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ABSTRACT 

There are several theories used to describe fracture process including Linear Elastic Fracture 

Mechanics (LEFM), Elastic-Plastic Fracture Mechanics (EPFM), and Cohesive Zone Models 

(CZM), which allow for development of predictive capabilities. The main disadvantage of LEFM 

and EPFM techniques is that only structures with an initial crack can be modeled. Other 

drawbacks of these techniques are geometry dependence and validity limits. In contrast, CZM 

can simulate fracture in any structures, with or without a crack. CZM is not confined to a class of 

materials, but it can be used for arbitrary materials. 

In this research, the CZM was used to numerically simulate crack initiation and growth in steel 

plates. Within the CZM, material separation (i.e. damage of the structure) is described by 

interface elements, which open irreversibly and lose their stiffness at failure, causing the 

continuum elements to be disconnected. Numerical simulation of tensile tests was conducted to 

determine and validate the cohesive parameters and then these parameters were used for 

modeling mode I fracture in steel plates. It was shown that the cohesive model is capable of 

simulating ductile fracture in cases where the crack path is not known in advance and the crack 

can evolve anywhere in the specimen. 
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Chapter 1: Introduction  

1-1. Introduction  

Due to the substantial increase in oil and gas activities in the Arctic, the demand for ice 

strengthened vessels has increased greatly. This increase in demand has highlighted the 

importance of designing ice strengthened ship structures that maintain adequate safety and 

integrity. In order to meet these new challenges, reliable prediction of the ultimate strength of a 

structure is essential. 

Traditionally, ship structures were designed to prevent yielding failure. However, steel has very 

great reserve strength after it yields and before it finally collapses, which is an advantage for 

cases when ship structures need to absorb large impact energy, such as in an ice-structure 

accident. The use of some portion of the reserve capacity for resisting loads will result in lighter 

structures, which are easier to fabricate and more economical. Using this reserve capacity causes 

a challenge to the balance between safety needs and commercial flexibility. Hence, investigating 

the ultimate strength of the structure is crucial. 

One of the main concerns in collision events is fracture in the outer hull. Once fracture occurs, 

the resistance to further damage drops dramatically. This may accelerate the hull opening 

process. Potential consequences are the risk of flooding and polluting the environment with fuel 

and cargo oil. With smaller damages, the shipôs stability may not be affected, but leakage of oil 

and fuel may occur, threatening the environment. Hence, the simulation of the damage 

propagation and the crack growth can also be crucial beside the prediction of the crack initiation. 

In order to ensure the integrity of structures, it is essential to develop advanced models that are 

able to capture the failure mechanisms occurring in such structures.  
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Since steel plates are the basic structural elements in many ships and offshore structures, 

understanding of the steel plate behavior is essential. The behavior of steel in the elastic region is 

well understood. In recent years, there has been a new interest in estimating the plastic response 

and the ultimate strength (failure capacity) of the structure, in order to use some portion of the 

reserve capacity of the structure in specific cases that seem economically rational.  

ñSustainable Technology for Polar Ships and Structuresò (STePS2), a project at the Faculty of 

Engineering and Applied Science at Memorial University of Newfoundland, focuses on 

developing design tools for polar ships and offshore structures. The aim of this study, as part of 

STePS2 project, is to gain a better understanding of the response of a steel plate to extreme ice 

load by exploring ductile fracture in steel plates numerically. Classical methods that are available 

to predict and evaluate fracture are discussed. Among them, recently developed method, 

Cohesive Zone Models (CZM), is chosen to simulate crack initiation and propagation 

numerically. 

CZMs are able to describe materials that exhibit strain-softening type behaviour. The basic 

assumption underlying them is the formation of a fictitious crack, as an extension of the real 

crack, referred to also as the process zone, where the material is still able to transfer stresses, 

although it is damaged. The crack is assumed to propagate when the stress at the crack tip 

reaches the cohesive strength. When the crack opens, the stress is not assumed to fall to zero at 

once but to decrease gently with increasing crack width until a critical displacement is reached 

and the interaction vanishes. 

The basic idea of the CZM is to split the materialôs behavior in deformation, which is modeled 

by continuum elements, and damage or separation, which is modeled by embedded interface 
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elements within continuum elements. The material separation and thus damage of the structure is 

described by interface elements, no continuum elements are damaged in CZM. Using this 

technique, the behavior of the material is split in two parts, the damage-free continuum with an 

arbitrary material law, and the cohesive interfaces between the continuum elements, which 

specify only the damage of the material.  

CZM, its application, advantages and disadvantages will be explained in detail in the following 

chapter. It will be presented that by investigating CZM to predict fracture initiation and 

propagation, it is possible to estimate the ship hull indentation resistance. 

The topic of this thesis originated to investigate the field of fracture mechanics and related 

theories and methods. Its main goal is to develop a better understanding of how to use the finite 

element method to simulate ice-structure collision and the damage caused by ice. The focus of 

the thesis has been on the ductile fracture of metal, particularly steel, and the use of CZM for 

simulating ductile fracture in mode I.  

This thesis gives an overview of the theory involved in a ductile failure of an isotropic ductile 

material such as steel, and explains CZM theory for modeling the material behavior related to 

ductile fracture for use in the finite element method. The cohesive material model is developed 

using tensile tests simulation in the finite element software ABAQUS. Then the developed 

material model is used to simulate fracture in steel plates being penetrated by a rigid indenter at 

low speed. 
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1-2. Fracture Mechanics 

The relationship between the stress and the strain depends on the mechanical properties of the 

material, specifically on their deformation behavior. In Figure 1-1 the characteristic features of 

elastic-plastic behavior are presented by the stress-strain curve. 

 

Figure 1-1: Elastic-plastic material behavior 

The material behaves elastically until a certain stress value is reached at point B, the yield 

strength „. Elastic material behavior is characterized by the feature that the deformations are 

reversible. The stress-strain relation is linear in the elastic range for most of materials, which is 

known as Hookeôs law: 

„  Ὁ‐                   Eq. (1-1) 

The modulus of elasticity (Youngôs modulus), E, is given by the slope of the stress-strain curve: 

Ὁ                     Eq. (1-2) 
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If the stress exceeds „, inelastic permanent deformations occur and plastic strains are formed, 

‐  π. In real materials the current yield strength, „, increases as a result of plastic 

deformation, which is denoted as hardening of the material. Plastic deformations are irreversible. 

If the applied stress is reduced to zero (point D in Figure 1-1), the material is relieved by a pure 

elastic deformation ‐ and only ‐ remains. After unloading, the plastic deformations remain. 

The plastic work of deformation is predominantly converted into heat. 

The stress-strain relation is non-linear in the plastic region, but can be approximated as linear in 

the practical ranges of structural deformation. Thus the total stress-strain is normally 

approximated as a bilinear curve with linear hardening. 

Beyond point E in Figure 1-1, there is a noticeable reduction of load-carrying capacity until 

rupture. The deformation during this last phase is localized in a neck region of the specimen. 

