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Abstract

Reductionism and holism are two worldviews that underlie the fields of linear and
nonlinear signal processing, respectively. In the reductionist worldview, deviation from
linearity is seen as a noise that warrants removal. In the holistic worldview, the
system is viewed as a whole that cannot be fully understood solely in terms of its
constituent parts. Conventional radar resolution theory is a direct application of the
reductionist view. Consequently, analysis of single-channel synthetic aperture radar
imagery for automatic target recognition (SAR-ATR) has traditionally been based
on linear techniques associated with the image intensity while the phase content is
ignored. The insufficiency of the linear system theory to extended targets has been

empirically observed in the literature.

This thesis consists of a development of novel tools that exploit the nonlinear phe-
nomenon in focused single-channel SAR imagery and application of these tools to the
SAR-ATR problem. A systematic procedure to infer the statistical significance of the
nonlinear dynamics is introduced. Furthermore, two novel frameworks for feature ex-
traction from complex-valued SAR imagery are presented. The first framework is solely
based on the often ignored phase content, and it is built on techniques from the fields
of complex-valued and directional statistics. The second framework utilizes complex-
valued SAR imagery and provides for exploiting nonlinear and nonstationary signal
analysis methods based on the Poincaré and Hilbert views for nonlinear phenomena.
Using real-world SAR datasets, the overall results confirm the statistical significance of
the nonlinear effect for the case of extended targets. Furthermore, when the complex-
valued SAR image is detected, the nonlinear dynamics are found to be obliterated or

greatly altered. The efficacy of the frameworks developed is clearly demonstrated.
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1. Introduction

1.1. Background

The development of modern high resolution synthetic aperture radar (SAR) was led by
three key innovations [1, 2]. First, pulse compression enabled radars to resolve closely
spaced targets in range. The most widely used pulse compression technique is linear
frequency modulation (LFM), which was introduced in the early 1950s. Second, in
1951, it was possible to resolve closely spaced targets in angular position relative to
the antenna beam center of side looking airborne radars. This was achieved through
Doppler filtering which was pioneered by Carl Wiley of Goodyear Aircraft Corpora-
tion. Finally, high resolution SAR was enabled through the advent of a technique to
synthesize a long aperture for storing the magnitude and phase of successive radar
returns along the platform trajectory. The integration of these innovations led to the

formation of the first focused SAR image at the university of Michigan in 1957.

Automatic target recognition (ATR) deals with the use of computer processing capa-
bilities to infer the classes of targets (i.e., objects of interest) in the sensory data, and
to characterize the desired operating conditions (OCs). ATR technology originated
in the military but today it is of a paramount importance to both the military and
civilian applications [3]. In the literature, there is a wide range of ATR applications
varying from recognizing a pre-known signature in homogeneous clutter to recognizing
the source of the signature that varies considerably with pose and configuration and

is located in a highly heterogeneous and probably occluded scene [1].

SAR images are not amenable for interpretation by the most sophisticated ATR
systems, let alone the trained eye [5]. In order to handle the SAR imagery in a divide-
and-conquer approach, an end-to-end ATR system for SAR imagery (SAR-ATR) is
typically multistaged. The front-end stage in the processing chain is known as the

detector. The intermediate stage is known as the low-level classifier (LLC). Finally,



the back-end stage is referred to as the high-level classifier (HLC) [6—12]. In this
research, attention is focused on single-channel SAR (i.e., single polarization) imagery.

A description of the SAR datasets used in this thesis is provided in Appendix A.

1.2. Motivations

The underpinning philosophy for science in general, and the field of signal processing
in particular, is based on either one of two multidisciplinary worldviews: reductionism
(also known as Newtonianism) and holism [13—-15]. In the reductionist worldview, a
complex system is assumed to be simply the superposition of its parts, and its analysis
is reduced to the analysis of its individual components. Although this view may not
seem to explicitly dismiss the existence of the so-called emergence phenomenon (i.e.,
multiplicity due to interactions between the individual components), it is implicit that
the emergence phenomenon can be captured by the constituent processes. On the
contrary, in the holistic worldview, the system is viewed as a whole that cannot be
fully understood solely in terms of its constituent parts. This principle was succinctly
summarized twenty-four centuries ago by Aristotle in Metaphysics: “The whole is

greater than the sum of its parts” [15].

Reductionism and holism set the philosophical foundations of linear and nonlinear
signal processing, respectively [13, 15]. In linear system theory [16], the reductionist
view, in which the signal is decomposed into fragments that are analyzed individually,
is applied verbatim. The analysis result for the whole signal is obtained from proper
scaling (i.e., homogeneity property) and addition of the fragments (i.e., superposition
property). For this process to hold, the central limit theorem (CLT) is invoked. Hence,
in this approach, it is implicit that the signal samples are drawn from a distribution
possessing a finite variance [17]. Accordingly, the linear system theory views deviation
from linearity as a noise that warrants removal. For example, the Fourier view, the
heart of linear system theory, assumes a first-order fundamental oscillation and bound-
ing higher order harmonics. Despite its mathematical soundness, this view does not

correspond to physical reality [15].

When the underlying random processes are nonlinear, advantages of the holistic
approach should be apparent. Statistically, nonlinear signal processing is motivated
by the generalized central limit theorem (GCLT) which holds that the variance of the



underlying random variables is infinite [19]. The Poincaré view [18, 20] is one such
important view for nonlinear signal processing, which sets the foundations for chaos
theory. The Hilbert view [1&] is another salient view which was popularized after
the advent of the Hilbert-Huang transform (HHT) [21], an important advancement in

adaptive nonlinear and nonstationary signal processing.

Conventional radar resolution theory, which is a resolution theory of point targets
[22], is a direct application of the reductionist view. Thus, analysis of the single-channel
SAR image has traditionally been based on linear techniques associated with the image
intensity while the phase content is ignored. The conclusion, based on the empirical
observation that man-made targets produce dispersive scattering, that linear theory
cannot adequately deal with extended targets has been reported in the literature [23-

|. In effect, dispersive scattering induces a nonlinear phase modulation in the radar
return signal which causes a mismatch in the correlator’s output. This phenomenon is

preserved in the complex-valued image rather than the detected one.

Research efforts into nonlinear scattering effects can be broadly classified into two
branches: (1) development of methods which seek to explicitly exploit the nonlinear
phenomenon, and (2) development of techniques to harness the nonlinear dynamics
embedded in the data generated by the linear signal processing methods. The research
work presented in this thesis is concerned with the second branch, as it is applied to

the focused single-channel complex-valued SAR image.

1.3. Origin of the Nonlinear Phenomenon in SAR

Imagery

The baseband backscatter zgp from a single point target, output from the quadrature
demodulator and downlinked to the SAR processor, is known as the phase history or

the raw data and is given by [22]

an () = Aexp (G9) fur (=228 (- )
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Here, A is the backscatter coefficient (i.e., 0,), ¥ is a phase change in the received pulse
due to the scattering process from a surface, j = v/—1, 7 is the fast time, 7 is the slow
time, w,(7) = rect(r/T,) is the transmitted pulse envelope, T, is the pulse duration,
R (n) is the distance between the radar and the point target, ¢ is the speed of light
in a vacuum, w, (1) is the two-way azimuth beam pattern, 7. is the beam center in
the azimuth direction, f, is the center frequency, and K, is the frequency modulation
(FM) rate of the range pulse. The SAR raw signal zgp (7,7) is conventionally modeled

as

TBB (Ta 77) = g(Tv 77) ®h<7_7 77) +n(7_7 77) ) (1'2)

where ® denotes convolution, g (7,7) is the ground reflectivity, h (7,7) is the impulse
response of the SAR, and n (7,7) is a noise component mainly due to the front-end

receiver.

The SAR processor solves for g (7,7n). Following conventional radar resolution the-
ory, h (1,m), bounded by the curly brackets in Eq. 1.1, is an impulse response of a point
target. For a given reflector within the radar illumination time, 1 is assumed to be
constant [22]. For the case of an extended target, this assumption is adopted verba-
tim. Hence, such a target is modeled as the linear combination of its point reflectors.
However, the assumption of constant ) is violated in the presence of dispersive scatter-
ing from cavity-like reflectors, typical in stationary and moving man-made (extended)
targets such as vehicles and airplanes. These reflectors trap the incident wave before
it is backscattered, thus, inducing a phase modulation. The problem arises when the
phase modulation is nonlinear. Besides the phase modulation, this phenomenon also
introduces amplitude modulation (AM) [23-25]. Thus, the backscatter term in Fq. 1.1

is rewritten

S (T (fT) 777) =A (T (fT) 777) eXp (]¢ (T (fT) ﬂ?)) ) (13)

where 7 (f,) is the time delay due to the phase modulation, and f; indicates a frequency
which varies across the spectral width of the chirp, B. In Eq. 1.3, it is emphasized
that the magnitude and phase of the backscatter is frequency dependent. While the



amplitude modulation is a linear process, this is often not the case for the phase
modulation. Indeed, based on the principle of stationary phase (POSP), the time

delay induced by a dispersive scatterer is

d o

() o< 47 (F)° (1.4)
where O is the order induced by the dispersive scatterer. For O € {0, 1,2}, the phase
modulation is linear, and its effect is either translation or smearing of the response
in the correlation filter. Another reason for the smearing of the response is the vari-
able Doppler processing used for motion compensation. However, for O ¢ {0, 1,2},
the phase center possesses a nonlinear delay which introduces spurious effects in the
correlator’s output. This phenomenon is referred to as ‘sideband responses’, and the
information about it is preserved in the complex-valued image but not in the detected
one. Furthermore, in the presence of an extended target, it is empirically observed
that this effect dominates the focused SAR imagery [23-25]. The sideband responses
are radically different from the range and Doppler sidelobes. One of the reasons for
this is that they are among the strongest responses. Secondly, unlike the range and
the Doppler sidelobes, they are not restricted to the range and cross range gates.
Thirdly, they are distributed over an area far larger than that occupied by the target.
As stressed in [23-20], these sideband responses cannot be suppressed by weighting
methods because they are target generated. Clearly, the nonlinear phase modulation

violates the conventional radar resolution theory.

1.4. Research Objective(s)

The primary objective of this research is the development of novel tools that take
advantage of the nonlinear phenomenon in focused single-channel SAR imagery, and
to apply the developed tools to the problem of SAR-ATR. The specific objectives of this
research are the following: firstly, to ascertain the status quo in SAR-ATR; secondly,
to develop a low-level understanding of the SAR data as well as the various factors
that impact the SAR image; and finally, to design novel features, inherently specific
to SAR imagery, suitable for use in SAR-ATR.



1.5. Research Methodology

In order to achieve the objective of this research, our research methodology was built
on four bottom-up research problems ordered as follows. Firstly, a review for the state-
of-the-art in SAR-ATR was conducted. This aimed at determining the status quo in
the field and defining a way forward. Secondly, the design and implementation of an
operational SAR system was undertaken. This provided for a firsthand understanding
of the various factors that impact the SAR image. Thirdly, examination and devel-
opment of methods for nonlinear and complex-valued statistical signal processing for
SAR imagery were conducted. This offered an in-depth study of the inherent statis-
tical characteristics of the SAR data and provided tools to take advantage of these
statistics. Fourthly, a target recognition system for single-channel SAR imagery was
designed. This allowed for interrelating and applying the findings obtained previously
to the SAR-ATR problem. Accordingly, the efficacy of the method(s) developed was
gauged.

To facilitate the development of the research work proposed in this thesis, five work
packages (WPs) were developed with specific tasks and sub-tasks. Under each WP,
listed below are the main problems underpinning the development of the research along
with the proposed solutions and methodology to tackle these problems, and the overall
contributions to the body of knowledge in this field.

1.5.1. WP1000: Review for the State-of-the-Art in SAR-ATR
1.5.1.1. Problem Statement

SAR-ATR is a difficult and diverse problem that continues to receive increasing atten-
tion from researchers around the globe. As is evidenced in the overwhelming number
of research articles published on the subject in the open literature, there is a lack of
a unified framework for this topic. That is, different researchers tend to approach
the topic from different perspectives. This makes it challenging to relate the various

research findings and to grasp the relationship between these various approaches.



1.5.1.2. Solution and Methodology

The development of a review for the state-of-the-art pertinent to the end-to-end SAR-
ATR system involved more than a literature review. Rather, this review work offered an
umbrella under which the various research activities in the field are broadly probed and
taxonomized. Thus, here, we proposed relevant taxonomies, identified and summarized
the underpinnings of the methods surveyed, pinpointed advantages, shortcomings and
challenges, and proposed relevant evaluation criteria for existing systems along with a
benchmarking scheme for a new system design. The ultimate goal was to produce a
review article(s) suitable for publication in relevant reputable venues. To achieve this

goal, the following sub-tasks were defined:

WP1100: Development of a literature review for target detection in SAR imagery.
This sub-task was devoted to a literature review on the front-end stage in the SAR-

ATR processing chain.

WP1200: Development of a literature review for target classification in SAR

imagery. This sub-task was devoted to a literature review on the intermediate (i.e.,
LLC) and the back-end (i.e., HLC) stages in the SAR-ATR processing chain.

WP1300: Development of an analysis for the status quo in SAR-ATR. This sub-
task aimed to provide analysis and interpretation for the constituents of the SAR-ATR

system both on the individual stage-level as well as for the end-to-end perspective.

WP1400: Production of a state-of-the-art review article(s) to disseminate results.
This sub-task was devoted to encapsulating our findings in research article(s) suitable

for publication in reputable venues on the subject.

1.5.1.3. Contribution(s) to the Body of Knowledge

The primary outcome from WP1000 is the development of in-depth review works
that offer analysis of the state-of-the-art in SAR-ATR. These review works provided a
roadmap that encapsulated the past and present of the subject along with a hint on

the future.



1.5.1.4. Overall Progress

WP1000 was completed. Two review articles were authored. The first article is perti-
nent to the front-end stage in the SAR-ATR processing chain. This article has already
been published in the Journal of Applied Remote Sensing. Please see [J-1-WP1000)|
under Sect. 1.6. The second article is a book chapter which encompasses a review for
the intermediate and back-end stages in the SAR-ATR processing chain along with a
perspective for the end-to-end system. Please refer to [B-1-WP1000] under Sect. 1.6.
A synopsis of these review works is presented as part of a literature review under
Chapter 2.

1.5.2. WP2000: Design and Implementation of an Operational
SAR System

1.5.2.1. Problem Statement

The lowest-level SAR data commercially and/or publicly available is that output from
the SAR processor (i.e., focused). The lack of phase history implies that extreme
limitations are imposed on the end-user (particularly, the researcher) which can be
summarized in two main aspects. Firstly, having only the focused output means that
a lack of practical knowledge for the various low-level factors that impact the focused
SAR image, such as the effect the SAR processor intrinsically has on the raw data. This
firsthand knowledge is important for developing an in-depth understanding of the fo-
cused SAR image which is instrumental, for example, in developing novel ATR tool(s)
specifically tailored to SAR imagery. Secondly, the restriction imposes an inability to
apply relevant algorithms in the phase-domain (prior to focusing), for example, to ex-
periment with and develop relevant techniques such as compressive sensing [26], video
SAR [27], various SAR focusing algorithms [22, 28], and detection and classification
of targets in the phase-domain [29, 30]. Such topics cannot be properly researched

without unrestricted access to the SAR phase history.

1.5.2.2. Solution and Methodology

To circumvent the phase history problem it was proposed to design and build an op-

erational and cost-effective SAR system. This entailed designing both the hardware



and the required SAR processor (i.e., focusing algorithm). Commercial off-the-shelf
(COTS) items were used as applicable. While a small dataset based on the designed
SAR system was developed, the ultimate goal here was not to develop a dataset com-
patible with those available for use in this thesis. Developing such dataset is a time-
consuming task beyond the scope of this thesis. However, throughout this exercise it
was expected to develop an in-depth understanding for the SAR phase history, the
SAR processor, and the impact of focusing on the SAR phase history, among other is-
sues. Further, additional applications of this exercise were expected to extend beyond
the scope of this thesis. To achieve our SAR system design and implementation, the

following sub-tasks were defined:

WP2100: Setting of the design objective(s) and option(s). This sub-task aimed
at defining the design objective of our SAR system for the purpose of this thesis
work. Primarily, the design offers a low-power SAR system that provided hands-on
demonstration of the SAR imaging process, both on the low-level and the high-level.
Various design options were researched. Ideally, a design option that enabled achieving

our objective with minimum hardware cost and man-hours was chosen.

WP2200: Definition of design requirements and budget. This sub-task was un-
dertaken in order to define the design requirements, in terms of both the hardware and
software, for the design option identified in WP2100. On the hardware design level,
specific interrelated design parameters such as resolution, center frequency, bandwidth
and transmit power, among others, needed to be specified. Then, specific hardware
items were either purchased (i.e., COTS) or built, if found possible and more affordable.
These items include: radio frequency (RF) components, passive components, active
components, transmit and receive antennas, and analog-to-digital converter (ADC),
among others. On the software design level, a suitable SAR digital signal processor

was appropriately adopted.

WP2300: Building of the system hardware. This sub-task translated the SAR
hardware design plan in WP2200 into action. A suitable printed circuit board (PCB)
was built and populated. The overall hardware of the SAR system was integrated
together. A suitable vector network analyzer (VNA) was sought to characterize the

system’s performance.



WP2400: Building of the system software. In this sub-task, the SAR digital
signal processor, researched in WP2200, for focusing the SAR phase history into a

SAR image, was implemented.

WP2500: Examination of SAR phase history, and producing focused SAR imagery
for a limited number of targets.  Under this sub-task, a limited number of targets
was imaged using our SAR system. This fulfilled the objective of the SAR system
designed for this thesis.

WP2600: Production of research article(s) and dissemination of the results.
This sub-task aimed at encapsulating our SAR system design experience in one or

more research articles for publication in relevant venue(s) on the subject.

1.5.2.3. Contribution(s) to the Body of Knowledge

The primary outcome of WP2000 was to provide a low-cost facility for hands-on exam-
ination of the phase history, the SAR processor, and various factors (i.e., both low-level
and high-level) that impact the SAR image. This provided for examining the value
of the phase history for direct use in SAR-ATR. Furthermore, this paved the way for
an in-depth understanding of the SAR image. Thus, specific features and a SAR-ATR
system that take advantage of the inherent characteristics of the SAR data were able

to be developed.

1.5.2.4. Overall Progress

The completed work alluded to under WP2000 resulted in the description of the design
and implementation of the operational SAR system being disseminated in a research
article. Please refer to [C-1-WP2000| under Sect.1.6. This paper is presented in
Chapter 3.
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1.5.3. WP3000: Development of Methods for Nonlinear and
Complex-Valued Statistical Signal Processing for SAR-ATR

1.5.3.1. Problem Statement I: Nonlinear Statistical Signal Processing for
SAR-ATR

An assumption of linearity underpins most commonly used algorithms for SAR-ATR.
Indeed, the single-channel SAR image is often implicitly assumed to be linear. The
main reason for this assumption is the general desire to use foundational radar reso-
lution theory, which is a resolution theory of point targets [22, 28]. In the literature,
there are two definitions of linearity considered [31-34]: (1) the definition of a strictly
linear signal, and (2) the commonly adopted definition of a linear signal. In the former,
the signal is assumed to be generated by a linear time invariant (LTI) or a linear space
invariant (LSI) system with a white Gaussian noise. The definition of the latter is
similar to the former but in the latter the magnitude distribution is allowed to deviate
from the Gaussian distribution. This implies that the strictly defined linear signal is
allowed to be characterized by a nonlinear observation function. Thus, the use of linear
digital signal processing methods on the latter is justified in the literature. The main
reason for the popularity of the linear signal processing techniques is their rich and
well-defined linear system theory and simplicity of implementation. However, if the
SAR data is proven to be nonlinear, significant gains from applying relevant nonlinear
techniques to the SAR-ATR problem are to be anticipated [19]. This is because non-
linear methods allow for exploiting the nonlinear statistics often ignored by common

linear signal processing methods.

1.5.3.2. Solution and Methodology for Problem Statement |

While the SAR sensor is often characterized in the literature as a linear system [22, 28],
this does not guarantee that the focused image output from the SAR processor is lin-
ear. Furthermore, with the advent of high resolution radars, the insufficiency of the
standard radar resolution theory to extended targets has been reported in the literature
[23-25]. This was based on the empirical observation that man-made targets induce
a nonlinear phase modulation in the radar return signal due to so-called dispersive
scattering. It is observed that much of the information about this phenomenon is pre-

served in the complex-valued SAR image rather than the detected one. Accordingly,
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it is important to research and define a suitable method for characterizing the linear-
ity /nonlinearity of the SAR image. If images are found to be nonlinear, the usage of
suitable nonlinear signal processing methods is strongly justified. Primarily, nonlinear
techniques are expected to achieve advantages both for detection and classification of

targets in SAR imagery. To achieve our goal, the following sub-tasks were defined:

WP3100: Investigation of the linearity/nonlinearity of the SAR data. This
sub-task aimed at researching suitable method(s) for characterizing the statistical sig-
nificance for linearity /nonlinearity in the SAR data. Then, the complex-valued SAR
image was examined for linearity /nonlinearity. Finally, the effect of detection on lin-

earity /nonlinearity in the SAR data was investigated.

WP3300: Development of suitable nonlinear method(s) for characterizing the
SAR data. This sub-task was contingent upon WP3100. When found nonlinear,
suitable methods to exploit this characteristic in SAR imagery were researched and
properly developed. Further, results from this sub-task were utilized in WP4000 de-

scribed under Sect. 1.5.4.

1.5.3.3. Problem Statement Il: Complex-Valued Statistical Signal Processing
for SAR-ATR

In most SAR-ATR works published in the literature utilizing single look complex (SLC)
SAR imagery, and particularly for single polarization, the phase content is entirely dis-
carded. A common belief among researchers in the field is that the phase is random and
uniformly distributed (i.e., in the range (—m, 7]), and, thus, is useless. Subsequently,
either the detected magnitude image, intensity image, or a radiometrically calibrated
relative is exclusively used. This is often (implicitly) justified by the hypotheses of
the so-called fully-developed speckle model [35, 36], built on standard radar resolution
theory, which as already noted is not strictly applicable to high resolution SAR im-
agery. Another relevant problem is the underlying (and often implicit) assumption for
circularity (also known as propriety) [12, 37, 38]. The assumption of circularity means
that the complex-valued SAR image has a probability distribution that is invariant
under rotation in the complex plane. It also implies that the complex-valued SAR

image is uncorrelated with its complex-conjugate. Accordingly, discarding the phase
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content in single-channel SAR imagery implies that all the foregoing assumptions are
satisfied, otherwise, important information about the targets in the complex-valued

SAR imagery is lost.

1.5.3.4. Solution and Methodology for Problem Statement Il

To address the issues identified under Sect. 1.5.3.3, the following tasks were outlined.
Firstly, proper tools to examine the circularity in complex-valued SAR imagery were
identified. Secondly, suitable methods(s) for the characterization and statistical mod-
eling of complex-valued SAR imagery were developed. As discussed under WP4000
(see Sect. 1.5.4) these method(s) were properly exploited in the form of features. To

achieve our goal, the following sub-tasks were defined:

WP3200: Investigation of the non-circularity (also known as impropriety) of the
complex-valued SAR data.  This sub-task aimed at researching the literature for
suitable tools to characterize the complex-valued statistics in SAR imagery. Then,

these tools were applied to complex-valued SAR imagery.

WP3400: Development of suitable method(s) for characterization and statis-
tical modeling of complex-valued SAR data. This sub-task was contingent upon
WP3200. Suitable tools that exploit the complex-valued statistics in SAR imagery
were designed. More specifically, statistical model(s) for the phase and/or the complex-
valued SAR image were developed. Furthermore, features that exploit the complex-
valued statistics in SAR imagery were identified. The results from this sub-task were
utilized under WP4000 in Sect. 1.5.4.

WP3500: Production of research article(s) and dissemination of the results.
The overall findings under WP3000 were encapsulated in research article(s) suitable

for dissemination in relevant venue(s) on the subject.

1.5.3.5. Contribution(s) to the Body of Knowledge

WP3000 provides an in-depth understanding of the SAR data in terms of nonlinearity

and complex-valued statistics. This leads to an informed choice and development of
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suitable tools for target detection and target classification in SAR imagery as encap-
sulated in WP4000 below. Furthermore, WP3000 provided for the development of

features that account for the intrinsic statistical characteristics specific to SAR im-

agery.

1.5.3.6. Overall Progress

The completion of WP3000 resulted in an in-depth analysis of the nonlinearity and
the noncircularity in complex-valued SAR imagery. Moreover, the effect of detection
on the nonlinear statistics in the SAR image has been studied. In the presence of
extended targets, it is found that the SAR image is intrinsically nonlinear. Further-
more, a method for characterizing the phase content in complex-valued SAR imagery
was developed. Upon applying the developed method, it was found that in the pres-
ence of extended targets, the complex-valued SAR image is inherently noncircular.
Additionally, statistical model for the characteristic phase image was derived. Fi-
nally, a comprehensive set of novel features that take advantage of the complex-valued
and the noncircular statistics has been devised. Our results are disseminated in mul-
tiple research articles as follows (see Sect.1.6). Firstly, the effect of detection on
the spatial resolution in complex-valued SAR imagery was studied in [J-2-WP3000]
and [C-3-WP3000]. Secondly, the statistical significance for the nonlinear dynam-
ics in complex-valued SAR imagery, and the effect of detection on the nonlinearity
were investigated in [J-2-WP3000], [C-4-WP3000] and [C-5-WP3000]. Finally,
circularity /noncircularity, phase characterization and modeling were presented in [J-
4-WP3/4000], [C-6-WP3000], [C-7-WP3000|, and [C-8-WP3/4000]. In this
thesis, [J-2-WP3000], [C-8-WP3/4000| and [J-4-WP3/4000] are presented in
Chapter 4, Chapter 5 and Chapter 6, respectively.

1.5.4. WP4000: Application to Target Recognition in SAR

Imagery
1.5.4.1. Problem Statement

SAR-ATR is a multidisciplinary field. In order to design a successful SAR-ATR sys-

tem, not only an in-depth understanding of the intrinsic characteristics of the SAR
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image is required but also a comprehension of the state-of-the-art pertaining to pat-
tern classification (in the SAR-ATR context) is entailed. The knowledge and tools
accumulated from earlier WPs need to be translated into a practical SAR-ATR sys-
tem. This provides for applying the knowledge acquired and demonstrating the value
of the newly developed features in SAR-ATR.

1.5.4.2. Solution and Methodology

To address the problem statement highlighted above, our aim was to develop an HLC
classifier for target recognition in SAR imagery. For the sake of manageability, our
attention in this thesis was restricted to the HLC stage in the SAR-ATR processing
chain. However, the techniques developed may be applicable or extendable to both the
front-end and the intermediate stages of the SAR-ATR system. The HLC classifier was
solely based on nonlinear, complex-valued and phase-based features. Multiple instances
for the HL.C classifier based on different combinations of features were investigated.
Comparison with standard baseline features based on the detected image was also
considered. The performance of the HLC classifiers developed were properly assessed

and compared. To achieve our goal, the following sub-tasks were defined:

WP4100: Development of baseline features. A suitable set of standard features
based on the detected SAR image were defined and extracted. These features were
used to train a suitable feature-based classifier. The classification accuracy of this

classifier was used for comparison with our novel features.

WP4200: Development of nonlinear and phase-based features Under this sub-
task, two sets of features were developed. Firstly, nonlinear features based solely on
the complex-valued SAR image were constructed. The purpose for this set of fea-
tures was to utilize the nonlinear dynamics in complex-valued SAR imagery. Suitable
methods for feature extraction utilizing nonlinear and nonstationary signal processing
methods were researched. Furthermore, methods motivated by chaos theory were also
investigated. Secondly, features based solely on the phase image were extracted. These
features were used to take advantage of the characteristic phase image as well as the
phase model developed under WP3000 in Sect. 1.5.3.4.
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WP4400: Development and assessment of HLC classifiers.  This sub-task aimed
at properly assessing the performance of the features developed under WP4100 and
WP4200. Primarily, multiple instances of a multi-class support vector machine (SVM)
classifier [39] were utilized. SVM was chosen mainly because it is a powerful method
for feature-based classification, and it was found to offer excellent performance for
our SAR dataset. In the first instance, a classifier based on the baseline features
was constructed. Additional SVM classifier instances based on the nonlinear and the
phase features were also developed. Furthermore, other instances of the SVM classifier
utilizing different combinations of the preceding features were examined and compared.
Classification accuracy for each classifier was presented in terms of a confusion matrix.
The statistical significance for the various features was computed, and was used to

rank and select the features accordingly.

WP4400: Production of research article(s) and dissemination of the results.
The overall findings under WP4000 were encapsulated in multiple research articles

and disseminated in relevant venue(s) on the subject.

1.5.4.3. Contribution(s) to the Body of Knowledge

The ultimate outcome of this research was to apply the knowledge, tools and algorithms
developed to construct new features for target recognition in SAR imagery. Various
novel features that exploit the often ignored nonlinear dynamics in complex-valued
SAR imagery were developed. Furthermore, additional set of features solely based on
the often discarded phase image were presented. The statistical significance of these
new features was clearly demonstrated on the SAR dataset available for this research

work.

1.5.4.4. Overall Progress

WP4000 was completed. For the case of extended targets, the importance of the non-
linear dynamics for target recognition in complex-valued SAR imagery was clearly
demonstrated. Furthermore, the statistical significance for the information carried
in the phase image was confirmed. Our overall findings were disseminated in mul-

tiple research articles as follows (see Sect.1.6). Firstly, a method for estimating the
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nonlinear order of the scatterers in complex-valued SAR imagery was introduced in
[C-8-WP3/4000]. These nonlinear scatterers serve as important features for target
recognition in SAR imagery. Secondly, the statistical significance for various solely
phase-based features was presented in [J-4-WP3/4000]. Finally, our overall major
research findings were provided in [J-5-WP4000]. In that paper, multiple compar-
isons and assessments of different features was detailed. In this thesis, [J-5-WP4000|
is presented in Chapter 7.

1.5.5. WP5000: Thesis Writing

This final WP is devoted to thesis writing. Given the publication-oriented style through
which our research work has been conducted, the manuscript-based thesis format has
been followed. The research papers chosen for incorporation into this dissertation are

summarized in Sect. 1.7.

1.6. Publications

Our overall research findings are contained in the following research articles:

« Book Chapter

[B-1-WP1000] K. El-Darymli, P. McGuire, E. W. Gill, D. Power, and C.
Moloney, Automatic Target Recognition in SAR Imagery (SAR-
ATR): A State-of-the-Art Review, 2015 [To be submitted).

. Journal Papers
[J-1-WP1000] K. El-Darymli, P. McGuire, D. Power, and C. Moloney, “Target

detection in synthetic aperture radar imagery: a state-of-the-art
survey,” Journal of Applied Remote Sensing, vol. 7, no. 1, 2013.
Available: http://dx.doi.org/10.1117/1.JRS.7.071598
[J-2-WP3000] K. El-Darymli, P. McGuire, E. W. Gill, D. Power, and C.
Moloney, “Effect of detection on spatial resolution in synthetic
aperture radar imagery and mitigation through upsampling,”

Journal of Applied Remote Sensing, vol. 8, no. 1, 2014. Avail-
able: http://d x.doi.org/10.1117/1.JRS.8.083601
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[J-3-WP3000] K. El-Darymli, E. W. Gill, P. McGuire, D. Power, and C.
Moloney, “Unscrambling nonlinear dynamics in synthetic aper-
ture radar imagery,” 2015 [Under Review).

[J-4-WP3/4000] K. El-Darymli, P. McGuire, E. W. Gill, D. Power, and C.
Moloney, “Characterization and statistical modeling of phase in
single-channel synthetic aperture radar imagery,” Aerospace and
FElectronic Systems, IEEE Transactions on, 2015 [Accepted).

[J-5-WP4000] K. El-Darymli, P. McGuire, E. W. Gill, D. Power, and C.
Moloney, “Holism for target classification in synthetic aperture

radar imagery,” 2015 [Under Review).

« Conference Papers
[C-1-WP2000] K. El-Darymli, C. Moloney, E. W. Gill, P. McGuire, and D.

Power, “Design and implementation of a low-power synthetic
aperture radar,” in International Geoscience and Remote Sens-
ing Symposium (IGARSS’1}), IEEE, Quebec, Canada, 2014.
[Online]. Awvailable: http://dx.doi.org/10.1109/IGARSS.2014.
69466184

[C-2-WP3000] K. El-Darymli, P. Mcguire, E. W. Gill, D. Power, and C.
Moloney, “Understanding the significance of radiometric cali-
bration for synthetic aperture radar imagery,” in Electrical and
Computer Engineering (CCECE), 2014 IEEE 27th Canadian
Conference on. Toronto, Canada, 2014, pp. 1-6. Available:
http://dx.doi.org /10.1109/CCECE.2014.6901104

[C-3-WP3000] K. El-Darymli, P. McGuire, D. Power, and C. Moloney, “An
algorithm for upsampling spotlight SAR imagery: a Radarsat-2

Y

SLC perspective,” in Algorithms for Synthetic Aperture Radar
Imagery XX, vol. 8746. Baltimore, USA: SPIE, 2013, pp. 874
607-874 607-9. Available: http://dx.doi.org/10.1117/12.2011151
[C-4-WP3000] K. El-Darymli, P. Mcguire, D. Power, and C. Moloney, “Non-
linearity in synthetic aperture radar imagery,” in Newfoundland
FElectrical and Computer Engineering Conference (NECEC’13),
St. John’s, Newfoundland, 2013. [Wally Read Best Student

Paper Award].
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[C-5-WP3000] K. El-Darymli, C. Moloney, E. W. Gill, P. McGuire, and
D. Power, “Nonlinearity and the effect of detection on single-
channel synthetic aperture radar imagery,” in OCEANS’1} MTS
/IEEE, Taipei, Taiwan, 2014. Available: http://dx.doi.org/10.11
09/OCEANS-TAIPEIL.2014.6964493

[C-6-WP3000] K. El-Darymli, P. McGuire, D. Power, and C. Moloney, “Re-
thinking the Phase in Single-Channel SAR Imagery,” IEEE 14th
International Radar Symposium (IRS) 2013, Dresden, Germany.
Available: http://bit.ly/lorOpdo

[C-7-WP3000] K. El-Darymli, C. Moloney, E. W. Gill, P. McGuire, and
D. Power, “On circularity /noncircularity in single-channel syn-
thetic aperture radar imagery,” in OCEANS’1} MTS/IEEE, St.
John’s, Canada, 2014. Available: http://dx.doi.org/10.1109/0C
EANS.2014.7003163

[C-8-WP3/4000] K. El-Darymli, C. Moloney, E. W. Gill, P. McGuire, and D.
Power, “Recognition of nonlinear dispersive scattering in SAR
imagery,” in IEEE IGARSS/CSRS’14, Quebec, Canada, 2014.
Available: http://dx.doi.org/10.1109/IGARSS.2014.6947548

1.7. Organization of the Dissertation

The remainder of this dissertation is organized as follows.

Chapter 2: Literature Review This chapter offers a synopsis of two state-of-the-art
review articles for automatic target recognition in SAR imagery (SAR-ATR) taken
from [B-1-WP1000] and [J-1-WP1000]. Firstly, ATR in the SAR context is in-
troduced. Secondly, the target detection module of the front-end stage is considered.
Thirdly, the target classification module of the intermediate and the back-end stages is
addressed. Taxonomy for the major methods under each module is proposed. Further,
a brief description pertaining to the architecture of each taxon is offered. Additionally,

representative examples from the literature are provided.
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Chapter 3: Design and Implementation of a Low-Power Synthetic Aperture Radar
This chapter is for the research article [C-1-WP2000]. It reports on the design and
implementation of a high-resolution low-power SAR. Our system utilizes the linear
frequency-modulated continuous wave (LFMCW) concept, and it operates in the S-
band. The generic architecture for our design is presented along with a description of
the digital SAR processor. Finally, for demonstration purposes, a focused SAR image

for a ground-truthed target is provided.

Chapter 4: Unscrambling Nonlinear Dynamics in Synthetic Aperture Radar Im-
agery This chapter is for the research article [J-3-WP3000]. In analyzing single-
channel SAR imagery, three interrelated questions often arise. Firstly, should one use
the detected or the complex-valued image? Secondly, what is the ‘best’ statistical
model? Thirdly, what constitute the ‘best’ signal processing methods? This chapter
addresses these questions from the overarching perspective of the generalized central
limit theorem, which underpins nonlinear signal processing. A novel procedure for
characterizing the nonlinear dynamics in SAR imagery is proposed. To apply the pro-
cedure, three complementary 1-D abstractions for a 2-D SAR chip' are introduced.
Our analysis is demonstrated on real-world datasets from multiple SAR sensors. The
nonlinear dynamics are found to be resolution-dependent. As the SAR chip is detected,
nonlinear effects are found to be obliterated (i.e., for magnitude-detection) or altered
(i.e., for power-detection). In the presence of extended targets (i.e., nonlinear scatter-
ers), it is recommended to use the complex-valued chip rather than the detected one.
Further, to exploit the embedded nonlinear statistics, it is advised to utilize relevant

nonlinear signal analysis techniques.

Chapter 5: Recognition of Nonlinear Dispersive Scattering in Synthetic Aperture
Radar Imagery Imagery This chapter is for the research article [C-8-WP3/4000].
It presents a new insight into the nonlinear dynamics in SAR imagery. For extended
targets, the conventional radar resolution theory is violated due to the nonlinear phase
modulation induced by the dispersive scatterers. A novel algorithm motivated by the
Hilbert view for nonlinear phenomena is introduced. Our algorithm may be used to

not only detect the dispersive scatterers but also to estimate the nonlinear order of the

IThe term chip is used to refer to a smaller image, for a particular target or clutter, extracted from
a bigger scene.
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phase modulation. Our results are demonstrated on a representative real-world target

chip.

Chapter 6: Characterization and Statistical Modeling of Phase in Single-Channel
Synthetic Aperture Radar Imagery This chapter is for the research article [J-4-
WP3/4000]. Traditionally, the phase content in single-channel synthetic aperture
radar (SAR) imagery is discarded. This practice is justified by the conventional radar
resolution theory, which is a theory strictly relevant to point targets. The advent of
high-resolution radars permits small targets previously considered to be points to be
now treated as extended targets, in which case this theory is not strictly applicable.
With this in mind, this chapter offers a new insight into the relevance of phase in single-
channel SAR imagery. The proposed approach builds on techniques from the fields
of complex-valued and directional statistics. In doing so, three main contributions
are presented, the first being a novel method for characterizing the phase content.
Secondly, a new statistical model for the phase is considered, and then a set of fifteen
solely-phase-based features are discussed. Our results are demonstrated on real-world
SAR datasets for ground-truthed targets. The statistical significance of the information
carried in the phase is clearly demonstrated. Furthermore, if applied to a dataset
with higher resolution, the proposed techniques are expected to achieve even higher

performance.

Chapter 7: Holism for Target Classification in Synthetic Aperture Radar Imagery
This chapter is for the research article [J-5-WP4000]. Reductionism and holism are
two worldviews underlying the fields of linear and nonlinear signal processing, respec-
tively. The conventional radar resolution theory is motivated by the former view, and
it is violated due to nonlinear phase modulation induced by the dispersive scattering
typically associated with extended targets. Motivated by the latter view, this chapter
offers a new insight into the process of feature extraction for target recognition appli-
cations in single-channel SAR imagery. Two novel frameworks for feature extraction
are presented. The first framework is based solely on the often-ignored phase chip.
The second framework uses the complex-valued 2-D SAR chip after it is transformed
into a 1-D vector. This transformation provides for the utilization of various nonlin-
ear and nonstationary time series analysis methods. Some representative nonlinear

features based on these two frameworks are introduced. Further, for comparison pur-
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poses, baseline features from the power-detected chip are also considered. Multiple
instances of an eight-class SVM classifier are designed based on combinations of fea-
ture sets extracted from the public-domain MSTAR dataset. A classification accuracy
of 93.4186% 1is achieved for the combination of the phase and 1-D based nonlinear
features. This is in comparison to 73.6269% for the baseline features. Because the
nonlinear phenomenon is resolution-dependent, our proposed approach is expected to

achieve even greater accuracy for SAR sensors with higher resolution.

Chapter 8: Summary This is a concluding chapter summarizing the main lessons
learned from this research work and wraps-up the dissertation. Also, suggestions for

future work are provided.
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2. Literature Review

2.1. Overview

This chapter offers a synopsis of two reviews of the state-of-the-art for automatic
target recognition in SAR imagery (SAR-ATR) from [, 2]. Firstly, ATR in the SAR
context is introduced. Secondly, the target detection module of the front-end stage
is considered. Thirdly, the target classification module of the intermediate and the
back-end stages is addressed. Taxonomy for the major methods under each module is
proposed. Further, a brief description pertaining to the architecture of each taxon is

offered. Additionally, representative examples from the literature are provided.

2.2. Automatic Target Recognition in the SAR
Context (SAR-ATR)

Automatic target recognition (ATR) deals with the information output from one (or
more) sensor(s) aimed at a scene of interest. ATR generally refers to the use of com-
puter processing capabilities to infer the classes of the targets in the sensory data, and
to (optionally) characterize some attributes of interest such as articulation, orientation,
occlusion, sub-class and so on, without human intervention. The term ATR originated
in the military in the early 1980s under the Low Altitude Navigation and Targeting
Infrared for Night (LANTRIN) program [3]. Today, ATR technology is important to
both military and civilian applications. The ATR problem is a part of the general
broad problem of machine vision, namely, how can computers be configured to do what

we humans do efficiently and naturally?

Target, clutter and noise are three terms of military origin associated with ATR and

are dependent on the application of interest. In the case of SAR imagery, a target
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refers to an object of interest in the imaged scene. Clutter refers to either man-made
(e.g., building, vehicles, etc.) or natural objects (e.g., trees, topological features, etc.)
which tend to dominate the imaged scene. Noise refers to imperfections in the SAR
image which are result of electronic noise in the SAR sensor as well as computational
inaccuracies introduced by the SAR signal processor. In the literature, there is a
spectrum of ATR problems ranging from classifying a pre-known signature in a well-
characterized clutter to recognizing the source of signature that varies greatly with

pose and state, and is located in a highly complex and probably an occluded scene [4].

