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Abstract

Elastic and structural properties of triangular lattice antiferromagnets CuCrQ,, CuFeQ,,
and CuCrS, were investigated to elucidate the role played by spin-phonon coupling in the
magnetic and multiferroic properties of a large class of triangular lattice antiferromagnets.

Using DBrillouin scattering, five of six elastic constants of CuCrQO, are determined at room
temperature. Low temperature elastic properties of CuCrQOs are extensively investigated with
the ultrasonic pulse echo method. According to these measurements, the elastic constants
C11, Caa, and Cgg show softening as the temperature is reduced down to the antiferromagnetic
transition temperature Ty; = 24.3 K. The Landau analysis of the ultrasonic data indicates
a first order pseudoproper ferroelastic transition at Tpy,, where magnetic moments can act
as a secondary order parameter. The transition corresponds to a structural change from the
tetragonal point group 3m to the monoclinic point group 2/m. In addition, the symmetry
lowering at Txy secms to aid the spin-driven ferroelectricity below Thvo = 23.8 K, at which
the crystal symmetry should change from 2/m to 2. The existence of Te is confirmed by
simultaneous measurements of the dielectric constant €[10) and acoustic modes.

Unlike CuCrOg, isostructural CuFeO, seems to show a second order 3m — 2/m fer-
roelastic transition coincident with the antiferromagnetic transition at Ty, = 14 K [1]. In
order to confirm if the transition is second order, Brillouin scattering measurcnents were
performed on CuFeO,. Due to the opacity of CuFeQ,, Brillouin spectra show only surface

acoustic modes for waves propagating in the zy and rz planes. The velocity of the modes



depends on the elastic constants Cyy and Css .

Raman measurements were performed to possibly determine if the ferroelastic transitions
at Ty, in CuFeO, and CuCrO, and the R3m — Cm structural and antiferromagnetic
transition at Ty = 38 K in another geometrically frustrated magnet, CuCrS,, are driven
by a soft optic mode. Based on these measurements, the temperature dependencies of
all modes in CuCrO,, CuFeOy and CuCrS; are attributed to anharmonic phonon-phonon

interactions. Therefore, Raman modes in CuCrQO, and CuFeO, cannot account for the

ferroelastic transitions observed at Ty, leaving the driving mechanism of the ferroelastic

transitions uncertain. Similarly, measurements on CuCrS, does not reveal any soft optic
modes.

Finally, simultaneous measurements of the dielectric constant and acoustic velocities of
CuCrO; were performed to determine the magnetic phase diagram of CuCrQO, for magnetic
fields along the [110] and [110] directions (hexagonal setting). For magnetic ficlds parallel to
the [ITO] direction the dielectric constant and acoustic modes show an anomaly at H p,, ~5
T between 2 K and 23.7 K, which correspond to a 90° flop in the spin-spiral plane and electric
polarization. The anomaly observed in the longitudinal acoustic mode propagating in the
basal plaie is attributed to the ficld dependence of magnetic susceptibility. Measurements
performed with magnetic fields parallel to the [110] direction suggest a reorientation in the
spin-spiral plane.

The ferroelastic transition, coincident with the antiferromagnetic transition at Ty; in
CuCrO, as well as acoustic anomalies at the spin flop transition clearly indicate that mag-
netoelastic coupling has a strong impact on the magnetic and multiferroic propertics of
CuCrQO,. For a complete understanding of the role of magnetoelastic coupling on these
properties in CuCrO, and a large class of triangular lattice antiferromagnets, results on the
ultrasonic velocity measurements on CuCrOs have to be analyzed using a Landau model that

includes magnetoelastic coupling terms as well as the coupling between the order parameter

vl




and magnetic moments.
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Chapter 1

Introduction

In the past 20 years, multiferroics have received considerable attention due to their funda-
mental magnetic and electric properties, as well as their potential applications. A material
is called multiferroic if it simultaneously possesses two or more of the ferroic properties: fer-
romagnetism (or antiferromagnetism), ferroelectricity, and ferroelasticity [6]. Ferroelectrics
and ferroelastics are electric and mechanical analogs of ferromagnets. For example, a fer-
roelastic material is defined as a material in which structural domains can be ordered or
switched by the application of homogeneous stress [7]. Similarly, in a ferroelectric mate-
rial, ferroelectric domains can be aligned by the application of an electric field. Combining
two or all of these ferroic properties in one material, as in multiferroics, brings about rich
fundamental physics. Particularly, coupling between magnetic and electric properties (mag-
netoelectric coupling) makes these materials promising candidates for potential applications
such as in data storage devices [8, 9, 10, 11]. For example, magnetoelectric coupling can be
used to design multistate memory devices with electrical writing and nondestructive mag-
netic reading operations [12]. Early discoveries of multiferroics included BiFeOsz, YMnOj,
and BiMnOj [13]. In these materials, ferroelectricity and antiferomagnetism coexist, how-

cver, ferroelectricity appears at much larger temperatures than magnetism because these two



properties appear independently of each other, which leads to weak magnetoelectric coupling

[13]. These materials are classified as type-I multiferroics [10].

Recently, in a new class of magnetoelectric multiferroics, called type-II multiferroics, it
was discovered that a ferroelectric polarization is induced upon the emergence of a mag-
netic ordering [14, 8]. As a result, the magnetic and electric properties are strongly coupled.,
making possible the electrical control of the magnetic properties, and vice versa [13, 15, 16].
Generally speaking, type-II multiferroics can be divided into 2 groups based on the mi-
croscopic mechanism of the multiferroic behavior [10]: materials in which ferroelectricity
appears as a result of a spiral spin order through spin-orbit interaction, and those in which
ferroelectricity appears in collinear magnetic structures through exchange striction [10]. Be-
fore explaining the microscopic mechanism of type-II multiferroics, we illustrate the relevant
maguetic orders in Fig. 1.1. The direction of the expected electric polarization P for each
magnetic order is depicted with thick arrows, whereas the direction of magnetic modulation
(i.e. magnetic propagation vector) is represented by qm. If S; and S; are two neighboring
spins on sites 7 and j, for spiral magnetic orders the cross product of the two spins, S; x S;,
defines the direction of the spin rotation axis. If the spin rotation axis is perpendicular to
the propagation vector g, the resulting magnetic order is called a cycloidal spiral structure,
shown in Fig. 1.1a [15]. If the spin rotation axis is parallel to the propagation vector qum,
then the maguetic order (Fig. 1.1¢) is called a proper screw spiral structure. In Fig. 1.1b,
we also show a collinear spin order in which magnetic moments are parallel (or antiparallel)

to their nearest neighbors.

In the first group of type-II multiferroics, a cycloidal spiral spin order (Fig. 1.1a) as
in ThMnOs3 [14] and DyMnO; [17] induces ferroelectric polarization P through the inverse

Dzyaloshinskii-Moriya (DM) interaction [18, 19] such that

P:ei]- X (Sl XSJ), (11)



a) qn
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Figure 1.1: Schematic illustrations of spiral and collinear magnetic orders and induced elec-

b)

C)

tric polarization: (a) Cycloidal spin order where the propagation vector is perpendicular
to the spin rotation axis can give rise to polarization through inverse DM interaction. (b)
4-sublattice collinear spin configuration can give rise to electric polarization P in the di-
rection of the modulation vector qn,. Collinear spin order can induce electric polarization
through exchange striction. (c¢) Proper screw spiral structure in which the spin rotation axis

is parallel to the modulation vector.



where e;; is a unit vector connecting two magnetic moments S; and S; parallel to the prop-

agation vector of the cycloid structure, gm||€;;. In this case, the induced polarization is
perpendicular to both the propagation vector g and spin rotation axis S; x S; (see Fig.
1.1a). In these materials, due to the correlation between the electric and magnetic degrees of
freedom, the spontaneous polarization can be controlled by an external magnetic field [14].
In ThMnOj3, Kimura ef al. [14] experimentally observed a 90° flop of the electric polarization
by applying a magnetic field between 5 T and 9 T along a direction parallel to the cycloidal
plane.

In the second group of type-II multiferroics, an electric polarization is induced by a
collinear spin order through exchange striction (Fig. 1.1b) [10]. In the collinear 1)) mag-
netic state of frustrated magnets such as CazCoq.-,Mn,Og [20] and DyFeOj [21], the exchange
striction coupling pulls parallel spins toward each other and pushes away antiparallel spins,
breaking the inversion symmetry and producing an electric polarization in the direction of

the magnetic modulation. Microscopically, the local electric polarization is given by [22]
P:po(T‘) SZS]7 (]‘2)

where the prefactor p,(r) depends on the local structure and exists only when the inversion
center between sites ¢ and j is absent [2]. Since the spatial average of p,(r) is zero in
centrosymmetric materials, ferroelectric polarization can be induced by exchange striction
only when the modulation in S, - S, is commensurate with respect to the lattice [2].

It is important to note that multiferroics in which ferroelectricity is driven by a collincar
spin order are rarely discovered [13, 23, 24]. In general, most spin driven multiferroics have
a spiral magnetic order (Fig. 1.1a) in the multiferroic state [13, 15, 16]. By using simple
syminetry arguments, we can explain how a spiral spin order can induce ferroelectricity.
The electric polarization P changes sign on the spatial inversion (r — -r) but remains

invariant on time reversal (¢ — —t). The magnetization M transforms in the opposite



1/ \1/ —3

Left-handed Right-handed

Figure 1.2: Geometrical frustration in a triangular lattice antiferromagnet.

way. While it remains invariant on spatial inversion, it changes sign on time reversal. Like
any maguetic order, a spiral magnetic order breaks times reversal symmetry (t — —t).
In addition, it also breaks spatial inversion symmetry, because upon the application of the
spatial inversion, the direction of the rotation of spins in the spiral plane is inverted. Thus,
in a material in which spins form a spiral order, an electric polarization is allowed [13]. This
makes geometrically frustrated magnets ideal systems for spin-driven ferroelectricity, because
geonietrically frustrated magnets naturally favor noncollinear magnetic orders as discussed
below.

Geometrical frustration occurs on a triangular lattice such as shown in Fig. 1.2. In
Fig. 1.2, magnetic moments (spins) 1 and 2 on the triangular lattice are aligned antiparallel
to each other. However, the third magnetic moment cannot be aligned simultaneously an-

tiparallel to the other two magnetic moments. Therefore, in order to remove this ambiguity,

[o534



the spins adopt a 120° spin configuration and lift the magnetic frustration. In a 120° spin

structure, neighboring spins are at 120° to each other and the magnetic propagation constant
is qn = % Depending on the sign of the single-ion anisotropy term D in the Hamiltonian
H' = —DS?, there are two types of 120° spin structures. For D < 0, the energy of the
system is minimized when the spiral plane is perpendicular to the triangular lattice plane
(easy-axis type). For D > 0, however, the spiral plane is parallel to the triangular lattice
plane (easy-plane type) [16]. Moreover, the spin chirality results in two possible chiral do-
mains, left-handed and right-handed, which leads to additional degeneracy in the ground
state. This geometrical frustration leads to a large number of complex spin configurations

that occur at low temperatures.

1.1 Motivation

Recently, ferroclectricity was observed in several members of geometrically frustrated mag-
nets with the formula ABO,. In this chemical formula, A is a nonmagnetic monovalent ion
such as Cu, Ag, or Li, whereas B is a magnetic trivalent ion such as Fe or Cr. In ABO,
compounds, geometrical frustration is due to their trigonal R3m symmetry, which leads to
interesting spin configurations at low temperatures [3, 25]. Additional studies on CuFeOs,,
CuCrOs. and AgCrO, [26, 27, 28] show that an electric polarization P||[110] is only induced
upou the emergence of a proper-screw spin order (Fig. 1.1). Under this scenario, the usual
inverse Dzyaloshinskii-Moriya (DM) interaction P ~ r;; x (S; x S;) [18, 19] cannot account
for the induced polarization because the propagation vector of the spin modulation is par-
allel to the spin rotation axis (see Eq. 1.1). Exchange striction (Eq. 1.2) cannot account
for the induced polarization either as the magnetic modulation vector in proper screw spi-
rals is incommensurate [2]. An alternative possibility, proposed by Arima et al. [2], is that

the polarization is induced by the variation of the metal-ligand hybridization. However,



ferroelectricity observed in rhombohedral AgCrS, upon a helical spin order suggests that

there might be other mechanisms that are also responsible for the induced ferroelectricity in
these triangular lattice antiferromagnets [29]. This is because the rhombohedral 3m point
group symmetry (R3m space group) of AgCrS,, as opposed to centrosymmetric 3 (R3m)
synunetry implies differences in the cation-anion-cation orbital hybridization and thus in the
magnetic exchanges [29]. Therefore, even though CuFeO, and CuCrO, represent spin-driven
ferroclectrics, the mechanisin leading to magnetoelectric coupling in these compounds is still
uncertain. In the case of CuFeQs,, it is pointed out that spin-lattice coupling is crucial in
the stabilization of the magnetic states at zero field [1, 30, 31, 32]. At Ty, = 14 K, an
R3m — C'2/m structural transition occurs in coincidence with an antiferromagnetic transi-
tion [30]. More importantly, sound velocity measurements and the analysis with a Landau
model show strong cvidence for an R3m — C2/m ferroelastic transition at Ty, indicating
that the magnetic transitions are stabilized by ferroelastic deformations [1, 31]. Thus, un-
derstanding the elastic properties of CuFeO, and CuCrO, might help to elucidate the role
played by the spin-lattice coupling in the magnetic and magnetoelectric propertics of this
class of frustrated systems. The comparison between these two isostructural compounds is
particularly relevant as their magnetic ground states are different. While CuCrO, shows
the magnetoelectric multiferroic behavior in its ground state below Ty, = 23.6 K [26, 27|,
CuFeO, goes into this state under a magnetic field applied along the ¢ axis [28]. Therefore,
we further investigated the ferroelastic transition at T, in CuFeO, and extensively studied
the elastic properties of CuCrQOs.

In the case of CuFeQ,, according to the Landau model [1] the transverse acoustic mode
propagating along the x axis with a polarization along the y axis, T, P, should show complete
softening at Ty;. The temperature dependence of this mode, based on ultrasonic velocity
measurements [1] is depicted in Fig. 1.3 with continuous lines whereas the prediction of the

model is shown with a dashed line. As shown in Fig. 1.3, due to large acoustic attenuation,






the complete softening on the transverse mode T, P, could not be observed. Therefore, we
performed Brillouin scattering measurements on CuFeQ, to determine if this mode shows
complete softening. Brillouin scattering was performed for the first time on this compound
to probe the elastic properties.

For CuCrO,, magnetostriction measurements show evidence for structural deformations
at Tnvi = 24.3 K, coincident with an antiferromagnetic transition [33]. Considering that
CuCrO, is isostructural to CuFeOs at room temperature, CuCrO, might also undergo a
ferroelastic transition at Ty,. However, the elastic properties of CuCrQO, are lacking in the
literature. Thus, in order to possibly determine ferroelasticity in CuCrO,, we investigated
the elastic properties of CuCrOsq using the ultrasonic pulse-echo method as a function of tem-
perature. In addition, for comparison we performed Brillouin scattering measurements down
to 30 K. For further investigation of magnetoelastic coupling, as well as magnetic and multi-
ferroic properties in CuCrQOs,, we performed ultrasonic velocity and dielectric measurements
under a magnetic field parallel to the [110] and [110] directions. With these measurements,
we also determined the magnetic field vs temperature phasc diagram of CuCrO, for fields
applied along the [110] and [110] directions.

According to group theory [34], the order parameter of an R3m — C2/m ferroelastic
transition belongs to the E, irreducible representation of the trigonal R3m space group.
Even though ferroelasticity below T in CuFeO, is confirmed with ultrasonic velocity mea-
surements [1], the order parameter of the ferroelastic transition is still not known. If the
order parameter is the spontaneous strains, the transition is called a proper ferroelastic tran-
sition and the elastic constants show a linear temperature dependence [35, 36, 37]. Due to
the nonlinear temperature dependence of the acoustic modes in CuFeO, (Fig. 1.3) [1], the
transition is identified as pseudoproper ferroelastic, which means that the order paramecter is
not the spontaneous strains but has the same symmetry properties [1, 35]). In this case, bilin-

ear coupling between the order parameter and the spontaneous strains gives rise to complete
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softening on the soft acoustic mode associated with the spontaneous strains. For CuFeQ,,
one would expect that the magnetic moments could be associated with the order parameter,
however, bilinear coupling between the magnetic noments and strains is not allowed due to
time reversal symmetry. One possibility is that the transition is driven by a Raman-active
E, mode as in other pseudoproper ferroelastic materials [5, 38, 39, 40]. Thus, we performed
Raman scattering measurements on CuFeO, and CuCrQO, to test this possibility. While
unpolarized Raman scattering measurements on CuFeQO, were performed between 80 K and
400 K [41], measurements investigating the antiferromagnetic and structural transition at
low temperatures are still lacking. In the case of CuCrO,, only room temperature Ramnan
measurements on polycrystals have been reported [42, 43, 44, 45]. Thus, our Raman mea-
surements represent the first polarized Raman investigation of both CuFeO, and CuCrO, as
well as the first investigation of phonon behavior at low temperatures. Results were recently
published [46].

In order to expand our study to a larger class of geometrically frustrated svstems, we
also studied CuCrS, which belongs to the trigonal R3m space group at room temperature
[H7, 48]. CuCrS, is possibly a spin-driven ferroclectric material, as in the sister compound
AgCrS; a ferroelectric polarization is induced upon a helical magnetic ordering below Ty
= 38 K [29]. Similar to CuFeO, [1] and possibly CuCrO, [33], CuCrS; and AgCrS, un-
dergo an R3m — C'm structural transition at the antiferromagnetic transition temperature
Tn ~40 K. indicating a strong magnetoelastic coupling [29, 47, 48]. According to the Aizu
classification of ferroic materials {7, 49]. an R3m — C'mn structural transition can be fer-
roelastic and simultancously ferroelectric. Thus, CuCrS, is an ideal compound to study the
role of magnetoelastic coupling in the magnetic and multiferroic propertics of geometrically
frustrated magnets. Unfortunately, due to the opacity and the platelet structure of CuCrSs
samples, which made it difficult for sample preparation for measurements in the x and y

axes. we could not perform ultrasonic velocity and Brillouin scattering measurements on
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this compound. However, we were able to perform Raman scattering measurements to de-

termine if the order parameter of the R3m — Cm structural transition is associated with
an E symmetry optical mode [34, 50]. Raman measurements were previously performed on
single crystals of CuCrS, down to 80 K [51]. As a result, our measurements provide Raman

data lacking at low temperatures.

1.2 Thesis outline

This thesis consists of 10 chapters. In Chapter 2, the topic of discussion is the main structural
and ferroic properties of CuFeQOy, CuCrQO,, and CuCrS,. Chapter 3 is devoted to the optical
indicatrix for uniaxial crystals and theory of inelastic light scattering, where Brillouin and
Raman scattering are discussed in detail. In Chapter 4, the theory of static and dynamic
clasticity is discussed. The solutions of Christoffel’s equation for the trigonal 3m point
group are also given. Chapter 5 provides a detailed description of the experimental sctups
for the ultrasonic pulse echo method, dielectric measurements, and Brillouin and Raman
scattering. In Chapter 6, Brillouin scattering measurements on CuFeO, and CuCrO, are
presented. Brillouin measurements on both CuFeO, and CuCrQO, were performed at room
temperature and low temperatures. With the room temperature measurements on CuCrQOs,,
the elastic constants and refractive indices of CuCrO; were determined. In Chapter 7, the
elastic properties of CuCrOg obtained using the ultrasonic pulse-echo method are presented.
In addition, the magnetic phase diagram of CuCrQO, is determined for fields parallel to the
[110] and [110] directions based on the simultaneous measurements of the ultrasonic velocities
and the dielectric constant along the x axis €; (e110] in hexagonal setting). Chapter 7, a
comparison of the elastic properties of CuCrO; obtained using the ultrasonic pulse-cecho
method and Brillouin scattering is also made. In Chapter 8, a Landau model that accounts for

the elastic properties of CuCrOs is presented. In Chapter 9, Raman scattering measurements
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on CukFeQ,, CuCrO,, and CuCrS, as a function of temperature are presented. Finally, a

summary and conclusions are made in Chapter 10.

12



Chapter 2

Properties of CuFeOs, CuCrQO9, and
CuCrSo

In this chapter, we present the main structural and ferroic properties of CuFeQ,, CuCrQOs,,

and CuCrS,.

2.1 CuFeO,; and CuCroO,

CuFeO, and CuCrO, crystallize into the delafossite (R3m) structure at room temperature
with the lattice constants a = b = 3.03 A, ¢ = 17.09 A for CuFeO, [52] and a = b = 2.98
A.c=1711 A for CuCr0O, [25]. The delafossite structure is illustrated in Fig. 2.1, where
nonmagnetic monovalent Cu ions and magnetic trivalent Fe or Cr ions are represented by
green and orange spheres, respectively. ABC stacked triangular layers of Fe or Cr ions are
separated by O-Cu-O tri-layers.

Fig. 2.2 illustrates a triangular lattice plane of Fe™® or Cr™® ions between two oxygen
layers and the symmetry operations of the delafossite R3m space group. The atomic po-

sitions and symmetry operations are given with respect to the hexagonal and Cartesian
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Figure 2.1: Crystal structure of delafossite CuFeOy and CuCrO,. Reprinted with permission

from [T. Arima, J. Phys. Soc. Jpn. 76, 073702 (2007)]. Copyright (2007) by The Physical

Society of Japan.
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Figure 2.2: The projection of a triangular lattice layer of Cr or Fe ions and two adjacent
oxygen layers along the ¢ direction and symmetry operations of R3m space group. a, b, c,
[110] and [110] designate the directions in the hexagonal basis. In Cartesian coordinates, r
and y axes are defined parallel to the [110] and [110] directions of the hexagonal coordinates.
Large circles represent the magnetic Cr or Fe ions. Small filled and open circles represent
oxygen ions located above and below the Cr or Fe layer, respectively. Thin lines and a
triangle with a small white circle at the central Cr or Fe ion indicate mirror planes (m)
and a three-fold rotation axis with an inversion center normal to the plane of projection,

respectively [2].
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coordinates. Throughout the thesis, we will use both Cartesian and hexagonal coordinates

depending on their convenience. The labels a,b,c,[110], and [110] designate the crystallo-
graphic directions in the hexagonal basis, whereas z, y and z correspond to those in the
Cartesian coordinates. The axes x, y, and z are respectively parallel to the [110], [110],
and ¢ directions of the hexagonal basis. Large circles represent the magnetic Fe or Cr ions,
whereas small open and filled circles represent oxygen ions located above and below the Fe
or Cr layer, respectively. The symmetry operations of the R3m space group are also shown
in Fig. 2.2. Thin lines and a triangle with a small white circle at the central Cr or Fe ion
indicate mirror planes (m) and a three-fold rotation axis with an inversion center normal to
the plane of projection while twofold rotation axes are shown with black arrows. To summa-
rize, the symmetry operations associated with the R3m space group are a spatial inversion,
a threefold rotation about the ¢ axis, twofold rotations about the a, b, and [110] axes, and
mirror planes perpendicular to the twofold rotation axes.

Although CuFeO; and CuCrO, are isostructural at room temperature, their magnetic
properties at low temperatures are quite different. Because Cu™ and O~? have filled shells,
differences in the magnetic behavior of CuFeO,; and CuCrQO; can be attributed to the mag-
neticions: Fe™ (3d°, L = 0,5 = 2) and Cr'® (3d®, L = 3, S = 2). In particular, no spin-orbit
interaction is expected in isolated Fe™ ions since L = (), whereas spin-orbit interaction is
allowed in Cr*?* as L = 3.

The magnetic properties of CuFeOq are well known and were studied by various groups
[1, 53, 28, 52]. In Fig. 2.3, we show the magnetic phase diagram of CuFeO, obtained using
the ultrasonic pulse-echo method [3]. In contrast to other triangular lattice antiferromagnets,
such as CuCrO,, LiCrO,, and AgCrO, [26, 54], CuFeO, shows a collinear commensurate four-
sublattice (110]) maguetic structure in its ground state below Ty, = 11 K [3, 28, 52] (sec
Fig. 2.3). Note that on a triangular lattice spins normally adopt a ~120° spin configuration

in order to lift the degeneracy. Between Ty, = 11 K and Ty, = 14 K, Fe™? ions order

16



—~ £

c nal

e n

I3

=

9y

T

c

@)]

3]

=

Z

-1
N1g

© mpe ‘ure

)

Figure 2.3: Figure is from Quirion et al. [3]. Magnetic field vs. temperature phase diagram
of CuFeO,. Reprinted with permission from [G. Quirion, M. L. Plumer, O. A. Petrenko, G.
Balakrishnan, and C. Proust, Phys. Rev. B 80, 064420 (2009)]. Copyright (2009) by the

American Physical Society.
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into an incommensurate sinusoidally amplitude-modulated spin configuration again with the
magnetic moments along the ¢ axis [3, 53]. By the application of a magnetic field along the
¢ axis, CuFeO, shows rich magnetic properties [3, 28, 52, 53]. Fields between 7 T and 13
T stabilize a proper screw spiral spin configuration. A top view sketch of this spin ordering
is presented in Fig. 2.4. In this phase, the magnetic wave vector (qy,) is along the [110
direction (hexagonal basis} and normal to the spin-spiral plane (easy axis) [3, 28, 55, 56 . The
green arrow indicates the direction of an electric polarization which is discussed in the next
scction. The application of larger magnetic fields result in the following spin configurations:
a collinear 5-sublattice (111){ state with S ||¢) for 13 T < H < 20 T, a collinear 3-sublattice
(1) structure with S ||¢ for 20 T < H < 34 T, a canted 3-sublattice state for 34 T < H <

49 T followed by a nonlinear incommensurate spin-flop phase which is close to the 120° spin

structure [3, 57,. The magnetization value saturates above 70 T [3, 56].

