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ABSTRACT 

Sabine’s gulls are the only Arctic gulls that undertake trans-equatorial migrations 

between their breeding grounds and offshore wintering areas. I used light-based archival 

geolocation devices (n = 36) to track Sabine’s gulls from one of their northernmost 

breeding colonies, on Nasaruvaalik Island in the Canadian High Arctic, to their wintering 

sites in the Southern Hemisphere.  I discovered that birds from Nasaruvaalik Island 

migrate to both the Pacific and Atlantic wintering areas this species is known to use, with 

the majority of birds migrating to a restricted area in the Humboldt Current off the coast 

of Peru and a small portion of the birds migrating to an area in the Benguela Current off 

the coast of South Africa. I characterized the routes, timing, and distance of Pacific 

wintering Sabine's gulls. Analysis of the movements of these individuals revealed that 

Sabine’s gulls exploit highly localized areas of elevated marine productivity along a 

migration route of more than 28,000 km. I identified the Juan de Fuca Eddy off the 

southwest coast of Vancouver Island, British Columbia as a critically important foraging 

area during both north and southbound migration. I also describe the non-stop overland 

crossing by some birds between the Pacific and Arctic Oceans during northbound 

migration.
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1.  Introduction and Overview 

1.1  Thesis Background 

Migration ecology 

The study of animal migration provides insights into patterns of resource abundance, 

migratory corridors, foraging behaviour, and population ecology. While widespread 

across animal taxa, migration is particularly evident and well developed in birds that 

move between breeding and non-breeding areas (Webster et al. 2002). The drive to find 

food, both to provision chicks during the breeding season and to survive during the non-

breeding season, is the strongest force influencing migration behaviour (Alerstam et al. 

2003), and therefore occurs in association with, and in response to, seasonal changes in 

food availability (Newton 2010). Individuals exploit seasonal peaks and avoid seasonal 

depressions in resource abundance (Alerstam et al. 2003), resulting from the alternation 

of warm and cold seasons at high latitudes, or of wet and dry seasons in the tropics 

(Newton 2010). To understand the biology and ecology of migratory birds, it is first 

necessary to understand the relative importance of events occurring during both the 

breeding and non-breeding parts of the annual cycle of birds (Robinson et al. 2010, 

Webster et al. 2002).  

Migratory connectivity is the extent to which individuals from the same breeding 

population overlap during the winter, and vice versa (Webster et al. 2002). The degree of 

connectivity ranges on a scale from weak to strong, and has a varying effect on the 

overall ecology of a species. Populations exhibiting strong migratory connectivity are 
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predicted to be more vulnerable to habitat changes or anthropogenic threats (e.g. 

González-Solís et al. 2007), while populations with weak or flexible connectivity may be 

buffered from threats in a particular area (e.g. Dias et al. 2011, Kopp et al. 2011). 

Ultimately, the most important factor in determining how migratory connectivity may 

affect overall survival is the extent to which specific threats during one part of the annual 

cycle are likely to affect the population at large (Marra et al. 1998). 

 

Use of geolocators to study bird migration 

Due to the inherent difficulties in following highly mobile individuals, there continue to 

be large gaps in our understanding of many aspects of migratory behaviour in birds. 

Fundamental knowledge such as the breeding and wintering ranges of some species is 

still lacking (Robinson et al. 2010), and the migratory connectivity of most bird species, 

particularly smaller species and those that spend the majority of time in remote or 

inaccessible areas remains poorly understood (Webster et al. 2002).   

Early studies of migratory behaviour relied on observational surveys (McLaren 

1982, Spear & Ainley 1999), mark-recapture (Pradel et al. 1997, Yong et al. 1998), radar 

observations (Biebach et al. 2000) radio telemetry (Aborn & Moore 1997, Iverson & 

Esler 2006, Plissner et al. 2000) or laboratory experiments (Marra et al. 1998, Phillips et 

al. 2009). Considerable advances in remote-sensing technologies over the last two 

decades have changed the way we study bird migration, providing opportunities to track 

individual birds with great precision and accuracy (Bridge et al. 2011, Burger & Shaffer 

2008, Fiedler 2009). This new wave of migration research has offered extraordinary 
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insights into foraging behaviour (McKnight et al. 2013), energy requirements (Fort et al. 

2013b), long-distance movements (Gill et al. 2008, Kopp et al. 2011), habitat associations 

(González-Solís et al. 2007), and risks associated with anthropogenic activities during the 

non-breeding season (Fort et al. 2013a, Montevecchi et al. 2012). 

Geolocators are currently one of the most widely used tools to track birds, and are 

among the smallest and least expensive tracking devices available (Bridge et al. 2013). 

Geolocators continuously log ambient light intensity and time, and the records are used to 

determine time of sunrise and sunset. Latitude is calculated from day length, and 

longitude from the time of solar noon (Fiedler 2009). More sophisticated devices also 

store sea-surface temperature (SST), wet-dry cycles, dive depths, and altitude data. 

Unlike transmitting devices, geolocators must be recovered in order to download the data 

and therefore the tagged bird must be recaptured. Geolocators have revealed previously 

unknown migration patterns of many species (Åkesson et al. 2012, Rodríguez et al. 

2009a, Salewski et al. 2013), as well as spectacular long distance migrations of smaller 

seabirds (Egevang et al. 2010, Fijn et al. 2013, Guilford et al. 2009), shorebirds (Johnson 

et al. 2012, Niles et al. 2010) and passerines (Stutchbury et al. 2009, Tøttrup et al. 2012). 

Although geolocators are widely recognized as one of the most reliable and least invasive 

methods to track individual birds, they also have several disadvantages, predominantly 

the relatively low accuracy of positional estimates compared with other methods such as 

satellite tags (Bridge et al. 2011). Light-based latitude estimates are prone to error, 

especially during equinox periods when day length is similar around the globe (Hill 

1994), when birds are at high latitudes and experiencing continuous daylight (Egevang 

2010), and at low latitudes when differences between day and night are less pronounced 
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(Shaffer et al. 2005). Latitudinal errors are also increased during the breeding season 

when tags are often shaded by birds sitting on nests (Ekstrom 2004), or when significant 

daily movements undertaken between sunrise and sunset increase or decrease perceived 

day length (Ekstrom 2004, Hill 1994). The mean error of filtered location estimates from 

geolocators deployed on seabirds ranges from 186 ± 114 km (Phillips et al. 2004) to 400 

± 298 km (Shaffer et al. 2005). SST data from satellites can be matched to tag data to 

improve estimates of latitude, particularly when there is definite north-south SST gradient 

(decreased error in Shaffer's 2005 study to 202 ± 171 km). With the continued 

development of processing algorithms (Ekstrom 2004, 2007) and techniques to improve 

the accuracy of location estimates (Lam et al. 2008, Shaffer et al. 2005, Teo et al. 2004), 

geolocators are quickly proving to be an invaluable tool to study migration routes and 

habitat use of a wide range of bird species. 

While there are obvious benefits to using geolocators to study bird migration, the 

effects of tagging on individual birds must also be considered. Seabirds in particular may 

suffer because tags may affect both aerodynamic as well as hydrodynamic performance 

(Vandenabeele et al. 2012). Early studies that examined effects of tag deployment on 

seabirds focused on foraging behaviour, particularly hydrodynamic drag in diving species 

like penguins (Culik et al. 1994). Since then, many studies on the behaviour of tagged 

birds have revealed a variety of adverse effects (Barron et al. 2010). Direct effects, such 

as increased energy expenditure (Vandenabeele et al. 2012), decreased breeding success 

(Ackerman et al. 2004, Rodríguez et al. 2009b), reduced flight range (Navarro & 

González-Solís 2006, Passos et al. 2010), increased duration of foraging trips (Ballard et 

al. 2010, Hamel et al. 2004), decreased nest attendance (Soehle et al. 2000), and reduced 
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breeding site fidelity and colony attendance (Robinson & Jones 2014) have all been 

documented as a result of tagging in some seabirds. Indirect effects such as reduced 

parental investment causing a reduction in body size of chicks (Adams et al. 2009, 

Robinson & Jones 2014, Sæther et al. 1993) or mate compensation, in which mates of 

tagged birds increased chick provisioning and offspring attendance to compensate for 

poor performance of their tagged partner (Paredes et al. 2005) have also been noted. The 

sensitivity of birds to tagging disturbance varies considerably with transmitter load, and 

the negative effects associated with the attachment of tracking devices to birds may be 

reduced as tags become smaller and lighter (Phillips et al. 2003). 

Ultimately, inter-species variation of tag deployment is great and effects must 

therefore be assessed on a case by case basis (Casper 2009). Vandenabeele et al. (2012) 

suggested that tag effects are likely to be strongest in seabirds with high wing loading and 

energetically expensive flapping flight like cormorants (Phalacrocoracidae) and Auks 

(Alcidae), but much lower in birds with a low cost flapping flight mode.  This would 

place my study species – Sabine’s gull (Xema sabini) – in a relatively low risk taxon for 

tag effect. 

 

1.2  Sabine’s Gull (Xema sabini) 

History and taxonomy 

The type specimen of the Sabine’s gull (Xema sabini) was collected in 1818 by Edward 

Sabine, a naturalist onboard the Isabella, during an expedition to explore Baffin Bay in 

hopes of discovering a Northwest Passage (Mlikovsky 2012). Joseph Sabine (Edward’s 
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brother) named and described the new species Larus sabini in Anals of Philosophy in 

1819 (Anonymous), and the genus Xema was later authored by Ross (1819). 

The Sabine’s gull is phylogenetically unique, belonging to the single-species 

genus Xema (Crochet & Bonhomme 2000). Previously thought to be most closely related 

to the swallow-tailed gull (Creagrus furcatus) based on morphological similarities (Chu 

1998, Dwight 1925, Moynihan 1959), X. sabini was identified as a sister taxon to the 

ivory gull (Pagophila eburnea) based on a molecular phylogeny (Crochet & Bonhomme 

2000), despite dramatic differences in plumage and morphology. Unlike the contrasted 

plumage of the Sabine’s gull, the ivory gull shows an entirely white plumage which is 

thought to be a consequence of their year-round Arctic distribution (versus low latitude 

pelagic) (Crochet & Bonhomme 2000). It is thought that these species differentiated c. 2 

million years ago (Crochet & Bonhomme 2000) in the High Arctic rather than colonizing 

the Arctic after differentiation (Day et al. 2001). 

 

Distinguishing characteristics and behaviour 

The Sabine's gull is a small gull (c. 190 g), unique in morphology and behaviour (Bent 

1921, Brown & Jones 1967). Adult birds in breeding plumage are distinctive, most 

notably for their dark grey hood separated from a white neck by a black collar, yellow-

tipped black bill, slightly forked tail, and striking black, white, and grey upper wing 

pattern (Plate 1). They have long narrow wings and fly with deep wing strokes which 

gives them a buoyant, tern-like appearance in flight (Day et al. 2001). 
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Plate 1. Adult breeding plumage of the Sabine’s gull (Xema sabini), showing distinctive upper wing 

pattern, dark grey head, and black bill with a yellow tip (photo by Mark Maftei). 

 

In addition to their distinctive morphological features, Sabine's gulls also have a 

molt pattern that differs from that of most other gulls. In adult birds, remigial moult 

occurs after migration, which is the reverse of most gulls with the exception of other long 

distance migrants such as the Franklin’s gull (Larus pipixcan) (Grant 1997). Sabine’s 

gulls undergo a complete moult in the spring, before starting northbound migration (Grant 

1997, Howell & Dunn 2007). Juvenile Sabine’s gulls retain their plumage through fall 

migration, starting moult into first-winter plumage only after they arrive at or near their 
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wintering site (Grant 1997). This pattern of moult likely reflects the energetic costs of 

Sabine’s gulls’ long-distance migration (Stenhouse et al. 2001). 

Sabine’s gulls also exhibit some aberrant breeding behaviours, most notably 

distraction displays more similar to shorebirds or jaegers than gulls (Stenhouse et al. 

2005), and relocation of chicks to post-hatching territories (Forchhammer & Maagaard 

1991, Stenhouse et al. 2001). In addition, they are the only Arctic gull to undergo trans-

equatorial migration (Day et al. 2001). 

 

Breeding range and habitat 

Sabine’s gulls breed across a circumpolar range, extending from Low Arctic taiga to High 

Arctic tundra (Figure 1-1). In North America, their breeding range extends from coastal 

Alaska across Arctic Canada and central High Arctic islands east to northern Hudson Bay 

and southwest Baffin Island (Figure 1-1). Outside North America, Sabine’s gulls breed in 

the High Arctic zones of Greenland, Spitsbergen, and eastern Russia (Figure 1-1). 