The general structure of an end-to-end SAR-ATR system as reported in the liter-
ature is depicted in Fig.2.1. To counter the prohibitive amounts of processing per-
taining to the input SAR imagery, the strategy is to divide-and-conquer. Accordingly,
SAR-ATR processing is split into three distinctive stages: detection (also known as
prescreening), low-level classification (LLC, also known as discrimination), and high-
level classification (HLC) [5-13]. The first two stages together are commonly known
as the focus-of-attention (FOA) module.

Computational Complexity

: : Classification
Image | Detector | : High-Level Classifier Result

: {Prescreener) | (HLC)

| |

|

Focus-of-Attention (FOA)

D
Input Data Load

Figure 2.1: General structure for an end-to-end SAR-ATR system.

As the input SAR data progresses throughout the SAR-ATR processing chain, the
data load is reduced. The HLC stage deals with SAR data that have relatively lower
computational load. On the contrary, the computational complexity of the SAR-ATR
chain increases as the SAR data progresses from the front-end stage toward the back-
end stage. In the next sections, the three blocks depicted in Fig. 2.1 are briefly reviewed.
The front-end stage is reviewed in Sect. 2.3. The intermediate and the back-end stages

are reviewed in Sect. 2.4.

Central to the three stages in the SAR-ATR processing chain are the features. Fea-

tures are heuristic measurable attributes of the individual objects being observed in the
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SAR image. In order for the SAR-ATR algorithm to be successful, features pertaining
to each stage should be discriminating and independent. Thus, the choice of particular
feature(s), as well as the design of a particular stage in the SAR-ATR processing chain.
entails an in-depth understanding of the SAR image.

2.3. The Detection Module (Front-End Stage)

Under this section a synopsis for the front-end stage in the SAR-ATR processing chain
is presented. Firstly, a taxonomy for the various target detection methods is proposed.
Then, a classification for the various detection approaches that fall under the proposed
taxa is introduced. Finally, this section is ended with concluding remarks. An in-depth
review for the state-of-the-art pertinent to the detection module can be found in our

review article published in the Journal of Applied Remote Sensing [1].

2.3.1. Taxonomy and Architecture of the Detection Approaches

The detection module takes the entire SAR image and identifies the regions(s) of in-
terest (ROI(s)). Ultimately, the detected regions in the SAR image are passed to the
next stage in the SAR-ATR chain for further analysis. The goodness of any detection
module is typically judged based upon three aspects of significance: computational
complexity, probability of detection (PD), and false alarm rate (also known as prob-
ability of false alarm, PFA). The detection module should enjoy a low computational
complexity such that it operates in real-time or near-real-time. This is in contrast
to the succeeding stages in the SAR-ATR chain which are relatively more compu-
tationally expensive. Further, a good detection module should provide a means to
refine detections, reduce clutter false alarms, and pass ROIs. Thus, such a detection
method should exhibit a reasonable PFA and acceptable PD. We broadly taxonomize
the target detection algorithms reported in the open literature into three major taxa:
single-feature-based, multi-feature-based and expert-system-oriented. This taxonomy

is depicted in Fig. 2.2.

The single-feature-based taxon bases the detection in the SAR image on a single
feature, typically the brightness in the pixel intensity, which is proportional to the

radar cross section (RCS). There exist various methods in the literature that fall under
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Figure 2.2: Taxonomy of target detection methods for SAR imagery.

this taxon. The single-feature-based approach is placed at the base of the pyramid in
Fig. 2.2 because it is the most common and widely used in the literature. Further, the

single-feature-based approach is the building block for the other two taxa.

The multi-feature-based taxon bases the detection decision on a fusion of two or more
features extracted from the input SAR image. Besides the RCS, additional features
that can be inferred and fused include multi-resolution RCS (i.e., features extracted
from the intensity image after it is analyzed with mulch-resolution technique such as
the continuous wavelet transform) and fractal dimension, among others. Obviously,
the multi-feature-based taxon builds on the previous taxon and is expected to provide
relatively improved detection performance along with fewer false alarms. Multiple

methods in the literature fall under this taxon.

Finally, the expert-system-oriented taxon is the most sophisticated. It extends the
two aforementioned taxa and utilizes a multi-stage (two or more stages) artificial intelli-
gence (AI) approach that bases the detection process in the SAR image on exploitation
of prior knowledge about the imaged scene, clutter and/or target(s). Prior knowledge
is exploited through various means such as: image segmentation, scene maps, previ-
ously gathered data, etc. As the sophistication of the detection taxon increases, the
complexity-performance trade-off arises. Caution should be exercised when opting for

a certain approach in order to carefully balance this trade-off.

Based on the aforementioned taxonomy, we broadly classify the various target de-
tection schemes and relevant methods reported in the literature in Fig. 2.3. Primarily,
under the single-feature-based taxon, the sliding window constant false alarm rate

(CFAR-based) sub-taxon is the most popular. There exist three perspectives through
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which the various CFAR methods can be viewed. First, based on the specifications
of the sliding window: there is fixed-size vs. adaptive as well as square-shaped vs.
non-square-shaped [14, 15]. Second, based on the method used to implement the
CFAR technique, there are various strategies, of which the most commonly applied
are cell-averaging CFAR (CA-CFAR) [16-18], smallest of CA-CFAR (SOCA-CFAR)
[19], greatest of CA-CFAR (GOCA-CFAR) [20], and order statistics CFAR (OS-CFAR)
[21], among others. Third, based on the method used to estimate the threshold (for
a desired PFA) in the boundary ring, and/or the approach utilized for estimating the
target signature (for a desired PD), two parametric and non-parametric sub-classes

emerge.

Under the parametric sub-class, two approaches are recognized: only background
modeling (e.g., Weibull distribution [22, 23], K-distribution [21], alpha-stable distribu-
tion [25, 26], or beta-prime (') distribution [27], among other models), and background
and target modeling [28, 29]. A choice of the parametric model that best represents
the SAR data in use has to be made among the various parametric models. Unlike
the parametric approach, the non-parametric approach [30, 31] does not assume any
form for the background/target model(s). Rather, it directly infers an approximate
model from the training data. One such method that performs model inference is the
kernel-density-estimation (KDE) [32]. Less popular non-CFAR-based methods [33],
such as those relying on a coherence image [31], represent the other sub-taxon of
single-feature-based methods. The single-feature-based taxon has the limitation that
it bases the detection decision solely on the RCS, and, thus, can become overwhelmed
in regions in the SAR image where there is heterogeneous clutter and/or a high den-
sity of targets. Methods under the multi-feature-based taxon are implemented in an
attempt to circumvent this drawback through basing the detection decision on a fusion
of two or more features. Obviously, this taxon can utilize a suitable method among
those presented under the single-feature-based taxon, and incorporate additional fea-
tures besides RCS such as: multi-resolution RCS analysis, fractal dimension [9, 35].
Multi-resolution methods can be either space-scale-based or space-frequency-based.
Prime examples of methods utilize space-scale features are those based on the wavelet-
transform including the discrete wavelet transform (DWT) [30] and the continuous
wavelet transform (CWT) [37].
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Figure 2.3: Major taxa and classes for implementing the target detection module.
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Prime examples of methods that utilizing time-frequency features include linear
time-frequency methods such as the Gabor transform and the S-transform [35]; and
bilinear (also known as quadratic) time-frequency methods such as Cohen’s class dis-
tributions (e.g., Wigner distribution, Wigner-Ville distribution, pseudo-Wigner-Ville
distribution, etc.) [39, 10]. Finally, a more robust taxon is the expert-system-oriented
approach which incorporates intelligence into the process to guide the decision making
[11]. In its simplest form, detection decisions can be guided by a structure map of the
imaged scene generated from properly segmenting the SAR image [12]. Further, meth-

ods of Al can be appropriately integrated to achieve near-optimal context utilization

[43-45].

2.3.2. Remarks

The following remarks are drawn based on our review of the state-of-the-art for the

detection module.

« The SAR image is typically available as a level-1 processed product (i.e., output

from the SAR processor) in a complex-valued form.

o The common practice in the radar community is to detect this image (i.e., to con-
vert it to a real-valued image through magnitude-detection or, more commonly,
power-detection), and to input it to a suitable target detection algorithm. In

this process, the phase content is entirely discarded.

o There is a wide range of options for implementing the target detection module.
Due to its relative ease of implementation, variations of the CFAR approach are

amongst the most popular.

o The target detection process is often based on the RCS and a statistical model

for the clutter. These are the features often used in the target detection module.
» From a signal processing perspective, it can be easily shown that CFAR is a finite
impulse response (FIR) band-pass (BP) filter [1].
« From a statistical pattern recognition perspective, it can be easily shown that
CFAR is an anomaly detector one-class classifier - i.e., a FEuclidean distance
classifier and a quadratic discriminant with a missing term for one-parameter

and two-parameter CFAR, respectively [1].
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o Finally, no matter how good the target detection method, the detection perfor-
mance is highly dependent on the features fed to the detector.

2.4. The Classification Module (Intermediate and
Back-End Stages)

Under this section, a synopsis of the intermediate and back-end stages in the SAR-ATR
processing chain is presented. First, the various methods pertaining to classification in
SAR-ATR are broadly taxonomized. Second, a concise description for the main meth-
ods and relevant architectures under each taxon is introduced. An in-depth analysis
for the target classification module can be found in our state-of-the art review book

chapter [2].

2.4.1. Taxonomy and Architecture of the Classification

Approaches

While the front-end stage in the SAR-ATR system identifies ROI(s) in the input SAR
image, the subsequent two stages are concerned with LLC and HLC classifications. A
suitable classifier is required in each of these two stages. Given its position in the SAR-
ATR processing chain, the LLC stage, as compared to the HLC stage, typically utilizes
a relatively simple classifier when compared to the HLC stage. ATR algorithms may be
broadly taxonomized into two distinctive taxa based on their implementation approach:
pattern recognition (PR) and knowledge-based (KB) [16] approaches. The latter also
goes by other names including Al-based, expert system, rule-based and model-based
approach. In the context of SAR-ATR, we refer to the methods that solely rely on
feature vectors (and also representative templates being a kind of feature vectors) as
being feature-based, and the methods that incorporate intelligence into the design as
a model-based. These two taxa for SAR-ATR are distinguished by the motivation of
the feature generation technique utilized and whether the system training is classifier-

oriented or target-model-oriented.

A careful examination of the literature pertinent to SAR-ATR reveals a third taxon

of methods fitting between the feature-based and the model-based taxa. We refer to
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this taxon as being semi-model-based. What distinguishes this taxon from the earlier
two taxa is that, although it solely relies on features, it incorporates intelligence into
the SAR-ATR system design. For an end-to-end SAR-ATR system, the feature-based
taxon is extensively used in the literature for both LLC and HLC classifications. The
semi-model-based and model-based taxa are primarily used for HLC classification.

Fig. 2.4 depicts the three taxa proposed.

Figure 2.4: Taxonomy of SAR-ATR approaches.

The feature-based taxon is placed at the base of the pyramid because it is the most
common in the literature. As one ascends from the base to the top of the pyramid, a
better recognition performance is expected to be attained. Conversely, as one descends
from the top to the base of the pyramid, the computational complexity of the SAR-ATR
system declines. These are design tradeoffs that need to be appropriately accounted

for.

In the next subsections, we provide a brief description for each taxon. Typically,
regardless of the taxon in question, there are two phases involved, namely, offline clas-
sifier training (i.e., for the feature-based taxon), or offline model construction/training
(i.e., for the model-based and the semi-model-based taxa, respectively), and online
prediction and classification. The feature-based and model-based taxa are presented
Sect. 2.4.1.1 and Sect. 2.4.1.2, respectively. The semi-model-based taxon is introduced
in Sect.2.4.1.3. The issues addressed under each subsection include: generic descrip-

tion, architecture(s), major challenges, advantages and disadvantages.
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2.4.1.1. Feature-Based Taxon

The feature-based taxon is a pattern recognition approach that solely relies on features
to represent the target. These features can be either image target templates or feature
vectors extracted from the target(s) of interest (i.e., the SAR target chips). The
feature-based approach assumes that the features of targets from different classes lie
in separable regions of the multidimensional feature space, while features from the same
class cluster together. The process of recognition in the feature-based approach involves

two distinctive phases, namely, an offline classifier training and online classification.

The classifier training phase is performed entirely offline as depicted in Fig. 2.5. One
needs to have an extensive set of target chips pertaining to all the targets of interest.
From the target chips, features of choice are extracted and properly preprocessed.

Then, these features are used to train the classifier of choice.

Features Extraction: Offline

| |

I . [
Targets Features Extraction

| rg Features Database | |

: Chips and Preprocessing I

Figure 2.5: Classifier training for the feature-based approach.

In the classification phase, features are extracted online from the input SAR chip
to be classified, and fed to the previously trained classifier as depicted in Fig. 2.6.
Obviously, the classification result relies on the choice of the training features and

their uniqueness in abstracting the target(s) of interest.

Classification: Online

|
I
| Ot Classification I
| and Features Result |
} Extraction !

Figure 2.6: Classification in the feature-based approach.
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Various methods pertaining to the feature-based approach can be found in classical
statistical pattern recognition texts [30, 31]. Further, a state-of-the-art review for the
SAR-ATR systems that utilize this taxon can be found in our work in [2]. While this
method is the most common in the literature, it may be overwhelmed when faced
with (substantial) variations in the input chip signature (i.e., extracted features) due
to factors such as clutter heterogeneity or extended operating condition(s) (EOC(s)).
Thus, the major drawback of this method is that it has a limited knowledge, and almost
no intelligence and reasoning capability to learn from the dynamic environment and

to adapt to it.

2.4.1.2. Model-Based Taxon

Unlike the feature-based taxon, the model-based taxon handles the recognition problem
in a bottom-up fashion. In other words, the recognition process in the model-based
approach begins with a simple feature extraction operation from the input SAR chip.
Then, the extracted features are compared against feature hypotheses derived on-the-
fly from offline pre-designed models of the targets of interest and the SAR sensor.
Typically, there exists one such model per each target of interest. By contrast, the
feature-based taxon incorporates a top-down approach in that it attempts to capture
the multiple aspects of the target variations and represent them in the form of features,
which are subsequently used to produce a trained classifier. Actually, the debate on
the preference of the bottom-up approach over the top-down approach originated in
the field of computer vision. Professor Rodney A. Brooks of Massachusetts Institute
of Technology (MIT) showcased the superiority of the bottom-up approach in relation
to the top-down approach through explaining that such system design should focus on
actions and behavior rather than representation and function [17]. The first model-
based system for target recognition, referred to as ACRONYM , was introduced by R.
A. Brooks in the early 1980s [15].

The model-based approach seeks to combat the major challenges of the feature-
based approach through incorporating prior knowledge into the design. Thus, the
model-based approach utilizes some of the techniques used in the feature-based ap-

proach and builds on them. Model-based approaches represent a spectrum of attempts
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steered towards the characterization of the physical structure of the target classes of
interest. Typically the model-based approach is comprised of an offline target-model
construction and an online prediction and classification. These two phases resemble the
feature-based approach but there are two major differences. First, the offline model-
construction is a major task in the model-based approach which focuses on building
a holistic and generic physical model for any target of interest. This is dissimilar to
the feature-based approach where, in this phase, a classifier of choice is merely trained
based on an ad hoc selection of training target features. Second, unlike the feature-
based approach where the online classification is merely based on extracting certain
features from the input SAR chip and determining where the extracted features fit in
the feature space of the offline-trained classifier(s), the model-based approach hypoth-
esizes relevant attributes in the input SAR chip, and, based on these attributes, it
produces certain predictions on-the-fly from the offline-constructed target-model. The
online classifier then looks for the hypothesis prediction that yields close resemblance
to the input SAR chip.

Multiple methods pertaining to the offline target-model construction are reported in
the literature. Regardless of the method used for target-model construction, the online
classification phase for all methods has similar structure with a few minor differences.
Next, we summarize some of the major methods reported in the open literature for
the offline target-model construction. This is followed by a description of the online

prediction and classification process.

In the first target-model construction method [19-51], only a 3-D CAD model for
each target of interest is designed offline and stored in the system’s database. This
process is depicted in Fig.2.7. These 3-D CAD models are used for online prediction

and classification in the second phase.

Design 3-D CAD Models
for all the targets of
interest

Figure 2.7: First model-based method for the offline target-model construction.

In the second method [55, 56], similar to the first, 3-D CAD models are designed for

all targets of interest. Then, a so-called global scattering center model is generated for
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each target of interest using a suitable electromagnetic (eM) prediction tool. These
3-D global scattering center models are stored offline in the training database and used
for the online prediction and classification phase. The process of offline target-model

construction is depicted in Fig. 2.8.

Design 3-D CAD Models Use €M Prediction Tool
for all the targets of » to Generate 3-D Global
interest Scattering Centers

Figure 2.8: Second model-based method for the offline target-model construction.

In the third method [57], similar to the first, a 3-D CAD model for each target
of interest is designed offline. An M prediction tool is used to generate 2-D target
templates at uniformly sampled azimuth angles. Then, for each template, a dictionary
of invariant histograms is generated. These 2-D target templates and corresponding
dictionaries are stored offline in the target-model database. This database is used
during the online prediction and classification phase. The process of offline model

construction is depicted in Fig. 2.9.

Use EM Prediction Tool to
Generate 2-D Target
Templates at uniformly
sampled azimuth angles.

Design a 3-D CAD
Model for each target —»|
of interest

For each template, generate
—»| a dictionary of invariant
histograms.

Figure 2.9: Third model-based method for the offline target-model construction.

In the fourth method [5%, 59], unlike the previous three methods, no CAD models are
utilized. Rather, for each target of interest, a set of target chips that covers the span of
the azimuth angles from 0° to 360° is required. Scattering centers are extracted from
each chip. These scattering centers are used to produce a 3-D target model comprised
of a number of N primitives each of which is characterized by a canonical primitive
type, a 3-D location of the primitive, and a set of continuous-valued descriptors. This
process is summarized in Fig.2.10. These 3-D target models are stored offline in the

target-model database and invoked on-the-fly during the online classification phase.
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For each target of interest, a FUSION:

set of target chips at N Generate Features for Each N Use Expectation-Maximization to
azimuth angles from 0°to Chip (Scattering Centers) generate a 3-D Target-Model
360° Characterized by N Primitives

Figure 2.10: Fourth model-based method for the offline target-model construction.

In the next phase, online prediction and classification are performed. This is de-
picted in Fig.2.11. Two distinctive sub-stages are executed in parallel. In the first
sub-stage, pertinent features are extracted from the input SAR chip and fed to the hy-
pothesis verification unit. In the second sub-stage, pertinent parameters are extracted
from the input SAR chip and fed to the hypothesis generation unit. Depending on the
method used for model construction (i.e., method 1 through method 4), the function-
ality of the hypothesis generation unit may vary from retrieving an eM prediction tool
(i.e., to generate prediction hypotheses based on the extracted parameters from the
input SAR chip) to simply retrieving relevant entries in the target-model database and
characterizing these entries based on the extracted parameters from the input chip.

This process is often referred to as indexing.

Classification: Online

l Target Characterization

| l E
| ! E
| g8
Preprocessing and Extracted Features I N Hypothesis I § g_
Features Extraction | "| Generation | )
| | S
Y E
Extracted Processing
Features Directives
Hypothesis
Verification Hypothesized Target

l Characteristics

Classification
Result

Figure 2.11: The online model-based prediction and classification.

The output from the hypothesis generation unit is a set of arbitrary feature-vector
predictions pertinent to various target classes, poses and the EOCs of interest. All

the predicted feature hypotheses are fed to the hypothesis verification unit. Finally,
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the classification of an input chip is performed by searching over the hypothesis space
for the set of possible combinations of target class, pose and relevant EOCs (if any)
that yield a predicted observation close to the actual observation. The feature-vector
prediction that scores the highest match, normally within some predefined threshold
constraint, is chosen. Being a function of the target-class, pose and relevant EOC(s),
matched features reflect the recognized target and its corresponding pose and EOC(s).
The pre-designed threshold constraint is often used to reject non-target confusers so

that no forced recognition is allowed.

From the earlier description it is obvious that regardless of the method used for the
target-model construction, the generic structure of the online model-based prediction
and classification phase is similar for all methods. For the four methods, the hypothesis
generation unit is used to hypothesize feature predictions that are fed to the hypoth-
esis verification unit for feature matching that yields a classification result. However,
depending on the target modeling method utilized, additional operations may need
to be incorporated into the hypothesis generation unit as described earlier. It should
be highlighted that while methods 1, 2 and 4 for target-model construction yield 3-D
target-models, method 3 yields a 2-D target-model that presumably handles the 3-D
space. This makes method 3 cumbersome when compared to the other three methods.
However, the challenge of the model-based method is that the identification, design
and incorporation of pertinent knowledge are major tasks that introduce additional
complexity to the SAR-ATR system. Thus, there always exists a trade-off between
system complexity and performance that needs to be carefully accounted for in the

target-model design process.

2.4.1.3. Semi-Model-Based Taxon

There is a class of approaches to the SAR-ATR problem that are neither strictly
feature-based nor explicitly model-based. It differs from the feature-based approach
in that it does not solely rely on an ad hoc selection of feature vectors for the offline
classifier training, and thus, it is not strictly classifier-oriented. It deviates from the
model-based approach in that it does not tightly follow the online classification regime
prescribed in the previous subsection. We refer to the approaches that are neither
feature-based nor model-based as a semi-model-based. This taxon of SAR-ATR loosely

fits between the feature-based and the model-based approaches that were described
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earlier. In this subsection, we describe two such methods from the literature to depict
the spectrum of these techniques. For each method, we first describe the major steps in
the offline target-model training. We use the term, target-model training to distinguish
this approach from the target-model construction process utilized in the model-based

approach. This is followed by a few details on the online classification process.

In the first method [60—(1], an extensive set of target chips that covers the span of
uniformly sampled azimuth angles from 0° to 360° is utilized. After certain prepro-
cessing, the variance for each target chip is estimated. The variances for the various
target chips are stored in the model database as a function of the target class and pose
angles. The process of offline model training is depicted in Fig. 2.12. There exists one
such target-model for each target of interest. These variances are utilized during the

online classification phase.

For each target of interest, use

a set of target chips at _| Estimate image variance for
uniformly sampled azimuth 4 each chip

angles from 0°to 360"

Figure 2.12: First semi-model-based method for the offline model-training.

In the online classification phase, a complex Gaussian probability density function
(PDF) is utilized. Note that a suitable PDF model other than the Gaussian can also
be used. The PDF model is parametrized by the pixel values of the preprocessed input
test chip as well as the target-model variances drawn from the database of variances
pertaining to the different targets and corresponding pose angles that were constructed
offline. A generalized likelihood ratio test (GLRT) is used to search for the variance
value that maximizes the likelihood test. Provided that the GLRT test exceeds some
predetermined threshold, the variance value that achieves the highest score over all
other variances is chosen. The corresponding parameters of the chosen variance (i.e.,
target class and pose) represent the classification result. If the threshold of the GLRT
is found to be less than the pre-determined threshold over all the variances space, the
input SAR chip is declared as a non-target confuser. The online classification process

pertaining to three-target classes is depicted in Fig. 2.13.
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Figure 2.13: First semi-model-based method for the online classification phase. In
this example, only three targets of interest are depicted.

In the second method [65-741], similar to the first, an extensive set of SAR target
chips at uniformly sampled azimuth angles from 0° to 360° is required. For each chip,
the N strongest scattering centers are sought (i.e., these are from p = 1 to N), and
their pixel values S, along with the corresponding range location R and cross-range
location C', are determined. This yields a triple (R, C, S). Such triples are arranged in
a descending order based on the pixel value S. Then, an origin pair (R,, C,) is chosen

from the N pairs (R, C). Further, dR and dC are calculated as

dR =R, — R,, dC =C,—C,. (2.1)

Accordingly, a look-up table (LUT) is constructed where its (z, y) addresses are
(dR, dC), and its corresponding entries are (Object Class, R,, S,, S,). This process is
repeated N times, and, in each time, a unique origin (R,, P,) is chosen from the tuple
(R, C) for p = 1toN. The results are stored in the LUT table. There is one such
LUT table for each target-class of interest. The process of LUT table construction
is depicted in Fig.2.14. In the online classification phase, similar features as those
described above for the offline phase are extracted and arranged in a descending order
based on the pixel value S. Then, the distances DR and DC' are calculated as

DR=dR—1:dR+1, and DC =dC —1:dC + 1. (2.2)

43



For each target of interest, use For each chip; find N strongest
a set of target chips at .| scatterers; defined by range N
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Figure 2.14: Second semi-model-based method for the offline model-training.

Next, a weighted vote is defined. Moreover, transition and magnitude limits are
introduced. These limits serve as thresholds to reject non-target confusers. Then, a
search is performed over all the pre-constructed LUT tables pertaining to the target-
classes of interest. The search result that achieves the highest score over all the LUT
tables is declared provided that it exceeds the abovementioned thresholds. Corre-
sponding entries in the relevant LUT table represent the target-class and its respective
pose. This process is depicted in Fig.2.15 for three target-models (i.e., three LUT
tables).

Figure 2.15: Second semi-model-based method for the online classification. In this
example, only three targets of interest are depicted.
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2.5. Conclusions

An end-to-end SAR-ATR system is comprised of three stages: front-end (i.e., detector),
intermediate (i.e., LLC classifier) and back-end (i.e., HLC classifier). Important points
to note are the following. Firstly, most works published in the literature exclusively
utilize the detected SAR image (i.e., magnitude or intensity) while the phase content
pertinent to the complex-valued SAR image is entirely discarded. Secondly, despite the
apparent superiority of the model-based taxon (for HLC classification) in comparison
to the other two taxa, this superiority is conditional upon the target model of choice
and its design feasibility. Indeed, unlike optical imagery, this is a much bigger challenge
in the case of SAR imagery (i.e., for radar signals in general). A detailed account for the
reasons of the combinatorial explosion of the SAR target signature and characterization
of the operating conditions for SAR imagery into standard operating conditions (SOCs)
and extended operating conditions (EOCs) can be found in our review article on the

topic [2]. A summary of these reasons is provided in Appendix B.
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3. Design and Implementation of a

Low-Power Synthetic Aperture
Radar

3.1. Overview

This chapter reports on the design and implementation of a high-resolution low-power
synthetic aperture radar (SAR). Our system utilizes the linear frequency-modulated
continuous wave (LFMCW) concept, and it operates in the S-band. The generic archi-
tecture for our design is presented along with a description of the digital SAR processor.
Finally, for demonstration purposes, a focused SAR image for a ground-truthed target

is provided.

3.2. Introduction

As an active sensor, synthetic aperture radar (SAR) is a valuable tool for various
military and civilian applications. Today, commercial SAR sensors, such as spaceborne
Radarsat-2, produce SAR imagery on the order of one metre resolution and finer
[1]. Further, some (limited) public-domain high-resolution SAR datasets, such from
airborne MSTAR [2], are also available. Additionally, ground-based SAR sensors such
as FastGBSAR can be purchased [3]. Thus, one may wonder at the value of building

one’s own SAR sensor.

Indeed, besides the costly price for acquiring SAR images or sensors, a major chal-
lenge to the end-user is the restricted access to the phase history. This imposes extreme

limitations on the researcher which can be summarized in two main aspects. Firstly,
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a lack of practical knowledge for the various low-level factors that impact the focused
SAR image, such as the effect the SAR processor intrinsically has on the raw data.
This firsthand knowledge is important for developing an in-depth understanding of the
focused SAR image which is instrumental, for example, in developing novel automatic
target recognition (ATR) tool(s) specifically tailored to SAR imagery. Secondly, the
restriction imposes an inability to apply relevant algorithms in the phase-domain (prior
to focusing), for example, to experiment with and develop relevant techniques such as
compressive sensing [1], video SAR [5], various SAR focusing algorithms [0, 7], and
detection and classification of targets in the phase-domain [, 9], to name a few. Such

topics cannot be properly researched without unrestricted access to the SAR phase

history.
Various SAR sensor designs are reported in the open literature [10-12]. Our SAR
offers an extension of the design concept originally reported in [13]. The remainder of

this chapter is organized as follows. In Sect. 3.3, our system architecture is presented
along with a brief description for the concept of operation. General description for
the omega-K algorithm (wKA) used to focus the phase history is given in Sect. 3.4. In
Sect. 3.5, a focused SAR image for a ground-truthed target is provided. Conclusions

are provided in Sect. 3.6.

3.3. System Architecture

As depicted in Fig. 3.1, our SAR design is based on the concept of linear frequency
modulated continuous wave (LFMCW) radar. The LFMCW architecture is chosen
because it is relatively simple and cost effective. The analog signal generator produces
both a modulating signal input to the voltage controlled oscillator (VCO) to produce
an LEMCW chirp and a synchronization signal needed by the digital SAR processor
to properly focus the phase history.

The parameters of the modulating signal are chosen to fulfill the desired design
requirements. The output from the VCO is amplified using a suitable power amplifier.
Then, two identical copies of the amplified LEMCW chirp are produced by the power
splitter. One of the these two copies is sent to the transmitter antenna while the
other copy is sent to the mixer. This architecture provides for an easy implementation

of a heterodyne receiver which down-converts the received backscatter signal from a
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pass-band frequency to a baseband frequency through a proper multiplication process

[14, 1],

Power
Amplifier
VCOo —FMCW
Signal
Ramp
Analog jAnt:zXnna
Ramp/Synch Splitter
Generator \ )
Synch Low Noise
Amplifier \ 4
r——\J’ Rx
Complex Digital SAR Mixer Antenna
SAR Image Processor

Figure 3.1: Architecture for an end-to-end LFMCW SAR system.

The down-converted baseband analog signal is low-pass filtered (LPF) in accordance
with the specifications of the analog-to-digital converter (ADC) being used. The fil-
tering operation is critical as it is designed to prevent aliasing in the sampled signal.
The output from the ADC is the SAR phase history of interest. Finally, the SAR
image can be appropriately focused through processing both the SAR phase history
and the reference synchronization signal generated by the analog signal generator. The
SAR processing is performed through using a suitable SAR image formation algorithm
6, 7.

The LEMCW concept is straightforward to explain [16-18]. In our design we utilize
a triangular modulating waveform. This is depicted by a solid green line in Fig. 3.2a.
The modulating waveform is used to sweep the VCO between f,,;, and f,,4., so that

the sweep bandwidth is given by

B = fma:c - fmzn (31)

with B having a center frequency of f,. The triangular waveform enables an upsweep

and downsweep for a total modulation time period of 7;,. The backscatter signal has
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a time delay 7' in reference to the transmitted signal which is related to the range R

to the target by

2
v
c

(3.2)

This form assumes a monostatic configuration where ¢ is the speed of light in a vacuum.

For a moving target with velocity v, a Doppler shift f; is produced as

Ja=+ (3.3)

where )\, is the wavelength of the transmitted radar wave. During an upsweep, the

rate of change in the transmitted frequency is given by

df 2B
- = 3.4
a T, (34)
Hence, the change in the transmitted frequency for a time delay T prior to reception

is given by

2B
df = —T. 3.5
I=7, (3.5)
Thus, the beat frequency for an upsweep (and downsweep) can be obtained by

substituting Eq. 3.2 into Eq. 3.5 and accounting for the Doppler shift from Eq. 3.3, as

follows

. 4B

Iy = ER F fa- (3.6)

Fig. 3.2b shows f;" and f; for the triangular waveform as seen at the mixer’s output.

This configuration allows for calculating the speed of a moving target, which is given
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(a) Linear change in frequency vs. time for the transmit-
ted LFMCW signal (solid green) and the backscatter signal
(dashed blue).

f
fo

= N— .

(b) Beat frequency at the mixer’s output.

Figure 3.2: Illustration for the LFEMCW concept.

)\7" f_ - f+
gu. (3.7)

vV = 9

It also provides for avoiding ambiguities and separating the slant-range-induced fre-

quency term (of interest in this chapter) embedded in the beat frequency as seen in

T fy + 1y
R==——=—="—2 3.8
4B 2 (3:8)
The slant-range theoretical resolution of the LEMCW radar is
AR~ < (3.9)
T 2B '
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The backscatter data is collected as the side-looking LEFMCW radar is moved in the
cross-range direction. The so-called synthetic aperture concept is inspired by that of
the phased array antenna but instead of having a large number of physical antenna
elements, SAR uses one antenna in conjunction with the different positions of the
along-track movement to emulate the phased array effect. The theoretical azimuth

resolution of the strip-mode SAR is [(]

L
NA ~ 5 (3.10)

where L is the length of the antenna in the azimuth direction. This shows that unlike
real aperture radar, the azimuth resolution of SAR improves for smaller L [6]. An
important design parameter is the signal to noise ratio (SNR). Assuming a point target,

the SNR of a monostatic radar for a single range profile is given by [19]

PtG2)\7%U

P,
SNRdB =10 loglo (N) = {1010g10 (m

) } — [101og,, (KT FyB)],

(3.11)

where the curly brackets represent the received signal power for a range profile (i.e.,
P, 4p), the square brackets represent the noise floor (i.e., Ngg), P, is the power at the
output of the receiver in watts, IV is the total noise power at the output of the receiver,
P, is the peak transmit power in watts, G is the antenna gain, ), is the radar operating
frequency wavelength in metres, o is the nonfluctuating target radar cross section in
m?, R is the range to the target, L, is a general loss factor that accounts for both
system and propagation losses, K is the Boltzmann constant, T is the effective noise
temperature, Fly is the receiver noise factor, and B is the LFMCW chirp bandwidth.
It is often assumed in the literature that Ts = Ty Fiy = 290 Kelvin, and Ls = 14 dB.
The chirp bandwidth considered in this study is 221 MHz.

Eq.3.11 is used to characterize the performance of our LFMCW radar in Fig. 3.3.
Table 3.1 lists the main parameters chosen in our SAR system design. These param-
eters were mainly chosen due to the availability of cost-effective hardware. A PCB

board was built for this design. Fig.3.4 depicts the radio frequency (RF) circuitry
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and the PCB board'. Further, two identical PCB antennas were built?. The Smith

chart for one of the antennas is given in Fig.3.5. The H-plane and E-plane radiation

patterns for this antenna are depicted in Fig.3.6. Relevant antenna parameters are

given in Table3.1.
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Figure 3.3: Performance of our LFMCW radar. The received power (P,) is normalized

by the radar cross section (o).

Figure 3.4: Circuitry for our SAR (DAQ unit is not shown).

IThe device used for data acquisition is provided in Appendix C.
2A picture for the antennas is shown in Appendix D.
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Figure 3.5: Smith chart for one of the antennas used in this study.

Stop 2.53600 GHz

Table 3.1: Design parameters for our SAR system.

Design Parameter ‘ Value
Fonin 2.315GIz
Srnaz 2.536 GHz
2 2.4255 Gz
B 221 MHz
T, 40 ms
Sampling Frequency 96 kHz
Sampling Resolution 24 bits
Output Power 18.5dBm (=70.8 mW)
Theoretical AR 0.678733 m
Far Range, Rz 500 m (Extendable)
Antenna Vertical 3-dB Beamwidth 16.5°
Antenna Horizontal 3-dB Beamwidth 15.5°
Antenna VSWR 1.7:1
Antenna Gain 22 dBi
Antenna Front to Back Ratio >36dB
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3.4. SAR Image Focusing

The range profiles output from the ADC are real-valued. Various operations are per-
formed on these profiles in the digital SAR processor (see Fig.3.7) to produce the
focused complex-valued image. First, with the help of the synchronization signal, the
range profiles are properly parsed and converted to a 2-D matrix with each row con-
taining the range profiles for a particular cross-range location in the imaged scene.
Second, the range profiles are converted to an analytic signal through quadrature de-
modulation. Other preprocessing operations can be performed at this stage including
motion compensation, calibration, etc. Then, the phase history is focused through
utilizing a suitable SAR image formation algorithm. We use the wKA algorithm due

to its simplicity and suitability for the imaging geometry considered in this study [0, 7].

Detailed explanation for the operations performed by the wKA algorithm can be
found in [6, 7]. The main operations performed by the wKA algorithm are shown
in Fig.3.7. The output from the wKA algorithm is the focused complex-valued SAR

image.

(a) H-plane radiation pattern. (b) E-plane radiation pattern.

Figure 3.6: H-plane and E-plane radiation patterns for the antenna.
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Figure 3.7: Digital SAR processor with the wKA algorithm.

(a) Ground-truth with the magnitude-detected SAR image superimposed.
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(c) Phase SAR image.

Figure 3.8: Focused image produced by our SAR.
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3.5. An lllustrative Example

To demonstrate the applicability of our SAR system, a vehicle target is considered. The
SAR sensor is placed at a suitable distance facing the vehicle’s side, shown in Fig. 3.8a,
and it is systematically moved from right to left. The focused magnitude-detected SAR
image is shown superimposed on the ground-truth photograph in Fig. 3.8a, and it is
shown separately in Fig. 3.8b. The corresponding phase image is shown in Fig. 3.8c.
As depicted in Fig. 3.8b, the scattering centers of the imaged target are well-defined.
Given the high-resolution of the SAR sensor, the phase image in Fig. 3.8c exhibits

some interesting patterns relevant to the imaged target.

3.6. Conclusions

This chapter has reported on a design and implementation for a low-power S-band
SAR. The main advantage of a researcher building their own SAR, besides being cost
effective, is the unrestricted access to the phase history. This provides for investigating
a plethora of relevant applications. The overall architecture for our system is presented
along with a brief description for the concept of operation. The wKA algorithm is
used to focus the phase history, and to produce a complex-valued SAR image for a
ground-truthed target. For the future, this design may be extended to a higher center
frequency, such as the W-band, with a much higher bandwidth.
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4. Unscrambling Nonlinear Dynamics
in Synthetic Aperture Radar

Imagery

4.1. Overview

In analyzing single-channel synthetic aperture radar (SAR) imagery, three interrelated
questions often arise. Firstly, should one use the detected or the complex-valued im-
age? Secondly, what is the ‘best’ statistical model? Thirdly, what constitute the
‘best’ signal processing methods? This chapter addresses these questions from the
overarching perspective of the generalized central limit theorem, which underpins non-
linear signal processing. A novel procedure for characterizing the nonlinear dynamics
in SAR imagery is proposed. To apply the procedure, three complementary 1-D ab-
stractions for a 2-D SAR chip are introduced. Our analysis is demonstrated on real-
world datasets from multiple SAR sensors. The nonlinear dynamics are found to be
resolution-dependent. As the SAR chip is detected, nonlinear effects are found to be
obliterated (i.e., for magnitude-detection) or altered (i.e., for power-detection). In the
presence of extended targets (i.e., nonlinear scatterers), it is recommended to use the
complex-valued chip rather than the detected one. Further, to exploit the embedded

nonlinear statistics, it is advised to utilize relevant nonlinear signal analysis techniques.

4.2. Introduction

Although we live in an inherently nonlinear world, conventional signal processing is
built on linear system theory. This theory treats deviation from linearity as noise that

warrants removal. Much of the original interest in nonlinear phenomena arose from the
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study of deterministic chaos, and subsequent research has branched into an analysis of
nonlinearity in general [I-3]. Nonlinear-based research efforts can be broadly classified
into two main branches: (1) the development of novel methods that seek to explicitly
exploit the nonlinear phenomenon, and (2) the advancement of techniques that permit
the harnessing of nonlinear dynamics (i.e., so-called nonlinear artifacts) retained in
the signal after application of common linear signal processing methods. This chapter,
concerned with the second branch, is exclusively aimed at the focused single-channel

complex-valued synthetic aperture radar (SAR) image outputs from SAR processors.

In SAR and its relatives, such as synthetic aperture sonar (SAS), the signal processor
focuses 1-D range profiles into a complex-valued image. The underlying assumption
which underpins signal processing theory in general, and its application to SAR im-
agery in particular, is linearity. Indeed, the SAR image is often implicitly assumed to
be linear. This is a consequence of the conventional resolution theory of point targets
[1]. Consequently, most of the interest in analyzing the focused single-channel SAR
image has traditionally been based on techniques motivated by linear system theory.
As a result, many such linear techniques are associated with the detected SAR image
(i.e., image intensity) while the phase content is entirely ignored. With the advent
of high-resolution remote sensors, the insufficiency of this theory as applied to both
stationary and moving extended targets has been reported in the literature [5—7]. This
conclusion is based on the empirical observation that extended targets, such as vehi-
cles and airplanes, produce dispersive scattering from cavity-like reflectors. In effect,
this induces a nonlinear phase modulation in the radar return signal which causes
a mismatch in the correlator’s output. This phenomenon is referred to as ‘sideband
responses’, and much of the information about it is preserved in the complex-valued

image rather than the detected one.

In the signal processing literature, there are two definitions of linearity considered
[8=13]: one is the definition of a strictly linear signal, and the other is the commonly
adopted definition of a linear signal. In the former, the signal is assumed to be gen-
erated by a linear time invariant (LTI) or a linear space invariant (LSI) system with
a white Gaussian noise. The commonly adopted definition differs from the former in
that the magnitude distribution is allowed to deviate from the Gaussian distribution.
This implies that the strictly defined linear signal is allowed to be characterized by a

nonlinear observation function, thereby justifying the use of linear signal processing
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methods on the latter. The main reason for the popularity of linear signal processing
techniques is their rich and well-defined linear system theory and simplicity of imple-
mentation. However, if the SAR data is proven to be nonlinear, significant gains are
to be anticipated from applying relevant nonlinear techniques. This is because the
nonlinear methods provide for the exploitation of the nonlinear statistics ignored by
the common linear signal processing methods. While the SAR sensor is often mod-
eled in the literature as a linear system [!], this does not guarantee that the focused
complex-valued image output from the SAR processor is linear, as explained earlier
[5-7].

Although our discussion here is presented in the context of automatic target recog-
nition in SAR imagery (SAR-ATR), which includes both detection and classification,
it is straightforward to generalize this discussion to any relevant context. In the
detection stage, popular linear statistical models include the Gaussian, exponential,
Rayleigh, Gamma, and Weibull distributions, etc. [I1]. All these linear models implic-
itly assume the underlying (superimposed) random variables to have a finite variance.
Hence, such models are all motivated by the central limit theorem (CLT). On the
contrary, nonlinear statistical models are built on the premises that the underlying
random variables possess an infinite variance; thus, such models are justified by the
generalized central limit theorem (GCLT). Examples of nonlinear statistical models
include the generalized Gaussian distribution (GGD) [13], the complex GGD [17],
the symmetric a-stable (Sa.S) distribution [13], the Gaussian scale mixture (GSM)
[16], and the wrapped complex Gaussian scale mixture (WCGSM) [17], etc.