Point E identifies the material state at the onset of damage. Beyond this point, the stress-strain 

response is governed by the evolution of the degradation of the stiffness in the region of strain 

localization (EF in Figure 1-1, this region is called necking region). At Point F in Figure 1-1 

rupture happens. 

Fracture is the separation of an object or material. A detailed understanding of how fracture 

occurs in materials may be assisted by the study of fracture mechanics. The prediction of failure 

initiation and evolution are, in general, difficult. This is covered in fracture mechanics. Fracture 

mechanics specifically addresses the issue of whether a body under load will remain intact or 

whether a new free surface will form. 

There are three independent loading modes to enable a crack to propagate (Figure 1-2): 

http://en.wikipedia.org/wiki/Fracture_mechanics
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¶ Mode I fracture- Opening mode where a tensile stress normal to the plane of the crack is 

applied and this is the most common load type. 

¶ Mode II fracture- Sliding mode or in-plane shear mode where a shear stress acting 

parallel to the plane of the crack and perpendicular to the crack front. 

¶ Mode III fracture- Tearing mode or out-of-plane shear mode where a shear stress acting 

parallel to the plane of the crack and parallel to the crack front. 

 

Figure 1-2: Fracture modes. a) Mode I, b) Mode II, c) Mode III 

For engineering materials, such as metals, there are two primary modes of fracture: brittle and 

ductile. In brittle fracture cracks spread very rapidly with little or no plastic deformation. In 

brittle fracture, no apparent plastic deformation takes place before fracture. Cracks that initiate in 

a brittle material tend to continue to grow and increase in size provided the loading will cause 

crack growth.  

In contrast, ductile fracture includes three stages: void nucleation, growth, and coalescence 

(Figure 1-3). Ductile fracture often occurs shortly after the onset of local necking, and relates to 

the formation of micro-voids which grow and eventually coalesce as the material is strained. In 

ductile fracture, extensive plastic deformation (necking) takes place before fracture. Some of the 

energy from stress concentrations at the crack tips is dissipated by plastic deformation before the 

http://en.wikipedia.org/wiki/Tensile_stress
http://en.wikipedia.org/wiki/Shear_stress
http://en.wikipedia.org/wiki/Shear_stress
http://en.wikipedia.org/wiki/Brittle
http://en.wikipedia.org/wiki/Plasticity_(physics)
http://en.wikipedia.org/wiki/Ductile
http://en.wikipedia.org/wiki/Necking_(engineering)
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crack actually propagates. The crack moves slowly and is accompanied by a large amount of 

plastic deformation. The crack typically will not grow unless the applied load is increased. 

Ductile fracture surfaces have larger necking regions and an overall rougher appearance than 

brittle fracture surfaces.  

 

Figure 1-3: Void nucleation, growth, and coalescence in a ductile material (Based on 

Tornqvist, 2003) 

Fracture surfaces and stress-strain curves for both ductile and brittle fracture are shown in Figure 

1-4. Plastic deformation in ductile fracture can be seen in these figures. 

 

Figure 1-4: Ductile and brittle fracture 
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Fracture toughness is a property of a material which describes the ability of the material 

containing a crack to resist fracture, and is one of the most important properties of any material 

for many design applications. Fracture toughness is a quantitative way of expressing a material's 

resistance to brittle fracture when a crack is present. If a material has much fracture toughness, it 

will probably undergo ductile fracture. Brittle fracture is very characteristic of materials with less 

fracture toughness. 

Whether fracture in a specific material is ductile or brittle can depend on the temperature of the 

environment. Steel is a typical example of dual behavior that shows brittle behavior at very low 

temperatures and is ductile at high temperatures. Generally, fracture toughness depends on 

temperature, loading rate, the composition of the material and its microstructure, together with 

the geometric effects of the crack tip. 

The design process of a structure consists of choosing the appropriate material strength as per the 

loading conditions, and structural analysis, so that it does not fail under load. Different 

approaches exist to investigate damage, material separation and fracture phenomena in order to 

develop predictive capabilities, including Linear Elastic Fracture Mechanics (LEFM), Elastic-

Plastic Fracture Mechanics (EPFM), and local approaches such as CZM. In the following an 

overview of these methods are presented. 

1-2-1. Linear  Elastic Fracture Mechanics 

LEFM is the basic theory of fracture that deals with sharp cracks in elastic bodies and predicts 

whether a specific crack in the body will grow more or not. For linear elastic materials (i.e., 

brittle), LEFM characterizes the local crack tip stress field using a single parameter called the 

stress intensity factor, K. It is defined from the elastic stresses near the tip of a sharp crack under 

http://en.wikipedia.org/wiki/Fracture
http://en.wikipedia.org/wiki/Brittle
http://en.wikipedia.org/wiki/Ductile
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remote loading. K is used to predict the stress intensity near the tip of a crack and it is a method 

of calculating the amount of energy available for fracture around a crack front in a linear elastic 

material. When it becomes critical, the crack grows and the material fails. This critical value is 

denoted ὑ and is known as the fracture toughness, which is a material property. 

Energy principles play an important role in studying crack problems. This is motivated by the 

fact that crack propagation always involves dissipation of stress-strain energy. This energy is 

dissipated in process zone because of plastic deformation, formation of micro separations, and 

coalescences. Irwin (1957) was the fi rst who observed that if the size of the plastic zone around 

crack tip is small compared to the size of the crack (i.e. in brittle materials), the energy required 

to grow the crack will not be critically dependent on the state of stress at the crack tip. According 

to this assumption, the energy needed to create a unit fracture surface which goes into the plastic 

deformation, the fracture process, and formation of new surfaces, is a constant that depends only 

on the material. This quantity is called fracture energy (Ὃ) and is considered to be a material 

property which is independent of applied loads and the geometry of the body. By considering 

fracture from an energy point of view, crack growth criteria can be expressed in terms of energy 

release rates. Crack propagation starts when the energy coming from the stress- strain field is 

suffcient to support the formation of micro voids and coalescences. Similar to K-based fracture 

criteria, the crack propagation starts when Ὃ Ὃ.  

This approach offers an alternative to the K-based fracture criteria discussed earlier and 

reinforces the connection between global and local fields in fracture problems. The energy 

release rate is a global parameter while the stress intensity factor is a local crack-tip parameter. 

Irwin showed that for a mode I crack the strain energy release rate and the stress intensity factor 

are related by: 

http://en.wikipedia.org/wiki/Fracture#Crack_separation_modes
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Ὃ
Ὗ

ὃ

ὑ

Ὁ
 Eq. (1-3) 

Where Ὁ denotes the effective Youngôs modulus for plane stress or plane strain. For plane 

strain: 

Ὁ
Ὁ

ρ ’
 Eq. (1-4) 

and for plane stress: 

Ὁ Ὁ Eq. (1-5) 

U is the potential energy available for crack growth and A is the crack area. E is the Young's 

modulus, ɜ is Poisson's ratio, and ὑ is stress intensity factors in mode I fracture.  

