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Abstract

The recognition of chemical similarities between molecules plays an important role in

chemical science, especially in the subjects of chemistry, biology and pharmaceuticals.

Traditional methods of structure recognition are time consuming, usually involving

a lot of experimentation and computational effort. The goal of the research is to

create an algorithm to compare two chemical structures automatically with basic

information. The algorithm only requires atom Cartesian coordinates, atom types

and connectivity information of the structures as input. It uses a novel method to

pair the atoms in the two structures such that the best superimposition is achieved.

A similarity score is computed based on this best superimposition.

The algorithm can also be used to search a large set of molecules for a structure

similar to a query molecule. An application is developed to display the two struc-

tures to be compared and provide a 3D image of their best superimposition based

on the auto-pairing of the atoms. Run-time analysis of the algorithm reveals that

the traditional time complexity does not describe the run-time of the algorithm well.

Linear regression indicates that the run-time is strongly influenced by the number of

triplets (consisting of 3 atoms joined by 2 bonds) matched between the two structures.

Testing of the algorithm on an in-house data-set of 737 structures as well as a larger

NCI-sourced database demonstrates its utility.
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Chapter 1

Introduction

Chemistry is a science that studies the composition, structure, properties and varia-

tions of substances on an atomic level. An atom is the basic building block of chemical

structures. The arrangement of a substance’s atoms reveals its properties. In earlier

ages, people could study the properties of a substance only by chemical experiments.

All that was known was when mixing a substance with a particular substance, some

reactions may happen (color change, precipitations, etc.). Thus, the properties of a

substance were studied by the reactions observed in different chemical experiments.

With the development of quantum chemistry, the study of chemistry reached the

electronic level. A substance is composed of molecules and a molecule is composed of

atoms. The arrangement of atoms in a molecule can be determined, which provides

a more intuitive way to study the properties of a substance. By using spectroscopic

methods, a 3D geometric structure of a molecule can be obtained. A molecule can be

represented by spheres and cylinders in three dimensional space. Different atoms are

represented by different size spheres. The bonds between the atoms are represented

by different length cylinders. Figure 1.1 shows an image of the 3D geometric structure

of the molecule 5-methyl-2-pyridinamine (C6H8N2). The white spheres represent hy-
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drogen atoms, the grey spheres represent carbon atoms and the blue spheres represent

nitrogen atoms. The cylinders connecting the spheres represent the bonds between

the atoms. It can be seen that the 3D representation of a molecule provides a more

clear and intuitive image of a molecule than its molecular formula or name.

Figure 1.1: 3D geometric structure of 5-methyl-2-pyridinamine (C6H8N2).

Examining the structure of a molecule provides a more effective way to study a

substance. It avoids the use of time-consuming experiments. Chemists usually try to

study an unknown substance’s properties by chemical experiments. Assuming that

chemists would like to study the properties of ortho-hydroxybenzoic (C6H4(OH)(COOH)),

they could mix it with other chemical substances and observe the chemical reac-

tions that occur. For example, if ferric trichloride (FeCl3) liquid is added to ortho-

hydroxybenzoic liquid, the mixed liquid will become purple, as in reaction (1.1):

6C6H5OH + FeCl3 → H3[Fe(OC6H5)6](Purple) + 3HCl. (1.1)

As a result, chemists know that ortho-hydroxybenzoic contains a substructure hy-
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droxybenzene (C6H5OH), since the hydroxybenzene ion will form purple complexes

with Fe3+, as in reaction (1.1). One can then assume that ortho-hydroxybenzoic

may have the same properties as hydroxybenzene and further experiments can be

performed to prove it. In practice, chemists may have tried hundreds of liquids

other than ferric trichloride because they did not know the composition of ortho-

hydroxybenzoic. Even observing purple complexes upon adding ferric trichloride

liquid to ortho-hydroxybenzoic liquid, does not confirm that ortho-hydroxybenzoic

contains hydroxybenzene since ions other than hydroxybenzene may also form purple

complexes with Fe3+. Thus, further experiments are required. It takes quite a long

time to perform all the experiments required.

However, by examining the structure of ortho-hydroxybenzoic, it can be seen di-

rectly that it contains hydroxybenzene as a substructure. The structure of hydroxy-

benzene and ortho-hydroxybenzoic is shown in Figure 1.2.

Figure 1.2: Structure of hydroxybenzene(left) and ortho-hydroxybenzoic(right).

As can be seen from the above example, studying the structure from an atomic

perspective greatly eases chemical research. However, in real world practice, the sub-

stance to be studied is much more complex. It may be impossible for chemists to

find similar substructures manually. With the development of computers, chemists
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may automate the process of finding similar structures or substructures. Thus, a

reliable method of comparing structural differences is needed. Recognizing the simi-

larity between two chemical structures with hundreds or even thousands of atoms is

a challenge, and an interesting topic in computational chemistry.

In order to use computers to compare molecules, a quantitative value to describe

their similarity is needed. It is a challenge to define a strict and accurate value that

can generally describe the similarity between molecules. Consequently, a large number

of approaches have been invented over the past several years [1–3,5,6,8–12]. However,

these approaches all have their pros and cons in describing the similarity between the

molecules (details will be discussed in Chapter 2). It remains a struggle to find a

universal measurement to define similarity.

With the increasing use of 3D molecular structure databases in modern chemical

research, finding similar molecules from a database containing thousands of molecules

becomes more and more crucial. Thus, an algorithm must not only compare the

similarity between two molecules, but also search an entire database to find molecules

that are similar to a particular query structure. A structure that a user uses as a

reference structure to find similar structures is called a “query” structure in this thesis,

while the molecule to which it is being compared is called the “target” structure.

The goal of this research is to define a proper measurement to describe the similarity

between molecules and create a robust algorithm that is able to compare two molecules

automatically, requiring no additional information besides structural files containing

only atomic Cartesian coordinates, atom types and connectivity information. This

algorithm can also be used to search 3D molecular structure databases for molecules

similar to a particular query molecule.



Chapter 2

Literature Review

Methods for recognition of chemical similarities between molecules are essentially of

two types: superimposing methods and non-superimposing methods. Superimposing

methods rely on the best superimposition of the molecules for comparison, while non-

superimposing methods use internal quantities of each molecule that are independent

of a particular orientation to measure the difference.

2.1 Non-Superimposing methods

Non-superimposing methods focus on the comparison of pre-computed descriptors

(sometimes computing these descriptors is very expensive) that can represent the

essential features of the molecule. This allows for identification of similarities between

molecules at a low computation cost based on these descriptors (once they are pre-

computed), and is an obvious advantage over superimposing methods that are quite

time-consuming.

The basic idea of non-superimposing methods is to obtain some specific values cal-

culated from atom types, distances between atoms, or other information in a molecule,

to form one or more histograms of these values. Interatomic distances or surface data

5
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are often used to form these specific values. The shape similarity is then based on the

similarity in the statistical properties such as moments or frequencies of these values

between two molecules. In [1], the devised method considers a molecular structure

that may be abstracted by its all-pairs-shortest-paths matrix and the distance matrix.

The shortest distance between any two atoms in a molecule, through the molecule’s

bonds, is stored in the all-pairs-shortest-paths matrix and the geometric distance be-

tween any two atoms in a molecule is stored in the distance matrix. This method

calculates the Euclidean metric between the histograms of these two matrices to obtain

a similarity score for the two molecules. Two years later, this method was updated

by using atom-based descriptors and surface-based descriptors [2]. Atom-based de-

scriptors are atom triangle bit strings and atom triangle histograms. This method

considers all combinations of atom triplets in the molecule. It digitizes atom-atom

distances using a 1.0 Angstrom range and sorts the sides of each triplet containing

distances smaller than 30 Angstroms by length (long, intermediate, short). The re-

sulting values are used to turn on the variable, which is stored in a logical array

named SHAPE (long, intermediate, short). After all triplets have been calculated,

the SHAPE array is packed into a bit string, which acts as one of the atom-based

descriptors. The atom triangle histogram is constructed from triplets’ perimeters and

triplets’ area ratios. A triplet area ratio is calculated as:

Ratio = A

Amax
exp(−(((P/3− S1)2)1/2 + ((P/3− S2)2)1/2 + ((P/3− S3)2)1/2/2P/3)),

(2.1)

where,

A = (P/2(P/2− S1)(P/2− S2)(P/2− S3))1/2,

Amax = (P 4/432)1/2,
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P is the perimeter of a triplet and S1, S2, S3 are the lengths of its three edges.

All the triplets’ perimeters are binned in 1 Angstrom ranges up to 50 Angstroms

in length, and all longer perimeters are ignored. The area ratio is multiplied by 10

and digitized, producing 10 ratio bins. The resulting integer array is SHAPE (ratio,

perimeter). Each time triplet data are calculated, the associated array variable is

increased by one. In this way, the atom triangle histogram is built up.

Surface based descriptors are centroid triangle perimeter surface histograms, cen-

troid triangle/normal angle surface histograms, multi-surface descriptor bit strings

and clustered triangle surface histograms [2]. These descriptors require surface data

of a molecule generated by placing uniform points on the molecular or active-site sur-

face. The method then constructs centroid triangles using surface point centroids and

all combinations of surface point pairs, and stores the perimeter data in 50 bins of 1

Angstrom to form the centroid triangle perimeter surface histograms. The centroid

triangle/normal angle surface histograms are constructed using the centroid triangles

with the same method as the atom triangle histogram, but with the perimeters binned

in 1.5 Angstrom ranges up to 60 Angstroms. The area ratio is then multiplied by 7 and

digitized to produce seven area ratio bins. In addition, the angles between normals are

binned in three angle bins (60 ◦, 120 ◦, 180 ◦) to form a histogram. The multi-surface

descriptor bit string is created by packing a five-dimensional array containing infor-

mation of centroid triangle perimeter, area ratio, normal angle, normal torsion and

curvature as a bit string. The five-dimensional array contains 40 perimeter slots of

1.5 Angstroms, five area ratio slots, three 60 ◦ normal angle slots, six 60 ◦ normal tor-

sion slots and six curvature slots. The clustered triangle surface histograms are built

up using the same procedure as the atom triangle histogram but using the triangles

determined between clustered points. All surface points associated with a particular

atom are clustered. All points within 1.5 Angstrom of each other are assigned to the
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same cluster and all clusters with a surface area less than 0.5 Angstrom2 are removed.

The method then calculates the similarity between the molecules by measuring the

difference between the histograms with ∑n
i=1 B

2
i /

∑m
i=1 max(TA,i, TB,i)2. Here, m and

n are the total number of bins of a histogram, or the length of a bit string, the B

is the number of descriptors overlapping between equivalent histogram bins, or the

number of matching bits for equivalent packed integers, and TA and TB are the values

for the individual descriptors for the same histogram bins/packed integers.

Randy J. Zauhar et al. [3] presents a method using a quite different approach to

describe molecules by shape signature. This method compares the difference between

a histogram of the information derived from the simulation of a ray-trace reflecting

within the molecular volume to measure the similarity between two molecules. It

uses the smooth molecular surface triangulator algorithm [4] to generate the solvent-

accessible molecular surface. The method then initiates a ray from a random point

on the molecular surface in a random direction towards the inside of a molecule. The

ray is propagated by the rules of optical reflection and the line segments that connect

two successive reflection points are saved. The distribution of the length of these

segments is then used as the shape signature of the molecule. The similarity score is

calculated as the sum of all the differences in all the bins between the histograms of

two molecules.

Among all of these non-superimposing methods, the ultrafast shape recognition

(USR) method is perhaps the most popular one [5]. USR uses the first three moments

of the distribution of different preconstructed distance sets in a molecule as shape

descriptors. First, USR chooses four significant locations in a molecule to construct

the distance sets: the molecular centroid (CTD), the closest atom to CTD (CST), the

farthest atom from CTD (FCT) and the farthest atom from FCT (FTF). USR then

calculates the distances between every atom of the molecule and these four locations,
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so that four distances sets, {dCTDk }Nk=1, {dCSTk }Nk=1, {dFCTk }Nk=1 and {dFTFk }Nk=1 (N is

the number of atoms) are obtained. Next, USR calculates the first three moments of

the distribution of these four data sets. The moments of the distribution of random

variables X1, X2, ... Xn can be calculated with the following equations:

µ1 = 1
n

n∑
i=1

Xi,

µr = 1
n− 1

n∑
i=1

(Xi − X̄)r (r = 2, 3...n), (2.2)

where µr is the rth moment and X̄ is the mean of the data set. By using these two

equations, the first three moments of the data sets {dCTDk }Nk=1, {dCSTk }Nk=1, {dFCTk }Nk=1

and {dFTFk }Nk=1 can be calculated. Thus, twelve shape descriptors can be obtained for a

molecule. Every molecule can be denoted as a vector of these shape descriptors: M =

{µCTD1 , µCTD2 , µCTD3 , µCST1 , µCST2 , µCST3 , µFCT1 , µFCT2 , µFCT3 , µFTF1 , µFTF2 , µFTF3 }. Once

each molecule in a database is described with these shape descriptors, a normalized

score function is used to quantify the degree of similarity between molecules. USR

uses the inverse of the translated and scaled Manhattan distance between both vectors

of shape descriptors, where a value of 1 corresponds to maximum similarity and 0 to

minimum similarity. The similarity score of USR is defined in Equation (2.3) where

ml is the lth element in the 12 shape descriptors of a query molecule, and m′l is the

lth element in the 12 shape descriptors of a target molecule,

S = 1
1 + 1

12
∑12
l=1 ‖ml −m′l‖

∈ (0, 1]. (2.3)

The descriptors that some non-superimposing methods use do not contain any

chemical information. These methods are less effective than superimposing meth-

ods. Andrew et al. suggests that it is better to use the methods described in [1, 2]
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as pre-screening methods to search a chemical structure database rather than as a

stand-alone application. Hence, some non-superimposing methods cannot ensure suc-

cess for all cases. Sometimes it is best if a user can look at the results or combine

non-superimposing methods with a superimposing method. In addition, although

the comparison calculations may seem efficient, the descriptors used in these meth-

ods must be pre-computed for every molecule, as their computation is quite time-

consuming. For example, Pedro et al. [5] reported that a database of just 113, 331

molecules takes about 1600 hours to calculate the shape signature. Also, the storage

of these descriptors needs additional space. The USR is reported in [5] to be both

effective and efficient among these non-superimposing methods. The descriptors it

uses are easy to calculate and this algorithm does find structures similar to the target

structure. This method essentially calculates the similarity between molecules using

those statistical measurements of interest to the chemical researcher. In [5] they find

the most similar molecules within a multi-billion molecule database in a matter of

minutes using a single processor, which is more than three orders of magnitude faster

than the previous fastest method.

2.2 Superimposing methods

Superimposing methods attempt to find the best overlap between molecules, including

the correct assignment of atoms, and measuring the similarity using root-mean-square-

distance or angles. The general idea of all superimposing methods is the same, that is,

to find the best superimposition by rotation and translation of one of the structures

[6, 8–11].

Nissink et al. [6] uses a crystallographic Fourier transform approach to superim-

pose molecules. For two molecules superimposed in space, a similarity index can be
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calculated based on electron density. A molecule can be represented by electron dis-

tribution in Fourier space based on X-ray crystallography. A molecule is placed at

the center of a cubic unit cell of side a which is part of a hypothetical cubic lattice.

The continuous electron distribution is described by a set of reciprocal lattice vectors

by Laue indices, h, and their corresponding structure factors, Fh,

Fh =
∫
Vcell

ρ(r)exp(2πih · r)V dr, (2.4)

where r is the positional vector of the unit cell, ρ is the electron density distribution

and V is the volume of the unit cell. Fh also can be calculated as a complex vector

of length |Fh| and phase ϕh:

Fh = |Fh|V exp(iϕh) (2.5)

The optimal superimposition is achieved when the overlap of electron density is max-

imized by the following function:

∑
h
‖FA

h ‖‖FB
h ‖cos(ϕAh − ϕBh )− 2πh · y, (2.6)

where ϕAh and ϕBh are phases of structure factors FA
h and FB

h , and y is the trans-

lation vector to be optimized given the orientation of structure A and B [6]. The

structure factor can be calculated by Equation (2.4) and the phase can be calculated

by Equation (2.5). There are also many other molecular similarity methods based

on electron density, which are outside of the scope of this thesis. A detailed review

can be found in Popelier [7]. Gironés et al. [8] introduced a superimposing method

by overlapping the largest substructures between two molecules. The most popular

and intuitive method is trying to find the rotation that minimizes the distance be-
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tween corresponding atoms [9–11]. All of the methods that use this approach find

the overlap that minimizes the root mean square deviation (RMSD) as in Equation

(2.7), where NA and NB denote the number of atoms in molecules A and B respec-

tively, (xAi , yAi , zAi ) and (xBi , yBi , zBi ) are the Cartesian coordinates of the ith atom in

molecules A and B,

RMSD =
min(NA,NB)∑

i=1

√√√√(xBi − xAi )2 + (yBi − yAi )2 + (zBi − zAi )2

min(NA, NB) . (2.7)

Henceforth in this thesis, two molecules to be compared will be denoted by superscript

A and B, with the above notation for the Cartesian coordinates. The subscript refers

to a particular atom within a molecule, and in the above case, the atoms between the

two molecules have been paired. The difference between existing RMSD methods is

in the approach used to find the required rotation. Liu and Van Rapenbusch [10]

presented a method using the Eulerian matrix, Lesk [11] published a method based on

polar angles, and the most preferable method uses quaternion parameterizations [9].

Since quaternions include information about the rotation axis and the rotation angle,

they avoid extra parameters to represent a rotation, as required by other methods.

The principle of using quaternions will be introduced in detail in the next chapter.