[1?0] CuFeO, and CuCrO,

llq,, Il [110]

Figure 2.4: A top view sketch of the proper screw spin structure for an arbitrary propagation

constant g, and the direction of the spontaneous polarization observed in CuFeQ, and

CuCrQs,.
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The other delafossite compound studied in this project is CuCrO, for which the number

of transitions is still not clear. In a recent single crystal study by Poienar et al. [58], specific
heat, magnetic susceptibility, dielectric, polarization, and resistivity measurements show only
orle transition at Ty ~ 24 K. In addition, there are a number of measurements on CuCrO,
polycrystals [25, 26, 59, 60] which show only one transition at Ty ~24 K. However, single
crystal studies by [27] and Frontzek et al. [61, 62] show evidence of transitions at Ty; = 24.3
K and Ty, = 23.6 K. In these measurements, the dielectric constant and electric polarization
indicate Ty, [27] while inagnetic susceptibility [27, 61, 62] and specific heat [27] measurements
show transitions at T, and Tho. In any case, neutron diffraction measurements [62, 63, 64]
show that the magnetic order in the ground state of CuCrQO, is an incommensurate proper
screw spin structure with qm||[110] (hexagonal basis) below T, This spin configuration is
very similar to the one ohserved in CuFeO, between 7 T and 13 T (see Fig. 2.4), however, the
propagation constants of the magnetic modulations in CuCrO, and CuFeO, are different.
CuCrO; adopts an almost 120° spin structure with ¢, = 0.329 in CuCrO; [25]. On the other
hand, the propagation constant of the magnetic modulation in CuFeO, is ¢, = 0.207 [65].
Between Txy and Tye, the maguetic order is ambiguous. While Kimura et al. [27] suggest a
collinear spin structure with the magnetic moments parallel to the ¢ axis, S||e, Frontzek et
al. [62] interpret the magnetic order as a two dimensional proper screw spin structure based
on their neutron diffraction measurements.

Magnetization measurements on CuCrO, with fields applied up to 53 T along the [110]
(hexagonal basis) direction show only one first order magnetoelectric transition at low teni-
peratures [61, 4, 66]. The transition is observed at 2 K with a field of Hyj,, = 5.3 T and is
attributed to a 90° spin flop in one of the 3 magnetic structural domains from the (110) planc
to the (110) plane [64, 4, 66]. The magnetic structural domains are illustrated in Fig. 2.5
and are labeled as A, B, and C. Spin-spiral planes are perpendicular to the triangular lattice

and represented by thick blue lines. The domains are oriented at 120° relative to each other
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due to threefold symmetry of CuCrO, along the ¢ axis. It is emphasized that domains B
and C should undergo a spin flop transition at a field much larger than 9 T [4]. In that case,
the spiral plane of each domain will be in the (110) plane. In addition, it is suggested that

a large magnetic field along the [110] direction would align the spiral plane of each domain

in the (110) plane [4].

CuCro,
T<T, Cc
-
2l
2 )
m
B B | R
H 1170}
t
(110

Figure 2.5: Spin-spiral domains A, B, and C in the multiferroic phase of CuCrQ, below

Tnz = 23.6 K and the transition of domain A into domain A" at 2 K with Hygy = 5.3 T [4].

Thick lines denote the spiral plane.
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2.1.1 Ferroelectricity and magnetoelectric coupling in CuFeO; and

CIICI‘OQ

Even though CuFeO, and CuCrO, have different magnetic properties, a proper screw spin
structure is stabilized in both compounds with the magnetic propagation vector along the
[110] direction [28, 26, 27, 64]. Strikingly, upon the stabilization of the proper screw spin
ordering in both compounds, an electric polarization P, represented by a green arrow in
Fig. 2.4, is induced in the direction of the magnetic modulation (along the [110] direction)
(P||gm]|[110]). Hence, CuFeO, and CuCrO, arc magnetoelectric multiferroic in the proper-

screw spin state.

The ferroelectricity induced upon a proper-screw spin ordering can be explained from the
viewpoint of magnetic symmetry [2]. Fig. 2.2 illustrates a triangular lattice planc of Fe™3 or
Cr*3 ions between two oxygen layers and the symmetry operations of the delafossite R3m
space group. Representing qm as (g, ¢, 0) for the antiferromagnetic phases, cither a collincar
or a spiral spin configuration breaks the threefold rotation about the ¢ axis and twofold
rotations along the a and b axes. In this case, the symmetry should change to monoclinic as
the remaining syminetry operations arc spatial inversion, two-fold rotation about the [110]
axis and a mirror plane normal to the [110] axis. Moreover, the proper screw spin order
breaks the inversion and mirror operations; therefore, the only allowed symmetry operation
is a 2’ rotation, which is a time reversal operation followed by a twofold rotation about the
[110] axis. As the crystal lattice has no twofold symmetry perpendicular to qm, the system
can be polar in the 2" direction ([110] axis), allowing the ferroelectric polarization in the

same direction with Ellqm [2].

For CuCrO,, upon the 90° flop of the spiral plane in domain A (Fig. 2.5), the clectric
polarization also flops as shown in A’ [64, 4, 66], demonstrating that the electric polarization

is induced by the proper screw spin structure.
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A microscopic origin for the spontaneous polarization induced by a proper screw magnetic
order is proposed by Arima et al. [2]. The term thought to be responsible [22] originates
from the variation of the metal-ligand (3d — 2p) hybridization, which imbalances the charge
transfer between neighboring Fe-O pairs. As a result, a net polarization is induced along
the direction of the magnetic modulation parallel to the [110] direction [2]. We should note

that upon doping the Fe sites with Al [67, 68], Ga [69], or Rh [65], the multiferroic phase

of CuFeO, appears at zero field as in CuCrQ,. In Al-doped CuFeQ, [68] and CuCrQ, [64],

a direct relationship between the spin helicity and the direction of electric polarization was

observed, which is in agreement with the prediction of the proposed microscopic mechanisin

2].

2.1.2 Ferroelasticity in CuFeO,

Besides its rich magnetic phase diagram, CuFeO, has interesting structural properties. At
Tn1, neutron [30] and x-ray [55] diffraction measurements show that CuFeO, undergoes a
structural transition from the trigonal R3m phase to the monoclinic C2/m phase. In addi-
tion, ultrasonic velocity measurements on CuFeQ, [1] indicate a second order pscudoproper
ferroelastic transition at Ty;. According to these measurements [1], some acoustic modes
show softening down to Txj, which correspond to a reduction in the clastic constants Cy,
Cl1, and Cgg relative to high temperatures. In particular, the softening observed on the
acoustic modes T, P, and T, P, corresponds to a 50% reduction in the elastic constant Clg
relative to 100 K (see Fig. 1.3) [1].

Recent studies on the isostructural compound CuCrO, show evidence for a structural
transition at Ty [4, 66]. An indirect indication of a structural transition in CuCrO, is pro-
vided by neutron diffraction measurements on Al- [70] and Ga-doped [69] CuFeQ, which show

multiferroicity in its ground state upon a proper screw ordering. These studies show that

22



the proper screw state is accompanied by a lattice distortion leading to a deformation in the
triangular lattice [69, 70]. Moreover, maguctostriction measurements on CuCrO, show that
the Cr triangular lattice is deformed at Ty, leading to a lowered crystallographic symmetry
at Ty [33]. These results are supported by recent electron spin resonance measurements
which have been modeled with a 118° spin configuration on a distorted Cr triangular lattice
[66]. As a result, since CuCrOs is isostructural to CuFeQ, at room temperature, it might
also undergo an R3m — C'2/m pseudoproper ferroelastic transition at Ty;. Whether or not

CuCrOy is ferroelastic helow Ty is still an open question.

2.2 Structural and magnetic properties of CuCrS,

Another triangular lattice antiferromagnet studied in this project is CuCrS,, which drew
attention as an ionic conductor [71] and a geometrically frustrated antiferromagnet [48, 47].
It also has a trigonal structure at room temperature, however the CuCrS, lattice lacks
inversion symmetry, therefore, it crystallizes into the trigonal R3m space group with the
lattice constants @« = b = 3.48 A, ¢ = 18.72 A[47].

Low tempcerature structural and magnetic properties of CuCrS, were investigated by
ueutron diffraction measurenents [48]. Despite the quasi-two-dimensional layered structure
of CuCrS,, earlier neutron diffraction measurciments reveal a complex three dimensional
helical magnetic order below Tn = 38 K [48]. Recent neutron measurements confirm the
three-dimensional order with a propagation vector qm = (—0.493,—0.087,1.25) [47]. In
addition to the helical order at Ty = 38 K [47, 48], these measurements also show a first
order structural transition from the trigonal R3m space group to the monoclinic C'm space
group [47]. According to the Aizu classification of ferroic materials [7, 49], an R3m — Cm
structural transition, as observed in CuCrS, [47], can result in ferroelastic and simultaneously

ferroelectric behavior. However, for CuCrS, there is no reported ferroelastic and ferroelectric
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of the wave vector k, called the propagation constant, is given by k& = w,/ug€y, where

€0 and i correspond to the electric permittivity and magnetic permeability of free space,
respectively. Thus, the phase velocity of the plane wave, or the speed of light, in vacuum, is
co = 1/\/1to€o. When the plane wave enters an isotropic medium, its wave vector is modified
due to a change in electric permittivity. In the rest of the thesis, the wave vector of a plane
wave in any medium is indicated by K whereas the corresponding wave vector in free space
is indicated by k. Here, we assume that the medium is nonmagnetic, therefore, the magnetic
permeability is the same as it is in free space, ug. If € represents the electric permittivity of

the medium, the propagation constant K of the plane wave is given by

K = w/e = nd L S ﬂ, (3.2)
(&) A

where

n=,/— (3.3)

is the index of refraction, or the refractive index, of the medium and A is the wavelength
of the plane wave in free space. The ratio €, = €/¢y is a measure of the change of electric
permittivity relative to free space, called the relative electric permittivity or the diclectric
constant. In a medium which has a refractive index n, the angular frequency of the planc
wave is still w, but its wavelength is A/n and the speed of light is ¢ = ¢q/n. Note that the
electric permittivity, and therefore the refractive index n, are functions of frequency. Thus,
the speed of light is weakly frequency dependent. In isotropic materials, the relative electric
permittivity can be represented by a scalar. In this case the electric displacement vector and

associated electric field are parallel,

D = ¢y, E, (3.4)

which imposes that the propagation characteristics of electromagnetic waves are independent

of their propagation direction in isotropic media.
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In anisotropic materials, the relative electric permittivity is expressed by the dielectric

tensor e,

€11 €12 €13

€12 €22 €23 | (3.5)

€13 €23 €33
where €;; corresponds to the dielectric constant in the i-th row and j-th column of the di-
electric tensor. Therefore, in general D and E are no longer parallel because they are related
by the dielectric tensor as D = ege. E. In this case, the propagation characteristics of elec-
tromagnetic waves depend on the direction of propagation due to the symmetry properties
of anisotropic materials. The dielectric tensor in Eq. 3.5 belongs to triclinic crystals. The

unber of independent elements in the dielectric tensor can be further reduced for crystals of

higher symmetry since physical properties of a crystal remain invariant under its symmetry.
For example, for a monoclinic crystal, application of a twofold rotation along the z axis in
Eq. 3.5 will leave only the diagonal elements and €15. In general, for any given anisotropic
crystal, there is a unique set of coordinate axes which diagonalize €, with eigenvalues €., €,
and €, [72, 73]. These axes are called the principal axes of the material. The components of
the electric displacement vector D with respect to the electric field E along these axes are

related by

D, = e, By, D, =ceoe, 5, D. =epe. .. (3.6)

The cigenvalues €., €,, and €, of the dielectric constant tensor are called the principal dielec-

tric constants. They define three principal refractive indices of the material

Ny = ez, Ny = /6, n. = /e (3.7)

In trigonal, hexagonal, and tetragonal crystals, the physical properties are invariant under a

threefold, sixfold and fourfold rotation along the z axis, respectively. Therefore, for crystals
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of trigonal, hexagonal, and tetragonal symmetry, the dielectric tensor (3.5) reduces to

€11 0 0
€ = 0 €11 0 ) (38)
0 0 €33

with corresponding principal refractive indices

Ny = ny, =€, n. = /€3, (3.9)

In the case of cubic crystals, the application of a 4 fold rotation along the [111] direction
reduces the dielectric tensor to only three diagonal elements with the same value, €;,, which
defines one distinct refractive index, n = /€;7. Therefore, cubic crystals behave like isotropic
media in terms of the propagation of plane waves. However, in crystals of lower symmetry,
D and E are no longer parallel as dictated by Eq. 3.5 and the direction of polarization is
specified by the direction of the D vector. Since D LK due to the Maxwell equation V-D = 0
in the absence of free charges, D has no compounent along the direction of the wave vector
and D has two allowed mutually orthogonal components. In anisotropic materials, cach
component generally experiences a different index of refraction and therefore has a different
propagation constant (see Eq. 3.2). This phenomenon is known as birefringence and such a
crystal is called a birefringent erystal [73)].

To clarify birefringence, consider a monochromatic plane wave propagating with an ar-
bitrary polarization propagating along the y axis in a birefringent material. Then, the field
will be decomposed into two modes, each of which has a linear polarization along one of the
principal axes x and 2. According to Egs. 3.6 and 3.7, cach of these modes has a character-
istic refractive index n; and a propagation constant K* = n;w/c, where ' is used to specify
the i-polarized field and does not correspond to a component of the wave vector K. Thus,
the a-polarized field travels with a phase velocity ¢ = co/n, whereas the z-polarized ficld

has a velocity of ¢ = ¢y/n,. Note that the polarization of the wave depends on the direction
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of D, and not that of E. In the special case where the plane wave travels along one of the

principal axes, D and E are parallel [73].

Clearly, when a wave enters an anisotropic medium, in an arbitrary direction with an
arbitrary polarization, the allowed polarizations specified by the components of the D vec-
tor will not necessarily be along the principal axes. In that case, we need to specify the
polarization directions with respect to the principal axes of the medium to determine the
refractive indices. This can be done using a geometric figure called the optical indicatriz, or
the indezx ellipsoid. The equation for the optical indicatrix is given by [72, 73]

2 2 L2
%+%+%=L (3.10)
where n,, n,, and n_ correspond to three principal refractive indices of the material [72, 73].
The optical indicatrix allows us to determine the refractive index for monochromatic plane
waves as a function of the polarization direction. The principal axes of the optical indicatrix
are oriented such that it is consistent with the symmetry axes of the crystal. In any crystal
which belongs to cubic, tetragonal, hexagonal, trigonal, and orthorhombic crystal systems,
the axes of the ellipsoid are parallel to the crystallographic axes [72, 73]. In a monoclinic
crystal, one of the axes of the ellipsoid must coincide with the principal axis along which
physical properties are invariant with respect to a twofold rotation. In triclinic crystals, the
ellipsoid axes can take any orientation, however it is fixed for a given crystal [72].

We use geometrical properties of the optical indicatrix in order to determine the refractive
indices and polarizations of a monochromatic plane wave propagating through a crystal with
a given wave vector K. This is illustrated in Fig. 3.1, where the wave vector K passes through
the origin of the indicatrix and is normal to a plane surface represented by the gray area
[72, 73]. The plane surface intersects the indicatrix with an ellipse and its secmiaxes define the

directions of both polarizations determined by the D vector components Dy and Ds. The

lengths of the semiaxes give the refractive indices experienced by these two polarizations.
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the crystal, the crystallographic z axis, since n, = n, # n,. Due to the existence of one
optic axis, a crystal that has trigonal, hexagonal or tetragonal symmetry is called a uniaxial
crystal [72, 73]. In uniaxial crystals, the determination of the polarizations and refractive
indices is particularly simple because the optical indicatrix reduces to [72, 73]

2,2 L2
i __;:‘/ ;ngl, (3.11)
where n, = n, = n, and n. = n,.. Here, the subscripts o and e refer to the ordinary
index and extraordinary indez, respectively. When a monochromatic plane wave propagates
in a direction other than the optic axis, it will be resolved into two modes with linear
polarizations, each of which experiences a unique refractive index. Clearly, both polarizations
are orthogonal to the wavector K. One of these polarizations, is perpendicular to the optic
axis and this mode is called the ordinary wave [73]. We use é, to indicate its polarization.
The polarization of the other mode is orthogonal to é,. This wave is called the extraordinary
wave and its polarization is indicated by é. [73]. These polarizations are the directions of
D rather than those of E. For the ordinary wave, the polarization é,, electric displacement
vector Do, and electric field E,, are always parallel, é,||D,||Eo, whereas for the extraordinary
wave €.||De ff Ee. However, when D is parallel to a principal axis, we have é.||De||Ee [73]
(sce Eq. 3.6).

Knowing the optic 2z axis of a uniaxial crystal and the direction of the wave vector, K,
we can determine both é, and é.. Designating the unit vector of the wave vector K with K

and that of the optic axis with 2, we can write &, and é. as [73]

. Kxz |

6. =é, x K. (3.12)

sinf ’
If K is at angle 8 relative to Z and an angle ¢ relative to I, being the unit vector for the r

axis, we have

K = #sinfcos ¢+ §sinfsin ¢ + 2 cos b, (3.13)
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€, = Zsin ¢ — Y cos ¢, (3.14)

and
€e = —Tcosfcosd —gycoshsing + Zsinf. (3.15)
The orientations of these vectors with respect to the principal axes are illustrated in Fig. 3.2.

Z
A

x>

D>

Figure 3.2: Relationships between the direction of wave propagation and polarization direc-

tions of the ordinary and extraordinary waves.

The refractive indices associated with the ordinary and extraordinary waves can bhe found by
using the indicatrix equation given in Eq. 3.11 and are shown in Fig. 3.3. The polarizations
é, and é. are along the semiaxes of the ellipse and the length of each semiaxis gives the

refractive index of each polarization. The refractive index experienced by the ordinary wave
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Substituting Eqs. 3.16-3.18 in Eq. 3.11, we obtain [73]

cos’f  sin?6
_ 3.19
n2(6) w2t nZ (3:19)

o

According to Eq. 3.19, a plane wave propagating at an arbitrary direction decomposes into

two components with D vectors, Dy and Dy,

D — DoezKo-r—zwt 4 DeezKe-r~zwt

— éODDCiKO-r~iwt + éeDeeiKeJ‘—iwt’ (320)

where K, and K, are the wave vectors of the components of the plane wave with magnitudes
|K,| = now/c and |K.| = n.(0)w/c, respectively. In general, E cannot be written in the form
of Eq. 3.20 since its longitudinal component does not vanish except when 6 = (0° and 6 = 90°
[73]. Note that n.(6) takes values between n, and n,. If n. > n,, the crystal is called positive

uniarial whereas it is called negative uniazial if n. < n, [72, 73].

3.2 Inelastic light scattering

Inelastic light scattering is one of processes that results from the interaction of electromag-
netic radiation with matter. In this process, a light heam with photons of energy hw,; and
momentum of hk; incident on a crystal is inelastically scattered to give photons of energy
hws and momentum of hks through the creation or annihilation of a lattice vibration. If
phonons involved in the process have energy A2 and momentum Aq the energy and momen-

tum conservation laws give

hw, = hw; £ hQ2 (3.21)

and

KK, = hK; + hq, (3.22)
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where w; and K; (w, and Kg) correspond to the angular frequency and wave vector of the

incident (scattered) photons in the scattering medium, whereas 2 and q are the angular
frequency and the wave vector of the lattice vibrations. When the frequency of the scattered
light corresponds to w, = w; — €2, such that a lattice vibration is created, the process is
called Stokes scattering whereas the process that annihilates a phonon, w, = w; + €, is
referred as anti-Stokes scattering. Thus, the frequency shift of the scattered light depends
on the type of the lattice vibration involved in the scattering process. If the scattering
of light occurs with the creation or annihilation of optical vibrations, the process is called
Raman scattering while the scattering phenomenon involving acoustic vibrations is referred
as Drillown scattering. The physical processes involved in Raman and Brillouin scattering
are different and are discussed in the following two sections in detail. Typical frequency
shifts for optical vibrations in Raman scattering range from 10 ecm™! to 1000 cm™! while
shifts for acoustic vibrations in Brillouin scattering are usually ~1 cm ™! [74].

In both Raman and Brillouin scattering experiments, ounly lattice vibrations near the
Brillouin zone center are probed. This is because even in 180° scattering, the wave vector
of the acoustic or optical vibrations are on the order of the incident wave vector, ~ 107
m~!, which is three orders of magnitude smaller than the size of the Brillouin zone, g =

~ 10" m~1, where d is the lattice spacing [74]. A comprehensive treatment of inelastic light

scattering can be found in many text books [74, 75].

3.2.1 Raman scattering

Raman scattering or the Raman effect was discovered by Sir Chandrasekhara Venkata Raman
and Kariamanickam Srinivasa Krishnan in liquids in 1928 [76], and by Grigory Landsberg
and Leonid Mandelstam in crystals the same year [77]. A comprehensive review of Raman

scattering is given by Loudon [78]. Raman scattering can be explained both classically and
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quantum mechanically. According to the classical theory, Raman scattering occurs when light
interacts with matter via a change in molecular polarizability. The molecular polarizability
is a measure of the ability of a material to become polarized under an electric field. A change
in the molecular polarizability can be induced, for example, by optical vibrations. If a given

molecule vibrates at an angular frequency 2 due to an optical lattice vibration, the molecular

polarizability also changes. Then, the components «;; of the molecular polarizability o may

he expanded in terms of the normal vibrational coordinate g, about its equilibrium value ¢2

o é)ai: .
g5 = (v + <0qnj>0qn (323)
@n = ¢, cos S, (3.24)

In Eq. 3.23, the first term corresponds to the equilibrium value of the polarizability whereas
the second term is the change induced by optical vibrations. A light beam with an electric
field

E = Eq cos (w;t) (3.25)

induces an oscillating dipole moment in the material given as

= : .26
Py Oy Ay Ky E, (3.26)
b Qo Gy Qo Ez

Therefore, the induced dipole moment component p; can be expressed as

o o dai
pilt) = o B cos (w;t) + ( an]

) gn 5 cos (Qt) cos (w;t). (3.27)
0

where repcated indexes represent a sum and w; corresponds to the angular frequency of the

incident light. Using the trigonometric relations
cos (x F y) = cos () cos (y) + sin (z) sin (y), (3.28)

36




the induced dipole moment p;(#) becomes

8&,;]'

Oqy,

. 1
) = Eyeon () + 5 (G2 ) auBpcos(en— e+ 5

) g E5 cos (w; + Q)t.

’ (3.29)
Here, the scattered radiation consists of hoth elastically and inelastically scattered light.
The first term represents an oscillating dipole associated with an elastic process (Rayleigh
scattering) since there is no frequency shift with respect to w;. The last two terms correspond
to Raman scattering with Stokes (w; — 1) and anti-Stokes (w; 4+ §2) bands (modes) for which
the frequency difference between the incident and scattered light is equal to the lattice
vibration 2. As Eq. 3.29 dictates, a lattice vibration is Raman active only if at least one of

the elements of the derivative of the polarizability tensor is non-zero, i.e. (aa—i;’l> # 0.
n 0

According to the quantum mechanical picture, Raman scattering is an inelastic colli-
sion between an incident photon and a molecule which changes the vibrational state of the
molccule. The diagram in Fig. 3.4 illustrates the vibrational and electronic states of the
molecule as well as the transitions giving rise to Raman scattering. The electronic ground
state is assumed to have several vibrational energy levels represented by m = 0,1,2,3. The
incident photon excites the molecule from the ground sate (m = 0) to a virtual electronic
state shown with dashed lines. Since the virtual level is not stable, the molecule immediately
loses energy and goes down to its ground state (rm = 0). In this case, the photon will be
elastically scattered with an energy equal to that of the inci nt photon, corresponding to
Rayleigh scattering. However, a small portion of molecules in the virtual level may go down
to the excited vibrational level (m = 1) and the incident photon loses an energy equal to the
energy differenice between the ground and excited (m = 1) states, h(v — 14). This scattered
photon gives rise to a Stokes band in the Raman spectrum. The final possibility is that the
molecule which is initially in an excited vibrational state absorbs the incident photon and

rises to a higher virtual state (see Fig. 3.4). Then, the molecule goes down to the ground
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Figure 3.4: A schematic diagram of vibrational transitions for Raman and Rayleigh Scatter-

ings

state (m = 0) while the energy loss is compensated for by the emission of a photon the en-
ergy of which equals that of the incident light plus the energy difference between the ground
(m = 0) and the excited (m = 1) vibrational states. This scattered photon gives rise to an
anti-Stokes line in the Raman spectrum. According to the Boltzman distribution function,
designating the number of molecules in the vibrational ground state m = 0 with N, the

number of molecules in the excited vibrational level (m = 1) is given by [79]

N = Nyexp (—f“}) . (3.30)
B

According to Eq. 3.30, most of the molecules exist in the ground state (m = 0) at low
temperatures and therefore the intensity of the Stokes lines is normally larger than that of

the anti-Stokes counter part. The ratio of the anti-Stokes and Stokes line intensity is [79]

[a'nti~5t (Vi + I/)4 (-hl/)

I (v; — v)? xp kpT

(3.31)

where v; is the frequency of the incident light, v is the frequency of the molecular vibrations,
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and T is the temperature. While kg is known as the Boltzman constant, the exponential

term is called the Boltzman factor. Referring to Eq. 3.31, one can see that the relative
intensity of the anti-Stokes line rapidly decreases as the temperature approaches zero due to
the Boltzman factor. For that reason, as both lines give the same information, the Stokes

lines are usually preferred to anti-Stokes lines.

