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Abstract 

The use of pyrene as a building block for molecules with applications in optoelectronic 

devices is becoming increasingly important.1  In this regard, the development of 

methodologies that provide convenient and highly regioselective access to functionalized 

pyrenes will facilitate progress in this area.  For example, the Bodwell group at Memorial 

University recently showed that the placement of alkoxy groups at the 4 and 5 positions 

on pyrene (e.g. 1) both activates the pyrene system towards electrophilic substitution and 

effectively hinders the 3 and 6 positions.  This methodology has been used in the 

synthesis of (1,8-pyrenylene)-ethynylene macrocycles,2 and is now at the heart of an 

iterative five-step strategy aimed at the synthesis of oligomeric pyrenophanes 2, 3 and 

beyond.  Details of the synthetic approach toward these pyrenophane chains will be 

presented. 
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Chapter 1: Introduction 

Cyclophanes are a class of molecules with a history that spans over sixty years.  In their 

simplest form, a cyclophane consists of one aromatic unit and one bridge, which connects 

nonadjacent positions of the aromatic system.3   

 

Figure 1.1: General structure of a simple cyclophane. 

 

Cyclophane chemistry is a very diverse field, as variations in the aromatic unit and/or the 

bridge lead to a broad spectrum of molecular structures and properties.  With regard to the 

aromatic unit, both the number and type of aromatic units can be varied from one to any 

larger number.  The aromatic system can be polynuclear, heteroaromatic or 

homoaromatic, and there are even examples of cyclophanes with antiaromatic or 

(ironically) nonaromatic "arenes."  In considering the bridge, the number of bridges and 

the length of the bridge can be changed.  The number of potential bridging sites 

(nonquaternary sites) on the aromatic unit(s) limits the number of possible bridges.  In 

most cases, a smaller bridge implies a higher amount of strain.  The bridging motif (the 

set of bridgehead atoms) on the aromatic ring(s) can also be modified.  Introducing 

ARENE

4
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heteroatoms, double or triple bonds into the bridge can also lead to great variations in 

structure and, subsequently, properties and function.  The field of cyclophane chemistry is 

therefore boundless, with very diverse types of compounds having already been reported.  

Cyclophanes are often thought of as being remarkably beautiful due simply to their 

structures.3  A prime example is superphane (5), which was reported first by Boekelheide4 

and shortly thereafter by Hopf.5   

 

Figure 1.2: Superphane (5). 

Because of the variety in structure and function, cyclophanes are of interest in anywhere 

from synthetic to theoretical, structural, host-guest, biological, and, materials chemistry.  

This is apparent in Figure 1.3, where three very different cyclophanes have three different 

functions.3  For instance, the metallocyclophane 6 was investigated to probe the effect of 

compleation of an arene by an organometallic fragment on the aromatic ring current.6  As 

well, cyclophane 7 is being investigated for potential applications as a biological sensor, 

or receptor for biological molecules.  Contrastingly, cyclophane 8 is synthesized via a 

template synthesis and, using that synthesis, a 2.5 nm cyclophane (consisting of 12 

aromatic rings, n=2) was prepared.7  

5 
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Figure 1.3: Examples of cyclophanes with different functions. 

 

The word cyclophane can be broken down in several parts.  Cyclo refers to the cyclic 

nature of the molecules.  Ph corresponds to the term "phenyl", which is meant to 

represent the aromatic unit.  In the very early days of cyclophane chemistry, this was 

always a benzene ring.  Ane is representative of the nature of the tether, which in its 

simplest form is an aliphatic chain.  The first reported example of a cyclophane, 

[2.2]paracyclophane, 9, (Figure 1.2), was fortuitously discovered by Brown and Farthing 
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in 1949, who prepared it in trace amounts by high temperature pyrolysis of p-xylene.  Its 

structure was established using X-ray crystallography.8   

 

Figure 1.4: [2.2]Paracyclophane (9) and anti-[2.2]metacyclophane (10). 

 

Although Pellegrin likely synthesized anti-[2.2]metacyclophane (10) in 1899,9 

[2.2]paracyclophane (9) was the first reported cyclophane with correctly assigned 

structure, and this marked the dawn of cyclophane chemistry as a distinct field.  Shortly 

thereafter, Cram and Steinberg published a rational synthesis of the [2.2]paracyclophane 

(9).10  A very striking feature of the structure of [2.2]paracyclophane (9) is that the 

benzene rings are boat-shaped.  Indeed, the presence of nonplanar aromatic rings took the 

concept of aromaticity into the third dimension.  The departure from the long and firmly 

held belief that aromatic molecules must be planar generated a great deal of interest in the 

field.  Cyclophanes became desirable targets due to a number of other attractive reasons, 

including synthetic challenge, strain and its implications, symmetry, conformational 

behaviour, and unusual chemical and physical / spectroscopic properties.  Today, this 

subject area continues to evolve and, as alluded to earlier, function is becoming a primary 

driver of research interest.  In any case, cyclophane chemistry remains an actively 

investigated field of modern chemistry.3   

9 10
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The Bodwell group has been interested in cyclophane chemistry for the past two decades.  

More specifically, the focus has been on cyclophanes that have pyrene as the aromatic 

moiety, i.e. pyrenophanes.  The Bodwell group is known for its synthesis and study of 

these molecules, and has numerous publications in the field.11–15 The general synthetic 

strategy for the synthesis of these molecules involves the construction of a tetrabromide 

11, in which two 1,3-bis(bromomethyl)benzene units are joined by a tether of variable 

composition (Scheme 1.1).   

 

Scheme 1.1: Bodwell's general synthetic strategy toward pyrenophanes. 

 

Tetrabromide 11 is then converted into a cyclophanediene 13 by way of the 

corresponding dithiacyclophane 1.   The formation of the pyrene unit is accomplished in 

the final step through a valence isomerization / dehydrogenation (VID) reaction from the 

corresponding [2.2]metacyclophanediene.14  This reaction has proved to be very powerful.  

It owes its success to several factors,14 including the thermally allowed nature of the 

valence isomerization in the [2.2]metacyclophanediene system (a suprafacial 6π 

electrocyclic ring closure), the formation of a new C–C bond, the formation of a new 

pyrene system (ca 75 kcal/mol of aromatic stabilization energy (ASE)) and the relative 

Br Br
Br Br SS

11 12 13 14
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insensitivity of the aromaticity of the pyrene system to bending out of planarity.14  As 

such, this strategy has been successfully employed in the syntheses of a variety of 

pyrenophanes (Figure 1.5).   

 

Figure 1.5: Selected Bodwell group pyrenophanes. 

 

The first example is 1,8-dioxa[8](2,7)pyrenophane (15), which was synthesized by 

Mannion.11  Its bridge is seven atoms in length, two of which are oxygen atoms, and it 

joins at the 2,7 positions on pyrene.  The pyrene system is more bent than the one that can 

be identified in the equator of D5h C70.  The next example, 16, which was synthesized by 

Zhang, is quite different.13  Its bridge consists of three phenylene units, and it is an 

example of pyrenophane consisting of only sp2-hybridized carbon atoms.  The third 

example 17 is different again from the other two.  Synthesized by Yang,15 it is a C2-

symmetric, and therefore chiral, [10](1,6)pyrenophane. 

 

All of the syntheses leading to the pyrenophanes described above rely on the 

aforementioned strategy shown in Scheme 1.1.  Despite pyrene being the aromatic moiety 

in the cyclophanes created within the Bodwell group, no pyrene derivative has ever been 

O O (CH2)4

15 16 17
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used in any of the syntheses.  In all cases, the nonplanar pyrene system is formed during 

the VID reaction.  

One of the aims of the work described in this thesis is to use pyrene itself as a starting 

material in the synthesis of a pyrenophane.  Importantly, this requires the selection of 

relatively unstrained pyrenophane targets.  Whereas the formation of a bent (and therefore 

strained) pyrene can be accomplished using the very powerful VID reaction, the energy 

required to bend the pyrene unit in some pyrenophane precursor would be expected to 

pose a serious impediment to any cyclization reaction leading to the corresponding 

pyrenophane.  Moreover, understanding the reactivity of pyrene and being able to 

substitute it in a controlled manner becomes important.   

Pyrene was first isolated as the highest boiling extract from coal tar in 1876.16  It is the 

smallest peri-fused benzenoid polycyclic aromatic hydrocarbon and is of particular 

interest due to its unique photophysical properties.1  Not only does it have a high quantum 

yield (0.65 in ethanol),17 but its fluorescence is also quite sensitive to its environment.  

Consequently, it has been used in a variety of sensing applications.  In fact, it has been 

dubbed the “gold standard” in molecular recognition by Figuera-Duarte and Müllen.1  

Pyrene has a reasonably large aromatic surface and can participate in both π-stacking and 

favorable CH–π interactions.  Therefore, it is has been exploited frequently in 

noncovalent functionalization of extended planar π-systems, such as carbon nanotubes 

and graphene.18   
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Pyrene readily undergoes electrophilic substitution at the 1, 3, 6 and 8 positions.  These 

are the most electron-rich centres and are predicted to be the most reactive by calculations 

on Wheland intermediates.19  As expected, pyrene undergoes bromination at 120 °C to 

yield 1,3,6,8-tetrabromopyrene (19) in high yield. However, what is perhaps more 

synthetically useful (especially for cyclophane synthesis) is a disubstituted pyrene 

derivative.  However, this is not a straightforward exercise.  For example, upon reducing 

the amount of bromine to 2.2 equivalents, Vollhard et al. obtained a mixture of 

constitutional isomers: the 1,3-, 1,6-, and 1,8-dibromopyrene products (20-22, Scheme 

1.2).20  Separation of these isomers is difficult and time consuming, and it is possible to 

obtain gram quantities of the 1,6- and 1,8-products through repeated crystallization.21  

What would be more useful for the synthetic community is an easier method to obtain 

these disubstituted pyrenes, for they are valuable building blocks for the synthesis of 

various types of extended π-systems.18    

 

 

 

 

 

 

Scheme 1.2: Bromination reactions of pyrene (18). 
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There are limitations to the use of pyrene to obtain disubstituted pyrenes.  There is a lack 

of well-known methodology and therefore diverse substitution patterns are difficult to 

obtain, especially directly from pyrene.1,18  Because of these limitations, indirect methods 

are often used to synthesize substituted pyrene, relying on precursors like 

tetrahydropyrene, hexahydropyrene, metacyclophanes, naphthalene, and functionalized 

biphenyls.18  

As previously mentioned, pyrene is activated towards electrophilic aromatic substitution  

 

 

Figure 1.6:  Preferred sites of electrophilic aromatic substitution on pyrene (18). 

at the 1, 3, 6 and 8 positions.  Originally reported by Ogino, the synthesis of simple 

tetrahalogenated and cyanated pyrenes has been shown, as well as monosubstitution.22  

However, reducing the number of molar equivalents of the electrophile to 2 or 3 leads to a 

hard-to-separate mixture of regioisomers.  Therefore, using direct electrophilic aromatic 

substitution, it is hard to prepare patterns other than 1-substituted or 1,3,6,8-

tetrasubstituted pyrenes.  Furthermore, many of these tetrasubstituted products have very 

low solubility, rendering isolation, purification, characterization, and further synthetic 

66

88

77

5544

1010 99

33

22

11

18

bulky
electrophiles

bulky
electrophiles



  21 

 

 

transformations difficult.  For instance, the compounds reported by Ogino were purified 

by high temperature vacuum sublimation (> 300 °C).22 

The 2 and 7 positions on pyrene can also be substituted with very high selectivity using 

electrophilic aromatic substitution, but only bulky electrophiles (e.g. t-butyl cation 

generated from t-butyl chloride and FeCl3)23 will react in this manner.  The origin of the 

selectivity over the much more electronically activated 1, 3, 6 and 8 positions is that they 

(and the 4, 5, 9, and 10 positions) are all sterically congested peri positions.  In 

combination with a bulky electrophile, there is a drastic reduction in the rate of reaction at 

these sites.   

