A PETROGRAPHIC, GEOCHEMICAL, AND GEOCHRONOLOGICAL STUDY OF RARE EARTH ELEMENT MINERALIZATION IN THE RED WINE INTRUSIVE SUITE, LABRADOR, CANADA

By

Matthew Gerald Crocker

A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of

Master of Science

Department of Earth Sciences

Memorial University of Newfoundland

October, 2014

St. John's Newfoundland

ABSTRACT

The Red Wine Intrusive Suite is located in central Labrador, in the Grenville Province front zone. This suite consists of two peralkaline silica-undersaturated (agpaitic) bodies which are enveloped by a larger oversaturated component, which previously yielded a U-Pb zircon crystallization age of 1330 +40/-20 Ma. The agpaitic units include melanocratic and leucocratic units that occur both as igneous textured and gneissic rocks, and host two varieties of rare earth element (REE) mineralization. The essential mineral assemblage of these units includes variable amounts of K-feldspar, albite, nepheline, pyroxene, amphibole, and aenigmatite, with local occurrence of eudialyte and britholite as the key REE-bearing minerals.

Petrographic, geochemical and geochronological data indicate that the two key REE-minerals crystallized at very different times. Eudialyte occurs in an igneous texture but has yielded a U-Pb age of 976 ± 3 Ma, which implies closure of the U-Pb system during cooling after Grenvillian metamorphism. Britholite exhibits a variety of textures, all of which indicate secondary crystallization, agreeing with a U-Pb age of 929 Ma which is considerably younger than the host rocks. Britholite mineralization was likely due to fluid flow within highly deformed melanocratic syenites during a period of orogenic collapse after the Grenvillian Orogeny.

ACKNOWLEDGEMENTS

I would first like to thank my supervisors, Dr. Greg Dunning and Dr. Graham Layne, for their support and guidance throughout this project and for further insight and suggestions during the writing process, as well as for all the knowledge I have gained over the past few years throughout both my M.Sc. and B.Sc. work.

Dr. Randy Miller is thanked for providing a great deal of information and insight about the project area and peralkaline rocks in general during the start of this project, and for giving me the opportunity to work with Search Minerals Inc.

This project was supported by Search Minerals Inc. through providing me with two seasons of field work, providing access to all geochemical analyses, and paying for the first set of thin sections. Additional funding for this study was provided by an NSERC discovery grant to Greg Dunning.

Pam King and Amanda Langille are thanked for assistance in processing of geochronology samples, and Michael Shaffer and Glenn Poirier (University of Ottawa) for help and advice during SEM and EPMA work respectively.

Finally I would like to thank my parents, Janet and Gerry, and my girlfriend, Megan Kavanagh, for their constant support, patience, and motivation throughout my university career and beyond. This achievement would not be possible without them.

TABLE OF CONTENTS

Abstract	ii
Acknowledgements	iii
LIST OF FIGURES	
LIST OF TABLES	
LIST OF APPENDICES	
Chapter 1 : INTRODUCTION	
Location	
Peralkaline Intrusions and Related Terminology	3
Thesis Goals	6
Previous Work	7
Other relevant works	13
Regional Geology	15
Wapustan River Metamorphic Suite	16
North Pole Brook Intrusive Suite	17
Letitia Lake Group	17
Red Wine Silica-Oversaturated Units (RWO)	18
Red Wine Silica-Undersaturated Units (RWU)	20
Seal Lake Group	22
Structural Geology	23
Note on Fluid Inclusions	25
Chapter 2 : PETROGRAPHY OF THE ROCKS OF THE RWIS	
Accessory Minerals	30
Main Lithological Units	33
Melasyenite	33
Leucosyenite	37
Red Wine Oversaturated Units (RWO)	40

Pegmatite	40
Quartz-Feldspar Porphyry	44
Volcanic Rocks of the Letitia Lake Group	44
REE Mineralization	45
Primary Igneous Mineralization (Type-1)	45
Secondary Mineralization (Type-2)	47
Summary/Petrogenetic Sequence	51
Leucosyenite	52
Melasyenite	55
Chapter 3 : LITHOGEOCHEMISTRY	
Lithogeochemical Analysis	59
Lithogeochemistry of Main Units	60
Melasyenite	61
Leucosyenite	65
Quartz-feldspar Porphyry	68
Note on Classification of Igneous Rocks Using Trace Elements	70
Lithogeochemistry Results from Field Sampling	71
Lithogeochemistry Results from Drill Hole CBD-11-02	76
Type-2 Mineralization	83
Summary	84
Chapter 4 : MINERAL CHEMISTRY	
Group 1- K-feldspar, Albite, Nepheline, Natrolite, and Cancrinite	91
Feldspar	91
Nepheline	92

