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Abstract  
 

The H
+
-coupled transporter peptide transporter 1 (PepT1) is found primarily in the intestine and 

is capable of transporting dietary di- and tripeptides as well as peptides produced by bacteria.   

However, little is known about the ontogeny of PepT1 in the piglet.  The first part of this thesis 

describes the investigation of the effects of development and diet on peptide transport in the 

intestine of the Yucatan miniature piglet. Dipeptide transport was significantly higher in the ileal 

section in the youngest age group (1 week) compared to the other suckling groups (p<0.05); 

however,  all suckling piglet groups demonstrated lower ileal transport compared to post-weaned 

pigs. These results suggest that peptide transport in the small intestine is important during the 

first week of suckling and again with diet transition following weaning. The objective of the 

second part of this thesis was to determine the impact of enterally delivered dipeptide-containing 

diets on indices of intestinal adaptation in neonatal piglets after intestinal resection, as PepT1 is 

preferentially maintained over free amino acid transporters in situations of gut stress such as 

short bowel syndrome.   In this model no evidence was found that enteral dipeptides provide 

specific adaptive benefits compared to constituent amino acids.  However, the dipeptide-

containing diets reduced pro-inflammatory cytokine concentrations in the mucosa (p<0.05).  One 

dipeptide in particular, cysteinyl-glycine, supported greater villus height compared to all other 

dipeptides and greater crypt depth compared to alanyl-glutamine yet no dipeptide diet altered 

intestinal morphology compared to the free amino acid control diet.  This study demonstrated 

that while there was no explicit morphological benefit of enteral dipeptides over their constituent 

free amino acids, there was the potential for the amelioration of intestinal inflammation by 

reducing pro-inflammatory cytokines.  As PepT1 is also capable of transporting bacterial 

peptides were then investigated intestinal response to a pro-inflammatory peptide, formyl-
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methionyl-leucyl-phenylalanine (fMLP) alone or in combination with cysteinyl-glycine in a 

model of intestinal atrophy.  Piglets received parenteral nutrition (PN) for 4 d to induce atrophy 

while littermates remained with the sow.  In both dietary treatments, intestinal segments exposed 

to fMLP had higher mucosal pro-inflammatory cytokines with this inflammatory effect being 

attenuated when cysteinyl-glycine was co-perfused with this bacterial peptide (p<0.05). 

Morphologically, fMLP exposure did not alter villus height or crypt depth in sow-fed animals; in 

contrast, intestinal segments from PN-fed piglets exposed to fMLP had reduced villus height 

compared to unexposed loops.  Inclusion of cysteinyl-glycine was effective at attenuating a 

bacterial peptide-induced inflammatory response in the injured SI.  This may be due to efficient 

dipeptide uptake in a situation of impaired free amino acid absorption, and/or competitive 

inhibition of fMLP uptake.   Through the use of in vivo piglet models, these studies have 

contributed to the understanding of peptide transport in health and disease states in addition to 

demonstrating the potential benefits of enteral dipeptide provision.   
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Chapter 1: Literature Review 

1.1 Protein digestion and amino acid transport 

Protein is an essential part of a complete daily diet. A typical Western diet usually contains 

70-100 g protein per day. Of this total protein, about 95-98% is completely digested and absorbed 

(Erickson et al., 1995).   After initiation of digestion in the stomach, dietary products are moved into 

the small intestine where pancreatic enzymes continue to break down complex compounds into 

absorbable products.   Through this gastrointestinal processing, protein is broken down into di/tri-

peptides, comprising roughly 80% of the total protein, with the remaining 20% being reduced to free 

amino acids (Ganapathy V, 2006).  These resulting products of protein digestion are absorbed 

from the lumen of the small intestine via specific transport mechanisms found on enterocytes, 

epithelial cells primarily responsible for nutrient uptake.  The mechanism by which an individual 

amino acid is absorbed by the intestine varies depending on the amino acid.  Free amino acid 

transporters can be classified into five different groups: 1) neutral amino acids, 2) cationic amino 

acids, 3) anionic amino acids,  4) proline, hydroxyproline, lysine and  5) taurine, β-amino acids 

(Broer, 2008).  Certain amino acids may be transported by more than one system, thereby 

providing redundancy (Broer, 2008). The activity of the transporters depends on the 

concentration and variety of amino acids present.   While these systems are capable of 

transporting the free amino acid products of protein digestion, another transporter is required for 

the removal of di/tripeptides from the lumen of the small intestine (Daniel, 2004).. There are 

multiple benefits to the transport of peptides over free amino acids.  Uptake of di/tripeptides by an 

apical peptide transporter, PepT1, requires the same amount of energy that is required to transport a 

single free amino acid (Daniel, 2004). Additionally, it is more efficient to transport amino acids in 
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small peptide form compared to transporting their constituent free amino acids because peptides 

demonstrate faster rates of uptake while requiring the same amount of energy (Gilbert et al., 2008b). 

Investigation of PepT1 has begun to reveal a new facet of amino acid uptake, as well as the 

evolutionarily conserved nature of peptide transport. 

1.2 Introduction to Proton Oligopeptide Transporters 

 Proteins capable of moving small peptides across membranes have been grouped into a 

transporter superfamily known as proton oligopeptide transporter, or POT.  Members of this 

family are found in most organisms with a significant degree of evolutionary conservation 

through bacteria, yeast, plants and animals (Daniel et al., 2006).  All members of this family of 

transport proteins are believed to utilize a proton gradient to drive the uptake of their substrates 

across cell membranes.  Currently there are 40 members of this superfamily, however many of 

those predicted to transport oligopeptides in C. elegans, A. thaliana and E. coli have yet to 

experimentally demonstrate peptide transport (Meredith and Boyd, 2000).  The inclusion of these 

putative peptide transporters is based on the detection of a specific protein sequence, PTR2, 

currently used as an identifier for potential peptide transporters.  There are currently five peptide 

transporters identified in mammals, varying in tissue distribution but with similarities in 

substrate specificity (Daniel and Kottra, 2004).  Classed predominantly as members of the 

SLC15 solute carrier family of transporters, they are SLC15A1, also known as PepT1, 

SLC15A2/PepT2, SLC15A3/ PHT 2 and SLC15A4/ PHT 1 (Daniel and Kottra, 2004).  The fifth 

peptide transporter, HPT1, has greater similarity to cadherins rather than its fellow peptide 

transporters (Dantzig et al., 1994).   

 

1.2.1 Peptide Transporter 1 (SLC15A1) and Peptide Transporter 2 (SLC15A2) 
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 The first identified peptide transporter, PepT1 (SLC15A1), was cloned from a rabbit 

intestinal cDNA library (Fei et al., 1994).  Shortly thereafter the peptide transporter PepT2 was 

first isolated from a human kidney cDNA library (Liu et al., 1995).  Of the members of the POT 

superfamily, PepT1 and PepT2 have received the most investigative attention.  Using 

immunohistochemistry, PepT1 was localized to the apical membrane of enterocytes (Ogihara et 

al., 1996).  PepT2 was not found in the intestine, but rather in the epithelium of the kidney, lung, 

mammary glands as well as regions of the central nervous system (Shen et al., 1999, Rubio-

Aliaga and Daniel, 2002).  PepT1 and PepT2 have many similarities in protein structure and 

sequence.  Both share putative sequences illustrating the potential for 12 trans-membrane 

domains while PepT2 shares 50% identity and 70% similarity to the previously identified PepT1 

(Liu et al., 1995).  Significantly, the sequence similarities are much higher in the trans-membrane 

regions than in the amino- and carboxy-terminus suggesting conservation of functionally 

important residues.  Despite these similarities there are important differences found between the 

substrate specificities of these peptide transporters.  PepT2 showed a higher affinity for 

dipeptides compared to PepT1 in rabbit and human samples (Amasheh et al., 1997, 

Ramamoorthy et al., 1995).  PepT1 is considered a low-affinity/high-capacity peptide transporter 

whereas PepT2 is high-affinity/low-capacity.  The primary function of PepT1 is the absorption of 

dipeptides from the nutritionally rich intestinal lumen, whereas PepT2 removes peptides at 

relatively low concentration from the tubules of the kidney; as such, this particular adaptation is 

physiologically beneficial.  Early in situ studies employed the everted jejunal ring model and 

exposed the tissue to hydrolysis-resistant oligopeptides of two, three or four amino acid residues 

to describe the structure affinity relationships of PepT1.  It was determined that only 

di/tripeptides were transported across the epithelial barrier of the small intestine; tetrapeptides 
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were not transported in this model (Daniel and Kottra, 2004).  Drugs that are structurally similar 

to small peptides are also transported by PepT1 and computational modeling has been 

extensively used to study this activity (Bolger et al., 1998, Irie et al., 2005).  Studies attempting 

to determine the distinct substrate specificities of PepT1 have revealed that almost all 

di/tripeptides constructed from physiological amino acids are potential substrates for transport 

(Vig et al., 2006).  While no similar study has been performed on PepT2, numerous peptides 

have been investigated as potential substrates and similar results have been obtained (Liu et al., 

1995, Ramamoorthy et al., 1995).  Both PepT1 and PepT2 have also demonstrated the capacity 

to transport compounds other than amino acids such as β-lactam antibiotics (Han et al., 1998, 

Terada et al., 1997), while PepT1 is also involved in the movement of bacterial peptides across 

the intestinal epithelium (Merlin et al., 1998).  This transport of non-physiological substrates is 

of interest as it provides another potential avenue for drug targeting, and it may be a causative 

factor in intestinal inflammation.  

1.2.1.1 Introduction to PepT1/PepT2 Structure/Function 

PepT1 consists of 12 trans-membrane domains (Figure 1), with each domain and loop 

unit associated with one of the 23 exons responsible for its coding (Urtti et al., 2001).  The 

transport of short peptides requires protons to provide a motive force, as well as sodium to 

maintain the proton gradient. NHE3, a sodium/proton antiporter, is responsible for providing the 

proton gradient necessary for intestinal PepT1 function (Ganapathy and Leibach, 1985).  PepT1 

has the capability to bind a large number of different substrates and the structure-affinity 

relationship of this transporter is an area of interest (Brandsch et al., 2004). With amino acids 

lengths of 710 and 729 respectively, PepT1 and PepT2 have several putative  
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Figure 1.1: Proposed structure of PepT1 
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phosphorylation and glycosylation sites.  Hydropathy analysis demonstrated that the peptide 

transporters likely contain 12 trans-membrane domains with cytosolic amino and carboxy 

termini (Fei et al., 1994).  In order to confirm the number and position of these trans-membrane 

domains, epitope mapping of human PepT1 was performed (Covitz et al., 1998).  This analysis 

confirmed the cytosolic location of the carboxy terminus and the number of trans-membrane 

domains.  Additionally, the experiment revealed that the loop between domains 3 and 4 was 

extracellular and a large extracellular loop between domains 9 and 10 was present.  The exact 

location of the amino terminus was not determined due to complications arising from epitope 

insertions between domains 1 and 3.  During these particular epitope insertions, hPepT1 function 

was disturbed, suggesting that this region is important for folding or transporter function.    

1.2.1.2 Recent Developments in the Structure of PepT1 

Although a large amount of data has been gathered through computational modeling and 

mutagenic studies, the structure of PepT1 is still under discussion.  Greater understanding of the 

protein structure, and thereby an understanding of substrate binding residues, would lead to 

predictions of binding affinity for novel therapeutic substrates.  Currently there is no complete 

structure of mammalian PepT1, however crystals structures have been obtained for numerous 

similar bacterial peptide transporters.   

Comparisons of PepT1 with the structure of LacY and GlpT, due to their predicted 

similarity in structure (Saier et al., 2006), aided in the development of a structural model of 

rabbit PepT1 (Meredith and Price, 2006).  This structural model was the first to directly 

challenge the hydropathy plot which predicted the 12 trans-membrane domains mentioned above 

(Fei et al., 1994).  Through the use of a more modern structural prediction program (MEMSAT3) 

(McGuffin et al., 2000), the predicted location of trans-membrane domain 1 shifted to residues 
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24 to 42 rather than 7 to 75, as predicted by hydropathy (Meredith and Price, 2006, Fei et al., 

1994).  This shift would provide an explanation for the complications found in the structural 

analysis via epitope mapping (Covitz et al., 1998).  The model proposed by Meredith and Price 

(2006) also positions a number of essential residues facing the central pore thereby providing a 

structural explanation for their importance.   

Recently the crystal structure of several prokaryotic peptide transporters has been solved 

(Newstead et al., 2011, Solcan et al., 2012, Doki et al., 2013).  PepTSo,  initially isolated from the 

bacterium Shewanella oneidensis, shares 30% identity within the trans-membrane regions of 

PepT1 and PepT2 including many of the previously identified significant residues (Newstead et 

al., 2011).  Unlike the previous models, PepTSo contains 14 trans-membrane domains at a 

resolution of 3.6 Å.  Transport of glycyl-sarcosine by PepTSo was similar to that of hPepT1 and 

experimentation with free amino acids, di/tripeptides and tetra-peptides suggested similar 

substrate affinity as other peptide transporters. Reliance on the proton motive force was also 

demonstrated in PepTSo.  Shortly after the publication of this structure the Newstead lab reported 

a higher resolution, 3.3 Å, structure of a peptide transporter from Streptococcus thermophilus,  

PepTSt (Solcan et al., 2012).  The functional characterization of this transporter revealed a hinge 

movement in the C-terminal region of the transporter, domains 10 and 11, with salt bridge 

interactions that alternate during the act of substrate transport.  The structure of a peptide 

transporter from Geobacillus kaustophilus (GkPOT) has been resolved at the highest resolution 

at1.9Å for ligand-free and 2.0 Å for sulphate bound form (Doki et al., 2013).  The structure of 

GkPOT was determined to be similar to that of PepTSo and PepTSt.  This was the first study to 

investigate the functional impact of site directed mutagenesis at this resolution.  Through the 

study of mutated forms of the protein it was shown that glutamate 310 is responsible for binding 
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the carboxyl group of the peptide substrate.  After substrate release, it is the interaction between 

glu310 and arg43 which causes a transition returning the transporter to a state ready to accept 

additional extracellular substrates. Although the determination of this structure is an important 

step in understanding the direct mechanism of action of peptide transport, it is important to 

consider that it only represents a static moment in the action of this transporter.  Since there is 

only a 30% identity between PepTSo and the mammalian PepT1 and PepT2, any direct 

comparisons on transport mechanisms or methods of substrate recognition must take this fact 

into consideration.   

1.2.1.3 Importance of Histidine, Arginine and Tyrosine Residues in Peptide Transport 

 Previous work has demonstrated that transport systems which co-transport hydrogen ions 

rely on histidyl residues for their activity (Ganapathy et al., 1987).  Considering that POT family 

members use these ions as the primary motive force, histidyl residues were studied as potentially 

vital components of both PepT1 (Kramer et al., 1988) and PepT2 (Miyamoto et al., 1986).  In 

order to specifically investigate the function of the histidyl residues, diethylpyrocarbonate 

(DEPC) was used in combination with brush-border membrane vesicles (BBMV) isolated from 

rabbit kidney (Miyamoto et al., 1986) or rabbit small intestine (Kramer et al., 1988).  The 

compound DEPC is capable of specifically altering the structure of histidine residues without 

modifying other residues in the protein.  The work by Miyamoto et al. (1986) demonstrated that 

functional histidyl residues were essential for PepT2 function, and suggested that thiol groups 

present around the binding site are also important.  They did not determine whether the histidine 

residues were present in the dipeptide-binding site or if they were involved with H
+
 binding.  

Treatment of BBMV with DEPC inhibited the transport of β-lactam antibiotics that contained an 
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-amino group, contributing to the theory that histidine residues are also important for PepT1 

function (Kramer et al., 1988). 

In order to understand the mechanisms controlling the binding capacity of these 

transporters, attention was directed towards the identification of specific histidine residues that 

were functionally significant.  Through sequence analysis it was determined that histidine 57 and 

121 were highly conserved in PepT1 and predicted to be present in trans-membrane domains 2 

and 4 respectively  (Terada et al., 1996).  Therefore site directed mutagenesis was performed 

replacing histidine 57, 121, or both, with glutamine and then measuring uptake of glycyl-

sarcosine, a hydrolysis resistant dipeptide, in Xenopus oocytes.  Alteration of either or both of 

these residues resulted in a dramatic reduction in glycyl-sarcosine transport, thereby indicating 

involvement in the activity of PepT1 through either substrate binding or other important 

functions.  Further research using a cell culture model transfected with either rat PepT1 or PepT2 

investigated the interaction of antibiotics with histidyl residues in an attempt to delineate the 

specific function of these residues (Terada et al., 1998).  It was established that the -amino 

group of both dipeptides and specific antibiotics interacted with the histidine residues; whether it 

was interaction with histidine 57 or 121 was unknown.  Study of these two residues has been 

ongoing, with certain results highlighting the significance of histidine 57 while suggesting that 

histidine121 is of little to no importance (Fei et al., 1997, Chen et al., 2000).  Other studies have 

maintained the necessity of two histidine residues, one for proton coupling and the other for 

peptide coupling (Steel et al., 1997).  

 Molecular and computational modelling of PepT1 has been very important in 

determining the potential importance of other conserved residues (Irie et al., 2005, Bolger et al., 

1998, Meredith and Price, 2006).  A positively charged amino acid residue, varying between 
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arginine or lysine depending on the animal being studied, is present in trans-membrane domain 7 

of all studied mammalian isoforms of PepT1 (Meredith, 2004).  There is a similar residue found 

in PepT2 indicating potential functional significance.  Investigation of the importance of arginine 

282 via mutagenesis into alanine slightly modified the uptake of glycyl-sarcosine in human 

embryonic kidney cells transfected with hPepT1 (Bolger et al., 1998).  Found in the seventh 

trans-membrane domain of PepT1 (Meredith and Boyd, 2000), mutation of this residue into 

glutamate uncoupled the transport of peptides from protons (Meredith, 2004).  This alteration 

from active to facilitated transport was investigated further in Xenopus oocytes transfected with 

wild-type and mutated rabbit PepT1 to determine the effect of the amino acid charge present at 

position 282 on transport of phenylalanyl-glutamine (Pieri et al., 2008).  Mutation of arginine 

282 to lysine, another positively charged amino acid, did not impact the efficacy of peptide 

transport.  Mutation of this position to histidine also exhibited similar activity as wild-type, 

potentially due to a positive charge on the histidine thus enabling it to function like arginine or 

lysine.  Double mutations revealed an interaction between arginine 282 with an aspartic acid 

residue at position 341 on trans-membrane domain 8 as charge swapping between these two 

residues (R282E/D341R) did not impact peptide transport.   

 A similar sequence of investigations has occurred with particular tyrosine residues in 

PepT1.  Beginning with sequence analysis, tyrosine 167 was identified as a conserved residue 

from bacteria to humans (Graul and Sadee, 1997).  Following its identification, tyrosine167 

underwent site-directed mutagenesis to alanine, phenylalanine, serine or histidine all of which 

abolished uptake of glycyl-sarcosine in cell culture (Yeung et al., 1998).  The sensitivity of 

transporter activity to the mutation of this residue, combined with the well conserved nature at 

this position, indicated the importance of this tyrosine residue.  Continued experimentation 
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revealed that tyrosine 56 is also important for peptide uptake as mutation to phenylalanine or 

alanine dramatically reduced transport of glycyl-leucine (Pieri et al., 2009, Chen et al., 2000).  

The tyrosine present at position 91was identified as potentially interacting with protons (Bolger 

et al., 1998) and mutation of that tyrosine reduced transport capacity (Links et al., 2007).  

Mutation of this residue uncoupled the transport of dipeptides from the proton motive force, 

strengthening the belief that tyrosine 91 was interacting with protons.  Further study has 

identified a potential interaction between tyrosine 91 and histidine 57, located adjacent to 

tyrosine 91 on trans-membrane domain 2 (Pieri et al., 2009).  As these residues are vital for 

proton coupling of peptide transport, this interaction may be involved in regulating pH 

stimulation of peptide transport   

1.3 PepT1 in the Intestine and Kidney 

1.3.1 Gastrointestinal Tract 

PepT1 was first discovered in intestinal samples (Erickson et al., 1995); thus, the 

gastrointestinal tract has undergone intense investigation to determine the distribution of this 

peptide transporter.  Most studies have reported no detection of PepT1 in the oesophagus, 

stomach, cecum or rectum (Ogihara et al., 1996, Freeman et al., 1995); however, one study 

detected weak expression of PepT1 mRNA in the stomach of rodents (Lu and Klaassen, 2006).  

In the intestine, the transporter is localized to the apical membrane of the villi, facilitating access 

to digesta passing through the lumen (Ogihara et al., 1996).  Both PepT1 protein and mRNA 

have been detected in the small intestine of a variety of animal species and the concentration of 

the transporter varies depending on intestinal location and species studied.  Black bears showed 

the highest concentration of PepT1 in the middle of the small intestine (Gilbert et al., 2007b) 
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while studies in humans have demonstrated the greatest presence in the duodenum/jejunum 

(Terada et al., 2005, Herrera-Ruiz et al., 2001).  In contrast, Chen et al. showed a consistent 

amount of PepT1 expression across the entire length of the small intestine of mature sheep, dairy 

cows, pigs, and chickens (Chen et al., 1999).  A study performed in 8-week old rats and mice 

showed no significant differences in the amount of PepT1 mRNA along the length of the small 

intestine (Lu and Klaassen, 2006).  Developmental changes in the location and concentration of 

PepT1 along the small intestine have been reported in rats (Shen et al., 2001), chickens (Chen et 

al., 2005) and pigs (Wang et al., 2009).  Shen et al. (2001) reported that PepT1 presence in the 

colon was transient; by day seven no PepT1 mRNA was found in the colon of developing rats.  

PepT1 has been found in the colon of rats at later time points (Shi et al., 2006a), but its presence 

has been primarily related to a state of intestinal injury such as gut resection and therefore has 

been a source of controversy.  A study in rats demonstrated increased PepT1 protein in the colon 

of animals with intestinal resection that were fed chow (Shi et al., 2006a), whereas rats fed an 

elemental diet did not express any PepT1 mRNA in colonic tissues (Lardy et al., 2006).  A recent 

study demonstrated that there is a greater concentration of PepT1 mRNA in the distal colon of 

mice, rather than proximal, and that this signal was lost in PepT1 knockout mice (Wuensch et al., 

2013).  Assessment of glycyl-sarcosine transport combined with immunofluorescence indicated 

that PepT1 protein was present in the distal colon of wild-type mice and that it was fully 

functional.  A similar condition has been demonstrated in humans, as PepT1 has been detected in 

the colon of humans that have undergone intestinal resection (Ziegler et al., 2002).  When 

compared to control subjects, PepT1 mRNA and protein isolated from colonic samples were 

higher in patients with massive bowel resections.   When combined, these distribution patterns 
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indicate that while PepT1 is ubiquitously expressed in the small intestine of numerous animals, 

colonic PepT1 is only present in early life or in disease states.   

1.3.2 Kidney 

Although PepT2 is considered to be the primary peptide transporter in the kidney, 

expression profiling of the kidney has revealed the presence of both PepT1 and PepT2 (Lu and 

Klaassen, 2006, Smith et al., 1998, Shen et al., 2001).  Analysis of specific regions of rat kidney 

revealed that there is a gradient of expression, from proximal to distal nephron, in both PepT1 

and PepT2 (Smith et al., 1998).  PepT1 was found solely in the kidney cortex with PepT2 being 

expressed in the cortex and the medulla.  While PepT2 was more abundant in rat kidney 

compared to PepT1, the latter was more specific for the early segments of the proximal tubule, 

S1, with the former having a greater concentration in the later segments, S2 and S3.  This, when 

combined with the low-affinity/high-capacity aspect of PepT1 and the high-affinity/low-capacity 

aspect of PepT2, indicates that the reabsorption of peptides in the kidney is handled in a 

sequential manner.  It has been suggested that PepT2 is primarily responsible for the transport of 

peptides, as glycyl-sarcosine was reabsorbed from the late portions of the proximal tubule 

(Silbernagl et al., 1987).  The relative importance of PepT1 in renal peptide transport has yet to 

be determined; however as it is a high-capacity transporter its role may be significant. 

1.4 Regulation of PepT1 in Health and Disease 

1.4.1 Dietary Factors 

There is a growing body of evidence demonstrating that PepT1 expression and activity is 

at least partially substrate driven.  Rats fed a high protein diet had greater uptake of carnosine 

than rats fed a low protein diet (Ferraris et al., 1988).  As carnosine is a substrate for PepT1, this 
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result suggested that diet may play a role in regulating PepT1; however the mechanism had yet to 

be determined.  Although the transporter was identified along the length of the small intestine, a 

high protein diet fed to rats induced PepT1 transcription in the proximal small intestine only 

(Erickson et al., 1995).  Greater abundance of PepT1 transporters was also observed in rats fed a 

standard diet supplemented with a single dipeptide compared to controls fed free amino acids 

(Shiraga et al., 1999).  The quality of protein ingested may also affect PepT1 expression.  A 

study performed in broiler chicks investigated whether PepT1 expression differed if corn-based 

diets were supplemented with soybean meal or gluten meal (Gilbert et al., 2008a).  Chicks fed 

soybean meal had greater expression of PepT1 than those fed gluten, similar to the trend found in 

the b
o,+

 AT, a neutral and basic free amino acid transporter.  Incubation of Caco-2 cells with a 

dipeptide resulted in alteration of the expression of PepT1 (Walker et al., 1998).  Caco-2 cells 

were transfected with human PepT1 cDNA and incubated with the dipeptide glycyl-glutamine.  

This dipeptide exposure increased transport of glycyl-sarcosine with increased expression of 

PepT1 mRNA and a concomitant increase in PepT1 protein.   

  Increasing evidence suggests that PepT1 expression and/or activity can be altered by 

manipulating nutritional status or health. In situations of gut stress such as malnutrition, 

intestinal failure or surgical intervention, PepT1 expression is maintained or increased, in 

contrast with other nutrient transporters which typically decline in number (Satoh et al., 2003).  

Humans fasted for 14 days demonstrated a significant decrease in the transport of amino acids 

but peptide transport was maintained (Vazquez et al., 1985). Changes were described in the 

transporter population in rats that were either food deprived for 4 days, food restricted to 50% of 

a control group intake, or nourished completely by parenteral nutrition (PN) (Ihara et al., 2000).  

The food deprived rats demonstrated an increase in PepT1 mRNA in the proximal gut by 179% 
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compared to controls.  The PN-fed rats with atrophy of the small intestine (SI) responded 

similarly to the food deprived animals.  Similar responses were observed in broiler chicks 

undergoing feed restriction (Chen et al., 2005, Gilbert et al., 2008a).  In one study, chickens were 

assigned to diets containing 12, 18 or 24 % crude protein  with sampling performed  during the 

first 35 days post-hatch (Chen et al., 2005).  Dietary intake of chickens receiving 18% or 24% 

crude protein (CP) was restricted to that consumed by those receiving the 12% diet with an 

additional group receiving free access to the 24% CP diet.  Chickens on 12% CP showed lower 

expression of PepT1, but the animals receiving a higher protein diet but restricted intake had 

higher expression of PepT1 compared to those receiving unlimited access to the higher protein 

diet.  Animals with free access to the diet containing 24% CP had declining expression of PepT1 

mRNA during the first two weeks of the study with increasing expression afterwards; however 

animals undergoing diet restriction still had greater expression of PepT1. Interestingly, high 

luminal concentrations of some free amino acids may impair dipeptide uptake (Himukai et al., 

1982), although this finding varies between in vitro model systems (Daniel, 2004).   This 

suggests that dietary factors, such as protein content in the diet, alter the expression of PepT1. 

1.4.2 Development 

Differences in the location and concentration of PepT1 mRNA along the small intestine 

during development have been reported in rats (Shen et al., 2001), chickens (Chen et al., 2005, 

Gilbert et al., 2007a) and pigs (Wang et al., 2009).  In rats, there is a dramatic shift in cellular 

localization of PepT1 between 18 days gestation and immediately after birth at 21 days gestation 

(Hussain et al., 2002).  Following birth there is a movement of PepT1 protein from the brush 

border membrane of the enterocytes to the cytoplasm and the basolateral membrane.  The 

transient nature and functional importance of this basolateral Pept1 has yet to be elucidated.  
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Early work on the developmental changes in rats showed that intestinal PepT1 mRNA was 

highest at 4 days of age and continued to decline until reaching concentrations found in 

adulthood at 28 days of age (Miyamoto et al., 1996).  Similarly, Shen et al. (2001) demonstrated 

that although PepT1 mRNA expression was at its highest point 3-5 days after birth in a neonatal 

rat model, it declined rapidly at all locations in the small intestine during the suckling period.  

Comparable to rats, chickens also demonstrated variance in the location and concentration of 

PepT1 mRNA during development (Chen et al., 2005, Gilbert et al., 2007a).  In a study of 

broilers, chickens raised for meat production,  PepT1 mRNA increased linearly with age (Chen 

et al., 2005).  Further investigation into the differences among intestinal positions corroborated 

this result and revealed that the greatest expression of PepT1 mRNA was found in the duodenum 

(Gilbert et al., 2007a).  Microarray analysis has been performed on chicken intestinal samples 

taken at varying stages of development from late stage embryos to two weeks post-hatch (Li et 

al., 2008).  In agreement with the previous studies, there was a linear increase in PepT1 mRNA 

in all regions of the chick intestine sampled from embryonic day 18 to post-hatch day 20 and at a 

greater quantity in the duodenum and jejunum compared to the ileum.  In Tibetan piglets, PepT1 

mRNA increased in the duodenum and jejunum from birth to the middle of the suckling period, 

after which the expression decreased in these intestinal regions (Wang et al., 2009).  In these 

animals the distal jejunum had greater expression of PepT1 mRNA than the other intestinal 

regions tested.  D’Inca et al. determined that there was a dramatic decrease in piglet PepT1 

mRNA expression within the first 48 hours after birth; however, intrauterine growth restriction 

delayed this adaptation (D'Inca et al., 2011). This suggests that PepT1 and peptide transport are 

potentially important in the early life of the suckling neonate.   
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1.4.3 Insulin 

Insulin is a key metabolic regulatory hormone that has been demonstrated to regulate 

amino acid transport.  Incubation with insulin was shown to rapidly increase dipeptide transport 

in a Caco-2 cell line (Thamotharan et al., 1999).  Inclusion of genistein, an inhibitor of receptor 

tyrosine kinases, in the incubation medium prevented this transport increase thereby 

demonstrating that the effect was due to insulin signalling.  A shift in the Vmax of PepT1 

confirmed an increase in the transporter population rather than an effect on substrate affinity.  

Curiously, a concomitant increase in PepT1 protein without an increase in PepT1 mRNA was 

observed.  Disturbance of the Golgi apparatus by brefeldin treatment did not disrupt the effect of 

insulin, while depolymerizing the microtubules through colchicine treatment abolished the 

increase in peptide uptake.  This indicated that insulin was inducing the movement of a pre-

existing cytosolic pool of PepT1 to the apical surface, rather than de novo transporter synthesis.  

