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Abstract

Elastic and structural properties of triangular lattice antiferromagnets CuCrQ,, CuFeQ,,
and CuCrS, were investigated to elucidate the role played by spin-phonon coupling in the
magnetic and multiferroic properties of a large class of triangular lattice antiferromagnets.

Using DBrillouin scattering, five of six elastic constants of CuCrQO, are determined at room
temperature. Low temperature elastic properties of CuCrQOs are extensively investigated with
the ultrasonic pulse echo method. According to these measurements, the elastic constants
C11, Caa, and Cgg show softening as the temperature is reduced down to the antiferromagnetic
transition temperature Ty; = 24.3 K. The Landau analysis of the ultrasonic data indicates
a first order pseudoproper ferroelastic transition at Tpy,, where magnetic moments can act
as a secondary order parameter. The transition corresponds to a structural change from the
tetragonal point group 3m to the monoclinic point group 2/m. In addition, the symmetry
lowering at Txy secms to aid the spin-driven ferroelectricity below Thvo = 23.8 K, at which
the crystal symmetry should change from 2/m to 2. The existence of Te is confirmed by
simultaneous measurements of the dielectric constant €[10) and acoustic modes.

Unlike CuCrOg, isostructural CuFeO, seems to show a second order 3m — 2/m fer-
roelastic transition coincident with the antiferromagnetic transition at Ty, = 14 K [1]. In
order to confirm if the transition is second order, Brillouin scattering measurcnents were
performed on CuFeO,. Due to the opacity of CuFeQ,, Brillouin spectra show only surface

acoustic modes for waves propagating in the zy and rz planes. The velocity of the modes



depends on the elastic constants Cyy and Css .

Raman measurements were performed to possibly determine if the ferroelastic transitions
at Ty, in CuFeO, and CuCrO, and the R3m — Cm structural and antiferromagnetic
transition at Ty = 38 K in another geometrically frustrated magnet, CuCrS,, are driven
by a soft optic mode. Based on these measurements, the temperature dependencies of
all modes in CuCrO,, CuFeOy and CuCrS; are attributed to anharmonic phonon-phonon

interactions. Therefore, Raman modes in CuCrQO, and CuFeO, cannot account for the

ferroelastic transitions observed at Ty, leaving the driving mechanism of the ferroelastic

transitions uncertain. Similarly, measurements on CuCrS, does not reveal any soft optic
modes.

Finally, simultaneous measurements of the dielectric constant and acoustic velocities of
CuCrO; were performed to determine the magnetic phase diagram of CuCrQO, for magnetic
fields along the [110] and [110] directions (hexagonal setting). For magnetic ficlds parallel to
the [ITO] direction the dielectric constant and acoustic modes show an anomaly at H p,, ~5
T between 2 K and 23.7 K, which correspond to a 90° flop in the spin-spiral plane and electric
polarization. The anomaly observed in the longitudinal acoustic mode propagating in the
basal plaie is attributed to the ficld dependence of magnetic susceptibility. Measurements
performed with magnetic fields parallel to the [110] direction suggest a reorientation in the
spin-spiral plane.

The ferroelastic transition, coincident with the antiferromagnetic transition at Ty; in
CuCrO, as well as acoustic anomalies at the spin flop transition clearly indicate that mag-
netoelastic coupling has a strong impact on the magnetic and multiferroic propertics of
CuCrQO,. For a complete understanding of the role of magnetoelastic coupling on these
properties in CuCrO, and a large class of triangular lattice antiferromagnets, results on the
ultrasonic velocity measurements on CuCrOs have to be analyzed using a Landau model that

includes magnetoelastic coupling terms as well as the coupling between the order parameter

vl




and magnetic moments.
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Chapter 1

Introduction

In the past 20 years, multiferroics have received considerable attention due to their funda-
mental magnetic and electric properties, as well as their potential applications. A material
is called multiferroic if it simultaneously possesses two or more of the ferroic properties: fer-
romagnetism (or antiferromagnetism), ferroelectricity, and ferroelasticity [6]. Ferroelectrics
and ferroelastics are electric and mechanical analogs of ferromagnets. For example, a fer-
roelastic material is defined as a material in which structural domains can be ordered or
switched by the application of homogeneous stress [7]. Similarly, in a ferroelectric mate-
rial, ferroelectric domains can be aligned by the application of an electric field. Combining
two or all of these ferroic properties in one material, as in multiferroics, brings about rich
fundamental physics. Particularly, coupling between magnetic and electric properties (mag-
netoelectric coupling) makes these materials promising candidates for potential applications
such as in data storage devices [8, 9, 10, 11]. For example, magnetoelectric coupling can be
used to design multistate memory devices with electrical writing and nondestructive mag-
netic reading operations [12]. Early discoveries of multiferroics included BiFeOsz, YMnOj,
and BiMnOj [13]. In these materials, ferroelectricity and antiferomagnetism coexist, how-

cver, ferroelectricity appears at much larger temperatures than magnetism because these two



properties appear independently of each other, which leads to weak magnetoelectric coupling

[13]. These materials are classified as type-I multiferroics [10].

Recently, in a new class of magnetoelectric multiferroics, called type-II multiferroics, it
was discovered that a ferroelectric polarization is induced upon the emergence of a mag-
netic ordering [14, 8]. As a result, the magnetic and electric properties are strongly coupled.,
making possible the electrical control of the magnetic properties, and vice versa [13, 15, 16].
Generally speaking, type-II multiferroics can be divided into 2 groups based on the mi-
croscopic mechanism of the multiferroic behavior [10]: materials in which ferroelectricity
appears as a result of a spiral spin order through spin-orbit interaction, and those in which
ferroelectricity appears in collinear magnetic structures through exchange striction [10]. Be-
fore explaining the microscopic mechanism of type-II multiferroics, we illustrate the relevant
maguetic orders in Fig. 1.1. The direction of the expected electric polarization P for each
magnetic order is depicted with thick arrows, whereas the direction of magnetic modulation
(i.e. magnetic propagation vector) is represented by qm. If S; and S; are two neighboring
spins on sites 7 and j, for spiral magnetic orders the cross product of the two spins, S; x S;,
defines the direction of the spin rotation axis. If the spin rotation axis is perpendicular to
the propagation vector g, the resulting magnetic order is called a cycloidal spiral structure,
shown in Fig. 1.1a [15]. If the spin rotation axis is parallel to the propagation vector qum,
then the maguetic order (Fig. 1.1¢) is called a proper screw spiral structure. In Fig. 1.1b,
we also show a collinear spin order in which magnetic moments are parallel (or antiparallel)

to their nearest neighbors.

In the first group of type-II multiferroics, a cycloidal spiral spin order (Fig. 1.1a) as
in ThMnOs3 [14] and DyMnO; [17] induces ferroelectric polarization P through the inverse

Dzyaloshinskii-Moriya (DM) interaction [18, 19] such that

P:ei]- X (Sl XSJ), (11)



a) qn
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Figure 1.1: Schematic illustrations of spiral and collinear magnetic orders and induced elec-

b)

C)

tric polarization: (a) Cycloidal spin order where the propagation vector is perpendicular
to the spin rotation axis can give rise to polarization through inverse DM interaction. (b)
4-sublattice collinear spin configuration can give rise to electric polarization P in the di-
rection of the modulation vector qn,. Collinear spin order can induce electric polarization
through exchange striction. (c¢) Proper screw spiral structure in which the spin rotation axis

is parallel to the modulation vector.



where e;; is a unit vector connecting two magnetic moments S; and S; parallel to the prop-

agation vector of the cycloid structure, gm||€;;. In this case, the induced polarization is
perpendicular to both the propagation vector g and spin rotation axis S; x S; (see Fig.
1.1a). In these materials, due to the correlation between the electric and magnetic degrees of
freedom, the spontaneous polarization can be controlled by an external magnetic field [14].
In ThMnOj3, Kimura ef al. [14] experimentally observed a 90° flop of the electric polarization
by applying a magnetic field between 5 T and 9 T along a direction parallel to the cycloidal
plane.

