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Abstract 

Within the offshore and maritime industries, simulation training can enhance 

conventional safety training by providing orientation training before workers have been 

deployed offshore and by improving the workers’ level of preparedness for emergency 

situations. As a precursor to simulation transfer studies, this research aimed to determine 

the level of competence in basic offshore safety gained through a virtual environment 

training program, investigate the training time required to achieve competence, and 

develop a strategy to assess human performance in simulated offshore emergency 

situations. 

The experiment demonstrated that offshore egress learning objectives can be taught using 

the virtual environment training program with some limitations. Basic offshore safety 

competence was not demonstrated for all learning objectives. Time to competence for 

some learning objectives was achieved within the study but for other learning objectives 

the time to competence is still unknown. Due to individual differences in spatial and 

procedural learning, some individuals required more exposure to the virtual setting to 

ensure knowledge retention.  

Modifications to the training and technology design are recommended in order to prepare 

for future transfer studies and offshore applications. 

 

Key terms: offshore emergency egress, safety training, virtual environments, spatial 

learning, procedural learning, performance assessment 
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Chapter 1 : Introduction 

1.1: Relevance of Work 

The offshore oil and gas industry is regarded as a high-risk and safety-critical 

work environment. Remote marine locations are often the site of essential oil and gas 

operations such as exploration, production, and transportation. Installations situated 

hundreds of kilometers off the coast present challenges to these critical operations 

(Sneddon, Mearns and Flin, 2013), and can result in a variety of hazards to the personnel 

working onboard.  The hazards range from reportable incidents and near misses to major 

accidents such as loss of stability or position, collisions with marine traffic, well 

blowouts, process gas leaks, systems fires, and explosions (Norsok, 2001; Skogdalen, 

Khorsandi, and Vinnem, 2012 citing IADC, 2009). These hazardous conditions can be 

triggered by the culmination of factors including extreme weather, equipment failure, 

organizational influences and human error (Reason, 1990). No matter the root cause, 

offshore accidents are dangerous situations requiring comprehensive emergency 

preparedness and response procedures. Case studies of offshore accidents, like that of the 

Deepwater Horizon Macondo Blowout in 2010 strongly indicate that the escape, 

evacuation, and rescue (EER) operations are imperative in safeguarding personnel from 

the dangers of offshore emergency situations (Skogdalen et al., 2012). In emergency 

situations, as part of the EER safety protocol the emergency response teams are 

responsible for controlling the damage caused by the hazardous conditions, accounting 

for all personnel onboard, and coordinating the evacuation or abandonment of the 
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platform. Flin, Slaven, and Stewart (1996) highlight that these offshore emergency 

response situations are “characterized by time-pressure, uncertainty and danger”. As a 

result, offshore accidents present many challenges for the response teams in managing the 

emergency. 

Offshore operations are only made practical because of the industry’s high regard 

for safety and its focus on emergency preparedness and response management to mitigate 

the consequences of accidents. To properly prevent, mitigate, and respond to the risks, the 

Canadian offshore oil and gas industry is heavily regulated at the international level (e.g. 

International Maritime Organization’s Convention on Standards of Training, Certification 

and Watchkeeping), the national level (e.g. Transport Canada), and industry level (e.g. 

Canadian Association of Petroleum Producers (CAPP)). These standards and regulations 

dictate emergency preparedness and response procedures and minimum competency 

requirements for personnel working onboard.  

1.1.1: Conventional Emergency Preparedness and Response Training: 

Offshore management relies on the escape, evacuation, and rescue (EER) safety 

protocol to respond to the dynamic and unpredictable conditions of emergency situations. 

EER protocol requires many operations personnel to switch to emergency response team 

duties in order to respond and diffuse emergency situations. For this reason, personnel 

onboard offshore petroleum installations are expected to have proficiency in both the 

technical and safety protocols and procedures of working offshore.  
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Due to the limited resources on board, everyone plays a role in managing the 

situation. Experienced personnel are trained to assume specific emergency duties as part 

of the emergency response team and are responsible for managing the hazardous situation 

offshore while planning and carrying out the safe abandonment of the installation. For 

general personnel (which includes new employees, short-term contractors, and visitors) 

the main duties in an emergency are to follow general emergency protocol as outlined on 

the installation’s station bill.  These include recognizing alarms, knowing how to escape 

by following egress routes to an area of temporary safe refuge, and registering at the 

designated muster points.  

The main duties of general personnel are taught during installation-specific 

orientation training called offshore safety induction. Once new personnel have completed 

the mandatory basic survival training certifications (Basic Survival Training, Helicopter 

Underwater Escape Training, Offshore Survival Introduction, Hydrogen Sulphide, etc.) 

they are required to participate in orientation training (CAPP, 2013). Offshore safety 

induction is important in preparing personnel for the urgency of emergency egress and 

severity of emergency situations, particularly in relation to time constraints, situation 

uncertainty and the overall complexity of offshore emergencies. Typical approaches to 

offshore platform orientation training include: 1) offshore orientation videos and 

supervised orientation periods on initial shifts at an offshore installation, and 2) regularly 

planned muster drills to practice emergency egress and response procedures.  

Many offshore oil and gas companies in Canada establish internal policies 

requiring new employees to complete a mandatory installation safety induction that is 
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conducted upon their first arrival offshore. New-to-vessel personnel can be at greater risk 

on the first few weeks on the job offshore due to their lack of knowledge of the 

environment and the installation-specific safety protocols. Installation safety induction 

covers familiarization with offshore hazards, important safety equipment and procedures 

for all personnel to follow in the event of emergency (CAPP, 2013). This on the job 

orientation program is known as “escorted orientation” training and involves a buddy 

system for pairing experienced personnel with new employees for an assigned duration 

while onboard. During the escorted orientation period the new employees are closely 

supervised to help establish spatial and procedural knowledge of the work environment 

and ensure they are familiar with the emergency protocols.  

While stationed onboard, regular emergency exercises and drills are used to 

establish routines in new personnel and to practice essential emergency response 

protocols. Emergency drills are performed frequently to assess whether emergency 

preparedness can be practically demonstrated by personnel. According to CAPP standard 

practice, offshore personnel are required to perform weekly muster and fire drills, 

monthly man-overboard and first aid drills and quarterly abandonment drills (CAPP, 

2013). Although emergency drills are often performed in optimal conditions, fatal 

accidents have occurred in abandonment drills involving lifeboat launching in benign 

conditions (Veitch, Billard and Patterson, 2009). For this reason, safety concerns limit the 

extent in which drills can replicate real emergency situations and whether they should be 

performed onboard at all.  
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Installation specific escorted orientation training and emergency drill activities are 

considered conventional training methods for preparing personnel for emergency 

situations. Veitch, Billard and Patterson (2008) explain that conventional training 

methods are constrained by ethical, logistical, and financial concerns in providing training 

that prepares personnel for the difficult and safety-critical emergency response situations. 

Therefore conventional training programs may be enhanced with simulation-augmented 

training. The following are some limitations of conventional training programs where 

simulation training can be helpful:  

 Training time commitments and reduced accessibility to experienced resources – 

Escorted orientation training is a considerable time and resource commitment and 

as a result is a costly form of training for the industry. This form of orientation 

training requires experienced personnel to provide several weeks of closely 

supervised buddy system training. In addition, general personnel, such as short-

term contractors, are often exposed to multiple platforms which can result in a loss 

of orientation on each vessel.  

 Cost and frequency of recurrent training – Installation safety induction is 

mandatory for all new employees upon arrival and after a six month absence 

(CAPP, 2013). Although refresher training is essential, it requires significant 

experienced resources to provide recurring training which can be costly.  

 Drills can be unsafe and do not represent real emergencies – Performing 

emergency exercises and drills onboard in optimal conditions may not be the 
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safest means and may not sufficiently prepare personnel for the real situation due 

to lack of correspondence to real emergency situations.  

1.1.2: Simulation and Virtual Environment Training: 

For many industries (aviation, medical, industrial, offshore and marine shipping) 

simulation training has been proven effective in providing a safe and effective means to 

practice safety-critical operations in preparation for real-world applications. According to 

Manovani and Castelnuovo (2003), virtual training can provide learning opportunities by 

offering both numerous first-person experiences and an environment to experience failure 

safely. Bradbury-Squires (2013) further suggests that simulation training complements 

conventional training by allowing trainees to gain artificial experience in managing stress-

inducing situations. 

Simulation has been used in offshore safety training to enhance conventional 

training including lifeboat launching (Veitch et al., 2008); lifeboat navigation in ice 

conditions (MacDonald et al., 2011); and platform hazard and risk assessment (Lang et 

al., 2007). Simulation could also be used to enhance escorted orientation training by 

improving the level of preparedness for emergency situations and orientation training 

before personnel go offshore. Veitch et al. (2008) described a forward look at offshore 

simulation to include larger scale, simulated muster drills, and Escape, Evacuation and 

Rescue (EER) exercises. The All-hands Virtual Emergency Response Trainer (AVERT) 

software was developed by Memorial University to realize the exploitation of virtual 
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environments in EER training and to target all-hands emergency preparedness and 

response exercises in a simulated environment.  

AVERT is a first-person virtual environment (VE) intended to train personnel 

within a naturalistic representation of their offshore work settings (House et al., 2014). 

The AVERT software was designed for training workers in general safety practices, 

onboard familiarization, and emergency preparedness. The AVERT software is coupled 

with a learning management system (LMS) to deliver guided training programs and 

administer dynamic test scenarios (House et al., 2014). When a trainee completes a 

scenario (practically demonstrating his/her competence), performance metrics are 

recorded to a report file in AVERT. These combinations of functionality allow for the 

creation of scenarios to target specific learning objectives, as well as the in-depth analysis 

of performance beyond simple success or failure.   

Adding AVERT training to conventional training may reduce the time required for 

the escorted orientation training by providing spatial knowledge of the vessel in advance 

of going offshore. Allowing personnel to familiarize themselves with their offshore work 

environment before being deployed offshore could assist in reducing loss of orientation 

for personnel required to travel to multiple installations and also support in administering 

refresher training. To assist with emergency exercises and practice drills, virtual 

environments can also provide a means to safely practice egress procedures through a 

series of offshore emergency scenarios. In particular, AVERT can provide credible 

emergency scenarios such as platform blackouts and fire or explosion situations for 
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personnel to safely practice tasks that could not otherwise be performed safely in drills 

and provide artificial experience in emergency exercises.  

In addition to providing credible situations and safe training opportunities that 

could otherwise not be performed, Salas et al. (2009) suggested that simulation training 

can “provide systematic and structured learning experiences”. This enables virtual 

environments to act as virtual laboratory settings for researchers to measure practically 

demonstrated competencies. Virtual environments thus are not only to practice navigating 

in emergency situations but also laboratories for instructors to measure the trainee’s 

performance. The virtual environment setting allows researchers to look at a situation or 

incident from the “inside out” when assessing accidents (Dekker, 2005). Virtual 

environments like AVERT can be used to enhance conventional training and as a tool to 

assess of performance. For the latter, it is important to demonstrate the efficacy of 

AVERT to provide confidence in its utility.  In order to assure basic offshore egress 

competence in both site familiarization and emergency offshore egress can be achieved 

through AVERT simulation training, the virtual environment technology requires 

validation testing. 

1.1.3: Competence in Basic Offshore Safety using AVERT 

Introducing a new virtual environment technology for offshore training requires 

the technology undergo validation testing to demonstrate its utility as a means to assure 

trainee competence. Past research using AVERT focused on user presence and spatial 

learning in a virtual environment of an offshore oil installation (Bradbury-Squires, 2013). 
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The present research builds on Bradbury-Squires’ (2013) study and goes beyond user 

presence and spatial learning to consider teaching and assessing more learning objectives 

related to emergency egress.  

This research studied the effect of the AVERT virtual environment training 

system on participant competency (task performance) and learning in emergency response 

during offshore evacuation scenarios. The primary research questions of the study aimed 

to answer: 

 Can people learn basic safety tasks using the AVERT platform? Which 

learning objectives are best taught using the AVERT platform? 

 What competencies can this technology address? Can basic safety 

competence in spatial awareness, alarm recognition and hazard 

identification be demonstrated using virtual environment technology?  

 How much training time is required to reach a competency in basic safety 

using AVERT? How does this training time translate into the ramp-up time 

required to deploy this training prior to going offshore?  

 What attributes of the virtual environment and learning management 

system are impactful on the training experience and essential to activate 

learning in basic offshore safety training? 

In addition, the research aimed to establish a baseline of task performance for 

novice individuals in virtual egress training scenarios. The secondary research questions 

of the study aimed to investigate:   

 How novices learn and behave in virtual emergency response scenarios?  
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 How effective is the training program at equipping participants to 

demonstrate competence in basic elements of offshore egress in AVERT?   

Overall, these data should inform future virtual environment studies on spatial and 

procedural knowledge transfer to real offshore environments. This research also included 

collecting data on the effects of varying performance shaping factors, training, visibility, 

and complexity, in the virtual scenarios upon physiological responses and cognitive 

human performance of individuals during simulated offshore emergency situations. These 

data were not included in the formal reporting of this work but will be included in 

Appendix A and B.  

1.2 Statement of Claim  

The objectives of this work are to: 

1. investigate the training time required to reach a competency in basic safety in 

offshore emergency egress using AVERT.  

2. develop a strategy to assess performance in simulated offshore emergency 

situations using a virtual environment. 

3. establish a baseline in task performance for novice individuals in virtual 

egress training and simulated offshore emergency situations. 

4. measure learning through a virtual environment and determine how attributes 

of virtual environments contribute to learning. 
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1.3 Hypotheses 

The following null hypotheses were tested: 

1. H1: Participants will reach basic competency in offshore emergency egress 

using AVERT within the allocated time of the study (after completing the 

three sessions). 

2. H2: Participants who spent more time training (repeat exposure to training 

group) will perform better from a task performance perspective in the 

emergency response testing scenarios than participants who spent less time 

training (the single exposure to training group).  

3. H3: As participants from both groups advance through the training and testing 

sessions, their task performance in all learning objectives will improve.  
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Chapter 2 : Literature Review 

There are many factors that influence the training effectiveness of virtual 

environment technology, from the technical aspects to the training goals, and the 

performance assessment requirements.  This literature review will discuss the following 

main factors affecting the overall skill acquisition and knowledge transfer using virtual 

environments:  

1. Virtual environment fidelity, trainee engagement and a sense of presence 

2. Learning processes and concepts driving training 

3. Comprehensive human performance assessments  

The first section will provide a brief explanation of how virtual environment 

fidelity, trainee engagement and achieving presence are important for facilitating learning 

in a virtual environment. The second section will describe the main learning processes 

and training concepts suitable for virtual environment training as they relate to the 

offshore training application. The third section will review the methods used to measure 

human performance through virtual environment technology.  

2.1: Virtual Environment Fidelity, Trainee Engagement and a Sense of Presence 

Effective virtual environment and simulation training tools are those that are able 

to support knowledge acquisition within the specific training context and ultimately 

provide skill transfer to the real-world training application. Researchers suggest that 

repeated experiences in simulator training that provides similar operational conditions as 

the real-world work settings can help prepare people for the associated stressful working 



13 
 

conditions (Tichon and Wallis, 2010). Thus, virtual environment training technologies are 

designed to recreate real-world conditions to assist in training correct procedures. In 

contrast, some researchers have found that the process of using virtual environments to 

replicate the real-world have exposed deficiencies in virtual environments and decreased 

the overall training quality (Witmer et al., 2002 citing Witmer, Bailey and Knerr, 1995; 

Witmer, et al., 1996). These deficiencies include: virtual environments cannot support 

navigational tasks as some trainees became lost or disoriented (Sebok et al., 2004; Witmer 

et al., 2002); practice is not equal to training in both real and virtual training settings 

(Klein, 1997); virtual environments induced simulator sickness in some trainees 

(Kennedy et al., 1993; Stanney et al., 1999; Witmer et al., 2002); and for short-term 

exposure, virtual environments do not provide any advantage over conventional maps for 

spatial knowledge transfer (Darken and Peterson, 2001; Waller et al., 1998). It is 

important to understand and address the factors that influence virtual environment 

training in order to maximize the utility of the technology for both skill acquisition and 

knowledge transfer.  

In order for virtual environments to be considered an effective training tool, there 

are several features that must be considered. From a pedagogical point of view, virtual 

environments provide a unique set of technical and ‘learner experience’ specific 

characteristics (Dalgarno and Lee, 2010). The technical characteristics of a virtual 

environment include the visual representation, situational context, and interface fidelity. 

The ‘learner experience’ characteristics include the level of engagement or interaction 

from the trainee, and the trainee’s motivation to learn from the environment. The virtual 
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environment fidelity and the situational context provided by credible scenarios in the 

virtual environment influence the overall level of immersion achieved in a virtual setting. 

Dalgarno and Lee (2010) best explain immersion as being related to the simulation 

technology as the measurable properties of the system or virtual environment that lead to 

a sense of presence (where presence is more related to the state of mind of the 

participant). Presence is when a trainee in a virtual setting “behaves like they are in a real 

life situation even though cognitively they know they are not” (Lee et al., 2010). The 

virtual environment fidelity and trainee engagement are both required in order to evoke a 

sense of presence from the trainee. Presence has been theorized as a mediator to effective 

learning and training transfer from a virtual environment (MacKinnon et al., 2010; 

Mantovani and Castelnuovo, 2003; Scoresby and Shelton, 2010; Slater, 2009; Witmer et 

al., 2002). Each of the following features will be reviewed in the literature to understand 

the influence they have on what makes good simulation training: 1) virtual environment 

fidelity, 2) trainee motivation and engagement, and 3) achieving a sense of presence.  

2.1.1: Fidelity of Virtual Environment Technology 

Virtual environment technology consists of the visual representation of a life-like 

or real-world environment and the interface to interact with the environment virtually. 

Simulation fidelity refers to how closely a simulation represents the real-world 

environment from both visual representation and environment interaction perspectives. 

Bradbury-Squires (2013), citing Gallagher et al. (2005), explains that simulation training 

involves using a virtual setting that resembles the real work environment to assist in the 
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development of cognitive and psychomotor skills. The idea is that virtual environments 

that are similar in visual, auditory, and haptic interaction support situated or experiential 

learning and provide the trainee with a safe environment to learn-by-doing (Huang et al., 

2010).  

The fidelity of simulation technology is really a technical measure of how sound a 

virtual environment is at reproducing the real-world (from visual representation, 

contextual and interactive perspectives). Simulation fidelity includes how well the virtual 

environment represents the real-world environment and how well the interface mimics 

interacting with the real-world. In the case where the interface does not mimic real-world 

interaction, the simulation fidelity includes the ease of operation of the interface.  

Dalgarno and Lee (2010) describe the elements that contribute to simulator 

fidelity as:  

Representational Fidelity: realistic display of the environment, smooth view 

changes and realistic object motion through the virtual environment, consistency 

of object behaviour, user representation, spatial audio representation, and 

kinaesthetic and tactile force feedback. 

Learner Interaction: embodies actions, embodies verbal and non-verbal 

communications, control of environment attributes and behaviours, and 

construction/scripting of objects and behaviours. (p. 15) 

Although simulation fidelity seems to be an obvious requirement for providing 

training, without careful development and consideration for these elements the utility of 
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the simulation can be lost. These visual and interactive elements are an important part of 

simulation training because if they are not properly represented it would be distracting for 

the trainee and affect the trainee’s sense of engagement and immersion.  

There are different levels of fidelity in simulation technology and they usually 

range based on the type of technology used. Virtual environment and simulation 

technology have a variety of forms depending on the level of immersion required from 

the simulation. Simulation technology range from desk-top based virtual environments to 

head mounted display (HMD) environments and full-mission surround visual systems. 

Desktop based virtual environments have been described as the least immersive 

simulation technology, while surround visual or full-mission simulators are more 

representative of the real-world application in visual representation and interactive 

interface. As a result, HMD’s are considered more immersive. The level of immersion 

required of a virtual environment is dependent on the intended training application and 

corresponding learning objectives. For example, Waller et al., (1998) have shown that 

neither environment fidelity nor interface fidelity had much effect on the acquisition of 

spatial route knowledge.  

The Tichon and Wallis (2010) study used two different simulator types (an 

enclosed replica cab system and a visual and force feedback control system) to determine 

the impact of fidelity and immersion on knowledge transfer and decision-making under 

stressful situations. This study found that high fidelity is not essential in order to provide 

transferable skills related to stress training and proposed that smaller simulations may 

reduce distraction and aid in trainee concentration (Tichon and Wallis, 2010). This 
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suggests that full-mission immersive simulators are not always necessary for spatial 

acquisition and that virtual environment desktop simulations are equally capable at 

providing spatial knowledge essential for real-world transfer. Mantovani and Castelnuovo 

(2003) suggest that virtual environment technology should provide a learning 

environment that resembles the real-world enough to be relevant and engaging so that the 

trainee develops artificial experience. They also suggest a safe environment should be 

provided so that mistakes can be made and participants can reflect on the experience and 

be ready to seek guidance (Mantovani and Castelnuovo, 2003).  

2.1.2: Trainee Engagement 

High fidelity (visual, contextual, and interface) simulations alone will not be 

successful at developing skill transfer.  Similarly, virtual environments that are designed 

to provide learning opportunities and means to assess competence will also miss the mark 

at developing skill transfer if the simulation itself or the training goals are not taken 

seriously. Elements that detract from the simulation training utility by distracting the 

trainees from the learning objectives or causing them to not take the simulation seriously 

include: a lack of realism visually and contextually (Dalgarno and Lee, 2010; Huang et 

al., 2010; Tichon, 2007, Waller et al., 1998); cumbersome or counter-intuitive 

functionality (Huang et al., 2010); latency or the delay between user actions to the 

displayed response, (Dalgarno and Lee, 2010; Meehan et al., 2003); simulations that 

induce simulator sickness (Waller et al., 1998; Witmer et al., 2002); poorly designed 

practice scenarios (without consideration of learning objectives) (Klein, 1997; Tichon, 
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2007); and ill-timed or irrelevant training feedback (De Freitas, 2009; Grantcharov and 

Reznick, 2008; Michel et al., 2009). 

Overall, these technical and training distractors negatively influence the user 

experience (or learner experience as outlined by Dalgarno and Lee, 2010). If any of the 

elements that detract from the simulation occur, the trainee can become disinterested and 

the learning lessons can be lost. As a result, the trainee’s behaviour and task performances 

being measured in the virtual environment are also inaccurate. Even if these distractors 

are addressed, there is still a chance for learning lessons to be lost due to limitations in the 

trainee’s attention span. If the trainee is not focused on the task, it is unlikely that learning 

will occur effectively. There is a certain level of engagement required of the trainee for 

learning to take place in a virtual setting.  

Trainee motivation and engagement is essential for the success of any virtual 

environment training program. There has been significant research on how to improve 

trainee motivation (Huang et al., 2010; Lee et al., 2010). Huang et al., (2010) describe 

three main characteristics that motivate learners in virtual environment settings: 

imagination, immersion and features of interaction. Visual and contextual realism can 

help with learner motivation and engagement by supporting the learner’s imagination and 

immersion. From a visual and contextual realism perspective, research has addressed how 

real is real enough to provide training value (Dalgarno and Lee, 2010; Waller et al., 

1998).  Mantovani and Castelnuovo (2003) suggest that reality and plausibility judgment 

of the virtual environment are more important than reconstructing a real-world 
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environment with a high level of visual fidelity. Reality and plausibility judgement 

involves replicating the situational context in the virtual environment so that the trainee 

can relate to the situation or believe that it is realistic (Mantovani and Castelnuovo, 2003). 

Lee et al. (2010) suggest that there is a correlation between academic achievement and 

students that are intrinsically motivated (without reinforcement) by the environments and 

activities. If virtual environments can sufficiently represent the real-world training 

application in both visual and contextual aspects, this would help in promoting student 

motivation and as a result learning outcomes.    

2.1.3: Creating a Sense of Presence  

The concept of presence has been frequently used to inform simulation training 

transfer. Researchers have studied the correlation between perceived user presence and 

task performance as well as training transfer (MacKinnon et al., 2012; Scoresby and 

Shelton, 2010; Slater, 2009; Mantovani and Castelnuovo, 2003; Insko, 2003; Witmer et 

al., 2002).  Presence is primarily reported by subjective measures through presence 

questionnaires that elicit the user’s perspective on how present they were in the virtual 

environment (Slater, 1999; Witmer & Singer, 1998; Witmer & Singer, 2005). Researchers 

have also used two other forms of measuring presence to support subjective measures: 

behavioural and physiological (Insko, 2003). Behavioural measurement techniques 

involve observing the trainee performance in the virtual environment and aim to assess 

how people react and manage situations presented in the virtual environment. 

Physiological measures involve recording the trainee's responses (heart rate, skin 
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temperature, galvanic skin response and respiration rate) to the stimuli in the virtual 

environment and compare them to the trainee's self-reported presence questionnaires 

(Meehan, 2002). All three means of measuring presence are focused on gaining an 

understanding of how immersed the participant was.  

There has been discussion in the literature over the concept of presence and 

whether there is a correlation between subjectively reported presence and training transfer 

(David Bradbury-Squires, 2013). In general, presence has been found to be more related 

to user acceptance or engagement than learning or training transfer. Therefore, presence 

at most is indirectly related to learning and training transfer through the influence of 

trainee engagement and acceptance of the training medium. For this reason, the 

relationship of presence, learning and training transfer falls beyond the scope of the 

current research.  

2.2: Learning Processes and Concepts Driving Training 

This section is focused on the elements necessary to support learning through a 

virtual environment. The first element to support learning is to understand the main 

learning processes necessary for effective virtual environment training. The second 

element is to understand the training concepts as they relate to the offshore training. The 

final element is to align the training goals with the transfer of knowledge and skill to the 

real-world applications.  

Considerable effort was spent defining the learning objectives relevant to the 

AVERT offshore training application within the capabilities of the virtual environment 



21 
 

technology. It was determined that since the AVERT offshore training application is 

targeting onboard familiarization and emergency egress preparedness training, both 

spatial and procedural knowledge will be required to provide relevant knowledge transfer. 

This section will discuss in detail: 1) how learning styles (active and passive) should be 

employed to shape the development of virtual environment training programs and 2) how 

to develop spatial and procedural knowledge through virtual environment training.  

2.2.1: Learning Styles - Active and Passive  

There are two prevalent forms of teaching styles represented in the literature that 

are relevant to virtual environment course design: active and passive teaching styles. 

Active learning, as defined by Michel et al. (2009), encompasses several instructional 

models to support a trainee self-driven learning process in which the trainee is responsible 

for his/her own learning. Active learning instructional models include: experiential, 

problem-based, participatory, and cooperative. Passive learning is defined as an 

instructor-driven learning process that is in line with the traditional lecture-style model of 

instruction (Wingfield, 2005).  

It is important to highlight the use of the term “active learning” in the literature as 

there is some confusion in relation to the definition of active learning. Most of the 

literature regarding active and passive learning in virtual environments (particularly 

related to spatial learning) use the broad term “active” learning when referring to 

experiential learning or learning by experiencing or exploring. Experiential learning is a 

process in which students learn from relevant experiences and are able to create 
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knowledge by reflecting on the experiences (Michel et al., 2009 and Wingfield, 2005 

citing Kolb 1984; Zapalska et al., 2012).  The relevant experiences are often provided 

from carefully designed student-centered course instruction. Virtual environment 

technology is designed to provide artificial experiential opportunities through relevant 

practice scenarios. In most cases, research describing active learning virtual environments 

are actually referring to experiential learning, and not the whole suite of instructional 

models that accompany active learning (problem-based, participatory, and cooperative).  

In this literature review, the term “active learning” is used when referring to the 

experiential learning instructional model.  

Passive Learning Applications: 

Passive learning strategies are instructor-driven (Wingfield, 2005), which allows 

the instructor to lead the learning process and dictate the direction of the lesson. 

Following traditional lecture style approaches to learning, they are usually conducted by 

set course curriculum and lectures, video instruction (Michel et al., 2009), and more 

recently page-turner e-learning venues (Clark and Mayer, 2008). Passive learning 

strategies are helpful in establishing foundational information in the form of factual and 

conceptual knowledge.  

Active Learning Applications: 

Active learning strategies are trainee-centered (Wingfield, 2005), which allows the 

trainee to have a more hands on approach to his/her own knowledge acquisition.  
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According to Wingfield (2005) and Michel et al. (2009), both citing Kolb (1984), 

the definition of active-experiential learning involves six elements in making an 

experience a learning opportunity: 1) learning is a process, not an outcome; 2) 

derives from experience; 3) requires the individual to resolve dialectically 

opposed demands; 4) holistic and integrative; 5) requires interplay between the 

person and the environment; and 6) results in knowledge creation. (p.119 & p.399) 

Active learning strategies can be especially useful in spatial knowledge 

acquisition as this process involves interacting with the environment and reflecting on the 

experience in order to develop the necessary route and survey knowledge for environment 

navigation and wayfinding. In Bradbury-Squires’ (2013) review of active and passive 

spatial learning, there was some evidence that active exploration resulted in “participants 

constructing a more accurate internal representation of the environment” and “more 

efficient strategies for wayfinding”. Thus, active learning may be better suited for the 

development of survey representation of spatial knowledge (Bradbury-Squires, 2013). 

Active learning styles may be more suitable for procedural knowledge development 

because part of learning a procedure and storing it to memory requires the trainee to 

perform the task and gain experience in the task.  

Active versus Passive Learning: 

There has been a lot of research into comparing the utility of active learning 

versus passive learning styles in virtual environments (Bradbury-Squires, 2013; Carassa 

et al., 2002; Chrastil and Warren, 2011; Clark and Mayer, 2008; Gaunet et al., 2001; 
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Melanson et al., 2002; Peruch and Wilson, 2004; and Michel et al. (2009) citing Stewart, 

Wingfield and Black, 2005).  

The results of most studies were unable to quantitatively show that active learning 

can surpass the learning outcomes of passive learning strategies (or prove that active 

learning is better at knowledge transfer than passive learning) (Michel et al., 2009; 

Wingfield, 2005). Michel et al. (2009) compared 15 active and passive learning studies (8 

qualitative and 7 quantitative). The qualitative research found active learning was 

superior to passive learning in regards to learning outcomes, but that quantitative research 

found no difference between active and passive learning in regards to learning outcomes. 

In the qualitative studies, the active learning has shown improved learning compared to 

passive learning in terms of qualitative results including student satisfaction or attitudinal 

responses to active teaching styles (Michel et al., 2009). Bradbury-Squires (2013) also 

reviewed six research studies that compared active and passive learning strategies for 

spatial knowledge acquisition and found that active and passive strategies usually resulted 

in equal task performance, in some cases active strategies provided superior performance, 

but there were no instances where passive strategies were better than active strategies. 

Clark and Mayers (2008) presented evidence that passive strategies are equally as 

valuable as active learning strategies.  

Overall, the research on active and passive learning styles is inconclusive on 

which learning strategy is better in terms of learning outcomes and task performance. Of 

the studies that found evidence to suggest that the active strategy benefited over passive 
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strategies, this advantage was sometimes due to the level of engagement of the participant 

(Michel, 2009). Rotgans and Schmit (2011) support this finding and suggest that active 

learning strategies encourage increased student satisfaction, which may also stimulate 

learning. If this in fact the case, developers should encourage the development of student 

satisfaction through employing active learning strategies in virtual environments.  Clark 

and Mayers (2008) suggest that the learning utility of each strategy (active and passive) is 

dependent on the application or learning concept being taught.  To develop an effective 

virtual environment training program, it is important to use the right learning strategy for 

the intended learning application. In some cases it is best to employ both active and 

passive strategies. 

Combination of Active and Passive Learning Styles 

Combining active and passive learning styles for virtual environment training 

programs can be useful in providing basic lessons using passive outlets and allowing for 

experiential learning and reflecting in active exercises. Clark and Mayer (2008) suggest a 

combination of examples and practice exercises is more useful in knowledge acquisition 

than just providing all practice scenarios. A combination of passive presentation of 

information and active application of information is beneficial for knowledge transfer. 

Clark and Mayer (2008) suggest that “when the learner is viewing an example, working 

memory is free to build a new mental model of the skill and then the learner can try out 

the new mental model in practice problem”.  
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2.2.2: Spatial Knowledge  

Offshore Orientation Requires Spatial Knowledge  

The AVERT virtual environment’s utility to enhance conventional onboard 

familiarization training involves facilitating the development of spatial knowledge. 

Spatial knowledge acquisition of a new environment through virtual environments is one 

of the advantages of the technology (Farrell et al., 2003; Sebok et al., 2004). This is 

particularly important for helping personnel in developing a comprehensive spatial 

understanding of his/her virtual offshore work environment before going offshore.  

The literature in this field suggests that virtual environments can be effective in 

providing spatial knowledge (Farrell et al., 2003 citing Waller et al., 1998; Lathrop and 

Kaiser, 2005; Witmer et al., 2002) with some limitations. In fact, the research community 

has shifted focus from whether or not virtual environments can provide spatial 

knowledge, to investigating how to optimize the spatial acquisition, and how to improve 

the transfer to real-world applications. Researchers are interested in answering questions 

looking at how to speed up development of spatial knowledge using virtual environments, 

and what variables mediate the transfer of spatial learning in virtual environment to real-

world applications (Farrell et al., 2003 citing Waller et al. 1998; Ruddle et al., 1998).  

What is Spatial Knowledge?  

Spatial knowledge is necessary for wayfinding in any environment, virtual or real-

world.  Darken and Peterson (2001) defines spatial knowledge as “the development and 

use of a cognitive map” of an environment through a combination of wayfinding 
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(cognitive) and motion (locomotion) in a virtual environment. Motion in this case refers 

to passive transportation within the virtual environment. Wayfinding relates to the 

strategic components of movement and the development of a cognitive or mental map to 

represent the environment (Darken and Peterson, 2001). The wayfinding component of 

navigation depends on the establishment of a spatial mental model of the environment. 

According to Sebok et al. (2004) one of the major contributing factors of a virtual 

environment’s utility is in its ability to support navigation and enable the trainee to 

“determine their present location, plan their route and traverse the route”.  Therefore 

spatial comprehension involves “perceiving, understanding, remembering and recalling 

spatial information” including landmark, route and survey knowledge for future 

navigational use (Darken and Peterson, 2001).   

There is some conflict in the literature over whether or not the cognitive map 

theory is a true representation of spatial learning. Weisberg et al. (2014) highlight the 

critiques of the cognitive map (Foo et al., 2005; Shettleworth, 2009) and suggests that the 

cognitive map exists but that there are noticeable individual differences as to how the 

cognitive map is constructed (Weisberg et al., 2014 citing Ishikawa & Montello, 2006 and 

Schinazi et al., 2013).  

Acquisition and Representation of Spatial Knowledge  

The development of spatial knowledge is often characterized by how the 

knowledge is collected, through different perspectives and over-time. A well-known 

model for explaining how spatial knowledge is gained from different spatial perspectives 
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is the Land-Route-Survey model (Seigel and White, 1975). The Land-Route-Survey 

model has “three stages of development of an individual’s cognitive representation of 

large-scale navigable spaces” (Waller et al., 1998 citing Seigel and White, 1975). Waller 

et al. (1998) explain that landmark identification is the primary stage of the mental map 

and involves identifying important locations in the environment (distinct and 

disconnected from one another). The second stage, known as route representation, 

involves connecting the landmarks with routes. Route knowledge (or representation) 

occurs when a trainee has had more exposure to the environment and allows them to 

“follow a known path from one location to another” (Chrastil, 2012). The third stage is 

survey representation and involves the development of a map-like depiction of the 

environment (Waller et al. 1998). Some researchers suggest that survey knowledge 

development refers to the process of path integration both within-route understanding and 

between-route understanding of the environment (Weisberg, 2014). According to Waller 

et al. (1998) the survey representation completes the spatial model by providing the 

trainee with “an understanding of the relationship between various landmarks 

independently of the routes that connect them.” Chrastil (2012) explains that acquiring 

survey knowledge allows the trainee “to take novel shortcuts and detours between 

locations, traversing paths that have never been taken before.” The transition from route 

to survey knowledge is hard to achieve for some people and requires more exposure to the 

environment to complete the spatial model of the environment (Waller et al. 1998; 

Weisberg et al., 2014).   
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Spatial knowledge can be acquired directly from the real environment or through 

other secondary sources such as video, photos, verbal directions and virtual environments 

(Darken and Peterson, 2001). Farrell et al. (2003) explain that spatial relationships can be 

represented as egocentric (local) or allocentric (global). The egocentric spatial 

representation is localized to the participant and where they move through the 

environment. Bradbury-Squires (2013) explains that egocentric spatial representation is a 

reflection of the participant’s experience navigating the environment. This spatial 

framework is involved in route-perspective learning (Brunye et al., 2012; Farrell et al., 

2003).  The allocentric representation (also known as exocentric in some literature) is 

more to do with the global location of landmarks from an external perspective, such a top-

down maps and this external framework is involved in survey-perspective learning 

(Brunye et al., 2012; Farrell et al., 2003). The allocentric representation is important in 

wayfinding of large-scale complex environments as it provides an effective and 

encompassing overview (Bradbury-Squires, 2013 citing Carassa et al., 2002).  

Egocentric spatial knowledge gathered from the environment directly from a first 

person perspective view is known as route knowledge (Brunye et al., citing Levelt, 1982, 

Linde and Labov, 1975). Trainees can gain route perspective learning “from salient cues 

in the environment such as landmarks, routes, nodes, and districts” (Wicken and Holland, 

2000; Witmer et al., 2002; and Lathrop and Kaiser, 2005; citing Lynch, 1960).  

Allocentric spatial knowledge gathered from maps or aerial views of the environment is 

referred to as survey knowledge. Trainees can gain survey knowledge by consulting a 
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map of the environment or through longer exposure to the environment to develop a map-

like mental configuration of the environment.  

Bradbury-Squires (2013), citing Wilson et al. (1997), and Seigel and White 

(1975), explains that the spatial learning process is the progression from egocentric to 

allocentric frame of reference (also known as route to survey map representation). This 

explanation may lead one to conclude that spatial acquisition requires an individual to 

establish land and route knowledge first and then gain survey knowledge. Bradbury-

Squires (2013, citing Wilson et al., 1997) suggests that the route to survey knowledge 

linear progression does not always support spatial knowledge acquisition as survey 

knowledge sometimes does not develop in this sequence. Route and survey representation 

involved in spatial learning is not necessarily confined to a linear progression. Brunye et 

al. (2012) explain that spatial knowledge is acquired by switching between multiple 

spatial perspectives, most commonly route and survey perspectives (Brunye et al., 2012 

citing Levelt, 1982; Linde and Labov, 1975).  

As trainees are exposed to an environment over time, route and survey knowledge 

of that environment is developed. This is the case for real and virtual environment 

training mediums.  However, the representation of spatial knowledge in a person’s mental 

model of an environment depends on how knowledge is collected (Darken and Peterson, 

2001). Lathrop (2005) suggests that spatial representation develops “as a function of the 

amount and type of exposure to the environment”. Although researchers have not 

identified a specific pathway or sequence of learning required to be more effective at 
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developing spatial knowledge, they have identified what characteristics impact the 

development of spatial knowledge. The different forms of spatial knowledge (land, route, 

survey) develop depending on how the trainee navigates or explores the new 

environment, the effort of the trainee to learn the environment and the structure of the 

environment itself (Chrastil, 2012). In addition, researchers (Darken and Peterson, 2001; 

Waller et al., 1998; Witmer et al., 2002) have found that participants obtained better 

survey knowledge using traditional maps than a virtual environment for short exposure 

time applications. Witmer et al. (2002) explain that the relative effectiveness of maps 

compared to virtual environments in enabling participants to develop spatial knowledge 

depends on several factors, including but not limited to the type of spatial tasks, the 

environment complexity, as well as the exposure time and quality of the virtual 

environment and maps.   

If spatial knowledge representation is impacted by how the knowledge is 

collected, then different training mediums (real-world, virtual and maps) could result in 

different spatial knowledge acquisition patterns. According to Waller et al. (1998) it is 

important to determine whether the spatial representation development process is the 

same in virtual environments as in real-world situations because the effectiveness of 

virtual environment training is dependent on the trainee’s ability to apply this training to a 

real-world environment.  These researchers (Waller et al., 1998) hypothesised that the 

training medium (real or virtual) that provided a better mental model would result in 

better performance in a real-world maze assessment. Waller et al. (1998) investigated two 

mediators (environment fidelity and interface fidelity) on developing a mental model by 
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comparing six training environments (no training, real-world, map, virtual environment 

desktop, virtual environment immersive and virtual environment long immersive) and 

assessing trainee performance in a real-world maze. This research found that the 

environment and interface fidelity had little effect on development of route knowledge, 

suggesting that lower fidelity virtual environments could also be used for developing a 

spatial representation. This study also measured the effectiveness of virtual environment 

training based on short term and long term virtual environment exposure and found that 

virtual environments were not as effective as maps for short term exposure, but may have 

long term exposure advantages (Waller et al., 1998). Similar results were found by 

Darken & Peterson (2001) and by Witmer et al. (2002). Witmer et al. (2002) found 

similar results when assessing the influence of cognitive and perceptual variables on the 

speed and quality of spatial acquisition provided by virtual environments. Darken and 

Peterson (2001) found similar results when investigating the exposure time in a virtual 

environment required to gain spatial knowledge. There seems to be a benefit in virtual 

environment technology in terms of effectiveness for long term exposure.    

