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Abstract 

 

In Newfoundland, assessing benthic community changes associated with organic matter 

enrichment near finfish farms is challenging because the majority of aquaculture sites are 

in deep waters, over hard, patchy substrata, where soft sediment sampling methods are 

ineffective. A promising approach is the use of video surveys to analyze epibenthic 

characteristics, including taxa that are indicative of organic matter enrichment, Beggiatoa 

spp. and OPC. Here, I compare seafloor biotic and abiotic characteristics on temporal and 

spatial scales over 2 years and at six locations. Benthic organisms and indicators were 

identified and evaluated in relation to distance to cage, aquaculture production status and 

environmental conditions. Abundance and percent cover of the benthos, with the 

exception of bio-indicators, was higher in non-production sites compared to the 

production and fallow sites, with minimal changes over time. Organic enrichment via 

aquaculture can lead to long term benthic changes (> 1 year) on hard substrata. 

 

 

 

 

 



iii 
 

Acknowledgments 

I would like to express my deepest gratitude to Dounia Hamoutene, Suzanne 

Dufour and Flora Salvo, my supervisory committee, for their patience, guidance and 

encouragement throughout my Master of Science journey. I would also like to thank Pete 

Goulet, Terry Bungay, Dwight Drover, Sebastien Donnet, and Lee Sheppard for their 

technical support and assistance with my data collection and analysis. 

This project would not have been possible without the funding provided by DFO, 

and I am grateful they have allowed me this opportunity to further science and develop 

myself academically. 

I would also like to thank all my family and friends who have supported me 

through this journey and allowed me to succeed. 

“Determine never to be idle. No person will have occasion to complain of the want of 

time, who never loses any. It is wonderful how much may be done, if we are always 

doing.”  

― Thomas Jefferson 

 

 

 

 



iv 
 

Table of Contents 

Abstract ............................................................................................................................................. ii 

Acknowledgments ............................................................................................................................ iii 

List of Abbreviations and Symbols ................................................................................................. xii 

Chapter 1. Introduction and overview .............................................................................................. 1 

1.1 Salmonid aquaculture in Newfoundland ................................................................................ 1 

1.2 Impacts of aquaculture on the benthos ................................................................................... 2 

1.3 Environmental monitoring approaches .................................................................................. 4 

1.4 Bio-indicators of organic enrichment..................................................................................... 6 

1.5 Thesis objectives .................................................................................................................... 7 

1.6 References .............................................................................................................................. 9 

Chapter 2. Biotic and abiotic characteristics of the seafloor in proximity to aquaculture sites on 

the south coast of Newfoundland ................................................................................................... 14 

2.1. Introduction ......................................................................................................................... 14 

2.1.1 Monitoring of the environmental impacts of aquaculture in Newfoundland ................ 14 

2.1.2 The benthic environment at Newfoundland aquaculture sites ...................................... 17 

2.1.3 Objectives...................................................................................................................... 18 

2.2. Materials and methods ........................................................................................................ 19 

2.2.1 Study sites ..................................................................................................................... 19 

2.2.2 Data collection .............................................................................................................. 23 

2.2.3 Sampling protocol ......................................................................................................... 25 

2.2.4 Video and image analysis ............................................................................................. 28 

2.2.5 Environmental monitoring reports from consultants .................................................... 29 

2.2.6 Statistics ........................................................................................................................ 30 

2.3. Results ................................................................................................................................. 31 

2.3.1 Environmental parameters ............................................................................................ 31 

2.3.2 Benthic communities ..................................................................................................... 41 

2.4. Discussion ........................................................................................................................... 49 

2.4.1 Benthic composition ..................................................................................................... 51 

2.5 References ............................................................................................................................ 54 



v 
 

3.1. Introduction ......................................................................................................................... 61 

3.1.1 Overview of environmental impacts from aquaculture operations ............................... 61 

3.1.2 Potential impacts of organic matter enrichment ............................................................ 62 

3.2. Methods ............................................................................................................................... 64 

3.2.1 Grouping of organisms .................................................................................................. 64 

3.2.2 Data processing ............................................................................................................. 65 

3.2.3 Statistical analysis ......................................................................................................... 67 

3.3. Results ................................................................................................................................. 67 

3.3.1 Epibenthic composition by production stage ................................................................ 67 

3.3.2 Epibenthic composition by production stage, comparing similar depths ...................... 70 

3.3.2.1 Sites NP1, P1, F1 ....................................................................................................... 70 

3.3.3 Temporal changes in epibenthic composition ............................................................... 77 

3.3.4 Epibenthic composition with distance to cage .............................................................. 84 

3.4. Discussion ........................................................................................................................... 89 

3.4.1 Differences between production stages ......................................................................... 90 

3.4.2 Differences between sites .............................................................................................. 92 

3.4.3 Changes on a temporal scale ......................................................................................... 93 

3.4.4 Changes on a spatial scale ............................................................................................. 96 

3.5. Conclusions ......................................................................................................................... 98 

3.6 References .............................................................................................................................. 100 

Chapter 4. Spatial and temporal distribution of biological indicators of organic enrichment 

(Beggiatoa spp. and OPC) in relation to aquaculture cages and local bathymetry .................... 107 

4.1. Introduction ....................................................................................................................... 107 

4.2. Methods ............................................................................................................................. 108 

4.2.1 Sampling sites ............................................................................................................. 108 

4.2.2 Mapping ...................................................................................................................... 109 

4.2.3 Data processing ........................................................................................................... 109 

4.3. Results ............................................................................................................................... 110 

4.3.1 Bathymetry of sites ..................................................................................................... 110 

4.3.2 Spatial benthic cover ................................................................................................... 111 

4.4. Discussion ......................................................................................................................... 129 



vi 
 

4.4.1 Spatial patterns ............................................................................................................ 129 

4.4.2 Temporal patterns ....................................................................................................... 130 

4.4.2.1 Site P1 ...................................................................................................................... 130 

4.4.2.2 Site F1 ...................................................................................................................... 133 

4.5. Conclusions ....................................................................................................................... 134 

4.6 References .............................................................................................................................. 136 

Chapter 5. General conclusions ................................................................................................... 140 

5.1 Benthic changes and relationship to aquaculture production ............................................. 140 

5.2 References .......................................................................................................................... 144 

 

 



vii 
 

List of Tables 

Table 1. Details of production, sampling and location of the six sites. ......................................... 21 

Table 2. Substrate classification guide use in this study, modified from Wentworth scale 

(Wentworth 1922). ......................................................................................................................... 30 

Table 3. Characteristics of the six sites surveyed off the south coast of Newfoundland in 2011 and 

2012. Data from all sampling periods are considered. DO: dissolved oxygen. ............................. 33 

Table 4. Most common taxa identified during video surveys and means of quantification. .......... 43 

Table 5. Species identified and corresponding taxonomic group classification ............................ 66 

Table 6. Results of Kruskal Wallis analyses comparing the total abundance, the abundances of 

organisms grouped by higher taxonomic rank, and the % cover of non-enumerable organisms 

(averages ± standard deviations) between sites grouped by production stage, with all dates 

considered. P-values are presented along with the results of multiple comparison tests, with letters 

denoting significant differences among groups. ***: p < 0.001. ................................................... 72 

Table 7. Results of Kruskal Wallis analyses comparing the total abundance, the abundances of 

organisms grouped by higher taxonomic rank, and the % cover of non-enumerable organisms 

(averages ± standard deviations) between sites NP1, P1 and F1 (all dates considered). P-values are 

presented along with the results of multiple comparison tests, with letters denoting significant 

differences among groups.  ***: p < 0.001 .................................................................................... 75 

Table 8. Results of Kruskal Wallis analyses comparing the total abundance, the abundances of 

organisms grouped by higher taxonomic rank, and the % cover of non-enumerable organisms 

(averages ± standard deviations) at sites NP2, P2 and F2 (all dates considered). P-values are 

presented along with the results of multiple comparison tests, with letters denoting significant 

differences among groups. ***: p < 0.001. .................................................................................... 77 

Table 9. Results of Kruskal Wallis analyses comparing the total abundance, the abundances of 

organisms grouped by higher taxonomic rank, and the % cover of non-enumerable organisms 

between sites NP1, P1 and F1, according to sampling date. P-values are presented. *: p < 0.05; **: 

p < 0.01; ***: p < 0.001. ................................................................................................................ 79 

Table 10. Results of Kruskal Wallis analyses comparing the total abundance, the abundances of 

organisms grouped by higher taxonomic rank, and the % cover of non-enumerable organisms at 

sites NP2, P2 and F2, according to sampling date. P-values are presented. *: p < 0.05; **: p < 

0.01; ***: p < 0.001. ...................................................................................................................... 82 



viii 
 

Table 11. Results of Kruskal Wallis analyses comparing the total abundance, the abundances of 

organisms grouped by higher taxonomic rank, and the % cover of non-enumerable organisms 

between sites P1 and F1 according to distance from cage edge (all dates considered). P-values are 

presented. *: p < 0.05; **: p < 0.01; ***: p < 0.001. ..................................................................... 88 

Table 12. Results of Kruskal Wallis analyses comparing the total abundance, the abundances of 

organisms grouped by higher taxonomic rank, and the % cover of non-enumerable organisms 

between stations at various distances from cage edge within site P2 at all sampling periods. P-

values are presented. *: p < 0.05; **: p < 0.01; ***: p < 0.001. .................................................... 89 

 

List of Figures 

Figure 1. Licensed aquaculture sites in Newfoundland in 2013. Source: NLDFA (2013). ............. 3 

Figure 2.  Map of the aquaculture portion of the South Coast of Newfoundland, Canada. Shaded 

area represents approximate area where sampling of the six sites occurred. Inset shows location 

relative to Eastern Canada.............................................................................................................. 20 

Figure 3. Blueprint for underwater video cage (A) and picture of frame and benthic environment 

from underwater video camera (B). The blue frame measures 50 x 50 cm and green frame 

measures 25 cm x 25 cm. The blacked out section shows coordinates for site (DFO 2012). ........ 24 

Figure 4. Sampling design for production, control and fallow sites. Dots represent locations where 

underwater video was recorded. ..................................................................................................... 27 

Figure 5. (A) Distribution of station depths at each site surveyed during 2011 and 2012. (B) 

Boxplots of depths at each site. ...................................................................................................... 34 

Figure 6. Boxplots of temperature of the seafloor at different sampling dates, for each study site.

 ....................................................................................................................................................... 35 

Figure 7. Temperatures recorded at the seafloor according to depth, at all stations and dates 

surveyed. ........................................................................................................................................ 36 

Figure 8. Dissolved oxygen concentration at the seafloor according to depth, for June 2012, 

August 2012 and Oct/Nov 2012 sampling periods. ....................................................................... 37 

Figure 9. Boxplots of dissolved oxygen concentration at the seafloor at each site for June 2012, 

August 2012 and Oct/Nov 2012 sampling periods. ....................................................................... 38 

Figure 10. Boxplots of dissolved oxygen concentration at the seafloor, all sites combined, during 

the June 2012, August 2012 and Oct/Nov 2012 sampling periods. ............................................... 39 



ix 
 

Figure 11. Proportion of substrate types at all sites surveyed. Blank areas are periods where 

sampling did not occur. .................................................................................................................. 40 

Figure 12. Distribution of observed taxa according to depth, considering all sampling periods. .. 44 

Figure 13. Relationship between taxon occurrence and temperature at the seafloor, considering all 

sampling periods. ........................................................................................................................... 45 

Figure 14. Relationship between occurrence of taxa and associated dissolved oxygen 

concentrations at all sampling periods. .......................................................................................... 46 

Figure 15. Taxon abundance (# of individuals) in relation to substrate and depth, at all sampling 

periods. Floc: flocculent matter. .................................................................................................... 47 

Figure 16. Percent cover of taxa in relation to depth and substrate type, considering all sampling 

periods. Floc: flocculent matter. .................................................................................................... 48 

Figure 17. Average epibenthic abundance and % cover of observed taxonomic groups per station, 

with the latter grouped according to aquaculture production stage. Data from all sampling dates 

and study sites are considered. The number of image (n) examined for each production stage and 

the number of image with no visible organisms (z) is indicated above each bar. .......................... 71 

Figure 18. Average epibenthic abundance and % cover of observed taxonomic groups per station, 

with sites NP1, P1 and F1, and sites NP2, P2 and F2 considered separately. Data from all 

sampling dates are compiled. The number of images (n) examined for each production stage and 

the number of images with no visible organisms (z) are indicated above each bar. ...................... 76 

Figure 19. Average epibenthic abundance and % cover of observed taxonomic groups per station, 

at sites NP1, P1 and F1. The number of images (n) examined at each site and the number of 

images with no visible organisms (z) are indicated above each bar. ............................................. 80 

Figure 20. Average epibenthic abundance and % cover of observed taxonomic groups per station, 

at sites NP2, P2 and F2. The number of images (n) examined for each site and the number of 

images with no visible organisms (z) are indicated above each bar. ............................................. 83 

Figure 21. Average epibenthic abundance and % cover of observed taxonomic groups per station, 

for sites P1 and F1. Data from all dates are considered. The number of images (n) examined for 

each production stage and the number of images with no visible organisms (z) are indicated above 

each bar. ......................................................................................................................................... 86 

Figure 22. Average epibenthic abundance and % cover of observed taxonomic groups per station, 

at site P2 (all dates considered). The number of images (n) examined for each production stage 

and the number of images with no visible organisms (z) is indicated above each bar. ................. 87 



x 
 

Figure 23. Bathymetric map of P1 with benthic cover composition at stations sampled on the 

South Coast of Newfoundland in July 2011. ............................................................................... 115 

Figure 24. Bathymetric map of P1 with benthic cover composition at stations sampled on the 

South Coast of Newfoundland in August 2011............................................................................ 116 

Figure 25: Bathymetric Map of P1 with Benthic Cover composition at stations sampled on the 

South Coast of Newfoundland on September 2011. .................................................................... 118 

Figure 26: Bathymetric map of P1 with benthic cover composition at stations sampled on the 

South Coast of Newfoundland in October 2011. ......................................................................... 118 

Figure 27. Bathymetric map of P1 with benthic cover composition at stations sampled on the 

South Coast of Newfoundland in June 2012. ............................................................................... 119 

Figure 28. Bathymetric map of P1 with benthic cover composition at stations sampled on the 

South Coast of Newfoundland in August 2012............................................................................ 120 

Figure 29. Bathymetric map of P1 with benthic cover composition at stations sampled on the 

South Coast of Newfoundland in Oct/Nov 2012. ........................................................................ 121 

Figure 30. Bathymetric map of F1 with benthic cover composition at stations sampled on the 

South Coast of Newfoundland in July 2011. ............................................................................... 122 

Figure 31. Bathymetric map of F1 with benthic cover composition at stations sampled on the 

South Coast of Newfoundland in August 2011............................................................................ 123 

Figure 32. Bathymetric map of F1 with benthic cover composition at stations sampled on the 

South Coast of Newfoundland in September 2011. ..................................................................... 124 

Figure 33: Bathymetric Map of F1 with Benthic Cover composition at stations sampled on the 

South Coast of Newfoundland on June 2012. .............................................................................. 125 

Figure 34. Bathymetric map of F1 with benthic cover composition at stations sampled on the 

South Coast of Newfoundland in August 2012............................................................................ 126 

Figure 35. Proportion of stations at P1 where Beggiatoa spp., OPC, other non-indicator species or 

no visible species were observed at each sampling date. ............................................................. 127 

Figure 36. Proportion of stations at F1 where Beggiatoa spp., OPC, other non-indicator species or 

no visible species were observed at each sampling date .............................................................. 128 

 

 

file:///C:/Users/Acer/Desktop/JOE%20FINAL_Jan11_2015.docx%23_Toc408742025
file:///C:/Users/Acer/Desktop/JOE%20FINAL_Jan11_2015.docx%23_Toc408742025
file:///C:/Users/Acer/Desktop/JOE%20FINAL_Jan11_2015.docx%23_Toc408742026
file:///C:/Users/Acer/Desktop/JOE%20FINAL_Jan11_2015.docx%23_Toc408742026
file:///C:/Users/Acer/Desktop/JOE%20FINAL_Jan11_2015.docx%23_Toc408742027
file:///C:/Users/Acer/Desktop/JOE%20FINAL_Jan11_2015.docx%23_Toc408742027
file:///C:/Users/Acer/Desktop/JOE%20FINAL_Jan11_2015.docx%23_Toc408742028
file:///C:/Users/Acer/Desktop/JOE%20FINAL_Jan11_2015.docx%23_Toc408742028
file:///C:/Users/Acer/Desktop/JOE%20FINAL_Jan11_2015.docx%23_Toc408742029
file:///C:/Users/Acer/Desktop/JOE%20FINAL_Jan11_2015.docx%23_Toc408742029
file:///C:/Users/Acer/Desktop/JOE%20FINAL_Jan11_2015.docx%23_Toc408742030
file:///C:/Users/Acer/Desktop/JOE%20FINAL_Jan11_2015.docx%23_Toc408742030
file:///C:/Users/Acer/Desktop/JOE%20FINAL_Jan11_2015.docx%23_Toc408742031
file:///C:/Users/Acer/Desktop/JOE%20FINAL_Jan11_2015.docx%23_Toc408742031
file:///C:/Users/Acer/Desktop/JOE%20FINAL_Jan11_2015.docx%23_Toc408742032
file:///C:/Users/Acer/Desktop/JOE%20FINAL_Jan11_2015.docx%23_Toc408742032
file:///C:/Users/Acer/Desktop/JOE%20FINAL_Jan11_2015.docx%23_Toc408742033
file:///C:/Users/Acer/Desktop/JOE%20FINAL_Jan11_2015.docx%23_Toc408742033
file:///C:/Users/Acer/Desktop/JOE%20FINAL_Jan11_2015.docx%23_Toc408742034
file:///C:/Users/Acer/Desktop/JOE%20FINAL_Jan11_2015.docx%23_Toc408742034
file:///C:/Users/Acer/Desktop/JOE%20FINAL_Jan11_2015.docx%23_Toc408742035
file:///C:/Users/Acer/Desktop/JOE%20FINAL_Jan11_2015.docx%23_Toc408742035
file:///C:/Users/Acer/Desktop/JOE%20FINAL_Jan11_2015.docx%23_Toc408742036
file:///C:/Users/Acer/Desktop/JOE%20FINAL_Jan11_2015.docx%23_Toc408742036


xi 
 

 

 

 

 

 

 

  



xii 
 

List of Abbreviations and Symbols 

ADCP – Acoustic Doppler Current Profiler  

BCMOE – British Columbia Ministry of Environment 

DELG – Department of Environment and Local Government 

FAO – Food and Agriculture Organization of the United Nations 

IOE – Indicators of Organic Enrichment 

NL – Newfoundland  

NLDFA – Newfoundland and Labrador Department of Fisheries and Aquaculture 

NSDFA – Nova Scotia Department of Fisheries and Aquaculture 

OM – Organic Matter 

OPC – Opportunistic Polychaete Complex 

R – Spearman Correlation Coefficient 

 

 

 

 



  

1 
 

Chapter 1. Introduction and overview 

1.1 Salmonid aquaculture in Newfoundland 

Aquaculture, the farming of aquatic flora and fauna, currently accounts for ~ 50% 

of the seafood produced for human consumption (FAO, 2011). Aquaculture is conducted 

on every continent, excluding Antarctica, and is currently the fastest growing animal food 

sector globally (FAO, 2011). The substantial growth of the aquaculture industry can be 

related to the increase in demand for seafood and the stagnant production of the capture 

fisheries (FAO, 2011). Aquaculture is needed in order to supply this demand both 

globally and locally; it is predicted that by 2025 an additional 416 000 tonnes of seafood 

is needed to supply North America’s demand (FAO, 2011). Aquaculture production in 

Canada has steadily increased in the last twenty years and as of 2011 had an approximate 

production value of ~ $845 000 (DFO, 2013). In Newfoundland and Labrador (NL) the 

aquaculture industry has also shown progressive expansion especially in terms of 

salmonid production. From 2006 to 2012, the NL industry has grown ~116% in terms of 

total export value (reaching $113 million) and ~130% in terms of salmonid production 

(NLDFA, 2013). In 2012, there were 145 licenses leasing an approximate water area of 

~6089 hectares (NLDFA, 2013) though not all of them are active at a given time. 

