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ABSTRACT 

 

After almost a century since the postulation of quantum mechanics, the only 

chemical systems that can be treated exactly are those with one electron. For all many-

electron problems we rely on approximate solutions to the electronic Schrödinger 

equation. The single largest error in the calculations is due to the lack of an accurate 

representation of what happens when two electrons come close together. How the motion 

of one electron is affected by that of the other electron is referred to as electron 

correlation. Not only is electron correlation a fundamental problem in quantum 

chemistry, it is also crucial in determining the important chemical effects. 

The correlated motion of electrons with opposite spins, completely neglected in 

single-determinantal Hartree-Fock theory, remains as one of the central unsolved challenges 

in quantum chemistry. Simple models that can account for the missing correlation energy 

have been investigated for the isoelectronic atomic series of two to eighteen electrons in 

order to gain further insight into the form of a correlation operator. The strength of the 

electron correlation likely depends on both their separation in position space and their 

separation in momentum space; hence, it is expected that the correlation energy is related to 

the average inter-electron distance and to their kinetic energy. It has been previously shown 

that the average electron-electron distance is inversely proportional to the Coulomb energy; 

thus, the correlation energy was modelled as a function of Coulomb repulsion and kinetic 

energies. Additionally, application of the atomic correlation models to the modeling of the 

correlation energy for simple molecular systems have been explored.  
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“The underlying physical laws necessary for the mathematical theory of a large part of 

physics and the whole of chemistry are thus completely known, and the difficulty is only 

that the exact application of these laws leads to equations much too complicated to be 

soluble. It therefore becomes desirable that approximate practical methods of applying 

quantum mechanics should be developed, which can lead to an explanation of the main 

features of complex atomic systems without too much computation.” 

  

 

Paul A. Dirac, Proceedings of the Royal Society of London. Series A. 

Containing Papers of a Mathematical and Physical Character, Vol. 123, (1929) 

  

http://en.wikiquote.org/wiki/Chemistry
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“I believe in intuition and inspiration. … At times I feel certain I am right while not knowing 

the reason. When the eclipse of 1919 confirmed my intuition, I was not in the least 

surprised. In fact I would have been astonished had it turned out otherwise. Imagination is 

more important than knowledge. For knowledge is limited, whereas imagination embraces 

the entire world, stimulating progress, giving birth to evolution. It is, strictly speaking, a 

real factor in scientific research.”  

 

 

 

Albert Einstein, in “Cosmic Religion: With Other Opinions and Aphorisms” (1931) 
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“I think I can safely say that nobody understands quantum mechanics.” 

 

 

Richard Feynman, in “The Character of Physical Law” (1965) 

http://en.wikiquote.org/wiki/Richard_Feynman
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1. Theoretical Background 

1.1. Introduction 

Our physical world is composed of interacting many-particle systems. All possible 

information about a system is in principle contained in the many-body wavefunction, 

determined by the time-dependent Schrödinger equation. However the exact analytical 

solution to a many-particle problem is not possible. This many-body problem is not 

unique to quantum mechanics, but to all interacting particles or systems, such as 

galaxies, planets, electronic systems, or nuclear matter. The appropriate approximate 

solutions to numerous physical systems have been obtained using the ever developing 

theoretical and computational methods. In the heart of quantum chemistry it is the 

electronic many-body problem that the theoretical methods aim to solve. Great 

development and ample advances have been made in the theoretical chemistry field in 

the last 80 years; however, the main and the most important problem still remains: the 

accurate description of what happens when two or more electrons come close together, 

called the electron correlation. Not only is electron correlation a fundamental problem 

in quantum chemistry, it is also crucial in determining the important chemical effects. 

1.2. Quantum Behavior of Atoms and Molecules 

At the fundamental level, the chemistry of all atomic and molecular systems is 

determined by the physics of the electrons and nuclei of which they are composed. 

According to Dirac “The laws necessary for the mathematical treatment of a large part 
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of physics and the whole chemistry are accurately described by quantum mechanics, and 

are in essence completely known; the only difficulty lies in the fact that the application 

of these laws leads to the equations that are too complex to be solved.”1 The only 

chemical systems for which the electronic part of the Schrödinger equation can be solved 

exactly are the simplest one-electron systems, such as the hydrogen atom and the 

molecular hydrogen cation.2 Since the birth of quantum mechanics and the postulation 

of the Schrödinger equation several methods to approximate the exact solutions to many-

electron problems have been developed. Today, computational and theoretical chemistry 

have become irreplaceable in the modern scientific research. Their importance will be 

even more significant with the development of improved computational chemistry 

methods which could yield more accurate results in shorter computational time. With 

the exponential rise in computational power and resources we have experienced in the 

last few decades, the search for more advanced theoretical chemistry methods has 

become one of the most exciting and promising research topics. 

The quantum behavior of atoms and molecules, in the absence of relativistic 

effects, is determined by the time-independent Schrödinger equation: 

𝐻̂𝛹𝑛 = 𝐸𝛹𝑛                                                               (1.1) 

where Ψn is the many-body wavefunction of the form: 

𝛹𝑛 ≡  𝛹𝑛(𝑅1, 𝑅2, 𝑅3, … ; 𝑟1, 𝑟2, 𝑟3, … )                                      (1.2) 

and 𝐻̂ is the total Hamiltonian operator for the system of nuclei and electrons described 

by position vectors Ri and ri, respectively, and representing the total energy, E, of all the 

particles of the system that can be written in atomic units as:3       
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𝐻̂ = − ∑
1

2𝑀𝐴

𝑀

𝐴=1

𝛻𝐴
2 – ∑

1

2
𝛻𝑖

2  +  ∑
𝑍𝐴𝑍𝐵

|𝑅𝐴 − 𝑅𝐵|

𝑀

𝐴=1
𝐵>𝐴

– ∑
𝑍𝐴

|𝑅𝐴 − 𝑟𝑖|

𝑁,𝑀

𝑖=1
𝐴=1

+ ∑
1

|𝑟𝑖 − 𝑟𝑗|
     (1

𝑁

𝑖=1
𝑗>𝑖

. 3)

𝑁

𝑖=1

 

where MA is the ratio of the mass of nucleus A to the mass of an electron, and ZA is the 

atomic number of nucleus A. The first two terms in the equation (1.3) are the kinetic 

energies for the nuclei and the electrons, respectively, where each Laplacian ∇𝐴
2 involves 

differentiation with respect to the nuclear coordinates of the Ath nucleus, while the ∇𝑖
2 

term involves differentiation with respect to the coordinates of the ith electron. The third, 

fourth and fifth terms in the equation (1.3) represent the potential energy of the system, 

and are the nuclear-nuclear repulsion, nuclear-electron attraction, and electron-electron 

repulsion energies, respectively. Analytical solutions to the time-independent 

Schrödinger equation are only possible for very simple systems; for the remainder of the 

problems one must rely on approximate models. Integration of equation (1.1) allows the 

energy to be expressed as an expectation value of the wavefunction,𝛹𝑛.4 

𝐸 =
⟨𝛹𝑛|𝐻̂|𝛹𝑛⟩

⟨𝛹𝑛|𝛹𝑛⟩
                                                            (1.4) 

In the Born-Oppenheimer approximation, the electrons are assumed to be moving 

in a field of fixed nuclei because of their relative masses, and the total wavefunction can 

be approximated by the product of the electronic and nuclear wavefunctions.5 The 

electronic Schrödinger equation can be written as:6 

𝐻̂𝑒𝑙𝑒𝑐𝛹𝑒𝑙𝑒𝑐({𝑟𝑖}) = 𝐸𝑒𝑙𝑒𝑐𝛹𝑒𝑙𝑒𝑐({𝑟𝑖})                                          (1.5) 

where the electronic Hamiltonian 𝐻̂𝑒𝑙𝑒𝑐 in atomic units is.3 
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𝐻̂𝑒𝑙𝑒𝑐(𝑟1, 𝑟2, 𝑟3, … ) = − ∑
1

2
𝛻𝑖

2 −  ∑ ∑
𝑍𝐴

|𝑅𝐴 − 𝑟𝑖|

𝑀

𝐴=1

𝑁

𝑖=1

+ ∑
1

|𝑟𝑖 − 𝑟𝑗|

𝑁

𝑖=1
𝑗>𝑖

                        (1.6)

𝑁

𝑖=1

 

The total energy of a system in a set of nuclear coordinates is the sum of the electronic 

energy and the nuclear repulsion energy, where the kinetic energy of the nuclei has been 

assumed to be zero. The energy dependence on the nuclear coordinates, a consequence 

of the Born-Oppenheimer approximation, gives rise to the potential energy surface 

(PES).3  

1.3.  Hartree-Fock Theory 

In the Hartree-Fock (HF) approximation, the motion of an electron is determined 

by the attractive electrostatic potential of the nuclei and by the repulsive average field 

of all the other electrons of the system.3 The HF approximate solution entails the 

wavefunction, 𝛹0, in the form of a single Slater determinant to describe the ground state 

of an N-electron system.7-11  

𝛹0(𝑥1, 𝑥2, … , 𝑥𝑛) =
1

√𝑁!
|

𝜒1(𝑥1) 𝜒2(𝑥1)

𝜒1(𝑥2) 𝜒2(𝑥2)
… 𝜒𝑁(𝑥1)

… 𝜒𝑁(𝑥2)
⋮ ⋮

𝜒1(𝑥𝑁) 𝜒2(𝑥𝑁)
 ⋱ ⋮
… 𝜒𝑁(𝑥𝑁)

|                                        (1.7) 

𝛹0 is the simplest antisymmetric product of the one-electron spin orbitals 𝜒𝑖(𝑥𝑖),   𝑥𝑖 =

(𝒓𝒊, 𝜔𝑖), where 𝑥𝑖 are the spatial and spin coordinates of each electron. The spin orbitals 

are products of spatial orbitals and spin functions, φ(r) and α(ω) or β(ω), respectively.3 

The electronic wavefunction in the form of a Slater determinant satisfies the 

antisymmetry principle, and also the indistinguishability of the electrons. The 
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expectation value of the electronic Hamiltonian and the Hartree-Fock wavefunction is 

the electronic Hartree-Fock energy. 

𝐸𝐻𝐹 = ⟨𝛹𝐻𝐹|𝐻̂|𝛹𝐻𝐹⟩                                                  (1.8) 

𝐸𝐻𝐹_𝑒 = ∑⟨𝜒𝑖|ℎ̂|𝜒𝑖⟩

𝑁

𝑖=1

+
1

2
∑ ∑⟨𝜒𝑖𝜒𝑗|𝜒𝑖𝜒𝑗⟩ − ⟨𝜒𝑖𝜒𝑗|𝜒𝑗𝜒𝑖⟩                  (1.9)

𝑁

𝑗=1

𝑁

𝑖=1

 

where ℎ̂ is the one-electron operator: 

 ℎ̂ = −
1

2
𝛻𝑖

2 − ∑
𝑍𝐴

𝑟𝑖𝐴

𝑀

𝐴=1

                                                  (1.10) 

and the ⟨𝜒𝑖𝜒𝑗|𝜒𝑖𝜒𝑗⟩ − ⟨𝜒𝑖𝜒𝑗|𝜒𝑗𝜒𝑖⟩ are two-electron integrals. The orthonormality 

constraint of the spin orbitals is written as: 

⟨𝜒𝑖|𝜒𝑗⟩ = 𝛿𝑖𝑗,          ∀ 𝑖, 𝑗                                               (1.11) 

The HF equations are derived by minimizing the energy expression with respect to the 

spin orbitals. The expression for the total HF energy, including the nuclear repulsion 

energy of a 2N-electron system with closed shells is given by:3 

𝐸𝐻𝐹 = 2 ∑ 𝐻𝑎𝑎

𝑁

𝑎=1

+ ∑ ∑(2𝐽𝑎𝑏 − 𝐾𝑎𝑏) + 𝑉𝑁𝑁                           (1.12)

𝑁

𝑏=1

𝑁

𝑎=1

 

where 𝐻𝑎𝑎 is the one-electron energy, 

𝐻𝑎𝑎 = ⟨𝜑𝑎|ℎ̂|𝜑𝑎⟩ = ⟨𝑎|ℎ̂|𝑎⟩                                        (1.13) 

𝐽𝑎𝑏 is the two-electron energy given by the Coulomb integral, ⟨𝑎𝑏|𝑎𝑏⟩, 

𝐽𝑎𝑏 = ∬ 𝜑𝑎
∗(𝑟1) 𝜑𝑏

∗ (𝑟2)
1

𝑟12
𝜑𝑎(𝑟1)𝜑𝑏(𝑟2)𝑑𝑟1𝑑𝑟2                           (1.14𝑎) 

𝐾𝑎𝑏 is the two-electron energy given by the exchange integral, ⟨𝑎𝑏|𝑏𝑎⟩, 
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𝐾𝑎𝑏 = ∬ 𝜑𝑎
∗(𝑟1) 𝜑𝑏

∗ (𝑟2)
1

𝑟12
𝜑𝑏(𝑟1)𝜑𝑎(𝑟2)𝑑𝑟1𝑑𝑟2                            (1.14𝑏) 

and 𝑉𝑁𝑁 is the nuclear repulsion term. The closed-shell HF equations have the form: 

𝑓𝜑𝑎(𝑟1) = 𝜖𝑎𝜑𝑎(𝑟1)                                                 (1.15) 

𝑓 = ℎ̂ + ∑ 𝐽𝑏 − 𝐾̂𝑏                                                  (1.16)

𝑁/2

𝑏=1

 

where 𝑓 is the closed-shell Fock operator, 𝜖𝑎 is the orbital energy, ℎ̂ is the one electron 

part of the Hamiltonian, 𝐽𝑏 and 𝐾̂𝑏 are the Coulomb and exchange operators, 

respectively:3  

𝐽𝑏𝜑𝑎(𝑟1) = ∫ [𝜑𝑏
∗ (𝑟2)

1

𝑟12
𝜑𝑏(𝑟2)𝑑𝑟2] 𝜑𝑎(𝑟1)                           (1.17𝑎) 

𝐾𝑏𝜑𝑎(𝑟1) = ∫ [𝜑𝑏
∗ (𝑟2)

1

𝑟12
𝜑𝑎(𝑟2)𝑑𝑟2] 𝜑𝑎(𝑟1)                            (1.17𝑏) 

Spatial functions can be expanded in a finite basis set {𝜓𝑠}𝑠=1
𝑘 :3,4 

𝜑𝑖 = ∑ 𝑐𝜇𝑖𝜓𝜇

𝑏

𝜇=1

                                                    (1.18) 

where the choice of the size of the basis is dictated by the degree of expected accuracy 

and computational cost, while the condition of orthogonality is always imposed on the 

basis, as the resulting HF equations are easier to solve.12  

Substitution of the basis set expansion in equation (1.18) into the Hartree-Fock equations 

(1.16) leads to the Roothaan’s equations that can be written as a set of b equations in the 

variables 𝑐𝜇𝑎 (eq. 1.19)12 or in a matrix form (eq. 1.20)3,4 as: 
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∑ 𝑐𝜇𝑎(𝐹𝜇𝜈 − 𝜖𝑎𝑆𝜇𝜈)

𝑏

𝜇=1

= 0                                        (1.19) 

𝑭𝑪 = 𝑺𝑪𝝐                                                             (1.20) 

where F is the Fock matrix with the matrix elements 𝐹𝜇𝜈 = ⟨𝜓𝜇|𝑓|𝜓𝜈⟩; S is the overlap 

matrix with the matrix elements  𝑆𝜇𝜈 = ⟨𝜓𝜇|𝜓𝜈⟩, C is the expansion coefficients matrix, 

and 𝝐 is the diagonal matrix of orbital energies. 

𝑪 = (

𝑐11 𝑐12

𝑐21 𝑐22

… 𝑐1𝑘

… 𝑐2𝑘

⋮ ⋮
𝑐𝑘1 𝑐𝑘2

 ⋱ ⋮
… 𝑐𝑘𝑘

)                       𝝐 = (

𝜖11 0
0 𝜖22

… 0
… 0

⋮ ⋮
0 0

 ⋱ ⋮
… 𝜖𝑘𝑘

)                   (1.21) 

The Fock operator is dependent on the molecular orbital coefficients through the 

Coulomb and exchange operators; therefore, an initial guess or prior knowledge of the 

coefficient matrix is required to solve Roothaan’s equations. Thus, the pseudo-

eigenvalue Hartree-Fock equations are nonlinear equations, solved by the iterative 

procedures. 

The probability of finding an electron described by the spatial wavefunction 𝜑𝑎, 

in the volume dr at a point r is |𝜑𝑎(𝒓)|2𝑑𝒓. The probability distribution function, charge 

density, is |𝜑𝑎(𝒓)|2. The total charge density of a system described by the closed-shell 

single determinantal wavefunction is a sum of the charge densities of all occupied 

molecular orbitals, and the integral of the total charge density is simply the total number 

of electrons.3 

𝜌(𝒓) = 2 ∑|𝜑𝑎(𝒓)|2                                                (1.22)

𝑁/2

𝑎
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∫ 𝜌(𝒓) 𝑑𝒓 = 2 ∑ ∫|𝜑𝑎(𝒓)|2 𝑑𝒓

𝑁/2

𝑎

= 2 ∑ 1

𝑁/2

𝑎

= 𝑁                       (1.23) 

Defining the density matrix P as: P=2CC+ with matrix elements 𝑃𝜇𝜈 =

2 ∑ 𝐶𝜇𝑎𝐶𝜈𝑎
∗𝑁/2

𝑎=1 , the electron density term can be written in terms of 𝑃𝜇𝜈. 

