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Abstract 

Heteroclitic peptides are sequence variants of native peptide epitopes that stimulate T 

cell responses superior to the native epitope. Since heteroclitic peptides enhance HIV-

specific CD8+ T cell cytokine production, we investigated whether they reduce signs 

of HIV-specific CD8+ T cell exhaustion. Twenty-four variant peptides were generated 

from reference human histocompatibility-linked leukocyte antigen (HLA)-A2-

restricted peptide epitopes Nef 8391, Nef 135143, Gag 433440 and Gag 

7785 with conservative and semi-conservative amino acid substitutions at positions 

3, 5 and 7 or 3, 5 and 8 of Gag 433440. Variants that enhanced interferon-gamma 

(IFN-γ) and/or interleukin-2 (IL-2) production were tested for their effects on 

proliferation and programmed death-1 (PD-1) expression. Heteroclitic variants 

enhanced HIV-specific CD8+ T cell proliferation by > 20% in 13/29 cases, induced 

lower PD-1 expression by 15% - 50% in 10 cases, and by ≥ 50% in 3 cases. These 

data indicate unique immunotherapeutic potential for heteroclitic peptides. 
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1.0 Introduction 

1.1 Overview of HIV/AIDS 

1.1.1 Discovery 

Acquired Immunodeficiency Syndrome (AIDS) was first observed in the 

United States in the early 1980’s among previously healthy young intravenous drug 

users and gay men who developed Pneumocystis jiroveci pneumonia (PJP), 

opportunistic cryptococcal or cytomegalovirus infections or rare malignancies like 

Kaposi’s sarcoma that normally occur only in immunocompromised patients (1). The 

rising incidence of PJP and Kaposi’s sarcoma in an unusual population prompted the 

task force team formed at the US Centers for Disease Control and Prevention (CDC) 

to monitor the outbreak and the term Acquired Immune Deficiency Syndrome was 

coined to name the fatal disease in 1982 (2,3). 

Françoise Barré-Sinoussi and Robert Gallo independently isolated the etiologic 

agent of AIDS and published their findings in the same issue of Science in 1983 (4,5). 

While Barré-Sinoussi’s group named the agent lymphadenopathy-associated virus 

(LAV), Gallo's group named it human T cell lymphotropic virus, type 3 (HTLV-III) 

(6). A consensus was reached in May 1986 by the International Committee on the 

Taxonomy of Viruses, and the name human immunodeficiency virus (HIV) was 

adopted (7). 

 Outbreaks of wasting and severe infections were also observed in rhesus 

macaques (Macaca mulatta) by researchers at the California Regional Primate 

Research Center (CRPRC) and New England Regional Primate Research Center 
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(NERPRC) shortly after the discovery of human-AIDS (8,9). These symptoms were 

similar to those observed in AIDS patients and the disease was termed simian-AIDS 

(10). Western Blot cross-reactivity between HIV-1 antigens and sera from these 

macaques led to the discovery and naming of the causative agent of simian-AIDS as 

simian immunodeficiency virus (SIV) (8,11). Sera from Senegalese sex-workers 

preferentially cross-reacted with SIV antigens on Western Blot assay as opposed to 

HIV-1 antigens, suggesting exposure to a more SIV-like virus (12). A similar but 

immunologically distinct strain of HIV was subsequently isolated from West African 

AIDS patients from Guinea-Bissau and Cape Verde in 1986. This strain was named 

HIV-2 and it has since remained endemic in West Africa (13). 

 

1.1.2 Epidemiology 

 The Joint United Nations Programme on HIV/AIDS (UNAIDS) recently 

reported that approximately 35.3 [32.2 – 38.8] million people were living with HIV 

worldwide at the end of 2012. There were 2.3 [1.9 – 2.7] million new infections and 

about 1.6 [1.4 – 1.9] million deaths due to AIDS in 2012 alone. About 95% of the new 

infections were in low and middle income countries. The sub-Saharan African region 

appears to be worst affected by this infection, accounting for 57% of people living 

with HIV worldwide (14). 

 Since the first reported case of HIV in Canada in 1985, a cumulative total of 

76,275 positive HIV tests have been reported to the Public Health Agency of Canada 

(PHAC). A total of 2,062 new infections were reported in 2012, which represents a 
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7.8% decrease from the 2011 reports (2,237 cases) and is the lowest number of annual 

HIV cases since incidence was first reported in 1985 (15). 

 

1.1.3 Structure and Genome 

 HIV is a lentivirus that belongs to the Retroviridae family. Viruses belonging 

to the lentivirus genus typically establish infection with a long incubation period 

(lente-, Latin for "slow") before development of disease. The mature HIV particle is 

spherical, about 100-120 nm in diameter and enveloped with a lipid bi-layer 

membrane derived from the host cell during budding of a newly formed virion.  

Within the nucleocapsid are two identical copies of a single-stranded, positive-sense 

ribonucleic acid (RNA) genome of ~9.7 kb. The nine genes (gag, pol, env, tat, rev, 

nef, vif, vpr, and vpu) that encode HIV proteins can be found in each copy of the 

RNA. Flanking both ends of the RNA are long terminal repeat (LTR) sequences, 

which regulate HIV replication. The structural proteins are encoded by the group-

specific core antigen (gag) and envelope (env) genes. The Gag gene codes for the 

matrix protein (p17), capsid (p24) and nucleocapsid (p7). The Pol gene encodes 

catalytic proteins such as reverse transciptase, protease and integrase. The Env gene 

encodes the glycoprotein (gp) 160, which is cleaved to the outer envelope protein 

gp120 and transmembrane protein gp41. Trans-activator of transcription (tat) and 

regulator of viral expression (rev) are both regulatory genes. Other genes such as vpu, 

vif, vpr and nef are accessory genes. The function of these genes and their products are 

summarized in Table 1.1, and discussed in relation to the HIV life cycle below. 
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Figure 1.1: HIV structure (A) the envelope proteins (gp120, gp41), RNA genome 
and other regulatory proteins. (B) The single-stranded HIV RNA genome showing the 
nine major genes coding for the viral proteins flanked on both sides by the LTR long-
terminal repeat. 
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Table 1.1: The nine major genes of HIV highlighting their products and function. 

Adapted by permission from Macmillan Publishers Ltd (16). 

Gene Protein Class Protein/Function 
gag – group specific 
antigen 

 
 
 
 
 
 
 
 
 
Structural 

Matrix (p17) 
*Undergoes myristylation 
that targets Gag 
polyprotein to lipid rafts 
*Implicated in nuclear 
import of HIV 
preintegration complex 
(PIC) 
Capsid (p24) 
*forms the inner core-
protein layer 
Nucleocapsid (p7) 
*binds directly to genomic 
RNA 
p6 
*Interacts with Vpr 
*Contains late domain 
(PTAP) that binds TSG101 
and participates in terminal 
steps of virion budding 

pol – polymerase  
 
Enzyme 

Protease (p10) 
*cleaves gag precursor 
Reverse Transcriptase 
(p66/51) 
Integrase (p32) 

env – envelope  
 
 
 
 
Envelope 

gp160 envelope protein 
cleaved in endoplasmic 
reticulum to 
gp120 
*protrudes from envelope 
and binds CD4 and 
chemokine receptor 
gp41 
*Transmembrane protein 
associated with gp120 and 
required for fusion 

tat – transactivator  
 
 
 

p14/p16 
*Binds transactivation 
response element 
*Enhances RNA Pol II 
elongation on the viral 
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DNA template in presence 
of host cyclin T1 and 
CDK9 

rev – regulator of viral 
gene expression 

Regulatory 
 

p19 
*Binds rev responsive 
element 
*Allows export of 
unspliced and singly 
spliced mRNAs from 
nucleus 

vif – viral infectivity factor  p23 
*Promotes infectivity of 
viral particle 
*Depletes intracellular 
stores of the anti-retroviral 
factors APOBEC3G, thus 
blocking virion 
incorporation of this factor 

vpr – viral protein R  p15 
*Promotes G2 cell cycle 
arrest 
*Facilitates HIV infection 
of macrophages 

vpu – viral protein U Accessory *Required for efficient 
viral assembly 
*Promotes CD4 
degradation 
*Influences budding of 
virion 

nef – negative regulation 
factor 

 *Downregulates host-cell 
CD4 and MHC Ι 
expression 
*Blocks apoptosis 
*Alters state of cellular 
activation 
*Progression to disease 
slowed significantly in 
absence of Nef 
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1.1.4 Life Cycle and Pathogenesis 

 Viral attachment and entry is initiated when gp120 binds specifically to CD4 

molecules expressed on certain T cells, macrophages and dendritic cells (17). The 

gp120/CD4 binding triggers a structural change, which permits the interaction of 

gp120 chemokine binding domains with either CC chemokine receptor 5 (CCR5) or 

CXC chemokine receptor 4 (CXCR4) (18,19). Selective interaction with one or the 

other of these chemokine receptors determines the virus tropism. M-tropic or R5 

strains utilize the CD4 molecule and β-chemokine receptor CCR5 to infect target 

cells, whereas the T-tropic or X4 strains utilize the CD4 molecule and α-chemokine 

receptor CXCR4. Viruses that utilize both chemokine receptors are defined as X4/R5 

strains (18,20). 

 The viral gp120 undergoes a conformational change upon binding with the 

relevant coreceptor. This change exposes the underlying transmembrane gp41, which 

in turn inserts its hydrophobic NH2 terminal sequence into the target cell membrane to 

initiate viral fusion with the target cell (21,22). After successful target cell infection 

and virus particle uncoating, reverse transcriptase (rt) converts the single-stranded 

RNA genome into a double-stranded cDNA copy. Approximately one mutation is 

introduced for every 1000–10,000 nucleotides synthesized due to the error-prone 

reverse transcription process (23-25). The cDNA forms a pre-integration complex 

(PIC) with host proteins (such as barrier to autointegration factor 1) and viral proteins 

(such as vpr, matrix and integrase), is actively transported to the nucleus and 

integrated into the host genome as a “provirus” by integrase (26,27). The provirus is 
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replicated as part of the host cell genome or may lie dormant and persist for several 

years in the latent stage of HIV infection. 
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Figure 1.2: The life cycle of HIV. The HIV particle fuses with the host cell 
membrane through interactions of gp120, gp41, CD4 and CCR5 and/or CXCR4. This 
is followed by uncoating and release of the viral genomic contents into the host cell 
cytoplasm. Reverse transcription produces a viral cDNA, which is translocated into 
the nucleus where it integrates with the host DNA. Copies of viral RNA are made 
following the activation and gene transcription of the host cell DNA. Viral proteins 
are made from viral RNAs. In the cytoplasm, the viral proteins mature and assemble 
into viral particles that bud from the host cell membrane.  Figure adapted from (28). 

 
 



10 

 

Human tripartite motif 5 alpha (TRIM5α) is a host protein that acts to inhibit 

HIV-1 replication soon after uncoating by targeting the capsid for ubiquitination and 

rapid proteolytic degradation. Viral replication commences postintegration with the 

production of nascent viral transcripts by cellular RNA polymerases. Transcription is 

initiated with the binding of cellular transcription factors (such as NFκB) to the 5’ end 

of the LTR which now serves as the promoter region. Translation of these early 

transcripts results in the production of regulatory proteins such as tat, rev and nef. Tat 

induces transcription by binding to transactivation response (TAR) element. Rev 

facilitates the nuclear export of unspliced RNA transcripts and Nef downregulates 

expression of CD4 and MHC class I molecules (29).  

Accessory proteins such as Vpu enhance CD4 degradation and facilitate virion 

release by inhibiting the host factor tetherin (30). Vpr enhances cell cycle arrest at the 

G2/M phase and can disrupt cellular transcription (31). Vif promotes infectivity of the 

virion and targets host cytidine deaminases (APOBEC3G and APOBEC3F) for 

ubiquitination and proteosomal degradation (32). Full length viral transcripts are 

packaged into the immature viral particles assembled into their functional forms by 

protease. The p6 protein which is present on the c-terminus of Gag interacts with 

tumor suppressor gene 101 (TSG101) to facilitate budding of the newly assembled 

viral particles (33).  

