3

V.

For the best experience, open this PDF portfolio in
Acrobat X or Adobe Reader X, or later.

Get Adobe Reader Now!

http://www.adobe.com/go/reader

Using Scala For
Computer-Assisted
Stepwise Refinement of Software

(from Specification To Implementation)

by Stephen D. Motty

(¢ Stephen D. Motty

A thesis submitted to the

School of Graduate Studies

in partial fulfilment of the
requirements for the degree of

Master of Engineering (Computer Engineering)

Faculty of Engineering and Applied Science

October 2014

St. John's Newfoundland

Abstract

It is possible to generate compilable source code directly from logical formulas
that describe the intended behaviour of software. Theories in support of this goal, in-
cluding theories of predicative programming and programming by specification, were
developed and well-understood by the mid-1990’s. In practice these techniques result
in code and specification libraries that are maintainable, sharable and unmistakably
fit for their purpose.

At present, the techniques have not met with widespread adoption. An under-
lying premise of this thesis is that adoption requires a proficient use of techniques
outside the normal curriculum followed by many computer programmers. A Struc-
tured Imperative Modular Programming/proof-Language and Environment, nick-
named SIMPPLE, is proposed to pull these techniques together into a single frame-
work.

The specific objective of the thesis is to describe how the typed trees representing
a SIMPPLE document are converted to queries to third-party provers. Using the
queries, these provers verify the logical correctness of the SIMPPLE program as it
is constructed line by line, a process known as stepwise refinement. Two classes
of provers are considered: first, Satisfiability Modulo Theorem (SMT) provers; and
secondly high-order Theorem Proving Systems (TPS).

The thesis concludes that stepwise refinement of software is practiceable, and
that the implementation is readily achievable with today’s technology. Examples of

programs created using the techniques are provided.

ii

Acknowledgements

Thanks are extended to Dr. Theodore S. Norvell who introduced me to the many
concepts developed throughout this thesis and who patiently waited for me to become
a believer. The financial contributions of the Memorial University of Newfound-
land (MUN) Faculty Association and the Natural Sciences and Engineering Resource

Council of Canada (NSERC) are gratefully acknowledged.

iii

Contents

Abstract ii
Acknowledgements iii
List of Tables X
List of Figures xi
List of Listings xiii
List of Abbreviations XV
0 Introduction 0
0.0 Motivation e e e 0
0.1 Contributions 1
0.2 Other Approaches e 1
0.3 Organization of Chapters 3
0.4 Guide to Notation, 5

1 Background 7
1.0 Automation 8

1.1 Grammars and Syntax Trees 9
1.1.0 Context Free Grammars (CFGs). 10

1.1.1 Programming with CFGs 12

1.1.1.0 ParseTrees 13

iv

1.1.1.1 Abstract Syntax Trees (ASTs)

1.2 Scala: A Modern Workhorse

1.2.0

1.2.1

1.2.2

1.2.3

Match-Case Construction
1.2.0.0 Regular Expressions and Implicitly-defined Extractors
1.2.0.1 CaseClasses
1.2.0.2 Advanced Extractors in Regular Expressions
Built-in Parser Combinators
Parametric Polymorphism

Dealing With Failure: Try Monad and Option

1.3 Specification of Imperative Programs

1.3.0

1.3.1

1.3.2

1.3.3

Imperative Programs and States
Programming Theory
Interpretations of Commands and Refinement
Choice of State Function
1.3.3.0 Representing Programs using Higher-order Logic

1.3.3.1 Representing Programs using First-order Logic

1.4 Summary e e e e e e

2 SIMPpLE and its Abstract Syntax

2.0 SIMPPLE Theory of Programming

2.1 Client/Server Data Flow

2.1.0

2.1.1

Formulating a Specification
2.1.0.0 Defining Input and Output Relationships
2.1.0.1 Elements of the Editing Environment

Trivial Solution and Other Theorems

16

24

26

27

28

2.1.2 Applicationof Rules 34

2.2 Abstract Syntax e e 36
2.2.0 PlainAST: A Simply-typed Typed AST 38
2.2.1 TypedAST: A Fully-typed Typed AST 39

2.3 SUmMmMary e e e e e e e e e e e e e e e e 40
3 Converting Input Strings to ASTs 41
3.0 Concrete Syntax e e e e e e e 41
3.00 Overview e 42
3.0.00 Queries e 43

3.00.1 Trees 45

3.0.0.2 Statements 46

3.0.0.3 Expressionst 47

3.004 Terminals 48

3.1 Synthesisand Analysis 48
3.1.0 Constants and User-defined Functions. 49
3.1.1 Application e 49
3.1.2 Specification 50
3.1.2.0 ASTNames 50

3.1.2.1 Annotationson Names 50

3.1.3 Computer Instructions o1
3.1.3.0 Assignment, 51

3.1.3.1 Declarations. 52

3.1.4 User-defined Functions 53
3.1.4.0 Quantified Lambda Abstractions 54

vi

3.2 SUMMATYt ot e e e e e e e e e e e e e e e e 55

Client/Server Interface 56
4.0 Client-side Input/Output Requirements 56
4.1 Server-side Implementation Details 59
4.1.0 Builder For Typed ASTs 59
4.1.0.0 PlainASTBuilderTyper. 60

4.1.0.1 TypedASTBuilderTyper 61

4.1.0.2 TyperBSOT and TypeMapper. 62

4.2 Summary e e e e e e e e e e e e e 63
Converting ASTs to FOL 64
5.0 Reduced AST for First-order Subset 64
5.1 AST Normal Form 65
5.1.0 Programming Theory 66
5.1.0.0 State Variables 67

5.1.0.1 Constants 67

5.1.0.2 Spec e e 68

5.1.0.3 Quantified Lambda Abstractions 68

5.1.04 Assignment, 68

5.1.0.5 StateVar Declaration 69

5.2 Mix-in Extensions oL 70
5.2.0 Refinement 71
5.2.0.0 ASTRefinementExtension 73

5.2.1 Application (First-order and High-order) 74
5.2.1.0 Guarded Expressions 75

vii

5.2.1.1 Sequential Composition 76

5.2.1.2 If-Then-Else Expressions 7

5.2.1.3 Application Of Function 78

5.3 Handling of Typed ASTs, 78
5.4 SUMMATY o v o e e e e e e e e e e e e e e e e e e 79
Generic Prover Interface 81
6.0 Oracles. e 82
6.0.0 Dealing with Types 83
6.0.1 Dealing with Naming Conventions 84

6.1 Adapter Interface 85
6.1.0 Scala Interface Trait 86
6.1.1 Conversion. vt it 86
6.1.2 Session Management 86
6.1.3 Executionof the Query 87

6.2 Implementation Details 87
6.2.0 Built-in Semantics For Common Constants 87
6.2.1 Axiomatization of User-defined Functions 88
6.2.2 Uncurrying of Functions 89

6.3 Summary e e e e e e e e e e 90
Using SMT Solvers as Oracles 91
7.0 SMT Solversin General 91
7.1 Verification of a Refinement Step 04
7.1.0 Conversion of the AST 95

7.1.0.0 Interfacing to SMT using an SMT Pretty Printer . . 95

viii

7.2 Case Studies

7.1.0.1

720 General Swap

7.2.1

7.2.2

7.2.0.0
7.2.0.1

7.2.0.2

General Swap Implementation
General Swap Specification

Verification of General Swap Implementation

Algebraic Swap o e e e

Formal Derivation of GCD

7.2.2.0
7.2.2.1
7.2.2.2
7.2.2.3
7.2.24
7.2.2.5
7.2.2.6

7.2.2.7

Alternation Law
Elimination of Guarded Expressions
Shunting,
Simplification
Evaluation of Trivial Solution
Introduction of Skip
Reduction of General Case to a Simpler Case

While Law s e

7.3 Implementation Details

7.3.0

7.3.1

7.3.2

7.3.3

Session Management

Type Declaration

8 Using Higher-Order Theorem Provers

8.0 Writing Theories of Computation

99
101
104
104
106
106
106
107
108
109
109
112
113
114
114
115
116

117

8.0.0 Supported High-order Formulas

8.0.1 Expressible High-order Formulas

8.0.2 Employable Theories of Computation

8.0.2.0 Tree-based substitution with State

8.0.2.1 Built-in Lawsand Rules

8.0.2.2 Translation of State-space Types

8.0.3 Provable High-order Theories

8.1 Kananaskis HOL Case-Study
8.1.0 Definitionso

8.1.1 Macros o e e e e

812 Results.

8.1.2.0 Forward Substitution Law

8.1.2.1 General Swap Algorithm

8.1.2.2 Algebraic Swap Algorithm

8.1.3 Observations

8.2 Summary e e e e e e e e e e e e e e

9 Conclusion
9.0 Results. e
9.1 Future Work
References

A Proof of Forward Substitution Theorem

A.0 Forward Substitution Law

A.1 Kananaskis Code Listing

134

134

136

139

142

List of Tables

1.0

2.0

2.1

3.0
3.1

3.2

5.0

6.0

6.1

7.0

8.0

Interpretations of Commands and Refinement® 23
AST Case Classes v v v v v it it e e e e e e e e 38
Type Constants for the TypedAST Trait 40
Abstract Syntax of Statements 46
Abstract Syntax of Expressions 47
Abstract Syntax of Terminals 48
Case Classes of Reduced, First-order ASTs 65
Adaapter Interface Error Reporting 85
Adapter Interface Default Conversion Methods 88
SMT Outcome Scenarios v v v ... 93
Interpretations of Commands and Refinement! 119

List of Figures

2.0

2.1

2.2

2.3

24

2.5

2.6

3.0

3.1

4.0

4.1

4.2

5.0

5.1

5.2

Client/Server Data Flow 30
GCD Blackbox Function 32
Input/Output Relationship in Editor Mockup 33
Axiom Introduction in Editor Mockup 34
Class Diagram for AbstractAST 36
ASTNames and ASTNodes 37
Concrete (i.e. Typed) ASTs 39
Server-Side Query in Editor Mockup 43
General Swap AST e 53
Specification of GCD in Editor Mockup 57
Trivial Case in Editor Mockup 58
Builder/Typer Class Diagram 59
Builder/Typer Class Methods 60
Classes Used for Typed ASTs 62
ASTNormalForm Class Diagram 66
ASTNormalForm Parser Extensions 67
Mix-in Extensionso 72

6.0

7.0

7.1

7.2

7.3

8.0

Prover Interface Class Diagram 82
Trivial Case in Editor Mockup 04
General Swap AST e 08
Parsed General Swap Specification 99
ScalaZ3Adapter Class Diagram 113
ScalaHOLAdapter Class Diagram 118

xiii

List of Listings

1.0 Imitial Document o 9
1.1 Edited Document o 9
1.2 Match-case Construction 15
1.3 Regular Expression Matching 16
3.0 Imitial Document 42
3.1 Edited Document 42
3.2 Server-side QUery e e e e e 45
7.0 Trivial Case of GCD 96
7.1 Equivalent Server-side Query in SMTLIB 101
7.2 Example of a Failed Implementation 102
7.3 Example of an Incomplete Implementation 102
7.4 Initial Document 102
7.5 Edited Documento 103
7.6 Server-side Query e 103
7.7 Equivalence for Unbounded Integers 103
7.8 Application of Alternation Law 105
7.9 Elimination of Guarded Expression 105
7.10 Shunting L 105

7.11 Simplification Lo 106

7.12 Application of Trivial Solution 107
7.13 Theorem for GCD(i,0) 108
7.14 Introduction of skip 108
7.15 Recursive Solution to General Case 110
7.16 Final GCD Algorithm 111
7.17 Proof of Termination 112
7.18 Alternate GCD Algorithm 112
8.0 HOL Goal: General Swap 130
8.1 RHS: General Swap e 131
8.2 HOL Goal: Algebraic Swap 132
8.3 RHS: Algebraic Swap i i i e 132
A.0 Proof of Forward Substitution Law 143

ot

List of Abbreviations

HOL
JVM
MCS
MUN
NSERC

SIMPPLE

SMT

TPS

Higher-order Logic

Java Virtual Machine

Model Checking Software

Memorial University of Newfoundland

Natural Sciences and Engineering Research Council of Canada

Structured Imperative Modular Programming/proof —

Language and Environment
Satisfiability Modulo Theorem

Theorem Proving System

X1

Chapter 0O

Introduction

0.0 Motivation

A software implementation is a syntactically correct document that can be compiled
into machine executable code. Arguably, the software implementation is expected
to be correct in ways other than just syntax: specifically, the user’s expectations of
what the software will do should be fulfilled by executing the resulting code. Unfortu-
nately, while syntactic correctness of an implementation is a prerequisite to producing
executable code, the latter is not.

A behavioural specification is a mathematical expression that describes how the
output of software should respond given certain guarantees about its inputs.|Gries
and Schneider, 1993] Several techniques for deriving software implementations di-
rectly from specifications exist in the literature, with distinct methods proposed by
Morgan [Morgan, 1994], Goguen [Goguen et al., 2000] and Hehner [Hehner, 1993].

Software derived in such a manner has the advantage that it is both syntactically and

behaviourally correct.

0.1 Contributions

This thesis describes the development of a structured imperative modular program-
ming /proof language and environment (nicknamed SIMPPLE) capable of veritying
stepwise refinements of programs. The main contribution of the thesis is a Scala lan-
guage implementation that interfaces to third-party provers. These provers verify the
logical correctness of the SIMPPLE program as it is constructed line by line. Two
classes of provers are considered: first, Satisfiability Modulo Theorem (SMT) solvers;
and secondly higher-order Theorem Proving Systems (TPS). A demonstration of the

capabilities of the software is provided. The demonstration consists of:

e parsing of textual documents conforming to a BNF grammar into abstract syn-

tax trees (ASTs);
e conversion of source abstract syntax trees (ASTs) into first-order logic;
e conversion of first-order logic into target ASTs of an SMT solver; and

e an implementation plan for targeting a higher-order TPS for solution of equally

or more challenging proofs.

0.2 Other Approaches

This thesis falls under the category of automated verification of software. The ap-

proach used here emphasizes the derivation of a correct program from a specification

using Hehner’s method of stepwise refinement.[Hehner, 2014] Other approaches to
automated verification of software include runtime verification, property specification
languages, static code analysis, and model-checking.

Runtime verification is the least exhaustive of the methods and tests only the
input and output relationships covered by the system’s test vectors. The approach
used in this thesis aims to prove the software correct for all possible initial and final
states.

Property specification languages allow a programmer to annotate code line-by-line
with details about what should and should not hold true as the program executes.
The assertions are considered auxiliary to the program and can often be superfluous.
The approach used in this thesis is to define the input and output requirements (the
specification) and use logical theory to prove an equivalence between the specification
and an implementation. Theorems are introduced instead of assertions; these theo-
rems provide meaning and definitions for terms used in the specification and are not
auxiliary statements. The aim is to prove the implementation sound in the presence
of the theory by using its theorems where necessary to refine the specification.

Static analysis techniques detect common programming errors (e.g. buffer over-
flows, memory leaks, redundant loop, and branch conditions), often by graphing
program flow and propagating a set of values through the graph until a fix-point is
reached meaning all relevant scenarios have been considered.[d’Silva et al., 2008] Static
verification is helpful in determining if a program maintains legal values throughout
its execution. It is more limited than the approach used in this thesis, which ensures
the values are both legal and correct according to a logical formulation of the user’s

expectations.

“*Model-checking algorithms exhaustively examine the reachable states of a pro-
gram.” [d’Silva et al., 2008], but suffer from problems with state-space explosion where
the complexity of the model grows exponentially in response to small changes in the
program. “To use model-checking on any program with more than six variables re-
quires abstraction, and each abstraction requires proof that it preserves the properties

of interest.” [Hehner, 2014] The techniques used in this thesis provide the means for

such proofs.

0.3 Organization of Chapters

The thesis begins with this overview, the aim of which is to present the motivation
behind the thesis and inform the reader as to what to expect in the coming chapters.
Readers will find the thesis informative on a number of topics. Readers new to
the concept of programming by specification will need to understand the background
material in chapters 1 to 2. Readers interested in the mechanics of applying Scala to
the problem of programming by specification will also find chapters 3 to 5 of interest.
Those who already have an understanding of the nature of the problem addressed
by the thesis will find chapters 6 to 8 of greater interest, as these chapters deal with
modern methods of solving these problems.

The title of the thesis is “Using Scala for Computer-assisted Stepwise Refinement

”

of Software (from Specification to Implementation) Chapter 1 introduces each of

the concepts mentioned in this title, namely:

e computer-assisted activities and the manner in which instructions are formu-

lated in preparation for computer processing, concentrating on grammars and

3

syntax trees;

e Scala, which is a modern example of a programming language that incorporates

features useful for translation between languages;

e step-wise methods for arriving at an implementation of a specification; and

e the production of software from specifications to implementations, including the

definition of refinement.

In Chapter 2, the discussion narrows in on the specific abstract syntax used by
the server software to record and represent documents processed by the automated
system. This abstract syntax allows the developer to write specifications and imple-
mentations interchangeably within the context of one document.

In Chapters 3 and 4, a concrete grammar is presented along with a case study
showing how a typical document is parsed. This concrete grammar is required
in order to present readable examples, and to develop test cases for the software
developed under this thesis. A mock-up of the client-side editor is used in Chapter 4
to demonstrate how the software might appear to a typical user.

Chapter 5 begins the discussion of the software developed under this thesis, fo-
cussing on the task of accepting the trees parsed from the concrete grammar and
converting them to a normalized, first-order equivalent.

In Chapter 6, the interface by which the normalized form is prepared for processing
by third-party software is described. In Chapter 7, the process of passing test cases
to a specific SMT solver are presented along with results. Chapter 8 provides a plan

for an alternative implementation that targets a higher-order TPS.

The thesis concludes with a review of the case studies, focussing on the immediate
applications to incorporate programming loops, and additional capabilites available

from the back-end oracles that can be investigated in the immediate future.

0.4 Guide to Notation

The thesis is very notation heavy and makes extensive use of notation from extended
BNF grammars, Scala Programming Language, higher-order logic (e.g. Kananaskis
HOL) and denotational semantics.

Extended BNF notation is used most extensively in Chapter 3 and Chapter 5.
A brief introduction to extended BNF grammar is given in Section 1.1.0. Addi-
tional details regarding BNF notation is available from the Encyclopedia of Com-
puter Science, maintained online by the Association of Computing Machinery (ACM)
at http://dl.acm.org/ralston.cfm.

The syntax of the Scala Programming Language is described in detail at http:
//www.scala-lang.org. Relevant features of the language, along with sample source
code is presented in this paper in Section 1.2. The Scala Programming syntax is
used throughout the document implementation details, including the implementation
of constructors for terminals described by the BNF grammars. UML diagrams such
as Figures 2.4, 2.5 and 2.6 use Scala-style functional prototypes, and for consistency
the sections describing these figures do also.

Examples of the use of notation from higher-order logic and denotational seman-
tics abound in Tables 1.0. and 8.0. In Chapter 8, corresponding symbols from the

theorem proving system Kananaskis HOL are used in source code. Symbols for log-

ical and (“A”) and logical or (“V") are often attributed to Russel and Heyting, and
are approximated in many computer languages, including Kananaskis HOL using the
compound symbols “/\” and “\/”. The symbol “=" is used for logical implica-
tion, approximated in Kananaskis HOL using the compound symbol “==>". In

@y

Kananaskis HOL, the exclamation mark is used in place of the symbol “¥” (uni-
versal generalization, or forall); the question mark “?” is used in place of the symbol
“3” (existential specification, or exists). Additionally, as introduced in the online
documentation for Kananaskis HOL at http://hol.sourceforge.net, a lambda ab-
straction is used to convert an expression to a function by binding typed variables
to the scope of the expression which follows. The symbol “\” is used for lambda
abstractions in Kananaskis HOL instead of the more conventional symbol “\” used
elsewhere in the thesis.

Denotational semantics are used in Tables 1.0. and 8.0 and throughout Chapters
5 and 8. An example of this notation is given below:

IF= ¢l =(IF] =€l

The vertical bars indicate that the delimited expression x is transformed from its
syntax into a semanticly equivalent interpretation. We can express this in words by
“the interpretation of ™, or less formally, “what is meant by ”. So, in the example
above, the expression can be stated: the interpretation of “F' = G” is ‘what is meant

by “F" implies what is meant by “G”.’

Chapter 1

Background

The title of the thesis is “Using Scala for Computer-assisted Stepwise Refinement of
Software (from Specification to Implementation)”. This chapter introduces each of

the concepts mentioned in this title, namely:

e computer-assisted activities and the manner in which instructions are formu-
lated in preparation for computer processing, concentrating on grammars and

syntax trees;

e Scala, which is a modern example of a programming language that incorporates

features useful for translation between grammars;
e step-wise methods for arriving at a solution to a problem; and

e the production of software from specifications and implementations, including

the definition of refinement.

1.0 Automation

The term “automation” refers to computer-assisted activities and the manner in which
instructions are formulated in preparation for computer processing. With respect to
this thesis, there are two distinct environments in which automation occurs. The
first environment will be known as an interactive environment; the alternative is a
facilitated environment. This distinction is relevant because the software developed
in this thesis provides a facilitated environment by which to produce fully-verified
software.

In the mode of operation referred to as an interactive environment, the operators
direct the interactions between themselves and the computers. To do so, the operator
expresses their instructions, typically by writing a program. The operator relies on an
interpreter or compiler to instruct the machine to produce its results. Upon execution
of the commands as encoded by the interpreter or compiler, the computer responds.

The alternative is a facilitated environment, in which the operator’s direction
is only over an intermediate client machine. The client machine provides indirect
communication to a pool of servers which determine the response and report back to
the client machine. The client machine in such an environment does not possess the
algorithms required to solve the user’s problem. Instead it has access to the target
servers and a library of routines that allow it to translate the user’s requests into the
syntax of the target machine. The servers process the client’s requests on their own
schedule and respond only when the result is ready. In this thesis, the algorithms used
by the server are said to belong to its oracles, which are often third-party components

accessible only to the server.

Listing 1.0: Initial Document

declare t := ain (
a:=b

b:=t;

)

Listing 1.1: Edited Document

The intent of the thesis is to use Scala to implement the server-side language so
a client can check the users’ progress as they edit code. As an example, consider
that on the client computer a user opens a document containing the program given
by Listing 1.0. After editing, the user ends up with the program seen in Listing 1.1.

The language discussed in this document allows the client software to formulate
a query asking the server about any potential for failure introduced by the changes.
The server facilitates this test by checking the query to determine which if any of its
third-party oracles are able to process the query. When one of the oracles produces
a response, the server informs the client which conveys the response to the user.
In this way, the thesis describes a facilitated environment that can let a high-level

source-code editor know how one version of a document stands in relation to another.

1.1 Grammars and Syntax Trees

This thesis describes a facilitated environment that can let a high-level source-code

editor know how one version of a document stands in relation to another. To do

so, each version of the document must be expressible using the language known as
SIMPPLE. Understanding the mechanics of this process requires a background in
the fundamentals of high-level languages.

This section presents some of the fundamentals of high-level languages. The sec-
tion begins by focusing on context-free grammars which define the language of the
high-level instructions.[Chomsky, 1959] The discussion moves to syntax trees, which
are the mechanism by which the instructions are prepared for semantic analysis and

compilation /interpretation.

1.1.0 Context Free Grammars (CFGs)

Grammars consist of:

e a set of symbols (for example 1 and +); and

e syntactic production rules that combine the symbols.

The production rules used in this thesis allow symbols to be combined based on
juxtaposition to other symbols. An example of combining symbols in such a manner
is restricting the use of the symbol + so that it can only occur between two 1’s. As
an introductory example, rules of this nature are typically expressed in prose using

statements such as:
e “1” is the name of a positive integer; and

e if “a” is the name of a positive integer, then “1 + a” is the name of a positive

integer.

10

The grammar described above is expressive enough to represent all positive in-
tegers. Expressiveness does not imply practicality; a more practical grammar for
representing integer values will be given later in this chapter.

The Backus-Naur form is conventionally used to write production rules precisely
and succinctly. In this form, each production rule can be assigned a (not necessarily
unique) label; the label is a nonterminal symbol in the grammar. These nontermi-
nals symbols can be referred to by other production rules. The nonterminal symbol
associated with the production rule is written on the left-hand side of an expression,
and the string of terminal and nonterminal symbols on the right-hand side.

The BNF grammar equivalent to the prose example written above assigns the
nonterminal label of POSITIVE INT to both production rules. The second rule is

recursively defined in the BNF grammar, yielding the two expressions below:

POSITIVE INT =1
POSITIVE INT =1 + POSITIVE INT
Extended BNF form allows rules to be combined using optional parts, alternatives,
and other notational conveniences. The following extended BNF equation combines

the two rules written above into one:

POSITIVE INT =1 [+ POSITIVE INT |

The limits on production rules used in this thesis ensure that the result is a
context-free grammar (CFGs). CFGs and their extended BNF forms are readily
parsable and implementable by computing machines. The ability to write extended
BNF grammars therefore allows the design of machines that respond to commands

tailored for specific data and processes.

11

1.1.1 Programming with CFGs

Commanding a machine using a CFG typically involves four processes:

Back-end

- — Execution
Processing

Instructions —— Lexer Parser Typer

e lexing

In the lexing phase, character sequences are matched to regular expression de-

scriptions of tokens.|[Reilly et al., 2000]

e parsing

Parsing produces a parse tree from a string belonging to CFG.

e typing
During typing, terminals and character data in the parse tree are converted to
internal representations that are readily manipulated by the processor. This
internal representation is referred to as a typed abstract syntax tree (AST); it
is a more generalized (or abstract) representation of the parse tree than the

original. The original is referred to as the concrete representation.

e back-end processing

The final stage is to process the typed AST. Typically the typed AST is
processed by a compiler-linker, interpreter or some other back-end process. In
the case of an interpreter, the machine is instructed to perform a series of op-
erations using the character data from the terminals as control values during

this stage. A compiler-linker defers the execution of the instructions (with the

12

possibility of optimizations along the way) by encoding the typed AST in a

native form.

1.1.1.0 Parse Trees

Parse trees are the mechanism by which the instructions defined by CFGs are pre-
pared for semantic analysis and compilation/interpretation. Parse trees are acyclic
rooted trees: they are described and understood using the terminology from graph
theory. Parse trees can also be described in terms of the CFGs they represent. Every
parent in the resulting tree corresponds to a nonterminal in the grammar. Every leaf

corresponds to a terminal.

1.1.1.1 Abstract Syntax Trees (ASTSs)

During typing, the input is converted to a typed AST and is then ready to be
processed. The AST is a symbolic representation of the user’s instructions. ASTs
are abstracted or generalized versions of parse trees, and one AST may describe more
than one parse tree. This feature of ASTs makes them especially useful in translating
from one grammar to another.

In an interactive environment, processing takes an AST and provides a semantic
interpretation for the expression represented. To do so, the processor must have
access to algorithms expressed in machine language. As an example, the user may
instruct the machine to compute the value of sinw. Interpreting sin and 7 to be
the trigonomic equivalents, a properly designed interpreter would compute the result
0.0; a compiler-linker would take a less direct route to the same end. In both cases,

a machine-implementable algorithm for computing the sin of a number is required,

13

as is a finite interpretation of the constant m. The semantic interpretation is in
most cases a practical one. For example we know the constant m to be infinite; a
practical interpretation of m ensures that expressions containing 7 evaluate within an
acceptable margin of error.

In a facilitated environment, which is the environment considered in this thesis,
the AST is neither compiled nor interpreted, but serves as the basis for semantic
analysis given a selection of back-ends. Semantic analysis matches the patterns and
structures of the AST to machine-implementable algorithms that give meaning to the
AST. In this thesis, these algorithms reside in the intellectual property of third-party
programs at the back-end. Because of the arm’s length relationship between the typer
and the back-ends in these cases, it is helpful to think of the third-party programs
as external oracles. In this situation, given an AST, automation involves one of two

options:

0. if the oracle has an API, the AST is processed by translating it and passing it

to the oracle for secondary processing using the API.

1. alternatively, the translator can work backwards from the translated AST to

generate a concrete syntax for the oracle.

1.2 Scala: A Modern Workhorse

The Scala programming language is hailed as “the result of a careful integration of
object-oriented and functional language concepts” [Odersky, 2014]. In this section,

features of Scala that are especially well-suited to semantic analysis of ASTs are

14

0 i match {

5

case 0 ==

0
case nonzeroValue if nonzeroValue > 0 ==

1
case =>

-1

Listing 1.2: Match-case Construction
introduced.

1.2.0 Match-Case Construction

In Scala, the match-case construction is used extensively to achieve pattern matching.
The match-case construction consists of a match keyword preceded by an expression
and followed by a block of code consisting of case statements. The case statement
accepts an extractor, an optional guard, and a body of code which is executed if the
expression is an application of the extractor.

