λ) relative difference set is a k-subset B of Zgv with

the property that its list of differences ∆B = {x− y|x, y ∈ B, x 6= y} has no element

in vZg while it contains each element of Zgv − vZg exactly λ times.

More generally, a (vg, g, k, λ) relative difference family ((vg, g, k, λ)-DF in short)

is a family F of k subsets (base blocks) of Zgv with the property that its list of

differences ∆F = ∪B∈F ∆B is λ times Zgv − vZg.

Such a DF generates a cyclic (k, λ)-GDD of type gv (V,G,B) with point-set V =

Zgv, group set G={vZg + i|0 ≤ i < v} and block multiset B={B+ t|B ∈ F , t ∈ Zgv}.

Remark 1.1.2 A (gv, g, k, 1)-DF is also called a g-regular cyclic packing

CP(1, k; gv).

Definition 1.1.15 Let v, g, k, λ be positive integers and α ∈ [0, λ]. A

(gv, {g, kα}, k, λ)-difference family in Zgv ((gv, {g, kα}, k, λ)-DF in Zgv in short) is

a family of k subsets (base blocks) of Zgv with the property that its list of differ-

ences ∆F = ∪B∈F ∆B is λZgv \ (λ{0, v, . . . , (g− 1)v}∪α{0, gv/k, . . . , (k− 1)gv/k}),

where ∆B = {bi − bj : 1 ≤ i, j ≤ k, i 6= j} if B = {b1, b2, . . . , bk}, such that

{0, v, . . . , (g − 1)v} ∩ {0, gv/k, . . . , (k − 1)gv/k} = {0}.
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Definition 1.1.16 A t×λu matrix D = (dij) with entries from Zu is called a (u, t, λ)-

cyclic difference matrix (denoted by (u, t, λ)-CDM) if every element of Zu occurs

exactly λ times among the differences dij − d`j, j = 1, . . . , λu for any i 6= `.

Example 1.1.2

M =



0 1 2 3 4

0 4 3 2 1

0 2 4 1 3

0 3 1 4 2


is a (5, 4, 1)-CDM.

Definition 1.1.17 Let D be a multiset of positive integers with |D| = n. A Skolem-

type sequence of order n is a sequence (s1, . . . , st), t ≥ 2n of integers i ∈ D such

that for each i ∈ D there is exactly one j ∈ {1, . . . , t − i} such that sj = sj+i = i.

Positions in the sequence not occupied by integers i ∈ D contain null elements. The

null elements in the sequence are also called hooks, zeros or holes.

Example 1.1.3 (1, 1, 6, 2, 5, 2, 1, 1, 6, 5) is a Skolem-type sequence of order 5 and

(7, 5, 2, ∗, 2, ∗, 5, 7, 1, 1) is a Skolem-type sequence of order 4.

Definition 1.1.18 A Skolem-type sequence is k-extended if it contains exactly one

hook which is in position k.
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Now, we give the definitions of some special cases of Skolem-type sequences.

Definition 1.1.19 A Skolem sequence of order n is a sequence Sn = (s1, s2, . . . ,

s2n) of 2n integers which satisfies the conditions:

1. for every k ∈ {1, 2, . . . , n} there are exactly two elements si, sj ∈ Sn such that

si = sj = k, and

2. if si = sj = k, i < j, then j − i = k.

Skolem sequences are also written as collections of ordered pairs {(ai, bi) : 1 ≤ i ≤

n, bi − ai = i} with ∪ni=1{ai, bi} = {1, 2, . . . , 2n}.

Example 1.1.4 S5 = (1, 1, 3, 4, 5, 3, 2, 4, 2, 5) or, equivalently, the collection

{(1, 2), (7, 9), (3, 6), (4, 8), (5, 10)} is a Skolem sequence of order 5 .

Definition 1.1.20 Given a Skolem sequence Sn = (s1, s2, . . . , s2n), the reverse
←
Sn=

(s2n, . . . , s1) is also a Skolem sequence.

Definition 1.1.21 A hooked Skolem sequence of order n is a sequence hSn = (s1, . . . ,

s2n−1, s2n+1) of 2n+ 1 integers which satisfies Definition 1.1.19, as well as s2n = 0.

Example 1.1.5 hS6 = (1, 1, 2, 5, 2, 4, 6, 3, 5, 4, 3, ∗, 6) or, equivalently, the collection

{(1, 2), (3, 5), (8, 11), (6, 10), (4, 9), (7, 13)} is a hooked Skolem sequence of order 6.
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Theorem 1.1.3 [84] A Skolem sequence of order n exists if and only if n ≡

0, 1 (mod 4).

Theorem 1.1.4 [69] A hooked Skolem sequence of order n exists if and only if

n ≡ 2, 3 (mod 4).

Definition 1.1.22 A k-extended Skolem sequence of order n is sequence ESn =

(s1, s2, ..., s2n+1) in which sk = 0 and, for each j ∈ {1, 2, ...n}, there exists a unique

i ∈ {1, 2, ..., n} such that si = si+j = j.

Example 1.1.6 3-extended ES4 = (4, 2, ∗, 2, 4, 3, 1, 1, 3) is a 3-extended Skolem se-

quence of order 4.

Theorem 1.1.5 [7] The necessary and sufficient conditions for the existence of a

k-extended Skolem sequence are n ≡ 0, 1 (mod 4) for k odd, and n ≡ 2, 3 (mod 4) for

k even.

Definition 1.1.23 A Skolem sequence with a hook in the middle (sn+1 = 0), is called

a Rosa sequence (or a split Skolem sequence) and is denoted by Rn. A sequence with

two hooks (sn+1 = 0; s2n+1 = 0), is called a hooked Rosa sequence (or a hooked split

Skolem sequence) and is denoted by hRn.

Example 1.1.7 R3 = (1, 1, 3, ∗, 2, 3, 2) is a Rosa sequence of order 3 and hR5 =

(3, 1, 1, 3, 4, ∗, 5, 2, 4, 2, ∗, 5) is a hooked Rosa sequence of order 5.
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Theorem 1.1.6 [75]

1. A Rosa sequence of order n exists if and only if n ≡ 0, 3 (mod 4).

2. A hooked Rosa sequence of order n exists if and only if n ≡ 1, 2 (mod 4).

Definition 1.1.24 Let m,n be positive integers, with m ≤ n. A near-Skolem se-

quence of order n and defect m, is a sequence (s1, s2, . . . , s2n−2) of integers si ∈

{1, 2, . . . ,m− 1,m+ 1, . . . , n} which satisfies the following conditions:

1. for every k ∈ {1, 2, . . . ,m − 1,m + 1, . . . , n}, there are exactly two elements

si, sj ∈ S such that si = sj = k, and

2. if si = sj = k, then j − i = k.

Example 1.1.8 (1, 1, 6, 3, 7, 5, 3, 2, 6, 2, 5, 7) is a 4-near Skolem sequence of order 7.

Definition 1.1.25 A hooked near-Skolem sequence of order n and defect m, denoted

m-near hSn, is a sequence (s1, s2, . . . , s2n−1) of integers si ∈ {1, 2, . . . ,m − 1,m +

1, . . . , n} satisfying Definition 1.1.24 and s2n−2 = 0.

Example 1.1.9 (2, 5, 2, 4, 6, 7, 5, 4, 1, 1, 6, ∗, 7) is a hooked 3-near Skolem sequence of

order 7.

Theorem 1.1.7 [77] An m-near Skolem sequence of order n exists if and only if

n ≡ 0, 1 (mod 4) and m is odd, or n ≡ 2, 3 (mod 4) and m is even.
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Theorem 1.1.8 [77] A hooked m-near Skolem sequence of order n exists if and only

if n ≡ 0, 1 (mod 4) and m is even, or n ≡ 2, 3 (mod 4) and m is odd.

Definition 1.1.26 A Langford sequence of order n and defect d, n > d (also called

a perfect Langford) is a sequence Lnd = (l1, l2, . . . , l2n) of 2n integers which satisfies

both:

1. for every k ∈ {d, d+ 1, . . . , d+n− 1}, there exist exactly two elements li, lj ∈ L

such that li = lj = k and

2. if li = lj = k with i < j, then j − i = k.

Note that some authors use the term length instead of order for the Langford

sequence. Also, the largest difference in a Langford sequence, n+ d− 1, is sometimes

called the order of the Langford sequence.

Example 1.1.10 L5
3 = (7, 5, 3, 6, 4, 3, 5, 7, 4, 6) is a Langford sequence of order 5 and

defect 3.

Definition 1.1.27 A hooked Langford sequence of order n and defect d is a sequence

hLmd = (l1, l2, . . . , l2n+1) of 2n+1 integers which satisfies Definition 1.1.26 and l2n = 0.

Example 1.1.11 hL5
2 = (4, 5, 6, 2, 4, 2, 5, 3, 6, ∗, 3) is a hooked Langford sequence of

order 5 and defect 2.
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Theorem 1.1.9 [8,66,83] The necessary and sufficient conditions for the existence

of a Langford sequence are:

1. n ≥ 2d− 1, and

2. n ≡ 0, 1 (mod 4) for d odd, n ≡ 0, 3 (mod 4) for d even.

Theorem 1.1.10 [8,66,83] The necessary and sufficient conditions for the existence

of a hooked Langford sequence (d, d+ 1, . . . , d+ n− 1) are:

1. n(n+ 1− 2d) + 2 ≥ 2, and

2. n ≡ 2, 3 (mod 4) for d odd, n ≡ 1, 2 (mod 4) for d even.

Definition 1.1.28 Let G be an additive abelian group of order v > 1. A starter in

G is a set of unordered pairs S = {{xi, yi}|1 ≤ i ≤ (v − 1)/2} which satisfies the

following two properties:

1. {xi|1 ≤ i ≤ (v − 1)/2} ∪ {yi|1 ≤ i ≤ (v − 1)/2} = G \ {0}.

2. {±(xi − yi)|1 ≤ i ≤ (v − 1)/2} = G \ {0}.

Example 1.1.12 A starter in Z7 is given by the pairs (3, 4), (2, 5), (1, 6). This starter

can also be written as a sequence (5, 3, 1, 1, 3, 5).
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Definition 1.1.29 Let G be an additive abelian group of order v > 1. A skew starter

in G is a set of unordered pairs S = {{xi, yi}|1 ≤ i ≤ (v − 1)/2} which satisfies the

following three properties:

1. {xi|1 ≤ i ≤ (v − 1)/2} ∪ {yi|1 ≤ i ≤ (v − 1)/2} = G \ {0}.

2. {±(xi − yi)|1 ≤ i ≤ (v − 1)/2} = G \ {0}.

3. {±(xi + yi)|1 ≤ i ≤ (v − 1)/2} = G \ {0}.

Example 1.1.13 A skew starter in Z7 is given by the pairs (2, 3), (4, 6), (1, 5). This

skew starter can also be written as a sequence (4, 1, 1, 2, 4, 2).

Definition 1.1.30 A (v, k, λ) optical orthogonal code is a family of (0, 1)-sequences

of length v and weight k satisfying the following two properties:

(a) The Auto-Correlation Property:
∑v−1

t=0 xtxt+i ≤ λ for any x ∈ C and any

integer i 6≡ 0 (mod v);

(b) The Cross-Correlation Property:
∑v−1

t=0 xtyt+i ≤ λ for any x 6= y in C and any

integer i.

Example 1.1.14 C = {1100100000000, 1010000100000} is a (13, 3, 1) code with two

codewords.
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A convenient way of viewing optical orthogonal codes, especially when k is much

smaller than v, is from a set-theoretical perspective. A (v, k, λ)-OOC, C, can be

alternatively considered as a collection of k-sets of integers modulo v, in which each

k-set corresponds to a codeword and the numbers in each k-set specify the nonzero

bits of the codeword. The correlations properties can be reformulated in this set-

theoretic perspective as follows:

1. The Auto-Correlation Property: |(X + s1) ∩ (X + s2)| ≤ λ for any X ∈ C and

any integers s1 6≡ s2 mod v;

2. The Cross-Correlation Property: |(X + s1) ∩ (Y + s2)| ≤ λ for any X, Y ∈ C

with X 6= Y and any integers s1 and s2;

Note that here X + s = {x + s mod v : x ∈ X} represents a cyclic shift of a

codeword X of amount s.

Remark 1.1.3 The size of a (v, k, λ) optical orthogonal code C is bounded by the

Johnson bound:

|C| ≤ (v−1)(v−2)···(v−λ)
k(k−1)...(k−λ) .

Definition 1.1.31 An optical orthogonal code is optimal if its size is the largest

possible. It is perfect if its size meets the Johnson upper bound.
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1.2 Previous Work and Applications

The origin of cyclic designs lies in the late nineteenth century when Heffter [61] posed

a problem equivalent to determining the spectrum of CSTS(v). In general, given

k and λ, to establish the spectrum of values of v for which there exists a cyclic

BIBD(v, k, λ) is a very difficult problem. The problem has been solved for k = 3 and

λ = 1 by Peltesohn [70], and for k = 3 and λ > 1 by Colbourn and Colbourn [42].

In 1897, Heffter [61] stated two difference problems. The solution to these prob-

lems is equivalent to the existence of cyclic Steiner triple systems.

Heffter’s first difference problem (denoted by HDP1(n)) is: can a set {1, . . . , 3n}

be partitioned into n ordered triples (ai, bi, ci) with 1 ≤ i ≤ n, such that ai + bi = ci

or ai+bi+ci ≡ 0(mod 6n+1)? If such a partition is possible then {{0, ai, ai+bi}|1 ≤

i ≤ n} will be the base blocks of a CSTS(6n+ 1).

Heffter’s second difference problem (denoted by HDP2(n)) is: can a set

{1, . . . , 3n+1}\{2n+1} be partitioned into n ordered triples (ai, bi, ci) with 1 ≤ i ≤ n,

such that ai + bi = ci or ai + bi + ci ≡ 0(mod 6n+ 3)? If such a partition is possible

then {{0, ai, ai+bi}|1 ≤ i ≤ n} with the addition of the base block {0, 2n+1, 4n+2},

having a short orbit of length 3n+ 1, will be the base blocks of a CSTS(6n+ 3).

In 1939, Peltesohn [70] solved both Heffter’s difference problems, showing at least
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one solution exists for each case, and constructed cyclic Steiner triple systems of order

v for v ≡ 1, 3(mod 6), v 6= 9.

In 1957, Skolem [84], studying Steiner triple systems, considered the existence of a

partition of the set {1, 2, . . . , 2n} into n ordered pairs {(ai, bi)|1 ≤ i ≤ n, bi− ai = i}.

This began the study of Skolem sequences and their many generalizations. For any

solution {(ai, bi)|1 ≤ i ≤ n} to Skolem’s problem, the triples {(i, ai + n, bi + n)|1 ≤

i ≤ n} form a solution to Heffter’s first difference problem. These triples yield the

base blocks {0, ai + n, bi + n}, 1 ≤ i ≤ n of a CSTS(6n + 1). Also, {0, i, bi + n},

1 ≤ i ≤ n is another set of base blocks of a CSTS(6n+ 1).

Skolem [85] showed that such a distribution exists for n ≡ 0 or 1(mod 4). He

also conjectured that a similar partitioning of {1, 2, . . . , 2n − 1, 2n + 1} into n pairs

{(ai, bi)|1 ≤ i ≤ n, bi − ai = i} is possible if and only if n ≡ 2 or 3(mod 4). This

conjecture was proved true by O’Keefe [69] in 1961. The combined results of Skolem

and O’Keefe proved the sufficiency for the existence of a CSTS(6n+ 1).

In 1966, Rosa [75] showed that a partition of {1, 2, . . . , n, n+ 2, . . . , 2n+ 1} into n

pairs {(ai, bi)|1 ≤ i ≤ n, bi − ai = i} is possible if and only if n ≡ 0 or 3(mod 4). For

such a partition, the triples {(i, ai + n, bi + n)|1 ≤ i ≤ n} form a solution to Heffter’s

second difference problem. These triples yield the base blocks {0, ai + n, bi + n},

1 ≤ i ≤ n. The base blocks {0, ai + n, bi + n}, 1 ≤ i ≤ n, together with the base
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block {0, 2n+ 1, 4n+ 2} having a short orbit of length 3n+ 1, are the base blocks of

a CSTS(6n+ 3).

Rosa [75] also showed that a similar partition of {1, 2, . . . , n, n + 2, . . . , 2n,

2n + 2} exists if and only if n ≡ 1 or 2(mod 4), where n ≥ 2. The existence of

the two sequences above proved the sufficiency for the existence of a CSTS(6n+ 3).

Skolem sequences were first studied for use in constructing cyclic Steiner triple

systems. Later, these sequences were generalized in many ways and are applied

in several areas such as: triple systems [47], factorization of complete graphs [72],

balanced ternary designs [9, 10], and design of statistical models, such as a balanced

sampling plan excluding contiguous units [89]. Some other papers in which these

sequences have been very useful are [7, 14,17,25,26].

The spectrum of cyclic BIBD(v, 4, λ) is not determined yet, although it has been

treated in many papers. The first one to consider cyclic designs with block size four

was Bose [15]. He constructed an infinite family of cyclic BIBD(v, 4, 1) for v = 12n+1

prime. His result was improved by Buratti [20] and by Chen and Zhu [35]. Bose [16]

constructed another two infinite families of cyclic block designs for k = 4, λ = 2 or 3,

and v a prime number. Wilson [90] also constructed infinite families of such designs.

Particular attention was paid to cyclic BIBD(v, 4, 1). Hanani [60] demonstrated that

a cyclic BIBD(v, 4, 1) can only exist when v ≡ 1, 4 (mod 12). It is reasonable to
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believe that a cyclic BIBD(v, 4, 1) exists for any admissible orders v ≥ 37, but the

problem is far from being settled.

It was shown that there exists cyclic BIBD(12t + 1, 4, 1) for t ≤ 1000 with one

exception of t = 2 [1,3,56] and there exist cyclic BIBD(12t+4, 4, 1) for 3 ≤ t ≤ 50 [36].

There is no cyclic BIBD(12t+ 4, 4, 1) for t = 1, 2 [36].

A few direct constructions for cyclic BIBD(v, 4, 1) are known. They are given by

Colbourn and Mathon [45], Mathon [67], and Rogers [74].

Furino [53] constructed new cyclic block designs for v ≡ 1, 5, 7, 11(mod 12) and

λ = 2, 3 or 6. Also, a few recursive constructions for cyclic BIBD(v, 4, λ) are known

[21,43,62,63].

The existence of cyclic BIBD(v, 4, λ) for small values of v plays an important role

in the recursive constructions for new cyclic designs. Some super-simple cyclic designs

with small values of v were constructed [37]. Also some linear classes of super-simple

cyclic designs are constructed in [38].

Although there exist direct and recursive constructions for cyclic BIBD(v, 4, λ),

the spectrum of the cyclic BIBD(v, 4, λ) is still an open problem.
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1.3 Outline of the Thesis

This thesis uses Skolem-type sequences to construct new cyclic BIBD(v, k, λ) for

k ≥ 3. We also use Skolem-type sequences to construct cyclic block designs with the

following properties: simple, cyclic, indecomposable, and cyclically indecomposable

but decomposable.

Chapter 1 gives the outline of the thesis. In this chapter, we give also some known

definitions and known results which will be useful for the further proven results.

Chapter 2 introduces a new Skolem-type sequence with three hooks which will be

used in Chapter 3 to construct cyclic BIBD(v, 3, 12). This chapter also introduces new

Skolem and Rosa arrays which can be used to construct cyclic BIBD(v, 3, λ). These

arrays will also be used in Chapter 4 to provide many examples of cyclic BIBD(v, 4, λ).

Chapter 3 discusses the connection between Skolem-type sequences and cyclic

block designs with block size 3. It was known that Skolem sequences give rise to

cyclic block designs with block size 3 and λ = 1 and 2. In this chapter, we show that

Skolem-type sequences can be used to generate cyclic designs with block size 3 and all

admissible λs. These results were published in Design, Codes and Cryptography [82].

Chapter 4 discusses cyclic block designs with block size 4 constructed with the

use of Skolem-type sequences. We give the necessary conditions for the existence of

22



a cyclic block design with block size 4. We construct, using Skolem-type sequences,

cyclic BIBD(v, 4, 6) for all v ≡ 1, 5, 7, 11(mod 12). Then, we generalize these con-

structions to construct cyclic BIBD(v, k, λ) for all v ≡ 1, 5, 7, 11(mod 12). Further-

more, we provide a complete set of examples of Skolem partitions that induce cyclic

BIBD(v, 4, λ) for every admissible class. These results were submitted for publica-

tion [79].

Chapter 5 discusses cyclic block designs with block size four constructed with

the use of other combinatorial structures. We construct several new linear classes of

cyclic block designs with block size 4 and λ > 1. Specifically, we construct cyclic

BIBD(6t+1, 4, 2) for t ≤ 1000 and cyclic BIBD(v, 4, 2) for v = 30t+7, 78t+7, 114t+

25, 138t + 31, 150t + 31, 162t + 31, 174t + 37, 174t + 43 for every t ≤ 1000, t 6= 2, 3.

We also construct, using relative difference families, many new linear classes of

cyclic BIBD(v, 4, 2) for some values of v ≡ 10 (mod 12), new cyclic BIBD(v, 4, 3)

for some values of v ≡ 0, 8, 9 (mod 12), new cyclic BIBD(v, 4, 6) for some values of

v ≡ 0, 2, 3, 6, 8(mod 12), and new cyclic BIBD(v, 4, 4) for some v ≡ 4(mod 12). For

cyclic BIBD(v, 4, 6) and v ≡ 6(mod 12), our constructions cover all the values of v

except for v = 810, 30v′, 810v′ where v′ is a product of primes greater than 5. The

problem of constructing cyclic BIBD(v, 4, λ) for all admissible orders v is still an open

problem. This chapter is a considerable step forward to the solution of this problem.
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The results of this chapter were submitted for publication [80].

Chapter 6 discusses block designs with block size three having different prop-

erties: cyclic, simple, indecomposable, and cyclically indecomposable but decom-

posable. We construct, using Skolem-type sequences, cyclic, simple, and indecom-

posable BIBD(v, 3, 3) for all admissible orders v, with some possible exceptions for

v = 9 and v = 24c + 9, c ≥ 4. These results were accepted for publication in

Journal of Combinatorial Mathematics and Combinatorial Computing [78]. We also

construct cyclic block designs that are cyclically indecomposable but decomposable.

We give examples of cyclically indecomposable but decomposable BIBD(v, 3, 4), for

v ≡ 0, 1(mod 3), v ≤ 21, and a few constructions which yield infinitely many such

triple systems of order v ≡ 0, 1(mod 3). The results were submitted for publica-

tion [59].

Chapter 7 describes the known constructions of optical orthogonal codes from

Skolem-type sequences.

Chapter 8 concludes the thesis and provides several open questions.
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Chapter 2

New Skolem-type Arrays

In this chapter, we introduce a new Skolem-type sequence with three hooks and new

Skolem and Rosa-type arrays. Then, in Chapters 3 and 4, we are going to use these

sequences to construct many new cyclic BIBD(v, k, λ), k ≥ 3.

Besides the fact that these new Skolem-type sequences will produce new cyclic

block designs, they can also be used to construct cyclic block designs with different

properties, like cyclic and simple designs, cyclic and indecomposable designs, cyclic

and decomposable designs, etc.

25



2.1 Skolem-type Sequences with Three Hooks

We introduce a new Skolem-type sequence. This is an m-near S2m−1 with three

hooks in positions m, 2m, 3m (i.e., a Skolem-type sequence with t = 4m − 1, D =

{1, . . . , 2m− 1} \ {m} and sm = s2m = s3m = 0).

Definition 2.1.1 Let m be a positive integer. An m-near Skolem sequence of order

2m− 1 with three hooks in positions m, 2m, and 3m is a sequence N = (n1, n2, . . . ,

n4m−1) of integers ni ∈ {1, 2, . . . , 2m−1}\{m} that satisfies the following conditions:

1. for every k ∈ {1, 2, . . . , 2m− 1}, k 6= m, there are exactly two elements ni, nj ∈

N such that ni = nj = k;

2. if ni = nj = k with i < j, then j − i = k;

3. nm = n2m = n3m = 0.

Theorem 2.1.1 An m-near Skolem sequence of order 2m − 1 with three hooks in

positions m, 2m and 3m exists for m ≡ 2 (mod 4),m ≥ 6.

Proof A Skolem construction which yields m-near Skolem sequences of order 2m−1

with hooks in positions m, 2m and 3m for m ≡ 2(mod 4),m ≥ 6 will be given. For

m = 6 the sequence is (9, 11, 5, 7, 4, ∗, 10, 5, 4, 9, 7, ∗, 11, 2, 8, 2, 10, ∗, 3, 1, 1, 3, 8).
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Note that in the construction, ai and bi represent the two positions in the sequence

of the element i, with ai < bi and 1 ≤ i ≤ 2m− 1, i 6= m.

For m ≡ 2(mod 4), let m = 4r + 2, r ≥ 2. The required construction is given in

Table 2.1.

ai bi i 0 ≤ j ≤
(1) 3m+ 2r − 1 3m+ 2r 1 -
(2) 2m+ 2r 2m+ 2r + 2 2 -
(3) 3m− 2 3m+ 1 3 -
(4) m− 1 m+ 3 4 -
(5) m+ 1 3m− 1 2m− 2 -
(6) 3m+ 2 4m− 2 m− 4 -
(7) 2m+ 3 + 2j 4m− 1− 2j 2m− 4− 4j r
(8) 2m+ 2 + 2j 4m− 4− 2j 2m− 6− 4j r − 2
(9) m− 3− 2j m+ 2 + 2j 5 + 4j 2r − 1
(10) m− 2− 2j m+ 5 + 2j 7 + 4j 2r − 1
(11) 3m− 3− j 3m+ 3 + j 6 + 2j 2r − 5

Omit row (11) when r = 2

Table 2.1: m-near Skolem sequence of order 2m− 1, for m ≡ 2(mod 4)

To verify that this construction forms an m-near Skolem sequence of order 2m−1

with hooks in positions m, 2m and 3m, it must be shown that each element of

{1, 2, . . . ,m−1,m+1, . . . , 2m−1, 2m+1, . . . , 3m−1, 3m+1, . . . 4m−1} = {1, . . . , 4r+

1, 4r + 3, . . . 8r + 3, 8r + 5, . . . , 12r + 5, 12r + 7, . . . , 16r + 7} appears in a pair (ai, bi)

exactly once, and that the differences bi − ai are exactly the elements {1, . . . ,m −

1,m+ 1, . . . , 2m− 1} = {1, . . . , 4r + 1, 4r + 3, . . . , 8r + 3}.
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Consider the pairs (ai, bi). It is easy to check that there are 2m − 2 = 8r + 2

such pairs, and so exactly 16r + 4 elements ai and bi. Thus, if every element of

{1, . . . , 4r+ 1, 4r+ 3, . . . 8r+ 3, 8r+ 5, . . . , 12r+ 5, 12r+ 7, . . . , 16r+ 7} occurs in one

of these pairs, each of these elements must occur exactly once.

Now, the elements 1, 3, . . . , 4r−3, 4r−1 occur in the pairs (m−3−2j,m+2+2j)

for 0 ≤ j ≤ 2r − 1, from row (9). The elements 2, 4, . . . , 4r − 2, 4r occur in the pairs

(m − 2 − 2j,m + 5 + 2j) for 0 ≤ j ≤ 2r − 1, from row (10). The element 4r + 1 is

given by the pair (m−1,m+3) from row (4). The element 4r+3 is given by the pair

(m + 1, 3m − 1) from row (5). The elements 4r + 4, 4r + 6, . . . , 8r + 2 occur in the

pairs (m− 3− 2j,m+ 2 + 2j) for 0 ≤ j ≤ 2r− 1, from row (9). The element 4r+ 5 is

given by the pair (m−1,m+ 3), from row (4). The elements 4r+ 7, 4r+ 9, . . . , 8r+ 5

occur in the pairs (m − 2 − 2j,m + 5 + 2j) for 0 ≤ j ≤ 2r − 1, from row (10). The

elements 8r + 6, 8r + 8, . . . , 10r + 2 occur in the pairs (2m+ 2 + 2j, 4m− 4− 2j) for

0 ≤ j ≤ r − 2, from row (8). The elements 8r + 7, 8r + 9, . . . , 10r + 7 occur in the

pairs (2m+ 3 + 2j, 4m− 1− 2j) for 0 ≤ j ≤ r, from row (7).

Both the elements 10r+ 4 and 10r+ 6 appear in the pair (2m+ 2r, 2m+ 2r+ 2),

from row (2). The elements 10r+ 8, 10r+ 9, . . . , 12r+ 3, occur in the pairs (3m− 3−

j, 3m + 3 + j) for 0 ≤ j ≤ 2r − 5, from row (11). The elements 12r + 4 and 12r + 7

appear both in the pair (3m− 2, 3m+ 1), from row (3). The element 12r + 5 occurs
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in the pair (m + 1, 3m − 1) from row (5). The element 12r + 8 appears in the pair

(3m+ 2, 4m− 2), from row (6). The elements 12r+ 9, 12r+ 10, . . . , 14r+ 4, occur in

the pairs (3m− 3− j, 3m+ 3 + j) for 0 ≤ j ≤ 2r − 5, from row (11).

Both the elements 14r + 5 and 14r + 6, occur in the pair (3m+ 2r− 1, 3m+ 2r),

from row (1). The elements 14r+ 7, 14r+ 9, . . . , 16r+ 7, occur in the pairs (2m+ 3 +

2j, 4m−1−2j) for 0 ≤ j ≤ r, from row (7). The elements 14r+8, 14r+10, . . . , 16r+4,

occur in the pairs (2m + 2 + 2j, 4m − 4 − 2j) for 0 ≤ j ≤ r − 2, from row (8). And

finally, the element 16r + 6 appears in the pair (3m+ 2, 4m− 2), from row (6).

Therefore, all the elements of {1, . . . , 4r + 1, 4r + 3, . . . 8r + 3, 8r + 5, . . . , 12r +

5, 12r + 7, . . . , 16r + 7}, occur in the pairs (ai, bi). Hence, each such element occurs

exactly once as either ai or bi for some i.

Secondly, it must be shown that the differences bi− ai give all values {1, . . . , 4r+

1, 4r+ 3, . . . , 8r+ 3} exactly once. Again, there are 2m− 2 = 8r+ 2 such differences,

so it must only be shown that each such element occurs at least once, which will then

imply that each occurs exactly once.

Difference 1 = (3m + 2r) − (3m + 2r − 1) can be found in row (1). Difference

2 = (2m+ 2r+ 2)− (2m+ 2r) appears in row (2). Difference 3 = (3m+ 1)− (3m−2)

appears in row (3), and difference 4 = (m+3)−(m−1) is the difference of bi−ai, in row

(4). The differences (m+2+2j)−(m−3−2j) = 5+4j for 0 ≤ j ≤ 2r−1, in row (9),
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give the numbers 5, 9, 13, . . . , 8r+1. The differences (m+5+2j)−(m−2−2j) = 7+4j

for 0 ≤ j ≤ 2r − 1, in row (10), give the numbers 7, 11, 15, . . . , 8r + 3. So, all the

odd differences are covered. The differences (3m + 3 + j) − (3m − 3 − j) = 6 + 2j

for 0 ≤ j ≤ 2r − 5 in row (11) give the numbers 6, 8, . . . , 4r − 4. The difference

(4m − 2) − (3m + 2) = m − 4 = 4r − 2 is the difference in row (6). The differences

(4m−1−2j)−(2m+3+2j) = 2m−4−4j for 0 ≤ j ≤ r, in row (7), give the numbers

4r, 4r+ 4, 4r+ 8, . . . , 8r. The differences (4m− 4− 2j)− (2m+ 2 + 2j) = 2m− 6− 4j

for 0 ≤ j ≤ r−2, in row (8), give the numbers 4r+6, 4r+10, . . . , 8r−2. To complete

the even elements of {1, . . . , 4r+ 1, 4r+ 3, . . . , 8r+ 3}, 8r+ 2 occurs as the difference

(3m− 1)− (m+ 1), in row (5). Thus, the verification is complete. �

2.2 m-fold Skolem Arrays

Definition 2.2.1 A 2-fold Skolem array of order n is a 2 × 2n array

s11 s12 . . . s12n

s21 s22 . . . s22n

such that for every integer i ∈ {1, 2, . . . , n} there are exactly two

pairs (j1, j1 + i) and (j2, j2 + i) such that s1j1 = s1j1+i = i (or s1j1 = s2j1+i = i) and

s2j2 = s2j2+i = i (or s2j2 = s1j2+i = i).
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Example 2.2.1
1 1 1 1

2 2 2 2

and
1 2 1 1

2 1 2 2

are 2-fold Skolem arrays of order

2.

Theorem 2.2.1 There exists a 2-fold Skolem array of order n for every positive

integer n.

Proof To show that a 2-fold Skolem array of order n exists for every positive integer

n, we consider three different cases.

Case 1: n ≡ 0, 1 (mod 4)

Take two Skolem sequences of order n.

Case 2: n ≡ 2 (mod 4)

A 2-fold Skolem array of order n is given in Table 2.2.

Let n = 4r + 2, r ≥ 0.

ai bi i 0 ≤ j ≤
(1) 1 + j n+ 1− j n− 2j 2r
(2) 2r + 2 n+ 2r + 2 n -
(3) 4r + 4 + j n+ 4r + 2− j n− 2− 2j 2r − 1
(4) 1 + j n− j n− 1− 2j 2r
(5) n+ 1 + j 2n− j n− 1− 2j 2r

Omit row (3) when r = 0

Table 2.2: 2-fold Skolem arrays of order n ≡ 2(mod 4)

Case 3: n ≡ 3 (mod 4)
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A 2-fold Skolem array of order n is given in Table 2.3.