Virtual Environment Exposure Time Required to Develop Spatial Knowledge?  

Bradbury-Squires (2013) citing Peruch et al. (1995) suggests that increased 

frequency and duration of exploration experiences with an environment improves spatial 

knowledge development of the environment. Waller et al. (1998) found that for short term 

exposures, virtual environment training may be no more effective than training in a map 

(and immersive may be no more effective than desktop training). If enough time is spent 

in virtual environment training, then virtual environment training may surpass map 
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training for developing spatial knowledge and be indistinguishable from training in the 

real world (Darken and Peterson, 2001; Waller et al., 1998). The duration participants 

were exposed to map and virtual environment training in Waller’s study was between 1-2 

minutes for short term exposure and 5 minutes for a long term exposure comparison. 

Darken et al. (2001) compared Waller’s study to three other studies (Darken et al., 2001; 

Koh et al., 2000; Waller et al. 1998; Witmer et al., 2002) with regards to training transfer 

and the total exposure time to virtual environments. Each study targeted different levels 

of participant experience, route or survey type tasks and different variations of 

navigational aids. The studies also ranged in virtual environment exposure time from 2 

minutes to 60 minutes. Darken et al. (2001) found that participants rarely had enough 

time to acquire meaningful survey knowledge. In all studies it was determined that with 

“sufficient” or long term exposure to the virtual environment it was possible to eventually 

surpass map survey knowledge acquisition (Darken and Peterson, 2001).  

Bradbury-Squires’ (2013) study used three thirty-minute sessions for a total of 40 

to 90 minutes of exposure (approximately 40 minutes for the structured route replication 

group and approximately 90 minutes for the unstructured active exploration group), 

which is considerably longer than the other studies reviewed. Participants in that study 

were evaluated based on two performance measures for spatial knowledge acquisition: 1) 

their demonstration of wayfinding and 2) their time to complete the scenario in the virtual 

environment. Bradbury-Squires’ study did not use spatial performance measures 

specifically for survey knowledge acquisition, so it is unclear if more or less exposure 
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time is necessary to complete the survey knowledge representation required for the large-

scale environment.  

The gap that sometimes occurs in acquiring survey knowledge through virtual 

environments may not only be attributed to exposure time or the order of route or survey 

knowledge acquisition, but also in part due to individual learning styles. Weisberg et al. 

(2014) explain that individuals acquire survey knowledge in particular “at very different 

rates and require different levels of information.” Brunye et al. (2012) citing Thorndyke 

and Hayes-Roth (1982), suggest that different learning perspectives (individuals who 

prefer navigation or route learning versus individuals who prefer map or survey learning) 

may also impact the development of route and survey knowledge. Bradbury-Squires 

(citing Waller et al. 1998) explains that individual differences in visualization skills, 

orientations skills and interface proficiency correlate with spatial learning in a virtual 

environment. Everyone is different in their ability to acquire spatial learning and the time 

it takes to acquire it (Weisberg et al, 2014).  Waller et al. (1998) citing Tversky (1981) 

suggests that some people are unable to complete the survey knowledge of real-world 

environments even after they have been exposed to the environment for several years. 

Weisberg et al. (2014) found similar results, suggesting that some participants can quickly 

gather all stages of spatial knowledge while others do not proceed beyond route 

knowledge and cannot demonstrate a survey knowledge understanding.   
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Designing Virtual Environments to Maximize Spatial Knowledge Learning? 

Although researchers (Waller et al., 1998) have demonstrated that relatively low 

fidelity virtual environment training allows people to develop useful spatial representation 

of a large-scale environment, there are some suggestions to consider that can improve 

spatial knowledge acquisition using a virtual environment. This section will describe 

some of the more prominent suggestions in the literature that can help enhance spatial 

learning through virtual environments. These are organized based on representational 

fidelity and learner interaction for virtual environments:   

Representation Fidelity: From a technical perspective, low fidelity simulators are limited 

to restricted fields of view and simplistic control interfaces. Waller et al. (1998) 

investigated how restricted field of view and non-intuitive or distracting interfaces 

impacted the development of survey representation. They found that neither environment 

fidelity nor interface fidelity had much effect on the acquisition of route knowledge 

(Waller et al., 1998). This further highlights the issue of developing survey knowledge 

through virtual environments. As survey knowledge acquisition is impacted by individual 

differences, there could be many ways to address this deficiency in virtual environments: 

reduced complexity of the environment, increased exposure time for some trainees, and 

the addition of navigational aids in the virtual environment.  

According to Witmer et al. (2002), the success of some researchers in 

demonstrating virtual environment developed spatial knowledge was due to the research 

focusing on simplified building layouts (to successfully demonstrate transfer of survey 
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knowledge from virtual environments to the real-world) (Witmer et al., 2002 citing 

Wilson et al., 1997). This finding reiterates Darken and Petersons’ (2001) conclusion that 

virtual environments have the potential to help trainees develop survey knowledge if 

given enough exposure time. It is useful to increase trainee exposure to virtual 

environments and perhaps even move towards an individualized training approach to 

spatial learning. To further assist with spatial knowledge acquisition, developers could 

implement navigational aids within the virtual environment, such as a mini-map 

representation, directional cues or arrows, personalized landmarks or checkpoints and 

trails or footprints displayed while navigating the virtual environment (Aldrich, 2009; 

Darken and Peterson, 2001).  The overuse of navigational aids to enhance performance in 

the virtual environment could hinder knowledge transfer to real-world settings if trainees 

become dependent on the navigational aids (e.g. map displays in the virtual environment 

can become a crutch for people who find developing survey knowledge challenging).  

Learner Interaction: From a user perspective, motivating the trainee to actively learn the 

spatial organization of the environment is necessary. Waller et al. (1998 citing Linberg 

and Garling, 1983) suggest that developing survey representation requires conscious 

effort. Although survey knowledge acquisition is in part dependent on individual learning 

styles, the process requires the trainee to actively participate in its development. Virtual 

environments can maximize spatial knowledge acquisition by improving the learner 

interaction with the virtual environment. This can be accomplished by supporting an 

active learning approach to teaching spatial knowledge and by employing a step-by-step 
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training progression to establish and build spatial knowledge (to help manage the 

trainee’s attentional resources and cognitive demands).   

2.2.3: Procedural Knowledge  

Offshore Emergency Egress Training Requires Procedural Knowledge  

The AVERT virtual environment’s utility to improve conventional offshore 

emergency preparedness, and response exercises or muster drills involves facilitating the 

development of procedural knowledge in emergency egress. Along with spatial 

knowledge acquisition, the ability to safely acquire procedural knowledge through virtual 

environments is another advantage to virtual environment technology. This is particularly 

important for helping personnel understand and practice complex emergency 

preparedness exercises and drills that cannot otherwise be safely performed in the real-

world.   

To this end, well-designed virtual environment training identifies the cognitive 

and psychomotor learning objectives of the training procedure in order to ensure the 

training application is properly focused on learning these concepts related to the 

operational tasks within the virtual setting. The procedural tasks related to offshore safety 

training for this study are largely cognitive tasks. Due to the limitations of a desktop 

based virtual environment interface in providing psychomotor learning, most 

psychomotor related procedural tasks involved in the emergency preparedness and 

response training were removed from the scope of the experiment. These include the 

physical operation a manual alarm call point (MAC) and donning an immersion suit.  The 
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focus of the procedural knowledge literature review will be on the cognitive aspects of 

training operational procedures. In the context of offshore training these include 

recognizing the alarm type and selecting the safest path for the emergency situation.  

What is Procedural Knowledge? 

Dahlstrom et al. (2009) explain (in the context of the aviation industry) that much 

of the training in operational industries focuses on the development of content-specific 

technical skills, or developing an inventory of procedural steps to increase safety. These 

technical skills or procedural knowledge are usually taught using a learning-by-doing 

approach. Procedural knowledge is knowing the criteria involved in recognising when to 

apply the appropriate procedure and the specific step-by-step procedure for the given 

situation (Bloom’s Taxonomy knowledge dimensions as defined by Anderson et al., 

2001). In this case, the criteria could include cues, triggers or patterns to recognise the 

situational conditions, while the procedures could include tasks, techniques or methods 

that may requiring both cognitive and psychomotor skills. Procedural knowledge in the 

context of emergency egress training is any predefined responsibilities or tasks that must 

be performed in a recognized circumstance (e.g. what to do in the event of an emergency 

– raise the alarm and follow egress route to designated muster station). According to 

industry standards, a trainee’s understanding of procedural knowledge is usually assessed 

through practical demonstration of the sequential tasks or procedures in a real or 

simulated environment (US Coast Guard Research and Development Center, 2000). 
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Acquisition of Procedural Knowledge 

Procedural skill acquisition is a participant’s ability to gain competency in one or 

more tasks through real or virtual experiences. Virtual environment and simulation 

training can help facilitate procedural knowledge acquisition by providing a means for 

controlled learning experiences (Salas et al., 2009). Much of procedural knowledge 

development is based on experiential learning (both learning by viewing and by doing, 

Clark and Mayer, 2008; Dahlstrom et al., 2009). Huang et al., (2010 citing Dewey theory) 

suggests that students should learn by doing and improve their skills through practice on a 

real task. Virtual environments can support the learning-by-doing process by providing 

credible situations and safe training opportunities that could otherwise not be performed 

in a real life setting. There are many factors that influence procedural skill acquisition in 

virtual environment training, including the learning style used by the virtual environment 

training program, the clarity of training goals, the representational and interface fidelity of 

the virtual environment technology to support cognitive and psychomotor skill 

development, the complexity of the tasks being trained, the practice scenario design, the 

duration and frequency of practice scenarios, as well as the quality of feedback received 

(Dalgarno and Lee, 2010; Grantcharov and Reznick, 2008). 

A trainee can develop procedural knowledge in a virtual environment if the 

simulation training is designed using a step-by-step approach to training in order to 

promote procedural knowledge development (Grantcharov and Reznick, 2008). This 

active learning teaching approach would help manage the amount of content the trainee is 

required to process through the virtual environment training. These exploratory and 
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contextual learning opportunities through active learning strategies in virtual 

environments can help solidify the procedural knowledge and allow the trainee to retain 

the learning objectives. Grantcharov and Reznick (2008) describe the process of 

developing procedural training using contextual and experiential learning strategies in a 

virtual or simulated setting (in the context of clinical training) to include the following 

development steps:  

1) provide opportunity for the trainee to practice basic psychomotor skills until 

trainee proficiency criteria has been achieved 

 

2) allow the trainee to acquire knowledge specific to the procedure,  

3) demonstrate the procedure to the trainee,  

4) break the procedure into key steps,  

5) allow the trainee time for comprehension/reflection,  

6) allow the trainee to perform single components of the procedure,  

7) allow the trainee to perform the entire procedure,   

8) provide comprehensive assessment and feedback throughout the learning process 

The development steps outlined by Grantcharov and Reznick, (2008) suggest 

developing the technology to support cognitive and psychomotor skills relevant to the 

training objectives. Once the technology is designed for these learning aspects, the 

training itself should provide the trainee the opportunity to be in control of his/her 

learning process. First the trainee is encouraged to understand the individual steps of the 

procedure independently and in manageable amounts before they are required to 

demonstrate the full procedure (Grantcharov and Reznick, 2008). This training strategy 
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also suggests providing immediate constructive feedback so that the trainee is able to 

understand the incorrect aspects of their performance in the virtual environment in order 

to correct their understanding.  

This strategy is best applied as a whole to the training curriculum design. 

However, it is important to look more closely at virtual environment scenario design. As 

Klein (1997) suggests that practice can translate into skill development, but this is 

dependent on both the design and quality of scenario. Situational context, learning 

objectives and careful design of practice scenarios are necessary to help the trainee gain 

skills in a virtual environment.  There are two approaches most prominently documented 

in the literature for designing scenarios in virtual environments: 1) goal based scenario 

design and 2) event-based scenario design.  

Goal-based Scenario Design: 

Goal-based scenarios are centered on the trainee achieving a main goal or mission 

over the course of the scenario. De Freitas and Neumann (2009) citing Squires (2006) 

describe the goal-based approach to developing simulation training in seven key 

components:  

1) The learning goals – should be intrinsically motivating. 

2) The mission – that can be accomplished by using specific skills and knowledge. 
 

3) The cover story – creates the need for the mission to be accomplished. 

4) The role – the player as protagonist. 

5) The scenario operations – the level design. 
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6) Resources – tools and resources available. 

7) Feedback – both negative and positive feedback is inherent and automatic. 

Essentially these recommendations involve establishing goals for the trainee that 

are enveloped by a mission for the scenario, which requires the trainee to use the 

procedural and spatial knowledge gained from the training. De Freitas and Neumann 

(2009) also suggest developing a cover story that provides a need for the scenario to be 

completed. Included in the cover story is the role of the trainee and the duties s/he is 

responsible for in the scenario. Once these elements are in place, then the scenario itself 

requires design, which in the case of offshore safety includes the context of the 

emergency situation or practice drill. The final step is proving feedback to the trainee. 

Feedback (both positive and negative) is essential for instilling the lessons of the 

exercises. Without proper intervention and timely feedback, the trainee can become 

confused about the rules and adopt poor or complacent behaviours. De Freitas and 

Neumann (2009) suggest that without proper feedback intervention, the trainees do not 

learn that their deviations from the standard performance are incorrect.  

Student debriefing or feedback comes in many automated forms, some examples 

include: player comparison statistics, after-action reviews (AAR), and in-game tips or 

guiding avatar. In the book The Complete Guide to Simulations and Serious Games, 

Aldrich (2009) explains that simulation features like that of the “player comparison 

panel” are useful forms of feedback that allow the trainee to compare their performance to 

his/her peers and adjust his/her strategy in the scenario. The performance compared in 
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player comparison panels is usually the time to complete a scenario or the number of 

correctly complete actions in a scenario. This form of feedback can increase user 

engagement however, Aldrich cautions that overemphasis of performance scores can 

negatively impact the trainee’s focus on learning the training content (Aldrich, 2009). 

After-action reviews are another form of feedback that summarizes the trainee’s 

performance at the end of a simulation. This is a form of scenario debriefing that allows 

the trainee to review their performance based on multiple parameters specific to the 

procedural tasks being assessed in the scenario. Klein (1997) argues that AAR should 

include cognitive feedback related to decision making in addition to summarizing 

performance of specific actions because if the trainee does not understand why the 

mistakes were made then the trainee could propagate poor habits in subsequent training 

exercises. As recommended by Grantcharov and Reznick, (2008), immediate feedback in 

the form of in-game tips and guiding supervisors are designed to instill in-game learning 

and reinforce the consequences of errors and incorrect behaviours in real-time in the 

exercise.  All forms of automated feedback have benefits and disadvantages however a 

commonality identified by researchers is the importance of allow the trainee time to 

process the feedback (also known as forced reflection) (Aldrich, 2009; Klein, 1997).  

Event-based Scenario Design:  

According to Fowlkes et al. (1998) the event-based approach to training provides 

opportunities to observe specific actions and reactions from events that have been 

introduced in the training program. These scenarios are carefully designed to provide 

hands-on practice in likely emergency situations. This is similar to introducing surprising 



44 
 

events to the trainee, which is a characteristic of emergency situations faced in real-world 

situations. Dahlstrom (2009) explains that many industries have the potential for 

unforeseeable situations to arise that will require trainees to think critically and draw upon 

training and experiences to respond to incidents that may fall outside the realm of 

conventional training. To some extent, this is where virtual environment scenario design 

can help bridge the gap of conventional training. Scenario based training in particular can 

help enumerate the multitude of variations that can occur in emergency situations and 

provide a wide variety of artificial experience through practice scenarios. In addition to 

this, Van der Spek et al. (2013) suggest that experiencing surprising events in a virtual 

setting can foster deeper learning. Thus event-based scenarios that employ surprising 

events in their design may reinforce the development of procedural knowledge. 

A common misconception with virtual environment training is the assumption that 

practice through virtual scenarios results in training. Klein (1997) explains (in the context 

of naturalistic decision making) that practice does not necessarily equate to training and 

“that by simply providing the trainee with an opportunity to practice does not necessarily 

translate into better or more meaningful training.” To this end, it is also important to have 

a firm understand of the learning processes being targeted by the virtual environment 

training in order to provide meaningful training through practices scenarios. Mantovani 

and Castelnuovo (2003) further stress that for any application, the type of learning 

concepts and the learning process itself need to be the focus of the virtual training. This is 

necessary throughout the development of all virtual environment applications. The 

learning process and learning objectives should drive the development of the virtual 
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environment technology in order to ensure the appropriate learning outcomes. 

Researchers also suggest that properly defining and pairing the learning objectives with 

the virtual environment capabilities is a critical step to ensuring that skill acquisition and 

knowledge retention occur (Kobes et al., 2010; Mantovani and Castelnuovo, 2003; 

Witmer, Sadowski & Finkelstein, 2002; Tichon and Wallis, 2010 citing Cannon-Bowers 

and Salas, 1998 and Wallis et al., 2007). It is important that the learning objectives match 

the real-world training goals and are realistically within the scope of the technology’s 

capabilities.  

2.3: Measuring Human Performance using a Virtual Environment  

Comprehensive and standardized assessment of performance using virtual 

environments is one of the many benefits of employing virtual environment technology in 

training and assessing operational procedures. Performance measures in virtual 

environments are directly related to the concepts being taught and the desired knowledge 

transfer. Real-world mariner assessment methods are explored followed by the virtual 

environment specific assessment methods. The performance measures most relevant to 

the AVERT offshore safety application in this study are also highlighted. 

Measuring Spatial Knowledge: 

There are several different techniques described in the literature to assess the 

development of spatial knowledge. Spatial performance measures in real and virtual 

environments include: time to find a location (Bradbury-Squires, 2013; Darken et al., 

2001; Farrell et al., 2003; Ruddle and Lessels, 2006; Waller et al., 1998; Witmer et al., 
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2002), route followed and deviations from route (Darken et al., 2001; Farrel et al., 2003; 

Ruddle and Lessels, 2006; Witmer et al., 1996), bearing/range estimation (Darken and 

Peterson, 2001, citing Witmer et al., 2002 and Koh et al., 2000), pointing tasks (Weisberg 

et al., 2014), time idle and time surveying an area, as well as errors such as misidentified 

landmarks and bumps into walls. Other means of measuring a participant’s spatial 

knowledge is through drawing paper maps (Darken and Peterson, 2001) or model 

building (Weisberg et al., 2014), and blindfold tests and mazes in a real environment 

(Peruch and Wilson, 2004; Waller et al. 1998).   

All spatial performance measures are aimed at testing the participants overall 

understanding of the environment and whether both route and survey knowledge was 

achieved.  Route knowledge is more commonly tested using time to find known location, 

and route deviations. These performance measures test whether or not the participant was 

able to repeat actions they already performed in the training. Survey knowledge is tested 

by looking more closely at global comprehension and includes bearing/range estimations, 

pointing tasks, drawing paper maps of the environment post exposure, and performance in 

real-world applications (e.g. blindfolded or maze mock-ups). These performance 

measures are designed to have the participant navigate a novel area or route in the 

environment in order to challenge the participant’s global understand of the environment.  

All techniques are useful as both route and survey knowledge is required to 

successfully navigate an environment. The most practical techniques that can be 
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demonstrated in a virtual environment were adopted for the AVERT study. These 

included time to complete, route selection, and off-route or deviations from route. 

Measuring Procedural Knowledge: 

Measuring procedural knowledge or performance can be categorized into three 

forms of assessment: oral/written questions (e.g. multiple choice quizzes/theory tests), 

practical demonstration exercises in a simulated job setting (e.g. virtual environment 

scenarios) and practical demonstration exercises in an actual shipboard job setting (e.g. 

real-world drills or scenarios) (US Coast Guard Research and Development Center, 

2000). These forms of assessment address both the knowledge or understanding 

dimension and the application dimension of learning. The US Coast Guard Research and 

Development Center, further explain that knowledge is assessed using questions and the 

actual shipboard job setting (or virtual setting) is used to “assess mariner’s demonstration 

of the method or ability to apply knowledge in the operational setting.” (US Coast Guard 

Research and Development Center, 2000).  According to industry standards the real world 

(or conventional) measures of procedural knowledge are broken down into the level of 

competence or mastery of the procedure required: knowledge, understanding, application 

and integration (DNV, 2005).  The levels indicate whether the procedure requires basic 

understanding or demonstration of the skill to achieve minimum competence.  

There are many different techniques described in the literature to assess the 

development of procedural knowledge in both real-world and virtual environment 

settings. Most of the procedural knowledge assessment techniques are domain specific 
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and include observing the trainees perform a sequence of actions related to an operation 

(US Coast Guard Research and Development Center, 2000); comparing trainee 

performance against a standard performance measure; or individual trainee performance 

or team performance (Salas et al., 2009). The information collected to measure 

performance can include reaction time, time to complete, number correct or number of 

errors and composite or correctness scores (Gawron, 2008).  

Virtual environments can measure trainee performance on procedural tasks by 

pre-defining the learning outcomes and proficiency criteria for each task before recording 

the trainee’s performance. This is very similar to real-world assessment of task 

performance. Real-world task performance measurements are developed by defining the 

learning objective, performance outcomes and proficiency or assessment criteria (US 

Coast Guard Research and Development Center, 2000). By breaking down the task into 

these elements it is easier to identify the correct and incorrect behaviours associated with 

the task. Once this information has been determined, the scenario design can be 

influenced by the elements being measured. For example, if mustering at your muster 

station depends on route knowledge and procedural knowledge, then the scenario can be 

designed to assess both and collect information related to both. For route knowledge the 

following parameters would be recorded: route chosen, distance traveled, time to 

complete. For procedural knowledge the following parameters would be recorded: correct 

alarm recognized, correct location reached, correct movement of T-card. 

Once the procedural parameters have been defined and the scenario is developed 

to exploit those factors then performance can be quantitatively measured and compared. 
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Same as in a real-world application through test scenarios, exercises, or drills. The benefit 

of virtual environment technology over real-world is that it allows for multiple measures 

(time stamped/synced) and perhaps a more in-depth analysis on performance and 

behaviour than in a real environment. Virtual environments can provide more consistent 

measure of performance in comparison to real-world assessment measures because as 

real-world applications have more room for human error on the part of the instructor 

(attentional resources likely taken to the max capacity). 

The most practical procedural performance measures that can be demonstrated in 

a virtual environment were adopted for AVERT study. These included registering at the 

temporary safe refuge area (reaching the correct location and moving appropriate T-card), 

alarm recognition, hazard avoidance, and general safe work practices (not running on the 

platform and closing all fire and watertight doors). 
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Chapter 3 : Methodology  

3.1. Experimental Overview 

The experimental design for this research is a part of a larger experiment 

developed to accommodate two research purposes: to assess trainee competence in 

emergency egress using virtual environment technology and to provide supplemental data 

for human reliability assessment (HRA) in emergency egress situations (Musharraf, 

2014). This section will first describe the Design of Experiments (DOE) methodology 

used and then focus on the competency assessment subset of the design, which is the 

research focus of this thesis. The human reliability portion of the experiment will not be 

reported in this thesis work. However this collaboration is important to point out as it 

influenced the overall design and execution of the experiment. 

3.1.1. Experimental Design 

3.1.1.1. Design of Experiment Methodology  

Following Douglas Montgomery’s design of experiments approach (Montgomery, 

2012) a full factorial experiment with three replications was used to investigate the impact 

of three performance shaping factors on the participants’ task performance and their 

likelihood to successfully respond to an emergency situation in AVERT. Figure 3-1 

depicts the overall experimental design including the performance shaping factors (PSF) 

as inputs and the measured responses as outputs. To investigate the impact that 

performance shaping factors have on the human reliability or success likelihood of the 

trainee in the emergency scenario. Performance shaping factors were varied for each test 
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scenario and the participants’ task performance was recorded as responses for each test 

scenario (Musharraf, 2014). 

 

Figure 3-1: Schematic of overall experimental design for the study. 

 

3.1.1.2. Performance Shaping Factors  

To accommodate the human reliability analysis in virtual emergency situations, 

three performance shaping factors were identified: training, complexity and visibility. 

Each factor was varied at two levels: high and low. The factor levels and ranges chosen 

are described in Table 3-1.  The training effect is the primary interest for this research 

while the effect of visibility and complexity are secondary interests and part of the human 

reliability assessment experimental design. Training (Factor A) was varied based on two 

levels of exposure: low or single exposure and high or repeated exposure. Overall training 

increased through participant exposure to the test scenarios and learning-by-doing as the 

participants progressed through the sessions. Following recommendations by Grantcharov 
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and Reznick (2008), participants were gradually introduced to procedures to allow the 

trainee to practice each procedural component individually and then once more as a 

combined procedure.  

Table 3-1: Factors and levels chosen for both experiments. 

Factors Name Low (-) High (+) 

A Training Single exposure Repeated exposure 

B Complexity 
Cabin Routes - 

Alarm - Severity 

Worksite Routes - 

Alarm - Severity 

C Visibility Normal Blackout 

 

Complexity (Factor B) was varied based on simple spatial structures such as 

hallways in cabin egress situations to more complex spatial structures such as dense 

machinery spaces in the engine room/worksite egress situations. Scenario complexity also 

increased across sessions with regards to the emergency situation severity this ranged 

from muster drills to full platform evacuation situations. Visibility (Factor C) was varied 

based on two levels: normal visibility (clear visibility and normal lighting) and blackout 

conditions. Blackouts simulated full loss of lighting and night time condition situations. 

3.1.1.3. Full Factorial Experimental Design   

To accommodate both research purposes (time to competence and human 

reliability analysis) a full factorial 2
3
 design was chosen. This design resulted in 8 tests 

(four identical tests for each training group) for each session and was repeated for a total 

of three sessions. This design enables a statistical analysis of the main effects and 

interaction effects for both competency assessment and human reliability assessment. 

Table 3-2 depicts the test variations for this experiment.  
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Table 3-2: The 2
3
 Full Factorial Design. 

Test 
Factors Treatment 

Condition A B C 

1 - - - (1) 

2 - + - b 

3 - - + c 

4 - + + bc 

5 + - - a 

6 + - + ac 

7 + + - ab 

8 + + + abc 

 

The high and low levels of each factor are represented by +/- in the table. The high 

and low levels of each factor change between repetitions. The level of training (Factor A) 

increases across sessions due to the participants’ learning through testing. The high and 

low levels of complexity (Factor B) also change and increase incrementally across 

sessions to support learning objectives being tested. The visibility levels (Factor C) 

remained at the same light levels (normal or blackout conditions) across the repetitions.  

3.1.1.4. Responses  

Two responses were chosen to determine whether the three factors in this 

experiment have an effect on participant task performance, user experience and the 

overall participant success/failure likelihood (for human reliability analysis). The 

responses selected were: Y1: Correct actions (task performance), and Y2: Stress 

experienced by the participant.  Correct actions relate to the subtasks defined in the 

training curriculum section and include for example time to muster, moving the t-card and 

closing doors (see Section 3.1.2). The level of stress experienced by the participant 
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involved recording their physiological responses to the virtual stimulus during the in-

simulation scenarios.  

The correct action responses (involving the training and learning effects) are of 

primary interest for this research. This design allowed for further investigation into 

within-group performance differences due to the effects of visibility, complexity and their 

interaction. The design also allowed for a comparison between task performances (Y1), 

and the physiological responses (Y2) measured during the scenarios. These data were not 

included in the formal reporting of this work but will be included in Appendix B 

3.1.1.5. Competency Assessment Subset of the Experimental Design  

To assess the efficacy of AVERT training in emergency egress an independent 

group (between participants) and repeated measures experimental design was used. The 

assessment focused on two aspects: 1) the level of training required to achieve 

competency in emergency egress and 2) the amount of time required to learn and 

sufficiently demonstrate competency in emergency egress using AVERT. 

Independent groups 

To assess the level of training required to achieve competence (Factor A from the 

full factorial design) two independent groups were designed, each receiving different 

amounts of exposure to AVERT training: 1. repeated exposure to basic offshore safety 

training (high level training) and 2. a single exposure to basic offshore safety training 

(low level training).  
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The training and testing procedures for each group is described in detail in section 

3.4. After completing the AVERT training both groups were required to complete three 

test sessions: 

 Session 1 – Basic Safety Induction 

 Session 2 – Advanced Alarm Recognition 

 Session 3 – Advanced Hazard Awareness  

 

The single exposure group (group 2) received the Basic Safety Training Tutorials 

during the first session and did not receive any other form of training thereafter. Figure 3-

2 depicts the difference in training exposure each group received. The repeated exposure 

group (group 1) received the Basic Safety Training tutorials during the first session as 

well as practice scenarios in AVERT and additional training tutorials and practice 

scenarios at the beginning of each subsequent session.  Each group received feedback on 

their performance after each test scenario.  

 

 

 

 

 

 

Figure 3 - 1: Breakdown of training exposure for each group. Figure 3-2: Breakdown of training exposure for each group. 
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Repeated Measures  

A repeated measures design was used to measure learning (time to competency). 

The same participants in each group were tested repeatedly on their competency over the 

course of three separate sessions. Their task performance was measured across the 

sessions to measure learning (level of improvement or retention). Learning was observed 

if the task performance improved for each learning objective across the test sessions. To 

accommodate the step-by-step learning process, the three sessions were designed to 

present increasing numbers of learning objectives as the participants progressed through 

each session. The three sessions were entitled:  Session 1 Spatial Awareness of 

Environment, Session 2 Alarm Recognition, and Session 3 Hazard Avoidance. Table 3-3 

lists the learning objectives tested during each session.  

 

Table 3-3: AVERT learning objectives tested for each session. 

Session 1 – Environment Session 2 – Alarms Session 3 – Hazards 

Spatial Awareness  

Routes and Mapping 

Register at TSR 

Safe Practices 

Spatial Awareness  

Alarms Recognition 

Routes and Mapping 

Register at TSR 

Safe Practices 

Spatial Awareness  

Alarms Recognition 

Routes and Mapping 

Hazard Avoidance 

Register at TSR 

Safe Practices 

 

For the purposes of this experiment, each participant performed the test scenarios 

and sessions in the same order. This was chosen as it supported the learning process from 

a pedagogical standpoint. Participants were tested on the training content in various 

situations and the scenario complexity increased across the sessions. The step-by-step 
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pedagogical approach used to test the participants’ competency is depicted in Figure 3. 

Training Curriculum Development section (Section 3.1.2) provides more information 

regarding the learning objectives and training content. 

 

Figure 3-3: Pedagogical step-by-step testing approach. 

 

It is important to note that the scenarios were not randomized to accommodate the 

incremental learning. This was done from a summative learning perspective to model the 

experiment training on how the AVERT Egress trainer would be deployed in a real 

training program. By doing so, the learning factor is now confounding the other factors. 

3.1.2. Training Curriculum Development 

Industry representatives and standards were referenced in selecting demonstrable 

competencies to be tested in AVERT. Mantovani and Castelnuovo (2003) explain that 

virtual environment training often accompanies other conventional training forms and it is 
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important to determine what part of the training is most suitable for virtual environments 

and what is best kept in traditional methods from a cost/benefit perspective. For the 

AVERT training curriculum it was important to identify which learning objectives were 

best suited for AVERT and what learning objectives are not practically demonstrated in a 

virtual environment.  

The AVERT Egress Trainer was designed to target eight major learning 

objectives: Spatial Awareness, Cognitive Awareness, Alarm Recognition, Routes and 

Mapping, First Actions, Situation Assessment, Standard Operating Procedures for Muster 

Station and Lifeboat Station and General Safe Practices. These learning objectives were 

defined by industry representatives in a workshop held in May 2012. Based on the 

existing functionality of the AVERT prototype, six of the learning objectives were 

targeted for this research study.  The learning objectives are represented in Table 3-4.  

Subject matter expert guidance and industry standards were used in the 

development of subtasks, training curriculum content and assessment criteria for each of 

the six competencies. The subtasks for each of the learning objectives are represented in 

Table 3-5.  
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Table 3-4: Learning objectives for the AVERT Egress Trainer. 

Learning Objectives General Description 

1. Establish Spatial Awareness 

of the Environment 

Know location of primary and secondary muster stations 

from two specific areas (cabin in the accommodation block 

and one primary work area). 

2. Alarm Recognition Objective 1 - Recognize and respond to different alarms 

(General Platform and Prepare to Abandon Platform Alarms) 

Objective 2 - Understand role and urgency of alarms 

(cognitive awareness of emergency situation). 

3. Routes and Mapping Know primary and secondary egress routes to muster station 

and lifeboat station from two specific areas (cabin in the 

accommodation block and one primary work area). 

4. Continually Assess Situation 

and Avoid Hazards on Route 

Understand the need to initially and continually assess 

situation. 

5. Register at Temporary Safe 

Refuge (TSR) – Perform 

Muster and Lifeboat Station 

Procedures 

Know muster station protocol and individual responsibility. 

Follow orders from muster checker/lifeboat coxswain (who 

must be clearly visible through appearance and behaviours) 

in preparation for the clear call or abandonment of the 

vessel. 

6. General Safe Practices Know how to keep a safe workplace. General practices (i.e. 

use of fire doors, areas of access, personal protective 

equipment to mitigate hazards). 
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Table 3-5: Learning objectives and subtasks for the AVERT Egress Trainer. 

Learning Objectives Subtasks 

1. Establish Spatial 

Awareness of 

Environment 

Understand the Terminology and Mapping of Main Vessel 

Zones 

Identify Location of Primary Work Area 

Identify Location of Vessel Living Areas including: Cabin 

and Mess Hall 

Identify Primary Muster Station 

Identify Lifeboat Station (Secondary Muster Station) 

2. Alarms Recognition: 

Understand role of 

alarms and urgency of 

situation 

Identify General Platform Alarm (GPA) 

Identify Prepare to Abandon Platform Alarm (PAPA) 

3. Routes and Mapping: 

Determine Primary and 

Alternative Routes to  

Muster Stations 

Accommodation Cabin to Primary Muster Station  

Accommodation Cabin to Lifeboat Station 

Main Work Area to Primary Muster Station 

Main Work Area to Lifeboat Station 

4. Assess Emergency 

Situation and Avoid 

Hazards on Route 

Assess surroundings, recognize hazards on the platform and 

know when and how to raise the alarm 

Follow direction of Public Announcement (PA), plan egress 

routes and re-route if necessary (due to hazards blocking route 

or updates from PA) 

5. Register at 

Temporary Safe Refuge 

(TSR)  

Muster Station and Lifeboat Station Procedures:  

      Perform T-Card Procedures 

      Remain at muster station and obey instructions from         

      muster checker (anticipate further PA announcements   

      or  clear call) 

      Remain at lifeboat station and follow directions for   

      Lifeboat Coxswain (anticipate boarding of lifeboat) 

6. Safe Practices 

Do not run on the platform 

Recognize and Use of Fire Doors and Watertight Doors 

(specific to egress routes) 

 

A training curriculum was created to teach the six learning objectives and educate 

new personnel in basic offshore safety practices to accompany the AVERT simulations. 

DiMattia, Khan, and Amyotte (2005) describe the emergency muster situation as having 
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four sequential steps: Awareness, Evaluation, Egress and Recovery. Each phase has 

specific muster actions for the general personnel to follow. The AVERT training 

curriculum focused on the Awareness, Evaluation and Egress stages of an emergency 

situation in the virtual environment. Table 3-6 depicts the muster actions for each phase.  

 

Table 3-6: Muster phases and corresponding muster actions (DiMattia et al., 2005). 

 

 

Awareness Phase 

1     Detect alarm 

2     Identify alarm 

3     Act accordingly 

Evaluation Phase 

4     Ascertain if danger is imminent 

5     Muster if in imminent danger 

6     Return process equipment to safe state 

7     Make workplace as safe as possible in limited time 

Egress Phase 

8     Listen and follow PA announcements 

9     Evaluate potential egress paths and choose route 

10     Move along egress route 

11     Assess quality of egress route while moving to TSR 

12     Choose alternate route if egress path is not tenable 

13     Collect personal survival suit if in accommodations at time of muster 

14     Assist others if needed or as directed 

Recovery Phase 

15     Register at TSR 

16     Provide pertinent feedback attained while en route to TSR 

17     Don personal or TSR survival suit if instructed to abandon 

18     Follow OIM’s instructions 
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Three modules were developed to teach awareness, situation evaluation and safe egress:  

 Platform Orientation module,  

 Keeping a Safe Workplace module and  

 Responding to Emergencies module.  

 

The interactive training modules allowed participants to learn the specific steps 

required to assess the situation and to safely follow egress routes in emergency muster 

situations.   A sample of the Offshore Safety training tutorial is depicted in Figure 3-4. 

 

Figure 3-4: Screen capture of Basic Offshore Safety training tutorial. 

 

The AVERT training curriculum consisted of:  

 narrated tutorial modules, platform maps,  

 a video walkthrough of platform, and  

 site specific cabin and worksite route videos.  
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The interactive tutorials enabled users to click through the content at their own 

pace. This training material was created using Storyline © 2012 (version 1) software by 

Articulate Global Inc. The walkthrough and route videos were created using FRAPS 
TM

 

2013 (version 3.5.99) by Beepa for video capture, Audacity ® (version 2.0.0) for audio 

editing and finally Premier Pro CC 2013 by Adobe Systems Inc. for video editing.  

3.1.3. Testing Scenarios Development 

Subject matter experts in offshore training were consulted in the development of 

the performance measures and test scenarios to assess trainee competency. The experts 

provided credible real-world situations for the research team to model in AVERT. Hazard 

types and likely locations for the hazards to occur on the platform were based on the 

circumstances provided by the subject matter experts. Detailed public address 

announcements were recorded to describe important information about the emergency 

situation to the participants for each scenario. The scenarios were tested and refined prior 

to starting the experiment to see how the hazard placement impacted trainee behaviour 

and route options.  

The method used to establish the assessment methods and performance criteria for 

the AVERT training curriculum was established using the US Coast Guard Research and 

Development Center’s Method for developing mariner assessments – Chapter 3 - Manual 

for assessment of developers. The performance measures outlined for each learning 

objectives are presented in Table 3-7. 
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Table 3-7: Performance measures identified for each learning objective in AVERT. 

Learning Objectives Performance Measure 

1. Establish Spatial Awareness 

of Environment 

Correct location 

Total time to muster at correct location 

Total distance travelled to correct location 

2. Alarms Recognition: 

Understand role of alarms and 

urgency of situation 

Correct location  (GPA = Mess Hall, PAPA = Lifeboat) 

3. Routes and Mapping: 

Determine Primary and 

Alternative Routes to Muster 

Stations 

Route selected (primary, secondary, or other)  

Total backtracking time 

Total backtracking distance 

4. Assess Emergency Situation 

and Avoid Hazards on Route 

Successful interaction with manual alarm call point 

(MAC) 

Route selection (primary, secondary, tertiary or other)  

Re-route in event of alarm change, PA update or 

encounter hazards blocking path 

Exposure time to hazard (smoke) 

Exposure time to hazard (fire)  

Incurred injury – Probability of 1
st
 degree burns   

5. Register at Temporary Safe 

Refuge (TSR) 

Correct location and Move t-card correctly 

6. Safe Practices 

Speed of trainee  (% running) 

Number of fire/watertight doors left open (closed)  

 

Significant collaboration with the AVERT software development team was 

required to ensure the performance measures listed in Table 3-7 were suitably 

implemented in AVERT. Some of the performance measures were recorded and assessed 

automatically in-simulation (e.g. correct location, time and distance to muster, and 

exposure to hazards). Other performance measures required the research team to track the 

participants’ performance using an observation log and by reviewing replay files (e.g. 
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route selection and re-routing). This is discussed further in section 3.5.1 - Performance 

Measures in AVERT.  

The design of experiments (DOE) design matrix (see Table 3-2) was used to 

design twelve test scenarios. Subject matter experts assisted in the development of 

credible emergency scenarios to allow trainees to demonstrate their understanding of the 

six core learning objectives. The test scenarios covered a range of activities, from basic 

muster drills that required the trainees to go to their muster station, to a full emergency 

evacuation that required trainees to avoid hazards that blocked their paths and then to 

muster at their lifeboat stations. As participants progressed through each session, the 

complexity of the test scenarios increased. A detailed description of the test scenarios for 

each session and the required action from the participant can be found in Appendix C.  

To accommodate the extent of targeted learning objectives, three separate sessions 

were used. In session 1, participants were required to listen to their supervising avatar and 

show that they knew how to get to their muster station or lifeboat station from their cabin 

and worksite. In session 2, participants advanced to responding to various alarm situations 

ranging from muster drills to real emergency situations. In session 3, participants were 

required to use vigilance in assessing their situation and to respond to the emergency 

evacuation signals. These scenarios involved blackouts, alarm changes and hazards such 

as galley fires, and engine room explosions. Throughout each scenario, participants were 

tested on their ability to identify the emergency situation based on the alarm type and PA 

announcements, and to respond according to the situation by selecting the safest route 

available to one of two designated locations at the Temporary Safe Refuge area. 
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3.2: Sample Size and Description of Participants 

An iterative process was used to determine the sample size for this experiment. 

The formula used to determine the sample size is shown in Equation 3.1.  