In the second group of type-II multiferroics, an electric polarization is induced by a
collinear spin order through exchange striction (Fig. 1.1b) [10]. In the collinear 1)) mag-
netic state of frustrated magnets such as CazCoq.-,Mn,Og [20] and DyFeOj [21], the exchange
striction coupling pulls parallel spins toward each other and pushes away antiparallel spins,
breaking the inversion symmetry and producing an electric polarization in the direction of

the magnetic modulation. Microscopically, the local electric polarization is given by [22]
P:po(T‘) SZS]7 (]‘2)

where the prefactor p,(r) depends on the local structure and exists only when the inversion
center between sites ¢ and j is absent [2]. Since the spatial average of p,(r) is zero in
centrosymmetric materials, ferroelectric polarization can be induced by exchange striction
only when the modulation in S, - S, is commensurate with respect to the lattice [2].

It is important to note that multiferroics in which ferroelectricity is driven by a collincar
spin order are rarely discovered [13, 23, 24]. In general, most spin driven multiferroics have
a spiral magnetic order (Fig. 1.1a) in the multiferroic state [13, 15, 16]. By using simple
syminetry arguments, we can explain how a spiral spin order can induce ferroelectricity.
The electric polarization P changes sign on the spatial inversion (r — -r) but remains

invariant on time reversal (¢ — —t). The magnetization M transforms in the opposite



1/ \1/ —3

Left-handed Right-handed

Figure 1.2: Geometrical frustration in a triangular lattice antiferromagnet.

way. While it remains invariant on spatial inversion, it changes sign on time reversal. Like
any maguetic order, a spiral magnetic order breaks times reversal symmetry (t — —t).
In addition, it also breaks spatial inversion symmetry, because upon the application of the
spatial inversion, the direction of the rotation of spins in the spiral plane is inverted. Thus,
in a material in which spins form a spiral order, an electric polarization is allowed [13]. This
makes geometrically frustrated magnets ideal systems for spin-driven ferroelectricity, because
geonietrically frustrated magnets naturally favor noncollinear magnetic orders as discussed
below.

Geometrical frustration occurs on a triangular lattice such as shown in Fig. 1.2. In
Fig. 1.2, magnetic moments (spins) 1 and 2 on the triangular lattice are aligned antiparallel
to each other. However, the third magnetic moment cannot be aligned simultaneously an-

tiparallel to the other two magnetic moments. Therefore, in order to remove this ambiguity,

[o534



the spins adopt a 120° spin configuration and lift the magnetic frustration. In a 120° spin

structure, neighboring spins are at 120° to each other and the magnetic propagation constant
is qn = % Depending on the sign of the single-ion anisotropy term D in the Hamiltonian
H' = —DS?, there are two types of 120° spin structures. For D < 0, the energy of the
system is minimized when the spiral plane is perpendicular to the triangular lattice plane
(easy-axis type). For D > 0, however, the spiral plane is parallel to the triangular lattice
plane (easy-plane type) [16]. Moreover, the spin chirality results in two possible chiral do-
mains, left-handed and right-handed, which leads to additional degeneracy in the ground
state. This geometrical frustration leads to a large number of complex spin configurations

that occur at low temperatures.

1.1 Motivation

Recently, ferroclectricity was observed in several members of geometrically frustrated mag-
nets with the formula ABO,. In this chemical formula, A is a nonmagnetic monovalent ion
such as Cu, Ag, or Li, whereas B is a magnetic trivalent ion such as Fe or Cr. In ABO,
compounds, geometrical frustration is due to their trigonal R3m symmetry, which leads to
interesting spin configurations at low temperatures [3, 25]. Additional studies on CuFeOs,,
CuCrOs. and AgCrO, [26, 27, 28] show that an electric polarization P||[110] is only induced
upou the emergence of a proper-screw spin order (Fig. 1.1). Under this scenario, the usual
inverse Dzyaloshinskii-Moriya (DM) interaction P ~ r;; x (S; x S;) [18, 19] cannot account
for the induced polarization because the propagation vector of the spin modulation is par-
allel to the spin rotation axis (see Eq. 1.1). Exchange striction (Eq. 1.2) cannot account
for the induced polarization either as the magnetic modulation vector in proper screw spi-
rals is incommensurate [2]. An alternative possibility, proposed by Arima et al. [2], is that

the polarization is induced by the variation of the metal-ligand hybridization. However,



ferroelectricity observed in rhombohedral AgCrS, upon a helical spin order suggests that

there might be other mechanisms that are also responsible for the induced ferroelectricity in
these triangular lattice antiferromagnets [29]. This is because the rhombohedral 3m point
group symmetry (R3m space group) of AgCrS,, as opposed to centrosymmetric 3 (R3m)
synunetry implies differences in the cation-anion-cation orbital hybridization and thus in the
magnetic exchanges [29]. Therefore, even though CuFeO, and CuCrO, represent spin-driven
ferroclectrics, the mechanisin leading to magnetoelectric coupling in these compounds is still
uncertain. In the case of CuFeQs,, it is pointed out that spin-lattice coupling is crucial in
the stabilization of the magnetic states at zero field [1, 30, 31, 32]. At Ty, = 14 K, an
R3m — C'2/m structural transition occurs in coincidence with an antiferromagnetic transi-
tion [30]. More importantly, sound velocity measurements and the analysis with a Landau
model show strong cvidence for an R3m — C2/m ferroelastic transition at Ty, indicating
that the magnetic transitions are stabilized by ferroelastic deformations [1, 31]. Thus, un-
derstanding the elastic properties of CuFeO, and CuCrO, might help to elucidate the role
played by the spin-lattice coupling in the magnetic and magnetoelectric propertics of this
class of frustrated systems. The comparison between these two isostructural compounds is
particularly relevant as their magnetic ground states are different. While CuCrO, shows
the magnetoelectric multiferroic behavior in its ground state below Ty, = 23.6 K [26, 27|,
CuFeO, goes into this state under a magnetic field applied along the ¢ axis [28]. Therefore,
we further investigated the ferroelastic transition at T, in CuFeO, and extensively studied
the elastic properties of CuCrQOs.

In the case of CuFeQ,, according to the Landau model [1] the transverse acoustic mode
propagating along the x axis with a polarization along the y axis, T, P, should show complete
softening at Ty;. The temperature dependence of this mode, based on ultrasonic velocity
measurements [1] is depicted in Fig. 1.3 with continuous lines whereas the prediction of the

model is shown with a dashed line. As shown in Fig. 1.3, due to large acoustic attenuation,






the complete softening on the transverse mode T, P, could not be observed. Therefore, we
performed Brillouin scattering measurements on CuFeQ, to determine if this mode shows
complete softening. Brillouin scattering was performed for the first time on this compound
to probe the elastic properties.

