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ABSTRACT 

 

Breast cancer is the second leading cause of cancer-related death after lung 

cancer in women. Early detection of breast cancer in X-ray mammography is 

believed to have effectively reduced the mortality rate since 1989. However, a 

relatively high false positive rate and a low specificity in mammography technology 

still exist. A computer-aided automatic mammogram analysis system in this research 

is proposed to improve the detection performances. 

In designing this analysis system, the discrete wavelet transforms (Daubechies 2, 

Daubechies 4, and Biorthogonal 6.8) and the Fourier cosine transform were first 

used to parse the mammogram images and extract statistical features. Then, an 

entropy-based feature selection method was implemented to reduce the number of 

features. Finally, different pattern recognition methods (including the 

Back-propagation Network, the Linear Discriminate Analysis, and the Naïve Bayes 

Classifier) and a voting classification scheme were employed. The performance of 

each classification strategy was evaluated for sensitivity, specificity, and accuracy 

and for general performance using the Receiver Operating Curve. The experiment 

demonstrated that the proposed automatic mammogram analysis system could 

effectively improve the classification performances, especially using the voting 

classification scheme based on the selected optimal features. 
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Chapter 1 – Introduction 

 

 

1.1 Research Rationale 

Breast cancer is the most commonly diagnosed form of cancer in women and the 

second-leading cause of cancer-related death after lung cancer [1]. Statistics from the 

American Cancer Society indicate that approximately 232,670 (29% of all cancer 

cases) American women will be diagnosed with breast cancer, and an estimated 

40,000 (15% of all cancer cases) women will die of it in 2014 [2]. In other words, 637 

American women will be diagnosed with breast cancer, and 109 women will die of it 

every day. Similar statistics were also found in Canada, where approximately 23,800 

(26%) women were diagnosed with breast cancer, and 5,000 (14%) died from it in 

2013 [3]. Under this circumstance, detection and diagnosis of breast cancer has 

already drawn a great deal of attention from the medical world. 

Studies show that early detection, diagnosis and therapy is particularly important 

to prolong lives and treat cancers [4]. If breast cancer is found early, the five-year 

survival rate of patients in stage 1 could reach 90% with effective treatment. To date, 

medical imaging technology, which is convenient and noninvasive, is one of the main 

methods for breast cancer detection. Commonly used medical imaging technologies 

include X-ray mammography, Computer Tomography (CT), ultrasound and Magnetic 
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Resonance Imaging (MRI), Positron Emission Tomography (PET), and Single-Photon 

Emission Computed Tomography (SPECT). Among these technologies, 

mammography achieves the best results in early detection of asymptomatic breast 

cancer and is one of the least expensive ones. For this reason, it has become the 

principal method of breast cancer detection in clinical practice, and one of the most 

effective ways for general breast cancer survey, though its detection sensitivity is still 

low. North American countries, the United States and Canada, consider breast cancer 

general survey and diagnosis as one of the most important parts of their health care 

systems. As a result, high resolution breast imaging equipment has become widely 

available [4].  

Modern equipment has improved the technical aspects of mammography, but a 

relatively high false positive rate and a low specificity still exist. This is due to 

fundamental physical limitations such as unobvious lesions, as well as controllable 

factors like radiologists’ inexperience in reading mammograms. This latter issue has 

been addressed using double reading, where two radiologists make their own 

judgments independently based on the same mammogram, and then combine and 

discuss both opinions. However, this is expensive, and as a result, interest in 

Computer-Aided Diagnosis (CADx) solutions has emerged [4]. 

 

1.2 Background Information 
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1.2.1 Detection of Masses and Calcifications 

Masses are the most common and basic symptoms of breast cancer. In clinically 

detected breast cancer, 80% - 90% of cases had masses [5]. Having spiculate 

boundaries is the most important characteristic in identifying malignant breast cancers. 

Additionally, shapes, sizes, and texture features also affect the diagnosis of breast 

cancer. Masses in mammography can be recognized as a local, high-contrast area, but 

the value of contrast is not unique. It changes when imaging conditions, sizes and 

backgrounds change. The X-ray absorption rates of masses are very close to dense 

glandular tissue in breast and other dense tissues. In addition, the boundaries of 

masses are always mixed with background structures, and mass detection has become 

a difficult task for observers and computer programmers [6]. In breast masses, high 

density usually reflects malignant tumors, which have irregular spiculate boundaries. 

In contrast, most benign masses have clear boundaries that are often round or oval [7].  

Calcifications (including marcocalcifications and microcalcifications) are 

important features in breast cancer detection. Tiny glandular clusters of 

microcalcifications often appear in early stages of breast cancer. Statistics show that 

30%-50% of most malignant breast tumors have the symptom of microcalcification 

[8].  

Calcifications in breast cancer mostly refer to calcium phosphate. A few are 

calcium oxalate calcifications. Calcifications coincide in lumens where ductal 
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carcinoma causes cellular degeneration. They manifest as piles of sediment or 

spiculate shapes in mammogram images. Calcifications are also present in ducts and 

stroma. Calcifications form when necrotic cells release phosphate radical into a 

calcium rich environment [9]. 

Automatic calcification detection has been an important research target. Some 

success has been achieved. However, applying the findings has been challenging for 

the following reasons: 1) microcalcifications occur in various sizes, shapes and 

distributions; 2) microcalcifications have low contrast in region of interest (ROI); 3) 

dense tissue and/or skin thickness make suspicious lesion areas difficult to detect 

(especially in young women); 4) the dense tissue is easily misunderstood as 

microcalcification, which results in high false positive rates among most existing 

algorithms. Therefore, microcalcification detection remains one of the most popular 

topics in medical image processing research [10]. 

1.2.2 Mammography 

Mammography is a specific kind of imaging technology that uses a low-dose 

X-ray system to examine breasts [11]. The use of radiography for cancer diagnosis 

appeared in the late 1920s, but X-ray mammography was developed in the 1960s [12]. 

Since many pathological conditions, such as breast cancer, are difficult to identify 

because of the imperceptible physical changes, mammography is aimed at maximizing 

the visibility of pathology. Two recent advances in mammography include digital 
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mammography and computer-aided detection (CAD). Digital mammography, also 

called full-field digital mammography (FFDM), is a mammography system that uses 

solid-state detectors [13]. Digital mammography provides slightly better detection 

rates than the older screen-film technology. It could also reduce processing steps and 

so increase treatment efficiency.   

1.2.2.1 Mammography Technology 

The principal components of a mammography system consist of the X-ray tube 

(generates the x-rays), filter (removes unwanted radiation), compression paddle (helps 

to regularize breast geometry), grid (rejects scattered radiation), and detector. The 

components are shown in Fig. 1.1. Unlike regular X-ray tubes, mammography 

equipment uses molybdenum anodes or rhodium anodes. Rhodium provides a more 

penetrating X-ray, useful for large or dense breasts. The system is designed to 

maximize spatial and contrast resolution. Modern units use a full field digital matrix 

detector [11].  

Generally, a mammogram image could have two basic views: craniocaudal (CC) 

view which is taken from above a horizontally-compressed breast and 

mediolateral-oblique (MLO) view which is taken from the side and at an angle of a 

diagonally-compressed breast. These views are shown in Fig. 1.2 A and B, 

respectively. 
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Figure 1.1: The physical structure of the equipment for mammography 

(retrieved from http://www.sprawls.org/resources/MAMMO/module.htm, Aug., 

2012 ) 

 

          

 

Figure 1.2: Digital mammograms illustrating the conventional views of the 

breast. A. Craniocaudal view (CC) the compressed breast is viewed from above; 

B. Mediolateral oblique (MLO) the compressed breast is viewed laterally 

towards the midline. 

 

 

 

A B 

http://www.sprawls.org/resources/MAMMO/module.htm
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1.2.2.2 CAD Technology 

In 1967, Dr. Fred Weisberg and others published an article in Radiology stating 

that breast cancer could be examined by comparing the asymmetry of the medical 

images of left and right breasts [14]. It was the first time that computer-aided 

diagnosis was applied to X-ray images. After nearly 40 years of development, CAD 

has become a piece of technology which has been gradually accepted. Computer-aided 

detection (CAD) systems combine computer calculation and analysis. They utilize 

medical imaging processing technology and other possible physiological and 

biochemical methods. The purpose of CAD software is to assist doctors in detecting 

disease and improving their diagnostic accuracy. Specifically, a mammogram is 

passed to the CAD system. The CAD system then searches for any abnormal areas 

such as density and calcification that may indicate the pathology of breast cancer. 

These suspicious areas on the images will be marked out by the CAD system, which 

could be a sign for the radiologist in further analysis. 

1.2.3 Terminology of Diagnosis Rates 

The performance of a mammography screening system can be measured by two 

parameters: sensitivity and specificity. Sensitivity (true positive rate) is the proportion 

of the cases deemed abnormal when breast cancer is present. For example, if 100 

women do have breast cancer among 1000 screened patients but only 90 are detected, 

then the sensitivity is 90/100 or 90%. Sensitivity may depend on several factors, such 
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as lesion size, breast tissue density, and overall image quality. In cancer screening 

protocols, sensitivity is deemed more important than specificity, because failure to 

diagnose breast cancer may result in serious health consequences for a patient. Almost 

fifty percent of cases in medical malpractice relate to “false-negative mammograms” 

[15]. 

Specificity (true negative fraction) is the proportion of cases deemed normal when 

breast cancer is absent. For example, if 100 cases of breast cancer are diagnosed in a 

set of 1000 patients, and the screening system finds 720 cases to be normal, the 

specificity is 720/900 or 80%. Although the consequences of a false positive 

(diagnosing a normal patient as having breast cancer) are less severe than missing a 

positive diagnosis of cancer, specificity should also be as high as possible. False 

positive examinations can result in unnecessary follow-up examinations and 

procedures, and may lead to significant anxiety and concern for the patient. 

 

1.3 Research Objectives  

The primary objective of this research is to design an automatic mammogram 

analysis system that combines features from the wavelet transform and the Fourier 

transform to select optimal features, and evaluates performances of different 

classifiers based on these features. Specific research objectives are 
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1. Develop a set of pre-processing steps to isolate the tissue in mammogram 

images and regularize the appearance of the images to make direct comparisons 

possible.  

2. Apply the wavelet transform and the Fourier transform to parse an image and 

generate a set of scalar features based on the output of the transforms to characterize 

each image. 

3. Employ an entropy-based feature selection method to reduce the number of 

features extracted from the previous step.  

4. Classify mammogram images as normal or cancerous based on three classifiers, 

and calculate the sensitivity, specificity, and accuracy. 

5. Evaluate the performances of the classifiers based on the Receiver Operating 

Curve, and compare them with a proposed voting classification scheme. 

 

1.4 Scope of Thesis 

In this thesis, the scope of the study focused on breast cancer detection using a 

computer-aided automatic mammogram analysis system. In designing this analysis 

system, an entropy-based feature selection method was implemented and different 

pattern recognition methods, including the Back-propagation (BP) Network, the 

Linear Discriminant Analysis (LDA), and the Naïve Bayes (NB) Classifier, were 

employed.  
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In Chapter 2, different data transform methods for mammography including the 

Discrete Wavelet Transform (DWT) and Discrete Fourier Transform (DFT) are first 

introduced in their principles, formulations, limitations, and applications. Then, 

pattern recognition in existing literature is reviewed, and its applications in breast 

cancer detection are particularly introduced. 

In Chapter 3, the mammogram image processing stage, which is the first stage of 

the proposed mammogram analysis system, is presented. This stage includes two basic 

steps: mammogram image pre-processing and data transforms.  

In Chapter 4, the feature selection and image classification stage in the 

mammogram analysis system is presented. An entropy-based feature selection 

algorithm is proposed to reduce the number of features extracted from the transformed 

mammogram images. Then, three classifiers and a voting classification scheme are 

used to discriminate normal or cancerous mammograms. Finally, the Receiver 

Operator Curve (ROC) is analyzed to evaluate the performances of classifiers. 

In Chapter 5, the performances of the proposed mammogram analysis system, 

including sensitivity, specificity, and accuracy, are evaluated and discussed.  