Natrolite	93
Cancrinite	93
Group 2- Amphibole, pyroxene, biotite, and pectolite	94
Amphibole	104
Pyroxene	106
Biotite	113
Pectolite	113
Group 3- Aenigmatite, Rinkite, and an unknown Y-bearing mineral	114
Aenigmatite	114
Unknown Y-bearing mineral	114
Rinkite	115
Group 4- Eudialyte	118
Eudialyte	118
Group 5- Britholite, Apatite, and Monazite	125
Apatite and Britholite	125
Monazite	128
Chapter 5 : GEOCHRONOLOGY	
Sample Processing	135
Results	139
Zircon	139
Eudialyte	140
Britholite	142
Summary	143
Chapter 6 : DISCUSSION	

Comparison to Other Deposits	160
Thor Lake (Nechalacho Deposit)- Northwest Territories	160
Kwyjibo Sector- Quebec	161
Conclusion	163
REFERENCES	165

LIST OF FIGURES

Figure 1-1: Labrador tectonic zones map with approximate location of the Red Wine
Property area marked with a red dot (from Wardle et al., 1997)5
Figure 1-2: Generalized figure from Thomas (1981) describing the structure of the Red
Wine-Letitia Lake area. RWIS would be located to the southwest of Letitia Lake and
northeast of Shallow Lake
Figure 1-3: Regional Geology of the Red Wine Project area (from Wardle et al., 1997). 19
Figure -1-4: Sheath fold in a melasyenite. Shape of the fold is most obviously indicated by
a layer of nepheline that has been weathered out just above the position of the pencil.
Picture taken from near the Barbera Prospect
Figure 1-5: Photomicrograph of sheared quartz-feldspar porphyry, indicating dynamic
recrystallization of large quartz grains in a mylonitic texture. Image is taken from sample
CBD-11-07-19, with a scale of 25 mm across
Figure 2-1: (Left) Medium-grained aenigmatite with associated amphibole, surrounded by
feldspar (photo is overexposed in order to better show the distinct red colour of the
aenigmatite) from sample CBD-10-01-01, igneous-textured leucosyenite
Figure 2-2: (Right) Very fine-grained fluorite, associated with fine-grained amphibole,
surrounded by feldspar, from sample CBD-11-07-14. Field of view is 2.2 mm29
Figure 2-3: Leucosyenite (sample CBD-11-07-14, deformed leucosyenite) with an
amphibole-rich band in crossed polarized light (XP). High birefringence, yellow-green-
blue, elongate grains within amphibole portion are pectolite. Field of view is 25 mm
horizontally 29

Figure 2-4: (Left) Natrolite-bearing cavity in a piece of NQ drill core from the Cabernet
Prospect (core width approximately 48 mm)
Figure 2-5: (Right) There are three high birefringence minerals in the image. 1: along the
bottom of the field of view are ~1-2 mm grains of cancrinite, 2: the predominant mineral
in the groundmass is very fine pyroxene, and 3: natrolite which appears to be very fine
grains which are growing into open space. Horizontal field of view is ~15 mm. Image is
from sample CBD-11-07-15
Figure 2-6 - Melasyenite with amphibole (dark green to black) predominant over pyroxene
(pale green to yellow) in sample CBD-10-01-18, a weakly deformed melasyenite32
Figure 2-7: Highly altered nepheline (light dusty brown) in a type-2 bearing melasyenite
(sample CBD-10-01-15) in both plane polarized light (upper) and crossed polarized light
(lower)
Figure 2-8: Megacrystic amphibole and lesser coarse feldspar in a pyroxene rich matrix in
a channel sample from the Cabernet Prospect
Figure 2-9: Three stages of deformation in the pyroxene-rich melasyenite unit (sub-units
1a and 1c). (a) Preserved igneous cumulate texture made up of coarse grains which appear
to be amphibole largely replaced by pyroxene. From sample CBD-10-01-11. (b) Further
along in the progression- fine elongate grains of pyroxene are more common but coarse
grains with a small amount of amphibole preserved in the core are still present but less
dominant. Image from sample CBD-10-01-32. (c) The final stage- here amphibole is
insignificant and fine agained alargets arranged analysis on most of the suit France counts
insignificant and fine-grained elongate pyroxene makes up most of the unit. From sample

Figure 2-10: Contact area between two subunits of leucosyenite, pyroxene-rich (2a-left)
versus amphibole-rich (2b-right). Field of view is ~24 mm. From sample CBD-10-01-24.
39
Figure 2-11: Igneous textured leucosyenite, made up of large grains of perthite, with lesser
amphibole that is commonly wedge shaped (best examples in the bottom left and top right).
From sample CBD-11-07-03
Figure 2-12: Plane-polarized (upper) and cross-polarized light (lower) images of a
leucosyenite with two small sheared bands which contain eudialyte and other REE-bearing
minerals. From sample CBD-10-01-3241
Figure 2-13: (a) Deep-red aenigmatite rimmed by amphibole, in sample CBD-10-01-01.
Lower portion of the slide appears to have two different generations of amphibole, one
(bluish tint) rimming the other (dark green). (b) Light-green pyroxene rimming dark green
amphibole and lesser aenigmatite, in sample CBD-10-01-33
Figure 2-14: Plane polarized and cross polarized light photomicrographs of the Arc Lake
alkali-quartz syenite. From sample RWOS-01 (a representative thin section from RWO
geochronology sample)42
Figure 2-15: Syenitic unit with small pegmatitic bands throughout. This sample was taken
from the Zinfandel Prospect42
Figure 2-16: Pegmatite (located on the Cabernet Prospect) with coarse-grained amphibole
and feldspars, and fine- to medium-grained altered eudialyte (pink to orange grains). Pen
magnet for scale
Figure 2-17: Representative section of quartz-feldspar porphyry from sample CBD-11-07-
10