 

Scheme 1.3: a) Friedel-Crafts t-butylation of pyrene (18) at the 2 and 7 positions.  

 b) Marder's borylation of pyrene (18). 

+
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Alternatively, Marder et al. found that iridium-catalyzed borylation occurs exclusively at 

the 2 and 7 positions (Scheme 1.3).24  Again, steric crowding at the 1, 3, 6 and 8 positions 

(as well as the 4, 5, 9, and 10 positions) is responsible for the complete selectivity at the 2 

and 7 positions. 

The 4, 5, 9 and 10 positions (K-regions) of pyrene can be oxidized in the presence of a 

ruthenium salt to give the 4,5-dione (31) or the 4,5,9,10-tetraone (32) in fair yield (45% 

and 36% respectively).25  Itami et al. have also recently reported the direct arylation at the 

4-position via a palladium catalyst (Scheme 1.4).26 

 

Scheme 1.4: a) Oxidation of the K-region of pyrene (18). b) Direct arylation at the 4-

position (18). 
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Although it is possible to directly substitute pyrene (18) at each of its positions, the 

situation becomes more complicated when even a single substituent is present.  Therefore, 

often times, one undertakes a more labor-intensive, indirect method to obtain a particular 

multifunctionalized pyrene.  This typically involves the construction of the pyrene system 

along the way.18 

Recently within the Bodwell group, methodology was developed that leads exclusively to 

1,8-dibromopyrene derivatives in high yield.2  The positioning of alkoxy groups in the 4 

and 5 positions on pyrene both activates the pyrene system towards electrophilic 

substitution and effectively hinders the 3 and 6 positions.  This methodology was used in 

the synthesis of 1,8-pyrenylene-ethynylene macrocycles such as 34.2  The synthetic plan 

for the work described in this thesis is based on this methodology.  

 

Figure 1.7: A 1,8-pyrenylene-ethynylene macrocycle (34). 
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The objective of this work is to develop an iterative strategy for the synthesis of a family 

of oligomeric (1,8)pyrenophanes (3) with potential application as sensors (Figure 1.8).  

The three key design elements are i) the repeating 1,4,5,8-tetrasubstituted pyrene system, 

ii) the flexible bridges that connect adjacent pyrene systems and iii) the side chains 

attached to one of the terminal pyrene units.   

 

Figure 1.8: Target pyrenophanes and their key design elements. 

 

As discussed earlier, pyrene is strongly fluorescent and its fluorescence behaviour is very 

sensitive to its environment.  Whereas most sensors have a pyrene unit attached as an 

appendage, the intention here is to build the sensor around pyrene and rely upon excimer 

formation and/or the presence of guest molecules to generate an output.  Four-atom 

bridges were chosen for initial work because they are sufficiently long as to impart very 

little strain into each pyrenophane system.  This should not only permit the use of pyrene 

as a starting material, but also confer good conformational mobility to the pyrenophane 
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units.  This mobility will presumably allow for easy access to both syn and anti 

conformations, as illustrated for the simplest of the targeted pyrenophanes 2 (Figure 1.9).  

Whereas the anti conformer would be expected to exhibit normal pyrene fluorescence, the 

syn conformer may exhibit excimer fluorescence.  According to simple molecular models, 

the syn conformer is flexible enough to open up enough to receive a planar guest 

molecule such as an aromatic system, e.g. a nitroarene, dioxin, phenol, or caffeine.  If the 

fluorescence of the system containing a guest differs from that of both the free syn and 

anti conformers, then this could form the basis of a sensor.  With larger values of n, the 

conformational behavior becomes more complicated, as each pyrenophane unit has its 

own syn and anti conformations.  However, the possibility of having an especially 

sensitive response arises.  Although somewhat speculative, this may result from changes 

from an all-anti conformation to a guest-containing all-syn conformation, which would 

have all of the pyrene units (and guests) stacked in a column.   

Figure 1.9: Anti and syn conformers of 2. 

 

The side chains (–OR) were initially included in the design for the purpose of maintaining 

solubility as the value of n becomes larger, but they may eventually prove to be more 

RO

RO

O

O

RO

RO

O

O

anti-xx syn-xx        anti-2                    syn-2 



  26 

 

 

useful.  One possibility would be to change the side chains from alkoxy groups to 

polyether chains in order to promote water solubility.  The incorporation of stimuli-

responsive units as a means to control the conformation of the pyrenophane(s) should also 

be borne in mind once the target systems have been synthesized and shown to exhibit 

desirable sensing properties.  

The design of the target systems 2 was heavily influenced by the pyrene chemistry 

described earlier.  The reasons for this are i) to minimize the number of synthetic steps 

needed to construct a suitably unstrained and flexible pyrenophane and ii) to make the 

synthesis iterative in nature.  The retrosynthetic analysis for pyrenophane 2 represents a 

single iteration (Scheme 1.5).   

 

Scheme 1.5: Retrosynthesis of 2. 
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An O-alkylation reaction (SN2 reaction) was chosen as the key cyclophane-forming step 

in the synthesis pyrenophane 2.  This leads back to dihalide 35 and pyrene-4,5-dione (31), 

which can be reduced to the corresponding diol directly prior to O-alkylation.  There is 

ample precedent for the use of SN2 chemistry in cyclophane synthesis as a wide range of 

other unstrained cyclophanes, especially thiacyclophanes,3,5,14 have been accessed using 

this type of reaction.  From 35, functional group interconversion leads back to diyne 37, 

which now contains retrons for the Sonogashira cross-coupling reaction.  Application of 

this transform brings the analysis back to dibromide 36, which then leads back to 4,5-

dialkoxypyrene 1 via completely regioselective electrophilic bromination (discussed in 

detail in the following Chapter).  In exactly the same way that pyrenophane 2 went back 

to 35 and 31, 4,5-dialkoxypyrene 1 leads back to dione 31 and a primary alkyl halide. 

The iterative nature of the synthetic strategy relies upon the success of the regioselective 

electrophilic bromination of pyrenophane 2 at the two positions analogous to those in 4,5-

dialkoxypyrene 1.  As such, the second iteration leading to pyrenophane 2 (Scheme 1.6) 

would consist of five steps: i) bromination, ii) Sonogashira reaction, iii) catalytic 

hydrogenation, iv) conversion of the alcohols to halides (or pseudohalides) and v) 

reduction and O-alkylation of dione 31 to afford pyrenophane 3.  At this point, another 

iteration could be initiated by electrophilic bromination, which would again be expected 

to occur with high selectivity at the same positions on the terminal pyrene system.   
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Scheme 1.6: Synthetic strategy toward pyrenophane chains. 

 

At the outset of this project, the aim was to complete as many iterations as possible in the 

time available, to study the conformational behavior of the pyrenophanes and to 
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Chapter 2: Results and Discussion 

 

To commence this project, pyrene-4,5-dione (31) was required.  Although 31 is a 

commercially available compound, it is prohibitively expensive ($105 for 25 mg*) to 

serve as a starting material for multistep synthesis.  It can be synthesized directly from 

pyrene (18), the most recent procedure having been reported by Harris et al in 2005.25  A 

slight modification of this procedure was subsequently reported by Bodwell et al.,2 who 

found that changing the solvent system from water, chloroform and acetonitrile to water, 

dichloromethane and tetrahydrofuran lessened the reaction time from 18 h to 2.5 h 

(Scheme 2.1).  In either case, the reaction is rather low yielding (40—45%), but this is 

certainly acceptable considering the high cost of dione 31 and the direct access to a 4,5-

difunctionalized pyrene.  Indeed, until very recently, this was the only reaction that 

selectively functionalized pyrene (18) in the 4 and 5 positions.   

 

Scheme 2.1: Synthesis of pyrene-4,5-dione (31). 

 

                                                

* Sigma Aldrich, April 2014 
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With regard to the suggested mechanism of the reaction, ruthenium tetraoxide (39, the 

active oxidant) is presumably generated in situ from ruthenium trichloride hydrate and 

sodium periodate.  It has been proposed that RuO4 (39) reacts with pyrene in the way that 

osmium tetraoxide reacts with alkenes, i.e. by a [3+2] cycloaddition at the K region of 

pyrene.27,28  However, the osmium tetraoxide mechanism usually yields 1,2-diols (e.g. 41) 

or, as in the case of the Lemieux-Johnson oxidation, aldehydes.29–31  The mechanism 

leading to the diketone formation has not been established, but two 1,2-eliminations from 

cyclic ruthenate 40 does not seem unreasonable (Scheme 2.2). 

 

 

Scheme 2.2: Mechanistic considerations for the RuO4 oxidation of pyrene (18). 
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From a practical perspective, the isolation of the product in pure form was found to be 

very problematic and, as explained in detail below, this limited the scale of the reaction to 

roughly 2 g of pyrene (18).  After the 2.5 h reaction, a considerable amount of an 

insoluble black-green residue was present and this needed to be removed by filtration.  

The tar-like nature of the residue made filtration difficult because the commercially 

available filter paper (even the most porous one available – Macherey-Nagel 616†) 

quickly became clogged.  Through some experimentation, it was found that the use of 

three layers of paper towels (Merfin Vicel) was more effective.‡  Nevertheless, the 

filtration was still slow and several washings (4-6) were usually required to extract the 

majority of the product from the residue.  Moreover, it still did not result in the complete 

removal of the residue, as it often remained in the organic layer until drying and 

subsequent gravity filtration.  

 

Once dry, the residue had a chalk-like consistency on top and the lower layers were more 

comparable to tar.  The identity of this residue was not investigated.  It could contain 

oxidized chloro impurities (from the RuCl3, which was found to be a less favorable and/or 

over-oxidation of pyrene.  Although it has been suggested that using ruthenium dioxide in 

the place of ruthenium trichloride would result in less residue,28 an earlier publication by 

                                                

† MN 616 ø 150 mm, Art.-Nr: 432 015, Lot 10177.06 

‡ Suction filtration using filter paper was found to proceed extremely slowly.  The use of 

Celite® was also investigated, but paper towels proved to be most effective. 
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Dixon et al.27 describing this reaction reported that this modification was non-specific, 

with oxidation occurring at positions other than the 4 and 5 positions.  It was not stated 

whether or not a residue formed, but several products were said to be formed, including 

two different dione products (i.e. 31 and 44), a lactol (43) and an unidentified aldehyde 

(45, Figure 2.1).  Harris et al.25 also did not report the presence of any residue, but they 

did report the formation of several other byproducts, none of which were identified. 