HIV replication kinetics can raise viremia to more than 100 million HIV-1 

RNA copies/ml plasma in the first few weeks of infection. This stage is known as the 

acute or primary phase of HIV-infection which is often characterized by flu-like 

symptoms. 
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Figure 1.3: Pathogenesis of untreated HIV-1 infection. There is a progressive spike 
in plasma viremia during acute infection with HIV. This leads to a continuous decline 
in CD4+ T cell count, with no detectable presence of neutralizing HIV-1 antibodies. 
The viremia is initially controlled by the host immune response (not shown), and the 
subject then enters a phase of clinical latency (chronic phase). HIV-specific antibodies 
are detectable at the onset of this stage. Viral replication continues, but the immune 
system is able to contain it to set-point levels (not illustrated). Total CD4+ T cell 
numbers continue to decline and untreated individuals develop clinical symptoms of 
full-blown AIDS over time. Reproduced with permission from (34) Copyright 
Massachusetts Medical Society. 
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There are no detectable neutralizing antibodies against HIV-1 during primary 

infection and the first evidence of an HIV-specific CD8+ T cell immune response is 

observed towards the end of this phase (35-37). During the asymptomatic phase, there 

are no overt clinical symptoms of on-going infection even though the viral replication 

cycle continues and there is usually a dramatic decline in the systemic CD4+ T cell 

count in untreated individuals (38). The emergence of HIV-specific CD8+ T cells is 

associated with decline of viremia to low levels, but destruction of CD4+ T cells 

continues, especially, within the lymphoid tissues of the gut (39). If left untreated, the 

CD4+ T cells are often reduced below a certain threshold level that permits the 

development of opportunistic infections (OIs). This phase could last from a few 

months to more than 15 years (36,40). 

 AIDS is often defined as the chronic terminal stage of HIV infection. The 

CD4+ T cell count falls to < 200 cells/µl, rendering the host susceptible to OIs. These 

OIs or cancers eventually lead to death (36). 

 

1.1.5 Therapy 

 Six major classes of antiretroviral therapy (ART) currently exist, and they are 

designed to interfere with different stages of the HIV life-cycle. Entry inhibitors 

(CCR5 co-receptor antagonists) prevent the viral particle from binding to host-cell 

receptors. Fusion inhibitors inhibit the viral particle from fusing with the host-cell 

membrane. Non-nucleoside rt inhibitors (NNRTIs) inhibit rt from converting HIV-

RNA into cDNA, whereas nucleoside/nucleotide rt inhibitors (NRTIs) are faulty DNA 

building blocks which are inserted into a growing HIV DNA chain, resulting in DNA 
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chain termination as no additional nucleotides can be attached to them. Integrase 

inhibitors block HIV DNA integration into host DNA, whereas protease inhibitors 

prevent the cleavage of polyproteins needed to produce mature infectious virions. 

Multi-class combination products combine HIV drugs from two or more classes into a 

single product (41). ART was administered as mono or dual therapy before the advent 

of combination antiretroviral therapy (cART) (42). cART inhibits viral replication and 

reduces HIV-1 viremia below the limits of detection by most conventional testing 

methods (<50 RNA copies/ml) resulting in significant immune reconstitution (43). 

This also leads to dramatic reduction in the morbidity and mortality associated with 

HIV infection (44). However, cART is not a curative therapy for HIV infection and 

drug resistance leading to treatment failure has been documented for all classes of 

ART (45). 

 

1.1.6 Viral Persistence and the Immune Response 

  HIV persistence can be attributed to a high mutation rate of ~ 3 x 10-5 

mutations per nucleotide base for each cycle of replication, allowing the generation of 

a genetically diverse  population of (109 to 1010) virions within an infected host each 

day (46). A hybrid-virus can be generated through genetic recombination upon 

infection of a new host cell with multiple strains of HIV, which adds to the overall 

viral diversity (47). Viral mutations usually generate quasispecies including drug-

resistant and immune escape variants (48,49). Most HIV-infected individuals mount 

effective cellular and humoral immune responses in the first few months of infection. 
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However, these responses fail to contain viral replication over longer time periods. 

The scope of this thesis is limited to the role CD8+ T cell responses in HIV infection. 

 

1.2 CD8+ T Cells 

1.2.1 T Cell Selection 

 T cells are derived from bone marrow hematopoietic stem cells. Committed 

early immature T cell precursors journey through the bloodstream to the thymus. 

Thymocytes at this early stage are termed double-negative (DN) thymocytes as they 

do not express CD4 or CD8 molecules. These DN thymocytes are subdivided into four 

sequential stages of differentiation based on the surface expression of CD44 and 

CD25 molecules: DN1, CD44+CD25−; DN2, CD44+CD25+; DN3, CD44−CD25+; and 

DN4, CD44−CD25− (50). DN thymocytes have the potential to differentiate into γδ or 

αβ TCR-expressing cells (51). Cells that differentiate along the αβ TCR pathway 

begin to express the surrogate α chain (pre-TCR-α) encoded by a non-rearranging 

locus (52,53). The surrogate α chain pairs with the TCR β-chain, which was a product 

of recombination-activating gene (RAG)-mediated gene rearrangement (54,55). This 

pre-TCR-αβ-pair associates with CD3/ζ proteins to form a novel complex called the 

pre-TCR-complex that is important in proximal signal transduction (56). T cells 

emerging from the late DN3 and DN4 stages undergo extensive proliferation, while 

pre-TCR-α expression and TCR β-chain rearrangement ceases. The resultant mature 

αβ T cells express CD8 coreceptor proteins first, and then CD4 (51). Cells expressing 

both CD4 and CD8 molecules, termed double positive (DP) thymocytes, comprise 
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90% of immature αβ-TCR-expressing cells populating the lymphoid compartment in 

the thymus of young individuals. 

These small double-positive thymocytes undergo a thymic selection process 

which is characterized by death by neglect, negative selection, positive selection and 

lineage-specific development. Due to poor TCR-pMHC interaction, most DP 

thymocytes die by neglect. Thymocytes bearing TCRs with strong avidity for self-

peptides are potentially auto-reactive T cells and they undergo apoptotic cell-death 

upon TCR ligation with self-pMHC (negative selection). However, cells bearing 

TCRs that recognize self-peptides and generate signals below a certain threshold of 

avidity receive a survival signal (positive selection). These processes precede lineage 

specific differentiation into either CD4+ or CD8+ mature T cells. 

 

1.2.2 TCR Signaling 

Signaling through the TCR and costimulation via receptors such as CD28 are 

both essential for successful naïve T cell activation (57). TCR signaling is antigen-

specific, while costimulatory signals that are usually provided by professional antigen 

presenting cell (APC) are antigen-independent and serve to modulate the T cell 

response and survival. Once activated, T cells respond by producing cytokines that 

modulate other cells, undergo clonal expansion, differentiate into effector and memory 

T cells, and in the case of cytotoxic T lymphocyte (CTL), mediate killing (cell-

mediated cytotoxicity). However, a naïve T cell becomes unresponsive (anergic) and 

tolerant when exposed to antigen in the absence of a costimulatory (second) signal. 
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 There are two different TCR heterodimers, the α:β TCR and γ:δ TCR. About 

95% of peripheral T cells bear alpha (α) and beta (β) chain TCRs, while the remaining 

5% express gamma and delta (γ/δ) chains. Each chain of the αβ TCR is made up of a 

variable (Vα or Vβ) and a constant (Cα or Cβ) domain. The Vα is encoded by two DNA 

segments (Vα and Jα), while the Vβ is encoded by three segments (Vβ, Dβ, and Jβ). The 

αβ-TCR resembles the Fab fragment of the Ig molecule. Upon receptor engagement, 

the αβ heterodimer associates with the CD3 molecule (TCR-complex) to initiate signal 

transduction across the cell membrane and phosphorylation to activate downstream 

signaling pathways. TCR interaction with the MHC-peptide complex triggers 

phosphorylation of tyrosine residues on the immunoreceptor tyrosine-based activation 

motifs (ITAMs) of the CD3 α, δ, ε and ζ chains (58). Protein tyrosine kinases (PTKs) 

important in T cell activation are Lck and Fyn of the Src family and ZAP-70 of the 

Syk family. These PTKs interact with the ITAMs of the TCR-complex. Activation of 

Lck kinase is dependent on the protein tyrosine phosphatase (PTP) CD45, which 

dephosphorylates an inhibitory tyrosine in the cytoplasmic tail of Lck. Activated Lck 

phosphorylates the ITAMs present in the cytoplasmic tail of the CD3 chains, making 

it a docking site for ZAP-70. ZAP-70 binds to the phosphorylated ITAMs and is 

activated (phosphorylated) by Lck. The substrates for ZAP-70 are LAT (linker for 

activation of T cells), a transmembrane protein with a long cytoplasmic tail and SLP-

76 (59,60). Phosphorylated LAT then recruits a number of adaptor proteins such as 

phospholipase γ 1 (PLCγ1), growth factor receptor-bound protein 2 (GRB2) and 

phosphatidylinositol 3-kinase (PI3K), which are crucial to T cell activation. Binding 

of LAT with these adaptor proteins begins the process of gene transcription through 
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the NF-κB, NF-AT and STAT pathway (61-63). Genes coding for the growth factor 

IL-2, pro-inflammatory cytokines IFN-γ and TNF-α and antiapoptotic protein Bcl-xL 

are upregulated (64). SLP-76 helps stabilize and maintain the immunological synapse 

by promoting the activation and clustering of leukocyte function-associated antigen 

(LFA-1), an integrin molecule (65,66). 

 

1.2.3 T Cell Costimulation 

1.2.3.1 CD28/B7 Family 

Secondary signals affecting T cells can be stimulatory or inhibitory, and are 

mainly delivered by molecules belonging to the CD28/B7, tumor necrosis 

factor/tumor necrosis factor receptor (TNF/TNFR) superfamily and some chemokine 

receptors (67-69). CD28 and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) 

are well characterized receptors belonging to the CD28/B7 superfamily. CD28 

provides a stimulatory signal to T cells, while CTLA-4 provides an inhibitory signal to 

activated T cells (70,71). They are both type 1 transmembrane glycoprotein receptors 

with an MYPPPY motif essentially used for interacting with B7.1 (CD80) and B7.2 

(CD86) molecules expressed on APCs (72). CD28 is constitutively expressed on most 

T cells, and some plasma cells (73,74). CTLA-4 is constitutively expressed on 

regulatory T cells. CD28 is translocated to the immunological synapse in association 

with the TCR, SLP-76 and ZAP-70 kinase when ligated with either of B7.1 or B7.2 

(75,76). Lck kinase phosphorylates the YXXM motif in the cytoplasmic tail of CD28, 

which then becomes a docking site for the SH2-domains of Grb2 and PI3K (75). 

Phosphorylation of PI3K induces the production of phosphatidylinositol (3,4,5)-
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triphosphate (PIP3) from its substrate PIP2. This process enhances signal transduction 

and gene transcription through NFκB and NFAT pathways (77,78). CTLA-4 has 

stronger affinity for CD80 and CD86 than CD28, and signaling through this receptor 

tends to attenuate or terminate T cell responses (71,79), whereas signaling through 

CD28 prevents anergy in naïve T cells, and enhances IL-2 production, proliferation, 

and survival (64,70,80). Humans, however, acquire CD28−CD8+ T cells with age, a 

situation which is also observable in progressive HIV infection (81-83). 

Programmed death-1 [PD-1 (CD279)] is an inhibitory member of the CD28/B7 

superfamily that was originally cloned from a T cell hybridoma line exhibiting 

apoptosis (84). PD-1 is a 288 amino acid type 1 transmembrane protein with a 

cytoplasmic tail containing an immunoreceptor tyrosine-based inhibitory motif (ITIM) 

and an immunoreceptor tyrosine-based switch motif (ITSM). In humans, PD-1 is 

encoded for by Pdcd1 gene on chromosome 2, and by Pdcd1 gene on chromosome 1 

in mice (85). Its expression on naïve T cells is extremely low, but it is inducibly 

expressed on activated T cells, B cells and myeloid cells (85). PD-1 interaction with 

any of its ligands PD-L1 [B7-H1, or CD274] or PD-L2 [B7-H2, B7-DC or CD273] 

dampens T cell responses by inhibiting membrane-proximal TCR signaling, 

downstream T cell proliferation, cytokine production and other effector functions (85-

88). However, PD-1-mediated inhibition can be overcome by strong TCR stimulation 

and CD28 costimulation (86,89). PD-L1 is constitutively expressed on mouse T and B 

cells, dendritic cells, macrophages, and mesenchymal stem cells, while PD-L2 is 

inducibly expressed on dendritic cells, macrophages and bone marrow-derived mast 

cells (90,91). The tyrosine motifs present in the cytoplasmic tail of PD-1 become 
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phosphorylated upon ligation. SH2-domain containing tyrosine phosphatase 1 (SHP-

