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ABSTRACT 

The chronic discharge of oily wastewater, mainly including bilge water, offshore 

produced water and ballast water, has been referred to as a major contributor to marine oil 

pollution. Although gravity-based treatment techniques have been widely used to separate 

oil from wastewater, many dissolved toxic organics, particularly Polycyclic Aromatic 

Hydrocarbons (PAHs), are not likely to be effectively removed and may cause severe 

environmental problems. Further treatment has therefore become necessary for the 

shipping and offshore oil and gas industries, particularly in the harsh environments (e.g., 

the Arctic Ocean) where ecosystems are extremely vulnerable. Among many chemical 

and biological treatment techniques, ultraviolet (UV) irradiation and advanced oxidation 

techniques have been recently regarded as promising solutions to the removal of PAHs. 

Such advanced treatment systems, as compared to the traditional ones, are usually lack of 

in-depth understanding of reaction mechanisms and kinetics, process control 

requirements, and long-term planning strategies. More particularly, the integration of 

process control and operation planning has been proven in the literature to greatly reduce 

process cost and improve system performance. However, such integration is usually 

complicated by many factors such as the multi-scale nature of decisions, the lack of 

knowledge of process dynamics and control, and uncertainty. These deficiencies can 

drastically hinder the widespread application of these advanced treatment systems in the 

shipping and offshore industries. In response to these knowledge and technique gaps, this 

research proposes an integrated process control and operation planning system to aid 

marine oily wastewater management based on experimental study, process modeling, 

process control, operation planning and their coupling.  
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The UV induced photodegradation of a typical PAH, namely naphthalene in seawater, 

was chosen as an example for studying the reaction mechanism and parameter effects. 

The experimental results showed that the removal of naphthalene followed first order 

kinetics and the most influential factors were fluence rate, temperature and the interaction 

between temperature and initial concentration. The reaction rate constants varied from 

0.0018 to 0.0428 min
-1

. Further analysis revealed that the reaction rate constants were 

linearly related to the number of lamps. High salinity suppressed the performance of UV 

irradiation which was mainly caused by the presence of bromide (Br
−
), carbonate (CO3

2−
) 

and bicarbonate (HCO3
−
) ions in seawater. In addition, increasing temperature seemed to 

stimulate the removal of naphthalene in seawater by exciting the collision between 

photons and molecules. The effect of initial concentration was not prominent while the 

average reaction rate constant at high concentration was slightly lower than that at low 

concentration. 

Based on the experimental results, a three-layer backpropagation neural network was 

developed to simulate the UV-induced photodegradation of naphthalene in marine oily 

wastewater. The photochemical process was successfully predicted by using 12 neurons 

in the hidden layer and the Levenberg-Marquardt backpropagation algorithm. The 

network was trained to provide a good overall linear fit with a slope of 0.97 and a 

correlation of determination (R
2
) of 0.943. All input variables in this study (i.e., initial 

concentration, salinity, fluence rate, temperature and reaction time) had considerable 

effects on the photodegradation process. The results showed that the developed ANN 

model was capable of accurately simulating the naphthalene removal process and 

reproduce the experiment.  
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The process control module, namely the artificial neural network based dynamic 

mixed integer nonlinear programming (ANN-DMINP) approach, was constructed based 

on the experimental study of PAH degradation, the degradation simulation using ANN, 

and the process dynamic optimization using genetic algorithm. Naphthalene degradation 

by UV irradiation was used as a case study to help develop these models. The results 

from the case study showed that the treatment cost in a fixed 36-hour period was 

minimized to $9.11 by using the ANN-DMINP approach. As a comparison, the 

single-stage optimization with constant variables was also applied and the treatment cost 

was 25.7% higher at $11.45. A Monte Carlo simulation was also performed to conclude 

that if the operator randomly set the flow rate and the number of lamps as constants 

during the 36-hour period, then there would be a great chance that the treatment standard 

cannot be met. If considering time as another flexible variable, the treatment cost reached 

its minimum at 27 hours with $8.71 and $8.94 for the ANN-DMINP approach and the 

single-stage optimization, respectively. A sensitivity analysis showed that more 

optimization stages can generally reduce treatment cost, but may lead to extra manpower 

needs and affect system stability. It was recommended to first seek the best solution with 

less optimization stages, and then using the solution as an initial population for more 

optimization stages, if necessary. 

On the other hand, the operation planning module was proposed based on the 

stochastic simulation–based hybrid interval fuzzy programming (SHIFP) approach and 

the hybrid fuzzy stochastic analytical hierarchy process (FSAHP) approach. A case study 

related to recovered oily water treatment during offshore oil spill cleanup operations was 

carried out to test the SHIFP approach. The decision makers were looking for solutions 
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that how to arrange different facilities and how much wastewater should be delivered to 

each facility. The results demonstrated that the maximum daily treatment capacity was 

likely to follow the normal distribution within the range from 3,000 to 3,700 tonnes. In 

addition, the shapes of the fuzzy decision variables, corresponding to the maximized 

objective function, can be categorized into seven groups with different probability such 

that decision makers can more confidently allocate limited resources. Another case study 

related to ballast water management was carried out to verify the feasibility and 

efficiency of the FSAHP approach. Five treatment technologies were evaluated against a 

number of environmental, economic, and technical criteria by nine experts from academia 

and government. The results revealed that UV was ranked with the highest overall score 

at 100% confidence level, indicating that the null assumption that it was not probabilistic 

optimal (versus the alternate assumption that it is) was rejected. Ozone, heat treatment, 

and ultrasound had the second, third, and fourth places at the confidence levels of 61.0–

71.4%, 56.0–68.4%, and 78.4−84.6%, respectively. Considerable overlaps existed among 

these three alternatives which may be attributed to the irreducible uncertainty caused by 

subjective judgments or lack of knowledge. The proposed FSAHP approach can offer a 

number of benefits such as the capability of capturing human‟s appraisal of ambiguity 

and addressing the effects of uncertain judgment when dealing with insufficient 

information or biased opinions. 

The coupling between process control and operation planning was innovatively 

realized by integrating neural networks, genetic algorithm, dynamic programming, and 

Monte Carlo simulation into the integrated simulation-based process control and 

operation planning (IS-PCOP) system. A real-world case study related to offshore 
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wastewater management on a FPSO was conducted to examine the efficacy of the 

proposed integration. The ANN-DMINP approach was used to optimize the treatment 

cost of removing naphthalene from bilge water using UV irradiation. Treated effluent, 

depending on the remaining concentration of naphthalene, was reused and could produce 

varying benefit. Monte Carlo simulation was applied to generate the parameters (e.g., 

volume, concentration and temperature) of daily bilge water and examine the net cost to 

obtain the distribution of optimal solutions at a series of treatment standards. The results 

showed that choosing the 20 μg L
−1

 treatment standard was the most economically 

competitive option. As compared to the traditional operation planning without process 

control, the integrated approach achieved more economically competitive results. 

The proposed IS-PCOP system can well link process control and operation planning 

by simultaneously adopting different time-scales in computation. The hourly process 

control strategy forwarded the results to the operation planning module where long-term 

arrangements can be further evaluated. The use of ANN modeling also played a key role 

in predicting the nonlinear behaviour of the treatment process. In addition, Monte Carlo 

simulation yielded a better insight on uncertainties, which may arise from a number of 

different sources. By addressing the uncertainties and expressing the results in probability 

distributions, the decision makers would have more confidence in making proper 

decisions regarding the short-term and long-term operation of the advanced wastewater 

treatment systems. 
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INTRODUCTION 
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1.1 Background and Challenges 

The rapid development of ocean industries can affect and alter the marine 

environment in many ways, of which contamination caused by accidental or operational 

release of oils draws growing concerns (Li et al., 2012). Such contamination can result in 

serious, long-term damage to local industries such as fishery and tourism, coastal 

communities, and the environment (Atlas and Hazen, 2011). Betti et al. (2011) reported 

that the annual amount of oil entering the global marine environment from sea-based 

activities was approximately 1.25 million tonnes. However, the range is wide, from a 

possible 470,000 tonnes to a possible 8.4 million tonnes per year. According to National 

Research Council (1985), marine oil pollution caused by big spills, routine maintenance, 

down the drain, up in smoke, offshore drilling, and natural seepage are 37, 137, 363, 92, 

15, and 62 million gallons per year. A report published by National Research Council 

(2003) stated that oil enters the marine environment through natural seepage from seabed 

(46%), operational discharge from ships and offshore facilities (37%), accidental spills 

(12%), and extraction of oil (3%). It can be concluded that operational discharge of oily 

waste is the dominant source of oil pollution at sea. 

The discharge of oil from oil and gas development and shipping operations is usually 

the result of either accidents or deliberate operational activities. Accidental discharges (oil 

spills) occur when vessels collide or come in distress at sea (e.g., engine breakdown, fire, 

and explosion) and break open, or run aground close to the shore, or when there is a 

blowout of an offshore oil well, or when a pipeline breaks. However, such accidents are 

uncommon and only account for a relatively small amount (12%) of the world‟s oil 

pollution in the oceans. Operational discharges, on the other hand, are mostly deliberate 
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and "routine", and can accumulate to an extraordinarily large amount over time. Typical 

operational oil pollution can be caused by routing activities such as loading, unloading, 

washing, discharge of untreated or inappropriately treated oily wastewater, and 

equipment failure or process interruption on offshore drilling facilities. Among them, the 

discharge of oily wastewater, usually including bilge water, offshore produced water and 

ballast water, has been referred to as “chronic oil pollution” on account of the fact that 

these discharges occur on a daily basis without triggering any major mitigation response. 

There is a growing recognition that the impacts associated with oily wastewater can be 

cumulative and longstanding (O‟Hara and Morandin, 2010). Owing to the stringent 

environmental regulations imposed in recent years, a thorough treatment of these waste 

streams must be carried out prior to discharge. 

Oil contained in oily wastewater can be classified into three fractions: dispersed free 

oil, oil-in-water or water-in-oil emulsions, and dissolved components (Klaassen, et al., 

2005). While the first two can be mostly removed by gravity separation or hydrocyclone 

(requires demulsification, if necessary), residual oil droplets and dissolved organic 

compounds including particularly polycyclic aromatic hydrocarbons (PAHs) would, 

however, remain unaffected. The occurrence of PAHs is usually of the greatest concern 

because of their high resistance towards biodegradation, extreme toxicity to marine biota, 

and possible carcinogenicity and mutagenicity (Tsapakis et al., 2010; Harman et al., 

2011). Therefore, a polishing treatment becomes much necessary to further remove PAHs 

from marine oily wastewater prior to discharge. 

Removal of PAHs from oily wastewater effluent (e.g., after gravity separator and 

flotation) is possible via many techniques such as biofiltration, biodegradation, 
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adsorption, and phytoremediation (Haritash and Kaushik, 2009). However, most of these 

methods are not directly suitable for marine applications on offshore oil and gas 

production facilities due to space, efficiency, cost, and safety concerns. In recent years, 

ultraviolet (UV) photooxidation and other advanced oxidation techniques (e.g., UV/H2O2, 

UV/O3) have been gaining significant attention and regarded as promising solutions 

because of their relatively small footprint, low cost, and high efficiency. They are 

attractive alternatives to the traditional non-destructive wastewater treatment processes 

(e.g., air stripping, adsorption, and membrane) because they can mineralize contaminants 

from water as opposed merely transporting them from one phase to another (Kishimoto 

and Nakamura, 2011). Many studies have experimentally investigated the degradation of 

PAHs in water and wastewater by using UV irradiation or its combination with other 

oxidants, such as ozone and H2O2 (Sanches et al., 2011). However, most of these studies 

have focused on freshwater systems rather than marine environments where salinity and 

complex matrix effects play a dominant role. Moreover, the research efforts on numerical 

modeling and performance optimization of these techniques have also been limited due to 

their multiphysics nature and the complexity of synergistic effects. Such advanced 

treatment systems, as compared to the traditional ones, still lack in-depth understanding 

of their reaction mechanisms, performance evaluation, process optimization, and 

operation planning, which can drastically hinder their widespread applications in shipping 

and offshore oil and gas industries. 

Process control techniques have been receiving significant attention over the years 

because they can be applied to optimize control strategies and thereby reduce operating 

cost. Process modeling is regarded as the foundation of any effective process control 
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strategy as it provides the response of the process to any inputs on which control 

optimization is based. Artificial neural networks (ANNs), as a group of nonlinear 

mapping/modeling systems, can effectively recognize and reproduce cause-effect 

relationships for any nonlinear complex system that may not be accurately modeled by 

traditional chemical/physical models. Based on the modeling techniques, many 

researchers have engaged in the development and application of process control tools, 

particularly for wastewater treatment, to meet the needs for performance and 

sustainability (Marchitan et al., 2010; Frontistis et al., 2012; Li et al., 2012). Soft 

computing methods, including artificial neural networks (ANN), adaptive network-based 

fuzzy inference system (ANFIS), genetic algorithm (GA), and fuzzy logic (FL), have 

received increasing attention in this regard (Bhatti et al., 2011; Ma et al., 2011). Recently, 

the combined use of soft computing techniques has also attracted much interest, 

particularly the integration of ANN and GA (Liu et al., 2013; Soleimani et al., 2013; 

Ghaedi et al., 2013; Badrnezhad and Mirza, 2014). Nonetheless, only a few have taken 

changing conditions and dynamic system control into account. Instead of optimizing the 

treatment process at the beginning with constant operation conditions, the concept of 

dynamic control can be used to rationally make a series of decisions at different time 

points and to achieve better performance in terms of cost and efficacy (Yu et al., 2008). 

Operation planning tools, on the other hand, have also been widely used to create a 

policy, change an internal procedure, design a facility, or construct a service program in 

terms of minimizing the cost or maximizing the profit, especially in environmental 

applications where decisions are commonly driven by long-term social-economic, 

political, and technical factors. System optimization and planning approaches are 



 
 

6 

necessary for supporting wastewater treatment processes because they can make all 

relevant units orderly, complete the scheduled tasks within the shortest time period to 

minimize costs and environmental impacts. However, these approaches are usually 

subject to various uncertainties and complex interactions among technical, environmental 

and managerial factors. On the other hand, with the increasingly stringent standards and 

more sophisticated treatment systems, operators have become more and more reliant on 

mathematical tools instead of their personal experience to optimize the control strategy 

and actions. The knowledge and prediction of dynamic responses to the variations of 

environmental conditions and operational factors are critical to ensure a sound design and 

optimal operation of the treatment process. 

It has been recognized that, regardless their difference, the combination of process 

control and operation planning can ensure the meeting of the economic objectives and the 

timely completion of the tasks associated with the plans (Hans et al., 2007; Hüfner et al., 

2009). Such a coupling can greatly reduce system cost and maximize economic and 

environmental benefits. Kamar (2010) argued that if appropriate process control is not 

implemented during a system planning procedure, there might be potential benefits lost 

because traditional planning tends to be more conservative and less risk-taking. However, 

such integration is oftentimes complicated by many factors such as the multi-scale nature 

of decisions, the lack of knowledge of process dynamics and control, and various types of 

uncertainties.  

Firstly, the most commonly cited technical challenge is the multiple time and length 

scales, or in other words, the coupling between middle/long-term planning decisions such 

as capital investment, portfolio management and policy-making with a planning horizon 
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spanning from months to decades, and short-term decisions such as production process 

control and logistics that are based on day-to-day or even hour-to-hour operations. 

Secondly, many operation processes of wastewater treatment usually consist of a number 

of complex physical, chemical, and biological sub-systems and their interactions that are 

preferably described by nonlinear functions. Nonlinear processes are difficult to control 

because the process input–output relationship can have so many variations. The issue 

becomes more complicated if a nonlinear characteristic of the system changes with time 

and there is a need for an adaptive change of the nonlinear behaviour. Lastly, it can be 

further complicated by various uncertainties, which may arise from a number of different 

sources, such as the demands for materials and finished products, feedstock supplies, 

environmental and economic conditions, and stakeholders‟ preference and interest. How 

to more accurately couple process control with operation planning has been a major 

challenge for the improvement of wastewater treatment systems‟ performance. To date, 

the attempt of investigating the feasibility and efficacy of coupling process control and 

operation planning on marine oily wastewater treatment has not been well documented. 

 

1.2 Research Objectives  

The goal of this research, therefore, is to develop an integrated simulation-based 

process control and operation planning system for marine oily wastewater management. 

It is developed based on experimental results, process modeling, process optimization, 

and a coupling between short- and long-term optimization. The experimental study serves 

as the foundation for process modeling. Process optimization is mainly a coupling 
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between the process modeling method and advanced optimization tools. Then the 

short-term process optimization can be integrated with long-term operation optimization. 

The major research tasks include: 1) to investigate the UV induced degradation kinetics 

of a representative PAH, namely naphthalene, through photolysis experiments in a 

bench-scale reactor. It should be noted that UV irradiation is used as an illustrative 

example in this research to support the following research objectives related to modeling 

system development; 2) to develop an ANN simulation model for predicting the removal 

of naphthalene based on the experimental results; 3) to develop an ANN-based dynamic 

mixed integer nonlinear programming (ANN-DMINP) approach that can help better 

optimize the performance of marine oily wastewater treatment using a dynamic concept; 

4) to develop a set of novel decision making tools for supporting marine oily wastewater 

management in terms of operation planning; 5) to propose an integrated optimization 

approach that combines process control with operation planning; and 6) to test the 

feasibility and effectiveness of the proposed methods via case studies.  

 

1.3 Structure of the Thesis 

Chapter 2 focuses on the comprehensive review of marine oily wastewater from the 

perspectives of background overview, legislative development, conventional treatment 

technologies, process control, operation planning and their coupling. 

Chapter 3 introduces the development and application of two decision-making tools 

for operation planning, namely the stochastic simulation–based hybrid interval fuzzy 

programming (SHIFP) approach and the hybrid fuzzy stochastic analytical hierarchy 

process (FSAHP) approach. Case studies related to oily water treatment planning and 
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ballast water management are provided for each approach, respectively. 

Chapter 4 examines the photodegradation process of naphthalene in marine oily 

wastewater through bench-scale experiments. The efficiency of UV treatment is tested 

under varying ambient conditions including salinity, UV fluence rate, initial concentration 

and temperature. A full factorial design of experiments (DOE) is employed to determine 

the significance of each factor being tested as well as their interactions. The results 

obtained in this chapter serves as an example for developing the simulation and 

optimization approaches in the following chapters. 

Chapter 5 provides the development of a three-layer backpropagation neural network 

model to simulate the UV-induced photodegradation of naphthalene. The importance of 

each model parameter is evaluated through analysis of variance (ANOVA) and sensitivity 

analysis and further compared with the experimental results obtained in Chapter 4. 

Chapter 6 presents a novel process control methodology, namely the ANN-based 

dynamic mixed integer nonlinear programming (ANN-DMINP) approach. The ANN 

simulation model is based on the results obtained in Chapter 5 while genetic algorithm is 

embedded using a dynamic concept. The proposed approach is validated through a case 

study with regard to the removal of naphthalene from oily wastewater using UV 

irradiation and a circulation system.  

In Chapter 7, the coupling between process control and operation planning is 

innovatively realized by integrating neural networks, genetic algorithm, dynamic 

programming, and Monte Carlo simulation into the integrated simulation-based process 

control and operation planning (IS-PCOP) system. A case study focusing on the UV 

secondary treatment of bilge water on an offshore floating production, storage, and 
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offloading (FPSO) vessel is presented to demonstrate the feasibility and efficacy of this 

coupling system. 

Chapter 8 concludes this study with summarized contribution and recommendations 

for future research. 
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2.1 Overview of Marine Oily Wastewater 

Oily wastewater can be generated from a variety of different industrial processes, 

such as petroleum refining, oil storage and transportation, petrochemical, food, leather 

and metal finishing. In the marine environment, oily wastewater usually refers to the 

following sources: 

 

2.1.1 Offshore Produced Water 

Produced water is the general description of formation water produced to surface or 

recycled water from water injection during onshore or offshore oil drilling operations. A 

global average of 210 million barrels per day was estimated in 1999 and this number has 

been increasing up to 254 million barrels per day (Neff et al., 2011a and 2011b). Around 

65% of the produced water generated in the US is injected back into the producing 

formation, 30% into deep saline formations and 5% is discharged to surface waters. As a 

result, water to oil ratio is around 3:1 that is to say water cut is 70%. 

The volume, composition, and properties (such as salinity, density, etc.) of offshore 

produced water may vary significantly between fields and even within the same field 

depending on many factors (Ebrahimi et al., 2010; Harman et al., 2011). The volume can 

usually be affected by the method of well drilling, the location of well, the type of well 

completion, the type of water separation technology, and use of water injection/flooding 

for oil recovery, and underground communications (Veil, 2011). Offshore produced water 

usually contains organic and inorganic substances from geologic formation, including 

produced hydrocarbons, traces of minerals, dissolved salts, and solid particles 

(Fakhru‟l-Razi et al., 2009). It may also come in contact with different types of treatment 
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and production chemicals (e.g., corrosion inhibitors, scale inhibitors, and biocides) used 

during drilling, stimulation, production, and oil water separation processes (Kelland, 

2014).  

Oil in produced water can be classified as dispersed and dissolved oil. Dispersed oil 

refers to the small oil droplets, which may range from sub-microns to hundreds of 

microns, whereas dissolved oil represents the oil in produced water in a soluble form. 

Both dispersed and soluble oil components in offshore produced water consist of 

petroleum hydrocarbons and other organic compounds such as aliphatic hydrocarbons, 

aromatic hydrocarbons (e.g., PAHs), organic acids, and phenols (Xu et al., 2008). The 

amount of dissolved oil largely depends on the type of oil, the volume of water 

production, artificial life technique, and the age of production. The amount of dispersed 

oil in produced water is determined by the density of oil, the shear history of the droplet, 

the amount of oil precipitation and interfacial tension between the water and oil 

(Stephenson, 1992). 

 

2.1.1.1 Environmental Impacts 

Substances of possible concern in offshore produced water include hydrocarbons, 

heavy metals, radionuclides, and production chemicals. Studies on the environmental 

impacts caused by produced water discharge from offshore oil and gas operations have 

been reported in the literature (Alley et al., 2011). The deposited oil can seriously affect 

the marine environment both as a result of physical smothering and toxic effects (Pivel 

and Freitas, 2010). Offshore produced water is typically more toxic than other marine 

wastewater streams as being extremely saline and containing a very broad range of 
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carcinogens, heavy metals and radionuclides as well as man-made chemicals (e.g., 

biocides) used in the drilling process. As it is a complex mixture of hundreds of 

components, in order to assess the associated toxicity, some studies have measured the 

toxicity of produced water as a whole while others have focused on each individual 

component (Fakhru‟l-Razi et al., 2009). When a component in produced water is 

bioavailable, it can be taken up by marine organisms. Ekins et al. (2005) suggested that 

the high bioavailability of contaminant in offshore produced water could result in the 

accumulation within the organisms (i.e., bioaccumulation via water and food, 

bioconcentration via water only). These impacts on the marine environment are usually 

characterized by the complex interrelation between the characteristics of the components 

in offshore produced water and the characteristics of the receiving water body as well as 

the exposure period. 

 

2.1.1.2 Legislation and Management Practices 

The discharge of offshore produced water to the marine environment has been 

regulated by regional, national, and international guidelines. Most regulations require 

intensive studies on environmental impact or risk assessment prior to setting specific 

limits on the concentrations of oil and grease or dispersed oil in offshore produced water. 

For example, the current limit for total oil and grease (dispersed and dissolved oil) in 

treated produced water destined for disposal in offshore waters of Canada is 60 ppm daily 

maximum and 30 ppm monthly average (Neff et al., 2011a). This 30 ppm oil-in-water 

standard usually refers to the concentration of oil dissolved or emulsified in water. The 

same 30 ppm standard has been adopted by the Australian government. The US offshore 
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produced water discharge standard for oil and grease in the Gulf of Mexico is 29 ppm 

(Neff et al., 2011b). Recommendations by Oslo Paris Convention in 2001 stipulate that 

every offshore platform has to comply with the 30 ppm monthly average dispersed oil in 

water discharge (Igunnu and Chen, 2012). In Australia, the maximum permitted discharge 

of oil and grease into the oceans is 30 ppm, while this number is set as 10 ppm in China. 

The Convention for the Protection of the Marine Environment of the North–East Atlantic 

sets the annual average limit for discharge into the sea at 40 ppm (Veil et al., 2004). Most 

management practices for offshore produced water focus on onsite treatment and 

geological disposal. One of the major purposes of offshore produced water treatment is to 

treat “reverse emulsion” (oil droplets suspended in the continuous water phase). Treated 

produced water can also be re-injected to the oil production zone to help maintain 

reservoir pressure and to drive oil toward production well. This option may be chosen 

when ocean discharge is not permitted in some locations, which may lead to complete 

elimination of all contaminants in offshore produced water that may threaten the ocean 

environment (Ahmadun et al., 2009). 

 

2.1.2 Ballast Water 

Ballast water is carried by cruise ships, large tankers, and bulk cargo carriers to 

acquire the optimum propeller depth and to maintain manoeuvrability and stability. It is 

usually pumped into dedicated ballast tanks or empty cargo holds in coastal waters during 

the cargo unloading process and discharged at the next port when ship receives cargo 

(Gregg and Hallegraeff, 2007). Current statistics suggest that shipping facilitates 

transportation of over 80% of the world‟s commodities and transports over 4 billion 
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metric tonnes of ballast water per year (Tsolaki and Diamadopoulos, 2010).  

Over the past decades, aside from being recognized as a major media for global 

invasive species, ballast water has also been blamed for contributing to marine oil 

pollution, particularly from the traditional single hull oil tankers (Tamburri et al., 2002). 

These old-fashioned tankers need to carry enough ballast water in the empty cargo holds 

after unloading oil cargo. Before any international conventions were adopted to prevent 

marine oil pollution, a common practice for these tankers was to wash out the cargo holds 

with water, pump the mixture of oil and water into the sea, and then pump in new ballast 

water that would be definitely polluted by oil residues. Zakaria et al. (2001) showed that 

the waters and beaches of the Straits of Malacca have received a significant share (30%) 

of its oil pollution from the Middle East petroleum through tanker accidents and/or tanker 

ballasting discharges or washing. Payne et al. (2005) stated that approximately 107 L/day 

of ballast water which contained 8 mg oil/L has been discharged into the Port Valdez, 

Alaska by a ballast water treatment plant.  

A total of 9,650 oil tankers, representing 1,888 million tonnes of oil, were in service 

in late 2008. Fortunately, the 2003 amendment to MARPOL 73/78 has accelerated 

phasing out of all single hull tankers and required the use of double hull tanker in oil 

trade. Most double hull tankers have segregated ballast tanks that can effectively prevent 

ballast water from being polluted by cargo oil or fuel oil. The oil pollution threats caused 

by oily ballast water discharge are likely to be greatly reduced. However, in the rare and 

exceptional event, extra ballast water may be loaded into a cargo tank to meet tanker‟s 

draft and trim requirements. And there will still be single hull tankers in operation in the 

next few years. Hence, the monitoring and treatment of oily ballast water should still be 
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given enough attention. 

 

2.1.2.1 Environmental Impacts 

Aquatic organisms carried by ballast water may survive lengthy voyages and adapt 

to new biogeographic regions. Introduced aquatic species have demonstrably adverse 

effects on local ecological systems, such as decrease in abundance, loss of biodiversity, 

and even extinction of native species (Tamburri et al., 2002). Invasive species mediated 

by ballast water are a growing threat to the world‟s economy, such as aquaculture, 

fisheries, and international trade (Jing et al., 2012a; Li et al., 2014). The first invasive 

species was postulated by Ostenfeld (1908) who claimed the observation of an 

Indo-Pacific diatom in the North Sea. Over 70 fish species native to the U.S. are 

threatened or endangered by non-indigenous ones (Pimentel et al., 2000). The Chinese 

mitten crab has invaded and established itself in 11 European countries and across North 

America such as San Francisco Bay and the St. Lawrence River, causing significant 

impacts on local biodiversity by eating fish bait (Rudnick et al., 2003; Herborg et al., 

2005). Zebra mussels (e.g., Musculista senhousia and Mytilus galloprovincialis) can also 

cause dramatic ecological impacts when abundant, ranging from potential displacement 

of native clams to alternation of energy and nutrient flows in large ecosystems (Cataldo, 

2001). 

Various hydrocarbons contained in oily ballast water can also cause severe adverse 

impacts on sea mammals, fish, and other wildlife due to their acute toxicity, limit the 

photosynthesis of marine plants and phytoplankton, and even affect long-term population 

growth of the exposed organisms. Ballast water from oil tankers or ballast water 
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treatment facilities may also contain a considerable amount of dissolved hydrocarbons 

(Law, 1994). Zakaria et al. (2001) showed that the waters and beaches of the Straits of 

Malacca have received a significant share (30%) of its oil pollution from the Middle East 

petroleum through tanker accidents and/or tanker ballasting discharges or washing. Payne 

et al. (2005) stated that approximately 107 L/day of ballast water which contained 8 mg 

oil/L has been discharged into the Port Valdez, Alaska by a ballast water treatment plant. 

These hydrocarbons can cause severe adverse impacts on sea mammals, fish, and other 

wildlife due to their acute toxicity, limit the photosynthesis of marine plants and 

phytoplankton, and even affect long-term population growth of the exposed organisms 

(Kingston, 2003). 

 

2.1.2.2 Legislation and Management Practices 

Currently, ballast water exchange (BWE) by sequential exchange or flow-through 

dilution at designated areas has been recognized as the most commonly applied method to 

minimize the environmental impacts from transporting and discharging ballast water. 

Nonetheless, the effectiveness of BWE may be exceedingly influenced by weather 

conditions, voyage duration and route, vessel capacity, and structural characteristics. 

Many physical, chemical, and biological treatment methods and their combinations have 

been tested and applied through both laboratory trials and field practices to remove solids, 

particulates, organic compounds, and unwanted organisms from ballast water. The 

International Maritime Organization (IMO) convention also adopts new ballast water 

management strategies, such as designated exchange areas and onshore ballast water 

treatment, and especially requires implementation of an onboard and ship-specific ballast 
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water management plan setting out safe and effective procedures for ballast water 

management practices (Jing et al., 2012a and 2012b). In case of oil polluted ballast water 

(e.g., extra ballast water loaded into cargo tanks), the IMO MARPOL Annex I well states 

the management procedure that includes crude oil tank-washing, gravity separation of 

oily ballast water, discharge of water below the oil/water interface, and transfer of the 

remaining oily water to the slop tank for further treatment (IMO, 2011). 

 

2.1.3 Bilge Water 

Bilge water, as one of the chronic marine oil pollution sources, has been blamed to 

cause around 20% of the total oily water released by vessels into the oceans worldwide 

(Tomaszewska et al., 2005). The bilge is the lowest compartment on a ship where water 

drained from the deck can be temporarily stored below decks and therefore creates a safer 

environment for the crew and passengers, particularly in heavy weather (Körbahti and 

Artut, 2010). It is not uncommon on ships for oil or water to leak into the bilge from 

various seals, gaskets, fittings, piping, connections, and from related maintenance and 

activities associated with these systems (Körbahti and Artut, 2013). Depending on the 

size, function, and design of the ship, bilge water is the mixture of water, fuel oil sludge, 

lubricating waste oil, cylinder oil, cleaning fluids, and other similar wastes from a variety 

of different sources (e.g., engines, piping, and other mechanical and operational processes) 

(Cazoir et al., 2012). For safety concerns, bilge water usually needs to be pumped 

overboard to prevent the bilge from overfilling the tank tops.  

This oily bilge water has been gaining significant attention such that it not only 

degrades water quality but is also toxic to human and marine life and environment, in 
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general (Rincón and La Motta, 2014). Oily bilge water is usually caused by petroleum 

hydrocarbons and contains two distinct components: a gravity separable phase which 

refers to free oil and an emulsified phase which represents hydrocarbons in stable 

suspension. The presence of detergents and surfactants in bilge water can also cause 

chemical emulsification of oil. The stability of emulsion depends on the surfactant 

concentration which forms a film and avoids the coalescence of oil droplets (Maiti et al., 

2011). Emulsified oil (i.e., oil droplets smaller than 20 μm) is the hardest to treat because 

its neutral buoyancy makes it difficult to separate by gravity alone (Otero et al., 2014). 