Figure 2.1: Pure compounds isolated by Dixon et al. from the oxidation of pyrene (18).   

Several impure mixtures, including one of the lactone 43 and unknown aldehyde 45 were 

also obtained.  

 

The problems with filtration were not the sole issues with the reaction leading to 31.  For 

a start, identifying the optimal time to stop the reaction is tricky.  Waiting for the 

complete consumption of pyrene (18) is futile because the product 31 eventually starts to 

be consumed faster than the pyrene.  It was found that the first signs (tlc analysis) of the 

formation of a byproduct (Rf = 0.34, dichloromethane) was the best time to stop the 

reaction and move onto filtration. 
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 During the extraction that followed the filtration, the remaining residue not only 

pervaded both layers, but also adhered to the sides of the separatory funnel.  This and the 

dark color of both layers made extraction a difficult task, because it was difficult to see 

the phase change.  On top of that, the reaction was found to be quite sensitive to 

variations in temperature, scale, and the addition rate of NaIO4, all of which adversely 

affect the yield.  If the reaction was heated, there was an increase in by-product formation 

and a corresponding reduction in yield.  For contrast, when the reaction was chilled (cold 

tap water in a jacketed flask, or an ice bath), product formation was greatly reduced, 

along with the rate of the reaction.  Sodium metaperiodate was found to dissolve 

exothermically in water.  Therefore, the rate of addition of sodium metaperiodate was 

important: too fast, and the reaction heated up, leading to the aforementioned observed 

decrease in yield. 

 

For the first year of this project, the problems associated with the oxidation of pyrene (18) 

to give pyrene-4,5-dione (31) were simply (but grudgingly) accepted as an inevitable 

limitation of this synthesis.  By whatever mechanism, some of the 4.5 equivalents of 

sodium periodate is reduced to iodine during the reaction, as evidenced by the pink colour 

of the solvent in the collection flask of the rotary evaporator during the work-up and the 

more intense pink-purple fraction from the column.§  A thiosulfate wash was incorporated 

into the work-up, to quench the iodine and this rendered the work-up and purification 

                                                

§ If this iodine co-mingles with the product 31 it appears as more of a brown-orange solid.  
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slightly easier.  The time and effort required to generate synthetically useful amounts of 

this key starting material were obvious impediments to progress and there was a clear 

need for an improved procedure.  

 

The use of N-heteroaromatic additives has precedent in related oxidation chemistry using 

rhenium, specifically methyltrioxorhenium (MTO).32,33  For example, Trost and Sharpless 

separately found that adding pyridine to their reaction mixtures served to both “clean up” 

the reaction and increase turnover numbers (Scheme 2.3).  Although in both cases the 

additive used was pyridine, there have been a number of reports of the effectiveness of 

aliphatic and aromatic nitrogen donor ligands, such as N-methylimidazole, pyridine and 

urea / hydrogen peroxide (UHP).34–37   

 

Scheme 2.3: An example of an MTO-mediated epoxidation by Sharpless et al.33 

 

In each case, the nitrogen-donor ligands were found to enhance the stability of the 

rhenium complexes.  The adducts containing aromatic N-donor ligands were found to be 

significantly more stable than those of the aliphatic ones.  This may be attributable to the 

fact that aromatic N-donor ligands are softer bases than the corresponding aliphatic ones, 

 MTO,  pyridine

30% aq H2O2
CH2Cl2, rt, 6 h

91%

O
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and therefore form more stable complexes with soft transition metal ions.37  It was also 

observed that there were no significant advantages to using aromatic bidentate ligands 

over monodentate ligands with respect to their catalytic activity and to the stability of 

their peroxo species.34 The coordination of the ligands to the rhenium center influences 

the stability, steric environment, and chemical behavior at the metal.  These effects all 

contribute to the catalytic activity of the metal complex, but not necessarily in a 

cooperative or easily predictable fashion.  Thus, it can be a hit-and-miss exercise to find 

an effective additive for a metal-mediated oxidation reaction. 

  

Based on a suggestion by Dr. J. P. Lumb (McGill University), the use of N-

methylimidazole (NMI)** as an additive was then investigated for the conversion of 18 to 

31 (Table 2.1).  Three different loadings (1, 5 and 10 mol%) of NMI were investigated in 

the reaction.  It was found that adding 5 mol% of NMI to the reaction not only reduced 

the amount of the precipitate formed, but also increased the yield from 45% to 52% 

(Entry 2).  It is unclear as to whether the small increase in yield was due to the direct 

involvement of the NMI in the conversion of 18 to 31 or because more of the product 

could be extracted from the cleaner reaction mixture.  Both 1 and 10 mol% loadings 

resulted in a decrease in the amount of the amount of the unwanted residue, but had little 

to no effect on yield (Entries 1 and 3). Therefore, with a more manageable work-up in 

hand, attempts to scale-up the reaction were undertaken, using 5 mol% of NMI.  

                                                

** This suggestion came during a poster session at a conference.  
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Although the increase in yield was modest, the substantial decrease in the amount of 

residue that formed changed the work-up and purification from being messy and time-

consuming to straightforward.  The drastic difference opened up the possibility of 

increasing the scale of the reaction and thus enabling the more-efficient production of 

multigram quantities of pyrene-4,5-dione (31).  

 

Entry Ligand 

(mol%) 

Yield  

(%) 

Temperature 

(°C) 

1 1 44 25 

2 5 52 25 

3 10 45 17 

 

Table 2.1: Optimization of the loading of NMI in the oxidation of pyrene (18).  

 

On a 2 g scale, all of the reactions with the NMI as an additive were worked up after 2.5 

h.  Suction filtration yielded very little of the aforementioned residue, and work up was 

much cleaner overall.  In fact, when it came time to purify the product via column 

O

O

RuCl3. 3H2O (10 mol%), 
NaIO4 (4.5 eq), NMI (amount)

CH2Cl2, THF, H2O, temp, 2.5 h

18
2.0 g

31
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chromatography, a short column (3 × 6 cm) could be used instead of the normal 

dimensions (3 × 20 cm).  Pyrene-4,5-dione (31) was isolated in 52% yield (Entry 2).   

 

The 2 g scale reaction requires a combined 130 mL of solvent.  An attempt was made to 

reduce this amount by half before further scale-up (Entry 1, Table 2.2).  However, the 

yield was slightly reduced (41%), and the work-up was less clean, and therefore more 

difficult.  Therefore, it was decided to keep the original concentration for further scale-up 

attempts.  

Entry Pyrene, 13 

(g) 

RuCl3Ŋ3H2O 

(g) 

NaIO4 

(g) 

Yield 

(%) 

Temperature 

(°C) 

1 2.00 0.27 9.52 52 25 

2 5.00 0.67 23.78 51 21 

3 10.68 1.42 50.36 49 25 

4 25.33 3.51 125.69 52 25 

5 100.57 13.29 478.48 41 22 

6 5.00 0.67 23.79 55 24 

Table 2.2: Optimization of the scale of the reaction to form pyrene-4,5-dione (31). 

O

O

RuCl3. 3H2O (10 mol%), 
NaIO4 (4.5 eq), NMI (5 mol%)

CH2Cl2, THF, H2O, temp, 2.5 h

18
amount

31
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Next, a 5 g scale reaction was attempted.  As with the 2 g scale, the reaction was stopped 

after 2.5 h, there was a drastic reduction in the precipitate compared with the original 

reaction conditions, and the work-up was far cleaner.  The yield remained constant at 

51% (Entry 2), and it was decided to scale-up further.  At the 10 g scale, there was still 

less precipitate than in the original 2 g reaction mixture, and the work-up remained clean.  

The yield of pyrene-4,5-dione (31) was 49% (Entry 3).  

 

Next, a 25 g scale reaction was attempted.  To facilitate stirring, a mechanical stirrer was 

used instead of the magnetic stirrer.  The reaction was again stopped after 2.5 h, and only 

a small amount of precipitate was formed.  Even at this scale, there was less precipitate 

formed than there was in the original 2 g reaction without the NMI!  With a yield of 52% 

(Entry 4), this scale proved to be the most convenient at the lab setting.  Larger scale 

reactions would call for the use of large glassware (round-bottomed flasks, separatory 

funnels, etc.) that was not readily available in the Bodwell laboratory.  

 

As a proof of concept, a 100 g scale reaction was also performed.  This was a rather 

daunting undertaking, for it required much larger equipment, much of which was 

improvised.  The reaction was conducted in a 12 L three-neck round-bottomed flask, 

using a mechanical stirrer and a combined 6.5 L of solvent.  Suction filtration required a 

large quantity of dichloromethane, and it was quite difficult to wash out the product (31) 

from the residue due to the massive scale of the reaction.  In an attempt to extract the 

product more efficiently, an industrial-sized Soxhlet apparatus was obtained, and the 
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residue from the suction filtration (along with the paper towels) was loaded into it using 

cotton plugs instead of a thimble, and dichloromethane as the extraction solvent.  The 

Soxhlet extraction resulted in the isolation of an additional 32 g of crude material before 

the column chromatographic step needed.  The next obstacle with this reaction scale was 

to concentrate the fractions before purifying via column chromatography.  Approximately 

30 L of solvent needed to be removed under reduced pressure, which would have required 

an inordinate amount of time using the rotary evaporators in the Bodwell lab.  Therefore, 

once again the Soxhlet apparatus was used, this time as a makeshift distillation apparatus; 

shortly before the collected solvent ran back down, it was emptied.  Once the product was 

adsorbed onto silica gel, column chromatography was performed, using a large column 

and resulting in a 41% yield (Entry 5).  Although this reaction can be performed on a 100 

g scale, this scale is far too large and cumbersome an undertaking.  The 25 g scale is 

about as large as can be performed comfortably in a typical lab setting. 

 

To compare the Soxhlet extraction with the traditional extraction in this reaction on a 

more manageable scale, a 5 g reaction was conducted.  Soxhlet extraction accounted for a 

5% increase in the yield to give a total yield of 55% (Entry 6). 

 

A series of experiments was then performed (Table 2.3) to try to deduce the role of the 

NMI in the reaction.  The ligand was varied, to see if the same result could be attained 

with a different additive.   
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Figure 2.2: Ligands used as additives in the reaction to form pyrene-4,5-dione (31). 

 

Two other nitrogen-donor ligands with varying denticities were also tried.  2,2’-

Bipyridine (bipy, 49), and diethylenetriamine (dien, 50) were both used at the optimal 

loading for NMI (5 mol%), and while they both brought about a decrease in the amount 

of the residue that formed, they had no beneficial effect on yield (Entries 1 and 2). 

 

Entry Ligand Yield (%) Temperature (°C) 

1 bipy (49) 43 26 

2 dien (50) 43 21 

3 PPh3 (51) 36 23 

4 DavePhos (52) 45 21 

5 DBU (53) 45 23 

Table 2.3: Optimization of the additive of the reaction to form pyrene-4,5-dione (31). 