1) and SHP-2 then binds to the ITIM and ITSM motifs of PD-1. This interaction 

downregulates TCR signaling and dephosphorylates other signaling intermediates 

(88). However, a mutation in the ITSM motif of PD-1 abrogates the inhibitory 

function of PD-1. This indicates that the ITSM alone plays the major role in PD-1-

mediated inhibition (88). PD-1 interaction with SHP-2 appears to be stronger than 

with SHP-1, meaning PD-1 functions by recruiting SHP-2, and perhaps SHP-1 to the 

TCR complex (92). CTLA-4 prevents Akt activation, while PD-1 inhibits Akt 

activation as well as PI3K activity. Also, PD-1 signaling inhibits the phosphorylation 

of ZAP-70, CD3ζ and PKCθ (93). Upon TCR ligation and T cell activation, CTLA-4 

is transported to the immunological synapse from an intracellular store depending on 

the signaling strength (94). PD-1 molecules are redistributed from uniform cell surface 

expression to concentrate at the immunological synapse upon TCR ligation (95). 
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Figure 1.4: PD-1 signaling pathway. PD-1 ligation by PD-L1 or PD-L2 causes the 
immediate phosphorylation of PD-1 cytoplasmic tyrosine residues ITIM and ITSM. 
SHP-2 molecules are recruited to the tyrosine residues and their association 
dephosphorylates molecules associated with signal transduction via the PI3K pathway 
with resultant inhibition of signaling through the Akt pathway. This process 
downregulates production of pro-inflammatory cytokines such IFN-γ, growth 
cytokines such as IL-2 and antiapoptotic molecules such as Bcl-xL. However, this 
inhibitory effect can be overcome by strong TCR stimulation and CD28 costimulation 
with resultant increase in cytokine production and enhanced cell survival. Reprinted 
by permission from Macmillan Publishers Ltd (85). 
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1.2.3.2 TNF/TNFR Family 

 The human homologue of 4-1BB was cloned in 1993 shortly after its discovery 

in mice (96,97). 4-1BB is a costimulatory molecule that is inducibly expressed on T 

cells upon activation, and constitutively expressed on APCs (98). Its ligand, 4-1BBL, 

is expressed on activated professional APCs, neurons, astrocytes, hematopoietic stem 

cells and myeloid progenitors (98-101). 4-1BBL expression on B cells and DC is 

mainly regulated by CD40 (99). The 4-1BB/4-1BBL interaction provides a 

costimulatory signal to T cells, although 4-1BB has a preferential effect on CD8+ T 

cells in antiviral and antitumor immunity in mice (102-104). Its importance in recall 

CD8+ T cell responses in viral infections and in maintenance of effector memory 

CD8+ T cells late in the primary immune response has been elucidated in mouse 

models (102,105-107). 4-1BB signals independently of CD28 costimulation in the 

presence of a strong TCR stimulation (107,108). Once bound to its ligand, 4-1BB 

recruits TNFR-associated factors (TRAFs) - TRAF1, TRAF2 and TRAF3, with 

downstream activation of NF-κB, c-Jun N-terminus kinase (JNK), extracellular signal 

regulated kinase (ERK) and p38 mitogen associated protein (MAP) kinase pathways 

(109-112). T cell survival is enhanced by 4-1BB through TRAF1 and ERK-dependent 

downregulation of the pro-apoptotic molecule Bim, and the NF-κB-dependent 

upregulation of antiapoptotic genes such as bcl-XL and bfl-1 (110,111,113,114). CD4+, 

CD8+, CD28+, and CD28- T cell cytokine production, proliferation and cytolytic 

effector functions can be enhanced by 4-1BB costimulation (115-119). 
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1.2.4 Antigen Processing and Presentation 

T cells recognize and afford protection against intracellular microbes (cell 

mediated immunity) that avoid humoral and complement-mediated attack in a two-

step process. Firstly, intracellular pathogens are broken down to smaller fragments 

(peptides) and loaded onto major histocompatibility complex (MHC) molecules 

(antigen processing). In the second step, the peptide-MHC (pMHC) complexes are 

transported to the cell surface where they can be easily recognized by an antigen-

specific T cell (antigen presentation). CD8+ T cells recognize peptides in association 

with MHC class I (MHC-I) molecules, whereas CD4+ T cells recognize peptides 

bound to MHC class II (MHC-II) molecules. 

Internalized or endogenous protein antigens in the cytosol are broken down by 

a large, multicatalytic protease complex called the proteasome. Transporter associated 

with antigen processing (TAP), a member of the ATP-binding cassette (ABC) family 

of transporters helps in the translocation of cytosolic generated peptides into the 

lumen of the endoplasmic reticulum where they are loaded on newly synthesized 

MHC-I molecules (120,121). The chaperone protein calnexin binds to newly 

synthesized MHC-I α chains in the ER and assists in protein folding as well as 

promotes assembly with β2-microglobulin (β2m). The partly folded MHC-I molecule 

is released from calnexin once it binds to β2m, and then it binds the peptide-loading 

complex (PLC) which is made up of TAP, calreticulin (CRT), TAP-associated protein 

(tapasin) and ERp57. Calreticulin carries out a similar chaperone function to calnexin. 

Tapasin performs a bridging function between MHC-I and TAP, recruiting MHC-I-

β2m dimers and calreticulin to the PLC (122,123). ERp57 is a thiol oxidoreductase 



23 

 

that assists in the folding of newly synthesized MHC-I α2 molecules in the ER (124). 

Endoplasmic reticulum aminopeptidase associated with antigen processing (ERAAP), 

found in mice, is a luminal component that plays a crucial role in the generation of 

peptide MHC-I complexes (125). Its human homologues are termed endoplasmic 

reticulum aminopeptidase-1 (ERAP1) and ERAP2 (126,127). Peptides, usually 8-10 

amino acids in length, are loaded in the α1α2 domain of MHC-I, but TAP molecules 

can transport larger peptides into the ER. The amino termini of these peptides can be 

trimmed by ERAAP/ERAP1 to yield peptides of an appropriate length for MHC-I 

binding. Upregulation of ERAAP can also be induced by IFN-γ. Suboptimal, low-

affinity peptides do not cause the release of the MHC-I from the PLC. Binding of 

high-affinity peptide to the partly folded MHC-I may cause conformational changes 

that complete the folding of the MHC-I molecule and trigger its release from the PLC. 

The fully folded MHC-I loaded with an appropriate peptide can now be transported to 

the cell surface. Although hundreds to thousands of potentially generated peptides 

have appropriate sequence to bind MHC-I, the bulk of responding antiviral CTL 

population CD8+ T cells recognize a tiny fraction of potential epitopes; a phenomenon 

referred to as immunodominance (128-131). 

 

1.2.5 Peptide Recognition and Activation of CD8+ T Cells 

 CD8+ T cells only recognize peptides presented by self-MHC class I 

molecules. Peptides, usually 8 to 11-mer, that dominate the recognition events with a 

particular MHC-I allele are termed “immunodominant” epitopes, whereas less-

recognized peptides are termed subdominant (129,130). The peptide binding groove of 
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MHC-I is flanked on both sides by α-helices and has a floor of antiparallel β-strands 

(132). Anchor residues of peptides interact with allele-specific pockets in the peptide 

binding groove of MHC class I, making upward pointing amino acid side chains 

available for interaction with the TCR (133,134). MHC class I molecules constantly 

present self and pathogen-derived peptides, but most auto-reactive T cells are clonally 

deleted during thymic selection. Antigen-specific T cells recognize the foreign 

peptides presented by self-MHC class I and form a stronger supramolecular adhesion 

complex (SMAC) or immunological complex with the APC in order to activate the T 

cell. The immunological synapse is further stabilized by the CD8 co-receptor on CD8+ 

T cells (135). Initial T cell priming takes place in the secondary lymphoid organs such 

as lymph nodes and spleen. The process of signal transduction and activation of CD8+ 

T cells follows the TCR signaling process already discussed in 1.2.2 above. 

 CD8+ T cells can become effector cytotoxic T lymphocytes (CTL) upon 

activation. CTL mediate the killing of virus-infected and tumor cells through two 

dominant contact-dependent pathways, the Fas/Fas ligand pathway and 

perforin/granzyme pathway. These two pathways are not mutually exclusive as an 

individual CTL may be equipped with both killing options (136). The Fas/Fas ligand 

and perforin/granzyme pathways result in activation of a family of cytotoxic 

proteases, the caspases, within the target cell that mediate cell-death. The two 

pathways differ in how they activate the caspases. Contained in the lytic granules of a 

CTL are perforin, a Ca2+-dependent pore-forming protein similar to the C9 component 

of complement, and an array of cathepsin-like proteases that are collectively referred 

to as granzymes. Perforin molecules “perforate” the membrane of the target cell, 
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thereby, facilitating the entry of granzymes into target cells in a manner that is still 

much debated (137). Five different granzymes can be found in humans, but granzymes 

A and B predominate in human CTL and are each capable of proteolytically activating 

cell death pathways, which ultimately cause fragmentation of the target cell’s DNA 

(138,139). Caspase-8 is recruited to the cytoplasmic tail of the Fas receptor, via the 

adaptor protein Fas-Associated protein with Death Domain (FADD) upon ligation of 

Fas on the target cell with FasL on the CTL, moving the cell into apoptosis (140-142). 

Recruitment of caspase-8 to the receptor complex results in activation of this protease, 

which in turn amplifies downstream caspase activation, either directly (type I 

pathway) or indirectly by cleaving Bid and provoking cytochrome c release from 

mitochondria (type II pathway) that activates the Apaf - 1/caspase-  “apoptosome”.  

The apoptosome then promotes activation of downstream effector caspases that kill 

the cell (136,143). Eventual cell death could take between 1-7 hours and both the 

perforin-granzyme and Fas-FasL pathways contribute to this. The CTL detaches from 

the target cell and pursues another target cell as a “serial killer” upon the delivery of 

the “lethal hit” as the CTL escapes intact. This is achieved by the delivery of the lethal 

hit in immediate juxtaposition to the target cell membrane. 

While immunodominance can be beneficial in that it generates potent immune 

responses to resolve infections, and contributes to the memory T cell pool to promote 

rapid immune responses following re-infection; it can be unfavourable in HIV 

infection due to the high mutation rate of HIV (144). Mutation of the 

immunodominant epitope in HIV infection favours the emergence of escape variants 

that evade immune recognition (144). 
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1.2.6 Importance of Cytotoxic CD8+ T Cells (CTL) in Controlling 

HIV Infection 

CTL are potent effector cells of the adaptive immune response that function 

through direct recognition and killing of malignant cells or virus-infected cells. This is 

achieved either through the Fas-FasL pathway or the perforin-granzyme pathway, or 

through secretion of pro-inflammatory cytokines that can raise an antiviral state in 

neighboring cells (145). The importance of CD8+ T cells in controlling HIV infection 

has been well documented. Emergence of HIV-specific CD8+ T cells in primary HIV-

1 infection is associated with viremia containment to set-point levels (35,39). This is 

in turn accompanied by the generation of sequence mutations within immunodominant 

HIV-1 epitopes, thereby giving rise to CTL escape variants of the virus, which further 

confirms the selective immune pressure exerted by CTL on HIV-1 replication 

(37,146,147). The importance of CTL in containment of viremia was also observed in 

primary simian immunodeficiency virus (SIV) infection in rhesus macaque models 

(148). Further studies additionally showed that AIDS-related mortality fell and SIV 

set-point levels were significantly reduced by 2.4 log during vaccination with a T-cell 

based vaccine that induced potent and broad CTL responses (149). More importantly, 

enhanced control of viremia has been linked with the expression of particular class I 

human histocompatibility-linked leukocyte antigens (HLA) such as B*5701, B*51 and 

B*27 in humans (150,151)  and Mamu-B*08 in rhesus monkeys (152). 

Although the precise mode of action of these HIV-specific CD8+ T cells in 

containing HIV-1 infection is not fully understood, Wong et al. argued that the initial 

systemic suppression of SIV viremia by SIV-specific CD8+ T cells is achieved mainly 
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through non-cytopathic means (153). Investigators generally believe viral suppression 

is achieved through their ability to produce pro-inflammatory cytokines such as IFN-γ, 

TNF-α, growth factor IL-2, chemokine macrophage inflammatory protein-1β (MIP-

1β) and their ability to undergo clonal expansion upon activation and degranulate 

upon contact with target cells (154,155). However, progressive loss of CTL effector 

functions has been reported in HIV-1 infection, a phenomenon often referred to as 

“exhaustion”. 

 

1.2.7 CD8+ T Cell Exhaustion: characteristics and causes 

T cell exhaustion is a phenomenon characterized by hierarchical loss of 

antigen-specific T cell functions, which can ultimately result in clonal deletion. This T 

cell dysfunction is often reflected in a reduced ability to produce IL-2 and TNF-α, 

reduced proliferation, a reduction in cytotoxicity, and increased susceptibility to 

apoptosis relative to polyfunctional T cells (156). Exhausted T cells remain in a 

monofunctional, IFN-γ-producing state before undergoing clonal deletion (157). 

Exhaustion was first observed in chronic lymphocytic choriomeningitis virus (LCMV) 

infection in mice (158). It has since been reported in some cancers, hepatitis B virus 

(HBV), hepatitis C virus (HCV) and HIV-1 infections (159,160). Accumulation of 

dysfunctional T cells in progressive HIV-1 infection is also associated with skewed 

differentiation into an effector memory phenotype. Chemotaxis of effector memory 

cells is impaired with high viremia, thereby posing another challenge to controlling 

viral burden (161-163). 
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Studies revealed that viral persistence and loss of CD4+ T cell help in 

progressive HIV/SIV-infection significantly contribute to CTL exhaustion (164,165). 