An example of a match-case construction is presented in Listing 1.2. In a match-
case construction, each extractor that immediately follows the case keyword attempts
to represent the match expression as an application of the extractor. If a constant is
used as an extractor, as in the first case statement of Listing 1.2, the only application
is a variable whose value equals the constant; thus if the variable i evaluates to 0, this
first case statement applies. When the case applies, control passes to the optional
guard expression. The guard is a Boolean expression which may mention variables
initialized by the match. If the guard evaluates to true, control passes to the body

of the case and the match is complete. Otherwise control passes to the next case

15

0 someString match {

5

case """0|[1—-9] [0—9]«""".r ==

printin(" The integer—valued string has no leading zeros");
case URIALI [0_9]+l| " lf'r =

printin(" The integer—valued string has leading zeros");
case =>

printIn(" The expression is not a valid integer—valued string");

Listing 1.3: Regular Expression Matching

statement. A wildcard match in the form of “case 7 is used to implement a default
behaviour for the match. From this description, it should be understood that the

example computes the sign of the integer valued variable 1.

1.2.0.0 Regular Expressions and Implicitly-defined Extractors

Extractors are implicit in a number of cases. For example, Scala provides an aug-
mentString class (strings delimited by three double-quotes) which can be used to
convert the string such as [0 — 9]+ directly into a regular expression pattern matcher.
By calling the method r of an augmentedString instance, a regular expression of type
Regex is returned. Scala adds extractor support automatically to all regular expres-
sions declared in the language. This means that in addition to the usual purpose of
regular expressions for searching and replacing throughout a string, match-case con-
structions provides an additional mode of operation in which a single string is easily
compared against any number of regular expressions.

This is demonstrated in Listing 1.3. In the example, a string is first compared
against the regular expression 0|[1 — 9] [0 — 9]x and, failing that, is subsequently

compared to [0 — 9]+ . This sequence of comparisons captures integer strings of

16

decimal digits having no leading zeros first and processes them as a unique case of

the more general expression.

1.2.0.1 Case Classes

A “case class” is a special form of class in which constructors double as extractors.
An automatically generated unapply function is created that extracts an object’s
constructor arguments. [Subramaniam, 2009] In particular, each of the formal pa-
rameters of the case class constructor is assigned a place (a positional field) in the
extractor’s list of extracted values. Provided that the expression being matched is
represented by an instance of the case class, variables associated with each place in
the constructor pattern are in scope during execution of the guard expression and, in
turn, the case body as would occur for any Scala extractor.

Case classes are especially helpful when working with ASTs. When using Scala
to process ASTs created from CFGs, they make it easy to determine the specific
production rule used to create each object. Root and child nodes can be passed as the
input to a match-case construction to be compared against sub-trees of a specialized
form. Once matched, the case classes provide access to the constructor arguments.
In the case of ASTSs, these constructor arguments are the terminals and nonterminals
of the original BNF grammar. This greatly simplifies the typing, translation and
processing of tree-like structures.

Case classes are typically used for the subclasses that extend a superclass. As a
precaution against further changes to the number and type of subclasses supported
by the grammar, the superclass can be marked as sealed. This forces all case classes

to be declared in the same file as their superclass, and ensures that warnings will be

17

created if a match construct is not declared for each possible case class.

1.2.0.2 Advanced Extractors in Regular Expressions

Scala’s support for regular expressions provides for support of capturing groups de-
fined within the regular expression string. A RegEx instance whose regular expres-
sion has no parenthetic groups, such as [0 — 9]+ is matched against the extractor
matchDecimalDigits () which accepts an empty set of arguments. For each group in
the regular expression, a corresponding argument is added to the extractor. Charac-
ters outside of any group do not receive a place in the argument list. Optional and
non-capturing groups are supported and can be nested within one another. Optional
variables are assigned a place in the extractor, but their value can be null or the
empty string. Non-capturing groups are not assigned a place in the argument list.
Non-capturing groups nested inside capturing groups do not get a place of their own,
but none-the-less are included in the string captured by its parent group.

As an example, the regular expression of the form (—[\+)?0 = ([1 — 9][0 — 9] *
10)(? : (\.(? : [0—=19] % [1—9])?7)0%)? discards leading and trailing zeros in a decimal
expansion. Furthermore, it separates the integer and fractional parts into separate

groups, yielding the extractor prototype:

matchDecimalExpansion(sign,wholePart,fractionalPart)

By combining this feature with guard expressions in match-case constructions,
separate case statements bodies can be written that target strings meeting very spe-

cific criteria.

18

1.2.1 Built-in Parser Combinators

Scala comes prepackaged with a utility library that includes parser combinators.
The combinators extend the pattern matching ability of Scala to incorporate rules
very similar to the BNF conventions. These utilities reside in the Scala package
scala.util.parsing.combinator. To implement a parser combinator in Scala, one may
extend one of the built-in Scala classes: RegexParsers, JavaTokenParsers, or Pack-

ratParsers.

1.2.2 Parametric Polymorphism

In order to define a function that can return generic types, the language supports
parametric polymorphism. Functions and classes can have their return types and
the types of their argcuments parameterized by appending the function or class name
with a type variable enclosed in square brackets. The type variable can be referred to
during the declaration of the class or function. Instances of the class or function must
define a type value to be substituted wherever the type variable appears. Constraints
can be placed on the range of possible values that can be assigned. For example,
the notation [N <: T] indicates it is possible to assign a type-value to N only if the

type-value is derived from the type T.

1.2.3 Dealing With Failure: Try Monad and Option

The Try monad provided by Scala allows a return value of a function to be classified
into success or failure. Case-class extractors allow a successful return value to be

unapplied to return the result. On failure, it allows extra information to be provided

19

to the caller.

Scala also supports an Option type. Like the Try monad, it also allows a return
value of a function to be classified into success or failure, using the term Some to
represent success and None to represent failure. An Option type can be converted
to a Try monad by converting a Some result to a Success result. A None result can

be mapped to a Failure value.

1.3 Specification of Imperative Programs

A core theme throughout the thesis is the correct relationship between specifications
and algorithms. This section introduces this theme through a discussion on specifi-

cation of imperative programs.

1.3.0 Imperative Programs and States

The conventional description of an imperative programming language is that of a
list of commands which are executed sequentially. The commands operate within
a state space, and the effect of the command is to alter the state in a deterministic
fashion. Logical questions can be asked about any two states. One such question
returns what are known as program invariants; that question asks: given any pair of
states modified by an imperative program, what statements are guaranteed to hold
true. Another question returns what is referred to as the program specification: what
relationship exists between the first and last state from a program sequence (from

input to termination).

20

1.3.1 Programming Theory

Any cohesive axiomization of a language allowing its expression in predicative logic
is generally referred to as a theory. Hoare's Logic is often referred to as the first
usable theory of programming. Hoare introduced triples in the form P {Q} R as
a notation meaning “If P is true before the initiation of Q, then the assertion R
will be true upon its completion”.[Hoare, 1969] The logic is composed of: a) an
infinite set of axioms described by an axiom schema for assignment; and b) rules
of consequence, composition, iteration allowing new theorems to be deduced from
axioms and theorems already proved. The resulting system tackles the problem of
correctness of an algorithm.

Building on the concept of precondition and postcondition, Dijkstra[Dijkstra,
1975] developed a formally rigorous calculus allowing preconditions to be determined
from programs and post-conditions. This calculus was especially geared towards
the formal derivation of programs. A more practical (or pragmatic) approach was
proposed by Hehner in 1984. Hehner’s efforts turned questions about sequences of
states into a method for program development with proof at each step. Hehner took
the view that “[a] proof can be a continuing equation, ... it can also be a continuing
implication, or a continuing mixture of equations and implications.” [Hehner, 2014].
Because programs are likewise written as sequences of steps, this approach makes
it “easier to see the execution pattern when we retain only enough information for
execution.” [Hehner, 2014].

Hehner combined the pre-conditions and post-conditions into a single Boolean

formula. Programs are a distinguished subset of these specifications. Specifically, “A

21

program is a specification of computer behavior; for now, that means it is a Boolean
expression relating prestate and poststate. Not every specification is a program. A
program is an implemented specification, that is, a specification for which an im-
plementation has been provided, so that a computer can execute it.” [Hehner, 2014]
Formal derivation of programs in Hehner’'s approach is accomplished by reducing a
specification to this distinguished subset while using reverse implication to ensure

correctness. This approach is referred to as stepwise refinement.

1.3.2 Interpretations of Commands and Refinement

Theories of predicative programming and programming by specification were devel-
oped and well-understood by the mid-1990°’s. These theories come in a number of
forms. A comprehensive theory of programming by refinement is actively maintained
by Hehner[Hehner, 2014] and the reader is referred there for a guide to the strate-
gies by which a program is developed from its specification. Hehner's work includes
contributions from Norvell, especially with regard to theories for nondeterminism
in functional programming and for function refinement, the recursive definition of
while-loops as well as criterion for data transformers.[Hehner, 2014]

Hehner adopts a first-order form that views specifications as Boolean formulas
and refinement as ordinary implication. A closely related higher-order model views
specifications as a function of two states, and refinement as a preorder’ between
specifications. This distinction is abstracted away when discussing programming
instructions, but becomes important when formulating specifications. As an example

the theories included in a NECEC 2010 conference paper[Motty and Norvell, 2010]

04 preorder is a binary relation that is reflexive and transitive

22

are reproduced in Table 1.0.

Term First-order Higher-order
Interpretation Interpretation
||skip|| ¥d=zNy =y As-As' - (s=4)
1) E As- Ezy,
||z:=E]| d=ENY =y As-As' Vv sv=|E|s
w=a>sv=sv
1Sl S AS-AS - S ey
if £
then F I|F||<E> |G| As-As'-||F| ss'<||E| s>|G| ss
else G
IF; G| a9 |FIZE AGIZY As-As'-3s-|[F| ssA |G| s
IF = G| |Fl= |G| As NS [F|| 55’ = |G| s
IFCGl VYey2.y Gl = |F|l Vs-¥s |Gl ss = |[F||ss

Table 1.0: Interpretations of Commands and Refinement!

1.3.3 Choice of State Function

The term “state space” refers to the abstract mathematical universe whose axes are
the state variables of a program. A state is any point in the state space. As such, a
state maps variable names to values (the “coordinates” of the state). A state function
is an abstract mathematical concept that accepts a state and a state variable name
and returns the corresponding value of the state variable in that state. The details
of how the state function is defined is important to this thesis.

In chapters 2 to 7 of this thesis, the state function maps the state to a distinct
and unique set of global variables. This definition of a state function results in a first-

order model of programs. The disadvantage is that some statements about programs

'In Table 1.0, it is assumed that all commands operate on states whose state variables include
only x, and y. Formulas need to be modified accordingly for other states.

23

are inexpressible in first-order logic. An implementation plan to provide an higher-
order state function is presented in Chapter 8 of this thesis. The higher-order state
function treats states as functions from state-variable names to dependently-typed
values. So in Chapter &, if s is a state, it is also a dependently-typed function. The
type of the function is dependent on its argument; for example, if is the name of an
integer-valued state variable, while y is the name of a Boolean-valued state variable,

then s (z) is an integer value, and s (y) is a Boolean value.

1.3.3.0 Representing Programs using Higher-order Logic

The higher-order axioms, theorems and definitions of programming theory used in this
thesis are adapted from Norvell[Norvell, 2012]. According to Norvell’s method[Norvell,
2012|, specifications and programs are functions; they accept two states and return
a Boolean value, and can be compared to one another provided higher-order typing
rules are respected. Traditionally an unprimed variable is used to represent the source
state, and a primed variable represents the target state. Each state has a signature,
Y. defined as a set of pairs (v,7T’), where v, a string, is a variable name and 7 is the
type of data associated with the named variable.

Using this notation, the programmer can enter the specification and assert that
it has Boolean relationships with other specifications. Refinement (definition 1.0)
is a higher-order relationship which compares two specifications. Refinement uses
implication to partition a set of programs into those that meet and those that do
not meet a specification. The definition of refinement introduces the symbol C,
pronounced “is refined by”. So the term S C P is pronounced “S is refined by P”,

or equivalently “P refines S™.

24

Definition 1.0 > SC P = (V_s,5 - Sss’ «<= Psd')

Since logical implication over sentences is a preorder, refinement is too. Two
special specifications mark the floor and ceiling of the refinement preorder. First
there is the case of a specification that is tautologically true and therefore holds for
all pairs of states. As an example, the Boolean expression T is a constant that always
evaluates to true. A lambda abstraction® can be used to turn this constant into a
function that accepts two states s and s’ as input but subsequently always returns
T. The resulting specification (see definition 1.1) is given the name ‘abort’: such a

specification is always satisfied.
Definition 1.1 abort = A_s,s"- T

On the contrary, it is possible to write a specification that is unsatisfiable and
therefore cannot hold for any pair of states. This specification (see definition 1.2)
is given the name ‘magic’; its definition is the lambda abstraction which evaluates in

all cases to false:

Definition 1.2 magic = A_s,s"- L

The special names of the specifications are chosen due to the contractual nature
of specifications. For instance, it would be unrealistic to search for a specification
equivalent to ‘magic’: no program can satisfy a search for the impossible. On the

contrary, a search for a program that satisfies the specification ‘abort’ will always

2The symbol 7 is used here to mean universal quantification over objects of type ¥, where ¥ is
the type for states

3The symbol Ay is used here to mean lambda abstraction over objects of type T, where ¥ is the
type for states

25

succeed; there’s just no point running it since it does nothing useful towards the
requirements. Refinement is a preordering relation on specifications. At the bottom of
this preorder sits the specification known as abort. All specifications refine abort, but
abort refines no other specification but itself. At the top of the preorder sits magic.
No specification but magic refines magic, though magic refines all specifications. This
can be summarized notationally* as:

v S -abort C S C magic

E—EZ—FBool

In between the two extremes, the ability to partition a set of programs into those that
meet a specification and those that do not is critical to the software acceptance and
development process. Refinement is transitive: “...if you refine a program today,
and refine it further tomorrow and again the day after, then by the weekend you still
have a refinement of what you started with.”[Morgan, 2009]. Since every specification
is refined by at least one unimplementable specification (i.e. magic), implementability
is a critical threshold. “[A]n unimplementable specification can not be refined by an

implementable specification.” [Norvell, 2012]

1.3.3.1 Representing Programs using First-order Logic

Unlike higher-order logic, in first-order logic, well-formedness rules of propositions do
not allow relationships between functions. In first-order logic, Boolean-valued terms
are predicates of a known arity; a predicate flanked by the appropriate number of

inputs evaluates to either true or false. Predicates must be fully applied to be well-

4The symbol ¥,___ .., is used here to mean universal quantification over objects of type © —

3. — Bool, where ¥ is the type for states

26

formed.[Wang, 1961] Consider for example that we have two specifications, S1 and
S2, such that two states s and s’ satisfy one specification if and only if they satisfy

the other. In first-order logic, this is written® as:

V_s,s" - Slss’ <= S2ss’
The rules of first-order logic allow one to conclude that S1 and S2 are functionally
equivalent, but fall short of being able to conclude that they are equal; that is:
S1 = S2. To do so would be to write predicates S1 and 52 without arguments,

which would be a violation of the well-formedness rules.

1.4 Summary

Those who wish to use a computer to automate a process often rely on custom
languages defined by formal grammars to express a goal, command, or instruction.
Modern-day programming languages such as Scala contain features that simplify the
parsing of such grammars. In this thesis, a custom language built to express con-
cepts from programming theory is parsed and processed by a server written in the
modern-day programming language Scala.

The topics presented in this chapter serve to introduce basics of grammars, the
Scala language and programming theory. The chapters which follow build the gram-
mar that the server software will use to record and represent documents to which

programming theory applies.

>The symbol 7, is used here to mean universal quantification over objects of type ¥, where ¥ is
the type for states

27

Chapter 2

SIMPpLE and its Abstract Syntax

In this section, past developments and background work completed prior to the com-
mencement of this thesis is discussed. This work includes the abstract syntax of

SIMPPLE.

2.0 SIMPpLE Theory of Programming

It is well known that syntactically and behaviourally correct software implementations
can be derived directly from specifications. The process known as stepwise refinement
derives the program from a specification and verifies it as it is constructed line by
line.

The need for an editing and proving environment in which programs are treated
as objects of enquiry led to the creation in 2007 of the SIMPPLE project. SIMPPLE
is an acronym for Structured Imperative Modular Proof/Programming Language and
Environment. The aim of the SIMPPLE project is to design a formal language for

writing program specifications, programs, and proofs that programs meet their speci-

28

fications. [Norvell, 2009] SIMPPLE provides a strongly typed syntax for interspersing

specifications with commands. Specifically, it provides a grammar for recording:

e arithmetic and logical expressions with precedence and associativity

e specifications

e commands (including assignment, sequential composition and alternation)
e lambda notation

e theorems

e derivations of programs

2.1 Client/Server Data Flow

Early work on SIMPPLE produced the client-side editor: a browser-based exten-
sion that allows users to edit proofs. The client-side editor is written in JavaScript
targeting the Mozilla framework. Behind the scenes, the editor communicates using
structured XML to a verification host.

It is the intent that the host will use the editor’'s XML requests to maintaining
an abstract representation of the user’s document in memory on the server-side host.
This abstract representation takes the form of an AST: a hierarchy of Scala objects
and classes. The server analyzes these ASTs to generate queries that can be posed to
one or more automated theorem provers to test the correctness of the program and

any assertions made about it. This data flow is depicted in Figure 2.0.

29

Editor XML HTTP
Server
SIMPPLE
XML
Query

Oracle (e.g SMT)

Figure 2.0: Client/Server Data Flow

In this section, a demonstration of stepwise refinement of a specification is intro-
duced. The demonstration is visualized using a mock-up of the client-side editor,
and shows how such an editor would assist in the stepwise refinement of software from
specification to implementation. The demonstration here is intended to provide an
initial introduction to the process. The demonstration is discussed further later in
the thesis once additional program theory and an abstract and concrete syntax for
the server-side language has been presented.

A comprehensive theory of programming by refinement is actively maintained by
Hehner[Hehner, 2014] and the reader is referred there for a guide to the strategies
by which a program is developed from its specification. In the interest of providing
an example, however, it is assumed that some approaches to mathematical problem
solving are universal. Of these, the formulation of the problem statement, and the

solution of trivial cases are sufficient for demonstration purposes.

30

2.1.0 Formulating a Specification

The first step in the practice of stepwise refinement of software is to formulate a
specification. While this may sound time-intensive, the approach suggested in this
demonstration is to treat functions as uninterpreted constants, or free variables. Un-
interpreted function names, when encountered in a document, are treated as constants
in the AST. Using constants for these names reinforces that the name refers to an
object with universal, immutable characteristics. This allows the writer to freely in-
troduce a new function or concept as a placeholder for something to be defined more
fully later. The theory behind uninterpreted functions is beyond the scope of the
thesis, but comes from the study of many-sorted logic, a logic system widely used in
modern SMT solvers. Barrett et al., 2010]

To demonstrate, the problem of computing the greatest common divisor [Norvell,

2012| has been adapted in this thesis for use as an example in the following sections.

2.1.0.0 Defining Input and Output Relationships

In Proposition 2 of Book VII of the Elements, Euclid proposed “Given two numbers
not prime to one another, to find their greatest common measure.” [Hawking, 2005]
This statement on its own defines the nature of the problem to be solved. On the
given, or input side, two numbers are presented. Provided that the preconditions are
met, the algorithm is to produce the greatest common measure of the two; otherwise
there is no requirement.

Euclid’s second proposition is typical of many computing problems in that it

defines constraints on the problem that must hold in order for the algorithm to apply.

31

first number (m) ——
m>0An>0 i GCD Algorithm — ged(m,n)

second number (n) ——

Figure 2.1: GCD Blackbox Function

In Euclid’s case, the constraint is that the inputs must not be prime to each other.
It’s worth noting that the Euclid’s algorithm actually works in situations where the
inputs are prime to one another; the resulting GCD in that case is unity. Modern
versions of the algorithm generally weaken the precondition, requiring only that at
least one of the inputs be non-zero. The block diagram in Figure 2.1 shows this
relationship in graphical form.

When writing input/output specifications, it is common to reuse state-variable
names to hold both the input and the output values. Conforming to this practice,
and using the uninterpreted function name gcd to represent the central block, the

specification for Figure 2.1 corresponds to the input string:

(m>0An>0=m =ged(m,n))

2.1.0.1 Elements of the Editing Environment

Once an input and output relationship has been defined, it can be entered in a custom,
web-enabled editor for version control and analysis. The editing environment requires

a number of elements, as illustrated by the mock-up in Figure 2.2. The mock-up

32

| Load I Save [B 1 I I u] l | i l =] [c I(icons complments of Whizzywig)

Reference Specification/Implementation Theorems

-eference version theorems

1
il
Al
I
{11
il
il

Refined Specification/ Implementation
<«<m>0An>0=>m=ged(m,n) >

Server-side Query

Figure 2.2: Input/Output Relationship in Editor Mockup

allows a previous revision of the document to serve as a previous step in the refinement
process. The active document forms the current step. Theorems justifying the
revision can be entered and maintained separately by the user. As the user edits the
document, the editor formulates a query to pose to the server-side prover to check
the correctness of the user’s modifications. A read-only window allows the display

of the server-side query for diagnostics and development purposes.

2.1.1 Trivial Solution and Other Theorems

Many problems have a set of known solutions that can be easily solved. In the case
of the GCD, a trivial solution occurs when one of the inputs is 0 and the other is

a positive number. Since zero can be divided by any number, the largest number

33

[Load [Save [B [7 | U |

Reference Specification/Implementation Theorems
eference version Vi1i-120=ged(1,0)=1

il

| = | b=] l (=4 |(ic0ns compliments of Whizzywig)

Refined Specification/ ITmplementation
«m>0Anz0=>m'=ged(m,n) >

Server-side Query

Figure 2.3: Axiom Introduction in Editor Mockup

which divides the other number is therefore the solution. Since the other number is
positive number it divides itself and is the largest number to do so; that makes it the
solution. We can express this logically as Theorem 2.0. This theorem can be added

to the document as illustrated in Figure 2.3.

Theorem 2.0 Vi-i > 0= ged(i,0) =1

2.1.2 Application of Rules

Given an input and output specification and a trivial solution, the next step is to
write a program that solves the trivial case without changing the overall specification
of the problem. It is at this stage that the use of formal methods diverges from

approaches generally followed by programmers. The traditional approach used would

34

be to implement the trivial case and make the software bullet-proof so that it aborts,
retries, or ignores in every other situation. The method used here is to implement
the cases where it can be proven that a solution exists and abort only if it can be
proven that one solution is as good as any other.

A fine-grained formal proof is a human-verifiable proof that must be applied one
rule at a time. Rules allow expressions of a language to be rewritten in a different
form without altering its meaning. For example, the case creation law[Hehner, 2014]
states that for any specification P, and any boolean expression b, P can be rewritten
as if b then b=> P else -b=> P. SIMPPLE uses the closely related Alternation
law, in which angle brackets convert the boolean expression to the higher-order type
of a specification; hence one writes if b then (b)=> P else (—b)=> P.

Often in conventional formal proofs, rules are combined into one step and the ver-
ification of proper application of the rules is left to the motivated reader. SIMPPLE
allows derivations using either a fine-grained formal proof or a conventional formal
proof. Automated verification of proofs is provided by the server-side oracles.

Later in this thesis, this example will be continued by applying rules of pro-
gramming theory to write an implementation for the trivial case without altering
the specification as a whole. We will also introduce a recursive method for solving
the non-trivial part of the problem, along with theories that justify the proposed

implementation.

35

ASTNode Type

ty : Typelnfo = initTypelnfo

}

AbstractAST TypedAST
ASTName
o Typelnfo : type =0 lad - oo — | | Typelnfo : type = Type
initTypelnfo : Typelnfo = 0 initTypelnfo : Typelnfo = null

)
I
I
i

PlainAST

Typelnfo : type = Unit
initTypelnfo : Typelnfo = ()

Figure 2.4: Class Diagram for AbstractAST

2.2 Abstract Syntax

An abstract representation of the user’s document is maintained in memory on the
server-side, with updates managed by HT'TP communication between the server and
client. The abstract representation takes the form of an AST: a hierarchy of Scala
objects and classes. The AST and its type system were prototyped in Haskell and
ported to Scala prior to the commencement of the thesis. Figure 2.4 shows the
collection of Scala classes that are used in this thesis to represent the system’s input
and intermediate formulae on the server-side. These classes can be described by the
abstract grammar presented in this section. This grammar allows the developer to
write specifications and implementations interchangeably within the context of one

document.

36

ASTNode

ty : Typelnfo = initTypelnfo

4
AbstractAST

Typelnfo : type =0
initTypelnfo : Typelnfo = 0

Primed(n:ASTName):ASTName
Dot(n:ASTName): ASTName

ASTName Plain(s:String): ASTName
root : String = "7 R Spec(expr:ASTNode):ASTNode
Apply(£:ASTNode,expr:ASTNode): ASTNode

Lambda(n:ASTName, expr:ASTNode):ASTNode
Var(n:Name):ASTNode
StateVarDecl(n:ASTName,expr:ASTNode,body:ASTNode):ASTNode
Assign(lhs:ASTNode,expr:ASTNode):ASTNode
StateVar(n:ASTName):ASTNode

Const(s:String):ASTNode

Figure 2.5: ASTNames and ASTNodes

ASTNodes and ASTNames are generated from the input strings using object-
oriented techniques. A class diagram showing the internal methods defined by
ASTNodes and ASTNames is presented in Figure 2.5.

In Scala, ASTName and ASTNode are declared as sealed abstract classes: each
of the non-terminals that produce them are implemented as case-classes. The AST
case-classes in Table 2.0 implement the AST used for server-side representation of a
SIMPPLE document.

While the case classes of the AST given provides a summary of the elements
representable within the AST, it does not provide a full description of the purpose
of each element. Additional details are provided in Chapter 3. To facilitate the

discussion, a concrete syntax is defined in Chapter 3 to illustrate various input strings

37

accepted by the server.

Spec(expr : ASTNode) : ASTNode

Apply(f: ASTNode, expr : ASTNode) : ASTNode
Lambda(n: ASTName, expr : ASTNode) : ASTNode
Var(n: Name) : ASTNode

StateVarDecl(n: ASTName, expr : ASTNode, body : ASTNode) : ASTNode
Assign(lhs : ASTNode, expr : ASTNode) : ASTNode
StateVar(n: ASTName) : ASTNode

Primed(n: ASTName) : ASTName

Dot(n: ASTName) : ASTName

Plain(s: String) : ASTName

Const(s: String) : ASTNode

Table 2.0: AST Case Classes

2.2.0 PlainAST: A Simply-typed Typed AST

The case class productions above are implemented within the context of the Ab-
stractAST trait. The AbstractAST trait is an abstract trait in Scala and serves as
a namespace within which ASTName and ASTNode can be parameterized. The
parameterization is accomplished by declaring (but not setting) variables and types;
these variables and types must be initialized by a derived concrete trait which is said
to be the typed ASTs. Type information is attached to the ASTNodes by the typed
AST. This relationship is depicted in Figure 2.6.

In order to represent ASTs prior to typing, the trait PlainAST is derived from
AbstractAST. PlainAST defines Typelnfo as a Scala Unit. The default value of

initTypelnfo is defined by PlainAST to be a O-tuple (or empty tuple).

38

typer

Type

IntType ()

BoolType()

EmptyStateSpaceType()

ConsStateSpaceType(varName : String, varType : Type, rest : Type)
FunType(t : Type, u: Type)

ExprType(t : Type, u: Type)

CommType(t : Type)

o]

AbstractAST TypedAST
Typelnfo : type =0) O Typelnfo : type = Type
initTypelnfo : Typelnfo = 0 initTypelnfo : Typelnfo = null

iy
I
PlainAST

Typelnfo : type = Unit
initTypelnfo : Typelnfo = ()

Figure 2.6: Concrete (i.e. Typed) ASTs

2.2.1 TypedAST: A Fully-typed Typed AST

The AST described above is very expressive, especially when it has type information
assigned to each node. The type-system used for the majority of SIMPPLE docu-
ments was originally developed in Haskell [Norvell, 2009]. The implementation has
been ported to Scala and is encapsulated by the TypedAST trait which derives its
AST from AbstractAST as seen in Figure 2.6. The type system includes support for
type constraints, type variables, and type constants, the full details of which are be-
yvond the scope of the thesis. Of interest to the thesis are the type constants defined
by the type system. Table 2.1 lists the most commonly used Type constants for the

TypedAST trait.

39

In this thesis, a SIMPPLE document consists of a collection of theorems which
represent statements made about a program and the behaviours its user expects of it.
The types defined in Table 2.1 are sufficient to identify programs and specifications

within the representative ASTs.