In the classification stage, suitable signal processing methods are often used to ex-
tract and/or select useful features from the SAR data. These features are used for
classifier training and testing. Feature generation methods can be broadly classified
into linear and nonlinear which are motivated by the CLT theorem and the GCLT the-
orem, respectively. Among others, popular linear signal processing methods include
the Fourier [18, 19], wavelet [20], Radon transforms [20, 21], and principal compo-
nent analysis (PCA) [22], while nonlinear signal processing methods similarly include
the empirical mode decomposition (EMD) [23, 24], Hilbert-Huang transform (HHT)
[23, 25, 26], nonlinear independent component analysis (nICA) [27], and the weighted
myriad filter (WMF) [13]. While many linear signal processing methods are designed

to preserve the nonlinear statistics (i.e., in the linearly transformed signal, when the
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nonlinear statistics are present in the original signal), features generated solely based

on the linear statistics will be blind to the nonlinear dynamics.

Based on the preceding discussion, it is clear that a proper understanding of the in-
herent nature of the SAR data in terms of linearity and nonlinearity will not only allow
for an informed choice pertaining to the most suitable statistical models and signal
processing methods, but also will provide for the extraction of as much information as
possible from the SAR data. The novel contributions presented in this chapter may
be summarized as follows

o A procedure for empirically demonstrating the inapplicability of the CLT the-
orem and the applicability of the GCLT theorem to extended targets in SAR
imagery, and the interrelationship with the spatial resolution of the SAR sensor
(see Sect.4.3.2 and Sect. 4.8.1),

A method for linearly transforming the real-valued SAR chip from 2-D to 1-D

space (see Sect.4.5.2),

A method for linearly transforming the complex-valued SAR chip, in terms of

the bivariate statistics, from 2-D to 1-D space (see Sect.4.5.3),

A method for linearly transforming the complex-valued SAR chip, in terms of

the complex-valued statistics, from 2-D to 1-D space (see Sect.4.5.4), and

A procedure for detecting and characterizing the statistical significance of non-

linearity in SAR imagery (see Sect.4.6).

Throughout this chapter, the term SAR is used to inclusively imply all other signals
that possess similar properties. Moreover, the term high-resolution is used to nominally
refer to a sensor with a spatial resolution greater than the size of the imaged target
(i.e., extended target) [28]. Further, the term chip is used to refer to a smaller image,
for a particular target or clutter, extracted from a bigger scene. Finally, in the present

context the term non-Gaussian is used synonymously with nonlinear.

The remainder of this chapter is organized as follows. In Sect. 4.3, the underlying
motivations for this study are presented. In Sect. 4.4, the topic of nonlinearity detection
in SAR imagery through resampling and hypothesis testing is approached. In Sect. 4.5,
a procedure for linear transformation of the real-valued, as well as the complex-valued,
SAR chip from 2-D to 1-D space is proposed. In Sect.4.6, a procedure for testing

the statistical significance of nonlinearity in SAR imagery is outlined. In Sect.4.7,
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the overall SAR datasets used in this study are introduced. In Sect. 4.8, results are

discussed. Finally, a conclusion appears in Sect. 4.9.

4.3. Motivations

In motivating this study, Sect. 4.3.1 suggests an answer to the question: why is nonlin-
ear signal processing necessary for SAR image analysis? This is followed in Sect. 4.3.2
by a discussion on the central limit theorem (CLT) and the generalized central limit
theorem (GCLT), in the context of SAR imagery. Demonstrative examples comple-

mentary to this section are provided under Sect. 4.8.1.

4.3.1. Why Nonlinear Signal Processing?

Nonlinear signal processing offers significant advantages over traditional linear signal
processing in applications where the underlying random processes are non-Gaussian in
nature and/or when the system acting on the signal of interest is inherently nonlinear
[13, 15]. Given that the SAR sensor is often modeled as a linear system [1], the former
case is of interest here. It is important to precisely explain what is meant by linearity
and nonlinearity. The following definitions are used in the literature to characterize

the signal’s linearity /nonlinearity [3—12]:

4.3.1.1. Definition of Strictly Linear Signal

a signal generated by a linear time invariant (LTI) or a linear space invariant (LSI)

system with a white Gaussian noise.

4.3.1.2. Commonly Adopted Definition of Linear Signal

similar to the aforementioned definition but the magnitude distribution is allowed to
deviate from the Gaussian distribution. This implies that, the strictly defined linear

signal is allowed to be characterized by a nonlinear observation function.
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4.3.1.3. Definition of Nonlinear Signal

any signal that does not fulfill the definition of either the strictly linear signal or the

commonly adopted definition of linear signal.

While much of the original interest in nonlinear phenomena arose from the study of
deterministic chaos, subsequent research has branched into an analysis of nonlineari-
ties generally [I—3]. In the remote sensing community, this motivated the development
of new techniques that are deliberately designed to excite nonlinear scattering in the
imaged object, and to properly harness it using suitable nonlinear signal processing
methods [29]. One of the most interesting recent studies on the superiority of nonlinear
signal processing for sonar is that reported in [29, 30]. In that study, it is empirically
demonstrated that while conventional linear signal processing is not able to distinguish
the targets from the bubble clutter, nonlinear signal processing inspired by dolphin-like
sonar pulses can both detect and classify such targets. In [29, 31], the extension of
this technique allowed the development of a new radar which relies on the excitation
of nonlinearities in the imaged scene. Nonlinear signal processing was used to differ-
entiate between linear and nonlinear scatterers, thus, improving the target recognition

performance of the radar.

4.3.2. Central Limit Theorem (CLT), Generalized Central Limit
Theorem (GCLT), and SAR Imagery

It is intuitive to approach the abovementioned definitions of linearity and nonlinear-
ity from the perspective of the CLT and the GCLT theorems, respectively. In Cases
(Sect.4.3.1.1) and (Sect. 4.3.1.2) above, the signal is assumed to be linear. For the two
cases, this implies that the superposition principle (i.e., additivity and homogeneity)
either strictly or approrimately hold, respectively [18, 19, 32]. This is a consequence
of the CLT theorem. The classical CLT theorem states that the properly normed sum
of a set of independent and identically distributed (iid) random variables, each with a
finite variance, will tend to Gaussian as the number of variables increases [33]. In Case
(Sect.4.3.1.1), the CLT is strictly applicable which means that the statistical distribu-
tion of the signal can be strictly modeled as Gaussian. However, in many real-world
systems the assumption of the strict Gaussianity is impractical. In Case (Sect. 4.3.1.2),

although a distribution other than (strict) Gaussian can be used to model the (magni-
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tude or power-detected) signal, the applicability of the CLT theorem is still assumed.
This is because such distributions (e.g., exponential, Rayleigh, Weibull, etc. [11]), im-
plicitly assume that the random variables they model possess a finite variance. This
implies that they lie in the domain-of-attraction of the Gaussian distribution (i.e., are
asymptotically Gaussian). It transpires that this is the case for any statistical distribu-
tion that employs the assumption of finite variance in the random variables modeled.

Here, we demonstrate the applicability of this idea to SAR imagery.

In order for Case (Sect.4.3.1.1) to be applicable to SAR imagery, it is required that
the complex-valued speckle (i.e., Y = Y; + jYg; imaginary unitj = \/—1, subscripts [
and @ denote the real and imaginary parts, respectively), which is modeled as a mul-
tiplicative noise, be bivariate Gaussian (i.e., Y7 is strictly Gaussian and Yy, is strictly
Gaussian). Assuming a homogeneous clutter and a single-look SAR processing, the
complex-valued backscatter X is constant (i.e., C'). Thus, the statistical multiplicative
model of the complex-valued SAR image including speckle (i.e.,Z = XY = Z; + jZg)
is bivariate Gaussian (i.e., Z = C (Y7 + jYg)). This implies that the power-detected
SAR image (i.e., Zp= 7%+ Z%) is exponentially distributed. Further, the magnitude-
detected SAR image (i.e., Zy =\ Z3 + Z%) follows Rayleigh distribution. Hence, the
phase image follows a uniform distribution. This makes the assumption of linearity
strictly applicable. For Case (Sect.4.3.1.2), the assumption that the distribution of
the complex-valued Y strictly abides by the bivariate Gaussian is replaced with the
properties that Y follows the Gamma distribution and the square-root Gamma dis-
tribution, respectively, in the power-domain and the magnitude-domain. It may be
noted that the exponential distribution, mentioned earlier under Case (Sect.4.3.1.1),
is a special case of the Gamma distribution. Further, the assumption of constant X
is replaced with a particular statistical model in the power or the magnitude domain
but not in the complex-valued domain. For example, one of the generic distributions
used for modeling the SAR image in the magnitude-domain is the G-distribution. The
G-distribution uses the square-root of the generalized inverse Gaussian distribution to
model Xy, =/ X? + ng for both homogeneous and heterogeneous backgrounds. The
speckle model in the power or the magnitude domain, still follows the Gamma dis-
tribution and the square-root Gamma distribution, respectively. Some other popular
statistical distributions such as the G°-distribution and the K-distribution are special
cases of the G-distribution. This shows the scope of Case (Sect.4.3.1.2) in the context
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of SAR imagery. It is clear that in all these cases the distribution of the magnitude-
detected or the power-detected SAR image is allowed to deviate from the Gaussian
distribution, in order for the non-strict assumption of linearity to hold. It is inter-
esting to note that the implicit assumption here is that all these distributions are in
the domain-of-attraction of the Gaussian distribution. Further, in all such statistical
models, the complex-valued statistics are entirely ignored due to the assumption that
the phase follows a uniform distribution. A detailed explanation on the interrelation

between these statistical models for SAR imagery is found in Sect. 5.2 in [11].

In Case (Sect.4.3.1.3), due to the infinite variance of the signal’s distribution (i.e.,
when the signal is sampled from a population with an infinite variance), the CLT cannot
hold. Thus, the CLT is replaced with the Generalized CLT (GCLT). In the GCLT, the
Gaussian distribution as a domain-of-attraction is replaced with the so-called stable
distribution. The GCLT states that a sum of independent random variables from
the same distribution, when properly centered and scaled, belongs to the domain-of-
attraction of a stable distribution. Further, the only distributions that arise as limits
from suitably scaled and centered sums of random variables are the stable distributions
[13, 34]. Of interest in nonlinear signal processing are the stable Paretian distributions
which are strictly non-Gaussian. Note that statistical distributions motivated by the

CLT theorem can be viewed as a special case of the GCLT theorem.

Case (Sect.4.3.1.3) motivates the whole research on nonlinear signal processing.
The reasoning here is that if one forces a signal sampled from a population which
possesses an infinite variance to be modeled, or more generally processed, using a linear
technique, one simply ignores some valuable information which can only be exploited
through utilizing nonlinear signal processing methods [13]. A practical example is
the statistical model often used in the front-end stage (i.e., target detection) of an
automatic target recognition (ATR) system. Other examples are the features generated
from the target chips for training and testing the intermediate (i.e., low-level classifier)
and the back-end (i.e., high-level classifier) stages of the ATR system. The empirical
applicability of Case (Sect.4.3.1.3) to high-resolution SAR imagery is discussed in
detail in Sect.4.8.1.
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4.4. Nonlinearity Detection in SAR Imagery

Under this section, the topic of nonlinearity detection in SAR imagery is presented.
Testing for nonlinearity through resampling is described in Sect.4.4.1. Then, rele-
vant test statistics for linearity and nonlinearity, used in this chapter, are presented
in Sect.4.4.2. Finally, pertinent parametric and nonparametric tests for statistical

significance are introduced in Sect. 4.4.3.

4.4.1. Testing for Nonlinearity through Resampling

The most common method for nonlinearity detection in a 1-D signal is that based
on the so-called surrogate data test. In this method, a surrogate signal {z}; , is
resampled from an original signal {x;};_, to be tested. The resampled signal should
fulfill the following two conditions: (1) it should preserve the linear correlation of
the original signal, and (2) it should retain the marginal distribution pertinent to the
original signal [35-37]. Thus, {x;};_, is resampled in accordance with a null hypothesis

Ho (for linearity) such that a surrogate signal {z;};_, is generated as follows

Ho:z=h(s), {s:} ~N(0,1,p5), (4.1)

where H, is a stochastic linear process, {s;} is a standard Gaussian process, ps is
the autocorrelation of s;, and h is a static instantaneous transform which can be lin-
ear /nonlinear /monotonic/nonmonotonic. Note that N (0, 1, ps) accounts for the linear
dynamics in the input signal and h allows for deviations from the marginal Gaussian
distribution. Various relevant resampling methods are reported in the literature. Of
interest to this study is the iterative amplitude adjusted Fourier transform (iIAAFT )
method [38, 39], which is chosen mainly because it is found to give acceptable results
[10]. The iAAFT method approximates the sample power spectrum, S,(f) ~ S.(f),
where S, (f) is the periodogram of {x,};" ,. Further, the iAAFT follows the constrained
realization approach in a direct attempt to generate surrogate data that fulfill the
abovementioned two conditions. Hence, the iAAFT is designed to be used for testing
Ho of a Gaussian process undergoing a static transform (i.e., not only the monotonic,

Case (Sect. 4.3.1.2) as discussed earlier). The iAAFT surrogate approximates the orig-
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inal autocorrelation (i.e., linear correlation) and possesses the exact original marginal

distribution of the input signal [38, 10, 11].

4.4.2. Measures for Linearity and Nonlinearity

In this study, two kinds of correlation measures are used to account for the linear and
nonlinear statistics, respectively. Firstly, for capturing the linear correlation statistics

in the SAR chip, we use the Pearson product-moment correlation (PPMC) given in

[39, 12] as
r (7_> _ ?:_17 (Zn/t_: Zj) (ytj-'; - Zj)7 (42>
=1 (e — )

where 7 is a lag and gy is the mean of {y;};_,. Secondly, for capturing the nonlinear

correlation statistics, we use the mutual information (MI) defined as [13]

I (T> =1 (Y;h YVt—’T‘) = Z Z PYiYi_, (yh yt—T> X lOg vy, (yt> yt—T>

, (4.3
Y: Yirr pv: (W) pvi, (Ye—r) (43)

where py,v, . (Yt, y1—-) is the joint probability mass function (PMF), and py, (y:) and
Dy,_, (yi—-) are the marginal PMFs for ¢ and y;—., respectively. MI is known to be a
powerful test statistic for nonlinearity, accounting for both linear and nonlinear behav-
iors [11-16]. To estimate the joint and marginal PMFs of Eq. 4.3 we use the equiprob-
able bin histogram (EBH) procedure which partitions the domain of Y; and Y;_- into b
intervals of similar occupancy and different width [11, 17, 18]. The histogram bins are
chosen to have equal probability rather than equal width as is the usual case. Thus,
the width of the bins is allowed to vary while the height of each bin is constrained so
that the area under the PMF approximation is equal to one. The main advantage of
EBH over the traditional equidistant histogram (EDH) is that it provides improved

resolution in regions where there is a large number of samples. Further, the number
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of bins b for each histogram considered in this study is set, as suggested in [11], to

b \/g 7 (4.4)

where n is the total length of the 1-D vector.

4.4.3. Testing for Statistical Significance in the Linear/Nonlinear

Measures

Testing for the statistical significance is of paramount importance in two scenarios
pertaining to this study. Firstly, this test is required to examine the validity of the
surrogates for nonlinearity testing (i.e., conformity of the surrogates with o). This
is achieved through examining the statistical significance of the linearity in the surro-
gates. If the surrogates are confirmed linear, they are deemed suitable for nonlinearity
analysis. Secondly, the statistical significance of the nonlinearity in the original SAR
data (i.e., deviation of the original SAR data from o) must be tested.

The procedure for testing the significance of the statistic Qg is formed by values
of Qs computed on an ensemble of N surrogates {Q1, Qs, ..., Qx}. Then, if the
statistic computed on the original signal, denoted Qy, is found to be in the tails of
the empirical null distribution, Hg is rejected. This test may be implemented using
parametric and nonparametric methods. Both methods are considered in this study to
confirm the significance of the results. The parametric test for linearity /nonlinearity
is provided in Sect.4.4.3.1, and the nonparametric test for Gaussianity, required to
validate the parametric test, is given in Sect.4.4.3.2. Finally, the nonparametric test

for linearity /nonlinearity is described in Sect. 4.4.3.3.

4.4.3.1. Parametric Test for Linearity/Nonlinearity

Let Qp denote the test statistic generated from the original signal to be tested, Q;
denote the test statistic for the i"* surrogate under H,, and pg and og denote the
sample mean and standard deviation, respectively, of the test statistic pertaining to

Qs ~ {Q1, Q2, ..., Qn}. The parametric measure of statistical significance is defined
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as

L= |@0_,u$|

os

(4.5)

If the distribution of £ is Gaussian, then the P-Value is given by [19, 50] as

P=1-ecf (%) = /;O exp (—u?) du, (4.6)

V2

The P-Value represents the probability of observing a significance £ or larger if Hg is
true. Hence, Hy is rejected if the P-Value is less than or equal to a significance level
a (i.e., the alternative hypothesis #; is favored). Typically, « is chosen to be either
0.01 or 0.05 [19, 50].

4.4.3.2. Nonparametric Test for Gaussianity

In order for the parametric test of Sect.4.4.3.1 to be valid, the measure values from
the surrogates are assumed to follow the Gaussian distribution. Thus, the parametric
test is rendered invalid (or at least inaccurate) if the measure values from the surro-
gates deviate from the Gaussian distribution. The nonparametric Kolmogorov-Smirnov
(KS) test for Gaussianity is considered in this study to examine the conformity of the
surrogate statistic ensemble {Qy, Qo, ..., Qx} with the Gaussian distribution for a sig-
nificance level . The KS test achieves this through quantifying the largest vertical
distance between the empirical distribution function (EDF) denoted by F'(z) of the
sample and an estimate of the cumulative distribution function (CDF) of the Gaussian
distribution denoted by G (z). The KS statistic is given in [51, 52] as

K= SUp ‘]5 (x) — G (x)], (4.7)

where sup is the supremum of the set of distances. An approximation for the critical
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value pertaining to this test is given by [39, 53]

o ](a
o 0.11°
vN +0.12 + VN

(4.8)

where K, = 1.358 and K, = 1.628 for a significance level o = 0.05 and o = 0.01,
respectively [39, 53]. For a significance level o, Gaussianity is accepted if £ < C,, and
the parametric test in Sect. 4.4.3.1 is deemed valid. Otherwise, Gaussianity is rejected

and the parametric test in Sect.4.4.3.1 is deemed invalid.

4.4.3.3. Nonparametric Test for Linearity/Nonlinearity

Being distribution-free, the nonparametric approach offers a more robust way to define
the statistical significance for linearity/nonlinearity. In this work, a two-sided test is
used where H, is rejected if Qg is smaller than the § quantile or larger than the
1 — § quantile of the surrogate statistic ensemble {Q;, Q,, ..., Qn}. For example, if
N = 1000 and o = 0.05, H is rejected if Qq is in the first or last 25 positions of the

rank ordered sequence {Qq, Qo, ..., Qn}.

4.5. Linear Transformation of SAR Chips from 2-D to
1-D Space

While the linear and nonlinear measures described in Sect.4.4 may be applied to a
particular direction in the SAR chip (e.g., vertical, horizontal, diagonal, etc.), it is
desired that such measures be designed to account for the neighborhoods of each pixel.
Under this section, we propose a method to transform the 2-D SAR chip into an
abstract 1-D vector that accounts for the pixel neighborhoods. The method is inspired
by the Radon transform. One main advantage of the Radon transform is that, being
a linear transform in the spatial-domain, it preserves the original statistics present in
the SAR image without introducing any nonlinear artifacts. A succinct description
for the forward Radon transform is given in Sect.4.5.1. Then, a novel method for
linear transformation of the real-valued 2-D SAR chip into a 1-D vector is presented in

Sect. 4.5.2. This is followed, in Sect. 4.5.3, by a novel method for linear transformation
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of the bivariate 2-D SAR chip into a 1-D vector. Finally, Sect. 4.5.4 describes a method

for linear transformation of the complex-valued 2-D SAR chip into a 1-D vector.

4.5.1. The Forward Radon Transform

The Radon transform Ry (2) for a 2-D function f (z,y) is the line integral of f parallel

to the ¢/ axis defined, for example in [21], as
Ry (2) = / f (2 cosf —y sinf, 2’ sinf + o cosh) dy/, (4.9)

where 6 is the projection angle, and (2’,%’) are the projection coordinates which are

related to the projection angle by

x’ _ | cos 6 sinf z | (4.10)
Y —sinf cosf Yy
The geometry of the Radon transform is illustrated in Fig. 4.1.

o
\ )’&Z’
%

» X-axis

Figure 4.1: Illustration of the Radon transform for a projection angle 6. The random
shape provided represents the 2-D function f (z,y).
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Note that the (2’,1') coordinate is rotated (in the spatial-domain) about the center of
the image as shown in Fig.4.1. An important property of the Radon transform, which
is of interest to the study presented in this chapter, is linearity [21]. This implies that
the Radon transform is both additive and homogeneous. This guarantees that the
Radon-transformed signal retains the statistics of the original 2-D SAR chip and does

not include nonlinear artifacts due to the transformation process.

4.5.2. A Method for Linear Transformation of the Real-Valued
2-D SAR Chip into a 1-D Vector

Under this section, a procedure for transforming the real-valued 2-D SAR chip f (z,v)
into a 1-D vector, utilizing the Radon transform, is proposed. The proposed procedure
is illustrated in Fig. 4.2. First, the Radon transform of the real-valued input SAR chip

is computed for the angles in the interval [0, 7) as

Real-Valued 2-D ) \
SAR Image F®,x”)=Re {f(x.y)}o=10,n)
fy) l :
1-D Vector (
“ F(x7)=Ry {F(O,x" )}¢=n
/ Fct) | (x7)=Ry {F(O0,x")}p=m2

Figure 4.2: Proposed procedure for transforming a real-valued 2-D SAR chip into a
1-D vector.

F (9,1‘/) = R9 {f ('T>y>}|9:[0,7r) ) (411>
a representation known also as a sinogram. Note that angles in the range [, 27| are

omitted because their corresponding Radon transform provides identical values to the

angles in the range [0,7), and this redundancy is of no interest to this study. This
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is followed by integrating out the projection angles # = [0, 7) through applying the

Radon transform to the sinogram output at a projection angle ¢ = 7 to obtain

F (') = Ry{F (9,x’)}|¢z%. (4.12)

The output given by Eq.4.12 is an abstract 1-D vector representative of the input 2-D
SAR chip. The procedure shown in Fig.4.2 can be applied to any real-valued SAR
chip, including the detected SAR chips (i.e., the power and the magnitude-detected
chips) as well as the real and the imaginary parts of the complex-valued SAR chip.

4.5.3. A Method for Linear Transformation of the Bivariate 2-D
SAR Chip into a 1-D Vector

Under this section, a procedure for transforming the bivariate SAR chip into a real-
valued 1-D vector is proposed. The term bivariate is used here to denote that the real
and the imaginary parts of the complex-valued SAR chip are treated as two separate
real-valued chips. This is in analogy to the bivariate distribution (e.g., bivariate Gaus-
sian) which is used to model the complex-valued data in such a manner (see page 20
in [54]). The procedure proposed here is meant to account for the bivariate statistics
between the real and the imaginary parts of the complex-valued SAR chip. Fig. 4.3
depicts the proposed procedure.

Complex-Valued 2-D \
SAR Image 1(8,x" )=Ro {i(x,3)}o=10,)
g(u,V)=i(x,3/) 1 q(x.y) !

Combine / and Q into a
{ 0(6,x" )=Re {q(x,y)}0=10,n) Single Sinogram:
19(6.x")=[I( ?,X') 0(6.x)]

DV

Figure 4.3: Proposed procedure for transforming a bivariate complex-valued SAR
chip into a 1-D vector.
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The complex-valued SAR chip is available in the form

g(u,v) =i(z,y)+ijq(z,y), (4.13)

where ¢ (z,y) and ¢ (z,y) are the real and the imaginary parts, respectively, of the
complex-valued SAR chip; and j = v/—1. Note that (z,y) represent the 2-D Cartesian
coordinates of the real-valued plane, while (u,v) represent the 2-D Cartesian coordi-

nates in the complex-valued plane.

The Radon transform is applied separately to the real and the imaginary parts of

the complex-valued SAR chip as

1(6, lj) = Ry {i(z, y>}|9:[0,7r) ) (4.14)

Q(0,2") = Ro{q (x7y>}|9:[0,7r) : (4.15)

Then, the two sinograms output from Eq. 4.14 and Eq. 4.15, respectively, are combined

together into a single sinogram as

1Q0,2') = [1(0,7) Q(6,2")]. (4.16)

Note that Matlab notation is used in Eq.4.16 to denote that the two sinograms are
concatenated horizontally, along the second dimension. Thus, the resultant sinogram
has the same number of rows as in the original sinogram (i.e., I (6, 2’) and @ (¢, 2") have
the same size), and the number of columns is doubled. Following this, the projection
angles § = [0,7) are integrated-out. This is achieved through applying the Radon

transform to the combined sinogram output from Eq. 4.16 at a projection angle ¢ = 7
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as follows

1Q (&) = Ry (1Q (6.4)},_ . (4.17)

The output given by Eq.4.17 is an abstract 1-D vector representative of the bivariate
statistics in the input 2-D complex-valued SAR chip.

4.5.4. A Method for Linear Transformation of the
Complex-Valued 2-D SAR Chip into a 1-D Vector

The procedure described in Sect. 4.5.3 accounts for the bivariate statistics between the
real and the imaginary parts of the complex-valued SAR chip. However, the complex-
valued statistics [51] are not meant to be accounted for by this procedure. Here, to
account for such complex-valued statistics, a simple procedure is proposed. First, the
real and the imaginary parts of the complex-valued SAR chip are suitably amalgamated

in the spatial-domain according to

fuiq (x,y) = furud (i (z,y) , ¢ (2,y)) - (4.18)

This specific form of interleaving is referred to as furud’ing, inspired by the spectro-
scopic binary in the constellation Canis Major known by the traditional name Furud
[55-58]. Fig. 4.4 illustrates our proposed furud’ing procedure.

In the next step, the real-valued furud chip is transformed to a 1-D vector through

inputting it to the algorithm introduced in Fig. 4.2, with the final output being given
by

Fuig (a/) = Ry { Ro { fuiq (,9)} oo}, - (4.19)

85



q11 412 413
qc1 422 423
q31 932 433
q41 942 443

(a) Real-part of the (b) Imaginary- (c) Furud’ed chip, fuiq (z,y).
complex-valued part of the
SAR chip, i (z,y). complex-valued
SAR chip,

q(z,y).

Figure 4.4: Our proposed furud’ing procedure.

4.6. Proposed Procedure for Nonlinearity Testing in

SAR Imagery

Our proposed procedure for nonlinearity testing in SAR imagery is depicted in Fig. 4.5.
Firstly, the 2-D SAR chip is transformed into an abstract 1-D vector, to be used for
all subsequent operations, following the procedure described in Sect.4.5. Next, an
N number of iIAAFT surrogates is generated from the abstract 1-D SAR data based
on the iAAFT method described in Sect.4.4.1. Then, the surrogates are tested for
linearity. This step is crucial as it guarantees the validity of the iAAFT surrogates for
nonlinearity testing in the subsequent stage. The test for linearity commences with
computing the PPMC coefficients, at a particular lag 7, for both the input 1-D SAR

data as well as for each surrogate, as described by Fq. 4.2.

Following this, to determine the statistical significance of linearity in the resampled
surrogates, the parametric and the nonparametric tests are conducted following the
methods described in Sect. 4.4.3.1 and Sect. 4.4.3.3. Furthermore, in order to validate

the parametric test for linearity, the PPMC measure values for the surrogates are also
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Test 1-D abstract SAR Choose Ty Which
/ Test results for data vs. iIAAFT surrogates achieves maximum P-
nonlinearity for nonlinearity (Ml) and Value in the vicinity of
significance (P-Value) Topt

Figure 4.5: Proposed testing procedure for nonlinearity/linearity proposed in this
chapter.

tested for Gaussianity following the KS test described in Sect.4.4.3.2. If the measure
values for the surrogates are found to be not strictly Gaussian, the parametric test
for linearity is deemed invalid and only the nonparametric test is considered in this
case. Otherwise, the P-Values for both the parametric and the non-parametric tests
are considered. This procedure is repeated for different lags 7. It is reported in the
literature that an approximate optimal value, 7,,, for 7 can be chosen such that it
corresponds to the first local minimum of the mutual information given by Eq. 4.3 [13].
However, it should be noted that this value of 7, is not guaranteed to maximize the
linearity in the surrogates. Thus, we choose a value of 7, in the vicinity of 7, such
that the P-Value for the linearity measures of the N surrogates is maximized and refer
to this lag as 7,4, This validates the significance for the statistical conformity of
the surrogates with Hy. The chosen lag 7,4, is used in the next stage for testing the

nonlinearity.

Finally, to test for the nonlinearity, the MI coefficients, described in Eq.4.3, are
computed both for the input abstract 1-D SAR data and for the N iAAFT surrogates
at lag Tynae- Further, both the parametric and the nonparametric tests are conducted to
characterize the statistical significance of nonlinearity/linearity (i.e., whichever the test
finds to be applicable) in the input abstract 1-D SAR data. The statistical significance
for all the results is presented in terms of P-Values. The KS test is applied to the MI

coefficients to validate the parametric test as described above.
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4.7. Real-World SAR Chips for Nonlinearity Analysis

Multiple single-channel SAR chips are utilized in this study. These SAR chips come
from four different SAR sensors. Radarsat-2 (RS-2) datasets are introduced in Sect. 4.7.1.
Relevant chips from the MSTAR dataset are provided in Sect.4.7.2. A SAR chip from
our own SAR sensor is provided under Sect.4.7.3.1. Finally, two additional SAR chips

from a very high-resolution SAR sensor are presented in Sect.4.7.3.2.

4.7.1. SAR Chips from Radarsat-2 Datasets

RS-2 is a spaceborne C-band radar. Two single-channel (HH) single-look complex-
valued (SLC) datasets from RS-2 are considered in this study. SLC is the lowest-
level product commercially available from MDA Corporation. In the first dataset, the
imaging mode is Spotlight. In this mode, RS-2 allows for improved spatial resolution
in the azimuth direction in which it delivers the highest nominal spatial resolution of
1.6 x0.8 m in range and azimuth, respectively [59]. The targets of interest considered in
this dataset are six construction vehicles (shown in red circles in Fig. 4.6a, and counted
from left to right) and two corner reflectors (trihedrals, shown in red trapezoids in
Fig. 4.6a, and counted from left to right) imaged in a site located in the former Naval
Station Argentia in Newfoundland, Canada [060]. The phase image for this scene is
provided in Fig. 4.6b. Ground-truthing is conducted by C-CORE (see Fig. 4.6¢). Note
that the size of these targets is comparable to the nominal spatial resolution of the

RS-2 sensor (i.e., these targets can be considered as point targets).

In the second dataset, two single-channel SLC SAR chips were extracted from a
public-domain RS-2 scene, i.e., Vancouver dataset in [61]. The imaging mode is ‘Po-
larimetric Fine’. Only the HH channel is utilized. The nominal spatial resolution for
this imaging mode is 5.2 x 7.7 m in range and azimuth, respectively [59]. In the first
chip, the target is a ship occupying a rectangular area of size 72 x 34 m in range and
azimuth, respectively. Note that this is an extended target. The magnitude-detected
chip and the phase chip for this target are provided in Fig.4.7. The second chip is
pertinent to a target-free sea clutter. The magnitude-detected chip and the phase chip

are shown in Fig. 4.8.

88



Vehicle Target
Corner Reflector (Trihedral)§

(a) Contrast-enhanced magnitude-detected RS-2 image. Ve-
hicle targets are numbered 1 to 6, respectively, from left to
right, Corner reflectors are numbered CR1 and CR2, respec-
tively, from left to right.

(b) Phase image.

(¢) Ground-truth image (left to right: 1 dump truck, 1 loader, 2 dump trucks, 2
pickup trucks).

Figure 4.6: Spotlight RS-2 SLC image for a site in the former Naval Station Argen-
tia [00] in Newfoundland, Canada. Ground-truth image is provided by C-CORE.
RADARSAT-2 Data and Products © MacDonald, Dettwiler and Associates Ltd.
(2011)
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(a) Magnitude-detected chip. (b) Phase chip.

Figure 4.7: RS-2 chip for ocean-based extended (ship) target (ET). RADARSAT-2
Data and Products © MacDonald, Dettwiler and Associates Ltd. (2008)

(a) Magnitude-detected chip. (b) Phase chip.

Figure 4.8: RS-2 chip for ocean clutter (i.e., target-free (TF) chip). RADARSAT-2
Data and Products © MacDonald, Dettwiler and Associates Ltd. (2008)

4.7.2. SAR Chips from the MSTAR Dataset

MSTAR is a public-domain single-channel (HH) and ground-truthed dataset acquired
by an airborne SAR sensor. MSTAR offers X-band SLC Spotlight chips for multiple
types of military targets (mostly vehicles) imaged under various amounts of articu-

lation, obscuration and camouflage. The MSTAR dataset provides a nominal spatial
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]. A set of MSTAR chips per-
taining to extended target D7 (bulldozer) is arbitrarily chosen for this study. The cho-

resolution of 0.3047 x 0.3047 m in range and azimuth |

sen set is representative of different azimuth angles for this target. Table 4.1 provides a
list of the chosen MSTAR chip IDs along with relevant azimuth angles. A ground-truth
image for the target is shown in Fig.4.9. The magnitude-detected chips considered in
this chapter for all the MSTAR chips of target D7, are provided in Fig.4.10. The
corresponding phase chips are depicted in Fig.4.11. The numbers shown on the chips

represent the chip number provided in Table4.1.

Table 4.1: List of the MSTAR chips of target D7 used in this chapter.

‘ No. ‘ MSTAR ID ‘ Azimuth Angle ‘

1 | HB15056.005 13.307442°
2 | HB15256.005 36.307442°
3 | HB15132.005 94.307442°
4 | HB14931.005 97.307442°
5 | HB15006.005 113.307442°
6 | HB15206.005 121.307442°
7 | HB15082.005 144.307434°
8 | HB15148.005 180.307434°
9 | HB15156.005 220.307434°
10 | HB14956.005 222.307434°
11 | HB15031.005 243.307434°
12 | HB15231.005 261.307434°
13 | HB15106.005 274.307434°
14 | HB14981.005 | 347.307434°
15 | HB15181.005 | 350.307434°
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Figure 4.10: Magnitude-detected chips for a selected set from MSTAR target D7.
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Figure 4.11: Phase chips for a selected set from MSTAR target D7.

4.7.3. SAR Chips from Miscellaneous Sensors

Three additional SAR chips are utilized in this study, the first being a ground-truthed
chip from our own SAR sensor as described in Sect. 4.7.3.1. Finally, two ground-truthed

chips, from a very high-resolution SAR sensor, are provided under Sect.4.7.3.2.

4.7.3.1. A Chip from our Own SAR Sensor

A SAR chip for a vehicle target (i.e., extended target) from our self-designed S-band
SAR sensor is utilized. Our SAR sensor offers single-channel SLC SAR data [63]. The
antenna polarization is HH. The imaging mode is ‘Stripmap’ The nominal spatial
resolution of our SAR sensor is 0.67873 x 0.15 m in range and azimuth, respectively.
A ground-truth photo for the imaged target is provided in Fig. 4.12. The magnitude-
detected and phase chips are depicted in Fig. 4.13.
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Figure 4.12: Ground-truth photo with magnitude-detected SAR chip superimposed.

(a) Magnitude-detected SAR chip.

(b) Phase SAR chip.

Figure 4.13: SAR chip from our own SAR sensor.

4.7.3.2. Two SAR Chips from a Very High-Resolution SAR Sensor

The final two SAR chips considered in this study are from a very high-resolution single-

channel X-band SAR system, obtained from [64, 65]. The imaging mode is ‘Stripmap’.
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The nominal spatial resolution of the SAR sensor is 0.03 x 0.012 m in range and
azimuth, respectively. The first target is a bike. The magnitude-detected and phase
chips for this target are shown in Fig. 4.14. The second target is the phrase GO STATE
which is formed through using a group of tiny pushpins. The magnitude-detected and
phase chips for this target are depicted in Fig. 4.15.
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(a) Magnitude-detected chip. (b) Phase chip.

Figure 4.14: SAR chip for a bike from a very high-resolution X-band radar.

(a) Magnitude-detected chip. (b) Phase chip.

Figure 4.15: SAR chip for GO STATE in pushpins from a very high-resolution X-band
radar.
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4.8. Results and Comments

This section is comprised of three parts. The applicability of the GCLT theorem to the
extended targets in SAR imagery is presented in Sect.4.8.1. Results for the statistical
significance of the nonlinear dynamics in the SAR datasets considered in this study are

provided in Sect. 4.8.2. Finally, relevant comments are introduced under Sect. 4.8.3.

4.8.1. Applicability of the GCLT Theorem to SAR Imagery, and

the Interrelationship with the Spatial Resolution

This section aims at empirically demonstrating the inapplicability of the CLT theorem
to the extended targets in SAR imagery. Further, the effect of the spatial resolution
for the SAR sensor is also examined. Five complex-valued SAR chips containing a
variety of target types and having differing spatial resolutions are chosen. The first
chip is for target-free (i.e., TF) ocean clutter taken from the RS-2 dataset introduced in
Sect.4.7.1. The second chip containing target #1 and representing the case of a point
target, is taken from the RS-2 dataset introduced in Sect.4.7.1. The third chip is for
target ET taken from the RS-2 dataset introduced in Sect.4.7.1. This chip represents
the case of an extended target. The fourth chip is for target #11 taken from the
MSTAR dataset presented under Sect.4.7.2. This chip also represents an extended
target. Finally, the fifth chip is for the phrase GO STATE in pushpins given under
Sect. 4.7.3.2. This case also represents an extended target.

For each of these chips, the following procedure is applied. First, a normalized EDH
histogram is computed for both the real-part and the imaginary-part, respectively.
Then, the envelope of the resultant histogram is fitted to the Gaussian distribution
and the GGD distribution, respectively. The Gaussian distribution serves to demon-
strate the applicability /inapplicability of the CLT theorem. The GGD distribution is
a non-Gaussian statistical model motivated by the GCLT theorem. GGD allows the
rate of tail decay to be varied and it is known to offer a good model for some impul-
sive phenomena. The GGD family is general in that it encompasses a wide array of
distributions with different tail characteristics from super-Gaussian to sub-Gaussian
with specific densities such as Laplacian and Gaussian distributions [13, 66]. The GGD

distribution is chosen in this study because it is found to closely fit our SAR data.

Fitting with the Gaussian distribution is performed using the minimum variance
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unbiased estimator (MVUE) [07]. Fitting with the GGD distribution is done through
minimizing the symmetrized relative entropy, known as the Jensen—Shannon (JS) di-
vergence, between the envelope of the histogram and the GGD’s PDF (see [17] and
Eq. E.5 in Appendix E for details). Goodness-of-fit measures between the normalized
histograms and both the Gaussian and the GGD PDFs are presented in terms of the
JS divergence (see Eq.E.5 in Appendix E for details). Our results are presented in
Fig. 4.16-Fig. 4.20, respectively. Goodness-of-fit measures are given in Table 4.2.
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(a) Histogram for real-part. (b) GGD PDF and Gaussian PDF
superimposed on histogram of
real-part in Fig. 4.16a.
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(c) Histogram for imaginary-part. (d) GGD PDF and Gaussian PDF
superimposed on histogram of
imaginary-part in Fig. 4.16c.

Figure 4.16: Histogram and fitting with Gaussian and GGD distributions for ocean
clutter (i.e., target-free (TF) chip) .
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(a) Histogram for real-part. (b) GGD PDF and Gaussian PDF

superimposed on histogram of
real-part in Fig. 4.17a.
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(c) Histogram for imaginary-part. (d) GGD PDF and Gaussian PDF
superimposed on histogram of
imaginary-part in Fig. 4.17c.

Figure 4.17: Histogram and fitting with Gaussian and GGD distributions for RS-2
target #1.
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(a) Histogram for real-part. (b) GGD PDF and Gaussian PDF

superimposed on histogram of
real-part in Fig. 4.18a.
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(c) Histogram for imaginary-part. (d) GGD PDF and Gaussian PDF
superimposed on histogram of
imaginary-part in Fig. 4.18c.
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(e) Zoom-in into the right tail of
Fig. 4.18b.

Figure 4.18: Histogram and fitting with Gaussian and GGD distributions for RS-2
extended (ship) target (ET).
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(a) Histogram for real-part. (b) GGD PDF and Gaussian PDF
superimposed on histogram of
real-part in Fig. 4.19a.
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(c) Histogram for imaginary-part. (d) GGD PDF and Gaussian PDF
superimposed on histogram of
imaginary-part in Fig. 4.19c¢.
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Figure 4.19: Histogram and fitting with Gaussian and GGD distributions for MSTAR
target #11.
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(a) Histogram for real-part. (b) GGD PDF and Gaussian PDF
superimposed on histogram of
real-part in Fig. 4.20a.
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(c) Histogram for imaginary-part. (d) GGD PDF and Gaussian PDF
superimposed on histogram of
imaginary-part in Fig. 4.20c.
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Figure 4.20: Histogram and fitting with Gaussian and GGD distributions for the
SAR chip of GO STATE in pushpins.
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Table 4.2: Goodness-of-fit measures for Fig. 4.16-Fig. 4.20, respectively.