A genome-wide microarray analysis carried out on exhausted CD8+ T cells in mice, 

chronically infected with LCMV, implicated members of the B7/CD28 and 

TNF/TNFR families, which are exclusively upregulated either individually or in 

combination, in development of exhaustion. Inhibitory receptors upregulated on 

exhausted LCMV-specific CD8+ T cell in chronic LCMV infection included CTLA-4, 

PD-1, lymphocyte-activation gene-3 (LAG-3), CD160, 2B4 (CD244), GP49 and 

paired-immunoglobulin like receptor B (PirB) relative to functional effector or 

memory cells (166,167). 
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Figure 1.5: T cell exhaustion. A naïve CD8+ T cell becomes primed by an antigen 
with supporting costimulation, and undergoes clonal expansion into effector CD8+ T 
cells which clear viremia. Some clones differentiate into highly polyfunctional 
memory CD8+ T cells which are capable of producing pro-inflammatory cytokines 
(TNF-α, IFN-γ, and IL-2), proliferate and are resistant to apoptosis. A number of these 
polyfunctional memory CD8+ T cells, however, become functionally impaired in a 
hierarchical manner as the primary infection progresses to a chronic phase and antigen 
persists. IL-2 production and proliferation are the first functions lost. Exhaustion 
become severe with increased viremia and reduced CD4+ T cell help and in some 
cases, these exhausted CD8+ T cells die by apoptosis (clonal deletion). Markers 
associated with T cell exhaustion include PD-1, LAG-3, 2B4, CD160. Excerpt from 
(159). 
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Inhibitory signals provided by LAG-3, once bound to its MHC-II ligand, 

attenuate T cell activation, proliferation, and renewal through cell cycle arrest (168-

170). Blockade of LAG-3 alone on LCMV-specific CD8+ T cells was not sufficient to 

reverse exhaustion or reduce viremia (171,172). 2B4 signaling on CD8+ T cells can 

either be activating or inhibitory (173). However, elevated expression of 2B4 has been 

shown to be inhibitory and contribute to HCV- and LCMV-specific CD8+ T cell 

exhaustion (171,174,175). Expression of CD160 on LCMV-specific CD8+ T cells and 

its coexpression with PD-1 on HIV-specific CD8+ T cells is a marker of disease 

progression, and also defines T cell subsets with advanced impairment (167,171,176). 

Blocking the interaction of CD160 with its ligand, herpes virus entry mediator 

(HVEM), enhances proliferation and cytokine production in “exhausted” 

cytomegalovirus (CMV)- and HIV-specific CD8+ T cells (176). Upregulation of PD-1 

in chronic HIV-1, HBV and HCV-infections in humans and SIV-infection in rhesus 

macaques has been linked to antigen-specific T cell dysfunction (164,177). Other 

negative regulators of T cell activation such as T cell immunoglobulin mucin-3 (Tim-

3) and CTLA-4 have also been implicated in HIV and HCV-specific CD4+ and CD8+ 

T cell functional impairment as the expression levels of these receptors correlated with 

failure to control viremia (165,178). Also, coexpression of multiple inhibitory 

molecules on cancer and HIV-specific CD8+ T cells defines subsets with advanced 

dysfunction (179,180). 

 A dramatic decline in the expression of these inhibitory molecules was 

observed in HIV-1 infected subjects treated with cART, although effector functions 

were not restored in HIV-specific CD8+ T cell upon successful treatment 
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(165,177,181). In vitro blockade of PD-1 and LAG-3 interaction with their ligands 

restored effector functions such as cytokine production, enhanced proliferation and 

reduced apoptosis (182). Blocking the interaction of PD-L1 with PD-1 in vivo also 

reduced SIV viremia in rhesus macaques and led to clearance of LCMV in mice, 

though restoration of T cell effector functions was only partial (182,183). 

 

1.3 Immunotherapeutic Vaccines against HIV 

Unlike prophylactic vaccines, which provide protection against invading 

pathogens for uninfected persons, therapeutic (treatment) vaccines are designed to 

modulate the ongoing immune response in unresolved infections or other chronic 

conditions. Most therapeutic vaccines are engineered to induce cell-mediated 

immunity rather than humoral immunity by enhancing existing, or generating new 

immune responses towards chronic pathogens or tumor antigens. 

While most HIV-infected individuals have strong initial CTL responses in the 

primary phase, chronic infection becomes established partly due to the selective 

immune pressure exerted on the virus by the HIV-specific CD8+ T cell (37). Viral 

persistence, partly due to inefficient recognition of HIV escape mutants, alters HIV-

specific CD8+ T cell immunodominance and could precede functional impairment of 

these HIV-specific T cells (184). 

Introduction of cART has dramatically reduced morbidity and mortality 

among individuals with chronic HIV infection (185). However, HIV-specific CD8+ T 

cell dysfunction persists through successful ART treatment (181). In spite of the 

improvement in HIV management, there is need for a life-time strict adherence in 
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order to maintain effective control. Also, the cost of ART, adverse drug effects and 

the risk of developing resistance are still problematic for many infected individuals. 

Furthermore, the annual economic burden posed by the HIV epidemic in both the 

developing and developed world has hindered economic growth. In fact, a recent 

study shows that for every 10 persons beginning ART, 16 are newly infected with 

HIV (186). This demonstrates the urgency of exploring other alternatives such as 

immune-based strategies, which will be economically important and reduce the 

requirement for “life-time cART adherence”. 

 The intent of a therapeutic vaccine is to induce a potent anti-HIV immune 

response or enhance the existing response by deliberate exposure to HIV antigens. 

Ideally, responses generated through this means should contain viral replication at 

undetectable levels – a situation found in a small population of HIV-infected ART-

naïve individuals (elite controllers) that do not rapidly progress towards AIDS. This 

phenomenon is termed natural “functional cure” (187). Several lines of evidence 

suggest that partial control of HIV replication could delay the need for initiation of 

cART in ART-naïve patients or allow “drug-holidays” in patients on cART. However, 

partial control of HIV replication might not have maximum clinical benefit because 

HIV-infected ART-naïve patients with high CD4+ cell counts still have higher chances 

of dying from non-AIDS-related diseases than the general population (188,189). Also, 

the early initiation of cART significantly improves HIV prognosis in comparison with 

delayed treatment (190). Furthermore, life expectancy has been greatly reduced in 

patients placed on “drug-holidays” with the intention of reducing untoward drug 

effects (191). It is, therefore, desirable for HIV therapeutic vaccines to completely 
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eradicate infection rather than achieve partial control, although most researchers 

believe complete viral clearance is impossible due to the virus’ ability to integrate into 

the genome and remain latent for decades (192). Nonetheless, if a therapeutic vaccine 

is able to partially contain viremia, this will be an important improvement and will 

justify further investigation into designing new candidate vaccines. 

Evidence of functional cure in the Berlin patient suggests that purging the HIV 

reservoir is possible (193,194). There are on-going clinical trials combining various 

approaches, such as therapeutic vaccination, gene therapy and cART to drive viral 

loads down to complete remission (195). There is currently no Food and Drug 

Administration (FDA) approved therapeutic vaccine for human use (192). Initial HIV 

vaccine candidates tested such as whole inactivated virus (REMUNE) or recombinant 

protein (gp120) were administered as prophylactic vaccines, and immune responses 

generated by these vaccines were disappointing (196,197). 

 

1.3.1 Applying Heteroclitic Peptides to Therapeutic Vaccination 

Although specific, TCR are able to interact with multiple peptide antigens 

(198). If each clone in the T cell repertoire could only recognize one cognate antigen 

and was non-cross-reactive, there would be limited T cell responses and the repertoire 

would have to be enormous. The number of T cells specific for a single antigenic 

determinant is small, and at least one T cell in a few thousand must respond to a 

foreign peptide in order to generate a substantial immune response (199). There is, 

therefore, some need for T cell cross-reactivity. Recent studies have suggested the 

ability of a TCR to recognize more than one peptide (200). We can, therefore, 
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potentially exploit the “cross-reactivity” of T cells to generate desired immune 

responses. 

 Heteroclitic peptides are sequence variants of native peptide epitopes that 

stimulate T cell responses superior to the native epitope. Heteroclitic peptides contain 

amino acid substitutions that can enhance peptide-binding affinity for human 

histocompatibility-linked leukocyte antigens (HLA) and/or improve TCR recognition 

(201,202). Evidence in several experimental systems suggests that heteroclitic 

peptides stimulate more potent immune responses against their respective native 

peptide epitope than the native peptide itself (202). Potentially heteroclitic variants 

have been previously generated using HLA-A2 and A3-restricted tumor-associated 

peptides (9mers and 10mers) and HLA-A2-restricted viral peptides including, HBV 

Pol.455 and HIV Pol.476 (both 9mers). Regardless of the native peptide epitope, 

variant epitopes showing heteroclitic activity had conservative or semiconservative 

amino acid (aa) substitutions only at positions 3, 5, or 7, and these heteroclitic 

epitopes elicited up to a 107-fold increase in T cell responses (203).  Evidence from 

X-ray crystallography-inferred 3-dimensional structure of HLA-A2 and A3 

pMHC:TCR complexes show that side chains of aa at positions 3, 5 and 7 in these 

MHC molecules interact directly with the complementarity determining region 3 

(CDR3) of the TCR α and β chains (204,205). A table of aa similarity scores proposed 

by Sette et al. was derived by averaging the rank coefficient score for tolerability of 

point mutations within a protein (Dayhoff PAM250), hydrophobicity (an average of 

Kyte/Doolittle and Fauchere/Pliska scales), and aa side chain volume (measured by 

H2O displacement) for each aa pair (203). We propose that candidate heteroclitic 
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variants of HIV native peptide epitopes can be generated in a similar manner as done 

by Sette et al. tested and incorporated into therapeutic HIV vaccines. 

 

1.4 Rationale for this Study 

 Chronic HIV-infection often leads to ineffective CD8+ T cell responses, in the 

form of reduced cytokine production, decreased proliferation and ultimately apoptosis 

of HIV-specific CD8+ T cells. Inhibitory signals elicited by some TCR co-receptor 

molecules such as PD-1 have been implicated in this functional impairment. We 

previously demonstrated that heteroclitic peptides enhance IFN-γ and IL-2 production 

by HIV-specific CD8+ T cells (206). This finding led to the exploration in this study of 

whether heteroclitic peptides also improve HIV-specific CD8+ T cell proliferation and 

reduce PD-1 expression. In the second part of this work, we tested the possibility that 

heteroclitic peptide stimulation in the presence of 4-1BB costimulation or absence of 

the inhibitory PD-1 pathway may further improve T cell responses elicited by 

heteroclitic peptides. 

Heteroclitic variant epitopes augmenting IL-2 and/or IFN-γ production by 

HIV-specific CD8+ T cells were initially identified by ELISPOT. We then measured 

heteroclitic peptide-driven proliferation and examined the effect of heteroclitic peptide 

stimulation on PD-1 expression by HIV-specific CD8+ T cells. Also, we investigated 

the effect of PD-1 signaling blockade or 4-1BBL costimulation on HIV-specific CD8+ 

T cells responding to heteroclitic peptide stimulation. 
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2.0 Materials and Methods 

2.1 Ethics Statement 

All study participants gave informed consent for whole blood collection and 

immunological studies. The study protocol was originally reviewed and approved by 

the Memorial University of Newfoundland Faculty of Medicine Human Investigation 

Committee and annual renewal is approved by the Newfoundland and Labrador 

Provincial Health Research Ethics Authority. 

 

2.2 Study Subjects 

 Whole blood samples from HIV-1-infected individuals (coded 1 to 288) and  

HIV-uninfected volunteers (coded 1000 and above) were obtained from attendees of 

the Newfoundland and Labrador Provincial HIV clinic and Faculty of Medicine 

personnel, Memorial University of Newfoundland, St. John’s, Canada respectively. 