In Newfoundland, salmonid farming is mainly located in the Coast of Bays region, 

on the south shore of the island (NLDFA, 2013) (Figure 1). This area is characterized by 

fjords of over 300 m in depth and protected bays, with benthic substrates predominated 

by rock and cobble along with patchy depositional areas (Anderson et al., 2005). 

Salmonids are raised in cages and the typical biomass harvested from one site can range 
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from 250 000 kg – 1 000 000 kg and depending on farming practices and size of site. The 

production cycle for Atlantic salmon is generally 16-24 months but on occasion is 

extended for logistical or fish health purposes (Boghen, 1995). After a production cycle, 

for biosecurity (i.e., fish health) reasons, farms are required to remain fallow for at least 

one year (Aquaculture Management Directorate, 2010). Aquaculture sites can be and are 

consistently utilized for more than one production cycle as a long as they abide by the 

mandatory fallow period. 

 

1.2 Impacts of aquaculture on the benthos 

Although the Newfoundland and Labrador government has supported the aquaculture 

industry due to economic implications of job creation and access to domestic and 

international markets (NLDFA, 2013). There are concerns over the potential impact to the 

benthos from the accumulation of feed and feces originating from salmonid farms 

(NLDFA, 2014). Consultations by Newfoundland and Labrador Fisheries and 

Aquaculture department (NLDFA) with industry, community organizations, government 

organizations, and academia revealed that the effects of feed and feces on the 

environment were one of the top five sustainable management issues (NLDFA, 2014). 

Feed and feces can accumulate and cause organic matter (OM) enrichment of the benthic 

environment (Crawford, 2003). OM enrichment is known to cause geochemical changes 

in the sediment (Holmer et al., 2005) and when severe, can change benthic community 

composition (Pearson, 1975). The geochemical changes include a reduction in oxygen 
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Figure 1. Licensed aquaculture sites in Newfoundland in 2013. Source: NLDFA (2013). 
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(Mazzola et al., 2000) and increase in sulphides (Tomassetti & Porrello, 2005) due to 

microbial activity in benthic substrates (Brooks et al., 2003). The biotic changes caused  

by OM enrichment are changes in abundance, community structure, diversity, a decrease 

in the size of species and increases in opportunistic species (Pearson & Rosenberg, 1978; 

Huang et al., 2012).  

 

1.3 Environmental monitoring approaches 

Environmental monitoring of the benthic habitat at finfish aquaculture sites is 

common practice worldwide. The variables monitored differ between countries and even 

regions due to habitat differences and government policies (Crawford et al., 2002). 

Kalantzi and Karakassis (2006) revealed that over 120 geochemical and biological 

variables were used to determine the benthic impact of fish farming (Kalantzi & Ioannis, 

2006). These techniques typically measure community structure or chemical 

characteristics of sediments (Wildish et al., 2001). Measuring sediment geochemistry is 

the preferred method because of its relatively lower cost and time required for analysis 

(Wildish et al., 2001). Measuring sediment redox potential and sulphide concentrations 

are the favoured methods as they are associated with microbial activity that implies a 

change from aerobic to anaerobic respiration which is commonly found in organically 

enriched areas (Wildish et al., 1999; Hargrave et al., 2008). Diver cores or sediment grabs 

are typically used to obtain samples that can be further analyzed to determine sulphide 

and redox levels. Alternatively, environmental monitoring can be undertaken by 

measuring benthic community composition using soft sediment techniques. These 
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techniques can be costly due to the extensive training and time required to properly 

identify and classify organisms. However, measuring benthic community composition 

gives direct biological evidence of changes in benthic composition. 

  In Canada, each jurisdiction has specific thresholds for sulphide concentrations 

and if exceeded aquaculturists are required to implement best management practices, 

mitigation measures, additional monitoring, and/or increase the fallow period to decrease 

the potential impacts on the benthic habitat (BCMOE, 2002; NLDFA, 2010; NSDFA, 

2011; DELG, 2012). In addition to sediment sampling, many jurisdictions also include 

video surveys as supplemental information that can be added to environmental 

monitoring requirements. 

 Seafloor imaging is an easy, cost effective and non-destructive technique for 

monitoring marine environments (Crawford et al., 2002). Video or still images form a 

permanent record that can be used and interpreted at any point. In the last decade, video 

techniques have been used more frequently to observe underwater macrofauna and habitat 

(Pelletier et al., 2012) and can provide sufficient taxonomic resolution to detect changes 

(Houk & Woesik, 2006). Video recordings are widely used in combination with other 

approaches to monitor the environmental impact of aquaculture, as this technique can 

provide data on the presence, absence, abundance or percent coverage of identifiable taxa 

including indicator species such as Beggiatoa spp. and OPC (Crawford et al., 2002; Angel 

& Spanier, 2002; Crawford, 2003; Brooks et al., 2003; Kamp et al., 2008). The use of 

video surveys as an environmental monitoring tool is of importance in the context of the 

Newfoundland aquaculture industry. The majority of aquaculture sites in the south coast 

of Newfoundland are located over areas with hard and patchy substrates, where sampling 
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using sediment grabs, diver cores and sediment imaging profiling is inefficient and often 

impossible to do. Sediment grabs often fail to collect samples due to the rocky substrate 

and diver cores are dangerous to obtain due to the depth of the sites. Visual surveys of the 

seafloor have been proposed and used as an alternative to sediment-based techniques in 

the challenging Newfoundland environment (DFO, 2012; Hamoutene et al., 2013). 

 

1.4 Bio-indicators of organic enrichment 

Changes to community structure can take place in highly organically enriched 

areas (Pearson & Rosenberg, 1978). The presence and/or dominance of opportunistic 

species can be used to determine the degree or intensity of organic enrichment  (Bustos-

Baez & Frid, 2003). Two common biotic indicators of organic enrichment are Beggiatoa 

spp. and opportunistic polychaete complexes (OPC). These indicators have also been 

identified in proximity to aquaculture sites in NL (Bungay, 2012; Hamoutene et al., 2013; 

Hamoutene, 2014). Bacteria belonging to the genus Beggiatoa are commonly found at the 

oxygen/sulphide interface where they form filamentous white mats (Preisler et al., 2007) 

and are typically associated with elevated sulphide levels (Hargrave et al., 2008). Mats of 

Beggiatoa have been considered as indicators of organic enrichment (Gray & Elliot, 

2009) including in benthic habitats that have been degraded by aquaculture organic input 

(Crawford, 2001). OPC is a conglomerate of polychaetes frequently observed in areas of 

organic enrichment and reduced conditions (Tomassetti & Porrellp, 2005). Although the 

species of worms forming OPC may vary, they are generally utilized as indicators 

because of their tolerance to severe hypoxia and opportunistic responses to organic 
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enrichment: they exhibit rapid exponential growth and become sexually mature within 

four weeks (AMR Ltd., 2008). The prevalence of these indicator species along with the 

abundances of other epibenthic species can aid in the understanding of benthic habitat 

quality. 

 

1.5 Thesis objectives 

Aquaculture sites are continually monitored and are required to be in compliance 

with environmental thresholds set by regulatory bodies (DFO, 2010). However, the 

thresholds set in Canada are designed for soft sediment sampling and have yet to be 

adapted to hard bottom substrates. In order to properly regulate the Newfoundland 

aquaculture industry, which is located over hard and patchy substrates, we must be able to 

understand the extent of the potential impact from OM enrichment on benthic 

assemblages over temporal and spatial scales.  

To understand the influence of OM enrichment originating from aquaculture sites 

on benthic biota, we must first characterize the seasonal or temporal variation in abiotic 

factors, and in the biota, in this area. The second chapter of this thesis aims to determine, 

with the use video surveys, the abiotic and biotic characteristics of subtidal benthic 

habitats on the south coast of Newfoundland. Specifically, the survey data are used to 

determine how benthic taxa are distributed according to depth, temperature, dissolved 

oxygen, substrate type, sampling date, and aquaculture production status (i.e., sites with 

no production, with production, and undergoing fallow are compared). By analyzing these 
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datasets, we can start to identify trends regarding the influence of organic enrichment on 

benthic organisms in this region. 

The third chapter aims to understand how the relative abundance of visible 

epibenthic taxa is affected both spatially and temporally by organic enrichment. The 

presence and abundance of taxa are examined in areas that undergo a continuous source 

of OM enrichment, in areas that are recovering from OM enrichment, and in areas not 

experiencing such enrichment. Relative abundances of taxa are related to distance from 

the source of OM enrichment (aquaculture cages) and to the recovery processes during 

the fallow period. 

 The fourth chapter focuses on indicator species (Beggiatoa spp. and OPC): their 

spatial distribution and percent cover are investigated to determine relationships with 

bathymetric properties and distance to cages. In addition, temporal changes in these 

indicator species and potential relationships between them are investigated.  

 Finally, fifth chapter draws general conclusions from all chapters and suggests 

areas for further research. 
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Chapter 2. Biotic and abiotic characteristics of the seafloor in proximity to 

aquaculture sites on the south coast of Newfoundland 

 

2.1. Introduction 

2.1.1 Monitoring of the environmental impacts of aquaculture in Newfoundland 

 Salmonid aquaculture is a growing industry in NL, and associated environmental 

impacts must be considered to ensure its sustainability and long term viability (NLDFA, 

2014). At aquaculture sites, organic enrichment of the benthos can occur when fish feces, 

excess feed, and biofouling organisms are deposited and accumulate onto the ocean 

bottom (Macleod et al., 2004). Organic enrichment from aquaculture sites has been 

shown to cause a reduction in species richness, biodiversity and body size, changes in 

community structure, the disappearance of suspension feeders, and an increase in deposit 

feeders (Ritz et al., 1989; Hall-Spencer et al., 2006; Hargrave et al., 2008). There is 

limited information available on impacts of organic enrichment on hard and patchy 

substrates, such as those that characterize aquaculture sites on the south coast of NL, as 

most studies have focused on changes to infaunal communities and not to the epibenthos.  

Changes to community structure can take place in highly organically enriched 

areas (Pearson & Rosenberg, 1978), and the presence and/or dominance of opportunistic 

species can be used to indicate the degree or intensity of organic enrichment (Bustos-

Baez & Frid, 2003). Two common biotic indicators of organic enrichment are Beggiatoa 

spp. and opportunistic polychaete complexes (OPC). These indicators have been 

identified in proximity to aquaculture sites in NL (Hamoutene et al., 2013; Hamoutene, 
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2014). Bacteria belonging to the genus Beggiatoa are commonly found at the 

oxygen/sulphide interface where they form filamentous white mats (Preisler et al., 2007); 

they can occur both within sediments and at the surface of various types of substrates. 

Beggiatoa spp. initially forms a thin white mat that increases in thickness as it expands 

upwards to remain at the oxygen/sulphide interface (Kamp et al., 2008). Beggiatoa spp. is 

present in a wide temperature range and growth is not constrained at low temperatures 

(Jorgensen et al., 2010). OPC is a term referring to a conglomerate of either a single 

polychaete species, or multiple species that have been frequently observed in areas of 

organic enrichment and reduced conditions (Tomassetti & Porrellp, 2005). Such 

polychaetes have been found to colonize reduced sediments in proximity to aquaculture 

operations (Kunihiro et al., 2008) and have been utilized as indicator species in both 

tropical and temperate regions (Brooks et al., 2003; Lee et al., 2006). 

Benthic changes due to aquaculture can depend on a number of factors including 

farming practices, oceanographic conditions, environmental conditions and the 

assimilative capacity of the local ecosystem for organic matter (OM) (Corner et al., 

2006). There are established methods of sampling benthic habitats to determine the level 

of impact from OM enrichment that differ depending on region, habitat type, or 

government policy (Crawford et al., 2002). In Canada, soft sediment sampling is 

commonly used in environmental monitoring programs (BCMOE, 2002; NLDFA, 2010; 

NSDFA, 2011; DELG, 2012) and focus on the measurement of sediment sulphide and 

redox after collecting sediment grabs. Regulatory bodies have developed sulphide and 

redox thresholds for sediment samples that aquaculture operators must abide by 

(BCMOE, 2002; NLDFA, 2010; NSDFA, 2011; DELG, 2012). However, in NL the 
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majority of sites are located in deep waters with hard substrates where soft sediment 

techniques are ineffective and often impossible. Fortunately, video surveys have been 

shown to be useful for long term monitoring of epibiotic communities (Houk & Woesik, 

2006). Current NL regulatory policies use video surveys in aquaculture environmental 

monitoring reports. It is pertinent to use video surveys in the south coast of NL to analyze 

the impacts of OM enrichment on the benthos from aquaculture operations (Bungay, 

2012). Although there has been extensive research in other temperate regions on the 

impacts of salmon aquaculture on the benthic environment (Pohle et al., 2001; Brooks et 

al., 2003), there have only been limited studies conducted on the south coast of NL 

(Anderson et al., 2005).   

Current regulations from the Newfoundland Department of Fisheries and 

Aquaculture (NLDFA) require applicants to submit a baseline report, with monitoring and 

reporting conducted by a third party, upon initial license application (NLDFA, 2013). Site 

owners must also submit two additional reports during fallowing: sampling for "Part 1" 

must be conducted within a four week period when harvesting is completed and sampling 

for "Part 2" must be conducted 4-8 weeks prior to restocking.  These reports outline the 

condition of the seafloor at all dates sampled, and require collecting sediment grabs and 

describing sediment condition (colour and consistency of the substrate). When obtainable, 

sediment grabs are used to determine sulphide and redox concentrations. Additionally, 

photos and videos, accompanied by observations of each sample, are required at locations 

with depths <100 m.  
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2.1.2 The benthic environment at Newfoundland aquaculture sites 

NL coastal benthic substrates are primarily rock and cobble (Anderson et al., 

2005). Only a few studies of the composition of the NL near shore benthic biota have 

been completed (Barrie, 1979; LGL Limited, 2001; Christian et al., 2010; Bungay, 2012), 

and the aquaculture industry has identified a lack of knowledge concerning the biotic and 

abiotic characteristics of the seafloor (e.g. seawater temperature, oxygen content, 

community composition) in proximity to currently operating salmon farms (AMEC, 

2002). Limited information on such biotic and abiotic characteristics is available from 

baseline and fallowing reports which are submitted by environmental monitoring 

companies to regulatory bodies for compliance purposes. Although the depth 

measurements in these reports are quantitative, the biological and substrate type data are 

often qualitative and do not include abundance counts, percent cover of substrates by 

organisms or calculations of biodiversity. A more thorough benthic sampling is required 

to document and evaluate temporal changes in physical parameters at the seafloor, as well 

as in the abundance and habitat preference of benthic biota in this region.  

The communities inhabiting hard bottom substrates are commonly comprised of 

sessile invertebrates such as sponges, cnidarians, ascidians and bryozans (Wenner et al., 

1983) with sponges exhibiting the highest biomass among all groups (Wenner et al., 

1983; Bungay, 2012). Epifaunal species attached to the substratum are frequently filter 

feeders (Osman, 1977). Benthic flora and fauna are extremely patchy in their distribution 

due to competition, predation, patterns of recruitment, distribution of substrata, and 

physical disturbances (Osman, 1977; Wenner, et al., 1983; Gray & Elliot, 2009; 

Eleftheriou, 2013). Benthic macrofaunal communites show a direct relationship with 
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substrate type (Barrie, 1979; Warwick & Uncles, 1980). Wenner et al. (1983) showed that 

changes in benthic composition in hard bottom communities were related more to 

differences in depth than to seasonal changes. These authors hypothesized that the 

difference was due to bottom temperature, as deeper habitats exhibited less temperature 

variability. However, other studies have shown that natural seasonal environmental 

changes can contribute to variations in benthic species composition on a temporal scale 

(Morrisey et al., 1992; Pacheco et al., 2010). Sampling programs should account for these 

spatial and temporal changes while noting habitat type and environmental conditions to 

truly understand changes in benthic communities.  