Let n = 4r + 3, r ≥ 0.

ai bi i 0 ≤ j ≤
(1) 1 + j n+ 1− j n− 2j 2r + 1
(2) n+ 2 + j 2n− j n− 2− 2j 2r
(3) 2r + 2 n+ 2r + 2 n -
(4) 1 + j n− j n− 1− 2j 2r
(5) 4r + 4 + j n+ 4r + 3− j n− 1− 2j 2r

Table 2.3: 2-fold Skolem arrays of order n ≡ 3(mod 4)

�

Definition 2.2.2 An m-fold Skolem array of order n is an m × 2n array

s11 s12 . . . s12n

...

sm1 sm2 . . . sm2n

such that for every integer i ∈ {1, 2, . . . , n} there are exactly

m pairs (jk, jk + i), k ∈ {1, . . . ,m} such that sxjk = syjk+i = i for x, y ∈ {1, 2, . . . ,m}.

Example 2.2.2

4 2 3 2 4 3 1 1

1 1 4 2 3 2 4 3

1 1 4 2 3 2 4 3.

is a 3-fold Skolem array of order 4.

Theorem 2.2.2 An m-fold Skolem array of order n exists if and only if m is even

or if m is odd and n ≡ 0, 1 (mod 4).
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Proof We begin by providing the necessity of these conditions.

Let (a1i , b1i), . . . , (ami
, bmi

), 1 ≤ i ≤ n be the pairs of the positions of an integer i

in the m-fold Skolem array of order n. Then we have:∑n
i=1(a1i + b1i . . .+ ami

+ bmi
) = m(1 + 2 + . . .+ 2n) =

2mn(2n+ 1)

2
, and∑n

i=1(a1i − b1i + . . .+ ami
− bmi

) = m(1 + 2 + . . .+ n) =
mn(n+ 1)

2
.

Subtracting the above sums, we get 2
∑n

i=1(b1i + . . . + bmi
) =

mn(3n+ 1)

2
. So,∑n

i=1(b1i + . . .+ bmi
) =

mn(3n+ 1)

4
. But b1i , . . . , bmi

are integers which implies that

mn(3n+ 1)

4
has to be an integer. This condition gives us m even or m odd and

n ≡ 0, 1 (mod 4).

To construct an m-fold Skolem array of order n for n ≡ 0, 1 (mod 4) and every

m, take m copies of a Skolem sequence of order n. To construct an m-fold Skolem

array of order n for n ≡ 2, 3(mod 4) and m even, take
m

2
copies of a 2-fold Skolem

array of order n. �

2.3 m-fold Hooked Skolem Arrays

Definition 2.3.1 A 2-fold hooked Skolem array of order n is an 2× (2n+ 1) array

s11 s12 . . . s12n+1

s21 s22 . . . s22n+1

such that for every integer i ∈ {1, 2, . . . , n} there are exactly

two pairs (j1, j1 + i) and (j2, j2 + i) such that s1j1 = s1j1+i = i (or s1j1 = s2j1+i = i) and
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s2j2 = s2j2+i = i (or s2j2 = s1j2+i = i) and sl2n = 0 for l = 1, 2.

Example 2.3.1
3 1 4 2 4 2 4 ∗ 4

1 1 1 3 2 3 2 ∗ 3.

is a 2-fold hooked Skolem array of

order 4.

Theorem 2.3.1 There exists a 2-fold hooked Skolem array of order n for every pos-

itive integer n.

Proof To construct a 2-fold hooked Skolem array of order n for every positive integer

n, we consider three different cases.

Case 1: n ≡ 2, 3 (mod 4)

Take two hooked Skolem sequences of order n.

Case 2: n ≡ 0 (mod 4)

A 2-fold hooked Skolem array of order 4 is given in Example 2.3.1.

A 2-fold hooked Skolem array of order n ≡ 0 (mod 4), n ≥ 8 is given in Table 2.4.

Let n = 4r, r ≥ 2.

Case 3: n ≡ 1 (mod 4)

Table 2.5 gives a 2-fold hooked Skolem array of order n.

Let n = 4r + 1, r ≥ 1.
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ai bi i 0 ≤ j ≤
(1) 1 + j n− j n− 1− 2j 1
(2) 3 + j n− 1− j n− 4− 2j 2r − 3
(3) 2r + 1 n+ 2r + 1 n -
(4) 4r + 2j n+ 4r − 2− 2j n− 2− 4j r − 1
(5) 4r + 3 + 2j n+ 4r − 1− 2j n− 4− 4j r − 2
(6) n+ 1 2n+ 1 n -
(7) 1 + j n− 2− j n− 3− 2j 2r − 2
(8) n+ 1 2n− 1 n− 2 -
(9) n+ 2 2n+ 1 n− 1 -
(10) n+ 3 + j 2n− 2− j n− 5− 2j 2r − 3
(11) 2n 2n 0 -

Table 2.4: 2-fold hooked Skolem array of order n ≡ 0(mod 4), n ≥ 8

ai bi i 0 ≤ j ≤
(1) 1 + j n+ 1− j n− 2j 1
(2) 3 + j n− j n− 3− 2j 2r − 2
(3) 2r + 2 n+ 2r + 2 n -
(4) 4r + 3 n+ 4r + 2 n− 1 -
(5) 4r + 2 + 2j n+ 4r − 1− 2j n− 3− 4j r − 1
(6) 4r + 5 + 2j n+ 4r − 2j n− 5− 4j r − 2
(7) 1 + j n− 1− j n− 2− 2j 2r − 1
(8) 4r + 3 n+ 4r + 2 n− 1 -
(9) 4r + 4 + j n+ 4r − j n− 4− 2j 2r − 2
(11) 2n 2n 0 -

Omit row (6) when r = 1

Table 2.5: 2-fold hooked Skolem array of order n ≡ 1(mod 4), n ≥ 5

�

Definition 2.3.2 An m-fold hooked Skolem array of order n is an m×(2n+1) array
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s11 s12 . . . s12n+1

...

sm1 sm2 . . . sm2n+1

such that for every integer i ∈ {1, 2, . . . , n} there are exactly

m pairs (jk, jk + i), k ∈ {1, . . . ,m} such that sxjk = syjk+i = i for x, y ∈ {1, 2, . . . ,m}

and s`2n = 0 for every ` ∈ {1, . . . ,m}.

Theorem 2.3.2 An m-fold hooked Skolem array of order n exists if and only if m is

even or if m is odd and n ≡ 2, 3 (mod 4).

The proof for the necessity of these conditions is similar to the proof of Theorem

2.2.2.

Proof To construct an m-fold hooked Skolem array of order n for n ≡ 2, 3 (mod 4)

and every m, take m copies of a hooked Skolem sequence of order n. To construct an

m-fold Skolem array of order n for n ≡ 0, 1(mod 4) and m even, take
m

2
copies of a

2-fold hooked Skolem array of order n. �

2.4 m-fold Skolem Arrays with a hooked extension

Definition 2.4.1 An m-fold Skolem array of order n with a hooked extension is

defined similarly to m-fold Skolem arrays of order n with the exception that the last

row has 2n+ 1 entries and sm2n = 0.
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Example 2.4.1

2 2 2 2

1 1 1 1

1 1 2 ∗ 2.

is a 3-fold Skolem array of order 2 with a hooked

extension.

Theorem 2.4.1 An m-fold Skolem array of order n with a hooked extension exists

if and only if m is odd and n ≡ 2, 3 (mod 4).

The proof for the necessity of these conditions is similar to the proof of Theorem

2.2.2.

Proof To construct an m-fold Skolem array of order n with a hooked extension for

n ≡ 2, 3 (mod 4) and m odd, take
m− 1

2
copies of a 2-fold Skolem array of order n

and for the last row take a hooked Skolem sequence of order n. �

2.5 m-fold Rosa Arrays

Definition 2.5.1 A 2-fold Rosa array of order n is a 2 × (2n + 1) array defined

similarly to 2-fold Skolem arrays of order n with the exception that s`n+1 = 0 for

` = 1, 2.
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Example 2.5.1
2 5 2 5 3 ∗ 5 3 5 1 1

2 3 2 4 3 ∗ 4 4 1 1 4

is a 2-fold Rosa array of or-

der 5.

Theorem 2.5.1 There exists a 2-fold Rosa array of order n for every positive integer

n, n > 2.

Proof To construct a 2-fold Rosa array of order n for every positive integer n, we

consider three different cases.

Case 1: n ≡ 0, 3 (mod 4)

Take two Rosa sequences of order n.

Case 2: n ≡ 1 (mod 4)

A 2-fold Rosa array of order n is given in Table 2.6. Let n = 4r + 1, r ≥ 1.

ai bi i 0 ≤ j ≤
(1) 1 + j n− j n− 1− 2j 2r − 1
(2) 2r + 1 n+ 2r + 1 n -
(3) n+ 2 + j 2n− j n− 2− 2j 2r − 2
(4) 2r + 2 n+ 2r + 2 n -
(5) n+ 2 2n+ 1 n− 1 -
(6) 1 2 1 -
(7) 3 + j n− j n− 3− 2j 2r − 2
(8) n+ 3 + j 2n+ 1− j n− 2− 2j 2r − 1
(9) n+ 1 n+ 1 0 -

Table 2.6: 2-fold Rosa arrays of order n ≡ 1(mod 4)

38



Case 3: n ≡ 2 (mod 4)

A 2-fold Rosa array of order n is given in Table 2.7. Let n = 4r + 2, r ≥ 1.

ai bi i 0 ≤ j ≤
(1) 1 + j n− j n− 1− 2j 2r
(2) n+ 2 + j 2n− j n− 2− 2j 2r − 1
(3) 2r + 2 n+ 2r + 2 n -
(4) 2r + 3 n+ 2r + 3 n -
(5) n+ 2 2n+ 1 n− 1 -
(6) 1 2 1 -
(7) 3 + j n− j n− 3− 2j 2r − 2
(8) n+ 3 + j 2n+ 1− j n− 2− 2j 2r − 1
(9) n+ 1 n+ 1 0 -

Table 2.7: 2-fold Rosa arrays of order n ≡ 2(mod 4)

�

Definition 2.5.2 An m-fold Rosa array of order n is an m× (2n+ 1) array defined

similarly to m-fold Skolem arrays of order n with the exception that s`n+1 = 0 for

` ∈ {1, . . . ,m}.

Theorem 2.5.2 An m-fold Rosa array of order n exists if and only if m is even or

if m is odd and n ≡ 0, 3 (mod 4).

The proof for the necessity of these conditions is similar to the proof of Theorem

2.2.2.
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Proof To construct an m-fold Rosa array of order n for n ≡ 0, 3 (mod 4) and every

m, take m copies of a Rosa sequence of order n. To construct an m-fold Rosa array

of order n for n ≡ 1, 2(mod 4) and m even, take
m

2
copies of a 2-fold Rosa array of

order n. �

2.6 m-fold Hooked Rosa Arrays

Definition 2.6.1 A 2-fold hooked Rosa array of order n is a 2 × (2n + 2) array

defined similarly to 2-fold Skolem arrays of order n with the exception that s`n+1 = 0,

s`2n+1 = 0 for ` = 1, 2.

Example 2.6.1
3 1 1 3 ∗ 1 1 2 ∗ 2

3 4 4 3 ∗ 4 4 2 ∗ 2

is a 2-fold hooked Rosa array of

order 4.

Theorem 2.6.1 There exists a 2-fold hooked Rosa array of order n for every positive

integer n.

Proof To construct a 2-fold hooked Rosa array of order n for every positive integer

n we consider three different cases.

Case 1: n ≡ 1, 2 (mod 4)

Take two hooked Rosa sequences of order n.
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Case 2: n ≡ 0 (mod 4)

A 2-fold hooked Rosa array of order 4 is given in Example 2.6.1.

A 2-fold hooked Rosa array of order n ≡ 0 (mod 8) is given in Table 2.8.

Let n = 8r, r ≥ 1.

ai bi i 0 ≤ j ≤
(1) 1 + j n− j n− 1− 2j 4r − 1
(2) n+ 2 2n+ 2 n -
(3) n+ 3 + j 2n− j n− 3− 2j 4r − 2
(4) 1 + j n− 1− j n− 2− 2j 4r − 2
(5) 4r n+ 4r − 1 n− 1 -
(6) n 2n− 2 n− 2 -
(7) n+ 2 2n+ 2 n -
(8) n+ 3 + 2j 2n− 1− 2j n− 4− 4j 2r − 3
(9) n+ 4 + 4j 2n− 6− 4j n− 10− 8j r − 2
(10) n+ 6 + 4j 2n− 4j n− 6− 8j r − 2
(11) 12r + j 12r + 4− j 4− 4j 1
(12) n+ 1 n+ 1 0 -
(13) 2n+ 1 2n+ 1 0 -

Omit rows (8), (9), (10) when r = 1

Table 2.8: 2-fold hooked Rosa arrays of order n ≡ 0(mod 8)

A 2-fold hooked Rosa array of order n ≡ 4 (mod 8) is given in Table 2.9. Let

n = 8r + 4, r ≥ 1.
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ai bi i 0 ≤ j ≤
(1) 1 + j n− j n− 1− 2j 4r + 1
(2) n+ 2 2n+ 2 n -
(3) n+ 3 + j 2n− j n− 3− 2j 4r
(4) 1 + j n− 1− j n− 2− 2j 4r
(5) 4r + 2 n+ 4r + 1 n− 1 -
(6) n 2n− 2 n− 2 -
(7) n+ 2 2n+ 2 n -
(8) n+ 3 + 2j 2n− 1− 2j n− 4− 4j 2r − 2
(9) n+ 4 + 4j 2n− 6− 4j n− 10− 8j r − 2
(10) n+ 6 + 4j 2n− 4j n− 6− 8j r − 2
(11) 12r + 6 12r + 12 6 -
(12) 12r + 4 12r + 8 4 -
(13) 12r + 7 12r + 9 2 -
(14) n+ 1 n+ 1 0 -
(15) 2n+ 1 2n+ 1 0 -

Omit rows (9), (10) when r = 1

Table 2.9: 2-fold hooked Rosa arrays of order n ≡ 4(mod 8)

Case 3: n ≡ 3 (mod 4)

A 2-fold hooked Rosa array of order 3 is:
1 1 3 ∗ 3 3 ∗ 3

1 1 2 ∗ 2 2 ∗ 2

.

A 2-fold hooked Rosa array of order n ≡ 7 (mod 8) is given in Table 2.10.

Let n = 8r + 7, r ≥ 0.
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ai bi i 0 ≤ j ≤
(1) 1 + j n− 1− j n− 2− 2j 4r + 2
(2) n 2n n -
(3) n+ 2 2n+ 2 n -
(4) n+ 3 + j 2n− 1− j n− 4− 2j 4r + 1
(5) 1 + j n− j n− 1− 2j 4r + 2
(6) 4r + 4 n+ 4r + 3 n− 1 -
(7) n+ 2 + 4j 2n− 3− 4j n− 5− 8j r − 1
(8) n+ 3 + 2j 2n− 2j n− 3− 4j 2r − 1
(9) n+ 4 2n+ 2 n− 2 -
(10) 8r + 15 + 4j n+ 8r + 6− 4j n− 9− 8j r − 1
(11) 12r + 9 12r + 13 4 -
(12) 12r + 12 12r + 14 2 -
(13) n+ 1 n+ 1 0 -
(14) 2n+ 1 2n+ 1 0 -

Omit rows (7), (8), (10) when r = 0

Table 2.10: 2-fold hooked Rosa arrays of order n ≡ 7(mod 8)

A 2-fold hooked Rosa array of order n ≡ 3 (mod 8), n ≥ 11 is given in Table 2.11.

Let n = 8r + 3, r ≥ 1.
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ai bi i 0 ≤ j ≤
(1) 1 + j n− 1− j n− 2− 2j 4r
(2) n 2n n -
(3) n+ 2 2n+ 2 n -
(4) n+ 3 + j 2n− 1− j n− 4− 2j 4r − 1
(5) 1 + j n− j n− 1− 2j 4r
(6) 4r + 2 n+ 4r + 1 n− 1 -
(7) n+ 2 + 4j 2n− 3− 4j n− 5− 8j r − 1
(8) n+ 3 + 2j 2n− 2j n− 3− 4j 2r − 2
(9) n+ 4 2n+ 2 n− 2 -
(10) n+ 8 + 4j 2n− 1− 4j n− 9− 8j r − 2
(11) 12r + 5 + j 12r + 9− j 4− 2j 1
(12) n+ 1 n+ 1 0 -
(13) 2n+ 1 2n+ 1 0 -

Omit row (10) when r = 1

Table 2.11: 2-fold hooked Rosa arrays of order n ≡ 11(mod 8)

�

Definition 2.6.2 An m-fold hooked Rosa array of order n is an m× (2n+ 2) array

defined similarly to m-fold Skolem arrays of order n with the exception that s`n+1 = 0,

s`2n+1 = 0 for ` ∈ {1, . . . ,m}.

Theorem 2.6.2 An m-fold hooked Rosa array of order n exists if and only if m is

even or if m is odd and n ≡ 1, 2 (mod 4).

The proof for the necessity of these conditions is similar to the proof of Theorem

2.2.2.
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Proof To construct an m-fold Rosa array of order n for n ≡ 1, 2 (mod 4) and every

m, take m copies of a hooked Rosa sequence of order n. To construct an m-fold

hooked Rosa array of order n for n ≡ 0, 3(mod 4) and m even, take
m

2
copies of a

2-fold hooked Rosa array of order n. �

2.7 m-fold Rosa Arrays with a hooked extension

Definition 2.7.1 An m-fold Rosa array of order n with a hooked extension is defined

similarly to m-fold Rosa arrays of order n with the exception that the last row has

2n+ 2 entries and sm2n+1 = 0.

Example 2.7.1

4 5 5 5 4 ∗ 5 5 5 1 1

4 2 4 2 4 ∗ 4 2 2 2 2

1 1 1 1 3 ∗ 3 3 3 3 ∗ 3

is a 3-fold Rosa array of

order 5 with a hooked extension.

Theorem 2.7.1 An m-fold Rosa array of order n with a hooked extension exists if

and only if m is odd and n ≡ 1, 2 (mod 4).

The proof for the necessity of these conditions is similar to the proof of Theorem

2.2.2.
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Proof To construct an m-fold Rosa array of order n with a hooked extension for

n ≡ 1, 2 (mod 4) and m odd, take
m− 1

2
copies of a 2-fold Rosa array of order n and

for the last row take a hooked Rosa sequence of order n. �
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Chapter 3

Cyclic BIBD(v, 3, λ) from

Skolem-type Sequences

In 1939, Peltesohn [70] solved Heffter’s two difference problems showing at least

one solution exists and constructed cyclic Steiner triple systems of order v for

v ≡ 1, 3 (mod 6), v 6= 9. In 1981, Colbourn and Colbourn [42] solved the exis-

tence problem for cyclic block designs with block size 3 and λ > 1 using Peltesohn

technique.

In 1957, Skolem [84] showed that Skolem sequences can be used to construct

cyclic Steiner triple systems of order v for v ≡ 1, 3 (mod 6), v 6= 9. With this

solution, Skolem provided a second existence proof for the existence of cyclic Steiner
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triple systems. In 2000, Rees and Shalaby [73] showed that Skolem sequences can be

used to construct cyclic BIBD(v, 3, 2) for all admissible orders v.

Since Skolem sequences can be used to construct cyclic BIBD(v, 3, λ) for λ = 1, 2,

an obvious question is if these Skolem sequences can be used to construct cyclic

BIBD(v, 3, λ) for all admissible v and λ.

In this chapter, we use Skolem-type sequences to provide a complete proof for the

existence of cyclic BIBD(v, 3, λ) for all admissible orders v and λ.

First, we describe the known constructions that give cyclic BIBD(v, 3, λ) for λ = 1

and λ = 2 . Then we give six new constructions that will generate cyclic block designs

for λ = 3, 4, 6 and 12.

Construction 3.0.1 [84] From a Skolem sequence or a hooked Skolem sequence of

order n, construct the pairs (ai, bi) such that bi − ai = i for 1 ≤ i ≤ n. The set of all

triples (i, ai+n, bi+n) for 1 ≤ i ≤ n is a solution to the first Heffter difference problem.

These triples yield the base blocks for a CSTS(6n+ 1): {0, ai + n, bi + n}, 1 ≤ i ≤ n.

Also, {0, i, bi + n}, 1 ≤ i ≤ n is another set of base blocks of a CSTS(6n+ 1).

Example 3.0.2 S4 = (1, 1, 4, 2, 3, 2, 4, 3), yields the pairs {(1, 2), (4, 6), (5, 8), (3, 7)}.

These pairs yield in turn the triples {(1, 5, 6), (2, 8, 10), (3, 9, 12), (4, 7, 11)} forming

a solution to the first Heffter problem. These triples yield the base blocks for two

CSTS(25)s:
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1. {0, 5, 6}, {0, 8, 10}, {0, 9, 12}, {0, 7, 11} (mod 25)

2. {0, 1, 6}, {0, 2, 10}, {0, 3, 12}, {0, 4, 11} (mod 25).

Construction 3.0.2 [75] From a Rosa sequence or a hooked Rosa sequence of order

n, construct the pairs (ai, bi) such that bi− ai = i for 1 ≤ i ≤ n. The set of all triples

(i, ai + n, bi + n) for 1 ≤ i ≤ n is a solution to the second Heffter difference problem.

These triples yield the base blocks for a CSTS(6n+ 3): {0, ai + n, bi + n}, 1 ≤ i ≤ n

together with the short orbit {0, 2n+ 1, 4n+ 2} (mod 6n+ 3).

Construction 3.0.3 [73] Let Sn = (s1, s2, . . . , s2n) be a Skolem sequence of order n

and let {(ai, bi)|1 ≤ i ≤ n} be the pairs of the positions in Sn for which bi − ai = i.

Then the set {i, ai+n, bi+n} partitions the set {1, . . . , 3n} into n triples (a, b, c) such

that a+ b ≡ c (mod 3n+1). Hence the set of triples {{0, i, bi+n}|i = 1, . . . , n} forms

the base blocks for a cyclic BIBD(3n+ 1, 3, 2).

Example 3.0.3 S5 = (5, 1, 1, 3, 4, 5, 3, 2, 4, 2) gives the triples {(1, 7, 8), (2, 13, 15),

(3, 9, 12), (4, 10, 14), (5, 6, 11)}. These triples give the base blocks of a cyclic

BIBD(16, 3, 2): {{0, 1, 8}, {0, 2, 15}, {0, 3, 12}, {0, 4, 14}, {0, 5, 11}}(mod 16).

Construction 3.0.4 [73] Let Rn = (r1, r2, . . . , r2n+1) be a Rosa sequence of order

n (rn+1 = 0), and let {(ai, bi)|1 ≤ i ≤ n} be the pairs of positions in Rn for which
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bi − ai = i. Then the set {i, ai + n + 1, bi + n + 1} partitions the set {1, . . . , 3n +

2}\{n + 1, 2n + 2} into n triples (a, b, c) such that a + b ≡ c (mod 3n + 3). Hence

the set of triples {{0, i, bi + n + 1}|i = 1, . . . , n} forms the base blocks for a cyclic

(3, 2)-GDD of type 3n+1 (whose groups are given by {0, n+ 1, 2n+ 2} (mod 3n+ 3))

which in turn gives rise to a cyclic BIBD(3n+ 3, 3, 2).

Example 3.0.4 A Rosa sequence of order 3, R3 = (1, 1, 3, ∗, 2, 3, 2) gives the

triples {(1, 5, 6), (2, 9, 11), (3, 7, 10)}. These triples give the base blocks of a cyclic

BIBD(12, 3, 2): {{0, 1, 6}, {0, 2, 11}, {0, 3, 10}} (with two copies of {0, 4, 8})(mod 12).

Next, we provide six new constructions that will give cyclic BIBD(v, 3, λ) for

λ ≥ 3.

Construction 3.0.5 Let Sn = (s1, s2, . . . , s2n) be a Skolem sequence of order n and

let {(ai, bi)|1 ≤ i ≤ n} be the pairs of positions in Sn for which bi − ai = i. Then the

set F= {{0, i, bi}|1 ≤ i ≤ n}(mod 2n + 1) is a (2n + 1, 3, 3)-DF. Hence, the set of

triples in F forms the base blocks of a cyclic BIBD(2n+ 1, 3, 3).

Proof Set Bi = {0, i, bi} and consider the elements of Bi mod 2n + 1. We have

∂B = ∆B = ±{i, bi, ai} whence ∂F=±{1, . . . , n} ∪ (∪ni=1 ± {ai, bi}) = ±{1, . . . , n} ∪

±{1, . . . , 2n}, as ∪ni=1{ai, bi} = {1, . . . , 2n}. Since we consider the elements of ∂F

mod 2n + 1, we have ±{1, . . . , n} = {1, . . . , 2n} and ±{1, . . . , 2n} = {1, . . . , 2n} ∪

50



{1, . . . , 2n}. One can see that, in ∂F , every integer mod 2n + 1 appears exactly 3

times; hence F is a (2n + 1, 3, 3)-DF. Hence, the set of triples in F forms the base

blocks of a cyclic BIBD(2n+ 1, 3, 3). �

Example 3.0.5 S4 = (1, 1, 3, 4, 2, 3, 2, 4) gives the base blocks for a cyclic

BIBD(9, 3, 3): {{0, 1, 2}, {0, 2, 7}, {0, 3, 6}, {0, 4, 8}}(mod 9).

The proof of Construction 3.0.6 is similar to that of Construction 3.0.5, and is

thus omitted.

Construction 3.0.6 Let hSn = (s1, s2, . . . , s2n−1, s2n+1) be a hooked Skolem sequence

of order n and let {(ai, bi)|1 ≤ i ≤ n} be the pairs of positions in hSn for which

bi− ai = i. Then the set F= {{0, i, bi + 1}|1 ≤ i ≤ n}(mod 2n+ 1) is a (2n+ 1, 3, 3)-

DF. Hence, the set of triples in F forms the base blocks of a cyclic BIBD(2n+1, 3, 3).

Example 3.0.6 hS3 = (1, 1, 2, 3, 2, ∗, 3) gives the base blocks for a cyclic

BIBD(7, 3, 3): {0, 2, 6} and two copies of {0, 1, 3} (mod 7).

Construction 3.0.7 Let n be even. Let ESn = (s1, s2, . . . , s 3n
2
, s 3n

2
+2, . . . , s2n+1) be

an (3n
2

+ 1)-extended Skolem sequence of order n and let {(ai, bi)|1 ≤ i ≤ n} be the

pairs of positions in ESn for which bi − ai = i. Then the set F= {{0, i, bi}|1 ≤ i ≤

n}(mod 3n
2

+ 1) is a (3n
2

+ 1, 3, 4)-DF. Hence, the set of triples in F forms the base

blocks of a cyclic BIBD(3n
2

+ 1, 3, 4).
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Proof Note that n ≡ 0, 2 (mod 4) whence 3n
2

+ 1 ≡ 0, 1(mod 2), respectively;

hence Theorem 1.1.5 holds. Set Bi = {0, i, bi} and consider the elements of Bi mod

(3n
2

+1). We have ∂Bi = ∆Bi = ±{i, bi, ai} whence ∂F= ±{1, . . . , n}∪±{1, . . . , 3n
2
}∪

±{3n
2

+ 2, . . . , 2n+ 1}. Since we consider the elements of ∂F mod (3n
2

+ 1), we have

±{1, . . . , n} = {1, . . . , n}∪{n
2
+1, . . . , 3n

2
} and±{3n

2
+2, . . . , 2n+1} = {1, . . . , n

2
}∪{n+

1, . . . , 3n
2
}. Whence ∂F={1, . . . , 3n

2
}∪{1, . . . , 3n

2
}∪±{1, . . . , 3n

2
}, that is a (3n

2
+1, 3, 4)-

DF. Hence, the set of triples in F forms the base blocks of a cyclic BIBD(3n
2

+1, 3, 4).

�

Example 3.0.7 The 7-extended Skolem sequence of order 4, ES4 =

(3, 1, 1, 3, 4, 2, ∗, 2, 4) gives the base blocks for a cyclic BIBD(7, 3, 4):

{{0, 1, 3}, {0, 2, 1}, {0, 3, 4}, {0, 4, 2}}(mod 7).

Construction 3.0.8 Let n be odd. Let ESn = (s1, s2, . . . , s2n−bn
2
c,

s2n−bn
2
c+2, . . . , s2n+1) be an (2n − bn

2
c + 1)-extended Skolem sequence of order

n and let {(ai, bi)|1 ≤ i ≤ n} be the pairs of positions in ESn for which bi − ai = i.

Then the set F= {{0, i, bi}|1 ≤ i ≤ n}(mod 2n − bn
2
c + 1) together with the block

{0, bn
2
c + 1, n + 1}(mod 2n − bn

2
c + 1) having a short orbit of length

2n−bn
2
c+1

3

is a (2n − bn
2
c + 1, 3, 4) − DF . Hence, the set of triples in F together with the

block {0, bn
2
c + 1, n + 1}(mod 2n − bn

2
c + 1) forms the base blocks of a cyclic

BIBD(2n− bn
2
c+ 1, 3, 4).
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Proof Note that n ≡ 1, 3(mod 4), that is bn
2
c ≡ 0, 1(mod 2), respectively, whence

2n−bn
2
c+1 ≡ 1, 0(mod 2) respectively. Hence Theorem 1.1.5 holds. Set Bi = {0, i, bi}

and consider the elements of Bi modulo v = 2n − bn
2
c + 1. We have ∂Bi = ∆Bi =

±{i, bi, ai} whence ∂F= ±{1, . . . , n} ∪ (∪ni=1{ai, bi}) = ±{1, . . . , n} ∪ ±{1, . . . , 2n −

bn
2
c} ∪ ±{2n − bn

2
c + 2, . . . , 2n + 1}. Since we consider the elements of ∂F mod

(2n − bn
2
c + 1), we have ±{1, . . . , n} = {1, . . . , n} ∪ {bn

2
c + 2, . . . , 2n − bn

2
c} and

±{2n−bn
2
c+ 2, . . . , 2n+ 1} = ±{1, . . . , bn

2
c} = {1, . . . , bn

2
c} ∪ {n+ 2, . . . , 2n−bn

2
c}.

Whence ∂F={1, . . . , 2n−bn
2
c} ∪ {1, . . . , 2n−bn

2
c} ∪ ({1, . . . , 2n−bn

2
c}− {n+ 1})∪

({1, . . . , 2n−bn
2
c}−{bn

2
c+1}). One can see that in ∂F every integer mod 2n−bn

2
c+1

different from ±(n + 1) appears exactly 4 times and the integers ±(n + 1) appear 3

times. Set B = {0, bn
2
c+1, n+1} and consider the elements of B mod v = 2n−bn

2
c+1.

We have ∂B = ±{bn
2
c+1, n−bn

2
c, n+1} = ±{n+1, n+1, n+1} whence ∂B = ±{n+1},

since GB is the subgroup of order 3 of Zv.

It follows that in ∂F every integer mod 2n − bn
2
c + 1 appears exactly 4 times,

hence F is a (2n− bn
2
c + 1, 3, 4)−DF . Hence, the set of triples in F together with

the block {0, bn
2
c + 1, n + 1}(mod 2n − bn

2
c + 1) forms the base blocks of a cyclic

BIBD(2n− bn
2
c+ 1, 3, 4). �

Example 3.0.8 A 9-extended Skolem sequence of order 9, ES5 =

(5, 3, 1, 1, 3, 5, 4, 2, ∗, 2, 4) gives the base blocks for a cyclic BIBD(9, 3, 4): {{0, 1, 4},

53



{0, 2, 1}, {0, 3, 5}, {0, 4, 2}, {0, 5, 6}}(mod 9) together with the block {0, 3, 6}(mod 9)

having a short orbit of length 3.

The proof of Construction 3.0.9 is similar to that of Construction 3.0.7, and is

thus omitted.

Construction 3.0.9 Let Rn = (r1, r2, . . . , r2n+1) be a Rosa sequence of order n,

(rn+1 = 0), and let {(ai, bi)|1 ≤ i ≤ n} be the pairs of positions in Rn for which

bi − ai = i. Then the set F= {{0, i, bi}|1 ≤ i ≤ n}(mod n + 1) is a (n + 1, 3, 6)-DF.

Hence, the set of triples in F forms the base blocks of a cyclic BIBD(n+ 1, 3, 6).

Example 3.0.9 R4 = (2, 4, 2, 3, ∗, 4, 3, 1, 1) gives the base blocks of a cyclic

BIBD(5, 3, 6): {{0, 1, 4}, {0, 2, 3}, {0, 3, 2}, {0, 4, 1}}(mod 5).

To construct cyclic BIBD(v, 3, 12), we use the near Skolem sequences with three

hooks introduced in Chapter 2.

Construction 3.0.10 Let m ≡ 2(mod 4),m ≥ 6 and let N = (n1, . . . , n4m−1) be an

m-near Skolem sequence of order 2m − 1 with nm = 0, n2m = 0, and n3m = 0. Let

{(ai, bi)|1 ≤ i ≤ 2m − 1, i 6= m} be the pairs of positions in N for which bi − ai = i.

