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ABSTRACT 

There are several theories used to describe fracture process including Linear Elastic Fracture 

Mechanics (LEFM), Elastic-Plastic Fracture Mechanics (EPFM), and Cohesive Zone Models 

(CZM), which allow for development of predictive capabilities. The main disadvantage of LEFM 

and EPFM techniques is that only structures with an initial crack can be modeled. Other 

drawbacks of these techniques are geometry dependence and validity limits. In contrast, CZM 

can simulate fracture in any structures, with or without a crack. CZM is not confined to a class of 

materials, but it can be used for arbitrary materials. 

In this research, the CZM was used to numerically simulate crack initiation and growth in steel 

plates. Within the CZM, material separation (i.e. damage of the structure) is described by 

interface elements, which open irreversibly and lose their stiffness at failure, causing the 

continuum elements to be disconnected. Numerical simulation of tensile tests was conducted to 

determine and validate the cohesive parameters and then these parameters were used for 

modeling mode I fracture in steel plates. It was shown that the cohesive model is capable of 

simulating ductile fracture in cases where the crack path is not known in advance and the crack 

can evolve anywhere in the specimen. 
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Chapter 1: Introduction 

1-1. Introduction 

Due to the substantial increase in oil and gas activities in the Arctic, the demand for ice 

strengthened vessels has increased greatly. This increase in demand has highlighted the 

importance of designing ice strengthened ship structures that maintain adequate safety and 

integrity. In order to meet these new challenges, reliable prediction of the ultimate strength of a 

structure is essential. 

Traditionally, ship structures were designed to prevent yielding failure. However, steel has very 

great reserve strength after it yields and before it finally collapses, which is an advantage for 

cases when ship structures need to absorb large impact energy, such as in an ice-structure 

accident. The use of some portion of the reserve capacity for resisting loads will result in lighter 

structures, which are easier to fabricate and more economical. Using this reserve capacity causes 

a challenge to the balance between safety needs and commercial flexibility. Hence, investigating 

the ultimate strength of the structure is crucial. 

One of the main concerns in collision events is fracture in the outer hull. Once fracture occurs, 

the resistance to further damage drops dramatically. This may accelerate the hull opening 

process. Potential consequences are the risk of flooding and polluting the environment with fuel 

and cargo oil. With smaller damages, the ship’s stability may not be affected, but leakage of oil 

and fuel may occur, threatening the environment. Hence, the simulation of the damage 

propagation and the crack growth can also be crucial beside the prediction of the crack initiation. 

In order to ensure the integrity of structures, it is essential to develop advanced models that are 

able to capture the failure mechanisms occurring in such structures.  
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Since steel plates are the basic structural elements in many ships and offshore structures, 

understanding of the steel plate behavior is essential. The behavior of steel in the elastic region is 

well understood. In recent years, there has been a new interest in estimating the plastic response 

and the ultimate strength (failure capacity) of the structure, in order to use some portion of the 

reserve capacity of the structure in specific cases that seem economically rational.  

“Sustainable Technology for Polar Ships and Structures” (STePS2), a project at the Faculty of 

Engineering and Applied Science at Memorial University of Newfoundland, focuses on 

developing design tools for polar ships and offshore structures. The aim of this study, as part of 

STePS2 project, is to gain a better understanding of the response of a steel plate to extreme ice 

load by exploring ductile fracture in steel plates numerically. Classical methods that are available 

to predict and evaluate fracture are discussed. Among them, recently developed method, 

Cohesive Zone Models (CZM), is chosen to simulate crack initiation and propagation 

numerically. 

CZMs are able to describe materials that exhibit strain-softening type behaviour. The basic 

assumption underlying them is the formation of a fictitious crack, as an extension of the real 

crack, referred to also as the process zone, where the material is still able to transfer stresses, 

although it is damaged. The crack is assumed to propagate when the stress at the crack tip 

reaches the cohesive strength. When the crack opens, the stress is not assumed to fall to zero at 

once but to decrease gently with increasing crack width until a critical displacement is reached 

and the interaction vanishes. 

The basic idea of the CZM is to split the material’s behavior in deformation, which is modeled 

by continuum elements, and damage or separation, which is modeled by embedded interface 
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elements within continuum elements. The material separation and thus damage of the structure is 

described by interface elements, no continuum elements are damaged in CZM. Using this 

technique, the behavior of the material is split in two parts, the damage-free continuum with an 

arbitrary material law, and the cohesive interfaces between the continuum elements, which 

specify only the damage of the material.  

CZM, its application, advantages and disadvantages will be explained in detail in the following 

chapter. It will be presented that by investigating CZM to predict fracture initiation and 

propagation, it is possible to estimate the ship hull indentation resistance. 

The topic of this thesis originated to investigate the field of fracture mechanics and related 

theories and methods. Its main goal is to develop a better understanding of how to use the finite 

element method to simulate ice-structure collision and the damage caused by ice. The focus of 

the thesis has been on the ductile fracture of metal, particularly steel, and the use of CZM for 

simulating ductile fracture in mode I.  

This thesis gives an overview of the theory involved in a ductile failure of an isotropic ductile 

material such as steel, and explains CZM theory for modeling the material behavior related to 

ductile fracture for use in the finite element method. The cohesive material model is developed 

using tensile tests simulation in the finite element software ABAQUS. Then the developed 

material model is used to simulate fracture in steel plates being penetrated by a rigid indenter at 

low speed. 
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1-2. Fracture Mechanics 

The relationship between the stress and the strain depends on the mechanical properties of the 

material, specifically on their deformation behavior. In Figure 1-1 the characteristic features of 

elastic-plastic behavior are presented by the stress-strain curve. 

 

Figure 1-1: Elastic-plastic material behavior 

The material behaves elastically until a certain stress value is reached at point B, the yield 

strength   . Elastic material behavior is characterized by the feature that the deformations are 

reversible. The stress-strain relation is linear in the elastic range for most of materials, which is 

known as Hooke’s law: 

                         Eq. (1-1) 

The modulus of elasticity (Young’s modulus), E, is given by the slope of the stress-strain curve: 

  
  

  
                    Eq. (1-2) 
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If the stress exceeds   , inelastic permanent deformations occur and plastic strains are formed, 

      . In real materials the current yield strength,   , increases as a result of plastic 

deformation, which is denoted as hardening of the material. Plastic deformations are irreversible. 

If the applied stress is reduced to zero (point D in Figure 1-1), the material is relieved by a pure 

elastic deformation    and only    remains. After unloading, the plastic deformations remain. 

The plastic work of deformation is predominantly converted into heat. 

The stress-strain relation is non-linear in the plastic region, but can be approximated as linear in 

the practical ranges of structural deformation. Thus the total stress-strain is normally 

approximated as a bilinear curve with linear hardening. 

Beyond point E in Figure 1-1, there is a noticeable reduction of load-carrying capacity until 

rupture. The deformation during this last phase is localized in a neck region of the specimen. 

Point E identifies the material state at the onset of damage. Beyond this point, the stress-strain 

response is governed by the evolution of the degradation of the stiffness in the region of strain 

localization (EF in Figure 1-1, this region is called necking region). At Point F in Figure 1-1 

rupture happens. 

Fracture is the separation of an object or material. A detailed understanding of how fracture 

occurs in materials may be assisted by the study of fracture mechanics. The prediction of failure 

initiation and evolution are, in general, difficult. This is covered in fracture mechanics. Fracture 

mechanics specifically addresses the issue of whether a body under load will remain intact or 

whether a new free surface will form. 

There are three independent loading modes to enable a crack to propagate (Figure 1-2): 

http://en.wikipedia.org/wiki/Fracture_mechanics
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 Mode I fracture- Opening mode where a tensile stress normal to the plane of the crack is 

applied and this is the most common load type. 

 Mode II fracture- Sliding mode or in-plane shear mode where a shear stress acting 

parallel to the plane of the crack and perpendicular to the crack front. 

 Mode III fracture- Tearing mode or out-of-plane shear mode where a shear stress acting 

parallel to the plane of the crack and parallel to the crack front. 

 

Figure 1-2: Fracture modes. a) Mode I, b) Mode II, c) Mode III 

For engineering materials, such as metals, there are two primary modes of fracture: brittle and 

ductile. In brittle fracture cracks spread very rapidly with little or no plastic deformation. In 

brittle fracture, no apparent plastic deformation takes place before fracture. Cracks that initiate in 

a brittle material tend to continue to grow and increase in size provided the loading will cause 

crack growth.  

In contrast, ductile fracture includes three stages: void nucleation, growth, and coalescence 

(Figure 1-3). Ductile fracture often occurs shortly after the onset of local necking, and relates to 

the formation of micro-voids which grow and eventually coalesce as the material is strained. In 

ductile fracture, extensive plastic deformation (necking) takes place before fracture. Some of the 

energy from stress concentrations at the crack tips is dissipated by plastic deformation before the 

http://en.wikipedia.org/wiki/Tensile_stress
http://en.wikipedia.org/wiki/Shear_stress
http://en.wikipedia.org/wiki/Shear_stress
http://en.wikipedia.org/wiki/Brittle
http://en.wikipedia.org/wiki/Plasticity_(physics)
http://en.wikipedia.org/wiki/Ductile
http://en.wikipedia.org/wiki/Necking_(engineering)
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crack actually propagates. The crack moves slowly and is accompanied by a large amount of 

plastic deformation. The crack typically will not grow unless the applied load is increased. 

Ductile fracture surfaces have larger necking regions and an overall rougher appearance than 

brittle fracture surfaces.  

 

Figure 1-3: Void nucleation, growth, and coalescence in a ductile material (Based on 

Tornqvist, 2003) 

Fracture surfaces and stress-strain curves for both ductile and brittle fracture are shown in Figure 

1-4. Plastic deformation in ductile fracture can be seen in these figures. 

 

Figure 1-4: Ductile and brittle fracture 
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Fracture toughness is a property of a material which describes the ability of the material 

containing a crack to resist fracture, and is one of the most important properties of any material 

for many design applications. Fracture toughness is a quantitative way of expressing a material's 

resistance to brittle fracture when a crack is present. If a material has much fracture toughness, it 

will probably undergo ductile fracture. Brittle fracture is very characteristic of materials with less 

fracture toughness. 

Whether fracture in a specific material is ductile or brittle can depend on the temperature of the 

environment. Steel is a typical example of dual behavior that shows brittle behavior at very low 

temperatures and is ductile at high temperatures. Generally, fracture toughness depends on 

temperature, loading rate, the composition of the material and its microstructure, together with 

the geometric effects of the crack tip. 

The design process of a structure consists of choosing the appropriate material strength as per the 

loading conditions, and structural analysis, so that it does not fail under load. Different 

approaches exist to investigate damage, material separation and fracture phenomena in order to 

develop predictive capabilities, including Linear Elastic Fracture Mechanics (LEFM), Elastic-

Plastic Fracture Mechanics (EPFM), and local approaches such as CZM. In the following an 

overview of these methods are presented. 

1-2-1. Linear Elastic Fracture Mechanics 

LEFM is the basic theory of fracture that deals with sharp cracks in elastic bodies and predicts 

whether a specific crack in the body will grow more or not. For linear elastic materials (i.e., 

brittle), LEFM characterizes the local crack tip stress field using a single parameter called the 

stress intensity factor, K. It is defined from the elastic stresses near the tip of a sharp crack under 

http://en.wikipedia.org/wiki/Fracture
http://en.wikipedia.org/wiki/Brittle
http://en.wikipedia.org/wiki/Ductile
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remote loading. K is used to predict the stress intensity near the tip of a crack and it is a method 

of calculating the amount of energy available for fracture around a crack front in a linear elastic 

material. When it becomes critical, the crack grows and the material fails. This critical value is 

denoted    and is known as the fracture toughness, which is a material property. 

Energy principles play an important role in studying crack problems. This is motivated by the 

fact that crack propagation always involves dissipation of stress-strain energy. This energy is 

dissipated in process zone because of plastic deformation, formation of micro separations, and 

coalescences. Irwin (1957) was the first who observed that if the size of the plastic zone around 

crack tip is small compared to the size of the crack (i.e. in brittle materials), the energy required 

to grow the crack will not be critically dependent on the state of stress at the crack tip. According 

to this assumption, the energy needed to create a unit fracture surface which goes into the plastic 

deformation, the fracture process, and formation of new surfaces, is a constant that depends only 

on the material. This quantity is called fracture energy (  ) and is considered to be a material 

property which is independent of applied loads and the geometry of the body. By considering 

fracture from an energy point of view, crack growth criteria can be expressed in terms of energy 

release rates. Crack propagation starts when the energy coming from the stress- strain field is 

suffcient to support the formation of micro voids and coalescences. Similar to K-based fracture 

criteria, the crack propagation starts when     .  

This approach offers an alternative to the K-based fracture criteria discussed earlier and 

reinforces the connection between global and local fields in fracture problems. The energy 

release rate is a global parameter while the stress intensity factor is a local crack-tip parameter. 