Each of above superimposing methods has its shortcomings. The method in [6]

needs additional electron density information of a molecule that is not always avail-

able. The method in [8] is trying to find the most similar molecule by overlapping the

largest identical substructure of two molecules. This method works fine for similar

molecules with identical atoms but may fail at some cases when the overall geometric

structure is very similar or the same but the atoms are not. Methods introduced

in [9–11] suffer from the labeling problem of atoms since these methods require the

correct mapping between the atoms of the two molecules being compared. Recently,
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Vásquez-Pérez et al. [12] designed a superimposing algorithm that solves the atom-

labeling problem and finds the best superimposition in a self-consistent way. How-

ever, this method uses a probabilistic approach, which applies random rotations to

the query structure, until a minimum RMSD is found 50 times. Owing to the ran-

domness of the approach, it is possible that the 50-times-occurred RMSD is not the

true minimum RMSD. Thus, its reliability is arguable. Furthermore, since the 50

repetitions is an arbitrary criteria, the run-time performance of the approach is also

arbitrary. In the next chapter, an effective and intuitive algorithm that computes

the similarity between molecules based on finding the correct assignment and overlap

between atoms will be presented.



Chapter 3

Objectives and Approach

3.1 Objectives

The objective for this thesis is to design a robust algorithm based on the superim-

position method that can compare two chemical molecules and produce a similarity

score. The algorithm requires the types of the atoms (as defined in Staveley [13]),

their Cartesian coordinates, and their connectivity information as input. The atom

type of an atom is based on its atomic symbol, the atomic numbers of its connected

(nearest-neighbour) atoms, and the valency (that is, the number of atoms that it

can bond to). It is based on the proprietary descriptor as described in Staveley’s

thesis [13]. The connectivity can be calculated from the Cartesian coordinates of a

molecule’s atoms by many chemical software packages such as Jmol [14]. As it is a

basic calculation in computation chemistry, it is assumed to be given (input) for the

algorithm presented here.

Usually to find very similar items, one wants to maximize a similarity score. How-

ever, in this thesis, the smaller the value of the similarity score, the more similar the

two molecules. The algorithm can also be used to find molecules similar to a query

14
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molecule by searching a database of chemical structures.

3.2 Approach

The basic purpose of the algorithm is to measure the similarity between two chemi-

cal structures by finding the best superimposition in three dimensional space. This

superimposition is performed by rotating one of the molecules to match the other.

The following sections will introduce the algorithm in detail. First, a measurement

is defined to describe the similarity between two molecules. Second, a method is

presented to pair the atoms in two molecules. The reason for including this step,

rather than finding the rotation directly, is discussed. This pairing method is the

novel contribution of the thesis. Finally, an existing method that is used to find the

rotation that achieves the best superimposition of two molecules is introduced [9].

The complete algorithm is illustrated by the flow chart in Figure 3.1.
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Figure 3.1: Flow chart illustrating the algorithm to compute the similarity between
two molecules.

A summary of the algorithm is as follows (the step number corresponds to the

circled number in each box of the flow chart in Figure 3.1), with the details presented

in the following sections:

1. Algorithm starts.

2. Read in structural information of two molecules that includes Cartesian co-

ordinates, type of each atom (as defined in Staveley [13]), and connectivity

information.



17

3. Find all atom triplets in each molecule. For each atom triplet, three atoms have

to be bonded in the molecule and cannot be co-linear in geometrical space (the

definition of atom triplet is introduced in Section 3.2.2.1).

4. Initialize the variable used to save the sum of all the distances between the

mapped atoms of two molecules, as well as the variable used to save the potential

correct mapping of atoms between the two molecules.

5. Each time through the loop (Step 5 to Step 13), without replacement, choose

one triplet from molecule A and one triplet from molecule B to compare.

6. Compare the triplet in molecule A to the triplet in molecule B. If the atoms

in the two triplets are mapped, continue to next step. Otherwise go to step 13

(details about how to distinguish if the atoms in the two triplets are mapped

are introduced in Section 3.2.2.1).

7. Compute the mapping of each atom for matched triplets (details about how to

map the atoms for mapped triplets are introduced in Section 3.2.2.1).

8. Compute the rotation that makes the atoms of two triplets overlap (details

about how to get the rotation are introduced in Section 3.2.2.2).

9. Apply this rotation to molecule A.

10. Run the Hungarian algorithm to get the best mapping of all the atoms in the

two molecules for the current structural orientation (rationale for the Hungarian

algorithm and how to apply it are introduced in Section 3.2.2.1).

11. If the sum of all the distances between the mapped atoms in the two molecules

is smaller than the saved one, proceed to next step. Otherwise, go to step 13.
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12. Replace the saved sum of all the distances between the mapped atoms, as well

as the mapping information with the newly calculated ones.

13. If finished comparing all the triplets of two molecules, continue. Otherwise, go

to step 5.

14. If the variable for saving the correct mapping is NULL (which means there is

no mapping between all the triplets in the two molecules), then, go to step 10

to obtain the mapping based on the original orientation of the two molecules.

Otherwise, go to next step.

15. Get the rotation that minimizes the RMSD between the two molecules based

on the best mapping of atoms achieved from the above steps (details about how

to get the rotation are introduced in Section 3.2.2.2.)

16. Calculate the similarity score (details of defining similarity score are introduced

in Section 3.2.1.)

17. Algorithm ends.

3.2.1 Definition of similarity

As introduced in the last chapter, from a geometric point of view, if two chemi-

cal molecules are the same, then they can be fully overlapped in three dimensional

space. The distance between the corresponding atoms is then zero. If they are simi-

lar molecules, some of the corresponding atoms may be overlapped while others may

be close to each other when they are at their best superimposition. Thus, the cho-

sen superimposing method uses the root mean square deviation (RMSD in Equation

(2.7)) as a similarity measure. The smaller the RMSD, the more similar the molecules
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are. However, some circumstances may exist where the RMSD is not enough to de-

scribe the similarity adequately. For example, the overall geometrical structure of

two molecules may be very similar or the same while the atom types are different.

For this case, the RMSD is the same (zero) even though there are different atoms

between these two molecules. Obviously, it is unreasonable that two molecules with

more identical atoms have the same similarity score as two molecules with less identi-

cal atoms, even if the geometrical structure is the same. If a chemist wants to search

a database for a molecule similar to a query molecule using this similarity score, he

may find many molecules with the same (minimal) RMSD. Among these molecules

with the same minimal RMSD, some will have the same geometrical structure but

different atom types from the query molecule. In this case, a chemist has to check

the atom types manually in order to find the most similar molecule.

Although the RMSD has its limitations, it is still useful to describe the structural

differences on a geometric basis. In order to take atom types into consideration when

measuring the similarity between the two molecules, the algorithm uses both the

RMSD and the atom type to measure the similarity of two molecules. The algorithm

calculates the RMSD and the number of identical atoms between the two molecules.

It then uses the ratio of the number of identical atoms to the total number of atoms

(the “similarity ratio”) as a weight for the similarity score RMSD. In the case where

the two molecules contain a different number of atoms, the total number of atoms

is the number of atoms in the larger molecule. Therefore, the similarity score (S)

between any two molecules (denoted as A and B) is defined as the RMSD between

the paired atoms divided by the similarity ratio:

S =
∑min(NA,NB)
i=1

√
(xB

i −x
A
i )2+(yB

i −y
A
i )2+(zB

i −z
A
i )2

min(NA,NB)
NA=B

max(NA,NB)
, (3.1)
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where NA=B is the number of identical atoms in A and B. For molecules with the

same geometrical structure and identical atoms, the similarity score is equal to the

RMSD. Note that when RMSD is equal to zero (identical structure), the similarity

ratio ([0, 1)) will not have any effect. As a result, structures with identical geometry

but different atoms would still have a similarity score of zero. In practice, due to

round-off errors in computers, even for two identical molecules, the calculated RMSD

value may be close to zero but will never equal zero.

3.2.2 Comparison algorithm

This section will introduce and explain the comparison algorithm. The algorithm

requires only the structural files for the molecules to be compared, which contain the

Cartesian coordinates, atom types (as defined in Staveley [13]) and the connectivity

information of the atoms in the molecule. The algorithm will then find the best su-

perimposition of the two molecules and calculate a similarity score. In this thesis, the

best superimposition is considered to be the superimposition with minimum RMSD

of the two compared structures. In contrast to the available superimposition algo-

rithms [9–11], the Cartesian coordinates of the atoms do not need to be in the same

order in the two structural files. The algorithm will automatically find the mapping

of the corresponding atoms in the two molecules for the user.

As introduced in Chapter 2, all the available algorithms compute the similarity

by rotating one molecule until the best superimposition of the two molecules is

achieved [9–11]. All the equations to calculate the rotation require values for cor-

responding atoms. These algorithms all assume that the order of the atoms in the

structural files of the two molecules to be compared is the correct mapping. However,

for general chemical structures, there is no conventional ordering for the atoms in

the structural file. Even for the same molecule, the sequence of labeling the atoms
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in the structural file may vary because the file was created by different applications

or different users. Mapping the atoms of two molecules according to the default or-

der of atoms in the structural files may produce the wrong result. Most available

algorithms suffer from this labeling problem [9–11]. Applications like Jmol try to

solve this problem by allowing the user to provide the correct mapping information

manually [14]. For molecules with few atoms, this may not be such an onerous task.

However, it is unrealistic for the user to provide the correct mapping information for

complex molecules with tens or hundreds of atoms (or more). Furthermore, if the

users want to use this algorithm to find a similar molecule from a database containing

hundreds of thousands or millions of molecules, it is impossible for them to provide

the mapping information of all the atoms of all of these molecules. As a result, su-

perimposition methods without correct mapping cannot be used to search a database

to find the most similar molecule to a query molecule, even though they can provide

more accurate results.

Thus, the algorithm has two parts. The first part will find the correct mapping

of the atoms between the two molecules to be compared. The second part will use

known methods to find the best superimposition of the two molecules based on the

identified mapping, and then provide a similarity score.

3.2.2.1 Finding the correct mapping of the atoms

As mentioned in Section 3.2.1, this algorithm is looking for the minimum similarity

score (Equation (3.1)). For any two molecules, the values of NA, NB, NA=B (number

of atoms) are constant. Thus, this algorithm is looking for the minimum value of the

following equation, which is the sum of all the distances between the corresponding

atoms,

d =
min(NA,NB)∑

i=1

√
(xBi − xAi )2 + (yBi − yAi )2 + (zBi − zAi )2. (3.2)
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However, as mentioned in the previous section, the labeling order of the atoms in

molecule A may not be the same as in molecule B. The correct mapping between the

atoms in the two molecules is unknown. The most intuitive way to find the minimum d

is to try all the different mappings of atoms between two molecules and to see which

mapping minimizes the sum of all the distances between the corresponding atoms.

However, this method is too computationally expensive. If there are N atoms in each

molecule, then N ! mappings need to be tried. An algorithm developed by Kuhn and

Munkres [15] solves this kind of general assignment problem. The algorithm is called

the Hungarian algorithm. It is a linear programming algorithm designed for solving

the problem of personnel-assignment. This problem is to find the best assignment

of a set of n persons to a set of n jobs, where the possible assignments are ranked

by the total scores or ratings of the workers in the jobs to which they are assigned

[15, 16]. The Hungarian algorithm reduces the time complexity of the problem from

n! to n3. Here, this algorithm is applied to solve the mapping problem of the atoms

in two molecules to be compared.

In our case, we can consider the set of atoms in one molecule as a set of persons and

the set of atoms in the other molecule as a set of jobs. The result of the Hungarian

algorithm provides the assignment between corresponding atoms that we are looking

for.

The Hungarian algorithm requires a matrix containing ranking information between

the persons and the jobs. Usually the ranking values represent the efficiency of person

i performing job j. Here, we rank all the atoms according to the atom type (as defined

in Staveley [13]) and the distances between every two atom pairs. The information can

be presented effectively by a matrix F , in which horizontal rows (persons) correspond

to atoms of one molecule and vertical columns (jobs) correspond to atoms of the

other molecule. An element Fij of the matrix is the ranking between the ith atom in
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molecule A and the jth atom in molecule B. We use the distance between these two

atoms, plus a penalty if the atoms are different, as their rank. If we use the same

notation as in the previous section, we define,

Fij =
√

(xBj − xAi )2 + (yBj − yAi )2 + (zBj − zAi )2 + b, (3.3)

where b is the penalty [17]. To avoid the wrong assignment between two structurally

equivalent atoms having a different atom type, we set b = 0 if atom i and j have

the same atom type and b = 10 otherwise [17]. Other positive quantities for b could

also be used as long as it is relatively larger than 0. If the number of atoms of the

two structures is different, virtual atoms are added to the structure with fewer atoms

in order to make the number of atoms of the structures the same. The value of Fij

between virtual atoms to the real atoms in the other structure is considered to be

infinite. In practice, any value that is relatively larger than the distances between

atoms can be used. In the implementation of this algorithm, 100 is used for this

value. With this matrix, we can use the Hungarian algorithm to find the mapping

between the atoms of the two molecules. Since we are looking for a mapping that

minimizes the sum of the distances between all the corresponding atoms, and the

rankings correspond to their distances, we are looking for the mapping that minimizes

the sum of the rank, as is the case in the personnel-assign problem. The Hungarian

algorithm is based on the theorem that if a number is added to or subtracted from all of

the entries of any one row or column of a cost matrix, then an optimal assignment for

the resulting cost matrix is also an optimal assignment for the original cost matrix [15].

The algorithm applies to the above generated N × N (N is the larger value of NA

and NB) cost matrix to find an optimal assignment (the mapping) for the atoms is

follows:
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1. Subtract the smallest entry in each row from all the entries of the row.

2. Subtract the smallest entry in each column from all the entries of the column.

3. Draw lines through appropriate rows and columns so that all the zero entries of

the cost matrix are covered and the minimum number of such lines is used.

4. If the minimum number of lines drawn in step 3 is N , an optimal assignment of

zeros is possible and the algorithm is finished. If the minimum number of lines

is less than N , proceed to next step.

5. Determine the smallest entry not covered by any line. Subtract this entry from

each uncovered row, and then add it to each covered column. Return to step 3.

In order to present a clearer illustration of this algorithm, consider the following ex-

ample. Given a cost matrix



90 75 75 80

35 85 55 65

125 95 90 105

45 110 95 115


,

where the (fictional) distances are taken to be integers for convenience. The smallest

entries of each row are indicated in red:



90 75 75 80

35 85 55 65

125 95 90 105

45 110 95 115


.

Step 1. Subtract 75 from Row 1, 35 from Row 2, 90 from Row 3 and 45 from Row

4 to obtain:
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15 0 0 5

0 50 20 30

35 5 0 15

0 65 50 70


.

Step 2. Subtract 0 from Column 1, 0 from Column 2, 0 from Column 3 and 5 from

Column 4 to obtain:



15 0 0 0

0 50 20 25

35 5 0 10

0 65 50 65


.

Step 3. Cover all the zeros of the matrix with the minimum number of horizontal

and/or vertical lines. In order to do so, for each cell, mij, that has a value zero, deter-

mine which direction has the most zeros, row i or column j (previously covered cells

with zeros do not count). Draw a line through that row or column. If the number of

zeros in the row is equal to the number of zeros in the column, then draw a line in either

direction. Repeat the above steps until all the cells that have a value zero are covered.



15 0 0 0

0 50 20 25

35 5 0 10

0 65 50 65


.

Step 4. Since the minimum number of lines is less than 4, proceed to Step 5.

Step 5. Note that 5 is the smallest entry not covered by any line. Subtract 5 from

each uncovered row to obtain:



26



15 0 0 0

−5 45 15 20

30 0 −5 5

−5 60 45 60


.

Now add 5 to each covered column to obtain:



20 0 5 0

0 45 20 20

35 0 0 5

0 60 50 60


.

and return to Step 3.

Step 3. Cover all the zeros of the matrix with the minimum number of horizontal or

vertical lines.



20 0 5 0

0 45 20 20

35 0 0 5

0 60 50 60


.

Step 4. Since the minimum number of lines is less than 4, proceed to Step 5.

Step 5. Note that 20 is the smallest entry not covered by a line. Subtract 20 from

each uncovered row to obtain:



20 0 5 0

−20 25 0 0

35 0 0 5

−20 40 30 40


.
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Then add 20 to each covered column,



40 0 5 0

0 25 0 0

55 0 0 5

0 40 30 40


.

and return to Step 3.

Step 3. Cover all the zeros of the matrix with the minimum number of horizontal or

vertical lines.



40 0 5 0

0 25 0 0

55 0 0 5

0 40 30 40


.

Step 4. Since the minimum number of lines is 4, an optimal assignment of zeros

(one of the optimal assignments is highlighted in red) is possible and the algorithm is

finished.



40 0 5 0

0 25 0 0

5 0 0 5

0 40 30 40


.

It can been seen that there exists multiple optimal mappings in this case. Because

the Hungarian algorithm is designed for finding the optimal mapping of personnel-

assignment, it is possible that multiple optimal mappings exist. However, when the

two molecules are overlapped, there only exists one optimal mapping between the
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molecules unless one or both the molecules are symmetric or contains symmetric sub-

structures. The different optimal mappings are just the different mappings between

the symmetric atoms. It does not matter which mapping is used to find the rotation

because superimposition of the molecule after rotation remains the same. Thus, any

optimal mapping can be used to find the rotation for the algorithm of this thesis.

Therefore, the atoms are mapped according to the result of the Hungarian algorithm.

The result generated by the above algorithm is only the best mapping in one orien-

tation of the two molecules. However, a molecule can be translated to any position or

rotated by any angle in a structural file. An example from Vásquez-Pérez et al. [12]

describes this problem nicely in two dimensional space. Although it is not a real world

example and is not in three dimensional space, the principle is the same. Presenting

it in two dimensional space gives a clearer view of this problem.