Sera from the HIV-infected subjects had previously been tested for HIV-1 antibodies 

by ELISA and serostatus confirmed by Western blot. HIV-infected subjects 

underwent routine clinical assessment with CD4+ T cell counts and viral load 

performed at least once every six months. Most HIV-infected study subjects had 

achieved viral suppression with cART below clinical detection limits at the time of 

participation. 
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2.3 Peripheral Blood Mononuclear Cell (PBMC) Isolation 

 PBMC were isolated from 20 ml of fresh whole blood collected by forearm 

venipuncture into vacutainer tubes containing acid-citrate-dextrose (ACD) 

anticoagulant. Plasma was collected following centrifugation at 400g for 10 min at 

room temperature (RT), aliquotted immediately and stored at -80ºC. The packed cells 

and buffy coat were diluted to 2x the original blood volume with phosphate buffered 

saline (PBS) and 15 ml buffy coat / packed cell suspension was layered over 15 ml 

Ficoll-PaqueTM PLUS (GE Healthcare Biosciences AB, Uppsala, Sweden) gradient 

separation medium and centrifuged at 400g, for 30 min at RT, with no brake. PBMC, 

which are suspended between the plasma-Ficoll interface, were carefully transferred 

into a clean 50 ml tube and washed with PBS containing 1% fetal calf serum (FCS) 

(Invitrogen). After counting, PBMC were resuspended in complete lymphocyte 

medium (RPMI 1640 supplemented with 10% FCS, 100 μg/ml streptomycin, 100 

IU/ml penicillin, 2 mM L-glutamine, 10 mM HEPES buffer solution and 2 x 10-5 M 2-

mercaptoethanol; all from Invitrogen) and either used fresh or cryopreserved until 

needed. 

 

2.4 PBMC Cryopreservation and Thawing 

 Freshly isolated PBMC were resuspended in freezing medium [80% complete 

RPMI 1640 medium, 10% supplemental FCS and 10% dimethyl sulfoxide (DMSO)] 

at 10 x 106 cells/ml, transferred into 2 ml Nalgene® System 100™ cryovials (Thermo 

Fisher Scientific, Rochester, NY) and incubated overnight in Thermo Scientific™ Mr. 

Frosty™ freezing container at -80°C. PBMC were transferred to and maintained in the 
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liquid nitrogen (LN) tank after overnight incubation until required. To thaw cells, 

cryopreserved PBMC were immediately immersed in a 37°C water bath and gently 

agitated until the contents were almost completely thawed and then the contents were 

immediately transferred into a sterile 15 ml tube containing 10 ml complete medium, 

and washed three times to remove DMSO. Cells were resuspended in complete 

medium at 2 x 106 cells/ml and rested overnight at 37°C in a 5% CO2 incubator to 

allow for recovery. Cells were counted after overnight recovery and all PBMC used 

were > 50% viable by trypan blue exclusion. 

 

2.5 HLA Typing 

 Most participants enrolled in this study before September 2012 were fully 

typed for HLA class I A and B antigens with the Lambda Monoclonal Typing Tray 

Second HLA Class I, Lot #6A (One Lambda, Canoga, CA) as per manufacturer’s 

instructions. In order to maximize time while B cells are being transformed, newly 

enrolled participants expressing HLA-A2 were identified with HLA-A2 specific 

monoclonal antibody (NFLD.M2) (207), which was a kind gift from Dr. Sheila 

Drover’s Laboratory. Briefly, 1 x 105 PBMC were incubated with the primary A2-

specific-antibody at 4°C for 30 mins, washed and labelled with a secondary goat anti-

mouse IgG fluorescein isothiocyanate (FITC) fluorochrome-conjugated polyclonal 

antibody for HLA-A2 antigen detection. PBMC, not incubated with the HLA-A2 

specific monoclonal antibody, but stained with FITC-conjugated goat anti-mouse IgG 

served as a control. PBMC were then analysed by flow cytometry for HLA-A2 

expression. 
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2.6 Peptides 

 HIV peptide pools stimulating IFN-γ/IL-2 responses (Gag and Nef) by HIV-

specific CD8+ cells were identified by previous students. Peptides pools consisted of 

sequential overlapping 15mer peptide sets spanning the major HIV clade B antigens 

(National Institutes of Health AIDS Research and Reference Reagent Program). 

Peptide pools were deconvoluted with peptide matrices by ELISPOT as previously 

described (208) to identify individual 15mers responsible for the cytokine responses. 

Twenty-four potentially heteroclitic variants were synthesized from reference HLA-

A2-restricted, optimally defined 9mer HIV peptide epitopes stimulating IL-2 

production by HIV-specific CD8+ T cell from our HIV-infected study subjects. 

Conservative and semi-conservative aa substitutions were made at positions 3, 5 or 7 

of Nef 8391, Nef 135143, Gag 7785 and 3, 5 or 8 of Gag 433440. The 

choice of aa and position of substitution was made as described in section 1.3.1. The 

rarity or absence of aa at positions of interest in the Los Alamos HIV sequence 

database 

(http://www.hiv.lanl.gov/content/sequence/QUICK_ALIGN/QuickAlign.html) was 

also considered in selecting the appropriate aa for substitution. HIV peptides were 

synthesized by PEPTIDE 2.0. Inc., USA. Individual peptides were dissolved in 

DMSO at 10 mg/ml, and stock solutions of 1 mg/ml peptides in unsupplemented 

RPMI 1640 were aliquotted. The sequences of all reference peptides tested and their 

variants are shown in Table 2.1. 

 

 

http://www.hiv.lanl.gov/content/sequence/QUICK_ALIGN/QuickAlign.html)
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Table 2.1: Reference and corresponding variant peptide sequences 

 

Reference Peptide 
(name, position: aa sequence) 

Variant Peptides 
(name: aa sequence) 

 
 
A2-7 (Nef83): AAVDLSHFL 

A2-7-1:   AALDLSHFL 
A2-7-2:   AATDLSHFL 
A2-7-3:   AAVDISHFL 
A2-7-4:   AAVDVSHFL 
A2-7-5:   AAVDLSQFL 
A2-7-6:   AAVDLSRFL 

 
 
A2-8 (Nef135): YPLTFGWCF 
 

A2-8-1:   YPITFGWCF 
A2-8-2:   YPVTFGWCF 
A2-8-3:   YPLTYGWCF 
A2-8-4:   YPLTWGWCF 
A2-8-5:   YPLTFGFCF 
A2-8-6:   YPLTFGRCF 

 
 
A2-Gag (Gag77): SLYNTVATL 
 

A2-Gag-1:   SLWNTVATL 
A2-Gag-2:   SLLNTVATL 
A2-Gag-3:   SLYNSVATL 
A2-Gag-4:   SLYNWVATL 
A2-Gag-5:   SLYNTVGTL 
A2-Gag-6:   SLYNTVMTL 

 
 
A2-9 (Gag433): FLGKIWPS 
 

A2-9-1:   FLSKIWPS 
A2-9-2:   FLNKIWPS 
A2-9-3:   FLGKTWPS 
A2-9-4:   FLGKKIWPS 
A2-9-5:   FLGKIWPV 
A2-9-6:   FLGKIWPVS 

AA substitution made are highlighted in red and underlined 
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2.7 ELISPOT Assay to Measure Peptide-specific IFN-γ and 

IL-2 Production by HIV-specific CD8+ T Cells 

The polyvinylidene difluoride (PVDF) membranes of MultiScreen 96-well 

microtitre plates were activated by wetting with 15 µl/well of 35% ethanol, and 

washed four times with PBS. The plates were coated with 100 µL 7.5 µg/ml IFN-γ 

mAb 1-D1K or 15 µg/ml IL-2 mAb IL2-1/249 (Mabtech, USA), and incubated 

overnight at 4°C.  Plates were washed four times with PBS and blocked with 150 µL 

of PBS containing 1% FCS for 2 hrs at 37°C. Fresh or thawed PBMC rested overnight 

were counted and their viability determined by trypan blue exclusion. PBMC at a 

concentration of 2 x 106 cells/ml of complete RPMI 1640 medium were plated at 2 x 

105 cells/well in duplicate for IFN-γ or 4 x 105 cells/well singly for IL-2 respectively. 

Cells in individual wells were stimulated with 4 µg/ml peptides. Unstimulated PBMC 

served as a negative control while cells stimulated with 4 µg/ml phytohemagglutinin 

(PHA) served as a positive control. The plates were washed four times with PBS after 

overnight incubation at 37ºC in a 5% CO2 incubator. 100 µl/well of 1 µg/ml 

biotinylated anti-IFN-γ mAb 7-B6-1 or anti-IL-2 mAb IL-2-II (Mabtech) detection 

antibody were added and incubated for 2 hrs at RT. Plates were washed again four 

more times with PBS and 100 µl/well of streptavidin-alkaline phosphatase conjugate 

(ALP) (Mabtech), diluted 1:1000 in PBS supplemented with 0.5% FCS was added for 

1 hr. Wells were washed again four times with PBS, and 100 µl/well of a 1/100 

diluted chromogenic ALP substrate (Bio-Rad Laboratories, Hercules, CA) in colour 

development solution was added. The plates were incubated with the substrate at RT 

for 20 mins – 1 hr until the emergence of dark-purple spots. Colour development was 
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stopped by rinsing the plates with tap water. Plates were air-dried overnight and spots 

were counted with an ImmunoScan ELISPOT reader (Cellular Technology Ltd., 

Cleveland, OH). Each spot represents a cytokine-producing cell. Wells producing 

twice the background spots and at least 50 IL-2 spot forming units (SFU)/106 PBMC 

or 100 IFN-γ SFU/106 PBMC were considered indicative of a positive response to 

peptide stimulation. 

 

2.8 Proliferation Assays and Assessment of PD-1 

Expression on Dividing CD8+ T Cells 

CellTraceTM carboxyfluorescein succinimidyl ester (CFSE) Cell Proliferation 

Kits (Invitrogen, Oregon, USA) were utilized in the proliferation assays. The CFSE 

dye was purchased from the manufacturer in the diacetylated form, 

carboxyfluorescein diacetate N-succinimidyl ester (CFDA, SE). The diacetate group 

of the CFDA, SE makes the dye highly membrane permeant. The intracellular 

esterases cleave the diacetate group from the CFDA, SE to form CFSE. This makes 

the CFSE more fluorescent and less membrane permeable. The amino-reactive 

succinimidyl side chains of the CFSE dye then covalently couple the dye to 

intracellular proteins, thus making the cells almost permanently fluorescent. CFSE 

was used to monitor lymphocyte division based on the sequential halving of the 

fluorescent intensity of the daughter cells. PBMC were either used fresh or thawed 

and rested overnight at 37°C. PBMC resuspended at 1 x 106 cells/ml in PBS 

supplemented with 5 mM ethylenediaminetetraacetic acid (EDTA) (Sigma) and 0.25 

μM CFSE were incubated in the dark at 37ºC for 10 min. Staining was quenched by 
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adding 5 volumes of ice-cold lymphocyte media and the cells incubated on ice for 5 

min. Cells were pelleted by centrifugation, and washed three times with complete 

lymphocyte medium. Staining was confirmed with a fluorescent microscope. PBMC 

were then resuspended at 2 x 106 cells/100μl lymphocyte medium, and stimulated for 

1 hr at 37°C with 100 μl of peptide at 200 μg/ml for a final peptide concentration of 

100 μg/ml, resuspended at 1 x 106 cells/ml in complete lymphocyte medium and 

maintained in culture for 7 days at 37ºC in a 5% CO2 incubator. For proliferation 

assays with immunomodulating agents, cells were resuspended in complete 

lymphocyte medium supplemented with either 500 ng/ml of 4-1BBL fusion protein 

(R&D Systems, USA) or 10 µg/ml of anti-PD-1 (PD-1.3.1; Miltenyi Biotec Inc., 

USA). Cells were harvested on day 7 and stained with a two color panel for surface 

markers using anti-CD8-PerCP (BW135/80; MiltenyiBiotec) and anti-PD-1-APC 

(EH12.2H7; BioLegend). Staining was performed according to manufacturer’s 

instructions with the use of appropriate isotype controls. Briefly, cells were washed 

with PBS supplemented with 5 mM EDTA, 0.5% FCS, 0.2% sodium azide (Sigma), 

pH adjusted to 7 – 7.2 (flow buffer); and then incubated with anti-CD8-PerCP and 

anti-PD-1-APC at 4°C for 20 min. Cells were washed again with flow buffer and 

resuspended in 1% paraformaldehyde. 1 x 105 events (cells) were acquired for 

analysis within one week of staining with a FACSCaliburTM Cell Analyzer (BD 

Biosciences). Data was analyzed using WINMDI 2.8 software. 
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2.9 Statistical Analysis 

All statistical analyses were performed using the GraphPad Prism (version 4.0) 

statistical software package (Graph-Pad Software, San Diego, CA). Normal 

distribution of data was assessed by the Kolmogorov-Smirnov test and non-parametric 

testing done for comparisons. Statistical significance (p value) of the effect of 

heteroclitic peptide stimulation on PD-1 expression was calculated by using Wilcoxon 

signed-rank test. A p value < 0.05 was considered statistically significant. Correlation 

between lower PD-1 expression and increased proliferation was assessed by linear 

regression analysis. 
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3.0 Results 

3.1 Heteroclitic Peptide Identification 

 Our laboratory previously demonstrated that heteroclitic peptides can enhance 

IFN-γ and IL-2 production by HIV-specific CD8+ T cells (206). In this study, we first 

identified additional heteroclitic peptides by ELISPOT assay. PBMC from over 80 

HIV-infected individuals were screened in duplicate for IFN-γ or in single test for IL-

2 production by HIV-specific CD8+ T cells responding to one or more of the four 

peptide sets used in this study (Table 2.1). All peptides were 9mers except A2-9 and 

variants A2-9-1, A2-9-2, A2-9-3, and A2-9-5, which are 8mers. Heteroclitic peptides 

were selected based on previously described criteria. Briefly, after background 

subtraction, variant peptides that stimulated ≥ 100 more IFN-γ SFU/106 PBMC or ≥ 

50 more IL-2 SFU/106 PBMC than the corresponding reference peptides were 

considered heteroclitic, provided that the total SFU/106 PBMC was ≤ 1000 for IFN-γ 

or ≤ 500 for IL-2. In the case of responses ≥ 1000 IFN-γ SFU/106 PBMC or ≥ 500 IL-

2 SFU/106 PBMC, variant peptides were considered heteroclitic when they stimulated 

≥ 10% more IFN-γ or IL-2 SFU/106 PBMC than the reference peptide (206). PBMC 

from 25 subjects with a positive response to one or more of the reference peptides 

were further tested with their respective variants by ELISPOT assays (Table 3.1). 