𝑛 =
(𝑡𝛼/2)

2
𝜎2

𝐵2
                                              (3.1) 

where:  

n = sample size 

tα/2 = t-score for a 95% confidence interval  

σ
 
= estimated standard deviation of the population   

B = acceptable margin of error 

 

To determine the t-score (tα/2), a confidence interval of 95% and 30 degrees of 

freedom was used. At least 30 degrees of freedom was required in order to approximate a 

standard normal distribution of the population. The task performance results from the 

previous AVERT study (Bradbury-Squires, 2013) were used to inform the standard 

deviation estimation of total time and distance travelled to muster. An estimated standard 

deviation (σ) for time to muster of +/-1.5 minutes (30% of the mean time to muster) was 

used for the sample size calculation. Using an iterative process, a margin of error of       

+/-10% was deemed acceptable. Based on the sample size calculations, a corresponding 

target sample size of 40 participants was used as the recruitment strategy. Another 

expectation was that a minimum of 15 participants for each training treatment condition 

would be required complete the study. 
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 A total of 40 participants were recruited for the study. Four participants withdrew 

from the study. Two participants withdrew due to reported simulator sickness symptoms 

and two other participants withdrew due to scheduling challenges. Thirty-six volunteers 

in total participated in this study: 27 males and 9 females. A statistical test was performed 

to determine if the two groups were balanced before stopping data collection at 36 

participants (i.e. to ensure there was no statistical difference between the groups based on 

video game experience and age). Seventeen participants were assigned to the repeat 

exposure to training treatment condition. Nineteen participants were assigned to the single 

exposure to training treatment group. No additional participants were recruited. As a 

result, the margin of error increased to +/-11%.  

Participants were primarily recruited from Memorial University’s campus by 

email (Appendix D), posters (Appendix E), and by word of mouth following protocol 

approved by Memorial University’s Interdisciplinary Committee on Ethics in Human 

Research (ICEHR). As a result, the majority of participants were undergraduate and 

graduate students. Their ages ranged from 19-39 years (26.5 ± 4.4 years).  

All volunteers who participated were naïve subjects with no significant prior 

offshore experience and no exposure to the AVERT simulator prior to the study. To 

measure time to competence and learning, participants with equal abilities and no 

experience offshore were required. The population of offshore personnel in 

Newfoundland possess a broad spectrum of experience and spatial knowledge of similar 

offshore environments. The recruitment strategy focused on naïve participants instead of 
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using experienced offshore workers because it is difficult to recruit offshore personnel 

with an equal level of experience.  

Upon arrival at the laboratory, participants were given a standardized explanation 

of the research experiment, the purpose of the research and what their participation would 

involve. They were informed of the possible benefits and risks to their participation and 

of their right to withdraw from the study at any point. Once all the information was 

presented and the participant had the chance to ask questions, they were then asked to 

provide their informed consent (Appendix F).  

Part of the experimental set-up involved participants completing three 

questionnaires before commencing the experiment (Appendix G, H & I):  

 Video Game Experience Questionnaire (VGEQ),  

 Offshore Experience Questionnaire (OEQ) and  

 Immersive Tendencies Questionnaire (ITQ).  

 

Participants reported their gaming experience and marine experience prior to participating 

in the study and this background information was used to assign groups. The two groups 

were balanced based on age, gender and reported video game experience. Five questions 

regarding video game experience were used to balance the participants’ abilities at the 

beginning of the experiment. The following information from the VGEQ (Appendix G) 

was used: whether or not participants played video games (VGEQ1), number of years 

playing video games (VGEQ2), number of hours per week (VGEQ3), familiarity with the 
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controller/interface (VGEQ6) and experience level using first-person vantage point games 

(VGEQ7).  

3.3: AVERT Simulator and Learning Management System 

The All-hands Virtual Emergency Response Trainer (AVERT) is a first-person 

vantage point simulation prototype intended to train workers in emergency egress in 

offshore environments and was developed by Memorial University’s Virtual 

Environments for Knowledge Mobilization project. The AVERT simulation environment 

coupled with a learning management system (LMS) was used to deliver guided training 

content and administer the test scenarios.  

3.3.1. AVERT Environment 

The AVERT Egress Trainer provides a three dimensional visual representation of 

what one would experience when located on an offshore platform. From the perspective 

of the trainee, AVERT offers an immersive virtual environment to provide them with 

hands-on workplace familiarization and a safe setting to practice emergency egress 

procedures.  The AVERT Egress Trainer prototype was developed using the Virtual 

Environments for Knowledge Mobilization project's custom designed open source 

distributed simulation engine (ODSE). The graphical representation was developed using 

the following open source libraries: OGRE3D© by Torus Knot Software, Sky X© and 

Hydrax© by Verguin Gonzalez, Caelum© by Caelum Team, Boost© (version 1.0) by 

Boost Software and Sixsense C++ libraries. Audio capabilities were developed using 

FMOD Audio © sounds system. The in-game physics was made available using PhysX© 
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by NVIDIA. The 3-D model for the virtual environment was developed using 

SoftImage© software by Autodesk. 

For the purposes of this study, the virtual environment was modeled after a 

generic Floating Production Storage and Offloading vessel (FPSO). The participants had 

access to the following areas on the virtual platform:  

 Accommodation Block,  

 Deck at the aft of the vessel,  

 Engine Room, and  

 Steering Gear Room.  

 

3.3.2. Learning Management System and Automated Brief/Debrief System 

A learning management system (LMS) was used to interface with the AVERT 

simulation. The LMS is an open source web-based e-learning platform called Moodle
TM

. 

The Moodle
TM 

LMS linked to tutorial content and AVERT scenarios and allowed 

participants to login to the session course material. Through the LMS, participants had 

access to guided power point presentations, platform walkthrough videos, and quizzes. 

Depending on the group assignment (single or repeated training exposure), participants 

could select practice scenarios to perform. AVERT recorded in-game task performance to 

a report file that the LMS used to provide feedback and track performance. Participants 

could also deploy testing scenarios in AVERT through the LMS. The automated 

brief/debrief system provided the participants with after action review feedback on their 

performance. Using the LMS coupled with the automated brief/debrief system, 
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participants were free to select the degree of feedback on their performance after 

completing each scenario. 

3.3.3. Equipment Set-up 

The AVERT workstation consisted of a desktop 19-inch flat screen monitor, a 

standard off-the-shelf dual joystick video game controller (Xbox 360© controller) and 

headphones. The instructor station was situated directly behind the AVERT workstation. 

This allowed researchers to observe what the participant was doing while monitoring the 

participant’s physiological responses to the test scenarios.   

Participants interacted with the AVERT offshore simulation using the video game 

controller (Xbox 360© controller). The left joystick controlled the user’s field of view 

(FOV) while the right joystick controlled the user’s movement through the virtual space. 

To perform actions within the environment (for example open doors or interact with the 

muster boards) the user could press the (A) button. To use the flashlight, the user could 

press the (B) button. 

Prior studies found that controller proficiency has some impact on task 

performance. Effort was made to reduce the familiarization time required with the 

controller and the impact that controller proficiency had on the overall success of the user 

interaction. For this reason, controller sensitivity was fixed at a moderate movement and 

participants were given the option to adjust the camera view (y-axis) to their preference 

(from normal to inverted). Movement options included stationary, walking (4.8km/h) and 

running (12 km/h).  
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3.4: Procedure (Offshore Training and Simulation Testing) 

Over the course of the experiment, participants were asked to attend three sessions 

on three separate days. The total time commitment ranged from 8 to 10 hours. This 

section will discuss the treatment each group received during the experiment. 

3.4.1. Session 1: Environment Awareness (4-5 hours) 

The first session involved the initial set-up, participant consent, and group 

assignment. After completing the briefing, the remainder of the session consisted of two 

phases: training phase and testing phase. 

 Session 1: Training Phase: 

The training content for session 1 focused on establishing environment knowledge 

(spatial awareness) and the basics to properly prepare for responding to egress situations. 

During this session, participants were instructed to imagine it was their first day of 

training for a job on an offshore platform. They were informed that in the event of an 

emergency offshore they would be required to successfully evacuate in a limited time 

period. With this in mind, their goal was to learn the material presented through tutorials 

to the best of their ability (i.e. learn escape routes from their accommodation and worksite 

to the primary and alternate muster points).   

The bulk of session 1 involved familiarizing the participants up with the basic 

offshore safety practices. The AVERT Basic Safety Briefing training content for this 

session covered the Platform Orientation, Keeping a Safe Workplace and Responding to 

Emergencies modules as described in section 3.1.2. To help participants process the 
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information, the training was divided into two parts. Part 1 included the Platform 

Orientation with a video tour of the platform and the Keeping a Safe workplace module.   

Part 2 involved the Responding to Emergencies Module. Part 1 and part 2 were separated 

by a 30-minute platform exploration period. This allowed participants to use the 

information in part 1 (spatial learning) during their exploration and review the content in 

part 2 (emergency protocols) with a better spatial understanding of the virtual platform.  

After completing part 1 of the tutorial, participants were given an intermission 

followed by a five to fifteen minute controller familiarization period. The controller 

familiarization provided participants with an opportunity to learn the controls associated 

with AVERT. Participants with prior video game experience received 5 minutes of 

familiarization. Participants with little to no game experience were allowed 15 minutes of 

familiarization. The environment used during the controller familiarization was not the 

environment the participants were required to know in the study. 

Once participants were comfortable with the controls they were given thirty 

minutes to freely explore their offshore environment. To guide their active exploration 

they were given a list of important locations to find. They were instructed to find their 

cabin, worksite (in the engine room), as well as primary and secondary muster points. 

Part two of the AVERT Basic Safety Briefing tutorial focused on the Responding 

to Emergencies Module. This introduced the concept of emergency alarm signals and the 

specific steps required to assess the situation and to safely follow egress routes in 

emergency situations. Participants watched five route videos highlighting important 
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egress routes: two available routes from their cabin and three available routes from their 

worksite in the engine room. 

After completing the tutorial training, the participants were assigned to one of two 

groups: 1. a single exposure to basic offshore safety training, or 2. repeated exposure to 

basic offshore safety training. The groups were balanced based on participants’ reported 

video game experience. The group assignment determined the participant’s level of 

exposure to AVERT and the schedule of training and testing for each session.  The single 

exposure group subsequently proceeded directly into the testing phase (they did not 

receive any other form of training), while the repeated exposure group received four 

practice scenarios prior to the testing phase. Figure 5 shows the training and questionnaire 

distribution timeline for both groups in session 1.  

Group 1 

 

Group 2 

 

Figure 3-5: Session 1 training and questionnaire distribution timeline for each group. 
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Session 1: Testing Phase 

The testing phase began after the second intermission. Participants had 15 minutes 

to complete a twenty question multiple choice quiz.  Upon the completion of the quiz they 

received a score and were prompted to review the correct answers.  

Before starting the test scenarios in AVERT, the participants were asked to 

complete a simulator sickness questionnaire (Appendix J) and were equipped with the 

physiological measuring system (see Section 3.5 for detailed set up). The physiological 

responses measured included:   

 Heart Rate (HR),  

 Skin Temperature (ST),  

 Galvanic Skin Response (GSR), and  

 Respiration Rate (RR).  

 

For comparison, a resting baseline of the participant’s physiology was collect 

before the start of each test scenario. During the baseline the participants were asked to 

relax as much as possible and to avoid talking or moving.  

Participants were instructed to take the simulation seriously and to react to the 

situations in the simulation as they would in a real life setting.  Test scenarios were 

completed in a specific order using a step-by-step pedagogical approach. Figure 6 depicts 

the timeline for the test scenarios. Participants received automated feedback on their 

performance after completing each scenario.  
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Group 1 & Group 2: 

 

Figure 3-6: Session 1 testing and questionnaire distribution timeline for each group. 

 

Once participants completed all test scenarios, they were asked to fill out a second 

simulator sickness questionnaire to provide a measure of the simulator sickness symptoms 

attributed to their navigation in the virtual environment. Participants also completed a 

post session debrief questionnaire (Appendix K) asking them to reflect on their 

performance and to describe what went well and what was most challenging about the 

exercises. They were also asked to rate the utility of the training material and AVERT 

training aids (feedback, checkboxes and videos). 

Participants were asked to return for session 2 and session 3 on separate days. The 

sessions were spaced by a minimum of 24 and a maximum of 48 hours. In two cases 

individuals exceeded the 48-hour maximum time between their second and third session 

due to scheduling challenges (snow storms).  

3.4.2. Sessions 2 & 3: Alarm Recognition and Hazard Avoidance (1-2 hours each) 

The second session involved assessing the participants' understanding of alarms 

and how to response to more complex emergency situations. The third session involved 
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assessing the participants' ability to respond to emergency situations with dynamic 

hazards and unexpected changes to the severity of the emergency situation.  

Sessions 2 & 3: Training Phase (for group 1 only):  

Participants in group 1 returned for refresher training while participants in group 2 

not receive any other training and went straight into the testing phase. Group 1 training 

involved a thirty minute refresher tutorial on alarms, review of the route videos and four 

practice scenarios in AVERT before the testing phase. In total, group 1 received an 

additional 4 hours of tutorial review and 12 scenarios of practice than group 2 over the 

course of the three sessions. Figure 7 depicts the timeline of additional training group 1 

received in session 2 and session 3. 

Group 1 

 

Figure 3-7: Sessions 2 and 3 training timeline for group 1. 

 

Sessions 2 & 3: Testing Phase 

After the intermission the participants of both groups followed the same protocol 

from session 1: completing the twenty question multiple-choice quiz, and four test 

scenarios. In the final session, participants were also required to complete two of 

subjective assessment questionnaires (Appendix L). Figure 8 depicts the timeline for the 

test scenarios. 
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Group 1 & Group 2: 

 

Figure 3-8: Sessions 2 and 3 testing timeline for each group. 

 

3.5: Data Collection Protocol 

Three forms of data were collect during the experiment: 1) AVERT task 

performance, 2) physiological responses, and 3) subjective reports in questionnaire form.  

3.5.1: Performance Measurements in AVERT 

When a trainee plays through a scenario, AVERT records performance metrics to 

a report file. This report file allows for quantitative analysis of performance. The AVERT 

report file recorded the following information for all test scenarios: 

 Correct location, (GPA dictates Mess Hall, PAPA dictates Lifeboat) 

 Total time to muster at correct location 

 Total distance travelled to correct location 

 Total backtracking time 

 Total backtracking distance 

 Successful interaction with manual alarm call point (MAC) 

 Exposure time to hazard (smoke/fire) 

 Incurred injury – Probability of 1st degree burns   

 Move t-card correctly 

 Speed of trainee (percent running) 

 Number of fire/watertight doors left open (closed) 
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To accompany the report file, an observation log was recorded describing the 

actions of each participant during the test scenarios for qualitative analysis. The 

observation log was used as a means to confirm the accuracy of the AVERT report file 

data and provided the following qualitative performance metrics: 

 Route selection (primary, secondary, tertiary or other)  

 Re-route in event of alarm change, PA update or encounter hazards 

blocking path 

 

The AVERT report file data combined with the observation logs were used to 

develop an aggregated task performance score for each test scenario. This aggregated 

score refers to the participants' overall Competency Score in achieving the core learning 

objectives (see results section for details).  

3.5.2: Physiological Measurements 

During the testing scenarios, the participant’s physiology was measured as an 

indicator of their immersion and stress due to the virtual emergency situations. 

Physiological data collection took place during the test phase of each session. To control 

diurnal variation effects upon the physiological measurements, each participant was tested 

at the same time of day. The physiological responses were recorded using the NeXus-10 

Mark II measuring system accompanied with BioTrace+ software (version V2013A) by 

Mind Media B.V. Netherlands. Electricardiography (ECG) was measured by placing 

electrodes on the participant’s chest and abdomen. The ECG raw data was transformed 

into heart rate (HR) using the BioTrace+ software. Respiration rate (RR) was measuring 



80 
 

by placing a sensor strap over the participant’s ribcage. Peripheral skin temperature (ST) 

was measured by taping a thermocouple between the participant’s thumb and the index 

finger on their left hand. Finally, galvanic skin response (GSR) was measured by placing 

two electrodes on the ring finger of each hand.  

3.5.3: Subjective Assessments 

Participants were asked to complete a number of questionnaires: Simulator 

Sickness Questionnaire, Immersive Tendencies Questionnaire, Presence Questionnaire, 

and Simulation Utility Questionnaire.  

The simulator sickness questionnaire was distributed before and after the 

participants’ exposure to the AVERT simulation for all test sessions. A total of six before 

and after simulator sickness reports were collected for each participant. This data 

provided information on whether or not navigation through AVERT causes participants to 

experience symptoms of simulator sickness.  
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Chapter 4 : Results 

4.1: Task Performance 

4.1.1: Task Performance with Training Type as Grouping Variable 

4.1.1.1. Time spent training for both groups 

Thirty-six participants (27 males and 9 females) completed the study. Seventeen 

participants received repeated exposure to training through three tutorial and practice 

sessions (group 1) and nineteen participants received a single exposure to training through 

one tutorial session (group 2). As part of the repeated exposure training, group 1 received 

more time in aggregate to review the tutorials and practice with AVERT than group 2. 

Figure 4-1 depicts the cumulative time spent reviewing the tutorial content across the 

three sessions (S1, S2, S3). Both groups have almost identical exposure time to tutorial 

content in the first session (S1). As group 2 is not exposed to tutorials in subsequent 

sessions S2 and S3, the gap in cumulative exposure time to tutorial content increases step-

wise as group 1 is exposed to tutorials (T2 and T3) in sessions S2 and S3.  
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Figure 4-1: Total time exposure to learn and review tutorial material. 

 

Specifically, group 1 and group 2 participants used a mean total of 74.58 minutes 

and 75.40 minutes respectively during session 1 to learn the tutorial material. Group 1 

participants used a mean of 30.12 additional minutes to review tutorial material in session 

2 and a mean of 20.63 minutes more in session 3, for a mean total exposure time to 

tutorial material of 125.33 minutes. Part of the tutorial in session 1 involved watching a 

platform orientation video and videos of five egress routes: two from the accommodations 

and three from worksites. Both groups reviewed 100% of the route videos available 

during session 1.  Group 1 also had the opportunity to watch the egress videos again 

during the tutorial review at the beginning of session 2 and session 3.  On average, group 

1 participants also reviewed 79% of the route videos during session 2 and 64% of the 

route videos in session 3.  
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Figure 4-2 shows the time participants spent actively engaging in AVERT through 

practice (P1, P2, P3) and test scenarios (E1, E2, E3). Each of the three sessions is broken 

out into components. For example, session 1 is comprised of an active exploration 

exercise (denoted as A in the figure), practice exercises (denoted as P1) and testing 

scenarios (denoted as E1). The tutorial training is not illustrated in Figure 2 as the 

tutorials did not include active engagement with AVERT by the participants. 

 
Figure 4-2: Time spent in AVERT across the three sessions. 

 

As illustrated in Figure 4-2, both groups had the same initial active engagement 

with AVERT through a thirty minute active exploration exercise in session 1. The active 

exploration scenario was designed to provide the participants thirty minutes to actively 

explore and familiarize themselves with the accommodations and worksites on the 
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platform. The scenario also highlighted a list of important places they should know and 

locate during their exploration.  

Table 4-1 shows that both group 1 and group 2 participants received the same 

active exploration time (A) in session 1. Group 1 participants were subsequently given 40 

minutes to practice in four AVERT scenarios, prior to the tests at the end of the session. 

In session 1, group 1 participants used a mean of 13.80 minutes to practice in the exercise 

scenarios (P1). In sessions 2 and 3, they used a mean of 8.71 and 9.99 minutes, 

respectively to practice (P2 and P3). In total, group 1 participants spent a mean of 32.49 

minutes over the three sessions in AVERT practice scenarios. Group 2 participants were 

not given the option to practice, so their time in the AVERT environment after the initial 

exploration exercise was limited to testing in each of the three sessions.  

Table 4-1: Time (in minutes) spent in active exploration, practice and test exercises across 

the three sessions. 

Group 
S1 S2 S3 

∑(Pi) ∑(Ei) Total 
A P1 E1 P2 E2 P3 E3 

G1 30.0 13.8 10.6 8.7 6.9 9.9 10.2 32.5 27.7 90.2 

G2 30.0 0.0 12.4 0.0 8.4 0.0 11.9 0.0 32.8 62.8 

 

At the end of each session, participants in group 1 and group 2 were given four 

test scenarios with up to 40 minutes to demonstrate their competency in AVERT. Each 

test scenario had a 10 minute time limit. As indicated in Table 4-1, group 1 participants 

spent a mean of 10.58 minutes to complete the session 1 test scenarios (E1), a mean of 

6.89 to complete the session 2 test scenarios (E2) and a mean of 10.19 minutes to 
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complete the session 3 test scenarios (E3). Group 2 participants spent a mean of 12.43 

minutes to complete session 1 test scenarios (E1), a mean of 8.41 to complete the session 

2 test scenarios (E2) and a mean of 11.94 minutes to complete the session 3 test scenarios 

(E3). In total, group 1 and group 2 participants spent a mean of 27.66 minutes and 32.77 

minutes, respectively over the three sessions in AVERT to complete the twelve test 

scenarios.  

As indicated in Figure 4-2, group 1 received a mean total exposure time to 

AVERT (includes A, P and E) of 90.15 minutes, while group 2 received a mean total 

exposure time to AVERT (includes A and E) of 62.77 minutes. This difference in 

cumulative exposure time to AVERT can be attributed to the additional practice time 

group 1 received and the fact that group 1 completed the test scenarios in less time than 

group 2. Group 1 received on average an additional 32.49 minutes to practice (P1, P2, and 

P3) than group 2. Group 2 spent a cumulative 5.11 minutes more time than group 1 to 

complete the test scenarios (E1, E2, and E3). On average, group 1 completed the test 

scenarios 1.70 minutes more quickly than group 2 across all three sessions.  

4.1.1.2. Task performance comparison between groups 

The AVERT learning objectives were outlined by industry representatives in a 

workshop. Subject matter expert guidance helped design assessment criteria for each of 

the six competencies. Group task performances for the six AVERT learning objectives 

were measured repeatedly across the three sessions. Each session targeted specific 

learning objectives and incrementally assessed the corresponding task performance 
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measures related to Spatial Awareness of Environment (S1), Alarm Recognition (S2) and 

Hazard Avoidance (S3). Table 4-2 shows which learning objectives were targeted and the 

associated task performance measures that were tested during each session.  

The results are reported based on the AVERT Learning Objectives and their 

corresponding Performance Measures as outlined in Table 4-2. The Spatial Awareness of 

the Environment learning objective has three performance measures: Correct Muster 

Location, Time to Muster and Distance Travelled during Mustering. The Alarm 

Recognition learning objective has one performance measure: Correct Muster Location. 

The Routes and Mapping learning objective has three performance measures: Route 

Selection, Backtracking Time and Backtracking Distance. The Assessing Situation and 

Hazard Avoidance learning objective has three performance measures: Raise the alarm, 

Re-route in the event of hazard or alarm change, Avoid Exposure to Hazards (includes 

time spent in smoke, time spent in contact with fire and injury due to fire exposure). The 

Register at the Temporary Safe Refuge (TSR) learning objective has only one 

performance measure: Correct Muster Location. Finally, the Safe Practices learning 

objective has two performance measures: Percent Running, and Closing Fire and 

Watertight doors.   
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Table 4-2: AVERT learning objectives and task performance measures tested for each 

session. 

Session 1 - Environment Session 2 - Alarms Session 3 - Hazards 

 

1. Spatial Awareness  

 Correct location 

 Total time to muster  

 Total distance 

travelled  
 

3. Routes and Mapping 

 Route selected  

 Backtracking time 

 Backtracking distance 
 

5. Register at TSR 

 Reach correct location  

and move T-card 

correctly 
 

6. Safe Practices 

 Percent time running 

 Close fire and 

watertight doors 

 

 

1. Spatial Awareness  

 Correct location 

 Total time to muster  

 Total distance 

travelled  
 

2. Alarms Recognition 

 Identify alarm and go 

to correct location   
 

3. Routes and Mapping 

 Route selected  

 Backtracking time 

 Backtracking distance 
 

5. Register at TSR 

 Reach correct location  

and move T-card 

correctly 
 

6. Safe Practices 

 Percent time running 

 Close fire and 

watertight doors 

 

 

1. Spatial Awareness  

 Correct location 

 Total time to muster  

 Total distance 

travelled  
 

2. Alarms Recognition 

 Identify alarm and go 

to correct location   
 

3. Routes and Mapping 

 Route selected  

 Backtracking time 

 Backtracking distance 
 

4. Hazard Avoidance 

 Successful interaction 

with MAC (Raise 

Alarm) 

 Re-route to avoid 

hazards blocking path 

 Exposure time to 

smoke 

 Exposure time to fire 

 Injury incurred 

(probability of 1
st
 

degree burns or death) 
 

5. Register at TSR 

 Reach correct location  

and move T-card 

correctly 
 

6. Safe Practices 

 Percent time running 

 Close fire and 

watertight doors 
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The task performance measures were recorded for each test scenario through the 

AVERT report files and the experiment observation logs. The data collected for the task 

performance measures included several types of data: nominal, ordinal and continuous 

data. Each type of data required a different method of statistical analysis. 

The nominal data collected includes pass/fail task performance measures such as 

Correct Muster Location, Correct Alarm Recognition, Registering at TSR (moving T-

card), Door Count, and Raising Alarm. The ordinal data collected included the ranked 

Route Selection task performance measure. Given the size and independent sample of the 

data, Fisher’s Exact Test was used to compare proportions for the two groups instead of 

Pearson chi-square. 

The continuous data included the task performance measure such as Time to 

Muster, Distance Travelled to Muster, Backtracking Time, Backtracking Distance, 

Percent Running, Exposure time to Smoke and Fire, and Injury Likelihood. Due to the 

small dataset, the Shapiro-Wilk Test was used instead of Kolmogorov-Smirnov to test the 

distribution of the data. Significant deviations from normality were found using the 

Shapiro-Wilk test (p-value 0.05) for the task performance continuous data. Therefore the 

null-hypothesis that data is normally distributed was rejected. Non-parametric statistics 

were used to perform statistical testing of the continuous data to compare means and 

variance. To determine the effect of training group on task performance, a two 

independent samples Kolmogorov-Smirnov test was used.  

Data analysis was conducted using IBM SPSS Statistics (v22.0) Exact Tests 

software. Results include all 36 participants unless otherwise stated (no outliers have been 
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removed). All results are expressed as mean ± standard error. An alpha value of p-value < 

0.05 was used to signify a statistical significance between groups while a p-value < 0.10 

was used to signify a statistical trend difference between groups. All tests are two-tailed 

unless stated otherwise.  

 

1. Spatial Awareness of Environment and Alarm Recognition 

 

Correct Muster Location (incl. Alarm Recognition and Register at the TSR subtasks) 

The correct location task is an indicator of whether or not the participant was able 

to reach his/ her primary or secondary muster point. The test scenarios are based on 

realistic evacuation situations where an alarm is sounded to indicate which location the 

participant is being directed to muster (this is the Alarm Recognition objective). If a 

General Platform Alarm (GPA) is sounded, then all personnel are required to gather at the 

primary muster point, the Mess Hall. If a Prepare to Abandon Platform Alarm (PAPA) is 

sounded, then all personnel are required to go to their secondary muster point, the 

Lifeboat Station. Each scenario clearly indicates where the correct muster point is for the 

participant. Once the participant reaches the correct location (also known as their muster 

points within the Temporary Safe Refuge) s/he must register at the muster point by 

moving her/his T-card from the ‘Steady’ to the ‘Mustered’ state. This is the Register at 

the TSR objective. 
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In AVERT, to be successful in reaching the correct location task the participant 

must perform the following:  

 reach the designated muster location within the 10 minute time limit, and 

 signify s/he has reached the location by moving her/his T-card. 

Conversely, the participant fails this task if s/he: 

 does not reach the right muster location,  

 interacts with another muster board at the wrong location (any muster 

station other than her/his own), 
 

 or if s/he is unable to reach the designated muster location within the 10 

minute time limit.  

 

Group results for the correct alarm recognition, correct muster location and 

registering at the TSR performance measures are reported in Table 4-3. For reporting 

purposes, the Alarm Recognition and Temporary Safe Refuge Registering learning 

objectives are included in this section as they are dependent on a successful muster in 

order to be considered correct as well. For example, the alarm type dictates the location at 

which to muster. Without the participant going to the correct location, AVERT has no 

measure of whether or not the participant knew the meaning of the alarm type. Likewise, 

to correctly register at the muster station (i.e. moving his/her t-card); the participant must 

reach the correct location first. For these reasons, the three separate learning objectives 

will be discussed together in this section.  

The percentage of correct and incorrect musters for each group is listed in Table 

4-3. Overall, the mean success for both groups was similar across all three sessions. There 
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were three instances where the group difference was 15% or greater (denoted as scenario 

codes TE1, TE4, and TH3). The first test scenario (TE1) resulted in the biggest difference 

of 19% between groups and the overall poorest correct location scores: 82% correct for 

group 1 and 63% correct for group 2. In comparing the group proportions using Fisher’s 

Exact Test, there was no statistical difference found between group participants in 

reaching the correct muster location for all scenarios across all three sessions. 

 

Table 4-3: Group proportions for correct muster and correct alarm recognition tasks. 

Scenario 

Code 
Group 

Muster Count Performance Percentage P-value 

Correct Incorrect % Correct % Incorrect 
Fisher's Exact Test 

Exact Sig. (2-sided) 

TE1   G1 14 3 82 18 .274 

  G2 12 7 63 37 
 

TE2  G1 14 3 82 18 1.000 

  G2 16 3 84 16 
 

TE3  G1 16 1 94 6 .472 

  G2 19 0 100 0 
 

TE4  G1 17 0 100 0 .231 

  G2 16 3 84 16 
 

TA1  G1 16 1 94 6 .472 

  G2 19 0 100 0 
 

TA2  G1 16 1 94 6 1.000 

  G2 18 1 95 5 
 

TA3  G1 16 1 94 6 1.000 

  G2 18 1 95 5 
 

TA4  G1 16 1 94 6 .472 

  G2 19 0 100 0 
 

TH1  G1 16 1 94 6 1.000 

  G2 17 2 89 11 
 

TH2  G1 16 1 94 6 1.000 

  G2 17 2 89 11 
 

TH3  G1 17 0 100 0 .231 

  G2 16 3 84 16 
 

TH4  G1 16 1 94 6 .605 

  G2 16 3 84 16 
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As shown in Table 4-3, there were seven scenarios where neither group was 100% 

successful at reaching the correct muster location. The lowest overall score for this task 

was 63.16% correct muster for group 2 in the first scenario (TE1). The highest overall 

score for this task was 100% correct muster. This was achieved by group 1 in two 

scenarios (TE4 and TH3) and for group 2 in three scenarios (TE3, TA1, and TA4). The 

main reason group 1 does score 100% for correct location task in the majority of the 

scenarios is due to one outlier who was consistently unable to reach the correct muster 

location throughout the test scenarios. If the outlier is removed group 1 would receive 

100% correct location in every scenario in session 2 and session 3. 

 

Total Time and Distance to Complete the Scenario: 

Two performance measures of the participants' spatial awareness of the 

environment are their total time to muster at the correct location and their total distance 

travelled to the correct location. These measures provide insight into the participants' 

knowledge of the physical geography and how proficient they are at navigating to their 

designated muster points. Participants were required to complete the test scenarios as 

quickly and efficiently as possible. The time and distance they took to complete the 

scenarios were recorded in a AVERT report file.  

Participants were required to demonstrate they could find their muster points from 

two main locations on the platform: their cabin and their worksite in the engine room. The 

cabin routes are shorter distances and have lower navigation complexity (i.e. more direct 

routes with fewer route options). The engine room worksite routes are longer and involve 
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more complex navigation (i.e. less clearly designated routes and more route options). 

Therefore, the data in this section is reported based on starting location: cabin egress and 

worksite egress scenarios.  

The mean total time and distances travelled described in this section include the 

entire sample of participants even if the participant did not go to the correct location in 

the scenario. The incorrect muster time to complete and distance travelled were included 

so that no one parameter interfered with the other in general reporting. The Aggregated 

Competence Score section describes in detail the interaction of the parameters.  

 

Cabin Egress Scenarios: 

Figure 4-3 and 4-4 show the task performance by group for time to muster and 

distance travelled for the cabin egress test scenarios in AVERT. Two scenarios of every 

session focused on accommodation egress situations. Each of the three sessions is broken 

out into two cabin egress scenarios: TE1 and TE3 for session 1, TA1 and TA3 for session 

2 and TH1 and TH2 for session 3. For example, session 1 and session 2 are comprised of 

a normal condition test scenario (denoted as TE1 and TA1 in the Figure) and a blackout 

condition test scenario (denoted as TE3 and TA3). Session 3 is comprised of two hazard 

condition evacuation test scenarios from the cabin (denoted a TH1 and TH2). See 

Appendix C for specific scenario details. 
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Figure 4-3: Time to complete cabin egress scenarios across the three sessions. 

 

As indicated in Figure 4-3, group 1 completed the cabin egress test scenarios on 

average 18.63 seconds more quickly than group 2 across the three sessions. In two 

scenarios (TA1 and TH1), the difference between group 1 and group 2 in time to muster 

was more than 30 seconds. Group 1 is 30.04 seconds faster at completing TA1 (p = 

0.036) and 33.62 seconds faster at completing TH1 than group 2 (p = 0.488). The same 

trend is not shown in distance travelled to muster. Figure 4-4 shows that group 1 uses less 

distance to muster (on average 9.70 meters less than group 2) in four out of the six test 

scenarios. However, in the first scenario (TE1) group 1 travelled on average 42.36 meters 

more to muster than group 2 (p = 0.803). This difference in distance is entirely due to one 

outlier. This participant became lost during the scenario and went to alternate muster 
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station at the forward section of the vessel. If the outlier is removed the mean distance for 

group 1 in TE1 changes from 143.16m to 84.34m. 

 

Figure 4-4: Distance travelled in the cabin scenarios across the three sessions. 

 

Table 4-4 shows the task performance by group for time to muster and distance 

travelled for the cabin egress test scenarios. In the cabin alarm scenario in session 2, 

(denoted as scenario code TA1) there was a significant difference between groups for 

time to muster (p = 0.036) and distanced travelled during evacuation (p = 0.005).  Group 

2 took on average 30.04 seconds longer and travelled 14.65 meters more to complete the 

scenario. Otherwise, no other statistical significance was found for the task performance 

(time and distance) in the cabin egress scenarios.  
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Table 4-4: Time to muster and distance travelled for the cabin egress scenarios. 

Scenario 

Code 
Condition Variable Group N Mean SE p - value 

TE1 Normal 

Time to 

muster 

G1 

G2 

17 

19 

140 

156 

31 

27 

0.527 

Distance G1 

G2 

17 

19 

143 

101 

59 

15 

0.803 

TE3 Blackout  

Time to 

muster 

G1 

G2 

17 

19 

134 

151 

12 

22 

0.450 

Distance G1 

G2 

17 

19 

93 

99 

10 

15 

0.527 

TA1 Alarm  

Time to 

muster 

G1 

G2 

17 

19 

78 

108 

7 

9 
0.036 

Distance G1 

G2 

17 

19 

62 

77 

6 

5 
0.005 

TA3 Alarm + Blackout  

Time to 

muster 

G1 

G2 

17 

19 

94 

102 

8 

9 

0.820 

Distance G1 

G2 

17 

19 

80 

75 

6 

6 

0.488 

TH1 Alarm + Hazard  

Time to 

muster 

G1 

G2 

17 

19 

118 

152 

10 

21 

0.488 

Distance G1 

G2 

17 

19 

111 

123 

8 

13 

0.851 

TH2 Alarm + Hazard  

Time to 

muster 

G1 

G2 

17 

19 

114 

122 

10 

15 

0.127 

Distance G1 

G2 

17 

19 

81 

88 

9 

8 

0.652 

 

Engine Room Egress Scenarios: 

Figure 4-5 and Figure 4-6 show the task performance by group for time to muster 

and distance travelled for the engine room worksite test scenarios in AVERT. Similar to 

the accommodations scenarios, there are two scenarios in every session that focused on 

the worksite egress situations. Each of the three sessions is broken out into two engine 

room egress scenarios: TE2 and TE4 for session 1, TA2 and TA4 for session 2 and TH3 

and TH4 for session 3. For example, session 1 and session 2 are comprised of a normal 

condition test scenario (denoted as TE2 and TA2 in the Figure) and a blackout condition 
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test scenario (denoted as TE4 and TA4). Session 3 is comprised of two hazard condition 

evacuation test scenarios from the engine room worksite (denoted a TH3 and TH4). See 

Appendix C for specific scenario details. 

 

Figure 4-5: Time to complete worksite scenarios across the three sessions. 

 

As indicated in Figure 4-5, group 1 completed the engine room worksite egress 

test scenarios on average 31.97 seconds faster than group 2 across the three sessions. In 

two scenarios (TE2 and TH3) the difference between group 1 and group 2 in time to 

muster is more than 40 seconds. Group 1 is 40.40 seconds faster at completing TE2 (p 

=0.266) and 47.19 seconds faster at completing TH3 than group 2 (p = 0.711).  

Figure 4-6 shows the distance travelled to muster for both groups for the engine 

room worksite scenarios. The same trend for group 1 is shown in distance travelled to 
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muster with the exception of TE4 in which both groups completed the scenario with a 

mean difference of 3.77 meters. On average, group 1 uses less distance to muster (20.35 

meters less than group 2) in five out of the six test scenarios.  

 

Figure 4-6: Distance travelled in the worksite scenarios across the three sessions. 

 

Table 4-5 shows the task performance by group for time to muster and distance 

travelled for the engine room worksite egress test scenarios. As indicated in Table 4-5, 

there was no statistical significance found between groups for the time to muster and 

distance travelled in the engine room egress scenarios. In TH4, where the average 

difference in distance travelled between groups is large, this is a result of one participant 

that became lost in the scenario (creating a statistical outlier). Task performance 

improvements for both groups across sessions will be discussed in the learning section. 
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Table 4-5: Time to muster and distance travelled for the engine room egress scenarios. 

Scenario 

Code 
Condition Variable Group N Mean SE p - value 

TE2 Normal  Time to 

muster 

G1 

G2 

17 

19 

181 

222 

29 

31 

0.266 

Distance G1 

G2 

17 

19 

157 

183 

18 

19 

0.416 

TE4 Blackout  Time to 

muster 

G1 

G2 

17 

19 

179 

217 

21 

21 

0.416 

Distance G1 

G2 

17 

19 

164 

160 

29 

12 

0.214 

TA2 Alarm  Time to 

muster 

G1 

G2 

17 

19 

116 

148 

11 

15 

0.335 

Distance G1 

G2 

17 

19 

118 

135 

11 

11 

0.161 

TA4 Alarm + 

Blackout  

Time to 

muster 

G1 

G2 

17 

19 

130 

147 

17 

17 

0.416 

Distance G1 

G2 

17 

19 

126 

136 

17 

13 

0.508 

TH3 Alarm + Hazard  Time to 

muster 

G1 

G2 

17 

19 

227 

274 

26 

38 

0.711 

Distance G1 

G2 

17 

19 

206 

236 

36 

29 

0.104 

TH4 Alarm + Hazard  Time to 

muster 

G1 

G2 

17 

19 

153 

169 

30 

26 

0.266 

Distance G1 

G2 

17 

19 

158 

202 

42 

44 

0.122 
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2. Routes and Mapping 
 

Route Selection: 

Participants were given five egress routes to learn during the training tutorials: 

two beginning in the accommodations from their cabin and three starting in the engine 

room from their worksite. For the accommodations scenarios: 

 the primary route was a shorter more direct interior route from the cabin to 

their muster station or lifeboat station, and  

 the secondary route was a less direct exterior route from the cabin to their 

muster station or lifeboat station. There was also an alternative to the 

secondary route (known as the tertiary route) that involved taking a longer 

corridor from the cabin to the exterior route. 

 

For the worksite scenarios: 

 the primary route was a direct route through the engine room from the 

worksite to the accommodation block and muster station or lifeboat 

station,  

 the secondary route was a direct route through the exit ladder from the 

engine room to the exterior main deck and to the lifeboat station or muster 

station, and  

 the tertiary route was the least direct route through the engine casing to the 

exterior main deck and to the lifeboat station or muster station. 
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During the test session, each scenario provided information to help the participant 

select the most appropriate route to take given the situation. The most appropriate route to 

take in a scenario changed depending on the circumstance. A successful route selection 

was one that: 

 was any route the participant initially selected and did not deviate from in 

the first session (to help participants learn the routes early on)  

 was the most efficient route (quickest time and shortest distance) to their 

muster station or lifeboat station,  

 the route that did not put the participant in harm’s way (i.e. listening to the 

PA announcement and not following a route that was blocked by a hazard).  

 

Route choices were ranked based on the primary, secondary, tertiary routes 

available from the cabin and worksite. In sessions 1 and 2, all routes were weighted 

equally. However, in session 3, route selection and subsequent re-routing are both more 

important due to the increased scenario complexity of session 3 test scenarios. Session 3 

scenarios require participants to avoid hazards and in some cases the hazards could block 

available routes causing participants to carefully select their route or re-route in the event 

that they encounter a hazard along their route.  