Figure 3.2: A pair of two-dimensional “molecules” of five “atoms” at two different
orientations. The green circles represent the location of the atoms in molecule A and
the red circles represent the location of the atoms in molecule B. (redrawn from [12])

Consider the two molecules depicted in Figure 3.2. The green circles represent the

location of the atoms in molecule A, while the red circles represent the location of
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the atoms in molecule B. With the original orientation of the molecules (left), the

pairing (based on minimum distance) is not ideal (1-2, 2-3, 3-5, 4-4, 5-1). However,

by rotating molecule B (red) by 120 ◦ (right), a much better pairing is obtained (1-1,

2-2, 3-3, 4-4, 5-5). Although these two mappings are generated by the Hungarian

algorithm, the different orientations of the molecules produce different results. If we

assume the numbers correspond to atom types, the second mapping is better since it

is the same mapping as when the two structures are fully overlapped. For the second

mapping, the best superimposition (fully overlapped) can be achieved by rotating the

red “atoms” counterclockwise by 90 ◦ with respect to the green “atoms”. Additionally,

we can see that rotating the red “atoms” in the first orientation counterclockwise by

any angle in the range of 90 ◦ ∼ 120 ◦ allows the Hungarian algorithm to produce the

correct mapping. So more than one orientation may produce the correct mapping.

There exists an orientation neighbourhood within which the mapping produced by

the Hungarian algorithm is correct. In [12], a probability driven approach is used to

ensure the orientation produces the correct mapping. In this approach, one molecule is

rotated by an arbitrary angle and the above Hungarian algorithm is applied to get the

mapping. Based on this mapping, one molecule is then rotated to obtain the minimum

value of Equation (3.2). These two steps are repeated until the same minimum d value

in Equation (3.2) is found 50 times. The position that produces this minimum d value

is considered to be the best superimposition. In the paper, a good result is reported

by applying the method to two series of carbon fullerenes (C60, C74, C180, C240) that

were randomly substituted by boron atoms [12]. However, with the probability driven

approach, it is arguable whether success with other molecules can be guaranteed. It

is possible that a selection of random rotations may not produce the best mapping.

The basic idea of the method of [12] is to look for a correct mapping such that the

sum of the distances between matched atoms is minimized over different orientations.
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Thus, the algorithm presented in this thesis needs to ensure that the orientation

of the two molecules are within the neighbourhood of producing the best mapping.

Since we are interested in finding similar molecules, for every two molecules to be

compared, we are looking for a substructure of each molecule that is similar. At the

best superimposition of the two molecules, there must be some substructure(s) of these

two molecules overlapping or almost overlapping. When these substructures of the two

molecules overlap, although that position may not be the best superimposition of the

two molecules, it is sufficient to find an orientation that will produce the best mapping.

Thus, by applying the rotation that makes the substructures overlap, the algorithm

can adjust the orientation of one molecule in order to make the two molecules in the

orientation produce the correct mapping. The algorithm needs at least three atoms for

a substructure, because in three dimensional space, at least three points are needed to

form a plane to define the rotation. The orientation of the structures can be adjusted

by making these two planes overlap. Although, not every rotation that makes these

substructures overlap will place the two molecules in the orientation to produce the

correct mapping, there must exist at least one substructure rotation that will place

the two molecules in the orientation for producing the correct mapping.

In order to find the best mapping of atoms between two molecules, for all the atoms

in the first molecule, the algorithm will find all the triplets consisting of three atoms.

The three atoms in a triplet cannot be co-linear (they should be able to form a unique

plane) and they have to be bonded in the molecule (reducing the number of triplets to

be compared). A valid triplet of atoms could be defined in graph terms if the molecule

is thought as a graph: nodes are the atoms, bonds are the edges. A valid triplet is a

subgraph with exactly three nodes where there are at least two paths connecting two

different node-pairs in the subgraph and such a path does not visit a node which is not

in the subgraph. Triplets are mapped (atoms in these two triplets are considered to
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be corresponding atoms) if they are identical substructures. Identical substructures

are a valid atom triplet in the target molecule and a valid atom triplet in the query

molecule such that the distances between every two atoms are the same and the atom

type (as defined in Staveley [13]) is same for the corresponding atoms. Let us call

the set of triplets of molecule A set TA. Similarly, the triplets of molecule B are set

TB. Every triplet in TA is compared to every triplet in TB. For each two triplets

to be compared, if the three inter-atom distances are the same as the inter-atom

distances in the other triplet and the atoms are also the same type (as defined in

Staveley [13]), the atoms in these two triplets are considered corresponding atoms. In

Figure 3.3, the atoms that form the green and yellow triangles are two examples of

atom triplets found by the algorithm. However, the atoms that form the pink triangle

are not an atom triplet, because only atoms 7 and 12 are bonded. Atom triplet

(3,4,6) in molecule 2-methylbenzo-1,4-quinone (C7H6O2) (Figure 3.3 left), and atom

triplet (5,7,8) in molecule 2-hydroxy-5-methylbenzo-1,4-quinone (C7H6O3) (right), are

corresponding atom triplets (3 corresponds to 8,4 corresponds to 7, 6 corresponds to

5). The distance between atoms A3 and A4 is same as the distance between atoms B7

and B8, the distance between atoms A4 and A6 is same as the distance between atoms

B5 and B7, the distance between atoms A3 and A6 is same as the distance between

B5 and B8, the atom type of A3 is same as B8, the atom type of A4 is same as B7,

and the atom type A6 is same as B5.
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Figure 3.3: Two molecules to be compared, 2-methylbenzo-1,4-quinone (C7H6O2)
(left) and 2-hydroxy-5-methylbenzo-1,4-quinone (C7H6O3) (right). For illustration,
the atoms within each structure are arbitrarily numbered.

The mapping information regarding which atom in one triplet corresponds to which

atom in the other triplet is recorded in setMTA=TB
. For example, let us use A1, A2, A3

to represent three atom types in one molecule A, B1, B2, B3 to represent three atom

types in the other molecule B and d() to represent the distance between two atoms.

If

d(A1, A2) = d(B1, B2),

d(A2, A3) = d(B2, B3),

d(A1, A3) = d(B1, B3),

A1 = B1,

A2 = B2,

A3 = B3,

then the algorithm will record the mapping information as A1 corresponds to B1, A2

corresponds to B2, and A3 corresponds to B3. If

d(A1, A2) = d(B2, B3),
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d(A2, A3) = d(B1, B2),

d(A1, A3) = d(B1, B3),

A1 = B1,

A2 = B2,

A3 = B3,

A1 6= A2 6= A3,

this is not a mapping. Although every distance mapped, the atom types did not. If

d(A1, A2) = d(B2, B3),

d(A2, A3) = d(B1, B2),

d(A1, A3) = d(B1, B3),

A1 = B3,

A2 = B2,

A3 = B1,

then the algorithm will record the mapping information as A1 corresponds to B3, A2

corresponds to B2 and A3 corresponds to B1. When recording matching information,

all possible mappings for triplets should be saved. For example, if

d(A1, A2) = d(B1, B2) = d(A2, A3) =

d(B2, B3) = d(A1, A3) = d(B1, B3),
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A1 = B1 = A2 = B2 = A3 = B3,

then for every atom in A1, A2, A3, the corresponding atom could be any atom in

B1, B2, B3. Thus, all six possible mappings should be saved as different mappings.

For every mapping of triplets in MTA=TB
, the first triplet’s center is mapped to the

center of the other triplet. Then, the three atoms in the triplet of molecule A are

used as the origin position and the three atoms in the triplet of molecule B is used as

the final position to find the rotation that makes the two triplets fully overlap. The

molecule is rotated based on the calculated rotation. Following the rotation, molecule

A is then translated such that the centre of mass of the two molecules overlap. After

that, the mapping of the atoms that minimizes the sum of all the distances between the

corresponding atoms of the two molecules is found for the current orientation. This

mapping is considered to be a candidate best mapping of all the atoms between the

two molecules. One molecule is then translated until the centers of the mapped atoms

are overlapped and the sum of all the distances between the corresponding atoms of

the two molecules at that position is saved. Because the algorithm is only finding the

minimum sum of all the distances between mapped atoms in two molecules, it has to

ensure that the centers of the matched atoms are overlapped in order to avoid having

the distance between the centers of mapped atoms in the two molecules affecting the

sum value. The method used to find the rotation does not include the translation.

The above steps are applied to all mapped triplets inMTA=TB
. During this iteration,

once a mapping with a smaller sum of the distances between the corresponding atoms

of the two molecules has been found, the saved value and the mapping information

is replaced. After the above steps are applied to every mapped triplet, the saved

mapping is considered to be the best mapping between the atoms in the two molecules.
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3.2.2.2 Finding the best superimposition

The basic idea of comparing the two chemical structures is to try to find the best su-

perimposition between these two molecules based on the best mapping of the atoms.

The popular way of doing this is to rotate one of the molecules until the best overlap

is achieved. There are many available methods for parameterizing rotation, such as

the arbitrary Eulerian rotation matrix [10], the polar-angle representation [11] and

the quaternion-based representation [12]. Quaternions include information about the

rotation axis and the rotation angle while other methods require several parameters

to represent a rotation. In addition, quaternions are much more computationally

efficient since multiplication between two quaternions only requires sixteen multipli-

cations and additions while a 3× 3 rotation matrix requires twenty-seven operations.

Therefore, the more rotation that occurs, the greater the benefit in using quaternion

representation. In computer graphics fields such as computer games, conventional

methods usually find several key orientations for a rotating object and then use in-

terpolation to obtain every step of the animation. Eulerian rotation matrices may

produce gimbal lock such that two rotational axes are pointing in the same direction,

and many object positions will not be available for representation, due to the loss

of one rotation dimension [18]. Therefore, the object will not rotate how it ought

to rotate. This will have a negative impact on the interpolation of the rotation. In

addition, in three-dimensional space, orientations and angles are represented by two

independent values. It is impossible to normalize them. However, for quaternions,

rotation axes and rotation angles are in the same dimensional space, and can be nor-

malized easily. The interpolation results using quaternions are much more reliable.

Thus, the quaternion-based representation is more suitable for our needs.

Quaternions are a number system created by mathematician William Rowan Hamil-

ton in 1843 [19,20]. A quaternion is defined as q = w+xi+ yj+ zk where w is a real
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number and x, y, z are pure imaginary. It can be also represented as q = (w,v), where

v is a vector. Let two quaternions be denoted by q1 = w1 + x1i+ y1j + z1k=(w1,v1),

and q2 = w2 + x2i+ y2j + z2k=(w2,v2). The multiplication between them is defined

as follows:

1. Normal representation:

q1 ∗ q2 = (w1w2 − x1x2 − y1y2 − z1z2) + (w1w2 + x1w2 + y1z2 − z1y2)i+

(w1y2 − x1z2 + y1w2 + z1x2)j + (w1z2 − x1y2 − y1x2 + z1w2)k. (3.4)

2. Vector representation:

q1 ∗ q2 = (w1w2 − v1 · v2, w1v2 + w2v1 + v1 × v2). (3.5)

If we consider w = cos( θ2), x = axsin( θ2), y = aysin( θ2), z = azsin( θ2), the quaternion

q represents a rotation about the vector (ax, ay, az) through θ degrees. As we can see,

a quaternion itself can easily represent a rotation with a simple and easy to read form.

It is a clearer representation compared to other methods, and the cost of storing or

computing the quaternion is much lower as well.

Note that the input files for the algorithm presented in this thesis contain the

coordinates of all the atoms of the molecules to be compared. For example, this

algorithm is trying to compare molecule A and molecule B. It reads in the coordinates

of all the atoms in these two molecules. For a certain atom in molecule A, its Cartesian

coordinate can be represented as a vector pA(xA, yA, zA). A rotation is desired that

will overlap pA with its correspondent atom pB(xB, yB, zB) in the other molecule.

pA and pB are converted from vectors to quaternions. When converting vectors to

four-dimensional space, as in a quaternion, the representation q = (w,v) mentioned
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above can be used. The real part w is set to zero while the quaternion’s imaginary

part is set to the coordinates of vector pA/B. After two quaternions are represented

by PA(0,pA) and PB(0,pB), a rotation is sought, after which pA will be overlapped

with pB. This rotation can be represented by Q in the following equation:

PB = Q-1PAQ, (3.6)

where Q is the quaternion that represents the rotation. Note that Q has to be

a unit quaternion [9], and Q-1 is the conjugate quaternion of Q. If a quaternion

q = w + xi + yj + zk, then its conjugate quaternion is q-1 = w − xi − yj − zk [9].

The desired rotation is found by solving Equation (3.6) for Q.

The above case is only for one atom in two molecules. Obviously, a chemical

structure will not consist of a single atom. If Equation (3.6) is applied to different atom

pairs between the two molecules, by solving these equations, different quaternions

representing different rotations may be obtained. For a given pair of molecules, the

algorithm seeks a single rotation to be applied to all the atoms, which results in

maximum overlap of the two molecules. In other words, one particular quaternion

that can minimize the total distance between all the atom pairs is sought.

Consider the case where the molecules A and B mentioned in the above exam-

ple each have N atoms, the coordinate information of all the atoms in molecule A

is represented as a vector set {(xA1 , yA1 , zA1 ), (xA2 , yA2 , zA2 )...(xAN , yAN , zAN)} and the co-

ordinate information of all the atoms in molecule B is represented as a vector set

{(xB1 , yB1 , zB1 ), (xB2 , yB2 , zB2 )...(xBN , yBN , zBN)}. Recall that the best superimposition is

achieved by minimizing Equation (3.2). In order to find the rotation to achieve this

minimum value, we need to convert the vector sets that represent the coordinate val-

ues of all the atoms in the two molecules to quaternion representation. All the atoms
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in molecule A can be denoted as {vA
i }(i = 1...N). The same representation for atoms

in molecule B can be given as {vB
i }(i = 1...N). The quaternion representation is

then given by (0,vA
i )(i = 1...N) and (0,vB

i )(i = 1...N). The rotation to superimpose

two molecules is represented by Q = (q1, q2, q3, q4). This rotation Q will not make

the atom postions in one molecule exactly match all the atom position vectors in the

other molecule. Consequently, the residual (distance) between the ith corresponding

atom pair is defined as a vector ei [21]:

(0, ei) = (0,vA
i )−Q-1(0,vB

i )Q. (3.7)

So if an atom pair is fully overlapped after rotation, the residual distance will be

zero, otherwise, it will have a positive value. As discussed in the previous section, the

rotation Q is determined by minimizing d in Equation (3.2). It is also determined by

minimizing d2, which here is the sum of the squared magnitudes of these residual vec-

tors ∑N
i=1 |ei|2, which is equals ∑N

i=1 |(0, ei)|2. In order to make the problem tractable,

we first left multiply Equation (3.7) through by Q to give:

Q(0, ei) = Q(0,vA
i )− (0,vB

i )Q. (3.8)

Since Q = (q1, q2, q3, q4) = (q1,q), where q = (q2, q3, q4), a slightly modified least

squares residual function is constructed by expanding polynomials in Equation (3.8)

according to Equations (3.4) and (3.5) [21]:

ε =
N∑
i=1
|Q(0, ei)|2 =

N∑
i=1
|Q|2|ei|2 =

N∑
i=1
|(−q · (vA

i − vB
i ), q1(vA

i − vB
i ) + q× (vA

i + vB
i ))|2

=
N∑
i=1
{[q2(xAi −xBi )+q3(yAi −yBi )+q4(zAi −zBi )]2+[q1(xAi −xBi )+q3(zAi +zBi )−q4(yAi −yBi )]2
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+[q1(yAi −yBi )+q4(xAi −xBi )−q2(zAi −zBi )]2+[q1(zAi −zBi )+q2(yAi −yBi )−q3(xAi −xBi )]2}.

(3.9)

Now, if q1, q2, q3, q4 can be calculated from Equation (3.9), the quaternion for the

rotation is obtained. Values of q1, q2, q3, q4 that minimize ε such that q2
1+q2

2+q2
3+q2

4 = 1

are sought. Lagrange multipliers can be used to solve this problem given the following

function from Equation (3.9):

ε = F (q1, q2, q3, q4, λ) =
N∑
i=1
{[q2(xAi − xBi ) + q3(yAi − yBi ) + q4(zAi − zBi )]2

+[q1(xAi −xBi )+q3(zAi +zBi )−q4(yAi −yBi )]2 +[q1(yAi −yBi )+q4(xAi −xBi )−q2(zAi −zBi )]2

+[q1(zAi − zBi ) + q2(yAi − yBi )− q3(xAi − xBi )]2}+ λ(q2
1 + q2

2 + q2
3 + q2

4 − 1). (3.10)

Computing the partial derivatives of the unknowns of F (q1, q2, q3, q4, λ) and setting

them equal to zero gives the following system of 5 equations containing 5 unknowns:



∂F (q1,q2,q3,q4,λ)
∂q1

= 0

∂F (q1,q2,q3,q4,λ)
∂q2

= 0

∂F (q1,q2,q3,q4,λ)
∂q3

= 0

∂F (q1,q2,q3,q4,λ)
∂q4

= 0

∂F (q1,q2,q3,q4,λ)
∂λ

= 0

. (3.11)

Letting xmi = xAi −xBi , x
p
i = xAi +xBi , y

m
i = yAi − yBi , y

p
i = yAi + yBi , z

m
i = zAi − zBi , z

p
i =

zAi + zBi , the problem can be organized as the following eigenvalue problem [21]:
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∑N
i=1(xmi )2 + (ymi )2 + (zmi )2 ∑N

i=1 y
p
i z

m
i − ymi z

p
i
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i=1 x

m
i z

p
i − x

p
i z
m
i
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i=1 x

p
i y
m
i − xmi y

p
i∑N

i=1 y
p
i z

m
i − ymi z

p
i
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i=1(ypi )2 + (zpi )2 + (xmi )2 ∑N
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m
i y

m
i − x

p
i y
p
i

∑N
i=1 x

m
i z
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i − x
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i z

p
i − x

p
i z
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i
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i=1 x

m
i y

m
i − xipy

p
i

∑N
i=1(xpi )2 + (zpi )2 + (ymi )2 ∑N

i=1 y
m
i z

m
i − y

p
i z

p
i∑N

i=1 x
p
i y
m
i − xmi y
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i
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i=1 x

m
i z

m
i − x

p
i z
p
i

∑N
i=1 y

m
i z

m
i − y

p
i z

p
i

∑N
i=1(xpi )2 + (ypi )2 + (zmi )2



∗



q1

q2

q3

q4


= λ



q1

q2

q3

q4


. (3.12)

One of the solutions for this system of equations will give us the values of q1, q2, q3, q4

and λ as required. Thus, we can obtain the rotation that leads to the best superim-

position of the two molecules, and the minimum value of ε, which is also the value

that describes the difference between the two molecules geometrically. The rotation

matrix for the best superimposition of molecules A and B is defined as follows [22]:


q2

1 + q2
2 − q2

3 − q2
4 2(q2q3 + q1q4) 2(q2q4 − q1q3)

2(q2q3 − q1q4) q2
1 + q2

3 − q2
2 − q2

4 2(q3q4 + q1q2)

2(q2q4 − q1q3) 2(q3q4 − q1q2) q2
1 + q2

4 − q2
2 − q2

3

 . (3.13)

3.2.3 Summary

By applying the above algorithm to any two molecules, a value measuring the simi-

larity between the two molecules will be obtained. This algorithm can also be applied

repeatedly to search a database of molecules for the molecule most similar to a query

molecule by finding the minimum similarity score among all the molecule comparisons.