The overall conclusions from the research in this thesis are presented in Chapter 6, 

in which some suggestions for future work are also outlined. 
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Chapter 2 – Data Transforms and Pattern Recognition 

 

 

Data transforms and pattern recognition are two essential parts in designing the 

automatic mammogram analysis system. In this chapter, the Fourier transform and 

different discrete wavelet transforms are first introduced with their principles, 

properties, limitations, and applications. Then, the concept of pattern recognition and 

its general system are presented. Specifically, its applications in breast cancer 

detection are reviewed. 

 

2.1 Introduction of Data Transforms 

Many data processing algorithms, such as compression, filtering, image processing, 

involve data transformation. Basically, data can be represented by “basis”. In linear 

algebra, basis refers to a series of linearly independent vectors that define a space. 

Any data in one space can be represented by a linear combination of these vectors. For 

example, the essence of Fourier expansion is to express a signal with linear 

combinations of bases in one space. The nature of the wavelet transform is also related 

to the transform based on wavelet bases.  

Selecting a certain kind of basis or transform is an essential task for different data 

processing algorithms. For example, in data compression, this basis should be selected 
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to represent the signal to the greatest extent using fewer vectors. The goodness of fit 

will determine how much compression can be achieved with acceptable information 

loss [29].  

In the data time-frequency analysis, the Fourier transform is traditionally applied, 

which is a global transform between the time and frequency domain. Therefore, the 

Fourier transform cannot express the local properties of signals in the time and 

frequency domains simultaneously. However, these local properties are the key 

characteristics of non-stationary signals in some circumstances. In order to analyze 

and process non-stationary signals, various approaches have been proposed, including 

Gabor transform, short-time Fourier transform, fractional Fourier transform, line 

frequency modulation wavelet transform, wavelet transforms, circulation statistics 

theory and amplitude-frequency modulation signal analysis [30]. The goal is to retain 

important temporal information in the frequency domain, or partial frequency 

information in the time domain. 

The basic idea of the short-time Fourier transform is that, assuming a 

non-stationary signal is stationary (or pseudo stationary), represented as a power 

spectrum in a short interval of a window function 𝑔(𝑥), move the window function 

and make 𝑓(𝑡)𝑔(𝑡 − 𝜏) stationary in different limited time width, and then calculate 

the power spectrum at that different instance [30]. Essentially, the short-time Fourier 

transform provides only time-resolved and single resolution in signal analysis. 



13 

 

 

The wavelet transform, as a time-dimensional analysis method, has not only the 

characteristics of multi-resolution analysis, but also the ability to express local 

properties in both the time and frequency domains [31]. This transform has a fixed but 

changeable window size. Consequently, the wavelet transform demonstrates good 

time resolution and poorer frequency resolution in its high frequency components, and 

good frequency resolution and poorer time resolution in its low frequency components. 

It is especially suitable for the detection of the transient abnormal phenomenon in 

normal signals by showing its composition. Specifically, the continuous wavelet 

transform, hailed as the “microscope of signal analysis”, has a fairly good 

performance in the fault detection and diagnosis of dynamic systems [32].  

 

2.2 Fourier Transform  

The Fourier transform is one of the most important methods in the field of signal 

processing. It provides a bridge between the frequency domain (Eqn. 2.1) and the time 

domain (Eqn. 2.2). 

 𝐹(𝑣) = ∫ 𝑒−2𝜋𝑖(𝑥,𝑣)𝑓(𝑥)𝑑𝑥                        (2.1) 

      𝑓(𝑥) = ∫ 𝑒2𝜋𝑖(𝑥,𝑣)𝐹(𝑣)𝑑𝑣                         (2.2) 

The Fourier pair illustrates that data presented in one domain can be represented in 

the other domain through inverse transformation.  
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The frequency of an image is the degree of the image’s gray level change in the 

plane space. For example, in an image, the corresponding frequency value of the area 

with slow gray level change is very low, and vice versa.  

2.2.1 Discrete Fourier Transform (DFT)  

An infinite number of different frequency sine and cosine curves are required to 

represent aperiodic signals, which is impossible to implement in the real world. As a 

result, the Discrete Fourier Transform (DFT) is used for discrete data with limited 

length in computer programming. 

The process of DFT can be illustrated in Fig. 2.1. 

 

Figure 2.1: Terminology of DFT (retrieved from 

http://www.dspguide.com/ch8/2.htm, Oct., 2012 ) 

 

The input signal 𝑥[] in the time domain consists of 𝑁 points, it then produces 

two signals in the frequency domain: the real part “𝑅𝑒 𝑋[]” and the imaginary part 

“𝐼𝑚 𝑋[ ]”. The values in 𝑅𝑒 𝑋[] and 𝐼𝑚 𝑋[ ] are respectively the amplitudes of 

cosine and sine wave sets [34].  

http://www.dspguide.com/ch8/2.htm
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The sine and cosine wave sets with unity amplitude are called DFT basis functions 

[34], given by 

          𝐶𝑘[𝑖] = 𝑐𝑜𝑠(2𝜋𝑘𝑖
𝑁⁄ )                         (2.3) 

  𝑆𝑘[𝑖] = 𝑠𝑖𝑛(2𝜋𝑘𝑖
𝑁⁄ )                         (2.4) 

where 𝐶𝑘[] is the cosine wave for the amplitude held in 𝑅𝑒 𝑋[𝑘], and 𝑆𝑘[] is the 

sine wave for the amplitude held in 𝐼𝑚 𝑋[𝑘]. 

Thus, the original signal 𝑥[] can be synthesized as 

𝑥[𝑖] = ∑ 𝑅𝑒𝑋̅[𝑘]cos (2𝑘𝜋𝑖
𝑁⁄ )

𝑁
2⁄

𝑘=0 + ∑ 𝐼𝑚𝑋̅[𝑘]sin (2𝑘𝜋𝑖
𝑁⁄ )

𝑁
2⁄

𝑘=0        (2.5) 

In general, the DFT of a discrete signal 𝑔(𝑛) is defined as 

𝐺(𝐾) = ∑ 𝑔(𝑛)𝑒−𝑖
2𝜋𝑘𝑛𝑇

𝑁𝑁−1
𝑛=0 ,         𝑘 = 0, … , 𝑁 − 1             (2.6) 

In a similar way, 2-D FT is a rather straightforward extension of the 1-D transform. 

Its equation is as follows: 

𝐺(𝑢, 𝑣) = ∑ ∑ 𝑔(𝑥, 𝑦)𝑒−𝑖
2𝜋(𝑢𝑥+𝑣𝑦)

𝑁𝑁−1
𝑦=0

𝑁−1
𝑥=0                  (2.7) 

 

2.2.2 Properties of DFT 

There are several properties in the DFT that make it easy to change a signal from 

one domain to the other domain. 

a) Linearity 

The Fourier transform is linear, and this property applies to all four members of 

the Fourier transform family (Fourier transform, Fourier series, discrete Fourier 
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transform, and discrete time Fourier transform). This means it possesses the properties 

of homogeneity and additivity [34].  

Homogeneity means that a change in amplitude in one domain produces a 

corresponding change in amplitude in the other domain. For example, in mathematical 

form (for any constant 𝑚), if 𝑥[ ] and 𝑋[ ] are a Fourier transform pair, then 𝑚𝑥[ ] 

and 𝑚𝑋[ ] are also a Fourier transform pair. Additivity means that addition in one 

domain is equivalent to addition in the other domain.  

b) Periodicity and Conjugate Symmetry 

The DFT and IDFT are periodic with period N. A simple proof is as follows: 

𝐹(𝑢, 𝑣 + 𝑁) =
1

𝑁
∑ ∑ 𝑓(𝑥, 𝑦)𝑒−𝑖

2𝜋𝑢𝑥

𝑁 𝑒−𝑖
2𝜋(𝑣+𝑁)𝑦

𝑁𝑁−1
𝑦=0

𝑁−1
𝑥=0   

    =
1

𝑁
∑ ∑ 𝑓(𝑥, 𝑦)𝑒−𝑖

2𝜋𝑢𝑥

𝑁 𝑒−𝑖
2𝜋𝑣𝑦

𝑁𝑁−1
𝑦=0

𝑁−1
𝑥=0 = 𝐹(𝑢, 𝑣)          (2.8) 

  So, 𝐹(𝑢, 𝑣) = 𝐹(𝑢 + 𝑁, 𝑣) = 𝐹(𝑢, 𝑣 + 𝑁) = 𝐹(𝑢 + 𝑁, 𝑣 + 𝑁)        (2.9) 

c) Convolution 

If 𝑥(𝑛) has the Fourier transform 𝑋(𝑘), and 𝑌 (𝑘) is the FT of 𝑦(𝑛), then 

      𝑋(𝑘)𝑌 (𝑘)  =  𝐷𝐹𝑇 {{𝑥(𝑛)}  {𝑦(𝑛)}}               (2.10) 

Here, denotes circular convolution [30]. 

d) Symmetry 

If 𝐹(𝑢, 𝑣) is real, then 

𝐹(𝑢, 𝑣) = 𝐹∗(−𝑢, −𝑣) → |𝐹(𝑢, 𝑣)| = |𝐹(−𝑢, −𝑣)|         (2.11) 

𝑓(𝑥, 𝑦) 𝑟𝑒𝑎𝑙 𝑎𝑛𝑑 𝑒𝑣𝑒𝑛 ↔ 𝐹(𝑢, 𝑣) 𝑟𝑒𝑎𝑙 𝑎𝑛𝑑 𝑒𝑣𝑒𝑛          (2.12) 
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𝑓(𝑥, 𝑦) 𝑟𝑒𝑎𝑙 𝑎𝑛𝑑 𝑜𝑑𝑑 ↔ 𝐹(𝑢, 𝑣) 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑎𝑛𝑑 𝑜𝑑𝑑      (2.13) 

2.2.3 Applications  

Fourier analysis is a useful tool for extracting data from many time domain signals 

or determining the resolution level in spatial domain images. As mentioned above, 

frequency encoded data can be transformed to the spatial domain. The best known 

example of this is MRI data, which is collected in a frequency encoded time domain 

and then transformed to the frequency encoded spatial domain to provide the MRI 

image. However, as shown above, the Fourier transform has a serious disadvantage: 

temporal information loss in time-frequency transformation [33]. Consequently, the 

Fourier transform may not be suitable for analyzing signals containing unstable or 

transient characteristics.  

Although the Fourier transform can associate the features of a signal’s frequency 

domain with its time domain, and observe respectively from the frequency and time 

domains, it cannot provide information simultaneously on both. This is because the 

time domain waveform of a signal is a composite of the frequency domain 

information [30]. In other words, analyzing a Fourier spectrum provides no 

information on when a certain frequency is produced. Thus, there is a dichotomy in 

the information available from Fourier-based signal analysis (namely, the exclusivity 

of the frequency and time domains). 
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In practical signal processing, especially for non-stable signals, the frequency 

domain characteristics of a signal are important [31]. For example, the vibration signal 

from the cylinder cover of a diesel engine, produced by strike or shock, is a transient 

signal. This signal is hard to be shown only in either the frequency domain or time 

domain. Therefore, a new way is required to describe joint time-frequency 

characteristics of a signal by combining the frequency domain with the time domain. 

This so-called time-frequency analysis method is also known as the time-frequency 

localization method. 

 

2.3 Discrete Wavelet Transform  

In practical applications, as for the Fourier transform, discretization must be 

applied to continuous wavelet. The discretization of continuous wavelet 𝛹𝑎,𝑏(𝑡) and 

continuous wavelet transform 𝑊𝑓(𝑎, 𝑏) is based on the scaling parameter 𝑎 and 

translation parameter 𝑏. A continuous wavelet can be defined as [38] 

𝛹𝑎,𝑏(𝑡) = |𝑎|−1/2𝛹 (
𝑡−𝑏

𝑎
)                         (2.14) 

where 𝑏 ∈ 𝑅, 𝑎 ∈ 𝑅+, 𝑎 ≠ 0, (𝑎 is a positive value in discretization, 𝑅 is for the 

field of real number). Its compatibility condition is 

𝐶𝛹 = ∫
|𝛹̂(𝜔̅)|

|𝜔̅|
𝑑𝜔̅ < ∞

∞

0
                          (2.15) 

Assuming 𝑎 = 𝑎0
𝑗
, 𝑏 = 𝑘𝑎0

𝑗
𝑏0, 𝑗 ∈ 𝑍, 𝑎0 > 1, (where 𝑍 represents integers) the 

corresponding discrete wavelet function 𝛹𝑗,𝑘(𝑡) can be given by 
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𝛹𝑗,𝑘(𝑡) = 𝑎0

−
𝑗

2𝛹 (
𝑡−𝑘𝑎0

𝑗
𝑏0

𝑎0
𝑗 ) = 𝑎0

−
𝑗

2𝛹(𝑎0
−𝑗

𝑡 − 𝑘𝑏0)       (2.16) 

The coefficient of the discrete wavelet can be presented as 

𝐶𝑗,𝑘 ∫ 𝑓(𝑡)𝛹𝑗,𝑘(𝑡)𝑑𝑡 =< 𝑓
∞

−∞
                       (2.17) 

Its reconstruction equation is 

𝑓(𝑡) = 𝐶 ∑ ∑ 𝐶𝑗,𝑘𝛹𝑗,𝑘(𝑡)∞
−∞

∞
−∞                       (2.18) 

In this equation, C is a constant which has nothing to do with the signal. However, 

the choice of 𝑎0 and 𝑏0 is important because of the requirement of the precision of 

the reconstructed signals. Based on that, 𝑎0 and 𝑏0 should be as small as possible, 

since the further the grid points are from each other, the lower is the reconstruction 

accuracy that can be achieved [39].  