𝜌(𝒓) = 2 ∑ ∑ ∑ 𝐶𝜇𝑎
∗ 𝐶𝜈𝑎𝜓𝜇

∗ (𝒓)𝜓𝜈(𝒓) = ∑ 𝑃𝜈𝜇𝜓𝜇
∗ (𝒓)𝜓𝜈(𝒓) 

𝜇𝜈

𝐾

𝜈=1

𝐾

𝜇=1

𝑁/2

𝑎

          (1.24) 

The charge density matrix specifies completely the charge density in terms of the 

expansion coefficients, and the closed-shell Fock operator can be expressed in terms of 

the density matrix3 

𝑓(𝒓1) = ℎ̂(𝒓1) + ∑ 𝐽𝑏 − 𝐾̂𝑏

𝑁
2

𝑏=1

= ℎ̂(𝒓1) + 𝜈𝐻𝐹(𝒓1)                                              

= ℎ̂(𝒓1) +
1

2
∑ 𝑃𝜈𝜇 [∫ 𝜓𝜇

∗ (𝒓2)(2 − 𝒫12)
1

𝒓12
𝜓𝜈(𝒓2)𝑑𝒓2]

𝜈𝜇

                 (1.25) 

where the 𝜈𝐻𝐹is an effective one-electron potential, and the 𝒫12 is the permutation 

operator, which permutes the coordinates of the particles. The most commonly used 

approach to find the solutions to the Roothaan’s equations is the self-consistent field 

(SCF) approach. The SCF approach most often uses the charge density matrix for the 

convergence test; the initial guess of the molecular orbitals determines the initial density 

matrix, which is used to calculate the effective one-electron Hartree-Fock potential, and 

therefore a new charge density. The SCF procedure is repeated until an effective 

electrostatic field no longer changes; therefore, until the field that produced a particular 

charge density is consistent with the field calculated from that same charge density.3 
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The above restricted closed-shell Hartree-Fock equations using the pairs of 

electrons in the closed shells are of course not sufficient to describe all molecules nor 

all their states; the restricted and unrestricted open-shell calculations were developed to 

deal with many of these electronic structure problems in chemistry. In the restricted 

open-shell Hartree-Fock procedure, all electrons, except for those that are required to 

occupy open-shell orbitals, are placed in closed-shell orbitals. The wavefunctions 

obtained in this way are the eigenfunctions of the spin operator; however, the constraint 

of occupying the orbitals in pairs raises the energy compared to the energy obtained 

using the unrestricted open-shell calculations. The unrestricted Hartree-Fock equations 

are derived in the similar way as the restricted Roothaan’s equations, by minimizing the 

total energy of the system; although, the spin orbitals need to be inserted into the 

equations and integrated over. Therefore, α and β spin electrons are described by 

different sets of spatial orbitals, and their energy will also differ.3 The unrestricted 

Hartree-Fock equations, the Pople-Nesbet equations, contain two (α and β) Fock 

operators, and the corresponding Coulomb and exchange operators are defined in similar 

way as for the Roothaan’s equations. The result is two sets of integro-differential 

eigenvalue equations that are coupled through the coulomb and exchange integrals, and 

need to be solved simultaneously by an iterative process. 

The Hartree-Fock approximation is remarkably successful in many computational 

chemistry problems; however, it also has many limitations. A single determinantal 

wavefunction cannot correctly describe many of the molecular or atomic systems and 

their states; however, it is often accurate and efficient in predicting correct molecular 
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structure.    Although the Hartree-Fock energy accounts for roughly 99% of the total 

electronic energy, it ignores the correlation between electrons, which is extremely 

important, especially for the cases that involve bond breaking and forming.   

1.4. Post Hartree-Fock Wavefunction Methods 

Many of the methods developed to account for the missing electron correlation, 

such as configuration interaction (CI) theory, the coupled-cluster (CC) approximation, 

multiconfiguration SCF (MCSCF), and Møller-Plesset (MP) perturbation theory are 

based on the Hartree-Fock theory.3 Post Hartree-Fock methods are however 

computationally costly, and are in general not practical for larder molecular systems, 

sometimes even for those containing two monomers. 

The variational CI theory uses a multi-determinantal wavefunction, which is a 

linear combination of Slater determinants that correspond to different electronic 

configurations of the system.3,6 

|𝛹𝐶𝐼⟩ = 𝑐0|𝛹0⟩ + ∑ 𝑐𝑎
𝑟

𝑎𝑟

|𝛹𝑎
𝑟⟩ + ∑ 𝑐𝑎𝑏

𝑟𝑠

𝑎<𝑏
𝑟<𝑠

|𝛹𝑎𝑏
𝑟𝑠 ⟩ + ⋯                      (1.26) 

The full CI matrix is the Hamiltonian matrix in the basis of all possible N-electron 

functions formed by replacing N spin orbitals in Hartree-Fock wavefunction, 𝛹0. Singly 

excited CI refers to a form of a CI trial wavefunction which contains determinants that 

differ from 𝛹0 by one spin orbital, |𝛹𝑎
𝑟⟩, doubly excited CI wavefunction contains 

determinants that differ from 𝛹0 by two spin orbitals, |𝛹𝑎𝑏
𝑟𝑠 ⟩, and so forth. In practice, 

the full CI is always truncated in some form, formed by a combination of singly, doubly, 
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triply, etc. excited determinants multiplied by the CI expansion coefficients. The CI 

problem can be written as an eigenvalue equation.3 

𝑯𝒄 = 𝑬𝒄                                                             (1.27) 

where E is a diagonal matrix of energies, c is the CI coefficient vector, and H is the CI 

matrix, with the elements HIJ. 

𝐻𝐼𝐽 = ⟨𝛹𝐼|𝐻̂|𝛹𝐽⟩                                                   (1.28) 

The solution is obtained by the determination of the optimal expansion coefficients set. 

The CI method uses the canonical Hartree-Fock orbitals, which are in general not the 

best choice for truncated CI calculations. To obtain the best possible approximation to 

an exact solution, the orbitals should also vary so as to minimize the energy, which is 

the multiconfiguration self-consistent field method (MCSCF).3 

|𝛹𝑀𝐶𝑆𝐶𝐹⟩ = ∑ 𝑐𝐼

𝐼

|𝛹𝐼⟩                                                 (1.29) 

The MCSCF wavefunction is a truncated CI expansion, in which both the 

expansion coefficients and the orthonormal orbitals are optimized. In the limits of a 

complete basis set (complete CI), and in the limit of all possible determinants applicable 

to a particular system (full CI), the non-relativistic CI wavefunction would approach the 

exact; the CI energies of the ground state, and also the CI energies of the excited states 

would approach the exact values. Therefore, CI provides a method to obtain an exact 

solution to the many-electron problem; in practice however, it is not possible to handle 

the infinite set of basis functions. Because the CI method is variational, it does provide 

the upper bound to the exact electronic energy; however, truncated CI; although it is 
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variational, is not size consistent: the truncated CI energy of non-interacting molecules 

is not equal to a sum of their individual CI energies. 

An alternative method to truncated CI is the coupled-cluster approximation; 

however, the CC approximation is very computationally expensive and although it is 

size consistent, it is not variational. The CC wavefunction is constructed as a cluster 

expansion of the Hartree-Fock wavefunction, and contains double, quadruple, hextuple, 

etc. excitations such that the coefficients of the 2nth-tuple excitations are approximated 

by products of n doubly excited coefficients.3 

|𝛹𝐶𝐶⟩ = 𝑒 𝒯̂|𝛹0⟩                                                  (1.30)  

where the cluster operator, 𝒯̂ is a sum of operators 𝒯̂𝑖, which produce excited 

determinants from the Hartree-Fock wavefunction. 

𝒯̂ = ∑ 𝒯̂𝑖

𝑁

𝑖=1

                                                     (1.31) 

The exponential cluster operator can be expanded as a Taylor series, and the 

approximations are based on the truncated expansion. 

𝑒 𝒯̂ = 1 + 𝒯̂ +
𝒯̂2

2!
+ ⋯                                         (1.32) 

The most common form of CC is CCSD(T), where the cluster expansion of the 

wavefunction is truncated at the doubles operator, while the triple excitations are 

approximated, rather than including a triples operator. The quadruple excitations in 

CCSD are approximated as a product of double excitations. 

Probably the most often used post Hartree-Fock wavefunction method is the 

Møller-Plesset (MP) perturbation theory. MP is based on Rayleigh-Schrödinger 
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perturbation theory. The correction to the zeroth-order Hamiltonian, Ĥ0, which has 

known eigenfunctions and eigenvalues is added as a perturbation, 𝒱̂, to give the 

perturbed Hamiltonian, Ĥ.4 

𝐻̂ = 𝐻̂0 +  𝒱̂                                                        (1.33)  

where the perturbation is expressed as: 

𝒱̂ = ∑ ∑
1

𝑟𝑖𝑗
𝑗<𝑖

− ∑ 𝒱̂𝐻𝐹(𝑖)

𝑁

𝑖=1

𝑁

𝑖=1

                                        (1.34) 

and 𝒱̂𝐻𝐹(𝑖) the is the effective Hartree-Fock potential. 

𝒱̂𝐻𝐹(𝑖) = ∑ (𝐽𝑗(𝑖) − 𝐾̂𝑗(𝑖))                                    (1.35)

𝑁

𝑗=1

 

The exact eigenfunctions and eigenvalues can be expanded in a Taylor series in λ as: 

|𝛷𝑖⟩ = |𝛹𝑖
(0)

⟩ + 𝜆 |𝛹𝑖
(1)

⟩ + 𝜆2 |𝛹𝑖
(2)

⟩ + ⋯                            (1.36) 

ℰ𝑖 = 𝐸𝑖
(0)

+ 𝜆𝐸𝑖
(1)

+ 𝜆2𝐸𝑖
(2)

+ ⋯                            (1.37) 

The zeroth-order MP energy is the sum of HF orbital energies, while the total HF energy 

is given by the sum of zeroth-order and first-order MP energies.3 The first correction to 

the HF energy is given by second-order MP energy. As the order in MP theory increases, 

the correction terms get more complex and more complicated to calculate. The MPn 

theory is size consistent, but not variational; therefore, it is possible for the calculated 

energy of (n)th-order to be lower than the energy of (n+1)th-order, or even lower than the 

exact non-relativistic energy. 
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1.5. Valence Bond Theory 

Valence bond (VB) theory remains a conceptually essential part of basic chemical 

theories as it offers many interesting and novel insights into the nature of chemical bond. 

The VB method, which appeared as a quantum mechanical formulation of Lewis’s 

electron-pair bonding model,13 became attractive from the chemist’s point of view; 

however, the accurate mathematical treatment of the VB approach was computationally 

very cumbersome. One of the issues causing the substantial computational demand of 

the VB method is the exponential increase in the number of determinants used in linear 

combination to write the VB wavefunction, which scales as 2n, where n is the number 

of covalent bonds in the corresponding VB structure. The second, more challenging 

computational problem arises from the non-orthogonal treatment required by VB theory, 

in sharp contrast to the orthogonality of the molecular orbitals used in Molecular Orbital 

(MO) theory.14 However, since the 1980s the number of VB theory based quantitative 

applications is growing, mainly due to the exponential increase of the computational 

power, numerous modern methodological contributions and the appearance of new VB 

methods and implementations. The VB theory is gaining popularity today. 

The increased popularity of MO theory does not necessary imply that one theory 

is better than the other; a properly executed VB method converges to the same result as 

a properly executed MO method. While the simple VB wavefunction is a linear 

combination of antisymmetrized products of AOs, the MO wavefunction in its Hartree-

Fock (HF) approximation is constructed as a linear combination of atomic orbitals 

(LCAO).14 
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The traditional Heitler and London (HL) wavefunction, ΦHL, describes a two-

electron bond as being purely covalent:15 

𝛷𝐻𝐿 = |𝑎𝑏̅| − |𝑎̅𝑏|                                                      (1.38) 

where a and b are respective AOs of two bonded atoms, ignoring the normalization 

constant. One of the virtues of VB description is that it correctly describes the 

dissociation of a covalent bond, but it is quantitatively inaccurate at bonding distances. 

On the other hand, a simple MO wavefunction describes a two-electron bond using 

molecular orbitals: doubly occupied bonding MO, 𝜎 = 𝑎 + 𝑏, and a virtual antibonding 

MO, 𝜎∗ = 𝑎 − 𝑏. The expansion of MO determinant into its AO constituents (ignoring 

the normalization constant) leads to ΨMO. 

𝛹𝑀𝑂 = |𝜎 𝜎|  = (|𝑎𝑏̅| − |𝑎̅𝑏|) + (|𝑎𝑎̅| + |𝑏𝑏̅|)                          (1.39) 

Therefore, in MO description, the homopolar two-electron bond will have half-ionic and 

half-covalent character irrespective of the bonding distance, and although it gives 

reasonably accurate results at the equilibrium bonding distance, the MO approach is 

incorrect at the dissociation limit.14  

The accurate description of a two-electron bond, which is mostly covalent, but has 

some contribution from the ionic structures is between simple VB and simple MO 

approaches. The improvement to the VB HL wavefunction can be done by mixing the 

simple ΦHL with the ionic determinants, and optimizing the coefficients (λ and μ) 

variationally in order to obtain ΨVB-full. 

𝛹𝑉𝐵−𝑓𝑢𝑙𝑙 =  𝜆 (|𝑎𝑏̅| − |𝑎̅𝑏|) + 𝜇 (|𝑎𝑎̅| + |𝑏𝑏̅|)                       (1.40) 
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Similarly, the simple MO description is improved by configuration interaction (CI), 

mainly by mixing of the ground state configuration with the doubly excited one, ΨD. 

𝛹𝐷 =  |𝜎∗ 𝜎∗| = −(|𝑎𝑏̅| − |𝑎̅𝑏|) + (|𝑎𝑎̅| + |𝑏𝑏̅|)                       (1.41) 

Mixing the two configurations, ΨMO and ΨD, with different coefficients (𝑐1, 𝑐2) that are 

optimized variationally leads to ΨMO-CI wavefunction. 

𝛹𝑀𝑂−𝐶𝐼 = 𝑐1|𝜎 𝜎| − 𝑐2|𝜎∗ 𝜎∗|            𝑐1, 𝑐2 > 0                      (1.42) 

Expanding ΨMO-CI, in which the covalent and ionic components have different weights, 

into AO determinants gives the wavefunction as: 

𝛹𝑀𝑂−𝐶𝐼 =  (𝑐1 + 𝑐2) (|𝑎𝑏̅| − |𝑎̅𝑏|) + (𝑐1 − 𝑐2) (|𝑎𝑎̅| − |𝑏𝑏̅|)             (1.43) 

which is equivalent to ΨVB-full, since all coefficients are optimized variationally in both 

improved VB and MO methods, which gives (𝑐1 + 𝑐2) = 𝜆 and (𝑐1 − 𝑐2) = 𝜇.14 

Therefore, both theories converge to the correct description when CI is introduced to 

MO, and are two mathematically equivalent representations of a two-electron bond. 

There is a wide range of orbital representations between fully localized VB and fully 

delocalized MO descriptions, and it is likely that the best representation of a covalent 

bond is by taking advantage of VB theory and MO theory complementarity.  

1.6. Density Functional Theory 

Although in most cases the post Hartree-Fock wavefunction methods are very 

successful in improving the accuracy of the HF results for quantum chemistry 

calculations, one common drawback they all share is their computational cost. The 

computational costs of the post HF methods increases considerably with the number of 
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basis functions used in the calculations, and even with today’s computational resources, 

they cannot be used to study large molecular systems. The alternative method to the 

wavefunction approach is density functional theory (DFT). In DFT, the energy is 

expressed as a functional of the electron density, ρ(r).16 

𝐸[𝜌(𝒓)] = 𝑇𝑒[𝜌(𝒓)] + 𝑉𝑛𝑒[𝜌(𝒓)] + 𝑉𝑒𝑒[𝜌(𝒓)] + 𝛥𝑇[𝜌(𝒓)] + 𝛥𝑉𝑒𝑒[𝜌(𝒓)]          (1.44) 

The Δ𝑇[𝜌(𝒓)] term is a correction to the kinetic energy of the electrons, 𝑇𝑒[𝜌(𝒓)], 

while the Δ𝑉𝑒𝑒[𝜌(𝒓)] term contains all the non-classical corrections to the electron-

electron repulsion energy, 𝑉𝑒𝑒[𝜌(𝒓)], and the 𝑉𝑛𝑒[𝜌(𝒓)] is the classical nucleus-electron 

potential energy. 