Irwin adopted the assumption that the size and shape of the energy dissipation zone remains 

approximately constant during brittle fracture. This assumption suggests that the energy needed 

to create a unit fracture surface is a constant that depends only on the material.  

However, in ductile materials (and even in materials that appear to be brittle), a plastic zone 

develops at the tip of the crack. As the applied load increases, the plastic zone increases in size 

until the crack grows and the material behind the crack tip unloads. The plastic loading and 

unloading cycle near the crack tip leads to the dissipation of energy as heat. In physical terms, 

additional energy is needed for crack growth in ductile materials when compared to brittle 

materials. 

In brittle materials, fracture energy and surface energy are equal, Ὃ ῲ (Surface energy 

quantifies the disruption of intermolecular bonds that occur when a surface is created). But in 

ductile materials, plastic dissipation also contributes to G.  

http://en.wikipedia.org/wiki/Young%27s_modulus
http://en.wikipedia.org/wiki/Young%27s_modulus
http://en.wikipedia.org/wiki/Poisson%27s_ratio
http://en.wikipedia.org/wiki/Plastic
http://en.wikipedia.org/wiki/Structural_load
http://en.wikipedia.org/wiki/Dissipation
http://en.wikipedia.org/wiki/Energy
http://en.wikipedia.org/wiki/Heat
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As mentioned, LEFM applies when the nonlinear deformation of the material is confined to a 

small region near the crack tip and plasticity does not play an important role during fracture. For 

brittle materials like some high strength steel, glass, and concrete, it accurately establishes the 

criteria for failure. However, severe limitations arise when the region of the material subject to 

plastic deformation before a crack propagates is not negligible. Additionally, LEFM has proven a 

useful tool for solving fracture problems provided a crack, like notch or flaw, exists in the 

structure. 

In reality, the crack tip is surrounded by the fracture process zone, the region around the crack tip 

where nonlinear deformation and material damage occur. Inside this zone, the LEFM solution is 

not valid. Outside this zone, the LEFM is accurate provided the plastic damage zone is small 

enough. The objective of LEFM is to predict the critical loads that will cause a crack to grow in a 

brittle material. This is not always the case and for ductile metals the size of the nonlinear zone, 

due to plasticity or microcracking, is not negligible in comparison with other dimensions of the 

cracked geometry. 

Moreover, even for brittle materials, where the process zone is small, the presence of an initial 

crack is needed for LEFM to be applicable. This means that bodies with no initial cracks cannot 

be analysed using LEFM. The facts mentioned above became the main motivation for 

development of a new field in fracture mechanics taking into account the plasticity in the process 

zone named EPFM.  

1-2-2. Elastic-Plastic Fracture Mechanics 

To predict failure in ductile materials, for which the assumptions of LEFM is no longer valid, 

EPFM provided the solution. Nonlinear fracture mechanics attempts to extend LEFM to consider 
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inelastic effects. The theory is called Elastic-Plastic Fracture Mechanics; however, the theory is 

not based on an elastic-plastic material model, but rather a nonlinear elastic material. It is based 

on a nonlinear elastic power law material (the same as elastic-plastic material but different 

unloading path). Under monotonic loading, this nonlinear elastic material can be matched to the 

behavior of an elastic-plastic material whose hardening behavior is accurately modeled by a 

power law. 

Rice (1968) made a considerable advance in EPFM. He idealized plastic deformation as a 

nonlinear elastic phenomenon for mathematical purposes and was able to generalize the energy 

release rate for such materials. He expressed this in terms of a path independent contour integral 

called J-Integral which became a very efficient tool to treat energy problems in fracture 

mechanics. 

As mentioned earlier, LEFM is valid for materials for which the plastic zone around crack tip is 

small compared to the dimensions of structure or specimen (i.e. brittle materials). The J-integral 

represents a way to describe the case where there is suffcient crack tip deformation that the part 

no longer obeys the linear elastic approximation. This analysis is limited to situations where 

plastic deformation at crack tip does not extend to the furthest edge of the loaded part. It was 

shown by Rice that the J-integral is equal to the strain energy release rate for a crack in a body 

subjected to monotonic loading ὐ Ὃ . This is true both for linear elastic and non-linear elastic 

materials. 

In this method, the elastic-plastic failure parameter is designated ὐ. The stress intensity factor, 

ὑ , can be calculated from the J-integral using Eq. 1-3. This relation has become a common 

technique to calculate stress intensity factors in both LEFM and EPFM for growing cracks.  
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In EPFM, a pre-existing crack is also assumed. No damage evolution is modeled and 

conventional material models, e.g. elastic-plastic constitutive equations, are applied. The process 

zone is assumed as infinitesimally small and special fracture criteria (e.g. K-based criterion or J-

based criterion) for crack extension are required. EPFM covers a comparably small part of these 

constitutive theories and phenomena of inelastic deformation; and does not account for effects of 

load history, unloading, and local rearrangement of stresses.  

Methods of conventional fracture mechanics are successfully used for the assessment of 

engineering structures for a very long time. In many cases, LEFM or EPFM is still applied to 

predict fracture onset due to its high level of standardisation and experience. However, 

considering the LEFM and EPFM limitations, failure prediction in a more general case requires 

modelling of the failure process zone.  

An alternative approach to predict fracture, which overcomes some of the aforementioned 

difficulties, is local approaches and micromechanical modeling of damage and fracture. As in 

Siegmund et al. (2000) pointed out, to date, local approaches are the only really successful 

methods for prediction of crack growth resistance. 

In a local approach, in principle, the parameters of the model depend only on the material, and 

not on the geometry. In this kind of approach, one can simulate ductile fracture either by 

employing a micromechanical model of damage, which represents the micromechanics of void 

initiation, growth and coalescence or by using a phenomenological model ( like CZM) for 

material separation and coupling the model to the surrounding undamaged elasticïplastic 

material. 
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1-3. Literature Review 

Fracture can be analyzed experimentally, analytically, or numerically. Experimental analysis can 

be extremely costly and time consuming. The other alternative to predict structural resistance 

capacity is simplified analytical methods like LEFM and EPFM. The overview of the application 

of analytical analyses and their main drawbacks has been described above.  

Analytical and macroscopic fracture mechanics approaches have some limitations with respect to 

the amount of plasticity allowed at the crack tip, constraint and geometry dependency. LEFM 

and EPFM are constraint and geometry dependent, because they are applicable to structures with 

initial crack, and the structure without an initial flaw cannot be investigated by these methods. 

As no analytical solutions are possible in more general cases, and with advances in computer 

technology, the numerical methods and finite element methods (FEM) have become capable 

tools to assess structural integrity.  