For CuCrO,, magnetostriction measurements show evidence for structural deformations
at Tnvi = 24.3 K, coincident with an antiferromagnetic transition [33]. Considering that
CuCrO, is isostructural to CuFeOs at room temperature, CuCrO, might also undergo a
ferroelastic transition at Ty,. However, the elastic properties of CuCrQO, are lacking in the
literature. Thus, in order to possibly determine ferroelasticity in CuCrO,, we investigated
the elastic properties of CuCrOsq using the ultrasonic pulse-echo method as a function of tem-
perature. In addition, for comparison we performed Brillouin scattering measurements down
to 30 K. For further investigation of magnetoelastic coupling, as well as magnetic and multi-
ferroic properties in CuCrQOs,, we performed ultrasonic velocity and dielectric measurements
under a magnetic field parallel to the [110] and [110] directions. With these measurements,
we also determined the magnetic field vs temperature phasc diagram of CuCrO, for fields
applied along the [110] and [110] directions.

According to group theory [34], the order parameter of an R3m — C2/m ferroelastic
transition belongs to the E, irreducible representation of the trigonal R3m space group.
Even though ferroelasticity below T in CuFeO, is confirmed with ultrasonic velocity mea-
surements [1], the order parameter of the ferroelastic transition is still not known. If the
order parameter is the spontaneous strains, the transition is called a proper ferroelastic tran-
sition and the elastic constants show a linear temperature dependence [35, 36, 37]. Due to
the nonlinear temperature dependence of the acoustic modes in CuFeO, (Fig. 1.3) [1], the
transition is identified as pseudoproper ferroelastic, which means that the order paramecter is
not the spontaneous strains but has the same symmetry properties [1, 35]). In this case, bilin-

ear coupling between the order parameter and the spontaneous strains gives rise to complete
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softening on the soft acoustic mode associated with the spontaneous strains. For CuFeQ,,
one would expect that the magnetic moments could be associated with the order parameter,
however, bilinear coupling between the magnetic noments and strains is not allowed due to
time reversal symmetry. One possibility is that the transition is driven by a Raman-active
E, mode as in other pseudoproper ferroelastic materials [5, 38, 39, 40]. Thus, we performed
Raman scattering measurements on CuFeO, and CuCrQO, to test this possibility. While
unpolarized Raman scattering measurements on CuFeQO, were performed between 80 K and
400 K [41], measurements investigating the antiferromagnetic and structural transition at
low temperatures are still lacking. In the case of CuCrO,, only room temperature Ramnan
measurements on polycrystals have been reported [42, 43, 44, 45]. Thus, our Raman mea-
surements represent the first polarized Raman investigation of both CuFeO, and CuCrO, as
well as the first investigation of phonon behavior at low temperatures. Results were recently
published [46].

In order to expand our study to a larger class of geometrically frustrated svstems, we
also studied CuCrS, which belongs to the trigonal R3m space group at room temperature
[H7, 48]. CuCrS, is possibly a spin-driven ferroclectric material, as in the sister compound
AgCrS; a ferroelectric polarization is induced upon a helical magnetic ordering below Ty
= 38 K [29]. Similar to CuFeO, [1] and possibly CuCrO, [33], CuCrS; and AgCrS, un-
dergo an R3m — C'm structural transition at the antiferromagnetic transition temperature
Tn ~40 K. indicating a strong magnetoelastic coupling [29, 47, 48]. According to the Aizu
classification of ferroic materials {7, 49]. an R3m — C'mn structural transition can be fer-
roelastic and simultancously ferroelectric. Thus, CuCrS, is an ideal compound to study the
role of magnetoelastic coupling in the magnetic and multiferroic propertics of geometrically
frustrated magnets. Unfortunately, due to the opacity and the platelet structure of CuCrSs
samples, which made it difficult for sample preparation for measurements in the x and y

axes. we could not perform ultrasonic velocity and Brillouin scattering measurements on
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this compound. However, we were able to perform Raman scattering measurements to de-

termine if the order parameter of the R3m — Cm structural transition is associated with
an E symmetry optical mode [34, 50]. Raman measurements were previously performed on
single crystals of CuCrS, down to 80 K [51]. As a result, our measurements provide Raman

data lacking at low temperatures.

1.2 Thesis outline

This thesis consists of 10 chapters. In Chapter 2, the topic of discussion is the main structural
and ferroic properties of CuFeQOy, CuCrQO,, and CuCrS,. Chapter 3 is devoted to the optical
indicatrix for uniaxial crystals and theory of inelastic light scattering, where Brillouin and
Raman scattering are discussed in detail. In Chapter 4, the theory of static and dynamic
clasticity is discussed. The solutions of Christoffel’s equation for the trigonal 3m point
group are also given. Chapter 5 provides a detailed description of the experimental sctups
for the ultrasonic pulse echo method, dielectric measurements, and Brillouin and Raman
scattering. In Chapter 6, Brillouin scattering measurements on CuFeO, and CuCrO, are
presented. Brillouin measurements on both CuFeO, and CuCrQO, were performed at room
temperature and low temperatures. With the room temperature measurements on CuCrQOs,,
the elastic constants and refractive indices of CuCrO; were determined. In Chapter 7, the
elastic properties of CuCrOg obtained using the ultrasonic pulse-echo method are presented.
In addition, the magnetic phase diagram of CuCrQO, is determined for fields parallel to the
[110] and [110] directions based on the simultaneous measurements of the ultrasonic velocities
and the dielectric constant along the x axis €; (e110] in hexagonal setting). Chapter 7, a
comparison of the elastic properties of CuCrO; obtained using the ultrasonic pulse-cecho
method and Brillouin scattering is also made. In Chapter 8, a Landau model that accounts for

the elastic properties of CuCrOs is presented. In Chapter 9, Raman scattering measurements
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on CukFeQ,, CuCrO,, and CuCrS, as a function of temperature are presented. Finally, a

summary and conclusions are made in Chapter 10.

12



Chapter 2

Properties of CuFeOs, CuCrQO9, and
CuCrSo

In this chapter, we present the main structural and ferroic properties of CuFeQ,, CuCrQOs,,

and CuCrS,.

2.1 CuFeO,; and CuCroO,

CuFeO, and CuCrO, crystallize into the delafossite (R3m) structure at room temperature
with the lattice constants a = b = 3.03 A, ¢ = 17.09 A for CuFeO, [52] and a = b = 2.98
A.c=1711 A for CuCr0O, [25]. The delafossite structure is illustrated in Fig. 2.1, where
nonmagnetic monovalent Cu ions and magnetic trivalent Fe or Cr ions are represented by
green and orange spheres, respectively. ABC stacked triangular layers of Fe or Cr ions are
separated by O-Cu-O tri-layers.

