
ANALYSIS OF KEY PREDISTRIBUTION

SCHEMES IN WIRELESS SENSOR

NETWORKS

By

Naren K.Gundimeda

A project submitted to School of Graduate Studies

In partial fulfillment of the requirements for the degree of

Master of Science (Scientific Computing)

Faculty of Science

Memorial University of Newfoundland

December 2014

St. John’s, Newfoundland

1

Table of Contents
Abstract 6

Acknowledgement 7

1 Introduction 8

1.1 Sensor Network 9

1.2 Features of Sensor Networks for Key Management 9

1.3 Key Establishment Phases 10

1.4 Main applications of Private Key Cryptography 10

2 Combinatorial Designs for Private Key Cryptography: Definitions 11

2.1 Basic Designs 11

2.1.1 Balanced Incomplete Block Designs (BIBD) 11

2.1.1.1 Parameter Conditions on BIBD 12

2.1.1.2 Complementary BIBD 14

2.1.1.3 Symmetric BIBD 14

2.2 Latin Squares 14

2.2.1 Orthogonal Latin squares 15

2.2.2 Mutually Orthogonal Latin squares 15

 2.3 Group Divisible Design 15

2.4 Transversal Design 15

2.5 Projective Planes 16

2.6 Affine Plane 16

2.7 Common Intersection Design 17

2

3 Literature Review 18

3.1 Previous Schemes 18

3.1.1 Blom’s Scheme 18

3.1.2 Song’s Scheme 19

3.1.3 Gilgor’s Scheme 19

3.2 Symmetric Designs and Key Distributions in Sensor Networks 19

3.2.1 Combining the Symmetric Design and Key distribution 20

3.2.2 Algorithm Construction 21

3.2.3 Analysis 21

3.3 Hybrid Designs for Scalable Distributions 22

 3.3.1 Description 22

3.4 Methods of Key Predistribution 23

3.4.1 Polynomial Pool Based Key Predistribution 23

3.4.1.1 Set-up Phase 24

3.4.1.2 Direct Key Establishment Phase 24

3.4.1.2.1 Predistribution 24

3.4.1.2.2 Real time discovery 24

3.4.1.3 Key Establishment Phase 25

3.4.1.3.1 Predistribution 25

3.4.1.3.2 Real time discovery 25

3.4.2 Random Subset Assignment Method 25

3.4.2.1 Subset assignment 25

 3.4.2.2 Polynomial Share Discovery 25

3.4.2.3 Path Discovery 26

3

3.4.4 Grid Based Key Predistribution 27

4 Key Predistribution Scheme using Transversal Design 29

4.1 Algorithm 29

4.2 Previous Work Proposed on Merging the Blocks 30

 4.3 Algorithm analysis 31

 4.4 Key Establishment using the Transversal Design 32

4.5 Probability of Key predistribution using CID design 33

5 Algorithm for Relationship Between Various Combinatorial Designs 34

6 Conclusion 35

Appendix A: Computational Program and Results 36

 Code for Generating Affine Plane from Orthogonal Latin Squares 39

Appendix B: Construction of Mutually Orthogonal Latin Squares (MOLS) 44

 Code for Generating MOLS 45

Appendix C: Program for Generating the Key Predistribution using Latin Square 48

Appendix D: Hadamard Matrix and BIBD 51

Bibliography 52

4

List of Tables

 1 Incidence Matrix 13

2 Latin Squares 14

3 Elements Represented in Groups 16

4 Representing the relationship between symmetric design and Key distribution [1] 21

5 Representing the relationship between Hybrid scheme and Key distribution [1] 22

6 Key-chains for a TD (4, 5)-based KPS, with block ID are of one-dimension [12] 30

7 Key-chains for a TD (4, 5)-based KPS, with block ID are of two-dimensions [12] 30

5

List of Figures

1 Wireless Sensor Network [1] 9

2 Finite projection of order 2 [3] 12

3 Probabailities of pairwise key establishment [11] 27

4 Grid based Predistribution [12] 28

List of Acronyms

1 Key Predistribution Scheme (KPS)

2 Balanced Incomplete Block Design (BIBD)

3 Orthogonal Latin Squares (OLS)

4 Mutually Orthogonal Latin Squares (MOLS)

5 Group Divisible Designs (GDD)

6 Transversal Designs (TD)

7 Common Intersection Design (CID)

6

ABSTRACT

Combinatorial designs are used for designing key predistribution schemes that are applied to wireless

sensor networks in communications. This helps in building a secure channel. Private-key cryptography

helps to determine a common key between a pair of nodes in sensor networks. Wireless sensor

networks using key predistribution schemes have many useful applications in military and civil

operations. When designs are efficiently implemented on sensor networks, blocks with unique keys

will be the result. One such implementation is a transversal design which follows the principle of

simple key establishment. Analysis of designs and modeling the key schemes are the subjects of this

project.

7

Acknowledgement

I would like to thank Dr. Nabil Shalaby giving me step by step guidance from start to end of the

project. He mainly understands the student’s ability and makes the student do hard work has inspired

me to fully focus on the project.

I would also thank Dr. Martin Plumer for his overall support and encouragement made the

project complete and to the writing centre too, which helped in writing this report.

8

1 Introduction

Distributed Sensor networks have many applications, such as military and civil operations and they are

used for target tracking and the monitoring of nuclear power plants. Protecting data needs a special

technique called cryptography (secret writing). Secret writing converts the message into a format

understandable only to the sender and receiver. Cryptographic systems are divided into two categories:

public-key cryptography (a different key for sender and receiver to encrypt and decrypt the data) and

private-key cryptography also called symmetric key cryptography (which shares a common key for the

sender and receiver). Because cryptography has mathematical operations such as substitution and

transposition, the security goals, such as confidentiality, authentication and data integrity are achieved.

Confidentiality means protecting the data from unauthorized users, while authentication is to verify the

data from the sender and data integrity ensures the data received is not modified.

Key establishment is an important aspect in achieving these goals. Managing the keys uses a set of

elements for key generation from a trusted authority. Key management involves key generation, key

establishment, key update and key revocation. Key generation is the process of generating the keys

from the trusted authority while key establishment generates the key rings by the trusted authority and

sends them to the nodes accordingly. In the key-update phase keys are updated after certain time period

and revocation deletes compromised keys. Cryptographic terms are described via key, plaintext and

ciphertext.

Plaintext is the original data while the key is secret and the sender uses mathematical operations for

maintaining the secrecy. Ciphertext is the converted to original data using a key. The process of

converting the original data to ciphertext is called encryption and the reverse process is called

decryption. Private-key cryptography is employed in sensor networks due to its computational and

communication cost efficiency [1].

9

1.1 Sensor Network

A sensor network consists of tiny sensor nodes present in a fixed network topology with limited

resources such as network capability. Fig.1 by Camtepe and Yener [1] explains how sensor network

functions in secure channels. Here, we can obeserve the direct link between a and b, and a and c, but

we can establish a path through a-c-b so that a and b do not share a key. The length of this path is

called the key-path length.