3.2.2 Polarizability and Raman Tensors

As mentioned earlier, a vibrational transition is Raman active only if the derivatives of
the polarizability tensor have a non-zero element. Since the molecular polarizability for an
anisotropic crystal is a tensor, its derivatives with respect to a given normal coordinate ¢,
are also expressed as tensors and are defined as Raman tensors. If the elements of a Raman
tensor, for a given normal coordinate g¢,, are represented by a;;, the Raman tensor and the

clectric fields of the incident and scattered light are related as [80)

s 1
E? Oz Ogy Oz £
E | = | ap ayy ay, E} (3.32)
B} Ozp Qg Ay E;

where E7, E, and E7 are the components of the electric field of the scattered light along the
x, y, and z axes, while E’, E;, and E? are those of the incident light. Hence, if the clement
a;; of the Raman tensor given in Eq. 3.32 is non-zero, Raman scattering is possible for the
electric fields £ and E;, that is, if the incident light is polarized along the i axis and the
scattered light is polarized along the j axis. In this case, the intensity of the Raman line is

proportional to [79]
I o a,. (3.33)

Raman tensors, for possible vibrational modes, are derived according to the symmetry of

the crystallographic point groups. These vibrational species are labeled using irreducible
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representations (IR) listed in character tables reported in various textbooks such as Ref.

[81]. These IRs describe how properties of molecules, such as vibrational (phonon) modes,

transform under symmetry operations of the molecular point group. They are represented
by symbols such as A, B, E and F. A vibration belongs to the A type if the vibration
is symmetric with respect to the rotation about the principal axis of symmetry, whereas
it belongs to B if it is anti-symmetric [82]. A and B are one dimensional, non-degenerate
representations. Types E and F', on the other hand, correspond to doubly and triply de-
generate representations, respectively [82]. IRs may also have subscripts depending on the
point group [81]. The subscript g is used when the vibration is symmetric with respect to a
center of symmetry whereas u is used when it is antisymmetric. Moreover, the subscript 1
(or 2) is used when the vibration is symmetric (or antisymmetric) with respect to a rotation

axis or rotation-reflection axis other than the principal axis or in point groups which have

only one symmetry axis with respect to a plane of symmetry.

Raman tensors are different for each irreducible representation for a given point group
(see Chapter 9). Thus, in a Raman experiment, one can identify the symmetries of optical
vibrations in a crystal with known orientation and point group by choosing the appropriate

polarizations for the incident and scattered light according to Eq. 3.32 (see Chapter 9).

3.3 Brillouin Light Scattering

Brillouin light scattering (BLS) from acoustic waves may occur due to two different mech-
anisms. One of these mechanisms is (bulk) elasto-optic scattering mechanism. Acoustic
waves present in a solid move in thermal equilibrium and modulate the dielectric constant
of the medium. Since atomic displacements due to acoustic waves are nearly constant over
distances on the order of 100 unit cells, one may discuss the acoustic waves in terms of an

elastic continuum model [83]. In this case, we can explain elasto-optic scattering mecha-
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Figure 3.5: a) Wave and b) particle pictures of Bri Huin light scattering.

nisin as Bragg scattering from acoustic waves. According to this analogy, acoustic waves are
viewed by an incident light wave as a moving diffraction grating and the incident light is
scattered with (Doppler) shifted frequencies. This is illustrated in Fig. 3.5a, where acoustic
waves are represented by parallel planes. The angles ¢; and ¢, are equal in this geometry.
The spacing d between the plane parallel regions correspond to the wavelength Ag of the
acoustic waves in the solid. Note that throughout the text, A represents the wavelength of
acoustic waves and the subscript B is used to represent bulk acoustic waves. For constructive
interference to occur, the path difference must be an integral multiple m of the wavelength

of the incident light, A;,
KL+ LM =2KL =m)\; = 2ndcos(¢;), (3.34)

where n is the refractive index of the solid. Considering the first order constructive inter-
ference (1), and using d = Ag = V/vg, where V and v are the acoustic velocity and
frequency, Eq 3.34 becomes

~

v
A; = 2n— sin (—) , (3.35)
vp 2
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Figure 3.6: Brilluin scattering geometry.

Brillouin scattering in an arbitrary direction is illustrated in Fig. 3.6, where k; (K;) and
ks (Ks) are the external (internal) incident and scattered photon wave vectors whercas qg
corresponds to the bulk acoustic wave vector. 6; (O,) and ©; (0;) are the angle of incidence
and the angle of refraction of the incident (scattered) light. From Snell’s law, we can see that
sinf; = nsin©; and sinfd, = nsin O, (see Fig. 3.6). If the sample transparency decreascs,
the incident light is not able to penetrate deep below the sample surface. Hence, a range
of possible acoustic wave vectors couple to the incident light according to the uncertainty
principal. This causes broadening in the bulk acoustic modes [84, 85, 86]. With increasing

opacity in the material, the scattering cross section for the bulk elasto-optic mechanism
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decreases and bulk acoustic waves may not even be observed [87]. In that case, another

mechanism, the surface-ripple effect, takes place to give rise to Brillouin scattering. As the
name suggests, scattering by this mechanism occurs due to acoustic phonons present on the
surface of the solid, or surface acoustic waves (SAW). The wave vector of a surface acoustic
wave is shown in Fig. 3.6 and is represented by qsaw. The magnitude of the surface acoustic

wave vector can be expressed as
gsaw = k;sinf; + kysin 8, ~ k;(sin ; 4 sin 6,) (3.40)

Using the dispersion relation, the frequency shift reduces to

VSAVV
Ai

Avsaw = % (sind; + sinfy) (3.41)

It should be noted that Brillouin light scattering does not allow direct sound velocity mea-
surements. In a backscattering geometry, v = 180° and 6; = 6;, rearranging Eqs. 3.39 and

3.41, the velocities of the bulk and surface phonons can be calculated using

AiAI/B

V= if n; # n, (3.42)
n; + Ng
Voaw = ————— .VM“ : (3.43)
2sin 6,

In Eq. 3.43, the frequency shift Avgay of a surface acoustic wave is independent of the
refractive index of the solid and is proportional to the sine of the angle of incidence, sin ;.
Thus, the frequency shift goes to zero as 8; approaches zero. Hence, one can unambiguously
distinguish surface acoustic modes from bulk acoustic modes in a Brillouin spectrum.

After determining the bulk acoustic mode velocities from the frequency shifts and using
Eq. 3.42, one can calculate the elastic constants using Christoffel’s equation. Christoffel’s
equation is derived in Chapter 4 for the trigonal 3m point group. In the case of surface
acoustic waves, the relationship between the velocity and elastic constants is not straight-
forward. Except for crystals of cubic and hexagonal symmetry, numerical calculations are

required for the determination of the elastic constants [88, 89, 90].
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3.3.1 Acoustic velocities and refractive indices of a birefringent

crystal

As discussed in Sec. 3.3, Brillouin scattering can be employed to determine acoustic velocities
in a material. However, determination of acoustic velocities with Brillouin scattering exper-
iments normally requires that the refractive index of the sample be known (see Eq. 3.39).
There are several experimental geometries which do not require the refractive index of the
material for the calculation of the acoustic velocities, however, these geometries are for trans-
parent materials [91, 92]. Recently, it has been shown [93] that a pseudoreflection geometry
(Fig. 3.7) can be successfully used to simultaneously determine the acoustic velocities and
refractive index of anisotropic materials from Brillouin scattering measurements. This ge-
ometry can also be employed for opaque materials provided that one observes bulk acoustic
modes. Below, we derive the frequency shifts of bulk acoustic modes in a solid for reflection

geometry Brillouin scattering experiments [91].

Figure 3.7: Brillouin light scattering in a reflection geometry.



In the reflection geometry [91] shown in Fig 3.7, k; (Kj;) and ke (Ks) are the external
(internal) incident and scattered photon wave vectors, whereas qg is the bulk acoustic wave
vector gp. 0; (©5) and ©; (6,) are the angle of incidence and the angle of refraction of the
incident (scattered) light. Note that 8; = 6, in this geometry. In addition, Snell’s law relates
these angles as siné; = n;sin ©; and sinf, = nsin O,, where n; and n, are the refractive
indices for the incident and scattered light. Since 8; = 0, and k; ~ k,, qg has no component
parallel to the sample surface. Thus, the acoustic wave propagates along the surface normal

with the wave vector

dB = QB (3.44)
= éLI(s COs @s + éJ_I(i CcOos ®i

= e kmngcos0, + € kin; cos O

X

€1 ki(ns cos Oy +n, cos ©;),

where qg; corresponds to the perpendicular and only component of the acoustic wave vector
whereas €, is a unit vector parallel specifying the direction of the acoustic wave vector, which
is normal to the sample surface. Using sin ©,2 = 1 — cos 0,2 = 1 and Suell’s law, n;sin©; =

ng sin Oy, the acoustic wave vector takes its forin in terms of the external parameters

qe = ¢, k; (Vn;’ —sin#,% + \/n'f — sin 91-2) (3.45)

Substitution of the dispersion relation, Qg =V ¢p, in Eq. 3.45 yields the frequency shift as

— V .2,,2 2 .2 ,,2 .2 ¢ 3
Avp = o (\/ki n? — k2, + \/’% ny — k2, ), (3.46)

where we drop the vector notation. Here, k,, = A;siné; is the in-plane component of the

incident light wave vector. According to Egs. 3.46, fits to experimentally determined Avp

vs. k,, data will give the acoustic velocities and refractive indices of the sample solid.
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Chapter 4

Elasticity

This chapter introduces some basic terms of elasticity theory such as stress, strain, and elastic
constants. The discussions follow those of the book Elastic Waves in Solids by Dieulesaint
ot al. [94]. The number of independent stress components, strains, and elastic constants
depends solely on the crystal point group. Therefore, symmetry properties of crystals are
also discussed. Forming the background for dynamic elasticity, Christoffel’s equation is
solved for plane waves propagating in a trigonal crystal with point group 3m. As mentioned
in earlier sections, CuFeO, and CuCrO, belong to the trigonal point group 3m (space group
R3m). These solutions are required to determine the elastic constants using the ultrasonic

pulsc-echo method and Brillouin scattering measurements.

4.1 Static elasticity

A force acting on a unit arca is defined as the stress. Hence, the stress components are

expressed as

AF;

- 4.1
Ny (11)

Oij =
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where AF; is the iy, component of the force exerted on the surface element AS;. Thus, o;

represents the 7y, component of the force acting on a unit area normal to the j-axis. Forces
normal to the surface are called tensile, or normal stress (o), whereas forces applied in a
direction parallel to the surface are associated with shear stress. As a result, there are 9
stress components. However, if one considers an elementary cube in static equilibrium, the

net force and torque acting on the cube must be zero, which requires
Oij = 0']'7;, (42)

recducing the number of independent stress components to 6. Thus, the stress tensor is

written as a symmetric 3x3 matrix

g1 012 013
= | 012 022 023 |- (4.3)
013 023 033
The stress applied on a material causes strain which can be defined as the deformation of
a solid induced by the action of a stress. As illustrated in Fig. 4.1, when a stress is applied
on a string, its length will change from L to L'. Let us define the deformation of a small
element in the string. Consider the section between the points M and N located at x and
r+ Ax in Fig. 4.1. After the force is applied, these points move to A’ and N’ at x + u(x)
and z + u(x + Az) + Az. The relative deformation of the section MN is then

M'N'— MN  u(zx+ Az) — u(x)

M 4.4
MN Ar ’ (44)

where M N and AM’N’ are the lengths of the sections AIN and M’N’, respectively. The strain
e of the string is defined as the limit when Az goes to 0, i.e.,

. ulx+ Az) —u(z)  du
e = lim =

= — 4.5
Ar—0 Az dz’ (4.5)

which is a dimensionless quantity. In the case of a one-dimmensional object, the deformation

is along the same direction as that of the stress and the strain is called a normal or tensile
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For small deformations, the strain is proportional to the stress so that the generalized Hookes

law is written as
oy = Cijm ext; 1, J, ky, 1 =1,2,3, (4.9)
where repeated indices are summed over. The constants Cy, are known as the elastic
constants which form a fourth-rank tensor called the elastic stiffness tensor. As each index
i, J, k, [ can take three possible values, the elastic stiffness tensor has 81 elements. However,
due to the symmetry properties of the stress (Eq. 4.2) and the strain (Eq. 4.7) tensor, we
have
Ci_jkl = Cjz‘kl? Cijkl = Cijlk’ (4-10)
which reduces the number of independent elastic constants to 36.
The numnber of independent elastic constants can be further reduced by thermodynamic

(:()nsi(lerations as f()HOWS: the energy variation per unit volume can be expressed as
dU — O'ikdeik -+ TdS, (411)

where T is the temperature and S is the entropy. Here, the first term represents the work
done by the external forces while the second term corresponds to heat received per unit

volume. Using

U
Oik = ( ‘ > ; (4.12)
Oeip S
the elastic constants can be expressed in terms of the internal energy as
005 U o*U )
Cijk,l = 7 ! = = Cklij- (41{3)

d(jk] - aGijaekl - Oeklﬁeij
The symmetry property in Eq. 4.13 not only reduces the number of independent elastic
constants from 36 to 21 but also allows one to label the elastic constants using the Voigt

notation where « are 3 represent pairs of Cartesian indices (7, 7) according to

1< (1,1), 2+ (2,2), 3+ (3,3)
46 (2,3)=1(3,2), 5 (1,3) =(3,1), 6 < (1,2) =(2,1).
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The elastic tensor can then be more conveniently expressed as a 6x6 matrix

Cii Ci2 Ci3 Ciu Cis Cig
Ciz O Coy Coy Cos Cyg
Ciz Cy Cyy Oy Cs5 C

o= v G G Ca i G| (4.14)
Ciy Cu Cy Cu Cis Che

C’15 0‘25 035 C(45 055 056

LCIG Cos Cag Cys Css Cig

where Cos = Ciji with a & (ij) and § < (kl). The elastic tensor in Eq. 4.14 belongs to
triclinic crystals. The number of independent elastic constants can be further reduced for a
crystal that belongs to other crystal systems because its physical properties remain invariant
under its symmetry properties. In other words, the invariance condition requires that the
elastic tensor must be invariant under all transformations of the reference frame, such as

rotations, inversion, and mirror planes,

P AAT S
Cijrr = 05 0Gapa Cpgrs, (4.15)

where a! is the element of the symmetry operation o in the i-th row and p—th column. As
an example, for trigonal point groups 3m, 3m, and 32, the elastic stiffness tensor has to be
invariant under Cy, (3-fold rotation with respect to z axis), Cy, (2-fold rotation with respect

to .« axis), and I (spatial inversion), which can be written in the matrix form as

4

af, = | =8 -1 0|, (4.16)
0 0 1
1 0 0

=10 -1 0 |, (4.17)
0 0 -1






4.2 Dynamic elasticity and plane wave propagation in
crystals

The propagation of acoustic waves in solid can be described by utilizing Newton’s second

law and Hooke’s law. The force density per unit volume for a solid under stress is given by

(')O'ij

. 4.22
(?LL']‘ ( )

fi =

According to Newton’s second law, the force density f; gives rise to an acceleration £% of
g ) Yy Ji g ot

an infinitesimal element as
0%u;

_ 4.23
p at2 ? ( )

fi

where p represents the density and w; corresponds to the i-th component of the displacement

u. Combining Eqgs. 4.22 and 4.23, the equation of motion for an elastic medium can be

written as
Ou;  Hoy;
p Tt % (4.24)
8t2 8T]
Making use of Hooke's law (Eq. 4.9), the equation of motion becomes
0%, H*y
il e B 4.25
P Jt? ]u&l‘ja:l‘k ( )
For plane waves, the solutions of this wave equation have the form
w; = ug;e ¥t =123, (4.26)

where ug; is the wave polarization or the particle displacement direction, q is the wave
vector corresponding to ¢ = 2 /A with A representing the wavelength and € is the angular

frequency. Substituting Eq. 4.26 into Eq. 4.25, one obtains
pPuo; = Cijragsaror, (4.27)
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where ¢; and ¢ are the components of the wave vector along the principal axis. Using

ugi = Oyug and dividing by ¢?, Eq. 4.27 can be written as

(sz(fil - Cijkmjnk)um = O, (428)

where V = % is the phase velocity and n; and ny, are the cosine directions of the wave vector

q. After introducing a second rank tensor, called the propagation tensor,
Ly = Cijungng,

Eq. 4.28 takes its final form

(T — pV283)ug = 0, (4.30)

which is known as Christoffel’s equation. Christoffel’s equation has 3 rcal and positive
eigenvalues, which means that there are three waves propagating in the same direction with
mutually orthogonal polarizations. One of these waves is longitudinal, hence the direction
of polarization (particle displacement) is parallel to the wave vector. The other two waves
arc called transverse (or shear) waves as the direction of polarization is perpendicular to the

wave vector. The velocities of these waves can be obtained by solving the secular equation

Ty — pV?8,] =0, (4.31)

which gives

v | Ces (4.32)
p

where Cess corresponds to a combination of independent elastic constants given in Eq. 4.19.
Consider as an example elastic waves propagating along the z direction in CukFeO, or CuCrO,
single crystals (which belong to the trigonal 3m point group). In this case, the cosine

directions are ny = 1, ny =0, ng = 0, and I';; can be written as
Iy = Cihu (4.33)
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or in the matrix form

Cy O 0
I1[100] = 0 066 Cha . (4‘34)
0 Cu Cy

The substitution of Eq. 4.34 in Eq. 4.31 yields the expressions for the velocities and po-
larizations of the three waves propagating along the z ([100]) axis in terms of the elastic
constants, as shown in Table 4.1. The expressions for the velocitics pV? of acoustic waves
propagating in the y ([010]) and =z ([001]) axes can be determined in a similar way and are
also shown in Table 4.1. For convenience, acoustic modes are labeled as L; or T;P;, where
L; corresponds to the longitudinal mode propagating along the ¢ axis and T;F; is the trans-
verse mode propagating along the 7 axis with a polarization along the j axis. Note that the
transverse modes propagating along the z axis are degenerate and have the same expression

for their velocities.
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Table 4.1: Solutions of Christoffel’s equation for a monochromatic plane wave propagating

along the three crystallographic axes for trigonal 3m point group. Modes are designated with
L; or T;P;. L; corresponds to the longitudinal mode propagating along the 7 axis whereas

T;P; corresponds to the transverse mode propagating along the i axis with a polarization

along the j axis.

Direction | Mode | pV?
L, Cin
[100] T.P, | $(Cas+ Cos — /(Caa — Ce6)? + 4C})
TP, | 2(Cas+ Cos + /(Cua — Ce6)? +4C%)
L, HCu 4 Caua + /(O — Cua)2 +4C%)
(010] T,P, | Cs
T,P. | HCi+ Cu— /(Cii — Ca)? +4CE)
L. Cy3
[001] [010] | Cu
T.P, | Cy




Chapter 5

Experimental Setup

In this work, four experimental techniques were employed. Two of these techniques arc

ultrasonic pulse echo method and Brillouin scattering. These techniques can be used to
measure the velocity of zone-center acoustic phonons from which one can obtain clastic con-
stants through Christoflel’s equation. We also performed capacitance measurements using
a capacitance hridge. Therefore, we bricfly describe how a capacitance bridge works. Fi-
nally, Raman scattering measurements were performed to measure zero wave vector optical
phonons. While all measurements were performed as a function of temperature, ultrasonic
velocity and dielectric measurements were also performed in a magnetic field. Cryogenic
systems and a superconducting magnet for field dependent measurements arc described in

the relevant sections.

5.1 Ultrasonic Pulse Echo Method

Sound velocity can be measured by using the ultrasonic pulse echo method. Sound waves are
generated with a transducer glued on two parallel surfaces of the sample. A transducer is a

piezoelectric crystal coated with gold electrodes. When a pulsed radio frequency (RF) signal
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is applied to the electrodes of the transducer, the piezoelectric crystal mechanically vibrates

at the same frequency (inverse piezoelectric effect) and generates an ultrasonic pulse in the
crystal. A piezoelectric crystal can also convert mechanical energy into an electrical signal,
called the piezoelectric effect. Thus, a transducer can serve as both a sound wave generator
and a detector. Measurements can be done in both reflection and transmission configurations
(sce Fig. 5.1). In the reflection configuration, the induced sound waves travel back and forth
between the parallel surfaces of the crystal due to refleetion at the surfaces. Each time the
sound waves return the transducer, it converts a small portion of the mechanical energy
into an electrical signal. If the acoustic attenuation is not too large, several eclioes can be
detected as shown in Fig. 5.2. In Fig. 5.2, the amplitude of the second echo is less than
that of the first echo due to acoustic attenuation. In the reflection configuration, the sound

velocity can be determined using

V==, (5.1)

where t is the time of flight for the acoustic wave which travels a total distance of 2L, L
being the sample length. In the transmission configuration, two transducers, glued on the
parallel surfaces of the sample, serve as the acoustic generator and detector, respectively.

The sound velocity can be obtained using

vl
t

, (5.2)

when the first echo is measured.

5.1.1 Acoustic Interferometer

The typical sample length used in the standard pulse-echo method is between 2 mm and 5
mm, giving a time of flight between 0.5 ps and 3 ps. The uncertainty associated with the

sample length is 0.01 mm. If we assume an uncertainty of 0.01 us for the time of flight, the
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resolution in the absolute velocity measurements will be around 0.5 %. We can increase the

resolution by using longer samples, however, the acoustic attenuation and the finite space of
the sample holder are the limiting factors. In order to obtain a higher resolution, an acoustic
interferometer is used. In that case, the measured quantity is the relative change in velocity,
%, instead of the absolute velocity V', and a resolution of as high as 1 part per million (ppmn)
can be achieved. The main principle of the acoustic interferometer is to detect the phase
difference between a reference signal and an echo. As seen in Fig. 5.3, the continuous signal,
generated by the radio frequency (RF) synthesizer opearting at 30 MHz, is split into two
parts by the power splitter. The first part is used as the reference signal. The other part is
shaped into short pulses of one us at a repetition rate of 1 kHz using the first gate. After the
signal is amplified by the broad band amplifier, it reaches the transducer via the circulator.
The main purpose of the circulator is to prevent any reflected signal from going back to
the RF synthesizer. The acoustic wave produced by the transducer travels in the sample
and gets reflected from the parallel surface. The reflected wave (echo) is converted into an
electrical signal by the transducer and it passes through the circulator from the position 1 to
the position 3. The second gate eliminates the initial pulse from the echo pattern to prevent
the saturation of the low noise RF amplifier. The echo pattern, after being amplified by
the low noise RF amplifier, is compared to the reference signal at the phase detector, which
produces a signal that is proportional to the phase difference. Provided that the acoustic

attenuation is not too large, a multi-echo pattern can be observed on the oscilloscope as

shown in Fig. 5.4.

For the m-th reflected echo, the phase difference ®,, can be expressed in terms of the

time of flight, At,, = mf,L , and the period T of the radio frequency signal as

At,, dmmlLf

P =2
T %
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The relative phase change of the m-th echo can be expressed as

A®, Af AL AV :
(I)m _ f +T—7 (04)

During the experiment, a boxcar, which measures the phase of one specific echo (in general
the first echo), functions as a part of a retroaction loop. In this loop, a computer is also
used to maintain a zero phase difference (A¢ = 0) by changing the frequency of the radio
frequency synthesizer. In general, the variation of the relative sample length %, as a function
of temperature or magnetic field, is an order of magnitude smaller than %. Hence, neglecting
the thermal expansion of the sample, we can directly measure the variation of the relative

velocity variation by measuring the variation of the relative frequency %

AV | Af
Vo

5.1.2 A helium bath cryostat

A continuous flow helium bath cryostat equipped with a superconducting magnet was used
for most of the sound velocity and dielectric measurements (Fig. 5.5). The temperature of
this cryogenic system can go down to 2 K with the use of liquid helium as cryogen. At this
temperature, the superconducting magnet can achieve a variable magnetic field up to 15 T.

The helium reservoir is vacuum insulated by an outer chamber to reduce conductive and
convective heat transfer due to the outside wall of the cryostat at room temperature. When
the liquid helium is transferred, the lower part of the reservoir is cooled down to 4.2 K by
liquid helium. Meanwhile, radiation baffles are cooled down by the cold gas which evaporates
from liquid heliuin. Therefore, the radiation baffles further reduce heat flow due to room
temperature radiation. The sample is mounted on the sample holder of a long probe located
in the sample chamber. In order to cool down the sample, the capillary is adjusted to let the

helium flow into the sample chamber. Moreover, the pressure in the sample chamber can
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be decreased using a mechanical pump connected to the sample chamber evacuation valve.

As the boiling point of helium decreases with low pressure, a temperature of 2 K can be
achieved around the sample holder. The temperature regulation is provided by adjusting
the input power of a resistive heater in the sample chamber and monitoring the temperature
with a diode. Both the resistive heater and diode are connected to a temperature controller.
Using a temperature controller, one can set the cooling or warming rate of the sample at
a specific value with a high accuracy and achieve a temperature stability better than 0.01
K. In addition, measurements performed as a function of magnetic field requires a constant
temperature, which requires a high temperature stability to obtain the field dependence of
the acoustic velocity or dielectric constant.

The superconducting magnet in the helium bath cryostat is a solenoid. This magnet
normally produces a variable magnetic field up to 13 T at 4.2 K (See Fig. 5.5). However, it
is possible to enhance its performance using the lambda refrigerator (also called the lanbda
plate) [95]. Lambda refrigerators consist of a liquid helium valve and a chamber with a
pumping line. Liquid helium continuously flows into the chamber and is pumped to a low
pressure. Cold helium below the lambda plate sinks to the bottom of the chamber and sets
up convection currents, maintaining the temperature of the magnet at 2.2 K. In this way,

the magnet can produce a variable field up to 15 T.