Fig. 2.2 illustrates a triangular lattice plane of Fe™® or Cr™® ions between two oxygen
layers and the symmetry operations of the delafossite R3m space group. The atomic po-

sitions and symmetry operations are given with respect to the hexagonal and Cartesian
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Figure 2.1: Crystal structure of delafossite CuFeOy and CuCrO,. Reprinted with permission

from [T. Arima, J. Phys. Soc. Jpn. 76, 073702 (2007)]. Copyright (2007) by The Physical

Society of Japan.
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Figure 2.2: The projection of a triangular lattice layer of Cr or Fe ions and two adjacent
oxygen layers along the ¢ direction and symmetry operations of R3m space group. a, b, c,
[110] and [110] designate the directions in the hexagonal basis. In Cartesian coordinates, r
and y axes are defined parallel to the [110] and [110] directions of the hexagonal coordinates.
Large circles represent the magnetic Cr or Fe ions. Small filled and open circles represent
oxygen ions located above and below the Cr or Fe layer, respectively. Thin lines and a
triangle with a small white circle at the central Cr or Fe ion indicate mirror planes (m)
and a three-fold rotation axis with an inversion center normal to the plane of projection,

respectively [2].
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coordinates. Throughout the thesis, we will use both Cartesian and hexagonal coordinates

depending on their convenience. The labels a,b,c,[110], and [110] designate the crystallo-
graphic directions in the hexagonal basis, whereas z, y and z correspond to those in the
Cartesian coordinates. The axes x, y, and z are respectively parallel to the [110], [110],
and ¢ directions of the hexagonal basis. Large circles represent the magnetic Fe or Cr ions,
whereas small open and filled circles represent oxygen ions located above and below the Fe
or Cr layer, respectively. The symmetry operations of the R3m space group are also shown
in Fig. 2.2. Thin lines and a triangle with a small white circle at the central Cr or Fe ion
indicate mirror planes (m) and a three-fold rotation axis with an inversion center normal to
the plane of projection while twofold rotation axes are shown with black arrows. To summa-
rize, the symmetry operations associated with the R3m space group are a spatial inversion,
a threefold rotation about the ¢ axis, twofold rotations about the a, b, and [110] axes, and
mirror planes perpendicular to the twofold rotation axes.

Although CuFeO; and CuCrO, are isostructural at room temperature, their magnetic
properties at low temperatures are quite different. Because Cu™ and O~? have filled shells,
differences in the magnetic behavior of CuFeO,; and CuCrQO; can be attributed to the mag-
neticions: Fe™ (3d°, L = 0,5 = 2) and Cr'® (3d®, L = 3, S = 2). In particular, no spin-orbit
interaction is expected in isolated Fe™ ions since L = (), whereas spin-orbit interaction is
allowed in Cr*?* as L = 3.

The magnetic properties of CuFeOq are well known and were studied by various groups
[1, 53, 28, 52]. In Fig. 2.3, we show the magnetic phase diagram of CuFeO, obtained using
the ultrasonic pulse-echo method [3]. In contrast to other triangular lattice antiferromagnets,
such as CuCrO,, LiCrO,, and AgCrO, [26, 54], CuFeO, shows a collinear commensurate four-
sublattice (110]) maguetic structure in its ground state below Ty, = 11 K [3, 28, 52] (sec
Fig. 2.3). Note that on a triangular lattice spins normally adopt a ~120° spin configuration

in order to lift the degeneracy. Between Ty, = 11 K and Ty, = 14 K, Fe™? ions order
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Figure 2.3: Figure is from Quirion et al. [3]. Magnetic field vs. temperature phase diagram
of CuFeO,. Reprinted with permission from [G. Quirion, M. L. Plumer, O. A. Petrenko, G.
Balakrishnan, and C. Proust, Phys. Rev. B 80, 064420 (2009)]. Copyright (2009) by the

American Physical Society.
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into an incommensurate sinusoidally amplitude-modulated spin configuration again with the
magnetic moments along the ¢ axis [3, 53]. By the application of a magnetic field along the
¢ axis, CuFeO, shows rich magnetic properties [3, 28, 52, 53]. Fields between 7 T and 13
T stabilize a proper screw spiral spin configuration. A top view sketch of this spin ordering
is presented in Fig. 2.4. In this phase, the magnetic wave vector (qy,) is along the [110
direction (hexagonal basis} and normal to the spin-spiral plane (easy axis) [3, 28, 55, 56 . The
green arrow indicates the direction of an electric polarization which is discussed in the next
scction. The application of larger magnetic fields result in the following spin configurations:
a collinear 5-sublattice (111){ state with S ||¢) for 13 T < H < 20 T, a collinear 3-sublattice
(1) structure with S ||¢ for 20 T < H < 34 T, a canted 3-sublattice state for 34 T < H <

49 T followed by a nonlinear incommensurate spin-flop phase which is close to the 120° spin

structure [3, 57,. The magnetization value saturates above 70 T [3, 56].

[1?0] CuFeO, and CuCrO,

llq,, Il [110]

Figure 2.4: A top view sketch of the proper screw spin structure for an arbitrary propagation

constant g, and the direction of the spontaneous polarization observed in CuFeQ, and

CuCrQs,.

18



The other delafossite compound studied in this project is CuCrO, for which the number

of transitions is still not clear. In a recent single crystal study by Poienar et al. [58], specific
heat, magnetic susceptibility, dielectric, polarization, and resistivity measurements show only
orle transition at Ty ~ 24 K. In addition, there are a number of measurements on CuCrO,
polycrystals [25, 26, 59, 60] which show only one transition at Ty ~24 K. However, single
crystal studies by [27] and Frontzek et al. [61, 62] show evidence of transitions at Ty; = 24.3
K and Ty, = 23.6 K. In these measurements, the dielectric constant and electric polarization
indicate Ty, [27] while inagnetic susceptibility [27, 61, 62] and specific heat [27] measurements
show transitions at T, and Tho. In any case, neutron diffraction measurements [62, 63, 64]
show that the magnetic order in the ground state of CuCrQO, is an incommensurate proper
screw spin structure with qm||[110] (hexagonal basis) below T, This spin configuration is
very similar to the one ohserved in CuFeO, between 7 T and 13 T (see Fig. 2.4), however, the
propagation constants of the magnetic modulations in CuCrO, and CuFeO, are different.
CuCrO; adopts an almost 120° spin structure with ¢, = 0.329 in CuCrO; [25]. On the other
hand, the propagation constant of the magnetic modulation in CuFeO, is ¢, = 0.207 [65].
Between Txy and Tye, the maguetic order is ambiguous. While Kimura et al. [27] suggest a
collinear spin structure with the magnetic moments parallel to the ¢ axis, S||e, Frontzek et
al. [62] interpret the magnetic order as a two dimensional proper screw spin structure based
on their neutron diffraction measurements.

Magnetization measurements on CuCrO, with fields applied up to 53 T along the [110]
(hexagonal basis) direction show only one first order magnetoelectric transition at low teni-
peratures [61, 4, 66]. The transition is observed at 2 K with a field of Hyj,, = 5.3 T and is
attributed to a 90° spin flop in one of the 3 magnetic structural domains from the (110) planc
to the (110) plane [64, 4, 66]. The magnetic structural domains are illustrated in Fig. 2.5
and are labeled as A, B, and C. Spin-spiral planes are perpendicular to the triangular lattice

and represented by thick blue lines. The domains are oriented at 120° relative to each other
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due to threefold symmetry of CuCrO, along the ¢ axis. It is emphasized that domains B
and C should undergo a spin flop transition at a field much larger than 9 T [4]. In that case,
the spiral plane of each domain will be in the (110) plane. In addition, it is suggested that

a large magnetic field along the [110] direction would align the spiral plane of each domain

in the (110) plane [4].

CuCro,
T<T, Cc
-
2l
2 )
m
B B | R
H 1170}
t
(110

Figure 2.5: Spin-spiral domains A, B, and C in the multiferroic phase of CuCrQ, below

Tnz = 23.6 K and the transition of domain A into domain A" at 2 K with Hygy = 5.3 T [4].

Thick lines denote the spiral plane.
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2.1.1 Ferroelectricity and magnetoelectric coupling in CuFeO; and

CIICI‘OQ

Even though CuFeO, and CuCrO, have different magnetic properties, a proper screw spin
structure is stabilized in both compounds with the magnetic propagation vector along the
[110] direction [28, 26, 27, 64]. Strikingly, upon the stabilization of the proper screw spin
ordering in both compounds, an electric polarization P, represented by a green arrow in
Fig. 2.4, is induced in the direction of the magnetic modulation (along the [110] direction)
(P||gm]|[110]). Hence, CuFeO, and CuCrO, arc magnetoelectric multiferroic in the proper-

screw spin state.