 

2.1.3 Objectives 

The objective of this chapter is to describe the biotic and abiotic characteristics of 

subtidal benthic habitats on the south coast of NL with the use of video surveys in 

combination with oceanographic recorders. The study was conducted at six locations: two 

sites with aquaculture cages, two sites undergoing fallow, and two sites not currently 

experiencing aquaculture production. Physical characteristics investigated include depth, 

temperature, dissolved oxygen (DO) and substrate type. Biological characteristics studied 

include the presence, abundance or percent cover of identifiable taxa. The biotic and 

abiotic characteristics of the seafloor along transects at each site are described, and 

species associations with habitat types, environmental conditions and/or seasonal changes 

are considered.  
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Two species associated with organic enrichment, Beggiatoa spp. and OPC, are 

also evaluated; both can be readily observed with video. As these organisms are small and 

too numerous to count, their presence is quantified as % cover (as for macroalgae). The 

baseline report and the Part 1- Part 2 reports differ in sampling design from our study, 

however data from these reports are drawn upon in this study.  

 

2.2. Materials and methods 

2.2.1 Study sites 

 Underwater video sampling occurred at six different sites in two bays on the south 

coast of Newfoundland: Hermitage Bay and Fortune Bay (Figure 2). Sampling sites 

represented different habitat conditions (e.g. depth ranges, substrate types) and levels or 

stages of Atlantic Salmon (Salmo salar) production. 

Sites were grouped into three classes: Production (P), Non-Production (NP), and 

Fallow (F) (Table 1). The production sites are coded as P1 and P2. Over the course of this 

study, P1 produced approximately 490 000 Atlantic Salmon in six cages and P2 produced 

approximately 354 000 Atlantic Salmon in 11 cages. Non-production sites are coded NP1 

and NP2. F1 and F2 refer to two fallow sites located in the same bay. Due to 

confidentiality agreements with aquaculture producers, the exact coordinates of the sites 

cannot be displayed. 
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Figure 2.  Map of the aquaculture portion of the South Coast of Newfoundland, Canada. 

Shaded area represents approximate area where sampling of the six sites occurred. Inset 

shows location relative to Eastern Canada. 
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Table 1. Details of production, sampling and location of the six sites. 

 

 

  

Site Location Sampling 

periods 

Number of 

stations 

Number of 

images analyzed 

P1 Hermitage 

Bay 

July 2011 

Aug 2011 

Sept 2011 

Oct 2011 

June 2012 

Aug 2012 

Oct/Nov 2012 

21 

20 

20 

19 

20 

19 

18 

21 

20 

20 

19 

83 

76 

72 

P2 Fortune 

Bay 

Aug 2011 

Sept 2011 

Oct 2011 

June 2012 

Aug 2012 

Oct/Nov 2012 

49 

27 

27 

32 

36 

32 

49 

27 

27 

130 

128 

128 

NP1 Hermitage 

Bay 

July 2011 

Aug 2011 

Sept 2011 

June 2012 

Aug 2012 

Oct/Nov 2012 

26 

29 

26 

34 

36 

35 

26 

29 

26 

131 

144 

140 

NP2 Fortune 

Bay 

Sept 2011 

Oct 2011 

June 2012 

Aug 2012 

Oct/Nov 2012 

44 

40 

42 

43 

43 

44 

40 

168 

172 

172 

F1 Hermitage 

Bay 

July 2011 

Aug 2011 

Sept 2011 

June 2012 

Aug 2012 

30 

29 

27 

31 

31 

30 

29 

27 

124 

124 

F2 Hermitage 

Bay 

Sept 2011 

Oct 2011 

June 2012 

Aug 2012 

Oct/Nov 2012 

42 

43 

39 

38 

40 

42 

43 

156 

152 

160 
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For sites in production, video sampling was initiated during the month when cages 

were initially stocked, and repeated at various times throughout the production cycle. 

Sites were sampled on a monthly basis in 2011 (July – October) and on a bimonthly basis 

in 2012 (June – Oct/Nov). Both sites were in production at all times sampled, and records 

indicated that this is the first time that aquaculture production has been carried out at 

these leased bodies of water.  

Fallow sites had previously experienced aquaculture production. Prior to video 

sampling, fish were harvested from the site and cages were left empty for the duration of 

this study. Video sampling began immediately after fish had been harvested, in July 2011 

(F1) and September 2011 (F2). Nets from the cages were removed from the site once 

harvesting was complete, but some derelict gear, cages (polar circles), ropes and PVC 

piping, cage floats and frames remained on site. Based on production records, F1 was 

initially stocked in July 2009. At site F2, several lease holders managed aquaculture 

production, and there is no information available on this site prior to 2006. F2 was 

stocked in 2006, harvested in November 2007, and lay fallow until 2009; fish were 

stocked again in 2009 and were harvested from November 2010 – September 2011. 

The production sites were chosen because initial surveys showed that they 

displayed different depth ranges and habitat conditions. The non-production sites (NP1 

and NP2) were selected because their depth profiles resembled those of P1 and P2, 

respectively, and were within close proximity (~2 km) of the latter sites. Fallowed sites, 

F1 and F2, had comparable habitat conditions.  
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2.2.2 Data collection 

2.2.2.1 Underwater video camera system 

An underwater video camera system was used for imaging the seafloor, following 

a procedure standardized by DFO for regulatory purposes (DFO 2012). The procedure 

was specifically designed for the south coast of NL by the Aquaculture Section, 

Department of Fisheries and Oceans, Canada, 2012.  

The camera used was a SV-16HR colour underwater camera with a resolution of 550 

TVL, mounted on a stainless steel frame (the frame served as a measurement tool as the 

camera had two grids within its field of view, measuring 25 X 25 cm and 50 X 50 cm, 

respectively (Figure 3). The frame was equipped with two 150 watts SV – Q10K 

underwater lights w, pointing downwards to illuminate the frame and the benthos. The 

power supply line and 150 m long video cables connected the camera and the lights to a 

video recording system on board the boat. Depths greater than 150 m were not sampled 

due to the cable length constraints. 

The video camera and lights were connected and powered by the on-board deck box 

that included a Datavideo digital video recorder, geostamp, glare resistant monitor, and 

GPS (Garmin GPS map CSX). The GPS had a precision of approximately 10 m. Controls 

on the deck box allowed for adjustment of light intensity, and for recording of the video 

to digital storage units. Date, time and GPS coordinates were overlain onto the video. 

http://www.dfo-mpo.gc.ca/library/347683.pdf
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Figure 3. Blueprint for underwater video cage (A) and picture of frame and benthic 

environment from underwater video camera (B). The blue frame measures 50 x 50 cm 

and green frame measures 25 cm x 25 cm. The blacked out section shows coordinates for 

site (DFO 2012). 

  

(A) (B) 
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2.2.2.2 Environmental monitoring equipment 

Logging instruments were attached to the cage frame. The Vemco Minilog-II-T 

submersible data logger recorded temperature and depth in 2011 and 2012. An RBR DO 

meter recorded depth, temperature and DO in 2012 only. The two instruments were used 

together to determine the reliability of depth measurements compared to those obtained 

using a depth sounder. The Vemco and RBR instruments recorded similar results, but the 

depth sounder measurements were not included in analyses. The Vemco and RBR 

recorders were deployed concurrently to provide back-up temperature and depth 

measurements in case of equipment malfunction. Measurements from the RBR DO meter 

were used primarily, with data extracted from the second device if recording failed. The 

frame rested on the bottom for at least thirty seconds and the measurements from logging 

instruments were obtained during this time period. 

 

2.2.3 Sampling protocol 

2.2.3.1 Transects  

At all sites, video recording was performed at stations situated at 20 m intervals 

along three transects, each extending to a minimum of 160 m unless water depth was 

greater than 150 m or an obstruction, cage, shoreline or gear made further sampling 

impossible. Two transects ran parallel to each other, while the third ran perpendicular to 

the shoreline (Figure 4). At production sites, transects began at the cage edge and 

continued outwards. At non-production sites, two transects ran parallel and another 
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transect was perpendicular. Due to the risk of entanglement with gear, sampling was not 

conducted on a transect perpendicular to the shore. At fallow sites, the design was the 

same as for non-production sites but the transects overlapped where cages had existed for 

aquaculture production. Coordinates were recorded for each station, and given a unique 

ID based on location and time. All stations were geo-referenced using handheld GPS.  

At production sites, the distance of each station from the aquaculture cage edge 

(representing 0 m) was recorded to the nearest 20 m increment. At fallow sites, any 

stations located underneath pre-existing cages or on cage edge were designated as 0 m 

and other stations extended outwards in 20 m increments. Non-production sites did not 

have a measurable distance from cages. 

2.2.3.2 Video recording 

At each station, the camera was lowered to the ocean bottom, and recording began 

when the seafloor was visible. The camera was lowered until it rested on the benthos, and 

was left on the bottom for at least ten seconds until a clear image of the benthic 

environment was obtained. In 2011, the camera rested at one area (quadrat) at each 

station. After reviewing the video and determining that the majority of benthic 

environments were highly patchy, we decided that the camera would image four quadrats 

per station for the 2012 field season (Table 1). The camera continually recorded 

throughout this period until all the four quadrats were viewed.  
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Figure 4. Sampling design for production, control and fallow sites. Dots represent 

locations where underwater video was recorded. 
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2.2.4 Video and image analysis 

After video recording was completed, all files were converted to the “.avi” format. 

Video files were viewed on Image grab and VLC Media Player software, so that frames 

from video could be selected, extracted and converted into image files (jpeg, png). Only 

frames that corresponded to the cage resting flat on the bottom and displayed a clear 

image were selected for extraction. 

To properly identify organisms and substrate types the Photographic Guide to 

Benthic Species of Hard Bottom Communities in Southwest Newfoundland was used 

(DFO 2012). On each image epifaunal, macroalgal and indicator species (Beggiatoa spp. 

and OPC) were identified, along with substrate type (Table 2). Organisms were identified 

to the lowest possible taxonomic group, and organisms that could not be readily identified 

due to a combination of video resolution and small size were omitted from the data. For 

each identifiable taxon, presence, abundance, or percent cover were recorded. Percent 

cover (in two dimensions, relative to the 50 cm x 50 cm frame area) was calculated for 

OPC, Beggiatoa spp. and macroalgae. Any fast moving organisms that continuously 

moved in and out of the frame were excluded as counts could be inaccurate (e.g. fish, 

zooplankton, etc). Substrate type was classified based on a modified Wentworth scale 

(Table 2). Flocculent matter looks like a black organic non-consolidated layer and 

separates by clumps when distributed. Flocculent matter appears after organic enrichment 

and covers up the natural substrate type. Identifying the natural substrate in the presence 

of flocculent matter was difficult. Therefore, although flocculent matter is not a naturally 

occurring substrate, it was used as a substrate type. Within each station, the percent cover 

http://www.dfo-mpo.gc.ca/library/347684.pdf
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of each identified substrate type was determined. The substrate type with the highest 

percent cover was deemed the dominant substrate type and was utilized for the analysis. 

To determine substrate composition per site, the substrates were divided by # of images 

taken for each site and represented as relative proportions. Additional observations, such 

as presence of feed pellets, shell debris and black sediment, were recorded. Each image 

was time stamped which allowed temperature, depth and dissolved oxygen to be matched 

to biotic and abiotic data with the same GPS coordinates. 

 

 2.2.5 Environmental monitoring reports from consultants 

Provincial and federal regulatory policies require environmental monitoring and 

reporting when bodies of water are leased to aquaculture companies for the farming of 

salmon. The environmental monitoring reports include video monitoring performed using 

comparable procedures and analytical approaches, except for the spatial coverage of 

sampling. Data from baseline reports were gathered for P1, F1, and F2 in 2009 and for P2 

in 2010 and were used to determine pre-site conditions (termed ‘baseline’). As the 

sampling design and the quantification of species of baseline differed, only stations that 

were in close proximity (< 20 m) to the cage locations and substrate types were 

considered.  
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Table 2. Substrate classification guide use in this study, modified from Wentworth scale 

(Wentworth 1922). 

Class Description 

Bedrock  Bedrock (continuous solid bedrock) 

Coarse Boulder and Rubble (>130mm)  

Medium Cobble and gravel (2-130 mm) 

Fine 

Flocculent 

matter 

Sand and mud (<1 mm) 

Flocculent matter (covered by organic 

matter, detritus) 

 

 

2.2.6 Statistics  

2.2.6.1 Box and Whisker Plots 

Box and whisker plots were used to graphically display differences in data sets on 

temporal and spatial scales. The line within boxes represents the median, while the upper 

and lower edges of the box correspond to the 25th and 75th percentiles. The lower 

whisker extends to lowest data point within 1.5 inter-quartile range and the upper whisker 

extends to the highest data point within 1.5 inter-quartile range. Outliers are represented 

by dots. Box and whisker plots were created with R statistical software. 
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2.2.6.2 Statistical Analysis 

The Pearson product-moment correlation coefficient (r) was used to determine 

correlations between; depth and temperature, DO and depth, abundance and temperature, 

and abundance and depth. Tukey HSD was used to determine significant pairwise 

differences of DO concentrations over sampling periods. All statistical analysis was done 

with R statistical software (R. Development Core Team, 2005). Furthermore, data was 

tested for normality and homoscedasticity. 

 

2.3. Results 

2.3.1 Environmental parameters 

Data was recorded from 2829 images, not including baseline data received from 

environmental monitoring reports. 

The depth range for all sites was of 5.6 – 145.7 m with an average depth of 64.2 

m; depth varied considerably within each site (Figure 5, Table 3). Sites P1, NP1, and F1 

had maximum depths greater than 100 m and depth averages of 79.4 m, 89.8 m and 76.8 

m, respectively. All stations at P2, NP2 and F2 had depths < 100 m, and respective 

average depths of 45.5 m, 50.8 m, and 52.6 m. The P1, NP1 and F1 depth distributions 

have a bell shape while the P2 and F2 depth distributions are skewed to the right.  

When considering all sampling dates and stations, water temperature at the 

seafloor ranged from 1.4 – 16.1°C with an average of 3.6°C. Temperatures were generally 

lower and less variable at P1, NP1 and F1 than at P2, NP2 and F2 (Figure 6). Seasonal 
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and depth patterns in temperature at the seafloor were apparent (Table 3, Figures 6, 7). 

Temperature showed a significant negative correlation (R= - 0.479, p < 0.001) with depth 

and was lowest during the beginning of each sampling year (July 2011 and June 2012), 

increasing over the next few months (Figure 6).  

DO recordings were obtained during the June 2012, August 2012 and Oct/Nov 

sampling periods. Overall, DO values recorded ranged from 2.8 – 8.0 mL.L-1 with an 

average of 5.7 mL.L-1 (Table 3). 

The lowest DO recordings (3.1 and 2.8 mL.L-1) were taken at P2 and F2, and 

highest DO values (8.1 mL.L-1) were recorded at NP2 (Figure 8), with no correlation with 

depth observed. All median values among sites are similar, between 5.5 to 6 mL.L-1, 

except for P2 (5.3 mL.L-1) (Figure 9). In 2012, a distinct seasonal pattern is discerned 

with a decrease in median DO over time (Figure 10). A Tukey HSD test revealed that DO 

values differed significantly (p < 0.01, for all pairwise comparisons) between sampling 

times: June 2012 – Aug 2012, June 2012 – Oct/Nov 2012, and Aug 2012 – Oct/Nov 

2012. 

Substrate composition varied among sites and with sampling period (Figure 11); 

however, the variability with time was relatively low at NP sites. As expected, flocculent 

matter was not observed at the NP sites (similar results as in baseline reports). At P1, 

flocculent matter was most dominant in October 2011, occurring in 42.1% of the stations. 

P2 was mainly comprised of fine sediments which accounted for 79.6% of all the stations 

at all times considered. At P2 flocculent matter occurred in the highest number of stations 



33 
 

(16 %) in August 2011. F2 had substrates mainly comprising of fine and/or flocculent 

matter at all times sampled. Considering all sampling dates, 88.7 % of the stations at F1 

and 97.7 % of the stations at F2 were classified as fine or flocculent matter substrates 

(Figure 11). At F1 and F2, the percentage of stations dominated by flocculent matter 

matter declined with time. 

 

Table 3. Characteristics of the six sites surveyed off the south coast of Newfoundland in 

2011 and 2012. Data from all sampling periods are considered. DO: dissolved oxygen.   

Site Depth 

range (m) 

Average 

depth ± SD 

(m) 

Temperature 

range (°C) 

 

Temperature 

average (°C) 

± SD 

DO 

range 

(mL.L-1) 

DO 

average ± SD 

(mL.L-1) 

P1 47 – 143 

 

79.4 ± 18.8 1.8 – 7.5 

 

3.2 ± 1.5 5.1 – 6.7 

 

5.9 ± 0.3 

P2 22 – 56 

 

45.5 ± 9.5 1.8 – 13.6 

 

4.1 ± 2.4 3.1 – 6.6 

 

5.3 ± 0.64 

NP1 14 –146 

 

89.8 ± 24.8 1.8 – 15.2 3.0 ± 1.4 4.8 – 6.7 5.6 ± 0.35 

NP2 8 – 96 50.8 ± 21.2 1.4 – 16.1 4.3 ± 3.3 4.3 – 8.1 5.8 ± 0.46 

F1 40 – 111 76.8 ± 16.4 1.9 – 6.1 2.6 ± 0.6 

 

5.4 – 6.9 6.0 ± 0.48 

F2 6 – 63 

 

52.6 ± 12.2 1.9 – 14.8 4.0 ± 2.1 2.8 – 7.2 5.7 ± 0.76 
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Figure 5. (A) Distribution of station depths at each site surveyed during 2011 and 2012. 