Although the FEM represents the most advanced approach, problems related to the prediction of 

fracture still need to be resolved. Fracture parameters and criteria for fracture and crack growth, 

which are used in practice for engineering assessment methods, have not yet been properly 

investigated. Presently, there is no adequate method to determine both fracture initiation and 

propagation in large scale structures. It is generally agreed that the models of the ductile fracture 

initiation and fracture propagation have not yet matured to a level of high general accuracy. 

Numerical analyses of fracture can be done by one of the following approaches: 

¶ Application of local fracture criteria 

¶ Application of Cohesive Zone Model 
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Both approaches allow for splitting the total dissipated work in formation of the ductile crack 

into the work of separation in the process zone and the plastic work in the embedding material 

and, thus, solve a classical problem of fracture mechanics (Siegmund et al. 2000). In numerical 

simulation of the fracture, the process zone ahead of the crack tip is modeled by either cohesive 

elements or continuum elements with incorporated fracture criteria, whereas the rest of the 

structure consists of continuum elements with classical elastic-plastic constitutive behavior. 

1-3-1. Fracture Criteria  

In order to predict the onset of fracture using FEM, several failure criteria and damage models 

are proposed and implemented in the literature. Comprehensive study on the existing fracture 

criteria and damage models in various stress and strain states is presented by Tornqvist (2003). 

Tornqvist (2003) defines separate damage categories including: 

¶ void growth fracture criteria, 

¶ continuum damage models, 

¶ porosity based models, 

¶ and empirical criteria. 

In the following, some of the criteria and the models will be discussed briefly to give an 

overview of this wide field of research. 

There are numerous empirical fracture criteria. Most of them are simple criteria based on critical 

stresses or strains. The most simple and common one in Finite Element (FE) simulations is the 

equivalent plastic strain criterion. However, since the strain at fracture depends on the stress state 

and thus often varies for each situation, this criterion is an over-simplified fracture criterion. The 

governing damage processes in materials are highly influenced by the stress triaxiality, which 
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should somehow be accounted for in the constitutive material model or in the damage criterion 

(Tornqvist, 2003). 

Fracture in ductile materials relates to the formation, growth and coalescence of voids. Void 

growth criteria assume that the degree of void growth can be represented by a damage parameter. 

Once this parameter reaches a critical level, fracture is initiated. Continuum damage models 

couple the constitutive material laws to the damage evolution. The material may in this way 

experience a degradation effect (softening) during plastic deformation. Fracture occurs once the 

damage has reached a critical level.  

Another damage category is the porosity based model. As for continuum damage models, the 

porosity models also couple damage to the constitutive material laws. The difference lies in the 

way the material damage is defined. Porosity based models couple damage directly to the 

physics of void growth. Continuum damage models, on the other hand, define damage as an 

evolution variable. The well-known porosity based damage model is the Gurson (1977) model. It 

was developed further by Tvergaard (1982) and Tvergaard and Needleman (1984) and called 

GTN model. 

As seen, there are several possible models/criteria for analysing ductile fracture initiation in large 

structures. The advantage of this type of models is that it has a micromechanical basis and can be 

used to predict damage and failure of the material even in initially undamaged structures. The 

main drawback is that each damage criterion only covers a specific kind of failure mechanism 

and cannot be used anymore if another failure mechanism is activated. 

Another problem with these damage models is that numerical simulations can show inherent 

mesh sensitivity. A fine mesh may for instance indicate strain concentrations at certain locations 



17 

 

which may not be captured by a coarser mesh. The effect is especially apparent close to crack 

tips. When large elements are applied, the problem is that strain concentrations remain 

uncaptured. By increasing the element size, the stress and strain concentrations are reduced and 

this delays fracture. 

In numerical analysis using the above mentioned fracture criteria, crack propagation is possible 

by using element deletion technique by which an element will be removed when it has reached 

the failure criterion value. This will often cause convergence problems as the stiffness is 

suddenly reduced or removed. This is an engineering approach which makes FE solutions very 

mesh sensitive and seems to be physically unreasonable. 

Generally, crack growth can be numerically simulated in the following ways:  

¶ Node release techniques, controlled by any fracture mechanics parameter (e.g. J-integral) 

which requires knowing the crack location in advance. This approach is mesh sensitive 

and the application of fracture mechanics parameters has some limitation as explained 

before. 

¶ Element deletion based on fracture criteria which is mesh sensitive and cause numerical 

convergence problem. 

¶ Material separation modeled by cohesive elements. 

This study focused on the last approach and its application. 

1-3-2. Cohesive Zone Modeling 

A ñphenomenological local approachò used for the numerical simulation of the crack initiation 

and propagation is known as the Cohesive Zone Model (CZM) (Siegmund et al., 2000). 

Cohesive elements used in simulating ductile fracture are supposed to represent the mechanism 
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of nucleation, growth and coalescence of microscopic voids. CZM is based on an idea proposed 

by Dugdale (1960) and Barenblatt (1962).  

Dugdale used this model to describe analytically the plastic deformation near the crack tip 

whereby the normal stress was limited by the yield stress of an elastic-ideally plastic material. 

Barenblatt investigated the fracture of brittle materials. Most of the recently developed and 

proposed models of CZM are different from Barenblattôs model in that they define the traction 

acting on the crack surface in dependence on the opening and not on the crack tip distance as 

Barenblatt did.  

Although the concept of CZM originates back to the early sixties of the previous century, the 

concept has gained wide spread use only within the recent years. CZM application as a fracture 

model occurred substantially later, using the finite element analysis method. In a finite element 

representation of CZM, originally proposed by Hillerborg et al. (1976) for brittle fracture, 

cohesive elements are introduced as interface between continuum elements. CZM has also been 

applied to ductile damage starting with an investigation by Needleman (1987) for the 

microscopic modelling and by Tvergaard and Hutchinson (1992) for macroscopic failure.  

Beside the simulation of failure in metals, the cohesive model has been widely used in the last 

three decades for fracture in fibers, polymers, and concrete structures. Most of the researchers 

investigate the application of CZM to simulate fracture in different kind of standard fracture 

specimens. 

Cornec et al. (2003) developed experimental procedures which allow the determination of 

cohesive material parameters for the Traction-Separation Law (TSL). This method is also used in 

this thesis to predict the cohesive parameters. 
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Scheider et al. (2003) proposed a new cohesive law and used it for the prediction of the crack 

path during stable crack extension in ductile materials. Crack propagation was simulated in a 

round tensile bar. It was shown that the model is able to predict the failure mechanism, which 

consists of normal fracture in the center and combined normal/shear fracture at the specimenôs 

circumference. The cohesive parameters can be different in normal and tangential direction, but 

several authors define the separation parameters to be equal for both failure modes. In Scheider 

et al. (2003) paper the parameters for normal and tangential fracture are completely independent. 

Fracture in a notched round tensile bar is also modeled by Anvari et al. (2007) using CZM. The 

cohesive elements obey the TSL defined from the single element calculations. A single strain 

rate dependent element that obeys Gurson-Tvergaard-Needleman (GTN) formulation was 

examined under different values of stress triaxiality and loading rates. The resulting stress-

elongation curves represented the TSL for cohesive elements. 