A study on the impact of insulin treatment on the transport of cephalexin (an antibiotic substrate 

of PepT1) in Caco-2 cells co-incubated with genistein and/or colchicine had similar results 

(Watanabe et al., 2004). Taken together, it is possible that circulating insulin interacts with 

receptors on the basolateral membrane of enterocytes to mobilize cytosolic stores of PepT1 to the 

apical membrane thereby facilitating increased uptake of substrates present in the intestinal 

lumen.  This was confirmed by studies in Caco-2 cells (Nielsen et al., 2003).  Similar to previous 

studies, brefeldin and colchicine inhibited the insulin stimulated uptake of the test dipeptide, in 

this case glycyl-sarcosine.  Basolateral stimulation of Caco-2 cells with insulin resulted in greater 

uptake of glycyl-sarcosine than either control or apical stimulation, with no difference detected 

between apical stimulation and control samples.   
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1.4.4 Short Bowel Syndrome 

Short bowel syndrome (SBS) is a clinical condition induced through the surgical removal 

of intestinal tissue.  Causes for intestinal resection are varied and include inflammatory disorders 

such as Crohn’s disease and colitis, tumors, physical trauma and infection such as necrotizing 

enterocolitis (NEC) (Goulet et al., 1991).  Intestinal resection results in a loss of absorptive 

capacity (Sukhotnik et al., 2002) potentially leading to a requirement for long term parenteral 

nutrition.  In newborn and pre-term infants, SBS is commonly the result of congenital 

malformations or necrotizing enterocolitis (Sodhi et al., 2008).  NEC is an aggressive, anaerobic 

infection that develops rapidly in the gastrointestinal tract in approximately 10% of all very low 

birth weight infants, with up to a 34% mortality rate in the lowest birth weight category 

(Fitzgibbons et al., 2009).  If SBS occurs as a consequence of intestinal disease, then a number of  

strategies have been employed in an attempt to improve nutrient absorption, intestinal  motility 

and subsequently, adaptation (Miller and Burjonrappa, 2013).  Elucidation of adaptive responses 

after intestinal resection, including alteration in peptide transport, could lead to dietary 

treatments that are designed to optimize nutrient availability in the compromised SI, and 

ultimately enhance adaptation in the remaining intestine. 

1.4.5 PepT1 and Intestinal Adaptation in SBS 

Whether or not PepT1 expression occurs in the colon after short bowel surgery is 

controversial.  After an 80% small intestinal resection in rats, changes were quantified in the 

colon one week post-operatively (Lardy et al., 2006).  There was no difference in PepT1 

expression compared to controls; however, this may have been due to the post-resection feeding 

of an elemental diet, which did not provide the stimulus necessary to induce the transporter.  In 

contrast, Shi et al. (2006a) developed a rat model that used SI resection in rats to induce colonic 
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PepT1 (Shi et al., 2006a).  This resected rat model was used to study the role of PepT1 in colonic 

inflammation.  This study clearly identified PepT1 protein in the colon of SI resected but not 

control rats, when killed 2 weeks post-operatively.  Rats were fed a liquid diet initially, and rat 

chow for the final week.  Therefore the induction of PepT1 in the colon may require the luminal 

presence of dipeptides.  One study investigated whether colonic PepT1 was expressed in patients 

with SBS (Ziegler et al., 2002).  Mucosal biopsy specimens were obtained from 13 adult patients 

with SBS and 33 controls.  There was no difference in PepT1 expression in the ileum of SBS 

patients compared to controls; however, there was a fivefold higher expression of the transporter 

in samples from the colon of SBS patients.  Although there has been much research on colonic 

adaptation, currently no study has investigated the impact of enterally delivered dipeptides on 

small intestinal adaptation in a piglet model of short bowel syndrome.   

1.4.6 Inflammatory Bowel Disease 

Inflammatory bowel disease (IBD) is an umbrella term used to describe chronic 

inflammation of the large and/or small intestine.  Although there are many types of inflammatory 

bowel diseases the most prominent, and most extensively studied, are Crohn’s disease and 

ulcerative colitis (Baumgart and Sandborn, 2012).  Crohn’s disease was first described in 

patients suffering inflammation of the ileum, but inflammation can be found in any area of the 

gastrointestinal tract including the colon.  Ulcerative colitis, however, is an intermittent disease 

where inflammation occurs primarily in colonic tissue.  In humans, colonic expression of PepT1 

has been reported in patients with inflammatory bowel disease (Merlin et al., 2001).  Evidence 

from both human and rat studies has indicated that PepT1 is capable of transporting of bacterial 

peptides, which may exacerbate the inflammatory process in Crohn’s disease and ulcerative 

colitis (Merlin et al., 2001, Shi et al., 2006c). Initial studies in Caco2-BBE cells, a variant of the 
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Caco2 cell line with greater homogeneity of brush border proteins,  demonstrated both the 

presence of human isoform of PepT1 and its capacity to transport the bacterial peptide formyl-

methionyl-leucyl-phenylalanine (fMLP) (Merlin et al., 1998).  Further investigation revealed that 

hPepT1 is expressed in the colon of patients with chronic ulcerative colitis, but not normal 

colonic tissue, and that transport of fMLP may affect immune response by stimulating expression 

of MHC-1 molecules (Merlin et al., 2001). One theory suggests that in IBD, there is an over 

production of proinflammatory peptides by the colonic microflora.  These peptides then act as 

substrates to induce PepT1 expression in the colon (Adibi, 2003). Exploration of the interaction 

between PepT1, bacteria and the immune system may result in a greater understanding of 

peptides in the intestinal inflammatory response. 

1.5 Substrates for PepT1 

1.5.1 Di/tripeptides 

To understand the potential impact of peptide transport, it is important to consider the 

variable affinity of PepT1 substrates.  Alanyl-alanine, for example, has a high affinity for PepT1 

(Ki of 0.08 mM) whereas glycyl-sarcosine is classified as a medium affinity substrate with a Ki 

of 1.1 mM, determined in Caco-2 cells (Brandsch et al., 1999, Brandsch et al., 1998).  Other 

sarcosine containing dipeptides have Ki’s ranging from 0.13 mM for phenylalanyl-sarcosine to 

2.5 mM for sarcosyl-proline, with sarcosyl-sarcosine showing no affinity for PepT1 (Brandsch et 

al., 1999).  Another study has reported an apparent Ki for sarcosyl-sarcosine as 15.9 mM; 

however affinities higher than 15 mM are typically considered to be non-substrates (Daniel et al., 

1992). 
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Dipeptides containing proline, in either the N-terminal or C-terminal position have been 

extensively studied in both kidney BBMV and Caco-2 cells (Thwaites et al., 1994, Daniel et al., 

1992, Brandsch et al., 1999).  In the case of prolyl-glycine, transport was undetectable in the 

kidney (Daniel et al., 1992) while an excess of the dipeptide reduced the uptake of glycyl-

sarcosine by only 59% in Caco-2 cells (Thwaites et al., 1994).  In an investigation of the 

transport of twelve different X-pro dipeptides in Caco-2 cells, all dipeptides were able to reduce 

uptake of glycyl-sarcosine (Brandsch et al., 1999).  Affinity for PepT1 ranged from 0.15 mM for 

alanyl-proline to 1.2 mM for prolyl-proline.  A concurrent experiment was performed by 

replacing the C-terminal proline with alanine, for example alanyl-proline would become alanyl-

alanine.  Interestingly, most X-ala dipeptides investigated showed greater affinity for PepT1 than 

X-pro, with the exception of prolyl-alanine which had a Ki of 9.5 mM compared to the 1.2 mM 

of prolyl-proline.  This investigation determined that in the case of X-pro dipeptides, the affinity 

for PepT1 is positively correlated with the percentage of trans conformation present, with greater 

cis conformation reducing transporter affinity.   

 In recent years it was suggested that Ki ranges should be used to describe PepT1 

substrates as high affinity (Ki <0.5 mM), medium affinity (Ki 0.5-5 mM) and low affinity (Ki >5 

mM) with non-substrates having an affinity > 15 mM (Brandsch et al., 2004).  This would enable 

easier classification of PepT1 substrates and potentially reduce the variability currently in the 

literature pertaining to affinity, as literature Ki values are inconsistent.  The most thorough 

investigation into dipeptide transport to date was published in 2006 (Vig et al., 2006).  This study 

quantified the IC50, the half maximal inhibitory concentration, of 81 different di/tripeptides in 

MDCK cells expressing hPepT1.  Although IC50 is not directly indicative of the Ki, the two are 

related where the lower the IC50 the greater the affinity of the substrate for the transporter of 
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interest.  Similar to the classification system proposed by Brandsch et al. (2004), the study by 

Vig et al. (2006) attempted to group the substrates investigated as either non/poor, intermediate, 

good or best substrates for PepT1.  In this system the best substrates for PepT1 include ala-ala, 

ala-phe, ala-tyr, leu-leu, phe-ala, phe-gly, phe-phe, phe-tyr, trp-ala, trp-val, tyr-ala, tyr-tyr, and 

val-val.  In contrast, certain dipeptides tested were not substrates for PepT1. This challenges the 

long held theory that all di/tripeptides are substrates for PepT1. These studies centering on the 

elucidation of peptide affinities provide indirect evidence regarding the binding pockets present 

in PepT1 thereby providing important information regarding the structure of this transporter. 

1.5.2 Bacterial peptides 

Bacterial colonization is more prolific in the colon than the small intestine.  Certain 

bacterial peptides are substrates for PepT1, two examples of which are formyl-methionyl-leucyl-

phenylalanine (Shi et al., 2006c, Carlson et al., 2007, Buyse et al., 2001) and l-Ala--d-Glu-

meso-DAP, Tri-DAP (Dalmasso et al., 2010).  Escherichia coli produces chemotactic 

compounds, however the major neutrophil chemotactic substance produced is formyl-methionyl-

leucyl-phenylalanine (fMLP) (Marasco et al., 1984).  Transport of fMLP by PepT1 has been 

demonstrated in cell culture (Merlin et al., 1998) and in rats (Buyse et al., 2002, Shi et al., 

2006a).  In Caco-2 cells, uptake of fMLP was inhibited by the presence of known substrates of 

PepT1 (Merlin et al., 1998, Foster and Zheng, 2007).  Creation of an inwardly directed proton 

gradient increased the uptake of fMLP in this model, thereby providing further support that 

PepT1 is responsible for the transport of this peptide. Transport of fMLP was shown to induce 

neutrophil migration across the epithelial monolayer, an activity which was abolished if fMLP 

uptake was inhibited.  Transport of fMLP has also been measured in rats using intestinal 

perfusion (Buyse et al., 2002).  Differences in the inflammatory response to fMLP were found 
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based on gut location.  Perfusion of fMLP in the jejunum, where there is a high expression of 

PepT1, resulted in neutrophil invasion and altered morphology while colonic perfusion produced 

no indices of inflammation.  Perfusion of fMLP into the colon of rats with SI resection (the 

model used to up-regulate PepT1 expression in the colon) resulted in greater myeloperoxidase 

activity and damage to the colonic mucosa compared to controls (Shi et al., 2006a, Shi et al., 

2006c).  The mechanism by which fMLP can induce a pro-inflammatory cytokine response is 

through the interaction with TNF- leading to an increase in NFκβ (Pan et al., 2010, Pan et al., 

2000).  It is through this signalling cascade that fMLP is able to induce intestinal inflammation.  

As PepT1 expression is negligible in a healthy colon, bacterially produced peptides have little 

access to this transporter which minimizes the potential for transport.  Abnormal expression of 

Pept1 in the colon, overgrowth of bacteria in the small intestine or increased intestinal 

permeability due to atrophy provide opportunities for transport or translocation of bacterial 

peptides.  Competitive inhibition or direct regulation of PepT1 expression may ameliorate 

intestinal inflammation in cases of excessive bacterial peptide exposure to PepT1.  To date there 

have been no studies quantifying the effect of fMLP in a state of intestinal atrophy. 

1.5.3 Cysteinyl-glycine 

Cysteine is a conditionally essential amino acid in neonates.  It can be synthesized via 

trans-sulfuration from methionine; however, cysteine is classified as conditionally essential as 

adequate methionine is necessary to support cysteine synthesis.  Additionally, there is evidence 

that the enzyme cystathionase, which is  involved in cysteine synthesis (Rao et al., 1990), is 

immature in preterm infants and cannot supply sufficient cysteine to meet whole body 

requirements (Zlotkin and Anderson, 1982) if dietary cysteine is inadequate.  Cysteine is a 

component of proteins and is also precursor for taurine and glutathione synthesis, both of which 
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function as antioxidants (Beetsch and Olson, 1998).  Rapid cell growth and turnover, and 

maintenance of the redox status in the mucosa are both vital to maintenance of the integrity of 

the intestinal barrier.  As such, adequate cysteine availability is important to the intestine. This 

was demonstrated in a study during which piglets were fed an enteral diet free of sulfur amino 

acids (Bauchart-Thevret et al., 2009).  The authors reported reduced cellular proliferation, lower 

numbers of goblet cells and reduced villus height in the small intestine.  Given that it was a diet 

free of methionine, protein synthesis was reduced leading to intestinal atrophy.  Further, with the 

absence of dietary methionine, cysteine could not be synthesized.  Cysteine is necessary for 

protein synthesis, but also has been shown to have direct stimulatory effects on cellular 

proliferation, via influencing the movement from the G1 to S phase of the cell cycle (Noda et al., 

2002).  Thus, a deficit in sulfur amino acids in the intestinal mucosa has profound multifactorial 

effects on growth and proliferation.  Cysteine alone is part of the oxidative stress control system 

(Jones, 2006); however, it is also a residue in the tri-peptide glutathione (-Glu-Cys-Gly, GSH) 

which contributes to controlling cellular redox states (Wu et al., 2004).  Limiting the availability 

of cysteine led to lower concentrations of glutathione in the plasma and intestinal mucosa of rats 

(Nkabyo et al., 2006).  Conversely, when diets were supplemented with sulfur amino acids 

(218% of requirement), rats had greater plasma redox potential.  Studies in humans with 

inflammatory bowel disorders requiring surgical resection have demonstrated compromised 

redox status  thereby influencing cellular signalling/metabolism and potentially aiding in the 

development of inflammation (Sido et al., 1998).   

Cysteinyl-glycine (CG) is a product of glutathione degradation (Cappiello et al., 2004) 

that can be hydrolyzed by a number of different peptidases; however, the stability of the 

dipeptide in plasma has not been as clearly delineated (Cappiello et al., 2004).  Although there 
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have been no studies specifically investigating whether CG is a substrate for PepT1, certain 

characteristics of dipeptides can be used to determine their affinity for transport via PepT1.  A 

study involving a variety of small peptides detailed the effect of peptide size, hydrophobicity, 

composition and charge on dipeptide transport (Vig et al., 2006).  Cysteine containing dipeptides 

were not tested in that study, but the results can be used to make inferences regarding the 

bioavailability of cysteinyl-glycine. All X-gly dipeptides were transported via PepT1 and neutral 

dipeptides resulted in higher activation than charged peptides thereby suggesting that CG is a 

viable substrate for PepT1.  An investigation of peptide transport in astroglia-rich primary 

cultures, a cell type containing PepT2, demonstrated that the uptake of CG was inhibited in the 

presence of alanyl-alanine, a known substrate for both PepT1 and PepT2 (Dringen et al., 1998).  

This result supports the theory that cysteinyl-glycine is a substrate for PepT1.  For individuals 

with compromised SI function, the inclusion of cysteine-containing peptides in enteral diets may 

enhance cysteine availability due to the stability of PepT1 expression and efficiency of peptide 

transport.  Improved cysteine availability may, in turn, enhance cellular proliferation and/or the 

generation of GSH, leading to greater redox capability and better recovery of the injured gut. 

1.5.4 Alanyl-glutamine 

One of the more clinically studied dietary substrates of PepT1 is the glutamine-containing 

dipeptide alanyl-glutamine (AQ).  There are known physiological benefits when glutamine is 

provided as a dipeptide rather than its free amino acid form.  Glutamine is much more stable as a 

dipeptide, and the concentration of plasma glutamine was greater when glutamine was provided 

to healthy men as alanyl-glutamine versus L-glutamine (Harris et al., 2012).  The impact of this 

dipeptide on intestinal health has been studied in vitro using cell culture (Alteheld et al., 2005) 

and in vivo via PN infusion into piglets (Burrin et al., 1994); as well, a number of human trials 
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have employed both enteral and parenteral provision of this dipeptide (Eroglu, 2009, Luo et al., 

2008, Lima et al., 2007).  Parenteral provision of AQ has been shown to increase antioxidant 

capacity and plasma glutamine concentrations, while intraperitoneal injection of AQ reduced the 

number of IFN- producing cells in a mouse model of dextran sodium sulfate-induced colitis 

(Chu et al., 2012).   A comparative study of enteral versus parenteral alanyl-glutamine in 

critically ill patients revealed that plasma glutamine was higher when the dipeptide was provided 

parenterally (Luo et al., 2008).  Other studies determining organ specific removal of dipeptides 

from human plasma observed that the liver, kidneys, muscle and intestine were responsible for 

removing 60% of the plasma alanyl-glutamine (Vazquez et al., 1993).  When provided as the free 

amino acid, enteral glutamine supressed pro-inflammatory cytokine production during an E. coli 

challenge in piglets (Ewaschuk et al., 2011); however the beneficial effect of enteral glutamine-

containing dipeptides has yet to be determined (Luo et al., 2008, Eroglu, 2009, Ligthart-Melis et 

al., 2009).  Greater understanding of the potential beneficial or harmful effects of enterally 

provided glutamine peptides such as alanyl-glutamine would provide the basis for more effective 

delivery of glutamine in situations where regular intestinal function is compromised.  

1.6 Intestinal immune system and cytokine response 

1.6.1 Epithelial barrier  

One of the roles of the epithelium of the small intestine, outside of nutrient transport, is to 

act as a barrier between the contents of the lumen and the circulatory system.  In a healthy 

individual the intestinal barrier is intact, preventing both paracellular transport of foreign or 

infectious material and interaction of luminal bacteria with the intestinal cells (Turner, 2009).  In 

cases of intestinal inflammation this barrier function of the intestine fails, leading to the 
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recruitment of immune cells and the propagation of the inflammatory response (Groschwitz and 

Hogan, 2009).  A multifaceted defense, the intestinal barrier is comprised of both extracellular 

and intracellular components.   

The most notable part of the extracellular barrier is the protein family known as mucins 

(McGuckin et al., 2009).  Mucins, produced by goblet cells, are heavily glycosylated proteins 

which have multiple functions including the prevention of direct bacterial contact with 

enterocytes (Johansson et al., 2008).  The thickness of the mucin layer varies depending on 

intestinal location, but has been found to be upwards of 800 µm thick in the colon of rats (Atuma 

et al., 2001).  Besides reducing bacterial contact with the epithelium, this mucous layer also 

contains a number of antimicrobial compounds including immunoglobulins, lectins and 

antimicrobial peptides such as defensins and cathelicidins (McGuckinet al., 2009).  These 

antimicrobials can be maintained at a much higher concentration by being present in the mucous 

layer than if they were secreted directly into the lumen of the intestine, thereby increasing their 

efficacy.  

The intercellular component of the intestinal barrier involves regulation of paracellular 

transport.  The apical junction complex is comprised of the tight junction proteins including 

claudins and occludins, and the adherens junction, involving E-cadherin and catenins (Laukoetter 

et al., 2006). This complex regulates the movement of solutes, and bacteria, through the 

paracellular pathway.  Any disruption of the apical junction complex results in a reduction of 

epithelial barrier integrity, increasing the risk of infection and inflammation.   In addition to the 

epithelial barrier provided by the enterocytes, the lymphoid tissue found within the intestine 

provides a wide range of immune cells, and biochemical signals, responsible for aiding in the 

prevention of infection and disease. 
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1.6.2 Mucosa-associated lymphoid tissue 

The mucosa-associated lymphoid tissues comprise the largest immune organ in the body 

(Turner, 2009); however there are site-specific differences between the various mucosal surfaces 

in the body.  Gut-associated lymphoid tissue is comprised of Peyer’s patches, organized 

lymphoid nodules, and mesenteric lymph nodes (Wershil and Furuta, 2008).  Peyer’s patches are 

found underneath a specific layer of columnar cells referred to as the follicle associated 

epithelium which contains a specialized epithelial cell type known as a microfold or M cell 

(Neutra, 1999).  The function of these M cells is to transport antigens from the lumen of the 

intestine directly to the lymphoid tissues and present them to dendritic cells.  Another method of 

inducing the immune response in the intestine occurs solely through dendritic cells, without the 

assistance of M cells (Rescigno, 2010).  Certain classes of dendritic cells are capable of sampling 

the contents of the intestinal lumen directly thereby obtaining antigens to present to naïve T-cells 

and B-cells resulting in their activation. Whether through the action of M cells or through 

dendritic cells alone, presentation of the foreign antigen is the first step in the initiation of the 

immune response, which can act through signalling compounds known as cytokines. 

1.6.3 Pro-inflammatory and anti-inflammatory cytokines 

1.6.3.1 TNF-α 

Tumor necrosis factor α (TNF-α) is a potent pro-inflammatory cytokine that plays a vital 

role in chronic inflammatory diseases such inflammatory bowel disease (Pedersen et al., 2014) 

but is also involved in the inflammatory response to infection (Surbatovic et al., 2013).  The 

primary cell type responsible for the production of TNF-α is activated macrophages, a subset of 

macrophages that have been exposed to interferon-γ in combination with either TNF-α or an 

infectious agent such as bacteria (Mosser, 2003).  It is important to note that while macrophages 
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are the primary producers of TNF-α, lymphocytes, as well as other cell types such as mast cells 

and neutrophils, are also capable of producing TNF-α albeit to a lesser extent (Kriegler et al., 

1988, Luettig et al., 1989). 

Initially TNF-α is produced as a 26 kDa transmembrane protein that is capable of acting 

as a ligand, interacting with TNF-α receptors directly, or as a receptor by transmitting 

extracellular information into the cell (Eissner et al., 2004). This transmembrane TNF-α can then 

be acted upon by a TNF-α converting enzyme to release a 17 kDa product, the soluble form of 

TNF-α (Black et al., 1997).  Both the transmembrane and soluble forms of TNF-α are 

homotrimers and this trimeric structure is required in order to mediate the biological activity of 

this cytokine (Tang et al., 1996).   

 There are two primary receptors for TNF-α, TNF-R1 and TNF-R2 (Hohmann et al., 

1989) however these receptors are regulated via different mechanisms (Vandenabeele et al., 

1995).  Expression of TNF-R1 is regulated by a house-keeping promoter that cannot be 

stimulated by other cytokines such as TNF-α or IFN-γ (Rothe et al., 1993). The regulation of 

TNF-R2 is more complex and differs based on cell type.  Macrophages, for example, show 

increased expression of TNF-R2 after exposure to bacterial products such a lipopolysaccharide 

(Tannenbaum et al., 1993) whereas B-cells require exposure to mitogens in order to begin 

increasing expression of this receptor (Erikstein et al., 1991).  While the extracellular portion of 

the TNF-α receptors are very similar, the intracellular domains show little sequence homology 

indicating significantly different methods of action (Ledgerwood et al., 1999). 

Capable of being activated by both the membrane bound and soluble forms of TNF-α, the 

signalling pathway of TNFR-1 is both well characterized and intricate (Grell et al., 1995).  After 

activation, TNFR-1 is bound by the TNF-receptor associated death domain protein which then 
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activates either the pro-apoptotic pathway, via the FAS-associated death domain protein, or the 

pro-inflammatory pathway via TNF receptor-associated factor 2 (TRAF2) and activation of 

NFκβ (Ting et al., 1996).  Unlike TNFR-1, TNFR-2 is only able to be activated via the 

transmembrane form of TNF-α (Grellet al., 1995).  Interestingly TNFR-2 is capable of inducing 

most of the same signalling pathways as TNFR1, despite the differences between their 

cytoplasmic domains (Rothe et al., 1994).  Unlike TNFR-1, TNFR-2 lacks the death domain 

binding capability and so the primary signalling route is through the TRAF2 pathway; the 

pathway which results in the activation of NFκβ.  

1.6.3.2 Interferon-γ  

Interferon-γ (IFN-γ) is a vital component of the innate and adaptive immune responses.  

This cytokine is involved in defending against infections (Filipe-Santos et al., 2006), viral 

diseases (Sedger et al., 1999), and tumor prevention (Ikeda et al., 2002).  In the innate immune 

response, the primary cells responsible for the production of IFN-γ are the natural killer cells, a 

type of cytotoxic lymphocyte, and natural killer T cells, a group of cells sharing the properties of 

both T cells and natural killer cells (Stetson et al., 2003).  These cell types are able to respond to 

infection through the rapid production of IFN-γ.  In the adaptive immune system the CD8
+
 

cytotoxic lymphocytes and CD4
+
 Th1 effector T cells are capable of producing IFN-γ however 

this process takes several days (Bach et al., 1997). 

The membrane bound IFN-γ receptor is comprised of two primary components, the 

ligand binding IFN-γ R1 chain, 90 kDa, and the accessory IFN-γ R2 chain, 60 kDa, both of 

which contain extracellular and cytosolic domains (Pestka et al., 1997).  Binding of IFN-γ to its 

receptor requires dimerization of the cytokine (Ealick et al., 1991), while transduction of the 

appropriate signals into the cell requires four subunits, two each of the R1 and R2 chains 
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(Pestkaet al., 1997).  If only IFN-γ R1 is present, signal transduction does not occur (Rashidbaigi 

et al., 1986) and without IFN-γ R1, the R2 chain is unable to crosslink or bind IFN-γ (Kotenko et 

al., 1995).  Signal transduction through the IFN-γ receptor complex also requires the recruitment 

of kinases. The intracellular domain of IFN-γR1 contains the binding motifs necessary for the 

recruitment of Janus tyrosine kinase (JAK) 1 as well as the recruitment of signal transducer and 

activator of transcription (STAT) 1 (Schroder et al., 2004).  Similarly, IFN-γR2 is able to recruit 

a JAK2 kinase which then undergoes autophosphorylation allowing it to activate the JAK1 

kinase on IFN-γR1 via transphosphorylation.  This kinase, JAK1, then phosphorylates tyrosine 

residues on IFN-γR1 leading to the recruitment, and subsequent phosphorylation, of STAT1. 

This phosphorylated STAT1 is now active and can translocate to the nucleus. 

The genes that are regulated by IFN-γ vary significantly (Schroderet al., 2004).  This 

cytokine is capable of influencing the transcription of genes involved in the antigen presentation 

pathway, antiviral response, and is both anti-proliferative and apoptotic.  In the presence of IFN-

γ chemoattractants for T cells, monocytes and macrophages are produced, nitrous oxide is 

produced to dilate blood vessels and there is an increase in adhesion molecules on endothelial 

cells and leukocytes. These responses increase the extraversion of leukocytes at the site of the 

inflammatory response leading to phagocytosis of any foreign objects, antibody production and 

cytokine release. 

1.6.3.3 Interleukin-10   

Unlike TNF-α and IFN-γ, interleukin-10 (IL-10) functions to limit the inflammatory 

response. Multiple immune cell types are capable of producing IL-10; however the primary 

source is macrophages (Ruffell et al., 2014, Sonderegger et al., 2012).  Interestingly, 

macrophages are also the cell population most influenced by IL-10 suggesting at least some auto-
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regulation (Moore et al., 2001).  Structurally IL-10 is similar to IFN-γ as it is a homodimer 

(Zdanov et al., 1995).  The biological activities of IL-10 include down regulation of major 

histocompatibility complex class II proteins on macrophages (Bogdan et al., 1991) as well as 

inhibition of TNF-α (de Waal Malefyt et al., 1991) and IFN-γ (Ito et al., 1999) production.  

These activities of IL-10 allow the host immune response to be modulated in order to prevent 

unnecessary damage to the healthy tissue at the site of inflammation. 

As the structure of IL-10 is similar to that of IFN-γ, it is no surprise that their respective 

receptors also share structural similarity. Like IFN-γ, the IL-10 receptor complex is comprised of 

two chains, IL-10R1 and IL-10R2 (Kotenko et al., 1997).  Unlike IFN-γ, the IL-10 receptor is 

lacking a soluble form as it has only been detected as a membrane associated receptor in vivo 

(Mooreet al., 2001).  A study performed in a JAK1 knockout mouse model demonstrated that 

macrophages lacking JAK1 do not respond to the presence of IL-10 (Rodig et al., 1998). Further 

studies in mutant mouse macrophage cells found that STAT3, a transcription factor, was also 

required in order to induce macrophage proliferation through IL-10 stimulation (O'Farrell et al., 

1998).  This situation is similar to that of the JAK/STAT pathway previously discussed and the 

proposed method of IL-10 signaling closely mimics that of IFN-γ (Kotenkoet al., 1997).  It is 

through the binding of IL-10 to either IL-10R1, which then recruits IL-10R2, or the complete IL-

10R complex, that the autophosphorylation of the tyrosine kinases and transphosphorylation of 

JAK1 can occur.  This phosphorylation of JAK1 then recruits STAT3 which, after undergoing its 

own phosphorylation by JAK1, is able to translocate to the nucleus and begin altering the 

transcription activity of the cell.  

As with most cytokines the biological activities of IL-10 varies depending on the 

properties of the cell upon which it is acting.  In the case of cells such as macrophages, IL-10 is 
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responsible for the inhibition of IL-1, TNF-α as well as numerous other cytokines and colony 

stimulating factors, which are glycoproteins capable of inducing differentiation and proliferation 

of hematopoietic stem cells (Mooreet al., 2001).  This inhibition of IL-1 and TNF-α is key to the 

anti-inflammatory properties of Il-10.  The prevention of nitric oxide synthesis, and thereby the 

reduction in vasodilation, is another property of IL-10; however, rather than being a direct action 

upon nitric oxide synthases, it is the down regulation of the upstream signalling messengers 

TNF-α and IFN-γ that is responsible for the reduction in nitric oxide synthesis (Flesch et al., 

1994).   

1.6.3.4 Nuclear factor κβ 

Essential in T-cell and B-cell differentiation, as well as having anti-apoptotic and pro-

inflammatory effects, the transcription factor NFκβ plays a vital role in the inflammatory 

response (Baeuerle and Henkel, 1994). There are five different members of the NFκβ family of 

proteins, RelA (p65), c-Rel, RelB, NFκβ1 (p50) and NFκβ2 (p52) (Liou, 2002). NFκβ1 and 

NFκβ2 contain a c-terminal domain that must be removed by proteolytic processing to become 

active. 

As a potent transcription factor, the activation of NFκβ is tightly regulated through 

another family of proteins called inhibitors of NFκβ, or IκB (Auphan et al., 1995).  The common 

sequence between the IκB family and NFκβ1/NFκβ2 is known as an ankyrin repeat.  Typically, 

NFκβ exists in the cytoplasm as a p50/p65 heterodimer which is bound by IκB. In order for 

NFκβ to perform its action as a transcription factor, the IκB must be degraded.  This degradation 

is accomplished through the activity of the IκB kinase complex (Baeuerle and Baltimore, 1996).  

This complex phosphorylates the appropriate region of the inhibitor leading to its 

polyubiquitination and degradation.  Activation of NFκB is only one part of the immune 
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signaling cascade and cytokines such as TNF- α, IFN-γ and IL-10 have demonstrated the 

capability to alter the activation of this essential transcription factor. 

The activation of NFκβ via TNF-α requires the destruction of any bound IκB and the 

mechanism may be different depending upon whether TNF-R1 or TNF-R2 is considered 

(Bradley, 2008, Devin et al., 2000).  In the case of TNF-R1 two components are required for 

activation of the IκB kinase complex, TRAF2 and the death domain kinase receptor-interacting 

protein (RIP) (Devinet al., 2000).  Initially TRAF2 brings the IκB kinase complex to TNF-R1 

and RIP activates the kinase complex leading to the degradation of the inhibitor and thereby the 

activation of NFκβ.  Although the activation of NFκβ through TNF-R2 is not as well 

characterized, it appears to also occur through an interaction with TRAF2 (Bradley, 2008).  

Should this be the case, the remaining signalling cascade would be similar to that of TNF-R1. 

