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ABSTRACT 

The Advanced Drilling Laboratory (ADL) has been developing a Vibration Assisted 

Rotary Drilling (VARD) System for several years, which is used for seeking the 

advantages brought by combining drilling bit vibration and rotation together in drilling 

operation. In order to achieve the laboratory and field data acquisition and processing, 

several integrated data acquisition systems are necessary. These systems are based on 

the most suitable sensors, acquisition parameters, and software to monitor different bit 

operating conditions and drill string motions in different experiments. 

The laboratory and field measurement systems include i) the control system of a 

Small Drilling Simulator (SDS), ii) a Mobile Data Acquisition system for field 

experiments, and iii) a Down Hole Measurement Tool, or Sensor Sub for drilling field 

trials. 

The system for the SDS is based on the LabVIEW programming language and 

includes the data acquisition, processing and system control ability. In this system, the 

LabVIEW user interface allows the operator to perform data acquisition, processing and 

logging.  

The Mobile data acquisition (DAQ) system is an extension of the SDS system based 

on the Signal Express Program and includes data acquisition and processing. It was 

designed to be able to be carried and operated in tough environments and has numerous 

data acquisition configurations for a range of different experimental requirements.  

The Down Hole Measurement Tool (Sensor Sub) is based on the use of 

accelerometers and magnetometers, along with onboard data acquisition and battery 

power systems; it is designed to operate in the down-hole environment with high 
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temperature, high pressure and severe vibration to supply raw data for each drilling 

experiment. The field trial results show that the Sensor Sub can provide compatible and 

accurate data to identify drill string motions (including rotary speed and bit orientation), 

and bit vibrations (including axial lateral torsional and bit whirl).   
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1. Introduction 

1.1. Introduction 

For most oil and gas exploitation activities, drilling is the most costly one. With 

more and more reservoirs being discovered offshore, in deep water and Arctic harsh 

environments, the drilling cost is increasing as well. For instance, the expense of the 

jack-up rigs offshore are around $1 million per day and the daily cost of floating rigs are 

ranging from $2.6 million to $5 million depending on their capability[1]. 

For the purpose of controlling the drilling cost, a very common way is to increase 

the drilling efficiency, which can be achieved by increasing the rate of penetration 

(ROP). The Advanced Drilling Laboratory (ADL) of Memorial University of 

Newfoundland is conducting a Vibration Assisted Rotary Drilling (VARD) testing to 

find out how to reach a higher ROP by adding vibration to the drill bit. Meanwhile, the 

laboratory tests require different data acquisition systems, and the development of these 

systems will be discussed in this thesis. 

 

1.2. Research scope and objective 

The Advanced Drilling Laboratory has been developing a Vibration Assisted Rotary 

Drilling (VARD) system during a comprehensive 7-year R&D program. This program is 

seeking the advantages brought by combining drilling bit vibration and rotation together 

in drilling operations. In order to achieve the laboratory and field data acquisition and 

processing, several integrated data acquisition systems are necessary. They are needed 

for different experiment environments and based on the most suitable program language. 
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Their function may include data acquisition, data processing and system control, 

depending on different experiment requirements. 

One system is the data acquisition and control system on the Small Drilling 

Simulator (SDS). In 2011, an upgrade to the previous sensing and data acquisition 

system on the SDS was initiated. During the upgrading process, more sensors and the 

LabVIEW software were added into the system. Moreover, in order to increase the 

intelligence and safety of the system, a remote control system and an emergency stop 

system were added as well. The upgraded system is an integrated DAQ system which 

can be operated for different experimental purposes with a control function. The whole 

system is based on LabVIEW software and has three emergency stop buttons to enhance 

the operation safety. 

Another system is a mobile DAQ system designed for field trial in 2012. The lab 

DAQ system is based on a PC and all the function and the connection are specially 

designed for the SDS, which is all hard-wired. There is a demand to develop a DAQ 

system which is easy to install and uninstall, has the capacity to do data recording for 

different sensors and also is able to function in various field operation environments. 

Due to these reasons, a mobile DAQ system needs to be built. The whole system is 

designed in two parts: one is the mobile power supply and the other is the mobile DAQ 

system. These two parts are separately installed in two Pelican watertight protective 

cases, which are able to be easily carried in any kinds of field environments.  

The last DAQ system is a down-hole measurement tool (Sensor Sub) for the drilling 

field trials conducted in 2014, which is going to test the VARD technology and provide 

data to evaluate models of bit wear and drill string motions. The commercial drilling 
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tool (black box) for down-hole data recording can only give out the data after the 

internal process, but it cannot be used in experiments for lacking of raw data, so a 

down-hole measurement tool (Sensor Sub) is needed to record the down-hole vibration 

in raw data format. The Sensor Sub is designed based on the Arduino platform and uses 

three tri-axial accelerometers and one magnetometer to measure the down-hole vibration 

and rotation. In addition, all the raw data are saved on one micro-SD card and the whole 

system is powered by three parallel packs of AA batteries. 

 

1.3. Research Background 

In the past seven years, the VARD project has conducted several different 

experiments and achieved several milestones. 

Li et al. [2] concluded a few observations after a series of experiments: 

- ROP can be significantly increased by adding vibration to the bit. 

- The founder point of the ROP-WOB (weight on bit) relation decreases while 

the vibration amplitude increases, which indicates that the same ROP can be achieved 

by a smaller WOB by adding axial vibration to the bit. 

- ROP is proportional to vibration amplitude. 

After Li’s experiment, Babatunde et al. [3] used three different amplitude and 

frequency values in their experiments and they observed the same results: higher 

amplitude leads to higher ROP. Moreover, the experiments were conducted with a 

polycrystalline diamond compact (PDC) bit two cutting blades and two nozzles. The 

observations are: 

- ROP can be improved by adding vibration to the PDC bit 
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- Lower WOB has an higher optimum vibration frequency (65Hz) and higher 

WOB’s optimum frequency is lower (55Hz) 

- Frequency peak was achieved at 9Hz 

- The 9Hz was assumed to be due to the mechanical interaction between the rock 

and the PDC bit at a constant motor speed. Moreover, the optimum frequencies around 

multiples of 9Hz were assumed to be happening at some resonance of excited and 

natural vibrations. 

In 2012, Pronin [4] did his experiment on a cavitation tool, using cavitation as a 

means of vibration source, and it was considered as an active VARD tool, which could 

generate vibration from itself, and he found: 

- The vibration generated by the prototype only depends on the inlet pressure. 

- The prototype produces significant outlet pressure pulses, which exceed the 

inlet pressure. 

In 2013, Babapour and Butt [5] conducted a series of experiments utilizing the 

Pulses Cavitation Tool and they found that the cavitating pressure pulses generated by 

the tool can enhance the ROP if the drilling system is not rigid. In addition, 

Gharibiyamchi’s simulation results [6] on Discrete Element Method (DEM) modelling 

match these results. 

 

1.4. Significance of Research 

In the past seven years, Advanced Drilling Laboratory members have done a lot of 

testing in our laboratory environment. Along with the test, laboratory development also 

made great progress. Among all the experiments mentioned in previous section, three 
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out of seven experiments utilized the data acquisition system and control system on SDS, 

and other two experiments utilized the Mobile DAQ system. Both of these two systems 

will be described in this thesis.  

Up to now, all the experiments that have been done in the Advanced Drilling 

Laboratory have shown positive results; not only were the experiments conducted in the 

laboratory environment, but also in the field environment. Up to September 2014, we 

have drilled several hundred-metre deep wells and recorded the vibrations at the bit, and 

compared the results with and without the VARD tool, and we found that the VARD tool 

could significantly enhance the ROP.  

However, the commercial drilling tool for data recording down-hole only gives out 

the processed data. If the daily renting rate is too high, it is not good for our experiment 

usage, so a down-hole measurement tool (Sensor Sub) was developed to record the 

down-hole vibration in the raw data format. This measurement tool was equipped with 

three tri-axial accelerometers, one tri-axial magnetometer, and onboard storage. The 

measurement tool deploys an aluminum alloy to avoid interference from the Earth’s 

magnetic field. Furthermore, the arrangement of the sensors can make sure that the 

measurement tool can obtain the axial, torsional, and lateral vibration and azimuth of the 

tool faces. Additionally, without rotation, if we slide the tool down hole, we can utilize 

the magnetometer data cross-correlated with accelerometer data to get the inclination of 

the well. 
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2. Literature Review 

2.1. Development of the Drilling Operation Monitoring System in Drilling 

Industry 

In the early stages of the drilling industry, before automation was applied, drillers 

depended on their own experience only to control the drilling, like determining the 

torque of the top drive, the flow rate of drilling fluid and the time of tripping out to 

change the bit, and so on. Humans are not as efficient as computers in calculation and 

reaction. If any incident happens, like kick, drilling fluid lost, or stick-slip, human 

always react slower than the computer-controlled systems. These incidents are 

dangerous and may lead to big accidents. Since the 1960s, intelligent control systems 

have been on the stage of the drilling industry. 

Rowsell and Waller [7] developed an Intelligent Control Drilling System on a 

laboratory scale. This system is able to minimize the operation cost, self-optimize, 

predict the wear, carry out close loop control and sense the rock change. 

In 2006, Qin Hu and Qingyou Liu [8] conducted research on the new technology by 

using an integrated drilling system to enhance the drilling efficiency in order to further 

control the operation cost. 

In 2012, Arnaout et al [9] utilized sensors to measure the hock load, block position, 

flow rate, pump pressure, borehole and bit depth, revolutions per minute (RPM), torque, 

rate of penetration and weight on bit. The data collected from the mud-logging system 

were used to detect different drilling operations, and the surface sensor measurements 

can provide the information of drilling operations. Based on the information measured 
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through a number of drilling operations with different parameters, they summarized 

patterns to recognize and classify drilling operations upon receiving the data. 

 

2.2. Downhole vibration monitoring systems 

Downhole vibration monitoring systems are usually installed in the drill string or at 

the bit to measure the vibrations while drilling. The monitoring systems work without 

interrupting the drilling activity, so it is one type of Measurement While Drilling (MWD) 

System. 

This section will describe several down-hole measurement tools developed in the 

past two decades, and they can somewhat reflect what improvements have been made in 

the petroleum industry. Although these tools are designed for different applications, they 

all face a severe down-hole operation environment. Therefore, the design of the tools 

has to meet the survival requirement, which is also important in our tool design. 

Moreover, the different design or arrangement of these tools and the utilization of the 

sensors provide us with valuable experience for our future work. 