Spatial Resolution JS Divergence
Chip Target Type Channel
[Rangex Azimuth] Gaussian GGD
PDF PDF
I 0.0592 0.0590
RS-2 TF [0.3047 x 0.3047] m Ocean Clutter
Q 0.0625 0.0605
I 0.2204 0.1218
RS-2 #1 [1.6 X 0.8] m Point Target
Q 0.4678 0.3944
I 2.0096 0.2277
RS-2 ET [6.2 x 7.7] m Extended Target
Q 1.8840 0.2839
I 0.8886 0.2495
MSTAR #11 [0.3047 x 0.3047] m Extended Target
Q 0.7589 0.1624
I 0.7667 0.0353
GO STATE [0.03 x 0.012] m Extended Target
Q 0.7671 0.0384

The following conclusions are drawn based on the results obtained. First, for the
target-free RS-2 chip considered, it is evident that the goodness-of-fit for both the
Gaussian and the GGD PDFs are almost identical (see Fig.4.16 and Table4.2). Tt
is thus concluded that nonlinearity is negligible in the absence of targets. Second,
based on the fitting results for the case of point target considered (see Fig.4.17 and
Table4.2), the Gaussian PDF and the GGD PDF are close to each other (i.e., in terms
of the JS divergence), despite the relatively better fit achieved by the GGD PDF. Tt
is observed that the GGD PDF gives more weight to the heavy tails and peakedness
of the histogram while the Gaussian PDF is restricted by the sample variance. Note
that the smaller the JS divergence measure is, the better the fit. Thus, it is evident
that the point target considered also possesses minimum nonlinearity. Third, for all
the other chips considered, the GGD distribution offers a much better fit than the
Gaussian distribution. This is evident through visually inspecting the fitting results
depicted in Fig.4.18-Fig. 4.20, respectively. This is also confirmed from Table 4.2 for
the JS divergence measures. It is clear that the Gaussian distribution cannot model
pulsed phenomenon with heavy tails (i.e., super-Gaussian) similar to those obtained in
the figures pertinent to the case of extended targets. However, the GGD distribution
accounts for this behavior. Further, it is noted that the peakedness and the heavy tails
get even more pronounced with the increase in the spatial resolution of the SAR sensor

relative to the size of the imaged target. This is clearly observed through comparing
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the histograms in Fig.4.20 with Fig.4.18 and Fig.4.19, respectively. This behavior
increases the goodness-of-fit between the histogram and the GGD PDF, in contrast

to the Gaussian PDF. This is confirmed by examining the JS divergence measures
provided in Table4.2.

Since the Gaussian distribution is motivated by the CLT theorem, this demonstrates
the inapplicability of the CLT theorem to the real-part and the imaginary-part of the
SAR chips containing the extended targets. Similarly, since the GGD distribution is
motivated by the GCLT theorem, it can be said that in the presence of extended tar-
gets, the SAR chips considered demonstrate some nonlinear behavior. This nonlinear
behavior becomes even more pronounced with the increase in the spatial resolution of
the SAR sensor, relative to the size of the imaged target. The statistical significance

of the nonlinearity is investigated in the next section.

4.8.2. Statistical Analysis for Nonlinearity

This section presents the statistical analysis results for the nonlinear dynamics in
the SAR datasets introduced under Sect.4.7. This analysis follows the procedure
described under Sect.4.4.1. The analysis utilizes a number of 1024 iAAFT surrogates
(i.e., N = 1024) for each 1-D vector representation. The number 1024 is chosen as
a tradeoff between computational complexity and statistical significance. Once the
iAAFT surrogates are calculated, the spatial lag 7,,., is found for each 1-D vector
representation as proposed in Sect.4.6. Then, the nonlinear measures in terms of
MI, are calculated at 7,,,, for each 1-D representation and its corresponding 1024
iAAFT surrogates. Parametric and nonparametric tests for the statistical significance
pertinent to both the linearity of the surrogates (i.e., in terms of PPMC) and the
nonlinearity of the 1-D representations (i.e., in terms of MI) are presented in terms of
P-Values following the procedure outlined in Sect. 4.4.3.1 and Sect. 4.4.3.3, respectively.
The applicability of the parametric test is validated following the procedure presented
in Sect.4.4.3.2.

The statistical analysis results for the SAR chips from the RS-2 dataset are presented
in Table4.3. The results pertaining to the SAR chips from the MSTAR dataset are
provided in Table4.4. Finally, Table4.5 through Table4.7 respectively present the

statistical analysis results for the three chips from the miscellaneous SAR datasets.
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Table 4.3: Nonlinearity analysis of the RS-2 chips.

PPMC (P-Value)

MI (P-Value)

No. Type | Tmaz
Parametric | Nonparametric | Parametric | Nonparametric

P 4 GR 0.9317 GR 0.3015
M 12 GR 0.9902 GR 0.9278
I 6 GR 0.9376 GR 0.7073

CR1
Q 11 GR 0.7932 GR 0.1063
1Q 19 GR 0.8595 GR 0.2234
Fuq 15 GR 0.9473 GR 0.0634
P 18 GR 0.9785 GR 0.8907
M 11 GR 0.9532 GR 0.9259
I 6 GR 0.9220 GR 0.0010

CR2
Q 2 GR 0.9629 GR 0.7424
1Q 12 GR 0.9766 GR 0.0010
Fuq 12 GR 0.9551 GR 0.0010
P 8 GR 0.9668 GR 0.9376
M 13 GR 0.8966 GR 0.6527
I 6 GR 0.2605 GR 0.9005
! Q 3 GR 0.6859 GR 0.3405
1Q 20 GR 0.9220 GR 0.3990
Fuiq 7 GR 0.3600 GR 0.5141
P 7 GR 0.9863 GR 0.6273
M 8 GR 0.9766 GR 0.9356
I 3 GR 0.9590 GR 0.6898
? Q 2 GR 0.8263 GR 0.4693
1Q 1 GR 0.9220 GR 0.2839
Fuq 10 GR 0.6293 GR 0.6956
P 6 GR 0.9454 GR 0.5434
M 9 GR 0.9356 GR 0.9434
I 9 GR 0.8751 GR 0.9571
’ Q 12 GR 0.7854 GR 0.3015
1Q 6 GR 0.9649 GR 0.7873
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Fuq 20 GR 0.9629 GR 0.7229
P 6 GR 0.9688 GR 0.7483
M 9 GR 0.8771 GR 0.8810
I 9 GR 0.8927 GR 0.2078
! Q 6 GR 0.9863 GR 0.2878
1Q 5 GR 0.9805 GR 0.3288
Fuyq 12 GR 0.8107 GR 0.4498
P 13 GR 0.8888 GR 0.8556
M 13 GR 0.9649 GR 0.9902
I 8 GR 0.9278 GR 0.7795
’ Q 6 0.8092 0.8459 GR 0.0654
1Q 10 GR 0.8595 GR 0.2898
Fuq 2 GR 0.9317 GR 0.0927
P 12 GR 0.9395 GR 0.7854
M 14 GR 0.9707 GR 0.9317
I 18 GR 0.9766 GR 0.5805
‘ Q 6 GR 0.4400 GR 0.4985
1Q 20 GR 0.9220 GR 0.5298
Fuyq 2 GR 0.7346 GR 0.9571
P 4 GR 0.9707 0.0000 0.0010
M 5 GR 0.7854 0.0216 0.0244
I 5 GR 0.9044 0.0033 0.0049
ET
Q 9 GR 0.8576 GR 0.0556
1Q 4 GR 0.7034 0.0014 0.0010
Fuq 4 GR 0.4966 0.0000 0.0010
P 6 GR 0.6468 GR 0.4322
M 7 GR 0.5317 GR 0.2546
I 5 GR 0.8439 GR 0.0088
TF
Q 5 GR 0.8673 0.1921 0.2098
1Q 11 GR 0.7073 GR 0.8790
Fuiq 12 GR 0.7054 0.6191 0.6585
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Table 4.4: Nonlinearity analysis of the MSTAR chips.

PPMC (P-Value) MI (P-Value)
No. Type | Tmasz
Parametric | Nonparametric | Parametric | Nonparametric
P 5 GR 0.7268 GR 0.0010
M 6 GR 0.7268 0.1406 0.1239
I 8 GR 0.9239 GR 0.0127
! Q 9 GR 0.7678 GR 0.0283
1Q 6 GR 0.6644 GR 0.0010
Fuyq 9 GR 0.9278 GR 0.0907
P 3 GR 0.8829 GR 0.0010
M 12 GR 0.8498 0.1290 0.1063
I 3 GR 0.9532 GR 0.0010
? Q 12 GR 0.5083 GR 0.0576
1Q 4 GR 0.3015 GR 0.0302
Fuq 10 GR 0.4810 GR 0.0088
P 1 GR 0.8732 GR 0.0010
M 10 GR 0.8888 0.0581 0.0576
I 3 GR 0.9707 GR 0.0029
’ Q 7 GR 0.9941 0.0000 0.0010
1Q 3 GR 0.9063 GR 0.0010
Fuq 10 GR 0.7580 GR 0.0010
P 6 GR 0.9434 GR 0.0010
M 12 GR 0.8498 0.0273 0.0302
I 12 GR 0.8439 GR 0.1961
! Q 8 GR 0.6644 GR 0.0010
1Q 14 GR 0.9063 GR 0.0068
Fuq 12 GR 0.1220 GR 0.0029
P 5 GR 0.9766 GR 0.0010
M 14 GR 0.9298 0.0148 0.0146
I 17 GR 0.9337 0.1680 0.1571
’ Q 7 GR 0.8166 GR 0.0010
1Q 13 GR 0.7151 GR 0.0888
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Fuq 6 GR 0.7502 GR 0.0615
P 4 GR 0.9473 GR 0.0010
M 9 GR 0.9844 0.0541 0.0380
I 4 GR 0.4849 GR 0.0068
6
Q 4 GR 0.4010 GR 0.0088
1Q 4 GR 0.2117 GR 0.0010
Fuq 3 GR 0.1298 GR 0.0010
P 6 GR 0.5063 0.0000 0.0010
M 5 GR 0.7307 0.0413 0.0380
I 4 GR 0.3307 GR 0.0537
7
Q 7 GR 0.2702 GR 0.0029
1Q 4 GR 0.6605 GR 0.0146
Fuq 5 GR 0.3210 GR 0.0010
P 13 GR 0.8732 GR 0.0010
M 3 GR 0.5044 GR 0.0010
I 3 GR 0.9395 GR 0.0185
8
Q 1 GR 0.8810 GR 0.0010
1Q 2 GR 0.3249 GR 0.0029
Fuq 4 GR 0.9024 GR 0.0010
P 6 GR 0.5161 GR 0.0010
M 12 GR 0.9063 0.1155 0.0888
I 7 GR 0.7463 GR 0.0010
9
Q 10 GR 0.5922 GR 0.0049
1Q 10 GR 0.8771 GR 0.0049
Fuq 17 GR 0.8537 GR 0.0166
P 3 GR 0.9200 GR 0.0010
M 12 GR 0.8341 0.0572 0.0634
I 5 GR 0.3034 GR 0.0010
10
Q 3 GR 0.8341 GR 0.0166
1Q 4 GR 0.1688 GR 0.0166
Fuyq 6 GR 0.5688 GR 0.0010
P 2 GR 0.9727 GR 0.0010
M 11 GR 0.8732 0.0437 0.0556
11
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I 4 GR 0.5922 GR 0.0068

Q 4 GR 0.8400 GR 0.0010

1Q 6 GR 0.3951 GR 0.0010

Fuiq 8 GR 0.3268 GR 0.0029

P 7 GR 0.9278 0.0000 0.0010

M 10 GR 0.8615 0.1059 0.1024

I 10 GR 0.8478 GR 0.0810

" Q 8 GR 0.7951 GR 0.0010
1Q 8 GR 0.6078 0.0000 0.0010

Fuq 14 GR 0.5337 0.0000 0.0029

P 2 GR 0.9590 GR 0.0010

M 9 GR 0.9180 0.0408 0.0459

I 2 GR 0.9941 GR 0.0029

v Q 4 GR 0.7620 GR 0.0068
1Q 2 GR 0.8556 GR 0.0010

Fugq 5 GR 0.9434 GR 0.0127

P 4 GR 0.5220 GR 0.0010

M 12 GR 0.7015 0.5185 0.5317

I 8 GR 0.8556 GR 0.0010

H Q 17 GR 0.8537 GR 0.0068
1Q 11 GR 0.8946 GR 0.0537

Fuyq 16 GR 0.9434 GR 0.0107

P 4 GR 0.9668 GR 0.0010

M 5 GR 0.6351 0.0815 0.0654

I 9 GR 0.9688 GR 0.0010

" Q 17 GR 0.9941 GR 0.5532
1Q 13 GR 0.9844 GR 0.0634

Fuq 12 GR 0.5668 GR 0.0049
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Table 4.5: Nonlinearity analysis of the SAR chip from our own SAR sensor.

PPMC (P-Value) MI (P-Value)
Type | Tmaz
Parametric ‘ Non-Parametric | Parametric ‘ Non-Parametric

P 11 GR 0.5668 GR 0.0010
M 1 GR 0.3678 GR 0.0322
I 4 GR 0.8829 GR 0.0010
Q 4 GR 0.8517 GR 0.0010
1Q 4 GR 0.9571 GR 0.0010
Fuq 17 GR 0.8595 GR 0.0010

Table 4.6: Nonlinearity analysis of the SAR chip for a bike.

PPMC (P-Value) MI (P-Value)
Type | Tmaz
Parametric ‘ Non-Parametric | Parametric ‘ Non-Parametric

P 19 GR 0.9532 0.0000 0.0010
M 20 GR 0.4498 0.2070 0.2351
I 2 GR 0.7659 0.0000 0.0010
Q 2 GR 0.7971 0.0052 0.0068
1Q 2 GR 0.8185 0.0000 0.0010
Fuq 9 GR 0.9551 0.000 0.0010

Table 4.7: Nonlinearity analysis of the SAR chip for GO STATE in pushpins.

PPMC (P-Value) MI (P-Value)
Type | Tmasz
Parametric ‘ Non-Parametric | Parametric ‘ Non-Parametric

P 16 GR 0.9317 0.0795 0.0888
M 14 GR 0.6332 0.1156 0.1337
I 2 GR 0.5883 GR 0.0010
Q 2 GR 0.7307 GR 0.0010
1Q 2 GR 0.6351 GR 0.0010
Fuq 8 GR 0.8751 GR 0.0010
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4.8.3. Comments

This section summarizes the main lessons learned from the statistical analysis for
the nonlinearity in the datasets considered in this study. Firstly, through inspecting
the results for the RS-2 dataset presented in Table4.3, it is clear that the statistical
significance for the nonlinearity is dependent on the target size relative to the spatial
resolution of the SAR sensor. It is observed that the nonlinearity is negligible for all
the point targets considered (i.e., construction vehicles and CR1) as well as for the
target-free ocean clutter chip. This can be inferred through examining the P-Values

under the MI measures. To reiterate,

Linearity: Hy € P-Value > 0.01, (4.20)
Nonlinearity: H; € P-Value < 0.01. (4.21)

Further, CR2 has statistically significant nonlinear behavior. This nonlinear behavior
originates from the real-part of this chip, and it is preserved in both the bivariate
representation (i.e., IQ) and the furud’ed representation (i.e., Fu;,). As this SAR chip
is detected, the nonlinear behavior is obliterated in both the power and the magnitude
chips. Note that there are no ground-truth images available for the corner reflectors.
Thus, it is postulated that the positioning of CR1 and CR2, relative to the RS-2 sensor,
are not identical. This explains the difference in the backscattering behavior of these
two corner reflectors. Moreover, when an extended target for a ship of size of 72 x 34
m is considered, the nonlinear dynamics are found to become pronounced. This is
expected since the ship size is orders of magnitude greater than the spatial resolution
of the RS-2 sensor. For almost all the RS-2 target chips analyzed it is noted that the
MI’s P-Value pertaining to the power-detection is less than that of the magnitude-
detection, and different from that of the real and the imaginary parts. This indicates
that both the power and the magnitude detections alter the statistics in the original
SAR image.

Next, from Table4.4 it is evident that the nonlinearity behavior in the complex-
valued MSTAR dataset is statistically significant. This is to be expected since the
imaged objects are all extended targets. It can be seen that the smallest MI's P-

Value alternates between the real and the imaginary parts which indicates that the
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nonlinearity effect originates from both of these parts. A close look at the effect of
detection in terms of P-Values reveals that magnitude-detection is worst when it comes
to either greatly diminishing or obliterating the nonlinear dynamics originally present
in the complex-valued SAR chip. This is in agreement with the results for the RS-2
dataset. The power-detected SAR chip retains some of the nonlinear characteristics
present in the real and the imaginary parts. However, through visually comparing
the 1-D representations for the undetected and the power-detected SAR chips, it is
postulated that the nonlinear dynamics have been altered from their original form.
Furthermore, it is also suggested that although the 1-D representation for the real-
part, imaginary-part, bivariate and furud’ed representations, respectively, do possess
some nonlinear behavior, the nonlinear dynamics in these different representations are

not identical.

In addition to the foregoing observations, the results obtained from the miscella-
neous SAR datasets given in Table 4.5 through Table 4.7, respectively, evidently reveal
a significant nonlinear trend. This can be attributed to the fact that the imaged objects
are extended targets. The nonlinear effect is clearly manifested through noting that all
the MI’s P-Values for the real-part, imaginary-part, bivariate and furud’ed representa-
tions, respectively, strongly favor H; for the nonlinearity. Similarly, it is observed that
the magnitude-detection greatly diminishes the nonlinear effects originally present in
the complex-valued SAR chip. While the power-detection often retains some of the
nonlinear characteristics in an altered form, it is noted that this may not be the case
at very high resolution and for the relatively small targets such as that of GO STATE
in pushpins (see Table4.7).

Finally, several overall observations may be summarized. The nonlinear effects in
complex-valued SAR chips are proportional to the spatial resolution and the size of
the imaged target. Magnitude-detection greatly diminishes or obliterates the nonlinear
effects. Power-detection either diminishes and /or alters the nonlinear effects. It is well-
known that the power and the magnitude detections, respectively, degrade the spatial
resolution originally present in the complex-valued SAR image by a factor of two or
greater (see [68] and Sect. 2.8 in [1]). Hence, to take full advantage of the nonlinear
statistics for the extended targets, it is advised to utilize the complex-valued SAR
image rather than the detected one. To account for the different nonlinear dynamics,

it may be useful to consider the real-part, imaginary-part, bivariate and furud’ed
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representations as complementary to each other. The 1-D representations for the real
and the imaginary parts capture the nonlinear dynamics in the 2-D counterparts.
The bivariate representation captures the bivariate nonlinear dynamics between the
real and the imaginary parts. The furud’ed representation accounts for the nonlinear
dynamics both within and between the pixels of the real and the imaginary parts.
From the perspective of the statistical significance for the nonlinear dynamics, this
demonstrates the usefulness of the often discarded phase for the extended targets in

high-resolution single-channel SAR imagery.

4.9. Conclusions

Nonlinear signal processing is motivated by the generalized central limit theorem
(GCLT) which provides for capturing the peakedness and heavy tails, indicators of
nonlinearity in the signal. In order to maximize the extraction of information from
SAR imagery, it is important to approach it from this perspective. This allows for
making informed decisions in the choice of suitable statistical models (e.g., for target
detection) and signal processing methods (e.g., for feature generation) that exploit the
inherent statistics embedded in the complex-valued SAR data. To provide for this,
this chapter has introduced a systematic procedure to infer the statistical significance

of the nonlinear dynamics in SAR imagery.

The applicability of our proposed procedure is demonstrated on various real-world
chips from multiple SAR sensors having a variety of spatial resolutions. The analysis
confirms the statistical significance of the nonlinear phenomenon, in the complex-
valued chip, for the case of extended targets. Furthermore, as the SAR chip is
magnitude-detected, the nonlinear effect is either obliterated or greatly diminished.
The power-detected chip is found to retain some nonlinear statistics but it is postulated
that such statistics are altered from their original form present in the complex-valued
chip. Hence, for the case of extended targets, in order to utilize the ‘nonlinear dynam-
ics’ in target recognition applications, it is recommended to use the complex-valued
SAR image rather than the detected one. Ongoing investigation involves building a
suitable classifier based on features generated from the complex-valued image. The
usefulness of the 1-D representations, presented in this chapter, for harnesssing the

nonlinear dynacmis from the complex-valued SAR chip will also be investigated.

112



Bibliography

1]

(6]

[7]

8]

C. P. Silva, “Nonlinear dynamics and chaos: From concept to application,”
Crosslink Magazine, Aerospace Corporation, Los Angeles, CA, Spring, vol. 12,
no. 1, pp. 40-51, 2011. [Online|. Available: http://www.acrospace.org/
wp-content /uploads/crosslink /V12N1.pdf 69, 73

SNDE. (2014) Society for nonlinear dynamics and econometrics. [Online].
Available: http://www.sndeecon.org

S. Strogatz, Nonlinear Dynamics And Chaos: With Applications To Physics,
Biology, Chemistry, And Engineering (Studies in Nonlinearity). Reading, Mas-
sachusetts: Persues Books, 1994. 69, 73

[. Cumming and F. Wong, Digital signal processing of synthetic aperture radar
data: algorithms and implementation. Norwood, MA: Artech House, 2004. 69,
70, 72, 111

A. Rihaczek and S. Hershkowitz, “Man-made target backscattering behavior:
applicability of conventional radar resolution theory,” Aerospace and Electronic
Systems, IEEE Transactions on, vol. 32, no. 2, pp. 809-824, 1996. [Online].
Available: http://dx.doi.org/10.1109/7.489523 69, 70

——, Radar resolution and complez-image analysis.  Norwood, MA: Artech
House, 1996.

——, Theory and practice of radar target identification. Boston: Artech House,
2000. 69, 70

D. P. Mandic and S. L. Goh, Complex Valued Nonlinear Adaptive Filters: Non-
circularity, Widely Linear and Neural Models, ser. Wiley Series in Adaptive and
Learning Systems for Signal Processing, Communications, and Control. ~West
Sussex, UK: John Wiley & Sons, 2009. 69, 72

T. Gautama, D. P. Mandic, and M. M. V. Hulle, “Signal nonlinearity
in fMRI: A comparison between BOLD and MION,” I[EEE Trans.

113


http://www.aerospace.org/wp-content/uploads/crosslink/V12N1.pdf
http://www.aerospace.org/wp-content/uploads/crosslink/V12N1.pdf
http://www.sndeecon.org
http://dx.doi.org/10.1109/7.489523

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Med. Imaging, vol. 22, mno. 5, pp. 636-644, 2003. [Online]. Available:
http://dx.doi.org/10.1109/TMI.2003.812248

——, “The delay vector variance method for detecting determinism and
nonlinearity in time series,” Physica D: Nonlinear Phenomena, vol. 190, no. 3-4,
pp. 167-176, 2004. [Online|. Available: http://dx.doi.org/10.1016/j.physd.2003.
11.001

R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E.
Elger, “Indications of nonlinear deterministic and finite-dimensional structures
in time series of brain electrical activity: Dependence on recording region
and brain state,” Physical Review F - Statistical, Nonlinear, and Soft Matter
Physics, vol. 64, no. 61, pp. 061907/1-061907/8, 2001. [Online|. Available:
http://dx.doi.org/10.1103/PhysRevE.64.061907

T. Schreiber and A. Schmitz, “Surrogate time series,” Physica D: Nonlinear
Phenomena, vol. 142, no. 3-4, pp. 346-382, 2000. [Online]. Available:
http://dx.doi.org/10.1016/S0167-2789(00)00043-9 72

G. R. Arce, Nonlinear signal processing: a statistical approach. Hoboken, NJ:
Wiley-Interscience, 2004. 69, 70, 72, 75, 96

K. El-Darymli, P. McGuire, D. Power, and C. Moloney, “Target detection
in synthetic aperture radar imagery: a state-of-the-art survey,” J.
Appl.  Remote Sens, wvol. 7, mo. 1, 2013. [Online]. Available:  http:
//dx.doi.org/10.1117/1.JRS.7.071598 70, 74, 75

M. Novey, T. Adali, and A. Roy, “Circularity and Gaussianity detection
using the complex generalized Gaussian distribution,” Signal Processing
Letters, IEEE, vol. 16, no. 11, pp. 993-996, 2009. [Online|. Available:
http://dx.doi.org/10.1109/LSP.2009.2028412 70, 72

M. J. Wainwright, E. P. Simoncelli, and A. S. Willsky, “Random cascades
on wavelet trees and their use in analyzing and modeling natural images,”
Applied and Computational Harmonic Analysis, vol. 11, no. 1, pp. 89-123, 2001.
[Online|. Available: http://dx.doi.org/10.1006/acha.2000.0350 70

K. El-Darymli, P. McGuire, E. W. Gill, D. Power, and C. Moloney, “Charac-
terization and statistical modeling of phase in single-channel synthetic aperture

radar imagery,” Aerospace and FElectronic Systems, IEEE Transactions on [Ac-

cepted], 2015. 70, 97

114


http://dx.doi.org/10.1109/TMI.2003.812248
http://dx.doi.org/10.1016/j.physd.2003.11.001
http://dx.doi.org/10.1016/j.physd.2003.11.001
http://dx.doi.org/10.1103/PhysRevE.64.061907
http://dx.doi.org/10.1016/S0167-2789(00)00043-9
http://dx.doi.org/10.1117/1.JRS.7.071598
http://dx.doi.org/10.1117/1.JRS.7.071598
http://dx.doi.org/10.1109/LSP.2009.2028412
http://dx.doi.org/10.1006/acha.2000.0350

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

28]

J. G. Proakis, Digital Signal Processing: Principles, Algorithms, and Applica-
tions, 4th ed. Upper Saddle Rlver, New Jersey: Prentice Hall, 2006. 70, 73

A. V. Oppenheim, Discrete-Time Signal Processing, 3rd ed. Upper Saddle River,
NJ: Prentice-Hall, 2009. 70, 73

J. P. Antoine, R. Murenzi, P. Vandergheynst, and S. T. Ali, Two-dimensional
wavelets and their relatives. Cambridge, UK: Cambridge University Press, 2004.
70

A. D. Poularikas, Ed., Transforms and applications handbook. Boca Raton, FL:
CRC Press, 2010. 70, 81, 82

R. Duda, P. Hart, and D. Stork, Pattern classification. New York, NY: John
Wiley and Sons, 2001. 70

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng,
N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition
and the Hilbert spectrum for nonlinear and non-stationary time series
analysis,” Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences, vol. 454, no. 1971, pp. 903-995, 1998. [Online]. Available:
http://dx.doi.org/10.1098 /rspa.1998.0193 70

A .-O. Boudraa and J.-C. Cexus, “EMD-based signal filtering,” Instrumentation

and Measurement, IEEE Transactions on, vol. 56, no. 6, pp. 2196-2202, 2007.
[Online]. Available: http://dx.doi.org/10.1109/TIM.2007.907967 70

H. Huang and J. Pan, “Speech pitch determination based on Hilbert-Huang
transform,” Signal Processing, vol. 86, no. 4, pp. 792-803, 2006. [Online].
Awvailable: http://dx.doi.org/10.1016/j.sigpro.2005.06.011 70

Y. Chen and M. Q. Feng, “A technique to improve the empirical mode
decomposition in the Hilbert-Huang transform,” Farthquake Engineering and
Engineering Vibration, vol. 2, no. 1, pp. 75-85, 2003. [Online]. Available:
http://dx.doi.org/10.1007/BF02857540 70

A. Singer and R. R. Coifman, “Non-linear independent component analysis
with diffusion maps,” Applied and Computational Harmonic Analysis, vol. 25,
no. 2, pp. 226-239, 2008. [Online|. Available: http://dx.doi.org/10.1016/j.acha.
2007.11.001 70

K. El-Darymli, P. McGuire, E. W. Gill, D. Power, and C. Moloney,

115


http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1109/TIM.2007.907967
http://dx.doi.org/10.1016/j.sigpro.2005.06.011
http://dx.doi.org/10.1007/BF02857540
http://dx.doi.org/10.1016/j.acha.2007.11.001
http://dx.doi.org/10.1016/j.acha.2007.11.001

32]

33]

[34]

[35]

[36]

[37]

“Understanding the significance of radiometric calibration for synthetic
aperture radar imagery,” in Canadian conference on electrical and computer
engineering (CCECE’14), IEEFE, Toronto, Canada, 2014. [Online]. Available:
http://dx.doi.org/10.1109/CCECE.2014.6901104 71

T. G. Leighton, P. R. White, and D. C. Finfer, “Contrast enhancement
between linear and nonlinear scatterers,” US Patent 11/917,990, 2010. [Online].
Awvailable: http://www.google.ca/patents/US20100286514 73

T. G. Leighton, G. H. Chua, and P. R. White, “Do dolphins benefit from
nonlinear mathematics when processing their sonar returns?” Royal Society
A: Mathematical, Physical and Engineering Science, vol. 468, no. 2147, pp.
3517-3532, 2012. [Online]. Available: http://dx.doi.org/10.1098 /rspa.2012.0247
73

T. G. Leighton, G. H. Chua, P. R. White, K. F. Tong, H. D. Griffiths,
and D. J. Daniels, “Radar clutter suppression and target discrimination
using twin inverted pulses,” Royal Society A: Mathematical, Physical
and Engineering Science, vol. 469, no. 2160, 2013. [Online]. Available:
http://dx.doi.org/10.1098 /rspa.2013.0512 73

V. lllingworth, Ed., The Penguin Dictionary of Physics. London, UK: Penguin
Books, 1991. 73

J. Rice, Mathematical Statistics and Data Analysis. Belmont, CA: Duxbury
Press, 1995. 73

R. J. Brown and B. Rimmer. (2014) Generalized central limit theorem.
Wolfram demonstration project. [Online|. Available: http://demonstrations.

wolfram.com / GeneralizedCentralLimit Theorem/ 75

T. Schreiber and A. Schmitz, “Improved surrogate data for nonlinearity
tests,” Physical Review Letters, vol. 77, no. 4, 1996. [Online]. Available:
http://dx.doi.org/10.1103/PhysRevLett.77.635 76

D. N. Politis, “The impact of bootstrap methods on time series analysis,”
Statistical Science, vol. 18, mno. 2, pp. 219-230, 2003. [Online]. Available:
http://dx.doi.org/10.1214 /ss/1063994977

D. Kugiumtzis, I. Vlachos, A. Papana, and P. G. Larsson, “Assessment

of measures of scalar time series analysis in discriminating preictal states,”

116


http://dx.doi.org/10.1109/CCECE.2014.6901104
http://www.google.ca/patents/US20100286514
http://dx.doi.org/10.1098/rspa.2012.0247
http://dx.doi.org/10.1098/rspa.2013.0512
http://demonstrations.wolfram.com/GeneralizedCentralLimitTheorem/
http://demonstrations.wolfram.com/GeneralizedCentralLimitTheorem/
http://dx.doi.org/10.1103/PhysRevLett.77.635
http://dx.doi.org/10.1214/ss/1063994977

[38]

[39]

[40]

[41]

[42]

[43]

[44]

International journal of Bioelectromagnetism, vol. 9, no. 3, pp. 134-145, 2007.
[Online]. Available: http://www.ijbem.org/volume9/number3/090303.pdf 76

J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, “Testing
for nonlinearity in time series: the method of surrogate data,” Physica D:
Nonlinear Phenomena, vol. 58, no. 1, pp. 77-94, 1992. [Online|. Available:
http://dx.doi.org/10.1016/0167-2789(92)90102-S 76, 77

D. S. Wilks, Statistical methods in the atmospheric sciences, 3rd ed. Waltham,
MA: Academic Press, 2011, vol. 100. 76, 77, 80

D. Kugiumtzis, “Evaluation of surrogate and bootstrap tests for nonlinearity in
time series,” Studies in Nonlinear Dynamics and Econometrics, vol. 12, no. 1,
2008. [Online|. Available: http://dx.doi.org/10.2202/1558-3708.1474 76, 77

——, “Statically transformed autoregressive process and surrogate data
test for mnonlinearity,” Physical Review FE: Statistical, Nonlinear, and
Soft Matter Physics, vol. 66, mno. 2, 2002. [Online]. Available: http:
//dx.doi.org/10.1103/PhysRevE.66.025201 77

H. G. Schuster and W. Just, Deterministic Chaos. An Introduction. Weinheim:
Wiley, 2006. 77

A. M. Fraser and H. L. Swinney, “Independent coordinates for strange
7 Physical review A: Atomic, Molecular,
and Optical Physics, vol. 33, no. 2, pp. 1134-1140, 1986. [Online]. Available:

http://dx.doi.org/10.1103/PhysRevA.33.1134 77, 87

C. J. Cellucci, A. M. Albano, and P. E. Rapp, “Statistical validation of mutual
information calculations: Comparison of alternative numerical algorithms,”
Physical Review FE: Statistical, Nonlinear, and Soft Matter Physics, vol. 71,
no. 6, 2005. [Online]. Available: http://dx.doi.org/10.1103/PhysRevE.71.066208
77,78

attractors from mutual information,

M. Palus and D. Hoyer, “Detecting nonlinearity and phase synchronization with
surrogate data,” Engineering in Medicine and Biology Magazine, IEEFE, vol. 17,
no. 6, pp. 40-45, 1998. [Online]. Available: http://dx.doi.org/10.1109/51.731319
K. Shi, X. Ma, and G. T. Zhou, “A mutual information based double-talk
detector for nonlinear systems,” in Information Sciences and Systems (CISS
2008), 42nd IEEE Annual Conference, 2008, pp. 356-360. [Online]. Available:
http://dx.doi.org/10.1109/CISS.2008.4558551 77

117


http://www.ijbem.org/volume9/number3/090303.pdf
http://dx.doi.org/10.1016/0167-2789(92)90102-S
http://dx.doi.org/10.2202/1558-3708.1474
http://dx.doi.org/10.1103/PhysRevE.66.025201
http://dx.doi.org/10.1103/PhysRevE.66.025201
http://dx.doi.org/10.1103/PhysRevA.33.1134
http://dx.doi.org/10.1103/PhysRevE.71.066208
http://dx.doi.org/10.1109/51.731319
http://dx.doi.org/10.1109/CISS.2008.4558551

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[56]

D. R. Ucci, W. Jacklin, and J. Grimm, “Investigation and simulation
of nonlinear processors for spread spectrum receivers,” Rome Laboratory,
Air Forace Materical Command, Griffiss Air Force Base, New York, Tech.
Rep. RL-TR-93-258, 1993. [Online]. Available: http://www.dtic.mil/cgi-bin/

GetTRDoc?Location=U2&doc=GetTRDoc.pdf& AD=ADA278025 77

M. Palus, “Testing for nonlinearity using redundancies: Quantitative and
qualitative aspects,” Physica D: Nonlinear Phenomena, vol. 80, no. 1, pp. 186—
205, 1995. [Online]. Available: http://dx.doi.org/10.1016/0167-2789(95)90079-9
77

D. S. Moore and D. K. Neal, Introduction to the Practice of Statistics. New
York, NY: Macmillan, 2009. 79

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables, ser. 55. Washington, DC: National
Bureau of Standards Applied Mathematics, Tenth Printing, 1972. 79

F. J. Massey, “The Kolmogorov-Smirnov test for goodness of fit,” Journal of
the American Statistical Association, vol. 46, no. 253, pp. 68-78, 1951. [Online].
Available: http://www.jstor.org/stable/2280095 79

G. Marsaglia, W. Tsang, and J. Wang, “Evaluating Kolmogorov’s distribution,”
Journal of Statistical Software, vol. 8 mno. 18, 2003. [Online]. Available:
http://www.jstatsoft.org/v08/i18 79

M. A. Stephens, “EDF statistics for goodness of fit and some comparisons,”
Journal of the American statistical Association, vol. 69, no. 347, pp. 730-737,
1974. [Online]. Available: http://dx.doi.org/10.1080/01621459.1974.10480196
80

P. J. Schreier and L. L. Scharf, Statistical signal processing of complex-valued
data: the theory of improper and noncircular signals. Cambridge, UK: Cam-
bridge University Press, 2010. 83, 85

R. H. Allen, Star ~ Names: Their  Lore  and  Meaning.
New York, NY: Dover Publications Inc, 1963. [Online]. Avail-
able:  http://penelope.uchicago.edu/Thayer/E/Gazetteer/Topics/astronomy/
_Texts/secondary /ALLSTA /Canis_ Major*.html 85

J. G. A. Davis, “The pronunciations, derivations, and meanings of a selected

118


http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA278025
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA278025
http://dx.doi.org/10.1016/0167-2789(95)90079-9
http://www.jstor.org/stable/2280095
http://www.jstatsoft.org/v08/i18
http://dx.doi.org/10.1080/01621459.1974.10480196
http://penelope.uchicago.edu/Thayer/E/Gazetteer/Topics/astronomy/_Texts/secondary/ALLSTA/Canis_Major*.html
http://penelope.uchicago.edu/Thayer/E/Gazetteer/Topics/astronomy/_Texts/secondary/ALLSTA/Canis_Major*.html

[57]

[58]

[59]

[64]

[65]

[66]

list of star names,” Popular Astronomy, vol. 52, no. 3, 1944. [Online]. Available:
http://tinyurl.com/mhr444u

European Southern Observatory. (2014) Artist’s impression of the evolution
of a hot high-mass binary star (annotated version). [Online]. Available:
http://www.eso.org/public/videos/eso1230b

Wikipedia. Zeta canis majoris. [Online]. Available: http://en.wikipedia.org/
wiki/Zeta Canis Majoris 85

MacDonald, Dettwiler and Associates Ltd. (2011) Radarsat-2 product
description. [Online]. Available:  http://gs.mdacorporation.com/products/
sensor /radarsat2/RS2_ Product_ Description.pdf 88

Wikipedia. (2013) Naval station argentia. [Online]. Available: http://en.
wikipedia.org/wiki/Naval _Station_ Argentia xiv, 88, 89

MacDonald, Detwiler and Associates Ltd. Radarsat-2 sample dataset.
[Online]. Available: http://gs.mdacorporation.com/SatelliteData/Radarsat2/
SampleDataset.aspx 88

United States Air Force. (2013) MSTAR. [Online]. Available:  https:
//www.sdms.afrl.af.mil /index.php?collection=mstar 91
K. El-Darymli, C. Moloney, E. W. Gill, P. McGuire, and D. Power, “Design

)

and implementation of a low-power synthetic aperture radar,” in International

Geoscience and Remote Sensing Symposium (IGARSS’1}), IEEE, Quebec,
Canada, 2014. [Online]. Available: http://dx.doi.org/10.1109/IGARSS.2014.
6946618 93

G. L. Charvat. (2013) Low-power X-band rail SAR. [Online].
Available: http://www.glcharvat.com/Dr._Gregory L. Charvat_ Projects/
Low-Power X-Band Rail SAR.html 94

G. L. Charvat, L. Kempell, and C. Coleman, “A low-power high-
sensitivity X-band rail SAR imaging system,” Antennas and Propagation
Magazine, IEEE, vol. 50, no. 3, pp. 108-115, 2008. [Online]. Available:
http://dx.doi.org/10.1109/MAP.2008.4563576 94

M. Novey, T. Adali, and A. Roy, “A complex generalized Gaussian

distribution- characterization, generation, and estimation,” Signal Processing,

119


http://tinyurl.com/mhr444u
http://www.eso.org/public/videos/eso1230b
http://en.wikipedia.org/wiki/Zeta_Canis_Majoris
http://en.wikipedia.org/wiki/Zeta_Canis_Majoris
http://gs.mdacorporation.com/products/sensor/radarsat2/RS2_Product_Description.pdf
http://gs.mdacorporation.com/products/sensor/radarsat2/RS2_Product_Description.pdf
http://en.wikipedia.org/wiki/Naval_Station_Argentia
http://en.wikipedia.org/wiki/Naval_Station_Argentia
http://gs.mdacorporation.com/SatelliteData/Radarsat2/SampleDataset.aspx
http://gs.mdacorporation.com/SatelliteData/Radarsat2/SampleDataset.aspx
https://www.sdms.afrl.af.mil/index.php?collection=mstar
https://www.sdms.afrl.af.mil/index.php?collection=mstar
http://dx.doi.org/10.1109/IGARSS.2014.6946618
http://dx.doi.org/10.1109/IGARSS.2014.6946618
http://www.glcharvat.com/Dr._Gregory_L._Charvat_Projects/Low-Power_X-Band_Rail_SAR.html
http://www.glcharvat.com/Dr._Gregory_L._Charvat_Projects/Low-Power_X-Band_Rail_SAR.html
http://dx.doi.org/10.1109/MAP.2008.4563576

[67]

[68]

IEEE Transactions on, vol. 58 mno. 3, pp. 1427-1433, 2010. [Online|. Available:
http://dx.doi.org/10.1109/TSP.2009.2036049 96

Matlab. (2014b) Normal distribution. Mathworks R2013b documentation. [On-
line]. Available: http://www.mathworks.com/help/stats/normal-distribution.
html 97

K. El-Darymli, P. McGuire, E. W. Gill, D. Power, and C. Moloney, “Effect
of detection on spatial-resolution in synthetic aperture radar imagery and

mitigation through upsampling,” Journal of Applied Remote Sensing, vol. 8,
no. 1, 2014. [Online]. Available: http://dx.doi.org/10.1117/1.JRS.8.083601 111

120


http://dx.doi.org/10.1109/TSP.2009.2036049
http://www.mathworks.com/help/stats/normal-distribution.html
http://www.mathworks.com/help/stats/normal-distribution.html
http://dx.doi.org/10.1117/1.JRS.8.083601

5. Recognition of Nonlinear
Dispersive Scattering in Synthetic

Aperture Radar Imagery Imagery

5.1. Overview

This chapter presents a new insight into the nonlinear dynamics in SAR imagery.
For extended targets, the conventional radar resolution theory is violated due to the
nonlinear phase modulation induced by the dispersive scatterers. A novel algorithm
motivated by the Hilbert view for the nonlinear phenomenon is introduced. Our al-
gorithm may be used to not only detect the dispersive scatterers but also to estimate
the nonlinear order of the phase modulation. Our results are demonstrated on a rep-

resentative real-world target chip.

5.2. Introduction

Although our world is inherently nonlinear, conventional signal processing is built on
a linear system theory that sees deviation from linearity as a noise that warrants
removal. This is the Fourier view which assumes a first-order fundamental oscillation
and bounding higher order harmonics. Despite its mathematical soundness, this view
does not correspond to physical reality [!]. Nonlinear research migrates from the
Fourier view, and it can be broadly classified into two branches: (1) development
of methods that seek to exploit the nonlinear phenomenon and (2) development of
techniques to harness the nonlinear dynamics embedded in the data generated by the

linear signal processing methods. This chapter is concerned with the second branch,
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as it is applied to the focused single-channel complex-valued (CV) synthetic aperture
radar (SAR) image.

