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Chapter 1

Introduction

1.1 Motivation

Software systems are now an integral part of industry and play an essential role in

every corner of companies’ operations. As businesses grow, reducing financial cost

and time of developing software as well as increasing compatibility to changes become

more crucial from a software engineering prospective. Consequently, Service-Oriented

Architecture (SOA) have been proposed to satisfy the current needs of businesses.

SOA is a paradigm for organizing and utilizing distributed capabilities that may

be under the control of different ownership domains [29, 68, 42]. This architecture

promises to leverage software systems to become more efficient and responsive to

changes through service reuse and process agility [39]. In SOA, services are defined

as software resources with externalized service descriptions. These descriptions are

available for searching and binding a service consumer. Service consumers can either

directly use the Uniform Resource Identifier (URI) for a service description, or can
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use a service registry to find a service description. In addition to the role of service

consumer, there are two other primary roles: the service provider, who implements

services and publishes their corresponding descriptions, and the service registry that

provides and maintains the repository of services.

Web services, as the practical examples of SOA, are modular, self-describing,

self-contained applications that are accessible over the Internet by using standard

Web protocols [72]. Web services can be classified into two groups based on their

functionality: Data Providing (DP) Web services and state-changing Web services.

DP Web services only provide information, while the state-changing services not only

provide information, but may also change the state of the world. For example, a

service that provides a list of departure flights from a given airport is classified as

a DP service, and a flight booking service that can change the number of available

seats (changing the state of the world) is a state-changing service.

SOA includes three main operations to support service consumers, providers, and

registries: service discovery, service matchmaking, and service invocation. Service

consumers search through the providers’ catalogs for their desired Web service (service

discovery). If they find a Web service that fulfills their needs (service matchmaking),

they can bind it to their system (service invocation). However, no single Web service

may be available to satisfy service consumers’ needs. In such cases, there may be

a chance to generate the desired Web service by composing available Web services.

However, automatic composition of Web services in order to fulfill consumers’ needs

is a challenging and complex task, which is known to be an NP-hard problem [52, 70].

The results of the Web Service Composition process might be thousands of Web

services, among which finding the desired Web services may be a difficult and time-
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consuming task. To support service consumers, the composed Web services can be

ranked based on the consumers’ preferences, which are secondary objectives that

should be satisfied as much as possible. Although different approaches have been

proposed to address the Web Service Composition problem [28, 77], few of them

consider the consumers’ preferences in the composition system.

1.2 Approach

The goal of this thesis is to compose DP Web services and rank the composition results

based on the preferences of service consumers, all in the presence of domain ontology.

Domain ontology is an encoded source of knowledge about a specific domain. It

provides a unified context to describe queries, services’ descriptions, and consumers’

preferences. To reach our goal, various methods for Web Service Composition are

considered including AI-planning (finding a sequence of stored actions such that the

preconditions hold and the goal is reached) and query rewriting (rewriting the received

query in terms of some available data sources). Since our focus is on DP Web services,

the query rewriting method is sufficient to effectively compose Web services.

Query rewriting originally belongs to the data integration field in which the goal is

to combine physically separated sources of data to answer queries. In data integration,

approaches are classified into Local-As-View (LAV) and Global-As-View (GAV). In

LAV, each source of data is called a view. Views have their descriptions to specify

their requirements as well as the information they provide. These descriptions and

queries are described by the same language. Given a set of views, a LAV-based

system rewrites the query in terms of views by composing some of the existing views
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to answer the query. Various algorithms have been proposed to rewrite queries in

LAV, including the MiniCon algorithm.

By having more knowledge about the domain on which the system relies, we can

possibly have more rewritten queries. For instance, assume that the domain is about

family relationships. Let one of the sources (views) provide a list of mothers who

work in Memorial University, and let the given query ask about a list of parents who

have a job. If the system knows that all mothers are also parents, then it can use this

view to answer the query. To enable this capability, this type of knowledge should be

first encoded and then utilized during the rewriting process. This problem is known

as query rewriting in the presence of dependencies.

MiniCon is not capable of producing this class of rewritings. To have such a

powerful system, the MiniCon algorithm needs to be extended, but we first need to

encode this class of knowledge. Logical languages can be effectively used to fulfill this

need. Using an expressive logical language allows more knowledge to be encoded;

however, expressivity brings computational complexity. For example, even though

tuple-generating-dependencies (TGD) is known as a useful tool to specify an ontology

[15], their use in the query rewriting process results in undecibality [10].

To address this complexity issue in our approach, human knowledge is encoded

using a sub-class of TGD, called full dependencies. We then extend the MiniCon

algorithm to integrate views in the presence of full dependencies. We also adapt this

extended algorithm to generate composed Web services. Finally, we design a formal

framework to capture the service consumers’ requests as well as their preferences to

rank the composition results.
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1.3 Organization of the Thesis

The rest of this document is organized as follows: In Chapter 2, the definition and

characteristics of SOA as well as the role of people/software in this architecture are

discussed. In addition, this Chapter reviews the definition of Web services, the impor-

tance of semantics in Web service composition, and the current methods for composing

Web services. Chapter 3 describes a running example, which is used for evaluation of

related works and our approach. Chapter 4 commences with describing data integra-

tion and its techniques and continues by classifying the algorithms for query rewriting.

Finally, this Chapter concludes with comparison of these algorithms. Chapter 5 rep-

resents the related works and their evaluations, which are categorized in two groups of

approaches related to preference-based Web service composition and query rewriting

in the presence of dependencies. In Chapter 6, additional concepts are introduced

as the basis for handling dependencies; these concepts are later used to extend the

MiniCon algorithm. The proof of the correctness of this algorithm is provided as the

conclusion of this Chapter. In Chapter 7, the adoption of the proposed algorithm for

Web service composition problem is described. Moreover, our formal framework to

handle user preferences as well as its evaluation are explained. Finally, our conclusion

and our perspective for future works are described in Chapter 8.
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Chapter 2

Service-Oriented Architecture and

Web Services

2.1 Software Architecture

A software architecture involves the descriptions of the structures from which sys-

tems are built (software components), the relationships between the components, the

principles and guidelines governing their design, and evolution over time. It also pro-

vides a description about how the information passes among the components [72].

In essence, an architecture is a plan which forms a backbone for building successful

systems that meet well-defined requirements and possess the characteristics needed

to meet those requirements.A software architecture [49] encompasses the significant

decisions about:

• the organization of a software system,

• the selection of the structural elements and their interfaces by which the system is
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composed, together with their behavior as specified in the collaboration among

those elements,

• the composition of these elements into progressively larger sub-systems, and

• the architectural style that guides this organization, these elements and their in-

terfaces, their collaborations, and their composition.

Software architecture deals with the structure and the behavior of software as well as

functionality, performance, re-usability, and technological constraints and tradeoffs.

The fundamental purpose of software architecture is to efficiently manage the com-

plexity of software systems in order to be appropriately modifiable in response to the

changes in the business and technical environments. To reach this purpose, different

software architectures such as SOA are introduced.

2.2 Service-Oriented Architecture

In the literature, different definitions of SOA given by different associations and com-

panies can be found. For instance, OASIS [68] defines SOA as:

“A paradigm for organizing and utilizing distributed capabilities that may

be under the control of different ownership domains. It provides a uniform

means to offer, discover, interact with and use capabilities to produce de-

sired effects consistent with measurable preconditions and expectations.”

Another popular definition is given by IBM [29]:
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“Service-oriented architecture (SOA) is a business-centric IT architectural

approach that supports integrating your business as linked, repeatable busi-

ness tasks, or services.”

As these definitions indicate, the core components of SOA-based software resources

are packaged as “services”, which are well-defined, self-contained modules that pro-

vide specified business functionalities, and are independent of the state or context of

other services [71]. The detailed explanation of characteristics of services is provided

in Section 2.2.3.

2.2.1 Principles of SOA

In order to enable SOA to gain its promises, a set of principles should be obeyed.

According to the literature [29, 72, 17], a mutual set of principles can be specified.

These principles are as follows:

• Scalability: SOA should work in a variety of settings such as within an organiza-

tion, between business partners, and across the world.

• Loose coupling: SOA is an evolution from tightly coupled systems to loosely

coupled ones. Service requester and service provider should be independent of

each other.

• Interoperability: One service/application should be able to communicate with

others regardless of the machines they are running on.

•Discovery and invoking: Services can be dynamically discovered, invoked, and

(re-) combined. This is accomplished through directory of service descriptions.
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• Abstraction: This principle emphasizes the need to hide as much of the under-

lying details of a service as possible. Instead of focusing on systems and ap-

plications, developers can concentrate on building services for business users.

Doing so directly enables and preserves the previously described loosely coupled

relationship.

• Standards: Interaction protocols must be standardized to ensure the widest in-

teroperability among unrelated service providers. Contracts should also be

standardized. Furthermore, standards are the basis of interoperable contract

selection and execution.

• Self-Healing: The ability to recover from errors without human intervention dur-

ing execution.

2.2.2 Roles of Interaction in SOA

There are three primary groups that play significant roles in SOA [29, 72]: service

provider, service registry, and service consumer. A service provider is an organization

(from business point of view) or a platform (from architectural point of view) that

owns the service and implements the business logic that underlies the service, host,

and controls access to the service. Service providers are responsible for publishing

their services in a service registry hosted by a service discovery agency. This involves

describing the business information, technical information of the service, and register-

ing that information in the service registry in the format prescribed by the discovery

agency.

A service consumer is the enterprise (from business point of view) or the application
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Figure 2.1: SOA roles and operations [72]

(from architectural point of view) which looks for those services that provide certain

functions and satisfy the consumers’ needs. The service consumer searches for the

desired services among the service descriptions that are already provided by different

service providers and are registered in the service registry. After finding the desired

service description, the service consumer uses the information in the description to

bind the service. A service consumer can be either a browser driven by an end user,

or another service as part of an application.

To assist the mentioned groups in their roles, service registries can be defined. A ser-

vice registry is a searchable directory, where service descriptions can be published and

searched. A service discovery agency is responsible for providing the infrastructure

required to enable the three operations described above in SOA: publishing the ser-

vices by service providers, searching for services by service consumers, and invoking

(binding) the services by service consumers.
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2.2.3 Services as the Core Component of SOA

In SOA, the entire functionalities of an enterprise are decomposed into smaller, dis-

tinct units of functionalities. To retain independency between services, services en-

capsulate some of the functionalities within a distinct context. Hence, the size of a

service (granularity) can vary. A service can be:

• a self-contained business task, such as a funds withdrawal or funds deposit service,

• a full-fledged business process, such as an automated purchase of office supplies,

• an application, such as a life insurance application or demand forecasts and stock

replacement, or

• a service-enabled resource, such as an access to a particular back-end database

containing patient medical records.

Furthermore, a service can encompass the functionalities provided by other services.

In this case, one or more services are composed together. In order to compose services,

or in the case that a service requests another service, they need to have a relationship.

According to the principles of SOA represented in Section 2.2.1, these relationships

should be loosely coupled. Therefore, these relationships are achieved through the

use of service descriptions by messaging.

Each service in SOA should possess the following characteristics:

•Loose coupling: Services maintain a relationship that minimizes dependencies and

only requires that they retain an awareness of each other.

• Service contract: Services adhere to a communication agreement, as defined col-

lectively by service descriptions.
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• Autonomy: Services have control over the logic they encapsulate, and their logic

cannot be changed from outside world.

• Abstraction: Beyond what is described in the service contract, services hide logic

from the outside world.

• Reusability: Logic is divided into services with the intention of promoting reuse.

• Composability: Collections of services can be coordinated and assembled to form

composite services.

• Discoverability: Services are designed to be outwardly descriptive so that they

can be found and accessed via available discovery mechanisms.

Services form a special subset of services in SOA architecture, and they are the focus

of this study. As such, the next Section is devoted to discuss Web services as well as

the need for semantics when dealing with them.

2.3 Web Services

Web services are modular, self-describing, self-contained applications that are acces-

sible over a network like the Internet [21]. They are the most popular realization of

the SOA, and they should hold all of the characteristics of services represented in

Section 2.2.3.

A Web service description has two major interrelated components which are functional

and non-functional characteristics. The functional description details the operational

characteristics, i.e., details about the overall behavior, how the service is invoked,
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and the location where it is invoked. The non-functional description concentrates on

service quality attributes such as service cost, performance, security, availability, and

response time.

Web service descriptions are described in terms of a description language. As men-

tioned in Section 2.2.2, one of the operations in SOA is service searching that is

divided into two sub-operations: service discovery and service matchmaking. Service

descriptions are used to perform these two operations. Finding a description lan-

guage that satisfies the operations’ requirements is a challenging task. A language

that only consists of a set of terms is not an effective solution due to the inherent am-

biguities in natural languages [32]. For instance, using the term bookTrip to describe

the functionalities of a Web service brings some ambiguities such as the type of the

trip (e.g. it is a flight trip or a train trip) that is unspecified. Even after clarifying

the meaning, how to use this Web service, such as the required input or the type of

output, is still unclear. Hence, in order to provide an effective description language,

a semantic solution is required.

2.3.1 Semantics of Web Services

One of the useful tools to incorporate semantics to the Web service description is

ontology [31, 64]. Ontology is defined as a formal and explicit specification of a

shared conceptualization [34]. Ontologies aim to construct a shared and common

understanding of terms and relations between them for a given domain across people,

organizations, and application systems [86] (For more information about ontologies

in semantics, readers are referred to [59]).
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Figure 2.2: Semantical languages for describing Web services [17]

Ontologies are expected to play a central role to empower Web services with expres-

sive and computer interpretable semantics. The combination of Web services and

ontologies has resulted in the emergence of a new generation of Web services called

semantic Web services [13]. To provide semantics in Web services using ontologies,

different languages have been used such as OWL-S, FLOWs, and WSMO. Integrating

ontology into Web services may not only enhance the quality and robustness of Web

service management, but also pave the way for semantic interoperation. Semantic

Web services play an essential role in industry and academia to address challeng-

ing research issues such as automatic selection, monitoring, and composition of Web

services.

2.3.2 Web Service Composition

Web Services are composed when no single Web service can satisfy functionalities

requested by a service consumer since there might be a possibility to combine existing

services to fulfill the request. As it is beyond the human capability to deal with

the composition manually, various approaches from different perspective have been
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proposed to automate this process.

Despite these efforts, WSC is still a highly complex task, and is known to be an NP-

hard problem [52, 77]. The increasing number of available services over the Internet

as well as the need to handle potentially frequent updates of services at runtime has

led to such a complexity. In addition, the lack of a unified language to describe and

evaluate Web services, which can be developed by different organizations, has made

this problem even more challenging. Consequently, automatically composing the Web

services is vital. To facilitate an automatic composition process, semantics plays a

significant role. Two main methods which have been adopted in the semantic-based

approaches are AI-planning and query rewriting.

2.3.2.1 Web Service Composition via AI-planning

Planning is the problem of synthesizing a course of action that, when executed, will

take an agent from a given initial state to a desired goal state [43]. In general, a

planning problem consists of a description of an initial state, a goal state, and a set

of actions [73]. For a given problem instance, the planning task is to generate a

sequence of actions that when performed from the initial state, will terminate in the

goal state [62] .

Although it is shown that using AI-planning for Web service composition cannot

reduce the computational complexity of this problem [70], many efforts have been

made to adopt it for this problem because of the similarities that exist between them.

The [73] is a survey on classifying AI-planning methods for Web service composition.

The categories which are discussed in the Related Works (Chapter 5) are described

in the rest of this Section.
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Figure 2.3: An example of situation calculus [78]

Situation calculus Situation calculus is a logical language for specifying and reasoning

about dynamical systems [78]. The key idea in situation calculus is to represent a

snapshot of the world, called a ‘situation’ explicitly. A situation is expressed in terms

of functions and relations called fluents. Fluents are statements which are true or

false in any given situation, e.g. ‘I am at home’. Another component in situation

calculus are actions which map situations to situations. For instance, as Figure 2.3

shows, ‘go’ and mow lawn() are actions; ‘holds’ and ‘result’ are fluent in this example.

Golog is a logic programming language built on top of the situation calculus. Some

approaches try to adapt and extend the Golog language for automatic composition

of Web services [64, 63]. The general idea underlying this method is that software

agents can reason about Web services to perform automatic Web service discovery,

execution, composition and inter-operation. The user’s requests and constraints can

be presented by the first-order language and the situation calculus (a logical language

for reasoning about action and change). The authors conceive each Web service as
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an action - either a primitive action (i.e., changing the state) or a complex action

(i.e., compositions of primitive actions). The agent knowledge base provides a logical

encoding of the preconditions and effects of the actions (Web services) in the language

of the situation calculus. The agents use procedural programming language constructs

which are composed with concepts defined for the services and constraints defined

using deductive machinery. A composite service is a set of atomic services which are

connected by procedural programming language constructs (if-then-else, while, and

so forth). Since Golog is a programming language on the top of situation calculus,

it provides flexibility to encode complex goals. Moreover, non-deterministic domains

can be addressed by this method; however, using this method to find the shortest

plan is not guaranteed [73].

Graph-based planning Several planners discussed so far utilize graph structures for

the extraction of heuristics. A planning graph is a directed leveled graph which

consists of two types of nodes, namely action nodes and proposition nodes. These

nodes are arranged in alternating levels consisting of proposition nodes followed by

layers of action nodes and so forth (e.g., in Figure 2.4 nodes in levels zero, two,

and four are proposition nodes, while others are action nodes). A planning graph

consists of a sequence of levels that correspond to time steps. Figure 2.4 shows a

simple example of a planning graph. The initial level (zero level) of a planning graph

is a proposition level which consists of one node for each proposition of the initial

situation (in this example, A, B, and C are considered as proposition). The second

level (level 1) is an action level which contains all actions whose preconditions are

satisfied by the proposition nodes of the initial level. The third level (level 2) is again a

proposition level, containing the proposition nodes from level 1 and proposition nodes
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Figure 2.4: Planning using graphplan [69]

that represent the effects of the actions of the preceding action layer. All actions at

some level i are connected to the preconditions at level i-1 and its effects at level i+1,

introducing or negating proposition in i+1. The construction of the planning graph

stops when two consecutive propositional layers are identical. It has been shown that

this step always occurs, guaranteeing the termination of the process. The complexity

of creating a planning graph is low-order polynomial in the number of actions and

propositions [73]. One of the well-known planners using this method is Graphplan

[12]. The advantage of Graphplan is its better performance compared to Golog.

Moreover, the soundness, completeness, generation of shortest plans, and termination

on unsolvable problems are proven. However, Graphplan cannot handle conditional

or universally quantified effects. In addition, Graphplan will have performance issues

in domains in which too much irrelevant information is encoded in the specifications

of a planning task [73].

Planning as Satisfiability The idea behind the planning as satisfiability-approach is

to express the planning problem as a reasoning problem for which powerful problem

solving algorithms exist. Effects of an action are implied by the occurrence of the ac-
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tion when its preconditions hold. Planning is then formalized as the process of finding

a deductive proof of a statement that asserts that the initial conditions together with

a sequence of actions imply the goal condition [30]. Different types of logic such as

propositional logic and description logics can be used as the core of this method [73].

SATPLAN [45] is the implemented algorithm based on this method. Blackbox [44] is

the mixture of SATPLAN and Graphplan algorithms. The benefits of this method is

that more logical operations can be defined to describe effects/situations.

HTN Planning Hierarchical Task Network (HTN) planning [61] is a well-known plan-

ning paradigm that has been employed for Web service composition problem (e.g.,

[56, 82, 81, 80]). In this approach, a method is defined as a description of how tasks

can be decomposed. Given an initial state, an initial task network (the objective of

planning), and a domain description comprising of a set of operators and methods,

an HTN planner constructs a plan by repeatedly decomposing tasks into smaller and

smaller sub-tasks until a primitive decomposition of the initial task network is found.

In more formal definition, an HTN planning problem is a 3-tuple P = (s0, w0, D)

where s0 is the initial state, w0 is the initial task network, and D is the HTN plan-

ning domain which consists of a set of operators and methods. A task network is a

pair w = (U,C) where U is a set of task nodes and C is a set of constraints. The

constraints normally considered are of type precedence constraint, before-constraint,

after-constraint or between-constraint. π = o1o2...ok is a plan for HTN planning pro-

gram P = (s0, w0, D) if there is a primitive decomposition, w, of w0 of which π is

an instance. This method is powerful to deal with the large and complex domains;

however, it may not deal with dynamic environment due to its need to receive tasks

with explicit descriptions.
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2.3.2.2 Web Service Composition via Query Rewriting

Query rewriting method originally belongs to the data integration field, in which

the purpose is to answer a given query by integrating the available sources of data.

Thus, a description should be assigned to each source, using which the integration

system can create a plan for combining sources. To enable the system to compare the

descriptions and to produce an integration plan that satisfies the submitted query,

the sources’ descriptions and consumers’ queries are required to be described over the

same language, called global schema. Different logical languages can be used for the

global schema such as datalog rules and various description logics [37].

Data integration systems are defined as a triple 〈G,S,M〉, where G is the global

schema, S is the set of data sources, and M is a set of mappings between sources

and the global schema. Queries are defined by using the set G. The techniques for

rewriting a query differ significantly and depend on the database integration approach

that is used, e.g., Global-As-View (GAV) or Local-As-View (LAV) [53].

The difference between these two techniques results from the difference in their map-

ping function. In GAV, each member of G is mapped to conjunctions of elements

in S. This type of mapping makes the query rewriting process simple. To rewrite

queries in GAV, it is enough to replace the names in the query by their mappings in

S. However, these mappings make GAV unsuitable for the domains where sources’

definitions and their providing data can change. When a change in a source occurs, all

the mappings in which the source appears need to be revisited/updated. Therefore,

these re-investigations reduce the performance of the system.

LAV has a different strategy for mapping: each member of S is mapped to conjunction

21



of some elements of G. This strategy enables the system to be more compatible

in response to changes in data sources. When a change in a source occurs, only

the mapping of S needs to be updated which is actually updating the conjunction.

Nevertheless, the query rewriting in this technique is highly complex [36]. Since LAV

is more suitable for source-changing domains in contrast to GAV, it can be adapted

for Web service composition problem. Therefore, various LAV-based approaches have

been proposed for Web service composition [58, 8, 65, 7, 87, 11].

In this work, our focus is on data-providing Web services which can get some data as

input (possibly empty input) and essentially provide some data as output. Therefore,

they have no state changing after calling. Although data-providing services can be

described using AI-planning techniques, all the capabilities of these techniques such

as encoding the effects after calling Web services or state changing may not be uti-

lized. Therefore, some investigations in these techniques may not be used during the

composition process. On the other hand, data-providing services can be seen as data

sources such that their definitions may change iteratively by their providers. Hence,

our approach is focused on adopting LAV to Web service composition.
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Chapter 3

Running Example

Several approaches have been proposed to compose Web services in the presence of

user (i.e., service consumer) preferences. Different techniques such as AI-planning

and query rewiring are adapted to compose Web services. Besides, various logical

languages including propositional logic, temporal logic, and description logics are used

to capture user preferences. Due to these variations in proposed methods, comparing

different approaches is a difficult task. In order to conduct such a comparison, an

example is first described. Here, this example is explained in a high-level description,

which is independent of the underlying technologies and/or languages. Later, these

descriptions will be revisited and will be expressed with respect to the languages

discussed in related works as well as the language used in our approach. This example

will provide us with a unified context to discuss related works, shown in Section 5.1.1),

and to evaluate our approach, which is explained in Section 7.3.

Our running example is based on the travel domain which has been the domain of

focus in many Web service composition studies. In this example (i) the knowledge
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regarding the travel domain is structured, (ii) a set of Web services are assumed, and

(iii) some scenarios are described in which a Web Service composition system needs

to be run.

3.1 Structure of the Domain

A widely used technique to describe a domain is through using an ontological struc-

ture. The most well-known definition of ontology is given by [34], where an ontology

is described as ”a specification of a conceptualization”. In general, ontology consists

of three main components: a set of terms, the meaning of terms, and the semantical

relations between the terms. Since an ontology consists of terms with fixed meanings,

it is required to declare terms used in our example’s domain.

Our domain of focus consists of three sub-categories which are (i) Location, (ii) Trip

and (iii) Accommodation. The Locations category is classified based on the actual

geographical locations. Term World refers to any geographical location in the world.

Term City can refer to any city. A more detailed example is an African City that

refers to the cities located in Africa. Similarity, the term European City refers to

the European cities; and Swedish City refers to Swedish cities. A Trip is a pair of

locations A and B such that a movement from A to B is possible. This movement can

be done by plane or train; thus, Trip consists of two sub-categories Flight and Train.

For example, moving from St. John’s to Toronto by plane is an instance of Flight,

and consequently it is a trip. A trip is called round-trip if there is a movement from

A to B and another movement from B to A. The Accommodation category includes

Hotel, B&B, and Motel. Hotels are classified based on their prices to 3-star, 4-star,
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Figure 3.1: High level view of our travel domain

5-star hotels. We assume that if customers can afford a 5-star hotel, they can afford a

4-star hotel as well. We assume the same for 4-star and 3-star hotels. The high-level

view of this domain is illustrated in Figure 3.1.

3.2 Available Web Services

We assume that there exists a set of Web services that are registered in a service

registry. In this thesis, a Web service is considered as a component that provides

some data as its output when its required data is provided as its input. As mentioned

in Section 2.3, each Web service requires a description of its functionalities; thus, in

our example, the following structure is specified for a Web service description:
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- service input, which declares the required data format for the service to run,

- service output, which specifies the format of the data provided by the service,

and

- a detailed information about the output data and input data and their seman-

tical relations.

The language of these descriptions should be borrowed from the language of the

service registry; thus, for now, we leave them as English statements. In Section 7.1.1,

we will formally translate them to a proper logical language

The service registry is responsible for storing the descriptions, which assigns a unique

name to each registered Web service and then stores the information regarding the

location of the Web service and about how to invoke it. These responsibilities are out

of the scope of this thesis. We assume we have a unique name for the Web services

by which the physical Web services can be invoked. Our focus is to find a logical

language to properly describe the functionalities of Web services and later use these

logical descriptions to perform Web service composition. For ease of readability, terms

in the ontology are used to describe the inputs and outputs of the Web services. The

registered Web services in our assumed service registry are listed in Table 7.3.
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NO Name Input Output Description

1 ETrain European

city c

Train trips provides a list of train trips (c,x)

where x is located in Europe

2 Scandinavia-

Train

Scandinavian

city c

Train trips provides a list of train trips (c,x)

where x is located in Scandinavia

3 EFlight European

city c

Flight trips provides a list of flight trips (c,x)

where x is located in Europe

4 LocalSweden

Airlines

Swedish

city c

Flight trips provides a list of flight trips (c,x)

where x is located in Sweden

5 WestJet Any city c Flight trips provides a list of flight trips (c,x)

where c and x can be any location

6 EgyptAirlines African

city c

Flight trips provides a list of flight trips trips

(c,x) where x is located in Africa

7 AirCanada Any city c Flight trips provides a list of flight trips trips

(c,x) where c and x can be any lo-

cation

8 StarHotel Any city c 4-star hotels Provides a list of 4-star hotels in c

9 AAHotel Any city c 3-star hotels Provides a list of 3-star hotels in c

10 RoyalHotel Any city c 5-star hotels Provides a list of 5-star hotels in c

Table 3.1: Registered Web services in the service registry
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3.3 Scenarios

Let us assume a travel reservation agency is planning to provide various offers to

its customers. The functionalities of the Web services and their preferences are as

follows:

1) Desired Web service 1 (Simple trip): the Web service gets a city c1 as input and

provides a list of cities c2 such that moving from c1 to c2 is possible.