 

2.2.1. IDEAL System 

In 1993, a new drilling technology was introduced in order to improve the drilling 

efficiency especially in the extended reach and horizontal applications. It was called the 

Integrated Drilling Evaluation and Logging technology (IDEAL system)[10]. This 

technology integrated “at-the-bit” measurement technology to provide Bit Resistivity, 

Azimuthal Resistivity, Focused Gamma Ray, Inclination and Motor RPM. These data 
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were transmitted to surface in real time to help optimize the wellbore trajectories, avoid 

problems with oil water contact, and adjust the direction of drilling. 

 

Figure 1 Instrumented Steerable Motor (IDEAL System) [10] 

 

2.2.2. AIM System 

In 2000, another behind-the-bit measurement system was developed. This tool is 

called At-bit Inclination Measurement (AIM) [ 11 ] tool, which was made by 

Schlumberger. This system includes a single axis inclinometer 0.3m behind the bit, and 

the sensor is mounted in the center of the rotating stabilizer. It was designed to improve 

the directional control and the drilling efficiency of the steerable positive displacement 

mud motors (PDMM). Figure 2 shows the arrangement of the sensor package in the 

AIM tool.  
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Figure 2 Schematic of AIM Tool [11] 

 

2.2.3. Drill-string Dynamic Sensor 

These systems are designed to provide the demanded data from the down-hole 

environment. Moreover, for down-hole drilling dynamic monitoring purposes, some 

other systems were developed too. In 1993, Zannoni et al. developed a new downhole 

MWD drill string dynamics sensor [12] to detect the harmful Bottom Hole Assembly 

(BHA) dynamic conditions such as whirling, lateral BHA shocks, stick-slip, and bit 

bounce. 

This system mounted three accelerometers on an existing MWD tool, as shown in 

Figure 3, and was put 0.55m behind the Gamma Ray sub. The three accelerometers are 

placed mutually orthogonal and the orientations are shown in Figure 4[12]. 

In this design, they used the X-axis to measure both lateral and radial accelerations, 

the Y-axis to measure both lateral and tangential acceleration, and the Z-axis to measure 
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axial acceleration. Figure 5 illustrates the vector components of the three accelerometers 

of the Drill-string Dynamics Sensor. 

 

Figure 3 Drill-string Dynamics Sensor [12] 
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Figure 4 Accelerometer Orientation [12] 

 

Figure 5 Accelerometer Vectors [12] 

 

2.2.4. Diagnostic-While-Drilling (DWD) System 

In 2003, Finger et al [ 13 ] and Mansure et al [ 14 ] invented the 

Diagnostic-While-Drilling System, which could provide high-speed, real-time downhole 

data while drilling.  

This system contains a measurement sub, which comprises the following 

measurements [13]: 

- Tri-axial acceleration 

- High frequency axial acceleration 

- Angular acceleration 

- Magnetometer (rotary speed) 
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- Weight on bit, torque on bit, bending moment 

- Drilling pipe and annulus pressure 

- Drill pipe and annulus temperature 

The measurement sub is a 17.8cm diameter by 2.16m long tubular tool, with a 

central sensor package (Figure 6). Strain gauges on the tool were designed for torque 

measurement, bending moment and weight on the bit measurement. Accelerometers and 

other electronics are mounted in the central package to measure the vibrations 

down-hole. 

This system also utilized the magnetometer data to determine the rotary speed, 

which is risky, because the magnetometer reading might experience interference from 

the formation magnetic field or the iron element in the tool itself. 

 

Figure 6 Layout of DWD measurement Sub [13] 

 

2.2.5. Drilling Vibration Monitoring & Control System 

In 2004, Cobern and Wassell published a paper on the design, modeling and 

laboratory testing of the Drilling Vibration Monitoring & Control System (DVMCS)[15], 

which is composed of a sensor package and a damping control system. The sensor 

package contains four single-axis accelerometers and one magnetometer. Three of the 

accelerometers are placed on the same section and are 120° apart from each other, and 
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the fourth accelerometer is set to measure the axial acceleration. The magnetometer is 

used as a backup to measure the rotary speed. The sensor arrangement is shown in 

Figure 7. 

The algorithm used to calculate the lateral and tangential vibrations are based on the 

rotary speed, which is calculated from the centripetal acceleration. However, the 

accelerometers will also pick up the lateral vibration at the same time, so the equation 

A𝑐(𝑡) =
A1(𝑡)+A2(𝑡)+A3(𝑡)

3
used to calculate centripetal acceleration might not be reliable. 

In this case, the rotary speed calculated from centripetal acceleration will not be reliable 

as well. 

 

Figure 7 Arrangement of DVMCS Sensors [15] 
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2.2.6. Bit-Based Data Acquisition System 

In 2007, Pastusek, Sullivan and Harris developed a Bit-Based Data Acquisition 

System and utilized it with the PDC bit[ 16 ]. This system is an integrated 

battery-powered dynamic-behavior sensor and data acquisition module, as shown in  

Figure 8. This system was patented in 2010[17]. In this patent, the top view of the 

system is shown in Figure 9. In this figure, the A1 and A1’ are two 5g range 

accelerometers, and A2 and A2’ are two 30g range accelerometers. Meanwhile, the 

author mentioned that the system may use tri-axial accelerometers or magnetometers 

instead of on board sensors in the case of plurality. 

 

Figure 8 Assembly Drawing Showing the Approximate Arrangement of the Module 

Prior to Implantation in the End of a Bit Shank [16] 
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Figure 9 Top View of a Module within a Borehole [17] 

 

2.3. Conclusion 

Above all, in laboratory environment, the DAQ system more depends on the 

sensor and the DAQ module functionality such as the resolution, signal type, signal 

frequency and so on. Since the DAQ system is designed for different systems and 

has its designated function, in the Advanced Drilling Laboratory, we should 

optimize and then apply the design to make the DAQ system more appropriate. 

For the downhole measurement tool, the mechanical design is as critical as the 

electronics. All the downhole measurement tools can survive under harsh downhole 

environments and function long enough to acquire and store the data during the 

downhole operation. At the same time, as a result of the limited space downhole, all 

the devices have to fit in the drill pipe, which is also a challenge. However, 

downhole measurement tools are based on different algorithms and mechanical 

designs aiming for their diverse experimental purposes, which asks for a new 
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algorithm and mechanical design for the Advanced Drilling Laboratory downhole 

measurement tool. 

  



 

17 

 

3. Laboratory System for Measurement of Bit Operating Conditions 

3.1. Introduction 

Li et al. [2] developed the Small Drilling Simulator (SDS) in 2010 to evaluate the 

influence of bit vibration on ROP. Figure 10 shows the SDS previous setup when Li did 

his experiment. After Li, Abtahi et al. [18] utilized the SDS to conduct the bit wear 

analysis and optimization research. In 2011, Babatunde and Butt [3] added in a flow 

control system on SDS to conduct the research on Effects of Vibration Frequency on 

ROP using a PDC bit. 
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Figure 10 SDS Previous Setup 

 

However, the previous setup only has limited measurements and accuracy is not 

good. Some new measuring instrumentation and Signal Express software were needed. 
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At the same time, to improve the safety of the lab operation, a remote control system 

and emergency stop switches were also added for the system. In spring 2012, a new 

design of the electrical system was completed. After the system was set up, the system 

calibration and data validation were implemented. However, the whole system had some 

electricity noise problems, which will be discussed in this chapter.  

The system is built as an integrated DAQ system which can be operated for 

different experimental purposes with control function inside. The whole system is built 

with the LabVIEW software and mainly uses the DAQ assistant. This chapter will 

introduce the system setup and calibration.  
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3.2. System Setup 

3.2.1. Sensors Setup 

The sensors setup is given in Table 1 and includes a load cell, 2 pressure transducers, 

a flow meter, an LPT, an accelerometer, a rotary encoder, a Hall Effect sensor and a 

variable frequency drive (VFD) power output. 

 Table 1 Summary of SDS Sensors 

Sensor Range Specifications 

Load-cell 2000lbs 
Honeywell 3173-2K,0.07 % accuracy, 4-20 

mA output 

pressure transducer 1500psi 
Endress and Hauser PMP131, 24V DC 

power, 4-20 mA output 

pressure transducer 1000psi 
GE UNIK 5000, 24V DC power, 4-20 mA 

output 

flow meter 5-50GPM Omega FTB-1425, 4-20 mA output 

LPT 200mm Sakae 30LP200, 0-10V output 

accelerometer ±4g Crossbow LP series, 0-4V output 

rotary encoder N/A 
Nikon RXA1000-22-1A, 5V DC power, 

pulse signal output 

hall effect sensor 0 to ±90A 
CLN-50, ±15V DC power, 50mA nominal 

analog output 

 

3.2.1.1. Load cell setup 

The load cell was purchased from Honeywell and the model number is 3173-2K[19], 

which can take 2000lbs weight and have 0.07 % accuracy. The load cell is connected to 

the junction box and then an in-line amplifier is used to amplify the signal. After 
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amplification, the signal is turned into 4-20 mA and one 250 ohm precise resistor is used 

to convert the signal into 0-5 V, which is easier for the DAQ board to acquire. 

The load cell is located below the pressure cell and used to record the force applied 

on the bit. (Figure 11) 

 

3.2.1.2. Pressure transducer setup 1 

The pressure transducer is from Endress and Hauser, the model number is 

PMP131[20], whose measurement range is 0-1500 psi. The pressure transduce is 

powered by 24V DC, and the output is 4-20 mA. Then another 250 ohm precise resistor 

is used to convert the signal into 0-5 V.  

The pressure transducer is located near the pump to monitor the pump pressure for 

safety operation. (Figure 11) 

 

3.2.1.3. Pressure transducer setup 2 

The pressure transducer is from GE, the model number is UNIK 5000[21], whose 

measurement range is 0-1000 psi. The pressure transduce is powered by 7-32V DC. We 

use 24V in this setup and the output of this sensor is 4-20 mA. And we also use a 250 

ohm precise resistor to convert the signal into 0-5 V.  

The pressure transducer is located near the pump to monitor the pump pressure for 

safety operation. (Figure 11) 
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3.2.1.4. LPT (Linear Potential Transducer) setup 

The LPT model number is 30LP200[22], which is from Sakae, and the stroke is 

200mm long, which is used to track the travel of the drill string. This LPT was powered 

up by 10V DC in the previous setup, so here we used 12V instead because 12V is more 

usual and can be shared with other sensors. The output of LPT is 0-10V and it is very 

easy for the data acquisition system to acquire. 