Fig.1: Wireless Sensor Network [1].

1.2 Features of Sensor Networks for Key Management

Cryptographic key management is a challenging task in a sensor network due to its vulnerability to

external attacks. Sensor networks have limited resources which make it difficult to implement public

key cryptographic algorithms; because of its wireless nature makes it is easy to eavesdrop, and a

definite topology is present in a sensor network.

Therefore the better choice would be a key predistribution scheme to establish the keys. In key

predistribution, we generally choose keys from a large pool. The main goals of the key establishment

are:

1. Key connectivity: If the sensor nodes in a neighbourhood share a common key, then the

probability of key connectivity can be described as Pc = L/N(N-1)/2, where L is number of links

and N is number of nodes

10

2. Resiliency: When nodes are captured or compromised, the rest of the network is disconnected

by affecting s' (number) of nodes. This can be measured by E(s) = Lˈ/L, where L is number of

links that are affected before s nodes are compromised and Ľ is the number of links that are

affected after s nodes are compromised.

3. Storage and computational requirements must be kept to a minimum value as the sensor

network consists of many (in some uses thousands) tiny sensors.

4. Key revocation: An efficient mechanism should be present for revoking the keys.

1.3 Key Establishment Phases

In [2], the key establishment is described in three phases:

1. Key Predistribution: Before deployment the keys should be preloaded onto the key rings.

2. Shared key discovery: When two nodes are communicating it is better to find a common key.

3. Key Establishment: If a common key does not exist, it is better to choose a key path for secure

communication.

Key predistribution schemes are mainly classified into three types: Probabilistic schemes draw keys

randomly from the key rings while deterministic schemes follow a definite pattern of the key pool and

hybrid approaches use both schemes.

The algorithm and key predistribution are deterministic for this report.

1.4 Main applications of Private Key Cryptography

The main applications of private key cryptography are telecommunications, optics, military service and

coding in civil operations, error correcting codes etc.

11

2 Combinatorial Designs for Private Key Cryptography: Definitions

2.1 Basic Designs

A Combinatorial design is a pair of parameters (X, A) where X represents points or elements, and the A

represents blocks or subsets of the elements, for example:

X= {1, 2, 3, 4}.

A= {123, 134, 234, 124}.

This design satisfies certain properties (for example, see BIBD below). This terminology is mainly

used in predisitribution schemes as they help to communicate between the nodes in a sensor network

(see appendix D for relation between BIBD and hadamard design).

2.1.1 Balanced Incomplete Block Designs (BIBD)

Balanced incomplete block design (BIBD) is a 3 parameter set:

S= (v, k, λ)

Where v is a set of points or elements.

k- Number of elements in the blocks.

λ- Number of times elements occur in the blocks.

An example is:

S = (7, 3, 1).

B1=(1, 2, 4) ,B2=(2, 3, 5) ,B3=(3, 4, 6), B4=(4, 5, 7) ,B5=(5, 6,1) ,B6=(6, 7, 2) ,B7=(7, 1, 3).

Keys = (k1, k2, k4), (k2, k3, k5), (k3, k4, k6), (k4, k5, k7), (k5, k6, k1), (k6, k7, k2),(k7, k1, k3).

There are 7 elements where v= {1, 2, 3, 4, 5, 6, 7}, k=3, λ=1.

Each block should contain a set of elements from set S, so all blocks will have only some elements, if

elements repeat only once in blocks then it is called a simple design.

12

Fig.2: Finite projection of order 2 [3].

In this (v, k, λ) design we have a given example of (7, 3, 1), also known as a Steiner triple system

because it has 3 blocks of elements and an affine plane of order n in Fig.2 [3]. This is also a projective

plane of order 2 with parameters as (n
2
+n+1, n+1, 1)-BIBD.

2.1.1.1 Parameter Conditions on BIBD

The parametric conditions on the BIBD can be described as follows. Every design satisfies the

following constraints [4]:

Theorem 1:

λ (v-1)=r(k-1).

Proof:

Let (A, B) be the design where A represents the elements and B represents the blocks, S represents the

BIBD (v, k, λ).

Consider the element y is present in r blocks then the other elements form pairs with x and makes r(k-

1) blocks. On the other hand, the element present in λ blocks make pairs with v-1 blocks. Combining

the two statements derives the result.

13

Theorem 2:

bk = vr

Let (A, B) be a (v, k, λ)-BIBD, and let b=|B| and size of the blocks B have k elements gives bk

elements. Consider the element x is made of r choices and it is present in v blocks. This makes it appear

in vr elements which give the final result [4].

Usually BIBD is converted to 5 parameter set (v, b, k, r, λ) design where r is repetition number which is

3 (total number of repetition of elements in all blocks with b determined by using the formula):

b= λ (v(v-1))/k(k-1).

An example of the parameter design is the same as the above block design with (7, 7, 3, 3, 1) where

block size is 3 and repetition number is also 3.

The incidence matrix of such a design can be described as follows:

 A is a b*v matrix and A=aij.

aij=1if ith block contains the jth element or aij=0 otherwise .

For example the Blocks {1,2,3} {2,3,4} {3,4,1}{4,1,2}.

In Table 1 the incidence matrix of the BIBD can be described in binary values as 1’s and 0’s.

Table 1: Example of Incidence Matrix.

Index

i, j

Matrix elements

1 2 3 4

1 1 0 1 1

2 1 1 0 1

3 1 1 1 0

4 0 1 1 1

14

2.1.1.2 Complementary BIBD

In (v, b, r, k, λ) [4] block designs, if there exists S of v elements then there is a complementary BIBD

such that the elements are of the S-B blocks. For (v, b, r, k, λ) such that k ≤ v-2 the complementary

design would be (v, b, b-r, v-k, b-2k+λ).

2.1.1.3 Symmetric BIBD

In [4] a BIBD, if one of the parameters is equal to other such that v = b or k = r then it is called a

symmetric BIBD. A complementary BIBD can be symmetric.

In BIBD we have parameters (v, k, λ) where in the blocks if there are common elements present then

such designs form the symmetric designs.

A1 ∩ A2= λ

Take the BIBD, for example,

S = (v, b, r, k, λ),

(7, 7, 3, 3, 1)

Blocks B= {123, 145, 167, 245, 267, 345, 367}

Here, we can observe that one of the parameters is equal to others, v=7=b and r=k=3. The common

intersection element is λ=1 in the blocks. In detail the blocks b1 = {123} and b2 = {145} where the

common element is 1. The complementary design can be symmetric (see complementary design

definition).

2.2 Latin Squares

A matrix of order n*n such that each of n symbols occurs once in each row and each column. The

number n is called order of the square. Example of latin square of order 3 is defined in table 2:

1 2 3
3 1 2
2 3 1

Table 2: Latin Squares.