Preference: Trips preferred to be flight.

2) Desired Web service 2 (Fast one-stop round-trip travel): the Web service gets

a city c1 in the world and provides three cities c′, c′′, and c2 such that moving

from c1 to c′, c′ to c2, c2 to c′′, and c′′ to c1 is possible (round-trips with one

stop per leg).

Preference: Clients prefer to travel by plane. This preference is more impor-

tant for the return legs because clients usually desire to reach their home as fast

as possible. Thus, trips preferred to be flight.

3) Desired Web service 3 (Visiting 4 European cities): it gets a city c1 and provides

the names of four European cities c2, c3, c4, and c5 such that there exists a trip

from c1 to c2, c2 to c3, c3 to c4, and c4 to c5.

Preference: If two consecutive cities are in Scandinavia, the travel between

them should be done by train because of the lower price and the beautiful

sceneries.

4) Desired Web service 4 (Travel around the world): it gets a city c1 in the world
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as the input and provides four city names c2 to c5 such that there exist a trip

from c1 to c2,..., c4 to c5, and c5 to c1.

Preference: At least three of the stops are preferred to be in Africa.

5) Desired Web service 5 (Affordable travel): This Web service gets a city c and

returns a list of (trip, hotel) such that the trip originates from c, and the hotel

is located in the destination.

Preference: If the destination is located in Europe, the room is preferred to

be in a 3-star hotel.

In Chapter 5, the related works along with the results of the evaluation performed

based on our running example are provided. The results of evaluation imply that

current approaches lack the ability to describe some of the above preferences and

some shortcomings exist in their ranking system. We later, in Chapter 7, propose a

formal system to address these shortcomings.
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Chapter 4

Data Integration and Query

Rewriting

Data integration is the problem of answering queries by combining different data

sources and providing unified views of these sources that are physically distributed

over different locations. For example, consider a query about a movie, actors of the

movie, the theatres where the movie is being played, and the reviews about the movie.

Let IMDB, Empire theatre database, and iTunes movie trailers website be the sources

that we have. Now, the question is how to integrate these data sources to answer the

query.

Since data sources can be produced anonymously, a mediated schema is required

to virtually create unified views for the sources. The required schema, which is

called global schema, enables an integration system to compare sources and reason on

queries (e.g., checking whether two queries are equivalent). To provide unified views

of sources, a set of relations between the global schema and sources is required. The
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mechanism of describing these relations distinguishes the techniques of integrating

data.

Two well-known techniques have been proposed for defining these relations: Global-

As-View (GAV) and Local-As-View (LAV). GAV expresses the global schema in terms

of the data sources, while the second approach, LAV, specifies the global schema

independently from the sources, and then expresses the sources in terms of the global

schema. These expressions are called views of sources. The formal definition of an

integration system is provided in definition 4.0.1.

Definition 4.0.1 Data integration system. A data integration system is defined

as a triple 〈G,S,M〉, where G is the global schema expressed in a language L, S is

the set of data sources, and M is a set of mappings between sources and the global

schema. �

Various languages have been used for describing queries and views such as conjunc-

tive queries without and with inequalities, positive queries, datalog, and first-order

queries [36]. Most of the works in data integration have been done using datalog and

conjunctive queries which are logic-based database languages [37]. Hence, the syntax

and semantics of these two languages are first reviewed, and then the techniques of

integrating data are explained in detail.

4.1 Datalog

A datalog [37] rule is a logical implication that may only contain conjunctions, con-

stant symbols, and universally quantified variables, but no disjunctions, negations,
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existential quantifiers, or function symbols. Datalog is considered a sub-language of

first-order logic to which the classical semantics applies. The syntax and the semantics

of datalog rules are described in the definitions 4.1.1 to 4.1.4.

Definition 4.1.1 (Datalog Syntax) The syntax of datalog consists of the sets L =

〈C,V,P〉 such that C is the set of constant symbols, V is the set of variable symbols,

and P is the set of predicate symbols. Each predicate has a fixed number as its arity.

The sets C and P are usually assumed to be finite, while the set V can be countably

infinite. The union of the sets C and V is also called datalog terms. �

Definition 4.1.2 (Datalog atom) Given a datalog syntax L = 〈C, V, P〉, the for-

mula P (t1, ..., tn) is a datalog atom such that P ∈ P has the arity n, and t1, ..., tn are

datalog terms. In addition to these atoms, any datalog syntax also has two default

atoms, shown by > and ⊥, with arity zero. �

Definition 4.1.3 (Datalog rule) Given a datalog syntax L = 〈C,V,P〉, a datalog

rule is an expression of the form

H(u) : −P1(u1), ..., Pn(un) (4.1)

where H(u) and Pi(ui) are datalog atoms; H(u) is called the head; P1(u1), ..., Pn(un)

is called the body; and the comma shows the conjunction between the atoms Pi(ui). �

Definition 4.1.4 (Datalog semantics) Given a datalog syntax L = 〈C, V, P〉, the

datalog semantics is defined by a datalog interpretation I (.I , DI) where DI is an inter-

pretation domain and .I is an interpretation function; the domain is an arbitrary set

that defines the world objects, and the interpretation function establishes the mapping

from symbols into this domain such that
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- If c ∈ C is a constant, then cI ∈ DI

- If P ∈ P is a predicate symbol of arity n, then P I ⊆ (DI)n.

Now, for a given variable assignment function Z : V→ DI , the interpretation function

.I can be extended as follows:

- If t is a term, then its interpretation is defined as:

tI,Z =


tI ∈ DI , if t ∈ C

Z(t) ∈ DI , if t ∈ V
(4.2)

- If P ∈ P is a predicate symbol of arity n, then P I,Z ⊆ (DI)n.

- If > and ⊥ are datalog atoms with arity zero, >I,Z = true and ⊥I,Z = false

for any variable assignment Z in I.

- For a predicate P ∈ P with arity n, P (t1, ..., tn)I,Z = true if (tI,Z1 , ..., tI,Zn ) ∈ P I ;

otherwise, P (t1, ..., tn)I,Z = false.

- For a conjunction of datalog atoms B1, ..., Bn, (B1, ..., Bn)I,Z = true if BI,Z
i =

true for all i=1, ..., n; otherwise, (B1, ..., Bn)I,Z = false.

- For a datalog rule H:- B such that B can be an arbitrary conjunction of datalog

atoms, (H : −B)I = true if for all possible variable assignments Z for I, either

BI,Z = false or HI,Z = true; otherwise, (H : −B)I = false.

�

4.2 Conjunctive Queries

A conjunctive query [1, 74] is a datalog rule but with a unique head (see definition

4.2.1) predicate which is not in datalog syntax and with restrictions over the range

33



of its variables. The intuition behind these restrictions is to guarantee a finite result

when a rule is applied to finite relations because checking whether a rule has a finite

result is undecidable. This restriction is called safe, i.e., each variable occurring in the

head must also occur in the body. As mentioned in definition 4.1.4, the semantics of

datalog rules is model-theoretic. Hence, if a rule has a model with infinite size, then it

is not tractable. For instance, in the unsafe rule CarPrice(c, price) : −NewCar(c),

the variable price can be anything. Our understanding from a rule is that “if the

body is true, then the head is true”. Therefore, for any data x, if x is a new car, the

data (x, price) should be inferred for any (possibly infinite) value for price. Conse-

quently, building such a model is not tractable. For more explanations about safety

and creating a minimal model readers are referred to the Section 12.3 of [1]. The

formal description of syntax and semantics of conjunctive queries are represented in

definitions 4.2.1 and 4.2.2.

Definition 4.2.1 (Conjunctive Query Syntax) Given a datalog syntax L = 〈C,

V, P〉, a conjunctive query is an expression of the form

Q(t1, ..., tk) : −P1(u1), ..., Pn(un) (4.3)

where Q /∈ P and k ≥ 1; tuple (t1, ..., tk) consists of L − terms; each Pi(ui) is an

L-atom; and Vars(t1, ..., tk) ⊆ V ars(u1)∪ ...∪V ars(un) where V ar(x) denotes the set

of variables occurring in x. Q(t1, ..., tk) is called head, and the rest of the query is

called body. Each atom in the body is also called subgoal. Variables which appear in

the head are called distinguished, while the remains are called non-distinguished (also

called existential) variables. �
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Definition 4.2.2 (Conjunctive Query Semantics) Given a syntax L and an in-

terpretation I, the semantics of a conjunctive query Q(t1, ..., tk) : −P1(u1), ..., Pn(un)

is defined as follows: if there is a variable assignment Z by which Pi(ui)
I,Z = true

for i=1, ..., n, then (tI,Z1 , ..., tI,Zk ) ∈ QIQ. IQ is then the extension of I to have an

interpretation for Q based on the already specified interpretations of symbols in L.

Intuitively, QIQ ⊆ (DI)k contains k-tuples of objects resulting from all the possi-

ble variable assignment functions in which all the query subgoals are evaluated to be

true. Therefore, for a given interpretation I and variable assignment Z, we will say

Q(x1, ..., xk)
I,Z = true if Pi(ui)

I,Z = true for i = 1, ..., n. �

Example 4.2.1 Consider the datalog language L = 〈{john, sara}, {x , y, z, u,

w,m,n, t, e,v1, ..., vn}, {Student, SupervisorOf , Happy, Smart}〉 such that atoms

Student(x), Happy(x), or Smart(x) indicate whether x is a student, a happy per-

son, or a smart one, respectively, and the atom SupervisorOf(x, y) shows that the

supervisor of x is y.

Any interpretation I can be seen as a database where the set of all the objects in

the database forms the DI , and the interpretation of each constant is an object in

DI (e.g., real persons John and Sara who are registered in the database I). Each

L-predicate’s interpretation is a table such that the number and the order of columns

are the same as the arity and the order of predicate’s arguments.

For instance, we can have a table in the database called student with one column, where

all the rows in this table are students, or a table SupervisorOf with two columns, where

the second column’s object is the supervisor of the object in the first column for each

row in this table.
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Also, someone may be interested to find all the students that are supervised by a/some

happy person(s); thus, a conjunctive query Q(x) : − Student(x),SupervisorOf(x, y),

Happy(y) can be used to fulfill the request. This query can be answered by joining the

above three tables; QIQ, the answer of the query, will be a new table with one column

that contains all the students of happy supervisors. �

Example 4.2.2 Let L be the language described in example 4.2.1, and let DI be

{Sara, John, Arash, Don, Edward} and SupervisorOf I= {(Arash, John), (John,

Edward), (Sara,Don), (Don, Edward)}. Assume a queryQ(x, y) :- SupervisorOf(x,

z), SuervisorOf(z, y) is received. To find possible answers, variables should be sub-

stituted with any possible object in DI . This substitution is done by defining a vari-

able assignment function Z. If such a variable assignment function exists by which

all the subgoals of the query are evaluated to be true, we then apply this variable

assignment function to the head and store it as one of the answer for the query.

Back to the exmaple, the only variable assignment functions which make all the

subgoals true are Z1 = {x → Arash, z → John, y → Edward} and Z2 = {x →

Sara, z → Don,y → Edward}, and they yield headsQ(Arash, Edward) andQ(Sara,

Edward) which are the answers. �

Up to this point, datalog and conjunctive queries and their syntax and semantics are

described. These two languages are well-studied languages which are widely used in

data integration approaches, and they are also used in our approach. Hence, in the

next Section, the data integration techniques are explained by employing these two

languages.
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4.3 Data Integration Techniques

As mentioned in definition 4.0.1, a data integration system consists of a global schema,

a set of data sources, and a set of mappings between the global schema and data

sources. The differences between data integration techniques stem from the difference

in defining the mappings. Two popular well-studied techniques have been proposed

for data integration: Global-As-View (GAV) maps each term in the global schema to

some data sources, and Local-As-View (LAV) which maps each source to some terms

in the global schema [1].

In any data integration system, queries are described over the global schema, and the

purpose of this system is to answer the queries by integrating some of the sources.

This means exploiting the mappings to reformulate the query Q, which is in terms

of global schema, into another query Q′ which is in terms of sources and can be

evaluated by considering the evaluation of data sources. This process is called query

rewriting, and Q′ is considered as a rewriting of Q.

In the rest of this Section, GAV and LAV as well as the algorithms for query rewriting

based on these techniques are described, and their advantages and disadvantages are

discussed.

4.3.1 Global-As-View (GAV)

Assume a data integration system 〈G, S, M〉 where G itself is G = 〈C, V, P〉 (i.e., a

datalog syntax), and S is a set of sources’ names. In GAV, the set M is populated by

mappings from global schema to data sources.

A mapping in a GAV-based system is a datalog rule that is defined with respect to
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L′= 〈C, V, P∪S 〉 such that the predicate symbol used in the head of the rule belongs

to the set P while the body’s predicate symbols are data sources’ names.

For example, assume the predicate symbol Flight exists in P which verifies flight trips

between two cities. Let AirCanada and WestJet be the data sources that provide a

list of flight trips between two cities, and their names are stored in S. The following

possible mappings can be defined by using AirCanada or WestJet in form of datalog

rules:

- Flight(a, b) : −AirCanada(a, b)

- Flight(a, b) : −WestJet(a, b)

As mentioned, a query in GAV is expressed in the terms of the global schema, i.e.,

L. Queries can be described in the form of conjunctive queries defined in Section

4.2. For instance, consider a query like Q(x, y) :- Flight(x, y) , Flight(y, x) which

is searching for pair of cities that round-trip flight is possible. A rewritten query in

GAV would be in the terms of data sources since the goal is to answer the query by

using only the data sources. Thus, Q can be re-written by the followings:

- Q′1(x, y) : −WestJet(x, y),WestJet(y, x)

- Q′2(x, y) : −WestJet(x, y), AirCanada(y, x)

- Q′3(x, y) : −AirCanada(x, y),WestJet(y, x)

- Q′4(x, y) : −AirCanada(x, y), AirCanada(y, x)

As this example shows a rewriting in GAV. For each subgoal g in the query, if a rule

in M exists such that the head predicate symbol of M is the same as g’s predicate

symbol, then, first, the variables appearing in the head of M are renamed with respect

to the g in such a way that they become identical, and second, g is replaced with
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the renamed body of M. Note that the non-distinguished variables in M should be

replaced with unique names that have not appeared before.

GAV is not appropriate for the domains in which changes are constantly taking place.

For example, assume that a data source is changed; consequently, some modifications

might be needed in those mappings in which the Web service is used. If these modi-

fications occur during the rewriting or after the rewriting, then the results cannot be

reliable. However, GAV is appropriate for those domains that have fixed data sources

and changeable global schema.

4.3.2 Local-As-View (LAV)

LAV-based systems, like any integration system, consist of 〈G, S, M〉 where G is a

datalog syntax, i.e., G = 〈C, V, P〉, and S is a set of sources’ names. The sources

are assumed each to have a unique name. In these systems, the set G is defined

independently from S, and then the mappings between these two sets are established.

In LAV, in contrast with GAV, the set M includes mappings from S to G.

A mapping in LAV is a conjunctive query over the language L= 〈C, V, P 〉 such that

the predicate symbol used in the head belongs to the set S, and the body contains

L-atoms. Each rule in M is called the view of the data source, that appears in the

head of the rule. In the rest of this thesis, we refer to views as the logical descriptions

of data sources.

Definition 4.3.1 (view) Let 〈G,S,M〉 be an LAV-based system where G= 〈C, V,

P 〉 is a datalog syntax. In this system, a view can be seen as a logical description

of a data source, e.g. ds, in S. Views are defined by uniquely named conjunctive
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queries (commonly denoted by V) over the global schema G. The answers of this

query (denoted by ν) is the data that is stored in ds. A view is complete if ν = V IV

where V IV is the results of interpretation of conjunctive query V over I (see definition

4.2.2); view is incomplete if ν ⊂ V IV �.

Mappings in LAV enable the system to be more flexible to changes in data sources.

If a data source is changed, modifying only the mappings in M that contain the data

source would be sufficient. This flexibility makes LAV-based systems suitable for the

domains that the global schema is fixed, and the sources may change. Nevertheless,

the query rewriting process in LAV is highly complicated.

To correctly rewrite a query in LAV, we first need to compare two queries. Two

interesting query compressions are query containment and query equivalence. Briefly,

query Q1 is contained in query Q2 if any answer of Q1 is also the answer of Q2. Two

queries are equivalent if the set of answers of Q1 and Q2 are the same. The formal

definitions of these query compressions are presented in definitions 4.3.3 and 4.3.4.

Definition 4.3.2 (Partial query containment and equivalence) Given con-

junctive queries Q1 and Q2, both described w.r.t. a datalog syntax L and an In-

terpretation I for L, Q1 is partially contained in Q2 under I, denoted by Q1 vI Q2,

if Q
IQ1
1 ⊆Q

IQ2
2 . Q1 and Q2 are partially equivalent, denoted by Q1 ≡I Q2, if Q1 vI Q2

and Q2 vI Q1 �.

Definition 4.3.3 (Query containment) Given conjunctive queries Q1 and Q2,

both described according to a datalog syntax L, Q1 is contained in Q2 if for any

interpretation I w.r.t. L, we have Q1 vI Q2; it is denoted by Q1 v Q2.
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Definition 4.3.4 (Query equivalence) Given conjunctive queries Q1 and Q2, both

described according to a datalog syntax L, Q1 and Q2 are equivalent, denoted by Q1

≡ Q2, if for any interpretation I w.r.t. L, we have Q1 ≡I Q2 �.

The problem of query rewriting using views in LAV is the following. Suppose we are

given a query Q over a global schema, and a set of view definitions V1, ..., Vn over the

same schema. The question is to check the possibility of answering the query Q using

only the answers to the views V1, ..., Vn [36]. Now, we have a context to define query

rewriting using views as follows:

Definition 4.3.5 (Query rewriting using views) Given a conjunctive query Q

and a set of view definitions V1, ..., Vn over the language L, a rewriting of the query

using views is a conjunctive query Q′ over the language L′= 〈C, V, P ∪ {V1, ..., Vn}〉

whose subgoals are the all atoms of 〈C,V, V1, ..., Vn〉. �

Example 4.3.1 Consider the following query and views which are defined over the

language L in example 4.2.1:

- Q(x) : −Student(x)

- V1(x, y) : −SupervisorOf(x, y), Happy(x)

- V2(x) : −Happy(x), Student(x)

- V3(y) : −SupervisorOf(x, y), Student(x)

All the queries Q′1, Q′2, Q′3, and Q′4 are the rewritings of Q by using the views. Note

that although Q′3 does not provide the data as the query request, it is a rewriting

according to definition 4.3.5.

- Q′1(x) : −V2(x)
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- Q′2(x) : −V1(x, z), V2(z)

- Q′3(x, y, z) : −V1(x, x), V2(y), V3(z)

- Q′4(x) : −V1(x,‘john’ ), V2(x)

�

Recalling the purpose of data integration systems, when a query is received, the

system attempts to answer by rewriting the query in terms of available data sources.

Obviously, a rewritten query is supposed to provide related answers to the original

query. For example, when a received query is about departure flights from Toronto,

rewriting with data sources that provide arrival flights to London is not interesting.

However, as the example 4.3.1 shows, various rewritten queries with possibly different

answers (if they are evaluated over the same interpretation I) can be provided. We

distinguish two groups of rewritings, equivalent rewritings and maximally-contained

rewritings, which finding them is the purpose of most of the proposed approaches in

the literature. We later show that the goal of our system is to find the maximally-

contained rewriting of a query if exist.

Definition 4.3.6 (Equivalent rewriting) Let Q be a query and V1, ..., Vn be views,

all over the same datalog language L; and let Q′ be a rewriting of Q over L′ (see

definition 4.3.5). We say Q′ is an equivalent rewriting of Q if we have Q
′I′
Q′ = QIQ

for any L-interpretation I, the L′-interpretation I ′ is obtained as V I′
i = V

(I)Vi
i for any

view name Vi in L′. �

Definition 4.3.7 (Maximally-contained rewriting) Let Q be a query and V1,

..., Vn be views, all over the same datalog language L; and let {Q1
′, ..., Qm

′} be a set
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of rewritings of Q (m ≥ 1) over L′. We say the union of the answers of contained-

rewritten queries is maximally-contained in Q if we have
⋃

1
mQ′

I′Q′
i

i ⊆ QIQ, and there

is not another different set of rewritings {Q1”,..., Qk
”} in L′ such that

⋃
1
mQ′

I′Q′
i

i ⊆⋃
1
kQ”

I′Qj”

j ⊆ QIQ for any L-interpretation I with the same restriction as definition

4.3.6 for I ′. �

Since language L′ contains L, the query Q can be also described over L′, but the

equivalency (or maximally contained) should be examined by a subset (not all) of all

the possible interpretations for L′. As definition 4.3.6 shows, a restriction should be

held for describing the interpretation I ′ for L′: selecting only those I ′ in which the

interpretation of views are based on the interpretation of P where P ⊆ P. These

interpretations can be created by, first, fixing the meaning (P I′) for all the P ⊆ P,

then, interpreting the views based on these meanings. By relaxing this restriction, two

rewritings such that one is contained in another may be specified as a non-contained

one by the relaxed definition (see example 4.3.2).

Example 4.3.2 Consider the following query Q and view V over the language L (see

example 4.2.1) and a given DI = {John, Sara,Kian}. A rewritten query Q′ can be

described over the language L′ = 〈{john, sara}, {x, y, z}, {Student, SupervisorOf ,

Happy, V }〉 as follows:

- Q(x) : −Happy(x)

- V (x) : −Student(x), Happy(x)

- Q′(x) : −V (x)

Intuitively, Q′ is contained in Q since the results of Q′ contain all the happy persons

that are also students; however, by having no restriction for creating an interpreta-
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tion for L′, we can create an interpretation I where HappyI = {Kian}, StudentI =

{Sara,Kian}, and V IV = {John} and derive Q′ is not contained in Q since Q′IQ′ 6⊆

QIQ. �

In spite of reducing the number of possible rewritten queries by finding equivalent

(or maximally-contained) ones, the set containing these particular rewritings can be

infinite because the number of subgoals in rewritten queries are not bounded. For

instance, a view can be infinitely repeated in a rewritten query. Thus, a boundary

over the length of rewritten queries is vital in order to make the problem of rewriting

tractable in a reasonable time.

In [54], two classes of rewritten queries, locally minimal and globally minimal, were

determined. It was also proven that these classes lead us to a bound for the length

of rewritten queries which can be found in theorem 4.3.1.

Definition 4.3.8 (locally minimal and globally minimal [54]) Let Q be the

query and V1, ..., Vn are the views, all over the same datalog language L. A rewriting

Q′ is locally minimal if there is no view V used in Q′ such that (Q′\V ) ≡ Q′. The

rewriting Q′ is globally minimal if there is no rewriting Q” over L′ such that Q” ≡ Q′

and |Q”| < |Q′| (|x| shows the number of subgoals in query x). �

Theorem 4.3.1 Let’s assume query Q and a set of views V1, ..., Vn w.r.t. a datalog

language L = 〈C,V,P〉 such that there are no comparison predicates (=,6=,≤,≥) in

P. If Q′ is a locally minimal and equivalent rewriting of Q using the views, then

|Q′|≤|Q|. [54].�

Up to this point, the number of possible rewritings is reduced by finding special

classes of rewritings (i.e., equivalent rewriting and maximally-contained rewriting).
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Moreover, the length of rewritten queries are bounded by defining locally minimal

rewritings. In order to make the rewriting process practicable, our attempt will be

to find all contained rewritten queries which are locally minimal.

To find whether a rewritten query is contained in the original query, a test is required.

Containment mapping [18] provides a necessary and sufficient condition for testing

query containment. The definition and the theorem of correctness of this testing is

described in definition 4.3.9 and theorem 4.3.2 respectively.

Definition 4.3.9 (containment mapping [18]) Let Q1 and Q2 be conjunctive

queries w.r.t. a datalog language L = 〈C, V, P〉, and let terms in Qi be the set of all the

variables and constants represented in Qi. A containment mapping τ : C∪V→ C∪V

from Q2 to Q1 is a mapping from the terms in Q2 to the terms in Q1, such that

the mapping is identical on the constants and under this mapping (i) the head of Q2

becomes corresponding to Q1’s head, and (ii) each subgoal of Q2 corresponds to a

subgoal in Q1. Later, we will use the term cover to indicate the corresponding rela-

tions between the subgoals such that subgoal si in Q2 covers the subgoal sj in Q1 if si

corresponds to sj by a given containment mapping τ . �

Theorem 4.3.2 Let Q1 and Q2 be conjunctive queries w.r.t. a datalog language L.

Q1 is contained in Q2 if and only if there is a containment mapping from Q2 to Q1

[18]. �

All the preliminaries required to rewrite queries in LAV are reviewed. Since many

algorithms with different perspectives have been proposed to rewrite queries in LAV,

they are provided in as a separate Section. In the next Section, these algorithms are
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classified based on their mechanism, and a comparison is provided as the conclusion

of this Chapter.

4.4 Query Rewriting Algorithms in LAV

Various algorithms have been proposed to tackle the problem of query rewriting in

LAV-based systems. These algorithms can be classified based on their mechanisms

into categories of (i) logical-based algorithms, (ii) bucket-based algorithms, (iii) hybrid

algorithms which are the combination of logical and bucket based procedures, and

(iv) graph based algorithms.

4.4.1 Logical-based algorithms

Logical-based algorithms are known as algorithms in which purely logical techniques

are used to rewrite queries. One of the famous well-studied algorithms in this category

is the inverse-rule algorithm [25]. The key step in this algorithm is the inversion of

views’ descriptions (conjunctive queries) for all views to form new rules. These rules

are constructed such that the view’s subgoals appear in the head of the new rules,

and the body contains the view’s head (i.e., view name) and possibly some function

symbols. The function symbols are the results of Skolemization. The Skolemization

is a way of removing existential quantifiers and existentially quantified variables. For

more information about Skolemization and unification in First-Order Logic (FOL),

readers are referred to Chapter 18 of [9].

The inverted rules are then used to rewrite the query; each subgoal s in the query

is replaced by a body of an inverted rule in which the head is identical to s. These
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replacements result in a rewritten query in terms of views (same perspective as query

rewriting in GAV described in Section 4.3.1). The result of replacements is then

simplified by removing function symbols to form the final query plan.

In detail, the algorithm starts by inversing the rules of views. Each local variable of

the view is replaced by a unique function symbol f (the Skolemization constant). For

instance, back to our previous examples, the variable z is a local variable of view V .