The LPT is located just below the motor and the motor can move up and down with 

the drill string. (Figure 11 & 12) 

 

3.2.1.5. Rotary encoder setup 

The Rotary encoder is a Nikon Rotary Encoder RXA1000-22-1A, which has three 

different signal outputs. In the three signal outputs, one is a clockwise counter, one is a 

counter-clockwise counter, and the other one is the reference counter. In the current 

setup, due to the port number limitation, only one counter is used and the rotary speed is 

obtained through the conversion. This rotary encoder is powered up by 5V DC, and its 

output is a pulse signal, in which the counter in DAQ is used for recording. 

The rotary encoder is located beside the shaft of the motor, and is rotary at the same 

speed with the motor shaft. (Figure 11 & 12) 

 

3.2.1.6. Accelerometer setup 

The accelerometer is an LP series accelerometer [23] from Crossbow, which is a 

three-axis accelerometer. In the current setup, only one axis is used to determine the 
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axial vibration of the drill string, and the accelerometer is powered by 5V DC. The 

measuring range is ±4g, and the output signal is 0-4V. 

The accelerometer is attached on the motor and used to record the axial vibration. 

(Figure 11 & 12) 

 

3.2.1.7. Hall Effect sensor setup 

The Hall Effect sensor is one closed loop Hall Effect current sensor, whose model 

number is CLN-50[24]. The sensor is powered up by ±15V DC and the nominal analog 

output current is 50mA, whose measuring range is 0 to ±90A and nominal current is 

50A rms. 

This sensor is located in the junction box of the sensors. One power cable of the 

motor goes through the sensor. The sensor measures the current getting into the motor 

and the power of the motor can be calculated by the voltage and the current. (Figure 11) 

 

3.2.1.8. Flow meter setup 

Omega FTB-1425[25] is used in our setup to monitor the flow rate from the pump; 

the measuring range is 5-50GPM and can give out pulse signals. The sensor signal gets 

to a flow rate indicator, and is transferred into a 4-20mA current signal and then 

converted into 0-5 V signal by using a 250 ohm precise resistor. 

The flow meter is located near the pump to record the pump flow rate. (Figure 11) 
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Figure 11 PHASE I setup and sensors locations (Front View) 

 

3.2.1.9. VFD power output 

The VFD has a drive that can output a 0-10 V signal indicating the power of the 

VFD. This signal is used to monitor the power of the VFD. (Figure 11) 

 

3.2.2. Data acquisition setup 

This DAQ system utilizes a NI-6024E [26] DAQ Card, which has the capability to 

capture multiple channel signals in high resolution simultaneously. For our lab usage, 

the DAQ card is installed on one PC’s mainboard aside the SDS drill rig. 

The detailed features of NI 6024E are as follows: 

Pressure 

transducer 
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• 16 AI channels (eight differentials) with 12-bit resolution 

• Two AO channels with 12-bit resolution 

• Eight lines of TTL-compatible DIO 

• Two 24-bit counter/timers for TIO  

• A 68-pin I/O connector 

To avoid the aliasing, the DAQ is designed to work at 10 kHz sampling rate, which 

is high enough to oversample the sensors data and avoid the aliasing. 

 

Figure 12 PHASE I Setup and Sensors Locations (Side VIEW) 
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Based on these features, these eight differential AI channels are used to record the 

voltage signal input from the above sensors except the rotary encoder, and the signal 

from the rotary encoder is recorded by one counter/timer. 

All the connections from sensors are connected into a 68 Pin I/O connector, and the 

connection pin diagram is shown in Figure 14. 

For different channel input, the LabVIEW software will assign different ports on the 

68-pin I/O connector, so the circuit should be connected to the right port.  

 

Figure 13 Computer enclosure Wiring and Connection 

The next three wiring diagrams will show all the wiring connections and circuit for 

the computer enclosure (Figure 14), drill rig (Figure 15) and pump station (Figure 16). 
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Figure 14 Computer Enclosure Connection Wiring Diagram (Appendix A-9.) 

 

3.2.3. Remote control system setup 

This system has a remote control system based on the NI DAQ board Digital output. 

The board has eight digital outputs, which means that different signals can be used to 

control different devices. In our setup, one signal is used to operate the pump start and 

stop, and two signals are used to control the drill start and stop respectively. 

 

3.2.3.1. Pump remote control 

The pump remote control is built with a digital relay, in which a digital signal 

output is used to control the relay on and off, and then control the pump to start and 

stop. 
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Figure 15 Phase I Drill Rig Connection Diagram (Appendix A-11.) 
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Figure 16 Pump Station Control/Instrumentation Circuit (Appendix A-12.) 

 

3.2.3.2. Drill start and stop remote control 

The drill start and stop control also works with relays, but one difference from the 

pump system is that in this system, two separated relays are used to control the drill, and 

a latch instead of the switch is used. The designed circuit needs a pulse voltage to excite 

or stop it, as shown in Figure 13. 

 

3.2.4. User Interface 

LabVIEW software is used in current setup. LabVIEW has two panels when 

designing a project: a front panel and a block diagram. The front panel is for people who 

operate the system, and the block diagram contains all the device connection, data 

processing and signal output. 
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The Figure 17 shows the front panel and Figure 18 shows the block diagram 

 

Figure 17 Front Panel for LabVIEW 

 

 



 

31 

 

 

Figure 18 Block Diagram for LabVIEW 
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3.3. Development Issues and solutions 

3.3.1. Noise 

Noise always exists in a data acquisition system. During the current system 

development, there was a very obvious interfering signal which was not usual noise. 

This signal had much larger amplitude compared to the usable signal and mainly existed 

in the pressure measurement. 

Through discussion and analysis, the source of the signal was determined to be the 

pump, which creates pressure pulses during rotation. This might cause the reading on 

the flow meter and pressure transducer to be unstable, but this effect can be minimized 

by averaging the data. 

 

3.3.2. Hall Effect Sensor 

In the circuit design phase, the Hall Effect sensor had a ±15V DC power supply 

with a 0V reference, which was considered as ground. This assumption led to an 

unusable result. The signal acquired in the computer did not match the operation of the 

motor and in order to solve this problem, the 0V reference was connected to the ground. 

 

3.3.3. Rotary Encoder 

The rotary encoder is unreliable in this setup, because it can be damaged if 

subjected to jolts. The photo eye in the sensor impacts the disc and damages itself. The 

photoelectric sensing of rotation directly generated from the shaft might be a good 
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choice for setup under severe vibration. The recommended solution is to use a laser 

sensor mounted on an isolated frame to measure the rotary speed. 

 

3.4. SDS DAQ System Extension (Mobile DAQ System) 

In 2012, a field trial testing was scheduled which requires accurate measurements 

like SDS could provide. A portable system was needed with the capacity to conduct data 

recording for different sensors, also able to function in various field operation 

environments. 

On account of these reasons, a mobile DAQ system was built in the summer of 

2012. This system is also based on LabVIEW but only utilized the Signal Express 

module for the data acquisition. The actual system is shown in Figure 19. As shown in 

the figure, the whole system was divided into two parts, one for the power supply and 

the other for the DAQ system. The two parts were separately installed in two Pelican 

watertight protective cases, which are able to be carried in any kinds of field 

environment.  
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Figure 19 Mobile Power System (Upper) and Mobile DAQ System (Lower) 

 

3.4.1. Mobile Power System 

The Mobile Power System is designed as water-proof when sealed and 

water-resistant when the top is opened. It is powered by 110V input, and has three 

different voltage outputs for common analog sensors, which are 5V, 9-12V and 24V 

respectively. They all generate linear voltage output and we set the 9-12V channel to 

10V for current usage. All the connections in the system are mil-spec, which are made 

from tough material and water-proof, as shown in Figure 20. Since the power system 

generated heat while running, fans and vents are necessary. However, this changed the 

water-proof grading from water-proof to water-resistant. Moreover, the entire system is 

mounted on the panel, which implies that they are all off bottom, so it will help in case 

some water gets in. 
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Figure 20 Mobile Power System Front Panel 

 

The power will connect to the DAQ case with a customized cable through DC 

OUTPUT, as shown in Figure 20. 

 

3.4.2. Mobile DAQ System 

The DAQ system is designed as water-proof. It has an NI9188 Chassis built in and 

two high resolution DAQ modules NI9237 (24-bit) and NI9205 (16-bit) for acquiring 

the data from different sensors. In order to avoid the aliasing, the DAQ was designed to 

work at a high frequency sampling rate-10 kHz, which would oversample the sensors 

data. The DAQ modules are shown in Figure 21. 
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Figure 21 Connections in mobile DAQ system 

 

The DAQ system is capable of working with up to 16 sensors. As labeled in Figure 

22, plugs 1,2,3,4,9,10,11,12 are for 24V sensors, and they can support 8 sensors in total; 

plugs 5,6,13,14 are for 5V sensors; plugs 7,8,15,16 are for 10V sensors, which are 

specifically designed for load cells in our system. 

For one field configuration, Plug 1 is the 4000 psi pressure transducer, plug 2 is the 

1500psi pressure transducer, and plug 3 is the flow meter. Plugs 7, 8, and 15 are used 

respectively for our load cells. 
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The PC-DAQ is the Ethernet port for data communication with the laptop, as shown 

in Figure 22 

 

Figure 22 Mobile DAQ System Front Panel 

 

  With the caps shown in Figure 22, the Mobile DAQ System is water-proof even 

when the lid is open. In Figure 23, there are no caps on the front panel, and the mil-spec 

connection is on the left of the figure, which are waterproof when connected. The 

PC-DAQ connection is also waterproof, which can transmit the data to the laptop in 

real-time. 
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Figure 23 Cable Connection and Mobile DAQ System Front Panel without Caps 

 

3.5. Experiments Summary 

This drilling setup was used in a laboratory environment in which the need of 

accurate measurement of operational variables changes with each experimental setup. 

The LabVIEW software is ideal for this setup as this software allows the sensor system 

to be integrated with the control of the equipment. It also allows for the development of 

these systems in a modular way, as well as testing and troubleshooting on individual 

components without affecting the system as a whole.  

Since the SDS was setup, it starts to serve the group member in different 

experiments. Khorshidian et al. [27] used the SDS to measure water flow rate, WOB and 

BHP. Pronin[4] used the SDS to finish his pulse-cavitation tool prototype testing. Figure 

24 shows one example form Pronin [4], which measures the inlet pressure and outlet 
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pressure of the pulse-cavitation tool at a high frequency indicating that the 

pulse-cavitation tool generates pressure pulses as predicted. 