𝑉𝑛𝑒[𝜌(𝒓)] = ∑ ∫
𝑍𝐴

|𝒓 − 𝒓𝑨|
𝜌(𝒓)𝑑𝒓                                    1.45)

𝑛𝑢𝑐𝑙𝑒𝑖

𝐴

 

𝑉𝑒𝑒[𝜌(𝒓)] =
1

2
∬

𝜌(𝒓1)𝜌(𝒓2)

|𝒓1 − 𝒓2|
𝑑𝒓1𝑑𝒓2                                  (1.46) 

These corrections are defined together as the exchange-correlation energy, 𝐸𝑥𝑐[𝜌(𝒓)].16 

𝛥𝑇[𝜌(𝒓)] + 𝛥𝑉𝑒𝑒[𝜌(𝒓)] = 𝐸𝑥𝑐[𝜌(𝒓)] = ∫ 𝜌(𝒓)𝜖𝑥𝑐 [𝜌(𝒓)]𝑑𝒓                 (1.47) 

The DFT energy functional is minimized using Kohn-Sham (KS) equations, which 

define the system of non-interacting electrons and their corresponding Kohn-Sham 

orbitals, {𝜑𝑖
𝐾𝑆}, described by a Slater determinant: 

ℎ̂𝑖
𝐾𝑆𝜑𝑖

𝐾𝑆 = 𝜖𝑖
𝐾𝑆𝜑𝑖

𝐾𝑆                                                           (1.48) 

where the ground state electron density can be written as: 

𝜌0(𝒓) = 𝜌𝐾𝑆(𝒓) = ∑ 𝜑𝑖
𝐾𝑆∗

𝑁

𝑖=1

(𝒓)𝜑𝑖
𝐾𝑆(𝒓)                                        (1.49) 
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and the KS one-electron operator ℎ̂𝑖
𝐾𝑆 is: 

ℎ̂𝑖
𝐾𝑆 = −

1

2
𝛻𝑖

2 − ∑
𝑍𝐴

𝒓𝑖𝐴
+ ∫

𝜌(𝒓2)

𝒓𝑖2
𝑑𝒓2 + 𝜐𝑥𝑐(𝒓𝑖)                      (1.50) 

where 𝜐̂𝑥𝑐(𝒓) is the exchange-correlation operator, defined as the functional derivative 

of the exchange-correlation energy with respect to the density.16 

𝜐̂𝑥𝑐(𝒓) =
𝛿𝐸𝑥𝑐[𝜌(𝒓)]

𝛿𝜌(𝒓)
                                                  (1.51) 

The exact form of the exchange-correlation functional operator is unknown; however, it 

is reasonable to approximate the exchange-correlation functional operator as a sum of 

the exchange, 𝜐𝑥(𝒓), and correlation, 𝜐𝑐(𝒓), operators.16  

𝜐̂𝑥𝑐(𝒓) = 𝜐𝑥(𝒓) + 𝜐̂𝑐(𝒓)                                                (1.52) 

Like HF equations, the KS equations are solved iteratively using SCF method. 

While the kinetic energy, electron-nuclear potential energy, and Coulomb electron-

electron potential are calculated as integrals over the basis functions, similar to HF 

theory, the exchange-correlation integrals are often too complex to be expressed 

analytically; therefore, the exchange-correlation energy is calculated using numerical 

integration. Because the exact form of the exchange-correlation operator is unknown, 

the DFT method employs approximate exchange-correlation operator. Therefore, even 

though the general form of DFT is variational, the approximate form of DFT is not. 

Several forms of exchange-correlation operators have been developed and are used 

today in many applications, some more popular than others, but in general, it is often 

necessary to select the most suitable functional depending on the system studied and the 

properties of interest. 
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2. Electron Correlation  

2.1. Introduction 

2.1.1. Electron Correlation 

In HF theory, the Pauli principle is obeyed within the antisymmetric HF 

wavefunction, and it assures that the correlation of electrons with parallel spin is 

accounted for by the exchange interaction;17 however, in the HF single-determinantal 

wavefunction theory, the motion of electrons with opposite spin is completely neglected, 

and the probability of finding two electrons with opposite spin at the same point in space 

is not equal to zero. The difference between the exact non-relativistic energy and the HF 

energy, using a complete basis set is defined as the correlation energy:18 

𝐸𝑐𝑜𝑟𝑟 = ℰ0 − 𝐸𝐻𝐹𝑙𝑖𝑚𝑖𝑡
                                                     (2.1) 

The error caused by the neglect of the correlation energy in light atoms is less than 

1% of the total electronic energy. However, the error is larger for even the smallest 

molecular systems, and can lead to incorrect thermodynamics and kinetics results, 

especially for the reaction systems where the correlation energy does not remain 

constant with respect to the reactants’ and products’ correlation energies.19-22 It is a very 

important and challenging goal to account for the missing correlation energy in purely 

ab initio calculations. This requires highly accurate and computationally very expensive 

post Hartree-Fock methods; therefore, many of the computationally accessible empirical 

methods, such as B3LYP density functional method or the Gaussian-n methods, are 

parameterized to reproduce accurate thermochemical data.22 The efficient calculation of 
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the Coulomb interaction and an accurate description of what happens when two 

electrons come close together remains one of the most active research topics in modern 

computational chemistry, almost a century after the formulation of quantum mechanics.2 

2.1.2. Fermi and Coulomb Correlation 

The nature of the correlation in the electronic wavefunctions has two independent 

forms: Fermi correlation and Coulomb correlation.23 Fermi correlation arises from the 

fact that the electrons are countable but indistinguishable, and obey Fermi statistics. 

Fermi statistics requires that the wavefunction is antisymmetric with respect to the 

exchange of configurations x1 and x2 for any pair of electrons, where x is a composite of 

space and spin coordinates: x=(rx,ry,rz,ω).23 The first consequence of the above is that 

any expansion of the wavefunction has zero contribution from the n-electron orbital 

product wavefunctions where two or more electrons occupy the same spin orbital; hence, 

the probability of finding two electrons with parallel spin at the same point in space is 

zero. This statistical correlation has by far the largest contribution to the correlation 

energy between electrons, and it is included in the Hartree product wavefunction as long 

as the electron indistinguishability is taken into account. The second consequence of 

Fermi correlation introduces additional (exchange) correlation, through the 

wavefunction antisymmetry requirement.23 While the x composite coordinate includes 

both space and spin coordinates, the non-relativistic Hamiltonian is spin free; therefore, 

the applicable spatial probability distribution can be obtained by integrating over the 

spin coordinates in 𝜌(𝒙) and 𝜌12(𝐱1, 𝐱2) to give 𝜌(𝒓) and 𝜌2(𝐫1, 𝐫2). The exchange 

correlation lowers the probability of the same spin electrons being close in space (called 
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the exchange hole), and it goes over and above the statistical correlation of the two like-

spin electrons being at the same point.23 Fermi correlation is completely unrelated to the 

repulsive electrostatic interaction between the electrons; rather, it is a fundamental 

consequence of their quantum nature.2 

The Fermi correlation is contained in the Hartree-Fock wavefunction; therefore, 

Löwdin’s definition of the correlation energy based on a restricted HF wavefunction 

refers to the missing Coulomb correlation only. Hartree-Fock theory is a mean-field 

theory: the repulsion between the electrons only affects the wavefunction through the 

effective potential; however, motion of an electron depends on the instantaneous 

interactions with all the other electrons.23 This missing electron correlation is the 

Coulomb correlation, and it is usually negative for the ground-state of a system as it 

tends to reduce the probability of finding two electrons in the same region of space. The 

source of the Coulomb correlation arises from the instantaneous electrons’ interaction 

through the repulsive electrostatic Coulomb force, and it is inversely proportional to the 

distance between the electrons, r12. 

𝐹𝑐 =
𝑞𝑒

2

4𝜋𝜀0𝑟12
                                                        (2.2) 

For very small atomic systems the Coulomb correlation is a relatively small 

perturbation of the Hartree-Fock energy, and it arises purely from the instantaneous 

electron-electron repulsion, sometimes referred to as a dynamic Coulomb correlation. 

However, there are numerous cases where a single Hartree-Fock configuration, a single 

Hartree-Fock determinant, is not sufficient to properly describe a system, and at least 

two configurations are necessary, especially when considering homolytic bond 
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cleavage. The Coulomb correlation in this case is referred to as a non-dynamical, or 

static correlation.23 

2.1.3. Dynamic and Static Correlation 

The Coulombic interactions (as well as the energetic effects of Fermi correlation) 

depend strongly on the internuclear separation. At the short separation, the electron 

correlation is discussed in terms of short-range effects of the dynamic correlation. 

Dynamic Coulomb correlation arises from the inability of the Hartree-Fock 

wavefunction to properly describe the instantaneous interactions between electrons 

when they come close to one another.24 At large separation, the electron correlation is 

often thought in terms of long-range effects of a non-dynamic, static correlation. Static 

Coulomb correlation is a result of the inability of the Hartree-Fock wavefunction to 

accurately describe the electronic configuration of a system due to near degeneracies, 

and corresponds to the tendency of the electrons to be associated with certain regions of 

space.24 However, strict distinction between static and dynamic correlation is not 

possible in general. 

When visualizing the electron correlation in molecules it is often common to 

consider three separate kinds of electron correlation descriptors: radial, angular, and left-

right correlation. These are not necessary specific to either Fermi or Coulomb 

correlation. The radial, or in-out, correlation refers to a case when an electron is close to 

a nucleus, and it is more probable to find all the other electrons far out from that nucleus. 

The radial correlation improves the description of the interaction between the electrons 

by using additional electronic configurations that include atomic orbitals of the same 
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angular quantum number but higher principal quantum number, for example, using 2s 

and 3s orbitals to describe He(1s2).24 The angular correlation refers to a case when an 

electron is on one side of a nucleus, and it is more probable to find all the other electrons 

on the other side of that nucleus. Angular correlation furthers the correction to the 

electron correlation through the added configurations of higher angular quantum 

numbers.24 Radial and angular correlations are separable when using a nucleus as the 

origin, and are useful in the electron correlation description in atoms or close to each 

nucleus in molecules.23 Left-right correlation implies the tendency of the electrons to 

move towards different nuclei, such as if an electron is close to a nucleus on the left side 

of a chemical bond it is more probable for the other electrons to be close to the nucleus 

on the right side.23 Left-right correlation is useful to describe correlation between 

electrons in the regions between the atoms in a molecule. For example in the triplet state 

of the hydrogen molecule there is a Fermi hole around the Fermi node, and if an electron 

is close to one nucleus, the other electron is likely found close to the other nucleus 

(strong negative left-right correlation). On the other hand, in the singlet state of the 

hydrogen molecule there is a Fermi heap around the Fermi hole resulting from the strong 

positive left-right correlation, and it is more probable to find two electrons on the same 

nucleus than on the different nuclei.23 Some other useful partitioning for the electron 

correlation have also been proposed. For example Clementi25 suggested division of the 

electron correlation into atomic, covalent, ionic, and van der Waals contributions, which 

can be useful in the analysis of the electron correlation in different systems and help in 

the development of new approaches.24 
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2.2. Existing Models for the Correlation Energy 

2.2.1. The Expansion of the Correlation Energy in Z-1 

For small atomic systems it is possible to obtain near exact correlated 

wavefunction. The first successful electronic structure computation of an explicitly 

correlated wavefunction was determined for the helium atom ground state by 

Hylleraas.26 In the Hylleraas expansion, the spatial part of the He ground state 

wavefunction assumes the form:26   

𝛹𝑁 = 𝑒𝑥𝑝(−𝜉(𝑟1 + 𝑟2))  ∑ 𝑐𝑘(𝑟1 + 𝑟2)𝑙𝑘(𝑟1 − 𝑟2)2𝑚𝑘

𝑁

𝑘=1

𝑟12
𝑛𝑘                       (2.3) 

where r1 and r2 are the distances of the first and second electron from the nucleus, 

respectively, and r12 is the inter-electronic distance. Although Hylleraas obtained very 

accurate electronic energy after variationally optimizing the linear and non-linear 

parameters, the techniques used for the helium atom become extremely complex when 

applied to larger systems and are not useful in practical applications. Hylleraas also 

expressed the exact energy of the helium-like ion as a Laurent series of the nuclear 

charge Z using perturbation theory.27 Davidson and co-workers estimated the expansion 

of the exact non-relativistic energy, Hartree-Fock energy, and correlation energy for 

isoelectronic series of 2 to 18 electrons using experimental and ab initio values:28,29 

𝐸𝑒𝑥𝑎𝑐𝑡(𝑁, 𝑍) = 𝐵0(𝑁)𝑍2 + 𝐵1(𝑁)𝑍 + 𝐵2(𝑁) + 𝐵3(𝑁)𝑍−1 + ⋯                     (2.4) 

𝐸𝐻𝐹(𝑁, 𝑍) = 𝐵0
𝐻𝐹(𝑁)𝑍2 + 𝐵1

𝐻𝐹(𝑁)𝑍 + 𝐵2
𝐻𝐹(𝑁) + 𝐵3

𝐻𝐹(𝑁)𝑍−1 + ⋯             (2.5) 

𝐸𝑐𝑜𝑟𝑟(𝑁, 𝑍) = 𝛥𝐵0(𝑁)𝑍2 + 𝛥𝐵1(𝑁)𝑍 + 𝛥𝐵2(𝑁) + 𝛥𝐵3(𝑁)𝑍−1 + ⋯            (2.6) 
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where each N dependent coefficient in the correlation expansion series is given by 

∆𝐵𝑖(𝑁). 

𝛥𝐵𝑖(𝑁) = 𝐵𝑖(𝑁) − 𝐵𝑖
𝐻𝐹(𝑁)                                            (2.7) 

In cases where a single configuration with hydrogenic orbitals is a reasonably 

accurate approximation to the exact wavefunction, the two leading coefficients in the 

expansion of the exact and the Hartree-Fock energy are equivalent,29 and therefore the 

quadratic and linear terms in Z  do not appear in the correlation energy expansion. For 

the isoelectronic series with N = 4, 5, 6, and N >12 a single configuration is not a 

satisfactory approximation; therefore, the linear coefficients for the exact and Hartree-

Fock energies are not equal.29 In these cases, the correlation energy expansion begins 

with a residual linear term in Z. The correlation energy as a function of Z for the 

isoelectronic series for N=2-18,28,29 and as a function of N for each atomic number series 

is given in Figure 2.1 and in Figure 2.2, respectively.   

2.2.2. The Size of an Electron Pair 

Some of the earlier attempts at modelling of the electron correlation in atomic systems 

explored the inverse relationship between the correlation energy and some measure of 

size. It has been shown that the correlation energies of different structural isomers 

change in relation to the volume available to the electrons, even though there is no 

change in the nuclear charges within the molecules.30 It is reasonable to assume that the 

correlation between the electrons should increase as the volume occupied by an electron 

pair decreases; in other words, the closer the electrons are to each other, the more 

correlated their motion.  
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Figure 2.1. Correlation energy as a function of nuclear charge, Z for the isoelectronic 

atomic series of N=2-18. 
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Figure 2.2. Correlation energy as a function of number of electrons, N for the 

isoelectronic atomic series of N=2-18. 
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Fröman proposed a semi-empirical formula using the mean value of the inter-

electronic distance of the form:17 

𝐸𝑐𝑜𝑟𝑟 =
1

𝑎𝑍 + 𝑏
〈

1

𝑟12

〉𝐴𝑣𝑒,𝐻𝐹                                              (2.8) 

where a and b were determined to be -0.520, and -0.167, respectively for helium-like 

systems using atomic units for the parameter 〈1/𝑟12〉𝐴𝑣𝑒,𝐻𝐹.17 Bernardi et. al.31 defined 

the size of an electron pair for the helium-like atoms as an expectation value of the 

spherical quadratic operator, r2; the volume of an ith atomic orbital can be then calculated 

from its size.32  

𝑉𝑖 =
4𝜋

3
  〈𝑟𝑖

2〉
3
2                                                          (2.9) 

An inverse relationship between the correlation energy and the size of an electron pair 

was suggested as:33-35 

𝐸𝑐𝑜𝑟𝑟 =
𝐾

(𝑍 − 𝜎)𝛾〈𝑟2〉
                                               (2.10) 

in which σ is a screening constant, the parameter K = -0.276698, γ = 2 for the helium-

like ions, and 〈𝑟2〉 is a second moment of the electron density. Their results indicated 

that the total size as weighted by the effective nuclear charge appears to be the most 

important factor in the approximation of the correlation energies for isoelectronic ions. 

They also note that Fröman’s relation in equation (2.8) can be rewritten in a form similar 

to equation (2.10).31 

𝐸𝑐𝑜𝑟𝑟 =
−0.070702

(𝑍 − 0.32115)
〈

1

𝑟12

〉𝐴𝑣𝑒,𝐻𝐹                                 (2.11) 
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López-Boada et. al. derived inequality relationship between the correlation energy and 

the expectation value of r2 based on the gradient expansion approximation:  

𝐸𝑐𝑜𝑟𝑟 ≤
𝐹(𝑁, 𝑍)

〈𝑟2〉
                                               (2.12) 

in which F is an unknown function of N and Z.36 Bernardi et. al.31 also showed that the 

size of an electron pair and the volume occupied by a pair is Z dependent, and therefore, 

the dependence of the correlation energy on the size might arise naturally from its 

dependence on atomic number, Z. It might be possible that we only need to parameterize 

one of these variables in the electron correlation modelling. However, the size of an 

electron pair alone cannot account for the total correlation energy, and other parameters 

should be included.  

Models describing the relationships between the correlation energy and size of the 

electron pair in the atomic series have been extended and applied to the molecular 

systems. Modelling of the electron correlation in molecules showed that the crude 

amount of the missing energy could be accounted for from the size of an electron 

pair.37,38 The size of an electron pair associated with a localized molecular orbital 

(LMO), 〈𝑟2〉𝑅𝑎
 is defined as:35 

〈𝑟2〉𝑅𝑎
= ⟨𝜓𝑎|𝑟2|𝜓𝑎⟩0 − 𝑅𝑎

2                                           (2.13) 

where Ra is the centroid of charge of the LMO calculated at a point R0.
34 

𝑅𝑎
2 = ⟨𝜓𝑎|𝑥1|𝜓𝑎⟩0

2 + ⟨𝜓𝑎|𝑦1|𝜓𝑎⟩0
2 + ⟨𝜓𝑎|𝑧1|𝜓𝑎⟩0

2                             (2.14) 

The size of a localized molecular orbital a has been related to the orbital energy, 𝜖𝑎,32 

(
1

𝜖𝑎
) = 𝑚〈𝑟2〉𝑎 + 𝑏                                                     (2.15) 
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where m and b are fitting parameters. The simple model relating atomic correlation 

energy to size in eq. (2.10) has been later extended to the molecular systems relating the 

molecular correlation energy to the LMO size.38 

𝐸𝑐𝑜𝑟𝑟 = 𝐶 ∑
1

〈𝑟2〉𝑖

𝑀

𝑖=1

                                                 (2.16) 

𝐸𝑐𝑜𝑟𝑟 = −0.06593 ∑〈𝑟2〉𝑖
−0.1958

𝑀

𝑖=1

                                       (2.17) 

The mean error obtained using the above model and STO-3G basis set calculations for 

a group of molecules and atoms in their study is comparable to that of some of the 

density functional methods,38 which suggests that these simple molecular correlation 

size models might be quite useful and applicable in the wide range of theoretical 

chemistry studies due to their computational efficiency.  