N
N

N

N
H2N

H
N

NH2
P

P

N

N
N

48 49 50 51 52 53

O

O

RuCl3. 3H2O (10 mol%), 
NaIO4 (4.5 eq), additive (5 mol%)

CH2Cl2, THF, H2O, temp, 2.5 h

18
2.0 g

31



  41 

 

 

The use of a phosphorus-based ligand, triphenylphosphine (51), did not lead to a 

reduction in the amount of residue formed, and the yield dropped to 36% (Entry 3).  It is 

possible that triphenylphosphine oxide38 was formed in situ, which essentially removed 

the ligand from the reaction and made it resemble a ligand-free reaction.  A more 

hindered phosphine ligand, DavePhos (52) was also tried.  Unlike triphenylphosphine,  

DavePhos was found to substantially reduce the amount of the residue that formed, 

rendering suction filtration trivially easy.  In fact, the use of DavePhos resulted in the 

greatest reduction of residue, and therefore the easiest work-up.  Unfortunately, the yield 

remained at 45% (Entry 4).  Despite the success with DavePhos, NMI remained an 

excellent and much more cost-efficient option.   

 

In some of the reported MTO experiments, the addition of Lewis base additives in the 

oxidation reactions not only enhanced the selectivity of the reactions but also accelerated 

the olefin oxidation.34,36,37  As well, it was found that with a higher pKa value of the 

conjugate acid of the additive, the stronger and more stable is the Re-ligand interaction.34  

Therefore, to see if basicity played a role in the conversion of 18 to 31, the addition of 

DBU (53) was attempted.  Although cleaner than the original 2 g scale reaction, there was 

more residue formed than with the NMI.  The yield, however, remained at 45% (Entry 5). 

 

Between all of these trials, the rate of the reaction did not appear to be significantly 

affected as judged by tlc analysis of the reaction progress.  Therefore, unlike in the article 

by Sharpless et al.,33 it is difficult to say whether the addition of NMI, or any of the other 
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ligands for that matter, served to accelerate the rate of oxidation.  At the very least, no 

dramatic changes in rate were observed.  Additionally, the denticity of the ligands also 

did not appear to affect the yield or quantity of residue.  

 

Instead of serving as a ligand on the active oxidant, it is possible that the additive is 

serving to de-coordinate the ruthenium from the product ortho-quinone 40, thereby 

reducing the amount of residue observed.  It is, however, difficult to say why just 5 mol% 

resulted in such a drastic reduction in the amount of residue formed.  Furthermore, it is 

possible that the ortho-quinone-ruthenium complex 40 is unstable under the oxidizing 

conditions, and may lead to a mixture of over-oxidized products, which may be some of 

what is observed in the residue.  Without further investigation, it is hard to say exactly 

what the role of the NMI is.  However, now that the reaction is scalable and less time-

consuming to perform, the modifications to the pyrene oxidation reaction made pyrene-

4,5-dione (31) much more readily available, thus providing an excellent situation to make 

meaningful progress with the intended synthetic plan. 

 

The next reaction in the planned synthetic sequence was the reduction and O-alkylation of 

pyrene-4,5-dione (31) to form a 4,5-dialkoxypyrene (1).  This procedure was adapted 

from a similar reduction and O-alkylation of phenanthrenedione 54 (Scheme 2.4).39   
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 Scheme 2.4: Reduction and O-alkylation of a phenanthrenedione 54,39 and the 

corresponding pyrenedione 31.2 

 

Although the reductive alkylation gave the 4,5-dialkoxypyrene (56) in 96% yield, it 

required a 48 h reaction time.  Therefore the procedure was modified in an attempt to 

reduce the reaction time (Scheme 2.5).  It was found that using a temperature of 100 °C 

instead of 25 °C reduced the reaction time from 2 d to 6 h, however, there was also an 

accompanying reduction in yield (from 96% to 85%).  A series of 4,5-dialkoxypyrenes 

was synthesized, with alkyl chains ranging from 10 carbons to 20 (Table 2.4).  Yields 

were consistently very good (85%) and the reaction could be scaled up to at least 10 g of 

dione 31.  There is no reason to expect that further scale-up could not be achieved 

comfortably. 
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Scheme 2.5: Modification of the reductive alkylation reaction. 

 

Entry Alkyl Chain Yield (%) 

1 C10H21 (57) 85 

2 C12H25 (58) 85 

3 C14H29 (59) 85 

4 C16H33 (60) 84 

5 C20H41 (61) 85 

Table 2.4: Series of synthesized 4,5-dialkoxypyrenes. 

 

A minor challenge with the initial purifications of the 4,5-dialkyoxypyrenes was the 

separation of the desired product from the excess alkyl halide (a total of 4 equivalents are 

used) by column chromatography.  When eluting with 10% dichloromethane/hexanes, the 

product and alkyl halide could not be separated completely.††  This problem was solved 

                                                

†† The products, usually solid, return to liquid form when excess alkyl halide is present. 
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by first eluting the column with hexanes (250—300 mL) before changing to the more 

polar elution solvent.  This proved to be easy for smaller scale reactions (2 or 4 g), but it 

became laborious for larger scale reactions.  This could potentially be avoided by using 

less of an excess of the alkyl halide in the reaction, but the smaller scales were sufficient 

for the purposes of this project.  Although this aspect of the alkylation reaction was not 

investigated, it would be a worthwhile pursuit in the future. 

 

The 4,5-dialkoxypyrenes were quite easy to handle.  Readily soluble in most organic 

solvents, they were neither light- nor air-sensitive and no special handling precautions 

were required.  They were, for the most part, all waxy white-yellow solids at room 

temperature.  Interestingly, the 4,5-dialkoxypyrene 59 (14-carbon alkyl chains) behaved 

somewhat differently from the other 4,5-dialkoxypyrenes.  When the reaction mixture 

was left to cool to room temperature, a sponge-like solid would form in the flask, 

covering the top of the reaction mixture.  Occasionally, this layer was hard enough to 

resist being punctured by a spatula.  During work-up, a similar sponge-like solid would 

form in the organic layer(s) during extraction if left to sit at room temperature for more 

than a few minutes.  Unfortunately, this did not prove to be a suitable method for isolation 

of the product in pure form (and thus avoiding column chromatography).  Upon removal 

of the solvent following column chromatography, the product solidified much more easily 

than all of the other 4,5-dialkoxypyrenes.  For this reason, the C14 alkyl chain was used. 
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The presence of the alkoxy groups at the 4 and 5 positions on pyrene serves two purposes: 

i) to activate the pyrene system towards electrophilic aromatic substitution, and ii) to 

sterically hinder the 3 and 6 positions.  Consequently, the addition of molecular bromine 

(2.2 equivalents dissolved in dichloromethane)‡‡ to the 4,5-dialkoxypyrene (59) yielded 

the corresponding 1,8-dibromopyrene product (62) exclusively within 5 min at room 

temperature in 95% yield (Scheme 2.6).   

 

Scheme 2.6: Synthesis of 1,8-dibromo-4,5-bis(tetradecyloxy)pyrene (62). 

 

The introduction of functionality at the 4 and 5 positions has made a formerly painstaking 

and nontrivial synthesis (of 1,8-dibromopyrene(s)) much easier, and consequently 

provided the opportunity for their use as building blocks for a variety of 1,8-substituted 

pyrene molecules.2  

 

With ready access to multigram quantities of 1,8-dibromo-4,5-bis(tetradecyloxy)pyrene, 

                                                

‡‡ Addition of neat bromine does not work. 
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attention was turned to installing the carbon chains that were slated to become the bridges 

in the target pyrenophanes.  Previous work within the group led to the successful 

conversion of dibromide 56 into alkynes 63-65 using Sonogashira cross-coupling with 

(trimethylsilyl)acetylene and 2-methylbut-3-yn-2-ol respectively (Scheme 2.7).2  

 

Scheme 2.7: The dialkoxydibromopyrene (56) as a substrate for Sonogashira chemistry.2 
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For the purposes of this project, a three-carbon chain with functionality at the end was 

required, so the alkyne that was chosen to be used in the Sonogashira reaction was 

propargyl alcohol (PA, 2-propyn-1-ol).  Since the synthetic plan involves subsequent SN2 

chemistry at the site of the OH functionality, it was critically important to omit the two 

methyl groups that are present in 2-methylbut-3-yn-2-ol (vide supra). This leaves a 

primary carbon instead of a tertiary carbon for use in the planned SN2 reactions.  Despite 

the structural similarity between 2-methylbut-3-yn-2-ol and propargyl alcohol, the 

Sonogashira reaction between dibromide 62 and propargyl alcohol did not proceed nearly 

as well as with 2-methylbut-3-yn-2-ol (Table 2.5). 

 

Entry Base Alkyne 

(eq) 

PdCl2(PPh3)3 

(mol%) 

CuI 

(mol%) 

Result 

1 Et3N PA (2.0) 5 10 Complex mixture 

2 Et3N PA (2.4) 4 10 Mono-coupling 

3 Et3N PA (4.0) 4 8 Dialkyne (minor) 

4 Et3N TMSA (4.0) 4 8 Dialkyne 

5 DBU TMSA (4.0) 4 8 Dialkyne 

6 DBU PA (4.0) 4 8 Dialkyne 

7 DBU PA (4.0) 10 20 Dialkyne 

Table 2.5: Attempted Sonogashira reactions with 62. 
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Using the same conditions developed previously in the Bodwell group (Scheme 2.7), the 

reaction of propargyl alcohol with dibromide 62 resulted in the complete consumption of 

62 and the formation of a dark, complex mixture of products (Entry 1).  When the number 

of equivalents of the alkyne was increased to 2.4, the mono-coupled product 66 was 

obtained in 32% yield (Entry 2).  A fair amount of the dibromide 62 (54%) was 

recovered.  Further increasing the amount of alkyne to 4.0 equivalents yielded the desired 

dialkyne 67 but in just 16% yield (Entry 3).  A substantial amount (73%) of the mono-

coupled product 66 was recovered (Entry 4).  These rather erratic results were puzzling, 

especially since the same batch of carefully purified and stored catalyst was used§§ and all 

glassware was consistently acid washed and oven dried.   

 

Figure 2.3: Products from attempted Sonogashira reactions with 62. 

 

                                                

§§ The same catalyst was used successfully in other Sonogashira reactions within the 

Bodwell group. 
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To determine whether the problem rested with the alkyne, propargyl alcohol was replaced 

by TMSA.  This time, the desired dialkyne 68 was obtained in 71% yield. (Entry 4).  1,8-

Diazabicyclo[5.4.0]undec-7-ene (DBU) was then used instead of triethylamine as the 

base, to see if it would enhance product formation.40  The desired alkyne 68 was obtained 

in 86% yield (Entry 5).  Using these conditions with propargyl alcohol yielded the 

dialkyne 67 in only 14% yield.  Since the disubstituted product was still formed in low 

yield, and there was no evidence of dehalohydrogenation (mass spectrometry and 1H-

NMR analysis), the catalyst loading was increased to 10 mol% (Entry 7).41  The yield of 

the disubstituted product remained low (26%).  Since variation of the base, catalyst, 

alkyne had not significantly improved the outcome of the reaction, it was decided to 

change the aryl halide from the dibromide 62 to the corresponding diiodide. 