5.2 Dielectric measurements

Dielectric constants of a solid can be determined by measuring capacitance. The dielectric

constant and capacitance are related by the equation

C = ¢€,.¢9

% (5.6)

where €, is the dielectric constant of the material and ¢ is the vacuum permittivity. Here, A
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Figure 5.6: A schematic diagram of the basic capacitance bridge circuit, the Andeen-

Hagerling Inc., model AH2550A.

corresponds to the area of two parallel plates separated by a distance d. In order to measure
the capacitance of the sample, two thin brass plates were glued on two parallel surfaces
of the sample using silicone. Measurements were performed using a 1 kHz ultra-precision
capacitance bridge (Andeen-Hagerling Inc., model AH2550A). The basic bridge circuit is
shown in Fig. 5.6. A generator excites the ratio transformer with a 1 kHz oscillating electrical
signal. The ratio transformer consists of leg 1 and leg 2 of the basic bridge. A large number of
transformer taps available in leg 1 and leg 2 allows the selection of precisely defined voltage
values to drive leg 3 and leg 4. Leg 3 is comprised of several fused-silica capacitors and
other circuit elements in order to form a stable resistor. The sample is connected on leg
4. The basic function of the microprocessor in the instrument is to minimize the voltage
at the detector by selecting (or balancing) taps 1 and 2 and selecting C, and R,. The
detector can measure both in-phase and quadrature (90°-out-of-phase) voltages with respect

to the voltage of the generator so that the resistive and capacitive components of the sample




is independently balanced. When the minimum voltage at the detector is achieved, the
capacitance of the sample can be determined since the ratio of the sample capacitance to C,

is equal to the ratio of the Tap 1 voltage to Tap 2 voltage.

5.3 Brillouin Scattering

The experimental setup for Brillouin scattering measurcments in backscattering geometry
is shown in Fig. 5.7. A single mode Ar™ laser (Coherent Inc.) operating at 514.5 nm or a
solid state laser (Goherent DPSS 532) with an output wavelength of 532 nm is used as the
incident light source. The incident beam from the laser is split into two beams by using a
beam splitter. One of the beams is used as the reference beam to stabilize the alignment of
a Sandercock-type : 3 tandem Fabry-Perot (FP) interferometer. The other beam serves as
the incident light beam. The polarization of the incident light is adjusted using a half-wave
plate (HWP). The incident beam is directed towards lens L; (£/2.2, f = 5.5 cmn) with prism
Pr. L; both focuses the incident beam on the sample and collects the scattered beamn from
the sample. A microscope (MS) is used for visual observation of the sample in order to
accurately focus the beam on the sample surface and collect the scattered beam using L.
Considering that the scattered beam collected by the lens (L) will have the same diameter,
an alternative way is to adjust the spot diameter of the scattered beam such that the spot
diameter remains the same between the lens Ly and interferometer. A polarizer (P) is used
to obtain the desired polarization of the scattered light. A lens (L4) focuses the scattered
heam onto pinhole (A1) for data collection and acquisition.

In a typical Brillouin light scattering experiment, acoustic waves can be revealed in the
frequency range between 1 and 150 GHz. Since the inelastically (Brillouin) scattered light is
weak compared to the elastically scattered contribution, a high resolution spectrometer with

a high contrast is required. This can be provided by a Fabry-Perot (FP) interferometer. A
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brief theory explaining how a Fabry-Perot interferometer is given in the following paragraphs.

A Fabry-Perot interferometer consists of two parallel, highly reflecting plane surfaces,
called an etalon (Fig. 5.8). In a Fabry-Perot interferometer, the spacing between the parallcl
surfaces is variable so that it serves as a spectrometer. Assume a plane wave of wavelength
A is incident at angle o on the etalon as shown in Fig. 5.8. The plane wave is multiply
reflected on both surfaces while a small portion is transmitted at each reflection. Reflected
beams are indicated with R; while transmitted beams are labeled as T;. The path difference

between each succeeding reflection is given by

[ = 2ndcosa, (5.7)

where n is the refractive index of the medium between the mirrors separated by d. The

68




phase difference is then

. 2wl 4drndcosa
= e— = ——— t‘.8
0 ;) 3 (5.8)

If the reflectivity R of the parallel surfaces is known, then the intensities of the reflected and

transmitted light, Iz and Ir, can he calculated as

4sin®6/2
Ip = IR 5.9
B 01— R?) + 4Rsin?5/2 (5.9)
and
_ 2
Ir = I LK (5.10)

(1— R*) +4Rsin*4§/2’
where I; is the intensity of the incident plane wave. Eqs. 5.9 and 5.10 are known as Airy
formulac. When the spacing between the parallel surfaces is an integer multiple of wavelength
A, the boundary conditions require that the phase difference be given by § = 2mm, where m
is an integer specifying the order of interference. Therefore, for each interference order m, we
can see from Eq. 5.10 that a transmission maximum, Iy = I, occurs. The frequency spacing
between the transmission maximum of each successive interference order (m — m + 1) is
known as the free spectral range (FSR). Using Eq. 5.8 and A = ¢/v, we obtain the free
spectral range as

C

FSR = (5.11)

2d+\/n? — sin? a.

[n most cases, the incident beam is normal to the parallel surfaces, i.e., @ = 0. In addition,

the space between the parallel surfaces is filled with air, which has a refractive index n = 1.

Then, the free spectral range (Eq. 5.11) can be written as
FSR=—. (5.12)

A measure of the resolution of the interferometer is the finesse (F'). The finesse is defined

as the ratio of FSR to the full width at half maximum of the transmission maxima, dv,

F:FSR: m/ﬁ_

(5.13)



The width of each transmission peak is determined by the reflectivity R of the parallel

surfaces. Therefore, the finesse also depends on the reflectivity R. Another important term
determined by the mirror reflectivity is the contrast C, which is defined as the ratio of the

peak height to the minimum intensity. The contrast is given by

AF?
C=1+42 (5.14)
v

In practice, the finesse value is less than 100 which places an upper limit to the contrast C <
10* [84]. For transparent samples, this contrast value is sufficient [84]. However, for opaque
samples, a higher contrast is normally required since the intensity of the Brillouin peaks
is much smaller [84]. A way to increase the contrast is to introduce multi-pass operation,
that is, to pass the light through the interferometer several tiines. An alternative approach
is to combine two interferometers of unequal mirror spacing such as in a Sandercock type
six-pass tandem Fabry-Perot interferometer (see Fig. 5.7). A tandewn instrument consists of
two FP interferometers of unequal mirror spacing d; and do. This prevents the overlap of
neighboring interference orders, hence providing a higher free spectral range by a factor of
10-20 as compared to a single FP instrument. The FP interferometer serves as a spectrometer
by varying the wmirror spacings d, and d, to scan the light intensity at different wavelengths
(Fig. 5.7). The variable mirror spacing is provided by the translation stage (enclosed by red
fine-dashed lines) on which one mirror from each FP interferometer is mounted as shown in
Fig 5.7. Focused scattered beam entering pinhole A, is recollimated using lens L3 to pass
3 times through each FP interferometer. The scattered light is then focused onto pinhole
Ay using lens Ly and detected by a photomultiplier tube (PMT). Pinholes A; and Az arc
opened to 200-450 yun and 300-700 jum, respectively. Light detected by the photomultiplier

tube can be viewed on a computer.




5.3.1 The cryogenic system for the optical setups

In order to perform Brillouin and Raman scattering experiments between room temperature
and low temperatures, a two-stage closed-cycle helium refrigerator was used. The two-stage
closed-cycle helium refrigerator consists of two units: a compressor module (APD Cryogenics
Inc., model HC2 or model HC4) and an expander module (Air products, model DE202). The
compressor is connected to the expander with two pressurized gas lines. The refrigeration in
the expander is achieved in two stages (see Fig. 5.9). The temperature in the first stage is
approximately 80 K and is not regulated. The sample is mounted in the second stage which
is surrounded by a brass radiation shield. The temperature in this stage is regulated using a
cryogenic temperature controller (LakeShore Cryotronics, model DTC 500). A silicon diode
and two resistive heaters are used to stabilize the temperature. A diffusion pump system is

used to keep the sample under high vacuum in order to provide thermal insulation.

5.4 Raman scattering

A schematic diagram used for Raman backscattering measurements is shown in Fig. 5.10.
The incident light is generated by either a tunable Art laser (Spectra Physics, series 2000)
or a solid state laser (Coherent DPSS 532) operating at 532 nm. The Art laser operates at
wavelengths of 514.5 nm, 501.7 nm, 496.5 nm, 48%8.0 nm, 476.5 nin, 472.9 nm, 465.8 nm, and
457.9 nm. Usually a 514.5 um or 488 nm output is used. A mirror (My) and a prism (Pr) are
used to direct the incident beam toward the sample. Then, the incident beam is focused on
the sample using lens Ly (f = 20.0 em). The backscattered light is collected by the same lens
(1.e., Ly). Focusing the incident beam on the sample and the collimation of the scattered
light is achieved with the same procedure as in Brillouin scattering measurements. The

polarization of the scattered light is selected by using a polarizer (P). The scattered light is
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equation
mA = s(sin o + sin 3) (5.15)
where m is the order of diffraction, X is the wavelength of light, and s is the grating spacing.

The symbols o and 3 represent the angle of incidence, and angle of diffraction, respectively.

The theoretical resolving power of a grating is given by

ZVZ ~ Mm, (5.16)

where A is the total number of the grating grooves, and m is the order of diffraction.
Each grating (with an area of 102 mnm x 102 mm) consists of 1800 grooves per i which

correspouds to a theoretical resolving power of Ry = Mm ~ 10°. In general, the theoretical

resolution is reduced by aberrations and imperfections associated with mirrors, lenses, and
the width of the slits. In order to obtain optimum resolution, the first collimating mirror Mj
must be completely illuminated by the scattered light entering from slit S;. Therefore, lens
Ls (f/8) is selected to have a similar f-number to that of the spectrometer (£/7.8). The light
diffracted by grating Gy is focused by mirror M, onto plane mirror Ms. After the light passes
through intermediate slit So and gets reflected from plane mirror My, it is sent to second
grating Go by mirror M. Then, it is focused by mirror Mg onto exit slit Sz for detection by
the photomultiplier tube PMT. Entrance and exit slits, S; and S3, of the spectrometer are
opened to 300 pm while intermediate slit S, is opened to 400 pm to a spectral resolution of

~4 el The scanning step size is set to .5-0.8 cm ™! with a dwell time of 5-120 s per step.
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Chapter 6

Brillouin Scattering Measurements on

CuFeO- and CuCrO,

As shown in Ref. [1], softening of the elastic constants in CuFeO, at the magnetic and struc-
tural transition, Ty; = 14 K, is well accounted for using a Landau model for a pseudoproper
ferroelastic transition from the trigonal R3m phase to the monoclinic C2/m phase. Accord-
ing to the Landau model, the transverse acoustic mode propagating along the z axis with
a polarization along the y axis, T, P, in CuFeO, should show complete softening. How-
ever, due to acoustic attenuation, the complete softening of this mode could not be observed
with sound velocity measurements [1]. As a result, we made an attempt to measure the
soft acoustic mode down to Tn; using Brillouin scattering. These results are preseuted in
Sec. 6.1. Because multiferroic CuCrOg is isostructural to CuFeO, at room temperature, it
might also show an R3m — C2 /m ferroelastic transition at low temperatures. Therefore, we
investigated acoustic waves in CuCrO; using Brillouin measurements down to low temper-
atures. Before doing the low temperature measurements, we also performed a set of room
temperature measurements to determine the elastic constants. Since the refractive indices

of CuCrO, are not reported, we performed a set of reflection geometry Brillouin scattering



measurements to simultaneously determine the acoustic velocities and refractive indices of

CuCrO;. We present the results on CuCrO; in Sec. 6.2.

6.1 CuFe02

In order to determine whether the soft acoustic mode T, P, shows complete softening at
the terroelastic and antiferromagnetic transition at Ty, we performed Brillouin scattering
measurements on single crystals of CuFeO,. Single crystals of CukFeO, were grown by the
floating zone method using a four mirror image furnace by Dr. Geetha Balakrishnan at
the Department of Physics, University of Warwick [52]. All samples were cut from a large
single crystal which has the shape of a long cylinder with the cylindrical axis close to the
crystallographic z axis. Diniensions of the samples vary but have approximately an arca of
2 mm X 2 mm on the studied surface and 1 mm along the surface normal (see Fig. 6.1). To
minimize surface scattering, samples were polished using abrasive slurry with 50 nm Al,Os
grains in order to minimize surface scattering. Room temperature Brillouin measurements
on CuFeO, were performed with a single mode solid state laser operating at 532 nm. An
incident beam of 80 mW was focused on the sample surface with a lens which has a focal
length of 5.5 cin and an f-number of 2.4 (f/2.4). The free spectral range was set to 25 GHz.
The frequency shifts and linewidths of the modes were determined with a fit to a Gaussian
profile.

Even though Brillouin scattering can occur at any angle, backscattering and right-angle
scattering are more commonly used since they are easy to carry out. Backscattering and
right-angle scattering geometries are illustrated in Fig. 6.2. The wave vectors of incident
and scattered light outside the sample are represented by k; and ks. The acoustic waves
observed with both geometries are also shown in Fig. 6.2, where the wave vectors of bulk and

surface acoustic waves are denoted by qg and qsaw. Sample in Fig. 6.2a is represented as
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transparent to point out the requirement for sample transparency in right-angle scattering

measurements. CuleQO; is an opaque material (semiconductor) with a direct band gap of
1.67 eV [96]. The incident light in our experiments is 532 nm which corresponds to an energy
of 2.33 eV. Therefore, we cannot use right-angle scattering on CuFeQ,. The backscattering
geometry is illustrated in Fig. 6.2b, where ; and broken lines correspond to the angle of
incidence and surface normal. In contrast to right-angle scattering geometry, backscattering
can also he used on opaque samples, which is why the sample in Fig. 6.2b is represented
with a gray color. In semniconductors, usually Brillouin scattering occurs via both elasto-
optic and surface-ripple mechanisms, that is, both bulk acoustic waves and surface acoustic
waves can be observed [84]. Therefore, we used backscattering geometry in the Brillouin
scattering measurements on CuFeQ,. Measurements performed at normal backscatteriug (6;
= s = 0) did not show any acoustic modes. As a result, all measurements were done with
a backscattering geometry at an oblique incidence as shown in Fig. 6.2.

Fig. 6.3 shows the sample orientation for the backscattering measurements. The polariza-
tion of the incident light was in the plane of incidence, which is defined as the plane spanned
by the surface normal and incident light wave vector. The polarization of the scattered light
was 1ot measured. The incident and scattered light propagated at an angle #; with respect
to the surface normal, which is parallel to the z axis in Fig. 6.3. Note that we can represent
the scattering geometry in Fig. 6.3 in a convenient way using the Porto notation, k;(e;es)ks.
In this representation, k; and k, correspond to the propagation directions of the incident and
scattered light, whercas ¢; and e, are the polarizations. When the direction of the incident
(scattered) light propagates at angle 6 relative to one of the crystallographic axes, we use
an apostrophe as a superscript. For example, the scattering geometry in Fig. 6.3 can be

', where the label 2’ corresponds to an incident light direction at an

represented by =/ (pu)z
angle 0; with respect to the surface normal which is parallel to the z axis. In addition, p

corresponds to a polarization in the plane of incidence and « means unpolarized.
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Figure 6.3: Experimental geometry and sample orientation in Brillouin scattering measure-

ments on CuFeQs,.

Spectra obtained with backscattering geometry are shown in Fig. 6.4; the angle of in-
cidence is indicated on the right hand side of each spectrum. We observe only one mode
in all spectra obtained with an angle of incidence varying from 40° to 80°. As the angle of
incidence is decreased, the frequency shift also decreases. In order to determine whether or
not the mode is a bulk or surface acoustic wave, we present in Fig. 6.5 the frequency shift
vs. sin 6. Dominant sources of uncertainty in the frequency shift are the angle of incidence
0; and mirror spacing of the interferometer while the uncertainty in sin 6; s due to 6;. As
seen in Fig. 6.5, the frequency dependence is linear and the frequency shift extrapolates to

zero as expected for surface acoustic waves

2sinf;Vsaw

Avsaw = = A\,

(6.1)
Therefore, we conclude that the mode observed in our spectra is a surface acoustic mode.
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Figure 6.4: Brillouin spectra of CuFeO, obtained with a backscattering geometry at an angle

of 0; relative to the z axis. 80




From the linear fit to the data in Fig. 6.5, we obtain Vg = 1800 £ 40 m/s for the velocity

of the surface acoustic wave (; to improve the linear fit, a point at 6; = 0 was added to the
data. Without the point at 8; = 0, the frequency shift still extrapolates to zero within the
uncertainty). It might be worth mentioning that measurements performed with polarized
incident and scattered light, (ss), (sp), (pp), and (ps), show that the surface acoustic mode is
observed only in the pp polarization (not shown). Here, s corresponds to a light polarization
perpendieular to the plane of incidence.

The fact that we cannot observe any bulk modes is due to the high opacity of CuFeQ,
crystals. In an opaque material, scattering from a bulk acoustic wave occurs in a volume
close to the surface due to the high value of the extinction coefficient  [84]. The extinction
cocfficient is the imaginary part of the complex refractive index given hy n, = n +ix. In
that case, the incident light penctrates a short distance bencath the sample surface and
is coupled to phonons with a large range of wavevectors. This causes broadening in the
linewidth orp of the Brillouin peaks in a Brillouin spectrum. The linewidths of the Brillouin
peaks for opaque materials vy = 4V K;k/m, where K is the incident light wave vector in
thie sample, mainly depend on the extinction coefficient. With increasing opacity, the surface
ripple mechanism may dominate and bulk modes may not even be observed [84, 97] as shown
in CuFeO, (Fig. 6.4).

Unfortunately, as our measurements on CuFeO, show only one surface acoustic mode
(Fig. 6.4), we are not able to determine whether the bulk mode T, P, shows complete soft-
ening as expected for the ferroelastic transition observed in CuFeO, [1]. At this point, it is
important to note that a soft bulk inode implies the existence of a soft surface mode [98, 99)].
If the velocity of the surface acoustic wave (Fig. 6.4) is related to the elastic constants that
determine the velocity of T, P,, then we can still determine if T, P, shows complete softcning
by measuring the soft acoustic mode velocity down to T'ny.

The elastic constants of CuFeOsy have already been determined by ultrasonic measure-
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Figure 6.5: Frequency shift of the surface acoustic wave in CuFeQ, propagating along the z
axis against the sine of the angle of incidence 6;. The angle 6; is relative to the normal of

the sample surface which is parallel to the 2 axis.
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ments [1]. Using the elastic constants of CuFeO, [1], we can plot the angular dependence

of the bulk mode velocities and compare them with the angular dependence of the surface
acoustic mode velocity. By comparison, we can find out which elastic constants determine
the surface acoustic mode velocity. Therefore, we measured the angular dependence of the
frequency shift of the surface acoustic mode in the zy and rz planes. The experimental
geometries for these measurements are illustrated in Fig. 6.3. If we keep the angle of in-
cidence (6;) constant and rotate the sample parallel to xy plane, the propagation direction
of the surface acoustic wave rotates in the xy plane. Measurements in the @z plane were
done in a similar way. Using the frequency shifts, we calculate the velocity of the surface
acoustic wave according to Eq. 6.1 and plot it against the angle relative to x axis in Fig. 6.6,
where squares represent surface modes propagating in the xy plane whereas circles are used
for modes propagating in the zz plane. According to Fig. 6.6, the velocity of the surface

acoustic mode does not change in the zy plane within the uncertainty. On the other hand,

the measurements in the xz plane show a large anisotropy. The velocity increases from 1800
+ 40 m/s along the x direction to 3100 4 40 m/s along the 2z direction, giving an anisotropy
ratio of 1.72 £ 0.06.

In Figs. 6.7-6.8, we compare the angular dependence of the inverse velocities of the surface
(squares) and bulk (lines) modes using a polar plot. The polar plots for the bulk modes are
obtained using the elastic constants determined by ultrasonic velocity measurements [1]. In
the ry plane (Fig. 6.7), the velocity of the surface wave is close to that of the fast transverse
mode velocity (continuous line) which mainly depends on the elastic constant Cyq. In the
xz plane, along the directions close to the x axis, the velocity of the surface acoustic mode
is close to the fast transverse mode velocity (continuous line), which is dominated by Cly
(Table 4.1). However, in the directions close to the z axis, the surface mode velocity is
between the longitudinal (dashed line) and fast transverse mode velocities. According to

Table 4.1, the longitudinal mode velocity mainly depends on Ciz along these directions.
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Figure 6.6: Velocity variations of the surface acoustic wave in the xy and the zz planes of

CuFeOs,.

These results show that the surface mode velocity mainly depends on Cyy and Cys. According
to Table 4.1 and Ref [1], softening observed on the T, P, mode (Fig. 1.3) is primarily due
to the Cgs elastic constant. Unfortunately, as the surface acoustic mode velocity depends
on Cy4 and Cj3, we cannot determine whether the soft acoustic mode T, P, shows complete

softening.
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Figure 6.7: Projection of inverse bulk and surface acoustic velocities in the wxy plane of

CuFeO,. Inverse velocities of bulk modes in CuFeQ, were calculated using the values of

elastic constants presented in Ref. [1].
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velocities of bulk modes in CuFeOs were calculated using the values of elastic constants

presented in Ref. [1].
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6.2 CuCrQO,

In this section, we investigate the temperature dependence of the elastic properties of
CuCrO,. At room temperature, we identify the acoustic modes propagating along the =z,
y. and z axes. Then, using reflection geometry, we determine the acoustic velocities and

refractive indices of CuCrQ,. Finally, we present low temperature measurements.

6.2.1 Elastic constants and refractive indices of CuCrQO,

Brillouin scattering measurements were performed on single crystals of CuCrQO, which were
grown from Biy,Oy flux [27] by Dr. Tsuyoshi Kimura and Dr. Tsuyoshi Otani at Osaka
University. The samples were platelets with a surface area of 2 mm x 2 mm in the triangular
lattice plane (zy plane) and about 0.4 mm long along the ¢ axis (See Fig. 6.1). Similar to the
preparation of CuFeO, samples, CuCrQO; samples were mechanically polished using abrasive
slurry with 50 nm Al,O3 grains. As CuCrOs, is not transparent, we could not apply the right-
angle scattering configuration for Brillouin scattering measurements. Instead, measurements
were performed using the geometry illustrated in Fig. 6.9 with 532 nm or 514.5 nm incident
light and a beam power of 40 mW. The incident and scattered light wave vectors outside the
sample are represented by k; and k. The wave vectors of bulk and surface acoustic waves
arc denoted by gg and ggaw-

The backscattering spectra obtained at an angle 6; relative to the z axis (Fig. 6.9) are
shown in Fig. 6.10. The angle of incidence is indicated on the right hand side of cach
spectrum (2'(pu)z’). As seen in Fig. 6.10, each spectrum shows three modes. At 76°, the
frequency shifts are 7.5 GHz, 28.5 GHz and 25.6 GHz. As the angle of incidence is reduced,
the frequency shift of each mode decreases. It is also noticeable that the high frequency
modes start to merge as the angle of incidence decreases. In order to identify these modes,

we follow the same procedure as for CuFeQ,. From the Brillouin equations of bulk and
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Figure 6.10: Backscattering spectra of CuCrO, obtained with an oblique angle of incidence

relative to the z axis. The scattering geometry is 2'(pu)2’.
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Table 6.1: Probed acoustic modes in CuCrO, with Brillouin backscattering in the trigonal

R3m phase (3m point group) [100).

Direction | Scattering geometry Mode Expressions of pV?
[100] x(yy)T, ¥(22)T, x(22)T | L, Ch
y(zx)7, y(22)y Ly 3(Cn+ Cyg +/(Cry — Cay)? +4CF)
010] y(xx)y, y(22)y T,P, 1O+ Cuy — V(Cii — Cuy)? +4C2))
y(x2)y T,P; Cés
2(zx)z, 2(yy)z L. Cs3
[001] (xx)Z, 2(yy)z, 2(ay)T | T.P, T. P, | Cy

In the backscattering geometry at an oblique angle of incidence (Fig. 6.9), bulk acoustic
phonons propagate at an angle 6; relative to the z axis. Along such directions, that is, di-
rections that are not along the high symnietry axes of the crystal, selection rules allow the
observation of all bulk phonous. Moreover, expressions of the velocities in terms of elastic
constants are complicated. An alternative way is to use backscattering along crystallographic
axes (Table 6.1), along which selection rules are satisfied [100]. As a result, we performed
backscattering measurements on CuCrO, along the z, y, and z crystallographic axes. Mea-
surements were performed with 514.5 nm and 532 nm incident light. The incident light with

a beam power of 40 mW was focused on the sample surface using a 5.5 cm lens (~ 12000

W /em?).

Backscattering spectra obtained for modes propagating along the x, y and » axes are
presented in Figs. 6.12-6.14. The scattering geometries are designated with the Porto no-
tation, k;(e;es)ks. We first discuss backscattering spectra for propagation along the z axis
shown in Fig. 6.12. The wavelength of the incident light is 532 nm. In Fig. 6.12, we sce

modes at 22.5 GHz and 100.4 GHz. The transverse modes along the z axis are degenerate
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[83], which is why we observe only two modes. Since the intensity of the mode at 100.4

GHz is weak, the frequency range between 90 GHz and 110 GHz was scanned 10 times more
than the rest of the spectrum (Fig. 6.12). The intensity of the mode at 100.4 GHz is weak
probably due to the small value of the elasto-optic coefficient in the selection rules [100],
which we present in Table 6.1 for trigonal symmetry. Selection rules for Brillouin scattering
are derived using elasto-optic (or photoelastic) tensors for each point group and depend on
both the propagation direction of the acoustic modes and the polarizations of incident and
scattered light [100]. Therefore, we present the selection rules for each acoustic mode in
ternis of its propagation direction and scattering geometry. For a discussion and derivation
of the selection rules, one can refer to Ref. [100]. In Table 6.1, we label the acoustic modes as
L; and T; P;, where L; corresponds to a longitudinal mode propagating along the i axis and
T;P; is a transverse mode propagating along the i axis with a polarization along the j axis.
The elastic constant combinations that determine the acoustic mode velocities are also given
according to Christoffel’s equation. According to the selection rules [100] (Table 6.1) for
backscattered light along the z axis, a parallel polarization configuration such as z(yy)z or
z(zx)z allows for the observation of both longitudinal and transverse modes (see Fig. 6.12).
On the other hand, a cross polarization geometry such as z(xy)z should ouly allow for the
observation of the transverse mode [100]. Therefore, we assign the mode at 22.5 GHz to the
transverse acoustic mode (1.F,), the velocity of which can be directly used to determine
the elastic constant Cyy (Table 6.1). The other mode at 100.4 GHz is attributed to the
longitudinal mode L. depending on Cs3 (Table 6.1).