15

2.2.1 Orthogonal Latin squares

Suppose that L1 is a Latin square of order n with entries from X and L2 is a Latin square of order n with

entries from Y. “We say that L1and L2 are orthogonal Latin squares provided that, for every x ∈ X and

for every y ∈ Y, there is a unique cell (i, j) such that L1 (i, j) = x and L2 (i, j) = y” [4].

2.2.2 Mutually Orthogonal Latin squares (MOLS)

“A set of m Latin squares of order n, say L1,...,Lm, are said to be mutually orthogonal Latin squares

(MOLS) if Li and Lj are orthogonal for all 1≤i <j ≤m”. The Latin squares are called mutually

orthogonal if they form orthogonal pairs [4].

2.3 Group Divisible Designs

A group divisible design consists of three parameters such as (X, G, A) with the following the

properties, where X represents the set of elements, G represents the group comprising the non-empty

sets of X, and A represents the blocks of X. The group and block have one common point and every

pair of distinct points contained in one block [4].

An example of GDD is S = (9, 3, 1)-BIBD

“X = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and

A = {123, 456, 789, 147, 258, 369, 159, 267, 348, 168, 249, 357}.

If we delete the point 1, for example, then we obtain the following GDD (Y, G, B):

Y = {2, 3, 4, 5, 6, 7, 8, 9},

G = {23, 47, 59, 68}, and

B = {456, 789, 258, 369, 267, 348, 249, 357}” [4].

2.4 Transversal Designs

Let k ≥ 2 and n ≥ 1, then a transversal design satisfies the following properties with (X, G, B) [4].

i) X is the number of elements.

ii) G is the partition in groups.

16

iii) B is blocks of X.

iv) Any group or any block has a common point (element).

v) Every pair of points is contained in exactly one block.

Example:

From group divisible design we have the following groups:

1 2 3 4

5 6 7 8

9 10 11 12

Table 3: Elements Represented in Groups.

Blocks are represented as the following:

B={1,5,9}{1,6,10}{1,7,11}{1,8,12}{2,5,11}{2,6,12}{2,8,10}{2,7,9}{3,6,9}{3,5,10}{3,7,12}{3,8,11}

{4,5,12}{4,8,9}{4,7,10}{4,6,11}

In Table 3 we have elements arranged as groups and blocks are arranged having a common element in

each block, starting at the initial block.

2.5 Projective Planes

A BIBD that forms the plane of order n having the parameters (n
2
+n+1, n+1, 1) will be called a

projective plane of order n such that n ≥ 2. For example if n=2, then the projective plane would be (7,

3, 1). If the BIBD in [4] satisfies the following property in the projective plane then it is a symmetric

BIBD:

 n
2
+n= (n+1) n

So every point in BIBD will intersect at blocks.

2.6 Affine Plane

Let n≥2 then there exists BIBD which satisfies the parameters such that (n
2
, n

2
+n, n+1, n, 1) is affine

17

plane of order n.

2.7 Common Intersection Design

Assume there are nodes Ni and Nj such that they can communicate with each other but don’t have a

common key while the intermediate node will have common key Nh.

Assume there is BIBD with parameters (v, b, r, k) with A elements and B Blocks.

Then the condition of common intersection is Bh∈ B and Bi ∩ Bj =Ø and

Bi ∩ Bh = Ø ≥µ (order of CID) [5].

18

3 Literature Review

Sensor networks use combinatorial design for predistributing the keys before deployment. Various

schemes were proposed that follow the probabilistic, deterministic or hybrid patterns which can be

applied to derive transversal designs. Various methodologies have been proposed and are also discussed

in this chapter.

3.1 Previous Schemes

3.1.1 Blom’s Scheme

Blom proposed a k-order matrix scheme over a finite field GF(q) (Galois field [3]). It has a private

symmetric matrix S and public Vandermonde matrix [6] as P. By using the private matrix we obtain

secrecy, and by using the public matrix we have the data to establish the keys between the nodes. The

columnar matrix will be P which is multiplied with S and results in A = (S*P)
T
. This gives rows of

matrix A and columns of matrix P forming the nodes. The private matrix column would be colj and the

row for matrix A is rowi. For generating the keys we have to exchange the columns in the matrix P and

multiply by A. Blom’s scheme follow the pattern of sharing the key and path length as 1 which tells us

this scheme is deterministic. When the resultant matrix and the private matrix are multiplied together

we have a symmetric matrix K=A*P generating the keys. If Blom’s scheme is applied to large numbers,

the matrix multiplication will be a costly computation. Blom’s scheme will affect the resiliency when

the number of nodes is increased.

Du et al. [7] used Blom’s scheme with ῳ spaces to increase the resiliency such that each random node

uses ᴦ spaces out of ῳ spaces. When resiliency is increased there will be no key space. If the

probability ratio of ᴦ/ῳ decreases then the probability of sharing the key also decreases.

19

3.1.2 Song’s Scheme

Chan, Perrig and Song [8] proposed a random pairwise key scheme where the probability of any two

nodes connecting is p, in the network of n nodes where each node needs to store (np) pairwise keys

instead of n-1 keys. As each node will have distinct keys, perfect resiliency is established.

Slijpevic et al. [9] proposed that sensor nodes share a list of master keys by using a random function

and a seed, where every sensor node will share the random function and a seed to select the network-

wise key.

3.1.3 Gilgor’s Scheme

Eschenauer and Gilgor [10] proposed a random key pairwise distribution scheme. In this scheme we

can supply many keys before deployment. We have to generate the pool P along with their identities for

each sensor. As the identities are present we can generate the keys k from pool P.

Thus, the k keys and their identities are loaded into the memory of the sensor node. In this process,

only identities are exchanged without any privacy mechanism. Gilgor’s scheme uses many

mathematical operations and requires much storage for each sensor node. If two sensor nodes share a

common key the set of keys will be generated.

Chan et al. [8] proposed a scheme to develop q-composite predistribution keys, which uses the key pool

but increases the overlapping of keys. This will need additional security for the nodes. Since there are

q-composite keys, each node will have unique keys but the problem is that the number of nodes are

compromised, which will affect the pairwise keys. If we limit the network size, each sensor node will

have pairwise key, which will reduce the number of nodes being compromised.

3.2 Symmetric Designs and Key Distributions in Sensor Networks

To describe the BIBD in a finite projection plane, there are a finite set of points and set of subsets or

lines, where number of points are n≥2 such that each point contains the parameters of a symmetric

design as (n
2
+n+1, n+1, 1). The symmetric design follows the properties of having a point with n+1

20

lines where every n+1 point has n
2
+n+ 1 lines. If we define the symmetric design in terms of a

complementary design, then block design, S = (v, k, λ)-BIBD with the blocks D= (D1,D2,…,Dn). Then

the complementary design of BIBD with five parameters is Sˈ= (v, b, b-r,v-k,v-2k+ λ) and with three

parameters Sˈ= (v,v-k,v-2k+ λ) [1]. We have an original design and a complementary design that are

symmetrical to each other and contains the intersection element λ [1].