Using the criteria above, we identified 29 heteroclitic peptides with PBMC from 9/25 

tested subjects (Table 3.2). Most of the heteroclitic peptides identified augmented 

IFN-γ production by HIV-specific CD8+ T cells, which didn’t always correlate with 

IL-2 responses (representative example is shown in Figure 3.1.A). This was the 

common trend observed with cytokine responses induced by the variant peptides 
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tested in our cohort. However, there were instances (A representative example is 

shown in Figure 3.1.B) where heteroclitic peptides enhanced both IFN-γ and IL-2 

responses. 
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Table 3.1: Number of subjects with positive IFN-γ and/or IL-2 responses against one 

or more peptides in each set 
 

Peptide Set A2-7 A2-8 A2-9 A2-Gag 
Fraction of 

tested subjects 
with  

IFN-γ 
responses 

 
 

10/25 

 
 

14/25 

 
 

12/25 

 
 

13/25 

Fraction of 
tested subjects 

with  
IL-2 responses 

 
1/14 

 
3/14 

 
6/14 

 
2/14 
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Figure 3.1: Representative cytokine expression patterns of HIV-specific CD8+ T 
cells stimulated with reference or variant peptides in ELISPOT assays. (A) 
Representative case of no association between IFN-γ production and IL-2 responses. 
(B) Representative case where heteroclitic peptide enhanced both IFN-γ and IL-2 
production. 
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Heteroclitic peptides 
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3.2 Heteroclitic Peptide Stimulation Resulted in Enhanced 

HIV-specific CD8+ T Cell Proliferation 

To follow up on our finding that heteroclitic variants of HIV peptides enhance 

IFN-γ and IL-2 production by HIV-specific CD8+ T cells, we investigated whether 

they also enhance CD8+ T cell proliferation. PBMC from nine HIV-infected subjects 

previously identified with strong IFN-γ and/or IL-2 responses against heteroclitic 

peptides by ELISPOT assay were labeled with CFSE, stimulated with reference or 

heteroclitic peptides, and then left in culture for seven days. Cells were harvested on 

day 7, labeled with anti-CD8 and anti-PD-1, and analysed by flow cytometry. Twenty-

nine previously identified heteroclitic peptides were tested in proliferation assays in 

comparison to their respective reference peptides. Heteroclitic peptides enhanced IFN-

γ production in the majority of the cases selected for proliferation testing, except cases 

A2-9-3; #45, A2-9-6; #45, and A2-8-6; #78, where both IFN-γ and IL-2 production 

were enhanced (Table 3.2). We measured proliferation based on the fluorescence 

intensity of the dividing cells as the parental population remains CFSEbright, while 

fluorescence reduces with each subsequent generation of cells (CFSEdim). Only cases 

where either reference or heteroclitic peptides drove more than 0.5% absolute CD8+ T 

cell proliferation were considered for comparison. Proliferation was considered 

enhanced when heteroclitic peptides caused a > 20% increase in the percentage of 

proliferating CD8+ T cells relative to the reference peptides. Heteroclitic peptides 

enhanced total CD8+ T cell proliferation in 13/29 cases (Figure 3.2), and induced 

similar CD8+ T cell proliferation with reference peptides in 7/29 cases (Figure 3.3). 
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This demonstrates that heteroclitic peptides stimulated equivalent or greater CD8+ T 

cell proliferation than reference peptides in 20/29 cases. 
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Figure 3.2: Comparison of CD8+ T cell proliferation induced by reference or 
heteroclitic peptides I. PBMC from study participants were CFSE labeled and 
stimulated with reference or heteroclitic peptides in 7 day culture. CD8+ T cells were 
gated for analysis and results plotted as PD-1 vs. CFSE. Numbers in the quadrants 
indicate the percentage increase in the proliferating CD8+ T cells stimulated with 
heteroclitic peptides relative to reference peptides. The amino acid substitution made 
in the heteroclitic peptide sequence is highlighted in red and underlined above the 
plots. Results on PD-1 expression are discussed in section 3.3. 
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Figure 3.3: Comparison of CD8+ T cell proliferation induced by reference or 
heteroclitic peptides II. PBMC from study participants were CFSE labeled and 
stimulated with reference or heteroclitic peptides in 7 day culture. CD8+ T cells were 
gated for analysis and results plotted as PD-1 vs. CFSE. Numbers in the quadrants 
indicate the percentage increase in the proliferating CD8+ T cells stimulated with 
heteroclitic peptides relative to reference peptides. The amino acid substitution made 
in the heteroclitic peptide sequence is highlighted in red and underlined above the 
plots. Results on PD-1 expression are discussed in section 3.3. 
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3.3 Heteroclitic Peptide Induced Lower PD-1 Expression 

on Proliferating HIV-specific CD8+ T Cells 

Elevated expression of PD-1 on HIV-specific CD8+ T cells in chronic HIV 

infection has been linked to their dysfunction. This compelled us to investigate the 

level of PD-1 expression on proliferating CD8+ T cells stimulated with reference or 

heteroclitic peptides. PBMC from nine HIV-infected subjects previously identified 

with heteroclitic responses to variant peptides in ELISPOT assay were labeled with 

CFSE, stimulated with reference or heteroclitic peptides and then left in culture for 

seven days. Cells were harvested on day 7, labeled with anti-CD8 and anti-PD-1 and 

analysed by flow cytometry. Twenty-nine cases of previously identified heteroclitic 

peptides were tested in proliferation assays in comparison to their respective reference 

peptides. The median percentage of proliferating CD8+ T cells expressing PD-1 in the 

group stimulated with reference peptides was significantly higher than in the group 

stimulated with heteroclitic peptides [Figure 3.4; median PD-1hi CFSEdim CD8+ T cells 

29% with interquartile range (IQR) 19.5% – 79.5% in the reference peptide stimulated 

group versus 25%, IQR 17.5% – 64.5% on CD8+ T cells stimulated with heteroclitic 

peptides, n=29, p value = 0.005 (Wilcoxon signed-rank test)]. The level of PD-1 

expression in the CFSEbright CD8+ T cells was < 2% (range 0 – 1.6%) when stimulated 

with either reference or heteroclitic peptides. There was lower PD-1 expression on 

proliferating CD8+ T cells (15% - 88%) in response to heteroclitic peptide stimulation 

in 13/29 cases relative to reference peptide stimulation (Figure 3.5). 
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Figure 3.4: The frequency of PD-1hi CFSEdim CD8+ T cells responding to 
reference or heteroclitic peptide stimulation. In paired analysis of 29 cases, 
stimulation with reference peptides was compared to stimulation with heteroclitic 
peptides. The median percentage of PD-1hi CFSEdim CD8+ T cells was significantly 
higher with reference peptide stimulation than heteroclitic peptide stimulation 
(Wilcoxon signed-rank test). 
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Figure 3.5: Comparison of PD-1 expression on proliferating CD8+ T cells 
stimulated with reference or heteroclitic peptides. PBMC from study participants 
were CFSE labeled and stimulated with reference or heteroclitic peptide in 7 day 
culture. CD8+ T cells were gated for analysis, and results plotted as PD-1 vs. CFSE. 
Numbers in the quadrants indicate the percentage reduction in PD-1 expression on 
proliferating CD8+ T cells stimulated with heteroclitic peptides relative to reference 
peptides. The amino acid substitution made in the heteroclitic peptide sequence is 
highlighted in red and underlined. Variants enhancing proliferation and lower PD-1 
expression are marked with asterisks. 
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3.4 Correlation between Enhanced CD8+ T Cell 

Proliferation and Lower PD-1 Expression in Response to 

Heteroclitic Peptides 

T cell “exhaustion” is a collective term used to describe one or more different 

T cell functional impairments, which could range from defective cytokine production 

or proliferation to clonal deletion. Studies have shown a relationship between 

sustained upregulation of PD-1 and the reduced capacity of HIV-specific CD8+ T cells 

to proliferate. We investigated whether there was a relationship between lower PD-1 

expression and enhanced proliferation in CD8+ T cell populations responding to 

heteroclitic peptide stimulation. CFSE labelled PBMC were stimulated with reference 

or heteroclitic peptides in a 7 day proliferation assay. Cells were harvested on day 7 

and stained with fluorochrome-conjugated antibodies against CD8 and PD-1, and 

analysed by flow cytometry. We measured the percentage of proliferating CD8+ T 

cells expressing PD-1 in response to reference or heteroclitic peptides and found no 

significant correlation between enhanced proliferation and lower PD-1 expression on 

CD8+ T cells stimulated with heteroclitic peptides (Figure 3.6.C). However, 

heteroclitic peptides either induced lower PD-1 expression or enhanced proliferation 

in 21/29 cases. Also, heteroclitic peptide stimulation enhanced proliferation and lower 

PD-1 expression in 6/29 cases (Figure 3.5: B2; C2; G2; J2; L2 and M2). Identified 

heteroclitic peptides and their effects on HIV-specific CD8+ T cell proliferation and 

PD-1 expression is summarised in table 3.2. These data suggest that heteroclitic 

peptide stimulation exerts differential effects on responding CD8+ T cells. 
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Table 3.2: Effects of heteroclitic peptides on HIV-specific CD8+ T cell cytokine 
production, proliferation and PD-1 expression. 

  
Subject 

 
Peptide 

 
IFN-γ 

SFU/106 
PBMC 

 

IL-2 SFU/106 
PBMC 

 

apercent 
proliferation 

 

bpercent 
PD-1 

expression 

35 A2-8 843 60 0.8 100 
 A2-8-5 938 c110 2.9 100 
 A2-8-6 1088 15 2.4 83 
 A2-9 1005 25 0.1 100 
 A2-9-6 1325 50 0.6 83 

43 A2-8 1383 ND 2.4 71 
 A2-8-3 1563 ND 0.6 33 
 A2-9 1460 ND 2.2 59 
 A2-9-3 1770 ND 2.9 7 

45 A2-8 2123 15 0.5 0 
 A2-8-5 2363 30 6.0 0 
 A2-8-6 2350 55 0.7 0 
 A2-9 1878 15 15.2 88 
 A2-9-3 2300 100 2.8 86 
 A2-9-6 2258 80 20.5 0 
 A2-Gag 2208 95 8.4 88 
 A2-Gag-4 2488 35 4.7 85 

78 A2-7 1385 100 4.4 75 
 A2-7-4 1713 115 1.4 60 
 A2-8 1773 145 2.3 83 
 A2-8-6 2053 215 2.6 69 

125 A2-Gag 58 10 0.5 80 
 A2-Gag-3 35 80 0.7 28 

214 A2-Gag 250 0 3.4 29 
 A2-Gag-2 555 0 4.0 40 
 A2-Gag-4 353 0 3.8 34 

233 A2-7 500 ND 1.1 27 
 A2-7-1 705 ND 1.6 25 
 A2-7-4 858 ND 1.5 20 
 A2-7-5 813 ND 1.4 28 
 A2-7-6 930 ND 3.6 19 
 A2-8 998 ND 1.8 33 
 A2-8-2 1370 ND 1.1 18 
 A2-8-3 1098 ND 0.9 22 
 A2-8-6 1100 ND 1.9 21 

244 A2-7 868 0 1.0 10 
 A2-7-1 1003 15 1.5 13 
 A2-9 833 10 1.2 8.4 
 A2-9-2 958 5 1.3 7.7 
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 A2-Gag 698 5 2.4 79 
 A2-Gag-2 1400 10 2.3 78 

277 A2-8 788 13 2.1 14 
 A2-8-2 908 0 2.4 17 
 A2-9 465 13 3.3 24 
 A2-9-2 583 3 2.8 18 
 A2-9-5 618 3 2.3 22 
 A2-Gag 638 20 2.7 15 
 A2-Gag-2 768 3 3.2 25 

 
 

aPercent proliferation represents the percentage of total CD8+ T lymphocytes that 

proliferated over 7 days of stimulation with the indicated peptide.   