López-Boada  et. al. used Bader’s39 approach of partitioning a molecule into the 

subsystems by means of zero flux surfaces, and extended atomic correlation models to 

the molecular systems by computing the correlation energy of each fragment using the 

relationship between the correlation energy and the expectation value of r2 in eq. 

(2.12).36 Their results are fairly good, considering the simplicity of the approximation; 

however, it has become obvious than the size alone cannot account for the total 

correlation energy, and other parameters should be included to derive more accurate 

correlation models. 
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2.2.3. Atomic Number and the Number of Electrons Models 

Although the correlation energy of neutral atoms in their ground state shows 

approximately linear dependence on the number of electrons, N, the deviation from this 

linearity appears for positive and negative ions, and it increases with the increasing 

charge. Alonso and Cordero40,41 observed that the function of the correlation energy and 

that of the number of antiparallel-spin electron pairs behave similarly with respect to the 

atomic number, and they suggested that the correlation energy should be proportional to 

the number of the opposite-spin electron pairs, N↓↑. In their formulation, based on 

density functional theory (DTF) context, they focus on the decomposition of the 

correlation energy into the pairing energies and on their additivity. The correlation 

energy can be written using DFT formalism as:16 

𝐸𝑐𝑜𝑟𝑟[𝜌↑, 𝜌↓] ≅
1

2
 ∑ ∬ 𝜌𝜎(𝒓1)

𝜎≠𝜎′

𝑔𝜎𝜎′
(𝒓1, 𝒓2)

𝒓12
 𝜌𝜎′(𝒓2)𝑑𝒓1𝑑𝒓2               (2.18) 

where r12 is the inter-electronic distance, 𝑔𝜎𝜎′
(𝒓1, 𝒓2) is the pair-correlation function 

for Coulomb correlation, and the quantity 𝜌𝜎′(𝒓2)𝑔𝜎𝜎′
(𝒓1, 𝒓2) is interpreted as a 

Coulomb hole around an electron with spin σ at r1. For σ ≠ σ′, the important contribution 

to the Coulomb hole comes from the correlation between the electrons with the opposite 

spins. The Coulomb hole between the parallel-spin electrons is very small in atomic 

systems as the Fermi correlation prevents the same spin electrons from occupying the 

same region in space. The pair correlation function is negative for small r12 and positive 

for large r12 which increases the probability of finding two antiparallel electrons at larger 

r12, and decreases the probability at small inter-electronic distance.41  
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The correlation energy of neutral and slightly charged positive and negative ions 

is linked to the number of the antiparallel spin electron pairs in the same main shell (K, 

L, …), while the inter-shell correlation energies are assumed minor, and their effect is 

approximately included within a single optimized parameter, that averages the pairing 

energy.40 

𝐸𝑐𝑜𝑟𝑟 = 𝛼𝑁↑↓                                                          (2.19) 

The study includes atomic systems with Z ≤ 18, but it is predicted that the linearity 

could be approximately valid for larger Z as well, although the correlation energy for 

heavier atoms might show the proportionality to Z4/3 instead. The relationship between 

the atomic correlation energies and the number of the opposite-spin electron pairs has 

been extended to include the orbital dependency of pairing energies in the later work of 

Alonso et. al.41 They found that the strength of the correlation depends on the overlap 

between the single-particle orbitals occupied by two electrons,41 where a good spatial 

separation exists between the different main shells electrons (1s in K shell and 2s in L 

shell), while the same main shell orbitals overlap quite strongly in the same region of 

space (2s and 2p in K shell, for example). The overlap can be visualized using plots of 

the radial densities r2R2(r), obtained from a DFT calculations with LDA, where R(r) is 

the radial part of the wavefunction.42 Consequently, the majority of the correlation 

energy between the parallel spin electrons would arise from the correlation between the 

electrons in the same main shell. These contributions can be separated into ss, sp, and 

pp correlations (within the first two shells), restricted to the electrons in the same main 

shell, and the magnitude of the pairing energies was found to follow -Ess > -Esp > -Epp 
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ordering. Alonso et. al.41 explained the above ordering in terms of two effects: the first 

effect involves the degree of the overlap between two orbitals involved; for example, 

the three p orbitals are oriented mutually perpendicular in space, so the wavefunction 

overlap between antiparallel spin electrons in different p orbitals is much smaller than 

the overlap between the s and any of the p orbitals of the same shell; therefore, the sp 

correlation is more important. The second involves radial localization of the orbitals, 

where for example 2p orbitals are less localized compared to 2s orbitals, and therefore 

the motion of the two antiparallel-spin 2p electrons would already be correlated more 

than that of the two 2s electrons. 

While Alonso et. al.41 showed that the correlation energy of low Z neutral atoms 

can be accurately modelled using the orbital-dependent pairing energies, they also 

explored a similar approach to the correlation energies of charged atomic systems. The 

behaviour is similar for singly charged cations and anions, except that the values of the 

slopes of the linear fit are not the same. The main difference is observed for the Ess 

pairing energy, where the increase is seen for the cations (increased localization as a 

result of a decreased screening of the nuclear charge), while the decrease in Ess pairing 

energy results for the anions (less localized due to extra screening of the nuclear 

charge).41 The variation in Esp pairing energy follows the opposite trend, and it is 

attributed to the s-wavefunction localization: increased s localization lowers the Esp 

pairing energy while lowering the 2s and 2p orbital overlap. 

McCarthy and Thakkar43 proposed a couple of models for the correlation energy 

of neutral atoms and singly charged cations:  



34 

 

 

𝐸𝑐𝑜𝑟𝑟 = 𝑎
𝑁↑↓

𝑖𝑛𝑡𝑟𝑎

𝑁↑↓
𝑁

3
2 + 𝑏 (1 −

𝑁↑↓
𝑖𝑛𝑡𝑟𝑎

𝑁↑↓
)

1

〈𝑟〉
𝐻𝐹

                             (2.20) 

𝐸𝑐𝑜𝑟𝑟 = 𝑎
𝑁↑↓

𝑖𝑛𝑡𝑟𝑎

𝑁↑↓
𝑁

3
2 + 𝑏 (1 −

𝑁↑↓
𝑖𝑛𝑡𝑟𝑎

𝑁↑↓
)

1

〈𝑟〉
𝐻𝐹

+ 𝑐
𝑁↑↑

𝑁↑↓

1

〈𝑟〉
𝐻𝐹

                (2.21) 

The 𝑁↑↓
𝑖𝑛𝑡𝑟𝑎/𝑁↑↓ is the ratio of the number of intra-shell antiparallel spin electron pairs 

to the number of the total antiparallel spin electron pairs, and the 1/〈𝑟〉𝐻𝐹 is a moment 

of the HF electron density ρ with the normalization ∫ 𝜌(𝒓)𝑑𝒓 = 𝑁, which contains the 

model’s dependence on atomic number Z.43 The second model includes the contribution 

to the total correlation energy from the parallel spin electron pairs through the ratio 

N↑↑/N↑↓, in which N↑↑ is the total number of same spin electron pairs. 

Following the work of Alonso et.al.40 on the modelling of the atomic correlation 

energies using number of electrons (or number of antiparallel-spin electron pairs), and 

the work of Liu and Parr44 based on the electron density at the nucleus, Mohajeri et.al.45 

explored the extension of a simple atomic model to the molecular systems. Using the 

coalescence nuclear-electron cusp condition on ρ(r), they showed that the atomic 

correlation energy can be represented as: 

𝐸𝑐𝑜𝑟𝑟 = 𝜆𝑁𝛼𝑍𝛽                                                        (2.22) 

𝑙𝑛
𝐸𝑐𝑜𝑟𝑟

𝑁
= 𝑙𝑛 𝜆 + 𝛽 𝑙𝑛 𝑍                                              (2.23) 

and when using different powers of atomic number for different isoelectronic series they 

could obtain very accurate fits. Using an additivity scheme to derive the model for 

molecular correlation energies in terms of constituent atoms and number of electrons, 

they suggested following model:45 
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𝐸𝑐𝑜𝑟𝑟(𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒) = 𝑎 ∑ 𝐸𝑐𝑜𝑟𝑟(𝑖)

𝑖

+ 𝑏𝑁 + 𝑐                                    (2.24) 

where the sum is extended over the exact correlation energies of all atoms in the 

molecule. They confirm that the correlation energy in molecules is larger than the sum 

of the correlation energies of its corresponding constituent atoms, and even though their 

molecular model is not of chemical accuracy, it is nevertheless useful and economical 

procedure to estimate correlation energies of closed-shell polyatomic systems. 

2.2.4. Relating Density at the Nucleus to the Total Correlation Energy 

Koga et. al.46 pointed out that the electron density at the nucleus is almost the same 

for each cation, neutral atom, and anion for the same atomic number Z. The electron 

density at the nucleus can be modelled as almost entirely due to the s-type atomic 

orbitals, predominantly the 1s orbital. They showed that for the neutral atoms, and singly 

charged anions and cations, the hydrogenic approximation of each 1s electron 

contributing Z3/π to the electron density at the nucleus reproduces HF values within 11% 

accuracy.46 Following these results the idea that the correlation energy is related to the 

electrostatic potential at the nucleus was extended by Liu and Parr.44 They report a 

simple empirical formula relating the electron density at the nucleus, ρ(0) and the total 

electron correlation energy for simple atomic systems. 

𝐸𝑐𝑜𝑟𝑟 = 𝐶𝑁𝜌(0)/𝑍𝛾                                                (2.25) 

where Z is the atomic number, N is the number of electrons, and γ and C are constants 

optimized for each isoelectronic atomic series, where both γ and C are irregular 

functions of N. The reasonably accurate (R2 = 0.9435) fit has been reported for a large 
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data set of atomic series.44 The accuracy of a simple relationship obtained in Liu and 

Parr’s work is remarkable, as it is quite encouraging, especially if there could be a way 

to extend these simple models to the calculations on larger chemical systems, it is fairly 

reasonable to expect that different optimized coefficients would be determined for 

different isoelectronic atomic series. It would be interesting to investigate further 

relationship between the coefficients for each isoelectronic series with respect to N, and 

to determine the possible nature of the changes that occur with adding or removing an 

electron in each case. 

According to the virial theorem, in quantum mechanics the average kinetic energy 

of an atom equals -½ times the average total potential energy:47 

〈𝑇〉 = −
1

2
〈𝑉𝑡𝑜𝑡𝑎𝑙〉                                                         (2.26) 

In accordance with the validity of the virial theorem for the total exact energy of a 

system, Eexact, and for the Hartree-Fock energy, EHF, and using the classical definition 

of the correlation energy in eq. (2.1), Liu and Parr modelled the kinetic and the potential 

contributions to the correlation energy, Tcorr and Vcorr, separately.44 

𝐸𝑐𝑜𝑟𝑟 = −𝑇𝑐𝑜𝑟𝑟 =
1

2
𝑉𝑐𝑜𝑟𝑟 = 𝑇𝑐𝑜𝑟𝑟 + 𝑉𝑐𝑜𝑟𝑟                              (2.27) 

𝑇𝑐𝑜𝑟𝑟(𝑁, 𝑍) = 𝐶𝑇𝑁𝜌(0)𝑍−1 = −𝐸𝑐𝑜𝑟𝑟                             (2.28) 

1

2
𝑉𝑐𝑜𝑟𝑟(𝑁, 𝑍) = 𝐶𝑉𝑁𝜌(0)𝑍−2 = −𝐸𝑐𝑜𝑟𝑟                             (2.29) 

where the empirical values of CT and CV were determined for each isoelectronic series. 
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2.2.5. An ab initio Linear Electron Correlation Operator 

The traditional density functional approach introduces nonlinear semi-empirical 

density dependent functionals to account for the electron correlation. Rassolov48 

proposed a linear correlation operator which modifies the Hartree-Fock Hamiltonian and 

which gives correlation energy for the single determinantal wavefunction in the form: 

𝐶̂ = −
𝐶0

𝑟12
2 𝑝12

2                                                          (2.30) 

where r12 is the average distance between the electrons, p12 is the relative momentum 

operator, and C0 is a numerical constant. The general functional form of the above 

operator was obtained by using determination of the correlation energy of two opposite 

systems: the dense electron gas, where the electrons are spread over the whole space, 

and the two-electron ion of high nuclear charge, where the electrons are localized close 

to the nucleus.48 The correlation energy approaches a constant value as Z → ∞ for a 

highly localized two-electron ion, when 𝑟12
2  → 0. The operator 𝐶̂ has larger expectation 

value for the electrons that move along with each other (𝑝12
2  → 0) than for the electrons 

with high relative momentum, as electrons that move fast with respect to each other 

would spend less time in each other’s vicinity.48  

2.3. Computational Methods and Approach 

The focus of this thesis is to investigate the behavior of the correlation energy for 

a number of simple atomic and molecular systems and to report empirical models 

developed by our group in the past few years that are able to accurately predict the 

electron correlation energy for these systems. The work summarized here focuses 
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primarily on atomic systems; although, the electron correlation models of several small 

molecular systems have been investigated as well. The aim of these models is to describe 

the electron correlation as a function of several different variables; specifically, the 

variables obtained using computationally efficient Hartree-Fock method. The basis sets 

used in the calculations involving the atomic systems are large enough and scaled to 

obtain sufficiently reliable results; and therefore, the difference between the Hartree-

Fock energy and the exact non-relativistic energy is due almost entirely to the inability 

of Hartree-Fock theory to account for the correlation energy, and thus the basis set 

incompleteness error is assumed to be very small and negligible in these cases. However, 

the small basis set used in the calculations involving molecular systems would add a 

non-negligible error in the calculated Hartree-Fock energy; therefore, the models 

suggested here account not only for the correlation energy in the molecular systems 

studied, but also for the basis set incompleteness error. 

The aim of the correlation models presented here is to aid in the development of 

new theoretical methods that can treat electron correlation more accurately and 

efficiently. At the same time, these simple models inevitably add to the better 

understanding of electron correlation in atoms and molecules. It is interesting to note 

that these very simple, few-parameter models have the accuracy comparable to some of 

the more complex and computationally more expensive theoretical methods. The 

complexity of highly accurate methods makes them extremely costly computationally; 

thus, their use is often impractical, or in some cases impossible, when applied to large 

chemical systems. Currently, the computational study of macromolecules is frequently 
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limited to empirical methods, mainly due to their efficiency. The simple electron 

correlation models may prove quite useful in the study of large molecular systems 

offering higher accuracy compared to the existing empirical methods. 

2.3.1. Methods Used to Model Atomic Systems 

All the calculations were performed with MUNgauss49 and Gaussian09.50 The 

atomic energies were calculated at the HF level of theory (RHF for closed shell and 

ROHF for open shell systems) using the aug-cc-pVTZ basis set as implemented in 

Gaussian03,51 where the scale factors were optimized for each system. The scaling 

factors were found to converge to a linear function of Z; therefore, the scale factors were 

constrained to be a linear function of Z. The equations used to define the scale factors 

for the systems studied are given in Table 2.1. The correlation energies of atomic 

systems are taken from the summary given by Chakravorty et. al.28,29 and are listed in 

Table 2.2. 

2.3.2. Methods Used to Model Molecular Systems 

All the calculations were performed with MUNgauss49 and Gaussian09.50 The 

molecular systems were optimized at the HF level using 6-31G(d,p) basis set as 

implemented in Gaussian03;51 the molecular energy of the optimized systems was 

further calculated at MP4, QCISD, and CCSD levels of theory for comparison. The 

correlation energies of the molecular systems are taken from the work of Gill et. al.,22 

and are listed in Table 2.3. Figure 2.3 shows the relationship of the correlation energy 

for the group of the molecular systems studied with number of electrons. 
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Table 2.1: Equations defining the scale factors, ζi =aiZ + bi, for the atomic systems. 