For example:

S= (v, k, λ) = (7, 3, 1)

Sˈ= (7, 4, 2)

D = {123,145,167,245,267,345,367}

Dˈ= {1467, 1256, 2367, 2345, 4567, 4567, 1256}.

3.2.1 Combining the Symmetric Design and Key distribution

Table 4 below [1] will help explain the relationship between the key distribution and the symmetric

design where N is number of nodes before deployment. Keys will be selected from the key pool, and

then the parameters will be changed as follows by having key chains as blocks and key pool size as the

network size in the sensor network: if two nodes share a common key, then the intersection would be

λ=1 or Χ keys, such that they follow the conditions v = b and r = k.

21

Table 4: Representation of relationship between a Symmetric design and Key distribution [1].

3.2.2 Algorithm Construction

In order to construct the design, a complete set of orthogonal latin squares is defined such that an n x n

array of n symbols is defined, which is called a mutually orthogonal latin square. Suppose we define

the latin squares as A and B, such that in each matrix aij and bij there are n x n arrays, then we have

distinct pairs of elements in each matrix.

Steps in the algorithm are with a given network size N and we have to determine the prime power n

such that it satisfies the condition (n
2
+n+1 ≥ N) and derive the n-1 orthogonal latin squares mentioned

in [3]. Then we will construct the affine plane of the form (n
2
, n, 1) which will finally have a projective

plane as (n
2
+n+1, n+1, 1). This follows the symmetric property.

3.2.3 Analysis

In a symmetric design, the average key path length would be 1, and the probability of key share is also

1. Here the resiliency is measured as an important metric for security, as the attacker has defined the

nodes selectively or randomly. The key chain size is defined as n+1. The attacker has to test the keys

with n+1 key chain. If the symmetric design property is applied to the key chain, then there will be

n
2
+n keys which must be paired for the n+ 1 keys. In this way the attacker can capture only n

2
+1 keys.

22

Symmetric designs do not support scalability when the sharing probability is 1 for the given fixed key

chain size such that N> n
2
+n+1, where n is a prime number. For larger networks, the probability of key

predistribution schemes will increase and have a possible number of distinct key chains. Symmetric

designs do not satisfy the interconnectivity property (of physically being connected when nodes are

compromised). So to improve the interconnectivity property, hybrid schemes should be used. These are

discussed in the next section.

3.3 Hybrid Designs for Scalable Distributions

Here we use N sensor nodes divided into blocks of size k of object size v [1]. The blocks are symmetric

such that N-b blocks are selected among k subsets of the complementary design. Blocks with at most K

keys come from the key ring or key pool. In table 5 we have the relation between hybrid design and

key predistribution with parameters defined.

Table 5: Representation of relationship between Hybrid scheme and Key distribution [1].

3.3.1 Description

In a given key chain of size K and network size N, the hybrid design will be a prime power n such that

in terms of k, where the blocks are of v-k, represent the complementary design and N-b uniformly

scales up to form complementary design blocks.

In summary we have to use a key chain size as K and number of nodes as N with power n. We also take

23

the value k ≤ K. With these parameters, we derive the symmetric design of pool size P and blocks B.

Based on this description we would have a complementary design which will be processed to give a

final hybrid design.

An example of hybrid design follows:

Generate the key chains with network size as 10 and assume that BIBD with parameters as: S = (v, k, λ)

= (7, 3, 1).

Form the symmetric blocks form:

B= {123,145,167,246,257,347,346} with the complementary symmetric design as: Bˈ= {4567, 2367,

2345,1357,1346,1256, 1247}.

Assume the subsets as H= {456, 236, 157}.

The blocks of hybrid symmetric design [1] are thus:

B ∪ H= {123, 145, 167, 246, 257, 347, 346, 456, 236, 157}.

3.4 Methods of Key Predistribution

3.4.1 Polynomial Pool Based Key Predistribution

To summarize the polynomial-based predistribution, we have to establish pairwise keys and randomly

generate the bivariate t-degree polynomial [11].

∑i
t
,j=0 ai,jx

i
y

j
=f(x,y).

This polynomial is applied over a finite field Fq, such that q is a prime number and satisfies the

property f(x,y)=f(y,x). Here, each sensor will have a unique ID. For example, the setup server computes

a polynomial share f(x,y)=f(i,y), which is used to compute the common key at point i, and the same

theory is used to exchange at point j as f(j,i)=f(i,j). The t-degree polynomial occupies (t+1) log q

storage space to store a polynomial f(i,x), and to establish the key, it has to assess the ID of q

neighbouring sensor nodes.

In [11] the general framework for pairwise key establishment is described. This framework generates

24

the random bivariate polynomial for sensor networks. Pairwise key establishment is divided into 3

phases:

I) Set-up Phase

II) Direct Key Establishment

III) Key Establishment

3.4.1.1 Set-up Phase

In this phase, the server will randomly generate the bivariate polynomial of t-degree which is

represented as F over a finite field Fq, and assigns a polynomial with a unique ID. The setup server

picks up a subset of polynomials that are assigned at sensor node i (Fi⊆ F). Here the problem is to find

the subset of polynomials for all sensors.

3.4.1.2 Direct Key Establishment Phase

In this phase we have to generate a pairwise key for the sensor node, if it is not present already, so that

the polynomial will have a shared pairwise key. The problem is finding the common bivariate

polynomial which is solved by either using predistribution or real-time discovery techniques.

3.4.1.2.1 Predistribution

In [11], the predistribution technique is described, where the setup server will predistribute the

information or data to the sensors so that if one node shares the key with another node, it can establish

a pairwise key. Even though this method is simple, it cannot connect to the networks on demand

because the server will have to be informed about additional sensors attached to the network. In

predistribution, the main disadvantage is that the attacker can identify the polynomial easily and target

the sensor nodes that share the polynomial which is solved by real time discovery technique.

3.4.1.2.2 Real time discovery

Real time discovery technique [11] is used to build the polynomial on demand if two sensors have a

common bivariate polynomial. The first solution for building the polynomial on the fly is to swap the

25

ID’s of polynomials, which have a common polynomial. For example, sensor node i may broadcast an

encryption list, α, EKv(α), v = 1, ..., |Fi |, where Kv is a potential pairwise key the other node may have,

but overhead is problematic [11].

3.4.1.3 Key Establishment Phase

In this phase to establish a pairwise key, we have a path between the nodes a and b such that it forms a

sequence and establishes the key. The problem is that two nodes cannot communicate directly. The

solution is to use predistribution and real time techniques.

3.4.1.3.1 Predistribution

The technique is same as in the direct key establishment phase (see previous section), but the server

will store the ID of the sensor node to the other node and will find the key path.