Irwin showed that for a mode I crack the strain energy release rate and the stress intensity factor 

are related by: 

http://en.wikipedia.org/wiki/Fracture#Crack_separation_modes
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 Eq. (1-3) 

Where    denotes the effective Young’s modulus for plane stress or plane strain. For plane 

strain: 

   
 

    
 Eq. (1-4) 

and for plane stress: 

     Eq. (1-5) 

U is the potential energy available for crack growth and A is the crack area. E is the Young's 

modulus, ν is Poisson's ratio, and    is stress intensity factors in mode I fracture.  

Irwin adopted the assumption that the size and shape of the energy dissipation zone remains 

approximately constant during brittle fracture. This assumption suggests that the energy needed 

to create a unit fracture surface is a constant that depends only on the material.  

However, in ductile materials (and even in materials that appear to be brittle), a plastic zone 

develops at the tip of the crack. As the applied load increases, the plastic zone increases in size 

until the crack grows and the material behind the crack tip unloads. The plastic loading and 

unloading cycle near the crack tip leads to the dissipation of energy as heat. In physical terms, 

additional energy is needed for crack growth in ductile materials when compared to brittle 

materials. 

In brittle materials, fracture energy and surface energy are equal,     (Surface energy 

quantifies the disruption of intermolecular bonds that occur when a surface is created). But in 

ductile materials, plastic dissipation also contributes to G.  

http://en.wikipedia.org/wiki/Young%27s_modulus
http://en.wikipedia.org/wiki/Young%27s_modulus
http://en.wikipedia.org/wiki/Poisson%27s_ratio
http://en.wikipedia.org/wiki/Plastic
http://en.wikipedia.org/wiki/Structural_load
http://en.wikipedia.org/wiki/Dissipation
http://en.wikipedia.org/wiki/Energy
http://en.wikipedia.org/wiki/Heat
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As mentioned, LEFM applies when the nonlinear deformation of the material is confined to a 

small region near the crack tip and plasticity does not play an important role during fracture. For 

brittle materials like some high strength steel, glass, and concrete, it accurately establishes the 

criteria for failure. However, severe limitations arise when the region of the material subject to 

plastic deformation before a crack propagates is not negligible. Additionally, LEFM has proven a 

useful tool for solving fracture problems provided a crack, like notch or flaw, exists in the 

structure. 

In reality, the crack tip is surrounded by the fracture process zone, the region around the crack tip 

where nonlinear deformation and material damage occur. Inside this zone, the LEFM solution is 

not valid. Outside this zone, the LEFM is accurate provided the plastic damage zone is small 

enough. The objective of LEFM is to predict the critical loads that will cause a crack to grow in a 

brittle material. This is not always the case and for ductile metals the size of the nonlinear zone, 

due to plasticity or microcracking, is not negligible in comparison with other dimensions of the 

cracked geometry. 

Moreover, even for brittle materials, where the process zone is small, the presence of an initial 

crack is needed for LEFM to be applicable. This means that bodies with no initial cracks cannot 

be analysed using LEFM. The facts mentioned above became the main motivation for 

development of a new field in fracture mechanics taking into account the plasticity in the process 

zone named EPFM.  

1-2-2. Elastic-Plastic Fracture Mechanics 

To predict failure in ductile materials, for which the assumptions of LEFM is no longer valid, 

EPFM provided the solution. Nonlinear fracture mechanics attempts to extend LEFM to consider 
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inelastic effects. The theory is called Elastic-Plastic Fracture Mechanics; however, the theory is 

not based on an elastic-plastic material model, but rather a nonlinear elastic material. It is based 

on a nonlinear elastic power law material (the same as elastic-plastic material but different 

unloading path). Under monotonic loading, this nonlinear elastic material can be matched to the 

behavior of an elastic-plastic material whose hardening behavior is accurately modeled by a 

power law. 

Rice (1968) made a considerable advance in EPFM. He idealized plastic deformation as a 

nonlinear elastic phenomenon for mathematical purposes and was able to generalize the energy 

release rate for such materials. He expressed this in terms of a path independent contour integral 

called J-Integral which became a very efficient tool to treat energy problems in fracture 

mechanics. 

As mentioned earlier, LEFM is valid for materials for which the plastic zone around crack tip is 

small compared to the dimensions of structure or specimen (i.e. brittle materials). The J-integral 

represents a way to describe the case where there is suffcient crack tip deformation that the part 

no longer obeys the linear elastic approximation. This analysis is limited to situations where 

plastic deformation at crack tip does not extend to the furthest edge of the loaded part. It was 

shown by Rice that the J-integral is equal to the strain energy release rate for a crack in a body 

subjected to monotonic loading      . This is true both for linear elastic and non-linear elastic 

materials. 

In this method, the elastic-plastic failure parameter is designated    . The stress intensity factor, 

   , can be calculated from the J-integral using Eq. 1-3. This relation has become a common 

technique to calculate stress intensity factors in both LEFM and EPFM for growing cracks.  
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In EPFM, a pre-existing crack is also assumed. No damage evolution is modeled and 

conventional material models, e.g. elastic-plastic constitutive equations, are applied. The process 

zone is assumed as infinitesimally small and special fracture criteria (e.g. K-based criterion or J-

based criterion) for crack extension are required. EPFM covers a comparably small part of these 

constitutive theories and phenomena of inelastic deformation; and does not account for effects of 

load history, unloading, and local rearrangement of stresses.  

Methods of conventional fracture mechanics are successfully used for the assessment of 

engineering structures for a very long time. In many cases, LEFM or EPFM is still applied to 

predict fracture onset due to its high level of standardisation and experience. However, 

considering the LEFM and EPFM limitations, failure prediction in a more general case requires 

modelling of the failure process zone.  

An alternative approach to predict fracture, which overcomes some of the aforementioned 

difficulties, is local approaches and micromechanical modeling of damage and fracture. As in 

Siegmund et al. (2000) pointed out, to date, local approaches are the only really successful 

methods for prediction of crack growth resistance. 

In a local approach, in principle, the parameters of the model depend only on the material, and 

not on the geometry. In this kind of approach, one can simulate ductile fracture either by 

employing a micromechanical model of damage, which represents the micromechanics of void 

initiation, growth and coalescence or by using a phenomenological model ( like CZM) for 

material separation and coupling the model to the surrounding undamaged elastic–plastic 

material. 
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1-3. Literature Review 

Fracture can be analyzed experimentally, analytically, or numerically. Experimental analysis can 

be extremely costly and time consuming. The other alternative to predict structural resistance 

capacity is simplified analytical methods like LEFM and EPFM. The overview of the application 

of analytical analyses and their main drawbacks has been described above.  

Analytical and macroscopic fracture mechanics approaches have some limitations with respect to 

the amount of plasticity allowed at the crack tip, constraint and geometry dependency. LEFM 

and EPFM are constraint and geometry dependent, because they are applicable to structures with 

initial crack, and the structure without an initial flaw cannot be investigated by these methods. 

As no analytical solutions are possible in more general cases, and with advances in computer 

technology, the numerical methods and finite element methods (FEM) have become capable 

tools to assess structural integrity.  

Although the FEM represents the most advanced approach, problems related to the prediction of 

fracture still need to be resolved. Fracture parameters and criteria for fracture and crack growth, 

which are used in practice for engineering assessment methods, have not yet been properly 

investigated. Presently, there is no adequate method to determine both fracture initiation and 

propagation in large scale structures. It is generally agreed that the models of the ductile fracture 

initiation and fracture propagation have not yet matured to a level of high general accuracy. 

Numerical analyses of fracture can be done by one of the following approaches: 

 Application of local fracture criteria 

 Application of Cohesive Zone Model 
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Both approaches allow for splitting the total dissipated work in formation of the ductile crack 

into the work of separation in the process zone and the plastic work in the embedding material 

and, thus, solve a classical problem of fracture mechanics (Siegmund et al. 2000). In numerical 

simulation of the fracture, the process zone ahead of the crack tip is modeled by either cohesive 

elements or continuum elements with incorporated fracture criteria, whereas the rest of the 

structure consists of continuum elements with classical elastic-plastic constitutive behavior. 

1-3-1. Fracture Criteria 

In order to predict the onset of fracture using FEM, several failure criteria and damage models 

are proposed and implemented in the literature. Comprehensive study on the existing fracture 

criteria and damage models in various stress and strain states is presented by Tornqvist (2003). 

Tornqvist (2003) defines separate damage categories including: 

 void growth fracture criteria, 

 continuum damage models, 

 porosity based models, 

 and empirical criteria. 

In the following, some of the criteria and the models will be discussed briefly to give an 

overview of this wide field of research. 

There are numerous empirical fracture criteria. Most of them are simple criteria based on critical 

stresses or strains. The most simple and common one in Finite Element (FE) simulations is the 

equivalent plastic strain criterion. However, since the strain at fracture depends on the stress state 

and thus often varies for each situation, this criterion is an over-simplified fracture criterion. The 

governing damage processes in materials are highly influenced by the stress triaxiality, which 
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should somehow be accounted for in the constitutive material model or in the damage criterion 

(Tornqvist, 2003). 

Fracture in ductile materials relates to the formation, growth and coalescence of voids. Void 

growth criteria assume that the degree of void growth can be represented by a damage parameter. 

Once this parameter reaches a critical level, fracture is initiated. Continuum damage models 

couple the constitutive material laws to the damage evolution. The material may in this way 

experience a degradation effect (softening) during plastic deformation. Fracture occurs once the 

damage has reached a critical level.  

Another damage category is the porosity based model. As for continuum damage models, the 

porosity models also couple damage to the constitutive material laws. The difference lies in the 

way the material damage is defined. Porosity based models couple damage directly to the 

physics of void growth. Continuum damage models, on the other hand, define damage as an 

evolution variable. The well-known porosity based damage model is the Gurson (1977) model. It 

was developed further by Tvergaard (1982) and Tvergaard and Needleman (1984) and called 

GTN model. 

As seen, there are several possible models/criteria for analysing ductile fracture initiation in large 

structures. The advantage of this type of models is that it has a micromechanical basis and can be 

used to predict damage and failure of the material even in initially undamaged structures. The 

main drawback is that each damage criterion only covers a specific kind of failure mechanism 

and cannot be used anymore if another failure mechanism is activated. 

Another problem with these damage models is that numerical simulations can show inherent 

mesh sensitivity. A fine mesh may for instance indicate strain concentrations at certain locations 
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which may not be captured by a coarser mesh. The effect is especially apparent close to crack 

tips. When large elements are applied, the problem is that strain concentrations remain 

uncaptured. By increasing the element size, the stress and strain concentrations are reduced and 

this delays fracture. 

In numerical analysis using the above mentioned fracture criteria, crack propagation is possible 

by using element deletion technique by which an element will be removed when it has reached 

the failure criterion value. This will often cause convergence problems as the stiffness is 

suddenly reduced or removed. This is an engineering approach which makes FE solutions very 

mesh sensitive and seems to be physically unreasonable. 

Generally, crack growth can be numerically simulated in the following ways:  

 Node release techniques, controlled by any fracture mechanics parameter (e.g. J-integral) 

which requires knowing the crack location in advance. This approach is mesh sensitive 

and the application of fracture mechanics parameters has some limitation as explained 

before. 

 Element deletion based on fracture criteria which is mesh sensitive and cause numerical 

convergence problem. 

 Material separation modeled by cohesive elements. 

This study focused on the last approach and its application. 

1-3-2. Cohesive Zone Modeling 

A “phenomenological local approach” used for the numerical simulation of the crack initiation 

and propagation is known as the Cohesive Zone Model (CZM) (Siegmund et al., 2000). 

Cohesive elements used in simulating ductile fracture are supposed to represent the mechanism 
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of nucleation, growth and coalescence of microscopic voids. CZM is based on an idea proposed 

by Dugdale (1960) and Barenblatt (1962).  

Dugdale used this model to describe analytically the plastic deformation near the crack tip 

whereby the normal stress was limited by the yield stress of an elastic-ideally plastic material. 

Barenblatt investigated the fracture of brittle materials. Most of the recently developed and 

proposed models of CZM are different from Barenblatt’s model in that they define the traction 

acting on the crack surface in dependence on the opening and not on the crack tip distance as 

Barenblatt did.  

Although the concept of CZM originates back to the early sixties of the previous century, the 

concept has gained wide spread use only within the recent years. CZM application as a fracture 

model occurred substantially later, using the finite element analysis method. In a finite element 

representation of CZM, originally proposed by Hillerborg et al. (1976) for brittle fracture, 

cohesive elements are introduced as interface between continuum elements. CZM has also been 

applied to ductile damage starting with an investigation by Needleman (1987) for the 

microscopic modelling and by Tvergaard and Hutchinson (1992) for macroscopic failure.  

Beside the simulation of failure in metals, the cohesive model has been widely used in the last 

three decades for fracture in fibers, polymers, and concrete structures. Most of the researchers 

investigate the application of CZM to simulate fracture in different kind of standard fracture 

specimens. 