ζi a B a b a b 

 He – Ni26+ Li – Ni25+ Be – Ni24+ 

ζ1 0.2297 0.0558 0.2320 0.0666 0.2338 0.0495 

ζ2 0.2542 -0.1482 0.2562 -0.1705 0.2519 -0.0251 

ζ3 0.4727 -0.6575 0.5134 -0.9557 0.5187 -1.0800 

ζ4 0.4004 -0.2153 0.4013 -0.2045 0.4012 -0.1245 

ζ5 1.7443 1.3604 1.1344 -1.7911 1.1331 -1.8774 

 B – Ni23+ C – Ni22+ N – Ni21+ 

ζ1 0.3815 -0.7878 0.3785 -0.7045 0.3821 -0.7429 

ζ2 0.3939 -0.9864 0.3915 -0.9356 0.3941 -0.9863 

ζ3 0.3362 -0.8969 0.3386 -0.8417 0.3346 -0.6400 

ζ4 0.3275 -0.7993 0.3305 -0.7813 0.3367 -0.8098 

ζ5 0.2496 -0.1073 0.2501 -0.1233 0.2516 -0.1740 

ζ6 0.2893 -0.4781 0.2882 -0.5111 0.2902 -0.5859 

ζ7 0.6120 -1.6696 0.6158 -1.6637 0.6120 -1.5328 

ζ8 0.4535 -0.7222 0.4492 -0.7369 0.4533 -0.8696 

ζ9 1.2376 -2.6495 1.2470 -2.7487 1.2355 -2.6313 
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ζi a B a b a b 

 O – Ni20+ F – Ni19+ Ne – Ni18+ 

ζ1 0.3779 -0.6358 0.3708 -0.4792 0.3670 -0.3504 

ζ2 0.3868 -0.8501 0.3782 -0.6853 0.3740 -0.5512 

ζ3 0.3400 -0.4648 0.3462 -0.4085 0.3554 -0.4001 

ζ4 0.3390 -0.7088 0.3354 -0.4736 0.3371 -0.3783 

ζ5 0.2523 -0.1946 0.2539 -0.2511 0.2587 -0.3712 

ζ6 0.2943 -0.7233 0.2936 -0.7686 0.2977 -0.8531 

ζ7 0.6156 -1.6101 0.6167 -1.6254 0.6280 -1.8915 

ζ8 0.4582 -1.0568 0.4571 -1.1224 0.4639 -1.2583 

ζ9 1.2452 -2.9132 1.2316 -2.7225 1.2370 -2.9133 
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Table 2.2: Correlation energiesa (in Hartrees) for the isoelectronic atomic systems.  

 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 

He -0.0420                 

Li -0.0435 -0.0453               

Be -0.0443 -0.0474 -0.0943             

B -0.0447 -0.0486 -0.1113 -0.1249           

C -0.0451 -0.0495 -0.1264 -0.1388 -0.1564         

N -0.0453 -0.0501 -0.1405 -0.1505 -0.1666 -0.1883       

O -0.0455 -0.0505 -0.1540 -0.1608 -0.1747 -0.1942 -0.2579     

F -0.0456 -0.0508 -0.1671 -0.1704 -0.1816 -0.1988 -0.2611 -0.3245   

Ne -0.0457 -0.0511 -0.1799 -0.1793 -0.1877 -0.2025 -0.2645 -0.3253 -0.3905 

Na -0.0458 -0.0514 -0.1925 -0.1879 -0.1932 -0.2056 -0.2677 -0.3275 -0.3889 

Mg -0.0459 -0.0515 -0.2049 -0.1961 -0.1982 -0.2081 -0.2705 -0.3300 -0.3896 

Al -0.0459 -0.0517 -0.2173 -0.2042 -0.2030 -0.2103 -0.2730 -0.3325 -0.3911 

Si -0.0460 -0.0518 -0.2295 -0.2121 -0.2075 -0.2121 -0.2753 -0.3347 -0.3928 
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 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 

P -0.0460 -0.0520 -0.2417 -0.2198 -0.2118 -0.2138 -0.2772 -0.3368 -0.3946 

S -0.0461 -0.0521 -0.2538 -0.2275 -0.2160 -0.2152 -0.2790 -0.3387 -0.3962 

Cl -0.0461 -0.0522 -0.2659 -0.2350 -0.2201 -0.2164 -0.2805 -0.3403 -0.3978 

Ar -0.0461 -0.0522 -0.2779 -0.2425 -0.2240 -0.2176 -0.2819 -0.3418 -0.3992 

K -0.0462 -0.0523 -0.2899 -0.2500 -0.2279 -0.2186 -0.2831 -0.3432 -0.4005 

Ca -0.0462 -0.0524 -0.3019 -0.2573 -0.2316 -0.2195 -0.2842 -0.3444 -0.4017 

Sc -0.0462 -0.0524 -0.3138 -0.2647 -0.2353 -0.2203 -0.2852 -0.3455 -0.4028 

Ti -0.0462 -0.0525 -0.3258 -0.2720 -0.2390 -0.2210 -0.2862 -0.3466 -0.4038 

V -0.0462 -0.0525 -0.3377 -0.2792 -0.2426 -0.2217 -0.2870 -0.3475 -0.4048 

Cr -0.0463 -0.0526 -0.3496 -0.2865 -0.2462 -0.2224 -0.2878 -0.3484 -0.4056 

Mn -0.0463 -0.0526 -0.3615 -0.2937 -0.2497 -0.2229 -0.2885 -0.3492 -0.4064 

Fe -0.0463 -0.0527 -0.3733 -0.3009 -0.2532 -0.2235 -0.2892 -0.3499 -0.4072 

Co -0.0463 -0.0527 -0.3852 -0.3080 -0.2566 -0.2240 -0.2898 -0.3506 -0.4079 

Ni -0.0463 -0.0527 -0.3970 -0.3152 -0.2601 -0.2244 -0.2903 -0.3512 -0.4085 

aCorrelation energies for the atomic systems are from reference (29).  
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Figure 2.3. Correlation energies for the set of small molecular systems studied.  
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Table 2.3: Correlation energiesa (in Hartrees) for the molecular systems studied.  

 Ecorr  Ecorr  Ecorr  Ecorr 

H2 -0.041 FH -0.389 H2NNH2 -0.641 SC -0.867 

LiH -0.083 LiF -0.441 HOOH -0.711 SO -0.974 

BeH -0.094 CN -0.500 F2 -0.757 ClO -1.009 

Li2 -0.124 HCCH -0.480 CO2 -0.876 ClF -1.063 

CH -0.199 HCN -0.515 SiH2(
1A1) -0.567 CH3Cl -0.968 

CH2(
3B1) -0.213 CO -0.535 SiH2(

3B1) -0.542 CH3SH -0.946 

CH2(
1A1) -0.239 N2 -0.549 SiH3 -0.577 HOCl -1.045 

NH -0.244 HCO -0.559 PH2 -0.616 Si2 -1.084 

CH3 -0.259 NO -0.604 SiH4 -0.606 NaCl -1.101 

NH2 -0.292 H2CCH2 -0.518 PH3 -0.652 P2 -1.205 

OH -0.314 H2CO -0.586 SH2 -0.683 S2 -1.291 

CH4 -0.299 O2 -0.660 ClH -0.707 SO2 -1.334 

NH3 -0.340 H3CCH3 -0.561 Na2 -0.819 Cl2 -1.380 

H2O -0.371 CH3OH -0.629 SiO -0.879 Si2H6 -1.183 

aCorrelation energies for the molecular systems are from reference (22). 
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3. Simple Models for the Correlation Energy 

3.1. Modelling of the Atomic Systems 

3.1.1. The Expansion of the Electron Correlation in J-1 

Davidson and co-workers28,29 estimated the expansion of the correlation energy 

for the isoelectronic series of 2 to 18 electrons using experimental and ab initio values. 

Each N dependent coefficient in the correlation expansion series is given by the 

difference between the N dependent coefficients in the expansion series of the exact non-

relativistic energy (equation 2.6) and calculated HF energy (equation 2.5). 

𝐸𝑐𝑜𝑟𝑟(𝑁, 𝑍) = 𝛥𝐵1(𝑁)𝑍1 + 𝛥𝐵2(𝑁)𝑍0 + 𝛥𝐵3(𝑁)𝑍−1 + 𝛥𝐵4(𝑁)𝑍−2            (3.1) 

𝛥𝐵𝑖(𝑁) = 𝐵𝑖
𝐸𝑥𝑎𝑐𝑡(𝑁) − 𝐵𝑖

𝐻𝐹(𝑁)                                            (3.2) 

The optimized coefficients for the truncated expansion are summarized in Table 3.1. For 

N=4, N=5, and N=6 isoelectronic systems the coefficient ΔB1 ≠ 0, and the correlation 

energy expansion is linear in Z. Using the calculated HF results, it should be noted that 

the Coulomb energy (𝐽𝑡𝑜𝑡𝑎𝑙 = 𝐽 = ∑   𝐽𝑖𝑗
𝑁
(𝑖=1,𝑗>𝑖) ), exchange energy (𝐾𝑡𝑜𝑡𝑎𝑙 = 𝐾 =

∑   𝐾𝑖𝑗
𝑁
(𝑖=1,𝑗>𝑖) ), and also the square root of the kinetic energy (√𝑇𝑡𝑜𝑡𝑎𝑙 = √𝑇 =

∑ √ 𝑇𝑖
𝑁
(𝑖=1) ) are all linear functions of Z (Figure 3.1). Using this relationship, it is 

possible to substitute Coulomb energy, Jtotal for Z in the correlation energy expansion: 

Model A.I  

𝐸𝑐𝑜𝑟𝑟(𝑁, 𝑍) = 𝛥𝐶1(𝑁)𝐽1 + 𝛥𝐶2(𝑁)𝐽0 + 𝛥𝐶3(𝑁)𝐽−1 + 𝛥𝐶4(𝑁)𝐽−2            (3.3) 
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Figure 3.1. Coulomb energy (J), exchange energy (K), and the square root of the kinetic 

energy (√𝑻) (all given in a.u.) are all linear functions of Z. 
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Table 3.1: The coefficients ΔBi (in a.u.) in the correlation energy expansion in Z-1.  

 ΔB1 ΔB2 -ΔB3 ΔB4 RSSa 

N=2 0.0000 0.0467 0.0101 0.0016 0.7255E-10 

N=3 0.0000 0.0537 0.0257 0.0018 0.3884E-9 

N=4 0.0117 0.0718 0.0886 -0.0354 0.1891E-8 

N=5 0.0070 0.1258 0.1423 -0.1820 0.4067E-8 

N=6 0.0031 0.1796 0.2078 -0.2680 0.2168E-7 

N=7 0.0000 0.2360 0.3410 0.0441 0.8661E-9 

N=8 -0.0003 0.3234 0.7618 2.0513 0.2069E-6 

N=9 -0.0007 0.4104 1.2913 5.1522 0.7855E-6 

N=10 -0.0012 0.4974 1.9442 9.8576 0.1136E-5 

aRSS is a residual sum of squares; RSS = TSS (total sum of squares) – ESS (explained sum of squares). 

Table 3.2: The coefficients ΔCi  (in a.u.) in the correlation energy expansion in J-1.  

 ΔC1 ΔC2 -ΔC3 ΔC4 RSS 

N=2 0.0000 0.0466 0.0060 0.0013 0.9445E-11 

N=3 0.0000 0.0536 0.0252 0.0142 0.3403E-9 

N=4 0.0073 0.0844 0.1353 0.1326 0.4375E-8 

N=5 0.0029 0.1367 0.3536 0.5923 0.1444E-8 

N=6 0.0009 0.1855 0.7003 2.0648 0.2452E-7 

N=7 0.0000 0.2324 1.2649 7.3692 0.3234E-7 

N=8 0.0000 0.3049 2.4248 30.6213 0.2166E-8 

N=9 0.0000 0.3730 4.0177 84.1159 0.4414E-7 

N=10 0.0000 0.4355 5.8431 189.4843 0.9499E-7 
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Figure 3.2a. The behavior of the optimized parameters (all given in a.u.) ΔBi (yellow 

circles) and ΔCi (blue triangles) (i = 1, 2) from the Taylor expansion of the correlation 

energy in Z-1and in J-1, respectively with respect to the number of electrons, N for the 

atomic systems for N=2 to N=10. 
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Figure 3.2b. The behavior of the optimized parameters (all given in a.u.) ΔBi (yellow 

circles) and ΔCi (blue triangles) (i = 3, 4) from the Taylor expansion of the correlation 

energy in Z-1and in J-1, respectively with respect to the number of electrons, N for the 

atomic systems for N=2 to N=10. 
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One advantage of the expansion of the correlation energy in J-1 over the expansion 

in Z-1 is that it would be applicable to the molecular systems as well as to the atomic 

systems in the modelling of correlation energy. The optimized coefficients for the 

truncated correlation energy expansion in J-1 are summarized in Table 3.2, and are 

compared to the coefficients in the correlation energy expansions in Z-1. As expected, 

the coefficients ΔBi and ΔCi (i =1, 2, 3, 4) behave similarly with the changing number 

of electrons (Figures 3.2a and 3.2b). For the N=4, N=5, and N=6 isoelectronic systems, 

the coefficient ΔC1 ≠ 0; therefore, the correlation energy is linear in Coulomb energy. 

The linear dependence of J on Z could also be used to modify the correlation 

energy model described by Parr et. al.(equation 2.17) by the substitution of J for Z. For 

the H-atom and one-electron ions, the density at the nucleus, ρ(0) is related to Z as: 

𝜌(0) ∝ 𝑍3                                                          (3.4) 

The above relationship can be approximately extended to other atomic systems (Figure 

3.3), and the Liu-Parr model in equation 2.17 can be simplified to  

𝐸𝑐𝑜𝑟𝑟 = 𝐶𝐿𝑖𝑢−𝑃𝑎𝑟𝑟(𝑁)𝑁𝑍(3−𝛾𝐿𝑖𝑢−𝑃𝑎𝑟𝑟)                                            (3.5) 

Using the linear dependence of J on Z, the correlation energy in atomic systems can be 

related to J, and expressed as: 

Model A.II 

𝐸𝑐𝑜𝑟𝑟 = 𝐶𝑀𝑜𝑑𝑒𝑙 𝐴.𝐼𝐼(𝑁) 𝐽𝛾𝑀𝑜𝑑𝑒𝑙 𝐴.𝐼𝐼
                                                     (3.6) 

The two parameters in the Liu-Parr model and the optimized parameters in Model 

A.II using Coulomb energy, are listed and compared in Table 3.3. Both parameters in 

Liu-Parr and in Model A.II depend on number of electrons present in the system, and 



52 

 

 

differ for each of the isoelectronic series. Figure 3.4 shows similar trends in the behavior 

of the γModel A.II and -γLiu-Parr parameters and the CModel A.II and CLiu-Parr parameters with 

respect to N. It is also evident that for the N=4 series the dependence of correlation 

energy on J and on Z is significantly different from that of the other series. These similar 

trends in the behavior of the coefficients in the expansion of correlation energy in Z-1, in 

the Liu-Parr model, Model A.I and in Model A.II with the increasing number of 

electrons suggest that all of these models are inter-related by design through a 

dependence of the variables on the nuclear charge.  

The relationship of the coefficients in the above models with the number of 

electrons, N is illustrated mainly to show the similar trends between the models. 

Although, the functions ΔBi(N), ΔCi(N), Ci(N) and γi(N) could be approximated and 

subsequently substituted into the equations presented, it is predicted that the 

extrapolation implemented this way could not lead to accurate results. The main reason 

for this is the periodicity observed in the correlation energy behaviour with N. 

Examining Figures 2.1 and Figure 2.2, one can deduce that the similarities exist between 

the Ecorrelation functions for N=2, N=10 and N=18 (fully occupied shells), for N=3 and 

N=11 (one single electron in the s type orbital), for N=4 and N=12 (filled s type orbital, 

with empty p orbitals), for N=5, 6, 7 and N=13, 14, 15 (singly occupied p orbitals) and 

for N=8, 9, 10 and N=16, 17, 18 (doubly occupied p orbitals). Therefore, the correlation 

energy is not expected to be a smooth function of N, although, it likely is in certain N 

intervals, such as for N=5-7, N=7-10, or for N=13-15 and N=15-18,  for example. 
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Table 3.3: The parameters in Liu-Parr model and in Model A.II (all given in a.u.) 

 CLiu-Parr
 γLiu-Parr CModel A.II

 γModel A.II RSSModel A.II 

N=2 0.0467 3.0796 0.0432 0.0273 3.003E-6 

N=3 0.0302 3.0381 0.0451 0.0499 7.070E-6 

N=4 0.0166 2.3632 0.0289 0.6892 6.208E-4 

N=5 0.0209 2.5655 0.0439 0.4682 3.933E-4 

N=6 0.0292 2.7720 0.0776 0.2668 5.203E-5 

N=7 0.0446 2.9838 0.1450 0.0938 5.209E-5 

N=8 0.0518 2.9907 0.2009 0.0746 1.296E-5 

N=9 0.0591 3.0079 0.2600 0.0580 8.713E-6 

N=10 0.0664 3.0285 0.3291 0.0398 2.737E-5 

 

 

Figure 3.3. Density at the nucleus vs Z for isoelectronic atomic systems of N=2-10. 
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Figure 3.4. The parameters (in a.u.) CLiu-Parr and γLiu-Parr in Liu-Parr model (green circles) 

and the parameters (in a.u.) CModel A.II and γModel A.II in the Model A.II (blue triangles) vs 

number of electrons. 
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3.1.2. Correlation Energy as a function of Coulomb and Kinetic Energies. 