Route selection represents the participant’s route choice and whether the 

participant followed a designated route during the scenario. Route selection was observed 

and recorded in the experiment observation log by the research team while the participant 

performed the scenario, or through reviewing the AVERT replay files to confirm any 
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missing values. For reporting purposes, the route selection results are reported in terms of 

the percentage each route was selected by the groups for each scenario. 

Table 4-6 and Table 4-7 summarize the percentage of routes selected by group for 

the cabin and engine room scenarios, respectively. As indicated in Table 4-6, the route 

selection for the cabin routes is mainly between the primary or secondary route options. 

Group 1 selects the primary route from the cabin 69% of the time, the secondary route 

27% of the time, the tertiary route 2% of the time, and exhibits lost behaviour 3% of the 

time across the six scenarios. Group 2 selects the primary route from the cabin 50% of the 

time, the secondary route 43% of the time, the tertiary route 4% of the time, and exhibits 

lost behaviour 3% of the time across the six scenarios. Both groups have a percentage of 

participants that were lost in the first scenario cabin egress scenario (TE1).  For the first 

scenario (TE1) 12% of group 1 and 11 % of group 2 were lost.  

In comparing the group proportions using Fisher’s Exact Test, there was a 

trending difference (p = 0.065) between group participants in route selection for scenario 

TA1 in session 2. During the alarm situation in TA1, 88% of group 1 selected the primary 

route while only 58% of group 2 selected the primary route. Conversely, 12% of group 1 

selected the secondary route while 42% of group 2 selected the secondary route. No other 

statistical difference was found between group participants in route selection for all cabin 

scenarios across all three sessions. 
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Table 4-6: Percent route selected by group for the cabin egress scenarios. 

Scenario 

Code 
Condition Group 

Percent Route Selected P-value 

primary secondary tertiary lost 
Fisher’s 

Exact Test 

TE1 Normal G1 59 24 6 12 .685 

 G2 42 42 5 11  

TE3 Blackout G1 65 29 6 0 .730 

 G2 47 37 11 5  

TA1 Alarm G1 88 12 0 0 .065 

  G2 58 42 0 0  

TA3 Alarm and 

Blackout 

G1 59 41 0 0 1.000 

 G2 53 42 5 0  

TH1 Alarm and 

Hazard 

G1 71 29 0 0 .322 

 G2 53 47 0 0  

TH2 Alarm and 

Hazard 

G1 71 23 0 6 .165 

 G2 47 47 5 0  
 

Session 3 scenarios TH1 and TH2 were designed to be more complex than 

previous cabin egress scenarios and required participants to select the safest route given 

the emergency circumstances. The cabin hazard condition scenario TH1 was designed to 

block the primary muster point due to an adjacent galley fire. Participants who selected 

the primary egress route ran the risk of exposing themselves to a smoke hazard. The 

safest route to take given the emergency situation was the secondary exterior route from 

the cabin to the lifeboat station. As indicated in Table 6 for hazard scenario TH1, 71% of 

group 1 participants selected the primary route and 24% selected the secondary route 

from the cabin. For group 2 participants, 53% selected the primary route and 47% 

selected the secondary route from the cabin. 

Similarly, the cabin hazard condition scenario TH2 involved a helideck fire with 

heavy smoke compromising the exterior egress route from the cabin, which was the 

secondary egress route. Participants who selected the secondary egress route ran the risk 
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of exposing themselves to a smoke hazard. The safest route to take given the emergency 

situation was the primary interior route from the cabin to the muster station and lifeboat 

station. As indicated in Table 6 for hazard scenario TH2, 71% of group 1 participants 

selected the primary route, 24% selected the secondary route from the cabin and 6% were 

lost. For group 2 participants, 47% selected the primary route, 47% selected the 

secondary route and 6% selected the tertiary route from the cabin. 

Table 4-7 shows that the route selection for the engine room routes were more 

distributed across the three route options. Group 1 selected the primary route from the 

worksite 64% of the time, the secondary route 19% of the time, and the tertiary route 8% 

of the time across the six scenarios. Group 2 selected the primary route from the worksite 

58% of the time, the secondary route 22% of the time, and the tertiary route 4% of the 

time across the six scenarios. On average, 10% of group 1 participants and 16% of group 

2 participants were lost in the engine room scenarios across the three sessions. 

Participants exhibited behaviours of being lost more frequently in the worksite scenarios. 

Unlike the cabin scenarios, in all the worksite scenarios there were lost participants in 

both groups. The highest percentage of lost participants occurred in scenario TH3 where 

18% of group 1 and 32% of group 2 were lost. This could be attributed to the TH3 

scenario design in which the primary egress route to the engine room was blocked by 

heavy smoke.   

In comparing the group proportions using Fisher’s Exact Test, there was no 

statistical difference found between group participants in route selection for all engine 

room egress scenarios across all three sessions. 
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Table 4-7: Percent route selected by group for the engine room egress scenarios. 

Scenario 

Code 
Condition Group 

Percent Route Selected P-value 

primary secondary tertiary lost 
Fisher’s 

Exact Test 

TE2 Normal G1 71 12 6 12 .772 

 G2 53 21 5 21  

TE4 Blackout G1 53 24 18 6 .329 

 G2 68 26 0 5  

TA2 Alarm G1 71 12 6 12 .602 

 G2 58 32 5 5  

TA4 Alarm and 

Blackout 

G1 76 12 6 6 1.000 

 G2 63 16 11 11  

TH3 Alarm, Hazard 

and Blackout 

G1 29 47 6 18 .551 

 G2 37 32 0 32  

TH4 Alarm, Hazard 

And Blackout 

G1 82 6 6 6 .826 

 G2 68 5 5 21  
 

Similarly to the cabin egress scenarios of session 3, the engine room egress 

scenarios TH3 and TH4 were designed to be more complex than previous engine room 

egress scenarios and required participants to select the safest route given the emergency 

circumstances.  

The engine room hazard condition scenario TH3 was designed to block the 

primary egress route from the worksite. Participants who selected the primary egress 

route ran the risk of exposing themselves to heavy smoke and fire hazards. The safest 

route to take given the emergency situation was the secondary or tertiary routes from the 

worksite to the lifeboat station. As indicated in Table 4-7 for hazard scenario TH3, 29% 

of group 1 participants selected the primary route, 47% selected the secondary route, 6% 

selected the tertiary route from the worksite in the engine room, and 18% of group 1 

participants were lost. For group 2 participants, 37% selected the primary route, 32% 
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selected the secondary route from the worksite in the engine room, and 32% of group 2 

participants were lost. 

For the engine room hazard condition scenario TH4, there was an engine room 

fire and explosion that compromised the secondary and tertiary egress route from the 

engine room. Participants who selected the secondary or tertiary egress routes ran the risk 

of severe burns or death due to fire and smoke exposure. The safest route to take given 

the emergency situation was the primary egress route from the worksite to the 

accommodations to the lifeboat station. As indicated in Table 4-7 for hazard scenario 

TH4, 82% of group 1 participants selected the primary route, 6% selected the secondary 

route, and 6% selected the tertiary route from the worksite in the engine room. For group 

2 participants, 68% selected the primary route, 5% selected the secondary, and 5% 

selected the tertiary route from the worksite in the engine room. 6% of group 1 

participants and 21% of group 2 participants were lost in the final engine room test 

scenario, TH4.   

 

Route Deviations (Off-Route): 

If the participant deviated from the designated route, an off-route performance 

measure was also recorded.  This measure identified how well the participants followed 

the designated egress routes they learned in the training tutorials. Only major route 

deviations were regarded as the participant going off route. Major route deviations 

included behaviours where the participants exhibited lost behaviour, did not follow any 

particular route for the situation, clearly made a wrong turn or detour, or arrived at the 
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wrong muster location. Behaviours including briefly going in the wrong direction, or 

opening the wrong door, that were self-corrected quickly were excluded from the off-

route count. Table 4-8 shows the percentage of participants who remained on route and 

the percentage of participants who deviated from the designated egress routes across the 

three sessions. 

 

Table 4-8: Group proportions for route deviations in all scenarios. 

Scenario 

Code 
Group 

Off Route Count Performance Percentage P-value 

Correctly 

Follow 

Route 

Off 

Route 
% Correct % Incorrect 

Fisher's Exact 

Test Exact Sig. 

(2-sided) 

TE1   G1 12 5 71 29 1.000 

  G2 14 5 74 26  

TE2  G1 13 4 76 24 .302 

  G2 11 8 58 42  

TE3  G1 12 5 71 29 .219 

  G2 17 2 89 11  

TE4  G1 11 6 65 35 .742 

  G2 11 8 58 42  

TA1  G1 15 2 88 12 1.000 

  G2 17 2 89 11  

TA2  G1 15 2 88 12 .236 

  G2 13 6 68 32  

TA3  G1 13 4 76 24 .391 

  G2 17 2 89 11  

TA4  G1 15 2 88 12 .408 

  G2 14 5 74 26  

TH1  G1 12 5 71 29 .732 

  G2 12 7 63 37  

TH2  G1 15 2 88 12 1.000 

  G2 16 3 84 16  

TH3  G1 11 6 65 35 .202 

  G2 8 11 42 58  

TH4  G1 15 2 88 12 .236 

  G2 13 6 68 32 
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Backtracking Time and Distance: 

Two complementary performance measures of Route Selection used to assess the 

participant’s understanding of the Routes and Mapping learning objective were 

backtracking time and backtracking distance. Once a participant selected an egress route, 

the backtracking performance measure was an assessment of how well the participant 

could follow the chosen egress route. The participants’ backtracking time and distance 

during the scenario were calculated using the AVERT report file and a post-experiment 

backtracking algorithm. The backtracking algorithm involved the avatar’s geometric 

positioning data (x, y, z) output by the AVERT report file and a series of horizontal and 

vertical position point checks.  The AVERT report file records the avatar’s position (x, y, 

z) every second of the test scenario. The recorded position points were compared 

sequentially using the algorithm parameters to determine if backtracking had occurred in 

the scenario. The parameters used for the algorithm were a horizontal inclusion range of 

1.5m, a vertical inclusion range 1.2m and an exclusion window of 4 position points. 

These parameters were selected and refined through previous studies. As a reference, 

Bradbury-Squires (2013) used 4.0m, 2.0m, and 4 position points as the parameters for the 

backtracking algorithm. The final backtracking parameters chosen were considered an 

acceptable capture of intentional backtracking by a participant.  

The horizontal (1.5m) and vertical (1.2m) ranges were used as two individual 

inclusion window checks to determine if any of the avatar’s preceding position points 

were close enough to the present position point to conclude that backtracking had 

occurred. If the participant returned to an area already traversed, then the previous 
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position points would cross the horizontal and vertical inclusion range and this action 

would be recorded as backtracking. The four position point exclusion window exempted 

the four preceding points from the backtracking analysis and allowed the participants to 

have a small window to assess the next available route option without it being counted as 

backtracking.  Thus, any movement within the horizontal and vertical range surrounding 

the avatar was exempt from backtracking calculation for the duration of the exclusion 

window. The final backtracking time and backtracking distance reported are a cumulative 

total of backtracking that took place during each test scenario.  

Specifically, a participant that concisely followed the designated egress route 

resulted in little to no backtracking time and backtracking distance. Participants that were 

uncertain of the egress route and spent time retracing their steps resulted in a larger 

backtracking time and distance. Larger backtracking time and backtracking distance 

indicated that the participant was either lost, inefficient at finding her/his way around 

their environment, or encountered a hazard along her/his selected route and re-routed.  

As participants were required to demonstrate they could find their muster points as 

quickly as possible from two main locations on the platform, the results for backtracking 

are reported based on the two locations: the cabin and the worksite in the engine room. 

 

Cabin Egress Scenarios:  

Figure 4-7 and Figure 4-8 show the backtracking time and backtracking distance 

by group for the cabin egress test scenarios in AVERT. On average, group 1 in most cases 

experienced less backtracking time than group 2 in the cabin scenarios. In three scenarios 
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the difference between group backtracking times is greater than 10 seconds (TE1, TA1 

and TH1). As indicated in Figure 4-8, there was less between groups difference 

experienced in backtracking distance with the exception of scenario TH1. In particular, 

for the cabin hazard scenario (TH1), group 2 spent an additional 27.74 seconds in 

backtracking time and 10.06 meters of backtracking distance than group 1. 

 
Figure 4-7: Backtracking time for cabin egress scenarios across the three sessions. 
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Figure 4-8: Backtracking distance for cabin egress scenarios across the three sessions. 

 

 

Table 4-9 shows the backtracking time and distance by group for the cabin egress 

test scenarios. In two scenarios, the between group difference is statistically significant. In 

the cabin alarm scenario in session 2 (denoted as scenario code TA1) there was a 

significant difference between groups for both backtracking time (p = 0.004) and distance 

(p = 0.006). In the cabin hazard scenario in session 3 (TH1) there was a significant 

difference between groups for backtracking time (p = 0.041). No other statistical 

significance was found for backtracking time and distance in the cabin egress scenarios.  
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Table 4-9: Backtracking time and distance by group for cabin egress scenarios. 

Scenario 

Code 
Condition Variable Group N Mean SE p - value 

TE1 Normal  BT time G1 

G2 

17 

19 

38 

52 

11 

12 

0.186 

BT distance G1 

G2 

17 

19 

25 

21 

12 

6 

0.960 

TE3 Blackout BT time G1 

G2 

17 

19 

47 

50 

8 

14 

0.397 

BT distance G1 

G2 

17 

19 

21 

21 

4 

8 

0.158 

TA1 Alarm BT time G1 

G2 

17 

19 

12 

24 

4 

4 
0.004 

BT distance G1 

G2 

17 

19 

5 

9 

2 

2 
0.006 

TA3 Alarm and 

Blackout  

BT time G1 

G2 

17 

19 

21 

21 

5 

5 

0.711 

BT distance G1 

G2 

17 

19 

9 

8 

2 

2 

0.378 

TH1 Alarm and 

Hazard  

BT time G1 

G2 

17 

19 

24 

52 

4 

12 
0.041 

BT distance G1 

G2 

17 

19 

16 

26 

3 

7 

0.786 

TH2 Alarm and 

Hazard  

BT time G1 

G2 

17 

19 

31 

33 

8 

9 

0.995 

BT distance G1 

G2 

17 

19 

18 

14 

7 

4 

0.960 

 

Engine Room Egress Scenarios: 

Figure 4-9 and Figure 4-10 show the backtracking time and backtracking distance 

by group for the engine room worksite test scenarios in AVERT. In most cases, group 1 

on average experienced less backtracking time than group 2 in the engine room scenarios. 

In three scenarios the difference between group backtracking times is greater than 15 

seconds (TE2, TE4 and TH3). In particular, for TE2, group 2 spent an additional 17.00 

seconds; for TE4, group 2 spent an additional 21.04 seconds; and for TH3, group 2 

spends an additional 22.20 seconds in backtracking time than group 1. As indicated in 
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Figure 4-10, there was less between groups difference experienced in backtracking 

distance.  

 
Figure 4-9: Backtracking time for worksite scenarios across the three sessions. 

 

 
Figure 4-10: Backtracking distance for worksite scenarios across the three sessions. 
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Table 4-10 shows the backtracking time and distance by group for the engine 

room test scenarios. There was no statistical significance found for the backtracking task 

performance in the engine room egress scenarios.  However, in two scenarios (TE2 and 

TA2) there is a trending difference between groups for backtracking distance. 

 

Table 4-10: Backtracking time and distance by group for the engine room scenarios. 

Scenario 

Code 
Condition Variable Group N Mean SE 

p - 

value 

TE2 Normal BT time G1 

G2 

17 

19 

52 

69 

17 

22 

0.359 

BT distance G1 

G2 

17 

19 

29 

37 

10 

9 
0.095 

TE4 Blackout  BT time G1 

G2 

17 

19 

48 

69 

9 

11 

0.397 

BT distance G1 

G2 

17 

19 

30 

28 

11 

5 

0.601 

TA2 Alarm  BT time G1 

G2 

17 

19 

20 

23 

6 

4 

0.229 

BT distance G1 

G2 

17 

19 

10 

15 

4 

4 
0.086 

TA4 Alarm and 

Blackout 

BT time G1 

G2 

17 

19 

24 

28 

9 

9 

0.565 

BT distance G1 

G2 

17 

19 

15 

16 

8 

5 

0.508 

TH3 Alarm, Hazard 

and Blackout 

BT time G1 

G2 

17 

19 

77 

99 

19 

22 

0.953 

BT distance G1 

G2 

17 

19 

54 

60 

20 

14 

0.359 

TH4 Alarm, Hazard 

and Blackout 

BT time G1 

G2 

17 

19 

44 

42 

24 

17 

0.335 

BT distance G1 

G2 

17 

19 

42 

51 

31 

28 

0.186 
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3. Continually Assessing Emergency Situation & Hazard Avoidance 

 

 

There are three performance measures for the Assessing Situation and Hazard 

Avoidance learning objective: Raise the alarm, Re-route in event of hazard or alarm 

change, and Avoid Exposure to Hazards (includes time spent in smoke, time spent in 

contact with fire and incurred injury due to fire exposure). 

 

Raising the Alarm: 

The first part of the Assessing the Situation objective was to be vigilant about the 

situation and know where and how to raise the alarm in the event of an emergency 

situation. Scenario TH4 tested the participants’ ability to assess a fire situation in the 

engine room and raise the alarm in a limited time period.  

To be successful at raising the alarm the participants would need to do the 

following:  

 see the fire at their worksite, 

 go to the correct manual alarm call point (MAC), 

 interact with the MAC and enable the alarm within a time limit of 20 

seconds.  

 

Other indicators of performance were tracked, including noting participants that 

went to the MAC location but were unable to engage the alarm in time, and participants 

that mistook an incorrect location for the MAC station.  

Table 4-11 shows task performance measures of raising the alarm by group. Only 

one participant (from group 1) was able to successfully raise the alarm. Four participants, 
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two in each group, attempted to raise the alarm but were unable to successfully raise the 

alarm within the time limit for the scenario. Three other participants, all from group 2, 

tried to raise the alarm but were not at a proper MAC station necessary to raise the alarm. 

In comparing the proportions for both groups, no statistical significance was found 

between groups in raising the alarm in the final test scenario (TH4). 

 

Table 4-11: Comparing group proportions for raising the alarm (correct interaction with 

MAC). 

Variable Group 
Raising Alarm Count Raising Alarm Percentage P-value 

Correct Incorrect % Correct % Incorrect 
Fisher's 

Exact Test  

TH4 Correctly 

Raise Alarm 
G1 1 16 6 94 .472 

G2 0 19 0 100 
 

TH4 Attempted to 

Raise Alarm (at 

the right location) 

G1 2 15 12 88 1.000 

G2 2 17 11 89 
 

*TH4 effort to 

Raise Alarm (but 

at wrong location) 

G1 0 17 0 100 .231 

G2 *3 16 *16 84 
 

 

Re-routing: 

 The second part of the Assessing the Situation objectives was to select a route to 

avoid hazards or re-route in the event of encountering a hazard along the chosen path. 

Session 3 introduced hazard situations resulting in more complex scenarios than the other 

sessions. The increased complexity made the subtask of route selection and re-routing 

more important for session 3. Route selection in the previous section (Routes and 

Mapping) depicted the percentage of participants that selected primary, secondary and 

tertiary routes for each of the hazard situations. If the participant selected a route that was 
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compromised by a hazard they were required to re-route. Similarly to the route selection 

data, the re-routing data was collected through experimenter review of the AVERT replay 

files. Table 4-12 and Table 4-13 summarize the percentage of re-routing by group for the 

cabin and engine room scenarios, respectively.  

The re-routing analysis looked at what the participants did when encountering a 

hazard. Three re-routing behaviours were observed in the hazard scenarios: 

 Participants whose route choice was a clear unobstructed route did not 

require re-routing (denoted as N/A for not applicable),  

 Participants whose first route choice was a compromised route requiring 

them to re-route and they did so safely (denoted as successful re-routed),  

 Participants whose first route choice was a compromised route requiring 

them to re-route and they chose not to re-route (denoted as no-re-routing).  

 

Table 4-12: Percent re-routing by group for the cabin egress scenarios. 

Scenario 

Code 
Condition Group 

Re-Routing P-value 

No  

re-routing 

required 

(n/a) 

Re-routing Required Fisher’s 

Exact Test 

(2-sided) 
Successfully 

Re-routed 

(y) 

No re-routing 

 (n) 

TH1 Alarm, 

Hazard and 

Blackout 

G1 23 65 12  

 G2 
47 42 11 

.277 

TH2 Alarm, 

Hazard 

And Blackout 

G1 71 23 6  

 G2 
47 21 32 

.177 
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Cabin Egress Scenarios:  

Table 4-12 summarizes the re-routing for the cabin scenarios TH1 and TH2. For 

scenario TH1, the secondary route to the lifeboat station was unobstructed. Taking the 

secondary route resulted in no re-routing required. The primary route was compromised 

by smoke. Thus taking the primary route caused participants to either recognize or 

encounter the smoke hazard and re-route to a safer egress path. In scenario TH1, 29% of 

group 1 and 47% of group 2 selected the secondary route and therefore did not require re-

routing. However, 23% of group 1 did not require re-routing. This percentage difference 

is due to one participant (6%) taking the safer route choice but not mustering at the 

lifeboat station and instead going through the lifeboat station and proceeding through the 

smoke filled muster station to muster at the mess hall instead of lifeboat station. 

In TH1, 71% of group 1 selected the primary route and 53% of group 2 followed 

the primary route to the lifeboat station. In group 1, of the 71% that selected the primary 

route, 65% re-routed and 6% did not re-route and went directly through the smoke. In 

group 2, of the 53% that selected the primary route, 42% re-routed and 11% did not re-

route and went directly through the smoke.  

For scenario TH2 the primary route to the lifeboat station was clear of hazards. 

Taking the primary route to the lifeboat would result in no re-routing required. The 

secondary and tertiary routes were compromised by smoke in the outside stairwell. 

Taking the secondary or tertiary route would require the participants to either recognize or 

encounter the smoke hazard and re-route to a safer egress path. In this scenario, 71% of 
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group 1 selected the primary route and 47% of group 2 selected the primary route and 

therefore did not require re-routing in TH2.  

In TH2, 6% of group 1 were lost in the scenario and 23% of group 1 selected the 

secondary route where they encountered the smoke hazard and were required to re-route. 

For group 2, 47% followed the secondary route and were required to re-route. Of the 29% 

of group 1 that required re-routing (selected the secondary route or exhibited lost 

behaviour), 23% (that selected the secondary route) successfully re-routed while one (6%) 

did not re-route and went directly through the smoke. The lost individual attempted to re-

route. One of the participants that selected the secondary route did not reroute. Of the 

53% of group 2 that followed the secondary route, 21% re-routed and 32% did not re-

route and went directly through the smoke.  

 

Engine Room Egress Scenarios:  

Table 4-13 summarizes the re-routing for the engine room scenarios TH3 and 

TH4. For scenario TH3, the secondary and tertiary routes to the lifeboat station were clear 

of hazards. Taking the secondary or tertiary route to the lifeboat resulted in little to no re-

routing required. The primary route was compromised by smoke and fire, requiring the 

participants to re-route to a safer egress path. For group 1, 29% selected the primary 

route, 47 % selected the secondary, 6% selected the tertiary and 18% were lost. For group 

2, 37% selected the primary route, 32 % selected the secondary, 0% selected the tertiary 

and 32% were lost.  For group 1 the 47 % that selected the secondary route and the 6% 

that selected the tertiary route did not require re-routing (making up 53% of group 1 that 
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did not require re-routing). Those that selected the primary route (29%) or were lost 

(18%) were required to re-route in TH3 scenario. All but one participant re-routed when 

required in group 1. Similarly, for group 2 the 32 % that selected the secondary route did 

not require re-routing. Those that selected the primary route (37%) or were lost (32%) 

were required to re-route in TH3 scenario (totaling 69% requiring re-routing). All but one 

group 2 participant re-routed when required. 

 

Table 4-13: Percent re-routing by group for the engine room egress scenarios. 

Scenario 

Code 
Condition Group 

Percent Route Selected P-value 

No re-

routing 

required 

(n/a) 

Re-routing Required Fisher’s 

Exact Test 

(2-sided) 
Re-routed 

(y) 

No Re-routing 

 (n) 

TH3 Alarm, 

Hazard and 

Blackout 

G1 53 41 6 .311 

 G2 
32 63 5 

 

TH4 Alarm, 

Hazard 

And Blackout 

G1 82 6 12 .493 

 G2 
74 21 5 

 

 

For scenario TH4, the primary route to the lifeboat station was unobstructed. 

Taking the primary route resulted in little to no re-routing required (depending on how 

well they knew the route). The secondary and tertiary routes were blocked by an 

explosion, as well as fire and smoke. Taking the secondary and tertiary routes, which 

were compromised by smoke and fire, required participants to either recognize or 

encounter the hazards and re-route to a safer egress path. For group 1, 82% selected the 

primary route, 6% selected the secondary, 6% selected the tertiary and 6% were lost. The 

82% of group 1 that selected the primary route did not require re-routing. Of the 

participants in group 1 that selected the secondary route, tertiary route or were lost in the 



121 
 

TH4 scenario, 6% re-routed and 12% did not re-route and were exposed to fire and 

smoke.  For group 2, 68% selected the primary route, 5 % selected the secondary, 5% 

selected the tertiary and 21% were lost. The 68% of group 2 that selected the primary 

route and one participant that was lost (6%) did not require re-routing (totaling the 74% of 

group 2 that did not require re-routing. The participant that was lost in this case 

successfully navigated out of the engine room using the primary egress route but became 

lost trying to find the correct muster station within the temporary safe refuge area. Of the 

participants in group 2 that selected the secondary, tertiary or were lost in the TH4 

scenario, 21% re-routed and 5% did not re-route and were exposed to fire and smoke.   

 

Avoid Exposure to the Hazards (Smoke and Fire) and Injury Incurred: 

The final part of the Assessing the Situation objectives was to avoid exposure to 

hazards. AVERT has built-in empirical mathematical models of hazards such as smoke, 

fire, and explosions (Pula et al., 2005; Assael and Kakosimos, 2010; Woodward and 

Pitblado, 2010; Babrauskas, 1983; Burgess and Herzberg, 1974). Risk of hazard exposure 

and severity of injury are estimated in the AVERT based on the avatar’s proximity and 

duration of exposure to the hazards (House et al. 2014). If a participant spent too long in 

smoke or got too close to the fire, AVERT recorded the time spent exposed to the hazard 

and calculated the probability of burns and death.  

All hazard scenarios were in session 3 (TH1, TH2, TH3, & TH4). The AVERT 

report file recorded the time spent exposed to smoke and fire in scenarios. This metric is a 
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cumulative total of the time in seconds that the participant spent in the smoke or fire. 

Results for the exposure to smoke and fire by group are reported in Table 4-14. 

Along with the time spent in contact with smoke and fire, AVERT also calculated 

and recorded the probability of burns and death due to fire exposure. The only scenario 

where participants were exposed to fire was TH4. Results for the injury incurred by fire 

exposure by group are reported in Table 4-15.  

As indicated in Table 4-14, there was a trending difference (p = 0.051) between 

the groups in exposure to smoke for scenario TH2.  Group 2 was exposed to a mean of 

2.49 seconds more smoke in TH2 than group 1. No other statistical significance was 

found between groups in hazard exposure. Scenario TH3 appears to have a significant 

difference in mean time spent in smoke, however, this is entirely due to one outlier that 

received a large exposure to smoke in the scenario. 

 

 

Table 4-14: Time spent exposed to smoke and fire hazards by group. 

Scenario 

Code 
Condition Variable Group N Mean SE p - value 

TH1 Cabin Hazard Time Exposed 

to Smoke 

G1 

G2 

17 

19 

1.36 

0.66 

0.53 

0.34 

0.402 

TH2 Cabin Hazard Time Exposed 

to Smoke 

G1 

G2 

17 

19 

0.83 

3.32 

0.52 

0.97 
0.051 

TH3 Engine Room 

Hazard & Blackout 

Time Exposed 

to Smoke 

G1 

G2 

17 

19 

0.05 

2.21 

0.05 

2.21 

1.000 

TH4 

 

Engine Room 

Hazard & Blackout  

Time Exposed 

to Smoke 

G1 

G2 

17 

19 

0.32 

0.65 

0.32 

0.43 

0.737 

% Fire Exposure G1 

G2 

17 

19 

2.71 

2.57 

2.05 

1.14 

0.645 

 

Table 4-15 shows the mean probability of injury (first degree burns) and 

probability of death due to fire exposure for both groups in the final scenario TH4.  Group 
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2 experienced an increased probability of injury and death. However, no statistical 

significance was found between groups in probability of injury or death due to fire 

exposure. This difference in probability of death in TH4 is due to one outlier who 

received a large cumulative time exposed to the fire hazard. 

 

Table 4-15: Probability of injury and death due to fire exposure in scenario TH4. 

Scenario 

Code 
Condition Variable Group N Mean SE p - value 

TH4 Engine Room 

Hazard & Blackout 

Prob of Injury 

(Burns) 

G1 

G2 

17 

19 

9.16 

16.40 

5.46 

7.03 

0.615 

Prob of Death G1 

G2 

17 

19 

0.04 

4.42 

0.03 

4.38 

0.615 

 

 

4. Safe Practices 

 

Percentage Running: 

Part of the general safe work practices is that participants understand the 

importance of not running on the platform and the risk associated with running in an 

emergency situation. To successfully fulfill this requirement, the participants were 

required to walk during all scenarios. The time spent running was recorded in the AVERT 

report file and subsequently was normalized with the time spent to complete the scenario, 

resulting in a percent time spent running in the scenario. To be successful in the scenario 

participants must spend 0% time running.  

Table 4-16 reports the mean percentage of time spent running for both groups 

during each scenario. In most scenarios, both group participants’ percentage running is 

greater than 10% with the exception of TH2. There is only one instance where either 
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group runs less than 10% of the scenario time. Group 1 in scenario TH2 ran on average 

7% of the scenario time.  

The overall mean percentage time running across all sessions for group 1 was 14% 

and for group 2 was 15%.  In two scenarios (TH2 and TH4) group 2 runs 5% or more 

time than group 1. As indicated in Table 16, the difference between groups in percentage 

time running is trending for those two scenarios (TH2 and TH4).  

In the cabin hazard scenario (TH2) there was a trending difference (p = 0.086) 

between group 1 and group 2 in percentage time running. Group 2 ran 5% more than 

group 1 in the cabin hazard scenario TH2. Likewise, in the engine room hazard scenario 

(TH4), there was a trending difference (p = 0.076) between group 1 and group 2 in 

percentage time running. Group 2 ran 8% more than group 1 in the engine room hazard 

scenario. No other statistical significance was found between groups in percentage time 

running. 
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Table 4-16: Percent running that occurred in each scenario for both groups. 

Scenario 

Code 
Condition Variable Group N Mean SE p - value 

TE1 Normal  Percent Running G1 

G2 

17 

19 

15 3 0.870 

 13 3 

TE2 Normal  Percent Running G1 

G2 

17 

19 

15 2 0.596 

 17 3 

TE3 Blackout  Percent Running G1 

G2 

17 

19 

11 3 0.397 

 14 3 

TE4 Blackout  Percent Running G1 

G2 

17 

19 

16 3 0.960 

 15 3 

TA1 Alarm  Percent Running G1 

G2 

17 

19 

11 2 0.768 

 12 2 

TA2 Alarm  Percent Running G1 

G2 

17 

19 

17 2 0.693 

 18 2 

TA3 Alarm and 

Blackout  

Percent Running G1 

G2 

17 

19 

14 3 0.647 

 14 2 

TA4 Alarm and 

Blackout  

Percent Running G1 

G2 

17 

19 

15 2 0.693 

 17 2 

TH1 Alarm and Hazard  Percent Running G1 

G2 

17 

19 

14 3 0.436 

 15 2 

TH2 Alarm and Hazard  Percent Running G1 

G2 

17 

19 

7 2 0.086 

 13 2 

TH3 Alarm, Hazard  

and Blackout  

Percent Running G1 

G2 

17 

19 

16 2 0.740 

 17 2 

TH4 Alarm, Hazard          

and Blackout 

Percent Running G1 

G2 

17 

19 

13 2 0.076 

21 3 

 

Closing Fire and Watertight Doors: 

The second part of the general safe work practices is for participants to understand 

the importance of closing fire and watertight doors and the risk associated with leaving 

them open. To successfully fulfill this requirement, the participant must close all fire and 

watertight doors while evacuating the platform. If a participant leaves one or more fire or 

watertight doors open, then this is considered a fail for this task.  

Table 4-17 shows the number of participants in both groups that correctly closed 

all important doors. There were only four instances where 70% or more of the group 
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participants were able to successfully close all the fire and watertight doors. For group 1, 

71% of the group participants were able to close all doors in scenarios TH3 and TH4. For 

group 2, 79% of the group participants were able to close all doors in scenarios TA4 and 

TH2. The lowest percentage in closing doors was the first scenario in session 1 (TE1), 

where only 35% of group 1 and 21% of group 2 were successful in closing all fire and 

watertight doors. The highest percentage in closing doors in any scenario was 79% and 

this was obtained by group 2 in scenarios TA4 and TH2.  

 

Table 4-17: Comparing group proportions for the closing doors task. 

Scenario 

Code 
Group 

Door Count Door Closing Percentage P-value 

Correct Incorrect % Correct % Incorrect 
Fisher's 

Exact Test  

TE1 G1 6 11 35 65 .463 

  G2 4 15 21 79 
 

TE2  G1 10 7 59 41 1.000 

  G2 11 8 58 42 
 

TE3  G1 8 9 47 53 1.000 

  G2 8 11 42 58 
 

TE4  G1 10 7 59 41 .525 

  G2 9 10 47 53 
 

TA1  G1 10 7 59 41 .749 

  G2 10 9 53 47 
 

TA2  G1 11 6 65 35 1.000 

  G2 12 7 63 37 
 

TA3  G1 7 10 41 59 .525 

  G2 10 9 53 47 
 

TA4  G1 9 8 53 47 .158 

  G2 15 4 79 21 
 

TH1  G1 11 6 65 35 .335 

  G2 9 10 47 53 
 

TH2  G1 8 9 47 53 .082 

  G2 15 4 79 21 
 

TH3  G1 12 5 71 29 .322 

  G2 10 9 53 47 
 

TH4  G1 12 5 71 29 1.000 

  G2 13 6 68 32 
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In comparing the group proportions using Fisher’s Exact Test, a trending 

difference of 32% (p = 0.082) was found between the two groups regarding door closing 

for the cabin hazard scenario (TH2). In this scenario, 47% of group 1 was successful in 

closing all doors; 79% of group 2 was successful in closing all doors. No other statistical 

significance was found between groups in closing doors for all other scenarios.  

 

4.1.1.3. Quiz performance comparison between groups 

The AVERT training program targeted two knowledge dimensions: the 

understanding and application of spatial and procedural knowledge. The procedural 

knowledge was assessed based on the participant’s understanding (factual or conceptual 

knowledge) and his/her procedural application. The participant’s understanding of 

procedural knowledge was assessed using multiple-choice questions. The application of 

procedural knowledge was assessed using the AVERT scenarios. Two measures of 

procedural knowledge were collected to compare the participant’s understanding of the 

procedures with their application of the procedures using their task performance in 

AVERT.  

An aggregated score was developed for the multiple-choice questions. See 

Appendix M for a list of the multiple choice quiz questions. The quiz questions were 

broken down into questions relating to specific learning objectives, such as spatial 

understanding, alarm recognition, and assessing the situation, for example. Table 4-18 

shows the quiz scores by group for the three sessions.  
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Table 4-18: Quiz results for each group across the three sessions. 

Session Group N Mean Std. Dev Minimum Maximum P-value 

1 G1 17 86 13 54 99 0.099 

G2 19 81 9 64 93  

2 G1 17 82 8 65 94 0.086 

G2 19 75 10 51 92  

3 G1 17 85 11 62 99 0.442 

G2 19 79 12 50 94  
 

As indicated in Table 4-18, group 1 achieved a higher mean quiz score than group 

2 in all three sessions. On average across the three sessions, group 1 scored an overall 

mean of 84% and group 2 scored an overall mean of 79% on the quizzes. On average, 

group 1 scored 6% higher on the quizzes than group 2. Overall, there was a trending 

difference between group scores for quiz 1 (5%, p = 0.099) and quiz 2 (7%, p = 0.086). 

There was no statistical difference between scores for quiz 3. 

In particular for session 1, group 1 received a mean quiz score of 86% and group 2 

received a mean quiz score of 81%. This suggests that the practice scenarios group 1 

received solidified their understanding of the procedural tasks and helped them achieve a 

higher quiz score. For session 2, group 1 received a mean quiz score of 82% and group 2 

received a mean quiz score of 75% (trending difference). For session 3, group 1 received 

a mean quiz score of 85% and group 2 received a mean quiz score of 79%. This indicates 

that the refresher training received by group 1 helped participants correctly answer 

questions in the second and third quizzes.  
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Breakdown of Quiz Scores by Session: 

Figure 4-11, Figure 4-12 and Figure 4-13 show the histograms of participants’ 

quiz scores by group across the three sessions.  The proportions were broken down into 

participants that received less than 60%, 60 ≤ n < 75, 75 ≤ n < 90 and 90% ≤ n. 

 

 
Figure 4-11: Session 1 quiz results for each group. 
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Figure 4-12: Session 2 quiz results for each group. 

 

 
Figure 4-13: Session 3 quiz results for each group. 
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As indicated in Figure 4-11, in session 1 the mean quiz score for group 1 was 86% 

and the mean quiz score for group 2 was 81%. Although group 1 had a greater number of 

participants achieving 90 or above, this group also had the greatest spread of quiz scores. 

Looking at specific questions, on average the questions in session 1 were within 

4% of the score between the groups. There were three questions where group 1 outscored 

group 2 with a mean score difference of 15% or greater. When asked “What is the 

expected chain of events in an emergency?”, group 1 was 20% more successful at 

answering this question than group 2. For the question “What is the T-card for?”, group 1 

was 25% more successful at answering the question than group 2. For the question “Who 

is in charge at the muster station?”, group 1 was 39% more successful at answering this 

question than group 2. These questions were related specifically to the following learning 

outcomes: the cognitive awareness of the emergency situation and muster procedures. 

As indicated in Figure 4-12, in session 2, the mean quiz score for group 1 was 

82% and the mean quiz score for group 2 was 75%. In session 2, there is a noticeable 

decrease in quiz performance by both groups.  

Looking at specific questions, on average the questions in session 2 were within 

6% of the score between the groups. There were three questions where group 1 outscored 

group 2 with a mean score difference of 15% or greater. When asked “What visual alarm 

is associated with the General Platform Alarm?”, group 1 was 19% more successful at 

answering this question than group 2. For the question “What do you do when you see a 

steady green light?”, group 1 was 20% more successful at answering the question than 

group 2. For the question “Who is in charge at the lifeboat station?”, group 1 was 26% 
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more successful at answering this question than group 2. These questions were related 

specifically to alarm recognition and the cognitive awareness of the emergency situation 

learning objectives. 

As indicated in Figure 4-13, in session 3, the mean quiz score for group 1 was 

85% and the mean quiz score for group 2 was 79%. In session 3, the overall quiz 

performance for both groups is similar in distribution of scores.  

Looking at specific questions, there were seven questions where group 1 or group 

2 outscored the other with a mean score difference of 15% or greater. When asked “What 

is the safest exit to take given where the hazard is located [on a map of the engine room 

worksite]?”, group 1 was 16% more successful at answering this question than group 2. 

For the question “Where is the TSR on the platform?”, group 1 was 19% more successful 

at answering the question than group 2. For the question “What is the safest exit to take 

given where the hazard is located [on a map of the accommodations]?”, group 2 was 20% 

more successful at answering this question than group 1. For the second question related 

to the engine room egress “What is the safest exit to take given where the hazard is 

located [on a map of the engine room worksite]?”, group 2 was also 20% more successful 

at answering this question than group 1. For the question “What would you do in the 

event of an alarm that wasn’t followed by a PA announcement?”, group 1 was 21% more 

successful at answering the question than group 2. For the question “What areas have 

increased risk on the platform?”, group 1 was 37% more successful at answering the 

question than group 2. For the question “What does EER stand for?”, group 1 was 48% 

more successful at answering the question than group 2.   
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4.2: Aggregated Competency Score Comparison 

 

Participants were required to be successful in all six AVERT learning objectives 

in order to achieve competence in basic offshore egress. An aggregated competency score 

was developed to measure each participant’s overall understanding of offshore egress and 

his/her ability to demonstrate competence in AVERT on an individual level. The 

aggregated competency score was developed by combining the AVERT performance 

measures corresponding to the six learning objectives in each scenario. Combining the 

AVERT performance measures into a competence score enabled a comparison of overall 

performance to identify the strengths and weaknesses of a group or an individual.  

The aggregated competency score was developed by applying a scoring system 

(i.e. designate pass-fail criteria or passing benchmark and threshold) to each performance 

measure and then applying an overall weighting of importance for that particular learning 

objective for each session. This section outlines the task performance scoring and 

weighting schemes used followed by the results for the three sessions.  

