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Abstract 

Many of the coastal rivers in Newfoundland contain Atlantic salmon populations which 

include both anadromous (i.e. migrate to sea) and non-anadromous (i.e. freshwater 

resident) phenotypes.  However, little is known about the relationship between the two 

types and particularly, how early offspring performance (i.e. growth, dominance and 

survival) may differ as a result of maternal effects (e.g., marine versus freshwater derived 

nutrients in the eggs). Six pairs of paternal half sib families were created by crossing 

unique anadromous and resident mothers with a single male (anadromous or resident).  

Samples were collected at each of four stages (i.e. unfertilized eggs, eyed eggs, yolk-sac 

larvae and newly emerged fish), weighed and used for lipid analyses.  All samples were 

processed and lipid profiles were determined by Iatroscan instrumentation and further 

characterized and quantified by gas chromatography.  There were no significant 

differences in triacylglycerols (TAG) or phospholipids (PL) between the two offspring 

types, however the anadromous offspring had higher amounts of eicosapentaenoic acid 

(EPA, 20:5ω3), docosahexaenoic acid (DHA, 22:6ω3) and ω3:ω6 fatty acids.  The 

resident offspring had higher amounts of arachidonic acid (AA, 20:4ω6).  Results also 

showed that resident mothers had larger eggs and their offspring were larger at 

emergence.  Pair-wise dominance trials between newly emerged anadromous and resident 

offspring revealed no significant difference in positioning relative to a defensible food 

source. Similarly, growth and survival of the newly emerged offspring, tested over a four 
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week period in stream channels and across three treatments (12 resident offspring, 12 

anadromous offspring, and 6 offspring of each type; five replicates of each), differed 

little. Thus, while there were apparent differences in maternal contributions to the 

offspring, there were no indications under the experimental conditions examined that 

these strongly influenced offspring performance after emergence.    
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1.1 Conditional Strategy 

Environments are constantly changing and to be successful organisms must be able to 

respond appropriately.  There are two major ways for organisms to respond to their 

surroundings, longer term options (across generations) stemming from natural selection, 

and phenotypic plasticity which are shorter term solutions (within generations) such as 

behavioural or physiological changes based on environmental conditions (Hutchings 

2011).  Behavioural changes include migration where a population may seek a better-

suited environment for specific activities, i.e. mating, spawning, nurseries or feeding.  

Partial migration, in which a single population contains both migratory and resident 

individuals, is a fundamental behaviour in avian ecology and is the basis for the evolution 

of migration in general (Kerr et al. 2009).  In fish ecology, migration has its own distinct 

terminology with the general migration of fish from salt water to fresh water and vice 

versa known as diadromy.  This is further delineated as anadromy which refers to 

migration from salt water to fresh water for breeding (e.g., Atlantic salmon), catadromy 

which refers to migration from fresh water to salt water for spawning (e.g., American eel) 

and amphidromy which refers to fish that migrate either way but not for breeding 

purposes (e.g., Bull shark), (McDowall 1992).  Fish that migrate entirely within the 

inland waters of a river system are referred to as potadromous (Northcote 1999).  Many 

salmonids have both anadromous and non-anadromous (resident/potadromous) life 

history forms although it is unclear which form came first or if the common ancestor pre-

dating the family was already diadromous (McDowall 2002).  Partial migration is also 

well documented among salmonids (Power et al. 1987; Verspoor and Cole 1989).  Two 
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main mechanisms may explain this phenomenon: (1) they are genetically distinct 

populations that overlap or (2) they are alternative life history phenotypes making up a 

single population with individuals capable of potentially adopting any of the alternative 

phenotypes.  Predictably, there is evidence to support both theories (Robitaille et al. 

1986; Tessier and Bernatchez 1999; Schluter and McPhail 1993; Adams 2007; Chapman 

et al. 2011; Dodson et al. 2013).   

Alternative life history phenotypes occur when an individual assumes a tactic 

according to its environmental or physiological state (i.e. status, body size), which is 

referred to as a conditional strategy (Dawkins 1980; Gross 1996; Taborsky et al. 2008).  

According to the environmental threshold model, there is genetic variation among 

organisms in the response to the switch point, which is the value of the environmental cue 

necessary to express one alternative phenotype over the other (Hazel et al. 1990; Roff 

1998; Tomkins and Hazel 2007).  Game theory states the average fitnesses of the tactics 

are not equal, but the fitnesses of the alternatives at the switchpoint are equal. This helps 

to explain the differences in migratory patterns among individuals of a single population; 

however, the exact mechanisms responsible remain unclear.  It is largely accepted that a 

threshold body size at a particular age is a determining factor for migration among 

salmonids (Thorpe et al. 1998; Paez et al. 2011), however others have argued that size 

alone cannot account for life history selection (Økland et al. 1993; Bohlin et al. 1996) 

and other factors such as maturity, smolt age (Letcher and Gries 2003) and genetic 

variation all play a part (Paez et al. 2011; Dodson et al. 2013). Frequently involved in 

developmental plasticity are parental effects, which allow for transmission of various 
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adaptive phenotypic strategies that span generations.  This can have important ecological 

and evolutionary consequences (e.g. Mousseau and Dingle 1991; Reznick 1991; Riska 

1991; Fox 1994; Einum and Fleming 2000a,b), as this potential to generate rapid 

phenotypic change can either speed up or otherwise interfere with evolutionary responses 

to natural selection (Kirkpatrick and Lande 1989;  Rasanen and Kruuk 2007).   

For most organisms, the phenotypes of the offspring tend to be influenced more 

by the mother than the father (Green 2008).  For example, mothers control the location, 

timing and dispersal of offspring/eggs as well as offspring size and protection, parental 

care and provisioning to developing young, as well as characteristics of the father if mate 

choice is present (Mousseau and Fox 1998).  This influence is referred to as a maternal 

effect, and can be broadly defined as the causal influence of the maternal genotype or 

phenotype on the offspring phenotype (Lacy 1998; Roff 1998; Wolf and Wade 2009). 

This phenotypic plasticity ensures that there are a greater quantity of phenotypes 

available than there are genotypes and allows these traits to be subject to natural selection 

and genetic modification hence affecting the evolution of a species.  The degree to which 

maternal environment and behaviour influence progeny phenotype and fitness will 

determine the likelihood that such maternal effects themselves will be selected upon 

(Wade 1998; Fox et al. 1999; Rasanen and Kruuk 2007).   

Maternal effects have garnered much interest since the 1980s and the plethora of 

articles on the subject illustrates the excitement this topic incites among those in the 

evolutionary and ecological communities.  Fish research abounds claiming links between 

maternal size, condition and age (Kjesbu et al. 1996) and egg/offspring size, condition 
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and viability (Chambers and Waiwood 1996; Trippel and Neil 2004; Rideout et al. 2005; 

Higashitani et al. 2007).  Size of the hatching larvae may also be affected by the chemical 

composition of the eggs (Morley et al. 1999) a product of maternal provisioning.  

Hormones provided by the mother are present in the egg and act as developmental and 

physiological signals modifying behaviour for the developing offspring as well as the 

adult.  Hormones also regulate transitions between life history stages. Variation in 

behavioural phenotype due to maternal hormone signalling to embryo/fetus is widespread 

in many taxa (Groothuis and Schwabl 2008) thus producing multiple behavioural 

phenotypes within families, in populations and among populations.  Individuals within 

partially migrating populations would not only differ potentially in the quantity of 

hormones and genetic material provided to offspring but mothers would offer different 

nutritional resources because of their own different nutritional environments (marine 

versus freshwater), creating further possible phenotypic variation and providing a unique 

opportunity to study effects of maternal provisioning.   

   

1.2 Atlantic salmon 

Some organisms provide a better opportunity for investigating the effects of maternal 

environments than others.  One of the more commonly studied species is Salmo salar, the 

Atlantic salmon, which is found in the temperate and sub-Arctic regions of the North 

Atlantic Ocean.  It is a popular sport fish and was a commercial target species until a 

decline in abundance and range over the last century that now has it listed as endangered 

in regions such as the Inner Bay of Fundy, and recommended for listing in Eastern Cape 

Breton Island, Anticosti Island, the Nova Scotia Southern Uplands and the Outer Bay of 
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Fundy (COSEWIC 2010).  In general, it is an iteroparous, anadromous species 

demonstrating immense within-population variability in size and age at maturity 

(Fleming 1998; Hutchings and Jones 1998; Jonsson and Jonsson 2011).  Atlantic salmon 

(Salmo salar) populations commonly include two major life history pathways; 1) 

maturation following an anadromous migration to the ocean and 2) precocial maturation 

as parr in freshwater prior to any anadromous migration.  Anadromous salmon undergo 

physiological transformations (smolting) and migrate seaward for 1-3 years before 

returning to their natal river systems to mate and spawn (Jonsson and Jonsson 2011).  

Mature parr remain in the rivers, mature at an earlier age and smaller size than 

anadromous males and may smolt and migrate to sea before breeding again (Berglund et 

al. 1992, Fleming and Reynolds 2004), however most will spend their entire lives in 

freshwater (Aubin-Horth et al. 2005).  This latter life history is limited to mature males in 

most instances.  In most of the ponds/lakes of Newfoundland a third option frequently 

appears, freshwater residency (non-anadromy) (Klemetsen et al. 2003; Fleming and 

Einum 2011) leading to populations made up exclusively of freshwater residents, as well 

as mixed populations of sympatric anadromous and resident individuals (Power et al. 

1987; Verspoor and Cole 1989; Adams 2007).  Freshwater residents are generally smaller 

than anadromous salmon and live out their entire life cycles in fresh water moving 

between the rivers and connecting lakes or ponds (Hutchings 2002).  Considered non-

migratory because they never leave the freshwater systems, some residents do however 

move from the bigger reservoirs into the rivers to spawn (Verspoor and Cole 1989).   
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Atlantic salmon females do not provide any type of active parental care for 

offspring after the fertilization of eggs (Fleming 1996), therefore the key aspect of 

maternal provisioning is the size, biochemical composition and energy content of the 

eggs.  These maternal effects can impact offspring fitness, behaviour and survival as well 

as other characteristics (Heath and Blouw 1998; Mousseau and Fox 1998; Lindstrom 

1999; Einum and Fleming 1999, 2000a).  Larger salmon usually lay larger eggs and size, 

as well as energy content of the eggs, is a critical feature of maternal provisioning.  

Larger eggs are usually associated with larger juvenile body size and higher growth and 

survival rates (Hutchings 1991; Einum and Fleming 1999, 2000a).  Nonetheless, 

offspring can increase their fitness by efficiently converting energy stores provided by 

their mothers into somatic tissue, preparing themselves for exogenous feeding (Berg et al. 

2001).  Furthermore, according to Berg et al. (2001), egg size and energy stores vary 

much more among families than within them and although resident salmon are generally 

smaller than anadromous salmon, they often have only marginally smaller eggs (Wood 

and Foote 1996; Fleming 1998).  The success of newly emerged offspring establishing 

territories depends on time of emergence, metabolic rate and body size (Cutts et al. 

1999a, b), which is also directly influenced by resources provided by the mother in the 

eggs.  Salmon eggs, which are large compared to many other species of fish, have a long 

incubation period and once hatched the offspring continue to rely on endogenous food 

sources for some time before active feeding begins.  These traits in particular give 

researchers time and opportunity to investigate maternal effects and due to the partially 

migratory populations, Atlantic salmon also provide a unique opportunity to consider the 
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differing kinds of maternal provisioning and their effects within an eco-evolutionary 

context.   