Cornec et al. (2003) developed experimental procedures which allow the determination of 

cohesive material parameters for the Traction-Separation Law (TSL). This method is also used in 

this thesis to predict the cohesive parameters. 
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Scheider et al. (2003) proposed a new cohesive law and used it for the prediction of the crack 

path during stable crack extension in ductile materials. Crack propagation was simulated in a 

round tensile bar. It was shown that the model is able to predict the failure mechanism, which 

consists of normal fracture in the center and combined normal/shear fracture at the specimen’s 

circumference. The cohesive parameters can be different in normal and tangential direction, but 

several authors define the separation parameters to be equal for both failure modes. In Scheider 

et al. (2003) paper the parameters for normal and tangential fracture are completely independent. 

Fracture in a notched round tensile bar is also modeled by Anvari et al. (2007) using CZM. The 

cohesive elements obey the TSL defined from the single element calculations. A single strain 

rate dependent element that obeys Gurson-Tvergaard-Needleman (GTN) formulation was 

examined under different values of stress triaxiality and loading rates. The resulting stress-

elongation curves represented the TSL for cohesive elements. 

In order to determine the TSL on a micromechanical basis, the deformation behaviour of a 

representative volume element, i.e. a single voided unit cell, including its material softening 

behaviour has been investigated in the literature. The first researchers who used this approach for 

the derivation of model parameters for cohesive modelling, were Tvergaard and Hutchinson 

(1992), who used a Gurson type model for the unit cell. However, they only studied a single 

stress state (uniaxial straining), and did not point out an issue, which becomes obvious by 

microstructural considerations: i.e. the TSL may depend on the stress state, which can be 

characterised by the triaxiality,   
  

   
, that is the hydrostatic stress divided by the Von Mises 

equivalent stress.  
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This issue was first investigated by Siegmund and Brocks (2000). The approach was extended to 

impact problems by using rate-sensitive and triaxiality-dependent cohesive elements to simulate 

crack growth under quasi-static and dynamic loading conditions by Anvari et al.(2006). In these 

studies, the constraint dependence of the cohesive parameters was considered by loading the 

representative volume element under different constraint conditions. 

The approach already described is to transfer the deformation behaviour of the representative 

volume element, i.e. a single voided unit cell, to the cohesive elements. Scheider (2009) 

discussed that the main drawback of this method is that the unit cell contains both, deformation 

and damage of a material whereas the cohesive model should contain the material separation 

only. He presented a new approach, in which the behaviour of a unit cell is separated to elastic-

plastic deformation and damage, and only the damage contribution is applied as the TSL for the 

cohesive elements. 

It should be noted that the validity of the GTN model is limited with respect to the failure 

mechanism and also with respect to stress triaxiality. This makes the proposed identification 

procedure only applicable for a specific range of structures, unless a more sophisticated void 

growth model is utilised.  

In the cohesive zone framework, the stress-state dependence of the fracture process under plane 

strain has been the subject of investigations during the last decade. Using void growth models on 

unit cells, triaxiality dependent TSLs have been developed and applied to various geometries 

(e.g. Anvari et al., 2006; Scheider, 2009; Siegmund et al., 2000). However, these analyses are 

difficult to perform using void growth models as they have difficulties in dealing with low 
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triaxiality of thin-walled structures. So, in the case of the steel plate, the derivation of the 

parameter dependency on triaxiality based on void growth models cannot be applied.  

An alternative to stress-state dependent CZM was presented in Scheider et al. (2006). The 

parameters for a specific range of triaxiality can be identified, and then the CZM can be applied 

with constant parameters to structures with similar constraint. The advantage of this method is 

that no explicit triaxiality dependence is needed (which is a problem for commercial finite 

element codes), and only tests for parameter identification in the triaxiality regime of the 

structure to be analysed have to be performed.  

CZM application for low triaxiality (plane stress) was investigated by Scheider et al. (2011). It 

was shown that the global behaviour can be predicted with constant cohesive parameters for 

many real materials as long as only flawed structures are simulated, even though the local 

behaviour, e.g. the crack front shape, may differ. However, if initially uncracked structures are 

investigated, the consideration of triaxiality for the cohesive parameters is crucial. 

In this thesis, the cohesive model will be described thoroughly as a model which has many 

advantages; and it will be used to simulate the crack initiation and propagation in steel plates. 
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Chapter 2: Cohesive Zone Modeling 

2-1. Introduction 

It was discussed that if the process zone is sufficiently small compared to structural dimension, 

classical fracture mechanics can be applied. If not, process zone and the forces that exist in the 

fracture zone must be taken into account. The most powerful way to model process zone is to use 

CZM. The general advantage, compared with classical fracture mechanics, is that, in principle, 

the parameters of the respective models are only material and not geometry dependent. Thus, 

these concepts guarantee transferability from specimens to structures over a wide range of sizes 

and geometries. It is not even necessary to consider specimens with an initial crack as also 

initially uncracked structures will break if the local degradation of material has exceeded some 

critical states.  

In cohesive crack model, the process zone is modeled as an extension of the crack length up to a 

point called fictitious crack tip (Figure 2-1). In this region, a specific constitutive law is 

considered. According to this specific law, stress decreases with increase in crack opening 

according to a specific function. The real crack tip (or physical crack tip) is the point on the 

crack surface on which there is no stress (i.e. the normal opening is bigger than the critical 

opening). 

CZMs are able to describe materials that exhibit strain-softening type behaviour. The basic 

assumption underlying them is the formation of a fictitious crack, as an extension of the real 

crack, referred to also as the process zone, where the material is still able to transfer stresses, 

although it is damaged,. The crack is assumed to propagate when the stress at the crack tip 

reaches the cohesive strength. When the crack opens, the stress is not assumed to fall to zero at 
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once but to decrease gently with increasing crack width until a critical displacement is reached 

and the interaction vanishes. 

 

Figure 2-1: Process zone in cohesive crack model (Base on Carpinteri et al., 2003) 

Within the framework of cohesive modelling and finite elements, contrary to computational 

crack propagation analyses using fracture criteria explained in the previous chapter, no 

continuum elements are damaged in the cohesive model. The zone in which damage occurs is 

reduced to a layer with zero thickness. The cohesive elements, in this layer, model the material 

separation; the surrounding continuum elements are damage-free. Cohesive interface elements 

are defined between the continuum elements, which open when damage occurs and lose their 

stiffness at failure so that the continuum elements are disconnected. For this reason the crack can 

propagate only along the element boundaries. If the crack propagation direction is not known in 

advance, the mesh generation has to make different crack paths possible. 
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The basic idea of the CZM, shown in Figure 2-2, is to split the material’s behavior in 

deformation, which is modeled by continuum elements, and damage or separation, which is 

modeled by embedded interface elements within continuum elements. Ductile fracture process, 

consisting of initiation, growth, and coalescence of voids, is represented by a Traction–

Separation Law (TSL), simulating the deformation and finally the separation of the material in 

the immediate vicinity of the crack tip. In the cohesive elements, the opening stress is controlled 

by a TSL, also called cohesive law. The separation, δ, can occur in normal (  ) or tangential 

direction (  ), which happen respectively in mode I and mode II/III fracture. Like the 

separations, the stresses, T, can also act in normal or in tangential direction, leading to normal or 

shear fracture respectively. Interface elements representing the damage are implemented between 

the continuum elements representing the elastic–plastic properties of the material.  

In addition, by using CZM in FE analysis, mesh independency is expected as long as the 

cohesive elements adequately resolve the fracture process zone. This will be explained more in 

following parts. 

The material separation and thus damage of the structure is classically described by interface 

elements, no continuum elements are damaged in CZM. Using this technique, the behavior of the 

material is split in two parts, the damage-free continuum with an arbitrary material law, and the 

cohesive interfaces between the continuum elements, which specify only the damage of the 

material (Figure 2-2). This modelling requires the use of a pair of constitutive equations: a 

stress–strain relationship for the undamaged material, and a stress-displacement curve for the 

damaged material. 
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Figure 2-2: Basic concept of CZM and representation of the ductile fracture by CZM (Based 

on Cornec et al., 2003) 

2-2. Cohesive Law 

The cohesive constitutive model has two key parameters that characterize the decohesion 

process: The maximum traction (stress at the surface of the continuum element),   , also denoted 

as cohesive strength and the separation where the cohesive element fails,   . When the normal or 

tangential component of the separation reaches a critical value,   
  or   

  , respectively, the 
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continuum elements initially connected by this cohesive element are disconnected, which means 

that the material at this point has failed (Figure 2-3). 

The separation of the cohesive interfaces is calculated from the displacement jump [u] between 

the adjacent continuum elements: 

  [ ]                         Eq. (2-1) 

   and    are the displacement of the upper node and the lower node respectively. 

 

Figure 2-3: Representation of the activated cohesive elements (Based on Cornec et al., 

2003) 

A constitutive equation is used to relate the traction, T, to the relative displacement, δ, at the 

interface. The form of the cohesive law is given by the function T(δ). The peak stress sets the 

local strength of the material and plays a critical role in developing plastic deformation in the 

background material. The area under the TSL curve is the energy absorbed by the cohesive 

element,   , and is known as the cohesive energy. This parameter, the total energy dissipation at 

fracture,   , can be derived by: 

   ∫     
  

 
                    Eq. (2-2) 
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If the shape of the TSL is known or presumed, two of the aforementioned parameters are enough 

to define the cohesive law. 

The local work of separation is equal to the material toughness which equals the energy release 

rate, Gc, when the material follows a linear-elastic response. The value of    can be obtained by 

experiment, since it coincides reasonably well with the J-integral at crack initiation,   . When the 

material deforms plastically, Gc elevates above   , but still the cohesive energy,   , corresponds 

approximately to the J-integral at crack initiation, and    can be the first guess for   . 

The cohesive parameters can be different in normal and tangential direction, but several authors 

define the separation energy to be equal for both failure modes, i.e.   
    

 . It should be noted 

that not enough study has been performed for tangential separation in the literature. 

The need for an appropriate constitutive equation in the formulation of the cohesive element is 

fundamental for an accurate simulation of fracture process. The shape of the CZM and its input 

parameters are often chosen as simple as possible for numerical reasons, rather than being 

physical meaningful. This is because the mechanisms that control those parameters have not yet 

been properly quantified. Since the cohesive model is a phenomenological model there is no 

evidence which form to take for     . Basically, the TSL is assumed to be a stress–separation 

curve with a bilinear shape. More recently, different shapes of the CZM have been proposed, 

namely the trapezoidal shape and exponential forms. Most authors take their own formulation for 

the dependence of the traction on the separation. Some softening models that have been proposed 

are shown in Figure 2-4. 

For ductile materials, a polynomial function of third degree, first used by Needleman (1987) for 

the pure normal separation and some years later extended by Tvergaard (1990) for mixed mode 
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loading, is one of the most popular cohesive laws and used by many authors. Needleman (1990) 

also used the exponential curve form. The polynomial function was extended and implemented 

later by Scheider (2003). The cohesive law presented in Scheider (2003) is capable of shear 

separation and unloading. It is similar to the function presented by Tvergaard and Hutchinson 

(1992), as shown in Figure 2-4 and called trapezoidal form in the following.  

 

Figure 2-4: Form of the TSL a) bilinear, b) trapezoidal, c) cubic, d) exponential 

One characteristic of all softening models is that the cohesive zone can still transfer load after the 

onset of damage. After the interfacial normal or shear tractions attain their respective cohesive 

strengths, the stiffness is gradually reduced to zero. They contain the two material parameters    
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and    mentioned above; and for total failure, the stresses become zero, T(δ >   ) = 0 for both 

normal and tangential separation. 

In traction-separation law, the initial slope is needed to avoid numerical problems between the 

cohesive elements and the surrounding continuum elements, and the descending slope models 

the rapid softening during void growth and coalescence.  

Elices et al. (2002) stated that the form of the cohesive law depends on the class of material 

under consideration. The authors also stated that the cohesive law should not have a strain 

hardening part as only the continuum elements and not the cohesive elements are supposed to 

affect the global behavior of the structure. Additionally, the initial stiffness of the cohesive 

model should be chosen as high as (numerically) possible. It should be at least greater than the 

elastic stiffness of the adjacent continuum element, as the deformation of the structure has to be 

dominated by the deformation of the continuum elements.  

The influence of the shape of the cohesive law on the crack propagation has not yet been studied 

extensively. Some investigations deal with the effect of the shape of the traction–separation 

function on the resulting fracture behaviour (e.g. Tvergaard et al., 1992; Scheider, 2009). 

Tvergaard and Hutchinson (1992) came to the conclusion that this effect can be relatively weak. 

It is often referenced to state that the shape of the cohesive law has little influence on the results. 

Although it has been claimed that the shape of the TSL hardly influences the crack growth 

behavior, there are a few investigations that show higher effects of the shape. For example, 

Scheider et al. (2006) showed numerically that the shape of the TSL can affect the load–

displacement behavior. Scheider et al. (2006) tried to transfer constant cohesive parameters, 
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which were derived for a specific TSL, to another TSL. It was shown that the cohesive elements 

are not transferable.  