Figure 2-18: Photomicrograph from sample LL-GC-01 of the Letitia Lake quartz-feldspar
porphyry. Field of view is 25 mm (horizontal)
Figure 2-19: Eudialyte in outcrop, within an amphibole-rich syenite on the Cabernet
Prospect
Figure 2-20: Large eudialyte grain in thin section, plane polarized light on the right and
crossed-polarized light on the left (from sample CBD-10-01-33)
Figure 2-21: Left image is in plane-polarized light; yellow grains are fine-grained
aggregates of britholite with small amounts of apatite remaining in the cores surrounded by
highly altered nepheline. Right image is the same area rotated 90° in crossed polarized light
(from sample CBD-10-01-15)
Figure 2-22: A cumulate textured leucosyenite (sample CBD-11-07-17) with type-2
mineralization (largest portion is in the top right, dark brown grains). Feldspar (Fsp),
consists of coarse-grained perthite, which is relatively unaltered whereas intercumulus
nepheline (Ne) is consistently altered, indicated by a dusty appearance in plane polarized
light. Field of view is 25 mm (horizontal)
Figure 2-23: Three ~1 mm grains, which may have been nepheline, now replaced by P- and
REE-bearing minerals. In order of increasing brightness the grains are made up of apatite,
REE-apatite, britholite and minor monazite, with one small grain of sphalerite in the top
right grain. The darkest portions (such as the near black in the top left grain) appear to be
the remnants of nepheline. This area is located in the top right-hand-corner of the image in
Figure 2-22

Figure 2-24: Right and left images are from sample CBD-11-07-17. The same texture is
shown at different magnifications. Elongate/bladed britholite grains appear to have grown
freely into a cavity; interstitial portions are filled by natrolite
Figure 2-25: (Left) Elongate metamorphic pyroxene with REE minerals (mainly britholite
- dark brown to orange mineral) filling cracks. This image is taken from sample CBD-10-
01-26
Figure 2-26: (Right) Back-scattered electron image of euhedral zoned pyroxene included
within an amphibole grain from sample CBD-11-07-21. This image has the illumination at
a very high level to increase the visibility of pyroxene zones
Figure 2-27: (Left) Circled grains are eudialyte with very small included grains of
aenigmatite in sample CBD-10-01-3053
Figure 2-28: (Right) Small grains of very pale pink eudialyte (Eud) included in a large dark
green amphibole (Amph) in sample CBD-10-01-1853
Figure 2-29: Green and brown amphibole with a rim of blue pyroxene, with associated dark
red to black aenigmatite. From sample CBD-11-07-0356
Figure 2-30: Back-scattered electron image (sample CBD-10-01-11) of equant apatite
grains (lightest grey) within a large amphibole crystal (middle shade of grey) that has been
partially replaced by pyroxene (darkest grey)
Figure 2-31: One grain of olivine (pink birefringence) surrounded by aenigmatite and
amphibole56
Figure 2-32: Summary of petrogenetic sequence. Bars represent the relative crystallization
order of the listed minerals, not an exact length of time. Blue represents the leucosyenite
and green melasyenite for minerals that occur in a different relative order in each rock type.

Red represents minerals that are not present in all units and black represents minerals that
occur with a consistent timing in both units
Figure 3-1: Cabernet Prospect diamond drill hole locations, with drill holes studied in this
chapter circled in red. Inset map shows local geology, as shown in Chapter 1, with the
larger map area marked in yellow
Figure 3-2: Selected Harker diagrams (Harker, 1909) for Al ₂ O ₃ , Na ₂ O, Fe ₂ O _{3(tot)} , P ₂ O ₅ , and
CaO, and the total alkalis versus silica (Le Bas et al, 1986) for outcrop samples from around
the entire RW property. All elements are in wt%
Figure 3-3: Results for La, Ce, Yb, Zr, Nb and Y from outcrop samples from throughout
the RW property. Elements are in ppm values and the legend is the same as in Figure 3-2.
75
Figure 3-4: Harker diagrams for Fe ₂ O ₃ (tot), MnO, CaO, MgO, Na ₂ O, and K ₂ O from CBD-
11-02. This drill hole contained significant type-2 mineralization, as well as eudialyte, and
was selected as a representative of the Cabernet prospect. The green triangles represent
high grade type-2 bearing samples and all others are represented by black circles. Elements
in wt %
Figure 3-5: Geochemical plots for TiO ₂ and P ₂ O ₅ versus SiO ₂ , and Zn, Nb, Y versus total
rare earth elements (TREE) DDH CBD-11-02. TiO2 and P2O5 are in wt%, all other
elements are in ppm
Figure 3-6: (A) Replacement of subhedral to euhedral apatite (clear, in core of grains) by
britholite (yellow to orange outer portion of grains). (B) Elongate britholite grains which
appear to have grown (in part in a radiating pattern) into fluid filled space79
Figure 3-7: Trace element plots for La Ce Vb II and Th from CRD-11-07-02