Brillouin spectra for backscattering along the y axis are shown in Fig. 6.13. Results
obtained with A = 514.5 nin are presented in Fig. 6.13. For the spectrum labeled as y(z'u)y,
2 corresponds to the polarization of the incident light at angle of 30° relative to the =
axis, whereas u corresponds to the unpolarized scattered light. In a Brillouin scattering

experinient, one can generally ohserve 3 pairs of peaks, each of which corresponds to one of
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Figure 6.12: Polarized Brillouin backscattering spectra of CuCrO, obtained along the 2 axis

with A = 532 nm.
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the three acoustic modes. However, the spectrum obtained with unpolarized scattered light

(Fig. 6.13) shows 6 pairs of peaks with frequency shifts ranging from 20 GHz to 80 GHz
(See Table 6.2). In birefringent crystals, a wave of arbitrary polarization can be decomposed
into two orthogonal polarizations. In this case, the polarization directions are along the .«
and z axes (Eq. 3.6). When light is polarized in the &y plane, the refractive index is the
ordinary index n,. However, when light is polarized along the z axis, the refractive index
is the extraordinary index n.. Referring to Eq. 6.2, we see that the frequency shift of an
acoustic mode depends on the refractive index of the incident and that of the scattered light.
As a result, if the selection rules allow the observation of an acoustic mode with (zx), (zz).
and (xz) polarizations, a spectrum obtained with (2’u) polarization should show frequency

shifts that depend on ny,, 1., and both n, and n,, respectively, giving rise to three peak pairs.

I order to identify the peaks for acoustic modes propagating along the y axis (Fig. 6.13,
we refer to the selection rules presented in Table 6.1 {100, 83]. In Fig. 6.13, with ()
polarization two well-defined modes are observed at 75.6 GHz and 23.7 GHz. With (zz)
polarization, two modes are observed at 61.9 GHz and 19.8 GHz. According to the selection
rules (Table 6.1), these coufigurations should allow longitudinal and quasitransverse modes
[100]. Hence, the high frequency peaks at 75.6 GHz and 61.9 GHz are assigned to the
longitudinal mode (L,) whereas modes observed at 23.7 GHz and 19.8 GHz arc attributed
to the quasitransverse mode (7, P;). The fact that the frequency shifts arc different for ()
and (zz) polarizations clearly shows the effect of birefringence. Fig. 6.13 also shows the
spectrum with cross polarization (xz). In this configuration, a strong peak is observed at
39.8 GHz. According to the selection rules (Table 6.1}, only the pure transverse mode should
be observed. Therefore, we assign the mode at 39.8 GHz to the purc transverse mode (1}, 1%)
related to the elastic constant Cyg. As seen in the spectrum, there are two additional pairs

observed with weak intensities at 61.9 GHz and 68.8 GHz. As the mode at 61.9 GHz has
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the same frequency shift as the longitudinal mode (L,) observed with a (zz) polarization
configuration, this suggests that the polarization of the incident light was at a small angle
relative to the x axis. The other mode at 68.8 GHz can also be assigned to the longitudinal
mode. Its frequency shift is different due to different refractive index in the basal plane (n,)
and that in the z axis (n.). The cross polarization configuration does not normally allow
for the observation of the longitudinal mode along the y axis [100]. However, probably the
large collection angle (due to an f-number of 2.4) lifts the selection rules since acoustic modes
propagating in the directions within the scattering cone (of ~ 30°) formed by the lens can be
observed. This explains why the longitudinal mode is also observed with a lower amplitude
[101].

Finally, we also performed backscattering measurements to determine the frequency of
acoustic modes propagating along the z axis. The spectra obtained along the z axis are pre-
sented in Fig. 6.14. Normally, the selection rules impose that backscattering measurements
along the r axis only allow longitudinal modes [100]. However, with unpolarized scattered
light & (z"u)x, we observe a total of 6 modes, which have frequency shifts similar to those
obtained for mmodes propagating along the y axis (Table 6.2). We attribute the observation
of these modes to the large collecting angle (f/2.4) in our measurements [101].

Frequency shifts of the bulk acoustic modes propagating along the three axes are tabu-
lated in Table 6.2. The frequency shifts are given for both 514.5 nm and 532 nm incident light
beams. The frequency shifts obtained with two excitation lines are different because the fre-
quency shifts depend on the wavelength of the incident light as well as the refractive indices
of the incident and scattered light (Eq. 6.2), which are weakly frequency dependent. Here,
we should note that normal incidence backscattering spectra cannot show surface acoustic
waves because the frequency shift of a surface acoustic wave is zero at normal incidence
(Eq. 6.1).

For the calculation of the acoustic velocities, we need to know the refractive indices of
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Figure 6.14: Polarized Brillouin backscattering spectra of CuCrO, obtained along the x axis

with A =514.5 nm.
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Table 6.2: Frequency shifts of the acoustic modes observed with Brillouin backscattering:
experiments along x, y, and 2 axes observed at room temperature in R3m phase of CuCrOs,.

The uncertainty associated with the frequency shifts is 0.5%.

Direction | Acoustic mode | Light Polarization | Avg for A = 514.5 nm | Avg for A = 532nm
Uncertainty: 0.5% Uncertainty: 0.5%
L. (z7), (yy) 100.4
[001] T.P, (xx), (yy), (ry) 23.5 22.5
L, (rxx) 75.6 72.0
L, (rz) 68.6 65.4
L, (zz) 61.9 59.4
[010] T, P, (vx) 23.7 22.7
T,P, (zz) 19.8 19.7
T,P, (rz) 39.8 38.2
L, (yy) 75.4
L, (y2) 68.6
Ly (z2) 61.8
[100] T, P, rr 23.8
T,P, (z2) 19.7
T.p, (y2) 39.7
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CuCrO, (Eq. 6.2). As discussed in Chapter 3, reflection geometry illustrated in Fig. 3.7 can
be used to determine acoustic velocities and refractive indices of an isotropic material [93].

In that case, the acoustic modes propagate normal to the surface and the frequency shift is

_ 12,02 1.2 12,02 _ 1.2
Avg = o <\/ki n? — k2 + \/ki n; km) , (6.4)

where A; is the incident light wave vector whereas k,, = k; sin ; is the component parallel

given by (Eq. 3.46)

to the sample surface (in-plane component). V is the acoustic velocity and n; and ng are
the refractive indices associated with the incident and scattered light, respectively. If the

refractive indices for the incident and scattered light are equal, i.e., n; = n, = n, the frequency

Avg = iK\/k?’n,? — k2, (6.5)
T

Note that CuCrO, has trigonal symmetry (3m point group) which means that it is a

shift can be written as

uniaxial birefringent material (see Sec. 3.1). Along the optic axis, which is parallel to the
crystallographic z axis, the refractive index is independent of the polarization direction and
given by the ordinary index n,. For other directions, light will be resolved into two orthogonal
modes, each of which experiences a unique refractive index. One of these polarizations is in
the ry plane, which experiences the ordinary index n,. The other polarization experiences a
refractive index which depends on the polar angle 8 between the » axis and direction of the

light propagation
1 cos?f  sinf

= 6.0
n2(0) n? * n? (6:6)

where n, corresponds to the extraordinary index. The extraordinary index 7, is experienced
by light polarized along the z axis (optic axis). For a derivation of Eq. 6.6 using the optical
indicatrix for uniaxial materials, one can refer to Sec. 3.1. As seen in Eq. 6.6, depending on
the polar angle 8, the refractive index n.(#) will take a value between the ordinary index n,

and the extraordinary index n..
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Consider the reflection geometry with respect to the y axis shown in Fig. 6.15a. In this

geometry, the plane of incidence is parallel to the zy plane. If we set the polarization of the
incident and scattered light in the wy plane, we observe acoustic modes L, and T, P, with
frequency shifts associated with (zx) polarization. Performing measurements at different
angles of incidence 6;, a fit of Avg vs. k,, using Eq. 6.5 will provide the velocities of
the L, and T, P, acoustic modes and the value of the ordinary index n,. Similarly, if we
perform measurements with (zz) polarization, we can determine the velocities of the L,
and T, P. modes and the extraordinary index n.. If the reflection geometry imeasurerent
is performed with respect to the y axis (Fig. 6.15) using cross polarized light, (x2) or (zz),
then we determine the velocity of the 7, P, mode and refractive indices n, and n. by a
fit using Eq. 6.4. Even though the longitudinal L, mode is normally forbidden in cross
polarization, it is observed with a weak intensity due to a large collecting angle in our
experiments (Fig. 6.13). Therefore, we can determine the velocity of the L, mode also using
cross polarization. Measurements can be done in a similar way with respect to the x axis.
In that case, the velocities of the acoustic modes propagating along the r axis, L., 1.1,
and T, P., as well as n, and n. can be obtained.

The same approach can be used to determine the velocities of acoustic modes propagating
along the z axis and ordinary index n, as illustrated in Fig. 6.15b. In this case, the plane of
incidence is parallel to the xz plane. The symbol ® is used to indicate that the polarization
of the incident and scattered light is along the y axis, that is, perpendicular to the plane
of incidence. In this case, the refractive index for the incident and scattered light is the
ordinary index n,. Then, fitting Avg vs. k,, using Eq. 6.5, we can determine the velocities
of TP, and L. modes as well as the ordinary index n,. The same results can be obtained
if "~ plane of incidence is parallel to the yz plane and the incident and scattered light are
polarized along the » axis.

In order to determine the refractive indices n, and n. and the velocities of the acoustic
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Figure 6.16: Polarized Brillouin scattering spectra obtained by using reflection geometry for

modes propagating along the y and z axes. Employed scattering geometries are a) y'(a’
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Figure 6.17: Brillouin scattering spectra obtained using reflection geometry with unpolarized

scattered light for modes propagating along the y axis.
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and (zx) polarizations. At normal incidence, approximately 5000 scans (~1 hour) were

enough to obtain a spectrum with strong mode intensities for the L, T, P. and T, P, modes
(Figs. 6.16and 6.17). The observation of other modes required as high as 40000 scans (17
hours) for angles larger than 40°. The longitudinal mode observed with (z) polarization
and the quasitransverse mode (T, P,) observed with (zz) polarization could not be observed
for angles larger than 60°.

The linewidths of the modes in the spectra shown in Figs. 6.16 and 6.17 are about 1.2
GHz, comparable to the instrumental linewidth (0.5 GHz). An increase in 6; in reflection
geometry experiments did not considerably change the linewidths with the exception for the
T, P. mode at 19.8 GHz (Fig. 6.16). Scvere broadening and asymmetry of this mode shifted
the intensity distribution to higher frequencies. Therefore, the frequency variation of this
mode was not used.

The frequency shifts of the acoustic modes are plotted against the in-plane component of
the incident light wave vector £, in Fig. 6.13. A simultaneous fit to the data obtained using
Eqs. 6.4 and 6.5 is represented by continuous lines. Fromn the fit, we determine the acoustic
mode velocities Vi, Ly, Vrype, Vryp., and Vi.p, as well as the refractive indices (n, and n..).
The results are tabulated in Tables 6.3 and 6.4. The uncertainties are approximately 3%.

We first discuss the results for the refractive indices. The fit to the frequencies of the
niodes propagating along the y and z axes gives the ordinary and extraordinary refractive
indices as n, = 2.92 £ 0.3 and n, = 2.39 £ 0.3 for A = 514.5 nm (Table 6.3). Since the
ordinary index n, is greater than the extraordinary index n., CuCrOs can be classified as a
negatively birefringent material [72] (see Sec. 3.1). The birefringence magnitude of CuCrO,
is then An = n. —n, = -0.53 £ 0.06. This value is larger than that of the well-known
negatively birefringent material CaCOg, in which n, = 1.66 and n, = 1.49, giving An =
-0.17 [102].

The ratio of Z—:’ = 1.22 + 0.03 can be tested using the frequency shifts of the L, L., T, P.
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Table 6.3: Refractive indices of CuCrQ, for A = 514.5 nm and A = 532 nm at room temper-

ature

Wavelength (nm) T, Ne

514.5 292 £0.03 | 2.39 £ 0.03

532 288 £0.05 | 2.38 £ 0.04

and T, P, modes associated with (xz) and (zz) polarizations. This can be done by rewriting

=

Eq. 6.2 for n; = n,, so that

Avolrr) o
= —. 6.7
Avplzz Ne (6.7)

Using the frequency shifts in Table 6.2, the longitudinal modes (L, and L,) give 1.22 &+
0.01 whereas the shifts for the transverse modes TP, and T, P, give 1.21 + 0.01. Thus,
the ratio determined by the fitting procedure agrees with those obtained from the frequency
shifts observed with backscattering (Figs. 6.13 and 6.14). The overall quality of the fitting

procedure can be further tested if one organizes Eq. 6.5 as

2 END)
(W‘?ZB) :7z,§—<12:7> , (6.8)

where n;, = ng, = n,. Eq. 6.8 can be used for all modes observed with (zz) polarization, as

shown in Fig. 6.19. In Fig. 6.19, squares, triangles, and stars represent data for the modes
L,, T,P,, and T.F,, respectively. According to Eq. 6.8, the intercept determined from a
linear fit (black line) to the data gives the square of the ordinary refractive index nZ, from
which we obtain n, = 2.92 4+ 0.01 in agreement with the value of n, presented in Table 6.3.
The refractive indices for A = 532 nm are also presented in Table 6.4. These values are
determined using Eq. 6.2, the frequency shifts, and velocities (Tables 6.2 and 6.4). Except

for the asymmetric low frequency (19.7 GHz) mode obtained with (zz) polarization, all

modes give the ordinary (n,) and extraordinary n. index values as presented in Table 6.3.
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Figure 6.19: A plot of (rAvp/Vk;)? vs. (ki /k;)? for modes observed with (zx) polarization.
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Table 6.4: Experimentally determined acoustic velocities for modes propagating along .r, ¥,

and z axes in the trigonal R3m phase of CuCrO, at room temperature.

Acoustic mode | Velocity (ms™?)

L. 9200 + 200
T.P,, TP, 2070 £ 30
L, 6650 X 80

T,P, 2090 + 30
T,P, 3870 + 50

L, 6640 £+ 100

T.P, 2110 £+ 40

T, P, 3850 + 70

Table 6.5: Experimental values of the bare elastic constants in CuCrO, at room temperature.

Bare values Ch Cia Cy3 Ciy Ces

101 N/m? [2424+07 78+ 1|47 +£3]2354+0.07|82+0.2

Acoustic velocities obtained using Egs. 6.4 and 6.5 are presented in Table 6.4. Usiug
these velocities (Table 6.4) and the solutions of the Christoffel’s equation (Table 6.1). we
determine the elastic constants C'yy, Ca, Cs3, Cyaq, Ces = (C11 — C12)/2, which are given in
Table 6.5. The uncertainties associated with Cy;, Cyy, and Cgg are about 3%. The velocities
of the acoustic modes T. P, T, P. and T, P, are equal within the uncertainties, therefore, we
could not determine the value of Cy4. From the acoustic velocities presented in Table 6.4,

we estimate the absolute value of Ci4 to be less than 1.4 x 109 N/m?.

As discussed earlier, transverse modes are forbidden in the backscattering ineasurements
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along the r axis (see Fig. 6.14). Modes located at 19.7 GHz and 23.7 GHz observed with

parallel ((22) and (zx)) polarization are assigned to the transverse mode T}, P, whereas mode
located at 39.7 GHz observed with cross (xz) polarization is assigned to the transverse mode
T, P, (see Table 6.1). In order to test our mode selection we calculate the transverse mode
velocities using the elastic constant values presented in Table 6.5. We obtain Vr,p, = 3900
+ 100 m/s and Vg, p, = 2100 £ 100 m/s. These values are in agreement with the velocities
presented in Table 6.4 which are calculated using the frequency shifts. Thus, we confirm
that our mode selection for the transverse modes is correct. Finally, using the extraordinary
index n., we can obtain the velocity associated with the T, P, mode ohserved with y(z2)y

geometry. The velocity is calculated as 2130 & 40 m /s, which falls in the velocity range for

this mode (Table 6.4).

6.2.2 Measurements between 295 K and 30 K

Ultrasonic velocity measurements on CuFeQ, indicate an R3m — C2/m pseudoproper fer-
roelastic transition at Tn; = 14 K. These measurements show significant softening of some
acoustic modes propagating along the z and y axes. [1]. Particularly, the transverse modes
T, P, and T, P, show softening up to 35% just above Ty, which correspond a 50% reduc-
tion in the value of Cgq relative to its maximum value at high temperatures. In addition,
according to the Landau analysis [1], the temperature dependence of T, P, is consistent with
complete softening. This observation is direct evidence that the transition at Ty is a second
order ferroelastic transition. Considering that CuCrQOs is isostructural to CuFeOs at rooin
temperature, it might also undergo a ferroelastic transition at Ty;= 24.3 K, which could
be identified through the observation of softening of the modes T, P, and T,F,. Thercfore,
we performed Brillouin scattering measurements on CuCrO; to determine the temperature

dependence of acoustic modes propagating along the = and y axes. Because we can measure
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the transverse acoustic modes T, P, and T,P, with backscattering along the = and y axes

(Figs. 6.13, 6.14), we used backscattering along these directions down to ~30 K using a sin-
gle mode Ar™ laser operating at 514.5 mmn. The incident beam power for the measurements
along the x axis was 12 mW (3800 W/cm?) whereas it was 20 mW (6400 W/cm?) for the y
axis.

Low temperature backscattering spectra on CuCrQOy are shown in Figs. 6.20-6.21. Since
the intensity of cach mode decreases as the temperature is lowered, the spectra had to be
recorded for up to 40 hours at low temperatures to obtain an acceptable signal-to-noise ratio.
Unfortunately, the lowest temperature we could achieve with the cryogenic system is 30 K,
therefore, we could not obtain the temperature dependence of the acoustic modes down to
the antiferromagnetic transition at Thy = 24.3 K and multiferroic transition at Tyo = 23.6
K [27, 62, 62).

The backscattering spectra obtained along the y axis, Fig. 6.20, were collected with
an incident light polarization along the @ axis and unpolarized (u) scattered light, giving
a scattering geometry as y(xu)y. As determined in Sec. 6.2.1, modes at 23.7 GHz and
39.8 GHz are due to the quasi transverse mode (T, P;) and the pure transverse mode (T, FP,),
respectively. The modes at 61.9 GHz, 68.6 GHz, and 75.6 GHz correspond to the longitudinal
mode L,.

The backscattering spectra obtained along the r axis are shown in Fig. 6.21. The incident
light was polarized along the y axis, whereas the polarization of the scattered light was not
measured. The spectra in Fig. 6.21 show four modes at 23.8 GHz, 39.7 GHz, 68.6 GHz, and
75.4 GHz. The modes at 24 GHz, and 40 GHz correspond to the quasi transverse inodes
T, P; and T,P,. The modes at 68.6 GHz and 75.4 GHz are the frequency shifts due to the
longitudinal mode L, observed with (yz) and (yy) polarized light, respectively.

In Fig. 6.22, we present the temperature dependence of the relative acoustic velocity

variations determined from the frequency shifts normalized with respect to their maximum
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Figure 6.20: Brillouin spectra of CuCrO; obtained with y(zu)y geometry at temperatures

between 31 K and 295 K using a 20 mW incident beam power (A = 514.5 nm).
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Figure 6.21: Brillouin spectra of CuCrQO, obtained with x(yu)T geometry at temperatures

between 31 K and 295 K using a 12 mW incident beam power (A = 514.5 nm).
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values at high temperatures. Modes propagating along the y axis are shown as squares while

those propagating along the x axis are represented with triangles. The relationship between
the acoustic velocities and associated effective elastic constants are given in Table 4.1. Ac-
cording to Table 4.1, Fig. 6.22a-c reflect the temperature dependence of the elastic constants
Css, C11, and Cyy, respectively. At 30 K, the temperature variation of the velocity for the
modes T, P, and T, P, shows 7% and 9% softening relative to the value at room temperature.
This softening corresponds to a decrease of about 11% in Cgg (Table 6.5). Even though the
velocity of T, P, is primarily determined by Cgg (Table 4.1), it also depends on Cyy and Cyy,
which might explain the difference in the temperature variation of both modes. In Fig 6.22h,
we show the velocity variations of both longitudinal modes, L, and L,. Similar to transverse
modes presented in Fig. 6.22a, both modes soften as the temperature is decreased down to
30 K. Softening observed in these modes is about 3%, which corresponds to a ~ 5% decrease
in ', relative to room temperature. Finally, we present the temperature dependence of
the modes T, P. and T, P, in Fig. 6.22c. The velocitics of these modes remain almost the
sanie throught the temperature range, which indicates that Cyy shows no variation with
temperature.

Even though we could not obhtain data down to the antiferromagnetic transitions, the
softening observed on the elastic constant Cg implies that CuCrQ, possibly undergocs a
ferroelastic transition at Ty, = 24.3 K. However, in order to make a conclusive statement,
the temperature dependence of the elastic constants around Tyy is still required. In that
case, an alternative method, such as the ultrasonic pulse echo method [1], can be used to

investigate the elastic properties of CuCrQO, at lower temnperatures.
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Chapter 7

Ultrasonic velocity and dielectric

measurements on CuCrQO»

Brillouin scattering measurements on CuCrO, show that acoustic modes related to Ceg
and Cjy show softening as the temperature is decreased down to 30 K. Unfortunately, the
minimum temperature achievable for the Brillouin measurements is 30 K, just above the
antiferromagnetic transition at Ty, = 24.3 K. For that reason, we used the ultrasonic pulse-
echo method to determine the elastic properties of CuCrOy down to ~4 K. In addition,
ultrasonic velocity and dielectric measurements were simultaneously performed to further
imvestigate magnetoelastic coupling and determine the magnetic phase diagram of CuCrO,
for fields up to 8 T along the [110] direction. Besides, these measurements aimed at clarifying

whether there is one or two zero-field phase transitions at low temperatures [27, 58].

7.1 Ultrasonic velocity measurements

In this section, elastic properties of CuCrOs arc determined using the ultrasonic pulse echo

method. The difference between the ultrasonic pulse echo method and Brillouin scattering
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is that the ultrasonic pulse echo method measures acoustic waves induced by a transducer,
whereas Brillouin light scattering experiments investigate phonons that already exist in the
crystal. The two techniques have several advantages and disadvantages compared to each
other. One of the disadvantages of the ultrasonic pulse echo method is that samples of 0.5
mm long are normally required. On the other hand, Brillouin scattering can be used to study
bulk modes in much smaller samples as thin as 1 gm [103]. In addition, the surface area
required for Brillouin scattering can be of the order of several hundred pm, which is large
enough for the spot size of the focused light. Another disadvantage of the ultrasonic pulse-
echo method is that below ferroic transitions, domains may cause large acoustic attenuation.
More importantly, the velocity measured in that case is the average velocity of the domains.
In the case of Brillouin scattering, domains may cause broadening in the line shape and
therefore a decrease in the intensity of phonon peaks [104]. However, even if the incident
light is focused on several structural domains [104], Brillouin peaks associated with different
domains can be resolved [104]. One of the disadvantages of Brillouin scattering over the
ultrasonic pulse echo method was that the contrast provided by the single Fabry-Perot
interferometers is not sufficient to study opaque materials [84]. Thercfore, the development
of multi-pass interferometers in the past 40 years has made this technique more convenient,
although local heating due to the incident beam power has to be taken into account [84].
Moreover, Brillouin scattering techniques cannot provide the resolution provided by the
ultrasonic pulse-echo method. The ultrasonic pulse echo method can provide a resolution as
high as 1 part per million 1}, whereas Brillouin scattering is limited to 0.1% [84].
Regardless of the advantages and disadvantages, both techniques are complementary. In
our case, due to the small sizes and dimensions of the samples, uncertainties on the absolute
acoustic velocitics obtained with the ultrasonic pulse-echo method were large. Along the
z axis, we could not even measure the acoustic velocity as the samples are only 0.5 mm

long (see Fig. 6.1). However, along the other directions, relative variations of the acoustic
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velocities are obtained with a resolution as high as a few parts per million down to 4 K.

CuCrO, samples were platelets with a surface area of 2 mmx2 mm in the triangular
lattice plane (xy plane) and about 0.5 mm along the z axis (Sec Fig. 6.1). Prior to ultrasonic
velocity measurements, samples were polished using abrasive slurry which is a mixture of
glycerin and SiC grains (White Abrasives Inc., 1200 RA SiC) in order to obtain parallel and
smooth surfaces. Acoustic waves were generated at ~30 MHz with a repetition rate of 1 kHz.
The temperature dependent measurements of the acoustic modes were performed along the
x and y directions (the [110] and [110] directions in the hexagonal basis).