 

2.1.3.1 Environmental Impacts 

At least to some level, though, most ships have the potential to create marine 

environment pollution through the discharge of oily bilge water due to malfunctioning oil 

water separator, accidents, malfunctioning bilge monitor, or a deliberate bilge water 

bypass (Körbahti and Artut, 2010). Oily bilge water may contain emulsified oil and 

grease, diesel, hydraulic oil, lube oil, and many other marine fuel oils. Generally, bilge 

water discharge is considered viscous and therefore has lower risk to vertical mixing 

(Otero et al., 2014). Nonetheless, the toxicity of numerous petroleum compounds can be 

significant such that even a small release or spill may result in the abundance decrease of 

local organisms from the cellular- to the population-level (National Research Council, 

2003). National Research Council (2003) also considered the discharge of bilge water to 

be moderate in terms of physical losses (e.g., evaporation, dispersion), formation of tar 

balls, and long-distance transport potential. Additionally, possible long-term impacts due 

to oily bilge water discharge may include: impaired survival or reproduction, chronic 
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toxicity of persistent components, and habitat degradation (Peterson and Holland-Bartels, 

2002). 

 

2.1.3.2 Legislation and Management Practices 

The Canadian government has set a 15 ppm oil and grease standard for offshore 

bilge water discharge. The Clean Water Act (33 CFR 153.305) also prohibits the use of 

soaps or other dispersing agents to dissipate oil on the water or in the bilge without 

obtaining permission from the U.S. Coastal Guard. Oily bilge water can be either retained 

onboard in a holding tank and discharged to an onshore facility or treated onboard. 

Conventional bilge water systems use an oil water separator to remove oil to meet 

regulatory standards (i.e., 15 ppm as an international standard set by IMO) prior to 

discharge. Currently other advanced treatment technologies include adsorbents, 

flocculants, ultrafilters, membrane, electrocoagulation, and chemical addition with 

temperature-enhanced centrifugal devices, and polymeric surface modified filtration 

(Benito et al., 2007; Asselin et al., 2008). Each treatment technology encompasses its 

pros and cons depending on the complexity of operations, as well as the capital and 

operating costs. There is no single off-the-shelf technology that can meet all requirements. 

The selection of the best technology will depend on, in addition to capital and operating 

costs, the type of ship (i.e. steam ship vs. gas turbine), the amount of loading, the degree 

of emulsification, the throughput and the robustness required of the unit. The evaluation 

of average bilge water composition and the degree of emulsification should be taken into 

account when choosing oily bilge water treatment equipment. 

 



 
 

22 

2.2 Treatment of Marine Oily Wastewater 

The discharge of untreated or partially treated oily wastewater can cause severe 

damage to the environment and harmful consequences on public health. That is why 

many governmental authorities have adopted stringent regulatory standards for oily 

wastewater management, particularly in the marine environment. Commonly applied 

management practices include, but not limited to, the following options (Jing et al., 

2012a): 

1) Directly treat wastewater onboard and discharge overboard when the treated 

effluent meets the environmental standards; 

2) Dispose or manage wastewater and recoverable materials in permitted locations 

and facilities, such as near-shore wastewater treatment plants; 

3) Reduce the generation of wastewater by adopting the-state-of-art clean 

production techniques, such as using segregated ballast tanks to minimize oily ballast 

water; 

4) Reuse or recycle treated oily wastewater whenever possible and practical, such 

as reusing treated offshore produced water for re-injection. This would save water 

consumption and eliminate the need for disposal; 

5) Properly store wastewater and avoid co-mingling wastewater of different 

classifications, such as separating recyclable wastewater from non-recyclable wastewater. 

Onboard treatment is usually the only practical management solution for ships and 

platforms operating in the marine environment. Several most commonly used onshore 

oily wastewater treatment methods are briefly summarized as follows: 

 



 
 

23 

2.2.1 Gravity Separation 

Traditionally, many ocean-going ships and offshore platforms have used gravity 

separation equipment to treat oily wastewater. These separators are usually equipped with 

parallel plate or filter coalescing technologies to separate oil from water based on 

different specific gravities and their immiscibility with each other. The coalescing 

materials, such as polypropylene and oleophilic polymer, can retain free and dispersed oil 

droplets (Salu et al., 2011). The droplets continue to accumulate and eventually break 

free from the plate or media and rise to the surface of the oily water. A sensor can detect 

the existence of floating oil layer and subsequently trigger an automatic pump to transfer 

the collected oil to a waste oil tank. However, it should be noted that gravity separation is 

generally not effective at removing emulsified oil from water because buoyancy 

differences can be too small. In addition, it is not applicable for removing colloidal 

metals and soluble organic compounds. Therefore, gravity separation alone is not 

sufficient to meet the discharge standard and is usually used as the primary treatment unit 

prior to other advanced techniques.  

 

2.2.2 Flotation 

Flotation is the process by which dispersed solid or liquid particles and precipitates 

in an aqueous solution are floated to the solution surface by injecting and rising 

continuous gas bubbles. The most commonly used types include impeller flotation, 

dissolved air flotation, electro-flotation, and pneumatic flotation (Ksenofontov and 

Ivanov, 2013). Hamia et al. (2007) investigated the performance of combining dissolved 

air flotation with activated carbon in treating refinery wastewater and obtained high 
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chemical oxygen demand removal efficiency. Painmanakul et al. (2010) studied the 

treatment of oily wastewater containing anionic surfactant by using the modified induced 

air flotation process. They further claimed that the removal efficiency was related to alum 

dosage, pH value, and gas flow rate. Palomino Romero et al. (2013) reported the 

optimum conditions for biodiesel wastewater treatment using an integrated 

electro-flotation and electro-oxidation method. It was demonstrated that electro-flotation 

could effectively remove turbidity, total solids, oils, and grease. Xu et al. (2014) proposed 

a cyclonic-static micro bubble flotation column for oily removing oil contents from 

wastewater. The column was advantageous over traditional flotation techniques in terms 

of effective separation size, short separation time, large handling capacity, and low 

operating cost. 

 

2.2.3 Coagulation 

Coagulation has been widely used to remove emulsified oil and dissolved oil in 

recent years. However, it should be noted that due to the complex composition of oily 

wastewater, the selection of proper coagulant may raise some concerns that would be 

addressed through experiments (Ahmad et al., 2006). Zeng et al. (2007) developed a new 

coagulant with cationic polymer synthesized by polysilicic acid and zinc sulfate. Under 

the optimum conditions of coagulation/flocculation, more than 99% of oil was removed 

by using the new coagulant cooperated with anion polyacrylamide. Zhao et al. (2014) 

provided a novel and economic approach of treating oily wastewater based on the 

enhanced coagulation-flocculation process that integrates synthetic polymers with natural 

diatomite. Hoseini et al. (2013) employed aluminum sulfate, ferric chloride, and 
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polyaluminum chloride as coagulants to destabilize the emulsions in oily wastewater. 

They also integrated coagulation with mechanically induced air flotation and found the 

optimum operational condition for removing total petroleum hydrocarbons. Such a 

combination of coagulation with mechanical air flotation has been gaining significant 

attention in the past decade and appearing as a promising solution (El-Gohary et al., 2010; 

Rattanapan et al., 2011; Santo et al., 2012). 

 

2.2.4 Membrane Separation 

Membranes can selectively separate (fractionate) materials via pores and minute 

gaps in the molecular arrangement of a continuous structure. Depending on the pore size 

and the pressure that drives the process, membrane separation can be classified as 

micro-filtration, ultra-filtration, nano-filtration, ion-exchange, and reverse osmosis 

(Salahi et al., 2012). Membranes can be made of a variety of materials such as metals, 

polymers, ceramics, glass fibres, and even stainless steel. Due to its chemical-free nature, 

membrane separation has been widely applied in water and wastewater treatment. Yu et al. 

(2006) developed a tabular ultra-filtration module, which was equipped with 

polyvinylidene fluoride membranes modified by inorganic nano-sized alumina particles. 

The module was tested on wastewater from an oil field and the results indicated that the 

quality of permeation water was suitable for oilfield injection. Zhang et al. (2009) applied 

polysulfone to remove oil contents from wastewater with an oil retention rate over 99% 

and an oil concentration in the permeation as low as 0.67 ppm. Yang et al. (2011) 

proposed a Kaolin/MnO2 bi-layer composite dynamic membrane in oily wastewater 

treatment. It was discovered that with the increase of oil concentration, the steady 
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permeate flux decreased while the oil retention ratio increased. Jin et al. (2012) developed 

a novel nano-filtration membrane incorporated with silica nano-particles by interfacial 

polymerization on polysulfone ultra-filtration membrane. This nano-membrane was able 

to not only reduce oil contents but also significantly remove salts from oily wastewater. 

 

2.2.5 Absorption and Adsorption 

For both absorption and adsorption treatment process, oily wastewater is pumped 

through sorption media in a reactor vessel or a contactor. Once the sorption media‟s 

capacity is exhausted, the media can be replaced or regenerated. Oil contained in 

wastewater can be absorbed by granular substances and absorbents or cartridge filters that 

have high affinity for emulsified oil droplets. Two commonly used absorption materials 

are organoclay and curable polymeric surfactant (Ibrahim et al., 2010). Organoclay can 

remove emulsified oil, greases, and large chlorinated hydrocarbons through a partitioning 

process. The oleophilic property of curable polymeric surfactant can be transferred into 

filter substrate materials and therefore enhance the attraction of organic compounds to the 

substrate. On the other hand, adsorption stands for the physical adherence or bonding of 

organic compounds onto the surface of adsorption media (Wang et al., 2012). One of the 

most widely used adsorption media is the granular activated carbon, which can 

effectively remove dissolved oil and hydrophobic organic chemicals from oily wastewater. 

However, it should be noted that the adsorption media usually needs to be regenerated 

after a certain period of using time. 

 

2.2.6 Biological Treatment 
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Biological treatment, as the name indicates, refers to the use of microorganisms in 

converting petroleum hydrocarbons to carbon dioxide and products that of the catabolic 

pathways. Technologies that fall into this category include activated sludge, biofilter, 

which are the most often applied, trickling filter, biological contact oxidation, and 

anaerobic process. Biological treatment is effective at both dispersed oil droplets and 

emulsified oil, which can be difficult to remove by many physical/chemical methods. In 

addition, it can simultaneously remove many other pollutants such as glycols, solvents, 

detergents, jet fuel, surfactants, nitrogen, and phosphorus. Despite its high capital cost, 

biological treatment can be environmentally friendly as it only needs aeration, nutrients 

and pH adjustment without any other add-in chemicals. Shariati et al. (2011) reported a 

97% removal efficiency of hydrocarbon pollutants in petroleum refinery wastewater by 

biodegradation within membrane sequencing batch reactors. Sharghi et al. (2013) treated 

high salinity synthetic oilfield produced water in a submerged membrane bioreactor with 

an enrichment culture consisting of a mixed halophilic bacterial species. The results 

suggested that the proposed system can greatly reduce oil and grease and accommodate 

high salinity conditions, which can be troublesome for traditional biological treatment. 

Peng et al. (2014) applied a biological-physicochemical pre-treatment with anaerobic 

digestion to enhance the treatment of oily wastewater and the production of biogas. The 

results indicated that the digestion process was promoted due to the inoculation by oil 

degrading bacteria.  

 

2.2.7 Challenges for Marine Applications 

Gravity separation, air flotation, and coagulation are currently most commonly used 
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in offshore industries, but they are primarily applied towards dispersed and free oil rather 

than the dissolved fractions. For vessels and platforms operating in the marine 

environment, the emission of residual oil droplets and dissolved organic compounds 

including particularly PAHs must be strictly controlled. This is especially true for the 

Arctic Ocean where zero discharge policy prevails and the release of any organic 

pollutants may be disastrous. PAHs are ubiquitous environmental pollutants that may 

originate from both natural and anthropogenic processes such as oil seeps, volcanic 

eruptions, burning of fossil fuel, coal tar, used lubricating oil and oil filters, and 

petroleum spills and discharge (Tobiszewski and Namieśnik, 2012).  

According to OGP (2002) and Neff et al. (2011b), the typical concentrations of 

naphthalene, phenanthrene and fluorene in produced water are somewhere between 5 and 

841, 9 and 111, and 4 and 67 μg L
−1

, respectively, whereas the other 13 EPA PAHs tend to 

have much lower concentrations ranging from 0.1 to 15 μg L
−1

. The total concentration of 

benzene, toluene, ethylbenzene and xylene (BTEX) is between 730 and 24070 μg L
−1

, 

while phenols have a total concentration around 400 μg L
−1

; however, they are generally 

less toxic and their natural degradation tends to be much faster than that of PAHs (Neff et 

al. 2011b). The occurrence of PAHs is usually of the greatest concern because of their 

high resistance towards biodegradation, extreme toxicity to marine biota, and possible 

carcinogenicity and mutagenicity (Tsapakis et al., 2010; Harman et al., 2011). The 

accumulated PAHs may cause many issues such as the inhibition of enzyme activities by 

disturbing mRNA transcription through DNA damage in the cell and. They can also 

induce DNA structural perturbations, which are directly correlated with mutagenesis, 

leading to cellular transformation (Chary et al., 2013). Lee et al. (2011) reported that the 
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accumulated PAHs can cause severe oxidative DNA damage and therefore lead to tumors 

and cancer.  

Therefore, additional polishing treatment techniques are much desirable after the 

conventional oil-water separation. Removal of PAHs from preliminarily treated marine 

oily wastewater (e.g., gravity separation) is possible via many techniques. As described 

above, biological treatment is considered as an environmentally benign option, except 

that the capital cost tends to be high and the operation requirements are stringent. The use 

of membrane separators and adsorption materials has been proven to be viable for both 

dispersed and dissolved petroleum hydrocarbons, but with considerably high operating 

and maintenance costs as well as backwash/regeneration needs. Many other methods such 

as biofiltration, biodegradation, adsorption, and phytoremediation (Haritash and Kaushik, 

2009) are greatly restricted by space and safety concerns, low efficiency, high operating 

cost, corrosion, and re-contamination problems (Yang et al., 2012). 

 

2.2.8 UV Irradiation and Advanced Oxidation 

To removal PAHs from primary treatment effluent (e.g., gravity separator, and 

flotation), UV irradiation and advanced oxidation processes have been gaining significant 

attention and regarded as promising solutions because of their relatively small footprint, 

low cost, and high efficiency. They are attractive alternatives to the traditional 

non-destructive wastewater treatment processes (e.g., air stripping, adsorption, and 

membrane) because they can mineralize contaminants from water as opposed merely 

transporting them from one phase to another (Kishimoto and Nakamura, 2011). In recent 

years, many previous studies have investigated the degradation of PAHs in water and 
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wastewater by using UV irradiation or its combination with other oxidants (Sanches et al., 

2011). Woo et al. (2009) characterized the photocatalytic degradation efficiencies and 

pathways of five major PAHs in aqueous solution. Kwon et al. (2009) studied the 

degradation of lowly concentrated phenanthrene and pyrene in aspect of kinetics under 

UV irradiation. The results suggested an inverse relation between the reaction constants 

and the number of molecules due to agglomeration of hydrophobic molecules in the 

aqueous environment. Aliaga et al. (2009) reported the removal of organic capping agents 

from Platinum colloid nanoparticles using UV/ozone treatment. Wang et al. (2009) 

studies the decomposition of two haloacetic acids by means of UV and ozone as well as 

their combinations including UV/ozone, UV/H2O2, ozone/H2O2, and UV/ozone/H2O2. 

They argued that single UV or ozone did not result in perceptible decomposition of target 

organics.  

Lucas et al. (2010) further examined the effectiveness of ozone, UV/ozone, and 

UV/ozone/H2O2 on the treatment of winery wastewater in a pilot-scale bubble column 

reactor. Analysis of the experimental data demonstrated that UV/ozone/H2O2 has the 

highest efficiency, followed by UV/ozone and ozone at the natural pH. Vilhunen et al. 

(2010) designed a re-circulated photoreactor in order to compare the UV photolysis and 

UV/H2O2 oxidation process in removing PAHs from groundwater contaminated with 

creosote wood preservative. Kishimoto and Nakamura (2011) investigated the effects of 

ozone bubble size and pH on the efficacy of UV/ozone treatment. The results indicated 

that increase in bubble size and the decrease in pH resulted in higher ozone utilization 

efficiency. They argued that this enhancement of ozone utilization was attributed to the 

shift of the production pathway of OH from O3
-
 to the UV photolysis of H2O2. 
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Włodarczyk-Makuła (2011) discovered a significant impact on the photolysis of PAHs 

when changing the exposure time from 10 to 20 s as the removal efficiencies were 

believed to be proportional to the length and intensity of UV exposure. Salihoglu et al. 

(2012) applied UV irradiation to remove PAHs from municipal sludge and obtained a 

removal rate up to 77% after 24 hours. The removal rate tended to increase as the 

temperature elevated during the UV irradiation. Tehrani-Bagha et al. (2012) applied 

UV-enhanced ozonation processes to the degradation of two organic surfactants and 

confirmed that the synergistic effects of ozone and UV were more effective than the 

individual processes. Malley and Kahan (2014) measured the photolysis kinetics of 

anthracene, pyrene, and phenanthrene in bulk ice and at ice surfaces containing organic 

matter. The results indicated that bulk ice and ice surfaces have special effects and the 

presence of organic matter can affect PAH photolysis kinetics by altering the physical 

environment. 

However, most of these studies have focused on freshwater systems. The 

investigation of UV and advanced oxidation systems for marine wastewater treatment has 

been limited to a few studies where artificial seawater was mostly used (Kot-Wasik et al., 

2004; Saeed et al., 2011; de Bruyn et al., 2012; Jing et al., 2014a and 2014b). It is still 

unclear how efficient they are in marine applications. In addition, the effects of different 

environmental and operational factors as well as their interactions on the treatment 

process are mainly unknown. How to wisely operate the treatment system to acquire the 

best performance with the least cost has been a challenge for operators. These knowledge 

gaps may seriously prevent their wide application in the offshore industries. Therefore, 
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this research will mainly focus on tackling these gaps through an example of UV 

photolysis of naphthalene. 

 

2.3 Treatment Process Control 

Process control is defined as an engineering discipline that deals with mechanisms 

and algorithms for maintaining the output of a specific engineering process within a 

desired range. Since wastewater treatment usually consists of a number of complex 

physical, chemical, and biological processes, controlling such a comprehensive subject 

largely depends on the quality of treatment effluent and realized through an operator‟s 

experience. With the increasingly stringent standards and more sophisticated treatment 

systems, operators have become more and more reliant on mathematical tools instead of 

their personal experience to optimize the control strategy.  

Zhang and Stanley (1999) developed a neural network process control system for the 

coagulation, flocculation, and sedimentation processes. The model was found to 

consistently predict the optimum alum and power activated carbon doses for different 

control actions. Yu et al. (2010) studied a novel Fenton process control strategy using 

ANN models and oxygen reduction potential monitoring to treat synthetic textile 

wastewater. Chiroşcă et al. (2011) examined the fuzzy control of a wastewater treatment 

process in which the organic substances were removed. Numerical simulations 

demonstrated that fuzzy control can be used as a reliable alternative to traditional 

experience-based control. Song et al. (2012) introduced a robust PID controller to control 

the dissolved oxygen (DO) concentration in wastewater treatment process by considering 

the characteristics of the time-delay, inertia and time-varying of DO. Abouzlam et al. 
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(2013) presented a continuous-time transfer function model and an LQ controller in order 

to minimize the consumption of electrical power and ozone gas of a catalytic ozonation 

wastewater treatment reactor. Huang et al. (2013) proposed an extended Elman neural 

network-based energy consumption model to study the relationship between energy 

consumption and effluent quality in a wastewater treatment plant. Han et al. (2014) used a 

nonlinear multi-objective model-predictive control scheme, which consisted of 

self-organizing basis function neural network and multi-objective gradient-based 

optimization, to find the optimal control of wastewater treatment process.  

The knowledge and prediction of dynamic responses to the variations of 

environmental conditions and operational factors are critical to ensure an optimal 

operation of the treatment process. A clear understanding of the process mechanism will 

help to qualify the direct relationships among the inputs and outputs and the indirect 

relationship such as the time series correlation. To help understand the mechanisms, 

simulate the process, predict the behaviour, and eventually wisely control the process, 

modeling methods have been recognized as an essential component and foundation for 

any successful process control strategies. 

 

2.3.1 Modeling the Treatment Process 

As compared to the research efforts on experimental investigation, the numerical 

modeling and performance optimization of the UV treatment technology has been a 

challenging area of research due to its multiphysics nature and the complexity of the 

synergistic effects. Crittenden et al. (1999) developed a kinetic model for the UV/H2O2 

process in a completely mixed batch reactor. The model includes the known elementary 
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chemical and photochemical reactions, and literature reported photochemical parameters 

and chemical reaction rate constants are used in this model to predict organic contaminant 

destruction. Johnson and Mehrvar (2008) proposed a kinetic model to predict the removal 

of aqueous metronidazole using the UV/H2O2 process. The simulation results of three 

different photoreactors revealed that the optimal initial H2O2 dose was correlated with the 

reactor radius. Elyasi and Taghipour (2010) developed a computational fluid dynamics 

(CFD) model in order to simulate UV photoreactors in the Eulerian framework for 

chemical removal using a UV-based hydroxyl radical initiated oxidation process. Along 

with a modified planar laser-induced fluorescence technique, the authors were able to 

simulate and optimize the UV reactor with different geometries and operating conditions. 

Mohajerani et al. (2012) proposed a pseudo-kinetic model for the treatment of a distillery 

wastewater by the UV/H2O2 process in a continuous tubular photoreactor. The organic 

degradation rates were measured based on chemical oxygen demand and total organic 

carbon.  

Unlike the single phase flow in regular UV or UV/H2O2 reactors, modeling of 

ozonation usually involves a more complex gas-liquid flow regime which can be further 

complicated when considering chemical reactions and ozone decay. Bolaños et al. (2008) 

evaluated the performance of ozone disinfection in fine bubble column contactors based 

on the principle of computational fluid dynamics and the kinetics of ozone decay. A 

mixture two-phase flow model and two transport equations were employed to predict the 

concentration profiles of ozone. Audenaert et al. (2010) simulated a full-scale drinking 

water plant using equations associated with ozone decomposition, organic carbon 

removal, disinfection and bromate formation. A scenario analysis was performed to 
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investigate the performance of this ozonation system at different operational conditions. 

Cardona et al. (2010) designed a semi-batch ozone bubble column reactor and 

investigated the gas-liquid mass transfer using the unstationary film theory. Talvy et al. 

(2011) presented a mathematical model of the momentum and mass transport 

phenomenon to couple the gas-liquid flow with ozone mass transfer and decay in an 

industrial scale drinking water treatment plant. 

 

2.3.2 Application of Artificial Neural Networks 

The complexity of marine oily wastewater, particularly the presence of inorganic 

ions including chloride (Cl
−
), bromide (Br

−
), carbonate (CO3

2−
), and bicarbonate (HCO3

−
), 

may interfere with photochemical treatment and therefore cause challenges in applying 

traditional chemical reaction models (Nandi et al., 2010; Pendashteh et al., 2011; Li et al., 

2012). Although the chemical or physical reactions involved are generally well known in 

principle, the ability to describe these reactions numerically is limited. Therefore, the 

major challenge lies on how to establish the nonlinear relationship between inputs and 

outputs.  

Artificial neural networks (ANNs), on the other hand, can effectively recognize and 

reproduce cause-effect relationships for a complex system. ANNs are inspired by the 

functionality of human brain where billions of neurons are interconnected to 

simultaneously process complex information. Since the first application in the 1940s 

(McCulloch and Pitts, 1943), ANNs have been widely used to simulate complex physical 

and chemical processes, predict future trends and solve multifaceted problems without 

mathematically describing the phenomena which are sometimes infeasible. In addition, 
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not only can the ANNs learn to respond to varying inputs, they are strongly capable of 

implementing nonlinear functions by allowing a uniform approximation of any 

continuous function. Such features are fundamental and desirable in studying 

environmental systems that usually exhibit complex and variable responses (Yoon et al., 

2011; May and Sivakumar, 2011; Nourani et al., 2012).  

On the other hand, ANNs have also been criticized for their “black box” nature such 

that the linearity or quadratic dependence of the transfer equations can not readily be 

understood. The computational burden and the proneness to overfit the training set have 

also been mentioned in the literature (Elmolla et al., 2010; Colbourn et al., 2011). Among 

many types of ANNs, two popular ones are the multilayer feed-forward neural network 

trained by backpropagation algorithm and the Kohonen self-organizing mapping 

(Aleboyeh et al., 2008; Jiao, 2010; Gazzaz et al., 2012).  

Recently, the application of ANNs to simulate wastewater treatment processes, 

especially photodegradation has been gaining increasing attention. Aleboyeh et al. (2008) 

have developed a multilayer feed-forward ANN to predict the photochemical 

decolorization of azo dye by using UV and hydrogen peroxide. Durán et al. (2009) have 

established a three layers feed-forward network to describe the photodegradation of 

cyanides and formats in power station effluent under UV/Fe(II)/H2O2 process. Elmolla et 

al. (2010) have examined the implementation of ANNs in simulating and predicting the 

degradation of antibiotic in aqueous solution by Fenton process. Lin et al. (2012) have 

applied ANN models to generate relationships among multiple monitored parameters and 

the total coliform counts to monitor and control UV and UV-TiO2 disinfections for 

municipal wastewater reclamation. Many other previous studies have also shown that 
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ANNs could effectively reproduce experimental data and predict the behaviour of 

photochemical wastewater treatment processes (Khataee and Kasiri, 2010; Antonopoulou 

et al., 2012; Frontistis et al., 2012; Pirdashti et al., 2013; Zhou et al., 2013). 

 

2.3.3 Simulation-based Process Control  

Experimental and modeling efforts are devoted to understand the behaviour of the 

UV and advanced oxidation treatment systems, to quantify the influence of each 

operational parameter, and to predict the performance. However, the lack of process 

optimization and optimal control of the treatment systems could drastically hinder their 

widespread applications in shipping and offshore oil and gas industries. Many researchers 

have engaged in the development and application of process control and optimization 

tools, particularly for wastewater treatment, to meet the needs for performance and 

sustainability (Marchitan et al., 2010; Frontistis et al., 2012).  

Statistical experimental design methods, such as the Taguchi method and response 

surface method (RSM), have been widely applied for the sake of improved product yields, 

reduced process variability, and reduced development time in engineering optimization 

problems. Zhu et al. (2011) used Box–Behnken experimental design (BBD) and RSM to 

design and optimize the performance of Fenton and electro-Fenton oxidation processes. 

Salahi et al. (2012) optimized the operating conditions of nano-porous system membrane 

processes by using the RSM. Gönder et al., (2012) applied the Taguchi method to find the 

optimum working conditions for the ultrafiltration process in paper mill wastewater 

treatment. Zirehpour et al. (2014) determined the optimum conditions for achieving 

higher membrane permeate flux in oily wastewater treatment by using the Taguchi robust 
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design method.  

On the other hand, many soft computing methods, including artificial neural 

networks (ANN), adaptive network-based fuzzy inference system (ANFIS) (Huang et al., 

2009; Elmolla et al., 2010; Turkdogan-Aydınol and Yetilmezsoy, 2010), genetic algorithm 

(GA), and fuzzy logic (FL), have also received increased attention in this regard 

(Colbourn et al., 2011; Mullai et al., 2011; Antonopoulou et al., 2012; Lin et al., 2012). 

Soft computing is known for the combined use of new computation techniques that can 

achieve higher tolerance towards imprecision, uncertainty, partial truth and 

approximation. It is usually defined as a methodology that synergically fuses fuzzy logic, 

neural networks, evolutionary algorithms, and nonlinear distributed systems (Chandwani 

et al., 2013). The application of these soft computing techniques has been dramatically 

extended to environmental systems in the past decade (Hu et al., 2012; Shokakar et al., 

2012; Jing et al., 2014b; Ghaedi et al., 2014).  

Recently, the combined use of the aforementioned techniques has also attracted 

much attention. Han and Qiao (2011) developed a dynamic structure neural network to 

control the dissolved oxygen in a wastewater treatment process. The results showed that 

the proposed approach can improve the control performance due to its adaptive strategy, 

particularly when the required dissolved oxygen level is changed in the control. Bhatti et 

al. (2011) developed a three-layer ANN model to predict the removal efficacy of copper 

from electrocoagulation wastewater as well as the consumption of energy. GA was also 

used over the ANN model to maximize removal efficiency and to minimize energy 

consumption. Ma et al. (2011) proposed a hybrid ANN-GA numerical technique to model 

and optimize the removal of chemical oxygen demand (COD) in an anoxic/oxic system. 
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Liu et al. (2013) combined GA with ANFIS for estimating effluent nutrient 

concentrations in a full-scale biological wastewater treatment plant. The results indicated 

that the GA-ANFIS technique outperformed the traditional ANFIS in terms of effluent 

prediction accuracy. Soleimani et al. (2013) applied an ANN model to simulate the 

permeation flux and fouling resistance in separation of oil from industrial oily wastewater. 

The optimum operating conditions, including trans-membrane pressure, cross-flow 

velocity, feed temperature and pH, were acquired by using multi-objective GA. Ghaedi et 

al. (2013) successfully predicted the adsorption of reactive orange 12 using a three layer 

principle component analysis-ANN. They further demonstrated the optimum operating 

variables to achieve the maximized adsorption efficiency based on GA. Badrnezhad and 

Mirza (2014) also integrated ANN with GA to model and optimize the operating 

parameters involved in the cross-flow ultrafiltration of oily wastewater. Temperature, feed 

pH, trans-membrane pressure, cross-flow velocity, and filtration time were used as inputs 

and optimized to get the optimum permeate flux as an output.  

Although many studies have investigated the combined use of soft computing 

techniques, particularly ANN and GA in modeling and optimization of wastewater 

treatment systems, only a few have taken changing conditions and dynamic system 

control into account. Instead of optimizing the treatment process at the beginning with 

constant operation conditions, the algorithm of dynamic control can be used to rationally 

make a series of decisions at different time points and to achieve better performance in 

terms of cost or efficacy (Yu et al., 2008). Such a multi-stage control strategy is usually 

complex and well suited to nonlinear systems where traditional models have difficulty 

incorporating continuous decisions (Liu et al., 2010; Ferrero et al., 2012). In addition, to 
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date, no attempt has been reported to integrate dynamic system control with ANN and GA 

in order to improve the effectiveness and efficiency of marine oily wastewater treatment. 

 

2.4 Treatment System Operation Planning 

Operation planning is a complex decision making process that includes the challenge 

to choose among alternatives that provide, on one hand, a sufficient level of flexibility to 

react on unforeseen future development and, on the other hand, are economically efficient. 

An optimized planning can make all relevant units orderly, complete the scheduled tasks 

within the shortest time period to minimize costs and associated environmental impacts. 

Environmental decisions can be complex because of the inherent trade-offs among 

environmental, social, ecological, and economic factors (Kiker et al., 2005; Matott et al., 

2009). To deal with this, the application of system optimization approaches for supporting 

environmental planning processes could be a promising solution (Krohling and 

Campanharo, 2011; Wandera et al., 2011). This is especially true for wastewater treatment 

systems as such investments are commonly built, operated, and maintained to generate 

social and environmental benefits while regulating the discharge of pollutants into the 

receiving environments (Chang et al., 2011; Zeferino et al., 2012; Lyko et al., 2012; Dong 

et al., 2014).  

Cunha et al. (2009) tried to determine the best possible configuration for the 

wastewater treatment system according to economic, environmental, and technical 

criteria. This decision-support model can aid the designing process by covering all the 

issues involved in the implementation of an integrated water resources management 

approach. Zeferino et al. (2010) proposed a multi-objective model for regional 
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wastewater systems planning through the weighting method and simulated annealing 

algorithm. The model could simultaneously address the minimization of capital costs, the 

minimization of operating and maintenance costs, and the maximization of dissolved 

oxygen. Brand and Ostfeld (2011) applied a genetic algorithm model for the optimal 

design of the transmission gravitational and pumping sewer pipelines, decentralized 

treatment plants, and end users of reclaimed water of a regional wastewater system. Liu 

et al. (2011) developed a mathematical programming approach to optimize water 

resources management by taking into account population distribution, water use/quality 

and wastewater generation, as well as geographical considerations. The outputs from this 

model provided the location of desalination plants and wastewater treatment and water 

reclamation plants, as well as the water conveyance infrastructure needed. Hakanen et al. 