It seems that for each TSL a set of new cohesive parameters should be derived. The method that 

will be used in this research is to determine the cohesive parameters for a specific TSL by 

simulating tensile tests. Then, the same TSL with the same cohesive parameters will be used to 

predict fracture in the steel plates. 

Another issue that should be considered while using CZM is the fact that if both separation 

modes, the tangential and the normal separation, occur simultaneously, there is an influence of 

the normal separation on the tangential tractions and vice versa. The description for this case of 

mixed mode and the basic assumptions made in the literature are given in the next part. Other 

special issues are the unloading behavior of the cohesive zone and the sliding of a failed cohesive 

element under negative normal separation, what involves contact of the fracture surfaces, 

described in the next part. 

Initially, all cohesive models, in the literature, were only based on a pure mode I crack under 

monotonic loading. Improvements have been developed for the application to mixed mode 

loading, time dependence, interaction of combined normal and tangential loading, and unloading 

of the cohesive elements. 

2-2-1. Mixed-Mode Fracture Criterion 

Ductile fracture may occur in various modes: 

 Normal fracture, where the fracture plane is perpendicular to the maximum normal stress 

(Mode I fracture).  
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 Shear fracture, where the fracture plane coincides with the plane of maximum shear stress 

(Mode II and III fracture). 

 A combination of both which is typical for the fracture behaviour of thin sections; in this 

case, normal and shear modes are present. 

As stated in the previous part, if normal separation,   , and tangential separation,   , occur 

simultaneously, there is an influence of the normal separation on the tangential tractions and vice 

versa. Under pure mode I, II or III loading, the onset of damage at the interface can be 

determined simply by comparing the tractions with their respective allowable values. However, 

under mixed-mode loading, damage onset may occur before any of the stress components 

involved reach their respective allowable values. Therefore, a general formulation for cohesive 

elements must deal with mixed-mode fracture problems.  

The criteria used to predict crack propagation under mixed-mode loading conditions are 

generally established in terms of the energy release rates and fracture toughness. The most 

widely used criteria to predict the interaction of the energy release rates in mixed-mode is the 

power law given by the following expression: 

 
  

   
    

   

    
    

    

     
     Eq. (2-3) 

The exponent α in the power law is usually selected to be either 1 or 2 in the literature. For 

isotropic materials               . 

A recently proposed criterion, the BK criterion (Benzeggagh and Kenane, 1996), is established in 

terms of the single-mode fracture toughness     and      and a parameter η for 2D fracture 

analysis: 
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              (
   

  
)
 

                    Eq. (2-4) 

Where, 

                            Eq. (2-5) 

If mode III loading occurs the criterion is: 

              (
      

  
)
 

                    Eq. (2-6) 

Where, 

                              Eq. (2-5) 

                                 Eq. (2-6) 

For isotropic material               , so the response is insensitive to the value of  . In 

many cases the one-dimensional representation of the relation is sufficient, namely when only 

mode I fracture is concerned. 

Another proposed mixed-mode criterion assumes that damage initiation can be predicted using 

the quadratic failure criterion: 

√ 
   

  
    

  
  

    
  
  

     Eq. (2-7) 

where   is the normal traction, and    and    are the tangential tractions.    and    are the 

normal and shear cohesive strengths, respectively. The operator <  > is defined as x if  >0, and 

0 otherwise. 
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The other way to embed the influence of tangential on normal opening (and vice versa) is to 

define the normal traction dependent on    explicitly, as Scheider et al. (2003) assumed. In both 

cases the separation function does not only depend on   , but also on   . Generally, TSL can be 

written as: 

                              Eq. (2-8) 

                              Eq. (2-9) 

2-2-2. Unloading in Cohesive Elements 

Unloading in cohesive elements can occur in the cases of unloading of a structure or crack 

happening. Therefore, the behavior of the cohesive elements has to be defined under unloading 

which will lead to decreasing separation. The terms ‘‘loading’’ and ‘‘unloading’’ will be used 

when separation is increasing or decreasing, respectively, as the tractions decrease also under 

increasing separation beyond maximum stress,   , in the softening region of TSL. Unloading 

model should consider the irreversibility of the damage process. Since damage evolution is an 

inelastic deformation and nonlinear process, the separation in cohesive models are considered 

like plastic deformation.  

In ductile materials, the mechanical work for producing damage is totally dissipated. Void 

growth in ductile materials is, hence, inelastic local separation and irreversible, and any 

unloading and reduction of separation occurs purely elastically with unchanged elastic stiffness 

as shown in Figure 2-5. If the local tractions in the cohesive elements are reduced to zero (AB in 

Figure 2-5), a significant separation remains. If the separation increases again, the tractions 

increase linearly up to point A and then follow the original cohesive law again. In the current 
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implementation of the cohesive model, the slope of the unloading curve is also set equal to the 

initial stiffness of the cohesive law. 

 

Figure 2-5: TSL at unloading 

The contact condition, i.e. prevention of penetration of adjacent continuum elements during 

unloading, has to be ensured also after total failure of the cohesive elements. For mode I fracture, 

which is considered solely throughout this research, the contact reduces to a normal contact. 

However, if a structure fails under shear mode loading, frictional sliding of the fracture surfaces 

must be also taken into account.  

2-3. Cohesive Parameters Determination 

In this part, the identification and validation of the cohesive model parameters are explained. A 

general concept for their identification in the case of mode I fracture is explained. 

Mixed-mode fracture is a relevant failure mechanism happens in homogeneous thin plates. The 

crack initiates in the centre of the specimen in normal fracture mode and then, continues to the 

surface of the plates in approximately 45 degree, which is called slant fracture. The mode I 

separation in this study represents the actual slant failure, and the respective cohesive 

parameters,   
  and   

 , are hence effective values of a mixed mode situation. Therefore, here, 
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only mode I fracture, which represents the real slant fracture, is considered for the fracture 

analysis. 

The cohesive model, which describes the material damage in the process zone, is purely 

phenomenological. Because, in reality, damage does not happen only within a specific layer of 

cohesive elements, but volumetric elements are damaged. Although the cohesive parameters are 

phenomenological, they have a physical background. In the following, an engineering approach 

for the determination of the cohesive parameters for normal fracture in ductile materials will be 

presented which was proposed and applied by several researchers including Cornec et al. (2003). 

The cohesive strength,   , can be taken as the maximum stress at fracture in a tensile bar. It has 

to be noted that the tensile specimen does not fail in a pure mode I. In slant fracture, a shear 

mode contribution is also present. As mentioned earlier, in this study, mode I cohesive 

parameters represent the parameters of mixed mode fracture. 

Given the small plastic zone size, any elevation of Gc over    is neglected and it is assumed that 

        . The cohesive energy for normal fracture,   , is equal to the J-integral at crack 

initiation in mode I,   .    is usually identical to the intersection point between a JR-curve and the 

critical Stretch Zone Width (SZWc), determined from the fracture surface. The principle of this 

method is shown in Figure 2-6 a. 

JR-curve is a tearing resistance curve, represents a material resistance to progressive crack 

extension (this implies that a material’s fracture toughness can change with crack extension). A 

tearing resistance curve is a plot of fracture toughness against crack extension. In many ductile 

materials, the size of the plastic zone at the crack tip increases as the crack extends. Thus, each 

successive unit of crack extension requires more energy than the preceding unit of extension (in 
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order to further increase the plastic zone size). Hence, the resistance of the material to crack 

extension increases with crack extension. This type of behaviour is known as a rising R-curve. 

There is a limit to this increase in toughness, and hence, all R-curves eventually flatten off. JR-

curve can be determined by a standard fracture test according to ASTM E1820. 

The SZWc should be determined by optical measurement of the stretch zone width of the initial 

fracture surface of the tested specimen. The intersection point of the average SZWc and the J-

  curve defines Ji. It is considered to be the most accurate method for measuring J close to the 

onset of crack extension. 

As mentioned earlier, the determination of Ji require the use of optical measurement to measure 

the stretch zone width on the fracture surfaces of the specimens. The method can produce large 

scatter in the values of Ji as a result of the subjective interpretation and measurement of the 

stretch zone width. If the stretch zone width cannot be distinguished from ductile crack 

extension, Ji cannot be determined. Since there are practical difficulties in using this approach, 

which makes it unsuitable for routine materials testing, an alternative procedure for estimating J 

close to the onset of initiation of stable crack extension is proposed in Schwalbe et al. (1995). 

This approach is used in this thesis to determine the fracture energy. 

The engineering approach is to use the fracture parameters at 0.2 mm of the crack extension. J0.2 

is the material resistance at 0.2 mm of the total crack extension. For many materials, this 

parameter provides useful estimation of the initiation toughness. This method is illustrated in 

Figure 2-6 b. 

As in this study, no JR-curve, which is determined through the mechanical test according to 

ASTM E1820, are available, an alternative procedure is applied. JR-curve for small crack 
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extension is taken from the blunting line (proposed by Cornec et al., 2003), which is given by a 

validated analytical solution: 

                           Eq. (2-10) 

Where,    is the maximum tensile strength and    is the crack extension. In this case, no 

determination of the J-integral by conducting standard fracture tests is needed. This method is 

presented in Figure 2-6 b. 

 

Figure 2-6: Determination of the cohesive energy by using a) the resistance curve and the 

stretch zone width, b) the analytical blunting line and 0.2 mm crack extension  

The procedure described in this part will be used in Chapter 4 to determine cohesive parameters, 

   and    for a bilinear TSL. Cohesive parameters are calibrated by tensile tests and then, the 

same parameters will be applied for simulating the fracture in steel plates. 
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Chapter 3: Experimental Results 

3-1. Introduction 

In order to validate the fracture process that will be modeled by CZM in this thesis, experimental 

results are needed. The mentioned experiments were designed and performed in a simultaneous 

project (Jamaly, 2014) at Memorial University of Newfoundland to examine fracture process in 

steel plates experimentally. An overview of the experiments, test setup, and the results are 

mentioned in this chapter. These experimental results will be compared with numerical results, 

which will be modeled by CZM in Chapter 4. 

Several fracture tests were conducted on two different kinds of steel materials. One is mild steel 

with 3.175 mm thickness, and the other is high tensile steel with 6.35 mm thickness. The 

mechanical properties of both kinds of steel materials are determined by conducting tensile tests 

and analyzing the experimental data. Then, fracture tests on steel plates, made from the same 

material as the tensile specimens, are investigated by conducting plate fracture tests. 

3-2. Tensile Test 

In order to determine material mechanical properties, mechanical tests are conducted where 

different parameters are measured. One of the useful and simple tests for determining the load-

carrying capacity of the material is the tensile test of flat bars or rods, which relates stress and 

strain. According to ASTM E1820, flat tensile specimens are used for analyzing mechanical 

properties of plates.  

In this tensile test, the specimen is subjected to a continuously increasing uniaxial load at 

constant rate (0.1 mm/sec) during which simultaneous measurements of the load and the 
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extension are made. The force applied and the deformation that is produced can be used to 

calculate the stress and strain in the material.  

From these measurements, the stress-strain curve is constructed. The stress (calculated from the 

load) and strain (calculated from the extension) can either be plotted as “nominal stress” against 

“nominal strain” or as “true stress” against “true strain”.  

Engineering stress and strain are other expressions for the nominal curve indicated above. In this 

case, the stress is the ratio of the applied load to the original section area of the specimen. 

Assuming that the stress   is distributed uniformly over the cross-section, we can write: 

  
 

 
 Eq. 3-1 

The relation between the applied stress and strain, in elastic region, can be expressed by: 

               Eq. 3-2 

Here e is the average linear strain. In simple terms, the linear strain can be expressed as: 

  
    
  

 Eq. 3-3 

   is the gauge length of the specimen. Thus, e is the ratio of the change in the gauge length to 

the original gauge length. This strain is called the engineering strain and it is valid for small 

strain values. A different and useful concept for defining strain, when deformation is considered 

in more practical terms, is associated with the instantaneous change occurring in a specimen’s 

length while a force is acting on it. Unlike cases of engineering strain, where reference was made 

to the constant gauge length of the specimen, reference is made to changes in the dimension at 
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each instant of the test. If dl is the amount by which the length, l, changes, strain can be defined 

similarly as: 

  
  

 
 Eq. 3-4 

Integrating the above equation: 

  ∫
  

 

  

  

   
  
  

 Eq. 3-5 

  is known as the natural, true, or logarithmic strain at every instant. It is often required to 

alternate between these two definitions of the strain, the engineering strain and the true strain. 

This can easily be performed using Eq. 3-3 and 3-4, as shown below. 

    
 

  
           Eq. 3-6 

In plastic deformation, the volume remains constant, so: 

                           Eq. 3-7 

   and   ,    and   ,    and    are, respectively, the section area and the gauge length of the 

tensile specimen before the specimen extension, during the tensile test , and at the fracture. 

There is a relation between true stress,   , and engineering stress ,  , using Eq. 3-6 and 3-7 as 

follows: 

   
 

  

  

  
 

 

  

  

  
   

  

  
   

  
  

           Eq. 3-8 

The material properties of steel are determined by tensile tests on steel flat bars. The geometry of 

the tensile specimen is shown in Figure 3-1.  