The temperature dependences of all acoustic ntodes propagating along the r and y axes
in CuCrOq are presented in Fig. 7.1. Modes propagating along the z axis are plotted using
green lines, whereas modes propagating along the y axis are plotted using red lines. The
data presented in Fig. 7.1 are normalized relative to the maximum value at high temper-
atures. All modes show only one distinct anomaly at Ty, = 24.3 + 0.2 K, below which a
collinear phase is expected down to Tne = 23.6 K [27, 61]. As seen in Fig. 7.1, none of the
acoustic modes show an anomaly at Tyo which is the transition temperature to the proper-
serew spin structure [25, 27]. In addition, no thermal hysteresis was observed at T in any
of the modes. Thermal hysteresis is a characteristic of first order phase transitions which
manifests itself with two different critical temperatures for warming and cooling cycles (sce
Chapter 8). This observation agrees with magnetic susceptibility, [27, 61], dielectric con-
stant [27], specific heat [27] and polarization measurements [26, 27] on CuCrQ,. The most
interesting feature of the results is that the velocitics decrease as the temperature is reduced
down to Twn;. Especially, the transverse modes T, P, and T,P, show softening up to 20%
(Fig. 7.1a), which corresponds to a reduction of about 35% in the elastic constant Cgg rela-
tive to room temperature (Table 4.1). For convenience, the room temperature values of the
elastic constants determined by Brillouin scattering are presented in Table 7.1. In Fig. 7.1b,

temperature dependences of the longitudinal modes L, and L, indicate a decrease of ~6%
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Figure 7.1: Temperature dependence of the normalized acoustic mode velocities in CuCrOs:
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Table 7.1: Experimental values of the bare elastic constants in CuCrO, at room temperature

Bare values Cy Cia Chs Cua Ces

101 N/m? | 2424078+ 1|47+3]235+0.07|80%0.2

in C1; relative to high temperatures. The decrease in the velocity of transverse modes T, P.
and T, P, (Fig. 7.1c) corresponds to a softening of 2% in Cy,.

As discussed previously, sound velocity measurements on CuFeO, show cvidence of a
second order R3m — C2/m pseudoproper ferroelastic transition at Ty; = 14 K [1]. All
niodes in CuFeQy show softening down to T, similar to our results obtained on CuCrQOs,.
In Fig. 7.2a, we compare the temperature behavior of the transverse mode 7T, P, in CuCrO,
and that in CuFeQO; [1]. In Fig. 7.2, the dotted lines represent the data for CuFeQ,, while the
continuous lines are for CuCrO,. Although the softening on both modes is comparable, T, P,
in CuFeO, seems to show complete softening whereas the softening observed in CuCrO, is
clearly incomplete. According to the Landau model for CuFeO, [1], complete softening of
this mode is expected when the transition is second order. Large softening of the transverse
mode T, P, in CuCrO, suggests that the transition at Ty; is also ferroclastic [105]. In
order to further investigate the order of the transition at Ty, in CuCrQO,, we compare in
Fig. 7.2b the temperature dependence of the longitudinal mode L, in CuCrO, and CuFeO,
[1]. Both modes show a decrease in the velocity with significant differences below Ty. As
seen i1 the inset of Fig. 7.2b, below Tn the velocity in CuCrO, (continuous line) increascs
nmore rapidly compared to results obtained on CuFeQO, (dotted line). The temperature
dependence of L, in CuCrQs is similar to the behavior obtained in NaN3 at T, = 293
K [105]. This particular behavior in NaNy was considered as evidence for a weakly first
order R3m — C2/mn ferroclastic transition [105]. Thus, in order to determine whether the

transition at Ty in CuCrOy is first order, we compare in Chapter 8 the data to predictions
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derived from a first order Landau model.

7.1.1 Magnetic phase diagram of CuCrQO,

In this section, we determine the magnetic phase diagram of CuCrO, for fields applied
along the [110] and [110] directions (hexagonal basis). So far, the Cartesian coordinate
system has been mostly used throughout the text. In this section, it is more convenient
to use hexagonal axes since we refer to the symmetry properties of the triangular lattice of
CuCrO; to explain our findings. Therefore, the sketch of the projection of the Cr and O
ions along the z axis shown in Fig. 2.2 is also presented in Fig. 7.3 to define the Cartesian
and hexagonal axes. Large circles represent the chromium ions, whereas small open and
filled circles represent oxygen ions located above and below the Cr layer, respectively. The
crystallographic directions in the hexagonal basis are represented by a, b, ¢, [110] and [110],
whereas Cartesian axes are designated by z, y, and z. The axes z, y, and z are defined
parallel to the [110], [110], and ¢ directions of the hexagonal basis. Thin lines and a triangle
with a small white circle at the central Cr ion indicate mirror planes (m) and a threefold
rotation axis with an inversion center normal to the plane of projection. The twofold rotation
axes are shown with black arrows. In the R3m space group, the symmetry operations are
a spatial inversion, a threefold rotation about the ¢ axis, twofold rotations about the a, b,
and [110] axes, and mirror planes perpendicular to the twofold rotation axes. Using the
hexagonal coordinates, the notations for acoustic modes should also be changed. In that
case, L, T, P, and T, P, read as L“TO], T[lT()]P[lIO]v and TmO] Py, respectively.

We first determine the number of maguetic phase transitions in CuCrQ, at zero field. Our
acoustic velocity measurements show only one transition at the antiferromagnetic transition
at Ty, = 24.3 K (Fig. 7.1). While a single crystal study by Poienar et al. [58] and a

number of measurements on polycrystals indicate one phase transition at ~ 24.3 K, single
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crystals studies by Kimura et al. [27] and Frontzek et al. [61, 62 indicate two transitions

at Ty = 24.2 K and Ty, = 23.6 K [27]. In particular, according to dielectric constant
and polarization measurements by Kimura et al. [27], an electric polarization emerges at
Ty = 23.6 K. To clarify the number of low temperature phase transitions at zero field in
CuCrO, and which phases are ferroelectric, we performed simultaneous measurements of
capacitance Cliygp and the velocities of acoustic modes Lyjg and Tyqo %70 in CuCrOy. It
should be noted that our CuCrO, samples were provided by Kimura et al. [27] but are not
the same samples as those used in their measurements. Measuring the capacitance Cijy0),

the temperature dependence of the dielectric constant €(1;09) was determined using

A
C[no] = 6[110]605, (7.1)

where Cy1q) is the capacitance along the [110] direction and € is the vacuum permittivity.
Here, A corresponds to the area of two parallel plates separated by a distance d. In order
to measure the capacitance of the sample, two thin brass plates were glued by using silicone
on two parallel surfaces of the sample.

Results for €119}, performed with the longitudinal mode L;;7y), are presented in Fig. 7.4a
while those measured simultaneously with 775 P10 are shown in Fig. 7.4b. The absolute
values of the dielectric constant €[;;0) shown in Fig. 7.4a-b arc different. Our values are also
smaller by a factor of 3 compared to earlier results [27]. Considering that the dielectric
constant €19 is calculated according to Eq. 7.1, our results clearly indicate considerable
parasitic capacitance C.p due to the experimental setup. One possibility is that the par-
asitic capacitance Cpope acts as a capacitor connected in series to the capacitance Cjjg of
the sample. In that case, what we measure could be less than Cj;,g) because the equivalent

capacitance Ce, would be given by + 21—, Therefore, it is plausible that we

‘eq ~prooe C[IIO]

obtain sinaller values for the diclectric constant (e10)) of CuCrO, than those reported in

literature [27]. Even though the absolute value for €19 deviates from other results [27],
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our measurements consistently show a step-like anomaly with an increase between 2 and 2.5

in the dielectric constant at Ty, = 23.8 K, indicating that CuCrQ, is ferroelectric below
Ty in agreement with Kimura et al. [27]. On the other hand, the velocities presented in
Fig. 7.4 show a minimum at Ty, = 24.3 K. Therefore, we conclude that at zero field, CuCrO,
undergoes a transition at Ty; = 24.3 K and a second one at Ty, = 23.8 K, in agreement
with Refs. [27, 61, 62]. The absence of an acoustic anomaly at Ty, is indicative of weak
magnetoelastic and piezoelectric coupling at this temperature.

Next, the field dependence of the transition at Ty, was determined through the measure-
ments of acoustic mode velocities at a magnetic field. Therefore, at fields parallel to the [110]
direction the relative velocity variations of the acoustic modes Lyy1q), Tjy1oile, and Tjy1o110)
were measured. According to these measurements (not shown), the transition temperature
Ty is field independent up to 8 T. In order to obtain the field dependence of the transition
at Tp, we measured the capacitance along the [110] direction along with the transverse
mode T{lTo]P[MO]- The variation of the dielectric constant €[110; 1 shown in Fig. 7.5 together
with the acoustic mode T[]T()]P[llo]- The relative velocity variation of T[ﬁ()]P[ll(]] is shown
with dashed lines, whereas the dielectric constant €j10; is shown with black lines. Since the
acoustic mode velocity is independent of the magnetic field, we only show the temperature
dependence of the acoustic mode at zero field. Unlike the transverse mode Tj 1o F119), the
dielectric constant significantly changes with the magnetic field. The largest increase in the
diclectric constant is observed at zero field. With an increase in the magnetic field, the in-
crease in the dielectric constant is gradually suppressed. When the field is 6 T or larger, the
dielectric constant shows a minimum. Taking the transition temperature as the midpoint of
the step like increase in the dielectric constant (indicated by the black arrow), we see that
Tno slightly changes with the magnetic field.

Possible new phases in CuCrQO, were also investigated by measurements of acoustic modes

as a function of magnetic field at a constant temperature. These measurements were per-
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formed at temperatures between 2 K to 26 K. Previous magnetization measurements on

CuCrO; indicate a first order magnetoelectric transition at 5.3 T at 2 K when the field is
applied along the [110] direction {4, 66]. Therefore, we applied the magnetic field along the
[110] direction.

The field dependence of the longitudinal mode L3, at 2 K and 23 K is shown in Fig. 7.6.
At 2 K, the acoustic velocity shows a minimum at Hyp,, &~ 5.3 T, whereas at 23.7 K, a
minimum is ohserved at Hy,, ~ 4.4 T. At both temperatures, the velocity minimum is at
different fields for increasing and decreasing magnetic fields, indicating that the transition
is first order. In Fig. 7.7, we show the field dependence of the velocity of L3, for increasing
ficlds. The velocity minimum first appears at slightly higher fields for temperatures up to
20 K and then goes down to 4.4 T at 23.7 T. The field scans performed on the transverse
mode Tjy7 P are shown in Fig. 7.8. In agreement with Lii1g), T};70 /% shows a minimum in
its velocity at 5.3 T at 2.5 K. At 17 K, the minimum observed in the velocity is at higher
field, 5.4 T. At 26 K, i.e. in the paramagunetic phase, no change is observed in the velocity
with thie mmagnetic field, which shows that the the acoustic anomalies have a magnetic origin.
We also measured the velocity of the transverse mode T[]TO]P[IIO] as a function of magnetic
field along the [110] direction. Results are shown in Fig. 7.9. Unlike the modes Lij0) and
T110Fe. the field dependence of Tjj1q P10 shows a double minimum feature. However, the
anomaly shows a sinilar behavior with temperature. Finally, in the paramagnetic phase (at
26 ), Fig. 7.9 shows no variation in velocity of 7j,5y Pi10) with a magnetic field, as observed
in the velocity of the mode Tj 54 P (Fig. 7.8).

The ficld dependences of the acoustic modes Ly 15 and Tpyy) P presented in Figs. 7.6-7.8
are similar to the ones observed in the antiferromagnetic compounds a— Fe,Oj [106] and
CsNiCl3 [107]. In ¢ Fe,Og [106] and CsNiCly [107], the velocity dips observed at a critical
field are explained by magnetoelastic coupling and are attributed to a spin-flop transition

[106, 107]. Thus, we also associate the acoustic anomalies on CuCrO, (Figs. 7.6, 7.7, 7.8,
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Figure 7.7: Relative velocity variation of the longitudinal acoustic mode Lj;7p) as a function
of magnetic field parallel to the [110] direction in CuCrQ; at temperatures between 2 K and

23.7 K. Data were collected for increasing magnetic field.
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7.9) to a spin flop transition for fields applied along the [110] direction. In addition, in the

case of CsNiCls [107], the velocity dip observed in the longitudinal mode L. is accounted for
by the field dependence of the magnetic susceptibility. Thus, the ultrasonic data for CuCrO,
suggest that the minimum observed in the longitudinal mode Lyjgq) (Figs. 7.6 and 7.7 is also
due to the field dependence of the magnetic susceptibility.

A spin flop scenario in CuCrO, for the acoustic anomalies presented in Figs. 7.6-7.8 is in
agreement with results obtained by magnetization, dielectric constant, polarization [4], and
electron spin resonance measurements [66] on CuCrQ,. These measurements performed as
a function of magnetic field along the [110] direction show a first order transition at 5.3 T
at 2 K [4, 66]. The transition is attributed to a 90° flop of the spin-spiral plane in one of
the magnetic structural domains A, B, and C' [4, 66]. The flop of the spin-spiral plane is
illustrated in Fig. 7.10, where rectangles denote the spiral plane whereas green arrows in each
domain indicate the direction of the electric polarization induced by the proper screw spin
structure. Considering the evidence for a structural transition at Ty [4, 66], the domains are
shown as slightly distorted relative to an equilateral triangle. In addition, if the structural
transition is to the monoclinic C2/m phase as in the case of CuFeQ,, the loss of threc fold
symmetry below T'x, should result in three structural domains which are at 120° relative to
cach other [66]. In Fig. 7.10, the spiral plane of each domain is shown with thick blue lines
whereas the direction of the electrie polarization is given by thick green arrows. The increase
in the free energy due to the field is proportional to the dot product of a magnetic moment
and the magnetic field. At a certain field, Hy,,, the free energy of domain A becomes higher
than domain A’. Therefore, in order to minimize the free energy, the magnetic domain A
shows a transition to domain A’ and the spiral plane flops by 90° as shown in Fig. 7.6.
Doniains B and C can also show a spin flop transition [4]. In that case, higher fields arc
required for a spin flop transition [4] as the spiral planes in B and C' domains make an angle

of 60° relative to the field direction.

132



H /[110]
A

*1110]

Figure 7.10: Magnetic structural domains A, B, and C in the multiferroic phase of CuCrO,
and the transition from domain A into domain A’ at a critical field parallel to the [110]

direction. The figure is identical to Fig. 2.5 and is replotted for convenience.

133



As seen in Fig. 7.6, the proper screw spin structure in CuCrO; induces a spontancous
polarization in the direction of the magnetic modulation (see Sec. 2.1.1). Microscopically,
the induced polarization is due to a variation of the metal-ligand hybridization [2]. As a
result of the 90° flop in the spiral plane in domain A, the spontaneous polarization also flops
by 90° [4, 66]. The direction of polarization after the spin flop is shown with the green arrow
in domain A’. The 90° flop of the spontaneous polarization can be explained in terms of
symmetry arguments [4]. After the spin-spiral flop, the remaining symmetry operation in
domain A’ is ', a time reversal operation followed by a mirror operation (broken line in A’
in Fig. 7.10). Since the system can be polar only parallel to m/, an electric polarization is
allowed parallel to the [110] direction. Note that the dielectric constant in the ab plane of
CuCrO; also shows an anomaly at the spin flop transition at low temperatures [27]. In order
to determine if the dielectric constant shows similar anomalies at higher temperatures in
the proper screw phase, we did a simultaneous measurement of the €[y, dielectric constant,
and the transverse acoustic mode Tj 1 Mi10) as a function of magnetic field parallel to the
[110] direction. Results are shown in Fig. 7.11. Similar to results obtained by Ref. [4], the
dielectric constant shows a decrcase up to ~2 T. The anomaly in the dielectric constant
that corresponds to the spin flop transition is at ~5.4 T, where the acoustic mode T 1yP119]
also shows an anomaly. The variation in the dielectric constant due to the spin flop is much
smaller than the variation observed at 2 K [4]. Similar anomaly is also observed when the
field scan is performed at 15 K (Fig. 7.11).

Using the data presented in Figs. 7.5, 7.7-7.8, and 7.11, we determine the magnetic phasc
diagrain of CuCrO, for fields parallel to the [110] direction shown in Fig. 7.12. At zero field,
CuCrO, is in the paramagnetic phase at temperatures above Ty, = 24.3 K (squares). Be-
tween Ty and Ty, (triangles), the magnetic order is thought to be a collinear spin structure
[4], which is illustrated in Fig. 7.12. Below T2, Cr ions order into a proper screw spin struc-

ture with a magnetic modulation in the [110] direction. The proper screw structure induces a
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spontaneous polarization in the same direction as shown by a green arrow in Fig. 7.12. Below
Ty, acoustic and dielectric measurements as a function of magnetic field shows a spin flop
transition. Fig. 7.12, the critical field H ), required for the spin flop is shown with circles
and stars for increasing and decreasing fields, respectively. The magnetic structural domains
and the spiral plane (rectangle) in each domain are also shown. At Hp,,, the spiral plane in
domain A flops by 90° as shown in domain A’. Upon the spin spiral flop, the spontaneous
polarization also flops by 90° (green arrows) [4, 66]. While H|y1o ~ 4.4 T is sufficient for the
spin-spiral flop at 23.7 K, the same transition s observed at 2 K with Hj7p = 5.3 T.

As shown in Fig. 7.5, €)11q) is field dependent for H||[110]. For comparison, we mea-
sured the dielectric constant ef1) for H [|[110]. The temperature scans of the dielectric
constant and the velocity of the (Ti79P10)) acoustic mode under a magnetic field are show
in Fig. 7.13. The acoustic mode (dashed line), which shows a minimum at Ty, is indepen-
dent of the magnetic field. Therefore, the relative variation of the acoustic mode is only
shown at zero field in Fig. 7.13. Similar to our previous measurements for €;,0) (Fig. 7.4), at
zero field the dielectric anomaly is at lower temperature than Ty, indicating the transition
at Ty». In addition, the increase in the dielectric constant (~ 2) at the anomaly is also in
agreement with our earlier results (Figs. 7.4 and 7.5). As the field is increased, the step
like anomaly changes to a Lorentzian line shape. Note that this behavior is different from
that observed when the ficld is applied along the [110] direction. For H||[110], Ty is weakly
field dependent as illustrated in Fig. 7.14, where triangles represent T, whereas the squares
correspond to Th.

Diclectrie measurements on CuCrQ, were previously performed as a function of fields
parallel to the [110] direction at low temperatures [4]. These measurcments show no evidence
of a flop in the spin-spiral plane. However, it is suggested that a slight rcorientation occurs in
the spiral planes of domains B and C' at interinediate fields, i.e. ~5 T. In order to investigate

the reorientation in the spiral planes, we measured €110 and the acoustic mode T[lTo]P[lw} at
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3 K, 5 K and 20 K as a function of the fields for H || [110]. Results are shown in Fig. 7.15.
Measurements performed for increasing and decrecasing fields are indicated by arrows above
each plot. As shown iu Fig. 7.15a, the dielectric constant measured at 3 K and 5 K shows a
rapid decrease between 0 T and 2 T, then remains nearly constant up to 7 T. Similarly, at 20
X the dielectric constant shows no variation between 4 T and 7 T. The acoustic mode also
shows variations with the field as shown in Fig. 7.15b. At 3 K, the acoustic mode velocity
slightly drops down to 2 T and then shows an S-shaped anomaly between 4 and 7 T. At
5 K and 20 K, the acoustic mode behaves similarly when compared to the data obtained
3 K. At 20 K, however the S-shaped anomaly slightly shifts to higher ficlds, showing its
temperature dependence. In Fig. 7.16, we compare the field dependence of the diclectric
constant and acoustic mode for H || [110] and H || [1T0]. The data obtained as a function
of the field along the [110] direction are shown with dashed lines whercas those obtained
with the field along the [110] direction are shown with continuous lines. At low fields, the
dielectric constant behaves similarly for both field directions. However, the small bump in
the dielectric constant is noticeable for Hjigo, which corresponds to a spin flop transition in
domain A (Fig. 7.10), is absent in the data for Hjjig. The acoustic mode shows a different
hehavior for Hjyjo) and Hjjg). While the spin flop transition observed at Hj gy ~5.4 is marked
with a double minimum feature in the acoustic mocle velocity (continuous line), the acoustic
mode shows an S-shaped anomaly with Hpyjg. The behavior of the diclectric constant and
the acoustic mode for Hyyjg can be considered as evidence for a reorientation in the spiral

planes at ~5 T ([27]).
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7.1.2 Comparison of ultrasonic and Brillouin scattering measure-

ments

In this section, we compare the elastic properties of CuCrO, obtained by Brillouin scatter-
ing and ultrasonic pulse-echo method. The mode velocities in Fig. 7.17 are normalized with
respect to the velocity maximum measured at high temperatures. According to Table 4.1,
Fig. 7.17a-c reflect the temperature dependences of the elastic constants Cyg, C11, and Cyy,
respectively. The relative velocity variations obtained with Brillouin scattering are repre-
sented with symbols. Modes propagating along the y axis are plotted with red squares while
thosc propagating along the x axis are represented with blue triangles. These results are
compared to ultrasonic measurements represented with blue and red lines, which correspond
to the data for modes propagating along the x and y axes. In Fig. 7.17a and b, the data ob-
tained with Brillouin scattering and ultrasonic measurements show a quantitative agreement
down to about 60 K. However, they significantly deviate at low temperatures. In the case of
the transverse mode T, P, presented in Fig. 7.17c¢, the velocity variations are in agreement
down to 30 K, however it is worth pointing out that the softening observed on this mode is

on the order of the experimental uncertainty in Brillouin measurements.

There might be several reasons for the disagreement between both sets of data at low
temperatures. First of all, the velocities determined by Brillouin scattering (Fig. 7.17) are
calculated with the asswinption that the dielectric constants, or the refractive indices, do not
considerably change with temperature. However, it could also be related to local heating
due to the incident laser beam. In order to test this assumption, we performed Brillouin
scattering measurenients using different beam power (Fig. 7.18). The data for the T, P, and
L, modes obtained with the 10 mW incident beam are shown with red stars wherecas those
obtained at 20 mW (6400 W/cm?) are displayed with red squares. As seen in Fig. 7.18,

the normalized velocities of the T, P, and L, modes show a larger decrease at a lower beam
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power. This is particularly evident at 31 K. In the case of T, P,, the softening is 3% larger
with 10 mW (3200 W/cm?) relative to the result obtained with 20 mW. In the case of the
L, mode, the difference in the softening is about 1%.

In order to further illustrate the effect of local heating on the low temperature Brillouin
scattering measurements, we perfornied a set of measurements at 31 K using different incident
beam powers. These measurements were performed in both z and y directions and are shown
in Figs. 7.19 and 7.20. With decreasing beamn power, longer collection times were required to
obtain an acceptable spectrum and measurements with less than 6 mW were not successful.
In Fig 7.21, we show the frequency shifts of acoustic modes T, P,, T, F,, L,, and L, against
the beamn power density. As seen in Fig. 7.21, the frequencies of both modes increase as the
power density increases (Fig. 7.21). For example, the softening observed in the longitudinal
modes (Fig. 7.21a) is 2.7% at 1900 W/cm?, whereas with 11800 W /cm? the softening is only
0.7%. The transverse modes, which soften by 20% relative to room temperature (Fig. 7.18),
show considerable changes when the power density is increased from 1900 W /cm? to 11300
W /cm?. The respective variations are ~ 5.5% and ~ 11%, corresponding to an increasc of
almost 60 K in the sample temperature when 11800 W/em? incident beam power is used.
Thus, we must conclude that, even at 1900 W/em? local heating in our Brillouin scattering
measurements are still significant, which explains why the temperature dependences of the
acoustic mode velocities obtained by Brillouin scattering do not agree with those obtained

with the ultrasonic pulse echo method.
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Landau model

As seen in Chapter 7, acoustic modes propagating along the x and y axes in CuCrO, show
softening at Ty. Particularly large softening observed on the T, P, and T, P, modes, corre-
sponding to a 35% reduction on Cgg, indicates that the transition at Ty, is ferroelastic as
observed in CuFeO, [1] and NaN3 [105]. However, the fact that the softening is incomplete
and a rapid increase in the velocity below Th; (see Fig. 7.1) suggest that the ferroelastic
transition is first order as also observed in NaNj [105]. Therefore, in order to confirm the
nature of the transition observed in CuCrOs, the sound velocity measurements are analyzed
using a Landau model based on symmetry arguments. First, we give an introduction to
Landau theory and discuss a few Landau potentials that account for first and second order

phase transitions.

Chapter 8

8.1 Introduction to Landau Theory

Landau theory is a macroscopic thermodynamic model which describes phase transitions

without giving any information about the microscopic causes of a phase transition [108].

\
\
Here, the discussion will be limited to phase transitions where the symmetry of the low
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symmetry phase is a subgroup of the high symmetry space group. A more general description

of phase transitions can be found in Ref. [109]. In the context of Landau theory, two new
concepts need to be introduced: the order parameter and the excess Gibbs free energy.

The order parameter is a variable that reflects the loss of some symmetry clements below
a critical temperature T,.. While its value is zero in the high symmetry phase, it is nonzero
in the low symmetry phase. The temperature dependence of the order parameter can reveal
the order of a phase transition. For a second order transition, the order parameter changes
continuously at T, while it changes discontinuously for a first order phase transition.

The excess Gibbs free energy simply represents the difference between the Gibbs free
energy of the high symmetry phase and that of the low symmetry phase [109]. This cnergy
difference G is then expressed as a Taylor series expansion of the order parameter ) such
that

G:A1Q+%AQ2+%DQ3+EBQ4+%CQ5+éCQ6+... (8.1)
Terms with a power larger than 6 are normally ignored since the value of @ is infinitesimal
at temperatures close to 7,. In addition, a stable state is associated with the minimum of

G which requires that

% = A1+ AQ + DQ* + BQ* + Q' + CQ* =0. (8.2)

Given that @@ = 0 in the high symmetry phase, Eq. 8.2 is only satisfied if A; = 0. One
of the most important characteristics of Landau theory is that the Gibbs free energy has
to be invariant under the symmetry operations of the high symmetry phase. For example,
assuming that the high temperature phase has a symmetry operation that imposes Q — —Q,

then ouly even power terms are allowed,
1, o 1 4 1 . % .
G=-AQ"+-BQ "+ =CQ". (8.3)
2 4 6
In his original theory for second order phase transitions [110], Landau assumed that A is the

only temperature dependent coefficient in the expansion such that A = a(T — Tp), where Tj
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is a transition temperature. Thus, A changes sign at Tj. The coefficient C' is always positive
for a stable state. Depending on the sign of the coefficient B, Eq. 8.3 can describe sccond

or first. order phase transitions as described below.