4.2.1 Task Performance Scoring 

A score system was assigned to each performance measure for all six learning 

objectives. The US Coast Guard’s Method for Developing Mariner Assessments was used 

to guide the development of the scoring system and involved creating a proficiency 

standard and assessment criteria for each performance measure (US Coast Guard 

Research and Development Center, 2000). The Mariner Assessment Guidelines suggest 

that critical actions or tasks require pass-fail proficiency criteria and non-critical tasks 
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follow a graded proficiency criteria (US Coast Guards Research and Development Center, 

2000). Subject matter experts were consulted in the development of the proficiency 

standards and assessment criteria specific to the AVERT performance measures. For the 

aggregated competency score, a combined pass-fail and a graded proficiency criterion 

was used.  

The subject matter experts deemed all subtask learning objectives as critical 

actions. The associated task performance measures for these learning objectives were a 

clear correct and incorrect response. For example, AVERT’s corresponding performance 

metrics included: reached the correct location, and moved T-card at muster station. 

Therefore, this form of data followed the designated pass-fail proficiency criteria. In 

addition to the pass-fail critical tasks, AVERT also collected many forms of 

complementary data that informed whether or not the participants required improvement. 

The data included performance metrics such as time to complete, route selection, and 

backtracking distance. Salas et al. (2009) recommended that “performance measures 

usually work best when expert models of the task are used as standards against which to 

compare and evaluate performance.” Following Salas et al.’s recommendation, the 

informative data was graded using a proficiency benchmark and passing threshold. The 

following sections outline the scoring systems used for each of the six learning objectives. 
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1. Spatial Awareness and Alarm Recognition: 

 

Correct Location (pass-fail)  

The correct location metric is a pass-fail task performance measure. The correct 

location is an indicator of whether or not the participants were able to reach their primary 

or secondary muster points. In the test scenarios, participants were required to recognize 

the alarm, egress to the correct muster location and indicate that they mustered by moving 

the T-card. They were instructed in the tutorials where their primary and secondary 

muster points were located. They were also taught the meaning of the different alarm 

types and that the alarm dictated where they should muster in the situation. The 

participant received a full passing score if they successfully reached the correct location. 

If the participant did not reach the correct location in time or if they attempted to muster 

at another location, then they received a failing score. Table 4-19 describes the behaviour 

observed and the scoring system applied to the correct location task.  

 

Table 4-19: Reaching correct location behaviour and the associated score scheme. 

Behaviour Score 

Reaching the correct location for situation and successfully moving the T-card 

on muster board.  
Pass 

Reaching correct location but not moving T-card.  

Fail 

Unable to reach correct location within time allocated. 

Going to the wrong location for the situation and moving T-card at wrong 

location for situation.  

Attempting to muster at the wrong location (looking for T-card and realizing 

his/her name is not on muster board) and then self-correcting to correct 

location. 
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Time to Muster at Correct Location (time limit and benchmark) 

To achieve the requirements of the spatial awareness learning objective, 

participants were required to reach the correct location for the situation and do so within 

the time limit. The time to complete the scenario (regardless of whether correct or not) 

was recorded in AVERT. Participants that completed the scenario incorrectly (e.g. 

mustered at the wrong location) did not receive a passing score for time to complete the 

scenario. These times were excluded from the time to complete results. Scoring for time 

to complete was broken down into two categories: overall time limit and the benchmark 

and passing threshold. Participants who did not muster within the time limit did not 

receive a passing score and were classified as requiring improvement. Participants that 

completed the scenario correctly, but were unable to meet the passing threshold of the 

benchmark time were also identified as requiring improvement. 

 

Overall Time Limit: 

Regulations do not dictate a maximum allowable time for mustering for egress 

drills or emergency situations. It is up to each offshore installation to set standard 

protocols on the total time available to muster during emergency exercises and drills. The 

International Association of Oil and Gas Producers (OGP) in a 2010 report suggested the 

typical time for mustering was between five to fifteen minutes (International Association 

of Oil and Gas Producers, 2010). Within this five to fifteen minute period the following 

events should have occurred: go to muster stations, perform a head count and if necessary 

order to abandon. For this experiment, a total of ten minutes was allocated as the 
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maximum allowable time for the participants to complete each scenario. If a participant 

was unable to reach the correct muster location within the allotted ten minutes, they did 

not pass the scenario.  

Participants were instructed that they had a maximum of ten minutes to complete 

each test scenario and they received feedback after each scenario showing the total time 

they took to complete the scenario. The time limit of ten minutes was ample time for a 

participant to reach the correct location in both the accommodation and worksite 

scenarios. Most scenarios, in practice, ten minutes was considered to be too much time to 

muster using AVERT. For this reason, a standard benchmark time and passing threshold 

was developed. 

 

Benchmark Time and Passing Threshold: 

To score the participants’ time to complete the scenarios, a benchmark time of 

how long an experienced participant would take to complete the muster scenario was 

used.  A passing threshold or time range was also used to identify the participants who 

were unsuccessful at meeting the benchmark and required improvement. The benchmark 

and threshold were developed to rank participant performance and indicate when 

proficiency was achieved and when improvement was required. The benchmark time in 

each scenario represented the time required to safely walk to the correct muster location 

within the temporary safe refuge area. The threshold time in each scenario represented an 

acceptable time to complete the scenario but where proficiency was not achieved (in 

either wayfinding or controller operation).  



138 
 

Participants who completed the scenario at or near the benchmark time received 

passing score. Participants who did not meet the benchmark time but fell within the 

threshold passed the scenario but were flagged as requiring improvement. Participants 

whose times fell outside the threshold time received a failing score for the scenario and 

were flagged as requiring significant improvement. Participants who completed the 

scenario far below the benchmark time were flagged as likely to have been running in the 

scenario and required intervention and reinforcement of safety practices learning 

objective. 

In real offshore environments, emergency situations can present complex and 

hazardous conditions that have the potential to negatively impact muster times by 

compromising egress routes and rendering areas of the platform inaccessible. Early 

design iterations of the performance scoring considered increasing the time and distance 

allowances for the AVERT emergency scenarios modelled in session 3. Additional time 

and distance allowances were considered to accommodate for the anticipated increase in 

travel time required due to hazards blocking routes and requiring participants to re-route.  

However, in real emergency situations, offshore personnel do not get more time to muster 

or evacuate the platform. Increasing the time allowances for the emergency conditions 

would not be realistic in a real-life situation. Therefore, the same time benchmark and 

passing thresholds were used to assess participant performance across all sessions (from 

basic wayfinding to complex emergency scenarios).  
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The total time to complete the scenario (time to muster) depended on the starting 

location of the scenario. Cabin scenarios were on average shorter in duration than engine 

room scenarios. For this reason, different benchmark times and thresholds were applied 

for the cabin and engine room scenarios.  

 

Accommodation Scenarios:  

The benchmark time range used for the accommodation scenarios was 70 to 110 

seconds.  This time represents the mean time range to complete the cabin egress route 

safely at a walking speed. Participants who completed the cabin egress scenarios in 70-

110 seconds received a passing score (full points). Any completion time under 70 seconds 

could be attributed to the participant running to the muster station. As this behaviour is 

not acceptable, participants with a completion time less than 70 seconds received a failing 

score (zero points). Participants who completed the egress route in 110-180 seconds have 

performed satisfactorily but can improve their performance. Participants that completed 

the scenario between 110-180 seconds received an “improvement required” score and 

received half points. Participants who took more than 180 seconds (3 minutes) to 

complete the cabin scenarios were likely to not have a good understanding of the 

environment or poor proficiency with the controller interface and received a failing score 

(zero points). Table 4-20 describes the behaviour observed and the scoring system applied 

to the time to complete the cabin egress task.  
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Table 4-20: Time to muster behaviour for the cabin scenarios and the associated score 

scheme. 

Time to Muster Behaviour Score 

< 70s Unacceptable (likely running the whole scenario) Zero points 

70-110s Acceptable (meets benchmark time) Full points 

110-180s  Satisfactory (improvement required) Half points 

> 180s  Unacceptable (too slow and improvement required) Zero points 

 
 

Worksite Scenarios: 

The benchmark time range used for the worksite scenarios was 90 to 130 seconds.  

This time represents the mean time range to complete the engine room egress route safely 

at a walking speed by competent individuals. Participants who completed the engine 

egress scenarios in 90-130 seconds received a passing score (full points). Completion 

times under 90 seconds was attributed to the participant running to the muster station. As 

this behaviour is not acceptable, participants with a completion time less than 90 seconds 

received a failing score (zero points). Participants who completed the egress route in 130-

240 seconds have performed satisfactorily but can improve their performance.  

Participants that completed the scenario between 130-240 seconds received an 

“improvement required” score and received half points.  Participants who took more than 

240 seconds  (4 minutes) to complete the engine room scenarios are likely to not have a 

good understanding of the environment or poor proficiency with the controller interface 

and received a failing score (zero points). Table 4-21 describes the behaviour observed 

and the scoring system applied to the time to complete the engine room egress task.  
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Table 4-21: Time to muster behaviour for the worksite scenarios and the associated score 

scheme. 

Time to Muster Behaviour Scoring 

< 90s Unacceptable (likely running the whole scenario) Zero points 

90-130s Acceptable (meets benchmark time) Full points 

130-240s Satisfactory (improvement required) Half point 

> 240s  Unacceptable (too slow and improvement required) Zero points 

 

 

Distance Travelled to Muster at Correct Location (benchmark and threshold) 

To score the participants’ distance travelled to complete the scenarios, a 

benchmark distance of an experienced individual was used.  A passing threshold or 

distance range was also used to identify the participants who were unsuccessful at 

meeting the benchmark distance and required improvement. The benchmark distance in 

each scenario represented the total distance travelled necessary to safely walk to the 

correct muster location within the temporary safe refuge area. A range was selected for 

the benchmark distance as the distance travelled to muster is route dependent and the 

benchmark range can account for the primary, secondary or tertiary routes selected. The 

threshold distance in each scenario represented an acceptable distance to complete the 

scenario, but where proficiency was not achieved (mainly in wayfinding). Total distances 

travelled of participants who completed the scenario incorrectly (e.g. mustered at the 

wrong location) did not receive a passing score.  

Participants who completed the scenario at or near the benchmark distance 

received passing score. Participants who did not meet the benchmark distance but fell 
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within the threshold passed the scenario but were flagged as requiring improvement. 

Participants whose total distance travelled fell outside the threshold distance received a 

failing score for the scenario and were flagged as requiring significant improvement.  

 

Accommodation Scenarios:  

The benchmark distance range used for the accommodation scenarios was 45 to 

85 meters.  Participants that completed the cabin egress scenarios in 45 to 85 meters 

received a passing score (full points). Participants who completed the scenario between 

85-125 meters received an “improvement required” score and received half points. 

Participants who completed the scenario in more than 125 meters for the cabin scenarios 

are likely to not have a good understanding of the environment and received a failing 

score (zero points). Table 4-22 describes the behaviour observed and the scoring system 

applied to the distance travelled to muster from the cabin.  

 

Table 4-22: Distance to muster for cabin scenarios and the associated score scheme. 

Distance to Muster Behaviour Score 

45 – 85m Acceptable (meets benchmark range) Full points 

85 – 125m Satisfactory (improvement required) Half points 

> 125m Unacceptable (significant improvement required) Zero points 

 

Worksite Scenarios: 

The benchmark distance range used for the worksite scenarios was 80 to 130 

meters.  Participants who completed the engine egress scenarios in 80 to 130 meters 

received a passing score (full points). Participants who completed the egress route in 130-
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180 meters have performed satisfactorily but received an “improvement required” score 

and received half points.  Participants who travelled more than 180 meters to complete the 

engine room scenarios are likely to not have a good understanding of the environment and 

received a failing score (zero points). Table 4-23 describes the behaviour observed and 

the scoring system applied to the distance travelled to muster from engine room.  

 

Table 4-23: Distance to muster for the worksite scenarios and the associated score 

scheme. 

Distance to Muster Behaviour Scoring 

80 – 130m Acceptable (meets benchmark range) Full points 

130 – 180m Satisfactory (improvement required) Half point 

> 180m Unacceptable (significant improvement required) Zero points 

 

 

2. Routes and Mapping 

 

Route Selection 

To be successful in the Routes and Mapping learning objective in the scenarios, 

participants were required to select the safest and most efficient route given the situation 

in the scenario. Participants were provided in the tutorials with two egress route options 

from the cabin and three egress route options from their worksite in the engine room. 

The route selection scoring depended on the complexity of the test sessions. For 

this reason, two different scoring schemes were applied for the first two sessions and the 

third session. 
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Session 1 and 2: Route Deviations 

Route choices were ranked based on the primary, secondary, tertiary routes 

available from the cabin and worksite. In sessions 1 and 2, the focus of the routes and 

mapping learning objective was on developing route knowledge of all routes available 

from the cabin and the worksite. Therefore, all route selections were scored equally. 

Participants were assessed on how well they could follow the particular route they had 

selected. If participants strayed off the route they lost points. Table 4-24 describes the 

route deviation behaviour observed and the scoring system applied to the route selection 

for each scenario. 

 

Table 4-24: Route selection behaviour and associated score scheme for each scenario. 

Behaviour Scoring 

Follows designated route (primary, secondary or tertiary) Pass (Full points) 

Minor off route (still room for improvement) Half point 

Major off route (improvement required) 

Zero points 

Not following any learned route (lost behaviour– improvement required)  

 

 

Session 3: Route Selection 

In session 3, route selection and subsequent re-routing were both more important 

due to the increased scenario complexity of the test scenarios. Each test scenario in 

session 3 provided information through PA announcements to help the participant select 

the most appropriate route to take given the situation. The most appropriate route to take 

in a scenario changed depending on the emergency circumstance. Participants were not 
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told which route was the most appropriate for the situation but at the end of the scenario 

they were given the option to review the route they chose and where they went during the 

scenario on the path tracker map. Although participants could review the route they chose 

in the scenario, they were not given additional feedback on the quality of the route they 

selected. The scoring of route selection was scenario dependent because route selection 

varied from scenario to scenario.  

Tables 4-25 and 4-26 describe the route selection behaviour observed and the 

scoring system applied for the accommodation and worksite egress scenarios. 

 

Table 4-25: Behaviour for the accommodation scenarios and the associated score scheme. 

Scenario Route Selected Score 

TH1 Secondary Route or Tertiary Route Pass (full points) 

Primary route (blocked by hazard) 
Fail (zero points) 

Lost Behaviour 

TH2 Primary – full points Pass (full points) 

Secondary or Tertiary Route (blocked by 

hazard) Fail (zero points) 

Lost Behaviour 

 

 

Table 4-26: Behaviour for the worksite scenarios and the associated score scheme. 

Scenario Route Selected Score 

TH3 Secondary or Tertiary Routes Pass (full points) 

Primary (blocked by hazard) 

Fail (zero points) 
Lost Behaviour 

TH4 Primary – full points Pass (full points) 

Secondary or Tertiary Routes (blocked by 

hazard) Fail (zero points) 

Lost Behaviour 
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The correct egress route option to select was specific to the context of the test 

scenario. In the cabin scenarios, no priority was assigned to the secondary or tertiary 

routes. Due to the layout of the accommodation block, the secondary and tertiary routes 

merge together along the egress path and are therefore very similar. For scoring purposes, 

the two routes were valued equally. For example, in the first hazard scenario (denoted 

TH1), the muster station and primary egress route were blocked by smoke and as a result 

the safest route option was to select either the secondary or tertiary routes. In this 

situation, both were equally correct. Similarly, in the worksite scenarios, no priority was 

assigned to the secondary or tertiary routes. The secondary and tertiary routes were two 

distinct routes from the worksite, but due to the layout of the engine room, they were 

situated in close proximity to one another. As a result, the hazard conditions in the 

scenarios could impact both routes. For scoring purposes, the two routes were valued 

equally. For example, in the final hazard scenario (denoted TH4), the explosion and fire 

rendered the secondary and tertiary egress routes inaccessible and as a result the only 

available route option was to select the primary egress route. In all scenarios, participants 

who selected any available clear route received a passing score and participants that 

selected the route blocked by the hazard received a failing score.  

 

Backtracking Time:  

The benchmark percent time backtracking range used for all scenarios was 0 to 

15%.  This time represents the mean percentage time spent backtracking that was 

acceptable to successfully complete the egress scenarios. Participants who completed the 
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scenarios within 15% time spent backtracking received a passing score (full points). 

Participants who completed the scenarios with a total backtracking percentage time 

between 15-25% received an “improvement required” score and received half points. 

Participants who completed the scenarios with a total backtracking percentage time more 

than 25% are likely to not have a good understanding of the environment or poor 

proficiency with the controller interface and received a failing score (zero points). Table 

4-27 describes the behaviour observed and the scoring system applied to the backtracking 

percentage time spent. 

 

Table 4-27: Percent time spent backtracking and the associated score scheme. 

Percent Time 

Backtracking 

Behaviour Score 

0-15% Acceptable (within passing threshold) Full points 

15-25% Satisfactory (still room for improvement) Half point  

>25% Unacceptable (improvement required) Zero points 

 

 

Backtracking Distance  

The benchmark backtracking distance range used for all scenarios was 0 to 45 

meters.  Participants who completed the scenarios within 10 meters of backtracking 

distance received a passing score (full points). Participants who completed the scenarios 

with a total backtracking distance between 10-25 meters received an “improvement 

required” score and received half points. Participants who completed the scenarios with a 

total backtracking distance more than 25 meters are likely to not have a good 

understanding of the environment and received a failing score (zero points). Table 4-28 
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describes the behaviour observed and the scoring system applied to the backtracking 

distance travelled.  

 

Table 4-28: Distance backtracking and the associated score scheme. 

Distance Backtracking Behaviour Score 

0-10m Acceptable (within passing threshold) Full points 

10-25m Satisfactory (still room for improvement) Half points 

> 25m Unacceptable (improvement required) Zero points 

 

 

3. Assess Situation & Avoid Hazards: 

 

Raising the Alarm (pass-fail): 
 

Participants were tested on their ability to raise the alarm in the last test scenario 

(TH4). To be successful in raising the alarm the participants were required to activate the 

manual alarm call point (MAC) within a 20 second time limit. Points were also given to 

participants who recognized the need to raise the alarm but were unable to do so within 

the time limit. Zero points were given to those who did not attempt to raise the alarm and 

to those who attempted to raise the alarm but were unable to identify the correct location 

of the MAC to properly raise the alarm. Table 4-29 depicts the raising the alarm 

behaviour and associated scores. 
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Table 4-29: Raise the alarm behaviour and scoring scheme. 

Behaviour Scoring 

Correctly raised alarm within time limit Pass (Full points) 

Attempted to raise alarm at correct location but were unable to do so 

within time limit 
Half points 

Attempted to raise alarm but at the wrong location 

Fail (Zero points) 

Did not attempt to raise the alarm 

 

 

Re-route to avoid Hazards on Platform (pass-fail): 
 

To be successful in avoiding hazards on the platform, participants were required to 

avoid hazardous routes or re-route from hazards blocking their path. Re-routing behaviour 

was a measure of how well the participants remembered their route knowledge and were 

able to use their survey knowledge. Re-routing was assessed during the hazard test 

scenarios in session 3.  

These test scenarios were designed to test the participants’ route and survey 

knowledge by blocking the primary or secondary egress routes, the routes with which the 

participants to be were most likely familiar. The participant received a passing score if the 

initial route they selected was free of hazards.  The participants also received a passing 

score if they re-routed immediately upon encountering a hazard along her/his selected 

route. If the participant did not re-route when encountering a hazard along her/his selected 

route then s/he received a failing score. Table 4-30 depicts the re-routing behaviour and 

associated scores. 
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Table 4-30: Re-routing behaviour and scoring scheme. 

Behaviour Scoring 

Initial route selection resulting 

in no re-routing required 

Initial route selection resulting in no re-routing 

required 
Pass 

Initial route selection resulting 

in re-routing required  

Re-routing successfully executed (avoids hazard 

or area around hazard) 

 

Pass 

No re-routing executed (did not re-route and went 

directly into hazard) 

 

Fail 

 

 

Exposure time to Smoke and Fire Hazards (pass-fail): 
 

The exposure time to a hazard is a pass-fail measure. The participant received a 

passing score if their avatar did not come in contact with smoke or fire hazards during the 

scenarios. Any time recorded of the participant exposed to a smoke or fire hazard was 

considered a fail score. Table 4-31 depicts the smoke and fire hazard exposure behaviour 

and associated scores. Table 4-32 depicts the incurred injury due to hazard exposure and 

associated scores. 

 

Table 4-31: Hazard exposure behaviour and scoring scheme. 

Behaviour Scoring 

No exposure time to smoke or fire hazards (0 seconds) Pass 

Exposure time to smoke or fire hazards ( > 0 seconds) Fail 

 

Table 4-32: Incurred injury (probability of 1st degree burns or death) and scoring scheme. 

Behaviour Scoring 

No incurred injury due to fire hazards (zero probability of 1
st
 degree burns 

and/or death) 
Pass 

Incurred injury due to fire hazards ( > 0 probability of 1
st
 degree burns 

and/or death) 
Fail 
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4.  Register at Temporary Safe Refuge 

 

Correctly Moving T-Card at Correct Muster Station (pass-fail): 

 

To be successful at Registering at Temporary Safe Refuge learning objective, 

participants must first reach the correct location and then correctly move their own T-card 

at the correct muster point. Participants were instructed in the tutorials on how to register 

at the muster station and lifeboat station and received feedback after each scenario on 

whether they went to the correct location. Table 4-33 describes the behaviour observed 

and the scoring system applied to the Register at TSR learning objective. 

 

Table 4-33: Registering at the TSR behaviour and scoring scheme. 

Behaviour Scoring 

Successfully moving his/her own T-card at right location for situation Pass 

Unsuccessfully interacting with T-card (i.e. not moving card) at right 

location for situation 

Fail Moving T-card at wrong location for situation 

Looking for T-card at wrong location for situation and then readjusting to 

correct location 

 
 
 

5. Safe Practices  
 

Percentage Running: 

To be successful in this Safe Practice learning objective, participants must spend 

0% of the scenario time running. Participants were instructed in the tutorials not to run on 

the platform and received feedback after each scenario showing the time spent stationary, 

walking and running in the scenario. However, participants still ran on average 15% of 
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the time spent in the scenarios across all three sessions. To instil the importance of this 

learning objective, participants that never ran received a passing score, participants that 

occasionally ran received an “improvement required” score and participants frequently 

ran received a failing score. Table 4-34 describes the behaviour observed and the scoring 

system applied to the no running on platform safety practice. 

 

Table 4-34: Running behaviour and scoring scheme. 

Percent Running Behaviour Scoring 

0% Never running (safe) Full points 

0-10% 
Occasionally breaking out into a run (improvement 

required) 
Half points 

> 10% Frequently running (unsafe and improvement required) Zero points 

 

 

 Closing Fire and Watertight Doors (pass-fail): 

To be successful in this safe practice learning objective, participants must close all 

fire and watertight doors while evacuating the platform in the scenarios. Participants were 

instructed in the tutorials not to leave fire or watertight doors open and received feedback 

after each scenario showing the number of doors left open in the scenario. On average, 

56% of participants closed all important doors in the scenarios across all three sessions. 

To instil the importance of this learning objective, participants who closed all doors 

received a passing score and participants that left one or more doors opened received a 

failing score. Table 4-35 describes the behaviour observed and the scoring system applied 

to the door-closing task. 
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Table 4-35: Closing doors behaviour and scoring scheme. 

# of Doors Left Open Behaviour Scoring 

0 Closing all doors (safe) Pass 

1 or more 
Leaving doors opened (unacceptable and needs 

improvement) 
Fail 

 

 

4.2.2 Weighting of Learning Objectives for Each Session 

Following the step-by-step approach to teaching style (Grantcharov and Reznick, 

2008), the AVERT training targeted specific learning objectives for each session. The 

focus of the first session was to establish spatial awareness and route knowledge. 

Additional learning objectives were incrementally added for each session. The alarm 

recognition and hazard avoidance learning objectives were incrementally added in order 

to help build a core spatial knowledge and procedural knowledge. The participants’ task 

performance for each learning objective was measured repeatedly across the three 

sessions. This allowed for repeated measures to compare performance. Table 4-36 

describes which learning objectives were tested during each session.   

 

Table 4-36: AVERT learning objectives tested for each session. 

Session 1 Session 2 Session 3 

 Spatial Awareness  

 

 Routes and Mapping 

 

 Register at TSR 

 Safe Practices 

 Spatial Awareness  

 Alarms Recognition 

 Routes and Mapping 

 

 Register at TSR 

 Safe Practices 

 Spatial Awareness  

 Alarms Recognition 

 Routes and Mapping 

 Hazard Avoidance 

 Register at TSR 

 Safe Practices 
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The above learning objectives were targeted based on subject matter expert 

guidance and AVERT capabilities. They were gradually assessed over the course of three 

test sessions to allow participants time to establish spatial learning and gain knowledge on 

an unfamiliar topic. A prior study suggested that active exploration time with the 

simulator was important for participants to develop spatial awareness and for the success 

of virtual environment training (Bradbury-Squires, 2013). Therefore, the training and 

testing structure was developed to allow participants more time to develop wayfinding in 

the virtual environment. The weighting of the learning objectives for each session 

followed the content and learning emphasis for each session: spatial awareness, alarms 

and hazard avoidance. 

A weighting scheme was developed to emphasize the importance of each task. 

The weighting system was used to grade all scenarios for each session. Tables 4-37, 4-38, 

and 4-39 show the weighting scheme used for session 1, session 2 and session 3 

respectively. Each session was weighted out of 100%.   

 

Session 1: Spatial Awareness  

The goal of session 1 was mainly to establish spatial knowledge while introducing 

the basic procedural knowledge required for emergency egress offshore (instilling the 

value of the temporary safe refuge (TSR) and general safe practices). This session 

focused on learning objectives: Spatial Awareness (LO1), Routes and Mapping (LO3), 

Register at TSR (LO5) and Safe Practices (LO6). For this reason 60% of the weighting 

was assigned to spatial knowledge acquisition (overall spatial awareness including 
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landmark recognition, route mapping and developing the foundation for survey 

knowledge development). The remaining 40% involved the procedural knowledge 

acquisition, specifically TSR procedures and general safe practices. Table 4-37 describes 

the learning objectives, the associated performance measures and assigned weighting for 

session 1.   

 

Table 4-37: Session 1 weighting scheme (out of a total of 100 points). 

Learning Objectives Performance Measure Weighting 

LO1. Establish Spatial 

Awareness of Environment 

Correct location 25 

35 Total time to muster at correct location 5 

Total distance travelled to correct 

location 
5 

LO3. Routes and Mapping: 

Determine Primary and 

Alternative Routes to Muster 

Stations 

Route selected (prim, second, or other)  15 

25 Off route:   

Total backtracking time 5 

Total backtracking distance 5 

LO5. Register at Temporary 

Safe Refuge (TSR) 
Correct location + Move t-card correctly 15 15 

LO6. Safe Practices 

Speed of trainee  (% running) 10 

25 
Number of fire/watertight doors left open 

(closed)  
15 

 

Note: A passing competence score is 80%. If a participant failed to achieve any of 

the above learning objectives individually it would result in a failing grade.  
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Spatial Awareness and Route Mapping (60%): 

Spatial Awareness and Route Mapping was broken down into reaching the correct 

location, time and distance spent getting to correct location, route selected to get to the 

location, and any backtracking that took place. This learning objective was aimed at 

helping the participants establish spatial orientation and wayfinding as described by 

Waller et al. (1999), Darken and Peterson (2001) and Farrell et al. (2003). To assist with 

this task, participants were provided time to familiarize themselves with accommodations, 

engine room machinery spaces, the temporary safe refuge (TSR) and the route options 

from accommodations and worksite to the TSR. This performance measure assessed how 

well the participants remembered:  

 the assigned muster stations (landmarks), 

 the egress routes (route knowledge),  

 and overall wayfinding in the environment (survey knowledge).  

 

The main focus of session 1 was to help establish spatial awareness of the 

environment (both route memory and survey knowledge). For this reason the spatial 

awareness and route mapping performance measures were allocated a 60% weighting for 

session 1. 

 

Register at TSR (15%):  

The second focus of session 1 was to establish the correct muster locations and the 

procedures necessary to correctly muster (i.e. what to do once one reached the correct 

location?). This learning objective is dependent on the previous objective. To properly 
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muster at the TSR, the participant required both spatial and procedural knowledge to 

recognize the muster and lifeboat stations (landmarks) and knowledge of procedures to 

identify the correct muster location. The performance measures associated with Muster 

Station Protocol were allocated a 15% weighting for session 1. 

 

Safe Practices (25%): 

The first focus of session 1 was on emphasizing the importance of safe practices. 

As the participants in the study had no prior work experience in an offshore environment, 

they were generally unaware (prior to the study) of general safety practices that are 

necessary while working in these environments. Two main elements that were 

emphasized in AVERT were: not to run on the platform and to remember to close all 

doors. These tasks are important and need to be emphasized in this form of training. For 

this reason, a weighting of 25% of the overall competency score in session 1 was assigned 

to this learning objective.  

The scoring scheme was not presented to the participants in the feedback portion 

of the testing and thus there was not sufficient reinforcement to help correct this 

behaviour for some participants in the study. This is a lesson learned to apply to future 

programs.  

 

Session 2: Alarm Recognition 

The goal of session 2 was to expand the participants’ procedural knowledge 

specifically in alarm recognition. Therefore, the Alarm Recognition learning objective 
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(LO2) was added to the assessment criteria in session 2. This change is also reflected in 

the weighting scheme of session 2. The overall focus transferred from spatial awareness 

to alarm recognition. For this reason, 35% of the weighting was assigned to spatial 

knowledge. The alarm recognition category was assigned 25% of the weighting (for the 

reinforcing of the alarm recognition element of the procedural knowledge). The 

remaining 40% involved the procedural knowledge acquisition again for registering at the 

TSR procedures and general safe practices. The weightings were rebalanced to 100% for 

the session.  Table 4-38 describes the learning objectives, the associated performance 

measures and assigned weighting for session 2.   

 

Spatial Awareness and Route Mapping (35%) and Alarm Recognition (25%): 

Once spatial awareness and route mapping was established in session 1, session 2 

added the alarm recognition learning objective to the participants’ responsibilities for 

responding to the scenarios. This resulted in a shift of weighting from the spatial 

awareness objective to the alarm recognition learning objective. Both spatial awareness 

and alarm recognition learning objectives are measured in AVERT with the same metric 

and can be considered as one and the same from session 2 onward.   

 

Register at TSR (15%) & Safe Practices (25%):  

These learning objective weightings remained the same in session 2. 

  



159 
 

Table 4-38: Session 2 weighting scheme (out of a total of 100 points). 

Learning Objectives Performance Measure Weighting 

LO1. Establish Spatial 

Awareness of Environment 

Correct location 
See LO2 

10 Total time to muster at correct location 5 

Total distance travelled to correct 

location 
5 

LO2. Alarms Recognition: 

Understand role of alarms 

and urgency of situation 

Correct location  (GPA = Mess Hall, 

PAPA = Lifeboat) 
25 25 

LO3. Routes and Mapping: 

Determine Primary and 

Alternative Routes to Muster 

Stations 

Route selected (prim, second, or other)  15 

25 
Off route:   

Total backtracking time 5 

Total backtracking distance 5 

LO5. Register at Temporary 

Safe Refuge (TSR) 

Correct location + Move t-card correctly 

15 15 

LO6. Safe Practices 

Speed of trainee  (% running) 
10 

25 
Number of fire/watertight doors left open 

(closed)  
15 

 

 

Session 3: Assess Situation and Avoid Hazards 

The goal of session 3 was to evaluate the participants’ procedural knowledge 

specifically in assessing the emergency situation and avoiding hazards on route. 

Therefore the Assess Emergency Situation and Avoid Hazards learning objective (LO4) 

was added to the assessment criteria in session 3. The weighting scheme of session 3 was 

adjusted to reflect the focus of the assessment. The overall focus transferred from spatial 

awareness and alarm recognition to assessing the situation and avoiding hazards. For this 

reason 30% of the weighting was reassigned to spatial knowledge (awareness and routes 
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and mapping). The alarm recognition category was reassigned 10% of the weighting. 

Assessment of the situation category was assigned 25% (for reinforcing the situation 

assessment element of the procedural knowledge). Registering at the TSR was adjusted to 

10% and the remaining 25% involved safe practices. The weightings were rebalanced to 

100% for the session.  Table 4-39 describes the learning objectives, the associated 

performance measures and assigned weightings for session 3.   

 

Assess Situation and Avoid Hazards (25%):  

The main focus of session 3 was establishing the importance of assessing the 

situation and avoiding hazards along the egress route. For this reason the performance 

measures associated with Assess Situation were allocated a 15% weighting for session 3. 

 

Spatial Awareness & Route Mapping (30%), Alarm Recognition (10%), Register at TSR 

(10%) 

Spatial awareness, route mapping, alarm recognition and register at TSR learning 

objectives were established and tested in session 1 and session 2. In session 3, the 

participants’ responsibilities transitioned from demonstrating knowledge of these learning 

objectives to their application in emergency situations. The assess situation and avoid 

hazards (LO4) learning objective encompasses the application of the first four learning 

objectives. As a result, these learning objective weightings had a reduced emphasis in 

session 3. 

 

Safe Practices (25%):  

This learning objective weighting remained the same in session 3.  
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Table 4-39: Session 3 weighting scheme (out of a total of 100 points). 

Learning Objectives Performance Measure 

Weighting 

Scenarios 
Total 

TH1-3 TH4 

LO1. Establish Spatial 

Awareness of 

Environment 

Correct location See LO2 See LO2  

Total time to muster at correct location 5 5 10 

Total distance travelled to correct 

location 
5 5  

LO2. Alarms 

Recognition: Understand 

role of alarms and 

urgency of situation 

 

Correct location  (GPA = Mess Hall, 

PAPA = Lifeboat) 

10 10 10 

LO3. Routes and 

Mapping: Determine 

Primary and Alternative 

Routes to Muster 

Stations 

Route selected (prim, second, or other)  
10 10 

20 Off route:   

Total backtracking time 5 5 

Total backtracking distance 5 5 

LO4. Assess Emergency 

Situation and Avoid 

Hazards on Route 

Successful Interaction with MAC 

(TH4 only) 
n/a 5 

25 

Route selected (prim, second, or other) 

& re-route in event of alarm change/ 

PA update  

5 n/a 

Re-route in event of encounter Hazard 

(Most efficient route selected when re-

routing) 

10 5 

Exposure time to hazard – smoke 10 5 

Exposure time to hazard – fire (TH4 

only) 
n/a 5 

Incurred injury – probability of 1
st
 

degree burns/death  (TH4 only) 
n/a 5 

LO5. Register at 

Temporary Safe Refuge 

(TSR) 

Correct location + Move t-card 

correctly 
10 10 10 

LO6. Safe Practices 

Speed of trainee  (% running) 
10 10 

25 Number of fire/watertight doors left 

open (closed)  15 15 
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4.2.3 Aggregated Competence Score Results  

The competence score provides a good indication of how closely the participants 

in both groups were able to reach competence in offshore egress using AVERT. The 

competence score for each scenario represents the individual participant’s ability to 

demonstrate her/his understanding of all six learning objectives in the virtual offshore 

egress situation. As described in the previous section, to receive a passing competence 

score the participant was required to achieve an 80% or higher in the aggregated 

competence score. This (high) percentage passing score was chosen to ensure that the 

participants were meeting all learning objective requirements adequately. Table 4-40 

summarizes the mean competence scores for the entire sample. 

 

Table 4-40: The descriptive statistics of the aggregated competency score for each 

scenario. 

Scenario N Mean Score Std. Dev Minimum Maximum 

Normal (TE1) 36 58 26 0 95 

Normal (TE2) 36 65 26 0 98 

Blackout (TE3) 36 73 17 8 95 

Blackout (TE4) 36 67 19 13 95 

Alarm (TA1) 36 79 14 25 100 

Alarm (TA2) 36 76 20 3 100 

Alarm + Blackout (TA3) 36 76 19 10 100 

Alarm + Blackout (TA4) 36 77 16 33 100 

Hazard situation (TH1) 36 61 23 15 95 

Hazard situation (TH2) 36 67 24 5 100 

Hazard situation (TH3) 36 62 23 5 98 

Hazard situation (TH4) 36 67 23 5 95 
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As shown in Table 4-40, neither group achieved a mean competence score of 80% 

or higher in any of the test scenarios. Thus, as a collective, neither group met the expected 

passing competence score. It is notable that the entire sample shows signs of 

improvement between scenarios in session 1 and further improvement across session 1 to 

session 2. However, there appears to be an overall degradation of performance in session 

3 which involved the most challenging scenarios. To compare competence scores in 

relation to scenario complexity, the competency scores have been organized by 

accommodation and worksite egress scenarios. Figures 4-14 and 4-15 depict the mean 

competence scores for each group in the accommodation and worksite scenarios, 

respectively.  

 

Figure 4-14: Cabin Egress Competence Scores for both groups. 
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Figure 4-15: Worksite Egress Competence Scores for both groups. 

 

Figure 4-14 shows a similar trend as the overall competence score in the 

accommodation egress scenarios. In session 1 there is a notable improvement for both 

groups in the overall competence score from TE1 to TE3 in the spatial awareness 

scenarios. Both groups remain consistent in competence score throughout session 2 

during the alarm recognition scenarios. The competence score begins to drop in session 3 

when the advanced emergency scenarios are introduced. The mean competence scores for 

both groups do not reach the passing score, however there are individuals in both groups 

that were successful in reaching the 80% passing score. In the first scenario (TE1), 24% 

of group 1 and 21% of group 2 achieved the passing score. In the blackout condition 



165 
 

(TE3), 35% of group 1 and 47% of group 2 achieved 80% or higher. Similarly, in the 

alarm recognition scenarios (TA1), 65% of group 1 and 47% of group 2 achieved the 

passing score. In TA3, 41% of group 1 and 63% of group 2 were successful. In the 

advanced emergency situations (TH1), 35% of group 1 and 26% of group 2 achieved 80% 

or higher. In TH2, 53% of group 1 and 32% of group 2 were successful at reaching the 

passing competence score.  

Figure 4-15 shows the competence score in the worksite egress scenarios. In 

session 1, there was a small improvement for group 1 and no notable improvement for 

group 2 in the overall competence score from TE1 to TE3 in the spatial awareness 

scenarios. Both groups reached the highest competence score in session 2 during the 

alarm recognition scenarios. Similarly to the accommodation egress scenarios, the mean 

competence scores for both groups in the worksite scenarios do not reach the passing 

score. There were, however, several individuals in both groups that were successful in 

reaching the 80% passing score. In the first engine room scenario (TE2), 41% of group 1 

and 42% of group 2 achieved the passing score. In the blackout condition (TE4), 35% of 

group 1 and 26% of group 2 achieved 80% or higher. In the alarm recognition scenarios 

(TA2), 71% of group 1 and 53% of group 2 achieved the passing score. In TA4, 59% of 

group 1 and 74% of group 2 were successful. In the advanced emergency situations 

(TH3), 29% of group 1 and 21% of group 2 achieved 80% or higher. In TH4, 41% of 

group 1 and 42% of group 2 were successful at reaching the passing competence score.  
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4.2.4 Competence Score Comparison between Groups 

Fisher’s Exact Test was used to compare the group proportions to determine if the 

level of training exposure between group 1 and group 2 impacted the participants’ overall 

competence score. Tables 4-41, 4-42 and 4-43 summarize the competence scores by 

group for the three sessions.  

 

Table 4-41: The mean competency scores for each scenario in session 1 by group. 

Scenario Condition Group N Mean SE 

p - value 

Fisher’s Exact 

Test 

Normal (TE1) G1 17 64 5.44  

0.314 

G2 19 53 6.62 

Normal (TE2) G1 17 67 6.13  

0.344 
G2 19 63 6.36 

Blackout (TE3) G1 17 72 4.66  

0.825 
G2 19 74 3.27 

Blackout (TE4) G1 17 73 2.94  

0.454 

G2 19 62 5.29 

 

In session 1, group 1 outscored group 2 in all scenarios except the cabin blackout 

scenario (TE3). As indicated in Table 4-41, no statistical difference was found between 

group participants in competence score for all session 1 scenarios. Overall, the 

competence scores for both groups were similar (mean 6% difference). The biggest 

difference was observed in the first (TE1) and last (TE4) scenarios, where the mean 

competence score of group 1 was 11% higher than group 2.  
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Both groups show improvement in competence score from session 1 to session 2. 

On average, group 1 improved by 6% while group 2 improved by 14% from session 1 to 

session 2. The competence scores are more balanced in session 2 across the two groups 

(mean 2% difference). However, in session 2, group 2 outscored group 1 in all scenarios 

except the normal condition engine room scenario. As indicated in Table 4-42, no 

statistical difference was found between group participants in competence score for all 

session 2 scenarios.  

 

Table 4-42: Session 2 mean competency scores by group. 

Scenario Condition Group N Mean SE 

p - value 

Fisher’s Exact 

Test 

Alarm (TA1) G1 17 79 4.14  

0.735 
G2 19 78 2.28 

Alarm (TA2) G1 17 77 4.77  

0.565 

G2 19 75 4.75 

Alarm + Blackout 

(TA3) 
G1 17 75 4.99  

0.241 

G2 19 76 4.30 

Alarm + Blackout 

(TA4) 
G1 17 75 3.86  

0.488 
G2 19 79 3.78 

 

The competence score performance of both groups degraded from session 2 to 

session 3.  On average, group 1 participants performance decreased by 6% while group 2 

decreased by 17% from session 2 to 3. Session 3 resulted in the biggest difference in 

competence scores between the two groups. In all session 3 scenarios, group 1 outscored 

group 2 (mean 9% difference). As indicated in Table 4-43, one scenario resulted in a 
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statistical difference between the group participants (TH2, p = 0.02). This scenario 

involved cabin egress where the secondary egress route was blocked by heavy smoke. 