(B) Boxplots of depths at each site.  

  

(A) (B) 
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Figure 6. Boxplots of temperature of the seafloor at different sampling dates, for each 

study site.  
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Figure 7. Temperatures recorded at the seafloor according to depth, at all stations and 

dates surveyed.  
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Figure 8. Dissolved oxygen concentration at the seafloor according to depth, for June 

2012, August 2012 and Oct/Nov 2012 sampling periods. 

  



38 
 

 

 

Figure 9. Boxplots of dissolved oxygen concentration at the seafloor at each site for June 

2012, August 2012 and Oct/Nov 2012 sampling periods.  
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Figure 10. Boxplots of dissolved oxygen concentration at the seafloor, all sites combined, 

during the June 2012, August 2012 and Oct/Nov 2012 sampling periods.   
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Figure 11. Proportion of substrate types at all sites surveyed. Blank areas are periods 

where sampling did not occur.  
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2.3.2 Benthic communities 

Over 10 500 individuals, excluding Beggiatoa spp., OPC and algal species, were 

identified, comprising at least 44 distinct taxa. Because 25 taxa were considered rare (i.e., 

fewer than 5 occurrences, considering all stations and times), only the most common taxa 

were used for data analysis (Table 4).  

Many faunal groups had wide depth distributions. Macrofauna were recorded at 

the shallowest depth (2 individuals at a depth of 5 m) as well as the greatest depth (1 

individual at 146 m) (Figure 12). However, some species seemed to be restricted by 

depth. The genus Strongylocentrotus existed in a relatively shallow depth range: 5 – 62 

m. Some of the photosynthetic species also appeared restricted by depth: Laminaria sp. 

were present at depths of 8 – 96 m and Hildenbrandia sp. occurred, with the exception of 

one point, at shallower depths ranging between 8 – 77 m. Alternatively, OPC and the 

family Comasteridae were found at greater depths, from 48 – 138 m and 35 – 117 m, 

respectively.  

Organisms generally occupied a wide range of temperatures (Figure 13). 

However, some species only occurred in a limited temperature range: OPC were found at 

cold temperatures ranging from 1.8 – 4.7 °C, with the exception of one data point with a 

temperature of 7.9°C. The family Comasteridae and Polymastia sp. had similar 

temperature ranges of 1.8 – 7.5°C and 1.8°C – 7.6°C, respectively. 

Most organisms were observed at a range of DO values between 4.5 – 7 mL.L-1.  

Only indicator species, OPC and Beggiatoa spp., were observed at the lowest DO 

concentrations (Figure 14).  
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Most taxa were observed living on a variety of substrate classes, although several 

taxa were not found on flocculent matter: Hildenbrandia sp., Agarum cribosum, 

Laminaria sp., F. Comasteridae, Gersemia sp., Halichondria sp., and F. Pectinidae, while 

others showed only few occurrences: Asterias vulgaris, F. Strongylocentrotidae, and 

Polymastia sp. (Figures 15, 16). Certain relationships between taxon presence and 

production stage were observed: Beggiatoa spp., OPC, and urchins (Strongylocentotidae) 

were only present in the fallow and/or production sites (Figures 12 – 16). 

The majority of taxa encountered had an abundance of <10 individuals per station 

at each sampling time. Mussels (Mytilus sp.), Serpula sp. and the sponges (Melonanchora 

sp., Halichondria sp. and Polymastia) had abundances of  >10 per sample. The most 

abundant taxonomic group was the sponges. Melonanchora sp. was the most common 

taxon (3977 individuals) among all sites. The greatest observed number of individuals 

recorded within a station was 68 Mytilus sp. at a fallow site; no other taxa were seen at 

this station. Macroalgal species, in general, had more occurrences and higher % cover at 

shallower depths. The percent cover of Beggiatoa spp. seemed unaffected by depth 

(Figure 16). The abundance of organisms showed a significant positive correlation with 

depth (R = 0.325, p < 0.001) and a significant negative correlation with temperature (R = -

0.0891, p < 0.001). 
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Table 4. Most common taxa identified during video surveys and means of quantification. 

Identified Organisms Classification Biological Measurement 

Asterias vulgaris Macrofauna Abundance 

F. Strongylocentotidae Macrofauna Abundance 

F. Comasteridae Macrofauna Abundance 

Gersemia sp. Macrofauna Abundance 

Stomphia sp. Macrofauna Abundance 

Serpula sp. Macrofauna Abundance 

Melonanchora sp. Macrofauna Abundance 

Halichondria sp. Macrofauna Abundance 

Polymastia sp. Macrofauna Abundance 

Mytilus sp. Macrofauna Abundance 

F Pectinidae Macrofauna Abundance 

Cancer sp. Macrofauna Abundance 

Beggiatoa spp. Indicator % Cover 

OPC Indicator % Cover 

Hildenbrandia sp. Macroflora % Cover 

Lithothamnium sp. Macroflora % Cover 

Chondrus sp. Macroflora % Cover 

Agarum cribosum Macroflora % Cover 

Laminaria sp. Macroflora % Cover 



44 
 

 

Figure 12. Distribution of observed taxa according to depth, considering all sampling 

periods. 
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Figure 13. Relationship between taxon occurrence and temperature at the seafloor, 

considering all sampling periods. 
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Figure 14. Relationship between occurrence of taxa and associated dissolved oxygen 

concentrations at all sampling periods. 
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Figure 15. Taxon abundance (# of individuals) in relation to substrate and depth, at all 

sampling periods. Floc: flocculent matter. 
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Figure 16. Percent cover of taxa in relation to depth and substrate type, considering all 

sampling periods. Floc: flocculent matter. 
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2.4. Discussion 

The use of underwater video in combination with environmental data recorders 

allowed biological data (taxon presence and abundance) to be associated with physical 

data (depth, temperature, DO and substrate type) at sites experiencing different stages of 

aquaculture production. 

 All of the sites were initially chosen based on depth attributes extracted from 

navigational charts, such that two main groups with similar intra-group conditions could 

be formed: [P1, NP1 and F1] and [P2, NP2, and F2]. Our data suggests that the two sets 

of sites had similar depth characteristics and frequency distributions (Figure 5). P1, NP1 

and F1 had stations deeper than 100 m and average depths of 80, 90 and 80 m, 

respectively (Table 3). All stations at P2, NP2 and F2 were at < 100 m depth, with 

average depths being around 50 m respectively (Table 3).  

Temperature changes in the water column and at the seafloor can result from 

increases in depth and seasonal changes (Gray & Elliot, 2009). The data supported this 

pattern by a negative correlation (R = -0.479) showing a decrease in temperature with 

increasing depth as expected (Figure 7). In addition, temperature changed with each 

sampling period although the range of mean temperatures for all sampling periods varied 

between 2.2 – 5.6°C (Figure 6). 

DO data showed a slight tendency to decrease with increasing depth; however, no 

significant correlation was found (Figure 8). DO changed significantly with time and 

Tukey HSD revealed that all dates differed significantly from each other after pairwise 

comparisons. Changes in DO could be related to multiple factors including seasonal 

temperature changes, seasonal stratification of the water column or long term climatic 
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variability (Anderson et al., 2005). The mean dissolved oxygen concentration was 

however comparable at all sites, ranging from 5.6 – 6.0 mL.L-1 The lowest DO values 

were observed at P2 and F2 and might be due to organic enrichment at those sites. OM 

enrichment has been shown to create hypoxic zones, and DO concentrations at P2 and F2 

were nearly hypoxic (1.4 mL.L-1) as previously observed by other authors (e.g. Axler et 

al., 1998; Hamoutene et al., 2013). However it should be noted that sites in NL can 

experience low oxygen levels even prior to aquaculture set-up (Hamoutene et al., 2013; 

Hamoutene, 2014). 

Substrate composition differed between sites and displayed variation over time 

within sites (Figure 11). However, the patchiness of the area and the design of the video 

surveys might explain some of the variation of substrate type over time. It is likely that 

the video does not survey the exact same location which could lead to differences in 

substrate types at identical stations over time. It is also important to note that the baseline 

reports are not covering the same surface or number of stations as we do, and that 

aquaculture sites contain both stations receiving settled OM from cages, and stations that 

do not (depending on local hydrodynamic conditions). As expected, substrate 

composition at NP1 and NP2 varied little over time and was mostly composed of medium 

sediment, with no flocculent matter. For P1, initially mostly covered with medium 

substrates, sampling taking place during the 2011 production cycle showed a relative 

increase in flocculent matter and fine substrates. Over 50% of stations were classified as 

fine substrate and flocculent matter from September 2011 onwards. F1 and F2 showed a 

consistent pattern in relative composition as well, with the majority of substrates at these 

sites comprised of flocculent matter and fine substrates. Throughout time flocculent 
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matter and fine sediments comprised 88% of the substrates at F1 and 97% at F2. The 

increasing presence of fine and flocculent matter likely results from organic enrichment 

deriving from the aquaculture sites (Wood & Armitage 1997; Gray et al., 2002; Cromey 

et al., 2002; Giles 2008; Huang et al., 2012).  

 

2.4.1 Benthic composition 

Most of the invertebrates identified were sessile, as expected due to the nature of 

hard bottom substrata (Wenner et al., 1983) and the sampling methodology: highly motile 

species were not considered in this study.  

Depth and temperature have been shown to affect benthic species distributions 

(Bergen et al., 2001). The overall abundance of species showed a significant positive 

correlation with depth (R = 0.325, p < 0.001) and a significant negative correlation with 

temperature (R = -0.0891, p < 0.001). Some species appeared to be restricted by 

temperature and/or depth (i.e. OPC, family Comasteridae). Other taxa existed at the 

minimum and maximum values of depth and temperature (i.e. Halichondria sp., 

Melonanchora sp.). As expected, the prevalence of photosynthetic macroalgae is affected 

by depth considering that light may not be able to reach greater depths (Markager & 

Sand-Jensen, 1992). Mytilus sp. occurred at 40 – 75 m depth but was concentrated in a 

few stations at the fallow site. Mussels are usually attached to derelict gear and cages and 

it is assumed that they fell off the gear and accumulated on the seafloor or could have 

been detached during net cleaning or cage removal. It is possible that mussels could have 
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always inhabited this area, however by analyzing temporal trends (Chapter 3), we can 

investigate this further. 

DO appeared to impact species distribution, with most species being present at the 

highest DO levels whereas only Beggiatoa spp. and OPC were observed at low oxygen 

values. Low oxygen levels due to organic enrichment could impact macrobenthic 

community structure and favor opportunistic species (Pearson & Rosenberg, 1978; Lu & 

Wu, 1997; Nilsson & Rosenberg, 2000) which is most likely why only Beggiatoa spp. 

and OPC, which are tolerant of reduced conditions (Tomassetti & Porrellp, 2005; Preisler 

et al., 2007) were present at the lowest recorded DO concentrations. 

Some species seem to prefer particular substrate types and/or flocculent matter: 

the indicator species and sea urchins were found in high concentration on flocculent 

matter and fine substrates. Beggiatoa spp. and OPC were only present at the production 

and fallow stages and their presence was likely triggered by the organic enrichment in 

that area (Crawford, 2003; Brooks et al., 2004; Hall-Spencer et al., 2006; Hamoutene et 

al., 2013; Hamoutene 2014). The family Strongylocentotidae (sea urchins) was only 

present during the fallow stage and could be attracted to abundant OM as a food source 

(Vetter & Dayton, 1999). 

In conclusion, two sets of sites were comparable in terms of depth range. OM 

sedimentation resulting in the accumulation of flocculent matter occurs only at production 

and fallow sites. Most species showed no site preference except for indicator species 

which were absent from non-production sites and were the only taxa observed at lower 
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oxygen levels. Most species showed a pattern with depth which may be related to 

temperature patterns, both being correlated.  

As no clear differences in temperature, depth, DO ranges and macrobenthic 

organisms (excluding OPC and Beggiatoa spp.) were observed between sites in each set, 

we can assume that sites are comparable and can be used to determine aquaculture impact 

on macrofaunal communities. This will be further investigated in the next chapter. 
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Chapter 3. Spatio-temporal changes in epibenthic communities at finfish farm sites 

3.1. Introduction 

3.1.1 Overview of environmental impacts from aquaculture operations 

Environmental impacts of aquaculture can be biological [e.g., interactions with 

wild stocks, causing genetic changes (Hindar et al., 1991; Crozier, 2000), disease transfer 

(Heggberget et al., 1993; Bridger et al., 2001) and/or competition (McGinnity et al., 2003; 

Mazur & Curtis, 2008)], or physico-chemical [e.g. changes in water chemistry (Alongi et 

al., 2003), nutrient loading (Angel et al., 2002; Gao et al., 2005), and organic enrichment 

of the benthos (Carrol et al. 2003; Sutherland et al., 2007)]. Organic matter (OM) 

enrichment of the benthos has been extensively researched and is possibly the most direct 

effect aquaculture can have on its local ecosystem (AMEC, 2002; Kalantzi & Ioannis 

2006). OM enrichment can occur at aquaculture sites when feed, feces and other fish by-

products flow through the cage and accumulate on the seafloor (Crawford, 2003). If the 

sediment OM is not diluted or assimilated by the natural processes, the local habitat may 

experience nutrient loading. Organic enrichment can lead to the smothering of benthic 

organisms and reduced oxygen concentrations, along with changes in biodiversity, 

abundances, biomass and assemblage composition (Gray & Elliot, 2009). The effects of 

various types of OM enrichment on benthic infaunal communities have been well studied 

(Pearson & Rosenberg, 1978; Nilsson & Rosenberg, 2000; Gray et al., 2002) and 

modelled (Pearson & Rosenberg, 1978). In general, OM enrichment causes a decrease in 

the size and diversity of species, and an increase in the abundance of smaller 

opportunistic species (Pearson & Rosenberg, 1978; Huang et al., 2012). 
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3.1.2 Potential impacts of organic matter enrichment 

In sedimentary benthic environments, OM enrichment can result in ecological 

successional patterns over both temporal and spatial scales (Pearson, 1975). Nilsson and 

Rosenberg (2001) describe four successional stages along a gradient of  increasing 

organic enrichment, defined by community composition. The stages include: an oxidized 

habitat with a highly diverse community, a transitional community with an increase in the 

abundance of opportunist species, a community dominated by opportunistic species, and 

an azoic habitat void of any macrobenthic species. Pearson and Rosenberg (1978) 

hypothesized that this biological relationship exists in any marine area that is affected by 

organic enrichment.  

The degree of OM enrichment from aquaculture depends on a multitude of factors 

including farming practices, bathymetric characteristics, oceanographic condition (i.e., 

current speed and direction; temperatures), habitat type and the assimilative capacity of 

the local ecosystem (Kalantzi & Ioannis, 2006). Spatially, the extent of impact can be 

limited to the area underneath the cages (Wildish & Pohle, 2005; Tomassetti et al., 2009) 

or extend to distances < 1 km (Holmer, 1991). A study by Pohle et al. (2001) conducted 

in Atlantic Canada shows regional changes to benthic macrofauna as a result of increased 

amounts of OM, up to 200 m away from cages.  

Temporal studies conducted on OM enrichment from finfish aquaculture have 

monitored changes to the benthos throughout a production cycle with a continued supply 

of OM (Tomassetti et al., 2009) or have focused on benthic recovery once cessation of 

OM enrichment occurs (Brooks et al., 2004). Recovery of the benthos has been shown to 

take place in as little as few months to >5 years post aquaculture production (Brooks et 
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al., 2003; 2004). Hamoutene et al. (2013, 2014) indicated that sites in NL post fallow still 

had hypoxic sediments and displayed an apparent lack of change in sediment condition. 

The impacts of OM enrichment from aquaculture are variable (Brooks et al., 2003); this 

variation can be caused by site characteristics, sampling protocols and analysis of the data 

(Kalantzi & Ioannis, 2006).   

Conventional methods to measure OM enrichment, sediment grabs and cores, 

have been mainly utilized for soft sediments (Hall-Spencer et al., 2006) and are often 

ineffective on predominantly hard substrates (Bungay, 2012; Hamoutene et al., 2013). In 

some regions such as the south coast of Newfoundland, the substrates beneath finfish 

aquaculture sites are mixed/predominantly rocky (Anderson et al. 2005, Bungay 2012, 

Hamoutene et al., 2013; Hamoutene, 2014). Out of the > 120 biological and geochemical 

variables that have been used to determine benthic changes due to aquaculture (Kalantzi 

& Karakassis, 2006), none have been developed for hard substrates. The evaluation of 

methods to document benthic impacts of aquaculture in NL has concluded that due to the 

hard and patchy nature of the south coast, video analysis is a preferred method. However, 

the use of video imaging as a monitoring tool in the NL region is in its infancy and an 

exploration of how benthic communities are affected by OM enrichment over temporal 

and spatial scales has not yet been completed.  

The present study uses video imaging to document the natural temporal variation 

in subtidal benthic organisms in the Coast of Bays region of NL and compare it to that in 

sites affected by OM enrichment from finfish cages and in sites undergoing fallow. 

Further, relationships between benthic organism presence and abundance according to 

distance from finfish cages are examined at production and fallow sites.  
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 In this chapter, the abundance and composition of visible epibenthic organisms 

will be compared and analyzed on temporal and spatial scales using two approaches: first 

considering all sites (two non-impacted sites, two production sites and two fallow sites); 

then considering sites grouped according to similar depth characteristics. The aim of this 

chapter is to determine spatial and temporal trends in epibenthic community change in 

relation to OM enrichment from aquaculture sites while accounting for natural seasonal 

changes and spatial patchiness.   