Numerous Salmo salar populations in the rivers of Newfoundland are composed 

of anadromous and resident, as well as mature parr phenotypes. In general, resident 

salmon have evolved as landlocked salmon either through naturally occurring events such 

as glaciation or anthropogenic events such as stocking (Hendry and Stearns 2004).  These 

landlocked salmon are physically isolated from the saltwater and have therefore adapted 

to an entirely freshwater existence.  However, resident salmon in Newfoundland do not 

appear to have evolved this way.  Although some populations are physically isolated, 

residents are abundant in many watersheds where the sea is accessible.  Research 

indicates that these two strategies are most likely exhibiting phenotypic plasticity under 

environmental conditions prevalent in the area and the two groups are not genetically 

distinct (Adams 2007).  Research on brown trout (Jonsson and Jonsson 2011) and Arctic 

char (Nordeng et al. 1989) show that resident fish can be produced from diadromous 

parents and vice versa and it is likely the case with Atlantic salmon as well.  Burton and 

Idler (1984) discovered that the Newfoundland resident population does include 

individuals that have the capacity to adapt to seawater.  The environmental cues that 

trigger the life history choice remain unclear and present an interesting avenue of 

exploration.  The existing knowledge of this species makes it particularly practical and 

interesting for examining fundamental questions about life history and migratory 

strategies in fish.   
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1.3 Offspring origin 

Eggs and fry of both anadromous and resident parentage are physically very similar and it 

is impossible to accurately classify young offspring using morphometrics and/or meristics 

(Riley et al. 1989).  In a population where both phenotypes are present, it may be difficult 

to determine the contribution of each to the overall population.  As the expression of the 

migratory phenotype in many of these populations is plastic, genetic separation of the 

contribution would not be feasible.  Studies on brown trout and brook trout have used 

stable isotope analysis to identify offspring of anadromous and freshwater-resident 

parents (Charles et al. 2004; Curry 2005).  Other methods used to distinguish freshwater 

residents from anadromous individuals in various salmonid populations include analysis 

of carotenoid pigment profiles in muscle tissue extracts (Youngson et al. 1997), strontium 

content of the scales (Eek and Bohlin 1997), and analysis of otolith microchemistry 

(Howland et al. 2001; Zimmerman and Reeves 2002).   

Lipid analysis can help determine where a fish has been feeding based on prey type 

(Parrish 1999).  This can be useful in determining feeding behaviour, foodweb 

relationships, ecological niches and the division of food sources among various species 

(Ackman 1994).  Specifically, marine and freshwater prey items contain specific fatty 

acids which accumulate in the fishes lipid stores.  Many marine fish larvae must have 

essential fatty acids, such as eicosapentaenoic acid (EPA, 20:5ω3), docosahexaenoic acid 

(DHA, 22:6ω3) and arachidonic acid (AA, 20:4ω6), in their diet due to an inability to 

synthesize these components (Tocher et al., 1989).  Measurements of these essential fatty 

acids and their ratios can be used as indicators of egg quality (Penney et al., 2006). 
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Inadequate quantities of DHA can result in impaired larval behaviour, while insufficient 

EPA and AA can have an impact on structural phospholipids (Wiegand et al., 2004).  

Lipids from aquatic and terrestrial plants have distinctive distinguishable fatty acid 

signatures and can be used to classify the predominant energy source of an aquatic 

system. Various studies have shown that the concentrations of fatty acids such as, 

18:2 6, 18:3ω3 and 20:4 6 in the lipids of freshwater animals are higher than their 

marine counterparts (Linko et al. 1992; Kakela and Hyvarinen 1998; Gonzalez-Baro and 

Pollero 1988).  These distinct lipid profiles can help to identify whether or not a fish has 

been to sea.  Since salmonids are entirely dependent on the lipid reserves provided by the 

mother until they begin feeding, newly emerged offspring can be sampled and should be 

able to be classified as being either 1) fry from an anadromous mother, or 2) fry from a 

resident mother, via lipid analysis.  Using this method, population structure in natural 

stream environments can be determined, advancing studies in partially migratory 

populations. 

Research indicates select fatty acids have an effect upon the performance of 

various fishes.  McKenzie et al. (1998) found that there was a positive relationship 

between maximum swimming speed and total ω6/ω3 fatty acid ratio of muscle lipids in 

Atlantic salmon.  Other studies have shown that higher dietary concentrations of ω3 fatty 

acids improve egg viability in European sea bass (Carrillo et al. 1995) and lower 

mortality rates and the incidence of heart lesions among Atlantic salmon during live 

transport (Bell et al. 1994).   
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If resources provided by the mothers differ in quality, it may be that offspring with 

comparatively better resources have a greater capacity to achieve higher social status thus 

effecting their survival. Typically, dominant individuals acquire more advantages than do 

their subordinate counterparts when it comes to survival, feeding occurrences, growth 

and mating (Fausch 1984; Metcalfe et al. 1989; Nielsen 1992).  Dominant individuals 

also appear to experience lower stress (Abbott and Dill 1989) and inhabit more 

energetically profitable territories (Fausch 1984, Metcalfe 1986).  Faster growth is 

generally associated with dominance in the laboratory and in natural pools in rivers 

(Metcalfe et al. 1989; Nakano 1995; Martin-Smith et al. 2004).   Investigations into early 

emergence behaviour and performance as well as growth rates should provide insight into 

social rank and survival.   

   

1.4 The Thesis 

The first aim here was to test quantitatively for differences in lipid composition of egg, 

embryos and larval offspring of sympatric resident and migratory Atlantic salmon. By 

doing so, existence of differences in lipid profiles could be established to determine if 

lipid profiles are unique to each alternate strategy, which would make it possible to 

determine the contribution of each phenotype to a sympatric river population. The second 

aim of this study was to experimentally test if differences in maternal provisioning 

influence offspring performance (competitive ability, growth and survival) of first 

feeding juveniles (i.e. at the start of exogenous feeding) of the two alternate migratory 

strategies of Atlantic salmon.  By looking at competitive ability, growth rate and 
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mortality, this study will help answer fundamental questions about life history and 

migratory strategies, adding to our understanding about the evolution, coexistence and 

maintenance of the two alternative life history phenotypes.  Specifically, the thesis 

provides a framework for studying the relationships and interactions between the 

anadromous and resident Atlantic salmon from a single population, addressing how 

maternal effects might influence the occurrence of partially migratory populations.   

  



 

13 
 

 
 

 

 

 

 

 

 

 

 

Chapter 2: Maternal effects and early life performance and interactions among 

offspring of resident and migratory Atlantic salmon (Salmo salar). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

14 
 

2.1 Introduction    

Salmonid life histories show considerable variability, including in age and size at first 

reproduction, degree of iteroparity, the phenology of reproduction, degree of reproductive 

investment, sexual dimorphism, parental care and the presence and degree of diadromy 

(Hutchings and Jones 1998, Fleming 1998, Fleming and Reynolds 2004, Jonsson and 

Jonsson 2011).  Much of the research regarding salmonid phenotypic plasticity has 

focused on the alternative male reproductive tactics and comparatively little on the 

existence of alternative migratory tactics among Atlantic salmon.  This has led to a 

slightly skewed view on alternate life history phenotypes in the Atlantic salmon and the 

partially migratory populations, especially the alternative forms of females (Adams 2007) 

tend to be somewhat neglected.  While many Atlantic salmon populations do tend to be a 

blend of anadromous and resident spawners (mature male parr), there are also 

populations which exhibit partial migration where individuals of both sexes within a 

cohort either migrate or remain resident all year round.  Studies of partially migratory 

populations of Atlantic salmon have tended to focus on the mechanisms (i.e. genetic and 

environmental determinants) behind the expression of the alternative migratory 

phenotypes, with little attention paid to maternal effects on the offspring.  These blended 

populations are thought to be either exhibiting polyphenism (Robitaille et al. 1986; 

Adams 2007) or are genetically distinct reproductively isolated populations (Verspoor 

and Cole 1989).  In populations exhibiting polyphenism, the expression of the alternative 

life history phenotypes is thought to be a conditional strategy, whereby the tactic adopted 



 

15 
 

is dependent on the individual’s social and/or physiological state (i.e. status, body size; 

sensu Dawkins 1980, Gross 1996, Oliveira et al. 2008).   

Since the 1990s, there has been a surge in recognition of the role maternal effects 

as a driving mechanism of phenotypic variability (Bernardo 1996; Mousseau and Fox 

1998). Traditionally, differences in phenotypes were considered a direct product of 

genetic and environmental variation.  However the phenomenon of maternal 

(transgenerational) effects has quickly gained recognition and is now widely accepted as 

an important mechanism that plays a unique role in various evolutionary and ecological 

processes including phenotypic plasticity (Wolfe and Wade 2009).  

Recent research on maternal effects in Atlantic salmon have stressed the idea that 

fitness outcomes of egg size variation are more pronounced during early juvenile stages 

rather than the egg or larval stage (Rollinson and Hutchings 2011; Louhi et al. 2014).  If 

maternal provisioning can account for differences in behaviour, competitive ability and 

size and growth, by extension maternal effects are likely to affect offspring survival, and 

ultimately the fitness of mothers adopting the alternative tactics (i.e. the evolutionary 

switch point between the tactics). Furthermore, such maternal effects may influence an 

offspring’s subsequent phenotype (e.g. status or state) when the expression of the 

alternative tactics is cued, thus playing a non-genetic role in the expression of partial 

migration.  Offspring of a given phenotype at that time may be better off remaining 

resident than migrating or vice versa.   

In addition to the amount of resources a mother allocates to each of her eggs, the 

form or quality of those resources is likely to have maternal effects on offspring 
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performance.  Since anadromous female Atlantic salmon derive much of their resources 

from feeding in a marine environment while the resident females do so from feeding in a 

freshwater environment, the resources they provide to their corresponding eggs and 

offspring may differ significantly.  This may lead to differences in offspring growth, 

competitive ability and survival that may be attributed to the differences in the form of 

maternal provisioning (e.g. fatty acids).  Fish feeding in a marine environment typically 

have different fatty acid compositions than their freshwater counterparts due in most part 

to their differing diets.  In general, freshwater fish have higher levels of ω6 fatty acids 

(FA) while marine fish have higher levels of ω3 long chain FA.  If maternal provisioning 

influences growth rate, better resources may encourage a higher growth rate and provide 

a fitness advantage which may cause a shift in the evolutionary equilibrium in the 

expression of the alternative tactics.   

The rivers and watersheds in Newfoundland provide a unique opportunity to 

study partially migratory populations and provide insight into the mechanisms involved 

in the expression of the alternative migratory tactics (migration versus residency).  Both 

tactics coexist in many of the same spawning sites despite each potentially affording 

different maternal resources to their offspring that may affect fitness.  By investigating 

the maternal allocation of resources to eggs and offspring, and the ensuing social 

interactions between offspring of the two phenotypes, behaviour that may impact fitness 

can be compared and quantified.  Such differences in behaviour may shed light on the 

degree to which maternal effects influence the co-existence of the alternative life history 

tactics. 
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  The objectives of this study were to test: (1) for differences in maternal allocation 

to eggs by females of the two life-history phenotypes, particularly in terms of egg size 

and lipid content and composition; (2) whether any differences persist through offspring 

emergence to the onset of exogenous feeding; and if so, whether these differences affect 

(3) the competitive ability of newly emerged juveniles and (4) their growth and mortality 

in a near natural stream environment.  This research provides a framework for studying 

the relationship between the anadromous and resident Atlantic salmon from a single 

population.  It investigates differences in performances of both types of offspring due to 

maternal effects which may help to answer fundamental questions about life history and 

migratory strategies, adding our understanding about the evolution, coexistence and 

maintenance of the two alternative life history phenotypes.   

 

2.2 Methods  

2.2.1 Experimental Crosses 

Five anadromous and 12 resident female, and 6 anadromous and 4 resident male Atlantic 

salmon were captured by electro fishing from Indian Bay Brook, Newfoundland (49
o
03’ 

N, 54
o
03’ W).  Anadromous fish were distinguished as being over 550 mm in length 

while the resident fish were under 450 mm (Adams 2007).  Gametes were collected by 

stripping over a two day period and kept cool while being transported to the Ocean 

Sciences Centre of Memorial University (St. John’s).  Within the same time frame, eggs 

were also stripped from an additional three anadromous females captured at the Grand 

Falls Fishway on the Exploits River, Newfoundland (49
o
04’ N, 55

o
20’ W).  On 5 
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November 2005, 300-400 eggs from each female were crossed with sperm from one of 

the males to produce 20 different families.  Each sire was crossed with at least one 

anadromous and one resident dam to create paternal half sib families and thus control for 

paternal effects (Table 2.1).  The offspring from each sub-family could then be tested for 

growth rate, competitive ability and mortality.  When creating the crosses, ten eggs from 

each female were weighed individually for wet and dry mass. Dry masses were obtained 

by placing the eggs on small, pre-weighed aluminum foil pans and then in a desiccating 

oven (70
o
C) until mass stabilized (~ 48 h).  