FunType (t: Type,u: Type)

ExprType (t: Type,u: Type)

CommType (t: Type)

IntType ()

BoolType ()

ConsStateSpace Type (s: String,varType: Type,rest: Type)
EmptyStateSpace Type ()

Table 2.1: Type Constants for the TypedAST Trait

2.3 Summary

SIMPPLE documents combine program specifications, programs, and proofs that
programs meet their specifications. The server software for SIMPPLE uses the ab-
stract syntax described in this chapter to record and represent SIMPPLE documents
as a collection of ASTNodes. This allows the documents to be treated as objects of
enquiry. The following chapters provide details on how client software can pose ques-
tions to the server in response to a direct query or in response to changes made to the
document. It will be seen that also built into the server are theories of programming

as defined for assignment, application and every other ASTNode.

40

Chapter 3

Converting Input Strings to ASTs

The intent of the thesis is to use Scala to implement the server-side language so a
client can check the users’ progress as they edit code. As mentioned in Chapter 1,
consider that on the client computer a user opens a document containing the program
given by Listing 3.0. After editing, the user ends up with the program seen in Listing
3.1

The language discussed in this document allows the client software to formulate a
query asking the server if the modified file is a refinement of the original. The query
must be expressible as an AST as described in the previous chapter. This chapter
describes the mechanics of this process in detail through the high-level description of

Scala source-code that converts server-side strings into the equivalent AST.

3.0 Concrete Syntax

While the syntax of the AST given in the preceding chapter provides a summary of

the elements representable within the AST, it does not provide a full description of

41

Listing 3.0: Initial Document

declare t := ain (
a:=b

b:=t;

)

Listing 3.1: Edited Document

the purpose of each element. Additional details are provided in this section. To
facilitate the discussion, a concrete syntax is defined to illustrate various input strings
accepted by the server.

The concrete syntax is produced by defining a BNF grammar for the terminals
abstracted away by the AST. Parser combinators are used to collect the elements of
each string and produce an equivalent AST for digital storage. The grammar also adds
a number of pre-defined constructs and built-in operators necessary to formulate easy
to read strings that include boolean, arithmetic and programming theory. Support
for infix notation, tuple-form functions and additional tokens is added where necessary

to improve readability of the input strings.

3.0.0 Overview

At the highest level, a document in SIMPPLE is a TREFE about which queries can
be made. Each query is a collection of TREEs. The concrete syntax for a query is

given as:

42

[Load [Save | B [7 | U |

| [E=]

l 2 [e I(icons compliments of Whizzywig)

Reference Specification/Implementation Theorems
=b+a; theorems
E =a-b;
=a-b;

Refined SpecificationImplementation
eclaret =a:in(

a="b;

b=t

Server-side Query

—

svar a == svar b + svar a; svar b = svar a - svar b; svar a ;= svar a - svar b;
=

ideclare svar t := svar a; in (svar a = svar b; svar b -=svart;)

Figure 3.0: Server-Side Query in Editor Mockup

QUERY :={ + TREE { C TREE} }

An example of a server-side query can be seen in Figure 3.0.

3.0.0.0 Queries

Each TREFE in a query serves as a theorem with an optional proof. If the theorem
has no associated proof it is treated as a constraint on the system and given special
consideration during processing of the query. Theorems introduce new terms and
functions and define them by assertions and constraints. If a proof is provided,
the QUERY is referred to as a derivation. The only proofs considered in the thesis
are those in which the conclusion can be reached through continued refinement of the

initial tree. A modification to an existing document that progresses a specification

43

towards an implementation can also be modelled as a continued refinement of the
initial document.

While not a formal part of the AST, theorems and derivations can be represented
in abstract form as sequences of ASTNodes. Every time a new theorem without a
proof is encountered, its AST is added to the list of theorems. As for proofs, an AST
is produced for all consecutive pairs of TREF's in the derivations, relating the first
TREE to the second. Each AST is added to the list of derivations.

For emphasis, the theorems considered in this thesis are classified as either a
declarative assertion or a stepwise, equational proof. The proof, if included, must be
a sequence of refinements; in this case the theorem proved is that the first TREFE is
refined by the last.

Declarative assertions are those theorems that have no associated proof. Theorems
without proofs may be introduced at any point in a document but will be given special
consideration during processing of the query. The system treats declarative assertions
as either a constraint, axiom or definition.

Derivations are theorems with proofs. In this thesis, derivations are in the form
of continued refinement. Derivations are checked for correctness by the system. Built
into the server are theories of programming as defined for assignment, and application
of some predefined operations discussed later in this chapter. In this way, each query
provides a means for client software to pose questions to the server in support of

validating revisions being made by the user to a document in its editor.

0 F
svar a := svar b + svar a;
svar b :— svar a — svar b;
svara:=svara — svar b
C
5 declare svar t :=svar ain (
svar a :— svar b;
svar b := svar t

Listing 3.2: Server-side Query

3.0.0.1 Trees

In the existing implementation, each of the trees in a query is converted independently.
Each TREE is an AST as represented by its root ASTNode. A TREE represents
either an axiom, a specification, a command or an entire program. Given two TREE's,
the client-side editor generates a QUERY asking whether the refinement between the
left-hand side and the right-hand side is true. Listing 3.2 shows the query that
corresponds to the document depicted in Figure 3.0.

The TREFEs considered in this thesis are defined such that they always produce a
BLOCK whose AST has type CommType(t: Type) where t represents the state space
upon which the command operates. Trees consist of a single block, but optionally
support a lifted form of implication informally referred to as "Leads to" which makes
the evaluation of the second BLOCK conditional on the first. Because SIMPPLE is
oriented towards imperative programming, BLOCKs combine statements to form an
imperative path of execution. Each statement is separated by a semicolon.

TREE = BLOCK | => BLOCK |

BLOCK = STATEMENT {; {; }[STATEMENT | }

45

3.0.0.2 Statements

Like trees, STATEMENTs considered in this thesis always produce an AST of type
CommType(t: Type). Statements include commands and specifications including nested
TREFEs but excluding recursive for and while loops. Recursive commands can be
handled through a series of proofs. [Norvell, 2012] The treatment of recursion involv-
ing a proof that a monotonically decreasing sequence converges on a solution set for

a problem is demonstrated later in this thesis through a case study on the derivation

of Euclid’s GCD algorithm.

skip |
BRANCHSTATEMENT |
| NESTEDTREE |
STATEMENT ::= SPECSTATEMENT |
DECLARESTATEMENT |
ASSIGNSTATEMENT
BRANCHSTATEMENT ::= if CMDEXP then STATEMENT
[else STATEMENT]
NESTEDTREE ::='(TREE *)
SPECSTATEMENT = UGSPEC | EQSPEC | ‘(" EXP *)’
UGSPEC ::= Y NAME - (UGSPEC | EQSPEC | EXP)
EQSPEC = 3 NAME - (UGSPEC | EQSPEC | EXP)
DECLARESTATEMENT ::= declare PLAINNAME := EXP
in STATEMENT
ASSIGNSTATEMENT ::= [assign| [svar| PLAINNAME := EXP

Table 3.0: Abstract Syntax of Statements

In the concrete syntax for STATEMENTs, DECLARESTATEMENT and
ASSIGNSTATEMENT only operate on state variables, so the name of the target

is implicitly a state variable and need not be explicitly stated. Also, to further

46

reduce redundant terms in the examples, the frequently used keyword " assign” is

optional.

3.0.0.3 Expressions

The concrete grammar supports the creation of terms and expressions, including infix
operations with left and right associativity, and functions that act on tuples. The
grammar ensures the correct precedence of standard arithmetic operations including
multiplication and division, and also honors left and right associativity of the op-
erators. Additionally, the grammar and its implementation supports parentheses
in expressions used by both specifications and commands. Functions, including the
predefined operations (addition, subtraction, multiplication, division and remainders)

are converted to CONST and applied to their arguments accordingly.

EXP ::= OP (0)
OP (0) == OP (1) [=> OP_(O)]
OP (1) == OP (2) {(*A’]* \/’)OP()}
OP (2)u=OP_(3) { ("< [*'<’|[*="["#"|"2"[">") OP_(3) }
OP (8)u=OP_(4) { (*+'[*=") OP_(4) }
OP (4) == 0P (5) {(° *|/|%)OP(5)}
OP(5) ::= PRIMITIVE
‘CEXP ‘)’ |

.. | STATEVAR |

PRIMITIVE == | '5 |

CONST [*(EXP {*,” EXP}*)’]

Table 3.1: Abstract Syntax of Expressions

47

3.0.0.4 Terminals

The remaining elements of the grammar come directly from the AST.

STATEVAR ::= svar PLAINNAME

VAR ::= wvar NAME

CONST ::= [const| (7 alpha ? |7 greek 7)) { 7 allcharacters ? — *\'}
NAME ::= PLAINNAME {7 |77}

PLAINNAME ::= (7 alpha?|? greek?) {7 alpha?|? greek? |0—9|° '}

Table 3.2: Abstract Syntax of Terminals

To reduce the need for redundant terms in the examples, the explicit use of the
keyword " const” is optional since CONST is processed last after all other production
rules have failed. The backslash character is reserved for future use and cannot be

used in the concrete syntax.

3.1 Synthesis and Analysis

The concrete syntax described in the previous section presents a form in which mean-
ingful input strings can be written and converted by a parser into an AST. The
concrete syntax allows us to present examples of the components that make up a
document.

In this section, common input strings are synthesized for the purpose of analyzing
their meaning and semantics. Examples are provided in this section, along with a

description of the role and significance of the component in forming a query.

48

3.1.0 Constants and User-defined Functions

Constants are used for making assertions that hold for the entirety of the document,
not just one step. Two distinct types of constants are recognized. Those which consist
entirely of digits prefixed with optional sign and followed optionally by a decimal point
and any number of zeros are interpreted as integers. Otherwise the constant must
be a built-in keyword, or a user-defined symbol. User-defined symbols start with an
alphabetic or greek character and contain any combination of greek and alphanumeric
characters and underscores.

Type information for the constant will be inferred by the typer. For example,
in the expression const 0 + ged(const 231, const 65) the strings ged and + will be

parsed into the ASTNodes Const("ged") and Const("+") respectively, both of

type FunType(IntType, FunType(IntType, IntType)).

3.1.1 Application

The AST for SIMPPLE supports application to one argument at a time, so during
parsing, applications are rewritten in curried form. For example, the expression
const 0+ ged(const 231, const 65) is transformed during parsing into the AST Apply(
Apply(Const("+"), Const("0")), Apply(Apply(Const("ged"), Const("231")),
Const("65"))).

One caveat with regard to functional application is that further restrictions may
be placed on their use depending on the oracles available. Specifically, it is safe to
assume that all oracles support the fully-applied use of any function. The same cannot

be said for partial application. As an example, the expression ged 42 60 is expressible

49

in all target oracles, but not the partially applied expression gcd 42.

3.1.2 Specification

When logical expressions are enclosed in angle brackets, they have a special syn-
tax. First and foremost, the angle brackets denote that the logical expression is to
be treated as a specification; that is, a Boolean function of two states. The angle
brackets allow us to expose the state variables of interest within the two state argu-
ments. Before presenting an example of a specification, it is important to understand

ASTNames and the annotations they support.

3.1.2.0 ASTNames

ASTNames are used within a specification to refer to variables. Undecorated names
may be used in general; ASTNames decorated with Prime or Dot are reserved for

state variables.

3.1.2.1 Annotations on Names

Within angle brackets are three distinguished classes of decorated names for state
variables: plain, primed and dotted. The convention is that a plain decoration refers
to the values mapped by the source state. Variables decorated with Primed names
refer to values mapped by the target state. Existentially or universally bound inter-
mediate state variable may also occur within angle brackets. Names decorated with
Dotted notation are reserved for this purpose. A specification that swaps the values

held by two state variables a and b can be expressed in a SIMPPLE document as:

50

! !
(svar @' = svar b A svar b = svar a)

The specification above indicates that the values held in state variables a and
b must be swapped one for the other upon termination of the program. The angle
brackets expose the state variables of interest within the two states. As mentioned in
the previous paragraph, plain variables within angle brackets refer to variable names
mapped to values by the initial state s. Primed variables within angle brackets refer
to variable names mapped to values by the final state s'.

Currying converts the application of functions to arguments one argument at a
time. Taking this into account, the final AST for the expression is Spec(Apply(
Apply(Const("A"), Apply(Apply(Const("="), StateVar(Prime("a"))),
StateVar(Plain("b")))), Apply(Apply(Const("="), StateVar(Prime("b"))

), StateVar(Plain("a")))).

3.1.3 Computer Instructions

A computer instruction is a specification for which a compilable algorithm has been
provided. In SIMPPLE, these instructions exist only outside of angle brackets. Two
important computer instructions are built into the grammar: state-variable assign-

ment, and state-variable declaration.

3.1.3.0 Assignment

The value of a state variable is modified by assigning it a new value computed from

the input state. In the example the present value of b is added to the present value

51

of a to become the new value for subsequent states in the path of execution. In the

concrete grammar presented in this chapter, this would be written:

assign svar a := svar b+ svar a

The corresponding SIMPPLE AST is given by Assign(StateVar(Plain("a")),
Apply(Apply(Const("+"), StateVar(Plain("b")))), StateVar(Plain("a")))

)

3.1.3.1 Declarations

Typically some state variables are present in the context by virtue of the established
path of execution. The grammar supports the declaration of new state variables as
needed. A state variable is introduced by assigning an initial value to it along with
a block within whose scope the state-variable exists. A typical example would be
to introduce a temporary variable to swap the values of two other variables. In the

concrete grammar presented in this chapter, this would be written:

declare svar t := svar a in (assign a := svar b; assign b := svar t)

The corresponding SIMPPLE AST representation as shown in Figure 3.1. With
the possible exception of the semicolon, the transformation of the input string is
straightforward. For added clarity, the original input string and the output AST is
placed side-by-side to highlight the correspondence between the concrete and abstract
form.

When comparing the concrete and abstract syntax, the treatment of the semicolon

52

DECLARE StateVarDecl(

t = Plain("1").
svar a StateVar("a").
m (Appli(Apph(Const(".").
assign svar a = svar b ; Assign(StateVar("a"), StateVar(" 5"))
assign svar b = svar t). Assign(StateVar(" 8"), StateVar(" "))

Figure 3.1: General Swap AST

is slightly more involved and requires some explanation. In the concrete representa-
tion, the semicolon is unobtrusively written in a readable repeated infix notation. In
the abstract representation, the semicolon is treated as an operator, and is applied
to its arguments one at a time using the technique of Currying. Scala’s parser com-
binators easily support the conversion from the infix notation to the curried version

of application supported by the AST.

3.1.4 User-defined Functions

The introduction of functions and constants beyond those defined by the system is
of utmost importance. For instance, the user may wish to define functions such as
the greatest common divisor gcd. By making assertions about the values of functions
under application to constant or variable expressions, it is possible to define the
behaviour of these functions.

From the point of view of the parser, user-defined symbols are all simply constant
strings of text, and provided they do not begin with an system-defined escape char-
acter and do not conflict with a system-defined symbol, the symbols are treated as

free expressions of the language. Type information for the user-defined functions will

53

be inferred by the typer.

3.1.4.0 Quantified Lambda Abstractions

User-defined functions are constrained by quantified lambda abstractions. The quan-
tifier may be existential (exists) or universal (forall). Quantifiers are converted inter-
nally to constants of the same name and applied to an implied, lambda abstraction
as its sole argument. The concrete syntax described in this chapter does not provide
any method for expressing lambda abstractions.

Lambda abstractions are associated with a right-side AST and a bound ASTName.
The name will be registered as a variable and is therefore subject to the same rules
as leaves of type Var. The lambda abstraction is a function that accepts a value or
expression which is to be substituted for every bound occurrence of the ASTName
within the body. When a quantifier is applied, the result is a Boolean expression.

As an example, the GCD algorithm has the following property:

Vi- vari >0 = ged(var i, 0) =var i

If we represent the parsed tree for the body var i > 0 = ged(var i, 0) = var i
using the notation: | vari >0 = ged(var i, 0) = var i |, then in response to this
input string, the parser generates the AST:

|Vi- var i >0 = ged(var i, 0) = var i | = Apply(Const(“forall”), Lambda(Var(
Plain(“i")), | var i > 0 = ged(var i, 0) = var i |))

The AST has type: BoolType().

54

3.2 Summary

This section provides the BNF grammar for the concrete syntax used for formulating
server-side queries and shows how it is mapped to the abstract syntax presented in
Section 2.2. In Chapter 4, the reader will be able to recognize and write test cases

developed for the server-side software.

55

Chapter 4

Client /Server Interface

The language discussed in this document allows the client software to formulate a
query asking the server whether one command is refined by the other. In the previous
chapter, a concrete syntax for the client/server interface was presented. The client-
side user-interface converts changes in a document to a server-side query. The code
developed in this thesis implements the server-side logic. Implementation of the
client-side user-interface is left to a future phase of development. In order to test the
server-side, a mock-up is used in this section that allows presentation of the inputs
the client-side user-interface must accept and the server-side query it may output in

response.

4.0 Client-side Input/Output Requirements

The editing environment requires a number of elements, as illustrated by the mock-up
in Figure 4.0. The input to the client-side user-interface includes a previous revision

of the document to serve as a previous step in the refinement process. The active

56

| Load [Save [B [I I u] | i | = l e |(icons compliments of Whizzywig)

Reference Specification/Implementation Theorems
eference version Vi1i-120=ged(1,0)=1

1l
1l
I
il

Refined Specification/ ITmplementation
«m>0Anz0=>m'=ged(m,n) >

Server-side Query

Figure 4.0: Specification of GCD in Editor Mockup

document forms the current step. Theorems justifying the revision can be entered
and maintained separately by the user.

The theorem presented in Figure 4.0 is the trivial solution of the GCD algorithm,
which is a subset of the overall solution. The case introduction law provides the
rules by which to implement a specific case in a way that does not limit the overall
specification of the problem.

SIMPPLE allows rules to be applied using both conventional and fine-grained
formal methods. Automated verification of proofs is provided by the server-side
oracles. As the user edits the document, the editor formulates a query to pose to the
server-side prover to check the correctness of the user’s modifications. The output

required of the client-side user-interface is the server-side query. A read-only window

57

| = l =] [c |(icons compliments of Whizzywig)

] I

Reference Specification/Implementation Theorems
«<m>0Anz0=>m'=ged(m,n) = Vi-1>0=ged(1,0)=1

[Load [Save [B [7 | U |

Refined Specification/Implementation
Lf n = 0 then

«<nzF0=» =>=m>0An20=m'=ged(m,n) >
lse
“n=0»=>=m>0=>m=m >

Server-side Query

WV i1(vari>0=ged(vari, 0)=var1)

(-

<« svarm>0 A svarn>0 = svarm' = ged (svarm, svarn) =

=

1f not (svar n=0) then (<< not (svarn=0) > = < svarm >0 A svarn>0 = svarm' = ged (svarm, svarn) =)
else (=< svarn=0> = < svarm>0 = gvarm'=svarm =)

Figure 4.1: Trivial Case in Editor Mockup

displays the server-side query for diagnostics and development purposes.

In the example shown in Figure 4.1 the user has applied rules that allow them to
introduce the case where the second parameter to the GCD function is 0. In order to
verify that the original specification is not violated by the proposed implementation,
a query asking whether the previous step in the document’s history is refined by the
current step is formulated in the concrete syntax of the server. In the absence of a
client-side user-interface, such queries can also be manually entered and sent directly

to the server.

58

o] [tveer]

Plain ASTBuilderTyper Typed AS T Builder Typer

process TypeConstraints (ast : ASTNode | : ASTNode process TypeConstraints (ast : ASTNode | : ASTNode

& TyperBSOT i

winterfaces

TBuilderTyper AST

process TypeConstraints (ast : ASTNode | : ASTNode

TypeMapper

v A"
PlainAST AbstractAST TypedAST Type

Figure 4.2: Builder/Typer Class Diagram

4.1 Server-side Implementation Details

This section describes details of the functions that are required to parse input strings
and store them as TypedASTs. The relationship between the classes required to

implement the full builder interface is depicted in Figure 4.2.

4.1.0 Builder For Typed ASTSs

Construction and typing of input strings during parsing is facilitated by a polymorphic
trait TBuilderTyperAST. It declares an abstract function processTypeConstraints
(ast : ASTNode) : ASTNode to serve as the primary interface between it and concrete
builder typers. Concrete builder typers are expected to apply type constraints to the
ASTNodes as the tree is built.

Figure 4.3 shows the class methods of the TBuilderTyperAST class. Each of
the static builder methods combines construction and typing of ASTNodes by calling
the appropriate constructor and then passing the constructed object to the abstract

function: processTypeConstraints (ast : ASTNode) : ASTNode. The processType-

59

]

TBuilder TyperAST

process TypeConstraints (ast : ASTNode) : ASTNode

buildStateVar(name : ASTName) : ASTNode

buildVar(name : ASTName) : ASTNode

buildConst(name : String) : ASTNode

buildStateVarDecl(name : ASTName, expr : ASTNode, body : ASTNode) : ASTNode
buildLambda(name : ASTName, body : ASTNode) : ASTNode

buildSpec(body : ASTNode) : ASTNode

buildAssign(lhs : ASTNode, expr : ASTNode) : ASTNode

build A pplication(operator : ASTNode, head : ASTNode) : ASTNode
buildCurriedUnary(operator : ASTNode, head : ASTNode) : ASTNode
buildCurriedBinary(operator : ASTNode, head : ASTNode, tail : ASTNode) : ASTNode
buildCurriedNOrder(operator : ASTNode, head : ASTNode, tail : Seq[ASTNode]) : ASTNode

AbstractAST

Figure 4.3: Builder/Typer Class Methods

Constraints function accepts an untyped AST whose children have partial or no type

constraints. The default implementation returns an identical AST whose type has

been set to a default value of initTypelnfo. Any subclass of AbstractAST can define

its own type system for the generated AST. By overriding processTypeConstraints,

subclasses can override the default implementation to return an AST whose type has

been inferred as much as possible given the set of type constraints.

4.1.0.0 PlainASTBuilderTyper

A corresponding concrete builder/typer is derived from the TBuilderTyperAST: it is

named PlainASTBuilderTyper. The primary task of the concrete builder is to provide

60

the polymorphic abstract builder with a reference object (in the case of PlainAST-
BuilderTyper, the reference is the companion object of PlainAST). The reference
object serves as a central interface by which the TBuilderTyperAST can access public
functions of the typed AST. An equally important function of PlainASTBuilder-

Typer is to override the default implementation of processTypeConstraints.

4.1.0.1 TypedASTBuilderTyper

As with PlainASTs, a concrete builder derived from the TBuilderTyperAST is re-
quired in order to provide an implementation of processTypeConstraints for Type-
dASTs. The implementation requires a mechanism for managing changes to the state
space and for keeping track of the types of variables and constants that are not part of
the state space. A fully developed typer exists in Haskell for this purpose but is not
in use in the current Scala implementation. Abstract methods are currently declared
until such time as the typer is available. The following functions are required of the

interface as declared by TypedASTBuilderTyper:

e queryStateSpace() : Type;

e declareStateVar(id : ASTName, ty : Type) : Type;

e undeclareStateVar(id : ASTName) : Type;

e queryBoundType(name : ASTName, expr : ASTNode) : Type;

e queryldType(id : String) : Type;

e querySymbolType(symbol : String) : Type;

61

;l TypedA S TBuilder Typer
«interfaces
TBuilder Typer AST process TypeConstraints (ast : ASTNode) : ASTNode
validateCurriedOperator(op : ASTNode, arg : ASTNode, diit : Type) : ASTNode
process TypeConstraints (ast : ASTNode) - ASTNode validateAssign(typeL : ASTNode, typeR : ASTNode, dfit : Type) : Type
validateApply(typel : ASTNode, typelt : ASTNode, diit : Type) : Type
queryStateSpace() : Type;
declareState Varfid : ASTName, ty : Type) : Type;
undeclareState Var(id : ASTName) : Type;
3 queryState Vars(stafeSpace : Type) : Map(String, Type/;
AbsiractAST TypedAST queryBound Type{name : ASTName, expr : ASTNode) : Type;
<t queryldType(id : Siring) : Type;
querySymbol Type (symbol - String) : Type;
typecastNode(base : Typed AST, ast: ASTNode) : base. ASTNode;
typecastName[base : Typed AST astName :ASTName) : base. ASTName

i

TyperBSOT

declareStateVar(id : ASTName, ty : Type) : Type
undeclareStateVar(id : ASTName) : Type;
queryStateVars(stateSpace : Type) : Map[String, Type|;

query BoundType{name : ASTName, expr : ASTNode) : Type;
queryldType(id : String) : Type;

querySymbolType(symbaol : String) : Type;

TypeMapper

uwser Types : Map[String, Type|
activeStateSpace : Type

Figure 4.4: Classes Used for Typed ASTs

4.1.0.2 TyperBSOT and TypeMapper

The declaration of an abstract interface as part of a TypedASTBuilderTyper means
it has no direct implementation. TyperBSOT provides a basic implementation of
the interface defined by TypedASTBuilderTyper. It suffices for the purposes of the
thesis to use a declarative TypeMapper to assign types by mapping their names to
user-declared types. TyperBSOT mixes the TypeMapper into the Typed ASTBuilder-
Typer to inherit this behaviour. Also inherited from TypeMapper is a stack-based
implementation for allocating state spaces: each new state variable declared pushes
a distinct, unique state space constant onto the stack where it remains as long as the
body of each state variable declaration is in scope. Figure 4.4 provides a high-level

description of the classes and relationships involved.

62

4.2 Summary

In the first half of this chapter, an example of a server-side query was presented in the
concrete syntax of SIMPPLE. A mockup of the client-side user interface was used for
presentation purposes. It must be understood by the reader that until such time as
the client-side user-interface is written, testing of the server-side interface is achieved
through unit testing (e.g. ScalaTest).

The second half of this chapter is devoted to introducing the server-side code
developed under this thesis. The introduction starts with a description of the routines
that build and type individual ASTNodes. These routines are used in conjunction

with Scala’s built-in parser combinators to convert test-strings into complete ASTs.

63

Chapter 5

Converting ASTs to FOL

This chapter presents a summary of the conversion of ASTs presented in the previous
chapter into a first-order representation. Details of an implementation plan for higher-

order logic are given in Chapter 8.

5.0 Reduced AST for First-order Subset

ASTs can be translated to a first order equivalent. The first order translation is a
distinguished subset of the overall language of SIMPPLE. The following nodes are
not present in the first order representation:

Spec(expr : ASTNode) : ASTNode

StateVarDecl(n: ASTName, expr : ASTNode, body : ASTNode) : ASTNode

Assign(lhs : ASTNode, expr : ASTNode) : ASTNode

After translation, the original tree is expressed in terms of the case classes listed
in Table 5.0.

Additionally, applications of higher-order functions such as the "if-then-else" ternary

64

operator, guarded blocks, and sequential compositions are converted to a first-order

form. The specifics of this conversion are discussed in Section 5.2.1.

Apply(f: ASTNode, expr : ASTNode) : ASTNode
Lambda(n: ASTName, expr : ASTNode) : ASTNode
StateVar(n: ASTName) : ASTNode

Var(n: Name) : ASTNode

Primed(n: ASTName) : ASTName

Dot(n: ASTName) : ASTName

Plain(s: String) : ASTName

Const(s: String) : ASTNode

Table 5.0: Case Classes of Reduced, First-order ASTs

5.1 AST Normal Form

The ASTNormalForm trait is the central player in the Scala source code. It brings
together the high-level definitions needed to build an expressive language with the
low-level builders needed to remove and translate these high-level expressions into
a common first-order language equivalent. The ASTNormalForm is combined with
parsers to impart these capabilities to classes that can accept strings as inputs. The
resulting configuration of classes is shown in Figure 5.0

The translation of ASTNodes to first-order is handled in Scala using a match-case
construct to recognize trees that are excluded from the language or which require
special handling. In order to support a modular methodology to building and ex-
tending the built-in operations supported by the proof-system, traits associated with
ASTNormalForm can be mixed in as the program matures using the multiple inheri-

tance feature of Scala. Each mix-in trait has the power to declare further high-order

65

bnfParsers folconversion

FOLParser ASTNormalForm

v

T

|

1 .

! combinator
A"

ASTNodeParser RegexParsers

v

st =

zinterfaces
TBuilderTyperAST

7
TypedASTBuilder Typer TyperBSOT

TypedAST

Figure 5.0: ASTNormalForm Class Diagram

constants. Traits in support of refinement, integer arithmetic, and common pro-
gramming blocks are included in the existing source and are used to fully parse the
examples presented in the thesis. The relationship between these classes is depicted

in Figure 5.1

5.1.0 Programming Theory

Nodes of type Type.CommType(c : ¥) are removed in the translated form and re-
placed by Boolean-valued expressions. To remove these nodes, an equivalent expres-
sion must be formed using the normalized first-order subset of the language. The ax-

ioms, theorems and definitions of programming theory used in this thesis are adapted

from ToC.[Norvell, 2012]

66

bnfParsers

folconversion

FOLParser ASTNormalForm
A
ASTArithmeticExtension
ASTProgrammingExtension
parsing
— /
ParserForSIMPPLE [*] |

ASTRefinementExtension

Figure 5.1: ASTNormalForm Parser Extensions

5.1.0.0 State Variables

State variables are preserved during translation. Notationally this can be expressed

as:

| StateVar (v)|| = StateVar (v)

5.1.0.1 Constants

Constants representing integers, Booleans, and associated operators, as well as con-
stants with no reserved meaning are preserved without modification in the translated

AST. The specifics of the conversion of other constants with a reserved interpretation

are discussed in section 5.2.1.