 

Figure 24 Pressure pulsations from Pronin [4] 

 

Figure 25 shows the data from SDS system which measures the vibration generated 

by the pulse-cavitation tool [4]. 
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Figure 25 Vibration measurement for Pulse Cavitation tool [4] 

 

For the Mobile DAQ system, Babapour [5] completed his experiment on 

Active-VARD Tool and pulse cavitation tool. The figure below shows the pressure 

pattern vs different flow rate from pulse cavitation tool experiment. All these data were 

collected by utilizing the Mobile DAQ system. 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10

V
ib

ra
ti

o
n

 A
cc

e
lr

at
io

n
 (

g)

Time(s)



 

41 

 

 

Figure 26 Drilling pipe pressure versus flow level in Babapour’s test [5] 
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4. Down-Hole Measurement Tool (Sensor Sub) 

As stated earlier, downhole bit and drill string motions were needed for a variety of 

experimental requirements, including VARD tool evaluation, drill string motion 

measurement, and Seismic While Drilling (SWD) source characterization. The design of 

these tools requires down-hole axial, lateral, tangential vibration and rotatory speed 

measurement. For this reason, three accelerometers and one magnetometer were 

selected. For data acquisition and recording, an onboard recording unit utilizing a 

micro-SD card was installed in the measurement tool.  

 

4.1. Background 

The Advanced Drilling Laboratory conducted a field trial in September 2014 to 

evaluate the VARD technology under field conditions. Because the commercial drilling 

tool (black box) for down-hole data recording can only give out the data after an internal 

process (which normally involves providing average or RMS values over set periods of 

time), it cannot be used in experiments or drilling field trials. Therefore, a down-hole 

measurement tool (Sensor Sub) was needed to record the down-hole vibration with high 

sampling rate. 

 

4.2. Design Methodology 

The basic down-hole measurement tool (Sensor Sub) sensor model comprises of 

four spaced tri-axial accelerometers positioned within the wall of a measurement tool 

section. Three of these four accelerometers cooperate and interact with each other to 
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measure the longitudinal, lateral and torsional vibrations. The fourth accelerometer 

measures shocks.  

Several possible configurations of the basic sensor arrangements described above 

are feasible. The first configuration of a vibration monitoring system [28] is shown in 

Figure 27, and the schematic diagram is shown as a cross-section of a drill segment with 

an interior longitudinal opening and a drill collar wall. Four accelerometers are shown 

within the wall of drill collar section. Three accelerometers are schematically identified 

by the rectangular box and identified by A1, A2 and A3. These three accelerometers are 

positioned l20° apart from one another and are also positioned to measure tangential 

acceleration forces on the outer circumference of drill collar. Accelerometer A1 is 

positioned on a reference plane (0°/360°). The measurement of tangential forces is 

indicated by the tangential lines. 

 

Figure 27 Layout of Sensors in Drill Collar (Configuration 1) 
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In accordance with the layout, the following equations are utilized to measure the 

torsional vibration (Equation 1), lateral vibration (for a given angle) (Equation 2) and 

maximum lateral vibration angle (Equation 3) [28]. 

𝑨𝝉𝟎 =
𝑨𝟏 + 𝑨𝟐 + 𝑨𝟑

𝟑
                                                                                                      (1) 

𝑨𝑳𝜶 =
𝟏

𝟑
(

𝑨𝟏 − 𝑨𝝉𝟎

𝒔𝒊𝒏(−𝜶)
+

𝑨𝟐 − 𝑨𝝉𝟎

𝒔𝒊𝒏(𝟏𝟐𝟎 − 𝜶)
+

𝑨𝟑 − 𝑨𝝉𝟎

𝒔𝒊𝒏(𝟐𝟒𝟎 − 𝜶)
)                                      (2) 

𝜶𝒎𝒂𝒙 = 𝒕𝒂𝒏−𝟏 (
𝑨𝟏 ∗ 𝒄𝒐𝒔(𝟗𝟎) + 𝑨𝟐 ∗ 𝒄𝒐𝒔(𝟐𝟏𝟎) + 𝑨𝟑 ∗ 𝒄𝒐𝒔(𝟑𝟑𝟎)

𝑨𝟏 ∗ 𝒔𝒊𝒏 (𝟗𝟎) + 𝑨𝟐 ∗ 𝒔𝒊𝒏(𝟐𝟏𝟎) + 𝑨𝟑 ∗ 𝒔𝒊𝒏(𝟑𝟑𝟎)
)              (3) 

In equation 2, when 𝛼 equals 0, 120, 240, the friction which has a denominator 

equals 0 is meaning nothing and will be consider as 0 during calculation.  

This method will get torsion vibration and also lateral vibration, but there is another 

thought about it. Because the measurement tool is going to take torque higher than 5000 

lb·ft, placing the accelerometers l20° apart from one another will reduce the material in 

between. Since we would like to have a package of sensors for easy installation, this 

means that the sensors in this layout will take more than 240° space and leave only 1/3 

material to take torque. For safety concern, this design was modified into Sensor 

Configuration 2, which is shown in Figure 28. 

In Sensor Configuration 2, we place accelerometer A2 in an opposite position, 

which is going to give an inverse measurement in torsional vibration and also lateral 

vibration. To approach better results, we are using tri-axial accelerometers instead of 

uniaxial accelerometers in this configuration. In this arrangement, the tri-axial 

accelerometers give the lateral vibration and torsional vibration simultaneously. Thus, 

the complexity is reduced further. 
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Figure 28 Layout of Sensors in Drill Collar (Method 2) 

A further sensor simplification can be done by placing two accelerometers in 90° 

and thus calculating torsional and lateral vibration in the Cartesian coordinate system. 

A3 is only used for axial acceleration. This Sensor Configuration 3 is shown in Figure 

29. 

 

 

 

 

 

 

 

 

Figure 29 Layout of Sensors in Drill Collar (Method 3) 
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4.2.1. Tool Face Angle, Inclination and Azimuth 

In the system we have three accelerometers and one magnetometer, and they are all 

tri-axial sensors. The outputs are shown below: 

 𝐀𝟏 = (
𝒂𝟏𝒙
𝒂𝟏𝒚
𝒂𝟏𝒛

) 𝐀𝟐 = (
𝒂𝟐𝒙
𝒂𝟐𝒚
𝒂𝟐𝒛

) 𝐀𝟑 = (
𝒂𝟑𝒙
𝒂𝟑𝒚
𝒂𝟑𝒛

) 𝐌 = (
𝒎𝒙
𝒎𝒚
𝒎𝒛

)                        (4) 

The locations of the sensors in design are shown below: 

 

Figure 30 3D location of sensors 

In order to get the bit vibration, A1 and A2 are the sensors which provide the normal 

operation data. They both have a 4g range and the sensors are located 90 apart. 
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Figure 31 Sketch of Transformation of Coordinate System 

 

According to the rotation transformation of Euler’s theorem, carrier posture in the 

space is only available for a limited time relative to the geographical coordinating 

system rotation. 

At beginning, the sensors’ coordinates (X-Y-Z) are the same as the NED 

(north-east-down) coordinates (N-X, E-Y, D-Z). Then revolving around the D axis by 

φ degree, we will get X’Y’D coordinates, revolving around Y’ axis θ degree, we will 

get XY’Z’ coordinates and revolving around X axis ∅ degree, we will get the current 

position XYZ coordinates.  
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Each revolution involves a coordinate transformation. It can be represented by a 

matrix transformation. 

R𝜑 = (
𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜑 0

−𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑 0
0 0 1

) 𝑅𝜃 = (
𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃

0 1 0
𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

)  

𝑹∅ = (
𝟏 𝟎 𝟎
𝟎 𝒄𝒐𝒔∅ 𝒔𝒊𝒏∅
𝟎 −𝒔𝒊𝒏∅ 𝒄𝒐𝒔∅

)                                                                                 (5)  

So the sensors coordinate have the following relationship with NED coordinate. 

𝐔𝑿𝒀𝒁 = 𝐑∅𝐑𝜽𝐑𝝋𝐔𝑵𝑬𝑫                                                                                     (6) 

𝐑𝝋
𝑻𝐑𝜽

𝑻𝐑∅
𝑻𝐔𝑿𝒀𝒁 = 𝐔𝑵𝑬𝑫                                                                              (7) 

In our setup, the accelerometer A3 has results 

𝐀𝟑 = (
𝒂𝟑𝒙
𝒂𝟑𝒚
𝒂𝟑𝒛

)                                                                                                     (8) 

(
𝒂𝟑𝒙
𝒂𝟑𝒚
𝒂𝟑𝒛

) = 𝐑∅𝐑𝜽𝐑𝝋 (
𝟎
𝟎
𝒈

)                                                                                 (9) 

g is the local gravitational acceleration,g = 9.81ms−2, and to do an inverse pitch 

and roll, 

𝐑𝜽
𝑻𝐑∅

𝑻 (
𝒂𝟑𝒙
𝒂𝟑𝒚
𝒂𝟑𝒛

) = 𝐑𝝋 (
𝟎
𝟎
𝒈

)                                                                            (10) 

(
𝒄𝒐𝒔𝜽 𝟎 𝒔𝒊𝒏𝜽

𝟎 𝟏 𝟎
−𝒔𝒊𝒏𝜽 𝟎 𝒄𝒐𝒔𝜽

) (
𝟏 𝟎 𝟎
𝟎 𝒄𝒐𝒔∅ −𝒔𝒊𝒏∅
𝟎 𝒔𝒊𝒏∅ 𝒄𝒐𝒔∅

) (
𝒂𝟑𝒙
𝒂𝟑𝒚
𝒂𝟑𝒛

) = 𝐑𝝋 (
𝟎
𝟎
𝒈

)          (11) 

(
𝒄𝒐𝒔𝜽 𝒔𝒊𝒏𝜽𝒔𝒊𝒏∅ 𝒔𝒊𝒏𝜽𝒄𝒐𝒔∅

𝟎 𝒄𝒐𝒔∅ −𝒔𝒊𝒏∅
−𝒔𝒊𝒏𝜽 𝒔𝒊𝒏∅𝒄𝒐𝒔𝜽 𝒄𝒐𝒔𝜽𝒄𝒐𝒔∅

) (
𝒂𝟑𝒙
𝒂𝟑𝒚
𝒂𝟑𝒛

) = 𝐑𝝋 (
𝟎
𝟎
𝒈

)                          (12) 
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The y component defines the tool face (roll) angle ∅ as 

𝒂𝟑𝒚𝒄𝒐𝒔∅ − 𝒂𝟑𝒛𝒔𝒊𝒏∅ = 𝟎                                                                          (13) 

𝒕𝒂𝒏∅ =
𝒂𝟑𝒚

𝒂𝟑𝒛
                                                                                                  (14) 

The x component gives the inclination (pitch) angle 𝜃 as 

𝒂𝟑𝒙𝒄𝒐𝒔𝜽 + 𝒂𝟑𝒚𝒔𝒊𝒏𝜽𝒔𝒊𝒏∅ + 𝒂𝟑𝒛𝒔𝒊𝒏𝜽𝒄𝒐𝒔∅ = 𝟎                              (15) 

𝒂𝟑𝒙 + 𝒂𝟑𝒚𝒕𝒂𝒏𝜽𝒔𝒊𝒏∅ + 𝒂𝟑𝒛𝒕𝒂𝒏𝜽𝒄𝒐𝒔∅ = 𝟎                                       (16) 

𝒕𝒂𝒏𝜽 = −
𝒂𝟑𝒙

𝒂𝟑𝒚𝒔𝒊𝒏∅ + 𝒂𝟑𝒛𝒄𝒐𝒔∅
                                                             (17) 

Since the angle 𝜃 and ∅ are known from the accelerometer, the magnetometer can 

give the orientation of the facing. 