Sabine’s gulls nest in single pairs, scattered groups, or within larger colonies, 

often in association with Arctic terns (Sterna paradisaea) (Blomqvist & Elander 1981, 

Day et al. 2001). In the Low Arctic, Sabine’s gulls nest in low-lying, coastal salt marsh 

tundra (Brown & Jones 1967, Day et al. 2001, Stenhouse et al. 2001). In the High Arctic, 

they nest on small gravel islands, in low-lying areas sparsely covered in vegetation 

(Forchhammer & Maagaard 1991, Mallory et al. 2012). Breeding sites are typically near 

tidal ponds and lakes, freshwater rivers or lakes, or polynyas (Day et al. 2001). 
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Figure 1-1. Distribution of Sabine’s gull (Xema sabini) showing circumpolar breeding range and 

winter range in the Southern hemisphere (adapted from text in Day et al. 2001). 

 

Winter range and habitat 

Sabine's gulls winter within the two major coastal upwelling systems in the Southern 

hemisphere; within the Humboldt Current off the coast of Peru in the Pacific, and in the 

Benguela Current off the coast of Namibia and South Africa in the Atlantic (Figure 1-1; 

Day et al. 2001).  

In the Pacific, the winter range of the Sabine’s gull has been determined from at-

sea surveys and coastal observations (Chapman 1969, Duffy 1983, Plenge et al. 1990, 
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Post 1971), which indicate that birds are primarily found in areas of intense coastal 

upwelling off the coast of Peru, occasionally venturing South into Chilean waters 

(Chapman 1969, Post 1971), and North to waters off the coasts of Ecuador and Columbia. 

These sightings are likely of gulls still on migration (Chapman 1969, Olsen & Larsson 

2004). The most extensive surveys in the Pacific were conducted by Chapman (1969), 

who showed peak numbers of Sabine’s gulls within the Humboldt Current from 

December to February (no voyages occurred in March). The highest concentrations of 

birds were seen less than 20 km offshore, between 15-18°S, with a smaller peak of 

concentration in near shore waters between 6-8°S (Chapman 1969). 

The winter range of the Sabine’s gull in the Atlantic was only recently described 

by Stenhouse et al. (2012) using geolocators (n = 8) deployed on birds from the small 

population breeding in Eastern Greenland. Birds from this study site were found to winter 

primarily off the coasts of Namibia and South Africa, between 20° and 30°S. At-sea 

surveys and incidental sightings in the Atlantic suggest a broader Atlantic wintering 

range, which includes the waters off southern Angola to the north, as well has low 

numbers wintering in the Indian Ocean within the Agulhas Current off the southern coast 

of South Africa to the southeast (Lambert 1972, Urban et al. 1986, Zoutendyk 1965, 

1968). 

 

Migratory behaviour 

Flying between their Arctic breeding range to offshore wintering sites in the Southern 

hemisphere, Sabine's gulls apparently undertake the longest known migration of any gull 
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(Stenhouse et al. 2012). Sabine’s gulls are highly pelagic during the non-breeding season, 

and move rapidly from their Arctic breeding sites to towards lower latitudes for the 

winter. The migration behaviour of Sabine’s gulls is poorly studied, although birds have 

been observed flying in flocks that range from small (1-5 individuals) to large (1000+ 

individuals), low to the water, stopping frequently to feed (Day et al. 2001). Sabine’s 

gulls have often been seen flying in mixed flocks or in close association with Arctic terns 

(Lambert 1972). Sabine’s gulls are mostly pelagic during migration and have been 

recorded flying along the shoreline to at least 200 km offshore, most numerous over the 

shelf break (Briggs et al. 1987, Morgan et al. 1991). When seen during migration, 

Sabine’s gulls appear to fly leisurely, stopping for hours to gather around fishing vessels, 

resting on ice edges, or swimming around foraging in the surface waters (Lambert 1972). 

It is possible that this unhurried flight behaviour occurs only during the day, during which 

birds rest and feed, and Sabine’s gulls migrate mostly at night (Lambert 1972), however 

this has not been confirmed. Migration was previously suggested to be more prolonged 

during fall (northbound) and rapid in the spring (northbound) (Briggs et al. 1987, 

Vermeer et al. 1989).  

 

Routes and timing of migration 

Sabine’s gulls breeding in Russia, Alaska, and western Canada are thought to migrate 

from the Gulf of Alaska, along the western coasts of North and South America to winter 

in the Pacific off the coast of Peru (Day et al. 2001). Birds from eastern Canada are 

thought to cross Davis Strait joining migrants from Greenland, then crossing the North 
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Atlantic to follow the western coasts of Europe and Africa to winter in the Atlantic off the 

coast of South Africa (Day et al. 2001). After breeding, Sabine’s gulls form large flocks 

near shore and feed in the water or on beaches (Bent 1921, Stenhouse et al. 2001). Adults 

purportedly leave the breeding areas before newly fledged young (Bent 1921, Cramp et 

al. 1983). Failed breeders may begin fall migration as early as July (Harrison 1985). 

Pacific migrants are observed in northern and western Alaska from late August to 

early September (Day et al. 2001) and are observed in southwestern Alaska and the Gulf 

of Alaska as late as early November (Gould et al. 1982). Sabine’s gull abundance peaks 

off the southwest coast of Vancouver Island in late August to early September (Morgan et 

al. 1991, Vermeer et al. 1989), with concentrations observed over Swiftsure Bank and La 

Perouse Bank (Morgan et al. 1991). Morgan et al. (1991) suggested this area is an 

important feeding area for Sabine’s gulls during fall migration. Along the U.S. coast, fall 

migration occurs off the coasts of Washington and Oregon from late August to September 

(Day et al. 2001), and off California from August to October (Briggs et al. 1987). 

Sabine’s gulls arrive at their wintering grounds off the coast of Peru between August and 

December (Chapman 1969, Duffy 1981). Spring migration begins off the coast of Peru 

between February and April (Blake 1977, Chapman 1969), and birds have been observed 

on migration off California beginning late April until late May (Briggs et al. 1987) and 

off British Columbia from April to early June (Campbell 1990, Morgan et al. 1991). 

Sabine’s gulls are first noted arriving on Alaskan breeding grounds between late April 

and early June and on Canadian Arctic breeding grounds in early to late June (Day et al. 

2001). 
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Atlantic migrants show peak movement leaving the Arctic from August to mid-

September (Day et al. 2001), occasionally as late as October (Brown et al. 1975, 

Salomonsen 1951). Birds concentrate in the Bay of Biscay and Iberian Sea, off the coasts 

of France, Spain and Portugal in mid-August to mid-September (Lambert 1972, 

Stenhouse et al. 2012). It is also likely that a portion of the Atlantic population follows 

the eastern coast of Canada and the U.S. south before crossing the Atlantic to the 

wintering site indicated by a number of sightings during fall migration (see Day et al. 

2001, Lambert 1972). Sabine’s gulls continue south and are obsered along the west coast 

of Africa between late August and November (Cramp et al. 1983, Stenhouse et al. 2012), 

with earliest arrivals to the wintering area off the coast of South Africa in late September 

(Lambert 1972), peaking between October and November (Stenhouse et al. 2012). 

Atlantic Sabine’s gulls remain in the wintering area until spring, with birds beginning 

spring migration between March and early May (Lambert 1972, Stenhouse et al. 2012). 

Birds are observed off northwest Africa between mid-March and June, peaking in early 

May (Stenhouse et al. 2012), spending two to three weeks staging off the coast of 

Morocco before moving north (Stenhouse et al. 2012). Sabine’s gulls are obesrved off the 

coasts of Newfoundland and Labrador as well as Greenland between late May and early 

June (Lambert 1972). Atlantic migrants arrive in to their Arctic breeding grounds 

between late May and mid-June (Lambert 1972, Stenhouse et al. 2001). 

It has been suggested that some Sabine’s gulls may travel overland during 

portions of either fall of spring migration (Day et al. 2001, Lambert 1972, Portenko 

1989). Lambert (1972) hypothesized that fall migration of birds breeding in the Canadian 

Arctic may involve overland movement across northeastern Canada and the United States 



27 

to the Atlantic, based on multiple sightings of Sabine’s gulls in the interior of the U.S., 

Great Lakes, and upper Gulf of St. Lawrence during September (Cramp et al. 1983, 

Lambert 1972). The scarcity of inland records in the fall, and the fact that these consist 

almost entirely of juveniles (or possibly lost vagrants) might suggest a mainly marine (not 

overland) migration pathway in the fall, especially around eastern North America. During 

spring migration, Lambert (1972) also suggested that birds may fly overland from the 

North American east coast to Hudson Bay, based on a few inland observations of adults 

in spring in this area (see Day et al. 2001). In contrast, there have been spring records of 

Sabine’s gulls in the interior of northwestern Canada and the U.S. (see Day et al. 2001), 

which may be attributed to a common overland route from the Pacific to the Arctic, 

however concrete evidence for this as a regular migration route involving a substantial 

proportion of the population has not been previously confirmed. On Wrangel Island in 

Russia, Sabine’s gulls have been seen flying directly across the island through high 

mountain passes (Portenko 1989). 

First year birds are thought to stay south of the breeding grounds during the first 

summer (Cramp et al. 1983, Urban et al. 1986), however it is entirely unknown what 

areas they use during this time. They have been occasionally seen in higher latitudes, off 

the coast of Labrador, near Southampton Island, NU, and off the coast of Maine, all 

during mid-July (Lambert 1972), suggesting substantial numbers may summer in the 

northern hemisphere (Day et al. 2001). 
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Foraging behaviour 

Sabine’s gulls feed on terrestrial and freshwater invertebrates, marine zooplankton, and 

small fish during the breeding season (Abraham & Ankney 1984, Brown & Jones 1967, 

Stenhouse et al. 2012). The diet of Sabine's gulls during the non-breeding season is 

poorly studied, although birds clearly target areas of high and consistent marine 

productivity within large coastal upwelling zones. Sabine’s gull forage offshore, and are 

often found along lines of foamy, plankton-rich water (caused by Langmuir circulation) 

characteristic of productive upwelling areas (Chapman 1969). Sabine’s gulls forage 

primarily by pursuit plunging, as well as surface feeding, pattering, and scavenging 

behind fishing vessels (Abrams 1983, Duffy 1983, 1989). They are known to feed on 

zooplankton swarms in the Humboldt Current (Duffy 1983), and on zooplankton swarms, 

fish schools, and over foraging fur seals in the Benguela Current (Duffy 1989). Attraction 

to fishing vessels and scavenging of fishery discards has also been confirmed for Sabine’s 

gulls (Duffy 1983, 1989; Valeiras 2003). 

 

Population and Conservation 

There are limited data on Sabine’s gull populations and trends due to a lack of 

comprehensive surveys, which would be in any case impractical if not impossible for a 

species which nests in low density across a vast and remote Arctic range (Day et al. 

2001).  

The global population estimate for Sabine’s gull is c. 330,000 - 700,000 (IUCN 

2014). In Canada, the estimated breeding population is 25,000 - 50,000 (Environment 
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Canada 2011). Foxe Basin is considered to contain the majority of breeding birds in 

Canada, with estimates of c. 25,000 concentrated on Prince Charles Island and Air Force 

Island (Johnston & Pepper 2009), and c. 26,000 in all of Foxe Basin and northern Hudson 

Bay (Gaston et al. 2012). Surveys of Banks and Victoria Island in the eastern Canadian 

Arctic yielded estimates of c. 1800 birds in 1993-1994 (Cornish & Dickson 1996), and c. 

450 birds in 2005 (Raven & Dickson 2006). In the northernmost part of their Canadian 

breeding range within Queens Channel, there is an estimated population of c. 300 birds 

(Maftei et al. 2015 in press). Estimates of the Russian breeding population are highly 

variable, and range from c. 2000 individuals (Kondratiev 1991) to c. 100-10,000 birds 

(Brazil 2009). A small population of 200-1000 Sabine’s gulls breeds in Greenland (Status 

and Conservation of the World's Seabirds 1986). Scattered pairs of Sabine’s gulls also 

occasionally breed on Spitsbergen (Cramp et al. 1983). The only non-breeding population 

data are derived from at-sea surveys within the Pacific wintering area, with estimates of c. 

100,000 individuals (Shuntov 1998). The Atlantic wintering population has not been 

estimated.  

Sabine’s gulls are considered a species of Least Concern (LC) globally (IUCN 

2014), and are not at risk in North America due to significant populations (Day et al. 

2001). Sabine’s gulls are listed as near threatened (NT) in Greenland (Boertmann 2007), 

due to the small population size. Despite their patchy distribution and low numbers 

(Kondratyev et al. 2000), Sabine’s gulls are not included in the Red Book of Russia 

(Andronov 2000). 