Rassolov52 proposed a linear correlation operator which gives the correlation 

energy for the single determinantal wavefunction based on its dependence on the two 

electrons’ separation distance and their relative momentum (Equation 2.22). Starting 

with Rassolov’s operator, it is possible to devise other simple electron correlation 

models based on the properties of HF orbitals and the total wavefunction for both atoms 

and molecules. In the following paragraph, the relationship between the correlation 

energy and the HF energies is explored for the atomic systems of N=2 to N=10 

isoelectronic series. Replacing the expectation values of the separation distance 𝑟12
2  and 

the relative momentum 𝑝12
2  operators in the Rassolov’s correlation operator by the 

average inter-particle distance and by the average inter-particle momentum, 

respectively, we arrive at:  

(𝛿𝑟12)𝑎𝑏 = √⟨𝑎𝑏|𝑟12
2 |𝑎𝑏⟩ ≡ 𝛿𝑟𝑎𝑏                                                    (3.7) 

(𝛿𝑝12)𝑎𝑏 = √⟨𝑎𝑏|𝑝12
2 |𝑎𝑏⟩ ≡ 𝛿𝑝𝑎𝑏                                                  (3.8) 

𝐸𝑐𝑜𝑟𝑟
𝑎𝑏 =

𝐶0
𝑎𝑏

(𝛿𝑟12)𝑎𝑏(𝛿𝑝12)𝑎𝑏
                                                         (3.9) 

Poirier and Hollett34 observed that the average distance between two electrons, 

with one occupying molecular orbital a and another occupying molecular orbital b, 

(𝛿𝑟12)𝑎𝑏 is inversely proportional to the two-electron Coulomb integral 

𝐽𝑎𝑏 =
𝛼

(𝛿𝑟12)𝑎𝑏
                                                      (3.10) 
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Using the above relationship for the average inter-particle distance and using the 

kinetic energy expression for the average inter-particle momentum: 

1

(𝛿𝑟12)𝑎𝑏
=

𝛼

𝐽𝑎𝑏
                                                         (3.11) 

(𝛿𝑝12)𝑎𝑏 = √2𝑚𝑒√𝑇𝑎𝑎 + 𝑇𝑏𝑏                                            (3.12) 

With me=1a.u. the correlation energy for a given electron pair associated with molecular 

orbitals a and b becomes: 

𝐸𝑐𝑜𝑟𝑟
𝑎𝑏 = 𝐶𝑎𝑏  

𝐽𝑎𝑏

√𝑇𝑎𝑎 + 𝑇𝑏𝑏 
                                                 (3.13) 

The total correlation energy can be written as a sum of the pair correlation energies: 

𝐸𝑐𝑜𝑟𝑟 = ∑ 𝐶𝑎𝑏  
𝐽𝑎𝑏

√𝑇𝑎𝑎 + 𝑇𝑏𝑏 
𝑎𝑏

                                          (3.14) 

where Cab would differ from the value of C0 in the Rassolov operator, and the parameter 

Cab depends on the number of electrons of the system. For simplicity, a new variable Xab 

was defined as 

𝑋𝑎𝑏 =  
𝐽𝑎𝑏

√𝑇𝑎𝑎 + 𝑇𝑏𝑏 
                                                     (3.15) 

and the relationship between the correlation energy and the variable Xab was examined: 

For two electron series ∑Xab=X11, and therefore 

𝐸𝑐𝑜𝑟𝑟 ∝ 𝑋11 , 𝑋11 =
𝐽11

√2𝑇11 
                                     (3.16) 

For two electron systems the behavior the of the parameter X11 with the increasing 

nuclear charge resembles that of the behavior of the correlation energy with the 

increasing Z (Figure 3.5) and the correlation energy for two electron series was fitted as 
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a linear function of X11. Interestingly, the parameter X11 for the other isoelectronic series 

follows a similar trend with respect to correlation energy behavior with the increasing 

nuclear charge, except for the atomic series containing four, five, and six electrons. 

Figure 3.6 shows the relationships of each of the X11 vs Z and compares it to the Ecorr vs 

Z behavior for all of the isoelectronic series. It was therefore initially investigated 

whether the total correlation energy for the atomic systems could be approximated using 

the X11 relationship: 

Model A.III 

𝐸𝑐𝑜𝑟𝑟 = 𝑎(𝑁) 𝑋11 + 𝑏(𝑁)                                               (3.17) 

The unique behavior of the correlation energy for the N=4, N=5, and N=6 electron series 

could be modelled more accurately using the modified Model A.IIIa, where we included 

a linear function of J11.  

Model A.IIIa 

𝐸𝑐𝑜𝑟𝑟 = 𝑎(𝑁) 𝑋11 + 𝑏(𝑁) +  𝑐(𝑁) 𝐽11                                     (3.18) 

The resulting fits and the optimized parameters are summarized in Table 3.4. 

Successfully expressing total correlation energy of an atomic system using the ratio of 

the HF values for the core electrons only; specifically, the parameters J11 and T11, 

suggests a possibility that the major part of the correlation energy of an atomic systems 

can be accounted from the correlation between the core electrons. It closely resembles 

an idea of Liu and Parr44 who related the total correlation energy to the density at the 

nucleus, and assumed that the total correlation of an atomic system can be expressed 

using the properties of the electrons closest to the nucleus. 
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However, it is reasonable to expect that the accuracy of the above model could be 

improved by considering the correlation between other electron pairs in the system in 

addition to the correlation of the core electrons. Total Coulomb energy was used as a 

parameter where the correlation energies of the isoelectronic series were fitted to: 

Model A.IIIb 

𝐸𝑐𝑜𝑟𝑟 = 𝑎(𝑁) ∑ 𝐽𝑎𝑏

𝑎𝑏

+ 𝑏(𝑁) + 𝑐(𝑁)/ ∑ 𝐽𝑎𝑏

𝑎𝑏

                              (3.19) 

The results are summarized in Table 3.5, while the behavior of the optimized coefficients 

with N is illustrated in Figure 3.7. These trends resemble the trends observed earlier with 

regards to the coefficients ΔBi and ΔCi in the expansion of the correlation energy in 1/Z 

and 1/J, respectively. Specifically, c(N) behaves like ΔB1(N) and ΔC1(N), while -b(N) 

behaves like ΔB2(N) and ΔC2(N) with increasing N; arising from the dependence of the 

Coulomb energy on nuclear charge. 

After several trials and fittings, a smaller number of models was considered, and 

these are described in the following paragraph. Initially, the contribution from each 

electron pair was weighted equally; and the total correlation energies for the 

isoelectronic series with N=2 to N=10 were fitted as a linear functions of a sum of the 

variables Xab, where the sum includes the contribution from all of the electron pairs in 

the system, including the parallel-spin electron pairs. 

 

Model A.IV. 

𝐸𝑐𝑜𝑟𝑟 = 𝐶(𝑁) ∑ 𝑋𝑎𝑏

𝑎𝑏

+ 𝑐(𝑁)                                             (3.20) 
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Figure 3.5. X11 vs Z relationship compared to the Ecorr vs Z behavior for the atomic 

systems with N=2. 
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Figure 3.6. Ecorr vs Z behavior (blue triangles, primary axes) compared to the X11 = 

J11/√2T11 vs Z relationship (red circles, secondary axes) for N=3-10 isoelectronic series. 
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Table 3.4: The optimized coefficients in Model A.III and Model A.IIIa. (in a.u.) 

 Model A.III Model A.IIIa 

 a(N) b(N) RSS a(N) b(N) c(N) RSS 

N=2 0.2894 -0.1342 2.67E-7 0.2632 -0.1182 0.0000 8.55E-8 

N=3 0.8040 -0.4487 1.03E-7 0.7784 -0.4329 0.0000 6.20E-8 

N=4 49.4232 -30.496 3.81E-2 3.6076 -2.1747 0.0186 8.79E-7 

N=5 59.3356 -36.693 4.99E-3 2.1072 -1.2069 0.0123 3.40E-4 

N=6 33.2002 -20.438 7.34E-4 8.7398 -5.2749 0.0052 3.10E-4 

N=7 11.6794 -7.0513 1.65E4 15.1406 -9.1965 -0.0007 1.58E-5 

N=8 12.1092 -7.2522 6.85E-5 15.5192 -9.3651 -0.0007 6.45E-5 

N=9 12.2680 -7.2890 2.16E-5 14.6182 -8.7455 -0.0005 2.05E-5 

N=10 11.9688 -7.0440 5.51E-6 9.9844 -5.8136 0.0003 4.98E-6 
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Table 3.5: The optimized coefficients in Model A.IIIb. (in a.u.) 

 a(N) b(N) c(N) RSS 

N=2 -0.0045 -0.0463 0.0000 5.49E-8 

N=3 -0.0175 -0.0526 0.0000 2.18E-7 

N=4 -0.0974 -0.0818 0.0073 9.35E-7 

N=5 -0.2530 -0.1323 0.0029 1.58E-6 

N=6 -0.4769 -0.1790 0.0010 2.07E-6 

N=7 -0.7235 -0.2213 0.0000 3.57E-6 

N=8 -0.8144 -0.2806 0.0001 1.03E-5 

N=9 -0.7288 -0.3353 0.0001 1.52E-5 

N=10 -0.1627 -0.3846 0.0001 1.67E-5 

 

 

Figure 3.7. The relationship between the coefficients a(N) (blue triangles), b(N) (red 

circles) and c(N) (green squares) of Model A.IIIb vs N. 
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The accuracy of the fitting is reasonable, considering the simplicity of the model. 

As the parallel-spin electrons are already correlated in Hartree-Fock theory through the 

exchange correlation, it is assumed that the contribution of the parallel-spin electron 

pairs to the total Coulomb correlation energy could be neglected and the total correlation 

energy was fitted as a linear function of the sum of the variables Xab, where the sum 

includes the contribution from the opposite-spin electron pairs only. The total correlation 

energy was fitted as a linear function of the sum of the variables Xaa, where the sum 

includes the contribution from the opposite-spin electron pairs in the same shell only. 

Model A.IVa 

𝐸𝑐𝑜𝑟𝑟 = 𝐶′(𝑁) ∑ 𝑋𝑎𝑏
↿⇂

𝑎𝑏

+ 𝑐′(𝑁)                                             (3.21) 

The correlation energy for the atomic systems was fitted as: 

Model A.IVb 

𝐸𝑐𝑜𝑟𝑟 = 𝐶′′(𝑁) ∑ 𝑋𝑎𝑎
↿⇂

𝑎

+ 𝑐′′(𝑁)                                             (3.22) 

 

The optimized parameters are summarized in Table 3.6 with the residual sum of 

squares values (RSS) in Table 3.7. The accuracies of Model A.IV, Model A.IVa and 

Model A.IVb are comparable to that of Model A.III. The behavior of the coefficients 

C(N) and c(N) with the increasing number of electrons follows similar trends for all of 

the models described above and all of them indicate different relationship for the N=4, 

N=5, and N=6 electron series. It is obvious that the above models are not sufficient to 

describe the correlation energy for the N=4, N=5, and N=6 electron series as accurately 
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as for the other N electron series. It appears that an additional term in the model function 

is needed to describe this behavior more accurately. At the same time; while the models 

A.III, A.IV, A.IVa, and A.IVb treat each of the electron pairs likewise by using the same 

coefficient for all pairs, it is reasonable to assume that if the electron pair correlation 

was described separately for each different electron pair, the accuracy would increase. 

Using additional coefficients results in more complicated models as it increases the 

number of empirical parameters; however, it does improve a model.  

Total atomic correlation energy can be partitioned into three parts: the correlation 

energy corresponding to the opposite spin electrons in the same orbital (𝐸𝑐𝑜𝑟𝑟_𝑎𝑎
↿⇂ ), the 

correlation energy corresponding to the opposite spin electrons in different orbitals 

(𝐸𝑐𝑜𝑟𝑟_𝑎𝑏
↿⇂ ), and the correlation energy corresponding to the parallel spin electrons 

(𝐸𝑐𝑜𝑟𝑟_𝑎𝑏
↿↿ ): 

𝐸𝑐𝑜𝑟𝑟 = ∑ 𝐸𝑐𝑜𝑟𝑟_𝑎𝑎
↿⇂

𝑎

+ ∑ 𝐸𝑐𝑜𝑟𝑟_𝑎𝑏
↿⇂

𝑎𝑏

+ ∑ 𝐸𝑐𝑜𝑟𝑟_𝑎𝑏
↿↿

𝑎𝑏

                    (3.23) 

In the model described below, the Ecorr_aa was modelled as a linear function of the sum 

of the Xaa parameters corresponding to pairs of the electrons in the same orbital (opposite 

spin). 𝐸𝑐𝑜𝑟𝑟_𝑎𝑏
↿⇂  was related to a sum of the Xab parameters corresponding to pairs of the 

electrons in different orbitals, while the 𝐸𝑐𝑜𝑟𝑟_𝑎𝑏
↿↿  was modelled as a function of a 

modified Xab parameter: 

𝑋𝑎𝑏
↿↿ = (𝐽𝑎𝑏 − 𝐾𝑎𝑏)/√(𝑇𝑎𝑎 + 𝑇𝑏𝑏)                                   (3.24) 
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Table 3.6: The optimized parameters for Models A.IV, A.IVa, and A.IVb. (in a.u.) 

 C(N) c(N) C′(N) c′(N) C′′(N) c′′(N) 

N=2 0.2894 -0.1342 0.2894 -0.1342 0.2894 -0.1342 

N=3 0.0404 0.0065 0.0769 -0.0153 0.8040 0.4487 

N=4 1.1466 -1.9270 5.2161 -3.4428 -9.2900 8.9201 

N=5 0.4386 -1.1246 1.8652 -1.6451 -7.3100 7.0471 

N=6 0.1740 -0.5839 0.7420 -0.7460 -5.1882 5.0547 

N=7 0.0480 -0.0953 0.2103 -0.1200 -2.3128 2.3700 

N=8 0.0348 -0.0215 0.1403 -0.0579 2.4610 -2.9518 

N=9 0.0242 0.0712 0.0932 0.0413 0.424 -0.7451 

N=10 0.0146 0.1950 0.0555 0.1766 0.2716 -0.1613 

 

Table 3.7: Residual Sum of Squares for Models A.IV, A.IVa, and A.IVb. (in a.u.) 

 RSSModel A.IV RSSModel A.IVa RSSModel A.IVb 

N=2 2.67E-7 2.67E-7 2.67E-7 

N=3 1.35E-6 1.26E-6 1.03E-7 

N=4 5.46E-2 5.22E-2 7.49E-2 

N=5 1.52E-2 1.49E-2 1.99E-2 

N=6 2.53E-3 2.44E-3 3.21E-3 

N=7 2.64E-5 2.09E-5 3.11E-5 

N=8 6.74E-5 6.81E-5
 4.58E-5 

N=9 9.54E-5 9.94E-5 2.44E-4 

N=10 1.11E-4 1.15E-4 1.88E-4 
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Model A.V 

𝐸𝑐𝑜𝑟𝑟 = 𝐶𝑎𝑎(𝑁) ∑ 𝑋𝑎𝑎
↿⇂

𝑎

+ 𝐶𝑎𝑏
↿⇂ (𝑁) ∑ 𝑋𝑎𝑏

↿⇂

𝑎𝑏

+ 𝐶𝑎𝑏
↿↿ (𝑁) ∑ 𝑋𝑎𝑏

↿↿

𝑎𝑏

               (3.25) 

The optimized parameters and the residual sum of squares (RSS) values for Model 

A.V are summarized in Table 3.8. There is not a considerable improvement over the 

simpler models with the increased number of the optimized coefficients; mostly, it still 

does not correctly account for the correlation energy of the N=4, N=5, and N=6 series.  

Alternatively, it could be argued that the N dependence should come through the 

number of the electron pairs accounted for in the summation. Model A.V was modified 

in such a way that the optimized coefficients were kept constant throughout the N=2 – 

N=10 electron series, but in order to successfully fit the correlation energy for all of the 

isoelectronic series using the model function for each of the electron pair type, additional 

coefficient had to be included, Model A.Va (Table 3.9). This linear coefficient could 

possibly be related to the correlation energy limit for each of the N series with nuclear 

charge Z→∞. The correlation energy limiting values at Z→∞ limits were further 

explored in the relations to the limiting values of Xab parameters at high Z. The attempts 

were made to relate the individual limits in Xab parameters to the corresponding pair 

correlation energies, as well as considering the sum of these limits with respect to the 

total correlation energy limit for each of the series. These relationships could help to 

estimate a limiting value of the dynamical correlation energy for the isoelectronic 

systems containing four, five, and six electrons without the effects of the non-dynamical 

correlation present in these systems. Subsequently, finding a suitable model function for 

the Coulomb electron correlation energy in these systems might enable certain 
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separation of the dynamical and non-dynamical correlations in these systems, and 

consequently give an indication how to model the non-dynamical correlation more 

accurately, which was further explored in the subsequent section of this thesis. The 

relationships and the behavior of the correlation energy and the parameters Xab with the 

increasing Z are illustrated in Figure 3.8, while the values of the limits at Z→∞ for each 

are summarized in Table 3.10, and their behavior with the increasing N are shown in 

Figure 3.9 and Figure 3.10. These results might turn out to be useful and aid in better 

understanding of the correlation energy behavior with the increasing number of 

electrons in the atomic systems as Z→∞. 
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Table 3.8: The optimized parameters for Model A.V. (in a.u.) 

 Caa_↓↑ Cab_↓↑ Cab_↑↑ RSS 

N=2 0.0734 - - 1.43E-5 

N=3 0.0786 0.5325 -0.5760 1.91E-8 

N=4 2.8511 102.1663 -123.2810 1.55E-2 

N=5 0.8378 43.0581 -49.1328 1.69E-3 

N=6 1.6505 17.0164 -8.6586 3.85E-4 

N=7 0.2465 0.5233 -0.4055 2.05E-7 

N=8 0.4928 3.4385 -3.6171 1.12E-5 

N=9 0.1544 -3.9424 4.433 1.18E-5 

N=10 0.1793 -3.6580 4.0873 6.52E-6 

 

Table 3.9: The optimized parameters for Model A.Va. (in a.u.) 