In the earth’s magnetic field, the angle of inclination of the geomagnetic field 

measures downwards from horizontal and varies over the earth’s surface from −90° at 

the south magnetic pole through 0° near the equator to +90° at the north magnetic 

pole. Use δ to denote. More detailed geomagnetic field maps can be obtained from the 

World Data Center for Geomagnetism[29]. 

In addition, the geomagnetic field doesn’t have a point to east component, so the 

earth magnetic field can be denoted as (
𝐵𝑐𝑜𝑠𝛿

0
𝐵𝑠𝑖𝑛𝛿

) 

𝐑𝜽
𝑻𝐑∅

𝑻 (
𝒎𝒙
𝒎𝒚
𝒎𝒛

) = 𝐑𝝋  (
𝑩𝒄𝒐𝒔𝜹

𝟎
𝑩𝒔𝒊𝒏𝜹

)                                                                   (18) 
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(
𝒄𝒐𝒔𝜽 𝟎 𝒔𝒊𝒏𝜽

𝟎 𝟏 𝟎
−𝒔𝒊𝒏𝜽 𝟎 𝒄𝒐𝒔𝜽

) (
𝟏 𝟎 𝟎
𝟎 𝒄𝒐𝒔∅ −𝒔𝒊𝒏∅
𝟎 𝒔𝒊𝒏∅ 𝒄𝒐𝒔∅

) (
𝒎𝒙
𝒎𝒚
𝒎𝒛

)

= (
𝒄𝒐𝒔𝝋 𝒔𝒊𝒏𝝋 𝟎

−𝒔𝒊𝒏𝝋 𝒄𝒐𝒔𝝋 𝟎
𝟎 𝟎 𝟏

) (
𝑩𝒄𝒐𝒔𝜹

𝟎
𝑩𝒔𝒊𝒏𝜹

)                                                             (19) 

(
𝒄𝒐𝒔𝜽 𝒔𝒊𝒏𝜽𝒔𝒊𝒏∅ 𝒔𝒊𝒏𝜽𝒄𝒐𝒔∅

𝟎 𝒄𝒐𝒔∅ −𝒔𝒊𝒏∅
−𝒔𝒊𝒏𝜽 𝒔𝒊𝒏∅𝒄𝒐𝒔𝜽 𝒄𝒐𝒔𝜽𝒄𝒐𝒔∅

) (
𝒎𝒙
𝒎𝒚
𝒎𝒛

) = (
𝑩𝒄𝒐𝒔𝜹𝒄𝒐𝒔𝝋

−𝑩𝒄𝒐𝒔𝜹𝒔𝒊𝒏𝝋
𝑩𝒔𝒊𝒏𝜹

)         (20) 

(

𝒄𝒐𝒔𝜽𝒎𝒙 + 𝒔𝒊𝒏𝜽𝒔𝒊𝒏∅𝒎𝒚 + 𝒔𝒊𝒏𝜽𝒄𝒐𝒔∅𝒎𝒛
𝒄𝒐𝒔∅𝒎𝒚 − 𝒔𝒊𝒏∅𝒎𝒛

−𝒔𝒊𝒏𝜽𝒎𝒙 + 𝒔𝒊𝒏∅𝒄𝒐𝒔𝜽𝒎𝒚 + 𝒄𝒐𝒔𝜽𝒄𝒐𝒔∅𝒎𝒛
) = (

𝑩𝒄𝒐𝒔𝜹𝒄𝒐𝒔𝝋
−𝑩𝒄𝒐𝒔𝜹𝒔𝒊𝒏𝝋

𝑩𝒔𝒊𝒏𝜹

)

= (
𝑩𝒙
𝑩𝒚
𝑩𝒛

)                                                                                   (21) 

This (
𝐵𝑥
𝐵𝑦
𝐵𝑧

)  represents the components of the magnetometer sensors after 

de-rotating to the flat plane with 𝜃 = ∅ = 0 

𝑩𝒙 = 𝑩𝒄𝒐𝒔𝜹𝒄𝒐𝒔𝝋                                                                                           (22) 

𝑩𝒚 = −𝑩𝒄𝒐𝒔𝜹𝒔𝒊𝒏𝝋                                                                                        (23) 

We can get tanφ 

𝒕𝒂𝒏𝝋 =
𝑩𝒚

𝑩𝒙
=

𝒄𝒐𝒔∅𝒎𝒚 − 𝒔𝒊𝒏∅𝒎𝒛

𝒄𝒐𝒔𝜽𝒎𝒙 + 𝒔𝒊𝒏𝜽𝒔𝒊𝒏∅𝒎𝒚 + 𝒔𝒊𝒏𝜽𝒄𝒐𝒔∅𝒎𝒛
                (24) 

Azimuth φ can be calculated by 

 𝝋 =
𝟏𝟖𝟎

𝝅 ∗ 𝒕𝒂𝒏𝝋 + 𝑫                                                                                      (25) 

The declination (D) is the angle between the geographic North and the horizontal 

component.  D = +1.367 is an example value. 

If φ< 0, then add 360° to φ; if φ > 360°, then subtract 360° from φ. 
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4.2.2. Axial Vibration and Shocks 

The axial vibration (the vibration along the drill string) can be obtained from 

𝑨𝒂 =
𝒂𝟏𝒛 + 𝒂𝟐𝒛

𝟐
                                                                                              (26) 

If shock happens, then 𝐴𝑎 = 𝑎3𝑧  

 

4.2.3. Angular Velocity and Stick-Slip 

From φ value, we can get angular velocity ω.  

𝛚 =
∆𝛗

∆𝒕
                                                                                                              (27) 

Stick-slip can be observed from ω values. One sudden decrease along with a 

sudden increase of ω will indicate that a stick-slip happened at the bit. 

 

4.2.4. Lateral Vibration 

 

Figure 32 Decomposition of Accelerations 
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𝒂𝟏𝒙 = 𝜶 ∗ 𝒓 + 𝑨𝒍𝒙                                                                             (28) 

𝒂𝟐𝒙 = 𝑨𝒍𝒙 − 𝑨𝒏                                                                                 (29) 

𝒂𝟏𝒚 = 𝑨𝒍𝒚 − 𝑨𝒏                                                                                 (30) 

𝒂𝟐𝒚 = 𝑨𝒍𝒚 − 𝜶 ∗ 𝒓                                                                            (31) 

In the above equations, 𝛼, 𝑟, 𝐴𝑙𝑥, 𝐴𝑙𝑦, 𝐴𝑛  are angular acceleration, direction of 

accelerometer from center, lateral vibration in x-axis direction, lateral vibration in y-axis 

direction, and centripetal acceleration, respectively. 

From equation 28 and 31, we can get 

𝒂𝟏𝒙 + 𝒂𝟐𝒚 = 𝑨𝒍𝒙 + 𝑨𝒍𝒚                                                                 (32) 

From equation 29 and 30, we can get 

𝒂𝟐𝒙 − 𝒂𝟏𝒚 = 𝑨𝒍𝒙 − 𝑨𝒍𝒚                                                                 (33) 

From equation 32 and 33, we can get from 

𝑨𝒍𝒙 =
𝒂𝟏𝒙 + 𝒂𝟐𝒚 + 𝒂𝟐𝒙 − 𝒂𝟏𝒚

𝟐
                                                 (34) 

𝑨𝒍𝒚 =
𝒂𝟏𝒙 + 𝒂𝟐𝒚 − 𝒂𝟐𝒙 + 𝒂𝟏𝒚

𝟐
                                                 (35) 

After we calculated the two components of lateral vibration, the maximum lateral 

acceleration can be obtained from 

𝑨𝒍 = √𝑨𝒍𝒙
𝟐 + 𝑨𝒍𝒚

𝟐                                                                          (36) 

If we set the angle between the direction of maximum lateral vibration (vibration 

perpendicular to the drill string) and X-axis is β.  

The direction of maximum lateral vibration is 
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𝛃 = 𝒕𝒂𝒏−𝟏 (
𝑨𝒍𝒚

𝑨𝒍𝒙
)                                                                             (37) 

4.2.5. Torsional Vibration 

From equation 28 to equation 31, we can back calculate α ∗ r, which is tangential 

acceleration calculated from angular acceleration and radius 

𝜶 ∗ 𝒓 =
𝒂𝟏𝒙 − 𝒂𝟐𝒚 − 𝒂𝟐𝒙 + 𝒂𝟏𝒚

𝟐
                                            (38) 

 

4.2.6. Whirl 

The identification of whirl can be done by using a cross plot of the lateral 

acceleration signals. Figure 33 shows the X and Y axial lateral acceleration cross plots. 

The test result can be compared with the figures to identify whether the whirl happened. 

 

Figure 33 A, Laboratory accelerations during whirl; B, Field Acceleration during 

Whirl; C, Field acceleration during No Whirl [14] 

 

Because lateral vibration is about the center of the drill string, another analysis 

method is needed to utilize the integration from the acceleration to provide us with the 
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displacement of the center. Plotting the center displacement value will give the tracers of 

the drill string movement. 

4.3. Down-Hole Measurement Tool (Sensor Sub) Design 

The measurement tool was designed by following the Sensor Configuration 3 

described in the previous sections. The mechanical parts of the tool were designed by 

the collaboration of the author and Pushpinder Rana, and were fabricated by the 

machine shop in the Faculty of Engineering and Applied Science of Memorial 

University of Newfoundland. After the metal parts were completed, Electrical Technical 

Services in Faculty of Engineering and Applied Science installed the sensors on the 

sensor package and did the wiring for the sensor package. 