3.4.1.3.2 Real time discovery

This method builds the nodes on demand if there is a key path and establishes the pairwise key from

the intermediate node to the destination node which increases the communication overhead.

3.4.2 Random Subset Assignment Method

In the random subset method, the server will select the random subset of polynomials as F and assign it

to the server. There is a unique key between each pair of sensors, which shares the polynomial. The

problem is that if there are key shares, no pairwise key is constructed. It has three steps:

3.4.2.1 Subset assignment

In this step, you have a bivariate t-degree polynomial which is generated randomly over a finite field

and a random set of polynomials are picked and assigned to the sensor node.

3.4.2.2 Polynomial Share Discovery

In this step, sensors will find the common polynomial by using the real discovery technique and

broadcast a polynomial ID as EKv(α), v = 1, ..., |Fi |, where Kv is a potential pairwise key the other node

may have.

26

3.4.2.3 Path Discovery

In the path discovery step, a source node will try to find another node’s ID that can set-up a common

key. The process is to broadcast the list of polynomials which includes ID
’
s of source node and

destination node. If one of the nodes establishes a common key with source and destination, the

message will be encrypted and a random key is generated for both of nodes (source node and

destination node), which can receive a pairwise key from the message.

The probability is explained as follows [11].

P=1-Πi=0
sˈ-1

s-

sˈ-i/s-i.

Figure 3a explains the relationship between p and s, and sˈ where the sensor node establishes the

pairwise key, and if there is d neighbouring nodes the probability can be given by [11].

Ps=1-(1-p)(1-p
2
)
d
.

Figure 3(b) explains the relation between p, d and Ps. The probability of comprised nodes of the

polynomial can be given by:

P(i)=NC!/(NC-i)!(sˈ /s)
i
(1- sˈ/s)

NC-i
.

Here’sˈ/s gives the polynomial of choosing F.

27

Fig 3: Probabilities of pairwise key establishment [11].

3.4.3 Grid Based Key Predistribution

 A grid based key predistribution scheme has several advantages [11]:

i) Sensors can establish a pairwise key if no compromised nodes are present and two sensors

should always communicate.

ii) The resiliency is very high even when the sensors are compromised.

iii) A sensor will establish a pairwise key if the other node has a same polynomial; otherwise

this will not occur.

In a grid based system, we construct a nxn grid with the set of 2n polynomials such that it is of the form

(Fi
c
(x,y),Fi

r
(x,y)) [11] and i=0,1,…,m-1 with n=sqrt(M) where M is number of sensor nodes. The sensor

will represent the unique point in the x-y coordinate, and distribute the polynomial (Fi
c
(x,y),Fi

r
(x,y)) to

the sensor.

28

Fig 4: Grid based Predistribution [11].

In a subset assignment; the setup server will generate a bivariate polynomial of t-degree over a finite

field. When there is no intersection in the grid, the polynomial will be assigned to the node. Typically

the polynomial can be represented as F = (fc
i
(x,y),fr

i
(x,y)) [11] where i=0,….m-1.

In polynomial share discovery; we check whether two column or rows will be equal then a pairwise

key will be established such they have the polynomial shares.

For path discovery; if there exists a path between i and j such that there are one or more intermediate

nodes, the node algorithm will be assigned. Fig 4(a) [11] explains in detail if there exists a path

between the nodes, and then a pairwise key will be established.

In some situations, if the intermediate nodes are compromised or out of range, they will have chosen

alternative key paths. For example in Fig 4(b) [11] we can establish the random pairwise key by using

the nodes (i, m-2) and (i
ˈ
, m-2) for node (i, j) with (i’, j’).

29

4 Key Predistribution Scheme using Transversal Design

In order to predistribute the keys, Pattanayak and Majhi [12] proposed a scheme based on the

transversal design. The algorithm for deriving the transversal design is described here. A transversal

design [12] can be defined in terms of group divisible designs, with a group g
u
 and block size k where

X is the finite cardinality g
u
, H is partition of X in parts of G, and A is a set of subsets of X following

the properties:

i) Hi ∩ Ai≤1 for every Hi∈ H and Ai ∈ A.

ii) Each pair of elements of X from different groups occurs in exactly one block in A.

iii) A transversal design is a group divisible design of type n
k
 and block size k.

4.1 Algorithm

The following steps derive the transversal design [12]:

(1) Define X = {0, 1,..., n-1}xZp where Zp is the prime number used for modulo operation

For 0≤x≤n-1, define Hx={x} x Zp.

 Define H= {Hx|0≤x≤n-1}.

 For every ordered pair (i, j) ∈ Zp x Zp.

Define a block Ai,j={(x, ix+j mod q)| 0≤x≤n-1}.

 Obtain A= {Ai,j|(i,j) ∈ Zp x Zp}.

 (X, H, A) is the transversal design TD (k,p) where k=G (groups) and p=B (blocks).

An example for transversal design is described here [12]:

Number of blocks=24.

Block size=4.

Prime power =Zp=5.

30

Table 6: Key-chains for a TD (4, 5)-based KPS, with block ID are of one-dimension [12].

Table 7: Key-chains for a TD (4, 5)-based KPS, with block ID of two-dimensions [12].

4.2 Previous Work Proposed on Merging the Blocks

 In the scheme proposed by Chakraborthy [13], it was observed that the connectivity property (if nodes

are compromised, the remaining nodes maintains all links in network) was increasing and was a hybrid

scheme having factor z and formed the key-chains in factors of z. This is a heuristic method. To

summarize, take the flag value and counter array so that it can store the blocks with factor z. Iterate the

block by using the loop, then the first block is passed, which was not used and which has no common

key (such that there is no sharing between the nodes). When the blocks are found and they have been

31

marked as used, and check the flag value as false, if there is no such block. After this, we increment the

block by 1 and end the loop. We check the properties that are to be satisfied, check the node value for

whether it has any interconnectivity property, and merge the blocks. After this step, we calculate the

adjacency matrix and increment it 1000 times such that it passes the iteration every time. This ends the

algorithm. The move routine will choose a random pair of nodes that share a maximum common key,

and another pair that does not. Then we see the intersection element after the first the pair is passed

before repeating this process.

4.3 Algorithm analysis

The main feature to discuss is the interconnectivity property (if nodes are compromised, the remaining

nodes maintain all links in network). If the interconnectivity property is satisfied then it is a

deterministic approach, otherwise it can be a heuristic approach. In the deterministic approach we take

the factor z for merging the blocks that forms the key chains to improve the connectivity.