 

 

Figure 2.4: Products isolated in the Sonogashira reaction with 62. 
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 Previous work in the group led to the formation of a 1,8-diiodo-4,5-dialkoxypyrene (69) 

in 46% yield from the corresponding dialkoxide using mercuric acetate and molecular 

iodine.42  Upon repeating this reaction exactly, a similar result was obtained.  It was then 

found that the yield of this reaction could be increased from 46% to 88% just by carefully 

monitoring the reaction progress by tlc.  Originally, the reaction was left for 18 h at room 

temperature, but the reaction was found to go to completion after only 2 h (Scheme 2.8).   

Scheme 2.8: Synthesis of diiodides 69 and 70. 

 

Evidently, the yield quickly reaches a maximum and then decreases with time.  This 

emphatically underscores the great importance of carefully monitoring one's reactions. 
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yield from the diiodide 70.  Changing the solvent used from toluene to diethyl ether (to 

facilitate solvent removal during work-up) further increased the yield to 91% (Scheme 

2.9).  

 

Scheme 2.9: Synthesis of the dialkyne 67 from the corresponding dibromide 62 and 

diiodide 70. 
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The alkyne units of 67 were then hydrogenated using conditions previously reported by 

the Bodwell group for a structurally different aryl alkyl alkyne.15  This was done to 

increase the flexibility in the newly-introduced side chains and thus provide access to a 

reasonable transition state geometry for the planned SN2 reaction leading to cyclophane 

formation.  Using palladium on carbon as the catalyst and ethanol as the solvent, the 

corresponding diol was obtained in 85% yield.  Switching the solvent used to ethyl 

acetate yielded diol 71 in 93% yield (Scheme 2.10). 

 

  

Scheme 2.10: Synthesis of diol 71 from the corresponding diyne 67. 
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The key step of this synthetic strategy, the reduction and O-alkylation to close the 

pyrenophane, requires an alkyl halide.  Therefore the diol 71 was converted into the 

corresponding ditosylate (72, 76%) and dibromide (73, 82%) using standard conditions 

(Scheme 2.11).  As expected, both compounds were obtained as stable solids.  No 

attempts were made to find optimal conditions for these products. 

 

 

Scheme 2.11: Conversion of diol 71 to the corresponding ditosylate 72 and dibromide 73. 
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intermediate 76  Deprotonation of the remaining OH group would give anion 77, which 

sets the stage for the key step of the overall sequence: an "intramolecular SN2-like" 

macrocyclization.***  The foremost consideration here is whether anion 77 is able to easily 

adopt a conformation in which the nucleophile (the negatively charged oxygen atom) is 

oriented at the back side of the C—Br bond.  Examination of simple molecular models 

suggests that this key requirement should achievable without the build-up of significant 

strain.  Calculations may have provided more insight, but none were performed.   

                                                

*** Of course, an intramolecular SN2 reaction cannot be bimolecular (the "2" in SN2), but 

the nucleophilic displacement event is mechanistically identical to that of the 

intermolecular version. 
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Scheme 2.12: SN2 -like macrocylization. (Counterions not shown for clarity) 

An important change from the conditions used for the synthesis of 4,5-dialkoxypyrenes 

57-61 was the reduction in the number of molar equivalents of the base (KOH) from 4.0 
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Scheme 2.13: Formation of the eliminiation product (78). 

 

Since elimination is favoured over substitution at higher temperatures, the reaction 
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conditions (to favour intramolecular macrocyclization), it appears as though the alkyl 

halide (72 or 73) undergoes E2 elimination upon addition to the reaction mixture, so it is 

possible that the anion generated from the deprotonation of 74 is acting as the base.  It is 

unclear why it would behave as a base in this case and as a nucleophile in the previously 

described alkylations. 

 

Entry Alkyl Halide Base Temperature (°C) Result 

1 dibromide 73 KOH 100 elimination 

2 dibromide 73 KOH 24 elimination 

3 ditosylate 72 KOH 23 elimination 

4 ditosylate 72 K2CO3 24 elimination 

5 dibromide 73 NaOH 22 elimination 

Table 2.6: Attempts at forming the desired pyrenophane (2). 

 

Scheme 2.14: E2 elimination of 72 or 73.  
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Chapter 3: Characterization of TTFV-Pyrene-based Polymers 

 

Organic electronic materials are molecular, oligomeric or polymeric π-systems that are 

typically constructed from some combination of aromatic systems, vinylene and 

ethynylene units.  The function of these materials is mainly dependent on the nature of 

their π-systems, their shape, and their noncovalent interactions.  When considering 

organic electronic materials, the behavior depends largely on the absolute and relative 

energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied 

molecular orbital (LUMO) levels, as well as orbital interactions.  When designing 

molecule-based organic electronic materials, the tuning of both the HOMO / LUMO gap 

and HOMO / LUMO levels are important factors to consider.  Performance can be 

controlled by tuning the HOMO / LUMO levels as well as solid-state properties (e.g. 

aggregation, crystal packing).  Molecules with a low-lying LUMO can easily accept an 

electron, whereas those with a high-lying HOMO can easily donate an electron.  

Molecules with narrow HOMO / LUMO gaps are of particular interest due to their ability 

to undergo promotion of an electron from the HOMO to the LUMO.  These are the 

fundamental processes that are exploited in all organic electronic devices.  

 

Three basic strategies are typically used to provide both a narrow HOMO / LUMO gap in 

organic materials and relatively independently tunable HOMO and LUMO levels: i) 

variation of the nature of the aromatic system(s), ii) extending π-conjugation in the 

molecule, and iii) functionalization with strategically placed electron donor and electron 
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acceptor groups (electronic push-pull effect).44,45  Each of these principles has been 

successfully employed in the design of π-conjugated systems.  In recent studies,46,47 there 

has been a growing interest in providing new electron donor / electron acceptor materials, 

driven by the need for molecules that improve efficiency and performance in applications 

such as solar cells and OLEDs.   

 

Tetrathiafulvalenes (TTF) and derivatives are often used as donor moieties in donor-

acceptor (D-A) materials due to their good stability and redox properties.  The sulfur 

heterocycle can be sequentially oxidized into a radical cation and dication (Scheme 5.1).  

Indeed, since its discovery in 1970, TTFs have been among one of the most heavily 

studied classes of heterocyclic systems.48  Functionalized TTF derivatives have been 

reported in applications ranging from electrochemical switches, sensors, surface 

modification agents, and so on.48  There has also been a sustained effort to make π-

extended TTFs to better control their electronic and solid-state packing properties.48 

 

 

Scheme 3.1: Redox transformation of TTF. 
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Tetrathiafulvalene vinylogues (TTFVs) are a type of π-extended TTFs, which contain an 

additional two (or some higher even number) sp2-hybridized carbon atoms between the 

dithiole rings.  TTFVs have conformational switching properties under redox conditions 

due to Coulombic interaction and steric strain (Scheme 3.2). 48   

 

Scheme 3.2: Redox-controlled conformational switching behavior of diphenyl-TTFV 82. 

The molecular geometries shown in the bottom were optimized at the B3LYP/6-311G* 

level of theory.††† 

 

 

 In its oxidized form, TTFV ([822+]) prefers a trans conformation due to the Coulombic 

repulsion between the two  positively charged dithiolium rings.  Reduction relieves this 

                                                

††† Calculations performed by Prof. Y. Zhao, Memorial University. 
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repulsion, and the TTFV molecule adopts a more stable cisoid conformation.  In the past 

few years, TTFVs have been used as building blocks for functional systems such as 

molecular tweezers, redox-active polymers, and a stimuli-responsive polymers which was 

found to effectively disperse single-walled carbon nanotubes (SWNTs) in various organic 

solvents.49–51  

 

SWNTs have remarkable properties, but their application in organic electronic devices is 

very limited due to poor solubility and structural heterogeneity (chirality and size) and 

varying levels of impurities such as metals, amorphous carbon and multiwalled carbon 

nanotubes (MWNT).  SWNTs are often functionalized to enable their homogeneous 

dispersion in various solvents and bulk materials.  One of the more popular approaches to 

SWNT solubilization is to use supramolecular interactions, which enable 

functionalization and dispersion without deteriorating the sp2 hybridization at any point 

on the nanotube structure and thus maintaining their electronic characteristics.52,53  

Conjugated polymers, which often include aromatic units, have been used as 

supramolecular dispersion agents because they participate in favorable π-stacking 

interactions with SWNTs.  They also tend to have good solubility and specially designed 

polymers can even exhibit selectivity when interacting with SWNTs.  For example, 

TTFV-based polymers have been shown to selectively and reversibly functionalize 

SWNTs.50,51  TTFV-fluorene (83) and TTFV-phenylacetylene (84) polymers were 

reported by the Zhao group (Figure 3.1).51,54  
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Figure 3.1: Selected TTFV-based polymers reported by the Zhao group. 
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alkynes has been used by the Zhao group in the synthesis of various polymers such as 83 

and 84.  Having been able to synthesize multigram quantities of diiodide 70, the 

opportunity to combine these two systems in a polymer presented itself.  Subjection of the 

two bifunctional species 85 and 70 to Sonogashira conditions led to the formation of 

polymer 86 in 87% yield (Scheme 3.3).‡‡‡  This reaction was found to be easily 

reproducible.   

 

Scheme 3.3: Synthesis of polymer 86. 

                                                

‡‡‡ The synthesis of 85 and 86 were carried out by Eyad Younes (Zhao group, Memorial 

University).  
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A series of experiments were then performed to learn more about the behavior and 

characteristics of the polymer.  To determine thermal stability and obtain information 

about phase changes, differential scanning calorimetry (DSC) experiments were 

performed.  A slight transition (neither significant nor representative of a phase change) at 

about 85 °C was observed, which corresponded to a heat flux of 0.2 mW.   The weak 

nature of this transition may indicate that it corresponds to a liquid crystalline (LC) glass 

transition or perhaps desolvation or instrumental error.  A large increase in heat flux 

occurred at about 300 °C, which is indicative of decomposition.  As far as stability is 

concerned, DSC revealed that the polymer was thermally stable to at least 150 °C, and 

thus could likely be used in devices up to temperatures of about 100 °C.   

 

Spartan molecular mechanics calculations using the MMFF force field§§§ predict that 

polymer 86 could adopt a folded structure with stacking observed between pyrene units 

(Figure 3.2).   The observed stacking of pyrene is similar to the columnar stacking 

observed in some discotic liquid crystal materials.   

Figure 3.2: Predicted structure of polymer 86. Alkyl chains omitted for clarity. 