(2011) described a new interactive tool for wastewater treatment plant design by 

combining with a treatment process simulator. It utilized interactive multi-objective 

optimization approach that enabled the design process to be associated with conflicting 

evaluation criteria. Tsuzuki et al. (2013) quantitatively analyzed pollution discharge 

indicators to develop a strategy for planning and management of municipal wastewater 

treatment systems. However, the application of operation planning tools towards marine 

wastewater treatment has not been well studied in the literature. 

Strategic flexibility is usually considered in the evaluation of operation planning 

solutions in order to accommodate planning uncertainties, which can be caused by the 

inaccuracies or perturbations of the parameter values, and the ambiguity or lack of 

information. Uncertainties can be one of the most significant difficulties in making a 

sound and robust wastewater system planning (Zeferino et al., 2014). Precise information 
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is generally difficult to obtain due to imperfect knowledge, measurement error, limited 

data accessibility, and the variations of parameters which are inherent to the environment. 

System optimization problems, therefore, are usually subject to various uncertainties and 

complex interactions among technical, environmental and managerial factors. As one of 

the traditional optimization approaches, fuzzy linear programming (FLP) has long been 

investigated and advanced since the early stage of fuzzy set theory which allows the 

representation of uncertainties due to human impreciseness in the form of membership 

functions (Bellman and Zadeh, 1970; Maleki et al., 2000; Zhang et al., 2003; Veeramani 

et al., 2011). It can be used to effectively reflect known possibilities and formulate the 

vagueness inherent in decision making processes in an efficient way. Many attempts have 

been reported in the literature to use FLP in environmental decision making (Chen et al., 

2003; Xu et al., 2009; Li and Chen, 2011; Tan et al., 2011).  

On the other hand, stochastic methods also have been widely used to tackle 

uncertainties with known probability distribution functions especially for objective and 

constraint coefficients. Review of the existing studies suggests that the most rigorous 

method of fitting a probability distribution is using the normal distribution (Kiemele et al., 

1997; Dunn and Clark, 2009). However, the central limit theorem defines that a normal 

distribution can only be approximated with a sufficiently large sample size which is often 

impractical under normal circumstances (Liu et al., 2010). Many parameters and decision 

variables are usually unknown or replaced with interval estimates based on references or 

experts‟ opinions (Chen et al., 2005a, 2005b; Li et al., 2006; He et al., 2009; Cao et al., 

2011). 
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Sometimes people facing situations where quantitative information or mathematical 

solutions are not readily available. For example, industrial stakeholders need to make a 

long-term decision on purchasing a suitable oily wastewater treatment system for onboard 

use by taking economic, environmental and technological factors into account. Decision 

makers, under such circumstances, usually need to reach a subjective consensus based on 

their personal experience, expertise as well as individual style and perspective. Many 

multi-criteria decision making (MCDM) approaches have been developed to facilitate 

decision making under such uncertainties and the lack of knowledge. Kornyshova and 

Salinesi (2007) classified them into categories such as outranking methods, analytic 

hierarchy process, multi-attribute utility theory, weighting methods, fuzzy methods, and 

multi-objective programming.  

Among them, the analytic hierarchy process (AHP), first proposed by Saaty (1980), 

is one of the most widely used MCDM approaches. It structures the rational analysis of 

decision making by dividing a problem into hierarchies including goal, criteria, 

sub-criteria (if any), and decision alternatives. One of the most important features, or in 

other words, the strengths of the AHP revolves around the possibility of evaluating 

quantitative as well as qualitative criteria and alternatives on the same preference scale. 

Pairwise comparison judgments are given by decision makers using numerical, verbal or 

graphical scales and are subsequently synthesized to obtain the overall priorities. This 

comparison enables the AHP to capture subjective and quantitative judgment made by 

decision makers. Many attempts have been reported in the literature to apply the AHP in 

problems with high complexity and uncertainty, especially in the environmental sector 

(Tolga et al., 2005; Chowdhury and Husain, 2006; Jablonsky, 2007; Tiryaki and 
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Ahlatcioglu, 2009; Sadiq and Tesfamariam, 2009; Kaya and Kahraman, 2011). However, 

the AHP has been criticized for its inability to quantify the uncertainty associated with 

decision making (Deng, 1999). Banuelas and Antony (2004) highlighted that the basic 

theory of the AHP does not allow any statistical conclusion to be drawn. Rosenbloom 

(1996) stated that a small difference in the utilities of alternatives may not be appropriate 

to conclude that one alternative is superior to the other. Carlucci and Schiuma (2009) 

argued that the AHP is not able to address the interactions and feedback dependencies 

between the elements of a decision problem. In addition, in many real-world applications, 

the available information is imprecise, incomplete and occasionally unreliable due to the 

unquantifiable nature of data or lack of knowledge. Human experts tend to use linguistic 

terms (e.g., good, poor, excellent) to express their judgments which may not be handled 

effectively using crisp scales. 

To overcome the aforementioned limitations, much research effort has therefore 

been directed towards taking uncertainties (e.g., through fuzzy sets and probability 

distributions) into account in the AHP. On one hand, to capture linguistic information, Yu 

(2002) employed an absolute term linearization technique and a fuzzy rating expression 

into a GP-AHP model for solving fuzzy AHP problems. Tolga et al. (2005) combined the 

use of fuzzy set theory with the AHP to address the uncertainty of assigning crisp 

concepts in decision-making topics. Tesfamariam and Sadiq (2006) incorporated 

uncertainty into the AHP using fuzzy arithmetic operations for environmental risk 

management. Chowdhury and Husain (2006) integrated fuzzy set theory, the AHP, and 

the concept of entropy to select the best management plan for a drinking water facility. 

Kaya and Kahraman (2011) proposed a hybrid fuzzy AHP-ELECTRE approach for 
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modeling the uncertainty of linguistic expression. On the other hand, to deal with 

insufficient information and opinion difference in group decision-making processes, 

pairwise comparison elements were suggested to be viewed as random variables and 

computed via Monte Carlo simulation by Rosenbloom (1996), Eskandari and Rabelo 

(2007) and Jing et al. (2013b and 2013c).  

To date, triangular distribution is the most commonly used distribution for modeling 

expert judgment in the AHP (Banuelas and Antony, 2004; Hsu and Pan 2009). However, 

it may place too much emphasis on the most likely value at the expense of the values to 

either side (Phanikumar and Maitra, 2006). It is possible to overcome this disadvantage of 

the triangular distribution by using the beta-PERT distribution. The beta-PERT 

distribution has also been widely used for modeling expert judgments and providing a 

close fit to normal distributions with less demand for data (Coates and Rahimifard, 2009; 

Jing et al., 2012b). It uses the most likely, minimum, and maximum values of expert 

estimates to generate a distribution that more closely resembles realistic probability 

distribution. Jing et al. (2012b) proposed a Monte Carlo simulation aided analytic 

hierarchy process (MC–AHP) approach by employing the beta-PERT distribution to 

prioritize nonpoint source pollution mitigation strategies. Jing et al. (2013b) further 

integrated the uniform distribution with interval judgment to a hybrid stochastic-interval 

analytic hierarchy process (SIAHP) approach for group decision making on wastewater 

reuse. 
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2.5 Integration of Process Control and Operation Planning 

Operation planning tools has been widely used to create policy, change an internal 

procedure, design a facility, or construct a service program in terms of minimizing the 

cost or maximizing the profit, especially in environmental applications where decisions 

are commonly driven by social-economic, political, and technical factors. On the other 

hand, process control techniques have also been receiving significant attention over the 

years because they can be applied to optimize control strategies and thereby reduce 

operating cost. With the advance of modern technology, a variety of new techniques and 

equipment have become available and the cost-savings by optimally controlling such 

processes become more economically attractive. It is not uncommon that decision makers 

or stakeholders would like to integrate process control techniques into their planning and 

strategic decision making framework.  

Recently, it has been recognized that, regardless their difference, the combination of 

process control and operation planning can ensure the meeting of the economic objectives 

and timely completion of the tasks associated with the plans (Hans et al., 2007; Hüfner et 

al., 2009). Hüfner et al. (2009) reported that a high-quality production planning needs to 

reflect the uncertainties associated with the market and technical parameters and to 

accommodate the feasible operation scheduling. Kamar (2010) argued that if appropriate 

process control is not implemented during the operation planning procedure, there might 

be potential benefits lost because traditional planning tends to be more conservative and 

less risk-taking. Verl et al. (2011) stated the importance of distinguishing between 

“detailed scheduling and process control” and “operation planning”. Nonetheless, they 

also claimed that process control consists of the anticipatory consideration and the 
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reaction to unexpected occurrences, while long-term planning is usually a prerequisite for 

detailed scheduling and process control. How to take process control and scheduling into 

account during operation planning have become a rapidly growing area of research and a 

subject of interest to academicians and practitioners alike. 

However, such integration is oftentimes complicated by many factors such as 

multi-scale nature of decisions, the lack of knowledge of process dynamics and control, 

and various types of uncertainties. Firstly, the most commonly cited technical challenge is 

the multiple time and length scales, or in other words, the coupling between long-term 

planning decisions such as capital investment, portfolio management and policy-making 

with a planning horizon spanning from months to decades, and short-term decisions such 

as production process control and logistics that are based on day-to-day or even 

hour-to-hour operations. Many advanced processes are now required to be modeled on as 

find-grained a time scale as hour to hour to represent their variability accurately, whereas 

most traditional operation planning strategies still follow a much coarser time scale such 

as month-to-month or year-to-year. How to effectively merge these different time scales 

presents a daunting challenge. 

Secondly, many operation processes usually consist of a number of complex physical, 

chemical, and biological sub-systems that are preferably described by nonlinear functions. 

Traditional process models that are developed based on classic theorems may not 

effectively describe these complex sub-systems because the models are usually created by 

applying different abstraction methods in which essential properties and key process 

indicators are preserved and insignificant details are left out. Therefore, how to precisely 

simulate the nonlinear systems and predict the outputs with high accuracy has been an 
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obstacle for learning the behaviour of many operation processes.  

Lastly, the coupling of process control and operation planning can be further 

complicated by various uncertainties, which may arise from a number of different sources, 

such as demands for materials and finished products, feedstock supplies, environmental 

and economic conditions, and customers‟ willingness to pay. The rapid development of 

technologies may also bring uncertainties as most technologies are in the process of 

maturing and the relevant costs and yields are not likely to be certain, not to mention the 

policies that are highly influenced by unpredictable political factors (Engell, 2009). 

Despite the above mentioned difficulties, there has been some research efforts 

directed towards the aforementioned needs of coupling process control and operation 

planning. Chakraborty and Bhattacharaya (2006) developed a process-based 

mathematical model to not only help the rational design of the methane production 

process but also enable the effective dynamic control of the production. Janak et al. (2006) 

implemented a continuous-time formulation for short-term scheduling (i.e., a few days) 

of batch processes with multiple intermediate due dates and finally led to a medium-term 

production planning framework. Hüfner et al. (2009) presented a new combined 

algorithm to solve long-term planning and short-term scheduling problems of batch 

production process under uncertainty. A two-stage stochastic linear integer program was 

employed to solve the planning problem while a priced timed automata model was 

designed for the scheduling problem. This two-layer concept can return a penalty back to 

the planning layer and re-evaluate the long-term plans if the scheduling targets are not 

met. Yan et al. (2009) combined short-term ship routing and long-term fleet planning 

models in order to maximize the total benefit of a fleet voyage problem. Verl et al. (2011) 
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proposed a model-based energy efficiency optimization for production system planning 

by using multilevel monitoring and control system. The material flow simulation of the 

process chain with state-based energy models of manufacturing resources were taken into 

account as process control modules. Powell et al. (2012) proposed a stochastic 

multi-scale model according to the concept of dynamic programming and can be used for 

both deterministic and stochastic problems. The model had a theoretic framework to 

derive near-optimal policies by running hourly simulations over multiple decades. Lee 

(2012) concluded that the control and scheduling of many engineering processes during 

system planning are usually influenced by the lack of knowledge and precise modeling 

tools due to the wide existence of nonlinearity. However, to date, there has been no such 

attempt made to investigate the feasibility and efficacy of coupling process control and 

operation planning on wastewater treatment applications, particularly for marine oily 

wastewater. 

 

2.6 Summary 

Marine oily wastewater has been recently criticized as a major source of oil pollution 

in the marine environment. Unlike catastrophic oil spills, the discharge of oily wastewater, 

including ballast water, offshore produced water, and bilge water, usually occurs on a 

daily basis without triggering any mitigation response. The accumulated effects of 

discharging untreated or partially treated oily wastewater can lead to significantly 

negative impacts on marine lives and even human health. One of the best management 

practices is onboard treatment. The treatment of oily wastewater can be undertaken using 

a number of physical, chemical, and biological methods, such as gravity separation, air 
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flotation, coagulation, membrane filtration, absorption, adsorption, and biological 

treatment. However, most of them are only used for removing dispersed/free oil (e.g., 

gravity separation) or even not applicable (e.g., biological treatment) for onboard 

treatment due to safety, space and cost concerns. The emission of residual oil droplets and 

dissolved organic compounds including particularly PAHs are not likely to be affected 

and must be stringently controlled. This is especially true for the Arctic Ocean and the 

North Atlantic where zero discharge policy prevails and the release of any organic 

pollutants may be disastrous. Therefore, additional polishing treatment technique is much 

desirable after the conventional oil-water separation to further remove PAHs.  

Recently, UV irradiation and advanced oxidation processes have been gaining 

significant attention and regarded as promising solutions because of their relatively small 

footprint, low cost, and high efficiency. However, most of the previous studies have 

focused on freshwater systems rather than marine environments where salinity and 

complex matrix effects play a dominant role. Moreover, the research efforts on numerical 

modeling and performance optimization of these techniques have also been limited due to 

their multiphysics nature and the complexity of synergistic effects. Such advanced 

treatment systems, as compared to the traditional ones, are still lack of in-depth 

understanding of their reaction mechanisms, performance evaluation, process 

optimization, and operation planning, which can drastically hinder their widespread 

applications in shipping and offshore oil and gas industries. 

A good treatment system operation usually requires both process control and 

operation planning to minimize treatment cost, minimize treatment time, and maximize 

treatment efficiency. System optimization and planning approaches are necessary for 
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supporting wastewater treatment processes because they can make all relevant units 

orderly, complete the scheduled tasks within the shortest time period to minimize costs 

and associated environmental impacts. However, these approaches are usually subject to 

various uncertainties and complex interactions among technical, environmental and 

managerial factors. Sometimes people facing situations where quantitative information or 

mathematical solutions are not readily available. Decision makers, under such 

circumstances, usually rely on multi-criteria decision making (MCDM) approaches to 

reach a subjective consensus. On the other hand, with the increasingly stringent standards 

and more sophisticated treatment systems, operators have become more and more reliant 

on mathematical tools instead of their personal experience to optimize the control strategy. 

A clear understanding of the process mechanism will help to qualify the direct 

relationships among the inputs and outputs and the indirect relationship such as the time 

series correlation.  

Process modeling is usually regarded as the foundation of any effective process 

control strategy as it provides the response of the process to any inputs on which control 

optimization is based. Recently, the combined use of soft computing methods, including 

artificial neural networks (ANN), adaptive network-based fuzzy inference system 

(ANFIS), genetic algorithm (GA), and fuzzy logic (FL), has been of growing interest in 

process control. Such a combination can achieve higher tolerance towards imprecision, 

uncertainty, partial truth and approximation as compared to traditional methods. However, 

most of the literature studies have focused either on process-control or operation-planning 

strategies while the integration has been drastically limited, particular in the field of 

marine wastewater management. More research efforts should be directed to such 
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integration as it can provide the decision makers or operators of marine wastewater 

treatment systems a boarder perspective of performance optimization in terms of 

economic, environmental, and technical considerations.    
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CHAPTER 3  

NOVEL OPERATION PLANNING TOOLS FOR MARINE 

OILY WASTEWATER MANAGEMENT 
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3.1 A Stochastic Simulation–Based Hybrid Interval Fuzzy 

Programming (SHIFP) Approach 

3.1.1 Background 

An offshore oil spill is defined as the discharge or release of petroleum hydrocarbons 

into the ocean or coastal waters. It may be due to the collision and/or grounding of oil 

tankers, accidental spill or leakage from offshore platforms and drilling rigs, and natural 

disasters such as typhoons and earthquakes that can cause huge damage to sea-based 

facilities and tankers. Oil spills can constitute a direct hazard to marine ecosystems and 

human health through a variety of pathways, including the digestion of oil, oiling of 

feathers and skins, the avoidance of oil habitat, inhalation or dermal contact, and the 

indirect threats to seafood safety and mental health (Boehm et al., 2008). The cleanup of 

offshore oil spills is usually subject to many constraints such as the type of oil, oil-water 

volume fraction, and temperature. The most commonly used methods include booming 

and skimming, chemical dispersants, biodegradation, in-situ burning, and the use of 

sorbents. Each method has its own advantages and disadvantages while skimming is one 

of the most environmentally friendly oil removal techniques (Pezeshki et al., 2000; You 

and Leyffer, 2011). Oil skimmers can float across the top of the slick contained within the 

boom and suck or scoop the oils of different viscosities into storage tanks without adding 

chemicals. It is worth noting that most crude oils and intermediate to heavy products can 

emulsify and form so-called water-in-oil-emulsions when spilled at sea. Therefore, the 

recovered mixture usually contains not only oil but also water and needs to be further 

treated before discharge (Gaaseidnes and Turbeville, 1999; Maguire-Boyle and Barron, 

2011).  
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The simplest treatment is nothing more than using a series of large holding tanks to 

allow water and oil to be separated under the action of gravity alone. In addition to that, 

centrifugal separators are known in which the oily mixture is forced to rotate at extremely 

high angular velocities thereby causing the separation of oil and water by density (Krebs 

et al., 2012). Other management options such as destruction by incineration and direct 

disposal to landfill have also been implemented in some areas to accommodate the 

limited storage or processing capacity. However, a rich body of literature documents 

indicated that the transportation and treatment of recovered oily water usually requires a 

large number of personnel and equipment (Dollhopf and Durno, 2011). This may, if not 

properly planned, significantly increase the cost and time of cleanup and pose a variety of 

technical challenges, particularly in the context of harsh environments where cold water, 

low temperature, dynamic/strong wave and current can significantly affect the 

applicability of these measures (Jing et al., 2012c). While an optimized contingency plan 

can make all relevant units orderly, complete the scheduled tasks within the shortest time 

period to minimize costs and associated environmental impacts. To deal with this, the 

application of system optimization approaches for supporting environmental decision 

making processes seems a promising solution. 

Precise information is difficult to obtain due to imperfect knowledge, measurement 

error, limited data accessibility, and the variations of parameters which are inherent to the 

environment. System optimization problems, therefore, are usually subject to various 

uncertainties and complex interactions among technical, environmental and managerial 

factors. Although various types of uncertainty have been discussed in the literature, there 

has been no study investigating the feasibility of handling both types of fuzzy, 
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probabilistic and interval inputs in system optimization problems. The interval-based FLP, 

uniform distribution, and Monte Carlo simulation would be integrated to simultaneously 

communicate fuzzy, interval, and stochastic uncertainties caused by imprecise 

information, subjective judgment, and variable environmental conditions into the 

optimization process.  

Therefore, in this section, a stochastic simulation–based hybrid interval fuzzy 

programming (SHIFP) approach is developed to aid the decision making process by 

solving fuzzy linear optimization problems. Fuzzy set theory, probability theory, and 

interval analysis are combined to provide decision makers with a better understanding of 

the impact of their decisions. A case study related to recovered oily water treatment 

during offshore oil spill cleanup operations is conducted to illustrate the feasibility of the 

SHIFP approach. 

 

3.1.2 Methodology 

3.1.2.1 Fuzzy Sets and Fuzzy Logic 

Zadeh (1965) first introduced the concept of fuzzy logic which was oriented to the 

rationality of uncertainty due to imprecision or vagueness. It is an extension of the 

classical set theory in which elements have grades of membership ranging from 0 to 1. 

Unlike classical set theory, fuzzy logic is a superset of conventional (Boolean) logic that 

has been extended to handle the concept of partial truth- truth values between 

“completely true” and “completely false”. As its name suggests, it is the logic underlying 

modes of reasoning which are approximate rather than exact. The importance of fuzzy 

logic derives from the fact that most modes of human reasoning and especially common 
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sense reasoning are approximate in nature. The essential characteristics of fuzzy logic 

include the following aspects: 1) exact reasoning is viewed as a limiting case of 

approximate reasoning; 2) everything is a matter of degree to a certain set, or in other 

words, everything has elasticity and nothing is absolute; 3) any logical system can be 

fuzzified; 4) knowledge is interpreted as a collection of elastic or, equivalently, fuzzy 

constraint on a collection of variables; and 5) inference is viewed as a process of 

propagation of elastic constraints. 

If Ω is a set, then a fuzzy subset   is defined by its membership function     , 

which produces values in [0, 1] for all x in Ω. Therefore,      is a function mapping Ω 

into the range of [0, 1]. If       equals to 1, then it can be stated that x0 completely 

belongs to the fuzzy subset  . If       equals to 0, then it means that x1 does not 

belong to   at all. If       equals to a fractional, say 0.5, then it can be concluded that 

the membership value of x2 in   is 0.5, indicating that the possibility of value x2 being 

classified into the category of   is 50%. Most of the fuzzy sets can be described by 

fuzzy numbers, most commonly triangular fuzzy numbers (TFNs). A triangular fuzzy 

number, with a membership function μ(x), is defined by three numbers a, b, and c where 

the base of the triangle is the interval [a, c] and its vertex at b.  

            (3.1) 
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3.1.2.2 Interval Theory 

Interval theory was developed in the 1950s as an approach to putting bounds on 

rounding errors and measurement errors in mathematical computation and thus 

developing numerical methods that yield reliable results. The main focus is on the 

simplest way to calculate upper and lower endpoints for the range of values of a function 

in one or more variables due to uncertain information or vagueness. These barriers are not 

necessarily the supremum or infimum, since the precise calculation of those values can be 

difficult or impossible. For instance, instead of roughly estimating the concentration of 

benzene in water using standard arithmetic as 1 ppm, interval arithmetic gives a more 

confident concentration range between 0.5 and 1.5 ppm. The most common use is to keep 

track of and handle rounding errors directly during the calculation and of uncertainties in 

the knowledge of the exact values of physical and technical parameters. The latter often 

arise from measurement errors and tolerances for components or due to limits on 

computational accuracy. Interval arithmetic has helped people find reliable and 

guaranteed solutions to equations and optimization problems. 

 

3.1.2.3 Stochastic Programming by Monte Carlo Simulation 

Monte Carlo simulation, which applies probability theory to address variable and 

uncertain phenomena, relies on statistical representation of available information. It has 

been widely applied to obtain more detailed information for systems that are too complex 

to be solved analytically. Monte Carlo simulation in its simplest form involves random 

sampling from a probability distribution. Various probability distributions (e.g., uniform, 

normal, beta, and lognormal) have been used in connection with Monte Carlo simulation 
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to model the uncertainty of environmental systems. Banuelas and Antony (2004) 

presented a modified analytic hierarchy process with triangular probability distribution to 

include uncertainty in the judgments. Li and Chen (2011) developed a 

fuzzy-stochastic-interval linear programming (FSILP) approach for supporting municipal 

solid waste management by tackling uncertainties expressed in normal probability 

distributions, fuzzy membership functions and discrete intervals. 

 

3.1.2.4 The SHIFP Approach 

In a decision process using the traditional FLP model, coefficients and variables may 

be fuzzy, instead of precisely given numbers as in crisp linear programming models. 

Consider the following FLP problem with fuzzy variables and fuzzy constraints (Kumar 

et al., 2011; Dubey et al., 2012): 

             (3.2) 

subject to: 

               (3.3) 

                                     (3.4) 

where is the value of the objective function; are the objective function coefficients;

are the decision variables; are the constraint coefficients; are the right-hand sides 

of constraints; and Mj, which are real numbers, are the upper bounds of decision variables. 

A basic assumption is that , , , and are all triangular fuzzy numbers. Note that
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and are usually given by literature data or subjective experience. On the other hand,

and , such as machine hours, labour force, required materials, and operating cost are 

usually imprecise due to incomplete information and the lack of complete understanding. 

Their minimum and maximum bounds can be determined based on literature review or 

expert survey. To account for imprecise knowledge and to model the uncertainty, 

triangular fuzzy numbers with regard to , , and the corresponding are randomly 

generated using Monte Carlo simulation within given intervals such that the left spread, 

right spread, and vertex values are assumed to have uniform distributions. The uniform 

distribution is commonly used where one can specify only the minimum and maximum 

possible values for the input variable. Subsequently, the constraints are examined to 

verify if any of them has been violated. If all constraints are satisfied, are determined 

to be feasible and a corresponding value of the objective function can be calculated. If

is the current best and , then should be replaced with , otherwise is 

discarded. Repeat the above procedure for a number of replications; the optimization 

results can be obtained as probability distributions (Alba et al., 2011; Li et al., 2013). The 

detailed algorithm can be summarized as follows: 

Step 1: Assign triangular fuzzy numbers to and crisp values to based on literature 

review or subjective opinions. It is noted that are treated as real numbers because the 

intervals [0, ] are used to generate random fuzzy numbers. 

Step 2: Review literatures and collect expert opinions about the values of each constraint 

and objective function coefficient which can be either intervals or discrete numbers. Set 

the minimum and maximum bounds for each coefficient such that uniform distributions 
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can be assumed within the bounds. 

Step 3: Sobol quasi-random numbers of uniform distribution are generated in sets of 

three (i.e., left spread, right spread, and vertex point of a triangular fuzzy number) and 

bounded between 0 and 1. Equation 3.5 is then applied to convert the random numbers 

from unit interval [0, 1] to the preset intervals of each coefficient (i.e., and ). It 

should be satisfied that left spread ≤ vertex ≤ right spread to ensure the triangular shape. 

                      (3.5) 

where Random represents the random numbers for the left, right, and vertex points of

and ; and are the minimum and maximum bounds determined in Step 2, 

respectively; and urnd are Sobol quasi-random numbers of uniform distribution. 

Step 4: As with Step 3, for each specific set of and , random triangular fuzzy numbers 

are generated for and bounded between 0 and Mj. 

Step 5: Examine the constraints to ensure the validity of . Calculations are based on 

the α-cuts and interval arithmetic (Buckley and Lowers, 2008). If any constraint is not 

satisfied, then need to be regenerated. 

Step 6: The objective function is calculated as using feasible and further compared 

with the current best value using Chen‟s Method (Chen and Hwang, 1992). If , 

then should be replaced with , otherwise is discarded. 

Step 7: Repeat Steps 4 through 6 for a preset number of replications (e.g., 1,000, and 

5,000) to obtain the maximum objective function as a triangular fuzzy number in terms of 

each set of and . The centre of gravity method is used to defuzzify the fuzzy objective 
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function value (i.e., triangular fuzzy number) into a crisp value (Van Broekhoven and De 

Baets, 2006). 

                            (3.6) 

where aw and cw are the minimum and maximum bounds of fuzzy number ; and is the 

membership function.  

Step 8: Repeat Steps 3 through 7 for a preset number of replications (e.g., 1,000, and 

5,000), the defuzzified maximum objective function can be obtained as a probability 

distribution function in order to reflect the inherent uncertainty in the optimization 

process.   

 

3.1.3 Case Study 

The objective of this case study is to examine the effectiveness of the proposed 

SHIFP approach in handling various uncertainties in the system optimization process. A 

hypothetic case of oil spill was assumed to occur in the North Atlantic near shore of 

Newfoundland and Labrador. An estimated total of 50,000 tonnes of bunker oil was 

accidentally spilled and needed to be cleaned up. Numerous weir skimmers and drum 

skimmers were employed to collect spilled oil which was more or less blended with 

seawater. The local authority had a number of incineration barges, vacuum trucks, 

centrifugal separators, and temporary storage facilities to treat the recovered oily water. 

However, it was unknown that how many units should be used and how much wastewater 

should be delivered to each facility. The objective was therefore to maximize the 
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treatment capacity of recovered oily water on a daily basis in order to reduce 

environmental risks. The main constraint was associated with the costs encountered in the 

treatment processes such that the total net cost should not exceed a given limit. The 

decision variables were chosen as the daily operation hours of each treatment facility by 

which decision makers could arrange the schedule for cleanup actions.  

                           (3.7) 

subject to: 

                (3.8) 

 ,                          (3.9) 

where is the total daily treatment capacity which needs to be maximized (tonnes/day);

are the hourly treatment capacities of each facility; and Nj are the daily operation 

hours and the total numbers of each facility, respectively; and are the operation and 

maintenance (O&M), and transportation costs, respectively; are the selling prices of 

recovered bunker oil from each facility; and is the maximum daily total budget (in CAD) 

which was set by the local authority as (110,000, 130,000, 150,000); and Mj are the 

maximum daily operation hours of each facility, in other words, the upper bounds of each 

decision variable. The corresponding lower and upper bounds of the coefficients and 

decision variables were arbitrarily assumed for computational simplicity (Table 3.1). It 

should be noted that the number of Monte Carlo iterations used here was determined as 

1,000 by taking time constraints and the efficiency of convergence into account.
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Table 3.1 Detailed description of treatment facilities of recovered oily water 

Facilities Sequence Total 

number  

Daily 

hours 

(hr) 

O&M cost 

(CAD/hr) 

Transportation 

cost 

(CAD/tonne) 

Hourly 

capacity 

(tonnes/hr) 

Recovered 

oil price 

(CAD/tonne) 

 
 

 
     

Incineration barge 1 6 [0, 12] [100, 500] [4.5, 6] [0.15, 0.25] 0 

Vacuum truck 2 20 [0, 24] [200, 300] [20, 30] [3, 5] [26, 35] 

Centrifugal 

separator 

3 10 [0, 20] [100, 250] [20, 30] [8, 11] [30, 50] 

Temporary storage 4 5 [0, 16] [20, 60] [33, 40] [4, 5.5] [18, 24] 

 

j jN
jX ja

id jc je
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Figure 3.1 Probability distributions of the lower bound, vertex point, upper bound, and defuzzified centroid of the 

objective function 
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Figure 3.2 Probability density estimates of the lower bound, vertex point, upper bound, and defuzzified centroid of the 

objective function 
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Figure 3.3 Normal probability plot of the centroid of the objective function
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3.1.4 Results and Discussion 

The histograms in Figure 3.1 depict that the distributions of the lower bounds, vertex 

points, and upper bounds of the maximized objective function were all close to normal. 

However, the results from the Lilliefors test, which is a two-sided goodness-of-fit test of 

normality, suggested that the null hypothesis of their normal distribution was rejected at a 

significance level of 5%. The offset of lower bounds and upper bounds towards the vertex 

points implies that the optimization results tended to concentrate in the range of 

2,000-4,500 tonnes. These findings can be further demonstrated in Figure 3.2 by using 

the kernel-smoothing method to plot the probability density estimates. Another 

interesting finding is that the distribution of the defuzzified optimization results was well 

fitted by the normal distribution with a mean value of 3,352 tonnes and a standard 

deviation of 155.4 tonnes. The Lilliefors test cannot reject the null hypothesis that the 

centroid distribution was normal at a significance level of 5%. Its normality was further 

evaluated and confirmed by the normal probability plot as shown in Figure 3.3. In this 

case study, the results revealed that the maximum daily treatment capacity was likely to 

range from 3,000-3,700 tonnes given the budget constraint. In other words, from the 

technical perspective, it induces that oil skimmers are not recommended to operate if the 

amount of recovered oily water exceeds the treatment capacity unless other treatment or 

storage facilities are available. 
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Figure 3.4 Probability density estimates of the lower bound, vertex point, upper bound, and defuzzified centroid of the 

O&M cost of incineration barge 
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Figure 3.5 Probability distributions of the lower bound, vertex point, upper bound, and defuzzified centroid of the 

O&M cost of incineration barge 
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Figure 3.6 Normal probability plot of the centroid of the O&M cost of incineration barge  
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Figure 3.7 Optimal solutions of operation hours of each treatment facility
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Figures 3.4 and 3.5 show the lower bounds, upper bounds, vertex points, and 

centroids of the stochastically generated fuzzy numbers with regard to the coefficient of 

O&M cost of incineration barge. The lower and upper bounds mostly appeared at the 

edges of the predefined interval (100, 500), indicating that the support of random fuzzy 

numbers tended to be wider rather than concentrating around the middle value. The 

Lilliefors test was used to test the null hypothesis that data come from a normally 

distributed population, when the null hypothesis does not specify which normal 

distribution. Based on the Lilliefors test at the 5% significance level, its centroid 

distribution well fitted the normal distribution with a mean value of 299.8 CAD/hr and a 

standard deviation of 89.5 CAD/hr which are also reported in the corresponding normal 

probability plot (Figure 3.6). This finding elucidates that producing a random sequence of 

triangular fuzzy numbers in a given interval is equivalent to a normal distribution when 

using the centroid defuzzification method. It is worth noting that, if Figure 3.2 is 

compared with Figure 3.4, the centroids of both the random fuzzy coefficients and the 

fuzzy optimal solutions follow normal distribution. The normality seems to be able to 

propagate throughout the optimization process, yet this interesting finding deserves more 

in-depth study and needs more rigorous mathematical proof to validate its applicability 

and feasibility. 