On account of the general inaccessibility of their breeding range, Sabine's gulls 

are thought to be relatively unaffected by anthropogenic disturbance during the breeding 
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season, although human disturbance has been reported to decrease hatching success in 

Greenland (Forchhammer & Maagaard 1991) and disturbance from herds of reindeer 

decreased nesting populations in Russia (Kondratiev 1991). Non-breeding threats have 

not been quantified, however their known wintering and stopover sites in highly 

productive marine areas overlap with major commercial fisheries, shipping, and tourism, 

which may affect food availability, increase exposure to contaminants, and/or cause 

physical disturbance (Day et al. 2001, Stenhouse et al. 2012).  This concern is somewhat 

mitigated by the birds’ offshore distribution, that limits contact with most human activity. 

 

1.3  Thesis Objectives 

Most research on Sabine’s gulls has focused on breeding biology and behaviour (e.g. 

Abraham 1986, Brown & Jones 1967, Kondratyev & Kondratyeva 1984, Mallory et al. 

2012, Stenhouse et al. 2001), while most aspects of the non-breeding ecology of this 

species are as yet unknown due to the difficulty of research on such a highly mobile 

pelagic species. One of the most significant gaps in our understanding of the ecology of 

Sabine’s gulls is the lack of conclusive evidence identifying migration routes and 

wintering sites used by various breeding populations (Day et al. 2001). Current 

information pertaining to the migratory movements of Sabine's gulls in the Pacific is 

largely derived from incidental sightings, and the huge distances between known breeding 

and wintering areas make it impossible to ascertain to what extent birds from different 

parts of the circumpolar breeding range of the species use different wintering areas. 
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Furthermore, beyond incidental sightings, virtually nothing is known about their stopover 

and winter habitat use in the Pacific. 

The goal of my thesis is to examine the movement and distribution of Sabine’s 

gulls from a breeding site in the Canadian High Arctic. My research addresses five 

important questions: (1) Where do Sabine’s gulls breeding in the Canadian High Arctic 

spend the winter? (2) What degree of migratory connectivity does the breeding population 

show (i.e., is there variation in winter destinations)? (3) How and when does Sabine’s gull 

migration take place (what are the routes taken, timing of movements and distance 

travelled)? (4) Do Sabine’s gulls show sex-related variation in migration timing similar to 

many other seabird species? (5) What stopover and wintering areas are used by Sabine’s 

gulls during the non-breeding season, and are the areas productive coastal upwelling 

areas, similar to areas confirmed by Stenhouse et al. (2012)? 

 

1.4  Chapter Outlines 

In Chapter One (this chapter), I introduce background information relevant to my thesis, a 

detailed species account of the Sabine’s gull, as well as my thesis objectives. In Chapter 

Two, I use geolocators to track Sabine’s gulls from a breeding site in the Canadian High 

Arctic to identify their wintering destinations (Pacific or Atlantic) and examine the 

variation that is found within the breeding population. In Chapter Three, I examine the 

Pacific migration of Sabine’s gulls in detail, describing the routes taken, timing of 

migration, distance and speed travelled, as well as variation between the sexes. I identify 

the critical stopover areas used and define the range of the Pacific wintering area used by 
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Sabine’s gulls from my study site. Finally, in Chapter Four, I summarize the results of my 

research, discuss conservation implications, and suggest future research objectives. 
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2.  Breeding on the Divide: Sabine’s Gulls (Xema sabini) from the Canadian High 

Arctic Migrate to both Pacific and Atlantic Wintering Sites 

2.1  Abstract 

The world's Arctic latitudes are some of the most recently colonized by birds, and a 

growing understanding of the migratory connectivity of circumpolar species offers unique 

insights into the mechanisms of range expansion and speciation. Longitudinal migratory 

divides within the Nearctic are known to exist for many breeding birds, however for most 

taxa it is unclear where the boundaries lie, and to what extent these affect the connectivity 

of species breeding across their ranges. Sabine’s gulls (Xema sabini) have a patchy but 

circumpolar breeding distribution and breed across the Nearctic from western Alaska to 

Eastern Greenland. Sabine’s gulls are known to winter in two geographically distinct 

areas in different ocean basins separated by thousands of kilometers, but that are 

ecologically similar: the Humboldt Current off the coast of Peru, and the Benguela 

Current off the coast of South Africa. Despite considerable speculation, it has never been 

confirmed where the migratory divide for this species lies in the Nearctic, and to what 

extent gaps in the non-contiguous circumpolar breeding range may reflect segregation to 

different wintering areas. Here, I provide quantitative evidence that confirms that Sabine's 

gulls from a single colony in the central Canadian High Arctic disperse to both the Pacific 

and Atlantic during the non-breeding season. This suggests that a dividing line between 

different wintering populations of this species may exist in the Central Canadian High 

Arctic, and that migratory connectivity of Nearctic Sabine’s gulls breeding near to or 

within the migratory divide may be more diffuse than previously assumed. My research 
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leads to a variety of ecological, behavioural and genetic questions about how the extreme 

long-distance migration pathways of this remarkable bird are determined, with general 

theoretical implications for our understanding of migratory behaviour of high latitude 

species. 

 

2.2  Introduction 

Determining the extent to which breeding populations overlap during the non-breeding 

season (i.e. migratory connectivity; Webster et al. 2002) is essential for interpreting 

ecological and evolutionary patterns of migratory species (Webster & Marra 2005). 

Strong or high migratory connectivity occurs when most individuals from one breeding 

population migrate to the same non-breeding area (Hedd et al. 2012), while weak or 

diffuse migratory connectivity occurs when individuals from a one breeding population 

migrate to several different non-breeding areas (e.g. Dias et al. 2011, Kopp et al. 2011, 

Webster et al. 2002). The strength of migratory connectivity has important conservation 

implications; for example events that occur at a species wintering site (e.g., habitat 

alteration) may influence subsequent events such as reproductive success at the breeding 

site at the individual level and, ultimately, the population level (Marra et al. 2011, 

Rockwell et al. 2012). 

A complete division between breeding populations in which individuals from one 

breeding population move to different wintering sites (or vice versa) is common in many 

migratory bird species (Gudmundsson et al. 2002, Helbig 1996, Macdonald et al. 2012). 

These population level differences in migration patterns may evolve slowly, driven by 
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physical factors such as glacial events or the alteration of favourable habitat (Kraaijeveld 

& Nieboer 2000), or biological factors such as distribution of resources, energetic costs of 

migration, or competition between breeding populations (Alerstam 2011, Alerstam et al. 

2003). 

For many Palearctic migratory birds, there is a distinct migratory divide (defined 

as a narrow region of contact between populations with divergent migratory directions; 

Mayr 1942) at 100°E along the Taymyr Peninsula in Russia, which forms the most 

northerly continental barrier to east-west migration, and lies roughly halfway between 

suitable wintering habitat in the Atlantic and Pacific regions (Alerstam & Gudmundsson 

1999a). Exceptions to this migratory divide exist, such as the cross-hemisphere migration 

of the Northern Wheatear (Oenanthe oenanthe) from Alaskan breeding grounds west 

across the Palearactic to winter in Eastern Africa (Bairlein et al. 2012). 

Corresponding efforts to study migration patterns in the Nearctic have failed to 

find a consistent geographic divide between migratory bird species (Gudmundsson et al. 

2002). Populations of most species of shorebirds appear to be divided in the western 

Arctic (Gratto-Trevor et al. 2012), while populations of some passerines (e.g. snow 

bunting) follow a divide in the east (e.g. Macdonald et al. 2012). Jaegers, terns, and gulls 

(Gudmundsson et al. 2002), as well as some duck species (Dickson 2012, Mehl et al. 

2004, Mosbech et al. 2006) have sub-populations that migrate east and west out of the 

Nearctic, with no consistent shared boundary between species. 

The Canadian High Arctic is a vast archipelago consisting of many terrestrial and 

marine habitats. The Arctic tundra system that is found within the archipelago is part of 

an nearly continuous area of relatively homogenous habitat that extends from the Nearctic 
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to the Palearctic (Henningsson & Alerstam 2008). Many breeding species can therefore 

occupy large or even circumpolar ranges, however these species typically consist of 

discrete populations that breed and winter in disjunct ranges with varying degrees of 

migratory connectivity (Henningsson & Alerstam 2008). The study of migration patterns 

in this geographic region is of particular interest for several reasons; (i) it is ecologically a 

very “young” area, having only become favourable as nesting habitat for birds since the 

last major ice age (Kraaijeveld & Nieboer 2000), (ii) it extends so far north of the 

Nearctic continental landmass that in its northern reaches it is physically an equally likely 

destination for migrants from the both the Nearctic and western Palearctic, and (iii) it 

extends from the North American continent symmetrically, so that its relative midpoint 

lies approximately equidistant from both the Atlantic and Pacific coasts (Gudmundsson et 

al. 2002). These three factors have resulted in the colonization of the High Arctic 

archipelago by migratory species from three source regions: Atlantic, Pacific and 

Palearctic (Bairlein et al. 2012, Gratto-Trevor et al. 2012, Mehl et al. 2004). Determining 

how species and populations are distributed through the Canadian High Arctic 

archipelago can help clarify the evolutionary process behind the migration patterns 

expressed by Arctic birds (Gudmundsson et al. 2002).  

The Sabine’s gull (Xema sabini) is a small gull which breeds across a patchy but 

circumpolar range (Day et al. 2001). It is highly pelagic in the non-breeding season, and 

spends the majority of its annual cycle in offshore waters (Stenhouse et al. 2012). All 

breeding populations are thought to migrate to either of two known wintering areas in 

major upwelling systems in the southern hemisphere (Blomqvist & Elander 1981, 

Stenhouse et al. 2012). The Pacific wintering population occupies a region within the 
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Humboldt Current off the coast of Peru (Chapman 1969), while the Atlantic wintering 

population occupies a region within the Benguela Current off the coast of South Africa 

and Namibia (Lambert 1972, Stenhouse et al. 2012). It is remains unclear how Sabine's 

gulls segregate between these two ecologically similar but extremely geographically 

disparate wintering areas, and the distribution of Atlantic and Pacific wintering birds at 

breeding colonies is unknown (Cramp et al. 1983, Day et al. 2001). Birds breeding in 

Siberia, Alaska, and the Western Canadian Arctic are thought to winter in the Pacific, 

while birds from breeding sites in the Eastern Canadian Arctic, Greenland, and Svalbard 

are thought to winter in the Atlantic (Blomqvist & Elander 1981). The migratory divide 

between Atlantic and Pacific wintering populations in the Palearctic is thought to lie 

along the Taymyr Peninsula (Alerstam & Gudmundsson 1999b), while the divide in the 

Nearctic is expected to lie somewhere in the central Canadian Arctic (Alerstam & 

Gudmundsson 1999a, Blomqvist & Elander 1981). 

My study used geolocators to track Sabine’s gulls breeding at a colony in the 

central Canadian High Arctic in order to determine their migratory inclination, which 

theoretically could be either to migrate west from the breeding grounds to winter within 

the Pacific, or east from the breeding grounds to winter in the Atlantic. Further, I aimed to 

interpret the revealed pattern of migration behaviour in relation to various hypotheses 

about how different Sabine’s gull migration patterns across their Arctic range might be 

determined. 
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2.3  Methods 

Study site 

I conducted field research on Nasaruvaalik Island, Nunavut, (75.8˚ N, 96.3˚ W; Figure 

2-1), between early June and late August over five years between 2008-2012. 

Nasaruvaalik Island is a small gravel island 1.4 km2 in size, supporting a large and 

diverse colony of marine birds that forage in several nearby polynyas. The island is 

characteristic of the High Arctic tundra ecoregion (Olson et al. 2001) and has been 

previously described in detail (Mallory et al. 2012). Sabine’s gulls are annual breeders, 

with the Nasaruvaalik Island colony size ranging from 16-31 breeding pairs over eight 

years of study, all of which nest in association with both Arctic terns (Sterna paradisaea) 

and Ross’s gulls (Rhodostethia rosea) in two colonies at either end of the island. Sabine’s 

gull philopatry at this site is high, based on capture-mark-resighting studies of colour 

marked birds (Davis et al. unpub.). Nesting habitat in the colonies consists of low gravel 

beach ridges interspersed with patches of moss and purple saxifrage (Saxifraga 

oppositifolia) and small, shallow ponds (Mallory et al. 2012). 

 

Deployment and recovery of geolocators 

I deployed 47 geolocators (44 LAT2900 and 3 LAT2500, Lotek Wireless, Canada) on 36 

adult breeding Sabine gulls on Nasaruvallik Island over three years. In 2008, I deployed 

geolocators on three birds. In 2010, I deployed geolocators on 23 birds, one of which was 

previously tagged in 2008. In 2011, I deployed geolocators on 21 birds, 10 of which were 

tagged previously in 2010. In total, I deployed geolocators on 18 females and 18 males,  
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Figure 2-1. Location of the study site at Nasaruvaalik Island, Nunavut (75.8º N, 96.3º W), in the 

Canadian High Arctic (North Pole Lambert Azimuthal Equal Area projection). 
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11 of which (six males and five females) I tagged twice. I captured breeding Sabine’s 

gulls with a spring-loaded bow net (Bub 1991) or a handheld CO2 powered net gun (see 

Edwards & Gilchrist 2011 for details). I attached geolocators to Darvic tarsal bands with 

plastic cable ties (Plate 2), totaling 2.1g (LAT2900) and 3.8g (LAT2500), averaging 1.1% 

and 2.0% of adult body weight respectively. All tagged birds were also fitted with a 

numbered metal band and a unique combination of Darvic bands on the opposite leg 

(Plate 2). I determined the sex of tagged birds through an analysis of 2-3 drops of blood 

collected from the brachial vein (as described by Quintana et al. 2008). I recaptured 

tagged birds the following year to recover the geolocators (one unit was recovered after 

two years), and downloaded the data in LAT Viewer Studio© (Lotek Wireless, Canada). 