 In addition to its capacity to signal through STAT3, IFN-γ is also capable of inducing 

expression of NFκβ, albeit not by itself (Cheshire and Baldwin, 1997, Rimbach et al., 2000). A 

study investigating the interaction between macrophages and human endothelial cells determined 

that when macrophages were exposed to IFN-γ they, in turn, increased NFκβ activation and 

DNA binding (Rimbachet al., 2000).  Although this is not a direct effect of IFN-γ, it 

demonstrates that this cytokine is capable of inducing the activation of NFκβ.  It appears that 

IFN-γ must act indirectly, as in the case of macrophage assisted endothelial NFκβ production, or 

in combination with other cytokines such as TNF- α in order to elicit activation of NFκβ 

(Cheshire and Baldwin, 1997).  When endothelial cells or pre-neuronal cells were co-stimulated 

with IFN-γ and TNF- α, activation of NFκβ occurred even at concentrations where the individual 

cytokines would have had no effect.  This indicated a synergistic effect between these cytokines 
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for the activation of this transcription factor and it was determined that in endothelial cells this 

synergism occurred due to increased degradation of IκB.   

 Anti-inflammatory cytokines, such as IL-10, are capable of repressing activation of 

NFκB (Wang et al., 1995). This study, conducted in human monocytes, found that IL-10 was 

able to inhibit NFκB in a dose dependent manner.  Further investigation of IL-10 and its impact 

on NFκB activation revealed that IL-10 is capable of preventing activation of the IκB kinase 

complex and directly inhibits DNA binding of activated NFκB (Schottelius et al., 1999). This 

inhibition of NFκB would prevent transcription of many pro-inflammatory cytokines and 

chemokines making IL-10 a powerful anti-inflammatory signal.  

1.7 Surgical methods 

1.7.1 Gut Loop Model 

The ligated loop model, or gut loop model, has been used in pigs to investigate amino 

acid metabolism of specific regions of the small intestine (Adegoke et al., 1999a, Adegoke et al., 

1999b).  This model has also been used to demonstrate PepT1-mediated transport of substrates 

including glycyl-sarcosine (Pan et al., 2002, Hindlet et al., 2007) as well as pharmaceutical 

compounds (Yang and Smith, 2013, Chu et al., 2001) and bacterial peptides (Wu and Smith, 

2013, Buyse et al., 2002).  Differences among the studies described in the literature include both 

intestinal positioning and length of the loops, but the methodology was similar in all studies.  In 

all cases, the intestine was exposed and the gut segment to be perfused was isolated and 

cannulated to create a closed system.  The mesentery was undisturbed, allowing for an in vivo 

assessment of intestinal activity.  The advantages of this model for investigating intestinal 

substrate transport include the ability to isolate and compare specific intestinal segments ( i.e. 
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jejunum versus ileum).  Furthermore, it allows for careful control of the composition of luminal 

contents presented to the intestinal mucosa.  Finally, it permits the implantation of multiple loops 

in one animal thereby reducing inter-animal variability.  The ligated loop model had been used 

previously (Nichols and Bertolo, 2008), and is ideal for investigations of the ontogeny of peptide 

transport in the Yucatan piglet and to study the impact of fMLP on markers of inflammation in 

healthy and atrophied intestine. 

1.7.2 Intestinal Resection 

Animal models have contributed important information about the adaptive capacity of the 

small intestine in response to resection, but most of the data were derived from mature rodent 

models which may not be of relevance to neonates.  Morphological and biochemical changes 

have been described post-resection in rat models treated with enteral feeding (Vanderhoof et al., 

1992, Cronk et al., 2000).  Fewer studies have been conducted in a clinically relevant piglet 

model, but include both enteral (Heemskerk et al., 1999) and parenteral  feeding strategies 

(Bartholome et al., 2004).  A Yucatan miniature piglet model of intestinal adaptation with an 

80% jejuno-ileal resection was characterized by my supervisors research group (Dodge et al., 

2012).  The study employed a combined protocol of enteral and parenteral feeding, and 

demonstrated profound early adaptive capacity in the distal ileum in piglets, compared to 

parenteral- or sham-treated controls.  Piglets had greater intestinal length with greater cellular 

proliferation index and ornithine decarboxylase activity in the distal ileum after receiving enteral 

feeding.  In that study, the enteral diet was elemental, containing free amino acids.  The evidence 

that PepT1 is maintained with intestinal injury (Satoh et al., 2003) and that transporter regulation 

is partially substrate driven (Walker et al., 1998) makes it a worthy target to investigate whether 

dipeptides might provide a nutritional advantage over free amino acids to support nitrogen 



37 
 

uptake.  Our piglet model is well-suited to investigate the potential effects of enterally provided 

dipeptides on intestinal adaption in neonates. 

 1.8 Problem of Investigation  
 

1.8.1 Background 

Differences in the location and concentration of PepT1 mRNA along the small intestine 

during development have been reported in rats (Shen et al., 2001), chickens (Chen et al., 2005, 

Gilbert et al., 2007a) and pigs (Wang et al., 2009).  In Tibetan piglets, PepT1 mRNA increased 

in the duodenum and jejunum from birth to the middle of the suckling period, after which the 

expression decreased in these intestinal regions.  This suggests that PepT1 and peptide transport 

are potentially important in the early life of the suckling neonate.  Characterizing the ontogeny of 

PepT1 in the neonate is necessary for the development of effective feeding strategies for both 

healthy and sick infants.  Dipeptide transport capacity via PepT1 across the length of the 

developing intestine has not been previously reported in our piglet model.   

Short bowel syndrome induced through intestinal resection reduces  absorptive capacity 

(Sukhotnik et al., 2002) resulting in nutrient deficits and prolonged medical care.  A piglet model 

of short bowel syndrome was characterized which demonstrated greater adaptive response in 

animals receiving enteral nutrition (Dodge et al., 2012).  PepT1 expression is maintained during 

intestinal stress while certain free amino acid transporters are reduced in number (Satoh et al., 

2003) and expression is at least partially substrate driven (Ferraris et al., 1988).  With PepT1 

expression maintained during intestinal injury and the increased adaptive response of the 

intestine in enterally fed piglets, I investigated the adaptive benefits of enterally provided 

dipeptides in our piglet model of short bowel syndrome. 
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Escherichia coli produces many chemotactic compounds, but the major neutrophil 

chemotactic substance produced is formyl-methionyl-leucyl-phenylalanine (fMLP) (Marasco et 

al., 1984).  Transport of fMLP by PepT1 has been demonstrated in cell culture (Merlin et al., 

1998) and in rats using intestinal perfusion (Buyse et al., 2002).  Intestinal perfusion in rat 

jejunum induced invasion of neutrophils into the mucosa and altered villus morphology, signs of 

intestinal inflammation.  Transport of fMLP has been implicated in exacerbating inflammatory 

bowel disease, with increased transport being correlated with increased expression of PepT1. 

Although it has been demonstrated that presence of dipeptides can prevent transport of fMLP via 

PepT1, the question of whether parenteral nutrition and associated gut atrophy increases the 

susceptibility to bacterially induced inflammation has yet to be addressed.  

1.8.2 Questions to be addressed 
 

Although the importance of peptide transport has been noted in a wide range of 

organisms, little information is available on peptide absorption in the piglet.  The piglet is a key 

model organism for neonatal development in humans, and swine are vital to the agricultural 

industry in Canada.  As such, information on peptide uptake in piglets has important applications 

in human health and swine production.  The research programme outlined in this thesis was 

performed in order to further elucidate peptide transport in Yucatan miniature pigs and to 

delineate potential benefits of enteral dipeptides.   
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1.8.3 Specific Objectives 
 

1) Identify the potential for peptide transport in the piglet small intestine and determine 

if there were any differences in peptide transport due to developmental changes or 

dietary alterations (Chapter 2) 

2) Study the potential ameliorative effects of enterally-delivered dipeptides in a 

surgically shortened intestine using a piglet model of short-bowel syndrome (SBS) 

(Chapter 3). 

3) Investigate the impact of a bacterial peptide, formyl-methionyl-leucyl-phenylalanine 

(fMLP) on intestinal inflammation in a model of gut atrophy (Chapter 4). 
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Chapter 2: Ontogeny of dipeptide uptake and peptide 

transporter 1 (PepT1) expression along the 

gastrointestinal tract in the neonatal Yucatan 

miniature pig 
 

 

The work presented in this chapter was funded in part by a grant from the Natural 

Sciences and Engineering Research Council of Canada.  It represents work that was presented at 

Experimental Biology 2008 in San Diego, CA, U.S.A and was published in the British Journal of 

Nutrition in 2013 (M.G. Nosworthy, R.F.P Bertolo and J.A. Brunton. Ontogeny of dipeptide 

uptake and PepT1 expression along the gastrointestinal tract in the neonatal Yucatan miniature 

pig.  Br J Nutr. 2013 12:1-7). JAB and RFP were responsible for designing the study, MGN 

carried out the animal work in addition to the laboratory and statistical analyses.  

A significant proportion of dietary amino acids are absorbed as small peptides through 

the activity of the intestinal di/tripeptide transporter PepT1.  The characterization of PepT1 in the 

developing neonate is of tremendous importance for the advancement of effective feeding 

strategies for both healthy and sick infants.  In this study, we determined PepT1 transport 

capabilities and relative quantities of PepT1 mRNA at specific locations along the 

gastrointestinal tract of piglets during suckling and post-weaning.  

Hypothesis: All intestinal regions studied will demonstrate the capacity to transport dipeptides. 

Additionally, the intestinal capacity for peptide uptake will change during development.   
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2.1 Abstract  
 

The H
+
-coupled transporter, PepT1 is responsible for the uptake of dietary di- and tri-peptides in 

the intestine.  Using an in vivo continuously perfused gut loop model in Yucatan miniature pigs, 

we measured dipeptide disappearance from four 10 cm segments placed at equidistant sites along 

the length of the small intestine.  Pigs were studied at 1, 2, 3 (suckling) and 6 weeks (post-

weaning) post-natal age. Transport capability across the PepT1 transporter was assessed by 

measuring the disappearance of 
3
H-glycyl-sarcosine; real time RT-PCR was also used to quantify 

PepT1 mRNA.  Each of the regions of intestine studied demonstrated the capacity for dipeptide 

transport.  There were no differences among age groups in transport rates measured in the most 

proximal intestine segment.  Transport of 
3
H-glycyl-sarcosine was significantly higher in the 

ileal section in the youngest age group (1 week) compared to the other suckling groups; however,  

all suckling piglet groups demonstrated lower ileal transport compared to the post-weaned pigs.  

Colonic PepT1 mRNA was maximal in the earliest weeks of development and decreased to its 

lowest point by week 6. These results suggest that peptide transport in the small intestine may be 

of importance during the first week of suckling and again with diet transition following weaning.      
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2.2 Introduction  
 

Dietary protein is absorbed from the intestinal lumen as its constituent amino acids as well as 

small peptides containing two or three residues.  The protein responsible for dietary di- and tri- 

peptide transport is PepT1, a member of the proton-coupled oligopeptide transporter (POT) super 

family of proteins (Daniel, 2004).  PepT1 is localized to the apical membrane of intestinal villi, 

allowing it access to the digesta passing through the lumen.  Studies that have investigated 

PepT1 mRNA at distinct regions along the intestine have reported variable results (Chen et al., 

1999, Li et al., 2008, Wang et al., 2009), likely due to different animal models.  In rats and mice, 

the amount of PepT1 mRNA does not change across the length of the small intestine (Lu and 

Klaassen, 2006, Rome et al., 2002, Erickson et al., 1995); however in the developing chick 

intestine, the highest quantities were found in the duodenum and jejunum (Li et al., 2008). In 

adult humans and rats, higher concentrations of PepT1 mRNA in the duodenum and jejunum 

have also been reported (Terada et al., 2005, Herrera-Ruiz et al., 2001).  In contrast, Chen et al. 

reported similar expression of PepT1 mRNA across the entire length of the small intestine of 

mature sheep, dairy cows, pigs and chickens (Chen et al., 1999). 

  Few studies have reported developmental changes in PepT1.  Differences in the location 

and concentration of PepT1 mRNA along the small intestine with increasing age have been 

reported in rats (Shen et al., 2001) and chickens (Chen et al., 2005, Gilbert et al., 2007a). PepT1 

protein increased linearly with age in chickens, but there was a decrease in PepT1 mRNA in rats 

between postnatal days 4 and 50.  Shen et al. demonstrated that even though PepT1 mRNA 

expression was at its highest point 3-5 days after birth in a neonatal rat model, it declined rapidly 

at all locations in the small intestine during the following days of suckling, suggesting that 

PepT1 and peptide transport are potentially important in the early life of the suckling neonate 
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(Shen et al., 2001).  In piglets, D’Inca et al. determined that there was a dramatic decrease in 

PepT1 mRNA expression within the first 48 hours after birth; however, intrauterine growth 

restriction delayed this adaptation, further supporting the importance of peptide transport in the 

newborn (D'Inca et al., 2011). 

In adult humans, a significant proportion of amino acids are absorbed as di- and 

tripeptides, and dipeptides are absorbed faster than free amino acids in the jejunum due to the 

high capacity for uptake by PepT1 (Ganapathy V, 1994).  A high turnover rate and expression 

level of PepT1 contributes to the rapid uptake of peptides (Steinhardt and Adibi, 1986).  The 

efficiency in uptake of small peptides combined with the lower osmolarity of peptide solutions 

support the use of peptides rather than free amino acids in therapeutic enteral formulas (Boza et 

al., 2000).  In neonates, proteolytic capacity is not as well developed as in adults, due to 

significantly lower production of pepsin (Henderson et al., 2001). Compared to adults, a higher 

proportion of amino acids would be present in the neonatal gut as small peptides.  As such, the 

capacity for peptide transport may be high to support optimal nutritional status and growth.  

Indeed, alanyl-glutamine is currently being studied as a potential dietary supplement, and has 

been reported to increase the nutritive status and intestinal barrier function in human neonates 

(Lima et al., 2007) as well as to aid in the maintenance of cellular glutathione concentrations 

during oxidative stress (Alteheld et al., 2005). Although the absorption of small peptides is 

important in the healthy individual, the bioavailability of peptides in times of intestinal duress 

may be of particular importance.  In addition, the added benefits of stability, hypotonicity and 

palatability (Silk et al., 1982) support the importance and usefulness of dipeptide preparations for 

modern clinical treatments.  
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Characterizing the ontogeny of PepT1 in the neonate is of tremendous importance for the 

development of effective feeding strategies for both healthy and sick infants.  The piglet is an 

excellent model for the human neonate, and especially preterm infants (Shulman, 1993). 

Neonatal pigs share similar patterns of intestinal development with humans, as well as similar 

nutritional requirements. Dipeptide transport capacity via PepT1 and the effects of development 

have not been previously reported in this model.  In this study, we determined PepT1 transport 

capabilities and relative quantities of PepT1 mRNA at specific locations along the 

gastrointestinal tract of piglets during suckling and post-weaning.  

2.3 Experimental Methods 
 

2.3.1 In situ perfusion (gut loop model)  
 

Sixteen Yucatan miniature piglets (N = 4 per group) were obtained from the breeding 

herd at Memorial University of Newfoundland (average birthweight 1.01 ± 0.03 kg; average 

growth rate from birth to 1 month of age: 45 ± 3 g/kg bodyweight/d).  All procedures were 

approved by the Institutional Animal Care Committee, and were in accordance with the 

guidelines of the Canadian Council on Animal Care. Piglets were studied at 1, 2, 3 or 6 weeks of 

age. Piglets in this herd are weaned at 4 weeks old to a standard pelleted grower pig diet based 

on wheat, barley, oats and canola meal (15.6% crude protein, 3.75% crude fat, 12.1 MJ/kg 

digestible energy) (Eastern Farmers Co-op, St. John’s, NL); preweaning piglets were exclusively 

suckled by sows fed a typical lactation diet with 14% crude protein and 3% crude fat.  To avoid 

fasting (which may alter PepT1 expression or function (Ma et al., 2012)), the in situ study was 

initiated within 2 h of separating the piglets from the sows at 1, 2 or 3 weeks of age and within 2 

h of last feed for 6 week old piglets. Anaesthesia was induced with an intramuscular injection of 
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22 mg/kg ketamine hydrochloride (Bimeda-MTC, Cambridge, ON) plus 0.5 mg/kg 

acepromazine (Vétoquinol Canada Inc., Lavaltrie, QC).  General anaesthesia was maintained 

with 1-2% isoflurane (Abbot Laboratories Ltd., Montreal, QC) delivered with 1.5 L/min oxygen.  

Body temperature was maintained via a homeothermic blanket system that automatically 

adjusted heat output in response to a rectal temperature probe (Harvard Apparatus, Saint-

Laurent, QC).  A mid-line incision was made in the abdomen to open the peritoneum.  The 

complete length of the small intestine (SI) was measured and four equidistant regions were 

marked for loop placement. The most proximal jejunal loop (0%) was defined as 15 cm from the 

ligament of Treitz.  Closed loops of intestine consisted of 10-cm sections of intestine with inlet 

and outlet cannulas (ID, 1/16 in.; OD, 1/8 in., Watson Marlow, Cornwall, UK) inserted through a 

small perforation at both ends of the 10 cm.  In total, four loops were placed at 0, 25, 50 and 75% 

of SI length.  Each isolated gut loop was perfused with a dipeptide-containing buffer that was re-

circulated through the loop for the duration of the study by a multi-channel peristaltic pump 

(Watson Marlow, Cornwall, UK).  The perfusate (65 ml) contained 5 mM glycyl-sarcosine (gly-

sar) with 37 kBq 
3
H-glycyl-sarcosine (Moravek, Brea, CA) in PBS (144.6 mM NaCl, 15.9 mM 

Na2HPO4, 1.2 mM NaH2PO4), pH 6.0, and was maintained at 37°C for the duration of the study.  

Perfusions through each closed loop continued for 120 min.  A 1 mL sample of perfusate from 

each closed loop was removed every 10 min, to determine isotope disappearance.  During the 

procedure the exposed intestines were kept moist with warmed saline and covered with gauze 

and plastic wrap.  Heart rate and blood oxygenation were monitored via pulse-oximetry 

(Surgivet, Dublin, OH) throughout the experiment.  At the end of the perfusion period the loops 

were excised by cautery, flushed with cold 0.9% saline, placed on ice, cut longitudinally and 

scraped with a microscope slide to remove the mucosa. Samples were also removed from the 
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apex of the spiral colon and flushed, and all tissues were immediately flash frozen in liquid 

nitrogen and stored at -80°C until further analyses. 

2.3.2 Disappearance of 
3
H-glycylsarcosine 

 

Sampled perfusate (100 µL) was added to 4 mL Scintiverse (Fisher Scientific, Ottawa, ON) for 

liquid scintillation counting.  The specific radioactivity (SRA) was calculated as the mean 

disintegrations per minute (dpm) per µmol of glycyl-sarcosine present in the perfusate. SRA was 

calculated at baseline (prior to perfusion) and in each of the perfusate samples taken over the 

course of the 2-h study.  The SRA was then used to determine the total quantity of glycyl-

sarcosine.  Rate of disappearance of glycyl-sarcosine was determined via area under the curve 

using GraphPad Prism 4.0. Perfusates were also derivatized with phenylisothiocyanate and 

analyzed using HPLC (Bidlingmeyer et al., 1984).  Complete fraction collection was used to 

determine whether the isotope was associated with glycyl-sarcosine, glycine or some other 

metabolite.  

2.3.3 Real-time RT-PCR 
 

PepT1 mRNA was measured in mucosa sampled from each of the perfused intestinal loops.  

Samples of colon were also analyzed.  RNA was extracted using the Qiagen RNEasy Mini kit 

(Qiagen Inc., Mississauga, ON) according to the manufacturer’s protocol.  Relative 

concentration and purity were determined by measuring the absorbance at 260 and 280 nm using 

a NanoDrop 1000 (NanoDrop Technologies, Wilmington, DE).  RNA integrity was visualized 

via the agarose gel visualization of the 28S:18S ratio.  cDNA was created according to the 

protocol outlined in the QuantiTect (Qiagen Inc., Mississauga, ON) reverse transcriptase manual. 

1 µg of total RNA was used in the reverse transcription reaction.  Taqman probes were utilized 
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in the PCR reaction. The sequences of the primers and probes were as follows: PepT1 forward 

primer  5’ d CTGGAGTTCTCCTATTCTCA 3’,  reverse primer 5’ d 

AACAGCCACGGTCAACAG 3’, probe sequence for PepT1 5’ d BHQ-2-

TCCTTCCAACATGAAGTCGGTGC-Pulsar 650 3’.  β-actin was used as an internal control 

with the following sequences: forward primer 5’ d CCCAGCACGATGAAGA 3’, reverse primer 

5’ d CGATCCACACGGAGTC 3’,  probe 5’ d FAM-TCAAGATCATCGCGCCTCCAGA-

BHQ-1 3’.  The accession numbers for the template sequences were AY180903.1 for PepT1
(23)

 

and AY55069 for beta-actin.  The Lightcycler (Roche, Indianapolis, IN) was set to the following 

conditions: 15 min at 95°C, 40 cycles of 1 min at 95°C and 1 min at 55°C, and a 40°C incubation 

for 1 min.  Reaction efficiency for PepT1 was 0.94 ± 0.03 and β-actin reaction efficiency was 

0.96 ± 0.06. Each sample was run in triplicate and analyzed using the Livak method (2
-

ddCt
)(Livak and Schmittgen, 2001).   

2.3.4 Statistical analyses 
 

Data were analyzed by one-way (colonic PepT1 mRNA) or two-way repeated measures ANOVA 

(overall uptake of glycyl-sarcosine) with Bonferroni’s protected means separation test. The 

variables analyzed in the two-way ANOVA were age, intestinal location and their interaction. 

Uptake data over time were tested for linearity using least squares regression. Sample size was N 

= 4 piglets per age group and differences were noted as significant if p < 0.05 (GraphPad Prism 

4.0, La Jolla, CA). 

2.4 Results  
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Throughout the perfusion studies, all piglets remained stable, well oxygenated and maintained a 

core body temperature above 37.5˚C. 

2.4.1 Dipeptide disappearance 
 

The proportion of 
3
H associated with glycyl-sarcosine accounted for greater than 90% of the 

radioactivity in the perfusates at baseline, determined through HPLC fraction collection, while 

glycine contained less than 5% of the label.  This suggests that the dipeptide did not degrade 

intraluminally and was available for transport. Glycyl-sarcosine transport occurred linearly in all 

intestinal loops in all animals studied, except in the most distal loop (75%) in week 1 and 3 

piglets, and in the 0% loop in piglets at week 6 (Fig.2.1). In order to assess how dipeptide uptake 

might change along the longitudinal axis of the small intestine as the animal ages, we compared 

glycyl-sarcosine uptake between age groups at the four sites of the small intestine (Fig. 2.2).  

Overall, there was a significant effect of age (p < 0.0001), intestinal location (p < 0.005) and age-

by-location interaction (p < 0.0005).  When compared by intestinal location, dipeptide uptake 

was remarkably consistent at the most proximal site (0%) across all age groups.  At the mid-

jejunum site (25%), glycyl-sarcosine uptake in 1 week old pigs was twice that in pigs 2 and 3 

weeks old (p < 0.05), with 6 week old pigs intermediate.  In the distal jejunum (50%), greater 

uptake occurred in the post-weaning animals (6 weeks) compared to the week 2 animals (p < 

0.05), with uptake in piglets at 1or 3 weeks of age intermediate.  The uptake of glycyl-sarcosine 

in the ileum (75%) for week 6 animals was about twice that for piglets aged 2 and 3 weeks (p < 

0.001), and 30% greater than piglets at 1 week (p < 0.05).  Within age groups, 1 week old 

animals had greatest uptake in mid-jejunum and ileum (p < 0.05).  In 6 week old animals, there 

was a notable gradient of glycyl-sarcosine uptake with the lowest uptake in the proximal jejunum 

up to a 3-fold higher uptake in the ileum (Fig. 2.2). 
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Fig. 2.1 Total glycylsarcosine disappeared from closed loops of small intestine during the 2 h 

perfusion study. Position of each intestinal loop is indicated by its relative position from the 

ligament of Treitz: (a) 0, (b) 25, (c) 50 and (d) 75 %. Values are means with their standard errors 

(N=4 for each group).  
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Fig. 2.2 Rate of glycyl-sarcosine (Gly-Sar) uptake from closed loops of small intestine.  

Intestinal position is given as distance from the ligament of Treitz as a percent of the total length 

of the intestine.  Uptake was determined by measuring the disappearance of 
3
H-glycyl-sarcosine.  

Data are expressed as mean ± SD (N = 4 for each bar) and were analyzed by two-way ANOVA. 

Significant effects of age (p < 0.0001), intestinal location (p < 0.005) and age-by-location 

interaction (p < 0.0005) were observed.  Lines represent significant differences between 

intestinal sections within an age group (*p < 0.05, **p < 0.01). Differing letters represent 

significant differences (p < 0.05) within each specific intestinal site, compared among age 

groups.   
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2.4.2 Quantification of PepT1 mRNA in the intestine 
 

The PCR results from the small intestinal tissue samples were highly variable, thus no significant 

differences in PepT1 mRNA were detected (Fig. 2.3).  PepT1 mRNA was detected in the colon 

of all animals (Fig. 2.4); however, the quantity was ~10% of that measured in the proximal 

jejunum of piglets at 1 week of age, and ~2% of that found in the proximal jejunum of post-

weaning animals (p < 0.05).  Although present in similar abundance at ages 1, 2 and 3 weeks, 

colonic PepT1 mRNA in post-weaned pigs was only 10% of that seen than in suckling pigs (p < 

0.05) (Fig. 2.4).  
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 Fig. 2.3 Real time RT-PCR analysis of PepT1 mRNA closed loops of small intestine.  Intestinal 

position is given as distance from the ligament of Treitz as a percent of the total length of the 

intestine.  Week 1 samples were set at 1 for comparison purposes (Livak and Schmittgen 2001).  

Data are expressed as mean ± SD (N = 4 for each bar). 
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Fig. 2.4 Real time RT-PCR analysis of PepT1 mRNA in the colon at four ages.  Week 1 samples 

were set at 1 for comparison purposes (Livak and Schmittgen 2001).  Data are expressed as mean 

± SD (N = 4 for each bar) and were analyzed by one-way ANOVA. Bars with differing letters 

are significantly different, p < 0.05. 
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2.5 Discussion  
 

Although the porcine peptide transporter has been cloned and characterized (Klang et al., 2005), 

there has been little investigation into the ontogeny of porcine PepT1.  The objective of this 

study was to evaluate the ontogenic pattern in peptide transport capability and PepT1 mRNA 

quantity in the small intestine of the Yucatan miniature pig as it develops from suckling to a 

post-weaned state.  Clinically, such information is necessary to appropriately design feeding 

regimens for infants.  This objective was accomplished through the use of a hydrolysis resistant 

dipeptide tracer, 
3
H-glycyl-sarcosine, and real time RT-PCR for mRNA analysis.  From these 

techniques it was determined that there was little variation in uptake of glycyl-sarcosine at any 

location in the small intestine during the suckling period; however in the post-weaning period, 

there was a distinct gradient in rate of uptake which was greatest in the distal small intestine.  

Small intestinal PepT1 mRNA was extremely variable at all locations measured in the small 

intestine at each age, whereas colonic PepT1 abundance declined dramatically after the animals 

were weaned. 

In this study, small intestinal loops were perfused with a dipeptide-containing solution 

and uptake was calculated from the disappearance of 
3
H-glycyl-sarcosine.  This in situ model is 

ideal to isolate specific regions of the intestine for study by allowing multiple loops per animal, 

limiting systemic effects of the perfusate and still maintaining first-pass metabolism (Nichols and 

Bertolo, 2008, Adegoke et al., 1999a, Adegoke et al., 1999b).  For these reasons, this model was 

selected to examine dipeptide uptake in the piglet model.   

Absorption of glycyl-sarcosine and PepT1 mRNA was detected in the loops at all four 

locations in the small intestine.  There was a significant effect of intestinal location on the uptake 



55 
 

of the dipeptide glycyl-sarcosine, particularly in post-weaning pigs (Fig. 2.2).  Uptake of glycyl-

sarcosine was relatively consistent in all intestinal locations examined in the older suckling 

animals (weeks 2 and 3).  So once an animal was no longer suckling and was weaned onto a 

solid grain-based diet, there was a greater capacity for dipeptide transport in the ileum.  

Components of sow milk are readily digested and absorbed in the proximal parts of the small 

intestine (Mavromichalis et al., 2001, Buddington et al., 2001), so it is likely that the dietary 

stimulus for PepT1 upregulation in more distal portions of the ileum may not be present in 

luminal contents.  In contrast, products of protein hydrolysis in grain-based diets with lower 

digestibility consumed by weaned animals would likely reach the ileum before absorption (Low, 

1979), providing a substrate for PepT1, and perhaps a stimulus for PepT1 upregulation in the 

distal intestine of the post-weaned piglet. In this respect, the distal ileum may be important for 

optimal nitrogen absorption in the period immediately following a diet transition.  Alternatively, 

the transition to solid feeding can be considered a period of intestinal injury and inflammation 

for the milk-fed piglet (Moeser et al., 2007, Pie et al., 2004) and such injury could lead to a 

stimulation of peptide uptake capacity (Vavricka et al., 2006).  With respect to age, dipeptide 

uptake tended to follow a U-shaped curve with higher uptake in 1 week old and post-weaned 

piglets.   

Although PepT1 is present in the small intestine, we have also identified its presence in 

the colon of the developing piglet.  Our results demonstrated that PepT1 mRNA is present in 

colonic tissues until after weaning occurs (week 6).  This may be an adaptive response that 

occurs post-weaning; as the distal small intestine increases its capacity for oligopeptide 

absorption, the colon reduces the transcription of PepT1 mRNA.  Shen et al. reported that PepT1 

presence in the colon was transient, because by day seven no PepT1 mRNA was found in the 
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colon of developing rats (Shen et al., 2001).  PepT1 has been found in the colon of rats at later 

time points (Shi et al., 2006b), but its presence has been primarily related to a state of intestinal 

injury such as gut resection.  PepT1 has also been detected in the colon of humans that have 

undergone intestinal resection (Ziegler et al., 2002).  PepT1 is present in the colon of humans 

with inflammatory bowel disease (Merlin et al., 2001) and it has been shown that PepT1 is 

capable of transporting fMLP, which is a bacterial peptide.  As such, PepT1 may be responsible 

for the exacerbation of inflammatory bowel disease.  Colonic PepT1 mRNA and protein were 

also higher in patients with massive bowel resections, when compared to control subjects 

(Ziegler et al., 2002).  A study in rats demonstrated an increase in PepT1 protein in the colon of 

animals with intestinal resection that were fed chow (Shi et al., 2006b), whereas rats fed an 

elemental diet did not express any PepT1 mRNA in colonic tissues (Lardy et al., 2006).  

Findings such as these underscore the importance of peptide presence in the lumen of the colon 

for the induction of PepT1.  Although colonic peptide transport is extremely low when compared 

to the whole small intestine, in the event of intestinal injury or malnutrition, capacity for 

oligopeptide uptake may be increased through the up-regulation of PepT1, thereby recovering  

nutritionally valuable substrates.  Whether this also leads to greater uptake of pathogenic 

bacterial peptides remains to be determined.   

To understand the potential impact of peptide transport, it is important to consider the 

variable affinity of PepT1 substrates.  Alanyl-alanine, for example, is a high affinity substrate for 

PepT1 (Ki of 0.08 ± 0.01 mM) whereas glycyl-sarcosine is classified as a medium affinity 

substrate with a Ki of 1.1 ± 0.1 mM, determined in Caco-2 cells (Brandsch et al., 1998, Brandsch 

et al., 1999).  Previous work on glycyl-sarcosine transport in porcine jejunum, using an Ussing 

chamber system, demonstrated dipeptide uptake of approximately 600 nmol/cm
2
/2 h (modified 
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from Winckler et al) (Winckler et al., 1999).  In our study, using the more physiological ligated 

loop model, we found that the overall average glycyl-sarcosine uptake was 424 ± 226 

nmol/cm
2
/2 h.  Thus, the data from our in situ model are comparable to previous in vitro findings 

with the same non-nutritional dipeptide and likely underestimate the transport rates of dietary 

dipeptides with higher PepT1 transporter affinity.   