V( x , y) :- SupervisorOf(x , z) , SupervisorOf(z , y)

As mentioned in Section 4.1 and 4.2, rule V can be viewed in the form of

∀x∀y∀z.(SupervisorOf(x, z) ∧ SupervisorOf(z, y)→ V (x, y))

which is a FOL sentence, and it is logically equivalent to the following FOL sentences:

∀x∀y∀z.(¬SupervisorOf(x, z) ∨ ¬SupervisorOf(z, y) ∨ V (x, y))

∀x∀y∀z.¬(SupervisorOf(x, z) ∧ SupervisorOf(z, y) ∧ ¬V (x, y))

∀x∀.y¬∃z(SupervisorOf(x, z) ∧ SupervisorOf(z, y) ∧ ¬V (x, y))

By the Skolemization method, the existential quantifier can be eliminated. The func-

tion symbol f can be replaced as follows:

∀x∀y.¬(((SupervisorOf(x, f(x, y)) ∧ SupervisorOf(f(x, y), y)) ∧ ¬V (x, y)))

which is logically equivalent to:

∀x∀y.(((SupervisorOf(x, f(x, y)) ∧ SupervisorOf(f(x, y), y))→ V (x, y)))

The above sentence can be expressed in the following form:

V(x, y) :- SupervisorOf(x,f(x,y)), SupervisorOf(f(x,y),y)
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By the Skolemization method, we can eliminate local variables of any views. In the

next step, each Skolemized view V is replaced by a set of rules such that the number

of rules in the set is equal to the number of subgoals of the Skolemized V. These new

rules have the form of (i) one subgoal of V as the head, and (ii) the head of V as the

only subgoal of their bodies.

For instance, the Skolemized view V is replaced by the following rules:

SupervisorOf(x, f(x,y)) →V(x, y)

SupervisorOf(f(x,y), x) →V(x, y)

To rewrite a query, we can use the modified version of semi-naive algorithm for the

GAV approach, which is described in Section 4.3.1. Modifications are required because

there is no support for function symbols in this algorithm. Duschka’s approach [25]

moves the function symbols out of the semi-naive evaluation and put them into a rule-

rewriting step. In effect, because there is no nested function symbols, the function

symbols always combine with predicates.

The unification technique then unifies two subgoals by finding the simplest substitu-

tion for the variables to make them identical. For instance, the SupervisorOf(f(x,

y), y) and SupervisorOf(a, c) have the unification SupervisorOf(f(c, c), c) by map-

ping x → c, y → c, and a → f(c, c). But the predicates SupervisorOf(x, f(x, y))

and SupervisorOf(f(x, y), y) have no unification. The unification can be answered

in linear time. Thus, it can be added to the GAV-based algorithm (see Section 4.3.1)

and the modified algorithm can be used for rewriting in LAV.
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4.4.2 Bucket-based algorithms

A naive algorithm for rewriting a query using views is to (i) choose an arbitrary

subset of views and (ii) checks whether the conjuncts of chosen views are contained

in the initial query by providing containment mapping test. Although the procedure

is simple, the algorithm is too expensive, especially for the problems with thousands

of views.

By the theorem 4.3.1, we can reduce the search space and set a bound on the number

of chosen views. Recalling the locally minimal rewriting (definition 4.3.8), a rewriting

Q′ is locally minimal if there is no view V used in Q′ such that (Q′\V ) ≡ Q′. Thus,

we can bound the size of chosen views based on the size of the query.

Moreover, we can further reduce the search space by eliminating the views that are

irrelevant to the query. For instance, when a query is about all the mothers who have

more than two children, considering a view which provides a list of flights between

two cities is obviously irrelevant. Since there is no ontological structure about the

concepts at this point, two concepts are relevant if, and only if, they are identical;

otherwise, they are irrelevant. Finding relevant views for rewriting is the intuition

behind the Bucket algorithm.

The concept of bucket was proposed in [55] for the first time. The Bucket algorithm

considers each subgoal of the query in isolation and creates a new bucket for each

subgoal. A view V is added to a bucket Bg (associated bucket to the subgoal g in Q)

if the following conditions hold:

(C1. view V has a subgoal s which has the same predicate as g

(C2. if there is a distinguished variable in g, then there should be a distinguished
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variable in s at the same position (in other word, distinguished variables in g

should be mapped to the distinguished variables in s)

The intuition behind the condition C1 is clear; it guarantees that the used views are

relevant to Q. C2 is a necessary condition for having a containment mapping from

Q to Q′. If C2 is violated, then there would not be any containment mapping (see

definition 4.3.9).

After filling the buckets, the algorithm considers all the possible combinations of

rewritings. Each combination is constructed by choosing an element (i.e. view) from

each bucket, and then providing a containment mapping from the query to these

views. If such a mapping exists, then the combination is one of the answers.

The Bucket algorithm, because of removing irrelevant views for rewriting a query,

will have a better performance in comparison with the naive algorithm described at

the beginning of this Section. In the worst case scenario, when all the views have

the same predicate as the query, the performance would be the same as the naive

algorithm.

In the Bucket algorithm, the second phase, which is the creation and the verification of

combinations, is considerably time consuming. To sped up the rewriting process, we

need to reduce the number of possible combinations in the second phase. Fortunately,

some of the combinations (e.g. see example 4.4.1)can be eliminated without requiring

any extra verification. These combinations are created because query subgoals are

investigated in isolation in the first phase of the Bucket algorithm.

Example 4.4.1 Let Q be the query and V1 and V2 be the only views that we have.

- Q(x, y) : −P (x, z), R(z, y)
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- V1(w) : −P (w, e1)

- V2(z) : −R(e2, z)

Then the bucket for each subgoal of the query would be as BP = {V1} and BR = {V2}.

The bucket algorithm then chooses one view from each bucket and combines them.

Since no containment mapping exists, the combination will be dropped. �

By considering query subgoals in isolation we lose the information about what sub-

goals are joints, i.e, they have shared variable(s). This information can be gained

by considering the shared variables which is the intuition behind the Shared-Variable

Bucket (SVB) algorithm [66].

4.4.2.1 Shared-Variable Bucket algorithm

The Shared-Variable Bucket (SVB) algorithm [66] is a modified version of the Bucket

algorithm. In this algorithm, the as in the Bucket algorithm, a bucket is created for

each subgoal of the query. In contrast to the former, a bucket is also created for

each shared variable in the query. This bucket contains only views that cover all the

subgoals in which the shared variable appears. Moreover, some additional conditions

are used for filling the buckets. Before describing these conditions, some concepts are

needed to be mentioned.

Recalling from Section 4.2, a variable that appears in the head of a conjunctive query

is called distinguished, and others are non-distinguished (existential) variables. When

a subgoal in a rewritten query (i.e. a view’s head) is expanded (that means the

head is replaced by the body of the view), the non-distinguished variables of the view

become local. A local variable should not appear anywhere else in the rewritten query;
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therefore, local variables are renamed to a unique name during expansion. Variables

which are not local are called exposed variables. These variables are renamed based

on the mappings provided during the filling of the buckets as in the Bucket algorithm.

The exposed variables are the only ones that may appear in subgoals belonging to the

expansion of two or more different subgoals of a rewritten query. The last definition

is about shared or unique variables: a query variable is shared if it appears more

than once in different subgoals; otherwise it is unique. For example, assume a view

V and a rewritten query Q′ as follows:

- V (x, y) : −P (x, z), Q(z, y)

- Q′(u, v) : −..., V (u,w), ...

The variables x and y are distinguished variables of the view V, and the variable z is

a local one. By expanding the solution we would have:

- Exp(Q′(u, v)) : −..., P (u, z), Q(z, w), ...

As the above expansion shows, the distinguished variable x in V is substituted with

u, as well as the substitution of distinguished variable y in V with w. So, u and w

in the expansion are exposed variables. Also, u and v are distinguished variables of

Exp(Q′). Moreover, u is an exposed, distinguished variable of Exp(Q′), and w is an

exposed, non-distinguished variable of Exp(Q′). Note that since z in V is local, it

may not appear in any other places in the expansion except those shown.

Back to determining conditions for filling the single buckets in SVB algorithm. The

following conditions should be met during mapping of the variables of a subgoal of a

query to a subgoal of a view:
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C1. A distinguished query variable can only map to a distinguished variable of view.

C2. A non-distinguished, shared query variable should not be mapped to a non-

distinguished view variable.

For filling the shared variable buckets, view V is inserted to a query shared-variable

y only if for any subgoal s in the query in which y appears,

C ′1. there exists a subgoal v in V that covers s

C ′2. for each non-distinguished shared query variable y′ that appears in s and is

mapped to a non-distinguished variable of V , V covers all the query subgoals

that y′ occurs in.

Members of the bucket for a shared variable a is a set of pairs such that the first

element is a view head V , and the second element is a set of subgoals v in V such

that there is a mapping from all the query subgoals containing a to s. In this mapping,

conditions C ′1 and C ′2 are met.

As an example to show how the entire algorithm works, assume we have two views

such that the first one provides flights with one stop, and the second web service

provides flights with two stops. Now, we are looking for flights with five stops. For

simplifying, assume the predicate flight gets two cities as the input and checks whether

they are connected by a flight. Let Q be the query, and V and W be the views that

we have.

- Q(a , b) :- Flight(a , c) , Flight(c , d) , Flight(d , e) , Flight(e , f) , Flight(f , g)

, Flight(g , b)

- V( x , y) :- Flight(x , z) , Flight(z , y)

- W(u , v) :- Flight(u , s) , Flight(s , t) , Flight(t , v)
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The algorithm starts to create a bucket for each query subgoal, e.g., Flight(a, c)

by checking all the views. The view V has subgoal Flight; therefore, the mapping

between them should be checked. The condition C1 is met because a is a distinguished

variable of Q and x is a distinguished variable of view V . But condition C2 does

not hold because c is a shared variable while z is a non-distinguished one. Hence,

the subgoal Flight(x, z) cannot cover the subgoal Flight(a, c) in the query. The

algorithm continues by checking the second subgoal of the V , but it cannot cover

the subgoal due to the violation of the second condition. Algorithm continues by

checking view W , and again the same situation happens. Consequently, the bucket

for the subgoal Flight(a, c) would be empty. By repeating this procedure for the

other query subgoals, empty buckets would be the result.

In the second part, the algorithm tries to create a bucket for each shared variable

of Q, and start with c and the view V . There is a mapping from query subgoals

Flight(a, c) and Flight(c, d) (all the subgoals in the query that contain c) to sub-

goals Flight(x, z) and Flight(z, y) in V since all the distinguished variable in these

two query subgoals are mapped to the distinguished variable x. Hence, the pair

〈V, F light(x, z), Flight(z, y)〉 is added to the bucket of shared variable c. By checking

the view W , the pair 〈W,Flight(u, s), Flight(s, t)〉 is added to the bucket of c. The

bucket for d would be {〈V , Flight(x, z), Flight(z, y)〉, 〈W,Flight(u, s), Flight(s, t)〉,

〈W,F light(s, t), Flight(t, v)〉}. By continuing this procedure, the bucket for e and f

would be the same as d, and the bucket for g would be the same as a.

In the final step, the algorithm provides the Cartesian product between the buckets

and then performs the containment testing to verify the results. Since the buckets

for the subgoals are empty, we must group the subgoal according to their shared
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variables, and cover them, in groups, from the buckets for the shared variables.

One of the options for covering the Flight(a, c), Flight(c, d) in the query is the

pair 〈V , Flight(x, z), Flight(z, y)〉 from the bucket c. The options for covering the

Flight(c, d), Flight(d, e) of the query are all the three members of the bucket d. But,

if we choose W , we would not have any views to cover only the last subgoal in the

query. Based on this limitation, there are two solutions:

- S1(a, b) : −V (a,m), V (m,n), V (n, b)

- S2(a, b) : −W (a,m),W (m, b)

As this example shows, instead of providing the 5×5×5×5×5×5 (15625) containment

mapping test, we tested only 2× 3× 3× 3× 2 (108) rewritings.

However, SVB first provides a mapping from g in Q to s in V to fill the bucket

associated to g, and then, after the combination of the buckets, it again provides a new

mapping from Q to a combination. This mapping is redundant and can be eliminated

if we consider the mappings in the previous phase. The main idea underlying the

MiniCon algorithm [74] is to use the information gained during the consideration of

views to combine views and avoid duplicate mappings.

To reach this point, MiniCon considers the shared variables by setting some rules for

mapping which will be described in Section 4.4.2.2; therefore, incorrect combinations

shown in the example 4.4.1 will be eliminated without checking the containment

mapping. Moreover, MiniCon finds the minimal subset of subgoals in V that satisfies

these rules. This avoids redundant mappings; hence, no containment mapping is

required after the combination.
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4.4.2.2 MiniCon algorithm

Given a query Q and a set of views, the MiniCon algorithm provides a set of rewritings

Q′ such that the union of answers of these rewritings is maximally contained in Q.

The core of this algorithm is the MiniCon Description (MCD). For each given view, we

may have several MCDs. Each MCD has information about the part(s) of a view that

can be used to cover some subgoal(s) of Q, i.e. it contains a mapping from a subset

of query variables to some variables of a view. Intuitively, each MCD is a fragment of

a containment mapping from the query to a rewritten query. Therefore, combining

the MCDs means joining the mappings in order to create a complete containment

mapping.

Before formally defining MCDs, some terms are needed. First, function Var(x) is

defined to return the set of variables which appear in x. Second, a view subgoal v

covers a query subgoal s if there is a mapping τ from Vars(Q) to Var(V) such that

τ(s) = v. Third, a head homomorphism h on a view V is a mapping from Vars(V)

to Vars(V) which is defined such that it is the identity mapping on the existential

variables, but may equate distinguished variables. This means for every distinguished

variable x, h(x) is distinguished, and h(x)= h(h(x)).

From [74], an MCD C for a query Q over a view V is a tuple of the form 〈hC , V (Y )C ,

ϕC , GC〉 where

- hC is a head homomorphism on V,

- V (Y )C is the result of applying hC to V i.e., Y = hC(A), where A are the head

variables of V,

- ϕC is a partial mapping from V ars(Q) to hc(V ars(V )),
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- GC is a subset of the subgoals in Q which are covered by some subgoal in hC(V )

using the mapping ϕC (note that not all such subgoals are necessarily included

in GC).

As mentioned before, the main idea in this algorithm is to collect information from

shared variables in order to reduce the number of possible combinations in the fi-

nal step (choosing a view from each bucket and combining them). Therefore, the

algorithm creates MCDs that satisfy the following property:

Property 1: Let C be a MCD for Q over V. The MiniCon algorithm considers C

only if the it satisfies the following conditions.

C1. each distinguished variable in the query must be mapped to a distinguished

variable of the view.

C2. If an existential variable x1 in the query is mapped to an existential variable of

the view V , then for all the subgoals in the query that include x1, there should

be some subgoals in the V that cover them.

The intuition behind C1, which comes from the Bucket algorithm, is that since a

distinguished variable appears in the results, it cannot be mapped to an existential

variable that will not appear in the results. The intuition behind C2 is interesting.

First, assume that an existential variable of the query is mapped to a distinguished

variable. For instance, consider the following example:

- Q(x) : −R1(x), R2(x, z), R3(z)

- V1(k, y) : −R1(k), R2(k, y)

- V2(m) : −R3(m)
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To check whether R2 from V1 can cover R2 in the query, we should find a mapping

between them which is x → k , z → y. No subgoal exists in V1 that can cover R3.

However, because z is mapped to a distinguished variable, we can hope that we may

find another view that covers R3 by mapping z in R3 to a distinguished variable in

that view, and then join it with V1. In this example, although V1 cannot cover R3, it

can be joined with V2 for answering the query, and variables y and m should then be

renamed with the same name (i.e., Q(x) : −V1(x, t), V2(t) ).

In contrast, when an existential query variable is mapped to an existential variable

in a view, there is no possibility to use another view to cover the other subgoals in

which the existential query variable appears, and then join these views. Hence, the

view should be capable of covering all the other subgoals in which this existential

query variable appears due to the disability of joining this view to another view.

The second phase combines the MCDs to create conjunctive rewritten queries. Since

the MCDs are carefully created, the combination process is simple and efficient be-

cause of eliminating redundant mappings which is mentioned in Section 4.4.2.1. The

MCDs which meet the property 2 can be combined; This property is defined as follows:

Property 2: Given a query Q, a set of views V , and the set of MCDs for Q over the

views in V , the only combinations of MCDs that are allowed to be constructed have

the form of C1, ..., Cl where

C1. GC1 ∪ ... ∪GCl= Subgoals(Q), and

C2. for every i 6= j,GCi ∩GCj= ∅.

By performing the two phases, creating MCDs and combining MCDs, a set of con-

tained rewritten queries will be constructed. The union of this set is shown to be
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maximally-contained in the given query [74]. Moreover, this algorithm is sound and

complete, i.e., every produced rewriting is contained, and for any possible contained

rewriting Q′1, there is a rewriting Q′ which is produced by the algorithm such that

Q′1 v Q′ [74].

4.4.3 Hybrid algorithm

MCDSAT [3] algorithm encoded the query rewriting problem in LAV as a proposi-

tional theory using Conjunctive Normal Form (CNF) formulas. These formulas were

then compiled to another normal form called deterministic, Decomposable Negation

Normal Form (d-DNNF) [23]. A sentence in NNF is a rooted, directed acyclic graph

(DAG) where

C1. each leaf node is labeled with true, false, ¬x, or x (x is a variable or constant)

C2. each internal node is labeled with ∧ or ∨.

A decomposable NNF (DNNF) [23] is an NNF ∆ if for every conjunction α = α1∧...∧

αn appearing in ∆, no atoms are shared between the conjuncts of α, i.e., atoms(αi) ∩

atoms(αj) = ∅ for i 6= j. A deterministic NNF (d-NNF) [23] is an NNF ∆ if for every

disjunction α = α1 ∨ ... ∨ αn appearing in ∆, every pair of disjuncts in α is logically

inconsistent that is αi ∨ αj  false for i 6= j. For example, (A ∧ B) ∨ (¬A ∧ C) is a

d-NNF.

Decomposability property permits the complex operations in polynomial-time such as

satisfiability, to find an assignment that makes a formula true; projection, to compute

the strongest sentence entailed by the theory; and model enumeration, to find all the

possible assignments that satisfy all the formulas in the theory [22].
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After compiling CNF to d-DNNF, MCDSAT utilized the state of the art SAT solvers

to find all possible models of the theory (model enumeration). To reach this point, this

algorithm encoded the MiniCon algorithm using propositional language; therefore, it

can be seen as a hybrid algorithm. The reason that enhanced the performance of

MCDSAT compared with MiniCon, is d-DNNF and its polynomial computational

characteristics.

4.4.4 Graph-based Algorithm

In [48], authors proposed GQR algorithm a graph-based approach to rewrite queries in

LAV. In this approach, queries and views are defined as graphs; Predicates and their

arguments correspond to graph nodes. Predicate nodes are labeled with the name

of predicates, and they are connected through edges to their arguments. Therefore,

shared variables between atoms result in shared variable nodes. Edges are labeled

with respect to the position of variable in the argument of the predicate. To distinct

distinguished variables from others, ⊗ and © are used to depict the distinguished

and non-distinguished variables, respectively.

This algorithm first decomposes the query and views to simple atomic subgoals and

depict them as graphs mentioned above. The decomposition process of views can

be done offline in order to speed up system’s online performance. Authors proposed

a novel query reformulation phase to maps query graph patterns to views’ graphs.

The algorithm incrementally build up the rewriting as the graphs are combined. This

algorithm maximally rewrites queries and is sound and complete.
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4.4.5 Comparison of the Algorithms

The idea underlying SVB is to reduce the number of elements in the buckets by

considering shared variables and determining some additional conditions. However,

this algorithm suffers from redundant mapping checks, described in Section 4.4.2.1.

On the other hand, MiniCon creates MCDs in such a way to avoid redundant mapping

tests in the second phase, the combination of MCDs. Therefore, MiniCon performs

better compared to the other algorithms in the bucket-based and logical based groups

[74].

Nonetheless, in the worst-case scenario, when all the views subgoals can cover any of

query subgoals, the computational complexity of any of these algorithms is the same.

The time complexity in this particular case is O((nmM)n) where n is the number of

subgoals in the given query, m is the maximal number of subgoals in views, and M

is the number of views. This value comes from the following calculation: since any

subgoal of any view can be used to cover a subgoal in the query, each bucket will

contain mM elements. In the next phase, which is choosing an element from each of

the buckets, since any combination will be a contained rewritten query, it leads to the

Cartesian product between the buckets, and each combination requires n checking.

Therefore, we need (nmM)n checkings in total.

In general, the performance of MiniCon is shown to be better in practice compared

to the inverse-rule algorithm [74]. The difference between these two algorithms is in

their second phase. In this phase, the inverse-rule algorithm tries to find a unification

for the heads of considering inverse rules that are potential candidate for constructing

a rewriting. MiniCon is searching for a set of MCDs that are pairwise disjoint and
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cover all the subgoals of the query. Unification is over the variables of the query, while

finding MCDs depends to the number of query subgoals. Hence, MiniCon searches

in a smaller set. Moreover, MiniCon removes the unusable views that violates the

property 1 in the first phase, while these views cannot be detected in the first phase

of inverse-rule algorithm.

GQR algorithm likewise the bucket based algorithms, investigate subgoals one by one,

while similar to MiniCon or MCDSAT, considers the shared variables to prune the

incorrect cases. In contrast with these two algorithms, as they mentioned, it doesn’t

try to a priori map fragments of query to the views. This mappings comes out natu-

rally as GQR algorithm combine atomic view subgoals to larger ones. Consequently,

the second phase of the algorithm needs to combine fewer views.

MiniCon directly provides information about which part of a rewritten query is used

to cover a considering query subgoal. Therefore, this information can be used to

not only evaluate the preferences more accurately, but also they can assist us in

developing a more expressive language for describing preferences. This information

plays an essential role in our approach for describing and evaluating user preferences

such as preferences outlined in Section 3.3. Therefore, we focus on MiniCon as the

core of our system.

4.5 Query Rewriting with Dependencies

When designing the global schema for a specified domain, we often have additional

information about the domain that cannot be captured by the terms in the global

schema. For example, in a global schema containing the terms Mother and Parent,
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we may need to encode more information by saying a mother is always a parent. This

kind of information can be encoded by specifying dependencies between the terms of

global schema.

Knowledge expressed by dependencies can also be used during the rewriting process

to produce additional contained results, which are contained only in the presence of

these dependencies. For instance, suppose that a query is about finding all parents,

and we have a view which provides a list of mothers, assuming that mothers are

already defined as parents, we then can use this view to answer the query.

Query rewriting in the presence of dependencies1 in LAV was first discussed in [26],

where a dependency is defined by a negated expression ¬Φ where Φ is a positive

conjunction of atoms, and all the variables in Φ are universally quantified (e.g.,

¬(Mother(x) ∧ Father(x)) to show Mother and Father are disjoint). Recently, this

problem has became one of the major problems in data integration. Especially in the

last few years that semantic Web and Web-based ontology languages such as OWL

[20] are introduced.

A dependency can be formalized by using logical languages such as propositional

logic, description logic, and fragments of first-order logic. The expressivity of de-

scribing dependencies and the complexity of rewriting in the presence of dependencies

totally depend on the language we choose. Various dependencies such as functional

dependencies, inclusion, full dependencies, tuple-generating dependencies (tgd), and

equality-generating dependencies (egd) have been defined. However, only a few of

them are used in query rewriting problem such as functional dependency and inclu-

sion [35, 6]. In [10, 15], it is noted that using general tgd’s makes the query rewriting

1This problem is also known as query rewriting with integrity constraints.
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problem undecidable. Thus, various simplified tgd’s such as weakly-acyclic tgd’s and

guarded tgd’s are introduced [14]. To cease this Section, a brief description of depen-

dencies is provided in Table 4.1.

Name FO-furmula Description

Func.

Dep.

∀x∀y∀z∀y′∀z′ [A(x, y, z) ∧

A(x, y′, z′) →y = y′]

A is an atom

inclusion ∀x̄∀ȳR(x̄, ȳ)→ ∃z̄S(x̄, z̄) R and S are atoms. x̄, ȳ, and z̄ are tuples

of terms.

Full

Dep.

∀x̄(Φ(x̄)→ A(ȳ)) Φ(x̄) is conjunction of atoms, and A(ȳ) is

an atom. All variables in ȳ are also in x̄.

tgd ∀x̄(Φ(x̄)→ ∃ȳΨ(x̄, ȳ)) Φ(x̄) and Ψ(x̄, ȳ) are conjunctions of

atoms. x̄ and ȳ are the tuples of terms. All

the variables in x̄ must appear in Φ(x̄).

egd ∀x̄(Φ(x̄)→ x1 = x2) Φ(x̄) is a conjunction of atoms. x1 and x2

must appear in x̄, and all the variables in

x̄ must appear in Φ(x̄).

Table 4.1: Description of dependencies

Later in Chapter 6, we extend the MiniCon algorithm to handle full dependencies.

In addition, we propose an extension to rewrite queries in the presence of full de-

pendencies which can extend any query rewriting algorithm described in Section 4.4.

However the optimized versions of the extension are integrated with MiniCon.

64



Chapter 5

Related Work

In this thesis, our goal is to propose a query rewriting algorithm adoptable for Web

service composition problem and then to create a formal ranking system to rank the

composed Web services based on user preferences. Therefore, the works related to

this thesis can be classified into two main categories of query rewriting in the presence

of dependencies, and Web service composition in the presence of user preferences.

According to the type of user preferences, the approaches of Web service composition

in the presence of user preferences can also be classified into two sub-categories.

The first category includes the works that handle user preferences for functional

characteristics of Web services, while the second category includes the ones in which

the users preferences are related to the non-functional aspects of Web services.

Following this categorization, this Chapter first describes related works for preference-

based composition of Web services. Then, since our focus is on user preferences re-

garding the functional characteristics of Web services, the approaches related to this

category of research are reviewed and evaluated by using the example defined in Chap-
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ter 3. Finally, the related works for query rewriting in the presence of dependencies

are reviewed.

5.1 Web Service Composition

Agarwal et.al [2] proposed a framework to let users describe their preferences on non-

functionalities of their desired Web services. In this framework, Web services and the

domain ontology are described using standard description logic [5], and preferences are

described using fuzzy rules. A set of composition plans are provided, namely sequence,

parallel, choice, and loop. These composition plans are defined by description logic.

For instance, Loop v WS u ∃ws.WS u ∃times.N where ws and times are functional

roles. This definition implies that an instance of Loop can be related to only one

instance of WS via the relation ws and to only one natural number via the relation

times. In this system, users are required to first manually choose one of the plans for

composition. The system then automatically selects appropriate Web services for the

composition based on the chosen plan.

Several non-functionalities of Web services are taken into account in this work such

as the availability rate, response time, and price amount. For each non-functional

characteristic, an aggregation function is defined to calculate the value of the non-

functional characteristic for the composed Web service with respect to the plan that

is used. For example, the response time for a composed Web service constructed

by a sequence plan is simply the summation of response time values of all the used

Web services, while the response time for a parallelly composed Web services is the

maximum of the response time values. These functions are modeled within the ontol-
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ogy, and are later used to calculate the corresponding values for the non-functional

characteristics of the composed Web services.