Embryos from each family were raised in separate containers within a vertical 

incubation system (i.e. a “Heath” tray incubator) until emergence at approximately 760 

ddpf (degrees days post fertilization).  As there was no gravel in the incubators, 

emergence was estimated to have occurred when fish were free swimming, no longer 

laying on the bottom, and had absorbed most of their yolk sac (i.e. “buttoned-up”).  All 

offspring for lipid analyses were taken directly from the incubator prior to exogenous 

feeding.  At emergence, the remainder of each family was transferred to glass aquaria, 

one per family, provided with air stones and fed ad libitum with live Artemia nauplii.  
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Table 2.1: Experimental crosses using resident and anadromous females and males from 

Indian Bay (IB) and anadromous females from the Exploits River (ER) to create families,  

* Identifies families that were used for experiments following the start of exogenous 

feeding. 

 

 Female  Male 

Cross 

(Family) 
 

ID 
 

Origin 
Length 

(mm) 
  

ID 
 

Origin 
Length 

(mm) 
 

1* 
 

R3 
 

Resident (IB) 
 

321 
  

A3 
 

Anadromous (IB) 
 

571 

2* A2 Anadromous (IB) 565  A3 Anadromous (IB) 571 

3* R6 Resident (IB) 396  A3 Anadromous (IB) 571 

4* A7 Anadromous (ER) 557  A3 Anadromous (IB) 571 

5* R2 Resident (IB) 312  R8 Resident (IB) 315 

6* A1 Anadromous (IB) 530  R8 Resident (IB) 315 

7 R8 Resident (IB) 323  R8 Resident (IB) 315 

8 A5 Anadromous (ER) 612  R8 Resident (IB) 315 

9* R7 Resident (IB) 320  R11 Resident (IB) 300 

10* A5 Anadromous (IB) 650  R11 Resident (IB) 300 

11 R11 Resident (IB) 330  R11 Resident (IB) 300 

12* R4 Resident (IB) 406  R12 Resident (IB) 285 

13* A4 Anadromous (IB) 650  R12 Resident (IB) 285 

14 R9 Resident (IB) 392  R12 Resident (IB) 285 

15 R12 Resident (IB) 332  A2 Anadromous (IB) 550 

16 A3 Anadromous (IB) 537  A2 Anadromous (IB) 550 

17 R5 Resident (IB) 331  A2 Anadromous (IB) 550 

18* R10 Resident (IB) 331  R7 Resident (IB) 401 

19* A6 Anadromous (ER) 550  R7 Resident (IB) 401 

20 R1 Resident (IB) 365  R7 Resident (IB) 401 
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2.2.2 Lipid analyses 

Eggs and offspring from each family were sampled at four stages to track lipid profiles: 

(1) unfertilized eggs, (2) eyed eggs (~225-230 ddpf), (3) hatched alevins (newly hatched 

larvae feeding endogenously from the yolk sac; ~510 ddpf) and (4) newly emerged fry 

(~760 ddpf).  At the unfertilized and eyed egg stages, three eggs from each female were 

taken for lipid analyses and dry mass (N = 60).  Due to mortality during hatching and the 

start of exogenous feeding (i.e. emergence), only 12 families created from the gametes of 

6 resident females, 6 anadromous females and the appropriate corresponding 5 males 

were found suitable (i.e. adequate number of individuals) for analysis of the alevins and 

emergent stages (Table 2.1).  To keep analysis consistent, only these twelve families were 

used in this study. 

Because of the limited number of individuals only one sample from each family 

and at each stage was used to determine dry mass.  However egg mass typically varies 

little [< 3%] within as compared to among females (Einum and Fleming 2004) and this 

was also found to be the case with the ten eggs taken for dry mass from each female 

previously.  Another two samples from each family were used for lipid analysis.  In 

preparation for lipid analysis, whole samples were individually weighed, placed in lipid 

cleaned tubes containing 2 ml of chloroform, flushed with nitrogen and sealed with 

Teflon lined caps and Teflon tape.  Specimens were stored at –20
o
C until extraction.   

Lipids were extracted using a variation of the Folch procedure (Folch et al. 1957) 

as described by Parrish (1999).  Lipid classes of these extracts were determined by 

Chromarod thin-layer chromatography with flame ionization detection (TLC/FID) using 



 

21 
 

a MARK V Iatroscan (Iatron Laboratories).  The extracts were spotted on silica gel 

coated Chromarods-SIII and a three-stage development system was used to separate lipid 

classes according to Parrish (1999).  After each separation, the rods were scanned and the 

three resulting chromatograms were combined using T Data Scan 3.0 (RSS Inc. Bennis. 

Tenn., USA). The signal (detected in millivolts) was quantified using lipid standards 

(nanodecane, cholesteryl stearate, 3-hexdecanone, tripalmitin, palmic acid, cetyl alcohol, 

cholesterol, monopalmitoyl, phosphatidylcoline dipalmitoyl) from Sigma Chemicals 

(Sigma Chemicals, St. Louis, MO, USA).  Standards used were composed of saturated 

fatty acids so they would be stable, however sample compounds would contain 

significant proportions of polyunsaturated fatty acids.  Parrish et al. (1992) found that 

polyunsaturated standards gave lower responses but the difference in response was small 

by comparison with the error of repeat analyses at any one level or the error in regression 

equations obtained from calibration data. 

Fatty acid methyl esters (FAME) were prepared by transesterfication, with 14% 

BF3/MeOH at 85°C for 1.5 hrs. The derivatives were analysed with a HP 6890 Gas 

Chromatograph (GC) Flame Ionization Detector (FID) equipped with a 7683 autosampler 

and a ZB wax+ GC column (Phenomenex, U.S.A.) using hydrogen as the carrier gas. The 

column length was 30m with an internal diameter of 0.32mm. The column temperature 

began at 65ºC and held this temperature for 0.5 minutes.  The temperature ramped to  

195 ºC at a rate of 40 ºC/min, held for 15 minutes then ramped to a final temperature of 

220 ºC at a rate of 2 ºC /min.  This final temperature was held for 0.75 minutes.  The 

carrier gas was hydrogen and flowed at a rate of 2 ml/minute.  The injector temperature 
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started at 150 ºC and ramped to a final temperature of 250 ºC at a rate of 120 ºC /minute.   

The detector temperature stayed constant at 260
 o

C.  Chromatograms were integrated and 

analyzed using Galaxie Chromatography Data System, version 1.9.3.2 (Varian Inc.) and 

individual fatty acid peaks were identified using retention times from standards 

purchased from Sigma Chemicals (37 component FAME mix (product number 47885-U), 

bacterial acid methyl ester mix (product number 47080-U), PUFA 1 (product number 

47033) and PUFA 3 (product number 47085-U).  

 

2.2.3 Offspring measurements at the start of exogenous feeding 

At emergence and just prior to the start of exogenous feeding, 20 of the surviving 

emergent fry from each of the 12 families were sampled simultaneously, weighed and 

photographed using the Pixera Viewfinder 2.6 software application (Pixera Corp.,Los 

Gatos, USA).  Total body area and the area of remaining yolk was measured using 

Matrox Inspector 3.0 digital image software (Matrox Electronic Systems Ltd., Dorval, 

Canada) to provide yolk sac to body size ratio which accounts for any body size 

differences.  The goal was to compare the two phenotypes and discover how much yolk 

sac remained at this stage.  Generally, alevins from small eggs (less yolk reserves) are 

expected to survive less time without food than alevins from large eggs.   

 

2.2.4 Competition experiment 

Two identical fiberglass troughs (50 cm wide × 18 cm high × 2.61 m long), each divided 

longitudinally with a solid divider to make two separate stream channels.  A current was 
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generated within each stream channel using an inflow spray bar positioned behind 

window screening at the upstream end of each channel. Each trough consisted of one 

channel with a spray bar attached directly to a facility freshwater supply and the other 

attached to a pump, creating a partially recirculating, unidirectional flow.  Five test arenas 

(18 cm long × 8 cm wide × 8-10 cm depth), each composed of Coruplas plastic sheeting 

along the bottom with gradually sloping sides and screening along the front and back, 

were placed at equal intervals within each channel to provide a total of 20 separate testing 

arenas (Figure 2.1).  Within the arenas, water flowed at a depth of 8-10 cm at  

3-5 cm sec
-1

 over a layer of 1 - 3 cm diameter gravel and an ambient light cycle was 

followed.  Taking the depth of the water into account, the fish had a relatively square area 

within which to swim and interact.  

For Atlantic salmon, the ability to compete at low densities with a highly localised 

food source indicates similar performance at high densities with a more dispersed food 

supply (Adams and Huntingford 1996).  To this end, ninety pair-wise (anadromous vs 

resident) dominance trials were performed with recently emerged fish (~ 900 ddpf) 

competing for food.  These fish had all been provided with food and were presumed to be 

feeding in the holding aquaria for approximately five days before the start of this 

experiment.  All offspring were paired with a paternal half sibling. The fry were 

anaesthetized with MS-222 (Western Chemical Inc., Ferndale, WA, USA), weighed and 

tagged by injecting a small aliquot of elastomer (NorthWest Technologies, WA, USA) 

into the musculature directly in front of the dorsal fins with a 29G needle.  Anadromous 

and resident fish were randomly selected and marked with different colours to control for 
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effects due to the marking procedure.  Elastomer tagging has been found to have better 

retention rates and be less intrusive compared to previously used external tags, and to 

have little to no impact on mortality in fish (Willis and Babcock 1998). 

Pairs of fish (half-siblings) were transferred into the testing arenas, where they 

were allowed 24 hrs to acclimate and learn the location from which food was dispensed.  

They were fed brine shrimp (Artemia) nauplii delivered via a tygon tube located at the 

centre of the upstream end of each arena. During the acclimation, the fish were fed at 

approximately every 3 hours during daylight.  During the experiments, observations were 

made through slits in tarps surrounding each trough to minimize disturbance.  Within 

each channel, testing was conducted from the downstream- to the upstream-most arena to 

prevent uneaten food from drifting down to untested fish. 
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A.     

 

 

 

 

 

                 

 

 

 

      B.           

 

 

 

                                                                    C.            

Figure 2.1: Schematic (A) and photograph (C) of stream channels with 10 separate 

testing areas for behavioural experiments; (B) sideview of arena showing water depth and 

area available to fish. 
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During each trial, similar quantities of live Artemia spp. (~ 10) were delivered through a 

feeding tube centered at the upstream end of the contest arena and feeding attempts 

recorded for each individual. 

Dominance was assessed with a point system accounting for feeding attempts and 

spatial position (Metcalfe et al., 1992, 1995; Cutts et al., 1999b; Moreau et al. 2011). 

Fish received a score of 1 for each feeding attempt or 2 if the attempt was contested 

(distinct biting or lunging motion) by another fish (Metcalfe et al. 1989).  Position of 

individuals in relation to a defensible food source and food consumption have been used 

successfully to measure dominance and aggression in stream-living salmonids (Metcalfe 

et al.. 1989, 1995; Huntingford et al. 1990; Riley et al. 2005; Moreau et al. 2011). 

Dominant juvenile salmonids usually occupy central-rear positions within a feeding 

territory, often keeping position just off the substrate with subordinates remaining on the 

side lines (Metcalfe et al. 1989; Johnsson et al. 1996).  Therefore fish were also scored 

according to an index that combined both spatial position and ability to obtain a contested 

food item (Metcalfe et al. 2003; Moreau et al. 2011).  The position values were based on 

optimal feeding locations with the square occupied by the fish’s head recorded both 

before and during presentation of the food item.  Each pair was observed 5 times with an 

hour between each trial and obtained a feeding attempt score (0-2) as well as a position 

score (Metcalfe et al. 2003).  Each individual observation lasted about one minute.  