 

3.2. Methods  

Underwater surveys were conducted at six locations on the South Coast of 

Newfoundland: two production sites (P), two non-production sites (NP) and two fallow 

sites (F), as described in Chapter 2. An underwater video camera and environmental 

monitoring equipment were lowered to the seafloor to capture images and obtain data of 

the physical and biological attributes of the benthic environment. Images were obtained at 

20 m intervals along three transects at each site (Chapter 2). 

 

3.2.1 Grouping of organisms 

The level of taxonomic resolution that can be achieved using video data varies 

according to the phylum considered (DFO, 2012). Biological data were categorized into 

larger taxonomic groups due to low abundances of single species. Taxa that could be 

individually counted were grouped into 5 categories: Echinoderms, Cnidaria, Annelids, 
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Porifera and Molluscs (Table 5). Species that were quantified by % cover were grouped 

into 4 categories: Beggiatoa spp., OPC, coralline algae and macroalgae (Table 5). Species 

quantified by % cover were separated from abundance data in subsequent analyses. For 

example, Beggiatoa spp. cover was only recorded as % cover and not quantified as 

abundance. Stations that lacked, in both abundance and % cover, any species (not 

including indicator species) were termed “no visible species”.  

 

3.2.2 Data processing 

Depth characteristics differed between the two sets of sites outlined in Chapter 2.  

Group 1 (NP1, P1, F1) had greater maximum and average depths than group 2 (NP2, P2, 

F2). Therefore, when graphically displaying sites (except when comparing production 

stages), these two groups were separated.  

Sampling protocols differed in the 2011 and 2012 sampling seasons. In this study 

we will investigate changes temporally over the whole time period and seasonally 

comparing within one sampling year (i.e., 2011 or 2012). During the 2011 field season, 

only one sample (one image per video recording) was collected for each station 

(geographic location); however four images, considered as replicates, were collected 

during the 2012 field season and data from these four images were averaged. The number 

of stations sampled varied slightly at different sampling dates and sites due to sampling 

design, constraints of video cable length, movement of cages, and adverse weather 

conditions. To graphically represent abundance and % cover values, averages per station 

(2500 cm2 as per quadrat size) were presented. Data presented according to distance from  
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cage are averages of stations along the three transects. All data calculations, statistical 

analyses, and graphical representations were done using R Statistical Software version 

0.97.318 (R. Development Core Team, 2005). 

 

Table 5. Species identified and corresponding taxonomic group classification 

Species Taxonomic Group 

Pectinidae Molluscs 

Mytilus sp. Molluscs 

Polymastia sp. Porifera 

Halichondria sp. Porifera 

Melonchora sp. Porifera 

Serpula sp. Annelids 

Gersemia sp. Cnidaria 

Stomphia sp. Cnidaria 

Stronglocentotidae  Echinoderms 

Asterias vulgaris Echinoderms 

Laminaria sp. Macroalgae 

Chondrus sp. Macroalgae 

Hildenbrandia sp. Coralline algae 

Lithothamnium sp. Coralline algae 

OPC (Family Dorvilleidae) OPC 

Beggiatoa spp. Beggiatoa spp. 
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3.2.3 Statistical analysis 

The complete dataset was analyzed to determine biological composition 

differences among sites, and to test whether the total abundance, abundance within each 

taxonomic group, and the percent cover of each non-enumerable taxon vary: 1) among 

production stages (comparing stations from non-production, production and fallow sites); 

2) among production stages, comparing sets of sites having similar depth distributions 

(i.e. considering separately NP1, P1 and F1, and NP2, P2 and F2, see Chapter 2); 3) 

according to sampling date within each site; and 4) according to distance from cage 

within particular sites.  

As the distribution of the data violated ANOVA assumptions (homoscedasticity), 

non-parametric Kruskal Wallis tests were used to test for differences between data sets. 

When analyzed, data sets revealed similar residual distributions. If significant, multiple 

comparisons tests were used with a p-value of 0.05 for statistical significance.  

3.3. Results 

3.3.1 Epibenthic composition by production stage  

3.3.1.1 Composition and abundance of enumerable organisms 

All taxon groups were represented in each of the three production stages (P, NP, F). 

However, total abundance and the abundances of each of the taxon groups differed with 

each production stage. The abundance of visible, enumerable organisms per station was 

highest at NP sites with an average of 6.35 ± 7.13 individuals per station. Porifera and 
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annelids were the predominant taxa at NP stations, where they represented on average 

67% and 19% of observed individuals, respectively. The P sites had the lowest average 

abundance of enumerable organisms, at 1.35 ± 3.44 individuals per station. Porifera were 

also predominant at P sites, consisting of 46% of the average abundance per station. F 

sites had an average abundance of 1.80 ± 5.57 individuals per station, mainly consisting 

of molluscs which comprised 61% of the average abundance per station. Molluscs existed 

at all sites however the species comprising this taxon differed between stages: at NP and 

P the dominant species were pectinids, comprising 89% and 97% of all molluscs, 

respectively. Molluscs at F sites were mainly comprised of Mytilus sp. (as visualised 

through the presence of shells), accounting for 99% of the mollusc abundance. Notably, 

NP, P and F had similar average abundances of cnidarians per station (Figure 17).  

The Kruskal Wallis test revealed significant differences in abundances for all 

taxonomic groups between the production stages (Table 6). Specifically, post-hoc tests 

revealed that the abundances of all categories of organisms, and the total abundance at the 

NP sites were greater than those at the P and F sites, except for molluscs. Pairwise 

comparisons between the abundance of organisms at P and F sites showed that only 

poriferans differed significantly, being more abundant at the P sites than the F sites.  

3.3.1.2 Percent cover of non-enumerable taxa 

Macroalgae and coralline algae were present in all the production stages; however 

Beggiatoa spp. and OPC were only present in the P and F stages. Non-enumerable taxa 

ranged in percent cover from absent at specific stations (0% cover) to complete coverage 

of a station (100% cover). 
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At the NP sites, 83.7% of the stations contained non-enumerable organisms which 

consisted of macroalgae and/or coralline algae; no OPC or Beggiatoa spp. were observed. 

At P1 sites, Beggiatoa spp. was present with an average % cover per station of 9.55 ± 

20.10%. At stations where Beggiatoa spp. was present it covered on average 29.96 ± 

25.65% of the grid area. Likewise, at the F sites Beggiatoa spp., occurred at 46.9 % of the 

stations with an average percent cover of 27.62 ± 39.92 per station. At stations where 

Beggiatoa spp. was present at F sites it covered on average 59.11 ± 39.37% of the grid 

area. OPC was present at both the P and F stages, and where present, they had an average 

% cover per station of 23.47 ± 33.09% and 16.13 ± 23.69%, respectively (Figure 17b); 

10.8 % of stations in P and 11.7% of stations in F contained OPC. 

The Kruskal Wallis test revealed significant differences in Beggiatoa spp., OPC, 

macroalgae and coralline algae cover between production groups. Post-hoc tests showed 

that the percent cover of Beggiatoa spp., macroalgae and coralline algae was significantly 

(p-value < 0.01) different among all production stages (Table 6). Beggiatoa spp. % cover 

was greatest at the F sites and absent at the NP sites, while the percent cover of both 

macroalgae and coralline algae were greatest at the NP sites and lowest at the F sites. The 

percent cover of OPC was not significantly different between the F and P stages, but 

differed significantly between both those groups and the NP sites (Table 6). 

3.3.1.3 Images with no visible organisms 

The NP sites had the lowest percentage of stations with no visible organisms (2.2 % 

of all images). P and F sites had greater amounts of images with no visible organisms 

with 38.9 % and 64.4 % at P and F stages, respectively. 
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3.3.2 Epibenthic composition by production stage, comparing similar depths  

3.3.2.1 Sites NP1, P1, F1 

Sites NP1, P1 and F1 were previously determined to be comparable based on depths 

(Chapter 2). Among these sites, the average total abundance of enumerable organisms 

was highest in NP1 with 10.77 ± 7.95 individuals per station. When groups of enumerable 

organisms were considered separately, the highest average abundance within each group, 

with the exception of molluscs, was found at NP1 (Table 7). Porifera and annelids were 

the predominant taxa in NP1 and comprised 65% and 23% of the average total abundance 

per station, respectively. F1 had the lowest average abundance with 1.86 ± 6.58 

organisms per station. Molluscs were the predominant taxon at F1, where they formed 

74% of the average total abundance. P1 had an average total abundance per station of 

3.29 ± 5.35 individuals with about half of the enumerable organisms consisting of 

poriferans (Figure 18).  
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Figure 17. Average epibenthic abundance and % cover of observed taxonomic groups per 

station, with the latter grouped according to aquaculture production stage. Data from all 

sampling dates and study sites are considered. The number of image (n) examined for 

each production stage and the number of image with no visible organisms (z) is indicated 

above each bar. 
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Table 6. Results of Kruskal Wallis analyses comparing the total abundance, the 

abundances of organisms grouped by higher taxonomic rank, and the % cover of non-

enumerable organisms (averages ± standard deviations) between sites grouped by 

production stage, with all dates considered. P-values are presented along with the results 

of multiple comparison tests, with letters denoting significant differences among groups. 

***: p < 0.001. 

 

 

 

 

The Kruskal-Wallis test revealed significant differences in the abundance of all 

categories of organisms between NP1, P1 and F1 (Table 7). The total abundance and the 

 p - value Non - Production Production Fallow 

Total abundance < 0.001 (***) 6.30 ± 7.10 (a) 1.35 ± 3.44 (b) 1.80 ± 5.57 (b) 

Echinoderms 
< 0.001 (***) 0.24 ± 0.71(a) 0.10 ± 0.52 (b) 0.14 ± 0.53 (b) 

Cnidaria 
< 0.001 (***) 0.44 ± 0.96 (a) 0.41 ± 1.62 (b) 0.40 ± 1.43 (b) 

Annelids 
< 0.001 (***) 1.22 ± 2.57 (a) 0.08 ± 0.55 (b) 0.04 ± 0.30 (b) 

Porifera 
< 0.001 (***) 4.21 ± 4.94 (a) 0.60 ± 2.00 (b) 0.10 ± 0.40 (c) 

Molluscs < 0.001 (***) 0.15 ± 0.78 (a) 0.12 ± 0.86 (a) 1.10 ± 5.30 (a) 

Beggiatoa spp. 
< 0.001 (***) 0.00 ± 0.00 (a) 9.50 ± 20.10 (b) 27.6 ± 39.9 (c) 

OPC < 0.001 (***) 0.00 ± 0.00 (a) 2.30 ± 12.30 (b) 1.80 ± 9.50 (b) 

Macroalgae 
< 0.001 (***) 9.72 ± 19.8 (a) 2.47 ±  9.13 (b) 0.06 ± 0.51 (c) 

Coralline algae < 0.001 (***) 9.81 ± 15.94 (a) 2.78 ± 8.10 (b) 0.36 ± 2.45 (c) 
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abundance of poriferans differed significantly between sites, with highest abundances at 

NP1 and lowest at F1. As for echinoderms, cnidarians and annelids, post-hoc tests 

showed that abundances were higher at NP1 than at P1 and F1, with no significant 

difference in abundance between the latter two sites. However, post hoc multiple 

comparison tests revealed no differences in the abundance of molluscs between sites.  

The non-enumerable organisms at NP1 were solely comprised of coralline algae and 

macroalgae. At both P1 and F1, non-enumerable organisms were mainly comprised of 

Beggiatoa spp. and OPC. Beggiatoa spp. had an average % cover per station of 19.17 ± 

25.67% and 29.03 ± 37.40% and OPC of 4.4 ± 16.75% and 4.23 ± 14.33% for P1 and F1, 

respectively. The Kruskal-Wallis test revealed significant differences in the abundance of 

all categories of organisms between sites NP1, P1 and F1 (Table 7). Macroalgae and 

coralline algae had a significantly greater % cover at N1 than at P1 and F1 (with coralline 

algae % cover also being significantly lower at F1 than P1). The percent cover of 

Beggiatoa spp. was significantly lower at NP1 than at F1 and P1, but that of OPC only 

differed significantly from F1. 

The percentage of images from NP1, P1 and F1 with no visible species is 3.0%, 

31.2% and 66.8%, respectively. 

3.3.2.2 NP2, P2, F2 

The average total abundance per station was highest in NP2 (2.47 ± 2.81), with 72% 

of enumerable organisms being poriferans (1.81 ± 2.32 organisms per station). P2 had the 

lowest average total abundance with only 0.48 ± 1.39 organisms per station. Echinoderms 

and annelids were not observed at this site. All sites had similar numbers of cnidarians 
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with average abundances per station of 0.21 ± 0.82, 0.26 ± 0.63, and 0.46 ± 1.32 for NP2, 

P2, F2, respectively. F2 had high numbers of molluscs (average abundance per station of 

0.92 ± 4.37) comprising 51% of the total average abundance per station at this site 

(Figure 18). 

Kruskal Wallis tests showed that abundances within all categories except Cnidaria 

differed significantly between sites (Table 8). Post-hoc analyses indicated that 

abundances of poriferans were greater at NP2 than at P2 and F2 and that echinoderm 

abundance was lower (nil) at P2 than at NP2 and F2. 

Non-enumerable organisms at NP2 consisted of macroalgae and coralline algae only, 

with average % cover per station of 15.82 ± 23.64% and 12.69 ± 16.11%, respectively. At 

F2, non-enumerable organisms were mainly comprised of Beggiatoa spp. with an average 

% cover per station of 26.72 ± 41.80. Beggiatoa spp. was present in P2 but with only 4.74 

± 14.34% cover per station; coralline algae and OPC were also observed at this site 

(Figure 18). Kruskal Wallis analyses revealed significant differences in the percent cover 

of all non-enumerable organisms among sites NP2, P2 and F2. The percent cover of 

Beggiatoa spp. was smallest at P2 and greatest at F2, while that of coralline algae and 

macroalgae were greatest at NP2 and lowest at F2 (Table 8). 

The percentages of images from NP2, P2 and F2 with no visible species are 1.5%, 

43.8% and 62.9%, respectively. 
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Table 7. Results of Kruskal Wallis analyses comparing the total abundance, the 

abundances of organisms grouped by higher taxonomic rank, and the % cover of non-

enumerable organisms (averages ± standard deviations) between sites NP1, P1 and F1 (all 

dates considered). P-values are presented along with the results of multiple comparison 

tests, with letters denoting significant differences among groups.  ***: p < 0.001  

 

 

 p - values NP1 P1 F1 

Total abundance 
< 0.001 (***) 10.77 ± 7.95 (a) 3.29 ± 5.35 (b) 1.86 ± 6.58 (c) 

Echinoderms 
< 0.001  (***) 0.49 ± 0.99 (a) 0.31 ± 0.89 (b) 0.002 ± 0.02 (b) 

Cnidaria 
< 0.001 (***) 0.71 ± 1.06 (a) 0.73 ± 2.7 (b) 0.32 ± 1.57 (b) 

Annelids 
< 0.001 (***) 2.47 ± 3.32 (a) 0.26 ± 0.98 (b) 0.03 ± 0.24 (b) 

Porifera 
< 0.001 (***) 6.96 ± 5.67 (a) 1.70 ± 3.21 (b) 0.11 ± 0.4 (c) 

Molluscs 
< 0.001 (***) 0.02 ± 0.11 (a) 0.22 ± 0.63 (a) 1.4 ± 6.38 (a) 

Beggiatoa spp. 
< 0.001 (***) 0.00 ± 0.00 (a) 19.17 ± 25.66 (b) 26.72 ± 41.80 (b) 

OPC 
< 0.001 (***) 0.00 ± 0.00 (a) 4.23 ± 16.75 (a,b) 4.42 ± 14.33 (b) 

Macroalgae 
< 0.001 (***) 2.76 ± 10.74 (a) 0.63 ± 3.22 (b) 0.05 ± 0.08 (b) 

Coralline algae 
< 0.001 (***) 6.53 ± 15.14 (a) 3.45 ± 4.34 (b) 0.09 ± 0.67 (c) 
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Figure 18. Average epibenthic abundance and % cover of observed taxonomic groups per 

station, with sites NP1, P1 and F1, and sites NP2, P2 and F2 considered separately. Data 

from all sampling dates are compiled. The number of images (n) examined for each 

production stage and the number of images with no visible organisms (z) are indicated 

above each bar. 
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Table 8. Results of Kruskal Wallis analyses comparing the total abundance, the 

abundances of organisms grouped by higher taxonomic rank, and the % cover of non-

enumerable organisms (averages ± standard deviations) at sites NP2, P2 and F2 (all dates 

considered). P-values are presented along with the results of multiple comparison tests, 

with letters denoting significant differences among groups. ***: p < 0.001. 

 p - values NP2 P2 F2 

Total abundance < 0.001 (***) 2.47 ± 2.81 (a) 3.29 ± 1.25 (b) 1.76 ± 4.71 (c) 

Echinoderms < 0.001 (***) 0.02 ± 0.13 (a) 0.00 ± 0.00 (b) 0.24 ± 0.69 (a) 

Cnidaria 0.343 0.21 ± 0.82 0.26 ± 0.63 0.46 ± 1.32 

Annelids < 0.001 (***) 0.14 ± 0.53 (a) 0.00 ± 0.00 (a) 0.05 ± 0.39 (a) 

Porifera < 0.001 (***) 1.81 ± 2.33 (a) 0.08 ± 3.21 (b) 0.10 ± 0.48 (b) 

Molluscs < 0.001 (***) 0.27 ± 1.04 (a) 0.08 ± 0.94 (a) 0.92 ± 4.37 (a) 

Beggiatoa spp. < 0.001 (***) 0.00 ± 0.00 (a) 4.73 ± 14.34 (b) 26.6 ± 41.7 (c) 

OPC < 0.001 (***) 0.00 ± 0.00 (a) 1.37 ± 9.54 (a) 0.03 ± 0.32 (a) 

Macroalgae < 0.001 (***) 15.80 ± 23.64 (a) 3.32 ± 10.73 (b) 0.06 ± 0.53 (c) 

Coralline algae < 0.001 (***) 12.69 ± 16.11 (a) 3.45 ± 9.27 (b) 0.55 ± 3.16 (c) 

 

 

3.3.3 Temporal changes in epibenthic composition  

3.3.3.1 Sites NP1, P1, F1 

The total abundance of enumerable organisms, and the percent cover of 

macroalgae and coralline algae at NP1 remained relatively constant throughout time, with 

the highest abundance per station occurring in July 2011 (13.10 ± 9.57) and the lowest in 
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September 2011 (8.26 ± 7.27). Although the total abundance did not change significantly 

with time, the abundance of cnidaria, annelids and echinoderms differed significantly 

between time periods, as did the percent cover of macroalgae (Table 9). 