Group 1 scored 13% higher than group 2 in this scenario. No other statistically significant 

difference was found between groups in competence score for the remaining scenarios.  

 

Table 4-43: Session 3 mean competency scores by group. 

Scenario Condition Group N Mean SE p - value 

Fisher’s Exact 

Test 

 (TH1) G1 17 62 5.39  

0.818 
G2 19 60 5.35 

 (TH2) G1 17 72 6.14  

0.020 
G2 19 63 5.00 

 (TH3) G1 17 69 4.45  

0.661 

G2 19 56 5.63 

 (TH4) G1 17 72 5.17  

0.902 

G2 19 62 5.65 

 

 

4.3: Learning Across Sessions 

The aggregated competence score provided a measure of the competence reached 

by both groups. A closer look at each learning objective is required to determine how well 

the participants learned the training content and improved by gaining experience in the 

test scenarios. To measure learning, each participant’s task performance was measured 

repeatedly across the three sessions. For the purpose of this study, learning is defined as 
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having occurred if the participant’s task performance improves on one or more of the 

learning objectives across the three test sessions. See Table 3-3 for a list of the learning 

objectives that were assessed for each session. 

This section will first identify any performance improvements measured within 

sessions and across sessions and secondly summarize the major learning outcomes and 

common mistakes observed during the virtual egress scenarios. Non-parametric statistics 

were used to compare within session and across session differences on task performance. 

Separate Friedman’s tests were used for each group to determine within-group differences 

between normal (control), blackout (visibility) and hazard (complexity) conditions. 

Wilcoxon Signed Ranks test were also used to check for within-group differences across 

two scenario conditions to identify any statistical significance. 

To compare task performance to measure improvements (learning), the results 

were again split into the accommodation scenarios and the worksite scenarios. The 

following comparisons were made for cabin egress scenarios: 

 To compare learning within the session on cabin egress scenarios, the following 

scenarios were compared: TE1-TE3 (normal to blackout conditions), TA1-TA3 

(normal to blackout conditions), and TH1 and TH2 (hazard to hazard conditions).  

 To compare learning across sessions on cabin egress scenarios, the following 

scenarios were compared: TE1-TA1 (normal to normal condition); and TE3-TA3 

(blackout to blackout condition). No data were collected to compare hazard 

conditions across sessions.  
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The following comparisons were made for engine room egress scenarios: 

 To compare learning within the session on engine room egress scenarios, the 

following scenarios were compared: TE2-TE4 (normal to blackout conditions) and 

TA2-TA4 (normal to blackout conditions) and TH3 and TH4 (hazard to hazard 

conditions).  

 To compare learning across sessions on engine room egress scenarios, the 

following scenarios were compared: TE2-TA2 (normal to normal condition); and 

TE4-TA4 (blackout to blackout condition). No data were collected to compare 

hazard conditions across sessions. 

 

1. Establishing Spatial Awareness of Environment 

 

Correct Muster Location – Cabin  

Within Sessions  

For group 1, no significant effect was identified between normal, blackout and 

hazard conditions on the correct muster location.  For group 2 there was a significant 

difference in reaching the correct location between the normal to blackout conditions 

(TE1 to TE3 scenarios) in session 1. Figure 4-16 shows the percent competence in 

reaching the correct location in the cabin scenarios for both groups. The task performance 

of group 2 in reaching the correct location improved by 37% from the normal condition to 

the blackout condition in the accommodation scenarios (TE1 to TE3, p = 0.016). There 
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were no other differences between normal to blackout conditions for group 2 in the 

correct muster location task.  

 
Figure 4-16: Cabin egress correct location and register at TSR competence scores. 

 

Across Sessions  

Comparing the correct muster location performance across sessions, there was no 

significant difference identified between session 1, session 2 and session 3 for group 1. 

For group 2 there was a significant difference (p = 0.016) in reaching the correct location 

between the normal condition scenario in session 1 and the normal condition scenario in 

session 2 (TE1-TA1). The task performance of group 2 in reaching the correct location 

improved by 37% from the normal condition in session 1 to the normal condition in 

session 2 in the accommodation scenarios. For group 2 there was also a significant 
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difference between the first scenario in session 1 (TE1) and the hazard condition in 

session 3 (TH1) with a difference of 26% improvement (p = 0.025).  There were no other 

differences between sessions for both groups in the correct muster location task. 

Overall, the improvement in performance experienced by group 2 from the first 

scenario to scenarios in session 2 and 3 is likely due to learning the correct muster 

locations during the test scenarios. The lack of significant difference in performance in 

group 1 is in part because group 1 was able to practice similar scenarios prior to the test 

sessions. Thus there was less room for improvement for group 1 (as the group 1 

participants’ improvement in identifying the correct muster location occurred in the 

practice scenarios). There was also some degradation in performance for both groups 

from session 2 to session 3. This decrease in reaching the correct muster location was not 

statistically significant. 

 

Correct Muster Location – Engine Room 

Within Sessions  

No significant difference was found for both groups in reaching the correct muster 

location for the engine room scenarios. Figure 4-17 shows the percent competence in 

reaching the correct location in the engine room scenarios for both groups 
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Figure 4-17: Worksite egress correct location and register at TSR competence scores. 

 

Across Sessions  

Comparing the correct muster location performance across sessions, there was no 

significant difference identified between session 1, session 2 and session 3 for group 1 or 

group 2.  

 

Time and Distance to Muster – Cabin Egress Scenarios 

Within Sessions  

Figures 4-18 and 4-19 show the percent competence for time and distance to 

muster in the cabin scenarios for both groups. In comparing normal to blackout conditions 

in cabin scenarios, there was no significant within-group difference between normal to 
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blackout conditions (TE1 to TE3) for time to complete and distance travelled to complete 

the scenarios for both groups in session 1. However, there was a significant within-group 

difference between normal and blackout conditions for group 1 (found between scenarios 

TA1-TA3) for time to complete scenario (difference = 15.73 seconds, p = 0.031) and 

distance to complete scenario (difference = 17.69 meters, p = 0.022) in session 2. There 

was no significant within-group difference for group 2 between (TA1-TA3) for time or 

distance to complete scenario (p = 0.196, p = 0.291).  

 

Across Sessions  

In comparing normal to hazard conditions in cabin scenarios, there was no 

significant difference in time and distance found for both groups in session 1. There was a 

trending difference in distance to complete scenario between normal to hazard (TE1 and 

TH1) conditions for group 1 (difference = 31.78m, p = 0.062) and group 2 (difference = 

22.03m, p = 0.070). There was also a trending difference for group 1 between TE1 and 

TH2 for distance to complete scenario (difference = 61.97m, p = 0.049). 



175 
 

 
Figure 4-18: Cabin egress time to complete competence scores for both groups. 

 

 
Figure 4-19: Cabin egress distance travelled competence score for both groups. 
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For group 1, a significant within-group difference was found between normal and 

hazard (TA1-TH1) conditions for time and distance to complete scenario (time difference 

= 40.3s, p = 0.000 and distance difference = 49.51m, p = 0.001). For group 2, a 

significant within group difference was found between normal and hazard (TA1-TH1) 

conditions for time and distance to complete scenario (time difference = 43.90s, p = 0.002 

and distance difference = 46.31m, p = 0.007). In addition for group 1 a significant within-

group difference were found between TA1-TH2 (normal to hazard) for time and distance 

to complete scenario (time difference = 36.01seconds, p = 0.000 and distance difference = 

19.33m, p = 0.025). For group 2 there was no significant within-group difference found 

between normal to hazard (TA1-TH2) conditions for time and distance to complete 

scenario (p = 0.225 and p = 0.227 respectively). 

In comparing blackout to hazard conditions in cabin scenarios, for group 1, there 

was a significant difference in distance to complete scenario between the blackout and 

hazard condition (TE3-TH1 distance difference = 18.40m, p = 0.049). For group 2, there 

was no significant within-group difference between blackout and hazard conditions (TE3-

TH1). For group 1 there was a significant within-group difference between the blackout 

to hazard conditions (TA3-TH1) for time and distance to complete the scenario (time 

difference = 24.57s, p = 0.023 and distance difference = 31.81m, p = 0.013). For group 2, 

there was a significant difference between the blackout and hazard condition (TA3-TH1) 

for time to complete scenario (time difference = 49.91s, p = 0.001 and distance difference 

= 47.62m, p = 0.002). 
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In comparing TA3-TH2 there was a significant difference for time to complete 

scenario for group 1 (difference = 20.28seconds, p = 0.023), but no difference for distance 

to complete scenario (p = 0.943). For group 2 there was no significant within-group 

difference between TA3-TH2 for time to complete scenario (p = 0.113), but there was a 

significant difference in distance to complete scenario (difference = 12.69m. p = 0.016). 

 

Time and Distance to Muster – Engine Room Egress Scenarios 

Within Sessions  

Figures 4-20 and 4-21 show the percent competence for time and distance to 

muster in the engine room scenarios for both groups. In comparing normal to blackout 

conditions in engine room scenarios, there was no difference for time and distance 

between normal to blackout conditions (for TE2-TE4 and TA2-TA4) for both groups for 

session 1 and session 2. 

 

Across Sessions  

In comparing normal to hazard conditions in engine room scenarios, for group 1, 

there is a trending difference for time to complete between normal to hazard (TE2-TH3) 

conditions (p = 0.064), but not for distance (p = 0.204). For group 2, there was a 

significant difference for distance (difference = 52.77m, p = 0.007) and a trending 

difference for time between TE2 to TH3 (time = 51.9s, p = 0.060). Comparing normal to 

hazard conditions (TA2-TH3), for group 1, there was a significant difference for time and 

distance for normal to hazard conditions in the engine room scenarios (time difference = 
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110.88s p = 0.000 and distance difference = 87.68m, p = 0.000). As well for group 2, 

there was a significant within-group difference in time and distance for normal to hazard 

(TA2-TH3) conditions in the engine room scenarios (time difference = 125.86s, p = 0.000 

and distance difference = 100.64m, p = 0.000). For group 1, there was also a significant 

difference between TA2-TH4 for distance (difference = 39.87m, p =0.017) and a trending 

difference for time (t = 37.4s; p = 0.071). 

 

 
Figure 4-20: Worksite egress time to complete competence score for both groups. 
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Figure 4-21: Worksite egress distance travelled competence score for both groups. 

 

In comparing blackout to hazard conditions in engine room scenarios (TE4-

TH3/TH4 or TA4-TH3/TH4), comparing blackout to hazard conditions (TE4-TH3), there 

was a significant difference in time to complete for group 2 (difference = 56.70s, p = 

0.045) and a trending difference for group 1 (difference = 47.89s, p = 0.064). There was 

no within group difference for distance between TE4-TH3 scenarios. Comparing TE4-

TH4 there was a significant difference in time to complete and distance to complete for 

group 2 between blackout to hazard conditions (time difference = -47.61s, p = 0.012 and 

distance difference = 75.93m, p = 0.001). There was also a trending difference for time to 

complete for group 1 (difference = -25.57s, p = 0.071). For group 1, there was a 
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significant difference between blackout to hazard condition (TA4-TH3) for time and 

distance to complete (time difference = 100.01s, p = 0.000 and distance difference = 

80.19m, p =0.001). Likewise, there was a significant within-group difference for group 2 

between TA4-TH3 (time difference = 126.95s, p = 0.000 and distance difference = 

99.56m, p =0.001). Finally, there was a significant difference in distance to complete 

between TA4-TH4 for group 2 (distance difference = 65.28m, p =0.027). 

 

2. Routes and Mapping 
 

Backtracking Time and Distance – Cabin Egress Scenarios 

Figures 4-22 and 4-23 show the percent competence for backtracking time and 

distance to muster in the cabin scenarios for both groups. There was no significant 

difference between normal and blackout conditions for both groups in session 1 cabin 

scenarios. In session 2, there was a significant difference in backtracking time between 

normal and blackout conditions (TA1-TA3) for group 1 only with a backtracking time 

difference of 9.24s (p = 0.000).  
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Figure 4-22: Cabin scenario backtracking time competence scores for both groups. 

 

 
Figure 4-23: Cabin scenario backtracking distance competence scores for both groups. 
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In comparing normal to hazard conditions there was a significant difference for 

both groups (TA1-TH1) for both backtracking time and distance. For group 1 there was a 

significant backtracking time difference of 12.30s (p = 0.002) and backtracking distance 

difference of 10.87m (p = 0.001). For group 2 there was a significant backtracking time 

difference of 27.52s (p = 0.006) and backtracking distance difference of 16.55m (p = 

0.007). For group 1 there was also a significant difference in normal to hazard conditions 

(TA1-TH2) for both backtracking time and distance with a difference of 19.83s  (p = 

0.001) and 13.20m (p = 0.003).   

In comparing blackout to hazard conditions there was a significant difference for 

group 2 (TA1-TH1) for both backtracking time and distance. In group 2 there was a 

significant backtracking time difference of 30.46s (p = 0.004) and a backtracking distance 

difference of 17.78m (p = 0.008). No other statistical significance was found for 

backtracking time and distance for the cabin scenarios. 

 

Backtracking Time and Distance - Engine Room Egress Scenarios 

Figures 4-24 and 4-25 show the percent competence for backtracking time and 

distance to muster in the engine room scenarios for both groups. There was no significant 

difference between normal and blackout conditions for both groups in session 1 and 

session 2 engine room scenarios. In session 2, there was a trending difference in 

backtracking distance between normal and blackout conditions (TA2-TA4) for group 2 

only (p = 0.091).  



183 
 

 
Figure 4-24: Engine room scenario backtracking time competence scores 

 

 
Figure 4-25: Engine room scenario backtracking distance competence score. 
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In comparing normal to hazard conditions there was a significant difference for 

both groups (TA2-TH3) for both backtracking time and distance. For group 1 there was a 

significant backtracking time difference of 56.94s (p = 0.002) and backtracking distance 

difference of 43.52m (p = 0.002). For group 2 there was a significant backtracking time 

difference of 75.86s (p = 0.000) and backtracking distance difference of 45.18m (p = 

0.001).  

In comparing blackout to hazard conditions there was a significant difference for 

both groups (TA4-TH3) for both backtracking time and distance. For group 1 there was a 

significant backtracking time difference of 52.58s (p = 0.006) and backtracking distance 

difference of 38.59m (p = 0.002). In group 2 there was a significant backtracking time 

difference of 70.65s (p = 0.000) and a backtracking distance difference of 44.10m (p = 

0.000).  For group 2 there was also a significant difference in blackout to hazard 

conditions (TE4-TH4) for backtracking time with a difference of -27.09s (p = 0.014).  No 

other statistical significance was found for backtracking time and distance for the engine 

room egress scenarios. 

3. Safe Practices: 

Percentage Running: 

Figures 4-26 and 4-27 show the percent competence for running in the cabin and 

engine room scenarios for both groups. There was no significant difference between 

normal and blackout conditions for both groups in session 1 and session 2 cabin and 

engine room scenarios.  
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In comparing normal to hazard conditions for the cabin scenarios there was a 

significant difference in percentage running for group 1. For group 2, there was a 

significant difference in percent running across all cabin scenarios. For group 1 there was 

a significant percent running difference between scenarios (TE1-TH2) resulting in a 

decrease of running by 8% (p = 0.007). There was also a trending difference between 

normal and hazard conditions for group 1 in scenarios (TA1-TH1, p = 0.055) and TA1-

TH2, p = 0.081). 

 
Figure 4-26: Cabin egress scenarios not running competence scores. 

 

In comparing blackout to hazard conditions for the cabin scenarios there was a 

significant difference for group1 (TA3-TH2) for percentage running. For group 1 there 

was a significant percent running difference resulting in a decrease of running by 7%      
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(p = 0.035). No other statistical significance was found for percent running for the cabin 

egress scenarios. 

 
Figure 4-27: Engine room egress scenarios not running competence scores. 

 

In comparing normal to hazard conditions for the engine room scenarios there was 

a significant difference for both groups (TE2-TH4 and TA2-TH4) for percent running. 

For group 1 there was a significant percent running difference of 4% (TA2-TH4, p = 

0.026). For group 2 there was a significant percent running difference of 4% (TE2-TH4,  

p = 0.027).  

In comparing blackout to hazard conditions for the cabin scenarios there was a 

significant difference for group2 (TE4-TH4) for percentage running. For group 2, there 

was a significant percent running difference resulting in an increase of running by 6%     
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(p = 0.024). No other statistical significance was found for percent running for the engine 

room egress scenarios. 

Overall, group 1 percent running decreased across each session (slight 

performance improvement). Group 2 percent running increasing across each session 

(decrease in performance). 

 

Closing Doors:  

Figures 4-28 and 4-29 show the percent competence for closing doors in the cabin 

and engine room scenarios for both groups. No statistical significant difference was found 

for the door closing task in the engine room scenarios. Similarly for the cabin scenarios 

no significant difference was identified for the door closing percentage for both group 1 

and group 2.   

In session 1, 50% of group 1 closed the doors while 41% of group 2 closed the 

doors. In session 2, 54% of group 1 and 62% of group 2 closed the doors (improvement). 

In session 3, 63% of group 1 and 62% of group 2 closed the doors.  There was an 

improvement in both groups for door closing from session 1 to session 2. For group 1 

there was a slight performance improvement for closing doors across session 1 and 

session 2 from 50% to 54%. A more substantial performance improvement for group 1 

occurred from session 2 to session 3 from 54% to 63%. For group 2 there was a 

substantial performance improvement for closing doors across session 1 and session 2 

from 41% to 62%. However there was no further improvement for group 2 from session 2 

to session 3.  
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Figure 4-28: Cabin egress scenarios closing doors competence scores. 

 

Overall, there was a significant difference between the first test scenario in session 

1 and the two hazard scenarios in session 3. For group 1 there was a 29% increase in door 

closing (p = 0.025) between TE1 and TH1 (normal to hazard). While for group 2 there 

was a 58 % increase in door closing (p = 0.002) between TE1 and TH2 (normal to hazard) 

and a 37% increase in door closing (p = 0.020) between TE3 and TH2 (blackout to 

hazard). There was also a trending difference between the session 2 and session 3 door 

closing for group 2 (when comparing TA1 to TH2 and TA3 to TH2, p = 0.059). In session 

3, there was also a trending difference of 32% (p = 0.082) between groups in scenario 

TH2. Group 2 received 32% higher competence in door closing than group 1. This is 

result is due the two groups route selection. 
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Figure 4-29: Engine room egress scenarios closing doors competence scores. 

 

Overall, there was a significant difference between group 1 and group 2 in 

scenario TA4. Group 2 received a 26 % higher competence than group 1 in door closing.  
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Chapter 5 : Discussion 

The goals of this study were to develop a strategy to assess performance in 

offshore emergency situations using virtual environments, measure time to competence, 

establish a baseline in task performance for novice individuals in simulated emergency 

situations and determine attributes of the virtual environment that activate learning. The 

main findings of this research were as follows: 1) performance in the test scenarios was 

lower than expected; 2) no major statistical significance was found in task performance 

between the two training exposure groups (with the exception of two scenarios out of a 

total of twelve); 3) basic offshore safety competence was not demonstrated for all six 

learning objectives; 4) time to competence for some learning objectives was achieved 

within the first session but for other learning objectives the time to competence is still 

unknown; and 5) learning occurred but at different rates for each group and each 

individual participant. 

5.1 Achieving Competence in Basic Egress Safety Offshore 

The main objective of the study was to develop a strategy to assess participant 

competence in offshore emergency situations using virtual environments. To measure 

competence and to understand the impact of virtual environment training on acquiring 

competence, two levels of training exposure were used. One group received repeated 

exposure while the other group received a single exposure to the training material. The 

participants in both groups were tested using the same test scenarios over the course of 

three sessions. The test sessions increased in difficulty across each session and ranged 
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from finding a specific muster location to alarm recognition drills to full emergency 

evacuation scenarios. Multiple task performance measures were recorded and compiled to 

assess competence for six learning objectives. The learning objectives were categorized 

into two knowledge dimensions: spatial knowledge and procedural knowledge.  

The spatial knowledge objectives included:  

 Establishing Spatial Awareness (LO1) 

 Routes and Mapping (LO3) 

The procedural knowledge objectives included:  

 Alarm Recognition (LO2) 

 Assessing Situation and Avoiding Hazards (LO4) 

 Registering at the Temporary Safe Refuge Area (LO5) 

 General Safe Practices (LO6) 

 

An aggregate score of the task performance parameters was developed using the 

performance data and a weighting scheme. Participants had to receive an 80% or higher in 

the aggregated competence score to pass.  

5.1.1 Competence Was Not Demonstrated in All Six Learning Objectives  

The results of the aggregate competency score show that participants were not 

able to demonstrate 100% competence. In fact, neither group was successful in 

demonstrating competence for all six learning objectives. As depicted in Figure 5-1, the 
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mean scores for both groups did not reach the 80% competence standard for all three 

testing sessions.  

 

Figure 5 - 1: Combined mean competence scores for each group across sessions 1-3. 

 

The overall mean competence reached for each session was 66%, 77% and 64% 

respectively. In session 1, the mean competence was 69% for group 1 and 63% for group 

2. In session 2, group 1 and group 2 both scored a mean of 77%. In session 3, the mean 

competence scores dropped to 69% for group 1 and 60% for group 2. This shows that 

competence generally improved as participants progressed through each session from 

spatial awareness to alarm recognition. Substantial deterioration in task performance 

occurred when participants transitioned from session 2, alarm recognition to session 3, 

hazard avoidance. This result was unexpected. It was hypothesized that participants 

would be able to successfully demonstrate all learning objectives by the end of the third 
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test session; however, this was the case for only a small minority of participants. Five 

people in total successfully achieved the minimum competence requirement in the final 

test session, four from group 1 and one from group 2. Three of the five participants 

demonstrated a mean competence score of 80% or above consistently across all sessions. 

However, only one participant was successful in achieving the 80% or above in all twelve 

test scenarios.  

The step increase in scenario difficulty was used to help establish spatial learning 

and add procedural tasks step by step. However, only 4 participants in session 1 received 

a mean of 80% on the scenarios. This early poor performance suggests that few 

participants were grasping the basics, which included correct location, follow egress 

route, register at TSR and comply with basic safety practices. In session 2, 18 participants 

received a mean of 80% on the test scenarios. This increase in mean competence score 

showed a promising sign that learning had occurred and that the participants were 

grasping spatial and procedural knowledge required for basic emergency egress. It also is 

an indication that participants were starting to demonstrate their competence in relatively 

normal conditions (less stressful). By sessions 3, only 5 participants received a mean of 

80% on the test scenarios. This indicates that the participants were unable to keep up with 

the increases in complexity from session 2 to session 3. There are several reasons that 

could contribute to the decline in performance: 
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1. The increase in difficulty was too abrupt for participants to demonstrate 

competence (steeper testing curve). The final test scenarios in session 3 

were more challenging for the participants than anticipated and resulted in 

a larger step increase in minimum competence requirements than the 

participants were able to demonstrate. 

2. Participants may have had difficulties retaining the initial training or 

participants may not have had a strong foundational knowledge both 

spatially and procedurally to handle the emergency egress scenarios in 

session 3.  

3. Participants may not have been able to demonstrate spatial or procedural 

tasks in high stress emergency situations. 

4. Due to passive reporting of feedback, participants may not have been 

adequately corrected for poor task performance that likely propagated into 

larger mistakes in the final test scenarios.  

5. Participants may have become complacent with the study and not taken the 

final situations seriously. 

5.1.2 Competence Achieved by Learning Objective 

Overall, participants were not successful in demonstrating competence in all 

performance tasks in the study. The majority of participants were able to successfully 

demonstrate the following: reaching the correct muster location (LO1 – Spatial 

Awareness), recognizing the alarm type (LO2 – Alarm Recognition), registering at the 
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temporary safe refuge area (LO5 – Register at TSR), and avoiding hazards blocking their 

path (LO4 – Assess Situation). However, participants were unable to successfully 

demonstrate the remaining competence: recognizing the hazardous situation and raising 

the alarm (LO4 – Assess Situation), resisting running on the platform and ensuring all fire 

or watertight doors were closed (LO6 – Safe Practices).  

Spatial Knowledge (LO1 & LO3)  

Overall, participants were able to reach the correct location in the cabin and 

engine room scenarios by the second session, with the exception of two outliers. This 

result indicates that participants were able to establish the landmark knowledge of the 

environment from Seigel and White’s (1975) Landmark-Route-Survey spatial knowledge 

acquisition model. Some participants were unable to demonstrate the same level of spatial 

knowledge in the emergency situations in session 3. This degradation in performance 

raises doubts about whether foundational spatial knowledge was sufficiently established 

for emergency egress situations.  

Deviations from egress routes were reduced from session 1 to session 2 as 

participants became more familiar with their primary and secondary routes from their 

cabin and worksite. This result indicates that participants were developing route 

knowledge of the platform. Route knowledge seemed to be successfully demonstrated for 

at least one egress route in the cabin scenarios, which involved a simple building 

environment structure. However, based on participant behaviours in the cabin scenarios, 

53% of participants selected the same preferred route throughout all cabin test scenarios. 
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This result indicates that fewer than half of participants demonstrated that they were able 

to egress from their cabin using both their primary and secondary egress routes.  

In the engine room scenarios, which represent a more complex spatial 

environment, the route knowledge was harder to establish for all egress options. Based on 

participant behaviours in the engine room scenarios, 11% of participants selected the 

same preferred route throughout all the worksite test scenarios. The small percentage 

selecting the same route throughout the scenarios may be an indication that participants 

were more active in learning multiple egress options from their worksite. In some cases it 

is more likely that the smaller percentage of participants selecting the same route is due to 

participants not having a firm grasp on even one preferred egress route. Some participants 

were prone to becoming lost in the engine room scenarios.  

Route and survey knowledge was tested in session 3, with final test scenarios that 

were designed to be complex emergency situations to investigate how people behave in 

emergency situations.  These test scenarios were designed to block primary or preferred 

routes at both the cabin and engine room locations on the platform. To test route 

knowledge the preferred route was blocked at the start of the route forcing the participant 

to select the next available alternative. The participants’ route selection in these 

emergency situations gave an indication of their route knowledge and how well they 

remembered their route options. The route selection and re-routing that took place in the 

final test scenarios suggest that some participants did not have a firm grasp on the egress 
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routes available and did not have a strong understanding of the survey knowledge of the 

platform. 

To test survey knowledge, the preferred or primary route was blocked mid route 

(TH1 & TH3). The extent to which the participant’s re-routing deviated from the ideal re-

routing when encountering the hazard informed how well the participants understood the 

layout of the environment and how it interconnected on a survey knowledge level. The 

most efficient re-routing would reflect a thorough understanding of survey knowledge. In 

these scenarios there were several participants in both groups who demonstrated a lack of 

survey knowledge development. These behaviours included going up or down 4 to 5 

decks to retrace steps to the starting point, choosing alternate route options, and passing 

alternative connecting routes that were not necessarily defined or designated routes. 

These results are consistent with Kobes et al. (2010) findings of participants passing the 

closest fire exits to take the main route they knew well. 

Kobes et al. (2010), citing others (Graham and Roberts, 2000; Sandberg, 1997), 

found that in emergency situations people tend to evacuate buildings from the main 

entrance or by taking their preferred known route. In Kobes et al.’s (2010) study some 

participants passed available and closer fire exits, opting to travel through the smoke 

hazard to take the route they knew well. This behaviour seems to occur when there is poor 

spatial knowledge, especially survey knowledge. Instances of these behaviours were 

observed in the final evacuation scenarios. In situations where spatial knowledge was 

limited or when stress took over, participants who were faced with blockages on all 

known egress options took on more risk and entered into the hazard in the direction of 
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their preferred route.  Individuals who preferred to follow to the same route in every 

scenario showed a behaviour associated with low route and survey knowledge in 

emergency situations.  Participants who varied their route selection between scenarios 

seemed to be more comfortable with their spatial representation of the virtual 

environment and were successful in re-routing when encountering hazards blocking their 

path.  

The aforementioned behaviours are indicators of spatial understanding and should 

be tracked automatically in a virtual environment in order to provide more comprehensive 

feedback and adjust the training scenarios to help expedite the development of route and 

survey knowledge. In the study, tracking and performance assessment of route selection 

and re-routing were performed by researcher observation and post scenario analysis. 

Further improvements to AVERT and the automated brief/debrief system are required to 

automate route tracking and performance assessment. Built in algorithms are required to 

track and compare route selection and re-routing in real-time to the most efficient route 

available. This integration is important in order to evaluate the participant’s route and 

survey knowledge and to provide them with the necessary prompt and relevant feedback.  

Procedural Knowledge (LO2, LO4, LO5, & LO6) 

Competence in alarm recognition and registering at the TSR are linked to the 

correct location learning objective. Overall, participants were able to recognize the alarm 

type and register at the correct muster location within the TSR for both the cabin and 

engine room scenarios. The outliers showed several instances where participants went to 
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the wrong location or forgot to move their T-card correctly in the final test scenarios. It is 

possible that these behaviours are linked to participants forgetting procedural steps in 

stressful situations.  

With regards to the fourth learning objective - Assess Emergency Situation and 

Avoid Hazards, participants were largely unsuccessful in raising the alarm. Only one 

participant was able to apply sufficient procedural and spatial knowledge, assess the 

situation and remember where the manual alarm call point was located to raise the alarm. 

This poor result is likely due to the steep increase in difficulty from session 2 to session 3. 

The increase in procedural tasks required of them to perform is likely the cause of 

participants not being able to properly raise the alarm. Participants were more successful 

in navigating away from hazards blocking the path. The outliers in this case exhausted all 

known route options and entered into known hazardous areas to take the only route they 

knew. This behaviour is a symptom of the participant not having a firm understanding of 

survey knowledge of their environment.  
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1) The Safe Practices learning objective was the poorest demonstrated of all the 

competencies. Participants showed improvement (20-30% increase in 

performance) across all sessions in remembering to close watertight and fire 

doors. Participants were consistently unable to demonstrate even 40% 

competence for not running on the platform. There are several reasons that 

could contribute to the behaviour observed:Participants reported that the 

interface was challenging to use when opening and closing doors resulting in 

some participants becoming frustrated with doors. 

2) Participants reported that the walking speed seemed too slow and resulted in 

participants preferring to run in the scenarios. 

3) Due to the stress of emergency situations, some participants may have 

forgotten the procedural task of closing doors or in some cases may have 

started running due to the sound of the PAPA alarm. 

4) The after-action review feedback that participants received was an optional 

and passive form of feedback. As a result, participants were not receiving a 

firm message that running was not acceptable and these behaviours persisted 

throughout the test scenarios. 

To address some of these issues in future virtual environment training, more 

emphasis on performance feedback is required. The procedural learning objectives require 

more stringent reinforcement during training scenarios to ensure knowledge acquisition 

and to ensure mistakes are not propagated throughout the performance assessment. The 

delivery of virtual environment training and assessment can also be improved to promote 
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spatial and procedural learning. A more gradual addition of procedural tasks between 

training sessions may be required. Instead of progressing from drills in session 2 to major 

accidents in session 3, a proposed new incremental step would go from alarm recognition 

to minor incidents and better equip trainees for major accidents scenarios.  

For future studies, it is important to be able to identify which participants are 

having trouble and what their main areas of difficulty are in order to provide these 

individuals with specially designed feedback and practice scenarios.  Given that helping 

crews train and overcome stressful situations in a safe virtual setting is the main goal of 

AVERT, further development of features to determine when trainees are struggling and to 

automate scenarios to target specific deficiencies is necessary for future virtual 

environment development and research. 

5.1.3 Time to Competence: 

Another objective of the study was to investigate the training time required to 

reach a competence in basic safety in offshore emergency egress using AVERT. The 

hypothesis was that participants would reach basic competency in offshore emergency 

egress using AVERT within the allocated time of the study, after completing all three 

sessions. This hypothesis assumed that the time required for the majority of the 

participants to achieve competence would be measurable during the time allocated for the 

study.  

Based on the time allocations used in other studies, the groups received 60-90 

minutes of cumulative total exposure to the AVERT virtual environment. The difference 
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in cumulative exposure between the two groups was an additional 30 minutes practice 

time received by group 1. Participants in group 1 were allocated 40 minutes in each 

session to practice, however most of group 1 did not make use of the full practice time. 

This exposure was in line with previous studies (Bradbury-Squires, 2013; Darken and 

Peterson, 2001) and provided a much longer exposure to the virtual environment than 

other spatial learning studies (Darken and Perterson, 2001 citing Witmer, Bailey, and 

Kerr, 1995; Koh, et al., 2000; and Waller et al., 1998).  Even though this study allowed 

participants more time with the virtual environment than most presented in the literature 

review, measuring time to competence still fell beyond the time allocated for the study. 

The study was unable to definitively determine the time required to achieve competence 

in basic safety in offshore emergencies using AVERT for two main reasons: 1) neither 

group was successful in achieving competence in all learning objectives and 2) based on 

the behaviours observed by outliers in the study (e.g. some participants that were 

consistently unable to perform in the spatial or procedural tasks), individual differences in 

learning pace and style likely played a large role in participants not demonstrating 

minimum competence. 

For these reasons, time to competence as whole is not yet known for all 

participants and exceeds the time allocated in this study. Looking at each learning 

objective individually, as was done in the previous section, helped understand which 

learning objectives were easier to achieve within the allocated time and which ones would 

require more time. As anticipated, spatial knowledge acquisition takes time. Researchers 

have indicated the potential for virtual environments to eventually surpass map accrued 
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spatial knowledge with sufficient exposure to the virtual setting (Darken and Peterson, 

2001; Waller et al., 1998). However, this study was unable to definitively support this 

theory because the training exposure participants received was standardized (e.g. 

participants received a set amount of time in the virtual environment regardless of their 

individual differences in spatial learning) and in some cases participants were not given 

sufficient time to reach spatial competence. Therefore, a limitation in this study is that 

spatial knowledge acquisition is heavily influenced by individual learning styles and pace.  

Although some participants were able to gain sufficient spatial knowledge to demonstrate 

competence in the test scenario, others were not able to do so in the time allocated. 

Individual learning styles should be taken into consideration in the design of future 

studies in order to determine the required exposure time to virtual environments necessary 

to reach competence. In addition to this, on an individual learning objective basis, 

competence that was demonstrated in normal conditions was not always demonstrated in 

full evacuation situations. The increase in scenario complexity is something that should 

also be addressed in future studies to help trainees reach spatial understanding more 

quickly regardless of the circumstances.  

Procedural knowledge acquisition requires the trainee to understand and perform 

smaller components of a procedural separately followed by the entire procedure, and 

receive feedback throughout the process (Grantcharov and Reznick, 2008). This was 

generally the case for participants who received repeated exposure to training. However, 

the poor procedural performance observed in this study is primarily due to the quality of 

feedback the participants received and the absence of reflection exercises after each test 
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scenario.  This is something that should be addressed in future studies to help trainees 

reach and exceed the minimum level of competence in a short time frame with 

reinforcement of learning objectives. 

5.2 Impact of Training Exposure on Task Performance  

Two different exposure levels to training were used to assess the impact of the 

training factor on task performance. The hypothesis was that participants who spent more 

time training (G1 - repeated exposure to training) will perform better from a task 

performance perspective in the emergency response testing scenarios than participants 

who spent less time training (G2 - single exposure to training). In reviewing the results of 

the task performance it was found that there was no significant difference between the 

groups with the exception of two scenarios (denoted TA2 and TH2).  

5.2.1 Statistically Different Groups Task Performance: 

Only one scenario was found to be statistically different in competence score 

between groups, denoted as TH2. In this cabin egress scenario, group 1 achieved 9% 

higher competence score than group 2 (p = 0.020). This competence score difference is 

attributed to group 1 reaching the correct muster location in a shorter time to complete, 

while avoiding hazard exposure and running significantly less in comparison to group 2.  

Even though group 1 outperformed group 2 in the aforementioned task performance 

measures, group 1 did receive a lower score in route selection based on the emergency 

situation and in closing all fire and watertight doors.  
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Another scenario (denoted TA1 – the first scenario of session 2) was not 

statistically significant from a competence score perspective but was statistically different 

between groups on multiple parameters (specifically time to muster, distance travelled to 

muster, route selection, backtracking time and backtracking distance). The reason why 

scenario TA2 was statistically significant on multiple parameters and not statistically 

significant from competence score is due to the weightings of the tasks and their overall 

importance to competence in emergency egress.  

In this cabin drill scenario, group 2 was a mean of 30 seconds slower (p = 0.036) 

and travelled 14 meters more (p = 0.005) than group 1 to complete the scenario. Group 1 

selected the primary egress route 30% more than group 2 (trending p =0.065) and as a 

result spent less time backtracking (12 seconds, p = 0.004) and travelled less distance 

backtracking (4 meters, p = 0.006). This difference in performance at the beginning of the 

second session may have been a sign of group 2 not being able to retain the information 

from the training session. In contrast, group 1 had the opportunity to review the 

information prior to testing. Group 2 was quick to learn from the first scenario and 

improved their overall performance to be statistically the same as group 1 in session 2. 

Group 2 was able to catch-up in performance just based on the scenario and feedback 

alone. The test scenarios themselves may have been a learning tactic for group 2 to help 

facilitate their comparable performance to group 1 in the scenarios that followed.  

The two scenarios where statistical significance was found are cabin scenarios. 

There was no statistical difference found between groups for the engine room scenarios. 
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This is an indicator that both groups were equally prepared for the engine room scenarios 

and that the additional practice time provided no advantage to group 1 in gaining 

additional spatial knowledge of the engine room.  

There are several possible reasons for observing little to no statistical difference 

between groups in spatial and procedural tasks: 

1) The basic safety training provided to both groups in session 1 was sufficient 

to provide equal performance across groups. 

2) The practice scenarios group 1 received were not sufficient to differentiate 

task performance during the test scenarios. 

3) The difficulty of the test scenarios was an effective training or learning tactic 

for group 2 to catch up to group 1 in task performance.  

5.2.2 Notable Group Differences in Spatial Task Performance: 

Although the majority of scenarios were not statistically different in task performance 

between groups, there were other notable differences in behaviour. The following 

describes the group differences by spatial and procedural tasks. In some cases group 1 

appeared to be a quicker than group 2 to demonstrate competence in the test scenarios 

(within the first session as opposed to by the time the participants perform the second 

session).  This may be due to the practice scenarios they received, for two reasons: 1) the 

practice scenarios gave group 1 a more comprehensive spatial knowledge due to more 

exposure with the virtual environment, and 2) the practice scenarios allowed group 1 the 

opportunity to make mistakes prior to being tested. The advantage to the practice time in 
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AVERT appears to have its limits as group 2 in some cases was able to reach equal 

performance as they progressed through scenarios. 

Reaching the Correct Muster Location 

There was no statistically significant difference between groups in the task of 

reaching the correct muster location. In general, group 1 successfully demonstrated this 

task midway through session 1 and maintained their performance throughout session 2 

and session 3. Group 2 successfully demonstrated this task by session 2 but it appears the 

group’s task performance degraded in session 3. This lag in demonstrating performance is 

likely to do with training retention or differences in spatial understanding.  

Proficiency in Reaching Correct Location 

Total time and distance travelled are two measures of how proficient the 

participants were at reaching the correct muster location. In comparing group 

performance, in one cabin egress scenario there was a significant difference between 

groups (denoted as scenario code TA1). In the more complex environment (engine room 

egress) scenarios there was no statistical significance found between groups for the time 

to muster and distance travelled. 

The fact that there was a difference in groups in the less complex environment and 

not in the more complex environment suggests that the two groups had an equal 

understanding of the engine room spatial layout. It also may be that group 2 had a 

significantly slower performance in the first scenario of the second session due to issues 
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in remembering the environment and not so much due to their understanding of the 

accommodation block.   

Route Selection and Re-routing   

There was no statistical difference between groups in route selection. There was 

however a trending difference in groups for scenario TA1: in group 1, 88% selected the 

primary and 12% selected secondary egress routes; in group 2, 58% selected the primary 

and 42% selected secondary egress routes. In general, group 1 seems to be more flexible 

when selecting routes in the cabin test scenarios. For the cabin scenarios, 53% of group 1 

and 26% of group 2 varied their route selection. In contrast, 41% of group 1 and 63% of 

group 2 participants selected their preferred route in every cabin test scenario.  Others had 

a tendency to follow the same route (observed in 5 out of 6 scenarios). 6% of group 1 and 

11% of group 2 followed the same route for most of the cabin scenarios. It is possible that 

group 1 participants were more adaptable to altering their route selection due to an 

increased knowledge of the environment. Conversely, group 2’s fixed route selection 

might be due to a weaker knowledge of the environment and their lack of confidence in 

knowing the route options.  

Although the groups were not statistically significantly different in their route 

selection, there were interesting behavioural tendencies by both groups. In general, both 

groups were equivalent in route flexibility in the more complex environment scenarios. 