 

Plate 2. Captured Sabine’s gull, showing geolocator (LAT2900) attached to a Darvic tarsal band with 

a numbered metal band and a unique combination of Darvic bands on the opposite leg. 
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Data processing 

The geolocators used in this study estimated location once daily; latitude was estimated 

from the duration of daylight between sunset and sunrise, and longitude from the exact 

time of sunrise and sunset (Ekstrom 2004). The geolocators sampled sea-surface 

temperature (SST) when immersed for more than two consecutive samples (i.e. 120 s) 

and recorded the minimum daily value (°C) (Lotek Wireless 2010). To improve the 

accuracy of latitude estimates, I used SST correlation (LAT Viewer Studio©) based on the 

approach used by Shaffer et al. (2005), which allowed me to retain data around the 

equinoxes. I used 8-day composites of nighttime SST grids from the MODIS TERRA 

satellite in this study (http://whiteshark.stanford.edu/public/lotek_sst/, 4 km resolution), 

which are suitable for comparison to the tag values (Warnock 2010). I then filtered 

locations (Freitas 2012) to remove positions implying an unrealistic flight speed in 

Program R (R Core Team 2013). I assumed Sabine's gulls did not exceed a maximum 

velocity of 13.9 m/s (> 50 km/h sustained over a 48 h period) (Hedenström 1998). To 

further reduce the mean error in positions estimates, I smoothed each track using a 

moving weighted average (with a window size of three), whereby each smoothed position 

was the weighted average (in a 1:2:1 ratio) of the previous, current, and subsequent 

position (as per Fifield et al. 2014). Fixed start positions (at breeding colony) and 

positions that showed large daily movements (greater than 4° of longitude or 6° degrees 

of latitude) were not smoothed to avoid introducing positional errors (Phillips et al. 2004). 
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Analysis of movement data 

I pooled all valid locations and generated kernel density estimations to represent the 

annual distribution of tracked birds (ESRI ArcGIS 10.1, search radius: 200 km, output 

cell size: 10 km). I created occupancy contours (25, 50, 75%) in Geospatial Modelling 

Environment (GME; Beyer 2012) to determine areas of high use throughout the annual 

cycle. I used the 50% occupancy contour generated around either one of the known 

wintering areas in the Southern Hemisphere (Day et al. 2001, Stenhouse et al. 2012) to set 

the boundary for the “wintering area”. For the purpose of this study, I did not use 

positions that occurred after the wintering period (spring migration) in the remaining 

analysis (see Chapter 3 for full discussion of the annual migration of Pacific migrating 

Sabine’s gulls). 

I assigned positions to either “stopover” or “travel” categories with each bird 

initially defined to be in a stopover period (i.e. starting at the breeding site). I identified 

transition to a travel period when three or more positions (within a sliding window of 

five) showed movement more than 100 km/d. Similarly, I identified transition back to a 

stopover period when three or more positions failed to meet the distance criteria (less than 

100 km/d) (method adapted from Fifield:2014bj and Gilg et al. 2013). Stopover periods 

were then examined for burst travel days, which occurred when birds travelled fast and 

far for 1-2 d, which would not trigger a transition to travel, however birds were clearly 

travelling to a new stopover area (Warnock 2010). These burst travel days were manually 

adjusted to reflect the travel behaviour. 
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Tracks were then split into two periods; fall migration and winter. Fall migration 

was defined as the period between departure from the breeding area (i.e., first “travel” 

location identified after breeding period) and arrival to the wintering area (i.e., first 

“stopover” location within the pre-defined wintering area) (as per Fifield:2014bj and 

Ramírez et al. 2013). For each wintering site (Pacific and Atlantic), I generated kernel 

density estimations (ESRI ArcGIS 10.1, search radius 200 km, output cell size 10 km) 

using winter locations, which I first transformed to an equal area projection appropriate 

for the site (South America Albers for Pacific and Africa Albers for Atlantic). To 

represent the distribution of birds at each wintering site, I created 25%, 50%, and 75% 

occupancy contours (GME; Beyer 2012). 

I calculated great-circle distances between each pair of valid locations in Program 

R (R Core Team 2013), and subsequently calculated distance per day based on the 

number of days between locations. Travel distance (km) was defined as the distance 

travelled during fall migration not including movement during stopover periods, and 

travel speed (km/d) as the travel distance divided by the days travelled (“travel” days 

only) during fall migration (as per Fijn et al. 2013). 

 

2.4  Results 

Geolocator recovery and data details 

I recovered 38 of 47 (81%) geolocators deployed on Nasaruvaalik Island. Four additional 

tagged birds were seen at the colony, but did not breed so I was unable to capture them, 

while one bird returned and successfully bred but had lost its geolocator prior to 
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resighting (92% of tags were re-sighted). The remaining four tagged birds (two pairs) did 

not return to the breeding site in either 2012 or 2013. 

After filtering, my dataset contained 6,350 locations (91.7% valid), averaging 176 

days per track. Twenty-eight geolocators tracked birds to their wintering site, while eight 

geolocators confirmed migration direction (Pacific or Atlantic) but failed before arrival to 

the wintering site. Two geolocators failed during the breeding season and were not 

included in the analysis (n = 36). Nine birds were tracked twice; therefore my data 

describes the movement of 27 individual birds. 

 

Wintering sites used 

Birds breeding on Nasauvaalik Island disperse to both the Atlantic and the Pacific during 

the non-breeding season (Figure 2-2-A). The majority of birds tracked (92.6%) migrated 

to the Pacific Ocean and wintered within the Humboldt Current off the coast of Peru 

(Figure 2-2-B). Two of the birds tracked (7.4%, both males) migrated east towards the 

Atlantic Ocean and wintered within the Benguela Current off the coast of Namibia and 

South Africa (Figure 2-2-C). Suprisingly, one pair of Sabine’s gulls (confirmed mates for 

six seasons) tracked for two consequetive years spent both non-breeding seasons in 

different oceans (Figure 2-2-A; red and green tracks). 

Sabine’s gulls showed high wintering site fidelity; all nine birds that were tracked 

for two years wintered in the same area both years, including one Atlantic wintering bird. 
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Figure 2-2. (A) Southbound migration of Sabine's gulls breeding at a site in the Central Canadian 

Arctic (black star), showing Atlantic tracks (n = 3) and Pacific tracks (n = 33). One breeding pair 

tracked for two consecutive years spent both non-breeding seasons in different oceans (red = 2010/11, 

green = 2011/12).  (B) Pacific wintering area, with 25%, 50%, and 75% occupancy contours (n = 26). 

(C) Atlantic wintering area, with 25%, 50%, and 75% occupancy contours (n = 2). 
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Migration details 

Sabine’s gulls left the breeding site in late August and arrived at the wintering site in 

early November (Table 2-1). During fall migration, tagged birds travelled 14,578 km to 

the Pacific wintering site, and 14,615 km to the Atlantic wintering site, excluding 

movement during stopover periods (Table 2-1). Both Pacific and Atlantic birds spent 84 

days migrating to the wintering site, flying at a speed of c. 350 km/day on travel days 

(Table 2-1). There was no significant difference in travel distance (t1 = 0.02, p > 0.5) or 

travel speed (t8 = 0.41, p > 0.5) between Pacific and Atlantic wintering populations.  

 

Table 2-1. Fall migration details of Sabine’s gulls (Xema sabini) tracked with geolocators from the 

Central Canadian Arctic (Nasaruvaalik Island) over three years (2008/09, 2010/11, 2011/12), showing 

mean value (range). 

 Pacific Migrants Atlantic Migrants  

Migration tracks (n) 33 3 

Departure from breeding area 18 Aug (5 Aug – 3 Sep) 24 Aug (10 Aug – 1 Sep) 

Arrival at wintering area 11 Nov (15 Oct – 6 Dec) 12 Nov (10 Nov – 15 
Nov) 

Duration of fall migration (d) 84 (58 – 112) 84 (75 – 92) 

Distance travelled (km) 14,578 (12,711 - 17,732) 14,615 (12,684 - 16,545) 

Travel speed (km/day) 347 (252 – 514) 354 (345 – 362) 
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2.5  Discussion 

Here, in the first tracking study of Sabine’s gulls from the North American Arctic, I 

report that birds from a single colony in the central Canadian High Arctic dispersed to 

both the Pacific and Atlantic oceans during the non-breeding season. While the majority 

of tracked birds migrated west to an area of upwelling within the Humboldt Current off 

the coast of Peru, a small proportion of individuals migrated east to an ecologically 

similar area within the Benguela Current off the coasts of Namibia and South Africa. This 

study confirms that Atlantic-wintering Sabine's gulls breed at least as far west as the 

center of the Canadian Arctic (around 96°	  W; and vice versa for Pacific-wintering 

Sabine’s gulls). Breeding populations with mixed migratory behaviour, such as the 

colony on Nasaruvaalik Island, demonstrate more diffuse migratory connectivity than 

would be expected for a species with such a patchy breeding distribution and disjunct 

wintering areas. 

In the High Arctic, migratory divides occur between areas which offer an optimal 

combination of suitable breeding habitat balanced with a relatively low cost of migration 

to suitable wintering habitat, considering both the distance to travel as well as the 

ecological or topographical barriers en route (Gilg & Yoccoz 2010, Henningsson & 

Alerstam 2005, Lundberg & Alerstam 1986). This study shows that Sabine’s gulls 

travelling from Nasaruvaalik Island to either wintering site, may incur similar energetic 

requirements, at least in simple terms like flying distance, speed, and duration. 

Throughout most of their breeding range, Sabine’s gulls prefer low-lying tundra habitat 

associated with freshwater or tidal marshes (Day et al. 2001). Only a small portion of the 
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population breeds in the High Arctic (Day et al. 2001), and very little is known about 

Sabine’s gulls breeding in the northern part of their range. A recent study by Mallory et 

al. (Mallory et al. 2012) however has shown that individuals breeding on Nasaruvaalik 

Island appear to be exploiting particularly favourable habitat, and experience higher 

reproductive success than birds breeding in more typical Low Arctic environments 

(Stenhouse et al. 2001). Nasaruvaalik Island has been identified as the most important 

breeding site for a wide variety of ground-nesting seabirds (including Sabine's gulls) in 

the Queens Channel region (Maftei et al. 2015 in press). The presence of several small 

but highly productive polynyas near the island provide reliable foraging opportunities 

even in the early part of the breeding season when surrounding waters are still completely 

frozen (Hannah et al. 2009, Maftei et al. 2012, Mallory et al. 2012), resulting in a small 

area of suitable habitat which supports a small but stable breeding population of Sabine’s 

gulls far outside the middle of their range. Adult survival at this colony is relatively high 

(Fife et al. 2013) and constant across years, yet recruitment is low, indicating that this is a 

largely self-sustaining population. The nearest known major breeding sites lie hundreds of 

kilometres to the southeast and southwest (Day et al. 2001, Stenhouse et al. 2001), and 

the birds nesting on Nasaruvaalik Island may represent a relatively recent colonization by 

a diverse and distinct breeding population of birds representing the northernmost extent of 

both Atlantic and Pacific wintering populations. 

The brief and unpredictable High Arctic breeding season places a high premium 

on timing arrival at the breeding site to coincide with optimal nesting conditions, and for 

individuals to arrive in prime breeding condition (Alerstam 2011). My study shows that in 

rare cases (one breeding pair tracked), mates migrate to Nasaruvaalik Island from 
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opposite ocean basins, with no clear indication of how the schedule of their respective 

partner is affected by environmental conditions en route. These mixed pairs may therefore 

be increasing the reproductive costs associated with failure to arrive on time and in prime 

condition. Even birds migrating along the same routes and relying on the same cues to 

time their arrival at breeding sites are susceptible to misjudging local conditions upon 

arrival (Morrison & Davidson 2009, Morrison 2007). Sabine's gulls form strong multi-

year pair bonds (Stenhouse & Robertson 2005), and the reproductive costs involved in 

deferring breeding or finding a new partner if a former mate fails to arrive at the breeding 

site are considerable, and would presumably be exaggerated in mixed pairs arriving from 

different directions.  