Then the set F={{0, i, bi}|1 ≤ i ≤ 2m−1, i 6= m}(mod m) is a (m, 3, 12)-DF. Hence,

the set of triples in F forms the base blocks of a cyclic BIBD(m, 3, 12).
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Proof Set Bi = {0, i, bi} and consider the elements of Bi mod m. We have

∂Bi = ∆Bi = ±{i, bi, ai} whence ∂F=±({1, . . . , 2m − 1} − {m}) ∪ ±({1, . . . , 4m −

1} − {m, 2m, 3m}). Since we consider the elements of ∂F mod m, we have

±({1, . . . , 2m−1}−{m}) = ±{1, . . . ,m−1}∪±{1, . . . ,m−1} and±({1, . . . , 4m−1}−

{m, 2m, 3m}) = ±{1, . . . ,m−1}∪±{1, . . . ,m−1}∪±{1, . . . ,m−1}∪±{1, . . . ,m−1}.

One can see that in ∂F every integer mod m appears exactly 12 times, hence F is

a (m, 3, 12) − DF . Hence, the set of triples in F forms the base blocks of a cyclic

BIBD(m, 3, 12). �

Example 3.0.10 N = (17, 19, 13, 15, 9, 11, 5, 7, 4, ∗, 18, 5, 4, 9, 7, 13, 11, 17, 15, ∗, 19, 14,

16, 2, 12, 2, 8, 3, 18, ∗, 3, 6, 1, 1, 8, 14, 12, 6, 16) is a 10-near S19 with hooks in positions

10, 20 and 30. This sequence gives the base blocks for a cyclic BIBD(10, 3, 12):

{{0, 1, 4}, {0, 2, 6}, {0, 3, 1}, {0, 4, 3}, {0, 5, 2}, {0, 6, 8}, {0, 7, 5}, {0, 8, 5}, {0, 9, 4},

{0, 1, 7}, {0, 2, 7}, {0, 3, 6}, {0, 4, 6}, {0, 5, 9}, {0, 6, 9}, {0, 7, 8}, {0, 8, 9}, {0, 9, 1}}

(mod 10).

Now, we are ready to prove the sufficiency of Theorem 3.0.4 using Skolem-type

sequences. We will construct cyclic block designs, using Skolem-type sequences, for

all admissible v and λ. For the necessary conditions we outline the proof of Colbourn

and Colbourn [42]. Then, we prove the sufficiency of the Main Theorem 3.0.4 using

Skolem-type sequences.
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In 1961, Hanani [60] solved the existence problem of BIBD(v, 3, λ).

Theorem 3.0.2 [60] Necessary and sufficient conditions for the existence of

BIBD(v, 3, λ) are:

1. λ ≡ 1, 5(mod 6) and v ≡ 1, 3(mod 6) or

2. λ ≡ 2, 4(mod 6) and v ≡ 0, 1(mod 3) or

3. λ ≡ 3(mod 6) and v ≡ 1(mod 2) or

4. λ ≡ 0(mod 6) and v ≥ 3.

In 1981, Colbourn and Colbourn [42] solved the existence problem of cyclic

BIBD(v, 3, λ). They defined D(v, λ) the multiset containing each i for 0 < i < v
2
,

λ times when v is odd. When v is even, D(v, λ) contains in addition the differ-

ence v
2
, λ

2
times. When v ≡ 0(mod 3), they also defined D0(v, λ) = D(v, λ) and

Dm(v, λ) = Dm−1(v, λ)− {v
3
}.

Colbourn and Colbourn [42], posed the following generalized versions of Heffter’s

problems for arbitrary λ:

• If v 6≡ 0 (mod 3), can D(v, λ) be partitioned into difference triples?

• If v ≡ 0 (mod 3), is there an m for which Dm(v, λ) can be partitioned into

difference triples?
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The resolution of these two difference problems is equivalent to a complete deter-

mination of cyclic BIBD(v, 3, λ).

Lemma 3.0.3 [42] If v ≡ 2 (mod 4) and λ ≡ 2 (mod 4), there is no cyclic

BIBD(v, 3, λ).

The following theorem was proved by Colbourn and Colbourn [42] using Pelte-

sohn’s technique. We give a new proof using Skolem-type sequences. While Colbourn

and Colbourn’s construction [42] provides only one cyclic design for each order v, our

constructions will provide many nonisomorphic cyclic designs for each order v.

Theorem 3.0.4 (Main Theorem) [42]

Necessary and sufficient conditions for the existence of a cyclic BIBD(v, 3, λ) are:

1. λ ≡ 1, 5, 7, 11(mod 12) and v ≡ 1, 3(mod 6) or

2. λ ≡ 2, 10(mod 12) and v ≡ 0, 1, 3, 4, 7, 9(mod 12) or

3. λ ≡ 3, 9(mod 12) and v ≡ 1(mod 2) or

4. λ ≡ 4, 8(mod 12) and v ≡ 0, 1(mod 3) or

5. λ ≡ 6(mod 12) and v ≡ 0, 1, 3(mod 4) or

6. λ ≡ 0(mod 12) and v ≥ 3,
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with only two exceptions: CSTS(9) and cyclic BIBD(9, 3, 2) do not exist.

Proof Necessity: Theorem 3.0.2 and Lemma 3.0.3 give the necessary conditions. For

v ≡ 0 (mod 3), the designs may have short orbits. To see the designs that have short

orbits, we arrange the necessary conditions of the above theorem in Table 3.1. We

denote with − the designs with no short orbits, and with + the designs that have

short orbits having the length equal to 1/3 of the full orbit. An empty cell in the

table means that such a design does not exist.

v/λ(mod 12) 0 1 2 3 4 5 6 7 8 9 10 11

0 - + + - + +
1 - - - - - - - - - - - -
2 -
3 - + + - + + - + + - + +
4 - - - - - -
5 - - - -
6 - + +
7 - - - - - - - - - - - -
8 - -
9 - + + - + + - + + - + +
10 - - -
11 - - - -

Table 3.1: Necessary conditions for the existence of a cyclic BIBD(v, 3, λ)

Sufficiency: We use the fact that we can construct a cyclic BIBD(v, 3, nλ) from a

cyclic BIBD(v, 3, λ) by simply taking each block of the cyclic BIBD(v, 3, λ) n times.

Using this observation, it will suffice to consider λ = 1, 2, 3, 4, 6, and 12.
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Case 1: λ = 1 and v ≡ 1, 3 (mod 6), v 6= 9

For v ≡ 1(mod 6), see Construction 3.0.1.

For v ≡ 3(mod 6), v 6= 9, see Construction 3.0.2.

Case 2: λ = 2 and v ≡ 0, 1, 3, 4, 7, 9 (mod 12), v 6= 9

For v ≡ 0, 3(mod 12), see Construction 3.0.4.

For v ≡ 1, 4(mod 12), see Construction 3.0.3.

For v ≡ 7(mod 12), take two copies of a CSTS(6n+ 1) from Construction 3.0.1.

For v ≡ 9(mod 12), v 6= 9, take two copies of a CSTS(6n + 3) from Construction

3.0.2.

It is known that a cyclic BIBD(9, 3, 2) does not exist [42].

Case 3: λ = 3 and v ≡ 1 (mod 2)

For v ≡ 1, 3(mod 8), see Construction 3.0.5.

For v ≡ 5, 7(mod 8), see Construction 3.0.6.

Case 4: λ = 4 and v ≡ 0, 1 (mod 3)

For v ≡ 0(mod 3), see Construction 3.0.8.

For v ≡ 1(mod 3), see Construction 3.0.7.

Case 5: λ = 6 and v ≡ 0, 1, 3 (mod 4)

For v ≡ 0, 1(mod 4), see Construction 3.0.9.

For v ≡ 3(mod 8), take two copies of a cyclic BIBD(v, 3, 3) from Construction
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3.0.5.

For v ≡ 7(mod 8), take two copies of a cyclic BIBD(v, 3, 3) from Construction

3.0.6.

Case 6: λ = 12 and v ≥ 3

For v ≡ 0(mod 3), take three copies of a cyclic BIBD(v, 3, 4) from Construction

3.0.8.

For v ≡ 1(mod 3), take three copies of a cyclic BIBD(v, 3, 4) from Construction

3.0.7.

For v ≡ 2(mod 12), see Construction 3.0.10.

For v ≡ 5, 8(mod 12), take two copies of a cyclic BIBD(v, 3, 6) from Construction

3.0.9.

For v ≡ 3(mod 8), take four copies of a cyclic BIBD(v, 3, 3) from Construction

3.0.5.

For v ≡ 7(mod 8), take four copies of a cyclic BIBD(v, 3, 3) from Construction

3.0.6. �

Remark 3.0.1 Some of the above cyclic BIBD(v, 3, λ) can be also constructed using

m-fold Skolem and Rosa arrays.
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Chapter 4

Cyclic BIBD(v, 4, λ) from

Skolem-type Sequences

M. Colbourn and Mathon [45] asked: “Can Skolem’s partitioning problems be gen-

eralized to yield cyclic BIBD(v, 4, 1)?”. Rosa [76] asked: “What is the format of

Skolem-type sequences that leads to cyclic BIBD(v, k, λ) for k ≥ 4?”.

In this chapter, we will answer these two questions. We give the necessary condi-

tions for the existence of a cyclic BIBD(v, 4, λ) and we construct several new cyclic

designs using Skolem-type sequences. We also show that there exists an example of

Skolem partitions that induces cyclic BIBD(v, 4, λ) for every admissible class.
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4.1 Necessary Conditions for Cyclic BIBD(v, 4, λ)

There are many papers dealing with cyclic block designs with block size four, but

to the best of our knowledge, the necessary conditions for the existence of cyclic

BIBD(v, 4, λ) are not stated. Here is our successful effort with this problem.

Hanani [60] proved that the necessary conditions are also sufficient for the exis-

tence of a BIBD(v, 4, λ).

Theorem 4.1.1 [60] The necessary conditions for the existence of a BIBD(v, 4, λ)

are:

1. v ≡ 1, 4 (mod 12) and all λs;

2. v ≡ 1 (mod 3) and λ ≡ 2, 4(mod 6);

3. v ≡ 0, 1 (mod 4) and λ ≡ 3(mod 6);

4. all v and λ ≡ 0(mod 6).

It is evident that cyclic BIBD(v, 4, λ) is a subset of BIBD(v, 4, λ). For a given v,

the necessary conditions λ(v − 1) ≡ 0(mod 3) and λv(v − 1) ≡ 0(mod 12) for the

existence of a cyclic BIBD(v, 4, λ) determine a minimum value of λ. It is enough to

consider these parameters since a cyclic BIBD(v, 4, nλ) can be constructed from a

cyclic BIBD(v, 4, λ) by taking n copies.
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Theorem 4.1.1 and the fact that cyclic BIBD(v, 4, λ) with small values of v exists

for every admissible pair (v, λ) (see Appendix B), gives us the following necessary

conditions.

Theorem 4.1.2 (Necessary conditions) The necessary conditions for the exis-

tence of a cyclic BIBD(v, 4, λ) are:

1. v ≡ 1, 4 (mod 12) and all λs;

2. v ≡ 1 (mod 3) and λ ≡ 2, 4, 8, 10(mod 12);

3. v ≡ 0, 1 (mod 4) and λ ≡ 3, 9(mod 12);

4. all v and λ ≡ 0, 6(mod 12);

with the exceptions of: cyclic BIBD(v, 4, 1) for v = 16, 25, 28 do not exist, cyclic

BIBD(8, 4, 3) and cyclic BIBD(10, 4, 2) do not exist.

It is known that cyclic BIBD(v, 4, 1) for v = 16, 25, 28 do not exist [41].

For a cyclic BIBD(8, 4, 3) to exist, the design needs to have one full orbit and

a regular orbit repeated three times, or one full orbit, one regular orbit and one

short orbit. Assume the cyclic BIBD(8, 4, 3) has the regular orbit {0, 2, 4, 6} repeated

three times. This orbit covers the differences 2, 4, 6 exactly three times and it is

impossible to find a full orbit that will cover the remaining differences exactly three
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times. Assume now that the cyclic BIBD(8, 4, 3) has the regular orbit {0, 2, 4, 6} and

one short orbit, say {0, 1, 4, 5}. These orbits will cover difference 4 exactly three

times and will cover the differences 1, 2, 3, each exactly once. Then it is impossible to

find a full orbit that will cover the differences 1, 2, 3 or their inverses exactly twice.

A similar argument can be used if the short orbit is {0, 3, 4, 7}. Therefore, a cyclic

BIBD(8, 4, 3) does not exist.

For a cyclic BIBD(10, 4, 2) to exist, the design must have 15 blocks. So 15 can

be expressed as the sum of the lengths of the orbits of the blocks. The stabilizer

of a block has order 1 or 2, therefore the orbit of a block has length either 10 or

5. In the first case a set of base blocks has the form {0, a, 5, a + 5}, {0, b, 5, b + 5},

{0, c, 5, c+5} which is obviously impossible since we would have three blocks through

0 and 5. Thus, we necessarily are in the second case and a set of base blocks has

the form {0, a, b, c}, {0, d, 5, d + 5}. One the other hand one can see, even by hand,

that no quadruple (a, b, c, d) can realize such a set of base blocks. Therefore, a cyclic

BIBD(10, 4, 2) does not exist.

For v ≡ 0 (mod 2), the designs may have short orbits. There are two types of

short orbits:

• the regular short orbit {0, v
4
, 2v

4
, 3v

4
} which has length equal to 1

4
of the full orbit;
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• the short orbit {0, i, v
2
, i+ v

2
}, 1 ≤ i < v

2
which has length equal to a half of the

full orbit.

To see the designs that have short orbits, we exhibit the necessary conditions of

the above theorem in Table 4.1.

v/λ (mod 12) 0 1 2 3 4 5 6 7 8 9 10 11

0 - +rs +s +r

1 - - - - - - - - - - - -
2 - +s

3 - -
4 - +r +s +rs - +r +s +rs - +r +s +rs

5 - - - -
6 - +s

7 - - - - - -
8 - +rs +s +r

9 - - - -
10 - +s - +s - +s

11 - -

Table 4.1: Necessary conditions for the existence of a cyclic BIBD(v, 4, λ)

We denote with − the designs with no short orbits, with +r the designs that

contain the regular short orbit, with +s the designs that contain the short orbit or

the regular short orbit twice, with +rs the designs that contain the regular short orbit

and the short orbit or the regular short orbit three times. An empty cell in the table

shows that no such design exists.

To prove that the necessary conditions are also sufficient for cyclic block designs
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with block size 4 is a difficult task. We will prove some of the necessary conditions

by constructing new linear classes of such designs.

4.2 Cyclic BIBD(v, 4, 1)

4.2.1 Heffter’s Problem for k = 4

In her doctoral thesis, M.J Colbourn [41] tried to construct cyclic block designs with

block size four using Peltesohn’s proof technique. We present her idea here: the

construction of a cyclic BIBD(v, 4, 1), v = 12n + 1, is equivalent to partitioning the

integers {1, 2, . . . , 12n} into n 12-subsets {a, v− a, b, v− b, c, v− c, a+ b, v− a− b, b+

c, v − b− c, a+ b+ c, v − a− b− c}. Then the base blocks {0, a, a+ b, a+ b+ c} will

be the base blocks of a cyclic BIBD(12n+ 1, 4, 1).

In subsection 4.2.2, we reduce this problem in half.

Example 4.2.1 For v = 49 and k = 4, a partition of the numbers {1, . . . , 48} into

four 12-subsets is:

1. {1, 48, 11, 37, 6, 43, 12, 37, 17, 32, 18, 31};

2. {2, 47, 5, 44, 15, 34, 7, 42, 20, 29, 22, 27};

3. {3, 46, 13, 36, 8, 41, 16, 33, 21, 28, 24, 25};
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4. {4, 45, 10, 39, 9, 40, 14, 35, 19, 30, 23, 26}.

and the base blocks of the cyclic BIBD(49, 4, 1) are: {{0, 1, 12, 18},

{0, 2, 7, 22}, {0, 3, 16, 24}, {0, 4, 14, 23}}.

When v = 12n+4, the designs will contain the extra starter block {0, 3n+1, 6n+

2, 9n + 3}. Hence, the construction of a cyclic BIBD(12n + 4, 4, 1), is equivalent to

partitioning the set of integers {1, . . . , 3n, 3n+ 2, . . . , 6n+ 1, 6n+ 3, . . . , 9n+ 2, 9n+

4, . . . , 12n+ 3} into n 12-subsets {a, v − a, b, v − b, c, v − c, a+ b, v − a− b, b+ c, v −

b− c, a+ b+ c, v − a− b− c} [41].

4.2.2 Skolem Partitioning Problem for k = 4 and λ = 1

The problem can be reduced in half as follows:

Remark 4.2.1 If there is a partition of the numbers {1, . . . , 6n} into n six-subsets

{a, b, c, a+ b, b+ c, a+ b+ c}, then {0, a, a+ b, a+ b+ c} will be the base blocks of a

cyclic BIBD(12n + 1, 4, 1). These n six-subsets can be arranged into triangles of the

form:

a+ b+ c

a+ b b+ c

a b c.
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Example 4.2.2 For v = 49 and k = 4, a partition of the numbers {1, . . . , 24} into

four six-subsets is:

1. {1, 11, 6, 12, 17, 18};

2. {2, 5, 15, 7, 20, 22};

3. {3, 13, 8, 16, 21, 24};

4. {4, 10, 9, 14, 19, 23}.

The triangle representation of these sets is:

18 22 24 23

12 17 7 20 16 21 14 19

1 11 6 2 5 15 3 13 8 4 10 9

and the base blocks of the cyclic BIBD(49, 4, 1) are: {{0, 1, 12, 18},

{0, 2, 7, 22}, {0, 3, 16, 24}, {0, 4, 14, 23}}.

The problem is similar for the case v = 12n+ 4.

Remark 4.2.2 If there is a partition of the numbers {1, . . . , 3n, 3n + 2, . . . 6n + 1}

into n six-subsets {a, b, c, a + b, b + c, a + b + c}, then {0, a, a + b, a + b + c} together

with the extra short orbit {0, 3n+ 1, 6n+ 2, 9n+ 3} will be the base blocks of a cyclic

BIBD(12n+ 4, 4, 1).
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4.2.3 Cyclic BIBD(12n+ 1, 4, 1)

In this subsection, we give several examples that use Skolem-type sequences to con-

struct cyclic BIBD(v, 4, 1), and some constructions that reduce the problem to a

problem similar to Heffter’s difference problem.

Remark 4.2.3 Let (ai, bi), 1 ≤ i ≤ n, be the pairs of a (hooked) Skolem sequence of

order n, and let xi, 1 ≤ xi ≤ n, be positive integers. If there exists a partition of the

numbers {n+ 1, . . . , 4n} into triples of the form (xi − i, xi, bi + 4n− xi), ∀1 ≤ i ≤ n,

then {0, i, xi, bi+4n}, 1 ≤ i ≤ n, will be the base blocks of a cyclic BIBD(12n+1, 4, 1).

Proof By the definition of a (hooked) Skolem sequence, bi − ai = i, ∀1 ≤ i ≤ n ⇒

bi − i = ai, ∀1 ≤ i ≤ n. Taking the differences ±i,±(bi + 4n),±(bi + 4n − i) from

{0, i, xi, bi + 4n} we see that:

• ±i gives all the differences {1, . . . , n}, each exactly once,

• for n ≡ 0, 1(mod 4), ±(bi + 4n) and ±(bi + 4n − i) = (ai + 4n) give all the

differences {4n + 1, . . . , 6n}, each exactly once, since (ai, bi) is a partition of

{1, . . . , 2n},

• for n ≡ 2, 3(mod 4), ±(bi + 4n) and ±(bi + 4n − i) = (ai + 4n) give all the

differences {4n + 1, . . . , 6n − 1, 6n + 1}, each exactly once, since (ai, bi) is a

partition of {1, . . . , 2n− 1, 2n+ 1}.
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So, the differences {1, . . . , n} and {4n+ 1, . . . , 6n} (respectively {4n+ 1, . . . , 6n−

1, 6n+ 1}) are covered exactly once.

Suppose we can partition the numbers {n + 1, . . . , 4n} into triples of the form

(xi − i, xi, bi + 4n− xi), 1 ≤ i ≤ n. Then {0, i, xi, bi + 4n}, 1 ≤ i ≤ n, covers all the

differences {1, . . . , 6n}, each exactly once. Therefore, {0, i, xi, bi + 4n}, 1 ≤ i ≤ n,

will be the base blocks of a cyclic BIBD(12n+ 1, 4, 1). �

Example 4.2.3 Let v = 49 and (6, 7), (1, 3), (2, 5), (4, 8) be the pairs of a Skolem

sequence of order 4. Then the base blocks {0, 1, x1, 23}, {0, 2, x2, 19}, {0, 3, x3, 21},

{0, 4, x4, 24} cover the differences {1, . . . , 4} and {17, . . . , 24}. In order to complete

the quadruples we need to partition the numbers {5, . . . , 16} (or {1, . . . , 12}) into

triples (xi − i, xi, bi + 4n− xi), 1 ≤ i ≤ 4.

A possible solution is: (6, 7, 16), (12, 14, 5), (10, 13, 8), (11, 15, 9).

If we subtract 4 from each of the numbers above, we get the triples (2, 3, 12),

(8, 10, 1), (6, 9, 4), (7, 11, 5) which can be represented as a Skolem sequence with 4

hooks as follows: from the first triple (2, 3, 12) we place a 1 in positions 2 and 3 and

a hook in position 12, from the second triple (8, 10, 1) we place a 2 in positions 8 and

10 and a hook in position 1 and so on. The sequence is:
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? 1 1 ? ? 3 4 2 3 2 4 ?

- - - - - - - - - - - -

1 2 3 4 5 6 7 8 9 10 11 12

So the base blocks of the cyclic BIBD(49, 4, 1) are: {{0, 1, 7, 23},

{0, 2, 14, 19}, {0, 3, 13, 21}, {0, 4, 15, 24}}.

One possible way to find the integers xi is to find a Skolem sequence with n hooks

that gives the required partition. Unfortunately, not every Skolem sequence with n

hooks will solve the problem.

Problem 4.2.1 What is the format of the Skolem-type sequence with n hooks that

gives the required partition?

There are many solutions for different orders. For example, there are three solu-

tions for v = 49, three solutions for v = 61, thirty-six solutions for v = 73 and several

solutions for v = 85 and v = 97. It is known that the number of Skolem sequences

of order n grows exponentially as the order of the sequence grows. It seems that the

number of solutions we get using our approach also grows exponentially. A few more

examples of such designs are given in Appendix A.
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4.2.4 Cyclic BIBD(12n+ 4, 4, 1)

In this case, the designs will have the short orbit {0, 3n+ 1, 6n+ 2, 9n+ 3}. We split

this problem in two cases.

Case 1: n ≡ 0, 1(mod 4)

Remark 4.2.4 Let (ai, bi), 1 ≤ i ≤ n, be a Skolem sequence of order n, and let xi, 1 ≤

xi ≤ n, be positive integers. If there exists a partition of the numbers {n+1, . . . , 4n+

1} \ {3n + 1} into triples of the form (xi − i, xi, bi + 4n + 1 − xi), ∀1 ≤ i ≤ n, then

{0, i, xi, bi+4n+1}, 1 ≤ i ≤ n, together with the short orbit {0, 3n+1, 6n+2, 9n+3},

will be the base blocks of a cyclic BIBD(12n+ 4, 4, 1).

In this case the base blocks {0, i, xi, bi+4n+1}, 1 ≤ i ≤ n, cover all the differences

{1, . . . , n} and {4n + 2, . . . , 6n + 1} exactly once. The short orbit {0, 3n + 1, 6n +

2, 9n+ 3} covers the differences 3n+ 1 and 6n+ 2.

Using the above approach, the problem is reduced to partitioning the numbers

{n + 1, . . . , 4n + 1} \ {3n + 1} into triples of the form (xi − i, xi, bi + 4n + 1 − xi),

∀1 ≤ i ≤ n. Subtracting n from each of the numbers above, the problem is equivalent

to partitioning the numbers {1, . . . , 3n} \ {2n + 1} into triples of the form {xi − i−

n, xi − n, bi + 3n+ 1− xi}, 1 ≤ i ≤ n.

Example 4.2.4 Let v = 64 and (2, 3), (6, 8), (7, 10), (1, 5), (4, 9) be the pairs of
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a Skolem sequence of order 5. Then the base blocks {0, 1, x1, 24}, {0, 2, x2, 29},

{0, 3, x3, 31}, {0, 4, x4, 26}, {0, 5, x5, 30}, {0, 16, 32, 48} cover the differences

{1, . . . , 5} and {22, . . . , 31} and their inverses. The last block covers the differ-

ences 16 and 32 and their inverses. In order to complete the quadruples, we

need to partition the numbers {6, . . . , 21} \ {16} (or {1, . . . , 16} \ {11}) into triples

(xi − i, xi, bi + 4n+ 1− xi), 1 ≤ i ≤ 5.

A possible solution is: (9, 10, 14), (6, 8, 21), (17, 20, 11), (15, 19, 7), (13, 18, 12).

If we subtract 5 from each of the numbers above, we get (4, 5, 9), (1, 3, 16),

(12, 15, 6), (10, 14, 2), (8, 13, 7), which can be represented as a Skolem sequence with

6 hooks (the extra hook is in position 11) as follows:

2 ? 2 1 1 ? ? 5 ? 4 ? 3 5 4 3 ?

- - - - - - - - - - - - - - - -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

So the base blocks of the cyclic BIBD(64, 4, 1) are: {{0, 1, 10, 24},

{0, 2, 8, 29}, {0, 3, 20, 31}, {0, 4, 19, 26}, {0, 5, 18, 30}, {0, 16, 32, 48}}.

More examples of such designs are given in Appendix A.

Case 2: n ≡ 2, 3(mod 4)

Remark 4.2.5 Let (ai, bi), 1 ≤ i ≤ n, be a reversed hooked Skolem sequence of order

n, and let xi, 1 ≤ xi ≤ n, be positive integers. If there exists a partition of the
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numbers {n+ 1, . . . , 4n+ 2} \ {3n+ 1, 4n+ 1} into triples of the form (xi− i, xi, bi +

4n − xi), 1 ≤ i ≤ n, then {0, i, xi, bi + 4n}, 1 ≤ i ≤ n, together with the short orbit

{0, 3n+ 1, 6n+ 2, 9n+ 3}, will be the base blocks of a cyclic BIBD(12n+ 4, 4, 1).

Using the above approach our problem is reduced to partitioning the numbers

{n+ 1, . . . , 4n+ 2} \ {3n+ 1, 4n+ 1} into triples of the form (xi− i, xi, bi + 4n− xi),

∀1 ≤ i ≤ n. Subtracting n from each of the numbers above, the problem is equivalent

to partitioning the numbers {1, . . . , 3n+ 2} \ {2n+ 1, 3n+ 1} into triples of the form

{xi − i− n, xi − n, bi + 3n− xi}, ∀1 ≤ i ≤ n.

Example 4.2.5 Let v = 76 and (6, 7), (1, 3), (10, 13), (8, 12), (4, 9), (5, 11) be the pairs

of a reversed hooked Skolem sequence of order 5. Then the base blocks {0, 1, x1, 31},

{0, 2, x2, 27}, {0, 3, x3, 37}, {0, 4, x4, 36}, {0, 5, x5, 33}, {0, 6, x6, 35}, {0, 19, 38, 57}

cover the differences {1, . . . , 6} and {25, . . . , 37} \ {26} and their inverses. The

last block covers the differences 19 and 38 and their inverses. In order to com-

plete the quadruples we need to partition the numbers {7, . . . , 26} \ {19, 25} (or

{1, . . . , 20} \ {13, 19}) into triples (xi − i, xi, bi + 4n− xi), 1 ≤ i ≤ 6.

A possible solution is: (7, 8, 23), (10, 12, 15), (21, 24, 13), (18, 22, 14), (11, 16, 17),

(20, 26, 9).

If we subtract 6 from each of the numbers above, we get: (1, 2, 17), (4, 6, 9),
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(15, 18, 7), (12, 16, 8), (5, 10, 11), (14, 20, 3), which can be represented as a Skolem

sequence with 8 hooks (the extra hooks are in positions 13, 19) as follows:

1 1 ? 2 5 2 ? ? ? 5 ? 4 ? 6 3 4 ? 3 ? 6

- - - - - - - - - - - - - - - - - - - -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

So the base blocks of the cyclic BIBD(76, 4, 1) are: {{0, 1, 8, 31},

{0, 2, 12, 27}, {0, 3, 24, 37}, {0, 4, 22, 36}, {0, 5, 16, 33}, {0, 6, 26, 35}, {0, 19, 38, 57}}.

Finding xi for all 1 ≤ i ≤ n will solve the problem. There are fifteen solutions for

v = 76 and many solutions for v = 88. In Appendix A we list a few more examples

of such designs.

4.3 Cyclic BIBD(v, 4, 2)

4.3.1 Cyclic BIBD(12n+ 1, 4, 2)

We use the 2-fold Skolem arrays of order n to construct cyclic BIBD(12n + 1, 4, 2).

We also give a construction that reduces the problem to a problem similar to Heffter’s

difference problem.

Remark 4.3.1 Let (ai, bi) and (ci, di), 1 ≤ i ≤ n, be a 2-fold Skolem array of order

n, and let xi, x
′
i be positive integers. If there exists a partition of the numbers {n +
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1, . . . , 4n}∪ {n+ 1, . . . , 4n} (or their inverses) into triples of the form (xi− i, xi, bi +

4n−xi) and (x′i− i, x′i, di+4n−x′i), 1 ≤ i ≤ n, then {0, i, xi, bi+4n} and {0, i, x′i, di+

4n}, 1 ≤ i ≤ n, will be the base blocks of a cyclic BIBD(12n+ 1, 4, 2).

Using the above approach our problem is reduced to partitioning the numbers

{n + 1, . . . , 4n} ∪ {n + 1, . . . , 4n} (or their inverses) into triples of the form (xi −

i, xi, bi + 4n − xi) and (x′i − i, x′i, di + 4n − x′i), 1 ≤ i ≤ n. Finding xi and x′i for all

1 ≤ i ≤ n will solve the problem.

Example 4.3.1 Let v = 37 and (1, 2), (5, 6), (2, 4), (3, 5), (1, 4), (3, 6) be the pairs of

a 2-fold Skolem array of order 3. Then, the base blocks {0, 1, x1, 14}, {0, 1, x′1, 18},

{0, 2, x2, 17}, {0, 2, x′2, 16}, {0, 3, x3, 16}, {0, 3, x′3, 18}, cover the differences {1, . . . , 3}

and {13, . . . , 18}, each exactly twice. In order to complete the quadruples we need to

partition the numbers {4, . . . , 12} (or {1, . . . , 9}) into triples (xi − i, xi, bi + 4n− xi),

(x′i − i, x′i, di + 4n− x′i), 1 ≤ i ≤ 3.

A possible solution is: (4, 5, 9), (11, 12, 6), (10, 12, 5), (8, 10, 6), (4, 7, 9), (8, 11, 7).

If we subtract 3 from each of the numbers above we get: (1, 2, 6), (8, 9, 3), (7, 9, 2),

(5, 7, 3), (1, 4, 6), (5, 8, 4), which can be represented as a 2-fold Skolem array with 6

hooks as follows:
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3 ? ? 3 3 ? 2 3 2

1 1 ? ? 2 ? 2 1 1

- - - - - - - - -

1 2 3 4 5 6 7 8 9

So the base blocks of the cyclic BIBD(37, 4, 2) are: {{0, 1, 5, 14},

{0, 1, 12, 18}, {0, 2, 12, 17}, {0, 2, 10, 16}, {0, 3, 7, 16}, {0, 3, 11, 18}}.

In Appendix A, we list a few more examples of such designs.

4.3.2 Cyclic BIBD(12n+ 4, 4, 2)

Similar to Section 4.3.1 with the only exception being that the cyclic BIBD(12n +

4, 4, 2) will have the extra short orbit {0, 3n+ 1, 6n+ 2, 9n+ 3}.

4.3.3 Cyclic BIBD(12n+ 7, 4, 2)

We write 12n+ 7 = 6(2n+ 1) + 1.

Remark 4.3.2 Let (ai, bi), 1 ≤ i ≤ 2n + 1 be a (hooked) Skolem sequence of order

2n + 1. If there exists a partition of the numbers {1, . . . , 6n + 3} or the numbers

{1, . . . , 6n+ 2, 6n+ 4} (or their inverses) into triples of the form (xi− i, xi, bi + 2n+
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1 − xi), 1 ≤ i ≤ 2n + 1, then {0, i, xi, bi + 2n + 1}, 1 ≤ i ≤ 2n + 1, will be the base

blocks of a cyclic BIBD(12n+ 1, 4, 2).

Using the above approach our problem is reduced to partitioning the numbers

{1, . . . , 6n+ 3} or the numbers {1, . . . , 6n+ 2, 6n+ 4} (or their inverses) into triples

of the form (xi − i, xi, bi + 2n + 1 − xi) ∀1 ≤ i ≤ 2n + 1. Finding xi will solve the

problem.

Example 4.3.2 Let v = 19 and {(1, 2), (3, 5), (4, 7)} be the pairs of a hooked

Skolem sequence of order 3. We need to partition {1, . . . , 8, 10} into triples (xi −

i, xi, bi + 3 − xi), 1 ≤ i ≤ 3. The partition is (5, 6,−1), (8, 10,−2), (4, 7, 3). Then

{0, 1, 6, 5}, {0, 2, 10, 8}, {0, 3, 7, 10} are the base blocks of a cyclic BIBD(19, 4, 2).

4.3.4 Cyclic BIBD(12n+ 10, 4, 2)

We write 12n+ 10 = 6(2n+ 1) + 4.