There are two possible mechanisms for the intestinal transport of oligopeptides: PepT1- 

mediated transcellular transport (Daniel, 2004) and paracellular transport (McCollum and Webb, 

1998). The role of these pathways in intestinal oligopeptide transport is not yet fully understood, 

and there is increasing evidence that the paracellular pathway may be of some importance in 

absorption of small peptides and peptidomimetic drugs (Lafforgue et al., 2008, Menon and Barr, 

2003).  It has been well documented that the small intestine of suckling animals demonstrates 

greater paracellular transport at younger ages (Udall et al., 1981, Weaver et al., 1984). Thus, it is 

possible that paracellular transport could mask low PepT1 activity during suckling. We also 

observed the greatest disappearance of glycyl-sarcosine in the ileum of the post-weaning 

animals.  Overall, if paracellular transport had significant impact on the transport of glycyl-

sarcosine in our piglets, it would have been most prominent at the younger ages (weeks 1, 2 and 

3) rather than the post-weaning state.   

In summary, we have examined the ontogenic changes of the peptide transporter PepT1 

in a piglet model of the developing intestine.  These results have demonstrated that the capacity 

for dipeptide transport is present in both the proximal and distal small intestine, with the colon 

potentially being able to transport peptides during the suckling state.  By post-weaning, the ileum 

is the site of highest dipeptide uptake.  The importance of dipeptides to the nutritional status of 

the developing infant is still unknown; however, when therapeutic formulas are necessary, it is 
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likely that the provision of all or part of the nitrogen as small peptides conveys advantages over 

preparations of free amino acids, and this may be of particular importance when compromised 

intestinal function is present. 
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Chapter 3:Enterally delivered dipeptides induce 

changes in small intestinal morphology in a piglet 

model of intestinal resection 
 

The work presented in this chapter was funded in part by a grant from the Ajinomoto 

Amino Acid Research Program.  It represents work that was presented at Experimental Biology 

2011 in Washington, D.C., U.S.A and will be submitted for publication in Clinical Nutrition.  

The co-authors of this work are Matthew G. Nosworthy, M. Elaine Dodge, Robert F. Bertolo and 

Janet A. Brunton.  All authors were responsible for designing the study and conducting the 

surgeries, MGN carried out the laboratory analysis with assistance from MED with respect to the 

western blots and BrdU, MGN performed the statistical analyses. 

Intestinal resection is an important issue in neonates leading to a reduction in absorptive 

capacity, with 2.2% of neonatal intensive care unit admissions resulting in short bowel 

syndrome, a condition with a 37.5% fatality rate.  As PepT1 is preferentially maintained over 

free amino acid transporters during gut stress, provision of dipeptides would result in increased 

nutrient availability thereby potentially enhancing the adaptive response of a surgically shortened 

intestine.  By selecting the dipeptides cysteinyl-glycine and alanyl-glutamine as test dipeptides, 

this study also established whether these dipeptides were beneficial in inducing adaptation in a 

piglet model of short bowel syndrome.    

Hypothesis: Dipeptides (alanyl-glutamine, cysteinyl-glycine, alanyl-alanine) delivered into a 

surgically shortened gut will induce an increase in PepT1 mRNA and protein in the residual 

intestine.  Greater efficiency of uptake of glutamine and cysteine as dipeptides (compared to 
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alanyl-alanine or free amino acids) will result in structural and functional enhancements of the SI 

mucosa, greater rates of mucosal protein synthesis and improved redox status. 

3.1 Abstract 

PepT1, a di/tripeptide transporter, is preferentially maintained over free amino acid transporters 

in situations of gut stress.  Therefore our objective was to determine the impact of enterally 

delivered dipeptide-containing diets on indices of intestinal adaptation in neonatal piglets after 

intestinal resection. 

Methods:  Piglets (N = 25, 10 ± 1 d old) underwent an 80% jejuno-ileal resection and were 

randomized to either 1) a control diet containing free amino acids, or the same diet but with 

equimolar amounts of free amino acids replaced by 2) alanyl-alanine, 3) alanyl-glutamine , 4) 

cysteinyl-glycine or 5) both alanyl-alanine and cysteinyl-glycine.  Outcome measures included 

plasma and mucosal amino acid concentrations, morphological and histological differences in the 

remnant intestine, PepT1 mRNA and protein expression, and mucosal cytokine concentrations. 

Result:  Intestinal length, organ weight and protein synthesis rates were similar between groups 

after 4 d of enteral feeding.  All of the dipeptide-containing diets reduced pro-inflammatory 

cytokine concentrations in the mucosa (TNF-α, IFN-γ).  The cysteinyl-glycine diet supported 

greater villus height compared to all other dipeptides and greater crypt depth compared to alanyl-

glutamine; however, none of the dipeptide diets altered intestinal morphology compared to the 

free amino acid control diet.   

Conclusions: This study showed that while there was no explicit morphological benefit of enteral 

dipeptides over their constituent free amino acids, there was the potential for the amelioration of 
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intestinal inflammation by reducing pro-inflammatory cytokines.  Enteral provision of dipeptides 

impacted intestinal adaptation, but the response was dipeptide-specific. 

3.2 Introduction  

Peptide transporter 1 (PepT1) is responsible for absorption of small peptides, two or three 

residues, from the lumen of the small intestine.  Increasing evidence suggests that PepT1 

population and/or activity can be altered by manipulating the nutritional status or health of the 

animal (Daniel, 2004). In situations of gut stress such as malnutrition, intestinal failure or 

surgical intervention, PepT1 expression is maintained or increased, in contrast with other nutrient 

transporters which typically decline in number (Satoh et al., 2003).  Humans fasted for 14 days 

demonstrated a significant decrease in the transport of amino acids but peptide transport was 

maintained (Vazquez et al., 1985). Ihara et al. (Ihara et al., 2000) reported a 179% increase in 

PepT1 mRNA over control samples in the jejunum of rats after a 4 day fast.  In addition to being 

preserved during gut stress, PepT1 expression is also substrate driven.  The presence of 

exogenous peptides in the culture media resulted in an increase in PepT1 expression in Caco-2 

cells (Walker et al., 1998).  Dietary provision of peptides has also demonstrated the same result 

in rats (Erickson et al., 1995, Shiraga et al., 1999). When the uptake of dietary protein is 

compromised due to intestinal injury such as inflammation or surgery, it may be advantageous to 

provide small peptides rather than free amino acids in the diet, to stimulate the population of 

PepT1 at the brush border and exploit the capacity for nitrogen transport.  

Short bowel syndrome (SBS) is a clinical condition induced through the surgical removal 

of intestinal tissue.  Causes for intestinal resection are varied, and include inflammatory 

disorders such as Crohn’s disease and colitis, tumors, physical trauma and infection such as 

necrotizing enterocolitis (NEC) (Goulet et al., 1991).  Intestinal resection results in a loss of 
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absorptive capacity (Sukhotnik et al., 2002) leading to a requirement for long term parenteral 

nutrition (PN).  In newborn and pre-term infants, SBS is commonly the result of congenital 

malformations or NEC (Sodhi et al., 2008). NEC is an aggressive, anaerobic infection that 

develops rapidly in the gastrointestinal tract in approximately 10% of all very low birth weight 

infants, with up to a 34% mortality rate in the lowest birth weight category (Fitzgibbons et al., 

2009).   

A recent study conducted in my supervisors lab demonstrated that enteral feeding (EN) of 

an elemental diet in combination with PN, induced intestinal adaptation in a piglet model of 

SBS.  This led to greater cell mass and intestinal length compared to PN alone (Dodge et al., 

2012).    Due to the substrate driven expression of PepT1, we hypothesized that providing enteral 

amino acids as peptides may stimulate the up-regulation of PepT1, leading to greater amino acid 

transport potential. 

Certain amino acids such as glutamine and cysteine are involved in intestinal barrier 

function and the regulation of oxidative stress.  Glutamine may be necessary for the localization 

of tight junction proteins in Caco-2 cells, thereby linking glutamine directly to intestinal integrity 

(Li et al., 2004).  Decline in the B0 transporter after surgical resection (Satoh et al., 2003) may 

prevent adequate absorption of glutamine, which could interfere with the maintenance of the 

intestinal barrier.  With PepT1 potentially up-regulated following surgery, and single amino acid 

transporters possibly depressed, the provision of enteral glutamine as a dipeptide may be 

particularly advantageous to the remaining intestine. 

Cysteine is a conditionally essential amino acid as it can be synthesized via trans-

sulfuration from methionine.  Cysteine has been linked to increased cellular proliferation via 
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transition from the G1 phase to S phase of the cell cycle (Noda et al., 2002).  Piglets that were 

fed an enteral diet free of sulfur amino acids presented with intestinal atrophy as demonstrated 

by reduced cellular proliferation, lower numbers of goblet cells and reduced villus height 

(Bauchart-Thevret et al., 2009).  Cysteine is also one of the amino acid residues in glutathione (-

Glu-Cys-Gly, GSH), and contributes to controlling cellular redox states (Wu et al., 2004). 

Limiting the availability of cysteine led to lower concentrations of glutathione in the plasma and 

intestinal mucosa of rats (Nkabyo et al., 2006). Studies in humans with inflammatory bowel 

disorders requiring surgical resection have demonstrated compromised redox status (Sido et al., 

1998).  Inclusion of cysteine-containing peptides in enteral diets may enhance cysteine 

availability and increase the generation of GSH, leading to improved recovery and intestinal 

adaptation. 

In this study we utilized a Yucatan miniature piglet model of intestinal adaptation which 

was previously characterized in my supervisors laboratory (Dodge et al., 2012) to investigate the 

potential benefits of alanyl-glutamine and cysteinyl-glycine when provided enterally to piglets 

with an 80% proximal resection of the small intestine.    

3.3 Materials and Methods 
 

3.3.1 Surgical procedures  
 

 Twenty-five (25) Yucatan miniature piglets, 10-12 days of age, were obtained 

from a breeding herd at Memorial University of Newfoundland (St John’s, NL) and randomized 

to one of five experimental groups. All experimental procedures were approved by the 

Institutional Animal Care Committee in accordance with guidelines of the Canadian Council of 
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Animal Care. Anesthesia was induced with an intramuscular injection of ketamine hydrochloride 

(22 mg/kg; Bimeda Canada, Cambridge, ON) and acepromazine (0.5 mg/kg; Vetoquinol Canada 

Inc, Lavaltrie, QC). After atropine sulfate injection (0.05 mg/kg; Rafter Dex Canada, Calgary, 

AB), the piglets were intubated and maintained under anesthesia with 1.0 - 1.5% isoflurane 

(Abbott Laboratories Ltd, Montreal, QC) mixed with oxygen at a flow rate of 1.5 L/min. In each 

piglet, 2 venous catheters were surgically implanted. One catheter was introduced into the 

femoral vein and advanced to the inferior vena cava for blood sampling and drug delivery. A 

second catheter was introduced into the jugular vein and advanced to the superior vena cava for 

the delivery of parenteral nutrition. The abdomen was opened, and approximately 80% of the 

proximal SI was resected, leaving 100 cm of the distal ileum proximal to the ileocecal valve 

intact. Continuity of the SI was restored using an end-to-end anastomosis.  Animals also 

underwent implantation of a gastric catheter to allow for infusion of the enteral diet. 

After surgery, piglets received intravenous antibiotics (20 mg of trimethoprim and 100 

mg of sulfadoxine; Borgal, Intervet Canada Ltd, Kirkland, ON) and analgesic (0.03 mg/kg of 

buprenorphine hydrochloride; Temgesic, Schering-Plough, Kirkland, ON).  Borgal was given 

daily and Temgesic every 12 h for the first 3 days postoperatively. Piglets were fitted with 

jackets secured to a tether-swivel system with dual-infusion ports (Lomir Biomedical, Notre-

Dame-De-L'Ile-Perrot, QC), allowing for the continuous infusion of both parenteral and enteral 

fluids. Piglets were housed in individual circular metabolic cages (1 m diameter), which allowed 

visual and aural contact with other piglets; toys were also provided. Lighting was maintained on 

a 12-h light:dark cycle, and room temperature was maintained between 23°C and 28°C with 

supplemental heat provided by heat lamps. Piglet weights were taken daily beginning 48 h after 

surgery.  
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3.3.2 Parenteral/Enteral Diets 
 

Following surgery, infusion of parenteral diet was initiated via the jugular vein at 50% of 

targeted intake. On the morning of day 1, the rate of infusion was increased to 75% for 12 h and 

then to 100% by the end of day 1 (13.5 mL·kg
–1

·d
–1

).  The complete parenteral diet provided 1.1 

MJ of metabolizable energy·kg
–1

·d
–1 

with glucose (24.5 g·kg
–1

·d
–1

) and lipid (20% Intralipid, 

Pharmacia, Stockholm, Sweden) each supplying 50% of non-protein energy and 15 g·kg
–1

·d
–1

 of 

protein, supplied as free amino acids. The amino acid composition was as follows (per gram of 

total L-amino acids): alanine, 107 mg; arginine, 67 mg; aspartate, 61 mg; cysteine, 14 mg; 

glutamate, 105 mg; glycine, 27 mg; histidine, 31 mg; isoleucine, 46 mg; leucine, 104 mg; lysine-

HCl, 102 mg; methionine, 19 mg; phenylalanine, 55 mg; proline, 83 mg; serine, 56 mg; taurine, 

5 mg; threonine, 41 mg; tryptophan, 21 mg; tyrosine, 8 mg; and valine, 53 mg (Dodge et al., 

2012). Prior to feeding, vitamins (Multi-12K1 Pediatric, Sabex Boucherville,  QC), trace 

minerals, 200% of NRC recommendations, (NRC, 1998), lipid, and iron dextran (Fe, 3.0 mg/kg; 

Vetoquinol Canada Inc, Lavaltrie, QC) were added to the diet. On day 2, the presence of ileus 

was tested by infusing a 10-mL bolus of the complete parenteral diet into the stomach via the 

gastric catheter. If gastric emptying was evident, then enteral feeding was initiated on day 3, and 

increased over the following 24 h to achieve 50% of total nutritional intake with the balance 

being maintained via parenteral nutrition. The diets were continuously infused intravenously and 

enterally by pressure sensitive peristaltic pumps. 

The piglets were randomized to one of 5 experimental enteral diets (N = 5 per group). 

The experimental diets were based on the elemental diet used for parenteral nutrition, with the 

majority of the nitrogen provided as free L-amino acids.  The dietary manipulations included 1) 

free amino acids as a control diet (CON), or the equimolar replacement of free amino acids with 
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the following dipeptides; 2) alanyl-alanine (AA), 3) alanyl-glutamine (AQ), 4) cysteinyl-glycine 

(CG) or 5) the combination of alanyl-glutamine and cysteinyl-glycine (AQ+CG) (Dipeptides 

were purchased from Bachem, Torrance, CA ).  All enteral diets were isonitrogenous. The amino 

acid composition of the enteral diets is given in Table 3.1. 

3.3.3 Necropsy and Tissue Collection 
 

Animals were injected intravenously with 50 mg/kg of 5-bromo-2′-deoxyuridine (BrdU) 

(Sigma Aldrich, Oakville, ON) 4 hours before necropsy.  Thirty minutes prior to necropsy 

animals were injected intravenously with 1.5 mmol/kg phenylalanine, of which 0.15 mmol/kg 

was labelled with 
3 

H-phenylalanine. At necropsy, the site of anastomosis was identified and the 

small intestine removed from the site of anastamosis to the ileocecal valve. The weight and 

length of this portion of the small intestine were measured and considered the “remnant 

intestine”.  A 3-cm segment of remnant intestine immediately distal to the site of anastomosis 

was also immersed in neutral buffered 10% formalin (Fisher Scientific, Pittsburgh, PA) for 

histologic analyses. The following 50 cm of remnant intestine was isolated and weighed, and the 

mucosa was harvested from the this intestinal section which was slit longitudinally and placed on 

a glass plate on ice. The mucosal tissue was scraped from the underlying muscle using a glass 

slide with even pressure, weighed and flash frozen in liquid nitrogen.  Liver and kidney weights 

were also measured. 

3.3.4 Histological Analysis 

3.3.4.1 Preparation of Slides 

After fixation in 10% buffered formalin (Fisher Scientific, Pittsburgh, PA), samples of 

intestine were dehydrated in ethanol, cleared in xylene, embedded in paraffin wax, and sliced 

into 5-µm sections. 



74 
 

Table 3.1: Amino acid composition of the enteral diets (g/L) 

Amino Acid Control AA AQ CG AQ+CG 

 

alanine 4.4 0 1.03 4.4 1.03 

arginine 3.59 3.59 3.59 3.59 3.59 

aspartate 3.27 3.27 3.27 3.27 3.27 

cysteine 1.1 1.1 1.1 0 0 

glutamate 0 0 0 0 0 

glycine 1.47 1.47 1.47 0.8 0.8 

histidine 1.67 1.67 1.67 1.67 1.67 

isoleucine 2.48 2.48 2.48 2.48 2.48 

leucine 5.61 5.61 5.61 5.61 5.6 

lysine 5.58 5.58 5.58 5.58 5.58 

methionine 1.04 1.04 1.04 1.04 1.04 

phenylalanine 2.95 2.95 2.95 2.95 2.95 

proline 4.46 4.46 4.46 4.46 4.46 

serine 5.19 5.19 5.19 5.19 5.19 

taurine 0.24 0.24 0.24 0.24 0.24 

tryptophan 1.14 1.14 1.14 1.14 1.14 

tyrosine 0.42 0.42 0.42 0.42 0.41 

valine 2.86 2.86 2.86 2.86 2.86 

threonine 2.18 2.18 2.18 2.18 2.18 

glutamine 5.5 5.5 0 5.5 0 

alanyl-glutamine  0 0 8.87 0 8.87 

alanyl-alanine 0 4.4 0 0 0 

cysteinyl-glycine 0 0 0 1.77 1.77 
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3.3.4.2 Crypt Depth/Villus Height 
 

Sections were stained with hematoxylin and eosin (Fisher Scientific, Pittsburgh, PA). 

Villus height and crypt depth were measured with a Zeiss Axiostar microscope (Carl Zeiss 

Toronto, ON).  Images were captured with an Infinity 1 camera and Infinity Analyze software 

(Lumenera Corporation Nepean, ON) Ten measurements of villus height and crypt depth were 

performed per animal. All histological measurements were performed in a blinded manner by a 

single investigator (MGN), see figure 3.1 for a representative image. 

3.3.4.3 Cellular Proliferation Index Using 5-Bromo-2′-deoxyuridine 
 

Immunohistologic analyses were performed to measure incorporation of BrdU into 

proliferating cells of small intestinal crypts (BD Biosciences Pharmingen, Mississauga, ON ) 

with visualization based on DAB substrate (Vector Laboratories, Burlington, ON). Data were 

expressed as the number of cells labeled with BrdU per total number of cells in an individual 

crypt (10 crypts per animal). 

3.3.5 Tissue Protein Synthesis 

Fractional rates of protein synthesis were measured by infusing a flooding dose of labeled 

and unlabeled phenylalanine (Garlick et al., 1980). Briefly, 4 days after initiation of enteral 

feeding and 30 min prior to necropsy, piglets were given an i.v. bolus of 
3
H-phenylalanine (37 

MBq per kg body weight) in 150 mmol/L phenylalanine (10 mL/kg body weight). Thirty minutes 

after the initiation of the phenylalanine bolus, piglets were anesthetized, and samples of liver and 

mucosa from the remnant intestine were taken for analysis of rates of protein synthesis. Specific 

radioactivities of the tissue free phenylalanine and the protein-bound phenylalanine were 

determined as described previously (Brunton et al., 2012).   
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Figure 3.1 Representative image of remnant intestine villus height and crypt depth 

measurements.   

 
 

 



77 
 

 

3.3.6 Tissue and Plasma Amino Acid Determination  
 

Free amino acid concentrations in plasma and tissue samples were analyzed using PITC 

derivatization (Bidlingmeyer et al., 1984) with norleucine as the internal standard. Phenylalanine 

fractions were collected and the radioactivity associated with these fractions was determined by 

scintillation counting. 

3.3.7 Real-time RT-PCR 
 

PepT1 mRNA was measured in small intestinal mucosa.  RNA was extracted using the 

Qiagen RNEasy Mini kit (Qiagen Inc. Montréal, QC) according to the manufacturer’s protocol.  

Concentration, purity and integrity were determined via the Agilent RNA Nano chip (Agilent 

Technologies, Mississauga, ON).  cDNA was generated according to the protocol outlined in the 

QuantiTect (Qiagen Inc. Montréal, QC, Canada) reverse transcriptase manual. 800 ng of total 

RNA was used in the reverse transcription reaction. Roche Faststart DNA master Sybr Green I 

kit (Roche, Laval, QC) was used for the qPCR reaction.  The sequences of the primers were as 

follows: PepT1 forward primer 5’ d CTGGAGTTCTCCTATTCTCA 3’,  reverse primer 5’ d 

AACAGCCACGGTCAACAG 3’,  β-actin was used as an internal control with the following 

sequences: forward primer 5’ d CCCAGCACGATGAAGA 3’, reverse primer 5’ d 

CGATCCACACGGAGTC 3’.   The accession numbers for the template sequences were 

AY180903.1 for PepT1 (Klang et al. 2005) and AY55069 for beta-actin.  The qPCR machine 

(Eppendorf Mastercycler, Eppendorf Mississauga, ON) was set to the following conditions: 10 

min at 95°C, 40 cycles of 15 sec at 95°C and 15 at 58°C, and 63°C incubation for 15 sec.  

Reaction efficiency for PepT1 was 0.87 ± 0.04 and β-actin reaction efficiency was 0.89 ± 0.04. 
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Each sample was run in duplicate and analyzed using 2
-ddCt 

 method (Livak and Schmittgen, 

2001). 

3.3.8 PepT1 Protein Analysis 
 

3.3.8.1 Brush Border Membrane Vesicle (BBMV) Preparation  
 

Brush border membrane vesicles were isolated from mucosal scrapings.  Briefly, tissues 

were homogenized in 100 mM mannitol, 2 mM HEPES/Tris pH 7.1 and 0.1 mM PMSF and 2 

mL of the homogenate was removed for protein and marker enzyme analysis.  The remaining 

sample was centrifuged at 500 g for 12 min.  Then 1 M MgCl2 was added to the supernatant to a 

final concentration of 10 mM, this solution was incubated on ice for 20 minutes prior to 

centrifugation at 3,000 g for 15 min. The supernatant was collected and centrifuged at 30,000 g 

for 30 min.  The pellet was then resuspended in 20 ml of 100 mM mannitol, 2 mM HEPES/Tris 

pH 7.4 and 1 mM MgSO4 and centrifuged at 30,000 g for 30 min to isolate BBMV’s.  The final 

pellet was resuspended in 300 mM mannitol, 20 mM HEPES/Tris pH 7.4 and 0.1 mM MgSO4 

(400 µl/g of wet tissue) and stored at -80°C. 

3.3.8.2 Western Blot 
 

  BBMV’s were analyzed for protein content using the BCA protein assay (Pierce 

Chemicals, Rockford, IL). Equivalent amounts of protein (50 μg) were electrophoresed on 8% 

SDS-polyacrylamide gels. After transfer to nitrocellulose membrane, blots were stained with 

Ponceau Red (Sigma Aldrich, Oakville, ON) to assess the equivalency of protein loading. Blots 

were blocked in 3% milk-TBST (Tris-buffered saline and Tween 20 at 0.2% V/V) for 45 min at 

room temperature and incubated with primary antibodies overnight at 4 °C. Primary antibodies 
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used were PepT1 (rabbit polyclonal 1:600, gift provided by E.A. Wong, Department of Animal 

and Poultry Sciences, Virginia Tech, Blacksburg, VA), and β-Actin (1:600 Sigma Aldrich, 

Oakville, ON). Blots were visualized using the Immun-Star WesternC Kit (Bio Rad, Montreal, 

QC) and images obtained using aa Alpha Innotech Chemiimager Gel Documentation System. 

 Band intensity was analyzed using AlphaVIEW SA (ProteinSimple, Toronto, ON) and PepT1 

expression was assessed relative to β-actin for each sample.  

3.3.8.3 Sucrase Enrichment of Brush Border Membrane Vesicles  

 

Brush border membrane vesicles (BBMV’s) were analysed for sucrase enrichment as per 

Dahlqvist (1968). In brief, 40 µg of protein from tissue homogenate or BBMV’s were incubated 

with 0.056 M sucrose at 37 °C for 20 min in triplicate. One triplicate was heat inactivated via 

immersion in boiling water for 5 min prior to incubation (blank).  After incubation an assay 

reagent consisting of o-Dianisidine, glucose oxidase and peroxidase (Sigma Aldrich, Oakville, 

ON) was added to each sample and incubated for an additional 20 min at 37 °C.  The enzymatic 

reaction was stopped by boiling the samples for 5 min.  The absorbance of the resulting solution 

was measured at 420 nm in a BioMate 3 spectrophotometer (Fisher Scientific, Pittsburgh, PA) 

and total glucose release was calculated through comparison to a standard curve after subtraction 

of the sample blank.  Overall sucrase enrichment was calculated by the ratio of sucrose release 

per µg of total protein from BBMV suspension to that of the tissue homogenate.   

3.3.9 Tissue and plasma glutathione  
 

Plasma and intestinal tissue concentrations of reduced and total glutathione were 

measured using the Biovision Glutathione assay kit (Biovision, Milpitas, CA) according to their 
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protocol.  In brief, 60 µl of plasma was deproteinized via the addition of 20 µl of perchloric acid.  

This mixture was centrifuged at > 10,000 g for 2 minutes at 4 ˚C and 10 µl of the supernatant 

was added to the microplate.   Assay buffer was used to increase the sample volume to either 90 

µl to measure reduced glutathione or 80 µl + 10 µl of reducing reagent to detect total glutathione.  

10 µl of the o-phthalaldehyde probe was added to each well and incubated at room temperature 

for 40 min.  Plates were read in a Powerwave XS microplate reader (Biotek, Winooski, VT) with 

Ex/Em=340/450.  Concentration of GSSG was calculated by subtracting the concentration of 

GSH from the total glutathione concentration.  

3.3.10 TNF-α and IFN- 
 

Mucosal TNF-α and IFN- concentrations were determined via porcine ELISA kits 

(Pierce, Rockford, IL).  The kits utilized anti-human antibodies that cross react with porcine 

cytokines.  Tissue supernatants were prepared by homogenizing tissue in PBS containing 

Protease Inhibitor Cocktail III (Calbiochem, San Diego, CA) and 1 mM PMSF (Sigma Aldrich, 

Oakville, ON).  Homogenates were then centrifuged at > 10,000 g for 5 minutes at 4 ˚C to allow 

for analysis of tissue supernatants according to the protocol provided by the supplier.  

Absorbance of the enzyme-substrate product was determined by subtracting the calculated value 

at 550 nm from that determined at 450 nm.  Linear regression was used to calculate the final 

concentration of cytokine in the supernatant which was reported as concentration per gram of 

mucosa.  

3.3.11 Statistics 
 

All results were expressed as mean ± standard deviation for each group of animals.  Data 

were analyzed by one-way ANOVA with Bonferroni’s protected means separation test. Sample 
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size was N = 5 piglets per dietary treatment and differences were noted as significant if p < 0.05 

(GraphPad Prism 4.0, La Jolla, CA). 

3.4 Results 

3.4.1 Morphologic measurements  
 

Body weights did not differ amongst treatment groups  (initial: 2.23 ± 0.30 kg; final 

control 3.27 ± 0.46 kg, AA 3.28 ±  0.26 kg, AQ 3.20 ± 0.49 kg, CG 2.85 ± 0.32 kg,  AQ+CG 

3.42 ± 0.38 kg).  Also, no differences were found in weight gain per kilogram per day 

(determined for the period after initiation of EN), and the percentage increase in body weight 

was similar among all treatment groups (Table 3.2).  No significant differences were determined 

in plasma amino acid concentrations amongst treatment groups (Table 3.3).  At necropsy, total 

liver and kidney weights were also not different amongst treatment groups (Table 3.2).  Protein 

synthesis rates in the liver and intestinal mucosa were also similar across dietary treatments 

(Table 3.2).  Length of the remnant intestine increased in all groups after one week of enteral 

feeding (Table 3.2).   

There was no effect of diet on the total weight in the remnant small intestine (Table 3.2), 

but the alanyl-glutamine and AQ+CG treatment resulted in lower mucosa weight in the proximal 

50 cm of the remnant intestine when compared to the control diet (Figure 3.2).    

3.4.2 Histology 
 

Analysis of intestinal morphology was performed on sections taken distal to the site of 

anastomosis (Figure 3.3).  Villus height was similar between CG and control treatments (CG:  

906 ±119 µm, control: 801 ± 49 µm); however villus height in the CG group was significantly  
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Table 3.2: Comparison of morphological and metabolic changes in piglets receiving 

different enteral diets. 

 

 Control AA AQ CG AQ+CG 

Remnant 

Intestinal 

Length (cm) 

185 ± 21 196 ± 15 170 ± 36 174 ± 31 180 ± 25 

Remnant 

Intestinal 

Weight 

(g/cm) 

0.31 ±  0.07 0.23 ± 0.04 0.26 ± 0.08 0.31 ± 0.10 0.28 ± 0.09 

Kidney 

Weight (g/kg) 

3.67 ± 0.41 3.54 ± 0.72 4.40 ± 0.89 4.37 ± 0.75 3.70 ± 0.38 

Liver Weight  

(g/kg) 

37.36 ± 3.89 38.85 ± 3.71 40.14 ± 7.00 41.77 ± 7.92 38.26 ± 2.54 

Mucosal 

Protein 

Synthesis 

(%/day) 

78 ± 27 90 ± 13 85 ± 23 98 ± 14 83 ± 14 

Liver Protein 

Synthesis 

(%/day) 

114 ± 38 71 ± 19 75 ± 30 88 ± 35 80 ± 14 

 

N = 5 piglets per group, values are mean ± SD.   
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Table 3.3: Plasma Amino Acid Concentrations (µmol/L) 

Amino Acid Control AA AQ CG AQ+CG 

Alanine 455 ± 100 543 ± 57 515 ± 57 572 ± 54 484 ± 122 

Arginine 126 ± 34 118 ± 32 134 ± 40 94 ± 24 137 ± 38 

Aspartate 25 ± 12 23 ± 11 25 ± 8 32 ± 19 18 ± 7 

Cysteine 260 ± 35 229 ± 52 285 ± 62 226 ± 59 229 ± 53 

Glutamate 161 ±  62 192 ± 60 201 ± 51 217 ± 75 150 ± 55 

Glutamine 230 ± 40 205 ± 63 224 ± 31 245 ± 70 233 ± 22 

Glycine 920 ± 302 927 ± 245 985 ± 213 961 ± 228 970 ± 496 

Isoleucine 148 ± 21 171 ± 12 164 ± 37 167 ± 20 150 ± 45 

Leucine 286 ± 47 280 ± 88 262 ± 94 273 ± 61 284 ± 50 

Lysine 370 ± 71 330 ± 185 392 ± 168 410 ± 196 365 ± 98 

OH-Proline 64 ± 11 66 ± 25 48 ± 18 67 ± 22 58 ± 7 

Phenylalanine 181 ± 44 182 ± 27 190 ± 32 175 ± 8 182 ± 57 

Proline 510 ± 80 500 ± 98 528 ± 110 549 ± 87 513 ± 83 

Serine 480 ± 87 476 ± 34 450 ± 53 509 ± 98 443 ± 65 

Taurine 143 ± 20 154 ± 49 137 ± 18 161 ± 21 132 ± 50 

Threonine 245 ± 48 221 ± 6 227 ±24 319 ± 95 230 ± 61 

Valine 267 ± 39 315 ± 51 248 ± 66 257 ± 49 269 ± 69 

 

 

N = 5 piglets per group, values are mean ± SD.   
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Figure 3.2:  Weight of mucosa from the proximal 50 cm of the remnant intestine in piglets fed 

diets containing either all free amino acids (Control), or one of alanyl-alanine (AA), alanyl-

glutamine (AQ), cysteinyl-glycine (CG) or both AQ and CG (AQ+CG).  N = 5 piglets per group, 

values are mean ± SD.  Data were analyzed by 1-way ANOVA with Bonferroni’s protected 

means separation test for post hoc analysis.  Bars with differing letters are significantly different 

p < 0.05. 
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Figure 3.3: Villus height and crypt depth distal to the site of anastamosis in piglets fed diets 

containing either all free amino acids (Control), or one of alanyl-alanine (AA), alanyl-glutamine 

(AQ), cysteinyl-glycine (CG) or both AQ and CG (AQ+CG).  N = 5 piglets per group, values are 

mean ± SD.  Data were analyzed by 1-way ANOVA with Bonferroni’s protected means 

separation test.  Bars with differing letters are significantly different p < 0.05. 
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Figure 3.4: BrdU incorperation into the intestinal crypts of piglets fed diets containing either all 

free amino acids (Control), or one of alanyl-alanine (AA), alanyl-glutamine (AQ), cysteinyl-

glycine (CG) or both AQ and CG (AQ+CG).  Data are presented as percent of total cells labelled 

with BrdU.  N = 5 piglets per group, values are mean ± SD.   
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higher than any other dipeptide group (p < 0.05) (Figure 3.2).  Enteral CG also resulted in 

significantly greater crypt depth when compared to AQ (CG 154 ± 11 µm vs AQ 116 ± 13 µm) 

(p < 0.05) (Figure 3.3).  Provision of enteral dipeptides did not alter cellular proliferation, as 

determined by BrdU incorporation (Figure 3.4).  