The layout of the downhole measurement tool (Sensor Sub) is shown below in 

Figure 34. 

 

Figure 34 Layout of Downhole Measurement Tool (Sensor Sub) 
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The whole measurement tool comprises of one sensor package, two controllers 

(Arduino Boards), and three battery packs. 

The two API connections are based on industrial standards, and the sensor package 

is located near the lower end to capture the vibrations on that end. During the tool usage 

operations, it can be placed near the bit to measure near bit vibration or placed in the 

middle section of drill string to measure the drill string vibration. The sensor package is 

connected to the main body with screws, and this design also reduces the torsional 

moment on the sensor package to avoid the potential damage to the sensors. All the 

sensors and controllers are covered in non-conductive silicone to keep them in place. 

The power is provided by three parallel 9V battery packs. In order to avoid the 

batteries losing connection under severe down-hole vibration, conductive epoxy is 

placed between the batteries, and each pack is encapsulated in a heat shrink tube to 

increase the rigidity. When the batteries are put into the slot, there is foam placed around 

them in order to absorb the vibration during operation. Figure 35 shows an exploded 

view of the assembled Sensor Sub. 



 

56 

 

 

Figure 35 Exploded View of Downhole Measurement Tool (Sensor Sub) 

 

Since the sensor package contains a magnetometer, it cannot operate near the steel. 

Therefore, the sensor package design utilized aluminum alloy and also the whole 

measurement tool. Figure 36 shows the aluminum shell that was developed to support 

and mount the sensors. 
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Figure 36 Sensor Package Layout 

 

4.4. Electronic Design and Laboratory Testing 

Before the measurement tool was fabricated, the electronic parts had been tested on 

bread boards. This test setup includes two parts: sensors are mounted on a bread board 

while controllers and micro-SD card are mounted on another bread board. One 9V 

battery pack is used to power the controllers. One set of 0.9m long wires connects these 

two bread boards (Figure 37). The sensors and data acquisition system used were digital 

with built-in anti-aliasing filters, therefore issues dealing with aliasing for signal 

recording were not relevant. 
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Figure 37 Setup of the Sensors 

 

This test utilized the MTS® machine, which could move up and down or rotate at a 

given frequency. The sensor bread board is mounted on the arm end of the machine, and 

controllers are placed outside the machine. At the same time, the wire is long enough to 

provide the flexibility of the system so as to reduce the vibration conducted to the 

controllers (Figure 38). 
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Figure 38 Setup of vertical vibration and torsional vibration testing for sensors 
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4.4.1. Acceleration test 

The acceleration tests were conducted by setting the axial displacement of the MTS 

machine to move up and down at frequencies 1Hz, 2Hz, 4Hz and 10Hz, at a constant 

amplitude of 10 mm. The readings from these tests are given in Figure 39, Figure 40 and 

Figure 41.  

 

Figure 39 Sensors Reading at 1Hz 

 

 

Figure 40 Sensors Reading at 2Hz 
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Figure 41 Sensors Reading at 4Hz 

 

The experiment results were compared with the expected g value if the vibration is 

set at a given frequency and amplitude. The data contains a little noise. After filtering 

the accelerometer data and taking the mean value, the results of the comparison are 

shown in Table 2.  

 

Table 2 Summary of acceleration test results and expected results. 

  1Hz 2Hz 4Hz 

expected acceleration 0.395m/s2 1.589 m/s2 6.317 m/s2 

expected g value 0.04 g 0.16 g 0.64 g 

sensor measurement 0.04 g 0.18 g 0.65 g 

 

The readings for 10Hz are shown in Figure 42. In 10Hz testing, the MTS machine 

will generate 4g acceleration. Since this experiment was conducted vertically, the 

acceleration due to gravity would also be recorded by the accelerometers. Because the 
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accelerometer A1 and A2 were set to 4g range, in this test their readings were saturated. 

Moreover, the vibration was severe, so it caused the whole system to vibrate at the same 

time. Meanwhile, the breadboard was not rigid enough, so all the readings on all 

accelerometers were higher than expected. For this reason, the testing result for 10Hz is 

not satisfactory. 

 

Figure 42 Sensors Reading at 10Hz 

 

From these results we can conclude that the program is working and in low 

frequency all the accelerometers are working properly in low vibration frequency. And 

the accuracy is also satisfying. Due to the breadboard restriction, in high vibration 

frequency we could not get a satisfying result. 

 

4.4.2. Rotation Test 

The rotation test was conducted to test whether the magnetometer works properly. 

Because the MTS machine arm is made of steel, the magnetometer readings will be 
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affected if it is mounted too close to the machine. A modification was done on the 

previous mounting (Figure 43) where a wood block was inserted between the MTS 

machine and the sensor bread board to increase the distance between the bread board 

and the machine to reduce the magnetic effect of the steel. 

 

Figure 43 Magnetometer test. 
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One issue about this testing is that this mounting is not rigid enough, and it is also 

hard to locate the magnetometer at the center of the rotation. Due to these reasons, the 

accuracy cannot be guaranteed, and this testing can only give the magnetometer working 

status.  

 

Figure 44 MTS machine Control Signal 

 

 

Figure 45 Magnetometer data calculated angle 
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4.5. Field Testing 

To find out the pVARD tool performance and test the Downhole Measurement Tool 

functionality in field environment, field trials were conducted from September 1 to 8, 

2014 at the Greenslades Construction Quarry B site (Figure 46) [30]. During field trials, 

drilling was conducted using both the PDC and roller cone (RC) bits with conventional 

rotary drilling and then repeated as needed with various configurations of the pVARD 

tool while penetrating the same formations under approximately equivalent WOB, 

scaled rotary speed, and bit hydraulic conditions. For most of these drilling runs, the 

pVARD tool was located directly behind the bit or Downhole Measurement Tool 

(Sensor Sub) in the BHA. ROP was scaled to equivalent ROP at a rotary speed of 100 

rpm to account for variations in rotary speed between some intervals. Various intervals 

were selected for short run drilling experiments under excessive weight conditions to 

enhance bit wear and to induce targeted types of bit and drill string vibration. The 

geology in this area is gray shale, red shale and granite formation.  

 

Figure 46 Aerial view of Greenslades Construction Quarry B on Red Bridge Road, 

Kelligrews, CBS with the approximate location of the 3 drilled wells shown in blue 
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Prior to tool use, the sensors were sealed in epoxy to keep them in place and to 

protect them from water if any leakage happened during operation. The other electronics 

components were encapsulated in silicone sealant to prevent the vibration damage. The 

tool was assembled on site as shown in Figure 47. 

 

Figure 47 Sensors Sub before assembly 

 

4.5.1. Field Rotation Test 

Before the drilling test, the measurement tool was installed on the drill string and 

suspended in air with no contact with the surrounding frame. In this configuration, a free 

rotation test was conducted to test the magnetometer working status, as shown in Figure 

48. 
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Figure 48 Free Rotation Test 

 

After post processing the magnetometer data, the azimuth of the sensor pointing is 

shown in Figure 49, in which the 0/360 indicates the North azimuth. 
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Figure 49 Azimuth of the Measurement Tool Rotation Test 

 

Then one period was picked out to calculate the rotation speed of the drill string, as 

shown in Figure 50. 

 

Figure 50 Example of RPM calculation 
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From this data, each rotation will take 360/963.55 second, which is about 161 RPM 

and corresponds to the maximum rotation speed of the motor with zero load and no 

contact with the well bore wall. 

The figure below shows a time fraction of the test 2014090210, which was 

conducted with RC bit at WOB 28205.61 lbs, and, as the well history notes mentioned, 

that was a stable drilling. The figure contains about 10.5 periods and the time length was 

6000ms, so each rotation took 6/10.5 second, which is 105 RPM, and was consistent 

with the notes on well history. 

 

Figure 51 Rotation data Example 
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determined from all three accelerometers and the shock is determined from the 16g 

range accelerometer only. 

Another conversion is the correlation between the algorithm and the actual layout in 

the downhole measurement. The a1x, a1y and a1z in the data are present as –A1z, A1y 

and –A1x in the algorithm respectively. The a2x, a2y and a2z in the data are presenting 

as A2z, A2x and –A2y in the algorithm, respectively. 

The experiments on day 1 were conducted with a PDC bit and the experiments 

conducted on day 2 used a RC bit. Test numbers 2014090106 and 2014090207 have the 

same WOB (20739.42 lbs) and were done in the same formation (gray shale). The 

accelerations for these two tests were evaluated to compare the measurements recorded 

using both types of bits, and are summarized in Figure 52. The figure shows the PDC bit 

has less axial vibration than the RC bit, which indicates that the expected result 

corresponds to their different penetration mechanism. 

  



 

71 

 

 

 

Figure 52 Axial Vibration Comparison during Drilling 

  

The figure below shows one fraction of test 2014090204, which utilized the RC bit, 

and WOB was 15979.01 lbs. The peaks imply that there were shocks during the test. 

During this drilling test, the drilling logs indicate the formation was changed from “grey 

shale” to “grey and red shale”, which might be the reason why the shocks happened. 
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Figure 53 Shocks recorded during drilling 

 

The value and direction of lateral vibration could also be calculated utilizing the 

algorithm. Figure 54 shows the results of the calculation for test 2014090201, which 

used RC bit under WOB 7933.01lbs and the formation was grey shale. 
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Figure 54 Lateral Vibration during Drilling 

 

Figure 55 Lateral Vibration direction during Drilling 

 

Figure 56 shows the lateral vibrations with PDC bit and RC bit from the same test 

2014090106 and 2014090207 respectively. They are under the same WOB (20739.42 

lbs) and were done in the same formation (gray shale).  

-0.5

0

0.5

1

1.5

2

2.5

3

3580000 3582000 3584000 3586000 3588000 3590000

A
cc

e
le

ra
ti

o
n

(g
)

time(ms)

Al

Al

-4

-3

-2

-1

0

1

2

3

4

3580000 3582000 3584000 3586000 3588000 3590000-π
 ~

 π

time(ms)

β

β



 

74 

 

From this figure we can see their performance corresponds to the characteristic of 

the bit. The PDC bit is much smoother than the RC bit. 