                                                

§§§ Calculations performed by Prof. Y. Zhao, Memorial University. 
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Variable temperature 1H-NMR experiments were therefore performed over a range from 

room temperature to 100 °C.  The polymer 86 did not show any temperature-dependent 

behaviour, which suggests that the event observed at 85 °C in the DSC may not be LC in 

nature.  Melting point analysis shows that melting starts around 200 °C, but that 

decomposition occurs.  This is supported by the DSC data, for there is a slight 

endothermic change followed by a larger exothermic process at around 260 °C.  

 

Next, pulsed gradient spin-echo (PGSE) diffusion NMR experiments were run in order to 

learn more about the size and behavior of the species in solution.  PGSE-diffusion NMR 

experiments provide accurate, noninvasive molecular diffusion measurements on 

complex chemical mixtures and multicomponent solutions.  The data extracted from these 

experiments enable the determination of a diffusion coefficient, from which a 

hydrodynamic radius can be calculated using the Stokes–Einstein equation: 

                                              !! = ! !!!
!!"!!

                                               (1) 

 

where D is the diffusion coefficient, kB is the Boltzmann constant, T is temperature, η is 

viscosity, and rH is the hydrodynamic radius. 

 

The Stokes–Einstein equation assumes a molecule is spherical in shape.  By taking into 

account the frictional drag associated with different shapes of molecules, it can be 

adjusted to solve for other shapes: 

                                               !! = ! !!!
!!"!!

                                               (2) 
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The above equation assumes the molecule is prolate (or oblong) instead of spherical.  If 

the molecule is more linear, the following equation (3) can be used: 

                                                  !! = ! !!!
!!"!!

                                               (3)  

 

Using the average diffusion coefficient (5.468 × 10-9 m2/s) obtained from the PGSE 

diffusion NMR experiments, the hydrodynamic radii were calculated for each shape 

(Table 3.1). 

 

Entry Shape Hydrodynamic Radius 

(nm) 

1 Spherical 2.35 

2 Prolate 3.52 

3 Linear 7.04 

Table 3.1: Calculated rH from PGSE-diffusion NMR data. 

 

Comparing this to the previously calculated structures (Figure 3.2), there some agreement 

with the rH corresponding to the spherical shape.  The calculated simplified structure is 

expected to have a molecular radius of about 1.3 nm.  Alkyl chains, if present, will 

theoretically account for an additional approximately 1 nm. Although close, it is 

important to consider that the experimental data does not allow for the calculation of 
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molecular radius, simply the hydrodynamic radius.  More calculations (specifically for 

the expected hydrodynamic radius) would be helpful. 

 

 Cyclic voltammetry experiments were performed**** using Ag / AgCl as the reference 

electrode, and a thin film of polymer 86 deposited on a glassy carbon working electrode.  

The scans show that the oxidation / reduction of the TTFV polymer is highly reversible.  

As shown in Figure 3.3, a redox wave pair is clearly observed in the cyclic 

voltammogram, with an anodic peak at +0.69 V and a cathodic peak at +0.52 V.  The 

voltammetric behaviour resembles that of the TTFV monomer, indicating that the 

oxidation and reduction occurs at the TTFV moieties in a simultaneous manner. 

Figure 3.3: One of the CV scans of 86. 

 

                                                

**** CV experiments were performed by E. Younes (Zhao group, Memorial University). 
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In conclusion, a series of experiments were conducted to learn more about the shape and 

properties of polymer 86.  The polymer was found to be thermally stable, and could 

conceivably be used in devices up to about 100 °C.  Through PGSE-diffusion NMR 

experiments the hydrodynamic radius was predicted, which is in agreement with the 

calculated value.  The molecule therefore likely adopts a globular structure in solution.  

Only the TTFV moiety was found to undergo reversible redox chemistry, with the pyrene 

moiety remaining intact.  This is an ongoing collaborative effort between the Bodwell and 

Zhao groups.  
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Chapter 4: Conclusions and Future Work 

 

Although the pyrenophane 2 was not successfully synthesized, progress was made 

through the first iteration of the planned synthetic route up to the penultimate step.  The 

final [1+1] coupling step failed due to competition from elimination.  Along the way, 

considerable attention was paid to the improvement of the first step in the synthesis, the 

oxidation of the starting material, pyrene (18) to pyrene-4,5-dione (31).  It was found that 

the addition of 5 mol% of N-methylimidazole transformed the work-up and purification 

steps of the reaction from being very difficult and time-consuming to becoming much 

more straightforward.  This enabled the reaction to be scaled up far beyond the previous 2 

g limit using the original procedure.  The reaction can now be performed comfortably 

with slightly improved yields on a 25 g scale of pyrene (18), using routinely available 

laboratory glassware.  One reaction was conducted on a 100 g scale, but the reaction was 

difficult to handle using regular lab glassware and equipment.  Although the role of the 

additive remains unclear, its use was fount to be a valuable modification of a useful 

reaction.   

 

The yield of the iodination of pyrene (18) to give diiodide 70 was improved from 46% to 

88%.  The greater availability of this compound was beneficial to the synthetic route 

because its Sonogashira reaction with propargyl alcohol proceeded in much higher yield 

(91%) than that with the corresponding dibromide 62 (26%).  Not only did diiodide 70 

contribute to the improvement of the planned synthetic route, but it is also a potentially 
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useful synthetic building block for other types of designed π-systems using different 

cross-coupling reactions.   

 

Using a TTFV derivative 85 and the diiodide 70, polymer 86 was synthesized by E. 

Younes and a series of experiments were conducted to learn more about its shape and 

properties.  The polymer was found to be thermally stable, and could conceivably be used 

in devices up to about 100 °C.  Through PGSE-diffusion NMR experiments the 

hydrodynamic radius was calculated, which is in agreement with the calculated value.  

The molecule therefore likely adopts a globular structure in solution.  Only the TTFV 

moiety was found to undergo reversible redox chemistry, with the pyrene moiety 

remaining intact.  This is an ongoing collaborative effort between the Bodwell and Zhao 

groups.  

 

Although the [1+1] cyclization reaction to afford pyrenophane 2 was unsuccessful, this 

does not mean that the general strategy is fatally flawed.  Beyond simply extending the 

length of the bridges (e.g. using homopropargyl alcohol in the Sonogashira reaction), a 

variety of other types of cyclophane-forming reactions could be investigated.  One 

possibility is to exploit the Heck reaction between 4,5-bis(allyloxy)pyrene (87) and 

diiodide 70 (Scheme 4.1).  The resulting pyrenophane 88 with E-configured double bonds 

does not appear to be significantly strained according to examination of simple molecular 

models.  In contrast, the corresponding pyrenophane with triple bonds, which would 

result from the use of 4,5-bis(propargyloxy)pyrene, would clearly be very strained.  
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Catalytic hydrogenation of 88 would afford pyrenophane 2 and the second iteration could 

then be initiated. 

 

Scheme 4.1: Possible cyclization reaction for the formation of 2. 
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dithiapyrenophane 90.  The much greater nucleophilicity and much lower basicity of the 

thiolate than alkoxide≤ would be expected to greatly favour the desired substitution 

reactions over the undesired elimination reactions.  Alternatively, the condensation of 

diamine 92 (e.g. from 72 or 73 via FGI) with dione 31 would be expected to afford 

diimine 93, reduction of which would afford diamine 94.  A complication here may be the 

need to protect the nitrogen atoms before commencing the second iteration.   
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Scheme 4.2: Possible cyclization reactions to form a similar pyrenophane as 2. 
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Chapter 5: Experimental 

 

All reaction solvents were ACS grade and were used as received.  NMR solvents were 

dried over activated molecular sieves (4 Å) before use.  All reagents and starting 

materials were used as received.  Flash silica gel was used for all column 

chromatography.    

 

NMR. CDCl3 solutions were used for recording 1H NMR and 13C NMR spectra unless 

otherwise noted.   All 1H NMR spectra were acquired using either a Bruker AVANCE 

500 spectrometer operating at 500 MHz or a Bruker AVANCE III 300 spectrometer 

operating at 300 MHz (as noted).  All 13C NMR spectra were acquired using a Bruker 

AVANCE III 300 spectrometer operating at 75 MHz.  Data was processed and analyzed 

using MestRenova software (Mnova NMR). 

 

Mass Spectrometry.  Mass spectra were recorded on an Agilent 1100 series LC/MSD 

(Quad) chromatographic system by flow injection analysis.  Samples were dissolved in 

CH2Cl2 unless otherwise noted, and ionized by atmospheric pressure chemical ionization 

(APCI, positive mode).  Mass spectra for the higher molecular weight analytes were 

recorded using a High Resolution MSD Waters Micromass GCT Premier mass 

spectrometer.  High resolution spectra were obtained by Linda Winsor (Memorial 

University). 
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Melting Points.  Melting points were recorded using a Stanford Research Systems 

Optimelt Automated Melting Point System with Digital Image Processing Technology.   

 

Pyrene-4,5-dione (31): 

 

 To a solution of pyrene (2.000 g, 9.888 mmol) in CH2Cl2 (40 mL) and THF (40 mL) 

were added RuCl3Ŋ3H2O (0.266 g, 0.995 mmol) and H2O (50 mL).  To the resulting dark 

green solution was added N-methylimidazole (0.03 mL, 0.4 mmol) and then NaIO4 (9.517 

g, 44.49 mmol), slowly over 10–15 min.  The resulting solution was stirred at room 

temperature for 2.5 h.  The reaction mixture was suction filtered using three layers of 

paper towels (Merfin Vicel) as filter paper.††††  The residue was washed with CH2Cl2 until 

the washings ran colourless.  To the resulting dark red-orange filtrate was added H2O 

(500 mL) and the organic phase was separated.  The aqueous phase was extracted with 

CH2Cl2 (3 × 50 mL) and the combined organic layers were washed with H2O (2 × 50 mL), 

Na2S2O3 (2 × 50 mL), H2O (50 mL) and brine (50 mL) to afford a clear red-orange 

solution, which was then dried over anhydrous MgSO4.  The solvent was removed under 

reduced pressure and the residue was subjected to column chromatography (4 × 26 cm) 

(CH2Cl2).  The first compound eluted (a black solid, Rf = 0.35) could not be identified.  

                                                

†††† When regular filter paper was used, the filtration proceeded extremely slowly. 

O

O
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The only other product to be eluted was pyrene-4,5-dione (31), which was obtained as an 

orange solid (1.202 g, 53%): Rf (40% ethyl acetate/hexanes) = 0.46; mp = 301–304 °C 

(dec), (Lit.25 mp = 302–304 °C); 1H NMR (500 MHz, CDCl3) δ = 8.47 (dd, J = 7.6, 1.2 

Hz, 2H), 8.16 (dd, J = 8.0, 1.3 Hz, 2H), 7.83 (s, 2H), 7.74 (t, J = 7.7 Hz, 2H); 13C NMR 

(75 MHz, CDCl3) δ = 180.50, 135.77, 132.08, 130.21, 130.15, 128.47, 128.01, 127.28; 

MS (APCI-(+), CH2Cl2): m/z (%) 233 ([M+1]+, 100); HRMS (EI-(+), CH2Cl2): calcd for 

C16H8O2 232.0524, found 232.0523.  