Case 1: n ≡ 0 (mod 2)

Remark 4.3.3 Let (ai, bi), 1 ≤ i ≤ 2n+ 1 be a Skolem sequence of order 2n+ 1, and

let xi be positive integers. If there exists a partition of the numbers {2, . . . , 6n + 4}

(or their inverses) into triples of the form (xi − i, xi, bi + 2n + 1 − xi), 1 ≤ i ≤
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2n+ 1, then {0, i, xi, bi + 2n+ 1}, 1 ≤ i ≤ 2n+ 1, together with the extra short orbit

{0, 1, 6n+ 4, 6n+ 5}, will be the base blocks of a cyclic BIBD(12n+ 10, 4, 2).

Using the above approach our problem is reduced to partitioning the numbers

{2, . . . , 6n+ 4} (or their inverses) into triples of the form (xi − i, xi, bi + 2n+ 1− xi)

∀1 ≤ i ≤ 2n+ 1.

Case 2: n ≡ 1 (mod 2)

Remark 4.3.4 Let (ai, bi), 1 ≤ i ≤ 2n + 1, be a hooked Skolem sequence of order

2n + 1, and let xi be positive integers. If there exists a partition of the numbers

{1, 3, . . . , 6n+4} (or their inverses) into triples of the form (xi−i, xi, bi+2n+1−xi),

1 ≤ i ≤ 2n+1, then {0, i, xi, bi+2n+1}, 1 ≤ i ≤ 2n+1, together with the extra short

orbit {0, 6n+3, 6n+5, 12n+8}, will be the base blocks of a cyclic BIBD(12n+10, 4, 2).

Using the above approach our problem is reduced to partitioning the numbers

{1, 3, . . . , 6n+ 4} (or their inverses) into triples of the form (xi− i, xi, bi+ 2n+ 1−xi)

∀1 ≤ i ≤ 2n+ 1.

Example 4.3.3 Let v = 34 and {(2, 3), (6, 8), (7, 10), (1, 5), (4, 9)} be the pairs

of a Skolem sequence of order 5. Then {0, 1, 31, 8}, {0, 2, 7, 13}, {0, 3, 24, 15},

{0, 4, 12, 10}, {0, 5, 20, 14} together with the short orbit {0, 1, 16, 17} are the base

blocks of a cyclic BIBD(34, 4, 2).
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4.4 Cyclic BIBD(v, 4, 3)

In this section we give examples of Skolem partitioning problem for each admissible

class of cyclic designs with λ = 3.

4.4.1 Cyclic BIBD(12n, 4, 3)

We write 12n = 4(3n− 1) + 4.

Case 1: n ≡ 0, 3 (mod 4)

Remark 4.4.1 Let (ai, bi), 1 ≤ i ≤ 3n − 1, be a (3n)-extended Skolem sequence of

order 3n − 1, and let xi, 1 ≤ i ≤ 3n − 1, be positive integers. If there exists a

partition of the numbers {1, . . . , 3n− 1} ∪ {1, . . . , 3n− 1} ∪ {3n+ 1, . . . , 6n− 1} (or

their inverses) into triples of the form (xi − i, xi, bi + 3n− xi), 1 ≤ i ≤ 3n− 1, then

{0, i, xi, bi + 3n}, 1 ≤ i ≤ 3n − 1 together with the regular short orbit {0, 3n, 6n, 9n}

taken three times, will be the base blocks of a cyclic BIBD(12n, 4, 3).

Using the above approach our problem is reduced to partitioning the numbers

{1, . . . , 3n− 1}∪ {1, . . . , 3n− 1}∪ {3n+ 1, . . . , 6n− 1} (or their inverses) into triples

of the form (xi − i, xi, bi + 3n− xi) ∀1 ≤ i ≤ 3n− 1.

Case 2: n ≡ 1, 2 (mod 4)
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Remark 4.4.2 Let (ai, bi), 1 ≤ i ≤ 3n−1, be a (3n+1)-extended Skolem sequence of

order 3n− 1, and let xi, 1 ≤ i ≤ 3n− 1 be positive integers. If there exists a partition

of the numbers {1, . . . , 3n − 2} ∪ {1, . . . , 6n − 1} (or their inverses) into triples of

the form (xi − i, xi, bi + 3n − 1 − xi), 1 ≤ i ≤ 3n − 1, then {0, i, xi, bi + 3n − 1},

1 ≤ i ≤ 3n− 1, together with the regular short orbit {0, 3n, 6n, 9n} and together with

the short orbit {0, 3n−1, 6n, 9n−1}, will be the base blocks of a cyclic BIBD(12n, 4, 3).

Using the above approach our problem is reduced to partitioning the numbers

{1, . . . , 3n − 2} ∪ {1, . . . , 6n − 1} (or their inverses) into triples of the form (xi −

i, xi, bi + 3n− 1− xi), 1 ≤ i ≤ 3n− 1.

Example 4.4.1 Let v = 12 and {(1, 2), (3, 5)} be the pairs of a 4-extended Skolem

sequence of order 2. Then {0, 1, 11, 4}, {0, 2, 11, 7} together with the regular short

orbit {0, 3, 6, 9} and together with the short orbit {0, 2, 6, 8} are the base blocks of a

cyclic BIBD(12, 4, 3).

4.4.2 Cyclic BIBD(12n+ 1, 4, 3)

We use a 3-fold (hooked) Skolem array of order n to construct cyclic BIBD(12n +

1, 4, 3).

Remark 4.4.3 Let (ai, bi), (ci, di) and (ei, fi), 1 ≤ i ≤ n, be a 3-fold (hooked) Skolem
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array of order n, and let xi, x
′
i, x
′′
i be positive integers. If there exists a partition of the

numbers {n+1, . . . , 4n}∪{n+1, . . . , 4n}∪{n+1, . . . , 4n} (or their inverses) into triples

of the form (xi− i, xi, bi+4n−xi), (x′i− i, x′i, bi+4n−x′i) and (x′′i − i, x′′i , fi+4n−x′′i ),

1 ≤ i ≤ n, then {0, i, xi, bi + 4n}, {0, i, x′i, di + 4n}, and {0, i, x′′i , fi + 4n} 1 ≤ i ≤ n,

will be the base blocks of a cyclic BIBD(12n+ 1, 4, 3).

Using the above approach our problem is reduced to partitioning the numbers

{n + 1, . . . , 4n} ∪ {n + 1, . . . , 4n} ∪ {n + 1, . . . , 4n} (or their inverses) into triples of

the form (xi− i, xi, bi + 4n−xi), (x′i− i, x′i, bi + 4n−x′i) and (x′′i − i, x′′i , fi + 4n−x′′i ),

1 ≤ i ≤ n.

Example 4.4.2 Let v = 13 and {(1, 2), (1, 2), (1, 2)} be the pairs of a 3-fold Skolem

sequence of order 1. Then {0, 1, 4, 6}, {0, 1, 4, 6}, {0, 1, 4, 6} are the base blocks of a

cyclic BIBD(13, 4, 3).

4.4.3 Cyclic BIBD(12n+ 5, 4, 3)

We write 12n+ 5 = 4(3n+ 1) + 1.

Remark 4.4.4 Let (ai, bi), 1 ≤ i ≤ 3n + 1, be a (hooked) Skolem sequence of order

3n + 1, and let xi, 1 ≤ i ≤ 3n + 1, be positive integers. If there exists a partition of

the numbers {1, . . . , 6n+ 2} ∪ {3n+ 2, . . . , 6n+ 2} (or their inverses) into triples of
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the form (xi − i, xi, bi − xi), 1 ≤ i ≤ 3n+ 1, then {0, i, xi, bi}, 1 ≤ i ≤ 3n+ 1, will be

the base blocks of a cyclic BIBD(12n+ 5, 4, 3).

Using the above approach our problem is reduced to partitioning the numbers

{1, . . . , 6n + 2} ∪ {3n + 2, . . . , 6n + 2} (or their inverses) into triples of the form

(xi − i, xi, bi − xi), 1 ≤ i ≤ 3n+ 1.

Example 4.4.3 Let v = 17 and {(1, 2), (4, 6), (5, 8), (3, 7)} be the pairs of a Skolem

sequence of order 4. Then {0, 1, 11, 2}, {0, 2, 13, 6}, {0, 3, 15, 8}, {0, 4, 16, 7} are the

base blocks of a cyclic BIBD(17, 4, 3).

4.4.4 Cyclic BIBD(12n+ 8, 4, 3)

We write 12n+ 8 = 4(3n+ 1) + 4.

Case 1: n ≡ 0, 3 (mod 4)

Remark 4.4.5 Let (ai, bi), 1 ≤ i ≤ 3n + 1, be a (3n + 3)-extended Skolem sequence

of order 3n + 1, and let xi, 1 ≤ i ≤ 3n + 1, be positive integers. If there exists a

partition of the numbers {1, . . . , 3n} ∪ {1, . . . , 6n+ 3} (or their inverses) into triples

of the form (xi − i, xi, bi + 3n + 1 − xi), 1 ≤ i ≤ 3n + 1, then {0, i, xi, bi + 3n + 1},

1 ≤ i ≤ 3n + 1 together with the regular short orbit {0, 3n + 2, 6n + 4, 9n + 6} and
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and together with the short orbit {0, 3n+ 1, 6n+ 4, 9n+ 5}, will be the base blocks of

a cyclic BIBD(12n+ 8, 4, 3).

Using the above approach our problem is reduced to partitioning the numbers

{1, . . . , 3n}∪{1, . . . , 6n+ 3} (or their inverses) into triples of the form (xi− i, xi, bi +

3n+ 1− xi) ∀1 ≤ i ≤ 3n+ 1.

Case 2: n ≡ 1, 2 (mod 4)

Remark 4.4.6 Let (ai, bi), 1 ≤ i ≤ 3n + 1, be a (3n + 2)-extended Skolem sequence

of order 3n + 1, and let xi, 1 ≤ i ≤ 3n + 1, be positive integers. If there exists

a partition of the numbers {1, . . . , 3n + 1} ∪ {1, . . . , 3n + 1} ∪ {3n + 3, . . . , 6n + 3}

(or their inverses) into triples of the form (xi − i, xi, bi + 3n + 2 − xi), 1 ≤ i ≤

3n + 1, then {0, i, xi, bi + 3n + 2}, 1 ≤ i ≤ 3n + 1, together with the regular short

orbit {0, 3n + 2, 6n + 4, 9n + 6} taken three times, will be the base blocks of a cyclic

BIBD(12n+ 8, 4, 3).

Using the above approach our problem is reduced to partitioning the numbers

{1, . . . , 3n+ 1} ∪ {1, . . . , 3n+ 1} ∪ {3n+ 3, . . . , 6n+ 3} (or their inverses) into triples

of the form (xi − i, xi, bi + 3n+ 2− xi), 1 ≤ i ≤ 3n+ 1.

Example 4.4.4 Let v = 20 and {(8, 9), (1, 3), (4, 7), (2, 6)} be the pairs of a 5-

ext Skolem sequence of order 4. Then {0, 1, 18, 14}, {0, 2, 19, 8}, {0, 3, 4, 12},
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{0, 4, 18, 11} together with the regular short orbit {0, 5, 10, 15} taken three times are

the base blocks of a cyclic BIBD(20, 4, 3).

4.4.5 Cyclic BIBD(12n+ 9, 4, 3)

We write 12n+ 9 = 4(3n+ 2) + 1.

Remark 4.4.7 Let (ai, bi), 1 ≤ i ≤ 3n + 2, be a (hooked) Skolem sequence of order

3n + 2, and let xi, 1 ≤ i ≤ 3n + 2 be positive integers. If there exists a partition of

the numbers {1, . . . , 6n+ 4} ∪ {3n+ 3, . . . , 6n+ 4} (or their inverses) into triples of

the form (xi − i, xi, bi − xi), 1 ≤ i ≤ 3n+ 2, then {0, i, xi, bi}, 1 ≤ i ≤ 3n+ 2, will be

the base blocks of a cyclic BIBD(12n+ 9, 4, 3).

Using the above approach our problem is reduced to partitioning the numbers

{1, . . . , 6n + 4} ∪ {3n + 3, . . . , 6n + 4} (or their inverses) into triples of the form

(xi − i, xi, bi − xi), 1 ≤ i ≤ 3n+ 2.

Example 4.4.5 Let v = 9 and {(1, 2), (3, 5)} be the pairs of a hooked Skolem sequence

of order 2. Then {0, 1, 2, 4}, {0, 2, 5, 6} are the base blocks of a cyclic BIBD(9, 4, 3).
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4.5 Cyclic BIBD(v, 4, 6)

4.5.1 Cyclic BIBD(v, 4, 6), v ≡ 1, 5, 7, 11(mod 12)

For λ = 6 and v ≡ 1, 5, 7, 11(mod 12) we give a few constructions of cyclic

block designs using Skolem-type sequences. Cyclic designs for λ = 6 and v ≡

1, 5, 7, 11(mod 12) were also constructed by Furino [53] using an algebraic proof.

We give a very simple combinatorial proof of the same problem.

Theorem 4.5.1 Let v ≡ 1, 5, 7, 11(mod 12). Let S = (v − 4, v − 6, . . . , 1, 1, . . . , v −

6, v − 4, 2, 0, 2) be a Skolem-type sequence where D = {1, 2, 3, 5, . . . , v − 4} and let

{(ai, bi)|i ∈ D} be the pairs of positions in Sn for which bi − ai = i. Then the set F

= {{0, i, ai + 1, bi + 1}|i ∈ D} (mod v) is a (v, 4, 6)-DF. Hence, the set of quadruples

in F form the base blocks of a cyclic BIBD(v, 4, 6).

Proof Set Bi = {{0, i, ai + 1, bi + 1}|i ∈ D} and consider the elements of Bi

mod v. We have ∂Bi = ∆Bi = ±{i, ai + 1, bi + 1, ai + 1 − i, ai + 1, i} whence

∂F=±{1, 2, 3, 5, . . . , (v−4)}∪±{1, 2, . . . , bv
2
c}∪±{1, 2, . . . , bv

2
c}∪±{2, 5, 8, . . . , (v−

3), 1, 4, . . . , (bv
2
c − 1)} ∪ ±{1, 2, . . . , bv

2
c} ∪ ±{1, 2, 3, 5, . . . , (v − 4)}.

Since we consider the elements of ∂F mod v, we have ±{1, 2, 3, 5, . . . , (v −

4)} = {1, 2, . . . , v − 1}, ±{1, 2, . . . , bv
2
c} = {1, 2, . . . , v − 1} and ±{2, 5, 8, . . . , (v −
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3), 1, 4, . . . , (bv
2
c − 1)} = {1, 2, . . . , v − 1}. Whence, ∂F is a (v, 4, 6)-DF. Hence, the

set of quadruples in F form the base blocks of a cyclic BIBD(v, 4, 6). �

Example 4.5.1 For v = 11, the Skolem-type sequence is (7, 5, 3, 1, 1, 3, 5, 7,

2, 0, 2) with the pairs (4, 5), (9, 11), (3, 6), (2, 7), (1, 8). These pairs yield the base

blocks of a cyclic BIBD(11, 4, 6): {0, 1, 5, 6}, {0, 2, 10, 1}, {0, 3, 4, 7}, {0, 5, 3, 8} and

{0, 7, 2, 9} (mod 11).

Theorem 4.5.1 can be generalized for all k ≥ 5 as in Theorem 4.5.2. The proof is

similar to Theorem 4.5.1 and is thus omitted.

Theorem 4.5.2 Let v ≡ 1, 5, 7, 11(mod 12), k ≥ 5 and v ≥ 2k − 5. Let S =

(v − 4, v − 6, . . . , 1, 1, . . . , v − 6, v − 4, 2, 0, 2) be a Skolem-type sequence where D =

{1, 2, 3, 5, . . . , v − 4} and let {(ai, bi)|i ∈ D} be the pairs of positions in Sn for which

bi−ai = i. Then the set F={{0, i, ai+1, bi+1, i+bi+1, 2i+bi+1, . . . , (k−4)i+bi+1}|i ∈

D} (mod v) is a (v, k, k(k−1)
2

)-DF. Hence, the set of quadruples in F form the base

blocks of a cyclic BIBD(v, k, k(k−1)
2

).

Example 4.5.2 For v = 11, the Skolem-type sequence is (7, 5, 3, 1, 1, 3, 5, 7,

2, 0, 2) with the pairs (4, 5), (9, 11), (3, 6), (2, 7), (1, 8). These pairs yield

the base blocks of a cyclic BIBD(11, 6, 15): {0, 1, 5, 6, 7, 8}, {0, 2, 10, 1, 3, 5},

{0, 3, 4, 7, 10, 2}, {0, 5, 3, 8, 2, 7} and {0, 7, 2, 9, 5, 1} (mod 11).
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We can also get some of the above cyclic designs using skew starters.

Theorem 4.5.3 If there exists a skew starter in Zv then there exists a cyclic

BIBD(v, 4, 6).

Proof Let S= {{xi, yi}|1 ≤ i ≤ v − 1/2} be a skew starter in Zv and let B be the

set of subsets {0, xi, yi, xi + yi}|1 ≤ i ≤ v − 1/2}. It is easy to see that these are the

base blocks of a cyclic BIBD(v, 4, 6). �

It is known that skew starters exist for all v such that gcd(v, 150) = 1 or 25

and that there do not exist skew starters for v ≡ 0(mod 3) or v even [34, 50]. It

is conjectured that skew starters exist for all v such that gcd(v, 6) = 1 [50] but the

conjecture is still open.

4.5.2 Cyclic BIBD(12n+ 2, 4, 6)

We write 12n+ 2 = 2(6n) + 2.

Case 1: n ≡ 0, 2 (mod 4)

Remark 4.5.1 Let (ai, bi), 1 ≤ i ≤ 6n, be a Skolem sequence of order 6n, and let xi,

1 ≤ i ≤ 6n be positive integers. If there exists a partition of the numbers {1, . . . , 6n−

1} ∪ {6n + 1} ∪ {1, . . . , 6n} ∪ {1, . . . , 6n} (or their inverses) into triples of the form
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(xi − i, xi, bi − xi), 1 ≤ i ≤ 6n, then {0, i, xi, bi}, 1 ≤ i ≤ 6n together with the short

orbit {0, 1, 6n+ 1, 6n+ 2}, will be the base blocks of a cyclic BIBD(12n+ 2, 4, 6).

Using the above approach our problem is reduced to partitioning the numbers

{1, . . . , 6n− 1} ∪ {6n + 1} ∪ {1, . . . , 6n} ∪ {1, . . . , 6n} (or their inverses) into triples

of the form (xi − i, xi, bi − xi) ∀1 ≤ i ≤ 6n.

Case 2: n ≡ 1, 3 (mod 4)

Remark 4.5.2 Let (ai, bi), 1 ≤ i ≤ 6n, be a hooked Skolem sequence of order 6n,

and let xi, 1 ≤ i ≤ 6n be positive integers. If there exists a partition of the numbers

{1, . . . , 6n − 2} ∪ {6n, 6n + 1} ∪ {1, . . . , 6n} ∪ {1, . . . , 6n} (or their inverses) into

triples of the form (xi − i, xi, bi − xi), 1 ≤ i ≤ 6n, then {0, i, xi, bi}, 1 ≤ i ≤ 6n,

together with the short orbit {0, 2, 6n + 1, 6n + 3}, will be the base blocks of a cyclic

BIBD(12n+ 2, 4, 6).

Using the above approach our problem is reduced to partitioning the numbers

{1, . . . , 6n−2}∪{6n, 6n+1}∪{1, . . . , 6n}∪{1, . . . , 6n} (or their inverses) into triples

of the form (xi − i, xi, bi − xi), 1 ≤ i ≤ 6n.

Example 4.5.3 Let v = 14 and {(1, 2), (9, 11), (3, 6), (4, 8), (5, 10), (7, 13)} be the

pairs of a hooked Skolem sequence of order 6. Then {0, 1, 11, 2}, {0, 2, 10, 11},
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{0, 3, 4, 6}, {0, 4, 7, 8}, {0, 5, 8, 10}, {0, 6, 8, 13} together with the short orbit

{0, 2, 7, 9} are the base blocks of a cyclic BIBD(14, 4, 6).

4.5.3 Cyclic BIBD(12n+ 3, 4, 6)

We write 12n+ 3 = 2(6n+ 1) + 1.

Case 1: n ≡ 0 (mod 2)

Remark 4.5.3 Let (ai, bi), 1 ≤ i ≤ 6n+ 1, be a Skolem sequence of order 6n+ 1 and

let xi, 1 ≤ i ≤ 6n + 1, be positive integers. If there exists a partition of the numbers

{1, . . . , 6n + 1} ∪ {1, . . . , 6n + 1} ∪ {1, . . . , 6n + 1} (or their inverses) into triples of

the form (xi − i, xi, bi − xi), 1 ≤ i ≤ 6n+ 1, then {0, i, xi, bi}, 1 ≤ i ≤ 6n+ 1, will be

the base blocks of a cyclic BIBD(12n+ 3, 4, 6).

Using the above approach our problem is reduced to partitioning the numbers

{1, . . . , 6n + 1} ∪ {1, . . . , 6n + 1} ∪ {1, . . . , 6n + 1} (or their inverses) into triples of

the form (xi − i, xi, bi − xi) ∀1 ≤ i ≤ 6n+ 1.

Case 2: n ≡ 1 (mod 2)

Remark 4.5.4 Let (ai, bi), 1 ≤ i ≤ 6n + 1, be a Rosa sequence of order 6n + 1, and

let xi, 1 ≤ i ≤ 6n + 1, be positive integers. If there exists a partition of the numbers

{1, . . . , 6n + 1} ∪ {1, . . . , 6n + 1} ∪ {1, . . . , 6n + 1} (or their inverses) into triples of
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the form (xi − i, xi, bi + 6n + 1 − xi), 1 ≤ i ≤ 6n + 1, then {0, i, xi, bi + 6n + 1},

1 ≤ i ≤ 6n+ 1 will be the base blocks of a cyclic BIBD(12n+ 3, 4, 6).

Using the above approach our problem is reduced to partitioning the numbers

{1, . . . , 6n + 1} ∪ {1, . . . , 6n + 1} ∪ {1, . . . , 6n + 1} (or their inverses) into triples of

the form (xi − i, xi, bi + 6n+ 1− xi), 1 ≤ i ≤ 6n+ 1.

Example 4.5.4 Let v = 15 and {(12, 13), (4, 6), (11, 14), (1, 5), (2, 7), (9, 15), (3, 10)}

be the pairs of a Rosa sequence of order 7. Then {0, 1, 2, 5}, {0, 2, 9, 13}, {0, 3, 13, 6},

{0, 4, 13, 12}, {0, 5, 9, 14}, {0, 6, 10, 7}, {0, 7, 14, 2} are the base blocks of a cyclic

BIBD(15, 4, 6).

4.5.4 Cyclic BIBD(12n+ 6, 4, 6)

We write 12n+ 6 = 2(6n+ 2) + 2.

Case 1: n ≡ 0, 2 (mod 4)

Remark 4.5.5 Let (ai, bi), 1 ≤ i ≤ 6n + 2, be a hooked Skolem sequence of order

6n+2, and let xi, 1 ≤ i ≤ 6n+2 be positive integers. If there exists a partition of the

numbers {1, . . . , 6n} ∪ {6n + 2, 6n + 4} ∪ {1, . . . , 6n + 2} ∪ {1, . . . , 6n + 2} (or their

inverses) into triples of the form (xi− i, xi, bi− xi), 1 ≤ i ≤ 6n+ 2, then {0, i, xi, bi},
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1 ≤ i ≤ 6n + 2, together with the short orbit {0, 2, 6n + 3, 6n + 5}, will be the base

blocks of a cyclic BIBD(12n+ 6, 4, 6).

Using the above approach our problem is reduced to partitioning the numbers

{1, . . . , 6n} ∪ {6n + 2, 6n + 4} ∪ {1, . . . , 6n + 2} ∪ {1, . . . , 6n + 2} (or their inverses)

into triples of the form (xi − i, xi, bi − xi), 1 ≤ i ≤ 6n+ 2.

Case 2: n ≡ 1, 3 (mod 4)

Remark 4.5.6 Let (ai, bi), 1 ≤ i ≤ 6n+2, be a Skolem sequence of order 6n+2, and

let xi, 1 ≤ i ≤ 6n + 2, be positive integers. If there exists a partition of the numbers

{1, . . . , 6n+ 1} ∪ {6n+ 3} ∪ {1, . . . , 6n+ 2} ∪ {1, . . . , 6n+ 2} (or their inverses) into

triples of the form (xi− i, xi, bi−xi), 1 ≤ i ≤ 6n+2, then {0, i, xi, bi}, 1 ≤ i ≤ 6n+2,

together with the short orbit {0, 1, 6n + 3, 6n + 4}, will be the base blocks of a cyclic

BIBD(12n+ 6, 4, 6).

Using the above approach our problem is reduced to partitioning the numbers

{1, . . . , 6n+ 1} ∪ {6n+ 3} ∪ {1, . . . , 6n+ 2} ∪ {1, . . . , 6n+ 2} (or their inverses) into

triples of the form (xi − i, xi, bi − xi), 1 ≤ i ≤ 6n+ 2.

Example 4.5.5 Let v = 18 and {(6, 7), (1, 3), (13, 16), (11, 15), (4, 9), (8, 14), (5, 12),

(2, 10)} be the pairs of a Skolem sequence of order 8. Then {0, 1, 17, 7}, {0, 2, 13, 3},
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{0, 3, 14, 16}, {0, 4, 13, 1}, {0, 5, 6, 9}, {0, 6, 3, 14}, {0, 7, 13, 12}, {08, 14, 10} to-

gether with the short orbit {0, 1, 9, 10} are the base blocks of a cyclic BIBD(18, 4, 6).

Remark 4.5.7 We have shown that there exists an example of Skolem partitions that

induces a cyclic BIBD(v, 4, λ) for every admissible class in Table 4.1.

It is known that cyclic BIBD(v, 4, 1) for v = 16, 25, 28 do not exist, and we showed

at the beginning of this chapter that cyclic BIBD(8, 4, 3) and cyclic BIBD(10, 4, 2)

do not exist. These mat be the only exceptions or there may be more exceptions for

some small orders.

Conjecture 4.5.1 For all admissible orders v and λ, with some possible exceptions,

there exists a Skolem partition that induces a cyclic BIBD(v, 4, λ).
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Chapter 5

Cyclic BIBD(v, 4, λ) from Other

Structures

In this chapter we use some existing results and relative difference families to construct

new cyclic BIBD(v, 4, λ) for λ > 1. Then, we provide a summary of what we have

done in this thesis and what is known about cyclic BIBD(v, 4, λ).

We provide many new linear classes of cyclic BIBD(v, 4, λ) for some orders v, in

particular for v ≡ 6(mod 12) and λ = 6, our constructions cover all the values of v

except for v = 810, 30v′, 810v′ where v′ is a product of primes greater than 5. The

problem of constructing cyclic BIBD(v, 4, λ) for all admissible orders v is still an open

problem. This chapter is a considerable step forward to the solution of this problem.
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5.1 Cyclic BIBD(v, 4, 2)

Using some known existing results, we construct cyclic BIBD(6t + 1, 4, 2), for every

t ≤ 1000, and cyclic BIBD(v, 4, 2), for v = 30t+ 7, 78t+ 7, 114t+ 25, 138t+ 31, 150t+

31, 162t+ 31, 174t+ 37, 174t+ 43, for every t ≤ 1000, t 6= 2, 3.

Lemma 5.1.1 If there exists a (12t + 1, 4, 1)-PDF, then there exists a cyclic

BIBD(6t+ 1, 4, 2).

Proof Let B be the set of base blocks of a (12t + 1, 4, 1)-PDF. These base blocks

cover all the differences {1, 2, . . . , 6t} each exactly once. Then the set of base blocks

B are the base blocks of a cyclic BIBD(6t+ 1, 4, 2). �

Theorem 5.1.2 There exists cyclic BIBD(6t+ 1, 4, 2), for every t ≤ 1000.

Proof There exists a (12t + 1, 4, 1)-PDF for any t ≤ 1000 except for t = 2, 3 [56].

By Lemma 5.1.1, there exists a cyclic BIBD(6t + 1, 4, 2) for any t ≤ 1000 except for

t = 2, 3. A cyclic BIBD(13, 4, 2) is given by the base blocks: {0, 1, 4, 6}, {0, 1, 3, 9}

and a cyclic BIBD(19, 4, 2) is given by the base blocks: {0, 1, 2, 6}, {0, 2, 8, 11},

{0, 3, 7, 12}. �

Example 5.1.1 Let {0, 1, 4, 6} be the base block of a (13, 4, 1)-PDF. Then {0, 1, 4, 6}

is the base block of a cyclic BIBD(7, 4, 2).
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Theorem 5.1.3 There exists cyclic BIBD(v, 4, 2) for v = 30t + 7, 78t + 7, 114t +

25, 138t+ 31, 150t+ 31, 162t+ 31, 174t+ 37, 174t+ 43 for every t ≤ 1000, t 6= 2, 3.

Proof In [67] it is proved that if a (12t+ 1, 4, 1)-PDF exists, then there exists (60t+

13, 4, 1)-PDF, (156t+ 13)-PDF, (228t+ 49)-PDF, (276t+ 61)-PDF, (300t+ 61)-PDF,

(324t+ 61)-PDF, (348t+ 73, 4, 1)-PDF and (348t+ 85, 4, 1)-PDF. We apply Lemma

5.1.1 to the above perfect difference families. �

5.2 Cyclic BIBD(v, 4, λ) from Relative Difference

Families

Skew starters are special Skolem-type sequences. Direct and recursive constructions

are used to construct many relative difference families from skew starters; see for

example [31, 32, 55]. As an example, to construct an (126, 18, 4, 1)-DF [55], from the

skew starter S = {(2, 3), (4, 6), (1, 5)} in Z7, take the base blocks {(x, 0), (y, 0), (x +

y, 7), (0, 8)}, {(0, 0), (x + y, 1), (x, 13), (y, 15)}, {(0, 0), (−x − y, 9), (−x, 3), (−y, 5)}

where {x, y} run over all pairs in S and −x,−y are the inverses of x, y in Z7.

So, the base blocks in our case are: {(2, 0), (3, 0), (5, 7), (0, 8)},

{(4, 0), (6, 0), (3, 7), (0, 8)}, {(1, 0), (5, 0), (6, 7), (0, 8)}, {(0, 0), (5, 1), (2, 13), (3, 15)},

{(0, 0), (3, 1), (4, 13), (6, 15)}, {(0, 0), (6, 1), (1, 13), (5, 15)}, {(0, 0), (2, 9), (5, 3),
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(4, 5)}, {(0, 0), (4, 9), (3, 3), (1, 5)},{(0, 0), (1, 9), (6, 3), (2, 5)}.

Using the ring isomorphism φ : (a, b) ∈ Z7 ⊕ Z18 → 36a + 91b ∈ Z126,

one may see that the (126, 18, 4, 1)-DF has the following base blocks:

{72, 108, 61, 98}, {18, 90, 115, 98}, {36, 54, 97, 98}, {0, 19, 121, 87}, {0, 73, 67, 69},

{0, 55, 85, 33}, {0, 9, 75, 95}, {0, 81, 3, 113}, {0, 99, 111, 23}.

We are going to use relative difference families and known recursive constructions

to construct new cyclic block designs with block size 4 and λ > 1.

We construct new linear classes of cyclic BIBD(v, 4, 2) for some values of v ≡

10 (mod 12), new cyclic BIBD(v, 4, 3) for some values of v ≡ 0, 8, 9 (mod 12), new

cyclic BIBD(v, 4, 6) for some values of v ≡ 0, 2, 3, 6, 8(mod 12), and new cyclic

BIBD(v, 4, 4) for some values of v ≡ 4(mod 12).

First, we outline what is known about relative difference families, cyclic difference

matrices (CDM) and the known recursive constructions.

It is known that no (9, 4, 1)-CDM and no (g, 4, 1)-CDM exist for g ≡ 0(mod 2) [54].

It is also known that a (27, 4, 1)-CDM and a (81, 4, 1)- CDM exist [55].

In the case of k = 4, it is well known that the 4 × v matrix with rows R =

(0, 1, . . . , v− 1), −R, 2R and −2R is a (v, 4, 1) cyclic difference matrix provided that

gcd(v, 6) = 1.

To construct new cyclic designs it will be necessary to build families of (v, g, 4, 1)-
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DFs. The following constructions provide recursive methods to obtain an infinite

number of such families.

Theorem 5.2.1 [92] Suppose that both a (v, g, 4, 1)-DF and a (g, r, 4, 1)-DF exist.

Then a (v, r, 4, 1)-DF also exists.

Theorem 5.2.2 [92] Suppose that both a (v, g, 4, 1)-DF and a (m, 4, 1)-CDM exist.

Then there exists a (mv, gm, 4, 1)-DF.

Theorem 5.2.3 [92] Suppose that there exists:

1. a (v, g, 4, 1)-DF,

2. a (m, 4, 1)-CDM, and

3. a (gm, r, 4, 1)-DF,

Then there exists an (mv, r, 4, 1)-DF.

Theorem 5.2.4 [21] If there exists an (nv, n, 4, 1)-DF, an (nw, n, 4, 1)-DF, and a

(w, 4, 1) difference matrix, then there exists an (nvw, n, 4, 1)-DF.

We are going to use the following lemma, to construct new cyclic BIBD(v, 4, λ).

Lemma 5.2.5 If there exists a cyclic (v, g, 4, 1)-DF and a cyclic BIBD(g, 4, λ), then

there exists a cyclic BIBD(v, 4, λ).
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Proof Let F be the family of starter blocks of the given (v, g, 4, 1)-DF and let E be

the base blocks of a cyclic BIBD(g, 4, λ). Denote u = v/g. For every B ∈ E , we

construct new base blocks uB as follows: uB = {ub(mod v)|b ∈ B}.