Following the conventional radar resolution theory, the focused SAR image is linear
[2]. Thus, analysis of the SAR image has traditionally been based on linear techniques
associated with the image intensity while the phase content is ignored. The inappli-
cability of the linear theory to extended targets has been reported in the literature
[3-5], based on the empirical observation that man-made targets produce dispersive
scattering. In effect, this induces a nonlinear phase modulation (PM) in the radar
return signal which causes a mismatch in the correlator’s output. This phenomenon is

preserved in the CV image rather than the detected one.

The Hilbert Huang transform (HHT) represents an advancement in nonlinear and
nonstationary signal processing [0]. First, it uses a technique known as empirical
mode decomposition (EMD) to decompose the data, according to their characteristic
scales, into a set of intrinsic mode functions (IMFs). Thus, unlike Fourier-based meth-
ods, the basis of the data comes from the data itself. Second, the IMFs are used to
construct a time/space-frequency-energy distribution known as the Hilbert spectrum.
Subsequently, the time/space localities of the events are preserved. Therefore, the fre-
quency and energy defined by the Hilbert transform have intrinsic and instantaneous
physical meaning. Although the term ‘spectrum’ and ‘frequency’ are traditionally as-
sociated with the Fourier-based analysis, the HHT provides a different interpretation
for these terms. In doing so, the HHT avoids the Heisenberg principle, which is a seri-
ous setback to all Fourier-based time/space-frequency methods including the wavelet

transform [6, 7].

In [3-5], a curve fitting algorithm is used to detect nonlinear scattering in SAR
imagery. We pinpoint two issues with this approach. Firstly, it is non-adaptive due to
its contingency on certain a priori assumptions. Secondly, while it identifies nonlinear
scattering in general terms, it neither classifies it nor estimates its order. The algorithm
presented in this chapter differs significantly. First, since our approach is motivated
by the HHT transform, it is entirely data-driven. Second, our approach allows for
classifying the dispersive scatterers as well as estimating their nonlinear order. To our
knowledge, this capability has not been previously demonstrated in the SAR literature.
A major advantage of the approach is the development of a new set of features which

exploit the nonlinear dynamics for target recognition applications.
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The remainder of this chapter is organized as follows. In Sect. 5.3, the origin of
the nonlinear phenomenon in SAR imagery is elaborated. In Sect. 5.4, the proposed
algorithm is introduced. In Sect. 5.5, an illustrative example is provided. Conclusions

are provided in Sect. 5.6.

5.3. Origin of the Nonlinear Phenomenon

The baseband backscatter zgp from a single point target, output from the quadrature
demodulator and downlinked to the SAR processor [2], is known as the phase history

or the raw data given by

an () = Aexp (G9) fur (=228 (- )

exp (—ﬂhj}M) exp (ijr (T _ 23(77)>2) } | (5.1)

where A is the backscatter coefficient (i.e., 0,), © is a phase change in the received

pulse due to the scattering process from a surface, j = v/—1, 7 is the fast time, 7 is
the slow time, w,(7) = rect(r/T,) is the transmitted pulse envelope, T, is the pulse
duration, R () is the distance between the radar and the point target, ¢ is the speed of
light in a vacuum, w, (1) is the two-way azimuth beam pattern, 7. is the beam center
in the azimuth direction, f, is the center frequency, and K, is the FM rate of the range

pulse. The SAR raw signal xpp (7,7) is conventionally modeled as

TBB (T>77) =4 (T> 77) ®h (T> 77) +n (T> 77) ) (52)

where ® denotes convolution, ¢ (7,7) is the ground reflectivity, h (7, 7) is the impulse
response of the SAR, and n (7,7) is a noise component mainly due to the front-end

receiver.

The SAR processor solves for g (7,1). Following the conventional radar resolution
theory, h (7,m), bounded by the curly brackets in Eq.5.1, is an impulse response of a

point target. For a given reflector within the radar illumination time, ¢ is assumed
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to be constant [2]. For the case of an extended target, this assumption is adopted
verbatim. Hence, such a target is modeled as the linear combination of its point reflec-
tors. However, the assumption of constant 1 is violated in the presence of dispersive
scattering from cavity-like reflectors, typical in stationary and moving man-made tar-
gets such as vehicles and airplanes. These reflectors trap the incident wave before it
is backscattered, thus, inducing a PM. The problem arises when the PM is nonlinear.
Besides the PM, this phenomenon also introduces amplitude modulation (AM) [3-5].

Thus, the backscatter term in Eq. 5.1 is rewritten

s (T (fr),m) = A7 (f=),n) exp (¢ (7 (), m)), (5-3)

where 7 (f;) is the time delay due to the PM, and f, varies over the spectral width
of the chirp, B. In Eq.5.3, it is emphasized that the magnitude and phase of the
backscatter is frequency dependent. While the AM is a linear process, this is often not
the case for the PM. Indeed, based on the principle of stationary phase (POSP), the

time delay induced by a dispersive scatterer is

P g () (5.4
where n is the order induced by the dispersive scatterer. For n € {0,1,2}, the PM
is linear, and its effect is either translation or smearing of the response in the corre-
lation filter. Another reason for the smearing of the response is the variable Doppler
processing used for motion compensation. However, for n ¢ {0, 1,2}, the phase cen-
ter possesses a nonlinear delay which introduces spurious effects in the correlator’s
output. This phenomenon is referred to as ‘sideband responses’, and the information
about it is preserved in the CV image rather than the detected one. Further, in the
presence of an extended target, it is empirically observed that this effect dominates
the focused SAR imagery [3-5]. The sideband responses are radically different from
the range and Doppler sidelobes. One of the reasons for this is that they are among
the strongest responses. Secondly, unlike the range and the Doppler sidelobes, they
are not restricted to the range and cross range gates. Thirdly, they are distributed

over an area far larger than that occupied by the target. As stressed in [3-0], these
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sideband responses cannot be suppressed by the weighting methods because they are
target generated. Obviously, the nonlinear PM violates the resolution theory of point

targets.

Although it is not common to exploit this phenomenon in radar applications, it
is well-known in wave theory (see Ch. 14 and 15 in [%]). Indeed, Huang et al. [!]
distinguish between two types of frequency modulation (FM): interwave and intrawave.
The former implies that the frequency of oscillation gradually changes as do the waves
in a dispersive system. The latter signifies that in dispersive waves, the frequency also
changes within one wave. Before the advent of the HHT, this phenomenon was often
treated as harmonic distortion [6]. In this study, we exploit this effect to detect and

classify the dispersive scatterers in SAR imagery.

5.4. Our Proposed Algorithm

Our proposed algorithm is depicted in Fig. 5.1. Firstly, the CV SAR chip is available

in the form

g(u,v)=i(z,y)+jq(zy), (5.5)

where i(@, g) and ¢ (@, g) are the real and the imaginary parts of the SAR chip,
respectively. To convert this chip to the 1-D space, the Radon transform is applied to

each part separately as follows

F(0,2) = Re{f (z.,1)}| (5.6)

6=[0,7)
where 6 € [m, 27] is omitted because the corresponding Radon transform is redundant.

Ry (x) is the line integral of f (@, g) parallel to the y axis defined as [9]

Ry (z) = /f(xcos@—ysin@,xsin@—l—ycos@)dy, (5.7)

—00
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Figure 5.1: Our proposed algorithm for detection and classification of the nonlinear
dispersive scatterers.

where 6 is the projection angle, and (x,y) are coordinates related to 6 by

T cosf sinf x
= . . (5.8)

Y —sinf cosf y
and (z,y) is rotated about the center of the image. The Radon transform is linear
which guarantees that it preserves the statistics of the original SAR chip. Then, the

projection angles are integrated-out through applying the Radon transform to Eq. 5.6

at ¢ = 3 as follows

F(z) = Ry {F (9,x)}|¢:% . (5.9)

The output given by Eq.5.9 is a 1-D vector I (z) and @ (z), respectively, repre-
sentative of 1 (z, g) and ¢ (@, g) Secondly, the ensemble EMD (EEMD) is applied
[10]. EEMD is a noise-assisted method which resolves the problem of mode mixing
encountered in the traditional EMD [0]. Primarily, EEMD defines the true IMF as

the mean value for an ensemble of trials. Each trial consists of the signal plus a white
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noise of a finite amplitude. Hence, the EEMD decomposes the input data to a small
number of IMFs based on the local characteristic time/space scale. An IMF represents
a simple oscillatory mode as a counterpart to the harmonic function. By definition,
an IMF is any function with the same number of extrema and zero crossings with its
envelope symmetric with respect to zero. This definition guarantees a well-behaved
Hilbert transform of the IMF. The procedure for extracting an IMF is referred to as
sifting. In our subsequent analysis, we use a local stopping criterion for the sifting

process as prescribed in [10]. Thus, a number m of IMFs are extracted from [ (z) and

Q (z) as

z_: Itvr (x)], + 11 (2),
= (5.10)

i@m J, + 7o (z).

where 77 (z) and 7 (x) are the residues.

Next, an analytic signal is formed from each IMF. Typically, the HHT achieves this
through computing the Hilbert transform for the IMF, and the result is placed in the
imaginary-part of the analytic signal. The real-part is the IMF signal itself. However,
according to the Paley-Wiener theorem, the CV SAR data output from the quadrature
demodulator is indeed an analytic signal whose imaginary-part is the Hilbert transform
of its real-part [1 1]. Hence, we form the analytic signals based on a proper combination

of the real-part and the imaginary-part for each IMF according to

[Hiur (2)], = [Iivr (2)], + 7 [Qrur (2)], (5.11)

where a € {1,...,m}. This representation is known as the Hilbert spectrum. Then,

the unwrapped instantaneous phase for the Hilbert spectrum is computed as

[H) (2)], = unworap (arg {[Hrvr (2)],}) (5.12)
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where untorap denotes the addition of multiples of £27 when absolute jumps between
consecutive elements of [H), ()], are greater than or equal to the default jump tolerance

of 7 radians.

Subsequently, the instantaneous frequency (IF) is computed following the definition
of the POSP as

18, (@), (513)

IF =
[1F (@), =
Then, the average frequency for the cycles of the IF and the real-part of each IMF

is computed as

[f17]a= favg ST (2)] o} 5 [f1]o=Favg {L1arr ()]} - (5.14)

Here, [frF], is the intrawave frequency and [f;], is the corresponding oscillation fre-

quency. Finally, we compute the nonlinear order for each IMF as [0, 12, 13]

0], = % +1. (5.15)

For % <1, [fir], is undersampled, and should not be used for calculating [O],.

5.5. An lllustrative Example

A single-channel (i.e., with a horizontal-horizontal (HH) polarization) SAR chip for
target D7 is arbitrarily chosen from the MSTAR dataset (see Fig.5.2). MSTAR is
a public-domain dataset that offers a nominal spatial resolution of 0.3047 m in both
range and azimuth [11]. In Fig. 5.3, this chip is transformed to 1-D space using Eq. 5.9.
Then, in Fig. 5.4, the EEMD is applied as described by Eq.5.10. Based on [10], we
used a number of 2000 ensembles with a ratio for the standard deviation of the added
noise to the signal equal to 0.2. The power of the EEMD is obvious as it decomposes
the SAR data into only four IMFs which are AM-FM signals. Note that the residues
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are discarded.
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Figure 5.2: MSTAR chip for target D7: HB14931.005.

Table 5.1: Order of the nonlinear scatterers in Fig. 5.5.

file | Urrla | Ou=Eet1

0.2621 Hz | 0.3414 Hz 2.3026
0.1364 Hz | 0.2154 Hz 2.5792
0.0678 Hz | 0.1076 Hz 2.5870
0.0256 Hz | 0.0476 Hz 2.8594

LN ECVIN IR e

Next, the IFs based on Eq.5.13 are depicted in Fig. 5.5. Two types of modulation
are noted: firstly, interwave modulation between the IMFs is a clear indicator for the
presence of dispersive scatterers; secondly, intrawave modulation is evident within each
[IF (x)],. In the case of linear dispersive scattering, one would expect the absence of
oscillations in [IF' (x)],. However, all [IF (x)], have oscillations, a clear indicator for
the nonlinear dispersive scattering [1, 6, 12]. In the final step, we compute the order of
the nonlinear scattering for each [IF (z)],. This is achieved through applying Eq. 5.15.
Our calculation for Eq.5.14 is based on the distance between the peaks. The orders

for the scatterers are provided in Table5.1.

This result reveals four different nonlinear scatterers in the MSTAR chip consid-

ered. The capability of our proposed method to identify and classify these dispersive
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Figure 5.3: Normalized I (z) and Q ().

scatterers is clear. This shows that the nonlinear effects in the CV SAR image can
offer an important set of features for target recognition applications. These features

are unique in that they accentuate the nonlinear dynamics of the scattering process.
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Figure 5.4: EEMD for Fig.5.3. Red solid line is for [I;jp (x)],. Dashed green line is
for [QIMF (Zl?)]a.
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Figure 5.5: IF for Fig.5.4. The ordinate is the normalized chirp bandwidth. For
MSTAR, B = 0.591GHz.

5.6. Conclusions

Dispersive scatterers from man-made targets induce a predominant nonlinear phase
modulation in the radar return signal. The conventional radar resolution theory views
this phenomenon as distortions that warrant removal. Motivated by the Hilbert view,
this chapter has presented a new insight into the nonlinear dynamics of the dispersive
scatterers. A novel algorithm for recognizing the order of the nonlinear scatterers is
introduced. The applicability of our algorithm is demonstrated on a real-world target
chip from the MSTAR dataset. Ongoing research involves the development of a new set

of features to harnesses this effect for target recognition applications in SAR imagery.
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6. Characterization and Statistical
Modeling of Phase in
Single-Channel Synthetic Aperture

Radar Imagery

6.1. Overview

Traditionally, the phase content in single-channel synthetic aperture radar (SAR) im-
agery is discarded. This practice is justified by the conventional radar resolution theory,
which is a theory strictly relevant to point targets. The advent of high-resolution radars
permits small targets previously considered to be points to be now treated as extended
targets, in which case this theory is not strictly applicable. With this in mind, this
chapter offers a new insight into the relevance of phase in single-channel SAR imagery.
The proposed approach builds on techniques from the fields of complex-valued and
directional statistics. In doing so, three main contributions are presented, the first
being a novel method for characterizing the phase content. Secondly, a new statistical
model for the phase is considered, and then a set of fifteen solely-phase-based features
are discussed. Our results are demonstrated on real-world SAR datasets for ground-
truthed targets. The statistical significance of the information carried in the phase is
clearly demonstrated. Furthermore, if applied to a dataset with higher resolution, the

proposed techniques are expected to achieve even higher performance.

134



6.2. Introduction

Synthetic aperture radar (SAR) is an active remote sensor that provides day-and-night
and all-weather broad area imaging capabilities at high resolutions. These unique ca-
pabilities make SAR a distinctive sensor for both civilian and military applications. In
most works published in the literature utilizing single look complex-valued (SLC) high-
resolution SAR imagery, and particularly for single polarization (i.e., single-channel),
the phase content is entirely discarded. Practitioners in the field usually comments
that the phase is discarded because it is random and uniformly distributed (i.e., in
the range (—m,7]) and, thus, useless. This statement bears some scrutiny. In order
to trace the root of this common belief, it is best to approach the topic from the
perspective of speckle. Indeed, the logic behind the discarding of the phase of a sig-
nal is based on the resolution theory of point targets [!], which in turn leads to the
so-called fully-developed speckle model [2]. Among the main hypotheses motivating
this model are [2, 3]: (1) the number of scatterers per resolution cell is large enough,
(2) the magnitude and phase of a particular scatterer do not depend on those of other
scatterers, (3) the magnitude and phase of any scatterer are independent of each other,
and (4) the phases are uniformly distributed between (—m, 7| (i.e., in other words, the
imaged surface is rough with respect to the wavelength of the radar). Clearly, with the
advent of high-resolution radars, the foregoing assumptions may be no longer strictly

applicable [1].

The main reason for violating the resolution theory of point targets is the intro-
duction of nonlinear phase modulation into a signal due to dispersive scatterers [].
This scattering behavior is due to the cavity-like reflectors in extended targets, and it
dominates the focused SAR imagery [1]. Although the practice of using the complex-
valued image is not common in the literature, in [1, 4, 5] a curve fitting algorithm is
used to detect nonlinear scattering in single-channel SAR imagery. The output from
this algorithm is used to generate features that take advantage of nonlinear scatter-
ing. These features are found to be useful for target recognition applications in SAR
imagery. Another advantage of using the complex-valued SAR image is that it retains
the full spatial resolution which is degraded by factors of two and greater for power

and magnitude detections, respectively [1, 6, 7].

The study in this chapter builds on three previous investigations [3—10]. In [8, 9],

an in-depth analysis for nonlinearity in single-channel SAR imagery was carried out.
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The analysis demonstrated the statistical significance of the nonlinear phenomenon in
high-resolution complex-valued SAR imagery. It was also shown that the nonlinear
effect is either obliterated or altered/diminished for magnitude and power detections,
respectively. In [10], an initial investigation into the effect of circularity /noncircularity
(also known as propriety /impropriety) in complex-valued SAR imagery was conducted.
It was demonstrated that, for the case of extended target, the complex-valued SAR
chip is noncircular. Also, a proportional relationship between noncircularity and non-

linearity was noted.

This chapter offers a new approach for extracting useful information from the phase
in single-channel SAR imagery. Primarily, the SAR image is considered from the
perspectives of complex-valued [11-13] and directional [11-16] statistics, respectively.
From the perspective of complex-valued statistics [| 1—13], the usefulness of the phase
can be quantified using a measure called noncircularity. Noncircularity simply means
that the complex-valued SAR image has a probability density function (PDF) that
is variant under rotation in the complex plane. This present research has indicated
that applying this measure directly to the phase image is misleading as it gives erro-
neous results for circularity (also known as propriety). Subsequently, it is important
that each pixel in the phase image is properly referenced to its neighbors. This is
achieved through borrowing relevant techniques from the field of directional statistics
[14=16] which can easily handle the issue of phase wrapping. Once preprocessed, it
transpires that in the presence of extended targets, the phase image is noncircular.
Furthermore, relevant techniques from the field of directional statistics are applied to
develop a suitable statistical model for the processed phase image. The following are

main contributions presented in this chapter:
e A method for characterizing the phase content in SAR imagery (see Sect. 6.5),
+ A statistical model for the characteristic phase in SAR imagery (see Sect.6.6),

and
o A set of fifteen solely-phase-based features for target classification in SAR im-
agery (see Sect.6.7).
The ideas presented in this chapter are applicable to various kinds of stationary and
moving extended targets including vehicles, ships, airplanes, icebergs, etc. Further-
more, the application of the methods proposed may be extended well beyond SAR

to include various types of coherent sensors in general such as radar, sonar, syn-
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thetic aperture sonar (SAS), ultrasound, and synthetic aperture ultrasound (SAU),
etc. Throughout the chapter, the term high-resolution is used to nominally refer to
a sensor with a spatial resolution finer than the size of the imaged target (i.e., an
extended target [17]). Finally, the term chip is used to refer to a smaller image, for a

particular target or clutter, extracted from a bigger scene.

The remainder of the chapter is organized as follows. In Sect. 6.3, the origin of the
nonlinear phenomenon in SAR imagery is described. In Sect. 6.4, the SAR datasets
utilized in this study are provided. In Sect.6.5, the proposed method for phase char-
acterization is introduced. In Sect. 6.6, the wrapped complex Gaussian scale mixture
(WCGSM) for phase modeling is presented and compared with von Mises (vM) and
wrapped Cauchy (WC) distributions. In Sect. 6.7, new fifteen phase-based features are
developed and used to demonstrate the advantage of the proposed methods for target

classification in SAR imagery. Finally, concluding remarks are given in Sect. 6.8.

6.3. On the Origin of the Nonlinear Phenomenon in

SAR Imagery

The baseband backscatter zgpg from a single point target, output from the quadrature
demodulator and downlinked to the SAR processor, is known as the phase history or

the raw signal given by [(]

zpp (T,1) = Aexp (jV) {wr (T - 2@) Wa (17 = 7c)

exp (1 ) xp (Wr (oo (?7))2) } | 6.)

where A is the backscatter coefficient (i.e., 0,), © is a phase change in the received

pulse due to the scattering process from a surface, j = v/—1, 7 is the fast time, 7 is
the slow time, w,(7) = rect(r/T,) is the transmitted pulse envelope, T, is the pulse
duration, R () is the distance between the radar and the point target, ¢ is the speed of
light in a vacuum, w, (1) is the two-way azimuth beam pattern, 7, is the beam center in

the azimuth direction, f, is the center frequency, and K, is the frequency modulation
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(FM) rate of the range pulse. The SAR raw signal is conventionally modeled as

zpp (1,m) =g (1,m) @ h(1,1) +n(1,7), (6.2)

where ® denotes convolution, g (7,7) is the ground reflectivity, h (7, 7) is the impulse
response of the SAR, and n (7,7) is a noise component mainly due to the front-end

receiver.

The SAR processor solves for ¢ (7,n). Following the conventional radar resolution
theory, h(7,m), bounded by the curly brackets in Eq. 6.1, is an impulse response of a
point target. For a given reflector within the radar illumination time, ¢ is assumed to
be constant [6]. For the case of an extended target, this assumption is retained. Hence,
such a target is modeled as the linear combination of its point reflectors. However,
the assumption of constant 1 is violated in the presence of dispersive scattering from
cavity-like reflectors, typical in stationary and moving man-made (extended) targets
such as vehicles and airplanes. These reflectors trap the incident wave before it is
backscattered, thus, inducing a phase modulation (PM). The problem arises when
the PM is nonlinear. Besides the PM, this phenomenon also introduces amplitude

modulation (AM) [1, 4, 5]. Thus, the backscatter term in Eq. 6.1 is rewritten as

s(t(fr),n) =A(r(fr),n)exp (]¢ (7— (f‘l’) ,77)) ) (6'3)

where 7 (f;) is the time delay due to the PM, and f, varies over the spectral width
of the chirp, B. In Eq.6.3, it is emphasized that the magnitude and phase of the
backscatter is frequency dependent. While AM is a linear process, this is often not
the case for PM. Indeed, based on the principle of stationary phase (POSP), the time

delay induced by a dispersive scatterer is

T (fr) zf(fT)O, (6.4)

where O is the order induced by the dispersive scatterer. For O € {0,1,2}, the PM is

linear, and its effect is either translation or smearing of the response in the correlation
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filter'. However, for O ¢ {0,1,2}, the phase center possesses a nonlinear delay which
introduces spurious effects in the correlator’s output. This phenomenon is referred
to as ‘sideband response’, and the information about it is preserved in the complex-
valued image rather than the detected one. Further, in the presence of an extended
target, it is empirically observed that this effect dominates the focused SAR imagery
[1, 4, 5]. The sideband responses are radically different from the range and Doppler
sidelobes. One of the reasons for this is that they are among the strongest responses.
Secondly, unlike the range and the Doppler sidelobes, they are not restricted to the
range and cross-range gates. Thirdly, they are distributed over an area far larger than
that occupied by the target. As stressed in [, 1, 5], these sideband responses cannot be
suppressed by the weighting methods because they are target generated. It is clear, as

a result of the effect, the nonlinear PM violates the resolution theory of point targets.

It may be noted that target recognition in SAR imagery is an important applica-
tion of the nonlinear phenomenon. Previous research has empirically observed that
‘nonlinear dynamics’ are dependent on the target type and the operating conditions at
which the target is imaged [1, 1, 5, 8, 10, 18]. Accordingly, through developing suitable
techniques to harness the ‘nonlinear dynamics’ in complex-valued SAR imagery, rele-
vant target recognition applications are naturally expected to achieve improvement in

target discrimination accuracy.

6.4. The SAR Datasets

This study utilizes two single-channel (i.e., HH) and SLC SAR datasets imaged in
the Spotlight mode: (1) a ground-truthed scene from the C-band Radarsat-2 (RS-
2) imaged in a site located in the former Naval Station Argentia of Newfoundland,
Canada [19], and (2) a comprehensive public-domain dataset collected and distributed
under the DARPA moving and stationary target recognition (MSTAR) program, and
acquired by an X-band STARLOS sensor [20]. The RS-2 scene offers a nominal spatial
resolution of 1.6 x 0.8 metres in range and azimuth, respectively [21]. The targets of
interest considered in this study are six construction vehicles. Ground-truthing (see
Fig. 6.1) was conducted by C-CORE?. The RS-2 scene is mainly used to demonstrate

!'Note that smearing also occurs due to the variable Doppler processing used for motion compensa-
tion.
http://www.c-core.ca/
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the population distribution for the characterized phase image (i.e., in Sect. 6.5).
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(a) Contrast-enhanced ~ and (b) Phase image.
magnitude-detected image. The
red and orange rectangles respec-
tively represent the target-free
(RS-2 TF) and the target chip
(RS-2 T1) utilized in Table6.2 .
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(c¢) Ground-truth image (right to left: 2 pickup (d) Histogram for the phase image
trucks, 2 dump trucks, 1 loader, 1 dump truck). in (b).

Figure 6.1: Spotlight RS-2 SLC image for a site in the former Naval Station Argentia
[19] in Newfoundland, Canada. Ground-truth image was provided by C-CORE.
RS-2 Data and Products © MacDonald, Dettwiler and Associates Ltd. (2011)

The MSTAR dataset provides a nominal spatial resolution of 0.3047 x 0.3047 metres
in range and azimuth. The dataset used in this study comes from two CDs avail-
able from the Sensor and Data Management System (SDMS) and entitled MSTAR /IU
Mixed Targets CD1 and CD2. In total, for each CD there are eight different types

of stationary (extended) targets imaged at azimuth angles covering the full span of
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[0°, 360°). CD1 and CD2 include SAR data collected at 15° and 17° depression angles,
respectively. In this chapter, the 17° and 15° datasets, respectively, are used for train-
ing and testing the classifier. A list for the target names and the overall number of the
complex-valued chips used in this study is provided in Table 6.1. Ground-truth pictures
for the eight MSTAR targets are depicted in Fig. 6.2. An example for a chip pertaining
to target T-62 is provided in Fig. 6.3. Fig. 6.1d and Fig. 6.3c serve to demonstrate the

shape of the histograms for the phase chip prior to characterization (see Sect.6.5).

23/4. (h) SLICY.

(8) ZSU-

Figure 6.2: Ground-truth pictures for the MSTAR targets used in this study [20].
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Table 6.1: List of the MSTAR targets used in this study.

No. of Training Chips | No. of Testing Chips

Target Name (17° depressiof anglIe)) (15° depressiorgl angllje)
BTR-60 256 195
251 299 274
BRDM-2 298 274
D7 299 274
T62 299 273
Z11-131 299 274
ZSU-23/4 299 274
SLICY 298 274

I 3N Bk, g
120 fX 8 . SRR
tal gy e ¢
1 A &y ?
S L
1 - gy, H 3 i
AR S0 i TR Y BTl
20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160 3 2 " 0 1 2 3

(a) Magnitude-detected chip. (b) Phase chip. (c) Histogram for the phase chip
in (b).

Figure 6.3: Images for an MSTAR chip of target T-62 (Tank HB15206.016). Azimuth
angle for this target is 5.515511°. In this chapter, this chip is referred to as MSTAR
T1.

6.5. Phase Characterization: Backscatter Relative
Phase Image (BRPI)

This section is comprised of three parts. An algorithm for phase characterization
in single-channel complex-valued SAR imagery is proposed in Sect.6.5.1. Measures
for circularity and noncircularity are introduced in Sect.6.5.2. Illustrative results are
provided in Sect. 6.5.3.
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6.5.1. A Novel Algorithm for Phase Characterization

The complex-valued SAR chip is available in the form

c(u,v) =i(z,y)+jq(zy), (6.5)

where i (x,y) and ¢ (z,y) are the real and imaginary parts of the complex-valued SAR
chip, respectively. Note that (x,y) represent the 2-D Cartesian coordinates of the
real-valued plane, while (u, v) represent the 2-D Cartesian coordinates in the complex-

valued plane. Hence, the phase chip is given by

¢ (z,y) = arg{c(u,v)} . (6.6)

The phase chip ® (z,y) should be properly processed in order to make sense of the
information content it carries. This is because, by definition, the phase is relative and
it often appears meaningless if it is not appropriately characterized. Accordingly, a
simple algorithm is proposed to compute the so-called backscatter relative phase image
(BRPI). Then, a histogram can be produced based on the BRPI image. The proposed
algorithm is depicted in Fig. 6.4.

Complex-Valued Phase Chip
SAR Chip, c{u,v) Md(x,y)=arg{c(u,v)}
L 4

CVF{u,v)=exp(j ®(x,y))

¥
Histogram of Backscatter Relative Phase Image
BRPI{x,y) BRPI(x,y)=arg{[CVF{u,v)]1/[f ® CVF(u,v)]}

Figure 6.4: Proposed algorithm for phase characterization in single-channel complex-
valued SAR imagery.
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(111111 1]
11111 1111111
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000 11011 1110111
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(k) Kernel k. 11111 1111111
(1) Kernel L 1111 1 1 1]

(m) Kernel m.

Figure 6.5: Examples of the convolution kernel f; tested in this chapter.

Phase values are in the range (—m, 7]. The phase chip should be first converted to the

polar form as

CVF (u,v) = exp (j® (x,y)) = cos{® (z,y)} + jsin{P (z,y)}. (6.7)

The main advantage of the polar representation is that it offers a unique means for
handling the phase wrapping typically encountered in linear statistics. This idea is
borrowed from the field of directional statistics *[14-16]. CVF (u,v) has a size M. X N...
The neighborhood-processed phase image is obtained through convolving CV F (u,v)
with a kernel fp. The kernel should have a value of zero in the center and ones where
desired. The kernel convolution operation produces an average phase image for the

neighborhood of each pixel in the phase chip. Examples of selected kernels tested in

3Directional statistics are also known as circular statistics. The name circular stems from the fact
that the phase values are on a circle where the angles m and —7 meet at the same point. In
directional statistics, ‘phase wrapping’ is also called ‘phase circularity’. This is not to be confused
with circularity /noncircularity discussed later in this chapter.
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this chapter are depicted in Fig.6.5. The convolution kernel f; has a size M x Ng.
M, and Ny are typically chosen to be odd values to avoid ambiguity in defining the
center pixel. Convolving CV F (u,v) with the kernel f; at a particular pixel location

in the image (m,n.) yields the following convolution image

My N
CI (me,ne) = fr@ CVF (me,n.) = Z Z Jr (mg,ng) CVE (me — my,ne — ny,)

me=1ng=1

(6.8)
where m. € {1,2,..., M.} and n. € {1,2,..., N.}. The BRPI image is defined as
CVF (u,v)
BRPI = — . 6.9
RPI(z,y) arg{ CI (u,v) } (6.9)

The resultant BRPI image defines the characteristic phase of each pixel in the input
phase image ® (x,y) relative to its neighborhood, defined by the convolution kernel fj.

6.5.2. Circularity vs. Noncircularity

From the perspective of complex-valued statistics, the practice of discarding the phase
may be justified by the implicit assumption that the underlying random variables are
second-order circular (also known as proper) in nature [I1-13]. The assumption of
circularity means that the complex-valued SAR chip has a PDF that is invariant un-
der rotation in the complex plane. This also implies that the complex-valued SAR
chip is uncorrelated with its complex-conjugate. Accordingly, discarding the phase
content implicitly implies that the aforementioned assumptions are satisfied. Other-
wise, valuable information about the targets in the complex-valued image is lost. This

information is important for target recognition applications.

Formally, a zero-mean complex-valued random variable (i.e., X = Xp+ jX7) is said

to be second-order circular, or proper, when its pseudo-covariance is zero [11]. That
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is,

v=E{X*} =0 (6.10)

This means,

OXp = 0X;, aHdE{XRX[} =0. (6.11)
where oy, and oy, are the standard deviations of the real and imaginary parts of X,
respectively.

For a random vector X, circularity implies that [

, 12]

E{XpXp} = E{X/X]}, (6.12)
and
E{XpX]} = -E{X;X}}, (6.13)

where Xy and X; are the real and imaginary parts of X, respectively; £ {-} is the

expectation; and 7' denotes the transpose.

A stronger condition for circularity is based on the PDF of the random variable.
A random variable X is circular if X and X exp (j®) have the same PDF (i.e., the
PDF is rotation invariant) [13]. This implicitly means that the phase of the complex-
valued random variable is non-informative; hence, the PDF is a function of only the
magnitude which implies that the PDF can be written as a function of X X™* rather
than X and X*, separately, where * denotes the complex conjugate. Since the phase is
non-informative for a circular random variable, a real-valued approach and complex-

valued approach for this case are equivalent [11, 12].
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In this chapter, a combination of two methods [1 1, 12] is applied to detect and charac-
terize the circularity /noncircularity in complex-valued single-channel SAR imagery. In
the first method, a hypothesis test is adopted to examine the circularity /noncircularity
(i.e., alternative hypothesis H; yc¢ is for noncircularity) in the complex-valued SAR
chip. This test employs a generalized likelihood ratio test (GLRT) based on the com-
plex generalized Gaussian distribution (CGGD) at a specific detection threshold de-
fined by the probability of false alarm (PFA) [12]. CGGD is a bivariate GGD model
that utilizes the so-called augmented representation [13] of the complex-valued ran-
dom variables, and it offers an excellent fit for the SAR data used in this study [9] (see
Fig. 6.8).

In the second method, the strength of noncircularity in the complex-valued SAR

chip is quantified using the modulus of the pseudo-covariance [11, 12]

1= [ ")

, 0 < |¥] < 1. (6.14)

Note that the greater |V|, the higher the noncircularity effect. Furthermore, the angle
of W is used in this study as a feature. It is defined by

LV =arg{V}. (6.15)

The foregoing two methods are applied to both the original phase chip (i.e., ® (z,y)) as
well as to the BRPI image given by Eq. 6.9. Thus, the random variable X is substituted
with the polar representations for the phase chip and the BRPI image, after they are

converted to a 1-D vector.

6.5.3. Results

This subsection demonstrates the applicability of the proposed phase characterization
method. Firstly, in order to gain an insight into the shape of the histograms produced
by the different kernels in Fig. 6.5, the proposed method is applied to the whole phase
image in Fig. 6.1b. The output result for the thirteen kernels considered is depicted in

Fig.6.6. This output represents the statistical distribution for the population. Next,
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the phase characterization method is applied to the phase chip for target T-62 from
the MSTAR dataset shown in Fig. 6.3b. The corresponding output result is given in
Fig.6.7.
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Figure 6.6: Normalized BRPI histograms (population distribution) pertaining to the
RS-2 image in Fig. 6.1b, and for all the kernels in Fig. 6.5. The abscissa denotes the
angles [—m, 7| in radians.

Based on these results, it is evident that the proposed method properly characterizes
the phase content in SAR imagery. This can be easily inferred through comparing
the output results in Fig. 6.6 and Fig. 6.7, respectively, with the original histograms
in Fig. 6.1d and Fig. 6.3c. It is obvious that kernels a, [ and m produce histograms
that look consistent with typical statistical distributions. Hence, these three kernels

are considered for all the subsequent analysis while the other kernels are discarded.

To further demonstrate the advantage of the proposed method, the two tests for
circularity /noncircularity (see Sect.6.5.2) are applied to a selection of three phase
chips both before and after phase characterization. The first and second phase chips
are for the target-free (TF) and the first target (T1) chips, respectively, taken from
the RS-2 image in Fig. 6.1a and Fig. 6.1b. The third phase chip is for the MSTAR
target T-62 (i.e., MSTAR T1) in Fig. 6.3b. The overall analysis results are given in
Table 6.2.

These results suggest that the phase for extended targets in SAR imagery is noncircular

in nature. However, in order to reveal the noncircularity, the phase chip should be
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Figure 6.7: Normalized BRPI histograms pertaining to the MSTAR phase chip in
Fig. 6.3b, for all the kernels in Fig.6.5. The abscissa denotes the angles [—7, 7| in
radians.

processed using the proposed method. Note that the RS-2 TF phase chip considered
is circular (i.e., |¥| = 0 and H; yc = 0). Furthermore, the RS-2 T1 phase chip possess
minimum noncircularity as suggested by |¥|. This is expected since RS-2 T1 is closer
to being a point-target. However, for the MSTAR T1 phase chip, the noncircularity
is more pronounced. This implies that the noncircularity measure i.e., |¥|, may serve
as a useful feature, for example, in target classification applications. The statistical
significance of the noncircularity in the MSTAR dataset is investigated later in this
chapter (see Sect.6.7).

6.6. Statistical Phase Modeling

An important aspect of statistical analysis is probability modeling. If the BRPI his-
togram can be fit to a particular probability model through a suitable process of
parameter estimation, then the phase information can be efficiently abstracted. In
Sect. 6.6.1.1, a novel statistical model for the BRPI image is introduced. In Sect.6.6.2,
two relevant circular models, used for comparison purposes, are overviewed. Finally,

the applicability of the proposed model is demonstrated in Sect. 6.6.3.
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Table 6.2: Results for the investigation into circularity /noncircularity of the phase in
single-channel SAR imagery. PFA=0.0001.

‘ ‘ RS-2 TF ‘ RS-2T1 ‘ MSTAR T1 ‘

Target Type Target-Free Point Extended
Shape parameter for CGGD (¢é) 1 1 0.2
Without Noncircularity
0 0 0
preprocessing (7—[1 N C’)
|| 0.0054 0.0097 0.0129
Preprocessing Noncircularity
0 0 1
with kernel (7‘[1,NC’)
a || 0.0055 0.0146 0.4683
Preprocessing Noncircularity
0 0 1
with kernel (H1,Nc)
l || 0.0022 0.0094 0.1908
Preprocessing Noncircularity
0 0 1
with kernel (Hl,NC’)
m || 0.0043 0.0062 0.0817

6.6.1. A Novel Statistical Model for the BRPI Image
6.6.1.1. Motivations

Envelopes for the histograms of the real and the imaginary parts pertaining to the
MSTAR chip in Fig. 6.3 are depicted by red dashed lines in Fig. 6.8. It is obvious that
these histograms follow a peaky and heavy-tailed non-Gaussian distribution (see [3-

| for more details). These characteristics can be well-modeled using the generalized
Gaussian distribution (GGD) [22]. The GGD distribution adapts to a large family of
symmetric distributions, from super-Gaussian to sub-Gaussian with specific densities
such as Laplacian and Gaussian distributions [23]. These histograms are fitted with the
GGD PDF. Fitting was done using the maximum likelihood estimator (MLE) [24, 25].

The fitting results are superimposed on the histograms in Fig. 6.8.

The normalized Jensen-Shannon divergence (JSDy) between the histogram and the
GGD PDF (see Eq. E.6 in Appendix E) for the real and the imaginary parts, respec-
tively, are 0.0059 and 0.0083. Note that the smaller the JSDy measure is, the better
the fit.
MSTAR dataset. It is well-known that the GGD distribution is a special case of the
A major advantage of the GSM

This goodness-of-fit is confirmed for various examples extracted from the

more generic Gaussian scale mixture (GSM) [20].
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model, besides its relative generality, is that it naturally accounts for correlations be-
tween the neighboring pixels which are not accounted for in the GGD model. Thus,
the complex GSM (CGSM) distribution is proposed to model the BRPI histogram.

The relevance of this choice is demonstrated below.
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Figure 6.8: Normalized histograms and GGD PDFs for the real and imaginary parts
of the MSTAR chip in Fig.6.3.

6.6.1.2. Modeling the Complex-Valued SAR Image (i.e., ¢(u,v)) Using CGSM

Consider the complex-valued SAR image represented by a complex random vector
2o = x¢ + jyc (i.e., this is the 1-D representation of ¢(u,v) in Eq.6.5). This vector
can be characterized by a CGSM model. The CGSM model is the product of a complex
Gaussian random vector (i.e., uc = uc,r + juc) and an independent hidden scalar
multiplier (i.e., 7¢). The neighboring pixels in the complex-valued SAR image are
indirectly linked by their shared dependency on the hidden multiplier. Hence, the
CGSM model can efficiently account for the correlation between neighboring pixels in
the complex-valued SAR image. Following the CGSM model, the real and imaginary

parts of the complex valued random vector can be described as follows [26, 27]

2c = o + Jyc = /Ycuc,r + J\/Ycuc,r = \/Ycuc. (6.16)

Since the distribution of the real-part (i.e.,z¢) is GSM, the conditional probability

p(xc|ye) is Gaussian. Similarly, since the distribution of the imaginary-part (i.e., y¢) is
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GSM, p(yc|ye) is also Gaussian. Accordingly, when it is conditioned on the multiplier
vc, the distribution of the complex-valued random vector (i.e., z¢) is complex Gaussian
and [26-25]

exp (—ng_l zc)

zclye

, 6.17
mdet (Ceine) (6:17)

p(zclve) =

where C,_},, = 7cCyo is the complex covariance matrix for z¢, Cy, = E [uc ug} is

the zero-mean (see Fig.6.8) complex covariance matrix for uc, and the dimensionality
of zc and ue¢ is N = 1 in this case; and H implies complex conjugate transposition.
Based on the definition of the CGSM model, u¢ is complex-Gaussian, and the scalar
real parameter ,/yc has some distribution on (0, 00) with a PDF p(y¢) where ¢ > 0
(see [28] for the PDF of 4¢). Subsequently, zc can be modeled with CGSM as [27, 28]

H -1
exp |—za C. zc
P(zc) :/ ( ol )

p(ye) dye. (6.18)
mdet (Ceine)

6.6.1.3. Modeling the Average Phase Image (i.e., C'I (u,v)) using CGSM

Given the wide range of distribution families encompassed by the CGSM model, it is
assumed that the complex-valued average phase image (i.e., CI (u,v) in Eq.6.8) can
be modeled using the CGSM model. By analogy with the earlier description, the 1-D

representation for CI (u,v) is given by

zor = xer + jycr = \/yerucrr + Jy/yerucrr = \/yerucr, (6.19)
and,
H 1
exp (—z¢;C; Zcr
p(zcr) = / ( ciher )p(’YCI)d”VCI- (6.20)
mdet (CZCI|’YC’I)
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Note that this model is assumed to hold for the three convolution kernels a, [ and m
of Fig.6.5.