For the engine room scenarios, 35% of group 1 and 47% of group 2 varied their route 

selection. Similarly, 29% of group 1 and 32% of group 2 selected the same route in every 
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engine room scenario. In the engine room scenarios there were also participants who 

showed a tendency to follow the same route (observed 5 out of 6 scenarios): 29% of 

group 1 and 21% of group 2 followed the same route for most of the engine room 

scenarios. Group 1 also had 6% of participants lost in every engine room scenario. It 

appears both groups had less familiarity with the engine room than the accommodation 

block. More participants became lost in the engine room scenarios, especially in the 

complex emergency scenarios. Thus, the smaller percentage of participants selecting the 

same route each time may be due to both groups having trouble developing spatial 

knowledge of one preferred route. The variation in route selection for the engine room 

scenarios may be due to poor route and survey knowledge by both groups.  

This difference in participant route preference is likely due to two factors: 1) 

group 1 may have established a better understanding of the route options for the cabin 

scenarios with additional exposure to the training material and practice scenarios and thus 

had more spatial knowledge to draw on, and 2) group 2 was not given sufficient time with 

the environment to establish sufficient spatial knowledge or to feel comfortable enough to 

take a less known route in the emergency situation. Due to the added complexity of the 

engine room scenarios, participants likely required more survey knowledge of the engine 

room in order to properly identify the route options. As survey knowledge takes longer to 

acquire, both groups likely did not have enough time to build the necessary spatial model 

of the engine room to help remember egress route options for their worksite scenarios. It 

is also possible that the lack of difference between groups in spatial knowledge of the 

worksite may be due to the repeated training group (group 1) not using the full amount of 
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time available to them in the practice scenarios. If participants in group 1 had taken full 

advantage of the practice time available to them, it is possible that more survey 

knowledge of the worksite in the engine room could have been established.  

5.2.3 Notable Group Differences in Procedural Task Performance  

Assess Emergency Situation and Avoid Hazards on Route  

There was no statistically significant difference between groups in raising the 

alarm. In general, the performance in this task was below expectations. The majority of 

participants were unable to recognize their procedural responsibility to raise the alarm in 

the scenario. Only one participant (from group 1) was able to successfully raise the alarm 

in scenario TH4. Other participants who attempted to raise the alarm had spatial issues in 

finding the location of the manual alarm call point. Two participants from each group 

attempted to raise the alarm but were unable to successfully raise the alarm within the 

time limit for the scenario. Three other participants from group 2 tried to raise the alarm 

but were not at a proper MAC station necessary to raise the alarm. This poor performance 

is a result of unclear test scenario goals in which participants were conditioned to listen 

for the alarm and PA announcement and then follow their egress route. When the scenario 

deviated from all previous scenarios to test them on raising the alarm, most participants 

mistook the cues of the situation requiring them to raise the alarm and proceeded to 

follow their egress route without alerting the emergency response team of the observed 

hazardous situation. Another possible reason for the poor performance in raising the 

alarm is due to weak spatial knowledge of the MAC stations. More training and clearer 

scenario instructions are required to assure competence in the more complex scenarios.  
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There was a trending statistical difference between groups in hazard exposure for 

one scenario (TH2). In this scenario, group 2 participants accepted more risk and were 

exposed to more smoke than group 1 (p = 0.051). This increase in smoke exposure may 

be a result of the preferred route behaviour observed in the test scenarios. Regardless of 

the hazardous situation blocking the secondary route, which was the preferred route for 

some participants, 42% of group 2 and 11% of group 1 proceeded to take the route most 

familiar to them. This is likely why there is a trending difference in hazard exposure 

because almost half of group 2 did not properly re-route and were subsequently exposed 

to smoke on their preferred path. This is again a symptom of poor route and survey 

knowledge. More exposure to the environment would likely benefit group 2 and help 

them acquire with route and survey knowledge. 

Safe Practices 

There was no statistically significant difference between groups in percent running 

with the exception of two scenarios (trending for TH2 and TH4). Although statistical 

significance was not found, the results show that group 1 participants’ performance 

gradually improved and group 2 participants’ performance degraded in both the cabin and 

engine room scenarios. 

For the cabin scenarios, the amount of running by group 1 participants decreased 

across each session. For group 1, there was an 8% decrease (p = 0.007) in running from 

session 1 (TE1) to session 3 (TH2), and a 7% decrease (p = 0.035) from session 2 (TA3) 

to session 3 (TH2). For group 2, the participants increased the amount of running across 
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each session, especially in the final emergency evacuation scenarios. For the engine room 

scenarios, the amount of running by group 2 participants increased across each session. 

For group 2, there was a 4% (p = 0.027) and 6% (p = 0.024) increase in running from 

session 1 (TE2 and TE4) to session 3 (TH4). For group 1, the participants decreased their 

running by 4% (p = 0.026) from session 2 (TA2) to session 3 (TH4). For the two 

emergency situations scenarios (TH2 and TH4) there was a trending difference between 

groups in percent running. It is possible that these emergency situations evoked an 

increased running behaviour in group 2. This opposite performance by the two groups is 

likely a result of the corrective feedback the groups received. Group 1 was reminded in 

the training tutorials not to run on the platform. Group 2 only received the after action 

review feedback indicating the time spent idle, walking, and running with no explicit 

feedback advising them not to run on the platform.  

There was no statistical difference between groups in closing doors. There was a 

trending difference between groups for TH2 (p = 0.082). In this scenario, 47% of group 1 

and 79% of group 2 correctly closed all fire and watertight doors. This difference in door 

closing is linked to the two group’s preferred route selection. In this scenario, group 1 

preferred to take the primary route and group 2 was more likely to take the secondary 

route. The primary route in this case has more doors to open and close and subsequently 

more room for error in forgetting to close doors. 

Overall, both groups gradually improved in closing doors across scenarios. For 

session 1 to session 3, group 1 participants improved by 13% and group 2 participants 
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improved by 21%. Both groups were only able to reach 62% competence in closing doors 

by the end of the study.  This is not entirely due to participants forgetting to close the 

doors and can be partly attributed to how participants were expected to interact with the 

doors in the virtual environment. Many participants reported difficulty interfacing with 

doors and frustration with the doors not closing when they were actively trying to close 

the doors. Future development of the virtual environment will need to address the 

deficiencies in interacting with objects within the environment. 

5.3 Measuring Learning in a Virtual Environment:  

The final objective of the study was to measure learning in a virtual environment 

and determine what attributes helped contribute to learning.  

5.3.1 Learning Occurred Across Sessions 

Although both groups were unable to archive 100% competence, the results show 

that learning occurred and performance improved. Most of the observed performance 

improvements occurred as participant progress from session 1 to session 2. An overall 

degradation of performance occurred from session 2 to session 3. These results indicate 

that the step progression from session 1 to session 2 facilitated learning and therefore an 

improvement in task performance. Conversely, as a result of the steep increase in scenario 

complexity and the increase in required emergency duties from session 2 to session 3, the 

participants did not demonstrate improvement. Any learning benefit from the test 

scenarios themselves was lost in the third session due to the difficulty of the scenarios. A 

more manageable increase in emergencies duties and scenario complexity may have 
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benefited both groups. For example, adding another training and testing session between 

session 2 and session 3 on minor emergency situations with minimal hazards could help 

support better understanding of the hazard avoidance learning objectives.  This approach 

would balance the required emergency duties between the two sessions while gradually 

increase the scenario complexity. The minor emergencies session would assess the 

trainees’ ability to raise the alarm, follow mustering protocol and re-route in normal and 

blackout conditions. This smaller step in training would promote learning and allow the 

next training session to focus on major emergencies. The major emergencies session 

could remain the same as session 3 of the study and would assess the trainees’ ability to 

identify hazards, respond to emergency situations and re-route in the event that the 

primary egress route is blocked by a hazard.  

Another reason for the poor performance in the third session may be that the 

participants were able to demonstrate some spatial and procedural knowledge in less 

stressful situations but unable to do so in more complex emergency situations. For 

example, some participants forgot a procedure, suddenly lost spatial awareness or never 

had enough spatial awareness to manage the complexity of the evacuation situation. This 

reaction of some participants to the more complex emergency situations may be due to 

the participants’ response to stress or the scenarios complexity exceeding their cognitive 

load. Virtual environments have the potential to train participants to be able to build-up 

exposure to stressful situations as required for real offshore emergency situations. Data 

analysis of the participants’ physiological responses collected during the test scenarios is 

beyond the scope of this thesis. Future studies should take into consideration the impact 
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of scenario complexity on trainee cognitive load and stress. Training and test scenarios 

should be designed to gradually build-up complexity and match trainees’ expectations.  

5.3.2 Attributes of a Virtual Environment that contribute to learning  

Several benefits and disadvantages to the training and technology were identified 

after observing participants interface with the training material and virtual emergency 

scenarios using the learning management system. The benefits of the AVERT training 

included: 1) the overall training objectives were easy to understand; 2) participants were 

able to progress through the course material independently and at their own pace; 3) the 

platform walkthrough scenarios used navigation aids to help participants establish spatial 

knowledge; 4) the test scenarios were engaging and acted as a learning tactic for group 2; 

and 5) the after-action review helped correct some erroneous behaviours (although not 

all) such as reaching the correct location, and closing doors.  

Guidance from Grantcharov and Reznick (2008) was followed in course design 

and feedback, however further improvements can be made to maximize the utility of 

virtual environment training. The following are areas where improvements can be made: 

organization and delivery of training; design and development of features in the 

technology to guide the trainee in-simulation; and overall experimental design 

improvements. Recommendations for improvement to training and virtual environment 

design include: 1) recognizing individual difference in skill acquisition, learning and 

retention and tailoring virtual environment features to individual learning styles; 2) 

engaging trainees and avoiding complacency; 3) designing training modules using 
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mastery of learning approach; 4) designing research experiments for multiple 

applications; and 5) importance of feedback and time to reflect on performance.   

Recognizing Individual Differences in Skill Acquisition, Learning and Retention   

Spatial learning occurred at different rates for many participants in this study. As 

Weisberg et al., (2014) suggest each individual is different in the amount of time and 

effort required to acquire spatial knowledge. Consequently, the time allocated in this 

study may not have been sufficient to accommodate individual differences in acquiring 

spatial knowledge. As a result, it is possible that individual differences in spatial learning 

attributed to the low competence scores.  

In general, some individuals required more exposure to virtual settings to ensure 

knowledge retention. Some participants regardless of the training exposure, had difficulty 

with spatial or procedural tasks, which required additional time and training to properly 

address. Some examples include: 1) the individual who was unable to correctly reach the 

muster location (in 8 of the 12 test scenarios); 2) the individual who chose to run through 

the hazard instead of finding an alternative route; and 3) the individual who forgot how to 

muster in the emergency situation. These cases are representative of the finding that the 

cumulative total exposure time in AVERT used in this study may not be sufficient to gain 

competence in all six learning objectives (for all participants or for the majority of 

participants). Therefore, the training model employed for both groups in this study did not 

accommodate individual learning needs. 
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Its important to recognize these individual differences in skill acquisition as this 

will impact how virtual environments are designed. To facilitate different learning styles, 

virtual environments should record the aforementioned types of behaviours in-game in 

order to customize training scenarios to support the individual needs. Virtual environment 

features that can support individual learning styles include: active walkthroughs with 

artificially intelligent guides (instead of orientation videos), in-game notifications when 

incorrect behaviours are happening, and allowing trainees to progress through the training 

content at their own pace by unlocking achievements and tailoring training to address 

individual behavioural tendencies.  

Engaging Trainees and Avoiding Complacency  

Trainee engagement is important for learning to occur using virtual environments.  

The decline in trainee engagement may have influenced the degradation in performance 

for some participants. Part of trainee engagement involves the overall attentional 

resources of the trainee. If the attentional resources are exceeded due to an overload of 

information, then loss of learning opportunities can occur. For the purposes of the study, 

much of the training was condensed into basic training tutorials at the onset of the first 

session. These training tutorials provided a large amount of information over the course 

of a two hour period. This may have exceeded some participants’ attentional resources 

resulting in some loss in trainee engagement and subsequently a loss of learning or 

retention due to lack of interest. It is important to design the frequency and delivery of 

virtual environment training so as not to exceed the attentional resources of the trainee. 
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Trainee engagement can also be improved with the increase of AVERT’s 

simulation fidelity, particularly from an interaction to the environment perspective. 

Improving the environment interaction realism would help address the difficulty some 

participants reported regarding opening and closing doors. From a procedural knowledge 

perspective, adding interaction functionality in AVERT that allows participants to interact 

and equip themselves with safety equipment should be the next step for software 

development. This would provide added contextual realism and improve trainee 

engagement for the participants.  

An interesting theory that could impact both groups with regards to the decline in 

performance in session 3 is participant complacency. The participants in this study were 

novice (no prior experience in the offshore industry) volunteers. This study involved a 

considerable time commitment with little to no incentive aside from the participants 

learning something new in the field of emergency egress. It is possible that some 

participants by the third session were less engaged in the study and wanted simply to ‘get 

through’ the exercises and put less effort into their performance. It is possible that this 

phenomenon would be less likely to occur in participants who worked in the offshore or 

maritime industries as they would have a vested interest to succeed based on job safety. 

Although this is outside of scope of the current study, it would be interesting to see how 

differently (if at all) personnel from the offshore work environment background might 

perform in comparison to the baseline of novice individuals. As some researchers have 

already demonstrated (Magee et al., 2012), this question may be answered in a reverse 

transfer study using experienced personnel.  
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Designing Training Modules using Mastery of Learning Approach: 

A critical process to help trainees reach the necessary level of competence is to 

improve training delivery by implementing a mastery of learning approach with 

reinforcement of learning in quality feedback. This mastery of learning concept is based 

on educational scaffolding principles (Sawyer, 2006). The mastery of learning approach 

would provide trainees with the foundational knowledge necessary to build on for more 

advanced learning objectives and support the development of competence in more 

complex situations. The master of learning approach would only allow the trainee to 

advance to the next learning objective once they are able to demonstrate the minimum 

acceptable competence of their current learning objective or task. This would help avoid 

trainees being tested on more advanced elements when they have not successfully 

demonstrated foundational requirements (such as spatial knowledge in this study). 

It is also important to provide transparency of competence scoring so that the 

participants know what they are being graded on. The performance measures used in this 

study were described to participants at the beginning of the study. However, the scenarios 

did not adequately brief the participants on the targeted learning objectives of the 

scenario. The after-action review feedback only provided the participants with a subset of 

the overall performance measures used in the competence score. If the feedback had been 

more detailed to encompass all the performance measures, it is more likely that 

participants would have been aware of how well they were performing against the 

performance standards. 
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To support the mastery of learning teaching approach, in-simulation training aids 

and automated performance assessment and feedback should be integrated in to the 

virtual environment training program. This configuration would support spatial and 

procedural knowledge development by allowing a trainee to demonstrate his/her 

capabilities in one foundational competence before moving on to more advanced 

competence requirements. Pairing mastery-of-learning training with detailed and 

automated feedback is necessary in order to identify trainee deficiencies and customize 

training to address these deficiencies. 

Designing Research Experiment for Multiple Applications 

This study was designed to inform two distinct research projects: 1) assess 

competence in offshore emergency egress using virtual environments and 2) to collect 

human reliability data in offshore emergency situations. To accommodate both forms of 

data collection, compromises in the experimental design were made. To support learning, 

the order of the test scenarios was chronological and gradually added procedural tasks. 

This approach was used instead of randomizing the test scenarios the participants 

received. As a result, the design affected the analysis of how the performance shaping 

factors, such as visibility and complexity, impacted human behaviour in emergency 

egress. Conversely, to support a more naturalistic response to emergency situations, the 

two group’s exposure to training from a human reliability analysis perspective was 

categorized as advanced training and minimal training. This design affected the amount of 

corrective instruction group 2 received in order to see how participants would react to 
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emergency situations with little training. The human reliability analysis research required 

behavioural naturalness and the training assessment research required interruption and 

corrective measures to instil learning and behavioural conformance to protocols and 

procedures. As a result, the feedback provided to the trainees was designed to be more 

informative than corrective, which was one of the reasons participants continually made 

procedural mistakes.  

Considerable planning and design iterations were used in the development of the 

experimental design. The results indicate areas for improvement. Future competence 

assessment and human reliability assessment experiments should be performed separately 

so that the data collection and analysis will not interfere with one another.  

Importance of Feedback and Time to Reflect on Performance  

The study employed a brief after-action review of the trainee’s performance at the 

end of each practice and test scenario. This information included: correct location 

reached, percent walking, running and stationary, path tracker map, total time to 

complete, number of doors left open (if any) and degree of injury incurred if hazard 

exposure occurred. This information was presented passively in that it was optional to 

review. Although this model followed the active learning style in that it allowed the 

trainee to have control over their learning process, it resulted in trainees skipping the 

essential review of their performance due to over confidence in their performance. 

Participants who felt they performed adequately tended not to review their feedback in 

detail, which could account for poor performance in session 3.  
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The feedback was also presented to inform the participants of their actions, but not 

the quality or correctness of the actions. This is likely a flaw in the design of the 

experiment. It was done this way so as not to heavily impact the data for the Human 

Reliability Assessment (HRA). Specifically, the data represented a more natural 

behaviour in emergency situations but as a result negatively impacted the training quality 

as mistakes were not adequately addressed from one scenario to another. It was also done 

so that the act of testing group 2 (which is essentially recurrent training for the group) did 

not retrain the individual. Thus the feedback was informative but not corrective. As Klein 

(1997) cautioned, trainees who do not understand the seriousness of the errors made nor 

spend enough time reflecting on their performance, are unlikely to develop strategies to 

improve their performance in the next scenario or test session.  

Therefore, the procedural learning objectives of this study require more stringent 

reinforcement of correct behaviours during training and testing scenarios to ensure 

knowledge acquisition. With immediate, relevant and corrective feedback in after action 

reviews of test scenarios, trainees would be able to correct their strategy and make greater 

improvement across test scenarios. If feedback is only informational and optional, like the 

feedback provided in this study, then participants may skip over the learning lessons and 

become overconfident in their performance.  

It is also recommended that trainees receive feedback that is more immediate (e.g. 

in-simulation tips and help), direct (e.g. explicit correct and incorrect – not ambiguous) 

and relevant (e.g. feedback that reiterates learning objectives – route selected compared 
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with the most efficient route instead of map of route taken). These forms of feedback can 

be automated in the learning management system to better inform the trainee of their 

errors and help mitigate any spread of potential errors. There should also be built in 

debrief exercises in the learning management system to encourage the trainee to reflect on 

their performance. Without these measures, participants will propagate mistakes 

throughout the training.   
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Chapter 6 : Conclusion and Recommendations 

6.1 Summary of Findings 

The following is a summary of the findings in this study: 

1. Basic offshore safety competence was not demonstrated for all learning 

objectives. It was hypothesized that participants would be able to 

successfully demonstrate all learning objectives by the end of session 3. In 

practice this was the case for only a small minority of participants. 

2. The majority of participants were able to successfully demonstrate the 

following competences:  

a. reach the correct muster location (LO1 – Spatial Awareness) 

b. recognize the alarm type (LO2 – Alarm Recognition) 

c. follow designated egress routes (LO3 – Routes and Mapping) 

d. avoid hazards blocking their path (LO4 – Assess Situation), and  

e. register at the temporary safe refuge area (LO5 – Register at TSR).  

3. The majority of participants were unable to successfully demonstrate the 

following competences:  

a. select safest egress routes (LO3 – Routes and Mapping) 

b. recognize the hazardous situation, raise the alarm and re-route 

effectively if the path was blocked (LO4 – Assess Situation) 

c. resist running on the platform, and ensure all fire or water tight 

doors were closed (LO6 – Safe Practices). 
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4. Time to competence for all learning objectives is still unknown. Individual 

differences in learning styles and pace may have impacted the amount of 

exposure to the AVERT training program required to ensure knowledge 

retention. This result highlights the importance of verifying that 

competence is achieved for each individual. In future studies, a shift in 

focus from time to competence to demonstrable competence is 

recommended. From a training utility perspective, the amount of time 

required to achieve competence is secondary to ensuring competence is 

achieved. Therefore a mastery of learning approach should be the focus of 

future AVERT training programs to ensure demonstrable competence. 

5. Few instances of statistically significant difference were found between 

the two groups’ task performance (both spatially and procedurally). It was 

hypothesized that participants who spent more time training (group 1) 

would outperform participants who spent less time training (group 2). 

However, this hypothesis was not supported for all learning objectives.  

6. One scenario (denoted TA1 – the first scenario of session 2) was 

statistically different between groups on multiple parameters: 

a. time to muster (p = 0.036),  

b. distance travelled to muster (p = 0.005),  

c. route selection (p =  0.065) 

d. backtracking time (p = 0.004) and backtracking distance  

(p = 0.006). 
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7. One scenario (denoted TH2 – the second scenario of session 3) had a 

trending difference between groups on multiple parameters: 

a. exposure to smoke (p = 0.051),  

b. percentage running (p = 0.086), and 

c. number of doors left opened (p = 0.082).  

8. Based on the mean competence scores, performance in the test scenarios 

improved from session 1 to session 2. However, a degradation in 

performance occurred between session 2 and session 3. It was 

hypothesized that task performance for both groups would improve as 

participants advanced through the training and testing sessions. This 

increase in average competence score between session 1 and session 2 

showed a promising sign that learning had occurred and that the 

participants were grasping spatial and procedural knowledge required for 

basic egress conditions. The decrease in performance between session 2 

and session 3 indicates that the participants were unable to keep up with 

the increases in complexity and that they may not have been adequately 

prepared for major emergency situations. 
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6.2 Concluding Remarks 

This research studied the effect of the AVERT virtual environment training on 

participant competency and learning in emergency response evacuation scenarios. 

Overall, this baseline data informs future virtual environment studies on spatial and 

procedural knowledge transfer to real offshore environments.  

Successful egress in an emergency situation requires both spatial and procedural 

knowledge. Realistic evacuation drills and emergency situations were recreated in the 

virtual environment to assess trainee competence in emergency offshore egress. The 

results from this study indicate that guided training or further training exposure to 

AVERT is required in order for the participants to be successful in demonstrating 

performance. When developing a virtual environment training program, careful 

consideration should be placed on individual differences in skill acquisition and retention. 

A mastery of learning approach should be considered to help all individuals with different 

learning needs to reach competence more quickly. The lackluster performance of 

participants in demonstrating competence in complex emergency situations (session 3) 

reflects more on the adequacy of the participants’ preparation for the difficulty of those 

situations than the success of the technology in teaching them about offshore egress 

training. The study clearly indicates that performance in offshore egress can be 

systematically assessed using virtual environment technology.  Overall, the results from 

this study indicate that there is still work to be done to validate the effectiveness and 

utility of the virtual environment technology on training offshore emergency egress.  
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6.3 Recommendations 

The following are areas where improvements can be made in future research related to 

offshore safety training with virtual environments: 

1. Training improvements to encourage skill acquisition and competence 

a. Apply a user-centered training program to virtual environments. Spend 

less time using traditional forms of teaching and focus more time 

training in the virtual environment, using engaging training scenarios. 

b. A mastery of learning approach can cater to the individual learning 

styles and paces to help improve overall trainee performance in the 

virtual setting. Better performance will occur if the trainee is able to 

focus specifically on the areas s/he finds more difficult and is only able 

to advance to new material once s/he has mastered the previous. To 

ensure better performance success, performance measures must be 

indicated to the trainee at the start of the virtual environment training 

program.  

c. After-action review feedback is most helpful when it is immediate, 

clear and relevant. This form of feedback should be supported with 

instantaneous in-simulation guidance and corrective reinforcement. 

2. Simulation improvements to support learning 

a. Training scenario design should engage the trainee and enable them to 

actively focus on learning and mastering the performance tasks. 
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b. Where possible, scenarios should use aids to help solidify learning and 

reinforce relevant learning objectives. Further work needs to be 

completed to automate the assessment of performance measures in 

order to provide important in-simulation guidance and immediate 

reinforcement feedback. 

3. Design of experiment improvements for multi-purpose data collection 

a. Human reliability assessment (HRA) experiments and training 

curriculum experiments should be done separately, otherwise as shown 

in this study, the experimental design, data collection and analysis may 

interfere with one another. Human reliability assessment requires 

behavioural naturalness in the virtual setting while training assessment 

requires interruption and corrective measures to instil learning and 

behavioural conformance to protocols and procedures.   

4. Future studies should focus on: 

a. Long-term retention studies (greater than a week duration) to address 

remaining time to competence and retention questions. 

b. Reverse training transfer studies using experienced personnel. Some 

forms of behaviours and mistakes observed by the novice group may 

not be present in a group with offshore domain expertise. 
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Appendix A: Presence Results to Virtual Environment Emergency Situations 

 

Descriptives for Group 1 and Group 2 – Video Game Experience Scores, Immersive 

Tendencies Scores and Presence Scores.  

Variables Group 1 Group 2 
All Participants  

(Total Sample) 

N 17 19 36 

Age 26.76 ± 1.22 (.823) 26.21 ± .91 (.823) 26.47 ± .74 

VGEQ2 11.88 ± 1.88 (.427) 10.84 ± 2.07 (.427) 11.33 ± 1.39 

VGEQ3 6.59 ± 1.85 (.654) 6.92 ± 1.98 (.654) 6.76 ± 1.35 

VGEQ6 2.24 ± .22 (.871) 2.16 ± 0.23 (.871) 2.19 ± .16 

VGEQ7 2.41 ± .23 (.672) 2.68 ± 0.19 (.672) 2.56 ± .15 

ITQ Score 62.50 ± 2.02 (.609) 64.99 ± 2.53 (.609) 63.81 ± 1.63  

PQ Score 79.49 ± 1.87 (.250) 77.80 ± 2.84 (.250) 78.59 ± 1.72 

All values are reported as means ± standard error (p - value) (* indicates p < 0.05, ** indicates p < 0.01) 
 

Group 1 - Mean Percentage Immersive Tendencies and Presence Scores 

Participant ITQ-%Score PQ-%Score 

G1-1 60  76 

G1-2 54 69 

G1-3 73 77 

G1-4 48 87 

G1-5 60 78 

G1-6 72 87 

G1-7 70 82 

G1-8 52 88 

G1-9 62 64 

G1-10 60 76 

G1-11 67 79 

G1-12 69 71 

G1-13 71 80 

G1-14 75 93 

G1-15 55 85 

G1-16 54 73 

G1-17 62 86 
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Group 2 - Mean Percentage Immersive Tendencies and Presence Scores 

Participant ITQ-%Score PQ-%Score 

G2-1 59 89 

G2-2 64 63 

G2-3 84 86 

G2-4 71 77 

G2-5 58 66 

G2-6 51 60 

G2-7 63 87 

G2-8 63 87 

G2-9 76 66 

G2-10 71 92 

G2-11 73 89 

G2-12 67 87 

G2-13 90 87 

G2-14 63 87 

G2-15 59 92 

G2-16 68 76 

G2-17 54 65 

G2-18 50 67 

G2-19 50 55 
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Appendix B: Physiological Response Results to Virtual Emergency Situations 

Group 1 - Mean physiological measures for each test scenario 

Participant Session GSR ST RR HR 

G1-1          

TE1 S1 9.46 94.12 21.52 68.75 

TE2  9.66 93.87 17.57 76.48 

TE3  9.42 94.63 17.16 69.79 

TE4  6.21 94.12 18.17 67.03 

TA1 S2 3.00 92.36 19.20 69.38 

TA2  2.90 91.89 19.26 67.76 

TA3  2.62 91.74 17.73 66.94 

TA4  3.23 92.02 19.28 68.81 

TH1 S3 1.66 87.88 20.22 68.54 

TH2  2.04 87.02 15.84 72.70 

TH3  2.70 86.10 18.28 70.42 

TH4  3.10 85.18 17.71 72.67 

G1-2  
    

TE1 S1 0.57 94.42 23.70 83.82 

TE2  2.00 95.26 26.56 90.85 

TE3  1.71 95.70 23.77 87.55 

TE4  1.44 95.72 23.99 91.56 

TA1 S2 0.46 87.63 21.12 76.52 

TA2  0.42 85.91 21.78 74.57 

TA3  0.42 85.60 22.14 69.68 

TA4  0.49 84.14 22.75 71.37 

TH1 S3 0.44 93.36 21.61 68.83 

TH2  0.51 92.25 21.41 69.89 

TH3  0.53 92.13 21.46 68.91 

TH4  0.65 91.30 19.94 70.49 

G1-3  
    

TE1 S1 4.73 82.31 25.65 97.48 

TE2  6.97 95.47 26.43 108.17 

TE3  8.81 96.26 25.35 106.98 

TE4  8.01 96.09 26.24 106.19 

TA1 S2 5.93 96.10 22.46 102.76 
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TA2  5.38 95.43 25.67 104.95 

TA3  5.22 95.43 23.19 104.08 

TA4  6.57 95.31 25.74 102.11 

TH1 S3 2.95 94.77 25.48 97.94 

TH2  2.72 95.63 25.22 103.13 

TH3  3.47 95.82 22.15 104.77 

TH4  4.21 95.60 24.77 103.62 

G1-4  
    

TE1 S1 3.15 95.53 23.30 65.17 

TE2  5.22 95.28 24.27 66.66 

TE3  6.84 95.32 23.83 67.13 

TE4  7.71 95.32 24.18 70.25 

TA1 S2 4.08 94.81 23.34 70.02 

TA2  5.72 94.84 24.28 62.69 

TA3  5.28 94.81 22.65 66.44 

TA4  7.31 95.14 22.29 64.60 

TH1 S3 2.72 95.70 21.79 59.47 

TH2  4.58 95.51 20.11 54.08 

TH3  5.35 95.33 21.40 56.70 

TH4  6.59 95.19 19.66 59.18 

G1-5  
    

TE1 S1 1.67 85.11 23.73 79.20 

TE2  1.53 84.73 21.65 81.49 

TE3  1.35 84.71 22.93 77.05 

TE4  1.91 84.28 24.44 75.64 

TA1 S2 2.75 89.25 21.16 78.50 

TA2  1.33 90.70 23.16 74.63 

TA3  1.64 91.33 24.66 82.02 

TA4  1.89 91.78 21.94 74.03 

TH1 S3 1.95 88.15 24.05 80.16 

TH2  2.36 87.38 24.08 73.66 

TH3  2.64 86.00 24.47 74.02 

TH4  2.87 84.86 26.27 79.17 

G1-6  
    

TE1 S1 6.54 93.45 21.18 62.40 

TE2  7.88 92.90 19.97 62.94 
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TE3  8.38 93.84 20.88 59.30 

TE4  8.91 94.66 20.03 60.78 

TA1 S2 5.04 93.77 19.18 59.62 

TA2  5.80 94.22 19.22 56.30 

TA3  6.68 94.01 17.55 59.60 

TA4  6.80 93.71 18.90 53.60 

TH1 S3 3.85 94.57 17.58 56.84 

TH2  5.11 94.74 18.23 55.84 

TH3  5.55 94.78 17.07 56.08 

TH4  5.67 95.10 17.66 53.80 

G1-7  
    

TE1 S1 1.31 88.40 22.57 70.80 

TE2  1.54 87.88 22.79 73.44 

TE3  1.71 88.12 23.26 72.65 

TE4  1.76 88.48 21.50 72.70 

TA1 S2 1.87 89.88 23.69 90.80 

TA2  2.34 89.34 23.07 84.47 

TA3  2.47 88.65 20.91 83.58 

TA4  2.61 88.48 23.47 82.39 

TH1 S3 1.59 91.30 25.19 80.97 

TH2  1.77 91.91 23.17 80.83 

TH3  1.95 91.93 24.14 79.09 

TH4  2.09 92.06 24.49 81.10 

G1-8  
    

TE1 S1 7.14 93.49 21.16 65.95 

TE2  8.43 94.49 20.82 66.42 

TE3  9.14 93.86 20.55 66.27 

TE4  9.58 93.93 20.11 68.78 

TA1 S2 7.05 95.09 22.02 82.63 

TA2  7.53 94.90 20.05 82.94 

TA3  7.97 95.33 22.13 80.48 

TA4  8.18 94.91 21.44 78.38 

TH1 S3 10.59 95.38 22.84 79.39 

TH2  9.80 95.59 24.48 85.13 

TH3  9.64 95.24 21.68 82.72 

TH4  10.66 95.29 22.30 85.05 
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G1-9  
    

TE1 S1 12.09 91.23 18.88 55.98 

TE2  13.12 90.86 19.54 54.77 

TE3  13.89 91.16 18.67 56.99 

TE4  14.21 91.15 18.42 54.01 

TA1 S2 13.19 94.25 17.03 58.74 

TA2  15.06 94.87 18.74 58.13 

TA3  15.77 95.67 18.63 60.87 

TA4  15.56 95.06 17.57 64.20 

TH1 S3 8.70 96.58 18.57 67.37 

TH2  10.46 96.63 18.56 62.68 

TH3  11.40 96.88 18.72 65.03 

TH4  10.81 96.45 19.56 60.79 

G1-10  
    

TE1 S1 2.34 83.30 25.19 77.50 

TE2  3.43 82.90 22.90 73.20 

TE3  4.20 83.37 22.69 72.85 

TE4  4.93 88.20 22.04 70.92 

TA1 S2 2.71 93.85 21.56 86.68 

TA2  3.70 92.69 22.82 76.36 

TA3  4.47 92.88 23.24 80.43 

TA4  5.27 93.02 20.38 75.81 

TH1 S3 2.05 87.79 20.37 69.20 

TH2  3.11 88.62 23.30 71.06 

TH3  4.00 90.83 21.19 72.01 

TH4  5.98 91.56 21.73 74.57 

G1-11  
    

TE1 S1 4.82 89.78 19.34 78.83 

TE2  5.70 90.89 20.98 78.94 

TE3  5.87 91.80 22.46 81.04 

TE4  5.90 92.32 22.45 81.91 

TA1 S2 5.37 92.93 23.13 76.66 

TA2  6.11 94.38 22.24 77.43 

TA3  6.91 93.89 21.66 77.41 

TA4  7.17 95.01 23.23 81.19 

TH1 S3 5.11 93.47 21.89 78.21 
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TH2  6.51 93.89 21.22 75.93 

TH3  7.06 94.28 21.38 83.64 

TH4  7.07 94.03 21.45 82.06 

G1-12  
    

TE1 S1 2.93 86.43 21.48 68.94 

TE2  3.5 86.57 20.55 69.67 

TE3  4.07 88.51 21.2 66.33 

TE4  4.43 92.67 20.2 69.17 

TA1 S2 3.92 94.74 22.59 76.25 

TA2  4.91 94.64 21.61 75.86 

TA3  5.21 94.98 21.43 72.39 

TA4  5.4 95.13 21.32 73.05 

TH1 S3 3.66 96.12 23.7 79.77 

TH2  4.5 96.26 22.52 78.23 

TH3  4.88 96.58 22.09 81.86 

TH4  4.92 96.09 21.48 81.66 

G1-13  
    

TE1 S1 2.72 85.30 24.77 74.85 

TE2  3.75 84.98 25.14 79.79 

TE3  5.00 86.63 22.33 74.49 

TE4  5.56 89.14 23.85 72.66 

TA1 S2 4.75 89.38 23.19 69.69 

TA2  6.04 90.36 24.70 72.57 

TA3  6.48 91.17 21.07 65.06 

TA4  6.94 90.97 21.39 67.81 

TH1 S3 3.35 92.31 23.69 69.87 

TH2  4.71 93.33 25.18 71.49 

TH3  5.34 93.98 23.73 67.85 

TH4  5.76 93.91 23.41 72.00 

G1-14  
    

TE1 S1 2.13 90.12 24.84 96.38 

TE2  2.00 91.42 20.47 89.17 

TE3  1.96 92.54 19.62 90.61 

TE4  1.89 92.22 19.37 88.50 

TA1 S2 1.36 90.05 22.07 87.17 

TA2  1.38 91.61 18.84 86.99 
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TA3  1.99 92.08 20.20 85.02 

TA4  1.90 92.17 18.29 86.13 

TH1 S3 0.47 92.65 20.69 82.19 

TH2  0.56 92.63 18.61 80.45 

TH3  0.51 92.37 17.94 82.66 

TH4  0.78 92.64 19.62 80.90 

G1-15  
    

TE1 S1 0.94 89.37 19.85 67.60 

TE2  1.03 88.79 20.66 66.36 

TE3  0.95 88.49 18.94 66.01 

TE4  1.43 88.54 19.97 66.65 

TA1 S2 0.79 89.14 23.39 71.50 

TA2  0.78 89.86 19.36 72.16 

TA3  0.95 90.87 22.24 72.78 

TA4  0.94 91.56 21.20 68.07 

TH1 S3 0.67 90.02 21.23 72.37 

TH2  1.02 90.38 21.79 68.03 

TH3  1.19 90.09 21.15 70.95 

TH4  1.50 90.16 21.43 68.71 

G1-16  
    

TE1 S1 2.01 89.42 20.32 70.33 

TE2  2.20 89.18 20.13 75.08 

TE3  2.46 89.13 22.28 74.39 

TE4  2.68 88.76 22.07 71.38 

TA1 S2 4.42 92.62 20.11 77.42 

TA2  5.41 93.57 19.65 71.48 

TA3  5.92 93.80 21.58 75.88 

TA4  6.15 93.78 20.89 75.59 

TH1 S3 2.35 85.64 21.45 75.06 

TH2  3.03 86.79 21.05 74.54 

TH3  3.72 89.54 21.90 74.71 

TH4  4.11 89.65 19.96 72.23 

G1-17  
    

TE1 S1 3.52 80.82 21.32 70.52 

TE2  4.21 81.35 21.11 69.20 

TE3  4.56 82.44 21.73 71.24 
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TE4  4.90 83.71 21.64 70.45 

TA1 S2 3.81 86.78 21.82 74.47 

TA2  4.38 84.89 22.56 71.46 

TA3  4.44 83.41 20.73 69.81 

TA4  4.43 82.92 21.52 71.25 

TH1 S3 3.16 86.15 19.90 64.35 

TH2  3.73 85.99 21.72 62.04 

TH3  3.93 87.65 21.39 65.05 

TH4  4.31 90.00 20.46 64.60 

 

  



249 
 

Group 2 - Mean physiological measures for each test scenario 

Participant Session GSR ST RR HR 

G2-1          

TE1 S1 2.99 91.44 32.82 120.23 

TE2  4.45 91.90 31.50 117.71 

TE3  4.98 92.04 32.98 117.52 

TE4  4.43 91.57 32.85 120.22 

TA1 S2 1.86 86.28 26.90 94.77 

TA2  2.69 85.26 27.63 94.03 

TA3  2.81 84.12 28.20 90.65 

TA4  3.10 83.76 27.58 90.97 

TH1 S3 2.47 93.59 29.94 103.74 

TH2  3.94 94.12 29.28 102.06 

TH3  3.98 93.96 29.70 105.10 

TH4  4.91 94.32 30.30 103.32 

G2-2  
    

TE1 S1 5.66 89.57 25.96 86.28 

TE2  6.90 88.99 25.98 86.86 

TE3  6.64 88.24 27.81 80.21 

TE4  6.02 89.20 27.51 82.52 

TA1 S2 7.86 95.68 27.36 92.65 

TA2  9.12 95.47 27.51 90.17 

TA3  9.79 95.61 27.00 86.39 

TA4  8.68 95.60 25.18 87.49 

TH1 S3 2.89 92.61 26.31 76.82 

TH2  2.93 92.59 25.97 79.09 

TH3  3.65 93.30 26.51 79.40 

TH4  4.79 93.35 26.54 79.40 

G2-3  
    

TE1 S1 5.91 95.57 23.92 87.21 

TE2  6.19 94.92 23.11 88.16 

TE3  7.48 94.60 22.11 87.20 

TE4  7.53 94.93 23.87 91.05 

TA1 S2 2.69 94.66 23.81 91.58 

TA2  2.77 94.92 24.17 90.39 
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TA3  2.85 94.62 24.54 93.92 

TA4  3.11 94.42 23.52 88.85 

TH1 S3 2.78 94.04 24.99 79.49 

TH2  2.76 93.34 23.49 79.87 

TH3  3.32 92.18 25.19 88.29 

TH4  3.67 91.51 24.71 81.56 

G2-4  
    

TE1 S1 1.60 95.34 22.23 78.47 

TE2  2.19 95.35 22.16 78.91 

TE3  1.93 94.18 19.95 74.51 

TE4  2.19 95.35 22.53 79.65 

TA1 S2 1.05 94.89 21.93 73.85 

TA2  1.77 95.32 21.00 72.18 

TA3  1.99 95.11 20.72 71.91 

TA4  1.85 95.12 20.68 74.38 

TH1 S3 1.59 94.99 22.42 74.72 

TH2  2.38 95.32 21.98 73.68 

TH3  1.93 94.18 19.95 74.51 

TH4  2.45 94.84 20.87 72.76 

G2-5  
    

TE1 S1 5.14 93.97 28.25 78.44 

TE2  6.68 94.81 30.12 83.65 

TE3  7.52 94.56 27.01 81.92 

TE4  8.15 95.34 30.61 83.36 

TA1 S2 4.06 97.49 33.30 102.06 

TA2  5.65 97.30 34.31 99.55 

TA3  5.41 97.50 31.06 95.81 

TA4  6.56 97.49 34.22 96.88 

TH1 S3 3.94 96.11 29.93 89.18 

TH2  5.30 96.41 27.66 87.71 

TH3  6.27 96.17 30.63 91.90 

TH4  6.55 96.35 30.01 93.21 

G2-6  
    

TE1 S1 4.25 94.63 28.16 87.47 

TE2  4.59 96.01 25.95 86.57 

TE3  6.99 95.96 26.13 87.43 
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TE4  6.92 95.43 26.48 85.15 