Another interesting point to discuss is that the shapes of the fuzzy decision variables, 

corresponding to the maximized objective function, can be categorized into groups 

(Figure 3.7). For each set of the random coefficients, Monte Carlo simulation randomly 

generated fuzzy decision variables, validated the constraints, and found and recorded the 

particular group of decision variables that led to the maximum objective function. The 
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above procedure was repeated 1,000 times such that 1,000 groups of decision variables 

were obtained. It should be noted that the optimal decision variables appeared repeatedly 

in seven different shapes as shown in Figure 3.7. The percentages listed in the legend 

illustrate how many times each shape was referred to in 1,000 optimization runs. For 

example, in Figures 3.7, the four triangular fuzzy numbers (i.e., operation hours of the 

incineration barges, vacuum trucks, centrifugal separators, and temporary storage 

facilities) whose minimum, maximum, and vertex points are marked with triangles, were 

selected as the optimal variables in 60.6% of the total runs (i.e., 606 out of 1,000). This 

can be further interpreted that, if the operation hours can be determined within the range 

of the triangular fuzzy numbers marked by the triangles (e.g., (4, 11) in Figure 3.7a), the 

probability of achieving maximum treatment capacity would be 60.6% under the 

condition of uncertain coefficients. Moreover, the fuzzy outputs can help the decision 

makers choose other compromising points rather than the vertex points (e.g., Figure 3.7a, 

triangular fuzzy numbers (4, 4.2, 11), vertex point 4.2) and provide them with the 

corresponding possibility of getting the maximum treatment capacity (i.e., possibility of 

the vertex points is 1 and decreases along both sides as shown in Figure 3.7). 

Contrastingly, in Figures 3.7, another four triangular fuzzy numbers marked by circles 

denote that in 24.7% of the replications (i.e., 247 out of 1,000), the objective function was 

maximized by setting decision variables in these shapes. This particular setting might also 

be considered as viable when the primary choice (settings with 60.6% probability) cannot 

be applied due to safety or technical concerns. 

These interesting findings are believed to have important and broader implications 

relating to oil spill cleanup and wastewater disposal such that decision makers can wisely 
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allocate limited resources with higher confidence in a short period of time. This is 

particularly true for harsh environments where available resources are usually in short 

supply and extreme weather conditions are likely to create more uncertainty in estimating 

the associated costs and time. In addition, from the ecological prospective, harsh 

environments tend to have more vulnerable ecosystems and shorter food chains than 

those in the low-latitude regions. Therefore, making quick and sound decisions will not 

only help reduce the oil spill cleanup cost but also minimize environmental risks. 

 

3.2 A Hybrid Fuzzy Stochastic Analytical Hierarchy Process (FSAHP) 

Approach 

3.2.1 Background 

Many multi-criteria decision making (MCDM) approaches have been developed to 

facilitate decision making under such uncertainties and the lack of knowledge. Among 

them, the analytic hierarchy process (AHP), first proposed by Saaty (1980), is one of the 

most widely used MCDM approaches. It structures the rational analysis of decision 

making by dividing a problem into hierarchies including goal, criteria, sub-criteria (if 

any), and decision alternatives. 

However, the traditional AHP method uses 1-9 crisp values for pairwise 

comparisons when you compare two decision alternatives on one particular criterion. 

However, in many real-world applications, the available information that can be used for 

comparisons is usually imprecise, incomplete and occasionally unreliable due to the 

unquantifiable nature of data or the lack of knowledge. Therefore, decision makers would 
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feel more comfortable in using linguistic terms (e.g., good, poor, excellent) to describe 

the performance of each alternative on the criterion instead of making direct comparisons. 

On the other hand, stochastic uncertainty is also worth being adopted because resultant 

rankings from the traditional AHP are not statistically testable and the statistical 

difference between two alternatives is unclear if their scores are close. In addition, for a 

group decision making problem, biased preferences, incomplete information and 

judgment uncertainty may arise when not enough decision makers/experts are available. 

To date, triangular distribution is the most commonly used distribution for modeling 

expert judgment in the AHP (Banuelas and Antony, 2004; Hsu and Pan 2009). However, 

it may place too much emphasis on the most likely value at the expense of the values to 

either side (Phanikumar and Maitra, 2006). It is possible to overcome this disadvantage of 

the triangular distribution by using the beta-PERT distribution. The beta-PERT 

distribution has also been widely used for modeling expert judgments and providing a 

close fit to normal distributions with less demand for data (Coates and Rahimifard, 2009; 

Jing et al., 2012b). 

In response to this, in this section, a hybrid fuzzy stochastic analytical hierarchy 

process (FSAHP) approach is developed by integrating the beta-PERT distribution, fuzzy 

set theory, pairwise comparison and Monte Carlo simulation. A real-world case study for 

ballast water management is presented to test the feasibility and efficiency of the 

proposed approach in a group decision-making environment. Ballast water is carried by 

ships to acquire the optimum operating depth of the propeller and to maintain 

manoeuvrability and stability (Endresen et al., 2004). It is recognized as the principle 

source of invasive species and pollutants in coastal freshwater and marine ecosystems, 
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causing severe effects on the environment and human health (Jing et al., 2012a). To 

address the associated concerns, the International Maritime Organization (IMO) has 

adopted many legal instruments whereby ships will be required to establish a ballast 

water management system between 2009 and 2016 (Gollasch et al., 2007). Many 

treatment technologies such as filtration, heat treatment, hydrocyclone, ultraviolet, 

ozonation, oxidization, electric pulse, and deoxygenation have been tested and applied to 

remove unwanted species and pollutants from ballast water (Jing et al., 2012a). However, 

Gregg and Hallegraeff (2007) argued that no treatment option had been shown fully 

biologically effective, environmentally friendly, safe and practical for onboard 

applications. In addition, the performance of most treatment processes is likely to be 

affected by the cold environment and unpredictable weather conditions (Endresen et al., 

2004; Jing et al., 2012a). For example, when using heat treatment, low temperature would 

require the heating coil to be work at higher capacity in order to maintain the desired 

temperature in the ballast tank so that the microorganisms can be killed. UV treatment 

can also be affected due to the rough sea, which may increase the possibility of having a 

broken lamp where mercury may be released. Many other treatment facilities can also be 

damaged when the waves are high and the wind is strong. The evaluation of their 

applicability and associated risk is of paramount importance and lacks in-depth research. 

How to choose the best technology from a sustainability metrics perspective still exists as 

a challenge to the government and other public bodies with environmental 

responsibilities. 

 

3.2.2 Methodology 
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3.2.2.1 Fuzzy Sets and Fuzzy Numbers 

See Section 3.1.2.1. 

 

3.2.2.2 Stochastic Programming by Monte Carlo Simulation 

See Section 3.1.2.3. 

 

3.2.2.3 The FSAHP Approach 

The proposed FSAHP approach is capable of capturing not only a human‟s appraisal 

of ambiguity but also the uncertainty introduced by the lack of information or scattered 

opinions. Experts‟ linguistic assessments are aggregated to approximate a series of 

beta-PERT distributions for randomized fuzzy pairwise comparisons. Monte Carlo 

simulation is then used to generate random fuzzy pairwise comparison matrices 

(FPCMs), calculate the fuzzy weights, and produce the final scores for each decision 

alternative. The detailed steps are summarized as follows: 

Step 1: Structure the decision problem into a hierarchy of interrelated sub-problems that 

can be analyzed independently. The hierarchy usually includes a main goal, criteria, and 

alternatives, from the top to the bottom. Each criterion may be further decomposed into a 

number of lower-level sub-criteria as a new level. The goal, criteria, sub-criteria (if any), 

and alternatives can be determined through literature reviews and collective discussions. 

Step 2: Linguistic judgments on each alternative and criterion with respect to the 

elements on the level immediately above can be obtained from experts through 

questionnaires, surveys, interviews, expert panels, and direct observations. Instead of 

using a crisp ratio scale, seven triangular fuzzy numbers (TFNs) (Figure 3.8) are used to 
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represent linguistic terms with the expectation that experts will feel more comfortable 

using such terms in their assessment. It should be noted that such a verbal clarification 

becomes impractical when too many rating scales (e.g., 10-point format) are involved 

because the level of agreement becomes too fine to be easily expressed in words (Dawes, 

2007). In addition, a seven level judgment would be easier to make than a nine level 

judgment so that the participating experts will be more comfortable to make decisions. 

Step 3: For the assessment of each alterative and criterion, the number of TFNs should be 

equal to the number of experts. The minimum (a), most likely (b) and maximum (c) 

values of the TFNs are aggregated into three individual groups. In order to generate 

random TFNs, Equations 3.10–3.13 are used to approximate an independent beta-PERT 

distribution for each group (Coates and Rahimifard, 2009; Jing et al., 2012b). 

                 (3.11) 

                     (3.12)                       

         (3.13)                      

                  (3.14) 

where mean, min, modal, max, stdev denote the mean, smallest, most probable, largest 

values, and standard deviations of a, b, and c, respectively; N is the number of experts; α 

and β are the shape factors. Equations 3.14–3.16 are then used to generate pseudorandom 

numbers (i.e., randoma, randomb, randomc) that follow the beta-PERT distributions for a, 
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b, and c, respectively in Matlab
®
. It is noteworthy that the triangular shape needs to be 

verified to validate these random numbers. 

        (3.15)                                      

        (3.16)                                        

          (3.17)                                         

where betarnd denotes standard Matlab
®
 function (i.e., beta distribution) which returns a 

random number between 0 and 1. 

Step 4: Set up fuzzy pairwise comparison matrices (FPCMs) for each hierarchy level 

based on fuzzy arithmetic. For example, when m alternatives (C1…Cm) on a given level 

are evaluated against each other with regard to the p
th

 criterion (p = 1, 2, 3…n) on the 

preceding level, an m × m FPCM is obtained as below 

                      (3.18)                                

To calculate each non-diagonal fuzzy element (e.g., ), the dominance of one alternative 

or criterion over another is determined by the division of two TFNs. For example, if the 

random TFNs for C1 and C3 are and , respectively, then 

 and .  

Step 5: Calculate the fuzzy weights of each FPCM (e.g., Equation 3.17). For example, in 

Equation 3.18, the geometric means of each row and the corresponding fuzzy weights are 

obtained using Equations 3.19-3.20. The weight assessing method by geometric mean is 

   aaaaaa minmaxbetarndminrandom  *,

   bbbbbb minmaxbetarndminrandom  *,

   cccccc minmaxbetarndminrandom  *,
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applied because of its simplicity and ease when dealing with fuzzy matrices (Kaya and 

Kahraman, 2011).  

     (3.19)          

               (3.20)         

              (3.21)      

where aij, bij, and cij are the minimum, most likely, and maximum values of each 

non-diagonal fuzzy element , respectively; m is the size of the FPCM or the number of 

decision alternatives; ai, bi, and ci are the geometric means of the minimum, most likely, 

and maximum values of the fuzzy elements on the i
th

 row, respectively;  asum, bsum, and 

csum are the sum of ai, bi, and ci, respectively; and are the fuzzy weights of the i
th

 

alternative against the p
th

 criterion. Repeating this step to obtain all other and , 

which are the fuzzy weights of the p
th

 criterion in terms of the goal. 

Step 6: As with the traditional AHP, the proposed FSAHP approach also measures the 

inconsistency of each FPCM. Due to the presence of fuzzy numbers, the traditional 

consistency algorithms are not effective in addressing such uncertainties. Hence, in this 

paper, a new inconsistency index (CIF) based on the distance of the matrix to a specific 

consistent matrix is adopted from Ramík and Korviny (2010). 

                       (3.22)                                               

                           (3.23)                                                  

mjiccbbaa

m
m

j

iji

m
m

j

iji

m
m

j

iji ,...,2,1,;;

/1

1

/1

1

/1

1



























 







m

i

isum

m

i

isum

m

i

isum ccbbaa
111

;;

mi
a

c

b

b

c

a
w

sum

i

sum

i

sum

i

ip ,...,2,1),,(~ 

ijx~

ipw~

ipw~ pw~

sum

i

i

i

i

L

i
b

a

a

b
s 









 min

sum

iM

i
b

b
s 



82 
 

                      (3.24)                                                

         (3.25)                         

 (3.26)      

where , , and are the minimum, most likely, and maximum values of the optimal 

solution that has the minimal measure of fuzziness, respectively; σ is the linguistic scale 

(i.e., [1/7, 7] in this study); γ is the normality constant; CIF is the inconsistency index of a 

FPCM such that a value of 0.1 or less is considered to be acceptable, otherwise the FPCM 

should be revised. 

Step 7: The overall fuzzy priorities of the i
th

 alternative can be calculated by 

aggregating the weights throughout the hierarchy: 

                   (3.27)                                                     

where are the fuzzy merits of the i
th

 alternative with regard to the p
th

 criterion, 

respectively; are the fuzzy weights of the p
th

 criterion against the goal; and n is the 

number of evaluation criteria. 

Step 8: Defuzzify by using the center of gravity (COG) method and rank the decision 

alternatives based on their normalized crisp overall scores wi. 
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                       (3.28)                               

                         (3.29)                       

where are the crisp overall scores of the i
th

 alternative; a and c denote the support of ;

are the corresponding membership functions of ; and wi are the normalized 

crisp overall scores of each decision alternative and are sequenced from high to low in the 

order of 1 to 5. To validate this ranking scheme, or in other words, the defuzzification 

results, Chen‟s fuzzy ranking method is also employed to further compare the overall 

fuzzy priorities and rank them from the highest to the lowest. 

Step 9: Repeat Steps 4 to 8 for a number of iterations (e.g., 1000 and 5000), the overall 

scores of alternatives can be obtained and plotted as probability density functions. 

 

3.2.3 Case Study 

This case study was conducted to demonstrate the applicability and effectiveness of 

the proposed FSAHP approach in addressing uncertainty in the context of group 

decision-making. A cargo ship was assumed to be required for an onboard ballast water 

treatment system in order to operate in the North Atlantic. The decision alternatives and 

evaluation criteria were determined based on literature review and discussion with 

experts from governmental ministries and academic institutions. The experts were further 

invited to fill out the questionnaire on the basis of linguistic terms. Their opinions were 

analyzed and interpreted to facilitate the implementation of the FSAHP approach.  
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3.2.3.1 Hierarchy Structure 

As depicted in Figure 3.9, the goal was to select the best onboard treatment 

technology in order to eliminate invasive microorganisms and to remove water soluble 

organics from ballast water, particularly in the harsh environments. Five treatment 

technologies including heat treatment, ultraviolet (UV), ozone, ultrasound, and biocide 

were chosen (Jing et al., 2012a). 
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Figure 3.8 Membership spread of linguistic scales 
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Figure 3.9 Hierarchy structure of the ballast water treatment technology selection 

problem 
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Heat treatment is capable of killing invasive species embedded in sediment that has 

accumulated at the bottom of the ballast tanks. It should be pointed out that discharging 

warm water potentially threatens biological communities and a complete treatment 

process may take hours or days, which is not always practicable. Despite the potential 

threats posed by mercury contamination and genetic mutation, UV manages to eliminate 

microorganisms by breaking chemical bonds in DNA and RNA molecules and cell 

proteins (Jing et al., 2012a). Recently, ozone has been widely employed in removing 

microorganisms from ballast water. The often-cited disadvantages of using ozone as a 

disinfectant have been reported as the possible formation of toxic by-products, low 

solubility, and high instability (Herwig et al., 2006). Ultrasound can induce the collapse 

of microscopic gas bubbles in the exposed liquid and lead to the rupture of cell 

membranes, yet it is less effective in killing some microorganisms such as bacteria 

(Holm, 2008). Many chemical biocides have been documented as possible treatment 

options to the problem of ballast-mediated invasive species. However, some concerns, 

such as risks from storage and handling, high operational and material cost, and possible 

discharge of toxic residues need to be taken into account (Gregg and Hallegraeff, 2007). 

Based on the recommendations from literature (de Lafontaine et al., 2009; Tsolaki and 

Diamadopoulos, 2010; Jing et al., 2012a) and expert opinions, in this study, eight 

evaluation criteria including efficacy on microorganisms, efficacy on organic pollutants, 

adaptability to harsh environments, capital cost, operation and maintenance (O&M) cost, 

human health risk, ecological risk, and waste production were chosen. 

 

3.2.3.2 Data Acquisition 
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In the absence of quantitative data about each alternative, experts‟ qualitative 

judgments were used to measure the priorities of alternatives. The linguistic assessments 

for the qualitative attributes were provided by nine experts from the government of 

Newfoundland and Labrador and academic institutions (professors and graduate students 

in Faculty of Engineering and Applied Science at Memorial University). The experts are 

all in the environmental engineering field or closely related to it. They were asked to rate 

the performance of each alternative and the importance of each criterion using the 

linguistic scales provided in Figure 3.8. Tables 3.2 and 3.3 summarize the linguistic 

assessments made by each participating expert. These assessments were aggregated in 

groups such that the beta-PERT distributions of each group can be estimated to generate 

random TFNs. For example, the performance of heat, ultraviolet, ozone, ultrasound and 

biocide with respect to their efficacy on microorganisms was randomly generated as C (2, 

3, 4), G (6, 7, 7), G (6, 7, 7), E (4, 5, 6) and F (5, 6, 7), respectively. To obtain the 

corresponding FPCM (i.e., Equation 3.29), elements in the first row were given by the 

fuzzy comparisons between the performance of heat (2, 3, 4) and all the others, 

respectively. The consistency of this FPCM was less than 0.1, which was acceptable, and 

the fuzzy weights of each alternative were able to be calculated. It should be noted that 

the number of Monte Carlo iterations used for this case study was determined as 1000 by 

taking time constraints and the efficiency of convergence into account (Hsu and Pan, 

2009). 
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Table 3.2 Expert assessment for ballast water treatment technologies 

Criteria Alternatives Expert Assessment 

1 2 3 4 5 6 7 8 9 

Efficacy on 

microorganisms 

Heat C D B B C C D C C 
Ultraviolet G F G G G G F F F 
Ozone G G E G G F F G F 
Ultrasound E E F E F D E E E 
Biocide F G G F F G E F G 

           Efficacy on 

organics 

Heat B A A C C B C C B 
Ultraviolet F E G F G F F G F 
Ozone F G E D F E F G E 
Ultrasound E E D E D E D E C 
Biocide B B A B B B C B A 

           Adaptability to 

harsh environments 

Heat C B D C B C C B C 
Ultraviolet F E G F F E F E F 
Ozone F E E F G D E F G 
Ultrasound E E F D E D E D D 
Biocide D D F E D E D C D 

           Capital cost Heat F D E E F E F E E 
Ultraviolet D E D E D B D D C 
Ozone C D C D C C C B C 
Ultrasound B C B C D C D B D 
Biocide G F F E G F E F E 

           O&M cost Heat F G F E E G E F G 
Ultraviolet D E E D D E D E E 
Ozone C C C D C E C D C 
Ultrasound C B C C D D B C D 
Biocide D E D F F E D E F 

           Human risk Heat G F G E F F E E F 
Ultraviolet C C D C D C D C B 
Ozone C D B D E D E C D 
Ultrasound B D D C D D E D C 
Biocide B B C C D C C D B 

           Ecological risk Heat C D B C D E C E D 
Ultraviolet D F D E F G F D D 
Ozone F E D E E F F D E 
Ultrasound E D E D E D E D D 
Biocide C B E D C C D C C 

           Waste production Heat E D D D C D E D C 

Ultraviolet F G F E F G G F E 

Ozone D E D D E E E F F 

Ultrasound D C C C D D E D E 

Biocide C B C B D C E D B 
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Table 3.3 Expert assessment for evaluation criteria 

 

Goal Criteria Expert Assessment 

1 2 3 4 5 6 7 8 9 

Best 

treatment 

technology 

Efficacy on microorganisms G F F E F E G E F 

Efficacy on organics E C D E F F D F D 

Adaptability to harsh environments F F G F E D E C D 

Capital cost F E B E C D F D C 

O&M cost C B E D C F F E F 

Human risk F G E F D E D E E 

Ecological risk D E F D E C D F D 

Waste production B D D A D B E G C 
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        (3.29) 

  

3.2.4 Results and Discussion 

The results and statistics were obtained by following the proposed FSAHP approach. 

Figure 3.10, for example, depicts the probability density of the scores of each alternative 

with respect to the criterion of human health risk after 1,000 iterations. The horizontal 

axis stands for the normalized scores of each alternative, while the vertical axis represents 

the probability of the scores. The higher the score, the better the performance. The 

histogram bar plot clearly demonstrates that heat treatment (0.26–0.33) appeared to be the 

most attractive solution in terms of the lowest health risk, followed by ozone (0.16–0.25) 

without any overlap. Ultrasound, biocide, and UV were seen as the least preferable option 

with considerable overlaps between each other, implying that the experts were not 

confident about ranking one over the others. The correlation coefficients between the 

scores of ultrasound and biocide, biocide and UV, and ultrasound and UV were -0.201, 

-0.476, and 0.308, respectively. A negative correlation coefficient between two variables 

usually implies that the increase of one variable is associated with the decrease of the 

other. One the other hand, a positive correlation coefficient means that two variables 

increase (or decrease) simultaneously in the same direction. These principles become 
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more prominent as the absolute value of a correlation coefficient close to 1. In this case 

study, negative correlation coefficients can be interpreted as larger overlaps as compared 

to positive correlation coefficients based on the fact that the scores were closely 

distributed (Figure 3.10). Tables 3.4 and 3.5 further validate these conclusions by 

showing the ranking of alternative priorities based on the COG and Chen‟s 

defuzzification methods, respectively. A statistical test of the null hypothesis that heat 

treatment was not the probabilistic optimal alternative (versus the alternate assumption 

that it was) was conducted to examine if the difference between it and the second best 

option (i.e., ozone) was statistically significant. Heat treatment was ranked first by both 

methods with the confidence level exceeding 95%, indicating the null assumption that it 

is not probabilistic optimal (versus the alternate assumption that it is) is rejected. 

Ultrasound took the third place in more than 75% of the iterations while UV had the least 

preference in over 70% of the cases. From the technical perspective, the results were 

reasonable because heat sources such as waste heat from the engine jacket coolers and 

additional auxiliary boiler are usually not accessible by most crew members. On the other 

hand, short-term exposure to high level ozone can temporarily influence lung function 

and respiratory tract; meanwhile, some by-products (e.g., bromate) produced from 

ozonation may also pose risks to human health. UV was ranked as the least preferable 

alternative because excessive human exposure to UV is positively associated with severe 

health problems including photoaged skin, ocular diseases, and skin cancers. 
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Table 3.4 Ranking with regard to human risk based on the COG method 

Treatment Technology Rank 

1 2 3 4 5 

Heat 1000 0 0 0 0 

      UV 0 3 6 260 731 

      Ozone 0 943 51 6 0 

      Ultrasound 0 50 798 150 2 

      Biocide 0 4 145 584 267 

Total 1000 1000 1000 1000 1000 
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Table 3.5 Ranking with regard to human risk based on Chen’s method 

Treatment Technology Rank 

1 2 3 4 5 

Heat 1000 0 0 0 0 

      UV 0 2 20 277 701 

      Ozone 0 929 57 11 3 

      Ultrasound 0 64 752 180 4 

      Biocide 0 5 171 532 292 

Total 1000 1000 1000 1000 1000 
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Figure 3.10 Probability distributions of alternative scores with regard to human risk 



96 
 

 
Figure 3.11 Probability density estimates of decision criteria weights 
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Figure 3.12 Probability distributions of alternative overall scores 
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Figure 3.13 Box plots of overall scores for each alternative
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Table 3.6 Summary of the simulation results for the final ranking based on the COG 

method 

Treatment Technology Rank 

1 2 3 4 5 

Heat 0 71 144 784 1 

      UV 1000 0 0 0 0 

      Ozone 0 610 296 94 0 

      Ultrasound 0 319 560 121 0 

      Biocide 0 0 0 1 999 

Total 1000 1000 1000 1000 1000 
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Table 3.7 Summary of the simulation results for the final ranking based on Chen’s 

method 

Treatment Technology Rank 

1 2 3 4 5 

Heat 0 25 98 876 1 

      UV 1000 0 0 0 0 

      Ozone 0 746 218 36 0 

      Ultrasound 0 229 684 87 0 

      Biocide 0 0 0 1 999 

Total 1000 1000 1000 1000 1000 
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The probability density distributions of criteria weights using the kernel-smoothing 

method are plotted in Figure 3.11. It reveals that efficacy on microorganisms, adaptability 

to harsh environments, O&M cost, and human health risk were the most influential 

criteria that need to be prioritized in the decision making process. The overall scores of 

each alternative towards the goal are shown in Figure 3.12 as histograms. Another 

statistical test of the null hypothesis that UV was not the probabilistic optimal alternative 

(versus the alternate assumption that it was) was conducted. Tables 3.6 and 3.7 reveal that 

UV was ranked with the highest overall score at 100% confidence level, indicating that 

the null assumption that it is not probabilistic optimal (versus the alternate assumption 

that it is) is rejected. Ozone, heat treatment, and ultrasound had the second, third, and 

fourth places at the confidence levels of 61.0–71.4%, 56.0–68.4%, and 78.4−84.6%, 

respectively. Figure 3.13 further supports this ranking scheme by using box plot to 

graphically illustrate the minimum, lower quartiles, medians, upper quartiles, and 

maximum of the overall scores. It indicates that the score distribution of ozone has a 

remarkable overlap with that of ultrasound as their medians, lower percentiles, and upper 

percentiles are close to each other. Nonetheless, ozone has a wider spread of scores as 

compared to ultrasound, suggesting that the experts were more unanimous on the 

performance of ultrasound during their assessment. Another interesting point to note is 

that both COG and Chen‟s methods produced similar defuzzification results, which 

demonstrated their applicability in the proposed FSAHP approach. In addition, the results 

also depicted that the proposal approach can well address linguistic inputs in group 

decision making processes. The decision makers would be more comfortable and 

confident to give vague judgments rather than evaluating pairwise comparisons using 
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single numeric values. Verbal assessments were collected and compared against with 

each other wherein the priorities of each alternative were determined. The use of the 

beta-PERT distribution was also able to lessen the uncertainty caused by insufficient 

information or biased opinions. 

 

3.3 Summary 

Good planning can help manage the scheduled tasks within the shortest time period 

to minimize costs and any associated environmental impacts. The existence of different 

types of uncertainties due to imprecise information, subjective judgment, and variable 

environmental conditions may complicate the planning process to a considerable extent. 

A stochastic SHIFP approach was developed in this chapter to tackle uncertainties 

inherent in the decision making environment. As with the traditional FLP, fuzzy set 

theory was used to model uncertainty such that the results would provide the decision 

makers more flexibility for the choice of the solution. Uniform interval distribution was 

assumed due to the lack of precise information on both coefficients and variables. A case 

study related to recovered oily water treatment during offshore oil spill cleanup 

operations was carried out to test the proposed approach. The decision makers were 

looking for solutions that how to arrange different facilities and how much wastewater 

should be delivered to each facility. The results demonstrated that the objective function 

(maximum daily treatment capacity), if defuzzified by the centroid defuzzification 

technique, was likely to follow the normal distribution within the range from 3,000 to 

3,700 tonnes. In addition, the shapes of the fuzzy decision variables, corresponding to the 

maximized objective function, can be categorized into seven groups with different 



103 
 

probability such that decision makers can more confidently allocate limited resources. 

This was particularly true for harsh environments where available resources were usually 

in short supply and extreme weather conditions were likely to create more uncertainties in 

estimating the cost and time. Emergency planners and administrators are expected to 

benefit from this study by gaining an insight into how to wisely allocate resources in 

responding to an offshore oil spill. 

When marine oily water is collected or ready for treatment, choosing the best 

available technology usually becomes the first priority for decision makers. As one of the 

most widely exploited multi-criteria decision making (MCDM) approaches, the analytic 

hierarchy process (AHP) has been well documented in the literature. However, it has 

been criticized for its inability to quantify the uncertainty associated with decision 

making. A hybrid fuzzy stochastic analytical hierarchy process (FSAHP) approach was 

developed in order to assist decision making with more confidence by integrating fuzzy 

set theory, probabilistic distribution, pairwise comparison and Monte Carlo simulation. A 

case study related to ballast water management was carried out to verify the feasibility 

and efficiency of the proposed approach. Five treatment technologies were evaluated 

against a number of environmental, economic, and technical criteria by nine experts. The 

results revealed that UV was ranked with the highest overall score at 100% confidence 

level, indicating that the null assumption that it was not probabilistic optimal (versus the 

alternate assumption that it is) was rejected. Ozone, heat treatment, and ultrasound had 

the second, third, and fourth places at the confidence levels of 61.0–71.4%, 56.0–68.4%, 

and 78.4−84.6%, respectively. Considerable overlaps existed among these three 

alternatives which may be attributed to the irreducible uncertainty caused by subjective 
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judgments or lack of knowledge. The results also illustrated that both COG and Chen‟s 

defuzzification methods were able to provide the decision makers with reliable decision 

references. The proposed FSAHP approach can offer a number of benefits such as the 

capability of capturing human‟s appraisal of ambiguity and addressing the effects of 

uncertain judgment when dealing with insufficient information or biased opinions. 

However, this approach could be highly sensitive to expert dependence whereby any 

misjudgement may affect its reliability and efficiency. As a complex methodology, it 

requires more computational efforts in assessing composite priorities than the traditional 

AHP.   
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CHAPTER 4  

AN EXPERIMENTAL STUDY ON THE TREATMENT OF 

MARINE OILY WASTEWATER USING UV IRRADIATION 
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4.1 Background 

A disproportionately large amount of oil pollution at sea is resulted from the 

operational discharge of oily wastewater (e.g., produced water, bilge water, and ballast 

water) from shipping and offshore oil and gas operations (Kadali et al., 2012; Jing et al., 

2012a). Secondary polishing treatment techniques, right after the conventional oil-water 

separation, have become increasingly necessary and crucial to achieve a thorough 

treatment of marine oily wastewater by removing PAHs from the effluent. The occurrence 

of PAHs is usually of the greatest concern because of their high resistance towards 

biodegradation, extreme toxicity to marine biota, and possible carcinogenicity and 

mutagenicity. For example, according to OGP (2002) and Neff et al. (2011b), the typical 

concentrations of naphthalene, phenanthrene and fluorene in produced water are 

somewhere between 5-841, 9-111, and 4-67 μg L
−1

, respectively, whereas the other 13 

EPA PAHs tend to have much lower concentrations ranging from 0.1 to 15 μg L
−1

. The 

total concentration of benzene, toluene, ethylbenzene and xylene (BTEX) is between 730 

and 24070 μg L
−1

, while phenols have a total concentration around 400 μg L
−1

; however, 

they are generally less toxic and their natural degradation tends to be much faster than 

that of PAHs (Neff et al., 2011b). Most of the traditional PAH removal techniques, such 

as biofiltration, biodegradation, adsorption, and phytoremediation are not directly suitable 

for marine applications due to space, cost, and safety concerns (Haritash and Kaushik, 

2009). UV irradiation has been named as a promising solution to fulfill this purpose as it 

has been widely used in freshwater applications and it can be applied in compact size 

with no adding chemicals (Woo et al., 2009; Włodarczyk-Makuła, 2011; Sanches et al., 

2011). Because most of the previous studies have not investigated its efficiency and 
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applicability in dealing with marine oily wastewater, this chapter is dedicated to 

investigate the UV induced degradation kinetics of a typical PAH, namely naphthalene, in 

natural seawater through a bench-scale reactor. Naphthalene is chosen because it is a 

major contaminant in oily wastewater such as ballast water, bilge water and offshore 

produced water, and has been considered as a possible carcinogen to humans. It is 

relatively more soluble and less hydrophobic than other high molecular weight PAHs 

which raises a critical bioavailability issue due to its high concentration. Experiments also 

focus on examining the effects of various factors including UV fluence rate, salinity, 

temperature and initial concentration. This experimental study serves as an example of 

marine oily wastewater treatment and also the foundation of the following chapters. 