67

5.1.0.2 Spec

The concrete syntax permits only those ASTNodes that are allowed in the reduced
AST to be parsed into Spec ASTNodes. The translation of Spec is therefore straight-
forward: the body is translated and replaces the original spec. Notationally this can
be expressed as:

| Spec (body)|| = || body]|

Specs are ASTNodes of type CommType(a :). X is used to determine Vars
that correspond to state variables in the translated AST. After the translation, the
resulting tree will have the type BoolType(). Details of this translation are provided

in Section 5.3.

5.1.0.3 Quantified Lambda Abstractions

A quantified lambda abstraction has the form Apply(Const(quantifier),Lambda(v,body))
where the quantifier is 3 ("exists") or V ("forall"). The translation is required only

to ensure that the body is in first order form. This is described as:

|| Apply (Const (quantifier), A (v, body)) || =

Apply (Const (quantifier), X (v, || body ||))

5.1.0.4 Assignment

The assignment command is represented in the AST by the case class Assign(target,
source) where both target and source are ASTNodes. This representation is quite
expressive supporting, among other possibilities, systems of linear equations. In this

thesis, only assignment to a single StateVar is considered. When the target of an

68

assignment is a single state variable, the only state variable affected by the instruction
is the target. All other state variables must be unaltered.

To translate the Assign ASTNode, the left-hand side is searched for a plain state
variable. When a plain state variable is found, it is translated into a primed variable
of the same name. The primed variable is asserted equal to the expression formed by
translating the source or right-hand side. The resulting equality is combined using the
conjunctive AND operator with other assertions that ensure no side-effects result from
the assigment. These other assertions are built by performing a finite quantification
for all variables defined in the state space, so that every other variable declared in
the state space is asserted to have a final value matching its initial value.

Considering only the case when the target is a single StateVar, this can be written
as:

| Assign(StateVar (Plain(v)), rhs) ||x =

Apply (Apply (Const (=), StateVar (Prime(‘0v’))) , ||rhs||s)
N\ Apply (Apply (Const (=), StateVar (Prime(‘w’))) , State Var (Plain(‘w’)))
N\ Apply (Apply (Const (=), StateVar (Prime(‘z’))) , State Var (Plain(‘z’)))

- repeat for additional state variables in X
5.1.0.5 StateVar Declaration

StateVarDecl is unique in that it modifies the value of the state-space a of type X
over the scope of its body. The conversion depends on two functions defined as
part of TypedASTBuilderTyper (from which ASTNormalForm is defined), namely
declareStatevar and undeclareStatevar. First, the type of the expression and the

variable is inferred and the variable is added to the state variable namespace by

69

calling declareStatevar. A tree representing the sequential composition of the Assign
tree and the body is then made and translated. The state variable is removed
from the state variable namespace by calling undeclareStatevar, and its final, primed
instance is existentially bound to the translated AST. This is seen more simply in

the notation:

| StateVarDecl (v , initEzpr : ExprType(a,T) , body) |s =

App!y(Const(3), A (Prime(v), || v := initEzpr ; body |5y, 1)))

5.2 Mix-in Extensions

The ASTNormalForm trait is the central player in the Scala source code. It defines
the algorithm by which ASTs can be built and subsequently translated to first order.
Certain core requirements of the ASTNormalForm class are dictated by the Abstrac-
tAST. Other implementation details depend on the concrete syntax and the theories
used to convert higher-order semantics into a first-order form.

In order to support changes in concrete syntax from the core features, the class
supports mix-in functions. These can be combined with the ASTNormalForm to

extend the default implementations for the following methods:

e translate(ast : ASTNode) : ASTNode

Call this function to translate an AST to first order.

e translateStateSpaceModel(translation : ASTNode) : ASTNode

Override this function to implement other models (including high-order models)

for state spaces.

70

e translateStateSpaceModelTypes(ty : Type) : Type

Override this function to implement other type-systems (including high-order

type-systems) for state spaces.

e def validateCurriedOperator(operator : ASTNode, argument : ASTNode, faile-
dResult : Type) : ASTNode
Override this function to assign types to dependently typed operators intro-

duced by a mix-in extension.

e typecastNode(base : TypedAST, ast : ASTNode) : base.ASTNode

Once the translation is complete, the ASTNormalForm can be discarded and
the tree can be passed to any other class derived from TypedAST. This function
performs the necessary type casts to demote the AST to one compatible with

the base type.

Traits in support of refinement, integer arithmetic, and common programming
blocks are included in the existing source and are used to fully parse the examples
presented in the thesis. Details of the class methods implemented by each of the
traits is shown in Figure 5.2. Specific details on each of the methods and how they

participate in the conversion to first order are given later in this section.

5.2.0 Refinement

At the highest level, a document in SIMPPLE is a query. Each query is a collection

of trees. The concrete syntax for a query is given as:

QUERY :={ + TREE { T TREE} }

71

folconversion

ASTArithmeticExtension
isLessThan : ASTNode ASTNormalForm
isNotGreaterThan : ASTNode
isNotLessThan : ASTNode and : ASTNode
isGreaterThan : ASTNode untrue : ASTNode
sum : ASTNode or: f\STNode
difference : ASTNode implies : ASTNode
product : ASTNode isldenticalTo : ASTNode
quotient : ASTNode inverse : ASTNode
remainder : ASTNode notUntrue : ASTNode
sc : ASTNode
treatInteger ValuedStrings Aslnts()
validateCurriedOperator(op : ASTNode, arg : ASTNode, dfit : Type) : ASTNode treat BooleanValuedStringsAsBools()

queryType(id : String, failedResultType : Type) : Type
exists{innerType : Type) : ASTNode
forall(innerType : Type) : ASTNode
buildExists{boundVar : ASTName, body : ASTNode) : ASTNode

ildForAll{boundVar : ASTName, body : ASTNode) : ASTNode
ASTRefinementExtension scAlpha(alpha : Type) : ASTNode
makeSe(lhs : ASTNode, rhs : ASTNode, alpha : Type) : ASTNode
makeSc(lhs : ASTNode, ths : ASTNode) : ASTNode
refinedBy() : ASTNode ma_](cSequm«::e[currcnt : ASTNode future : Seq|ASTNode]) : ASTNode
applyRefines(root : ASTNode, refinements : Seq[ASTNode]) : ASTNode validateCurriedOperator(op : ASTNode, arg : ASTNode, dfit : Type) : ASTNode
translateStateS: Al ion : ASTNode) : ASTNode tram;].atcStatcSpechudclTypcﬁ{ty_: Type) : Type

translateStateS) Model lation : ASTNode) : ASTNode

translate(ast : ASTNode) : ASTNode
typecastNode| base : TypedAST, ast : ASTNode) : base. ASTNode
translate| base : TypedAST, ast : ASTNode) : base ASTNode

refinedBy({alpha : Type) : ASTNode

ASTP: ingk:

ite{alpha : Type) : ASTNode
ite() : ASTNode

skip(alpha : Type) : ASTNode
skip() : ASTNode

abort{alpha : Type) : ASTNode
ahort() : ASTNode
magic{alpha : Type) : ASTNode
magic() : ASTNaode

Figure 5.2: Mix-in Extensions

Theorems and derivations are not a formal part of the AbstractAST, and are
creatures of the parser. The parser starts at the beginning of the document and
searches for the first theorem or derivation. It parses the series of trees, and returns
all the trees in the document up until the start of the next theorem or derivation. If
only one tree is returned, the tree is a theorem. Otherwise, the sequence of trees is
a derivation consisting of continuing refinements.

Formally, any TREF is typed by the typer as a function of two states. Refinement,
being a preorder between TRFEFEs is thus a higher-order operation that operates on
functions that are not fully applied. This interpretation can be deferred in most cases
until after the AST is ready for translation to first-order. ASTRefinementExtension

class implements the methods for deferring this interpretation.

72

5.2.0.0 ASTRefinementExtension

ASTRefinementExtension defers the interpretation of refinement as a first-order func-
tion by declaring a higher-order operator named refinedBy(). This high-order func-
tion is added at the parsing stage.

During parsing, if a theorem without proof is encountered, it is added to a se-
quence of theorems maintained by the parser. ~When a derivation is parsed in-
stead, the applyRefines method of the ASTRefinementExtension class builds the
AST from the head and tail of the derivation, building the case class constructor:
Apply(Apply(refinedBy(),head),tail.head). It adds the resulting tree to a sequence
of derivations, and then recurses until ASTs for each refinement have been added to
the list of derivations.

The parser continues parsing the remainder of the document in a similar way. The
result is two sequences

Theorems (s : String) : Seq [ASTNode]

Derivations (s : String) : Seq [ASTNode|

When it is time to translate the AST to first order, the ASTRefinementExtension
matches the AST against the extractor for the case class Apply(Apply(refinedBy(),
head), tailLhead). If a match is detected, ASTRefinementExtension provides the

following replacement:

73

| Apply (Apply (refinedBy(), tree), refinement) |«

Apply (Const(¥),\ (Prime(‘v’), Apply (Const(¥), A (Plain(‘v’),

Apply (Const(V),\ (Prime(‘w’), Apply (Const(¥), A (Plain(‘w’),
- repeat for additional state variables in X

Apply (Apply (Const (=),

|| refinement||s,)

ltreell))

5.2.1 Application (First-order and High-order)

When a high-order application of a constant is encountered, the mix-in trait which
defines it must provide a suitable first-order translation (either during parsing or in the
final translation to first order). Any constants defined to have special interpretation
by the extension should be intercepted by the extending trait and should not be sent
to the super class for first-order processing. This process often happens in the context
of substituting an application of the constant to one or more of its arguments. In
these cases, the application of the constant is typically translated in tandem with its
arguments.

Besides refinement, there are a number of higher-order functions defined in the
concrete syntax that need to be intercepted and given special treatment during con-
version to first-order. Some of these constants, like the Sequential Composition
operator are defined in the ASTNormalForm companion object. Others, including
the refinement operator and "if-then-else" blocks are defined in companion objects
belonging to various extensions (mix-in traits).

Besides ASTRefinementExtension, two other examples of mix-in extensions to the

74

ASTNormalForm exist in the implementation.

e ASTArithmetricExtension

Declares typed-operators for curried arithmetic operations typically associated
with integers. Since many of these operations can also operate on other types
(i.e. reals, complex, and matrixes), the operators are typed when built based
on a type-schema. For instance, relational operators acting on an argument of

type ty are assigned a type ty->ty->BoolType().

Also provided is an option for enabling automatic detection and typing of integer

strings as IntType().

e ASTProgrammingExtension

Declares typed operators representing the programming specifications magic,

skip and abort, as well as the ternary command "if-then-else".

5.2.1.0 Guarded Expressions

The concrete syntax supports the following high-order operation:

TREE = BLOCK | = BLOCK |

This high-order operator has the type FunType(CommType(«), FunType(
CommType(o), CommType(o))). As described in Section 5.3, after translation,
each BLOCK is type-converted to BoolType(), and the operator “=" becomes nor-
mal implication with the type FunType(BoolType(), FunType(BoolType(), BoolType()

))-

75

5.2.1.1 Sequential Composition

The concrete syntax supports the following high-order operation:

BLOCK := STATEMENT { ;{;}
[STATEMENT |
}

When statements are separated by one or more semicolons, the semicolon is in-
terpreted as the high-order sequential composition operator. The translation of this
command is done in two phases. First, the inner commands are translated to first-

order as in:

| Apply (Apply (Const (), lhs), rhs) || =

Apply (Apply (Const (;), || ths [[) . [| rhs ||)

Second, the translation can be overridden to support different state space models.
For the default state space model, the following steps are used to transform the

application to a first-order representation:

0. An extra dot is appended to existing dotted variables in the left-hand term; this
includes any dotted variables bound by existing lambda abstractions. Primed
state-variables are then replaced with single-dotted variables. A function called

scLHS is used to perform this translation.

1. An extra dot is appended to existing dotted variables in the right-hand term;
this includes any dotted variables bound by existing lambda abstractions. A

function called scRHS is used to perform this operation.

76

2. The conjunction of the translated left and right hand expressions is formed.
The single-dotted variables in the resulting conjunction are bound using an

existentially quantified lambda abstraction.

The overall result of the translation is that plain state-variables on the right-hand
side and primed state-variables on the left-hand side are replaced with single-dotted
variables and the dotted variables are existentially bound. This creates the set {var'}
which represents an intermediate state s’, forming a path that joins the target state
of the first STATEMENT to the source state of the second. This can be seen more
simply in the notation:

| Apply (Apply (Const (3), || ths), || vhs [l) Il =
Apply (Const (3) , A (Dot(*v’),
Apply (Const (3), A (Dot(‘w’),
- repeat for additional state variables of ¥
Apply (Apply (Const (A),
scLhs (| hs])))

scRhs (||rhs||))
5.2.1.2 If-Then-Else Expressions

The concrete syntax supports the following high-order operation:

BRANCHSTATEMENT := if CMDEXP then STATEMENT

[else STATEMENT |

This string is parsed into a ternary operation in the form:
Apply (Apply (Apply (Const (ite), guard), ifClause), elseClause).
If the optional else STATEMENT is not provided, then elseClause defaults to

Const (skip).

7

The translation of the AST is handled by the default translation for application

as defined in section 5.2.1.3.

5.2.1.3 Application Of Function

If not intercepted by an extending trait, application is processed by ASTNormalForm
using a default method. All user-defined functions are handled using the default
method. Also, many built-in operators are supported through this default procedure,
including those for boolean logic, and those residing in ASTArithmetricExtension for
common integer operators. The default procedure recursively translates the operator
and operand in the following fashion:

|| Apply (operator, operand) || = Apply (|| operator || , || operand ||)

5.3 Handling of Typed ASTs

Type information is retained during translation as it contains important information
about the state variables in use in the state space, and constraints on the types of
functions and variables. As part of translation, type information also needs to be
converted to an appropriate first-order type. Most notably, given an expression of
CommType(a) or ExprType(a,ty), the translation instantiates a distinct set of global
variables {var?} for each state, and substitutes the set of variables for the state. The
StateSpaceType alpha determines the set {var®} that corresponds to state variables
in the translated AST.

To take into account the fact that initial and final states for the typed AST have

been substituted for a distinct set of variables {var?}, the following type conversions

78

are performed:

0. ExprType(alpha,ty)
The translated type is equal to the translated inner type ty. Notationally this
is written:
| EzprType(a,ty) || = | ty ||
1. CommType(alpha)
The translated expression has type BoolType(). Notationally this is written:

|| CommType(a) || = BoolType()

2. FunType(argumentType,resultType)

The argument and result types are translated, and a new functional type results
that returns the translated resultType when applied to an operand whose type

matches that of the translated argument type. Notationally, this is simply:

| FunType(t, w) || = FunType(| ¢ |, u |)

5.4 Summary

This chapter shows how the abstract syntax of SIMPPLE can be translated into
first order logic. The default implementation discussed in this chapter provides a
first-order interpretation for frequently encountered constants and operators. The
chapters to follow show how a document that has been translated in this way is

ready to be processed by oracles available to the server. For example, the ASTNodes

79

translated by the default implementation can be evaluated directly by oracles with

support for first-order logic.

80

Chapter 6

(Generic Prover Interface

The thesis has shown how the software uses the ASTNormalForm class to formulate
a query and translate it into a first-order translation. At this point, the ASTNor-
malForm, the parsers and all the mix-in extensions have completed their work. The
resulting tree is typecast to a TypedAST.

Constants and symbols defined as part of Boolean, arithmetic and user-defined
theories remain in the language. These include the constants representing true,
false, conjunction and disjunction, identity and inequality, addition and subtraction,
multiplication and division. These constants form the basis for the prover interface
through which third-party oracles are accessed.

Figure 6.0 shows the classes involved in the prover interface. In this chapter
we show how these classes support adapters to various third-party APIs in order to

process the query.

81

Provers

T
AdapterInterface
checkSession() : Boolean
assertConstraint (booleanFormula : T)
isFormulaSatisfiable(booleanFormula : T) : Option/Boolean]
convertTree[N <1: AST Node](ast : N) : Try[T]
negateConclusion[N <1: AST Node](conclusion : N) : Try[T]
Tokenized VariableNames
tokenizeUserVariables(varLUT : Set[String]) : Map[String,String]
ast typer
%
AbstractAST TypedAST
ASTName
Typelnfo : type =0 kel --14 Typelnfo : type = Type
initTypelnfo : Typelnfo =0 initTypelnfo : Typelnfo = null
]
oracles
ASTNode Type PrimitiveTypes
ty : Typelnfo = initTypelnfo (| [[[~~~ 7

Figure 6.0: Prover Interface Class Diagram

6.0 Oracles

The prover interface prepares the AST for the final step, conversion of the query to
the grammar of third-party programs at the server’s back-end. Because the generic
prover interface establishes an arm’s length relationship between the server and these

programs, it is helpful to think of them as external oracles. Given an AST, conversion

involves one of two options:

0. if the oracle has an API, the AST is processed by translating it and passing it

to the oracle using the APL

82

1. alternatively, the translator can convert the translated AST to the concrete

syntax for the oracle (a process similar to pretty-printing).

The arm’s length relationship is established by defining a set of constants in a
Scala interface which can be adapted for each oracle by optionally mapping them to
ASTs native to the oracle. If a pre-defined constant appears in the query but is not
in the language of the oracle, then conversion fails for that oracle. Additionally, user-
defined constants can be introduced by providing axiomatized definitions to establish
the semantics of the constant. Provided that these definitions can be expressed
in the language of the oracle, the user-defined constants can be used in expressions

converted to the oracles grammar.

6.0.0 Dealing with Types

The examples in this thesis rely upon the TypedAST class. TypedAST is one example
of a concrete AbstractAST with a fully developed type system, but it is not the
only possible type system. Each type-system augments the AST by providing type
information.

Once the typed AST is converted to the native form specific to an oracle, this
type information is no longer available. To decouple the oracle from the typed,
concrete AST, strings are used by the adapter to report back type information about
the converted native form. A set of primitive types shared between the server and
its oracles are defined in the class PrimitiveTypes. Currently the list allows for
boolean and integer types. Regular expressions are also defined in the class allowing

the adapter to test for names of constants that are intended to be associated with

83

a primitive type. For example, a constant "0" whose name matches the regular
expression [0-9]+ is expected to be converted to an integer constant whose value is 0.

In the absence of a matching regular expression to identify constants belonging
to a specific type, the types of constants would typically be inferred by the typer
following parsing of the original document. The names of any inferred, typer-specific
types must not conflict with those reserved in PrimitiveTypes. Note however that
the concrete syntax presented in this thesis does not provide any facility for declaring
types. The reason for this is that the typer is largely considered beyond the scope of
the thesis. Type information for the TypedAST is managed by a TypeMapper and
TyperBSOT class which suffice for the purposes of the thesis. The compromise is that
types for non-trivial constants and variables must be pre-declared prior to parsing the
original document. Failing to pre-declare a non-trivial constant or variable type will

result in a type-error being reported during generation of the AST by the parser.

6.0.1 Dealing with Naming Conventions

Up to this stage in the translation process, there have been few restrictions on the
names of variables, constants and symbols stored in the AST. Other than recognizing
and reserving numeric constants and conventional symbols for arithmetic operations,
the document may contain an infinite number of names chosen by its writer. It is
recognized however that when a specific oracle is targeted, some user-chosen names
may conflict with the naming conventions enforced by the target oracle. A utility
class called Tokenized VariableNames is available to assist in this situation. It chooses

a straightforward naming convention that is expected to be supported by the majority

84

of oracles; each of the user-defined variable names is mapped to the tokenized name.
When the AST is converted, the tokenized name can be obtained at any time using
the user-defined name as a key.

In rare exceptions when the naming conventions of Tokenized VariableNames have
a conflict with those of the oracle, the TokenizedVariableNames class can serve as
a template that can be extended to implement a naming convention specific to the

offending oracle.

6.1 Adapter Interface

This section describes details of the functions that are important to the interface

between the first-order translator of an AST and the target oracles.

final def notImplemented[T| : Try[T] = Failure(new Exception("not implemented"));
final def notAvailable|[T] : Try[T] =

Failure(new Exception("the required resource is not available"));
final def unsupportedNode[T] : Try[T] = Failure(new Exception("unsupported node"));
final def illegalName|T] : Try|[T] = Failure(new Exception("illegal name"));
final def illegal Argument|[T] : Try[Seq[T]] =

Failure(new Exception("error converting argument"));

final def illegal ArgumentList[T| : Try[T| = Failure(new Exception("illegal arguments"));
final def undefinedType[T] : Try|T] = Failure(new Exception("untyped argument"));
final def generalFailure[T|(message : String) : Try[T] = Failure(new Exception(message));

Table 6.0: Adaapter Interface Error Reporting

85

6.1.0 Scala Interface Trait

The design of the prover interface using Scala makes use of Scala’s support for para-
metric polymorphism and the monadic Try type. In the descriptions of functions
used below, the symbol T is a parametric placeholder referring to the native AST
form. Concrete adapters will define this parameter to match the specific type native
to their oracle.

The interface trait defines a number of possible failure exceptions for this purpose,

as listed in the Table 6.0.

6.1.1 Conversion

Once an AST has been translated and typecast to any concrete class derived from
ASTNode, it can be converted to the language of the oracle by passing it to the

convertTree function:

convertTree[N <: ASTNode](ast : N) : Try[T]

6.1.2 Session Management

The Adapter interface also defines the means by which the server can initiate, termi-

nate and manipulate running sessions of the oracles it spawns:

checkSession() : Boolean; //ABSTRACT

86

6.1.3 Execution of the Query

The reason for converting trees to an Oracle’s form in the first place is to be able
to pose questions to it. There are two distinct parts of a query: firstly, constraints
used to axiomatize a function or definition important to the formula; and secondly,
a conclusion which needs to be proven or disproven given the constraints. Once the
constraints and the conclusion have been asserted, the query is ready to be executed.

In order to facilitate this, the following functions are declared:

assertConstraint(booleanFormula : T)

negateConclusion|N <: ASTNode|(conclusion : N) : Try[T]

isFormulaSatisfiable(booleanFormula : T) : Option[Boolean|;

6.2 Implementation Details

This section describes details of the functions that facilitate the mapping of specific
AST trees to ASTs native to each third-party oracle. This information is provided as
a reference for future developers and is not required to use a fully developed concrete

adapter.

6.2.0 Built-in Semantics For Common Constants

Constants and symbols defined as part of Boolean and arithmetic theory remain in the
language. These include the constants representing true and false, conjunction and
disjunction, identity and inequality, addition and subtraction, and multiplication and

division. Special keywords representing these built-in operations are shared between

87

the ASTNormalForm and the interfaces to the various oracles. Table 6.1 lists the
entry points in the adapter interface support conversion of well-formed Boolean and

arithmetic expressions to the target AST of the oracle.

atotFALSE() : Try[T] ;

atotTRUE() : Try[T] ;

atotNOT (term : T') : Try[T] ;

atotAND(lhs : T, rhs : T) : Try[T] ;

atotOR(lhs : T, rhs: T) : Try[T] ;

atotIMPLIES(lhs : 7', rhs : T) : Try[T] ;

atotINT(i : Int) : Try[T] ;

atotNEGATE(term : T) : Try[T] ;

atotSUM(lhs : T, ths : T') : Try[T] ;
atotDIFFERENCE(lhs : T, rths : T) : Try[T] ;
atotPRODUCT (lhs : T, ths : T) : Try[T] ;
atotQUOTIENT (lhs : T, rhs : T) : Try[T] ;
atotREMAINDER(lhs : 7, ths : T) : Try[T] ;
atotISLESSTHAN(lhs : T, ths : T) : Try[T] ;
atotISNOGREATERTHAN(lhs : 7, ths : T) : Try[T] ;
atotISIDENTICALTO(lhs : T, rths : T) : Try[T] ;
atotISNOLESSTHAN(lhs : 7', rhs : T) : Try[T] ;
atotISGREATERTHAN(lhs : T, ths : T) : Try[T] ;
atotIF(cond : T, ifClause : T, elseClause : T) : Try[T] ;
atotISREFINEDBY (lhs : T, ths : T') : Try[T] ;

Table 6.1: Adapter Interface Default Conversion Methods

6.2.1 Axiomatization of User-defined Functions

The constants defined above have predefined type and semantics. In addition to the
above, any fully applied application of user-defined functions is also supported. The
type of these user-defined functions as inferred by the type-checker must be consistent.

The interpretation of the functions are subject to the user’s axiomatization of the

88

functions specification. In order to support this, the prover interface allows the user
to bind a variable in a tree and optionally quantify over it either existentially or
universally. The input ASTNode is translated to the oracles format as part of this

process:

atotBIND(lambda : ASTNode) : Try[T] ;
atotEXISTS(typedBinder : ASTNode, lambda : ASTNode) : Try[T] ;

atotFORALL(typedBinder : ASTNode, lambda : ASTNode) : Try[T] ;

The arguments of the expressions inevitably contain constants, variables and,

depending on the state space model adopted for the problem, state variables:

atotConstant(name : ASTName, ty : Type) : Try[T]
atotVariable(name : ASTName,ty : Type) : Try[T] ;

atotStateVariable(name : ASTName,ty : Type) : Try[T] ;

Related to the conversion of constants are issues surrounding the reserved names
and naming rules held by specific oracles. ~Where necessary, the prover interface
supports conversion of arbitrarily chosen user-defined manes for variables to a sys-
tematically chosen name that is guaranteed not to conflict with the reserved names

of the oracle.

6.2.2 Uncurrying of Functions

Whether working with built-in functions or user-defined ones, all functional applica-
tions processed by the prover interface must be fully applied and must match the type

and signature of the function. In order to ensure this is the case, curried functions

89

are converted to a first-order, fully applied uncurried form:

convertCurriedFunctionToArityN(fn : ASTNode,arguments : Seq[ASTNode]|,

returns : Type) : Try[T];

ASTNodes for the operator and the arguments are passed to the conversion func-
tion along with a Type representing the function’s return type. This allows the fully
applied expression to be typed and converted to the application of a function with

arity n.

6.3 Summary

This chapter describes how the code implemented as part of the thesis uses the
object-oriented features of Scala to support multiple oracles derived from an generic
prover interface. The generic prover interface provides core functionality by support-
ing ASTNodes with a first-order logic type. Future chapters will show examples
in which queries sent to the server are evaluated by real oracles extended from the

generic prover interface.

90

Chapter 7

Using SMT Solvers as Oracles

If the signature of the states has a manageable number of state variables, it is possible
to implement a state function that maps the state variables of each state to a distinct
and unique set of global variables. This allows the query to avoid quantification over
states and keeps it in the form of a first-order formula. The problem of solving the
query is thereby reduced to a question about whether a valuation exists for the global
variables that acts as an example or counter-example for the assertions. Questions
of this nature are solved by automated SMT solvers which find true valuations of
expressions that include quantifiers, integers, real-numbers and matrixes and their
types. In this chapter the use of an SMT solver to answer queries expressed in the

language of SIMPPLE is described and results are presented.

7.0 SMT Solvers in General

Once a derivation has been written in first-order, it needs to be determined if the

derivation is valid. There is a direct relationship between validity and satisfiability.

91

“Validity is about finding a proof of a statement; satisfiability is about finding a
solution to a set of constraints... Thus, to check [that a formula| is valid (i.e., to
prove it), we show its negation to be unsatisfiable.” [Research, 2014]

The question of whether a formula is satisfiable is a classic decision problem known
as SAT: “given a propositional formula in n variables, is there a valuation for each of
the values such that the formula evaluates to true?” Although SAT is NP-complete,
automated SAT solvers exist which can solve some practical instances of SAT. SMT
solvers augment SAT solvers by including first-order theories about quantifiers, in-
tegers, real-numbers and matrixes and their types. A generic syntax for an SMT
solver is defined by the SMT-LIB initiative which promotes the adoption of common
languages and interfaces for SMT solvers. Examples of SMT queries presented in this
thesis adhere to the 2010 version 2.0 standard of the SMT-LIB specification.

Most SMT solvers are based on an implementation of the Davis—Putnam—Logemann—
Loveland (DPLL) algorithm. An SMT solver will respond to a query in one of three
ways. Either it will compute a valuation that proves the expression can evaluate true,
it will prove that no solution exists, or it will be unable to determine the satisfiability
of the expression. When the result is wrapped in a Scala Option return value, the
three values are mapped to Some(true), Some(false), or None.