In tables 6 and 7 (constructed from and algorithm listed in [12]), we can observe the consecutive blocks

that start from 0, and do not have common keys. The consecutive blocks will be divided from 0 to 25

such that first group forms the blocks from 0 to 4 the next group from 5 to 9 and so on, with the

condition 0<x, y<p-1. Then the blocks are merged consecutively and we take z/p value by having the

following conditions:

i) If p%z=0, then z=x and p=x
y
 and then the nodes are merged and assigned to sensor nodes.

ii) If p%z=1, check if whether there is any common key. If it does not exist, merge the first and second

block which is equal to p. In this step we also try the p/z value of remaining blocks, which are chosen

from each p block and have no common key.

32

iii) If p %z =2, then we form the consecutive blocks and check if there is no inter-group common key.

Next step would be merging the p/z blocks which will result in p blocks and among every two groups

we combine z blocks to form p/z merged blocks.

iv) For p % z >2, we see the logic of combining the blocks with no common key, the remaining blocks

are merged which will increase the number of nodes.

For further analysis of the algorithm see [12]. Now let us illustrate the above case with an example with

values p=5 and z=3and N=25, K=4 in table 6 and give the blocks in two dimensions and merge each

block with other block such that they have common key until we have no block left.

4.4 Key Establishment using the Transversal Design

In the paper mentioned by Pattanayak and Majhi [12], the groups and blocks are two dimensional

objects formed by taking the keys as the first component which is in the form (i, x), and repeating the

cycle from 0 to 4 of (i,x). In brief, the difference between the first column first group and second

column second group is 1; in the third step it increases by 2, and the first column third group is also 2.

Here the same pattern is repeated, and the algorithm is presented as mentioned in [12]:

The first step is to take the key-id in one dimension. Assign the value x to key-id, then take the

modulus of x over p and assign to y (x%p). Divide the value x by p and name it as z (x/p). After this

step we will assign the array a[x] to y variable. Take a variable b and iterate a loop which gives the

first group of keys. We follow the same iteration for second column second group and third column

third group by iterating the loop until z value for each column, and if we have the two dimensional

nodes simply we form the key establishment between the nodes as (i,x), and stop the key establishment.

In this way we can establish the common key between x and y such that we calculate the keys for x and

y.

33

4.5 Probability of Key predistribution using CID design

The probability Ni and Nj nodes such that they have a common key and are within range is [5]:

P=k*(r-1)/b-1.

The resiliency is measured as follows; when an attacker is comprimising s nodes V(s) =1-(1-r-2/b-2)
s
.

34

5 Algorithm for Relationships Between Various Combinatorial Designs

The numerical results generated from the program in appendix A are based on the relationship between

orthogonal latin squares and projective planes. We will construct the affine plane based on the

orthogonal latin squares and then we will generate the projective plane. With the program results I am

able to understand the concept of block designs and projective planes relationships easily. I have also

improved my mathematical knowledge by covering the in-depth concept of latin squares. I have

constructed the programs in fortran95 language, given in appendix A. We first take the latin square as

input and based on indices we generate the affine plane. The second program generates the structure of

mutually orthogonal latin squares of order 5 by considering the primitive root of a number. Taking this

primitive root we will finid the galois field values and performing the operation we get the MOLS.

35

6 Conclusion

To summarize, the transversal design is useful for understanding the key predistribution schemes.

Implementation on the sensor involves checking if the nodes within the communication range will

have a common key. It also specifies the metrics for understanding them. This project also dealt with

other algorithms, so that previous schemes are explained, and how merits and demerits are specified.

Finally, the key establishment phases are discussed to achieve this goal. This project also involved the

computational results in affine planes and mutually orthogonal latin squares in (appendix A) . Future

work would be to implement the key predistribution schemes using other combinatorial designs, and

help to improve efficiency, along with other metrics.

36

Appendix A: Computational Program and Results

Theorem: Suppose there exists an affine plane of order n, then there exists n-1 mutually orthogonal

latin squares of order n.

Proof:

We can construct n-1 MOLS by using the latin squares L1, L2, L3,…..LN-1 which forms the intersection

in affine planes as in [4].

We can define the example as in [4].

X = {1,2,3,4,5,6,7,8,9}

We can name the blocks as follows:

B={123,147,159,168,456,258,267,249,789,369,348,357}

Then the latin squares are as follows:

L2

1 3 2

3 2 1

2 1 3

Suppose we combine latin squares with affine planes can be defined as follows [4]:

A(1,1)={(1,1)(1,2)(1,3)} A(2,1)={(1,1)(2,1)(3,1)}

A(1,2)={(2,1)(2,2)(2,3)} A(2,2)={(1,2)(2,2)(3,2)}

A(1,3)={(3,1)(3,2)(3,3)} A(2,3)={(1,3)(2,3)(3,3)}

A(3,1)={(1,1)(2,3)(3,2)} A(4,1)={(3,1)(1,2)(2,3)}

L1

1 3 2

2 1 3

3 2 1

37

A(3,2)={(2,1)(1,2),(3,3)} A(4,2)={(1,1)(2,2)(3,3)}

A(3,3)={(3,1)(2,2)(1,3)} A(4,3)={(2,1)(3,2)(1,3)}

Problem : 3 mutually orthogonal latin squares of order 4

1 2 3 4 1 2 3 4 1 2 3 4

2 1 4 3 3 4 1 2 4 3 2 1

3 4 1 2 4 3 2 1 2 1 4 3

4 3 2 1 2 1 4 3 3 4 1 2

Row by column value is represented as:

(1,1),(1,2),(1,3),(1,4)

(2,1),(2,2),(2,3),(2,4)

(3,1),(3,2),(3,3),(3,4)

(4,1),(4,2),(4,3),(4,4)

2nd MOLS (1,1),(2,1),(3,1),(4,1) (1,2),(2,2),(3,2),(4,2)

(1,3),(2,3),(3,3),(4,3) (1,4),(2,4),(3,4),(4,4)

3rd MOLS (1,1),(2,2),(3,3),(4,4) (2,1),(1,2),(3,4),(4,3)

(3,1),(1,3),(2,4),(4,2) (4,1),(1,4),(2,3),(3,2)

4th MOLS (4,1),(1,2),(2,4),(3,3) (1,1),(2,3),(3,4),(4,2)

(2,1),(3,2),(1,3),(4,4) (3,1),(2,2),(1,4),(4,3)

5th MOLS (3,1),(4,4),(1,2),(2,3) (4,1),(3,4),(2,2),(1,3)

(1,1),(2,4),(3,2),(4,3) (2,1),(1,4),(3,3),(4,2)

38

39

Code for Generating Affine plane from Orthogonal Latin Squares

Here the construction is based on the latin squares as input and generating vertical and horizontal

planes and then constructing the other two latin squares using the indexes in each matrix.

program Squares implicit none

integer i, j, k, L1(3,3), L2(3,3), x

L1(1,1)=1;

L1(1,2)=3;

L1(1,3)=2;

L1(2,1)=2;

L1(2,2)=1;

L1(2,3)=3;

L1(3,1)=3;

L1(3,2)=2;

L1(3,3)=1;

L2(1,1)=1;