Figure 3-8: Location of named prospects on the RW property86
Figure 3-9: REE diagrams for high grade (>5000 ppm TREE) channels from six prospects
in the RWU, using the chondrite normalization values of Sun and McDonough (1989)87
Figure 3-10: Geochemical results from high grade REE channels (>4000 ppm TREE) for
REE, Y, Zr, Nb, and Zn. Symbols are the same as in Figure 3-9
Figure 4-1: BSE images with analysis points labelled. (A) Sample CBD-11-07-03, feldspar
in igneous-textured leucosyenite with associated pyroxene and amphibole; (B) Sample
CBD-10-01-30, feldspar and nepheline in leucosyenite; (C) Sample MRGC-01, feldspar
and nepheline in pyroxene-rich melasyenite with associated britholite and amphibole; (D)
Sample CBD-11-07-12, K-feldspar and nepheline in leucocratic portion of a eudialyte-rich
banded unit. Associated results presented in Table 4-3 to 4-495
Figure 4-2: BSE images with analysis points labelled. (A) Sample CBD-11-07-17, natrolite
in a leucosyenite bearing type-2 mineralization; (B) Sample CBD-11-07-03, amphibole,
pyroxene and biotite in igneous-textured leucosyenite; (C) Sample CBD-10-01-11,
amphibole and pyroxene in igneous-textured melasyenite; (D) Sample CBD-11-07-21,
igneous pyroxene in a leucosyenite. Associated results are presented in Table 4-6 to Table
4-9
Figure 4-3: MnO versus MgO for all amphibole samples analyzed
Figure 4-4: Compositional variation in pyroxene, Al ₂ O ₃ versus FeO (A and B) and TiO ₂
versus MnO (C). Symbols in (A) and (C) are the same as those used in the amphibole
section (Figure 4-3), symbols for (B) are listed in legend - only samples with visible
differences between core and rim in BSE images are shown. A hollow symbol indicates a
rim and solid indicates core.

Figure 4-5: Composition of pyroxene from Curtis and Gittins (1979) using Na/(Na+Ca)
versus Al/(Al+Fe) (a and b), compared with analyses from this study (c). Fe3+ was
determined using FeO*0.85 based on the calculated oxidation ratio of Singh and Bonardi
(1972)
Figure 4-6: BSE images with analysis points labelled. (A) Sample CBD-11-07-03, biotite
(Bt) in igneous textured leucosyenite with associated rinkite (Rnk); (B) Sample CBD-10-
01-11, pectolite (pec) in igneous textured melasyenite; (C) Sample CBD-11-07-17,
aenigmatite (Aen) in leucosyenite with associated unknown Y-mineral (Y-unk). Associated
results are presented in Table 4-10 and Table 4-11
Figure 4-7: BSE images with analysis points labelled. (A) Sample CBD-11-07-17,
unknown Y-mineral in leucosyenite; (B) Sample CBD-10-01-17, unknown Y-mineral in
leucosyenite. Associated results are presented in Table 4-13
Figure 4-8: Whole rock analysis of sample CBD-11-07-11 (green) with a representative
rinkite analysis (black)
Figure 4-9: (A) Sample CBD-11-07-21 (green) whole rock REE pattern compared with
EPMA analysis of eudialyte (black) from this sample. (B) Eudialyte EPMA results from
samples CBD-11-07-01 (purple), CBD-11-07-12 (blue), CBD-11-07-21 (green) and CBD-
10-01-30 (red), indicate some heterogeneity among eudialyte analyses
Figure 4-10: BSE images with eudialyte spot analyses labelled. (A) Sample CBD-11-07-
21, leucosyenite. Note bright REE rich rims; (B) Sample CBD-11-07-12, leucocratic
portion of a banded unit; (C) Sample CBD-10-01-30, leucosyenite; (D) Sample CBD-11-
07-21, leucosyenite. Note patchy zoning in largest grains. Associated results are presented
in Table 4-14 and Table 4-15