41 

 

 

Figure 3-1: The dimensions of the tensile specimens (in mm) 

Ten tensile specimens have been manufactured for the determination of the stress-strain curve of 

every kind of steel. The tensile specimens after the tensile tests are shown in Figures 3-2 and 3-3. 

 

Figure 3-2: Steel tensile specimens after fracture - 3.175 mm thickness 



42 

 

 

Figure 3-3: Steel tensile specimens after fracture- 6.35 mm thickness 

Experimental data and load-displacement curve obtained from the tensile tests, are presented in 

Figure 3-4 for thin specimens and in Figure 3-5 for thick ones. These curves are analyzed to 

derive engineering stress-strain curves using Eqs. 3-1 and 3-3. Engineering stress-strain curves 

are converted to true stress- strain curves by Eqs. 3-6 and 3-8. The stress- strain curves for one 

sample of the thin plate and one sample of the thick plate are demonstrated in Figures 3-6 and 3-

7 respectively. 
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Figure 3-4: Force-elongation curves of steel tensile specimens- 3.175 mm thickness 

 

Figure 3-5: Force-elongation curves of steel tensile specimens- 6.35 mm thickness 
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Figure 3-6: Engineering and true stress-strain curves- 3.175 mm thickness 

 

Figure 3-7: Engineering and true stress-strain curves- 6.35 mm thickness 
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In Figure 3-4 to Figure 3-7, the flat regions of the curves are the result of modifications on the 

experimental data. It should be noted that since the elastic region of the experimental curves deal 

with very small elongations/strains, the data obtained solely from the displacement sensor on 

INSTRON machine is not reliable and an extensometer must be used to measure, accurately, 

very small displacements in the tensile specimens. Measuring crosshead deflection during a test 

does not just measure strain in a defined region of a test sample. It also measures machine 

deflection, grip deflection, and possible slippage and deflection of the part of the test sample 

outside the normal reduced section. Hence, the change in length is not correctly measured due to 

the other deflections without an extensometer. 

For the highest accuracy of the measurements of yield strength and Young’s modulus, an 

extensometer is required to measure the change in length over the defined area. The 

extensometer and the way it is installed on the tensile specimen are shown in Figure 3-8. 

The measuring range of the extensometer is very important. In general, the extensometer's 

measuring range should match the amount of specimen elongation that is being investigated. In 

the case of fracture analyses, the whole range of the elongation till the fracture is under 

investigation. To obtain the whole stress-strain curve, an extensometer with high measuring 

range is required. However, the available extensometer is applicable only for elastic region and 

insufficient measuring range of the extensometer prevents measurement of larger elongations. 

One way to obtain data for the full stress-strain curve with a low measuring range extensometer 

is as follows: Run the test until a certain strain is reached, pause the test, remove the 

extensometer, and resume the test using the crosshead to obtain the rest of the test data to 

specimen failure. This procedure allows approximate measurement of elongation to failure with 
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a low measuring range extensometer. Using this procedure will reduce the chance of damage to 

the extensometer. However, not all test controls allow you to pause the test. Finally, it is possible 

to use a long measuring range extensometer and get more accurate measurements. 

 

Figure 3-8: Tensile test setup, INSTRON machine, and extensometer 

Extensometer 
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In this study, the elastic properties, ultimate stress, and the fracture point are essential which are 

measurable by presented curves in Figure 3-4 to 3-7. The horizontal flat regions in the mentioned 

curves are caused by simply connecting the elastic region measured by extensometer and the 

plastic area measured by sensors of the INSTRON machine.  

The early stages of the tensile tests are used to evaluate the yield strength and the Young’s 

modulus. The elastic limit is defined as the stress at which plastic deformation begins; in other 

words, it represents the largest load that a material can tolerate without noticeable or even 

measurable permanent change. Below this value, the slope, namely the ratio of stress to strain, is 

constant. The material is said to behave according to Hooke’s law and the ratio of stress to strain 

is called young’s modulus (E). 

The need for a practical determination of yielding in a material resulted in a method for its 

evaluation, a technique known as the “offset yield strength”. Offset yield strength represents the 

practical yield strength for engineering applications. For its evaluation, the early stages of tensile 

tests are used to evaluate the “yield strength”, which is defined as the stress at which a 

predetermined amount of permanent deformation occurs. To find the yield strength, a 

predetermined amount of permanent strain is set along the strain axis. A straight line is drawn 

parallel to the linear portion of the stress-strain curve. The point of intersection of this line and 

the stress-strain curve is projected on the stress axis; this stress value is called the yield stress. 

The offset stress usually used for yield stress is at 0.002. This technique is illustrated in Figure 3-

9. 
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Figure 3-9: Determination of the elastic limit 

Using the explained procedure for determining mechanical properties, the average material 

properties of steel are presented in Table 3-1. 

Table 3-1: Mechanical properties of steel 

Material Young’s Modulus (MPa) Poisson Ratio Yield Stress (MPa) 

Mild steel 214000 0.3 244 

High Tensile Steel 202000 0.3 426 

 

3-3. Plate Fracture Test 

In order to estimate the response of a steel plate to extreme loads, steel plates subject to 

indentation loads were tested in the Structural Laboratory at Memorial University of 

Newfoundland by Jamaly, 2014. The plate specimens were made of the same steel plates as the 

tensile specimens. A schematic view of the test setup is illustrated in Figure 3-10. Figure 3-11 

shows the dimensions of the test setup. 
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Figure 3-10: Plate fracture test setup at the structural lab (Jamaly, 2014) 

Two thin plates made of mild steel (3.175 mm thick) and two thick plates from high tensile steel 

(6.35 mm thick) were fabricated. The dimensions are shown in Figure 3-12. Since the main 

purpose of this study is to numerically simulate the normal fracture, and in order to avoid the 

fracture due to shear limit in the boundary of the plate, the two edges that the steel plate is 

placing on them are curved and the plate under investigation is designed to be wider at the edges. 

The width of the steel plates in the middle of the specimens is 100 mm. 

The steel plate is bolted to the test setup to have approximately fixed boundary conditions at two 

edges of the plate. A semi- cylindrical rigid indenter is pushing the steel plate down until fracture 

happens. The impact speed is 0.1 mm/sec and the radius of the indenter is 75 mm. Broken steel 

plates are presented in Figure 3-13 and 3-14.  
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Figure 3-11: Dimensions of the plate fracture test setup (in mm) (Jamaly, 2014) 
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Figure 3-12: Steel plates dimensions (in mm) 

 

Figure 3-13: Crack path and the deflection in the thin plate (Jamaly, 2014) 
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Figure 3-14: Crack path and the deflection in the thick plate (Jamaly, 2014) 

In all steel plates, crack initiated in the centre of the width of the plate in normal fracture mode 

and then, continues to the edges of the plates, which is called slant fracture. Normal fracture 

region and slant fracture region are presented for thin plates in Figure 3-15 and for thick plates in 

Figure 3-16. These sequences and the crack propagation are shown in the pictures taken from the 

bottom of the plates during the experiments, which are presented in Figure 3-17 for the thin plate 

and in Figure 3-18 for the thick plate. 
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Figure 3-15: Normal and slant fracture in the thin steel plates 

 

 

 

Figure 3-16: Normal and slant fracture in the thick steel plates 

 

Figure 3-17: The sequences of the crack propagation in the thin plate (from left to right) 

Slant fracture 

Normal fracture 

Slant fracture 

Normal fracture 
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Figure 3-18: The sequences of the crack propagation in the thick plate (from left to right)  

During the experiments, vertical force applied to the steel plates and the vertical displacement of 

the rigid indenter were recorded. The force-deflection curves for the thin and thick plates are 

depicted in Figure 3-19 and 3-20. Sudden falls in the curves are presenting the points at which 

the fracture in the steel plates happened. These curves will be compared to numerical results 

derived by using CZM in Chapter 4. 

 

Figure 3-19: Force-deflection curves in thin plates- sudden fall shows the fracture (based on 

experiments done by Jamaly, 2014) 
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Figure 3-20: Force-deflection curves in thick plates- sudden fall shows the fracture (based 

on experiments done by Jamaly, 2014) 

The force-deflection curves show a clear transition from plate bending towards membrane 

behavior. Prior to fracture, the force does not increase as the plate thinning, the necking 

phenomena, occurs. The necking continued until fracture happened. Fracture occurs very fast 

and this causes an immediate drop in force. 

The horizontal distance of the crack locations from the plates’ edge, for both thin and thick 

plates, are almost 300 mm. Figure 3-21 shows this distance on a sample of thick plates. These 

distances are presented in Table 3-2. 
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Figure 3-21: The horizontal distance of the crack locations (Jamaly, 2014) 

Table 3-2: Crack location- horizontal distance from the edge of the steel plate 

Specimen 

Thin Plate 

Test No. 1 

Thin Plate 

Test No. 2 

Thick Plate 

Test No. 1 

Thick Plate 

Test No. 2 

Distance (mm) 320 310 325 330 
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Chapter 4: Finite Element Analysis 

4-1. Introduction 

This chapter describes the application of a 3D interface cohesive finite element model to predict 

quasi-static, ductile crack extension in steel for mode I loading and crack growth. The fracture 

model comprises initially zero thickness interface elements with constitutive response described 

by a traction-separation relationship. Conventional continuum finite elements model the elastic-

plastic response of the main material. The interface cohesive elements undergo gradual 

decohesion between faces of the continuum elements to create new traction-free crack faces.  

This part presents results from numerical analyses with focus on fracture prediction. The 

performance of CZM is investigated. In addition, the influence of the cohesive parameters with 

respect to onset of failure is studied. 

In order to investigate the performance of the cohesive model under the same constraint 

conditions and the transferability of their parameters, tensile test simulations are used for 

parameter identification and calibration, and steel plate fracture tests simulation are used for 

cohesive model validation. It will be shown that for both models, a single set of parameters 

describes the mechanical behaviour of both types of specimens. A comparison of experimental 

results with those from FEA is carried out to assess the accuracy of the developed model.  

For the entire investigation, ABAQUS is used.  

4-2. Finite Element Analysis Basics 

There are four main components in a finite element model: 

 Analysis type 
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 Boundary conditions 

 Material model  

 Element definition 

One choice that has to be made when planning Finite Element Analysis (FEA) is which method 

should be used to solve the problem numerically. Additionally, given the geometry of the 

considered problem, the modeller mainly has to decide on the boundary conditions, the material 

model, the mesh and the element type.  

4-2-1. Analysis type 

Generally, there are two methods to solve structural problems numerically: static analysis and 

dynamic analysis. The basic statement of static equilibrium is that the internal forces exerted on 

the nodes, I (resulting from the element stresses), and external forces, P, acting at every node 

must balance: 

                           Eq. 4-1 

The major difference between static and dynamic analysis is the inclusion of the inertial forces, 

  ̈. Where, M is the mass and  ̈ is the acceleration of the structure. A problem is dynamic when 

the inertial forces are significant and vary rapidly in time. Inertial forces are proportional to the 

acceleration of the mass in structure. The dynamic equilibrium equations are written for 

convenience with the inertial forces isolated from the other forces: 

  ̈                            Eq. 4-2 
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This equation is simply newton’s second law of motion. I and P may depend on nodal 

displacements and velocities but not any higher-order time derivatives. Thus, the system is 

second order in time, and damping/dissipation is included in I and P: 

       ̇                      Eq. 4-3 

Where, K (stiffness) and C (damping) are constant, the problem is linear.  

Solving a dynamic problem may require the integration of the equations of motion in time. The 

method used to integrate these equations through time, distinguish Abaqus/Standard and 

Abaqus/Explicit.  

Abaqus/Standard is a general-purpose finite element program. It can solve both static and 

dynamic equilibrium equations. Implicit method, which requires direct solution of a set of matrix 

equations to obtain the state at the end of the increment, is used by Abaqus/Standard. Time 

increment size is not limited; generally, fewer time increments required to complete a given 

simulation. In order to solve nonlinear problems, iterations are required. Each time increment is 

expensive since each requires the solution for a set of simultaneous equations. 

Abaqus/Explicit is a general-purpose finite element program for explicit dynamics. It solves 

highly discontinuous high-speed dynamic problems efficiently using explicit method. In explicit 

method, the state at the end of the increment depends solely on the state at the beginning of the 

increment, and Solution procedure does not require iteration. Time increment size is limited; 

generally, many time increments are required to complete a given simulation. Each time 

increment is relatively inexpensive because it is not required to solve a set of simultaneous 

equations. 
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Iteration is an attempt at finding the equilibrium solution in an increment. Abaqus/Standard uses 

an incremental-iterative solution technique based on the Newton-Raphson method. The method 

is unconditionally stable (i.e. any size increments can be used). Each increment usually requires 

several iterations to achieve convergence. 

Abaqus/Explicit solution is conditionally stable and the size of the time increment must be 

controlled. Explicit methods generally require many more time increments than implicit methods 

for the same problem. In a nonlinear analysis, ABAQUS automatically chooses appropriate load 

increments and convergence tolerances and continually adjusts them during the analysis to 

ensure that an accurate solution is obtained efficiently. 