 

bPercent PD-1 expression represents the percentage of the CD8+ T cells that 

proliferated over 7 days of stimulation with the indicated peptide that express PD-1.   

 

cNumbers in bold text denote cases where either cytokine production or proliferation 

was increased or PD-1 expression reduced by the indicated (heteroclitic) peptide 

relative to the reference peptide. 

 

 

 

 

 

 

 

 



69 

 

     

 

 

Figure 3.6: Enhanced proliferation is independent of reduced PD-1 expression. 
(A) Scatter plot showing cases where heteroclitic peptides stimulation enhanced CD8+ 
T cell proliferation by > 20% (n=13). (B) Scatter plot showing cases where 
heteroclitic peptides stimulation induced lower PD-1 expression on proliferating CD8+ 
T cell by > 15% (n=13). (C) Correlation between enhanced CD8+ T cell proliferation 
and lower PD-1 expression. 
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3.5 Blockade of PD-1 or Costimulation with 4-1BBL 

Enhanced HIV-specific CD8+ T Cell Responses to 

Heteroclitic Peptides 

Studies have previously shown that blocking the PD-1 inhibitory pathway or 

providing costimulation via the 4-1BB signaling pathway can improve HIV-specific 

CD8+ T cell responses (177,209). These studies were carried out on memory CD8+ T 

cells using wild-type HIV peptides. We tested whether blocking the PD-1/PD-L1/2 

pathway during HIV-specific CD8+ T cell stimulation with heteroclitic peptides or 

delivery of 4-1BB costimulatory signal would further improve responding T cell 

effector function and reduce exhaustion. CFSE-labeled PBMC from HIV-infected 

subjects were stimulated with reference or heteroclitic peptides in a 7 day proliferation 

assay in the presence or absence of anti-PD-1 blocking antibody or 4-1BBL fusion 

protein. The percentage of CFSEdim CD8+ T cells was compared between PBMC 

populations that were treated with anti-PD-1 blocking antibody or no blocking 

antibody. We also compared PBMC populations that were cultured with or without 4-

1BBL fusion protein. Figure 3.7.A shows representative flow cytometry data where 

PD-1 inhibition enhanced proliferation of CD8+ T cells stimulated with reference 

peptide by 160%. Alternatively, 4-1BBL costimulation resulted in enhanced 

proliferation of CD8+ T cells by 40% (Figure 3.7.B). It is, however, worthy of note 

that 4-1BBL costimulation did not induce lower PD-1 expression on proliferating 

CD8+ T cells stimulated with reference peptide. The combined blockade of PD-1 and 

4-1BBL costimulation enhanced CD8+ T cell proliferation by 280%, which suggests 
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an additive effect on the responding cells (Figure 3.7.C). On the other hand, blocking 

the PD-1 pathway enhanced proliferation of CD8+ T cells stimulated with heteroclitic 

peptides by 78% (Figure 3.8.A). Also, 4-1BBL costimulation enhanced proliferation 

of CD8+ T cell responding to heteroclitic peptide by 56%, and lowered PD-1 

expression by 36% (Figure 3.8.B). These preliminary results demonstrate that 

treatment with immunomodulating agents such as anti-PD-1 or 4-1BBL can further 

boost T cell responses to heteroclitic peptides. 
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Figure 3.7: PD-1 blockade and / or 4-1BBL costimulation alters HIV-specific 
CD8+ T cell proliferation. (A) Representative flow cytometry data showing the 
CFSE profile of CD8+ T cells responding to reference peptide stimulation in the 
presence or absence of PD-1 blocking antibody. (B) CFSE profile of CD8+ T cells 
responding to reference peptide stimulation in the presence or absence of 4-1BBL 
costimulation. (C) CFSE profile of CD8+ T cells responding to reference peptide 
stimulation in the presence or absence of both anti-PD-1 blocking and 4-1BBL fusion 
protein. 
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Figure 3.8: PD-1 blockade or 4-1BBL costimulation alters HIV-specific CD8+ T 
cell proliferation. (A) Representative flow cytometry data showing the CFSE profile 
of CD8+ T cells responding to heteroclitic peptide stimulation in the presence or 
absence of PD-1 blocking antibody. (B) CFSE profile of CD8+ T cells responding to 
heteroclitic peptide stimulation in the presence or absence of 4-1BBL costimulation. 
Percentage increase in CD8+ T cell proliferation and percentage decrease in PD-1 
expression are shown in upper-left quadrants and lower-left quadrants respectively. 
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4.0 Discussion 

Different strategies are being explored to develop prophylactic and therapeutic 

approaches to prevent HIV infection and AIDS. One key strategy is to develop an 

HIV immunotherapy utilizing HIV-specific CD8+ T cells. Activation of HIV-specific 

CD8+ T cells following acute HIV infection contributes to the decline of viremia and 

delays disease progression (35,39). Also, HIV-specific CD8+ CTL persist through 

disease progression and are resistant to HIV infection since they do not express CD4, 

which is the main receptor for HIV entry and cellular infection. However, continuous 

stimulation via their TCR with HIV peptide epitopes during chronic HIV-infection has 

been implicated in their functional impairment, which persists even through successful 

ART and antigen withdrawal (181,184). The collection of T cell functional 

impairments that scientists have termed “T cell exhaustion” ranges from a partial 

decrease or loss of cytokine production through to clonal deletion (159). We 

previously demonstrated that heteroclitic peptide stimulation enhances cytokine 

production by HIV-specific CD8+ T cells (206). In this study, we investigated the 

effect on other T cell functional impairments by stimulating HIV-specific CD8+ T 

cells with heteroclitic variants of native HIV peptides. 

The process of T cell functional impairment appears stepwise and progressive in 

nature with antigen-specific proliferation being an effector function that is 

extinguished early. This study, therefore, aimed to characterize the effects of 

heteroclitic peptide stimulation on proliferation of HIV-specific CD8+ T cells. We first 

identified HIV variant peptides that enhanced HIV-specific CD8+ T cell cytokine 

responses by ELISPOT assays, and termed these variants “heteroclitic”. Most of the 
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identified heteroclitic peptides enhanced IFN-γ production, although some enhanced 

IL-2 production as well. Similar enhanced IL-2 responses have been reported by 

stimulation with an heteroclitic influenza virus peptide (A2-Flu-1) relative to the 

reference peptide (206). However, no systematic comparison of the frequency of 

heteroclitic peptides related to HIV epitopes versus other viral epitopes has been 

carried out. In this study, IFN-γ and IL-2 production were independently enhanced as 

there was no direct correlation between these two cytokine responses when PBMC 

were stimulated with heteroclitic peptides. 

Together with reduced cytokine production, loss of proliferative capacity is 

one of the major T cell functional impairments that occur in chronic HIV-infection. 

CD4+ T cells often play an important role in the generation of optimal CD8+ T cell 

responses in an ongoing infection. CD4+ helper T cells produce IL-2, which is a T cell 

growth factor that supports HIV-specific CD8+ T cell survival and memory T cell 

formation. Since CD4+ T cells are the main target of HIV, there is a dramatic 

reduction in CD4+ T cell counts in untreated HIV-infection. This renders the HIV-

specific CD8+ T cell “helpless”, and contributes to HIV-specific CD8+ T cell 

exhaustion in progressive HIV infection (210). Zimmerli et al. showed that HIV-1-

specific IFN-γ/IL-2-producing CD8+ T cells are capable of driving their own 

proliferation in the absence of CD4+ T cell help (211). To this end, we followed up to 

see whether HIV-1-specific IFN-γ/IL-2-producing CD8+ T cells activated by 

heteroclitic peptide stimulation can also drive their clonal expansion. PBMC from 

HIV-infected subjects that showed higher cytokine responses to heteroclitic peptides 

in ELISPOT assays were further cultured for 7 days with the heteroclitic peptide that 
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induced the highest cytokine responses. We found that heteroclitic peptides enhanced 

HIV-specific CD8+ T cell proliferation relative to reference peptides in almost half of 

the cases where reference / heteroclitic HIV-peptide pairs were compared. Since IL-2 

is a T cell growth factor that plays an important role in driving T cell clonal expansion 

and differentiation, we expected heteroclitic peptides that enhanced IL-2 production to 

also enhance HIV-specific CD8+ T cell proliferation. Surprisingly, HIV-specific CD8+ 

T cell proliferation was not enhanced in at least one case where IL-2 production was 

increased. Our data suggest that enhanced CD8+ T cell proliferation by heteroclitic 

peptides in many cases is independent of detectable IL-2 production. All the 

heteroclitic peptides tested in proliferation assays enhanced IFN-γ production. Ahmed 

et al. showed that loss of IL-2 production and proliferation capacity are the early signs 

of functional impairment observed in LCMV-specific CD8+ T cells. IFN-γ production, 

which is persistent, eventually becomes defective in severe T cell exhaustion (184). 

This T cell functional impairment has been documented in chronic HIV-infection as 

well (159,160). Several studies have shown that a significant fraction of HIV-specific 

CD8+ T cells lose the ability to produce IFN-γ in chronic HIV-infection, a 

phenomenon which indicates severe T cell exhaustion (212-214). Our finding that 

heteroclitic HIV-peptides enhanced proliferation and cytokine production relative to 

the native HIV-peptide epitope suggests that heteroclitic peptide stimulation either 

selectively stimulates non-exhausted T cells or restores “exhausted” HIV-specific 

CD8+ T cells to a functional or even polyfunctional state. Retention of polyfunctional 

HIV-specific CD8+ T cells, which are capable of producing cytokines and 

proliferating, is an attribute found in only a minority of HIV-infected, ART-naïve 
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viremic controllers called long-term nonprogressors (LTNP) (215). Hence, our results 

suggest that heteroclitic peptide stimulation could possibly stimulate activation of the 

same polyfunctional T cells that help LTNP keep viremia in check. 

In progressive HIV infection, chronic expression of PD-1 molecules on HIV-

specific CD8+ T cells correlates with failure to contain viremia (177). In addition, 

HIV-specific CD8+ T cells in LTNP express a significantly lower amount of PD-1, 

which is associated with their ability to contain HIV viremia (215). Several 

interventions aimed at improving exhausted T cell responses employed monoclonal 

blocking antibodies against PD-1 or its ligands or introduced exogenous costimulatory 

molecules such as 4-1BB during T cell activation. All of these interventions to a 

significant extent restored or improved the effector functions of responding T cells 

(68,216). However, native HIV-peptide epitopes were utilized in stimulating these 

HIV-specific CD8+ T cells in all the interventions. For the first time, we demonstrated 

that heteroclitic variants of these native HIV-peptide epitopes could improve the 

character of HIV-specific CD8+ T cell responses relative to their reference epitopes, 

without either introducing exogenous costimulatory molecules or blocking inhibitory 

receptors. Expression of PD-1 on proliferating HIV-specific CD8+ T cells stimulated 

with heteroclitic peptides was significantly low relative to HIV-specific CD8+ T cells 

stimulated with reference peptides in almost half of the peptide pairs compared. This 

finding suggests unique features of heteroclitic peptides in reducing T cell 

“exhaustion” while still enhancing proliferation and cytokine production in 

responding CD8+ T cells. Comparison of cases where PD-1 expression was lower with 

cases where HIV-specific CD8+ T cell proliferation was enhanced showed no 
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significant correlation between lower PD-1 expression and enhanced proliferation. 

This could either mean that heteroclitic peptides select for distinct heterogeneous 

subsets of HIV-specific CD8+ T cells, which partly explains the difference in 

frequency of PD-1 low cells induced by heteroclitic peptides or that activation signals 

generated by heteroclitic peptide stimulation somehow bypass the PD-1 signaling 

pathway, thereby allowing enhanced proliferation even of PD-1hi CD8+ T cells. 