 

4.2 Materials and Methods 

4.2.1 Reagents and Standards 

Naphthalene (>99%) and naphthalene D8 (>99%, internal standard) were purchased 

from Aldrich and used as received. Dichloromethane (Honeywell Burdick and Jackson, 

USA) was used for preparing stock solutions and for aqueous sample extraction. 

Naphthalene spiking solutions were prepared by 1:1 dilution (v/v) of the stock solutions 

in acetone (Honeywell Burdick and Jackson, USA). The commercial products were used 

as received without any further purification. Distilled water was produced on-site from a 

double, fused-silica distillation unit. Considering the potential interference caused by the 

complex matrix of offshore produced water and bilge water (e.g., other petroleum 

hydrocarbons, heavy metals, biocides, and solids), seawater was chosen for this 

preliminary investigation of the performance of UV irradiation in removing PAHs. 
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Natural seawater with salinity around 25 practical salinity unit (psu) was obtained from a 

clean coastal site in St. John‟s, Canada, and the site is considered free of any oil pollution. 

Seawater was stored and used after filtration (5 μm) to remove suspended solids that 

could scatter and absorb UV irradiation.  

 

4.2.2 Photoreactor and Light Source 

The photoreactor used in this study has an inner airtight quartz sleeve and an outer 

aluminum jacket. The inner sleeve is a clear fused quartz beaker (Technical Glass, USA) 

with a polycarbonate top lid sealed by a 0.64 cm thick O-ring to avoid the evaporation of 

naphthalene. A stainless steel stirring rod, attached to a 4.78 cm size stepper motor 

(4018L-01S-01, from LIN Engineering), is placed at the center of the sleeve. Two 

stainless steel six-bladed paddle impellers are mounted one above the other on the rod. A 

50 W Eheim Jager aquarium heater (3602090, from Eheim, Germany) and a thermometer 

are deployed to adjust water temperature. Eight 18.4 W low-pressure UV lamps (Atlantic 

Ultraviolet, Canada) with emission peak at 254 nm were placed around the quartz sleeve 

(Figure 4.1b). The emission peak has a full width half maximum (FWHM) of 15 nm. The 

outer jacket has an aluminum lid that can be firmly sealed to provide heat and light 

insulation. Four control buttons are located on the dashboard outside of the jacket body to 

control lamps in any desired combinations (i.e., two, four, six, and eight lamps). 

 

4.2.3 UV Fluence Rate Determination 

Fluence rate refers to the total radiant power incident from all directions onto an 

infinitesimally small sphere. According to Bolton and Linden (2003), it is the appropriate 
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term to describe photon intensity in a UV reactor because UV can impinge on the target 

organic compounds from any direction. For different number of lamps, the fluence rate in 

the empty quartz sleeve was measured at 17 points on the top, middle, and bottom layers 

(Figure 4.1), respectively, by using a digital UVX Radiometer (UVP, USA). The 

measurements were made and summed according to the tetrahedral method described by 

Björn (1995) in order to account for light reflected from all directions. To determine the 

corresponding fluence rate when the quartz sleeve was filled with the sample water, the 

attenuation coefficient of UV through water (0.0264 cm
−1

) was taken into account on the 

basis of Su and Yeh (1995). As most suspended solids were removed prior to the tests, a 

basic assumption here was that the effective attenuation length was approximated as the 

internal radius of the reactor (11.1 cm), implying a 25% reduction in all measurements. 

The adjusted measurements were then interpolated by using a Matlab
®
 built-in function 

(i.e., griddata) on the top, middle, and bottom layers, respectively. 

 

4.2.4 Experimental Procedure 

To examine the effects of fluence rate, salinity, temperature, and initial concentration, 

a full factorial design of experiments (DOE) was employed to determine the significance 

of each factor being tested as well as their interactions. Two levels of UV fluence rate 

were obtained by switching on two and six lamps, respectively. Initial naphthalene 

concentrations were set as 10 and 500 μg L
−1

 which were usually considered as the 

minimum and maximum values in oily seawater (OGP, 2002; Johnsen et al., 2004; 

Blanchard et al., 2011). Temperature was adjusted and maintained at 23 (room 

temperature) and 40 
o
C which were reported as the typical temperature range of marine 
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oily wastewater such as offshore produced water and bilge water (Levine and Barnes, 

2010; Neff et al., 2011a; Leichsenring and Lawrence, 2011). Control experiments 

(without UV irradiation) were conducted at 40 
o
C to quantify the loss of naphthalene 

caused by volatilization. Salinity levels of 25, 32.5, and 40 psu were chosen on the basis 

of the ocean surface salinity at the coastal region of the Grand Bank in Newfoundland 

(Han et al., 2011) and the North Atlantic (Qu et al., 2011).  

In each of the 24 experimental runs, a volume of 50 μL of naphthalene stock 

solution (1.2 or 60 mg ml
−1

) was diluted in acetone (1:1, v/v) and then spiked into 6 L 

filtered seawater to obtain an initial naphthalene concentration of 10 or 500 μg L
−1

, 

respectively. Different salinity levels were obtained by evaporating seawater and 

measured by a salinity meter (Thermo Scientific Orion Star A215). The mixture was 

vigorously stirred for 20 min to reach the thermal and volatilization equilibria. UV lamps 

were allowed to warm-up for 20 min before tests. Temperature was controlled by the 

built-in heater. The paddle impellers were driven by a stepper motor to ensure complete 

homogeneity during reaction. At various time intervals (e.g., 30 min) during photolysis, a 

20 ml water sample was collected from the reactor using a peristaltic pump and 

transferred into a 20 ml amber vial. 

 

4.2.5 Analytical Method 

Ten-millilitre water sample was transferred from an amber vial into a glass 

centrifuge tube. A volume of 20 μL of Naphthalene D8 internal standard (5 and 250 mg 

L
−1 

for an initial naphthalene concentration of 10 and 500 μg L
−1

, respectively) was then 

added and subsequently mixed with 0.25 ml dichloromethane for extraction. After 
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shaking and centrifuging for 15 minutes in each step, 50 μL organic phase extract was 

transferred into a 150 μL micro vial and analyzed by a gas chromatograph (GC) (Agilent 

7890A) equipped with a fused silica capillary column (30 m × 0.25 mm × 0.25 μm) and a 

mass selective detector (MS) (Agilent 5975C). Sample injection (2 μL) was performed by 

an auto-injector (Agilent 7693) at a temperature of 300 
o
C. The samples were injected in 

the split injection mode. Oven operating parameters were set as initially 65 
o
C and finally 

300 
o
C with a temperature increase rate of 60 

o
C min

−1
. Hydrocarbon analyses were 

performed in the selected ion monitoring (SIM) mode using an electron energy of 70 eV 

and a source temperature of 350 
o
C. 

 

4.2.6 Statistical Analysis 

The photolysis rate constants of naphthalene in seawater were obtained for different 

experimental conditions. All experimental data were subjected to multi-way analysis of 

variance (ANOVA) to determine the significance of fluence rate, salinity, temperature and 

initial concentration. ANOVA tests the null hypothesis that the output means of each 

factor level are equal, versus them not being equal. A probability of p < 0.05 indicates 

that this factor or the interaction effects between multiple factors are significant. 



112 
 

 
Figure 4.1 (a) Layers and (b) measuring points of UV fluence rate within the quartz sleeve 
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4.3 Results and Discussion 

The reaction rate equation of the photodegradation of naphthalene can be expressed 

as follows: 

        
(1) 

where r is the reaction rate (μg L
−1

 min
−1

); tr is reaction time (min); cnap is the 

concentration of naphthalene (μg L
−1

); kr is the reaction rate constant (min
−1

); and nr is 

the reaction order, which has been generally accepted as equal to 1 (first order kinetics) 

for naphthalene (Kwon et al., 2009; Kong et al., 2012). Equation 1 can be rearranged as: 

            (2) 

where ct and c0 are the instant and initial concentrations of naphthalene, respectively. 

Equation 2 can be further inferred t 

        

(3) 

where k0 is the reaction rate constant of per mW cm
-2

 fluence rate; E and E0 are the actual 

and unit fluence rates (mW cm
−2

), respectively. This series of k0 can be used as a good 

reference to predict the removal rate of naphthalene in industrial processes where high 

energy UV radiation can be employed. According to Equation 2, the reaction rate 

constants under different experimental conditions are tabulated in Table 4.1. 

 

4.3.1 ANOVA 

The Box-Cox (B-C) plot for power transforms suggested that a natural logarithmic 
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transformation (λ=0) of the original outputs would better normalize the data points. The 

UV-induced photodegradation of naphthalene in seawater can be expressed using the 

following equation: 

    (4) 

where X1, X2, X3 and X4 are the coded inputs for fluence rate, salinity, temperature and 

initial concentration, respectively. Equation 4 indicates that the positive coefficients of X1, 

X3, X1X3 and X3X4 have a constructive effect to promote the removal of naphthalene, 

while the increase of X2 and X4 can slow down the process. Results from ANOVA on the 

natural logarithmic transformed response model were summarized in Table 4.2. From the 

Fisher‟s F-test, it was observed that the established model (Equation 4) was statistically 

significant with a F-Value of 23.32 and a probability value (Prob > F) of less than 0.0001. 

This observation was also evidenced by the adjusted and predicted R
2
 values, which were 

0.87 and 0.80, respectively. The predicted R
2 

= 0.80 suggested that 80% of the sample 

variation could be attributed to the independent variables while the adjusted R
2 

= 0.87 

was also of statistical significance and agreed with the correlation applicability of the 

model.  

 According to Table 4.2, a factor or an interaction with a p-value less than 0.05 is 

defined to have significant influence on the photodegradation of naphthalene. The smaller 

the p-values are, the bigger the significance of the factors or their interactions. It can be 

obversed that the effect of fluence rate was the most influential on the removal process, 

followed by temperature and the interaction between temperature and initial 

concentration. This finding was also in agreement with the fact that their model 

coefficients, as shown in Equation 4, were much greater than the others. 

43314321 28.014.022.041.011.048.078.4)ln( XXXXXXXXk 
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Table 4.1 Reaction rate constants of all factorial runs 

 

Reaction condition k 

(min
−1

) 

k0 

(min
−1

) 

Regression 

coefficient Initial Conc. 

(μg L
−1

) 

Run # UV 

lamps 

Salinity 

(psu) 

Temperature 

(
o
C) 

10 

1 6 25 23 0.0186 0.0022 0.992 

2 6 32.5 23 0.0160 0.0019 0.988 

3 6 40 23 0.0110 0.0013 0.982 

4 6 25 40 0.0236 0.0029 0.982 

5 6 32.5 40 0.0183 0.0022 0.955 

6 6 40 40 0.0190 0.0023 0.999 

7 2 25 23 0.0069 0.0024 0.989 

8 2 32.5 23 0.0058 0.0020 0.894 

9 2 40 23 0.0047 0.0016 0.989 

10 2 25 40 0.0073 0.0025 0.986 

11 2 32.5 40 0.0066 0.0023 0.981 

12 2 40 40 0.0062 0.0022 0.994 

        

500 

1 6 25 23 0.0077 0.0009 0.966 

2 6 32.5 23 0.0044 0.0005 0.727 

3 6 40 23 0.0021 0.0003 0.319 

4 6 25 40 0.0428 0.0052 0.912 

5 6 32.5 40 0.0176 0.0021 0.961 

6 6 40 40 0.0216 0.0026 0.982 

7 2 25 23 0.0031 0.0011 0.894 

8 2 32.5 23 0.0018 0.0006 0.427 

9 2 40 23 0.0034 0.0012 0.727 

10 2 25 40 0.0144 0.0050 0.921 

11 2 32.5 40 0.0051 0.0018 0.992 

12 2 40 40 0.0048 0.0017 0.850 
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Table 4.2 ANOVA for natural logarithmic transformed response of naphthalene 

photodegradation 

Source Sum of squares df Mean squares F-Value p-value, Prob > F 

Model 2.74 7 0.39 23.32 <0.0001 

X1-fluence rate 1.05 1 1.05 62.42 <0.0001 

X2-salinity 0.24 2 0.12 7.25 0.0057 

X3-temperature 0.78 1 0.78 46.43 <0.0001 

X4-initial concentration 0.23 1 0.23 13.63 0.0020 

X1X3 0.083 1 0.083 4.93 0.0411 

X3X4 0.36 1 0.36 21.35 0.0003 

Residual 0.27 16 0.017   

Total 3.01 23    
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4.3.2 Effect of Fluence Rate 

The fluence rate of four lamps was measured, corrected with a 25% attenuation 

coefficient, and interpolated on the top, middle and bottom layers, respectively (Figures 

2a-2c). The spatial distributions clearly indicate that UV irradiation reaches its maxima 

near the lamps and gradually decreases to half its maximum value at the centre. Figure 

4.2d shows a 3-layer average distribution from which the mean fluence rate inside the 

quartz sleeve was obtained as 5.65 mW cm
-2

. By following the same procedure, as shown 

in Figure 4.3, the average fluence rates of two, six and eight lamps were obtained as 2.88, 

8.27 and 10.93 mW cm
-2

, respectively. A linear relationship between the number of lamps 

and the mean fluence rate was established with a regression coefficient of 0.99. 

The photodegradation rates of different numbers of lamps were also noted to follow 

a linear pattern. Fox example, the average fluence rate of six lamps (8.27 mW cm
−2

) was 

almost three times greater than that of two lamps (2.88 mW cm
−2

). Under the same 

experimental conditions, the reaction rate constants of six lamps were approximately as 

much as three times higher than those of two lamps (Table 4.1). To further validate this 

finding, an additional series of experiments were conducted by using two, four, six, and 

eight lamps while keeping salinity at 40 psu, temperature at 23 
o
C and initial 

concentration at 10 μg L
−1

. As shown in Figure 4a, the degradation process became much 

faster with the increasing number of lamps. For example, after 2 hours of irradiation, the 

remaining concentrations of naphthalene using two, four, six, and eight lamps were 6.1, 

4.8, 2.0, and 0.9 μg L
−1

, respectively. Semi-log plots of naphthalene concentration versus 

degradation time all appear to be linear with regression coefficients greater than 0.98, 

suggesting that the first-order kinetics is applicable regardless the intensity of UV 
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irradiance (Figure 4b). Further analysis revealed that the first order rate constants were 

0.0047, 0.0080, 0.0110, and 0.0169 min
−1

, respectively, which were linearly related to the 

number of lamps (Figure 4b). This linear pattern infers that high fluence rate can increase 

the collision probability between active centers and therefore generate more free radicals 

(e.g., OH·) to promote the photodegradation process.  

 

4.3.3 Effect of Salinity 

The effect of salinity on the photodegradation of naphthalene is presented in Figure 

4.5. A clear trend can be identified that the performance of UV irradiation was decreased 

at higher salinity levels. In order to further understand this inhibition effect, another two 

experimental runs were undertaken by using distilled water and diluting seawater with 

distilled water to achieve salinity series of 0 and 18 psu, respectively, under the 

irradiation of six lamps. Initial concentration and temperature were used as 10 μg L
−1

 and 

23 
o
C, respectively. As shown in Figure 4.6, naphthalene spiked in distilled water can be 

removed after 120 min irradiation. Contrastingly, the same amount of naphthalene in 

seawater would take much longer time to be fully mineralized. For example, the 

remaining naphthalene concentration in 40 psu seawater after 240 min exposure was 9% 

of the initial concentration. The reaction rate constants (k) were 0.0655, 0.0224, 0.0186, 

0.0160 and 0.0110 min
−1

 for salinity levels of 0, 18, 25, 32.5 and 40 psu, respectively, 

implying a decreasing trend with the increase of salinity. 
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Figure 4.2 (a) Top layer, (b) mid layer, (c) bottom layer, and (d) 3-layer average 

distributions of UV fluence rate with four lamps 
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Figure 4.3 Three-layer average distributions of UV fluence rate with (a) two, (b) four, 

(c) six, and (d) eight lamps 
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Figure 4.4 (a) Concentration change and (b) the first-order regression of 10 μg L

−1
 naphthalene photodegradation in 40 

psu seawater (Temperature = 23 
o
C) 
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Such effects may be caused by the presence of bromide (Br
−
), carbonate (CO3

2−
) and 

bicarbonate (HCO3
−
) ions in seawater. Bromide concentration in seawater usually ranges 

from 65 to 80 ppm, which is approximately 0.2% of all dissolved salts. According to von 

Gunten (2003), OH· plays an important role in the oxidation of Br
−
 to generate the less 

reactive dibromide anion (Br2·
−
). Zafiriou et al. (1987) reported that OH· reacts almost 

exclusively with Br
−
 as compared to CO3

2−
 and HCO3

−
. Lair et al. (2008) argued that both 

CO3
2−

 and HCO3
−
 are also capable of scavenging free radicals (e.g., OH·) excited by UV 

and therefore suppress the photolysis process. Measurements of sample pH revealed that 

an increasing salinity tended to result in higher alkalinity values (caused by CO3
2−

 and 

HCO3
−
), which in turn raised the equilibrium pH of seawater (Figure 4.6). Therefore, the 

elevation of salinity seemingly impeded the removal of naphthalene because the 

concentrations of the aforementioned radical inhibitors were also expected to increase. 

Another possible explanation of this discrepancy may be attributed to the possible 

existence of some dissolved organic compounds that can absorb photons from UV 

irradiation. Dimou et al. (2004) found that dissolved organic matters in natural seawater 

could induce a decrease of Triadimefon photolysis rate due to the optical filter effect. 

Moreover, it is worth mentioning that the nitrate (NO3
−
) in seawater (i.e., concentration 

around 2–12 μmol L
-1

 in the North Atlantic according to Steinhoff et al. (2010)) would 

appear to be a promising source of OH· during UV photolysis. However, the presence of 

NO3
−
 can also inhibit the degradation of PAHs via an „inner filter‟ effect (Mack and 

Bolton, 1999; Tedetti et al., 2007; Ji et al., 2012).  
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Figure 4.5 Reaction rate constants of naphthalene photodegradation at salinity 

levels of 25, 32.5 and 40 psu 
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Figure 4.6 Effect of salinity on the photodegradation of naphthalene using six UV 

lamps (initial concentration = 10 μg L
−1

; temperature = 23 
o
C) 
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4.3.4 Effect of Temperature 

Given that naphthalene is volatile, control experiments (without UV irradiation) 

were carried out at 40 
o
C to measure the volatilization loss. The results demonstrated that 

the concentration of naphthalene remained relatively constant after a control period of 4 

hours and the effect of evaporation loss was not significant. Viewed from Figure 4.7a, the 

elevation of temperature from 23 to 40 
o
C considerably accelerated the degradation of 

naphthalene in seawater because of the increasing collisions between photons and 

molecules. However, as with most photoreactions, temperature is not the major driving 

force to enhance UV-induced photodegradation (Nadal et al., 2006; Lee et al., 2011). The 

differences between reaction rate constants at 23 and 40 
o
C were not as remarkable as 

those between different fluence rates (Table 4.1). On the other hand, a temperature 

increase is expected to result in a decrease in oxygen solubility that lowers the generation 

of singlet oxygen and superoxide anion radical. 

Figure 4.7b further highlights this trend by plotting the concentration of remaining 

naphthalene at 23
 o

C, 40
 o

C, and an additional point, 30 
o
C while the other conditions 

were kept unchanged. The reaction rate constants gradually increased by 13.9% and 11.4% 

from 23 to 30 
o
C, and 30 to 40 

o
C, respectively. The activation energy (Ea) of this process 

can also be roughly determined by plotting the reaction rate constant versus temperature. 

The Arrhenius law defines that k in the ln- form should be linearly related to Kelvin 

temperature in the form of 1/T. 

        (5) 

where R is the universal gas constant (J K
−1

 mol
−1

), T is temperature (K), and A is the 

pre-exponential factor depending on compound. A linear trend line (R
2
 = 0.982) revealed 

ln(k) =
-Ea

R

1

T
+ ln(A)
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that this particular Ea was 10.67 kJ mol
−1

, which was about half of the value in distilled 

water (Lair et al., 2008). High activation energy usually corresponds to a reaction rate 

that is very sensitive to temperature. The higher the activation energy, the more increase 

in reaction rate constant when temperature goes up. This difference implied that 

increasing temperature would be more favourable and effective for the photodegradation 

of naphthalene in distilled water rather than in seawater. 

 

4.3.5 Effect of Initial Concentration 

A comparison between the results at different initial concentrations is summarized in 

Table 4.3. A single factor ANOVA (p = 0.75) rejected the hypothesis that a statistically 

significant difference existed between the two groups of rate constants, implying the 

contribution from initial concentration was not prominent. Nonetheless, the average 

reaction rate constant at high concentration was slightly lower than that at low 

concentration. It may be further interpreted as evidence that an increase in naphthalene 

concentration would lead to a slight decrease in reaction rate (Figure 4.8). This 

observation may be explained by the fact that when the initial concentration of 

naphthalene was low, the amount of reactive radicals generated from UV irradiation was 

more than enough to initiate the photoreactions. Contrastingly, when the initial 

concentration was 50 times higher, using the same amount of radicals may not be 

sufficient to sustain the reactions at the desired rate. 
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Figure 4.7 Effect of temperature at (a) an initial concentration of 500 μg L−1 and two UV lamps, and (b) an initial 

concentration of 10 μg L
−1

, a salinity level of 25 psu and six UV lamps 
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Another interesting finding was that the variance in the high concentration group 

was greater than that in the low concentration group. This considerable variance is mainly 

contributed by the interaction effect between temperature and initial concentration. As 

demonstrated in Figure 4.8, when the temperature of water samples was maintained at a 

relatively high level (i.e., 40 
o
C), the 4

th
 and 10

th
 high concentration runs had remarkably 

higher reaction rate constants as compared to the low concentration runs. These results 

suggested that temperature and initial concentration had synergistic effects on the 

removal of naphthalene. However, it is also noteworthy that this synergistic effect was 

alleviated at higher salinity levels. 

It is also worth noting that, although naphthalene itself is carcinogenic and it does 

not act as a photosensitizer like many other PAHs (e.g., anthracene and fluoranthene), the 

photodegradation process is likely to produce other toxic oxygenated compounds (Barron 

and Ka'Aihue, 2001). According to Bernstein et al. (2001) and McConkey et al. (2002), 

the initial photoproducts of naphthalene, endoperoxides, are short-lived intermediates and 

will undergo further reactions to form several more stable photoproducts, such as 

1-naphthol, 1,4-napthoquinone and 1,4-naphthalenedione. The identification and 

quantification of the toxicity of these photoproducts in the marine environment has been 

limited in the literature and therefore deserves more research effort. 
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Table 4.3 Single factor ANOVA of naphthalene photodegradation at different initial 

concentrations 

Initial concentration  

(μg L
−1

) 

Average k (min
-1

) Variance    

10  0.0120 4.42E-5    

500 0.0107 1.45E-4    

      

Source of Variation Sum of squares df Mean squares F-value p-value 

Between groups 9.63E-6 1 9.63E-6 0.1020 0.7524 

Within groups 2.08E-3 22 9.44E-5   

Total 2.09E-3 23    
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Figure 4.8 Reaction rate constants at different initial concentrations (run numbers 

refer to Table 4.1) 
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4.4 Summary 

Marine oil pollution caused by operational wastewater discharges has been 

recognized as a challenging issue. More research efforts are demanded to develop 

effective treatment methods for removal of dissolved organic compounds particularly 

including polycyclic aromatic hydrocarbons (PAHs) and to understand the associated 

mechanisms. This study targeted UV irradiation of a typical PAH, namely naphthalene in 

seawater, and examined the degradation kinetics. The efficiency of UV treatment was 

tested under varying ambient conditions including salinity, UV fluence rate, initial 

concentration and temperature. A full factorial design of experiments (DOE) was 

employed to determine the significance of each factor being tested as well as their 

interactions.  

The results showed that the removal of naphthalene followed first order kinetics in 

all experimental runs and the most influential factors were fluence rate, temperature and 

the interaction between temperature and initial concentration. A mathematical equation 

was obtained to describe the photodegradation process with the adjusted and predicted R
2
 

values of 0.87 and 0.80, respectively. A linear relationship between the number of UV 

lamps and the mean fluence rate was established with a R
2
 value of 0.99. Further analysis 

revealed that the reaction rate constants were linearly related to the number of lamps. 

High photon flux can greatly elevate the probability of collision between active centers 

and photons and therefore can generate more free radicals to promote the photoreactions. 

High salinity suppressed the performance of UV irradiation which was mainly caused by 

the presence of bromide (Br
−
), carbonate (CO3

2−
) and bicarbonate (HCO3

−
) ions in 

seawater. The existence of nitrate (NO3
−
) may also interfere with the photodegradation 



132 
 

process and thus deserves more research attention. These radical scavengers became 

more abundant at higher salinity levels due to increasing pH. In addition, increasing 

temperature from 23 to 40 
o
C seemed to stimulate the removal of naphthalene in seawater 

by exciting the collision between photons and molecules. A particular activation energy 

value was determined as 10.67 kJ mol
−1

, which was about half of that in the distilled 

water with heterogeneous catalyst. This difference implied that, for the purpose of 

removing naphthalene, increasing temperature in seawater would not be as sensitive as 

that in distilled water. The effect of initial concentration was not prominent while the 

average reaction rate constant at high concentration was slightly lower than that at low 

concentration. In addition, the toxicity of the associated photoproducts in the marine 

environment may be a topic for future research. 

The results from this study are expected to not only help understand the photolysis 

mechanism of PAHs but provide a good example to develop the integrated process 

control and operation planning system for marine oily wastewater management. The 

successful development of such a decision support system can be applied to many other 

wastewater treatment techniques such as ozone, photocatalysis, and membrane.  
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CHAPTER 5  

SIMULATION OF THE TREATMENT OF MARINE OILY 

WASTEWATER USING UV IRRADIATION 
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naphthalene in marine oily wastewater by artificial neural networks. Water, Air, & Soil 
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 Role: Liang Jing solely worked on this study and acted as the first author of this manuscript 
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5.1 Background 

To comply with the growingly stringent regulations on the discharge of marine oily 

wastewater, effective treatment must be carried out prior to discharge or disposal. 

Physical treatment methods (e.g., gravity separation and hydrocyclone) are commonly 

used in practice (Fakhru‟l-Razi et al., 2009; Tony et al., 2012). While most dispersed free 

oil can be removed, many dissolved organic compounds, particularly polycyclic aromatic 

hydrocarbons (PAHs), are unlikely to be affected. UV irradiation and advanced oxidation 

techniques have been recently regarded as promising solutions to the removal of PAHs. 

As with most traditional treatment systems, the knowledge and prediction of dynamic 

responses to the variations of environmental conditions and operational factors are critical 

to ensure an optimal operation of the advanced oxidation processes. A clear 

understanding of the process mechanism will help to qualify the direct relationships 

among the inputs and outputs and the indirect relationship such as the time series 

correlation. However, the research efforts on numerical modeling and performance 

optimization have been limited due to their multiphysics nature and the complexity of 

synergistic effects. To help understand the mechanisms, simulate the process, predict the 

behaviour, and eventually wisely control the process, modeling methods have been 

recognized as an essential component and foundation for any successful process control 

strategies. 

Due to the complexity of marine oily wastewater, many traditional chemical reaction 

models have difficulties in simulating the photochemical reactions within the marine 

environment (Nandi et al., 2010; Pendashteh et al., 2011). Artificial neural networks 

(ANNs), on the other hand, can effectively recognize and reproduce cause-effect 
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relationships for a complex system. Not only can the ANNs learn to respond to varying 

inputs, they are strongly capable of implementing nonlinear functions by allowing a 

uniform approximation of any continuous function. Therefore, this chapter presents a 

simulation model for the removal of PAHs by using ANN method. The UV experimental 

results obtained in Chapter 4 are used as an example for developing the ANN model. 

 

5.2 Methodology 

5.2.1 Experimental 

The experiments results used in this chapter are based on Chapter 4. See Section 4.2 

for details. 

 

5.2.2 Model Inputs 

As the removal rate at the beginning of the photodegradation process is always zero, 

the first time point (time = 0) was not included in the experimental design. This full 

factorial DOE (Table 5.1) was introduced in Chapter 4 and the corresponding results were 

used for developing the proposed ANN model.  

 

5.2.3 Artificial Neural Networks (ANNs) 

ANNs are known for their ability of simulating and predicting a complex pattern 

correctly by learning the relationships between inputs and outputs. The rule of thumb in 

successfully getting a reliable network largely relies on the selection of process variables, 

network structure and the available datasets for training purposes. A typical ANN is 

usually comprised of numerous individual processing units (i.e., neurons) that are 
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grouped in an input layer (independent variables), an output layer (dependent variables) 

and at least one hidden layer. It is worth mention that most ANNs are based on one 

hidden layer because the universal approximation theory suggests that one hidden layer 

with sufficient neurons can interpret any input-output patterns (Aleboyeh et al., 2008). 

Each neuron is interconnected with the ones on the preceding and succeeding layers by 

parallel rather than sequential mathematical transformation equations that contain 

adjustable weights and biases (e.g., linear, log-sigmoid and hyperbolic tangent-sigmoid).  

The numbers of input and output neurons stand for the number of input variables 

used in prediction and output variables to be predicted, respectively, whereas the neurons 

contained in the hidden layer are used as feature detectors to encode the inputs. If there 

are fewer neurons in the hidden layer, the convergence rate of the network may be 

affected. On the other hand, too many neurons may result in complicated network 

topology, training frequency increasing, over-fitting of the model and generalization 

reduction. Therefore, the number of neurons in the hidden layer is one of the key factors 

that may significantly influence the accuracy of the network.  

The weighted sum of the inputs is transferred to each hidden neuron by activation 

functions, and then undergoes another weighted sum transformation to get the outputs. In 

this study, a multilayer feed-forward ANN with one hidden layer was trained by the 

backpropagation algorithm to predict the photochemical removal of naphthalene from 

oily seawater. The transfer functions used at the hidden and output layers were 

log-sigmoid (logsig) and linear (purelin), respectively, given that the experimental results 

were described in removal efficiency, which ranges from 0 to 100% and fits well with the 

logsig function (Zhang et al., 2013; Abushammala et al., 2013).   
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Table 5.1 Mixed level full factorial DOE for ANN model development 

Variable Levels Unit Values 

Initial Concentration 2 μg L
−1

 10 500 - - - - - - 

Salinity 3 ppt 25 32.5 40 - - - - - 

Fluence rate 2 mw cm
-2

 2.88 8.27 - - - - - - 

Temperature 2 
o
C 23 40 - - - - - - 

Time 8 min 30 60 90 120 150 180 210 240 
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 Neural network toolbox V6.0 of MATLAB software was used. Datasets (192 in 

total) were obtained from our previous study (Jing et al., 2013a) and were randomly 

divided into training (60%, 116 datasets), validation (20%, 38 datasets), and testing (20%, 

38 datasets) subsets (see Appendix A). Training is the process in which the network 

adjusts the weights and biases to fit the input-output relation according to its error. 

Validation is used to measure network generalization and to halt training when 

generalization stops improving, whereas testing serves as an independent measure of 

network performance and has no influence on training. The input variables were fluence 

rate, salinity, temperature, initial concentration and reaction time. The output variable was 

naphthalene removal rate at a given time point. All input variables were normalized by 

rescaling their ranges of variation within the 0–1 range (Equation 5.1). 

        (5.1) 

where X is the original data; Xmin and Xmax are the minimum and maximum values of X, 

respectively; and x is the unified data of X. 

The significance of each input variable concerning the model output was assessed 

using two sensitivity analysis techniques. The first one, proposed by Garson (1991), 

assesses the contributions based on the neural net weight matrix. 

               (5.2) 

where Ij is the relative significance of the j
th

 input variable on the output variable; Ni 

and Nh are the number of input and hidden neurons, respectively; W are the connection 
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weights between layers; i, h and o refer to input, hidden and output layers, respectively; k, 

m and n refer to input, hidden and output neurons, respectively. The other technique is to 

examine the performance of all possible combinations of input variables such that the 

contributions from single and multiple variables can be investigated. 