Let uE = {uB|B ∈ E} and let H be the family of starter blocks in which each

starter block in F is taken λ times. Then, one can easily check that u E ∪ H is the

required family of base blocks of a cyclic BIBD(v, 4, λ). �

The above lemma can be used even more generally as follows:

Lemma 5.2.6 If there exist a cyclic (v, g, 4, λ1)-DF and a cyclic BIBD(g, 4, λ2), then

there exists a cyclic BIBD(v, 4, λ) with λ=LCM(λ1, λ2).

5.2.1 Cyclic BIBD(v, 4, 2) for some values v ≡ 10(mod 12)

We construct infinitely many new cyclic BIBD(v, 4, 2) for some values of v ≡

10(mod 12). Specifically, we construct cyclic BIBD(22p, 4, 2) for every prime p ≡

1(mod 6).

Theorem 5.2.7 Let v be a non-negative integer. If there exists a (v, 22, 4, 1)-DF,

then there exists a cyclic BIBD(v, 4, 2).

Proof Let F be the family of starter blocks of the given (v, 22, 4, 1)-DF and let B
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be the base blocks of a cyclic BIBD(22, 4, 2) (see Appendix B). Now, apply Lemma

5.2.5. �

Theorem 5.2.8 There exists a cyclic BIBD(22p, 4, 2) for every prime p ≡ 1(mod 6).

Proof There exists a (2p, 2, 4, 1)-DF for every prime p ≡ 1(mod 6) [19]. Apply

Theorem 5.2.2 for v = 2p, g = 2 and m = 11 where p ≡ 1(mod 6) a prime to

get a (22p, 22, 4, 1)-DF for every prime p ≡ 1(mod 6). Apply Theorem 5.2.7 to the

(22p, 22, 4, 1)-DF given above for every prime p ≡ 1(mod 6). �

5.2.2 Cyclic BIBD(v, 4, 3) for some values of v ≡ 0(mod 12)

The following theorems give many new cyclic block designs with block size 4

and v ≡ 0 (mod 12). Specifically, we construct cyclic BIBD(v, 4, 3) for v =

120, 144, 192, 216, 240, 288. We construct cyclic BIBD(24v, 4, 3) for all integers v

such that gcd(v, 6) = 1. We construct cyclic BIBD(24v · 34t, 4, 3) and cyclic

BIBD(24v · 34t+2, 4, 3) for all integers t ≥ 0 and all integers v such that gcd(v, 6) = 1.

Finally, we also construct cyclic BIBD(24 · u · 5s, 4, 3) for every integer s ≥ 1 and

u = 5, 6, 8, 9, 10, 12.

Theorem 5.2.9 Let v be a non-negative integer. If there exists a (v, 24, 4, 1)-DF,

then there exists a cyclic BIBD(v, 4, 3).
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Proof Let F be the family of starter blocks of the given (v, 24, 4, 1)-DF and

let {{0, 1, 2, 4}, {0, 1, 5, 10}, {0, 2, 9, 17}, {0, 3, 10, 14}, {0, 3, 11, 16}} together with the

regular orbit {0, 6, 12, 18} taken three times be the base blocks of a cyclic

BIBD(24, 4, 3). Now, apply Lemma 5.2.5. �

Theorem 5.2.10 There exists a cyclic BIBD(24v · 34t, 4, 3) and a cyclic BIBD(24v ·

34t+2, 4, 3), for all integers t ≥ 0 and all integers v such that gcd(v, 6) = 1.

Proof There exists a (24v · 34t, 24, 4, 1)-DF for all integers t ≥ 0 and all integers v

such that gcd(v, 6) = 1 [55]. There exists a (24v · 34t+2, 24, 4, 1)-DF for all integers

t ≥ 0 and all integers v such that gcd(v, 6) = 1 [55]. Apply Theorem 5.2.9 to the

(24v · 34t, 24, 4, 1)-DF and the (24v · 34t+2, 24, 4, 1)-DF given above to get a cyclic

BIBD(24 · v · 34t, 4, 3) and a cyclic BIBD(24v · 34t+2, 4, 3) for all integers t ≥ 0 and all

integers v such that gcd(v, 6) = 1. �

Theorem 5.2.11 There exists cyclic BIBD(v, 4, 3) for v = 120, 144, 192, 216, 240,

288.

Proof There exist an (120, 24, 4, 1)-DF and a (216, 24, 4, 1)-DF [92]. There exist

an (144, 24, 4, 1)-DF and a (288, 24, 4, 1)-DF [30]. There exist also an (192, 24, 4, 1)-

DF and a (240, 24, 4, 1)-DF [31]. Apply Theorem 5.2.9 to the (v, 24, 4, 1)-DF for

v = 120, 144, 192, 216, 240, 288. �
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Theorem 5.2.12 There exists a cyclic BIBD(24 · u · 5s, 4, 3) for every integer s ≥ 1

and u = 5, 6, 8, 9, 10, 12.

Proof Apply Theorem 5.2.4 for n = 24, w = 5 and v = u · 5s, s ≥ 0 to get a

(24 · u · 5s, 24, 4, 1)-DF for every s ≥ 1. Then apply Theorem 5.2.9. �

5.2.3 Cyclic BIBD(v, 4, 3) for some values of v ≡ 8(mod 12)

We construct many new cyclic BIBD(v, 4, 3) for some values of v ≡ 8(mod 12).

Specifically, we construct cyclic BIBD(20p, 4, 3) for every prime p ≡ 1(mod 12).

Theorem 5.2.13 Let v be a non-negative integer. If there exist a (v, 20, 4, 1)-DF,

then there exists a cyclic BIBD(v, 4, 3).

Proof Let F be the family of starter blocks of the given (v, 20, 4, 1)-DF and let B

be the base blocks of a cyclic BIBD(20, 4, 3) (see Appendix B). Now, apply Lemma

5.2.5. �

Theorem 5.2.14 There exists a cyclic BIBD(20p, 4, 3) for every prime p ≡

1(mod 12).

Proof There exists a (4p, 4, 4, 1)-DF for every prime p ≡ 1(mod 12) [22, 33]. Apply

Theorem 5.2.2 for v = 4p, g = 4 and m = 5 where p ≡ 1(mod 12) a prime to get
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a (20p, 20, 4, 1)-DF for every prime p ≡ 1(mod 12). Apply Theorem 5.2.13 to the

(20p, 20, 4, 1)-DF given above for every prime p ≡ 1(mod 12). �

5.2.4 Cyclic BIBD(v, 4, 3) for some values of v ≡ 9(mod 12)

In this subsection, we construct cyclic BIBD(v, 4, 3) for some v ≡ 9(mod 12), using

Lemma 5.2.5 and the known recursive constructions for difference families. Specifi-

cally, we construct a cyclic BIBD(81, 4, 3) and infinite families of cyclic BIBD(9v, 4, 3)

and cyclic BIBD(9v2, 4, 3) for any positive integer v whose prime factors are all con-

gruent to 1(mod 4) and greater than 5.

Theorem 5.2.15 Let v be a non-negative integer. If there exists a (9v, 9, 4, 1)-DF,

then there exists a cyclic BIBD(9v, 4, 3).

Proof Let F be the family of starter blocks of the given (9v, 9, 4, 1)-DF and let

{{0, 1, 2, 4}, {0, 1, 4, 6}} be the base blocks of a cyclic BIBD(9, 4, 3). Now, apply

Lemma 5.2.5 to get the required design. �

Example 5.2.1 [56] The following are two examples of base blocks for a (9v, 9, 4, 1)-

DF with v = 9, 13.

1. An (81, 9, 4, 1)-DF: {{0, 6, 28, 40}, {0, 3, 16, 26}, {0, 2, 31, 35}, {0, 5, 19, 30},

{0, 1, 21, 38}, {0, 7, 15, 39}}.
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2. An (117, 9, 4, 1)-DF: {{0, 19, 27, 50}, {0, 6, 47, 54}, {0, 9, 29, 34}, {0, 4, 42, 53},

{0, 1, 18, 58}, {0, 2, 30, 46}, {0, 32, 35, 56}, {0, 12, 45, 55}, {0, 14, 36, 51}}.

It is known that no (45, 9, 4, 1)-DF exists [52].

Example 5.2.2 From Example 5.2.1, we know that an (81, 9, 4, 1)-DF and an

(117, 9, 4, 1)-DF exist. Applying Theorem 5.2.15 we get the new cyclic BIBD(81, 4, 3)

and BIBD(117, 4, 3).

Note that the new cyclic BIBD(81, 4, 3) cannot be obtained by any known direct

or recursive construction.

Theorem 5.2.16 There exists a cyclic BIBD(9v, 4, 3) for any positive integer v

whose prime factors are all congruent to 1(mod 4) and greater than 5.

Proof There exists a (9v, 9, 4, 1)-DF for any positive integer v whose prime factors

are all congruent to 1(mod 4) and greater than 5 [52]. Apply Theorem 5.2.15 to the

(9v, 9, 4, 1)-DF given above. �

Theorem 5.2.17 There exists a cyclic BIBD(92 · v′, 4, 3) for any positive integer

v′ = p1p2 · · · pr whose prime factors p1, p2, . . . , pr are all congruent to 1(mod 4) and

greater than 5.
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Proof Apply Theorem 5.2.4 for n = 9, w = pi and v = 9pj for any primes pi, pj ≡

1(mod 4), pi, pj > 5 to get a (92 · pi · pj, 9, 4, 1)-DF. Then apply again Theorem 5.2.4

for n = 9, w = pk and v = 9pipj for any primes pi, pj, pk ≡ 1(mod 4), pi, pj > 5 to get

a (92 ·pi ·pj ·pk, 9, 4, 1)-DF. Continuing in this way, we get a (92 ·v′, 9, 4, 1)-DF for any

positive integer v′ = p1p2 · · · pr whose prime factors p1, p2, . . . , pr are all congruent

to 1(mod 4) and greater than 5. Now, we apply Theorem 5.2.15 to get a cyclic

BIBD(92 · v′, 4, 3) for any positive integer v′ whose prime factors are all congruent to

1(mod 4) and greater than 5. �

5.2.5 Cyclic BIBD(v, 4, 4) for some values of v ≡ 4(mod 12)

The theorems in this section give many cyclic block designs with block size 4 and

v ≡ 4 (mod 12). Specifically, we construct cyclic BIBD(16p, 4, 4) for every prime

p ≡ 1(mod 6). We construct cyclic BIBD(162 · v′, 4, 4) for all v′ whose prime factors

are congruent to 1(mod 6).

Theorem 5.2.18 Let v be a non-negative integer. If there exists a (v, 16, 4, 1)-DF,

then there exists a cyclic BIBD(v, 4, 4).

Proof Let F be the family of starter blocks of the given (v, 16, 4, 1)-DF and

let {{0, 1, 2, 3}, {0, 2, 7, 13}, {0, 3, 9, 10}, {0, 5, 7, 10}} together with the short orbit
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{0, 4, 8, 12} taken four times, be the base blocks of a cyclic BIBD(16, 4, 4). Now,

apply Lemma 5.2.5. �

Theorem 5.2.19 There exists a cyclic BIBD(16v, 4, 4) for all v whose prime factors

are congruent to 1(mod 6).

Proof Apply Theorem 5.2.4 for n = 16, v = p1p2 · · · pr, w = pj for every prime

pi ≡ 1(mod 6). �

Theorem 5.2.20 There exists a cyclic BIBD(162 · v′, 4, 4) for all v′ whose prime

factors are congruent to 1(mod 6).

Proof There exists a (256, 16, 4, 1)-DF [30] and a (112, 16, 4, 1)-DF [32]. Apply The-

orem 5.2.4 for n = 16, w = v′ and v = 16 to get a (162 · v′, 16, 4, 1)-DF. Then apply

Theorem 5.2.18. �

5.2.6 Cyclic BIBD(v, 4, 6) for some values of v ≡ 2(mod 12)

We construct many new cyclic BIBD(v, 4, 6) for some values of v ≡ 2(mod 12).

Specifically, we construct cyclic BIBD(14p, 4, 6) for every prime p ≡ 1(mod 6).

Theorem 5.2.21 Let v be a non-negative integer. If there exists a (v, 14, 4, 1)-DF,

then there exists a cyclic BIBD(v, 4, 6).
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Proof Let F be the family of starter blocks of the given (v, 14, 4, 1)-DF and let B

be the base blocks of a cyclic BIBD(14, 4, 6) (see Appendix B). Now, apply Lemma

5.2.5. �

Theorem 5.2.22 There exists a cyclic BIBD(14p, 4, 6) for every prime p ≡

1(mod 6).

Proof There exists a (2p, 2, 4, 1)-DF for every prime p ≡ 1(mod 6) [19]. Apply

Theorem 5.2.2 for v = 2p, g = 2 and m = 7 where p ≡ 1(mod 6) a prime to get

a (14p, 14, 4, 1)-DF for every prime p ≡ 1(mod 6). Apply Theorem 5.2.21 to the

(14p, 14, 4, 1)-DF given above for every prime p ≡ 1(mod 6). �

5.2.7 Cyclic BIBD(v, 4, 6) for some values of v ≡ 3(mod 12)

We construct infinite families of cyclic BIBD(v, 4, 6) for some values of v ≡ 3(mod 12).

Specifically, we construct infinite families of cyclic BIBD(27v, 4, 6) for any v coprime

with 6. We also construct infinite families of cyclic BIBD(v, 4, 6) for v = 35 · v′, 37 · v′

for any positive integer v′ whose prime factors are all congruent to 1(mod 4) and

greater than 5.

Theorem 5.2.23 Let v be a non-negative integer. If there exists a (v, 27, 4, 1)-DF,

then there exists a cyclic BIBD(v, 4, 6).
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Proof Let F be the family of starter blocks of the given (v, 27, 4, 1)-DF. A cyclic

BIBD(27, 4, 6) exists [13]. Now, apply Lemma 5.2.5. �

Theorem 5.2.24 There exists a cyclic BIBD(27v, 4, 6) for any v coprime with 6.

Proof A cyclic BIBD(27, 4, 6) exists [13] and the existence of a cyclic (v, 4, 6)-DF

for any v coprime with 6 is given in Theorem 4.5.1. Then, using [64], there exists

a (27v, 4, 6)-DF in Z27 × Zv which is isomorphic to Z27v, by the Chinese remainder

theorem. �

Theorem 5.2.25 There exists a cyclic BIBD(32s+3, 4, 6) for any positive integer s ≥

1.

Proof There exists a (32s+3, 27, 4, 1)-DF for any positive integer s ≥ 1 [32]. Apply

Theorem 5.2.23 to the (32s+3, 27, 4, 1)-DF given above for any positive integer s ≥ 1.

�

Theorem 5.2.26 There exist a cyclic BIBD(35 ·v, 4, 6) and a cyclic BIBD(37 ·v, 4, 6)

for any positive integer v whose prime factors are all congruent to 1(mod 4) and

greater than 5.

Proof There exist a (9 · v′, 9, 4, 1)-DF [52] and a (92 · v′, 9, 4, 1)-DF for any positive

integer v′ whose prime factors are all congruent to 1(mod 4) and greater than 5 (see
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the proof of Theorem 5.2.17). There exists a (27 ·9, 27, 4, 1)-DF [32]. Apply Theorem

5.2.3 for v = 9 · v′, m = 27, g = 9 and r = 27 to get a (35 · v′, 27, 4, 1)-DF for any

positive integer v′ whose prime factors are all congruent to 1(mod 4) and greater

than 5. Apply Theorem 5.2.3 for v = 92 · v′, m = 27, g = 9 and r = 27 to get a

(37 · v′, 27, 4, 1)-DF for any positive integer v′ whose prime factors are all congruent

to 1(mod 4) and greater than 5. Apply Theorem 5.2.23 to the (35 · v, 27, 4, 1)-DF and

to the (37 · v, 27, 4, 1)-DF given above. �

5.2.8 Cyclic BIBD(v, 4, 6) for some values of v ≡ 6(mod 12)

We construct infinite families of cyclic BIBD(6v, 4, 6) for v ≡ 6 (mod 12). Specifi-

cally, we construct cyclic BIBD(v, 4, 6) for v = 9, 15, 27, 45, 81. We construct cyclic

BIBD(6v, 4, 6) for all values of v whose prime factors are greater than 5. We also con-

struct cyclic BIBD(6vv′, 4, 6) for v = 33s, 33s+1, 33s+2, 33s+1 ·5, 33s+2 ·5, 34s+1 ·5, 34s+2 ·5

for s ≥ 1 and all v′ whose prime factors are greater than 5. The only values of v

not covered by our constructions are v = 810, 30v′, 810v′ where v′ has all the prime

factors greater than 5.

Theorem 5.2.27 Let v be a non-negative integer. If there exists a (v, 6, 4, 1)-DF,

then there exists a cyclic BIBD(v, 4, 6).

Proof Let F be the family of starter blocks of the given (v, 6, 4, 1)-DF, and let
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{0, 1, 2, 3}, {0, 2, 3, 4} together with the short orbit {0, 1, 3, 4} be the base blocks of

a cyclic BIBD(6, 4, 6). Now, apply Lemma 5.2.5. �

Theorem 5.2.28 There exists a cyclic BIBD(6v, 4, 6) for all primes v > 5.

Proof There exists a (6v, 6, 4, 1)-DF for all primes v > 5 [23, 34]. Apply Theorem

5.2.27 to the (6v, 6, 4, 1)-DF given above. �

Theorem 5.2.29 There exist a cyclic BIBD(6v, 4, 6) for v = 9, 15, 27, 45, 81 and a

cyclic BIBD(6v′, 4, 6) for all integers v′ whose prime factors are greater than 5.

Proof Apply Theorem 5.2.27 for (6v, 6, 4, 1)-DF, v = 9, 15, 27, 45, 81 which can be

found in [12, 55]. Apply Theorem 5.2.4 for n = 6, w = pi and v = pj for any

primes pi, pj > 5 to get a (6 · pipj, 6, 4, 1)-DF, where pi, pj are prime factors greater

than 5. Then apply again Theorem 5.2.4 for n = 6, w = pk and v = pipj to get a

(6 · pipjpk, 6, 4, 1)-DF, where pi, pj, pk are prime factors greater than 5. Continuing

this procedure we get a (6 · v′, 6, 4, 1)-DF, where v′ has all prime factors greater than

5. Then apply Theorem 5.2.27 to get a cyclic BIBD(6 ·v′, 4, 6) for any positive integer

v′ whose prime factors are all greater than 5. �

Theorem 5.2.30 There exists a cyclic BIBD(6 · u · v′, 4, 6) , for any positive integer

v′ whose prime factors are all greater than 5, and u = 9, 15, 27, 45, 81.
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Proof Apply Theorem 5.2.4 for n = 6, w = v′ and v = 9, 15, 27, 45, 81 to get a

(6 ·u ·v′, 6, 4, 1)-DF for any positive integer v′ whose prime factors are all greater than

5. Apply Theorem 5.2.27 to this relative difference family. �

Theorem 5.2.31 There exists a cyclic BIBD(6 ·33s ·v′, 4, 6) for any positive v′ whose

prime factors are all greater than 5 and for any integer s ≥ 1.

Proof Apply Theorem 5.2.4 for n = 6, w = 27 and v = v′ to get a (6 · 33s · v′, 6, 4, 1)-

DF for every integer s ≥ 1. Apply Theorem 5.2.27 to this relative difference family.

�

Theorem 5.2.32 There exists a cyclic BIBD(v, 4, 6) for v = 6 ·33s, 6 ·33s+2, 6 ·33s+1

and every integer s ≥ 1.

Proof Apply Theorem 5.2.4 for n = 6, w = 27 and v = 33s for every integer s ≥ 1

to get a (6 · 33s, 6, 4, 1)-DF for every integer s ≥ 1. Apply Theorem 5.2.4 for n = 6,

w = 27 and v = 33s−1 for every integer s ≥ 1 to get a (6 · 33s+2, 6, 4, 1)-DF. Apply

Theorem 5.2.4 for n = 6, w = 27 and v = 33s+1 for every integer s ≥ 1 to get a

(6 · 33s+1, 6, 4, 1)-DF.

Apply Theorem 5.2.27 to the above relative difference families. �

Theorem 5.2.33 There exists cyclic BIBD(6vv′, 4, 6) for v = 33s, 33s+1, 33s+2, s ≥ 1

and all v′ whose prime factors are all greater than 5.
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Proof Apply Theorem 5.2.4 for n = 6, v = 33s, 33s+1, 33s+2, s ≥ 1 and w = v′. �

Theorem 5.2.34 There exists a cyclic BIBD(v, 4, 6) for v = 6 · 33s+1 · 5, 6 · 33s+2 ·

5, 6 · 34s+1 · 5, 6 · 34s+2 · 5 and for every integer s ≥ 1.

Proof Apply Theorem 5.2.4 for n = 6, w = 27 and v = 33s−2 · 5 and for n = 6,

w = 81 and v = 34s+1 · 5, for every integer s ≥ 1. Apply Theorem 5.2.4 for n = 6,

w = 27 and v = 33s−1 · 5 for every integer s ≥ 1. Apply Theorem 5.2.4 for every

integer s ≥ 1 to get a (6 · 34s+1 · 5, 6, 4, 1)-DF. Apply Theorem 5.2.4 for n = 6, w = 81

and v = 34s+2 · 5 for every integer s ≥ 0 to get a (6 · 34s+2 · 5, 6, 4, 1)-DF. Apply

Theorem 5.2.27 to the above relative difference families for every integer s ≥ 1. �

Theorem 5.2.35 There exists cyclic BIBD(6vv′, 4, 6) for v = 33s+2 ·5, 33s+1 ·5, 34s+1 ·

5, 34s+2 · 5, s ≥ 1 and all v′ whose prime factors are all greater than 5.

Proof Apply Theorem 5.2.4 for n = 6, v = 33s+2 · 5, 33s+1 · 5, 34s+1 · 5, 34s+2 · 5, s ≥ 1

and w = v′. �

Theorem 5.2.36 There exists a cyclic BIBD(6 ·u ·v′, 4, 6) for u = 9, 15, 45 and every

v′ whose prime factors are greater than 5.

Proof Apply Theorem 5.2.4 for n = 6, w = v′ and v = u to get a (6 ·u ·v′, 6, 4, 1)-DF.

A (6u, 6, 4, 1)-DF for u = 9, 15, 45 exists, see [12, 55]. Apply Theorem 5.2.27 to the

(6 · u · v′, 6, 4, 1)-DF. �
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Theorem 5.2.37 There exists a cyclic BIBD(6 · 34s, 4, 6) for every integer s ≥ 1.

Proof Apply Theorem 5.2.4 for n = 6, w = 34 and v = 34s to get a (6 · 34s+4, 6, 4, 1)-

DF. Apply Theorem 5.2.27 to the (6 · 34s, 6, 4, 1)-DF for every s ≥ 1. �

Theorem 5.2.38 There exists a cyclic BIBD(6 · 34s · v′, 4, 6) for every integer s ≥ 1

and every v′ whose prime factors are greater than 5.

Proof Apply Theorem 5.2.4 for n = 6, w = v′ and v = 34s to get a (6 ·34s ·v′, 6, 4, 1)-

DF. Apply Theorem 5.2.27 to the (6 · 34s · v′, 6, 4, 1)-DF for every s ≥ 1. �

Theorem 5.2.39 Let v be a non-negative integer. If there exists a (v, 18, 4, 1)-DF,

then there exists a cyclic BIBD(v, 4, 6).

Proof Let F be the family of starter blocks of the given (v, 18, 4, 1)-DF, and let

{0, 2, 5, 7}, {0, 1, 5, 15}, {0, 1, 12, 13}, {0, 1, 7, 9}, {0, 6, 8, 10}, {0, 4, 8, 11}, {0, 5, 9, 12},

{0, 1, 3, 6} together with the short orbit {0, 1, 9, 10} be the base blocks of a cyclic

BIBD(18, 4, 6). Now, apply Lemma 5.2.5. �

Theorem 5.2.40 There exists a cyclic BIBD(6 · 3 · v, 4, 6) for every v such that

gcd(v, 150) = 1 or 25.

Proof There exists a (18v, 18, 4, 1)-DF for every v such that gcd(v, 150) = 1 or

25 [55]. Apply Theorem 5.2.39 to the (18v, 18, 4, 1)-DF given above. �
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There exists a cyclic BIBD(30, 4, 6) (see Appendix B).

Summarizing all the above results, we have the following theorem:

Theorem 5.2.41 There exists a cyclic BIBD(v, 4, 6) for every positive v except

810, 30v′, 810v′, where v′ has all the prime factors greater than 5.

5.2.9 Cyclic BIBD(v, 4, 6) for some values of v ≡ 8(mod 12)

The theorems in this section give many new cyclic block designs with block size 4

and v ≡ 8 (mod 12). Specifically, we construct cyclic BIBD(8v, 4, 6) for all orders v of

the form v = p1p2 · · · pr such that each pi is a prime ≡ 1(mod 6). We also construct

cyclic BIBD(8 · 16 · v, 4, 6) for all orders v of the form v = p1p2 · · · pr such that each

pi is a prime congruent to 1(mod 6).

Theorem 5.2.42 Let v be a non-negative integer. If there exist a (v, 8, 4, 1)-DF,

then there exists a cyclic BIBD(v, 4, 6).

Proof Let F be the family of starter blocks of the given (v, 8, 4, 1)-DF and

let {{0, 1, 4, 5}, {0, 1, 4, 5}, {0, 1, 6, 7}, {0, 2, 5, 7}, {0, 2, 4, 6}, {0, 2, 4, 6}}, be the base

blocks of a cyclic BIBD(8, 4, 6). Apply Lemma 5.2.5. �

Theorem 5.2.43 There exists a cyclic BIBD(8v, 4, 6) for all v of the form v =

p1p2 · · · pr such that each pi is a prime congruent to 1(mod 6).
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Proof There exists a (8v, 8, 4, 1)-DF for all v of the form v = p1p2 · · · pr such that each

pi is a prime congruent to 1(mod 6) [23]. Apply Theorem 5.2.42 for the (8v, 8, 4, 1)-

DF for all v of the form v = p1p2 · · · pr such that each pi is a prime congruent to

1(mod 6) given above. �

Theorem 5.2.44 There exists a cyclic BIBD(8 · 16 · v′, 4, 6) for all v′s of the form

v′ = p1p2 · · · pr such that each pi is a prime congruent to 1(mod 6).

Proof There exists an (128, 8, 4, 1)-DF [30]. Apply Theorem 5.2.4 for n = 8, w = v′

and v = 16 to get a (8 · 16 · v′, 8, 4, 1)-DF for all v′ of the form v′ = p1p2 · · · pr such

that each pi is a prime congruent to 1(mod 6). Now apply Theorem 5.2.42 to get the

desired result. �

5.3 Summary of Known Results for Cyclic

BIBD(v, 4, λ)

We have constructed many linear classes of new cyclic BIBD(v, 4, λ). We summarize

the results obtained in this thesis, as well as the known results for cyclic BIBD(v, 4, λ):

λ = 1 and v ≡ 1, 4 (mod 12)

For v ≡ 1(mod 12), v 6= 25, there exists cyclic BIBD(12t + 1, 4, 1) for every
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t ≤ 1000, t 6= 2 [2,3,56]. For v ≡ 4(mod 12) v 6= 16, 28, there exists cyclic BIBD(12t+

4, 4, 1) for every t ≤ 50, t 6= 1, 2 [36].

Some linear classes of cyclic BIBD(v, 4, 1) are known: there exists a cyclic

BIBD(p, 4, 1) for any prime p ≡ 1 (mod 12) [20,35]; there exist a cyclic BIBD(v, 4, 1)

and a cyclic BIBD(4v, 4, 1), where v is a product of primes congruent to 1 mod-

ulo 12 [24, 40]; there exists a cyclic BIBD(4p, 4, 1) for any prime p ≡ 1(mod 6)

such that
p− 1

6
has a prime factor q not greater than 19 [23]; there exists a cyclic

BIBD(pq, 4, 1) for p ≤ q < 1000 primes with p ≡ q ≡ 7 (mod 12) [27]; there exists

a cyclic BIBD(4nu, 4, 1) with u a product of primes congruent to 1 modulo 6 for any

integer n ≥ 3. There exists a cyclic BIBD(16u, 4, 1) where u is a product of primes

congruent to 1 modulo 6 and gcd(u, 7 · 13 · 19) 6= 1 [29]. If a cyclic BIBD(12t+ 1, 4, 1)

exists, then there exists cyclic BIBD(60t+ 13, 4, 1), cyclic BIBD(84t+ 13, 4, 1), cyclic

BIBD(156t+13, 4, 1), cyclic BIBD(228t+49, 4, 1), cyclic BIBD(276t+61, 4, 1), cyclic

BIBD(300t+ 61, 4, 1), and cyclic BIBD(300t+ 79, 4, 1) designs [67,74].

λ = 2 and v ≡ 1, 4, 7, 10 (mod 12)

For v ≡ 1, 4 (mod 12), take two copies of a cyclic BIBD(v, 4, 1).

For v ≡ 1, 7 (mod 12), there exists cyclic BIBD(6t + 1, 4, 2) for every t ≤ 1000

(see Theorem 5.1.2).

There exists cyclic BIBD(v, 4, 2) for v = 30t+7, 78t+7, 114t+25, 138t+31, 150t+
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31, 162t+ 31, 174t+ 37, 174t+ 43 for every t ≤ 1000, t 6= 2, 3 (see Theorem 5.1.3).

For v ≡ 1(mod 6) a prime power, there exists cyclic BIBD(v, 4, 2) [16].

There exists a cyclic BIBD(v, 4, 2) design for any v that is square-free and v =∏
pni
i

∏
q
2mj

j ≡ 7(mod 12) where pi ≡ 1(mod 6), qj ≡ 5(mod 6) and ni,mj ∈ N [53].

For v ≡ 10(mod 12), there exists cyclic BIBD(v, 4, 2) for every v = 22p with

p ≡ 1(mod 6) a prime (see Section 5.2.1). There exists cyclic BIBD(v, 4, 2) for

v = 22, 34, 46 [2].

λ = 3 and v ≡ 0, 1, 4, 5, 8, 9 (mod 12)

For v ≡ 1, 4 (mod 12), take three copies of a cyclic BIBD(v, 4, 1).

For v ≡ 0 (mod 12), there exists cyclic BIBD(v, 4, 3) for v =

120, 144, 192, 216, 240, 288; there exists cyclic BIBD(24v, 4, 3) for all integers v such

that gcd(v, 6) = 1; there exists cyclic BIBD(24v · 34t, 4, 3) and cyclic BIBD(24v ·

34t+2, 4, 3) for all integers t ≥ 0 and all integers v such that gcd(v, 6) = 1; there exists

cyclic BIBD(24 ·u ·5s, 4, 3) for every integer s ≥ 1 and u = 5, 6, 8, 9, 10, 12 (see Section

5.2.2).

For v ≡ 9 (mod 12), there exist cyclic BIBD(81, 4, 3) and infinite families of

cyclic BIBD(9v, 4, 3) and cyclic BIBD(9v2, 4, 3) for any positive integer v whose prime

factors are all congruent to 1(mod 4) and greater than 5 (see Section 5.2.4).

For v = 4n+ 1 a prime power, there exists a cyclic BIBD(v, 4, 3) [16]. There is a
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cyclic BIBD(v, 4, 3) when v has one of the following forms: v ≤ 149 and v ≡ 1 (mod 4)

[4]; v = (2w + 1)2 with w < 50 [4]; v = 22n + 2n + 1 with n ≥ 2 [28]; v = 9nw with

n ≥ 1 and every prime factor of w congruent to 1 (mod 4) [5].

For v ≡ 8(mod 12), there exists cyclic BIBD(v, 4, 3) for v = 20p where p ≡

1(mod 12) is a prime (see Section 5.2.3). There exists a cyclic BIBD(20, 4, 3) (see

Appendix B).

λ = 4 and v ≡ 1, 4, 7, 10 (mod 12)

For v ≡ 1, 4 (mod 12), take four copies of a cyclic BIBD(v, 4, 1).

For v ≡ 7, 10 (mod 12), take two copies of a cyclic BIBD(v, 4, 2).

For v ≡ 4 (mod 12), there exists cyclic BIBD(16p, 4, 4) for every prime p ≡

1(mod 6); there exists cyclic BIBD(162 · v′, 4, 4) for all v′ whose prime factors are

congruent to 1(mod 6) (see Section 5.2.5).

λ = 5 and v ≡ 1, 4 (mod 12)

For v ≡ 1, 4 (mod 12), take five copies of a cyclic BIBD(v, 4, 1).

λ = 6 and all v

For v ≡ 0 (mod 12), take two copies of a cyclic BIBD(v, 4, 3).

For v ≡ 1, 5, 7, 11 (mod 12), there exists cyclic BIBD(v, 4, 6) (see Theorem 4.5.1).

For v ≡ 2 (mod 12), there exists cyclic BIBD(v, 4, 6) for v = 14p where

p ≡ 1(mod 6) a prime (see Section 5.2.6). There exists a cyclic BIBD(14, 4, 6) (see
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Appendix B).

For v ≡ 3 (mod 12), there exists cyclic BIBD(27v, 4, 6) for any v coprime with 6;

there exist infinite families of cyclic BIBD(v, 4, 6) for v = 35 · v′, 37 · v′ for any positive

integer v′ whose prime factors are all congruent to ≡ 1(mod 4) and greater than 5

(see Section 5.2.7).

For v ≡ 4 (mod 12), take six copies of a cyclic BIBD(v, 4, 1).

For v ≡ 6 (mod 12), there exists cyclic BIBD(v, 4, 6) for every admissible v except

for v = 810, 30v′, 810v′, where v′ is a product of primes each greater than 5 (see

Section 5.2.8).