However, since elevated PD-1 expression in HIV and other chronic infections is 

associated with T cell exhaustion and disease progression, lower expression of PD-1 

generated by heteroclitic peptides may enhance CD8+ T cell effector function and 

limit disease progression. Normally, inhibitory signals delivered by PD-1 

downregulate TCR signaling through direct dephosphorylation of intracellular 

signaling intermediates. The phosphatases (SHP-1 and SHP-2) associated with PD-1 

dephosphorylate CD3ζ and prevent the phosphorylation of ZAP-70 and PKCθ (85). A 

possible explanation for the negligible effects of PD-1 signaling on HIV-specific 

CFSEdim CD8+ T cells responding to heteroclitic peptide stimulation as we have 

observed could be attributed to increased tyrosine phosphorylation of ZAP-70 and 

TCR ζ chains in CTL stimulated with heteroclitic peptides relative to native peptide-

stimulated CTL, as was reported by Salazar et al. (202). Again, this supports our 

suggestion that heteroclitic peptides can potentially bypass exhaustion induced by 

reference peptides. There was no correlation between the type of cytokine induced by 

heteroclitic peptides and lowered PD-1 expression (data not shown). Even though IL-2 

is a T cell growth factor, studies indicate it can increase the expression of PD-1. A 

study by Fauci et al. showed that culture of purified T cells with common γ-chain 
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cytokines such as IL-2, IL-7, IL-15, and IL-21 markedly enhanced PD-1 expression in 

vitro (217). This observation was confirmed in vivo when they demonstrated that 

PBMC isolated from HIV-infected subjects expressed higher levels of PD-1 following 

IL-2 immunotherapy (217). This supports our finding that heteroclitic-HIV peptides 

induced lower PD-1 expression on HIV-specific CD8+ T cells in the absence of 

detectable IL-2. The goal of heteroclitic HIV-variant peptide stimulation is to generate 

HIV-specific CD8+ T cells with enhanced effector responses towards the native 

antigen. Studies in our laboratory showed by additive ELISPOT assays that reference 

peptides A2-7, A2-8, A2-9 and their respective heteroclitic analogs stimulated the 

same subset of HIV-specific CD8+ T cells (206). Since the amino acid substitutions 

we made in the variant peptide sequences were not at the positions harboring HLA 

anchor residues, we do not expect any alteration in their HLA-binding affinity relative 

to the reference peptides. This T cell cross-reactivity, however, suggests that the 

enhanced responses observed in CD8+ T cells stimulated with heteroclitic peptides 

could be attributed to differential intracellular signaling of the responding CD8+ T 

cells rather than recognition of reference and variant peptides by different T cells. 

Even though additive ELISPOT assays suggest that heteroclitic peptides 

stimulated the same CD8+ T cell subsets as the reference peptides, we still cannot rule 

out the possibility that heteroclitic peptides may also stimulate CD8+ T cells that are 

not specific for the native peptide epitope. The substitution of threonine at position 2 

of a well-characterized HLA-A2-restricted melanoma antigen (gp100209-217) with 

methionine (gp1002M) significantly enhanced pMHC binding affinity and antigen 

presentation (218,219). However, only 25% of T cells from PBMC of melanoma 
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patients stimulated with melanoma peptide analog gp1002M were able to recognize the 

native peptide epitope (220). It was also confirmed in an independent study that 

gp1002M-specific T cell cross-reactivity with the wild-type melanoma antigen is 2-3 

orders of magnitude lesser than to the gp1002M peptide (221). Since the aim of 

heteroclitic peptide stimulation is to enhance responses in HIV-specific CD8+ T cells 

with high avidity for native-HIV proteins, inducing T cells that do not recognize 

native HIV epitopes or T cells that mask the desired responses would not be 

beneficial. Tetramer-stained HIV-specific CD8+ T cells expanded with reference 

peptides in proliferation assays can be stimulated with heteroclitic peptides to monitor 

the frequency of cross-reactive HIV-specific CD8+ T cells responding to heteroclitic 

peptide stimulation. Also, additive proliferation assays in which PBMC from our 

HIV-infected subjects would be cultured in separate tubes for 7 days with the 

reference peptides or heteroclitic peptides as explained in the methods section, and a 

combination of the reference peptide with the heteroclitic peptides in the same tube 

could be performed in order to investigate heteroclitic peptide-driven T cell cross-

reactivity with the native-HIV peptide. An additive response would be expected if 

different subsets of HIV-specific CD8+ T cells were responding to the peptide 

stimulation. However, if both peptides stimulated the same CD8+ T cell subset, the 

percentage of CFSEdim CD8+ T cells in the PBMC population that was stimulated with 

both reference and heteroclitic peptides would be equal to the percentage of CFSEdim 

CD8+ T cells in the PBMC population that was stimulated with the heteroclitic 

peptide. We couldn’t measure the baseline expression level of PD-1 on CD8+ T cells 

for post-stimulation comparison due to a shortage of PBMC. However, we speculate 
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that heteroclitic peptides stimulated the same subset of HIV-specific CD8+ T cells 

based on previous ELISPOT results (206). 

Finally, we examined the effect of 4-1BBL costimulation or blockade of the 

PD-1 pathway on CD8+ T cells responding to heteroclitic peptide stimulation. The 

balance of costimulatory and inhibitory signals delivered via the TCR and other cell 

surface signaling molecules to T cells ultimately determines their effector responses. 

Several studies have shown that altering both the positive and negative signals 

delivered to antigen-specific T cells in some cancer and infectious disease models can 

potentially be therapeutic (183,206,222,223). Also, since flow cytometry was not done 

before day 7 due to shortage of cells, some dividing cells might be undergoing cell 

death through activation and it is possible that PD-1 blockade would prevent apoptotic 

cell death usually induced by PD-1 signaling. One way by which heteroclitic peptides 

induce better T cell responses is by increasing tyrosine phosphorylation of ZAP-70 

and TCR ζ chains (202), which is normally inhibited by PD-1 signaling, elimination of 

the PD-1 signal should further improve the effect of heteroclitic peptide stimulation on 

the responding HIV-specific CD8+ T cells. Therefore, we blocked the PD-1/PD-L1/2 

pathway during peptide stimulation of HIV-specific CD8+ T cells. Indeed, blocking 

the PD-1 signaling pathway further enhanced proliferation of HIV-specific CD8+ T 

cells stimulated with heteroclitic peptides. Since 4-1BB costimulates T cells 

independently of the major T cell costimulatory molecule CD28 and humans 

accumulate CD28– T cells with age, we decided to also stimulate the HIV-specific 

CD8+ T cells with peptides in the presence of 4-1BBL. Addition of exogenous 4-

1BBL fusion protein as a source of T-cell costimulation also enhanced proliferation 
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and reduced PD-1 expression on HIV-specific CD8+ T cells responding to heteroclitic 

peptides. A combination of both 4-1BBL costimulation and PD-1 blockade showed an 

additive effect on HIV-specific CD8+ T cells stimulated with the reference peptides 

but was not tested with heteroclitic peptides. 

This study characterized the effects of heteroclitic HIV-peptide stimulation on 

HIV-specific CD8+ T cell effector responses such as cytokine production and clonal 

expansion, which are impaired with T cell exhaustion. We identified an additional 29 

instances of heteroclitic peptide activity, and showed that IFN-γ and IL-2 production 

were enhanced in HIV-specific CD8+ T cells responding to these peptides. We 

demonstrated that heteroclitic variants of native HIV-peptides are capable of 

enhancing HIV-specific CD8+ T cell proliferation relative to native epitopes, and that 

improved IL-2 responses are not always associated with enhanced proliferation. The 

heteroclitic variant peptides employed in this study produced promising results, which 

could potentially guide the design of other heteroclitic HIV-peptide variants. In this 

study, we only generated twenty-four variant peptides from A2-7, A2-8, A2-9, and 

A2-Gag reference peptides (i.e. six variants per peptide set). This was carried out by a 

single conservative or semiconservative aa substitution at residues distinct from the 

main MHC anchors. These substitutions often induced better HIV-specific CD8+ T 

cell responses than the reference peptide, consistent with the findings of Sette et al. 

(203). Also, we did not find a significant correlation between enhanced proliferation 

and lower PD-1 expression with heteroclitic peptide stimulation in this study. Finally, 

we showed that manipulating T cell costimulatory and/or inhibitory signals could 

further benefit the T cells responding to heteroclitic peptide stimulation in terms of 
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proliferation. This study further advances our knowledge on the ability of heteroclitic 

peptides to enhance effector functions of HIV-specific CD8+ T cells. 

Analysis of aa substitutions in the reference peptide sequences, that made the 

variant peptides more antigenic (heteroclitic) could be used to inform the design of 

more potentially heteroclitic variants with substitutions at multiple positions. It is 

important to note that heteroclitic peptides employed in this study were variants of 

immunodominant epitopes. Inter-individual variability in heteroclitic responses could 

be attributed to the polymorphic nature of HLA presenting the immunodominant HIV 

epitopes and studies show that HIV immunodominant epitopes, in the context of their 

HLA-restriction do not often reflect an individual's overall HIV-specific CD8+ T cell 

response (224). This may limit generalizability in terms of vaccine development. 

However, if heteroclitic peptides enhance antiviral immunity, personalized therapeutic 

HIV vaccine would not demand inordinate effort or expense relative to genotyping 

and phenotyping, which is already standard of care for HIV infection. Our findings 

justify further investigation of the incorporation of heteroclitic peptides into HIV 

vaccines. 
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5.0 Conclusions and Future Directions 

 This study has generated additional knowledge on the potential benefits of 

incorporating heteroclitic-HIV peptides into HIV therapeutic vaccines to induce 

stronger and better HIV-specific CD8+ T cell responses. We have shown that 

heteroclitic peptides can alter both the magnitude and character of HIV-specific CD8+ 

T cell responses. Since chronic stimulation with wild-type HIV epitopes is associated 

with HIV-specific CD8+ T cell exhaustion, a longer time-frame would be required to 

determine whether or not chronic stimulation with heteroclitic HIV-peptides would 

also lead to T cell functional impairment. Heteroclitic peptide stimulation in this study 

only lasted 24 hours (ELISPOT) or 7 days (proliferation assay). Since PD-1 

expression did not hinder HIV-specific CD8+ T cell responses when stimulated with 

heteroclitic peptides compared to reference peptides, it is worth investigating whether 

activation signals generated by heteroclitic peptide stimulation bypass or overwhelm 

the PD-1 signaling pathway in some way. This could be investigated by carrying out a 

microarray analysis to examine what genes are turned on or repressed in PD-1 

expressing CD8+ T cells stimulated with heteroclitic peptides compared to those 

stimulated with reference peptides. This could provide insight into how the 

TCR/heteroclitic peptide interactions modulate T cell responses. Other T cell 

inhibitory molecules that have been implicated in T cell exhaustion include TIM-3, 

LAG-3, CD160, CTLA4, 2B4 and SLAM. We only investigated the effect of 

heteroclitic peptides on PD-1 expression in this study. Further investigation should 

determine whether or not heteroclitic peptides modulate the expression of other co-

inhibitory molecules and if this contributes to the enhanced T cell responses generated 
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by heteroclitic peptides. Altogether, this information could be useful for designing 

heteroclitic peptides that improve effector responses of HIV-specific CD8+ T cells 

with high avidity for native-HIV epitopes. 
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Appendix A:  General characteristics of study subjects with heteroclitic responses. 
 

aID bVirus 
load 

cCD4+ T 
cells/μl 

dCD4+ T 
cell  nadir 

CD8+ T 
cells /μl 

eDuration of 
infection  

fHAART 

       
007 3.87 8 8 1239 >17 years No 
028 ≤1.30 140 0 1180 >17 years Yes 
214 ≤1.30 189 90 576 >6 years Yes 
078 4.44 228 32 1007 >17 years Yes 
125 ≤1.60 248 59 464 >14 years Yes 
011 1.78 280 63 2450 >17 years Yes 
283 4.25 352 352 752 >1 year No 
166 ≤1.30 364 200 663 >11 years Yes 
212 ≤1.70 378 300 423 >6 years Yes 
244 ≤1.30 475 51 817 >3 years Yes 
282 ≤1.30 476 476 532 >1 year Yes 
039 ≤1.30 483 24 1426 >17 years Yes 
148 ≤1.30 533 6 468 >13 years Yes 
126 ≤1.30 620 164 600 >14 years Yes 
001 ≤1.30 638 51 792 >18 years Yes 
043 ≤1.30 675 324 420 >17 years Yes 
230 ≤1.30 696 390 1296 >4 years Yes 
277 ≤1.30 696 621 986 >1 year Yes 
071 ≤1.30 768 418 1320 >17 years Yes 
115 ≤1.30 768 204 1248 >15 years Yes 
134 ≤1.30 810 96 504 >14 years Yes 
045 ≤1.30 868 209 1260 >17 years Yes 
237 ≤1.30 952 480 1836 >4 years Yes 
035 1.48 1020 176 3300 >17 years Yes 
233 1.31 1088 1568 1050 >4 years Yes 

 
aSubjects were sequentially coded as they enrolled in the study and are tabulated in 
order of increasing CD4+ T cell counts. 
 
bVirus loads obtained for the time of testing from clinical charts are expressed as log10 
copies HIV RNA/mL plasma. 
 
cNumber of CD4+ and CD8+ T cells/L peripheral blood at the time of testing for each 
subject. 
 
dCD4+ T cell nadir is the lowest recorded CD4+ T cell count from each subjects’ 
clinical chart. 
 
eDuration of infection is based on the earliest record of known HIV-seropositive 
status. 
 
fWhether or not subjects were receiving highly active antiretroviral therapy at time of 
testing is noted. 