8.1.1 Second order phase transitions

Whenever B > 0, second order transitions can be successfully described considering only the
first two terms, hence

c;Z%AQ2+iBQ% (8.4)

where A = a(T — T;). The cquations that minimize the Gibbs free energy G are

oG

—_— = 3 = 5

90 AQ + BQ 0, (8.5)
and

902G ) ,

— = . > 0. .6

90 A+3BQ" >0 (8.6)

Here, the first equation means that the free energy corresponds to an extremum, while the
second cquation ensures that the free energy corresponds to a minimum. Solutions of Eq. 8.5

are givern as

Q=0 T>T, (8.7)
Q= %mrfy T < Ty, (8.8)

corresponding to the order parameter of the high symmetry phase and that of the low
symmetry phase, respectively. The variation of G as a function of () at different temperatures
is illustrated in Fig. 8.1. When T > T,, where T, = Ty is the critical temperature, the
equilibrium point is specified by @ = 0. Below T, the frce energy minimum shifts to Q.
Fig. 8.2 shows the temperature dependence of the order parameter as predicted by Eq. 8.8
with a continuous variation at T.. Below T, the order parameter changes as (T, — T)l/ 2,

where 3 = 1/2 is the typical mean field critical exponent for the order parameter.
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Figure 8.1: Gibbs free energy as a function of Q at various temperatures for a second order |

phase transition.

Figure 8.2: Order parameter () as a function of temperature for a second order phase tran-

sition.
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8.1.2 First order phase transitions

In this section, we present two Landau potentials that describe first order phase transitions.

2-4-6 potential

The excess Gibbs free energy GG in Eq. 8.3 describes a first order phase transition if B < 0.

Here, we keep the sixth power term so that the free energy has a stable minimum. A stable

minimum in G requires that

oG

— =A 3 5=
30 Q+ BQ’ +CQ’ =0,
’G P A
—aQQ_A+3BQ +5CQ" > 0.

Therefore,

Q:O, T‘>T‘07

~B++/B*—4AC
Q= 50 ,

T < Ty,

(8.9)

(8.10)

(8.11)

(8.12)

where Eq. 8.12 corresponds to the solution in the low symmetry phase. An important

characteristic associated with first order phase transitions is thermal hysteresis. This can

be best illustrated by a plot of G as a function of the order parameter @ as shown in

Fig. 8.3. When T > T\, G is stable at ) = 0 (high symmetry phase). At T = T}, a

saddle point appears. At T., which is called the thermodynamic eritical temperature, high

symmetry and low symmetry phases become equally stable. However, as a transition to the

low symmetry phase would cost energy due to the energy barrier, the transition only occurs

at T' = Ty, when the potential barrier completely disappears. If the temperature is increased,

no transition occurs to the high symmetry phase until the temperature reaches 77.Therefore,

as illustrated in Fig. 8.4, the value of ) changes discontinuously at the phase boundaries,

which is a characteristic of first order transitions along with thermal hysteresis.

154



Figure 8.3: Gibbs Free energy as a function of () at various temperatures for a first order

transition.

Figure 8.4: Order parameter € as a function of temperature for a first order phase transition. ‘
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Given that A is a temperature dependent term in Eq. 8.12, we can determine the char-

acteristic temperatures T, and T; using Eq. 8.12.
Case 1: B2 —4AC <0
In this case, substituting A = a(T—T}) in the inequality, the temperature can be obtained

as
2

4aC
When Eq. 8.13 is satisfied, Eq. 8.12 describes a stable state with = 0, which corresponds

T>

+ Ty =T, (8.13)

to the high symmetry phase.
Case 2: B2 - 4AC =0

Substituting A = a(T" — 1y) in the equality, we obtain

B2
T=—+Ty=T 8.14
4aC+ 0 1 ( )
and
-B
7)) =+ — 8.15
which describe curve 2 with the appearance of an inflection point (Fig. 8.3).
Case 3: T =1,
At T =T, both phases are equally stable (curve 4 in Fig. 8.3), requiring that
1, o 1+ 1, &
Using Eq. 8.16 and 8.12, T, can be obtained as
3B?
T, = Tp. 8.17
16al’ +lo ( )

2-3-4 potential

If the symmetry of the high symmetry phase allows a third order contribution in G, a 2-3-4
potential such as

1 1
G = %AQ2 + 5DQ3 + ZBQ4’ (8.18)
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where D # 0 and B > 0, can account for first order phase transitions. The equations that

minimize the free energy G are

d
9C _ 40+ DQ* + BO =0 (8.19)
Q)
92
G 44 9D0 +3BO? > 0. (8.20)
06
Hence, T and T, correspond to
D2
= S 8.21
Tl TO + 4AB, ( )
and
2D?
T. =T . 8.22
c o+ 9B ( )

8.2 Landau model for an R3m — C2/m ferroelastic tran-
sition

In this section, we present a Landau model for an R3m — C2/m ferroclastic transition to
analyze the elastic properties of CuCrO, (see Chapter 7). One would naturally assume that
the order parameter of a ferroelastic transition is strains. In that case a linear temperature
dependence is expected for the temperature dependence of the elastic constants [35, 30,
37, 105]. Considering that the observed temperature dependence for the acoustic modes
in CuCrO, corresponds to a nonlinear temperature dependence of the elastic constants, we
assume that the transition at Ty is pscudoproper ferroclastic, for which the order parameter
1s associated with another physical quantity that has the same symmetry as the spontaneous
strains [1].

The total free energy G((Q);, €;), which is a function of the order parameters (); and strain

components e;, consists of three distinct contributions
G(Qi,ﬁ’j) = GL((QY) +Gﬁ(€’]) +Gp(Qi,€j) (823)
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where G1(Q);) is the Landau expansion in terms of the order parameters Q;, G.(e;) is the

clastic energy associated with the trigonal 3m point group, and G.(Q;, €;) is the energy due
to the coupling between the order parameters and the strains. According to Tol’edano et al.
[35], the Landau free energy for an R3m — C2/m ferroelastic transition can be expressed

as a function of a two component order parameter (), Q)

GL(@1. Q) = A} +Q8) + 3D(Q} — Q0D + B@ + QP (521)

[Nl

where A is given by A = %a,(T — Tp) and B and D are constants. Here, T defines the
transition temperature in the absence of elastic coupling. For an R3m — C2/m ferroelastic
transition, the order parameter belongs to the two dimensional irreducible representation E,

[34], which is represented by
(Q1. @) = {(z® —¢*. ), (yz,22) } . (8.25)
The terms allowed in the model have to be compatible with the symmetry properties of the

Table 8.1: Transformation of the order parameter components under the generators of the

3rn point group

~i

GZ.T (13;
Qi @ | -1 —V3Q: | @
Qa | —Qa | Q) —10Q1 | Qs

high symmetry point group, that is, they have to be invariant under the generators of the
3m point group, which are a threefold rotation around the z axis Cs. (Eq. 4.16), a twofold
rotation around the r axis Ca, (Eq. 4.17) and a spatial inversion I (Eq. 4.18). In Table 8.1,
we present how the order parameter components transform under the generators of the 3m
point group (Eqs. 4.16-4.18). Applying the transformation rules given in Table 8.1, it is easy

to show that the Landau Free energy G1(Q;) is invariant under the 3 symmetry operations.



In order to calculate the temperature dependence of acoustic modes associated with an

R3m — C2/m ferroelastic transition, we have to include the elastic energy of the 3m point

group. The elastic energy G.(e;), derived in Chapter 4, is given by

1 1 1
G(,(Cj) = ECP(€1 + 62)2 + 50336% + 5044(63 + eg)

1 .
+ 5066(3% + Cosler — 62)2 + Cizler + ez)es + Cralereq — ezeq + eseq), (8.26)

where €, = ¢ 12,

Finally, we include the energy G. which is due to the coupling between the order param-
eters and the strains. Here, we only consider the bilinear (Q;e;) and linear-quadratic (Q?¢;)
coupling terms. In order to determine the allowed terms, one needs to take into account the
transformation of the order parameter components (Table 8.1) and the strains. In Table 8.2,
the functional representations of the strains are given in parenthesis in the first column

whereas their transformations under the generators Cy,, Cs,, and I are shown in the sccond,

third, and fourth columns, respectively. According to Tables 8.1 and 8.2, we see that the

Table 8.2: Transformation of strains under the generators of the 3rn point group

’ Strains | Cy, Cs, I
er(x?) | er | L4 %2 \//5156 el
ex(y) | er | B4yt o
e3(2? es €3 ey
esyz) | eq —4 - %ﬂ €4
es(xz) | —es % -4 es
es(xy) | —es % — @ — D leg

order parameter components (@, QJ2) transform as the strain combinations 6;(e; — eq, €5) +

ds(eq, €5). Therefore, bilinear coupling terms 6, ((e; — €3)Q1 + esQ2) + da(esQ + 5@ ), with
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41 and dy being coupling coefficients, are allowed in the model. The linear-quadratic terms

are Bi(e; + e2)(Q% + Q3) and Bse3(Q? + Q3), giving the coupling energy as

Go(Qire5) = d1(er — e2)Q1 +e6Q2) + da(eaQr +e5Q0) + Biler +e2)(QF +Q3) + Baea(QF + Q3),

where ) and 33 are also coupling cocfficients.

(8.27)

The expressions for the strains, in terms of the order parameter components, can be

found by minimizing the free energy as

which give

em =

_ 2(B3Ch13 — BiCs3)

€p =

€3 =

=010+ 0205

€ —

oG
= —QOfori=1-—
o, Oforj=1-6,

2((5()(71/1 - (51044)

Cy

@,

c (QF +Q3),

25]013 - [))3(011 -+ (71@\
Cy

—02(Chy — Cha) +25,C4
',

@,

C (227

—02C14 + 01Cy4
C.

@2,

where e,, = e; — e3, ¢y = €; + €3, and

Ca = (C1 — C12)Caq — 2CFy,
Cyp = (Ci1 4 C12)Cs3 — 2C7%,

C. = C?y — CaCos.

Q%+ Q3),

(8.28)

(8.29)

(8.30)

As illustrated in Fig. 8.4, the order parameters are nonzero below the transition temper-

aturc. In order to find the solutions for the order parameters, we minimize the free energy
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with the respect to the order parameter components such that

oG !
— =0, 8.31
o .
oG
— =0, 8.32
e 552
A simultaneous solution of Egs. 8.31 and 8.32 leads to three solutions
(i) Q1 = Q2 =0,
(ii) Q; #0 and Q, = 0,
(iil) Q; # 0 and @, # 0. (8.33)

Case (i) corresponds to the high temperature R3m phase. Case (ii) corresponds to a struc-
tural transition to the monoclinic C2/m phase [111]. According to Eq. 8.29, for @, = 0
and Q2 # 0, ey, e, €3, €5, and eg are non-zero, causing deformations along the x, y, z axes
and shear deformations in the xz and zy planes, respectively. Case (iii) corresponds to a
structural transition from the trigonal R3m phase to a low temperature triclinic 1 phase.
Therefore, we construct our model for CuCrO, according to case (ii) and consider the
scenario in which @; # 0 and @2 = 0 (Eq. 8.33). Referring to Fig. 8.4, the transition
temperature Ty, can be defined as Ty  T.. In order to find the expressions for Q,(Tn1)
and Ty, we use Eq. 8.31 and the fact that the free energy is zero at T = Ty, as illustrated

in Fig. 8.3. We obtain

2D

Thi) = ——

Q1(T'n) 1B

2D? Cy
— R .34
Ty T0+9aB+aC'a’ (8.34)
where

Cj '53(011 — Cl?) - 4(51(52014 + 25%044 (835)

Here, we set 3, and 3 to zero since they do not significantly change Th, and the order

parameter ;. Even though the temperature dependence of acoustic modes in CuCrQO,
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suggests a first order transition at Ty, we observe no thermal hysteresis (Fig. 7.1). Therefore,
we do not determine the characteristic temperatures T, and 77 (see Fig. 8.4). In order to

find an expression for the order paramecter @; betow Ty, we use Eq. 8.31, which gives

D \/D*+36aB(Tn; —T) o
QuT) = ~35 T . (8.36)

Next, we derive the temperature dependence of the elastic constants C,,, using [112]

9*G PG (rPG\T G
Co = o =S (70 (8.37)
de,,0e,, 0Qi0e,, \ 0W; e, 0Y;

i
where m,n = 1,...6 and i = 1,2. Results, as a function of the order parameter Q;(7), are
tabulated in Table 8.3. According to this model, five of the six independent elastic constants
show softening due to bilinear coupling between the strains and order parameters. For
T < Ty, 13 independent elastic constants, compatible with the monoclinic C'2/m phase,
are obtained (Table 8.3). For these calculations, the elastic energy (Eq. 8.26) is defined
relative to the trigonal R3m phasc using the conventional coordinate system in which the
threefold axis is along the z axis with the twofold axis along the r axis [94]. Since an
R3m — (C2/m structural transition must preserve the twofold symmetry, the calculated

elastic tensor for the monoclinic C2/m phase conserves the twofold symmetry along the z

axis as also stated in Ref. [1].

8.2.1 Numerical calculations

In order to estimate some of the model parameters, we use the temperature dependernce of
the L., T, P, T,P,, and T, P, modes (Fig. 7.1). In Table 8.5, we show the effective elastic
constants of the acoustic modes in the trigonal R3m and monoclinic C2/m phases. In
Table 8.4, we conipare the elastic constants of CuCrQ, obtained using Brillouin scattering
(Section 6.2.1) to the numerical values used to get better agreement below T. At the most,

these values differ from the experimental values by a factor of 2 in the case of Cgg. Using the

162



Table 8.3: Temperature dependence of elastic constants for an R3m — C2/m ferroelastic

transition.

Trigonal R3m

Monoclinic C2/m
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Table 8.4: Experimental values of the bare elastic constants in CuCrQO, at room temperature

and their comparison with the values used in the model.

Bare values C“ C]Q C]g 014 033 C44 066

Experimental (x 10'° N/m?) | 24.2 | 8 - | <14 47 [235] 8.2

Model ( x10'° N/m?) 242 | 15 | 25 | 2.3 | 47 | 3.5 | 4.6

Table 8.5: Expressions of pV? for trigonal R3m and monoclinic C'2/m phases.

Dircction | Mode ‘ R3m phase C2/m phase

L. |Cu Ci \
[l()()] TIPy %(044 + 066 — \/(044 — 066)2 + 40124) %(055 + Cﬁﬁ — \/(055 — 066)2 + 40.‘?6) \
T.P. | 3(Cas + Cos + /(Caa — Co6)? +4C%) | 2(Cs5 4 Ces + /(Css — Cy)? + 4C%)

L, HCu + Caa + V(Ci1 — Caa)? +4ACY) | H(Coz + Cus + /(Coa — Cua)? + 4C%,)

[010] TyP T CG(; 066
T,P. %(Cu + Cyq — \/(Cu — Cpp)? +4C%) %(022 +Cyy — \/(022 — C)2 +4C3)
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elastic constants reported in Table 8.4, we estimate coupling coefficients using the reductions

observed on the elastic constants

ACTN) _ o
L
ACi(Twi) _ .y, oo
CGS .
ACu(Tw) _ ) uor
C44 . ’
ACeriTv _ g g9, (8.38)
Cers

where C.ss corresponds to the effective elastic constant associated with the velocity of T, P,
given in Table 8.5. We also arbitrarily set @ = 1 and adjust the value of Ty in order to get a
good agreement for the temperature dependence observed above Ty.

The other coefficients are estimated using the values of strains e; and e

2d0Cqia — 0,C
(0 K) — epf0 K) = 220Gl g 1)

=513x10* (8.39)

0K +ea0K) DA gy k),

= —7.0x 1078 (8.40)

consistent with magnetostriction measurements [33]. Here, we set 33 to zero since the clastic
constants which determine the velocity of the acoustic modes propagating along the x and
y axes do not depend on the linear-quadratic coupling term Ss3es(Q? + Q3). The coefficients

B and D are determined using the relations (Eqgs. 8.34, 8.36).

2D ¢
Ty, =Ty + —
N o+ 9aB + aC,’
D vV D? 4 36a BTy,
K) = —— .
QoK) = 2 4 YA (8.41)

165



All coefficients used in the model are reported in Table 8.6. Using these numnerical values,
we present in Fig. 8.5 the temperature dependence of the order paramecter Q. As expected
for a first order phase transition, the order paramecter shows a discontinuity at the critical
temperature Ty;. In Fig. 8.6, we present the temperature dependences of the strains, which

also show a discontinuity at Tn;.

Table 8.6: Values of the coupling and other constants

(l T‘() B D (5] 62 /))1

1 -10 0.183 -3.80 7.97 x10®> -1.24 x10° 874

25
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o
)]
Y
o
-
[6)]
N
o

Figure 8.5: Temperature dependence of the the order parameter (Q, (Eq. 8.36)
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Figure 8.6: Temperature dependence of the strains (Eq. 8.29)

In Fig. 8.7, we cowpare the temperature dependence of the relative acoustic velocity
variations and nunerical predictions obtained for a continuous and a first order ferroelastic
transition. For a second order phase transition, one can set B = 0 and obtain the temperature
dependence of elastic constants as reported in Ref. [1]. The experimental data are represented
by continuous lines, whereas the numerical predictions of a first and a second order Landau
model are shown using dotted and dashed lines, respectively. For clarity all modes are plotted
in separate graphs. In Fig. 8.7, a) and b) show the transverse T, P, and T, P, which mainly
depend on Cgg, whereas ¢) and d) show the longitudinal modes L, and Ly, which depend on
C'1y. Finally, we present in e) and f) the transverse modes T, P, and T, P. the velocities of

z

whicli are dominated by Clyy.
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The predictions of the first order model (dotted lines in Fig. 8.7) are in good agreement
with the data (continuous lines) above Ty except for the transverse mode T, P.. However, a
good qualitative agreement is still obtained for the model. In general, the softening observed
on the modes presented in Fig. 8.7 is due to the bilinear coupling between the order parameter
component and strains (Eq. 8.27). At Ty, the steep increase observed in the acoustic mode
velocities below Ty is qualitatively reproduced for the modes T, P,, T,P,, T, P., and L,
(see the inset of Fig. 8.7d). However, for other modes this hehavior is not well captured.
In order to reproduce this steep increase, higher order coupling terms might be necessary.
In the inset of Fig. 8.7c, we notice a change of slope in the velocity of the longitudinal
mode L, just before Ty;. This behavior, which is accounted for by the model, is due to the
linear-quadratic coupling 8;(e; + e2)(@% + @3). The change of slope just above Ty is also
apparent in other modes, which cannot be reproduced with the model. Finally, below Ty,
the numerical predictions qualitatively capture the temperature dependence of all modes.

The predictions of the second order model (dashed lines in Fig. 8.7) can account for the
temperature dependence of some of the modes. However, there are noticeable differences.
According to the second order model, the transverse mode T, P, should show complete soft-
ening at Ty, which significantly deviates from our experimental observations. (continuous
line in Fig. 8.7a). The other difference between the numerical predictions and data is that
the model does not predict an abrupt increase at Ty in any of the modes, as expected for a
second order, or continuous phase transition (see Sec. 8.1). The model also fails to reproduce
the temperature dependence of the transverse modes T, P, and T, P, below Ty.

Considering that the first order model is more compatible with the data (Fig. 8.7), we
conclude the transition at Tl is a first order pseudoproper ferroelastic transition. In order
to obtain more quantitative agreement between the model predictions and data, we may
have to include higher order coupling terms. The fact that the transition is pseudoproper

ferroelastic raises the question about the nature of the order parameter (0,. According to

169



Ref. [27], the magnetic order between Ty, and Ty, is collinear with the magnetic moments
oriented along the » axis. In this case, a bilinear coupling term, which accounts for the
softening observed on the acoustic modes (Fig. 8.7), is not allowed due to time reversal
symmetry. Therefore, the microscopic mechanism that leads to the ferroelastic transition in
CuCrOs still remains unresolved. A possible mechanism in CuCrQO, is investigated in the

next chapter.
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Chapter 9

Raman Measurements on CuFeQO»,

CuCr0Oy, and CuCrSs

This chapter presents the Raman measurements on CuFeO, and CuCrO,. As mentioned
before, sound velocity measurements on CuFeO, [1, 31] show that the magnetic transition
at Ty; = 14 K is induced by an R3m — C2/m structural transition. According to the
Landau analysis [1], the structural transition at Tnx; = 14 K is identified as pseudoproper
ferroclastic. Our sound velocity measurements indicate that the isostructural compound
CuCrO, also undergoes an B3m — C2/m ferroelastic transition at Ty, = 24.3 K (except
that the transition in CuCrOs is first order). Since the order parameter of an R3m — C2/m
structural transition belongs to the F, irreducible representation [34], the transitions in both
compounds could be driven by a Raman active £, mode. Therefore, we performed Raman
scattering measurements on CukFeO, and CuCrO, down to T" = 5 K. Another frustrated
magnet, CuCrS,, also shows an R3m — C'/m symmetry lowering transition at the antifer-
romagnetic transition temperature Ty = 37.5 K. In that case, the order parameter should
belong to the £ irreducible representation of the R3in space group [50]. Thus, we also mea-

sured the Raman modes in this compound to determine if the transition at Ty is driven by
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a soft optical mode.

9.1 CuFeO, and CuCrO,

We first present polarized room temperature spectra of CuFeQ, and CuCrO, and identify
the symmetries of Raman modes in both compounds using Raman tensors. Then, we present
the data obtained between room temperature and 5 K and analyze the results to possibly de-
termine the order parameters of the ferroelastic transitions observed in CuFeO, and CuCrQO,

at low temperatures.

9.1.1 Room Temperature Measurements

Delafossite compounds (space group R3m) such as CuFeO; and CuCrO, have one formula
unit per unit cell with a total of 12 possible vibrational modes, A4,, + E;, + 34,, + 3F,
[113]. A modes correspond to vibrations of the Cu-O bonds along the hexagonal ¢ axis
whereas £ modes describe the vibrations in the basal planc (xy plane). Due to the existence
of an inversion center, the classification of normal modes is done in terms of their parity
[113]. Odd modes, denoted by the subscript u, refer to infrared active or acoustic modes
while even modes, denoted by the subscript g, are Raman active. In order to determine the
symmetry of the modes observed in CuFeO, (Fig. 9.1) and CuCrO, (Fig. 9.2), we performed
polarized Raman scattering measurements at room temperature.

Prior to experiments, CuCrOq and CuFeO, samples were mechanically polished as de-
scribed in Chapter 6. In the first set of experiments, performed with the Ar™ laser (A = 514.5
um), the incident beam powers for CuFeO, and CuCrO, were 50 mW and 28 mW, respec-
tively. In the second set of experiments on CuFeO, and CuCrO,, performed by Dr Kim
Doan Truong at the University of Sherbrooke, a HeNe laser with a wavelength of 632 nn

was used. These measurements were performed using a micro Raman setup with a resolution
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of 0.5 cm™!. Apart from the optical elements, the experimental setup consisted of a double

grating spectrometer (Jobin Yvon, model Labram-800) and a liquid-nitrogen cooled CCD
detector. In order to minimize sample heating, 0.3 mW was focused onto a 3 pm spot size
(4000 W/cm?). All room temperature measurements were performed with a backscattering
geometry. The experimental scattering geometries are represented using the Porto notation,
ki(eies)ks. In Figs. 9.1 and Fig. 9.2, the notation z(zy)Z indicates that the incident light
propagates along the z axis with a polarization along the z axis while the scattered light
propagates along the Z axis with a polarization along the y axis. In addition, the label 2’
designates a direction making an angle 6 relative to the z axis, where 8 = 50° for CuFeO,
while 8 = 15° for CuCrO,. The label i designates a polarization direction in the yz plane.

To our knowledge, no polarized Raman measurements on CuFeQ, single crystals have
been reported so far. At room temperature, the spectrum taken with the Art laser using
unpolarized (u) scattered light, Fig. 9.1a, shows modes at 349 cm™! and 690 cm ™! in agree-

nent with results obtained on polyerystals [114, 41]. The intensity of the mode at 690 cm™!

I remains visible in both

disappears with cross (y'z) polarization while the mode at 349 cin™
(y'u) and cross (y'x) polarizations. Measurements with the He-Ne laser show Raman modes
at 351 em™! and 692 em™! and a broad band at 496 em™! (See Fig. 9.1b). The spectra
obtained with the HeNe laser has a much better signal-to-noise ratio than those obtained
with the Ar* laser. This is because in the Hen-Ne setup more scattered light is collected by
the large collection cone of the scattered light provided by a lens with a small f-number and
short focal length in the micro-Raman setup using the HeNe laser. The mode at 692 cin !
has a strong intensity in the parallel polarization (yy) and disappears in the cross polariza-

1is very weak which implies that the He-Ne

tion (yx). The intensity of the mode at 351 cm™
excitation line at 632.8 nm is not in resonance with the vibrations associated with this mode
as observed in LiNiO; [115]. Despite its weak intensity, it is visible in both polarizations.

Moreover, this mode was reproducible down to low temperatures (see Fig. 9.4b).
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Figure 9.1: Polarized Raman Spectra of CuFeOy at room temperature obtained using the
(a) Ar* (A = 514.5 nm) and (b)He-Ne (A = 632.8 nm) lasers. See text for the description of

the scattering geometries. In the spectra obtained with the Ar™ laser, a plasma line located

1

at 521 em™' is removed for clarity.
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The symmetry of each mode can be identified using the Raman scattering tensors asso-

ciated with the trigonal point group 3m (Eq. 9.1 and 9.2) [78, 81],

a 0 0
Ap(x): {0 a 0 (9.1)
00 b
and
c 0 0 0 —¢ —d
Ecx): [0 —¢c d |, EBay:| = 0 0 |- (9.2)
0 d 0 —d 0 0

According to Egs. 9.1 and 9.2, a cross polarization configuration such as z(y.r)z allows only
F, modes, while a parallel polarization configuration like z(zz)Z allows the observation of

1

E, and Ay, modes. Therefore, the mode symmetries are assigned as wya,, = 692 cm ™" and

wg, = 351 cm™L.