For v ≡ 8 (mod 12), there exists cyclic BIBD(8v, 4, 6) for all v of the form v =

p1p2 · · · pr such that each pi is a prime ≡ 1(mod 6); there exists cyclic BIBD(8 · 16 ·

v′, 4, 6) for all v of the form v = p1p2 · · · pr such that each pi is a prime ≡ 1(mod 6)

(see Section 5.2.9).

For v ≡ 9 (mod 12), take two copies of a cyclic BIBD(v, 4, 3).

For v ≡ 10 (mod 12), take three copies of a cyclic BIBD(v, 4, 2).
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Chapter 6

Simple Cyclically Indecomposable

BIBD (v, 3, λ)

The constructions of BIBDs(v, 3, λ) with the properties cyclic, simple, and indecom-

posable, have been studied by many researchers one property at a time; for example,

cyclic BIBD(v, 3, λ) for all λs were constructed in [40, 82], simple for λ = 2 in [86]

and simple for every v and λ satisfying the necessary conditions in [48].

Also some of the properties were combined in studies. In [87], cyclic and simple

BIBD(v, 3, 2) for all admissible orders were constructed, while in [6,47,49,65,68,94],

simple and indecomposable designs for λ = 2, 3, 4, 5, 6 and all admissible v were

constructed. In [93], simple and indecomposable designs were constructed for all v ≥
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24λ− 5 satisfying the necessary conditions. For the general case of λ > 6, Colbourn

and Colbourn [44] constructed a single indecomposable BIBD(v, 3, λ) for each odd λ.

Shen [81] used the Colbourn and Colbourn result and some recursive constructions

to prove the necessary conditions are asymptotically sufficient. Specifically, if λ is

odd, then there exists a constant v0 depending on λ with an indecomposable simple

BIBD(v, 3, λ) for all v ≥ v0 satisfying the necessary conditions.

In [73], the authors constructed BIBD(v, 3, 2) having all three properties of being

cyclic, simple and indecomposable for all admissible orders v. They acknowledged

that the analogous problem for λ = 3 is more difficult.

In this chapter we construct cyclic, simple and indecomposable BIBD(v, 3, 3) for

all admissible orders v with some possible exceptions for v = 9 and v = 24c+9, c ≥ 4.

Rees and Shalaby [73] introduced the notion of cyclically indecomposable triple

systems. Grüttmüller, Rees, and Shalaby [57], constructed cyclically indecomposable

BIBD(v, 3, 2) for all admissible orders. The authors also checked exhaustively the

cyclic BIBD(v, 3, λ) for λ = 2, v ≤ 33 and λ = 3, v ≤ 21 that are cyclically indecom-

posable and determined if they are decomposable (to non cyclic) or not. Grüttmüller,

Rees, Shalaby [57] found that there are exactly 3 inequivalent cyclically indecompos-

able but decomposable cyclic BIBD(9, 3, 3), exactly 45 cyclically indecomposable but

decomposable cyclic BIBD(15, 3, 3), and exactly 7247 cyclically indecomposable but
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decomposable cyclic BIBD(21, 3, 3). They pointed out that many of the sub-STSs are

generated +3(mod v); that is, the automorphism group contains no cycle of length v

but a permutation which consists of three disjoint cycles of length v/3 each.

Grüttmüller [58] constructed cyclically indecomposable but decomposable cyclic

BIBD(v, 3, 3) for v ≡ 3(mod 6). Cyclically indecomposable but decomposable cyclic

BIBD(v, 3, 3) for v ≡ 1(mod 6) are more difficult to find. It is known that there is no

such system for v = 7 or 13, but there is such a system for v = 19 [57]. Grüttmüller

[58] constructed cyclically indecomposable but decomposable cyclic BIBD(19v, 3, 3)

for v ≡ 1(mod 6).

We construct in this chapter, many new linear classes of cyclically indecomposable

but decomposable BIBD(v, 3, 4).

6.1 Cyclic, Simple, and Indecomposable

BIBD(v, 3, 3)

In this section, we prove that there exist cyclic, simple, and indecomposable

BIBD(v, 3, 3) for all admissible orders v with some possible exceptions for v = 9

and v = 24c+ 9, c ≥ 4.

In 1974, Kramer [65] constructed all indecomposable BIBD(v, 3, 3). We noticed
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that Kramer’s construction for v ≡ 1 or 5 (mod 6) also gives cyclic and simple designs.

We also noticed that this construction can be obtained using the canonical starter

v−2, v−4, . . . , 3, 1, 1, 3, . . . , v−4, v−2 and taking the base blocks {{0, i, bi}(mod v)|i =

1, 2, . . . , 1
2
(v − 1)}. So, Kramer’s construction can be obtained using Skolem-type

sequences.

We prove next that Kramer’s construction for indecomposable BIBD(v, 3, 3) pro-

duces simple designs.

Theorem 6.1.1 The blocks {0, α,−α}(mod v)|α = 0, 1, . . . , 1
2
(v − 1) for v ≡

1 or 5 (mod 6) form a cyclic, simple, and indecomposable BIBD(v, 3, 3).

Proof Let v = 6n+ 1. The design is cyclic and indecomposable [65]. We prove that

the cyclic BIBD(v, 3, 3) produced by {{0, α,−α}(mod v)|α = 1, . . . , 1
2
(v − 1)} is also

simple.

Suppose that the construction above produces {x, y, z} as a repeated block. Any

block {x, y, z} is of the form {0, i, 6n+ 1− i}+ k for some i = 1, 2, . . . , 1
2
(v − 1) and

k ∈ Z6n+1. Hence, if {x, y, z} is a repeated block we have:

{0, i1, 6n+ 1− i1}+ k1 = {0, i2, 6n+ 1− i2}+ k2
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whence

{0, i2, 6n+ 1− i2} = {0, i1, 6n+ 1− i1}+ k

, for some i1, i2 ∈ {1, 2, . . . , 12(v − 1)} and some k ∈ Z6n+1.

If k = 0, we have i2 = 6n + 1− i1 and i1 = 6n + 1− i2 which is impossible since

6n + 1 − i1 > i2 and 6n + 1 − i2 > i1 by definition (i.e., i1, i2 ∈ {1, 2, . . . , 3n} while

6n+ 1− i1, 6n+ 1− i2 ∈ {3n+ 1, . . . , 6n}.

If k = i2, we have


i1 + i2 = 6n+ 1

6n+ 1− i1 + i2 = 6n+ 1− i2

or


i1 + i2 = 6n+ 1− i2

6n+ 1− i1 + i2 = 6n+ 1.

Since both i1 and i2 are at most 3n, it is impossible to have i1 + i2 = 6n+ 1. Also

i1 6= i2.

If k = 6n + 1 − i2, we have


i1 + 6n+ 1− i2 = 6n+ 1

6n+ 1− i1 + 6n+ 1− i2 = i2 + 6n+ 1

⇔


i1 + i2 = 6n+ 1− i1

6n+ 1− i2 + i1 = 6n+ 1

or


i1 + 6n+ 1− i2 = i2

6n+ 1− i1 + 6n+ 1− i2 = 6n+ 1.

Since 6n + 1 − i2 > i2 , it is impossible to have i1 + 6n + 1 − i2 = i2. It follows

that our design is simple.
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The case for v = 6n+ 5 is similar. �

In order to complete the case for λ = 3, we need to find cyclic, simple, and

indecomposable BIBD(v, 3, 3) for v ≡ 3 (mod 6).

6.1.1 Simple BIBD (v, 3, 3)

We use Constructions 3.0.5 and 3.0.6 to construct simple BIBD(v, 3, 3) for v ≡

3 (mod 6), v ≥ 15 with a possible exception for v = 24c+ 57, c ≥ 2.

Lemma 6.1.2 For every n ≡ 0 or 1 (mod 4), n ≥ 8, there is a Skolem sequence of

order n starting with a 1 and ending with a 2.

Proof To get a Skolem sequence of order n for n ≡ 0 or 1 (mod 4), n ≥ 8, take

(1, 1, hLn−23 ), replace the hook with a 2 and add the other 2 at the end of the sequence.

For n = 8, take hL6
3 = (8, 3, 5, 7, 3, 4, 6, 5, 8, 4, 7, ∗, 6), for n = 12 take hL10

3 =

(9, 11, 3, 12, 4, 3, 7, 10, 4, 9, 8, 5, 11, 7, 6, 12, 5, 10, 8, ∗, 6) and for the remaining hLn−23 ,

hook a hLn−34 (see [83], Theorem 2, Case 1) to (3, ∗, ∗, 3).

For n ≡ 1 (mod 4), n ≥ 9, take hLn−23 (see [83], Theorem 2, Case 1). �

Example 6.1.1 From Lemma 6.1.2, we have S8=(1, 1, 8, 3, 5, 7, 3,

4, 6, 5, 8, 4, 7, 2, 6, 2), S12=(1, 1, 9, 11, 3, 12, 4, 3, 7, 10, 4, 9, 8, 5, 11, 7, 6, 12, 5, 10, 8, 2, 6, 2)
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and S16 = (1, 1, 9, 6, 4, 14, 15, 11, 4, 6, 13, 9, 16, 7, 12, 10, 8, 5, 11, 14, 7, 15, 5, 13, 8, 10, 12,

3, 16, 2, 3, 2).

Lemma 6.1.3 For every n ≡ 2 or 3 (mod 4), n ≥ 7, there is a hooked Skolem

sequence of order n starting with a 1 and ending with a 2.

Proof For n ≡ 2 or 3 (mod 4), n ≥ 7, take hSn = (1, 1, Ln−23 , 2, ∗, 2).

When n ≡ 2(mod 4), take Ln−23 (see [83], Theorem 1, Case 3).

When n ≡ 3(mod 4), take L5
3 = (6, 7, 3, 4, 5, 3, 6, 4, 7, 5) and for n ≥ 11 take Ln−23

(see [8], Theorem 2). �

Theorem 6.1.4 There exists simple BIBD(6n + 3, 3, 3), n ≥ 2, n ≡ 0 or 1 (mod 4)

except for 6n+ 3 = 24c+ 9, c ≥ 4.

Proof First, let v = 2n+ 1, n ≡ 0 or 1 (mod 4), n ≥ 8. Apply Construction 3.0.5 to

a Skolem sequence of order n starting with a 1 and ending with a 2 given by Lemma

6.1.2. We prove now that the cyclic BIBD(v, 3, 3), v = 6n + 3, n ≥ 2, v 6= 24c + 57,

c ≥ 2 produced by this construction is simple.

Suppose that the construction above produces {x, y, z} as a repeated block. With

regards to Construction 3.0.5, any block {x, y, z} is of the form {0, i, bi}+ k for some
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i = 1, 2, . . . , n and k ∈ Z2n+1. Hence if {x, y, z} is a repeated block we have:

{0, i1, bi1}+ k1 = {0, i2, bi2}+ k2

whence,

{0, i2, bi2} = {0, i1, bi1}+ k

for some i1, i2 ∈ {1, 2, . . . , n} and some k ∈ Z2n+1.

If k = 0, we have i2 = bi1 and i1 = bi2 which is impossible since bi1 ≥ i1 + 1 and

bi2 ≥ i2 + 1 from the definition of a Skolem sequence.

If k = i2, we have


i1 + i2 = 2n+ 1

bi1 + i2 = bi2

or


i1 + i2 = bi2

bi1 + i2 = 2n+ 1.

Since both i1 and i2 are at most n, it is impossible to have i1 + i2 = 2n+ 1.

If k = bi2 , we have


i1 + bi2 = 2n+ 1

bi1 + bi2 = i2 + 2n+ 1

⇔


i1 + i2 = bi1

bi2 + i1 = 2n+ 1

or


i1 + bi2 = i2

bi1 + bi2 = 2n+ 1.

Since bi2 > i2 , it is impossible to have i1 + bi2 = i2.

So, to prove that a system has no repeated blocks is enough to show that:
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i1 + i2 = bi2

bi1 + i2 = 2n+ 1

or


i1 + i2 = bi1

bi2 + i1 = 2n+ 1

are not satisfied. We will prove also

that i = v
3

and bi = 2v
3

are not allowed.

For n = 8 and n = 12, it is easy to see that the Skolem sequences of order n given

by Lemma 6.1.2 produce simple designs.

For n ≡ 0(mod 4), n ≥ 16, let Sn be the Skolem sequence given by Lemma 6.1.2.

This Skolem sequence is constructed using the hooked Langford sequence hLn−34 (see

[83], Theorem 2, Case 1). Since d = 4, we will use only lines (1)− (7), (14), (8∗), (10∗)

and (11∗) in Simpson’s Table [83]. Note that n − 3 = 9 + 4r in Simpson’s Table,

so n = 12 + 4r and v = 25 + 8r in this case. Because we add the pair (1, 1) at the

beginning of the Langford sequence hLn−34 , ai and bi will be shifted to the right by

two positions.

To make it easier for the reader we give, in Table 6.1, the hLn−34 taken from

Simpson’s Table and adapted for our case.

So the base blocks of the cyclic designs produced by Construction 3.0.5 are

{0, 1, 2}, {0, 2, v − 1}, {0, 3, v − 2} and {0, i, bi + 2} for i = 4, . . . , n.

First, we show that the above designs have no short orbits, i.e., i = v
3

and bi+2 =

2v
3

are not allowed. In the first three base blocks, it is obvious that i 6= v
3
. For the

remaining base blocks, we check lines (1)−(7), (14), (8∗), (10∗) and (11∗) in Simpson’s
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ai + 2 bi + 2 i = bi − ai 0 ≤ j ≤
(1) 2r + 3− j 2r + 7 + j 4 + 2j r
(2) r + 2− j 3r + 9 + j 2r + 7 + 2j r − 1
(3) 6r + 12− j 6r + 17 + j 5 + 2j r − 1
(4) 5r + 12− j 7r + 18 + j 2r + 6 + 2j r
(5) 3r + 8 7r + 17 4r + 9 -
(6) 4r + 9 8r + 21 4r + 12 -
(7) 2r + 6 6r + 13 4r + 7 -
(14) 2r + 5 6r + 16 4r + 11 -
(8∗) 4r + 11 8r + 19 4r + 8 -
(10∗) 4r + 10 6r + 15 2r + 5 -
(11∗) 2r + 4 6r + 14 4r + 10 -

Table 6.1: hLn−34

Table.

Line (1):


4 + 2j = 25+8r

3

2r + 7 + j = 2(25+8r)
3

⇔ r = −45
12

which is impossible since r ≥ 1.

Line (2):


2r + 7 + 2j = 25+8r

3

3r + 9 + j = 2(25+8r)
3

⇔ r = −7
2

which is impossible since r ≥ 1.

Line (3):


5 + 2j = 25+8r

3

6r + 17 + j = 2(25+8r)
3

⇔ r = −1 which is impossible since r ≥ 1

and also integer.

Line (4):


2r + 6 + 2j = 25+8r

3

7r + 18 + j = 2(25+8r)
3

⇔ r = −5
4

which is impossible since r ≥ 1.

129



Line (5):


4r + 9 = 25+8r

3

7r + 17 = 2(25+8r)
3

⇔ ∅. Line (6)


4r + 12 = 25+8r

3

8r + 21 = 2(25+8r)
3

⇔ ∅.

Line (7):


4r + 7 = 25+8r

3

6r + 13 = 2(25+8r)
3

⇔ ∅. Line (14)


4r + 11 = 25+8r

3

6r + 16 = 2(25+8r)
3

⇔ ∅.

Line (8∗):


4r + 8 = 25+8r

3

8r + 19 = 2(25+8r)
3

⇔ ∅. Line (10∗)


2r + 5 = 25+8r

3

6r + 15 = 2(25+8r)
3

⇔ ∅.

Line (11∗):


4r + 10 = 25+8r

3

6r + 14 = 2(25+8r)
3

⇔ ∅.

Next, we have to check that neither


i1 + i2 = bi2

bi1 + i2 = 2n+ 1

nor


i1 + i2 = bi1

bi2 + i1 = 2n+ 1

are satisfied.

Lines (1) − (1):


4 + 2j1 + 4 + 2j2 = 2r + 7 + j2

4 + 2j2 + 2r + 7 + j1 = 25 + 8r

⇔


j1 = −2r−15

3

j2 = 10r+27
3

which is

impossible since j1 ≥ 0 and also integer.
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Lines (1)− (2):


4 + 2j1 + 2r + 7 + 2j2 = 3r + 9 + j2

2r + 7 + 2j2 + 2r + 7 + j1 = 25 + 8r

⇔


j1 = −2r−15

3

j2 = r − 2− 2j1

which is impossible since j1 ≥ 0 and also integer.

Lines (1) − (3):


4 + 2j1 + 5 + 2j2 = 6r + 17+2

5 + 2j2 + 2r + 7 + j1 = 25 + 8r

⇔


j1 = j2 − 5

j2 = 2r + 9

which is

impossible since j2 ≤ r − 1.

Lines (1)− (4):


4 + 2j1 + 2r + 6 + 2j2 = 7r + 18 + j2

2r + 6 + 2j2 + 2r + 7 + j1 = 25 + 8r

⇔


j1 = j2 + r − 4

j2 = 3r+16
3

which is impossible since j2 ≤ r.

Lines (1)− (5):


4r + 2j + 13 = 7r + 17

j + 6r + 16 = 25 + 8r

⇔ r = −14 which is impossible since

r ≥ 1.

Lines (1)− (6):


4r + 2j + 16 = 8r + 21

j + 6r + 19 = 25 + 8r

⇔ ∅.

Lines (1)− (7):


4r + 2j + 11 = 6r + 13

j + 6r + 14 = 25 + 8r

⇔ r = −12 which is impossible since

r ≥ 1.

Lines (1)− (14):


4r + 2j + 15 = 6r + 16

j + 6r + 18 = 25 + 8r

⇔ j = −6 which is impossible since
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j ≥ 0.

Lines (1)− (8∗):


4r + 2j + 15 = 8r + 19

j + 6r + 15 = 25 + 8r

⇔ ∅.

Lines (1)− (10∗):


2r + 2j + 9 = 6r + 15

j + 4r + 12 = 25 + 8r

⇔ r = −5 which is impossible since

r ≥ 1.

Lines (1)−(11∗):


4r + 2j + 14 = 6r + 14

j + 6r + 17 = 25 + 8r

⇔ r = −8 which is impossible since

r ≥ 1.

Similarly, we can check any combinations of two lines in Simpson’s Table. This

can be done easily using a program in Mathematica that checks all the pairs of rows

in Simpson’s Table using the above approach. The code for the program and the

results can be found in [78]. From the results, we can easily see that if we check any

combination of two lines in Simpson’s Table, the conditions are not satisfied in almost

all of the cases. There are two cases where these conditions are satisfied. The first

case is when we check line (3) with line (1), and we get that, for r = 4 + 3c, j1 = 2c,

and j2 = 6 + 2c, c ≥ 2, the system is not simple. This implies that our system is not

simple when v = 24c+ 9, c ≥ 4. The second case is when we check line (3) with line

(2). Here, we get r = 5 and therefore v = 59. But v = 59 is not congruent to 3 (mod
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6). A cyclic BIBD(59, 3, 3) is simple, cyclic, and indecomposable by Theorem 6.1.1.

For n ≡ 1(mod 4), let Sn be the Skolem sequence given by Lemma 6.1.2. This

Skolem sequence is constructed using hLn−23 from [83], Theorem 2, Case 1. Since

d = 3, will use only lines (1)− (6), (14), (7′), (8′) and (10′) in Simpson’s Table. Note

that n− 2 = 7 + 4r in Simpson’s Table, so n = 9 + 4r and v = 19 + 8r in this case.

Because we add the pair (1, 1) at the beginning of the Langford sequence hLn−23 , ai

and bi will be shifted to the right by two positions.

Table 6.2 gives the hLn−23 from Simpson’s Table adapted to our case.

ai + 2 bi + 2 i = bi − ai 0 ≤ j ≤
(1) 2r + 3− j 2r + 6 + j 3 + 2j r
(2) r + 2− j 3r + 8 + j 2r + 6 + 2j r − 1
(3) 6r + 10− j 6r + 14 + j 4 + 2j r − 1
(4) 5r + 10− j 7r + 15 + j 2r + 5 + 2j r
(5) 3r + 7 7r + 14 4r + 7 -
(6) 4r + 8 8r + 17 4r + 9 -
(14) 2r + 4 6r + 12 4r + 8 -
(7′) 2r + 5 6r + 11 4r + 6 -
(10′) 4r + 9 6r + 13 2r + 4 -

Table 6.2: hLn−23

So, the base blocks of the cyclic designs produced by Construction 3.0.5 are

{0, 1, 2}, {0, 2, v − 1} and {0, i, bi + 2} for i = 3, . . . , n. Using the same argument

we show that these designs have no short orbits.

We show that i = v
3

and bi + 2 = 2v
3

are not allowed in the above system. In the
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first two base blocks it is obvious that i 6= v
3
. For the remaining base blocks we check

lines (1)− (6), (14), (7′) and (10′) in Table 6.2.

Line (1):


3 + 2j = 19+8r

3

2r + 6 + j = 2(19+8r)
3

⇔ r = −5
2

which is impossible since r ≥ 0 and

also integer.

Line (2):


2r + 6 + 2j = 19+8r

3

3r + 8 + j = 2(19+8r)
3

⇔ r = −9
4

which is impossible since r ≥ 0 and

also integer.

Line (3):


4 + 2j = 19+8r

3

6r + 14 + j = 2(19+8r)
3

⇔ j = −1
2

which is impossible since j ≥ 0

and also integer.

Line (4):


2r + 5 + 2j = 19+8r

3

7r + 15 + j = 2(19+8r)
3

⇔ r = −3
2

which is impossible since r ≥ 0

and also integer.

Line (5):


4r + 7 = 19+8r

3

7r + 14 = 2(19+8r)
3

⇔ ∅. Line (6)


4r + 9 = 19+8r

3

8r + 17 = 219+8r
3

⇔ ∅.

Line (14):


4r + 8 = 19+8r

3

6r + 12 = 2(19+8r)
3

⇔ ∅. Line (7′)


4r + 6 = 19+8r

3

6r + 11 = 2(19+8r)
3

⇔ ∅.

134



Line (10′):


2r + 4 = 19+8r

3

6r + 13 = 2(19+8r)
3

⇔ ∅.

Next, we have to check that


i1 + i2 = bi2

bi1 + i2 = 2n+ 1

or


i1 + i2 = bi1

bi2 + i1 = 2n+ 1

are not

satisfied. As with the previous case, the results can be found in [78]. When we check

line (3) and line (1) the conditions are satisfied. But, in this case v = 24c+ 35, c ≥ 1

which is not congruent to 3 (mod 6). So, a BIBD(24c + 35, 3, 3) for c ≥ 1 is cyclic,

simple, and indecomposable by Theorem 6.1.1. �

Theorem 6.1.5 There exists simple BIBD(6n + 3, 3, 3) for all n ≡

2 or 3 (mod 4), n ≥ 2.

Proof Let v = 2n + 1, n ≡ 2 or 3 (mod 4), n ≥ 7. Apply Construction 3.0.6 to a

hooked Skolem sequence of order n starting with a 1 and ending with a 2 given by

Lemma 6.1.3. The proof is similar to Theorem 6.1.4.

Let v = 2n+ 1, n ≡ 2 or 3 (mod 4), n ≥ 10.

For n ≡ 2(mod 4), n ≥ 10, let hSn be the hooked Skolem sequence given by

Lemma 6.1.3. This hooked Skolem sequence is constructed using the Langford se-

quence Ln−23 from [83], Theorem 1, Case 3.

Since d = 3, will use only lines (1)− (4), (6), (9), (11) and (13) in Simpson’s Table.
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Note that m = n − 2 = 4r in Simpson’s Table, so n = 4r + 2 and v = 8r + 5,

r ≥ 2, d = 3, s = 1 in this case. Because we add the pair (1, 1) at the beginning

of the hooked Langford sequence hLn−23 , ai and bi will be shifted to the right by two

positions. To make it easier for the reader we give in Table 6.3 the Ln−23 taken from

Simpson’s Table and adapted for our case.

ai + 2 bi + 2 i = bi − ai 0 ≤ j ≤
(1) 2r − j 2r + 4 + j 4 + 2j r − 3
(2) r + 2− j 3r + 3 + j 2r + 1 + 2j r − 1
(3) 6r + 1− j 6r + 4 + j 3 + 2j r − 2
(4) 5r + 2− j 7r + 4 + j 2r + 2 + 2j r − 2
(6) 2r + 3 4r + 3 2r -
(9) 3r + 2 7r + 3 4r + 1 -
(11) 2r + 1 6r + 3 4r + 2 -
(13) 2r + 2 6r + 2 4r -

Omit row (1) when r = 2

Table 6.3: Ln−23

So, the base blocks of the cyclic designs produced by Construction 3.0.6 are

{0, 1, 3}, {0, 2, 1} and {0, i, bi + 2 + 1} for i = 3, . . . , n and i = bi − ai.

First, we show that i = v
3

and bi + 2 + 1 = 2v
3

are not allowed in the above system.

In the first two base blocks, it is obvious that i 6= v
3
. For the remaining base blocks

we check lines (1)− (4), (6), (9), (11) and (13) in Table 6.3.
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Line (1):


4 + 2j = 8r+5

3

2r + 5 + j = 2(8r+5)
3

⇔ r = 1
4

which is impossible since r ≥ 2 and

also integer.

Line (2):


2r + 1 + 2j = 8r+5

3

3r + 4 + j = 2(8r+5)
3

⇔ r = 1
2

which is impossible since r ≥ 2 and

also integer.

Line (3):


3 + 2j = 8r+5

3

6r + 5 + j = 2(8r+5)
3

⇔ r = −1
2

which is impossible since r ≥ 2 and

also integer.

Line (4):


2r + 2 + 2j = 8r+5

3

7r + 5 + j = 2(8r+5)
3

⇔ r = −3
4

which is impossible since r ≥ 2 and

also integer.

Line (6):


2r = 8r+5

3

4r + 4 = 2(8r+5)
3

⇔ ∅. Line (9):


4r + 1 = 8r+5

3

7r + 4 = 28r+5
3

⇔ ∅.

Line (11):


4r + 2 = 8r+5

3

6r + 4 = 2(8r+5)
3

⇔ ∅. Line (13):


4r = 8r+5

3

6r + 3 = 2(8r+5)
3

⇔ ∅.

Next, we have to show that


i1 + i2 = bi2

bi1 + i2 = 2n+ 1

or


i1 + i2 = bi1

bi2 + i1 = 2n+ 1

are not
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satisfied. The results for this can be found in [78]. As before, when we check line (3)

with line (1), the conditions are satisfied. But v = 24c+ 5, c ≥ 2 in this case which is

not congruent to 3 (mod 6). So, by Theorem 6.1.1, there exists a cyclic, simple, and

indecomposable BIBD(24c+ 5, 3, 3) for c ≥ 2.

For n ≡ 3(mod 4), n ≥ 11, let hSn be the hooked Skolem sequence given by Lemma

6.1.3. This hooked Skolem sequence is constructed using a Ln−23 ( [8], Theorem 2).

Since d = 3 will use only lines (1) − (4), (6) − (10) in [8]. Note that m = n − 2 =

4r + 1, r ≥ 2, e = 4 in [8], so n = 4r + 3 and v = 8r + 7 in this case. Because we

add the pair (1, 1) at the beginning of the Langford sequence Ln−23 , ai and bi will be

shifted to the right by two positions.

Table 6.4 gives the Ln−23 from [8] adapted to our case.

ai + 2 bi + 2 i = bi − ai 0 ≤ j ≤
(1) 2r + 2− j 2r + 6 + j 4 + 2j r − 2
(2) r + 2− j 3r + 5 + j 2r + 3 + 2j r − 2
(3) 3 4r + 4 4r + 1 -
(4) 2r + 4 4r + 5 2r + 1 -
(6) r + 3 5r + 5 4r + 2 -
(7) 2r + 5 6r + 5 4r -
(8 2r + 3 6r + 6 4r + 3 -
(9) 6r + 4− j 6r + 7 + j 3 + 2j r − 2
(10) 5r + 4− j 7r + 6 + j 2r + 2 + 2j r − 2

Table 6.4: Ln−23

So, the base blocks of the cyclic designs produced by Construction 3.0.6 are
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{0, 1, 3}, {0, 2, 1} and {0, i, bi + 2 + 1} for i = 3, . . . , n. Using the same argument

as before, we show that these designs are simple.

First, we show that i = v
3

and bi + 2 + 1 = 2v
3

are not allowed in the above system.

In the first two base blocks is obvious that i 6= v
3
. For the remaining base blocks we

check lines (1)− (4), (6)− (10) in Table 6.4.

Line (1):


4 + 2j = 8r+7

3

2r + 7 + j = 2(8r+7)
3

⇔ r = 3
4

which is impossible since r ≥ 2 and

also integer.

Line (2):


2r + 3 + 2j = 8r+7

3

3r + 6 + j = 2(8r+7)
3

⇔ r = 1
2

which is impossible since r ≥ 2 and

also integer.

Line (3):


4r + 1 = 8r+7

3

4r + 5 = 2(8r+7)
3

⇔ ∅. Line (4)


2r + 1 = 8r+7

3

4r + 6 = 2(8r+7)
3

⇔ ∅.

Line (6):


4r + 2 = 8r+7

3

5r + 6 = 2(8r+7)
3

⇔ ∅. Line (7)


4r = 8r+7

3

6r + 6 = 2(8r+7)
3

⇔ ∅.

Line (8):


4r + 3 = 8r+7

3

6r + 7 = 2(8r+7)
3

⇔ ∅.
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Line (9):


3 + 2j = 8r+7

3

6r + 8 + j = 2(8r+7)
3

⇔ r = −3
2

which is impossible since r ≥ 2.

Line (10):


2r + 2 + 2j = 8r+7

3

7r + 7 + j = 2(8r+7)
3

⇔ r = −5
4

which is impossible since r ≥ 2.

Next, we have to check that


i1 + i2 = bi2

bi1 + i2 = 2n+ 1

or


i1 + i2 = bi1

bi2 + i1 = 2n+ 1

are not

satisfied. The results for this can be found in [78]. Here, for v = 3c − 1, c ≥ 4 and

for v = 55 the conditions are satisfied but these orders are not congruent to 3 (mod

6). Therefore, by Theorem 6.1.1, there exists cyclic, simple, and indecomposable

BIBD(3c − 1, 3, 3) for c ≥ 4 and cyclic, simple, and indecomposable BIBD(55, 3, 3).

�

6.1.2 Indecomposable BIBD (v, 3, 3)

We use Constructions 3.0.5 and 3.0.6 to construct indecomposable BIBD(v, 3, 3) for

v ≡ 3 (mod 6), v ≥ 15.

Theorem 6.1.6 There exists an indecomposable BIBD(v, 3, 3), for every v ≡

3 (mod 6), v ≥ 15.
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Proof Let v ≡ 3 (mod 6), v ≥ 15. Suppose that v = 2n + 1, n ≡ 0 or 1 (mod 4),

n ≥ 8.

Apply Construction 3.0.5 to a Skolem sequence of order n starting with a 1 and

ending with a 2. By Lemma 6.1.2, such a Skolem sequence of order n exists for every

n ≥ 8.

Now, for a BIBD(2n+ 1, 3, 3) to be decomposable, there must be an STS(2n+ 1)

inside the BIBD(2n+ 1, 3, 3).

If 2n + 1 ≡ 3 (mod 6), let {xi, xj, xk} be a triple using symbols from N2n+1 =

{0, 1, . . . , 2n}. Let dij = min {|xi − xj|, 2n+ 1− |xi − xj|} be the difference between

xi and xj. An STS(2n + 1) on N2n+1 must have a set of triples with the property

that each difference d, 1 ≤ d ≤ n, occurs exactly 2n + 1 times. Assume there is an

STS(2n+ 1) inside our BIBD(2n+ 1, 3, 3) and let fα be the number of triples inside

the STS(2n+ 1) which are a cyclic shift of {0, α, bα}.

We look at the first two base blocks of our BIBD(2n + 1, 3, 3). These are

{0, 1, 2} (mod 2n+1) and {0, 2, 2n} (mod 2n+1). Then the existence of an STS(2n+1)

inside our BIBD(2n+ 1, 3, 3) requires that the equation 2f1 + f2 = 2n+ 1 must have

a solution in nonnegative integers (we need the difference 1 to occur exactly 2n + 1

times).

Case 1: f1 = 1
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Suppose we choose one block from the orbit {0, 1, 2}(mod 2n+1). Since this orbit

uses the difference 1 twice and the difference 2, and the orbit {0, 2, 2n}(mod 2n+ 1)

uses the differences 1, 2 and 3, whenever we pick one block from the first orbit we

cannot choose three blocks from the second orbit (i.e., those blocks where the pairs

(0, 1), (0, 2) and (1, 2) are included). So, we just have 2n − 2 blocks in the second

orbit to choose from. But we need 2n − 1 blocks from the second orbit in order to

cover difference 1 exactly 2n+ 1 times.

Therefore, we have no solution in this case.

Case 2: f1 = 2

Since f2 = 2n−3
2

is not an integer, we have no solution in this case.

Case 3: f1 = 3, 5, . . . , n (orn− 1)

Similar to Case 1. So, there is no solution in this case.

Case 4: f1 = 4, 6, . . . , n (orn− 1)

Similar to Case 2. So, there is no solution in this case.

Case 5: f1 = 0

Note that our cyclic BIBD(v, 3, 3) has no short orbits (see Theorem 6.1.4) while

a cyclic STS(v) will have a short orbit. Therefore, if a design exists inside our

BIBD(v, 3, 3), that design is not cyclic.

