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Abstract 

This thesis reports the synthesis a series of novel dithiafulvenyl (DTF) compounds, and 

their characterization. This entails an investigation into their unique electronic properties, 

as well as their response to both chemical and electrochemical oxidation. This work 

expands upon previous work within the Zhao group to prepare bis-spiro compounds from 

DTFs, and works toward a mechanistic explanation for this process. Additionally, 

examination of DTF species unreactive to typical oxidative dimerization to 

tetrathiafulvalene (TTFV) using density-functional theory (DFT) optimization has 

elucidated the effect of resonance delocalization on the reactivity of the radical cation 

DTF toward TTFV formation. 

This thesis also reports the synthetic efforts toward a catechol-functionalized 

polysiloxane material for anticorrosion and antifouling marine coating additives. Several 

routes have been explored in attempts to obtain the target compound, including the 

Hiyama and Kumada coupling reactions. The difficulties faced in synthesis and the 

potential new avenues to pursue are discussed. 
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Chapter 1 

Introduction 

1.1 Tetrathiafulvalene 

Tetrathiafulvalene (TTF), a small -electron rich organic molecule, was first discovered 

accidentally in 1970 by the Wudl group.
1
 The initial investigations of TTF were focused 

on its crystallographic properties; however, it took very little time for progress to be made 

to assess its electrical and conductive properties, spring boarding into modern research 

work on its applicability in molecular electronics and exploration of the other fascinating 

molecular properties of its derivatives, such as tetrathiafulvalene vinylogues (TTFV). 

Indeed, TTF and related compounds have been found in organic syntheses since the 

1930s, often as undesired byproducts,
2
 but when Wudl reported that a chlorine salt of 

oxidized TTF acted as a conductor, more serious investigations began into TTF and its 

properties. Cowan and coworkers  performed unrelated work in the same year, preparing 

a charge transfer complex of TTF and TCNQ (7,7,8,8-tetracyano-pquinodimethane), 

taking electrons from the TTF and achieving conduction through an charge transfer to the 

TCNQ.
3
 This milestone in new conducting organic materials triggered vast interest in 

TTF, with the many opportunities to fine tune its conductive properties via manipulation 

of the length of the -system and incorporation of additional more heteroatoms into the 

molecule. Initially, the synthesis of TTFV was executed through a tedious route, taking 

eight synthetic steps to obtain TTF in poor purity and yields.
4
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TTF is derived from two units of dithiafulvene (DTF) through oxidative coupling, 

mediated by chemical oxidants, such as iodine or DDQ, or through applied potential. The 

reactivity of DTF is very complex and significantly dependent on factors such as steric 

hindrance around the vinylidene carbon and resonance delocalization of the radical cation 

species. As a result, the fundamentals of DTF chemistry are still a challenging research 

topic that awaits further investigation. 

TTF can be sequentially oxidized to form a radical cation and a dication. During the 

oxidation process, the non-aromatic dithiole unit of TTF loses an electron to form an 

aromatic dithiolium ring. For this reason, each of the oxidized states of TTF is stabilized 

by a gain of aromaticity at the cationic dithiolium ring. However, the most stable state is 

the dicationic (TTF
2+

) species, as it maximizes aromaticity and -conjugation. The 

stability of these compounds is highly appealing, because it allows the TTF to be used as 

a reversible -electron donor. -Electron donors have numerous uses in materials 

chemistry, such as oligothiophenes present in electroactive thin films,
5
 the use of carbon 

nanotubes as absorbants for environmental cleanup via -electron donor-acceptor 

interactions,
6
 and fluorescent sensors,

7
 to name a few. Although there are many potential 

sources of electron donors already available, the ease of oxidation of the TTF molecule, 

as well as the straightforward synthetic routes available to prepare it, make it a potential 

star in applied physical organic research. 
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1.1.1 -Extended TTFs (exTTFs)  

Simple TTF is a relatively small and uncomplicated molecule, but research has expanded 

the complexity and versatility of its derivatives for many years. One type of TTF is the 

family of -extended TTFs (-exTTFs), which extend conjugation either through fused 

aromatic rings on the dithiole ring (Figure 1.1, compounds 1-3),
8-9

 or by adding 

conjugated bridges in between the rings (Figure 1.1, compounds 4-6)
10-12

. 

 

Figure 1.1 Selected examples of -exTTFs. 
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The extension of the conjugated moieties around the dithiole rings reduces oxidation 

potentials. The formation of dicationic TTF derivatives can be considerably enhanced by 

the separation and delocalization of the positive charges across the extended -

frameworks of exTTFs. As a consequence, the Coulombic repulsion between the two 

dithiolium rings is attenuated, exerting a significant stabilizing effect on the dications. 

The increased degree of conjugation in exTTFs also modifies the electronic absorption 

behaviour of the compound, and can effectively change conformational properties and 

reactivity.  

For most of the known exTTFs, this second oxidation can become much easier than the 

first oxidation, as a compound tends to undergo a simultaneous two-electron oxidation 

rather than stepwise single-electron transfers. This has been generally referred to as the 

“inverted potential” scenario in the electrochemistry of TTFs. Consider compound 7,
13

 

Figure 1.2, which undergoes its first oxidation at +0.03 V, and its second oxidation at 

+0.46 V (vs. Ag/Ag
+
). These oxidations may be made more difficult by the electron-

withdrawing substituents 7 bears, a common trend seen in TTFs.
14

 In comparison, 

compound 8,
15

 which is an exTTF carrying quinoid and polyaromatic units bridging the 

two dithiole rings, undergoes a two-electron transfer oxidation at +0.50 V (vs. SCE). The 

markedly different electrochemical behavior can be ascribed to the central -units of 

compound 8, which stabilize the dication of 8 to a great extent. 
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Figure 1.2 Comparison of redox-activities for -exTTFs. 

1.1.2 Applications 

1.1.2.1 Organic conductors and superconductors 

The initial appeal of TTF was its potential use as the first organic conductor, wherein 

charge-transfer salts of the TTF oriented themselves in the solid state such that the central 

double bonds stacked, permitting intermolecular orbital interactions, and resulting in 

unidirectional conductivity.
1
 In more recent investigations, TTF has been used as a 

superconductor, and found to have very high transition temperatures compared to other 

materials.
16

 As a strong electron donor, it is easy to produce electron flow through 

materials composed of salts or complexes bearing TTF. Maximising charge carrier 

generation is the key to enhancing conductivity, which is best achieved with TTF by 

reducing the energy gap between the TTF and its electron acceptor counterpart. 

In 2007, a simple amide-functionalized TTF was developed by the Amabilino group to 

investigate the effect of hydrogen bonding in the formation of conducting nanowires in 

the solid state.
17

 This entailed the synthesis and irreversible heat treatment at 350 K of 

compound 9 xerogels (Figure 1.3) to yield a new phase of material. This new phase 

possessed a room temperature resistivity of roughly 20–30 Ω·cm, and conductive AFM 
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found a fibre-like morphology of the converted xerogels on graphite, with some regions 

even having parallel nanofibres. The more highly conducting regions of the gel, where 

these fibres were observed, were easily saturated with current, exhibited metallic 

character. In the less easily saturated regions, a wider band gap was observed, consistent 

with semiconductor character. It can be ascertained from this work that the structure of 

TTF-conductors can be enhanced by the presence of a hydrogen-bonding system, which 

directs assembly of the gels and improves their stability. 

 

Figure 1.3 Structure of compound 9. 

In the recent work by Cui and coworkers, a TTF ligand was used to coordinate with 

nickel to create a superconductor (compound 10, Figure 1.4).
18

 The behaviour of this 

complex was assessed on several fronts, evaluating the effect of temperature, pressure, 

and applied magnetic field. Crystal structure determinations of compound 10, [Ni(hfdt)2] 

(hfdt=bis(trifluoromethyl)tetrathiafulvalenedithiolate), at 12, 100, 200, and 250 K, 

indicated  that the compound was structurally stable at all temperatures, a characteristic 

essential to a functional superconductor. Using a four-probe resistivity system, small 

crystal samples of 10 were subjected to high pressures at room temperature. Initially, at 

ambient pressure, 10 was at the very least a functional semi-conductor with a resistivity 

of 60 Ω cm and a calculated band gap of 0.12 eV, but as the pressure was increased to 7.3 
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GPa, the resistivity dropped down to 0.003 Ω cm, while the band gap similarly shrank. At 

8 GPa, 10 became a semimetal, with no calculated band gap. With constant pressure 

studies at 7.6 GPa, the resistivity dropped until 85 K, at which point it increased sharply. 

Superconductivity was confirmed with the presence of a strong resistivity decrease at 8.1 

GPa, with temperature onset at 5.5 K.10, subject to a pressure range of 7.3 to 8.6 GPa and 

a temperature range above 3.3 K, is a highly effective superconducting material for new 

applications.  

 

Figure 1.4 Superconductor 10 ([Ni(hfdt)2]). 

1.1.2.2 Sensors 

Thanks to its reversible oxidization, during which TTF undergoes a conformational 

change, TTF is a very useful switchable material, with applications such as reversible 

sensors and selectively solubilizing materials.
19-21

 It has drawn great attention in 

biological and enzymatic chemistry as an electron mediator for other redox sensitive 

sensing materials, although this is a niche application for TTF.
22-23

 It can operate as a 

ligand, binding to metal cations with varying degrees of selectivity, or an anion sensor, 

likewise with varying degrees of selectivity. 

An excellent example of a TTF derivative functioning as a metal ion sensor would be that 

of compound 11 (Figure 1.5), a ligand prepared using TTF as a chromophore.
24

 Upon 



8 

 

binding to nickel(II) in solution, an immediate change in UV-Vis absorption is observed, 

with a new band developing at 318 nm, from a pure ligand absorption at 283 nm. This 

new band, found in the region indicative of ligand-centered >* and n* 

transitions, is likely due to a conformational change from trans to cis upon complexation. 

It is reasonable to attribute this change in absorption to the electron donation of TTF 

through the 2,2’,6’,2’’-terpyridine (terpy) moiety of the ligand into the nickel(II) upon 

binding. It is evident that a significant change in the electronic character of 11 has taken 

place, supported by a redshift of more than 100 nm for the intramolecular charge transfer 

band, typical behaviour for strong metal complexation. The behaviour associated with 

nickel(II) was also observed upon titration with zinc(II) and cadmium(II) solutions, and 

observed with minor differences in the case of iron(II). This indicates, as one would 

expect, that a simple ligand such as 11 is not a selective sensor, but useful as a non-

specific reagent for the detection of a number of metal cations. Compound 11 was 

investigated at a concentration of 1.25 · 10
-5

 mol  L
−1

, and found to respond to as little as 

0.25 equivalents of metal ion solution, presenting a poor threshold of sensitivity for 

analytical purposes. However, this issue can be disregarded, as it is unlikely that 11 

would be used as an analytical reagent, but rather, it would find purpose with 

multifunctional molecular materials, such as those related to optics or magnetism. 
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Figure 1.5 Compound 11 that acts as a colorimetric metal sensor. 

Another example of TTF acting as a metal ion sensor is when a TTF is bonded to a 

calixarene. Compounds 12 and 13 (Figure 1.6) were prepared by Zhao and coworkers 

using simple starting materials and click chemistry.
25

 In this case, 12 and 13 displayed 

changes in their UV-Vis spectra for only copper(II) and mercury(II) salt solutions, out of 

thirteen different metals ions tested. It is reported that these changes are simply due to 

progressive oxidation of the TTF in the presence of these metals, but not attributed to 

their binding to the host as such. Nevertheless, the compounds are still regarded as a type 

of chemosensor system for metal ions. In the presence of p-chloranil, a large excess of 

lead(II), and slightly less scandium(III), lead(II), and zinc(II) result in changes in the UV-

Vis spectra, attributable to the intermolecular electron transfer between TTF-calixarene 

and the p-chloranil, but the significant amounts of metals needed to mediate these 

transfers suggest that the binding is weak. There is some slight improvement in transfer 

for 13 compared to 12 with respect to lead(II), which may be accounted for by the 

flexibility of the TTF arms, allowing the metal to better interact with the p-chloranil 

oxygen, the triazolyl nitrogen and the dithiafulvenyl sulfur atoms, which in turn enhances 

electron transfer. 
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Figure 1.6 TTF-calixarene metal sensors 12 and 13. 

Another use for TTF-based sensors is anion detection. Even simple structures can 

undergo significant changes in UV-Vis or electrochemical responses upon analyte 

addition. One prime example of this is compound 14 (Figure 1.7), a fluoride sensor, 

which showed an enormous change in UV-Vis upon addition  of fluoride ion which, 

according to the authors, deprotonated the hydrazone –NH (realistically, it is more likely 

that the fluoride hydrogen-bonds to the hydrazone hydrogen).
21

 In the UV-Vis, the * 

band of the sensor shrank upon fluoride addition and the ICT band grew. This is, as one 

would expect, because the fluoride-induced deprotonation or hydrogen bond at the 

nitrogen site increases its electron pushing effect, raising the * MO of the molecule and 

facilitating intramolecular charge transfer (ICT). Compound 14 also presented a huge 

difference in cyclic voltammograms after fluoride addition, with a positive shift of 395 

mV for the first anodic potential observed after 4 equivalents of fluoride were added. The 
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fact that a large anodic shift was observed is generally uncommon, as anion binding tends 

to stabilize the oxidized state, and result in a cathodic shift. With compound 14, the 

deprotonation improves the ICT of the sensor, as discussed with respect to the UV-Vis, 

and the electron donation from either the TTF or the deprotonated hydrazone nitrogen to 

the electron-withdrawing 2,4-dinitrophenyl takes place more readily. 

 

Figure 1.7 Fluoride sensor 14. 

1.1.2.3 Molecular switches 

TTFs are popular choices as components of redox-controlled molecular switches, owing 

once again to their excellent tuneable redox and structural properties. Because their 

oxidations are readily reversible, they are inherently appealing as “triggers” in a 

molecular switch, with more than one electronic state, or switch stop, available. 