User preferences are modeled by using fuzzy IF-THEN rules. A fuzzy IF-THEN rule

consists of an IF part, which is a combination of terms and a THEN part, which is

exactly one term. Each term is in the form of A = T where A is a variable and T is

value. A fuzzy function is defined that assigns a value between [0, 1] to the rules based

on their degree of fulfillment w.r.t a composition. Users can describe a preference,

e.g, IF ResponseTime = fast and PriceAmount = cheap THEN Rank = high. Given a

set of preference rules, this system first calculates the associated values of composed

Web services, and then ranks them based on the evaluation of defined preferences.

In [84], the authors proposed a preference-based system by exploiting Golog (described

in Section 2.3.2.1) for composing Web services, and a combination of First Order

Logic (FOL) and temporal logic to describe user preferences about functional and

nonfunctional characteristics of their desired Web services. Situation calculus and

FOL are used to describe functional and nonfunctional characteristics of Web services,

and Golog is used to specify composite Web services by using built-in operators such

as occ and final, where final(f) states that fluent f holds in the final situation, and

occ(a) states that action a occurs in the present situation. For more information

about situation calculus, readers are referred to Section 2.3.2.1.

User preferences are expressed using FOL combined with additional operators bor-

rowed from temporal logic operators such as until, always, and next. Each preference

has a weight between zero to one that is assigned by users. A preference with lower

weight is more preferred than a preference with higher weight. When a preference

is satisfied by a composition, its weight will be added to the relevant composition’s
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weight; otherwise, one is added. A composition with lower weight is preferred to a

composition with higher one.

For instance, the preferences below can be described for a travel domain. P1 states

that the user prefers economy flights with a Star Alliance carrier, and P2 states she

prefers direct economy flights with Delta airlines, but she prefers P1 more than P2.

P3 expresses that Hilton hotel never is booked.

- P1: (∃c, w).occ′(BookAir(c.economy,w)[0.8] ∧member(c, starAlliance)[0.2])

- P2: occ?′(bookAir(delta, economy, direct))[0.5]

- P3: always(¬((∃h).hotelBooked(h) ∧ hilton(h)))[0]

Moreover, users can specify alternatives for each preference, which means they can

group some preferences such that if any of member is satisfied, the group is then

satisfied. The order of checking the member of groups is according to their weights;

the lower weight is considered first. If the jth preference is satisfied, the associated

weight vj is added to the situation. In a case that none of the members satisfies the

considering situation, the maximum weight in the group is added to the situation.

Finally, the composition system uses the preferences to generate the most preferred

solutions. This framework uses the preferences during the composition in order to

prune unlikely possible situations, thus reducing the time of composition process.

In Lin’s approach [56], Web services were described by OWL-S (Section 2.3.1), and

preferences are expressed by PDDL3 [33]. Preferences are divided into two groups

of basic preferences, which are based on FOL and temporal preferences. Temporal

preferences consist of some basic preferences and operators of Linear Temporal Logic
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(LTL) such as final, at−most− once, sometime− after, and sometime− before.

In this approach, first, descriptions in OWL-S and PDDL3 are translated into a

planning language. Then, SCUP - the proposed algorithm- combines HTN planning

with best-first search that uses a heuristic selection mechanism and computes the

cost of a state before decomposing it. A better state is determined by evaluating user

preferences. Lin showed this approach had substantially better quality in finding the

most preferred plan compared to other planning algorithms.

Traverso et al. [85] looked at preferences as the alternative goals of composition that

must be satisfied when the main goal could not be reached. Web services described

by OWL-S are translated to state transition system. A state transition system pro-

vides a sort of operational semantics to OWL-S such as non-deterministic situation

handling and partial observation of state of Web services. Preferences are defined

in term of goals of composition. They can be described as simple or complex goals.

Simple goals are described by using a propositional logic language. For describing

complex goal such as “try to satisfy goal 1, upon failure, do satisfy goal 2”, they used

EaGLe language [51] that has some operators over simple goals. For instance, for

propositional formula p as a simple goal, the complex goal g can be defined as g := p

| gAndg | gTheng | gFailg | Repeatg | DoReachp | TryReachp. They used a planner

to create a plan for composition. Easily converting the created plan to an executable

one is the advantage of this planner.

In [67], the authors used context logic to deal with Web service composition. In

general, context logic is an extension of first-order logic in which sentences are not

simply true, but are true within a context i.e. isTrue(context, formula) is true when

the first-order formula is true based on the given context as the input. Dynamic
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Description Logic (DDL) [19] is used to describe the context. A DDL language

consists of TBox, ABox, and ActionBox which is a set of actions, and each action is a

binary tuple of pre-conditions and effects. Preferences also are described in terms of

DDLs as well as the query and Web services. The proposed framework checks whether

a composition of Web services is possible to satisfy the query by using DDL’s reasoner.

Sohrabi et al. [82] modified PDDL3 and extended it to HTN-based planner to compose

Web services based on user preferences and service regulations/policies that can be

defined in terms of a Linear Temporal Logic (LTL). The modified version of PDDL3

in this approach has three constructions: occ(a) which indicates primitive task a

occurs in the present state, initiate(x) indicates task x initiates in current state, and

terminate(x) shows that x terminates in current state. The semantics of the added

constructions are discussed in [81]. Each preference, described in terms of modified

PDDL3, has a unique name and a cost that is associated with the preference. There

is a built-in function in PDDL3 called is− violated that takes as input a preference

name and returns the number of times that the preference is violated. As an example

for describing the preferences, we can consider these two preferences about a travel

domain:

- (preference p1 (sometime-after (terminate arrange-trans) (initiate arrange-acc)

) )

- (preference p2 (imply (and (hasBookedFlight ? Y) (hasAirline ? Y ? X) (mem-

ber ? X StarAlliance)) (sometime (occ (pay ?Y CIBC) ) ) ) )

Preference p1 implies the arranging for accommodation should be start after finishing

the arrangement for transportation. Preference p2 states that if a flight is booked
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with Star alliance carrier, pay using the user’s CIBC credit card. Also, it is possible to

define a metric function over the preferences such as (: metricminimize (+(∗40(is−

violatedp1)) (∗20(is − violatedp2)))) that specifies p1 is twice more important than

p2.

In [79], authors considered user preferences over non-functionalities of Web services,

and they use Conditional Preference Network (CP-net). CP-net is a framework for

representation and reasoning with qualitative preferences. A CP-net is a graphical

model that allows the user to describe preference relations as the notions of preferen-

tial dependence or preferential independence and conditional preferential dependence

or conditional preferential independence. In the context of Web service composition,

CP-nets can be used to capture the user preferences among various assignments of a

Quality Of Service (QoS) parameter.

In addition, through CP-nets users can also specify conditional preferences on values

for a QoS parameter depending on values assigned to other QoS parameters. For

instance, a user prefers to have a more secure Web services. Also, it is already defined

for the system that e.g. SSLv3 is more secure than SSLv2. Thus, the system will

give the higher rank for those composed Web services that use SSLv3. The system

can consider more than one QoS parameter (e.g., tractability and performance). In

this case, the system draws the induced preference graph of CP-net. This graph is

a directed acyclic graph whose nodes are the conjuncts of variables, and there is an

edge (o, o′) iff o and o′ differ only in a single variable. The root of this graph is the

highest-level on preferences. Consequently, a composite Web service can be ranked

based on the conjunction of variables in the nodes that they fulfill. If the satisfied

node is closer to the root, it means that composite Web service is more preferred (see
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Figure 5.1: Induced Preference Graph [79]

figure 5.1).

Rahmani et al. [75] proposed a heuristic algorithm for Web service composition

with considering user non-functional preferences. In this approach, Web services are

modeled by their input, output, and their non-functional properties such as execution

time and Web service price. The main search algorithm is a backward search. In each

step of backward search, there might be more than one relevant candidate service for

continuing backward search. Moreover, backward search may try several services

which are not reachable from the initial state. By ordering the relevant services, the

authors showed that searching can avoid dead end branches.

In backward search, after adding one service to a plan, the service’s inputs will be

added to the goal list. One simple idea can be about how much criticality one service

will add to the problem. The concept of criticality in the proposed algorithm is how far

the service’s inputs are from the initial state. Hence, they define some functions that
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estimate the distance of the input of a service from the initial inputs, and the minimum

distance will be chosen. To investigate the non-functionalities of the composed Web

service, first, users specify their preferred value for each non-functional property.

Then, the same procedure will be operated to those Web services that when they are

composed the aggregated distance satisfies the user preferences.

Benouaret’s framework [11] can be divided into four sub-components: Data as a

Service (DaaS) annotator, RDF query rewriting, Fuzzy constraint matcher, and ser-

vice ranker. DaaS annotator allows service providers to describe functionalities and

(fuzzy) constraints of a service in the form of SPARQL queries. Borrowing from [11],

the following SPARQL query illustrates the functionality and constraints of a DaaS

service:

RDFQuery {SELECT ?y ?z ?t

WHERE{ ?Au rdf:type AutoMaker ?Au name $x

?Au makes ?C ?C rdf:type Car ?C hasName ?y

?C has Price ?z ?C hasWarranty ?t}}
CONSTRAINTS {?z is ’URL/CheapService’, ?t is ’URL/ShortService’}

The RDF query rewriter identifies relevant services that match a query or at least

some parts of it. The fuzzy constraints matcher is used to compute the matching

degrees between (fuzzy) preference constraints and (fuzzy) service constraint for each

relevant service. The role of the service ranker is to rank both individual and com-

posite services based on their associated matching degrees.

As an example, a query and preference such as return the French cars, preferably at

an affordable price with a warranty around 18 months and having a normal power

with a medium consumption, can be specified as follows:
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SELECT?n?pr?w?pw?co

WHERE{ ?Au rdf:type AutoMaker ?Au hasCountry ’France’ ?Au makes ?C

?C rdf:type Car ?C hasName ?n C has Price ?pr

?C hasWarranty ?w ?C hasPower ?pw ?C hasConsumption ?co}
PREFERING{?pr is ’URL/AffordablesService’,

?w is ’URL/around(18)Service’, ?pw is ’URL/NormalService’,

?co is ’URL/mediumService’}

In Izquierdo et al approach [40], which is our main motivation, the authors use query

rewriting techniques and logical theories to compose Web services. Web services are

semantically described using LAV mappings in terms of an ontology domain, and

user requests are defined in form of conjunctive queries with respect to the ontology.

In addition, users may specify a set of preferences in order to rank the possible

solutions to a received request. The LAV formulation allows the system to cast the

service selection problem as a query rewriting problem. In this system, the ontology

is defined by using subsumption rules. Each Web service description is defined in

the form of conjunctive queries over the ontology domain. Each request consists of

a conjunctive query and a set of preferences. Preferences are described in form of

propositional formulas.

For instance, in the travel domain, users can specify their preferences such as ”if my

travel is operated by an airline, I prefer to have a flight provided by AirCanada” by

using the formula like flight→ AirCanada. For each preference a cost can be defined

by the user such that when the preference is violated by a composed Web service,

its cost will be added to the composite Web service, and finally the composed Web

services will be ranked based on their associated costs such that a Web service with

a lower cost has a higher rank.
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In their proposed mechanism, users can prioritize their preferences by allocating dif-

ferent costs to preferences, e.g. a user wants to imply ”I highly prefer to not fly, but if

it is not possible, I prefer to fly by AirCanada”. These preferences can be described

as follow: (i) P1: (¬flight, 40) , (ii) P2: (flight → AirCanada, 10). Hence, P1 is four

times more important than P2. After describing the request, this framework rewrites

the query based on available services in the service registry, and then uses a SAT

solver in order to evaluate each composite Web service and to rank them based on

the evaluated user preferences, and returns a ranked set of composed Web services.

Mesmoudi et al. [65] combined configuration and query rewriting methods for Web

service composition. In general, configuration [46] is to find a set of concrete objects

that satisfy the properties of a given model. In this approach, services are described in

terms of inputs and outputs with respect to the ontology’s concepts. The ontology is

described by description logic (FLE). This approach uses two algorithms, the first one

for identifying services according to the concepts in the query, and the second one for

pruning irrelevant rewritings. Then, the configuration method is used to capture the

dependencies of selected Web services by drawing the dependency graph which is a

directed acyclic graph. Finally, the preferences are specified using the language FLE.

The function ”concept score” is used for each concept in the preference to calculate

the degree of relevance between a composition concept and the one concept in P.

Next a global score for the composition is calculated from the individual concept

scores. The concept score is characterized by two elements closeness and specificity.

The closeness parameter shows the semantic distance between the concept in P and

its correspondence in composition by using the tree diagram of the ontology. For

instance, assume an ontology with this structure: first− class− flight v flight v
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travel, and assume in the composition we have the concept flight. Now, if in the

preference, there is a concept flight, then closeness parameter will take the value ’1’.

Otherwise, if the concept first-class-flight is represented in the preference, it takes

the value less than one e.g. ’0.8’, but it takes another number less than ’1’ such as

’0.3’ if the concept travel is represented in the preference. The idea of our proximate

measurement function, explained by definition 7.2.11, is motivated by the closeness

function in this work; nonetheless, the calculation process of these two functions are

totally different. Specificity is related to the hierarchical position of the concept in

the ontology. A global score can be reached by calculating the average of concept

scores for each composition, and they will be ranked based on these numbers.

5.1.1 Evaluation of the Related Works

In this Section, the approaches that considered preferences over the functionalities of

Web services are evaluated by our example (see Chapter 3) such as Agrawals approach

[2] and Izquierdo et al approach [40]. In other word, the approaches (e.g., [79]) that

focus on the users non-functional preferences are out of the scope of this Section.

To evaluate the Izquierdo et al approach [40], the domain ontology should be defined.

Predicates World(x), Europe(x), Scandinavia(x), Africa(x) are added to the ontology

to verify the location of x. Flight(x,y) and train(x,y) are used to determine that the

movement from x to y is done by a flight (or respectively, train).

The Web services in the assumed service registry, which are listed in table 7.3) should

be first described. In this approach, the descriptions of Web services are expressed

using conjunctive queries in the terms of the concepts in the domain ontology. There-
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fore, according to the above ontology, Web service EFlight can be described as:

EFlight($x, y) : −Flight(x, y), Europe(x), Europe(y)

where Flight and Europe are relational symbols in the ontology, and predicate Flight

verifies whether the provided trip is flight. The symbol ‘$’ denotes that x is input

attribute, and the service provides information in the form of a tuple (x, y).

The descriptions of the other Web services are represented as follows:

• ETrain ($x, y) :-Train(x, y), Europe(x), Europe(y)

• ScandinaviaTrain ($x, y) :- Train(x, y), Scandinavia(x), Scandinavia(y)

• LocalSwedenAirlines($x, y) :- Flight(x, y), Sweden(x), Sweden(y)

• WestJet ($x, y) :- Flight(x, y), World(x), World(y)

• EgyptAirlines ($x, y) :- Flight(x, y), Africa(x), Africa(y)

• AirCanada ($x, y) :- Flight(x, y) , World(x), World(y)

• EFlight($x, y) :- Flight(x, y), Europe(x), Europe(y)

• StarHotel ($x, hotelName) :- World(x), 4-starHotel(hotelName),

LocatedIn(x, hotelName)

• AAHotel ($x, hotelName) :- World(x), 3-starHotel(hotelName),

LocatedIn(x, hotelName)

• RoyalHotel ($x, hotelName) :- World(x), 4-starHotel(hotelName),

LocatedIn(x, hotelName)
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In this framework, a user request R is in the form of tuples R =< Q,P > such that

Q is a conjunctive query in the terms of the ontology, and P is a set of preferences

for Q. Back to our case study, to find the second desired Web service, a query such

as the following can be defined:

Q($x, y) : −World(x), Trip(x, u), World(u), Trip(u, y), World(y), Trip(y, w),

World(w), Trip(w, x)

A preference in this framework is a tuple < ρ, c > where ρ is a propositional formula in

the terms of Web services names and the ontology’s concepts. c is the cost associated

with ρ, and will be added to the total cost of a rewritten query when it violates the

associated propositional formula. The validity of a preference is defined with respect

to the propositional model M(I) such that a valid rewriting I satisfies a preference

if either the Web service name appearing in ρ is also appear in I, or a concept (or its

parents in the ontology) in the preference appears in I as well.The solution for the

request R is any best-ranked valid rewriting based on the total violated costs. By

using the language that is proposed in [40], our preference for the above query, which

is “Trips are preferred to be flight”, can be described as (Flight, k) or (¬Train, k)

such that k is the cost of the preference.

Although it is possible to describe this preference in the proposed language, there are

some issues in ranking the results. For instance, the following rewritings are valid

answers to the request:

• I1(x, y) : −EFlight(x, u), WestJet(u, y), AirCanada(y, w), WestJet(w, x)

• I2(x, y) : −LocalSwedenAirlines(x, u), ScandinaviaTrain(u, y),

ScandinaviaTrain(y, w), ScandinaviaTrain(w, x)
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Figure 5.2: Graphical representation of the query

• I3(x, y) : −LocalSwedenAirlines(x, u), ScandinaviaTrain(u, y), AirCanada(y,

w), WestJet(w, x)

For the preference (Flight, 50), the results I1, I2, and I3 have the same ranking since

all of them satisfy the preference; thus, the associated total costs are zero. For the

preference (¬Train, 50), the results are ranked as I1, I2, and I3 with the costs of 0,

50, 50, respectively. As this example shows, this approach cannot distinct between

the composed Web services that provide three leg flights and the Web services that

provide only one leg flight.

For the second desired Web service (visiting four European cites), the query can be

specified as Q($x,u,w,y,z) :- World(x), Trip(x, u), Europe(u), Trip(u, w), Europe(w),

Trip(w, y), Europe(y), Trip(y, z), Europe(z).

The graphical representation of this query is depicted in Figure 5.2.

The preference “If two consecutive cities are in Scandinavia, the travel between them

should be done by train” for this query can be expressed by (Scandinavia→ Train, 100)

formula, but this formula does not capture the entire meaning that we expect. For

instance, a rewritten query such as I($x,u,w,y,z) :- WestJet(x, u), ETrain(u, w),

LocalSwedenAirlines(w, y), EFlight(y, z) will satisfy the preference; however, this

composition is not the one we prefer because w and y are located in Scandinavia and
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connected by a flight.

The preference for the fourth desired Web service cannot be described in this language.

The fifth preference, similar to the first preference, has issues in the ranking process;

for example, assume the case that there is no Web service to book a 3-star hotel and

there are two Web services such that the first one books a 4-star hotel, and another

one books a room in a 5-star hotel. Although, none of these two Web services satisfy

the preference, the first one is closer to our preference, and a higher rank is desired

to be assigned to it. However, this framework cannot handle this desire.

In [65], the description logic FLE is used for describing the ontology. The syntax and

semantics of FLE are represented in Figure 5.3:

Figure 5.3: Syntax and semantics of FLE

where A is a primitive concept, C, D, E are arbitrary concepts, R is an arbitrary role,

and a and b are individuals. For further detail about description logics, readers are

directed to [5].
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In this framework, Web services are categorized based on their functionalities. For in-

stance, in our case study, Web services in the registry can be categorized into two main

groups: Trip and Accommodation. Each category represents the functionalities of its

Web services, and it is described in the terms of the concepts in the ontology. For ex-

ample, the Trip category is described as Trip v ∃HasInput.Location, and the output

departurePlace by using the expression Transportation v ∃HasOutput.Location. To

indicate the subcategories (e.g., flight and train), the subsumption rule is used; for

example, Flight v Trip. Also, a subsumption rule is used to declare the category of

each Web services in the repository such as AirCanada v Flight. The names Flight

and AirCanada in the ontology are called abstract Web services. Those abstract

Web services that can be replaced immediately by a concrete Web service are called

primitive Web services. For our example, AirCanada, WestJet, AAHotel, and ETrain

are primitive services. In this approach, only the primitive services are considered:

the categories in the ontology that do not have abstract services as subcategories. In

other word, the source nodes (i.e. nodes that have no incoming edge) of the ontology

graph are considered.

A query in this approach consists of two parts: the mandatory part M and the

preference part P . The mandatory part is specified as a triple < I,O,C > where I

denotes the input data, O denotes the output data, and C denotes service categories.

For example, the mandatory part of a query for searching the fifth desired Web service

can be specified as:

M = Trip u HasInput.Location u Hasoutput.Location u Accomidation u

HasInput.Location u HasOutput.HotelNames

The preference part of the query also is a tuple < I,O,C > in which I denotes
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the preferences for the inputs, O denotes the preferences for the outputs, and C de-

notes the category of the desired Web service. For example, the preference “The

booked room is preferred to be in a 3-star hotel” can be expressed by the expression

<’ ’, 3starhotel, Accommodation >. As mentioned in Section 5.1, this approach as-

signs a value to each concept in the preference to represent the relevance degree of a

composition and a concept in P .

This value is called the concept score and is calculated by the formula S(c, R) =

Closeness(c, R)∗Specificity(c) where R is a composition, c is a concept in the pref-

erence. Closeness and specificity are two elements that are defined as follows:

where V is the set of Web services that are used in the composition. The function

extent(c) is the semantic extent implied by the concept c. It is related to the hierar-

chical position of the concept in the ontology, and intuitively measures the granularity

of a domain concept. For example, let us take X v Y and Y v Z, if X has no sub-

concepts, the extent value of X is 1, for Y , the extent value is 2 and for Z, the extent

value is 3.

Based on these definitions, assume the results of the query described above are com-

positions of WestJet service with StarHotel, AAHotel, or RoyalHotel services. The

ranking of the results is represented in Table 5.1. Although the preference is a 3-star

hotel, the best score belongs to the Web service that operates bookings in a 5-star

hotel.

For the first four desired Web services, we need additional concepts to describe the

queries properly. Web services are categorized and each category describes the func-

tionalities of its Web services. Based on our categorization, WJ and EF services have

the same functionalities. But, they get different inputs. Therefore, extra categories
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Table 5.1: Ranked results of compositions

Composition Closeness Closeness Composition score

WestJet + Royal-Hotel 0.8 1/1 0.8

WestJet + StarHotel 0.8 1/2 0.4

WestJet + AA-Hotel 1 1/3 0.33

are needed. These modifications can be done by eliminating the input part for cate-

gory Trip and describing the inputs of the category in its subcategories individually,

adding Europe-Trip, African-Trip as the subcategories of Trip, and specifying the in-

puts part for the subcategories, e.g., EuropeTrip v ∃HasInput.EuropeLocation and

Europe-Trip v ∃ Hasoutput.EuropeLocation. Now, assume that two Web services

are added to the repository; the first one operates on Swedish local flights, and the

second one only gets French cities as the input. We cannot add them to Europe-Trip

category due to the different inputs. As such, the initial issue still remains. Con-

sequently, the categories must be divided to very small categories, so in some cases

each subcategory has only few Web services, so this issue makes the approach less

efficient. On the other hand, if this kind of categorization is done, there are still some

issues in describing preferences. For example, describing the third preference at least

three stops in Africa is not possible due to the structure/language of preferences.

The proposed language for preferences in [84] can describe the first preference as the

formula (always(bookF light)), but issues in ranking still remain. For instance, those

composed Web services that perform all legs flight itineraries will get the highest rank,

and another composed Web services will get the same and a lower rank. In other word,
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the results can be divided in two groups: All legs flight and others, and there is no

ranking in the second group between e.g. three-leg flights and two-leg flights. The

third preference can be described in proposed preference language which is based on

FOL, however the ranking is not completely correct. For example, the framework

does not make a difference between the group of composed Web services that provide

itineraries with two stops in Africa and the other group of services that provides

itineraries with no stops in Africa. Also, this approach is not capable of handling the

second and fourth preferences because user preferences can only be described for the

entire query not a part of it.

The language PDDL3 that is used by [57] and [83]can completely handle the first

preference because this language counts the number of times that a preference is

violated. Therefore, a composition with three leg flight and one leg train (one time

violation) has lower cost than a composition with two leg flight and two leg train (two

time violations), and consequently has higher rank. However, there is no possibility

for describing preferences like the second and fourth ones.

To summarize, Table 5.2 shows the evaluation of related works.
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Table 5.2: Related works evaluation

Approach Prf1 Prf2 Prf3 Prf4

Izquierdo et al. [40] - - - -

Mesmoudi et al. [65] - - - partially

Sohrabi et al. [84] - - partially -

Lin et al. [57] X - - -

Sohrabi et al. [83] X - - -

5.2 Query Rewriting using Views in the Presence

of Dependencies

The problem rewriting queries using views in the presence of dependencies, a.k.a

rewriting with integrity constraints, was studied first in [26], where a dependency is

defined by a negated expression ¬Φ where Φ is a positive conjunction of atoms, and

all the variables in Φ are universally quantified. For example, to show mothers and

fathers are disjoint, the expression¬(Mother(x) ∧ Father(x)) can be used.

Other dependencies that have been studied are functional and inclusion dependencies.

Gryz [35] proposed and algorithm to equivalently rewrite queries in the presence of

inclusion dependencies. This algorithm first chases back the query to form query

Q′, and it then tries to find equivalent replacement atoms for each atom in Q′ by

using the set of inclusion dependencies. The author also provided an extension to

also find contained rewritings. In [6], authors extended MiniCon algorithm to rewrite
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queries in the presence if inclusion dependencies. The algorithm first chases queries

and views and then applies modified MiniCon to rewrite the initial query by using

the new query and view subgoals. Duschka et al. [27] extended reverse algorithm to

maximally rewrite queries in the presence of dependencies by finding recursive query

plans. They also extended the algorithm to support full dependencies. The extension

finds recursive query plans that are maximally contained in the initial query. The

authors also showed that for the dependencies that are not full, i.e. some existential

variables also exist in the query, the algorithm may fail to rewrite the query because

the semi-native evaluation of datalog program may not terminate.

In [47], authors dealt with the problem finding maximally contained rewritings in the

presence of special class of dependencies called conjunctive inclusion dependencies.

The proposed algorithm which is an extension for inverse rule algorithm is sound but

not complete.

Another class of dependencies which have been considered are tuple-generating depen-

dencies (tgd’s). In [10, 15], it is noted that using general tgd’s without any constraints

makes the query rewriting problem undecidable because the chasing process may not

terminate. Therefore, various subclasses of tgd’s are considered such as weakly-acyclic

tgd’s and guarded tgd’s. To more information readers are referred to [14].

Full dependency (see Table 4.1) as a special class of tgd’s have been considered.

As mentioned above, [27] extended inverse-rule algorithm to rewrite queries in the

presence of full dependencies. This algorithm provides recursive rewritten queries. In

spite of all these efforts, no extension exists for bucket-based algorithm to handle full

dependencies. Therefore, our focus was to extend a bucket-based algorithm which is

explained in Chapter 6.
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Chapter 6

Query Rewriting in the Presence

of Dependencies

Defining dependencies over the global schema may assist us to find more contained

rewritten queries, which are contained only in the presence of these dependencies.

Various dependencies have been defined such as inclusion, full dependencies, and

tgd’s (see Section 4.5).