The ferroelectricity induced upon a proper-screw spin ordering can be explained from the
viewpoint of magnetic symmetry [2]. Fig. 2.2 illustrates a triangular lattice planc of Fe™3 or
Cr*3 ions between two oxygen layers and the symmetry operations of the delafossite R3m
space group. Representing qm as (g, ¢, 0) for the antiferromagnetic phases, cither a collincar
or a spiral spin configuration breaks the threefold rotation about the ¢ axis and twofold
rotations along the a and b axes. In this case, the symmetry should change to monoclinic as
the remaining syminetry operations arc spatial inversion, two-fold rotation about the [110]
axis and a mirror plane normal to the [110] axis. Moreover, the proper screw spin order
breaks the inversion and mirror operations; therefore, the only allowed symmetry operation
is a 2’ rotation, which is a time reversal operation followed by a twofold rotation about the
[110] axis. As the crystal lattice has no twofold symmetry perpendicular to qm, the system
can be polar in the 2" direction ([110] axis), allowing the ferroelectric polarization in the

same direction with Ellqm [2].

For CuCrO,, upon the 90° flop of the spiral plane in domain A (Fig. 2.5), the clectric
polarization also flops as shown in A’ [64, 4, 66], demonstrating that the electric polarization

is induced by the proper screw spin structure.
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A microscopic origin for the spontaneous polarization induced by a proper screw magnetic
order is proposed by Arima et al. [2]. The term thought to be responsible [22] originates
from the variation of the metal-ligand (3d — 2p) hybridization, which imbalances the charge
transfer between neighboring Fe-O pairs. As a result, a net polarization is induced along
the direction of the magnetic modulation parallel to the [110] direction [2]. We should note

that upon doping the Fe sites with Al [67, 68], Ga [69], or Rh [65], the multiferroic phase

of CuFeO, appears at zero field as in CuCrQ,. In Al-doped CuFeQ, [68] and CuCrQ, [64],

a direct relationship between the spin helicity and the direction of electric polarization was

observed, which is in agreement with the prediction of the proposed microscopic mechanisin

2].

2.1.2 Ferroelasticity in CuFeO,

Besides its rich magnetic phase diagram, CuFeO, has interesting structural properties. At
Tn1, neutron [30] and x-ray [55] diffraction measurements show that CuFeO, undergoes a
structural transition from the trigonal R3m phase to the monoclinic C2/m phase. In addi-
tion, ultrasonic velocity measurements on CuFeQ, [1] indicate a second order pscudoproper
ferroelastic transition at Ty;. According to these measurements [1], some acoustic modes
show softening down to Txj, which correspond to a reduction in the clastic constants Cy,
Cl1, and Cgg relative to high temperatures. In particular, the softening observed on the
acoustic modes T, P, and T, P, corresponds to a 50% reduction in the elastic constant Clg
relative to 100 K (see Fig. 1.3) [1].

Recent studies on the isostructural compound CuCrO, show evidence for a structural
transition at Ty [4, 66]. An indirect indication of a structural transition in CuCrO, is pro-
vided by neutron diffraction measurements on Al- [70] and Ga-doped [69] CuFeQ, which show

multiferroicity in its ground state upon a proper screw ordering. These studies show that
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the proper screw state is accompanied by a lattice distortion leading to a deformation in the
triangular lattice [69, 70]. Moreover, maguctostriction measurements on CuCrO, show that
the Cr triangular lattice is deformed at Ty, leading to a lowered crystallographic symmetry
at Ty [33]. These results are supported by recent electron spin resonance measurements
which have been modeled with a 118° spin configuration on a distorted Cr triangular lattice
[66]. As a result, since CuCrOs is isostructural to CuFeQ, at room temperature, it might
also undergo an R3m — C'2/m pseudoproper ferroelastic transition at Ty;. Whether or not

CuCrOy is ferroelastic helow Ty is still an open question.

2.2 Structural and magnetic properties of CuCrS,

Another triangular lattice antiferromagnet studied in this project is CuCrS,, which drew
attention as an ionic conductor [71] and a geometrically frustrated antiferromagnet [48, 47].
It also has a trigonal structure at room temperature, however the CuCrS, lattice lacks
inversion symmetry, therefore, it crystallizes into the trigonal R3m space group with the
lattice constants @« = b = 3.48 A, ¢ = 18.72 A[47].

Low tempcerature structural and magnetic properties of CuCrS, were investigated by
ueutron diffraction measurenents [48]. Despite the quasi-two-dimensional layered structure
of CuCrS,, earlier neutron diffraction measurciments reveal a complex three dimensional
helical magnetic order below Tn = 38 K [48]. Recent neutron measurements confirm the
three-dimensional order with a propagation vector qm = (—0.493,—0.087,1.25) [47]. In
addition to the helical order at Ty = 38 K [47, 48], these measurements also show a first
order structural transition from the trigonal R3m space group to the monoclinic C'm space
group [47]. According to the Aizu classification of ferroic materials [7, 49], an R3m — Cm
structural transition, as observed in CuCrS, [47], can result in ferroelastic and simultaneously

ferroelectric behavior. However, for CuCrS, there is no reported ferroelastic and ferroelectric
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of the wave vector k, called the propagation constant, is given by k& = w,/ug€y, where

€0 and i correspond to the electric permittivity and magnetic permeability of free space,
respectively. Thus, the phase velocity of the plane wave, or the speed of light, in vacuum, is
co = 1/\/1to€o. When the plane wave enters an isotropic medium, its wave vector is modified
due to a change in electric permittivity. In the rest of the thesis, the wave vector of a plane
wave in any medium is indicated by K whereas the corresponding wave vector in free space
is indicated by k. Here, we assume that the medium is nonmagnetic, therefore, the magnetic
permeability is the same as it is in free space, ug. If € represents the electric permittivity of

the medium, the propagation constant K of the plane wave is given by

K = w/e = nd L S ﬂ, (3.2)
(&) A

where

n=,/— (3.3)

is the index of refraction, or the refractive index, of the medium and A is the wavelength
of the plane wave in free space. The ratio €, = €/¢y is a measure of the change of electric
permittivity relative to free space, called the relative electric permittivity or the diclectric
constant. In a medium which has a refractive index n, the angular frequency of the planc
wave is still w, but its wavelength is A/n and the speed of light is ¢ = ¢q/n. Note that the
electric permittivity, and therefore the refractive index n, are functions of frequency. Thus,
the speed of light is weakly frequency dependent. In isotropic materials, the relative electric
permittivity can be represented by a scalar. In this case the electric displacement vector and

associated electric field are parallel,

D = ¢y, E, (3.4)

which imposes that the propagation characteristics of electromagnetic waves are independent

of their propagation direction in isotropic media.
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In anisotropic materials, the relative electric permittivity is expressed by the dielectric

tensor e,

€11 €12 €13

€12 €22 €23 | (3.5)