 

5.2.4 Analysis of Variance (ANOVA) 

Data from the mixed level full factorial design experiments were subjected to 

ANOVA in order to not only evaluate the effect of each input variable as well as their 

interactions, but also to verify if the optimized weights can well illustrate the importance 

of each variable. ANOVA tests the null hypothesis that the contributions from each input 

variable to the output are equal, versus them not being equal. A probability of p less than 

0.05 indicates that the variable has a significant effect. 

 

5.2.5 Verification of the ANN Model 

As the ANN model was trained based on the full factorial design experiments (Table 

5.1), another three experimental tests (Table 5.2) were performed and compared with the 

prediction using the developed model. It can be seen that at least one variable had 

different values other than the full factorial design in order to test the generalizability of 

the ANN model. The supplementary experimental results were used to validate if the 

developed model can well predict the photolysis process with inputs values that are 

different from the training set. All the experimental procedures and analytical methods 

were the same as described in Sections 5.2 and 5.3.  
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Table 5.2 Conditions of the supplementary experimental tests for ANN model 

verification 

Tests Initial concentration 

(μg L
−1

) 

Salinity 

(ppt) 

Fluence rate 

(mw cm
-2

) 

Temperature 

(
o
C) 

Reaction time 

(min) 

E-1 10 25 5.65 23 240  

E-2 10 40 5.65 23 240  

E-3 300 25 8.27 23 240 
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5.3 Results and Discussion 

5.3.1 ANN Modeling 

The topology of an ANN is usually determined by the number of hidden layers, the 

number of neurons contained in the hidden layers and the nature of the transfer functions. 

In this study, one hidden layer along with the backpropagation algorithm was selected for 

the proposed ANN model. Therefore, the specific backpropagation algorithm and the 

number of hidden neurons needed to be optimized. 

 

5.3.1.1 Selection of backpropagation training algorithm 

Mean square error (MSE) measures the performance of an ANN based on the 

deviations between network predictions and experimental responses. The training, 

validation and testing subsets would have different MSE performance. In this study, the 

minimum value of the MSE of the training and testing subsets (MSEt-t) was adopted to 

examine thirteen backpropagation algorithms (Yetilmezsoy and Demirel, 2008; Elmolla 

et al., 2010). Ten neurons were used in the hidden layer while the transfer functions were 

log-sigmoid (logsig) and linear (purelin) at the hidden and output layers, respectively. The 

maximum epoch number was set as 100. The comparison among different algorithms was 

summarized in Table 5.3. It was observed that the Levenberg-Marquardt backpropagation 

algorithm was able to produce the least MSEt-t and hence was preferred over the others. 

 

5.3.1.2 Optimization of the number of hidden neurons  

The number of neurons in the hidden layer can drastically affect network 

convergence and prediction accuracy. If the architecture is too simple, the trained network 
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may not have sufficient ability to learn the process correctly; however, a complicated 

architecture may fail to converge properly due to the over fitted training data. The 

optimal number of neurons, therefore, was determined by using the trial-and-error 

procedure based on MSEt-t. Each topology was repeated five times and averaged to avoid 

random correlation due to the random initialization of the weights. Figure 5.1 shows the 

impact of the number of neurons in the hidden layer on the network performance. It could 

be seen that the MSEt-t reached the minimum value at 12 neurons and became stabilized 

thereafter. Hence, the optimized neural network structure was derived as shown in Figure 

5.2. 
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Table 5.3 Comparison of backpropagation algorithms with 10 neurons in the hidden layer 

Backpropagation algorithm Function MSEt-t Epoch Overall R
2
 

Levenberg-Marquardt trainlm 0.0060 10 0.910 

BFGS Quasi-Newton trainbfg 0.0089 6 0.848 

Scaled conjugate gradient trainscg 0.0118 12 0.845 

Random order weight/bias learning rules trainr 0.0936 100 0.746 

Rpop trainrp 0.0090 35 0.877 

Gradient descent (GD) traingd 0.0231 100 0.704 

GD with adaptive learning rate traingda 0.0291 100 0.673 

GD with momentum traingdm 0.0630 100 0.597 

GD with momentum and adaptive learning rate traingdx 0.0252 100 0.707 

One step secant trainoss 0.0195 10 0.780 

Conjugate gradient with Beale-Powell restarts traincgb 0.0087 7 0.870 

Conjugate gradient with Fletcher-Reeves restarts traincgf 0.0096 8 0.860 

Conjugate gradient with Polak-Ribiere restarts traincgp 0.0080 6 0.864 
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Figure 5.1 Relationship between the number of hidden neurons and MSEt-t 

 



145 
 

 

Figure 5.2 Optimized structure of the developed ANN model 
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5.3.1.3 Training, validation and testing of the model 

The datasets were divided into three subsets including training (60%), validation 

(20%) and testing (20%) for model development. An inverse range scaling was performed 

on the modeling outputs for comparison purposes. The network was trained to provide a 

MSE of 0.00181 and a reasonable linear fit (correlation of determination R
2
 = 0.984) for 

the training subset (Figure 5.3a). The modeled removal rates were also close to the 

measured ones for the validation and testing subsets (Figures 5.3b and 5.3c). The overall 

best linear fit equation had a slope of 0.97 (Figure 5.3d), which was remarkably close to 

the best linear fit (modeled = measured), an intercept of 1.3 and a R
2
 of 0.943. These 

linear fits indicated that the developed ANN model was able to accurately simulate the 

naphthalene removal process and reproduce the experimental results. 

 

5.3.1.4 Sensitivity analysis 

Based on Garson equation (Equation 5.2), the detailed connection weights trained by 

the proposed ANN model are shown in Table 5.4. Table 5.5 shows the relative importance 

of the each input variable obtained by using Equation 5.2. Fluence rate was ranked with 

the highest contribution and therefore appeared to be the most influential variables, 

followed by temperature, reaction time, salinity and initial concentration. The relatively 

low importance of salinity indicates that the removal of naphthalene using UV irradiation 

is likely to be effective for a wide range of seawater salinities. 
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Figure 5.3 Comparison between ANN modeled and experimentally measured values 

of naphthalene removal rate for the (a) training, (b) validation, (c) testing and (d) 

overall datasets 
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According to the second sensitivity technique (Section 5.2.3), groups of one, two, 

three, four and five variables were examined by using the optimized ANN structure with 

12 hidden neurons and the Levenberg-Marquardt backpropagation algorithm. MSEt-t was 

chosen as the performance indicator such that lower values led to greater importance. As 

shown in Table 5.6, X1 to X5 stand for initial concentration, salinity, fluence rate, 

temperature and reaction time, respectively. In the group of one variable, fluence rate (X3) 

was marked as the most contributing variable with a MSEt-t of 0.0504 and an overall R
2
 

of 0.295. The MSEt-t for two variables reached its minimum (0.0421) when both fluence 

rate (X3) and temperature (X4) were included, implying that temperature was the second 

most influential variable. The MSEt-t continued decreasing to 0.0129, which was the 

minimum value of the group of three variables when reaction time (X5) was used in 

combination with fluence rate (X3) and temperature (X4). Salinity (X2) appeared to be the 

fourth important variable because its combination with fluence rate (X3), temperature (X4) 

and reaction time (X5) had the lowest MSEt-t (0.0099) in the four-variable group. When 

all variables including initial concentration (X1) were used, the MSEt-t decreased to 

0.0025 with an overall R
2
 of 0.956. Therefore, the order of variable importance (from 

high to low) supported by such analysis was fluence rate (X3), temperature (X4), reaction 

time (X5), salinity (X2) and initial concentration (X1) which was in good agreement with 

the sensitivity analysis results using Garson equation (Equation 5.2). 
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Table 5.4 Weights between the input and output layers (W1), weights between the hidden and output layers (W2) and 

biases 

 

Neuron W1     W2 

 Input variables     Output variable 

 Initial Concentration Salinity   Fluence rate Temperature   Time     Bias Naphthalene  

removal rate 

Bias 

1 0.6508 -0.7993 3.3177 -1.4368 5.3337    -5.6172    -0.1511 -1.4740 

2 -5.6207 -3.4670 -1.6087 3.7399 -3.4642    -3.1491    -0.1832  

3 0.5361 0.2351 -3.0628 -0.3039 0.0621    -4.8635    -3.0120  

4 3.8022 -1.4287 3.0374 5.2788 -3.8535    -0.9152     0.5644  

5 5.3680 2.0948 -5.3111 0.7650 -0.0967    -1.7854     0.5900  

6 -4.1609 -1.4316 3.0062 4.1801 4.5628     0.5939     0.5960  

7 0.3029 -1.7911 2.0615 3.3788 4.7574    -1.1175     0.5851  

8 0.6302 0.8824 -1.0961 4.8385 -5.6007     1.4117    -0.7656  

9 -0.6757 5.0376 -1.3415 4.4204 0.8125     5.3968     1.0464  

10 -5.9498 4.7941 -3.5973 -1.8491 -1.6449     1.9361     0.6422  

11 0.1282 -5.6630 0.5007 -2.5575 -0.5933    -3.8886     1.1350  

12 -1.0131 -0.6212 -0.5046 1.3646 -3.1814    -5.5641    -1.6380  
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Table 5.5 Relative importance of input variables on the removal of naphthalene 

Input Variable Importance (%) 

Initial Concentration 14.1 

Salinity 18.0 

Fluence rate 30.1 

Temperature 19.7 

Time 18.1 

Total 100 
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Table 5.6 Evaluation of possible combinations of input variables 

Combination MSEt-t Epoch Overall R
2
 

X1 0.0788 3 0.039 

X2 0.0849 3 0.027 

X3
*
 0.0504 4 0.295 

X4 0.0634 3 0.122 

X5 0.0565 3 0.365 

X1+X2 0.0784 4 0.064 

X1+X3 0.0465 3 0.330 

X1+X4 0.0689 3 0.184 

X1+X5 0.0549 9 0.395 

X2+X3 0.0510 4 0.312 

X2+X4 0.0763 3 0.148 

X2+X5 0.0550 7 0.366 

X3+X4
*
 0.0421 3 0.415 

X3+X5 0.0493 8 0.594 

X4+X5 0.0512 8 0.481 

X1+X2+X3 0.0464 5 0.364 

X1+X2+X4 0.0534 5 0.218 

X1+X2+X5 0.0392 9 0.367 

X1+X3+X4 0.0452 4 0.484 

X1+X3+X5 0.0228 9 0.702 

X1+X4+X5 0.0348 12 0.523 

X2+X3+X4 0.0545 12 0.407 

X2+X3+X5 0.0369 10 0.637 

X2+X4+X5 0.0344 14 0.503 

X3+X4+X5
*
 0.0129 11 0.776 

X1+X2+X3+X4 0.0358 8 0.490 

X1+X2+X3+X5 0.0155 16 0.731 

X1+X2+X4+X5 0.0252 12 0.550 

X1+X3+X4+X5 0.0153 12 0.869 

X2+X3+X4+X5
*
 0.0099 12 0.821 

X1+X2+X3+X4+X5
*
 0.0025 12 0.956 

Note: * indicates the best group performance 



152 
 

5.3.2 ANOVA 

ANOVA was performed in this study to validate the developed ANN model by 

examining the importance of each input variable and their interactions. After a 

pre-analysis of the collected information, the Box-Cox (B-C) plot for power transforms 

suggested that no transformation was recommended to better normalize the data points. 

Results from ANOVA on the response model were summarized in Table 5.7. From the 

Fisher‟s F-test, factorial effects with p-values less than 0.05 (5% level of significance) 

were considered significant. Therefore, all individual input variables had significant 

contribution to the removal of naphthalene. The higher the F-values are, the higher the 

significance of the variables or their interactions. It can be seen that fluence rate seemed 

to dominate the removal process because its F-value was considerably higher than the 

others. Temperature appeared to be the second most influential variable, followed by 

reaction time, initial concentration and salinity, which were ranked as the thrid, fourth 

and fifth, respectively. These findings were in good accordance with the sensitivity 

analyses of the developed ANN model. In addition, ANOVA was able to identify some 

prominent interactions between different variables such as the synergetic effect between 

temperature and initial concentration (Jing et al., 2013a).  
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Table 5.7 ANOVA for square root transformed response of naphthalene photodegradation 

Source Sum of squares df Mean squares F-value p-value, Prob > F 

Model 142000 13 10919.87 113.26 <0.0001 significant 

X1-initial concentration 6200.91 1 6200.91 64.32 <0.0001 

X2-salinity 5032.62 2 2516.31 26.10 <0.0001 

X3-fluence rate 46871.06 1 46871.06 486.15 <0.0001 

X4-temperature 19411.78 1 19411.78 201.34 <0.0001 

X5-time 59020.07 7 8431.44 87.45 <0.0001 

X1X4 5421.84 1 5421.84 56.24 <0.0001 

Residual 17161.60 178 96.41   

Total 159100 191    
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5.3.3 ANN Model Verification 

To better evaluate the generalizability of the developed ANN model, supplementary 

experimental tests were conducted by using experimental settings that were different 

from the ones used in the model development process (Tables 5.1 and 5.2). The detailed 

settings were used as input for the ANN model while the prediction outputs were 

compared with the experimental results. The higher the R
2
 value, the better goodness of 

fit of the prediction, in other words, the better generalizability of the model. Figures 

5.4a-5.4c show such comparison between the predicted and experimental removal rates. 

It can be noted that the prediction plots agree well with the experimental plots. Figure 

5.4d plots the line that best fits the data of the scatter plot with a slope of 0.83, an 

intercept of 14.1 and a R
2
 of 0.876, suggesting that the developed ANN model is capable 

of predicting the removal of naphthalene with acceptable accuracy. 

 

5.3.4 Effect of Input Variables  

As shown in Figure 5.5, when other experimental conditions were fixed at initial 

concentration 10 μg L
−1

, salinity 32.5 ppt and temperature 40 
o
C, the removal process of 

using six lamps (8.27 mW cm
-2

) was much quicker that using two lamps (2.88 mW cm
-2

). 

This difference was equally prominent for both experimental and simulation results as 

they were closely related. By plotting log of experimental removal rates against 

degradation time, the first order reaction rate constant of six lamps (0.0183 min
-1

) was 

approximately as much as three times higher than that of two lamps (0.0066 min
-1

). These 

observations may be attributed to the fact that high fluence rate can increase the 

probability for collision between active centers and subsequently produce more highly 
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oxidative radicals (e.g., OH·) to promote the photodegradation process. 

Temperature is one of the most decisive factors in most photochemical reactions. 

The increase of temperature was able to considerably accelerate the removal of 

naphthalene. Figure 5.6 shows a comparison between the predicted and experimental 

values of naphthalene removal rate at 23 and 40 
o
C while other conditions were kept as 

follows: initial concentration 500 μg L
−1

, fluence rate 2.88 mW cm
-2

 and salinity 25 ppt. 

After 120 min UV exposure, both simulated and experimental removal rates at 23 
o
C 

were somewhere around 30%, whereas there numbers were significantly higher at 40 
o
C 

(around 60%). After 240 min UV exposure, the removal rates at 40 
o
C were still 

drastically higher than those at 23 
o
C. However, sensitivity analyses of the ANN model 

revealed that the influence of temperature was not as strong as that of fluence rate. This 

finding is in accordance with literature that temperature is not the leading driving force to 

enhance UV-induced photodegradation (Nadal et al., 2006; Lee et al., 2011). 

The increase of salinity seemed to moderately suppress the degradation of 

naphthalene though the tendency was not as distinct as fluence rate and temperature. 

Figure 5.7 compares the removal process at different salinity levels using both predicted 

and experimental data. It can be seen that the lines are closely spaced with numerous 

intersections which admits that the effect of salinity was not significant. Nonetheless, the 

removal process at 25 ppt was still quicker than those at 32.5 and 40 ppt. This inhibition 

effect may be caused by the presence of bromide (Br
−
), carbonate (CO3

2−
) and 

bicarbonate (HCO3
−
) ions that are strongly capable of scavenging free radicals (e.g., OH·) 

excited by UV. 

Photodegradation was performed at different initial naphthalene concentrations, with 
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a constant photon flux (2.88 mW cm
-2

), salinity (32.5 ppt) and temperature (40 
o
C). The 

effect of initial concentration was not prominent as the removal lines were close to each 

other (Figure 5.8). Nonetheless, the first order reaction rate constant at 10 μg L
−1

 (0.0066 

min
-1

) was slightly higher than that at 500 μg L
−1

 (0.0051 min
-1

). This observation may be 

explained by the fact that when the initial concentration of naphthalene was low, the 

amount of reactive radicals generated from UV irradiation was more than enough to 

initiate the photoreactions. Contrastingly, when the initial concentration was 50 times 

higher, using the same amount of radicals may not be sufficient to sustain the reactions at 

the desired rate. Figure 5.8 demonstrates that the predicted values were in good 

agreement with the experimental results. 
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Figure 5.4 Comparison between ANN output and experimental results obtained 

from supplementary experimental tests (a) E-1, (b) E-2, (c) E-3 and (d) overall tests 

(see Table 5.1) 
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Figure 5.5 Comparison between ANN output and experimental results at different 

fluence rates (other experimental conditions: 10 μg L
−1

, 32.5 ppt and 40 
o
C) 
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Figure 5.6 Comparison between ANN output and experimental results at different 

temperatures (other experimental conditions: 500 μg L
−1

, 25 ppt and 2.88 mw cm
-2

) 
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Figure 5.7 Comparison between ANN output and experimental results at different 

salinity levels (other experimental conditions: 500 μg L
−1

, 8.27 mw cm
-2

 and 40 
o
C) 
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Figure 5.8 Comparison between ANN output and experimental results at different 

initial concentrations (other experimental conditions: 32.5 ppt, 2.88 mw cm
-2

 and 40 
o
C) 
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5.4. Summary 

A three-layer backpropagation neural network was developed to simulate the 

UV-induced photodegradation of a typical PAH, naphthalene, in marine oily wastewater. 

The photochemical process was successfully predicted by using 12 neurons in the hidden 

layer and the Levenberg-Marquardt backpropagation algorithm. The network was trained 

to provide a good overall linear fit with a slope of 0.97 and a correlation of determination 

(R
2
) of 0.943. All input variables in this study (i.e., initial concentration, salinity, fluence 

rate, temperature and reaction time) had considerable effects on the photodegradation 

process. The outputs of sensitivity analysis and ANOVA revealed that fluence rate and 

temperature were noted as the most influential variables, which aligned with the 

experimental observations. The results showed that the developed ANN model was 

capable of accurately simulating the PAH removal process and reproduce the experiment. 

ANN modeling technique seemed to be a promising alternative to the traditional reaction 

models and regression analysis. The developed ANN model will also be coupled with 

optimization methods in the later chapters to optimally control the treatment process of 

marine oily wastewater in terms of cost and efficiency.  
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CHAPTER 6  

SIMULATION-BASED DYNAMIC PROCESS CONTROL 

OF MARINE OILY WASTEWATER TREATMENT 
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This chapter is based on and expanded from the following paper: 

Jing, L., Chen, B., Zhang, B.Y., and Li, P. (2014). Process simulation and dynamic control for 

marine oily wastewater treatment using UV irradiation. Water Research, under review. 

 Role: Liang Jing solely worked on this study and acted as the first author of this manuscript 

under Dr. Bing Chen and Dr. Baiyu Zhang’s guidance. Most contents of this paper was 

written by Liang and further polished by the other co-authors. 
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6.1 Background 

To ensure a sound design and optimal operation of offshore wastewater treatment 

processes in terms of costs, time and environmental standards, process control techniques 

are much desired. Recently, the combined use of soft computing (e.g., ANN, ANFIS, and 

GA) techniques has attracted much attention in optimizing the performance of many 

industrial processes. Nonetheless, not many studies have taken changing conditions and 

dynamic system control into account when applying such soft computing tools (Li et al., 

2012). The algorithm of dynamic control can be used to rationally make a series of 

decisions at different time points and to achieve better performance in terms of cost or 

efficacy. To date, no attempt has been reported to integrate dynamic system control with 

ANN and GA in order to improve the effectiveness and efficiency of marine oily 

wastewater treatment. Therefore, the objective of this chapter is to develop an 

ANN-based dynamic mixed integer nonlinear programming (ANN-DMINP) approach 

that can help better optimize the performance of wastewater treatment processes by 

optimally adjusting treatment parameters at given time intervals (e.g., hourly or daily). 

The removal of naphthalene from oily seawater using UV irradiation, as described in 

Chapters 4 and 5, is used as a case study to demonstrate the applicability of this proposed 

approach. 

 

6.2 Methodology 

6.2.1 The General ANN-DMINP Approach 

The proposed ANN-based dynamic mixed integer nonlinear programming 
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(ANN-DMINP) approach can be summarized as follows. Consider the following general 

nonlinear optimization problem: 

        (6.1) 

subject to: 

        (6.2) 

        (6.3) 

          (6.4) 

where x are the decision variables; f is the nonlinear objective function that needs to be 

minimized; g and h are the nonlinear equality and inequality constraints, respectively; p 

and q are the numbers of equality and inequality constraints, respectively; and lb and ub 

are the lower and upper bounds of x, respectively. The bounds can be defined by 

consulting experts, field engineers or literatures. Traditionally, mixed integer optimization 

problems can be solved by mathematical programming techniques such as branch and 

bound (Martí and Reinelt, 2011), generalized benders‟ decomposition (GBD) and 

outer-approximation (OA) algorithms (Farkas et al., 2008; Chu and You, 2013). 

Particularly, when the objective function and/or constraints are coupled with simulation 

modules (e.g., ANN model), real-time decisions may be required to meet the control 

needs in terms of operating cost, control stability, and response time (Ding et al., 2006). 

The problem would then become a multi-stage process where the decision of the one 

stage would have a ripple effect on the decisions of the following stages through 

simulation models.  

       (6.5) 

subject to: 

)(xfMin

pjxg j ,,2,1,0)( 

qkxhk ,,2,1,0)( 

ubxlb 

),,,,,,( 2121 nn yyyxxxfMin 
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                 (6.6) 

                 (6.7) 

                    (6.8) 

where xi and yi are the decision variables of multiple stages which are usually defined by 

time (yi are integers); and n stands for the number of decision stages. Such type of 

nonlinear problems tends to possess a dynamic nature as shown below and may not be 

easily solved by aforementioned traditional techniques. To remediate this situation, 

genetic algorithms (GAs), which are probabilistic global optimization formalisms, can be 

employed to solve the above multi-stage nonlinear optimization problem.  

Genetic algorithms combine the “survival of the fittest” principle of natural 

evolution with a randomized information exchange which helps to form a stochastic 

search routine and produce new individuals with higher fitness (Ma et al., 2011). As 

compared to the traditional gradient-based optimization techniques, GAs have several 

distinguished features: 1) they are zero-order optimization methods that only require the 

scalar values of the objective function; 2) they can handle linear, nonlinear, complex and 

noisy objective functions; 3) their global search mechanism ensures that they are more 

likely to find the global optimum instead of being trapped at local optimums; 4) the 

stochastic solution search procedure gives them immunity to preconditions such as 

smoothness, differentiability, and continuity on the objective function form (Ghaedi et al., 

2013; El-Fergany et al., 2014). In a typical GA procedure, the optimal solution search 

commences from a randomly initialized population of candidate solutions. Each solution 

has as many segments as the number of decision variables and is usually coded as a 

chromosome sting of binary digits (Dong et al., 2013). Then the initial solutions are 

pjyyyxxxg nnj ,,2,10),,,,,,( 2121  

qkyyyxxxh nnk ,,2,10),,,,,,( 2121  

niubyandxlb ii ,,2,1 
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decoded by an evaluator into the fitness function values, whose magnitude is indicative of 

the objective function values. For maximization and minimization problems, the fitness 

function value should scale up with the increasing and decreasing value of the objective 

function, respectively (Bhatti et al., 2011). Based on the evaluation of the fitness values 

of the solutions, the next generation (i.e., new population) of solutions can be produced 

through four GA operators, namely reproduction, crossover, and mutation, by which GA 

can escape from local optimal points (Badrnezhad and Mizra, 2014). The resultant 

population of solutions is then iteratively subject to this aforementioned procedure such 

that the candidate solutions are refined in a manner imitating selection and adaptation in 

biological evolution, until the convergence is obtained or the pre-set stopping conditions 

are satisfied. 

Reproduction is a process in which strings with higher fitness values are copied and 

passed to the next generation according to their fitness values (Ma et al., 2011). The 

higher fitness values, the higher probability of surviving into the next generation. 

Reproduction can be recognized as an artificial version of natural selection through which 

strings with lower fitness are eliminated from the solution population (Bhatti et al., 2011). 

In nature, an offspring normally inherits genes from both parents and is rarely the exact 

same as one of them. Crossover makes this happen by randomly (with a crossover 

probability) exchanging parts of two parent strings to produce two child strings for the 

next generation (Ghaedi et al., 2013). It enables GA to extract the best genes from 

different individuals and inherit them into the potentially superior offspring. From the 

mathematical perspective, crossover offers further knowledge about the hyperplanes 

already represented earlier in the population and introduces representatives of new 
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hyperplanes into the population. Mutation, on the other hand, also plays an important role 

in evolution because it can bring new information into the current population. It is the 

random alteration of bits in parent strings such that the variability of the population in the 

next generation can be increased. Mutation is the key operator that helps GA to avoid 

local optimal points in the search space (Ma et al., 2011; El-Fergany et al., 2014). 

The stepwise procedure for implementing the ANN-DMINP approach can be 

summarized as follows: 

Step 1: Define the problem with target inputs and the number of time-stages. Set the 

generation count Ng to zero. Set population size Np, iteration number Ni, reproduction 

probability pr, crossover probability pc, and mutation probability pm.  

Step 2: Create the initial population with the preset population size (e.g., Np = 200) 

using random binary digits. Each solution string in the population has the same number 

of segments as the number of decision variables. 

Step 3: Extract the values of each decision variable by reading and decoding certain 

sets of binary digits. Apply individual solutions to the predefined ANN model, run the 

simulation for each time stage i and obtain the simulation outputs.  

Step 4: Evaluate the objective function and fitness score of each solution string. 

Rank the strings in the deceasing order of their fitness values. All the linear constraints 

and bounds should be satisfied, while the nonlinear constraints may not be all satisfied at 

every generation but will be met at the convergence solution. 

Step 5: Create a mating pool by using a proportional selection criterion (e.g., 

simulated roulette) to choose solutions in the initial population. The probability of an 

individual solution being chosen is proportional to its fitness value. 
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Step 6: From the mating pool, choose parent strings to perform reproduction (Pr) and 

crossover (Pc) operations to obtain the offspring population. 

Step 7: Perform mutation (Pm) on the offspring population. 

Step 8: Update the generation count by Ng = Ng + 1. 

Step 9: Repeat steps 3-8 to update the population pool with new generations until 

one of the convergence criteria is satisfied, such as the generation count Ng reaches the 

preset limit, or the weighted average relative change in the fitness function value over 

stall generations is less than function tolerance. The convergence solution is record as the 

final solution to the optimization problem. 

 

6.2.2 Application of ANN-DMINP in Marine Oily Wastewater Treatment 

Consider the following oily seawater treatment system to examine the effectiveness 

of the proposed ANN-DMINP approach and visualize the contributions of this control 

strategy. To accommodate with the developed ANN simulation model in Chapter 5, the 

treatment system here is assumed to be used for removing naphthalene from oil polluted 

seawater by using UV irradiation. The flow-through treatment system is assumed to 

consist of a storage tank and a reaction tank. The UV-induced photodegradation process 

is carried out within the reaction tank only where the developed ANN simulation model 

can be used to simulate the treatment process. Two pumps with adjustable flow rate are 

assumed to be used to circulate seawater through the treatment system. Seawater is 

assumed to be completely mixed in both tanks and no degradation occurs in the storage 

tank. Controlling parameters include UV intensity, pump flow rate, initial naphthalene 

concentration, salinity, temperature and discharge standard. 
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Figure 6.1 Flow chart of the ANN-based dynamic mixed integer nonlinear 

programming (ANN-DMINP) approach 

  

Initial generation count Ng = 0

Set Np, Ni, Pr, Pc, and Pm

Randomly generate initial  

string population (Np)

Update the population pool

Evaluate objective function and 

fitness values of the strings

Rank the strings and 

reproduction, crossoverm and 

mutation

Update generation count

Ng = Ng + 1

Is any convergence 

criterion met?

No

The top ranked string in the 

converged population

Define the Problem with target 

inputs and the number of stages

Inputs determined by each 

individual population

Run the ANN simulation model 

for the time stage i

i = imax? Yes

No

i = i +1

Yes



171 
 

The objective is to design an operation scheme within a certain period (e.g., 24 or 36 

hours) in order to meet the discharge standard with the minimized cost. Cost is associated 

with the use of UV lamps and the pumps by which electricity is consumed. This problem 

can then be formulated as the following multi-stage mixed integer nonlinear 

programming problem with multiple stages. 

            (6.9) 

subject to: 

             (6.10) 

             (6.11) 

                (6.12) 

             (6.13) 

where x and y are the flow rates and UV intensity during each time stage, respectively; i 

is the number of hours; Costx and Costy are the cost coefficients associated with flow rate 

and UV intensity, respectively; n is the number of time stages; and C are the nonlinear 

inequity constraint associated with the final concentrations of naphthalene after treatment; 

stdstorage and stdreaction are the desired concentrations in the storage and reaction tanks, 

respectively. The computation of the nonlinear constraints C is simplified as follows. For 

example, during a small time increment , the initial concentrations in the storage (cs) 

and reaction (cr) tanks (assuming completely mixed conditions) can be computed as: 

1) The removal rate of naphthalene in the portion of seawater that remains in the 

reaction tank after an exposure period of  can be calculated using the pre-developed 

ANN model as: 

 



n

i

iyix yCostxCostyxfMin
1
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(6.14) 

where represents naphthalene removal in percentage; sim and net are Matlab
®

 

commands for ANN simulation; y1 is the number of UV lamps operated in the first hour; 

cr0, salinity, temperature and stand for the initial concentration in the reaction tank, 

salinity, temperature, and time, respectively. 

2) Within the time period of , the volume of seawater that flows out of the 

reaction tank is  and its removal rate can be integrated as shown below. 

According to the first order reaction kinetics, we have 

                        (6.15) 

                     (6.16) 

               (6.17) 

                        (6.18) 

where k is the reaction rate constant;  and  are the concentrations of naphthalene in 

seawater that remains in the reaction tank at time points and t, respectively; and is the 

corresponding removal rate at time point t. 

3) Within the time period of , the volume of seawater that flows in the reaction 

tank is  and its removal rate can be integrated using the same procedure stated 

above. 

             (6.19) 
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                       (6.20) 

                         (6.21) 

where  is the initial concentration of naphthalene in the storage tank; and are the 

removal rates in seawater coming from the storage tank at time points  and t, 

respectively. 

4) The total naphthalene removal in mass m and the concentrations in the storage 

tank (cs) and reaction tank (cr) after can therefore be computed as: 

       (6.22) 

      (6.23) 

            (6.24) 

where Vr and Vs represent the volume of seawater in reaction and storage tanks, 

respectively. Repeat the above steps for the rest of the time stages to obtain the final 

concentrations in both tanks, which are required to be less than or equal to the discharge 

standard stdstorage and stdreaction, respectively. It is worth noted that choosing the value of 

 depends on the computation time constraints and the treatment system characteristics. 
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Figure 6.2 A schematic plot of the flow-through UV treatment system of the case 

study 
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6.3 Case Study 

In this case study, as shown in Figure 6.2, a total volume of 15 L seawater polluted 

by naphthalene at a concentration of 300 μg L
−1 

needs to be treated using the above 

system. The treatment system consists of a storage tank, with a maximum capacity of 15 

L, and a 3 L reaction tank. The ANN simulation model developed in Chapter 5 is used to 

simulate the removal efficiency of naphthalene within the reaction tank. The salinity is 

32.5 practical salinity unit (psu) and water temperature is maintained at 25 
o
C. According 

to the stringent marine water quality standard and the 15 ppm discharge standard of bilge 

water (CCME, 1999; McLaughlin et al., 2014), the concentration of naphthalene in both 

tanks are set to be lower than 10 μg L
−1

 prior to discharge. The objective of this problem 

is therefore to design the operation scheme for 36 hours in order to meet the discharge 

standard and to minimize the total treatment cost. Cost is associated with the use of UV 

lamps and the pumps by which electricity is consumed. Their cost coefficients are 

arbitrarily predefined as $0.05 per lamp per hour and $0.003 per liter, respectively. UV 

lamps can be operated in different combinations and its number has to be an integer 

ranging from 2 to 6. The flow rates of the pumps are equal and have to be greater than 0.1 

and less than 0.5 L min
-1

. This problem can then be formulated as the following 

multi-stage mixed integer nonlinear programming problem with 36 stages. 