Chapter 4

Qualitative performance of the

algorithm

4.1 Objectives

In this section, some examples demonstrating the performance of the algorithm will

be discussed. The series of tests and the data sets to which they were applied will be

presented. The main objectives of these tests are: 1. test if the algorithm can find the

correct mapping between a query molecule and a target molecule (The correct map-

ping of an atom in a query molecule is an atom in a target molecule that is closest to

the atom in the query molecule when the RMSD of the two molecules is minimized.);

2. test if the algorithm can find similar molecules for a query molecule from a col-

lection of molecules based on the similarity score defined in Section 3.2.1; 3. test the

algorithm’s performance on different sets of molecules: a small set of molecules pro-

vided by Dr. Raymond Poirier of the Chemistry Department of Memorial University

and a much larger data set downloaded from the National Cancer Institute (NCI)

database [23] and preprocessed by Mark Staveley to compute atom types [13].

41
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4.2 Application

In order to test the performance of the algorithm, a java-based application was im-

plemented. The application is able to read structural files and display them in 3D.

It can read two molecules in a standard file format and compute the similarity be-

tween them using the algorithm presented in Chapter 3. It will output the similarity

score and the root mean square deviation (RMSD in Equation (2.7)) of the pair of

molecules. Then, it will overlap 3D images of the two molecules based on their best

superimposition calculated by the algorithm. The application can also search for the

best match to a query molecule from many different molecules and provide a ranked

list of all possible matches and similarity scores.

The application is implemented as an extension of Jmol [14]. Jmol is a free open

source application that can display molecules in 3D. In Jmol the user can rotate the

molecules, do many calculations on the molecules such as calculate distances, angles

and torsion angles, and make use of many tools/functions that will not be discussed

here. Almost all chemists are familiar with Jmol, which is one reason for using it as

a platform. The application uses some of Jmol’s code as a foundation, such as its

code for rendering, finding rotations and animation. Therefore, the user can also use

Jmol’s scripts directly within the application.

It is worth mentioning that when implementing the algorithm to compare the atom

triplets (as introduced in Section 3.2.2.1), a residual value is used to check if the dis-

tances are equal. As long as the difference between the two distances being compared

is less than this residual value, the application considers these two distances to be

equal. The Cartesian coordinates in a structural file may differ even for the same

structure depending on the method(s) use to create it. Due to the round-off error

in computers, even two structural files that describe the same molecule may vary

several angstroms in the distance between two atoms. In the application developed
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here, 0.01 Angstrom was arbitrarily chosen as the tolerance. If one wants to test the

algorithm on a different data set, a different tolerance value might be more appro-

priate. All of the tests presented henceforth are run on a personal computer with an

AMD Athlon™ dual core processor 4850e 2.5GHz CPU, 4 GB RAM and the 64-bit

Windows 7 operating system.

4.3 Data sets

In order to check if the algorithm works as desired, tests were performed with two

data sets. First, the algorithm was tested on a small set of molecules provided by

Dr. Raymond Poirier of the Chemistry Department of Memorial University. There

are 737 structures in the data set originating from a number of different sources

[24–26]. The number of atoms in each structure in this data set ranges from 17 to

27. The data set consists of tens of molecules and their isomers, along with several

transition states. Hence, every molecule in this data set has several similar molecules

within the set. This data set is henceforth referred to as the 737-data-set and was

used to test the functioning and performance of the algorithm. The algorithm was

subsequently tested with a much larger data set downloaded from the National Cancer

Institute (NCI) database [23] and preprocessed by Mark Staveley to compute atom

types [13]. The version of the database that Dr. Staveley downloaded and processed

was: Release 3 Files - September 2003. The NCI database contains 260,071 structures,

combined from DTP (Developmental Therapeutics Program) releases from Oct. 1999,

Aug. 2000, Feb. 2003, and Sep. 2003. Some molecules in the NCI database are

described in 2D, as projections of the actual 3D structure. Although the algorithm

described in this thesis is capable of comparing such 2D structures, they were omitted

as test cases since their spatial extent is not fully described, making superimposition
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of structures less meaningful. Following the removal of all unsuitable files, 163,652

structures remained. These 163,652 molecules are henceforth referred to as the sub-

NCI database. The smallest molecule in this data set has 4 atoms while the largest

has 270 atoms. The distribution of the structure size of this data set (in terms of

number of atoms) is presented in Figure 4.1.

Figure 4.1: The distribution of size (number of atoms) of the test molecules in the
sub-NCI database.

In the following section, the results of testing the algorithm functionality and per-

formance on these two data sets are presented and discussed.

4.3.1 Test results

4.3.1.1 Finding similar molecules

In order to test the performance of the algorithm with similar molecules, each molecule

of the 737-data-set is used as a query to search all of the molecules in the 737-data-

set for similar molecules. The query molecule was kept in the target molecules as

a distinct benchmark of the test, since the algorithm should always find the query

molecule itself as the most similar molecule. The search result of every molecule in the
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737-data-set is in the folder named “Result of testing with the 737-data-set” in the zip

file attached to this thesis. For all of the molecules in the 737-data-set, each of them

found itself to be the most similar one. Owing to the length of the thesis, among all

the search results, only the six most similar molecules of five query molecules that the

algorithm found are listed in Table 4.1. The details of the comparison results (output

of the application) shown in Table 4.1 are listed in Appendix A. The first column

of the table contains the query molecules. The other columns are the top six most

similar molecules (in ranked order) the algorithm found according to the calculated

similarity score in Equation (3.1). For each molecule, its 3D image, its molecular

formula and its structural filename are listed. It can be seen that for each of the five

molecules in the table, the algorithm found the same molecule as the query molecule

to be the most similar one. Although for molecule C5H12N2O4 (in the third row of

Table 4.1), the most similar molecule’s filename (in the third row second column of

Table 4.1) is not the same as the query molecule’s filename, while the same structural

filename is listed as the second most similar one (in the third row third column of

Table 4.1). These two files describe the same molecule in the 737-data-set and the

same similarity score (8.656624∗10−8) and RMSD (8.656624∗10−8) is found for each.

For some structures in the 737-data-set, there are several structural files describing

the same molecule that have been computed using different methods. The ranking for

these kind of structural files with the same similarity score is based on the comparison

order of structures. For these cases, in the result list, the query structural file itself

may not be in first place. However, this does not affect the fact that the most similar

molecule found by the algorithm is still the query molecule itself. As illustrated by

the images in Table 4.1, the other top ranked molecules found by the algorithm, are

all similar to the query molecules. Thus, the algorithm performs as desired for the

737-data-set.
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Query NO. 1 NO. 2 NO. 3 NO. 4 NO. 5 NO. 6

C5H6N5O

(GS_Ade_

PathwayA_

I1A_B3LYP_

631Gd)

C5H6N5O

(GS_Ade_

PathwayA_

I1A_B3LYP_

631Gd)

C5H6N5O

(GS_Ade_

PathwayA_

I1A_G3MP2B3)

C5H6N5O

(GS_Ade_

PathwayA_

I1A_G3B3)

C5H6N5O

(GS_Ade_

PathwayA_

I1A_CBSQB3)

C5H6N5O

(GS_Ade_

PathwayA_

I1A_MP2_

631Gd)

C5H6N5O

(GS_Ade_

PathwayA_

I1A_B3LYP_

631pGd)

C5H8N5O2

(GS_Ade_

PathwayB_

I1B_B3LYP_

631pGd)

C5H8N5O2

(GS_Ade_

PathwayB_

I1B_B3LYP_

631pGd)

C5H8N5O2

(GS_Ade_

PathwayB_

I1B_HF_

631Gd)

C5H8N5O2

(GS_Ade_

PathwayB_

I1B_MP2_

631Gd)

C5H8N5O2

(GS_Ade_

PathwayB_

I1B_CBSQB3)

C5H10N5O3

(TS_Ade_

PathwayC_

TS2C_

G3MP2B3)

C5H11N5O3

(GS_Ade_

PathwayF_

I2F_HF_

631Gd)

C5H12N2O4

(GS_DHA_P1_

B3LYP_631Gd)

C5H12N2O4

(GS_DHB_P1_

B3LYP_631Gd)

C5H12N2O4

(GS_DHA_P1_

B3LYP_631Gd)

C5H12N2O4

(GS_DHA_P1N_

G3MP2B3)

C5H12N2O4

(GS_DHB_P1_

G3MP2B3)

C5H12N2O4

(TS_IRCF_P_

DHA_TS1_

B3LYP_631Gd)

C5H12N2O4

(TS_IRCF_P_

DHB_TS2_

B3LYP_631Gd)

C5H10N2O3

(GS_GDA_P1b_

B3LYP_

631pGdp_SMD)

C5H10N2O3

(GS_GDA_P1b_

B3LYP_

631pGdp_SMD)

C5H10N2O3

(GS_GDA_P1_

B3LYP_

631pGdp_PCM)

C5H8NO4

(TS_IRCF_

I2b_PHC_TS3_

B3LYP_

631pGdp)

C5H10N2O3

(GS_GDA_P1_

B3LYP_

631pGdp_SMD)

C5H10N2O3

(TS_IRCR_P_

DGA_TS1_

B3LYP_

631pGdp_SMD)

C5H11N2O4

(GS_DHD_P1_

B3LYP_631Gd)

C7H10O2

(TS_C7H10O2_

endo3B_

HF631ppGd)

C7H10O2

(TS_C7H10O2_

endo3B_

HF631ppGd)

C7H10O2

(TS_C7H10O2_

endo_3B_

B3LYP631ppGd)

C7H10O

(TS_C7H10O_

endo_syn_G_

HF631ppGd)

C7H10O

(TS_C7H10O_

endo_anti_S_

HF631ppGd)

C7H10O

(TS_C7H10O_

endo_anti_S_

HF631Gd)

C7H10 (TS_

C7H10_endo_

HF631ppGd)

Table 4.1: Top six similar molecules for five sample query structures searching the
737-data-set.
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4.3.1.2 Changes in orientation and labeling order

In order to test whether the algorithm can find similar molecules to a query molecule

in spite of the orientation in the structural files, a new data set was generated by

randomly rotating each molecule in the 737-data-set to a different orientation. The

labeling order of each structural file does not need to be changed randomly, because

the algorithm pairs the atoms automatically regardless of the labeling order. This new

data set is referred to as the 737r-data-set. Each molecule of the 737-data-set is used

as a query to search all the molecules in the 737r-data-set for similar molecules. The

details of the comparison results (output of the application) of the same molecules as in

Table 4.1 are listed in Appendix B. Although the ranking order of some structures has

changed (Appendix B), all of the same structural files were in the top ranked list. The

search results of using every molecule in the 737-data-set to search all the molecules in

the 737r-data-set are in the folder named “Result of testing with the 737r-data-set”

in the zip file attached to this thesis. When randomly rotating a molecule, minor

roundoff errors are introduced into the Cartesian coordinates, thus, the similarity

scores of these structures were changed, leading to a change of the ranking order of

these files. Regardless of which filename was listed first, the molecule that these files

represent is still the same. Therefore, using the algorithm on the randomly perturbed

structures produced the same results as listed in Table 4.1, demonstrating that the

algorithm could find the best superimposition even though the molecules are not in

the same orientation and do not have the same labeling order.

4.3.1.3 Searching the sub-NCI database

Due to the size of the sub-NCI data set, searching every molecule in the whole database

for its similar molecules will be quite time consuming. Thus, a random selection of a

number of molecules were chosen as query structures. According to the distribution
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of the molecule size in Figure 4.1, most molecules have 20 − 80 atoms. Therefore,

the molecules were categorized into 5 groups: less than 20 atoms, 21 − 40 atoms,

41 − 60 atoms, 61 − 80 atoms and more than 80 atoms. Then, 5 molecules from

each category were randomly chosen and used to compare to all the molecules in the

sub-NCI database. The query molecules were still kept in the target molecules as a

benchmark of the test. For all the structures being tested, the algorithm found the

same molecule as the query molecule to be the most similar. Other similar molecules

were molecules with the same geometric structure but different atoms, or molecules

with similar geometric structure. Five of the test results are listed in Table 4.2. The

detailed results (output of the application) of each molecule in Table 4.2 are listed in

Appendix C. The complete search results of these molecules are in the folder named

“Result of testing with the sub-NCI database” in the zip file attached to this thesis.

Based on the results of these randomly selected structures, the algorithm proved

successful in finding similar structures in the sub-NCI database.

Query NO. 1 NO. 2 NO. 3 NO. 4 NO. 5

4-methyl-1,

2-benzenediamine

C7H10N2

(1487_NCI)

4-methyl-1,

2-benzenediamine

C7H10N2

(1487_NCI)

2-fluoro-4-

methylaniline

C7H8NF

(111019_NCI)

4-methyl-2-

pyridinamine

C6H8N2

(1482_NCI)

5-methyl-2-

pyridinamine

C6H8N2

(1481_NCI)

5-methyl-2-

pyridinamine

C6H8N2

(76019_NCI)

ethyl 2,

3-dihydro-1H-

pyrrolo[1,2-a]

benzimidazole-

8-carboxylate

C13H14N2O2

(108547_NCI)

ethyl 2,

3-dihydro-1H-

pyrrolo[1,2-a]

benzimidazole-

8-carboxylate

C13H14N2O2

(108547_NCI)

ethyl 5-

quinoline

carboxylate

C12H11NO2

(105780_NCI)

ethyl 2-

(acetylamino)

benzoate

C11H13NO3

(99250_NCI)

ethyl 2-

(methylamino)

benzoate

C10H13NO2

(199847_NCI)

methyl 9H-

purine-6-

carboxylate

C7H6N4O2

(205011_NCI)
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ethyl ((4-

(hydroxy(oxido)

amino)-2-methyl-

1-naphthyl)

(phenylsulfonyl)

amino)acetate

C21H20N2O6S

(118972_NCI)

ethyl ((4-

(hydroxy(oxido)

amino)-2-methyl-

1-naphthyl)

(phenylsulfonyl)

amino)acetate

C21H20N2O6S

(118972_NCI)

(3-chloro-2,

4,6-trimethyl

(phenylsulfonyl)

anilino)

acetic acid

C17H18NO4SCl

(116735_NCI)

3-phenyl-2-

(phenylsulfonyl)-1,

2-oxaziridine

C13H11NO3S

(190006_NCI)

N-ethyl-N-

(2-methylphenyl)

benzenesul

fonamide

C15H17NO2S

(122069_NCI)

N-(2-cyanoethyl)-

N-(4-formylphenyl)

benzenesul

fonamide

C16H14N2O3S

(222312_NCI)

4-chloro-N-

hexadecyl-3-

(hydroxy(oxido)

amino)-N-isopropyl

benzenesul

fonamide

C25H43N2O4SCl

(113567_NCI)

4-chloro-N-

hexadecyl-3-

(hydroxy(oxido)

amino)-N-isopropyl

benzenesul

fonamide

C25H43N2O4SCl

(113567_NCI)

1,10-

dichlorodecane

C10H20Cl2

(9324_NCI)

1-chlorodecane

C10H21Cl

(6004_NCI)

1-bromodecane

C10H21Br

(8638_NCI)

decane

C10H22

(8639_NCI)

4,4-bis(4-(((4-

(phenyldiazenyl)

anilino)carbonyl)

oxy)phenyl)

pentanoic acid

C43H36N6O6

(206308_NCI)

4,4-bis(4-(((4-

(phenyldiazenyl)

anilino)carbonyl)

oxy)phenyl)

pentanoic acid

C43H36N6O6

(206308_NCI)

1-(4-benzylphenyl)

ethanone

C15H14O

(69547_NCI)

5-benzyl-2-methyl-

1,3-benzoxazole

C15H13NO

(92804_NCI)

2-phenyl-2,3-

dihydro-4H-

chromeno[2,3-d]

pyrimidin-4-one

C17H12N2O2

(157385_NCI)

Dichinyl

C30H18O4

(7126_NCI)

Table 4.2: Top five similar molecules for five sample query structures searching the
sub-NCI data set.

4.3.1.4 Test conclusion

Based on the test results presented, the algorithm is shown to be functional and effec-

tive in comparing two molecules as well as searching a database for similar molecules.
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4.3.2 Some Features of the algorithm

Some concrete examples are presented in order to give a vivid image of how the

algorithm works. Here is an example discovered when testing the algorithm with

the sub-NCI database. The molecule on the left in Figure 4.2 (2-methylbenzo-1,4-

quinone (C7H6O2)) was used to search the whole sub-NCI database for the most

similar molecule. The molecule on the right (2-hydroxy-5-methylbenzo-1,4-quinone

(C7H6O3)) is the second most similar one found by the algorithm. The most similar

one is the same molecule as the query but in a different orientation.