Understanding how individuals are connected between different seasons of their 

annual cycle (i.e. migratory connectivity; Webster et al. 2002) is essential for interpreting 

ecological and evolutionary patterns (Webster & Marra 2005). The strength of migratory 

connectivity has important conservation implications; for example events that occur at the 

wintering site (e.g. habitat alteration) may affect the reproductive success and survival of 

individuals at the breeding site (Marra et al. 2011, Rockwell et al. 2012). Information 

about how populations are geographically linked throughout the year is lacking for many 

species of migratory birds (Marra et al. 2011), including Sabine’s gulls (Day et al. 2001). 

My research is the first to consider the degree of migratory connectivity in Sabine’s gulls 

breeding in the Nearctic, and shows that birds breeding on Nasaruvaalik Island exhibit 

somewhat diffuse migratory connectivity due to mixed wintering area preference.  

 Ultimately, my study gives rise to a variety of ecological, behavioural and genetic 

questions about how the migration pathways of Sabine’s gulls are determined, and on a 
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larger scale, how migratory behaviour of high latitude species is determined. Since 

migration direction tendency has only been quantified at one Canadian Arctic Sabine’s 

gull colony (Nasuravaalik Island) and my data shows mixed migratory behaviour in 

adults (no juveniles have been studied), more data is needed from other colonies (east and 

west) and data from juvenile Sabine’s gulls (particularly “hybrid” offspring) is needed in 

order to gain insights into the degree of inheritance and learning. 
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3.  Trans-equatorial Migration and Stopover Sites of Sabine’s Gulls (Xema sabini) 

from the Canadian High Arctic 

3.1  Abstract 

Sabine's gulls (Xema sabini) undertake the longest migration of any gull, a spectacular 

trans-equatorial movement from Arctic breeding areas to pelagic wintering areas in the 

southern hemisphere. A recent study identified and described the routes and wintering 

areas used by Sabine's gulls migrating through the Atlantic, but very little is known about 

the population of Sabine's gulls wintering in the Pacific. My study used geolocators (n = 

33) to track Sabine’s gulls over three years during their annual migration from a breeding 

site in the Canadian High Arctic to a wintering site in the Pacific Ocean within the 

Humboldt Current off the coast of Peru. I quantified migration routes and timing of 

individual birds, identified important stopover areas used during migration, and defined 

the extent of their Pacific wintering area. Sabine’s gulls made an average round-trip 

migration of over 28,000 km, travelling rapidly between highly localized stopover sites in 

areas of coastal upwelling. The Juan de Fuca Eddy off the southwest coast of British 

Columbia was identified as the most important stopover site, used by birds during both 

spring and fall migration. All of the Pacific migrants tracked spent the winter within a 

relatively restricted area of upwelling within the Humboldt Current off the coast of Peru. 

Tracks also confirmed that some Sabine’s gulls make a remarkable overland (3268 km) 

spring migration crossing multiple mountain ranges between the Pacific Ocean and 

Hudson Bay or the Bering Sea en route to the breeding site in the Canadian High Arctic.  
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3.2  Introduction 

Understanding a species’ migration pattern, such as timing of movements and the routes 

and stopover areas used, may help to predict or explain changes in population size or 

distribution. Seabirds, many of which are long-distant migrants, continuously target areas 

of high marine productivity throughout their annual cycle (González-Solís et al. 2007, 

McKnight et al. 2013, Shaffer et al. 2006), and therefore aggregate where resources are 

available and predictable, e.g. areas of strong coastal upwelling and steep continental 

slopes or shelf breaks (Burger 2003, Duffy 1989, Vermeer et al. 1989). 

Unique among Larids, Sabine's gulls (Xema sabini) undertake a lengthy trans-

equatorial migration between Arctic breeding sites and pelagic wintering areas in the 

southern hemisphere - the longest migration of any gull (Stenhouse et al. 2012). Although 

Sabine's gulls breed at mostly small scattered colonies across a wide circumpolar range 

(Day et al. 2001), they are only known to winter in two distinct areas in the Southern 

hemisphere; within the Humboldt Current off the coast of Peru in the Pacific (Chapman 

1969, Day et al. 2001), and within the Benguela Current off the coast of South Africa in 

the Atlantic (Lambert 1972, Stenhouse et al. 2012). Recently, geolocators were used to 

track the migration of Sabine’s gulls breeding in Eastern Greenland to the Atlantic 

wintering site, revealing the timing and routes of their migration, the extent of their 

wintering range, and stopover areas used during fall and spring migration (Stenhouse et 

al. 2012). In Chapter 2, I showed for the first time where birds breeding at a site in the 

Central Canadian Arctic spend the non-breeding season. Detailed information on the 

movements of Sabine’s gulls wintering in the Pacific continues to be deficient, 
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specifically the routes and timing of their migration as well as distance and speed 

travelled. 

In this study I used geolocators to track the migration of Sabine’s gulls from a 

breeding colony in the central Canadian Arctic to their Pacific wintering site. Specifically, 

my objectives were (1) to identify the route(s) used by Sabine’s gulls from a Canadian 

Arctic breeding site to and from their wintering area in the Pacific, (2) to quantify the 

timing of these migrations, the distance and speed travelled during the nonbreeding 

period, as well as the sex-related variation in migration timing, (3) to identify the stopover 

areas used during fall and spring migration, and define the extent of their wintering area. 

 

3.3  Methods 

Study site 

I captured Sabine’s gulls on Nasaruvaalik Island, Nunavut, (75.8˚ N, 96.3˚ W), between 

early June and late August over five years (2008-2012). The study site is described in 

Chapter 2 (see Figure 2-1) and in detail in Mallory et al. (2012). 

 

Deployment and recovery of geolocators 

As previously described in Chapter 2, I deployed 47 geolocators (44 LAT2900 and 3 

LAT2500, Lotek Wireless, Canada) on 36 adult breeding Sabine gulls on Nasaruvallik 

Island over three years (two in 2008, 23 in 2010, and 21 in 2011). In total, I deployed 

geolocators on 18 females and 18 males, 11 of which (six males and five females) I 
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tagged twice. I captured breeding Sabine’s gulls with a spring-loaded bow net (Bub 1991) 

or a handheld CO2 powered net gun (see Edwards & Gilchrist 2011 for details). I captured 

breeding Sabine’s gulls with a spring-loaded bow net (Bub 1991) or a handheld CO2 

powered net gun (see Edwards & Gilchrist 2011 for details). I attached geolocators to 

Darvic tarsal bands with plastic cable ties, totaling 2.1g (LAT2900) and 3.8g (LAT2500), 

averaging 1.1% and 2.0% of adult body weight respectively. All tagged birds were also 

fitted with a numbered metal band and a unique combination of Darvic bands on the 

opposite leg. I weighed birds using a 300-g Pesola spring scale and measured culmen, 

total head length, wing chord, and tarsus (mm). I determined the sex of tagged birds 

through an analysis of 2-3 drops of blood collected from the brachial vein (as described 

by Quintana et al. 2008). I recaptured tagged birds the following year to recover the 

geolocators (one unit was recovered after two years), and downloaded the data in LAT 

Viewer Studio© (Lotek Wireless, Canada). 

 

Tag Effect 

I assessed the effect of geolocators on Sabine’s gulls by comparing return rate and date, 

adult body mass change, nest success, and chick growth between tagged and control 

birds. I weighed Sabine’s gulls at tag deployment and recovery, made daily checks for 

individually colour-marked birds present within the study area, marked and monitored 

nests to determine nest success (see Mallory et al. 2012 for detailed methods), and banded 

and weighed recently hatched chicks to calculate chick growth. I defined treatment nests 
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as nests with either one or two tagged parents, and control nests as nests without tagged 

parents (see Appendix 1 for detailed Tag Effect methods). 

 

Data processing 

The geolocators used in this study estimated location once daily; latitude was estimated 

from the duration of daylight between sunset and sunrise, and longitude from the exact 

time of sunrise and sunset (Ekstrom 2004). The geolocators sampled sea-surface 

temperature (SST) when immersed for more than two consecutive samples (i.e. 120 s) 

and recorded the minimum daily value (°C) (Lotek Wireless 2010). As described in 

Chapter 2, I used SST correlation (LAT Viewer Studio©) to improve the accuracy of 

latitude estimates based on the approach used by Shaffer et al. (2005), which allowed me 

to retain data around the equinoxes. I used 8-day composites of nighttime SST grids from 

the MODIS TERRA satellite in this study 

(http://whiteshark.stanford.edu/public/lotek_sst/, 4 km resolution), which are suitable for 

comparison to the tag values (Warnock 2010). I then filtered locations (Freitas 2012) to 

remove positions implying an unrealistic flight speed in Program R (R Core Team 2013). 

I assumed Sabine's gulls did not exceed a maximum velocity of 13.9 m/s (> 50 km/h 

sustained over a 48 h period) (Hedenström 1998). To further reduce the mean error in 

positions estimates, I smoothed each track using a moving weighted average (with a 

window size of three), whereby each smoothed position was the weighted average (in a 

1:2:1 ratio) of the previous, current, and subsequent position (as per Fifield et al. 2014). 

Fixed start positions (at breeding colony) and positions that showed large daily 
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movements (greater than 4° of longitude or 6° degrees of latitude) were not smoothed to 

avoid introducing positional errors (Phillips et al. 2004). 

 

Analysis of movement data 

As described in Chapter 2, I pooled all valid locations and generated kernel density 

estimations to represent the annual distribution of tracked birds (ESRI ArcGIS 10.1, 

search radius: 200 km, output cell size: 10 km). I created occupancy contours (25, 50, 

75%) in Geospatial Modelling Environment (GME; Beyer 2012) to determine areas of 

high use throughout the annual cycle. I used the 50% occupancy contour generated 

around the known Pacific wintering area in the Southern Hemisphere (Day et al. 2001) to 

set the boundary for the “wintering area”. Tracked Sabine’s gulls that migrated to the 

Atlantic for the winter were not included in the remaining analysis (see Chapter 2 for full 

discussion of Atlantic migrating Sabine’ gulls). 

Using previously assigned location categories (“stopover” or “travel”, see Chapter 

2), tracks were split into three periods; fall migration, winter, and spring migration. Fall 

migration was defined as the period between departure from the breeding area (i.e., first 

“travel” location identified after breeding period) and arrival to the wintering area (i.e., 

first “stopover” location within the pre-defined wintering area). Spring was similarly 

defined as the period between departure from the wintering area and arrival to the 

breeding area (as per Fifield:2014bj and Ramírez et al. 2013). All stopover periods were 

further categorized as “primary” if more than 75% of tracked birds used a particular area. 

For each primary fall and spring stopover area, I generated kernel density estimations 
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(ESRI ArcGIS 10.1) using a search radius of 200 km and an output cell size of 10 km, 

which is comparable to similar studies (Gilg et al. 2013, Hedd et al. 2012, Stenhouse et al. 

2012). To represent the distribution of birds at primary stopover areas, I created 25%, 

50%, and 75% occupancy contours (GME; Beyer 2012). The Pacific wintering site 

occupancy contours were previously generated in Chapter 2.  

In addition to travel distance (km) and travel speed (km/d) calculations done in 

Chapter 2 (calculations that do not include movement during stopover periods), I 

calculated migration distance (km) and migration speed (km/d). Migration distance was 

defined as the total distance travelled during fall or spring migration, including stopover 

movement and migration speed (km/d) as the migration distance divided by the number 

of days (including “stopover” days) migrated during fall or spring migration (as per Fijn 

et al. 2013). All distance (great-circle) calculations were done in Program R (R Core 

Team 2013). 

 

3.4  Results 

Geolocator recovery and data details 

As previously reported in Chapter 2, I recovered 38 of 47 (81%) geolocators 

deployed on Nasaruvaalik Island (Table 3-1). Four additional birds were seen at the 

breeding site with a geolocator but I was unable to capture them (non-breeding) and one 

bird showed up to breed but had lost the geolocator (92% of tags were re-sighted). Two of 

the birds tracked (three tracks) did not winter in the Pacific (see Chapter 2 for the results 

of Atlantic birds). 
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Table 3-1. Details of Sabine’s gulls (Xema sabini) tracked with geolocators (n = 33) from 

Nasaruvaalik Island in the Canadian High Arctic. 