In addition to the vibrational modes observed in CuFeQOs, a broad band located at 496
em ™! s also revealed using both laser sources. In the unpolarized (y'u) spectrum obtained
with the Ar? laser, the intensity of this feature is within the background noise. In the parallel
polarized spectrum obtained with the He-Ne laser, the broad peak is clearly observed down
to 5 K (Fig. 9.4). This broad band is also apparent in the spectra down to 80 K obtained on
polyerystals [41]. Polarized spectra obtained with both excitation lines show that the mode
at 496 em ' has A, symmetry.

Similar to the case of CuFeQOs, polarized Raman spectra of CuCrQOs are not available in
literature. In Fig. 9.2, we present polarized Raman spectra of CuCrO, obtained at room
temperature. In these spectra, P indicates plasma lines. As in the case of CuFeO,, CuCrO,
should show two Raman modes. However, with unpolarized (u) scattered light (not shown)

or a parallel polarization (xz) configuration with the Art laser (Fig. 9.2a), we observe modes

at 104 em ™!, 207 em™!, 382 em ™! 457 em ™!, 538 em !, 557 em Y, 623 em ™!, 668 cm !, and
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Figure 9.2: Polarized Raman Spectra of CuCrO; at room temperature obtained using (a)

the Ar* and (b) He-Ne lasers. P indicates plasma lines. See text for the description of the

scattering geometries.
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709 em~'. Using the He-Ne laser (Fig. 9.2b), a similar spectrum is obtained except for the

1

absence of a mode at 382 cm™! and a new mode at 359 em™!. The symmetries of these

modes can be assigned according to the polarized Raman measurements shown in Fig. 9.2.

I are observed in both polarization

Since the modes at 104 em™!, 212 em™!, and 457 cin~
configurations, these modes belong to the E, irreducible representation. The other modes
are therefore assigned to A, representation since their intensities are weak or disappear in the
cross polarization configuration. So far, there have been four publications reporting Raman
spectra on CuCrO, powder samples [42, 43, 44, 45]. Two of these publications show modes at
207 em™!, 444 em ™!, and 691 em ™! [42, 43]. In addition, one of these works shows additional
features with weak intensities at ~540 cm™" and ~560 cm ! [43]. Other publications [44, 45]
reveal Raman modes only at 452 cm™! and 703 cm™!. By comparison, our polarized Raman

U and

results indicate that the Raman modes in CuCrO; correspond to wy,, = 709 cm™
wg, = 457 cm™ L.

As nientioned earlier, CuFeO, and CuCrO, should only have two Raman modes. How-
ever, both compounds show additional features (Figs. 9.1 and 9.2) similar to those observed
in other delafossite compounds such as CuAlO, [116] and CuGaO, [113]. In agreement
with ab initio calculations, these additional modes in CuAlQ, are attributed to non-zero
wavevector phonons which are normally forbidden by Raman selection rules [116]. As sug-
gested, the selection rules are possibly relaxed by defects such as Cu vacancies, interstitial
oxygeus or tetrahedrally coordinated Cr*? or Fe™ on the Cu site [116]. Thus, the additional
features observed in CuFeO, and CuCrQg could have an origin similar to that observed in
CuAlO, [116] and CuGaO, [113]. They could also be crystal field excitations, which are
due to electronic transitions between two orbitals of an atom in a crystal field. The crystal
field is siniply the electric field arising from the electrons in the orbitals of neighboring ions,
which can lift the degeneracy of atomic orbitals. In ABO, delafossites such as CuCrO; and

CuFeQs, magnetic (Cr’* and Fe3*) ions are in the center of an octahedron formed by the
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oxygen ions, leading to the overlaps of the 3d orbitals of the magnetic ion and the p orbitals
of the oxygen ions. This overlap results in energy splitting in the d orbitals (between e, and
ty, orbitals). Crystal field excitations were revealed in the Raman spectra of a number of
geometrically frustrated magnets including Ry TiyO7, where R = Th, Dy [117]. In Th,Ti,Ox.
the Raman shifts of these excitations range between 7 em™! and 135 cm ™! whereas the crys-
tal field excitation observed in Dy, TigO7 appear at 287 em™!. All these excitations are due

to R* ions [117].

9.1.2 Low temperature measurements

Low temperature measurements on CuFeQ, and CuCrQ, were performed using the setups
described in the previous section. Measurements using the HeNe laser were performed by Dr.
Kim Doan Truong at the University of Sherbrooke. For these measurements, a backscattering
geometry with an incident beam power of 0.3 mW was used. With the Art laser, the
scattering geometry for low temperature measurements was different from that used at room
temperature. Fig. 9.3 shows a top view diagramn of the sample orientation with respect to
the incident beam and the direction of observation for low temperature measurements. The
crystallographic axes of the samples arc also shown. The incident light propagates at 25°
relative to the normal (77) of the sample surface. The scattered light was collected at an angle
of 90° with respect to the incident light. In CuFeQ,, the focal lengths of the focusing and
the collecting lenses were 12 em and 20 em (f/4). respectively. For CuCrQO, measurements,
the focal lengths were 20 em (f/4 and f/5. respectively). Such a scattering geometry was
preferred over the backscattering geometry in order to avoid the reflected beam from the
cryostat windows.

Uunpolarized Raman spectra of CuFeQ, obtained using 514.5 nin and 632.8 nm radiation

are shown in Fig. 9.4. Spectra using the Art laser were obtained down to 15 K. As a result,
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Figure 9.3: A top view of the CuFeQ, and CuCrO, sample orientation relative to the incident
and scattered light for low temperature measurements performed with the Art laser (A =

514.5 nm).

we could not obtain spectra below Ty; = 14 K with this excitation line. However, using
the He-Ne laser, the temperature dependences of the Raman modes were obtained down to
5 K. Spectra obtained with both excitation lines show similar behavior. The intensitics of
all modes increase in accordance with the decrease in the Raman linewidths. No significant
change in the Raman shifts was observed in the temperature rénge studied. Duc to the
R3m — C2/m structural transition at Ty, [1, 30, 55, spectra obtained below Ty, with the
He-Ne laser should normally show additional Raman modes. The 4;, mode should transform

into an A, mode for the monoclinic space group ("2/m whereas one would expect

179



(@)

A=5145nm

P

Intensity (Arb.)

(b)
CuFe02 A=632.8nm
)1
_ |
[ Eg |
15K F |
ll 5K
10 K
80 K !
i 20 K
110 K |

IV NTETE YT PRV Saw PR )

300 400 500 600 70Q 800390

Stokes Shift (cm™)

165 Kt

190 K|

255 K |

290 K[,

30K

50 K

100 K

200 K

290 K

400 500 600 700 800
Stokes Shift (cm™)

Figure 9.4: Unpolarized Raman spectra of CuFeO, using (a) the Ar* laser (A = 514.5 nm)

(b) HeNe laser (A = 632.8 nm) obtained down to 15 K and 5 K, respectively. The HeNe laser

measurements were performed by Dr. Kim Doan Truong at the University of Sherbrooke.
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the splitting of the E, mode into an A, and B, mode [81]. However, no such splitting is
noticeable in the monoclinic phase. We attribute this discrepancy to weak resonance with
the He-Ne excitation line, which results in a weak intensity for the £, mode and makes it
difficult to resolve any possible splitting. Another possibility is that the temperature of the
sample remains above Ty even with a beam power of 4000 W /cm?.

Unpolarized Raman spectra of CuCrO, obtained with the Ar™ and He-Ne excitation
lines are shown in Fig. 9.5. While the spectra obtained with the 514.5 nm laser line do not
show any significant changes with temperature, the spectra obtained with the HeNe laser
display small differences as the temperature is decreased from room temperature down to
8 K. With a close look at the E, mode (458 cmi™!), one can observe that its tail becomes
broader on the right hand side below 160 K (Fig. 9.5b). With further cooling, an additional
mode is easily distinguished and its frequency increases to 470 cm™! at 8 K. This mode is
also observed with parallel and cross polarization configurations as shown in Fig. 9.6. It
should be noted that the additional mode is unlikely due to the splitting of the E, mode
since neutron diffraction [30, 55], magnetostriction [33], and sound velocity measurements
(Fig. 7.1) do not show any anomaly that could be associated with a structural deformation
in the 150 K-200 K temperature range. This mode could be due to crystal field excitations or
relaxation of the Raman selection rules because of defects [113, 117]. Moreover, the spectra
of CuCrO, at 8 K and 15 K (Fig. 9.5b) deserve some attention. Unlike the spectra at
other temperatures (above Ty ), they develop a broad background feature centered at ~550
em™!. Since it appears below Ty, we could associate it with magnon modes arising from
a proper screw ordering observed below Ty, [63, 118]. As seen in Fig. 9.6,the broad band
is observed using both parallel and cross polarizations. Finally, despite the evidence for an
R3m — C2/m ferroelastic transition at Ty;  24.3 K in CuCrO, presented in the carlier
chapter, no additional Raman modes are observed below this temperature. Local heating

due to incident beam power density (4000 W/cm?) is a possibility (see Sec. 7.1.2);
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Figure 9.5: Raman spectra of CuCrO, using (a) the Ar™ laser (A = 514.5 nin) (b) HeNe laser
(A = 632.8 nm) obtained down to 18 K and 8 K, respectively. The HeNe laser mecasurements

were performed by Dr. Kim Doan Truong at the University of Sherbrooke.
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however, the broad band observed in the spectra at 8 K and 15 K (Fig. 9.5) clearly shows
that the sample temperatures for these spectra were below Ty;. If the additional Raman
modes associated with the monoclinic phase below Ty, are weak, they might be suppressed

by the broad magnon band.
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Figure 9.6: Polarized Raman spectra of CuCrO, obtained at 8 K using the HeNe laser (A =

632.8 nm). Data were collected with Dr. Kim Doan Truong at the University of Sherbrooke.
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The temperature dependence of the Raman modes in CuFeQO, are presented in Fig. 9.7.
Results obtained using both setups show the same variations with temperature; i.e., the
frequency of hoth modes increases as the temperature is reduced. The additional mode at w =
495 em 7! shows similar behavior with decreasing temperature to those of the Raman modes
(not shown). According to the spectra obtained with the Ar* laser (squares in Fig. 9.7). E,
and Ay, mode frequencies show no significant increase between room temperature and 15 K.
On the other hand, the results obtained with the HeNe laser (triangles) show that the E,

! respectively. The differences in

and A, mode frequencies increase by 2 en™! and 5 em™
the frequency variations obtained from two sets of measurements could he attributed to local
heating. Comparing the temperature dependences of the Raman shifts in CuFeO, (Fig. 9.7)
to earlier results obtained between 400 K and 80 K [41], we see that results obtained with
the HeNe laser are in quantitative agrecment. According to results obtained with the HeNe
laser, the frequencies of the A;, and E; mode in CuFeO, show no significant, variation below
Ty, = 14 K. In addition, the linewidths of all modes in CuFeQ, decrease as the temperature
is decreased (not shown).

The frequency variations of the E,; and A4;, modes in CuCrO, arc shown in Fig. 9.8.
Results obtained with the HeNe laser (triangles) show that both mode frequencies increase
hetween 290 K and 80 K. While the frequency of the 4, mode remains constant between 80
K and 8 K, the frequency of the E, mode decreases slightly in this range. Results obtained
with the Ar* laser (squares in Fig. 9.8) show the same frequency variation down to 160 K.
Below 160 K, both modes show a drop in frequency. While the F; mode decreases by 1
cm !, the drop in the A,, inode frequency is 2 em~!. The origin of the differences below 160
K obtained with the both laser sources is not clear. Interestingly, Raman spectra of CuCrQO,
obtained with the HeNe laser shows the appearance of a new mode below 160 K (Fig. 9.5).

According to group theory [34], E,-symunetric optic modes could be associated with the

order parameters of the ferroelastic transitions at Ty in CuCrO, and CuFeOs [1]. A typical
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Figure 9.9: Figure is from Aktas et al. [5]. Soft optic mode in the ferroelastic compound

RbLil;(SO4)4.

example of a soft optic mode is shown in Fig. 9.9, where the squared frequency of the B-
symmetric soft optic mode in the ferroelastic RbLiH3(SO4), compound varies linearly with
temperature, with a slope change at Ty; [5. On the other hand, £, modes in CuFeO,
and CuCrO;, show an increase in frequency with no sign of softening. The temperature
behavior of both modes in CuFeO; and CuCrQO, is rather attributed to anharmonic phonon-
phonon interactions, in agreement with the analysis of Pavunny et al. [41. With a decrease
in temperature, anharmonic phonon-phonon interactions are reduced due to a decrease in

phonon occupation number. As a result, the strength of the atomic force constant increases,
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leading to an increased frequency shift. Based on these results, we conclude that none of
the Raman modes in CuFeO; and CuCrQ), can account for the pseudoproper ferroelastic
transitions ohserved at Ty = 14 K in CuFeO, [1] and at Ty, = 24.3 K in CuCrO,. While
these results do not refute the nature of the ferroelastic transitions in CuFeQO, [1] and CuCrO,

(Figs. 7.1-7.2 and 8.7), they leave the driving mechanisms unresolved.

9.2 Raman scattering measurements on CuCrS,

The triangular lattice antiferromagnet CuCrS, has one formula unit per unit cell, resulting
in 12 vibrational modes, 44, + 4F [51]. Since the point group (3m) of CuCrS, lacks in-
version symmetry, all modes are Raman and infrared (IR) active [51]. The A; modes are
associated with the displacements of the Cu and Cr atoms along the ¢ axis with the S atoms
moving in the opposite direction. On the other hand, degenerate E modes correspond to the
displacements perpendicular to the z axis.

Measurements were performed on single crystals of CuCrS, provided by Dr. Julia C.
E. Rasch at ETH Zurich (Now at VDI/VDE Innovation and Technology GmbH, Berlin).
CuCrS; samples have a platelet geometry with a large area in the basal plane and 200 g
thick along the ¢ axis. Measurements were performed using the 514.5 nin line of a multi
mode Ar* laser with a beamn power of 25 mW.

Fig. 9.10 shows Raman spectra of CuCrS, obtained hetween room temperature and 13 K.
All spectra were collected using backscattering geometry at an oblique angle of incidence

relative to the surface normal of the sample. The scattering geometries can be represented

/ ’

with the Porto notation as z'(su)z’ and z'(pu)z’. Here 2’ corresponds to a direction at an
angle of 30° relative to the ¢ axis. The notations p and s correspond to light polarizations
parallel and perpendicular to the plane of incidence, whereas u corresponds to unpolarized

scattered light. (The polarizations s and p do not necessarily correspond to cither of the
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crystallographic axes since the crystallographic directions in the basal plane in the CuCrS,

are unknown). In Fig. 9.10, the spectra plotted with the same color are collected at the same
temperature, which is indicated on the right hand side of the spectrum pair. In each pair of
spectra, the lower spectrum is collected with {su) polarization whereas the top spectrum is
collected with pu polarization. Spectra at all temperatures show two strong modes at 253
em” ! and 319 em™!. In addition, a low frequency mode partially hidden in the tail of the
laser line is observed at 57 emn™! with (su) polarization. Another mode, which is not easily
seen at room temperature reveals itself as the temperature is decreased. A Lorentzian fit to
the data gives the frequency shift of this mode as 224 em™! at 250 K. In order to determine
mode symmetry, we compare our results to earlier Raman measurements by Abramova et al.
[51]. They also calculate expected Raman frequencies using a valence force field model and
simulate the Raman spectra of CuCrO, at room temperature. We refer to these calculations
as simulations, which show 8 Raman modes: 4 A; + 4 F [51]. Two of these modes with
A, and FE symmetries are central lines. Three of these modes are located at 198 em™!, 240
em ', and 307 cm ™! and belong to the A, irreducible representation (IR) [51]. The remaining
three modes have £ symmetry with frequency shifts at 99 cmm™!, 211 em™!, and 257 ¢m™L

Raman measurements by Abramova et al. [51] reveal three Raman modes. Similar to our

1 1

results, two of these nmodes are located at 257 em ' and 322 em ™ and are identified as E
and A, modes, respectively. The third mode appears as a shoulder of the 257 cm™! line and
its symmetry is not specified [51]. Comparing our results to Raman spectra and calculated
Raman shifts [51], we identify the modes in Fig. 9.10 as wg = 252 em™! and wy, = 319 em ™',
and wg = 57 em™!. The mode observed at 224 cm™! could belong to either of the irreducible
representations £ and A;, even though simulations [51] show that A; mode located at 240
cm™! has a weak intensity. Thus, the mode at 224 is more likely to be an E mode. The

remaining A; mode which is not observed also has a weak intensity according to simulations

[51], which might explain why the spectra of CuCrS, do not reveal all Raman modes.
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Figure 9.10: Raman spectra of CuCrS, obtained between 295 K and 13 K.
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As the temperature is reduced, Raman spectra do not show significant change except

for the appearance of a new mode at 418 cm™' at low temperatures (Fig. 9.10). This mode
was observed at low temperatures in the previous measurements and was considered to be
due to an electronic transition [51]. As in the case of CuFeO, and CuCrO; (Sec. 9.1.1 and
9.1.2), this mode could be due to crystal field excitations or defects [113, 117]. The broad
band at 215 cm™! and the low frequency E mode at 57 cm™! become more noticcable at
lower temperatures. Below the antiferromagnetic and R3m — Cm structural transition
temperature Ty = 37.5 K [47], spectra do exhibit the splitting of the £ mode. Local heating
is ruled out due to the low incident beam power density (=5000 W/cm?). We conclude that
the resolution in our experiments (4 em™') is not enough to observe the splitting.

The frequency shift vs. temperature of the four modes is plotted in Fig. 9.11. All modes
shift to higher frequencies with decreasing temperature, between 295 K and 90 K and reinain
almost constant or increase slightly below 90 K. In addition, none of the modes seem to be
affected by the structural and antiferromagnetic transition at T. These results are similar
to those obtained in earlier measurements [51]. However, there are several differences worth
mentioning. According to the previous report [51], the broad A; mode (at 215 cin™! at room
temperature) slightly decreases with a decrease in temperature. In addition, they observe a
splitting in the A; mode observed at 319 cm™! below 190 K [51]. The frequency separation of
the two modes at 78 K is only 3 em™! [51], which is smaller than our experimental resolution
(4 ein™1). Although a minimum at the frequency shifts of the £ modes is noticeable at 190
K, we need more data points around this temperature to reach any conclusion. Considering
that the frequencies of all the modes increase with decreasing temperatures, similar to those
of CuFeOy and CuCrO,, we attribute the temperature behavior to thermal contraction
anharmonic phonon-phonon interactions. As discussed in Sec. 2.2, Aizu [7, 49] classified a
R3m — Cm structural as a possible ferroelastic transition. The order parameter of such a

transition should belong to the E irreducible representation. QOur results show that none of
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the E-symmetric Raman modes in CuCrS, are associated with the order parameter of the

antiferromagnetic and structural transition at Ty.




Chapter 10

Summary and conclusions

In this project, we studied the elastic and structural properties of triangular lattice antifer-
romagnets CuCrO;, CuFeO,, and CuCrS, to investigate the role played by the spin-phonon
coupling in the magnetic and multiferroic properties of a large class of geometrically frus-
trated magnets. The emphasis was put on CuCrO, for comparison with CuFeO, which was
extensively investigated using ultrasonic velocity measurements [1, 3, 31]. Our study consists
of three major parts.

The first part was to determine the elastic properties of CuCrO, and further investigate
the elastic properties of CuFeQ,. Similar to results obtained on the acoustic modes of CuFeO,
[1], ultrasonic velocity measurements on CuCrO, show that all acoustic mode velocities de-
crease as the temperature is reduced down to the first antiferromagnetic transition observed
at. Ty = 24.3 K. The decrease observed in the acoustic mode velocities corresponds to soft-
cning of the clastic constants Cgg, C1, and Cyy. Particularly, the softening observed in the
transverse mode T, P, indicates a ~ 35% reduction on the elastic constant Cgg at T relative
to its value at room temperature. Our analysis of the ultrasonic velocity measurements on
CuCrO; using a Landau model indicates that the data are consistent with an R3m — C2/m

pseudoproper ferroelastic transition at Tyq. In this context, the order parameter, which
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belongs to the two dimensional E, irreducible representation of the trigonal 3m point group

(R3m space group), bilinearly couples to spontaneous strains e, = & (e; — e, eg) + d2(e4, €5)
and gives rise to softening on the acoustic modes with a nonlinear temperature dependence.
In the model, a linear-quadratic coupling term (3 (e, + e2){Q? + Q3)) is used to account for
the drop in the velocity of the longitudinal L, mode just before T,. In addition, according
to the model, the steep increase in the acoustic velocities below Ty, is due to a discontin-
uous change in the order parameter at the ferroelastic transition at Ty, characteristic of
first order phase transitions. More importantly, the incomplete softening of the transverse
mode T, P, is also due to the first order nature of the pseudoproper ferroelastic transition
at Ty in CuCrOy. In a second order ferroelastic phase transition transition, one would
expect complete softening in this mode (T, P,) as suggested in the case of CuFeO, [1]. Our
Brillouin scattering measurements performed on CuFeQO, to determine if this mode shows
complete softening were not successful. Due to the opacity of CuFeQ,, Brillouin measure-
ments show only surface acoustic modes propagating in the xy and zz planes with a velocity
that depends on the elastic constants Cyy and C33. As a result, we could not confirm the
second order nature of the pseudoproper ferroelastic transition in CuFeO,. Brillouin scat-
tering measurements which were also performed on CuCrO; for comparison with ultrasonic
measurements show softening of the acoustic modes. However, local heating, due to incident
beam power, does not allow us to observe the actual softening of the acoustic modes in
CuCrO,y. Even though low temperature Brillouin measurements were not conclusive, room
temperature measurements performed using reflection and backscattering geoinetries pro-
vided us with four of the six elastic constants in CuCrOy. The values of the elastic constants
were used to fit the model to the experimental data.

In the second part of the study, we determined the magnetic phase diagram of CuCrO, for
magnetic fields applied along the [110] and [110] directions (hexagonal basis). Measurements

to determine the magnetic phase diagramn of CuCrO, were performed simultanecously on the
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€(110] dielectric constant and velocities of the L;110], Ti1g oy, and Ty % acoustic modes

(hexagonal basis). These measurements show zero-field transitions at Ty, = 24.3 K and
Tno = 23.8 K, below which ferroelectricity is induced by a proper screw spin ordering. In
adldition, measurements with a magnetic field along the [110] direction confirm the first order
transition that was previously observed at low temperatures with magnetization, dielectric
constant and polarization measurements [4]. This first order transition, which is attributed
to a 90° flop in the spin-spiral from the (110) plane to the (110) plane, is observed from low
temperatures at H =5.2 Tup to T = 23.7 K at H = 4.4 T. Measurements for fields along
the [110] suggest that the minimum in the velocity of the longitudinal L, mode could be due
to the field dependence of magnetic susceptibility [107]. Our dielectric and sound velocity
measurements with fields along the [110] direction do not indicate a spin flop transition.
However, anomalies observed in the velocity of the T}y Fjiig) mode at H ~5 T suggest a
reorientation in the magnetic domains, in agreement with earlier studies [4].

Assuming a collinear magnetic order between Ty, and Ty, [27], since bilinear coupling
between magnetic moments and strains breaks time reversal symmetry, the order parameter
cannot be associated with magnetic moments. Therefore, in the last part of our study we
investigated the temperature dependence of Raman modes in CuCrO, and CuFeQ, to pos-
sibly determine if the order parameters of the R3m — C'2/m ferroelastic transitions at Th,
in CuFeO, [1} and CuCrO, are associated with an E,-symmetric Raman active optic mode.
Since the R3m — C'in structural transition at Ta; = 38 K in CuCrS, could be driven by an
E-symmetric Raman mode, we also measured Raman modes of CuCrS,. Raman measurc-
ments on all compounds show that mode frequencies increase with decreasing temperature
in accordance with anharmonic phonon-phonon interactions. These results clearly indicate
that none of the Raman active £, modes observed in CuFeO, and CuCrO, drive the pscu-
doproper ferrcelastic transitions observed at the Néel temperature Ty,. Thercfore, the order

paramecters of the ferroelastic transitions at Th; in CuFeQ, and CuCrQOs arce still unknown.
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Similarly, CuCrS, does not have any soft optic modes that could be associated with the
structural transition at Ty.

Our detailed investigation on the elastic properties of CuCrO, suggests that a ferroclas-
tic transition at T releases the magnetic frustration and stabilizes the antiferromagnetic
transition at the same temperature. Another important role of the ferroelasticity in CuCrO,

can be seen if one considers that spin driven ferroelectricity usually appears in low symmetry

crystals. The ferroelastic transition reduces the symmetry of the erystal from trigonal (3m)

to monoclinic (2/m) at Txy, while at T the proper screw spin structure lowers the crys-
tal symmetry to the monoclinic point group 2, inducing a ferroelectric polarization. Thus,
a similar ferroelastic transition can be expected in other delafossites such as AgCrO; and
LiCrO, [26].

In Chapter 8, we analyzed the elastic properties of CuCrO, using a Landau model which
ignores the magnetic degrees of freedom. For a complete quantitative analysis and under-
standing of magnetoeleastic coupling and its role in CuCrO, and other delafossites, the free
energy has to be expanded to include magnetoelastic coupling terms and possible coupling
between strains and magnetic moments. Using the complete model, one can also deter-
mine the nature of magnetoelastic coupling at the spin flop transition. Finally, our acoustic
velocity measurements as a function of magnetic field show that the ultrasonic pulse ccho
method can he a useful tool to identify and distinguish between a spin flop transition and

spin reorientation.
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