Figure 4-11: Plot of $P_2O_5 + CaO$ versus $Ce_2O_3 + SiO_2$ for all analyses of apatite – britholite,
with separate symbols representing each thin section
Figure 4-12: Whole rock analysis of sample CBD-10-01-15 (green) with representative
analyses of britholite (purple), apatite (blue) and the unknown Y-mineral (red) from the
same sample
Figure 4-13: BSE images with locations of apatite and britholite analyses labelled. (A)
Sample CBD-10-01-30, igneous textured melasyenite; (B) Sample CBD-11-07-15,
leucosyenite bearing type-2 mineralization; (C) Sample MRGC-01, melasyenite; (D)
Sample CBD-10-01-15, melasyenite. Associated results are presented Table 4-17 to 4-19.
130
Figure 5-1: Locations of samples used for U-Pb geochronology. The blue symbol represents
the area where a contact was inferred between the LLG, RWO, and RWU. The red symbols
represent the Merlot (Northern) and Cabernet (Southern) Prospects (map from Wardle et
al., 1997)
Figure 5-2: Apatite grain which is partially altered to britholite. SEM-BSE image of sample
CB-01-15136
Figure 5-3: U/Pb concordia diagrams for LL-GC-01 zircon, CBC-11-10 eudialyte, and
RWMR britholite, along with images of picked grains from each sample141
Figure -6-1: (A) Igneous-textured leucosyenite, made up of coarse-grained perthite and
interstitial amphibole. (B) Igneous-textured melasyenite, made up of pyroxene which has
largely replaced amphibole. (C) Sheared melasyenite, with fine bands of mafic minerals
and slightly coarser felsic minerals. The height of each image is 25 mm

Figure 6-2: (A) Eudialyte crystals surrounded by feldspar (dark), no zoning or bright rims
are present, minor inclusions (of a Zr-silicate) are the small bright areas and darker portions
are likely damage due to polishing (CBD-11-07-12). (B) Eudialyte with faint patchy
zonation (centre) associated with aenigmatite, light grey, feldspar (dark) and minor
sphalerite (brightest grain) from sample CBD-10-01-30
Figure 6-3: Euhedral apatite crystals which have been almost completely replaced by
britholite, in a highly altered unit (sample (CBD-10-01-15). Clear portions are remnant
apatite and yellow portion is britholite, grains are surrounded by very fine grained alteration
minerals
Figure 6-4: Schematic diagram for the formation of the Kangerlussuaq Intrusion in eastern
Greenland from Riishuus et al. (2008). The general process involves repeated injections
from a mantle derived, stratified magma chamber. The theorized method of emplacement
includes top downward tapping of the magma chamber - which would have been
contaminated by crustal sources at the top of the magma chamber leading to decreased
levels of silica saturation with progressive injections into the upper intrusive body153
Figure 6-5: Pyroxene-rich melasyenite with secondary britholite (yellow-light brown) and
sphalerite (dark red-brown), some larger grains are present between grains of pyroxene but
very fine amounts also appear to be filling fractures in pyroxene grains (sample CBD-10-
01-26)
Figure 6-6: Layered sample, predominantly pyroxene (top) and feldspar (below) in sample
CBD-11-07-12. Pyroxene exhibits many fractures perpendicular to mineralogical layering,
whereas feldspars do not appear to contain any fractures. Width= 25 mm

LIST OF TABLES

Table 3-1: Major-element compositions of representative melasyenite units; 1a (pyroxene
> amphibole) and 1b (amphibole > pyroxene)
Table 3-2: Major-element compositions of representative melasyenite units; 1c (>70%
mafic) and 3b (pyroxene-rich with amphibole and feldspar megacrysts). Note: sample 11-
07-19 is a very mafic rich cumulate textured sample, primarily made up of pyroxene but
with a notable amount of olivine64
Table 3-3: Major-element composition of representative leucosyenite units; 2a (pyroxene
> amphibole) and 2b (amphibole > pyroxene). Representative samples from moderately
deformed samples
Table 3-4: Major-element composition of representative units 2c (igneous-textured syenite)
and 3a (pegmatite)67
Table 3-5: Major-element composition for representative unit 5 (quartz-feldspar porphyry)
samples69
Table 4-1: Ideal mineral formulae used for Group 1
Table 4-2: End-member mineral formulae for Group 294
Table 4-3: EPMA results for feldspar from sample CBD-11-07-03, in both wt% and atoms
per formula unit96
Table 4-4: EPMA results for feldspar and nepheline from samples CBD-10-01-3097
Table 4-5: EPMA results from feldspar and nepheline from sample MRGC-0198
Table 4-6: EPMA results from nepheline and K-feldspar from sample CBD-11-07-12 and
natrolite from sample CBD-11-07-17

Table 4-7: EPMA results from amphibole, pyroxene and biotite from sample CBD-11-07-
03101
Table 4-8: EPMA results from amphibole and pyroxene from samples CBD-10-01-11.102
Table 4-9: EPMA results from pyroxene from samples CBD-11-07-21103
Table 4-10: EPMA results from biotite and pectolite from samples CBD-11-07-03 and
CBD-10-01-11 respectively
Table 4-11: EPMA results from aenigmatite and rinkite from samples CBD-11-07-17 and
CBD-11-07-03 respectively. No image is available to correlate with rinkite analyses112
Table 4-12: End-member mineral formulae for Group 3
Table 4-13: EPMA results from unknown Y-mineral from sample CBD-11-07-17117
Table 4-14: EPMA results of eudialyte from sample CBD-11-07-21
Table 4-15: EPMA results of eudialyte from samples CBD-11-07-12 and CBD-10-01-30.
Table 4-16: Mineral formulae for Group 5
Table 4-17: EPMA results of apatite, britholite and monazite from samples CBD-10-01-11,
CBD-11-07-15, and CBD-11-07-17, respectively
Table 4-18: EPMA results of britholite from sample MRGC-01
Table 4-19: EPMA results of apatite and britholite from sample CBD-10-01-15133
Table 5-1: U-Pb data from zircon, eudialyte and britholite from the Red Wine Intrusive
Suite