In order to determine the TSL on a micromechanical basis, the deformation behaviour of a 

representative volume element, i.e. a single voided unit cell, including its material softening 

behaviour has been investigated in the literature. The first researchers who used this approach for 

the derivation of model parameters for cohesive modelling, were Tvergaard and Hutchinson 

(1992), who used a Gurson type model for the unit cell. However, they only studied a single 

stress state (uniaxial straining), and did not point out an issue, which becomes obvious by 

microstructural considerations: i.e. the TSL may depend on the stress state, which can be 

characterised by the triaxiality, – , that is the hydrostatic stress divided by the Von Mises 

equivalent stress.  
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This issue was first investigated by Siegmund and Brocks (2000). The approach was extended to 

impact problems by using rate-sensitive and triaxiality-dependent cohesive elements to simulate 

crack growth under quasi-static and dynamic loading conditions by Anvari et al.(2006). In these 

studies, the constraint dependence of the cohesive parameters was considered by loading the 

representative volume element under different constraint conditions. 

The approach already described is to transfer the deformation behaviour of the representative 

volume element, i.e. a single voided unit cell, to the cohesive elements. Scheider (2009) 

discussed that the main drawback of this method is that the unit cell contains both, deformation 

and damage of a material whereas the cohesive model should contain the material separation 

only. He presented a new approach, in which the behaviour of a unit cell is separated to elastic-

plastic deformation and damage, and only the damage contribution is applied as the TSL for the 

cohesive elements. 

It should be noted that the validity of the GTN model is limited with respect to the failure 

mechanism and also with respect to stress triaxiality. This makes the proposed identification 

procedure only applicable for a specific range of structures, unless a more sophisticated void 

growth model is utilised.  

In the cohesive zone framework, the stress-state dependence of the fracture process under plane 

strain has been the subject of investigations during the last decade. Using void growth models on 

unit cells, triaxiality dependent TSLs have been developed and applied to various geometries 

(e.g. Anvari et al., 2006; Scheider, 2009; Siegmund et al., 2000). However, these analyses are 

difficult to perform using void growth models as they have difficulties in dealing with low 
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triaxiality of thin-walled structures. So, in the case of the steel plate, the derivation of the 

parameter dependency on triaxiality based on void growth models cannot be applied.  

An alternative to stress-state dependent CZM was presented in Scheider et al. (2006). The 

parameters for a specific range of triaxiality can be identified, and then the CZM can be applied 

with constant parameters to structures with similar constraint. The advantage of this method is 

that no explicit triaxiality dependence is needed (which is a problem for commercial finite 

element codes), and only tests for parameter identification in the triaxiality regime of the 

structure to be analysed have to be performed.  

CZM application for low triaxiality (plane stress) was investigated by Scheider et al. (2011). It 

was shown that the global behaviour can be predicted with constant cohesive parameters for 

many real materials as long as only flawed structures are simulated, even though the local 

behaviour, e.g. the crack front shape, may differ. However, if initially uncracked structures are 

investigated, the consideration of triaxiality for the cohesive parameters is crucial. 

In this thesis, the cohesive model will be described thoroughly as a model which has many 

advantages; and it will be used to simulate the crack initiation and propagation in steel plates. 
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Chapter 2: Cohesive Zone Modeling 

2-1. Introduction  

It was discussed that if the process zone is sufficiently small compared to structural dimension, 

classical fracture mechanics can be applied. If not, process zone and the forces that exist in the 

fracture zone must be taken into account. The most powerful way to model process zone is to use 

CZM. The general advantage, compared with classical fracture mechanics, is that, in principle, 

the parameters of the respective models are only material and not geometry dependent. Thus, 

these concepts guarantee transferability from specimens to structures over a wide range of sizes 

and geometries. It is not even necessary to consider specimens with an initial crack as also 

initially uncracked structures will break if the local degradation of material has exceeded some 

critical states.  

In cohesive crack model, the process zone is modeled as an extension of the crack length up to a 

point called fictitious crack tip (Figure 2-1). In this region, a specific constitutive law is 

considered. According to this specific law, stress decreases with increase in crack opening 

according to a specific function. The real crack tip (or physical crack tip) is the point on the 

crack surface on which there is no stress (i.e. the normal opening is bigger than the critical 

opening). 

CZMs are able to describe materials that exhibit strain-softening type behaviour. The basic 

assumption underlying them is the formation of a fictitious crack, as an extension of the real 

crack, referred to also as the process zone, where the material is still able to transfer stresses, 

although it is damaged,. The crack is assumed to propagate when the stress at the crack tip 

reaches the cohesive strength. When the crack opens, the stress is not assumed to fall to zero at 
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once but to decrease gently with increasing crack width until a critical displacement is reached 

and the interaction vanishes. 

 

Figure 2-1: Process zone in cohesive crack model (Base on Carpinteri et al., 2003) 

Within the framework of cohesive modelling and finite elements, contrary to computational 

crack propagation analyses using fracture criteria explained in the previous chapter, no 

continuum elements are damaged in the cohesive model. The zone in which damage occurs is 

reduced to a layer with zero thickness. The cohesive elements, in this layer, model the material 

separation; the surrounding continuum elements are damage-free. Cohesive interface elements 

are defined between the continuum elements, which open when damage occurs and lose their 

stiffness at failure so that the continuum elements are disconnected. For this reason the crack can 

propagate only along the element boundaries. If the crack propagation direction is not known in 

advance, the mesh generation has to make different crack paths possible. 
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The basic idea of the CZM, shown in Figure 2-2, is to split the materialôs behavior in 

deformation, which is modeled by continuum elements, and damage or separation, which is 

modeled by embedded interface elements within continuum elements. Ductile fracture process, 

consisting of initiation, growth, and coalescence of voids, is represented by a Tractionï

Separation Law (TSL), simulating the deformation and finally the separation of the material in 

the immediate vicinity of the crack tip. In the cohesive elements, the opening stress is controlled 

by a TSL, also called cohesive law. The separation, ŭ, can occur in normal ( ) or tangential 

direction (), which happen respectively in mode I and mode II/III fracture. Like the 

separations, the stresses, T, can also act in normal or in tangential direction, leading to normal or 

shear fracture respectively. Interface elements representing the damage are implemented between 

the continuum elements representing the elasticïplastic properties of the material.  

In addition, by using CZM in FE analysis, mesh independency is expected as long as the 

cohesive elements adequately resolve the fracture process zone. This will be explained more in 

following parts. 