3.4.3 GSH, TNF-α and IFN- 
 

Total and reduced glutathione was quantified in both plasma and mucosal tissue (Figure 

3.5); no significant differences amongst treatments were detected.  The inclusion of AQ or CG, 

or both, in the enteral diets significantly reduced the concentration of IFN- to less than 40% of 

control (p < 0.05) (Figure 3.6).  The inclusion of any of the dipeptides in the diets resulted in a 

dramatic reduction in TNF-α, to less than 27% of control (p < 0.01) (Figure 3.7) 

3.4.4 PepT1 mRNA/Protein Expression 
 

Samples of mucosa taken from the remnant intestine were used to determine PepT1 

mRNA and protein expression. No significant difference was found in PepT1 mRNA (Figure 

3.8) or protein expression (Figure 3.10) between any of the dietary regimens.   

3.5 Discussion  
 

In a previous study (Dodge et al., 2012), it was demonstrated that early provision of an 

elemental enteral diet in tandem with parenteral nutrition resulted in massive adaptive responses 

in a piglet model of short bowel syndrome.  We used this model to investigate potential trophic 

effects of dipeptides, some of which were composed of metabolically important amino acids.  

The most intriguing outcome was the substantial influence of dipeptides on the mucosal 

concentration of pro-inflammatory cytokines. Surprisingly, in contrast to this observation, the  
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Figure 3.5:  Total (white bar) and reduced (patterned bar) glutathione concentrations in plasma 

(a) and mucosa (b) in piglets fed diets containing either all free amino acids (Control), or one of 

alanyl-alanine (AA), alanyl-glutamine (AQ), cysteinyl-glycine (CG) or both AQ and CG 

(AQ+CG).  N = 5 piglets per group, values are mean ± SD. Data were analyzed by 1-way 

ANOVA.   
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Figure 3.6: Concentration of IFN- in intestinal mucosa of piglets fed diets containing either all 

free amino acids (Control), or one of alanyl-alanine (AA), alanyl-glutamine (AQ), cysteinyl-

glycine (CG) or both AQ and CG (AQ+CG). N = 5 per group.  Values are mean ± SD.  Data 

were analyzed by 1-way ANOVA with Bonferroni’s protected means separation test for post-hoc 

analysis.  Bars with differing letters are significantly different p < 0.05. 
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Figure 3.7: Concentration of TNF-α in intestinal mucosa of piglets fed diets containing either all 

free amino acids (Control), or one of alanyl-alanine (AA), alanyl-glutamine (AQ), cysteinyl-

glycine (CG) or both AQ and CG (AQ+CG). N = 5 per group.  Values are mean ± SD.  Data 

were analyzed by 1-way ANOVA Bonferroni’s protected means separation test for post-hoc 

analysis.  Bars with differing letters are significantly different p < 0.05. 
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Figure 3.8: Fold change of PepT1 mRNA in intestinal mucosa of piglets fed diets containing 

either all free amino (Control), or one of alanyl-alanine (AA), alanyl-glutamine (AQ), cysteinyl-

glycine (CG) or both AQ and CG (AQ+CG). N = 5 per group.  Values are mean ± SD.   
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Figure 3.9: Representative western blot of PepT (top) and β-actin (bottom).  Circled bands were 

selected for analysis on the basis of anticipated size.  Lanes are as follows: AA, AQ+CG, CG, 

AQ and control.  
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Figure 3.10: Ratio of PepT1 protein to β-actin in intestinal mucosa of piglets fed diets containing 

either all free amino acids (Control), or one of alanyl-alanine (AA), alanyl-glutamine (AQ), 

cysteinyl-glycine (CG) or both AQ and CG (AQ+CG). N = 5 per group.  Values are mean ± SD.   
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data also suggest that inclusion of alanyl-glutamine in the enteral diet may actually be 

detrimental to mucosal growth in this surgical model.   

Differences in the cytokine concentrations in mucosa isolated from piglets demonstrate 

that the form of the dietary amino acids can alter the inflammatory state of the small intestine.  

Small intestinal bacterial overgrowth is a common and potentially serious complication of short 

bowel syndrome in infants that dramatically increases the risk of systemic infection (Cole et al., 

2010).  In a study of 10 infants with SBS, the concentration of circulating pro-inflammatory 

cytokines was inversely correlated with enteral intake; however, the form of the enteral diets was 

not described (Cole et al., 2010).  In our study, mucosal IFN- concentration was lower than 

control in the treatment groups that received CG, AQ or both, but not in the group fed AA.  

Thus, there is an underlying mechanism at work that responds to specific dipeptides.  The impact 

of alanyl-glutamine on intestinal health has been studied in vitro using cell culture (Alteheld et 

al., 2005), in vivo via PN infusion into piglets (Burrin et al., 1994) and in a number of human 

trials that have employed both enteral and parenteral provision of this dipeptide (Eroglu, 2009, 

Luo et al., 2008, Lima et al., 2007). Parenteral provision of AQ has been shown to increase 

antioxidant capacity and plasma glutamine concentrations, while intraperitoneal injection of AQ 

reduced the number of IFN-  producing cells in a mouse model of DSS-induced colitis (Chu et 

al., 2012).  When provided as the free amino acid, enteral glutamine supressed pro-inflammatory 

cytokine production during an E. coli challenge in piglets (Ewaschuk et al., 2011); however the 

beneficial effect of enteral glutamine-containing dipeptides has yet to be established (Luo et al., 

2008, Eroglu, 2009, Ligthart-Melis et al., 2009).  We have demonstrated that while enteral AQ 

does reduce pro-inflammatory cytokines, it has no other significant benefits over provision of 

free amino acids. 
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Mucosal TNF-α was also dramatically lower in the dipeptide-treated piglets compared to 

the control group.  Unlike IFN-, however, the presence of any of the test dipeptides resulted in a 

reduction of TNF-α.  Bacterial peptides, substrates for PepT1, can induce a pro-inflammatory 

cytokine response in monocytes through NFκβ signalling (Pan et al., 2010).  l-Ala--d-Glu-meso-

DAP (Dalmasso et al., 2010) and formyl-methionyl-leucyl-phenylalanine (Shi et al., 2006b, 

Carlson et al., 2007) are examples of bacterially derived pro-inflammatory substrates for PepT1. 

NF-κβ is a ubiquitous transcription factor and is highly involved in regulation of the immune 

system and its activation requires the phosphorylation and subsequent degradation of its 

inhibitor, Iκβ (Baeuerle and Henkel, 1994).  Once active, NF-κβ can act on the promoter region 

for pro-inflammatory cytokines such as TNF- (Baeuerle and Henkel, 1994) and IFN- (Sica et 

al., 1997).  TNF- is also capable of stimulating activation of NF-κβ by activating Iκβ kinase, 

the enzyme responsible for marking Iκβ for degradation. This can result in a positive feedback 

loop and the propagation of the inflammatory response (Grell et al., 1995).  Interestingly, both 

thiols such as n-acetyl-cysteine, and glutamine are capable of blocking NFκβ activation 

(Singleton et al., 2005,). The mechanism by which thiols prevent NFκβ activation is believed to 

be the prevention of Iκβ degradation, either through the improper folding of required kinases or 

other inhibition of Iκβ phosphorylation (Staal et al., 1990).  For TNF-, it is possible that the 

dipeptide effect of competitive inhibition for fMLP transport reduced NFκβ activation by the 

bacterial peptide, subsequently resulting in reduced transcription of the cytokine.  Conversely for 

IFN-, the lower concentration of IFN- found in AQ, CG and AQ + CG animals may be due to 

the presence of thiols, in the form of CG, or glutamine, in the form of AQ.  These compounds 

could have disrupted the phosphorylation of Iκβ, with the similar result of preventing the 

activation of NFκβ and IFN- transcription.  
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In Caco-2 cells, supplementation of the media with IFN- resulted in an increased mRNA 

expression of PepT1 (Foster et al., 2009, Vavricka et al., 2006). This was not reflected in our 

findings as PepT1 mRNA concentration was not altered despite differing concentrations of IFN-

.  Similarly, previous work demonstrated the capacity for substrate induced expression of PepT1 

in Caco-2 cells and increased mRNA in a rodent model (Walker et al., 1998, Shiraga et al., 

1999).  We did not detect any differences in either PepT1 mRNA or protein among any of the 

dietary regimens.  Whether this is due to a lack of stimulation of PepT1 mRNA transcription, a 

reduction in protein trafficking to the brush border, or a missed temporal window of enterocyte 

response is undetermined. 

An interesting finding of this study was that both cysteinyl-glycine and free amino acids 

demonstrated structural advantages over alanyl-glutamine.  It is possible that enteral glutamine is 

less accessible for use by the intestine as a dipeptide due to inefficient intracellular hydrolysis, 

and that alanyl-glutamine is exported intact into the circulatory system. A comparative study of 

enteral versus parenteral alanyl-glutamine in critically ill patients revealed that plasma glutamine 

was higher when the dipeptide was provided parenterally (Luo et al., 2008). Other studies 

determining organ specific removal of dipeptides from human plasma reported that the intestine 

was responsible for removing only 13% of alanyl-glutamine present in the plasma (Reviewed in 

Vazquez et al., 1993). When glycyl-leucine and glycyl-glycine were assayed, it was found that 

the intestine was responsible for contributing the lowest rate of plasma clearance compared to the 

other tissues studied.  This indicates that the intestine does not significantly utilize circulating 

dipeptides compared to other tissues.  Although enterocytes are able to utilize plasma glutamine, 

the intestine preferentially utilizes enteral glutamine compared with intravenously provided 

glutamine for arginine synthesis (Ligthart-Melis et al., 2009).  If alanyl-glutamine is being 
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transported into the circulatory system intact, the glutamine would be less accessible for use by 

the intestine and therefore not the best form of glutamine for an injured gut.  

We ascertained that supplementation with either free cysteine or cysteinyl-glycine did not 

affect the concentration of cysteine in either plasma or intestinal mucosa.  This is similar to the 

findings of Shyntum et al. who determined that the plasma pool of cysteine was not modulated 

through dietary intake in a rat model of bowel resection (Shyntum et al., 2009).  Mucosal and 

plasma glutathione concentrations were similarly unaffected by altering the enteral diets 

potentially due to the fact that no difference in amino acid availability was determined.  Cysteine 

alone is part of the oxidative stress control system; however, it is also an essential part of 

glutathione (GSH), the primary regulator of oxidative stress (Jones, 2006).  Nkabyo et al. 

demonstrated greater redox potential with sulphur amino acid (SAA) supplementation (218% of 

control diet SAA) in a model of bowel resection in rats (Nkabyo et al., 2006).  Although this 

demonstrated that SAA supplementation results in an improved redox status, we have not 

demonstrated any additional advantages in redox status of this surgical model when cysteine was 

supplied as the dipeptide cysteinyl-glycine.  It is possible that supplementing with additional CG 

rather than providing only the nutritional requirements of cysteine as a dipeptide could have led 

to greater redox potential in our model.  Additionally, the bioavailability of this dipeptide to 

enterocytes, or lack thereof, is also a potential reason for the lack of response in our model.  

In this study, enteral dipeptides had no impact on protein synthesis or intestinal length 

when compared to free amino acids.  Piglets receiving CG had significantly greater villus height 

compared with either AQ or AQ+CG, and the CG treatment also resulted in greater crypt depth 

when compared to piglets receiving AQ.  However, there was no detectable difference in cellular 

proliferation at necropsy.  This discrepancy between the morphological data and cellular growth 
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data could be due to the time at which the samples were taken for analysis.  In this model, 

samples were removed approximately one week after surgery.  Previous work in our lab (Dodge 

et al., 2012) using an identical surgical model demonstrated that within 24 h of initiating enteral 

feeding there is a period of rapid cellular proliferation and a high rate of protein synthesis, that 

was not detectable one week later.  This study determined potential adaptive benefits of enteral 

dipeptides and therefore necessitated extended enteral feeding before necropsy; therefore it is 

likely that the period of rapid cellular proliferation occurred prior to sample removal. 

An important aspect to consider in this study is the bioavailability of these dipeptides.  

Stability and clearance of plasma cysteinyl-glycine have not been as clearly delineated as alanyl-

glutamine.  However, as CG is a product of GSH degradation, numerous peptidases such as 

leucyl amino peptidase and alanyl peptidase have been shown to hydrolyse CG (Cappiello et al., 

2004).  Certain characteristics of dipeptides may predict their affinity for transport via PepT1.  A 

study by Vig et al. detailed the effect of peptide size, hydrophobicity, composition and charge on 

dipeptide transport (Vig et al., 2006).  Although cysteine containing dipeptides were not used in 

that study, the results can be used to make inferences regarding the bioavailability of cysteinyl-

glycine.  All X-glycine dipeptides were transported via PepT1 and neutral dipeptides resulted in 

greater transport than charged peptides thereby suggesting that CG is a viable substrate for 

PepT1. 

The objective of this study was to determine the impact of enteral dipeptides on indices 

of intestinal adaptation in a piglet model of short bowel syndrome.  Enteral dipeptides induced a 

marked reduction in pro-inflammatory cytokines when compared to free amino acids, while there 

was no effect on either PepT1 mRNA or protein expression.  These results demonstrated that 

while there was no explicit morphological benefit of enteral dipeptides over their constituent free 
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amino acids, there is the potential for the amelioration of intestinal inflammation by reducing 

pro-inflammatory cytokines.   
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Chapter 4: Cysteinyl-glycine reduces mucosal pro-

inflammatory cytokine response to fMLP in a piglet 

model of intestinal atrophy. 
 

The work presented in this chapter was funded in part by a grant from the Canadian 

Institutes of Health Research.  This work was presented at Experimental Biology 2013 in Boston, 

MA, U.S.A and will be submitted for publication in the Journal of Nutrition. The co-authors of 

this work are Matthew G. Nosworthy and Janet A. Brunton.  MGN and JAB were responsible for 

designing the study, MGN carried out the animal work in addition to the laboratory and 

statistical analyses. 

Substrates for PepT1 are widely varied, including not only dietary peptides and 

peptidomimetic drugs but also bacterially produced peptides such a formyl-methionyl-leucyl-

phenylalanine (fMLP).  This peptide has been demonstrated to induce intestinal inflammation 

and is the primary chemotactic factor produced by Escherichia coli.  As parenteral nutrition 

increases both the risk of bacterial infection and PepT1 expression in the distal intestine, this 

study determined whether parenterally-fed neonatal piglets were more susceptible to fMLP-

induced inflammation than their sow-fed siblings.  Additionally, these experiments investigated 

whether the dipeptide cysteinyl-glycine could attenuate the inflammation stimulated by the 

bacterial peptide. 

 Hypothesis: Parenteral feeding will increase the susceptibility of the intestine to fMLP-

induced inflammation while inclusion of cysteinyl-glycine will ameliorate indices of 

inflammation in both dietary treatments to a greater extent than the free amino acids cysteine and 

glycine.  
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 4.1 Abstract  

PepT1 is an intestinal di/tripeptide transporter also capable of transporting bacterial 

peptides. We measured the mucosal inflammatory response to a pro-inflammatory peptide, 

formyl-methionyl-leucyl-phenylalanine (fMLP), when delivered with cysteinyl-glycine in a 

model of intestinal atrophy.  Pigs (N = 6, 10 d) received parenteral nutrition (PN) for 4 d to 

induce atrophy of the small intestine; littermates (N = 6) remained with the sow.  Subsequently, 

five 10 cm loops of the distal SI were isolated and perfused for 3 h with one of: 1) 5 mM 

cysteine  + 5 mM glycine 2) 5 mM cysteinyl-glycine 3) 10 µM  fMLP 4) 5 mM cys + gly + 10 

µM fMLP 5) 5 mM cysteinyl-glycine + 10 µM fMLP.  In both dietary treatments, intestinal 

segments exposed to fMLP had higher mucosal TNF-α and IFN- compared to unexposed loops 

(p <0.001).  IFN- was higher in parenterally fed piglets compared to sow-fed pigs (p < 0.01). 

Co-perfusion of fMLP and cysteinyl-glycine resulted in a lower IFN- response in both sow-fed 

and parenterally fed piglets (p < 0.05), but neither group responded significantly to free cys + 

gly.  Interestingly, free cys + gly reduced the TNF-α response in sow-fed pigs (p < 0.001), but 

not in the PN-fed group.  Loops exposed to cysteinyl-glycine and fMLP had lower TNF-α 

concentrations compared to fMLP alone in both diet groups (p < 0.001) and in sow-fed piglets 

the response was significantly more abated than with cys + gly (p < 0.001).  Interleukin-10, an 

anti-inflammatory cytokine, was lower in animals undergoing parenteral nutrition compared to 

sow-fed (p < 0.05), but did not differ between loop treatments.  Morphologically, fMLP exposure 

did not alter villus height or crypt depth in sow-fed animals; in contrast, intestinal segments from 

PN-fed piglets exposed to fMLP had reduced villus height compared to unexposed loops (p < 

0.05).  Inclusion of cysteinyl-glycine was effective at attenuating a bacterial peptide-induced 

inflammatory response in the injured SI; this may be due to efficient dipeptide uptake in a 

situation of impaired free amino acid absorption, and/or competitive inhibition of fMLP uptake.  
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4.2 Introduction 
 

The products of protein digestion that are absorbed by the small intestinal epithelium 

include free amino acids and small peptides of two to three residues in length.  These di/tri-

peptides are removed from the nutrient rich intestinal lumen by a H
+
/peptide symporter, peptide 

transporter 1 or PepT1 (Vig et al., 2006).  This transporter is localized to the apical surface of the 

intestinal villi and has broad substrate specificity.  It is important to note that potential substrates 

for PepT1 include almost all possible dietary di/tripeptides (Vig et al., 2006), some antibiotics 

(Terada et al., 1997, Terada et al., 1998, Zhang et al., 2009) and pro-inflammatory bacterial 

peptides (Shi et al., 2006c, Carlson et al., 2007, Buyse et al., 2001, Dalmasso et al., 2010).   

The primary neutrophil chemotactic substance produced by Escherichia coli is formyl-

methionyl-leucyl-phenylalanine (fMLP) (Marasco et al., 1984).  This tripeptide is the most 

predominant N-formylated peptide present in the colonic lumen of humans (Marasco et al., 

1984).  PepT1-mediated transport of fMLP has been demonstrated in cell culture (Merlin et al., 

1998, Foster and Zheng, 2007) and in vivo in rats (Buyse et al., 2002, Shi et al., 2006a).  Uptake 

of fMLP was inhibited by the presence of known substrates of PepT1 in cell culture studies 

(Merlin et al., 1998, Foster and Zheng, 2007).  Further, the presence of fMLP induced neutrophil 

migration across an epithelial monolayer, an activity which was abolished if fMLP uptake was 

inhibited.  Uptake of fMLP has been investigated in rats using an intestinal perfusion approach 

(Buyse et al., 2002).  Marked inflammatory response occurred in jejunal segments perfused with 

fMLP, an intestinal position known to have high expression of PepT1.  This inflammation was 

accompanied by an increase in DNA binding by NFκβ, a transcription factor involved in the 

regulation of pro-inflammatory cytokines. The transcription factor NFκβ is a key regulator of the 

immune response (Baeuerle and Henkel, 1994). This transcription factor it capable of inducing 
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transcription of TNF-α, a potent pro-inflammatory cytokine involved in inflammatory disease.  

Similarly, NFκβ is capable of promoting the transcription of IFN-γ (Sica et al., 1997), another 

pro-inflammatory cytokine.  Therefore the induction of NFκβ by fMLP may also increase the 

concentration of IFN-γ and TNF-α.  Competitive inhibition of fMLP transport or direct 

regulation of PepT1 expression may have the potential to ameliorate intestinal inflammation in 

pathological situations where there is an abnormally high exposure of bacterial peptides to 

PepT1. 

The necessity for parenteral nutrition (PN) support represents a pathological situation for 

the gut that is characterized by greater intestinal permeability with potential for intestinal atrophy 

(Buchman et al., 1995).  Furthermore, PN modulates the immune response of the intestine 

leading to higher risk of infection (Omata et al., 2013, Heneghan et al., 2013).  This risk is 

potentiated via the suppression of the bactericidal response of the small intestine (Omata et al., 

2013) and a reduction in Paneth cell function leading to an inability to replenish lost enterocytes 

(Heneghan et al., 2013).  A study measuring mRNA of amino acid transporters of parenterally 

and orally fed adult rats noted an increase in PepT1 mRNA in the distal small intestine (Howard 

et al., 2004).  This combination of sustained PepT1 with bacterial overgrowth in the small 

intestine, or bacterial infection due to parenteral nutrition, may facilitate greater uptake of 

bacterial peptides leading to the development of intestinal inflammation.   

We used a piglet model of PN in combination with a ligated loop model of intestinal 

perfusion to investigate changes in cytokine response and intestinal morphology after perfusion 

with fMLP alone or in combination with a competitor for PepT1, the dipeptide cysteinyl-glycine. 

The purpose of this study was to quantify the inflammatory response to fMLP in the distal small 

intestine of piglets with PN-induced intestinal changes, compared to healthy sow-fed littermates.  
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Further, we determined whether the mucosal response to fMLP was altered when presented to 

the small intestine with a dipeptide (cysteinyl-glycine), or the constituent free amino acids (L-

cysteine and glycine).    The selection of cysteinyl-glycine as the dipeptide for this study was 

based on the anti-inflammatory capacity of cysteine (Jones, 2006), as well as previous work 

having demonstrated that cysteinyl-glycine was able to reduce the mucosal concentration of pro-

inflammatory cytokines in a piglet model of short bowel syndrome (Chapter 3) 

4.3 Materials and Methods 
 

4.3.1 Study design 
 

All experimental procedures were approved by the Institutional Animal Care Committee 

in accordance with guidelines of the Canadian Council of Animal Care.  Yucatan miniature 

piglets were randomized to either parenteral nutrition (PN, N = 6) or sow-feeding (N = 6) as 

littermate pairs.  The littermates assigned to PN were removed from the sow at 10 d of age and 

underwent surgical insertion of jugular and femoral catheters, as previously described (Ch 3, pg 

64).  The catheters were implanted for blood sampling and delivery of the parenteral solution. 

PN was initiated immediately following surgery and continued until day four post-operatively as 

short term parenteral feeding (48 hrs) is capable of inducing intestinal atrophy (Niinikoski et al. 

2004).  The sow-fed group remained with the sow during this time.  The complete parenteral diet 

provided 1.1 MJ of metabolizable energy·kg
–1

·d
–1 

with glucose (24.5 g·kg
–1

·d
–1

) and lipid (20% 

Intralipid, Pharmacia) each supplying 50% of non-protein energy and 15 g·kg
–1

·d
–1

 of protein, 

supplied as free amino acids.  The amino acid composition was as follows (per gram of total L-

amino acids): alanine, 107 mg; arginine, 67 mg; aspartate, 61 mg; cysteine, 14 mg; glutamate, 

105 mg; glycine, 27 mg; histidine, 31 mg; isoleucine, 46 mg; leucine, 104 mg; lysine-HCl, 102 
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mg; methionine, 19 mg; phenylalanine, 55 mg; proline, 83 mg; serine, 56 mg; taurine, 5 mg; 

threonine, 41 mg; tryptophan, 21 mg; tyrosine, 8 mg; and valine, 53 mg (Dodge et al., 2012).  

Prior to feeding, vitamins (Multi-12K1 Pediatric, Sabex, St Boucherville, QC) trace minerals at 

200% of NRC recommendations, (NRC, 1998), lipid, and iron dextran (Fe, 3.0 mg/kg; 

Vetoquinol Canada Inc, Saint-Hyacinthe, QC) were added to the diet.   

 

4.3.2 In situ perfusion (gut loop model)  
 

On d 4 of study (d 4 post-op for PN piglets), sow-fed and PN piglets were brought to the 

laboratory to undergo an in situ perfusion study.  The piglets were pre-anesthetized with an IM 

injection of ketamine (20 mg/kg) plus acepromazine (0.5 mg/kg).  Subsequently, the piglets were 

intubated and maintained under general anesthesia using 0.6-1.0% isoflurane (Abbott 

Laboratories Ltd, Montreal, QC) mixed with oxygen at a flow rate of 1.5 L/min.  A laparotomy 

was performed to expose the small intestine. The sites for the five intestinal loops were located 

along the length of the distal small intestine (i.e., ileum).  Closed loops of intestine consisted of 

10 cm sections of intestine with inlet and outlet cannulas (inner diameter, 0.2 cm; outer diameter, 

0.3 cm, Watson Marlow Pumps Group, Wilmington, MA) inserted through a small perforation at 

both ends of the 10 cm.  A suture was placed around the tube and intestine, occluding flow of 

intestinal contents into that section.  The loop was gently flushed of luminal contents using 

warmed (37°C) KRB  (constituents in g/L: D-glucose 1.8, magnesium chloride (anhydrous) 

0.0468, potassium chloride 0.34, sodium chloride 7.0, sodium phosphate dibasic (anhydrous) 0.1 

and sodium phosphate monobasic (anhydrous) 0.18) buffer until the effluent ran clear. Loops 

were separated by 30 cm of intestine with the last loop being placed 50 cm from the ileocecal 

valve.  Piglets were kept warm by a homeothermic blanket and the exposed intestines were kept 
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moistened with warmed saline and covered with gauze and plastic wrap.  Heart rate, body 

temperature and blood oxygenation were monitored throughout the 180 min experiment, after 

which the loops were excised by cautery and flushed with cold 0.9% saline.  A 2-cm segment of 

loop tissue was immersed in neutral buffered 10% formalin (Fisher Scientific, Pittsburgh, PA) 

for histologic analyses.  The remaining segment was placed on ice, cut longitudinally and 

scraped with a microscope slide to remove the mucosa which was then frozen in liquid nitrogen 

and stored at -80°C for further analysis. 

4.3.3 Perfusates 
 

Five different loop treatments (perfusates) were randomly assigned to intestinal position 

with treatments matched for location between littermates.  The treatments contained: 1) 5 mM 

cysteine + glycine; 2) 5 mM cysteinyl-glycine; 3) 10 µM fMLP; 4) 5 mM cysteine +glycine + 10 

µM fMLP; 5) 5 mM cysteinyl-glycine + 10 µM fMLP.  The concentration of dipeptide was 

selected due to the work of Klang et al. (2005) while the concentration of fMLP was selected due 

to previously published work by Buyse et al. (2002). All perfusates were constructed in KRB. 

The fMLP treatment also included 
3
H-fMLP and all loops contained 

14
C-mannitol to assess 

intestinal permeability.  The disappearance of 
3
H-fMLP and 

14
C-mannitol from the perfusates 

was determined by adding 100 µL of perfusate to 4 ml Scintiverse (Fisher Scientific, Pittsburgh, 

PA) for liquid scintillation counting.  The specific radioactivity was calculated as the mean 

dpm/mmol of 
3
H-fMLP or 

14
C-mannitol present in the perfusate. Specific radioactivity was 

calculated at baseline (prior to perfusion) and in each of the perfusate samples taken over the 

course of the 3 h study.  The specific radioactivity was then used to determine the total quantity 

of fMLP or mannitol remaining in the perfusates at the time points studied.  
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4.3.4 TNF-α, IFN- and IL-10 
 

Mucosal TNF-α, IFN- and IL-10 concentrations were determined via porcine ELISA 

kits (Pierce, Rockford, IL).  The kits utilized anti-human antibodies that cross react with porcine 

cytokines.  Tissue supernatants were prepared by homogenizing tissue in PBS containing 

Protease Inhibitor Cocktail III (Calbiochem, Etobicoke, ON) and 1 mM PMSF (Sigma Aldrich, 

Oakville, ON).  Homogenates were then centrifuged at > 10,000 g for 5 minutes at 4 ˚C to allow 

for analysis of tissue supernatants according to the protocol provided by the supplier.  

Absorbance of the enzyme-substrate product was determined by subtracting the calculated value 

at 550 nm from that determined at 450 nm.  Linear regression was used to calculate the final 

concentration of cytokine in the supernatant which was reported as pg per gram of mucosa.  

4.3.5 Myeloperoxidase (MPO) Assay 
 

Intestinal tissue samples (50-100 mg) were homogenized on ice in 0.5% 

hexadecyltrimethylammonium bromide (Sigma Aldrich, Oakville, ON) in 50 mM KPO4.  

Homogenates underwent three rapid freeze/thaw cycles (-80°C/37°C) and were then centrifuged 

at12,800 g for 15 minutes at 4°C.  The supernatant containing MPO was assayed 

spectrophotometrically after the addition of 50 mM KPO4 containing 0.53 mM O-dianisidine 

dihydrochloride and 0.15 mM hydrogen peroxide.  Changes in absorbance were measured at 460 

nm for 2 minutes with readings taken every 15 seconds (BU-530, Beckman Coulter, 

Mississauga, ON).  MPO activity was reported as IU/g wet tissue where one IU was defined as 

the quantity of enzyme able to convert 1 µmol of hydrogen peroxide to water in 1 min at room 

temperature.   
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4.3.6 Histological analysis 
 

4.3.6.1 Preparation of slides 
 

After fixation in 10% buffered formalin (Fisher Scientific, Pittsburgh, PA), samples of 

intestine were dehydrated in ethanol, cleared in xylene, embedded in paraffin wax, and sliced 

into 5-µm sections. 

4.3.6.2 Crypt Depth/Villus Height 
 

Sections were stained with hematoxylin and eosin (Fisher Scientific, Pittsburgh, PA). 