Now, we choose no block from the first orbit and all the blocks in the second orbit
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(i.e., f1 = 0, f2 = 2n + 1). Therefore differences 1, 2 and 3 are all covered each

exactly 2n+ 1 times in the STS(v). From the remaining n− 2 orbits {0, i, bi}, i ≥ 3

there will be two or three orbits which will use differences 2 and 3. Since differences

1, 2 and 3 are already covered, we cannot choose any block from those orbits that

uses these three differences. So, we are left with n− 4 or n− 5 orbits to choose from.

We need to cover differences 4, 5, . . . , n (n − 3 differences) each exactly v = 2n + 1

times.

We form a system of n − 3 equations with n − 4 or n − 5 unknowns in the

following way: when a difference appears in different orbits, the sum of the blocks

that we choose from each orbit has to equal v, i.e., if difference 4 appears in f5, f7

and f10 we have f5 + f7 + f10 = v or if difference 4 appears in f7 twice and in f9

once we have 2f7 + f9 = v. The system that we form is non-singular and it has

the unique solution fi1 = fi2 = . . . = fik = v for some 4 ≤ i1, i2, . . . , ik ≤ n and

fj1 = fj2 = . . . = fjk = 0 for some 4 ≤ j1, j2, . . . , jk ≤ n. But this implies that the

STS(v) inside our BIBD(v, 3, 3) is cyclic which is impossible.

Therefore, we have no solution in this case. It follows that our BIBD(2n+ 1, 3, 3)

is indecomposable.

Now, suppose that v = 2n + 1, n ≡ 2 or 3 (mod 4), n ≥ 7. Apply Construction

3.0.6 to a hooked Skolem sequence of order n starting with a 1 and ending with

143



a 2. By Lemma 6.1.3, such a hooked Skolem sequence of order n exists for every

n ≥ 7. Let fα be the number of triples inside the STS(2n + 1) which are a cyclic

shift of {0, α, bα + 1}. Using the same argument as before it can be shown that the

BIBD(2n+ 1, 3, 3) is indecomposable. �

6.1.3 Cyclic, Simple, and Indecomposable BIBD (v, 3, 3)

Now we are ready to prove our main result.

Theorem 6.1.7 There exist cyclic, simple, and indecomposable BIBD(v, 3, 3), for

every v ≡ 1(mod 2), v ≥ 5, v 6= 9 and v 6= 24c+ 9, c ≥ 4.

Proof Let v ≡ 1 or 5 (mod 6) and take the base blocks {0, α,−α}(mod v)|α =

0, 1, . . . , 1
2
(v − 1). By Theorem 6.1.1, these will be the base blocks of a cyclic, simple

and indecomposable BIBD(v, 3, 3).

Let v ≡ 3 (mod 6), v = 2n + 1, n ≡ 0 or 1 (mod 4), n ≥ 8. Apply Construction

3.0.5 to the Skolem sequence of order n given by Lemma 6.1.2. These designs are

cyclic by Construction 3.0.5, simple except for v = 24c + 9, c ≥ 4 by Theorem 6.1.4

and indecomposable by Theorem 6.1.6.

Let v ≡ 3 (mod 6), v = 2n + 1, n ≡ 2 or 3 (mod 4), n ≥ 7. Apply Construction

3.0.6 to the hooked Skolem sequence of order n given by Lemma 6.1.3. These designs

144



are cyclic by Construction 3.0.6, simple by Theorem 6.1.5 and indecomposable by

Theorem 6.1.6. �

6.2 Cyclically Indecomposable but Decomposable

BIBD(v, 3, 4)

In this section we give examples of cyclically indecomposable but decomposable

BIBD(v, 3, 4) for v ≤ 21. We obtained these designs using Constructions 3.0.7

and 3.0.8 from Chapter 2. Then, we use these examples and some new construc-

tions to generate infinitely many new cyclically indecomposable but decomposable

BIBD(v, 3, 4).

6.2.1 Examples of Cyclically Indecomposable but Decompos-

able BIBD(v, 3, 4) for v ≤ 21

Lemma 6.2.1 There exists a cyclically indecomposable but decomposable cyclic

BIBD(9, 3, 4).

Proof From the 9-extended Skolem sequence of order 5, (5, 3, 1, 1, 3, 5, 4, 2, ∗, 2, 4),

take the base block of the form {0, i, bi} (mod 9). So, the canonical base blocks of the
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cyclic BIBD(9, 3, 4) are: {0, 1, 4}, {0, 2, 1}, {0, 3, 5}, {0, 4, 2}, {0, 5, 6}, and the short

orbit {0, 6, 3}.

This system is cyclically indecomposable since there exists no CSTS(9) nor cyclic

BIBD(9, 3, 2). This design is decomposable since the following blocks which are chosen

from the orbits of the base blocks above form an STS(9): {0, 1, 2}, {0, 3, 8}, {0, 4, 7},

{0, 5, 6}, {1, 3, 7}, {1, 4, 6}, {1, 5, 8}, {2, 3, 6}, {2, 4, 8}, {2, 5, 7},{3, 4, 5},{6, 7, 8}. The

base blocks of the BIBD(9, 3, 3) are just the complement of the blocks above with

respect to the blocks in the cyclic BIBD(9, 3, 4). �

Lemma 6.2.2 There exists a cyclically indecomposable but decomposable cyclic

BIBD(10, 3, 4).

Proof From the 10-extended Skolem sequence of order 6,

(5, 3, 1, 1, 3, 5, 6, 4, 2, ∗, 2, 4, 6), take the base blocks of the form {0, i, bi} (mod

10). So, the canonical base blocks of the cyclic BIBD(10, 3, 4) are: {0, 1, 4}, {0, 2, 1},

{0, 3, 5}, {0, 4, 2}, {0, 5, 6}, {0, 6, 3}. This system is cyclically indecomposable since

there exists no CSTS(10) nor cyclic BIBD(10, 3, 2). On the other hand, this design is

decomposable since the following blocks which are chosen from the orbits of the base

blocks above form a BIBD(10, 3, 2): {0, 1, 2}, {0, 1, 4}, {0, 2, 4}, {0, 3, 7}, {0, 3, 9},

{0, 5, 6}, {0, 5, 8}, {0, 6, 7}, {0, 8, 9}, {1, 2, 6},{1, 3, 5},{1, 3, 8}, {1, 4, 7}, {1, 5, 8},

{1, 6, 9}, {1, 7, 9},{2, 3, 4}, {2, 3, 6}, {2, 5, 7}, {2, 5, 9}, {2, 7, 8},{2, 8, 9}, {3, 4, 8},
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{3, 5, 7}, {3, 6, 9}, {4, 5, 6}, {4, 5, 9}, {4, 6, 8}, {4, 7, 9}, {6, 7, 8}. The base blocks of

the second BIBD(10, 3, 2) are just the complement of the blocks above with respect

to the blocks in the cyclic BIBD(10, 3, 4). �

Lemma 6.2.3 There exists a cyclically indecomposable but decomposable cyclic

BIBD(12, 3, 4).

Proof From the 12-extended Skolem sequence of order 7,

(1, 1, 4, 2, 6, 2, 4, 7, 5, 3, 6, ∗, 3, 5, 7), take the base blocks of the form {0, i, bi}

(mod 12) together with the short base block {0, 4, 8}. So, the canonical base blocks

of the cyclic BIBD(12, 3, 4) are: {0, 1, 2}, {0, 2, 6}, {0, 3, 1}, {0, 4, 7}, {0, 5, 2},

{0, 6, 11}, {0, 7, 3}, and the short base block {0, 4, 8}. There exists no CSTS(12) and

therefore no cyclic decomposition into a CSTS(12) and a cyclic BIBD(12, 3, 3). A

decomposition into two cyclic BIBD(12, 3, 2) would require 2 × 2 short base blocks

but there is only one. Therefore the design is cyclically indecomposable.

This design is decomposable since the following blocks which are chosen from

the orbits of the base blocks above form a BIBD(12, 3, 2): {0, 1, 2}, {0, 1, 3}, {0, 2, 5},

{0, 3, 7}, {0, 4, 7}, {0, 4, 8}, {0, 5, 9}, {0, 6, 8}, {0, 6, 11}, {0, 9, 10},{0, 10, 11},{1, 2, 4},

{1, 3, 6}, {1, 4, 8}, {1, 5, 9}, {1, 5, 11},{1, 6, 7}, {1, 7, 9}, {1, 8, 10}, {1, 10, 11},

{2, 3, 4},{2, 3, 9}, {2, 5, 10}, {2, 6, 9}, {2, 6, 11}, {2, 7, 8}, {2, 7, 11}, {2, 8, 10},

{3, 4, 5}, {3, 5, 8}, {3, 6, 10}, {3, 7, 10},{3, 8, 11}, {3, 9, 11}, {4, 5, 11}, {4, 6, 9},
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{4, 6, 10}, {4, 7, 11}, {4, 9, 10}, {5, 6, 7}, {5, 6, 8}, {5, 7, 10}, {7, 8, 9},{8, 9, 11}. The

base blocks of the second BIBD(12, 3, 2) are just the complement of the blocks above

with respect to the blocks of the cyclic BIBD(12, 3, 4). �

Lemma 6.2.4 There exists a cyclically indecomposable but decomposable cyclic

BIBD(13, 3, 4).

Proof From the 13-extended Skolem sequence of order 8,

(1, 1, 6, 4, 2, 8, 2, 4, 6, 7, 5, 3, ∗, 8, 3, 5, 7), take the base blocks of the form {0, i, bi}

(mod 13). So, the canonical base blocks of the cyclic BIBD(13, 3, 4) are: {0, 1, 2},

{0, 2, 7}, {0, 3, 2}, {0, 4, 8}, {0, 5, 3}, {0, 6, 9}, {0, 7, 4}, {0, 8, 1}. Here we have to

show that neither a decomposition into a CSTS(13) and a cyclic BIBD(13, 3, 3), nor

into two cyclic BIBD(13, 3, 2) is possible. For a CSTS(13) we need two base blocks

whose differences give each of {1, 2, . . . , 6} exactly once. But these do not exist.

Now, suppose there exists a decomposition into two cyclic BIBD(13, 3, 2), denoted

C1 and C2 respectively. Assume that the base block {0, 4, 8} providing the repeated

difference 4 belongs to C1. Then, the two base blocks {0, 6, 9}, {0, 7, 4} which cover

difference 4 as well need to occur in C2. Both blocks cover differences 3 and 6

each. Therefore, base blocks {0, 2, 7} and {0, 8, 1} are forced to be contained in C1.

But then difference 5 occurs three times among the differences provided by base
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blocks of C1, a contradiction. Hence, the cyclic BIBD(13, 3, 4) above is cyclically

indecomposable.

The design is decomposable since the following blocks which are chosen

from the orbits of the base blocks above form a BIBD(13, 3, 2): {0, 1, 2},

{0, 1, 8}, {0, 2, 3}, {0, 3, 7}, {0, 4, 7}, {0, 4, 8}, {0, 5, 9}, {0, 5, 11}, {0, 6, 9},

{0, 6, 10},{0, 10, 12},{0, 11, 12}, {1, 2, 9}, {1, 3, 4}, {1, 3, 11}, {1, 4, 6},{1, 5, 8},

{1, 5, 10}, {1, 6, 12}, {1, 7, 10}, {1, 7, 11},{1, 9, 12}, {2, 3, 10}, {2, 4, 5}, {2, 4, 12},

{2, 5, 9}, {2, 6, 11}, {2, 6, 12}, {2, 7, 8}, {2, 7, 11}, {2, 8, 10}, {3, 4, 5},{3, 5, 6},

{3, 6, 10}, {3, 7, 12}, {3, 8, 9}, {3, 8, 12}, {3, 9, 11}, {4, 6, 11}, {4, 7, 9}, {4, 8, 11},

{4, 9, 10}, {4, 10, 12},{5, 6, 7}, {5, 7, 12}, {5, 8, 12}, {5, 10, 11}, {6, 7, 8}, {6, 8, 9},

{7, 9, 10}, {8, 10, 11}, {9, 11, 12}. The base blocks of the second BIBD(13, 3, 2) are

just the complement of the blocks above with respect to the blocks in the cyclic

BIBD(13, 3, 4). �

Lemma 6.2.5 There exists a cyclically indecomposable but decomposable cyclic

BIBD(15, 3, 4).

Proof From the 15-extended Skolem sequence of order 9,

(1, 1, 6, 4, 2, 8, 2, 4, 6, 9, 7, 5, 3, 8, ∗, 3, 5, 7, 9), take the base blocks of the form

{0, i, bi} (mod 15). So, the canonical base blocks of the cyclic BIBD(15, 3, 4) are:
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{0, 1, 2}, {0, 2, 7}, {0, 3, 1}, {0, 4, 8}, {0, 5, 2}, {0, 6, 9}, {0, 7, 3}, {0, 8, 14}, {0, 9, 4},

together with the short orbit {0, 5, 10}.

With regard to cyclic decomposability it is easily seen that a decomposition into

two cyclic BIBD(15, 3, 2) would require four short base blocks, but there is only

one. Now, suppose there exists a decomposition into a CSTS(15) and a cyclic

BIBD(15, 3, 3), denoted C1 and C2 respectively. The short base block has to oc-

cur in C1 and therefore covers all pairs of points with difference 5. Consequently,

the remaining differences {1, 2, 3, 4, 6, 7} have to be covered exactly once by two base

blocks. But there are no such two base blocks. Hence, the cyclic BIBD(15, 3, 4) above

is cyclically indecomposable.

This design is decomposable since the following blocks which are cho-

sen from the orbits of the base blocks above form an STS(15): {0, 1, 3},

{0, 2, 5}, {0, 4, 9}, {0, 6, 10}, {0, 7, 11}, {0, 8, 14}, {0, 12, 13}, {1, 2, 10}, {1, 4, 14},

{1, 5, 9},{1, 6, 12},{1, 7, 8}, {1, 11, 13}, {2, 3, 11}, {2, 4, 7}, {2, 6, 13},{2, 8, 9},

{2, 12, 14}, {3, 4, 6}, {3, 5, 8}, {3, 7, 12},{3, 9, 13}, {3, 10, 14}, {4, 5, 13}, {4, 8, 12},

{4, 10, 11}, {5, 6, 14}, {5, 7, 10}, {5, 11, 12}, {6, 7, 9}, {6, 8, 11}, {7, 13, 14},{8, 10, 13},

{9, 10, 12}, {9, 11, 14}. The base blocks of the second BIBD(15, 3, 3) are just the com-

plement of the blocks above with respect to the blocks in the cyclic BIBD(15, 3, 4).

�
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Lemma 6.2.6 There exists a cyclically indecomposable but decomposable cyclic

BIBD(16, 3, 4).

Proof From the 16-extended Skolem sequence of order 10,

(1, 1, 8, 6, 4, 2, 10, 2, 4, 6, 8, 9, 7, 5, 3, ∗, 10, 3, 5, 7, 9), take the base blocks of the

form {0, i, bi} (mod 16). So, the canonical base blocks of the cyclic BIBD(16, 3, 4)

are: {0, 1, 2}, {0, 2, 8}, {0, 3, 2}, {0, 4, 9}, {0, 5, 3}, {0, 6, 10}, {0, 7, 4}, {0, 8, 11},

{0, 9, 5}, {0, 10, 1}. A CSTS(16) does not exist. So, we only have to show that a

decomposition into two cyclic BIBD(16, 3, 2) is not possible. Suppose to the contrary

that there exists a decomposition into two cyclic BIBD(16, 3, 2), denoted C1 and C2

respectively. Assume that the base block {0, 1, 2} providing the repeated difference 1

belongs to C1. Then the two base blocks {0, 3, 2}, {0, 10, 1} which cover difference 1

as well need to occur in C2. The second of these blocks covers difference 6. Therefore,

base block {0, 6, 10} with the repeated difference 6 has to be in C1 and base block

{0, 2, 8} has to be in C2. Moreover, the latter base block provides difference 8 = v/2

in C2 and thus base block {0, 8, 11}, with the second difference 8, is forced to be

contained in C1. We observe that difference 2 now already occurs twice in base blocks

of C2 and, therefore, base block {0, 5, 3} belongs to C1, covers a second difference 3

there, and forces the seventh base block {0, 7, 4} to be in C2. This in turn provides

a second difference 7 in C2 such that base blocks {0, 4, 9} and {0, 9, 5} need to be in
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C1. But then difference 5 occurs three times among the differences provided by base

blocks of C1, a contradiction. Hence, the cyclic BIBD(16, 3, 4) above is cyclically

indecomposable.

Moreover, this design is decomposable since the following blocks which are cho-

sen from the orbits of the base blocks above form a BIBD(16, 3, 2): {0, 1, 2},

{0, 1, 10}, {0, 2, 3}, {0, 3, 5}, {0, 4, 7}, {0, 4, 9}, {0, 5, 12}, {0, 6, 12}, {0, 6, 14},

{0, 7, 11},{0, 8, 10},{0, 8, 11}, {0, 9, 13}, {0, 13, 15}, {0, 14, 15}, {1, 2, 11},{1, 3, 9},

{1, 3, 14}, {1, 4, 9}, {1, 4, 13}, {1, 5, 11},{1, 5, 12}, {1, 6, 10}, {1, 6, 14}, {1, 7, 8},

{1, 7, 15}, {1, 8, 13}, {1, 12, 15}, {2, 3, 4}, {2, 4, 5}, {2, 5, 10}, {2, 6, 9},{2, 6, 13},

{2, 7, 14}, {2, 7, 15}, {2, 8, 12}, {2, 8, 14}, {2, 9, 13}, {2, 10, 13}, {2, 11, 15}, {3, 4, 13},

{3, 5, 11}, {3, 6, 8},{3, 6, 11}, {3, 7, 12}, {3, 7, 13}, {3, 8, 12}, {3, 9, 15}, {3, 10, 14},

{3, 10, 15}, {4, 5, 14}, {4, 6, 7},{4, 6, 12}, {4, 8, 11}, {4, 8, 15}, {4, 10, 11}, {4, 10, 14},

{4, 12, 15}, {5, 6, 7}, {5, 6, 15}, {5, 7, 13}, {5, 8, 10}, {5, 8, 13},{5, 9, 14}, {5, 9, 15},

{6, 8, 9}, {6, 10, 13}, {6, 11, 15}, {7, 8, 9}, {7, 9, 10}, {7, 10, 12}, {7, 11, 14},{8, 14, 15},

{9, 10, 11}, {9, 11, 12}, {9, 12, 14}, {10, 13, 15}, {11, 12, 13}, {11, 13, 14}, {12, 13, 14}.

The base blocks of the second BIBD(16, 3, 2) are just the complement of the blocks

above with respect to the blocks in the cyclic BIBD(16, 3, 4). �

Lemma 6.2.7 There exists a cyclically indecomposable but decomposable cyclic

BIBD(18, 3, 4).
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Proof From the 18-extended Skolem sequence of order 11,

(11, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 11, 10, 8, 6, 4, 2, ∗, 2, 4, 6, 8, 10), take the base blocks of

the form {0, i, bi} (mod 18). So, the canonical base blocks of the cyclic BIBD(18, 3, 4)

are: {0, 1, 7}, {0, 2, 1}, {0, 3, 8}, {0, 4, 2}, {0, 5, 9}, {0, 6, 3}, {0, 7, 10}, {0, 8, 4},

{0, 9, 11}, {0, 10, 5}, {0, 11, 12}, and the short orbit {0, 6, 12}. This system is cycli-

cally indecomposable since there exists no CSTS(18) nor a cyclic BIBD(18, 3, 2). This

design is decomposable since the following blocks which are chosen from the orbits

of the base blocks above form a BIBD(18, 3, 2): {0, 1, 2}, {0, 1, 7}, {0, 2, 4}, {0, 3, 6},

{0, 3, 8}, {0, 4, 8}, {0, 5, 13}, {0, 5, 15}, {0, 6, 17}, {0, 7, 10},{0, 9, 11},{0, 9, 14},

{0, 10, 13}, {0, 11, 12}, {0, 12, 15}, {0, 14, 16},{0, 16, 17}, {1, 2, 8}, {1, 3, 10},

{1, 3, 17}, {1, 4, 7},{1, 4, 12}, {1, 5, 9}, {1, 5, 14}, {1, 6, 11}, {1, 6, 16}, {1, 8, 11},

{1, 9, 14}, {1, 10, 15}, {1, 12, 13}, {1, 13, 16}, {1, 15, 17},{2, 3, 4}, {2, 3, 9}, {2, 5, 8},

{2, 5, 10}, {2, 6, 10}, {2, 6, 16}, {2, 7, 15}, {2, 7, 17}, {2, 9, 12}, {2, 11, 13}, {2, 11, 16},

{2, 12, 15},{2, 13, 14}, {2, 14, 17}, {3, 4, 10}, {3, 5, 7}, {3, 5, 12}, {3, 6, 14}, {3, 7, 11},

{3, 8, 13}, {3, 9, 15},{3, 11, 16}, {3, 12, 17}, {3, 13, 16}, {3, 14, 15}, {4, 5, 6}, {4, 5, 11},

{4, 6, 13}, {4, 7, 15}, {4, 8, 12}, {4, 9, 13}, {4, 9, 17},{4, 10, 16}, {4, 11, 14}, {4, 14, 17},

{4, 15, 16}, {5, 6, 12}, {5, 7, 14}, {5, 8, 16}, {5, 9, 13}, {5, 10, 15},{5, 11, 17},

{5, 16, 17}, {6, 7, 8}, {6, 7, 13}, {6, 8, 15}, {6, 9, 12}, {6, 9, 17}, {6, 10, 14}, {6, 11, 15},

{7, 8, 14},{7, 9, 11}, {7, 9, 16}, {7, 10, 13}, {7, 12, 16}, {7, 12, 17}, {8, 9, 10}, {8, 9, 15},
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{8, 10, 17}, {8, 10, 14},{8, 12, 16}, {8, 13, 17}, {9, 10, 16}, {10, 11, 12}, {10, 11, 17},

{10, 12, 14}, {11, 13, 15}, {12, 13, 14}, {13, 15, 17}, {14, 15, 16}. The base blocks of

the second BIBD(18, 3, 2) are just the complement of the blocks above with respect

to the blocks in the cyclic BIBD(18, 3, 4). �

Lemma 6.2.8 There exists a cyclically indecomposable but decomposable cyclic

BIBD(19, 3, 4).

Proof From the 19-extended Skolem sequence of order 12,

(11, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 11, 12, 10, 8, 6, 4, 2, ∗, 2, 4, 6, 8, 10, 12), take the base

blocks of the form {0, i, bi} (mod 19). So, the canonical base blocks of the cyclic

BIBD(19, 3, 4) are: {0, 1, 7}, {0, 2, 1}, {0, 3, 8}, {0, 4, 2}, {0, 5, 9}, {0, 6, 3}, {0, 7, 10},

{0, 8, 4}, {0, 9, 11}, {0, 10, 5}, {0, 11, 12}, {0, 12, 6}. Again, we have to show that

neither a decomposition into a CSTS(19) and a cyclic BIBD(19, 3, 3), nor into two

cyclic BIBD(19, 3, 2) is possible. First, suppose there exists a decomposition into

a CSTS(19) and a cyclic BIBD(19, 3, 3), denoted C1 and C2 respectively. Then all

base blocks with repeated differences must belong to C2. These cover differences

4 and 2 three times such that the remaining base blocks with differences 4 and

2, that is {0, 5, 9} and {0, 9, 11}, need to occur in C1. But then the difference 9

occurs twice in C1, a contradiction. Now, suppose there exists a decomposition into

two BIBD(19, 3, 2), denoted C1 and C2 respectively. Assume that the base block
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{0, 2, 1} providing the repeated difference 1 belongs to C1. Then, the two base blocks

{0, 1, 7}, {0, 11, 12} which cover difference 1 as well need to occur in C2. Both blocks

cover difference 7 each. Therefore, the seventh and twelveth base blocks {0, 7, 10}

and {0, 12, 6} are forced to be contained in C1. The last base block provides the

repeated difference 6, hence the 6th base block {0, 6, 3} must be in C2 providing a

repeated difference 3. This in turn forces the third base block {0, 3, 8} to occur in

C1. Continuing in this way difference 5 now forces the tenth base block {0, 10, 5} to

be in C2 and the fifth base block to be in C1. Finally, difference 4 forces the eighth

base block {0, 8, 4} to be part of C2 and the fourth base block {0, 4, 2} to belong to

C1. The latter gives a repeated difference 2 such that, together with the very first

base block, this difference occurs three times among the differences provided by base

blocks of C1, a contradiction. Hence, the cyclic BIBD(19, 3, 4) above is cyclically

indecomposable.

The design above is decomposable since the following blocks which are

chosen from the orbits of the base blocks above form a BIBD(19, 3, 2):

{0, 1, 2}, {0, 1, 7}, {0, 2, 10}, {0, 3, 6}, {0, 3, 8}, {0, 4, 8}, {0, 4, 14}, {0, 5, 9},

{0, 5, 16}, {0, 6, 18},{0, 7, 13},{0, 9, 16}, {0, 10, 15}, {0, 11, 12}, {0, 11, 14},

{0, 12, 13},{0, 15, 17}, {0, 17, 18}, {1, 2, 3}, {1, 3, 18}, {1, 4, 9},{1, 4, 17}, {1, 5, 15},

{1, 5, 16}, {1, 6, 10}, {1, 6, 17}, {1, 7, 13}, {1, 8, 11}, {1, 8, 14}, {1, 9, 18}, {1, 10, 12},
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{1, 11, 16},{1, 12, 15}, {1, 13, 14}, {2, 3, 9}, {2, 4, 6}, {2, 4, 12}, {2, 5, 10}, {2, 5, 14},

{2, 6, 16}, {2, 7, 11}, {2, 7, 18}, {2, 8, 14},{2, 8, 15}, {2, 9, 15}, {2, 11, 18}, {2, 12, 17},

{2, 13, 16}, {2, 13, 17}, {3, 4, 5}, {3, 4, 11}, {3, 5, 7},{3, 6, 11}, {3, 7, 17}, {3, 8, 12},

{3, 9, 15}, {3, 10, 13}, {3, 10, 16}, {3, 12, 14}, {3, 13, 18}, {3, 14, 17}, {3, 15, 16},

{4, 5, 6},{4, 7, 10}, {4, 7, 12}, {4, 8, 18}, {4, 9, 13}, {4, 10, 16}, {4, 11, 14}, {4, 13, 15},

{4, 15, 18}, {4, 16, 17},{5, 6, 13}, {5, 7, 9}, {5, 8, 13}, {5, 8, 17}, {5, 10, 14}, {5, 11, 17},

{5, 11, 18}, {5, 12, 15}, {5, 12, 18}, {6, 7, 8},{6, 7, 14}, {6, 8, 10}, {6, 9, 12}, {6, 9, 14},

{6, 11, 15}, {6, 12, 18}, {6, 13, 16}, {6, 15, 17}, {7, 8, 9},{7, 10, 15}, {7, 11, 15},

{7, 12, 16}, {7, 14, 17}, {7, 16, 18}, {8, 9, 16}, {8, 10, 12}, {8, 11, 16}, {8, 13, 17},

{8, 15, 18},{9, 10, 11}, {9, 10, 17}, {9, 11, 13}, {9, 12, 17}, {9, 14, 18}, {10, 11, 17},

{10, 13, 18}, {10, 14, 18}, {11, 12, 13},{12, 14, 16}, {13, 14, 15}, {14, 15, 16},

{16, 17, 18}. The base blocks of the second BIBD(19, 3, 2) are just the com-

plement of the blocks above with respect to the blocks in the cyclic BIBD(19, 3, 4).

�

Lemma 6.2.9 There exists a cyclically indecomposable but decomposable cyclic

BIBD(21, 3, 4).

Proof From the 21-extended Skolem sequence of order 13,

(4, 2, 8, 2, 4, 6, 3, 12, 10, 3, 8, 6, 13, 11, 9, 7, 1, 1, 10, 12, ∗, 5, 7, 9, 11, 13, 5), take the

base blocks of the form {0, i, bi} (mod 21) together with the short orbit {0, 7, 14}.
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So, the canonical base blocks of the cyclic BIBD(21, 3, 4) are: {0, 1, 18}, {0, 2, 4},

{0, 3, 10}, {0, 4, 5}, {0, 5, 6}, {0, 6, 12}, {0, 7, 2}, {0, 8, 11}, {0, 9, 3}, {0, 10, 19},

{0, 11, 4}, {0, 12, 20}, {0, 13, 5}. The existence of four short base blocks is a necessary

condition for the existence of a decomposition into two BIBD(v, 3, 2) which is clearly

not satisfied. Therefore, if the design is cyclically decomposable, it must be into a

CSTS(21) and a cyclic BIBD(21, 3, 3), denoted C1 and C2. The short block with

difference 7 belongs to C1. Therefore, all other base blocks with difference 7 as well

as all base blocks with repeated differences belong to C2. These are the second, third,

sixth, seventh, eleventh and thirteenth base blocks. Among the differences provided

by these blocks, 2 occurs three times. Hence, the tenth base block {0, 10, 19} with

difference 2 must occur in C1 providing differences 9 and 10. This forces the eightth,

nineth and twelveth base blocks to be in C2 with the consequence that difference 8

occurs now four times in C2, a contradiction.

The design is clearly decomposable since the following blocks which are

chosen from the orbits of the base blocks above form a BIBD(21, 3, 2):

{0, 1, 13}, {0, 1, 16}, {0, 2, 4}, {0, 2, 7}, {0, 3, 9}, {0, 3, 10}, {0, 4, 11}, {0, 5, 6},

{0, 5, 19}, {0, 6, 12},{0, 7, 18},{0, 8, 9}, {0, 8, 13}, {0, 10, 18}, {0, 11, 14},

{0, 12, 15},{0, 14, 16}, {0, 15, 20}, {0, 17, 19}, {0, 17, 20}, {1, 2, 14},{1, 2, 18}, {1, 3, 8},

{1, 3, 13}, {1, 4, 5}, {1, 4, 10}, {1, 5, 12}, {1, 6, 7}, {1, 6, 14}, {1, 7, 19}, {1, 8, 15},
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{1, 9, 12},{1, 9, 17}, {1, 10, 16}, {1, 11, 19}, {1, 11, 20}, {1, 15, 17}, {1, 18, 20},

{2, 3, 19}, {2, 3, 20}, {2, 4, 9}, {2, 5, 6}, {2, 5, 15},{2, 6, 13}, {2, 7, 8}, {2, 8, 17},

{2, 9, 19}, {2, 10, 11}, {2, 10, 15}, {2, 11, 13}, {2, 12, 16}, {2, 12, 20},{2, 14, 17},

{2, 16, 18}, {3, 4, 16}, {3, 4, 20}, {3, 5, 7}, {3, 5, 10}, {3, 6, 7}, {3, 6, 13}, {3, 8, 16},

{3, 9, 15}, {3, 11, 12},{3, 11, 14}, {3, 12, 18}, {3, 14, 17}, {3, 15, 18}, {3, 17, 19},

{4, 5, 17}, {4, 6, 8}, {4, 6, 16}, {4, 7, 14},{4, 7, 17}, {4, 8, 9}, {4, 10, 19}, {4, 11, 18},

{4, 12, 15}, {4, 12, 20}, {4, 13, 15}, {4, 13, 19}, {4, 14, 18}, {5, 7, 12},{5, 8, 14},

{5, 8, 18}, {5, 9, 10}, {5, 9, 16}, {5, 11, 17}, {5, 11, 20}, {5, 13, 16}, {5, 13, 18},

{5, 14, 20},{5, 15, 19}, {6, 8, 18}, {6, 9, 10}, {6, 9, 19}, {6, 10, 11}, {6, 11, 19},

{6, 12, 18}, {6, 14, 15}, {6, 15, 17}, {6, 16, 20},{6, 17, 20}, {7, 8, 20}, {7, 9, 11},

{7, 9, 14}, {7, 10, 16}, {7, 10, 17}, {7, 11, 18}, {7, 12, 13}, {7, 13, 19},{7, 15, 16},

{7, 15, 20}, {8, 10, 15}, {8, 10, 20}, {8, 11, 12}, {8, 11, 17}, {8, 12, 19}, {8, 13, 14},

{8, 16, 19}, {9, 11, 16}, {9, 12, 13}, {9, 13, 20}, {9, 14, 15}, {9, 17, 18}, {9, 18, 20},

{10, 12, 14}, {10, 12, 17}, {10, 13, 14}, {10, 13, 20}, {10, 18, 19}, {11, 13, 15},

{11, 15, 16}, {12, 14, 19}, {12, 16, 17}, {13, 16, 17}, {13, 17, 18}, {14, 16, 18},

{14, 19, 20}, {15, 18, 19}, {16, 19, 20}. The base blocks of the second BIBD(21, 3, 2)

are just the complement of the blocks above with respect to the blocks in the cyclic

BIBD(21, 3, 4). �
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6.2.2 Cyclically Indecomposable BIBD(v, 3, 4) for infinite

values of v

In this subsection, we are going to construct some linear classes of cyclically inde-

composable but decomposable BIBD(v, 3, 4). To construct these designs we are using

cyclic systems of order nv with cyclic sub-systems of order v and index n and relative

difference families (nv, n, 3, 1)-DF.

By Theorem 2.1 in [71] there exists a cyclic triple system of order pn containing

a cyclic sub-system of order p on the point set 0, n, 2n, . . . , (p− 1)n.

Construction 6.2.1 Let p ≡ 1 or 3 (mod 6), p 6= 9 and n ≡ 1 (mod 6) and suppose

that there exists a cyclically indecomposable but decomposable cyclic BIBD(p, 3, 4).

Then there exists a cyclically indecomposable but decomposable cyclic BIBD(pn, 3, 4).