Furthermore, because TTF can be oxidized by chemical or electrochemical methods, it 

offers versatility in diverse applications and research fields. As well, its color changes 

upon change of oxidation state are usually significant, which allow easy monitoring and 

interpretation of the switching activity by UV-Vis spectral analysis and even simple 

visual inspection. The changes in fluorescence and cyclic voltammetric behaviours also 
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serve as excellent investigative tools, providing even further means to study a system. 

TTF can be incorporated for diverse purposes, such as the development of molecular 

machines,
26-28

 or to work towards molecular computers through logic gates.
29-30

 

Investigations into molecular switches tend to involve very rational design, to anticipate 

the changes in stimuli required to effect new states. This often leads to careful 

development of synthetic methodologies, sometimes involving template synthesis for 

larger structures, while other times requiring extensive application of coupling reactions. 

A more basic example would be compound 15 (Figure 1.8), which alternates between a 

vase and kite conformer based on the oxidation states of the incorporated TTFs.
31

 The 

change in conformation is dramatic and can be easily examined by the behaviour of 15 in 

a cyclic voltammogram. The oxidations are more difficult for 15 than the parent TTF, 

especially the first two-electron oxidations, as the generated 15
2+ 

bears two radical 

cations in close proximity to one another, which experience some electronic coupling and 

Coulombic repulsions. This instability, as well as the presence of electron-withdrawing 

alkylsufanyl and quinoxaline substituents, increase the potential required for the first 

oxidation, and result in a broad oxidation peak, as well as conformational change. The 

second two-electron oxidation takes place relatively readily, as the cationic regions of the 

molecule are no longer interacting, and causes no further conformational change.  
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Figure 1.8 Conformational switching of 15. 

Another simple example is the compound series in Figure 1.9, designed as chiral 

molecular switches to be driven by TTF oxidation and cationic repulsions.
32

 Molecules, 
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such as 16, possessed of short o-alkylthio- linkers to TTF on the 2,2’-positions of the 

BINAP, formed a cation radical dimer (TTF2
2+

) upon the first oxidation of both moieties, 

stabilizing the Coulombic repulsions, but with the second oxidation, they repelled each 

other further, increasing the dihedral angle of the BINAP considerably, as observed in the 

CD spectrum. Furthermore, when further TTFs were linked on the 6,6’- positions, as in 

compound 17, more significant changes were observed, even in the first oxidation, as the 

6,6’-TTFs are incapable of forming the cation radical dimer to stabilize themselves. 

 

Figure 1.9 Chiral molecular switches 16 and 17. 
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The interactions between supramolecular assemblies will obviously change if some 

property within one molecule is changed, giving rise to the notion of molecular machines. 

As seen in Figure 1.10, a system to mimic natural skeletal muscle was developed, based 

on affinities for different groups and interactions in different oxidation states.
33

 In the 

neutral state, assembly 18 has two tetracationic cyclophanes, cyclobis(paraquat-para-

phenylene) (CBPQT
4+

) residing around the TTF moieties of a [3]rotaxane, thanks to 

TTF’s electron donating ability and - stacking interactions. However, upon chemical or 

electrochemical oxidation, the CBPQT
4+

s’ movement to the naphthalene could be 

monitored by 
1
H NMR, CV, and UV-Vis spectroelectrochemistry. This movement was 

triggered through repulsions between the dicationic TTFs and pyridiunium groups, as 

well as attractive - interactions between the naphthyl and pyridinium groups. 
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Figure 1.10 Neutral and oxidized rotaxane assembly 18. 
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An excellent example of a molecular logic gate can be seen with compound 19 (Figure 

1.11).
34

 This molecule responds to diverse stimuli (inputs) to offer different outcomes 

(outputs), demonstrating varying logic gate performances. While 19 cannot be thought of 

as selective, it acts as a logic gate, from either an initial neutral or initial oxidized state, in 

several capacities. In the presence of certain inputs neutral 19 can act as an AND, OR, 

and INHIBIT logic gates, going from non-fluorescent to fluorescent, with measured 

fluorescence as the output (truth table for AND Table 1.1). For NOT, NAND, NOR, and 

XNOR logic gates, the initial state is that of 19
2+

, which will change the output to the loss 

of fluorescence, instead of its growth or initialization (truth table for NAND Tables 1.2). 

 

Figure 1.11 Oxidation of logic gate 19. 

Input 1: Ce
4+

 Input 2: H
+
 

Normalized fluorescence 

intensities (PL) 

0 0 0 (0.08) 

1 0 0 (0.06) 

0 1 0 (0.30) 

1 1 1 (1.00) 

Table 1.1 Truth table for 19 as AND logic gate, with inputs (NH4)2Ce(NO3)6 (Ce
4+

) and 

CF3COOH (H
+
). 
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Input 1: Fe
2+

 Input 2: NOBF4 
Normalized fluorescence 

intensities (PL) 

0 0 1 (1.00) 

1 0 1 (0.90) 

0 1 1 (1.00) 

1 1 0 (0.07) 

Table 1.2 Truth table for 19
2+

 as NAND logic gate, with inputs Fe(ClO4)2 (Fe
2+

) and 

NOBF4. 

1.1.3 Synthetic methodologies 

1.1.3.1 TTF 

Initially, synthesis of TTF was executed through a tedious route, taking eight synthetic 

steps to obtain TTF in poor purity and yields.
4
 Due to recent research to find better 

synthetic routes for TTFs, numerous excellent methods have been developed to readily 

access a wide variety of simple and complex TTFs. In addition to the final step in 

preparation of TTF, there are many common precursor steps found throughout the 

literature. Presented in Scheme 1.1 are a series of synthetic routes to TTF (modified from 

reference 35).
35
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Scheme 1.1 Synthetic methods for constructing the TTF skeleton. 

As shown above, there are many precursors that can be used to make TTF. However, 

these precursors themselves have many synthetic routes available for their preparation. 

Scheme 1.2 (modified from reference 35) shows the various methods to make a typical 

thione compound, a key precursor to TTF. 
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Scheme 1.2 Synthetic methods for thione. 

As shown in Scheme 1.1, there are also many uses for a dithiolium salt in the preparation 

of TTF. There are several straightforward chemical methods by which a dithiolium salt 

can be prepared (Scheme 1.3, modified from reference 35). 

 

Scheme 1.3 Synthetic methods for dithiolium salt. 
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Among all the methods available to make TTF, there are three that are the most popular. 

As demonstrated in Scheme 1.4, the first, (a), is the base-promoted coupling of dithiolium 

salts or dithiole-2-chalcones; the second, (b), is the phosphite-promoted coupling of the 

same. These two are the best options for the synthesis of symmetric TTFs. The third 

method in Scheme 1.4, (c), the base-promoted coupling of a Wittig reagent and a 

dithiolium salt, is a highly efficient choice for the generation of asymmetric TTFs.  

 

Scheme 1.4 The major routes to TTF. 

The thione precursor, used for TTF synthesis in Scheme 1.2, is easily prepared on a bulk 

scale through the use of carbon disulfide and an alkali metal, such as sodium or 

potassium.
36

 The reduction of carbon disulfide is performed readily by the alkali metal, 

and the reaction mechanism is described in Scheme 1.5. The resultant dithiolate ion is 

isolated as the tetraethylammonium salt of its zinc chelate. Substitution reactions between 

the dithiolate-zinc complex and appropriate electrophiles, such as alkyl halides, acyl 

halides, alkynyl halides, and alkenyl halides, yield thione products with the desired 

substituents (Scheme 1.6). 
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Scheme 1.5 Mechanism of 1,3-dithiole-2-thione-4,5-dithiolate (dimercaptoisotrithione, 

dmit) formation by sodium reduction. 

 

Scheme 1.6 Synthetic preparation methodology of thione precursor by sodium reduction 

of carbon disulfide. 

From the thione precursor, a dithiazolium salt can be prepared. This requires an addition-

reduction-elimination series of reactions, resulting in a cationic and an aromatic dithiole 

ring. This process entails the alkylation of the thione, and is generally favorable thanks to 

the aromaticity developed, but strong alkylating reagents are still required to overcome 

the -bond. Dimethyl sulfate at 100 °C is a popular choice for reaction conditions 

(Scheme 1.7), and can be followed by addition of fluoroboric acid to yield the dithiolium 

tetrafluoroborate salt by precipitation (Scheme 1.8).
37
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Scheme 1.7 Methylation of thione using dimethyl sulfate. 

 

Scheme 1.8 Synthesis of dithiolium salts. 

Dithiolium salts are functional TTF precursors, as they can be reacted with a phosphine to 

yield a Wittig reagent, or reacted with phosphite to yield a phosphonate ester (Scheme 

1.9). These can be used to make a variety of TTFs: direct coupling with a dithiolium salt 

can produce a simple TTF, while the use of either as a precursor to a Horner–Wadsworth-

Emmons reaction can yield -exTTFs, which can be composed of large and extended 

conjugated structures. 

 

Scheme 1.9 TTF precursor preparations. 

It is worth noting that, in dilute conditions, the thione can react with an excess of 

trialkylphosphites to produce the phosphonate ester in good yield. However, while this 
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one-step process is very efficient, the excess of trialkylphosphites makes purification very 

difficult and limits the applicability beyond the laboratory scale. 

Modification of the TTF skeleton follows several basic routes; a very common one is to 

lithiate TTF with an organolithium reagent at low temperature, and then add electrophiles 

to react further. A series of examples of this are presented in Scheme 1.10, all of which 

have synthetic significance of their own. The aldehyde product is particularly useful, as it 

can be subjected to an olefination reaction to extend the chain of conjugation. The 

lithiation can be controlled by electron donating substituents on the dithiole ring. The 

presence of an electron donor reduces the acidity of the proton adjacent to it, and vice 

versa for electron withdrawing substituents, permitting the preparation of multisubstituted 

TTFs.
38
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Scheme 1.10 Lithiation of TTF and selected further reactions. (modified from reference 

38) 

1.1.3.2 -exTTFs 

In order to prepare -exTTFs, the conjugated chain must be extended. As previously 

discussed, this can be accomplished by increasing the amount of conjugation between the 

dithiole rings, or by extending it by the addition of substituents to the rings. A common 

way to extend the amount of conjugation using substituents bonded  to the dithiole rings 

is to use perform a Diels–Alder reaction,
39

 requiring the generation of the reactive diene 

with a desired dienophile in situ, in order to prevent its decomposition and side reactions. 

The biggest issue with the Diels–Alder reaction is that it usually requires high 

temperature, which can cause the product to undergo decomposition if it is not thermally 

stable. 
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There are two popular methods used in order to increase the conjugation between the 

dithiole rings using -conjugated spacers. The first is to prepare a diketone or dialdehyde 

to be used as the spacer, and then either couple it with thione or convert it to the target by 

a Wittig reaction. The first method is quick and efficient, but has the previously discussed 

issues of reactions with trialkylphosphites, as well as the risk of decomposition due to the 

high temperatures required to perform the reaction. The Wittig olefination utilizes 

phosphonium salts and mild conditions, with little byproduct formation, but it requires 

reagents to be base-stable, and the phosphonate preparation is tedious and expensive. The 

second method by which -exTTFs are prepared is through reactions of dithiole 

monomers to extend conjugation. This offers a great deal of variety in methods, as just 

about anything can be self-coupled to produce a target. Scheme 1.11 presents a summary 

of these two methods. 
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Scheme 1.11 Synthetic methods to extend the -chain in TTF. 

1.1.4 TTFV 

Tetrathiafulvalene vinylogues (TTFVs) are a specific subset of -exTTFs, which bear 

two vinyl groups between the dithiole rings. As can be seen from Figure 1.12 below, the 

oxidation of dithiafulvene (DTF) to TTFV follows a very straightforward radical 

dimerization mechanism. 
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Figure 1.12 Mechanism of DTF oxidation. 

In the dimerization reaction, oxidation of the DTF takes place at first by a chemical 

oxidant or applied potential. The oxidation yields an aromatic and stable radical cation, 

[DTF]
+·

, which dimerizes to yield a dicationic intermediate, [TTFV·2H]
2+

. In this 

intermediate, the Coulombic forces between the two nearby cationic dithiolium rings are 

significant. As a result, the molecule favors a trans conformation. Deprotonation of the 

first TTFV alleviates this repulsive stress, and further oxidation of TTFV takes place to 

restore the [TTFV]
2+

. This is then reduced by a reducing agent, such as sodium 

thiosulfate, to yield a cisoid conformer product. 

1.1.4.1 TTFV Synthesis 

The stereotypical preparation of TTFV requires the oxidation of an appropriate 

dithiafulvene (DTF), followed by its radical homocoupling, and subsequent reduction. 
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This task can be accomplished using a chemical oxidant, such as iodine or 2,3-dichloro-

5,6-dicyano-1,4-benzoquinone (DDQ), or electrochemically. TTFV macrocycles and 

polymers are attainable through the oxidation of monomers bearing more than one DTF 

unit by whatever means is preferred. Bulk electrolysis is a highly efficient means of 

producing large quantities of TTFVs from DTF precursors, and tends to proceed well, 

except in rare cases. 

TTFVs can, of course, be prepared from a DTF bearing an aldehyde, which can be 

subjected to either a Wittig or Horner–Wadsworth–Emmons olefination; however, this is 

a less common choice, as it increases the synthesis time, but it offers reasonable access to 

an asymmetric TTFV. An example is shown in Scheme 1.12,
40

 wherein a Vilsmeier–

Haack reaction generated the second aldehyde, which was then reacted with a 

phosphonate ester in a Horner–Wadsworth–Emmons reaction to produce the desired 

target, compound 20. 
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Scheme 1.12 Stepwise synthesis of an asymmetric TTFV, compound 20. 