Figure 4.2: Two similar molecules in the NCI database, the left one is 2-methylbenzo-
1,4-quinone (C7H6O2) and the right one is 2-hydroxy-5-methylbenzo-1,4-quinone
(C7H6O3).

Figure 4.3 shows the labeling order of the atoms in the structural files of these two

molecules.



51

Figure 4.3: The labeling order in the structural files of 2-methylbenzo-1,4-quinone
(C7H6O2) (left) and 2-hydroxy-5-methylbenzo-1,4-quinone (C7H6O3) (right) in the
NCI database.

It can be seen that the labeling order in these two structural files does not corre-

spond to the correct mapping of the atoms. Without this thesis work, if these two

structural files are used directly to find the best superimposition, the result is not

the maximum overlap of these two structures. Figure 4.4 demonstrates the best su-

perimposition Jmol obtained based on the labeling order in the two structural files.

The RMSD for this superimposition was 2.09 Angstroms. It is obvious that these two

molecules can be overlapped in a better position than the one in Figure 4.4.
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Figure 4.4: Comparison result in Jmol based on the structural files of 2-methylbenzo-
1,4-quinone (C7H6O2) and 2-hydroxy-5-methylbenzo-1,4-quinone (C7H6O3) (in trans-
parent yellow) in the NCI database.

Using the algorithm developed for the thesis, the result shown in Figure 4.5 is

obtained, where molecule 2-methylbenzo-1,4-quinone (C7H6O2) is able to fully overlap

with molecule 2-hydroxy-5-methylbenzo-1,4-quinone (C7H6O3).



53

Figure 4.5: Comparison result of the algorithm based on the structural files
of 2-methylbenzo-1,4-quinone (C7H6O2) and 2-hydroxy-5-methylbenzo-1,4-quinone
(C7H6O3) (in transparent yellow) in the NCI database.

It is important to note that, based on the algorithm, the best superimposition

calculated may not make the largest substructure of the two molecules fully overlap

as in the algorithm in [8]. This is because the algorithm is trying to find the best

superimposition of the two molecules based on the minimum value of the RMSD

between the corresponding atoms. For some cases, there may be large substructures

that are identical in the two molecules to be compared, but in order to make the

distances between the atoms outside of the substructures close enough, the identical

substructures will not fully overlap. To illustrate this phenomenon, molecule C7H10

and its isomer are chosen from the 737-data-set (shown in Figure 4.6).
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(a) Molecule C7H10
(filename:

TS_C7H10_endo_B3LYP631ppGd.log1.ar)

(b) An isomer of molecule C7H10
(filename:

TS_C7H10_exo_B3LYP631ppGd.log1.ar)

Figure 4.6: Molecule C7H10 and its isomer.

These two molecules contain the same two components. The top component consists

of 7 atoms and the bottom component consists of 10 atoms. Each component is

identical to its counterpart in the other structure, however, one component is inverted

relative to the other. When applying the algorithm to these two molecules, the best

superimposition obtained is shown in Figure 4.7.
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Figure 4.7: Comparison result of C7H10 and one of its isomers (in yellow).

If the largest substructures (bottom component) fully overlap, the distances be-

tween the atoms in the top component will make the total RMSD larger than if the

top component was fully superimposed. In fact, these kinds of cases do not only hap-

pen with the algorithm presented here. As long as the superimposing method uses

the RMSD to measure the best superimposition, such cases may occur.



Chapter 5

Run-time analysis

In this chapter, the run-time analysis of the algorithm is presented to determine for

a particular pair of structures, how long the algorithm would take to compute the

similarity score, as well as to determine which factors may affect the run-time of

the algorithm. First, the time complexity analysis of the algorithm is introduced.

Second, test data is used to analyze the run-time. Linear regression is used to analyze

these data in order to obtain the factors that affect the run-time performance of the

algorithm. Finally, some concrete examples of the run-time of the algorithm to search

the sub-NCI database are provided.

5.1 Time complexity analysis of the algorithm

5.1.1 Time complexity

Time complexity is widely used to describe the run-time of an algorithm in computer

science. Often a function (f(a)) is used to represent the number of steps that an

algorithm uses on any input of length a [28]. There are commonly two ways to

analyze the time complexity: worst-case analysis and average-case analysis. In worst-

56
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case analysis, the longest running time for input of a particular length is considered. In

average-case analysis, the average of the running times for inputs of a particular length

is considered. Sometimes it is difficult to obtain the function f(a) representing the

worst-case or average-case of an algorithm. Instead, a function g(a) can be obtained,

where f(a) < c∗ g(a) for suitably large a and constant c [28]. This is called the upper

bound analysis.

The exact running time of an algorithm may be a complex expression. Since the

main interest in understanding the running time of the algorithm is typically when it

is run on large inputs, one convenient form of estimation, called asymptotic analysis,

is often used to describe the running time of an algorithm. Only the highest order

term of the expression for the running time of the algorithm need be considered. Both

the coefficient of that term and any lower order terms are disregarded, because the

highest order term dominates the other terms on large inputs [28].

For example, the function f(a) = 6a3 + 7a2 + 15a + 99 describing the run-time

of an algorithm has four terms and the highest order term is 6a3. Disregarding the

coefficient 6, the time complexity of this algorithm is O(a3). This notation is called

big-O notation (O()) and it is the most common way to represent upper bounds.

Big-O notation represents the idea that one function is asymptotically no more than

another. If the worst-case time complexity of an algorithm is O(a3), then the run-time

of the worst case of this algorithm can be represented by a polynomial with a highest

order term of a3.

5.1.2 Time complexity calculation

In this section, the time complexity of the algorithm presented in this thesis is analyzed

step-by-step based on the flow chart of the algorithm in Figure 3.1. If the probability of

every case of an algorithm can be obtained, an average-case analysis of time complexity
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can be calculated. Unfortunately, every molecule is distinct. There are no patterns

or rules that describe a distribution of molecules, from which an average can be

determined. Thus, the worst-case analysis is applied here. As introduced in the last

section, time complexity is a function (f(a)) representing the maximum number of

steps that an algorithm uses on any input of length a [28].

The input of the program is two structure files representing two molecules. Accord-

ingly, the parameter of the function f() should be the length a of these two structure

files. In Appendix D, an example of the structure file that the algorithm of this thesis

uses as input is shown. It can be seen that the file contains two main parts. Each

line in the first part lists the atomic number, Cartesian coordinates, labeling order

and atom type of an atom in the structure. The number of characters of the atomic

number is 4, the number of characters of each coordinate of the Cartesian coordi-

nates and the atom type are 11, and the number of characters of the labeling order

is 3. The number of characters of the interval between every two fields is 3 except

the one between the z coordinates and the labeling order is 2. Thus, the number

of characters of first part is 65 ∗ (n + 1), where n represents the number of atoms

in the structure, and 1 represents the header line of the first part. The second part

of the file lists the connectivity information of the atoms in the structure with the

labeling of the atoms indicated in the first part. For every listed atom, two lines are

used to indicate the connectivity information. The first line lists the labeling order of

an atom and the labeling order of all the other atoms bonded to it. The number of

characters of the labeling order of the listed atom is 5 and the number of characters

of each of all the other atoms bonded to it is 4. The number of characters between

every two fields is 1. The second line lists the atom type of all the atoms in the

first line. The number of characters of the atom type of the listed atom is 13, the

number of characters of the atom type of the bonded atoms is 14 and the number



59

of characters between every two fields is 1. Unfortunately, the number of characters

of each line in the second part varies because different atoms may have a different

number of bonded atoms. The actual number of characters of every line cannot be

predicted. However, an atom can be bonded to at most 15 atoms [29]. Therefore,

the upper bound can be used here. The upper bound of the number of characters of

the first line in the line-triple that represents the connectivity information of an atom

is 5 + 15 ∗ 4 + 7 = 72. The upper bound of the number of characters of the second

line is 13 + 14 ∗ 15 + 7 = 230. The number of characters of the header of the second

part is 39. Thus, the upper bound of the number of characters of the second part is

72∗n+230∗n+39 = 302∗n+39. Therefore, the upper bound of the number of charac-

ters of a structure file is 65∗(n+1)+302∗n+39 = 367∗n+104, where n is the number of

atoms in the structure. The algorithm of this thesis takes two structure files as the in-

put, thus, the length a of the input is 367∗n1+104+367∗n2+104 = 367∗(n1+n2)+208,

where n1 is the number of atoms in molecule A and n2 is the number of atoms in

molecule B. According to the usual expression of time complexity, this length a should

be used as the function parameter. However, it can be seen that this length a is depen-

dent on the number of atoms in the two molecules. Therefore, the number of atoms in

the two molecules can be used as the input of the function representing the run-time

of the algorithm. Since the upper bound analysis is applied here, a function g(n1, n2)

rather than f(n1, n2) is sought in the following analysis (for ease of illustration, n1

and n2 are henceforth used to denote the the number of atoms in molecule A and B,

respectively, where n1 ≤ n2), where f(n1, n2) is bounded by g(n1, n2).

The algorithm actually starts in Step 2 of the flow chart in Figure 3.1 (Step 1 just

indicates the start of the algorithm). Step 2 reads in structural information of two

molecules that includes Cartesian coordinates, type of each atom, and connectivity

information. As calculated in the last paragraph, the length of the input is 367 ∗
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(n1 + n2) + 208. Considering the reading in of a single character as a unit step,

the algorithm takes 367 ∗ (n1 + n2) + 208 steps to read in the two structure files.

The algorithm needs to save the x, y, z coordinates, atom type and the connectivity

information. The algorithm gets each of these values of an atom in a structure by

getting the substrings of a line. Thus, the algorithm takes 8 steps (4 steps to get

the x, y, z values and the atom type, and 4 steps to save these 4 values) to save

the information of the x, y, z coordinates and the atom type of an atom, and at

most 16 steps (1 step to get the information of the atoms, at most 7 steps to get the

information of all the atoms bonded to it and 8 steps to save these values) to save

the connectivity information. The algorithm takes at most 24 ∗ n1 + 24 ∗ n2 steps to

save all the necessary information. Therefore, Step 2 of the algorithm takes at most

367 ∗ (n1 + n2) + 208 + 24 ∗ n1 + 24 ∗ n2 = 391(n1 + n2) + 208 steps.

Step 3 finds all atom triplets in each molecule. For each atom triplet, three atoms

have to be bonded in the molecule and cannot be co-linear in geometrical space. For

an atom in a molecule, it chooses its two bonded atoms to form an atom triplet. The

number of atom triplets in a molecule depends on its structure. A precise number

cannot be calculated just based on the number of atoms in a molecule. However, the

number of atoms bonded to an atom is not likely to exceed 4 in our data sets. In

Figure 5.1, the x axis is the the number of atoms in the structures in the sub-NCI

database and the y axis is the number of triplets the algorithm found in a structure.

The red line represents the function y = 4x, which means for a certain structure with

x atoms the number of the triples found in this structure is 4x. It can be seen that

all the dots in the plot are under this line. Thus, for all the structures in the sub-NCI

database, the number of triplets actually found in each structure is no more than the

four times the number of atoms in the structure.
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Figure 5.1: Number of atoms vs. the number of triplets found in the structure for all
the structures in the sub-NCI database.

As a result, for a molecule with n atoms, it will have at most 4 ∗ n atom triplets.

For every atom triplet, the algorithm has to check if the three atoms are co-linear. To

do so, it calculates the distances between every two atoms, which requires 3 steps. If

the length of the two short edges is equal to the length of the longest edge, the three

atoms are co-linear. This requires at most 4 steps (2 steps to sort the edges, 2 steps to

compare the length) to check if three atoms are co-linear. Then, the algorithm requires

3 steps to save the information of every atom and 3 steps to save the length of every

edge. Consequently, the algorithm requires no more than 4∗n+4∗n∗(3+4+3+3) =

56 ∗ n steps to find and save all the atom triplets in a structure. Therefore, the

algorithm requires at most 56 ∗ n1 + 56 ∗ n2 = 56 ∗ (n1 + n2) steps to find and save all

the atom triplets in two molecules.

Step 4 initializes the variable used to save the sum of all the distances between the

mapped atoms of two molecules, as well as the variable used to save the potential

correct mapping of atoms between the two molecules, which requires 2 steps.
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Step 5 compares every triplet from molecule A to every triplet from molecule B

without replacement. The number of steps will be the number of atom triplets in

molecule A multiplied by the number of atom triplets in molecule B. As calculated in

Step 3, the upper bound of the number of atom triplets in a molecule is 4∗n. Thus, the

upper bound of the steps to compare all the atom triplets is 4∗n1∗4∗n2 = 16∗n1∗n2.

Step 6 compares a triplet in molecule A to a triplet in molecule B to see if the

atoms in the two triplets are mapped. If the atoms in the two triplets are mapped,

continue to Step 7. Otherwise go to Step 13. Step 6 compares the atom types of the

three atoms in two atom triplets, which requires 3 steps. It then compares the lengths

between every two atoms in two atom triplets, which also requires 3 steps. Thus, the

algorithm requires 6 steps to compare a triplet in molecule A to a triplet in molecule

B.

Step 7 computes the mapping of each atom for matched triplets. The worst case

happens when two atom triplets form two identical regular triangles with six identical

atoms. In that case, every atom in one triplet can be mapped to any atom in the

other triplet. This requires 6 steps to save all the mapping information. Thus, it

requires at most 12 steps for one comparison of two atom triplets.

Step 8 computes the rotation that makes the atoms of the two triplets overlap. The

system of equations in Equation (3.12) requires 6 ∗ 16 ∗N steps (6 steps to compute

xmi , x
p
i , y

m
i , y

p
i , z

m
i , z

p
i , 16 steps to compute the 4×4 matrix for one pair of points, where

N represents the number of paired points) to construct, and 4 ∗ 4 steps to solve. Here

the number of paired points is 3. Thus, the algorithm requires 6 ∗ 16 ∗ 3 + 16 = 304

steps to compute the rotation.

Step 9 applies the computed rotation in Step 8 to molecule A, which means it applies

the rotation matrix in Equation (3.13) to every atom in A. For ease of calculation,

every entry in the matrix is considered to be computed in 1 step. Thus, it requires
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9 steps to compute the rotation matrix and then it requires 15 steps to compute the

coordinates after rotation. Thus, the algorithm requires 9 + 15 ∗n1 steps to apply the

computed rotation to molecule A. After that, the algorithm also needs to translate

molecule A in order to overlap the centers of molecule A and B. It requires n1 ∗3 steps

to get the center of molecule A, n2∗3 steps to get the center of molecule B, and 3 steps

to get the amount by which the atoms in molecule A need to be translated. Then,

the algorithm requires 3 ∗ n1 steps to apply this translation to molecule A. Thus, the

algorithm requires 9 + 15 ∗ n1 + 3 ∗ n1 + 3 ∗ n2 + 3 + 3 ∗ n1 = 15 + 21 ∗ n1 + 3 ∗ n2

steps to rotate and translate molecule A.

Step 10 runs the Hungarian algorithm (Section 3.2.2.1) to get the best mapping of

all the atoms in the two molecules for the current structural orientation. For a N×N

cost matrix, the Hungarian algorithm requires N steps to subtract the smallest entry

in each row from all the entries of the row and N steps to subtract the smallest entry

in each column from all the entries of the column. Then, it requires at most N2 steps

to determine which rows and columns to exclude so that all the zero entries of the

cost matrix are covered and the minimum number of such exclusions are used (ie.

determine where to draw lines). If the minimum number of lines drawn is N , an

optimal assignment of zeros is possible and the algorithm is finished. If the minimum

number of lines is less thanN , the algorithm determines the smallest entry not covered

by any line. This entry is subtracted from each uncovered row, and then added to each

covered column, which requires 2 ∗N steps. The algorithm repeats this process until

the optimal assignment is found. The worst case happens when every loop only makes

one of the N rows all zero. In which case, the algorithm needs to be repeated N times.

Thus, the Hungarian algorithm requires at most (N+N+N2 +2∗N)∗N = N3 +4N2

steps. In the algorithm of this thesis, N = n2, so at most n3
2 + 4n2

2 steps are required

to get the best mapping of all the atoms.
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Step 11 calculates the sum of all the distances between the mapped atoms in two

molecules, if it is smaller than the saved one, it proceeds to the next step. Otherwise,

it goes to Step 13. It requires 3 ∗ n1 + n1 − 1 steps to calculate the sum of all the

distances between the mapped atoms and 1 step to compare it to the saved one. Thus,

Step 11 requires 4 ∗ n1 steps to finish the process.

Step 12 replaces the saved sum of all the distances between the mapped atoms, as

well as the mapping information with the newly calculated ones, which requires 1+n1

steps.

Step 13 checks whether all the triplets of two molecules have been compared. If so,

it continues, otherwise, it goes to Step 5. This requires 1 step.

Step 14 checks if the variable for saving the correct mapping is NULL (which means

there is no mapping between all the triplets in the two molecules). If so, it goes to

Step 10 to obtain the mapping based on the original orientation of the two molecules.

Otherwise, it goes to the next step. This requires 1 step.

Step 15 gets the rotation that minimizes the RMSD between the two molecules

based on the best mapping of atoms achieved from the above steps. As calculated in

Step 8 and 9, it requires 96 ∗ n1 + 16 steps to get the rotation and 9 + 15 ∗ n1 + 3 ∗

n1 + 3 ∗ n2 + 3 + 3 ∗ n1 = 15 + 21 ∗ n1 + 3 ∗ n2 to rotate and translate molecule A.

Thus, Step 15 requires 96 ∗ n1 + 16 + 15 + 21 ∗ n1 + 3 ∗ n2 = 117 ∗ n1 + 3 ∗ n2 + 31

steps in all.

Step 16 calculates the similarity score, which requires 3∗n1 steps to get the RMSD

and 1 step to calculate the similarity score from the RMSD, so 3 ∗ n1 + 1 steps in all.