Villus height and crypt depth were measured with a Zeiss Axiostar microscope (Carl Zeiss, 

Toronto, ON).  Images were captured with an Infinity 1 camera and Infinity Analyze software 

(Lumenera Corporation, Nepean, ON). Ten measurements of villus height and crypt depth were 

performed per sample.  All histological measurements were performed in a blinded manner by a 

single investigator (MGN). 

4.3.7 Statistical Analysis 
 

For all analyses a mixed model two-way ANOVA was used, with loop treatment as the 

repeated measure within pigs and diet as the second variable.  Piglets receiving parenteral 

feeding were matched to sow-fed littermates of the same gender.  Differences were determined 

to be significant if p < 0.05 (Graphpad Prism 5.0, La Jolla, CA) 

4.4 Results 
 

Throughout the perfusion studies all piglets remained stable, well-oxygenated and 

maintained a core body temperature between 37-39°C.  
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4.4.1 Mucosal Cytokines 
 

Parenteral nutrition did not affect mucosal IFN-γ concentrations (Fig. 4.1), as the 

concentrations were similar to the sow-fed group when not exposed to fMLP.  Perfusion of 

intestinal loops with fMLP alone significantly increased the concentration of IFN- γ.  Co-

perfusion of fMLP with CG resulted in significantly lower concentrations of IFN- γ in PN fed 

piglets; however this effect was not detected when fMLP was co-perfused with free cysteine and 

glycine.  Similar to the IFN-γ response, there was no effect of parenteral feeding on mucosal 

TNF- concentrations (Fig.4.2).  Perfusion of fMLP resulted in a greater concentration of TNF-

 compared to the control loops, regardless of the presence of either cysteine + glycine or 

cysteinyl-glycine.  Treatment with fMLP and amino acids demonstrated that there was a 

significant effect of the form of amino acids.  Compared to fMLP alone, the dipeptide resulted in 

lower TNF- concentrations stimulated by fMLP in both sow-fed and parenterally-fed piglets.  

Sow-fed piglets had lower TNF- responses to fMLP compared to PN animals when either free 

cysteine and glycine or the dipeptide were added to the perfusate.  The mucosal concentration of 

Il-10 was not affected by any loop treatment; however, piglets receiving parenteral nutrition had 

lower concentrations of the anti-inflammatory cytokine than their sow-fed littermates (Fig. 4.3). 
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Figure 4.1:  Mucosal IFN-γ concentration in sow-fed and PN-fed piglets sampled from ligated 

loops perfused with cysteine + glycine (C+G), cysteinyl-glycine (C-G), formyl-methionyl-

leucyl-phenylalanine (fMLP), a combination of cysteine + glycine + fMLP (C+G+fMLP) or 

cysteinyl-glycine + fMLP (C-G+fMLP).  Lines represent significant differences between diet 

treatments (** p < 0.01).  Differing letters indicate differences amongst loop treatments within 

the diet treatment (p < 0.05).  Data were analyzed via mixed model 2-way ANOVA with 

Bonferroni post-hoc analysis.  N = 6 per group. Values are mean + SD.  
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Figure 4.2: Mucosal TNF-α concentration in sow-fed and PN-fed piglets sampled from ligated 

loops perfused with cysteine + glycine (C+G), cysteinyl-glycine (C-G), formyl-methionyl-

leucyl-phenylalanine (fMLP), a combination of cysteine + glycine + fMLP (C+G+fMLP) or 

cysteinyl-glycine + fMLP (C-G+fMLP).  Lines represent significant differences between diet 

treatments (** p < 0.01).  Differing letters indicate differences amongst loop treatments within 

the diet treatment (p < 0.05). Data were analyzed via mixed model 2-way ANOVA with 

Bonferroni post-hoc test.  N = 6 per group. Values are mean + SD.  
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Figure 4.3: Mucosal IL-10 concentration in sow-fed and PN-fed piglets sampled from ligated 

loops perfused with cysteine + glycine (C+G), cysteinyl-glycine (C-G), formyl-methionyl-

leucyl-phenylalanine (fMLP), a combination of cysteine + glycine + fMLP  (C+G+fMLP) or 

cysteinyl-glycine + fMLP (C-G+fMLP).  Lines represent significant differences between diet 

treatment (** p < 0.01).  Data were analyzed via mixed model 2-way ANOVA with Bonferroni 

post-hoc test.  N = 6 per group. Values are mean + SD.  
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4.4.2 Disappearance of 
3
H-fMLP or 

14
C-mannitol 

 

Perfusates sampled throughout the 3-hour procedure were analyzed to determine 

disappearance of 
3
H-fMLP (Fig. 4.4), as a marker for fMLP transport and 

14
C-mannitol (Fig. 

4.5), an indicator of paracellular transport.  Scintillation counting of the perfusate samples 

revealed highly variable results for the transport of 
3
H-fMLP in all loops, both in PN and sow-

fed piglets, with no significant differences found either between dietary regimen or perfusate 

contents.  Analysis of 
14

C-mannitol disappearance found no change in mannitol concentration 

with any perfusate or in either sow-fed or PN fed piglets. 

4.4.3 Myeloperoxidase activity 

 

Myeloperoxidase activity was measured in the intestinal mucosa as an indicator of 

neutrophil migration.  There was no effect of route of feeding on basal myeloperoxidase activity 

(Fig. 4.6).  Perfusion of intestinal segments with fMLP generated greater MPO activity in both 

groups, regardless of dietary regimen. The inclusion of cysteine + glycine with fMLP had no 

impact on MPO activity, but co-perfusion of cysteinyl-glycine with fMLP resulted in lower MPO 

activity that was similar to that of the control samples in both sow-fed and PN piglets.    

4.4.4 Intestinal morphology 
 

There was no effect of route of feeding or loop treatment on crypt depth (Figure 4.7).  In the 

sow-fed animals, villus height was unaffected by exposure to fMLP.  In the PN group, however, 

villi were significantly shorter in the loops perfused with fMLP, and co-perfusion with either 

cysteine and glycine or cysteinyl-glycine were intermediate between the control and fMLP  
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Figure 4.4: Disappearance of fMLP in in sow-fed and PN-fed piglets with intestinal loops 

perfused with either a) formyl-methionyl-leucyl-phenylalanine (fMLP), b) a combination of 

cysteine + glycine + fMLP (C+G+fMLP), or c) cysteinyl-glycine + fMLP (C-G+fMLP).  Data 

were analyzed via mixed model 2-way ANOVA with Bonferroni post-hoc test. N = 6 per group. 

Mean ± SD 
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Figure 4.5:  Disappearance of mannitol in in sow-fed and PN-fed piglets with intestinal loops 

perfused with either a) cysteine + glycine (C+G) b) cysteinyl-glycine (C-G) c)formyl-methionyl-

leucyl-phenylalanine (fMLP) d) a combination of cysteine + glycine + fMLP  (C+G+fMLP) e) 

cysteinyl- glycine + fMLP (C-G+fMLP).  Data were analyzed via mixed model 2-way ANOVA 

with Bonferroni post-hoc. N = 6 per group. Mean ± SD 
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Figure 4.6: Mucosal myeloperoxidase activity in ligated loops in sow-fed and PN-fed piglets 

sampled from ligated loops perfused with cysteine + glycine (C+G), cysteinyl-glycine (C-G), 

formyl-methionyl-leucyl-phenylalanine (fMLP), a combination of cysteine + glycine + fMLP  

(C+G+fMLP) or cysteinyl-glycine + fMLP (C-G+fMLP).  Differing letters represent significant 

differences between loop treatments within a feeding group (p < 0.05).  Data were analyzed via 

mixed model 2-way ANOVA with Bonferroni post-hoc.  N = 6 per group. Values are mean + 

SD.  
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Figure 4.7: Villus height (>0)  and crypt depth (<0) of ligated loops in sow-fed and PN-fed 

piglets sampled from ligated loops perfused with cysteine + glycine (C+G), cysteinyl-glycine (C-

G), formyl-methionyl-leucyl-phenylalanine (fMLP), a combination of cysteine + glycine + fMLP  

(C+G+fMLP) or cysteinyl-glycine + fMLP (C-G+fMLP).  Differing letters represent significant 

differences between loop treatments within parenterally fed animals (p < 0.05).  Lines represent 

significant differences between diet treatment (** p < 0.01).  Data were analyzed via mixed 

model 2-way ANOVA with Bonferroni post-hoc test.  N = 6 per group. Values are mean ± SEM. 
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segments.  Interestingly, villus damage in response to fMLP occurred only in the PN animals 

compared to identical conditions in sow-fed piglets. 

4.5 Discussion 

The objectives of this study were to investigate the mucosal response to fMLP-induced 

inflammation in healthy versus compromised gut and to determine the impact of cysteinyl-

glycine on fMLP-induced inflammation.  These objectives were accomplished through 

quantification of the cytokine response to fMLP, as determined by myeloperoxidase activity and 

intestinal histology.  Not surprisingly, we determined that parenterally-fed animals were more 

susceptible to fMLP-induced inflammation than their sow-fed littermates.  A novel finding is that 

cysteinyl-glycine was more effective at attenuating fMLP-induced inflammation, through the 

reduction of pro-inflammatory cytokines, compared to equimolar amounts of the constituent free 

amino acids. 

 Intestinal mucosa exposed to fMLP had greater concentrations of IFN- and TNF- than 

loops perfused with either free amino acids or cysteinyl-glycine alone.  Previous work on other 

cell types such as neurons (Cianciulli et al., 2009), myeloid cells (Browning et al., 1997) and 

peripheral blood monocytes (Pan et al., 2000) demonstrated that fMLP exposure induces 

expression of NF-κβ.  In turn, NF-κβ can act on the promoter regions for pro-inflammatory 

cytokines such as IFN- and TNF- (Baeuerle and Henkel, 1994, Sica et al., 1997).   In a 

positive feedback loop, TNF- is also capable of inducing NF-κβ activation resulting in the 

propagation of the inflammatory response (Grell et al., 1995).  The function of IFN- is to induce 

the production of chemoattractants for leukocytes; additionally, IFN- is both anti-proliferative 

and apoptotic (Schroder et al., 2004).  Although we did not directly measure NF-κβ, the 

conserved nature of the response to fMLP exposure across numerous cell types combined with 
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the fMLP-induced increase of pro-inflammatory cytokines in the intestine suggests that 

enterocytes may respond to fMLP in a similar fashion.   

Inclusion of a dipeptide as cysteinyl-glycine ameliorated fMLP induced production of 

IFN- and TNF-, potentially through the reduction of PepT1-mediated fMLP uptake via 

competitive inhibition.  It has been well demonstrated that transport of fMLP is inhibited in the 

presence of other PepT1 substrates (Buyse et al., 2002, Shi et al., 2006c, Foster and Zheng, 

2007).  Perfusion of fMLP resulted in a greater concentration of pro-inflammatory cytokines, 

while co-perfusion with cysteinyl-glycine acted as a competitive inhibitor of uptake.  If the 

concentrations of luminal substrates for PepT1 were increased, this could potentially lead to 

further competition for transport and thereby further reduce the inflammatory response induced 

by fMLP. 

Interestingly, co-perfusion of fMLP with free cysteine and glycine significantly reduced 

TNF- only in sow-fed piglets, not their PN-fed littermates.  Cysteine is part of the oxidative 

stress control system, independent of  its role as a component of glutathione (GSH) (Jones, 

2006).  Both cysteine and glycine have been demonstrated to exhibit anti-inflammatory effects in 

arterial endothelial cells through the reduction of NF-κβ activation (Hasegawa et al., 2012).  The 

differing responses by diet treatment may be related to impairment of amino acid uptake 

secondary to PN-induced intestinal atrophy; thus, the tempered response to free cysteine and 

glycine could be due to reduced amino acid availability.   

To determine whether anti-inflammatory cytokines were also affected by route of feeding 

or fMLP exposure, we quantified mucosal concentration of interleukin-10 (IL-10).  Unlike the 

pro-inflammatory cytokines measured, IL-10 concentration was not altered by exposure to 
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fMLP.  Piglets receiving parenteral nutrition, however, had lower mucosal IL-10 compared to 

their sow-fed littermates.  In a mouse model of parenteral nutrition, intestinal epithelial 

lymphocytes produced less IL-10, leading to an overall lower concentration of mucosal IL-10 

compared to mice undergoing enteral feeding (Fukatsu et al., 2001, Sun et al., 2008).  This lack 

of IL-10 synthesis was accompanied by a reduction in tight junction proteins and greater 

epithelial permeability.  Altered intestinal permeability would allow for additional bacterial 

translocation thereby inducing or exacerbating the immune response and intestinal inflammation.   

In order to determine if there was altered ileal paracellular permeability in our piglet 

model, we measured mannitol disappearance from the perfusate during intestinal perfusion.  In a 

Caco-2 cell model, exposure to fMLP reduced intestinal barrier function as indicated by elevated 

mannitol movement (Foster and Zheng, 2007).  The piglet model used in the current study, 

however, studied only the distal intestine rather than whole SI or colon.  Studies in rats have 

shown that the ileum has much lower permeability than either the jejunum or Caco-2 cells, with 

ileal permeability being similar between rats and humans (Artursson et al., 1993, Kim, 1996).   

Parenteral nutrition has also been shown to affect gut barrier function with greater permeability 

to macromolecules in the small intestine (Illig et al., 1992, Iiboshi et al., 1994); however, these 

studies did not directly investigate ileal permeability.  One study in rats did demonstrate greater 

permeability in the ileum after seven days of parenteral nutrition (Mosenthal et al., 2002).  In our 

piglet model, four days of parenteral feeding did not alter permeability in the ileum; however, it 

is unknown if longer duration of PN would result in greater ileal permeability thereby 

potentiating the intestinal inflammatory response to bacteria.  

Quantification of the disappearance of fMLP using a radiolabelled substrate was 

conducted; however, there were no significant differences detected among any of the perfusates 
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or between dietary treatments.  There are two possible explanations for this result. One is that 

there was no difference in the uptake of fMLP from the perfusate.  Alternatively, the method we 

used to quantify fMLP disappearance was not sufficiently sensitive.  Indirect evidence of fMLP 

uptake was provided by the differing concentrations of mucosal cytokines in the presence of the 

bacterial peptide.  Similarly, different mucosal responses depending on whether fMLP was 

perfused alone, with free amino acids or with cysteinyl-glycine suggest that there was potential 

inhibition when a dipeptide was present. This suggests that the detection method is not sensitive 

enough to quantify the movement of 
3
H-fMLP.   If the quantity of radiolabelled fMLP in the 

perfusate were reduced, the ability to detect significance in smaller variations of dpm would be 

increased resulting in a more sensitive assay.  As a surrogate indicator of fMLP transport, and its 

resultant impact on intestinal inflammation, mucosal myeloperoxidase activity was measured. 

Myeloperoxidase activity is useful as a measure of intestinal inflammation.  In this study, 

MPO activity was not affected by intestinal atrophy induced by parenteral nutrition.  However 

cysteinyl-glycine was able to attenuate fMLP induced MPO activity in both sow-fed and PN 

animals.  Previous studies have investigated MPO activity in the small intestine and colon of rats 

(Buyse et al., 2002, Shi et al., 2006c).  These investigations demonstrated that exposure to fMLP 

stimulated MPO activity in the small intestine but only in colonic tissue of rats with PepT1 

expression induced by small bowel resection.  We have demonstrated that supplying a 

competitive inhibitor for fMLP uptake, cysteinyl-glycine, prevents any significant stimulatory 

effect of fMLP on MPO activity.  Although studies have shown competitive inhibition of fMLP 

transport with dipeptides or other substrates of PepT1 (Buyse et al., 2002, Shi et al., 2006c, 

Foster and Zheng, 2007), whether there is an additional benefit due to the presence of a particular 

dipeptide has yet to be determined.  Inclusion of a hydrolysis resistant dipeptide, such as glycyl-
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sarcosine, could potentially further reduce fMLP-induced MPO activity through its stability in 

the lumen of the intestine. 

After four days of parenteral feeding, there was no deleterious effect on the villus 

architecture compared to the sow-fed littermates.  When the challenge of fMLP exposure was 

added, it was apparent that parenteral feeding increased susceptibility to villus damage. 

Destruction of intestinal villi by bacterial peptides would result in reduced nutritional absorptive 

capacity, leading to reduced protein deposition and prolonged recovery for individuals requiring 

parenteral nutrition.  This effect is not limited to the ileum as a study in rats investigated the 

inflammatory effect of fMLP and found similar villus damage in the jejunum after perfusion with 

fMLP (Buyse et al., 2002).  In the current study, the villi damage induced by fMLP was 

ameliorated when either cysteine + glycine or cysteinyl-glycine was included in the perfusate.   

Although the inflammatory effects of bacterial peptides in colonic tissues in cases of 

intestinal injury have been previously investigated (Shi et al., 2006a, Shi et al., 2006c, Merlin et 

al., 2001), this study was the first analysis of fMLP-induced inflammation in a parenterally-fed 

animal model.  We found that parenteral feeding sensitized the ileum to fMLP-induced 

inflammation and that the inclusion of a dipeptide, cysteinyl-glycine, in the lumen of the 

intestine ameliorated this response.  These findings are of particular importance when long-term 

parenteral nutrition is required in neonates, as reduction of pro-inflammatory cytokines could 

reduce risk for intestinal damage.   
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Chapter 5: Summary and Conclusions 

5.1 General Overview 

The series of studies presented in this thesis set out to investigate intestinal dipeptide 

transport via PepT1 in the neonatal Yucatan miniature pig with particular focus on 

developmental changes, intestinal injury and bacterial peptide induced inflammation.  This was 

accomplished through in vivo experimentation using ligated intestinal loops for the study of 

developmental changes and fMLP-induced inflammation.  An 80% jejuno-ileal resection was 

performed to study the ameliorative potential of alanyl-glutamine and cysteinyl-glycine in a 

model of intestinal injury.  The piglet is a model organism for human neonatal development and 

nutrient requirements, with swine also being vital to the agricultural industry in Canada.  As 

such, information on peptide uptake in piglets has important applications in both human health 

and swine husbandry. 

5.2 Investigation of the ontogeny of peptide transport in the piglet 

5.2.1 Overview of results 

The objectives for my first study were to identify the potential for peptide transport in the 

piglet small intestine and determine if there were any differences in peptide transport due to 

developmental changes or dietary alterations. To accomplish this goal, I quantified the 

disappearance of radiolabelled glycyl-sarcosine after perfusion through isolated equidistant 

segments of small intestine from both suckling and post-weaned piglets.  PepT1 mRNA was also 

analysed from the small intestinal loops, as well as samples from the spiral colon, to determine if 

there were any developmental changes in the expression of this peptide transporter.  Through this 

model, I determined that the capacity for dipeptide transport is present in both the proximal and 
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distal small intestine.  By post-weaning, the ileum was the site of highest dipeptide uptake 

compared to jejunal segments.  Analysis of PepT1 mRNA revealed that while PepT1 mRNA was 

present in colonic samples in both suckling and post-weaning animals, after weaning PepT1 

expression was dramatically reduced.   

5.2.2 Implications and modifications 

This study was the first to use the ligated loop model to investigate developmental effects 

on peptide uptake at various locations in the small intestine in piglets.  Characterizing the 

capacity for peptide transport in the neonatal piglet was a vital step in my research programme. 

Knowing the intestinal location where dietary peptides are primarily transported could influence 

surgical decisions such as prioritizing which region of intestine to spare during resection.  

Similarly, armed with the knowledge that peptide transport is possible throughout the intestine, 

dietary regimens could be altered to include di/tripeptides over free amino acid due to favorable 

factors such as increased stability and solubility.  The fact that colonic expression of PepT1 

mRNA was lost after weaning was also an interesting finding.  It is possible that in early life 

there is a greater potential for uptake of harmful bacterial peptides from the lumen of the colon 

than after weaning.    

One of the findings of this work was greater transport in the ileum of post-weaned 

piglets.  Unfortunately it cannot be determined whether this occurs through a developmental 

change, a dietary change or the combination of both.  The study design could have been altered 

to include another group piglets kept on sow’s milk for six weeks.  This would have provided a 

clearer image of the true ontogeny of this transporter; however it would not have been as 

physiologically relevant.  Additionally, direct investigation of the PepT1 protein would have 

been beneficial.  I found highly variable quantities of PepT1 mRNA in the small intestine and 
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relatively small quantities in the colon.  Direct visualization or quantification of PepT1, through 

western blots or immunohistochemistry, would have provided direct information regarding the 

quantity of PepT1 protein present as mRNA content does not always equate with protein 

expression.   

Overall I believe that this initial project was well designed and an excellent launching 

point for the studies which followed.  The use of the ligated loop model allowed for investigation 

of peptide transport at multiple locations in the same animal, dramatically reducing the 

variability.  The choice of substrate, glycyl-sarcosine, controlled for hydrolysis at the brush 

border and inclusion of the radiolabel provided an easy way to track its disappearance.  

As I completed this initial study a piglet model of short-bowel syndrome was being 

characterized.  This model removed the majority of the small intestine but left 100 cm of the 

ileum intact.  As I had previously determined that the ileum was important in the transport of 

dipeptides I was interested in moving my research into this new model.  Was it possible that 

inclusion of dipeptides in an enteral diet would result in increased intestinal adaptation compared 

to equivalent free amino acids in this model of short-bowel syndrome?  

5.3 Investigation of the adaptive benefits of enteral peptides in a surgically shortened gut 

5.3.1 Overview of results 

Continuing my work in peptide transport, my objective was to study the potential 

ameliorative effects of enterally-delivered dipeptides in a surgically shortened intestine using a 

piglet model of short-bowel syndrome.  The piglets underwent surgery at ten days of age as the 

surgical procedure was quite invasive and younger piglets may not have survived the entire 

study.  This piglet model involved the removal of 80% of the small intestine, leaving 100 cm 
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proximal from the ileocecal valve, and performing an anastomosis to the remaining jejunal 

tissue.  After recovery, enteral feeding of dipeptides was initiated and maintained for four days.  

The dipeptides used in this study were alanyl-alanine, as a control for the effect of dipeptides 

alone, alanyl-glutamine (AQ), as a stable form of glutamine, and cysteinyl-glycine (CG), a 

dipeptide providing two residues required for glutathione synthesis as well as amino acids that 

have previously demonstrated anti-inflammatory characteristics.  Using control groups provided 

with equimolar free amino acid diets, and a synergistic dietary regimen of a combination of 

alanyl-glutamine and cysteinyl-glycine (AQ+CG), I was able to determine that there is no 

explicit morphological benefit of enteral dipeptides compared to equimolar free amino acids.  

However, provision of enteral dipeptides did reduce mucosal concentrations of the pro-

inflammatory cytokines TNF-α and IFN-γ.  Inclusion of CG alone did result in greater 

morphological adaptation, as villus height was greater than either AQ or AQ+CG while crypt 

depth was greater than AQ alone.  Other outcomes measured, including cellular proliferation, 

protein synthesis as well as mucosal and plasma amino acid concentrations, did not differ 

amongst any dietary regimen.   

5.3.2 Implications and modifications 

Surgical resection is a common procedure for neonates and the development of a novel 

dietary regimen that increases intestinal adaptation would be extremely beneficial.  While the 

dipeptides I investigated, AQ and CG, did not stimulate any greater adaptive response than free 

amino acids, the impact on cytokines was an unexpected beneficial result generated through 

post-hoc analysis.  These dipeptides could be of use as supplements to individuals suffering from 

inflammatory bowel disorders to reduce in severity of the inflammatory response. 
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 With a study of this complexity there were complications as well as additional outcomes 

which would have clarified some of the results.  Initially I intended to ensure that each block of 

treatments would be tested simultaneously on littermates, thereby increasing the power of my 

analysis.  Due to complications with litter sizes this, unfortunately, was not possible.  For the 

outcomes that were measured, I theorized that one of the reasons why I did not see adaptive 

responses was due to a missed window of adaptation.  Samples were taken after 4 days of enteral 

feeding, so early adaptive responses may have been missed by this study design.  Altering the 

design to include additional cohorts where sampling could be done at earlier time points would 

have provided the necessary data to confirm this theory but would have required significantly 

more animals.  

Perhaps the aspect of this study which would require the most modification would be the 

investigation of the cytokine response.  Although I determined that TNF-α and IFN-γ 

concentrations were lower in piglets receiving AQ and CG I did not determine the mechanism by 

which this occurred.  The hypothesis that this occurs is through modulation of NFκβ is sound 

however without additional measurements this theory remains unproven and it is likely that these 

dipeptides also alter other cellular signals.  There are a number of additional experiments which 

would have provided the necessary details to clarify the mechanism.  A microarray, followed by 

qPCR validation, would have revealed increases or decreases in a variety of cytokine signalling 

pathway intermediates, while a cytokine array would have given a clearer image of the cytokine 

status after enteral feeding.  

 Bacterial overgrowth was also proposed as a potential explanation for the cytokine 

response.  Biopsy of a mesenteric lymph node and culturing the bacteria present would have 

revealed any increase in bacterial translocation.  However production of bacterial peptides could 



140 
 

also have induced the inflammatory response.  This ties into the dual nature of PepT1, capable of 

transporting both dietary as well as bacterial peptides.  Is it possible that the inflammation I 

detected, and the subsequent reduction in the presence of enteral dipeptides, was directed 

through transport of bacterial peptides?   

5.4 Investigation of intestinal susceptibility to bacterial inflammation after parenteral feeding 

5.4.1 Overview of results 

 As my second study had created more questions than answers, the objective I had in 

mind for my third study was to investigate the impact of a bacterial peptide, formyl-methionyl-

leucyl-phenylalanine on ileal inflammation in a model of gut atrophy in the presence of 

cysteinyl-glycine.  This would provide a better understanding of the interaction between a 

bacterial peptide and CG, potentially explaining some of the results found in my second study.  

After four days of parenteral nutrition, distal segments of the small intestine were isolated and 

perfused with combinations of fMLP, free cysteine and glycine or the dipeptide cysteinyl-

glycine.  Similar procedures were performed on sow-fed littermates to compare any impact of 

parenteral feeding on intestinal inflammation. Perfusion of the ligated loops with fMLP led to the 

induction of pro-inflammatory cytokines in both sow and PN-fed piglets, with PN feeding 

potentiating the inflammation induced by fMLP as demonstrated by villus damage only in piglets 

undergoing parenteral feeding.  Mucosal concentration of anti-inflammatory IL-10 also was 

lower in PN-fed piglets compared to sow fed littermates.  Co-perfusion of fMLP with CG 

resulted in lower concentrations of these pro-inflammatory cytokines than fMLP alone.   
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5.4.2 Implications and modifications 

The design of this study developed out of the results of my previous work, hence the 

focus on the distal intestine, the location of the remaining intestine after resection.  Similar to the 

first study, using the gut loop model allowed for many different solutions to be investigated in 

one animal, removing the potential for inter-animal variability and giving the analysis additional 

power. Although increases in bacterial population and translocation following parenteral 

nutrition has been well documented, the finding that parenteral nutrition sensitizes the intestine 

to bacterial peptide-based inflammation is novel.  These findings indicate that inflammation due 

to bacterial peptides is of greater concern for individuals undergoing parenteral nutrition and that 

enteral provision of a dipeptide, cysteinyl-glycine, is advantageous for its capability to reduce or 

inhibit the production of pro-inflammatory cytokines.  Similarly, in cases of bacterial overgrowth 

in the small intestine, enteral provision of cysteinyl-glycine would be beneficial to prevent 

unwanted transport of bacterial peptides.  

Moving from a surgically shortened intestine to a gut loop model was necessary for a 

number of reasons.  Most importantly the fragility of the intestine after resection would cause 

complications for insertion and maintenance of a three hour ligated loop perfusion, and the lack 

of a suitable length of intestine in which to place the loops would make this study impossible to 

complete in the previous model.   Unfortunately, the results of this study do not directly answer 

all the questions raised from the short-bowel work.  I was able to demonstrate that fMLP could 

induce inflammation in the distal intestine and inclusion of CG attenuated this inflammation.  

Whether the mechanism by which CG affects fMLP-induced inflammation is through 

competitive inhibition, direct alteration of cellular signalling or a combination of both was not 

determined by this study design.  Similar to the second study, use of modern genomic/proteomic 
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analysis would have provided the necessary information to elucidate the underlying mechanism 

by which CG was reducing the immune response to fMLP.   

Working within the gut loop model, a few minor alterations to the study design would 

have provided additional information, although not all of it tied directly to the primary objective.  

Although four days of parenteral nutrition has been shown to induce intestinal atrophy, I did not 

demonstrate atrophy in my study.  Implantation of additional loops in the jejunum would have 

provided information regarding potential increases in paracellular transport while histological 

sampling of the proximal intestine would have indicated any alteration in intestinal architecture 

confirming intestinal atrophy.  While the initial objective of the study was to determine the 

impact in the distal intestine, investigation of the proximal intestine would have been relatively 

simple. Under pathological conditions the ileum would undergo bacterial overgrowth to a greater 

extent than the jejunum.  If parenteral nutrition induces greater atrophy in the jejunum the impact 

of bacterial peptides in that region may be noteworthy in cases where the intestine had to be 

surgically shortened thereby exposing jejunal tissue to an increased pathogen load.  During the 

loop excision process if measurements of the exact length and width of each loop were taken, the 

total area of absorption could have been calculated leading to a more precise measurement of 

fMLP and mannitol disappearance.   

5.5 Final thoughts 

I believe that future work following from the studies presented here should focus on two 

particular areas.  Having shown that there are developmental differences in intestinal peptide 

transport, the nutritional relevance and metabolic impact of intact dietary di/tripeptides during 

neonatal development should be elucidated.  Certain dipeptides, such as alanyl-glutamine, have 
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been used in therapeutic formulas for a number of years but there has been little work towards 

understanding the potential benefits of replacing free amino acids with di/tripeptides in neonates. 

The contribution of PepT1 to intracellular signalling should also be investigated.  As 

substrates for this transporter can include bacterial compounds, further understanding of the 

downstream signalling mechanisms of these substrates could provide targets for future 

therapeutic interventions.  It has already been suggested that fMLP acts through NFκβ, but there 

is the potential for dietary substrates of PepT1 to influence cellular signalling either due to an 

activity of the intact dipeptide or simply be increasing intracellular concentration of amino acids.  

Ultimately, a more detailed understanding of PepT1 will directly contribute to the development 

of novel dietary therapies and the enhancement of modern nutrition in both health and disease. 

 

 

 

 

 

 

 

 

 



144 
 

Bibliography 

ADEGOKE, O. A., MCBURNEY, M. I. & BARACOS, V. E. 1999a. Jejunal mucosal protein 

synthesis: validation of luminal flooding dose method and effect of luminal osmolarity. 

Am J Physiol, 276, G14-20. 

ADEGOKE, O. A., MCBURNEY, M. I., SAMUELS, S. E. & BARACOS, V. E. 1999b. Luminal 

amino acids acutely decrease intestinal mucosal protein synthesis and protease mRNA in 

piglets. J Nutr, 129, 1871-8. 

ADIBI, S. A. 2003. Regulation of expression of the intestinal oligopeptide transporter (Pept-1) in 

health and disease. Am J Physiol Gastrointest Liver Physiol, 285, G779-88. 

ALTEHELD, B., EVANS, M. E., GU, L. H., GANAPATHY, V., LEIBACH, F. H., JONES, D. 

P. & ZIEGLER, T. R. 2005. Alanylglutamine dipeptide and growth hormone maintain 

PepT1-mediated transport in oxidatively stressed Caco-2 cells. J Nutr, 135, 19-26. 

AMASHEH, S., WENZEL, U., BOLL, M., DORN, D., WEBER, W., CLAUSS, W. & DANIEL, 

H. 1997. Transport of charged dipeptides by the intestinal H+/peptide symporter PepT1 

expressed in Xenopus laevis oocytes. J Membr Biol, 155, 247-56. 