Sometimes there are large inertia loads but can do static analyses because the loads vary slowly 

with time. Additionally, when the inertial or dynamic force is small enough, the equations reduce 

to the static form of equilibrium. In quasi-static problems: 

 inertia forces are negligible, 

 the velocity of the material in the test specimen is very small, and 

 Kinematic energy is negligible. 

In these problems, the energy history for a quasi-static problem would appear as shown in the 

Figure 4-1. The kinematic energy of the deforming material,   , does not exceed a small fraction 

of its internal energy,   , throughout the majority of the simulation. A small fraction typically 

means 1 to 5% (ABAQUS, 2010).  
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Figure 4-1: Energy history for quasi-static problem 

In this research, Abaqus/Standard analysis method is chosen when analyzing the models because 

this can be an appropriate analyzing method to use in a quasi-static situation. Due to the 

relatively low velocity in ship collisions, the strain rate is low compared to other high-speed 

impact problems.  

4-2-2. Nonlinearity  

There are different kinds of structural nonlinearities. Sources of nonlinearity are: 

 Material nonlinearities (including Nonlinear elasticity, plasticity, material damage, and 

failure mechanisms) 

 Boundary condition nonlinearities (the boundary condition is not fixed and changes 

during the analysis. The most common example is the contact problem) 

 Geometric nonlinearities (including large deflections and deformations, and large 

rotations) 
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Typical nonlinear problems have all three forms of nonlinearity. So the equilibrium equations 

must include the nonlinear terms; and generally, the nonlinear equations for each degree of 

freedom are coupled. All these nonlinearity types are present in the tensile test and the plate 

fracture test simulation. All of these structural nonlinearities are supported by ABAQUS. 

When the displacements are small, the equilibrium equations can be established with reference to 

the initial configuration. When the ultimate strength of structures that collapse is to be calculated, 

the assumption about small displacements and linear material need to be modified. For a linear 

analysis, the stiffness matrix is assumed to be constant. In linear analysis following equation is 

solved in order to get the load or displacement 

                          Eq. 4-4 

Where, F is external load, U is nodal displacement, and K is stiffness matrix found from the 

linear strain stress relationship and is constant throughout the analysis. 

When the structure undergoes large deformations, the material is nonlinear, or the boundary 

conditions change during the analysis, the stiffness matrix changes with deformation and needs 

to be recalculated in each load step. The governing equations are nonlinear with respect to 

displacement and an incremental solution scheme is used for solution. In this case, Eq. 4-4 is 

modified as:  

                             Eq. 4-5 

Where, stiffness      is not a constant rather depends on the displacement. 

In general, the above equation is not possible to be solved analytically. Normally incremental or 

iterative method is used. Then, Eq. 4-5 is expressed as:  
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                              Eq. 4-6 

Where,            is incremental stiffness; and    and    are corresponding increments 

in load and displacement, respectively.  

With a given condition      ,   can be calculated and the displacement increment,   , due to 

load increment,    , can be calculated by following equation: 

                              Eq. 4-7 

Nonlinear problems are generally solved in an incremental solution schemes. For a static 

problem a fraction of the total load is applied to the structure and the equilibrium solution 

corresponding to the current load level is obtained. The load level is then increased (i.e. 

incremented) and the process is repeated until the full load level is applied. 

In static problems, the total load applied is broken into smaller increments so that the nonlinear 

solution path may be followed. In dynamic problems the total time period is broken into smaller 

increments to integrate the equations of motion. For a dynamic problem, the equations of motion 

are numerically integrated in time using discrete time increments. As mentioned, there are two 

different methods offered by ABAQUS to perform dynamic analysis, each of them with 

advantages and disadvantages depending on the considered problem: Abaqus/Standard and 

Abaqus/Explicit.  

4-3. Modeling damage in ABAQUS 

To help in understanding the fracture modeling capabilities in ABAQUS, consider the response 

of a typical metal specimen during a simple tensile test (the bilinear model is a reasonable and 

engineering model of the steel behavior). The stress-strain response, such as that illustrated in 
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Figure 4-2, will show distinct phases. The material response is initially linear elastic, AB, 

followed by plastic yielding with strain hardening, BC. Beyond point C there is a marked 

reduction of load-carrying capacity until rupture, CD. The deformation during this last phase is 

localized in a neck region of the specimen. Point C identifies the material state at the onset of the 

damage and damage initiates from this point. Beyond this point, the stress-strain response CD is 

governed by the evolution of the degradation of the stiffness in the region of strain localization. 

In the context of damage mechanics, CD can be viewed as the degraded response of the curve 

CD’, which the material would have followed in the absence of damage. 

 

Figure 4-2: Typical material response showing progressive damage 

Thus, in ABAQUS the specification of a failure mechanism consists of four distinct parts: 

(ABAQUS, 2010) 

 the definition of the effective (or undamaged) material response (e.g. elastic-plastic 

material with hardening, ABCD’ in Figure 4-2), 

 a damage initiation criterion (e.g. C in Figure 4-2), 

http://tayyebe:2080/texis/search/hilight2.html/+/usb/pt05ch24s01abo21.html?CDB=v6.12#failure-uniaxial-test
http://tayyebe:2080/texis/search/hilight2.html/+/usb/pt05ch24s01abo21.html?CDB=v6.12#failure-uniaxial-test
http://tayyebe:2080/texis/search/hilight2.html/+/usb/pt05ch24s01abo21.html?CDB=v6.12#failure-uniaxial-test
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 a damage evolution law (e.g. CD in Figure 4-2), and 

 material separation once the material stiffness is fully degraded (e.g. D in Figure 4-2). 

All four components should be in material definition to model fracture. The strain softening part 

of the curve cannot represent a material property. Because it depends on fracture mechanics 

considerations and mesh size. In this research, ABCD’ in Figure 4-2 is used as the material 

model of the continuum elements; and to address the strain softening issue, Cohesive Zone 

Model, with a bilinear TSL (Figure 2-4 a), is used. 

ABAQUS has capability of predicting crack propagation. Element deletion technique is provided 

such that the element, where the failure criterion is locally reached, will be removed from the 

calculation. Thereby dynamic element deletion can be visualized as crack propagation. If a 

critical initiation value of some fracture parameter is exceeded, a crack starts to grow. Crack 

growth can also be simulated using node release techniques, controlled by any fracture 

mechanics parameter (e.g. J-integral) which requires knowing the crack location in advance. 

These two mentioned techniques are highly mesh sensitive and cause numerical convergence 

problems. 

Modeling Cracks and crack-like defects induce high stress and strain gradients which require a 

fine mesh size resulting in large numbers of elements and degrees of freedom. Nonlinear 

simulations of components with stress concentrators are therefore expensive with respect to 

computation time and memory. All possibilities to reduce the number of degrees of freedoms 

should hence be utilized like: 

 restricting to two-dimensional models of the structure if physically meaningful, 

 coarsening the mesh away from the defect,  

http://tayyebe:2080/texis/search/hilight2.html/+/usb/pt05ch24s01abo21.html?CDB=v6.12#failure-uniaxial-test
http://tayyebe:2080/texis/search/hilight2.html/+/usb/pt05ch24s01abo21.html?CDB=v6.12#failure-uniaxial-test
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 introducing symmetry conditions.  

To solve the mentioned problems in using Element deletion technique and node release 

technique, and the problems regarding the validity of classical Fracture Mechanics, CZM can be 

used. ABAQUS can handle crack using cohesive zone model, which is expected to be less mesh 

sensitive. 

4-3-1. CZM in ABAQUS 

To model fracture, in a finite element representation of CZM, cohesive elements are introduced 

as interface elements between continuum elements at the boundaries of continuum elements (i.e. 

along pre-defined crack paths). They do not have an initial thickness but upper and lower 

surfaces are distinct with duplicated nodes, which can separate during loading. The damage 

occurs only in the interface elements which obey a constitutive equation named TSL explained in 

Chapter 2.  

In the cohesive model, the damage evolution in the structure is decoupled from its inelastic 

deformation. Material separation occurs only in interface elements which have no volume in the 

undeformed state, but can open under loading, that is, the two sides of the interface can 

irreversibly separate, which describes the evolution of damage and finally (if separation is larger 

than   ) results in the failure of the interface element. Hence, the continuum elements are 

separated. 

Two main approaches that can be used to embed cohesive elements in a FE model are: 

(ABAQUS, 2010) 

 embedding one or more layers of cohesive elements in the mesh of an existing model 

using offset technique. Offset mesh can be created only from three-dimensional element 
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faces. As a result, only hexahedral- and wedge-shaped cohesive elements can be created 

using an offset mesh. 

 creating the analysis model using the geometry and mesh tools. The connection at the 

interface between the cohesive layer and the surrounding bulk material can be modeled 

by sharing nodes or by defining a tie constraint. The tie-constraint approach allows 

modelling the cohesive layer using a finer discretization than that of the bulk material and 

may be more desirable in certain modeling situations. 

Cohesive elements have an orientation associated with them. This orientation defines the 

thickness direction of the elements, and it should be consistent throughout the cohesive layer. 

Swept or offset meshing techniques should be used to generate the mesh in the cohesive layer, 

because these tools produce meshes that are oriented consistently. A single layer of solid 

elements should be created to model the cohesive region. The use of more than one layer through 

the thickness could produce unreliable results and is not recommended. (ABAQUS, 2010) 

TSL consists linear elasticity with damage. Linear elasticity defines behavior before the initiation 

of damage. It relates nominal stress to nominal strain (nominal traction to separation with default 

choice of unit thickness). In ABAQUS, nominal stress and strain quantities are used for the 

traction separation law. If unit thickness is specified for the element (in section module, not in 

geometry), then the nominal strain corresponds to the separation value. If a non-unit thickness 

(h) is specified for the cohesive element, the value of the stiffness must be scaled accordingly: 

                           Eq. 4-5 

ABAQUS requires that the cohesive elements thickness, h, and ten material parameters are 

inputted: 
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 Elastic stiffness (En, Et, Es), 

 Damage initiation criterion (Nmax, Tmax, Smax) 

 Damage evolution (η, GIC, GIIC, GIIIC) 

Assuming the isotropic behavior,                   ; and for BK mixed mode behavior 

(Benzeggagh and Kenane, 1996), this makes the response independent of η term. Cohesive 

elements thickness are essentially zero in the geometry, but the cohesive section property 

thickness is specify as h=1, so nominal strains=separation and elastic modulus=stiffness. 

Isotropic behavior also implies the following:  

 En,=Et,=Es (equals to K, since h=1) 

 Nmax=Tmax=Smax=Tultimate 

The traction-separation law is based on the separation between the top and bottom faces of the 

cohesive element. However, for considering symmetry condition, it should be noted that on a 

symmetry plane, the separation that computed is half of the actual value. TSL for considering 

symmetry condition is shown in Figure 4-3. 

 

Figure 4-3: TSL for considering symmetry condition 
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While using cohesive elements, special issues should be considered that are specific to these 

elements. Such issues include special considerations associated with using cohesive elements in 

conjunction with contact interactions, and potential convergence problems in Abaqus/Standard.  

4-4. Tensile Test Simulation 

In order to derive and calibrate the cohesive material, numerical simulation of tensile specimens 

under tensile loading is performed using ABAQUS. Here, the finite element analysis of the test 

specimens studied in Chapter 3 is described. 

For embedding cohesive elements in an existing three-dimensional mesh the solid offset mesh 

tool is used. For this approach, the offset distance is set to be zero to generate a layer of zero 

thickness hexahedral elements (with consistent orientation) between continuum elements that 

share nodes with the surrounding bulk material. 

The FE mesh of the tensile bars, tested in Chapter 3, is shown in Figure 4-4 and Figure 4-5. 

Mesh size is 1 mm. 72 layers of cohesive elements are embedded in the necking region. The FE 

model consists of 11577 3D solid elements and 3570 3D cohesive elements in planes normal to 

the applied load between each layer of continuum elements for the thin tensile bar; and it 

includes 23154 3D solid elements and 7038 3D cohesive elements for the thick tensile bar. Since 

the cohesive elements have zero thickness in the beginning, they are not visible originally, but 

they are highlighted in red in Figure 4-4 and Figure 4-5. 
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Figure 4-4: FE mesh of the thin tensile bar, 3.175 mm thickness. Cohesive elements are 

highlighted in red. 

For FE simulation of the tensile tests, instead of applying tension forces to the both ends of the 

tension bar, a prescribed displacement is applied to both reference points at the two ends of 

tensile bar. Displacement-controlled loading allows the crack to grow in a stable fashion because 

the applied load is adjusted by increasing or decreasing it in order to maintain a certain rate of 

displacement, which is not possible under load-controlled loading. Thus, this phenomenon can 

be modelled statically, provided the applied displacement is below the amount that would cause 

dynamic crack growth. In a load-controlled experiment where the load is increasing or 

maintained at a certain value, the difference in the applied load and the required load increases 

monotonically as the crack grows. Thus, the specimen will experience dynamic and catastrophic 

failure. Such a phenomenon cannot truly be modeled in a static simulation. (ABAQUS, 2010) 
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Figure 4-5: FE mesh of the thick tensile bar, 6.35 mm thickness. Cohesive elements are 

highlighted in red. 