Year Band Sex 
First  

Valid Fix 
Last 

Valid Fix 
Unfiltered 
Locations 

Filtered 
Locations 

Valid 
Locations (%) 

2008/ 
2009 

69921a M 01-Sep 15-Jun 288 282 97.9 
69923 M 03-Sep 08-Jun 279 261 93.5 
69926 M 30-Aug 07-Jun 282 275 97.5 

2010/ 
2011 

69953b F 23-Aug 12-Dec 112 102 91.1 
69902c F 11-Aug 31-Jan 174 160 92.0 
69905d F 21-Aug 09-Jun 293 250 85.3 
69909 F 14-Aug 03-Mar 202 187 92.6 
69913e M 09-Aug 26-Jan 171 142 83.0 
69914 F 10-Aug 14-Nov 97 85 87.6 
69915f F 07-Aug 08-Mar 214 190 88.8 
69919g M 26-Aug 08-Nov 75 58 77.3 
69920 M 09-Aug 12-Oct 65 60 92.3 
69921a M 21-Aug 25-Feb 189 175 92.6 
69924 M 11-Aug 15-May 278 255 91.7 
69925 F 15-Aug 15-Oct 62 58 93.5 
69985 F 07-Aug 29-Jan 176 165 93.8 
69991 F 07-Aug 16-Oct 71 61 85.9 
69992 M 19-Aug 08-Jan 143 137 95.8 
69993 M 11-Aug 05-Apr 238 226 95.0 
69994h M 11-Aug 17-Jun 311 250 80.4 

2011/ 
2012 

69953b F 21-Aug 13-Jun 298 265 88.9 
69902c F 18-Aug 09-Apr 236 222 94.1 
69905d F 13-Aug 22-Oct 71 64 90.1 
69913e M 31-Aug 15-Jun 290 271 93.4 
69915f F 13-Aug 04-Oct 53 49 92.5 
69919g M 31-Aug 15-Jun 290 267 92.1 
69923 M 02-Sep 26-Jan 147 129 87.8 
69928 F 22-Aug 08-Jun 292 273 93.5 
69979 F 19-Aug 22-Jun 309 286 92.6 
69994h M 25-Aug 06-Apr 226 219 96.9 
71302 M 31-Aug 12-Jun 287 273 95.1 
71303 F 21-Aug 08-Jun 293 277 94.5 
71307 F 23-Aug 19-Sep 28 28 100.0 

 Mean  18-Aug 3-Mar 198 182 91.5 

 Total  - - 6,540 6,002 91.8 
 a-h birds tagged for a second year 
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After filtering, my dataset contained 6,002 locations (91.8% valid), averaging 182 

days per track (Table 3-1). Eleven of the recovered geolocators gave a full year of 

migration data, two provided partial spring migration, 15 provided fall migration and 

wintering data only, eight provided partial fall migration, and two failed during the 

breeding season and were not included in the analysis (n = 33; Table 3-1). Eight birds 

were tracked twice; therefore my data describes the movement of 25 individual birds. 

 

Tag effect 

There was no significant difference in return rate and return date between tagged and 

untagged birds, or in nest success and chick growth between treatment and control nests 

(see Appendix 1 for details). When the 2.1 g LAT2900 tags were used (n = 44), there was 

no difference in the mean body weight of tagged birds between tag deployment and 

recovery, however when the 3.8 g LAT2500 tags were used (n = 3), there was a 

significant decrease in body weight of tagged birds (-10.3 g change, t2 = 7.75, p = 0.02). 

 

Migration pattern 

In general, Sabine’s gulls followed a coastal migration route from the breeding site in the 

Canadian High Arctic to the wintering site off the coast of Peru (Figure 3-1). Throughout 

their annual migration, Sabine’s gulls demonstrated a stepping-stone pattern of migration, 

where travel periods (Figure 3-1; blue) were frequently interrupted by stopover periods 

(Figure 3-1; red). 
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Figure 3-1. Annual migration of Sabine’s gulls tracked with geolocators (n = 33), from a breeding site 

in the Canadian High Arctic (red star) to the Pacific wintering site off the coast of Peru, showing 

travel days (blue) frequently interrupted by stopover days (red), showing individual variation in 

timing and latitude of migration. Faded map in background shown for geographic reference only. 
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Fall (southbound) migration and stopover 

Tagged Sabine’s gulls began post-breeding migration in mid-August (Table 3-2). Birds 

headed west from the breeding area, following the coast of Alaska south to the Pacific 

Ocean (Figure 3-2). By early September (Table 3-2), all birds had arrived at the primary 

fall stopover site within the Juan de Fuca Eddy off the southwest coast of Vancouver 

Island (Figure 3-2 inset). This area was used by 100% (n = 33) of the tagged birds during 

southbound migration, and individuals stopped for an average of 31 days (± 11.4 d; Table 

3-2). The 50% fall stopover occupancy contour (core use) represented an area of 94,101 

km2, ranging from 50.0 ˚N to 45.6 ˚N (mean 47.8 ± 1.2 ˚N) and 126.7 ˚W to 123.8 ˚W 

(mean 125.2 ± 0.6 ˚W) (Figure 3-2 inset). In early October (Table 3-2), birds continued 

their migration south along the Pacific coast of North and Central America, before 

crossing the equator to arrive at the wintering area off the coast of Peru (Figure 3-3), in 

mid-November (Table 3-2). Southbound migration (n = 26) was completed in an average 

of 84 days (± 15.2 d; Table 3-2). 

   

Wintering Area 

Sabine’s gulls spent almost five months (mean 146 ± 15 d) wintering off the coast of 

Peru, beginning in mid-November and ending in early April (Table 3-2). The 50% winter 

area occupancy contour (core use) represented an area of 167,637 km2, ranging from 5.2 

˚S to 11.4 ˚S (mean 7.9 ± 1.5 ˚S) and 82.7 ˚W to 79.1 ˚W (mean 80.8 ± 0.8 ˚W) (Figure 

3-3). 
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Table 3-2. Migration details of Sabine’s gulls (Xema sabini) tracked with geolocators from a breeding 

site in the Canadian High Arctic (Nasaruvaalik Island) over three years (2008/09, 2010/11, 2011/12). 
	   	   Mean	   Range	   SD	   n	  

Fa
ll	  

Start	  fall	  migration	   18	  Aug	   5	  Aug	  –	  3	  Sep	   8.7	   33	  

Arrive	  Juan	  de	  Fuca	   6	  Sep	   19	  Aug	  –	  29	  Sep	   11.4	   33	  

Depart	  Juan	  de	  Fuca	   5	  Oct	   12	  Sep	  –	  24	  Oct	   9.4	   32	  

Duration	  of	  fall	  stopover	  (d)	   31	   6	  –	  54	   11.4	   32	  

End	  fall	  migration	   10	  Nov	   14	  Oct	  –	  5	  Dec	   15.5	   26	  

Duration	  of	  fall	  migration	  (d)	   84	   58	  –	  112	   15.2	   26	  

Distance	  of	  fall	  travel	  (km)	   14,578	  	   12,711	  –	  17,732	   1,092	   26	  

Speed	  of	  fall	  travel	  (km/day)	   347	   252	  –	  514	   63	   26	  

W
in
te
r	  

Arrive	  Humboldt	   11	  Nov	   15	  Oct	  –	  6	  Dec	   15.5	   26	  

Depart	  Humboldt	   8	  Apr	   24	  Mar	  –	  9	  May	   11.5	   13	  

Duration	  of	  winter	  (d)	   146	   123	  –	  178	   14.8	   13	  

Sp
ri
ng
	  

Start	  spring	  migration	   9	  Apr	   25	  Mar	  –	  10	  May	   11.5	   13	  

Arrive	  Juan	  de	  Fuca	   14	  May	   28	  Apr	  –	  21	  May	   6.8	   12	  

Depart	  Juan	  de	  Fuca	   22	  May	   16	  May	  –	  29	  May	   4.4	   11	  

Duration	  of	  spring	  stopover	  (d)	   9	   5	  –	  19	   3.6	   11	  

End	  spring	  migration	   18	  Jun	   9	  Jun	  –	  25	  Jun	   5.0	   13	  

Duration	  of	  spring	  migration	  (d)	   74	   55	  -‐	  92	   11.8	   13	  

Distance	  of	  spring	  travel	  (km)	   13,800	   11,694	  –	  16,671	   1,309	   11	  

Speed	  of	  spring	  travel	  (km/day)	   318	   266	  -‐	  362	   33	   11	  

An
nu
al
	  

Annual	  travel	  (excl.	  stops,	  km)	   28,330	   25,807	  –	  31,968	   1,706	   11	  

Annual	  migration	  (incl.	  stops,	  km)	   37,393	   34,831	  –	  41,407	   1,843	   11	  
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Figure 3-2. Southbound migration of Sabine's gulls from Nasaruvaalik Island, Nunavut, to the Pacific 

wintering area off the coast of Peru over three years (2008/09, 2010/11, 2011/12). Fall migration (red, 

n = 33), winter movement (blue, n = 26). Inset map shows the primary fall stopover area, with 25%, 

50%, and 75% occupancy contours (Winkel-Tripel projection). 
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Figure 3-3. Wintering area of Sabine’s gulls (n = 26) from a breeding site in the Canadian High 

Arctic over three years (2008/09, 2010/11, 2011/12), showing the 25%, 50%, and 75% winter 

occupancy contours (main) and all winter locations (inset) (South America Albers Equal Area 

projection). 
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Spring (northbound) migration and stopover 

Northbound migration began in early April (Table 3-2), with birds following a route 

along the west coast of Central and North America (n = 13; Figure 3-4). Individuals 

stopped again within the Juan de Fuca Eddy off the southwest coast of Vancouver Island 

in mid-May, remaining at this primary spring stopover area for 9 days (± 3.6 d; Table 3-2, 

Figure 3-4 inset). This stopover area was used by 12 of the 13 birds tracked (92%) during 

northbound migration. The 50% spring stopover occupancy contour (core use) 

represented an area of 222,806 km2, ranging from 49.0 ˚N to 45.5 ˚N (mean 47.5 ± 0.9 

˚N) and 128.3 ˚W to 124.0 ˚W (mean 126.0 ± 1.0 ˚W; Figure 3-4 inset). Birds departed 

the stopover area at the end of May, and were observed arriving back on Nasaruvaalik 

Island in mid-June (Table 3-2). Northbound migration (n = 13) was completed in an 

average of 74 days (± 11.8 d; Table 3-2). 

 

Overland Migration 

In the final leg of the northbound migration, tagged Sabine’s gulls followed three 

extremely different routes (Figure 3-4). Two birds roughly retraced their southbound 

tracks around the coast of Alaska, but eight other birds (in two different years), 

incorporated significant overland flights on their way back north. Most remarkably, two 

birds flew directly east overland from the spring stopover area off the coast of Vancouver 

Island (late May) to Hudson Bay (early June), travelling an average distance of 3268 km 

(3142 to 3394 km; Figure 3-4). On this route, one of the birds stopped for 4 days (31 May 

to 3 Jun) in northern Saskatchewan, while the other flew non-stop for 10 days (mean  
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Figure 3-4. Northbound migration of Sabine's gulls from the Pacific wintering area off the coast of 

Peru to Nasaruvaalik Island, Nunavut over three years (2008/09, 2010/11, 2011/12). Spring migration 

(purple, n = 33), winter movement (blue, n = 26). Inset map shows the primary spring stopover area, 

with 25%, 50%, and 75% occupancy contours (Winkel-Tripel projection). 
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travel speed 311 km/d; 286 to 339 km/d). Upon arrival to Hudson Bay, both birds stopped 

for 6-8 days before flying almost due north to the breeding site on Nasaruvaalik Island 

(Figure 3-4). 

The other six birds appeared to rapidly cross interior Alaska between the Gulf of 

Alaska and the Beaufort Sea (Figure 3-4). At this latitude (> 60 °N) on dates approaching 

the summer solstice (24 h daylight), geolocation estimates tend to be inaccurate, but 

corresponding SST data showed an abrupt temperature change from 5.6 ± 1.7 °C on the 

last valid date within the Gulf of Alaska (3 Jun ± 3.1 d) to -0.8 ± 1.0 °C on the first valid 

date within the Beaufort Sea (6 Jun ± 3.0 d). The rapid movement of these Sabine’s gulls 

from warmer waters to sub-zero waters (in 3 d ± 1.4 d) can only be explained by an 

overland route, since a coastal route around Alaska through the eastern Aleutian Islands 

North to the Beaufort Sea greatly exceeds the maximum known flight speed for Sabine’s 

gulls. 

 

Variation in migration timing 

In 2010, severe weather conditions during the early chick-rearing period caused 

widespread chick mortality and ultimately total colony failure. The entire breeding colony 

was subsequently abandoned by early August. By comparison, birds were still actively 

rearing chicks throughout August of 2008 and 2011. Birds tagged in the failed year 

(2010) departed the breeding area 10 days earlier than birds tagged in successful years 

(2008 and 2011) (14 Aug ± 7 d vs. 24 Aug ± 7 d, t31 = -4.1, p < 0.001). 



81 

I also tested for differences in migration timing between the sexes in 2010/11 and 

2011/12 tagged birds (2008/09 tagged birds were all male). Females departed the 

breeding area earlier than males in 2011 (17 Aug ± 4 d vs. 29 Aug ± 3 d, t10 = -6.1, p < 

0.001), but not in 2010 when the entire colony failed. Females arrived at the wintering 

area earlier than males in both years (4 Nov ± 16 d vs. 17 Nov ± 13 d, t21 = -2.3, p < 

0.05).  Most geolocators failed before recording a full year of data, but observations of 

colour marked birds returning to the breeding site for 2011 and 2012 (17 females, 16 

females) indicated that males arrived back on Nasaruvaalik Island five days earlier than 

females (18 Jun ± 4 d vs. 23 Jun ± 5 d, t30 = 3.2, p < 0.01). 