LIST OF APPENDICES

Appendix A- Petrography table	.175
Appendix B: Lithogeochemistry results from diamond drill core samples	195
Appendix C: Lithogeochemistry results from grab sampling	.483
Appendix D: Lithogeochemistry results from channel sampling	.519
Appendix E: EPMA results	.717

CHAPTER 1: INTRODUCTION

The Red Wine Intrusive Suite (RWIS) is located in central Labrador and is within the 'front zone' of the Grenville Province near the boundary with the Churchill Province. Its alkaline character was first recognized by Evans and Dujardin (1961) and Heinrich and Quon (1963) and was subsequently studied by Gandhi and Brown (1971), Singh and Kamineni (1972), and Curtis and Currie (1981), as well as by Thomas (1981) in a regional mapping study.

The RWIS is made up of two main bodies, the north and south Red Wine plutons, with many smaller bodies in the surrounding area. The focus of this thesis is on the north pluton. The intrusive bodies are made up of silica-undersaturated leucocratic syenite with lesser melanocratic varieties, which as a group will be referred to as the Red Wine Undersaturated Suite (RWU). These rocks are enveloped by the Red Wine silica-oversaturated members (RWO) (Curtis and Currie, 1981; Hill and Miller 1990). Many of the units that are the focus of this study are in the agpaitic sub-group of peralkaline rocks; more detail on these rocks is presented in the following section.

Rare earth element (REE) mineralization has been known in this area since the late 1950s (Cruft and Robinson, 1958), but until recently was not considered potentially economically viable. Cruft and Robinson recognized eudialyte (a complex Na-Zr-REE silicate) which is the mineral that drew attention to the area for recent exploration, but as work was carried out another type of mineralization was discovered. This was simply named type-2 mineralization (eudialyte being type-1) as the identity of the mineral species was not

immediately known at the time due to its fine grain size. Characterizing this type-2 mineralization is one of the main goals of this thesis.

Field work for this thesis was carried out during 2010 and 2011 summer field seasons with Search Minerals Inc. Sampling methods included grab sampling, channel sampling and diamond-drill-core sampling.

The Search Minerals 2010 program began with basic prospecting, which eventually led to channel sampling and subsequently diamond drilling. This work included 106 lithogeochemical grab samples, 194.5 m of channel (493 samples), and 1891 m of drill core (1996 samples). The main focus was on the Pinot Rose Prospect which was an area of historic eudialyte mineralization, as well as on the Cabernet Prospect, where type-2 mineralization was first noted. Both of these areas were subject to extensive channel sampling and drilling, whereas only grab samples were taken in other areas of interest. In 2011, a larger drill program was carried out at the Cabernet Prospect, set up as a grid layout based around selected 2010 drill hole collars. Seventeen drill holes were completed for a total of 3663 m (4184 samples). In addition to this drill program, extensive channel sampling programs were carried out on several other prospective areas, for a total of 492 m (984 samples), as well as 14 grab samples.

This thesis was undertaken in order to better understand the geological context of REE mineralization in the study area. The focus is on the petrology, lithogeochemistry and age of the host rocks, and the genesis of REE-rich zones in the context of their igneous and metamorphic history.

Location

The RWIS is located approximately 115 km northeast of the town of Churchill Falls, central Labrador (Figure 1-1). Access to this property is most easily obtained by helicopter, in the case of this study by an approximately 40 km flight from a camp on the Orma Lake road, north of Churchill Falls.

Peralkaline Intrusions and Related Terminology

Alkaline rocks are complicated and generally poorly understood relative to other igneous rock types and involve a range of uncommon names and terms. For this study, a general overview of the origin and terminology of agpaitic rocks from Sorensen (1997) is given. The term agpaitic essentially represents peralkaline nepheline syenite and volcanic equivalents, as well as complex silicates, such as eudialyte, which contain elements such as Zr, Ti, REE, F and other volatile elements. In general, these rocks do not contain minerals such as zircon, titanite, and ilmenite which are unstable in peralkaline magmas, except where there is a transitional zone to a non-agpaitic peralkaline unit, known as miaskitic rocks. In these rocks, for example, rims of zircon on eudialyte may occur.

Generally agpaitic rocks have a (Na+K)/Al ratio of ≥ 1.2 (where peralkaline is defined as >1.0). However, it is possible to have a rock with a higher ratio that is not agpaitic, or an agpaitic rock with a lower ratio, which indicates that more factors than major element composition influence the formation of these rocks. Volatile- and rare-element content are other important factors in the genesis of these rocks, contributing to the large number of uncommon minerals associated with these settings. Complexes such as the Khibina and Lovozero intrusions contain more than 500 mineral species. Other factors important in

agpaitic rock formation are the oxidation state of the magma and fluid/gas phase composition (Sorensen, 1997).