            (6.25) 

subject to: 

             (6.26) 

             (6.27) 
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                (6.28) 

             (6.29) 

where x and y are the flow rates (L min
-1

) and the numbers of UV lamps during each hour, 

respectively; i is the number of hours; and C are the nonlinear inequity constraint 

associated with the final concentration of naphthalene after 36-hour UV treatment (μg 

L
−1

). The computation of the nonlinear constraints C is simplified as follows. For 

example, during a small time increment  in the first hour, the post-concentrations in 

the storage (cs) and reaction (cr) tanks (assuming completely mixed conditions) can be 

computed as: 

1) The removal rate of naphthalene in the portion of seawater that remains in the 

reaction tank after an exposure period of  can be calculated using the pre-developed 

feedforward neural network (Jing et al., 2014b), which requires inputs of UV lamps, 

salinity, temperature, concentration, and reaction time 

     
(6.30) 

where represents naphthalene removal in percentage; sim and net are Matlab 

commands for ANN simulation; y1 is the number of UV lamps operated in the first hour; 

cr0, 32.5, 25 and stand for pre-concentration in the reaction tank, salinity, temperature, 

and time, respectively. 

2) Within the time period of , the volume of seawater that flows out of the 

reaction tank is  and its removal rate can be integrated as shown below. 

According to the first order reaction kinetics, we have 

                        (6.31) 
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                     (6.32) 

               (6.33) 

                        (6.34) 

where k is the reaction rate constant;  and  are the concentrations of naphthalene in 

seawater that remains in the reaction tank at time points and t, respectively; and is the 

corresponding removal rate at time point t. 

3) Within the time period of , the volume of seawater that flows in the reaction 

tank is  and its removal rate can be integrated using the same procedure stated 

above. 

                (6.35) 

                       (6.36) 

                         (6.37) 

where  is the initial concentration of naphthalene in the storage tank; and are the 

removal rates in seawater coming from the storage tank at time points  and t, 

respectively. 

4) The total naphthalene removal in mass m and the concentrations in the storage 

tank (cs) and reaction tank (cr) after can be computed as: 

        (6.38) 
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       (6.39) 

           (6.40) 

Repeat the above four steps for the rest of the first hour as well as subsequent hours 

to obtain the final concentrations in both tanks, which are required to be less than or equal 

to 10 μg L
−1

. It can be seen that the length of Δt is of significance in computing the 

concentrations of naphthalene in both tanks, which are in turn affected by the differences 

among the removal rates rΔt, rout, and rin. Ideally, Δt should be set as short as enough to 

approach the complete mixing assumption such that the differences among rΔt, rout, and rin 

are negligible. Therefore, in this case study, Δt was tested at 0.1, 0.5, 1, 2, 3, 4, and 5 

minutes, respectively, with cr0 varying from 300 to 100 μg/L to determine the best 

compromise between computation accuracy and efficiency. As shown in Table 6.1, the 

concentration difference (Δc) between rΔt and rout/rin shows an increasing trend when Δt 

increases and this trend is not affected by cr0. However, to simplify the computation and 

to avoid time-consuming iterations, a compromise on the length of Δt should be taken 

into account such that Δt was set as 1 min in this case study. 

To solve this problem, GA optimization was performed in Matlab
®
 by following the 

detailed procedure shown in Figure 6.1. The number of variables was 72. Population size 

(Np) and maximum generation count (Ng) are usually two of the most important paramters 

in GA optimization. To validate if the chosen values of Np and Ng can well achieve the 

desired solution, a comparative test was undertaken by examining their different 

combinations (Table 6.2). It can be seen that the optimization results dropped from 

9.6784 to 9.1125 when Np was hold at 30 and Ng was increased from 50 to 100. However, 
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a further increase of Ng from 100 to 200 did not produce any better results because the 

optimization process usually met the stopping criteria between 70 to 80 generations. On 

the other hand, higher Np values were not associated with better performance as observed 

from the last three tests. It has been reported that big population size may not improve the 

performance of GA in meaning of speed of finding solution (El-Fergany et al., 2014). Np 

was therefore set to 30 by taking computation time and resource constraints into account. 

Based on the test results and literature recommendations (Ma et al., 2011; Dong et al., 

2013; Liu et al., 2013), the population size (Np) and maximum generation count (Ng) were 

set at 30 and 100, respectively. The binary tournament selection function and 

doubleVector population type were used as default for mixed integer programming. The 

elite count for reproduction (Pr) was set at 2, while the crossover fraction (Pc) of the 

current population excluding the elite individuals was set at 0.8. Power mutation (Pm) was 

adopted by default to accommodate the integer restriction of decision variables (Deep et 

al., 2009). 

To compare with the performance of the ANN-DMINP approach, a single-stage 

optimization (i.e., globally continuous problem) was conducted by using constant flow 

rate and constant number of lamps throughout the 36-hour period. The optimization 

procedure and GA settings were the same as for the multi-stage problem. In addition, a 

500-iteration Monte Carlo simulation was performed to illustrate the distribution of 

treatment cost that might be expected from random sampling of constant flow rate and 

the number of lamps within their ranges. Such a random sampling can well reflect the 

consequence of random decision making when no optimization results are available.  
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Table 6.1 The removal rates rΔt, rout, and rin after one time step Δt at different initial concentrations (cr0) in the reaction tank 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: Δc stands for the difference between the concentrations of naphthalene in seawater that remains in the reaction tank and in 

seawater that flows out of the reaction tank. It can be calculated with Δc = cr0*( rΔt - rout).

Time step 

(min) 

cr0 = 300 μg/L cr0 = 200 μg/L cr0 = 100 μg/L 

rΔt rout =rin 

rin 

0.0003 

0.0003 

Δc (μg/L) rΔt rout =rin 

rin 

Δc (μg/L) rΔt rout =rin 

rin 

Δc (μg/L) 

0.1 0.0006 0.0003 0.09 0.0009 0.0004 0.09 0.0011 0.0006 0.06 

0.5 0.0030 0.0014 0.45 0.0047 0.0024 0.48 0.0057 0.0028 0.28 

1 0.0059 0.0030 0.89 0.0093 0.0047 0.94 0.0113 0.0057 0.57 

2 0.0118 0.0059 1.77 0.0185 0.0093 1.86 0.0225 0.0113 1.13 

3 0.0176 0.0088 2.64 0.0276 0.0138 2.76 0.0335 0.0168 1.68 

4 0.0234 0.0118 3.53 0.0367 0.0184 3.68 0.0445 0.0223 2.23 

5 0.0292 0.0147 4.41 0.0456 0.0230 4.60 0.0553 0.0278 2.78 
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Table 6.2 The comparison of minimized treatment cost based on different Np and Ng 

combinations 

Test # Np Ng Min Cost ($) 

1 30 50 9.6784 

2 30 100 9.1125 

3 30 200 9.1125 

4 50 100 9.3094 

5 100 100 9.5404 
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6.4 Results and Discussion 

The results from the case study suggested that the minimum treatment cost was 

optimized at $9.1125 after 36-hour UV irradiation. The final concentrations in the storage 

and reaction tanks were 9.97 and 7.56 μg L
−1

, respectively, indicating that the nonlinear 

constraints on the discharge standards were met (Figure 6.3). The decreasing trend of 

both concentrations were closely linked with a correlation coefficient of 0.998, while they 

were reversely correlated with the treatment cost with correlation coefficients lower than 

-0.938. This observation infers that the decision variables were properly optimized. If the 

flow rate was too low, given the number of UV lamps unchanged, the concentration 

difference between two tanks would be much more pronounced because most treated 

seawater would remain in the reaction tank. If the flow rate was too high, the pollutant 

removal process can be somewhat accelerated but with much higher cost. On the other 

hand, given constant flow rate, more UV lamps may drastically promote the treatment 

process but also associate with higher cost, and vice versa. The flow rates and the number 

of UV lamps during each stage are illustrated in Figure 6.4. It is worth mentioning that 

the treatment system was not in its peak load condition. The number of UV lamps was 

kept at the minimum level (e.g., 2 lamps) in 16 hours, and the mean flow rate during the 

whole treatment period was just half of its top limit at 0.241 L min
-1

. This implies that the 

36-hour period may be further shortened without violating the discharge standards. 

 

6.4.1 Comparison with the Single-Stage Optimization and Monte Carlo Simulation 

The single-stage optimization yielded a constant flow rate of 0.1 L min
-1

 and 6 UV 

lamps during the 36-hour period. The variations of naphthalene concentrations in both 
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tanks with time are plotted in Figure 6.5. The degradation strictly followed the first order 

kinetics well with R
2
 greater than 0.99 and reduced the concentrations in the storage and 

reaction tanks to 4.15 and 3.08 μg L
−1

, respectively. The difference between two 

concentrations ranged from 1.07 to 45.92 μg L
−1

 with a mean value of 15.75 μg L
−1

. The 

mean value was larger than that of the multi-stage problem (i.e., 6.53 μg L
−1

), indicating 

that the fixed parameters was not as much efficient as the variable ones in balancing the 

concentrations. The treatment cost was optimized to $11.448, which was 25.7% higher 

than that of the multi-stage problem, suggesting the multi-stage operation plan was 

superior in terms of cost efficiency. This difference could be solely due to the 

over-exposure of UV irradiation by using 6 lamps during the treatment period as the flow 

rate was at its minimum level (0.1 L min
-1

). If the number of UV lamps was adjusted to 5 

while maintaining the flow rate at 0.1 L min
-1

, the concentrations in the storage and 

reaction tanks would go down to 16.52 and 13.55 μg L
−1

, respectively, which were higher 

than the discharge standard. The standard was not met until the flow rate was increased to 

0.5 L min
-1

 with 5 lamps on, incurring a total cost of $12.24. Therefore, using the 

combination of 0.1 L min
-1

 flow rate and 6 UV lamps seemed to be the best decision 

available for this single-stage treatment plan. Another interesting finding was that the 

concentrations in both tanks were lower than 10 μg L
−1

 after only 29 hours, which means 

the rest of the treatment period can be readily considered as unnecessary. Therefore, as 

concluded from the multi-stage problem, a reduction in treatment duration could be 

favoured because it may also lead to lower treatment cost.  

On the other hand, 83% (415 out of 500) of the Monte Carlo iterations were not able 

to meet the required
 
standard (10 μg L

−1
) due to the lack of flow rate or UV irradiation. 
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Only 85 iterations were recorded as feasible solution and the statistical analysis of 

treatment cost, flow rate, and the number of lamps is shown in Table 6.3. It can be seen 

that the minimum treatment cost was $11.449, which was close to the single-stage 

optimization results of $11.448. Nonetheless, the mean cost was $12.797 with a standard 

deviation of $0.728, indicating that in most Monte Carlo iterations the system 

performance was not at its optimal level. These results suggested that, if the operator 

randomly set the flow rate and the number of lamps as constants during the 36-hour 

period, then there would be a great chance that the treatment standard cannot be met. 

Even if the treatment was successful, the system can hardly reach its optimal performance 

due to the lack of optimization efforts. 
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Figure 6.3 Variations of the concentrations in the storage and reaction tanks and the 

treatment cost during the 36-hour UV exposure using the ANN-DMINP approach 
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Figure 6.4 Variations of the flow rate and the number of UV lamps during the 

36-hour UV exposure 
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Figure 6.5 Variations of the concentrations in the storage and reaction tanks and the 

treatment cost during the 36-hour UV exposure using the single-stage optimization 
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Figure 6.6 Minimization of treatment time and total cost using both multi-stage 

(ANN-DMINP) and single-stage optimization 
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6.4.2 Minimization of Time and Cost 

The original problem of the case study was to minimize treatment cost given 36-hour 

time period. The optimization results showed that the treatment system was not operated 

at full capacity, indicating the operation time may be reduced. The comparative 

single-stage problem also revealed that a reduction in treatment duration could be 

necessary and cost-effective. Indeed, increasing flow rate and UV irradiation intensity 

may help achieve the discharge standard in a shorter operating time. To better understand 

the relationship between cost and operation time, the ANN-DMINP approach and the 

single-stage optimization were both carried out for multiple periods ranging from 25 to 

36 hours by taking time constraints and the efficiency of convergence into account. The 

number of stages of the ANN-DMINP approach was set as the same as the number of 

hours (one hour per stage) for each period. The validity of constraints (final 

concentrations not exceeding 10 μg L
−1

) was checked such that feasible solutions in terms 

of cost and time were recorded. The population size (Np), maximum generation count (Ng) 

and elite count for reproduction (Pr) were kept as 30, 100 and 2, respectively. 

As depicted in Figure 6.6, it can be seen that the treatment costs for both multi-stage 

ANN-DMINP and single-stage optimization tended to decrease with decreasing time. 

This decreasing trend was remarkable at the beginning from 36 hours and reached a local 

minimum around 27 hours for both cases. The cost started to increase if the treatment 

time went below 27 hours and reached the threshold at 25 hours for the discharge 

standard to be met. The discharge standard of 10 μg L
−1 

was not able to be satisfied if the 

treatment time was less than 25 hours. Another interest finding is that the optimum cost 

of the multi-stage control scheme was lower than that of the single-stage control scheme 
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at an average difference of $1.00, implying the superiority of the ANN-DMINP approach. 

 

6.4.3 Effect of the number of optimization stages 

The ANN-DMINP approach was originally proposed and implemented on an hourly 

basis so that each stage had one hour. However, such an hourly operation plan sometimes 

may not be the best option, given that changing the operation parameters too often may 

cause additional costs or affect the stability of the system. To understand how the number 

of optimization stages can influence on the optimization results, sensitivity analysis was 

conducted. When the total treatment period was fixed at 36 hours, it can be seen that 

more optimization stages generally resulted in lower total treatment cost (Table 6.4). 

Interestingly, when having two stages, or in other words, changing the operation 

parameters once after the 18
th

 hour, the total treatment cost would reach its minimum 

value at $8.3622. The flow rates and the numbers of lamps at the two stages were 0.160 

and 0.199 L min
-1

, and 2 and 6, respectively. Such an interesting observation may be 

explained by the nature of GA. The solution search mechanism of GA often starts from a 

random initial population such that the 36-stage optimization would hardly converge to 

the solution from the 2-stage one. With that being said, if the solution from the 2-stage 

case can be used as the initial population for the 36-stage case, then a better solution may 

be obtained. The performance of the hourly stage and 2-stage optimization was further 

compared at a number of other periods. As shown in Table 6.5, the results obtained from 

hourly stage optimization dominate those from 2-stage optimization, indicating that 

optimization with more stages would be more beneficial. Nonetheless, it should be taken 

into account that more control stages would possibly increase manpower needs and 
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reduce system stability. Therefore, for the sake of computation time, the operators are 

recommended to first seek the best solution with less optimization stages, and then use it 

as an initial population to seek potentially better solution with more optimization stages. 

Then the difference between the solutions can be evaluated to determine whether or not a 

more complex operation plan should be implemented. 
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Table 6.3 Statistical results of the Monte Carlo Simulation 

 Flow rate (L/min) UV lamp Cost ($) 

Min 0.100 5 11.449 

Max 0.495 6 14.000 

Mean 0.315 5.977 12.797 

Std 0.115 0.153 0.728 

95% percentile [0.114, 0.478] [6, 6] [11.538, 13.823] 
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Table 6.4 Sensitivity analysis of the number of optimization stages with 36 hours 

The number 

of stages 

Stage 

duration (hr) 

Optimization 

results ($) 

36 1 9.1125 

18 2 9.2503 

12 3 8.9999 

6 6 9.1148 

2 18 8.3622 

1 36 11.4480 
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Table 6.5 Comparison between hourly stage and two stage optimization 

Time (hr) Optimization results ($)  

Hourly stage Two stage 

32 8.9870 9.0407 

30 8.6753 9.4853 

28 8.7885 9.0622 

27 8.6280 9.2705 

26 9.0315 8.9188 

25 9.0442 9.0442 
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6.5 Summary 

This chapter presents an ANN-based dynamic mixed integer nonlinear programming 

(ANN-DMINP) approach to help optimize the performance of marine oily wastewater 

treatment. It is an integration of simulation (i.e., ANN), stochastic optimization (GA) and 

the multi-stage principle and is examined through a hypothetical case study. UV 

photodegradation of naphthalene, as described in Chapters 4 and 5, was chosen in the 

case study as an example to demonstrate the applicability of the proposed approach. The 

results from the case study showed that the treatment cost in a fixed 36-hour period was 

minimized to $9.11 by using the ANN-DMINP approach. As a comparison, the 

single-stage optimization with constant variables was also applied and the treatment cost 

was 25.7% higher at $11.45. A Monte Carlo simulation was also performed to conclude 

that if the operator randomly set the flow rate and the number of lamps as constants 

during the 36-hour period, then there would be a great chance that the treatment standard 

cannot be met. If considering time as another flexible variable, the treatment cost reached 

its minimum at 27 hours with $8.71 and $8.94 for the ANN-DMINP approach and the 

single-stage optimization, respectively. A sensitivity analysis for the number of stages 

demonstrated that, regardless the length of treatment period, more optimization stages can 

generally reduce treatment cost, but may lead to extra manpower needs and affect system 

stability. It was recommended to first seek the best solution with less optimization stages, 

and then using the solution as an initial population for more optimization stages, if 

necessary.  
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CHAPTER 7  

AN INTEGRATED SIMULATION-BASED PROCESS 

CONTROL AND OPERATION PLANNING (IS-PCOP) 

APPROACH FOR MARINE WASTEWATER 

MANAGEMENT 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

____________________ 

This chapter is based on and expanded from the following paper: 

Jing, L., Chen, B., and Zhang, B.Y. (2014). An integrated simulation-based process control and 

operation planning (IS-PCOP) approach for marine wastewater management. Journal of 

Environmental Management, to be submitted. 

 Role: Liang Jing solely worked on this study and acted as the first author of this manuscript 

under Dr. Bing Chen and Dr. Baiyu Zhang’s guidance. Most contents of this paper was 

written by Liang and further polished by the other co-authors. 
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7.1 Background 

In view of overall planning, the terms of “operation planning” and “process control 

or detailed scheduling” are quite different from each other. Operation planning, or so 

called system planning, usually refers to a longer period of time and is a prerequisite for 

process control. Based on the required product characteristics and economic and 

environmental constraints, the most appropriate processes, resources, and standards can 

be properly selected. A good operation planning tool, particularly from the long-term 

perspective, is an important basis and guarantee for meeting basic needs, providing 

high-quality service, and making the best use of available resources. This is especially 

true for offshore operations where resources such as power supply, available space, and 

man power are usually limited. Chapter 3 introduces two decision support and operation 

planning tools for marine oily wastewater treatment. It is worth mentioning that the 

optimization modules within these tools are usually complicated by many inherent 

nonlinear processes, such as the efficiency, cost and time requirement of different 

treatment technologies. The lack of understanding and knowledge has urged people to 

employ arbitrary opinion or empirical interpolation in order to simplify the nonlinearity. 

Contrastingly, process control is generally achieved by careful and accurate control and 

monitoring of the process parameters affecting the quality of the products. It is defined as 

an engineering discipline that deals with mechanisms and algorithms for maintaining the 

output of a specific engineering process within a desired range. With the increasingly 

stringent standards and more sophisticated treatment systems, operators have become 

more and more reliant on mathematical tools instead of their personal experience to 

optimize the control strategy.  
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An ideal combination of both process control and operation planning can greatly 

reduce system cost and maximize economic and environmental benefits associated with 

marine oily wastewater treatment. Recently, it has been recognized that, regardless their 

difference, the combination of process control and operation planning can ensure the 

meeting of the economic objectives and timely completion of the tasks associated with 

the plans (Hans et al., 2007; Hüfner et al., 2009). Hüfner et al. (2009) reported that a 

high-quality production planning needs to reflect the uncertainties associated with the 

market and technical parameters and to accommodate the feasible operation scheduling. 

Anuar Mohamad Kamar (2010) argued that if appropriate process control is not 

implemented during the system planning procedure, there might be potential benefits lost 

because traditional planning tends to be more conservative and less risk-taking. Verl et al. 

(2011) stated the importance of distinguishing between “detailed scheduling and process 

control” and “operation planning”. Nonetheless, they also claimed that process control 

consists of the anticipatory consideration and the reaction to unexpected occurrences, 

while long-term planning is usually a prerequisite for detailed scheduling and process 

control. How to take process control and scheduling into account during operation 

planning have become a rapidly growing area of research and a subject of interest to 

academicians and practitioners alike. 

However, the link between process control and operation planning is most often not 

available due to the complexity of the integrated system, the difficulty in capturing and 

modeling the behaviour of the process, and the uncertainty of parameters to be considered. 

The first challenging aspect is the multi-scale nature of the integration, which arises as 

operation planning (e.g., capacity investment and design decisions) is typically made on a 
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much coarser (and longer) time scale than process control decisions. It is common to have 

benefits, investments, or capacity growth reviewed on a seasonal or yearly basis, whereas 

process control requires decisions and actions on a much finer time scale (e.g., hours). 

Secondly, wastewater treatment usually consists of a number of complex physical, 

chemical, and biological processes that are described by nonlinear functions. Therefore, 

how to precisely simulate the process and predict the outputs has been an obstacle for 

learning the behaviour of the treatment systems. Lastly, such coupling can be further 

complicated by uncertainties, which may arise from a number of different sources 

including wastewater characteristics, technology features and limitations, as well as 

environmental standards. 

How to more accurately couple process control with operation planning has been a 

major roadblock in the development of an effective decision support system for marine 

oily wastewater management. To date, there has been no study reported in the literature 

on such integration. To fill the above knowledge gap, this chapter, therefore, aims at 

demonstrating the possible integration of process control with traditional operation 

planning by using neural networks, genetic algorithm, multistage principle, and Monte 

Carlo simulation. A case study of offshore wastewater management is carried out to 

demonstrate the efficacy of the proposed approach. 

 

7.2 The IS-PCOP Approach for Marine Wastewater Management 

Consider the following operation planning problem: 

                          (7.1) 

subject to: 

)(...)()()( 21 xfxfxfxfMin n
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      (7.2) 

      (7.3) 

         (7.4) 

where x are the decision variables, such as chemical dose and retention time; f is the 

objective function which equals to the sum of n sub-functions that are related to treatment 

cost or environmental risk; g and h are the equality and inequality constraints that can be 

associated with treatment capacity and man power restraint, respectively; p and q are the 

numbers of equality and inequality constraints, respectively; and lb and ub are the lower 

and upper bounds of x, respectively. The bounds are usually set by consulting experts or 

literature documents. A common situation is that, some of the sub-functions may be 

associated with simulation processes, while the process control tool proposed in Chapter 

6 can be used to optimize these sub-functions. A prerequisite here is that the simulation 

process must have been well investigated, preferably supported by experimental 

observation data, such that an ANN simulation model can be developed (Figure 7.1). The 

detailed solution algorithm is summarized as follows: 

Step 1: Define the operation planning objectives and constraints as introduced in 

Equations 7.1-7.4. Generate random numbers for the coefficients of objective functions 

and constraints within the corresponding upper and lower bounds. The bounds can be 

defined by consulting experts, field engineers or literatures. 

Step 2:  Generate random decision variables x within the predefined bounds lb and ub. 

These two steps are adopted from the SHIFP method proposed in Chapter 3. 

Step 3: Define the process control problems fn(x) with inputs and the number of stages. 

The inputs are defined by the wastewater treatment problem (e.g., UV does and salinity) 

pjxg j ,,2,10)( 

qkxhk ,,2,10)( 

ubxlb 
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while the number of stages are defined by the treatment period. Divide the 

simulation-based sub-functions fn(x) into multiple stages and obtain the corresponding 

minimized fn(x) using the ANN-DMINP approach (Section 6.2.1). The ANN model(s) are 

developed according to experimental data prior to this problem solving process. 

Step 4: Evaluate the equality and inequality constraints to ensure the validity of the 

decision variables. 

Step 5: Calculate the objective function f(x) in terms of minimized fn(x) and record 

feasible solutions. 

Step 6: Repeat Steps 2-5 for a number of iterations using Monte Carlo simulation. Note 

that the higher the number of iterations, the higher the chance to get a better solution 

distribution, and also the more computation time is required. The number of iterations 

should be set according to calculation accuracy and time/resources constraints. Find the 

minimum objective function value f(x) and the value of decision variables corresponding 

to the random coefficients. 

Step 7: Repeat Steps 1-6 using Monte Carlo simulation for a preset number of times. The 

objective function can be obtained as a probability distribution function in order to reflect 

the inherent uncertainty in the optimization process. 
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Figure 7.1 Flowchart of the IS-PCOP Approach for marine wastewater management 
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Figure 7.2 A schematic plot of the UV treatment system on the FPSO 
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7.3 Case Study 

7.3.1 Bilge Water Treatment System 

This case study is simplified based on a real-world case in the North Atlantic where a 

Floating Production Storage Offloading (FPSO) vessel. To protect confidentiality, all 

identifications have been removed. The onboard generated oily wastewater needs to be 

completely treated prior to discharge overboard or reuse. It should be noted that ballast 

water and produced water are not included in here. Produced water usually has its own 

separate treatment system due to the high volume. Ballast water is also not considered in 

this case as it is usually stored in segregated ballast tanks on new vessels and is free of 

any contact with oil. Therefore, in this case study, oily wastewater is mainly referred to 

bilge water that comes from vessel sewage leak, cooling water leak, deck drainage, 

machinery drainage, and the leak of jet fuel, lubricant oil, diesel oil, hydraulic oil, and 

crude oil. 

Bilge water on the FPSO is typically directed towards the slops tank where it mixes 

with collected rainwater and air conditioning condensate. Mixed bilge water then 

undergoes oil-water separation and oil level testing to meet a discharge level at 15 ppm. 

Due to growing concerns and more stringent regulations (e.g., zero discharge policy in 

the Arctic), further treatment becomes desired to destruct dissolved organic pollutants 

(e.g., PAHs) left in the effluent from oil-water separator. In this case study, as described 

in Chapters 4, 5 and 6, UV secondary treatment system is deployed onboard to remove 

naphthalene, which is a typical PAH and of great environmental concern. Effluent from 

the oil-water separator is conveyed to storage tanks (100 m
3
) and then pumped to the 
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reaction tank for secondary treatment (i.e., UV irradiation) on a daily basis (Figure 7.2). 

There are two such storage tanks in order to make sure that one of them is available for 

storage while the other is under treatment cycle. The storage tanks are connected to an 

UV reaction tank (10 m
3
) where the average UV fluence rate can be controlled at 2.88, 

4.27, 5.65, 6.96, and 8.27 mW cm
-2

, respectively. This 5-level UV setting is the same as 

what has been used in Chapter 6, where different numbers of UV lamps (i.e., 2-6) were 

used to reflect different fluence rates. Water contained in storage and reaction tanks is 

assumed to be completely mixed. The flow rate, based on consulting local field engineers, 

can be adjusted from 0.05 to 0.2 m
3
 min

-1
 by using two centrifugal pumps between the 

storage and reaction tanks. Water flow contained in the pipes between two tanks is 

assumed to be negligible. 

 

7.3.2 Bilge Water Characterization 

According to the corresponding monitoring program technical reports, the daily 

average discharge of bilge water from the FPSO is approximately 39.64 m
3
 day

-1
 with a 

standard deviation of 5.02 m
3
 day

-1
. The concentration of naphthalene in bilge water 

varies from 11 to 3070 μg L
−1

, with a mean value and standard deviation of 177.47 and 

17.12 μg L
−1

, respectively (U.S. EPA, 1999; Netherlands National Water Board, 2008). 

Assumptions are made here that the daily discharge volume and the concentration of 

naphthalene both follow normal distribution determined by their mean values and 

standard deviations. Salinity of bilge water is assumed to follow normal distribution with 

a mean value and standard deviation of 22 and 2 psu, respectively. Bilge water 

temperature, according to relevant reports and consultation with field engineers, also 
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obeys normal distribution with an average value of 45 
o
C and a standard deviation of 2 

o
C. 

 

7.3.3 Problem Formulation 

For each Monte Carlo run, random bilge water volume and naphthalene 

concentration were generated based on their corresponding normal distributions. Then the 

proposed process control approach was adopted to minimize the daily treatment cost by 

examining 24 hours treatment periods. Effluent from the UV treatment system, depending 

on its quality in terms of naphthalene concentration (i.e., should be less than 30 μg L
−1

 for 

safety concerns according to Kennedy (2006)), can be reused onboard and generate 

varying benefits. The operation planning goal was to minimize the total treatment cost 

over a certain period of time, subtracting the reusing benefit, in order to economically 

meet the discharge standard for weeks, months or years, given the wastewater 

characteristics would remain unchanged. The problem of this case study, therefore, can be 

restated as to choose the best UV treatment goal (i.e., naphthalene concentrations in both 

storage and reaction tanks) that can minimize the total net treatment cost over a 20-day 

period. Considering the available computation capacity and time constraint, the 20-day 

planning horizon was selected as a demonstrative example to show the effectiveness of 

the IS-PCOP Approach. Detailed problem formulation is summarized as follows: 

Step 1: Set the UV treatment standard (β) to 30 μg L
−1

. 

Step 2: Generate random numbers for the daily volume of bilge water (z) and the 

concentration of naphthalene according to their pre-defined normal distributions, which 

are N (39.64, 5.02) and N (177.47, 17.12), respectively. 
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Step 3: Apply the ANN-DMINP approach to minimize the daily net cost f, which equals 

the treatment cost subtracting benefits from reusing treated water. Note that the 

population size (Np) and maximum generation count (Ng) were set at 10 and 20, 

respectively by taking computation time into account. All other GA optimization 

parameters were kept the same as referring to Section 6.3. 

       (7.5) 

subject to: 

        (7.6) 

        (7.7) 

       (7.8) 

where x and y are the flow rates (m
3
 min

-1
) and the intensity level of UV irradiation (i.e., 

5 levels corresponding to 2.88, 4.27, 5.65, 6.96, and 8.27 mW cm
-2

) during each hour, 

respectively; i is the number of hours; n in the total treatment period which could vary 

from 1 to 24 hours and must be integer (hour); z is the random daily volume of bilge 

water based on historical records (m
3
); h1 and h2 stand for the final concentrations in the 

storage tank and the reaction tank, respectively; and β stands for the treatment standard. 

The cost coefficients in Equation 7.5 are arbitrarily predefined as $0.5 per intensity level 

per hour and $0.03 per liter, respectively. The flow rates of the pumps are equal and have 

to be greater than 0.05 and less than 0.2 L min
-1

. 

Step 4: Repeat Steps 2-3 for 20 iterations using Monte Carlo simulation to approximate a 

distribution of the daily net cost associated with the treatment standard of 30 μg L
−1

. Note 

that the number of Monte Carlo iterations may be increased to obtain the output closed to 
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desired output. However, due to time and resource constraints, the number of iterations 

was sets as 20 in this case study to demonstrate the feasibility of the proposed 

methodology. The total net cost over this 20-day period can also be obtained by summing 

up the daily net cost. 

Step 5: Repeat Steps 1-4 for other treatment standards using Monte Carlo simulation. 

Ideally, the larger the number of iterations (e.g., 2000), the larger will be the computation 

time and the better will be the solution found. Due to concerns related to computation 

time, the standards are only examined at 5, 10, 15, 20 and 25 μg L
−1

 to demonstrate the 

efficacy of the proposed methodology. Then a comparison can be carried out to identify 

the most economically advantageous strategy that should be adopted for operation 

planning over this 20-day period. 

 

7.4 Results and Discussion 

7.4.1 Integrated Process Control and Operation Planning 

Figure 7.3 demonstrates the optimization results with the treatment standard of 15 μg 

L
−1

. By generating random wastewater conditions (e.g., volume, concentration, salinity) 

and follow the procedure described in Section 7.3.3, the probability density estimates of 

the minimized daily treatment cost and net cost are plotted using the kernel-smoothing 

method. It can be seen that the most probable value of daily treatment cost lied between 

$22 and $32, with a mean of $30.92. As for the net cost that takes reusing benefits into 

account, the most probable value ranged from $10 to $27 per day, with a mean of $18.78 

per day. As a comparison, the same probability density estimates of the 20 μg L
−1

 

standard seemed to shift to the lower side of costs (Figure 7.4). The most probably value 
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of daily treatment cost and net cost were both less than $30 with means of $28.94 and 

$18.00, respectively. This decreasing trend indicated that, from the probability 

perspective, the standard of 20 μg L
−1 

can be more economically competitive over the 

standard of 15 μg L
−1

. Or in other words, choosing the more stringent standard (i.e., 15 

μg L
−1

) resulted in an increase of treatment cost and reusing benefit. However, the 

increase of treatment cost overwhelmed that of benefit, leading to a higher net cost. 