 

Migration distance and speed 

During fall migration, birds travelled an average of 14,578 km at a speed of 347 km/day, 

and during spring migration, birds travelled an average of 13,800 km at a speed of 318 

km/day (excluding stopover movement) (see Table 3-2 for s.d. and range, Figure 3-5, 

Figure 3-6). While birds were within stopover areas (fall, winter, spring), movement 

speed averaged 45 ± 6 km/day (range 28 to 73 km/d; Figure 3-6). Over their entire annual 

migration, tagged Sabine’s gull flew 28,330 km excluding stopover movement, and 

31,363 km when stopover movement was included (see Table 3-2 for s.d. and range). 

There was no statistically significant difference between the migration distance or 

migration speed between sexes (all p-values > 0.05).  
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Figure 3-5. Mean distances (km) and duration (days) flown by Sabine’s gulls during migration in 

2008 - 2012 from a breeding site in the Canadian Arctic to their wintering site off the coast of Peru 

(fall n = 26, winter n = 13, spring n = 11). “Migration” distance was defined as the total distance 

travelled during each stage (including stopover movement), while “travel” distance was defined as the 

distance travelled between stopover periods (excluding stopover movement). 
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Figure 3-6. Mean speed (km/day) of Sabine’s gulls during migration in 2008 - 2012 from a breeding 

site in the Canadian Arctic to their wintering site off the coast of Peru (fall n = 26, winter n = 13, 

spring n = 11). “Migration” speed was defined as the migration distance divided by the number of 

migration days, including stopovers, while “travel” speed was defined as the travel distance divided 

by the days travelled between stopover periods.  
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3.5  Discussion 

My study tracking the Pacific migration of Sabine’s gulls from a breeding site in the 

Canadian High Arctic indicated that these birds followed a coastal, trans-equatorial 

migration to an area off the coast of Peru, travelling more than 28,000 km annually. Birds 

move rapidly between stopover sites characterized by highly productive upwelling areas 

within the Eastern Pacific ocean and most importantly, use the Juan de Fuca Eddy as their 

primary fall and spring stopover site. I have also confirmed for the first time that Sabine’s 

gulls are capable of long-distance overland movements. 

 

Trans-equatorial migration 

While trans-equatorial migration is a fairly common strategy employed by many families 

of birds that travel between areas of alternating high seasonal productivity (Gilg et al. 

2013, Hedd et al. 2012, Mellone et al. 2013), it is a relatively rare among the Laridae, 

which are mostly short-distance migrants (Hatch et al. 2011, Klaassen et al. 2011), and as 

a group tend to be highly adaptable and opportunistic scavengers (Karnovsky et al. 2009, 

Villablanca et al. 2007). Only Sabine's gulls and Franklin's gulls (Larus pipixcan) are 

known to undertake long, trans-equatorial migrations, the latter of which breeds in the 

prairie regions of North America and migrates south to coastal regions of Peru (Burger 

2010, Howell & Dunn 2007).  There are, however, several notable exceptions within the 

closely related Sternidae and Stercoraridae, including the Arctic tern (Sterna paradisaea) 

which completes the longest known annual migration of any bird (Egevang et al. 2010, 

Fijn et al. 2013), while Pomarine, Parasitic, and Long-tailed jaegers (Stercorarius 

pomarinus, S. parasiticus, S. longicaudus) also breed in the northern hemisphere and 
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winter in the southern hemisphere (Gilg et al. 2013, Olsen & Larsson 1997). The related 

south polar skua (Stercorarius maccormicki) breeds in the southern hemisphere and 

winters in the northern hemisphere (Kopp et al. 2011). It is notable that all of these 

species are highly pelagic during the non-breeding season, and it is likely that the risks 

and demands of a lengthy annual migration are offset by the benefits of targeting areas of 

extremely high seasonal productivity in which there is little direct competition for 

resources.  

 

Wintering and stopover habitat 

My results are consistent with previous research by Stenhouse et al. (2012) and confirm 

that Sabine's gulls target areas of strong and predictable upwelling during their 

migrations, and are restricted to localized areas of similar habitat during the winter. 

While many seabirds show a clear affinity for productive areas of upwelling (Kopp et al. 

2011, Shaffer et al. 2006), Sabine's gulls are less adapted to a truly pelagic lifestyle than 

alcids that can dive deep below the surface to expand their vertical foraging range (Croll 

et al. 1992) or tubenoses that can travel efficiently across wide expanses of unproductive 

waters while scavenging opportunistically in areas of unpredictable or ephemeral food 

abundance (Dias et al. 2012, Phillips et al. 2008). As such, Sabine’s gulls may be 

particularly dependent on areas in which strong upwelling concentrates large zooplankton 

and small fish close to the surface for the duration of the non-breeding season. The 

reliance of Sabine's gulls on areas of high marine productivity has already been shown in 

the Atlantic population of the species. These birds winter within the Benguela Current off 

the coast of South Africa and stage in the Bay of Biscay off the coast of Portugal in the 
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fall, and within the Canary Current off the coast of Northwest Africa in the spring 

(Stenhouse et al. 2012). The Pacific wintering area I identified for Sabine's gulls within 

the Humboldt Current off the coast of Peru is similarly an area of high primary 

productivity supporting high forage fish populations (Daneri et al. 2000), and offers 

surface foraging seabirds like Sabine's gulls predictable access to abundant resources 

(Weichler 2004) 

The primary stopover site used by tracked Sabine’s gulls over the continental 

shelf off southwest Vancouver Island during both spring and fall migration is another 

area characterized by strong coastal upwelling conditions and known for its extremely 

high productivity (Burger 2003, MacFadyen et al. 2008). The unique currents and 

bathymetry in the Juan de Fuca region creates a large cyclonic eddy (the Juan de Fuca 

Eddy) which forms in the spring and persists until the fall (MacFadyen et al. 2008, Pool 

et al. 2008), and is responsible for massive upwelling of deep, nutrient-rich water rising 

up from the Juan de Fuca Canyon (Freeland 1992, Pool et al. 2008). The cold, upwelled 

water spreads over an extensive and shallow bank at the edge of the continental shelf 

(Swiftsure Bank), creating exceptionally favourable conditions for foraging seabirds, 

whales, and fish (Burger 2003, Vermeer et al. 1989). 

 

Overland Migration 

Although Sabine's gulls are highly pelagic away from their breeding areas (Day et al. 

2001), a surprising result of my study was the discovery that at least some individuals 

follow an overland migration route across Canada between the coast of British Columbia 

and Hudson Bay or across Alaska between the Gulf of Alaska and the Bering Sea. This 
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strategy involves crossing the considerable obstacles presented by the Coastal and Rocky 

mountain ranges and the Brooks Range, respectively. Similar overland 'shortcut' routes 

have also recently been documented in Arctic terns which cross over the Andes 

mountains from west to east instead of rounding Cape Horn en route between stopover 

sites in the Pacific and wintering areas in the Southern Ocean (Duffy & McKnight 2013). 

While such overland movements are not without precedent in otherwise pelagic seabirds 

(Duffy & McKnight 2013), it demonstrates a unique plasticity in Sabine's gulls which 

appear to be able to make on route decisions to following alternate coastal or overland 

migration routes as ice and weather conditions dictate on a year-to-year basis. An 

overland route may allow birds to reach High Arctic breeding sites faster in the spring, as 

well as maximizing the likelihood of encountering favourable foraging opportunities in 

freshwater lakes or early thawing inlets around river mouths in Hudson Bay at a time 

when large sections of the ocean at northern latitudes remain frozen and inhospitable.  

The rare but regular presence of Sabine's gulls in late May and early June in areas 

of northern inland Canada, far from known breeding areas, has been previously noted 

(Day et al. 2001, Savile 1972, Taylor 1972, Wolford 1972), but never conclusively 

explained.  My confirmation of an overland flight path used by Sabine's gulls travelling 

between the Pacific and Hudson Bay firmly put these reports into context.  

 

Conservation implications 

Although Sabine’s gulls are not currently threatened in Canada, they are highly 

dependent on a few localized areas of high marine productivity throughout their annual 

cycle. Understanding the details of Sabine’s gull migration informs conservation efforts 
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by identifying important habitats, as well as overlapping human activities and potential 

environmental and anthropogenic threats. The Juan de Fuca Eddy and the northern 

Humboldt current region must in this context be recognized as particularly important sites 

for Sabine’s gulls and the main area of conservation concern outside the breeding season. 

These areas also host large numbers of other seabirds, including other long-distance 

migrants such sooty shearwaters (Puffinus griseus) (Shaffer et al. 2006) and Arctic terns 

(McKnight et al. 2013), highlighting the importance of productive upwelling sites in the 

Pacific Ocean. 
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4.  Summary and General Discussion 

4.1  Thesis Summary 

Sabine's gulls undertake the longest migration of any gull, a spectacular trans-equatorial 

movement from Arctic breeding areas to pelagic wintering areas in the southern 

hemisphere. All breeding populations are known to winter in either of two geographically 

disparate but ecologically similar areas: the Humboldt Current off the coast of Peru, and 

the Benguela Current off the coast of South Africa. Despite considerable speculation, it 

has never been confirmed where the migratory divide for this species lies in the Nearctic 

(or even if there is a disctinct migratory divide as opposed to a wide area of mixed 

migration tendency), and to what extent gaps in the non-contiguous circumpolar breeding 

range may reflect segregation of wintering populations. A recent study (Stenhouse et al. 

2012) identified and described the routes and wintering areas used by Sabine's gulls (n = 

10) migrating through the Atlantic, but very little is known about the breeding population 

of Sabine's gulls in the Canadian High Arctic, and birds migrating through the Pacific 

have never before been studied in detail. 

The goal of my thesis was to examine the movement and distribution of Sabine’s 

gulls from the Canadian High Arctic. This research answered three important questions 

regarding Sabine’s gull movement during the non-breeding season, specifically filling 

gaps in our knowledge about this species, as well as increasing our understanding of the 

migratory connectivity of circumpolar species and ecology of pelagic seabirds. 

I determined that birds from a colony near the northernmost part of their range in 

Canada migrate to both the Pacific and Atlantic wintering sites known for this species. 
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The majority of birds tracked spent the winter in the waters of the Humboldt Current off 

the coast of Peru, while a small proportion of the birds spent the winter in the waters of 

the Benguela Current off the coast of South Africa and Namibia. I characterized the 

routes, timing, and distance of migration for Pacific wintering Sabine's gulls. Analysis of 

the movements of these individuals revealed that Sabine’s gulls exploit highly localized 

areas of elevated marine productivity along a migration route of more than 28,000 km. I 

identified the Juan de Fuca Eddy off the southwest coast of Vancouver Island, British 

Columbia as a critically important foraging area during both north and southbound 

migration. This research also confirmed that some Sabine’s gulls make a remarkable 

overland spring migration crossing multiple mountain ranges between the Pacific Ocean 

and Hudson Bay or the Bering Sea en route to the breeding site in the Canadian High 

Arctic. 

 

4.2  Conservation implications 

Understanding a species migration pattern, such as timing of movements and the routes 

and stopover areas used may help predict or explain changes in population size or 

distribution. The research presented in this thesis unravels a few aspects of the ecology of 

Sabine’s gulls that have implications for conservation and can be used to inform 

management strategies. 
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Migratory Connectivity 

The strength of migratory connectivity has important conservation implications. For 

example, events that occur at the wintering site (e.g. habitat alteration) may affect the 

reproductive success and survival (Marra et al. 2011, Rockwell et al. 2012). These carry-

over effects can occur at the individual level (Rockwell et al. 2012), or at the population 

level (Fraser et al. 2012, Macdonald et al. 2012), especially if a species is under strong 

migratory connectivity (e.g. individuals from a breeding population spend the winter 

together) (Norris & Taylor 2006, Webster & Marra 2005). Information about how 

populations are geographically linked throughout the year is lacking for many species of 

migratory birds (Marra et al. 2011), including Sabine’s gulls (Day et al. 2001). 

My research is the first to consider the degree of migratory connectivity within 

populations of Sabine’s gulls breeding in the Nearctic. Sabine’s gulls breeding in the 

central Canadian Arctic are under weaker migratory connectivity than birds in colonies 

that migrate entirely to the Pacific wintering site or exclusively to Atlantic wintering sites, 

and may therefore be slightly more buffered from potential threats that occur during the 

non-breeding season. 