Total abundances at P1 were lower at every date sampled than at NP1. The 

highest total average abundance per station was recorded in June 2012 with 4.60 ± 6.15 

individuals per station and the lowest abundance occurred in August 2012 with an 

average abundance of 1.55 ± 2.50 individuals per station (Figure 19). The indicator 

species Beggiatoa spp. and OPC differed significantly through time. Beggiatoa spp. 

coverage was highest in August 2011, with an average % cover per station of 43.79 ± 

34.47 and was lowest in Oct/Nov 2012 (7.58 ± 14.01%). OPC percent cover was highest 

in October 2011 (19.21 ± 37.97) and lowest (0.00 ± 0.00%) in August 2011 and in 

Oct/Nov 2012 (0.00 ± 0.00%). 

At F1, the total abundance of enumerable organisms per station was lower at each 

date sampled compared to NP1. The highest total abundance per station at F1 was 

recorded in August 2012 (4.68 ± 9.43) and the lowest abundance in July 2011 (zero 

individuals). Molluscs differed significantly through time and were the most dominant 

taxon observed in August 2011, June 2012, and August 2012, comprising 84%, 68% and 

77% of the average abundance per station, respectively. Beggiatoa spp. percent cover was 

highest in June 2012 (48.00 ± 43.68%) and lowest in July 2011 (17.6 ± 28.99%). OPC 

percent cover was highest in July 2011 (12.90 ± 23.27 %) and lowest (0.20 ± 0.54 %) in 

September 2011. 
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NP1 had no images classified as having no visible organisms in July 2011 and 

September 2011, however the highest percentage of images with no visible organisms 

occurred in June 2012 (5.3% of images). The percentage of images with no visible 

organisms at P1 was highest in October 2011 at 36.8% and was lowest (25.0%) in August 

2011 and September 2011. F1 had high percentages of images with no visible organisms 

and in July 2011, 100% of the images had no visible organisms. However, at the last 

sampling period, only 50.8% of the images at F1 had no visible organisms. 

 

Table 9. Results of Kruskal Wallis analyses comparing the total abundance, the 

abundances of organisms grouped by higher taxonomic rank, and the % cover of non-

enumerable organisms between sites NP1, P1 and F1, according to sampling date. P-

values are presented. *: p < 0.05; **: p < 0.01; ***: p < 0.001. 

 NP1 P1 F1 

Total abundance 0.137 0.521 < 0.001 (***) 

Echinoderms 0.031 (*) 0.639 0.437 

Cnidaria < 0.001 (***) 0.357 0.081 

Annelids 0.019 (*) 0.006 (**) 0.493 

Porifera 0.231 0.651 0.081 

Molluscs 0.153 0.117 < 0.001 (***) 

Beggiatoa spp. NA 0.003 (**) 0.001 (**) 

OPC NA 0.003 (**) < 0.001 (***) 

Macroalgae 0.002 (**) 0.664 0.708 

Coralline algae 0.808 < 0.001 (***) 0.004 (**) 
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Figure 19. Average epibenthic abundance and % cover of observed taxonomic groups per 

station, at sites NP1, P1 and F1. The number of images (n) examined at each site and the 

number of images with no visible organisms (z) are indicated above each bar. 
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3.3.3.2 Sites NP2, P2, F2 

At NP2, the total abundance of enumerable organisms and the percent cover of 

macroalgae and coralline algae varied significantly over time with the highest abundance 

occurring in Oct/Nov 2012 (4.60 ± 2.65) and the lowest abundance (1.00 ± 1.78) in 

October 2011. Annelids, porifera, molluscs and coralline algae displayed significant 

changes over time (Table 10).  

At P2, the abundance and percent cover of organisms was lower at all dates than 

at NP2. Additionally, the total abundance, the abundance of cnidaria and porifera, and the 

percent cover of macroalgae and coralline algae differed significantly throughout time at 

P2 (Table 10). The percent Beggiatoa spp. cover at P2 varied with time and was the 

highest in August 2011 (9.29 ± 20.22) and lowest in October 2011 (0.80 ± 4.04). 

At F2, molluscs appeared to increase in abundance during each year (i.e., from 

September 2011 to October 2011 and from June 2012 to Oct/Nov 2012; Figure 20). The 

% cover of Beggiatoa spp. varied with time, however no statistical difference was found 

(Table 10). At F2, OPC varied significantly with time but percent cover values were very 

low, ranging from 0 – 0.16 average % cover per station. Coralline algae showed a similar 

pattern, varying significantly with time, but with low average % cover per station (0.35 – 

0.74 %). 

At NP2, there were no images with no visible organisms in September 2011; the 

highest percentage of images with no visible organisms occurred in June 2012 (3.0% of 

images). At P1, the percentage of images with no visible organisms peaked at 55.5% in 
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October 2011 and was the lowest in August 2012 (35.9 %). F1 had high percentages of 

images with no visible organisms and in September 2011, 81% of the images had no 

visible organisms. However, the last sampling period had the lowest (56.2%) percentage 

of images with no visible organisms. 

 

Table 10. Results of Kruskal Wallis analyses comparing the total abundance, the 

abundances of organisms grouped by higher taxonomic rank, and the % cover of non-

enumerable organisms at sites NP2, P2 and F2, according to sampling date. P-values are 

presented. *: p < 0.05; **: p < 0.01; ***: p < 0.001. 

 NP2 P2 F2 

Total abundance < 0.001 (***) 0.031 (*) < 0.001 (***) 

Echinoderms 0.4028 NA < 0.001 (***) 

Cnidaria 0.1085 0.017 (*) 0.205 

Annelids 0.006 (**) NA 0.701 

Porifera < 0.001 (***) 0.050 (*) 0.650 

Molluscs < 0.001 (***) 0.120 < 0.001 (***) 

Beggiatoa spp. NA 0.046 (*) 0.651 

OPC NA 0.106 0.005 (***) 

Macroalgae 0.172 0.040 (*) 0.198 

Coralline algae 0.005 (**) 0.004 (**) 0.826 
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Figure 20. Average epibenthic abundance and % cover of observed taxonomic groups per 

station, at sites NP2, P2 and F2. The number of images (n) examined for each site and the 

number of images with no visible organisms (z) are indicated above each bar. 

 

 

 

z = 0 
n = 44 

z = 0 
n = 44 
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3.3.4 Epibenthic composition with distance to cage 

3.3.4.1 P1 and F1 

The abundance of enumerable organisms at P1 varied with distance to cage, with 

the highest abundances occurring at stations that were 100 and 120 m from the edge of 

the cage. The 100 m station had a total average abundance per station of 6.32 ± 9.08, 

most of which (51% of the total average abundance) consisted of cnidaria. The 120 m 

station had a total average abundance of 5.92 ± 8.41 and was predominately comprised of 

porifera which accounted for 63% of the total average abundance. Significant differences 

in the abundance of cnidaria and porifera with distance to cage were observed (Table 11). 

The percent cover of Beggiatoa spp. differed significantly according to distance to cage 

(Table 11). Beggiatoa spp. and OPC coverage tended to decrease with increasing distance 

from cage edge but differences were not significant (Figure 21, Table 11).  

At F1, the total abundance of enumerable organisms and the abundance of 

cnidaria and molluscs differed significantly with distance to cage (Table 11). The average 

percent cover of Beggiatoa spp. differed significantly with distance to cage (Table 11), 

and tended to decrease with increasing distance from cage edge (Figure 21): the highest 

average % cover occurred at 20 m from cages (44.92 ± 43.30%) and the lowest occurred 

at 160 m from cages (7.63 ± 19.58%). The percent cover of OPC showed a similar trend 

but differences were not statistically significant (Figure 21, Table 11). 

Spatially, the greatest amount of images with no visible organisms at P1 (39.3%) 

occurred at 140 m from cage edge, and the lowest (12.5% of images) occurred at 100 m. 
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At F1 the highest amount of images with no visible organisms occurred at 20 m (88.6%) 

and the lowest (23.3%) at 100 m. 

3.3.4.2 P2 

At P2, the total abundance per station and the abundance of cnidaria decreased 

significantly with distance from cages (Table 12). The percent cover of Beggiatoa spp. 

and OPC differed significantly with distance to cage (Table 12) and tended to decrease 

with increasing distance (Figure 22). The percent cover of macroalgae was highest at 160 

m (10.95 ± 24.07%) while that of coralline algae was highest at 180 m (7.74 ± 9.90%); 

the percent cover of those two taxa varied significantly with distance to cage (Table 12). 

The images with no visible organisms at P2 were most prevalent at 0 m (59.49% 

of the images) and the lowest at the furthest distance (180 m) from cages (11.5% of 

images).  
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Figure 21. Average epibenthic abundance and % cover of observed taxonomic groups per 

station, for sites P1 and F1. Data from all dates are considered. The number of images (n) 

examined for each production stage and the number of images with no visible organisms 

(z) are indicated above each bar. 
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Figure 22. Average epibenthic abundance and % cover of observed taxonomic groups per 

station, at site P2 (all dates considered). The number of images (n) examined for each 

production stage and the number of images with no visible organisms (z) is indicated 

above each bar. 
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Table 11. Results of Kruskal Wallis analyses comparing the total abundance, the 

abundances of organisms grouped by higher taxonomic rank, and the % cover of non-

enumerable organisms between sites P1 and F1 according to distance from cage edge (all 

dates considered). P-values are presented. *: p < 0.05; **: p < 0.01; ***: p < 0.001. 

 P1 F1 

Total abundance 0.128 0.039 (*) 

Echinoderms 0.022 (*) 0.365 

Cnidaria 0.005 (**) 0.012 (*) 

Annelids 0.355 0.362 

Porifera 0.269 0.104 

Molluscs 0.362 0.122 (*) 

Beggiatoa spp. 0.003 (**) 0.005 (**) 

OPC 0.198 0.765 

Macroalgae 0.616 0.478 

Coralline algae 0.543 0.118 
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Table 12. Results of Kruskal Wallis analyses comparing the total abundance, the 

abundances of organisms grouped by higher taxonomic rank, and the % cover of non-

enumerable organisms between stations at various distances from cage edge within site 

P2 at all sampling periods. P-values are presented. *: p < 0.05; **: p < 0.01; ***: p < 

0.001. 

 P2 

Total abundance 0.026 (*) 

Echinoderms NA 

Cnidaria < 0.001 (***) 

Annelids NA 

Porifera 0.971 

Molluscs 0.472 

Beggiatoa spp. < 0.001  (***) 

OPC < 0.001  (***) 

Macroalgae < 0.001  (***) 

Coralline algae < 0.001  (***) 

 

 

3.4. Discussion 

The aim of this study was to investigate potential spatial and temporal changes in 

the composition of epibenthic assemblages resulting from organic enrichment and/or 

seasonal effects.  
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3.4.1 Differences between production stages 

  The present study shows that all biological variables, with the exception of the 

abundance of molluscs in the Kruskal Wallis multiple comparisons, differed significantly 

between the NP stage and both the P and F stages (all stations and sampling periods 

considered). Differences observed in the abundance of non-indicator species and in the 

presence of the indicator species among production stages are biologically significant 

because they indicate modifications to the benthic habitat (Gray & Elliot, 2009). Both the 

P and F sites had a significantly lower total abundance of enumerable organisms than the 

NP sites. OM loading can cause localized hypoxia and anoxia due to the consumption of 

oxygen from microorganisms (Hargrave et al., 2008). Areas with reduced oxygen 

concentrations are inhospitable to many species as they can negatively affect 

physiological responses and cause mortality (Gray et al., 2002). The low abundances and 

the high amounts of stations devoid of enumerable organisms at the F and P stages may 

be explained by hypoxia or anoxia at certain stations. Further, the P and F sites were 

colonized by indicator species (Beggiatoa spp. and OPC), which were not observed at the 

NP site. Hamoutene et al. (2013) showed that these indicators are valid bio-indicators of 

organic enrichment at aquaculture sites on the south coast of NL.  

According to the Pearson-Rosenberg model (1978) of organic enrichment, at 

certain levels along enrichment gradient sediments become reduced and have higher 

abundance of organisms due to the high concentration of opportunistic species (Pearson 

& Rosenberg, 1978; Nilsson & Rosenberg, 2000). Although the results of the present 
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study appear to contradict this model of organic enrichment with decreased abundance in 

reduced sediments (Pearson & Rosenberg 1978) it should be noted that the abundance 

measurement did not include taxa calculated by % cover. In addition, we did not include 

infaunal species which could have altered abundance values when dealing with patchy 

substrates. Indicator species, assumed to be in high numbers in proximity to organic 

enrichment (Nilsson & Rosenberg 2000), were measured as % cover and were not 

enumerated; therefore, abundances at production and fallow sites would have been greater 

if indicator species had been quantified and incorporated into the abundance calculation. 

Although indicator species were not included into abundance calculations, there were 

other biologically significant differences between production stages. The abundance and 

percent coverage of macroalgae, coralline algae and porifera were significantly lower at 

the P and F sites. Photosynthetic organisms and sponges are sensitive to smothering by 

OM (Hall-Spencer et al., 2006) and the organic loading from the aquaculture sites most 

likely caused their decline at both the P and F sites. This analysis provided further 

evidence of OM smothering and the possible development of reduced conditions. After 

the cessation of organic loading it was expected that the abundance of all non-indicator 

species would increase at an F site; however, this was not apparent for algal species. The 

percentage cover of algal species was highest in the NP sites, followed by the P sites, with 

F sites showing the lowest percent cover. Hall-Spencer et al (2006) indicated that a two 

year fallow period was inadequate in allowing maerl beds to recover due to slow growth 

characteristics of that species. Similarly, the fallow period was insufficient to support the 

recolonization of algal species in our study.  
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3.4.2 Differences between sites 

When groups of sites having similar depth characteristics were considered 

separately, changes in epibenthic composition were similar to those observed when 

comparing all sites. In both groups 1 and 2, comparisons of the three stages of production 

revealed significant differences in the total abundance of organisms, in the abundance of 

porifera, and in the percent coverage of macroalgae and coralline algae.  

Not all enumerable species decreased in abundance at P and F sites: molluscs 

(predominantly mussels) were abundant at both F sites. The abundance of molluscs 

differed significantly among sites within both groups of sites 1 and 2; however, multiple 

comparison tests could not differentiate sites maybe due to the high standard deviation of 

the images. Mussels were observed in abundance on derelict gear (ropes, polar circles) at 

both F1 and F2 when sampling. The high abundance of molluscs at the F sites is most 

likely due to biofouling mussels falling off derelict gear at both of these sites. Biofouling 

is a common problem in finfish aquaculture industries globally and mussels are known to 

foul aquaculture gear in temperate regions (Bloecher et al., 2013). 

It is clear that aquaculture production and the resulting organic enrichment have 

an impact on epibenthic community composition. These changes include a reduction in 

the overall abundance, algal species, sponges, and the presence of indicator species at 

both the P and F sites including an increase in molluscs in both the F sites. Many other 

studies have shown comparable results (e.g. Hall-Spencer et al., 2006). However, as 

aquaculture sites were here repeatedly examined, we have the opportunity to examine 

how aquaculture might affect epibenthic communities on a finer temporal scale, and 
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attempt to differentiate natural changes from those related to organic enrichment from 

aquaculture activities. 

 

3.4.3 Changes on a temporal scale  

Temporal variations in benthic composition were observed within every site in 

group 1 (NP1, P1, F1); however, no consistent, significant trend existed among all sites. 

OPC coverage was highest in October 2011 and was low or absent at other time periods, 

suggesting sensitivity to temperature, seasonal life history, or to organic loading. Life 

history traits of OPC are relatively unknown; further studies should investigate OPC 

environmental preferences and tolerance to aid in understanding their distribution on a 

temporal scale. Our data suggest a temperature tolerance of OPC as its presence was 

essentially limited to 1.8 – 4.7° C. Furthermore as temperature increased from June 2012 

– Oct/Nov 2012 (Figure 3, Chapter 2) the % cover of OPC decreased in both F1 and P1 

(Figure 19). However, this trend did not exist July 2011 – October 2011 and could be 

related to its biological relationship with Beggiatoa spp., organic loading or temporal 

oceanographic conditions. Additionally, images with void of enumerable organisms 

decreased with time at F1 and could be signs of recovery at that site. This trend will be 

further analyzed in Chapter 4. 

 Interestingly, mollusc abundance differed significantly among time periods, with 

abundances being highest in August 2011 and 2012. As mentioned previously, biofouling 

of derelict gear by mussels was observed at both F sites. It is possible that they began 
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falling off derelict gear as their size increased after a period of optimal mussel growth in 

the summer and/or from the onset of fall storms (Boghen, 1995). 

 Temporal variations in benthic composition in group 2 (NP2, P2, F2) differed 

from those observed in group 1. The abundance of enumerable organisms differed 

significantly over time unlike in P1 and NP1. As sites in group 2 are shallower, the 

temperature varied over time (Figure 6, Chapter 1). Benthic species distribution can be 

affected by temperature (Bergen et al., 2001); seasonal changes in temperature could have 

caused significant changes to the abundances of enumerable organisms in this group of 

sites. Annelids at both NP1 and NP2 varied significantly over time suggesting seasonal or 

temporal influences. Annelids were shown to have strong seasonal patterns in other areas 

and peak in abundance in the summer (Stanwell-Smith et al., 1999).   