As mentioned, in FE simulation using cohesive modeling, the mechanical constitutive responses 

are classified to be based on: 

 a continuum description of the material (for elastic-plastic material), 

 a TSL of the interface material (for cohesive material) 

The derivation of both material models are explained thoroughly in the following. 

4-4-1. Stress- Strain Material Model 

The stress and strain relationship for a material is a way to define how a material will react 

mechanically to an applied loading condition. In ABAQUS, the properties of a material for 

continuum elements is inputted as the relationship between true stress and true strain for the 

plastic straining, and the Young’s modulus and the Poisson’s ratio define the linear-elastic 
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behavior leading to the plasticity. The material model in FEA is determined by tensile tests on 

steel flat bars explained in Chapter 3. Typically, the material behaviour of steel in FEA can be 

idealised as bilinear model with elastic and linear strain hardening components. The slope at 

elastic region is represented by Young's Modulus. 

 

Figure 4-6: Engineering stress-strain curve, true stress-strain curve, FE bilinear curve for 

3.175-mm plate 

For the generation of a stress–strain curve, the engineering values from the tensile tests, given in 

Figure 3-6 and 3-7, first were converted to true stress- true strain values. Since the yield stress 

and the ultimate stress (the point at which fracture starts) on the stress-strain curve are the most 

important points, this curve is idealized as a bilinear curve which is then used for all subsequent 

numerical simulations. These curves are shown in Figure 4-6 for specimens with 3.175 mm 

thickness and in Figure 4-7 for specimens with 6.35 mm thickness. The elastic properties are 
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given in Table 3-1. These materials are used for modeling the mechanical behavior of the 

continuum elements. This is an approximation of the material’s behaviour. Therefore, the results 

of the FE simulation should be also discussed with respect to the choice of the stress-strain 

curve.  

 

Figure 4-7: Engineering stress-strain curve, true stress-strain curve, FE bilinear curve for 

6.35-mm plate 

4-4-2. Traction- Seperation Material Model 

As mentioned, in order to derive the FE material model including elastic-plastic material for 

continuum elements and TSL for cohesive elements, the tensile tests were done. Calibration tests 

of the fracture parameters in cohesive elements are conducted by modeling uniaxial tensile tests 

in FE software and comparing the numerical and experimental results. 
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ABAQUS provides three types of TSL, including triangular, exponentially softening, and user 

defined softening models. The most popular model among these three traction-separation laws 

for cohesive element is triangular traction-separation law. It is simply defined with elastic 

stiffness (K), strength of an element (  ), and either critical displacement at failure (  ) or 

fracture energy (  ). In the triangular model, applied stress on cohesive element increases with 

the slope of K up to the strength of the element (  ) and decays linearly till the displacement of 

the element reaches to critical displacement (  ). The critical energy release rate of this model 

can be easily calculated by getting the area under the traction-separation curve.  

As explained in Chapter 2, an estimate of the cohesive strength,   , was obtained from the 

normal stress at fracture of the flat tensile specimen during the tensile test. The engineering stress 

at failure, as calculated by the force at failure divided by the original cross section of the 

specimen, was then set equal to the cohesive traction. The separation energy,   , was pre-

estimated from the J-integral at crack initiation. Using Eq. 2-10 and the procedure explained in 

Chapter 2, cohesive energy is calculated. Generally,      , and    can be taken as a first 

approximation for    in a subsequent parameter fitting process. The definite values of the 

parameters can be determined in an inverse procedure by fitting simulation results to 

experimental records. 

The cohesive parameters can be calibrated by simulations of the tensile test with cohesive 

elements through fitting numerical data to experimental data. Figure 4-8 and Figure 4-9 present 

the results of FEA simulation of the tensile bar tests for various combination of     and   . Note 

that the different    values did not change the load-displacement curve but only the point of 

failure. It is observed in the parameter study that    determines the ductility of the specimen and 

the effect of the cohesive energy is much less than the effect of cohesive strength. If the strength 
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of cohesive element is higher than the ultimate stress of the ductile steel plate, it will stay only in 

the elastic region, while if the strength is lower than the ultimate stress, the cohesive model will 

start to show softening behavior before the steel reaches its ultimate stress. Therefore, when 

using the cohesive elements, capturing the softening behavior of the ductile steel is really 

difficult. 

The subsequent optimization of the parameters by simulations of the load-displacement curve 

yielded             and             for mild steel and             and    

         for high tensile steel. These values will be used to simulate fracture in the steel plate 

fracture tests. 

 

Figure 4-8: Determination of cohesive parameters for mild steel (3.175 mm thickness) and 

the effect of the variation of cohesive parameters on the fracture simulation 
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Figure 4-9: Determination of cohesive parameters for high tensile steel (6.35 mm thickness) 

and the effect of the variation of cohesive parameters on the fracture simulation 

It should be mentioned that force-displacement curve in case of numerical simulation, even 

without modeling the damage (FE Model without CZM in Figure 4-8 and 4-9), has small 

deviation from experimental results. This is because of the fact that the FE model for the elastic-

plastic material was idealized to a bilinear curve (to reduce simulation time significantly), while 

more accurate elastic-plastic material model may improve the numerical simulation results. The 

general behavior of load-displacement curve of numerical simulation compares well with the 

experimental results.  

Even though the tensile specimen has a simple geometry and the loading is uniaxial, the 

mechanism of failure of that specimen is very complex due to the mixed fracture. In tensile test, 

fracture initiates in the center of the breadth of the specimen after significant plastic deformation 

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25

F
o

rc
e 

(k
N

) 

Elongation (mm) 

Tensile Tests Results

FE Model without CZM

T=555, J=410

T=560, J=410

T=558, J=410

T=558, J=400



77 

 

with a pure normal fracture mode. Then, the normal fracture mode transits to a slant fracture 

mode of ductile tearing, where, the crack is inclined and propagate along approximately     

angle to the surface of the specimen. The crack thus extends locally in a mixed-mode 

configuration. (Scheide et al., 2003; Cornec et al., 2009) 

The numerical simulation of the fracture behavior of the tensile bar using the cohesive model is 

considered successful if numerical load-deflection curves agree well with the experimental load-

deflection curves and the following phenomena can be realized: 

 The crack initiates in the center of the breadth of the specimen. 

 The crack extends to the outer surface and deviates from the original crack plane into the 

    plane. 

As mentioned, in the present study, slant fracture is treated like a mode I fracture (normal 

separation) with the fracture plane normal to the applied load and the appropriate effective 

cohesive parameters. The idealization of the cohesive model does not consider the real slant 

fracture (under     across the thickness). Crack propagation is modelled in the projection plane 

equivalent to normal fracture but with cohesive parameters consistently determined as well in the 

projection plane.  

Interface cohesive elements are placed only in flat plane directions between the continuum 

elements, constraining crack growth in the flat plane directions (mode I fracture). Figure 4-10 

and 4-11 show crack growth in cohesive elements. In FE simulation similar to the experiments, 

the crack initiates in the centre of the breadth of the tensile specimen and extends to the outer 

surface. In reality, after the normal fracture initiation in the middle of the specimen, the crack 

shoud extend to the circomference in 45 degree.  
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In this simulation, the cohesive elements were just inserted in perpendicular direction to the bar 

axis between the continuum elements. Hence, crack develops in a flat plane. Modeling of the 

transition from flat to slant local fracture modes, using interface cohesive elements, lies beyond 

the scope of this study. The numerical models restrict crack to propogate in flat mode only. The 

focus here lies on the numerical and experimental results comparison, and the overall capability 

of the models to predict the measured load-crack extension response. Exact features of the 

transition to local slant fracture likely involve a complex interaction between fracture 

parameters. 

 

Figure 4-10: Crack growth path during the tensile test - 3.175 mm thickness 
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Figure 4-11: Crack growth path during the tensile test - 6.35 mm thickness 

As described above, direct measurements of the respective quantities were combined with FE 

simulations of fracture mechanics tests for a fine-tuning of the parameters. The cohesive 

parameters such as fracture energy were calibrated, so that the elements fail at the appropriate 

value of applied load or displacement. These parameters are used to simulate steel plate fracture 

in next stage. Calibrated cohesive parameters are presented in Table 4-1. 

Table 4-1: Cohesive parameters 

Steel mild steel high tensile 

Plate Thickness (mm) 3.175 6.35 

         335 555 

          250 410 
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4-4-3. Convergence Studies 

Mesh dependence of numerical results is a big issue in damage mechanics when softening 

behavior of material is simulated. As mentioned in Chapter 1, simulation of fracture using 

fracture criteria in FEA is highly mesh sensitive. On the other hand, since the cohesive law is 

expressed in terms of stress depending on the separation, a length scale parameter (characteristic 

length) is inherent to the model. In other words, a cohesive law introduces well-defined fracture 

energy (fracture or cohesive energy is the work of separation per unit area). Thus, no mesh 

dependence is expected and finite element models with cohesive elements are mesh independent, 

which is always a big issue in application of fracture criteria in FEA.  

In this part, fracture simulation with two different mesh sizes, but with the same cohesive 

parameters, is conducted to investigate the fracture in both thin and thick tensile specimens. The 

tensile test simulation is repeated with 2 mm and 4 mm mesh size. Finite element model of the 

tensile bars, after the fracture, are shown in Figure 4-12, 4-13, 4-14, and 4-15. 

The numerical results are presented in Figure 4-16 and Figure 4-17. As it was expected, mesh 

size does not have a significant effect on the final results when cohesive elements are used for 

fracture analysis. The prediction of the fracture point using CZM is less mesh sensitive in 

comparison with the other FEA techniques to analyze fracture. This is one of the advantages of 

the CZM, which reduces the simulation time significantly. 
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Figure 4-12: Crack growth path during the tensile test, 3.175 mm thickness, 2 mm mesh size  

 

Figure 4-13: Crack growth path during the tensile test, 3.175 mm thickness, 4 mm mesh size 
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Figure 4-14: Crack growth path during the tensile test, 6.35 mm thickness, 2 mm mesh size  

 

Figure 4-15: Crack growth path during the tensile test, 6.35 mm thickness, 4 mm mesh size  
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Figure 4-16: Load-elongation curve of the tensile test for 3.175 mm specimen 

 

Figure 4-17: Load-elongation curve of the tensile test for 6.35 mm specimen 
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4-5. Plate Fracture Test Simulation 

The transferability of the cohesive model parameters to other specimen sizes and geometries is 

investigated in this part. Experimental results of the steel plates loaded by rigid indenter 

(presented in Chapter 3) are used to validate the cohesive model transferability to other 

specimens with the same stress triaxiality. 

The plate fracture test setup and the required dimensions were illustrated in Figure 3-10, Figure 

3-11 and Figure 3-12. In order to numerically simulate these experiments and investigate crack 

initiation and propagation in the steel plates, the test setup is modeled in ABAQUS.  

In ABAQUS, problems with multiple components are modeled by associating the geometry 

defining each component with the appropriate material models and specifying component 

interactions.  

The indenter was modeled as a discrete rigid surface. This means that the surface of the indenter 

will not be able to deform, and will keep its initial shape throughout the analysis. The discrete 

rigid surface is defined by a mesh of undeformable elements. Having elements containing nodes 

is beneficial when the contact between the surfaces of the two parts are to be defined. This saves 

computation time when running the analysis. 

Alternatively, an analytical rigid surface could have been used. This is a rigid surface that is 

defined by the geometry, and not a mesh of rigid elements as the discrete rigid surface. This will 

make the computer analysis run more slowly, since the geometrically defined surface is more 

complicated to analyze than the meshed surface of the discrete rigid body.  

In order to ensure that the indenter moves down to the plate, perpendicular to the plate’s initial 

surface, the reference point of the indenter was restrained against all movements and rotations 
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except for the translation in the global y-direction, perpendicular to the plane of the plate. The 

contact between the outer surface of the indenter and the upper surface of the plate is defined 

using General contact. 

Generally, there are three contact models in ABAQUS: 

 General contact 

 Node-to-Surface contact (Slave nodes cannot penetrate master surface segments. Nodes 

on the master surface can penetrate slave surface segments.) 

 Surface-to-Surface contact  

The two contact algorithms, however, can be used together in the same analysis. The General 

contact algorithm automatically avoids processing interactions that are treated by the contact pair 

algorithm. Here, General contact is used for the whole model, and beside defining the General 

contact, in order to model the contact between the indenter and the cohesive elements of the plate 

more precisely, Node-to-Surface contact is used. 

For modeling contact, the slave surface should be meshed more finely than the master surface. If 

mesh densities are equal, the slave surface should be the surface with softer underlying material. 

(ABAQUS, 2010) Here, the plate’s mesh size is 2 mm, the mesh size of the indenter and the 

boundary plates is 4 mm. the plate is also softer than the indenter and the boundary plates. 

It should be mentioned that the other reason that in this research, discrete rigid is used is the fact 

that analytical rigid surfaces are not currently supported by General contact model in ABAQUS. 