1.2 Recent Progress in Anticorrosive Materials 

While part of this thesis pertains to fundamental study, a brief foray into applied research 

was undertaken involving corrosion, its mechanism, and marine anticorrosion coatings, as 

well as bioinspiration for new coating additives. It is known that marine corrosion has 

presented a considerable challenge to humanity’s maritime endeavours since time 

immemorial. The destruction and replacement of metal components, not the mention the 

costs associated with preventative and restorative maintenance, loss of efficiency, and 

loss of productivity all combine to create barriers to be overcome. The marine 

environment provides especially harsh conditions in which to combat corrosion, as it 
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offers an infinite supply of electrolytes, and is refreshed at the surface with oxygen 

through wave-action mixing. 

In order to effectively prevent, or at least reduce, corrosion, the mechanisms it follows 

must be well understood. Once a solid grasp of corrosion mechanisms is attained, it 

becomes a much simpler task to prevent the process in the first place. 

1.2.1 The Mechanism of Corrosion 

Galvanic corrosion requires a surface to behave as an electrochemical cell. This entails 

the presence of an anode, a cathode, and two bridges between the two-one being an 

electrolyte solution, the other being metallic conductor. Assuming there is a potential 

difference between the anode and the cathode, and suitable materials for oxidation and 

reduction, respectively, at each, corrosion will take place. The potential difference is 

formed when there are different conditions at different sites on the surface, such as 

differing concentrations of electrolytes (e.g., sodium chloride in seawater) or dissolved 

oxygen. 

The anode is the metal surface, generally iron, although there are often inclusions of other 

metals, or metal sulfides, such as manganese(II) sulfide in steel, contaminating the 

substrate. Upon oxidation, the metal can be converted to water-soluble ions, or it can 

form a protective (and insoluble) oxide coating on the metal surface. In any case, the 

region where the metal is oxidized alters the consistency of the metal surface, resulting in 

further oxidation at that site. This reaction is paired with a cathodic reduction of dissolved 
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oxygen to hydroxide. Overall, the processes of galvanic corrosion constitute an 

electrochemical cell. 

There are many environmental factors encouraging corrosion processes. The “splash 

zone” best exemplifies the problems that increase the rate and severity of marine 

corrosion. The constant wetting ensures a water-film on the surface (a water-film can also 

be formed atmospherically at greater than 80% humidity), creating the chance for a salt 

bridge to form. Furthermore, this wetting is with saltwater, which is itself an electrolyte, 

and guarantees a good connection between anodic and cathodic sites. The re-mixing of 

the water with fresh air ensures a high dissolved oxygen concentration, thus enabling the 

cathode to perform its counterpart reduction to the oxidation of the metal by the anode. 

The mixing at the water surface as compared to sites either lower or higher on the metal 

surface creates differences in the concentrations of electrolytes and oxygen, forming the 

necessary potential difference for galvanic corrosion to take place. 

The “splash zone” is also relatively warm, as it is near the surface, increasing the rate of 

corrosion, while also encouraging microorganisms, such as sulfate-reducing bacteria 

(SRB), to flourish and impact the strength of the substrate. Wave-action can stress the 

metal, while changes in temperature are also likely to exist throughout the metal, which 

also impacts its mechanical performance.  

Other problems that can enhance corrosion include existing pits and crevices. Pitting 

corrosion tends to start at defects in the metal, such as the previously-mentioned 

manganese(II) sulfide inclusions. The small manganese sulfide areas become anodic, and 
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are oxidized, generating micropits. These pits experience different electrochemical 

conditions compared to the bulk metal surface due to poorer mixing. This allows further 

oxidation to occur resulting in growth of pits through galvanic corrosion. The presence of 

SRB rapidly converts the sulfide to hydrogen sulfide, a gas which leaves the metal 

surface around the site unprotected. The presence of SRB has been demonstrated in the 

literature to have a significant impact on the rate and degree of pitting observed.
41

 Again, 

this relates to the water temperature, as the activity of SRB is reduced at low 

temperatures. For instance, it has been observed that pitting corrosion is diminished in 

polar waters as opposed to more temperate conditions. Crevice corrosion is very similar 

to pitting corrosion, only it begins in sites where surfaces meet, such as metal-metal or 

metal-non-metal parts adhered to one another by some means. The presence of these 

pieces offers a shelter from currents, restricting mixing and creating different 

concentrations of dissolved oxygen and electrolyte as compared to other areas on the 

metal surface. This gives the needed potential difference for galvanic corrosion to 

commence and, from this starting point, it spreads. It is reasonable to assume that SRB 

continue to have an influence in crevice corrosion, and may even have a greater impact in 

crevices, as there is an immediately available protected site for colonization.  

1.2.2 Protective Coatings 

The application of protective coatings, known as “barrier protection”, shields corrodible 

substrates from corrosion by preventing the passage of dissolved oxygen and electrolyte 

solution to the substrate, thus blocking the formation of the galvanic cell and its resulting 

damage. There are two means by which a barrier can be applied upon a surface; firstly, in 
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a process called passivation, the simple by-products of corrosion, insoluble metal oxides, 

create an impermeable barrier (for example, the atmospheric corrosion of copper(0) 

creates a green copper(II) oxide, known as patina, which shields the bulk of the copper 

from further corrosive action); secondly, a coating can be applied, composed of parts 

such as binders, pigments, extenders, solvents, and additives. While binders and pigments 

make up the bulk of an organic coating and its performance, the other components each 

have specialized purposes. Extenders can be added to increase the volume and thus 

surface coverage, while solvents dictate the film formation behaviour and ease of 

processability. Additives are added in small amounts to fine tune and enhance specific 

properties of the coating.
42

 

In pigment-centred coatings, inert pigments are mixed in with the other components, 

which align within the organic binders in the film to create layers and slow the passage of 

oxygen and other corrosive substances. The resultant reduced concentrations slow the 

rate of corrosion and protect the substrate.
42

 By comparison, binder-centred coatings 

operate with organic polymers, relying on the organic binders to act as an impenetrable 

barrier. This demands a strong grasp of structure-property relationships in molecules, as 

the organic binders must be able to bind to the metal substrate, as well as provide a 

protective barrier, and offer a good mechanical performance.
42

 

Amongst binder-centred coatings, the most popular choices for marine anticorrosion 

applications are epoxy resins. These combine bisphenol A and epichlorohydrin, and are 

then crosslinked with either polyamines or polyamides. These resins offer good adhesion 

to metal substrates, and are resistant to chemical attack. However, they are subject to 
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damage and degradation due to UV exposure, demanding a secondary topcoat to be 

applied to protect the basecoat from this condition (generally polyurethane).
42

 A second 

widely used type of polymer binder is acrylic. Polymerization of acrylic acid or ester 

yields the bulk binder, while isocyanates or amine resins are added to enhance 

crosslinking and to cure the coating. Pure acrylics tend to be disfavored, as they do not 

offer great corrosion protection, but modifications can be performed to augment their 

performance.
42

 Polyurethanes themselves are also often chosen, as they have good 

mechanical strength, gloss and color retention, and are resistant to scratching and 

mechanical harm, all attributable to the hydrogen bonds formed between the isocyanate 

groups in the coatings and compounds bearing active hydrogens. One major drawback to 

these types of coatings is that they are weak against mechanical strains, but they can be 

improved with modifications.
42

 Polysiloxanes are another type of organic coating, 

utilizing the strength of silicon-oxygen bonds to protect their substrate. They offer 

excellent color and gloss retention, but have poor mechanical properties and miscibility 

with more common coatings.
42

 Furthermore, because polysiloxane is bio-inert, it is safe 

for diverse applications, including medical implants, and, because its hydrophobic nature 

offers a strong barrier to charged species (such as those of an electrolyte solution) 

reaching a metal surface, it can inhibit corrosion.
43

 

1.2.3 Bioinspired Design of Anticorrosion and Antifouling Materials 

The organisms that survive and thrive in harsh marine environments can offer clues 

toward enhancing materials in those same conditions. One prime example of this is the 

Atlantic blue mussel, which adheres itself for life to marine substrates such as rocks, 
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wharves, or any other stable footing. From here, these simple filter feeders can live for 

many years. The mechanism by which these animals hang on is well worth investigation 

into its applicability in human endeavours and industrial pursuits. 

The adhesive feet of blue mussels are essentially protein chains secreted by the mussel. 

What is intriguing about these chains is that, at the foot-substrate interface, the chains are 

composed of 21 and 27 mole percent dopamine (compound 21, Figure 1.13),
44

 whose R 

group is the organic moiety catechol (bolded group of compound 21). 

 

Figure 1.13 Structure of dopamine, compound 21; bolded structure is catechol. 

This molecule has drawn attention from the scientific community, especially from 

chemists interested in using catechol-functionalized molecules to achieve surface 

modifications,
45-47

 but also from the medical field, as a potential scaffold for 

hydroxyapatite (the material in bones),
48

 wet adhesives that do not trigger significant 

inflammation,
49

 and for biologically degradable adhesive hydrogels that do not induce 

inflammation.
50

 

The mechanism of the adhesive action of catechol has yet to be fully elucidated, but there 

are several proposed mechanisms. One proposed mechanism is co-ordination bonding, 

wherein a deprotonated catechol can replace a ligand on the surface to create a stable 
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bond.
51

 Another is bidentate chelation bonding, wherein both oxygens play a role in 

bonding to a surface atom,
52

 possibly improving the stability of the surface atom by 

filling more sites and improving the coordination environment of the central atom. A 

third possible mechanism for the adhesive nature of catechol could be a bridged bidentate 

model, where each oxygen atom bonds to a different surface atom.
53

 A final proposed 

mechanism requires a mixture of either monodentate bonding with some hydrogen 

bonding through the hydrogen of the hydroxyl groups on catechol, or monodentate-

bidentate bonding, varying over the surface.
54

 Of course, the mechanism of binding varies 

depending on the surface composition,
45

 and is also likely to change based on the 

macromolecular structure upon which the catechol is functionalized. 

This moiety holds great promise in marine research, as it is functionally adhesive in wet 

conditions, but can still be modified to perform other tasks, such as antifouling.
55

 The 

potential to prepare materials with multiply defined functions is highly intriguing, and 

could be used to remove flaws from other compounds, such as polysiloxanes, while 

leaving the strengths.  

1.2.4 Polysiloxanes in Chemistry 

1.2.4.1 Hydride Sources 

Polysiloxanes, especially polymethylhydrosiloxane (PMHS) (22, Figure 1.14), have been 

investigated as gentle and environmentally friendly hydride sources for many years.
56-57

 

They are cheap and straightforward to prepare, as well as highly stable, and can be used 

as hydride transfer reagents (from the weak silicon-hydrogen bond) to prepare expensive 
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reagents such as organotin hydrides (e.g., one of the best ways to prepare Bu3SnH is from 

(Bu3Sn)2O and PMHS), demonstrating that the low cost of PMHS and its stability toward 

multiple functional groups do not affect its applicability. 

 

Figure 1.14 General structure of compound 22 (PMHS). 

In recent work by Chandrasekhar and coworkers, PMHS was utilized as a hydride 

transfer reagent to cleave allyl ethers, esters, and amines to generate alcohols (up to 94% 

yield), acids (up to 87% yield), and primary amines (up to 92% yield) respectively 

(Scheme 1.13).
58

 Simply by combining PMHS, ZnCl2, and Pd(PPh3)4 in THF at room 

temperature, their work has served to expand the usefulness of the allyl protecting group, 

relying on the gentle and one-step PMHS approach, rather than the use of harsh 

potassium tert-butoxide and acid workup. Furthermore, this work studied the selectivity 

of the PMHS hydride for the allyl-X bond in the presence of other alcohol protecting 

groups, and it was found that benzyl, p-methoxybenzyl, tosyl, tetrahydropyranyl, 

methoxy methyl, tert-butyldimethylsilyl, and acetyl were all stable under these 

conditions, providing researchers with another avenue for selective deprotection of diols. 
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Scheme 1.13 Deallylation of allyl ethers, esters, and amines using PMHS. 

In more recent work, the Beller group developed a system to reduce aldehydes to alcohols 

through the use of iron(II) acetate, tricyclohexylphosphine, and PMHS at low temperature, 

followed by a mildly basic workup (Scheme 1.14).
59

 This work is highly appealing for 

several reasons: firstly, iron(II) acetate is either cheaply made, using iron metal and hot 

glacial acetic acid, or readily purchased from bulk suppliers, and secondly, these salts are 

much less toxic to the environment than the tin by-products of Stille-type reductions. 

Their investigations assessed the tolerance of other functionalities, such as halides, nitro 

groups, esters, and nitriles, and found that all were unaffected during the reduction of the 

aldehyde. In this regard, a wide range of aldehydes were successfully reduced to the 

corresponding primary alcohols, with isolated yields ranging from 72 to 99% in some 

cases. This work further demonstrated the large scope of applications of polysiloxanes as 

hydride sources, and offered a cheaper alternative to more established methods.  

 

Scheme 1.14 Iron-mediated reduction of aldehydes using PMHS as hydride source. 

 



40 

 

1.2.4.2 Catalyst/ Ligand Scaffold; General Scaffold 

As synthetic chemistry advances, it has become essential to take a green approach, and 

ensure high recovery yields of any unreacted materials or catalysts, to reduce waste, 

costs, and potential environmental impacts. As polysiloxanes can be prepared in any 

chain size, they can be produced bearing a large number of ligand sites, enhancing 

activity, and may be recoverable, as either insoluble catalyst supports, or recovered 

following simple workups (soluble supports). This, alongside the fact that polysiloxane 

can be readily functionalized, makes for an appealing scaffold for catalysis, or for an 

unreactive and neutral stationary phase or alternative support, hence opening the door to 

uses in chromatography or biomedical chemistry. 