Organic enrichment of P2 appeared to lead to rapid decreases in the abundance of 

enumerable species, with lower values observed after the first sampling period, and the 

possible development of reduced conditions that were unfavourable to certain taxa. In 

general, fishes are more sensitive to hypoxia than crustaceans and echinoderms, which in 

turn are more sensitive than annelids, whilst molluscs are the least sensitive (Gray et al., 

2002). Although molluscs were observed at P2, there were no echinoderms or annelids at 

this site, suggesting a degree of hypoxia unsuitable to those taxa but perhaps tolerable for 

molluscs. Alternatively, although molluscs were observed on the seafloor they may not 

have been alive.  

Interestingly, at F2, the total abundance of enumerable organisms as well as the 

abundance of echinoderms and molluscs differed significantly over time and were highest 

in the last sampling period (i.e., 14 months of fallow). The increased abundances and 
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appearance of echinoderms and annelids could be signs of recovery at F2 (Pereira et al., 

2004). The echinoderms observed here likely use deposit feeding as a feeding strategy, 

and could have aided in both the ingestion of organics and bioturbation (Holmer et al., 

2005) allowing sediments to recover. Although deposit feeders are associated with 

enriched environments (Pearson & Rosenberg, 1978), the high abundance and proportion 

of echinoderms could be an indication of recovery. Annelid abundance at F2 was not 

elevated at the last sampling period, although this could be explained by natural seasonal 

variation, as mentioned previously. F2 showed similar patterns of F1 in which images 

void of species decreased over a temporal scale. This trend will be further analyzed in 

Chapter 4. 

It is clear that some of the epibenthic assemblage changes observed in this study 

are due to seasonal or temporal variation while others are related to either increasing OM 

loading or to the cessation of organic enrichment. Annelids and molluscs appeared to be 

affected by temperature or season (or by other stochastic events such as recruitment) as 

well as by organic enrichment. Macroalgal species and sponges reacted negatively to 

organic enrichment: at production and fallow sites, they appeared in much lower 

abundances compared to NP sites and showed no signs of recovery with time. However, 

echinoderms increased in abundance over time at F2, suggesting recovery; further 

temporal sampling is required to determine if this trend is consistent.  Echinoderms are 

quite motile and can travel major distances to sites by chemical gradients of food 

The percent coverage of both indicator species changed significant with time with 

no clear pattern, although some temporal changes in OPC could be related to temperature 

preferences (Chapter 2). In part, temporal or seasonal variability in fish feed input and 
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stock biomass (Linfoot et al., 1990) could explain those inconsistent changes on a 

temporal scale. In addition, analyzing changes in indicator species on a spatial scale could 

be useful, as Pearson and Rosenberg (1978) noted that organic enrichment affects benthic 

communities on both temporal and spatial scales concurrently.  

 

3.4.4 Changes on a spatial scale  

Wildish and Pohle (2005) investigated changes in benthic communities in New 

Brunswick, Canada, and stated that changes in benthic communities in proximity to 

aquaculture sites were mainly constrained to a defined cage footprint; however, Pohle et 

al. (2001) found regional impacts extending as far as 200 m even though currents were as 

low as < 5 cm/s. Our study revealed the presence of indicator species as far away as 160 

m from cages, suggesting that organic enrichment extended at least to that distance. 

However, a decreasing % cover of indicator species was observed with increasing 

distance.  

At P1 and F1, stations at 100 m from cage edge were affected by organic 

enrichment: Beggiatoa spp. was present at these stations, but in low amounts (7 – 10 % 

cover). The OM enrichment at a certain distance from cages (e.g, approximately 100 m 

away) could have led to greater abundances of cnidaria, as observed for certain taxa in 

other studies (Vetter & Dayton, 1999). Cnidaria varied significantly with distance at P1, 

F1 and F2. The abundance of cnidarians was higher at 100 m from cage edge than at non-

impacted sites. Echinoderms showed a similar pattern with the highest abundances at P1 

and F1 located at 100 m from cages, and higher than at site NP1. These patterns 
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correspond to the transition zone within generalized SAB diagrams as described by 

Pearson & Rosenberg (1978) but further analysis at multiple sites is recommended to 

determine if this trend is consistent.  

Interestingly, at P2, the Beggiatoa spp. trend was not consistent through all 

distances. Furthermore, images void of enumerable species decreased with increasing 

distance. Both trends could be due to bathymetric properties of that area. Spatial maps 

could help determine epibenthic trends due to bathymetric characteristics and water 

current and circulation effect. The percent cover of macroalgae and coralline algae 

increased with increasing distance from cages and could be partly to do with the 

bathymetric characteristics of the area and decreasing organic enrichment.  

Spatial patterns of organic enrichment were more predictable and were 

comparable to those described by the Pearson & Rosenberg model. 

Opportunistic/indicator species coverage decreased as distance from the source of organic 

enrichment increased, and abundances of echinoderms and cnidarians increased at a 

transitional zone but decreased at greater distances, where they closely resembled 

abundances at non-impacted zones. Echinoderms may benefit from intermediate organic 

enrichment as a food source and/or the abundance of molluscs could be attracted to 

certain sites near cages (Crawford et al., 2002 Mente et al., 2010). However, sponges and 

the algal species seemed sensitive to organic enrichment up to distances of 160 m from 

cages. Determining the spatial extent of OM settlement could provide more detail on 

enrichment effects and help correlate biotic changes with deposition.  
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3.5. Conclusions 

Organic enrichment led to decreases in the abundance of sponges, macroalgae and 

coralline algae; however molluscs proliferated during the fallow period but were most 

likely due to biofouling rather than recolonization. These trends were consistent whether 

or not sites were grouped according to similar depth characteristics. On a temporal scale, 

the impact of organic enrichment from aquaculture production appeared immediate, 

effecting changes to epibenthic assemblages even within the first sampling period. 

Sponges, macroalgae and coralline algae were the most sensitive taxa to organic 

enrichment, and exhibited no sign of recovery during fallowing. 

The presence of indicator species at P and F stages provided validation that 

organic enrichment had occurred. OPC and Beggiatoa spp. were present soon after 

aquaculture production began although OPC showed seasonal variability. Beggiatoa spp. 

displayed no clear pattern of change in percent coverage through time. It is unclear if the 

percent cover of indicator species could be used to quantitatively compare sites or used in 

regulatory thresholds. Our data did show that the percent cover of Beggiatoa spp. and 

OPC did decrease with distance. This trend of decreasing % cover of the indicator species 

is expected as the intensity of organic enrichment would decrease over distance due to 

dilution and limitations of its particle distribution. Beggiatoa spp. was expected to 

increase throughout a production cycle and decrease throughout the fallow cycle. 

However, although the % cover varied at different time periods a clear increase or 

decrease in percent cover was not observed.  
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Echinoderms increased in abundance during the fallow period at F2 and could 

indicate recovery. Increased abundances of echinoderms and cnidaria at 100 m could also 

be indicative of a transition zone to “natural” conditions. In conclusion, organic 

enrichment impacts epibenthic assemblages by both increasing and decreasing specific 

taxon groups. Furthermore, changes are likely related to habitat specific characteristics 

are bathymetric properties.  
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Chapter 4. Spatial and temporal distribution of biological indicators of organic 

enrichment (Beggiatoa spp. and OPC) in relation to aquaculture cages and local 

bathymetry  

4.1. Introduction 

The sedimentation of organic matter (OM) is a complex process that depends on 

several factors: farming practices (e.g. feeding quantity and rate), fish conditions (e.g., 

age, size, biomass) and physical conditions (e.g. currents, winds, bathymetry) (Corner et 

al., 2006). Aquaculture sites are subject to dynamic conditions, with changes in farm 

management, seasonal oceanographic fluctuations and temporal variations in biological 

communities occurring (Perez et al., 2002; Cromey et al., 2002; Sanz-Lazaro et al., 2011) 

and ultimately altering the rate and spatial extent of organic deposition. Additionally, the 

intensity of organic enrichment can change drastically over relatively short distances 

(Cromey et al., 2002). This combination of factors can lead to complex spatial and 

temporal patterns of organic enrichment.  

On the south coast of Newfoundland, two biological indicators, Beggiatoa spp. 

and Opportunistic Polychaete Complexes (OPC), were found to be associated with 

organic enrichment at finfish aquaculture sites (Bungay; 2012; Hamoutene et al., 2013). 

The presence and abundance of these organisms can be used to determine the spatial 

extent of organic enrichment originating from salmon aquaculture sites. For example, the 

impact of marine fish aquaculture on the seafloor has been modeled using Geographic 

Information Systems (GIS) to display the presence and abundance of indicator species 
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relative to the spatial extent of cages and the local bathymetry (Perez et al., 2002; Corner 

et al., 2006). 

The objective of this chapter is to investigate the spatial and temporal distribution 

of biological indicators of organic enrichment (Beggiatoa spp. and OPC) in relation to 

aquaculture cages and local bathymetry. First, bathymetric maps of two study sites (a 

production and a fallow site) were generated, and the percent cover of both indicators at 

sampling stations were displayed on those maps, along with the presence (and, if 

appropriate, the percent cover) of other, non-indicator species. Sampling was performed 

at different times to capture temporal changes in the percent cover of those indicators of 

organic enrichment. Changes in the spatial distribution and abundance of indicator 

species at the production site can help to assess how changes occur in the benthic habitat 

along with a continuous source of organic loading. At the fallow site, changes in indicator 

and non-indicator species may reveal recovery after organic loading has stopped.  

 

4.2. Methods 

4.2.1 Sampling sites 

Two sites were chosen for this analysis due to their comparable depth 

characteristics, P1 and F1 (Chapter 2). These sites were chosen specifically due to the 

number and distance of sampling of stations that extended from cage edge. Three 

transects were utilized to gain a better understanding of how differential waste dispersion 
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due to possible influences from current direction might affect organic distribution and 

corresponding changes in the epibenthic communities. 

 

4.2.2 Mapping 

Bathymetric maps were created using ArcGiS software. The coastline of 

Newfoundland was generated based on a shapefile produced from a National 

Topographic Service 1:50000 scale map. Depths and corresponding coordinates were 

obtained from multibeam sonar surveys and from the depth recorders that were used 

during video sampling (see Chapter 2). To create the bathymetric shapefile, data was 

interpolated across a surface using inverse distance weighted interpolation. 

Biological data (see below) was plotted on maps based on coordinates obtained 

during video sampling (for procedure and equipment, see Chapter 2). Cage locations were 

extracted from environmental monitoring reports. However, over the sampling period, 

cages moved and/or were rearranged periodically. In order to standardize the results, 

stations located at cage edge were always referred to as “0 m”, with subsequent images 

obtained each 20 m from the first station, along transects (as described in Chapter 2).  

 

4.2.3 Data processing 

Based on video monitoring and macrobenthic community identification as 

described in chapter 2, during the 2011 field season, one sample was collected at each 
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station; four images were collected at each station during the 2012 field season, with 

resulting data representing averages for each station.  

Data are presented as pie charts showing OPC and Beggiatoa spp. percentage 

cover determined from benthic image analysis (the area determination technique is 

described in Chapter 2). For each time and station, Beggiatoa spp. and OPC are 

represented by their respective percentage cover on a pie chart, and the remaining 

percentage is shown in green if other organisms were observed (i.e., non-indicator 

species, or NIS), or in grey it no other organisms were seen (i.e., no visible species, or 

NVS). For example, if Beggiatoa spp. and/or OPC were present at a station along with no 

visible species, then ”no visible species” was calculated as: 100 – (% cover Beggiatoa 

spp. + % cover OPC). If a station was devoid of any visible species it was classified as 

100% “no visible species” (i.e., a grey circle). If a station only contained visible 

organisms other than the indicators, it was classified as 100% “non indicator species” 

(i.e., a green circle).  

 

4.3. Results 

4.3.1 Bathymetry of sites 

4.3.1.1 P1 

P1 is located over a steep depth gradient, with the majority of stations (81%) located 

over depths of 50 – 100 m. The increase in depth from 50 to 100 m occurs rapidly (i.e., 

over < 50 m in horizontal distance) and relatively evenly as distance from the shoreline 
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increases, in the area considered herein. The rectangular area occupied by cages has its 

greatest length parallel to the shoreline, and the cage location changed over the sampling 

period, being situated over deeper water at later sampling periods (July 2011 – June 2012) 

(Figures 23 – 29). 

4.3.1.2 F1 

The majority (89%) of stations at F1 are located over depths of 50 – 100 m. However, 

the seafloor at F1 appears to be relatively less steep than at P1 although it also displays 

increased depth as distance from shoreline increases. The approximately rectangular area 

that was previously occupied by cages has its longest side parallel to the shoreline 

(Figures 30 – 34). 

 

4.3.2 Spatial benthic cover 

4.3.2.1 P1 

Throughout P1 and at all sampling periods, certain trends in the presence and percent 

coverage of benthic organisms were observed, along with apparent patchiness. In general, 

IOE (indicators of organic enrichment: Beggiatoa spp. and OPC) were observed in close 

proximity to cages, and NIS appeared to be more common at locations furthest away from 

the spatial extent of cages (Figures 23 – 29).  

On the first sampling date (July 2011), all benthic cover groups (i.e., Beggiatoa sp, 

OPC and NIS) were observed on the three transects (Figure 23). Along the short transect 

perpendicular to the coastline, mainly NIS were observed, along with < 25% coverage of 
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Beggiatoa spp. On the transect to the east of cages, no IOE were seen, with stations either 

being bare or containing NIS. Along the transect to the west of cages, IOE were 

dominant, particularly between 50 and 100 m depth, and within 60 m of the cage edge. 

Some NIS and a bare station were also documented along this transect. 

In August 2011, Beggiatoa spp. appeared along the eastern transect at up to 100 m 

distance from cages, and declining in % cover with distance from cage edge (Figure 24). 

Along the short perpendicular transect, the station closest to the cage was dominated by 

Beggiatoa spp., and the next station was bare. Beggiatoa spp. were seen at all stations 

(including a shallow station) on the transect to the west of cages, but no OPC were visible 

at this time. 

In September 2011, Beggiatoa spp. on the eastern transect decreased in percent cover 

with distance from cage edge (and were present at up to 100 m from cages); NIS were 

observed at > 40 m from cages (Figure 25). Only NIS were observed on the transect 

perpendicular to the shoreline. All stations on the western transect contained IOE, 

generally covering less than half of the station area. The following month, Beggiatoa spp. 

coverage on the eastern transect had slightly decreased, and the western transect showed 

only IOE at up to 100 m from cages, with Beggiatoa spp. recorded at up to 140 m from 

cages (Figure ). OPC were predominant at 0, 20, 40 and 80 m from cages along the 

western transect. 

In the second year, very few IOE were seen on the eastern transect, and the percent 

cover of IOE where observed was generally lower than in 2011. Along the transect 



113 
 

perpendicular to the coastline, only IOE (mainly Beggiatoa spp.) were observed in June 

2012 (Figure 27), but NIS were predominant in August (Figure 28) - no observations 

were made along this transect in Oct/Nov 2012 (Figure 29). Stations on the western 

transect contained a decreasing percent cover of IOE (Beggiatoa spp. and OPC) with 

increasing distance from cages, to a maximum distance of 120 m from cages in June 

2012, Beggiatoa spp. (up to 10.3 % cover) at up to 80 m from cages in August 2012, and 

a low coverage of Beggiatoa spp. at up to 120 m from cages in Oct/Nov 2012; NIS were 

present along this transect at all sampling dates in 2012 (but were rare in August 2012). 

Three bare stations were noted along the western transect in August 2012, and one in 

Oct/Nov 2012 (Figures 27 – 29). 

Temporally, Beggiatoa spp. was observed at the greatest proportion of stations (85%) 

in August 2011 and at the lowest proportion of stations (42%) in August 2012 (Figure 

35). OPC was most prevalent in June 2012, occurring in 36% of stations, and least 

prevalent in August 2011 and Oct/Nov 2012 in which it was absent. NIS were most 

prevalent in Oct/Nov 2012, occurring at 85% of the stations, while in October 2011 they 

were only present in 57% of the stations. Stations classified as NVS (or a combination of 

an IOE and no other visible organisms) were observed at all survey periods. Bare stations 

were located at various areas relative to the cages, on the three transects, and showed no 

clear temporal pattern.  

4.3.2.2 F1 

 Patchiness in benthic organism presence and coverage was observed at site F1, 

throughout all sampling periods, with no obvious spatial gradients or difference between 
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transects. Beggiatoa spp., OPC, and areas with no visible species were common within 

and in close proximity to the area previously occupied by cages. Furthermore, NIS 

appeared to be more common at stations that were furthest from the area covered by 

cages.  

Over the first year, most stations were either bare or contained Beggiatoa spp. 

(Figures 30 – 32). In addition, OPC decreased in presence and percent cover from June to 

October, and NIS were only seen in August and September (Figures 31, 32). In 2012, 

there were fewer stations with NIS, but Beggiatoa spp. remained abundant. OPC were 

observed at two stations underneath the cage area in July, but were not seen in August 

(Figures 33, 34). 

Beggiatoa spp. occurred at the highest proportion of stations (74%) in August 2012, 

and in the lowest proportion of stations (43%) in July 2011 at start of production. OPC 

were seen at 60% of stations at the first sampling period (July 2011), but were only seen 

at 10% of stations in the last sampling period (August 2012). NIS were not seen in July 

2011 but increased in prevalence up to Oct/Nov 2012, where they were observed in 58% 

of the stations, throughout the sampling area (Figure 34). In July 2011, 90% of the 

stations were classified as having no visible species compared to 20% of stations in June 

and August 2012 (Figure 36). 
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Site – P1 
Time – July 11 

Figure 23. Bathymetric map of P1 with benthic cover composition at stations sampled 

on the South Coast of Newfoundland in July 2011. 