Discrete rigid bodies can be used with both general contact and contact pairs. 

Additionally, two curved plates in the test setup, which are assumed to be rigid and fixed, are 

modeled. Another contact between the rigid plates and the plate under investigation is defined. 
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The bolts used to attach the plate to the boundary plates are not modeled and the ends of the plate 

under investigation are attached to the boundary plates using tie constraint to model rigid 

boundary condition. 

Output was requested for the displacement and the reaction force in the reference point of the 

indenter. These are used to evaluate the analysis against the force-displacement curves that were 

developed in the plate fracture tests. 

 

Figure 4-18: FE model of the plate fracture test 

Cohesive elements are embedded between continuum elements. The FE model of the thin plate 

fracture test consists 50142 3D solid elements and 5304 cohesive elements. The FE model of the 

thick plate fracture test with 75192 3D solid elements and 9300 cohesive elements is shown in 

Figure 4-18. The mesh size for the steel plate is 2 mm and for the rigid indenter and the rigid 

plates are 4 mm. A layer of cohesive elements is embedded between each two layers of 
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continuum elements in necking region perpendicular to the plate surface. Zero thickness 

cohesive elements are not visible originally, but they are highlighted in red in Figure 4-19 and 

Figure 4-20 for illustration purpose. 

 

Figure 4-19: FE mesh of the steel plate with 3.175 mm thickness. Cohesive elements are 

highlighted in red. 
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Figure 4-20: FE mesh of the steel plate with 6.35 mm thickness. Cohesive elements are 

highlighted in red. 

The rigid indenter will push the plate downward until fracture happens. In the numerical 

simulation of the plate fracture, the same as in the plate fracture experiments, the crack starts in 

the centre of the breadth of the plate and grows to the surfaces of the specimen, which shows the 

capability of the CZM to model the exact crack propagation path. The crack propagations are 

presented in Figure 4-21 and Figure 4-22 (views from the bottom of the plates). 
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a) 

 

b) 

Figure 4-21: The sequences of the crack propagation a) in the FE model of the thin plate, b) 

in the experimental test of the thin plate (from left to right) 

 

a) 

 

b) 

Figure 4-22: The sequences of the crack propagation a) in the FE model of the thick plate, 

b) in the experimental test of the thick plate (from left to right) 
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The steel plates at the end of the simulation are presented in Figure 4-23 and Figure 4-24. The 

general crack path and the crack initiation point in the plates, simulated numerically, compare 

reasonably to Figure 3-13 and 3-14 from experimental tests. It should be mentioned that the 

crack path is restricted to propagate along the cohesive elements and the exact crack propagation 

may be simulated if cohesive elements are inserted in all possible directions.  

The predicted deformation is similar to that observed in the experimental tests. Figure 4-23 and 

4-24 perfectly show the capability of CZM to simulate crack initiation and propagation. These 

figures show that the horizontal distance of the crack locations match the distance from 

experimental tests, which were presented in Table 3-2 and Figure 3-21. 

 

Figure 4-23: Fracture simulation in the thin steel plate 

The differences in experimental and numerical horizontal distances can be the result of 

experimental errors. It should be noted that there is variation in horizontal distances determined 

340 mm 
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from experiments on the specimens with the same dimensions in Table 3-2. Where, the FE 

model is the idealized simulation of the experiments. Additionally, the position of the cohesive 

layers and the fact that crack propagate only along the embedded layers affects the crack 

location. 

 

Figure 4-24: Fracture simulation in the thick steel  

The force and displacement values of the indenter are recorded during the simulation. The 

numerical simulation results are compared with experimental results in Figure 4-25 and 4-26. 

The cohesive model shows very good agreement with the experimental curves. The force-

displacement curves show clear transition from plate bending towards membrane behavior. 

These transition points have some differences with experimental results which can be the result 

of not having perfectly fixed boundary conditions in the plate fracture experiments. Fracture 

occurs with an immediate drop in force. 

330 mm 
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Figure 4-25: Force-deflection curve for the thin plate 

 

Figure 4-26: Force-deflection curve for the thick plate 
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One important point for the transferability of the cohesive parameters is that the fracture 

mechanisms occurring in the steel plate and in the tensile specimen are identical. It is assumed 

that both structures fail by ductile damage and the fracture surface is flat. Their results showed 

good agreement between the experimental results and the FEA results when comparing the 

force-displacement curves. The fact that in numerical simulation, crack starts in the centre and 

propagate to the surfaces shows high capability of Cohesive Zone Model in simulation of the 

crack initiation and propagation.   
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Chapter 5: Conclusions 

5-1. Conclusion 

To face the new challenges and the extreme ice loads in the Arctic, and to ensure the integrity of 

structures, structural rupture which are common in ice-structure interactions has been 

investigated in STePS2 project. The aim of two simultaneous Master theses, as part of STePS2, 

was to gain a better understanding of the response of steel plates to extreme ice loads by 

exploring ductile fracture in steel plates both experimentally and numerically. The aim was to 

develop advanced failure model and to use the results from the experimental tests to provide 

structural verification data, to insure that the numerical fracture model can simulate the physical 

fracture happened in the steel plates.  

The topic of the current thesis originated to investigate the field of fracture mechanics and 

related theories and methods. Its main goal was to develop a better understanding of how to use 

the finite element method to simulate damage and ductile fracture in steel structures. Recently 

developed method, CZM, was used to simulate crack initiation and propagation numerically. 

In order to provide validation data, a test setup and a set of physical experiments have been 

designed by the other Master thesis (Jamaly, 2014). The experiments address key aspects of the 

fracture mechanics that the numerical models need to address. 

This thesis investigated the cohesive process zone model, a general model which can deal with 

the nonlinear zone ahead of the crack tip, presents in any kind of material separation. In this 

thesis, cohesive parameters and the procedure for their determination for simulating normal 

ductile fracture in steel plates were presented.  
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A traction-separation law, which describes the constitutive behavior of the cohesive model, was 

extracted by a method combining experiments and numerical simulation. Cohesive parameters in 

cohesive zone model, including maximum traction and fracture energy, were determined 

conducting tensile tests. Then, the tensile tests were simulated numerically to calibrate cohesive 

parameters. Various combination of T and    were used to simulate the tensile tests, and 

investigating the effect of cohesive parameters. The parameters, that result the best fit of the 

numerical results to the experimental data, were selected as the final cohesive parameters to 

model fracture in the steel plates. 

Afterwards, the numerical simulation of fracture in the steel plates was conducted to validate the 

transferability of the CZM. The developed CZM was applied successfully to the steel plates with 

the same stress constraint and it was shown that CZM is capable of overcoming the 

disadvantages in using classical Fracture Mechanics or using the damage fracture criteria in 

numerical simulation. The crack location and the load- deflection curve reasonably compare with 

the experimental data. 

There were no problems, in principle, with transferring the fracture parameters from small 

specimens to large components. This was one of the big problems in the classical macroscopic 

fracture mechanics approach.  

It was shown that the predicted fracture point depends strongly on the normal cohesive strength. 

The cohesive energy has only little effect on the fracture estimation. Another parameter 

influencing the point of crack deviation is the finite element mesh, because the crack can 

propagate only along the embedded cohesive layers between the continuum elements. However, 
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cohesive elements can be placed between every element faces as a mechanism for allowing all 

individual elements to separate. 

The advantages of the cohesive model can be summarized in the following points: 

1. CZM is a phenomenological modeling technique. 

Due to its phenomenological character, the model is adjustable to many different types of 

materials and failure phenomena. Cohesive laws can be established for various separation 

phenomena. In summary, the cohesive model can be regarded as a flexible tool for 

numerical simulation of damage localization and material separation up to structural 

failure. The classical Fracture Mechanics, LEFM or EPFM, are limited to brittle fracture. 

2. The presence of an initial crack is not essential in CZM. 

In this thesis, fracture initiation and propogation in tensile specimens and steel plates 

were investigated. Notice that these computations could not be done using classical 

Fracture Mechanics, because no initial cracks were presented in the specimens. Classical 

Fracture Mechanics Requires a pre-existing flaw at the beginning of the crack surface. It 

cannot model crack initiation from a surface that is not already cracked.  

On the other hand, CZM can model crack initiation from initially un-cracked surfaces. 

The crack initiates when the cohesive traction stress exceeds a critical value. The CZM is 

able to adequately predict the fracture in structures without a pre-existing crack, and not 

only the response of bodies with initial cracks, which is a common drawback of most 

fracture models. Therefore, no restrictions exist due to non-existing or non-valid fracture 

parameters. It was shown that the cohesive model is capable of simulating the ductile 
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fracture in cases where the crack path is not known in advance and the crack was able to 

evolve anywhere in the specimen that cohesive layers were inserted. 

3. CZM is mesh size independent. 

Mesh dependence of numerical results is a big issue in damage mechanics when 

softening behavior of material is simulated. Since the cohesive law is expressed in terms 

of stress depending on the separation, a length scale parameter (characteristic length) is 

inherent to the model. In other words, a cohesive law introduces well-defined fracture 

energy (fracture or cohesive energy is the work of separation per unit area). Thus, no 

mesh dependence was expected. It was shown that finite element models with cohesive 

elements were mesh independent, which is always a big issue in application of fracture 

criteria in FEA.  

5-2. Recommendations for Further Work 

The present applications of cohesive models are still far away from practical engineering 

employment in structural integrity assessments and fracture analysis. There is a strong need to 

standardize the simulation techniques and the determination of the cohesive parameters. The 

phenomenological nature of this model is an advantage with respect to its flexibility but may 

cause some uncertainties about the physics of the underlying processes. Hence, advanced tests 

and measuring techniques are required for determining the cohesive parameters.  

Since CZM is relatively new technique to model the fracture process, there are a lot of topics in 

CZM that need more investigation and are worth considering. Some are expressed in the 

following: 

1. Cohesive parameters determination  
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It seems that cohesive laws constitute a research area where modelling is far more 

advanced than experimental investigations. A few studies cover the determination of the 

cohesive law. the uniaxial model used, in this study, to derive the cohesive parameters in 

normal fracture, needs to be generalized to a fully mixed-mode formulation to determine 

cohesive parameters for other fracture modes. Some other fracture tests may be needed 

for determining the whole cohesive parameters including tangential parameters. 

It must also be noted that the cohesive model is very sensitive to the input data, namely 

the cohesive parameters. Therefore, the procedures for the determination of the cohesive 

parameters need further work. New experimental test methods are required for 

determining cohesive properties and for the calibration of numerical analyses.  

2. Investigating the effects of field variables such as stress triaxiality and strain rate effects, 

to introduce a dependence of the softening function on stress constraint or triaxiality, 

and/or strain rate. 

Cohesive parameters may depend on the hydrostatic stress state, which is usually 

normalized by the equivalent stress. This gives the well-known expression for the triaxial 

stress state,   
  

   
. Here,    is the hydrostatic stress and     is the equivalent stress. 

TSL seems to depend, in general, on the applied stress triaxiality and may depend on 

other field quantities like loading rate. 

It has been shown by some authors that the cohesive parameters are not material 

constants, as they may depend on stress triaxiality. However, this dependence may be of 

second order compared to effects of global plastic constraint (Siegmund, 2000), so that 
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realistic simulations can be performed over a fairly wide range of varying stress 

triaxiality. (Scheider et al., 2003) 

The same issue should be considered for strain-rate effects, so CZM can also be extended 

to time-dependent material behavior. 

3. Developing irregular mesh to simulate arbitrary crack propagation 

As mentioned, another parameter influencing the simulation of crack propagation is the 

finite element mesh. The finite element mesh plays an important role on the crack path 

and interacts with the effects of the cohesive parameters. 

In CZM, since the interface elements are put between the continuum elements of the 

finite element mesh, the crack propagation in the structure is not totally arbitrary, but can 

only occur along the element edges of the mesh where cohesive elements are embedded. 

In order to allow the crack happening everywhere in the structure, a maximum of 

possible directions has to be provided by the finite element mesh. This is possible by the 

use of triangular elements in two-dimensional or tetrahedral elements in three-

dimensional meshes, respectively.  

Another aspect of the mesh issue is the difference between regular and irregular mesh 

patterns. Since a regular mesh maintains the current direction of crack propagation, it 

leads to a straight crack path. In the case that the crack has to run through an irregular 

mesh, the local separation mode in the cohesive elements consists of both normal and 

tangential separation, where the correct interaction between normal and shear parameters 

are essential. 
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In all problems considered in the literature, the crack path was predefined by the location 

of cohesive elements in a regular mesh, which is actually the real crack path in mode I 

fracture. However, in general case, a crack propagates in an arbitrary direction. Irregular 

meshes have the advantage that they do not favor a specific crack-propagation direction. 

On the other hand, an irregular mesh may make convergence more difficult. In order to 

simulate arbitrary crack propagation, more experience in FEA and mesh generation for 

3D crack growth simulations are needed.  

In summary, more powerful computer programs and better knowledge of material properties can 

definitely increase Cohesive Zone Modeling potential field of application.  
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