€13 €23 €33
where €;; corresponds to the dielectric constant in the i-th row and j-th column of the di-
electric tensor. Therefore, in general D and E are no longer parallel because they are related
by the dielectric tensor as D = ege. E. In this case, the propagation characteristics of elec-
tromagnetic waves depend on the direction of propagation due to the symmetry properties
of anisotropic materials. The dielectric tensor in Eq. 3.5 belongs to triclinic crystals. The

unber of independent elements in the dielectric tensor can be further reduced for crystals of

higher symmetry since physical properties of a crystal remain invariant under its symmetry.
For example, for a monoclinic crystal, application of a twofold rotation along the z axis in
Eq. 3.5 will leave only the diagonal elements and €15. In general, for any given anisotropic
crystal, there is a unique set of coordinate axes which diagonalize €, with eigenvalues €., €,
and €, [72, 73]. These axes are called the principal axes of the material. The components of
the electric displacement vector D with respect to the electric field E along these axes are

related by

D, = e, By, D, =ceoe, 5, D. =epe. .. (3.6)

The cigenvalues €., €,, and €, of the dielectric constant tensor are called the principal dielec-

tric constants. They define three principal refractive indices of the material

Ny = ez, Ny = /6, n. = /e (3.7)

In trigonal, hexagonal, and tetragonal crystals, the physical properties are invariant under a

threefold, sixfold and fourfold rotation along the z axis, respectively. Therefore, for crystals
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of trigonal, hexagonal, and tetragonal symmetry, the dielectric tensor (3.5) reduces to

€11 0 0
€ = 0 €11 0 ) (38)
0 0 €33

with corresponding principal refractive indices

Ny = ny, =€, n. = /€3, (3.9)

In the case of cubic crystals, the application of a 4 fold rotation along the [111] direction
reduces the dielectric tensor to only three diagonal elements with the same value, €;,, which
defines one distinct refractive index, n = /€;7. Therefore, cubic crystals behave like isotropic
media in terms of the propagation of plane waves. However, in crystals of lower symmetry,
D and E are no longer parallel as dictated by Eq. 3.5 and the direction of polarization is
specified by the direction of the D vector. Since D LK due to the Maxwell equation V-D = 0
in the absence of free charges, D has no compounent along the direction of the wave vector
and D has two allowed mutually orthogonal components. In anisotropic materials, cach
component generally experiences a different index of refraction and therefore has a different
propagation constant (see Eq. 3.2). This phenomenon is known as birefringence and such a
crystal is called a birefringent erystal [73)].

To clarify birefringence, consider a monochromatic plane wave propagating with an ar-
bitrary polarization propagating along the y axis in a birefringent material. Then, the field
will be decomposed into two modes, each of which has a linear polarization along one of the
principal axes x and 2. According to Egs. 3.6 and 3.7, cach of these modes has a character-
istic refractive index n; and a propagation constant K* = n;w/c, where ' is used to specify
the i-polarized field and does not correspond to a component of the wave vector K. Thus,
the a-polarized field travels with a phase velocity ¢ = co/n, whereas the z-polarized ficld

has a velocity of ¢ = ¢y/n,. Note that the polarization of the wave depends on the direction
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of D, and not that of E. In the special case where the plane wave travels along one of the

principal axes, D and E are parallel [73].

Clearly, when a wave enters an anisotropic medium, in an arbitrary direction with an
arbitrary polarization, the allowed polarizations specified by the components of the D vec-
tor will not necessarily be along the principal axes. In that case, we need to specify the
polarization directions with respect to the principal axes of the medium to determine the
refractive indices. This can be done using a geometric figure called the optical indicatriz, or
the indezx ellipsoid. The equation for the optical indicatrix is given by [72, 73]

2 2 L2
%+%+%=L (3.10)
where n,, n,, and n_ correspond to three principal refractive indices of the material [72, 73].
The optical indicatrix allows us to determine the refractive index for monochromatic plane
waves as a function of the polarization direction. The principal axes of the optical indicatrix
are oriented such that it is consistent with the symmetry axes of the crystal. In any crystal
which belongs to cubic, tetragonal, hexagonal, trigonal, and orthorhombic crystal systems,
the axes of the ellipsoid are parallel to the crystallographic axes [72, 73]. In a monoclinic
crystal, one of the axes of the ellipsoid must coincide with the principal axis along which
physical properties are invariant with respect to a twofold rotation. In triclinic crystals, the
ellipsoid axes can take any orientation, however it is fixed for a given crystal [72].

We use geometrical properties of the optical indicatrix in order to determine the refractive
indices and polarizations of a monochromatic plane wave propagating through a crystal with
a given wave vector K. This is illustrated in Fig. 3.1, where the wave vector K passes through
the origin of the indicatrix and is normal to a plane surface represented by the gray area
[72, 73]. The plane surface intersects the indicatrix with an ellipse and its secmiaxes define the

directions of both polarizations determined by the D vector components Dy and Ds. The

lengths of the semiaxes give the refractive indices experienced by these two polarizations.
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the crystal, the crystallographic z axis, since n, = n, # n,. Due to the existence of one
optic axis, a crystal that has trigonal, hexagonal or tetragonal symmetry is called a uniaxial
crystal [72, 73]. In uniaxial crystals, the determination of the polarizations and refractive
indices is particularly simple because the optical indicatrix reduces to [72, 73]

2,2 L2
i __;:‘/ ;ngl, (3.11)
where n, = n, = n, and n. = n,.. Here, the subscripts o and e refer to the ordinary
index and extraordinary indez, respectively. When a monochromatic plane wave propagates
in a direction other than the optic axis, it will be resolved into two modes with linear
polarizations, each of which experiences a unique refractive index. Clearly, both polarizations
are orthogonal to the wavector K. One of these polarizations, is perpendicular to the optic
axis and this mode is called the ordinary wave [73]. We use é, to indicate its polarization.
The polarization of the other mode is orthogonal to é,. This wave is called the extraordinary
wave and its polarization is indicated by é. [73]. These polarizations are the directions of
D rather than those of E. For the ordinary wave, the polarization é,, electric displacement
vector Do, and electric field E,, are always parallel, é,||D,||Eo, whereas for the extraordinary
wave €.||De ff Ee. However, when D is parallel to a principal axis, we have é.||De||Ee [73]
(sce Eq. 3.6).

Knowing the optic 2z axis of a uniaxial crystal and the direction of the wave vector, K,
we can determine both é, and é.. Designating the unit vector of the wave vector K with K

and that of the optic axis with 2, we can write &, and é. as [73]

. Kxz |

6. =é, x K. (3.12)

sinf ’
If K is at angle 8 relative to Z and an angle ¢ relative to I, being the unit vector for the r

axis, we have

K = #sinfcos ¢+ §sinfsin ¢ + 2 cos b, (3.13)
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€, = Zsin ¢ — Y cos ¢, (3.14)

and
€e = —Tcosfcosd —gycoshsing + Zsinf. (3.15)
The orientations of these vectors with respect to the principal axes are illustrated in Fig. 3.2.

Z
A

x>

D>

Figure 3.2: Relationships between the direction of wave propagation and polarization direc-

tions of the ordinary and extraordinary waves.

The refractive indices associated with the ordinary and extraordinary waves can bhe found by
using the indicatrix equation given in Eq. 3.11 and are shown in Fig. 3.3. The polarizations
é, and é. are along the semiaxes of the ellipse and the length of each semiaxis gives the

refractive index of each polarization. The refractive index experienced by the ordinary wave

32






Substituting Eqs. 3.16-3.18 in Eq. 3.11, we obtain [73]

cos’f  sin?6
_ 3.19
n2(6) w2t nZ (3:19)

o

According to Eq. 3.19, a plane wave propagating at an arbitrary direction decomposes into

two components with D vectors, Dy and Dy,

D — DoezKo-r—zwt 4 DeezKe-r~zwt

— éODDCiKO-r~iwt + éeDeeiKeJ‘—iwt’ (320)

where K, and K, are the wave vectors of the components of the plane wave with magnitudes
|K,| = now/c and |K.| = n.(0)w/c, respectively. In general, E cannot be written in the form
of Eq. 3.20 since its longitudinal component does not vanish except when 6 = (0° and 6 = 90°
[73]. Note that n.(6) takes values between n, and n,. If n. > n,, the crystal is called positive

uniarial whereas it is called negative uniazial if n. < n, [72, 73].