 

 

Figure 56 Lateral Vibration during Drilling 

 

Torsion vibration during drilling can be calculated from equation 37. Figure 57 

shows the torsional vibration from the same tests 2014090106 and 2014090207 

respectively. They are under the same WOB (20739.42 lbs) and were done in the same 

formation (gray shale). 
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Figure 57 Torsional Vibration during Drilling 

 

To evaluate the bit whirl, cross plots of X and Y lateral vibration were made (see 

Figure 33). To evaluate the lateral vibrations at the bit, lateral accelerations are an 

indication of high lateral motions as the bit whirls in the hole. Figure 58 shows the whirl 

during the test. The plot on the left is the test 2014090201 with RC bit and WOB 
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5807.04 lbs, and the plot on the right is the test 2014090212 with PDC bit and WOB 

26546.46lbs. As expected, higher whirl is observed at higher WOB. 

 

Figure 58 Analysis of whirl during test 2014090201 and 2014090212, showing low 

whirl (left) at low WIB and high whirl (right) at higher WOB. 

 

4.5.3. Measurement Tool Operation Issues 

In the field trial, the seal rings (see Figure 59) on one end of the Sensor Sub were 

damaged during the drill string dynamic testing under a very low WOB and high 

rotatory speed, because the drill string bounced around and contacted with the well bore, 

and the side force compressed the seal ring on one side, which caused the water to get in 

from another side. As soon as the water went in, it brought sand into the tool and 

damaged the seals. When we tried to open the measurement tool to retrieve the data, the 

tool was difficult to open. After we removed the shale from the tool, we saw lots of sand 

in the sealing, which scratched the aluminum shell, see Figure 59. 
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Figure 59 Seal was damaged after test 

 

After this, the seal rings cannot seal the tool properly (Figure 60), so the tool was 

wrapped in electrical tape to prevent water interfering with the electronics for further 

tests. Several successful runs using the tool were made after this. However, the sealing 

was not sufficient and the electronics were damaged by the water and no longer worked 

eventually. For future work, redesign of the seals for the tool is recommended. This may 

be achieved by redesigning the tool so that it does not have to be disassembled to 

download the recorded data or to change the battery packs. 
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Figure 60 Wrapped measurement tool (Left) and damaged seal rings (Right) 

 

4.6. Conclusion 

In conclusion, this down-hole measurement tool (Sensor Sub) was constituted with 

three tri-axial accelerometers, one tri-axial magnetometer, and onboard storage, and an 

aluminum alloy to avoid interference from the Earth’s magnetic field. Because of the 

special design and arrangement of the Sensor Sub, we can obtain the axial, torsional, 

and lateral vibration, azimuth of the tool faces, rotary speed, and even whirl data 

through post processing. 
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5. Conclusion and Future work 

From the work presented in this thesis, the SDS DAQ and control system are proved 

to be a success. It can record 8 different analog sensors at a high frequency 

simultaneously and has a friendly user interface for easy operation. The built-in 

emergency stop switch enhanced the laboratory safety, which is an important factor in 

all experimental research. 

The SDS extension Mobile DAQ system extended the laboratory SDS DAQ 

operation. It brings a reliable DAQ system into field experiments and enhanced the 

experiment flexibility. The DAQ system is a well-protected system with high accuracy, 

high speed and high extensibility, and it can be connected to 16 different sensors at the 

same time and easily installed and uninstalled through quick connections. 

From the field trial results, the conclusion was that the Sensor Sub worked properly, 

which indicated that the design and development (including sensor arrangement, system 

programming, and post processing algorithms) are valid. Furthermore, more tests need 

to be conducted in the future to ensure that the measurement tool meets the experiment 

requirements, especially in the field environment. 

 The down-hole measurement tool (Sensor Sub) is a high-speed, non-real-time data 

recorder prototype. It can measure down-hole axial, torsional, lateral vibration, stick-slip, 

well inclination, and back calculate whirl. This will provide the Advanced Drilling 

Laboratory with field data to help improve the simulation experiments. 

In addition, SDS and Mobile DAQ are finished products; the future work on these 

two systems will be regular maintenance and calibration. Modification could be done 

easily based on the experimental requirements. 
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The down-hole measurement tool (Sensor Sub) is a non-real-time data recorder first 

generation prototype. The installation and wiring could bring some error or noise into 

this system. In the future, a new design on mechanical components would be 

recommended so as to provide better sealing and make the next generation prototype on 

a single PCB board, which could enhance the performance and the accuracy of the 

system to some extent. Moreover, the casing of the tool could be modified to have an 

easy access to the data and the battery without having to pull the tool apart.  

Because this measurement tool is a non-real-time data recorder, all the data we 

obtained need a post processing to get complete motion data. In the future work, if the 

controller could be more powerful, we might be able to calculate all the data in real time 

and this measurement tool could work with a mud pulse telemetry tool or wire-line to 

develop a real-time down-hole measurement system. Besides, the experiment results 

proved that the algorithms are accurate, which implies that the data collected from the 

field trial can be used for further research. 
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Appendices 

A-1. Load cell calibration 

The steps of calibration for pressure transducer are as follows: 

1) Connect the circuit, follow the circuit diagram 

2) Use a multi-meter to make sure the circuit is correct 

3) The calibration sheet for the load cell and amplifier are available from factory. 

The data input needs to be converted from voltage into load. The calibration sheet for 

the load cell and the amplifier are in Figure 61 and  Figure 62. 
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Figure 61 Calibration sheet for Load Cell 
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 Figure 62 Calibration sheet for Amplifier 
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A-2. Pressure transducer calibration 1 

The steps of calibration for the pressure transducer are as follows: 

1) Connect the circuit, follow the circuit diagram 

2) Use a multimeter to make sure the circuit is correct 

3) The pressure transducer is calibrated in the factory, 0-5V input was used and 

the calibration sheet is shown in Figure 63. 

 

Figure 63 Calibration sheet for Pressure Transducer1500psi 
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A-3. Pressure transducer calibration 2 

The steps of calibration for the pressure transducer are as follows: 

1) Connect the circuit, follow the circuit diagram 

2) Use a multimeter to make sure the circuit is correct 

3) The calibration sheet for the pressure transducer came from the factory, use the 

calibration data to convert the 0-5V input to pressure. The calibration sheet is in Figure 

64. 

 

Figure 64 Calibration sheet for Pressure Transducer 1000psi  
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A-4. Pressure transducer calibration 2 

The steps of calibration for the LPT are as follows: 

1) Connect the circuit, follow the circuit diagram 

2) Use a multimeter to make sure the circuit is correct 

3) Let the LPT be fully extended, and then record the output voltage V1; let the 

LPT stroke fully pull back, and record the output voltage V2; then measure the effective 

length L. Make the fully extended stroke position 0.  

4) The conversion formula is for position P and input voltage v 

P =
𝑉2 − 𝑉1

𝐿
𝑣 
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A-5. Rotary encoder calibration 

The steps of calibration for the rotary encoder are as follows: 

1) Connect the circuit, follow the circuit diagram 

2) Use a multimeter to make sure the circuit is correct 

3) Because only one signal is used to record the rotary speed, the number of 

pulses should be converted to revolutions. Through the test, the rotary encoder will 

generate a 1000-pulse signal, and by using this data and the clock time (s) built inside 

the LabVIEW software, the rotary speed can be calculated 

4) The conversion formula to get rotary speed N from pulse number n is 

N =
n

1000 ∗ t
∗ 60 
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A-6. Accelerometer calibration 

The steps of calibration for the accelerometer are as follows: 

1) Connect the circuit, following the circuit diagram 

2) Use a multimeter to make sure the circuit is correct 

3) Because only one signal is used to record the rotary speed, the number of 

pulses should be converted to revolutions. Through the test, the rotary encoder will 

generate a 1000-pulse signal, and by using this data and the clock time (s) built inside 

the LabVIEW software, the rotary speed can be calculated 

4) The conversion formula to get rotary speed N from pulse number n is 

N =
n

1000 ∗ t
∗ 60 
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A-7. Hall Effect Sensor Calibration 

The steps of calibration for the Hall Effect sensor are as follows: 

1) Connect the circuit, follow the circuit diagram 

2) Use a multimeter to make sure the circuit is correct 

3) The circuit is powered by ±15V DC and the nominal analog output of the 

sensor is 50mA, which is indicated as the nominal current 50A rms. 
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A-8. Flow meter calibration 

The steps of calibration for the flow meter are as follows: 

1) Connect the circuit, follow the circuit diagram 

2) Use a multimeter to make sure the circuit is correct 

3) From the sensor specification, each gallon that passes through the flow meter 

will generate 870 pulse signals.  

4) The conversion formula to get flow amount M from pulse number n is 

M = n/870 

1) The flow rate R through the recording time t (in system can set every 10s) is  

R = M/t 
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A-9. SDS System Computer Enclosure 
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A-10. SDS System Connection Diagram 
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A-11. SDS System Drill Rig Connection Diagram 
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A-12. SDS System Drill Rig Circuit Schematic 
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A-13. Mobile DAQ System Operation Manual 

Steps: 

1. In operation, all the connections should be connected and checked. Then turn on 

the power switch, and the light will be on. 

2. Click on the NI network browser icon. 

 

Make sure the device is in the list and record the IP Address for future usage. 

3. Click on the NI MAX icon. 

 

On the left, My System - Devices and Interfaces - Network Devices 

NI cDAQ-9188 “xxxxxxxx” 

1: NI 9237 “xxxxxxxx” 

 8: NI 9205 (DSUB) “xxxxxxxx” 

Make sure they all work. If not, delete the NI cDAQ-9188 and My System - 

Devices and Interfaces - Network Devices – Add Network Device – Find Network 

NI-DAQmx Devices. The IP address will be used if the NI module does not show up in 

the list. 

4. After the devices are ready, click the  
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and wait for the program to start. 

5. Click Run to run the program (Run will change to Stop), and click Record to 

record the data. 

6. After clicking Record, the system will ask you to select a channel to be recorded, 

the file location and the file name, making the work clear and keeping every file for the 

sake of future benefit. 

7. Click Record again to stop recording. 

8. Click Stop to stop the program. 

9. If one file is wrong it can be deleted only when the program is stopped. 

10. Save all the data and shut down the system. 

11. Disassemble the system and store it safely.  
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A-14. Master Arduino Board Program 

#include <SPI.h> 

#include <Wire.h> 

 

int CSArray[3] = {8,9,10}; 

 

char POWER_CTL = 0x2D;    //Power Control Register 

char DATA_FORMAT = 0x31; 

char DATAX0 = 0x32;   //X-Axis Data 0 

char DATAX1 = 0x33;   //X-Axis Data 1 

char DATAY0 = 0x34;   //Y-Axis Data 0 

char DATAY1 = 0x35;   //Y-Axis Data 1 

char DATAZ0 = 0x36;   //Z-Axis Data 0 

char DATAZ1 = 0x37;   //Z-Axis Data 1 

 

//This buffer will hold values read from the ADXL345 registers. 

char values [15]; 

char buffer [8]; 

 

int SSpin = 11;   // magnetometer pin 4 

int DRDYpin = 12;    // magnetometer pin 5 

//int RESETpin = 13;   // magnetometer pin 6 

int heading = 0;  // magnetic field heading 
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void setup() 

{ 

  Wire.begin(); 

  //Initiate an SPI communication instance. 