 In practical calculation, it is impossible to calculate 𝑎, 𝑏 values of the continuous 

wavelet transform (CWT) for all scaling parameters and translation parameters, and 

the actual observation signals are discrete. As a result, the discrete wavelet transform 

(DWT) is usually used. When the DWT is applied, the ½ in the coefficient effectively 

reduces the resolution of the scale map. The most effective method of computation is 

the fast wavelet algorithm (also named as pyramid algorithm), which was developed 

by S. Mallat in 1988 [40]. For any signal, the first step of the discrete wavelet 

transform is to divide a signal into the low frequency part (called the approximate part) 

and the discrete part (called the details). The approximate part represents the main 

characteristics of the signal. The second step is to apply the similar operation to the 
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low frequency part. But at this time, the scaling factor has been changed. This 

operation is repeated until the desired scale is reached. In addition to continuous 

wavelet and discrete wavelet, there are wavelet packets and multi-dimensional 

wavelets in practical applications [41]. 

2.3.1 2-D Discrete Wavelet Transform  

In 2D wavelets, there is one scaling function and three wavelets: 

The scaling function       𝜑2𝐷 = 𝜑(𝑥)𝜑(𝑦)                        (2.19) 

The three wavelets        𝛹1
2𝐷 = 𝜑(𝑥)𝛹(𝑦)                        (2.20) 

                   𝛹2
2𝐷 = 𝛹(𝑥)𝜑(𝑦)                        (2.21) 

          𝛹3
2𝐷 = 𝛹(𝑥)𝛹(𝑦)                       (2.22) 

where 𝜙 and 𝜓 indicate the scaling function and 1-D wavelet, respectively. The 

discrete wavelet transforms of image 𝑓(𝑥, 𝑦) of size M and N is 

𝑊𝜑(𝑗0,𝑚, 𝑛) =
1

√𝑀𝑁
∑ ∑ 𝑓(𝑥, 𝑦)𝜑𝑗0,𝑚,𝑛(𝑥, 𝑦)𝑁−1

𝑦=0
𝑀−1
𝑥=0           (2.23) 

𝑊𝜑
𝑖(𝑗,𝑚, 𝑛) =

1

√𝑀𝑁
∑ ∑ 𝑓(𝑥, 𝑦)𝛹𝑗,m,n

𝑖 (𝑥, 𝑦)𝑁−1
𝑦=0

𝑀−1
𝑥=0             (2.24) 

The image can be represented by the sum of orthogonal signals corresponding to 

different resolution scales. The detailed coefficients include the horizontal, vertical 

and diagonal details of the image. Fig. 2.3 illustrates the general form of the 2D 

wavelet transform. The decompositions first run along the 𝑥-axis, and then run along 

the 𝑦-axis. In the figure, ℎ𝛹(−𝑛) is an average filter. It outputs the average of its 

current input and its previous input. ℎ𝜑(−𝑛) is a moving difference filter. It outputs 
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half the difference between its current input and its previous input. 2 ↓ represents a 

down-sampling operator. It outputs at half the rate of the input. 

 

Figure 2.3: Fast 2D wavelet transform flow chart (retrieved from the CS6756 

Digital Image Processing course note in Memorial University, winter 2012, 

Professor Siwei Lu) 

 

Thus, an image can be divided into four bands: LL (left-top), HL (right-top), LH 

(left-bottom) and HH (right-bottom). An example is shown in Fig. 2.4. The sub-band 

𝑊𝜑(𝑗, 𝑚, 𝑛)(LL) contains the smooth information and the background intensity of the 

image, and the sub-bands 𝑊𝛹
𝐷(𝑗, m, n), 𝑊𝛹

𝑉(𝑗, m, n) and 𝑊𝛹
𝐻(𝑗, m, n)  contain the 

detailed information of the image. The sub-band 𝑊𝜑(𝑗, 𝑚, 𝑛) (LL) is obtained by low 

pass filtering along the rows and then low pass filtering along the corresponding 

columns. It represents the approximated version of the original image at half 

resolution. 𝑊𝛹
𝐻(𝑗, m, n) (HL), representing the horizontal high frequencies (vertical 

edges), is the low pass filtering result along the rows. In contrast, 𝑊𝛹
𝑉(𝑗, m, n) (LH), 

representing the vertical high frequencies (horizontal edges), is the high pass filtering 

result along the columns. 𝑊𝛹
𝐷(𝑗, m, n) (HH), representing the high frequencies in 
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diagonal direction (corners and diagonal edges), is the filtering result by the high pass 

filter along both columns and rows [42]. 

 

Figure 2.4: One and two level wavelet decomposition process (retrieved from the 

CS6756 Digital Image Processing course note in Memorial University, winter 

2012, Professor Siwei Lu) 

 

     

    (a)                                (b) 

      

  (c)                                (d) 
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Figure 2.5: An image decomposition example: (a) Original image; (b) 

decomposition at level 1; (c) decomposition at level 2; (d) synthesized image 

(Images are taken from the Image Processing Toolbox in Matlab (R2010b)) 

The image of a woman in Fig. 2.5 (a) is decomposed with the Symlets wavelet 

(sym4 in Matlab Image Processing Toolbox). The first level decomposition of the 

original image is shown in Fig. 2.5 (b), and the second level decomposition result is 

shown in Fig. 2.5 (c). After the inverse DWT, the synthesized image is shown in Fig. 

2.5 (d). 

 

2.3.2 Applications 

Wavelets can be applied in different application fields, including numerical 

analysis, image compression, image de-noising, image enhancement, image fusion, 

feature detection, edge detection and so on. 

Wavelet analysis is a powerful and computationally efficient tool for numerical 

analysis. For example, it has been used in the solution of partial differential equations 

(ODEs) and integral equations (PDEs) [47].  

Image compression algorithms based on the discrete cosine wavelet transform are 

basically decomposing signals in the frequency domain. In this way, it is easier to 

obtain important coefficients and achieve the best compression, as the correlation 

between signals can be removed. Take medical images for example; there is a need of 

local high resolution. Apparently, simple frequency domain analysis cannot meet that 

requirement. With the characteristic of time-frequency in the wavelet analysis, 
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coefficients can be dealt with in both domains. Different compression can be precisely 

provided in any interested part. Due to the advantages of the decomposition of 

detailed information, the Wavelet Scalar Quantization (WSQ) method is used to 

compress the FBI fingerprint database [43]. The new JPEG 2000 (Joint Photographic 

Experts Group) standard is also based on the wavelet transform. The compression 

procedure of the JPEG 2000 standard can be divided into three parts, the 

pre-processing, the core processing, and the bit-stream formation part [44]. The 

pre-processing part independently compresses an image into rectangular blocks. The 

core processing, mainly based on the discrete wavelet transform, is to decompose the 

tile components into different levels. Images are transformed to low-pass and 

high-pass samples, which represent a low-resolution version and a down-sampled 

residual version of the original set. After all coefficients are quantized, entropy coding 

is performed [45]. 

De-noising is critical in image processing, as noise is usually unpredictable, and 

exists in every step of image acquisition, processing, and outputting. In wavelet-based 

image de-noising, one wavelet and the decomposition level 𝑁 are first chosen. Then 

one chooses a threshold for each of the 𝑁 layers, and conducts quantization process 

to the high frequency coefficients in each layer. Finally, reconstruction is done using 

the low frequency coefficients in layer 𝑁  and the modified high frequency 

coefficients from layer 1 to 𝑁 [39]. With the Matlab Image Processing Toolbox, 
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de-noising functions such as ddencmp and wdencmp can effectively implement 

wavelet-based image de-noising.  

In image processing, image enhancement can be conducted by setting a mask or 

modifying Fourier coefficients in the time domain or the frequency domain. However, 

these two methods either lose information or involve complex long calculation. 

Multi-scale analysis in wavelet, which is more flexible, provides a solution using as 

little amount of calculation as possible and choosing any decomposition levels to 

achieve satisfactory results [45]. 

The wavelet transform enables the possibility to distinguish between signal parts 

with different frequencies; therefore, it can be applied to feature detection. Schneiders 

proposed a real-time implementation of the DWT to detect features, and it was found 

that the detection speed of the wavelet filter was faster than a simple threshold-based 

detection [46]. 

 

2.4 Pattern Recognition 

Pattern recognition first appeared in the 1920s. With the presence of computers in 

the 1940s, and the development of artificial intelligence in the 1950s, pattern 

recognition quickly developed into a subject in the 1960s [48]. Its theory and method 

in many science and technology research areas have attracted wide attention. 
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Therefore, it has promoted the development of the artificial intelligence system, which 

enlarged the possibility of computer applications. 

In 1929, Tauschek invented a machine reader, which could recognize the numbers 

0 to 9 [49]. Fisher proposed the statistical distribution theory in the 1930s, which laid 

the foundation of statistical pattern recognition. Two decades later, Noam Chomsky 

presented formal language theory, and Fu Jingsun presented sentence structure pattern 

recognition. The theory of fuzzy sets was raised by Zadeh ten years after that. 

Subsequently, fuzzy pattern recognition methods have been widely developed and 

applied. Hopfield presented neural network models reviving the artificial neural 

network, which became widely applied in pattern recognition in the 1980s. Small 

sample theory and support vector machines gained significant prominence in the 

1990s [49]. 

2.4.1 The Concept of Pattern Recognition 

Pattern recognition is a kind of technique dealing with artificial intelligence 

information. It has been widely applied in areas such as words, fingerprints 

recognition, and remote sensing. In industry, pattern recognition optimization 

techniques have produced enormous economic benefits in chemical and light industry, 

metallurgy, and others. 

 Broadly speaking, objects are themselves patterns [50]. Narrowly speaking, a 

pattern is the distribution of time and space information based on observations. 
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Patterns may be grouped or organized by measurable likeness into pattern classes [49]. 

The goal of pattern recognition is to identify the class to which a particular pattern 

belongs. 

 People can accomplish the job for small numbers of patterns; however, it could 

be extremely difficult for hundreds of millions of objects. Consequently, people 

allocated the task to computers. Generally speaking, pattern recognition is the analysis, 

description, classification and recognition of different sorts of things or phenomena 

using computers. 

2.4.2 Pattern Recognition System 

 

Figure 2.6: The composition of a pattern recognition system 

As shown in Fig. 2.6, a pattern recognition system is mainly composed of four 

stages: data acquisition, pre-processing, feature extraction and selection, and classifier 

design and classification decision. The goal is to assign a pattern to a certain group or 

category. The data acquisition stage transfers all kinds of information about the study 

of objects to digital number or symbol sets that can be accepted by machines. The 
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pre-processing stage is to remove noise, strengthen valuable information, and recover 

information degraded during acquisition or transfer. It usually includes binarization 

processing, edge extraction, image segmentation, digital filtering, de-noising 

processing, and normalization.  

The next stage is to extract relevant data features. For example, in fingerprint 

recognition, features such as texture, intersection, and shapes can be extracted. The 

space that contains all original data is called the measurement space, and the related 

data is eventually classified in the object class feature space. At this point, the high 

dimensional measurement space has been transformed to lower dimensional feature 

space. Analysis of the feature space will identify the most relevant features. This 

process is called feature selection. A group of stable and typical features is the core of 

a recognition algorithm. Although two recognition algorithms use the same 

classification strategy, they belong to different algorithms when using different 

features.  