 Caa_↓↑ Cab_↓↑ Cab_↑↑ c RSS 

N=2 0.0734 - - - 1.43E-5 

N=3 0.0734 0.5208 -0.4105 -0.0306 1.59E-4 

N=4 0.0734 0.5208 -0.4105 0.1476 1.87E-1 

N=5 0.0734 0.5208 -0.4105 -0.0089 5.25E-2 

N=6 0.0734 0.5208 -0.4105 0.4486 3.46E-2 

N=7 0.0734 0.5208 -0.4105 0.1814 2.57E-7 

N=8 0.0734 -3.2838 3.6831 -0.9512 3.03E-3 

N=9 0.0734 -3.2838 3.6831 0.1900 2.46E-4 

N=10 0.0734 -3.2838 3.6831 0.1479 5.12E-6 
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Figure 3.8a. Relationship X11 vs Z for the N=2 to N=10 isoelectronic series. (in a.u.) 

 

Figure 3.8b. Relationship X22 vs Z for the N=3 to N=10 isoelectronic series. (in a.u.) 
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Figure 3.8c. Relationship X12 vs Z for the N=3 to N=10 isoelectronic series. (in a.u.) 

 

Figure 3.8d. Relationship X13 vs Z for the N=5 to N=10 isoelectronic series. (in a.u.) 
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Figure 3.8e. Relationship X23 vs Z for the N=5 to N=10 isoelectronic series. (in a.u.) 

 

Figure 3.8f. Relationship X33 vs Z for the N=8 to N=10 isoelectronic series. (in a.u.) 
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Figure 3.8g. Relationship X34 vs Z for the N=6 to N=10 isoelectronic series (in a.u.) 

 

Figure 3.8h. Relationship between Xtotal, vs Z for the N=2 to N=10 isoelectronic series. 
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Table 3.10: Limits of Ecorr (Hartrees) and Xab (a.u.) parameters at the high Z.  

 Ecorr Xtotal X11 X12 X22 X13 X23 X33_ij X33_ii 

N=2 0.0467 0.6247 0.6247       

N=3 0.0536 1.1546 0.6246 0.2650      

N=4 0.0776 1.9884 0.6250 0.2657 0.3005     

N=5 0.1186 3.2465 0.6245 0.2647 0.3006 0.3068 0.3245   

N=6 0.1732 4.8541 0.6240 0.2639 0.3006 0.3066 0.3247 0.3490  

N=7 0.2373 6.8059 0.6239 0.2630 0.3008 0.3063 0.3244 0.3483  

N=8 0.3061 9.1667 0.6233 0.2627 0.3004 0.3066 0.3249 0.3496 0.3918 

N=9 0.3692 11.9775 0.6230 0.2624 0.3005 0.3087 0.3280 0.3551 0.3983 

N=10 0.4270 15.2777 0.6223 0.2613 0.3007 0.3119 0.3325 0.3628 0.4077 

The limits for each of the parameters above were evaluated from the Taylor expansion in 1/Z. For the 

N=4, N=5, and N=6 series the limits for the correlation energy were not evaluated as the correlation 

energy is linear in Z. 

 

 

Figure 3.9. The limits at high Z for Ecorr (red circles) and Xtotal (blue triangles) gradually 

increase with the increasing number of electrons, N. 
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Figure 3.10. The changes in the limits at high Z for Xab parameters (all given in a.u.) 

with the increasing number of electrons, N.  
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3.1.3. Electron Correlation in N = 4, 5, 6 systems 

For the atomic systems with N=4, N=5, and N=6 the correlation energy behaves 

approximately as a linear function of Z.  The linear residual term in the correlation 

energy expansion in Z arises because the linear coefficients in the expansion of the exact 

and Hartree-Fock energy are not equal.28,29 As observed in the correlation energy models 

described in the previous paragraphs, the accuracy of fitting for the N=4, N=5, and N=6 

series is always lower than that of the other series, while the empirically determined 

optimized coefficients display very different behavior compared to the coefficients 

corresponding to the rest of the series. The modelling of the correlation energy in these 

systems requires a different treatment. After several trials, the simplest solution that 

leads to a reasonably accurate modelling of the atomic series containing 4, 5, and 6 

electrons was found by adding a linear term in Z (aZ+b) to the previous models. For 

brevity, only the variations of the modified Model A.V for the N=4, N=5, and N=6 

atomic systems will be described further, as these capture the correlation energy 

behavior the best, and they also lead to the most accurate results: 

Model A.VI 

𝐸𝑐𝑜𝑟𝑟 = 𝐶𝑎𝑎(𝑁) ∑ 𝑋𝑎𝑎
↿⇂

𝑎

+ 𝐶𝑎𝑏
↿⇂ (𝑁) ∑ 𝑋𝑎𝑏

↿⇂

𝑎𝑏

+ 𝐶𝑎𝑏
↿↿ (𝑁) ∑ 𝑋𝑎𝑏

↿↿

𝑎𝑏

+ 𝑎𝑍           (3.26) 

Observing the linear relationship between the Coulomb energy, J and exchange 

energy, K components of the total HF energy, it is possible to model the electron 

correlation present in the N=4, N=5, and N=6 atomic systems including a linear function 

of any of these terms substituting for the nuclear charge, Z. It appears that the most suited 

linear term would include relationship with either J12, K12 or J12 – K12 terms. The 
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correlation model below includes a linear function in K12 as it leads to the best RSS 

values: 

Model A.VII 

𝐸𝑐𝑜𝑟𝑟 = 𝐶𝑎𝑎(𝑁) ∑ 𝑋𝑎𝑎
↿⇂

𝑎

+ 𝐶𝑎𝑏
↿⇂ (𝑁) ∑ 𝑋𝑎𝑏

↿⇂

𝑎𝑏

+ 𝐶𝑎𝑏
↿↿ (𝑁) ∑ 𝑋𝑎𝑏

↿↿

𝑎𝑏

+ 𝑎𝐾12        (3.27) 

Additionally, it was compared whether any advantage could be gained by 

increasing the number of empirical coefficients in the model by fitting the correlation 

energy to a sum of the linear functions of each of the Xab parameters separately. Initially 

all of the coefficients were allowed to vary for different isoelectronic systems (Model 

A.VIII). Afterwards, each component of the total correlation energy Ecorr_ab would 

change with the changing Xab parameter following the same relationship, independent 

of the number of electrons present in the system. While each of the Xab parameters 

follows unique trend with respect to the increasing nuclear charge, these trends appear 

to be independent of N; therefore, we assume that the changes in the total correlation 

energy with the increasing number of electrons are due to the changes in the number of 

electron pairs present in the system, similar to the reasoning discussed by Alonso et.al.40 

with the exception of the N=4, N=5, and N=6 atomic systems. Figure 3.11 and Figure 

3.12 illustrate this behavior, where the relationship between the correlation energy of 

neutral atoms and N is compared to the relationship between the number of the 

antiparallel electron pairs and N. The optimized coefficients for Model A.VII, Model 

A.VIII and Model A.IX are summarized in Table 3.11, Table 3.12 and Table 3.13, 

respectively, while the N relationships of the coefficients in Model A.VIII are shown in 

Figure 3.13. 



77 

 

 

 

Model A.VIII 

𝐸𝑐𝑜𝑟𝑟 = ∑ 𝐶𝑎𝑎
(𝑁)

𝑋𝑎𝑎

𝑎

+ ∑ 𝐶𝑎𝑏
(𝑁)

𝑋𝑎𝑏

𝑎𝑏

+ 𝑐(𝑁)𝐾12                             (3.28) 

 

Model A.IX 

𝐸𝑐𝑜𝑟𝑟 = ∑ 𝐶𝑎𝑎𝑋𝑎𝑎

𝑎

+ ∑ 𝐶𝑎𝑏𝑋𝑎𝑏

𝑎𝑏

+ 𝑐(𝑁)𝐾12                                (3.29) 

In the models above, the correlation energy is expressed as a sum of the pair correlation 

energies, where each electron pair is characterized by a specific value of Xab parameter. 

There is no considerable improvement of the previous models observed by including the 

term for the parallel-spin electron pair correlation, where the modified Xab was used, 

which uses (Jab-Kab) value, rather than the Jab value. Therefore, the parallel-spin electron 

pair correlation was neglected in the Models A.VIII and A.IX. Finally, observing that 

the Xab values increase with the increasing nuclear charge, and approach limiting value 

as Z→∞, except for the X22 and X23 parameters, it was attempted to include these in a 

model; however, no obvious improvements or insights have been apparent by doing so. 
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Figure 3.11. The relationship between the correlation energy of neutral atoms, and 

singly charged cations vs N is compared to the relationship between the number of the 

electron pairs, and the number of antiparallel electron pairs vs N. The curve for highly 

charged cations (q = +18) is included to illustrate the differences in the correlation 

energy behavior for the N=2,3 vs N=4,5,6 and vs N=7,8,9,10 series with the atomic 

number; specifically, small changes and close to linear dependence on Z (the slope Ecorr 

vs N is almost constant with the increasing charge of an ion (and therefore with the 

increasing nuclear charge) for the N=2,3 and N=7,8,9,10 series, while the slope changes 

drastically for the N=4,5,6 series. 
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Figure 3.12. The relationship between the correlation energy of neutral atoms, and 

singly charged cations vs number of antiparallel electron pairs. The curve for highly 

charged cations (q=+18) is included to illustrate the differences in the correlation energy 

behavior for the N=4,5,6 isoelectronic series. 
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Table 3.11: The optimized parameters for Model A.VII. (in a.u.) 

 Caa_↓↑ Cab_↓↑ Cab_↑↑ c RSSModel A.VII 

N=2 0.0734 - - - 1.43E-5 

N=3 0.0756 0.4679 -0.4968 0.0004 4.24E-9 

N=4 0.0439 0.8988 -0.7252 0.5357 8.68E-9 

N=5 0.0149 0.9219 -0.9099 0.3164 1.91E-7 

N=6 0.0856 0.5483 -0.4568 0.1435 1.23E-8 

N=7 0.2020 0.4317 -0.3217 0.0037 2.13E-9 

N=8 0.2994 1.7987 -1.8705 0.0146 1.07E-5 

N=9 0.1781 -2.5830 2.8999 0.0229 3.91E-7 

N=10 0.2211 -2.6685 2.9659 0.0237 1.88E-7 

 

Table 3.12: The optimized parameters for Model A.VIII. (in a.u.) 

 Caa Cab c RSSModel A.VIII 

N=2 0.0734 - - 1.43E-5 

N=3 0.0549 0.0340 0.0018 3.69E-7 

N=4 0.0261 0.0763 0.5380 4.05E-7 

N=5 -0.0019 0.0640 0.3217 7.25E-7 

N=6 -0.0158 0.0513 0.1507 1.26E-6 

N=7 0.0025 0.0375 0.0165 3.17E-6 

N=8 0.0884 0.0211 0.0299 1.14E-5 

N=9 0.17362 0.0036 0.0443 2.06E-5 

N=10 0.2814 -0.0167 0.0630 2.79E-5 
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Figure 3.13. The relationship between the coefficients Caa (blue triangles), Cab (red 

circles) and c (green squares) of Model A.VIII vs N. 
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Table 3.13: The optimized parameters for Model A.IX. (in a.u.) 

 c C11 C12 C22 RSSModel A.IX 

N=2 - 0.0734 - - 1.43E-5 

N=3 0.0018  0.0549 0.0681 - 3.69E-7 

N=4 0.5358 -0.3179 0.5851 0.4990 7.65E-9 

N=5 0.3188 0.1360 0.5439 -0.4150 6.91E-9 

N=6 0.1436 0.6353 -0.6792 0.1003 1.58E-10 

N=7 0.0036  -3.6424 1.9978 7.2658 1.09E-9 

N=8 0.0021 3.0461 -1.2756 -3.9623 1.36E-10 

N=9 0.0019 1.2640 -0.1455 0.1583 1.26E-10 

N=10 0.0047 7.6498 -4.2093 -8.4183 1.07E-10 

 C13 C23 C34,35,45 C33,44,55 

N=5 -0.1224 0.2532 - - 

N=6 1.1539 0.8655 - - 

N=7 1.2732 0.6828 -2.3504 - 

N=8 0.4886 0.1360 -1.2280 0.4186 

N=9 -0.2542 -5.5731 16.2188 -10.7552 

N=10 0.9944 -0.5367 -32.7200 27.0478 
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3.2. Modelling of Molecular Systems 

3.2.1. Simple Linear Relationships 

The correlation energies of neutral and slightly charged positive and negative ions 

were linked to the number of the electrons and the antiparallel spin electron pairs in the 

same main shell, while the inter-shell correlation energies are assumed minor, and their 

effect is approximately included within a single optimized parameter, that averages the 

pairing energy. The relationship between the atomic correlation energies and the number 

of the opposite-spin electron pairs has been extended to include the orbital dependency 

of pairing energies in the later work of Alonso et. al.41 

A similar modeling was applied to molecular systems by fitting the correlation 

energies of 56 simple molecules as a linear function of N and N↑↓pairs; however, the 

quadratic relationship between the total correlation energy and the number of the 

electron pairs with the opposite spin in the system gives much better fit: 

Model M.I 

𝐸𝑐𝑜𝑟𝑟 = 𝐶𝐼𝑁 + 𝑐𝐼                                                            (3.30) 

Model M.II 

𝐸𝑐𝑜𝑟𝑟 = 𝐶𝐼𝐼√𝑁↑↓𝑝𝑎𝑖𝑟𝑠 + 𝑐𝐼𝐼                                                   (3.31) 

These relationships are illustrated in Figure 3.14, while optimized coefficients and RSS 

values are listed in Table 3.14. 

Models describing the relationships between the correlation energy and size of the 

electron pair in the atomic series have been extended and applied to molecular systems, 

where it has been shown that the large amount of the missing energy could be 
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approximated from the size of an electron pair associated with a localized molecular 

orbital (LMO), 〈𝑟2〉𝑅𝑎
. The size of a localized molecular orbital a has been related to the 

orbital energy, 𝜖𝑎. It is reasonable to assume that the correlation between the electrons 

should increase as the volume occupied by an electron pair decreases; in other words, 

the closer the electrons are to each other, the more correlated their motion is. Fröman 

proposed a semi-empirical formula using the mean value of the inter-electronic distance, 

which is related to the size of an electron pair, and proposed an inverse relationship 

between molecular correlation energy the average inter-electronic distance. 

Furthermore, the average distance between the electrons is related to the inverse of the 

Coulomb repulsion energy corresponding to the electron pair, as has been discussed by 

Hollett and Poirier.34 These ideas have been extended by fitting the molecular 

correlation energy as a function of the total Coulomb energy. It has been found that 

much better fit is obtained by relating the square root of the total Coulomb energy to the 

total correlation energy, and so the quadratic relationship is discussed here, rather than 

the linear function. The results of the fitting are summarized in Table 3.14. 

Model M.III 

𝐸𝑐𝑜𝑟𝑟 = 𝐶𝐼𝐼𝐼√∑ 𝐽𝑎𝑏

𝑎𝑏

+ 𝑐𝐼𝐼𝐼                                                      (3.32) 

Additionally, an extension of the atomic correlation energy models involving the 

relationship between the electron pair correlation energy and the ratio of the Coulomb 

and the kinetic energies to the molecular systems was considered, where the fitting 

parameters were defined as:  
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𝑋𝑆𝑈𝑀 = ∑ 𝑋𝑎𝑏

𝑎𝑏

= ∑
𝐽𝑎𝑏

√(𝑇𝑎𝑎 + 𝑇𝑏𝑏)
 

𝑎𝑏

                              (3.33) 

𝑋𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐽𝑎𝑏  

𝑎𝑏

/√∑ 𝑇𝑎𝑎

𝑎

                                                 (3.34) 

The linear behavior of the parameters ∑Xab and Xtotal with the increasing N is 

similar to that of the total correlation energy (Figure 3.15); therefore, the relationship 

between the molecular correlation energy and the parameters ∑Xab and Xtotal in the way 

analogous to the atomic systems was considered. The total correlation energy was fitted 

as a linear function of the sum of the parameters ∑Xab (Model M.IV), where the sum 

includes all the electron pairs of the molecular system. However, the fitting of the 

correlation energy as a linear function of a parameter Xtotal gives similar results with 

comparable accuracy, while it simplifies the model (Model M.V). The results are 

summarized and compared to the previous models in Table 3.14. 

Model M.IV 

𝐸𝑐𝑜𝑟𝑟 = 𝐶𝐼𝑉𝑋𝑆𝑈𝑀 + 𝑐𝐼𝑉                                     (3.35) 

Model M.V 

𝐸𝑐𝑜𝑟𝑟 = 𝐶𝑉𝑋𝑡𝑜𝑡𝑎𝑙 + 𝑐𝑉                                     (3.36) 

While the above models are reasonably accurate considering their simplicity, there 

is no systematic trend observed with regards to the error associated with these models, 

and it is not possible to predict whether the calculated correlation energy would be below 

or above the actual value for a molecule outside of the set. 
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Figure 3.14. The relationship between the molecular correlation energy and the number 

of electrons present in the system; compared to the relationships vs Coulomb energy, 

and the ratio of Coulomb energy and square root of the kinetic energy. 
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Table 3.14: The optimized parameters for Models M.I-M.V. (in a.u.) 