Step 6 to Step 13 is a loop, the number of iterations depends on the number of

mapped atom triplets found in Step 6. Thus, the upper bound of the number of

mapped atom triplets is 16 ∗ n1 ∗ n2, when all the compared atom triplets in Step 5

are mapped.
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The upper bound of all the steps of the algorithm is 391 ∗ (n1 + n2) + 208+56 ∗

(n1 + n2) + 2+16 ∗ n1 ∗ n2+16 ∗ n1 ∗ n2 ∗ (6 + 12 + 304+15 + 21 ∗ n1 + 3 ∗ n2+n3
2 +

4n2
2+4 ∗ n1+1 + n1 + 1)+ 117 ∗ n1 + 3 ∗ n2 + 31+3 ∗ n1 + 1. g(n1, n2) = 16 ∗ n1 ∗ n4

2 +

64 ∗ n1 ∗ n3
2 + 48 ∗ n2

2 ∗ n1 + 416 ∗ n2
1 ∗ n2 + 5440 ∗ n1 ∗ n2 + 450 ∗ n2 + 567 ∗ n1 + 242.

Therefore, the time complexity of the algorithm is O(n1 ∗ n4
2).

During the above time complexity analysis, the worst case of many steps was not

obtained, and an upper bound was applied instead. Time complexity obtained by the

upper bound analysis describes the upper bound of the run-time for an arbitrary input

size of the algorithm. In general the upper bound overestimates the actual run-time

of the algorithm. A good estimate for a run-time function would have a growth rate

as close to the actual run-time as possible, without unnecessary polynomial terms.

According to the above analysis, the term that dominates the run-time upper bound is

n1 ∗n4
2, which means that the number of atoms in the two molecules are the two main

factors that affect the upper bound run-time of the algorithm. However, this upper

bound is obtained by assuming that all the triplets are mapped, which never happens

in practice. If the number of mapped triplets is zero or much less than 16 ∗ n1 ∗ n2,

the run-time is dramatically over estimated by this upper bound. Thus, the number

of mapped triplets may also be an important factor that affects the run-time of the

algorithm, which is not included in this time complexity analysis. Conventional run-

time complexity parameterizes the run-time function f(a) with the size of the input,

and does not distinguish different input structures, such as correspondence between

molecules as used in this thesis. If such factors influence program run-time, they

cannot be captured in these kind of complexity functions without characterizing them

as sub-problems of their own. Therefore, this time complexity analysis is not able to

describe the performance of the algorithm in terms of mapped triplets. It cannot

describe the effect on the run-time of the different structures to be compared. The
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next section investigates the effect of the number of mapped triplets on the run-time

of the algorithm using some empirical run-time data of the algorithm.

5.2 Obtaining the run-time data

One hundred structure pairs to be compared are randomly selected from the sub-NCI

database to gain one hundred samples of run-time. In order to make sure these one

hundred samples cover structures with different numbers of atoms, these structures

are not picked entirely randomly. Structures are chosen with the following arbitrary

categories based on number of atoms: 18 − 22, 38 − 42, 58 − 62, 78 − 82, 98 − 102,

118 − 122, 138 − 142, 158 − 162, 178 − 182 and 198 − 202. One query structure is

randomly chosen from each set and compared to a randomly chosen target structure

from the other sets. Then, this process is repeated until a query structure is selected

from each set and compared to a target structure from every other set. Each structure

can only be selected once as a query structure or a target structure. If, for a certain

set, all the structures with that number of atoms have been selected, the range of

the number of atoms of that set can be increased by one in order to obtain a unique

structure to compare. For every comparison result, in addition to the run-time of the

algorithm, the number of atoms and the number of mapped atom triplets between

each pair of structures are also recorded. For every comparison, the CPU time of

running the algorithm is recorded as the run-time.

The CPU time is captured by the following java code:

import java.lang.management.*;

/** Get CPU time in nanoseconds. */

public long getCpuTime( ) {
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ThreadMXBean bean = ManagementFactory.getThreadMXBean( );

return bean.isCurrentThreadCpuTimeSupported( ) ?

bean.getCurrentThreadCpuTime( ) : 0L;

}

Because the single run-times of some comparisons are too short to be captured, each

comparison is repeated until the total run-time is more than 1 second, then the run-

time of a single run is obtained by dividing the total run-time by the number of

times the comparison was run. The run-times of these 100 comparisons are shown

in the scatter plot in Figure 5.2. The x axis is the index of the structure pair to be

compared and the y axis is its run-time (in seconds). The range of the run-time is

from 0.00241973s to 1565.111s. The average run-time is 59.42111s and the standard

deviation of all these 100 run-times is 202.1817s. The details of all the test results

are listed in Appendix E.

Figure 5.2: The run-time of 100 randomly selected pairs of comparing structures in
the sub-NCI database.
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5.3 Run-time analysis based on the empirical run-

time

Linear regression is used to analyze the run-time data obtained in the last section.

Linear regression is an approach for modeling the relationship between a scalar de-

pendent variable y and one or more explanatory variables denoted X. The data are

modeled using a linear model provided by the user, and the coefficients of the model

are calculated from the data by minimizing the sum of the least square distances from

all the data points to the curve represented by the model. If the model fits all the data

points well, the R2 (multiple R2) value will be close to 1 (if the regression contains

more than one explanatory variable X, the R2 value is called the multiple R2 value.).

R2 (multiple R2) is a statistical measure of how close the data are to the fitted re-

gression line, and is always between 0 and 100%. 0 indicates that the model explains

none of the variability of the response data around its mean, and 100% indicates that

the model explains all the variability of the response data around its mean.

First, the model based on the time complexity analysis is used to fit the 100 run-time

data points. The statistical software package R is used to apply the linear regression.

To explore the explanatory power of the function g(n1, n2) = 16 ∗ n1 ∗ n4
2 + 64 ∗ n1 ∗

n3
2 +48∗n2

2 ∗n1 +416∗n2
1 ∗n2 +5440∗n1 ∗n2 +450∗n2 +567∗n1 +242 obtained in the

time complexity analysis, the linear model is described by a polynomial containing

the linear terms: n1 ∗ n4
2, n1 ∗ n3

2, n2
2 ∗ n1, n2

1 ∗ n2, n1 ∗ n2, n2, n1. Thus, the model

“run-time ∼ n1 ∗n4
2 +n1 ∗n3

2 +n2
2 ∗n1 +n2

1 ∗n2 +n1 ∗n2 +n2 +n1” is applied to the 100

run-time data points. The calculated multiple R2 of this model is 0.2578, indicating

that this model only explained 25.78% of the variability of the response data around

its mean, which indicates the function g(n1, n2) poorly describes the run-time of the

actual cases. The number of atoms in the molecules vs. the run-time are plotted in
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Figures 5.3 and 5.4. It can be seen that there is no recognizable correlation between

the run-time and the sizes of the molecules to be compared.

Figure 5.3: Number of atoms in the first molecule vs. the run-time

Figure 5.4: Number of atoms in the second molecule vs. the run-time

Thus, the upper bound of the run-time obtained by complexity analysis is of limited

value. The run-time is not dominated by the number of atoms in the molecules being



70

compared, the parameter associated with classical complexity analysis.

Next the number of mapped triplets is used in a linear model. The number of

mapped triplets vs. the run-time is plotted in Figure 5.5. An increase in the run-time

is observed with an increase in the number of mapped triplets.

Figure 5.5: The number of mapped triplets vs. the run-time

Adding the variable for the number of mapped triplets (k) in the function g(n1, n2)

from time complexity analysis, by replacing the number of mapped triplets (16∗n1∗n2)

with k, a function g(n1, n2, k) can be obtained as k ∗ n3
2 + 4 ∗ k ∗ n2

2 + 3 ∗ k ∗ n2 + 26 ∗

k ∗ n1 + 16 ∗ n1 ∗ n2 + 339k + 431 ∗ n1 + 314 ∗ n2 + 242. Thus, the model “run-time

∼ k ∗n3
2 +k ∗n2

2 +k ∗n2 +k ∗n1 +n1 ∗n2 +k+n2 +n1” is applied to the 100 run-time

data points. By running the linear regression, the multiple R2 is 0.9931, which means

that 99.31% of the variability of the run-time around its mean can be described by

this model. The detailed results of the linear regression generated by R are listed in

Table 5.1 and the residual plot is in Figure 5.6. It can been seen that there are no

apparent patterns of bias in the residual plot, which indicates no extra factors are

needed to explain any bias in the run-time data.
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Term Coefficients Standard Error P-value

Intercept 1.806 ∗ 101 1.051 ∗ 101 0.0890

k −3.227 ∗ 10−1 7.032 ∗ 10−2 1.42 ∗ 10−5

n2 −1.118 ∗ 10−1 7.233 ∗ 10−2 0.1258

n1 −2.229 ∗ 10−1 1.770 ∗ 10−1 0.2111

k ∗ n3
2 8.060 ∗ 10−8 1.393 ∗ 10−8 1.00 ∗ 10−7

k ∗ n2
2 −3.876 ∗ 10−5 7.337 ∗ 10−6 8.65 ∗ 10−7

k ∗ n2 6.267 ∗ 10−3 1.264 ∗ 10−3 3.29 ∗ 10−6

k ∗ n1 2.634 ∗ 10−5 1.103 ∗ 10−5 0.0191

n1 ∗ n2 1.511 ∗ 10−3 1.010 ∗ 10−3 0.1382

Table 5.1: The linear regression results generated by R.

Figure 5.6: The residual plot of the linear regression generated by R.

As can be seen from Table 5.1, five terms that contain the number of mapped

triplets (k) have the five lowest p-values among all the other variables. The p-value
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for each term tests the null hypothesis that the term does not explain any variance

in the run-time. A low p-value (< 0.05) indicates that the null hypothesis can be

rejected, which indicates that this term is likely to be a meaningful addition to the

model because changes in this term’s value are related to changes in the run-time.

With the non-significant factors (n1, n2, n1 ∗n2) dropped, the R2 is 0.9928. Thus, the

number of mapped triplets is a dominant variable that affects the performance of the

algorithm.

It should be noted that the linear regression result obtained here is a polynomial

that fits the trend of the run-time of the algorithm. If this polynomial is used to

predict the actual run-time for a specific case, the result may not be accurate. In

addition, the data points are spread out over a large range of values in Figure 5.2,

which also indicates the prediction of this kind of data with large standard deviation

may result in large error. Furthermore, the number of mapped triplets cannot be

obtained before running the algorithm. Therefore, this polynomial cannot reliably

predict the run-time of the algorithm for specific cases.

5.4 Some examples of the empirical run-time of

the algorithm

Different tests of the run-time are presented in this section. Although the specific

molecules influence the exact run-time, users can obtain an estimate of how long the

algorithm may take by using these run-time data as a reference. All of the tests here

are run on the same personal computer as the one being used for Chapter 4 with an

AMD Athlon™ dual core processor 4850e 2.5GHz CPU, 4 GB RAM and the 64-bit

Windows 7 operating system.

Figure 5.7 shows the run-time distribution of 3900 randomly selected pairs of struc-
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tures (selected by the same method introduced in Section 5.2), ranging from 18 to

225 atoms. The run-time of all these 3900 comparisons are in the folder named “3900

run time test result” in the zip file attached to this thesis.

Figure 5.7: The run-time distribution of 3900 randomly selected pairs of structures
in the sub-NCI database.

The run-time of 94.4% of cases (3680 out of 3900) is under 200s. Only 0.64% of

comparisons (25 out of 3900) take over 800s to finish the comparison. For example,

the case of the longest run-time in the test data is structure C70H138N8O4S4 (Figure

5.8) compared to itself (exact same file).
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Figure 5.8: Chemical structure C70H138N8O4S4.

It took 2362.432s to run the algorithm. This structure has 224 atoms and con-

tains many identical three-atom substructures. When the algorithm is comparing

this structure to itself, each triplet is mapped to all the identical triplets in the other

copy of the structure. This situation is close to the worst case mentioned in the time

complexity calculation (as discussed in Section 5.1.2). Thus, the number of mapped

triplets for this comparison is extremely large: 52984. As mentioned in the linear

regression analysis (Section 5.3), the number of mapped triples is the most significant

term that affects the run-time of the algorithm. This is the main reason why the

run-time of this comparison is so long.

For 25 molecules randomly selected from the sub-NCI database, with structures in

the 4 to 100 atom range, the run-time data to search the entire sub-NCI database for

a similar structure is listed in Table 5.2. The details of the result files are in the folder

named “Run time results of searching the sub-NCI data set” in the zip file attached

to this thesis. The sub-NCI database is categorized into 5 groups: 0 − 20, 21 − 40,

41 − 60, 61 − 80, and > 80 atoms. Five molecules are randomly selected from each

category to search the whole sub-NCI database. These run-times can provide a rough

run-time prediction as a reference for those who want to use the algorithm to search
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Query Structure Number of atoms Run-time(s) Run-time(h)
C7H10N2 19 4294.9883318 1.19
C8H8O2 18 3889.4325321 1.08

C6H9O2Br3 20 5921.2831567 1.64
C7H9NO 18 4280.7610406 1.19
C4H4N6S 15 506.2076449 0.14
C10H21BO2 34 16383.6930230 4.55
C16H16O2 34 16173.1228732 4.49
C13H14N2O2 31 13100.4023764 3.64
C7H6N4O6 23 1622.2231988 0.45

C16H14N2O6S 38 17656.6767831 4.90
C18H18O4S 41 19759.3206615 5.49

C17H26N2O2Cl4 51 13472.8235637 3.74
C21H20N2O6S 50 37706.0345038 10.47
C19H21NO2 43 31774.9232841 8.83
C23H18N6OS2 50 38831.8313204 10.79
C25H43N2O4SCl 76 180604.7289152 50.17
C26H41N2O4Cl 74 90847.9779551 25.24
C36H27N 64 122826.8569466 34.12
C23H38O5 66 127223.3395290 35.34
C36H25N2P 64 109882.4711703 30.52
C31H56O2 89 342824.8959814 95.23

C32H38N6O2Cl4 82 80888.5153128 22.47
C43H36N6O6 91 175906.1971966 48.86

C34H29N6O20NaS6 96 96468.1323815 26.80
C36H41N3O4 84 165219.9258953 45.89

Table 5.2: 25 randomly selected structures to search the sub-NCI database.

the NCI database.

Although most of the run-times in Table 5.2 are several hours, this is not unusual

in computational chemistry. Furthermore, when using this algorithm to search the

database, a chemist could set some filtering options first, which will be discussed in

more detail in the next chapter. Thus, the actual run-time for searching the database

could be significantly improved.
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5.5 Conclusion

The analysis of the run-time in this chapter reveals that the number of mapped

triplets, and the number of atoms in each structure are the terms that affect the run-

time of the algorithm. However, the number of mapped triplets is the dominant of

these three. The more mapped triplets found, the longer time the algorithm takes.



Chapter 6

Conclusion and future work

This thesis details an algorithm for the automated comparison of chemical structures.

The algorithm solves the traditional labeling problem in superimposition methods.

Thus, the algorithm is not only able to compute a similarity score for two chemical

structures, but is also able to search a large collection of chemical structures for similar

ones. Using data from two data sets, the algorithm is shown to work well qualitatively.

This thesis also analyses the time complexity of the algorithm and presents a practical

average run-time analysis based on the data sets. Based on the test run-time data, the

algorithm may take less than 200 seconds for a single comparison (3680 out of 3900 test

cases (94.4%) are under 200s, 2367 out of 3900 test cases (60.7%) are under 10s), only

0.64% of comparisons (25 out of 3900) took over 800 seconds. If using the algorithm to

search the sub-NCI database that contains 163652 structures, it took at least 506.21

seconds and at most 342824.9 seconds to finish the search owing to different query

structures. These run-times are all captured by testing the algorithm on a personal

computer with an AMD Athlon™ dual core processor 4850e 2.5GHz CPU, 4 GB RAM

and the 64-bit Windows 7 operating system. Therefore, this algorithm is functional

and practical for use.

77
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However, the algorithm still has the potential to be improved. First, since the

algorithm only compares chemical structures mainly on a geometric basis, if two

structures are isomers or are in the same cluster, it cannot output a result to notify the

user that these two structures are isomers or the same molecules. Although there is a

method available to check if two structures are isomers using the SMILES (Simplified

Molecular-Input Line-Entry System) strings (a specification in the form of a line

notation for describing the structure of chemical molecules using short ASCII strings.),

its results are not reliable. Thus, a method of comparing isomers and molecules in the

same cluster according to geometry would be a good improvement for the algorithm.

Second, the result of using the algorithm to search the entire sub-NCI database shows

that it takes hours to finish, owing to the algorithm comparing every structure in

the database one by one. In practical applications of this algorithm, the user could

add some filters based on the particular needs. For example, if a chemist is looking

for a structure in the NCI database that is similar to a 20-atom query structure, he

may not be interested in the structures with sizes that are twice as large as the query

structure. Thus, the algorithm does not need to search the structures with more

than 40 atoms. Or maybe the chemist is only interested in structures that consist of

certain atoms; then the algorithm does not need to search the structures that consist

of other atoms. Consequently, the run-time can be significantly reduced. Third, the

user also can add more conditions to the algorithm to obtain more specific comparison

or search results. For example, the user can add a condition that considers chlorine

equal to fluorine. Thus, the molecules with the same structure but different in chlorine

or fluorine atoms will have the same metrics in the results. Finally, in the run-time

analysis section, the thesis presents a polynomial to predict the run-time. However,

the polynomial has a term that is the number of mapped atom-triplets between the

two structures, for which it is hard to obtain a value before running the algorithm.
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Maybe it is possible to estimate this number from a more thorough characterization

of chemical structures.

Overall, the algorithm has many practical applications, not just limited to using

it as introduced in this thesis. This algorithm has proved to be useful and worth

developing to additional applications in the future.