In our approach, we use full dependencies, which are logically equivalent to datalog

rules, to describe dependencies. We call the entire package of query language and

dependencies, which both are defined over the same language, domain ontology. In

this Chapter, the domain ontology is first formalized, and then the concepts used

for query rewriting in the presence of ontology are defined. Finally, we explain our

algorithm to rewrite queries in the presence of full dependencies.
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6.1 Domain Ontology

An ontology is a formal, explicit specification of a shared conceptualization [34]. In

this definition, “conceptualization” refers to a model of the world. “Shared” indicates

that an ontology captures knowledge which is accepted by a group, and it is mean-

ingful for them. “Explicit” means that the type of concepts in an ontology and the

constraints on these concepts are explicitly defined. Finally, “formal” means that the

ontology should be machine understandable [20].

Some of the well-studied languages to construct an ontology are description logics

(DL), rule-based languages, and some fragments of the combination of the two formers

[37]. Various description logics are studied to encode human knowledge, such as

SROIQ [38], EL++ [4], and DL-lite [16], that underly the profiles OWL DL, OWL

EL, and OWL QL, respectively. Description logics, in general, are powerful tools to

capture human knowledge but are inefficient in reasoning performance compared with

rule-based languages such as datalog which are less expressive but more efficient in

reasoning.

Nonetheless, there exists kinds of knowledge which can be captured by only one of

these languages or even by none of them. For instance, in SROIQ, the most expressive

DL, it is impossible to assert that a person X who has a brother, sister, mother, and

father, then all of them have a complete family [37] because predicates with arity

more than two are not allowed. This can be done easily using the datalog rule

HasCompleteFamily(x,b,s,f,m) :- HasBrother(x,b), HasSister(x,s), HasFather(x,f),

HasMother(x,m)

On the other hand, datalog rules cannot encode the information that a family with
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more than five children is a big family, which is easy to represent in SROIQ. To

achieve to a more expressive language the first idea that may come to mind is to

combine these two languages because both are fragments of first order logic and can be

combined together. However, combining description logics, even EL++ the simplest

one, with rules makes the reasoning problem undecidable. Therefore, fragments of this

combination such as DL-rules and safe DL-rules have been proposed and studied. For

more information about description logics and rules, readers are referred to Chapter

5 and 6 in [37].

In spite of the efforts, having expressivity and tractability is a double-sided sword,

and there is a trade-off between these two desires. To handle this trade-off, in our

approach, datalog rules are used to construct the domain ontology because in the Web

service composition where real-time answering is required, tractability is the main

concern. Moreover, we can mix ontological rules with queries and views, and then

use the same reasoners for them without any additional cost to translate languages to

each other. The formal definition of ontology in this work can be found in Definition

6.1.1.

Definition 6.1.1 (domain ontology) A domain ontology is a tuple O= 〈 L, ∆

〉 where L is a datalog syntax (Definition 4.1.1) to capture the domain’s concepts

and their meanings, and ∆ is a finite set of safe datalog rules over the L to capture

the relations between these concepts. For any rule in ∆, the order of its subgoals is

assumed to be fixed. Moreover, any rule in ∆ has a unique id. L and ∆ are called

ontology language and ontology rules respectively in the rest of this thesis. �

The order of subgoals has no effect on the evaluation of the rules. Hence, without
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loss of generality, we can assume that the order of subgoals in each rule is fixed. This

characteristic assists us to rewrite the query faster by reducing the number of checks.

Before continuing this Chapter, a set of functions are defined. The function Head(R)

returns the head atom, while the function Body(R) returns the subgoals of the given

rule R; function V ar(P ), recalling from Chapter 4, returns all the variables appearing

in P ; and Predicate(P ) returns the predicate name which is used in P . Moreover

we use symbol � and ` to describe consistency/provable. I � ∆ means for any rule

R ∈ ∆, RI = true. ∆ ` R means R is provable based on ∆. In other word, for any

interpretation I such that I � ∆, we have RI = true.

In the rest of this Section, we will define a set of concepts on which our algorithm

is based. The first concept that we use during the rewriting is a dependency graph,

which is drawn according to ∆ and is called ∆-graph. This graph is defined as follows:

Definition 6.1.2 (∆-graph) For a given domain ontology O= 〈 L, ∆ 〉, ∆-graph is

a directed acyclic graph G∆= 〈V,E〉 with labeled nodes and edges such that

- V = C ∪ P where P is a set of nodes labeled with predicate symbols (called p-

node), and C is the set including all the nodes labeled with the rules’ ids in ∆

(called conjunct-nodes)

- E is the set of labeled edges that are drawn based on the rules; for a given rule

Number n) P1(u1):- P2(u2), ..., Pk(uk), ∆-graph is drawn as follows:
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Figure 6.1: ∆-graph basic structure

where the edge labels represent the positions of connected p-nodes in the rule n; the

square nodes represent c-node; and circle nodes represent p-nodes. Note that we only

consider the domain otologies whose their ∆-graph is acyclic. �

Each predicate in L has a unique p-node, and each rule in ∆ has a unique c-node.

As Figure 6.1 shows, there always exists a path from subgoals of a rule to its head,

and the length of this path is equal to two. Paths, e.g. from P to S, can be used

to check if there exists a rule ∆ ` R such that Head(R) = S and P is a subgoal in

R. Note that the existence of a path is a necessary but not sufficient condition for

finding R. It is not sufficient because predicates’ arguments are not considered in ∆

graph. We consider them later (see Definitions 6.2.5 and 6.2.6) during the creation

of rule R based on some paths in the graph. Therefore, such a rule R may not exist

while there is a path from P to S.

Example 6.1.1 Let O= 〈 〈 C, {v1, v2, v3, v4, x, y}, {Smart(v1), SupervisorOf(

v3, v4), Happy(v2)} 〉, {Happy(y):- SuervisorOf(x, y), Smart(x)}〉 be a domain

ontology; the ∆-graph can be drawn as follows:
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Definition 6.1.3 (path) A path from a node labeled with α to another node labeled

with β in ∆-graph is a string of nodes that are connected to each other. A path is

formalized as a tuple 〈 r1 : s1, r2 : s2, ..., rn : sn 〉 where ri is an id indicating the

rule Rri in ∆, and si indicates the subgoal gsi in Rri such that:

- Predicate(gs1) = α

- Predicate(Head(Rrl)) = Predicate(gkl+1
) for 1 < l < n

- Predicate(Head(Rrn)) = β

�

Note that since the ∆-graph is acyclic, and ∆ is finite, any path in ∆ is finite. This

characteristic is crucial for query rewriting in the presence of full dependencies, as

it guarantee the problem to be decidable. The path concept is used later, during

rewriting of a query, to check whether a subgoal of a view has any potential to cover

a query’s subgoal. To enable such a check, another concept is required, which is path

overlap. We can easily determine whether or not two given paths overlap each other

by checking their definitions.

Definitions 6.1.4 Path overlap Two paths P1= 〈 r1 : s1, r2 : s2, ..., rn : sn 〉 and

P2= 〈 r′1 : s′1, r′2 : s′2, ..., r′m : s′m 〉 overlap each other if there is an ri in P1 which is
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identical to an r′j in P2. The size of the overlap is equal to the number of ri’s which

are the same in P1 and P2. �

We defined all the concepts ∆-graph, path, and path overlap in order to be able to

define a concept called D-RAD, which is described in Definition 6.1.5.

Definitions 6.1.5 D-RAD (Derivation-Rooted Acyclic Digraph) D-RAD D

is a sub-graph of ∆-graph containing a set of paths P = {P1, ..., Pk } such that

C1) there is one and only one p-node TD, called the root, such that for every other

node n in D, there is a path from n to TD, and

C2) only one edge goes through each p-node in the D-RAD.

Nodes that have no incoming edge are called source node. The path in P with maxi-

mum overlaps with the other paths in P is called the rooted path of the D-RAD and

is shown by PTD
. Path PTD

may not be unique. In the case that more than one path

has maximum overlap, one of them is arbitrarily selected.

�
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The intuition behind the D-RAD is to convert a D-RAD to a new datalog rule R′ such

that the head of this rule has the predicate TD, the body contains the source nodes

of D-RAD, and the terms are named such that∆ `R′. To pave the way to reach this

point, clause C1 is a necessary condition to ensure that the heads of such rules have

only one atom. The condition C2 guarantees no non-deterministic situation occurs

during the conversion of a D-RAD to a rule.

6.2 Required Tools for using Domain Ontology in

Query Rewriting

Domain ontology formalizes the human knowledge about a given domain. This for-

malized information can be utilized to rewrite a query in order to possibly provide

more rewritten queries, which are contained in the initial query only in the presence of

the information. This kind of containment is called ∆-containment, and that queries

holding ∆-containment are called ∆-contained queries. These queries are formally

defined in Definition 6.2.1.

Definitions 6.2.1 (∆-contained queries) Let Q1 and Q2 be two conjunctive queries,

and ∆ be the set of ontology rules all w.r.t. ontology language L. We say Q1 is ∆-

contained in Q2, denoted by Q1 v∆ Q2, if for all interpretation I by which I � ∆, we

have Q1 vI Q2

Theorem 6.2.1 Assume we have a rule R which is defined as P1(u1):- P2(u2), ...,

Pk(uk) ∈ ∆ over the ontology language L. Let Q1(x):- P1(u1) and Q2(x) :- P2(u2),

..., Pk(uk) be two conjunctive queries over L where x is a tuple of L -terms; then, Q2
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is ∆-contained in Q1 (Q2 v∆ Q1).

Proof. We know that Q2 vI Q1 if Q2
IQ2 ⊆ Q1

IQ1 for all I in L where I � ∆. Assume

for the sake of contradiction that there is an interpretation I1 � ∆ by which Q2
IQ2 *

Q1
IQ1 , that means, there is an object t in I1 such that t ∈ Q2

IQ2 and t /∈ Q1
IQ1 . Since

t ∈ Q2
IQ2 , there is a variable assignment Z1 such that Pi

I1,Z1 (ui)=true for i = 2, ...,

k, and xI1,Z1= t. Because all the variables in the head of R must appear in the body

(see Definition 4.2.1), Z1 can also be applied to the terms in u1.

On the other hand, I1 � ∆ that means for all the variable assignments Z in I1, if

Pi
I1,Z (ui)=true for i = 2, ..., k, then P1

I1,Z (u1)=true; therefore, we should have

P1
I1,Z (u1)=true by the variable assignment Z1. Consequently, based on Definition

4.2.2, (xI1,Z1= t should be the member of Q1
IQ1 which is in contradiction with our

assumption; thus, no such an I1 exists, i.e., Q2 v∆ Q1. �

Corollary. For a given ontology O= 〈 L, ∆ 〉, and the rule P1(u1):- P2(u2), ...,

Pk(uk) ∈ ∆, let Q1(x):- P1(u1), Φ(y) and Q2(x) :- P2(u2), ..., Pk(uk), Φ(y), Ψ(w)

be two conjunctive queries over L, where each of Φ(y) and Ψ(w) are conjunctions of

L-atoms that can be empty; and x, y, and w are L-term tuples. Then Q2 v∆ Q1.

Proof. Since all the ontology rules are safe, all the variables in Q1 also appear in Q2;

therefore, any variable assignment function that can be applied to Q2 can be applied

to Q1 as well. For any interpretation I � ∆, If a variable assignment function Z in I

satisfies all the subgoals in Q2, it will also satisfy all the subgoals in Q1, result in Q2

v∆ Q1. �

As the corollary shows, for two queries Q1 and Q2 such that Q2 v∆ Q1, adding

some additional subgoals to Q2 doesn’t affect the ∆-containment. We later use this
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characteristic to find more ∆-contained queries by using D-RADs and expanding a

p-node by its source nodes (i.e. nodes that have no incoming edge).

Example 6.2.1 By having Theorem 6.2.1 and its corollary, more contained rewrit-

ings may be produced. For instance, let assume the ontology 〈L, {Happy(y):- Smart(x),

SupervisorOf(x, y)} 〉, the query Q(x):- Happy(x), and the view V (y):- Smart(x),

SupervisorOf(x, y) all over the same language L. The ontology rule specifies that

all the people that supervise smart person(s) are happy, and the view would provide

the supervisors of smarts people. By having this ontology and using Theorem 6.2.1,

we can use the view V to answer the query although the predicate Happy does not not

directly appear in V .

Definitions 6.2.2 (∆-equivalent queries)Two conjunctive queries Q1 and Q2 are

∆-equivalent, denoted by Q1 ≡∆ Q2, iff Q1 v∆ Q2 and Q2 v∆ Q1. �

For containment testing of conjunctive queries under inclusion and functional depen-

dencies, [41] and [35] used a computation method, called chase. We will adopt this

method to check the containment of CQs in the presence of ontology rules (i.e., full

dependencies). The chase concept is originally introduced in [60] for functional de-

pendencies. It was modified later in [41] for inclusion and functional dependencies

and revisited in [35] for query rewriting in the presence of functional and inclusion

dependencies. We modify this method to enable us to utilize ontology rules dur-

ing rewriting. Using the modified chase method, we can test the ∆-equivalency of

queries.

Definitions 6.2.3 (Chase∆,R)Let R be an ontology rule P1(u1):- P2(u2), ..., Pk(uk)

∈ ∆. We say that a Chase∆,R is applicable for a conjunctive query Q if the conjunc-
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tion of P2(w2), ..., Pk(wk) exists in Q and there is a homomorphism h that satisfies

the following conditions: (i) constants in ui are mapped to the identical constants

in wi, and (ii) variables in ui are mapped to either variables or constants in wi for

i = 2,..., k. If Chase∆,R is applicable for Q, we then add the atom P1(h(u1)) to Q to

create new CQ Q′. This procedure of adding an atom is called a Chase∆,R step and

is denoted by Q
h,R−−→ Q′. �

Our purpose is to find contained and ∆-contained queries as answers to the ini-

tial query by using the MiniCon algorithm because of its performance in practice.

However, as described in Section 4.4.2.2, the MiniCon algorithm can only find the

contained query as ∆ is not supported. Hence, we extend this algorithm to provide

∆-contained queries as well. To reach this point, a set of theorems are required which

are defined below.

Theorem 6.2.2 Given an ontology O=〈 L, ∆ 〉 such that 1 ≤ |∆| and a given

conjunctive query Q over L, if a CQ Q[1] exists such that Q[1] is the result of a

1− chase∆ sequence from Q, then Q[1] ≡∆ Q.

Proof. Q[1] is applicable, i.e, there is a rule R in ∆ and a homomorphism f such that

the body of R appears as some subgoals of Q and f maps the terms in R to the query

terms which appear in these subgoals. Based on Definition 6.2.3, the homomorphism

of the head of R is added as a new subgoal to Q, forming Q[1]. Using Definition 6.2.2,

we need to show that Q[1] v∆ Q and Q v∆ Q[1]. Showing Q[1] v∆ Q is straightfor-

ward since all the subgoals in Q are also appeared in Q[1]. Therefore, for any variable

assignment in any interpretation, if all the subgoals in Q[1] are interpreted as true, all

the Q’s subgoals are then interpreted as true, resulting in Q[1] v Q, and then we can
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infer Q[1] v∆ Q. To prove Q v∆ Q[1], we only need to investigate the interpretations

that are consistent with ∆. Therefore, all the variable assignments in these interpre-

tations that satisfy the subgoals in Q are forced to satisfy the subgoals of Q[1] as well,

thus Q v∆ Q[1].

�

As mentioned in Definition 4.3.9, a subgoal of a query (e.g., s) is covered by a subgoal

of another query (e.g., g), if there is a containment mapping from s to g. By having

Definition 6.2.3 and Theorem 6.2.2, we can extend the meaning of covering. This

extension will assist us in constructing a new algorithm, and proving its correctness.

Definitions 6.2.4 (∆-covering) Let Q1 and Q2 be two conjunctive queries, and ∆

be a set of ontology rules, all over the same language L. Then a subgoal, e.g. s, in

Q1 is covered by a subgoal of Q2, if either

- there is a containment mapping from s to a subgoal of Q2, or

- there is a rule R over L such that ∆ ` R, and Q2 can be chased by R to form

Q2
[1] by adding new subgoal g′ to Q2. Then, there is a containment mapping

from s to g′.

�

Recall procedure of rewriting in MiniCon from section 4.4.2.2. For each subgoal g

in a query Q, this algorithm compare each subgoal of any view (e.g., s) to g. If the

predicate of s is not the same as the predicate of g, then the algorithm concludes that

s cannot be used to cover g. By adding the set ∆, the problem of rewriting becomes

complicated since we may derive from ∆ that s is contained in g. Hence, it is possible

to use s to cover g. To handle these situations, we use the ∆-graph.
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Figure 6.2: Converting a path to C-rule

The main idea underlying our algorithm is to use ∆ and check whether s has any

potential to cover g when MiniCon fails to use s to cover g. To perform this test, our

algorithm attempts to find a path from the node labeled with the predicate of s to

another node labeled with the predicate of g. If no such path exists, we can conclude

that s has no potential to cover g. The word “potential” is used because even in the

case that there is a path from Predicate(s) to Predicate(g), s may not cover g.

Each path in the ∆-graph provides us with a guide to select a subset of rules {R}

that are required to create a possibly new rule R which is consistent with ∆ (more

precisely, {R} ` R). Intuitively, the body of R contains the union of all the nodes

that are connected to the c-nodes in the path in addition to the first node of the path.

The head’s predicate of R is the last node of the path (see Figure 6.2). The rule R,

which is created based on a path by using a subset of rules, is called Compound rule

(C-rule). The procedure of creating a Compound rule from a path is defined in the

following definition 6.2.5 and algorithm 1.
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Definitions 6.2.5 (Compound Rule (C-rule)) A compound rule R is a datalog

rule which is created based on a path as a guideline and a set of rules as a source such

that R is consistent with that set of rules. Given a path 〈 r1 : s1, r2 : s2, ..., rn : sn

〉, a compound rule R is created iteratively by starting from rule r2.

Algorithm 1 Procedure of C-rule creation

1: Input: a path P and a set of ontology rules ∆

2: Output: A compound rule R if it succeeds; nothing if it fails.

3: Create C rule(P , ∆)

4: create a new rule R . its head and body will be created in the next steps

5: Find least restrictive head homomorphism h and partial mapping Γ such that

Γ(gs2) = h(Head(Rr1))

6: if h and Γ exist then

7: create function f as follows:

f(x) =

 Γ(x) if x ∈ Γ(x)

FreshCopy(x) Otherwise

8: Body(R)= {f(Body(Rr2/gs2))} ∪ h(Body(Rr1))

9: Head(R)= {f(Head(Rr2))}

10: else

11: terminate and return nothing.

12: end if
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13: for each 3 ≤ i ≤ n do

14: Find least restrictive head homomorphism hi and partial mapping Γi such

that Γi(gsi) = hi(Head(R))

15: if hi and Γi exist then

16: create function fi as follows:

fi(x) =

 Γi(x) if x ∈ Dom(Γi)

FreshCopyi(x) Otherwise

17: Body(R)=hi(Body(R))

18: Body(R)+= {fi(Body(Rri/gsi))}

19: Head(R)= {fi(Head(Rri))}

20: else

21: terminate and return nothing

22: end if

23: end for

24: return the created rule R as the result

Least restrictive head homomorphism h means the minimum number of variables’

equations, defined in h, that is necessary to have Γ(gs2) = h(Head(Rr1)).

Algorithm 1 attempts to convert a given path to a rule that can be derived from

∆. Let us consider a simple example: Let Q(x) : −S(x) be the query and V1(y) :

−B(y), V2(z, w) : −C(z, w) be the view. Assume that ∆ contains rules 1) S(u) :

−C(u, e), D(u) and 2) D(m) : −B(m). According to the ∆-graph depicted in figure

6.3, providing the path from B to S for algorithm 1, the c-rule S(u) : −C(u, e), B(u)
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Figure 6.3: A simple ∆-graph

can be constructed. Intuitively, if we show that C(u, e), B(u) is ∆-contained in S(u),

then we can use views V1 and V2 to rewrite the query. Using Theorem 6.2.3, we can

guarantee that the body of a C-rule is always ∆-contained in the head.

Theorem 6.2.3 Let ∆ be a set of ontology rules, and R be a compound rule, which is

constructed w.r.t. a path 〈 r1 : s1, r2 : s2, ..., rn : sn 〉 in ∆-graph. Let Q1 and Q2 be

two conjunctive queries which are defined as Q1(x) :- Head(R) and Q2(x) :- Body(R)

where x is the same tuple as the head arguments of R. Then Q2 is ∆-contained in

Q1.

Proof. Proof is done by induction. Assume the induction base as follows:

Base: Path P= 〈i1 : k1, i2 : k2〉 with length l=2. Based on the algorithm described in

Definition 6.2.5, a compund rule R: Head(R):- Body(R) is created when there is a

mapping Γ and a homomorphism h such that

- Γ1(gk2)= h(Head(Ri1)) (fact 1)
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-

f(x) =

 Γ1(x) if x ∈ Dom(Γ1)

FreshCopy(x) Otherwise

- Body(R)= f(Body(Ri2)/gk2) ∪ {h(Body(Ri1))}

- Head(R)= f(Head(Ri2))

To prove the above statement, we need to show that for any variable assignment Z in

any interpretation I (I � ∆), if Body(R)I,Z=true, then Head(R)I,Z=true.

Assume an interpretation I1 where I1 � ∆. Since I1 is an arbitrary interpretation,

it can be replaced by any I ′ consistent with ∆ (I ′ � ∆). Without losse of generality,

assume that Ri1 and Ri2 are as follows:

Ri1) P1,0(y):- P1,1(x1), ..., P1,k1(xk1), ..., P1,n(xn)

Ri2) P2,0(u):- P2,1(w1), ..., P2,k2(wk2), ..., P2,m(wm)

Based on the path, P2,k2(wk2) should be replaced by the body of Ri1. Therefore, the

body and the head of R would be

- Body(R)= f(P2,1(w1)), ..., f(P2,k2−1(wk2−1)), h(P1,1(x1)), ..., h(P1,n(xn)), ...,

f(P2,m(wm))

- Head(R)= f(P2,0(u))

Now, let Z1 be an arbitrary variable assignment in I1 such that Body(R)I1,Z1=true.

This means,

[f(P2,i(wi))]
I1,Z1 = true for i = 1, ..., n, and i 6= k2 (fact 2)

[h(P1,j(xj))]
I1,Z1 = true for j = 1, ..., n, (fact 3)

If we show that [f(P2,k2(wk2))]
I1,Z1 = true, since I1 � ∆, we can immediately in-

fer [f(P2,0(u))]I1,Z1 = true. Back to the definition of f , f(P2,k2(wk2)) is equal to
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Γ(P2,k2(wk2)). Also, by using the fact 3 and I1 � ∆, [h(P1,0(y))]I1,Z1 = true can be

derived. Now, using the fact 1, Γ(P2,k2(wk2)) is forced to be true, which leads us to

f(P2,k2(wk2))=true (according to the definition of function f). (fact 4)

Consequently, by using facts 2, 4, and I1 � ∆, we can conclude [f(P2,0(u))]I1,Z1 = true

which is the head of R. Since I1 is an arbitrary interpretation, we can derive that for

any interpretation I where I � ∆ and variable assignment Z in I,

if Body(R)I,Z=true, then Body(R)I,Z= true.

Now, assume the theorem holds for l=J. We should show that it also holds for l=J+1.

This case is straight forward. It can be reduced to the base case by assuming that the

Compound rule for l=J is created, and this new rule is added to ∆ with id r′. We can

change the path from 〈 r1 : s1, r2 : s2, ..., rJ+1 : sJ+1 〉 to a path 〈 r′ : s′, rJ+1 : sJ+1〉,

and it is already shown that for a path with length two the theorem holds. �

Definitions 6.2.6 (Complex Compound Rule (CC-rule)) Complex Compound

rule (CC-rule) is a datalog rule which is created by using a D-RAD (i.e., a set of

paths) such that the source nodes (i.e. nodes that have no incoming edge) of a D-

RAD construct the body, and the head predicate is node TD.

The procedure, represented in the next page, can be used to create cc-rules. The

input of this procedure is a set of paths which creates a D-RAD {P}, and the output

will be a a cc-rule in the case of success. It returns nothing in the case of failure.

104



Algorithm 2 Procedure of creation of cc-rule

1: Input: a set of paths {P} and a set of ontology rules ∆

2: Output: either a c-rule or a cc-rule if it succeeds; nothing if it fails.

3: Create CC-rule({P},∆)

4: if (| {P} | == 1) then

5: return C-rule(P ,∆)

6: end if

7: G= ∅

8: create a new rule R

9: Find PTD
∈ {P} and remove it from {P}

10: for each P ∈ {P} do

11: Find the overlap parts of P with PTD
(e.g., 〈ek, ..., ek+n〉), and create new path

P ′ which contains the non-overlap parts of P

12: if (Gek ∈ G) then

13: put P ′ in Gek

14: else

15: create a new set Gek , and put P ′ in it. . Gek is a set labeled with the first

element in the overlap part

16: add Gek to G

17: end if

18: end for
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19: for each group Gi ∈ {G} do

20: rule RGi= Create CC-rule(Gi, ∆) . These rules will be used during the

phase 2 of this algorithm.

21: if failed to create RGi then

22: terminate and return nothing

23: end if

24: end for

25: //try to create a rule for PTD
: 〈r1 : s1, ..., rn : sn〉 . Phase 2

26: Find h, Γ such that Γ(gs2) = h(Head(Rr1))

27: if (h and Γ exist) then

28: create function f as follows:

f(x) =

 Γ(x) if x ∈ Γ(x)

FreshCopy(x) Otherwise

29: Body(R) = {f(Subgoal Exp(G, Rr2)/gs2)} ∪ h(Subgoal Exp(G, Rr1))

30: Head(R)= {f(Head(Rr2))}

31: for 3 ≤ i ≤ n do

32: Find hi and Γi such that Γi(gsi) = hi(Head(R))

33: if hi and Γi exist: then

34: create function fi as follows:

fi(x) =

 Γi(x) if x ∈ Dom(Γi)

FreshCopyi(x) Otherwise

35: Body(R)=hi(Body(R))
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36: Body(R)+= {f(Subgoal Exp(G, Rri)/gsi)}

37: Head(R)= {fi(Head(Rri))}

38: else

39: terminate and return nothing

40: end if

41: end for

42: return the created cc-rule R as the result

43: else

44: terminate and return nothing.

45: end if . End of the algorithm

1: Function Subgoal Exp(G, Rri)

2: Body=∅

3: for each subgoal sk of Rri do

4: if there exists a group Gα ∈ G where α is equal to ri : sk then

5: Find δ such that δ(Head(RGα)) = sk

6: Body+=δ(Body(RGα))

7: else

8: Body+=sk

9: end if

10: end for

11: return Body
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6.3 Computing ∆-contained Queries

As discussed in Section 4.4.5, the MiniCon algorithm is our choice to be adopted for

Web service composition. The MiniCon produces a set of contained non-recursive

rewritten queries such that the union of these queries is maximally contained in the

original query. This is in contrast with the inversed-rule algorithm that produces a

recursive datalog program. Recursively connecting to some Web services to provide

data is not desirable for service consumers, as each connection to Web services may

cost them, nor for service providers who are responsible for maintaining the required

infrastructures for accessibility of their Web services. In addition, the performance

of the MiniCon is higher compared with logic-based algorithms, and it is more suit-

able to be extended with full dependencies compared with the MCDSAT algorithm.