The functionalization of polysiloxane with an appropriate ligand system can provide a 

valuable support for catalysts, making them quantitatively recoverable, often without 

significant loss of activity. A prime example of this is the 2004 work by DeClue and 

coworkers, wherein two polysiloxane-ligand structures (compounds 23 and 24, Figure 

1.15) were prepared and evaluated for activity in the Sharpless asymmetric 

dihydroxylation reaction.
60

 Compound 23 was insoluble in common solvents used for this 

type of reaction (reported solvents used were tert-butyl alcohol: water (1:1, v/v) and 

acetone: water (10:1, v/v)), while 24 produced a homogeneous reaction mixture under 

experimental conditions. Through a battery of experiments, testing a large scope of 

olefins for dihydroxylation using osmium tetraoxide and a secondary oxidant, either 4-

methylmorpholine N-oxide or potassium ferricyanide in either tert-butyl alcohol water 

(1:1, v/v) or acetone water (10:1, v/v), respectively, at 0 to 4 °C, it was observed that, 
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although both ligands produced similar yields and enantiomeric excesses (ee), compound 

24 could react much more rapidly, as expected given its solubility. 

However, when recovering the ligands, 23 could be obtained by simple filtration, while 

24 was precipitated out of the reaction mixture by addition of excess water and then 

isolated by filtration. 24 could be reused directly, with all reagents but the metal oxide, to 

yield similar quantities and ee from the reaction (although it took considerably longer), 

while 23 could be left to react without addition of extra osmium tetraoxide for a week and 

no noticeable reaction would take place.  

Compound 23 is suspected to have captured some trace amounts of the metal through the 

filtration, while the slow precipitation of 24 likely did not collect any, as the metal would 

be both soluble and dilute in the aqueous solution. Nearly quantitative amounts of both 

ligands could be recovered and reused, and in the presence of added osmium tetraoxide, 

both retained high catalytic activities with similar yields, stereoselectivity, and almost 

identical reaction times to the first experiment. The ligands were recovered and reused for 

five iterations of the experiment, and found to be consistently effective. The preparation 

of these ligands, particularly the soluble ligand 24, offers a unique solution to industrial 

operations requiring these processes, controlling costs and still offering an excellent 

system. 
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Figure 1.15 Structures of polysiloxane ligand-supports, compounds 23 and 24. 

An example of polysiloxane acting as a neutral support can be found in the preparation of 

a poly(ʟ-lactic acid)-polysiloxane carbonate hybrid membrane, to be used as a 

biodegradable and non-toxic substrate for hydroxycarbonate-apatite formation and bone 

regeneration.
61

 The membrane was prepared by dipping a small circular glass substrate 

into a solution of poly(ʟ-lactic acid)-polysiloxane (prepared by the researchers from 

poly(ʟ-lactic acid) and aminopropyltriethoxysilane monomer and calcium carbonate, 

followed by drying at room temperature. The dried sample was evaluated by FT-IR, and 

it is apparent that a strong new band has formed at approximately 1600 cm
−1

, which is 

reasonable for the formation of a new bond between the amino functionality of the silane 

and the carboxyl functionality of the acid. The membrane sample was then soaked in 

simulated body fluid (SBF) at 37 °C for 3 days, after which apatite-specific peaks can be 

seen in the thin film-XRD, suggesting the presence of silicon supports and the beginnings 

of bone-like structure. After the soak, silicon could be detected in the hydroxycarbonate 

apatite layer that had formed on the sample, suggesting that the silicon was solubilized in 
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the SBF, but promptly re-integrated into the new structure as either siloxane or silicate. In 

vitro experiments using osteoblasts (bone-forming cells) were undertaken, using some 

samples that had been soaked in SBF and some samples that were used directly after 

drying. While both membranes could support cell proliferation and were non-toxic, the 

soaked samples bearing the hydroxycarbonate-apatite layer supported cell growth much 

better, and possessed a statistically significant increase in cell numbers over the dipped 

and dried membrane. Although this work is only in very early stages, advancement could 

provide new bone regrowth techniques to aid both active and aging populations with 

superior medical care, while reducing costs and expenses in increased surgeries and 

patient recovery times. 

1.2.4.3 Hydrosilylation 

In their crude form, polysiloxanes are not ideal as anticorrosion coating materials. Their 

good qualities are negated by their immiscibility and weak mechanical properties, making 

them unappealing for industrial-scale application. To this end, diverse methods for the 

modification of polysiloxane have been developed, in order to enhance their performance. 

Although there are a multitude of possible catalyst systems available for hydrosilylation, 

the two most common catalysts used are Speier’s catalyst and Karstedt’s catalyst (Figure 

1.16, compounds 25 and 26, respectively). Based around a platinum core, they can be 

used in small mole percentages to offer high yields of silylated products. 
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Figure 1.16 Common catalysts for hydrosilylation. 

The most typical approaches utilize an alkene and a metal catalyst bearing somewhat 

labile ligands, and which follow a Chalk–Harrod mechanism (Scheme 1.15) proposed in 

1965 and which is based on Speier’s catalyst.
62

 In this mechanism, oxidative addition 

bonds the silane to a metal-alkene complex, usually with a d
8
 or d

10
 configuration, which 

is then followed by insertion of the alkene into the metal-hydride bond, and then 

reductive elimination to produce the silyl product and regenerate the metal complex.
63

 

 

Scheme 1.15 Chalk–Harrod mechanism of hydrosilylation. 

A modified Chalk–Harrod mechanism has been developed (Scheme 1.16) to account for 

certain oddities such as the formation of vinylsilanes. This follows a path where the 
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alkene insertion into the metal-silyl bond occurs, followed by reductive elimination of the 

carbon-hydrogen bond. The Chalk–Harrod mechanism is expected to be followed over 

the modified mechanism, though, as the modified mechanism has a considerably higher 

energy of activation for the rate-determining step, according to calculations.
64

  

 

Scheme 1.16 Modified Chalk–Harrod mechanism of hydrosilylation. 

A recent example of Speier’s and Karstedt’s catalysts can be found in the work of the 

Safa group.
65

 This work entailed the preparation of new poly(methylalkoxy)silanes 

through hydrosilylation with simple alcohols in the presence of trace catalyst (Scheme 

1.17). Although both catalysts worked, Karstedt’s catalyst took less time, required a 

lower temperature, and provided higher yields than Speier’s catalyst. Furthermore, a 

lower relative concentration of Karstedt’s catalyst ([Pt
0
]/[Si–H] = 15 · 10

−5
) was used 

than Speier’s catalyst ([Pt
0
]/[Si-H] = 34 · 10

−5
), making it a significantly more 

economical option. It is plain to see that the differing structures of the two catalysts, from 

the very simple Speier’s catalyst, to the somewhat more complex Karstedt’s catalyst, 
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have a huge bearing on reactivity and greatly influence the transition state in the rate-

determining step. The appropriate choice of catalyst is absolutely critical to industrial 

endeavours, as small differences in reactivities on the laboratory scale could drive costs 

to exorbitant heights based solely on this factor. 

 

Scheme 1.17 Simple hydrosilylation of alcohols. 

Hydrosilylation chemistry can also be used to prepare precursors for polysiloxane-

backboned copolymers. In recent work by the Chisholm group, an epoxy-functionalized 

poly(dimethyl)siloxane (PDMS) copolymer was prepared for creating an antimicrobial 

surface coating.
66

 This was accomplished by first adding the backbone to allyl glycidyl 

ether using Karstedt’s catalyst. From there, levofloxacin was added to the terminal 

epoxide to yield the target (Scheme 1.18). Evaluation of the coating showed a uniform 

distribution of the levofloxacin, which resulted in a superior initial kill of applied 

microbes, and an improved longevity of activity, as compared to a control of polysiloxane 

mixed with levofloxacin. This simple and direct approach to coating preparation could 

offer rapid improvements in materials used for biomedical surfaces or even implants. 
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Scheme 1.18 Preparation of a levofloxacin-polysiloxane antimicrobial coating material. 

1.3 Scope of Thesis 

This M.Sc. dissertation has completed one major project in the synthesis and properties 

evaluation of DTFs and their reactivities toward oxidative dimerization, one major 

project in the development of a novel ex-TTF, and progressed towards one project on a 

TTFV cryptand, and one project toward catechol functionalized polysiloxane. Chapter 1 

contains brief overviews on two topics: (i) TTF’s properties, applications, syntheses, and 

its sub-groupings of exTTFs and TTFV, and (ii) corrosion and polysiloxanes, with a brief 

note on the molecule catechol. 
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Chapter 2 focuses on the synthesis and characterization of a series of DTF molecules, and 

their behaviour upon oxidation. Although many TTFVs have been prepared, there has yet 

to be a conclusive fundamental study of the reactivities of DTFs, permitting better 

predictions of possible targets, as well as byproducts.Utilizing standard olefinations and 

iodine-driven oxidations, as well as cyclic voltammetric techniques, several DTFs were 

studied and compared in order to determine trends in behaviour, and to find a basis for 

these trends in terms of structural differences. Certain compounds were successfully 

crystallized, and their structures confirmed by X-ray single crystallographic analysis. 

Chapter 3 presents the progress toward a catechol-functionalized polysiloxane for 

anticorrosive coating additives. Such a coating has not yet been developed, and could 

provide accost-effective and environmentally friendly new material to protect against 

marine corrosion damages. The synthesis required investigation of the Hiyama coupling 

reaction, the Kumada coupling reaction, the Vilsmeier–Haack reaction, the Rieche 

reaction, and the Wittig reaction. Although this project is incomplete, the eventual results 

will provide great insight into anticorrosion additives, and may yield a marketable 

product. 

Chapter 4 is a summary, and the conclusions of this thesis are given. This includes 

possible solutions to challenges encountered during this work, and proposes future 

directions for further study, as well as a brief discussion of a prepared but under-explored 

compound relevant to this thesis. 
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Chapter 2  

Synthesis and Characterization of DTFs, Their 

Properties and Reactivities 

2.1 Introduction 

TTFVs are a heavily researched subset of TTFs, owing to their switchable properties with 

respect to oxidation, and their unique electronic character. As discussed in Section 1.1.6, 

the interesting behaviours associated with TTFV have been attributed to their 

conformational switching upon oxidation. Many different TTFVs have been prepared in 

the literature, often to analyze this conformational change, or to assess dihedral angles in 

comparable structures, or even simply to investigate the changes in oxidation potential for 

different TTFVs. Often, TTFV is prepared as an applicable material, again, owing to the 

highly efficient switching, and potential task-oriented molecules that can be designed 

from it. However, as yet there has not been a full study on the fundamental behaviours of 

DTFs and their redox-properties. To this end, not much can be said with certainty when 

predicting DTF oxidations to TTFVs, or its other properties. 

DTFs are oxidized to form TTFVs according to the mechanism shown in Figure 1.12, 

Section 1.1.6. However, little is known about the factors that affect this mechanism or 

reaction rate, or that change the pathway entirely. To this end, several different DTFs 

were designed, as shown in Figure 2.1, synthesized, and then characterized. Furthermore, 
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their oxidation behaviour was analyzed to determine what factors could be at play in the 

mechanism, and their voltammetric, UV-Vis absorption spectroscopic, and 

crystallographic analyses were also performed. 

 

Figure 2.1 Chemical structures of target simple DTFs. 

Previous work in the Zhao group has utilized an ortho-bromo DTF to prepare a novel 

spiro-compound (compound 32, Figure 2.2).
1
 Initially, it was suspected that the bromide 

might somehow hydrogen-bond to the cations, and inhibit deprotonation. However, as it 

is a very large atom, it is possible that the bromine could have a steric effect as well. To 

this end, the above series was devised. 27 should have no steric effects to impact the 

reaction mechanism, and is likely to proceed normally, but 28 through 30 move a methyl 

group around the ring, in order to evaluate whether steric interactions can play a role in 

the reaction mechanism. Finally, 31 may have some steric blocking effect, but is likely 

more significant that it possesses a large and delocalized electron system. 
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Figure 2.2 Novel spiro-TTF compound. 

The goal of this work is to determine the effect of bulky groups on the aryl substituents, 

as well as the effect of conjugation and electron delocalization on the dimerization 

mechanism.  

2.2 Results and discussion 

2.2.1 Synthesis and Characterization of Simple DTFs 27-31 

2.2.1.1 Retrosynthetic Analysis 

The retrosynthetic analysis of DTF 27 is outlined in Scheme 2.1. It is worth noting that 

this retrosynthesis is the same for all the simple DTFs, compounds 27 – 31, as all are 

readily available as purchasable aldehydes from chemical suppliers.  

Compound 27 can be broken into two synthons through an olefination reaction between 

s-methyl thione, 32, and 33. S-methyl thione 33 is readily accessible through established 

procedures reported in literature, and benzaldehyde can be purchased. 
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Scheme 2.1 Retrosynthesis of simple DTF 27. 

2.2.1.2 Synthesis of S-methyl thione 33 

S-methyl thione 33 was prepared using known procedures.
2
 As presented in Scheme 2.2, 

the synthesis of S-methyl thione 33 began with a reaction in DMF between Na and CS2. 

Chelation of the dithiolate ion with Zn
2+

 using ZnCl2 in concentrated NH3·H2O, followed 

by precipitation with tetraethylammonium bromide, afforded the red salt 34, with an 

overall yield of 67%. The salt was then dissolved and dissociated into the dithiolate in 

acetone, and reacted with MeI to produce the S-methyl thione 33 in 67% yield. 

 

Scheme 2.2 Synthesis of S-methyl thione 33. 
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2.2.1.3 Synthesis of Simple DTFs 27-31, 35 

Phosphite-mediated coupling was an ideal and straightforward means to obtain the target 

DTFs.
3
 In the presence of refluxing trimethyl phosphite, s-methyl thione 33 was reacted 

with precursor aldehydes benzaldehyde, o-, m-, p-tolualdehydes, and 9-

anthracenecarboxaldehyde to yield 27, 28, 29, 30, and 31, in their respective yields 

following column chromatography on flash silica (27, 29, 30, 31) or recrystallization (28) 

(synthesis presented in Scheme 2.3, yields and times listed in Table 2.1). 
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Scheme 2.3 Synthesis of simple DTFs 27- 31. 

 

Table 2.1 Synthetic conditions and resultant yields for 27- 31. 