TA1 S2 3.88 88.48 25.13 80.39 

TA2  4.67 86.56 25.86 82.96 

TA3  5.19 86.48 24.16 79.67 

TA4  4.83 86.78 24.22 81.60 

TH1 S3 4.57 91.72 25.94 81.44 

TH2  5.95 92.47 25.05 75.12 

TH3  6.61 91.65 23.52 79.13 

TH4  6.08 90.69 23.45 73.93 

G2-7  
    

TE1 S1 3.60 90.17 22.96 74.74 

TE2  5.20 89.57 20.11 74.84 

TE3  5.66 89.87 20.93 72.49 

TE4  5.97 89.77 18.74 70.76 

TA1 S2 3.91 93.32 20.03 88.69 

TA2  4.49 94.54 21.97 83.15 

TA3  4.64 95.29 19.60 85.12 

TA4  4.23 94.28 20.86 81.59 

TH1 S3 4.17 91.95 19.90 75.21 

TH2  4.93 92.84 19.77 77.81 

TH3  5.33 92.28 19.25 77.03 

TH4  5.33 91.39 21.83 80.16 

G2-8  
    

TE1 S1 5.55 93.51 21.25 81.48 

TE2  7.98 94.46 21.35 80.21 

TE3  9.06 94.68 21.91 79.09 

TE4  9.14 94.80 21.74 74.14 

TA1 S2 5.93 95.83 22.36 85.46 

TA2  7.41 95.93 20.43 83.64 

TA3  7.99 95.77 21.01 84.11 

TA4  7.99 95.62 20.51 83.39 

TH1 S3 6.19 95.79 20.36 88.01 

TH2  7.76 95.58 20.48 82.61 

TH3  8.41 95.75 22.02 81.17 

TH4  8.66 94.37 21.43 81.69 

G2-9  
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TE1 S1 6.27 89.77 19.59 89.72 

TE2  7.28 87.47 19.62 85.61 

TE3  8.05 87.45 19.09 83.66 

TE4  7.90 88.24 18.55 85.87 

TA1 S2 6.66 93.56 19.54 89.96 

TA2  6.75 91.32 18.09 94.37 

TA3  6.35 91.44 20.34 89.25 

TA4  6.22 91.33 20.40 91.58 

TH1 S3 3.43 89.91 18.55 86.88 

TH2  4.18 87.02 18.78 85.00 

TH3  4.51 86.75 19.10 90.39 

TH4  5.06 86.34 17.82 82.52 

G2-10  
    

TE1 S1 2.00 93.95 25.45 76.20 

TE2  2.49 95.00 26.20 82.44 

TE3  2.17 94.72 25.23 77.02 

TE4  2.56 93.74 26.22 77.90 

TA1 S2 1.24 88.96 25.04 73.30 

TA2  1.59 89.18 25.03 72.79 

TA3  1.67 90.41 25.78 78.03 

TA4  1.97 89.65 24.03 71.45 

TH1 S3 2.94 92.21 30.95 76.59 

TH2  3.73 93.33 26.20 84.07 

TH3  4.45 93.36 25.27 80.03 

TH4  4.98 93.96 26.75 79.19 

G2-11  
    

TE1 S1 1.55 89.12 22.85 61.17 

TE2  1.31 90.48 20.33 60.46 

TE3  2.07 91.42 19.86 60.89 

TE4  1.82 92.33 22.11 65.28 

TA1 S2 2.16 93.34 19.42 61.00 

TA2  1.28 92.94 22.60 61.97 

TA3  1.95 92.99 19.66 62.11 

TA4  1.38 94.41 23.15 60.74 

TH1 S3 1.30 93.73 20.86 70.01 

TH2  1.55 95.08 20.26 68.13 
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TH3  1.71 93.62 22.31 64.85 

TH4  1.99 93.55 19.98 61.96 

G2-12  
    

TE1 S1 0.95 89.46 20.32 64.18 

TE2  1.36 89.55 21.19 69.43 

TE3  1.56 88.45 19.97 70.96 

TE4  1.61 87.82 19.85 67.57 

TA1 S2 1.10 91.52 20.10 64.05 

TA2  1.53 90.93 21.31 68.35 

TA3  1.67 90.17 20.35 65.26 

TA4  1.78 90.21 21.43 65.34 

TH1 S3 1.61 91.27 18.88 67.08 

TH2  1.62 90.36 19.97 69.03 

TH3  1.78 90.00 20.96 66.93 

TH4  1.86 89.79 23.08 67.22 

G2-13  
    

TE1 S1 4.02 94.70 25.90 88.81 

TE2  4.82 95.69 26.05 90.92 

TE3  4.97 95.89 19.50 90.91 

TE4  5.13 95.20 22.18 90.59 

TA1 S2 3.78 96.23 23.01 98.64 

TA2  4.43 96.38 24.63 96.20 

TA3  4.63 96.49 26.24 97.20 

TA4  4.92 96.36 26.82 97.80 

TH1 S3 4.02 95.20 27.87 105.35 

TH2  4.62 94.94 26.27 105.62 

TH3  4.81 94.57 24.56 109.04 

TH4  5.20 93.92 23.05 100.57 

G2-14  
    

TE1 S1 5.42 91.06 22.64 79.60 

TE2  6.02 90.71 24.51 83.82 

TE3  6.21 89.44 22.77 76.17 

TE4  6.24 88.34 22.79 82.85 

TA1 S2 4.20 95.94 24.48 91.63 

TA2  4.56 95.82 24.16 89.00 

TA3  4.60 95.59 24.11 85.80 
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TA4  4.47 95.71 24.62 89.31 

TH1 S3 5.85 94.62 25.86 85.58 

TH2  7.15 94.80 22.42 86.13 

TH3  7.06 94.48 24.18 85.37 

TH4  6.88 93.81 23.71 82.77 

G2-15  
    

TE1 S1 1.76 87.78 25.79 93.63 

TE2  2.12 85.98 26.28 89.05 

TE3  2.38 84.63 26.19 88.36 

TE4  2.40 83.72 24.54 85.83 

TA1 S2 3.21 91.81 29.63 104.31 

TA2  3.68 91.02 28.12 102.14 

TA3  4.01 90.94 28.59 100.01 

TA4  4.14 90.52 28.26 99.45 

TH1 S3 3.63 90.91 27.11 103.78 

TH2  4.73 89.51 27.24 98.80 

TH3  5.01 89.01 28.36 106.19 

TH4  4.91 88.06 27.86 104.93 

G2-16  
    

TE1 S1 4.30 92.65 26.73 81.58 

TE2  5.04 92.78 26.62 81.79 

TE3  5.14 93.61 25.28 79.51 

TE4  4.70 93.30 25.17 78.14 

TA1 S2 1.96 94.89 24.62 76.81 

TA2  1.00 95.27 24.53 77.42 

TA3  1.13 95.03 25.29 76.13 

TA4  1.62 95.06 25.42 77.32 

TH1 S3 1.46 94.15 24.24 75.90 

TH2  2.35 93.75 25.94 77.78 

TH3  1.27 92.83 26.12 78.58 

TH4  2.30 93.84 27.37 75.74 

G2-17  
    

TE1 S1 5.29 92.31 23.90 61.69 

TE2  6.06 93.70 21.48 56.92 

TE3  5.57 94.05 21.46 61.70 

TE4  6.18 94.41 19.96 61.16 
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TA1 S2 2.34 92.72 18.43 57.19 

TA2  3.06 93.64 22.23 57.48 

TA3  N/A 94.15 20.11 56.09 

TA4  3.36 93.71 20.82 57.43 

TH1 S3 1.79 90.57 22.21 59.56 

TH2  1.97 91.64 20.30 57.02 

TH3  1.91 91.64 20.30 56.55 

TH4  2.16 92.47 20.69 55.65 

G2-18  
    

TE1 S1 1.71 93.24 26.96 75.65 

TE2  1.73 93.38 25.77 74.57 

TE3  1.90 93.60 28.20 77.92 

TE4  1.72 93.27 27.07 74.96 

TA1 S2 0.45 93.98 25.91 78.81 

TA2  0.58 93.33 25.56 80.24 

TA3  0.65 93.75 21.64 78.39 

TA4  0.79 93.58 24.88 82.33 

TH1 S3 0.91 93.93 26.80 93.24 

TH2  1.43 93.90 27.67 91.36 

TH3  1.67 94.00 25.40 91.21 

TH4  1.82 94.14 24.52 88.61 

G2-19  
    

TE1 S1 2.40 86.26 21.04 74.26 

TE2  2.79 85.65 21.13 76.57 

TE3  3.09 85.44 19.35 77.51 

TE4  3.50 86.02 20.52 72.16 

TA1 S2 0.46 84.98 18.02 73.46 

TA2  0.42 85.79 16.74 71.31 

TA3  0.78 85.57 19.81 76.93 

TA4  0.45 85.73 19.70 73.72 

TH1 S3 2.00 78.89 19.59 78.14 

TH2  1.42 79.50 20.05 77.61 

TH3  1.71 79.27 18.73 75.20 

TH4  2.34 79.17 20.08 81.26 
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Appendix C: Detailed Description of Test Scenarios and Required Actions.  

Sessions Scenario 

Code 

Context and Required Actions 

Set 1: 

Environment 

TE1 From cabin, find your lifeboat station using primary or secondary 

egress routes (as quickly as possible). 

TE2 From worksite, find your primary muster station using primary or 

secondary egress routes (as quickly as possible). 

TE3 From cabin, find your primary muster station in a blackout situation 

using primary or secondary egress routes (as quickly as possible). 

TE4 From worksite, find your lifeboat station in a blackout situation using 

primary or secondary egress routes (as quickly as possible). 

Set 2:  

Alarms 

TA1 From cabin, respond to a muster drill (GPA alarm). Required action: 

muster at your primary muster station as quickly as possible. 

TA2 From worksite, respond to an evacuation drill (PAPA alarm). Required 

action: muster at your lifeboat station as quickly as possible. 

TA3  From cabin, respond to emergency situation (PAPA alarm caused by 

equipment failure and anomalies in process controls resulting in 

blackout) Required action: muster at lifeboat station as quickly as 

possible. 

TA4 From worksite, respond to emergency situation (GPA alarm vessel 

wide blackout) Required action: muster at primary muster station as 

quickly as possible. 

Set 3:  

Hazard 

Avoidance 

TH1  From cabin, respond to emergency situation (GPA alarm due to fire in 

galley and escalating to a PAPA alarm due to smoke in adjacent muster 

station). Required action: head to primary muster station then re-route 

to lifeboat station due to compromised primary muster point. NOTE: 

primary route and muster point blocked. 

TH2  From cabin, respond to emergency situation (GPA alarm due to fire on 

helideck and escalating to a PAPA alarm due to explosion on helideck. 

High winds resulting in heaving smoke affection port side and center 

stairwell outside). Required action: head to primary muster station then 

re-route to lifeboat station due to escalating situation. NOTE: 

secondary route blocked. 

TH3  From worksite, respond to emergency situation (GPA alarm due to 

electrical fire and smoke in upper deck and escalating to a PAPA alarm 

due a blackout and thick smoke blocking access to upper deck and 

muster stations). Required action: head to primary muster station then 

re-route to lifeboat station due to escalating situation. NOTE: primary 

route blocked. 

TH4  From worksite, respond to emergency situation (No initial alarm, fire 

and explosion at main engine resulting in blackout) Required action: 

raise alarm, once alarm raised head to primary muster station then re-

route to lifeboat station due to escalating situation. NOTE: secondary 

route blocked. 
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Appendix D: Call for Participants Recruitment Email 

 

Call for Subjects- Recruitment Email Information 

Are you interested in taking part in a research study? 

Volunteers are needed to study the effect of virtual training systems on behaviour and learning 

in emergency response scenarios.  

Brief Description of Experiment: 

 Contribute to our understanding of how training protocols affects people’s ability to 

train their memory and emergency response behaviors. 

 You’ll be using a simulator that is similar to a first person video game BUT for serious 

training situations. The simulation is controlled by an Xbox controller on a desktop 

computer. 
 

 Volunteers will be asked to attend three (3) training and testing sessions.  

 Each session could take upwards of four (4) hours to complete for a total of three (3) 

sessions. With no more than two (2) days between sessions. 

Who can participate? 

 Anyone between 19-55 years of age. 

 No experience necessary to participate. 

The study will be conducted in the Virtual Environments for Knowledge Mobilization laboratory 

located off-campus at 20 Hallett Crescent. Total time involvement will be approximately twelve 

hours over three visits to the lab.   

Sources of data being collected: 

 Performance during simulation scenarios;  

 Sensors will be applied to each participant to measure:  
o Heart rate (2-Lead EKG);  
o Skin conductance (2 finger electrodes);  
o Peripheral skin temperature (one sensor applied to the hand), and; 
o Respiration (a band fixed around the torso),  

 Subjective assessment of experience via questionnaires. 
 

Please contact Jennifer Smith or Mashrura Musharraf for more information or to schedule a 

session. You can contact Mashrura by email (mm6414@mun.ca)  or Jennifer by email 

(jennifersmith@mun.ca) or by telephone at (709) 864 - 6764.  

mailto:(mm6414@mun.ca)
mailto:jennifersmith@mun.ca
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Appendix E: Recruitment Poster 
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Appendix F: Free and Informed Consent Form 

 

Title: The effect of virtual training systems on participant behaviour and learning in 

emergency response scenarios. 

 

Researchers: Dr. Scott MacKinnon 

 Principal Investigator 

 Memorial University of Newfoundland 

 School of Human Kinetics and Recreation 

 (709) 864-6936 

 smackinn@mun.ca 

 

 Ms. Jennifer Smith 

 Co-Investigator 

 Virtual Environments for Knowledge Mobilization Project 

 Human Factors Coordinator 

 (709) 864-6764 

 jennifersmith@mun.ca 

 

 Mr. David Bradbury-Squires 

 Co-Investigator 

 Virtual Environments for Knowledge Mobilization Project 

 Human Factors Graduate Student 

 (709) 728-5472 

 djbs32@mun.ca  

 

 Mr. Andrew Caines 

 Co-Investigator 

 Virtual Environments for Knowledge Mobilization Project 

 Human Factors Assistant – Cooperative Education 

 (709) 864-6764 

 a.caines@mun.ca 

  

 Mrs. Mashrura Musharraf 

 Co-Investigator 

 Virtual Environments for Knowledge Mobilization Project 

 Human Factors Graduate Student 

 (709) 769-6669 

 mm6414@mun.ca 

 

  

mailto:smackinn@mun.ca
mailto:jennifersmith@mun.ca
mailto:djbs32@mun.ca
mailto:a.caines@mun.ca
mailto:mm6414@mun.ca
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You are invited to take part in a research project entitled “The effect of virtual training 

systems on participant behaviour and learning in emergency response scenarios”. 

 

This form is part of the process of informed consent.  It should give you the basic idea of 

what the research is about and what your participation will involve.  It also describes your 

right to withdraw from the study at any time.  In order to decide whether you wish to 

participate in this research study, you should understand enough about its risks and 

benefits to be able to make an informed decision.  This is the informed consent process.  

Take time to read this carefully and to understand the information given to you.  Please 

contact the researchers Dr. Scott MacKinnon or Jennifer Smith if you have any questions 

about the study or for more information not included here before you consent. 

 

It is entirely up to you to decide whether to take part in this research.  If you choose not to 

take part in this research or if you decide to withdraw from the research once it has 

started, there will be no negative consequences for you, now or in the future. 

 

Introduction 

 

We are an interdisciplinary research team at Memorial University.  The research is being 

conducted as a part of the Virtual Environments for Knowledge Mobilization Project. 

Disciplines collaborating on this project include engineers of various specialties (naval 

architecture, mechanical, software, electrical), human factors and ergonomics 

researchers, coop students from the faculty of engineering and kinesiology, and graduate 

students with related research interests.    

 

There has recently been increased emphasis placed on ensuring the safety of crew on 

ships and offshore platforms.  This has manifested in the form of improved safety 

management systems, more stringent regulations governing qualifications of seafarers and 

offshore crew, and requirements for more comprehensive training programs relating to all 

aspects of work and personal safety in maritime occupations.   

 

The basic training related to personal safety and emergency response is most commonly 

delivered in lecture format, and routine drills.  On offshore platforms there are weekly 

muster drills on a specific day and time where the onboard crew is required to proceed to 

their muster stations.  Practically, this is their only opportunity to practice emergency 

response and muster procedures learned in lecture. 

 

These weekly training drills are performed under optimal conditions.  The crew knows to 

expect the drill at the same day and time, there is no threat of danger, and the route to the 

muster area will be free of obstacles.  With no opportunity to experience an actual hazard 

or threat of danger, the value of this training may be lost. 

 

This research project is evaluating naive participants training for emergency response and 

mustering on a virtual offshore oil rig.  In this virtual environment there is the capability 
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to implement hazards such as fires, explosions, oil leaks and toxic fumes.  When 

practicing evacuation of an area of the vessel, doors can be barred, stairs can be rendered 

impassable, and the trainees will have to select alternate routes to avoid hazards, and 

safely make their way to their muster station or abandonment area.  

 

Purpose of study: 

 

This study will evaluate virtual training systems. Technology is advancing is such a way 

that training time may be increased without increasing the demand on instructors.  In this 

study, minimal contact with the training facilitator is supplemented with training tools and 

artificial instruction. The research team is seeking to determine if there is a difference in 

performance between groups after single exposure training program and repeat exposure 

training program.  

 

What you will do in this study: 

 

Participants will attend three, four hour sessions in Virtual Environments Lab with no 

more than two days between sessions. Each session will consist of a training phase 

followed by virtual environment testing trials. Training will be an artificial-instructor led 

tutorial providing guidance on basic offshore safety practices including spatial awareness, 

alarm recognition, muster procedures and hazard avoidance. During the tutorials the 

instructor will provide a video walk-through tour of the virtual platform, outlining the 

platform floor plans, pointing out areas of access on the platform, important landmarks, 

muster locations and instructing on available escape routes. The instructor will also 

provide helpful lessons to facilitate learning of alarm types, mustering procedures and 

recognizing potential hazards. The instructions to the participant will be to learn, with the 

assistance of the familiarization materials, the alarm types, multiple escape routes, and 

muster procedures. Participants will have the opportunity to explore the virtual offshore 

oil rig in a thirty-minute self-guided walkthrough. 

 

At the end of the training phase of each session, each participant will complete a quiz and 

perform four measured trials to assess the efficacy of each of the training protocols on 

learning alarm types, muster locations and escape routes.  Each participant will perform 

the measured trials in the same order.  The measured trial scenarios will increase in 

difficulty across each session. The trials will consist of scenarios, where the participant 

will encounter different alarm types as well as hazards such as poor lighting, barriers, 

fires, or explosions. Given these obstacles, the participant will have to respond 

appropriately to the alarm type and navigate from the starting point (cabin or workstation) 

to their muster location choosing alternative routes should they encounter an obstacle. 

After completing each trial scenario the participant will receive feedback on their 

performance. 
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Length of time: 

 

Each participant will be required to attend three, four hour training and testing sessions, 

with no more than 2 days between sessions. Following the completion of the training the 

participant will be required to complete four testing trials for each session. The 

anticipated total time involvement of the participants is expected to be no more than 

twelve hours of the three visits to the Virtual Environments Lab. 

 

Withdrawal from the study: 

 

If you decide to withdraw from the study, the information collected up to that time will 

continue to be used by the research team.  It may not be removed. This information will 

only be used for the purposes of this study.  

 

Information collected and used by the research team will be stored by Scott MacKinnon 

and he is the person responsible for keeping it secure. Withdrawal from the study will not 

affect your standing with Memorial University, The School of Human Kinetics and 

Recreation, The School of Engineering and Applied Science, or the Virtual Environments 

for Knowledge Mobilization Project. 

 

Possible benefits: 

 

There are no known direct benefits to the participants of this study.   

 

The knowledge gained from this study will support efforts to improve training in the 

maritime community. 

 

Possible risks: 

 

Participants will be equipped with electrodes on several locations on their body.  While 

these self-adhesive electrodes are only applied to the skin, or are worn attached to a head 

cap, the adhesive gel and tape that is used to secure the wires may irritate sensitive skin. 

The application method employed in this study is common practice in both research and 

clinical applications. Skin sensitivity will be assessed prior to the application of the 

sensors and should the skin become irritated to a point of discomfort the participant 

retains the right to withdrawal. All efforts will be made to minimize the duration of skin 

exposure to the adhesive gel and tape. 

 

Navigation through the virtual space may cause some to experience symptoms of motion 

(or simulator) sickness. Simulator sickness will be assessed prior to the study and will be 

monitored throughout. The third person view point that will be used in this study is not 

known to be highly provocative of simulator sickness symptoms in non- or minimally 

susceptible individuals. 
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Exposure to a computer screen may cause eye strain in some participants.  Screen time 

exposure is minimal, and therefore there is minimal expected discomfort. The distance 

from the participant to the screen will be selected such that it reduces the potential for eye 

strain and discomfort. Eye strain is expected to be not more than would be experienced 

during normal computer usage of the same duration. 

 

If at any time the participant experiences symptoms or discomfort which prevent them 

from continuing in this study they retain the right to withdrawal from the study. 

 

Confidentiality vs. Anonymity 

 

There is a difference between confidentiality and anonymity:  Confidentiality is ensuring 

that identities of participants are accessible only to those authorized to have access.  

Anonymity is a result of not disclosing participant’s identifying characteristics (such as 

name or description of physical appearance). 

 

Confidentiality and Storage of Data: 

 

Protecting your privacy and maintaining confidentiality is an important goal of the 

research team. Every effort to protect your privacy will be made. However it cannot be 

guaranteed. For example we may be required by law to allow access to research records. 

 

When you sign this consent form you give us permission to  

 Collect information from you 

 Share information with the people conducting the study 

 Share information with the people responsible for protecting your safety  

 

The members of the research team will see study records that identify you by name. Other 

people may need to look at the study records that identify you by name. This might 

include the research ethics board. You may ask to see the list of these people. They can 

look at your records only when one of the research team is present. 

 

Use of records 

 

The research team will collect and use only the information they need for this research 

study. This information will include your: 

 

 date of birth 

 sex 

 performance metrics 

 physiological data 

 subjective assessments 
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Your name and contact information will be kept in a locked office on a password 

protected PC by the research team at MUN.  It will not be shared with others without your 

permission. Your name will not appear in any report or article published as a result of this 

study. 

 

Information collected for this study will be kept for 5 years. Following this period, all 

electronic records of your participation will be permanently deleted and all paper files 

will be appropriately destroyed.   

 

Anonymity: 

 

Protecting your privacy and ensuring all personal data recorded during participation 

remains anonymous is an important goal for the research team. Every reasonable effort 

will be made to assure your anonymity. You will not be identified in any reports or 

publications without your explicit written permission.  

 

Recording of Data: 

 

As part of this study, we will be collecting various types of data. Performance metrics will 

be recorded electronically during computer-based activities: time, speed, and errors; 

physiological parameters will be collected to assess stress experienced during the test 

trials: heart rate (EKG), galvanic skin response, respiration rate, skin temperature, and 

electroencephalogram (EEG). Afterwards, you will also be asked to fill out a 

questionnaire to report perception of “presence” during the simulation, a questionnaire 

reporting symptoms of simulator sickness and a questionnaire reporting the overall utility 

the virtual environment training. 

 

Reporting of Results: 

 

The research team intends to publish the findings of this study in peer reviewed journals 

and academic conferences.  Formal reports will be made available to funding agencies 

and industry partners. The data will be reported in statistical and descriptive form. 

Individual information or data will not be reported without your exclusive written 

consent.  

 

Sharing of Results with Participants: 

 

On completion of data analysis a report will be prepared for dissemination.  Participants 

who wish to be informed of the results will have the opportunity to receive a copy of the 

final report. 
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Questions: 

 

You are welcome to ask questions at any time during your participation in this research.  

If you would like more information about this study, please contact:  

Dr. Scott MacKinnon 

(709) 864-6936 

smackinn@mun.ca 

 

Jennifer Smith 

(709) 864-6764 

jennifersmith@mun.ca 

 

 

ICEHR Statement: 

 

The proposal for this research has been reviewed by the Interdisciplinary Committee on 

Ethics in Human Research and found to be in compliance with Memorial University’s 

ethics policy.  If you have ethical concerns about the research (such as the way you have 

been treated or your rights as a participant), you may contact the Chairperson of the 

ICEHR at icehr@mun.ca or by telephone at 709-864-2861. 

 

Consent: 

 

Your signature on this form means that: 

 You have read the information about the research. 

 You have been able to ask questions about this study. 

 You are satisfied with the answers to all your questions. 

 You understand what the study is about and what you will be doing. 

 You understand that you are free to withdraw from the study at any time, without 

having to give a reason, and that doing so will not affect you now or in the future.   

 You understand that any data collected from you up to the point of your 

withdrawal will be retained by the researcher for use in the research study. 

 

If you sign this form, you do not give up your legal rights and do not release the 

researchers from their professional responsibilities. 

 

Your signature:  

 

I have read and understood what this study is about and appreciate the risks and benefits.  

I have had adequate time to think about this and had the opportunity to ask questions and 

my questions have been answered. 

 

mailto:smackinn@mun.ca
mailto:jennifersmith@mun.ca
mailto:icehr@mun.ca
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  I agree to participate in the research project understanding the risks and 

contributions of my participation, that my participation is voluntary, and that I 

may end my participation at any time. 

 I agree to the use of quotations but do not want my name to be identified in any 

publications resulting from this study. 

 I agree to having all of the following physiological parameters recorded during my 

participation in this study. 

  

  Heart Rate (EKG) 

 Galvanic Skin Response 

 Skin Temperature 

 Respiration  

 Electroencephalogram (EEG) 

 

I agree to the use of my responses to all questionnaires completed during my 

participation in this study  

A copy of this Informed Consent Form has been given to me for my records. 

 

 

 __________________________________  _____________________________ 

Signature of Participant    Date 

 

 

Researcher’s Signature: 

 

I have explained this study to the best of my ability.  I invited questions and gave 

answers.  I believe that the participant fully understands what is involved in being in the 

study, any potential risks of the study and that he or she has freely chosen to be in the 

study. 

 

 

 __________________________________  _____________________________ 

Signature of Principal Investigator   Date 
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Appendix G: Video Game Experience Questionnaire 

Participant Number:     
      

Gender (circle one): M / F 

    Age:   
        

        1) Have you ever played video or computer games? (circle one) 
 If no, then you do not need to fill in the rest of the questionnaire.  

     Yes /   No   
         2)  How long have you been playing video games? 

             Time (in years):     
      

         3)  How many hours, on average, do you spend playing videogames per week? 
   

         _________Hours per week 
               4) Which of the following video game genres do you prefer? 

            A) Action 
  

F) Simulation 
     B) Action-adventure 

  
G) Strategy 

     C) Adventure 
  

H) Other (Please Specify): 
     D) Role-playing 

                 5) What is your preferred view angle in video games? 
            A) First person perspective (Player experiences the game from the eyes of the character) 

    B) Third person perspective (Player experiences the game from an over the shoulders view of the character) 

C) Isometric perspective (Aerial viewpoint of the map) 
             6)  How familiar are you using the controller/interface employed in this study? 

         A) Not at all 
  

C) Proficient 
    B) Somewhat proficient 

 
D) Expert 

              7)  How proficient/experienced would you rate your level of skill, in first person vantage point games? 

         A) Never Played 
 

C) Played With Some Experience 
   B) Played but Not Experienced D) I Consider Myself an Expert  
   

         8) Which of the following gaming systems do you have experience using? 
          A) Xbox 

  
D) PC Based 

    B) Nintendo Wii 
  

E) Other (Please Specify) _________________________________ 
C) Play Station 
D) iPad/Android/Mobile platform 

F) Of the systems you have experience using, with which do you     
have the most experience? _______________________________ 
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Appendix H: Offshore Experience Questionnaire 

Participant Number:     
      

         1) Have you worked in the marine or offshore industry? (i.e. ships, ports, oil platforms, etc.) 

     Yes /   No   
     

If yes, please list the marine environments you have worked:       

 
         

     

2) Have you ever had emergency evacuation training?  
             Yes /   No 

       
If yes, please list the type of training you have:       
         

         

         3)  Have you ever worked on an offshore platform/vessel? 
If no, do not answer the rest of the questionnaire. 

         Yes /   No 
             4) How long have you worked on an offshore platform/vessel? 

             In years        

         5) On what kind of an offshore platform or vessel have you worked on? 
    

        A) Fixed platform 
    B) Semi-submersible platform 

C) Floating Production Storage and Offloading (FPSO) 
D) Gravity Based Structure (GBS) 
E) Spar platform 
 

    6) How many hours, on average, have you spent at sea?  
 
 ________ In hours 
 
7) Do you have any experience using the platform layout represented by AVERT in this study?  

Yes /   No 

   

8) Have you ever participated in emergency preparedness training or fire drills? 

Yes /   No 
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Appendix I: Modified Witmer & Singer Immersive Tendencies Questionnaire 

Witmer, B. G., & Singer, M. J. (1998). Measuring Presence in Virtual Environments: A Presence 

Questionnaire. Presence: Teleoperators & Virtual Environments, 7(3), 225-240.  

Participant Number: ____________________ 

1. Do you ever get extremely involved in projects that are assigned to you by your 

boss or your instructor, to the exclusion of other tasks? 

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
       Not at all           Very Often 

2. How easily can you switch your attention from the task in which you are currently 

involved to a new task? 

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
  Not at all easily           Very Easily 

3. How frequently do you get emotionally involved (angry, sad, happy) in the news 

stories that you read or hear? 

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
          Never            Very Often 

4. Do you easily become deeply involved in movies or TV dramas? 

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
       Not at all           Very Easily 

5. Do you ever become so involved in a television program or book that people have 

problems getting your attention? 

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
       Not at all                Very Often  
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6. How mentally alert do you feel at the present time? 

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
    Not at all Alert            Very Alert 

7. How frequently do you find yourself closely identifying with the characters in a 

story line? 

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
            Never       Very frequently 

8. Do you ever become so involved in a video game that it is as if you are inside the 

game rather than moving a joystick or watching the screen? 

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
          Never           Very Often 

9. How good are you at blocking out external distractions when you are involved in 

something? 

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
   Not good at all            Very Good 

10. Do you ever become so involved in a day dream that you are not aware of things 

happening around you? 

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
          Never             Very Often 

11. How well do you concentrate on enjoyable activities? 

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
   Not well at all            Very Well 

12. How well do you concentrate on disagreeable tasks? 

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
   Not well at all                  Very well  
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13. Have you ever gotten excited during a chase or fight scene on TV or in the 

movies? 

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
           Never           Very Often 

14. Have you ever gotten scared by something happening on a TV show or in a 

movie? 

      ☐     ☐     ☐     ☐     ☐     ☐     ☐  

          Never         Very Often 
15. Have you ever remained apprehensive or fearful long after watching a scary 

movie? 

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
          Never          Very Often 

16. Do you ever become so involved in something that you lose all track of time? 

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
         Not at all           Very Often 
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Appendix J: Kennedy Simulator Sickness Questionnaire 

Kennedy, R. G. (1993). Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator 
Sickness. International Journal Of Aviation Psychology, 3(3), 203 
 
Participant Number: _______________________________________ 
 

Time:___________________ 
When: After / Before Testing 
 

    
Symptom  

0                         
No Symptoms 

1             
Minimal 

2          
Moderate 

3                 
Severe 

General Discomfort 
        

Fatigue 
        

Headache 
        

Eyestrain 
        

Difficulty Focusing 
        

Increased Salivation  
        

Sweating 
        

Nausea 
        

Difficulty Concentrating 
        

Fullness of Head 
        

Blurred Vision 
        

Dizzy (eyes open) 
        

Dizzy (eyes closed) 
        

Vertigo 
        

Stomach Awareness 
        

Burping 
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Appendix K: Utility of Virtual Environment and Training Questionnaire 

 

Post-Trial Questionnaire for Session 1 and Session 2: 
 

Participant Number: _____________ 
 

1. What did you find most challenging in completing the scenarios? 
              

_______________________________________________________________________________ 

2. What do you think are important factors for success in the scenarios? 
              

_______________________________________________________________________________ 

 

3. Did you have a strategy to learn the environment and respond to scenarios?           Y   /   N 
 

If yes, please briefly describe your strategy. 
______________________________________________________________________________ 
______________________________________________________________________________ 
 

4.     Did you have enough time to complete the scenarios in the way you would have 
wanted? 

       ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
   Not enough time                          Too much time 
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Post-Trial Questionnaire for Session 3 

Participant Number: __________ 

A. Tutorials: 
 

1. How helpful was the basic offshore safety training material? 

     ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
          Not at all              Very helpful 
 

2. How helpful was the walkthrough video? 

     ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
          Not at all              Very helpful 
 

3. How helpful was the escape route videos? 

     ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
          Not at all              Very helpful 
 

4. How helpful were the floor plans? 

     ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
          Not at all              Very helpful 
 

5. How helpful was the 30-minute platform exploration time (free-roam around the 

platform)? 

  ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
   Not at all              Very helpful 
 

6. Did you have enough time to review the material the way you would have wanted? 

     ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
Not enough time             Too much time 
 

7. Did the tutorial provide you with sufficient understanding to respond to the test 
scenarios? 

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
      Not at all          Completely 
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8. How helpful were the quizzes? 

     ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
       Not at all              Very helpful 
 

9. How helpful was the feedback you received? 

     ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
       Not at all              Very helpful 
 

B. Scenarios: 
 
4. Reflect on your performance and rate your overall performance in completing the 

scenarios. 

        ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
Not at all successful                      Very successful 

 

5. How realistic were the hazards/scenarios you experienced? 

        ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
Not at all compelling                     Very compelling 

 

6. What went well during the scenarios?  
              

_______________________________________________________________________________ 

7. What did you find most challenging in completing the scenarios? 
              

_______________________________________________________________________________ 

8. What do you think are important factors for success in the scenarios? 
              

_______________________________________________________________________________ 

 

9. Did you have a strategy to learn the environment and respond to scenarios?           Y   /   N 
 

If yes, please briefly describe your strategy. 
______________________________________________________________________________ 
______________________________________________________________________________ 
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10. How comfortable were you at navigating the platform? 

 ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
      Not at all                               Very comfortable 

 

11. How comfortable were you at responding to alarms? 

☐     ☐     ☐     ☐     ☐     ☐     ☐ 
     Not at all                             Very comfortable 

 

12. How comfortable were you at avoiding hazards? 

   ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
   Not at all               Very comfortable 

 

10. Did you have enough time to complete the scenarios in the way you would have 
wanted? 

   ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
Not enough time                          Too much time 
 
 

C. Simulator: 
 
1. Rate the ease of use of the controls: 

   ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
Very Hard                 Very Easy 
 

2. How helpful was the mini map? 

   ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
 Not at all                 Very helpful 
 

3. How helpful were the check box questions? 

   ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
 Not at all                 Very helpful 
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4. How helpful was the helper text? 

   ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
 Not at all                 Very helpful 
 

5. How helpful were the signs on the platform? 

   ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
 Not at all                 Very helpful 

6. Rate the ease of use of interacting with things in the virtual environment (i.e. turning on 

flashlight, opening and closing doors, moving your T-card, etc): 

   ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
Very Hard                 Very Easy 
 

 

D. Comments and Suggestions: 
 

Any Comments? 
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Appendix L: Modified Witmer and Singer Presence Questionnaire 

Witmer, B. G., & Singer, M. J. (1998). Measuring Presence in Virtual Environments: A Presence 

Questionnaire. Presence: Teleoperators & Virtual Environments, 7(3), 225-240.  

Participant Number: _______ 

1. How responsive was the environment to actions that you initiated (or performed)?   

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
Not at all Responsive      Very Responsive 

2. How natural did your interactions with the environment seem?  

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
Not at all Natural       Very Natural 

3. How much did the visual aspects of the environment involve you?   

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
       Not at all       Completely 

4. How much did the auditory aspects of the environment involve you?  

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
       Not at all       Completely 

5. How natural was the mechanism which controlled movement through the environment?  

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
  Not at all Natural        Very Natural 

6. How compelling was your sense of objects moving through space?  

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
Not at all compelling      Very Compelling  
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7. Were you able to anticipate what would happen next in response to the actions that you  

performed?   

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
      Not at all          Completely 

8. How completely were you able to actively survey or search the environment using 

vision?  

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
       Not at all           Completely 

9. How well could you identify sounds?   

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
       Not at all           Very well 

10. How compelling was your sense of moving around inside the virtual environment? 

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
Not at all compelling      Very Compelling 

11. How involved were you in the virtual environment experience?  

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
Not at all Involved      Very Involved 

12. How much delay did you experience between your actions and expected out-comes? 

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
Very delayed       No delay at all 

13. How quickly did you adjust to the virtual environment experience?  

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
Not quickly at all      Very quickly 
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14. How proficient in moving and interacting with the virtual environment did you feel at 

the end of the experience?  

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
Not at all proficient      Very Proficient 

15. How much did the visual display quality interfere or distract you from performing 

assigned tasks or required activities? 

      ☐     ☐     ☐     ☐     ☐     ☐     ☐  

Very Distracting       Not at all distracting 
16. How much did the control devices interfere with the performance of assigned tasks or 

with other activities?  

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
Very Interfering       Not interfering at all 

17. How well could you concentrate on the assigned tasks or required activities rather than 

on the mechanisms used to perform those tasks or activities? 

      ☐     ☐     ☐     ☐     ☐     ☐     ☐ 
          Not at all              Very well 
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Appendix M: Multiple Choice Quiz Questions for Each Session. 

 

Session 1 – Baseline Safety Induction Quiz  

Learning Objectives Quiz Questions 

Spatial Awareness 

1. What does TSR stand for? 

2. On which deck is your cabin located? 

3. Where is your worksite onboard the vessel? 

4. Where is your primary muster station located? 

5. Where is your secondary muster station located? 

 7. Which areas of the platform do you NOT have access to? 

8. What does the blast wall do? 

9. What is the purpose of a muster? 

Cognitive Awareness 

10. In what situation would you be required to go to your lifeboat station? 

11. Who is in charge at the muster station? 
 

17. What is the expected chain of events in an emergency situation? 

Alarm Recognition 

12. What does GPA stand for? 

13. What does the PAPA stand for? 

14. Where do you go after hearing the Prepare to Abandon Platform Alarm? 

15. What information does the PA provide? 

Routes 16. How many routes are available from your cabin to the lifeboat station? 

Muster Procedures 

18. What is the T-card for? 
 

19. What is a clear call? 

20. What is the purpose of the lifeboat station? 

Safe Practices 6. Fire doors and watertight doors should always be? 
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Session 2 – Advanced Alarm Recognition Quiz 
 

Learning Objectives Quiz Questions 

Cognitive Awareness 

1. What are the emergency duties of general personnel? 

2. Who is in charge at the lifeboat station? 

3. What do you do in the event of a major incident and PAPA alarm? 

4. What are the TWO most important pieces of information you need in 

order to respond to an emergency? 

Alarm Recognition 

5. When hearing a GPA alarm where are you being directed to go? 

6. What alarm is this? [GPA] 

7. What visual alarm is associated with the General Platform Alarm? 

8. What alarm is this? [PAPA] 

9. What do you do when you see a steady green light? 

10. How do you raise the alarm? 

11. What does MAC stand for? 

12. Why is it important to listen for a PA? 

13. When should you raise the alarm? 

14. What is considered a reportable incident? 

15. Where is the nearest manual alarm call point to your situation at your 

worksite? 

Re-routing 16. List some major accidents offshore: 

Muster Procedures 

17. How do you correctly notify the muster checker that you've mustered? 

18. What do you do after you've mustered? 

19. Why is it important to report to your muster station immediately in an 

emergency situation? 

Routes 
20. In your opinion what is the most efficient route from your worksite to 

your muster station? 
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Session 3 – Advanced Hazard Awareness Quiz 

Learning Objectives Quiz Questions 

Spatial Awareness 

1. Where is the TSR on the platform? 

2. The station bill provides what information? 

3. What do you do in the event that your primary muster station is 

compromised? 

4. If you can't remember how to get to your muster station what should you 

do? 

Cognitive Awareness 
5. What does the OIM do in the event of an emergency? 

6. What do you do in the event of a minor incident? 

Alarm Recognition 
7. What would you do in the event of an alarm that wasn't followed by a PA 

announcement? 

Routes 8. What is the safest exit to take given where the hazard is located? 

Re-routing 

9. What PPE should you wear in smoke environments? 

10. What are some of the possible hazards of an offshore work 

environment? 

11. What does EER stand for? 

12. Why is it important to know more than one route? 

13. What areas have increased risk on the platform? 

14. What do you do when your primary muster route has been blocked? 

15. What are some things that could cause a situation to escalate? 

 16. What is the expected chain of events in an emergency situation? 

 
17. What is the safest exit to take given where the hazard is located? 

18. What is the safest exit to take given where the hazard is located? 

Muster Procedures 
19. How do you indicate you've mustered at the lifeboat station? 

20. Which of the following is a good reason to leave the muster station? 

 