L2(1,2)=3;

L2(1,3)=2;

L2(2,1)=3;

L2(2,2)=2;

L2(2,3)=1;

L2(3,1)=2;

L2(3,2)=1;

L2(3,3)=3;

40

write(*,2000) ((L1(i,j),j=1,3),i=1,3) write(*,2001) ((L2(i,j),j=1,3),i=1,3)

2000 format (/, 'L1(i,j) = ',/ (3i3))

2001 format (/, 'L2(i,j) = ',/ (3i3))

do x=1,2

do k=1,3 print*, 'A', x, k do i=1,3

do j=1,3

if (x==1) then

if (L1(i,j)==k) then

print*, i, j

endif

endif

 if (x==2) then

if (L2(i,j)==k) then

print*, i, j

endif

endif

enddo

enddo

enddo

 enddo

do k=1,3

print*, 'A', 3, k do j=1,3

41

print*, k, j

enddo

enddo

do k=1,3

print*, 'A', 4, k do i=1,3

print*, i, k enddo

enddo

stop

end program Squares

Output

Compiling the source code....

$gfortran -std=f95 main.f95 -o demo 2>&1

Executing the program....

$demo L1(i,j) =

1 3 2

2 1 3

3 2 1

 L2(i,j) =

1 3 2

3 2 1

2 1 3

A 1 1

42

 1 1

 2 2

 3 3

A 1 2

 1 3

 2 1

 3 2

A 1 3

 1 2

 2 3

 3 1

A 2 1

 1 1

 2 3

 3 2

A 2 2

 1 3

 2 2

 3 1

A 2 3

 1 2

 2 1

 3 3

43

A 3 1

 1 1

 1 2

 1 3

A 3 2

 2 1

 2 2

 2 3

A 3 3

 3 1

 3 2

 3 3

A 4 1

 1 1

44

Appendix B: Construction of Mutually Orthogonal Latin Squares (MOLS)

In order to construct the MOLS we have find the values in Galois fields as GF(q)={ λ1, λ2,

λ3,…..}

Then the major operation to be performed is λi λk+ λj .

For example the MOLS of order 5 can be constructed as follows:

5 have the primitive root as 2.

Construction:

2
1
=2 mod5 =2.

2
2
=4 mod 5=4.

2
3
=8 mod 5=3.

2
4
=16 mod 5=1.

λ1=2, λ2=4, λ3=3, λ4=1.

(1,1)=2x2+2=6 mod 5=1:(2,1)=4x2+2=10 mod 5=0:(3,1)=3x2+2=8 mod 5=3:(4,1)=4:(5,1)=2.

(1,2)=2x2+4=8 mod 5=3: (2,2)=4x2+4=12 mod 5=2:(3,2)=3x2+4=10 mod 5=0:(4,2)=1:(5,1)=4.

(1,3)=2x2+3=7 mod 5=2: (2,3)=4x2+3=11 mod 5=1:(3,3)=3x2+3=9 mod 5=4:(4,3)=0:(5,1)=3.

(1,4)=2x2+1=5 mod 5=0: (2,4)=4x2+1=9 mod 5=4:(3,4)=3x2+1=7 mod 5=2:(4,4)=3:(5,1)=1.

(1,5)=2x2+0=4 mod 5=4: (2,5)=4x2+0=8 mod 5=3:(3,5)=3x2+0=6 mod 5=1:(4,1)=2:(5,1)=0.

0 2 1 4 3

3 0 4 2 1

4 1 0 3 2

2 4 3 1 0

1 3 2 0 4

3 0 4 2 1

4 1 0 3 2

2 4 3 1 0

1 3 2 0 4

0 2 1 4 3

4 1 0 3 2

2 4 3 1 0

1 3 2 0 4

0 2 1 4 3

3 0 4 2 1

1 3 2 0 4

0 2 1 4 3

3 0 4 2 1

4 1 0 3 2

2 4 3 1 0

45

Code for Generating MOLS:

This program mainly explains how to derive the MOLS of order 5. It checks the number is prime

or not after that it takes the matrix from the primitive root given and generates the λ values and

then processing the matrices will give the final result.

program MOLS

 integer Ak(5,5), l(5), i, j, k, ord, lk

 lk=2

 print *, 'Input a number: '

 read *, ord

 code = is_prime(ord) ---------------------Determining the prime number

 if code == 0 then

 do i=1,ord-1

 l(i) = mod(lk**i, ord)------------------------Generate the primitive root

 enddo

 l(ord)=0

 do i=1,ord

 do j=1,ord

 Ak(i,j)= mod(l(i)*lk +l(j),5)---------------take the matrix

 enddo

 enddo

 write(*,2001) l

 write(*,2000) ((Ak(i,j),j=1,ord),i=1,ord)

 2000 format (/, 'Ak(i,j) = ',/ (5i5))

46

 2001 format (/, 'lambda = ',/,(15i5))take the lambda values

 !do k=1,ord

 do i=1,ord

 if ((ord-i) /= lk) then

 do j=1,ord

 Ak(i,j)= mod(l(1)*(ord-i) +l(j),5)

 enddo

 endif

 enddo

 !enddo--do the processing for matrices

 write(*,2000) ((Ak(i,j),j=1,ord),i=1,ord)

 stop

 else

 stop

 end if write the down matrices

end program MOLS

output:

Compiling the source code....
$gfortran -std=f95 main.f95 -o demo 2>&1

Executing the program....
$demo

 Input a number:

lambda =

 2 4 3 1 0

47

Ak(i,j) =

 1 3 2 0 4

 0 2 1 4 3

 3 0 4 2 1

 4 1 0 3 2

 2 4 3 1 0

Ak(i,j) =

 0 2 1 4 3

 3 0 4 2 1

 4 1 0 3 2

 1 3 2 0 4

 2 4 3 1 0

Ak(i,j) =

 3 0 4 2 1

 4 1 0 3 2

 1 3 2 0 4

 0 2 1 4 3

 2 4 3 1 0

Ak(i,j) =

 4 1 0 3 2

 1 3 2 0 4

 0 2 1 4 3

 3 0 4 2 1

 2 4 3 1 0

48

Appendix C: Program for Generating the Key Predistribution using Latin Square

This program takes the q as primitive root value. The primitive root will process and give q-1

orthogonal latin squares converted to affine planes. When affine planes are marked into

projective plane will give the predistribution schemes based on an equation ax+by+cz = 0. A key

(x, y, z) is distributed to node (a, b, c).