Synthesis using mesitaldehyde to yield 35 was also attempted, however, refluxing in 

trimethyl phosphite only yield the tetra SMe TTF (Figure 2.3). This is likely due to the 

presence of the two o-methyl groups on mesitaldehyde, which restricted the reactivity of 

the thione carbon. 
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Figure 2.3 Synthetic efforts toward compound 35. 

2.2.1.4 Oxidation and Product Characterization of 27, 28 and 30 

Iodine-mediated oxidation of 27, 28 and 30 was attempted, in order to assess the resultant 

TTFV products. Although it resulted in a poor yield, oxidation of 27 did produce some 

TTFV (compound 36, Scheme 2.4). The poor yield is likely attributable to the tedious 

purification process and the instability of the compound under laboratory conditions, as 

both 27 and 36 appear to decompose rapidly during purification, leaving little for 

characterization. This decomposition may be due to radical delocalization, especially to 

the open para site on the phenyl group, where many possible products could form.  

 

Scheme 2.4 Oxidation of 27. 
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After examining the MS, 
1
H-NMR, and 

13
C-NMR data for the oxidation of 28, it was 

clear that it formed a mixture of a TTFV and a spirocompound (Scheme 2.5). It is likely 

that, were 37 and 38 easily separable, a method could be developed to ascertain the effect 

of the methyl groups, to grow single crystals, and to assess bond angles and strains, as 

well as interatomic distances in the solid state.  

 

Scheme 2.5 Oxidation of 28. *Yields based on SMe ratio in 
1
H NMR 

The formation of this mixture is supported by the 
1
H NMR, as shown in Figure 2.4. The 

ratio of the aromatic region, from 7.20 to 6.83 ppm, integrates to 6 H, while the singlet at 

4.63 ppm integrates as 1 H. Compound 38 should show 4 H in the aromatic region and 1 

H as Ha off the cycle in the centre, but 6 H are observed in the aromatic region, 

suggesting a rough 1: 2 ratio of 37: 38. However, it is well-known that the signals of the 

aromatic region are less reliable for accurate integration due to relaxation time 

differences. Furthermore, it is not certain that the aromatic region shows protons of only 

these two compounds, and it may reflect some minute contamination of the sample. To 

obtain a more accurate estimate of relative distributions of 37 and 38, the alkyl region is 

deemed more trustworthy, given that there is no significant signal overlap, and, in 

particular, the SMe region is considered diagnostic. With respect to the SMe peaks, the 
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ratio of products is 2.06: 7.19, which reduces to a ratio of 1:3.49 for 37:38. Meanwhile, 

the o-tolyl Me protons show a 0.99: 3.26 ratio, reduced to 1: 3.29. These two ratios are in 

good agreement, and the aromatic region also somewhat agrees, supporting a roughly 1: 

3.39 ratio of 38:37. With this ratio, the estimated yields can be determind to be 21% for 

37 and 72% for 38. The GC-MS spectrum confirms the presence of m/z signals that 

match the molecular ions of  37 and 38, but does not provide meaningful quantitative 

measurements. 
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Figure 2.4 
1
H NMR spectrum of 37 and 38 mixture; (a) aromatic region; (b) alkyl region. 



64 
 

 

Figure 2.5 Proposed mechanism of spiro-compound formation. 

A new possible mechanism that could explain the formation of these products is 

presented in Figure 2.5, as proposed by the Zhao group. Further experimentation with 

other o-modified aryl substituents on TTFV would enable the mechanism to be validated, 

or demand an appropriate correction. As can be seen, initially, the mechanism is the same 

as the typical TTFV formation (Figure 1.12), but at Step III, the paths diverge. While the 

typical TTFV will follow a radical dimerization and deprotonation pathway, in the case 

of the spiro-compound, there is likely some steric inhibition, limiting the ability of the 

base to act. In this case, a nucleophile (for 37, thiosulfate added in workup) will attack 

each cation in a stepwise fashion, to create the final product. While still unexplored, this 

new avenue presents an intriguing methodology for synthesis, as spiro-compounds often 

possess significant biological activity,
4
 and so could be of great interest to the biomedical 

and pharmaceutical fields.  
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Meanwhile, compound 30 produced the expected TTFV, 39, based upon MS, 
1
H-NMR, 

and 
13

C-NMR data, in 39% yield (Scheme 2.6).  

 

Scheme 2.6 Oxidation of 30. 

2.2.1.5 Structural Properties of DTFs 28, 30, 31, and 39; Calculated Geometries of 

DTFs and Real X-ray Structures of DTFs and a TTFV 

Single crystals of DTFs 28, 30, and 31 were grown (31 was grown by former Zhao group 

student Stephen Bouzan in a leftover sample after completion of his program). 28 was 

grown slowly in a mixed solvent solution of ethyl acetate and hexanes at 0 °C, and the X-

ray crystal structure is presented in Figures 2.6a) and c). Figure 2.6b) shows the DTF-

optimized geometries of 28, with SMe groups omitted for ease of calculation. 
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Figure 2.6 (a) Single crystal X-ray structure of 28, (b) DFT-optimized structure of 28 

(Calculations performed at the 97BXD/6-31G(d,p) level of theory), (c) ORTEP drawing 

of 28 at 50% probability level. 

Compound 28 shows a dihedral angle of 44.6°, as compared to the optimized angle of 

43.7°, and the two indicated bond lengths are also very similar, suggesting that DFT can 

provide a reasonable means of predicting crystal structures of these molecules. In the X-

ray structure of 28, it can be seen that the methyl group of the o-tolyl substituent is 

directed outwards, away from the SMe of the dithiole moiety, as would be expected to 

minimize steric repulsion. It is likely that these steric restrictions would reduce the 
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number of available geometries for 28 to take, and thus narrow the possible results when 

performing calculations. The molecule takes monoclinic packing in the solid state. 

Meanwhile, 30 was grown in a mixed solvent of dichloromethane and methanol at 0 °C, 

and Figures 2.7a) and c) shows the X-ray analysis of the single crystal structure, while 

Figure 2.7b) shows the DFT-optimized geometry for the molecule.  

 

Figure 2.7 (a) Single crystal X-ray structure of 30, (b) DFT-optimized structure of 30 

(Calculations performed at the 97BXD/6-31G(d,p) level of theory), (c) ORTEP drawing 

of 30 at 50% probability level. 
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On comparison, the DFT-optimized structure for 30 appears to fit the experimental data 

more poorly than did the pair for 28, especially with respect to the dihedral angle, but it is 

still acceptable for simple predictive work. It is worth noting that this crystal grew 

rapidly, in less than 24 hours, and grew with a less than 3% weighted R value. Although 

this may be attributable to the ease of packing in the bulk solution, with all of the methyl 

groups on the p-tolyl substituent having only one place to go, it may be that the lack of 

large repulsive interactions between the tolyl protons, the vinylidene proton, and the 

dithiole moiety opened up more possible geometries for the molecule to take, and thus 

made the calculations that much less trustworthy. The molecule takes an orthorhombic 

crystal system. 

Compound 31 was grown in dichloromethane at 4 °C by former group member Stephen 

Bouzan, and the resultant crystal was analyzed by X-ray crystal diffraction. Figures 2.8a) 

and c) show the single crystal structure of 31, while Figure 2.8b) presents the DFT-

optimized geometry for 31.  
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Figure 2.8 (a) Single crystal X-ray structure of 31, (b) DFT-optimized structure of 31 

(Calculations performed at the 97BXD/6-31G(d,p) level of theory), (c) ORTEP drawing 

of 31 at 50% probability level. 

As can be observed from the simple comparison of Figures 2.8a) and 2.8b), the DFT-

optimization remains useful, even in molecules as complex as this. The calculated 

dihedral angle is very close to the actual one, and the bond lengths are also very close, 

with one being the same in both the predicted model and the real structure. It is not 

unimaginable to assume that the accuracy of the calculation on 31 could be due to the 

rigidity of the anthryl substituent, restricting rotation to around the vinylidene bond. 

Furthermore, because of the large -electron cloud around the aromatic moiety, electron-



70 
 

electron repulsion with the lone pairs of the sulfur could further limit the range of 

geometries available to 31.  

It is clear that more hindered and “stiff” molecules are more reliably evaluated by DFT-

optimization, which may make planning of future targets simpler. In order to improve the 

theory available, it is necessary to increase the library of “flexible” molecules evaluated, 

to fully understand their properties in single crystals. 

Finally, a crystal of 39 was grown in ethyl acetate and hexanes at 0 °C, and evaluated by 

X-ray diffraction (Figure 2.9).  

 

Figure 2.9 ORTEP drawing of 39 at 50% ellipsoid probability. 
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2.2.1.6 Electronic Properties of Simple DTFs 27, 28, 30, 31, and 40 

UV-Vis absorption spectra of simple DTFs 27, 28, 30, and 31 were measured, as well as 

compound 40, prepared by former group member Guang Chen, and as yet unexplored in 

this regard (Figure 2.11).  

 

Figure 2.10 Structures of simple DTFs 27, 28, 30, 31, and 40. 

 

Figure 2.11 UV-Vis spectra of 27, 28, 30, 31, and 40 measured in CH2Cl2. 
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As would be expected, compounds 27, 28, and 30 show very similar UV-Vis absorptions. 

27 shows an absorption maximum at 339 nm, 28 at 344 nm, and 30 at 338 nm, and all 

present only one band. When considering compounds 31 and 40, things become more 

complicated. Compound 31 exhibits three absorption bands, at 386 nm, 368 nm, and 352 

nm, as well as a small shoulder band on each side, at 334 nm and 415 nm. This increase 

in complexity is likely due to the presence of increased conjugation in the naphthyl 

moiety. Considering compound 39, there are two prominent absorption bands at 282 nm 

and 297 nm, and two shoulders at 273 nm and 325 nm. Again, this is attributable to the 

complexity of the 9-tripticyl moiety, as compared to the more basic DTFs. The 

absorptions of the dimers of these DTFs were not considered, as a simple alkyl group like 

methyl does not impact the long-range conjugation, and thus will not impact the UV-Vis.
5
 

2.2.1.7 Electrochemical Redox Properties of 27, 28, 30, 31, and 40 

Cyclic voltammetric analyses of 27, 28, 30, 31, and 40 were performed, and their 

voltammograms are presented in Figure 2.12.  
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Figure 2.12 Cyclic voltammograms of 27, 28, 30, 31, and 40 in 1 mM Bu4NBF4 in 

CH2Cl2, glassy carbon as the working electrode, Pt wire as the counter electrode, and Ag/ 

AgCl as the reference electrode. Scan rate: 100 mV/s. 

As can be seen from the above figure, 27 and 30 experience the simple redox couple of 

DTF – TTFV
2+

, as the generated DTF
+· 

will dimerize to form the TTFV dication rapidly 

in solution. In comparison, the cylic voltammogram of 28 shows a two-step oxidation and 

a one-step reduction, suggesting that the initially formed DTF
+
 may convert into another 

compound, which is again oxidized before being reversibly reduced back to DTF. 

In the case of 40, the first oxidation is the oxidation of DTF, while the second oxidation 

potential is for the oxidation of the triptycenyl moiety. The sole reduction potential 

observed is for the quasi-reversible reduction of the TTFV
2+

, which is only quasi-

reversible because it appears less intense than the oxidation peak. 
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Finally, for 31, there is only an oxidation peak observed, and no paired reduction. This 

suggests that the radical cation is either unstable or highly reactive, and is consumed 

before it can form a TTFV
2+

. 

2.2.1.8 Spin-density Mapping of Radical Cations of 27, 28, 29, 30, 31, 33, and 40 

Spin-density mapping can be a helpful tool in evaluating the density of unpaired electrons 

on a molecule. To this end, the geometries of 27, 28, 29, 30, 31, 33, and 40 were 

optimized at the 97BXD/6-31G(d,p) level of theory, and then spin-density maps 

prepared. As can be seen in Figure 2.13, while some DTFs carry the radical primarily on 

the vinylidene carbon, compound 31 has such strong resonance contributors that the 

radical travels to the para position of the ring. This could well account for the lack of 

further oxidation observed in the CV (Figure 2.12), and one possible cause of the 

irreversible oxidation may be a coupling between two radical cation 31 molecules to 

create an aryl-aryl bond.  
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Figure 2.13 Spin-density maps of 27, 28, 29, 30, 31, 33, and 40. (Optimized at the 

97BXD/6-31G(d,p) level of theory) 

2.2.1.9 Summary 

A new method for the preparation of thia-spiro-compounds has been found, and an 

investigation into the key structural features driving such reasons was undertaken. It has 

been determined that both steric hindrance at the ortho site of the aryl substituent and 

resonance delocalization have an effect on the oxidation behaviours of DTFs, allowing 

future work to be tailored with this in mind. 
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2.3 Experimental 

General Procedures 

Chemicals were purchased from commercial suppliers and used without further 

purification. All reactions were conducted in standard, dry glassware and under an inert 

atmosphere of nitrogen. Evaporation and concentration were carried out with a water 

aspirator, except in the case of vacuum distillation of trimethyl phosphite, in which case a 

high vacuum pump was used. Flash column chromatography was performed using 240-

400 mesh silica gel obtained from SiliCycle. Thin-layer chromatography (TLC) was 

carried out with silica gel 60 F254 covered on plastic sheets and visualized by UV light. 

Melting points were measured on an Optimelt automated melting point system, 

manufactured by Stanford Research Systems. 
1
H NMR and 

13
C NMR were measured on 

a Bruker Avance III 300 MHz spectrometer. Chemical shifts are reported in ppm 

downfield from the signal of the internal reference SiMe4. A single bounce diamond ATR 

accessory was used on a Bruker Alpha IR spectrometer to obtain all IR spectra. High-

resolution mass spectrometric (HRMS) analyses were performed on a GTC Premier 

Micromass instrument (MS Technology) using atmospheric pressure chemical ionization 

(APCI). Low resolution LCMS-TRAP analyses were performed using an Agilent 110 

series LC and an Agilent 1100 series MSD trap, model G2445D SL. Single crystal X-ray 

diffraction data for 30 were collected on a Rigaku Saturn CCD area detector equipped 

with a SHINE optic with MoKradiation (= 0.71075Å). Single crystal X-ray diffraction 

data for 28, 31, and 3 were collected in an X-ray facility using a Rigaku SMART6000 

CCD detector equipped with a Cu anode generator at McMaster University. UV-Vis 
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spectra were measured on a Cary 6000i UV-Vis-NIR spectrophotometer. Cyclic 

voltammetric (CV) experiments were carried out in a standard three-electrode setup 

controlled by a BASi epsilon workstation.  

p-Tolyl-TTFV (39). 