Feature extraction and selection are of vital importance in the recognition process. 

If a pattern is properly chosen, it will show large variances to different patterns, and 

we can easily design a classifier with high performance. Therefore, feature selection 

would directly influence the design of a classifier and the result of the classification. 

Although feature extraction and selection hold a very important place in pattern 

recognition, there are no general methods so far.  
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Determining the optimum number of features to use is not straightforward. 

Commonly, when a classifier with one set of features cannot satisfy the demands, we 

would naturally think of adding new features. However, adding features will increase 

the difficulty of feature extraction and the complexity of classification calculation. In 

practical applications, it is found that the performance of a classifier will be the same 

or even worse when the number of features reaches a certain limit. This problem is 

mainly due to the limited sample size of data. In this case, to satisfy the classification 

result, samples for learning must be increased at the same time as adding features [48]. 

A variety of feature selection methods have been developed, which can be divided 

into three categories: filter methods, wrapper methods, and hybrid methods [24]. In 

filter methods, the Sequential Forward Selection (SFS), proposed by Whitney in 1971, 

is one of the most commonly used approximate optimal methods [25]. This method 

starts from an empty feature set and iteratively adds a new feature from the remaining 

features. In contrast, the Backward Forward Selection (SBS) removes one feature each 

time from the full feature set. The Wrapper approaches apply specific machine 

learning algorithms such as the decision tree or support vector machine (SVM), and 

utilize the corresponding classification performance to guide the feature selection [26]. 

The Hybrid method is a combination of the advantages of the Filter and Wrapper 

methods. An experiment by Jain [27] with different feature selection methods showed 
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that the sequential forward floating selection (SFFS) algorithm, proposed by Pudil 

[28], outperformed the other algorithms. 

The last stage of pattern recognition is classifier design and classification decision. 

The output of this part could be a certain pattern that an object belongs to, or the most 

similar pattern number in a pattern database. The design of a classifier is usually based 

on the pattern set, which has been classified or described. This pattern set is called the 

training set, and this result learning strategy is called supervised learning. There is 

also unsupervised learning, which needs no prior knowledge, but is based on the 

statistical law or similarity learning to classify each object’s category. Among various 

pattern recognition methods, the most commonly used are pattern matching, statistical 

pattern recognition, syntactic pattern recognition, fuzzy pattern recognition and neural 

network pattern recognition.  

2.4.3 Applications 

Pattern recognition can be applied on different subjects, such as speech 

recognition, speech translation, face recognition, fingerprint recognition, handwriting 

character recognition. After decades of research and development, pattern recognition 

technologies have been widely used in a variety of fields, including artificial 

intelligence, computer engineering, machine learning, neural biology, medicine, 

archaeology, geological prospecting, space science, remote sensing, and industrial 

fault detection [39]. Furthermore, the fast development of pattern recognition 
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technologies can also greatly enhance the development of military science and 

technology [48]. 

In medical applications, such as cancer detection, X-ray image analysis, blood 

tests, chromosome analysis, electrocardiogram and electroencephalogram diagnosis, 

pattern recognition is also critically important [48]. Existing research put great effort 

into the detection of microcalcifications in breast cancer detection. In 2010, 

Balakumaran first employed dyadic wavelet transform to enhance mammogram 

quality, and detected 95% of microcalcifications in his experiment by fuzzy shell 

clustering [16]. Chan et al. proposed a different computer-aided diagnostic method to 

detect microcalcifications on digitized mammograms, which improved the 

classification accuracy [17]. This method was aimed at improving the signal-to-noise 

ratio (SNR) by linear spatial filters. In Jinchang Ren and Zheng Wang’s recent work, 

they proposed an improved SVM approach designed for effective classification of 

benign and malignant microcalcifications in mammograms. The experiment results 

showed nearly 20% improvement in terms of the area under the ROC curve (Az) [18]. 

In 2007, Kage et al. [21] compared the performances of some state-of-the-art 

methods for mass detection in mammograms. Their experiments were based on two 

databases that are free to the public: Mammographic Image Analysis Society’s digital 

mammogram database (MIAS) [19] and the Digital Database for Screening 

Mammography (DDSM) [20]. The results showed that the Gradient Orientation 
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Analysis (GOA) developed by Brake and Karssemeijer achieved the best results for 

both databases. The Analysis of Local Orientated Edges (ALOE) method presented by 

Kegelmeyer et al. [22] achieved the second best results. The standard deviation of 

folded gradient orientations method, named Liu method [23], achieved the worst 

results. After adding the novel gradient direction analysis to the Liu Method, the 

performance was significantly increased. 
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Chapter 3 – Mammogram Image Processing 

 

 

The mammogram image processing is the first stage of the proposed mammogram 

analysis system. This stage includes two basic steps: mammogram image 

pre-processing and data transforms. In the mammogram image pre-processing step, 

the original digital  mammogram images are de-noised and normalized. In the data 

transforms step, the normalized images are decomposed by the Fourier transform and 

three wavelet transforms with different bases (Daubechies db2, Daubechies db4, and 

Biorthogonal bior6.8) separately. Then, four statistical features, including the mean, 

standard deviation, skewness and kurtosis of the image intensities, are extracted. 

 

3.1 Mammogram Image Pre-processing  

For the automatic mammogram analysis system, the original images are different 

in size and directions. Furthermore, artefacts and noise may also exist in some 

mammograms, which would generate wrong or poor analysis result. Thus, several 

mammogram pre-processing steps were implemented to regularize the appearance of 

the images, and remove unnecessary artefacts and noise. Based on the studies [62-63], 

the steps taken in this work include orientation matching, background thresholding, 

and intensity matching.  
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3.1.1 Orientation Matching 

In this study only the MLO mammogram presentation was used. In these, the right 

and left breasts point to the opposite sides in the mammogram image. Therefore, it is 

better to flip one of the breasts to the same direction as the other one. This step 

ensures that all images pointed to the same direction, preventing changes in the 

wavelet transform coefficients due only to the directionality change between right and 

left images. The sharp edge between the tissue and the dark background is a major 

feature in all images that affects this change. As shown in Fig. 3.1, the intensity of 

right breast images falls from left to right across this edge, while it rises in left breast 

images. This would change the sign of the calculated wavelet coefficient.  

   

Figure 3.1: An example of MLO view mammogram: A. Right side; B. Left 

side; C. the image after orientation matching of A. 

Fig. 3.1 shows the result of orientation matching of an example of Medial Lateral 

Oblique (MLO) view mammogram. Fig. 3.1 A and B respectively show the right and 

left breast images of a patient with tiny microcalcifications in her breast tissue. Fig. 

3.1 C shows the reflected image of orientation matching of the right breast.   

A B C 
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3.1.2 Background Thresholding 

Signal outside the tissue is non-informative and was removed from consideration 

by binary masking. Thresholding is the simplest method to create binary images, and 

it normally sets all pixels below a set intensity level to zero [41]. A satisfactory 

threshold can remove all irrelevant information in the background pixels, and leave 

foreground objects unaltered. A most commonly used method to choose the threshold 

is Otsu’s Method [54], which assumes that the image to be thresholded contains two 

classes of pixels or bi-modal histogram (e.g. foreground and background). The method 

then calculates the optimum threshold separating those two classes so that their 

combined spread (intra-class variance) is minimal [54]. It also assumes that the 

foreground and background intensities are normally distributed, and it chooses the 

threshold level which minimizes the segmentation error between the two regions.   

The attenuation of x-rays passing through the tissue affects the intensity in the 

images, and is influenced by the thickness and density of the tissue. Therefore, tissue 

pixels which fall below the conservative threshold are predominantly from the edges 

of the tissue region where the breast tissue is thin and uncompressed. While a few 

pixel layers may be removed by this method, it was deemed acceptable as any 

pathology that exists this close to the surface of a patient’s skin should be readily 

detectable by conventional examination without the aid of mammography. 
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In this work, the binary thresholding, which sets all pixels below a threshold, was 

set to an intensity of zero and all pixels above the threshold to an intensity of one (see 

Fig. 3.2). The output image of the process is the pixel-by-pixel product of the binary 

mask image and the original image. In this way, all background pixels of the output 

image are set to zero of intensity, while all foreground pixels are unaffected. 

       

Figure 3.2: A. Mammogram image before background thresholding; B. The 

thresholded binary image used to mask the original image. 

 

3.1.3 Intensity Matching 

Intensity matching is the last pre-processing step applied to the images before they 

are ready for data tranforms. In this step, all mammograms are linearly scaled to an 

intensity of 0.0 to 1.0. This intensity matching process can be defined by 

)_max(

_
_

inimg

inimg
outimg  ,            (3.1) 

A B 
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where img_in is the input image following the background thresholding step, and 

img_out is the intensity-matched image whose pixel intensities range from zero to one. 

This step ensures the uniformity across all different mammogram images, because 

their pixel intensities ranges could differ with machines settings. It can be seen in Fig. 

3.3 that there is tiny difference before and after the intensity matching procedure. The 

broader spread in intensities would increase the variations in different tissue types and 

densities. (the maximum relative intensity prior to normalization was 0.92). 

       

Figure 3.3: Mammogram image before A and after B intensity matching 

 

3.2 Data Transforms 

Once the images are pre-processed to minimize the differences between images 

that were not related to differences in the physical composition of the breast tissue, the 

wavelet and Fourier transforms were performed on the images.   

The images were all sampled to 1024×1024 pixels, which would allow maximum 

10 levels of decomposition, since dyadic sampling reduces the dimensions by a factor 

A B 
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of two in each direction after each pass. In this work, only eight levels of 

decomposition were used. Because the final two levels would consist of four-pixel and 

one-pixel images, respectively, which are basically useless for mammogram analysis, 

compared to the size of the entire breast. As a result, these levels are omitted from the 

wavelet analysis to speed calculation. 

3.2.1 Choice of Transform Methods 

1. Daubechies Wavelets: db 𝑁 

This discrete orthogonal wavelet was developed from two-scale equation 

coefficient {ℎ𝑘}  by Ingrid Daubechies, which makes discrete wavelet analysis 

practicable [33]. The names of the Daubechies family wavelets are written as “db 𝑁”, 

where 𝑁 is the order, and 𝑑𝑏 is the "surname" of the wavelet. Except when 𝑁=1 

(Haar), db 𝑁 is asymmetric and has no explicit expressions. But there are explicit 

expressions for the square modulus of the transfer function of {ℎ𝑘}. Assuming that 

𝑃(𝑦) = ∑ 𝐶𝑘
𝑁−1+𝑘𝑦𝑘𝑁−1

𝑘=0 , 𝐶𝑘
𝑁−1+𝑘 is the coefficient of binomials, then, 

|𝑚0(𝜔)|2 = (𝑐𝑜𝑠2 𝜔

2
)

𝑁

𝑃(𝑠𝑖𝑛2 𝜔

2
)                (3.2) 

in which, 𝑚0(𝜔) =
1

√2
∑ ℎ𝑘𝑒−𝑖𝑘𝜔2𝑁−1

𝑘=0 . 

The Daubechies wavelets are chosen for their sensitivity to various types of 

intensity gradients. Fig. 3.4 shows the wavelet and scaling functions of two 

Daubechies wavelets used in this work: Daubechies 2 and Daubechies 4.  
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Figure 3.4: Wavelet functions (high pass filters) and scaling functions 

(low pass filters) for Daubechies 2 and Daubechies 4 [55]. 

 

2. Biorthogonal Wavelet Pairs: biorNr.Nd 

The main characteristic of the Biorthogonal function is it can feature linear phase, 

and it is mainly used in the reconstruction of signals and images. The Biorthogonal 

wavelet family uses a pair of associated scaling filters (instead of the same single one) 

for reconstruction and decomposition [33]. The Biorthogonal function is denoted as 

biorNr.Nd form in Table 3.1[36], in which, 𝑟 denotes reconstruction, 𝑑  denotes 

decomposition. 
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Table 3.1: biorNr.Nd form 

 

Nr
 

Nd
 

1 1,3,5 

2 2,4,6,8 

3 1,3,5,7,9 

4 4 

5 5 

6 8 

 

The Biorthogonal wavelets are chosen for their ability to provide exact 

reconstruction. Fig. 3.5 shows the decomposition (analysis) and reconstruction 

(synthesis) filters for the Biorthogonal bior6.8 wavelet. The wavelets and their 

associated scaling functions are shown in the discrete form, since this is the form used 

to decompose the mammogram images [55]. 