Overall scores included both scores for each of the five trials.  Only in contests where 

there was a minimum difference of 3 points between overall scores was an individual 

declared dominant (Metcalfe et al. 2003).  
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2.2.5 Growth and survival experiment 

Five troughs, identical to those described in the competition experiment, were used.  Each 

of the two parallel channels within a trough was partitioned into two equally sized 

sections separated by a screen (Figure 2.2).  To simulate the abiotic conditions of a 

natural stream, a 3 cm thick layer of 1 - 3 cm diameter gravel was added to each section, 

and water depth was kept at 8-10 cm with water flow at 3-5 cm sec 
-1

 and an ambient 

light cycle was followed.  The density of fish in rivers and streams is highly variable, 

however according to Grant and Kramer (1990), territory size of recently emerged 

salmonids ranges from 0.010-0.037 m
2
.  Based on this information, each stream section 

was stocked with one of 3 treatments (5 replicates per treatment), with each replicate 

located in a different quadrant in a subsequent trough each time and leaving one stream 

section empty in each trough to control for position effects.  The quadrants in the fifth 

trough were assigned treatments randomly, again with one quadrant left empty.  Each 

treatment consisted of 12 fish (~ 37m
-2

), with treatment one having 6 anadromous and 6 

resident offspring (Allopatric - matched according to families), treatment two had 12 

resident offspring (Sympatric Resident Group – all resident families represented) and 

treatment three consisted of 12 anadromous offspring (Sympatric Anadromous Group – 

all anadromous families represented) (Table 2.2).  All fish were anaesthetized, measured 

for length and weighed and marked using the same procedure as above, however, each 

fish within a stream section received a unique colour so individual growth rates could be 

tracked.  Fish in each section were fed similar volumes (4% of fish biomass) of Artemia 

2-3 times daily.  This food level and its pulsated delivery was designed to create a 
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competitive environment.  Estimates of invertebrate drift in natural streams suggest that 

this food level would be representative of a food-limited environment (Wilzbach et al. 

1986; Keeley and Grant 1995). 

At the termination of the experiment, 30 days later, the fish were remeasured. 

Specific growth rate was calculated using the formula: 

G = (Ln(wt) - Ln(wi))/t     

where Ln (wt) is the natural logarithm of the mass at time t (number of days) and Ln (wi) 

is the natural logarithm of the initial mass. Instantaneous growth rate (G) is particularly 

useful for reporting the growth of small fish (Ricker 1979).   

All animals were treated in accordance with the guidelines of the Canadian 

Council on Animal Care during holding and experimentation, and approval was granted 

by Memorial University’s Institutional Animal Care Committee (AUP 06-04-IF). 
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A. 

 

 

 

B.  

 

 

 

 

 

 

 

 

Figure 2.2: Photograph (A) and schematic (B) of stream channels with 4 separate areas 

for the growth and survival study. 
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Table 2.2: Mean ± SD mass of the anadromous and resident offspring in each treatment 

of the growth and survival experiment. 

 

 

 

Treatment 

 

Resident 

mass (g) 

 

Anadromous 

mass (g) 

 

Sympatric 

 

0.185 ± 0.026 

(n=30) 

 

 

0.177 ± 0.021 

(n=30) 

 

Allopatric 0.187 ± 0.029 

(n=60) 

 

0.170 ± 0.020 

(n=60) 
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2.2.6 Statistical analysis 

General linear models, ANOVAs (SPSS©21, SPSS Inc.), were used to test for 

differences in fatty acids by maternal origin (anadromous vs resident) and developmental 

stage (unfertilized egg, eyed egg, alevin and first feeding fry).  There were no significant 

origin-×-stage interactions (P > 0.19) and thus the models were rerun excluding the 

interaction term.  Significance levels were adjusted for multiple comparisons using 

sequential Bonferroni correction.  A selection of lipid classes and fatty acids were 

analysed in terms of mg/g dry weight but results did not differ from results obtained from 

using percentages.  The analyses resulting from using the percentages were tested for 

normality and equal variance and passed both tests. 

Principal component analysis (PCA) was used to condense the amount of 

information contained in a larger number of original variables into a smaller set of 

variables with minimum loss of information (McCure & Grace, 2002).  In this way 

previously unsuspected relationships may become more obvious.  PCA was performed 

using the correlation matrix (SPSS©16, SPSS Inc.) to help identify the patterns 

associated with female phenotype, life stage (unfertilized egg, eyed egg, alevin, emerged 

fry), lipid classes (phospholipids, TAG) other lipid classes [hydrocarbons, steryl 

esters/wax esters, methyl ketones, glyceryl ethers, triacylglycerols, free fatty acids, 

alcohols, sterols, diacylglycerols and acetone mobile polar lipids] and selected fatty acids 

(AA, EPA, DHA, saturated fatty acids, MUFA, signature terrestrial fatty acids [18:2ω6 

and 18:3ω3], and other PUFAs).  Results of the PCA are based on the rotated component 

matrix (Varimax rotation with Kaiser Normalization). 



 

32 
 

To compare the relationship between yolk sac area and body area (excluding yolk 

area) at emergence of offspring of anadromous and resident females (fixed effect), a 

nested ANOVA (SPSS©21, SPSS Inc.) was performed on natural logarithm transformed 

data with female nested within origin (random effect). 

For trials of the relative competitive abilities of half siblings, a logistic regression 

with a binomial distribution was used.  The formula was: 

  wins/total = type + error       

 where wins =  # of  non-losses; total = total # of trials and type = resident or 

anadromous. The generalized linear model procedure of SAS (1988) was used to evaluate 

logistic regressions. Differences in initial and final mass and specific growth rate of fish 

in the growth and survival experiment were tested using ANOVA with fish origin and 

treatment as fixed effects and replicate as a random effect. The level of significance for 

all tests was α = 0.05. 

 

2.3 Results  

Despite their smaller body sizes (Table 2.1), resident females had significantly larger 

eggs than anadromous females, both in terms of wet (nested ANOVA F1,18 = 15.81, P = 

0.001) and dry mass (F1,18 = 10.47, P = 0.005; Table 2.3). There was also a significant 

difference in egg size between andromous females from Indian Bay Brook and the 

Exploits River (wet mass F1,6 = 33.46, P = 0.001; dry mass F1,6 = 43.85, P = 0.001; Table 

3). When comparing only the females from Indian Bay Brook, resident females continued 
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to show significantly heavier egg wet mass (F1,15 = 6.27, P = 0.024), but the difference 

was marginally nonsignificant in terms of egg dry mass (F1,14.9 = 3.69, P = 0.074). 
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Table 2.3: Mean ± SD wet and dry mass of unfertilized eggs of the resident and 

anadromous females. 

 Resident  Anadromous 

 
Indian Bay Brook 

(n = 12 females) 

 
Indian Bay Brook 

(n = 5 females) 

Exploits River 

(n = 3 females) 

Egg Wet Mass (mg) 144  ± 20  124 ± 11 102 ± 6 

Egg Dry Mass (mg) 54.7  ± 9.0  47.4 ± 1.9 38.6 ± 3.2 
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2.3.1 Total lipids, lipid classes and fatty acids 

There were no significant differences in lipid profiles between the offspring of 

andromous females from Indian Bay Brook and those from the Exploits River (P > 0.20), 

and thus the two groups were combined in subsequent analyses. Total lipids of whole 

individuals (mg/g) did not differ by maternal origin (i.e. anadromous vs. resident mother) 

across the developmental stages examined (F1,43 = 0.16, P = 0.694; Figure 2.3), nor did 

phospholipids  (F1,43 = 4.02, P = 0.052) and triacylglycerols as a percent of total lipid 

mass (TAG; F1,43 = 0.16, P = 0.694; Figure 2.4) (see Appendix 1 for complete list of lipid 

classes per family across developmental stages).  There was also no significant difference 

between offspring of resident and anadromous females in total saturated fatty acids (SAT; 

Table 2.4, Figure 2.5). There were, however, a number of significant differences in the 

fatty acid profiles of eggs and offspring of resident versus anadromous females (Table 

2.4) (see Appendix 2 for complete list of fatty acids per family across developmental 

stages), particularly in relation to monounsaturated (MUFA; Figure 2.5) and 

polyunsaturated fatty acids (PUFA), including arachidonic acid (AA; Figure 2.6), 

eicosapentaenoic acid (EPA) and docosapentaenoic acid (DHA). Moreover, the ratios of 

AA:EPA (Figure 2.7), DHA:EPA (Figure 2.8) and ω3:ω6 (Figure 2.9) showed significant 

differences between offspring origin at each life stage.   

There was generally little effect of developmental stage on lipid and fatty acid 

profiles (Table 2.4). Neither total lipids (F1,43 = 0.85, P = 0.476; Figure 2.3) nor 

phospholipids  as a percent of total lipid mass varied significantly with developmental 

stage (F1,43 = 1.12, P = 0.354; Figure 2.4). However, triacylglycerols (TAG) as a percent 
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of total lipid mass did vary significantly with developmental stage (F1,43 = 6.96, P = 

0.001; Figure 2.4).  It declined particularly during the latter stages of development, from 

representing ~ 46% of total lipids at unfertilized egg, eyed egg and alevin stages to 37% 

at the emergent fry stage. There was also a similar decline in stearic acid (18:0), with a 

pronounced change from the alevin to emergent fry stage, though it was not significant 

following sequential Bonferroni correction (Table 2.4). The only other changes with 

development stage were in regard to palmitic acid (16:0) and gondoic acid (20:1ω9), and 

both were relatively weak and not significant following sequential Bonferroni correction 

(Table 2.4). 
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Figure 2.3: Total lipids (mg/g) for offspring of anadromous and resident mothers at the 

four developmental stages studied.  (F1,43 = 0.85, P = 0.476) 
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Figure 2.4: Phospholipids (PL, F1,43 = 4.02, P = 0.052) and triacylglycerols (TAG, F1,43 = 

0.16, P = 0.694) as a percent of total lipid mass across the four developmental stages for 

offspring of anadromous and resident mothers.   
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Figure 2.5: Total saturated fatty acids (SAT) and monounsaturated fatty acids (MUFA) 

as a percent of total fatty acid mass across the four developmental stages for offspring of 

anadromous and resident females.  (See Table 2.4) 
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Table 2.4: Profiles of major fatty acids (i.e. > 1% of total fatty acid composition) of offspring of resident and anadromous 

females at four different development stages (unfertilized egg, eyed egg, alevin and emergent fry).  Data are means ± SD and 

p-values from ANOVA results are shown.  

The following fatty acids were below detection limits in all samples: 18:2a, 18:2b, 22:2NMIDa?,  22:2NMIDb?, 

trimethyltridecanoic acid (TMTD), pristanic acid?, 16:1ω11?,  ai17:0, 16:4ω3?, 18:1ω11?, 19:0, 20:0, 18:5ω3, 21:0, 22:0.  

The following fatty acids and fatty acid markers were present at proportions < 1 % and were not included in the above Table: 

14:1, i15:0, ai15:0, 15:1, 16:1ω5, i17:0, 17:1b, 16:4ω1, 18:3ω6, 20:1ω11?, 20:2ω6, 20:3ω6, 22:1ω7, 22:1ω11(13), 23:0, 

22:4ω6?, 22:4ω3?. 

 
 

 
Unfertilized Eggs 

  
Eyed Eggs 

  
Alevins 

  
Fry 

  
ANOVA (p values) 

Fatty 
Acid 

 
Resident 

 
Anad. 

  
Resident 

 
Anad. 

  
Resident 

 
Anad. 

  
Resident 

 
Anad. 