 

Compound 30 (86.4 mg, 0.289 mmol) was dissolved in CH2Cl2 (15 mL). To this, I2 

(220.2 mg, 0.860 mmol) was added. The resulting dark green solution was stirred at rt for 

6 hours, then quenched with Na2S2O3 (20 mL, satd). The contents was left to stir at rt 

overnight, then the yellow-brown organic layer was separated, washed with Na2S2O3 

(satd), H2O, and dried over MgSO4, and concentrated under reduced pressure. The 

residue was dissolved in EtOAc (10 mL) and filtered through a cotton plug, then hexanes 

(60 mL) was added, and the solution chilled at 0 °C for three weeks. Suction filtration 

using 0 °C hexanes washes yield 39 (33.4 mg, 0.0561 mmol, 39%) as small, cubic 

orange-brown crystals. 
1
H NMR (300 MHz, CD2Cl2) δ 7.38-7.30 (d, J=8.2 Hz, 2H), 7.20-

7.13 (d, J= 8.0 2H), 2.46 (s, 3H), 2.44 (s, 3H), 2.35 (s, 3H); 
13

C NMR (75 MHz, CD2Cl2) 

δ 137.42, 135.05, 134.67, 129.65, 128.08, 126.91, 125.40, 125.37, 21.32, 19.10, 19.05; 

FTIR (pure) 3076.40, 3040.63, 3013.37, 2982.86, 2914.30, 1535.26, 1505.94, 1420.49, 

1306.98, 1179.17, 1110.22, 955.31, 888.52, 807.65, 759.26, 725.74, 666.01, 534.52, 
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460.76 cm
-1

 HRMS (EI-TOF, +eV) m/z calculated for C26H26S8 593.9800, found M
+
 

593.9792. 

o-Tolyl-DTF (37) and o-tolyl-spiro-TTFV (38). 

 

I2 (0.44 g, 1.72 mmol) was dissolved in CH2Cl2 (50 mL) and compound 28 (164.3 mg, 

0.550 mmol), dissolved in CH2Cl2 (10 mL), was added dropwise over 30 minutes at rt 

(three rinses of 28 using CH2Cl2 (2 mL) were also added), then left to stir at rt for four 

hours. The resulting solution was then quenched with Na2S2O3 (20 mL, satd) and left to 

stir at rt overnight. The yellow-brown organic layer was separated, washed with Na2S2O3, 

H2O, and dried over MgSO4. Following concentration under reduced pressure, the crude 

mixture was purified by column chromatography, using 1% EtOAC in hexanes eluent. 

The fractions with the fewest spots on TLC (a mixture of two major spots and several 

minor tailing spots) were concentrated in vacuo to yield the mixture of 37 and 38 (0.16 g) 

as a brown liquid. 
1
H NMR (300 MHz, CD2Cl2) δ 7.22-6.92 (m, 6H), 4.63 (s, 1H), 2.31 

(s, 1H), 2.19 (s, 3H), 2.18 (s, 1H), 2.09 (s, 3H), 2.06 (s, 1H), 2.00 (s, 3H); 
13

C NMR (75 

MHz, CD2Cl2) δ 138.45, 133.54, 130.86, 130.75, 130.25, 130.13, 128.86, 128.62, 126.85, 

126.77, 126.49, 125.79, 83.75, 60.99, 20.63, 91.57, 19.55, 19.01, 18.93; FTIR (neat) 

3057.84, 3018.56, 2951.74, 2918.00, 2854.39, 1735.66, 1419.19, 1236.80, 1044.04, 
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966.18, 853.45, 730.67 cm
-1

;  LC-MS TRAP (APCI, +eV) 594.9 (M37+H)
+
, 628.9 

(M38+H)
+
. 

Phenyl-TTFV (36). 

 

Compound 27 (246.5 mg, 0.866 mmol) was dissolved in CH2Cl2 (25 mL). To this, I2 

(670.5 mg, 2.62 mmol) was added. The resulting dark green solution was stirred at rt for 

1.5 hours, then quenched with Na2S2O3 (50 mL, satd). The contents was left to stir at rt 

overnight, then the yellow-brown organic layer was separated, washed with Na2S2O3 

(satd), H2O, and dried over MgSO4, and concentrated under reduced pressure to yield a 

crude product. This was purified by column chromatography in 5% EtOAc in hexanes to 

yield 36 (82.4 mg, 0.145 mmol, 16%) as a red oil. 
1
H NMR (300 MHz, CD2Cl2) δ 7.35-

7.30 (m, 2H), 7.23 (m, 2H), 7.11 (m, 1H), 2.33 (s, 3H), 2.31 (s, 3H); 
13

C NMR (75 MHz, 

CDCl3) δ 137.20, 135.95, 131.29, 128.63, 128.02, 126.93, 126.68, 124.87, 18.90; FTIR 

(neat) 3050.65, 3024.62, 2981.64, 2914.42, 2848.98, 2819.10, 1520.51, 1493.65, 

1420.98, 1308.58, 1027.89, 963.39, 889.27, 754.06, 697.45, 576.17, 465.30 cm
-1

; HRMS 

(EI-TOF, +eV) m/z calculated for C24H22S8 565.9487, found M
+
 565.9498. 
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Anthryl-DTF (31). 

 

9-Anthracenecarboxaldehyde (262.9 mg, 1.27 mmol) and 33 (342.3 mg, 1.51 mmol) were 

dissolved in P(OMe)3 (20 mL) and heated to reflux for 5 hours. At this point, excess 

P(OMe)3 was removed by vacuum distillation, and the resulting red solution filtered 

directly through a silica plug (5% EtOAc in hexanes). The filtrate was concentrated under 

reduced pressure to yield a red syrup, which was further purified by a silica column 

(hexanes eluent), and concentrated under reduced pressure to yield 31 (434.6 mg, 1.13 

mmol, 89%) as a red oil. 
1
H NMR (300 MHz, CDCl3) δ 8.44-8.39 (s, 1H), 8.21 – 8.12 (d, 

J=8.4 Hz, 2H), 8.04 – 7.97 (d, J= 7.7 Hz, 2H), 7.53 – 7.42 (m, 4H), 7.10 (s, 1H), 2.48-

2.45 (s, 3H), 2.16-2.13 (s, 3H); 
13

C NMR (75 MHz, CDCl3) δ 137.35, 131.58, 131.08, 

128.93, 128.90, 127.32, 125.96, 125.90, ; FTIR (neat) 3074, 3048, 2992, 2918, 2852, 

2822, 1670, 1621, 1570, 1517, 1497, 1440, 1427, 1420, 1346, 1313, 1262, 1157, 1013, 

969 cm
-1

; HRMS (EI-TOF, +eV) m/z calculated for C20H16S4 384.0135, found M
+
 

384.0139. 
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p-Tolyl-DTF (30). 

 

p-Tolualdehyde (300.8 mg, 2.50 mmol) and 33 (669.3 mg, 3.00 mmol) were dissolved in 

P(OMe)3 (20 mL) and heated to reflux for 1 hour. At this point, excess P(OMe)3 was 

removed by vacuum distillation, and the resulting orange-brown solution purified by 

column chromatography (5% EtOAc in hexanes eluent) and then concentrated under 

reduced pressure to yield 30 (597.5 mg, 2.00 mmol, 80%) as an orange oil. 
1
H NMR (300 

MHz, CDCl3) δ 7.19-7.08 (m, 4H), 6.47-6.43 (s, 1H), 2.44-2.42 (s, 3H), 2.41-2.40 (s, 

3H), 2.34-2.32 (s, 3H) ; 
13

C NMR (75 MHz, CDCl3) δ 135.87, 133.54, 130.53, 129.25, 

127.01, 126.78, 124.22, 115.12, 21.26, 19.04, 18.93; FTIR (pure) 3119.30, 3074.05, 

3042.40, 3018.17, 2990.55, 2916.62, 2852.61, 2823.58, 2729.66, 1576.33, 1554.53, 

1507.56, 1419.46, 1310.59, 967.29, 891.63, 820.13, 510.57 cm
-1

; HRMS (EI-TOF, +eV) 

m/z calculated for C13H14S4 297.9978, found M
+
 297.9982. 
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m-Tolyl-DTF (29). 

 

m-Tolualdehyde (0.7015 g, 5.84 mmol) and 33 (1.5597 g, 6.89 mmol) were dissolved in 

P(OMe)3 (40 mL) and heated to reflux for 1.5 hours. At this point, excess P(OMe)3 was 

removed by vacuum distillation, and the resulting red solution was purified by column 

chromatography using 5% EtOAc in hexanes eluent. Concentration under reduced 

pressure followed by purification by column using pure hexanes eluent yielded 29 

(1.0460g, 3.50 mmol, 60%) as a clear yellow oil. 
1
H NMR (300 MHz, CD2Cl2) δ 7.33-

7.26 (m, 1H), 7.10-7.02 (m, 3H), 6.53-6.50 (s, 1H), 2.49-2.48 (s, 3H), 2.47-2.46 (s, 3H), 

2.42-2.40 (s, 3H) ; 
13

C NMR (75 MHz, CD2Cl2) δ 138.69, 136.59, 132.03, 128.79, 

127.86, 127.73, 127.21, 124.46, 124.23, 115.26, 21.64, 19.24, 19.12 ; FTIR (neat) 

3087.53, 3035.37, 2989.34, 2916.51, 2729.90, 1560.97, 1418.88, 1310.74, 96.47, 889.88, 

805.49, 688.78,473.10 cm
-1

; HRMS (EI-TOF, +eV) m/z calculated for C13H14S4 

297.9978, found M
+
 297.9987. 
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o-Tolyl-DTF (28). 

 

o-Tolualdehyde (2.50 g, 20.8 mmol) and 33 (5.59 g, 24.9 mmol) were dissolved in 

P(OMe)3 (50 mL) and heated to reflux for 3 hours. At this point, excess P(OMe)3 was 

removed by vacuum distillation, and the resulting red solution was purified by column 

chromatography using 5% EtOAc in hexanes eluent, followed by concentration under 

reduced pressure. The resulting red oil was further purified by column chromatography 

using 2.5% EtOAc in hexanes, and, following concentration under reduced pressure, the 

red oil was diluted in EtOAc (30 mL) and hexanes (175 mL) and chilled at 0 °C for five 

days. Suction filtration with 0 °C hexanes washes yielded 28 (0.7401 g, 2.45 mmol, 12%) 

as large orange needles. 
1
H NMR (300 MHz, CD2Cl2) δ 7.37-7.32 (m, 1H), 7.29-7.13 (m, 

3H), 6.6.2 (s, 1H), 2.49-2.48 (s, 3H), 2.43-2.42 (s, 3H), 2.33-2.31 (s, 3H) ; 
13

C NMR (75 

MHz, CD2Cl2) δ 135.85, 135.76, 133.19, 130.60, 127.09, 126.94, 126.29, 126.25, 124.57, 

113.76, 20.10, 19.15, 19.13; FTIR (neat) 2992.57, 2967.67, 2942.42, 2915.41, 1575.57, 

1456.16, 1105.82, 889.37, 819.42, 753.15, 501.73 cm
-1

; HRMS (EI-TOF, +eV) m/z 

calculated for C13H14S4 297.9978, found M
+
 297.9984. 
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Phenyl-DTF (27). 

 

Benzaldehyde (0.3989 g, 3.76 mmol) and 33 (0.9356 g, 4.14 mmol) were dissolved in 

P(OMe)3 (30 mL) and refluxed for 3 hours. At this point, excess P(OMe)3 was removed 

by vacuum distillation, and the resulting red solution was purified by column 

chromatography using 5% EtOAc in hexanes eluent, followed by concentration under 

reduced pressure to yield 27 (0.97g, 3.41 mmol, 91%) as a red oil. 
1
H NMR (300 MHz, 

CDCl3) δ 7.39-7.32 (m, 2H), 7.24-7.14 (m, 3H), 6.49-6.47 (s, 1H), 2.45-2.43 (s, 3H), 

2.43-2.41 (s, 3H); 
13

C NMR (75 MHz, CDCl3) δ 136.27, 131.95, 128.56, 127.14, 126.82, 

125.98, 124.25, 114.91,19.04, 18.93; FTIR (neat) 3096.19, 3077.72, 3050.32, 3023.70, 

2988.16, 2951.79, 2916.49, 2847.45, 2821.70, 1595.72, 1577.58, 1557.87, 1493.79, 

1452.09, 1419.41, 1310.14, 1133.04, 1068.54, 966.55, 889.10, 831.45, 744.00, 687.97, 

583.83, 508.51, 470.60 cm
-1

; HRMS (TOF MS CI, +eV) m/z calculated for C12H12S4 

283.9822, found M
+
 283.9834. 
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4,5-Bis-(methylthio)-1,3-dithiol-2-thione (33).  

 

To a solution of 34 (20.02 g, 27.9 mmol) in acetone (300 mL) was added MeI (15 mL, 

240 mmol). The mixture was left to stir at room temperature over 3 days, then suction 

filtered. The filtrate was concentrated under reduced pressure and dissolved in minimal 

boiling 25% MeCN in acetone. The resulting solution was chilled at 0 °C overnight, and 

then yellow-green needles were isolated via suction filtration. These needles were 

purified by column chromatography using 50% CH2Cl2 in hexanes eluent to yield a 

yellow solution, which was concentrated under reduced pressure to afford 33 (8.4817 g, 

37.5 mmol, 67%) as large yellow needles. 
1
H NMR (300 MHz, CDCl3) δ 2.50 (s, 1H). 