The material separation and thus damage of the structure is classically described by interface 

elements, no continuum elements are damaged in CZM. Using this technique, the behavior of the 

material is split in two parts, the damage-free continuum with an arbitrary material law, and the 

cohesive interfaces between the continuum elements, which specify only the damage of the 

material (Figure 2-2). This modelling requires the use of a pair of constitutive equations: a 

stressïstrain relationship for the undamaged material, and a stress-displacement curve for the 

damaged material. 
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Figure 2-2: Basic concept of CZM and representation of the ductile fracture by CZM (Based 

on Cornec et al., 2003) 

2-2. Cohesive Law 

The cohesive constitutive model has two key parameters that characterize the decohesion 

process: The maximum traction (stress at the surface of the continuum element), Ὕ, also denoted 

as cohesive strength and the separation where the cohesive element fails, . When the normal or 

tangential component of the separation reaches a critical value,   or   , respectively, the 
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continuum elements initially connected by this cohesive element are disconnected, which means 

that the material at this point has failed (Figure 2-3). 

The separation of the cohesive interfaces is calculated from the displacement jump [u]  between 

the adjacent continuum elements: 

 ό ό ό                   Eq. (2-1) 

ό  and ό  are the displacement of the upper node and the lower node respectively. 

 

Figure 2-3: Representation of the activated cohesive elements (Based on Cornec et al., 

2003) 

A constitutive equation is used to relate the traction, T, to the relative displacement, ŭ, at the 

interface. The form of the cohesive law is given by the function T(ŭ). The peak stress sets the 

local strength of the material and plays a critical role in developing plastic deformation in the 

background material. The area under the TSL curve is the energy absorbed by the cohesive 

element, ῲ, and is known as the cohesive energy. This parameter, the total energy dissipation at 

fracture, ῲ, can be derived by: 

ῲ ᷿ ὝὨ                  Eq. (2-2) 
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If the shape of the TSL is known or presumed, two of the aforementioned parameters are enough 

to define the cohesive law. 

The local work of separation is equal to the material toughness which equals the energy release 

rate, Gc, when the material follows a linear-elastic response. The value of ῲ can be obtained by 

experiment, since it coincides reasonably well with the J-integral at crack initiation, ὐ. When the 

material deforms plastically, Gc elevates above ῲ, but still the cohesive energy, ῲ, corresponds 

approximately to the J-integral at crack initiation, and * can be the first guess for ῲ. 

The cohesive parameters can be different in normal and tangential direction, but several authors 

define the separation energy to be equal for both failure modes, i.e. ῲ ῲ . It should be noted 

that not enough study has been performed for tangential separation in the literature. 

The need for an appropriate constitutive equation in the formulation of the cohesive element is 

fundamental for an accurate simulation of fracture process. The shape of the CZM and its input 

parameters are often chosen as simple as possible for numerical reasons, rather than being 

physical meaningful. This is because the mechanisms that control those parameters have not yet 

been properly quantified. Since the cohesive model is a phenomenological model there is no 

evidence which form to take for Ὕ. Basically, the TSL is assumed to be a stressïseparation 

curve with a bilinear shape. More recently, different shapes of the CZM have been proposed, 

namely the trapezoidal shape and exponential forms. Most authors take their own formulation for 

the dependence of the traction on the separation. Some softening models that have been proposed 

are shown in Figure 2-4. 

For ductile materials, a polynomial function of third degree, first used by Needleman (1987) for 

the pure normal separation and some years later extended by Tvergaard (1990) for mixed mode 
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loading, is one of the most popular cohesive laws and used by many authors. Needleman (1990) 

also used the exponential curve form. The polynomial function was extended and implemented 

later by Scheider (2003). The cohesive law presented in Scheider (2003) is capable of shear 

separation and unloading. It is similar to the function presented by Tvergaard and Hutchinson 

(1992), as shown in Figure 2-4 and called trapezoidal form in the following.  

 

Figure 2-4: Form of the TSL a) bilinear, b) trapezoidal, c) cubic, d) exponential 

One characteristic of all softening models is that the cohesive zone can still transfer load after the 

onset of damage. After the interfacial normal or shear tractions attain their respective cohesive 

strengths, the stiffness is gradually reduced to zero. They contain the two material parameters Ὕ 
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and  mentioned above; and for total failure, the stresses become zero, T(ŭ > ) = 0 for both 

normal and tangential separation. 

In traction-separation law, the initial slope is needed to avoid numerical problems between the 

cohesive elements and the surrounding continuum elements, and the descending slope models 

the rapid softening during void growth and coalescence.  

Elices et al. (2002) stated that the form of the cohesive law depends on the class of material 

under consideration. The authors also stated that the cohesive law should not have a strain 

hardening part as only the continuum elements and not the cohesive elements are supposed to 

affect the global behavior of the structure. Additionally, the initial stiffness of the cohesive 

model should be chosen as high as (numerically) possible. It should be at least greater than the 

elastic stiffness of the adjacent continuum element, as the deformation of the structure has to be 

dominated by the deformation of the continuum elements.  

The influence of the shape of the cohesive law on the crack propagation has not yet been studied 

extensively. Some investigations deal with the effect of the shape of the tractionïseparation 

function on the resulting fracture behaviour (e.g. Tvergaard et al., 1992; Scheider, 2009). 

Tvergaard and Hutchinson (1992) came to the conclusion that this effect can be relatively weak. 

It is often referenced to state that the shape of the cohesive law has little influence on the results. 

Although it has been claimed that the shape of the TSL hardly influences the crack growth 

behavior, there are a few investigations that show higher effects of the shape. For example, 

Scheider et al. (2006) showed numerically that the shape of the TSL can affect the loadï

displacement behavior. Scheider et al. (2006) tried to transfer constant cohesive parameters, 
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which were derived for a specific TSL, to another TSL. It was shown that the cohesive elements 

are not transferable.  

It seems that for each TSL a set of new cohesive parameters should be derived. The method that 

will be used in this research is to determine the cohesive parameters for a specific TSL by 

simulating tensile tests. Then, the same TSL with the same cohesive parameters will be used to 

predict fracture in the steel plates. 

Another issue that should be considered while using CZM is the fact that if both separation 

modes, the tangential and the normal separation, occur simultaneously, there is an influence of 

the normal separation on the tangential tractions and vice versa. The description for this case of 

mixed mode and the basic assumptions made in the literature are given in the next part. Other 

special issues are the unloading behavior of the cohesive zone and the sliding of a failed cohesive 

element under negative normal separation, what involves contact of the fracture surfaces, 

described in the next part. 

Initially, all cohesive models, in the literature, were only based on a pure mode I crack under 

monotonic loading. Improvements have been developed for the application to mixed mode 

loading, time dependence, interaction of combined normal and tangential loading, and unloading 

of the cohesive elements. 

2-2-1. Mixed-Mode Fracture Criterion  

Ductile fracture may occur in various modes: 

¶ Normal fracture, where the fracture plane is perpendicular to the maximum normal stress 

(Mode I fracture).  
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¶ Shear fracture, where the fracture plane coincides with the plane of maximum shear stress 

(Mode II and III fracture). 

¶ A combination of both which is typical for the fracture behaviour of thin sections; in this 

case, normal and shear modes are present. 