Consequently, the MiniCon is more practicable in comparison with its alternatives.

According to Definition 6.2.1, ∆-contained queries are contained in the original query

only in the presence of ∆, i.e.,we may have more rewritten queries that are contained

in the original query. Unfortunately, MiniCon is unable to find these queries due

to a lack of support for utilizing the ∆ set. Therefore, we extended this algorithm

to compute ∆-contained queries as well. In Section 6.3.1, a naive algorithm for this

purpose is introduced, and then, our efforts to optimize this algorithm are explained.
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6.3.1 MiniCon-FD: A Naive Query Rewriting Algorithm in

the Presence of Full Dependencies

6.3.1.1 Motivation

As described in Section 4.4.2.2, during the creation of MCDs, MiniCon considers all

the subgoals of all views for each subgoal of the query to check whether they can

cover a query subgoal. If there is a mapping from the query subgoal, e.g. g, to the

considering view’s subgoal, e.g., s in view V , such that by this mapping (i) g and s

become identical and (ii) property 1 is satisfied, then a new MCD C is created. This

MCD implies that subgoal s in view V can be used to cover the query subgoal g.

By the definition of mapping, it can be concluded that if two subgoals g and s have

different predicate symbols, then no mapping can be found, causing no covering.

In the presence of the ontology rules (i.e., full dependencies), we may simply express

that a concept in the ontology is contained in another concept. In this case, MiniCon

fails to use this relation. This kind of failures is explained by Example 6.3.1.

Example 6.3.1 Let O= 〈 L, ∆ 〉 be an ontology where L = { ∅, {v1, ..., v100},

{ Couple, Married, Parent, Mother, hasChild } }, and ∆= { 〈R1; Parent(v1):-

Mother(v1)〉, 〈 R2; Parent(v2):- Couple(v2), HasChild(v2, v3) 〉, 〈R3; Couple(v4):-

Married(v4)〉}. Let Q and V1 be as follows:

- Q(v5):- Parent(v5)

- V1(v6):- Mother(v6)

In this domain, all mothers are defined to be parents, like the real world. Since

predicate Parent and Mother are different, no MCD can be created by MiniCon,
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resulting in no rewritten query. �

Example 6.3.1 is a simple instance of the query rewriting in the presence of full

dependencies. Because of the expressivity of full dependencies, rewriting queries, e.g.

Q in the example 6.3.1, can be more complicated if there exist views such as

- V2(v7):- Married(v7), HasChild(v7, v8)

- V3(v9):- Married(v9)

- V4(v10, v11):- HasChild(v10, v11)

The idea underlying MiniCon-FD is that when Predicate(g) is not the same as Pred-

icate(s), MiniCon-FD retries by finding a rule R which is consistent with ∆, and

Predicate(s) appears in the body and Predicate(g) appears in the head. MiniCon-FD

then attempts to find a mapping τ from g to the head of R. If such a mapping exists,

then the query Q will be chased back by replacing g with the body of R, while the

body’s terms are renamed according to τ .

For instance, in Example 6.3.1, Q can be chased back to form Q1
[1](v1):- Parent(v1) by

using rule 1. Now, view V1 can be used to rewrite Q1
[1]. According to Theorem 6.2.2,

we know that Q1
[1] v∆ Q; hence, Q′1(v1):- V1(v1) would be a contained rewriting of Q.

However, Q′1 is not the only possible rewriting. Q can also be chased back by rule 2,

and the result then can be chased backed by rule 3 to form Q2
[2](v1):- Married(v1),

HasChild(v1, v12). Now, the contained rewritten queries Q′2(v1):- V2(v1), and Q′3(v1):-

V3(v1), V4(v1, v13) can be produced by MiniCon.

6.3.1.2 The mechansim of MiniCon-FD

To find all the possible chased-back queries, MiniCon-FD finds all the possible D-

RADs in the ∆-graph. Then, for each D-RAD, the corresponding CC-rule may be
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constructed. Then, a homomorphism function may be defined to rename the terms

in the head atom to make this subgoal identical to g. If such a CC-rule and homo-

morphism exist, the query will be chased back, and the MiniCon algorithm is called

to rewrite the chased-back query.

For each CC-rule, only one subgoal of a query can be chased back since the head con-

tains only one subgoal. However, it is possible that more than one subgoal is chased

back simultaneously. To handle such cases, a specific basket for each subgoal g in

query is created which contains all the possible CC-rules with head g. For chasing

back the query, it is enough to choose a rule for each basket. Note that each basket has

a default rule “g : −g′′ in order to handle the situations that only some (but not all)

subgoals are chased back. The description of the algorithm is provided in Algorithm 3.
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Algorithm 3 MiniCon-FD algorithm

1: Input: A set of rules ∆, ∆-graph, a set of views V , query Q

2: Output: ∆-contained and contained rewritten queries

3: Results=∅

4: for each subgoal g in Q do

5: create a specific basket Bg, and add a default rule g : −g to Bg

6: Find all the possible D-RADs D such that Predicate(g)= TD

7: for each D ∈ D do

8: create cc-rule R, and find homomorphism h such that h(Head(R))= g

9: if R and h exist then put h(R) in Bg

10: end if

11: end for

12: end for

13: /*Now we have B= {Bg1 , ..., Bgn} where Bgi contains all the consistent rules with

∆ where the heads are the same as gi in Q*/

14: Q′=∅

15: for any non-redundant combination of 〈Rg1 , ..., Rgn〉 where Rgi ∈ Bgi do

16: add the Body(Rgi) to Q′, and rename the existential variables in Body(Rgi)

with new names which do not appear in Q′

17: Results+=MiniCon(Q′, V)

18: end for
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6.3.1.3 The correctness of MiniCon-FD

We claim that MiniCon-FD constructs rewritten queries which are ∆-contained in a

given query. To show that this algorithm is sound, we prove that this claim holds for

any output of this algorithm.

To prove the soundness of the algorithm, we can classify the outputs in two disjoint

groups based on the selected rules of the basket. The first group includes the produced

rewritings which are constructed by using only the default rules of baskets. The second

group includes the remaining. For the first group, when the default rule of each basket

is selected for chasing back, the chased query is equal to the original query. Thus, for

this group, it is sufficient to use MiniCon soundness theorem [74] to show that the

provided rewritten queries are contained in the given query. It can be immediately

derived that these rewritings are ∆-contained in the given query as well.

For the second group, we know that each query Q′ which is constructed by chasing

back a given query Q is ∆-contained in Q (Q′ v∆ Q). According to the soundness

theorem of MiniCon [74], giving the query Q′ as an input to MiniCon, we know that

each produced rewritten query Q′′ is contained in Q′ (Q′′ v Q′). It is straightforward

that if Q′′ v Q′ then Q′′ v∆ Q′. Therefore, Q′′ v∆ Q, and Q′′ can be generalized to

any rewritten query in the second group.

6.3.2 Optimization of MiniCon-FD

6.3.2.1 MiniCon-FD+

The idea behind MiniCon-FD+ is to reduce the number of times that MiniCon should

be called by reducing the number of rules in each basket. This can be achieved if we
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Figure 6.4: Possible D-RADs in the ∆-graph

reduce the number of D-RADs that are required to be considered. Because MiniCon-

FD constructs CC-rule independently without considering the existing views, some

CC-rules mat be created while there is no view to cover the rules’ subgoals. This

situation is exemplified by example 6.3.2.

Example 6.3.2 Let Q(x) : −S(x) be the query and V1(x) : −P (x) and V2(x) : −R(x)

be the views. Let ∆ contain the following rules 1)D(x), G(x)→ S(x), 2)P (x)→ D(x),

and 3)R(x)→ G(x). Although all the D-RADs drawn in figure 6.4 will be examined,

only D-RAD 1 may result in a rewriting.

Examining D-RADs 2,3, and 4 can be eliminated if we consider only the D-RADs

whose source nodes appear in some views. �

In MiniCon-FD+, only those D-RADs are considered, whose source nodes appear in

some views as well. If we have a CC-rule in which a subgoal does not appear in any

view, then it is impossible to chase-back the query by the rule and find a contained

rewriting due to lack of views which can cover this subgoal.
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MiniCon-FD+, like MiniCon, explores all the subgoals of the views for each query

subgoal. If there is path from a view’s subgoal to a query’s subgoal, then this path is

saved for the next step. In the next step, any possible D-RADs that can be constructed

based on the found paths is built. After this part, the procedure of rewriting is the

same as MiniCon-FD. Thus, soundness can be proved using the same procedure as

the MiniCon-FD soundness proof.

6.3.2.2 MiniCon-FD++

In MiniCon-FD+, all the subgoals of views are examined for each query’s subgoal

to check whether there exists a path between them. After finding all the paths, D-

RADs and their CC-rules are created based on the paths. MiniCon is then called

to rewrite queries created by chasing back the query using these rules, and it again

examines all the subgoals of views blindly (duplicate checking). We already collected

the information regarding which view can potentially cover which query’s subgoal.

Thus, if we can use this information, which is gained during the path finding, then

we can reduce the consumed time. However, we need to break down the MiniCon

algorithm and modify some parts of it, resulting in a more complicated algorithm.

MiniCon-FD++, like its ancestor, consists of two main phases: creating the MCDs

and combining the MCDs. In contrast to MiniCon, a special class of MCDs are also

created which are called partial MCDs, shown by P-MCD. These MCDs are created

based on the paths from view subgoals to query subgoals. A P-MCD includes the

information about the subgoals of the view that can cover the query subgoal(s), and it

consists of two sets: the requirement set and the provide set. The provide set contains

the subgoals of the query that can be covered, and the requirement set describes the

115



needs of this covering that should be provided.

When the algorithm fails to find a mapping from a query subgoal g to a subgoal s

of a view V (i.e., failing to use s to cover g), it retries by finding paths from s to

g. For each path, the corresponding C-rule is constructed, and then g is expanded.

MiniCon-FD++ then attempts to find a mapping from a subgoal in the expansion

to the view subgoal s. If such a mapping exists, a P-MCD is created such that the

provide set contains the subgoal g and all other subgoals in the expansion that are

mapped, and the requirement set is filled by the rest of the expansion. P-MCDs are

formally defined as follows:

Definitions 6.3.1 (Partial MCD) For a given subgoal g in the query and subgoal

s in view V , a partial MCD P is a tuple 〈V,P, R, Prv,Req,G, h, ϕ〉 where

- V is view V,

- P is a path from s to g,

- R is a C-rule created based on path P,

- h is a head homomorphism on view V ,

- ϕ is a variable mapping from s′ in expanded query by rule R to subgoal v such

that ϕ(s′) = h(v),

- Prev contains the subgoal(s) in the body of R that are covered by mapping ϕ,

- Req is a set containing the Body(R)− Prev, and

- G is the query subgoal(s) that is covered by mapping ϕ.

�

The mapping ϕ of any P-MCD should satisfy Property 1′ that is presented in Defi-

nition 6.3.2. Moreover, sets Prev and G, similar the procedure of creating MCDs in
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MiniCon described in Section 4.4.2.2, are assumed to be minimal.

Definitions 6.3.2 (Property 1′) A mapping ϕ satisfies property 1′, if

C1. for each distinguished variable x in the query, ϕ(x) is a distinguished variable.

C2. For any non-distinguished variable y in Q, if ϕ(y) = z where z is a non-

distinguished variable, then ϕ should be extended such that any subgoal g in

Q that includes y is covered either directly by some subgoals in the view, or by

expanding g with a C-rule and then covering all the subgoals g′ in the expanded

parts that contain y.

�

In clause C2, when a non-distinguished variable is mapped to a non-distinguished

variable in the query (ϕ(y) = z), a set Jointy is created and all the subgoals g in Q

that contain y are stored in this set. In the next step, the mapping ϕ is tried to be

extended such that all the subgoals in Jointy can be covered by some subgoals in the

view. If such an extension is possible, an MCD C is created, and Jointy is added to

set GC . In the case that no subgoal in V covers subgoal g, paths from view’s subgoals

to g are considered. If such a path exists, g then is expanded by the corresponding

c-rule. All the subgoals in the expanded part which contains y are replaced with g in

Jointy, and the remains are added to the provide set. If the Jointy becomes empty,

then property 1′ is satisfied and a P-MCD will be created; otherwise, we say property

1′ is violated. MiniCon-FD++ consists of two main phases, creating P-MCD/MCD

and combining P-MCD/MCD. First, the mechanism of creation of MCDs (partial

and complete) is represented in algorithm 4.
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Algorithm 4 MiniCon-FD++: P-MCD/MCD creation phase

1: Input: A set of rules ∆, ∆-graph, a set of views V , query Q

2: Output: A set of P-MCDs P and a set of MCDs C

3: P = ∅, C = ∅

4: for each subgoal g in Q do

5: for each subgoal s in V do

6: if h and ϕ satisfying property 1′ exist and ϕ(g) = h(s) then

7: create P-MCD P based on ϕ, h, Prv, and Req that are populated

during examining property 1′.

8: else

9: if Some path exists from s to g then

10: for each path P do

11: create c-rule R and expand Q by it.

12: find mapping ϕ that satisfies property 1′, and homomorphism h

such that ϕ(g) = h(s).

13: if ϕ exists then

14: create new P-MCD P and

15: add to set ReqP all the subgoals that are produced by the

expansion, and they are not covered by mapping ϕ.

16: add all the covered subgoals to PrvP set.
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17: end if

18: end for

19: end if

20: end if

21: if P is created and ReqP is empty then

22: store P in as a MCD in C

23: else

24: store P in P

25: end if

26: end for

27: end for

Example 6.3.3 Let’s assume the ontology 〈L, {1) Happy(e):- Smart(t), Superviso-

rOf(t, e)} 〉, the query Q(x):- Happy(x), and the views V1(z):- Smart(z) and V2(u):-

SupervisorOf(u,w) all over the same language L defined in Example 4.2.1. The first

phase of MiniCon-FD++ starts with the first subgoal of the query, Happy(x) and view

V1. Due to the lack of mappings from Happy(x) to Smart(z), the algorithm finds the

paths from Smart to Happy in the ∆-graph and constructs the associated C-rules.

Since one path exists, Happy(x) can be expanded with the body of associated C-rule

Happy(x):- Smart(m), SupervisorOf(m,x). Now, a mapping which satisfies prop-

erty 1′ and a head homomorphism must be found such that by using them Smart(m)

and Smart(z) become identical. The mapping ϕ = {m → z} and homomorphism

h = ∅ would be sufficient to have ϕ(Smart(m))= h(Smart(z)). Thus, a new P-MCD
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P1 would be created. By following the same steps for view V2, the P-MCD P2 is also

created.

P1 = 〈V1, 〈1 : 1〉, Happy(x):- Smart(m), SupervisorOf(m,x), ∅, {m→ z}, {Smart(m)},

{SupervisorOf(m,x)}, {Happy(x)}〉.

P2 = 〈V2, 〈2 : 1〉, Happy(x):- Smart(t), SupervisorOf(t, x), ∅, {t → u, x → w},

{SupervisorOf(t, x)}, {Smart(t)}, {Happy(x)}〉.

�

After the creation of partial and complete MCDs, partial MCDs are first considered.

If such a set of P-MCDs exist, such that their Prev sets cover all the subgoals in the

union of their Req, then a new MCD is created and added to the C. Note that in these

new MCDs, the used view can be the combination of some of the given views. In this

case, we can look at these views as a new single view such that the body is conjuncts

of these views’ bodies, and the head is the union of views’ head variables. Therefore,

we can use MCD, described in Section 4.4.2.2, without changing its definition.

Considering all the possible combinations is exponential (2n where n is the number of

P-MCDs), making the problem impracticable. Many of these combinations may not

result a new MCD; therefore, the P-MCDs paths are again investigated in order to

reduce the size of checking-space. The combination of P-MCDs are only considered

if their paths create a D-RAD and their C-rules include the same head. To explain

the intuition behind these conditions we recall the idea underlying MiniCon-FD+.

In MiniCon-FD+, if there is a path from a view subgoal to a query subgoal, the path

will be saved. After finding all possible paths by investigating all view subgoals, D-

RADs based on the found paths are created. For each D-RAD that can be constructed,
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the cc-rule is created and by which the corresponding query subgoal is expanded to

form a new query Q′, which is ∆-contained in the initial query. Finally, MiniCon is

called to rewrite Q′. The idea in MiniCon-FD++ is also the same, but with different

operation. In MiniCon-FD++, our goal is also to expand the query with only those

c-rules that all the source nodes (i.e. nodes that have no incoming edge) of the

associated D-RADs are covered by some views’ subgoals. Therefore, we investigate

only those subset of P-MCDs that their paths create a D-RAD with the same c-rule’s

head to guarantee all the paths belong to the same derivation tree. If such a set of P-

MCDs exist, the algorithm tries to find a homomorphism h and a mapping φ from the

Prv sets to Req sets while φ is consistent with ϕ’s, that means the queries variables

must be mapped to the same query variables. This part distinguishes MiniCon-FD++

from MiniCon-FD+, when we use the information collected during investigation of

paths instead of re-investigating the views subgoals.

When all the subset of P-MCDs which satisfy the above conditions are investigated,

and the new MCDs are created, the algorithm performs the same procedure as Mini-

Con (see Section 4.4.2.2), to combine the MCDs. Consequently, the only part which

needs to be explained is the procedure of combining the P-MCDs which is represented

in algorithm 5.
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Algorithm 5 MiniCon-FD++: Combining P-MCDs

1: Input: Two P-MCDs P1 and P2;

2: Output: a set of new P-MCDs P and MCDs C;

3: C = ∅,P = ∅;

4: for each subgoal g in ReqP2 do

5: for each subgoal s in PrvP1 do

6: Find a variable mapping φ from PrvP1 to ReqP2 such that

7: (E1) φ(x) = x where x is a query variable and (E2) φ(s)= g;

8: if φ exists then

9: ReqP2 =ReqP2 -{g};

10: ReqP1 =φ(ReqP1) - PrvP2 ; . Rename variables in ReqP1 w.r.t φ

11: create new P-MCD P3 such that

12: VP3=VP1 ∪ VP2 ;

13: PrvP3=φ(PrvP1) ∪ PrvP2 ,and ReqP3=ReqP1 ∪ReqP2 ;

14: hP3=φ(hP1) ∪ hP2 ,and ϕP3=φ(ϕP1) ∪ ϕP2 ;

15: PathP3=PathP1 ∪ PathP2 ;

16: RP3= Create CC − rule(PathP3); . (see algorithm 3)

17: if RP3 exists and ReqP3 = ∅ then create new MCD C w.r.t P3, and

add it to C;

18: end if

19: if RP3 exists and ReqP3 6= ∅ then add P3 to P ;

20: end if

21: end if

22: end for

23: end for
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Example 6.3.4 To combine P-MCDs P1 and P2 constructed in example 6.3.3, a

mapping φ is defined from PrvP1, {Smart(m)}, to ReqP2, i.e. Smart(t). Since m

and t are not query variables, we would have φ = {m → t} which satisfies condi-

tions E1 and E2. Therefore, Smart(t) should be removed from ReqP2, and ReqP1

= {φ(SupervisorOf(m,x))}-SupervisorOf(t, x)=∅, according to lines 9 and 10. A

new P-MCD P3 is created as follows:

- ReqP3 = ReqP1 ∪ReqP2 = ∅

- PrvP3 = φ(PrvP1) ∪ PrvP2 = {Smart(t), SupervisorOf(t, x)}

- hP3 = ∅

- ϕP3=φ({m→ z}) ∪ {t→ u, x→ w}={t→ z, t→ u, x→ w}

- VP3={V1, V2}

- PathP3={〈1 : 1〉, 〈2 : 1〉}

- RP3=Happy(x):- Smart(t), SupervisorOf(t, x)

- GP3={Happy(x)}

Because RP3 exists and ReqP3 is empty, a new MCD C1=〈hP3 , VP3 , ϕP3 , GP3〉 is created

and added to MCD set. Finally, the set C = {C1} is passed to the combination phase

of MiniCon, resulting in the rewritten query Q′(x) : −V1(x), V2(x).

�

6.4 Conclusion

MiniCon-FD is a naive algorithm that rewrites queries in the presence of full depen-

dencies and produces ∆-contained queries. Given an ontology 〈L,∆〉, it creates a

basket for each query subgoal and fills it with all the CC-rules in which the head is
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the same as the query subgoal. Because, the ∆-graph is a finite tree, the number of

D-RADs, which are subtrees in the ∆-graph, are finite. Therefore, the size of bas-

kets are bounded, and the calculation will terminate. In the next step, a cc-rule is

selected from each basket, and the query is expanded by using it if possible in order

to form query Q′. Then, Minicon is called to rewrite Q′. Since Q′ is ∆-contained in

the initial query, the rewritings are ∆-contained rewritten queries. However, due to

independently construction of CC-rules without considering the existing views, the

irrelevant cc-rules can be examined which is exemplified by example 6.3.2.

Considering views during constructing D-RADs is the idea underlying MiniCon-FD+.

In this algorithm, when a D-RAD is found, the algorithm first checks that at-least

one view exists for each leaf such that a subgoal predicate of the view is the same

as the leaf label. Time for this check is O(log(n × m × r)) where n is the number

of source nodes in the D-RAD, m is the number of views, and r is the maximum

number of subgoals in a view. Compared with the time which is required for executing

MiniCon to rewrite, this check can efficiently reduce the time in practice by reducing

the number of expanded queries with cc-rules that should be rewritten by MiniCon.

Nonetheless, there is no guarantee that a D-RAD that passed the check will lead us

to a valid rewritten query.

In MiniCon-FD+, during the process of finding paths, pieces of information, for ex-

ample, the third subgoal of nth view can cover the second query subgoal, are gained.

Nonetheless, these pieces of information are re-collected during running the MiniCon

due to the distinct execution of these two phases. To avoid the redundant collection

of information, MiniCon-FD++ is introduced which is integrated with MiniCon and

modified some parts of it.
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Integrating with MiniCon algorithm improves the performance of MiniCon-FD++ in

compared with MiniCon-FD+. On the other hand, since MiniCon-FD+ is distinct

from MiniCon, it can be added to other rewriting algorithms such as GQR algorithm

(explained in Section 4.4.4) which has a better performance in practice, resulting in

a faster query rewriting algorithm in the presence of full dependencies.

In the domains where the ontology is fixed, the performance of MiniCon-FD and

its descendants can also be improved by offline calculation of D-RADs and their

associated rules. By assuming the ontology and its ∆-graph as fixed, all the possible

the D-RADs and their cc-rules can be calculated and stored offline. Hence, in online

process when a query is posed, the system only requires to find the related calculated

cc-rules which can speed up the rewriting process.
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Chapter 7

Preference-based Composition of

Web Services

7.1 Adopting MiniCon-FD+ for Web Service Com-

position

Web services can be classified into two major groups of data providing (DP) and

state-changing services based on their outputs and effects after execution. DP Web

services receive data as their input (possibly empty input) and provide data as the

output. For example, a service that provides a list of departure fights from a given

airport is categorized as a DP service. State-changing services not only provide data,

but may also change the state of the world. The state of the world can generally be

defined as a set of parameters and variables that describe the situations such as before

and after the execution of a Web service. A flight booking service is categorized as a

state-changing service since it can change the number of available seats, resulting in
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a change in the state of the system after execution.

This thesis is mainly focused on DP services. Therefore, in our work, Web services

can be seen as views, and Web service composition can be seen as the integration

of these views. Consequently, MiniCon-FD+, introduced in Section 6.3.2.1, can be

used for the purpose of Web service composition. However, since there is no method

to specify input and output parameters, modifications are required in the integration

system. In this Chapter, Web services and queries are first defined, and then MiniCon-

FD+ is adapted for composing Web services. Finally, a formal framework is designed

to encode user preferences and to rank the results of a composition based on these

preferences.

7.1.1 Queries and Web services

In the Web service composition problem, a query is received to describe a desired Web

service. Since Web services can receive input and output parameters, a query should

capture these pieces of information. Outputs are the data resulting from execution of

a Web service, and inputs are defined as some pieces of information that are required

to generate outputs.

In this approach, queries are described in the form of conjunctive queries (see Section

4.2) over a given ontology’s language L, which is described in Definition 6.1.1. To

distinguish the inputs from the outputs, the character $ is used. The terms in the

head that have a $ sign are the inputs, indicating that they can be provided for the

desired Web service. The entire head tuple, consisting of inputs and the other head

terms, are defined as the expected outputs of the desired Web service.
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Definition 7.1.1 Queries A query Q over the ontology language L is a conjunctive

query in the form of

Q($g, y) : −R1((x1)), ..., Rk((xk))

Where g and y are the lists containing L-terms. g represents the inputs, and tuple

($g, y) represents the outputs of a desired Web service. �

As mentioned in Section 2.3, each Web service needs a description to represent its

functional characteristics. This description can be modeled using views syntax. How-

ever, because of input and output parameters, this syntax needs to be modified; thus

a Web service description is defined as follows:

Definition 7.1.2 Web services Given an ontology language L, a Web service is

described similar to the queries as a conjunctive query over L in the form of

V ($g, y) : −R1((x1)), ..., Rk((xk))

Where g and y are lists of L-terms and represent the inputs and outputs of the Web

service, respectively. In contrast to queries, V is assumed to be a unique name used

to refer to a real Web service, and it is stored in a set V called Web service registry.

�

In addition to functional characteristics, which are captured by conjunctive queries,

each Web service requires descriptions of service contract, its location, and how it

can be invoked (as mentioned in Section 2.2.3). The structure of these is out of the

scope of this research. We assume that this information is provided by the service

publisher and stored in a service registry agency, and can later be retrieved by using
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the name V . Therefore, each Web service registered in our service registry requires a

unique name which is the same as the head of the conjunctive query V .

7.1.2 Web Service Composition

MiniCon-FD+ can be used to compose Web services when no input is defined. In the

presence of inputs for Web services, some of the results cannot be executed in order

to produce the expected outputs. An example is provided below (Example 7.1.1),

demonstrating a case in which the required input of a Web service in a composition

cannot be provided.

Example 7.1.1 Consider the query Q, views V1 and V2 that are registered in a

service registry, and the rewritten query Q′ as the result of MiniCon-FD+ if the input

parameter is ignored.

- Q($x, y) : −R(x, y, z), S(y, z)

- V1($x, $y, z) : −R(x, y, z), P (x, y)

- V2($y, z) : −S(y, z)

- Q′($x, y) : −V1(x, y, z), V2(y, z)

In the rewritten query Q, V1 and V2 require y as the input to provide output, while y

is not the input of the query. It cannot be provided by any other Web services in Q′

neither; hence no possible order exists for the execution of V1 and V2 to produce the

output. Nevertheless, this rewritten query is a contained rewriting in the absence of

input output parameters. �

Handling input and output parameters in the query rewriting process has been studied

in the data integration area. This problem is known as query rewriting in the presence
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of an access pattern limitations, where there may exist some limitations to access data

[76]. For instance, to get the current temperature from Yahoo! Weather, it is not

possible to ask for all the tuples in the database. Instead, the received query should

specify some parameters, such as the location, to get the temperature values.