The same trend can be observed with the standards of 5 and 10 μg L
−1

 from Figures 

7.5 and 7.6. As the tolerance of naphthalene concentration became stricter, sharp jumps in 

treatment cost were expected and attributable to the extended use of UV lamps and 

pumps. The mean treatment costs for the standards of 5 and 10 μg L
−1

 were $55.96 and 

$44.97, respectively, which were drastically higher than those of 15 and 20 μg L
−1

. On 

the other hand, stricter standards also offered more competitive reusing return. By reusing 

the treated effluent with 5 and 10 μg L
−1

 naphthalene concentrations, the average 

economic returns were calculated as $14.43 and $13.34, respectively. However, by 

subtracting benefits from the treatment costs, the average net costs were $41.53 and 

$31.62, respectively, which were higher than those of the 15 and 20 μg L
−1

 standards. 

Contrastingly, the treatment costs associated with the standards of 25 and 30 μg L
−1 

were 

fairly close to that of the 20 μg L
−1

 standard but slightly at the lower end (Figures 7.7 and 

7.8). Their average treatment costs were $27.64 and $24.75, respectively; while the 

average net costs were $18.70 and $21.72, respectively (Table 7.1). 

Figure 7.9 depicts the optimal daily treatment cost, net cost, and benefit at different 

standards, with the central points showing the average over the iterations, and the bars 

representing the standard deviation of the estimates. It can be seen that treatment cost and 
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reusing benefit both prominently went up with more stringent treatment standard. Such 

increases are reasonably self-explanatory because reducing the concentration of 

naphthalene to a lower level would certainly require more energy and therefore provide 

better reuse potential. Nonetheless, the increase of treatment cost was significant as the 

standard lowered from 15 to 5 μg L
−1

; however, in between 20 and 30 μg L
−1

, this trend 

was not prominent. As for reusing benefit, the increasing behaviour was only remarkable 

in between 25 and 30 μg L
−1

. Such a difference resulted in the fact that the net cost tended 

to be higher at more stringent standards (Figure 7.9), implying that the increase of 

treatment cost dominated over the increase of benefit. A maximum and a minimum (i.e., 

$41.53 per day and $18.00 per day, respectively) were obtained at the standards of 5 and 

20 μg L
−1

, respectively, suggesting that the 20μg L
−1 

standard should be adopted by the 

decision makers as the most economically feasible option. The distance between the error 

bars can be further reduced if more Monte Carlo iterations can be carried out if available 

computation capacity becomes available. In addition, it should be noted that the 

calculation of reusing benefit would much dependent on the benefit function as shown in 

Equation 7.5. Here in this case study the reusing benefit decreased with increasing 

treatment standard; however, changing the benefit function may lead to totally different 

scenarios. 

 

7.4.2 Comparison with Operation Planning without Process control 

To validate if the coupling between process control and operation planning was 

advantageous over the traditional planning with no process control module, a comparison 

study was conducted by using the single-stage one time planning (Section 6.4.1) over the 
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20-day period. Traditional planning tends to be more conservative and risk-avoiding such 

that the single-stage planning was based on the average problem settings including daily 

bilge water volume (39.64 m
3
), the concentration of naphthalene (177.47 μg L

−1
), salinity 

(22 psu), and temperature (45 
o
C). The UV intensity level and flow rate also remained 

unchanged with no process control efforts for each day within the 20-day period. Six 

treatment standards (i.e., 5, 10, 15, 20, 25, and 30 μg L
−1

) were evaluated and the results 

are demonstrated in Figure 7.9. It can be seen that the total treatment costs (20-day period) 

with process control, at each treatment standard, were lower than the results from the 

single-stage planning. This finding indicated that integrating process control with 

traditional operation planning would provide more economically competitive options in 

operating the treatment system. Another interesting point is that, the difference between 

operation planning with and without process control decreased with more stringent 

standard. This was in accordance with the trend shown in Figure 6.5 because when the 

treatment needed to be completed within a short period of time or the concentration had 

to be lower than a strict standard, the treatment system tended to be at its full capacity 

and had less potential for process control tools to make a difference. 

It can be seen that the combination of process control and operation planning can 

ensure the meeting of the economic objectives and timely completion of the tasks 

associated with the plans. The proposed IS-PCOP approach can well link process control 

and operation planning by simultaneously adopting different time-scales in computation. 

The hourly process control strategy forwards the results to the operation planning module 

where long-term arrangements can be further evaluated. The use of ANN model also 

plays a key role in predicting the treatment process. Many environmental processes, such 
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as wastewater treatment processes, tend to have a nonlinear nature that makes the 

prediction so complicated. Traditional process models that are developed based on classic 

theorems may not effectively describe these complex sub-systems because the models are 

usually created by applying different abstraction methods in which essential properties 

and key process indicators are preserved and insignificant details are left out. The use of 

ANN model, on the other hand, can well simulate the nonlinear processes using a black 

box nature which is more resistant to data uncertainty and lack of knowledge. In addition, 

the use of Monte Carlo simulation tackles the uncertainties, which may arise from a 

number of different sources, such as demands for materials and finished products, 

feedstock supplies, environmental and economic conditions, and customers‟ willingness 

to pay. By addressing the uncertainties and expressing the results in probability 

distributions, the decision makers would have more confidence in making proper 

decisions regarding the long-term and short-term operation of the processes. 
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Table 7.1 Summary of the optimization results at different treatment standard 

Standard 

(μg L
−1

) 

Treatment cost ($/day) Net cost ($/day) CR Reusing benefit ($/day) 

Mean SD Mean SD Mean SD 

30 24.75 12.20 21.72 12.10 0.999 3.02 0.17 

25 27.64 13.64 18.70 12.95 0.999 8.94 0.87 

20 28.94 14.71 18.00 14.42 0.999 10.94 0.63 

15 30.92 9.09 18.78 8.74 0.997 12.14 0.78 

10 44.97 18.30 31.62 17.88 0.999 13.34 0.72 

5 55.96 12.69 41.53 12.29 0.999 14.43 0.73 

Note: CR represents the correlation coefficient between daily treatment cost and net cost; 

and SD stands for standard deviation. 
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Figure 7.3 Probability density estimates of the daily treatment cost and net cost of 

the 15 μg L
−1

 standard 
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Figure 7.4 Probability density estimates of the daily treatment cost and net cost of 

the 20 μg L
−1

 standard 
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Figure 7.5 Probability density estimates of the daily treatment cost and net cost of 

the 10 μg L
−1

 standard 
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Figure 7.6 Probability density estimates of the daily treatment cost and net cost of 

the 5 μg L
−1

 standard 
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Figure 7.7 Probability density estimates of the daily treatment cost and net cost of 

the 25 μg L
−1

 standard 
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Figure 7.8 Probability density estimates of the daily treatment cost and net cost of 

the 30 μg L
−1

 standard 
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Figure 7.9 Error bar plot of daily treatment cost, reusing benefit, and net cost of 

each treatment standard 
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Figure 7.10 The cumulative treatment cost comparison over the 20-day period 

between operation planning with process control and without process control 
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7.5 Summary 

This chapter investigates the feasibility of integrating dynamic process control with 

traditional operation planning as an integrated simulation-based process control and 

operation planning (IS-PCOP) system. A case study related to oily wastewater 

management on a FPSO was conducted to examine the efficacy of this proposed 

integration. The process control approach was used to optimize the treatment cost of 

removing naphthalene from bilge water using UV irradiation. Treated effluent, depending 

on the remaining concentration of naphthalene, was reused and could produce benefit. 

Monte Carlo simulation was applied to generate the parameters (e.g., volume, 

concentration and temperature) of bilge water and examine the net cost to obtain the 

distribution of optimal solutions at a series of treatment strategies. The results showed 

that choosing the 20 μg L
−1

 treatment standard was the most economically competitive 

option. As compared to the traditional operation planning without process control, the 

integrated approach achieved more economically competitive results. The proposed 

integration of dynamic process control and operation planning was successfully applied 

and demonstrated through this case study. Outputs from such integration can offer 

decision makers critical information and more confidence that is not likely to be provided 

by traditional techniques. Future research directions may focus on optimizing the 

computation procedure in order to accommodate larger number of Monte Carlo iterations, 

introduce fuzzy uncertainty into the proposed approach, and further validate by 

large-scale case studies.  
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CHAPTER 8  

CONCLUSIONS AND RECOMMENDATIONS 
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8.1 Summary 

Marine oily wastewater has been recently criticized as a major source of oil pollution 

in the marine environment. Unlike catastrophic oil spills, the discharge of oily wastewater, 

including ballast water, produced water, and bilge water, usually occurs on a daily basis 

without triggering a mitigation response. The accumulated effects of discharging 

untreated or partially treated oily wastewater can lead to significantly negative impacts on 

marine lives and even human health. While the dispersed free oil, oil-in-water or 

water-in-oil emulsions can be mostly removed by gravity separation or hydrocyclone, 

residual oil droplets and dissolved organic compounds including particularly polycyclic 

aromatic hydrocarbons (PAHs) would, however, remain unaffected. The occurrence of 

PAHs is usually of the greatest concern because of their high resistance towards 

biodegradation, extreme toxicity to marine biota, and possible carcinogenicity and 

mutagenicity. Further polishing treatment has therefore become necessary to further 

remove PAHs prior to discharge. 

In recent years, UV photooxidation and other advanced oxidation techniques (e.g., 

UV/H2O2, UV/O3) have been gaining significant attention. They have been regarded as 

promising solutions to the removal of PAHs because of their relatively small footprint, 

low cost, and high efficiency. However, most of the previous studies have focused on 

freshwater systems rather than marine environments where salinity and complex matrix 

effects play a dominant role. Moreover, the research efforts on numerical modeling and 

performance optimization of these techniques have also been limited due to their 

multiphysics nature and the complexity of synergistic effects. Such advanced treatment 

systems, as compared to the traditional ones (e.g., gravity separation and adsorption), are 
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still lack of in-depth understanding of their reaction mechanisms, performance evaluation, 

process optimization, operation planning, and particularly the coupling between process 

control and operation planning, which may drastically hinder their widespread 

applications in shipping and offshore oil and gas industries. 

This research, therefore, started from proposing two novel decision making tools to 

guide the operation planning of marine oily wastewater management, particularly using 

UV or other advanced oxidation techniques. Firstly, a stochastic simulation–based hybrid 

interval fuzzy programming (SHIFP) approach was developed to tackle uncertainties 

inherent in the decision making of operation planning. As with the traditional fuzzy linear 

programming, fuzzy set theory was used to model uncertainty such that the results would 

provide the decision makers more flexibility for the choice of the solution. Uniform 

interval distribution was assumed due to the lack of precise information on both 

coefficients and variables.  

A case study related to recovered oily water treatment during offshore oil spill 

cleanup was carried out to test the proposed approach. The local authority had a number 

of incineration barges, vacuum trucks, centrifugal separators, and temporary storage 

facilities to treat the recovered oily wastewater. However, it was unknown that how many 

facilities should be used and how much wastewater should be delivered to each facility. 

The results demonstrated that the objective function (maximum daily treatment capacity), 

if defuzzified by the centroid defuzzification technique, was likely to follow the normal 

distribution. In addition, the shapes of the fuzzy decision variables, corresponding to the 

maximized objective function, can be categorized into seven groups with different 

probability such that decision makers can more confidently allocate limited resources. 
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Emergency planners and administrators are expected to benefit from this study by gaining 

an insight into how to wisely allocate resources in responding to an offshore oil spill. 

Secondly, when marine oily water is collected or ready for treatment, choosing the best 

available technology usually becomes the first priority for decision makers.  

As one of the most widely exploited multi-criteria decision making (MCDM) 

approaches, the analytic hierarchy process (AHP) has been well documented in the 

literature. However, it has been criticized for its inability to quantify the uncertainty 

associated with decision making. A hybrid fuzzy stochastic analytical hierarchy process 

(FSAHP) approach was developed in order to assist decision making with more 

confidence by integrating fuzzy set theory, probabilistic distribution, pairwise comparison 

and Monte Carlo simulation.  

A case study related to ballast water management was carried out to verify the 

feasibility and efficiency of the proposed approach. Five treatment technologies were 

evaluated against a number of environmental, economic, and technical criteria. The 

results revealed that UV was ranked with the highest overall score at 100% confidence 

level, indicating that the null assumption that it was not probabilistic optimal (versus the 

alternate assumption that it is) was rejected. Ozone, heat treatment, and ultrasound had 

the second, third, and fourth places at the confidence levels of 61.0–71.4%, 56.0–68.4%, 

and 78.4−84.6%, respectively. Considerable overlaps existed among these three 

alternatives which may be attributed to the irreducible uncertainty caused by subjective 

judgments or lack of knowledge. The results also illustrated that both the center of gravity 

(COG) and Chen‟s defuzzification methods were able to provide the decision makers 

with reliable decision references. The proposed FSAHP approach can offer a number of 
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benefits such as the capability of capturing human‟s appraisal of ambiguity and 

addressing the effects of uncertain judgment when dealing with insufficient information 

or biased opinions. 

The next objective of this research was to develop a process control approach that 

can be used to real-timely control UV or other advanced oxidation treatment technologies. 

The foundation of any process control methods rely much on the effectiveness and 

accuracy of process simulation. In this study, therefore, the concept of artificial neural 

networks (ANNs) was adopted for simulation in order to tackle the nonlinearity inherent 

in these advanced treatment system. Experimental results are the prerequisite to an ANN 

simulation model, thus the UV induced photodegradation of a typical PAH, namely 

naphthalene in seawater, was chosen as an example for developing the simulation model. 

A full factorial design of experiments (DOE) was employed to determine the significance 

of each factor being tested as well as their interactions.  

The experimental results showed that the removal of naphthalene followed first order 

kinetics in all experimental runs and the most influential factors were fluence rate, 

temperature and the interaction between temperature and initial concentration. Further 

analysis revealed that the reaction rate constants were linearly related to the number of 

lamps. High salinity suppressed the performance of UV irradiation which was mainly 

caused by the presence of bromide (Br
−
), carbonate (CO3

2−
) and bicarbonate (HCO3

−
) 

ions in seawater. In addition, increasing temperature from 23 to 40 
o
C seemed to 

stimulate the removal of naphthalene in seawater by exciting the collision between 

photons and molecules. The effect of initial concentration was not prominent while the 



228 
 

average reaction rate constant at high concentration was slightly lower than that at low 

concentration.  

Based on the experimental results, a three-layer backpropagation neural network was 

developed to simulate the UV-induced photodegradation of naphthalene in marine oily 

wastewater. The photochemical process was successfully predicted by using 12 neurons 

in the hidden layer and the Levenberg-Marquardt backpropagation algorithm. The 

network was trained to provide a good overall linear fit with a slope of 0.97 and a 

correlation of determination (R
2
) of 0.943. All input variables in this study (i.e., initial 

concentration, salinity, fluence rate, temperature and reaction time) had considerable 

effects on the photodegradation process. The outputs of sensitivity analysis and ANOVA 

revealed that fluence rate and temperature were noted as the most influential variables, 

which aligned with the experimental observations. The results showed that the developed 

ANN model was capable of accurately simulating the naphthalene removal process and 

reproduce the experiment.  

Based on the developed ANN model, an ANN-based dynamic mixed integer 

nonlinear programming (ANN-DMINP) approach was proposed by integrating process 

simulation (i.e., ANN), stochastic optimization (GA) and the multi-stage principle. This 

process control approach was examined through a case study simplified from a real world 

problem. UV photodegradation of naphthalene, as described in Chapters 4 and 5, was 

chosen in the case study as an example to demonstrate the applicability of the proposed 

approach. The results from the case study showed that the treatment cost in a fixed 

36-hour period was minimized to $9.11 by using the ANN-DMINP approach. As a 

comparison, the single-stage optimization with constant variables was also applied and 
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the treatment cost was 25.7% higher at $11.45. A Monte Carlo simulation was also 

performed to conclude that if the operator randomly set the flow rate and the number of 

lamps as constants during the 36-hour period, then there would be a great chance that the 

treatment standard cannot be met. If considering time as another flexible variable, the 

treatment cost reached its minimum at 27 hours with $8.71 and $8.94 for the 

ANN-DMINP approach and the single-stage optimization, respectively. A sensitivity 

analysis for the number of stages demonstrated that, regardless the length of treatment 

period, more optimization stages can generally reduce treatment cost, but may lead to 

extra manpower needs and affect system stability. It was recommended to first seek the 

best solution with less optimization stages, and then using the solution as an initial 

population for more optimization stages, if necessary. By using UV irradiation as an 

example, these findings well demonstrate that the developed ANN-DMINP approach can 

be helpful in the context of reducing the time and cost associated with marine oily 

wastewater treatment, and even many other environmental processes. 

The combination of process control and operation planning can ensure the meeting of 

the economic objectives and timely completion of the tasks associated with the plans. An 

integrated simulation-based process control and operation planning (IS-PCOP) system 

was developed in this research to fulfil that purpose. Such a combination is expected to 

greatly reduce system cost and to maximize economic and environmental benefits 

associated with marine oily wastewater treatment. The IS-PCOP system was employed to 

dynamically control one or more processes associated with the objective function while 

Monte Carlo simulation was adopted to find the optimal solution. A real-world case study 

related to offshore wastewater management on a FPSO was conducted to examine the 
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efficacy of the proposed integration. The ANN-DMINP approach was used to optimize 

the treatment cost of removing naphthalene from bilge water using UV irradiation. 

Treated effluent, depending on the remaining concentration of naphthalene, was reused 

and could produce varying benefit. Monte Carlo simulation was applied to generate the 

parameters (e.g., volume, concentration and temperature) of daily bilge water and 

examine the net cost to obtain the distribution of optimal solutions at a series of treatment 

standards. The results showed that choosing the 20 μg L
−1

 treatment standard was the 

most economically competitive option. As compared to the traditional operation planning 

without process control, the integrated approach achieved more economically competitive 

results.  

The proposed IS-PCOP approach can well link process control and operation 

planning by simultaneously adopting different time-scales in computation. The hourly 

process control strategy forwards the results to the operation-planning module where 

long-term arrangements can be further evaluated. The use of ANN model also plays a key 

role in predicting the treatment process. Many environmental processes, such as 

wastewater treatment processes, tend to have a nonlinear nature that makes the prediction 

so complicated. Traditional process models that are developed based on classic theorems 

may not effectively describe these complex sub-systems because the models are usually 

created by applying different abstraction methods in which essential properties and key 

process indicators are preserved and insignificant details are left out. The use of ANN 

model, on the other hand, can well simulate the nonlinear processes using a black box 

nature which is more resistant to data uncertainty and lack of knowledge. In addition, the 

use of Monte Carlo simulation tackles the uncertainties, which may arise from a number 
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of different sources, such as demands for materials and finished products, feedstock 

supplies, environmental and economic conditions, and customers‟ willingness to pay. By 

addressing the uncertainties and expressing the results in probability distributions, the 

decision makers would have more confidence in making proper decisions regarding both 

long-term and short-term operations of the processes. 

 

8.2 Research Contributions 

This research can be summarized and highlighted by the following contributions: 

1) Two novel operation planning tools, namely the stochastic simulation–based 

hybrid interval fuzzy programming (SHIFP) approach and the hybrid fuzzy stochastic 

analytical hierarchy process (FSAHP) approach, have been developed for marine oily 

wastewater treatment and management. The SHIFP approach can help operation planners 

and administrators in oily wastewater treatment planning while the FSAHP method has 

the capability of capturing human‟s appraisal of ambiguity and addressing the effects of 

uncertain judgment when dealing with insufficient information or biased opinions. 

2) An experimental study has been carried out to investigate UV irradiation as an 

option to treat seawater that contains PAHs (e.g., naphthalene). The photolysis 

mechanism and kinetics of naphthalene has been tested under varying ambient conditions 

including salinity, UV fluence rate, initial concentration and temperature. The results 

from this study are expected to not only help understand the photolysis mechanism of 

PAHs but serve as a good example to develop the integrated process control and 

operation planning system for marine oily wastewater management. 
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3) Based on the experimental results, a neural network model has been developed to 

simulate the UV-induced photodegradation of naphthalene in seawater. The network has 

been trained to provide a good overall linear fit with a slope of 0.97 and a correlation of 

determination (R
2
) of 0.943. The results can demonstrate the fact that the developed ANN 

model can accurately simulate the naphthalene removal process and reproduce the 

experiment. This modeling tool serves as a core part of the following integrated process 

control and operation planning system. 

4) An ANN-based dynamic mixed integer nonlinear programming (ANN-DMINP) 

approach has been proposed to help optimize the performance of the UV treatment 

process. This approach is an integration of simulation, stochastic optimization and the 

multi-stage principle that has never been coupled in the literature. The results of a case 

study have revealed that the proposed dynamic control approach can be used to rationally 

make decisions at different time points and to achieve better performance in terms of cost 

or efficacy. 

5) An innovative integration of process control with traditional operation planning 

has been accomplished by using neural networks, genetic algorithm, multistage principle, 

and Monte Carlo simulation. The proposed IS-PCOP system can well link process control 

and operation planning by simultaneously adopting different time-scales in computation. 

The use of ANN modeling plays a key role in capturing the nonlinear behaviour of the 

treatment process. Genetic algorithm and multistage principle can ensure the efficient 

stochastic search for the optimal solutions in a real-time basis. In addition, Monte Carlo 

simulation yields a better insight on uncertainties, which may arise from a number of 

different sources. By addressing the uncertainties and expressing the results in probability 
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distributions, the decision makers would have more confidence in making proper 

decisions regarding the short-term and long-term operations. It is concluded that the 

combination of process control and operation planning can ensure the meeting of the 

economic objectives and timely completion of the tasks associated with the plans. 

Outputs from such integration can offer decision makers critical information and more 

confidence that is not likely to be provided by traditional techniques. The proposed 

IS-PCOP system can also be used for many other engineering sectors, which involve both 

dynamic processes and operation planning. 
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8.4 Recommendations for Future Research 

1) The polishing treatment of marine oily wastewater may target, aside from PAHs, 

many other organic pollutants that may raise environmental concerns. Such pollutants 

may include, but not limited to, BTEX, phenols, alkyl phenols, alkylated PAHs, and 

aliphatic hydrocarbons. The evaluation criteria for treatment efficiency, other than 

individual pollutants, may consider total petroleum hydrocarbon (TPH), total organic 

carbon (TOC), chemical oxygen demand (COD), and toxicity. Oily wastewater samples 

including offshore produced water, bilge water, and ballast water from the offshore 

industries are also recommended for experimental studies. In addition, the treatment 

options may expand to a broader perspective to include more powerful techniques, such 

as other advanced oxidation processes (AOPs) and nanofiltration. 

2) The modeling of marine oily wastewater treatment could be further improved by 
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coupling ANN with fuzzy logic and stochastic uncertainty. The basic learning rule of 

ANN is based on the gradient method, which has been criticized for its slowness and 

tendency to be trapped in local minima. In addition, they tend to have difficulties in 

performing heuristic reasoning of the domain problem. The linguistic fuzzy-if rules can 

well adopt expert opinions in mapping input linguistic variables to corresponding output 

variables. This feature is advantageous as it allows the performance analysis within the 

framework of seizure prediction characteristics. On the other hand, if ANN model inputs 

are fixed while outputs are subject to stochastic uncertainty (i.e., known distributions of 

specific parameters), which can be usual in repetitive experimental investigations, the 

weights and biases of the ANN model may also inherit stochastic distribution to capture 

such uncertainty. One can also use commercial multi-physics tools COMSOL or ANSYS 

to simulate and optimize complex physical/chemical/biological processes with the aid of 

Matlab. 

3) In this research, UV irradiation targeting on PAHs has been used as an example to 

demonstrate the applicability of the IS-PCOP system. It can also be applied to many other 

environmental sectors where dynamic process control and operation planning are both 

important. For example, to assess the impacts and optimize system configurations for a 

municipal solid waste collection and management system, the planning targets may 

include the number, sizes and locations of landfills and collection stations to minimize 

long-term costs while the operation parameters are subject to a finer scale such as daily 

truck route and hourly collection rates. Another example can be directed to a city‟s 

wastewater treatment system. Operation planning can be used to decide the location, 

capacity and technology of the treatment plants according to the population and water 
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demand of the city. Meanwhile, process control techniques are responsible for 

minimizing treatment costs and associated health risks. Some other potential application 

sectors include oil spill cleanup, soil and groundwater remediation, etc. In addition, 

two-stage stochastic programming and approximate dynamic programming can be further 

introduced into the IS-PCOP system. 
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Appendix A: Datasets for developing the ANN model 
 

Initial Concentration 

(μg L
−1

) 

Salinity 

(psu) 

UV 

Lamps 

Temperature 

(
o
C) 

Time 

(min) 

Removal 

Rate (%) 

10 25 2 23 30 2.52 

10 25 2 23 60 19.70 

10 25 2 23 90 36.58 

10 25 2 23 120 48.56 

10 25 2 23 150 60.66 

10 25 2 23 180 67.99 

10 25 2 23 210 74.09 

10 25 2 23 240 78.78 

10 25 6 23 30 52.81 

10 25 6 23 60 64.18 

10 25 6 23 90 80.54 

10 25 6 23 120 90.00 

10 25 6 23 150 95.15 

10 25 6 23 180 96.93 

10 25 6 23 210 98.30 

10 25 6 23 240 98.63 

10 32.5 2 23 30 0.00 

10 32.5 2 23 60 17.25 

10 32.5 2 23 90 38.51 

10 32.5 2 23 120 37.80 

10 32.5 2 23 150 50.26 

10 32.5 2 23 180 53.99 

10 32.5 2 23 210 77.17 

10 32.5 2 23 240 68.72 

10 32.5 6 23 30 34.23 

10 32.5 6 23 60 53.30 

10 32.5 6 23 90 67.29 

10 32.5 6 23 120 82.71 

10 32.5 6 23 150 90.65 

10 32.5 6 23 180 94.16 

10 32.5 6 23 210 98.78 

10 32.5 6 23 240 96.45 

10 40 2 23 30 6.42 

10 40 2 23 60 13.25 

10 40 2 23 90 26.73 

10 40 2 23 120 38.14 

10 40 2 23 150 46.46 

10 40 2 23 180 52.86 

10 40 2 23 210 59.27 

10 40 2 23 240 66.26 

10 40 6 23 30 32.82 

10 40 6 23 60 54.06 
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10 40 6 23 90 69.99 

10 40 6 23 120 79.74 

10 40 6 23 150 85.00 

10 40 6 23 180 88.81 

10 40 6 23 210 90.82 

10 40 6 23 240 92.24 

10 25 2 40 30 23.42 

10 25 2 40 60 34.91 

10 25 2 40 90 56.36 

10 25 2 40 120 63.35 

10 25 2 40 150 70.94 

10 25 2 40 180 74.91 

10 25 2 40 210 78.43 

10 25 2 40 240 82.45 

10 25 6 40 30 62.66 

10 25 6 40 60 81.70 

10 25 6 40 90 92.25 

10 25 6 40 120 96.20 

10 25 6 40 150 96.78 

10 25 6 40 180 98.84 

10 25 6 40 210 98.73 

10 25 6 40 240 99.39 

10 32.5 2 40 30 9.17 

10 32.5 2 40 60 18.83 

10 32.5 2 40 90 32.58 

10 32.5 2 40 120 44.19 

10 32.5 2 40 150 55.30 

10 32.5 2 40 180 65.16 

10 32.5 2 40 210 73.12 

10 32.5 2 40 240 78.44 

10 32.5 6 40 30 47.32 

10 32.5 6 40 60 73.88 

10 32.5 6 40 90 88.59 

10 32.5 6 40 120 93.74 

10 32.5 6 40 150 96.10 

10 32.5 6 40 180 97.20 

10 32.5 6 40 210 97.21 

10 32.5 6 40 240 99.00 

10 40 2 40 30 14.28 

10 40 2 40 60 33.24 

10 40 2 40 90 47.94 

10 40 2 40 120 55.24 

10 40 2 40 150 61.77 

10 40 2 40 180 68.27 

10 40 2 40 210 73.70 

10 40 2 40 240 76.99 
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10 40 6 40 30 42.17 

10 40 6 40 60 68.03 

10 40 6 40 90 83.60 

10 40 6 40 120 89.92 

10 40 6 40 150 94.54 

10 40 6 40 180 96.77 

10 40 6 40 210 98.10 

10 40 6 40 240 99.00 

500 25 2 23 30 6.71 

500 25 2 23 60 6.63 

500 25 2 23 90 24.76 

500 25 2 23 120 25.41 

500 25 2 23 150 25.23 

500 25 2 23 180 38.28 

500 25 2 23 210 40.67 

500 25 2 23 240 57.87 

500 25 6 23 30 30.94 

500 25 6 23 60 47.40 

500 25 6 23 90 63.05 

500 25 6 23 120 61.47 

500 25 6 23 150 67.50 

500 25 6 23 180 74.69 

500 25 6 23 210 81.13 

500 25 6 23 240 87.45 

500 32.5 2 23 30 17.69 

500 32.5 2 23 60 0.81 

500 32.5 2 23 90 17.26 

500 32.5 2 23 120 27.06 

500 32.5 2 23 150 44.72 

500 32.5 2 23 180 37.55 

500 32.5 2 23 210 27.11 

500 32.5 2 23 240 26.96 

500 32.5 6 23 30 0.00 

500 32.5 6 23 60 12.11 

500 32.5 6 23 90 22.99 

500 32.5 6 23 120 42.19 

500 32.5 6 23 150 10.43 

500 32.5 6 23 180 47.67 

500 32.5 6 23 210 61.68 

500 32.5 6 23 240 82.03 

500 40 2 23 30 0.00 

500 40 2 23 60 5.78 

500 40 2 23 90 8.15 

500 40 2 23 120 24.10 

500 40 2 23 150 41.58 

500 40 2 23 180 55.27 
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500 40 2 23 210 26.42 

500 40 2 23 240 52.26 

500 40 6 23 30 52.62 

500 40 6 23 60 51.95 

500 40 6 23 90 57.85 

500 40 6 23 120 45.33 

500 40 6 23 150 65.65 

500 40 6 23 180 64.10 

500 40 6 23 210 49.05 

500 40 6 23 240 56.10 

500 25 2 40 30 16.69 

500 25 2 40 60 34.77 

500 25 2 40 90 51.92 

500 25 2 40 120 58.51 

500 25 2 40 150 76.16 

500 25 2 40 180 86.07 

500 25 2 40 210 92.80 

500 25 2 40 240 97.47 

500 25 6 40 30 63.75 

500 25 6 40 60 97.18 

500 25 6 40 90 98.93 

500 25 6 40 120 99.06 

500 25 6 40 150 99.11 

500 25 6 40 180 99.41 

500 25 6 40 210 98.94 

500 25 6 40 240 99.01 

500 32.5 2 40 30 12.01 

500 32.5 2 40 60 24.56 

500 32.5 2 40 90 34.42 

500 32.5 2 40 120 40.66 

500 32.5 2 40 150 49.97 

500 32.5 2 40 180 61.35 

500 32.5 2 40 210 65.84 

500 32.5 2 40 240 69.44 

500 32.5 6 40 30 35.82 

500 32.5 6 40 60 55.17 

500 32.5 6 40 90 77.14 

500 32.5 6 40 120 86.33 

500 32.5 6 40 150 88.41 

500 32.5 6 40 180 93.14 

500 32.5 6 40 210 98.16 

500 32.5 6 40 240 98.69 

500 40 2 40 30 43.12 

500 40 2 40 60 38.11 

500 40 2 40 90 29.55 

500 40 2 40 120 55.99 
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500 40 2 40 150 46.73 

500 40 2 40 180 65.37 

500 40 2 40 210 70.39 

500 40 2 40 240 73.44 

500 40 6 40 30 40.72 

500 40 6 40 60 59.83 

500 40 6 40 90 80.99 

500 40 6 40 120 91.85 

500 40 6 40 150 96.91 

500 40 6 40 180 97.98 

500 40 6 40 210 98.41 

500 40 6 40 240 99.00 
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