 
Origin Stage 

 1.2 ± 0.5 1.6 ± 0.5  1.3 ± 0.6 1.6 ± 0.4)  1.2 ± 0.5 1.5 ± 0.5  1.2 ± 0.4 1.3 ± 0.4  0.027 0.785 

14.2 ± 
1.5 

14.3 ± 
0.7 

 14.1 ± 
1.2 

14.3 ± 
0.7 

 14.1 ± 
0.6 

13.6 ± 
2.2 

 14.6 ± 
1.0 

16.2 ± 
2.0 

 0.372 0.044 

5.3 ± 2.1 6.3 ± 2.5  5.3 ± 1.9 6.4 ± 2.2  4.3 ± 1.4 5.5 ± 1.2  4.7 ± 2.1 5.4 ± 3.8  0.178 0.706 

9.7 ± 1.7 7.7 ± 1.7  9.9 ± 2.9 8.3 ± 1.6  9.3 ± 1.5 8.6 ± 1.5  6.7 ± 2.0 6.6 ± 1.0  0.042 0.005 

16.0 ± 
4.0 

20.6 ± 
1.4 

 14.5 ± 
4.5 

20.8 ± 
1.7 

 14.7 ± 
3.4 

20.4 ± 
2.9 

 12.0 ± 
3.7 

19.6 ± 
1.6 

 <.001* 0.205 

5.3 ± 0.9 4.1 ± 0.6  6.8 ± 2.6 4.3 ± 0.9  5.1 ± 0.8 4.1 ± 0.8  6.4 ± 4.3 4.2 ± 0.4  0.002* 0.494 

2.6 ± 1.0 0.9 ± 0.1  2.7 ± 0.5 0.9 ± 0.2  2.4 ± 1.0 0.9 ± 0.9  2.3 ± 0.7 0.9 ± 0.1  <.001* 0.851 

1.1 ± 0.4 0.3 ± 0.1  1.2 ± 0.5 0.3 ± 0.1  1.1 ± 0.4 0.3 ± 0.3  1.1 ± 0.3 0.3 ± 0.1  <.001* 0.988 

0.5 ± 0.3 1.7 ± 0.4  0.5 ± 0.2 1.8 ± 0.3  0.6 ± 0.2 1.9 ± 0.2  0.4 ± 0.1 1.4 ± 0.2  <.001* 0.044 

1.2 ± 0.6 0.1 ± 0.1  1.1 ± 0.5 0.2 ± 0.0  1.0 ± 0.5 0.2 ± 0.5  0.6± 0.4 0.4 ± 0.4  <.001* 0.208 
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Table 4 (continued) 

Unfertilized Eggs  Eyed Eggs  Alevins  Fry  ANOVA (p values) 

DHA

16.2 ± 
4.3 

19.7 ± 
2.7 

 14.5 ± 
3.9 

17.9 ± 
5.0 

 17.2 ± 
4.3 

21.0 ± 3.7  17.7 ± 
3.9 

21.1 ± 
4.2 

 0.003* 0.175 

0.7 ± 1.0 1.7 ± 0.8  0.6 ± 0.2 1.1 ± 0.5  0.9 ± 0.8 1.2 ± 0.8  3.2 ± 5.9 1.8 ± 1.1  0.873 0.252 

SAT 26.1 ± 
3.0 

24.7 ± 
1.6 

 26.2 ± 
3.9 

26.1 ± 
5.7 

 24.2 ± 
3.1 

23.7± 4.9  23.7 ± 
2.2 

24.7 ± 
3.1 

 0.483 0.367 

MUFA 29.2 ± 
6.2 

36.6 ± 
4.8 

 29.6 ± 
5.7 

36.0 ± 
2.9 

 26.8 ± 
4.9 

34.5 ± 3.7  29.0 ± 
7.6 

34.6 ± 
4.4 

 <.001* 0.573 

PUFA 44.0 ± 
6.6 

38.3 ± 
4.4 

 43.5 ± 
6.0 

37.6 ± 
6.5 

 43.0 ± 
6.3 

37.4 ± 5.2  46.7 ± 
7.7 

40.4 ± 
4.7 

 <.001* 0.245 

AA/EPA 2.0 ± 0.6 0.1 ± 0.0  2.1 ± 0.7 0.1 ± 0.0  1.9 ± 0.7 0.1 ± 0.1  1.9 ± 0.6 0.2 ± 0.1  <.001* 0.472 

DHA/EPA  3.1 ± 0.6 2.4 ± 0.4  3.0 ± 0.4 2.1 ± 0.7  2.9 ± 0.4 2.2 ± 0.3  3.2 ± 1.1 2.4 ± 0.6  <.001* 0.954 

 4.6 ± 2.2 28.3 ± 
6.5 

 4.3 ± 1.7 26.1 ± 
5.6 

 4.8 ± 2.3 27.1 ± 5.6  5.5 ± 2.2 29.5 ± 
8.5 

 <.001* 0.668 

27.1 ± 
7.5 

35.4 ± 
3.4 

 26.7 ± 
7.5 

34.4 ± 
5.1 

 30.1 ± 
7.8 

37.9 ± 2.8  30.1 ± 
5.9 

36.7 ± 
3.3 

 <.001* 0.751 

Fatty Acid Resident Anad.  Resident Anad.  Resident Anad.  Resident Anad.  Origin Stage 

4.5 ± 1.0 6.4 ± 0.6  4.3 ± 1.0 6.3 ± 0.3  4.0 ± 1.2 6.3 ± 1.1  4.1 ± 0.6 5.3 ± 0.7  <.001* 0.127 

AA

9.3 ± 1.0 0.8 ± 0.3  9.3 ± 1.1 0.9 ± 0.3  9.7 ± 0.9 1.0 ± 0.8  10.0 ± 
0.8 

1.4 ± 0.5  <.001* 0.135 

EPA)

5.0 ± 1.5 8.4 ± 0.7  5.1 ± 1.6 8.5 ± 0.6  5.8 ± 1.6 8.9 ± 1.4  5.7 ± 1.4 8.9 ± 0.6  <.001* 0.340 

1.3 ± 0.4 0.0 ± 0.0  1.3 ± 0.4 0.1 ± 0.0  1.2 ± 0.5 0.0 ± 0.3  1.2 ± 0.5 0.0 ± 0.3  <.001* 0.953 
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Table 4 (continued) 

6.5 ± 1.7 1.3 ± 0.3  6.5 ± 1.2 1.4 ± 0.3  6.0 ± 1.6 1.4 ± 0.3  5.7 ± 0.8 1.3 ± 0.2  <.001* 0.639 

* Significant following sequential Bonferroni adjustment 
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Figure 2.6: Total arachidonic acid (AA), eicosapentaenoic acid (EPA),  and 

docosapentaenoiec acid (DHA) as a percent of total fatty acid mass across the four 

developmental stages for offspring of anadromous and resident females.  (See Table 2.4) 
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Figure 2.7:  Ratio of arachidonic acid (AA) to eicosapentaenoic acid (EPA) across the 

four developmental stages for offspring of anadromous and resident females.  (See Table 

2.4) 
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Figure 2.8:  Ratio of docosapentaenoic acid (DHA) to eicosapentaenoic acid (EPA) 

across the four developmental stages for offspring of anadromous and resident females.  

(See Table 2.4)  
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Figure 2.9:  Ratio of ω3 to ω6 fatty acids across the four developmental stages for 

offspring of anadromous and resident females.  (See Table 2.4) 
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2.3.2 Principal Component Analysis 

Approximately 87% of variance observed between the offspring of the different origins 

can be explained by the first three components of the rotated data matrix (Table 2.5).  

Principal component 1 (PC 1) explains 51% of the variance with strong positive loadings 

for phospholipids (PL), triacylglycerols (TAG), saturated fatty acids (SAT), 

monounsaturated fatty acids (MUFA), eicosapentaeonic acid (EPA), docosahexaenoic 

acid (DHA)  and other polyunsaturated fatty acids (other PUFA), and a weaker negative 

loading for offspring origin (Table 2.6, Figure 2.10).  The highest loadings for principal 

component 2 (PC 2) were offspring origin, arachidonic acid (AA) and terrestrial fatty 

acids (terrestrial FA).  For principal component 3 (PC 3) the highest loadings were for 

developmental stage and other lipids.   
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Table 2.5: Sums of squared loadings, percent of variance between offspring explained 

and cumulative percent for the first three principal components (Eigenvalues > 1) derived 

using Varimax rotation with Kaiser normalization to examine patterns in offspring origin, 

developmental stage and absolute amounts of selected lipid classes and fatty acids. 

 

 

Principal 

Component 

Rotation Sums of Squared Loadings 

Eigenvalue % of Variance Cumulative % 

1 6.141 51.177 51.177 

2 2.952 24.604 75.781 

3 1.443 12.022 87.803 
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Table 2.6: Rotated component matrix (Varimax with Kaiser normalization) for the first 

three components of the PCA to examine patterns in offspring origin, developmental 

stage and absolute amounts of selected lipid classes and fatty acids. 

 

 
Principal Component Scores 

PC1 PC2 PC3 

Origin -0.247 0.907 0.005 

Stage 0.041 0.072 0.917 

Other Lipids 0.477 -0.060 0.618 

PL 0.863 0.297 0.169 

TAG 0.957 0.108 0.062 

SAT 0.911 0.259 0.074 

MUFA 0.940 -0.061 0.043 

AA 0.155 0.961 0.043 

EPA  0.884 -0.333 0.251 

DHA 0.874 -0.118 0.326 

Terrestrial FA 0.345 0.869 -0.017 

Other PUFA  0.887 0.383 0.091 
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B. 
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C. 

 

 

Figure 2.10: Two-factor plots of the rotated principal component data matrix of the 

absolute amount of selected lipid classes and fatty acids showing the loadings for: (A) the 

first two principal components, (B) principal components two and three and (C) the 

principal components one and three.  Origin = female phenotype; Stage = one of four 

developmental stages (unfertilized egg, eyed egg, alevin, emerged fry);  

PL = phospholipids; Other Lipids = hydrocarbons, steryl esters/wax esters, methyl 

ketones, glyceryl ethers, triacylglycerols, free fatty acids, alcohols, sterols, 

diacylglycerols and acetone mobile polar lipids ; TAG = triacylglycerols; SAT = 

saturated fatty acids ; AA = arachidonic acid; DHA = docosahexaenoic acid; EPA = 

eicosapentaenoic acid; MUFA = mono unsaturated fatty acids ; Terrestrial = signature 

terrestrial fatty acids ; Other PUFA = polyunsaturated fatty acids minus AA, DHA, EPA 

and Terrestrial.     
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2.3.3 Emergent measurements 

 The emergent fry of resident mothers were larger, having greater total surface 

areas (body plus yolk sac surface area; mean ± SD = 94.5 ± 8.8 mm
2
) than those of 

anadromous mothers (84.3 ± 6.5 mm
2
; nested ANOVA: F1,10 = 5.95, P = 0.035).  They 

were also heavier (resident 206 ± 28 mg, anadromous 169 ± 18 mg; F1,10 = 8.04, P = 

0.018) and tended to be longer (resident 27.1 ± 1.3 mm; anadromous 26.1 ± 0.7 mm
2
), 

though not significantly so (F1,10 = 4.14, P = 0.069).  There was a strong relationship 

between unfertilized egg mass and emergent fry mass (adjusted r
2
 = .941, P < 0.001; fry 

mass = 0.748 (egg mass) – 9.11).  In terms of the yolk sac area remaining at this 

developmental stage, there was a nonsignificant tendency for resident offspring to have 

both absolutely (resident 12.1 ± 2.7 mm
2
; anadromous 9.5 ± 2.9 mm

2
; nested ANOVA: 

F1,10 = 3.11, P = 0.109) and relatively  larger yolk sacs than that of anadromous offspring, 

though not significantly so (F1,10.1 = 3.87, P = 0.077, covariate body area F1,235.2 = 7.43, P 

= 0.007; Figure 2.11).   There was a significant relationship between the body area and 

yolk sac area for the anadromous offspring (F1,118 = 24.90, P = 0.00) but not for the 

resident offspring (F1,118 = 0.380, P = 0.54). 
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Figure 2.11:  Relation between yolk sac and total body area at the emergent fry stage for 

offspring of anadromous and resident females.  