3.2 Inelastic light scattering

Inelastic light scattering is one of processes that results from the interaction of electromag-
netic radiation with matter. In this process, a light heam with photons of energy hw,; and
momentum of hk; incident on a crystal is inelastically scattered to give photons of energy
hws and momentum of hks through the creation or annihilation of a lattice vibration. If
phonons involved in the process have energy A2 and momentum Aq the energy and momen-

tum conservation laws give

hw, = hw; £ hQ2 (3.21)

and

KK, = hK; + hq, (3.22)
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where w; and K; (w, and Kg) correspond to the angular frequency and wave vector of the

incident (scattered) photons in the scattering medium, whereas 2 and q are the angular
frequency and the wave vector of the lattice vibrations. When the frequency of the scattered
light corresponds to w, = w; — €2, such that a lattice vibration is created, the process is
called Stokes scattering whereas the process that annihilates a phonon, w, = w; + €, is
referred as anti-Stokes scattering. Thus, the frequency shift of the scattered light depends
on the type of the lattice vibration involved in the scattering process. If the scattering
of light occurs with the creation or annihilation of optical vibrations, the process is called
Raman scattering while the scattering phenomenon involving acoustic vibrations is referred
as Drillown scattering. The physical processes involved in Raman and Brillouin scattering
are different and are discussed in the following two sections in detail. Typical frequency
shifts for optical vibrations in Raman scattering range from 10 ecm™! to 1000 cm™! while
shifts for acoustic vibrations in Brillouin scattering are usually ~1 cm ™! [74].

In both Raman and Brillouin scattering experiments, ounly lattice vibrations near the
Brillouin zone center are probed. This is because even in 180° scattering, the wave vector
of the acoustic or optical vibrations are on the order of the incident wave vector, ~ 107
m~!, which is three orders of magnitude smaller than the size of the Brillouin zone, g =

~ 10" m~1, where d is the lattice spacing [74]. A comprehensive treatment of inelastic light

scattering can be found in many text books [74, 75].

3.2.1 Raman scattering

Raman scattering or the Raman effect was discovered by Sir Chandrasekhara Venkata Raman
and Kariamanickam Srinivasa Krishnan in liquids in 1928 [76], and by Grigory Landsberg
and Leonid Mandelstam in crystals the same year [77]. A comprehensive review of Raman

scattering is given by Loudon [78]. Raman scattering can be explained both classically and
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quantum mechanically. According to the classical theory, Raman scattering occurs when light
interacts with matter via a change in molecular polarizability. The molecular polarizability
is a measure of the ability of a material to become polarized under an electric field. A change
in the molecular polarizability can be induced, for example, by optical vibrations. If a given

molecule vibrates at an angular frequency 2 due to an optical lattice vibration, the molecular

polarizability also changes. Then, the components «;; of the molecular polarizability o may

he expanded in terms of the normal vibrational coordinate g, about its equilibrium value ¢2

o é)ai: .
g5 = (v + <0qnj>0qn (323)
@n = ¢, cos S, (3.24)

In Eq. 3.23, the first term corresponds to the equilibrium value of the polarizability whereas
the second term is the change induced by optical vibrations. A light beam with an electric
field

E = Eq cos (w;t) (3.25)

induces an oscillating dipole moment in the material given as

= : .26
Py Oy Ay Ky E, (3.26)
b Qo Gy Qo Ez

Therefore, the induced dipole moment component p; can be expressed as

o o dai
pilt) = o B cos (w;t) + ( an]

) gn 5 cos (Qt) cos (w;t). (3.27)
0

where repcated indexes represent a sum and w; corresponds to the angular frequency of the

incident light. Using the trigonometric relations
cos (x F y) = cos () cos (y) + sin (z) sin (y), (3.28)
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the induced dipole moment p;(#) becomes

8&,;]'

Oqy,

. 1
) = Eyeon () + 5 (G2 ) auBpcos(en— e+ 5

) g E5 cos (w; + Q)t.

’ (3.29)
Here, the scattered radiation consists of hoth elastically and inelastically scattered light.
The first term represents an oscillating dipole associated with an elastic process (Rayleigh
scattering) since there is no frequency shift with respect to w;. The last two terms correspond
to Raman scattering with Stokes (w; — 1) and anti-Stokes (w; 4+ §2) bands (modes) for which
the frequency difference between the incident and scattered light is equal to the lattice
vibration 2. As Eq. 3.29 dictates, a lattice vibration is Raman active only if at least one of

the elements of the derivative of the polarizability tensor is non-zero, i.e. (aa—i;’l> # 0.
n 0

According to the quantum mechanical picture, Raman scattering is an inelastic colli-
sion between an incident photon and a molecule which changes the vibrational state of the
molccule. The diagram in Fig. 3.4 illustrates the vibrational and electronic states of the
molecule as well as the transitions giving rise to Raman scattering. The electronic ground
state is assumed to have several vibrational energy levels represented by m = 0,1,2,3. The
incident photon excites the molecule from the ground sate (m = 0) to a virtual electronic
state shown with dashed lines. Since the virtual level is not stable, the molecule immediately
loses energy and goes down to its ground state (rm = 0). In this case, the photon will be
elastically scattered with an energy equal to that of the inci nt photon, corresponding to
Rayleigh scattering. However, a small portion of molecules in the virtual level may go down
to the excited vibrational level (m = 1) and the incident photon loses an energy equal to the
energy differenice between the ground and excited (m = 1) states, h(v — 14). This scattered
photon gives rise to a Stokes band in the Raman spectrum. The final possibility is that the
molecule which is initially in an excited vibrational state absorbs the incident photon and

rises to a higher virtual state (see Fig. 3.4). Then, the molecule goes down to the ground
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Figure 3.4: A schematic diagram of vibrational transitions for Raman and Rayleigh Scatter-

ings

state (m = 0) while the energy loss is compensated for by the emission of a photon the en-
ergy of which equals that of the incident light plus the energy difference between the ground
(m = 0) and the excited (m = 1) vibrational states. This scattered photon gives rise to an
anti-Stokes line in the Raman spectrum. According to the Boltzman distribution function,
designating the number of molecules in the vibrational ground state m = 0 with N, the

number of molecules in the excited vibrational level (m = 1) is given by [79]

N = Nyexp (—f“}) . (3.30)
B

According to Eq. 3.30, most of the molecules exist in the ground state (m = 0) at low
temperatures and therefore the intensity of the Stokes lines is normally larger than that of

the anti-Stokes counter part. The ratio of the anti-Stokes and Stokes line intensity is [79]

[a'nti~5t (Vi + I/)4 (-hl/)

I (v; — v)? xp kpT

(3.31)

where v; is the frequency of the incident light, v is the frequency of the molecular vibrations,
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and T is the temperature. While kg is known as the Boltzman constant, the exponential

term is called the Boltzman factor. Referring to Eq. 3.31, one can see that the relative
intensity of the anti-Stokes line rapidly decreases as the temperature approaches zero due to
the Boltzman factor. For that reason, as both lines give the same information, the Stokes

lines are usually preferred to anti-Stokes lines.