6.6.1.4. Joint Distribution of ¢(u,v) and CI(u,v)

Given that z¢ and zop are modeled using CGSM, it is assumed that their joint distri-
bution is also CGSM (i.e., BRPI (z,y) in Eq.6.9). Accordingly, 2., = [2¢ zeq) " can

be modeled as

_H -1 .
eXp ( Zbrp/iozbrpi |’Ybrpi Zb,rpl)

72det (Cop o) 021

p (ZC> ch|”7brpi> =

Note that the vector dimension, NV is 2 in this case. Equivalently, this can be written

in polar form as [29]

p(roren ®o, Borlym) = 7 2det (C4) 1, ) rorerexp (—2tuCl) 1, 2rmi) -
(6.22)

The complex-valued random variables in Eq. 6.22 have a zero-mean (see Fig.6.8) and

their joint covariance matrix is defined as

P11 P12
Czbrpi"Ybrpi =FE [zbrpiazgpihbrpi} = VYorpi |: p* p ] . (623)
12 22

This matrix is positive definite Hermitian which implies that its inverse exists as

P [511 /312]7 6.24)

Zbrpi| Vorpi . *
TP TP f)/brpz 512 522
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where

Bra = |Bra| exp (]@12) : (6.25)
Subsequently, it can be easily shown that (see [29])
H -1

Zb'r‘pl Ozbrpi |’Yb'rpi Zbrp?,
|511| |512| exp (]QH)

= [ rcexp (—j®c) rorexp(—j®er) } [ | 12| exp (_j¢ ) 22|
P19

rcexp (P
[ cexp(j®c) | _ ré | Put| ey | Baal + 2rerer | Bia| cos ((I)C — ®or - 912) :

Tcr €Xp (j(pCI)

(6.26)

Substituting Eq.6.26 into Eq.6.22 and integrating-out rc and r¢; yields (see p. 557

in [29])

p(Pc, Por|Yorpi)

— 1 2det (Cz_bipmbm) / / rororexp(—re |fii—|ré ;| Bl
rcr=0rc=0
— 27’07’0[ |512| COS((I)C — (I)C[ — Qm))drcdrm
62

-1
= (87r2 | 511 |512|) det (C_l pri) — arccos® (x), (6.27)

Zbrpi 602

where

1 9
det (CZpri|’Ypri) — 1 |512|

_ 1.2
|Bual | Bra |511] | Baz| 1= Ay, (6.28)

where A2, is the correlation coefficient which may be observed to be independent of
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Yorpi (see Eq. 6.23 and Eq.6.24) since

2
1 2
)\2 — Yorpi 512‘ — |7b7‘p’ip12|2 — |p12| (6 29)
” %1 011 71 ﬂzg‘ Vorpiora| [Yorpip22| — p11] [ P22l
TPL brpi
Also, in Eq.6.27 y is given by
X = Apg Cos (<I>C —Por -, + 7r) ) (6.30)

Hence, Eq.6.27 simplifies to

1— X2, 02 ) 1— )% x arccos () 1
i _ 9
52 o2 recos (x) 5z X =) + =\

=N, X arccos (x)
C4r2 (1 —x?) ( (1- X2)0.5 + 1) . (6.31)

Noting that, according to Eq.6.29 and Eq.6.30, both A5 and x are independent on

P (Pc, Por|Vorpi) =

Yorpis

P (Pc, @or) p (Vorpi)

p (e, orlvomi) = P (ornd) =p(Pc, Per) - (6.32)
rpi
Thus, from Eq.6.31 and Eq.6.32,
1— )2 x arccos ()
Po, Peyp) = 12 +1). 6.33
p( c C'I> 47T2 (1 _ X2) ( (1 o X2>0.5 ( )

The interest here is in modeling the distribution of the BRPI image (i.e., ®p,,;) where

Dppi = o — Dy (6.34)
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Thus, from Eq. 6.30

¢ = A5 COS (@brm —¢,+ 7r) , (6.35)

and, Eq. 6.33 becomes

1— X2 x arccos ()
P (B + Ger, or) = oy ( e 1) (630

Subsequently, ®¢; can be integrated-out to obtain p (®y,,;) as follows

[o1- A2, X arccos ()
p ((Dbrpi) — /47’(’2 (1 _ XQ) ( (1 _ X2)0.5 + 1 d(DC[. (637)

—T

Hence,

2
P (P) = it (S 1) (639)
The BRPI model derived in Eq.6.38 is characterized by the location parameter ¢ €
[—7, 7] and the shape parameter A € [0, 1) where the subscript 12 is dropped for nota-
tional simplicity. This model is referred to as the wrapped CGSM (i.e., WCGSM (Q, )\))
It is noted that this model resembles that reported in [30] which is used for modeling
the 1-D complex-valued wavelet coefficients. Fig. 6.9 depicts the WCGSM (Q, )\) PDF
for two values of ¢ and various values of A\. Given that this phase model is derived
based on the CGSM distribution, it is straightforward to conclude that it encompasses
multiple circular distributions such as the von Mises (vM) and wrapped Cauchy (WC)

as special cases. This is explored in Sect. 6.6.3.
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-pi -pif2 0 pi/2 pi -pi -pil2 0 pi/2 pi
(a) WCGSM PDF for ¢ = 0. (b) WCGSM for ¢ = 0.757.

Figure 6.9: PDFs for the WCGSM distribution at different values of .

6.6.1.5. Parameter Estimation for IWCGSM (¢, )

The WCGSM distribution, characterized by two parameters, is given by

WOGSM (03) = p(0) = o (S 4] o

where,

X = Acos (i — G+ 7). (6.40)

In [30], the MLE approach for estimating the parameters of a similar PDF was inves-
tigated, and it was concluded that no closed-form solution exists. Subsequently, an
iterative procedure using the Newton-Raphson method was used. In this work, it is
proposed to estimate the parameters of the WCGSM model as follows. Firstly, ¢ is
the location parameter, and it has been empirically observed that it can be accurately

estimated using the circular mean of the BRPI image which is defined as [14]

n

¢ = arg (% > exp (jq’brm’,i)> ; (6.41)

i=1
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where n is the total number of samples in the BRPI image. Secondly, it is proposed to

utilize a simple numerical procedure based on the Jensen—Shannon divergence (JSD,

see Appendix E) to estimate the shape parameter (i.e., \) [31, 32]. This proposed

procedure may be summarized as follows:

1.

Convert the BRPI image (i.e., ®p;) to a 1-D vector; this vector has a length of

n.
Calculate é based on Eq.6.41.

Produce a histogram (i.e., h) based on the 1-D BRPI vector, and normalize it
(i.e., hNorm = ﬁ)
Define the desired range of A (i.e., lambdas € [Amin, Amaz] = [0,1)), and iterate

as follows:
.« i=1
o lambdas (1) = 0;
« while lambdas(i) < 1

— Produce the PDF for WCGSM model and normalize it as
N WCGSM($,lambdas(i))
* p <Z> o surn<VVC’GS]W((]S7 lambdas(i)))’

— Calculate the JS divergence between hyom, and p(i) as
x JS (i) = JSD (hnorm,p (7)); %See JSD below
—1=141;

Increment (inc) for iterations. The larger inc the faster will be the

algorithm and the smaller inc, the more accurate the estimation result.
* 1nc = 0.00001;
* lambdas(i) = lambdas(i — 1) + inc;
e end
e A\ =lambdas(JS == min(JS)); %Find the best fit
The JS divergence is calculated based on the following procedure (see Appendix E).
function JS = JSD(P,Q)
o P = P./sum(P);
« Q=Q./sum(Q);
o KL1=(P. x(log2(P)—10g2(Q)));
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« KL2 = (Q.* (log2(Q) — log2(P)));

total = (K L1 + KL2)/2;

« total(isnan(total)) = 0; %resolving P(i) = Qi) == 0
o JS = sumf(total)

end

As noted, for accurate estimation of A, inc should be small, and, in this chapter

inc = 0.00001 is used for all the calculations.

6.6.2. Relevant Circular Distributions

Two popular circular models, the von Mises (vM) and wrapped Cauchy (WC) are
considered in this subsection. The PDFs pertaining to these two distributions are

briefly introduced in Sect.6.6.2.1 and Sect. 6.6.2.2, respectively.

6.6.2.1. von Mises Distribution, vM (k)

The vM distribution is the circular analogue of the Gaussian distribution. It is the
most commonly used symmetric unimodal distribution for circular data. The vM
distribution is a special case of the von Mises-Fisher distribution on the N-dimensional

sphere. The vM PDF for the circular random variable (i.e., the phase, x) is given by

[16, 33]

B exp (k cos (T — fypr))
oM (1, k) = [ (@lporr, £) = o], (1)

where, — 1 < pyp <7, 0 < K <00, (6.42)

and

« I, (k) is the modified Bessel function of order 0; I, (k) = L [ exp (k cos (z)) dz.

e iy is the circular mean, which is a measure of location analogous to the mean

in Gaussian distribution.

K is a measure of concentration. It is the reciprocal of dispersion. Note that 1/

is analogous to o2 in the Gaussian distribution. As x = 0, the vM distribution
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converges to the uniform distribution. As x becomes large, the vM distribution
approaches the Gaussian distribution. As k = oo, the vM distribution tends to
the point distribution concentrated in the direction pu.
The PDEFs of the vM distribution for p,, = 0 and p,n = 0.757 at different values of
r are depicted in Fig. 6.10a and Fig. 6.10b, respectively. These two parameters of the

vM distribution can be estimated in a closed form based on an MLE procedure (see
Sect. F.1).

-pi -pif2
(a) vM PDF for p,p = 0. (b) vM PDF for pi,p = 0.757.

Figure 6.10: vM PDF for two values of 1, and different values of .

6.6.2.2. Wrapped Cauchy (also known as wrapped Lorentzian) Distribution,
WC (pwe; p)

The WC distribution is a symmetric unimodal distribution that can be obtained by
wrapping the Cauchy distribution (on the line) around the circle. The PDF of the WC
distribution is given by [34]

1 1-p?
27 1+ p? — 2pcos (T — fiywe)’
where — 7 < e <7, 0 < p < 1. (6.43)

WO (ftwe, p) = f (|11, p) =
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Note that . is the location parameter and p is the scale parameter. As p = 0 the
WC distribution converges to the uniform distribution. As p = 1, the WC distribution
tends to the point distribution concentrated in the direction p,.. The PDFs of the
WC distribution for p,. = 0 and g, = 0.757 at different values of p are depicted in
Fig. 6.11a and Fig. 6.11b, respectively. A summary of the estimation procedure for
the two parameters of the WC distribution is provided in Sect. F.2.
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-pi -pir2 0 pif2 pi pi -pif2 0 pil2 pi
(a) WC PDF for fiye = 0. (b) WC PDF for e = 0.757.

Figure 6.11: WC PDF for two values of p,,. and different values of p.

6.6.3. Fitting Results

To demonstrate the applicability of the WCGSM PDF, two phase chips from the
MSTAR dataset are considered. The first phase chip, referred to as MSTAR T1, is for
target T-62 shown in Fig. 6.3b. The second phase chip, referred to as MSTAR T2, is
for target BRDM-2 (see Fig.6.2). The ID number for this chip is HB15156.001 and
the azimuth angle is 103.325272°. For these two chips, the BRPI images for kernels
a, [ and m of Fig.6.5 are obtained as described in Sect.6.5.1. Then, for each BRPI
image, the parameters of the WCGSM, vM and WC PDFs, respectively, are computed
as described in Sect.6.6.1 and Sect.6.6.2. The fitting results pertaining to MSTAR
T1 are depicted in Fig.6.12. The overall fitting results for the two chips along with
the goodness-of-fit in terms of JSDy (see Eq.E.6 in Appendix E) are presented in
Table6.3.
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are superimposed on the BRPI histograms for kernels a, [ and m.

The following conclusions are drawn based on the results obtained. Firstly, comparing
the vM, WC, and WCGSM PDFs it is apparent that the latter achieves the best fit
for the three kernels. Secondly, as one moves from kernels a to m, the peakedness and
heavy tails of the corresponding BRPI histograms become less pronounced. The WC
PDF is more heavy-tailed and more peaked, which makes it a better model than the
vM PDF for the BRPI histogram of kernel a. On the contrary, the vM PDF is less
heavy-tailed and less peaked, which makes it a better model than the WC PDF for
the BRPI histogram of kernel m. The peakedness and heavy tails pertaining to kernel
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Table 6.3: Parameter estimates pertaining to kernels a, [ and m for the vM, WC and
WCGSM PDFs.

Kernel vM wc WCGSM
Chip JSDn JSDn JSDn
fx (N’L)My H) (,uwc; ,0) (¢7 )‘)
0.0053, 0.0048, 0.0053,
T MSTAR #1 0.0065 0.0021
1.9418 0.6458 0.7919
a
0.0033, -9.215e-04, 0.0033,
T MSTAR #2 0.0061 0.0018
1.8884 0.6398 0.7846
0.0081, 0.0061, 0.0081,
T MSTAR #1 0.0012 0.0012
. 1.0561 0.4457 0.5641
-3.78e-04, 0.0021, -3.78e-04,
T MSTAR #2 0.0012 0.0010
1.0237 0.4373 0.5529
0.0004, -0.003, 0.0004,
T MSTAR #1 7.1752e-04 8.4103e-04
0.6440 0.2983 0.3798
m
-0.002, 7.1424e-04, -0.002,
T MSTAR #2 6.6240e-04 6.8543e-04
0.6466 0.3013 0.3824

[ is moderately situated between that of kernels a and m. This makes the fits of the
vM and the WC PDFs relatively similar for this case. Finally, the results obtained
demonstrate the general applicability of the WCGSM PDF and its adaptability to the
BRPI histograms for the three kernels. It is evident that the vM and the WC PDFs
can be viewed as special cases of the WCGSM PDF.

6.7. Classification Using Phase-Based Features

The purpose of this section is to demonstrate the advantage of the proposed meth-
ods for phase characterization and modeling in target classification in SAR imagery.
First, baseline features extracted from the power-detected SAR chip are provided in
Sect.6.7.1. Then, a set of fifteen features based solely on the phase image are in-
troduced in Sect.6.7.2. Support vector machine (SVM) classifier design and feature
ranking are described in Sect.6.7.3 and Sect.6.7.4, respectively. Finally, the overall

results are presented in Sect. 6.7.5.
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6.7.1. Baseline Features

Baseline features are solely based on the power-detected SAR chip. Nineteen baseline
features are utilized in this study. The procedure for extracting the baseline features

is summarized in Fig. 6.13. First, the complex-valued SAR chip is power-detected as

p(x,y) = [i (z,9)]" + [q (z,9)]". (6.44)
Power Detection Adaptive Thresholding z
22 — E_— =
p=i"+q (Kapur method) o 3
! I B¢
S8
/ Baseline /7 Feature Extraction ] 51
Features

Figure 6.13: Procedure for extraction of the baseline features.

Then, the power-detected SAR chip is thresholded through an adaptive information
theoretic approach based on the entropy of the histogram as originally proposed by
Kapur et al. [35]. This method was chosen because it is found to offer excellent
performance. Further, morphological dilation is applied to the thresholded image [30].
This operation is aimed at merging the relevant different connected regions in the
thresholded image into one contiguous region representative of the target extent. In
the next step, a set of features is extracted from the binary image, the dilated binary
image, and the gray-level image. These extractions are meant to represent the power-

based features commonly used in the literature, and they include the following [37]:
o Number of scattering centers (fpr1): the number of connected regions in the
binary image.
o Area (fpr2): the total number of pixels with value of one in the binary image.

o Centroid (fprs, fpr4): the ‘center of mass’ of the dilated binary image. Note

that the first element (fpr3) is the horizontal coordinate (or z-coordinate) of
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the center of mass, and the second element (fpr4) is the vertical coordinate (or

y-coordinate).

Major axis length (fprs): the length (in pixels) of the major axis of the ellipse
that has the same normalized second central moments as the region. This mea-

sure is based on the dilated binary image.

Minor axis length (fpre): the length (in pixels) of the minor axis of the ellipse
that has the same normalized second central moments as the region. This mea-

sure is also based on the dilated binary image.

Eccentricity (fpr7): the eccentricity of the ellipse that has the same second-
moments as the region. The eccentricity is the ratio of the distance between the
foci of the ellipse and its major axis length. The value is between 0 and 1. This

measure is also based on the dilated binary image.

Orientation (fprs): the angle (in degrees ranging from —90° to 90°) between the
r-axis and the major axis of the ellipse that has the same second-moments as

the region. This measure is also based on the dilated binary image.

Convex area (fpro): the number of pixels in the convex hull that specifies the
smallest convex polygon that can contain the region. This measure is also based

on the dilated binary image.

Euler number (fgr10): the number of objects in the region minus the number of
holes in those objects. This measure is based on the binary image.

Equivalent diameter (fpr11): the diameter of a circle with the same area as the
region. Computed as \/% fBro. This measure is based on the dilated binary
image.

Solidity (fpri12): the proportion of the pixels in the convex hull that are also in

the region, computed as % This measure is also based on the dilated binary
image.

Extent (fpri3): the ratio of pixels in the region to pixels in the total bounding

fBL2 : :
box. Computed as s—— 782 g Box- This measure is also based on the

dilated binary image.

Perimeter (fpr14): the distance between each adjoining pair of pixels around the

border of the region. This measure is also based on the dilated binary image.

Weighted centroid (fpris, fBr16): the center of the region based on location and
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intensity value. The first element (fpri5) is the horizontal coordinate (or -
coordinate) of the weighted centroid. The second element (fgr16) is the vertical
coordinate (or y-coordinate). This measure is based on both the dilated binary

image as well as the power-detected intensity image.

Mean intensity (fpr17): the mean of all the intensity values in the region of the
power-detected image as defined by the dilated binary image.

Minimum intensity (fpr1s): the value of the pixel with the lowest intensity in
the region of the power-detected image as defined by the dilated binary image.
Maximum intensity (fpr19): the value of the pixel with the greatest intensity in

the region of the power-detected image as defined by the dilated binary image.

6.7.2. Features Based Solely on the Phase Image

While various types of features can be extracted based on the BRPI image as well as
the WCGSM model described in Sect. 6.5 and Sect. 6.6, for demonstration purposes

the following set of fifteen features are considered in this study:

The location parameter based on kernel a (fpp1): this is the location parameter
é of the WCGSM PDF for kernel a (see Fig.6.5) estimated based on Eq.6.41.

The shape parameter based on kernel a (fppo): this is the shape parameter \ of
the WCGSM PDF for kernel a (see Fig. 6.5) estimated based on the JSD method
presented in Sect. 6.6.1.5.

Maximum peak value for kernel a (fpp3): this is the peak value for the WCGSM

PDF based on kernel a. This is analogous to the peak value for the the normalized
histogram defined by h/sum(h) (see Fig.6.12).

The location parameter based on kernel [ (fpp4): this is the location parameter
é of the WCGSM PDF for kernel [ (see Fig.6.5) estimated based on Eq.6.41.
The shape parameter based on kernel | (fpps): this is the shape parameter A
of the WCGSM PDF for kernel | (see Fig.6.5) estimated based on the JSD
divergence method presented in Sect. 6.6.1.5.

Maximum peak value for kernel I (fppg): this is the peak value for the WCGSM
PDF based on the kernel [.

The location parameter based on kernel m (fpy7): this is the location parameter
é of the WCGSM PDF for the kernel m (see Fig. 6.5) estimated based on Eq. 6.41.
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o The shape parameter based on kernel m (fppg): this is the shape parameter A
of the WCGSM PDF for kernel m (see Fig.6.5) estimated based on the JSD
method presented in Sect. 6.6.1.5.

« Maximum peak value for kernel m (fppg): this is the peak value for the WCGSM
PDF based on kernel m.

« First pseudo-covariance measure (fpp10): this is the measure given in Eq.6.15,

and based on kernel a.

» Second pseudo-covariance measure (fpy11): this is the measure given in Eq.6.15,

and based on kernel [.

o Third pseudo-covariance measure (fpp12): this is the measure given in Eq.6.15,

and based on kernel m.

« First noncircularity measure (fpp13): this is the measure given in Fq.6.14, and

based on kernel a.

 Second noncircularity measure (fpp14): this is the measure given in Eq.6.14, and

based on kernel [.

 Third noncircularity measure (fpp15): this is the measure given in Eq.6.14, and

based on kernel m.

It may be noted that because the ‘sideband responses’ due to the nonlinear scattering
are distributed over an area far larger than that physically occupied by the target [1],
no segmentation should be utilized and the largest area possible around the target
should be included. Hence, the entire MSTAR chip provided by SDMS is used in this

study.

6.7.3. Classifier Design

The open source LIBSVM machine learning library [38] is used in this study to design
an eight-class support vector machine (SVM) classifier. The kernel used in this work
is the Gaussian radial basis function (RBF) [39, 10]. Two parameters (C,v) play a
crucial role in dictating the performance of the SVM classifier. C' > 0 is the penalty
or regularization parameter, and v > 0 is the kernel parameter (see [35] for details).
Following the guidelines in [38, 39, 41], a grid-search and a v-fold cross-validation can

be used to find the optimal values of these two parameters.
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6.7.4. Feature Ranking

In this study, the Fisher score (F-Score) [12] is used to evaluate the statistical signif-
icance of the features. The F-Score is a technique for measuring the discrimination
of two sets of real numbers. Given the training vectors x; where kK = 1,...,m and if
the number of positive and negative instances are n, and n_, respectively, then, the

F-Score of the i'! feature is defined as [10, 12, 43]

(67 %) + (57 - %)

F(i)= > 5. (6.45)
n + —(+ n_ — —(—
L (o) - =)+ e i (e - %)
where X;, )‘(EH and )_cl(-_), respectively, are the averages for the i'" feature of the whole,

positive and negative datasets; x,(jl) is the i*® feature of the k" positive instance; xé_l) is

the i*® feature of the k™ negative instance. The numerator indicates the discrimination
between the positive and negative sets, and the denominator indicates that within
each of the two sets. The larger the F-Score is, the more likely the feature is more

discriminative [12, 13].

6.7.5. Results

Two different training and testing feature sets are extracted using the MSTAR datasets
presented in Sect. 6.4. The first feature set contains the baseline features based on the
power-detected SAR chips described in Sect. 7.8.1. In total, there are nineteen baseline
features for each target chip. Hence, the size of the constructed baseline features matrix
for training is 2347 x 19 and for testing is 2112 x 19. The second set is for the phase-
based features presented in Sect. 6.7.2. Fifteen phase-based features are extracted from
each target chip. The size of the phase-based features matrix for training is 2347 x 15
and for testing is 2112 x 15.

Following the steps outlined in Sect.6.7.3, two different multi-class SVM classifiers
are trained using the training baseline and phase-based feature sets. The grid search for
the optimal values of (C, v) pertaining to the two classifiers is depicted in Fig. 6.14.
The accuracy depicted is based on a five-fold cross validation. Optimal values are

found to be (2°, 27!) and (2, 2), respectively, for the baseline and phase-based feature
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sets. Once the two classifiers are constructed based on the optimal parameters found,
the classifiers are tested using the baseline and the phase-based testing feature sets,
respectively. The confusion matrices for the baseline and phase-based classifiers are
provided in Fig. 6.15 and Fig. 6.16, respectively. The overall classification accuracy (as

well as the validation accuracy) is calculated based on [38] as

No. of Correctly Predicted Data
No. of Testing Data

Accuracy = x 100. (6.46)

The classifier based on the baseline features achieves an overall classification accuracy
of 73.6269%. Moreover, the results obtained for the phase-based features evidently
demonstrate that the phase in single-channel SAR imagery is not useless as is often
assumed in the literature. On the contrary, based only on fifteen phase-based features,
an overall classification accuracy of 63.0208% is achieved. In comparison to the other
targets, it is noted that SLICY, BTR-60, ZSU-23/4 and 2S1, respectively, scored an
overall classification accuracy of 97.4453%, 87.6923%, 79.1971% and 71.5328% for the
phase-based features, and an overall classification accuracy of 96.7153%, 73.3333%,
72.9927% and 64.2336% for the baseline features. This is a clear indication that the
nonlinear dynamics possessed in the phase chips of these targets are relatively more
pronounced, and they are captured by the proposed features. It is worth noting that
SLICY achieved the highest classification accuracy for both the baseline and the phase-
based classifiers. This is expected due to the unique phenomenology of SLICY in
comparison to the other targets considered. It should also be noted that if a SAR
dataset with higher resolution is used, one would expect an increase in the classification

accuracy based solely on the phase features.

Next, the combinatorial effect of the baseline and the phase-based features is studied.
This serves to illustrate the uniqueness of the information carried in the phase in
comparison to the power-detected chip. The amalgamation of the baseline and the
phase-based features is used to build a new SVM classifier following the procedure
described in Sect.6.7.3. Thus, the sizes of the new features matrices for training and
testing, respectively, are 2347 x (19 4 15) and 2112 x (19 + 15). The optimal values
for (C, «) are obtained based on a grid search (see Fig. 6.17) and found to be (2°, 271).

The confusion matrix and the classification accuracy for this classifier are provided in
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Fig. 6.18.
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(b) Grid search for the phase-based features.

Figure 6.14: Grid search for optimal (C, ) for the two set of features.
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BTR — 60 251 BRDM — 2 D7 T62 ZIL — 131 ZSU —23/4  SLICY

BTR — 60 73.3333 3.0769 8.2051 2.0513 6.1538 3.0769 4.1026 0
251 5.8394 64.2336 6.9343 6.2044 8.7591 5.8394 1.0949 1.0949
BRDM -2 9.4891 5.8394 71.8978 0.3650 3.6496 4.7445 4.0146 1.0949
D7 2.1898 5.1095 2.1898 77.3723  4.3796 3.2847 4.7445 0.7299
T62 6.2271 10.6227 5.4945 0.7326  67.3993 3.6630 5.4945 0.3663
ZIL — 131 6.2044 9.4891 5.1095 1.4599 9.4891 64.9635 1.0949 2.1898
ZSU —23/4 6.5693 2.9197 4.0146 7.2993 4.3796 1.4599 72.9927 0.3650
SLICY 0.3650 1.4599 0 0.3650 0 1.0949 0 96.7153

Figure 6.15: Confusion matrix for the baseline classifier. Classification accuracy =
73.6269% (1555/2112).

BTR — 60 251 BRDM — 2 D7 T62 ZIL — 131 ZSU-—23/4 SLICY
BTR — 60 87.6923 3.5897 1.0256 1.0256 0 0 3.0769 3.5897
251 6.9343 71.5328 1.8248 15.3285 0.7299 1.4599 1.8248 0.3650
BRDM — 2 0.7299 5.8394 43.4307 10.9489  19.3431 12.0438 7.2993 0.3650
D7 0 15.6934 6.2044 44.8905  9.1241 20.8029 3.2847 0
T62 0 0.7326 13.9194 8.0586  43.5897  20.5128 13.1868 0
ZIL — 131 0.3650 4.0146 6.2044 30.6569  10.9489  43.4307 4.3796 0
ZSU —23/4 0 0 4.3796 0.3650 12.7737 1.0949 79.1971 2.1898
SLICY 0 0 1.0949 0 0 0 1.4599 97.4453

Figure 6.16: Confusion matrix for the classifier based solely on the phase features.
Classification accuracy = 63.0208% (1331/2112).

These results demonstrate the uniqueness of the phase-based features. Particularly,
upon combining the baseline and the phase-based features, the overall classification
accuracy is increased by around 8%. Again, if a SAR dataset with higher resolution
is used, one would expect even greater increase in accuracy. Next, the combination of
the baseline and the phase-based features are ranked based on the procedure outlined
in Sect.6.7.4. F-Scores for the features are depicted in Fig.6.19. The correspond-
ing F-Score values are given in Table6.5. Generally, the F-Score results convey that
five of the phase-based features possess higher significance than the baseline features.
Additionally, the F-Score of the phased-based features with indices of 22, 32 and 21,
respectively, are around seven-fold of the maximum F-Score pertinent to the baseline
features scored by the baseline feature with index number five. This shows the utility

of the phase-based features.
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Figure 6.17: Grid search of optimal (C, 7) for combinations of the baseline 4+ phase-
based features.

BTR — 60 251 BRDM — 2 D7 T62 ZIL — 131 ZSU —23/4 SLICY
BTR — 60 88.2051 4.1026 1.0256 1.5385 0 1.0256 1.5385 2.5641
251 8.0292 79.5620 2.9197 5.4745 1.4599 2.1898 0.3650 0
BRDM — 2 0.3650 7.2993 75.5474 1.4599 5.8394 6.9343 2.5547 0
D7 1.4599 4.0146 3.2847 84.6715 2.1898 3.2847 1.0949 0
T62 0.7326 2.1978 10.2564 1.4652 73.6264 6.2271 5.4945 0
ZIL — 131 1.8248 8.0292 7.6642 3.6496 9.1241 68.6131 1.0949 0
ZSU — 23/4 0 1.4599 4.0146 2.1898 4.3796 1.4599 85.4015 1.0949
SLICY 0 0.3650 0.3650 0.3650 0 01.0949 0.3650 97.4453

Figure 6.18: Confusion matrix for the classifier based on baseline and phase-based
features. Classification accuracy = 81.392% (1719/2112).

F-Score

12 3 4 5 6 7 8 910111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Feature Index

Figure 6.19: Significance in terms of the F-Score for all the features (baseline + phase-
based) used in this study. Blue and red bars, respectively, represent the baseline

and phase-based features. The feature index corresponds to the feature subscript
provided in Table 6.4.
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Table 6.4: F-Scores for the baseline features used in this study

Index 1 2 3 4 5 6 7 8

Type fBL1 fBL2 fBL3 fBL4 fBLs fBL6 fpL7 fBLs
F-Score 0.104282 0.174448 0.026250 0.240112 | 0.525163 | 0.116269 | 0.356272 0.007372

Index 9 10 11 12 13 14 15 16

Type fBL9y fBL10 fBL11 fL12 fer13 fBL14 fBL15 fBL16
F-Score 0.234009 | 0.074707 | 0.252705 0.071361 0.090576 | 0.435705 0.037509 0.205777

Index 17 18 19

Type fer17 fBL18 fBL19
F-Score 0.296468 | 0.037128 0.290143

Table 6.5: F-Scores for the phase-based features used in this study.

Index 20 21 22 23 24 25 26 27

Type frn1 frhno frns frha frus frhe fpn7 frns
F-Score 0.002161 3.40389 3.93829 0.001028 | 0.852989 | 0.850224 | 0.000536 0.451283

Index 28 29 30 31 32 33 34

Type frho frh1o frn11 frhi2 IR frh14 frn1s
F-Score 0.437565 0.003383 0.004468 0.001335 | 3.609093 | 0.466928 | 0.100274

The following observations are based on the results obtained. First, unlike the
common belief that the phase in single-channel complex-valued SAR imagery carries
no useful information, the statistical significance of the information carried in the
phase is clearly demonstrated. Second, the top ranked feature is that based on the
peak value of the normalized WCGSM model. This is directly followed by the measure
for noncircularity based on the absolute value for the pseudo-covariance of the BRPI
image. Then, this is followed by the shape parameter of the WCGSM PDF. This
demonstrates the advantage of the proposed method for phase characterization and
modeling. Finally, it should be stressed that because we do not have access to a dataset

with a greater resolution (i.e., typical of today’s airborne SAR sensors), the MSTAR
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dataset was utilized to illustrate the general advantages of our proposed methods.
With the increase in the spatial resolution of the SAR sensor relative to the size of the
imaged target, the nonlinear phenomenon is naturally expected to be more pronounced.
Accordingly, the application of the proposed approach to this kind of SAR imagery

should achieve higher classification accuracy.

6.8. Conclusions

Nonlinear phase modulation is a phenomenon of significance for extended targets in
SAR imagery. Important information about this phenomenon is carried in the often
discarded phase of the SAR image. This chapter presented a new insight into the
phase in single-channel SAR imagery. A method for characterizing the phase content
is presented. Additionally, a statistical model for the characteristic phase is derived.
Furthermore, a set of fifteen phase-based features are introduced. The applicability of
the proposed features is demonstrated on eight-class real-world phase chips from the
MSTAR dataset. When a dataset with higher resolution is available, the techniques
proposed in this chapter are expected to achieve superior classification accuracy. On-
going research effort is focused on developing novel methods that take advantage of
the nonlinear dynamics in the complex-valued SAR chip. The combinatorial effect for

various types of features, including those considered in this study, will be examined.
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7. Holism for Target Classification in
Synthetic Aperture Radar Imagery

7.1. Overview

Reductionism and holism are two worldviews underlying the fields of linear and nonlin-
ear signal processing, respectively. The conventional radar resolution theory is moti-
vated by the former view, and it is violated due to nonlinear phase modulation induced
by the dispersive scattering typically associated with extended targets. Motivated by
the latter view, this chapter offers a new insight into the process of feature extrac-
tion for target recognition applications in single-channel SAR imagery. Two novel
frameworks for feature extraction are presented. The first framework is based solely
on the often-ignored phase chip. The second framework uses the complex-valued 2-D
SAR chip after it is transformed into a 1-D vector. This transformation provides for
the utilization of various nonlinear and nonstationary time series analysis methods.
Some representative nonlinear features based on these two frameworks are introduced.
Further, for comparison purposes, baseline features from the power-detected chip are
also considered. Multiple instances of an eight-class support vector machine (SVM)
classifier are designed based on combinations of feature sets extracted from the public-
domain MSTAR dataset. A classification accuracy of 93.4186% is achieved for the
combination of the phase and 1-D based nonlinear features. This is in comparison to
73.6269% for the baseline features. Because the nonlinear phenomenon is resolution-
dependent, our proposed approach is expected to achieve even greater accuracy for

SAR sensors with higher resolution.
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7.2. Introduction

The underpinning philosophy for science in general, and the field of signal processing
in particular, is based on either one of two multidisciplinary worldviews: reductionism
(also known as Newtonianism) and holism [I=3]. In the reductionist worldview, a
complex system is assumed to be simply the superposition of its parts, and its analysis
is reduced to analysis of its individual components. Although this view may not
seem to explicitly dismiss the existence of the so-called emergence phenomenon (i.e.,
multiplicity due to interactions between the individual components), it is implicit that
the emergence phenomenon can be captured by the constituent processes. On the
contrary, in the holistic worldview, the system is viewed as a whole that cannot be
fully understood solely in terms of its constituent parts. This principle was succinctly
summarized twenty-four centuries ago by Aristotle in Metaphysics: “The whole is

greater than the sum of its parts” [3].

Reductionism and holism set the philosophical foundations of linear and nonlinear
signal processing, respectively [1, 3]. In linear system theory [4], the reductionist view
is applied, meaning that the signal is decomposed into fragments that are analyzed
individually. The analysis result for the whole signal is obtained from proper scaling
(i.e., homogeneity property) and addition of the fragments (i.e., superposition princi-
ple). For this process to be valid, the central limit theorem (CLT) is invoked; hence, it
is implicitly assumed that the signal samples are drawn from a distribution possessing
a finite variance [5]. Accordingly, the linear system theory treats deviation from linear-
ity as noise that warrants removal. For example, the Fourier view, the heart of linear
system theory, assumes a first-order fundamental oscillation and bounding higher order
harmonics. Despite its mathematical soundness, this view does not correspond strictly
to physical reality [0].

When the underlying random processes are nonlinear, advantages of the holistic ap-
proach become apparent. Statistically, nonlinear signal processing is motivated by the
generalized central limit theorem (GCLT) which holds that the variance of the under-
lying random variables is infinite [7]. The Poincaré view [0, 8] is one such important
view for nonlinear signal processing, which sets the foundations for chaos theory. The
Hilbert view [0] is another important view which was popularized after the advent
of the Hilbert-Huang transform (HHT) [9], an important advancement in adaptive

nonlinear and nonstationary signal processing.
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Conventional radar resolution theory, which is a resolution theory of point targets
[10], represents a direct application of the reductionist worldview. Thus, analysis of
the single-channel synthetic aperture radar (SAR) image has traditionally been based
on linear techniques associated with the image intensity while the phase content is
ignored. The insufficiency of the linear resolution theory to extended targets, based
on the empirical observation that man-made targets produce dispersive scattering,
has been reported in the literature [11-13]. In effect, this induces a nonlinear phase
modulation (PM) in the radar return signal which causes a mismatch in the correlator’s
output. This phenomenon is preserved in the complex-valued image rather than the

detected one.

In [I1-13], a curve fitting algorithm is used to detect nonlinear scattering in SAR
imagery. However, there are two possible drawbacks associated with this approach.
Firstly, it is non-adaptive due to its contingency on certain a priori assumptions. Sec-
ondly, while it identifies nonlinear scattering in general terms, it neither classifies it
nor estimates its order. The feature extraction approach presented in this chapter
differs significantly in that it is entirely data driven without any a priori assumptions.
Further, our approach is advantageous in that it allows for classifying the dispersive
scatterers as well as estimating their nonlinear order. To our knowledge, this capa-
bility has not been previously demonstrated in the SAR literature. This provides for

significantly utilizing nonlinear phenomena in target recognition applications.

The study in this chapter builds on six previous investigations [14—19]. In [14, 15],
an in-depth analysis for nonlinearity in single-channel SAR imagery was conducted.
The analysis demonstrated the statistical significance of the nonlinear phenomenon in
high-resolution complex-valued SAR imagery. It was also shown that the nonlinear
effect is either obliterated or altered /diminished for magnitude and power detections,
respectively. In [16-18], a method for characterization and statistical modeling of the
phase in single-channel SAR imagery was proposed. Also, the circularity (also known
as propriety) in complex-valued SAR imagery was investigated. It was demonstrated
that, for the case of extended target, the complex-valued SAR chip is noncircular. In
[19], a method for estimating the order of nonlinear dispersive scattering in complex-

valued SAR imagery was provided.
The main contributions presented in this study are:

o Development of a new feature set based solely on the phase in single-channel
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SAR imagery,

» Development of three complementary 1-D representations for the 2-D real /imaginary
parts, bivariate and complex-valued SAR chips. This allows for applying various

nonlinear and nonstationary time series analysis methods for feature extraction,

e Development of a new set of features based on the HHT as well as methods
motivated by chaos theory including permutation entropy (PE) and detrended
fluctuation analysis (DFA), and

o A simple method for feature standardization based on the median and the in-
terquartile range (IQR).
The topic addressed in this chapter is applicable to various kinds of stationary and
moving targets including vehicles, ships, airplanes, icebergs, etc. Furthermore, the
application of the methods proposed may be extended beyond SAR to include radar
in general, sonar, synthetic aperture sonar (SAS), ultrasound, synthetic aperture ul-
trasound (SAU), etc.

The remainder of this chapter is organized as follows. Firstly, the origin of the
nonlinear phenomenon in single-channel SAR imagery is approached in Sect. 7.3. Then,
the proposed framework for nonlinear feature extraction based solely on the phase chip
is described in Sect. 7.4. Thirdly, the three 1-D representations for the 2-D SAR chip
are introduced in Sect. 7.5. Subsequently, methods used for nonlinear feature extraction
based solely on the 1-D representations are proposed in Sect. 7.6, and this is followed in
Sect. 7.7 by a discussion of the SAR dataset utilized in this study. The overall features
used in the study, including the baseline features and the nonlinear features, as well as
the proposed procedure for feature normalization, are defined in Sect. 7.8. The process
of classifier design and feature selection are outlined in Sect. 7.9, and the overall results
are elaborated upon in Sect.7.10. Finally, conclusions are offered at the end of the
chapter in Sect. 7.11.

7.3. Origin of the Nonlinear Phenomenon in SAR

Imagery

The baseband backscatter zgp from a single point target, output from the quadrature

demodulator and downlinked to the SAR processor, is known as the phase history or
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the raw data and is given by [10]

an () = Aexp (G9) fur (=228 (- )

exp (—ﬂhj}M) exp (ijr (T Y (?7))2) } | (7.1)

where A is the backscatter coefficient (i.e., 0,), © is a phase change in the received

pulse due to the scattering process from a surface, j = v/—1, 7 is the fast time, 7 is
the slow time, w,(7) = rect(r/T,) is the transmitted pulse envelope, T, is the pulse
duration, R () is the distance between the radar and the point target, ¢ is the speed of
light in a vacuum, w, (1) is the two-way azimuth beam pattern, 7. is the beam center in
the azimuth direction, f, is the center frequency, and K, is the frequency modulation
(FM) rate of the range pulse. The SAR raw signal zgpg (7, 7) is conventionally modeled

as

TBB (T>77) =4 (T> 77) ®h (T> 77) +n (T> 77) ) (72)

where ® denotes convolution, ¢ (7,7) is the ground reflectivity, h (7, 7) is the impulse
response of the SAR, and n (7,7) is a noise component mainly due to the front-end

receiver.