 

56 
 

2.3.4 Competition trials 

 

The majority of the pairwise competition trials ended as a draw with neither 

individual declared as dominant (Figure 2.12).  Statistical analysis confirmed this result 

among all pairs and showed no significant differences between the two strains of salmon 

(p = 0.31).  There were no obvious signs of aggression noted (biting or chasing).  Most of 

the results were based on position as the fry were not taking food regularly during 

observations even though fish had all been provided with food and were presumed to be 

feeding in the holding aquaria for approximately five days before the start of this 

experiment.   
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Figure 2.12: Number of wins for offspring of resident and anadromous females in 

pairwise competition trials, as well as the number of draws.   
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2.3.5 Growth and Survival 

Results from the growth and survival experiment indicate that fish of both 

phenotypes lost mass over the course of the experiment; however, there was no 

significant difference in the growth rate between offspring origin, treatments or replicates  

(all interaction terms P > 0.30; reduced model: origin F1,171 = 0.86, P = 0.354, treatment 

F1,171 = 0.57, P = 0.452, replicate F4,171 = 0.25, P = 0.911).   At the onset of the 

experiment, the offspring from resident mothers were significantly heavier than those of 

the anadromous mothers ( all interaction terms P > 0.20; reduced model: origin F1,173 = 

13.71, P < 0.001, treatment and replicate P > 0.20), but by the end of the experiment, 30 

days later, there was no significant difference between the masses of the two strains (all 

interaction terms P > 0.20; reduced model: origin F1,171 = 0.00, P = 0.966, treatment and 

replicate P > 0.40; Table 2.7, Figure 2.13).  There were only two mortalities during this 

experiment, one from each phenotype; an anadromous offspring from a pure treatment 

and a resident offspring from a mixed treatment. 
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Table 2.7: Mean ± SD initial and final offspring mass and growth rate from the growth 

and survival experiment broken down by treatment.  

  

Resident 

 

Anadromous 

 

 

Treatment 

 

Initial 

mass (g) 

 

Final 

mass (g) 

Growth 

Rate  

 

Initial 

mass (g) 

 

Final 

mass (g) 

Growth 

Rate 

 

Sympatric 

 

0.185 ± 0.026 

(n=30) 

 

 

0.143 ± 0.023 

(n=29) 

- 0.008 ± 

0.003 

 

0.177 ± 0.021 

(n=30) 

 

 

0.138 ± 0.020 

(n=30) 
- 0.009 ± 

0.003 

Allopatric 0.187 ± 0.029 

(n=60) 

 

0.145 ± 0.023 

(n=60) 

 

- 0.009 ±  

0.002 

0.170 ± 0.020 

(n=60) 

 

0.147 ± 0.112 

(n=59) 
- 0.008 ± 

0.002 
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Figure 2.13: Initial and final mass (g) of offspring from anadromous and resident   

females by treatment (sympatric or allopatric) in the growth and survival experiment. 
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2.4 Discussion 

Many of the coastal rivers in Newfoundland contain Atlantic salmon populations made 

up of both anadromous and resident individuals.  It was the aim of this study to discover 

if maternal effects (specifically the lipid composition of the resources provided) differed 

between the two phenotypes and how it may affect offspring performance.  Our findings 

indicate that there are clear differences in maternal allocation of resources to eggs by 

sympatric anadromous and resident female Atlantic salmon. This goes beyond any 

differences in egg size and includes differences in fatty acid profiles. Differences in 

arachidonic acid (AA), terrestrial fatty acids (linoleic and α-linolenic acid), 

eicosapentaenoic acid (EPA), and the ratios of AA to EPA, DHA to EPA and ω3 to ω6 

fatty acids, in particular, distinguish fully the eggs and offspring (at least to the start of 

exogenous feeding) of the two phenotypes of females. Moreover, there was strong 

relation between initial egg size and the size of emergent fry (760 degree days post 

fertilization;  r
2
 = 0.941), such that the newly emerged offspring of resident females 

weighed significantly more than did those of anadromous females.  The anadromous 

offspring, however, showed a nonsignificant trend to have proportionately (relative to 

body area) more yolk sac remaining at this developmental stage.  Despite the differences 

in egg size and lipid profiles, they did not translate into differences in competitive 

behaviour, growth rates or mortality of the emergent offspring following the start of 

exogenous feeding. 
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As expected, there were many differences between phenotypes at every stage 

when it came to fatty acid composition, especially with regards to the ω3 and ω6 fatty 

acids.  As expected the resident offspring had higher percentages of arachidonic acid 

(AA)(20:4ω6), linoleic acid (LA)(18:2ω6) and α-linolenic acid (LNA) (18:3ω3) as the 

natural prey of many freshwater fish (e.g. freshwater algae, crustacea, and aquatic larvae 

of insects) are generally, rich in these particular fatty acids  although important season-

dependent differences do occur (Wood 1974; Takahashi and Yamada 1976; Hanson et al. 

1985; Wiegand 1996).  Many freshwater fish are also capable of producing DHA 

(22:6ω3) and EPA (20:5ω3) from LNA, and AA from LA.  When the long chain ω3 FA 

are in short supply, and LNA is either unavailable or inefficiently converted to DHA to 

supply tissue needs the body synthesizes a substitute from ω6 precursors.  The 

replacement FA is docosopentaenoic acid (22:5ω6) (Mohrhauer and Holman 1963), 

which appears essential in the early life stages of fishes such as cod (Gadus morhua) 

(Parrish et al. 2007).  This was one of the fatty acids which was consistently found to be 

in greater supply among the resident offspring.   Some studies have suggested that some 

freshwater species (e.g. pike Esox lucius L.), may not be able to synthesize  AA and EPA 

and that Atlantic salmon in particular are not able to produce AA from LA and must 

obtain it from their diet (Henderson et al. 1995; Ackman and Takeuchi 1986).  Marine 

species generally are characterized by low levels of LA and LNA, as well as higher levels 

of long chain ω3 PUFAs predominantly EPA and DHA (22:6ω3) (Anderson et al. 1990; 

Wiegand 1996), which was the case for the anadromous offspring in this study as well.  

EPA and DHA are copious in the marine environment coming from diatoms and 
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flagellates respectively, where they are passed on from zooplankton to fish (Klenk and 

Eberhagen 1962; Hilditch and Williams 1964; Yamada and Hayashi 1975; Sargent et al. 

1995).  Clearly the essential fatty acids ingested by the mothers are being passed on to the 

offspring through maternal provisioning.   

DHA, EPA, AA (and their associated ratios) are significantly correlated with egg 

quality, fertilization success, hatching success and larval development in many fish 

species such as cod, spotted wolfish and common snook (Pickova et al., 1997; Tveiten et 

al., 2004; Yanes-Roca et al., 2009).  In particular, the rate and extent of production of 

these biologically active eicosanoids, which are involved in various stress reactions from 

blood clotting to inflammatory reactions, are determined by the ratio of AA:EPA which 

in turn is influenced by the dietary, or in this case the yolk sac ratio of ω6 :ω3  PUFA 

(Sargent et al. 1995).  Ackman and Takeuchi (1986) suggested that low levels of AA in 

hatchery-reared Atlantic salmon smolts compared to wild fish may be the cause of 

various skin pathologies.  The current study found the resident offspring to have 

significantly higher ratios of AA:EPA, which implies that these fish may be better able to 

withstand stress related issues than anadromous offspring. 

For marine fish a DHA:EPA ratio of 2:1is generally accepted as adequate for 

normal growth and development with higher ratios being associated with high quality 

eggs and normal development(Sargent 1995, Sargent et al. 1999).  For the anadromous 

offspring, the mean DHA:EPA ratios ranged from 2.1 ± 0.7 up to 2.4 ± 0.6 implying that 

these fish were developing normally while the mean ratios for the resident offspring 
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ranged from 2.9 ± 0.4 to 3.2 ± 1.1 were significantly higher and may imply a high quality 

of eggs.  Marine fish naturally experience a much higher input of ω3 than ω6 PUFA, 

while freshwater fish tend to have lower levels of ω3 PUFA but higher levels of ω6 

PUFAs, especially linoleic acid and AA (Steffens 1997; Sargent et al. 1995), which is the 

preferred substrate and produces eicosanoids of higher biological activity (Bell et al. 

1994; Sargent et al. 1995).  The ratio of ω3 to ω6 fatty acids was significantly higher in 

the fish originating from an anadromous mother, which was expected and is consistent 

with previous research.  Interestingly, even though Atlantic salmon are not exclusively 

marine fish, due to maternal provisioning the eggs and newly emerged anadromous 

offspring clearly follow this pattern.   This is useful data in attempting to distinguish 

phenotypes, a goal of this study.  Given the total lack of overlap in the ratios of ω3:ω6  

FA between offspring of the two phenotypes it would be relatively easy to determine 

from which phenotype of mother an individual derived.  

There was generally little effect of developmental stage on lipid and fatty acid 

profiles which is quite different from what is generally seen in many other species of fish 

(Wiegand 1996).  However, preferential retention of PUFA especially DHA and AA is 

very common throughout development as was evidenced in this study.   These fatty acids 

are generally essential to membrane fluidity and possibly the nervous system as well 

which may explain why demand for these particular fatty acids increase during 

development (Cowey et al. 1985).  Since most of the lipids in fertilized fish eggs are 

either converted into structural components, such as cell membranes, or are channeled 

into energy production, total lipid content of fertilized eggs tends to remain relatively 
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consistent until hatch (Heming and Buddington 1988).  This is consistent with the 

findings of this study as well, as total lipids were not significantly different between 

stages for both phenotypes or between phenotypes. 

Fish eggs must contain levels of nutrient that meet the energy and growth demand 

of the embryo and eventual fry through to, and during the onset of exogenous feeding.  

These nutrients must be provided by the mother.  Triacylglycerols (TAG) are a key 

neutral lipid class in the diet of marine fish and are generally the predominant lipid class 

in the diet of freshwater fish.  These lipids are a major long-term source of energy.  

Phospholipids (PL) are required for optimal growth and survival and play a central role in 

the structure of cell membrane bilayers in fishes.  They are crucial for the prevention of 

skeletal deformities and possibly stress resistance in larval and early juvenile fish of both 

marine and freshwater species (Tocher et al. 2008).  TAG was the predominant lipid in 

the unfertilized and eyed stages, with PL becoming the predominant lipid by the 

emergent fry stage (start of exogenous feeding).  While there was no significant 

difference in TAG or PL between the two offspring origins, there was a significant 

difference in TAG among the developmental stages with amounts decreasing throughout 

the latter stages, which coincided with the depletion of the yolk sac/maternal resources.  

This is common, as it is generally accepted that neutral lipid- rich eggs, like Atlantic 

salmon eggs, utilize primarily TAG and also steryl and wax esters where present for 

growth and development (Tocher et al. 2008).       
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2.4.1 Egg and Offspring Size at Emergence 

Contrary to other findings (Wood and Foote 1996, Fleming 1998), the resident eggs here 

were larger than the anadromous eggs and therefore the resident offspring were 

significantly larger from the outset.  This is an interesting finding as the resident mothers 

were smaller than the anadromous mothers and most research indicates that larger fish 

within a species have larger eggs (Roff 1992; Einum and Fleming 2002).  It is possible 

that since their offspring must compete directly with offspring of anadromous mothers 

the resident mothers are trading egg quantity for egg quality and supplying their eggs 

with more lipids and laying fewer eggs.  Research indicates that resident mothers do in 

fact lay fewer eggs than their anadromous counterparts in a population (Klemetsen et al. 

2003), however this is not surprising as resident salmon are generally smaller than 

anadromous salmon.     

Size at emergence, as well as size of energy reserves have important fitness 

consequences for salmonids (Einum and Fleming 2000; Rollinson and Hutchings 2013).  

Upon emergence, offspring rely on the remainder of their yolk sac while they become 

accustomed to exogenous feeding.  Size of yolk sac remaining may affect swim ability 

and allow individuals with larger sacs more time to adapt, establish territories and make 

the switch to active feeding (Dill 1977).   Both the emergent anadromous offspring and 

the resident offspring were sampled at the same age and both types were free swimming, 

however the fry of the resident females were significantly larger and also showed a non-

significant tendency to have larger yolk sacs.  This fits in well with previous research as 

generally, larger larvae have larger yolk reserves, which provide them with prolonged 
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food reserves before the need for exogenous feeding (Rideout et al. 2005).  All offspring 

were compared to their paternal half sibs before exogenous feeding began so any 

differences were attributed to maternal effects.   