 

Figure 3.5: Decomposition (analysis) and reconstruction (synthesis) filters for 

the Bior6.8 wavelet 
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3. Fourier Transform 

 The time or space based data is usually transformed to frequency-based data after 

the Fourier transform, as shown in Fig. 3.6. The Discrete Fourier Transform (DFT) of 

a vector x of length n is another vector y of length n according to the following 

equation: 

𝑦𝑝+1 = ∑ 𝜔𝑗𝑝𝑥𝑗+1
𝑛−1
𝑗=0                        (3.3) 

where 𝜔 is a complex 𝑛th root of unity: 

𝜔 = 𝑒
−2𝜋𝑖

𝑛⁄                               (3.4) 

Here, i is the imaginary unit, and p and j are indices that run from 0 to 𝑛– 1. 

 

 

 

Figure 3.6: Fourier transform between the time/space and frequency domain [55] 

 

4. Comparison  

Fig. 3.7 shows the original mammogram and its four detail views obtained at the 

first decomposition level when the Db4 wavelet basis is used. It is shown that the 
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wavelet maps have a lower resolution than the original image. Each view is sensitive 

to different features in the image. For example, the horizontal detail detects vertical 

changes in intensity, the vertical detail detects horizontal changes in intensity, the 

diagonal detail responds when the intensity is varying in both directions, and the 

approximation image is a low resolution version of the original image used as an input 

to the next coarser level of the decomposition.   

Fig. 3.8 shows the Fourier transform view of the original mammogram. Compared 

with the wavelet maps, it can be seen that the wavelet transform provides 

multi-resolution decomposition, which means the wavelet maps at different levels 

reflect the image features of different sizes. Furthermore, spatial information is 

partially conserved. The wavelet maps in Fig. 3.7 show the spatial distribution of 

information at particular size scales; in contrast, the Fourier transform would lose the 

spatial information and simply produce a map of the relative contributions of different 

frequencies over the entire image. This spatial information is useful for finding 

localized structures, such as microcalcifications and masses. These structures remain 

localized after the wavelet transform is applied, and their can then be distinguished 

from a more homogeneous background. 
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Figure 3.7: First level db4 wavelet decomposition: A. Original mammography 

image; B. Approximation view; C. Horizontal detail view; D. Vertical detail 

view; E. Diagonal view.   

A 

B C 

D E 
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Figure 3.8: The Fourier transform view of the mammogram in Fig. 3.7 A.  

3.2.2 Choice of Measurement 

In this experiment, four statistical features were extracted: mean intensity, 

standard deviation, skewness and kurtosis of the pixel intensities. Then, the 

mammogram analysis system uses some of these features to classify mammogram 

images as being normal or cancerous.  

1. Mean  

The mean 𝜇 in this paper is obtained by calculating the average pixel value of the 

tissue region in the mammogram image. The equation is given by 

𝜇 =
1

𝑁
∑ 𝐼(𝑖, 𝑗)𝑖,𝑗                           (4.3) 
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where 𝐼(𝑖, 𝑗) is the pixel value at point (𝑖, 𝑗) of the mammogram image. 𝑁 is the 

number of pixels in the tissue region of the image. The mean feature measures the 

average value of each detail views at different decomposition levels. 

Microcalcifications are usually tiny and bright. Compared with normal samples, 

microcalcifications have a slightly higher intensity in the high resolution maps. While 

masses are usually different in sizes and shapes, they could range from millimetres to 

several centimetres in width. Therefore, masses cannot be extracted from the 

background tissue through single scale or wavelet basis. However, masses are located 

in one region of tissue, and they are usually brighter than normal tissue. As a result, a 

slightly larger mean intensity can be measured through a wavelet basis, especially 

when different scales are used to detect masses. 

2. Standard Deviation 

The standard deviation σ, the estimate of the mean square deviation of grey pixel 

values, describes the dispersion of a local region. It is defined as 

𝜎 = √
1

𝑁
∑ [𝐼(𝑖, 𝑗) − 𝜇]2

𝑖,𝑗                       (4.4) 

It measures the variability in the brightness of the image over the tissue region. 

The value of the standard deviation would increase in the high spatial resolution levels 

of the wavelet map images that contain microcalcifications or masses, because they 

are brighter than normal parts of mammogram images. 

3. Skewness 
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The third statistic feature measured from each wavelet map image is the skewness 

of the pixel intensities, which measures the degree of asymmetry. The skewness of a 

distribution of values is defined as the third central moment of the distribution, 

normalized by the cube of the standard deviation. It is given by 

𝑆 =
1

𝑁
∑ [

𝐼(𝑖,𝑗)−𝜇

𝜎
]3

𝑖,𝑗                            (4.5) 

When a distribution has a larger right tail, then it shows a positive skewness. Even 

there is no significantly difference in the mean value or standard deviation, the 

skewness still changes because it is sensitive to the addition of a small number of 

unusually small or large values on a distribution. 

4. Kurtosis 

The fourth statistic measured from the wavelet maps is the kurtosis of the pixel 

intensities. The kurtosis of a distribution of values is defined as the fourth central 

moment of the distribution, normalized by the fourth power of the standard deviation 

of the distribution. The kurtosis K is given by 

𝐾 =
1

𝑁
∑ [

𝐼(𝑖,𝑗)−𝜇

𝜎
]4

𝑖,𝑗                           (4.6) 

Kurtosis measures the narrowness of the central peak of a distribution compared 

with the size of the distribution’s tails. A distribution with a narrow peak and tails that 

drop off slowly has a large kurtosis compared with a distribution with a relatively 

wide peak but suppressed tails. The kurtosis and standard deviation of a distribution 

may be similar, but kurtosis is more sensitive to points distant from the mean than the 
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standard deviation. Because of this, kurtosis is sensitive to the presence of 

microcalcifications and masses. It will rise when the number of unusual bright pixels 

increases in a wavelet map. 
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Chapter 4 – Feature Selection and Image Classification 

 

 

The second and third stage of the mammogram analysis system, the feature 

selection and image classification stages, are introduced in this chapter. First, an 

entropy-based feature selection algorithm is proposed to reduce the number of features, 

which were extracted from the transformed mammogram images. Then, three 

classifiers (the Linear Discriminate Analysis, the Back-propagation Network, and the 

Naive Bayes classifier) and a voting classification scheme are proposed and discussed 

in detail. The classifiers would be used based on the features after the feature selection. 

Finally, the classification accuracy, sensitivity, specificity, and Receiver Operator 

Curve (ROC), are presented for the evaluation of the classifiers. 

 

4.1 Feature Selection 

Since a large number of potential classification features are generated from each 

mammogram image, a selection process is needed to choose those features that are 

most effective at differentiating between normal and cancerous images. Specifically, 

there are four parameters measured from each wavelet map, with four wavelet maps 

per level and eight levels of decomposition. Thus, 16 features could be generated form 

each level of decomposition. To eliminate some of these, it was noted in N. Terki, etc. 
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[59] that peak signal to noise ratio (PSNR) improved when the level of decomposition 

increases, and the image quality was better from third level of decomposition. 

Therefore, level 3 to level 8 of decomposition of the proposed three wavelet transform 

methods were applied in this work. In this case, 96 features would be generated from 

each of three wavelet transforms based on the 6 levels of wavelet decomposition.  

Then, the generated 96 features from the wavelet transform were combined with 

the 6 features extracted from the Fourier transform. In other words, 3 different feature 

sets were created, and each of the feature sets contains features from one wavelet 

transform and the Fourier transform. 

For a feature to be useful in classification, it should be closely and uniquely 

associated with a certain class [56]. Ideally, the feature will correlate with the desired 

class independent of the presence of other classes. If these conditions are met, the 

feature reduction (selection) problem can be addressed by measuring the correlation 

with that class then establishing a pass threshold. The pass threshold eliminates 

features that correlate poorly. There are two common approaches used to measure the 

correlation between two random variables, in this case between feature and class [57]. 

The first is linear correlation, where the variation in a feature value is compared to the 

variation in a class value. This is clearly not applicable here where the class variable 

has two values, normal or suspicious. The second approach and the one adopted for 
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this research is Information Gain, a concept based on the reduction of entropy in the 

dataset.   

A target range for number of features was determined from the work of, Lei and 

Huan [58], they proposed a fast correlation based filter approach and conducted an 

efficient way of analyzing feature redundancy. Their new feature selection algorithm 

was implemented and evaluated through extensive experiments comparing with other 

related feature selection algorithms based on ten different kinds of feature types. The 

number of features ranged from 57 to 650, and the sample size of feature types ranged 

from 32 to 9338. At the end of the experiment, they recorded the running time of the 

proposed system and the number of features selected for each algorithm. The results 

showed that the average selected number of features was 15 for the five compared 

feature selection algorithms, and the selected features could lead classification 

accuracy to around 89%. In this research, we chose a threshold of information gain 

which could lead to around 15 features left. 

4.1.1 Principle 

Entropy is a measure of the uncertainty of a random variable [58]. The entropy of 

a variable X is defined as 

𝐻(𝑋) = − ∑ 𝑃(𝑥𝑖)𝑙𝑜𝑔2(𝑃(𝑥𝑖))𝑖                  (4.1) 

and the entropy of X after observing values of another variable Y is defined as 

 𝐻(𝑋｜Y) = − ∑ 𝑃(𝑦𝑗) ∑ 𝑃(𝑥𝑖|𝑦𝑗)𝑖 𝑙𝑜𝑔2(𝑃(𝑥𝑖｜𝑦𝑗))𝑗          (4.2) 
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where 𝑃(𝑥𝑖) is the prior probabilities for all values of X, and 𝑃(𝑥𝑖|𝑦𝑗) is the 

posterior probabilities of X given the values of Y. The amount by which the entropy of 

X decreases reflects additional information about X provided by Y, and is called 

information gain [46], given by 

𝐼𝐺(𝑋｜Y) = 𝐻(𝑋) − 𝐻(𝑋｜Y)                 (4.3) 

If we have 𝐼𝐺(𝑋｜Y) > 𝐼𝐺(𝑍｜Y), it means a feature Y is regarded more 

correlated to feature X than to feature Z. 

4.1.2 Algorithm 

The entropy with the feature selection algorithm was implemented by the 

following steps: 

1. Order features based on decreasing entropy values (using Equation 4.1), and 

build a link list for all features; 

2. Calculate the entropy of each feature in the link list related to the classification 

results using Equation 4.2; 

3. Calculate the information gain of each feature using Equation 4.3 based on its 

two entropies obtained from step 1 and 2;  

4. Compare each feature’s information gain with the next feature, and move the 

larger one ahead till the end of the link list; 

5. Select the features with the information gain larger than the threshold set in the 

program. 
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4.2 Image Classification 

4.2.1 Linear Discriminate Analysis 

Linear Discriminate Analysis (LDA), a widely used algorithm for pattern 

recognition, was introduced by Belhumeur in 1996 [48]. The main idea is to reduce 

the dimensionality of the dataset in a manner that preserves class discrimination. Data 

is projected onto a vector so as to maximize class-mean separation and minimize 

intra-class variability. Conceptually, this means that the data are now arranged linearly 

along a vector. Ideally, the classes of interest are completely separated and the feature 

or features can be used to classify newly introduced data [48]. After projection, 

pattern samples in the new subspace have the biggest between-class distance and the 

minimum within-class distance, which guarantee the best separability in the space.  