The SAR processor solves for g (7,1). Following the conventional radar resolution
theory, h (7,m), bounded by the curly brackets in Eq. 7.1, is an impulse response of a
point target. For a given reflector within the radar illumination time, v is assumed to
be constant [10]. For the case of an extended target, this assumption is adopted verba-
tim. Hence, such a target is modeled as the linear combination of its point reflectors.
However, the assumption of constant v is violated in the presence of dispersive scatter-
ing from cavity-like reflectors, typical in stationary and moving man-made (extended)
targets such as vehicles and airplanes. These reflectors trap the incident wave before
it is backscattered, thus inducing a phase modulation (PM). The problem arises when

the PM is nonlinear. Besides the PM, this phenomenon also introduces amplitude
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modulation (AM) [11-13]. Therefore, the backscatter term in Eq. 7.1 is rewritten as

s(T(fr),n) = AT (f=),n) exp (¢ (7 (), m)), (7.3)

where 7 (f,) is the time delay due to the PM, and f, varies over the spectral width of
the chirp, B. It should be emphasized that the magnitude and phase of the backscatter
in Eq. 7.3 is frequency dependent. While the AM is a linear process, this is often not
the case for the PM. Indeed, based on the principle of stationary phase (POSP), the

time delay induced by a dispersive scatterer is

) g (). (7.4

where O is the order of nonlinearity induced by the dispersive scatterer. For O €
{0,1,2}, the PM is linear, and its effect is either translation or smearing of the re-
sponse in the correlation filter. Another reason for the smearing of the response is the
variable Doppler processing used for motion compensation. However, for O ¢ {0, 1,2},
the phase center possesses a nonlinear delay which introduces spurious effects in the
correlator’s output. This phenomenon is referred to as ‘sideband responses’, and the
information about it is preserved in the complex-valued image rather than the detected
one. Further, in the presence of an extended target, it is empirically observed that
this effect dominates the focused SAR imagery [11-13]. The sideband responses are
radically different from the range and Doppler sidelobes. One of the reasons for this
is that they are among the strongest responses. Secondly, unlike the range and the
Doppler sidelobes, the sideband responses are not restricted to the range and cross-
range gates. Thirdly, they are distributed over an area far larger than that occupied
by the target. As stressed in [l 1-13], these sideband responses cannot be suppressed
by the weighting methods because they are target generated. Obviously, the nonlinear

PM violates the resolution theory of point targets.
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7.4. Nonlinear Measures Based Solely on the Phase
Chip

In a previous work [16, 18], it was demonstrated that the phase in single-channel
complex-valued SAR imagery, particularly in the presence of extended target(s), can
indeed be statistically well-modeled using the wrapped complex Gaussian scale mixture
(WCGSM). A brief overview for our proposed algorithm for phase characterization is

presented in Fig. 7.1. The complex-valued SAR chip is available in the form

c(u,v) =i(z,y) +jq(z,y), (7.5)

where i (x,y) and ¢ (z,y) are the real and imaginary parts of the complex-valued SAR
chip, respectively. Note that (z,y) represent the 2-D Cartesian coordinates of the
real-valued plane, while (u, v) represent the 2-D Cartesian coordinates in the complex-

valued plane. Hence, the phase chip is given by

¢ (z,y) = arg{c(u,v)} . (7.6)

The phase chip @ (z,y) is processed in order to make sense of the information content
it carries. This is because, by definition, the phase is always relative and it often ap-
pears meaningless if it is not appropriately characterized. Accordingly, the proposed
algorithm simply produces the so-called backscatter relative phase image (BRPI). The
main idea is that each pixel in the phase chip is characterized in relation to its neigh-

bors. Then, a histogram can be computed based on the BRPI image.
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Complex-Valued Phase Chip
SAR Chip, c{u,v) d(x,y)=arg{c(u,v)}
¥

CVF{u,v)=exp(j ®(x,y))

¥
Histogram of Backscatter Relative Phase Image
BRPI{x,y) BRPI(x,y)=arg{[CVF{u,v)]1/[f. ® CVF(u,v)]}

Figure 7.1: Proposed algorithm for phase characterization in SAR imagery.

The BRPI image is computed from the difference between the phase chip and the
neighborhood-processed phase chip. The latter is obtained through convolving the
phase chip with a kernel f;. The kernel should have a value of zero in the center
and ones where desired. The kernel convolution operation produces an average phase
chip for the neighborhood of each pixel in the phase chip. In this study, three kernels
are considered as shown in Fig. 7.2. As pointed-out in [10], these kernels were chosen

because they are found to produce histograms consistent with typical statistical models.

1111111

11111 1111111

1 11 11111 1111111
1 01 11011 1110111
1 11 11111 1111111
(a) First kernel. 1111 1111111
(b) Second kernel. 1111 1 1 1]

(c) Third kernel.

Figure 7.2: The three convolution kernels (f;) considered in this study.

Phase values are in the range (—m, 7| - i.e., the phase values are on a circle where the

angles m and —7 meet at the same point. In order to account for the circularity of the
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phase, the phase chip @ (z,y) should be first converted to the polar form as follows

CVF (u,v) =exp (jP(x,y)) = cos{P (z,y)} + jsin{P (x,y)}. (7.7)

CVF (u,v) has a size of M. x N.. The convolution kernel f; has a size of M), x Nj.
M, and N, are typically chosen to be odd values to avoid ambiguity in defining the
center pixel. Convolving CV F (u,v) with the kernel f; at a particular pixel location

in the chip (me, n.) yields the convolution image as

My Ng

CI(me,ne) = fr @ CVEF (me,n.) = Z Z S (Mg, ni) CVE (me — my,ne — ny.)

mr=1ni=1

(7.8)

where ® denotes convolution, m. € {1,2,..., M.} and n. € {1,2,...,N.}. The BRPI
image is defined as the difference between the phase angles pertaining to the original

phase chip and the convolution chip and may be expressed as

(7.9)

BRPI (z,y) = arg{m}.

CI (u,v)

The resultant BRPI image defines the characteristic phase of each pixel in the input
phase chip ® (z,y) relative to its neighborhood as defined by the convolution kernel
fx- The next step involves modeling the three resultant BRPI histograms using the
WCGSM model described in [16]. The WCGSM distribution, characterized by two

IProcessing the polar representation of the phase chip rather than the phase chip per se allows for
easily accounting for phase wrapping. This idea is borrowed from the field of directional (also
known as circular) statistics. See for example [20-22]. The term ‘circular’ stems from the fact
that the phase values are on a circle where the angles m and —7 meet at the same point. In
directional statistics, ‘phase wrapping’ is also called ‘phase circularity’. This is not to be confused
with circularity /noncircularity discussed later in this chapter.
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parameters, is given by

WCGSM (6, 3) = p(@uryi) = 27:(1_ _AXQ) (X( ff(;?f)g?g) + 1) , (7.10)

where,

X = A cos (@brpi — ¢+ 7r) . (7.11)

The parameters of the WCGSM model are estimated as discussed below. First, it was
empirically observed that the location parameter ¢ can be accurately estimated using

the circular mean of the BRPI image which is defined as

é = arg (% Z; exp (j@brmi)> , (7.12)
where n is the total number of samples in the BRPI image. The parameter A is the
shape parameter of the WCGSM distribution which is estimated based on a simple
fitting procedure utilizing the the Jensen-Shannon (JS) divergence (see Sect.6.6.1.5
for details). Once the three histograms pertaining to the three kernels are modeled
using the three WCGSM models, features based on the WCGSM probability density
function (PDF) can be extracted (see Sect.7.8.2.1).

Besides the features based on the WCGSM model, it is possible to extract useful
features directly from the BRPI image given in Eq. 7.9. One such important measure
is the circularity /noncircularity which is also known as propriety/impropriety, respec-
tively [23, 24]. Circularity means that the BRPI image has a PDF that is invariant
under rotation in the complex plane. This also implies that the BRPI image is uncor-
related with its complex-conjugate. In [16, 18], it was shown that through utilizing the
BRPI image, it is possible to characterize the noncircularity in the phase chip. This

is achieved by using the modulus of the pseudo-covariance [23, 25, 20]

| = |E {BRPIBRPI" }

, 0 < V] < 1. (7.13)
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where E {.} denotes the expectation, BRPI is the polar representation of BRPI after
conversion to a 1-D vector, and 7" denotes the transpose. Note that if |¥| = 0, then
BRPI is said to be second-order circular, or proper. Further, the angle of ¥ is also

used in this study as

LV = arg{V}. (7.14)

7.5. Linear Transformation of 2-D SAR Chips to 1-D
Space

This section presents three complementary algorithms to transform the 2-D SAR chip
into an abstract 1-D vector that accounts for the pixel neighborhood. Our method is
inspired by the Radon transform. The remainder of this section is organized as follows.
First, a description for the forward Radon transform is given in Sect.7.5.1. Second, a
method for linear transformation of the real and the imaginary parts of the complex-
valued 2-D SAR chip into a 1-D vector is presented in Sect.7.5.2. Third, a method
for linear transformation of the bivariate 2-D SAR chip into a 1-D vector is described
in Sect.7.5.3. Finally, Sect.7.5.4 describes a method for linear transformation of the

complex-valued 2-D SAR chip into a 1-D vector.

7.5.1. The Forward Radon Transform

The Radon transform Ry (2) for a 2-D function f (z,y) is the line integral of f parallel
to the ¢/ axis defined as [27]

Ry (2) = / f (2 cosf — o' sinf, 2’ sin @ + o cos ) dy/, (7.15)

—00
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where 6 is the projection angle, and (2’,%’) are the projection coordinates which are

related to the projection angle as

x’ _ cgs@ sin @ z | (7.16)
Y —sinf cosf Yy
The geometry of the Radon transform is illustrated in Fig.7.3. Note that the (2,1/)
coordinate is rotated about the center of the image as shown in Fig.7.3. Among the
main advantages of the Radon transform is that it is computed directly in the spatial

domain, and it is a linear transform [27]. Hence, it preserves the statistics present in

the original 2-D SAR chip without introducing any nonlinear artifacts.

4
»
$

» X-axis

Figure 7.3: Illustration of the Radon transform for a projection angle 6. The random
shape provided represents the 2-D function f (z,y).

7.5.2. A Method for Linear Transformation of the Real and the
Imaginary Parts of the 2-D SAR Chip into a 1-D Vector

Under this subsection, a procedure for transforming the real and the imaginary parts
of the 2-D complex-valued SAR chip into a 1-D vector, utilizing the Radon transform,
is proposed. Our proposed procedure is depicted in Fig. 7.4.
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Real-Valued 2-D L
/ SAR Image, f(x.y) / 2 A0 x7)=Re{flxy)lo-ro.m

4

/ 1-D Vector, F(x’) /‘7 F(x’ )=Ro {F(0, x’ )}o=r»

Figure 7.4: Proposed procedure for transforming the real and imaginary parts of the
2-D complex-valued SAR chip into a 1-D vector.

The Radon transform is applied separately to the real and imaginary parts of the

complex-valued SAR chip (see Eq.7.5) as

1(0,2") = R {i (x7y)}|9:[0,7r) : (7.17)

Q(0,2") = Ro{q(z,y)}o—jo.r) - (7.18)

Note that angles in the range [m, 27| are omitted because their corresponding Radon
transform provides identical values to angles in the range [0,7). This redundant in-
formation is of no interest in this study. Also, note that the Radon transform repre-
sentation given by Fq.7.17 and Eq. 7.18 is known as a sinogram. In the next step, the
projection angles § = [0, 7) are integrated-out. This is achieved through applying the

Radon transform to the sinograms at a projection angle ¢ = 7 as

I(2') = Ry{I (9,x’)}|¢:% . (7.19)

Q) = Ro{Q (0.4}, s - (7.20)
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The output given by Eq.7.19 and Eq. 7.20 is an abstract 1-D vector representative of
the real and imaginary parts of the complex-valued SAR chip.

7.5.3. A Method for Linear Transformation of the Bivariate 2-D
SAR Chip into a 1-D Vector

Under this subsection, a procedure for transforming the bivariate SAR chip into a real-
valued 1-D vector is proposed. The term bivariate is used here to denote that the real
and imaginary parts of the complex-valued SAR chip are treated as two separate real-
valued chips. This is in analogy to the bivariate distribution (e.g., bivariate Gaussian)
which is used to model complex-valued data in such a manner (see page 20 in [21]).
The procedure proposed here is meant to account for the bivariate statistics between
the real and imaginary parts of the complex-valued SAR chip. Fig.7.5 depicts our

proposed procedure.

Complex-Valued 2-D
SAR Image I( 6, x" )=Ro {i(x,y)}o- [0, )
c(u,v)=i(x,y)+j al(x,y)

Y
A 4
Combine | and Q into a Single
Q( 6, x" )=Re{a(x,y)}o-(0,n > Sinogram:
1Q( 0, x )=[(6,x)a(e,x)]
v
1-D Vector D , .
/ lQ(X’ ) F IQ(X )-R¢{IQ( 97 X }}¢=T:s2

Figure 7.5: Proposed procedure for transforming the bivariate 2-D SAR chip into a
1-D vector.

The two sinograms output from Eq.7.17 and Eq. 7.18, respectively, are combined to-

gether into a single sinogram as follows

1Q0,7) = [1(0,7) Q(6,2")]. (7.21)

193



Note that Matlab notation is used in Eq.7.21 to denote that the two sinograms are
concatenated horizontally, along the second dimension. Thus, the resultant sinogram
has the same number of rows as in the original sinogram (i.e., 1 (6,2’) and Q (6,2")
have similar dimensions), and the number of columns is doubled. In the next step, the
projection angles § = [0, 1) are integrated-out. This is achieved through applying the
Radon transform to the combined sinogram output from Eq. 7.21 at a projection angle

¢ = 5 as follows

1Q(«) = Ry {I1Q(0.4)},_s (7.22)

The output given by Eq. 7.22 is an abstract 1-D vector representative of the bivariate
statistics in the input 2-D complex-valued SAR chip.

7.5.4. A Method for Linear Transformation of the
Complex-Valued 2-D SAR Chip into a 1-D Vector

The procedure described in Sect. 7.5.3 accounts for the bivariate statistics between the
real and imaginary parts of the complex-valued SAR chip. However, the complex-
valued statistics [2] are not meant to be accounted for by this procedure. To account
for these statistics, a simple procedure is proposed under this subsection. First, the real
and the imaginary parts of the complex-valued SAR chip are suitably amalgamated in

the spatial-domain as

Ftig () = furud (i (z,) , (2, )) (7.23)
This procedure, referred to as furud’ing, was inspired by the spectroscopic binary in

the constellation Canis Major known with the traditional name Furud [28-31]. Fig. 7.6

demonstrates our proposed furud’ing procedure.
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q11 412 413
q21 422 423
qs31 432 433
q41 942 443

(a) Real-part of the (b) Imaginary- (c) Furud’ed chip, fuiq (z,y).
complex-valued part of the
SAR chip, i (z,y). complex-valued
SAR chip,

q(z,y).

Figure 7.6: Our proposed furud’ing procedure.

In the next step, the real-valued furud chip is transformed to a 1-D vector by inputting

it to the proposed algorithm introduced in Fig.7.4. The final output is given by

Fuig (a/) = Ry { R { fusq (2,9} ompo )}, - (7.24)

7.6. Nonlinear Measures Based Solely on the 1-D

Representation

In this section, the nonlinear measures considered in this study and based on the 1-D
representation of the SAR chip are presented. Some of these measures are directly
based on the 1-D Radon representations discussed earlier while some others are based
on the Hilbert spectrum computed from the 1-D Radon representations. The remainder
of this section is organized as follows. In Sect.7.6.1, a brief overview for the Hilbert-
Huang transform (HHT) [9] along with a few proposed modifications is presented.
Further, in Sect. 7.6.2, a selection of relevant methods used in this study for quantifying

the nonlinear dynamics is provided.
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7.6.1. Hilbert-Huang Transform (HHT)

HHT represents an advancement in nonlinear and nonstationary signal processing [9].
Firstly, it uses a technique known as empirical mode decomposition (EMD) to de-
compose the data, according to their characteristic scales, into a set of intrinsic mode
functions (IMFs). Thus, unlike Fourier-based methods, the basis of the data comes
from the data itself. Secondly, the IMFs are used to construct a time/space-frequency-
energy distribution known as the Hilbert spectrum. Subsequently, the time/space
localities of the events are preserved. Therefore, the frequency and energy defined by
the Hilbert transform have intrinsic and instantaneous physical meaning. Although
the term ‘spectrum’ and ‘frequency’ are traditionally associated with the Fourier-based
analysis, the HHT provides a different interpretation for these terms. In doing so, the
HHT avoids the Heisenberg principle, which is a serious setback to all Fourier-based

time /space-frequency methods including the Fourier-based wavelet transform [9, 32].

In this study, the ensemble EMD (EEMD) [33] is applied to the outputs given by
Eq.7.19 and Eq. 7.20 separately. EEMD is a noise-assisted method which resolves the
problem of mode mixing encountered in the traditional EMD [9]. Primarily, EEMD
decomposes the input data to a small number of IMFs based on the local characteristic
time/space scale. An IMF represents a simple oscillatory mode as a counterpart to
the harmonic function. By definition, an IMF is any function with the same number
of extrema and zero-crossings, with its envelopes being symmetric with respect to
zero. This definition guarantees a well-behaved Hilbert transform of the IMF. The
procedure of extracting an IMF is called sifting. In our subsequent analysis, we use a
local stopping criterion for the sifting process as prescribed in [33]. Thus, an m number
of IMFs is extracted from [ (2') and Q (2') as

z_: Irvr ()], +rr (2),
o=t (7.25)

z_: Qrur (2)], + ¢ (2').

a=1
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where r; (z') and r¢ (2) are the residues. The total number of IMFs is specified as [9]

m =log, (n) — 1, (7.26)

where n is the length of the original 1-D signal. In order to calculate the Hilbert
spectrum, two methods are used in this study [34, 35]: the direct quadrature (DQ)
method and the generalized zero-crossing (GZC) method. The DQ method is based
on the analytic signal for each IMF. Traditionally, the HHT transform achieves this
through computing the Hilbert transform for the IMF, and the result is placed in the
imaginary-part of the analytic signal. The real-part is the IMF signal itself. However,
according to the Paley-Wiener theorem, the complex-valued signal output from the
quadrature demodulator is indeed an analytic signal where its imaginary-part is simply
the Hilbert transform of its real-part [36]. Hence, we form the analytic signals based

on proper combination of the real and the imaginary parts for each IMF according to

[Hpg (2')], = [Lrur (2')], + 5 [Qrur (2)], (7.27)

where a € {1,...,m}. Note that this representation is known as the Hilbert spectrum.

Thus, the instantaneous magnitude of the Hilbert spectrum is given by

bo @), = (e @) + Qe (&)2) . (7.28)

Further, the unwrapped instantaneous phase for the Hilbert spectrum is computed as

[hpg (2')], = untotap (arg {[HDQ (x’)]a}) , (7.29)
where untorap denotes the addition of multiples of £27 when absolute jumps between

consecutive elements of [hpg (2')], are greater than or equal to the default jump tol-

erance of w radians. Subsequently, the instantaneous frequency is computed following
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the definition of POSP as

TFpe ()], = =5 oo ()], (7.30)

In the GZC method, the instantaneous frequency [[Fgzc (2')], is defined for the
whole wave (i.e., based on the real-part of each IMF in our case), which includes
the values from crest-to-crest, trough-to-trough and up (down) zero-crossing to up
(down) zero-crossing. The corresponding b zc (.) is denoted [baze (2)], (see [34, 37]

for details).

7.6.2. Quantifying the Nonlinear Dynamics

Under this subsection, the nonlinear measures used in this study are presented. First,
the order of nonlinearity is described in Sect.7.6.2.1. Second, the degree of nonlin-
earity is elaborated on in Sect.7.6.2.2. Third, the combined degree of nonlinearity
is described in Sect.7.6.2.3. Fourth, the permutation entropy (PE) is introduced in
Sect. 7.6.2.4. Finally, the scaling exponent, based on detrended fluctuation analysis
(DFA), is discussed in Sect. 7.6.2.5.

7.6.2.1. Order of Nonlinearity

The average frequency for the cycles of the instantaneous frequency and the real-part

of each IMF, respectively, are computed from

f1a=Favg {[TFDg ()], } (7.31)

[f1]a = Favg {L1aer (7)), }- (7.32)

Note that [frr], is the intrawave frequency and [f7], is the corresponding oscillation
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frequency. Thus, we compute the nonlinear order for each IMF as [9, 34, 37]

0], = % +1. (7.33)

Urrla 1 implies that [frr], is undersampled. This means that the estimate of [O],

(f1]a
based on such values is incorrect or at least inaccurate. Thus, we do not use the
undersampled frequencies for order estimation in this study. Note that in Eq.7.31, it

is possible to replace the average with the median [35].

7.6.2.2. Degree of Nonlinearity

For each IMF, the degree of nonlinearity, DN,, can be computed as [3]

DN, — std < l[IFDQ ()], — U Fezo (x')]a] bazc ('T/>]a> 7 (7.34)

[ Fozo ()], [bGZC_(JU')]a

where std denotes the standard deviation and [baze (z')], is the mean value for [bazc ()],

It is possible to replace std with the interquartile range (IQR) [39]. It is also possible

to replace the mean value for [beze (2')], with the median.

7.6.2.3. Combined Degree of Nonlinearity

The combined degree of nonlinearity, C DN, weighs the degree of nonlinearity for each
IMF by the energy in each IMF as [31]

m 2
CDN:ZDN(I [EIMF](I

_ LA 7.35
a=1 k=1 [EIMF]i ( )

where [E; Mp]z is the energy in the real-part of the analytic signal pertaining to each
IMF (i.e., [IIMF (.T/)]a )
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7.6.2.4. Permutation Entropy

Permutation entropy (PE) [10] is a simple yet robust complexity measure for a time
series based on its neighboring values. In analogy to relevant measures for chaotic
dynamical systems, PE behaves similar to the Lyapunov exponent, and it is found to
be useful, particularly in the presence of nonlinear dynamics in the signal. To take into
account the causal information pertaining to any effects stemming from the temporal
order of the successive elements of the time series, the time series is encoded first into
sequences of symbols, based on the theory of symbolic dynamics. Then, the entropy

is computed for the encoded sequence as follows [10]

Al

Hy =~ pelog, (pe) (7.36)

c=1

Here, p. represents the relative frequencies of the possible patterns of symbol sequences,
termed permutations, and [ is an important parameter for the number of possible per-
mutation patterns. Also, note that in computing p. there is an important parameter
called 7 which describes the time delay between successive points in the symbol se-
quence. Detailed description for the PE algorithm as well as important practical

recommendations for choosing the two parameters can be found in [11].

7.6.2.5. Scaling Exponent based on Detrended Fluctuation Analysis (DFA)

Detrended fluctuation analysis (DFA) is a simple technique for identifying the extent
of fractal self-similarity in a nonstationary time series based on the calculation of a
scaling exponent «. First, z(n) the time series to be analyzed is integrated to produce

a self-similar random walk [12, 13]

v =3 (o). (787

Then, y(n) is successively subdivided into windows of length L samples. For a time

series of length M samples there will be the nearest integer to log, M scales. A least-
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squares straight line local trend is calculated by analytically minimizing the squared

error E? over the slope and intercept parameters a and b as [12, 43]

arg min E* = > (y (7)) — an — b)*. (7.38)

a,b fi=1

Then, the fluctuation is calculated over all windows at each time scale as [12; 13]

05
1 L

F(L)=|7 > (y () - an - b . (7.39)

=1

On a log-log graph of L vs. F(L), a straight line indicates self-similarity expressed

as F'(L) o« a. The scaling exponent « is calculated as the slope of a straight line fit

to the log-log graph of L vs. F(L) using least-squares as above (see [12, 13] for more

details).

7.7. The SAR Dataset

This study utilizes a comprehensive public-domain single-channel (i.e., HH polariza-
tion) and single look complex-valued (SLC) SAR dataset collected and distributed
under the DARPA moving and stationary target recognition (MSTAR) program [14].
Sandia National Laboratory used an X-band STARLOS sensor in Spotlight mode
to collect the data. The MSTAR dataset provides a nominal spatial resolution of
0.3047 x 0.3047 metres in both range and azimuth. The data used in this study comes
from two CDs available from the Sensor and Data Management System (SDMS) and
entitled MSTAR/IU Mixed Targets CD1 and CD2. In total, for each CD there are
eight different types of stationary targets imaged at azimuth angles covering the full
span of [0°, 360°). CD1 and CD2 include SAR data collected at 15° and 17° depression
angles, respectively. In this chapter, the 17° dataset is used for training the classifier
while the 15° dataset is used for testing the classifier. A list for the target names and
the overall number of the complex-valued SAR chips used in this study is provided in

Table 7.1. Ground-truth pictures for the eight targets are depicted in Fig. 7.7.
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Table 7.1: List of the MSTAR targets used in this study.

No. of Training Chips | No. of Testing Chips

Target Name (17° deplressior;g angle) | (15° depressioi angll)e)
BTR-60 256 195
251 299 274
BRDM-2 298 274
D7 299 274
T62 299 273
Z1L-131 299 274
7SU-23/4 209 274
SLICY 298 274

23/4. (h) SLICY.

(8) ZSU-

Figure 7.7: Ground-truth pictures for the MSTAR targets used in this study [14].
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7.8. Feature Extraction

This section presents the three feature sets utilized in this study. First, the baseline fea-
tures extracted from the power-detected SAR chips are provided in Sect.7.8.1. Then,
features based on the nonlinear dynamics, extracted both from the phase chips and
the 1-D representations, are introduced in Sect. 7.8.2. Finally, feature normalization is
described in Sect. 7.8.3.

7.8.1. Baseline Features

Baseline features are solely based on the power-detected SAR chip. Nineteen baseline
features are utilized in this study. The procedure for extracting the baseline features

is summarized in Fig. 7.8. First, the complex-valued SAR chip is power-detected as

. 2 2

p(zy) =[i(z,y)]" + gz, y)]". (7.40)

Power Detection | Adaptive Thresholding| | =

2, 2 > > o

p=i“+q {Kapur method) o 3

53

\ 4 oo

/ Baseline ‘ > ag'

Feature Extraction < o

Features

Figure 7.8: Procedure for extraction of the baseline features.

Then, the power-detected SAR chip is thresholded through an adaptive information
theoretic approach based on the entropy of the histogram as originally proposed by
Kapur et al. [15]. This method was chosen because it is found to offer excellent
performance. Further, morphological dilation is applied to the thresholded image [10].
This operation is aimed at merging the relevant different connected regions in the
thresholded image into one contiguous region representative of the target extent. In

the next step, a set of features is extracted from the binary image, the dilated binary
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image, and the gray-level image. These extractions are meant to represent the power-

based features commonly used in the literature, and they include the following [17]:

Number of scattering centers (fpr1): the number of connected regions in the
binary image.
Area (fpr2): the total number of pixels with value of one in the binary image.

Centroid (fprs, fers): the ‘center of mass’ of the dilated binary image. Note
that the first element (fpr3) is the horizontal coordinate (or z-coordinate) of
the center of mass, and the second element (fpr4) is the vertical coordinate (or

y-coordinate).

Major axis length (fprs): the length (in pixels) of the major axis of the ellipse
that has the same normalized second central moments as the region. This mea-

sure is based on the dilated binary image.

Minor axis length (fpr¢): the length (in pixels) of the minor axis of the ellipse
that has the same normalized second central moments as the region. This mea-

sure is also based on the dilated binary image.

Eccentricity (fpr7): the eccentricity of the ellipse that has the same second-
moments as the region. The eccentricity is the ratio of the distance between the
foci of the ellipse and its major axis length. The value is between 0 and 1. This

measure is also based on the dilated binary image.

Orientation (fprs): the angle (in degrees ranging from —90° to 90°) between the
r-axis and the major axis of the ellipse that has the same second-moments as

the region. This measure is also based on the dilated binary image.

Convex area (fpro): the number of pixels in the convex hull that specifies the
smallest convex polygon that can contain the region. This measure is also based

on the dilated binary image.

Euler number (fgr10): the number of objects in the region minus the number of

holes in those objects. This measure is based on the binary image.

Equivalent diameter (fpr11): the diameter of a circle with the same area as the
region. Computed as \/% fBro. This measure is based on the dilated binary
image.

Solidity (fpri2): the proportion of the pixels in the convex hull that are also in

the region, computed as % This measure is also based on the dilated binary
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image.

Extent (fpri3): the ratio of pixels in the region to pixels in the total bounding
box. Computed as s—— tthBL(fun ding Box' This measure is also based on the
dilated binary image.

Perimeter (fpr14): the distance between each adjoining pair of pixels around the

border of the region. This measure is also based on the dilated binary image.

Weighted centroid (fpr1s, fpri6): the center of the region based on location and
intensity value. The first element (fpri5) is the horizontal coordinate (or a-
coordinate) of the weighted centroid. The second element (fgr16) is the vertical
coordinate (or y-coordinate). This measure is based on both the dilated binary

image as well as the power-detected intensity image.

Mean intensity (fpri17): the mean of all the intensity values in the region of the
power-detected image as defined by the dilated binary image.

Minimum intensity (fpr1s): the value of the pixel with the lowest intensity in
the region of the power-detected image as defined by the dilated binary image.
Maximum intensity (fpr19): the value of the pixel with the greatest intensity in

the region of the power-detected image as defined by the dilated binary image.

7.8.2. Features Based on the Nonlinear Dynamics

In this study, there are two sets of features based on the nonlinear dynamics in the

SAR chip. First, the nonlinear features based solely on the phase image are presented

in Sect.7.8.2.1. Then, the nonlinear features based solely on the 1-D representations
of the SAR chip are described in Sect. 7.8.2.2.

7.8.2.1. Nonlinear Features Based Solely on the Phase Image

While various types of features can be extracted based on the BRPI image as well as
the WCGSM model described in Sect. 7.4, a set of fifteen features are considered in

this study for demonstration purposes as follows:

o The location parameter based on the first kernel (fpp1): this is the location
parameter é of the WCGSM PDF for the first kernel (see Fig.7.2), estimated
based on Eq.7.12.
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The shape parameter based on the first kernel (fpp2): this is the shape parameter
A of the WCGSM PDF for the first kernel (see Fig.7.2), estimated based on the
JS divergence method (see [10]).

Maximum peak value for the first kernel (fpp3): this is the peak value for the
WCGSM PDF based on the first kernel.

The location parameter based on the second kernel (fpp4): this is the location
parameter é of the WCGSM PDF for the second kernel (see Fig.7.2), estimated
based on Eq.7.12.

The shape parameter based on the second kernel (fpp5): this is the shape pa-
rameter \ of the WCGSM PDF for the second kernel (see Fig.7.2), estimated
based on the JS divergence method (see [10]).

Maximum peak value for the second kernel (fppg): this is the peak value for the
WCGSM PDF based on the second kernel.

The location parameter based on the third kernel (fpp7): this is the location
parameter é of the WCGSM PDF for the third kernel (see Fig.7.2), estimated
based on Eq.7.12.

The shape parameter based on the third kernel (fpps): this is the shape param-
eter \ of the WCGSM PDF for the third kernel (see Fig.7.2), estimated based
on the JS divergence method (see [10]).

Maximum peak value for the third kernel (fppg): this is the peak value for the
WCGSM PDF, based on the third kernel.

First pseudo-covariance measure (fpp10): this is the measure given in Eq.7.14
and based on the first kernel.

Second pseudo-covariance measure (fpp11): this is the measure given in Eq.7.14

and based on the second kernel.

Third pseudo-covariance measure (fpp12): this is the measure given in Eq.7.14
and based on the third kernel.

First noncircularity measure (fpp13): this is the measure given in Eq.7.13 and
based on the first kernel.

Second noncircularity measure (fpp14): this is the measure given in Eq.7.13 and

based on the second kernel.

Third noncircularity measure (fpp15): this is the measure given in Eq.7.13 and
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based on the third kernel.

7.8.2.2. Nonlinear Features Based Solely on 1-D Representations

Prior to converting the SAR chips from 2-D to 1-D space (see Sect. 7.5), it is important
that all the SAR chips are zero-padded to a standardized size. This guarantees the
compatibility of similar feature measures extracted from different target chips. For
the MSTAR dataset considered it is noted that the size of the SAR chips varies from
54 x b4 pixels (i.e., for SLICY) to 193 x 192 pixels (i.e., for ZIL-131). Hence, each
SAR chip is zero-padded on all sides to yield a standardized size of 200 x 200 pixels.
Then, the nonlinear measures presented in Sect. 7.6 are invoked. In total, ninety eight
nonlinear features are extracted from the 1-D representations of the SAR chip. These

features are described as follows:

 Features based on the IMFs (fyr1to fxrs2): In this study, the 1-D representation
of the real and imaginary parts of the complex-valued SAR chip are decomposed
using EEMD into eight distinct IMFs pairs. For each pair of the IMFs, the average
frequency is calculated based on the real-part (fyr1) as described by Eq. 7.32; the
average instantaneous frequency based on the real and imaginary parts (fyz2) as
described by Eq. 7.31, the order of nonlinearity (fyz3) as estimated by Eq. 7.33,

and the degree of nonlinearity (fyrz4) as shown in Eq. 7.34.
« Combined degree of nonlinearity (fyr33): this is calculated based on Eq. 7.35.
« Features based on the PE for the combination of the IMF pairs ( fyr34t0 fyra1):

the real and imaginary parts of each IMF pair are combined into one vector (i.e.,
[Limvr (27)], s [Qrvr (2)],]); then, the PE is computed for the combined vector
as described in Sect.7.6.2.4. Note that all the PE computations in this chapter
are based on the order of appearance where first occurrence implies a lower rank
(see [11] for details). The number of permutation patterns (I) is set to 3. The
time delay (7) between successive points in the symbol sequence is set to 1. These
parameters are used in all subsequent computations of the PE, and they were

chosen following the recommendations provided in [11].

o Features based on the PE of the instantaneous frequency of the Hilbert spectrum
calculated based on the DQ method (fnr42to fnrag): these are the PEs of the
eight vectors (i.e., [[ Fp (2')],) produced by Eq.7.30.
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Features based on the PE of the magnitude of the Hilbert spectrum calculated
based on the DQ method (fyrso to fvrs7): these are the PEs of the eight vectors
(i-e., [bop (2)],) produced by Eq. 7.28.

Features based on the PE of the instantaneous frequency of the Hilbert spectrum
calculated based on the GZC method (fyrssto fnres): these are the PEs of the
eight vectors produced from [ Fgzc (2')], (see Sect.7.6.1).

Features based on the PE of the magnitude of the Hilbert spectrum calculated
based on the GZC method (fnres to fnrrs): these are the PEs of the eight vectors
produced from [bezc (2')], (see Sect. 7.6.1).

Features based on the PE of the instantaneous frequency of the Hilbert spectrum
calculated based on combination of the DQ and GZC methods (fxr74t0 fyrs1):
these are the PEs of the eight vectors produced from the combination given by
[ Fop (¢')), » T Fazo (2')],)-

Features based on the PE of the magnitude of the Hilbert spectrum calculated
based on the combination of the DQ and GZC methods (fyrs2to farse):
these are the PEs of the eight vectors produced from the combination given by
[1bap ()], - bz (a')],].

Features based on the PE of the 1-D Radon signals (fnxrooto fyres): this set
of features are directly extracted from the 1-D Radon representation for the
real-part (fyroo) described in Eq.7.19, the imaginary-part (fyro1) described in
Eq.7.20, the combination of the real and imaginary parts into a 1-D vector
(fNLo2), the bivariate representation (fnros) described in Eq.7.22, and finally,
the furud’ed representation (fyr94) described in Eq.7.24.

Fluctuation index features based on the 1-D Radon signals (fyros to fxres): this
set of features are directly extracted from the 1-D Radon representation for
the real-part (fnyros), the imaginary-part (fnyros), the bivariate representation

(fnro7), and the furud’ed representation (fnros).

7.8.3. Feature Normalization

Feature standardization and feature scaling are two important aspects pertaining to

feature normalization in this study. In the machine learning literature (see, for exam-

|) and its applications to target detection and classification in SAR imagery
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(see, for example, [19] and [50]), feature standardization makes the values of each

feature in the dataset have zero-mean and unit-variance and is defined as

f, = : (7.41)

where f is feature vector, [i is the sample mean of f, and & is the sample standard
deviation of f. In statistics, this standardization procedure is known as the standard
score or the z-score [51]. A major assumption in Eq.7.41 is that the data in f follows
the Gaussian distribution, and the sample i and ¢ are similar or at least close to the
population’s mean (u) and standard deviation (o). The second assumption is often
unrealistic. For the feature set considered in this study, we noted that the feature
vectors are not Gaussian distributed, and we found that standardization following
Eq.7.41 degrades the classification accuracy of the classifier. Accordingly, £ and &,

respectively, are replaced with the median and the interquantile range (IQR) as follows

fr = f_I]g?:m, (7.42)
These two measures are borrowed from the field of robust statistics [38]. Robust
statistics seek to provide methods that emulate popular statistical methods, but which
are not unduly affected by outliers or other small departures from model assumptions.
The median, being the numerical value separating the higher and lower halves of a
data sample, is a robust measure of central tendency, while i is not. IQR is a measure
of statistical dispersion, being equal to the difference between the upper and lower
quartiles. It is the most significant basic robust measure of scale. If there are outliers

in the data, then the IQR is more representative than ¢ as an estimate of the spread
of the body of the data. [39].

Once the feature vectors are standardized the next step involves feature scaling.
Feature scaling is an important step that prevents attributes in greater numeric ranges
from dominating those in smaller numeric ranges. Following the recommendations in
[52], each training feature vector is scaled first in the range [—1, 1]; then, the corre-
sponding testing feature vector is scaled based on the minimum and maximum values

in the training feature vector and not based on the testing vector.
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7.9. Classifier Design and Feature Selection

This section is comprised of two parts. Sect.7.9.1 contains a description of the clas-
sification method used in this study, and the classifier design procedure is also briefly

described. In Sect.7.9.2, a method for feature ranking and selection is presented.

7.9.1. Classifier Design

Here, the LIBSVM software system [53] is used to design multi-class support vector
machine (SVM) classifiers. SVM is a powerful supervised classification technique that
takes advantage of the so-called kernel trick. The main idea of the SVM is that the
feature data is mapped to a much higher dimension than the original space. In the high
dimensional space, data from two classes can always be linearly separated by a hyper
plane. After determining the linear decision boundary, the data are then projected
back to the original dimension of the feature space. This procedure is motivated by
Cover’s theorem which states that, “a complex pattern classification problem, cast in
a high dimensional space nonlinearly, is more likely to be linearly separable than in a

low dimensional space, provided that the space is not densely populated [51]”.

Based on the training data, the SVM produces a model that allows prediction of
the target values of the test data given only the test data attributes. The building
block of the multi-class SVM is a binary classifier (also known as a dichotomizer). The
multi-class classifier can be composed based on the one-against-one approach. For a

number of classes K, the total number of dichotomizers needed is given by [1]

K(K —1)
——

Number of dichotomizers = (7.43)

For example, in the SAR dataset considered in this study there are eight target classes.
Hence, 28 dichotomizers are required. Each dichotomizer should be trained on the
combination of two classes. Thus, for a particular dichotomizer, given a training set of
instance-label pairs (x4, y,) where ¢ = {1, ...,1}, x, € R" and y, € {w;, wj}l, the SVM
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requires solving the following optimization problem |

Y Y Y ]

min % (Weei)T (Wei) 1 0 (g9 |
| |

WWitds p0ic] i’ q
subject to:
(W) T () + B4 > 1 — (€59), ], if %, €,
(WY1 (o) 4+ 550 < —1+ (€49, ] i x, €
& > 0.

(7.44)

Here, W is the (not necessarily normalized) normal vector to the hyperplane, ﬁ
determines the offset of the hyperplane from the origin along the normal vector W,
£wi¥i is a non-negative slack variable which measures the degree of misclassification of
the data, C' > 0 is the penalty or regularization parameter for the error term and ¢ (.)

is a higher dimensional space function that defines the kernel function as

K (x4, ;) = ¢(x:) T o(x;). (7.45)

The kernel used in this work is the Gaussian radial basis function (RBF) defined as

[45, 52

K (xi, %;) = exp (=[x — %) (7.46)

where 7 > 0 is the kernel parameter. This kernel is chosen because it is found to give
excellent performance for our feature set. The two parameters (C,~) play a crucial
role in dictating the performance of the SVM classifier. Following the guidelines in
[52, 53, 57], we adopt a grid-search and a v-fold cross-validation to find the optimal

values of these parameters.

For each dichotomizer, given a testing instance X5, the decision function (predictor)

211



is [53]

gwiwj (Xtest> = sgn ((Wwiwj)T¢ (Xtest) + bwiwj') . (747)

In the classification stage, a voting strategy is deployed based on the votes cast by
each dichotomizer for all data points xss:. Hence, a point with the maximum number

Y Y ]

of votes is designated to be in the class |

7.9.2. Feature Ranking and Selection

In this study, a method for feature ranking is used to evaluate the statistical significance
of the features. Further, the ranked features are examined to determine the best
sub-set of features for classifier construction. The strategy utilized is adopted from
[59]. Primarily, a combination of the Fisher score (F-Score) and SVM multi-class
classification is used. The F-Score is a technique for measuring the discrimination of
two sets of real numbers. Given the training vectors x; where k = 1,...,m, and if
the number of positive and negative instances are ny and n_, respectively, then, the

F-Score of the i'! feature is defined as [13, 59, 60]

| (39 - %) + (37 - %)
F (i) = 5 7 (7.48)
S it (of) - =)+ s i (ol - 20)

n+—1

B
where X;, XE

), respectively, are the averages for the i*" feature of the whole,

positive and negative datasets; x,(jl) is the 7" feature of the k™ positive instance; xé_l) is

) and )‘(E_

the i*® feature of the k™ negative instance. The numerator indicates the discrimination
between the positive and negative sets, and the denominator indicates the one within
each of the two sets. The larger the F-Score, the more likely the feature is to be more
discriminative. Omnce the F-Score is computed for each feature vector, the features
are sorted based on their significance as defined by the F-Score. Then, the high F-
Score features are added gradually and used to train the multi-class SVM classifier.
This process is continued until the validation accuracy of the classifier decreases. The

sub-set of features that achieves the highest validation accuracy is selected [59, 60].
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7.10. Results

Using the training and testing datasets presented in Sect. 7.7, three different training
and testing feature sets are extracted. The first feature set contains the baseline
features based on the power-detected SAR chips described in Sect. 7.8.1. In total, there
are nineteen baseline features for each target chip. Hence, the size of the constructed
baseline features matrix for training is 2347 x 19 and for testing is 2112 x 19. The
second set is for the phase-based features presented in Sect.7.8.2.1. Fifteen phase-
based features are extracted from each target chip. The size of the phase-based features
matrix for training is 2347 x 15 and for testing is 2347 x 15. The third set is solely based
on the nonlinear features from the 1-D representations, introduced in Sect. 7.6. A total
of ninety eight features are extracted from each target chip. Accordingly, the size of

the 1-D based features matrix for training is 2347 x 98 and for testing is 2112 x 98.

Each feature set is normalized following the procedure prescribed in Sect.7.8.3.
Then, following the steps outlined in Sect.7.9.1, three different multi-class SVM clas-
sifiers are trained using the training feature sets. The grid search for the optimal
values of (C, v) pertaining to the three classifiers is depicted in Fig.7.9. The accu-
racy depicted is based on a five-fold cross validation. Optimal values are found to be
(2°,271)) (2, 2) and (2'°, 2711, respectively, for the baseline, phase-based and 1-D
based features. Once the three classifiers are constructed based on the optimal pa-
rameters found, the classifiers are tested using the testing feature set. The confusion
matrices for the baseline, phase-based and nonlinear 1-D based classifiers are provided
in Fig. 7.10, Fig. 7.11 and Fig. 7.12, respectively. The arrangement of the targets in the
confusion matrices follows Table 7.1. The overall classification accuracy (as well as the

validation accuracy), calculated based on [53], is

No. of Correctly Predicted Data

100. 4
No. of Testing Data x 100 (7.49)

Accuracy =
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Best log2{C} = 5 log2{ganna} = -1 accuracy = 75,7963%
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(a) Grid search for the baseline features.
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(c) Grid search for the nonlinear 1-D based features.