  Most mortality during the first year of life takes place between the time of 

emergence from the gravel and the founding of territories, when swimming abilities have 

improved (Ottaway and Clarke 1981; Einum and Fleming 2000a).  Upon emergence, fry 

are highly vulnerable to predation and therefore stand a better chance of survival by 

emerging synchronously.  Nonetheless those that emerge first have preferential access to 

feeding territories.  However, there is also a risk that by emerging too early they may be 

ahead of the food availability.    Here, the resident offspring are at a definite advantage by 

being able to rely on their endogenous resources longer while learning how to feed from 

outside sources.  The anadromous offspring must switch to exogenous feeding sooner or 

risk starvation.  Rottiers (1993) found that landlocked Atlantic salmon juveniles had 

higher lipid content than those of anadromous strains when fed an identical diet, which 

indicates that the landlocked salmon may have a higher capacity to use dietary lipids 

reflecting an adaptation to freshwater where the food chain is typically poorer in lipids 

than in a marine environment (Pickova et al. 1999).  Obviously both phenotypes have 

adaptations to freshwater as juveniles but they may be using the lipids differently as a 

result of maternal provisioning.  The resident offspring may be using their resources more 

efficiently and therefore have more yolk sac remaining upon emergence.  Again this may 

be a case of quantity over quality, more resources supplied by the mothers so that the 

resident offspring are able to compete with anadromous conspecifics.  Resident offspring 
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may also be genetically predisposed to using freshwater lipids more efficiently as their 

mothers have spent their entire lives in a freshwater environment.  Alternatively, it is 

possible since the emergent fish did not actually emerge from gravel on their own but 

rather were estimated to have emerged based on observations (i.e. they were free 

swimming and had ‘buttoned up’), that the resident offspring would not have actually left 

the gravel yet (e.g. resident offspring have later emergent times) and would have had later 

access to territories.  This may explain why their yolk sacs were larger upon sampling.   

2.4.2 Competition Trials 

This particular experiment suggests that there is no discernible difference between 

phenotypes at this stage when it comes to dominance status.  The idea that larger size and 

dominance go hand in hand has been well documented among salmonids ( Newman 

1956; Jenkins 1969; Wankowski and Thorpe 1979; Abbot et al. 1985), but Huntingford et 

al. (1990) found that in Atlantic salmon size was likely a consequence of social status and 

not a cause.  Metcalfe et al. (1995) also found that the standard metabolic rate was a 

better indicator of social status than relative size or mass of Atlantic salmon.  When they 

corrected for metabolic rate, size had no effect on the outcome of the competitive 

encounters.  In this study, even though the resident offspring were significantly larger 

there was no difference in the competitive abilities of the two phenotypes under these 

experimental conditions.   

There were few if any outwardly aggressive acts and hardly any competition over 

food acquisition in these trials.  Since resident offspring still had endogenous resources 

they may not have been a threat to the anadromous fry and hence no direct competition 
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was observed.  The absence of marked aggression may also be due to kin discrimination 

or low genetic diversity as pairs tested were paternal half siblings.  Brown and Brown 

(1992) demonstrated that Atlantic salmon can discriminate kin from non-kin and 

subsequently, reported that kin discrimination abilities allow individuals to reduce the 

levels of aggression associated with territorial defence towards related conspecifics and 

to defend smaller territories near kin versus non-kin (Brown and Brown 1996).   

This study also agrees with previous research which suggests that bigger does not 

always mean more dominant (Huntingford et al. 1990; Metcalfe et al. 1995).  The 

resident offspring were larger and had slightly larger remaining yolk sacs, but were 

clearly not more dominant.  It appears that neither resident nor anadromous mothers have 

more dominant offspring upon emergence under the conditions tested. 

 

2.4.3 Growth and Survival 

Competitive interactions for food are an important source of growth rate variation since 

they result in dominant individuals consuming a disproportionate quantity of food and 

growing disproportionately fast compared to less aggressive fish.  Even though the 

resident offspring were statistically larger at the onset of the experiment there was no 

significant difference in growth rates or end mass between the two phenotypes.  All 

individuals lost mass during this experiment which was not unexpected.  The decrease in 

specific growth rate observed may have been influenced by an initial period of 

acclimation to both unfamiliar food items (Wang and White, 1994) and environment.  
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These newly emerged offspring were living off the remains of their yolk sacs while 

learning how to feed in an environment which was purposely designed to be food limited 

and generate competition. 

Rottiers (1993) reported a higher growth rate in landlocked Atlantic salmon 

juveniles than in anadromous salmon of same age.  However that study was done on fish 

older than those studied here and therefore may have already established their particular 

life history phenotypes.  Those populations studied were also from two distinct 

populations unlike those of this current study which were likely from one population 

exhibiting alternative phenotypes (Adams, 2007).  Peng et al. (2003) found that 

landlocked offspring had a noticeably higher body mass than the anadromous fry as well 

as a higher growth rate, although the two strains tested were also from different 

populations.  The current investigation did not find a perceptible difference in the mean 

growth rates of the offspring of the two phenotypes, however according to Elliot and 

Hurley (1997) salmon obtained from populations from a narrow geographical area had no 

intraspecific differences when it came to growth rates.  It is possible however, that any 

differences in behaviour were not apparent under the conditions tested and different 

conditions may produce different results. 

According to this study, offspring of the two alternate origins differ in lipid 

profiles, egg size and size at emergence with the resident offspring seemingly at a short 

term advantage upon emergence due to their overall larger size and quantity of 

endogenous resources, however there are many variables that affect growth, fitness and 
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survival and anadromous offspring may have an advantage early on by having access to 

better quality resources through maternal provisioning.  Only a couple of specific 

behaviours that may have been influenced by maternal effects were investigated in this 

short term study.  Further study is needed to shed light on the interactions of the two 

phenotypes after endogenous resources have been completely depleted and territories 

have been established.  
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3.1 Summary and Conclusions 

To the best of my knowledge, this study is the first in-depth look at the differences in the 

lipid content and composition of various early life history stages for wild Atlantic salmon 

and offers a practical solution to the task of discovering the contribution made to the 

population by both phenotypes.  The results indicate that there are sufficient differences 

between specific fatty acids of the offspring of anadromous mothers and resident mothers 

to create distinct fatty acid profiles and is therefore a realistic way to identify offspring 

enabling researchers to determine the contributions resident and anadromous females 

make to a population.  This information would improve fisheries management and 

policies by allowing a more thorough understanding of the population structure of the 

Atlantic salmon in a given region since anadromous salmon are a popular game fish and 

governed by much tighter fishing regulations than the resident fish.  Fishing pressure on 

anadromous phenotypes may cause decreased competition for the resident phenotype 

thereby possibly allowing them to become the predominant presence in the river systems.  

Also since the anadromous fish are more likely to be harvested it is possible that the 

evolutionary threshold for adopting one tactic over another could shift promoting rapid 

life history evolution, changing the population dynamics of a river over time and possibly 

threaten sustainability of fisheries yields.  As adoption of a life history tactic is likely to 

be a conditional strategy with unequal fitness for both tactics, there may be ramifications 

of a shift in population structure as the anadromous phenotype declines (Gross 1996; 

Brockman 2001).   
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Even though resources provided by the two types of mothers were different with 

regards to lipid composition and content this did not appear to have an impact on the 

behaviour of the offspring, at least at the developmental stages, and under the conditions 

investigated.  While the anadromous offspring had more ω3 FA than the resident 

offspring, the resident offspring make up for this deficiency by converting other FA into 

the required ω3 FA.  This seems to be a successful strategy for the resident offspring as 

they did not appear to be any less fit than the anadromous offspring and were able to hold 

their own in the dominance competitions.   

An anadromous parent is likely capable of producing a resident offspring and vice 

versa.  Therefore the purpose of this study was not to predict life history choice based 

upon maternal provisioning but rather to investigate if there were differences in maternal 

provisioning for the two types and if those dissimilarities would produce differences in 

early behaviour that may ultimately affect the fitness associated with the two tactics. 

While there was a distinct difference in the fatty acid profiles of the resources provided to 

offspring there also seemed to be a difference in the method of allocation.  According to 

this study the anadromous mothers may opt for the highest quality of egg they can 

achieve in their environments while the resident mothers seem to provide more resources 

and hence have larger eggs. However results suggest that behavioural differences in early 

life performance and interactions between the offspring of the anadromous mothers and 

the offspring of the resident mothers are minimal at best under these experimental 

conditions and may not directly affect the coexistence of the two strains.  This makes 

sense as the two phenotypes have evolved to spawn within the same environment and 
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even though quality and quantity of resources differed for the offspring their competitive 

abilities seem to be evenly matched.  While there does appear to be a link between 

egg/offspring size and increased fitness (Einum and Fleming 1999, 2000), studies have 

stressed the idea that fitness consequences of egg size differences are more pronounced 

during early juvenile stages rather than the egg or larval stage (Rollinson and Hutchings 

2011; Fleming and Einum 2011; Louhi et al. 2014).   So even though the resident eggs 

and offspring were larger, behavioural differences may not be apparent until offspring are 

older however, as both types of offspring have been coexisting in the same population it 

is likely that their competitive abilities would be similar.  This may be due in part to the 

resources provided by their mothers.  The anadromous offspring had more long chain 

fatty acids (DHA, EPA) while the resident offspring were supplied with less of the long 

chain fatty acids but more of ω6 fatty acids.  This seemingly allows both types of 

offspring to coexist and perform similarly within a population. 

The success of newly emerged offspring establishing territories depends on time 

of emergence, metabolic rate and body size (Cutts et al. 1999a, b).  Higher metabolic 

rates seemingly cause a greater quantity of the yolk reserves to be used in respiration over 

a set amount of time leading to an earlier requirement for exogenous food (Metcalfe et al. 

1995).  In this study anadromous offspring appeared to have less yolk sac reserves than 

the resident fry upon emergence and it may be that they have a higher metabolic rate.  A 

higher metabolic rate has been hypothesized to coincide with a larger otolith at first 

feeding, faster digestion, a higher dominance status, increased growth rates and an 

increased likelihood of early seaward migration (Metcalfe et al. 1992; McCarthy 2000; 
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Millidine et al. 2009; Reid et al. 2011).  Again these characteristics may not be apparent 

until offspring were older. 

This study opens up several avenues for future research including:  1) presumably 

both types of offspring would be ingesting the same diet as they occupy the same habitat 

and it would be interesting to see how long the offspring of the two phenotypes retain 

their different lipid profiles. 2) If the anadromous offspring use up their resources quicker 

than resident offspring this interestingly may suggest a higher metabolic rate that may 

lead to a higher growth rate in the future.   Metabolic rates of both types should be 

measured and compared. 3) Overall lipid profiles were unique to each type and it would 

be interesting to discover if in fact any of the resident offspring became anadromous upon 

maturity and how their lipid profiles would change. 4) In aquaculture, marine fish must 

be fed an enriched diet to increase their DHA intake and thereby provide a higher 

DHA:EPA ratio necessary for normal growth and development and for pigmentation. If 

resident (or fish from a partial migratory population) rather than strictly anadromous 

Atlantic salmon were used for aquaculture, diet supplementation with DHA might not be 

necessary as freshwater fish may have the ability to make their own DHA and utilize 

dietary lipids more efficiently. 5) Offspring of anadromous and resident females could be  

reared until smoltification occurs in some and the maternity of both phenotypes could 

then be determined. 
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Appendix 1: Lipid class means expressed as a % of total lipids (means <1 % excluded) of individual families of anadromous females 

from Exploits River (E) and Indian Bay Brook (S) and resident females from Indian Bay Brook (O) at four different developmental stages.  

Shaded areas indicate means < 1%. 