As stated in the previous part, if normal separation,  , and tangential separation,  , occur 

simultaneously, there is an influence of the normal separation on the tangential tractions and vice 

versa. Under pure mode I, II or III loading, the onset of damage at the interface can be 

determined simply by comparing the tractions with their respective allowable values. However, 

under mixed-mode loading, damage onset may occur before any of the stress components 

involved reach their respective allowable values. Therefore, a general formulation for cohesive 

elements must deal with mixed-mode fracture problems.  

The criteria used to predict crack propagation under mixed-mode loading conditions are 

generally established in terms of the energy release rates and fracture toughness. The most 

widely used criteria to predict the interaction of the energy release rates in mixed-mode is the 

power law given by the following expression: 

Ὃ

Ὃ

Ὃ

Ὃ

Ὃ

Ὃ
ρ Eq. (2-3) 

The exponent Ŭ in the power law is usually selected to be either 1 or 2 in the literature. For 

isotropic materials Ὃ Ὃ Ὃ . 

A recently proposed criterion, the BK criterion (Benzeggagh and Kenane, 1996), is established in 

terms of the single-mode fracture toughness Ὃ  and Ὃ  and a parameter ɖ for 2D fracture 

analysis: 
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Ὃ Ὃ Ὃ Ὃ                 Eq. (2-4) 

Where, 

Ὃ Ὃ Ὃ                    Eq. (2-5) 

If mode III loading occurs the criterion is: 

Ὃ Ὃ Ὃ Ὃ                 Eq. (2-6) 

Where, 

Ὃ Ὃ Ὃ                   Eq. (2-5) 

Ὃ Ὃ Ὃ                   Eq. (2-6) 

For isotropic material Ὃ Ὃ Ὃ , so the response is insensitive to the value of –. In 

many cases the one-dimensional representation of the relation is sufficient, namely when only 

mode I fracture is concerned. 

Another proposed mixed-mode criterion assumes that damage initiation can be predicted using 

the quadratic failure criterion: 

„

Ὕ

†

Ὕ

†

Ὕ
ρ Eq. (2-7) 

where „ is the normal traction, and † and † are the tangential tractions. Ὕ  and Ὕ  are the 

normal and shear cohesive strengths, respectively. The operator < „>  is defined as x if „>0, and 

0 otherwise. 
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The other way to embed the influence of tangential on normal opening (and vice versa) is to 

define the normal traction dependent on   explicitly, as Scheider et al. (2003) assumed. In both 

cases the separation function does not only depend on  , but also on  . Generally, TSL can be 

written as: 

Ὕ Ὕ ȟ                   Eq. (2-8) 

Ὕ Ὕ ȟ                   Eq. (2-9) 

2-2-2. Unloading in Cohesive Elements 

Unloading in cohesive elements can occur in the cases of unloading of a structure or crack 

happening. Therefore, the behavior of the cohesive elements has to be defined under unloading 

which will lead to decreasing separation. The terms óóloadingôô and óóunloadingôô will be used 

when separation is increasing or decreasing, respectively, as the tractions decrease also under 

increasing separation beyond maximum stress, Ὕ, in the softening region of TSL. Unloading 

model should consider the irreversibility of the damage process. Since damage evolution is an 

inelastic deformation and nonlinear process, the separation in cohesive models are considered 

like plastic deformation.  

In ductile materials, the mechanical work for producing damage is totally dissipated. Void 

growth in ductile materials is, hence, inelastic local separation and irreversible, and any 

unloading and reduction of separation occurs purely elastically with unchanged elastic stiffness 

as shown in Figure 2-5. If the local tractions in the cohesive elements are reduced to zero (AB in 

Figure 2-5), a significant separation remains. If the separation increases again, the tractions 

increase linearly up to point A and then follow the original cohesive law again. In the current 
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implementation of the cohesive model, the slope of the unloading curve is also set equal to the 

initial stiffness of the cohesive law. 

 

Figure 2-5: TSL at unloading 

The contact condition, i.e. prevention of penetration of adjacent continuum elements during 

unloading, has to be ensured also after total failure of the cohesive elements. For mode I fracture, 

which is considered solely throughout this research, the contact reduces to a normal contact. 

However, if a structure fails under shear mode loading, frictional sliding of the fracture surfaces 

must be also taken into account.  

2-3. Cohesive Parameters Determination 

In this part, the identification and validation of the cohesive model parameters are explained. A 

general concept for their identification in the case of mode I fracture is explained. 

Mixed-mode fracture is a relevant failure mechanism happens in homogeneous thin plates. The 

crack initiates in the centre of the specimen in normal fracture mode and then, continues to the 

surface of the plates in approximately 45 degree, which is called slant fracture. The mode I 

separation in this study represents the actual slant failure, and the respective cohesive 

parameters, Ὕ  and  , are hence effective values of a mixed mode situation. Therefore, here, 
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only mode I fracture, which represents the real slant fracture, is considered for the fracture 

analysis. 

The cohesive model, which describes the material damage in the process zone, is purely 

phenomenological. Because, in reality, damage does not happen only within a specific layer of 

cohesive elements, but volumetric elements are damaged. Although the cohesive parameters are 

phenomenological, they have a physical background. In the following, an engineering approach 

for the determination of the cohesive parameters for normal fracture in ductile materials will be 

presented which was proposed and applied by several researchers including Cornec et al. (2003). 

The cohesive strength, Ὕ, can be taken as the maximum stress at fracture in a tensile bar. It has 

to be noted that the tensile specimen does not fail in a pure mode I. In slant fracture, a shear 

mode contribution is also present. As mentioned earlier, in this study, mode I cohesive 

parameters represent the parameters of mixed mode fracture. 

Given the small plastic zone size, any elevation of Gc over ῲ is neglected and it is assumed that 

ῲ Ὃ ὐ. The cohesive energy for normal fracture, ῲ, is equal to the J-integral at crack 

initiation in mode I, ὐ. ὐ is usually identical to the intersection point between a JR-curve and the 

critical Stretch Zone Width (SZWc), determined from the fracture surface. The principle of this 

method is shown in Figure 2-6 a. 

JR-curve is a tearing resistance curve, represents a material resistance to progressive crack 

extension (this implies that a materialôs fracture toughness can change with crack extension). A 

tearing resistance curve is a plot of fracture toughness against crack extension. In many ductile 

materials, the size of the plastic zone at the crack tip increases as the crack extends. Thus, each 

successive unit of crack extension requires more energy than the preceding unit of extension (in 
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order to further increase the plastic zone size). Hence, the resistance of the material to crack 

extension increases with crack extension. This type of behaviour is known as a rising R-curve. 

There is a limit to this increase in toughness, and hence, all R-curves eventually flatten off. JR-

curve can be determined by a standard fracture test according to ASTM E1820. 

The SZWc should be determined by optical measurement of the stretch zone width of the initial 

fracture surface of the tested specimen. The intersection point of the average SZWc and the J-

Ўὥ curve defines Ji. It is considered to be the most accurate method for measuring J close to the 

onset of crack extension. 