116 
 

 

  

Site – P1 
Time – Aug 11 

Figure 24. Bathymetric map of P1 with benthic cover composition at stations 

sampled on the South Coast of Newfoundland in August 2011. 
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Figure 25. Bathymetric map of P1 with benthic cover composition at stations sampled on 

the South Coast of Newfoundland in September 2011. 

 

  

Site – P1 
Time – Sept 11 
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Figure 25: Bathymetric Map of P1 with Benthic Cover composition at stations sampled 

on the South Coast of Newfoundland on September 2011. 

 

Site – P1 
Time – Oct 11 

Figure 26. Bathymetric map of P1 with benthic cover composition at stations sampled on 

the South Coast of Newfoundland in October 2011. 

 

Figure 26: Bathymetric map of P1 with benthic cover composition at stations sampled on 

the South Coast of Newfoundland in October 2011. 
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Site – P1 
Time – June 12 

Figure 27. Bathymetric map of P1 with benthic cover composition at stations sampled 

on the South Coast of Newfoundland in June 2012. 
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Site – P1 
Time – Aug 12 

Figure 28. Bathymetric map of P1 with benthic cover composition at stations sampled 

on the South Coast of Newfoundland in August 2012. 
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Site – P1 
Time – Oct/Nov 12 

Figure 29. Bathymetric map of P1 with benthic cover composition at stations 

sampled on the South Coast of Newfoundland in Oct/Nov 2012. 
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Site – F1 
Time – July 11 

Figure 30. Bathymetric map of F1 with benthic cover composition at stations sampled 

on the South Coast of Newfoundland in July 2011. 
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Site – F1 
Time – Aug 11 

Figure 31. Bathymetric map of F1 with benthic cover composition at stations 

sampled on the South Coast of Newfoundland in August 2011. 
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Site – F1 
Time – Sept  11 

Figure 32. Bathymetric map of F1 with benthic cover composition at stations sampled 

on the South Coast of Newfoundland in September 2011. 
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Site – P1 
Time – June 12 

Figure 33: Bathymetric Map of F1 with Benthic Cover composition at stations sampled on 

the South Coast of Newfoundland on June 2012. 
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Site – F1 
Time – Aug 12 

Figure 34. Bathymetric map of F1 with benthic cover composition at stations 

sampled on the South Coast of Newfoundland in August 2012. 
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Figure 35. Proportion of stations at P1 where Beggiatoa spp., OPC, other non-indicator 

species or no visible species were observed at each sampling date.  
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Figure 36. Proportion of stations at F1 where Beggiatoa spp., OPC, other non-indicator 

species or no visible species were observed at each sampling date 
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4.4. Discussion 

The aim of this chapter was to investigate spatial and temporal effects of organic 

enrichment due to aquaculture by comparing the distribution of Beggiatoa spp., OPC and 

other benthic organisms within a production and a fallow site.  

 

4.4.1 Spatial patterns  

 Spatial patterns were similar at both sites (P1 and F1) studied and across sampling 

periods. Beggiatoa spp., OPC and, to some extent, patches without visible benthic 

organisms, were more often found in proximity to cage edge. Other benthic organisms 

were more prevalent as distance from cage edge increased. These findings complement 

the results found in Chapter 3: Figure 21 displays a lower abundance and higher percent 

cover of indicator species at stations close to cage edge. However, as the distance 

increases from cage edge an increase in benthic abundance and decrease in percent cover 

of indicator species is apparent. Similarly, other studies have shown that Beggiatoa spp. 

and opportunistic species are more abundant close to aquaculture sites (Hall-Spencer et 

al., 2006; Hargrave et al., 2008; Paxton & Davey, 2010), with other benthic species 

appearing as distance from the source of organic enrichment increases (Nilsson & 

Rosenberg 2000; Keeley et al., 2013). 

There were noticeable differences in benthic cover among the transects. At P1, the 

western transect appeared to be affected more by organic enrichment, which could be due 

to currents influencing deposition (Sanz-Lazaro et al., 2011; Huang et al., 2012).   
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4.4.2 Temporal patterns 

4.4.2.1 Site P1 

The temporal patterns of presence and percent cover Beggiatoa spp. at P1 were 

complex, with no obvious trend through time. The highest proportion of stations with 

Beggiatoa spp. occurred in August 2011; the increase in the spatial cover of Beggiatoa 

spp. since July 2011 is likely due to the continuous loading of OM from aquaculture 

cages. Continuous loading of OM has been shown to be associated with an increase in the 

presence of Beggiatoa spp. in other studies (Keeley et al., 2013). However, the decrease 

in the number of stations containing Beggiatoa spp. from August 2011 – October 2011 

was unexpected. A possible reason for the decrease of stations containing Beggiatoa spp. 

could due to increased concentrations of sulphide in the sediment which has been 

suggested as a limiting factor of the development of Beggiatoa spp. (Hamoutene, 2014). 

Furthermore, although the number of stations containing Beggiatoa spp. decreased from 

August 11 – October 11, the proportion of stations containing OPC increased. Beggiatoa 

spp. could have been present but the development of OPC could have covered bacterial 

mats not allowing us to detect them. In part, the decrease in the proportion of stations 

with Beggiatoa spp. could also be due to a combination of sampling accuracy and the 

bathymetry of P1. The bathymetric maps display a steep depth gradient perpendicular to 

the shoreline with rapid depth changes over relatively short distances. Differences in 

bathymetry can influence the deposition of OM (Perez et al. 2002) and in turn could 

affect the distribution of Beggiatoa spp., leading to high spatial patchiness. Furthermore, 

the GPS sampling accuracy is within 10 m and the video surveys are unlikely to have 
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covered the exact same locations at different sampling dates, particularly given that cages 

moved between sampling dates. Therefore, it is possible that the local distribution and 

percent cover of Beggiatoa spp. may have remained constant from July 2011 – October 

11, but this was not detected due to the sampling limitations explained above.  

In June 2012, a decrease in the proportion of stations with Beggiatoa spp. was 

observed compared to the 2011 sampling dates and could denote a partial recovery in 

winter of 2011 when feeding rates are decreased (Karakassis et al., 1998). A decrease of 

Beggiatoa spp. from June 2012 to August 2012 was unexpected, however the number 

stations with no visible species did increase and could indicate the development of 

hypoxic or anoxic conditions over that time period, with conditions unsuitable for 

Beggiatoa spp. (Macleod et al., 2004; Hamoutene, 2014). The increase in proportion in 

stations with Beggiatoa spp. from June 2012 – Oct/Nov 2012 should be interpreted with 

caution as the % cover of Beggiatoa spp. was the lowest at all sampling periods during 

this period (Figure 19). Harvesting was initiated in Oct/Nov 2012, and as feeding 

decreased and/or ceased prior to harvesting, the intensity of organic loading was reduced 

between June 2012 – Oct/Nov 2012. The reduced loading could have allowed for partial 

recovery from anoxic to hypoxic conditions as stations with Beggiatoa spp. increased in 

proportion and stations with NVS were observed less frequently. 

OPC presence and coverage varied temporally: these organisms were most abundant 

in June 2012 (the coldest sampling period) and were absent in Oct/Nov 2012 and August 

2011 (the warmest sampling dates). The temporal pattern in OPC presence may indicate 

that these organisms are restricted to temperatures below 4°C (as suggested in Figure 12, 
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Chapter 2). Furthermore, Beggiatoa spp. and OPC often co-occur, and there appears to be 

a relationship between the two as OPC only appears at stations in P1 after the appearance 

of Beggiatoa sp (Figures 23 – 29). Little is known about the life history or feeding mode 

of polychaetes forming OPC, but they may feed on Beggiatoa spp.: species forming OPC 

in Newfoundland belong to the family Dorvilleidae (Murray et al., 2012), in which 

species from oxygen-minimum zones consume mat-forming microbes (Levin et al., 

2013). At stations where only OPC were observed, Beggiatoa spp. may have been located 

beneath OPC where they were not visible on benthic images. Further, both Beggiatoa spp. 

and OPC may be present beneath the surface of sediments or flocculent matter, indicating 

that reported OPC and Beggiatoa spp. data may be underestimated (and that some sites 

with areas of NVS may in reality contain IOE).  

The highest proportion of stations with NVS was observed in July 2011, with 

decreasing reports of this category thereafter. In these areas, the benthos may have been 

initially smothered by OM (Pearson, 1975) and later colonized by Beggiatoa spp. as 

organic loading increased (Brooks et al., 2003). Data must also be interpreted with 

caution as the sampling design changed from 2011 – 2012: only one sample was obtained 

during the 2011 field season, while four images were taken in 2012. As the probability of 

encountering an organism was greater in 2012 given the larger area examined overall per 

station, this likely led to fewer stations being reported as having NVS in the second year.  

The lowest proportion of stations with NIS was reported in October 2011 and the 

highest proportion in October/November 2012. The highest proportion of stations with 

NIS in Oct/Nov 2012 was unexpected and could be due to the sampling design and/or 
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dispersion patterns of organics due to the highly variable current speeds/directions in this 

area (Sebastien Donnet, pers. comm). The occurrence of few organisms at the beginning 

of the first year may have been due to increased organic loading which can lead to 

habitats void of macrobenthic species (Nilsson & Rosenberg, 2000). The highest mean 

abundance per station was observed in June 2012 and the lowest in August 2012, 

however no statistical significant differences in abundances were observed (Figure 19). 

The change in sampling design between the two seasons likely led to a higher proportion 

of stations with reported NIS in 2012; this should be evaluated carefully as August 2012 

had the lowest abundance of NIS out of all sampling periods. 

4.4.2.2 Site F1 

The proportion of stations with Beggiatoa spp. and NIS increased through time, while 

the proportion of stations with OPC and NVS showed the opposite trend. Macleod et al. 

(2006) observed that Beggiatoa spp. was not apparent immediately after the removal of 

cages. Beggiatoa spp. increased in area coverage and thickness during the first month of 

the fallow period and was visible up to 8 months thereafter (Macleod et al., 2006). 

Therefore it is probable that conditions at F1 were unfavourable for Beggiatoa spp. 

initially, but that microbial mats could form as sediments slowly became oxidized or 

sulphide fluxes became adequate for growth (Hamoutene, 2014). Alternatively, Beggiatoa 

spp. could be present in deeper sediments but not visible of surface sediments 

(Hamoutene, 2014). Such changes in sediment chemistry could explain the inverse 

relationship in the proportion of stations with Beggiatoa spp. and with NVS, as Beggiatoa 

mats progressively spread into areas that were previously bare. The proportion of stations 
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with OPC decreased rapidly over time as has been noted during fallow periods in other 

studies (Mazzola et al., 2000; Macleod et al., 2007), possibly due to temperature 

constraints in our study and relationships between OPC and Beggiatoa spp. at F1.  

 

4.5. Conclusions 

Organic loading on the benthos is a complex process that can be dependent on 

farming practices, oceanographic conditions, bathymetric characteristics, substrate type 

and the local biological capacity to assimilate organics. All parameters that affect 

deposition differ between sites and can cause variable spatial and temporal distributions 

of organic enrichment. Our study showed not only that Beggiatoa spp. and OPC are 

associated with organic enrichment as they predominately occur in close proximity to 

cages, but also that areas with no visible species could be another indicator of reduced 

conditions and should be evaluated when conducting video surveys. Furthermore, our 

study indicated that the temporal patterns of indicator species are complex. Beggiatoa 

spp. appearance seemed to display a lag time with respect to the beginning of organic 

enrichment. From one month into production, Beggiatoa spp. increased in presence and 

% cover throughout the duration of farming, and continued to increase in spatial 

coverage, albeit slowly, at the fallow site. OPC showed temporal variation that could be 

attributed to temperature preferences. Interestingly, OPC occurred in areas where 

Beggiatoa spp. was previously observed; however, the biological interactions between 

those IOE are unknown and further studies should investigate their relationship. This 

study highlights the importance of continued environmental monitoring to determine the 
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spatial and temporal impacts of organic enrichment originating from aquaculture sites. 

Maps provide a useful visual supplement for the regulators and industry to understand 

impact on a spatial scale. Furthermore it should also be noted that the fallow site 

aquaculture impact footprint remained unchanged in our study period of 2 years. Further 

investigation is needed to understand how long temporally organic enrichment from 

aquaculture affects an area. 
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Chapter 5. General conclusions 

5.1 Benthic changes and relationship to aquaculture production  

As the NL aquaculture industry continues to grow, it is essential that it be 

managed in a manner that is environmentally sustainable (NLDFA 2014). Regulatory 

thresholds on the impacts of OM enrichment originating from aquaculture operations to 

the benthic environment must be developed and enforced. Therefore, knowledge must be 

gained in the south coast of NL concerning changes to the benthic habitat resulting from 

the increase of OM in sediments. Unlike other jurisdictions across Canada, where soft 

sediment sampling is used (BCMOE, 2002; NLDFA, 2010; NSDFA, 2011; DELG, 2012) 

to determine benthic changes, the south coast of NL consists of rocky and patchy 

substrates (Anderson et al., 2005; Bungay 2012; Hamoutene et al. 2013, Hamoutene 

2014) where soft sediment sampling is ineffective and video surveys are the preferred 

method to investigate and document changes in epibenthic habitat. Through video surveys 

and complementary environmental monitoring equipment, this study characterized abiotic 

factors, identified the epibiota and documented changes on temporal and spatial scales.  

As in other studies (Anderson et al., 2005; Hamoutene et al., 2013, Hamoutene, 

2014; Bungay, 2012) we showed that the bottom composition consisted of rocky and 

patchy substrates. The substrate composition of these sites also changed on a temporal 

scale, possibly through the influence of sedimentation from OM (Karakassis, 1998, 

Klaoudatos et al., 2006) and inaccuracies in our sampling design. Although substrate type 

varied between sites, the study highlighted two sets of sites that had comparable depth 
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and temperature characteristics. These sets were initially separated to investigate if 

epibiota displayed abiotic preferences (Chapter 2). However, for the most part, organisms 

were unrestricted by abiotic factors although few had noticeable temperature and depth 

preferences (OPC, family Comasteridae, algal species). Biota did however show a 

relationship with the various aquaculture production stages with Beggiatoa spp., OPC and 

genus Strongylocentrotus present at only production and fallow sites but absent from non-

production sites. The video survey helped classify and identify the species that inhabit the 

south coast of NL but also helped identify species that are possibly attracted to OM 

enrichment. These findings are important for regulatory purposes and habitat protection 

because the video survey can readily identify sensitive habitats, rare/endangered species 

and or species of economic importance.  

 Both the production stage and the fallow stage differed significantly from the non-

production stage in total abundance and abundances in all taxon groups except the 

molluscs (Chapter 3). Furthermore both bio-indicators were only present at sites that had 

or were currently experiencing aquaculture production. Certain groups (sponges, algal 

species) were more sensitive to OM enrichment and declined significantly in abundance 

or percent cover when compared to non-production sites. However other taxon groups 

such as the molluscs increased in abundance. Molluscs likely increased in abundance due 

to fall off from biofouled gear and net washing activities.  

Temporally, OM enrichment appeared to impact epibenthic change immediately 

as changes were observed after one month of aquaculture production. A possible trend of 

epibenthic recovery was noticed in the fallow sites, with a slight increase in abundances 



142 
 

at the later sampling periods (June 2012 – August 2012 at fallow sites). However 

epibenthic composition at fallow sites were not comparable to the non-production sites 

and it is likely that return to original conditions did not occur. In addition, at least OPC 

and/or Beggiatoa spp. was present at all sampling periods throughout the fallow stage 

indicating reduced conditions. Future studies should analyze fallow sites for extended 

periods of time (> 2 years) to identify suitable time periods that would allow for benthic 

recovery. 

Spatially, OM enrichment and its effects diminished with increasing distance from 

aquaculture cages as expected. Bio-indicator species and images with zero visible species 

were more prevalent close to cage edge but decreased with increasing distance. 

Interestingly, increased abundances were observed at intermediate distances and could be 

associated with certain species (i.e. sea urchins) using the OM as a food source. Further 

investigation of the intermediate effects of organic enrichment should be evaluated to 

gain a better understanding of the potential beneficial effect of aquaculture impact.   

Bio-indicators and images with zero visible species were in close proximity to 

aquaculture operations regardless of the bathymetry (Chapter 4). It appeared that the bio-

indicators and images with no visible species followed a transitional pattern. Stations 

close to cage edge and likely heavily impacted by OM were initially devoid of species, 

followed by colonization of Beggiatoa spp., and then OPC. These stations might be 

initially covered by OM and conditions could be unsuitable for any visible epibenthic 

species. From the accumulation of OM, the resulting habitat likely attracts Beggiatoa spp. 

who then colonize these areas. OPC then seems to follows after Beggiatoa spp. Further 
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studies should focus on the direct relationship between Beggiatoa spp. and OPC to gain 

understanding on how these bio-indicators interact. Although these transitional patterns of 

bio-indicators and stations with no visible species were observed, further research should 

be done as it is likely that the patchy nature of the habitat, farming practices and our 

sampling protocol contributed to the complexity of these transitions. Permanently fixed 

time lapse camera focused on the sea bottom could be used to see if clear trends exist 

between these groups. Images with no visible species should be identified and evaluated 

in environmental monitoring programs.  

In conclusion, the OM enrichment from aquaculture causes epibenthic changes in 

the south coast of NL. Transitions are complex and variable, likely dependent on farming 

practices, environmental factors, and assimilative capacity of the environment. The 

complexity and variability reinforce the idea that these sites should be continuously 

monitored pre and post aquaculture production. OM enrichment appears to impact these 

habitats immediately no return to baseline conditions in the sites evaluated in this study. 

Our data suggests that neither bio-indicator species showed clear changes in presence or 

percent cover over temporal scales, either at sites with continuous loading of OM or in 

recovery from OM. Images with zero visible species should be considered concurrently 

with bio-indicators to determine the extent of OM enrichment impact. 
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