When an SMT solver concludes a formula is satisfiable, it yields a single valuation
out of a possibly infinite set. To use an SMT solver to prove a statement that the user
believes to be universally valid, the formula needs to be negated. SMT solvers need
only produce a single counter-example that proves the assertion false. If a valuation
satisfies the negated formula, then at least one exception exists which disproves the

universal validity of the statement. On the contrary, the formula is universally valid

92

if its negation is found to be unsatisfiable. Depending on whether the SMT solver is

able to find a counter-example, there are four possible scenarios as shown in Table

7.0.
Formula is | Negated For- | Counter- Counter- Scala Result
Universally mula is Satis- | Example Example
Valid fiable Exists Found
False True True True Some(true)
False True True False None
True False False False None
True False False False Some(false)

Table 7.0: SMT Outcome Scenarios

The logic of SMT is that of many-sorted first-order logic with equality. In many-
sorted first-order logic with equality, variables, functions and constants differ only
in terms of their arity and distinctness. Constants and variables are semantically
equivalent to functions of arity 0; constants differ from variables in that constants
are either distinct from one another or redundant, while variables must necessarily
equate to exactly one constant. Functions have arity greater than 0 and must be
fully applied to have value. The properties of distinctness and arity are expressible
in SMTLIB 2.0 so there is no strict requirement to distinguish amongst constants,

variables and functions in an SMT solver.

93

| Load I Save [B [I I u] | =] l e |(icons compliments of Whizzywig)

Reference Specification/Implementation Theorems
«<m>0Anz0=>m'=ged(m,n) = Vi-1>0=ged(1,0)=1

il
Til

Refined Specification/Implementation
if n = 0 then
«<nzF0=» =>=m>0An20=m'=ged(m,n) >

else
“n=0»=>=m>0=>m=m >

Server-side Query

WV i1(vari>0=ged(vari, 0)=var1)

(-

<« svarm>0 A svarn>0 = svarm' = ged (svarm, svarn) =

=

1f not (svar n=0) then (<< not (svarn=0) > = < svarm >0 A svarn>0 = svarm' = ged (svarm, svarn) =)
else (= svarn=0> = < svarm >0 = svarm' =svarm =)

Figure 7.0: Trivial Case in Editor Mockup

7.1 Verification of a Refinement Step

In the example shown in Figure 7.0 the user has applied rules that allow them to solve
the trivial case where the second parameter to the GCD function is 0. In order to
verify that the original specification is not limited by the proposed implementation,
a query asking whether the previous step in the document’s history is refined by the
current step needs to be sent to the server. A read-only window allows the display
of the server-side query for diagnostics and development purposes. Such queries can
also be edited and sent directly to the server.

Upon receiving and parsing the query, the server has a sequence of ASTs for
the document being edited, including theorems that the user feels relevant to their

derivations. Enroute to the prover interface, the AST is converted to a first order

94

equivalent and program theory is used to convert ASTNodes that have a predefined
meaning. These nodes include higher-order specifications and programming instruc-
tions such as alternation, assignment and state-variable declaration. To complete
the processing of the query, the server must pass it to an external oracle by extending

the server’s generic prover interface to produce a customized adapter.

7.1.0 Conversion of the AST

The translated AST is sent to the convertTree call of the generic prover interface,

which processes the AST in one of two ways:

0. if the oracle has an API, the AST is passed it to the oracle using the APL.

1. alternatively, the translator can convert the translated AST to the concrete

syntax for the oracle.

7.1.0.0 Interfacing to SMT using an SMT Pretty Printer

A critical goal of the thesis is to integrate the server-side with an efficient SMT solver.
One option for doing so is to pretty print® the SMT query to a file and execute and
analyze the return codes output by a console-based solver. Listing 7.0 illustrates the
SMT program that corresponds to the query of Figure 7.0.

Because an SMT solver is being used to show the validity of a formula, the negation
of the formula is checked and the SMT solver is expected to determine the formula

unsatisfiable.

OPretty printing is the inverse process of parsing.

95

0 (declare—fun gcd (Int Int) Int)
(assert (forall ((i Int)) (== (> 10) (= (ged i0) i))))

(assert
(not

(forall ((_allOthers Int))

5 (forall ((_allOthers p Int))
(forall ((m Int))
(forall ((m_p Int))
(forall ((n Int))
(forall ((n_p Int))

10 (==

(if (not (= n 0))
(== (not (=n0)) (== (and (> m0) (>=n0)) (=m_p (<
—gcd mn))))
(== (=n0) (== (>m0) (=m_p (gcd m 0))))

15 == (and (> m0) (>=n0)) (=m_p (gcd m n)))

e e

)

)
20)
(check—sat)
Listing 7.0: Trivial Case of GCD

7.1.0.1 ScalaZ3 JNI Interface to Z3 Java API

Rather than pursuing the pretty-printed option, the preferred route for interfacing
to an SMT solver is by using a Scala API. Z3 [de Moura and Bjerner, 2008|, an
SMT solver developed by Microsoft as part of its Research in Software Engineering

initiative, was chosen as the target oracle because:

0. it has been applied effectively to similar problems in the past, in particular to

verification condition checking; and

1. a JNI interface called ScalaZ3 is readily available.

96

2. ScalaZ3 makes Z3 accessible from the Scala language. ScalaZ3 was developed
through the Laboratory of Automated Reasoning and Analysis (LARA) at the

Swiss Ecole Polytechnique Federale de Lausanne (EPFL).

The query that matches Listing 7.0 was generated by the server-side algorithms
through calls to the generic prover interface described in Chapter 6. Calls specific to
ScalaZ3 were customized as part of the development of the ScalaZ3 adapter described
in Section 7.3. Using ScalaZ3 as the target oracle, the query of Figure 7.0 was sent

to Z3 and verified.

7.2 Case Studies

In this section, we look at three case studies that successtully use an SMT solver to
verify a series of refinements from initial specification of a document to final imple-

mentation.

7.2.0 General Swap

Earlier in the thesis, the scenario was discussed in which the client-side editor contains

the program:

declare t := svar a in (
svar a ;— svar b ;

svar b := svar t

This string is considered first for a number of reasons:

97

DECLARE StateVarDecl(

t = Plain("1").
svar a StateVar("a").
m (Appli(Apph(Const(".").
assign svar a = svar b ; Assign(StateVar("a"), StateVar(" 5"))
assign svar b = svar t). Assign(StateVar(" 8"), StateVar(" "))

Figure 7.1: General Swap AST

e it is concise;

e it has no arithmetic operations;

e it is immediately identifiable as a program that swaps a with b; in other words,

it refines the specification (var ' = var b A var b’ = var a)

7.2.0.0 General Swap Implementation

To construct the query, the input string for the implementation needs to be parsed
into the AST format of Chapter 2, with translations to first order logic as described
in Chapter 5, and then passed to the prover interface as described in Chapter 6.
With the possible exception of the semicolon, the corresponding AST representa-
tion of the input string should be intuitively clear. For added clarity, the original
input string and the output AST is placed side-by-side in 7.1 to highlight the corre-

spondence between the concrete and abstract form.

7.2.0.1 General Swap Specification

In the grammar of the concrete syntax, the specification of the general swap problem

is written as ((var ' = var b A var b’ = var a)). Figure 7.2 shows the original input

98

<< Spec(
Appli(Apph(Const("A").
var a Apph(Apph(Const("="),
- Var(Prime("a")

var b). Var("b")

var b). Applv(Appl(Const("=")
- Var(Prime(" 5")

var a). Var("a")

>)

Figure 7.2: Parsed General Swap Specification

string is placed in the left and the corresponding AST on the right to highlight the
correspondence between the concrete and abstract form.

Currying in this example can be seen to produce unnatural looking transcripts.
For this reason, the remaining examples will discuss only the relationship between the
concrete syntax and the output of the SMT solver. The reader should understand
that the concrete syntax is for presentation and that the document is stored internally

by parsing the concrete syntax into the AST presented in Chapter 2.

7.2.0.2 Verification of General Swap Implementation

The belief that an implementation meets the requirements of its user is for all intents
and purposes a theorem. Developers expect their users to accept the existence of
an implementable program that appears to behave according to the specification as

proof that the work is complete. The concrete syntax presented in this section is a

99

language that formalizes this contract. This proof is expressed in the concrete syntax

as a derivation:

l_
((svar ' = svar b A svar b/ = svar a))
C
declare svar t := svar a in (
svar a := svar b;

svar b := svar t

The above query represents a coarse-grained formal proof, moving directly from
specification to implementation. A fine-grained formal derivation of the program
involves application of substitution laws of assignment one law or rule at a time.
When using SMT solvers as oracles, the server accepts either style of proof.

Details of the conversion of the query to SMT are logged along with the final
result of the SMT solver. The query above is converted to an equivalent AST
representable by the concrete syntax of SMTLIB. This portion of the log is shown in
Listing 7.1. In response to the query the Z3 solver returns the result of Some(false).
As shown in Table 7.0, this indicates that the negated form of the refinement is
unsatisfiable, thereby confirming validity of the assertion that the implementation
refines the specification.

Introducing a bug, such as the one in Listing 7.2 causes the query to return
Some(true). Altering the specification in various ways, such as that depicted in

Listing 7.3, is likewise detected by the solver as failing the refinement. As indicated

100

0 (not (forall (_allOthers Int)
(forall (_allOthers_p Int)
(forall (x Int)

(forall (x_p Int)
(forall (y Int)

5 (forall (y_p Int)
(== (exists (t_p Int)
(exists (_allOthers_d Int)
(exists (x_d Int)
(exists (y_d Int)
10 (exists (t_d Int)
(and (and (= _allOthers _d _allOthers)
(and (=x_dx)

(and (=y_dy) (=t_dy))))
(exists (_allOthers d d Int)
15 (exists (x_d _d Int)
(exists (y_d d Int)
(exists (t_d_d Int)
(and (and (= _allOthers d d
_allOthers_d)
20 (and (=x_d dx d)
(and (=t d dt d)
(=y_d_dx_d))
(and (= _allOthers_p
_allOthers _d_d)
25 (and (=y py d d)
(and (=t pt_d d)
(=>_p _d_d))MN))
(and (=x_py) (=y_px)))))))))
Listing 7.1: Equivalent Server-side Query in SMTLIB

in Table 7.0, the SMT solver can provide a counter-example in these cases.

7.2.1 Algebraic Swap

Earlier in the thesis, the scenario was discussed in which a user opens a document

containing the program given by Listing 7.4. After editing, the user ends up with the

101

0

l_
<< svara —svarb A varb’ —svara >>
C
declare svar t := svar a in (

svar a := svar a;

svart :— svar b

Listing 7.2: Example of a Failed Implementation

l_
<< svara’ —=svarb Avarb’ =svara Avarc —svara >>
C
declare svar t := svar a in (

svar a :— svar b;

svar b :—= svar t

Listing 7.3: Example of an Incomplete Implementation

a:=b+a;
b:=a—b;
a:=a—>b

Listing 7.4: Initial Document

program seen in Listing 7.5. When using SMT solvers as oracles, the server is able to
compare programs to program (see Listing 7.6) in the same manner that it compares
programs to specifications. The SMT solver applies its theorems of integer theory

during the processing of this query and successfully verifies the refinement relation

between the two operations.

It is important to note that the theory of integers used bySIMPPLE (and the

SMT solver) assumes unbounded integers. This establishes that the programs are

102

declare t := ain (
a:=b

b:=t;

)

Listing 7.5: Edited Document

l_
svar a := svar b + svar a;
svar b :— svar a — svar b;
svara:=svara — svar b
C
declare svar t := svar a in (
svar a :— svar b;
svar b := svar t

Listing 7.6: Server-side Query

l_

declare svar t := svar a in (
svar a :— svar b;
svar b := svar t

svar a := svar b + svar a;
svar b :— svar a — svar b;
svara:=svara — svar b

Listing 7.7: Equivalence for Unbounded Integers

equivalent when the state variables are declared to be unbounded Integer types. It

also means the reverse relationship verifies as seen in Listing 7.7.

103

7.2.2 Formal Derivation of GCD

In Chapter 2 of the thesis, the formulation of a problem statement for computing the
greatest common divisor and its trivial solution was introduced as a demonstration
of the method programming by stepwise refinement. The GCD algorithm can be
derived using fine-grained application of rules that allow each step to be compared
by a human reader for correctness. In this section, an adaptation of the fine-grained
formal proof of the GCD [Norvell, 2012| is presented in such a fashion with a brief
discussion of the rules applied by each step. The code samples are excerpts from the

log generated by the Scala software written in the course of the thesis.

7.2.2.0 Alternation Law

The case creation law[Hehner, 2014] states that for any specification P, and any
Boolean expression b, P can be rewritten as if b then (b= P) else (—b= P). SIMPPLE
uses the closely related Alternation law, in which angle brackets convert the Boolean
expression to the higher-order type of a specification; hence one writes:

if bthen ((b) = P) else ((-b)= P.)

In this form, one can approach the derivation in a case-wise fashion. Any step
that refines the clause (b) = P can be used in the case when b evaluates true;
likewise, any step that refines the clause (—b) = P can be used in the case when b
evaluates false.

The first step in the derivation of the GCD algorithm is to apply this to the
specification for the GCD as seen in Listing 7.8. The discussion of the proof continues

in the following sections, first for the trivial case where n = 0 and then for the more

104

0 \ Theorem:
<< svarm > 0 and svar n >= 0 => (svar m’ = gcd (svar m, svar n)) >
\isRefinedBy
if not (svar n = 0)
then
5 (<< not (svarn=0) >> ==>
<< svarm > 0 and svar n >= 0 => (svar m’ = gcd (svar m, svar n)«—

(<< not (not (svar n = 0)) >> ==
<< svarm > 0 and svar n >= 0 => (svar m’ = gcd (svar m, svar n))<

Listing 7.8: Application of Alternation Law

0 \ Theorem:

<< (svarn=0) >>=> << svarm > 0and svarn >=0 => (svar m’ = gcd («—
<—svar m, svar n)) >
\isRefinedBy

<< (svarn=0) ==
(svar m > 0 and svar n >=0) => (svar m’ = gcd (svar m, svar n)) >>

Listing 7.9: Elimination of Guarded Expression

0 \ Theorem:
<< (svarn=0) ==
(svar m > 0 and svar n >=0) => (svar m’ = gcd (svar m, svar n)) >>
\isRefinedBy
<< ((svar n =0) and (svar m > 0 and svar n >= 0)) => (svar m’ = gcd (svar m,«—
— svar n)) >

Listing 7.10: Shunting

general case

105

0 \ Theorem:
<< ((svar n = 0) and (svar m > 0 and svar n >= 0)) => (svar m’ = gcd (svar m
— svar n)) >>
\isRefinedBy
<< ((svarn =0) and (svar m > 0)) == svar m’ = gcd (svar m, svar n) >

Listing 7.11: Simplification

7.2.2.1 Elimination of Guarded Expressions

When two specifications are combined using the higher-order implication operator
=> they produce a new specification inside which the LHS operand implies the
RHS using ordinary Boolean implication. This definition is applied to the clause

where n = 0 in Listing 7.9

7.2.2.2 Shunting

Shunting asserts the logical equivalence between the expressions P = @ = R and

P A@Q = R. This rule in applied in the next revision in Listing 7.10

7.2.2.3 Simplification

The expression n > 0 includes the expression n = 0 and is the weakest of the two
expressions. The antecedent of the implication can therefore be simplified to Listing
7.11 using the equivalence (n =0An > 0) = (n = 0).

The net effect of the refinements made to the specification up until this point is
to simplity the precondition of the case when n = 0 as much as possible. This is
a common strategy in stepwise refinement and it will be seen again when the more

general case of n # 0 is refined.

106

0 \ Theorem:
<< ((svar n = 0) and (svar m > 0 and svar n >= 0)) => (svar m’ = gcd (svar m
— svar n)) >>
\isRefinedBy
<< ((svarn =0) and (svar m > 0)) == svar m’ = svar m >>

Listing 7.12: Application of Trivial Solution

7.2.2.4 Evaluation of Trivial Solution

The case when n = 0 has now been reduced to a specification that defines the pre-
conditions and the desired output. At each stage, the query has been sent to the
server and has been converted to Z3. The result of the query in all cases has been
Some(false). As can be seen from Table 7.0, this indicates that the negated form of
the refinement is unsatisfiable, thereby confirming validity of the assertion that each
step in the derivation refines the previous step.

In the case of the GCD, a trivial solution occurs when one of the inputs is 0 and
the other is a positive number: these conditions match those now in the simplified
form of the specification. Since zero can be divided by any number, the largest
number which divides the other number is therefore the solution. Since the other
number is positive number it divides itself and is the largest number to do so; that
makes it the solution. We can therefore solve the trivial case by setting m’ = m as
seen in Listing 7.12.

Sending the above query to the server results in the first failure from the Z3 SMT
solver. Instead of reporting Some(false), it reports Some(true). This indicates that
an interpretation exists for the uninterpreted function GCD that makes it possible

for the proposed solution (m' = m) not to be equivalent to the desired solution

107

0 \ Theorem:
forall i (
vari >0 =>
gcd (var i, 0) = var i

Listing 7.13: Theorem for GCD(i,0)

0 \ Theorem:
<< ((svarn =0) and (svar m > 0)) == svar m’ = svar m >>
\isRefinedBy
skip
Listing 7.14: Introduction of skip

(m'" = ged(m,0)). Since in the intended interpretation of the GCD function, it
is a law that Vi -7 > 0 = ged(4,0) = 7 a means of restricting Z3 from using any
interpretation that does not satisfy this law is required. To do so, the theorem of
Listing 7.13 must be added to the document.

With the addition of the above theorem, the document is tested again. Theorems
such as the one above are extracted from the document and sent to the Z3 SMT solver
in order to augment its background theories and to constrain the interpretations it
can use for uninterpreted functions. The remaining queries are then tested; now the
SMT solver is able to verify that, given what it knows about the GCD algorithm, the

proposed refinement is valid.

7.2.2.5 Introduction of Skip

The final step for generating a program from a specification is to refine the speci-

fication by statements that consist only of computer instructions. The simplest of

108

these instructions is the "no-operation" or skip instruction. As a result of our for-
mal derivation, the system is able to verify that in the case when n = 0 the skip

instruction is a suitable implementation as seen in Listing 7.14.

7.2.2.6 Reduction of General Case to a Simpler Case

Euclid’s GCD algorithm provides a proof that in the general case, the solution of the
GCD is equal to the GCD of one number and the modulo remainder of the larger
number. Since modulo arithmetic requires a positive divisor, this corresponds to the
theorem: Vi -Vj-j > 0 = ged(i,j) = ged(j,i%j). By adding this theorem to the
document, a recursive solution of the GCD can be verified using a method similar to
that for the trivial case. This time, all steps are combined into a single equational
proof, that simplifies the general case to its precondition and its output requirements,
and then converts the output assignment to a recursive assignment instruction. The
server-side query for this is shown in Listing 7.15.

The Z3 SMT solver is able to verify each step. Running the example provides a
log of the equivalent SMTLIB concrete syntax and the Z3 response Some(false) for

each refinement, indicating validity of the affirmative form of the query.

7.2.2.7 While Law

The theory of stepwise refinement of programs includes support for recursive calls and
loops. For example, the While Law states that, subject to some conditions, a query in
the form g C if b then (h;g) else skip can be rewritten as g C while b do h [Norvell,
2012|. The use of looping instructions has not been directly addressed in this thesis,

but the reader should recognize that, having established the previous theorems within

109

0 \ Theorem:
forall i forall j (
var j > 0 ==
ged (var i, var j) = ged (var j, vari % var j)
\ Theorem:
5 << not(svarn=0) >> => << svar
(svar m" = gcd (svar m, svar n))
\isRefinedBy
<< (not (svarn =10)) ==
(svar m > 0 and svar n >= 0) == (svar m" = gcd (svar m, svar n)) >
10 \isRefinedBy
<< (not (svar n = 0) and (svar m > 0 and svar n >=0)) =>
(svar m’ = gcd (svar m, svar n)) ==
\isRefinedBy
<< (svar m > 0 and svar n > 0) => (svar m’ = gcd (svar m, svar n)) >>
15 \isRefinedBy
<< (svar m > 0 and svar n > 0) => (svar m’ = gcd (svar n, svar m % svar n)) «
\isRefinedBy
declare t := svar n
in (
20 assign svar n := svar m
assign svar m := svar t ;

m > 0andsvarn >=0 ==

);
<< svarm > 0 and svar n >= 0 => (svar m’ = gcd (svar m, svar n)) >

Listing 7.15: Recursive Solution to General Case

the document, the GCD specification has been proven to be refined to this form as
seen in Listing 7.16.

The conditions of the While Law are required to ensure that the loop eventually
terminates. In the case of the GCD, since n > (m % n) >= 0, the modulo arithmetic
of the general case works to reduce the problem to the trivial case of n = 0 in at most
n iterations. As proof of termination, we can add an iteration counter state variable

svar ¢ and require that as part of the specification, the final value of svar ¢ be no

110

10

\ Theorem:
<< svarm > 0 and svar n >= 0 => (svar m’ = gcd (svar m, svar n)) >>
\isRefinedBy
if not (svar n = 0)
then (
declare t := svar n
in (
assign svar n := svar m % svar n ;
assign svar m := svar t ;
<< svarm > 0 and svar n >= 0 => (svar m’ = gcd (svar m, svar n)) >>
else
skip;
Listing 7.16: Final GCD Algorithm

greater than n above its initial value; that is: ((¢ <=c+ n))

The modified algorithm given in Listing 7.17 includes proof of termination and
passes the test for validity when using the Z3 SMT solver as the oracle. In the
presence of this proof of termination, the GCD implementation can be rewritten with
while loops as shown in Listing 7.18.

One closing comment: changing the termination condition from ((¢’ <= c+ n))
to ((¢ < c+n)) did not pass the test for validity. Rather than returning, the Z3
SMT solver enters an infinite loop. It is expected from Table 7.0 that less exhaustive
SMT solvers would return None in response to the query, indicating an inability
to prove or disprove the existence of a counter-example. To accommodate for such
possibilities, time-outs are recommended to be added to the prover interface. Support
for additional SMT solvers should also be considered; the query can then be sent to
multiple solvers at once and the first solver to return with a definitive response can

signal the termination of the others.

111

(svar ¢ + svar n) and (svar <

e —
=

0 \ Theorem:
<< svarm > 0 and svar n >= 0 == ((svar ¢’
—m’ = gcd (svar m, svar n))) ==

\isRefinedBy
if not (svar n = 0)
then (
declare t := svar n
in (
assign svar n := svar m % svar n ;
assign svar m := svar t ;

assign svar c := svar ¢ + 1;

—
P

<< svarm > 0 and svar n >= 0 == ((svar ¢’ <= (svar ¢ + svar n) and (svar <

10
—m’ = ng (SVar m, svar n)))

)

else
skip;
Listing 7.17: Proof of Termination

(svar ¢ + svar n) and (svar <

e —
=

Y,

0 \ Theorem:
<< svarm > 0 and svar n >= 0 == ((svar ¢’
—m’ = gcd (svar m, svar n))) =°
\isRefinedBy
while (svar n = 0)

do (
declare t := svar n
in (
assign svar n := svar m % svar n ;
assign svar m := svar t ;

);
10 assign svar ¢ := svar ¢ + 1;
Listing 7.18: Alternate GCD Algorithm

)

7.3 Implementation Details
This section describes details of the functions that adapt an AST to a form that can

be executed by Z3 by way of the ScalaZ3 API. This information is provided as a
112

]

T
Loi
AdapterInterface
checkSession() : Boolean -
assert Comstraint(booleanFormula : T') «T —+ T3AST»
isFormulaSatisfiable(booleanFormula : T) : Option/Boolean| .
convertTree[N <1: ASTN ode|(ast : N) : TryT) ScalaZ3Adapter
negateConclusion|N <1: ASTN ode|(conclusion : N) : Try(T)
assertConstraint (booleanFormula - T
isFormulaSatisfisble(booleanFormula : T) : Option|Boolean|

ScalaZ3 oracles

Z3Solver oracles z3
hhh"""‘"—-—-....___ Z3SessionCore Z3Constants Variables AndFunctions
Z3Context activeSession : Option[Z3Context)
activeSolver : Option|Z3Solver| ¥
checkBSession() : Boolean MapOfZ3Functions
typer
TypedAST \
Typelnfo : type = Type MapOfZ3Sorts StackOfZ3deBruijins
initTypelnfo : Typelnfo = mull

I ,

Type PrimitiveTypes

Figure 7.3: ScalaZ3Adapter Class Diagram

reference for future developers and is not required to use a fully developed concrete

adapter. Figure 7.3 shows the classes involved.

7.3.0 Session Management

The following functions allow the adapter to check whether a session to z3 is open, to
open and reset resources used by the session, and to close and free resources allocated

to the session:

e def checkSession() : Boolean
e def open() : Boolean

e def close()

113

7.3.1 Type Declaration

Types in SMTLIB are referred to as Sorts. By default, z3 recognizes boolean and
integer sorts. Any other type must be declared inside z3 before its use. The following
functions allow the adapter to retrieve the sort from z3 if it has been declared, and

optionally to declare it if it does not already exist.
e def findSortInContext(sortRequired : String) : Option|Z3Sort]

e def ensureSortInContext(sortRequired : String) : Z3Sort

7.3.2 Constants, Variables and Functions

The implementation of the interface to z3 processes constants, variables and functions
under the umbrella of one class, and handles the ASTNodes: Apply, Const, and
Var. It distinguishes between constants and functions, the latter of which must
always be applied to at least one argument. In order to ensure there are no naming,
arity or typing inconsistencies, it enumerates constants, variables and functions as it
encounters them in the AST, calling a routine that performs the necessary checks.

These routines include:

e def findTypedConstantInContext(name : String, sortRequired : String) : Op-

tion[Z3AST]

e def ensureTypedConstantInContext(name : String, sortRequired : String) :

Option[Z3AST]|

e def findTypedVariableInContext(name : String, sortRequired : String) : Op-

tion[Z3AST]

114

e def ensureTypedVariableInContext(name : String, sortRequired : String) : Op-

tion[Z3AST]

e def findFunctionInContext(name : String, sortRequired : String, argsRequired

: Seq[String]) : (String,Option[Z3FuncDecl])

e def ensureFunctionInContext(name : String, sortRequired : String, argsRe-

quired : Seq[String]) : (String,Option[Z3FuncDecl])

e def findTypedFunctionInContext(name : String, sortRequired : String, argsRe-

quired : Seq[String]) : Option|[Z3FuncDecl]

e def ensureTypedFunctionInContext(name : String, sortRequired : String, argsRe-

quired : Seq[String]) : Option|[Z3FuncDecl]

7.3.3 Existential and Universal Quantification

Another important element of SMT is the assertion of universally or existentially
quantified expressions. Using the ScalaZ3 API, the adapter first builds these as
lambda-abstracted formulas; then fresh symbols are created for each of the bound
variables and used to assert the appropriate quantification. The following routines

are provided in order to meet these requirements:
e def findSymbolInContext(symbolRequired : String) : Option[Z3Symbol]
e def ensureSymbolInContext(symbolRequired : String) : Z3Symbol

e def buildBoundArgumentList (functionSignature : (Seq[String|,String)) : (Seq[Z3AST],

Seq[(Z3Symbol,Z3Sort)])

115

7.4 Summary

This chapter describes how the code implemented as part of the thesis uses the object-
oriented features of Scala to evaluate server-side queries by targeting the ScalaZ3
SMT solver. UML diagrams describing the implementation are provided along with
case studies. A ScalaTest test suite containing the case studies presented here is

maintained at svn://tera.engr.mun.ca/simple.proj/trunk/SIMPPLE.

116

Chapter 8

Using Higher-Order Theorem

Provers

The cases studies in this thesis have focussed on oracles that provide feedback about
whether one tree stored in AST format is a refinement of another. For these purposes,
SMT and first-order logic suffice. That said, the software has been designed with the
view to testing significantly more complex queries and formulating complete theories
and specifications. Figure 8.0 shows a conceptual prototype for a concrete adapter
based around a serializer that pretty-prints® a TPS document.

In this chapter we show how the above interfaces support adapters to a popular

third-party TPS in order to process the query.

OPretty-printing is the inverse process of parsing. Starting from an AST, the pretty-printer
selects a concrete syntax of its choosing.