ARTURSSON, P., UNGELL, A. L. & LOFROTH, J. E. 1993. Selective paracellular 

permeability in two models of intestinal absorption: cultured monolayers of human 

intestinal epithelial cells and rat intestinal segments. Pharm Res, 10, 1123-9. 

ATUMA C., STRUGALA V., ALLEN A. & HOLM L. 2001. The adherent gastrointestinal 

mucus gel layer: thickness and physical state in vivo. Am J Physiol Gastrointest Liver 

Physiol, 280,G922-9. 



145 
 

AUPHAN N., DIDONATO J. A., ROSETTE C., HELMBERG A. & KARIN M. 1995. 

Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through 

induction of I kappa B synthesis. Science, 270,286-90. 

BACH E. A., AGUET M. & SCHREIBER R. D. 1997. The IFN gamma receptor: a paradigm for 

cytokine receptor signaling. Annu Rev Immunol, 15,563-91. 

BAEUERLE P. A. & BALTIMORE D. 1996. NF-kappa B: ten years after. Cell, 87,13-20. 

BAEUERLE, P. A. & HENKEL, T. 1994. Function and activation of NF-kappa B in the immune 

system. Annu Rev Immunol, 12, 141-79. 

BARTHOLOME, A. L., ALBIN, D. M., BAKER, D. H., HOLST, J. J. & TAPPENDEN, K. A. 

2004. Supplementation of total parenteral nutrition with butyrate acutely increases 

structural aspects of intestinal adaptation after an 80% jejunoileal resection in neonatal  

piglets. JPEN J Parenter Enteral Nutr, 28, 210-22; discussion 222-3. 

BAUCHART-THEVRET, C., STOLL, B., CHACKO, S. & BURRIN, D. G. 2009. Sulfur amino 

acid deficiency upregulates intestinal methionine cycle activity and suppresses epithelial 

growth in neonatal pigs. Am J Physiol Endocrinol Metab, 296, E1239-50. 

BAUMGART, D. C. & SANDBORN, W. J. 2012. Crohn's disease. Lancet, 380, 1590-605. 

BEETSCH, J. W. & OLSON, J. E. 1998. Taurine synthesis and cysteine metabolism in cultured 

rat astrocytes: effects of hyperosmotic exposure. Am J Physiol, 274, C866-74. 

BIDLINGMEYER, B. A., COHEN, S. A. & TARVIN, T. L. 1984. Rapid analysis of amino acids 

using pre-column derivatization. J Chromatogr, 336, 93-104. 

BLACK R. A., RAUCH C. T., KOZLOSKY C. J., PESCHON J. J., SLACK J. L., WOLFSON 

M. F., CASTNER B. J., STOCKING K. L., REDDY P., SRINIVASAN S., NELSON N., 

BOIANI N., SCHOOLEY K. A., GERHART M., DAVIS R., FITZNER J. N., 



146 
 

JOHNSON R. S., PAXTON R. J., MARCH C. J. & CERRETTI D. P. 1997. A 

metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. 

Nature, 385,729-33. 

BOGDAN C., VODOVOTZ Y. & NATHAN C. 1991. Macrophage deactivation by interleukin 

10. J Exp Med, 174,1549-55. 

BOLGER, M. B., HAWORTH, I. S., YEUNG, A. K., ANN, D., VON GRAFENSTEIN, H., 

HAMM-ALVAREZ, S., OKAMOTO, C. T., KIM, K. J., BASU, S. K., WU, S. & LEE, 

V. H. 1998. Structure, function, and molecular modeling approaches to the study of the 

intestinal dipeptide transporter PepT1. J Pharm Sci, 87, 1286-91. 

BOZA, J. J., MOENNOZ, D., VUICHOUD, J., JARRET, A. R., GAUDARD-DE-WECK, D. & 

BALLEVRE, O. 2000. Protein hydrolysate vs free amino acid-based diets on the 

nutritional recovery of the starved rat. Eur J Nutr, 39, 237-43. 

BRADLEY J. R. 2008. TNF-mediated inflammatory disease. J Pathol, 214,149-60. 

BRANDSCH, M., KNUTTER, I. & LEIBACH, F. H. 2004. The intestinal H+/peptide symporter 

PEPT1: structure-affinity relationships. Eur J Pharm Sci, 21, 53-60. 

BRANDSCH, M., KNUTTER, I., THUNECKE, F., HARTRODT, B., BORN, I., BORNER, V., 

HIRCHE, F., FISCHER, G. & NEUBERT, K. 1999. Decisive structural determinants for 

the interaction of proline derivatives with the intestinal H+/peptide symporter. Eur J 

Biochem, 266, 502-8. 

BRANDSCH, M., THUNECKE, F., KULLERTZ, G., SCHUTKOWSKI, M., FISCHER, G. & 

NEUBERT, K. 1998. Evidence for the absolute conformational specificity of the 

intestinal H+/peptide symporter, PEPT1. J Biol Chem, 273, 3861-4. 



147 
 

BROER, S. 2008. Amino acid transport across mammalian intestinal and renal epithelia. Physiol 

Rev, 88, 249-86. 

BROWNING, D. D., PAN, Z. K., PROSSNITZ, E. R. & YE, R. D. 1997. Cell type- and 

developmental stage-specific activation of NF-kappaB by fMet-Leu-Phe in myeloid cells. 

J Biol Chem, 272, 7995-8001. 

BRUNTON, J. A., BALDWIN, M. P., HANNA, R. A. & BERTOLO, R. F. 2012. Proline 

supplementation to parenteral nutrition results in greater rates of protein synthesis in the 

muscle, skin, and small intestine in neonatal Yucatan miniature piglets. J Nutr, 142, 

1004-8. 

BUCHMAN, A. L., MOUKARZEL, A. A., BHUTA, S., BELLE, M., AMENT, M. E., 

ECKHERT, C. D., HOLLANDER, D., GORNBEIN, J., KOPPLE, J. D. & 

VIJAYAROGHAVAN, S. R. 1995. Parenteral nutrition is associated with intestinal 

morphologic and functional changes in humans. JPEN J Parenter Enteral Nutr, 19, 453-

60. 

BUDDINGTON, R. K., ELNIF, J., PUCHAL-GARDINER, A. A. & SANGILD, P. T. 2001. 

Intestinal apical amino acid absorption during development of the pig. Am J Physiol 

Regul Integr Comp Physiol, 280, R241-7. 

BURRIN, D. G., SHULMAN, R. J., LANGSTON, C. & STORM, M. C. 1994. Supplemental 

alanylglutamine, organ growth, and nitrogen metabolism in neonatal pigs fed by total 

parenteral nutrition. JPEN J Parenter Enteral Nutr, 18, 313-9. 

BUYSE, M., BERLIOZ, F., GUILMEAU, S., TSOCAS, A., VOISIN, T., PERANZI, G., 

MERLIN, D., LABURTHE, M., LEWIN, M. J., ROZE, C. & BADO, A. 2001. PepT1-



148 
 

mediated epithelial transport of dipeptides and cephalexin is enhanced by luminal leptin 

in the small intestine. J Clin Invest, 108, 1483-94. 

BUYSE, M., TSOCAS, A., WALKER, F., MERLIN, D. & BADO, A. 2002. PepT1-mediated 

fMLP transport induces intestinal inflammation in vivo. Am J Physiol Cell Physiol, 283, 

C1795-800. 

CAPPIELLO, M., LAZZAROTTI, A., BUONO, F., SCALONI, A., D'AMBROSIO, C., 

AMODEO, P., MENDEZ, B. L., PELOSI, P., DEL CORSO, A. & MURA, U. 2004. New 

role for leucyl aminopeptidase in glutathione turnover. Biochem J, 378, 35-44. 

CARLSON, R. M., VAVRICKA, S. R., ELORANTA, J. J., MUSCH, M. W., ARVANS, D. L., 

KLES, K. A., WALSH-REITZ, M. M., KULLAK-UBLICK, G. A. & CHANG, E. B. 

2007. fMLP induces Hsp27 expression, attenuates NF-kappaB activation, and confers 

intestinal epithelial cell protection. Am J Physiol Gastrointest Liver Physiol, 292, G1070-

8. 

CHEN, H., PAN, Y., WONG, E. A. & WEBB, K. E., JR. 2005. Dietary protein level and stage 

of development affect expression of an intestinal peptide transporter (cPepT1) in 

chickens. J Nutr, 135, 193-8. 

CHEN, H., WONG, E. A. & WEBB, K. E., JR. 1999. Tissue distribution of a peptide transporter 

mRNA in sheep, dairy cows, pigs, and chickens. J Anim Sci, 77, 1277-83. 

CHEN, X. Z., STEEL, A. & HEDIGER, M. A. 2000. Functional roles of histidine and tyrosine 

residues in the H(+)-peptide transporter PepT1. Biochem Biophys Res Commun, 272, 

726-30. 



149 
 

CHESHIRE J. L. & BALDWIN A. S., JR. 1997. Synergistic activation of NF-kappaB by tumor 

necrosis factor alpha and gamma interferon via enhanced I kappaB alpha degradation and 

de novo I kappaBbeta degradation. Mol Cell Biol, 17,6746-54. 

 

CHU, C. C., HOU, Y. C., PAI, M. H., CHAO, C. J. & YEH, S. L. 2012. Pretreatment with 

alanyl-glutamine suppresses T-helper-cell-associated cytokine expression and reduces 

inflammatory responses in mice with acute DSS-induced colitis. J Nutr Biochem, 23, 

1092-9. 

CHU, X. Y., SANCHEZ-CASTANO, G. P., HIGAKI, K., OH, D. M., HSU, C. P. & AMIDON, 

G. L. 2001. Correlation between epithelial cell permeability of cephalexin and expression 

of intestinal oligopeptide transporter. J Pharmacol Exp Ther, 299, 575-82. 

CIANCIULLI, A., ACQUAFREDDA, A., CAVALLO, P., SAPONARO, C., CALVELLO, R., 

MITOLO, V. & PANARO, M. A. 2009. f-Met-Leu-Phe stimulates nitric oxide 

production in chick embryo neurons: the role of NF-kB. Immunopharmacol 

Immunotoxicol, 31, 51-63. 

COLE, C. R., FREM, J. C., SCHMOTZER, B., GEWIRTZ, A. T., MEDDINGS, J. B., GOLD, 

B. D. & ZIEGLER, T. R. 2010. The rate of bloodstream infection is high in infants with 

short bowel syndrome: relationship with small bowel bacterial overgrowth, enteral 

feeding, and inflammatory and immune responses. J Pediatr, 156, 941-7, 947 e1. 

COVITZ, K. M., AMIDON, G. L. & SADEE, W. 1998. Membrane topology of the human 

dipeptide transporter, hPEPT1, determined by epitope insertions. Biochemistry, 37, 

15214-21. 



150 
 

CRONK, D. R., FERGUSON, D. C. & THOMPSON, J. S. 2000. Malnutrition impairs 

postresection intestinal adaptation. JPEN J Parenter Enteral Nutr, 24, 76-80. 

D'INCA, R., GRAS-LE GUEN, C., CHE, L., SANGILD, P. T. & LE HUEROU-LURON, I. 

2011. Intrauterine growth restriction delays feeding-induced gut adaptation in term 

newborn pigs. Neonatology, 99, 208-16. 

DALMASSO, G., NGUYEN, H. T., CHARRIER-HISAMUDDIN, L., YAN, Y., LAROUI, H., 

DEMOULIN, B., SITARAMAN, S. V. & MERLIN, D. 2010. PepT1 mediates transport 

of the proinflammatory bacterial tripeptide L-Ala-{gamma}-D-Glu-meso-DAP in 

intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol, 299, G687-96. 

DANIEL, H. 2004. Molecular and integrative physiology of intestinal peptide transport. Annu 

Rev Physiol, 66, 361-84. 

DANIEL, H. & KOTTRA, G. 2004. The proton oligopeptide cotransporter family SLC15 in 

physiology and pharmacology. Pflugers Arch, 447, 610-8. 

DANIEL, H., MORSE, E. L. & ADIBI, S. A. 1992. Determinants of substrate affinity for the 

oligopeptide/H+ symporter in the renal brush border membrane. J Biol Chem, 267, 9565-

73. 

DANIEL, H., SPANIER, B., KOTTRA, G. & WEITZ, D. 2006. From bacteria to man: archaic 

proton-dependent peptide transporters at work. Physiology (Bethesda), 21, 93-102. 

DANTZIG, A. H., HOSKINS, J. A., TABAS, L. B., BRIGHT, S., SHEPARD, R. L., JENKINS, 

I. L., DUCKWORTH, D. C., SPORTSMAN, J. R., MACKENSEN, D., ROSTECK, P. 

R., JR. & ET AL. 1994. Association of intestinal peptide transport with a protein related 

to the cadherin superfamily. Science, 264, 430-3. 



151 
 

DE WAAL MALEFYT R., ABRAMS J., BENNETT B., FIGDOR C. G. & DE VRIES J. E. 

1991. Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an 

autoregulatory role of IL-10 produced by monocytes. J Exp Med, 174,1209-20. 

DEVIN A., COOK A., LIN Y., RODRIGUEZ Y., KELLIHER M. & LIU Z. 2000. The distinct 

roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 

while RIP mediates IKK activation. Immunity, 12,419-29. 

DODGE, M. E., BERTOLO, R. F. & BRUNTON, J. A. 2012. Enteral feeding induces early 

intestinal adaptation in a parenterally fed neonatal piglet model of short bowel syndrome. 

JPEN J Parenter Enteral Nutr, 36, 205-12. 

DOKI, S., KATO, H. E., SOLCAN, N., IWAKI, M., KOYAMA, M., HATTORI, M., IWASE, 

N., TSUKAZAKI, T., SUGITA, Y., KANDORI, H., NEWSTEAD, S., ISHITANI, R. & 

NUREKI, O. 2013. Structural basis for dynamic mechanism of proton-coupled symport 

by the peptide transporter POT. Proc Natl Acad Sci U S A. 

DRINGEN, R., HAMPRECHT, B. & BROER, S. 1998. The peptide transporter PepT2 mediates 

the uptake of the glutathione precursor CysGly in astroglia-rich primary cultures. J 

Neurochem, 71, 388-93. 

EISSNER G., KOLCH W. & SCHEURICH P. 2004. Ligands working as receptors: reverse 

signaling by members of the TNF superfamily enhance the plasticity of the immune 

system. Cytokine Growth Factor Rev, 15,353-66. 

ERICKSON, R. H., GUM, J. R., JR., LINDSTROM, M. M., MCKEAN, D. & KIM, Y. S. 1995. 

Regional expression and dietary regulation of rat small intestinal peptide and amino acid 

transporter mRNAs. Biochem Biophys Res Commun, 216, 249-57. 



152 
 

ERIKSTEIN B. K., SMELAND E. B., BLOMHOFF H. K., FUNDERUD S., PRYDZ K., 

LESSLAUER W. & ESPEVIK T. 1991. Independent regulation of 55-kDa and 75-kDa 

tumor necrosis factor receptors during activation of human peripheral blood B 

lymphocytes. Eur J Immunol, 21,1033-7. 

EROGLU, A. 2009. The effect of intravenous alanyl-glutamine supplementation on plasma 

glutathione levels in intensive care unit trauma patients receiving enteral nutrition: the 

results of a randomized controlled trial. Anesth Analg, 109, 502-5. 

EWASCHUK, J. B., MURDOCH, G. K., JOHNSON, I. R., MADSEN, K. L. & FIELD, C. J. 

2011. Glutamine supplementation improves intestinal barrier function in a weaned piglet 

model of Escherichia coli infection. Br J Nutr, 106, 870-7. 

FEI, Y. J., KANAI, Y., NUSSBERGER, S., GANAPATHY, V., LEIBACH, F. H., ROMERO, 

M. F., SINGH, S. K., BORON, W. F. & HEDIGER, M. A. 1994. Expression cloning of a 

mammalian proton-coupled oligopeptide transporter. Nature, 368, 563-6. 

FEI, Y. J., LIU, W., PRASAD, P. D., KEKUDA, R., OBLAK, T. G., GANAPATHY, V. & 

LEIBACH, F. H. 1997. Identification of the histidyl residue obligatory for the catalytic 

activity of the human H+/peptide cotransporters PEPT1 and PEPT2. Biochemistry, 36, 

452-60. 

FERRARIS, R. P., DIAMOND, J. & KWAN, W. W. 1988. Dietary regulation of intestinal 

transport of the dipeptide carnosine. Am J Physiol, 255, G143-50. 

FILIPE-SANTOS O., BUSTAMANTE J., CHAPGIER A., VOGT G., DE BEAUCOUDREY L., 

FEINBERG J., JOUANGUY E., BOISSON-DUPUIS S., FIESCHI C., PICARD C. & 

CASANOVA J. L. 2006. Inborn errors of IL-12/23- and IFN-gamma-mediated 

immunity: molecular, cellular, and clinical features. Semin Immunol, 18,347-61. 



153 
 

FITZGIBBONS, S. C., CHING, Y., YU, D., CARPENTER, J., KENNY, M., WELDON, C., 

LILLEHEI, C., VALIM, C., HORBAR, J. D. & JAKSIC, T. 2009. Mortality of 

necrotizing enterocolitis expressed by birth weight categories. J Pediatr Surg, 44, 1072-5; 

discussion 1075-6. 

FLESCH I. E., HESS J. H., OSWALD I. P. & KAUFMANN S. H. 1994. Growth inhibition of 

Mycobacterium bovis by IFN-gamma stimulated macrophages: regulation by endogenous 

tumor necrosis factor-alpha and by IL-10. Int Immunol, 6,693-700. 

FOSTER, D. R., LANDOWSKI, C. P., ZHENG, X., AMIDON, G. L. & WELAGE, L. S. 2009. 

Interferon-gamma increases expression of the di/tri-peptide transporter, h-PEPT1, and 

dipeptide transport in cultured human intestinal monolayers. Pharmacol Res, 59, 215-20. 

FOSTER, D. R. & ZHENG, X. 2007. Cephalexin inhibits N-formylated peptide transport and 

intestinal hyperpermeability in Caco2 cells. J Pharm Pharm Sci, 10, 299-310. 

FREEMAN, T. C., BENTSEN, B. S., THWAITES, D. T. & SIMMONS, N. L. 1995. H+/di-

tripeptide transporter (PepT1) expression in the rabbit intestine. Pflugers Arch, 430, 394-

400. 

FUKATSU, K., KUDSK, K. A., ZARZAUR, B. L., WU, Y., HANNA, M. K. & DEWITT, R. C. 

2001. TPN decreases IL-4 and IL-10 mRNA expression in lipopolysaccharide stimulated 

intestinal lamina propria cells but glutamine supplementation preserves the expression. 

Shock, 15, 318-22. 

GANAPATHY & LEIBACH, F. H. 1985. Is intestinal peptide transport energized by a proton 

gradient? Am J Physiol, 249, G153-60. 



154 
 

GANAPATHY, V., BALKOVETZ, D. F., GANAPATHY, M. E., MAHESH, V. B., DEVOE, L. 

D. & LEIBACH, F. H. 1987. Evidence for histidyl and carboxy groups at the active site 

of the human placental Na+-H+ exchanger. Biochem J, 245, 473-7. 

GANAPATHY V, B. M. L. F. 1994. Intestinal transport of amino acids and peptides. In: 

JOHNSON, L. (ed.) Physiology of the Gastrointestinal Tract. New York: Raven. 

GANAPATHY V, G. N., MARTINDALE RG 2006. Protein digestion and absorption, in 

Physiology of the Gastrointestinal Tract, 4th edition In: LR, J. (ed.) 4th ed. 

GARLICK, P. J., MCNURLAN, M. A. & PREEDY, V. R. 1980. A rapid and convenient 

technique for measuring the rate of protein synthesis in tissues by injection of 

[3H]phenylalanine. Biochem J, 192, 719-23. 

GILBERT, E. R., LI, H., EMMERSON, D. A., WEBB, K. E., JR. & WONG, E. A. 2007a. 

Developmental regulation of nutrient transporter and enzyme mRNA abundance in the 

small intestine of broilers. Poult Sci, 86, 1739-53. 

GILBERT, E. R., LI, H., EMMERSON, D. A., WEBB, K. E., JR. & WONG, E. A. 2008a. 

Dietary protein quality and feed restriction influence abundance of nutrient transporter 

mRNA in the small intestine of broiler chicks. J Nutr, 138, 262-71. 

GILBERT, E. R., WONG, E. A., VAUGHAN, M. & WEBB, K. E., JR. 2007b. Distribution and 

abundance of nutrient transporter mRNA in the intestinal tract of the black bear, Ursus 

americanus. Comp Biochem Physiol B Biochem Mol Biol, 146, 35-41. 

GILBERT, E. R., WONG, E. A. & WEBB, K. E., JR. 2008b. Board-invited review: Peptide 

absorption and utilization: Implications for animal nutrition and health. J Anim Sci, 86, 

2135-55. 



155 
 

GOULET, O. J., REVILLON, Y., JAN, D., DE POTTER, S., MAURAGE, C., LORTAT-

JACOB, S., MARTELLI, H., NIHOUL-FEKETE, C. & RICOUR, C. 1991. Neonatal 

short bowel syndrome. J Pediatr, 119, 18-23. 

GRAUL, R. C. & SADEE, W. 1997. Sequence alignments of the H(+)-dependent oligopeptide 

transporter family PTR: inferences on structure and function of the intestinal PET1 

transporter. Pharm Res, 14, 388-400. 

GRELL M., DOUNI E., WAJANT H., LOHDEN M., CLAUSS M., MAXEINER B., 

GEORGOPOULOS S., LESSLAUER W., KOLLIAS G., PFIZENMAIER K. & 

SCHEURICH P. 1995. The transmembrane form of tumor necrosis factor is the prime 

activating ligand of the 80 kDa tumor necrosis factor receptor. Cell, 83,793-802. 

GROSCHWITZ K. R. & HOGAN S. P. 2009. Intestinal barrier function: molecular regulation 

and disease pathogenesis. J Allergy Clin Immunol, 124,3-20; quiz 1-2. 

HAN, H., DE VRUEH, R. L., RHIE, J. K., COVITZ, K. M., SMITH, P. L., LEE, C. P., OH, D. 

M., SADEE, W. & AMIDON, G. L. 1998. 5'-Amino acid esters of antiviral nucleosides, 

acyclovir, and AZT are absorbed by the intestinal PEPT1 peptide transporter. Pharm Res, 

15, 1154-9. 

HARRIS, R. C., HOFFMAN, J. R., ALLSOPP, A. & ROUTLEDGE, N. B. 2012. L-glutamine 

absorption is enhanced after ingestion of L-alanylglutamine compared with the free 

amino acid or wheat protein. Nutr Res, 32, 272-7. 

HASEGAWA, S., ICHIYAMA, T., SONAKA, I., OHSAKI, A., OKADA, S., WAKIGUCHI, 

H., KUDO, K., KITTAKA, S., HARA, M. & FURUKAWA, S. 2012. Cysteine, histidine 

and glycine exhibit anti-inflammatory effects in human coronary arterial endothelial 

cells. Clin Exp Immunol, 167, 269-74. 



156 
 

HEEMSKERK, V. H., VAN HEURN, L. W., FARLA, P., BUURMAN, W. A., PIERSMA, F., 

TER RIET, G. & HEINEMAN, E. 1999. A successful short-bowel syndrome model in 

neonatal piglets. J Pediatr Gastroenterol Nutr, 29, 457-61. 

HENDERSON, T. R., HAMOSH, M., ARMAND, M., MEHTA, N. R. & HAMOSH, P. 2001. 

Gastric proteolysis in preterm infants fed mother's milk or formula. Adv Exp Med Biol, 

501, 403-8. 

HENEGHAN, A. F., PIERRE, J. F., TANDEE, K., SHANMUGANAYAGAM, D., WANG, X., 

REED, J. D., STEELE, J. L. & KUDSK, K. A. 2013. Parenteral Nutrition Decreases 

Paneth Cell Function and Intestinal Bactericidal Activity While Increasing Susceptibility 

to Bacterial Enteroinvasion. JPEN J Parenter Enteral Nutr. 

HERRERA-RUIZ, D., WANG, Q., GUDMUNDSSON, O. S., COOK, T. J., SMITH, R. L., 

FARIA, T. N. & KNIPP, G. T. 2001. Spatial expression patterns of peptide transporters 

in the human and rat gastrointestinal tracts, Caco-2 in vitro cell culture model, and 

multiple human tissues. AAPS PharmSci, 3, E9. 

HIMUKAI, M., KANO-KAMEYAMA, A. & HOSHI, T. 1982. Mechanisms of inhibition of 

glycylglycine transport by glycyl-L-leucine and L-leucine in guinea-pig small intestine. 

Biochim Biophys Acta, 687, 170-8. 

HINDLET, P., BADO, A., FARINOTTI, R. & BUYSE, M. 2007. Long-term effect of leptin on 

H+-coupled peptide cotransporter 1 activity and expression in vivo: evidence in leptin-

deficient mice. J Pharmacol Exp Ther, 323, 192-201. 

HOHMANN H. P., REMY R., BROCKHAUS M. & VAN LOON A. P. 1989. Two different cell 

types have different major receptors for human tumor necrosis factor (TNF alpha). J Biol 

Chem, 264,14927-34. 



157 
 

HOWARD, A., GOODLAD, R. A., WALTERS, J. R., FORD, D. & HIRST, B. H. 2004. 

Increased expression of specific intestinal amino acid and peptide transporter mRNA in 

rats fed by TPN is reversed by GLP-2. J Nutr, 134, 2957-64. 

HUSSAIN, I., KELLETT, L., AFFLECK, J., SHEPHERD, J. & BOYD, R. 2002. Expression and 

cellular distribution during development of the peptide transporter (PepT1) in the small 

intestinal epithelium of the rat. Cell Tissue Res, 307, 139-42. 

IHARA, T., TSUJIKAWA, T., FUJIYAMA, Y. & BAMBA, T. 2000. Regulation of PepT1 

peptide transporter expression in the rat small intestine under malnourished conditions. 

Digestion, 61, 59-67. 

IIBOSHI, Y., NEZU, R., KENNEDY, M., FUJII, M., WASA, M., FUKUZAWA, M., 

KAMATA, S., TAKAGI, Y. & OKADA, A. 1994. Total parenteral nutrition decreases 

luminal mucous gel and increases permeability of small intestine. JPEN J Parenter 

Enteral Nutr, 18, 346-50. 

IKEDA H., OLD L. J. & SCHREIBER R. D. 2002. The roles of IFN gamma in protection 

against tumor development and cancer immunoediting. Cytokine Growth Factor Rev, 

13,95-109. 

ILLIG, K. A., RYAN, C. K., HARDY, D. J., RHODES, J., LOCKE, W. & SAX, H. C. 1992. 

Total parenteral nutrition-induced changes in gut mucosal function: atrophy alone is not 

the issue. Surgery, 112, 631-7. 

IRIE, M., TERADA, T., KATSURA, T., MATSUOKA, S. & INUI, K. 2005. Computational 

modelling of H+-coupled peptide transport via human PEPT1. J Physiol, 565, 429-39. 

ITO S., ANSARI P., SAKATSUME M., DICKENSHEETS H., VAZQUEZ N., DONNELLY R. 

P., LARNER A. C. & FINBLOOM D. S. 1999. Interleukin-10 inhibits expression of both 



158 
 

interferon alpha- and interferon gamma- induced genes by suppressing tyrosine 

phosphorylation of STAT1. Blood, 93,1456-63. 

JOHANSSON M. E., PHILLIPSON M., PETERSSON J., VELCICH A., HOLM L. & 

HANSSON G. C. 2008. The inner of the two Muc2 mucin-dependent mucus layers in 

colon is devoid of bacteria. Proc Natl Acad Sci U S A, 105,15064-9. 

JONES, D. P. 2006. Redefining oxidative stress. Antioxid Redox Signal, 8, 1865-79. 

KIM, C. J., KOVACS-NOLAN, J., YANG, C., ARCHBOLD, T., FAN, M. Z. & MINE, Y. 

2009. L-cysteine supplementation attenuates local inflammation and restores gut 

homeostasis in a porcine model of colitis. Biochim Biophys Acta, 1790, 1161-9. 

KIM, M. 1996. Absorption of polyethylene glycol oligomers (330-1 122 Da) is greater in the 

jejunum than in the ileum of rats. J Nutr, 126, 2172-8. 

KLANG, J. E., BURNWORTH, L. A., PAN, Y. X., WEBB, K. E., JR. & WONG, E. A. 2005. 

Functional characterization of a cloned pig intestinal peptide transporter (pPepT1). J 

Anim Sci, 83, 172-81. 

KOTENKO S. V., IZOTOVA L. S., POLLACK B. P., MARIANO T. M., DONNELLY R. J., 

MUTHUKUMARAN G., COOK J. R., GAROTTA G., SILVENNOINEN O., IHLE J. N. 

& ET AL. 1995. Interaction between the components of the interferon gamma receptor 

complex. J Biol Chem, 270,20915-21. 

KRAMER, W., GIRBIG, F., PETZOLDT, E. & LEIPE, I. 1988. Inactivation of the intestinal 

uptake system for beta-lactam antibiotics by diethylpyrocarbonate. Biochim Biophys 

Acta, 943, 288-96. 



159 
 

KRIEGLER M., PEREZ C., DEFAY K., ALBERT I. & LU S. D. 1988. A novel form of 

TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the 

complex physiology of TNF. Cell, 53,45-53. 

LAFFORGUE, G., ARELLANO, C., VACHOUX, C., WOODLEY, J., PHILIBERT, C., 

DUPOUY, V., BOUSQUET-MELOU, A., GANDIA, P. & HOUIN, G. 2008. Oral 

absorption of ampicillin: role of paracellular route vs. PepT1 transporter. Fundam Clin 

Pharmacol, 22, 189-201. 

LARDY, H., THOMAS, M., NOORDINE, M. L., BRUNEAU, A., CHERBUY, C., 

VAUGELADE, P., PHILIPPE, C., COLOMB, V. & DUEE, P. H. 2006. Changes induced 

in colonocytes by extensive intestinal resection in rats. Dig Dis Sci, 51, 326-32. 

LAUKOETTER M. G., BRUEWER M. & NUSRAT A. 2006. Regulation of the intestinal 

epithelial barrier by the apical junctional complex. Curr Opin Gastroenterol, 22,85-9. 

LEDGERWOOD E. C., POBER J. S. & BRADLEY J. R. 1999. Recent advances in the 

molecular basis of TNF signal transduction. Lab Invest, 79,1041-50. 

LI, H., GILBERT, E. R., ZHANG, Y., CRASTA, O., EMMERSON, D., WEBB, K. E., JR. & 

WONG, E. A. 2008. Expression profiling of the solute carrier gene family in chicken 

intestine from the late embryonic to early post-hatch stages. Anim Genet, 39, 407-24. 

LI, N., LEWIS, P., SAMUELSON, D., LIBONI, K. & NEU, J. 2004. Glutamine regulates Caco-

2 cell tight junction proteins. Am J Physiol Gastrointest Liver Physiol, 287, G726-33. 

LIGTHART-MELIS, G. C., VAN DE POLL, M. C., DEJONG, C. H., BOELENS, P. G., 

DEUTZ, N. E. & VAN LEEUWEN, P. A. 2007. The route of administration (enteral or 

parenteral) affects the conversion of isotopically labeled L-[2-15N]glutamine into 



160 
 

citrulline and arginine in humans. JPEN J Parenter Enteral Nutr, 31, 343-48; discussion 

349-50. 