As mentioned earlier, the determination of Ji require the use of optical measurement to measure 

the stretch zone width on the fracture surfaces of the specimens. The method can produce large 

scatter in the values of Ji as a result of the subjective interpretation and measurement of the 

stretch zone width. If the stretch zone width cannot be distinguished from ductile crack 

extension, Ji cannot be determined. Since there are practical difficulties in using this approach, 

which makes it unsuitable for routine materials testing, an alternative procedure for estimating J 

close to the onset of initiation of stable crack extension is proposed in Schwalbe et al. (1995). 

This approach is used in this thesis to determine the fracture energy. 

The engineering approach is to use the fracture parameters at 0.2 mm of the crack extension. J0.2 

is the material resistance at 0.2 mm of the total crack extension. For many materials, this 

parameter provides useful estimation of the initiation toughness. This method is illustrated in 

Figure 2-6 b. 

As in this study, no JR-curve, which is determined through the mechanical test according to 

ASTM E1820, are available, an alternative procedure is applied. JR-curve for small crack 
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extension is taken from the blunting line (proposed by Cornec et al., 2003), which is given by a 

validated analytical solution: 

ὐ σȢχυ„ȢЎὥ                 Eq. (2-10) 

Where, „  is the maximum tensile strength and Ўὥ is the crack extension. In this case, no 

determination of the J-integral by conducting standard fracture tests is needed. This method is 

presented in Figure 2-6 b. 

 

Figure 2-6: Determination of the cohesive energy by using a) the resistance curve and the 

stretch zone width, b) the analytical blunting line and 0.2 mm crack extension 

The procedure described in this part will be used in Chapter 4 to determine cohesive parameters, 

Ὕ and ῲ for a bilinear TSL. Cohesive parameters are calibrated by tensile tests and then, the 

same parameters will be applied for simulating the fracture in steel plates. 
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Chapter 3: Experimental Results 

3-1. Introduction  

In order to validate the fracture process that will be modeled by CZM in this thesis, experimental 

results are needed. The mentioned experiments were designed and performed in a simultaneous 

project (Jamaly, 2014) at Memorial University of Newfoundland to examine fracture process in 

steel plates experimentally. An overview of the experiments, test setup, and the results are 

mentioned in this chapter. These experimental results will be compared with numerical results, 

which will be modeled by CZM in Chapter 4. 

Several fracture tests were conducted on two different kinds of steel materials. One is mild steel 

with 3.175 mm thickness, and the other is high tensile steel with 6.35 mm thickness. The 

mechanical properties of both kinds of steel materials are determined by conducting tensile tests 

and analyzing the experimental data. Then, fracture tests on steel plates, made from the same 

material as the tensile specimens, are investigated by conducting plate fracture tests. 

3-2. Tensile Test 

In order to determine material mechanical properties, mechanical tests are conducted where 

different parameters are measured. One of the useful and simple tests for determining the load-

carrying capacity of the material is the tensile test of flat bars or rods, which relates stress and 

strain. According to ASTM E1820, flat tensile specimens are used for analyzing mechanical 

properties of plates.  

In this tensile test, the specimen is subjected to a continuously increasing uniaxial load at 

constant rate (0.1 mm/sec) during which simultaneous measurements of the load and the 
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extension are made. The force applied and the deformation that is produced can be used to 

calculate the stress and strain in the material.  

From these measurements, the stress-strain curve is constructed. The stress (calculated from the 

load) and strain (calculated from the extension) can either be plotted as ñnominal stressò against 

ñnominal strainò or as ñtrue stressò against ñtrue strainò.  

Engineering stress and strain are other expressions for the nominal curve indicated above. In this 

case, the stress is the ratio of the applied load to the original section area of the specimen. 

Assuming that the stress ʎ is distributed uniformly over the cross-section, we can write: 

„
ὖ

ὃ
 Eq. 3-1 

The relation between the applied stress and strain, in elastic region, can be expressed by: 

„ ὉὩ           Eq. 3-2 

Here e is the average linear strain. In simple terms, the linear strain can be expressed as: 

Ὡ
ὰ ὰ

ὰ
 Eq. 3-3 

ὰ is the gauge length of the specimen. Thus, e is the ratio of the change in the gauge length to 

the original gauge length. This strain is called the engineering strain and it is valid for small 

strain values. A different and useful concept for defining strain, when deformation is considered 

in more practical terms, is associated with the instantaneous change occurring in a specimenôs 

length while a force is acting on it. Unlike cases of engineering strain, where reference was made 

to the constant gauge length of the specimen, reference is made to changes in the dimension at 
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each instant of the test. If dl is the amount by which the length, l, changes, strain can be defined 

similarly as: 

‐
Ὠὰ

ὰ
 Eq. 3-4 

Integrating the above equation: 

‐
Ὠὰ

ὰ
ὰὲ
ὰ

ὰ
 Eq. 3-5 

‐ is known as the natural, true, or logarithmic strain at every instant. It is often required to 

alternate between these two definitions of the strain, the engineering strain and the true strain. 

This can easily be performed using Eq. 3-3 and 3-4, as shown below. 

‐ ὰὲ
ὰ

ὰ
ὰὲ Ὡ ρ  Eq. 3-6 

In plastic deformation, the volume remains constant, so: 

ὠ ὃὰ ὃὰ Ễ ὃὰ         Eq. 3-7 

ὃ and ὰ, ὃ and ὰ, ὃ and ὰ are, respectively, the section area and the gauge length of the 

tensile specimen before the specimen extension, during the tensile test , and at the fracture. 

There is a relation between true stress, „, and engineering stress ,„, using Eq. 3-6 and 3-7 as 

follows: 

„
ὖ

ὃ

ὃ

ὃ

ὖ

ὃ

ὃ

ὃ
„
ὃ

ὃ
„
ὰ

ὰ
„ Ὡ ρ  Eq. 3-8 

The material properties of steel are determined by tensile tests on steel flat bars. The geometry of 

the tensile specimen is shown in Figure 3-1.  
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Figure 3-1: The dimensions of the tensile specimens (in mm) 

Ten tensile specimens have been manufactured for the determination of the stress-strain curve of 

every kind of steel. The tensile specimens after the tensile tests are shown in Figures 3-2 and 3-3. 

 

Figure 3-2: Steel tensile specimens after fracture - 3.175 mm thickness 
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Figure 3-3: Steel tensile specimens after fracture- 6.35 mm thickness 

Experimental data and load-displacement curve obtained from the tensile tests, are presented in 

Figure 3-4 for thin specimens and in Figure 3-5 for thick ones. These curves are analyzed to 

derive engineering stress-strain curves using Eqs. 3-1 and 3-3. Engineering stress-strain curves 

are converted to true stress- strain curves by Eqs. 3-6 and 3-8. The stress- strain curves for one 

sample of the thin plate and one sample of the thick plate are demonstrated in Figures 3-6 and 3-

7 respectively. 
























































































