Figure 7.9: Grid search for optimal (C, ) for the three set of features.
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BTR — 60 251 BRDM — 2 D7 T62 ZIL — 131 ZSU —23/4  SLICY

BTR — 60 73.3333 3.0769 8.2051 2.0513 6.1538 3.0769 4.1026 0
251 5.8394 64.2336 6.9343 6.2044 8.7591 5.8394 1.0949 1.0949
BRDM -2 9.4891 5.8394 71.8978 0.3650 3.6496 4.7445 4.0146 1.0949
D7 2.1898 5.1095 2.1898 77.3723  4.3796 3.2847 4.7445 0.7299
T62 6.2271 10.6227 5.4945 0.7326  67.3993 3.6630 5.4945 0.3663
ZIL — 131 6.2044 9.4891 5.1095 1.4599 9.4891 64.9635 1.0949 2.1898
ZSU —23/4 6.5693 2.9197 4.0146 7.2993 4.3796 1.4599 72.9927 0.3650
SLICY 0.3650 1.4599 0 0.3650 0 1.0949 0 96.7153

Figure 7.10: Confusion matrix for the baseline classifier. Classification accuracy =
73.6269% (1555/2112).

BTR — 60 251 BRDM — 2 D7 T62 ZIL — 131 ZSU —23/4  SLICY
BTR — 60 87.6923 3.5897 1.0256 1.0256 0 0 3.0769 3.5897
251 6.9343 71.5328 1.8248 15.3285 0.7299 1.4599 1.8248 0.3650
BRDM -2 0.7299 5.8394 43.4307 10.9489  19.3431 12.0438 7.2993 0.3650
D7 0 15.6934 6.2044 44.8905  9.1241 20.8029 3.2847 0
T62 0 0.7326 13.9194 8.0586  43.5897  20.5128 13.1868 0
ZIL — 131 0.3650 4.0146 6.2044 30.6569  10.9489  43.4307 4.3796 0
ZSU —23/4 0 0 4.3796 0.3650 12.7737 1.0949 79.1971 2.1898
SLICY 0 0 1.0949 0 0 0 1.4599 97.4453

Figure 7.11: Confusion matrix for the classifier based solely on the phase features.
Classification accuracy = 63.0208% (1331/2112).

BTR — 60 251 BRDM — 2 D7 T62 ZIL — 131 ZSU —23/4 SLICY
BTR — 60 56.9231 0 43.0769 0 0 0 0 0
251 0 79.9270 0 0 0.7299 0 19.3431 0
BRDM — 2 39.7810 0 60.2190 0 0 0 0 0
D7 0 0 0 85.7664 13.5036 0.3650 0.3650 0
T62 0 1.8315 0 26.3736  70.3297 0 1.4652 0
ZIL — 131 0 0 0 2.1898 0 97.8102 0 0
ZSU —23/4 0 24.0876 0 0 0.3650 0 75.5474 0
SLICY 0 0 0 0 0 0 0 100.0000

Figure 7.12: Confusion matrix for the classifier based on nonlinear features extracted
from 1-D representations. Classification accuracy = 79.1193% (1671/2112).

The results obtained based on the phase features evidently demonstrate that the

phase in single-channel SAR imagery is not useless as is often assumed in the literature.
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On the contrary, based only on fifteen features, an overall classification accuracy of
63.0208% is achieved. It is interesting to note that for four targets (i.e., BTR-60, 2S1,
ZSU-23/4 and SLICY), higher classification accuracy was achieved in comparison to the
baseline features. This implies that these targets possess greater nonlinear scattering
effects manifested in their corresponding phase image. It should also be noted that
if a SAR dataset with higher resolution is used, one would expect an increase in the
classification accuracy based solely on the phase features. Based on the classification
result given in Fig. 7.12, it is evident that the nonlinear features extracted based on
the 1-D representations of the SAR chip provide for improvement in the classification
accuracy. This clearly shows the importance of considering the often-ignored nonlinear

dynamics in classification techniques associated with complex-valued SAR images.

Next, the three sets of features are ranked, and a search for the best sub-set of
the features is conducted based on the procedure outlined in Sect.7.9.2. F-Scores for
the baseline, phase-based and nonlinear 1-D based features, respectively, are depicted
in Fig.7.13, Fig.7.14 and Fig.7.15. The F-Score values are given, respectively, in
Table 7.2, Table7.3 and Table7.4. Generally, the F-Score results convey that the
significance of the phase-based features for discrimination between the target classes
is around seven-fold that of the baseline features. Furthermore, the significance of the
1-D based nonlinear features is around one-hundred-and-sixty-fold that of the baseline
features. This shows the utility of the nonlinear approach. Further discussion on this
appears later in this section. For each of the three sets of features, a search for the
best sub-set led to the conclusion that all the features are important in attaining the

classification accuracy achieved.
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Figure 7.13: Significance of the baseline features. The feature index represents the
feature subscripts provided in subsection Sect.7.8.1.
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Figure 7.14: Significance of the phase features. The feature index represents the

feature subscripts provided in Sect. 7.8.2.1.
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Figure 7.15: Significance of the nonlinear features without the phase. The feature
index represents the feature subscripts provided in Sect. 7.8.2.2.

Next, the effect of different combinations for the three sets of features is studied.
Three more classifiers are trained and tested following the procedure outlined earlier.
The first classifier is based on the amalgamation of the baseline and the phase-based
features, respectively. Thus, the sizes of the new features matrices for training and
testing, respectively, are 2347 x (19 + 15) and 2112 x (19 4 15). The second classi-
fier uses the amalgamation of the phase-based and the nonlinear 1-D based features,
respectively. Hence, the size of the features matrix for training is 2347 x (15 + 98)
and for testing is 2112 x (15+ 98). The third classifier utilizes the combination of
the baseline, phase-based and nonlinear 1-D based features, respectively. Accordingly,
the size of the features matrix for training is 2347 x (19 + 15 4 98) and for testing is
2112x (19 + 15 + 98). The optimal values for (C, ) are obtained based on a grid search
(see Fig. 7.16) and found to be (25, 271), (22, 279) and (2°, 27°) for the first, second
and third classifiers, respectively. The confusion matrices and classification accuracy

for the three classifiers are provided in Fig. 7.17, Fig. 7.18 and Fig. 7.19, respectively.
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(a) Grid search for combination of baseline 4+ phase-
based features.
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(b) Grid search for combination of the phase-based +
nonlinear 1-D based features.

Best log2{C} = 5 log2{ganma) = -5 accuracy = 95,3558%
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(c) Grid search for the baseline + phase-based + non-
linear 1-D based features.
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Figure 7.16: Grid search for optimal (C, «y) for combinations of the three feature sets.
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BTR — 60 251 BRDM — 2 D7 T62 ZIL — 131 ZSU —23/4  SLICY

BTR — 60 88.2051 4.1026 1.0256 1.5385 0 1.0256 1.5385 2.5641
251 8.0292 79.5620 2.9197 5.4745 1.4599 2.1898 0.3650 0
BRDM — 2 0.3650 7.2993 75.5474 1.4599 5.8394 6.9343 2.5547 0
D7 1.4599 4.0146 3.2847 84.6715  2.1898 3.2847 1.0949 0
T62 0.7326 2.1978 10.2564 1.4652 73.6264 6.2271 5.4945 0
ZIL — 131 1.8248 8.0292 7.6642 3.6496 9.1241 68.6131 1.0949 0

ZSU —23/4 0 1.4599 4.0146 2.1898 4.3796 1.4599 85.4015 1.0949

SLICY 0 0.3650 0.3650 0.3650 0 01.0949 0.3650 97.4453

Figure 7.17: Confusion matrix for the classifier based on baseline 4+ phase-based
features. Classification accuracy = 81.392% (1719/2112).

BTR — 60 251 BRDM — 2 D7 T62 ZIL — 131 ZSU —23/4 SLICY
BTR — 60 90.7692 0 8.7179 0 0 0 0.5128 0
251 0 96.3504 0 0 0.3650 0 3.2847 0
BRDM — 2 4.3796 0 95.6204 0 0 0 0 0
D7 0 0.3650 0 83.5766 15.6934 0 0.3650 0
T62 0 0.7326 0 14.2857 84.6154 0 0.3663 0
ZIL — 131 0 0 0 2.1898 0.3650 97.4453 0 0
ZSU —23/4 0 1.8248 0 0 0 0 98.1752 0
SLICY 0 0 0 0 0 0 0 100.0000

Figure 7.18: Confusion matrix for the classifier based on phase-based + nonlinear
1-D based features. Classification accuracy = 93.4186% (1973/2112).

BTR — 60 251 BRDM — 2 D7 T62 ZIL — 131 ZSU —23/4 SLICY
BTR — 60 90.7692 1.0256 7.6923 0 0 0 0.5128 0
251 0 97.0803 0 0 0.3650 0 02.5547 0
BRDM — 2 2.1898 0 97.8102 0 0 0 0 0
D7 0 0 0 93.4307  5.8394 0.3650 0.3650 0
T62 0 0.3663 0 4.7619  93.4066 0 1.4652 0
ZIL — 131 0 0 0 0 0.3650 99.6350 0 0
ZSU —23/4 0 2.1898 0 0 0.7299 0 97.0803 0
SLICY 0 0 0 0 0 0 0 100.0000

Figure 7.19: Confusion matrix for the classifier based on baseline + phase-based +
nonlinear 1-D based features. Classification accuracy = 96.3542% (2035/2112).

These results demonstrate the importance of the phase-based and nonlinear 1-D

based features. Particularly, upon combining the baseline and phase-based features,
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the classification accuracy is increased by around 8%. Furthermore, combination of
the phase-based and nonlinear 1-D based features allows for an overall classification
accuracy of 93.4186%. This significant improvement in the classification accuracy
shows the importance of these two sets of features. Additionally, inclusion of the

baseline features slightly increases the classification accuracy to 96.3542%.

Next, a search for the best sub-set of features from the combination of the three
sets is conducted. First, significance in terms of the F-Scores for the three feature
sets is depicted in Fig.7.20. Note that the blue, red and green bars, respectively,
represent the baseline, phase-based and nonlinear 1-D based features. Then, the overall
features are sorted, and sub-set selection is conducted following the procedure outlined
in Sect. 7.9.2. The top sixty-six features were selected as they are found to achieve the
highest validation accuracy (i.e., 96.1653% ). The overall F-Scores along with the
selected sixty-six features are shown in Table 7.2- Table7.4. It is worth noting that
among the selected features, the top twenty-nine come from the nonlinear 1-D based

and phase-based features, respectively.

80 =
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Figure 7.20: Significance for all the features (baseline + phase-based + nonlinear 1-D
based) used in this study. Blue, red and green bars, respectively, represent baseline,
phase-based and nonlinear 1-D based features.
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Table 7.2: F-Scores for the baseline features used in this study. The bold numbers in
brackets indicate the ranks for the top sixty-six features.

Index 1 (64) 2 (59) 3 4 (51) 5 (30) 6 (63) 7 (39) 8

Type fBL1 fBL2 fBL3 fBL4 fBLs fBLe feL7 fBLs

F-Score 0.104282 0.174448 0.026250 0.240112 0.525163 0.116269 0.356272 0.007372

Index 9 (52) 10 11 (50) 12 13 14 (36) 15 16 (53)

Type fBLo fBL10 fBL11 fBL12 fBL13 fBL14 fBL15 fBL16

F-Score 0.234009 0.074707 0.252705 0.071361 0.090576 0.435705 0.037509 0.205777

Index 17 (42) 18 19 (44)

Type feL17 fBL1s fBL19

F-Score 0.296468 0.037128 0.290143

Table 7.3: F-Scores for the nonlinear phase-based features used in this study. The
bold numbers in brackets indicate the ranks for the top sixty-six features.

Index 20 21 (15) 22 (13) 23 24 (21) 25 (22) 26 27 (34)
Type fpn1 fpha fphs fPha frhs frhe it frhs
F-Score 0.002161 3.40389 3.93829 0.001028 0.852989 0.850224 0.000536 0.451283
Index 28 (35) 29 30 31 32 (14) 33 (32) 34 (66)
Type L) frhio fPhi1 frhi2 frPhis frhia fphis
F-Score 0.437565 0.003383 0.004468 0.001335 3.609093 0.466928 0.100274
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Table 7.4: F-Scores for the nonlinear 1-D based features. The bold numbers in
brackets indicate the ranks for the top sixty-six features.

Index 35 36 37 38 (23) 39 (16) 40 41 (17) 42 (49)

Type fNL1 fNL2 fNLs fNL4 fNLs fNL6 fNL7 fNLs

F-Score 0.004376 0.043474 0.028188 0.837737 2.561608 0.083659 1.675789 0.255196

Index 43 (19) 44 (24) 45 46 (38) 47 (37) 48 (28) 49 50 (55)

Type fNLo fNL10 fNL11 fNL12 fNL13 fNL14 fNL1s fNL16

F-Score 1.151379 0.831957 0.048254 0.383011 0.402271 0.569529 0.003632 0.202775

Index 51 52 53 54 (65) 55 56 57 58

Type fNL17 fNL1s fNL19 fNL20 fNL21 fNL22 fNL23 fNL24

F-Score 0.038605 0.043167 0.028673 0.101209 0.068022 0.032381 0.005276 0.044145

Index 59 60 61 62 63 64 65 66
Type fNL25 fNL26 fNL27 fNL2s fNL29 fNL30 fNL31 fNL32
F-Score 0.006465 0.035941 0.025960 0.061196 0.011671 0.026343 0.004708 0.015550
Index 67 (20) 68 (5) 69 (18) 70 (25) 71 (47) 72 73 74
Type fNL33 fNL34 fNL3s fNL36 fNL37 fNL3s fNL39 fNL40

F-Score 0.937748 41.99154 1.335222 0.737384 0.258012 0.021904 0.020498 0.008744

Index 75 76 (2) 77 78 (27) 79 (31) 80 81 82

Type fNLa1 fNLa2 fNLa3 fNL44 fNLas fNLa6 fNLa7 fNLas

F-Score 0.005032 74.732794 0.012247 0.661262 0.521751 0.06181 0.094429 0.021047

Index 83 84 (4) 85 86 (26) 87 (48) 88 (58) 89 (54) 90

Type fNL49 fNL50 fNLs1 fNL52 fNL53 fNL54 fNL55 fNL56

F-Score 0.057071 45.77489 0.045835 0.698165 0.257581 0.191538 0.205569 0.035003

Index 91 92 (12) 93 94 (62) 95 96 97 98

Type fNL57 fNL5s fNLs9 fNL60o fNL61 fNL62 fNL63 fNL64

F-Score 0.031306 5.651479 0.092150 0.127972 0.026360 0.056588 0.087552 0.009154

Index 99 100 (11) | 101 (29) | 102 (40) | 103 (61) 104 105 106
Type fNL65 fNL66 fNL67 fNLes fNL69 fNL70 fNL71 fNL72
F-Score 0.011370 5.932869 0.55627 0.348003 0.143246 0.035961 0.058544 0.003314
Index 107 108 (3) 109 110 (46) | 111 (56) 112 113 114
Type fNL73 fNL74 fNL7s fNL76 fNL77 fNL78 fNL79 fNLSo

F-Score 0.005743 49.33849 0.029424 0.261102 0.202594 0.041158 0.067312 0.003950

Index 115 116 (10) 117 118 (33) | 119 (60) 120 121 122

Type fNLs1 fNLs2 fNLs3 fNLsa fNLss fNLs6 fNLs7 fNLss

F-Score 0.004851 34.94347 0.035165 0.452377 0.173644 0.090287 0.067904 0.003530

Index 123 124 (6) 125 (7) 126 (1) 127 (9) 128 (8) 129 (43) | 130 (41)

Type fNLs9 fNLoo fNLo1 fNLo2 fNLos fNLo4 fNLos fNLo6

F-Score 0.006756 41.93384 40.41706 84.95294 37.15177 38.85961 0.296341 0.318477

Index 131 (57) | 132 (45)

Type fNLo7 fNLos

F-Score 0.196293 0.261724
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Finally, the selected features are used to construct a new SVM classifier. A grid
search is conducted (see Fig.7.22) and the optimal values of (C, ) are found to be
(25, 27°), respectively. Once the classifier is constructed, it is tested using similar
features extracted from the testing dataset. The confusion matrix for this classifier is
provided in Fig.7.21. Based on this result, it is clear that the classification accuracy
for the classifier based on the selected sixty-six features is very close to that based on

the whole set of one-hundred-and-thirty-two features.

BTR — 60 251 BRDM — 2 D7 T62 ZIL — 131 ZSU —23/4 SLICY
BTR — 60 90.7692 2.0513 6.1538 0 0 0 1.0256 0
251 0 98.1752 0 0 0.3650 0 1.4599 0
BRDM — 2 4.3796 0 95.6204 0 0 0 0 0
D7 0 0.3650 0 94.1606  4.0146 0.7299 0.7299 0
T62 0 1.0989 0 04.0293 91.9414 0.7326 2.1978 0
ZIL — 131 0 0 0 0.3650 0.7299 98.9051 0 0
ZSU —23/4 0 1.0949 0 0 1.4599 0 97.4453 0
SLICY 0 0 0 0 0 0 0 100.0000

Figure 7.21: Confusion matrix for the classifier based on the selected sixty-six fea-
tures.. Classification accuracy = 96.0701 % (2029/2112).

Best log2{C) = 5 log2{gannal) = -5 accuracy = 96,1693%
C =32 ganna = B,03125 95
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Figure 7.22: Grid search for optimal (C, ) for the selected sixty-six features.
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The most prominent lessons learned form this investigation are now highlighted.
Firstly, contrary to the usual practice of discarding the phase in single-channel SAR
imagery under the assumption that it carries no useful information, the statistical sig-
nificance of the information carried in the phase in general, and the complex-valued
chip in particular, is clearly demonstrated here. Secondly, a classification accuracy of
93.4186% 1is achieved based solely on the nonlinear features extracted from the com-
bination of the phase-based and the nonlinear space 1-D based representations. This
validates the superior performance of the proposed framework both for phase char-
acterization and modeling and for transformation from 2-D to 1-D space. This also
demonstrates that by using the correct set of features, it is possible to neglect features
based on the detected SAR chips. Hence, through approaching the complex-valued
SAR chip from the holistic perspective of nonlinearity, it is possible to gain a new
insight into the process of feature extraction for target recognition in SAR imagery.
Thirdly, it is interesting to note that among the most significant features are those
based on the PE for the combination of the 1-D transformed real and imaginary parts,
real-part, imaginary-part, furud’ed and bivariate representations, respectively. This
validates the usefulness of the three radon-based 1-D representations proposed in this
study. This also demonstrates the prominence of PE at capturing the nonlinear dy-
namics in the different representations. Additionally, among the top ranked features
are those based on the Hilbert spectrum. This shows the superiority of the HHT
transform at capturing the nonlinear dynamics. Next, it is important to note that
the feature extraction methods presented in this study are by no means exhaustive.
Rather, they serve to demonstrate the objective of the study and they open the door
for more in-depth investigation into various nonlinear feature extraction methods. Fi-
nally, it should be stressed that with the increase in the spatial resolution of the SAR
sensor relative to the size of the imaged target, the nonlinear phenomenon is naturally
expected to be more pronounced. Thus, the application of our approach to this kind

of SAR imagery should achieve even more prominent classification accuracy.

7.11. Conclusions

For the case of extended targets and due to the dispersive scatterers, phase change

in the radar return signal is not linear as it is often assumed by the conventional res-
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olution theory. In fact, nonlinear phase modulation is an intrinsic phenomenon for
extended targets in SAR imagery. When the processed SAR image is approached from
the reductionist perspective of linear signal processing, nonlinearity is often viewed
as a noise that warrants removal. On the contrary, nonlinear signal processing meth-
ods are motivated by the holistic signal processing worldview which is designed to
account for multiplicity due to interactions between the individual components in the
radar returns. The advantage of holism for signal processing in SAR imagery is clearly
demonstrated in this chapter. Two frameworks for feature extraction that take advan-
tage of the nonlinear phenomenon are presented. The first framework is solely based
on the phase chip of the extended target, and it allows for extracting unique features
for target recognition applications. The second framework is based on 1-D represen-
tations for the complex-valued SAR chip. This provides for utilizing a wide array of
methods for nonlinear and nonstationary time series analysis such as those associated
with chaos theory and the Hilbert-Huang transform (HHT). Our proposed approach
is demonstrated on the real-world MSTAR dataset. Comparison with baseline fea-
tures from the power-detected chips is also considered. An overall improvement in the
classification accuracy by around 20% is achieved due to the proposed approach. The
higher the spatial resolution of the SAR sensor the more predominant the nonlinear
dynamics in the processed image from the extended target. Hence, our proposed ap-
proach is expected to offer even greater gains for such sensors. The application of our
approach extends well beyond SAR to include various kinds of relevant imagery such

as that from radar, sonar and ultrasound.
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8. Summary

8.1. Conclusions

The following thesis objectives were outlined in Sect. 1.4:

Primary objective

o To develop novel tools that take advantage of the nonlinear phenomenon in
focused single-channel synthetic aperture radar (SAR) imagery; and

o To apply the developed tools to the problem of automatic target recognition in

SAR (SAR-ATR).

Specific Objectives

o To comprehend the status quo in SAR-ATR;

o To develop a low-level understanding of the SAR data as well as the various

factors that impact the SAR image; and

o To design novel features, inherently specific to SAR imagery, suitable for use in
SAR-ATR.

The foregoing objectives have been successfully fulfilled, leading to the development of
two new frameworks for feature extraction from complex-valued SAR imagery in Chap-
ter 7. The methodology followed to resolve the objectives of this thesis is summarized
below.

An in-depth review for the state-of-the-art in SAR-ATR has been conducted, and it
is disseminated in two research articles [1, 2]. This review has offered an umbrella under

which the various research activities in the field are broadly probed and taxonomized.
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The underpinnings of the methods reviewed have been summarized, and advantages,
shortcomings and challenges of the various SAR-ATR taxa have been pinpointed. A
synopsis for this review work is presented in Chapter 2. For most works on single-
channel SAR-ATR, the detected image (i.e., image intensity) is often utilized while
the phase content is discarded. This is a result of the conventional radar resolution
theory, a theory of point targets motivated by the linear system theory. At the heart of
the linear system theory, the Fourier view assumes a first-order fundamental oscillation
and bounding higher order harmonics. Subsequently, from the perspective of linear
system theory, deviations from linearity are considered noise that warrants removal.

Despite its mathematical soundness, this view does not correspond to physical reality.

The design and implementation of a low-power and high-resolution SAR system
in Chapter 3 has provided for developing a low-level understanding of single-channel
SAR imagery, and for comprehending the various factors that impact the focused
complex-valued image. The developed system utilizes the linear frequency-modulated
continuous wave (LEMCW) concept, and it operates in the S-band. The generic ar-
chitecture for the system is presented along with a brief description for the concept
of operation. The Omega-K algorithm (wKA) is used to focus the phase history, and
to produce a complex-valued SAR image for a ground-truthed target. Further, this

image is utilized for nonlinearity analysis in Chapter 4.

In Chapter 4, a systematic procedure to infer the statistical significance of the non-
linear dynamics in SAR imagery has been introduced. A proper understanding of the
inherent nature of the SAR data in terms of linearity and nonlinearity does not only
allow for an informed choice pertaining to the most suitable statistical models and sig-
nal processing methods, but also it provides for the extraction of as much information
as possible from the SAR data. The procedure utilizes hypothesis testing based on
linear surrogates resampled from the original SAR data using a method known as the
iterative amplitude adjusted Fourier transform (iAAFT). The statistical significance
for the decision is provided in terms of both parametric and nonparametric P-Values.
In order to apply the procedure, the SAR chips should be first transformed from the
2-D to the 1-D space. This is achieved through introducing three new methods. The
first method is applicable to real-valued SAR chips including the detected, real and
imaginary parts. The second method is meant to handle the bivariate interrelationship

between the real and the imaginary parts. In the third method, a so-called furud’ing
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operation is presented which allows for capturing the complex-valued statistics within
and between the real and the imaginary parts. The applicability of the proposed pro-
cedure is demonstrated on various real-world target chips from multiple SAR sensors
with different spatial resolutions. The analysis results confirm the statistical signif-
icance of the nonlinear phenomenon for the case of extended targets. Furthermore,
as the complex-valued SAR chip is magnitude-detected, the nonlinear effect is either
obliterated or greatly diminished. The power-detected chip is found to retain some
nonlinear statistics but it is postulated that such statistics are altered from their orig-
inal form present in the complex-valued chip. Subsequently, for the case of extended
targets, it is recommended to utilize the complex-valued SAR image rather than the
detected one. Furthermore, to exploit the embedded nonlinear statistics, it is advised

to utilize relevant nonlinear signal analysis techniques.

Motivated by the Hilbert view for the nonlinear phenomenon, Chapter 5 has pre-
sented a new insight into the nonlinear dynamics of the dispersive scatterers in SAR
imagery. It is demonstrated that dispersive scatterers from man-made targets induce a
predominant nonlinear phase modulation in the radar return signal. The conventional
radar resolution theory views this phenomenon as distortions that warrant removal. A
novel algorithm for recognizing the order of the nonlinear scatterers is devised. The
applicability of the proposed algorithm is demonstrated on a real-world target chip
from the MSTAR dataset. This provides for developing a new set of features that
take advantage of this effect for target recognition applications in SAR imagery. The

approach described in this chapter is expanded upon in Chapter 7.

In Chapter 6, a new insight into the relevance of phase in single-channel SAR im-
agery is presented. Particularly, the SAR image is approached from the perspectives
of complex-valued and directional statistics, respectively. From the perspective of
complex-valued statistics, the usefulness of the phase is quantified using a measure
called noncircularity (also known as impropriety). Noncircularity simply means that
the complex-valued SAR image has a probability density function (PDF) that is vari-
ant under rotation in the complex plane. It is found that applying this measure
directly to the phase image is misleading as it gives erroneous results for circularity
(also known as propriety). Subsequently, it is important that each pixel in the phase
image is properly referenced to its neighborhood. This is achieved through introduc-

ing a new algorithm for phase characterization which utilizes relevant techniques from

236



the field of directional statistics that can easily handle the issue of phase wrapping.
The characterized phase image is called the backscatter relative phase image (BRPI).
It transpires that in the presence of extended targets, the BRPI image is noncircular.
Furthermore, relevant techniques from the field of directional statistics are also applied
to derive a suitable statistical model for the processed phase image referred to as a
wrapped complex Gaussian scale mixture (WCGSM). Accordingly, a new set of fifteen
solely phase-based features for target classification in SAR imagery have been devel-
oped. An eight-class support vector machine (SVM) classifier utilizing the MSTAR
dataset is used to examine the statistical significance of the information carried in the
phase image. Unlike the common belief that the phase in single-channel SAR imagery
carries no useful information, the statistical significance of the information carried in
the phase is clearly demonstrated. With the increase in the spatial resolution of the
SAR sensor relative to the size of the imaged target, the nonlinear phenomenon is nat-
urally expected to be more pronounced. Accordingly, the application of the proposed

approach to this kind of SAR imagery should achieve higher classification accuracy.

The objective of this research is culminated in Chapter 7. The worldviews of re-
ductionism and holism, respectively, are shown to underlie the fields of linear and
nonlinear signal processing. When the processed SAR image is approached from the
reductionist perspective of linear signal processing, nonlinearity is often viewed as a
noise that warrants removal. On the contrary, nonlinear signal processing methods
are motivated by the holistic worldview which is designed to account for multiplic-
ity due to interactions between the individual components in the radar returns. The
advantage of holism for signal processing in SAR imagery is clearly demonstrated in
this chapter. Two frameworks for feature extraction that take advantage of the non-
linear phenomenon are presented. The first framework is solely based on the phase
chip of the extended target, and it allows for extracting unique features for target
recognition applications. The second framework is based on 1-D representations for
the complex-valued SAR chip. This provides for utilizing a wide array of methods
for nonlinear and nonstationary time series analysis such as from chaos theory and
the Hilbert-Huang transform (HHT). Comparison with conventional baseline features
from the power-detected chips is also considered. Multiple instances of an eight-class
SVM classifier are designed based on combinations of exemplary feature sets extracted
from the MSTAR dataset. A superior classification accuracy of 93.4186% is achieved
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for the combination of the phase and the 1-D based nonlinear features. This is in com-
parison to 73.6269% for the baseline features. Combining the baseline features with
the proposed features increased the classification accuracy by less than 3%. Because
the nonlinear phenomenon is resolution-dependent, the proposed approach is expected

to achieve even greater accuracy for SAR sensors with higher spatial resolution.

8.2. Future Work

The focus of this research work has been on the development of techniques to extract
useful information about the nonlinear dynamics embedded in the single-channel SAR
data generated by conventional linear signal processing methods. Particularly, the
advantage of the developed techniques is demonstrated on man-made vehicle targets
from the public-domain MSTAR dataset. It should be stressed that besides stationary
vehicle targets, this work is also applicable to various kinds of stationary and moving
extended targets including vehicles, ships, airplanes, icebergs, oil slicks, etc. A future
extension of this work is to examine the suitability of the developed techniques for
recognition of natural extended targets in SAR imagery such as icebergs and oil slicks.
Traditionally, in such cases, detected imagery is used, the phase content is discarded,
and the nonlinear dynamics are often overlooked [3-5]. Similarly, another important
application is the phenomenon of nonlinear internal water waves commonly referred to
within the offshore oil and gas industry as solitons [6]. Solitons form large-amplitude
solitary internal waves causing strong, rapidly varying currents within the water col-
umn that are a proven hazard to offshore oil and gas developments in several regions
of the world [6]. Thus, there is a significant interest in studying this phenomenon,
among others, from the oil and gas industry. Despite the numerous works on analyz-
ing this phenomenon from single-channel SAR imagery [7, &], the interest thus far has
been focused on the detected imagery without considering the phase. It may be noted
that solitary internal waves are also observed by high frequency (HF) radar [3]. Thus,
subsequent application of the signal processing methods presented in this work may
offer an important contribution to extracting new information about this phenomenon

as observed by a variety of sensors.

Another important extension is to investigate the advantage of the developed tech-

niques for dual, quad-polarimetric and compact-polarimetric SAR imagery [9, 10]. In

238



the literature, for multi-channel SAR imagery, the phase content is often utilized with
the aim of extracting useful inter-channel information. Typical methods that take ad-
vantage of this phenomenon include [l 1-15] incoherent target decomposition (ITD),
coherent target decomposition (CTD), complex Wishart distribution, and target co-
herency matrix (TCM), among others. Extension of the research work introduced in
this thesis to multi-channel SAR imagery may offer new insights into extracting useful

information specifically targeting the nonlinear phenomenon.

As alluded to above, the application of this research is extendable well beyond SAR
to include various types of sensors such as radar, sonar, synthetic aperture sonar (SAS)
[16], ultrasound, and synthetic aperture ultrasound (SAU) [17], etc. For example, it
is demonstrated in the literature that backscatter from sea clutter imaged by an X-
band radar possesses statistically significant nonlinear dynamics that are linked to the
sea state [18]. Similar observations are noted for different kinds of targets imaged by
radio frequency (e.g., HF radar [3, 19]), and ultrasound frequency (e.g., sonar [20]
and medical ultrasound [21]). This demonstrates the potentiality of extending the
frameworks for nonlinear feature extraction, presented in this thesis, to various kinds

of remote sensing applications.

While the preceding discussion is concerned with harnessing the nonlinear effects
embedded in the signals generated by conventional linear signal processing methods,
a natural extension for this work is the development of methods that seek to explic-
itly exploit the nonlinear phenomenon. Indeed, there have been recent works in this
direction where new techniques are deliberately designed to excite nonlinear scatter-
ing in the imaged object(s), and to properly harness it using suitable nonlinear signal
processing methods [22]. One of the most interesting recent studies on the superiority
of this approach for sonar is that reported in [22, 23]. In that study, it is empirically
demonstrated that while conventional linear signal processing is not able to distinguish
targets from bubble clutter, signal processing inspired by nonlinear dolphin-like sonar
pulses can both detect and classify such targets. In [22, 24], the extension of this
technique allowed the development of a new radar that relies on the excitation of non-
linearities in the imaged scene. Nonlinear signal processing was used to differentiate
between linear and nonlinear scatterers, thus, improving the target recognition perfor-
mance of the radar. Relevant work on the advantage of nonlinear signal processing for

HF radar is available in [25]. Accordingly, an ambitious long-term goal for the research
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presented in this thesis is to develop a new resolution theory for extended targets that

is specifically tailored to handle nonlinear phenomena.
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A. The SAR Datasets Avaliable for
This Research

Three real-world, single-channel and single-look complex (SLC) SAR datasets are used
throughout this thesis. Firstly, the Radarasat-2 dataset is described. Secondly, the
public-domain MSTAR dataset is introduced. Finally, SAR chips from miscellaneous

sensors are presented.

A.1. Radarsat-2 SAR Dataset

Radarsat-2 is Canada’s next-generation commercial SAR satellite. The satellite was
launched in December 14, 2007. Radarsat-2 is sponsored by Canada Space Agency
(CSA) and operated by MacDonald Dettwiler and Associates (MDA) Corporation.
Radarsat-2 carries a C-band SAR sensor whereby the finest spatial resolution com-
mercially available is that of the single-channel Spotlight imaging mode. In this mode,
Radarsat-2 offers a spatial resolution of 0.8 x 1.6 m in the azimuth and (slant) range,
respectively [1]. The lowest-level product commercially available from Radarsat-2 is
SLC [2]. This is the complex-valued and focused SAR image output from the SAR
processor. No SAR phase history is available from Radarsat-2 as per the contract be-
tween CSA and MDA. The Radarsat-2 SLC dataset used in this thesis is originally due
to the Virtual SAR Constellation (VSC) project [3] which utilizes a recent Spotlight
mode dataset that comprises over 500 images of ground-truthed construction vehicles
for scenes located in Long Harbour and Argentia, Newfoundland. Additionally, few
single-channel SLC SAR chips were extracted from a public-domain Radarsat-2 scene,
i.e., Vancouver dataset in [1]. The imaging mode is ‘Polarimetric Fine’. Only the HH
channel is utilized. The nominal spatial resolution for this imaging mode is 5.2 x 7.7

m in range and azimuth, respectively [1]. The targets of interest are ships.
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A.2. MSTAR SAR Dataset

Moving and Stationary Target Acquisition and Recognition (MSTAR) is a predomi-
nantly Spotlight (except for few non-target clutter chips) real-world freely and publicly
available X-band SAR dataset from the Sensor and Data Management System (SDMS)
of the United States Air Force. The MSTAR dataset was originally collected in 1995
and 1996 at the Redstone Arsenal, Huntsville, AL by the airborne Sandia National
Laboratory (SNL) SAR sensor platform and an X-band STARLOS sensor. The col-
lection was jointly sponsored by DARPA and Air Force Research Laboratory. The
MSTAR dataset offers a spatial resolution of 0.3047x0.3047 metres in both range and
azimuth. Further, the MSTAR dataset is available in the form of SLC complex-valued
chips. No SAR phase history pertaining to the MSTAR dataset is publicly available.

Under this dataset, two data collections are available. The first collection contains
baseline X-band SAR imagery of 13 target types (20 actual targets) plus minor ex-
amples of articulation, obscuration and camouflage. Additional clutter imagery is also
available. The second collection contains X-band SAR imagery of 15 target types (27
actual targets). Baseline data is available for 12 additional target types. Articulation
and obscuration data is also available for numerous targets and their variants. Ex-
tensive research works based on this dataset are available in the literature [5]. The
MSTAR dataset can be retrieved from this link [6]. The main advantage of using the
MSTAR dataset in this thesis is its fine resolution relative to C-CORE’s Radarsat-2
dataset.

A.3. SAR Chips from Miscellaneous Sensors

Three additional SAR chips are utilized in this study: (1) a ground-truthed chip from
our own SAR sensor, and (2) two ground-truthed chips, from a very high-resolution
SAR sensor.

A Chip from our Own SAR Sensor

A SAR chip for a vehicle target (i.e., extended target) from our self-designed S-band
SAR sensor is utilized. Our SAR sensor offers single-channel SLC SAR data [7]. The
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antenna polarization is HH. The imaging mode is ‘Stripmap’ The nominal spatial

resolution of our SAR sensor is 0.67873 x 0.15 m in range and azimuth, respectively.

Two SAR Chips from a Very High-Resolution SAR Sensor

The final two SAR chips considered in this study are from a very high-resolution single-
channel X-band SAR system, obtained from [%, 9]. The imaging mode is ‘Stripmap’.
The nominal spatial resolution of the SAR sensor is 0.03 x 0.012 m in range and
azimuth, respectively. The first target is a bike. The second target is the phrase GO
STATE which is formed through using a group of tiny pushpins.
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B. Reasons for Target Signature
Variability in SAR Imagery

Inter-
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Figure B.1: Summary of the inter-sensory reasons for target-signature variability [7].
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C. Data Acquisition Unit Used in the
LFMCW SAR Radar

Figure C.1: The device used for data acquisition in the SAR radar. It is a high-quality
sound recorder (H4N Handy Recorder) available from Zoom Corporation [10)].
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Transmit and Receive Antennas
Used in the LFMCW SAR Radar

Figure D.1: Setup for the Tx and the Rx antennas.
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E. Jensen—Shannon Divergence (JSD)

The Kullback-Leibler divergence (KLD, also known as the relative entropy) is an
information-theoretic approach to measure the information lost when ¢(z) is used to

estimate p(z). It is given by [11]

KLD(pllg) = 3 p (a)log: (M) . (E.1)

rzeX q ('T>

KLD provides a means for comparing the entropy of the two distributions over the
same random variable. Intuitively, this allows for estimating the number of additional
bits required when encoding a random variable X with a distribution p(z) using the

alternative distribution g(x). The properties of interest for KLD are

KLD (pllq) > 0, (E.2)
KLD (pllq) = 0iffp(z) = q () for allz € X, (E.3)
KLD (pllq) # KLD (q||p) - (E.4)

Jensen—Shannon divergence (JSD) is a symmetrized version of KLD. It is calculated
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7sp — KLD (pl|q);KLD (allp) (E.5)

In this study, in order to quantify the goodness-of-fit between the empirical BRPI
histogram (i.e., p) and the PDF obtained based on the estimation of parameters (i.e.,

q), the following measure is considered

JSD JSD
JSDy = _ , E.6
NI HD) T Yo 0 (0 omn (@) (E6)

where H (p) is the histogram entropy.
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F. Parameter Estimation for the viM
and WC Distributions

F.1. Maximum Likelihood Parameter Estimation for

the vM Distribution

The parameter p is the circular mean of the vM distribution. The MLE estimate of

this parameter is defined as follows [, 17]

fi = arg {% Z: exp (m)} ; (F.1)

where n is the total number of phase measurements, and z; is the value of a particular

phase measurement.

In order to estimate s, it is important to calculate the R? statistic which is the

square of the length of the averaged vector given by [11, 17]
) | 2 | 2
R:=z7"= (— Z cos xl> + (— Z sin xl> (F.2)
nai4 nis

The expectation value of the R? statistic is given by [14, 17]

1 nm—11L(k)?
<R>_n+ n I (r)? (F.3)
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Ii(k)?
Io(k)2

Accordingly, the following statistic is the unbiased estimate for

(R) = 2 <R2 - 1) . (F.4)

n

Hence, solving the following equation for x yields the MLE estimate in the limit of

large n [14, 19]
5 Li(w)
R= , F5
T (%) (F.5)
where I,,,(k) is the Bessel function defined as
1 m
In(k) = —/ exp (k cos x) cosmz dx. (F.6)
T Jo

F.2. Maximum Likelihood Parameter Estimation for
the WC Distribution

The MLE estimates of . and p can be obtained by a recursive algorithm originally
due to Kent and Tyler [16]. First, the PDF of the WC distribution needs to be

parametrized by introducing the following two parameters [17]

2 COS [y 20 SN Yy
— — P e F.7
1+ ,02 y M2 ) ( )

Thus, Eq.6.43 can be rewritten in terms of u; and ps as follows:

1 1
2T Cpe 1 — i1 cOST — o sinz’

f (@5 1, o) = (F.8)

255



where,

1

_ 7 (F.9)
1 —pf —p3

C’LUC

Then, two other parameters 7, and 7, are introduced

T = Cwe H1s N2 = Cue fl2, Cuwe = \/ 1+ 1F + 13, (F.10)

To obtain the MLE estimate /i1 and fi2, the log-likelihood function (i.e., logarithm of
Eq. F.8) is differentiated with respect to 7y and 7 as follows

1 n
Z w; [cos; — uy] =0, (F.11)
Cwe ;=1
1 n
Z w; [sin6; — po] =0, (F.12)
Cwe ;=1
where,
1
w; (F.13)

1 — p1 cosB; — posinf;’

where ¢ = 1,...,n. Accordingly, p; and s can be expressed as adaptively weighted

averages as

Y w;cosb;

: F.14
S (F.14)

%51

Yo, w;sinb;

M2 =
Z?:1 Ww;

(F.15)
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Thus, the MLE estimates fi; and fio, (and thus fi,. and p) can be obtained through a

reweighting iterative procedure as summarized in Fig. F.1 [17].

Choose arbitrary initial
values of m;, and my;
(my,0) +(my0)°<1

4( Start iterations
-
!
1 .
Wiy, = - fori=1,.,n.
1 pypcosx; — pp ,Sin x;
‘
¥t w;, cos x;
i _ &=l 1
1Lv+l — n
i=1 Wi
n -
u _ Li=1 Wiy SINX;
2,v+1 — n
i=1 Wip
’
End iteration upon
convergence
I

Calculate estimates of & and o
based on Eq. (F.7)

Figure F.1: Algorithm for MLE estimation of . and p.
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