The data are consistent with the literature report.
6
 

Bis(tetraethylammonium) bis(1,3-dithiole-4,5-dithiolate)zincate (34). 

 

A mixture of Na (14.73 g, 640 mmol) and CS2 (80 mL, 1.33 mol) was refluxed for 30 

minutes. Dried DMF (100 mL) was added dropwise over a period of 30 minutes. The 

mixture was refluxed for 3 hours and then excess CS2 was removed by vacuum 

distillation at 45 °C. The reaction was quenched in an ice-water bath with dropwise 

addition of MeOH (100 mL). After warming back to rt, a solution of ZnCl2 (20.46 g, 150 
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mmol) in concentrated NH3·H2O (100 mL) was added dropwise to the reaction mixture 

over 30 minutes. Following this, a solution of Et4NBr (40.40 g, 192 mmol) in H2O (40 

mL) was added rapidly dropwise over 5 minutes. After 30 minutes of stirring, the mixture 

was left to stand overnight. Suction filtration with H2O washes afforded 34 (80.22 g, 

0.112 mol) as a red powder. M. P. 203-204 °C. M. P. is consistent with reported data.
2
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Chapter 3 

Toward Anticorrosive Marine Coating Additives 

3.1 Introduction 

As discussed in Section 1.2 of Chapter 1, corrosion is an important issue for any water-

oriented tasks or endeavours. To this end, technology to inhibit that process has been 

developed, but the problem has not been resolved as yet. A coating layer can effectively 

resist the process of corrosion on metal surface, but it cannot completely eliminate 

corrosion, since water or electrolyte solution  can still penetrate the coating layer at a 

slow rate. Once electrolyte solution reaches the metal surface underneath the coating, 

corrosion begins to take place and the coating loses the protective function. Therefore, 

one of the major tasks in current anticorrosion coating research is focused on how to 

increase the effectiveness of the coating protection.  

Coating additives are a straightforward approach to augment the performance of a 

coating, utilizing only a small change in the existing procedures to effect a large 

improvement in the coating’s properties. Additionally, additives are a cost-effective 

measure to modify coatings, as they can be used in very small amounts, relative to the 

bulk material. Generally, these additives are used to fine-tune a coating to a particular 

environment, optimizing the protection afforded for that circumstance. 
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Preliminary work in the Zhao group
1
 has found that eugenol, a molecule related to 

catechol (compounds 41 and 42, Figure 3.1), can be readily coupled onto polysiloxane 

using Speier’s catalyst.  

 

Figure 3.1 Eugenol (41) and catechol’s (42) molecular structures. 

The new polymer additives prepared have been analyzed, and found to offer a great 

improvement in corrosion protection, even with as little as a 1 wt% additive. Polymers 43 

and 44 (Figure 3.2) were blended with a conventional epoxy resin, coated on steel test 

plates, and subjected to corrosion testing for 20 days in 3.5 wt% NaCl solution.  

 

Figure 3.2 Polymers 43 and 44. 

Evaluation of anticorrosion properties was performed using electronic impedance 

spectroscopy (EIS), which measures the impedance of a surface (acting as a working 

electrode) in an electrochemical cell. The impedance is the resistance (real) and reactance 

(imaginary) of a real electrical circuit; only ideal circuits possess purely resistance. EIS 
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measures the circuit’s ability to resist current flow by probing frequency responses to 

applied small amplitude AC voltages, or, more simply, EIS studies the frequency 

dependence of the impedance to the applied potential. Through circuit modeling and 

simulations, circuits can be designed to fit the data. In this way, the number of parts to an 

impedance signal can be determined, and the individual impedances and behaviours of 

those parts found. 

Through EIS, it was determined from impedance Bode plots that the pure resin offers an 

impedance of 2.2 x 10
6
 Ω at 0.1 Hz after 20 days of submersion in 3.5 wt % NaCl 

solution, while the addition of a 2.5 wt% of 43 has 4.4 x 10
7
 Ω, and a 1 wt% addition of 

44 to the resin shows 1.3 x 10
8
 Ω. All started higher, but the pure resin started with the 

lowest initial impedance value, and it decreased the most. Additionally, examination of 

phase angle Bode plots suggests that electrolyte solution permeates the pure resin coating 

in just six days, while the coatings bearing additives do not develop new time constants 

over the course the experiment, and so appear to protect the surface for that time. 

Furthermore, at the start of the experiment with the 43 additive there are two time 

constants, possibly attributable to a complex coating with different functional parts. With 

the 44 additive, a second time constant can be seen, but there are few changes, and so the 

additive may make the coating more stable or water-resistant, perhaps due to crosslinking 

of the triethoxysilyl groups. 

With these promising results, work must begin to investigate how more hydroxyl groups 

will affect the additive and coating. This is why this chapter sets out to prepare a 

polysiloxane additive functionalized with catechol groups. This will detail the progress 
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thus far to producing such a target (45, Figure 3.3), and list the challenges encountered, as 

well as attempt to explain synthetic difficulties. 

 

Figure 3.3 Target polymer molecule, 45. 

3.2 Results and Discussion 

3.2.1 Synthesis toward 45 

3.2.1.1 Retrosynthetic Analysis 

The retrosynthetic analysis of compound 45 can be found in Scheme 3.1. Polymer 45 can 

be prepared from  vinyl-functionalized catechol (46) and PMHS through catalytic 

hydrosilylation. 46 can be generated using a metal-catalyzed coupling reaction on an 

iodo-functionalized protected catechol 47. This, in turn, can be prepared by simple 

iodination of protected catechol 48, which is readily produced by reaction of catechol and 

acetone in the presence of a Lewis acid. 
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Scheme 3.1 Retrosynthesis of 45. 

3.2.1.2 Toward the Synthesis of Vinyl-Functionalized Protected Catechol 46 

First, protected catechol 48 was prepared using known procedures.
2
 As presented in 

Scheme 3.2, 48 was made in 75% yield by reaction of catechol with acetone and 

phosphorus trichloride in benzene. This was then reacted further with iodine in the 

presence of  mercuric acetate as oxidant in dichloromethane to afford 47 in 75% yield.  
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Scheme 3.2 Synthesis of 47. 

From 47, it was anticipated that a direct Hiyama coupling with triethoxyvinylsilane 

should afford 46. In advance of consuming the limited 47, several test reactions were 

performed using iodobenzene and p-iodoanisole to determine the appropriate conditions. 

Unfortunately, none of the test reactions afforded any vinyl-functionalized products, as 

detailed in Scheme 3.3 and Table 3.1. 

 

Scheme 3.3 Synthetic attempts toward 50a and 50b. 
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Table 3.1 Summary of Hiyama conditions attempted toward 50a and 50b. 

In trials 1 and 2, either an uninterpretable 
1
H NMR spectrum or an insoluble mass 

resulted. In both cases,  no delay was taken before the silane was added to the reaction,  

and 4 equivalents of sodium hydroxide were used to quench the aryl-silane intermediate, 

as it has been used in literature
3
 and performs the same mechanistic function as fluoride 

does, by activating the silane for transmetallation. Although Pd(0) cannot enter the aryl-

halide bond, some was freshly prepared on hand, so it was considered a worthwhile 

opportunity just to verify. Later trials with p-iodoanisole as the precursor also failed, 

although it is worth noting that in trial 5, a 30 minute delay was undertaken before the 

addition of the silane. One unfortunate limitation was the lack of dry diethyl ether, as it is 

another solvent commonly used for these types of reactions, and might have been able to 

stabilize any charges or partial charges in the solution. It is possible that if more catalyst 

systems and varied additions times and temperatures were attempted, the reaction might 

Trial 
49a/

b 
1.Temp 1. h Cat. (%) 

Quench 

(eq.) 

2. 

Temp 
2. h Result 

1 49a Reflux 3.5  
Pd(PPh3)4 

(5%) 

NaOH 

(4) 
Reflux 16 

NMR 

mess 

2 49a Reflux 3.5 
PdCl2(PPh3)2 

(5%) 

NaOH 

(4) 
Reflux 16 

Insoluble 

product 

3 49b 120 °C () 1/6 
Pd(OAc)2 

(0.1%) 

TBAB 

(0.5) 

Added 

TBAF at 

start 

Starting 

material 

4 49b Reflux 18 PdCl2 (2%) 
TBAF 

(1.2) 

Added 

TBAF at 

start 

Trace, 

smear in 

TLC 

5 49b Reflux 48 PdCl2 (2%) 
TBAF 

(1/2) 
rt 72 

Starting 

material 
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proceed as desired, but given the lack of promise in these results, a new approach was 

required. 

The Kumada reaction utilizes palladium(II) insertion into aryl-halide bonds like the 

Hiyama, however, it uses an aggressive Grignard reagent to add an alkyl, alkenyl, or aryl 

group in the place of the halide. In these experiments, 47 was used as a precursor, simply 

to offer more rapid results if the reactions were successful. A summary is presented in 

Scheme 3.4 and Table 3.2. 

 

Scheme 3.4 Synthetic attempts using the Kumada reaction toward 46. 

Trial 1.T Cat. mol % 2. T 2. Time Result 

1 rt 3 rt 3 hr 

Inextractable 

water-soluble 

solid 

2 Reflux 3 Reflux 48 hr 

Recovered 

47, possible 

trace of 46 in 
1
H NMR 

3 rt 5 rt 6 hr 

Recovered 

starting 

material 

Table 3.2 Summary of Kumada conditions attempted toward 46. 

Again, the Kumada reaction was found to be unsuccessful. There was some promise in 

the 
1
H NMR for trial 2, but column chromatography could not separate the two products, 

and the experiment could not be repeated. Diethyl ether would have been an ideal 
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solvent, as it is well-known to stabilize Grignard reagents, but the anhydrous solvent is 

both tedious and dangerous to prepare, and costly to order. Both of these difficulties 

would make this synthesis cost-prohibitive on an industrial scale, and so another 

approach had to be taken. 

Upon further consideration, a two-step process utilizing a formylation of the protected 

catechol 48 followed by a single Wittig reaction was conceived. Initially, direct attempts 

were made to formylate 48, utilizing the Vilsmeier–Haack and Reiche reactions 

(presented in Schemes 3.5 and 3.6, respectively), to obtain 51. 

 

Scheme 3.5 Synthetic attempt toward 51 using Vilsmeier–Haack conditions.
4
 

 

Scheme 3.6 Synthesis of 51 using Rieche conditions.
5
 

The Vilsmeier–Haack reaction was unsuccessful in direct formylation of 48, however, 

pleasantly, the Rieche reaction worked, with very simple workup to a pure product and 

excellent yield. Disappointingly, the dichloromethyl methyl ether was extremely 

expensive, and so other approaches were required to obtain 51 on large scale. At the least, 

the Rieche formylation provided 51 for characterization and TLC purposes for future 

experiments. 
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Few other direct methods are available for the formylation of an aryl compound, but there 

are many permutations of the butyl lithium formylation of an aryl halide. Bearing this in 

mind, 47 was readily converted to 51 using butyl lithium to generate a lithiated species, 

which then reacted with DMF (Scheme 3.7). 

 

Scheme 3.7 Butyl lithium formylation of 47. 

Although the butyl lithium formylation offered a higher yield for that reaction than the 

Rieche reaction (88% versus 84%), the overall yield of the iodination and subsequent 

butyl lithium formylation is only 66%, and requires a tedious recrystallization to purify 

the iodocatechol, as well as the use of costly iodine and mercuric acetate. It is reasonable 

to assume the costs balance out, including the cost of labor, but this is an interesting note. 

In spite of efforts to reduce the cost of this synthesis for cheap anticorrosion coating 

additives, certain steps will unavoidably require expensive reagents or workup. In the 

event of scale-up for industry, it is probable that the Rieche reaction would be a better 

choice, as it would require less man hours and offer a higher yield, although it working 

with pure titanium(IV) chloride in large quantities would require special staff safety 

training. 

Once 51 had been obtained successfully, the sole remaining intermediate before 45 was 

the vinyl-functionalized protected catechol, 46. Preparation was attempted using a single 
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Wittig reaction, with butyl lithium and tetramethylphosphonium bromide in THF 

(Scheme 3.8, Table 3.3). 

 

Scheme 3.8 Synthetic attempts towards 46 using single Wittig reaction. 

Trial 1.Time 2. Time 3. Time Result 

1 1 hr 6 hr 48 hr Product present in GC-MS, but still very impure 

(
1
H NMR) after column chromatography 

2 0.5 hr 1 hr 16 hr Product decomposed on column, resulting in 

“smear” TLC 

Table 3.3 Summary of Wittig conditions attempted toward 46. 

On both attempts to prepare this compound, new spots appeared on the TLC during the 

reaction, but upon aqueous workup and column purification, other spots formed, 

suggesting that the product 46 is very unstable, or sensitive to oxidation. It is possible 

that in the presence of radical initiators, or an oxidizing environment, the molecule 

behaves like styrene and polymerizes into complex polymers, which could explain the 

“smearing” observed on TLC after column. Alternatively, it may be that, in the presence 

of acid, as found on silica, the electron-rich alkene is protonated, resulting in a stabilized 

cation that could undergo addition reactions and the like. Another potential problem 

could be cyclization through the electron-rich diene, such as a Diels–Alder reaction. 

Although the correct mass could be detected in GC-MS from trial 1, no 
1
H NMR 

spectrum could be obtained that contributed significantly to the determination, and in any 

case, only traces of products could be collected from the column. Although there are 
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peaks in the alkenyl region of the 
13

C NMR, this is hardly definitive, and can be simply 

considered a supporting piece of information. There is no doubt that the compound can be 

prepared, but it is likely highly unstable to typical work up or benchtop conditions. 