117

]

,.__‘
|

AdapterInterface
checkSession() : Boolean |- \
assert Comatraint{booleanFormula : T) «T — HDLAST=
isFormulaSatisfiable(booleanFormula : T) : Option/Boolean| .
convertTree[N <1: ASTN ode|(ast : N) : TryT) ScalaHOLAdapter
negateConclusion|N <1: ASTN ode|(conclusion : N) : Try(T)
assert Constraint(booleanFormuls : T
isFormulaSatisfiable(booleanFormula : T) : Option[Boolean)
oracles
oracles hol
HOLSessionCore HOLC: ‘Variables AndFuncti
|
typer checkSession() : Boolean scribe(query : HOLAST) : String
Typed AST
Typelnfo : type = Type
initTypelnfo : Typelnfo = mull
MapOfHOLTypes StateSpaceStack MapOfHOLFunctions
T
Type PrimitiveTypes

Figure 8.0: ScalaHOLAdapter Class Diagram

8.0 Writing Theories of Computation

It is well-known that compilable source code can be generated directly from logical
formulas that describe the intended behaviour of software. Theories in support of this
goal, including theories of predicative programming and programming by specifica-
tion, were developed and well-understood by the mid-1990°s. These theories come in
a number of forms. Already in this thesis we have seen two closely related forms: one
first-order form that views specifications as Boolean formulas and refinement as ordi-
nary implication; and a closely related high-order form that views specifications as a
function of two states, and refinement as a preorder between specifications. This dis-
tinction is abstracted away when discussing programming instructions, but becomes

important when formulating specifications. As an example the theories included in

118

a NECEC 2010 conference paper[Motty and Norvell, 2010] are reproduced in Table
8.0.

The language and environment for which this thesis is written is that of a browser-
based extension for editing of instructions, Boolean formulas, and high-order specifi-
cations. In this chapter, a distinction is made between what is supported by the AST,
what can be expressed in the language, what theories of computation are employed,

and what can be proven.

Term First-order Higher-order
Interpretation Interpretation
||skip|| ¥d=zNy =y As-As' - (s=4)
1) E As- Ezy,
||z:=E]| ?=ENY =y As-As' Vv sv=|E|s
w=a>sv=sv
1Sl S AS-AS - S ey
if £
then F I|F||<E> |G| As-As'-||F| ss'<||E| s>|G| ss
else G
IF; G| a9 |FIZE AGIZY As-As'-3s-|[F| ssA |G| s
IF = G| |Fl= |G| As NS [F|| 55’ = |G| s
IFCGl VYey2.y Gl = |F|l Vs-¥s |Gl ss = |[F||ss

Table 8.0: Interpretations of Commands and Refinement!

8.0.0 Swupported High-order Formulas

The first of these, what is supported by the AST, is the least restrictive. For example,

the AST can store any of the terms from Table 8.0.

'In Table 8.0, it is assumed that all commands operate on states whose state variables include
only x, and y. Formulas need to be modified accordingly for other states.

119

8.0.1 Expressible High-order Formulas

As for what can be expressed, the concrete syntax in this thesis intentionally omits
lambda expressions. The ability to chain and nest such expressions inside other ex-
pressions makes their translation to lower-orders difficult and could not be completed
within the scope of this thesis.

Without support for pure (unqualified) lambda expressions in the concrete syn-
tax, many laws required for the high-order theory of computation are excluded. For
instance, using lambda notation, the high-order laws of forward and backward sub-

stitution are written as shown below:

FVs Vo -Vzsubsxz=Ay-z4dr =y>sy

Y f - Vo - Ve -forwardSub f xe = As- As' - f (subsz (es)) s
Y f - Vo - Ve -forwardSub f xe = (z :=e; f)

Y f - Vo - Ve-backwardSub f xe = As - A\s' - fs(subs' z (es'))

Ff E backwardSub fxe;x :=e€

8.0.2 Employable Theories of Computation

The use of the high-order theory of computation has been deferred in favour of the
first-order state-space model. This allows use and testing with readily available
first-order tools.

The usability of high-order theories of computation is significantly enhanced by

enabling lambda abstractions in the concrete syntax, but the employment of these the-

120

ories is not however dependent on the presence of lambda expressions in the concrete
syntax. High-order theories of computation can be added by modifying the Scala
code described in chapters 2 to 5 of this theses. This section provides a summary of

the required changes.

8.0.2.0 Tree-based substitution with State

The functions which apply the model of state space need to be overridden in order to
take full advantage of higher-order types available in theorem proving systems. The

following is recommended[Norvell, 2009]

0. StateVar

The state variable is converted to a functional application of the corresponding
state and a string representing the name of the state variable. Handling of decorated
names needs to be transferred from states to variables: the notation x; = Dot(z,_;)
for d > 0 and 2y = & = Plain(x) is used to illustrate this. A function dotState
is needed to handle intermediate states by converting .Apply(Var(sz)), v) to

Apply(Var(Dot(s4—1)), v) where

||State Var(Plain(v))| = Apply(Var(Plain(s)), v)
||StateVar(vy)|| = dotState(||StateVar(va_y)||)
||State Var(Prime(v))| = Apply(Var(Prime(s)), v)

1. Application of semicolon to two commands

(a) The inner commands are translated. To eliminate the possibility of conflict

between bound and free variables, an extra dot is appended to existing

121

dotted states in both terms; this includes any dotted variables bound by a

lambda abstraction.

(b) A tree representing the left-most command is applied to the plain state and
an existentially bound intermediate (dotted) state; the right-most com-
mand is applied to the dotted state and the Primed state. This thereby
associates the right-hand side’s initial state with the intermediate state

constrained by the left-hand side.

| Apply (Apply (Const (7;7), lhs), rhs) || =

Lambda (Plain(s), Lambda (Pm’me(s),
Apply (C‘onst (3), Lambda (Dot (s),
Apply (Apply (Const (A),
seLhs (| hs]))

scRhs (||rhs||)))

2. Assignment:

(a) The target of the assignment is translated. Currently the software only
supports assignments whose target is a single state variable (e.g. "v"), in
which case the state variable is promoted to a Primed variable of the same

name, and then translated yielding || State Var(Prime(”v"))||.
(b) The expression to be assigned to the target is translated.

(c) There must be no side-effects; this is accomplished by universally quanti-

fying over all variable names. If the variable name matches that of the

122

target, then the value in the Primed state is equal to the translated ex-
pression; otherwise the value in the Primed state must be identical to the

value in the Plain state.

|| Assign(StateVar (Plain(”"v”)), rhs) || =

Lambda (Plain(s), Lambda (Pm’me(s),
Apply (C‘onst (V) , Lambda (w,
Apply(Apply(Apply (Const (7 ite™),
Apply(Apply(Const (7 =7),
Var (Prime(w)),
Var (Prime(*v"))),
Apply (||rhs|| , Plain (s))),))))

Apply (Var (Prime (s)) ,w))

3. StateVar Declaration

(a) The declaration is unapplied to expose the state variable being declared,

its initial value, and the body within which the variable is in scope.

(b) The type of the expression is inferred and a fresh state is instantiated with
type constraints defined by universally quantifying over all variable names.
If the variable name matches that of the variable being declared, then the

value in the Plain state is equal to the translated expression.

(c) A tree representing the body is translated and it is applied to the freshly

created state and an existentially bound final (primed) state. Within the

123

scope of the existential operation, assertions are made that for all vari-
able names, Apply(Prime(sigma),variable.name) takes the value of Ap-
ply(Prime(tau),variable.name) except in the case for the variable name
being introduced by the StateVar Decl ; in that case it takes the value of

Apply(Plain(sigma),variable.name).
4. Spec

(a) The declaration is unapplied to expose the body of the spec.

(b) The body is translated to a lambda abstraction over two states, thereby
capturing the Plain and Primed versions of states appearing in the speci-
fication and renaming if necessary to simplify the logic of the conversion.
The lambda abstraction is then applied to two arguments: one plain and
one primed, representing the states for which the specification is to be

evaluated:

|Spec (Body)|| =
Lambda (P!aé'n.(s), Lambda (Pﬂme(s):
Apply(Apply(|| Body|| , Var(Plain(s)), Var(Prime(s))))))
8.0.2.1 Built-in Laws and Rules

In addition to updating the state space model, inclusion of keywords into the concrete
syntax is also suggested in order to unburden the user from the need to declare these.

Essential laws include[Norvell, 2012]:

e One-point Law

124

Strengthening

Monotonicity

Antimonotonicity

Erasure Laws

Substitution Laws

Alternation Law

8.0.2.2 Translation of State-space Types

The translation of Types is simplified by the method of conversions above; after the
translations are applied all queries should evaluate to expressions of BoolType(). To
support the addition of user-defined types and improve their readability, a method
for annotating variables and expressions with explicit types should be introduced into

the concrete syntax.

8.0.3 Provable High-order Theories

Quantification over functions requires a type-system with support for functions. Such
type-systems are absent from the SMTLIB language, so SMTLIB is only suitable for
fragments of the language that are effectively first-order. Overcoming this short-
coming by using existential and universal quantifiers to fully apply lambda-bound
abstractions does not solve the problem since SMT is incomplete in the presence of
quantifiers and may be able to prove validity for some formulas but not equivalent

formulas that vary slightly in order, number or complexity. For this reason, queries

125

with a large number of partially applied functions are not likely to meet with success
without the use of a TPS.

The refinement relationship between the swap specification, the general swap,
and the numeric swap was proven valid in a high-order theorem prover.[Motty and
Norvell, 2010] The approach for doing so is markedly different and less amenable
to automation than that of the SMT solver. Logical proofs in TPS are largely
about transformation; they work best when it can be demonstrated that the proof
at hand is nothing more than a type-instantiation, alpha conversion, specialization
or generalization of an existing theorem. Section 8.1 describes a number of macros
that were necessary to get the case studies proven successfully in the TPS known as
HOL4. Experience using a specific TPS can improve the odds of finding successful
strategies but cannot guarantee success.

Finally TPSs do not permit uninterpretted user-defined functions. Functions
must be fully interpreted so that the TPS can prove user-declared assertions about
them. This requires a much more stringent and complete definition of subroutines

and external dependencies upon which an algorithm relies.

8.1 Kananaskis HOL Case-Study

A 20-year stretch of interactive proof assistants released under the acronym HOLSS
culminated with a successor HOL4, also known as Kananaskis HOL. The acronym
HOL refers to the use of high-order logics which use a type system to support the
handling of partially applied functions as objects of enquiry.

HOL’s theories are loaded from libraries. One library in particular, known as

126

‘bossLib’, provides a suite of basic automated proving tools. A number of other
libraries provide type syntaxes which make it possible to extend HOL's native data
types to include numbers, strings and lists. Another important library, mesonLib,

defines a number of essential automated model elimination algorithms.

8.1.0 Definitions

The following higher-order definitions for refinement, sequential composition, assign-
ment and subs (local substitution of a variable for an expression inside the body of a

statement) were introduced into the theorem prover.

DefinitionOfRefinement LHS T RHS = V(s:'a) (s':'0).RHS s s’ = LHS s s’
Assign assign x e s s 2 Vy. if x =y then (s'y) = (es) else (s'y) = (sy)
Sequential Composition sc f gss =2 (Is.fss Ags s)

Substitution subs f x e s s’ = (let s" = \y - if x =y then es else sy in f s" s');

8.1.1 Macros

In order to prove the validity of the relationship between the swap specification, the
general swap, and the numeric swap the available theories of HOL were used in ways
prescribed by a small number of macros.[Motty and Norvell, 2010] These macros

consist of:

REP_ EVAL TAC Exhaustively evaluate expressions in a theorem until no fur-

ther change results

127

MAKE IT SO Given an expression th, if th is a hypothesis of a theorem (i.e. in

the assumption list), simplify it to TRUE anywhere it appears in the conclusion

REFINEMENT TAC and REFINEMENT RULE Rewrites references to the
refinement function with its first-order definition. This converts an expression

LHS C RHS to Vs,s'- RHS s s = LHS s s

thmAbstractSpecification Converts the higher-order identity between specifica-

tions to a first order functional equivalence, i.e. (Vss' - fss < gss) <

(f =9
thmOnePointLemma Proof of the theorem (z =2z) A (fat) < fazt

thmForwardSubstitution Proof of the theoremVf ez s s - sc(assignze) f s s

(let 8" =MNy.if x =y theneselse syin f s"s")

EvaluateFor Given a refinement expression in the form of LHS C RHS if the RHS

is often reducible to th(; form:

if “a” =v then Fj,s,8 ---5",8

'

As,s'-3s -5 /\1 §Vv- | else if “B” = v then Figs,s ---s", s

else if - - -

The reduced form is alxa-:ays possible to generate provided the state(s) aré known
when any variable (e.g. “a”) undergoes an assignment. If so, the companion
function (e.g. F},) need simply assert equalities for the variable’s value for those
target states. An example is discussed in the results section.

Once the RHS is in the reduced form, the expression LHS T RHS is converted

to an implication using REFINEMENT TAC and the antecedent is stripped

128

(added to the list of assumptions) using an application of the built-in tactic

REPEAT STRIP TAC. This converts the expression to the form:

if “a” =v then Fj,s,8 ---5",8

U; V7V | elseif “3” =wv then Fygs,s---s",s' | ¢ LHS

else if - - -

The EvaluateFor macro will evaluate the RHS for éach state variable (e.g.

“a” *3") and simplify the LHS until the theorem has been exhaustively re-

duced.

8.1.2 Results

The macros defined above were specifically designed and tested in order to prove
theories of stepwise refinement of programs. A number of these proofs are discussed
here: specifically a proof of the forward substitution law and a verification that the
general swap algorithm and the algebraic swap algorithms meet their specification.
The examples shown in this section are written in HOL’s syntax. HOL uses

standard keyboard symbols for the following logical symbols:

Logical Symbol Keyboard Character

VY !
3 ?
A \
C =.

8.1.2.0 Forward Substitution Law

The Forward Substitution Law is expressed in HOL as follows:

129

10

\ (s:string—=’b) (s":string—=’b) . ((s’ "m") = (s "n")) /\ ((s’"n") = (s "m«

SC

(

sc (assign ("t") (\ (s:string—>’b).s "m")) (assign "m" (\ (s:string—>'b). s "n«
=)
)

(assign "n" (\ (s:string—>'b).s "t"))

)

Listing 8.0: HOL Goal: General Swap

“Ifexss. sclassignxze) fss = subs fress *

The proof of the forward substitution law in HOL is surprisingly complicated. It
requires two rewrite rules and two lemmas be introduced in addition to the definitions
already discussed. With the introduction of these rules and lemmas, the proof still
requires 10 steps and is partitioned amongst a number of sub-goals. The proof is
recreated in Appendix A and serves mainly as empirical evidence of the difficulty in-
volved in partitioning problems so that the rules and background theory are sufficient

to reach a proof in a higher-order system.

8.1.2.1 General Swap Algorithm

The aim of the general swap algorithm is to prove the theorems of Listing 8.0 true
in HOL. In order to automate the proof in Kananaskis HOL, the right-hand side

of the refinement needs to be converted to the form of Listing 8.1. The conver-

130

0 (7s".
(yif "m" =y thens" y=s"n"elses" y =if "t" =y then s "m" else s y)

/

(ly. if "n" = ythens'y =s

" lttlt else S? y — 5" y)

Listing 8.1: RHS: General Swap

sion is accomplished passing the substitution (Vss' - fss < gss') < (f =g)
(thmAbstractSpecification) to HOL’s built in tactic, SUBST TAC and then applying
the custom macro REP EVAL TAC. In this form, the built in HOL tactic REPEAT
STRIP TAC is able to discharge the companion functions into the assumption list.
The macro EvaluateFor [“t”,“x”,“y"| can be used and the proof solved with a call to

REP EVAL TAC.

8.1.2.2 Algebraic Swap Algorithm

The aim of the algebraic swap algorithm is to prove the theorems of Listing 8.2 true
in HOL. In order to automate the proof, the right-hand side of the refinement needs
to be converted to the form of Listing 8.3. The proof of the algebraic swap example

depends on theorems in the HOL library arithmeticTheory, and the lemma:
lemma = “!(a:num) (b:num). (a +b-(a+b-b))=(b+a-a)“

The conversion is accomplished passing the substitution (Vs s’ - fss’ < gss') <
(f = g) (thmAbstractSpecification) to HOL’s built in tactic, SUBST TAC and then
applying the custom macro REP EVAL TAC. In this form, the built-in HOL tactic
REPEAT STRIP TAC is able to discharge the companion functions into the assump-

tion list. The macro EvaluateFor [“x”,“y”| can be used and the proof solved with

131

(
\ (s:string—>num) (s:string—=>num). ((s’ "m") = (s "n")) /\ ((s" "n") = (s "m—

(_)II))
)

[=.

(

(assign "m" (\ (sistring—>num).((s "m") + (s "n"))))
(assign N ((s:string—j::>num). ((S umn) _ (S "n"))))

assign "m" (\\ (s:string—=>num).((s "m") — (s "n")))

Listing 8.2: HOL Goal: Algebraic Swap

(7s".
I(y :string). if "n" =y thens"y=s"m" +s"n" —s"n"
elses" y =if "m" =y thens "m" + s "n" else s y)

nn n nn.n
n

| I(y :string).if "m" =y thens’y =s" "m" — s elses’y =s"vy)

Listing 8.3: RHS: Algebraic Swap

a call to (PROVE_TAC [LESS EQ REFL, LESS EQ ADD SUB, SUB EQ 0,

ADD 0, lemmal).

8.1.3 Observations

While the macros declared here are not enough to solve every problem poseable by

SIMPPLE, two observations can be made:

132

0. Studying problems in the field of formal methods can lead to the identification of
generalized forms suitable for use with automated model elimination algorithms;

and

1. For some generalized forms, a set of macros can be identified that increase the

success of automated model elimination algorithms

The lemmas and tactics required to prove the various forms of refinement were
discovered through iterative interactions with the theorem prover. This involved
significant interpretation of error messages and results printed by the prover, as well

as a study of the available libraries of theorems built into HOL.

8.2 Summary

This chapter describes an implementation plan for evaluating server-side queries by
targeting a higher-order theorem prover. The implementation plan is included in the
thesis to demonstrate the process of extending the classes implemented under this

thesis to applications beyond the scope of the thesis.

133

Chapter 9

Conclusion

In this thesis, laws of predicative programming were formulated and tested in two
state-of-the-art proof systems. We saw that some programs without loops could
be transformed automatically thanks to many of the features built into the Scala
language. In this section, the key conclusions are reviewed and the need for future

work is discussed.

9.0 Results

Past developments and background work completed prior to the commencement of
this thesis produced: a browser-based extension that allows users to edit proofs; and,
an abstract syntax and type system for SIMPPLE prototyed in Haskell. This past
work served as the starting point to this thesis. The main contribution of this thesis is
a Scala language implementation that interfaces to third-party provers. These provers
verify the logical correctness of the SIMPPLE program as it is constructed line by line.

Two classes of provers were considered: first, Satisfiablilty Modulo Theorem (SMT)

134

solvers; and secondly higher-order Theorem Proving Systems (TPS). The capabilities

of the software was demonstrated. The demonstration consisted of:

parsing of textual documents conforming to a BNF grammar into abstract syn-

tax trees (ASTs).
e conversion of source abstract syntax trees (ASTs) into first-order logic.
e conversion of first-order logic into target ASTs of an SMT solver.

e an implementation plan for targeting a higher-order TPS for solution of equally

or more challenging proofs.

In order to complete the work in the time-frame available, a number of simplifi-

cations were necessary, specifically:

e a simplified version of the type-system was used, augmented where necessary

by adding the ability to predeclare the types of constants used in the examples.

e the only proofs allowed are those in which the conclusion can be reached through

continued refinement of the initial tree.
e no explicit support for loops was included in the language.

e examples were limited to those that could be readily presented using familiar

theories of Boolean logic and integer arithmetic.

The software developed as part of this thesis is not limited by the choices made
above and can be immediately used to test a wide variety of examples. Furthermore,

it was shown in this thesis that in the case of the GCD algorithm, proof of termination

135

can be established by the SMT solver; consequently support for while loops can be
added to the language as a sub-derivation of the derivations in which they appear.

Results are mixed for the demonstration of support for higher-order theorem
provers. On the one hand, the type systems of higher-order theorem provers are
needed for the most complex proofs; on the other-hand the use of SMT solvers when
suitable results in almost effortless automated verification in comparison.

On the whole, the software is expected to be of value. For the purpose of teaching
stepwise refinement of software, it allows more challenging proofs to be practiced
than can easily be verified manually. For the purpose of research into SMT solvers,
it applies theories of predicative programming to SIMPPLE programs, and handles
conversion to SMTLIB. It uses an adapter interface to support the targetting and
testing of other oracles for future enhancement.

It is hoped that further applications of the software will be found, and that it will
contribute to the production of implemented specifications that are maintainable,

sharable and unmistakably fit for their purpose.

9.1 Future Work

One of the case studies examined looked at different implementations of the swap
algorithm. Both implementations refine the specification for a swap algorithm, and
each refines the other as long as the elements being swapped are integers. When two
programs equate in such a fashion, they are not necessarily interchangeable. Other
factors, such as hardware resource utilization, readability, parallel execution and data

representation play a role in determining the suitability of a program for a particular

136

application.

The examples covered in this thesis involve short segments of code. This was nec-
essary in order to present the results in the space available for a master’s thesis. The
source code itself is not limited in terms of the number of lines of code in a document,
nor the number of variables, constants and theorems introduced therein. Empiri-
cal evidence suggests that fairly complex queries can be tolerated by the back-end
provers, especially in the case when the refinement is valid. When invalid refinements
are made, SMT solvers work hard to find a counterexample but frequently time-out
or return unknown. Recent improvements to Z3 have been made and are promising
for the types of problems presented here. Especially promising is the addition of
quantifier elimination tactics.[De Moura and Bjgrner, 2011]

The modular, object oriented nature of the source code developed should aid in
extension and debugging. Future work is required to target additional oracles and
add comprehensive theories beyond that of integer and boolean logic. Incorpora-
tion of loops, arrays and parallel operation of threads is also important in today’s
environment.

The thesis described a method of developing fully verified software, but the soft-
ware created in the process of the thesis does not follow the methodology. The
software methodology used in this thesis described its inputs and outputs with for-
mal grammars and used UML diagrams to describe the object-oriented architecture
of the implementation. As an alternative output of the methodology, the possibility
that the specifications can be refined into a higher-order formula in the instruction
set of model-driven architectures (MDA) instead of computer instructions should also

be considered.

137

The thesis describes a method of programming by specification that applies to im-
perative languages, but Scala and many modern languages contain functional aspects.
It is noted that approaches to stepwise refinement for functional programming exist.
"Functional and imperative programming are not really competitors; they can be
used together.... Functional programming and imperative programming differ mainly
in the notation they use for substitution" [Hehner, 2014]. Alternatively, code which

lends itself to an imperative implementation can be tested in isolation.

138

References

[Barrett et al., 2010] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-
LIB standard — version 2.0. In Proceedings of the 8" International Workshop on

Satisfiability Modulo Theories (SMT °10), July 2010. Edinburgh, Scotland.

[Chomsky, 1959] Noam Chomsky. On certain formal properties of grammars. Infor-

mation and Control, 2(2):137-167, 1959.

[de Moura and Bjerner, 2008] Leonardo Mendonca de Moura and Nikolaj Bjerner.
Z3: An efficient smt solver. In C. R. Ramakrishnan and Jakob Rehof, edi-
tors, TACAS, volume 4963 of Lecture Notes in Computer Science, pages 337-340.

Springer, 2008.

[De Moura and Bjerner, 2011] Leonardo De Moura and Nikolaj Bjerner. Satisfiabil-
ity modulo theories: Introduction and applications, 2011. http://dl.acm.org/

citation.cfm?7id=1995394.

[Dijkstra, 1975] Edsger W. Dijkstra. Guarded commands, nondeterminacy and for-

mal derivation of programs. Commun. ACM, 18(8):453-457, August 1975.

[d’Silva et al., 2008] V. d’Silva, D. Kroening, and G. Weissenbacher. A survey of

automated techniques for formal software verification. Computer-Aided Design

139

of Integrated Circuits and Systems, IEEE Transactions on, 27(7):1165-1178, July

2008.

[Goguen et al., 2000] Joseph A. Goguen, Timothy Winkler, José Meseguer, Kokichi
Futatsugi, and Jean-Pierre Jouannaud. Introducing obj. In Joseph Goguen and

Grant Malcolm, editors, Software Engineering with OBJ, volume 2 of Advances in

Formal Methods, pages 3-167. Springer US, 2000.

[Gries and Schneider, 1993] David Gries and Fred B. Schneider. A Logical Approach

to Discrete Math. Springer-Verlag New York, Inc., New York, NY, USA, 1993.

[Hawking, 2005] S. W. Hawking, editor. God Created the Integers : the Mathematical
Breakthroughs that Changed History. Running Press, Philadelphia, PA ; London :,

2005.

[Hehner, 1993] Eric C. R. Hehner. A Practical Theory of Programming. Texts and

Monographs in Computer Science. Springer-Verlag, 1993.

[Hehner, 2014] Eric C. R. Hehner. A Practical Theory of Programming, 2014. On

the web at http://www.cs.toronto.edu/ "hehner/aPToP/aPToP.pdf.

[Hoare, 1969] C. A. R. Hoare. An Aziomatic Basis for Computer Programming, vol-

ume 12. ACM, New York, NY, USA, October 1969.

[Morgan, 1994] Carroll C. Morgan. Programming from Specifications, 2nd Edition.

Prentice Hall International series in computer science. Prentice Hall, 1994.

[Morgan, 2009] Carroll Morgan. How to brew-up a refinement ordering. Electron.

Notes Theor. Comput. Sci., 259:123—-141, December 2009.

140

[Motty and Norvell, 2010] Stephen Motty and Theodore Norvell. Interactive proofs

of programs. NECEC 2010, 2010.

[Norvell, 2009] Theodore S. Norvell. The simple report, 2009. Draft: Typeset October

13. Available from author upon request.

[Norvell, 2012] Theodore S. Norvell. Theory of computing /computation, 2012. Type-

set January 5. Available from author upon request.

[Odersky, 2014] Martin Odersky. What is scala, June 2014. On the web at http:

//www.scala-lang.org/what-is-scala.html.

[Reilly et al., 2000] Edwin D. Reilly, Anthony Ralston, and David Hemmendinger.

Encyclopedia of Computer Science. Nature Publishing Group, London, 2000.

[Research, 2014] Microsoft Research. Z3 guide, June 2014. On the web at http:

//rise4fun.com/z3/tutorialcontent/guide#h22.

[Subramaniam, 2009] Venkat Subramaniam. Programming Scala: Tackle Multi-Core
Complexity on the JVM. The pragmatic programmers. Pragmatic Bookshelf,

Raleigh, NC, 2000.

[Wang, 1961] Hao Wang. The calculus of partial predicates and its extension to set

theory i. Mathematical Logic Quarterly, 7(17-18):283-288, 1961.

141

Appendix A

Proof of Forward Substitution

Theorem

This chapter provides a code listing of the forward substitution law as proven in the

Kananaskis 9 HOL theorem prover.

A.0 Forward Substitution Law

The forward substitution law can be expressed in higher-order logic with the support

of lambda expressions as:

VF ex s sl (assignx =e; F)s sl =

(let " = Ay - if x =y then es else sy in (F) s” s/)

142

A.1 Kananaskis Code Listing

0 set trace "Unicode" 0;

show _types:=true;
show _assums:=true;

b set fixity "[=." (Infixl 500);
val DefinitionOfRefinement = xDefine "bRefinement"
‘v [=. u=1(s:’a) (s’:’b). uss’ =>vss’t

10 val REFINEMENT _TAC =

(*
[
1 1-
‘N's s’ .vws s’ [u
15 *)
(PURE_ONCE_REWRITE_TAC [DefinitionOfRefinement])
(+ [
1 /-
Is s, us s’ ==> \ s s’. v 5 s’
20 *)
THEN
(REPEAT GEN_TAQ)
(+ [
1 /-
25 us s’ =>(\s s’. vss’)ss’
*)
THEN
(BETA_TAQ)
(+ [
30 1 /-
4 s s’ ==> v s s’
*)

35 fun REFINEMENT RULE th =

(
BETA_RULE
(
GEN_ALL
40 (
PURE_ONCE_REWRITE_RULE [DefinitionOfRefinement] th
)
)
)

45

Define ‘assign x e s s? =

143

50

55

60

65

70

75

80

85

90

95

ly.

if x = y then

(s y) = (e s)
else

(s y) = (sy)

Define ‘sc f g s s? = (7 s*?