Agpaitic rocks have high Na, Zr, Cl, F, Li, Be, Rb, Ga, REE, Nb, Ta, Hf, Zn, Sn, U and Th contents, along with methane or another hydrocarbon-rich gas phase present during crystallization. In general, they are also depleted in Mg, Ca, Cr, Sc, Co, and Ni. Many agpaitic intrusions show Rb/Sr values that imply mantle derivation, with some also indicating minor crustal contamination before crystallization. Pronounced negative Eu anomalies are common in these rocks, which may indicate fractionation of plagioclase before emplacement. Removal of a mafic cumulate phase may be common as well, indicated by typically low values of Mg, Ca, Cr, Sc, Co and Ni.

Parental magmas for agpaitic rocks are believed to be either alkali basalt or nephelinitic magmas, with fractionation occurring in the crust, or fractionation from nephelinitic or nepheline benmoreitic (intermediate, alkaline, silica undersaturated rock) magma at mantle depths (Kramm and Kogarko, 1994). Evidence of liquid immiscibility has been observed (Kogarko, 1977; Kogarko and Romanchev, 1983), most commonly as evidence that a Na-rich fluid has separated from the magma and caused late- and post-magmatic alteration. This alteration may lead to redistribution of trace elements and therefore could contribute to concentration of REE or other elements into economic quantities (Sorensen, 1997).

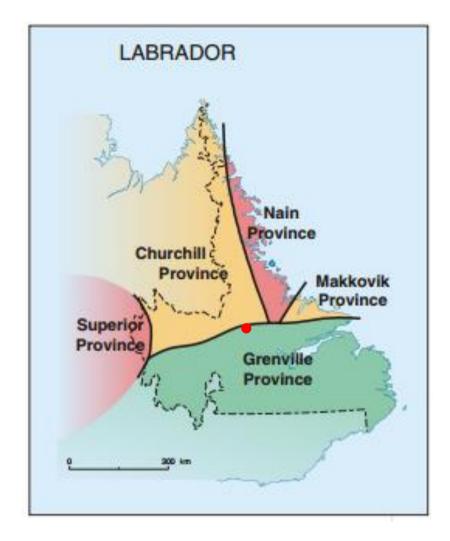


Figure 1-1: Labrador tectonic zones map with approximate location of the Red Wine Property area marked with a red dot (from Wardle et al., 1997).

Thesis Goals

The main questions that have been addressed during this study are as follows:

- What is the crystallization history of the Red Wine Intrusive Suite, the main rock forming minerals and their petrogenetic relationship? This was determined using standard transmitted light petrography with the aid of back-scattered electron (BSE) images and Electron Probe Microanalysis (EPMA).
- What are the ages of the units? In terms of igneous crystallization of the RWIS as well as the crystallization of the two main types of REE mineralization. This was done using a Thermal Ionization Mass Spectrometer (TIMS) for U-Pb geochronology. The aim was to use zircon in any samples that contain it, but as noted above, most agpaitic rocks such as the RWU do not contain zircon. Other U-bearing minerals were selected in an attempt to determine the age of units that did not contain zircon.
- What are the main REE-bearing minerals and their textural and paragenetic relationships to each other and to the host rocks? This was determined using multiple methods such as transmitted light petrography, BSE images with an SEM, EMPA, and TIMS.
- How do these rocks fit into the regional geological history? How do the ages and
 petrogenetic history relate to the surrounding rocks? This is a synthesis of all
 available data collected during the study.

Previous Work

This section summarizes the most important work (from the author's perspective) that has been produced on the RWIS and surrounding area, as well as more general literature relevant to certain aspects of this study.

Curtis and Currie (1981) described the RWIS (referred to then as the Red Wine Alkaline Complex) as multiple elongate intrusive bodies with two main intrusions and numerous smaller associated bodies, with a general northeast trend. This work was the first to characterize the Red Wine Complex as peralkaline, and the first to describe the silica-oversaturated component, which they named the Arc Lake Gneisses. They divided the Red Wine Complex into 6 subtypes which will be discussed in detail below.

This work was complimented by an earlier publication where thirteen samples of igneous textured syenite from the RWIS (referred to then as the Red Wine Alkaline Province) to produce Rb/Sr whole rock isochrons (Blaxland and Curtis, 1977). Two of these samples contained very low Rb and Sr contents and were excluded; the other 11 gave an average age of 1345 ± 75 Ma with an initial 87 Sr/ 86 Sr of 0.702 ± 0.010 which they deemed too imprecise to infer a definite magma source.

During the same period Curtis and Gittins (1976) published a detailed study of pyroxene chemistry in the RWIS. In general the varieties present are unusual for against intrusions in that they are commonly aluminous, and this chemical variation is believed to be caused by metamorphism of the against rocks. The main compositional variation can be explained

in terms of variations in Na/(Na+Ca) and $Al^{vi}/(Al^{vi}+Fe^{3+})$ in the M2 and M1 sites respectively.