 

General Procedure for the Synthesis of 4,5-Dialkoxypyrenes:  

 

To a solution of pyrene-4,5-dione (31) in THF (100 mL) and H2O (100 mL) were added 

TBAB (0.3 equiv.) and Na2SO3 (3 equiv.).  The resulting clear orange solution was stirred 

at room temperature for 5 min.  To the solution was added a solution of KOH (4 equiv.) 

in H2O (100 mL).  The resulting solution was deep red, and the flask was immediately 

capped.  To this solution was added the alkyl halide (4 equiv.).  The flask was equipped 

with a capped condenser and was stirred at 100 °C for 6 h.  The reaction mixture was 

cooled to room temperature and the layers were separated.  The aqueous layer was 

extracted with ethyl acetate (3 × 15 mL) and the THF layer was washed with H2O (15 

mL) before being combined with the other organic extracts.  The combined organic 

extracts were washed with H2O (3 × 15 mL) to afford a clear yellow solution, which was 

RO

RO
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then dried over anhydrous MgSO4.  The solvent was removed under reduced pressure and 

the residue was subjected to column chromatography (3 × 20 cm) using hexanes (350 

mL) and then 10% CH2Cl2/hexanes. 

 

4,5-Bis(decyloxy)pyrene (57):  

 

According to the general procedure, pyrene-4,5-dione (31) (2.001 g, 8.623 mmol), THF 

(100 mL), H2O (100 mL), TBAB (0.850 g, 2.637 mmol) and Na2SO3 (4.507 g, 25.88 

mmol), followed by a solution of KOH (3.908 g, 69.65 mmol) in H2O (100 mL) and 1-

bromodecane (9.532 g, 29.56 mmol) were employed to yield 4,5-bis(decyloxy)pyrene 

(57) (3.772 g, 85%): Rf (20% CH2Cl2/hexanes) = 0.43; mp 36-39 °C; IR (solid) υ = 1214, 

1168 cm-1; 1H NMR (500 MHz, CDCl3) δ = 8.49 (d, J = 7.8 Hz, 2H), 8.14 (d, J = 7.5 Hz, 

2H), 8.06 (s, 2H), 8.02 (t, J = 7.7 Hz, 2H), 4.34 (t, J = 6.7 Hz, 4H), 1.95–2.01 (m, 4H), 

1.55–1.65 (m, 4H), 1.25–1.45 (m, 24H), 0.87–0.90 (m, 6H); 13C NMR (75 MHz, CDCl3) 

δ = 144.10, 131.07, 128.92, 127.30, 125.93, 124.27, 122.86, 119.43, 73.80, 31.93, 30.63, 

29.70, 29.63, 29.61, 29.37, 26.34, 22.71, 14.13; MS (APCI-(+), MeOH): m/z (%) 515.4 

([M+1]+). HRMS (EI-(+), CH2Cl2): calcd for C36H50O2 514.7810, found 514.7812. 

 

 

RO

RO

R = C10H21
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4,5-Bis(dodecyloxy)pyrene (58): 

 

According to the general procedure, pyrene-4,5-dione (31) (2.02 g, 9.98 mmol), THF 

(100 mL), H2O (100 mL), TBAB (0.42 g, 1.3 mmol) and Na2SO3 (4.55 g, 26.1 mmol) 

followed by a solution of KOH (2.03 g, 3.62 mmol) in H2O (100 mL) and 1-

bromododecane (9.976 g, 40.03 mmol) were employed to afford 4,5-

bis(dodecyloxy)pyrene (58) (2.08 g, 85%): Rf (20% CH2Cl2/hexanes) = 0.43; mp 53-54 

°C; 1H NMR (300 MHz, CDCl3) δ = 8.49 (dd, J = 1.1, 7.8 Hz, 2H), 8.13 (dd, J = 1.2, 7.6 

Hz, 2H), 8.04 (s, 2H), 8.02 (t, J = 7.7 Hz, 2H), 4.33 (t, J = 6.7 Hz, 4H), 1.93–2.02 (m, 

4H), 1.56–1.66 (m, 4H), 1.27–1.54 (m, 32H), 0.86–0.90 (m, 6H); 13C NMR (75 MHz, 

CDCl3) δ = 144.13, 131.09, 128.94, 127.32, 125.95, 124.29, 122.88, 119.45, 73.83, 31.98, 

30.67, 29.75, 29.72, 29.64, 29.42, 26.37, 22.74, 14.16. 

 

4,5-Bis(tetradecyloxy)pyrene (59):  

 

RO

RO

R = C12H25

RO

RO

R = C14H29
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According to the general procedure, pyrene-4,5-dione (31) (3.027 g, 13.04 mmol), THF 

(100 mL), H2O (100 mL), TBAB (1.266 g, 3.927 mmol) and Na2SO3 (6.793 g, 39.02 

mmol) followed by a solution of KOH (5.911 g, 105.3 mmol) in H2O (100 mL) and 1-

bromotetradecane (14.430 g, 52.04 mmol) were employed to afford 4,5-

bis(tetradecyloxy)pyrene (59) (13.796 g, 85%): Rf (20% CH2Cl2/hexanes) = 0.43; mp 57-

58 °C; 1H NMR (500 MHz, CDCl3) δ = 8.49 (d, J = 7.8 Hz, 2H), 8.13 (d, J = 7.6 Hz, 2H), 

8.05 (s, 2H), 8.01 (t, J = 7.7 Hz, 2H), 4.34 (t, J = 6.7 Hz, 4H), 1.93–2.02 (m, 4H), 1.57–

1.65 (m, 4H), 1.27–1.45 (m, 40H), 0.86–0.90 (m, 6H); 13C NMR (75 MHz, CDCl3) δ = 

144.12, 131.08, 128.93, 127.31, 125.94, 124.28, 122.87, 119.44, 73.82, 31.97, 30.66, 

29.75, 29.71, 29.63, 29.41, 26.36, 22.73, 14.15; MS (APCI-(+), CH2Cl2): m/z (%) 627.6 

([M+1]+); HRMS (ESI-(+), CH2Cl2): calcd for C44H66O2 626.5063, found 626.5045. 

 

4,5-Bis(hexadecyloxy)pyrene (60): 

 

According to the general procedure, pyrene-4,5-dione (31) (2.00 g, 8.62 mmol), THF 

(100 mL), H2O (100 mL), TBAB (0.83 g, 2.57 mmol) and Na2SO3 (4.49 g, 25.79 mmol) 

followed by a solution of KOH (3.86 g, 68.79 mmol) in H2O (100 mL) and 1-

bromohexadecane (13.18 g, 43.16 mmol) were employed to afford 4,5-

bis(hexadecyloxy)pyrene (60) (5.01 g, 85%): Rf (20% CH2Cl2/hexanes) = 0.43; mp 62-65 

RO

RO

R = C16H33
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°C; 1H NMR (300 MHz, CDCl3) δ = 8.49 (dd, J = 1.2, 7.8 Hz, 2H), 8.14 (dd, J = 1.1, 7.6 

Hz, 2H), 8.05 (s, 2H), 8.02 (t, J = 7.7 Hz, 2H), 4.34 (t, J = 6.7 Hz, 4H), 1.93–2.03 (m, 

4H), 1.57–1.66 (m, 4H), 1.26–1.45 (m, 46H), 0.85–0.90 (m, 6H); 13C NMR (75 MHz, 

CDCl3) δ = 144.11, 131.08, 128.93, 127.31, 125.94, 124.28, 122.87, 119.44, 76.60, 73.82, 

31.96, 30.65, 29.75, 29.73, 29.63, 29.40, 26.36, 22.73, 14.15. 

 

4,5-Bis(icosyloxy)pyrene (61): 

 

According to the general procedure, pyrene-4,5-dione (31) (2.002 g, 8.705 mmol), THF 

(100 mL), H2O (100 mL), TBAB (0.834 g, 2.587 mmol) and Na2SO3 (4.513 g, 25.92 

mmol) followed by a solution of KOH (3.918 g, 69.83 mmol) in H2O (100 mL) and 1-

bromoicosane (15.738 g, 43.54 mmol) were employed to afford 4,5-bis(icosyloxy)pyrene 

(61) (5.885 g, 85%): Rf (20% CH2Cl2/hexanes) = 0.43; mp 76-80 °C; 1H NMR (300 MHz, 

CDCl3) δ = 8.49 (d, J = 1.1, 7.8 Hz, 2H), 8.14 (dd, J = 1.2, 7.7 Hz, 2H), 8.05 (s, 2H), 8.02 

(t, J = 7.7 Hz, 2H), 4.34 (t, J = 6.7 Hz, 4H), 1.93–2.03 (m, 4H), 1.57–1.66 (m, 4H), 1.26–

1.45 (m, 64H), 0.85–0.90 (m, 6H); 13C NMR (75 MHz, CDCl3) δ = 144.11, 131.08, 

128.93, 127.31, 125.94, 124.28, 122.87, 119.44, 73.82, 31.96, 30.65, 29.75, 29.70, 29.63, 

29.40, 26.36, 22.72, 14.15. 
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1,8-Dibromo-4,5-bis(tetradecyloxy)pyrene (62):  

 

In a 16 mL sample vial, 4,5-bis(tetradecyloxy)pyrene (59) (2.51 g, 1.94 mmol) was 

dissolved in CH2Cl2 (20 mL).  In another vial, Br2 (1.43 g, 8.95 mmol) was dissolved in 

CH2Cl2 (1 mL).  To the 4,5-bis(tetradecyloxy)pyrene solution was added the bromine 

solution dropwise over several minutes.  After the addition of each drop of the bromine 

solution, the red-orange colour immediately dissipated until the addition was complete.  

The mixture was washed with a 5% solution of NaOH (10 mL) and then H2O (10 mL) to 

afford a clear red-orange solution, which was then dried over anhydrous MgSO4.  The 

solvent was removed under reduced pressure and the residue was subjected to column 

chromatography (3 × 20 cm) (10% CH2Cl2/hexanes).  The only compound to be eluted 

was 1,8-dibromo-4,5-bis(tetradecyloxy)pyrene (62) (1.42 g, 93%): Rf  (20% 

CH2Cl2/hexanes) = 0.56; mp = 80-83 °C; 1H NMR (300 MHz, CDCl3) δ = 8.53 (s, 2H), 

8.37 (d, J = 8.4 Hz, 2H), 8.27 (d, J = 8.5 Hz, 2H), 4.31 (t, J = 6.7 Hz, 4H), 1.95–2.01 (m, 

4H), 1.55–1.64 (m, 4H), 1.26–1.43 (m, 40H), 0.86–0.93 (m, 6H); 13C NMR (75 MHz, 

CDCl3) δ = 143.80, 130.74, 129.45, 128.72, 127.49, 120.87, 73.92, 31.96, 30.54, 29.74, 

29.70, 29.68, 29.56, 29.40, 26.29, 22.72, 14.15; MS (APCI-(+), CH2Cl2): m/z (%) 785.4 
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(M+ 81Br79Br), 783.4 (M+ -79Br, 100; -81Br). HRMS (ESI-(+), CH2Cl2): calcd for 

C44H64O2Br2, 782.3273, found 782.3274. 