3.2.2 Polarizability and Raman Tensors

As mentioned earlier, a vibrational transition is Raman active only if the derivatives of
the polarizability tensor have a non-zero element. Since the molecular polarizability for an
anisotropic crystal is a tensor, its derivatives with respect to a given normal coordinate ¢,
are also expressed as tensors and are defined as Raman tensors. If the elements of a Raman
tensor, for a given normal coordinate g¢,, are represented by a;;, the Raman tensor and the

clectric fields of the incident and scattered light are related as [80)

s 1
E? Oz Ogy Oz £
E | = | ap ayy ay, E} (3.32)
B} Ozp Qg Ay E;

where E7, E, and E7 are the components of the electric field of the scattered light along the
x, y, and z axes, while E’, E;, and E? are those of the incident light. Hence, if the clement
a;; of the Raman tensor given in Eq. 3.32 is non-zero, Raman scattering is possible for the
electric fields £ and E;, that is, if the incident light is polarized along the i axis and the
scattered light is polarized along the j axis. In this case, the intensity of the Raman line is

proportional to [79]
I o a,. (3.33)

Raman tensors, for possible vibrational modes, are derived according to the symmetry of

the crystallographic point groups. These vibrational species are labeled using irreducible
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representations (IR) listed in character tables reported in various textbooks such as Ref.

[81]. These IRs describe how properties of molecules, such as vibrational (phonon) modes,

transform under symmetry operations of the molecular point group. They are represented
by symbols such as A, B, E and F. A vibration belongs to the A type if the vibration
is symmetric with respect to the rotation about the principal axis of symmetry, whereas
it belongs to B if it is anti-symmetric [82]. A and B are one dimensional, non-degenerate
representations. Types E and F', on the other hand, correspond to doubly and triply de-
generate representations, respectively [82]. IRs may also have subscripts depending on the
point group [81]. The subscript g is used when the vibration is symmetric with respect to a
center of symmetry whereas u is used when it is antisymmetric. Moreover, the subscript 1
(or 2) is used when the vibration is symmetric (or antisymmetric) with respect to a rotation

axis or rotation-reflection axis other than the principal axis or in point groups which have

only one symmetry axis with respect to a plane of symmetry.

Raman tensors are different for each irreducible representation for a given point group
(see Chapter 9). Thus, in a Raman experiment, one can identify the symmetries of optical
vibrations in a crystal with known orientation and point group by choosing the appropriate

polarizations for the incident and scattered light according to Eq. 3.32 (see Chapter 9).

3.3 Brillouin Light Scattering

Brillouin light scattering (BLS) from acoustic waves may occur due to two different mech-
anisms. One of these mechanisms is (bulk) elasto-optic scattering mechanism. Acoustic
waves present in a solid move in thermal equilibrium and modulate the dielectric constant
of the medium. Since atomic displacements due to acoustic waves are nearly constant over
distances on the order of 100 unit cells, one may discuss the acoustic waves in terms of an

elastic continuum model [83]. In this case, we can explain elasto-optic scattering mecha-
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Figure 3.5: a) Wave and b) particle pictures of Bri Huin light scattering.

nisin as Bragg scattering from acoustic waves. According to this analogy, acoustic waves are
viewed by an incident light wave as a moving diffraction grating and the incident light is
scattered with (Doppler) shifted frequencies. This is illustrated in Fig. 3.5a, where acoustic
waves are represented by parallel planes. The angles ¢; and ¢, are equal in this geometry.
The spacing d between the plane parallel regions correspond to the wavelength Ag of the
acoustic waves in the solid. Note that throughout the text, A represents the wavelength of
acoustic waves and the subscript B is used to represent bulk acoustic waves. For constructive
interference to occur, the path difference must be an integral multiple m of the wavelength

of the incident light, A;,
KL+ LM =2KL =m)\; = 2ndcos(¢;), (3.34)

where n is the refractive index of the solid. Considering the first order constructive inter-
ference (1), and using d = Ag = V/vg, where V and v are the acoustic velocity and
frequency, Eq 3.34 becomes

~

v
A; = 2n— sin (—) , (3.35)
vp 2
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Figure 3.6: Brilluin scattering geometry.

Brillouin scattering in an arbitrary direction is illustrated in Fig. 3.6, where k; (K;) and
ks (Ks) are the external (internal) incident and scattered photon wave vectors whercas qg
corresponds to the bulk acoustic wave vector. 6; (O,) and ©; (0;) are the angle of incidence
and the angle of refraction of the incident (scattered) light. From Snell’s law, we can see that
sinf; = nsin©; and sinfd, = nsin O, (see Fig. 3.6). If the sample transparency decreascs,
the incident light is not able to penetrate deep below the sample surface. Hence, a range
of possible acoustic wave vectors couple to the incident light according to the uncertainty
principal. This causes broadening in the bulk acoustic modes [84, 85, 86]. With increasing

opacity in the material, the scattering cross section for the bulk elasto-optic mechanism
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decreases and bulk acoustic waves may not even be observed [87]. In that case, another

mechanism, the surface-ripple effect, takes place to give rise to Brillouin scattering. As the
name suggests, scattering by this mechanism occurs due to acoustic phonons present on the
surface of the solid, or surface acoustic waves (SAW). The wave vector of a surface acoustic
wave is shown in Fig. 3.6 and is represented by qsaw. The magnitude of the surface acoustic

wave vector can be expressed as
gsaw = k;sinf; + kysin 8, ~ k;(sin ; 4 sin 6,) (3.40)

Using the dispersion relation, the frequency shift reduces to

VSAVV
Ai

Avsaw = % (sind; + sinfy) (3.41)

It should be noted that Brillouin light scattering does not allow direct sound velocity mea-
surements. In a backscattering geometry, v = 180° and 6; = 6;, rearranging Eqs. 3.39 and

3.41, the velocities of the bulk and surface phonons can be calculated using

AiAI/B

V= if n; # n, (3.42)
n; + Ng
Voaw = ————— .VM“ : (3.43)
2sin 6,

In Eq. 3.43, the frequency shift Avgay of a surface acoustic wave is independent of the
refractive index of the solid and is proportional to the sine of the angle of incidence, sin ;.
Thus, the frequency shift goes to zero as 8; approaches zero. Hence, one can unambiguously
distinguish surface acoustic modes from bulk acoustic modes in a Brillouin spectrum.

After determining the bulk acoustic mode velocities from the frequency shifts and using
Eq. 3.42, one can calculate the elastic constants using Christoffel’s equation. Christoffel’s
equation is derived in Chapter 4 for the trigonal 3m point group. In the case of surface
acoustic waves, the relationship between the velocity and elastic constants is not straight-
forward. Except for crystals of cubic and hexagonal symmetry, numerical calculations are

required for the determination of the elastic constants [88, 89, 90].
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3.3.1 Acoustic velocities and refractive indices of a birefringent

crystal

As discussed in Sec. 3.3, Brillouin scattering can be employed to determine acoustic velocities
in a material. However, determination of acoustic velocities with Brillouin scattering exper-
iments normally requires that the refractive index of the sample be known (see Eq. 3.39).
There are several experimental geometries which do not require the refractive index of the
material for the calculation of the acoustic velocities, however, these geometries are for trans-
parent materials [91, 92]. Recently, it has been shown [93] that a pseudoreflection geometry
(Fig. 3.7) can be successfully used to simultaneously determine the acoustic velocities and
refractive index of anisotropic materials from Brillouin scattering measurements. This ge-
ometry can also be employed for opaque materials provided that one observes bulk acoustic
modes. Below, we derive the frequency shif