.fss?? Ngs??s?) ¢

fun SWAPLR_RULE th =(PURE_ONCE_REWRITE_RULE [EQ_SYM_EQ] th);

val thmAbstractFunction =

f- (6 =F) <=>Ily. ty=Ffuy

(t =f) <=>1ly. ty=7JFuy

a). Ty)) <=> (I(y:’a).(t (y :’a)

(ACCEPT _TAC (SPECL [‘‘t:’a—>’b‘,“‘f:’a->’b‘‘] FUN_EQ_THM))

(= [JI1-1'tf. (t=C0y. fy)<=>!y. ty=7Fuy

prove
(
C1(t :?a —> ’b) (f :?7a > ’b).(t = (\(y
fy)) <,
(
(EVAL_TAQO)
(x [
] 1I-
1t
*)
THEN
(REPEAT STRIP_TAC)
(x [
] 1I-
*)
THEN
)
)

val thmConditionalFunction =

let val
goal = ““I(t :’a —> ’b) (a :’a —> bool) (b :’a —> ’b) (c

and

and

ifaythenty=byelsety=cy)

:’a).

if ay then b y else c y))*“¢

?a > ’b). (I(y

: thm *)

““\(y:’a).(if (a:’a—>bool) y then (b:’a->’b) y else (c:’a—>’b) y)*¢

<=>
t =\
specializedTerm0 = [
“ft:?a->’b° ",
]
specializedTerml = [

144

:’a

““Nrhs. ((((t:’a—>’b) (y:’a)) = rhs)) ¢,
““(a:’a —> bool) (y: ’a)‘‘,
““((b:’a—>’b) (y:’a))°**,

100 ““((c:’a=>’b)(y:’a)) ‘¢
]
in
prove
(
105 goal,
(
(* [
1 I-
Itabe. (ly. if aythenty=>byelsety=cuy)l<=>
110 (t = (\y. if a y then b y else c y))
*)
(REPEAT STRIP_TAC)
i
1 1=
115 (y. if a y then t y = b y else t y = ¢ y) <=>
(t = (\y. if a y then b y else c y))
*)
THEN
(EQ_TAC THENL
120 ¢
(x [
1 1-
(ly. if a y then t y = b y else t y = c y)
=> (t = (\y. if a y then b y else c y))
125 *)
(REPEAT STRIP_TAC)
(x [
(ly. if a y then t y = b y else t y = c y)
1 1-
130 (t = (\y. if a y then b y else c y))
*)
THEN

(SUBST_TAC [(BETA_RULE (SPECL specializedTerm0
thmAbstractFunction))])

[
135 (ly. if a y then t y = b y else t y = c y)
1 1=
Iy. t y=1f a y then b y else c vy
*)
THEN
140 (REPEAT STRIP_TAC)
[
(ly. if a y then t y = b y else t y = c y)
1 1=
ty=14if ay then b y else c y *)
145 THEN

(SUBST_TAC [

145

150

155

160

165

170

175

180

185

190

195

t’a)) ‘e,

(BETA _RULE(SPECL specializedTerml (
INST TYPE [
alpha |-> ““:’b **, beta |->°“:bool**
1 COND_RAND))

)
D
(*x [

(ly. if a y then t y = b y else t y = c y)

1 1=

*)
THEN

if aythent y=>byelsety=cuy

(FIRST _ASSUM (ACCEPT _TAC o (SPEC “‘y:’a“‘)))

), (
(x [
1 1-

(t = (\y. if a y then b y else c y))

*)

=> (ly. if ay thent y =b y elset y=c y)

(REPEAT STRIP_TAC)

(*x [

t = (\y. if a y then b y else ¢ y)

1 1-

*)
THEN

2f ay then t y=0byelsety=cuy

(SUBST_TAC [(
SWAPLR_RULE

(

BETA_ RULE

(

)]
(*x [

SPECL [
““Nrhs. ((((t:?’a—>’b) (y:’a)) =rhs)) ‘¢,
“f(a:’a —> bool) (y: ?a)“, “((b:’a—>’b) (y

““((c:’a—>’b)(y:’a)) ‘¢
1 (UNST_TYPE [

alpha |—> ““:’b ¢, beta |->°‘:bool*®
] COND_RAND)

t = (\y. if a y then b y else ¢ y)

1 1-

*)
THEN
(ASSUME_TAC
(

ty=1f ay then b y else c y

146

200

205

210

215

220

225

230

235

240

UNDISCH @#1(EQ_IMP_RULE
(
BETA RULE
(
SPECL
[““t:’a—>’b*¢,
¢\ (y:’a).(if (a:’a—>bool) y then (b

:’a—>’b) y
else (c:’a—>’b) y)
1 thmAbstractFunction
)
)
))
)
x [
'y. ty=1f ay then b y else c y
t = (\y. if a y then b y else c y)
1 1-
ty=1f ay then b y else c y
*)
)
THEN
(FIRST _ASSUM (ACCEPT _TAC o (SPEC “‘y:’a“‘)))
)]
(x [
1 /-
itabe. (ly. ifaythen t y=»byelsety=cy)
<=>
(t = (\y. if a y then b y else c y)) : thm
*)
)
)
)
end

fun EXHAUSTIVELY x =
(REPEAT (CHANGED TAC x))

val REP_EVAL_ TAC =
(EXHAUSTIVELY EVAL_TAC)

val thmAcceptinPlace = UNDISCH (prove (‘(v:bool) ==> (v <=> T)‘“¢,REP_EVAL TAQ));
val thmRejectInPlace = UNDISCH (prove (‘‘("(v:bool)) ==> (v <=> F)‘¢,REP_EVAL TAC))

fun USE_CONTEXT (asl:term list) (th:thm) =

147

if (null asl) then th else (UNDISCH (USE_ CONTEXT (tl(asl)) th))
245 ;

fun VSUB (v:term) (e:term) (th:thm) =
USE CONTEXT (hyp th) (SPEC e (GEN v (DISCH_ ALL th)))
250
fun MAKE IT_SO (th:thm) =
((SUBST_TAC [(VSUB f‘v:bool‘* (concl th) thmAcceptinPlace)]) THEN EVAL TAC)

255 fun MAKE_IT _NO (th:thm) =
if (is_neg(concl th)) then
((SUBST_TAC [(VSUB ‘‘v:bool‘* (dest neg(concl th)) thmRejectinPlace)]) THEN

EVAL TAC)
else
((SUBST_TAC [(VSUB “‘v:bool‘‘ (mk_neg(concl th)) thmRejectinPlace)]) THEN
EVAL TAC)
260 ;
val SPEC_EQ THM =
prove
(
265 “e(1(s :’a) (s’ ’b).(f :’a —> ’b > ’c) s s’ = (g :’a > ’b > ’c) ss’) <=>
(f=g°",
(
(EQ_TAC THENL
L(
i
270 1 1=
(1s s’. fss’ =gss’) =>(f=g)
*)
(DISCH_TAQ)
(x [
275 (s s’. fss’”=qgss5’)
1 1-
(f =g
*)
THEN
280 (SUBST_TAC [(INST_TYPE [beta |-> ¢“:’b—>?c‘‘] (SPEC_ALL
FUN_EQ THM))1)
(x [
(s s’. fss’”=qgss5’)
1 1-
'c. fz=g9g=x
285 *)
THEN
(GEN_TAC)
(x [
(s s’. fss’”=qgss5’)
290 1 1-

148

295

300

305

310

315

320

325

330

335

(x:?a)¢“] (

N1

)
(*
*)

fz=g¢z
*)
THEN
(SUBST_TAC [(SPECL [“‘(f:’a=>’b->’c) (x:’a)‘‘,“‘(g:’a~—>’b->"c)

INST_TYPE [alpha |-> <:’b‘‘, beta |-> gammal FUN_EQ_THM

)
* [
(s s’. fss’”=qgss5’)
1 1=
Iz’ fzaz’ =gz’
*)
THEN
(GEN_TAC)
* [
(s s’. fss’”=qgss5’)
1 1=
fzz’ =gz’
*)
THEN
(FIRST_ASSUM (ACCEPT_TAC o (SPECL [“‘x:’a‘‘,“‘x’:’b‘‘1)))
), (
(* [
1 1=
(f =g) => !ss’. fss’=gqgs s’
*)
(REPEAT STRIP_TAC)
* [
(f =g
1 1=
!s s’. fss’”=gs s’
*)
THEN
(REPEAT AP_THM _TAC)
* [
(f =g
1 1=
f=9
*)
THEN

(FIRST _ASSUM ACCEPT _TAQ)
)]

[J1- (s s’. fss’” =g s s’) <=>(f =g) : proof

149

340

345

350

355

360

365

370

375

380

385

390

val thmAbstractSpecification =

INST _TYPE [

alpha |-> ““:?a —> ’b**,

] SPEC_EQ_THM
(*

beta |-> ““:’a —> ’b*‘‘, gamma |-> ‘‘:bool‘*

[0 /- (s s’. fss’<=>gqgss’)<=>(=g): thm

*)

val thmOnePointLemma=
prove
(
Clx=x) /N (Fxt) <=
(
(EQ_TAC THENL

fxtef,

¢
(x [
1 1/-
(=) /\ (fzt)) =>fat
*)
(ASSUME_TAC (REFL “‘x“¢))
(* [(z =41
1 1-
(z=2) /\ (fzt)) ==> fzt
*)
THEN
(FIRST_ASSUM MAKE_IT_SO)
), (
(x [
1 1/-
(Fzt)=>((x=z)/\fzt
*)
(DISCH_ TAC)
(x [
(fzt)
1 1-
(z=2z) /\ fzt
*)
THEN
(FIRST_ASSUM MAKE_IT_SO)
)]

Define ‘subs f x e s s’

= (let s?? = \y. if x=y then e s else s y

in fs’? s?) ¢;

val thmForwardSubstitution =

150

395

400

405

410

415

420

425

430

435

let val

conversion0 = BETA RULE

and

(

)

SWAPLR_RULE

(
SPECL
L
€622 :73->p" ¢,
“\(y:’a).((x:’a) = y) ¢,
““N(y:’a).((e:(’a—>’b)->’b) (s:’a->’b))**,
ff5:73->p*¢
1
thmConditionalFunction
)

conversionl = SWAPLR_RULE

:?a—>’b) else s y*°¢

and

(

)

BETA RULE
(
SPECL
L
g2 :29->p ¢,

¢\ (y:’a).if (x:’a) =y then (e:(’a—>’b)-—>’b) (s

thmAbstractFunction

lemma0 = BETA_ RULE

->’b) else s y*¢

and

(

)

SPECL
[
€€g22:7->7p* ¢,
““\(y:’a).if (x:’a) = y then (e:(’a—>’b)—>’b) (s:’a
]

thmAbstractFunction

lemmal = VSUB “‘t:’c‘¢ “fs?:’c‘*

b) (s:’a->’b)

(

VSUB ‘“x:’a—>’b®¢ “*‘\(y:’a).if(x = y) then (e:(’a—>’b)—>’

else s y*°¢
(INST_TYPE [
alpha |-> ““:(?a—>’b)‘* , beta |—> “‘:%c‘¢
1 thmOnePointLemma)

151

prove

440 (
““If e x s 5. sc (assign x e) fs s’ =subs fxess’ ¢,
(
(REPEAT STRIP_TAC)
i
445 1 1=
sc (assign z e) f s s’ <=> subs f z e 5 s’
*)
THEN
(EVAL_TAC)
450 i
1 1=
(25’7,
(ly. if ¢ =y then s’’ y = e s else s’’ y = s y)
/',‘ f g?? S’)
<=>
455 f (\y. if ¢ = y then e s else s y) s’
*)
THEN
(REWRITE_TAC [(REWRITE_RULE [conversion0] lemma0),conversionl])
i
460 1 1=
(25’7,
(s’? = (\y. if ¢ = y then e s else s y)) /\ f s?’
57)
<=>
f (\y. if ¢ = y then e s else s y) s’
465 *)
THEN
(SUBST_TAC [(SWAPLR_RULE lemmal)])
i
1 1=
470 (?s77,
(s’? = (\y. if ¢ = y then e s else s y)) /\ f s?’
57)
<=>
((\y. if z = y then e s else s y) =
(\y. if £ = y then e s else s y))
475 /\
f (\y. if ¢ = y then e s else s y) s’
*)
THEN
(EQ_TAC THENL
480 ¢
(x [
1 1-
(25’7,
(s’? = (\y. if ¢ = y then e s else s y)) /\ f
s?? S’)
485 =>

152

490

495

500

505

510

515

520

525

((\y. if z = y then e s else s y) =
(\y. if € = y then e s else s y))

/\
f O\y. if = y then e s else s y) s’
*)
(DISCH_TAO)
(*x [
(?s’?, (s’’ = (\y. if € = y then e s else s y)) /\
f 5’7 57)
1 1-
((\y. if z = y then e s else s y) =
(\y. if € = y then e s else s y))
/\
f O\y. if = y then e s else s y) s’
*)
THEN
(FIRST _ASSUM CHOOSE_TAC)
(*x [
(s’? = (\y. if ¢ = y then e s else s y)) /\ f s?’
S’
(?s’?, (s’’ = (\y. if € = y then e s else s y)) /\
f 5’7 57)
1 1-
((\y. if z = y then e s else s y) =
(\y. if € = y then e s else s y))
/\
f O\y. if = y then e s else s y) s’
*)
THEN
(FIRST_ASSUM (fn th => (TRY(REWRITE_TAC [(SWAPLR_RULE
th)1))))
), (
(x [
1 1-
((\y. if ¢ = y then e s else s y) = (\y. ifz =y
then e s else s y))
/\
f (\y. if ¢ = y then e s else s y) s’
=>
(?s’?, (s’’ = (\y. if € = y then e s else s y)) /\
f 5’7 57)
*)
(DISCH_TAO)
(*x [
((\y. if ¢ = y then e s else s y) = (\y. ifz =y
then e s else s y))
/\
f (\y. if ¢ = y then e s else s y) s’
1 1-

153

530

535

540

545

550

/',‘ f g?? S’)

then e s else s

T =y then e s

end

(75’7, (s’? = (\y. if ¢ = y then e s else s y))

*)
THEN
(FIRST _ASSUM (fn th => (TRY (
EXISTS TAC ((#1(dest eq(#1(dest conj(concl th))))))))

)
)
(*x [
((\y. if ¢ = y then e s else s y) = (\y. ifz =y
y))
/\
f (\y. if ¢ = y then e s else s y) s’
1 1-
((\y. if © = y then e s else s y) = (\y. if
else s y))
/\
f O\y. if = y then e s else s y) s’
*)
THEN
(FIRST _ASSUM MAKE IT_SO)
)]

Listing A.0: Proof of Forward Substitution Law

154

		

		
Load
Save

		
(icons compliments of Whizzywig)

		Reference Specification/Implementation

if b ≠ 0 then

 ≪ b ≠ 0 ≫ ⇒ ≪ a > 0 ⇒ a' = gcd (a, b) ≫

else

 ≪ b = 0 ≫ ⇒ ≪ a > 0 ⇒ a' = gcd (a, b) ≫

		Theorems

∀ i · i > 0 ⇒ gcd (i, 0) = i

		Refined Specification/Implementation

if b ≠ 0 then

 ≪ b ≠ 0 ≫ ⇒ ≪ a > 0 ⇒ a' = gcd (a, b) ≫

else

 ≪ b = 0 ≫ ⇒ ≪ a > 0 ⇒ a' = a ≫

		Server-side Query

\Theorem:

 forall i (var i > 0 => gcd (var i, 0) = var i)

\Theorem:

 if not (svar b = 0) then (<< not (svar b = 0) >> => << svar a > 0 => svar a' = gcd (svar a, svar b) >>)
else (<< svar b = 0 >> => << svar a > 0 => svar a' = gcd (svar a, svar b) >>)

\isRefinedBy

 if not (svar b = 0) then (<< not (svar b = 0) >> => << svar a > 0 => svar a' = gcd (svar a, svar b) >>)
else (<< svar b = 0 >> => << svar a > 0 => svar a' = svar a >>)

		
Navigate the content above. Cursor coordinates to the right will update automatically.

 		Direction
 		Start Container
 		Start Offset
 		End Container
 		End Offset

		

		
Load
Save

		
(icons compliments of Whizzywig)

		Reference Specification/Implementation

a := b + a;

b := a - b;

a := a - b;

		Theorems

theorems

		Refined Specification/Implementation

declare t := a; in (

 a := b;

 b := t;

)

		Server-side Query

\Theorem:

svar a := svar b + svar a; svar b := svar a - svar b; svar a := svar a - svar b;

\isRefinedBy

declare t := svar a in (svar a := svar b; svar b := svar t;)

		
Navigate the content above. Cursor coordinates to the right will update automatically.

 		Direction
 		Start Container
 		Start Offset
 		End Container
 		End Offset

		

		
Load
Save

		
(icons compliments of Whizzywig)

		Reference Specification/Implementation

≪ a' = b ∧ b' = a ≫

		Theorems

theorems

		Refined Specification/Implementation

declare t := a; in (

 a := b;

 b := t;

)

		Server-side Query

\Theorem:

<< svar a' = svar b and svar b' = svar a >>

\isRefinedBy

svar a := svar b + svar a; svar b := svar a - svar b; svar a := svar a - svar b;

\isRefinedBy

declare t := svar a in (svar a := svar b; svar b := svar t;)

		
Navigate the content above. Cursor coordinates to the right will update automatically.

 		Direction
 		Start Container
 		Start Offset
 		End Container
 		End Offset

		

		
Load
Save

		
(icons compliments of Whizzywig)

		Reference Specification/Implementation

declare t := a; in (

 a := b;

 b := t;

)

		Theorems

theorems

		Refined Specification/Implementation

a := b + a;

b := a - b;

a := a - b;

		Server-side Query

\Theorem:

declare t := svar a in (svar a := svar b; svar b := svar t;)

\isRefinedBy

svar a := svar b + svar a; svar b := svar a - svar b; svar a := svar a - svar b;

		
Navigate the content above. Cursor coordinates to the right will update automatically.

 		Direction
 		Start Container
 		Start Offset
 		End Container
 		End Offset

(* SWAPPING.SML \lstset{language=ML,upquote=true}\begin{comment} % *)
(* %
\end{comment} % (*
*)
\begin{comment}==LITERATE PROGRAM FILE HEADER ===\end{comment}

\section{HOL Preliminaries}

The HOL logic system provides a proof manager which manages the derivation of an proof. It does so using a
structure which represents a list of assumptions, a desired conclusion, and a list of theorems from which justify the
conclusion as drawn from the assumptions. A goal is a similar structure, without the theorems: that is, the goal consists
of a list of assumptions and a conclusion for which a proof is desired. The derivation of a proof is a tree structure
and can be represented using a fractional notation, where the numerator represents the goal, and the denominator represents
a set of sub-goals which result from a mechanical application of a rule of logic.

Another way of looking at a deriviation is to treat the top-most goal as the root of a tree; the sub goals sprout out
from the root, and whenever the outermost sub-goals evaluates to true or false, it is a leaf.
Once we have evalauted sub-goal in such a manner, the corresponding terms from the trunk can be substituted.

There are a number of libraries in HOL which makes this possible. One library in particular, known as `bossLib',
provides a suite of basic automated proving tools. A number of other libraries provide type syntaxes which make it
possible to extends HOLs native data types to include numbers, strings and lists.We now load these libraries and open
them to make them public. Finally, to get feedback about data types and proofs,
we enable the HOL system to display all assumptions and data types currently in use.

\begin{lstlisting} % *)

load "bossLib";
open bossLib;

load "stringSyntax";
open stringSyntax;

load "numSyntax";
open numSyntax;

load "listSyntax";
open listSyntax;

show_types:=true;
show_assums:=true;

(* \end{lstlisting}
\begin{lstlisting} % (*

 The internal features of the bossLib structure are now exposed to the HOL session.
 Terms can now consist of expressions on strings, numbers and lists.
 Types and assumptions will be echoed verbosely to the user console.
*) \end{lstlisting} %

\section{Definition of Boolean Refinement}

The language of program refinement is that of logic: truth and falsehood. Truth, however, is a much loftier goal than the more practical
problems faced by software engineers; to mistake program correctness for truth is philosophically invalid. Rather, when we speak of truth
in a programming context, it is intended to refer to the two outcomes of the Turing Machine: either the machine halts and the problem is solved,
or the solution is not in the language of the machine. We introduce the specifications $abort$ and $magic$, which we use when it is
important to stress this interpretation of the logic. Given any initial state and any final state, $abort$ returns true, while $magic$
returns false.

\begin{lstlisting} % *)

Define `abort = \(s:'a) (s':'b). T`;
Define `magic = \(s:'a) (s':'b). F`;

(* \end{lstlisting}
\begin{lstlisting} % (*

	If the current state is a solution, then simply abort.
	If no solution exists in the language of the machine, then the specification can be refined only by magic.
*) \end{lstlisting} %

In our model, specifications are boolean functions that evaluate true when a behaviour is accepted.
We may say that a specification is refined by another; since specifications are boolean
functions, refinement is a boolean operation. Specifically, we define the boolean operator \sqsubseteq_b
such that $v \sqsubseteq_b u$ if and only if for all applicable state spaces, $ u \Rightarrow v$. Having defined
refinement in this way, a common requirement that arises in proofs is to rewrite refinement using primitive
boolean operators. To perform these common tasks, we introduce REFINEMENT_TAC and REFINEMENT_RULE. We demonstrate
the use of these tactics in a simple proof to show that magic refines all specifications, and all specifications
refine abort.

\begin{lstlisting} % *)

set_fixity "[=." (Infixl 500);
val DefinitionOfRefinement = xDefine "bRefinement"
	`v [=. u = !(s:'a) (s':'b). u s s' ==> v s s'`
;

val REFINEMENT_TAC =
	(*
		[
]	|-
				`\ s s' .v s s' [=. u
	*)
	(PURE_ONCE_REWRITE_TAC [DefinitionOfRefinement])
				(*	[
]	|-
							!s s'. u s s' ==> \ s s'. v s s'
				*)
	THEN
		(REPEAT GEN_TAC)	
				(*	[
]	|-
						 u s s'	 ==> (\s s'. v s s') s s'
				*)
	THEN
		(BETA_TAC)
				(*	[
]	|-
						 u s s'	 ==> v s s'
				*)
;

fun REFINEMENT_RULE th =
	(
		BETA_RULE
		(
			GEN_ALL
			(
				PURE_ONCE_REWRITE_RULE [DefinitionOfRefinement] th
)
)
)
;

(* \end{lstlisting}
\begin{lstlisting} % (*

EXAMPLES
prove
	(
		`` f [=. magic ``,
		REFINEMENT_TAC
			(*
				[
] |-
					magic s s' ==> f s s'
			*)	
	THEN
		EVAL_TAC
			(* |- f [=. magic : thm *)
)
;
	
prove
	(
		`` abort [=. f ``,
		REFINEMENT_TAC
			(*
				[
] |-
					f s s' ==> abort s s'
			*)	
	THEN
		EVAL_TAC
			(* |- abort [=. f : thm *)
)
;
*) \end{lstlisting} %

The above code demonstrates three commonly used functions of the HOL proving system, namely:

\begin{enumerate}
\item{Define}

Allows constants and functions to be introduced.
\item{xDefine and set_fixity}

Allows symbolic constants and infix operators to be introduced.
\item{EVAL}

Allows constants and functions to be simplified through substitution and evaluation.
\end{enumerate}

section{Definition of Assignment }

\begin{lstlisting} % *)

Define `assign x e s s' =
			!y.
				if x = y then
					(s' y) = (e s)
 else
					(s' y) = (s y)
		`
;

(* \end{lstlisting}
\begin{lstlisting} % (*

EXAMPLES
	let	val	
		xForyImplies_sx_Is_es =
		(
				EVAL_RULE (SPEC ``x:'a`` (EVAL_RULE (ASSUME ``assign x e s s'``)))
						(*	[
								assign x e s s'	
]	|-
								s' x = e s : thm
						*)
)

	in
		prove (
			``(\ (s :'a -> 'b) (s' :'a -> 'b).((s'(x:'a)) = ((e:('a->'b)->'b) s))) [=. (assign x e)``,
			(
				(REFINEMENT_TAC)	
						(*	[
]	|-
								 assign x e s s'	
								 ==>
								 s' x = e s	
						*)
			THEN
				(DISCH_TAC)	
						(* 	[
								assign x e s s'	
]	|-
								s' x = e s	
						*)
			THEN
				(ACCEPT_TAC xForyImplies_sx_Is_es)
)
)
	end
;

*) \end{lstlisting} %

The above code demonstrates seven commonly used tactics of the HOL proving system, namely:

\begin{enumerate}
\item{ASSUME, ASSUME_TAC}

Given a theorem whose assumptions are a subset of the current goal, adds the theorems conclusion to goal's assumptions.

\item{EVAL_RULE}

Creates an equality between the theorems conclusion and the result of evaluating its terms and functions.
\item{SPEC,SPECL}

Allows a general theorem to be specialized to a particular instance.
SPECL allows parallel execution of multiple SPEC tactics using a list of instances.
\item{SUBST_TAC}

Given an equality, if the left-hand side is a term in the goal, then it is replaced by the right-hand side.
\item{DISCH_TAC}

Given an implications, moves the left-hand side of the implication into the list of assumptions.
\item{ACCEPT_TAC}

Once a sub-goal has been converted into the form of an existing theorem, this tactic promotes the sub-goal to a theorem.
\end{enumerate}

\section{Sequential Composition}

As the example shows, using language constructs such as a verilog generate statement, it is possible to
implement many parallel specifications in hardware. Depending on hardware resources and timing closure
considerations, often a sequential implementation is preferred. This is made possible by using an
existential specification. Specifically, we assert that their exists an intermediate state, s'',
such that initial specification f provides a path from s to s'', and the final specification g
provides a path from s'' to s'. As an example of how to use this, consider how the specification
$x ' = 1 \and y ' = 1$ is satisfied by $y:=1;x:=y$.

\begin{lstlisting} % *)

Define `sc f g s s' = (? s'' . f s s'' /\ g s'' s') ` ;

(* \end{lstlisting}
\begin{lstlisting} % (*

EXAMPLES
	let	val	
		goal = ``(\ (s:'a->num) (s':'a->num). (((s' (x:'a)) = 1) /\ ((s' (y:'a)) = 1))) [=. (sc (assign y (\ (s:'a->num).1)) (assign x (\ (s:'a->num).(s y))))``
	and
		lemma = (UNDISCH_ALL (#1 (EQ_IMP_RULE (EVAL (mk_comb(mk_comb ((rand goal),``s:'a->num``),``s':'a->num``))))))
						(*	[
								sc (assign y (\s. 1)) (assign x (\s. s y)) s s'
]	|-
								 ?s''.
										(!y'. if y = y' then s'' y' = 1 else s'' y' = s y')
										/\
										(!y'. if x = y' then s' y' = s'' y else s' y' = s'' y')
						*)
	in
		prove
		(
			goal,
			(
				(REFINEMENT_TAC)
						(*	[
]	|-
									sc (assign y (\s. 1)) (assign x (\s. s y)) s s' ==> (s' x = 1) /\ (s' y = 1)
						*)
			THEN
				(STRIP_TAC)	
						(* 	[
								sc (assign y (\s. 1)) (assign x (\s. s y)) s s'
]	|-
									(s' x = 1) /\ (s' y = 1)
						*)
			THEN
				(STRIP_ASSUME_TAC lemma)
						(* 	[
								 !y'. if x = y' then s' y' = s'' y else s' y' = s'' y'
							,
								 !y'. if y = y' then s'' y' = 1 else s'' y' = s y'
							,
								 sc (assign y (\s. 1)) (assign x (\s. s y)) s s'
]	|-
									(s' x = 1) /\ (s' y = 1)
						*)
			THEN
				(SUBST_TAC
					[(
						EVAL_RULE 												
							(
								(SPECL [``x:'a``]	(ASSUME (#2(dest_conj (beta_conv(mk_comb((rand (concl lemma)),``s'':'a->num``)))))))
)
)]
)
						(* 	[
								 !y'. if x = y' then s' y' = s'' y else s' y' = s'' y'
							,
								 !y'. if y = y' then s'' y' = 1 else s'' y' = s y'
							,
								 sc (assign y (\s. 1)) (assign x (\s. s y)) s s'
]	|-
									(s'' y = 1) /\ (s' y = 1)
						*)
			THEN
				(SUBST_TAC
					[(
						EVAL_RULE 												
							(
								(SPECL [``y:'a``]	(ASSUME (#2(dest_conj (beta_conv(mk_comb((rand (concl lemma)),``s'':'a->num``)))))))
)
)]
)
						(* 	[
								 !y'. if x = y' then s' y' = s'' y else s' y' = s'' y'
							,
								 !y'. if y = y' then s'' y' = 1 else s'' y' = s y'
							,
								 sc (assign y (\s. 1)) (assign x (\s. s y)) s s'
]	|-
									(s'' y = 1) /\ (s'' y = 1)
						*)
			THEN
				(CONJ_TAC THENL
					[(
						(* 	[
								 !y'. if x = y' then s' y' = s'' y else s' y' = s'' y'
							,
								 !y'. if y = y' then s'' y' = 1 else s'' y' = s y'
							,
								 sc (assign y (\s. 1)) (assign x (\s. s y)) s s'
]	|-
									(s'' y = (1 :num))
						*)				
						(ACCEPT_TAC
							(
								EVAL_RULE
								(
									(SPECL [``y:'a``]	(ASSUME (#1(dest_conj (beta_conv(mk_comb((rand (concl lemma)),``s'':'a->num``)))))))
)
)
)
),(
						(ACCEPT_TAC
							(
								EVAL_RULE
									(
										(SPECL [``y:'a``]	(ASSUME (#1(dest_conj (beta_conv(mk_comb((rand (concl lemma)),``s'':'a->num``)))))))
)
)
)
)]
)
)
)
	end
;

*) \end{lstlisting} %

The example above introduces the following tactics and rules:

\begin{enumerate}
\item{UNDISCH_ALL}

Given a list of assumptions, converts them into a chain of refinements.