LIGTHART-MELIS, G. C., VAN DE POLL, M. C., VERMEULEN, M. A., BOELENS, P. G., 

VAN DEN TOL, M. P., VAN SCHAIK, C., DE BANDT, J. P., DEUTZ, N. E., 

DEJONG, C. H. & VAN LEEUWEN, P. A. 2009. Enteral administration of alanyl-[2-

(15)N]glutamine contributes more to the de novo synthesis of arginine than does 

intravenous infusion of the dipeptide in humans. Am J Clin Nutr, 90, 95-105. 

LIMA, N. L., SOARES, A. M., MOTA, R. M., MONTEIRO, H. S., GUERRANT, R. L. & 

LIMA, A. A. 2007. Wasting and intestinal barrier function in children taking alanyl-

glutamine-supplemented enteral formula. J Pediatr Gastroenterol Nutr, 44, 365-74. 

LINKS, J. L., KULKARNI, A. A., DAVIES, D. L., LEE, V. H. & HAWORTH, I. S. 2007. 

Cysteine scanning of transmembrane domain three of the human dipeptide transporter: 

implications for substrate transport. J Drug Target, 15, 218-25. 

LIOU H. C. 2002. Regulation of the immune system by NF-kappaB and IkappaB. J Biochem 

Mol Biol, 35,537-46. 

LIU, W., LIANG, R., RAMAMOORTHY, S., FEI, Y. J., GANAPATHY, M. E., HEDIGER, M. 

A., GANAPATHY, V. & LEIBACH, F. H. 1995. Molecular cloning of PEPT 2, a new 

member of the H+/peptide cotransporter family, from human kidney. Biochim Biophys 

Acta, 1235, 461-6. 

LIVAK, K. J. & SCHMITTGEN, T. D. 2001. Analysis of relative gene expression data using 

real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25, 402-8. 

LOW, A. G. 1979. Studies on digestion and absorption in the intestines of growing pigs. 6. 

Measurements of the flow of amino acids. Br J Nutr, 41, 147-56. 



161 
 

LU, H. & KLAASSEN, C. 2006. Tissue distribution and thyroid hormone regulation of Pept1 

and Pept2 mRNA in rodents. Peptides, 27, 850-7. 

LUETTIG B., DECKER T. & LOHMANN-MATTHES M. L. 1989. Evidence for the existence 

of two forms of membrane tumor necrosis factor: an integral protein and a molecule 

attached to its receptor. J Immunol, 143,4034-8. 

LUO, M., BAZARGAN, N., GRIFFITH, D. P., ESTIVARIZ, C. F., LEADER, L. M., EASLEY, 

K. A., DAIGNAULT, N. M., HAO, L., MEDDINGS, J. B., GALLOWAY, J. R., 

BLUMBERG, J. B., JONES, D. P. & ZIEGLER, T. R. 2008. Metabolic effects of enteral 

versus parenteral alanyl-glutamine dipeptide administration in critically ill patients 

receiving enteral feeding: a pilot study. Clin Nutr, 27, 297-306. 

MA, K., HU, Y. & SMITH, D. E. 2012. Influence of fed-fasted state on intestinal PEPT1 

expression and in vivo pharmacokinetics of glycylsarcosine in wild-type and Pept1 

knockout mice. Pharm Res, 29, 535-45. 

MARASCO, W. A., PHAN, S. H., KRUTZSCH, H., SHOWELL, H. J., FELTNER, D. E., 

NAIRN, R., BECKER, E. L. & WARD, P. A. 1984. Purification and identification of 

formyl-methionyl-leucyl-phenylalanine as the major peptide neutrophil chemotactic 

factor produced by Escherichia coli. J Biol Chem, 259, 5430-9. 

MAVROMICHALIS, I., PARR, T. M., GABERT, V. M. & BAKER, D. H. 2001. True ileal 

digestibility of amino acids in sow's milk for 17-day-old pigs. J Anim Sci, 79, 707-13. 

MCCOLLUM, M. Q. & WEBB, K. E., JR. 1998. Glycyl-L-sarcosine absorption across ovine 

omasal epithelium during coincubation with other peptide substrates and volatile fatty 

acids. J Anim Sci, 76, 2706-11. 



162 
 

MCGUCKIN M. A., ERI R., SIMMS L. A., FLORIN T. H. & RADFORD-SMITH G. 2009. 

Intestinal barrier dysfunction in inflammatory bowel diseases. Inflamm Bowel Dis, 

15,100-13. 

MCGUFFIN, L. J., BRYSON, K. & JONES, D. T. 2000. The PSIPRED protein structure 

prediction server. Bioinformatics, 16, 404-5. 

MENON, R. M. & BARR, W. H. 2003. Comparison of ceftibuten transport across Caco-2 cells 

and rat jejunum mounted on modified Ussing chambers. Biopharm Drug Dispos, 24, 299-

308. 

MEREDITH, D. 2004. Site-directed mutation of arginine 282 to glutamate uncouples the 

movement of peptides and protons by the rabbit proton-peptide cotransporter PepT1. J 

Biol Chem, 279, 15795-8. 

MEREDITH, D. & BOYD, C. A. 2000. Structure and function of eukaryotic peptide 

transporters. Cell Mol Life Sci, 57, 754-78. 

MEREDITH, D. & PRICE, R. A. 2006. Molecular modeling of PepT1--towards a structure. J 

Membr Biol, 213, 79-88. 

MERLIN, D., SI-TAHAR, M., SITARAMAN, S. V., EASTBURN, K., WILLIAMS, I., LIU, X., 

HEDIGER, M. A. & MADARA, J. L. 2001. Colonic epithelial hPepT1 expression occurs 

in inflammatory bowel disease: transport of bacterial peptides influences expression of 

MHC class 1 molecules. Gastroenterology, 120, 1666-79. 

MERLIN, D., STEEL, A., GEWIRTZ, A. T., SI-TAHAR, M., HEDIGER, M. A. & MADARA, 

J. L. 1998. hPepT1-mediated epithelial transport of bacteria-derived chemotactic peptides 

enhances neutrophil-epithelial interactions. J Clin Invest, 102, 2011-8. 



163 
 

MILLER, M. & BURJONRAPPA, S. 2013. A Review of Enteral Strategies in Infant Short 

Bowel Syndrome: evidence-based or NICU Culture? J Pediatr Surg, 48, 1099-112. 

MIYAMOTO, K., SHIRAGA, T., MORITA, K., YAMAMOTO, H., HAGA, H., TAKETANI, 

Y., TAMAI, I., SAI, Y., TSUJI, A. & TAKEDA, E. 1996. Sequence, tissue distribution 

and developmental changes in rat intestinal oligopeptide transporter. Biochim Biophys 

Acta, 1305, 34-8. 

MIYAMOTO, Y., GANAPATHY, V. & LEIBACH, F. H. 1986. Identification of histidyl and 

thiol groups at the active site of rabbit renal dipeptide transporter. J Biol Chem, 261, 

16133-40. 

MOESER, A. J., KLOK, C. V., RYAN, K. A., WOOTEN, J. G., LITTLE, D., COOK, V. L. & 

BLIKSLAGER, A. T. 2007. Stress signaling pathways activated by weaning mediate 

intestinal dysfunction in the pig. Am J Physiol Gastrointest Liver Physiol, 292, G173-81. 

MOORE K. W., DE WAAL MALEFYT R., COFFMAN R. L. & O'GARRA A. 2001. 

Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol, 19,683-765. 

MOSENTHAL, A. C., XU, D. & DEITCH, E. A. 2002. Elemental and intravenous total 

parenteral nutrition diet-induced gut barrier failure is intestinal site specific and can be 

prevented by feeding nonfermentable fiber. Crit Care Med, 30, 396-402. 

MOSSER D. M. 2003. The many faces of macrophage activation. J Leukoc Biol, 73,209-12. 

NEUTRA M. R. 1999. Interactions of viruses and microparticles with apical plasma membranes 

of M cells: implications for human immunodeficiency virus transmission. J Infect Dis, 

179 Suppl 3,S441-3. 

NEWSTEAD, S., DREW, D., CAMERON, A. D., POSTIS, V. L., XIA, X., FOWLER, P. W., 

INGRAM, J. C., CARPENTER, E. P., SANSOM, M. S., MCPHERSON, M. J., 



164 
 

BALDWIN, S. A. & IWATA, S. 2011. Crystal structure of a prokaryotic homologue of 

the mammalian oligopeptide-proton symporters, PepT1 and PepT2. EMBO J, 30, 417-26. 

NICHOLS, N. L. & BERTOLO, R. F. 2008. Luminal threonine concentration acutely affects 

intestinal mucosal protein and mucin synthesis in piglets. J Nutr, 138, 1298-303. 

NIELSEN, C. U., AMSTRUP, J., NIELSEN, R., STEFFANSEN, B., FROKJAER, S. & 

BRODIN, B. 2003. Epidermal growth factor and insulin short-term increase hPepT1-

mediated glycylsarcosine uptake in Caco-2 cells. Acta Physiol Scand, 178, 139-48. 

NKABYO, Y. S., GU, L. H., JONES, D. P. & ZIEGLER, T. R. 2006. Thiol/disulfide redox 

status is oxidized in plasma and small intestinal and colonic mucosa of rats with 

inadequate sulfur amino acid intake. J Nutr, 136, 1242-8. 

NODA, T., IWAKIRI, R., FUJIMOTO, K., RHOADS, C. A. & AW, T. Y. 2002. Exogenous 

cysteine and cystine promote cell proliferation in CaCo-2 cells. Cell Prolif, 35, 117-29. 

NRC 1998. Nutrient Requirements of Swine, Washington, D.C., National Academy Press. 

O'FARRELL A. M., LIU Y., MOORE K. W. & MUI A. L. 1998. IL-10 inhibits macrophage 

activation and proliferation by distinct signaling mechanisms: evidence for Stat3-

dependent and -independent pathways. EMBO J, 17,1006-18. 

OGIHARA, H., SAITO, H., SHIN, B. C., TERADO, T., TAKENOSHITA, S., NAGAMACHI, 

Y., INUI, K. & TAKATA, K. 1996. Immuno-localization of H+/peptide cotransporter in 

rat digestive tract. Biochem Biophys Res Commun, 220, 848-52. 

OMATA, J., PIERRE, J. F., HENEGHAN, A. F., TSAO, F. H., SANO, Y., JONKER, M. A. & 

KUDSK, K. A. 2013. Parenteral nutrition suppresses the bactericidal response of the 

small intestine. Surgery, 153, 17-24. 



165 
 

PAN, W. W., LI, J. D., HUANG, S., PAPADIMOS, T. J., PAN, Z. K. & CHEN, L. Y. 2010. 

Synergistic activation of NF-{kappa}B by bacterial chemoattractant and TNF{alpha} is 

mediated by p38 MAPK-dependent RelA acetylation. J Biol Chem, 285, 34348-54. 

PAN, X., TERADA, T., IRIE, M., SAITO, H. & INUI, K. 2002. Diurnal rhythm of H+-peptide 

cotransporter in rat small intestine. Am J Physiol Gastrointest Liver Physiol, 283, G57-

64. 

PAN, Z. K., CHEN, L. Y., COCHRANE, C. G. & ZURAW, B. L. 2000. fMet-Leu-Phe 

stimulates proinflammatory cytokine gene expression in human peripheral blood 

monocytes: the role of phosphatidylinositol 3-kinase. J Immunol, 164, 404-11. 

PEDERSEN J., COSKUN M., SOENDERGAARD C., SALEM M. & NIELSEN O. H. 2014. 

Inflammatory pathways of importance for management of inflammatory bowel disease. 

World J Gastroenterol, 20,64-77. 

PESTKA S., KOTENKO S. V., MUTHUKUMARAN G., IZOTOVA L. S., COOK J. R. & 

GAROTTA G. 1997. The interferon gamma (IFN-gamma) receptor: a paradigm for the 

multichain cytokine receptor. Cytokine Growth Factor Rev, 8,189-206. 

PIE, S., LALLES, J. P., BLAZY, F., LAFFITTE, J., SEVE, B. & OSWALD, I. P. 2004. 

Weaning is associated with an upregulation of expression of inflammatory cytokines in 

the intestine of piglets. J Nutr, 134, 641-7. 

PIERI, M., GAN, C., BAILEY, P. & MEREDITH, D. 2009. The transmembrane tyrosines Y56, 

Y91 and Y167 play important roles in determining the affinity and transport rate of the 

rabbit proton-coupled peptide transporter PepT1. Int J Biochem Cell Biol, 41, 2204-13. 



166 
 

PIERI, M., HALL, D., PRICE, R., BAILEY, P. & MEREDITH, D. 2008. Site-directed 

mutagenesis of Arginine282 suggests how protons and peptides are co-transported by 

rabbit PepT1. Int J Biochem Cell Biol, 40, 721-30. 

RAMAMOORTHY, S., LIU, W., MA, Y. Y., YANG-FENG, T. L., GANAPATHY, V. & 

LEIBACH, F. H. 1995. Proton/peptide cotransporter (PEPT 2) from human kidney: 

functional characterization and chromosomal localization. Biochim Biophys Acta, 1240, 

1-4. 

RASHIDBAIGI A., LANGER J. A., JUNG V., JONES C., MORSE H. G., TISCHFIELD J. A., 

TRILL J. J., KUNG H. F. & PESTKA S. 1986. The gene for the human immune 

interferon receptor is located on chromosome 6. Proc Natl Acad Sci U S A, 83,384-8. 

RAO, A. M., DRAKE, M. R. & STIPANUK, M. H. 1990. Role of the transsulfuration pathway 

and of gamma-cystathionase activity in the formation of cysteine and sulfate from 

methionine in rat hepatocytes. J Nutr, 120, 837-45. 

RESCIGNO M. 2010. Intestinal dendritic cells. Adv Immunol, 107,109-38. 

RIMBACH G., VALACCHI G., CANALI R. & VIRGILI F. 2000. Macrophages stimulated with 

IFN-gamma activate NF-kappa B and induce MCP-1 gene expression in primary human 

endothelial cells. Mol Cell Biol Res Commun, 3,238-42. 

RODIG S. J., MERAZ M. A., WHITE J. M., LAMPE P. A., RILEY J. K., ARTHUR C. D., 

KING K. L., SHEEHAN K. C., YIN L., PENNICA D., JOHNSON E. M., JR. & 

SCHREIBER R. D. 1998. Disruption of the Jak1 gene demonstrates obligatory and 

nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell, 93,373-83. 

ROME, S., BARBOT, L., WINDSOR, E., KAPEL, N., TRICOTTET, V., HUNEAU, J. F., 

REYNES, M., GOBERT, J. G. & TOME, D. 2002. The regionalization of PepT1, NBAT 



167 
 

and EAAC1 transporters in the small intestine of rats are unchanged from birth to 

adulthood. J Nutr, 132, 1009-11. 

ROTHE J., BLUETHMANN H., GENTZ R., LESSLAUER W. & STEINMETZ M. 1993. 

Genomic organization and promoter function of the murine tumor necrosis factor 

receptor beta gene. Mol Immunol, 30,165-75. 

ROTHE M., WONG S. C., HENZEL W. J. & GOEDDEL D. V. 1994. A novel family of 

putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor 

necrosis factor receptor. Cell, 78,681-92. 

RUBIO-ALIAGA, I. & DANIEL, H. 2002. Mammalian peptide transporters as targets for drug 

delivery. Trends Pharmacol Sci, 23, 434-40. 

RUFFELL B., CHANG-STRACHAN D., CHAN V., ROSENBUSCH A., HO C. M., PRYER 

N., DANIEL D., HWANG E. S., RUGO H. S. & COUSSENS L. M. 2014. Macrophage 

IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 

expression in intratumoral dendritic cells. Cancer Cell, 26,623-37. 

SAIER, M. H., JR., TRAN, C. V. & BARABOTE, R. D. 2006. TCDB: the Transporter 

Classification Database for membrane transport protein analyses and information. 

Nucleic Acids Res, 34, D181-6. 

SATOH, J., TSUJIKAWA, T., FUJIYAMA, Y. & BANBA, T. 2003. Enteral alanyl-glutamine 

supplement promotes intestinal adaptation in rats. Int J Mol Med, 12, 615-20. 

SCHOTTELIUS A. J., MAYO M. W., SARTOR R. B. & BALDWIN A. S., JR. 1999. 

Interleukin-10 signaling blocks inhibitor of kappaB kinase activity and nuclear factor 

kappaB DNA binding. J Biol Chem, 274,31868-74. 



168 
 

SCHRODER K., HERTZOG P. J., RAVASI T. & HUME D. A. 2004. Interferon-gamma: an 

overview of signals, mechanisms and functions. J Leukoc Biol, 75,163-89. 

SEDGER L. M., SHOWS D. M., BLANTON R. A., PESCHON J. J., GOODWIN R. G., 

COSMAN D. & WILEY S. R. 1999. IFN-gamma mediates a novel antiviral activity 

through dynamic modulation of TRAIL and TRAIL receptor expression. J Immunol, 

163,920-6. 

SHEN, H., SMITH, D. E. & BROSIUS, F. C., 3RD 2001. Developmental expression of PEPT1 

and PEPT2 in rat small intestine, colon, and kidney. Pediatr Res, 49, 789-95. 

SHEN, H., SMITH, D. E., YANG, T., HUANG, Y. G., SCHNERMANN, J. B. & BROSIUS, F. 

C., 3RD 1999. Localization of PEPT1 and PEPT2 proton-coupled oligopeptide 

transporter mRNA and protein in rat kidney. Am J Physiol, 276, F658-65. 

SHI, B., SONG, D., XUE, H., LI, J. & LI, N. 2006a. Abnormal expression of the peptide 

transporter PepT1 in the colon of massive bowel resection rat: a potential route for 

colonic mucosa damage by transport of fMLP. Dig Dis Sci, 51, 2087-93. 

SHI, B., SONG, D., XUE, H., LI, J., LI, N. & LI, J. 2006b. Abnormal expression of the peptide 

transporter PepT1 in the colon of massive bowel resection rat: a potential route for 

colonic mucosa damage by transport of fMLP. Dig Dis Sci, 51, 2087-93. 

SHI, B., SONG, D., XUE, H., LI, N. & LI, J. 2006c. PepT1 mediates colon damage by 

transporting fMLP in rats with bowel resection. J Surg Res, 136, 38-44. 

SHIRAGA, T., MIYAMOTO, K., TANAKA, H., YAMAMOTO, H., TAKETANI, Y., 

MORITA, K., TAMAI, I., TSUJI, A. & TAKEDA, E. 1999. Cellular and molecular 

mechanisms of dietary regulation on rat intestinal H+/Peptide transporter PepT1. 

Gastroenterology, 116, 354-62. 



169 
 

SHULMAN, R. J. 1993. The piglet can be used to study the effects of parenteral and enteral 

nutrition on body composition. J Nutr, 123, 395-8. 

SHYNTUM, Y., IYER, S. S., TIAN, J., HAO, L., MANNERY, Y. O., JONES, D. P. & 

ZIEGLER, T. R. 2009. Dietary sulfur amino acid supplementation reduces small bowel 

thiol/disulfide redox state and stimulates ileal mucosal growth after massive small bowel 

resection in rats. J Nutr, 139, 2272-8. 

SIDO, B., HACK, V., HOCHLEHNERT, A., LIPPS, H., HERFARTH, C. & DROGE, W. 1998. 

Impairment of intestinal glutathione synthesis in patients with inflammatory bowel 

disease. Gut, 42, 485-92. 

SILBERNAGL, S., GANAPATHY, V. & LEIBACH, F. H. 1987. H+ gradient-driven dipeptide 

reabsorption in proximal tubule of rat kidney. Studies in vivo and in vitro. Am J Physiol, 

253, F448-57. 

SILK, D. B., HEGARTY, J. E., FAIRCLOUGH, P. D. & CLARK, M. L. 1982. Characterization 

and nutritional significance of peptide transport in man. Ann Nutr Metab, 26, 337-52. 

SMITH, D. E., PAVLOVA, A., BERGER, U. V., HEDIGER, M. A., YANG, T., HUANG, Y. G. 

& SCHNERMANN, J. B. 1998. Tubular localization and tissue distribution of peptide 

transporters in rat kidney. Pharm Res, 15, 1244-9. 

SODHI, C., RICHARDSON, W., GRIBAR, S. & HACKAM, D. J. 2008. The development of 

animal models for the study of necrotizing enterocolitis. Dis Model Mech, 1, 94-8. 

SOLCAN, N., KWOK, J., FOWLER, P. W., CAMERON, A. D., DREW, D., IWATA, S. & 

NEWSTEAD, S. 2012. Alternating access mechanism in the POT family of oligopeptide 

transporters. EMBO J, 31, 3411-21. 



170 
 

SONDEREGGER F. L., MA Y., MAYLOR-HAGAN H., BREWSTER J., HUANG X., 

SPANGRUDE G. J., ZACHARY J. F., WEIS J. H. & WEIS J. J. 2012. Localized 

production of IL-10 suppresses early inflammatory cell infiltration and subsequent 

development of IFN-gamma-mediated Lyme arthritis. J Immunol, 188,1381-93. 

STEEL, A., NUSSBERGER, S., ROMERO, M. F., BORON, W. F., BOYD, C. A. & HEDIGER, 

M. A. 1997. Stoichiometry and pH dependence of the rabbit proton-dependent 

oligopeptide transporter PepT1. J Physiol, 498 ( Pt 3), 563-9. 

STEINHARDT, H. J. & ADIBI, S. A. 1986. Kinetics and characteristics of absorption from an 

equimolar mixture of 12 glycyl-dipeptides in human jejunum. Gastroenterology, 90, 577-

82. 

STETSON D. B., MOHRS M., REINHARDT R. L., BARON J. L., WANG Z. E., GAPIN L., 

KRONENBERG M. & LOCKSLEY R. M. 2003. Constitutive cytokine mRNAs mark 

natural killer (NK) and NK T cells poised for rapid effector function. J Exp Med, 

198,1069-76. 

SUKHOTNIK, I., SIPLOVICH, L., SHILONI, E., MOR-VAKNIN, N., HARMON, C. M. & 

CORAN, A. G. 2002. Intestinal adaptation in short-bowel syndrome in infants and 

children: a collective review. Pediatr Surg Int, 18, 258-63. 

SUN, X., YANG, H., NOSE, K., NOSE, S., HAXHIJA, E. Q., KOGA, H., FENG, Y. & 

TEITELBAUM, D. H. 2008. Decline in intestinal mucosal IL-10 expression and 

decreased intestinal barrier function in a mouse model of total parenteral nutrition. Am J 

Physiol Gastrointest Liver Physiol, 294, G139-47. 



171 
 

SURBATOVIC M., VELJOVIC M., JEVDJIC J., POPOVIC N., DJORDJEVIC D. & 

RADAKOVIC S. 2013. Immunoinflammatory response in critically ill patients: severe 

sepsis and/or trauma. Mediators Inflamm, 2013,362793. 

TANG P., HUNG M. C. & KLOSTERGAARD J. 1996. Human pro-tumor necrosis factor is a 

homotrimer. Biochemistry, 35,8216-25. 

TANNENBAUM C. S., MAJOR J. A. & HAMILTON T. A. 1993. IFN-gamma and 

lipopolysaccharide differentially modulate expression of tumor necrosis factor receptor 

mRNA in murine peritoneal macrophages. J Immunol, 151,6833-9. 

TERADA, T., SAITO, H. & INUI, K. 1998. Interaction of beta-lactam antibiotics with histidine 

residue of rat H+/peptide cotransporters, PEPT1 and PEPT2. J Biol Chem, 273, 5582-5. 

TERADA, T., SAITO, H., MUKAI, M. & INUI, K. 1997. Recognition of beta-lactam antibiotics 

by rat peptide transporters, PEPT1 and PEPT2, in LLC-PK1 cells. Am J Physiol, 273, 

F706-11. 

TERADA, T., SAITO, H., MUKAI, M. & INUI, K. I. 1996. Identification of the histidine 

residues involved in substrate recognition by a rat H+/peptide cotransporter, PEPT1. 

FEBS Lett, 394, 196-200. 

TERADA, T., SHIMADA, Y., PAN, X., KISHIMOTO, K., SAKURAI, T., DOI, R., 

ONODERA, H., KATSURA, T., IMAMURA, M. & INUI, K. 2005. Expression profiles 

of various transporters for oligopeptides, amino acids and organic ions along the human 

digestive tract. Biochem Pharmacol, 70, 1756-63. 

THAMOTHARAN, M., BAWANI, S. Z., ZHOU, X. & ADIBI, S. A. 1999. Hormonal regulation 

of oligopeptide transporter pept-1 in a human intestinal cell line. Am J Physiol, 276, 

C821-6. 



172 
 

THWAITES, D. T., HIRST, B. H. & SIMMONS, N. L. 1994. Substrate specificity of the 

di/tripeptide transporter in human intestinal epithelia (Caco-2): identification of 

substrates that undergo H(+)-coupled absorption. Br J Pharmacol, 113, 1050-6. 

TING A. T., PIMENTEL-MUINOS F. X. & SEED B. 1996. RIP mediates tumor necrosis factor 

receptor 1 activation of NF-kappaB but not Fas/APO-1-initiated apoptosis. EMBO J, 

15,6189-96. 

TURNER J. R. 2009. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol, 

9,799-809. 

UDALL, J. N., PANG, K., FRITZE, L., KLEINMAN, R. & WALKER, W. A. 1981. 

Development of gastrointestinal mucosal barrier. I. The effect of age on intestinal 

permeability to macromolecules. Pediatr Res, 15, 241-4. 

URTTI, A., JOHNS, S. J. & SADEE, W. 2001. Genomic structure of proton-coupled 

oligopeptide transporter hPEPT1 and pH-sensing regulatory splice variant. AAPS 

PharmSci, 3, E6. 

VANDENABEELE P., DECLERCQ W., BEYAERT R. & FIERS W. 1995. Two tumour 

necrosis factor receptors: structure and function. Trends Cell Biol, 5,392-9. 

VANDERHOOF, J. A., BLACKWOOD, D. J., MOHAMMADPOUR, H. & PARK, J. H. 1992. 

Effects of oral supplementation of glutamine on small intestinal mucosal mass following 

resection. J Am Coll Nutr, 11, 223-7. 

VAVRICKA, S. R., MUSCH, M. W., FUJIYA, M., KLES, K., CHANG, L., ELORANTA, J. J., 

KULLAK-UBLICK, G. A., DRABIK, K., MERLIN, D. & CHANG, E. B. 2006. Tumor 

necrosis factor-alpha and interferon-gamma increase PepT1 expression and activity in the 



173 
 

human colon carcinoma cell line Caco-2/bbe and in mouse intestine. Pflugers Arch, 452, 

71-80. 

VAZQUEZ, J. A., DANIEL, H. & ADIBI, S. A. 1993. Dipeptides in parenteral nutrition: from 

basic science to clinical applications. Nutr Clin Pract, 8, 95-105. 

VAZQUEZ, J. A., MORSE, E. L. & ADIBI, S. A. 1985. Effect of starvation on amino acid and 

peptide transport and peptide hydrolysis in humans. Am J Physiol, 249, G563-6. 

VIG, B. S., STOUCH, T. R., TIMOSZYK, J. K., QUAN, Y., WALL, D. A., SMITH, R. L. & 

FARIA, T. N. 2006. Human PEPT1 pharmacophore distinguishes between dipeptide 

transport and binding. J Med Chem, 49, 3636-44. 

WALKER, D., THWAITES, D. T., SIMMONS, N. L., GILBERT, H. J. & HIRST, B. H. 1998. 

Substrate upregulation of the human small intestinal peptide transporter, hPepT1. J 

Physiol, 507 ( Pt 3), 697-706. 

WANG P., WU P., SIEGEL M. I., EGAN R. W. & BILLAH M. M. 1995. Interleukin (IL)-10 

inhibits nuclear factor kappa B (NF kappa B) activation in human monocytes. IL-10 and 

IL-4 suppress cytokine synthesis by different mechanisms. J Biol Chem, 270,9558-63. 

WANG, W., SHI, C., ZHANG, J., GU, W., LI, T., GEN, M., CHU, W., HUANG, R., LIU, Y., 

HOU, Y., LI, P. & YIN, Y. 2009. Molecular cloning, distribution and ontogenetic 

expression of the oligopeptide transporter PepT1 mRNA in Tibetan suckling piglets. 

Amino Acids, 37, 593-601. 

WATANABE, K., TERADA, K., JINRIKI, T. & SATO, J. 2004. Effect of insulin on cephalexin 

uptake and transepithelial transport in the human intestinal cell line Caco-2. Eur J Pharm 

Sci, 21, 87-95. 



174 
 

WEAVER, L. T., LAKER, M. F. & NELSON, R. 1984. Intestinal permeability in the newborn. 

Arch Dis Child, 59, 236-41. 

WERSHIL B. K. & FURUTA G. T. 2008. 4. Gastrointestinal mucosal immunity. J Allergy Clin 

Immunol, 121,S380-3.. 

WINCKLER, C., BREVES, G., BOLL, M. & DANIEL, H. 1999. Characteristics of dipeptide 

transport in pig jejunum in vitro. J Comp Physiol B, 169, 495-500. 

WU, G., FANG, Y. Z., YANG, S., LUPTON, J. R. & TURNER, N. D. 2004. Glutathione 

metabolism and its implications for health. J Nutr, 134, 489-92. 

WU, S. P. & SMITH, D. E. 2013. Impact of intestinal PepT1 on the kinetics and dynamics of N-

formyl-methionyl-leucyl-phenylalanine, a bacterially-produced chemotactic peptide. Mol 

Pharm, 10, 677-84. 

WUENSCH, T., SCHULZ, S., ULLRICH, S., LILL, N., STELZL, T., RUBIO-ALIAGA, I., 

LOH, G., CHAMAILLARD, M., HALLER, D. & DANIEL, H. 2013. The peptide 

transporter PEPT1 is expressed in distal colon in rodents and humans and contributes to 

water absorption. Am J Physiol Gastrointest Liver Physiol. 

YANG, B. & SMITH, D. E. 2013. Significance of peptide transporter 1 in the intestinal 

permeability of valacyclovir in wild-type and PepT1 knockout mice. Drug Metab Dispos, 

41, 608-14. 

YEUNG, A. K., BASU, S. K., WU, S. K., CHU, C., OKAMOTO, C. T., HAMM-ALVAREZ, S. 

F., VON GRAFENSTEIN, H., SHEN, W. C., KIM, K. J., BOLGER, M. B., HAWORTH, 

I. S., ANN, D. K. & LEE, V. H. 1998. Molecular identification of a role for tyrosine 167 

in the function of the human intestinal proton- coupled dipeptide transporter (hPepT1). 

Biochem Biophys Res Commun, 250, 103-7. 



175 
 

ZDANOV A., SCHALK-HIHI C., GUSTCHINA A., TSANG M., WEATHERBEE J. & 

WLODAWER A. 1995. Crystal structure of interleukin-10 reveals the functional dimer 

with an unexpected topological similarity to interferon gamma. Structure, 3,591-601. 

ZHANG, Q., LIU, Q., WU, J., WANG, C., PENG, J., MA, X. & LIU, K. 2009. PEPT1 involved 

in the uptake and transepithelial transport of cefditoren in vivo and in vitro. Eur J 

Pharmacol, 612, 9-14. 

ZIEGLER, T. R., FERNANDEZ-ESTIVARIZ, C., GU, L. H., BAZARGAN, N., 

UMEAKUNNE, K., WALLACE, T. M., DIAZ, E. E., ROSADO, K. E., PASCAL, R. R., 

GALLOWAY, J. R., WILCOX, J. N. & LEADER, L. M. 2002. Distribution of the 

H+/peptide transporter PepT1 in human intestine: up-regulated expression in the colonic 

mucosa of patients with short-bowel syndrome. Am J Clin Nutr, 75, 922-30. 

ZLOTKIN, S. H. & ANDERSON, G. H. 1982. The development of cystathionase activity during 

the first year of life. Pediatr Res, 16, 65-8. 

  

 

 