 

Critical Habitat Used During Migration 

Although Sabine’s gulls are not currently threatened in Canada, identifying the 

habitats used during the non-breeding season has been recognized as a research priority 

(Day et al. 2001). This research provides a detailed account of the wintering range for 

Sabine’s gulls in the Pacific, showing they are highly dependent on a few localized areas 
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of high marine productivity throughout their annual cycle. My tracks demonstrated that 

Sabine’s gulls use a restricted area of the Humboldt Current off the coast of Peru, as well 

as confirmed the use of the Benguela Current off the coasts of South Africa and Namibia 

in the Atlantic. These are the two major eastern boundary upwelling systems in the 

southern hemisphere, which are divided into four independent ecosystems: the northern 

Humboldt (Peru), the southern Humboldt (Chile), the northern Benguela (Namibia), and 

the southern Benguela (South Africa) (Moloney et al. 2005, Shannon et al. 2008). The 

Juan de Fuca Eddy and the northern Humboldt current region must be recognized as 

particularly important sites for Sabine’s gulls and the main area of conservation concern 

outside the breeding season. 

Environmental variability in these systems is significant, and productivity 

fluctuates on annual (El Niño Southern Oscillation events) and decadal (alternating cool 

and warm periods) time scales (Moloney et al. 2005, Shannon et al. 2008). In addition, 

intense exploitation of the dominant pelagic fish species affects the ecosystem at all 

trophic levels, and massive changes in fish populations are accompanied by changes in 

abundance and composition of zooplankton (Alheit & Niquen 2004, Cury 2000). 

Sabine’s gulls depend on the ready availability of small fish and zooplankton in these 

areas, and populations are likely to be influenced by fluctuations in the abundance and 

distribution of prey within them. 

My research identifies the Juan de Fuca Eddy as a critical stopover site for 

Sabine’s gulls during both spring and fall migration. The continental shelf off the 

southwest coast of Vancouver Island is extremely productive and is known to provide 

foraging habitat for many species of seabirds, whales, and fish (Burger 2003). The 
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increasing industrialization of the Pacific Northwest has led to increases in shipping 

traffic, which poses a high risk of oil spills and other contamination (Burger 1993, Burger 

et al. 2002). 

Commercial fisheries overlapping with critical habitats using by Sabine’s gulls 

may also affect survival during the non-breeding season (Day et al. 2001), but it remains 

unclear whether such overlap could pose a threat (i.e. resource depletion or direct 

mortality) (Bertrand et al. 2012, Lebreton & Veran 2013, Tasker et al. 2000), or a benefit, 

through increased food supply from fishing discards (Tasker et al. 2000). Sabine’s gulls 

are known to associate with fishing vessels during the non-breeding season (Duffy 1989, 

Valeiras 2003, Wahl & Heinemann 1979), and therefore they may encounter or even 

exploit favourable foraging opportunities during stopover periods within the Juan de Fuca 

Eddy, which may explain population increase in some parts of their breeding range (Day 

et al. 2001). 

 

Flexibility in Migration Patterns 

It is widely accepted that bird migration is flexible in time and space (Alerstam 2011, 

Sutherland 1998), and there are many examples of migratory birds species that show 

flexible routing (Gilg et al. 2013, Stanley et al. 2012), or timing (Conklin et al. 2013, 

Studds & Marra 2011) throughout their annual cycle. Variation in migration schedules 

and patterns may be driven by ecological interactions en route (Both 2010, Thorup et al. 

2006), phenotypic plasticity (Balbontín et al. 2009, Schmaljohann et al. 2012), 

endogenous mechanisms (Berthold 2001), or a combination of the above, however the 
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degree of flexibility and mechanisms controlling the variation observed continues to be 

challenged (Knudsen et al. 2011). It is clear though, that examining the amount of 

flexibility in migration timing and routes is important for predicting species-specific 

responses to climate change (Both 2010, Stanley et al. 2012). 

By examining the routes and timing of migration of Sabine’s gulls that spend the 

non-breeding season in the Pacific, I was able to show flexibility in both migration 

patterns and scheduling. In the spring, Sabine’s gulls showed relatively consistent 

migration timing, but variation in migration routes; for example, some individuals 

followed an overland path towards the breeding site instead of following the coast. This 

trend has been noted in other species (Stanley et al. 2012, Vardanis et al. 2011), and 

suggests timing may be under stronger endogenous control, while variation in local 

conditions may drive route flexibility. Variability was also seen in stopover sites used, 

where in the most extreme case, one individual bird flew almost non-stop from the 

wintering site to the Gulf of Alaska, skipping spring stopover areas that the majority of 

other tracked birds used. Although further study is needed to fully examine the variation 

in Sabine’s gull migration, it is possible that individuals may be able to change their route 

in response to short-term conditions (food availability, wind speed or direction, ice 

extent), which will potentially allow the population to adapt to changing climate 

conditions or resource abundance. 

Many variations in migration routes of both Pacific and Atlantic Sabine’s gulls 

have been observed (Day et al. 2001, Lambert 1972). Stenhouse et al. (2012) showed 

variation in fall migration, with some birds heading east to Iceland and Ireland, while 

others moved into the central North Atlantic Ocean before heading east towards the 
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European coast. Another bird travelled around the southern tip of Greenland and up the 

western coast before heading back east towards the stopover site (Stenhouse et al. 2012). 

It is also likely that a portion of the Atlantic population follows the eastern coast of 

Canada and the U.S. south before crossing the Atlantic to the wintering site, as indicated 

by a number of sightings during fall migration (see Day et al. 2001, Lambert 1972). 

 
 

4.3  Future research directions 

Additional research is needed to determine the boundaries of occurrence of Pacific versus 

Atlantic wintering birds among Nearctic breeding sites. Tracking birds from more eastern 

as well as more western Canadian Arctic breeding colonies would enhance our 

understanding of a possible east-west migratory divide. Additional migration tracks from 

Sabine’s gulls breeding at other sites in the Nearctic would also clarify the degree of 

migratory connectivity between Nearctic populations. Alternatively, stable isotopes could 

be used to infer wintering locations of breeding Sabine’s gulls to determine migratory 

connectivity between stages of their annual cycle (Hobson 2005). Since Sabine’s gulls 

undergo a complete moult in the spring before starting northbound migration (Grant 

1997, Howell & Dunn 2007), isotopic ratios within feathers collected at breeding sites 

across the Nearctic would reflect the food webs where they were grown (Mehl et al. 2004, 

Rushing et al. 2014). Despite the low resolution of results (Hobson 1999), this method 

would obtain large samples and be relatively inexpensive compared to tracking 

individuals. 
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There continues to be major gaps in our understanding of the migration ecology of 

juvenile Sabine’s gulls (Day et al. 2001). It is unknown what routes juvenile birds take 

after they leave their fledging territories, where they spend their first winter, and what 

they do during their first summer (Day et al. 2001). Sightings appear to indicate more 

inland birds and perhaps different routes, particularly in eastern North America (see ebird. 

http://www.ebird.org). Satellite tags should be deployed on fledgling Sabine’s gulls to 

reveal these completely unknown movements. Geolocators could also be deployed, 

however Sabine’s gulls are not known to return to their natal sites until they are two years 

old minimum (Davis et al., unpubl. data), and breeding is confirmed at three years old 

(Stenhouse et al. 2001), making recovery of the tags difficult. 

My study also gives rise to a variety of ecological, behavioural and genetic 

questions about how the migration pathways of Sabine’s gulls are determined. For 

example, how is migration direction (and ultimately navigation to one of the wintering 

sites) determined in Sabine’s gulls? Is migratory direction inherent as in some Palearctic 

warblers (Berthold & Helbig 1992, Helbig 1996), or learned by following adults during 

their first migration as shown for some storks (Chernetsov et al. 2004) and cranes 

(Mueller et al. 2013)? It has been suggested that adults leave the breeding area earlier 

than juveniles in Sabine’s gulls (Lambert 1972), which may eliminate the ability for 

juveniles to learn from adult migratory pathways, however more research is needed to 

confirm this difference in migration timing between adults and juveniles. If migration 

direction is genetic, what is the resulting behaviour of ‘hybrid’ offspring? Perhaps they 

display intermediate migration routes (as shown by Delmore:2014kd and Helbig 1991), to 

spend the non-breeding season half way between Pacific and Atlantic wintering sites, or 
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alternatively they use the same route as one parental group (also shown by Delmore & 

Irwin 2014). Since migration direction tendency has only been quantified at one Canadian 

Arctic Sabine’s gull colony (Nasuravaalik Island) and my data shows mixed migratory 

behaviour in adults (and no juveniles have been studied), more data is needed from other 

colonies (east and west) and data from juvenile Sabine’s gulls (particularly “hybrid” 

offspring) is needed in order to gain insights into the degree of inheritance and learning. 

Future studies on Sabine’s gulls could track the migration of juveniles from hybrid nests 

(Pacific/Atlantic pairs), and compare migration patterns to entirely Pacific and Atlantic 

wintering pairs in order to gain insights into the degree of inheritance and learning.  

Despite our widespread knowledge of migration patterns and evolutionary 

determinants in birds (Alerstam et al. 2003), orientation of Arctic migrants is still largely 

unknown (Alerstam 2001, Åkesson & Hedenström 2007). My study therefore contributes 

to the broader study of how migratory behaviour of high latitude species is determined. 
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Appendix 1 – Details of Tag Effect Study 

Methods 

I assessed the effect of geolocators on Sabine’s gulls by comparing return rate, return 

date, adult body mass change, nest success, and chick growth between tagged and control 

birds. I weighed birds during incubation at tag deployment and recovery (including mass 

of tag and bands), where greater mass loss among the tagged birds compared to control 

birds would indicate tag-related stress. 

To assess return rate and return date, I conducted daily checks for all individually 

colour-marked Sabine’s gulls present within the Nasaruvaalik Island study area, during 

the month of June (pre-incubation). The small size of the island and the restricted area in 

which Sabine's gulls forage and roost makes it likely that the majority of birds present on 

any given day were accounted for. 

In 2011, I marked and monitored all Sabine’s gull nests on Nasaruvaalik Island to 

determine nest success. Nests were checked daily after initiation to determine laying 

order, monitored through incubation to quantify predation, and checked daily once 

hatching began to determine hatch success (see Mallory et al. 2012 for detailed methods). 

I defined treatment nests as nests with either one or two geolocator tagged parents, and 

control nests as nests without geolocator tagged parents (all breeding birds in the study 

were marked with a metal band and a combination of coloured Darvic bands). 

To determine chick growth, recently hatched chicks (day 0 or 1) were banded with 

a metal band and a unique combination of coloured Darvic bands. Chicks were weighed 

in a plastic cup using a 100 or 300 gram (± 1 g) Pesola spring scale as frequently as 



 

 

possible (every 2-3 d). The mean chick weight was calculated for each brood, combining 

data over 2 day periods (e.g. age 0-1 d, 2-3 d, etc.). Chick growth rate was assessed 

during the linear growth phase of Sabine’s gulls (age 4 – 14 d) (Kondratyev & 

Kondratyeva 1984). I calculated chick growth rates for treatment and control broods, 

plotting growth rate with a regression of the natural log of mean brood mass on age (day). 

I compared the slopes of the growth rates (mass) between treatments to determine 

significance (Le Fer et al. 2008). 

 

Results 

When I deployed the smaller 2.1 g LAT2900 tags in 2010/11 and 2011/12, I found no 

difference in the mean body mass change from geolocator deployment to recovery 

between tagged and untagged birds (deployment mass = 184.9 ± 13.1 g, recovery mass = 

185.6 ± 13.4 g, t23 = -0.30, p = 0.8). However, when I deployed the larger 3.8 g LAT2500 

tags in 2008/09, there was a significant decrease (-10.3 g) in mean body mass of tagged 

birds compared to untagged birds (t2 = 7.75, p < 0.05). 

Of 32 birds outfitted with geolocators for the first year, 29 returned to the 

breeding site the following year (91%), with birds first observed on 21 Jun ± 5.5 d. Of 29 

breeding birds trapped but not outfitted with geolocators, 27 returned the following year 

(93%), with birds observed arriving on 21 Jun ± 8.8 d. There was no significant 

difference in either return rate (χ2
1 = 0.12, p = 0.7) or return date (t43 = -0.13, p = 0.9). 

I tested the effect of tags on nest success (hatch rate) in 2011, and found no 

significant difference between treatment nests (tagged parents) and control nests (banded, 



 

 

but not tagged parents) (χ2
1 = 0.6, p = 0.4). The control nests (n = 10) hatched 19 of 23 

eggs laid (83%) and the geolocator nests (n = 14) hatched 25 of 34 eggs laid (74%). I 

observed six eggs that were cracked (possibly by the geolocator) during incubation, and 

three of the cracked eggs failed as a result (50%). 

Chicks hatched from nests with geolocator parents (n = 22) had a lower growth 

rate (11.6 g/d) than chicks from nests with only banded parents (n = 23; 12.2 g/d), 

however the difference in growth rate between the treatments was not significant 

(ANCOVA, p = 0.85). 
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