Appendix A

Detailed results of Table 4.1

The test results of using molecules C5H6N5O, C5H8N5O2, C5H12N2O4, C5H10N2O3

and C7H10O2 in Table 4.1 as the query molecule to search the whole 737-data-set

are listed in this appendix. The results are text files generated by the application

for the test. The first line of the file contains the query molecule’s filename, the

number of atoms and the atom triplets found in it. The remainder is the molecules

the algorithm found that are similar to the query molecule in a most-to-least-similar

order. These molecules are listed in a tab-delimited table with eight columns. Each

row represents a molecule. Column “Structure” lists the filename of this molecule

and the directory of the file. Column “score” is the similarity score the algorithm

calculated when comparing this molecule to the query molecule. Column “rmsd”

is the RMSD between this molecule and the query molecule. Column “size” is the

number of the atoms in this molecule. Column “same” is the number of identical

atoms between this molecule and the query molecule. Column “all” is the larger of

the number of atoms of this molecule and the query molecule. Column “triangles” is

the number of atom triplets the algorithm found in this molecule. Column “matched”

is the number of mapped atom triplets between the query molecule and this molecule.
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The following is the first eight rows of the output file generated by the application

when using molecule C5H6N5O to search the entire 737-data-set (the first row in Ta-

ble 4.1):

GS_Ade_PathwayA_I1A_B3LYP_631Gd.out1.ar:(17atoms,28triangles)

structure score rmsd size same all triangles matched

D:\\structures\\GS\\GS_Ade_PathwayA_I1A_B3LYP_631Gd.out1.ar 7.824592E-8 7.824592E-8 17 17 17 28 36

D:\\structures\\GS\\GS_Ade_PathwayA_I1A_G3B3.out1.ar 2.3375972E-7 2.3375972E-7 17 17 17 28 36

D:\\structures\\GS\\GS_Ade_PathwayA_I1A_G3MP2B3.out1.ar 2.3375972E-7 2.3375972E-7 17 17 17 28 36

D:\\structures\\GS\\GS_Ade_PathwayA_I1A_CBSQB3.out1.ar 0.013064672 0.013064672 17 17 17 28 36

D:\\structures\\GS\\GS_Ade_PathwayA_I1A_MP2_631Gd.out1.ar 0.022226611 0.022226611 17 17 17 28 36

D:\\structures\\GS\\GS_Ade_PathwayA_I1A_B3LYP_631pGd.out1.ar 0.031945907 0.031945907 17 17 17 28 36

...(more comparison results of other 731 molecules)

The following is the first eight rows of the output file generated by the application

when using molecule C5H8N5O2 to search the entire 737-data-set (the second row in

Table 4.1):

GS_Ade_PathwayB_I1B_B3LYP_631pGd.out1.ar:(20atoms,29triangles)

structure score rmsd size same all triangles matched

D:\\structures\\GS\\GS_Ade_PathwayB_I1B_B3LYP_631pGd.out1.ar 7.751953E-8 7.751953E-8 20 20 20 29 38

D:\\structures\\GS\\GS_Ade_PathwayB_I1B_HF_631Gd.out1.ar 0.08340267 0.08340267 20 20 20 29 36

D:\\structures\\GS\\GS_Ade_PathwayB_I1B_MP2_631Gd.out1.ar 0.1279925 0.1279925 20 20 20 29 38

D:\\structures\\GS\\GS_Ade_PathwayB_I1B_CBSQB3.out1.ar 0.13690503 0.13690503 20 20 20 29 38

D:\\structures\\TS\\TS_Ade_PathwayC_TS2C_G3MP2B3.out1.ar 0.3397378 0.25111055 23 17 23 37 26

D:\\structures\\GS\\GS_Ade_PathwayF_I2F_HF_631Gd.out1.ar 0.38504344 0.30482605 24 19 24 32 28

...(more comparison results of other 731 molecules)

The following is the first eight rows of the output file generated by the application

when using molecule C5H12N2O4 to search the entire 737-data-set (the third row in

Table 4.1):

GS_DHA_P1_B3LYP_631Gd.log1.ar:(23atoms,32triangles)

structure score rmsd size same all triangles matched

D:\\structures\\GS\\GS_DHB_P1_B3LYP_631Gd.log1.ar 8.656624E-8 8.656624E-8 23 23 23 32 76

D:\\structures\\GS\\GS_DHA_P1_B3LYP_631Gd.log1.ar 8.656624E-8 8.656624E-8 23 23 23 32 76

D:\\structures\\GS\\GS_DHA_P1N_G3MP2B3.log1.ar 1.825114E-7 1.8251141E-7 23 23 23 32 76

D:\\structures\\GS\\GS_DHB_P1_G3MP2B3.log1.ar 1.825114E-7 1.8251141E-7 23 23 23 32 76

D:\\structures\\TS\\TS_IRCF_P_DHA_TS1_B3LYP_631Gd.log1.ar 7.410906E-4 7.410906E-4 23 23 23 32 76

D:\\structures\\TS\\TS_IRCF_P_DHB_TS2_B3LYP_631Gd.log1.ar 8.335496E-4 8.3354954E-4 23 23 23 32 76

...(more comparison results of other 731 molecules)

The following is the first eight rows of the output file generated by the application



82

when using molecule C5H10N2O3 to search the entire 737-data-set (the fourth row in

Table 4.1):

GS_GDA_P1b_B3LYP_631pGdp_SMD.log1.ar:(20atoms,31triangles)

structure score rmsd size same all triangles matched

D:\\structures\\GS\\GS_GDA_P1b_B3LYP_631pGdp_SMD.log1.ar 7.23501E-8 7.23501E-8 20 20 20 31 68

D:\\structures\\GS\\GS_GDA_P1_B3LYP_631pGdp_PCM.log1.ar 0.16244033 0.16244033 20 20 20 31 68

D:\\structures\\TS\\TS_IRCF_I2b_PHC_TS3_B3LYP_631pGdp.log1.ar 1.2166932 0.9125199 18 15 20 32 38

D:\\structures\\GS\\GS_GDA_P1_B3LYP_631pGdp_SMD.log1.ar 1.2433121 1.1189809 20 18 20 37 39

D:\\structures\\TS\\TS_IRCR_P_DGA_TS1_B3LYP_631pGdp_SMD.log1.ar 1.2438437 1.1194594 20 18 20 37 39

D:\\structures\\GS\\GS_DHD_P1_B3LYP_631Gd.log1.ar 1.251775 0.85348296 22 15 22 37 53

...(more comparison results of other 731 molecules)

The following is the first eight rows of the output file generated by the application

when using molecule C7H10O2 to search the entire 737-data-set (the fifth row in Table

4.1):

TS_C7H10O2_endo3B_HF631ppGd.log1.ar:(19atoms,36triangles)

structure score rmsd size same all triangles matched

D:\\structures\\TS\\TS_C7H10O2_endo3B_HF631ppGd.log1.ar 7.648167E-8 7.648167E-8 19 19 19 36 92

D:\\structures\\TS\\TS_C7H10O2_endo_3B_B3LYP631ppGd.log1.ar 0.044035513 0.044035513 19 19 19 36 63

D:\\structures\\TS\\TS_C7H10O_endo_syn_G_HF631ppGd.log1.ar 0.13386537 0.11272874 18 16 19 35 60

D:\\structures\\TS\\TS_C7H10O_endo_anti_S_HF631ppGd.log1.ar 0.17247841 0.14524497 18 16 19 35 60

D:\\structures\\TS\\TS_C7H10O_endo_anti_S_HF631Gd.log1.ar 0.1786975 0.1504821 18 16 19 35 60

D:\\structures\\TS\\TS_C7H10_endo_HF631ppGd.log1.ar 0.23298095 0.171670 17 14 19 34 60

...(more comparison results of other 731 molecules)



Appendix B

Detailed results of using molecules

in Table 4.1 to search the

737r-data-set

The test results of using molecules C5H6N5O, C5H8N5O2, C5H12N2O4, C5H10N2O3

and C7H10O2 in Table 4.1 as the query molecule to search the entire 737r-data-set

are listed in this appendix. The filename of every molecule in the 737r-data-set is

the same filename of the molecule in the 737-data-set (before a random rotation).

The results are text files generated by the application for the test. The first line of

the file contains the query molecule’s filename, the number of atoms and the atom

triplets found in it. The remainder is the molecules the algorithm found that are

similar to the query molecule in a most-to-least-similar order. These molecules are

listed in a tab-delimited table with eight columns. Each row represents a molecule.

Column “Structure” lists the filename of this molecule and the directory of the file.

Column “score” is the similarity score the algorithm calculated when comparing this

molecule to the query molecule. Column “rmsd” is the RMSD between this molecule
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and the query molecule. Column “size” is the number of the atoms in this molecule.

Column “same” is the number of identical atoms between this molecule and the query

molecule. Column “all” is the larger of the number of atoms of this molecule and

the query molecule. Column “triangles” is the number of atom triplets the algorithm

found in this molecule. Column “matched” is the number of mapped atom triplets

between the query molecule and this molecule.

The following is the first eight rows of the output file generated by the application

when using molecule C5H6N5O in the 737-data-set to search the entire 737r-data-set:

GS_Ade_PathwayA_I1A_B3LYP_631Gd.out1.ar:(17atoms,28triangles)

structure score rmsd size same all triangles matched

D:\\TestFileConvert\\GS\\GS_Ade_PathwayA_I1A_G3MP2B3.out1.ar 1.3036896E-7 1.3036896E-7 17 17 17 28 38

D:\\TestFileConvert\\GS\\GS_Ade_PathwayA_I1A_B3LYP_631Gd.out1.ar 1.6501266E-7 1.6501266E-7 17 17 17 28 38

D:\\TestFileConvert\\GS\\GS_Ade_PathwayA_I1A_G3B3.out1.ar 2.650705E-7 2.650705E-7 17 17 17 28 38

D:\\TestFileConvert\\GS\\GS_Ade_PathwayA_I1A_CBSQB3.out1.ar 0.013064702 0.013064702 17 17 17 28 38

D:\\TestFileConvert\\GS\\GS_Ade_PathwayA_I1A_MP2_631Gd.out1.ar 0.022226539 0.022226539 17 17 17 28 38

D:\\TestFileConvert\\GS\\GS_Ade_PathwayA_I1A_B3LYP_631pGd.out1.ar 0.031945888 0.031945888 17 17 17 28 38

...(more comparison results of other 731 molecules)

The following is the first eight rows of the output file generated by the application

when using molecule C5H8N5O2 in the 737-data-set to search the entire 737r-data-set:

GS_Ade_PathwayB_I1B_B3LYP_631pGd.out1.ar:(20atoms,29triangles)

structure score rmsd size same all triangles matched

D:\\TestFileConvert\\GS\\GS_Ade_PathwayB_I1B_B3LYP_631pGd.out1.ar 1.9156103E-7 1.9156103E-7 20 20 20 29 40

D:\\TestFileConvert\\GS\\GS_Ade_PathwayB_I1B_HF_631Gd.out1.ar 0.08340269 0.08340269 20 20 20 29 40

D:\\TestFileConvert\\GS\\GS_Ade_PathwayB_I1B_MP2_631Gd.out1.ar 0.12799248 0.12799248 20 20 20 29 40

D:\\TestFileConvert\\GS\\GS_Ade_PathwayB_I1B_CBSQB3.out1.ar 0.13690506 0.13690506 20 20 20 29 40

D:\\TestFileConvert\\TS\\TS_Ade_PathwayC_TS2C_G3MP2B3.out1.ar 0.33973783 0.25111058 23 17 23 37 28

D:\\TestFileConvert\\GS\\GS_Ade_PathwayF_I2F_HF_631Gd.out1.ar 0.38504344 0.30482605 24 19 24 32 36

...(more comparison results of other 731 molecules)

The following is the first eight rows of the output file generated by the application

when using molecule C5H12N2O4 in the 737-data-set to search the entire 737r-data-

set:
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GS_DHA_P1_B3LYP_631Gd.log1.ar:(23atoms,32triangles)

structure score rmsd size same all triangles matched

D:\\TestFileConvert\\GS\\GS_DHA_P1N_G3MP2B3.log1.ar 1.910293E-7 1.910293E-7 23 23 23 32 76

D:\\TestFileConvert\\GS\\GS_DHA_P1_B3LYP_631Gd.log1.ar 2.055007E-7 2.0550071E-7 23 23 23 32 76

D:\\TestFileConvert\\GS\\GS_DHB_P1_G3MP2B3.log1.ar 3.076233E-7 3.076233E-7 23 23 23 32 76

D:\\TestFileConvert\\GS\\GS_DHB_P1_B3LYP_631Gd.log1.ar 3.0786248E-7 3.0786248E-7 23 23 23 32 76

D:\\TestFileConvert\\TS\\TS_IRCF_P_DHA_TS1_B3LYP_631Gd.log1.ar 7.4109243E-4 7.4109243E-4 23 23 23 32 76

D:\\TestFileConvert\\TS\\TS_IRCF_P_DHB_TS2_B3LYP_631Gd.log1.ar 8.335505E-4 8.335506E-4 23 23 23 32 76

...(more comparison results of other 731 molecules)

The following is the first eight rows of the output file generated by the application

when using molecule C5H10N2O3 in the 737-data-set to search the entire 737r-data-

set:

GS_GDA_P1b_B3LYP_631pGdp_SMD.log1.ar:(20atoms,31triangles)

structure score rmsd size same all triangles matched

D:\\structures\\GS\\GS_GDA_P1b_B3LYP_631pGdp_SMD.log1.ar 7.23501E-8 7.23501E-8 20 20 20 31 68

D:\\structures\\GS\\GS_GDA_P1_B3LYP_631pGdp_PCM.log1.ar 0.16244033 0.16244033 20 20 20 31 68

D:\\structures\\TS\\TS_IRCF_I2b_PHC_TS3_B3LYP_631pGdp.log1.ar 1.2166932 0.9125199 18 15 20 32 38

D:\\structures\\GS\\GS_GDA_P1_B3LYP_631pGdp_SMD.log1.ar 1.2433121 1.1189809 20 18 20 37 39

D:\\structures\\TS\\TS_IRCR_P_DGA_TS1_B3LYP_631pGdp_SMD.log1.ar 1.2438437 1.1194594 20 18 20 37 39

D:\\structures\\GS\\GS_DHD_P1_B3LYP_631Gd.log1.ar 1.251775 0.85348296 22 15 22 37 53

...(more comparison results of other 731 molecules)

The following is the first eight rows of the output file generated by the application

when using molecule C7H10O2 in the 737-data-set to search the entire 737r-data-set:

TS_C7H10O2_endo3B_HF631ppGd.log1.ar:(19atoms,36triangles)

structure score rmsd size same all triangles matched

D:\\TestFileConvert\\GS\\GS_GDA_P1b_B3LYP_631pGdp_SMD.log1.ar 1.3220114E-7 1.3220114E-7 20 20 20 31 70

D:\\TestFileConvert\\GS\\GS_GDA_P1_B3LYP_631pGdp_PCM.log1.ar 0.16244034 0.16244034 20 20 20 31 70

D:\\TestFileConvert\\TS\\TS_IRCF_I2b_PHC_TS3_B3LYP_631pGdp.log1.ar 1.2166934 0.91252005 18 15 20 32 41

D:\\TestFileConvert\\GS\\GS_GDA_P1_B3LYP_631pGdp_SMD.log1.ar 1.2433121 1.1189809 20 18 20 37 41

D:\\TestFileConvert\\TS\\TS_IRCR_P_DGA_TS1_B3LYP_631pGdp_SMD.log1.ar 1.2438437 1.1194594 20 18 20 37 41

D:\\TestFileConvert\\GS\\GS_DHD_P1_G3MP2B3.log1.ar 1.251775 0.85348296 22 15 22 37 55

...(more comparison results of other 731 molecules)



Appendix C

Detailed results of Table 4.2

The test results of using molecules 4-methyl-1, 2-benzenediamine (C7H10N2); ethyl

2, 3-dihydro-1H-pyrrolo[1,2-a]benzimidazole-8-carboxylate (C13H14N2O2); ethyl ((4-

(hydroxy(oxido)amino)-2-methyl-1-naphthyl)(phenylsulfonyl)amino)acetate

(C21H20N2O6S); 4-chloro-N-hexadecyl-3-(hydroxy(oxido)amino)-N-isopropyl benzene-

sulfonamide (C25H43N2O4SCl) and 4,4-bis(4-(((4-(phenyldiazenyl)anilino)carbonyl)

oxy)phenyl)pentanoic acid (C43H36N6O6) in Table 4.2 as the query molecule to search

the entire sub-NCI data set are listed in this appendix. The results are text files gen-

erated by the application for the test. The first line of the file contains the query

molecule’s filename, the number of atoms and the atom triplets found in it. The

remainder is the molecules the algorithm found that are similar to the query molecule

in a most-to-least-similar order. These molecules are listed in a tab-delimited table

with eight columns. Each row represents a molecule. Column “Structure” lists the

filename of this molecule and the directory of the file. Column “score” is the similarity

score the algorithm calculated when comparing this molecule to the query molecule.

Column “rmsd” is the RMSD between this molecule and the query molecule. Column

“size” is the number of the atoms in this molecule. Column “same” is the number of
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identical atoms between this molecule and the query molecule. Column “all” is the

larger of the number of atoms of this molecule and the query molecule. Column “tri-

angles” is the number of atom triplets the algorithm found in this molecule. Column

“matched” is the number of mapped atom triplets between the query molecule and

this molecule.