Finally, it is likely that either the Hiyama or Kumada reactions should be revisited, as 

they may be able to be optimized for this molecule, and would hopefully require less 

tedious workup and present fewer workup opportunities for the product to react further. A 

preparation of a related molecule, with less atom efficiency, but an alkyl “break” between 

the vinyl and aryl moieties, might prove more stable, as in the case of eugenol, found in 

nature and easily isolated in the lab. This would entail the exploration of techniques such 

as a Friedel–Crafts reaction, which might bring up new challenges, but it also holds 

promise as a viable solution. 

3.2.1.3 Summary 

The target compound, 45, has yet to be prepared and tested. In spite of this, a great deal 

has been learned about the synthetic route that will successfully form it. Numerous 

reactions have been investigated for this target, and although some did not work, it is 

likely that with further experimentation a path can be developed. In particular, the 

optimization of the Kumada reaction holds appeal, for it could provide a quick and cheap 

avenue to the vinyl-functionalized protected catechol 46, or a new approach to disconnect 

the vinyl group from the electron-donating catechol species. If the Rieche reagent became 

less costly and the Wittig reaction could be improved, that methodology could serve, as 

well. These reactions must proceed well in order for 45 to ever be a viable additive in 
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industrial scale coatings, and much work remains to be done. Doubtless this project will 

be highly valuable to both academia and industry upon completion, and might even help 

to elucidate the mechanism of catechol binding, with comparative studies using a 

protected and a non-protected catecholic polysiloxane derivative. 

3.3 Experimental 

General Procedures 

Chemicals were purchased from commercial suppliers and used without further 

purification. All reactions were conducted in standard, dry glassware and under an inert 

atmosphere of nitrogen. Evaporation and concentration were carried out with a water 

aspirator, except in the case of vacuum distillation of trimethylphosphite, where a high 

vacuum pump was used. Flash column chromatography was performed using 240-400 

mesh silica gel obtained from SiliCycle. Thin-layer chromatography (TLC) was carried 

out with silica gel 60 F254 covered on plastic sheets and visualized by UV light. Melting 

points were measured on an Optimelt automated melting point system, manufactured by 

Stanford Research Systems. 
1
H NMR and 

13
C NMR were measured on a BrukerAvance 

III 300 MHz spectrometer, except in the case of 49, which was taken on a BrukerAvance 

500 MHz spectrometer. Chemical shifts are reported in ppm downfield from the signal of 

the internal reference SiMe4. A single bounce diamond ATR accessory was used on a 

Bruker Alpha IR spectrometer to obtain all IR spectra. High-resolution mass 

spectrometric (HRMS) analyses were performed on a GTCPremier Micromass instrument 

(MS Technology) using atmospheric pressure chemical ionization (APCI). Gas 
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chromatography mass spectra were obtained on an Agilent6890N gas chromatograph 

using an Aglient 5973 inert mass spectrometer. The column was an Agilent J&W DB-

5MS, 30m long, 0.5mm diameter, with 0.25 m film thickness. 

2,2-Dimethylbenzo[d][1,3]dioxole-5-carbaldehyde (51). 

 

Compound 47 (1.8119 g, 6.54 mmol) was dissolved in THF (40 mL) and chilled while 

stirring at -78 °C for 15 minutes. Butyl lithium (5.25 mL, 2.5 M, 13.1 mmol) was added 

dropwise at -78 °C over 5 minutes, and the reaction left to stir for 30 minutes. Dry DMF 

(1 mL, 12.9 mmol) was added dropwise at -78 °C over 5 minutes, and the reaction left to 

stir at -78 °C for 1.5 hours. The reaction was moved from a dry ice-acetone bath to an 

ice-water bath and warmed to 0 °C for 1.5 hours. Excess butyl lithium was quenched with 

dropwise addition of water at 0 °C, after which the reaction mixture was concentrated 

under reduced pressure. The resultant off yellow oil and clear colorless solution was 

extracted with ethyl acetate. The extractions were combined and washed with water, then 

dried over MgSO4. Evaporation of ethyl acetate at reduced pressure afforded 51 (1.0285 

g, 5.78 mmol, 88%) as a clear yellow oil. 

Compound 48 (247.1 mg, 1.65 mmol) was dissolved in CH2Cl2 (15 mL) and chilled in an 

ice-water bath to 0 °C. Cl2HCOCH3 (0.2 mL, 2.26 mmol) and subsequently TiCl4 (0.25 

mL, 2.28 mmol) were added, and the reaction left to stir at 0 °C for 30 minutes. The 

reaction was quenched at 0 °C with dropwise addition of NH4Cl, the separated, and the 
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organic layer washed with H2O and dried over MgSO4. Evaporation of solvent afforded 

51 (243.6 mg, 13.7 mmol) as a dark yellow oil.
1
H NMR (300 MHz, CDCl3) δ 9.79 (s, 

1H), 7.39-7.35 (dd, J = 7.9 Hz, 1.6 Hz, 1H), 7.27-7.24 (d, J = 1.7 Hz, 1H), 6.84 (d, J = 

7.9 Hz, 1H) 1.71 (s, 6H); 
13

C NMR (75 MHz, CDCl3) δ 190.43, 153.04, 148.50, 131.44, 

128.37, 119.79, 108.18, 106.77, 25.96; FTIR (neat) 3076.94, 2992.31, 2938.19, 2834.55, 

2787.98, 2737.07, 2713.06, 2619.72, 1684.88, 1599.06, 1489.96, 1448.67, 1378.14, 

1358.26, 1255.25, 1213.23, 1147.79, 1068.71, 979.71, 831.10, 809.00, 783.33 cm
-1

; 

HRMS (EI, TOF, +eV) m/z calculated for C10H10O3 178.0630, found M
+
 178.0639. 

5-Iodo-2,2-dimethylbenzo[d][1,3]dioxole (47). 

 

Compound 48 (9.25 g, 61.6 mmol) was diluted in CH2Cl2 (300 mL), and then I2 (17.36 g, 

67.8 mmol) and Hg(OAc)2 (21.86 g, 68.5 mmol) were dissolved in the solution. The 

reaction was left to stir at rt for 24 hours. At this time, the reaction solution was filtered 

through a pad of diatomaceous earth, and the clear pink filtrate concentrated under 

reduced pressure to yield a white solid in brown solution. The solid was dissolved in 

MeOH and chilled at −78 °C until thick white solid formed. This was isolated by suction 

filtration with −78 °C MeOH washes to yield 47 (12.76 g, 46.1 mmol, 75%) as a white 

solid.
1
H NMR (300 MHz, CDCl3) δ 7.11-7.07 (dd, J= 8.1, 1.7 Hz, 1H), 7.03-7.01 (d, J-

1.7 Hz, 1H), 6.53-6.47 (d, J= 8.1 Hz, 1H), 1.66 (s, 6H); 
13

C NMR (75 MHz, CDCl3) δ 

148.57, 147.65, 129.99, 118.78, 117.46, 110.35, 81.47, 25.84; FTIR (pure) 3095.70, 
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3072.92, 3044.783, 2992.37, 2936.12, 1489.60, 1376.93, 1232.00, 974.70, 863.85, 

826.42, 795.82, 653.21, 574.87, 508.55 cm
-1

; HRMS (EI, TOF, +eV) m/z calculated for 

C9H902I 275.9647, found M
+
 275.9659; M. P. 44.9-46.0 °C. 

2,2-Dimethylbenzo[d][1,3]dioxole (48). 

 

Catechol (33.1266 g, 0.301 mol) and acetone (29 mL, 0.396 mol) were combined in 

benzene (120 mL) at rt. To this, PCl3 (11 mL, 0.124 mol) was added dropwise over 30 

minutes, and the reaction left to stir at rt over 3 days. This was poured over K2CO3 (50 g, 

0.362 mol) in H2O (100 mL), and suction filtered to remove solid residue. The filtrate 

was separated, and the organic layer washed with KOH (15 v/v%) and H2O, then dried 

over MgSO4. Evaporation under reduced pressure afforded 48 (33.9773 g, 0.226 mol, 

75%) as a clear yellow oil. 
1
H NMR (500 MHz, CDCl3) δ 6.76 (m, 4H), 1.67 (s, 6H). The 

data are consistent with literature report.
6
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Chapter 4 

Summary and Future Work 

Through the course of this thesis, a series of DTFs, 27 to 31, has been synthesized using 

the one-pot olefination reaction, involving in situ generation of phosphonate ester by 

reacting thione and trialkyl phosphite and subsequent Horner-Wittig reaction with an 

aldehyde. The resulting yields varied greatly, from 12 to 91%. The low yields are mainly 

caused by either poor product stability or significant side reactions. These problems often 

led to difficult or tedious purification tasks, such as the determination of recrystallization 

conditions, or the use of a series of column purifications to obtain pure products. One the 

one hand, recrystallization tends to afford highly stable crystals that are resistant to heat, 

light, and air, on the other hand, the concentrates of column fractions, even if as pure as 

the crystal according to NMR, tend to decompose rapidly. The exceptions to this are 30 

and 31, which can remain relatively stable in the fridge for several months, but 27, 28, 

and 29 all degrade further, even protected from heat and light, and purged with nitrogen 

gas. In future work, efforts should be directed toward reaction conditions optimizing 

recrystallization yields and affording stable products. This would facilitate large scale 

syntheses, and eventually make DTF compounds useful in practice for applications in 

materials industries. 

The reactivity towards oxidative dimerization of these DTFs was evaluated, and it was 

observed that, for those that could accomplish the reaction, the yields were again diverse. 
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The oxidation of 30 afforded 39 in 39% yield after recrystallization, and the crystals, as 

observed in the DTFs, were stable under benchtop conditions. However, in the oxidation 

of 27, the product 36 was obtained in a mere 16% yield, as the compound appeared to 

degrade over the course of column purification. It may be that these challenges in workup 

and purification are at least somewhat to blame for the dearth of earlier research around 

DTF reactivity towards oxidative dimerization, as the compounds are costly to prepare in 

both time and materials. As can be seen in the oxidation of 28, while some information 

can be derived from the experiment, the inability to purify the reaction mixture by either 

column chromatography or recrystallization after many attempts would be discouraging 

to anyone exploring similar topics. 

From these studies, it is found that oxidative dimerization of DTFs to TTFVs depends on 

two major and universal effects; that of steric interactions, and that of resonance 

delocalization.  

As observed with the o-bromophenyl DTF, previously prepared by a former group 

member, Stephen Bouzan, the presence of an ortho substituent on the aryl moiety affects 

and modifies the mechanism of dimerization. In that case, it was unclear if the change 

was due to sterics or the electronic inductive effect of the bromine atom, or a combination 

of the two. With the addition of the o-tolyl DTF, 28, a pure steric influence was observed, 

and the mechanism was similarly changed, although not to the same degree. From these 

experiments, it is clear that sterics do play a role in the mechanism of dimerization, but 

that induction also influences things, as o-tolyl DTF produced a mixture of TTFV and the 

spiro-product, while o-bromophenyl DTF yielded only the spiro-product. The effect of 
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resonance can be seen in 31, which fails to dimerize, due to electron delocalization on the 

DTF radical cation. It is reasonable to state that if the spin-density is not on the 

vinylidene carbon in predictive DFT calculations, it is highly unlikely that dimerization 

will occur with that species, and, as a result, the starting material may be lost in the 

formation of an undesired byproduct. Most certainly, further investigation and the 

preparation of new model compounds will aid in ascertaining the relative significances of 

these factors, and allow better prediction of products in future. It may be that ortho 

substitutions should be performed after the preparation of a TTFV to prevent spiro-

product formation, or that non-conjugated DTF precursors should be used for TTFV 

dimerization, followed by reduction to afford the target. 

In the preparation of a novel catechol-functionalized polysiloxane, numerous synthetic 

obstacles were encountered. While there are doubtless other methods available to achieve 

the target than those explored here, it is essential that the final synthesis be cost-effective 

for industrial scale processes, and so only the least expensive of methods have been 

attempted. Furthermore, new approaches to bulk material preparations such as these are 

much preferred to be environmentally friendly, or “green”, prohibiting the use of toxic 

reagents or the formation of harmful workup wastes.  

Furthermore, the instability of the target molecule 46 has been found to be one of the 

greatest challenges with this synthesis. It may be that the vinyl group can be protonated 

readily, as it is an electron-rich alkene, resulting in many possible addition reactions. The 

presence of a diene could trigger cyclization, such as a Diels-Alder reaction, further 

complicating the reaction or workup mixture. Finally, there is a risk of oxidation or 
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interaction with any trace radical initiator generating complex polymers or polymer 

mixtures. It is clear that this molecule, while highly atom efficient, is not a reasonable 

target for industrial scale preparation, and so new avenues must be considered. 

It is possible that, with the addition of an sp
3
 carbon between the protected catechol and 

the vinyl groups, the lack of conjugation would allow the vinyl group to be stable, as in 

the case of the naturally occurring molecule eugenol. This new molecule (compound 52, 

Figure 4.1), which should be able to be hydrosilylated, will be useful not just in 

anticorrosion work, but potentially also in the medical and surface modification fields, as 

it could be bonded to a target easily using coupling chemistry, and transfer its adhesive 

qualities to the final product. 

 

Figure 4.1 New catechol target, compound 52. 

Finally, the preliminary synthesis of a dialkyne linked -exTTFV (compound 53, Figure 

4.2) has been performed, using the methodology laid out by former group member Dr. 

Guang Chen.
1
 The sole exception to this method was a minor change in the 

homocoupling catalyst, reported in literature to reduce byproduct formation and generally 

clean up the reaction.
2
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Figure 4.2 Dialkyne-linked -exTTFV, compound 53. 

This product was found to be stable under controlled conditions (low temperature, 

protected from light and air), and preliminary electrochemical investigations show 

intriguing behaviour. The compound has been sent on to collaborators at Saint Mary’s 

University in Nova Scotia for further study, including more electrochemical analyses and 

single-molecule layer behaviour. It is anticipated that this compound could serve as a 

molecular building block for electroactive polymers, with applications in chemical 

sensors, electrochemical devices, and intelligent materials (e.g. stimuli-responsive 

materials), to name a few. 
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