In the data integration area, access pattern limitation is modeled by attaching a string

to views and queries. For each view or query, a string with length n is attached where

n is the number of terms in the head. and kth letter in the string indicates the type

of the kth term head. Terms can be either free or bound which are shown by letters

f and b, respectively. Bound terms appearing in a view imply that the view can only

provide tuples as the outputs if values for the bound terms are provided. In contrast,

free terms make no limitation for providing outputs. To apply this model to Example

7.1.1, view V1 can be modeled as V1
bbf (x, y, z). In this thesis, we selected the $-sign

model to encode the access patterns.

The complexity of query rewriting in the presence of access pattern limitation has

been considered in several works. In [76], it is shown that the bound mentioned in

Theorem 4.3.1 does not hold for the length of rewritings in the presence of access

pattern limitations (see Example 7.1.2). They also showed that in the case of finding

the equivalent rewriting, it is enough to consider the rewritten queries with length of

n + v where n is the number of query subgoals and v is the number of variables in

the query. In the case of finding maximally-contained rewriting, the authors in [50]

showed that no bound exists for the length of rewritings. In [24], the authors proposed

an algorithm to find maximally-contained rewritings in the presence of access pattern

limitations by producing recursive rewritings.
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Example 7.1.2 Consider the following query and views. The query asks for the

persons who are supervised by John. V1 provides all the supervisors of the given

person x, and V2 provides all the persons who are supervised.

- Q(x) : −SupervisorOf(x, ‘John’)

- V1($x, y) : −SupervisorOf(x, y)

- V2(x) : −SupervisorOf(x, y)

- Q(x) : −V2(x), V1($x,‘John’)

The rewritten query Q′ can provide the tuples that are requested by the query. How-

ever, based on Theorem 4.3.1, the length of a rewritten query, if exists, should be less

than the size of the query. �

In this approach, we focus on non-recursive query rewriting in the presence of access

pattern limitation, and we consider the rewritten queries with the length of smaller or

equal to the size of the initial query. Our system first rewrites a given query without

considering input parameters, and it then verifies whether a produced rewriting is

executable by checking the input parameters. If there is an order for the views used

in a rewriting such that the inputs of all the views can be provided either by the user

or by the earlier views, then this rewriting is added to the verified set. The formal

definition of executablity of a rewriting is described in Definition 7.1.3.

Definition 7.1.3 (Executable rewriting). Given a query Q, a rewritten query Q′

is executable if there is an acyclic order for the execution the of used views in Q′ such

that the inputs of each view can be provided either

- by the user, i.e., the input parameters in the used view are also labeled as the

inputs in Q, or
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- by the earlier views in the order.

�

Intuitively, users expect not to have a composition that always provides an empty

set as the output. Although it is impossible to guarantee a composition that al-

ways has some outputs, we can avoid providing compositions that always provide

an empty set in the presence of full dependencies. For example, assume we are

looking for kind and supportive persons (i.e., Q(x) : −Supportive(x), Kind(x)), and

let V1(x) : −Mother(x) and V2(x) : −Father(x) be the views. By assuming the

ontology rules ∆={1) Mother(x) → Kind(x), 2) Father(x) → Supportive(x), 3)

Mother(x), Father(x) → ⊥ }, MiniCon-FD+ will provide the following rewritten

query Q′(x) : −V1(x), V2(x). However, it can be derived from the ontology rules

that Q′ always produces empty set if executed. In this case, we call V1 and V2 as

incomposable views based on the ontology rules.

Definition 7.1.4 (Incomposable views). Given a domain ontology 〈L,∆〉, two

views V1 and V2 used in a rewriting Q′ are incomposable if ∆ 1 > → exp(V1)) ∧

exp(V2)) where exp(V) is the conjunction of subgoals resulted from replacing the V’s

head with its body in Exp(Q′).�

After ensuring the executability of a rewriting, each two consecutive views should be

tested to not be incomposable. This test can be done by expanding a rewritten query,

and verifying its consistency with the ontologys rules.

The order of performing these two tests depends on their computational complexity

because each test is performed after running MiniCon-FD+, and it may also reduce
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the number of rewritings. The more complex test can be performed after the results

set is reduced by the simpler one. The complexity of testing the executability of a

rewriting highly depends to the number of subgoals and the number of input variables

in the views. The test of incomposability of views, depends on the size of ∆ in the

domain ontology. Therefore, based on the domain and the views, this order can

change.

Up to this point, definitions of queries and views are modified to handle DP Web

services. Two more extensions are required to verify the results of rewriting produced

by MiniCon-FD+ due to the access pattern limitations as well as rules with the form

of P1(x1), ...Pn(xn) → ⊥. Using Definitions 7.1.3 and 7.1.4, we can formally define

composed Web services.

Definition 7.1.5 (Composed Web services). Given a domain ontology O, a

query Q, {pref} a set of user preferences (see definition 7.2.4), and a set of Web

services all over the ontology language, a composed Web service CWS is a tuple

〈{R}, {C}, Cmp, TC〉 where

- {R} is a set of CC-rules used to expand Q in order to form Q′,

- Cmp is an executable rewriting of Q′ such that no pair of views used in Cmp is

incomposable,

- {C} is a set of MCDs used to construct Cmp, and

- TC is a zero or positive number indicating the total cost of violations by the

considering Cmp by the evaluated preferences.

�
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The TC is calculated during the evaluation of user preferences to rank the composed

Web services. The processes of evaluation and ranking are explained in Section 7.2.3.

In the next Section, the user preferences and their syntax and semantics are described.

Next, to evaluate our system, the example in Chapter 3 is implemented.

7.2 User Preferences

User preferences are defined as alternative objectives that are not the goals of the

composition, but we are interested to satisfy them as much as possible. To evaluate

preferences, an expressive and tractable language is required. This language needs to

be expressive enough to capture all the information about the users’ preferences. The

evaluation of statements in this language also needs to be tractable, so that we can

rank the results in a reasonable time. In this study, the datalog language is selected

to describe the preference formulas because of its tractability . In addition, it can

easily be integrated with ontology rules to derive more information without additional

translation.

Datalog language, by itself, is not powerful enough to describe some preferences shown

in Section 3.3. For instance, the preference for the fourth desired Web service cannot

be expressed in datalog language because there is no cardinality restriction defined in

this language. Therefore, we design a formal framework to expand the expressivity

of datalog language.

In addition, to enhance the capability of the framework to encode the user preferences

accurately, users should also be able to specify the fragment of their query which is

related to their preferences.. For instance, consider example 7.2.1. In this example,
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if we can specify that the preference CanandianCity(‘Toronto’ ) is related to subgoal

CanadianCity(c2) we can then use this preference statement to accurately rank the

compositions. Otherwise, compositions that provide tuples of student and professors

such that the professors are born in Toronto will satisfy the preference as well.

Example 7.2.1 Consider a query Q(x,y):- Student(x), Professor(y), BornIn(x,c1),

BornIn(x,c2), CanandianCity(c1), CanadianCity(c2) which requests for students and

professors who were born in Canada. Lets assume our preference is to find students

who were born in Toronto. A preference such as CanandianCity(‘Toronto’ ) cannot

properly encode the meaning of this preference because the query subgoal to which

CanandianCity(‘Toronto’ ) refers is not clearly indicated. �

In this framework, two classes of preferences are described: global preferences and

local preferences. Global preferences are those preferences that are associated with

the entire query, while local preferences are associated with a fragment of the query.

These two classes bring more expressivity and not only enable the users to describe

complex preferences, such as the third preference described in Chapter 3, but they

also assist in correctly ranking the results of the composition.

Since users describe the query as well as the preferences, they are able to specify

the parts of the query which are associated with their preference. To handle local

and global preferences, a proper language is required for describing preferences. The

syntax of this language is described in Section 7.2.1.
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7.2.1 Syntax of User Preferences

In this Section, the syntax of our language for describing user preferences is defined.

The structure of this syntax is explained from basic to complex preference formulas.

The core part of the preference language is in the form of datalog rules and is defined

as follows:

Definition 7.2.1 (Basic preference formula). Given an ontology language L =

〈C,V,P〉, a basic preference formula f is defined as

P2(x2), ..., Pk(xk)→ P1(x1) | > → P1(x1) | P2(x2), ..., Pk(xk)→ ⊥

where Pi(xi) is an L-atoms. �

According to definition 7.2.1, the preference described in Example 7.2.1 can be > →

CanandianCity(‘Toronto’ ). As another example, if a user prefers to find students

who were not born in Ontario, she can use Ontario(c1)→ ⊥.

To distinguish local preferences from global preferences, the associated part of the

query to the preference formula should be encoded, which is done by defining prefer-

ence bodies.

Definition 7.2.2 (Preference body). Given an ontology language L and a query

Q over L, a preference body is a tuple 〈f, sq〉 where f is a basic preference formula

over L, and sq is a subset of subgoals in Q. pb is a unique name to refer to the

preference body, and it is stored in a set which is called preference body names and is

shown by PB. �
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Example 7.2.2 Recalling from Example 7.2.1, the preference of finding students

who were born in Toronto can be encoded by preference body pb such that pb =

〈> → CanandianCity(‘Toronto’ ), CanandianCity(c1)〉. �

Local preferences can improve accuracy in evaluating the preferences. Nevertheless,

they are not sufficient yet to express more complex preferences such as either student

x is preferred to be born in Alberta or if x was born in Ontario then professor y should

be born in Ontario too, for each pair of (x,y) in Example 7.2.1.

To make the language more expressive, the class of complex preference formulas is

defined. Complex formulas are defined over the preference body names. The definition

of complex preference formulas is provided in Definition 7.2.3.

Definition 7.2.3 (Complex preference formula). The language for describing a

complex preference formula is a tuple 〈PB, {∨,∧,→, n 4 �}〉 where n is a positive

number and PB is the set of all preference bodies’ names, and the second argument is

the operator set. Given such a language, a complex preference formula cf is defined

as

pb | cf 1 ∧ cf 2 | cf 1 ∨ cf 2 | cf 1 → cf 2 | n 4 cf 1 � . . .� cfn+m

where m and n are positive numbers, pb ∈ PB, and cf i is a complex preference

formula. �

Example 7.2.3 Recalling the query from Example 7.2.1, to express the preference

student x is preferred to be born in Alberta, or if x was born in Ontario the professor

y should be born in Ontario too, the following preference bodies can be defined:

pb1 = 〈> → Alberta(c1), {CanadianCity(c1)}〉
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pb2 = 〈Ontario(c1)→ Ontario(c2), {CanadianCity(c1), CanadianCity(c2)}〉

The complex preference formula CF1 can be defined as CF1 = pb1 ∨ pb2. �

To enable users to prioritize their preferences, users associate their preference with

an integer value. This value is called the cost of preference and is collected when

the preference is violated by a composition. Recalling Definition 7.1.5, a composition

is a tuple 〈{R}, {C}, Cmp, TC〉 where TC is a positive number indicating the total

costs of violations of the evaluated preferences by the composition. During ranking

of the composed Web services, if a composition violates a preference, the cost value

associated to the preference is added to the composition’s TC.

Definition 7.2.4 (Preferences). Given an ontology language L and a set of pref-

erence bodies in terms of L which their names are stored in PB, a preference is a

tuple 〈cf, C〉 where cf is a complex formula in terms of PB, and C is a number which

indicates the cost that should be collected if cf is violated by a composition. The value

cf is determined by the user, and it must be greater than one. �

7.2.2 Semantics of User Preferences

The semantics of preferences is model-theoretic and is achieved by assigning a truth

value to each preference body and then evaluating the complex preference formulas

with respect to these values. As mentioned before, two classes of preferences, i.e.,

global and local preferences, can be defined. To assign truth values to a preference

body 〈f, sq〉 of a global preference, since sq indicates the entire query, it is enough to

check whether the entire rewritten query is consistent with f w.r.t the domain rules

∆. In contrast, assigning truth values to local preference bodies is not simple.
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Figure 7.1: Relations between query subgoals and rewritten query subgoals

To assign truth value to a local preference body 〈f, sq〉, we first need to know the

part of the composed Web service that is used to cover q. Sets {R} and {C} of a

composed Web service are utilized to determine the parts that cover q. As shown

in Figure 7.1, since each MCD contains a mapping from some subgoal s in Q′ to

some view subgoals, we can use MCDs to determine the rewritten query subgoals

that cover s. On the other hand, using the utilized CC-rules to form Q′, we can

determine whether a subgoal in Q′ is the result of the replacement of a head by the

body of CC-rule, and we can also detect the replaced subgoals. Consequently, given

a query and a composed Web service, for any query subgoal s, we can determine

the set of subgoals in a composition that covers s. We call this set Coverallq. In

addition to these subgoals, all the other subgoals in the rewritten query that have

shared variables with Coverallq are also added to this set.

Example 7.2.4 Consider a query Q(x,y):- Student(x), Professor(y), BornIn(x,c1),

BornIn(y,c2), CanandianCity(c1), CanadianCity(c2) which requests for students and
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professors who were born in Canada. Let assume our preference is to find students

who were born in Toronto. A preference such as CanandianCity(‘Toronto’ ) cannot

properly encode the meaning of this preference because the query subgoal to which

CanandianCity(‘Toronto’ ) refers is not clearly indicated. �

Definition 7.2.5 (Coveralq). Given an ontology 〈L,∆〉, query Q, and a composition

CWS = 〈{R}, {C}, Cmp, TC〉, all w.r.t L, for a subgoal q in Q, Coveralq is the set

of subgoals in Cmp such that

C1 they either cover q directly or the subgoals which are resulted by expanding q

with a CC-rule in {R}, or

C2 they have some shared variable(s) with the subgoals collected in clause C1.

�

We later use Coverallq to assign truth values to preference bodies. For a global pref-

erence body, Coverallq is the entire rewritten query, while a fragment of a rewritten

query may be in Coverallq of a local one.

Definition 7.2.6 (Basic preference formula semantics). Given an ontology

〈L,∆〉 and a set of atoms A, for any interpretation I � ∆, the semantics of a basic

preference formula f is defined as

- [P2(x2), ..., Pk(xk)→ P1(x1)]I = true, if either (P2(x2), ..., Pk(xk))
I,Z= false or

P I,Z
1 = true for all the variable assignments Z in I by which all the atoms s ∈ A

sI,Z= true.

- [P2(x2), ..., Pk(xk) → ⊥]I = true if [P2(x2), ..., Pk(xk)]
I,Z = false for all the

variable assignments Z in I by which all the atoms s ∈ A sI,Z= true.
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- [> → P1(x1)]I= true, if P1(x1)I,Z= true for all the variable assignments Z in

I by which all the atoms s ∈ A sI,Z= true.

If formula f is evaluated as true (i.e., f is satisfied) under I, it is then shown by

I�∆∪Af . �

By using the semantics of basic preference formula, the semantics of preference bodies

and complex preference formulas are defined in Definitions 7.2.7 and 7.2.8, respec-

tively.

Definition 7.2.7 (Preference body semantics). Given an ontology 〈L,∆〉 and

the union of Coverallq for each q ∈ sq which are constructed w.r.t. preference body

pb= 〈f, sq〉 and a composition CWS = 〈{R}, {C}, Cmp, TC〉, pb is evaluated as true

if for any interpretation I, I�∆∪Coverallqf ; otherwise, pb evaluates to false. Moreover,

a model MCWS is created for the preference body names such that MCWS � pb if

pb = true. Otherwise, MCWS 2 pb. �

The semantics of complex preference formulas are defined with respect to the model

MCWS. Therefore, all the preference bodies are first evaluated, and a model MCWS

is created based on their truth values. In other word, MCWS is a model for a propo-

sitional logic language L where the predicates in this language are the preference

bodies’ names. After constructing the model M w.r.t a composition CWS, the com-

plex formulas can be evaluated using MCWS because they are defined over the same

terms as MCWS, which are preference bodies’ names.

Definition 7.2.8 (Complex preference formula semantics). Given a set of

preference body names PB and a model MCWS constructed w.r.t. to PB, A complex

preference formula cf is satisfied by the model MCWS (MCWS � cf) if:
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- MCWS � cf if MCWS � pb where cf = pb, and pb ∈ PB

- MCWS � cf 1 ∧ cf 2 if MCWS � cf 1 and MCWS � cf 1 where cf1 and cf2 are

complex formulas.

- MCWS � cf 1 ∨ cf 2 if either MCWS � cf 1 or MCWS � cf 1 where cf1 and cf2 are

complex formulas.

- MCWS � cf 1 → cf 2 if either MCWS 2 cf 1 or MCWS � cf 1 where cf1 and cf2

are complex formulas.

- MCWS � n 4 cf 1 � . . . � cfn+m if |{cfi| MCWS � cfi, 1 6 i 6 (m + n)}| > n

where cfi is a complex formula.

�

Definition 7.2.9 Preference semantics. A preference 〈cf, C〉 is satisfied by a

composed Web service CWS, if and only if,MCWS � cf . �

7.2.3 Evaluation of User Preferences

Users describe a query as well as their preferences for a desired composition, based

on Definitions 7.2.1-7.2.4, and then send them to the framework. The framework

evaluates all the preferences for each composition and collects the cost of violated

preferences. It finally ranks the compositions based on their associated total cost.

To commence the evaluation, the described preference bodies are first considered. As

explained in Definition 7.2.2, a preference body pb consists of a formula f and subset of

query subgoals q such that q specifies the part of the query that should be considered

for satisfying the formula f . In addition, the relations between the subgoals of the

original query and the subgoals in the expanded rewritten query can be determined by
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considering the MCDs and CC-rules used to construct a composition. The subgoals

in the expanded rewritten query that cover q are collected in a set called Coverallq.

Given a preference body pb=〈f, sq〉 w.r.t. an ontology domain 〈L,∆〉, for any inter-

pretation I (i.e., any database) that is consistent with our ontology rules (∆), if all

the subgoals in Coverallq are evaluated as true, then f is also evaluated as true. In

other words, if the evaluation process is translated to first-order logic, the following

FO-sentence can simply describe this process:

∀x̄∀ȳ ∀z̄
∧
Coverallq(x̄, ȳ)→ f(x̄, z̄)

where x̄, ȳ, and z̄ are L-variables that appear in f and Coverallq.
∧
Coverallq(x̄, ȳ)

means the conjunction of the subgoals in Coverallq.

For each composed Web service CWS, all preference bodies should be evaluated

because the set Coverallq completely depends to the CWS. During the evaluation of

all the preference bodies, a model MCWS is also created according to the truth values

of evaluated preference bodies. After this step, only model MCWS is used to evaluate

the preference complex formulas, and consequently the preferences are evaluated.

Definition 7.2.10 (Evaluation of preferences). For a given preference pref=〈cf ,

C〉 and a composition CWS= 〈{R}, {C}, Cmp, TC〉, the associated cost of the pref-

erence C is collected if and only of cf is violated by CWS that means

TC+ = C if and only if, CWS 2 cf .

�

Another additional feature is defined to measure the approximation of a satisfied

composition to a preference. This feature is implemented by a function that assigns

a non-negative value to the preference bodies based on their evaluations.
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Definition 7.2.11 (Approximation measurement function). For a given do-

main ontology 〈L,∆〉, a composition CWS, and a preference body pb = 〈f, sq〉, the

approximation function Prx : PB → Z+ is defined as follows:

Prx(pb) =

 |T | �T∪Coverallq f

0 otherwise

where T ⊆ ∆ and no T ′ ⊆ ∆ exists such that �T ′∪Coverallq f and |T ′| < |T | �

Based on the approximation function and evaluation of preferences, the total cost of

a composition is calculated according to Definition 7.2.12.

Definition 7.2.12 (Composition total cost). The total cost of a composition

CWS after evaluation of all the described preferences is

TCCWS = violations + approximations, where

- violations=
∑
i

Ci where CWS 2 cfi for prefi = 〈cfi, Ci〉

- approximations=
∑
i

∑
pbj∈cfi

Prx(pbj)

|∆| such that MCWS � cfi for prefi = 〈cfi, Ci〉

�

Note that the value of
Prx(pbj)

|∆| is always less than or equal to one. The final definition

is the ranker relation which is used to ranks the compositions based on their total

cost.

Definition 7.2.13 (Ranker relation) Ranker relation � is a reflexive and transi-

tive relation which ranks the compositions based on their total cost such that a com-

position with a lower cost has a better rank. Hence, CWSi � CWSj means CWSj

has a better rank with lower cost in compared with CWSi. �
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7.3 Evaluation

In order to evaluate our proposed approach, the example in Chapter 3 is formally

modeled using our proposed framework. The four desired Web services are then de-

scribed as the queries, and the framework attempts to answer them by composing the

Web services in the assumed registry and ranks the results based on user preferences.

We then investigate the ranked results to verify the correctness of our system.

7.3.1 Domain Ontology

First, the domain ontology must be described. As mentioned in definition 6.1.1, an

ontology is a tuple 〈 L, ∆ 〉 where L = 〈C,V,P〉, and ∆ is the set of datalog rules in

terms of language L. C is a set of constants which are names for our real objects in the

domain of interest; for example, the name ‘Toronto’ can be used to refer to the real

city Toronto, or the constant AC120 can be used to refer to a real flight of AirCanada

with this name. For simplicity, we assume that we have no constants (names) in our

domain. The set V is the set of all variable names that can be countably infinite. So,

we register variables a, a1, a2, ..., b, b1, b2, ..., c, c1, c2, ..., z, z1, z2, ... , which are

countably infinite, in the set V.

The set P is the set of all predicates. Defining the required predicates is the respon-

sibility of domain experts and system engineers. The design of two experts may be

completely different, but each design is expected to be expressive enough to capture

all the needs of system users. Our registered predicates in P and their definitions are

described in the table 7.1.

Predicate Description
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Accommodation(x) It verifies whether the given x is an accommodation

Hotel(x) verifies whether the given x is a hotel

B B(x) verifies whether the given x is a B&B

Motel(x) verifies whether the given x is a motel

3-starHotel(x) verifies whether the given x is a 3 star hotel

4-starHotel(x) verifies whether the given x is a 4 star hotel

5-starHotel(x) verifies whether the given x is a 5 star hotel

LocatedIn(x, y) verifies whether the given x is located in y

Trip(x, y) verifies whether it is possible to move from x to y

Flight(x,y) verifies whether there is a flight from x to y

Train(x,y) verifies whether there is a train from x to y

World(x) verifies whether the given x is a location in the world

NA(x) verifies whether the given x is located in North America.

AS(x) verifies whether the given x is located in Asia

AF(x) verifies whether the given x is located in Africa

EU(x) verifies whether the given x is located in Europe

Scandinavia(x) verifies whether the given x is located in Scandinavia

Sweden(x) verifies whether the given x is located in Sweden

⊥ implies bottom (nothing)

> implies top (everything)

Table 7.1: Registered Predicates in domain ontology
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After specifying the language L, the set of ontology rules can be expressed as follows:

Table 7.2: Domain ontology rules

(1) Hotel(x)→ Accommodation(x) (11) AS(x)→ World(x)

(2) B B(x)→ Accommodation(x) (12) EU(x)→ World(x)

(3) Motel(x)→ Accommodation(x) (13) Scandinavia(x)→ EU(x)

(4) 3− starHotel(x)→ Hotel(x) (14) Sweden(x)→ Scandinavia(x)

(5) 4− starHotel(x)→ 3starHotel(x) (15) NA(x) ∧ AF (x)→ ⊥

(6) 5− starHotel(x)→ 4starHotel(x) (16) NA(x) ∧ AS(x)→ ⊥

(7) Flight(x, y)→ Trip(x, y) (17) AF (x) ∧ AS(x)→ ⊥

(8) Train(x, y)→ Trip(x, y) (18) NA(x) ∧ EU(x)→ ⊥

(9) NA(x)→ World(x) (19) EU(x) ∧ AF (x)→ ⊥

(10) AF (x)→ World(x) (20) AS(x) ∧ EU(x)→ ⊥

The fifth rule, for example, expresses that all the 4-star hotels are also 3-star hotels,

and the rules 15-20 indicate that the continents are distinct. According to the rules,

the ∆-graph is depicted in figure 7.2.
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Figure 7.2: The ∆-graph of case study

7.3.2 Registered Web services

Since our focus is on DP services, the conjunctive query form can be used for service

description. The descriptions (see definition 7.1.2) of registered Web services are

represented in the following table:
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Web service Head Description

E-Train ET ET($a1, a2):- EU(a1) , EU(a2), Train(a1, a2)

Scandinavia-Train ST ST($b1, b2):- Scandinavia(b1), Scandinavia (b2),

Train(b1, b2)

Europe-Flight EF EF($c1, c2):- EU(c1), EU(c2), Flight(c1, c2)

Local-Sweden Flight LSF LSF($d1, d2):- Sweden(d1), Sweden(d2), Flight(d1,

d2)

WestJet WJ WJ($e1, e2):- World(e1), World(e2), Flight(e1, e2)

Egypt-Airlines EGPF EGPF($m1, m2):- AF(m1), AF(m2), Flight(m1,

m2)

AirCanada AC AC($n1, n2):- World(n1), World(n2), Flight(n1,

n2)

Star Hotel SThtl SThtl($f1, f2):- World(f1), 4-starHotel(f2),

LocatedIn(f2, f1)

Affordable hotel AFhtl AFhtl($g1, g2):- World(g1), 3-starHotel(g2),

LocatedIn(g2, g1)

Royal Hotel SHhtl SHhtl($h1, h2):- World(h1), 5-starHotel(h2),

LocatedIn(h2, h1)

Table 7.3: Registered Web services in the service registry
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7.3.3 Queries and Preferences

Each desired Web service in Chapter 3 can be described as a query, and associated

preferences can be properly specified by our formal framework.