The following is the first seven rows of the output file generated by the application

when using molecule 4-methyl-1, 2-benzenediamine (C7H10N2) to search the entire

sub-NCI data set (the first row in Table 4.2):

1487_NCI.lis:(19atoms,30triangles)

structure score rmsd size same all triangles matched

D:\\NCI_Trim\\1400\\1487_NCI.lis 6.080277E-8 6.080277E-8 19 19 19 30 84

D:\\NCI_Trim\\111000\\111019_NCI.lis 0.015928725 0.01257531 17 15 19 27 59

D:\\NCI_Trim\\1400\\1482_NCI.lis 0.06428598 0.04398514 16 13 19 25 41

D:\\NCI_Trim\\1400\\1481_NCI.lis 0.069995396 0.047891587 16 13 19 25 40

D:\\NCI_Trim\\76000\\76019_NCI.lis 0.0700789 0.047948726 16 13 19 25 40

...(more comparison results of other 163647 molecules)

The following is the first seven rows of the output file generated by the application

when using molecule ethyl 2, 3-dihydro-1H-pyrrolo[1,2-a]benzimidazole-8-carboxylate

(C13H14N2O2) to search the entire sub-NCI data set (the second row in Table 4.2):

108547_NCI.lis:(31atoms,59triangles)

structure score rmsd size same all triangles matched

D:\\NCI_Trim\\108500\\108547_NCI.lis 1.02438456E-7 1.02438456E-7 31 31 31 59 125

D:\\NCI_Trim\\105700\\105780_NCI.lis 0.672143 0.43364063 26 20 31 44 76

D:\\NCI_Trim\\99200\\99250_NCI.lis 0.7822722 0.52992636 28 21 31 46 95

D:\\NCI_Trim\\199800\\199847_NCI.lis 0.7841758 0.5059199 26 20 31 43 77

D:\\NCI_Trim\\205000\\205011_NCI.lis 0.80119514 0.20676003 19 8 31 31 1

...(more comparison results of other 163647 molecules)

The following is the first seven rows of the output file generated by the application

when using molecule ethyl ((4-(hydroxy(oxido)amino)-2-methyl-1-naphthyl)

(phenylsulfonyl)amino)acetate (C21H20N2O6S) to search the entire sub-NCI data set
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(the third row in Table 4.2):

118972_NCI.lis:(50atoms,88triangles)

structure score rmsd size same all triangles matched

D:\\NCI_Trim\\118900\\118972_NCI.lis 1.0505697E-7 1.0505697E-7 50 50 50 88 439

D:\\NCI_Trim\\116700\\116735_NCI.lis 0.9432973 0.62257624 42 33 50 73 335

D:\\NCI_Trim\\190000\\190006_NCI.lis 1.3381022 0.58876497 29 22 50 50 314

D:\\NCI_Trim\\122000\\122069_NCI.lis 1.3860861 0.69304305 36 25 50 63 374

D:\\NCI_Trim\\222300\\222312_NCI.lis 1.5278447 0.70280856 36 23 50 61 244

D:\\NCI_Trim\\116700\\116777_NCI.lis 1.8689374 0.82233244 36 22 50 63 377

...(more comparison results of other 163647 molecules)

The following is the first seven rows of the output file generated by the application

when using molecule 4-chloro-N-hexadecyl-3-(hydroxy(oxido)amino)-N-isopropyl ben-

zenesulfonamide (C25H43N2O4SCl) to search the entire sub-NCI data set (the fourth

row in Table 4.2):

113567_NCI.lis:(76atoms,144triangles)

structure score rmsd size same all triangles matched

D:\\NCI_Trim\\113500\\113567_NCI.lis 1.7218684E-7 1.7218684E-7 76 76 76 144 3668

D:\\NCI_Trim\\9300\\9324_NCI.lis 0.22195421 0.0817726 32 28 76 60 1824

D:\\NCI_Trim\\6000\\6004_NCI.lis 0.22995637 0.08472077 32 28 76 60 1892

D:\\NCI_Trim\\8600\\8638_NCI.lis 0.2789677 0.10277758 32 28 76 60 1892

D:\\NCI_Trim\\8600\\8639_NCI.lis 0.28174788 0.103801854 32 28 76 60 1960

D:\\NCI_Trim\\5400\\5497_NCI.lis 0.28427857 0.093512684 30 25 76 55 1632

...(more comparison results of other 163647 molecules)

The following is the first seven rows of the output file generated by the application

when using molecule 4,4-bis(4-(((4-(phenyldiazenyl)anilino)carbonyl)oxy)phenyl)pentanoic

acid (C43H36N6O6) to search the entire sub-NCI data set (the fifth row in Table 4.2):
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206308_NCI.lis:(91atoms,164triangles)

structure score rmsd size same all triangles matched

D:\\NCI_Trim\\206300\\206308_NCI.lis 1.7705688E-7 1.7705686E-7 91 91 91 164 1001

D:\\NCI_Trim\\69500\\69547_NCI.lis 4.555083 0.90100545 30 18 91 51 327

D:\\NCI_Trim\\92800\\92804_NCI.lis 4.9094367 0.8631977 30 16 91 53 271

D:\\NCI_Trim\\157300\\157385_NCI.lis 4.940801 0.8144177 33 15 91 59 261

D:\\NCI_Trim\\7100\\7126_NCI.lis 5.049523 1.49821 52 27 91 96 524

D:\\NCI_Trim\\249800\\249872_NCI.lis 5.0761538 1.227202 48 22 91 89 291

...(more comparison results of other 163647 molecules)



Appendix D

An example of the input structure

file used by the algorithm

The following is the content of the structure file of molecule 2-methylbenzo-1,4-

quinone (C7H6O2) used as the input of the algorithm.

! Z X Y Z Atom Atype

8 -2.24230000 1.04180000 0.00180000 1 O(4,-1)

8 2.75340000 -0.55940000 0.00110000 2 O(4,-1)

6 -1.08580000 0.67110000 0.00190000 3 C(30,-1)

6 -0.77300000 -0.77250000 -0.00020000 4 C(24,-1)

6 0.00790000 1.66390000 -0.00180000 5 C(19,-1)

6 0.50320000 -1.18150000 -0.00050000 6 C(19,-1)

6 1.28410000 1.25480000 -0.00210000 7 C(19,-1)

6 1.59700000 -0.18880000 0.00140000 8 C(30,-1)

6 -1.88880000 -1.78530000 -0.00160000 9 C(10,0)

1 -0.22080000 2.71930000 -0.00470000 10 H(4,0)

1 0.73190000 -2.23700000 0.00200000 11 H(4,0)
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1 2.08380000 1.98070000 -0.00080000 12 H(4,0)

1 -2.15810000 -2.03070000 1.02570000 13 H(4,0)

1 -2.75590000 -1.36990000 -0.51510000 14 H(4,0)

1 -1.55970000 -2.68790000 -0.51650000 15 H(4,0)

Atom to Atom(s) (Bond part of a ring)

1 : 3 ()

O(4,-1) : =C(30,-1)

2 : 8 ()

O(4,-1) : =C(30,-1)

3 : 4, 5 ()

C(30,-1) : -C(24,-1) , -C(19,-1)

4 : 6, 9 ()

C(24,-1) : =C(19,-1) , -C(10,0)

5 : 7, 10 ()

C(19,-1) : =C(19,-1) , -H(4,0)

6 : 8, 11 ()

C(19,-1) : -C(30,-1) , -H(4,0)

7 : 8, 12 ()

C(19,-1) : -C(30,-1) , -H(4,0)

9 : 13, 14, 15 ()

C(10,0) : -H(4,0) , -H(4,0) , -H(4,0)



Appendix E

Detailed test results of 100

randomly selected pairs in Figure

5.2

The test results of 100 randomly selected pairs of structures in Figure 5.2 are listed

in this appendix. The results are text files generated by the application for the test.

The results are listed in a tab-delimited table with ten columns. Each row represents

comparison result of two molecules. Column “structure1” lists the filename of the

first molecule of the comparison molecules. Column “n1” lists the number of atoms

in the first molecule. Column “t1” lists the number of atom triplets found in the first

molecule. Column “structure2” lists the filename of the second molecule. Column

“n2” lists the number of atoms in the second molecule. Column “t2” lists the num-

ber of atom triplets found in the second molecule. Column “k” lists the number of

matched triplets between the comparison molecules. Column “same” lists the number

of identical atoms between the comparison molecules. Column “all” lists the number

of the larger of the number of atoms in the comparison molecules. Column “runtime”
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lists the run-time of the comparison molecules in seconds.

structure1 n1 t1 structure2 n2 t2 k same all runtime

49834_NCI.lis 21 27 63912_NCI.lis 22 39 0 2 22 0.00241973

155648_NCI.lis 20 30 141829_NCI.lis 39 67 0 3 39 0.00385796

160854_NCI.lis 20 31 141650_NCI.lis 58 103 12 2 58 0.013389391

9103_NCI.lis 22 37 53903_NCI.lis 82 133 42 2 82 0.077520497

1632_NCI.lis 21 36 95189_NCI.lis 99 192 36 5 99 0.080246914

77389_NCI.lis 20 30 254562_NCI.lis 118 231 6 1 118 0.021853735

34963_NCI.lis 19 25 35396_NCI.lis 138 260 2 1 138 0.01572255

23736_NCI.lis 18 31 224460_NCI.lis 162 310 0 2 162 0.017691119

12318_NCI.lis 20 32 242358_NCI.lis 178 314 412 6 178 2.538916275

258243_NCI.lis 22 30 250869_NCI.lis 201 386 92 5 201 0.651304175

155314_NCI.lis 41 72 165142_NCI.lis 22 38 120 7 41 0.091047856

184316_NCI.lis 40 67 99846_NCI.lis 38 65 20 11 40 0.020481113

23406_NCI.lis 38 68 192414_NCI.lis 61 111 232 17 61 0.389402496

196698_NCI.lis 39 67 252964_NCI.lis 78 152 344 20 78 0.810005192

112813_NCI.lis 39 73 220211_NCI.lis 99 175 440 9 99 1.524352629

241174_NCI.lis 38 69 156948_NCI.lis 121 232 92 10 121 0.531224458

226946_NCI.lis 41 75 255693_NCI.lis 141 277 96 10 141 0.781205008

186916_NCI.lis 39 76 243642_NCI.lis 160 307 78 11 160 0.658129219

96406_NCI.lis 41 68 257742_NCI.lis 178 325 217 6 178 1.9656126

184537_NCI.lis 41 80 252207_NCI.lis 198 384 1152 8 198 13.3068853

12943_NCI.lis 59 107 49975_NCI.lis 20 31 52 4 59 0.092455639

30141_NCI.lis 60 110 59008_NCI.lis 39 69 450 19 60 0.782405015

127961_NCI.lis 59 110 106075_NCI.lis 59 101 400 21 59 0.886605683

133074_NCI.lis 58 97 12814_NCI.lis 81 161 176 17 81 0.637654088

208473_NCI.lis 58 102 60305_NCI.lis 98 186 98 17 98 0.491031719

237670_NCI.lis 61 106 168759_NCI.lis 120 217 182 22 120 1.620181814

84591_NCI.lis 59 101 253754_NCI.lis 141 252 162 10 141 1.838211783

248068_NCI.lis 62 113 43696_NCI.lis 162 291 168 20 162 2.4492157

128559_NCI.lis 60 108 226391_NCI.lis 178 328 872 16 178 12.3084789

188284_NCI.lis 62 110 226394_NCI.lis 198 379 768 13 198 13.4940865

100590_NCI.lis 79 151 202180_NCI.lis 19 30 0 1 79 0.01010622

118325_NCI.lis 79 148 239405_NCI.lis 42 85 654 13 79 2.44609568

253249_NCI.lis 80 153 149364_NCI.lis 62 110 640 26 80 2.546716325

216607_NCI.lis 79 149 248249_NCI.lis 81 144 228 21 81 0.950187909

252992_NCI.lis 80 161 188798_NCI.lis 99 187 660 27 99 3.6660235

126859_NCI.lis 78 148 63489_NCI.lis 122 234 7978 39 122 76.9240931
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179370_NCI.lis 82 144 252409_NCI.lis 141 267 814 26 141 10.1556651

34084_NCI.lis 82 170 126271_NCI.lis 159 272 728 29 159 13.728088

74925_NCI.lis 80 150 132146_NCI.lis 181 350 92 32 181 2.06857326

238987_NCI.lis 78 146 244690_NCI.lis 202 392 8380 33 202 203.8777069

12747_NCI.lis 98 172 201661_NCI.lis 18 30 42 3 98 0.262001679

145773_NCI.lis 102 194 83063_NCI.lis 42 76 558 20 102 3.8220245

237893_NCI.lis 100 184 242212_NCI.lis 58 106 144 17 100 1.06704684

242802_NCI.lis 102 192 184787_NCI.lis 81 173 1682 34 102 9.94506375

80313_NCI.lis 99 173 1243_NCI.lis 101 187 82 32 101 0.75660485

259784_NCI.lis 101 182 201649_NCI.lis 120 234 504 37 120 6.15423945

196566_NCI.lis 98 192 220422_NCI.lis 140 259 1057 32 140 14.3832922

194639_NCI.lis 98 182 64965_NCI.lis 160 274 590 21 160 11.6220745

30822_NCI.lis 100 191 250831_NCI.lis 180 346 6880 54 180 162.3190405

148669_NCI.lis 100 195 45657_NCI.lis 206 402 30448 91 206 913.8070577

65006_NCI.lis 120 198 203909_NCI.lis 18 28 0 3 120 0.01918633

215213_NCI.lis 118 208 247205_NCI.lis 41 81 320 9 118 3.489222367

1244_NCI.lis 119 223 160502_NCI.lis 59 114 336 20 119 3.754424067

206482_NCI.lis 118 219 13816_NCI.lis 78 151 210 26 118 2.11849358

220502_NCI.lis 121 212 113644_NCI.lis 98 174 124 24 121 1.34940865

100607_NCI.lis 119 234 254396_NCI.lis 122 219 1468 30 122 16.9261085

238054_NCI.lis 121 230 148678_NCI.lis 138 258 816 38 138 11.3100725

229522_NCI.lis 122 227 248049_NCI.lis 159 298 2669 41 159 47.4867044

70998_NCI.lis 122 220 153537_NCI.lis 180 324 0 28 180 0.108697471

48485_NCI.lis 120 230 243059_NCI.lis 207 388 960 50 207 31.980205

13818_NCI.lis 141 262 234913_NCI.lis 20 38 26 7 141 0.438837596

248925_NCI.lis 138 262 249957_NCI.lis 39 67 636 16 138 10.2804659

220420_NCI.lis 138 258 43548_NCI.lis 61 112 384 21 138 6.18543965

147968_NCI.lis 140 254 255862_NCI.lis 78 138 102 29 140 1.69261085

254070_NCI.lis 142 259 45655_NCI.lis 99 193 1232 22 142 21.7465394

242395_NCI.lis 138 248 228639_NCI.lis 121 226 0 29 138 0.072388953

65722_NCI.lis 139 264 229518_NCI.lis 142 263 1090 45 142 17.9869153

254072_NCI.lis 139 253 216857_NCI.lis 159 295 590 39 159 11.5284739

96880_NCI.lis 138 260 250809_NCI.lis 181 345 1572 44 181 40.56026

245131_NCI.lis 141 265 223229_NCI.lis 207 377 232 48 207 9.43026045

244654_NCI.lis 158 274 241951_NCI.lis 18 29 116 0 158 2.577916525

175274_NCI.lis 162 288 84119_NCI.lis 38 72 144 8 162 3.629623267

223231_NCI.lis 162 296 255418_NCI.lis 58 106 1 17 162 0.060065056

170387_NCI.lis 160 309 121948_NCI.lis 78 147 9493 53 160 230.4914775

256128_NCI.lis 158 301 251111_NCI.lis 98 177 843 27 158 17.3941115
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237503_NCI.lis 158 308 222854_NCI.lis 119 238 1728 45 158 32.9318111

252486_NCI.lis 162 313 53468_NCI.lis 140 266 2074 50 162 47.5491048

258320_NCI.lis 160 294 254074_NCI.lis 157 293 1000 25 160 19.8745274

111304_NCI.lis 157 297 160847_NCI.lis 177 336 23542 99 177 661.6314412

72377_NCI.lis 163 312 180885_NCI.lis 208 392 2176 68 208 77.6260976

250833_NCI.lis 177 345 93709_NCI.lis 22 38 54 5 177 1.631324743

49544_NCI.lis 176 340 226101_NCI.lis 41 75 48 10 176 1.548867071

250834_NCI.lis 175 340 148786_NCI.lis 61 113 4704 30 175 145.2213309

16882_NCI.lis 175 343 241653_NCI.lis 78 141 162 24 175 5.31183405

230493_NCI.lis 175 325 24230_NCI.lis 98 168 1012 28 175 29.5777896

256682_NCI.lis 175 340 248928_NCI.lis 120 217 120 32 175 3.614023167

220534_NCI.lis 174 332 11698_NCI.lis 142 266 3600 61 174 79.3265085

150270_NCI.lis 186 312 782_NCI.lis 163 312 972 39 186 28.2673812

252544_NCI.lis 186 354 252544_NCI.lis 186 354 2970 186 186 71.6668594

253516_NCI.lis 186 351 242397_NCI.lis 210 392 1400 40 210 60.4659876

220419_NCI.lis 190 423 45525_NCI.lis 20 38 0 5 190 0.060158469

226396_NCI.lis 210 400 234402_NCI.lis 40 69 434 4 210 22.1677421

223232_NCI.lis 189 345 90985_NCI.lis 61 105 186 17 189 7.1448458

250839_NCI.lis 189 362 16268_NCI.lis 81 171 1991 42 189 78.8897057

72378_NCI.lis 187 360 74842_NCI.lis 98 172 960 39 187 35.6150283

249991_NCI.lis 220 411 235419_NCI.lis 119 227 1991 35 220 118.3111584

15216_NCI.lis 221 407 252407_NCI.lis 142 272 924 53 221 49.8423195

48509_NCI.lis 224 414 75501_NCI.lis 163 312 33048 72 224 1565.111233

223233_NCI.lis 225 409 252542_NCI.lis 174 333 2478 53 225 135.2216668

195529_NCI.lis 174 327 195529_NCI.lis 174 327 31167 174 174 672.2707094
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