#include <stdio.h>

#include <stdlib.h>

#define q 4

/**Distribution of keys following KPS using PG(2, q)**/

int main(){

int i, x, y, b, c;

int* phi_q = (int*) malloc(sizeof(int) * 10);

for (i=0; i<q; i++){

phi_q[i] = i;

}

printf("Node Index || Keys\n", b,c);

for (b=phi_q[0]; b<=phi_q[q-1]; b++) {

for (c=phi_q[0]; c<=phi_q[q-1]; c++) {

//node

printf("(1,%d,%d) ||", b,c);

//key

for (y=phi_q[0]; y<=phi_q[q-1]; y++) {

x=((-(c+b*y)) % q + q)%q; //positive modulo

49

printf(" (%d,%d,1) ", x,y);

}

printf(" (%d,1,0)\n", (-b % q + q) %q);

}

}

for (c=phi_q[0]; c<=phi_q[q-1]; c++) {//node

printf("(0,1,%d) ||", c % q);

//key

for (x=phi_q[0]; x<=phi_q[q-1]; x++) {

printf(" (%d,%d,1) ", x, (-c % q + q)%q);

}

printf(" (1,0,0)\n");

}

//node

printf("(0,0,1) ||");

//key

for (x=phi_q[0]; x<=phi_q[q-1]; x++) {

printf(" (%d,1,0) ", x);

}

printf(" (1,0,0)\n", (-b % q + q) %q);

return 0;

}

Output:

50

Executing the program....

$demo

Node Index || Keys

(1,0,0) || (0,0,1) (0,1,1) (0,2,1) (0,3,1) (0,1,0)

(1,0,1) || (3,0,1) (3,1,1) (3,2,1) (3,3,1) (0,1,0)

(1,0,2) || (2,0,1) (2,1,1) (2,2,1) (2,3,1) (0,1,0)

(1,0,3) || (1,0,1) (1,1,1) (1,2,1) (1,3,1) (0,1,0)

(1,1,0) || (0,0,1) (3,1,1) (2,2,1) (1,3,1) (3,1,0)

(1,1,1) || (3,0,1) (2,1,1) (1,2,1) (0,3,1) (3,1,0)

(1,1,2) || (2,0,1) (1,1,1) (0,2,1) (3,3,1) (3,1,0)

(1,1,3) || (1,0,1) (0,1,1) (3,2,1) (2,3,1) (3,1,0)

(1,2,0) || (0,0,1) (2,1,1) (0,2,1) (2,3,1) (2,1,0)

(1,2,1) || (3,0,1) (1,1,1) (3,2,1) (1,3,1) (2,1,0)

(1,2,2) || (2,0,1) (0,1,1) (2,2,1) (0,3,1) (2,1,0)

(1,2,3) || (1,0,1) (3,1,1) (1,2,1) (3,3,1) (2,1,0)

(1,3,0) || (0,0,1) (1,1,1) (2,2,1) (3,3,1) (1,1,0)

(1,3,1) || (3,0,1) (0,1,1) (1,2,1) (2,3,1) (1,1,0)

(1,3,2) || (2,0,1) (3,1,1) (0,2,1) (1,3,1) (1,1,0)

(1,3,3) || (1,0,1) (2,1,1) (3,2,1) (0,3,1) (1,1,0)

(0,1,0) || (0,0,1) (1,0,1) (2,0,1) (3,0,1) (1,0,0)

(0,1,1) || (0,3,1) (1,3,1) (2,3,1) (3,3,1) (1,0,0)

(0,1,2) || (0,2,1) (1,2,1) (2,2,1) (3,2,1) (1,0,0)

(0,1,3) || (0,1,1) (1,1,1) (2,1,1) (3,1,1) (1,0,0)(0,0,1) || (0,1,0) (1,1,0) (2,1,0) (3,1,0) (1,0,0)

51

Appendix D: Hadamard matrix and BIBD

A matrix of order nxn such that every entry in the matrix should be equal to 1 or -1 in rows and

columns. It is represented as H. The condition for hadamard matrix is HH
T
= nIn, where I is the

identity of order n:

1 1

1 -1

Table for hadamard matrix.

Suppose we multiply with 1 and -1, we also derive the hadamard matrix again. This is called

standardization.

Equivalence of a Hadamard Matrix and BIBD

Suppose there is a hadamard matrix of order 4m, then there exists a BIBD such that it forms (v,

k, λ) which is also a symmetric BIBD.

For example:

Suppose with BIBD (4, 3, 1) and the blocks (123, 234, 341, 412)

Then the matrix can be formed as we substitute 0 with -1, and add 1 in a row and a column that

gives the hadamard matrix is described in following table:

Relationship between hadmard matrix and BIBD.

1 -1 1 1 1

1 1 -1 1 1

1 1 1 -1 1

-1 1 1 1 1

1 1 1 1 1

52

Bibliography

[1] S. A. Camtepe & B. Yener, “Combinatorial Design of Key Distribution Mechanisms for

Wireless Sensor Networks,” IEEE/ACM Transactions on Networking, Vol. 15, No. 2, April 2007.

[2] Harjot Bawa, Singh and Kumar, “An Efficient Novel Key management scheme using N

choose K algorithm for Wireless Sensor Networks,”India, (IJCNC) Vol.4, No.6, November 2012.

[3] I. Anderson, “Combinatorial Designs: Construction Methods”, Ellis Horwood Limited, 1990.

[4] D. R. Stinson, Combinatorial Designs: “Constructions and Analysis. Springer-Verlag,”New

York (2004).

[5] Anupam Pattanayak, B. Majhi, “Key Predistribution Schemes in Distributed Wireless Sensor

Network using Combinatorial Designs Revisited,” Cryptology eprint Archive, Report 2009.

[6] R. Blom, “An optimal class of symmetric key generation systems,” EUROCRYPT 84, 1985.

[7] W. Du, J. Deng, Y. S. Han, S. Chen, P. K. Varshney, “A Key Management Scheme for

Wireless Sensor Networks Using Deployment Knowledge,” INFOCOM, 2004.

[8] H. Chan, A. Perrig and D. Song, “Random Key Predistribution Schemes for Sensor

Networks,” In 2003 IEEE Symposium on Research in Security and Privacy, 2003.

[9] S. Slijepcevic, M. Potkonjak, V. Tsiatsis, S. Zimbeck, M. B. Srivastava, “On communication

Security in Wireless Ad-Hoc Sensor Network,” Eleventh IEEE International Workshops on

Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’02), 2002.

[10] L. Eschenauer, V. D. Gligor, “A key-management scheme for distributed sensor networks,”

Proceedings of the 9th ACM conference on Computer and communications security, 2002.

[11] D. Liu, P. Ning, “Establishing pairwise keys in distributed sensor networks,” Proceedings of

the 10th ACM conference on Computer and communication security, 2003.

53

[12] Anupam Pattanayak, B. Majhi, “A Deterministic Approach of Merging of Blocks in

Transversal Design based Key Predistribution,” India, Cryptology eprint Archive, Report 2009.

[13] D Chakrabarti, S Maitra, B Roy, “A key pre-distribution scheme for wireless sensor

networks: merging blocks in combinatorial design,”International Journal of Information

Security, Vol. 5, No. 2, pp 105-114, 2006.