Suppose there are N samples, {𝑥1
(𝑖)

, 𝑥2
(𝑖)

,…, 𝑥𝑑
(𝑖) 

}, in d dimensions, which belong 

to class 𝐶. The objective function of LDA is as follows: 

𝑊𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤
𝑊𝑇𝑆𝑏𝑊

𝑊𝑇𝑆𝑊𝑊
                   (4.4) 

𝑆𝑏 =
1

𝑛
∑ (𝑚𝑖 − 𝑚)(𝑚𝑖 − 𝑚)𝑇𝑐

𝑖=1                   (4.5) 

𝑆𝑤 =
1

𝑛
∑ (∑ (𝑥𝑗

𝑖 − 𝑚𝑖)(𝑥𝑗
𝑖 − 𝑚𝑖)𝑇𝑛𝑖

𝑗=1
𝑐
𝑖=1 )                 (4.6) 

where 𝑚 is the total sample mean vector, 𝑛𝑖 is the number of samples in class 𝐶𝑖, 

𝑚𝑖 is the average vector associated to 𝐶𝑖 class, 𝑥𝑗
𝑖 is the 𝑗 − 𝑡ℎ sample vector in 

the 𝐶𝑖 − 𝑡ℎ  class. 𝑆𝑏  and 𝑆𝑤  are named between-class scatter matrix and 

within-class matrix, respectively. 
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As mentioned above, the objective of LDA is to make the data points of different 

classes as far apart from each other as possible. In addition, it also aims at making the 

data points from the same class as close as possible. These two purposes can be 

decomposed into the following functions: 

𝑚𝑎𝑥 ∑ 𝑛𝑖𝑊𝑇(𝑚𝑖 − 𝑚)(𝑚𝑖 − 𝑚)𝑇𝑤𝑐
𝑖=1                 (4.7) 

𝑚𝑖𝑛 ∑ (∑ 𝑊𝑇(𝑥𝑗
𝑖 − 𝑚𝑖)(𝑥𝑗

𝑖 − 𝑚𝑖)𝑇𝑤
𝑛𝑖
𝑗=1

𝑐
𝑖=1              (4.8) 

This procedure can also be illustrated in Fig. 4.1(a) and (b). 

 

 

   

(a)                               (b) 

Figure 4.1 Data points with the same shape belong to the same class. (a): 

Diagram of between-class procedure; (b): Diagram of within-class procedure. 

 

4.2.1.1 Algorithm 

1) Constructing a matrix of feature vectors. All feature samples were read in as a 

matrix 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}. Each feature data 𝑥𝑖 was regarded as a node 𝑖, and in the 

same way, another feature data 𝑥𝑗 was regarded as a node 𝑗. Node 𝑖 and 𝑗 were 

connected with a line if 𝑥𝑖 and 𝑥𝑗 were close, and they belonged to the same class. 

2) Calculating scatter matrixes. In this step, between-class scatter matrix 𝑆𝑏 and 

within-class matrix 𝑆𝑤 were calculated using Equations 4.5 and 4.6. 

Central point 
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3) LDA projection. Data points 𝑥𝑖 were projected into the LDA subspace so that 

the matrix 𝑆𝑤 was non-singular. The transformation matrix of LDA was presented 

here as 𝑊𝐿𝐷𝐴. After projection, 𝑆𝑏 and 𝑆𝑤 became 

𝑆𝑏̂ = 𝑊𝐿𝐷𝐴
𝑇 𝑆𝑏𝑊𝐿𝐷𝐴                       (4.9) 

𝑆𝑤̂ = 𝑊𝐿𝐷𝐴
𝑇 𝑆𝑤𝑊𝐿𝐷𝐴                      (4.10) 

4) Computing the projection matrixes. After adding the Lagrange multiplier and 

some derivation steps, the following function was achieved. It is also called the Fisher 

Linear Discrimination. 

𝑆𝑤
−1𝑆𝑏𝑊 = 𝜆𝑊                        (4.11) 

It can be seen that 𝑊 is the eigenvector of matrix 𝑆𝑤
−1𝑆𝑏. 

5) Linear embedding. With the substitution of eigenvector, 𝑊𝑏𝑒𝑠𝑡 is easy to find 

by the following equation: 

W = 𝑆𝑤
−1(𝜇1 − 𝜇2 )                        (4.12) 

where 𝜇 is the mean value (central point) of samples in each class. 

𝑢𝑖 =
1

𝑛𝑖
∑ 𝑥𝑥∈𝐶                            (4.13) 

 

4.2.2 Back-propagation Network 

  The BP neural network is an abbreviation for the error back propagation algorithm, 

and is commonly used in the artificial network [49]. It consists of information forward 

propagation and error backward propagation. As shown in Fig. 4.3, the typical BP 
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network is a three layer network, which includes input layer, hidden layer and output 

layer. Information is introduced, weighted then passed to the output layer. The results 

are compared with the desired outcome (training phase) and the error term 

minimization used to adjust the weighting. 

 

Figure 4.2: BP neural network  
1 x1, x2, … , xn: the input values of the BP network. 
2 wij, wjk: the weight values. 
3 y1, … , ym: the estimated values. 

 

The BP network can also be seen as a non-linear function, which establishes a 

mapping relationship from 𝑛 independent variables to 𝑚 dependent variables. 

4.2.2.1 Algorithm 

1) Network initialization. According to the input and desired output values (𝑋 

and 𝑌) of the network, we can set 𝑛 nodes in the input layer, 𝑙 nodes in the hidden 

layer, and 𝑚  nodes in the output layer. The weight values (𝑤𝑖𝑗 and 𝑤𝑗𝑘 ), the 

threshold value 𝑎 in the hidden layer, the threshold value b in the output layer, the 

learning speed, and the activation functions should also be initialized. 
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2) Calculation of the hidden layer output. This output H can be achieved through 

𝑋, 𝑤𝑖𝑗, and 𝑎 .  

𝐻𝑗 = 𝑓(∑ 𝑤𝑖𝑗𝑥𝑖 − 𝑎𝑗
𝑛
𝑖=1 )              𝑗 = 1,2, … , 𝑙            (4.14) 

Here, 𝑙 is the number of nodes in the hidden layer, 𝑓 is an activation function. 

In this work, the activation function is chosen as 

𝑓(𝑥) =
1

1+𝑒𝑥                       (4.15) 

3) Calculation of the output layer output. O is determined through 𝐻, 𝑤𝑗𝑘, and 𝑏 . 

𝑂𝑘 = ∑ 𝐻𝑗𝑤𝑗𝑘 − 𝑏𝑘
𝑙
𝑗=1          𝑘 = 1,2, … , 𝑚           (4.16) 

4) Calculation of error. Based on the output 𝑂 and the estimated output 𝑌, we 

can obtain the prediction error 𝑒. 

𝑒𝑘 = 𝑌𝑘 − 𝑂𝑘        𝑘 = 1,2, … , 𝑚                   (4.17) 

5) Weight update. The values can be updated using the following equations: 

𝑤𝑖𝑗 = 𝑤𝑖𝑗 + 𝜂𝐻𝑗(1 − 𝐻𝑗)𝑥(𝑙) ∑ 𝑤𝑗𝑘𝑒𝑘
𝑚
𝑘=1         𝑖 = 1,2, … , 𝑛; 𝑗 = 1,2,      (4.18) 

  𝑤𝑗𝑘 = 𝑤𝑗𝑘 + 𝜂𝐻𝑗𝑒𝑘      𝑗 = 1,2, … , 𝑙; 𝑘 = 1,2, … , 𝑚                  (4.19) 

in which, 𝜂 is the learning speed. 

6) Threshold update.  

𝑎𝑖 = 𝑎𝑖 + 𝜂𝐻𝑗(1 − 𝐻𝑗) ∑ 𝑤𝑗𝑘𝑒𝑘
𝑚
𝑘=1         𝑗 = 1,2, … , 𝑙       (4.20) 

𝑏𝑘 = 𝑏𝑘 + 𝑒𝑘      𝑘 = 1,2, … , 𝑚                        (4.21) 

7) If the iteration is not over, the algorithm goes back to the second step. 
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4.2.2.2 Implementation 

The aim of the algorithm was to classify mammograms into two categories: 

cancerous or normal. Because the input features are 14 dimensional, and there are two 

kinds of mammograms to be classified, the construction of the BP network can be 

defined as “14-15, 2”. It means that there are 14 nodes in the input layer, 15 nodes in 

the hidden layer, and 2 nodes in the output layer. Furthermore, after random sorting of 

670 mammograms, 520 of them were randomly selected as the training dataset, the 

remaining 150 were chosen to test the classification performance of the BP network. 

4.2.3 Naive Bayes Classifier 

The Naive Bayes classifier (NB), which is quite popular for its simplicity in 

implementation, is a probabilistic classifier using the Bayes' theorem [51]. It is also a 

supervised learning method, by using an approximation algorithm. Furthermore, the 

NB classifier has the following features [52]: 

 (1) Instead of assigning an instance to a certain category, it calculates the 

probability of this instance belonging to each category and chooses the largest one. 

(2) All features are usually involved in the Bayes classification process. Only one 

or several features cannot determine the classification result. 

(3) The features for the Naive Bayes classifier can be discrete, continuous, or 

hybrid. 
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4.2.3.1 Algorithm 

Suppose that 𝐴 = {𝐴1, 𝐴2,…𝐴𝑛} are the features for one dataset, and there are m 

classes, 𝐶 = {𝐶1, 𝐶2, … 𝐶𝑚}. Given an instance, its feature is 𝑋 = {𝑋1, 𝑋2, … 𝑋𝑛}, then 

the posterior probability that instance belongs to a class 𝐶𝑖 is 𝑃 = 𝑃(𝐶𝑖) = (𝑋｜𝐶𝑖). 

The Bayes classifier can be represented as 

𝐶(𝑋) =
arg 𝑚𝑎𝑥
𝐶𝑖 ∈ 𝐶 𝑃(𝐶𝑖) 𝑃(𝑋｜𝐶𝑖)                   (4.22) 

It indicates that the prediction accuracy reaches the maximum value when instance 

𝑋 has the largest posterior probability. 

However, the posterior probability in Equation 4.22 is difficult to calculate. 

Therefore, the “Naive Bayes hypothesis”, which assumes all features 𝐴𝑖  are 

independent from each other, is introduced to the Naive Bayes classifier. Thus, 

𝑃(𝐴𝑖|𝐶, 𝐴𝑗) = 𝑃(𝐴𝑖|𝐶),      ∀𝐴𝑖, 𝐴𝑗 , 𝑃(𝐶) > 0            (4.23) 

The Naive Bayes classification algorithm can independently learn either the 

conditional probability of each feature 𝐴𝑖 in the class C (𝑃(𝐴𝑖|𝐶)), or the probability 

of each feature 𝐴𝑖. Replaced with a normalization factor “𝑎”, the posterior probability 

becomes 

𝑃(𝐶 = 𝑐|𝐴1 = 𝑎1 … 𝐴𝑛 = 𝑎𝑛) = 𝛼𝑃(𝐶 = 𝑐) ∏ 𝑃(𝑛
𝑖=1 𝐴𝑖｜𝐶 = 𝑐)      (4.24) 

According to Equation 4.19, the optimal classification (𝐶 = 𝐶𝑖) should satisfy 

𝑃(𝐶𝑖| < 𝑎1 … 𝑎𝑛 >) =
𝑃(<𝑎1…𝑎𝑛>|𝐶𝑖)

𝑃(<𝑎1…𝑎𝑛>)
𝑃(𝐶𝑖)            (4.25) 

𝑃(𝐶𝑖| < 𝑎1 … 𝑎𝑛 >) > 𝑃(𝐶𝑗| < 𝑎1 … 𝑎𝑛 >), 𝑗 ≠ 𝑖         (4.26) 
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Based on the above analysis, the Naive Bayes classification process can be 

presented in Fig. 4.3. 

 

Figure 4.3: The Naive Bayes classification process 

 

It can be seen from Fig. 4.3, the whole Naive Bayes classification process can be 

divided into three stages. 

The first stage is preparing, which is mainly determining the characteristics of 

features, and allocating them appropriately into different classes. In this stage, the 
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unclassified data is set as an input, and the output is their features and training 

samples. 

The second stage is training the Naive Bayes classifier. The main task is to 

calculate the prior probability of each class in the training data and each feature’s 

conditional probability. The input is the features and the training data, the output is the 

trained classifier. This stage can be implemented by programming according to 

Equations 4.22-4.26.  

The third stage is the application of the trained Naive Bayes classifier in testing 

data.  

 

4.3 Voting Classification Scheme 

Combining the above-mentioned classifiers (LDA, BP, NB), a voting 

classification scheme is further proposed for the mammogram analysis system in this 

research. Fig. 4.4 shows the voting classification scheme, where “1” represents 

cancerous mammograms from a classifier, and “0” represents normal mammograms. 

When classifying a mammogram image, the voting classification decision is made by 

taking opinions of the majority of the three classifiers. 
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Figure 4.4: Voting classification scheme 

 

4.4 Evaluation 

 The evaluation of the classifiers performance is essential in designing the 

proposed mammogram analysis system. In this paper, two evaluation methods were 

used. 