 

1,8-Diiodo-4,5-bis(tetradecyloxy)pyrene (70):  

 

To a stirred solution of 4,5-bis(tetradecyloxy)pyrene (59) (1.501 g, 2.394 mmol) in 

CH2Cl2 (30 mL) was added mercuric acetate (1.678 g, 5.266 mmol).  The reaction 

mixture was left to stir for 5 min.  Iodine (1.339 g, 5.272 mmol) was then added and the 

resulting mixture was left to stir for 2.5 h at room temperature.  The reaction mixture was 

filtered through a plug of Celite® and extracted with CH2Cl2 (3 × 20 mL).  The combined 

organic extractions were then with a solution of sodium bisulfite (50 mL), 5% NaHCO3 

solution (50 mL), water (2 × 50 mL) and brine (50 mL).  The resulting clear yellow 

solution was then dried over MgSO4 and excess solvent was removed under reduced 

pressure.  The residue was adsorbed onto silica gel and subjected to column 

chromatography (10% CH2Cl2/hexanes) to afford 1,8-diiodo-4,5-bis(tetradecyloxy)pyrene 

(70) (1.871 g, 89%) as a white solid: Rf (10% d CH2Cl2/hexanes) = 0.48; mp = 89.0-90.0 

°C; 1H NMR (300 MHz, CDCl3) δ = 8.54 (d, 8.4 Hz, 2H), 8.37 (s, 2H), 8.22 (d, J = 8.4 

Hz, 2H), 4.31 (t, J = 6.7 Hz, 4H), 1.95 (quint, J = 7.1 Hz, 4H), 1.59–1.61 (m, 6H), 1.26–

RO

RO
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1.45 (m, 38H), 0.88 (t, J = 6.2 Hz, 6H); 13C NMR (75 MHz, CDCl3) δ = 181.27, 143.91, 

137.47, 132.94, 132.39, 129,37, 123.12, 121.31, 96.18, 73.91, 34.08, 31.96, 30.54, 29.74, 

29.71, 29.69, 29.56, 29.47, 29.41, 28.21, 26.29, 22.73, 14.15; MS (APCI-(+), CH2Cl2): 

m/z (%) 879.8; HRMS (ESI-(+), CH2Cl2): calcd for C44H64O2I2, 878.7867, found 

878.7868. 

 

1,8-Bis(3-hydroxy-1-propynyl)-4,5-bis(tetradecyloxy)pyrene (67):   

 

In an acid-washed and oven-dried 100 mL Schlenck flask, 1,8-dibromo-4,5-

bis(tetradecyloxy)pyrene (322 mg, 0.367 mmol) was dissolved in diethyl ether (30 mL).  

The resulting clear pale yellow solution was degassed via 3 freeze-pump-thaw cycles.  

PdCl2(PPh3)2 (27 mg, 0.039 mmol) and CuI (15 mg, 0.0790 mmol) were then added and 

the resulting clear yellow solution was left to stir for 5 min.  DBU (0.6 mL, 4.0 mmol) 

was then added and the resulting orange solution was cooled on an ice bath for 10 min. 

Propargyl alcohol (0.6 mL, 10.4 mmol) was then added and the ice bath was removed.  

The resulting orange-brown solution was left to gradually warm to room temperature and 

stir for 12 h.  The solvent was removed under reduced pressure.  The yellow solid residue 

was dissolved in CH2Cl2 (50 mL) and washed with saturated NH4Cl solution (2 × 100 
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mL), H2O (2 × 100 mL) and brine (100 mL).  The combined organic layers were dried 

over Na2SO4 and the decanted supernatant was concentrated under reduced pressure.  The 

residue was adsorbed on silica gel and subjected to column chromatography (20% ethyl 

acetate/hexanes, then ethyl acetate) to afford 1,8-bis(1-propyn-3-ol)-4,5-

bis(tetradecyloxy)pyrene (67) (0.245 g, 91%) as a yellow solid: Rf (40% ethyl 

acetate/hexanes) = 0.34; mp = 115–118 °C (dec); 1H NMR (500 MHz, CDCl3) δ = 8.49 

(d, J = 7.8 Hz, 2H), 8.14 (d, J = 7.5 Hz, 2H), 8.06 (s, 2H), 8.02 (t, J = 7.7 Hz, 2H), 4.34 (t, 

J = 6.7 Hz, 4H), 1.95–2.01 (m, 4H), 1.55–1.65 (m, 4H), 1.25–1.45 (m, 24H), 0.87–0.90 

(m, 6H); 13C NMR (75 MHz, CDCl3) δ = 144.10, 131.07, 128.92, 127.30, 125.93, 124.27, 

122.86, 119.43, 73.80, 31.93, 30.63, 29.70, 29.63, 29.61, 29.37, 26.34, 22.71, 14.13; MS 

(APCI-(+), CH2Cl2): m/z (%); 743.6; HRMS (ESI-(+), CH2Cl2): calcd for C50H70O4, 

742.5900, found 742.5896. 

 

1,8-Bis(3-hydroxypropyl)-4,5-bis(tetradecyloxy)pyrene (71):  

 

To a stirred solution of 1,8-bis(3-hydroxy-1-propynyl)-4,5-bis(tetradecyloxy)pyrene (56) 

(0.212 g, 0.289 mmol) in ethyl acetate (25 mL) was added 10% Pd/C (0.102 g).  The 

reaction mixture was stirred at room temperature under an atmosphere of hydrogen 

(balloon), and the progress of the reaction was monitored by 1H NMR.  After 18 h the 
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mixture was filtered through a plug of Celite® and the clear yellow filtrate was 

concentrated under reduced pressure.  The residue was filtered through a plug of silica 

(using a sintered glass crucible with suction) using ethyl acetate as the eluent to afford 

1,8-bis(3-hydroxypropyl)-4,5-bis(tetradecyloxy)pyrene (71) (0.200 g, 93%) as a yellow 

powdery solid:  Rf (40% ethyl acetate/hexanes) = 34; mp = 63.0-65 °C; 1H NMR (500 

MHz, CDCl3) δ = 8.41 (d, J = 8 Hz, 2H), 8.32 (s, 2H), 7.89 (d, J = 8 Hz 2H), 4.30 (t, J = 

6.7 Hz, 4H), 3.79 (t, J = 6.2 Hz, 4H), 3.45 (t, J = 7.7, 4H), 2.08-2.18 (m, 4H), 1.92-2.01 

(m, 4H), 1.55–1.63 (m, 4H), 1.27–1.45 (m, 49H), 0.86–0.90 (m, 6H); 13C NMR (75 MHz, 

CDCl3) δ = 143.30, 135.07, 128.40, 127.69, 127.29, 123.14, 119.19, 73.73, 62.44, 34.60, 

31.94, 30.63, 29.73, 29.69, 29.62, 29.55, 29.39, 26.35, 22.70, 14.13; MS (APCI, positive 

mode, CH2Cl2): m/z (%) 743 ([M+1]+, 100), ; HRMS (ESI-(+), CH2Cl2): calcd for 

C60H85O6 742.5900, found 742.5908. 

 

1,8-Bis(3-tosylpropyl)-4,5-bis(tetradecyloxy)pyrene (72):  

 

To a stirring solution of 71 (0.057 g, 0.0769 mmol) in CH2Cl2 (2.5 mL) was added Et3N 

(0.6 mL, 4.3 mmol).  Purified p-TsCl (0.038 g, 0.199 mmol) was added and the reaction 

was left to stir at room temperature.  After 18 h, the reaction was quenched with the 

addition of H2O (5 mL).  The reaction mixture was extracted with CH2Cl2 (3 × 5 mL), and 
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the combined organic extracts were washed with NH4Cl (5 mL), H2O (2 × 5 mL), and 

brine (5 mL), and dried over anhydrous MgSO4.  Excess solvent was removed under 

reduced pressure.  The residue was adsorbed onto silica gel then subjected to column 

chromatography (20% ethyl acetate/hexanes) to afford 1,8-bis(3-tosylpropyl)-4,5-

bis(tetradecyloxy)pyrene (72) (0.63 g, 78%) as a yellow solid: Rf (40% ethyl 

acetate/hexanes) = 0.54; mp = 115–118 °C (dec); 1H NMR (300 MHz, CDCl3) δ = 8.34 

(d, J = 8 Hz, 2H), 8.17 (s, 2H), 7.81 (d, J = 8.3 Hz, 2H), 7.70 (m, 8H), 7.30 (m, 4H), 4.30 

(t, J = 6.6 Hz, 4H), 4.13 (d, J = 6 Hz, 4H ), 3.38 (t, J = 6.7 Hz, 4H), 3.22 (m, 4H), 2.40 (s, 

10H), 2.19-2.30 (m, 4H), 1.94-2.04 (m, 4H), 1.58–1.63 (m, 4H), 1.27–1.45 (m, 30H), 

0.86–0.90 (m, 6H); 13C NMR (75 MHz, CDCl3) δ =; MS (APCI, positive mode, CH2Cl2): 

m/z (%) 1052.6 ([M+1]+, 100), ; HRMS (ESI-(+), CH2Cl2): calcd for C64H90O8S2 

1051.5266, found 1051.5251. 

 

1,8-Bis(3-bromopropyl)-4,5-bis(tetradecyloxy)pyrene (73):  

 

To a stirred solution of 71 (0.047 g, 0.063 mmol) in CH2Cl2 (5 mL) was added PBr3 (0.1 

mL, 1.1 mmol).  The reaction mixture was capped and left to stir at room temperature.  

After 16 h, the reaction was quenched by the addition of H2O (5 mL).  It was extracted 

with CH2Cl2 (2 × 2 mL), washed with 5% NaHCO3 (5 mL), H2O (2 × 2 mL) and brine (2 
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mL).  The combined organic layers were dried over MgSO4 and the excess solvent was 

removed under reduced pressure.  The residue was adsorbed onto silica gel and subjected 

to column chromatograpyy (20% ethyl acetate / hexanes) to afford 73 as a yellow solid 

(0.045 g, 82%): Rf (40% ethyl acetate/hexanes) = 0.52; mp = 114–118 °C (dec); 1H NMR 

(300 MHz, CDCl3) δ = 8.61 (2, 2H), 8.43 (d, J = 8.2 Hz, 2H), 8.14 (d, J = 8.2 Hz, 2H), 

4.75 (d, J = 5.6 Hz, 4H), 4.32 (t, J = 6.8 Hz, 4H), 1.92-1.98 (m, 4H), 1.77–1.85 (m, 4H), 

1.53–1.64 (m, 49H), 1.27-1.35 (m, 48H), 0.86–0.89 (m, 6H); 13C NMR (75 MHz, CDCl3) 

δ = 143.32, 135.11, 128.43, 127.71, 127.26, 123.16, 119.23, 73.75, 62.42, 34.56, 31.89, 

30.62, 29.73, 29.69, 29.62, 29.55, 29.39, 26.35, 22.70, 14.13; MS (APCI, positive mode, 

CH2Cl2): m/z (%) 869; HRMS (ESI-(+), CH2Cl2): calcd for C50H76O2Br2 868.9422, found 

868.9418. 
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