Proof Let the set B contain all the blocks of the cyclic sub-system. From the cyclic

system of order pn, remove all blocks which are in the orbit of B. Let B′ contain

all remaining blocks. Taking each of these blocks four times yields an incomplete

cyclic BIBD(pn, 3, 4) with n holes, each hole containing p points. Let R be the set

of canonical base blocks of the given cyclic BIBD(p, 3, 4). Now insert the base block

n · R for each R ∈ R and develop these blocks mod pn to fill all holes. This gives a

cyclic BIBD(pn, 3, 4), say C.
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It remains to show that this design C is cyclically indecomposable and to present

a decomposition into a non-cyclic STS(pn) and a BIBD(pn, 3, 3), or a decomposition

into two non-cyclic BIBD(pn, 3, 2).

Suppose first that there exists a decomposition of C into a CSTS(pn) and a cyclic

BIBD(pn, 3, 3), with canonical base block lists R1 and R2, respectively. Let R′1

contain those base blocks from R1 which cover a difference of the form ±dn where

d ∈ Zp \ {0}. By construction, each base block from R′1 is a translate of a base block

n ·R with R ∈ R. So define R′ to contain all base blocks R ∈ R with n ·R+ i ∈ R′1

for some i ∈ Zpn. The base blocks in R′1 cover all differences of the form ±dn

exactly once and, therefore, the base blocks in R′ cover all differences of the form

±d (d ∈ Zp \ {0}) exactly once. This implies that the base blocks in R′ generate

a cyclic STS(p) and the base blocks in R \ R′ generate a cyclic BIBD(p, 3, 3) which

form together a cyclic decomposition of the cyclic BIBD(p, 3, 4) which is cyclically

indecomposable by hypothesis, a contradiction.

Suppose now that there exists a decomposition of C into two cyclic BIBD(pn, 3, 2),

with canonical base block lists R1 and R2, respectively. Following the same argument

as before, it is easy to show that such a decomposition is impossible.

Assume that the cyclically indecomposable but decomposable BIBD(p, 3, 4) has a

decomposition into a non-cyclic STS(p) and a BIBD(pn, 3, 3). A decomposition into
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a non-cyclic STS(pn) and a BIBD(pn, 3, 3) can be obtained as follows. Take all blocks

n · B + i, where B is a block from the STS(p) and i ∈ Zn, and adjoin the blocks in

B′ (which remained after the first step of the construction). This yields an STS(pn),

say S, whose blocks are clearly contained in the block set of C. The blocks of the

BIBD(pn, 3, 3) are just the complement of the blocks of S with respect to the blocks

in C.

If the cyclically indecomposable but decomposable BIBD(p, 3, 4) has a decompo-

sition into two non-cyclic BIBD(p, 3, 2), follow the same argument as before to get a

decomposition of the BIBD(pn, 3, 4) into two non-cyclic BIBD(pn, 3, 2). �

Corollary 6.2.10 Let n ≡ 1 (mod 6). Then there exists cyclically indecomposable

but decomposable cyclic BIBD(v, 3, 4) for v = 13n, v = 15n, v = 19n and v = 21n.

Proof There exists a cyclically indecomposable but decomposable cyclic

BIBD(v, 3, 4) for v = 13 (Lemma 6.2.4), v = 15 (Lemma 6.2.5), v = 19 (Lemma

6.2.8) and v = 21 (Lemma 6.2.9). Apply Construction 6.2.1 for p = 13, 15, 19 and 21.

�

Construction 6.2.2 Let p ≡ 3 (mod 6), p 6= 9 and n ≡ 3 or 5 (mod 6), n 6= 3

and suppose that there exists a cyclically indecomposable but decomposable cyclic

BIBD(p, 3, 4). Then there exists a cyclically indecomposable but decomposable cyclic
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BIBD(pn, 3, 4).

Proof By Theorem 2.1 in [71] there exists a cyclic triple system of order pn containing

a cyclic sub-system of order p on the point set 0, n, 2n, . . . , (p − 1)n. The proof is

then similar to Construction 6.2.1. �

Corollary 6.2.11 Let n ≡ 3 or 5 (mod 6), n 6= 3. Then there exists cyclically inde-

composable but decomposable cyclic BIBD(15n, 3, 4) and cyclic BIBD(21n, 3, 4).

Proof There exists a cyclically indecomposable but decomposable BIBD(v, 3, 4) for

v = 15 (Lemma 6.2.5) and for v = 21 (Lemma 6.2.9). Apply Construction 6.2.2 for

p = 15 and p = 21. �

Construction 6.2.3 Let p ≡ 1 (mod 6), p ≥ 7 and suppose that there exists a cycli-

cally indecomposable but decomposable cyclic BIBD(p, 3, 4). Then there exists a cycli-

cally indecomposable but decomposable cyclic BIBD(9p, 3, 4).

Proof By Theorem 2.1 in [71] there exists a cyclic STS(9p) containing a cyclic sub-

system of order p on the point set 0, 9, 18, . . . , 9(p− 1). The proof is then similar to

Construction 6.2.1. �

Corollary 6.2.12 There exists cyclically indecomposable but decomposable cyclic

BIBD(117, 3, 4) and cyclic BIBD(171, 3, 4).
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Proof There exists a cyclically indecomposable but decomposable cyclic

BIBD(v, 3, 4) for v = 13 (Lemma 6.2.4) and v = 19 (Lemma 6.2.8). Apply Con-

struction 6.2.3 for p = 13 and 19. �

Construction 6.2.4 There exists a cyclically indecomposable but decomposable

BIBD(16v, 3, 4) for every v ≡ 1(mod 3).

Proof By Lemma 3.8 in [88] there exists a (16v, 16, 3, 1)-DF for every v ≡

1(mod 3). By Lemma 6.2.6 there exists a cyclically indecomposable but decom-

posable BIBD(16, 3, 4). The rest of the proof is similar to the proof of Construction

6.2.1. �

Remark 6.2.1 Construction 6.2.1 can be generalized.

Theorem 6.2.13 If there exists a (pn, p, k, 1)-DF and a cyclically indecomposable

but decomposable BIBD(p, k, λ), then there exists a cyclically indecomposable but de-

composable BIBD(pn, k, λ).

Theorem 6.2.14 If there exists a (gv, {g, 3}, k, λ)-DF and a cyclically indecompos-

able but decomposable BIBD(g, k, λ), then there exists a cyclically indecomposable but

decomposable BIBD(gv, k, λ).

163



We now summarize the results of this section. There exists cyclically indecompos-

able but decomposable BIBD(v, 3, 4) for v ≡ 1(mod 3) if v = 10, 13, 16, 19, 78k +

13, 114k + 19, 48k + 16 where k is a positive integer. There exists cyclically

indecomposable but decomposable BIBD(v, 3, 4) for v ≡ 0(mod 3) if v =

9, 12, 15, 18, 21, 117, 171, 90k+75, 90k′+45, 126k′+63, 126k+105, 90k+15, 126k+21,

where k and k′ are integers, k ≥ 0, k′ ≥ 1.
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Chapter 7

Applications to Optical Orthogonal

Codes

In this chapter, we want to discuss some attempts to use direct constructions of cyclic

designs from Skolem-type sequences to obtain optical orthogonal codes with λ = 1

and λ = 2.

Cyclic designs with special properties (simple or super-simple) are equivalent to

optimal optical orthogonal codes. The study of optical orthogonal codes (OOC for

short) was motivated by an application in a fibre-optic code-division multiple access

channel. Many users wish to transmit information over a common wide-band optical

channel. The objective is to design a system that allows the users to share the common
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channel. For the construction of optimal optical orthogonal codes, cyclic block designs

play an important role since a cyclic block design is equivalent to an optimal optical

orthogonal code. As an example, C = {1100100000000, 1010000100000} is a (13, 3, 1)

code with two codewords. In set theoretic notation C = {{0, 1, 4}, {0, 2, 7}} (mod

13), which gives a cyclic Steiner triple system of order 13. A survey about cyclic

designs and their applications to optimal optical orthogonal codes is given in [11].

Determining the parameters v, k and λ for which an optimal (v, k, λ)-OOC exists

is a difficult task. For k = 3, optimal optical orthogonal codes always exist except

when v = 6n+ 2 and n ≡ 2 or 3 (mod 4) [39].

7.1 Construction of (v, 3, 1)-OOC

A direct construction for optimal orthogonal codes for every order v except when

v = 6n + 2 and n ≡ 2 or 3 (mod 4) was given by Skolem and O’Keefe [69, 84] using

Skolem-type sequences.

Brickell and Wei [18] gave a direct construction for near optimal optical orthogonal

codes (missing one codeword) with weight 3 using a shell-like structure. A shell Sj is

a set of codewords of the form Sj(i) = {0, ajm+dj + i, bjm+ej +2i} for Lj ≤ i ≤ Uj,

where Uj − Lj = m. Brickell and Wei’s shell structures can be written as a Skolem
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sequence with two hooks for v = 6n + x, 0 ≤ x ≤ 5, n even, and it can be written

as a Skolem sequence with one hook for v = 6n + x, 0 ≤ x ≤ 5, n odd. When

n is even, the Skolem-type sequence is n − 2, n − 4, . . . , 2, ∗, 2, 4, . . . , n − 2, ∗, n −

1, n − 3, . . . , 1, 1, 3, . . . , n − 1. For n odd, the Skolem-type sequence is n − 1, n −

3, . . . , 2, ∗, 2, 4, . . . , n− 3, n− 1, n− 2, n− 4, . . . , 1, 1, 3, . . . , n− 4, n− 2. In both cases,

the pairs (ai, bi), 1 ≤ i ≤ n−1 given by the Skolem-type sequence give the codewords

{0, ai+n, bi+n}, 1 ≤ i ≤ n−1 for a near optimal optical orthogonal code of order v,

except when v = 6n+ 2 and n ≡ 2 or 3 (mod 4). Then, Brickell and Wei refined their

construction to obtain perfect codes for every v ≡ 1 (mod 6). Their construction for

perfect codes is the same as that found by Skolem and O’Keefe [69,84].

7.2 Construction of (v, 4, 1)-OOC

7.2.1 Shell construction

Brickell and Wei [18] attempted to extend their use of shells to obtain optimal optical

orthogonal codes with weight 4 and λ = 1. They needed to construct six shells for

this case and they had to enlist the help of a computer. The problem proved more

difficult than they had expected and they were fully successful only in the case when

v = 72n+ 1.
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For this value of v, they constructed optical orthogonal codes with two code-

words less than optimal. In fact, values of v of this form satisfy the congruence

v ≡ 1(mod k(k − 1)) and so cyclic designs will provide perfect optical orthogonal

codes for those values of v for which they exist. However, Brickell and Wei pointed

out that, with the help of an even longer computer search, their method should also

be succsessful for other values of v of the form 72n+ h, for h 6= 1.

They looked for shells of the form {0, ajk+ dj + i, bjk+ ej + 2i, cjk+ fj + 3i} with

Lj ≤ i ≤ Uj and 1 ≤ j ≤ 6, and where 0 ≤ aj, bj, cj ≤ 71, dj = 0, 1, ej = 0, 1, 2, fj =

0, 1, 2, 3, Lj = 0, 1, and Uj = n− 2, n− 1, such that no repeated differences exist.

After an extensive computer search, they found four sets of values for the param-

eters aj, bj, cj, which would give a complete shell structure of six shells. A further

computer search was used to find optimal values for the parameters dj, ej, fj, Lj and

Uj.

As an example, the following (145, 4, 1)-OOC is obtained using their method:

{0, 31, 13, 1}, {0, 32, 15, 4}, {0, 77, 44, 3}, {0, 78, 58, 2}, {0, 79, 60, 5}, {0, 112, 14, 37},

{0, 119, 27, 35}, {0, 120, 29, 38}, {0, 95, 43, 36}, {0, 96, 45, 39}.

Brickell and Wei pointed out that there might be a different choice of the param-

eters that could be extended to a cyclic design.
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7.2.2 Examples from Skolem-type sequences

It is known that super-simple cyclic designs are equivalent to optimal optical orthogo-

nal codes. All the cyclic BIBD(v, 4, 1) constructed in this thesis are super-simple and

thus they give (v, 4, 1) optimal optical orthogonal codes. See Chapter 4 and Appendix

A for examples of super-simple cyclic BIBD(v, 4, 1).

7.3 Construction of (v, 3, 2)-OOC

It is well known that simple cyclic BIBD(v, 3, λ) are equivalent to (v, 3, 2) optical

orthogonal codes. So, the cyclic, simple, and indecomposable BIBD(v, 3, 3) we found

in Chapter 3 give (v, 3, 2) optical orthogonal codes for every v except for v = 24c+57,

c ≥ 2. Note that these codes are not optimal as they are missing many codewords.

A direct construction for (v, 3, 2) optimal optical orthogonal codes for each v 6≡

0(mod 3), v ≥ 4 was given by Chen and Wei [38].

7.4 Construction of (v, 4, 2)-OOC

Many of the cyclic BIBD(v, 4, λ) for λ > 1 constructed in this thesis are super-simple

and so they give rise to (v, 4, 2) optical orthogonal codes.

Below we list just a few examples of such designs.
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Example 7.4.1 Cyclic BIBD(25, 4, 2): 2-fold Skolem array S2 = {(1, 2), (3, 4),

(1, 3), (2, 4)} ⇒ {0, 1, 6, 10}, {0, 1, 8, 12}, {0, 2, 8, 11}, {0, 2, 5, 12}

Example 7.4.2 Cyclic BIBD(37, 4, 2): 2-fold Skolem array S3 = {(1, 2), (5, 6), (2, 4),

(3, 5), (1, 4), (3, 6)} ⇒ {0, 1, 5, 14}, {0, 1, 12, 18}, {0, 2, 12, 17}, {0, 2, 10, 16},

{0, 3, 7, 16}, {0, 3, 11, 18}.

Example 7.4.3 Cyclic BIBD(49, 4, 2): 2-fold Skolem array S4 = {(1, 2), (6, 7), (3, 5),

(6, 8), (1, 4), (2, 5), (3, 7), (4, 8)} ⇒ {0, 1, 6, 18}, {0, 1, 16, 23}, {0, 2, 15, 21},

{0, 2, 16, 24}, {0, 3, 8, 20}, {0, 3, 10, 21}, {0, 4, 14, 23}, {0, 4, 13, 24}.

Example 7.4.4 Cyclic BIBD(17, 4, 3): Skolem sequence of order 4 {(1, 2), (4, 6),

(5, 8), (3, 7)} ⇒ {0, 1, 11, 2}, {0, 2, 13, 6}, {0, 3, 15, 8}, {0, 4, 16, 7}.
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Chapter 8

Conclusions and Future Research

8.1 Conclusions

The problem of constructing cyclic BIBD(v, 4, 1) by Peltesohn’s method has been

open for over 35 years. We introduced in this thesis a Skolem partitioning problem

which seems significantly easier. We showed that there exists an example of Skolem

partitions that induces a cyclic BIBD(v, 4, λ) for every admissible class in Table 4.1.

It was known that Skolem sequences can be used to construct cyclic BIBD(v, 3, λ)

for λ = 1, 2. We showed in this thesis that Skolem sequences can be used to construct

cyclic BIBD(v, 3, λ) for all admissible orders v and λ. Moreover, we showed that

Skolem sequences can be used to construct cyclic BIBD(v, k, λ) for k ≥ 4.
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Furthermore, we used Skolem-type sequences to construct cyclic designs with the

following properties: simple, indecomposable, and cyclically indecomposable but de-

composable.

Simple designs with k = 3 and super-simple designs with k = 4 are equivalent

to optical othogonal codes. All the cyclic BIBD(v, 4, 1) constructed in this thesis are

super-simple, and thus they give (v, 4, 1) optimal optical orthogonal codes. We believe

that many of the cyclic BIBD(v, 4, λ) constructed in this thesis are super-simple and

thus many applications of these designs may be found in the future.

8.2 Future Research

We will outline below some open questions related to our work.

8.2.1 New Skolem-type sequences

In Chapter 2, we introduced new Skolem-type sequences. We showed that there exists

m-near Skolem sequences of order 2m− 1 with three hooks in positions m, 2m, and

3m for every m ≡ 2(mod 4), m ≥ 6.

Problem 8.2.1 Can m-near Skolem sequences of order 2m − 1 with three hooks in

positions m, 2m, and 3m be constructed for every m?
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In Chapter 3, we used the m-near Skolem sequences of order 2m − 1 with three

hooks in positions m, 2m, and 3m to construct cyclic BIBD(12n+ 2, 3, 12).

Problem 8.2.2 Are there any other applications of these sequences?

In Chapter 2, we also introduced m-fold Skolem-type arrays. The obvious appli-

cations of these sequences is that they give cyclic BIBD(v, 3, λ) with λ = m.

Problem 8.2.3 Are there any other applications of these Skolem-type arrays?

8.2.2 Cyclic BIBD(v, 3, λ)

In Chapter 3, we constructed cyclic block designs with block size 3 for all admissible

λ using Skolem-type sequences. One important thing about our constructions is that

they provide lots of solutions. For example, to obtain a cyclic BIBD(2× 4 + 1, 3, 3),

we use a Skolem sequence of order 4. But there are six Skolem sequences of order

4 and that means we can get six different cyclic BIBD(9, 3, 3). As the order of our

Skolem sequences gets larger, the number of Skolem sequences that we obtain grows

exponentially. For example, there are 504 Skolem sequences of order 8 and 2656

Skolem-sequences of order 9. An obvious questions is:

Problem 8.2.4 Are all the designs of a certain order v isomorphic?
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Problem 8.2.5 How many of the cyclic designs constructed in Chapter 3 are simple?

How many are indecomposable? What other properties do these designs have?

Problem 8.2.6 Construct the cyclic packings and the cyclic coverings for

BIBD(v, 3, λ).

8.2.3 Cyclic BIBD(v, 4, λ)

In Chapter 4 we outlined the necessary conditions for the existence of a cyclic

BIBD(v, 4, λ).

Problem 8.2.7 Are the necessary conditions also sufficient for the existence of cyclic

BIBD(v, 4, λ)?

In her doctoral thesis, Marlene Colbourn [41] tried to construct cyclic block de-

signs with block size four using Peltesohn’s proof technique. We used Skolem-type

sequences to reduce the partitioning problem in half.

Problem 8.2.8 Is there a partition of the numbers {1, . . . , 6n} into n six-subsets

{a, b, c, a+ b, b+ c, a+ b+ c}?

Using Skolem-type sequences we reduced the problem but we are still far from

solving it.
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Problem 8.2.9 Is there a partition of the numbers {n + 1, . . . , 4n} into triples

(xi, yi, zi) such that xi = yi − i, zi = bi + 4n− yi,∀1 ≤ i ≤ n?

Subtracting n from each of the numbers above, the problem is equivalent to:

Problem 8.2.10 Is there a partition of the numbers {1, . . . , 3n} into triples (xi, yi, zi)

such that xi = yi − i, zi = bi + 4n− yi,∀1 ≤ i ≤ n?

In Chapter 4, we used also Skolem-type sequences to construct cyclic block designs

with block size 4 and λ = 6.

Problem 8.2.11 Can Skolem-type sequences be used to construct cyclic block designs

with block size 4, for all admissible v and λ?

In Chapter 5, we used relative difference families to get many new infinite classes

of cyclic block design.

Problem 8.2.12 Can relative difference families be used to construct cyclic block

designs with block size 4, for all admissible v and λ?

Problem 8.2.13 Construct the cyclic packings and the cyclic coverings for

BIBD(v, 4, λ).
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8.2.4 Cyclically Indecomposable BIBD(v, 3, λ)

In Chapter 6, we showed that there exists cyclic, simple, and indecomposable

BIBD(v, 3, 3) for all admissible v ≥ 15 and a possible exception for v = 9. The

six cyclic BIBD(9, 3, 3) obtained from the six Skolem sequences of order 4 are all

decomposable.

Problem 8.2.14 Are there cyclic, simple and indecomposable BIBD(9, 3, 3)?

Our efforts to solve the problem for λ = 4 were not successful. We have no example

of a cyclic, simple, and indecomposable BIBD(v, 3, 4).

Problem 8.2.15 Are there cyclic, simple, and indecomposable BIBD(v, 3, λ), for λ ≥

4?

In Chapter 6, we also found cyclically indecomposable but decomposable designs

for λ = 4.

Problem 8.2.16 Are there cyclically indecomposable but decomposable BIBD(v, 3, λ)

for λ ≥ 5?

8.2.5 Optical Orthogonal Codes

It is known that perfect optical orthogonal codes are equivalent to cyclic designs.

Brickel and Wei [18] developed shell-like structures for k = 3 that give optimal or-
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thogonal codes for every v except when v = 6n + 2 and n ≡ 2 or 3 (mod 4). They

also developed shell-like structures for k = 4 that give optimal orthogonal codes for

v = 72n+ 1.

Problem 8.2.17 Can the shell-like structure for k = 4, developed by Brickel and

Wei, be refined to give perfect optical orthogonal codes?

Problem 8.2.18 Are there shell-structures, for k ≥ 5?
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[57] M. Grüttmüller, R. Rees and N. Shalaby, Cyclically Indecomposable Triple Sys-

tems that are Decomposable, J. Combin. Math. Combin. Comput. 63 (2007),

103-122.
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Appendix A

Examples of Cyclic Designs from

Skolem-type Sequences

Here are the cyclic designs we found using Skolem-type sequences.

For a cyclic BIBD(49, 4, 1) we found three designs. Here are the base blocks of

these cyclic designs:

1. S4 = {(1, 2), (4, 6), (5, 8), (3, 7)} ⇒

{0, 1, 12, 18}, {0, 2, 7, 22}, {0, 3, 16, 24}, {0, 4, 14, 23}.

2. S4 = {(6, 7), (1, 3), (2, 5), (4, 8)} ⇒

{0, 1, 7, 23}, {0, 2, 14, 19}, {0, 3, 13, 21}, {0, 4, 15, 24}.
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3. S4 = {(1, 2), (4, 6), (5, 8), (3, 7)} ⇒

{0, 1, 12, 18}, {0, 2, 15, 22}, {0, 3, 8, 24}, {0, 4, 14, 23}.

For a cyclic BIBD(61, 4, 1), we found three cyclic designs.

1. S5 = {(2, 3), (6, 8), (7, 10), (1, 5), (4, 9)} ⇒

{0, 1, 10, 23}, {0, 2, 20, 28}, {0, 3, 14, 30}, {0, 4, 19, 25}, {0, 5, 12, 29}.

2. S5 = {(2, 3), (6, 8), (7, 10), (1, 5), (4, 9)} ⇒

{0, 1, 14, 23}, {0, 2, 20, 28}, {0, 3, 19, 30}, {0, 4, 10, 25}, {0, 5, 12, 29}.

3. S5 = {(8, 9), (3, 5), (1, 4), (6, 10), (2, 7)} ⇒

{0, 1, 20, 29}, {0, 2, 15, 25}, {0, 3, 17, 24}, {0, 4, 12, 30}, {0, 5, 11, 27}.

For a cyclic BIBD(64, 4, 1) we found two cyclic designs. The first one was given

in Chapter 4, and the second one is given below.

1. S5 = {(9, 10), (5, 7), (1, 4), (2, 6), (3, 8)} ⇒

{0, 1, 13, 31}, {0, 2, 21, 28}, {0, 3, 11, 25}, {0, 4, 10, 27}, {0, 5, 20, 29},

{0, 16, 32, 48}.

For a cyclic BIBD(73, 4, 1) we found seven cyclic designs.
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1. S6 = {(10, 11), (5, 7), (1, 4), (2, 6), (8, 13), (3, 9)} ⇒

{0, 1, 24, 35}, {0, 2, 10, 31}, {0, 3, 19, 28}, {0, 4, 18, 30}, {0, 5, 22, 37},

{0, 6, 13, 33}.

2. S6 = {(10, 11), (2, 4), (6, 9), (1, 5), (3, 8), (7, 13)} ⇒

{0, 1, 24, 35}, {0, 2, 21, 28}, {0, 3, 13, 33}, {0, 4, 12, 29}, {0, 5, 14, 32},

{0, 6, 22, 37}.

3. S6 = {(10, 11), (2, 4), (3, 6), (5, 9), (8, 13), (1, 7)} ⇒

{0, 1, 24, 35}, {0, 2, 21, 28}, {0, 3, 12, 30}, {0, 4, 20, 33}, {0, 5, 15, 37},

{0, 6, 14, 31}.

4. S6 = {(2, 3), (11, 13), (5, 8), (6, 10), (4, 9), (1, 7)} ⇒

{0, 1, 17, 27}, {0, 2, 22, 37}, {0, 3, 24, 32}, {0, 4, 11, 34}, {0, 5, 14, 33},

{0, 6, 18, 31}.

5. S6 = {(2, 3), (8, 10), (4, 7), (9, 13), (1, 6), (5, 11)} ⇒

{0, 1, 16, 27}, {0, 2, 24, 34}, {0, 3, 12, 31}, {0, 4, 17, 37}, {0, 5, 23, 30},

{0, 6, 14, 35}.

6. S6 = {(1, 2), (9, 11), (3, 6), (4, 8), (5, 10), (7, 13)} ⇒

{0, 1, 9, 26}, {0, 2, 23, 35}, {0, 3, 19, 30}, {0, 4, 22, 32}, {0, 5, 20, 34},

{0, 6, 13, 37}.
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7. S6 = {(10, 11), (4, 6), (2, 5), (9, 13), (3, 8), (1, 7)} ⇒

{0, 1, 11, 35}, {0, 2, 17, 30}, {0, 3, 21, 29}, {0, 4, 23, 37}, {0, 5, 12, 32},

{0, 6, 22, 31}.

For a cyclic BIBD(76, 4, 1) we found fifteen cyclic BIBD(76, 4, 1). The base blocks

of some of these cyclic BIBD(76, 4, 1) are:

1. S6 = {(6, 7), (1, 3), (10, 13), (8, 12), (4, 9), (5, 11)} ⇒

{0, 1, 8, 31}, {0, 2, 12, 27}, {0, 3, 24, 37}, {0, 4, 22, 36}, {0, 5, 16, 33}, {0, 6, 26, 35}.

2. S6 = {(3, 4), (11, 13), (6, 9), (8, 12), (5, 10), (1, 7)} ⇒

{0, 1, 10, 28}, {0, 2, 22, 37}, {0, 3, 26, 33}, {0, 4, 12, 36}, {0, 5, 21, 34}, {0, 6, 17, 31}.

For a cyclic BIBD(88, 4, 1) we found many cyclic BIBD(88, 4, 1). The base blocks

of some of these cyclic BIBD(88, 4, 1) are:

1. S7 = {(4, 5), (9, 11), (12, 15), (10, 14), (3, 8), (1, 7), (6, 13)} ⇒

{0, 1, 9, 33}, {0, 2, 18, 39}, {0, 3, 30, 43}, {0, 4, 14, 42}, {0, 5, 25, 36}, {0, 6, 23, 35},

{0, 7, 26, 41}.

2. S7 = {(4, 5), (9, 11), (12, 15), (10, 14), (3, 8), (1, 7), (6, 13)} ⇒

{0, 1, 9, 33}, {0, 2, 23, 39}, {0, 3, 30, 43}, {0, 4, 14, 42}, {0, 5, 25, 36}, {0, 6, 18, 35},

{0, 7, 26, 41}.
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For a cyclic BIBD(97, 4, 1) we found two cyclic block designs.

1. S8 = {(1, 2), (13, 15), (5, 8), (6, 10), (11, 16), (3, 9), (7, 14), (4, 12)} ⇒

{0, 1, 13, 34}, {0, 2, 32, 47}, {0, 3, 26, 40}, {0, 4, 20, 42}, {0, 5, 29, 48},

{0, 6, 31, 41}, {0, 7, 18, 46}, {0, 8, 17, 44}.

2. S8 = {(1, 2), (13, 15), (4, 7), (10, 14), (6, 11), (3, 9), (5, 12), (8, 16)} ⇒

{0, 1, 13, 34}, {0, 2, 31, 47}, {0, 3, 14, 39}, {0, 4, 27, 46}, {0, 5, 15, 43},

{0, 6, 32, 41}, {0, 7, 24, 44}, {0, 8, 30, 48}.

For a cyclic BIBD(13, 4, 2) we found one cyclic design. The base blocks are:

1. 2-fold Skolem array S1 = {(1, 2), (1, 2)} ⇒

{0, 1, 4, 6}, {0, 1, 4, 6}

For a cyclic BIBD(25, 4, 2) we found two cyclic design. The base blocks are:

1. 2-fold Skolem array S2 = {(1, 2), (3, 4), (1, 3), (2, 4)} ⇒

{0, 1, 6, 10}, {0, 1, 8, 12}, {0, 2, 8, 11}, {0, 2, 5, 12}.

2. 2-fold Skolem array S2 = {(1, 2), (3, 4), (1, 3), (2, 4)} ⇒

{0, 1, 4, 10}, {0, 1, 8, 12}, {0, 2, 8, 11}, {0, 2, 7, 12}.

For a cyclic BIBD(37, 4, 2) we found four cyclic design. The base blocks are:
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1. 2-fold Skolem array S3 = {(1, 2), (5, 6), (2, 4), (3, 5), (1, 4), (3, 6)} ⇒

{0, 1, 5, 14}, {0, 1, 12, 18}, {0, 2, 12, 17}, {0, 2, 10, 16}, {0, 3, 7, 16}, {0, 3, 11, 18}.

2. 2-fold Skolem array S3 = {(1, 2), (5, 6), (2, 4), (3, 5), (1, 4), (3, 6)} ⇒

{0, 1, 5, 14}, {0, 1, 12, 18}, {0, 2, 7, 17}, {0, 2, 10, 16}, {0, 3, 12, 16}, {0, 3, 11, 18}.

3. 2-fold Skolem array S3 = {(1, 2), (5, 6), (2, 4), (3, 5), (1, 4), (3, 6)} ⇒

{0, 1, 5, 14}, {0, 1, 7, 18}, {0, 2, 12, 17}, {0, 2, 10, 16}, {0, 3, 12, 16}, {0, 3, 11, 18}.

4. 2-fold Skolem array S3 = {(1, 2), (5, 6), (2, 4), (3, 5), (1, 4), (3, 6)} ⇒

{0, 1, 5, 14}, {0, 1, 7, 18}, {0, 2, 10, 17}, {0, 2, 12, 16}, {0, 3, 11, 16}, {0, 3, 12, 18}.

For a cyclic BIBD(49, 4, 2) we found many cyclic design. The base blocks of some

of them are:

1. 2-fold Skolem array S4 = {(1, 2), (6, 7), (3, 5), (6, 8), (1, 4), (2, 5), (3, 7), (4, 8)} ⇒

{0, 1, 6, 18}, {0, 1, 16, 23}, {0, 2, 15, 21}, {0, 2, 16, 24}, {0, 3, 8, 20}, {0, 3, 10, 21},

{0, 4, 14, 23}, {0, 4, 13, 24}.

2. 2-fold Skolem array S4 = {(1, 2), (7, 8), (3, 5), (5, 7), (1, 4), (3, 6), (2, 6), (4, 8)} ⇒

{0, 1, 6, 18}, {0, 1, 15, 24}, {0, 2, 15, 21}, {0, 2, 16, 23}, {0, 3, 10, 20}, {0, 3, 11, 22},

{0, 4, 16, 22}, {0, 4, 9, 24}.
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Appendix B

Examples of Cyclic BIBD(v, 4, λ)

for some values of v

We give a few cyclic BIBD(v, 4, λ) for some small values of v. The short orbits

are shown slanted. We obtained the following cyclic designs using a hill-climbing

algorithm. The algorithm removes the differences that appear in the short orbit and

hill climbs on the remaining differences.

BIBD(7, 4, 2): {0, 1, 2, 4};

BIBD(22, 4, 2): {0, 4, 16, 17}, {0, 12, 14, 21}, {0, 14, 16, 19}, {0 , 4 , 11 , 15};

BIBD(20, 4, 3): {0, 4, 11, 12}, {0, 3, 7, 9}, {0, 6, 7, 18}, {0, 2, 3, 6}, {0 , 5 , 10 , 15},

{0 , 5 , 10 , 15}, {0 , 5 , 10 , 15};
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BIBD(9, 4, 3): {0, 1, 3, 5}, {0, 1, 3, 4};

BIBD(6, 4, 6): {0, 1, 2, 3}, {0, 2, 3, 4}, {0 , 1 , 3 , 4};

BIBD(8, 4, 6): {0, 1, 4, 5}, {0, 1, 4, 5}, {0, 1, 6, 7}, {0, 2, 5, 7}, {0 , 2 , 4 , 6}, {0 , 2 , 4 , 6};

BIBD(11, 4, 6): {0, 1, 2, 4}, {0, 2, 4, 8}, {0, 4, 5, 8}, {0, 5, 8, 10}, {0, 5, 9, 10};

BIBD(14, 4, 6): {0, 4, 5, 10}, {0, 2, 4, 7}, {0, 3, 4, 5}, {0, 3, 6, 8}, {0, 8, 10, 11}, {0, 2, 6, 7},

{0 , 1 , 7 , 8};

BIBD(15, 4, 6): {0, 1, 2, 3}, {0, 2, 4, 6}, {0, 4, 8, 12}, {0, 1, 8, 9}, {0, 6, 9, 12}, {0, 1, 5, 10},

{0, 2, 5, 10};

BIBD(8, 4, 15): {0, 1, 4, 6}, {0, 1, 4, 6}, {0, 1, 2, 6}, {0, 1, 2, 5}, {0, 3, 4, 5}, {0, 2, 3, 5},

{0, 1, 2, 7}, {0, 1, 2, 4}, {0 , 1 , 4 , 5}, {0 , 2 , 4 , 6};
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