  SPI.begin(); 

  //Configure the SPI connection for the ADXL345. 

  SPI.setDataMode(SPI_MODE3); 

  //set the SPI connection to fast. 

  SPI.setClockDivider(SPI_CLOCK_DIV2); 

  //Create a serial connection to display the data on the terminal. 

  Serial.begin(9600); 

   

  pinMode(SSpin, OUTPUT); 

  pinMode(DRDYpin, INPUT); 

 

   

      pinMode(CSArray[0], OUTPUT); 

      digitalWrite(CSArray[0], HIGH); 

      writeRegister(POWER_CTL, 0x08,CSArray[0]); 

      writeRegister(DATA_FORMAT, 0x01,CSArray[0]); 

       

      pinMode(CSArray[1], OUTPUT); 
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      digitalWrite(CSArray[1], HIGH); 

      writeRegister(POWER_CTL, 0x08,CSArray[1]); 

      writeRegister(DATA_FORMAT, 0x01,CSArray[1]); 

       

      pinMode(CSArray[2], OUTPUT); 

      digitalWrite(CSArray[2], HIGH); 

      writeRegister(POWER_CTL, 0x08,CSArray[2]); 

      writeRegister(DATA_FORMAT, 0x03,CSArray[2]); 

       

      digitalWrite(SSpin, LOW); 

      SPI.transfer(0x00); 

      SPI.transfer(0x9C); 

      digitalWrite(SSpin, HIGH); 

      delay(10); 

       

      digitalWrite(SSpin, LOW); 

      SPI.transfer(0x01); 

      SPI.transfer(0x20); 

      digitalWrite(SSpin, HIGH); 

      delay(10); 

       

      digitalWrite(SSpin, LOW); 

      SPI.transfer(0x02); 
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      SPI.transfer(0x00); 

      digitalWrite(SSpin, HIGH); 

} 

 

 

void loop() 

{ 

//  heading = getHeading(x, y, z);  // calculates the magnetic field heading 

    Wire.beginTransmission(2); // transmit to slave device  

    byte mag[6]; 

    readMag(mag); 

    int i = 0; 

    for(i = 0; i < 6; i++) 

      Wire.write(mag[i]); 

     

    int j = 0; 

    for(j=0;j<3;j++) 

    { 

      readRegister(DATAX0, 6, values,CSArray[j]); 

      int i = 0; 

        for(i=0;i<6;i++) 

        { 

          Wire.write(values[i]); 



 

105 

 

        } 

         

    } 

  Wire.endTransmission();    // stop transmitting 

} 

 

void writeRegister(char registerAddress, char value, int CS){ 

  //Set Chip Select pin low to signal the beginning of an SPI packet. 

  digitalWrite(CS, LOW); 

  //Transfer the register address over SPI. 

  SPI.transfer(registerAddress); 

  //Transfer the desired register value over SPI. 

  SPI.transfer(value); 

  //Set the Chip Select pin high to signal the end of an SPI packet. 

  digitalWrite(CS, HIGH); 

} 

 

 

//This function will read a certain number of registers starting from a specified 

address and store their values in a buffer. 

//Parameters: 

//  char registerAddress - The register addresse to start the read sequence from. 

//  int numBytes - The number of registers that should be read. 
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//  char * values - A pointer to a buffer where the results of the operation should be 

stored. 

void readRegister(char registerAddress, int numBytes, char * values, int CS){ 

  //Since we're performing a read operation, the most significant bit of the register 

address should be set. 

  char address = 0x80 | registerAddress; 

  //If we're doing a multi-byte read, bit 6 needs to be set as well. 

  if(numBytes > 1)address = address | 0x40; 

 

  //Set the Chip select pin low to start an SPI packet. 

  digitalWrite(CS, LOW); 

  //Transfer the starting register address that needs to be read. 

  SPI.transfer(address); 

  //Continue to read registers until we've read the number specified, storing the 

results to the input buffer. 

  for (int i=0; i<numBytes; i++){ 

    values[i] = SPI.transfer(0x00); 

  } 

  //Set the Chips Select pin high to end the SPI packet. 

  digitalWrite(CS, HIGH); 

} 

 

int readMag(byte result[]) 
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{ 

  digitalWrite(SSpin, LOW); 

  SPI.transfer(0xC3); 

  result[0] = SPI.transfer(0xFF); 

  result[1] = SPI.transfer(0xFF); 

  result[2] = SPI.transfer(0xFF); 

  result[3] = SPI.transfer(0xFF); 

  result[4] = SPI.transfer(0xFF); 

  result[5] = SPI.transfer(0xFF); 

  digitalWrite(SSpin, HIGH); 

  return 0; 

} 

 

int receiveBit() 

{ 

  // receive the data on the FALLING edge of the clock 

char value; 

  int bit = SPI.transfer(0x00); 

 

  return bit; 

} 
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A-15. Slave Arduino Board Program 

#include <Wire.h> 

#include <SD.h> 

#include <SPI.h> 

 

const int chipSelect = 10; 

//make a string for assembling the data to log: 

String dataString = ""; 

short receiveFlag = 0; 

short mx,my,mz; 

short acc1x,acc1y,acc1z; 

short acc2x,acc2y,acc2z; 

short acc3x,acc3y,acc3z; 

 

File dataFile; 

 

void setup() 

{ 

  Wire.begin(2);                // join i2c bus with address #4 

  SPI.begin(); 

  //Configure the SPI connection for the ADXL345. 

  SPI.setDataMode(SPI_MODE3); 

  //set the SPI connection to fast. 
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  SPI.setClockDivider(SPI_CLOCK_DIV2); 

  //Create a serial connection to display the data on the terminal. 

   

  Wire.onReceive(receiveEvent); // register event 

  Serial.begin(9600);           // start serial for output 

 

  if (!SD.begin(chipSelect)) { 

    while (1) ; 

  } 

 

  // Open up the file we're going to log to! 

  dataFile = SD.open("test.txt", FILE_WRITE); 

} 

 

 

void loop() 

{ 

    if (receiveFlag = 1) 

    { 

    dataFile.print(millis()); 

    dataFile.print(','); 

    dataFile.print(mx); 

    dataFile.print(','); 
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    dataFile.print(my); 

    dataFile.print(','); 

    dataFile.print(mz); 

    dataFile.print(','); 

    dataFile.print(acc1x); 

    dataFile.print(','); 

    dataFile.print(acc1y); 

    dataFile.print(','); 

    dataFile.print(acc1z); 

    dataFile.print(','); 

    dataFile.print(acc2x); 

    dataFile.print(','); 

    dataFile.print(acc2y); 

    dataFile.print(','); 

    dataFile.print(acc2z); 

    dataFile.print(','); 

    dataFile.print(acc3x); 

    dataFile.print(','); 

    dataFile.print(acc3y); 

    dataFile.print(','); 

    dataFile.println(acc3z); 

 

    } 
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  dataFile.flush();   

  } 

 

 

// function that executes whenever data is received from master 

// this function is registered as an event, see setup() 

void receiveEvent(int howMany) 

{ 

  while(1 <= Wire.available()) // loop through all but the last 

  { 

    mx = ((Wire.read() << 8) | Wire.read()); 

    mz = ((Wire.read() << 8) | Wire.read()); 

    my = ((Wire.read() << 8) | Wire.read()); 

     

    acc1x = Wire.read() | (Wire.read() << 8); 

    acc1y = Wire.read() | (Wire.read() << 8); 

    acc1z = Wire.read() | (Wire.read() << 8); 

      

    acc2x = Wire.read() | (Wire.read() << 8); 

    acc2y = Wire.read() | (Wire.read() << 8); 

    acc2z = Wire.read() | (Wire.read() << 8); 

      

    acc3x = Wire.read() | (Wire.read() << 8); 
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    acc3y = Wire.read() | (Wire.read() << 8); 

    acc3z = Wire.read() | (Wire.read() << 8); 

     

    receiveFlag = 1;     

     

  } 

} 
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A-16. Sensor Sub Connection Diagram 
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A-17. I 9205 DAQ Module Specifications Summary  

General 

Product Family Industrial I / O 

Measurement Type Voltage 

Form Factor CompactDAQ 

CompactRIO 

Operating System / Target Real-Time Windows 

RoHS Compliant No 

Isolation Type Ch-Earth Ground Isolation 

Analog Input 

Single-Ended Channels 32 

Differential Channels 16 

Analog Input Resolution 16 bits 

Maximum Voltage Range  

Range -10 V - 10 V 

Accuracy 6220 µV 
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General 

Minimum Voltage Range  

Range -0.2 V - 0.2 V 

Accuracy 157 µV 

Simultaneous Sampling  No 

Timing / Triggering / Synchronization 

Triggering Analog 

Physical Specifications 

Length 9 cm 

Width 2.3 cm 

I / O Connector 36-position spring terminal 

37-pin D-Sub 

Operating Temperature -40 °C - 70 °C 
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A-18. NI 9237 DAQ Module Specifications Summary  

General 

Product Family Industrial I / O 

Measurement Type Strain / Bridge-based sensor 

Form Factor CompactDAQ 

CompactRIO 

Operating System / Target Real-Time 

Windows 

RoHS Compliant Yes 

Isolation Type Ch-Earth Ground Isolation 

Analog Input 

Single-Ended Channels 0 

Differential Channels 4 

Analog Input Resolution 24 bits 

Maximum Voltage Range  

Range -25 mV / V - 25 mV / V 
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General 

Accuracy 0.0375 mV / V 

Bridge Configurations Full Bridge 

Half Bridge 

Quarter Bridge 

Simultaneous Sampling  Yes 

Excitation Voltage 2 V 

2.5 V 

3.3 V 

5 V 

10 V 

Signal Conditioning Anti-aliasing filter 

Bridge completion 

Voltage excitation 

Physical Specifications 

Length 9 cm 

Width 2.3 cm 
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General 

I / O Connector RJ50 

Operating Temperature -40 °C - 70 °C 

 