The first method is based on the classification specificity of mammogram. In this 

binary classification problem, a classifier yields two results: positive and negative. 

According to the confusion matrix in machine learning, there could be four outcomes 

for the classifier in analyzing a sample. As shown in Fig. 4.5, the four results placed in 

a confusion matrix are true positive (TP), true negative (TN), false positive (FP), and 

false negative (FN). Specifically, “TP” refers to a positive instance is classified 

correctly as positive; “FN” refers to the positive instance wrongly classified as 

negative. Similarly, “TN” refers to that a negative instance is correctly classified as 

negative; otherwise it is “FP”.  



62 

 

 

The classification specificity is defined as the proportion of instances deemed 

normal when breast cancer is absent. It is given in Equation 4.27. Besides, the 

classification accuracy and sensitivity, defined in Equation 4.28 and Equation 4.29, 

respectively, are also used to help the performance evaluation in this research. 

 

 

 

 

 

 

Figure 4.5: Confusion matrix 

 

  Specificity (SP): 𝑆𝑃 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                      (4.27) 

Accuracy: 𝑎𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑇
                     (4.28) 

Sensitivity (SN): 𝑆𝑁 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                      (4.29) 

The second method employs the Receiver Operator Curve (ROC) to facilitate 

comparison of different classifiers. More specifically, the area under the curve (AUC) 

can be used to simply and graphically evaluate the performance of classifiers [63, 64]. 

An ROC curve plots the X axis and Y axis using the false positive rate (FPr) and 

true positive rate (TPr) respectively, shown in Fig. 4.9. FPr and TPr can be calculated 

using Equations 4.30 and 4.31: 
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Positive TP FP 

Negative FN TN 
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𝐹𝑃𝑟 = 1 − 𝑆𝑃 =
𝐹𝑃

𝑇𝑁+𝐹𝑃
                        (4.30) 

𝑇𝑃𝑟 = 𝑆𝑁 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                           (4.31) 

Generally, a good classifier would produce an ROC curve which is located closer 

to the upper left corner. The reason is straightforward: given the same false positive 

rate (𝐹𝑃𝑟), a better classifier can obtain a larger true positive rate (𝑇𝑃𝑟). In other 

words, the area under a better classifier curve is usually larger. For example, the 

classifier “a” outperforms the classifier “b” as shown in Fig. 4.6.  

In general, the area under the ROC curve ranges between 0.5 and 1.0, and the 

closer to 1 the AUC is, the better the classifier is. The classifier achieves relatively 

low accuracy when the AUC is between 0.5 and 0.7; it has fairly good accuracy when 

the AUC is from 0.7 to 0.9, and excellent accuracy if the AUC is above 0.9. The 

classifier completely does not work if the AUC is equal to 0.5. The situation where the 

AUC is lower than 0.5 seldom appears in practice. 

 

Figure 4.6: ROC curve for comparison between classifier a and b. (retrieved 

from Journal of Biomedical Informatics, www.elsevier.com/locate/yjbin, Jan., 

2013) 

http://www.elsevier.com/locate/yjbin
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Chapter 5 Results and Discussion 

 

 

Features based on moments of the mean were computed from a training dataset 

containing 670 mammograms that had been normalized then Fourier and wavelet 

transformed (see Chapter 3 for details). Next an entropy based feature selection 

algorithm was applied to reduce the total number of features (See Chapter 4 for 

details). These features were passed through three unique classifiers and the results of 

that process will be discussed here. The performance of the classifiers was compared 

using a truth table and Receiver Operating Characteristic (ROC) curves. As a second 

test, the classifiers were tested in a testing dataset containing 817 normal 

mammograms with features extracted from the training dataset. The results of this 

experiment are also discussed.    

 

5.1 Materials and Methods 

5.1.1 Materials 

The images to be analyzed in this work were a gift from the Eastern Health in 

Newfoundland and Labrador of Canada. One training dataset consisted of 670 

mammogram images: 521 images of normal breasts and 149 images of malignant 
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breasts. These mammogram images were histologically confirmed by Newfoundland 

and Labrador breast screening program. The other testing dataset consisted of 817 

normal mammogram images. Images from both datasets were all anonymous in the 

format of DICOM [61], which is a set of standard protocols in the medical image 

processing, storage, printing, and transmission. Their use was authorized by the 

Health Research Ethics Authority (HREA) in the reference number of 11312. All 

DICOM mammogram images were sampled to 1024×1024 pixels and reconfigured to 

PGM format. 

5.1.2 Methods 

The computer-aided mammogram analysis system is designed to process the 

original PGM images and automatically discriminate them as either normal or 

cancerous. As shown in Fig. 5.1, this system comprised three consecutive stages: the 

image processing, feature selection and image classification stage.  

In the first image processing stage, a set of scalar features were extracted from an 

original image. This stage consisted of two steps: image pre-processing and data 

transform (including wavelet and Fourier transforms). In the image preprocessing step, 

the original digitized mammogram image is flipped, de-noised, and scaled to a 

common maximum value. In the data transform step, the normalized images are 

decomposed by three wavelet transforms with different bases (Daubechies db2, 

Daubechies db4, and Biorthogonal bior6.8) and the Fourier transform separately. 
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Multiple levels of decomposition were used, and four images are produced at each 

level of the decomposition. Finally, four statistic features, including the mean, 

standard deviation, skewness and kurtosis of the image intensities, were calculated. 

In the second feature selection stage, the optimal features for the next stage were 

selected by an entropy-based feature selection algorithm, which reduces the number of 

features extracted from the transformed mammogram images. After calculating the 

information gain value of each feature, the features with high information gain value 

were selected. 

In the final image classification stage, mammogram images were determined as 

either normal or cancerous based on the selected features. Three classifiers (Linear 

Discriminate Analysis, Back-propagation Network, and Naive Bayes classifier) were 

trained and tested. Furthermore, a combined voting classification scheme was 

proposed based on these classifiers. 

In this experiment, the programs of the image processing and the classification 

were developed in Matlab 2010b, and the program of feature selection was developed 

in Eclipse using JAVA. The computer used was based on Windows 8.1, Intel dual 

core CPU i5-3210M @ 2.50GHz, 4GB RAM. It usually took 20 minutes to complete 

the process of feature extraction from 670 mammograms in Matlab. It took around 10 

seconds to run the feature selection process in Eclipse. The final image classification 

process only required less than 5 seconds in Matlab. 
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Figure 5.1: Block diagram of automatic mammogram analysis system 

   

5.2 Feature Selection Results and Discussion 

5.2.1 Results 

When the aforementioned data transform methods in Chapter 3 were applied on 

the training dataset of 670 Mediolateral oblique (MLO) mammograms, 102 statistic 

features were extracted. Among the features, 6 features were extracted from the 

Fourier transform, and 96 features were calculated for each image from three kinds of 
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discrete wavelet transform (Daubechies db2, Daubechies db4 and the biorthogonal 

bior6.8 wavelets) separately. 

The next step was to select the best features since including many features would 

almost certainly over specify the algorithm to the training dataset and this would 

impair its general application [60]. Therefore, the information gain ranking was used 

to select the best features and thus reduce the number of features enlisted for 

classification. As described in Chapter 4, Lei and Huan’s research [58] found that 15 

features could lead to the best classification accuracy. Therefore, 14 features in this 

research with information gain larger than 0.69 were empirically selected for the 

image classification after the usage of the sorting algorithm. If the information gain 

was set too low, the number of features would significantly increase, for example, the 

number of features was 23 when the information gain was set to 0.6. On the other 

hand, accurate classification results might not be obtained if the number of features is 

set too high. In the same way, the features selected from the db2 and Fourier 

transforms could be determined. In this case, information gain was set as 0.68 to keep 

consistent the number of features left with the db4 wavelet and Fourier transforms. 

Using the aforementioned method, the features selected from the db4 wavelet and 

Fourier transforms are listed in Table 5.1.  

This information gain value resulted in 15 statistic features, which are listed in 

Table 5.2. 
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Table 5.1: Information gain statistic for features calculated from the db4 

wavelet and Fourier transform maps 

 

Feature
 

IG 

Level 3 kurtosis,h 0.74 

Level 3 kurtosis,v 0.76 

Level 3 kurtosis,d 0.74 

Level 4 kurtosis,h 0.72 

Level 4 kurtosis,v 0.75 

Level 4 kurtosis,d 0.71 

Level 5 kurtosis,h 0.71 

Level 5 kurtosis,v 0.72 

Level 5 kurtosis,d 0.69 

Level 8 mean,a 0.70 

Level 8 kurtosis,v 0.70 

Fourier std 0.76 

Fourier kurtosis 0.76 

Fourier skewness 0.75 
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Table 5.2: Information gain statistic for features calculated from the db2 

wavelet and Fourier transform maps 

 

Feature IG 

Level 3 kurtosis,h 0.74 

Level 3 kurtosis,v 0.74 

Level 3 kurtosis,d 0.75 

Level 4 kurtosis,h 0.71 

Level 4 kurtosis,v 0.73 

Level 4 kurtosis,d 0.73 

Level 5 kurtosis,h 0.68 

Level 5 kurtosis,v 0.71 

Level 5 kurtosis,d 0.69 

Level 7 mean,a 0.72 

Level 8 mean,a 0.73 

Level 8 std,a 0.69 

Fourier std 0.76 

Fourier kurtosis 0.76 

Fourier skewness 0.75 

 

Similarly, the features selected from the bior6.8 wavelet and Fourier transforms 

were obtained by setting the information gain value as 0.68, which are shown in Table 

5.3.  
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Table 5.3: Information gain statistic for features calculated from the bior6.8 

wavelet and Fourier transform maps 

 

Feature IG 

Level 3 kurtosis,h 0.75 

Level 3 kurtosis,v 0.76 

Level 3 kurtosis,d 0.74 

Level 4 kurtosis,h 0.73 

Level 4 kurtosis,v 0.74 

Level 4 kurtosis,d 0.71 

Level 5 kurtosis,h 0.72 

Level 5 kurtosis,v 0.72 

Level 6 kurtosis,v 0.69 

Level 7 mean,a 0.72 

Level 8 mean,a 0.73 

Level 8 std,a 0.71 

Fourier std 0.76 

Fourier kurtosis 0.76 

Fourier skewness 0.75 

 

In order to compare features from the three wavelet and Fourier transforms, these 

features were ranked in descending order according to their information gain. Table 

5.4 shows the top 12 features with information gain higher than 0.74. The 12 features 

listed in Table 5.4 are named as the optimal features. 
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Table 5.4: Information gain statistic for the optimal features calculated from all 

wavelet and Fourier transform maps 

 

Feature IG 

Fourier kurtosis 0.76 

Db4 Level 3 kurtosis,v 0.76 

Fourier std 0.76 

Bior6.8 Level 3 kurtosis,v 0.76 

Db2 Level 3 kurtosis,d 0.75 

Db4 Level 4 kurtosis,v 0.75 

Fourier skewness 0.75 

Bior6.8 Level 3 kurtosis,h 0.75 

Bior6.8 Level 3 kurtosis,d 0.74 

Db2 Level 3 kurtosis,h 0.74 

Db4 Level 3 kurtosis,h 0.74 

Bior6.8 Level 4 kurtosis,v 0.74 

 

5.2.2 Discussion 

In the first three feature tables (Table 5.1, Table 5.2, and Table 5.3), features 

including standard diversion, kurtosis and skewness extracted from the Fourier 

transform are always obtained by the proposed entropy-based feature selection 

algorithm. It was also found that the kurtosis of the detail views (horizontal, vertical, 

diagonal) in level 3 and level 4, and the mean value of the approximate view of level 8 

are obtained by the algorithm. Furthermore, the average information gain of features 

selected from the bior6.8 wavelet and Fourier transforms is larger than that of the db2 
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wavelet and Fourier transforms; and the information gain of features selected from the 

db4 wavelet and Fourier transforms is the highest.  

In the selected features from the db4 wavelet and Fourier transforms listed in 

Table 5.1, kurtosis accounts for 78.6% (11 out of 14 features); it accounts for 66.7% 

(10 out of 15 features) in Table 5.2 (db2 wavelet and Fourier transform) as well as in 

Table 5.3 (bior6.8 wavelet and Fourier transform). Thus, kurtosis works best in the 

four features.  