 Parameter Ci ci R2 

Model M.I N 0.0458 -0.0963 0.9770 

Model M.II (N↓↑pairs)
1/2 0.0915 -0.0936 0.9770 

Model M.III (∑Jab)
1/2 0.0712 -0.0449 0.9430 

Model M.IV ∑Xab =∑(Jab/(Taa+Tbb)
1/2) 0.1024 -0.0834 0.9747 

Model M.V Xtotal = ∑Jab/(∑Taa)
1/2 0.0192 0.1377 0.9711 

 

 

Figure 3.15. The relationship between N and parameters XSUM  from equation 3.33 (blue 

traingles, primary axes) and Xtotal from equation 3.34 (red circles, secondary axes). 
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However, some interesting insights are observed from the above relationships, 

which might be helpful in the development of more accurate molecular correlation 

energy models. More precisely, the molecules studied were arranged into several groups, 

or subsets, with respect to the correlation energy behavior with the increasing number 

of electrons, and also with respect to the increasing value of the nuclear charge of the 

atoms constituting a molecular system. By modelling the correlation energies of a group 

of the molecules sharing similar molecular structure only, it is possible to obtain more 

accurate fittings; at the same time, comparing the similarities and differences between 

the correlation models corresponding to different groups it might be possible to acquire 

a better understanding of the molecular correlation behavior in general. It was found that 

four distinct molecular groups suit the partitioning of the molecular systems with respect 

to the correlation energy behavior best: in the first group the focus is only on the 

diatomic homonuclear molecular systems, the second group contains the heteronuclear 

molecules not containing hydrogen atom, in the third group the molecules containing 

only a single atom other than hydrogen were explored, while the fourth group contains 

all other molecules in the set: the hydrides containing two atoms, same or different, other 

than hydrogen. Figure 3.16 illustrates these four distinct groups within our molecular 

set, based on their structure, which is reflected in their correlation energy behavior with 

the increasing number of electrons and the increasing nuclear charge of the constituent 

atoms. Atomic correlation energies of the constituent atoms are included in the plot for 

comparison. At the same time, notice that for each of the groups of molecules there is a 

clear separation in the curve between the molecules containing first row elements, with 
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or without hydrogens, and the molecules containing at least one element of the second 

row of the periodic table. These differences likely arise from the increasing number of 

core electrons, and the increasing nuclear charge is expected to play an important role 

as the core electrons are moving closer to a nucleus.  

Similarities are also observed with regards to a trend in the correlation energy 

relationships vs  ∑Xab and Xtotal between atomic and molecular systems, while the linear 

relationship vs Xtotal, is surprisingly much better fit than the linear relationship vs ∑Xab. 

Models M.IV and M.V were therefore slightly revised to fit a group of the molecules 

that share similar molecular structure to a linear function of the above parameters, 

instead of fitting all molecular systems together. By adjusting the empirical coefficients 

to obtain more accurate fit, we hope to gain better reproducibility of a model when 

applied to the wider range of molecular systems. Figure 3.17 illustrates these 

adjustments, and the specific coefficients corresponding to each group are summarized 

in Table 3.15. It was found that a better fit is obtained by modelling the correlation 

energy as a power function of the parameter ∑Xab rather than a linear function; therefore, 

the coefficients corresponding to a power function are also included for comparison.  
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Figure 3.16. The molecular correlation energy vs ∑Xab; illustrating four distinct groups 

within the set of 56 small molecular systems, based on their structure, which is reflected 

in their correlation energy behavior with the increasing number of electrons and the 

increasing nuclear charge of the constituent atoms. 
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Figure 3.17. The relationship between the molecular correlation energy and the ratio of 

Coulomb energy and squared root of the kinetic energy for the selected molecular 

groups. 
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Table 3.15: The optimized parameters for the modified Model M.IV (∑Xab 

relationship), and for modified Model M.V (Xtotal relationship) for the selected 

groups of the molecular systems. (all given in a.u.) 

  Ci ci R2 

Model M.IVm 

 

Ecorr = CIVm ∑ Xab + cIVm 

AA 0.0169 0.1870 0.9818 

A1A2 0.0161 0.2325 0.9923 

AHn 0.0201 0.0743 0.9790 

A1A2Hn 0.0147 0.2019 0.9487 

Model M.IVn 
 

Ecorr = CIVn (∑ Xab)
cIVn 

 

AA 0.0572 0.7477 0.9985 

A1A2 0.0659 0.7071 0.9976 

AHn 0.0530 0.7394 0.9898 

A1A2Hn 0.0568 0.7166 0.9293 

Model M.Vm 

 

Ecorr = CVm  Xtotal + cVm 

 

AA 0.0950 -0.0654 0.9996 

A1A2 0.0973 -0.0613 0.9954 

AHn 0.0793 -0.0144 0.9924 

A1A2Hn 0.0990 -0.1404 0.9526 

AA symbolizes the homonuclear diatomic molecules with no hydrogens. A1A2 denotes the heteronuclear 

diatomic molecules with no hydrogens. AHn symbolizes molecules containing only a single atom of the 

first or second row of the periodic table other than hydrogen (monoatomic hydrides), while A1A2Hn 

represents molecules containing at least two atoms other than hydrogens (diatomic hydrides).  
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3.3. Summary: Correlation Energy of the Atomic and Molecular Systems 

The performance of the correlation energy models for the atomic systems has been 

assessed using the average deviation (AD), mean average deviation (MAD) values, and 

the standard deviation (STD) statistical values. These, along with the RSS values 

corresponding to each model, are summarized for a few representative atomic 

correlation models in Table 3.16. Similarly, the performance of the molecular 

correlation models was evaluated, and also compared to the performance of the higher 

level of theory correlated methods; specifically, MP4(FULL), CISD(T), and CCSD(T) 

and the results are listed in Table 3.17. 

The atomic correlation energy models presented here can successfully account for 

the missing correlation energy in the atomic isoelectronic series quite well, and are 

within chemical accuracy. We are confident that these models would be able to predict 

reliable correlation energies for the atomic and cationic systems containing 2-10 

electrons. However, the relationship of correlation energy with respect to N does not 

follow a simple function; therefore, while we are able to construct a successful model 

using the available correlation energy data, further work is needed to develop a reliable 

models for the N>10 isoelectronic systems. The most difficult part in the correlation 

energy modelling of the atomic systems is to correctly describe the correlation energy 

behavior for N=4, N=5, and N=6 series simultaneously and in relation with the rest of 

the N series. Despite the systematic increase in the correlation energy with the increasing 

number of electrons from N=7 to N=10, it is expected that a certain deviation from the 

gradual increase will be observed in the correlation models for higher N, similar to the 
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four electron series. It is estimated that periodicity in the pattern will also emerge, 

reflecting the periodicity in the filling of the atomic orbitals; although, it is not expected 

to be as extreme as for the N=4 atomic systems.  

The performance of the molecular correlation models is remarkably good, 

considering their computational simplicity, especially when compared to the higher 

level correlated computational methods, such as CI or CC. The calculated MAD values 

for the selected models are smaller than those for the high level correlated methods; 

meaning the predicted electron correlation energies deviate from the actual values less. 

Figure 3.19 and Figure 3.20 illustrate these results as they also point out different trends 

demonstrated by our models, (which are behaving similar to each other), compared to 

the trends demonstrated by the other correlated methods. The similar trends observed 

here are likely due to the approach of treating the correlation energy problem by the 

corresponding theoretical method. However, the basis set used to calculate the correlated 

energies using MP4, CI, and CC levels was small; therefore, the accuracy of the 

correlated methods is greatly affected by the basis set incompleteness error, much more 

than those of HF calculations. Nevertheless, considering the simplicity of these models, 

their computational efficiency would still be advantageous over the other methods.  The 

main drawback of our models though would be their limited applicability to a wider 

range of molecules that do not fall into the four group categories described here. Further 

work is needed to extend the generality of the suggested models.  
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Table 3.16: Average Deviation (AD) and Mean Average Deviation (MAD) for 

selected atomic correlation energy models.  

 Average RSS STD AD MAD 

Model A.II 1.31E-4 0.0049 0.0017 0.0018 

Model A.IIIa 8.41E-5 0.0021 0.0012 0.0011 

Model A.IIIb 5.63E-6 0.0021 0.0014 0.0014 

Model A.IV 8.07E-3 0.0188 0.0091 0.0091 

Model A.VIII 1.31E-4 0.0007 0.0004 0.0004 

Model A.IX 8.90E-6 0.0003 0.0002 0.0002 

The error for each model was calculated as a difference between the exact energy and the total energy 

calculated using 6-31G(d,p) basis set. Therefore, the error is not strictly just the missing correlation 

energy, but it also includes the basis set incompleteness error. (STD, AD, MAD are all given in Hartrees.) 

 

Figure 3.18. The linear relationship between Ecorr_V5Z and Ecorr_6-31G(d,p), both calculated 

as a difference between the exact energy and HF energy according to Löwdin’s 

definition. 
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Table 3.17: Average Deviation (AD), Mean Average Deviation (MAD), and 

Standard Deviation (STD) for the molecular correlation energy models. 

 AD MAD STD 

MP4SDTQ(FULL) 0.446 0.258 0.307 

QCISD(T) 0.455 0.262 0.312 

CCSD(T) 0.455 0.262 0.312 

Model M.I 0.045 0.045 0.056 

Model M.II 0.045 0.045 0.088 

Model M.III 0.063 0.063 0.059 

Model M.IV 0.052 0.052 0.063 

Model M.IVm 0.059 0.038 0.050 

Model M.V 0.047 0.047 0.059 

Model M.Vm 0.058 0.037 0.050 

The error for each model was calculated as a difference between the exact energy and the total energy 

calculated using the correlated method with 6-31G(d,p) basis set. Therefore, the error is not strictly just 

the missing correlation energy, but it also includes the basis set incompleteness error. Although it is shown 

that the HF energy for the selected molecules calculated using 6-31G(d,p) basis is almost linear with the 

HF energy calculated using large cc-p-V5Z basis, it is known that the effect of the basis set size when 

used with higher levels of theory like CI or CC is much stronger, and the larger basis usually improves 

the calculations greatly. (This work is to be completed in the near future.) (All data in Hartrees.) 
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Figure 3.19. The deviation of the calculated energy from the exact non-relativistic 

energy vs. N. 

 

Figure 3.20. The difference between the calculated model or correlated method energy 

and the Hartree-Fock energy, compared to the actual correlation energy. 
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4. Conclusions and Future Work 

4.1. Atomic Models 

The electron correlation problem continues to be one of the most challenging 

computational chemistry problems. Although the Hartree-Fock approximation is 

generally successful in predicting approximately 99% of the total non-relativistic 

energy, the remaining 1% is extremely important in determination of the accurate 

molecular properties. Without including the electron correlation energy, molecular 

properties such as bond energies, equilibrium geometries, dipole moments, or reaction 

kinetics cannot be determined accurately for chemical systems. 

The methods that treat the electron correlation problem are continuously 

developing and evolving; many of these are based on the classical density distribution, 

while others take a wavefunction approach to the problem. Explicitly correlated 

methods, natural orbital methods, reduced density matrix methods, and also some simple 

empirical models are quite successful in predicting accurate correlation energies for 

large number of molecular systems. Several such models were described here, and their 

large advantage is their computational efficiency, which makes them applicable to a 

wide range of chemical systems.  

There are several possible ways for the atomic correlation models described in this 

thesis to evolve and to improve their accuracy. For example, some of the future work 
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plans to use at the relationships between correlation energy and orbital energies, spatial 

coincidence, and the radial densities of the atomic orbitals.  

It would be interesting to explore the changes in the calculated HF properties with 

the addition of an electron to a system and compare it to the changes in the corresponding 

correlation energy. The change in total correlation (𝑑𝐸𝑐𝑜𝑟𝑟/𝑑𝑁) would not only include 

an additional correlation energy due to an extra electron (𝐸𝑐𝑜𝑟𝑟_𝑛𝑒𝑤), but also the 

changes in the correlation energy corresponding to the electron pairs already present in 

the system (∑
𝑑𝐸𝑐𝑜𝑟𝑟_𝑎𝑏

𝑑𝑁𝑎𝑏 ), and therefore to the properties of these electrons (equation 

4.1). The changes in the Coulomb energy, kinetic energy, and changes in the exchange 

energy (Figure 4.1) might all be helpful in determination of the changes in the correlation 

energy. These changes are also expected to be related to the changes in the orbital 

energies (𝑑𝜀𝑎𝑎), so in the future, models related to the equations 4.2 and 4.3 could be 

explored:   

𝑑𝐸𝑐𝑜𝑟𝑟

𝑑𝑁
= ∑

𝑑𝐸𝑐𝑜𝑟𝑟_𝑎𝑏

𝑑𝑁
𝑎𝑏

+ 𝐸𝑐𝑜𝑟𝑟_𝑛𝑒𝑤                                     (4.1) 

𝐸𝑐𝑜𝑟𝑟 ∝ ∑ 𝜀𝑎𝑎  

𝑎

                                                                   (4.2) 

𝑑𝐸𝑐𝑜𝑟𝑟

𝑑𝑁
(𝑍) ∝ ∑

𝑑𝜀𝑎𝑎

𝑑𝑁
 

𝑎

                                                          (4.3) 

The correlation energy depends not only on the size and the shape of the orbitals 

that describe the particular electron pair, but also it likely depends on the amount of 

space that these orbital share. While the size and the volume of an electron pair is related 

to the shape and size of a MO describing it, the overlap of these orbitals could be related 
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to their spatial coincidence or can be determined from the radial density function. 

Relating the correlation energy to such properties as radial density (𝑟2𝑅2(𝑟)) or spatial 

coincidence (SPC) in addition to other HF orbital properties might prove useful, 

especially in determination of the correlation energy between the electrons in different 

orbitals or different shells: 

𝐸𝑐𝑜𝑟𝑟 ∝ 𝑟2𝑅2(𝑟)                                              (4.4) 

𝐸𝑐𝑜𝑟𝑟 ∝ 𝑆𝑃𝐶 (𝑟)                                             (4.5) 

The empirical atomic correlation energy models can prove to be quite beneficial 

in gaining better understanding of the correlation energy problem in general. While it is 

desirable to solve the correlation problem for the atomic systems, there is much greater 

need to be able to apply or extend these models to a wide range of molecular systems. 

Future work will explore this applicability of the atomic correlation models to a large 

range of the molecular systems.  
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4.2. Molecular Models  

The extension the atomic correlation energy models to molecular systems might 

be applicable in the modeling of some parts of the molecular correlation energy, such as 

the correlation energy of the core electrons of the constituent atoms. Total molecular 

correlation energy can be partitioned into the core-core correlation, core-valence 

correlation, and the valence-valence correlation, where the core-core correlation would 

be modelled using corresponding atomic system: 

𝐸𝑐𝑜𝑟𝑟 = ∑ 𝐸𝑐𝑜𝑟𝑟_𝑎𝑏
𝑐𝑜𝑟𝑒−𝑐𝑜𝑟𝑒

𝑎𝑏

+ ∑ 𝐸𝑐𝑜𝑟𝑟_𝑎𝑏
𝑐𝑜𝑟𝑒−𝑣𝑎𝑙𝑒𝑛𝑐𝑒

𝑎𝑏

+ ∑ 𝐸𝑐𝑜𝑟𝑟_𝑎𝑏
𝑣𝑎𝑙𝑒𝑛𝑐𝑒−𝑣𝑎𝑙𝑒𝑛𝑐𝑒

𝑎𝑏

               (4.6) 

Koga et. al.53 pointed out that the electron density at the nucleus is almost the same 

for each cation, neutral atom, and anion for the same atomic number Z. The electron 

density at the nucleus can be modelled as almost entirely due to the s-type atomic 

orbitals, predominantly the 1s orbital. Liu and Parr44 extended this idea and related the 

electrostatic potential and the density at the nucleus to the correlation energy. It would 

be interesting to explore whether we can apply the calculated HF energy components 

corresponding to the core electrons of each constituent atom of the molecular systems 

and relate it to the core-core molecular correlation energy.  

Mohajeri et.al45 explored the extension of a simple atomic model to the molecules 

and by using the additivity scheme they derived the model for molecular correlation 

energies in terms of constituent atoms and the number of electrons. They confirm that 

the correlation energy in molecules is larger than the sum of the correlation energies of 

its corresponding constituent atoms, and even though their molecular model is not of 
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chemical accuracy, it is nevertheless useful and economical procedure to estimate 

correlation energies of closed-shell polyatomic systems. 

A possible extension of these models is to determine the HF properties 

corresponding to each atom in the molecule, and use the atomic correlation energy 

models described earlier to obtain the corresponding atomic correlation. The total 

molecular correlation energy could be obtained by adding the atomic correlations. The 

missing amount of interatomic correlation might be possibly determine from the 

properties of valence electrons predominantly involved in the bonding. 

𝐸𝑐𝑜𝑟𝑟 = ∑ 𝐸𝑐𝑜𝑟𝑟_𝑎𝑏
(𝐴)

𝐴,𝑎𝑏

+ ∑ 𝐸𝑐𝑜𝑟𝑟_𝑎𝑏
(𝐴𝐵)

𝐴𝐵,𝑎𝑏

                                              (4.7) 

𝐸𝑐𝑜𝑟𝑟 = ∑ 𝐸𝑐𝑜𝑟𝑟_𝑎𝑎
(𝐴)

𝐴,𝑎

+ ∑ 𝐸𝑐𝑜𝑟𝑟_𝑎𝑏
(𝐴)

𝐴,𝑎𝑏

+ ∑ 𝐸𝑐𝑜𝑟𝑟_𝑎𝑎
(𝐴𝐵)

𝐴𝐵,𝑎

 + ∑ 𝐸𝑐𝑜𝑟𝑟_𝑎𝑏
(𝐴𝐵)

𝐴𝐵,𝑎𝑏

                 (4.8) 

Similar to the atomic systems, the properties such as the radial density or spatial 

coincidence (SPC) in addition to other HF molecular orbital properties might be useful 

in the approximation of the correlation energy between the electrons in different 

molecular orbitals. 
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Figure 4.1. The changes in the correlation energy with N vs N compared to the changes 

in HF values of the Coulomb energy, kinetic energy and exchange energy with N vs N 

corresponding to the core electrons described by the 1s2 atomic orbital. 
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