Family Total Lipids % Phospholipids % TAG % Sterols % AMPL % FFA % Hydrocarbons % Steryl Esters/ % Methyl  
  (mg/g)             Wax Esters Ketones 
          

 Unfertilized         
E6 268.78 39.72 50.64 9.64 0.00     

E7 135.91 47.77 37.98 10.50 3.34     

S1 65.47 48.81 36.33 12.35 0.00     

S2 129.96 41.64 42.07 14.07 1.87     

S4 180.37 39.34 50.77 9.23 0.00     

S5 357.72 28.00 52.04 6.28 13.65     

O10 92.73 61.84 22.09 15.17 0.00     

O2 141.30 43.66 41.63 13.58 0.00     

O3 135.27 49.78 36.80 11.99 0.89     

O4 238.86 43.67 47.27 7.94 1.07     

O6 81.88 28.16 50.90 18.16 1.40     

O7 198.39 37.86 46.73 10.68 1.71     

 Eyed         

E6 169.41 36.39 47.16 9.70 3.73 2.02    

E7 201.47 39.40 43.54 9.48 3.86 2.34    

S1 116.84 29.51 51.66 5.29 8.08 5.24    

S2 132.67 33.22 52.31 9.14 3.25 1.72    

S4 143.44 35.53 50.20 9.76 1.42 2.18    

S5 158.81 33.87 54.22 7.61 2.34 1.39    

O10 127.96 41.75 44.32 11.57 1.83 0.53    

O2 251.01 40.29 48.18 8.45 1.54 0.53    

O3 183.07 45.01 41.75 7.77 3.16 1.77    

O4 227.59 39.76 48.96 8.87 2.02 0.00    

O6 157.79 35.19 50.73 7.55 1.86 2.67    

O7 372.33 40.61 51.51 5.85 0.79 1.24    
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Appendix 1: (Continued) 

Family Total Lipids % Phospholipids % TAG % Sterols % AMPL % FFA % Hydrocarbons % Steryl Esters/ % Methyl 

 
(mg/g) 

      
  Wax Esters Ketones 

          
 Alevin         
E6 154.31 35.44 46.33 12.98 3.02     

E7 145.06 50.99 34.75 11.72 0.87     

S1 445.21 38.57 50.88 5.87 1.90     

S2 170.77 31.29 53.69 9.63 2.65     

S4 172.80 33.89 54.45 9.40 1.40     

S5 294.30 43.50 47.73 7.22 0.68     

O10 175.04 46.54 42.93 9.40 1.14     

O2 155.30 36.92 47.54 11.61 1.66     

O3 174.36 51.11 38.77 8.08 1.61     

O4 190.93 35.99 47.94 9.18 3.49     

O6 266.93 39.62 47.14 8.28 1.62     

O7 286.54 47.96 35.93 9.22 1.79     

          

 Emergent         

E6 123.41 47.74 24.73 8.05 10.85 
 

2.56 0.00 3.08 

E7 258.72 38.06 37.35 13.21 4.77 
 

2.48 0.38 3.75 

S1 148.96 39.97 36.07 15.19 2.12 
 

1.36 1.81 2.35 

S2 165.92 38.57 38.12 14.19 4.65 
 

2.45 0.00 2.03 

S4 212.61 37.03 41.99 11.95 4.63 
 

2.01 0.88 1.51 

S5 313.11 32.60 49.68 10.31 3.58 
 

0.80 0.74 2.30 

O10 139.15 46.15 33.09 14.52 2.80 
 

1.58 0.00 1.86 

O2 271.62 37.30 46.22 12.21 0.86 
 

0.38 1.14 0.48 

O3 146.82 41.26 33.50 13.82 6.06 
 

1.42 0.76 2.42 

O4 151.15 33.40 42.69 13.47 4.48 
 

1.44 1.51 3.01 

O6 111.50 38.69 31.49 15.39 4.89 
 

2.23 3.73 3.56 

O7 154.15 53.13 20.56 15.49 5.70 
 

0.79 0.39 3.88 
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Appendix 2: Fatty acid means expressed as a % of total fatty acids (means <1 % excluded) of individual families of anadromous females 

from Exploits River (E) and Indian Bay Brook (S) and resident females from Indian Bay Brook (O) at four different developmental stages. 

Family 14:0 16:0 16:1w7 18:0 18:1w9 18:1w7 18:2w6 20:1w9 20:4w6 20:5w3 22:5w3 22:6w3 24:1 

 
             

 Unfertilized             

E6 1.15 14.22 4.67 7.27 23.20 4.01 0.91 2.40 0.85 7.18 5.47 20.05 2.91 

E7 1.34 14.05 4.42 8.16 19.46 3.56 0.87 1.73 1.29 9.20 6.62 22.77 2.03 

S1 1.17 15.32 3.97 9.37 19.35 4.06 0.88 1.88 0.91 8.09 6.65 22.64 0.58 

S2 1.77 13.26 5.94 4.64 20.20 3.53 1.04 2.15 0.93 9.06 7.22 19.28 1.68 

S4 2.10 14.21 9.25 8.47 20.39 5.23 0.73 1.71 0.44 8.42 6.44 16.54 1.98 

S5 2.13 14.68 9.72 8.55 21.12 4.16 0.78 1.68 0.47 8.37 6.06 16.90 1.14 

O10 0.85 13.48 5.13 9.76 15.78 5.64 3.54 0.35 11.18 4.22 4.15 14.23 0 

O2 0.85 14.63 8.37 9.82 21.51 5.97 2.43 0.28 9.68 3.61 3.37 10.38 0.71 

O3 0.95 16.82 2.16 12.75 12.89 5.59 1.71 0.99 8.31 4.26 3.91 17.59 2.33 

O4 2.05 12.53 5.38 7.56 13.26 3.97 2.09 0.75 8.77 6.99 5.86 18.31 0.21 

O6 1.60 13.98 4.19 9.26 12.25 4.47 1.73 0.58 8.92 6.76 5.20 21.02 1.57 

O7 1.12 13.64 6.53 9.29 20.30 6.24 4.21 0.30 9.16 3.93 3.47 9.97 0.28 

              

 Eyed             

E6 1.32 14.85 4.25 6.86 20.78 4.44 0.78 2.20 1.02 8.47 5.91 22.35 1.00 

E7 1.44 13.70 5.55 7.04 22.57 2.71 1.09 1.72 1.12 9.21 6.31 21.83 0.54 

S1 1.29 13.90 5.27 7.41 23.06 4.40 1.17 1.77 0.92 8.02 6.23 19.66 0.74 

S2 1.68 14.76 5.00 10.28 18.50 4.99 0.93 2.08 1.03 8.41 6.76 18.25 1.28 

S4 1.83 14.70 7.97 10.48 19.79 4.15 0.73 1.75 0.52 7.71 6.18 16.86 2.05 

S5 2.29 13.36 10.09 7.72 20.20 5.14 0.83 1.52 0.51 9.27 6.38 8.56 0.78 

O10 0.82 14.03 4.32 11.59 14.28 8.53 3.58 0.43 10.35 3.73 3.71 11.66 0.79 

O2 0.92 14.15 8.70 8.93 22.79 6.46 2.81 0.32 8.97 3.57 3.13 9.69 0.49 

O3 1.25 14.48 4.96 8.37 18.98 10.54 2.85 0.82 8.65 5.60 4.14 18.23 0.28 

O4 2.14 11.98 5.94 6.78 15.44 3.22 2.24 0.69 8.39 7.07 5.96 17.35 0.48 

O6 1.75 14.01 4.93 8.59 13.08 5.15 2.29 0.48 8.52 6.73 5.07 18.25 0.88 

O7 0.76 15.77 3.08 14.97 12.14 7.02 2.23 0.44 11.04 3.73 3.89 11.73 0.73 
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Appendix 2: (Continued) 

Family 14:0 16:0 16:1w7 18:0 18:1w9 18:1w7 18:2w6 20:1w9 20:4w6 20:5w3 22:5w3 22:6w3 24:1 

              

 Alevin             

E6 0.56 9.29 1.57 10.38 22.10 5.14 0.80 2.81 1.26 9.02 5.15 25.97 0.78 

E7 1.40 15.37 2.31 8.10 17.59 3.57 1.06 1.70 1.36 9.30 6.36 22.04 1.63 

S1 1.37 13.41 5.51 6.73 21.97 3.81 1.19 1.56 0.88 8.68 6.19 20.06 2.62 

S2 1.36 14.84 4.28 10.12 16.60 4.07 0.74 1.94 1.36 8.51 7.31 21.36 1.58 

S4 1.98 14.38 9.42 8.26 20.37 4.02 0.74 1.58 0.53 9.02 6.46 18.55 0.40 

S5 2.07 14.08 9.80 7.83 21.01 3.96 0.84 1.62 0.48 9.11 6.48 18.17 0.41 

O10 0.88 13.53 5.76 9.03 17.05 5.38 4.16 0.31 10.79 4.02 3.65 12.76 0.30 

O2 0.69 15.20 6.07 12.09 18.27 6.59 2.14 0.30 10.66 3.86 3.66 11.55 0.48 

O3 1.16 13.77 4.22 7.76 18.08 4.36 2.65 0.80 8.64 5.47 4.10 18.55 0.65 

O4 2.03 13.93 2.78 8.40 12.38 4.98 2.12 0.73 9.70 7.33 4.04 16.91 2.44 

O6 1.50 14.26 4.43 9.31 11.43 4.52 1.62 0.60 9.20 6.94 5.34 21.39 0.38 

O7 1.05 13.86 2.66 9.28 11.26 4.53 1.48 0.62 8.92 7.07 5.05 21.85 0.93 

              

              

 Emergent             

E6 0.89 16.00 3.29 6.11 18.17 3.97 0.89 1.51 1.82 8.42 4.63 26.07 3.02 

E7 1.10 17.24 2.87 7.06 17.82 3.58 0.82 1.15 2.05 9.16 5.06 24.34 1.92 

S1 1.02 19.24 3.56 8.03 18.67 4.58 0.89 1.34 1.45 7.84 4.64 20.76 3.16 

S2 1.71 16.69 6.34 7.27 21.71 4.42 1.09 1.74 1.65 9.31 6.37 13.84 1.53 

S4 1.88 14.41 9.91 5.70 20.12 4.59 0.89 1.15 0.82 9.35 5.27 20.71 0.70 

S5 1.78 13.74 9.59 5.71 20.89 4.28 0.69 1.33 0.81 9.12 5.87 21.15 0.74 

O10 0.86 13.57 5.16 9.83 15.88 5.68 3.56 0.35 9.27 4.25 4.18 14.33 0 

O2 0.84 16.42 8.45 3.70 21.63 14.97 2.65 0.30 10.65 3.83 3.24 13.94 1.06 

O3 0.99 14.63 3.32 6.84 15.52 5.03 2.43 0.55 9.46 5.40 3.53 21.38 0.78 

O4 1.72 13.89 3.80 6.63 12.02 4.64 1.92 0.52 9.41 6.66 5.13 20.57 2.16 

O6 1.60 14.25 5.14 7.15 13.26 4.23 2.07 0.44 9.04 6.79 4.61 21.68 0.19 

O7 1.03 14.58 2.28 6.27 10.30 3.82 1.45 0.36 9.89 7.34 3.92 28.74 3.38 

 



 

95 
 

Appendix 3: Total masses (g) of individual families of anadromous females from Exploits River (E) and Indian Bay Brook (S) 

and resident females from Indian Bay Brook (O) at four different developmental stages. 

Family Total mass (g) 

 Unfertilized Eyed Alevins Emergent 
     
E6 0.096 ± 0.003 0.124 ± 0.006 0.099 ± 0.001 0.147 ± 0.009 

E7 0.101 ± 0.004  0.127 ± 0.007 0.106 ± 0.002 0.146 ± 0.009 

S1 0.131 ± 0.017 0.146 ± 0.000 0.123 ± 0.005 0.189 ± 0.007 

S2 0.127 ± 0.015 0.138 ± 0.005 0.125 ± 0.002 0.177 ± 0.008 

S4 0.121 ± 0.005 0.142 ± 0.007 0.115 ± 0.002 0.174 ± 0.007 

S5 0.119 ± 0.003 0.149 ± 0.002 0.198 ± 0.109 0.181 ± 0.010 

O10 0.157 ± 0.023 0.147 ± 0.072 0.193 ± 0.026 0.232 ± 0.030 

O2 0.110 ± 0.004 0.128 ± 0.003 0.114 ± 0.004 0.156 ± 0.008 

O3 0.154 ± 0.003 0.179 ± 0.003 0.162 ± 0.003 0.221 ± 0.009 

O4 0.149 ± 0.005 0.185 ± 0.001 0.154 ± 0.002 0.202 ± 0.011 

O6 0.156 ± 0.005 0.174 ± 0.017 0.155 ± 0.001 0.217 ± 0.008 

O7 0.154 ± 0.006 0.185 ± 0.001 0.128 ± 0.010 0.209 ± 0.015 

     