In regard to the optimal features of Table 5.4, three features of the Fourier 

transform, four features of the bior6.8 transform, three features of the db4 transform, 

and two features of the db2 wavelet transform were selected separately. Among those 

features, nine features are kurtosis, accounting for 75%. Additionally, features 

selected from the wavelet transform are mostly localized in the third level of wavelet 

decomposition (7 out of 9 features).  

 

5.3 Image Classification Results and Discussion 

5.3.1 Results 

Three classifiers, the Linear Discriminate Analysis (LDA), the Back-propagation 

Network (BP), and the Naive Bayes Classifier (NB), were tested in the proposed 

automatic mammogram analysis system. Their performances were first trained and 

tested using the training dataset of 670 mammograms.  
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Table 5.5 shows the accuracy, sensitivity, and specificity of the three classifiers 

based on the above selected db2-Fourier, bior6.8-Fourier, db4-Fourier, and the 

optimal features.  

 

Table 5.5: Classification performances of three classifiers for the training 

dataset 

 

Classifier LDA BP NB 

db2-Fourier 

Features 

Accuracy 80.69% 85.05% 81.03% 

Sensitivity 71.18% 83.05% 90.06% 

Specificity 89.03% 88.06% 70.08% 

bior6.8-Fourier 

Features 

Accuracy 81.01% 86.07% 83.03% 

Sensitivity 72.06% 84.65% 91.71% 

Specificity 90.32% 89.01% 72.15% 

db4-Fourier 

Features 

Accuracy 84.03% 89.06% 86.02% 

Sensitivity 74.24% 87.55% 93.20% 

Specificity 93.06% 92.05% 74.07% 

The optimal 

Features 

Accuracy 88.02% 94.14% 89.83% 

Sensitivity 78.26% 90.45% 96.21% 

Specificity 96.88% 95.03% 80.60% 

 

Based on the obtained above performance results, the Receiver Operating 

Characteristics curves were plotted to facilitate comparison of the three classifiers (see 

Fig. 5.2). In this Figure, 𝐴 denotes the LDA classifier, 𝐵 denotes the BP classifier, 

and 𝐶 denotes the Naive Bayes classifier. 



75 

 

 

 

              (a)                                 (b) 

   

(c)                                 (d) 

Figure 5.2: ROC curves with the classifiers: A. LDA; B. BP; and C. NB. (a), 

(b), (c), and (d): performances of classifiers based on db2-Fourier, 

bior6.8-Fourier, db4-Fourier, and the optimal features respectively.  
1
 TPr: true positive rate; 

2
 FPr: false positive rate. 

 

According to the definition of specificity, it is the proportion of the cases deemed 

normal when breast cancer is absent. To further validate the performances of three 

classifiers and test if they were improved in specificity using the previous trained 

features, they were examined in the testing dataset, which consisted of 817 

mammograms that were classified as normal by radiologists. When using features 

selected from the db2 and Fourier transforms, the LDA classifier suggested that 520 
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mammograms were normal out of the 817 mammograms, the BP network classified 

410 normal mammograms, and the NB classifier showed that 325 were normal. 

Therefore, the specificity for these three classifiers for the testing dataset was 63.6%, 

50.1%, 39.8%, respectively (see Table 5.6). 

 

Table 5.6: Specificity of three classifiers for the testing dataset  

 

 db2-Fourier bior6.8-Fourier db4-Fourier the optimal features 

LDA 63.6% 68.7% 70.1% 74.1% 

BP 50.1% 55.5% 60.2% 64.2% 

NB 39.8% 42.3% 47.8% 51.8% 

 

Then, 817 mammogram images in the testing dataset were tested using the voting 

classification scheme introduced in chapter 4, which took majority vote of three 

classifiers. The results showed that there were respectively 520, 570, 594, and 690 

normal mammograms out of 817 mammograms using selected db2-Fourier, 

bior6.8-Fourier, db4-Fourier and the optimal features (see Table 5.7). 

 

Table 5.7: Specificity of different features using voting classification scheme 

 

db2-Fourier bior6.8-Fourier db4-Fourier The optimal features 

63.6% 69.6% 72.7% 77.1% 
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5.3.2 Discussion 

According to the results in Table 5.5, three classifiers achieved their highest 

classification performances using the optimal features, followed by the features 

selected from the db4 wavelet and Fourier transforms; whereas their performances are 

the lowest using features selected from the db2 wavelet and Fourier transforms. 

Specifically, Table 5.8 shows the detailed comparisons of accuracy, sensitivity, and 

specificity using the optimal features and other feature sets (the db2-Fourier, the 

db4-Fourier, and the bior6.8-Fourier feature sets).  

 

Table 5.8: The performance increase of classifiers with the optimal features 

and separate feature sets 

 

 
Accuracy 

increase 

Sensitivity 

increase 

Specificity 

increase 

optimal 

features VS 

db2-Fourier 

features 

LDA 7.33% 9.09% 8.8% 

BP 7.08% 7.40% 6.15% 

NB 7.85% 6.97% 10.52% 

optimal 

features VS 

bior6.8-Fourier 

features 

LDA 7.01% 8.07% 6.80% 

BP 6.20% 5.80% 4.50% 

NB 6.56% 6.02% 8.45% 

optimal 

features VS 

db4-Fourier 

features 

LDA 3.99% 5.08% 3.81% 

BP 4.02% 2.90% 3.01% 

NB 3.82% 5.00% 6.53% 
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The reason that optimal features achieve the highest classification performance 

could be the information gain of the optimal features is the highest among the four 

different feature sets. In other words, the features in the optimal feature set are more 

correlated to the mammogram class than any of the other features. 

It can also be found from Table 5.5 and ROC curves that the Naive Bayes 

classifier achieves the highest sensitivity using the default parameters in the proposed 

mammogram analysis system. On the other hand, the Linear Discriminate Analysis 

classifier achieves the highest specificity, and the Back Propagation network achieves 

the highest accuracy based on all the four feature sets. This result suggests that the NB 

classifier is more sensitive to classify cancerous mammograms, the LDA classifier 

gives better classification in normal mammograms, and the BP neural network works 

well in both of normal and cancerous mammograms. 

From the classification results shown in Table 5.6, it could be found that the LDA 

classifier using the optimal features achieves the highest specificity. The specificity of 

the LDA classifier with the optimal features is 4.0% higher than that of the features of 

the db4-Fourier transform, 5.4% higher than that of the bior6.8-Fourier transform, and 

10.5% higher than that of the db2-Fourier transform. The average specificity of the 

LDA classifier with the three feature methods (i.e., the db4-Fourier, db2-Fourier, and 

bior6.8-Fourier transform) is 12.2% higher than that of the BP classifier, and 24% 

higher than that of the NB classifier. These results are consistent with previous 
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theoretical analysis and experimental results based on the training dataset of 670 

mammograms, though the performance for the testing dataset is not that satisfactory. 

This could be due to the lack of generality of the original training dataset.  

In addition, in the examined testing dataset, 10 mammogram images were 

misclassified as cancerous by all classifiers. From the visual examination results, 

those mammograms contained a shadow of an unknown object, which probably led to 

the misclassification. 22 mammogram images were classified correctly as normal by 

the BP and NB classifiers, but they were classified as cancerous by the LDA classifier. 

This misclassification by the LDA classifier could be due to the small feature 

differences between subtle masses and some false-positive regions when trained in the 

training dataset, as the Linear Discriminate Analysis classifier does not work well in 

nonlinear classification. 

After the comparison of Table 5.6 and Table 5.7, the proposed voting 

classification scheme works better than all three classifiers in specificity. Specifically, 

compared with the NB classifier, the voting classification scheme achieves 25.3% 

higher specificity with the optimal features, 24.9% higher specificity with the features 

of the db4-Fourier transform, 27.3% higher specificity with the features of the 

bior6.8-Fourier transform, and 24.8% higher specificity with the features of the 

db2-Fourier transform. Compared with the BP classifier, the voting classification 

scheme achieves 12.9%, 13.5%, 14.1%, and 13.5% higher specificity with four feature 
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sets, respectively. As to the LDA classifier, its specificity increases 3.0% with the 

optimal features, increases 2.6% with the db4-Fourier features, increases 0.9% with 

the bior6.8-Fourier features, and is the same with the db2-Fourier features. 
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Chapter 6 Conclusions and Future Work 

 

 

6.1 Conclusions 

Breast cancer has been the second leading cause of cancer-related death after lung 

cancer in women. X-ray mammography is a leading method for the early detection of 

breast cancer, which has effectively reduced the death rate since mid-1980s [3]. In this 

research, a computer-aided automatic mammogram analysis system, which consists of 

image processing, feature selection, and image classification, is proposed to improve 

the detection performances. 

The image processing includes mammogram image pre-processing and data 

transforms (including wavelet and Fourier transforms). The pre-processing part was 

first developed for regularizing the appearance of normal and cancerous images with 

different orientations, background and intensity ranges. This was successfully done 

through masking and intensity normalization in tandem. All regularized mammogram 

images were then applied to wavelet and Fourier decompositions. Statistical features, 

including the mean, standard deviation, skewness, and kurtosis of the image intensities, 

were extracted from different decomposition levels. For each of the three wavelet 

bases (db2, db4, and bior6.8) used in this work, 96 features were extracted from level 
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3 to 8 of the wavelet decompositions. Adding 6 features from the Fourier transform, 

102 potential features were obtained. 

In order to select the most effective features for differentiating between normal 

and cancerous mammogram images, an entropy-based algorithm was employed to 

remove less significant features. This selection was achieved by sorting and selecting 

features with higher information gain values. The experimental results suggested that 

the information gain of features from the db4-Fourier transform was higher than that 

of features from the bior6.8-Fourier transform, and the information gain of features 

from the db2-Fourier transform was the lowest among the three feature sets. In the 

features from the db2, db4, bior6.8, and Fourier transforms, we selected the top 12 

features (the optimal features) with their information gain values higher than 0.74.  

Based on the four selected feature sets, three classifiers (NB, LDA, and BP) were 

first applied in the training dataset of 670 mammogram images. The highest 

sensitivity (96.21%) was achieved by the NB classifier, the highest specificity 

(96.88%) was achieved by the LDA classifier, and the highest accuracy (94.14%) was 

achieved by the BP network. All the best performances were achieved using the 

optimal features. ROC curves were then plotted to facilitate comparison of the three 

classifiers. The results showed that the NB classifier was more sensitive to classify 

cancerous mammogram images, the LDA classifier gave better classification in 
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normal mammograms, and the BP neural network worked well with both normal and 

cancerous mammogram images.  

To further evaluate the performances of three classifiers and test if they could be 

improved in specificity using the previous feature sets, they were examined in the 

testing dataset of 817 normal mammogram images. The experimental results of each 

classifier and the proposed voting classification scheme showed that the LDA 

classifier using the optimal features achieved the highest specificity (74.1%), which 

was 10.5%, 5.4%, and 4.0% higher than using the db2-Fourier, bior6.8-Fourier, and 

db4-Fourier features, respectively. Similarly, the proposed voting classification 

scheme achieved the highest specificity (77.1%) using the optimal features. Compared 

with the LDA, BP, and NB classifier separately, the specificity of the voting 

classification scheme increased by 3.0%, 12.9%, and 25.3% using the optimal 

features. 

In conclusion, the experiment on the training and testing datasets demonstrated 

that the proposed automatic mammogram analysis system could effectively improve 

the classification performances, especially using the voting classification scheme 

based on the selected optimal features. 
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6.2 Future Work 

 In this thesis, the proposed automatic mammogram analysis system was tested 

with three kinds of wavelet basis and three classifiers based on two datasets. However, 

more work in different aspects can be taken into consideration to deepen the research. 

For example, the evaluation of image signal-to-noise (SNR) can be further 

investigated regarding to its effect, consistency and sensitivity to the mammogram 

analysis system. In the future, more wavelet bases can be employed to see if they can 

extract valuable features with high information gain. At the same time, more 

classifiers can be investigated to compare their sensitivity, specificity and accuracy. In 

addition, more datasets of a larger volume of breast cancer cases can be used to train 

and evaluate the proposed analysis system. Moreover, the voting classification scheme 

achieves higher specificity compared with single classifier using any feature set. In the 

future, a sequential classification scheme could be taken into consideration to 

investigate its performance. 
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