\item{EQ_IMP_RULE}

Swaps the left-hand and right-hand side of an equation, as required to apply the SUBST_TAC.
\item{STRIP_TAC,STRIP_ASSUME_TAC}

Similar to DISCH_TAC, but decomposes assumptions to remove quantifiers and conjunctions so that they can be more readily used.
\item{CONJ_TAC, EQ_TAC}

If a theorem is in the form a conjunction, this breaks the goal into two sub-goals, one for the left-hand side,
the other for the right-hand side. EQ_TAC was not used in the example, but does the same for equations.

\item{rand,rator,dest_conj,beta_conv,mk_comb, concl, etc}

There are a variety of routines defined in the Term structure which are useful for extracting and transforming specific
terms into the form needed to prove a goal.

Given an implications, moves the left-hand side of the implication into the list of assumptions.
\item{fetch}

Retrieves a theorem stored in a theory file (e.g. definitions are stored in the current theory automatically for ease of access)
\end{enumerate}

\section{Manipulating Functions}

In predicative programming, it is often necessary to treat functions as objects. The lambda notation is particularly powerful for this
in HOL. Because many proofs require converting to and from the lambda notation, some utility function are introduces here.

\begin{lstlisting} % *)

fun SWAPLR_RULE th =(PURE_ONCE_REWRITE_RULE [EQ_SYM_EQ] th);

val	thmAbstractFunction =	
	prove
	(
		``!(t :'a -> 'b) (f :'a -> 'b).(t = (\(y :'a). f y)) <=> (!(y:'a).(t (y :'a) = f y)) ``,
		(
			(EVAL_TAC)
				(* 	[
]	|-
							!t f. (t = f) <=> !y. t y = f y
				*)
		THEN
			(REPEAT STRIP_TAC)
				(* 	[
]	|-
							 (t = f) <=> !y. t y = f y
				*)
		THEN
			(ACCEPT_TAC (SPECL [``t:'a->'b``,``f:'a->'b``] FUN_EQ_THM))
				(* [] |- !t f. (t = (\y. f y)) <=> !y. t y = f y : thm *)
)
)
;

val	thmConditionalFunction =	
	let val
		goal =	``!(t :'a -> 'b) (a :'a -> bool) (b :'a -> 'b) (c :'a -> 'b). (!(y :'a).
				if a y then t y = b y else t y = c y)
					<=>
				(t = (\(y :'a). if a y then b y else c y))``
	and
		specializedTerm0 = [``t:'a->'b``,``\(y:'a).(if (a:'a->bool) y then (b:'a->'b) y else (c:'a->'b) y)``]
	and
		specializedTerm1 = [``\rhs.((((t:'a->'b) (y:'a)) = rhs)) ``,``(a:'a -> bool) (y: 'a)``,``((b:'a->'b) (y:'a))``, ``((c:'a->'b)(y:'a))``]
	in
		prove
		(
			goal,
			(
				(*	[
]	|-
							!t a b c. (!y. if a y then t y = b y else t y = c y) <=> (t = (\y. if a y then b y else c y))
				*)
				(REPEAT STRIP_TAC)
					(* 	[
]	|-
							(!y. if a y then t y = b y else t y = c y) <=> (t = (\y. if a y then b y else c y))
					*)
			THEN
				(EQ_TAC	THENL
					[(
						(* 	[
]	|-
									(!y. if a y then t y = b y else t y = c y) ==> (t = (\y. if a y then b y else c y))
						*)
						(REPEAT STRIP_TAC)
							(* 	[
									(!y. if a y then t y = b y else t y = c y)
]	|-
										(t = (\y. if a y then b y else c y))
							*)
					THEN
						(SUBST_TAC [(BETA_RULE (SPECL specializedTerm0 thmAbstractFunction))])
							(* 	[
									(!y. if a y then t y = b y else t y = c y)
]	|-
										!y. t y = if a y then b y else c y
							*)
					THEN
						(REPEAT STRIP_TAC)
							(* 	[
									(!y. if a y then t y = b y else t y = c y)
]	|-
										t y = if a y then b y else c y							*)
					THEN
						(SUBST_TAC [(BETA_RULE(SPECL specializedTerm1 (INST_TYPE [alpha |-> ``:'b ``, beta |->``:bool``] COND_RAND)))])
							(* 	[
									(!y. if a y then t y = b y else t y = c y)
]	|-
										 if a y then t y = b y else t y = c y
							*)
					THEN
						(FIRST_ASSUM (ACCEPT_TAC o (SPEC ``y:'a``)))
),(
						(* 	[
]	|-
									(t = (\y. if a y then b y else c y)) ==> (!y. if a y then t y = b y else t y = c y)
						*)
						(REPEAT STRIP_TAC)
							(* 	[
									t = (\y. if a y then b y else c y)								
]	|-
										if a y then t y = b y else t y = c y
							*)
					THEN
						(SUBST_TAC [(SWAPLR_RULE
										(
											BETA_RULE
											(
												SPECL
													[``\rhs.((((t:'a->'b) (y:'a)) = rhs)) ``,
														``(a:'a -> bool) (y: 'a)``,``((b:'a->'b) (y:'a))``,
														``((c:'a->'b)(y:'a))``
] (INST_TYPE [alpha |-> ``:'b ``, beta |->``:bool``] COND_RAND)
)
)
)]
)
							(* 	[
									t = (\y. if a y then b y else c y)								
]	|-
										t y = if a y then b y else c y
							*)
					THEN
						(ASSUME_TAC
							(
								UNDISCH (#1(EQ_IMP_RULE 				
										(
											BETA_RULE
											(
													SPECL
													[``t:'a->'b``,
														``\ (y:'a).(if (a:'a->bool) y then (b:'a->'b) y else (c:'a->'b) y)``
] thmAbstractFunction
)
)
))
)
							(* 	[
									!y. t y = if a y then b y else c y
								,
									t = (\y. if a y then b y else c y)								
]	|-
										t y = if a y then b y else c y
							*)
)
					THEN
						(FIRST_ASSUM (ACCEPT_TAC o (SPEC ``y:'a``)))
)]				
					(* []	|- !t a b c. (!y. if a y then t y = b y else t y = c y) <=> (t = (\y. if a y then b y else c y)) : thm *)
)
)
)
	end
;

(* \end{lstlisting}
\begin{lstlisting} % (*

EXAMPLES

*) \end{lstlisting} %

		
The following HOL theorems were introduced in the previous proof:

\begin{enumerate}
\item{PURE_ONCE_REWRITE_RULE}

Performs a limited rewrites of terms on an existing theorem
\item{EQ_SYM_EQ}

This theorem can be used in conjuntion with the PURE_ONCE_REWRITE rule to swap the left-hand side and right-hand side
of an equation.
\item{COND_RAND}

This theorem treats a conditional statement as an operand of a function, allowing the function to be moved.
It is written $\forall (f :'a -> 'b) (b :bool) (x :'a) (y :'a) \cdot f (if b then x else y) = if b then f x else f y $
\item{FUN_EQ_THM}

This theorem defines equality among functions.
It is written $\forall (f :'a -> 'b) (g :'a -> 'b) \cdot ((f = g) \Leftrightarrow \forall (x :'a) \cdot f x = g x)$
\item{BETA_RULE}

This theorem evaluate a theorem which contains lambda expressions.
\item{THENL (with EQ_TAC)}

THENL is similar to THEN, but must be used following any tactic that breaks a goal down into subgoals.
It accepts a list of tactics, one for each sub-goal. In the proof, THENL was used with EQ_TAC, which
breaks an equality into two sub-goals using EQ_IMP_RULE.

\item{FIRST_ASSUM and o (the tactical composition operator)}

Assumptions in HOL are not managed consistently accross versions of HOL. If an assumption is required as a parameter to
a tactic, FIRST_ASSUM provides a search capability. It accepts a function to which it passes as a parameter the ASSUMED
theorem for each assumption. If the result is a valid tactic, and the tactic succeeds on the goal, then the search
is considered successful; otherwise, the search continues with the next assumption.

\end{enumerate}
	
\section{In-place Proofs and Lemmas}

We've seen how sub-goals are a neccessary part of complex proofs. While sub-goals are unavoidable, one method to minimize them
is to allow in-place proofs. An in-place proof takes advantage of the fact that any assumption that remains in the assumption
list must evaluate to true. Thus, if we have an existing theorem that we expect will become part of the proof process, the following
strategy can be used to introduce in-place proofs:

\begin{enumerate}
\item{Introduce the lemma as an assumption of the proof}
\item{Proceed with the proof as desired until a term becomes alpha-convertible to the lemma}
\item{Convert the term to a boolean constant, then evaluate the goal using EVAL_TAC}
\end{enumerate}

The following functions facilitate the above approach:

\begin{lstlisting} % *)

fun EXHAUSTIVELY x =
	(REPEAT (CHANGED_TAC x))
;

val REP_EVAL_TAC =
	(EXHAUSTIVELY EVAL_TAC)
;

val thmAcceptInPlace = UNDISCH (prove (``(v:bool) ==> (v <=> T)``,REP_EVAL_TAC));
val thmRejectInPlace = UNDISCH (prove (``(~(v:bool)) ==> (v <=> F)``,REP_EVAL_TAC));

fun USE_CONTEXT (asl:term list) (th:thm) =
	if (null asl) then th else (UNDISCH (USE_CONTEXT (tl(asl)) th))
;

fun VSUB (v:term) (e:term) (th:thm) =
	USE_CONTEXT (hyp th) (SPEC e (GEN v (DISCH_ALL th)))
;

fun MAKE_IT_SO (th:thm) =
	((SUBST_TAC [(VSUB ``v:bool`` (concl th) thmAcceptInPlace)]) THEN EVAL_TAC)
;

fun MAKE_IT_NO (th:thm) =
	if(is_neg(concl th)) then
		((SUBST_TAC [(VSUB ``v:bool`` (dest_neg(concl th)) thmRejectInPlace)]) THEN EVAL_TAC)
	else
		((SUBST_TAC [(VSUB ``v:bool`` (mk_neg(concl th)) thmRejectInPlace)]) THEN EVAL_TAC)
;
(* \end{lstlisting}
\begin{lstlisting} % (*

EXAMPLES

	For an example of these theorems, see the proof of the one-point lemma
*) \end{lstlisting} %

\section{Type Instantiation}

Before we can move on to practical examples, a discussion on type instantiation is neccessary.
Type instantiation allows us to convert a theorem that holds for all types to one that holds
for a specific typeor combination of types.

Type instantiation can be a very powerful tool. This is especially true when an atomic type
is cast as a composite type, such as converting the type ``:'a`` to the function ``:'a->'b``.
In the typed lambda calculus, there is no distinction between a composite type and a function.
Any path from one type-space to another is inherently a function.

The HOL type-inference system and the INST_TYPE can be used to take simple theorems and specification
and extend them to more complex classes of systems. Often-times, however, it is desirable to revert
from a complex type or function to a form that can be more easily manipulated and parameterized. This
is especially important when we consider that the current definition of state-spaces is polymorphic
in this implementation. We know only that a state-space s is of type ``'a->'b``, without restricting
how we define our addressing mechanism (type ``'a``) or how we define our data representation (type ``'b``).

Our definitions of magic, abort and assignment are tied to state-spaces, but because they are abstract state spaces,
it is sometimes helpful to completely eliminate them from a derivation. The following theorem faciliates this:

\begin{lstlisting} % *)

val	SPEC_EQ_THM =
	prove
	(
		``(!(s :'a) (s' :'b).(f :'a -> 'b -> 'c) s s' = (g :'a -> 'b -> 'c) s s') <=> (f = g)``,
		(
			(EQ_TAC THENL
				[(
					(* 	[
]	|-
								(!s s'. f s s' = g s s') ==> (f = g)
					*)
					(DISCH_TAC)
						(* 	[
									(!s s'. f s s' = g s s')
]	|-
									(f = g)
						*)
				THEN
					(SUBST_TAC [(INST_TYPE [beta |-> ``:'b->'c``] (SPEC_ALL FUN_EQ_THM))])
						(* 	[
									(!s s'. f s s' = g s s')
]	|-
									!x. f x = g x
						*)
				THEN
					(GEN_TAC)
						(* 	[
									(!s s'. f s s' = g s s')
]	|-
									f x = g x
						*)
				THEN
					(SUBST_TAC [(SPECL [``(f:'a->'b->'c) (x:'a)``,``(g:'a->'b->'c) (x:'a)``] (INST_TYPE [alpha |-> ``:'b``, beta |-> gamma] FUN_EQ_THM))])
						(* 	[
									(!s s'. f s s' = g s s')
]	|-
									 !x'. f x x' = g x x'
						*)
				THEN
					(GEN_TAC)
						(* 	[
									(!s s'. f s s' = g s s')
]	|-
									 f x x' = g x x'
						*)
				THEN
					(FIRST_ASSUM (ACCEPT_TAC o (SPECL [``x:'a``,``x':'b``])))
),(
					(* 	[
]	|-
								(f = g) ==> !s s'. f s s' = g s s'
					*)
					(REPEAT STRIP_TAC)
						(* 	[
									(f = g)
]	|-
									!s s'. f s s' = g s s'
						*)
				THEN
					(REPEAT AP_THM_TAC)
						(* 	[
									(f = g)
]	|-
									f = g
						*)
				THEN
					(FIRST_ASSUM ACCEPT_TAC)
)]
)
)	
			(*
				[] |- (!s s'. f s s' = g s s') <=> (f = g) : proof
			*)
)
;

(* \end{lstlisting}
\begin{lstlisting} % (*

EXAMPLES

Type instantiation is ubiquitous in the HOL logic proving system

*) \end{lstlisting} %

\section{Predicative Programming Laws}

We've already seen how the ability to substitute terms with expressions allows us to derive proofs from goals.
Since programs are proofs, this means that substitution allows us to derive new programs from existing
algorithms. The substitution may be a replacement of an abstract class with a functional prototype, or it may be
a data refinement. Whatever the reason, the ability to construct new programs from existing templates is a
powerful software development strategy.

Keeping with the existing model for state spaces and specifications, the following provides a suitable definintion of
substitution at the theoretical level. Our example shows how this can be used to derive higher level theorems such
as the forward substitution law.

\begin{lstlisting} % *)

val thmAbstractSpecification =
		INST_TYPE [alpha |-> ``:'a -> 'b``, beta |-> ``:'a -> 'b``, gamma |-> ``:bool``] SPEC_EQ_THM
			(* 	
				[] |- (!s s'. f s s' <=> g s s') <=> (f = g) : thm 			
			*)
;

val thmOnePointLemma=
	prove
	(
		`` (x = x) /\ (f x t) <=> f x t``,
		(
			(EQ_TAC	THENL
				[(
					(* 	[
]	|-
								((x = x) /\ (f x t)) ==> f x t
					*)
						(ASSUME_TAC (REFL ``x``))
						(* 	[(x = x)
]	|-
									((x = x) /\ (f x t)) ==> f x t
						*)
					THEN
						(FIRST_ASSUM MAKE_IT_SO)
),(
					(* 	[
]	|-
								(f x t) ==> (x = x) /\ f x t
					*)
						(DISCH_TAC)
						(* 	[
								(f x t)
]	|-
									(x = x) /\ f x t
						*)
					THEN
						(FIRST_ASSUM MAKE_IT_SO)
)]
)					
)
)
;
		
Define `subs f x e s s'
 = (let s'' = \y. if x=y then e s else s y
 in f s'' s') `;

val thmForwardSubstitution =
	let	val	
		conversion0 = BETA_RULE
						(
							SWAPLR_RULE
							(
								SPECL
									[
										``s'':'a->'b``,
										``\(y:'a).((x:'a) = y)``,
										``\(y:'a).((e:('a->'b)->'b) (s:'a->'b))``,
										``s:'a->'b``
]
										thmConditionalFunction
)
)
	and
		conversion1 = SWAPLR_RULE 						
						(
							BETA_RULE
							(
								SPECL
									[
										``s'':'a->'b``,
										``\ (y:'a).if (x:'a) = y then (e:('a->'b)->'b) (s:'a->'b) else s y``
]
										thmAbstractFunction
)
)
	and
		lemma0 = BETA_RULE
						(
							SPECL
								[
									``s'':'a->'b``,
									``\(y:'a).if (x:'a) = y then (e:('a->'b)->'b) (s:'a->'b) else s y``
]
									thmAbstractFunction
)
	and
		lemma1	=	VSUB ``t:'c`` ``s':'c``
						(
							VSUB ``x:'a->'b`` ``\(y:'a).if(x = y) then (e:('a->'b)->'b) (s:'a->'b) else s y``
								(INST_TYPE [alpha |-> ``:('a->'b)`` , beta |-> ``:'c``] thmOnePointLemma)
)
	in
		prove
		(
			``!f e x s s'. sc (assign x e) f s s' = subs f x e s s' ``,
			(
				(REPEAT STRIP_TAC)
					(* 	[
]	|-
								 sc (assign x e) f s s' <=> subs f x e s s'
					*)
			THEN
				(EVAL_TAC)
					(* 	[
]	|-
								(?s''.
									(!y. if x = y then s'' y = e s else s'' y = s y) /\ f s'' s')
								<=>
									f (\y. if x = y then e s else s y) s'
					*)
			THEN
				(REWRITE_TAC [(REWRITE_RULE [conversion0] lemma0),conversion1])
					(* 	[
]	|-
								(?s''.
									(s'' = (\y. if x = y then e s else s y)) /\ f s'' s')
								<=>
									f (\y. if x = y then e s else s y) s'
					*)
			THEN
				(SUBST_TAC [(SWAPLR_RULE lemma1)])
					(* 	[
]	|-
								 (?s''.
									(s'' = (\y. if x = y then e s else s y)) /\ f s'' s')
								<=>
										((\y. if x = y then e s else s y) = (\y. if x = y then e s else s y)) 	
									/\	
										f (\y. if x = y then e s else s y) s'
					*)
			THEN
				(EQ_TAC THENL
					[(
						(* 	[
]	|-
									 (?s''.
										(s'' = (\y. if x = y then e s else s y)) /\ f s'' s')
									==>
											((\y. if x = y then e s else s y) = (\y. if x = y then e s else s y))
										/\
											f (\y. if x = y then e s else s y) s'

						*)
						(DISCH_TAC)
							(* 	[
									(?s''. (s'' = (\y. if x = y then e s else s y)) /\ f s'' s')
]	|-
											((\y. if x = y then e s else s y) = (\y. if x = y then e s else s y))
										/\
											f (\y. if x = y then e s else s y) s'
							*)
					THEN
						(FIRST_ASSUM CHOOSE_TAC)
							(* 	[
									(s'' = (\y. if x = y then e s else s y)) /\ f s'' s'
								,
									(?s''. (s'' = (\y. if x = y then e s else s y)) /\ f s'' s')
]	|-
											((\y. if x = y then e s else s y) = (\y. if x = y then e s else s y))
										 /\
											f (\y. if x = y then e s else s y) s'
							*)
					THEN
						(FIRST_ASSUM (fn th => (TRY(REWRITE_TAC [(SWAPLR_RULE th)]))))
),(
						(* 	[
]	|-
											((\y. if x = y then e s else s y) = (\y. if x = y then e s else s y))
										/\
											f (\y. if x = y then e s else s y) s'
									==>
									 (?s''. (s'' = (\y. if x = y then e s else s y)) /\ f s'' s')
						*)
						(DISCH_TAC)
							(* 	[
									((\y. if x = y then e s else s y) = (\y. if x = y then e s else s y))
										/\
									f (\y. if x = y then e s else s y) s'
]	|-
									 (?s''. (s'' = (\y. if x = y then e s else s y)) /\ f s'' s')
							*)
					THEN
						(FIRST_ASSUM (fn th => (TRY (EXISTS_TAC ((#1(dest_eq(#1(dest_conj(concl th))))))))))
							(* 	[
									((\y. if x = y then e s else s y) = (\y. if x = y then e s else s y))
										/\
									f (\y. if x = y then e s else s y) s'
]	|-
											((\y. if x = y then e s else s y) = (\y. if x = y then e s else s y))
										/\
											f (\y. if x = y then e s else s y) s'
							*)
					THEN
						(FIRST_ASSUM MAKE_IT_SO)
)]
)
)
)
	end
;

(* \end{lstlisting}
\begin{lstlisting} % (*

EXAMPLES

	Please refer to the section on swapping algorithms for examples of the use of the forward substitution law
*) \end{lstlisting} %

\section{Swapping Algorithms}

The final exercise is to demonstrate the use of the theory on some sample programs.

A useful function on state spaces is the swap command which is defined as:

(s' x = s y /\ s' y = s x)

where s is free provided that s x and s y exist and are of the same type.

We wish to show that provided x and y are the same type, the following are valid implementatons:

\begin{enumerate}
\item{in the general case, instantiating variable names (type 'a) with strings}

\begin{lstlisting} % *)
fun EvaluateFor valList =
	if(null valList) then
	(
		(REPEAT DISCH_TAC)
		THEN
		(REPEAT (FIRST_ASSUM (fn th => (CHANGED_TAC (SUBST_TAC [th])))))
)
	else
	(
		(EVERY_ASSUM
			(fn th =>	let val instance = (SPECL [(hd valList)] th)
					in
					(
						(ASSUME_TAC instance) THEN
						(UNDISCH_TAC (concl instance))	THEN
						(REP_EVAL_TAC)
)
					end
)
)
		THEN
		(
			EvaluateFor (tl valList)
)
)
;

val GeneralSwap = let val
	conversion =	
		PURE_ONCE_REWRITE_RULE [thmAbstractSpecification]
			(
				SPECL
					[
						``"t"``,
						``(assign "x" (\ (s:string->'b). s "y"))``,
						``(\ (s:string->'b).s "x")``
]
					(INST_TYPE
						[alpha |-> ``:string``,
							gamma |-> ``:string->'b``
]
						(REFINEMENT_RULE
							(
								SPECL
									[
										``f:('a->'b)->'c->bool``,
										``e:('a->'b)->'b``,
										``x:'a``
]
									thmForwardSubstitution
)	
)
)
)
	in
		prove
		(
			``	(
					(
						\ (s:string->'b) (s':string->'b) . ((s' "x") = (s "y")) /\ ((s' "y") = (s "x"))
)
					[=.
					(
						sc
						(
							sc (assign ("t") (\ (s:string->'b).s "x")) (assign "x" (\ (s:string->'b). s "y"))
)
						(assign "y" (\ (s:string->'b).s "t"))
)
)
			``
			,
			(SUBST_TAC [conversion])
				(*	[
]	|-
							 (\s s'. (s' "x" = s "y") /\ (s' "y" = s "x")) [=. sc (subs (assign "x" (\s. s "y")) "t" (\s. s "x")) (assign "y" (\s. s "t"))					
				*)
		THEN
			(REP_EVAL_TAC)
				(*	[
]	|-
							!s s'.
								(?s''.
										(!y.if "x" = y then s'' y = s "y" else s' y = if "t" = y then s "x" else s y)
												/\
										(!y. if "y" = y then s' y = s'' "t" else s' y = s'' y)
)
								==>
									(s' "x" = s "y") /\ (s' "y" = s "x")
				*)
				
		THEN
			(REPEAT STRIP_TAC)	
		THEN
			(EvaluateFor [``"t"``,``"x"``,``"y"``])
		THEN
			REP_EVAL_TAC
)
	end
;

(* \end{lstlisting}
\begin{lstlisting} % (*

	Proof of an algorithm for swapping values among two variables

*) \end{lstlisting} %

\item{in the case where s x and s y are numeric}

\begin{lstlisting} % *)

load "arithmeticTheory";
open arithmeticTheory;
(*
	need this for LESS_EQ_REFL, LESS_EQ_ADD_SUB, SUB_EQ_0, and ADD_0
	
*)

val NumericSwap = let val
		conversion =	
			PURE_ONCE_REWRITE_RULE [thmAbstractSpecification]
			(
				SPECL
					[
						``"x"``,
						``(assign "y" (\ (s:string->num). ((s "x") - (s "y"))))``,
						``(\ (s:string->num).((s "x") + (s "y")))``
]
					(INST_TYPE
						[
							alpha |-> ``:string``,
							beta |-> ``:num``,
							gamma |-> ``:string->num``
]
						(REFINEMENT_RULE
							(
								SPECL
									[
										``f:('a->'b)->'c->bool``,
										``e:('a->'b)->'b``,
										``x:'a``
] thmForwardSubstitution
)
)
)
)
	and
		lemma = prove (
				``!(a:num) (b:num). (a + b -(a + b -b)) = (b + a - a)``,
				(PROVE_TAC [LESS_EQ_REFL, LESS_EQ_ADD_SUB, SUB_EQ_0,ADD_0,ADD_SYM])
)
	in
		prove
		(
			``	
				(
					\ (s:string->num) (s':string->num). ((s' "x") = (s "y")) /\ ((s' "y") = (s "x"))
)
				[=.
				(
					sc
						(
							(sc
									(assign "x" (\ (s:string->num).((s "x") + (s "y"))))
									(assign "y" (\ (s:string->num). ((s "x") - (s "y"))))
)
)
						(
								assign "x" (\ (s:string->num).((s "x") - (s "y")))
)
)
			``
			,
			(SUBST_TAC [conversion])
				(*	[
]	|-
							(\(s :string -> num) (s' :string -> num). (s' "x" = s "y") /\ (s' "y" = s "x"))
							[=.
								 sc
								 (subs (assign "y" (\(s :string -> num). s "x" - s "y")) "x"
									 (\(s :string -> num). s "x" + s "y"))
								 (assign "x" (\(s :string -> num). s "x" - s "y"))
				*)
		THEN
			(REP_EVAL_TAC)
				(*	[
]	|-
							!(s :string -> num) (s' :string -> num).
								 (?(s'' :string -> num).
								 (!(y :string).
									if "y" = y then s'' y = s "x" + s "y" - s "y"
									else s'' y = if "x" = y then s "x" + s "y" else s y) /\
								 !(y :string).
								 if "x" = y then s' y = s'' "x" - s'' "y" else s' y = s'' y) ==>
								 (s' "x" = s "y") /\ (s' "y" = s "x")
				*)
		THEN
			(REPEAT STRIP_TAC)	
		THEN
			(EvaluateFor [``"x"``,``"y"``])
				(*	[
						!(y :string).
							if "y" = y then (s'' :string -> num) y = (s :string -> num) "x" + s "y" - s "y"
							else s'' y = if "x" = y then s "x" + s "y" else s y
										/\
						!(y :string).
							 if "x" = y then (s' :string -> num) y = (s'' :string -> num) "x" - s'' "y"
							 else s' y = s'' y
										/\
						(s'' :string -> num) "y" = (s :string -> num) "x" + s "y" - s "y"
										/\
						(s' :string -> num) "y" = (s'' :string -> num) "y"
										/\
						(s'' :string -> num) "x" = (s :string -> num) "x" + s "y"
										/\
						(s' :string -> num) "x" = (s'' :string -> num) "x" - s'' "y"
]	|-
							 (s :string -> num) "x" + s "y" - (s "x" + s "y" - s "y") = s "y"
				*)
				(*	[
						!(y :string).
							if "y" = y then (s'' :string -> num) y = (s :string -> num) "x" + s "y" - s "y"
							else s'' y = if "x" = y then s "x" + s "y" else s y
										/\
						!(y :string).
							if "x" = y then (s' :string -> num) y = (s'' :string -> num) "x" - s'' "y"
							else s' y = s'' y
										/\
						(s'' :string -> num) "y" = (s :string -> num) "x" + s "y" - s "y"
										/\
						(s' :string -> num) "y" = (s'' :string -> num) "y"
										/\
						(s'' :string -> num) "x" = (s :string -> num) "x" + s "y"
										/\
						(s' :string -> num) "x" = (s'' :string -> num) "x" - s'' "y"						
]	|-
							(s' :string -> num) "x" = (s :string -> num) "y"
				*)
		THEN
			(PROVE_TAC [LESS_EQ_REFL, LESS_EQ_ADD_SUB, SUB_EQ_0,ADD_0,lemma])
)
	end
;

(* \end{lstlisting}
\begin{lstlisting} % (*

	BORROWING FROM ARITHMETIC THEORY TO SOLVE THE SPECIFIC CASE FOR NUMERIC SWAPPING
	
*) \end{lstlisting} %

\end{enumerate}

This concludes the demonstration.

\begin{comment}===LITERATE PROGRAM FILE TRAILER ===\end{comment}
 \begin{lstlisting}
(*
 Last updated October 12, 2010
*)
\end{lstlisting} %
% *)