1) Simple Trip:

• Q($x, y):- World(x), Trip(x, y), World(y)

• Preferences= {〈pb1, 100〉} where:

◦ pb1 =< > → Flight(x, y), {Trip(x, y)} >

2) Fast one-stop round trip travel:

• Q($x, y):- World(x), Trip(x, u), World(u), Trip(u, y), World(y), Trip(y, w),

World(w), Trip(w, x)

• Preferences= {〈pb1, 100〉, 〈pb2, 100〉, 〈pb3, 400〉, 〈pb4, 400〉} where:

◦ pb1 =< > → Flight(x, u), {Trip(x, u)} >

◦ pb2 =< > → Flight(u, y), {Trip(u, y)} >

◦ pb3 =< > → Flight(y, w), {Trip(y, w)} >

◦ pb4 =< > → Flight(w, x), {Trip(w, x)} >

3) Visiting four European cities

• Q($x, u, w, y):- EU(x), Trip(x, u), EU(u), Trip(u, w), EU(w), Trip(w, y), EU(y)

• Preferences= {< (pb1 ∧ pb2)→ pTrain1, 100 >,< (pb2 ∧ pb3)→ pTrain2, 100 >

,< (pb2 ∧ pb3)→ pTrain3, 100 >, } where:
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◦ pb1 =< > → Scandinavia(x), {EU(x)} >

◦ pb2 =< > → Scandinavia(u), {EU(u)} >

◦ pb3 =< > → Scandinavia(w), {EU(w)} >

◦ pb4 =< > → Scandinavia(y), {EU(y)} >

◦ pTrain1 =< > → Train(x, u), {Trip(x, u)} >

◦ pTrain2 =< > → Train(u,w), {Trip(u,w)} >

◦ pTrain3 =< > → Train(w, y), {Trip(w, y)} >

4) Trip around the world (visiting 5 stops):

• Q($x1, x2,..., x5):- World(x1), Trip(x1, x2), World(x2), ..., Trip(x4, x5),

World(x5), Trip(x5, x1)

• Preferences= {< 3 4 pb1 � ...� pb5, 150 >} where:

◦ pb1 =< > → AF (x1), {World(x1)} >

◦ pb2 =< > → AF (x2), {World(x2)} >

◦ pb3 =< > → AF (x3), {World(x3)} >

◦ pb4 =< > → AF (x4), {World(x4)} >

◦ pb5 =< > → AF (x5), {World(x5)} >

5) Affordable travel:

• Q($x, y, h):- World(x), Trip(x, y), World(y), LocatedIn(h, y), Hotel(h)
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• Preferences= {< pb1 → pb2, 100 >} where:

◦ pb1 =< > → EU(y), {World(y)} >

◦ pb2 =< > → 3− starHotel(h), {Hotel(h)} >

7.3.4 Composition and Verification

In this Section, the composition process for the first and the fourth queries which are

described in Section 7.3.3 are considered. Our proposed framework provides possible

composition by rewriting queries in terms of registered Web services in the registry.

To rewrite the query, MiniCon-FD+ first finds all the ∆-contained queries whose

subgoals are appeared in at-least one view by finding CC-rules and expanding the

initial query. It then rewrites each query by calling MiniCon and stores the results.

Finally, the executability and composability of rewritten queries are checked, and

those that are verified are returned as the results of the composition process.

To rewrite the first query, the following ∆-contained queries can be constructed with

respect to the ontology as some of the possible ∆-contained quires:

- Q1($x, y):- World(x), Flight(x, y), World(y)

- Q2($x, y):- World(x), Train(x, y), World(y)

- Q2($x, y):- EU(x), Train(x, y), EU(y)

- Q3($x, y):- Scandinavia(x), Flight(x, y), EU(y)

In the next step, each query Qi as well as Q are rewritten by MiniCon. Some of the

results of this step are represented as follows:

- Q′1($x, y): WJ($x, y)

152



- Q′2($x, y): WJ($x, y),AC($x, y), SThtl($y,h)

- Q′3($x, y): ET($x, y)

- Q′4($x, y): ST($x, y),EGPF($x,y), WJ($x,y)

Rewritten query Q′2 provides the flights from the given city x to some cities in the

world such that these flights are registered in the database of both AirCanada and

WestJet, and there is also a Star hotel in the destination. Thus, they can be considered

as some answers to our query. Q′4 is not composable because if we expand the ST

and EGPF we will get EU(x)∧AF (x) which is not possible based on the nineteenth

rule in ∆.

For the second query, the following ∆-contained queries can be constructed w.r.t ∆:

- Q1($x, y):- EU(x), Train(x, u), Sweden(u), Train(u, y), EU(y), Train(y, w),

EU(w), Flight(w, x)

- Q2($x, y):- World(x), Flight(x, u), World(u), Flight(u, y), World(y), Flight(y,

w), EU(w), Flight(w, x)

- Q3($x, y):- EU(x), Train(x, u), AF(u), Flight(u, y), EU(y), Train(y, w), EU(w),

Train(w, x)

- Q4($x, y):- World(x), Flight(x, u), Sweden(u), Flight(u, y), Sweden(y), Train(y,

w), EU(w), Train(w, x)

- Q5($x, y):- World(x), Train(x, u), EU(u), Train(u, y), Sweden(y), Train(y, w),

EU(w), Train(w, x)

In the next step, each query Qi as well as Q are rewritten by MiniCon. Some of the

results of this step are represented as follows:

- Q′1($x, y):- ET($x, u), ST($u, y), ET($y, w), EF($w, x)
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- Q′2($x, y):- AC($x, u), WJ($u, y), AC($y, w), EF($w, x)

- Q′3($x, y):- ET($x, u), EGPF($u, y), ET($y, w), ST($w, x)

- Q′4($x, y):- AC($x, u), LSF($u, y), ET($y, w), ET($w, x)

- Q′5($x, y):- SThl($x, k2), ET($x, u), ST($u, y), ET($y, w), ET($w, $x)

Views ET and EGPF in Q′3 are incomposable because we would have EU(u)∧AF (u)

by expanding these views while EU(x)∧AF (x)→ ⊥ (the ETs outputs cannot be used

as the input of EGPF). Therefore, after performing the verifications, the above results

will be reduced to Q′1, Q′2, Q′4, and Q′5 which constructs the following compositions:

- CWS1= 〈{EU(x)→ World(x), Train(x, u)→ Trip(x, u),Train(u, y)→

Trip(u, y), Train(y, w)→ Trip(y, w), Flight(w, x)→ Trip(w, x), Sweden(u)→

World(u), EU(y)→ World(y)}, {C1, C2, C3, C4}, Q′2, 0〉 where

◦ C1= 〈{(a1, a1), (a2, a2)}, ET (a1, a2), {x→ a1, u→ a2}, {1, 2}〉

◦ C2= 〈{(b1, b1), (b2, b2)}, ST (b1, b2), {u→ b1, y → b2}, {3, 4}〉

◦ C3= 〈{(a1, a1), (a2, a2)}, ET (a1, a2), {y → a1, w → a2}, {5, 6, 7}〉

◦ C4= 〈{(c1, c1), (c2, c2))}, EF (c1, c2), {w → c1, x→ c2}, {8}〉

- CWS2= 〈{Flight(x, u)→ Trip(x, u),Flight(u, y)→ Trip(u, y), Flight(y, w)→

Trip(y, w), Flight(w, x)→ Trip(w, x), }, {C1, C2, C3, C4}, Q′2, 0〉 where

◦ C1= 〈{(n1, n1), (n2, n2)}, AC(n1, n2), {x→ n1, u→ n2}, {1, 2}〉

◦ C2= 〈{(e1, e1), (e2, e2)},WJ(e1, e2), {u→ e1, y → e2}, {3, 4}〉

◦ C3= 〈{(l1, l1), (l2, l2)}, AC(l1, l2), {y → l1, w → l2}, {5, 6}〉

◦ C4= 〈{(c1, c1), (c2, c2))}, EF (c1, c2), {w → c1, x→ c2}, {7, 8}〉

- CWS3= 〈{Flight(x, u)→ Trip(x, u),Flight(u, y)→ Trip(u, y), Train(y, w)→

Trip(y, w), Train(w, x)→ Trip(w, x), Sweden(u)→ World(u), Sweden(y)→

World(y),EU(w)→ World(w) }, {C1, C2, C3, C4}, Q′4, 0〉 where

◦ C1= 〈{(n1, n1), (n2, n2)}, AC(n1, n2), {x→ n1, u→ n2}, {1, 2}〉
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◦ C2= 〈{(d1, d1), (d2, d2)}, LSF (d1, d2), {u→ d1, y → d2}, {3, 4, 5}〉

◦ C3= 〈{(l1, l1), (l2, l2)}, ET (l1, l2), {y → l1, w → l2}, {6, 7}〉

◦ C4= 〈{(a1, a1), (a2, a2))}, ET (a1, a2), {w → a1, x→ a2}, {8}〉

- CWS4= 〈{Train(x, u) → Trip(x, u),Train(u, y) → Trip(u, y), Train(y, w) →

Trip(y, w), Train(w, x) → Trip(w, x), ET (u) → World(u), Sweden(y) →

World(y),EU(w)→ World(w) }, {C1, C2, C3, C4, C5}, Q′5, 0〉 where

◦ C1= 〈{(f1, f1), (f2, f2)}, SThl(f1, f2), {x→ f1, k2 → f2}, {1}〉

◦ C2= 〈{(n1, n1), (n2, n2)}, ET (n1, n2), {x→ n1, u→ n2}, {2, 3}〉

◦ C3= 〈{(d1, d1), (d2, d2)}, ST (d1, d2), {u→ d1, y → d2}, {4, 5}〉

◦ C4= 〈{(l1, l1), (l2, l2)}, ET (l1, l2), {y → l1, w → l2}, {6, 7}〉

◦ C5= 〈{(a1, a1), (a2, a2))}, ET (a1, a2), {w → a1, x→ a2}, {8}〉

Note that Q′5 is executable and not incomposable. This composition provides all the

train itineraries from x such that x is located in Europe (i.e., it satisfies Q5), and it

also implies that there exists a hotel in x (more filtering on the values of x).

For the fifth query (Affordable travel), the following rewritten queries are provided

as some of the results:

- Q1($x, y, h):- EF($x, y), SThtl($y, h)

- Q2($x, y, h):- AC($x, y), LSF($d1, y), SThtl($y, h)

- Q3($x, y, h):- EF($x, y), STHtl($y, h1), AFhtl($y, h)

- Q4($x, y, h):- EGPF($x, y), SHhtl($y, h)

- Q5($x, y, h):- EGPF($x, y), AFHtl ($y, h)

After performing two classes of verification, Q2 will be eliminated due to the lack of

executable order.
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7.3.5 Ranking the Composed Web Services based on user

Preferences

As the final step of our framework, the verified rewritings should be ranked based on

the user preferences. In this Section, we rank the results of second and fifth query,

and we will then compare the ranked results with our expected rankings in order to

evaluate the correctness of the ranking system.

To rank the results for the second query, all the preferences should be evaluated

for each composition. To commence the preference evaluation for the composed Web

service CWS1, the Coverallqi for each preference body pbi=〈fi, qi〉 i = 1, ..., 4, defined

in Section 7.3.3 for the second query, should be specified. According to the definition

of the coverall set described in Definition 7.2.5, the coverall sets for CWS1 are

- Coverallq1= {Train(x, u), T rip(x, u)}

- Coverallq2= {Train(u, y), T rip(u, y)}

- Coverallq3= {Train(y, w), T rip(y, w)}

- Coverallq4= {Flight(w, x), T rip(w, x)}

According to the semantics of preference bodies which are explained in Definition

7.2.7, pb1 is true if for any interpretation I, I�∆∪Coverallq1 (> → Flight(x, u)). In

other words, if there is an interpretation I such that I2∆∪Coverallq1 (> → Flight(x, u)),

then pb1 is false. To create such a I, assume a domain D in which all the cities

are connected by train. Thus,Train(x, u)I,Z = true, Trip(x, u)I,Z = true, and

Flight(x, u)I,Z = false for any variable assignment Z in I, resulting pb1 = false.

Likewise, pb1, pb2, and pb3 are evaluated as false. For pb4, because for any interpre-

tation I, I�∆∪{Flight(w,x),T rip(w,x)}> → Flight(w, x) is true, pb4 is true. Consequently,
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Model MCWS1 is MCWS1={pb1 = false, pb2 = false, pb3 = false, pb4 = true}.

In the final step, the complex preference formulas of preferences should be investigated

by using model MCWS1 . The first three preferences are violated, so their associated

costs should be added to the total cost (TC)of CWS1, resulting TC = 600. By

following the same steps for the other compositions, the following results will be

achieved:

Composition Cost Description

CWS2 0 All the legs are flight

CWS1 600 Only the last leg is flight

CWS3 800 Only the first two legs are flight

CWS4 1000 All the legs are train

As the above table shows, the composite Web services are ranked correctly as we

expected based on their itineraries. Note that although CWS3 provides two legs

flight it has a lower rank compared to CWS1 which has only one leg flight because

the return legs are strongly preferred to be flight.

In order to rank the results for the fifth query, a similar procedure needs to performed.

Starting with Q1($x, y, h) : −EF ($x, y), SThtl($y, h), both preference bodies pb1

=< > → EU(y), {World(y)} > and pb2 =< > → EU(y), {World(y)} > are satisfied,

thus the preference is satisfied. Likewise, Q′2 and Q′3 satisfy the preference. Queries

Q′4 and Q′5 are also satisfy the preference since the destination is not located in

Europe. Consequently, no cost caused by violation of the preference is added to the

the compositions’ total cost; however, the user prefers 3-star hotels. In this case the
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proximate measurement function plays a role to order the compositions which are

more close to our preference.

According to Definition 7.2.11, Prox(pbi) is equal to the minimum number of rules in

∆ which is necessary to derive pbi as true. For example, rules 4 and 5 in ∆ are enough

to make pb2 as true, thus Prox(pb2) = 2. The total costs (TCs) for the compositions

according to Definition 7.2.12 are presented in the following table.

Composition Proximation Violation TC Description

CWS1
(0+2)

21
0 2

21
destination: EU, Hotel: 4-star

CWS2
(2+2)

21
0 4

21
destination: Sweden, Hotel: 4-star

CWS3
(0+0)

21
0 0 destination: EU, Hotel: 3-star

CWS4
(0+3)

21
0 3

21
destination: Africa, Hotel: 5-star

CWS5
(0+0)

21
0 0 destination: Africa, Hotel: 3-star

As the above table shows, the compositions that provide flights to Europe and book

a room in a 3-star hotel have a higher ranking. Moreover, those compositions that

their provided flights’ destinations are not located in Europe, but they book a room

in a 3-star hotel have a higher ranking which doesn’t have any conflict with the user

preferences.
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Chapter 8

Conclusions and Future Work

The main objectives of this research have been to compose DP Web services in the

presence of domain ontology and to provide a framework in order to utilize user

preferences to rank the results of a composition. In order to accomplish these goals,

MiniCon algorithm, a state-of-the-art bucket-based algorithm, was extended to handle

full dependency rules (Chapter 6). In the next step, the extended algorithm was

adopted the for Web service composition problem (Chapter 7, Section 7.1). To let

users describe their preferences about their desired Web services, a formal framework

was designed to encode the users’ preferences and to use them in order to rank the

results of a composition (Chapter 7, Section 7.2). Finally, a running example, defined

in Chapter 3, was implemented in order to evaluate the proposed framework (Chapter

7, Section 7.3). The primary contributions of this research as well as the potential

future directions are outlined in the reminder of this Chapter.
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8.1 Research Contributions

8.1.1 Query Rewriting in the Presence of Full Dependencies

While the Web facilitates fast access to various data sources distributed in different

locations, finding the most complete answer to a given query in a reasonable time

becomes a challenge. In order to make this process automatically, an additional

ontological structure is required since data sources can be created anonymously with

different terminologies. By utilizing more information about the domain, we may find

more answers to a received query. Therefore, this ontological structure should also

provide such information about the underlying domain.

A fundamental research question raised about providing such ontological structure

was, how can knowledge about a domain be encoded to be used during answering a

query by integrating data sources? To answer this research question, various logical

structures have been reviewed which have been used to extend the data integration

problem. Using the knowledge drawn from these studies, datalog rules, i.e. full

dependencies, were selected as a language to build domain ontology because of its

tractability and acceptable expressivity.

To utilize the ontology, the MiniCon algorithm was extended to integrate data sources

in the presence of ontology domain. Nonetheless, MCDSAT and GQR algorithms (re-

viewed in Sections 4.4.3 and 4.4.4) are shown to be more efficient in comparison with

MiniCon. The reason behind this decision is that since MiniCon provides information

about which parts of a rewritten query are used to answer which parts of the initial

query, making it suitable for handling the specific class of preferences called local

preferences, introduced in Section 7.2.
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To integrate data sources in the presence of full dependencies, MiniCon-FD and its

optimized version, MiniCon-FD+, were proposed. These two algorithms were shown

to utilize the ontology domain independent of their rewriting algorithm, i.e. MiniCon.

Therefore, they can be used to extend GQR and MCDSAT as well. Moreover, in order

to enhance the efficiency, MiniCon-FD++ were proposed by modifying MiniCon to

rewrite queries in the presence of full dependencies when no constant exists.

8.1.2 Preference-based Composition of DP Web Services

To compose DP Web Services, MiniCon-FD+ was chosen because of its capability of

handling constant symbols. Because this algorithm was developed for data integration

problem, it could not be used directly for Web service composition, thus an adaption

were required. To verify the correctness of the results of MiniCon-FD+, two checking

procedures are explained in Chapter 6 that test the executability and incomposability.

Because thousands of composed Web services can be generated as the results of a

composition process, finding the best fit composition based on user needs is a chal-

lenge. To assist users in the searching process, we utilized users’ preferences about

their desired Web services to rank the results. Our approach is motivated by the

work proposed in [40], which provided a novel framework to utilize user preferences

for ranking the results. However, since this approach used propositional logic as the

language of preferences, some restrictions exist in describing preferences. In addition,

to reveal the limitations of related works in encoding user preferences along with their

issues in ranking, a running example was defined. This example was also used to eval-

uate our approach. To handle the shortcomings of related approaches, discussed in
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Section 5.1, a novel formal framework was proposed.

In our proposed framework, two classes of local and global preferences can be described

which the former encodes the user preferences about a fragment of query while the

later encodes information about the entire query. In addition, a novel language is

defined to capture user preferences. In order to rank the results of a composition

accurately, the proximate function was defined to measure the closeness of a satisfied

composite to the desired composite. To evaluate our framework, the running example

was implemented.

8.2 Future Work

While the soundness of MiniCon-FD and its optimized version has been proved, the

completeness of this algorithm still needs to be shown. Therefore, the first effort can

be the completeness proof of this algorithm. We showed that MiniCon-FD can be

added to any rewriting algorithm such as MCDSAT and GQR algorithms to extend

them with full dependencies. However, we showed that some redundant information

may be collected during rewriting process because we run MiniCon-FD separately.

One way to enhance the performance is to break down these two algorithms and

modify them.

On the other hand, improving the language of describing queries and Web services

can enhance the efficiency and practability of system. MiniCon-FD++ cannot support

constant symbols but constants symbols are vital in practice for describing ontologies.

Thus, one of our future efforts is to extend MiniCon-FD++ with constant symbols.

Moreover, using more expressive languages for describing ontology such as tgd rules
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can be another option to improve the approach.

In our work, the user preferences regarding to functional characteristics of Web ser-

vices are taken into account. However, considering the non-functional characteristics

of Web services such as the price or response time can assist us in finding the most

desirable ones. As such, incorporating a method to capture and use this type of

preference in the composition process can be of value. In addition, user preferences

can be used during the composition process to prune the cases that lead the system

to undesirable composition. Nonetheless, this procedure can cause and empty result

which may not be pleasant for users.
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[37] P. Hitzler, M. Krötzsch, and S. Rudolph. Foundations of Semantic Web Tech-

nologies. Chapman & Hall/CRC, 2009.

[38] I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible sroiq. In Knowl-

edge Representation, pages 57–67, 2006.

[39] J. Hutchinson, G. Kotonya, J. Walkerdine, P. Sawyer, G. Dobson, and V. Onditi.

The challenge of evolving existing systems to service-oriented architectures. In

IEEE International Conference on Industrial Informatics, volume 2, pages 773

–778, 2007.

168



[40] D. Izquierdo, M.-E. Vidal, and B. Bonet. An expressive and efficient solution to

the service selection problem. In Proceedings of the semantic Web conference on

The semantic web - Volume Part I, pages 386–401, 2010.

[41] D. S. Johnson and A. Klug. Testing containment of conjunctive queries under

functional and inclusion dependencies. In ACM SIGACT-SIGMOD symposium

on Principles of database systems, pages 164–169, 1982.

[42] T. Kaczmarek and K. Wecel. Hype over service-oriented architecture continues.

Wirtschaftsinformatik, 50:52–59, 2008.

[43] S. Kambhampati. Refinement planning as a unifying framework for plan synthe-

sis. AI Magazine, 18(2):67–97, 1997.

[44] H. Kautz and B. Selman. BLACKBOX: A new approach to the application of

theorem proving to problem solving. In Workshop on Planning as Combinational

Search, pages 58–60, 1998.

[45] H. Kautz and B. Selman. Unifying SAT-based and graph-based planning. In

Proceedings of the Joint Conference on Artificial Intelligence, pages 318–325,

1999.

[46] R. Klein, M. Buchheit, and W. Nutt. Configuration as model construction: The

constructive problem solving approach. In Artificial Intelligence in Design 94,

pages 201–218. 1994.

169



[47] C. Koch. Query rewriting with symmetric constraints. In Proceedings of the

Second International Symposium on Foundations of Information and Knowledge

Systems, FoIKS ’02, pages 130–147, 2002.

[48] G. Konstantinidis and J. L. Ambite. Scalable query rewriting: a graph-based

approach. In Proceedings of the 2011 ACM SIGMOD International Conference

on Management of data, pages 97–108, 2011.

[49] P. Kruchten. The Rational Unified Process: An Introduction. Addison-Wesley,

1999.

[50] C. T. Kwok and D. S. Weld. Planning to gather information. In In Proceedings of

the AAAI Thirteenth National Conference on Artificial Intelligence, pages 32–39,

1996.

[51] U. D. Lago, M. Pistore, and P. Traverso. Planning with a language for extended

goals. In Eighteenth national conference on Artificial intelligence, pages 447–454,

2002.

[52] F. Lecue and N. Mehandjiev. Towards scalability of quality driven semantic Web

service composition. In IEEE International Conference on Web Services, pages

469 –476, 2009.

[53] M. Lenzerini. Logical foundations for data integration. pages 38–40, 2005.

[54] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava. Answering queries

using views. In PODS, San Jose, Calif, USA, pages 95 –104, 1995.

170



[55] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying heterogeneous information

sources using source descriptions. In International Conference on Very Large

Data Bases, pages 251–262, 1996.

[56] N. Lin, U. Kuter, and E. Sirin. Web service composition with user preferences.

In Proceedings of the European Semantic Web Conference, pages 629–643, 2008.

[57] N. Lin, U. Kuter, and E. Sirin. Web service composition with user preferences.

In Proceedings of the Semantic Web Conference on The semantic Web: Research

and Applications, pages 629–643, 2008.

[58] J. Lu, Y. Yu, and J. Mylopoulos. A lightweight approach to semantic web

service synthesis. In Workshop on Challenges in Web Information Retrieval and

Integration, pages 240–247, 2005.

[59] A. Maedche and S. Staab. Ontology learning for the semantic Web. IEEE

Intelligent Systems, 16(2):72 – 79, 2001.

[60] D. Maier and A. Mendelzon. Testing implications of data dependencies. ACM

Transactions on Database Systems, pages 455–469, 1979.

[61] P. T. Mallik Ghallab, Dana Nau. Automated Planning: Theory and Practice.

Morgan Kaufmann, 2004.

[62] S. Mcilraith and R. Fadel. Planning with complex actions. In ProcProceedings of

the International Workshop on Non-Monotonic Reasoning, pages 356–364, 2002.

171



[63] S. A. McIlraith and T. C. Son. Adapting Golog for composition of semanticWeb

services. In Principles of Knowledge Representation and Reasoning, pages 482–

496, 2002.

[64] S. A. McIlraith, T. C. Son, and H. Zeng. Semantic Web services. IEEE Intelligent

Systems, 16(2):46–53, 2001.

[65] A. Mesmoudi, M. Mrissa, and M. Hacid. Combining configuration and query

rewriting for web service composition. In Web Services (ICWS), 2011 IEEE

International Conference on, pages 113 –120, 2011.

[66] P. Mitra. An algorithm for answering queries efficiently using views. In Aus-

tralasian Database Conference, pages 99–106, 2001.

[67] W. Niu, Z. Shi, and L. Chang. A Context Model for Service Composition Based

on Dynamic Description Logic. 2009.

[68] OASIS. Reference model for service oriented architecture 1.0. @ONLINE, 2010.

[69] S.-C. Oh, D. Lee, and S. R. T. Kumara. A comparative illustration of ai planning-

based web services composition. SIGecom Exch., 5:1–10, 2006.

[70] S.-C. Oh, D. Lee, and S. R. T. Kumara. Web service planner (wspr): An effective

and scalable web service composition algorithm. International Journal of Web

Services Research, 4(1):1–22, 2007.

[71] M. P. Papazoglou and W.-J. Heuvel. Service oriented architectures: Approaches,

technologies and research issues. The VLDB Journal, 16(3):389–415, 2007.

172



[72] P. Papazoglou, M. Web Services: Principles and Technologies. Prentice Hall,

2008.

[73] J. Peer. Web service composition as AI planning-a survey. Technical report,

University of St. Gallen, Switzerland, 2005.

[74] R. Pottinger and A. Halevy. MiniCon: A scalable algorithm for answering queries

using views. The VLDB Journal, 10(2-3):182–198, 2001.

[75] H. Rahmani, G. GhasemSani, and H. Abolhassani. Automatic Web service com-

position considering user non-functional preferences. In Proceedings of the Inter-

national Conference on Next Generation Web Services Practices, pages 33–38,

2008.

[76] A. Rajaraman, Y. Sagiv, and J. D. Ullman. Answering queries using tem-

plates with binding patterns (extended abstract). In Proceedings of the four-

teenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database

systems, pages 105–112, 1995.

[77] J. Rao and X. Su. A survey of automated Web service composition methods.

In In Proceedings of the International Workshop on Semantic Web Services and

Web Process Composition, pages 43–54, 2004.

[78] R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Imple-

menting Dynamical Systems. MIT Press, 2001.

173



[79] G. R. Santhanam, S. Basu, and V. Honavar. On utilizing qualitative preferences

in Web service composition: A CP-net based approach. In Proceedings of the

IEEE Congress on Services - Part I, pages 538–544, 2008.

[80] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. HTN planning for Web

service composition using shop2. Web Semantics, 1(4):377–396, 2004.

[81] S. Sohrabi, J. A. Baier, and S. A. McIlraith. HTN planning with preferences.

In Proceedings of the Jont Conference on Artifical intelligence, pages 1790–1797,

2009.

[82] S. Sohrabi and S. A. Mcilraith. Optimizing Web service composition while enforc-

ing regulations. In Proceedings of the International Semantic Web Conference,

pages 601–617, 2009.

[83] S. Sohrabi and S. A. Mcilraith. Optimizing Web service composition while enforc-

ing regulations. In Proceedings of the Semantic Web Conference, pages 601–617,

2009.

[84] S. Sohrabi, N. Prokoshyna, and S. A. Mcilraith. Web service composition via

the customization of golog programs with user preferences. chapter Conceptual

Modeling: Foundations and Applications, pages 319–334. 2009.

[85] P. Traverso and M. Pistore. Automated composition of semantic web services

into executable processes. pages 380–394, 2004.

[86] G. Weikum. Letter from the special issue editor. IEEE Data Eng. Bull., 25(1):3,

2002.

174



[87] L. Zhou, H. Chen, T. Yu, J. Ma, and Z. Wu. Ontology-based scientific data

service composition: A query rewriting-based approach. In AAAI Spring Sym-

posium: Semantic Scientific Knowledge Integration, pages 116–121, 2008.

175