Curtis and Currie (1976) reported that the pyroxene present in each unit varies as follows; hybridized quartz syenite contains aegirine, calcic-aegirine, and titanian aegirine; hybrid nepheline syenite contains Ti-Fe omphacite; leucocratic and melanocratic gneiss units contain aegirine-jadeite and Ti-Fe omphacite; syenite/malignite contains aegirine and Ti-Fe omphacite, and presumed dyke rocks in the area contain Ti-Fe omphacite.

The wide range of textural relationships exhibited by the various pyroxene species includes disequilibrium such as irregular zoning and resorbed grains. Some samples indicated that the pyroxene formed from the breakdown of aenigmatite, nepheline and arfvedsonite. In the presumed dyke rocks, two stages of omphacite growth were interpreted, one which displays patchy zoning and another that is present as microlites and was interpreted to be secondary (Curtis and Currie, 1976).

Pyroxene having compositions described above are commonly associated with high pressure metamorphism, but, in this case, they were interpreted to be due to reactions involving minerals such as aenigmatite, plagioclase, nepheline, and arfvedsonite in a system with low silica activity and high peralkalinity. The metamorphic P-T path interpreted from these pyroxenes involved an initial rapid pressure increase to amphibolite facies, followed by a shallow P-T path as temperature rose and pressure remained constant (Curtis and Currie, 1976).

Singh and Kamineni (1971) and Singh and Bonardi (1972) also completed mineralogical and textural studies, both on the rocks surrounding the RWIS (referred to here as the Joan Lake area) as well as on the RWIS itself. The 1972 work included Mossbauer resonance measurements of arfvedsonite and aegirine-augite. The results of this work showed that arfvedsonite has 5 atomic sites for Fe, including 3-Fe²⁺(M₁), 1-Fe²⁺(M₃) and 1-Fe³⁺(M₂), these proportions yield an oxidation state ratio of 0.2, calculated from Fe³⁺(M₂)/Fe²⁺(M₃)+Fe³⁺(M₂). Aegirine-augite has five octahedral sites for Fe³⁺ (M₁) and one for Fe²⁺(M₂), which gives an oxidation ratio of 0.85. This indicates that aegirine-augite will form in much more oxidized conditions and incorporate a greater proportion of Fe³⁺ than arfvedsonite.

Hill and Thomas (1983) discussed the relationships among the Letitia Lake Group (LLG) and Red Wine oversaturated units (RWO) with the Flowers River Intrusive Suite. A previous unpublished zircon date for the LLG is 1327 +/- 4 Ma (presented by Thomas, 1981, from Fryer, personal communication), which was correlated to the Rb/Sr age of Blaxland and Curtis (1977) for the igneous textured Red Wine Undersaturated units (RWU). It is suggested that a large rift zone was present during this time, extending from the southern portion of Greenland, where it resulted in the Gardar Province peralkaline intrusions as well as the Eriksfjord basaltic units, to central Labrador where it gave rise to the Flowers River Igneous Suite, LLG and RWIS with the associated Seal Lake basalts and sedimentary units.

Hill and Miller (1990) compared felsic intrusive bodies in north-central Labrador, having ages ranging from 1340-1240 Ma. These intrusions include the Flowers River Igneous

Suite, the Strange Lake peralkaline granite, the RWIS and LLG, the Upper North River pluton, the Manvers Granite and the Arrowhead Lake pluton, and they concluded that they developed after a long period of uplift and erosion. The discussion of the RWIS and LLG is the most relevant to the current study. Their conclusion was that the RWIS is a high level intrusion, having a close genetic relationship with the oversaturated members and the LLG. This is based on the spatial association and geochemical similarities between mineralized peralkaline trachytic flows of the LLG and the RW quartz syenite, the presence of peralkaline volcanic blocks down-faulted into the peralkaline quartz syenite and peralkaline granite, and the presence of perthitic feldspars that are evidence of crystallization during rapid cooling.

The regional setting of the RWIS was clarified by Thomas (1981), who completed a regional scale mapping project in the surrounding area. The area consists of 3 major crustal blocks that have experienced multiple deformation phases, and are separated by a series of faults (Figure 1-2). The regional structural trends were interpreted to be a result of tight folds with faults parallel to fold limbs, yielding N-S near strike-slip faults in the southeast and E-W thrusts in the northern portion near Letitia Lake. The RWIS is part of the central structural block. Little detail is presented for the undersaturated component, but the oversaturated units were reported to range from undeformed to highly cataclasized.

At a larger scale for structural geology, Rivers et al (1989) determined the three main tectonic zones of Grenville Province. These include the parautochthonous belt (PB), the allochthonous polycyclic belt and the allochthonous monocyclic belt. The Grenville Front

(GF) is the northern boundary of Grenvillian metamorphism between the parautochthonous belt and the tectonic foreland, marked by 950 ± 50 Ma K-Ar ages in the south and the absence of these reset values to the north. The PB consists of northeast trending shears with isoclinal folds developing in the west. Multiple phases of deformation have been indicated in both the eastern (Rivers et al, 1989) and western (Rivers et al, 1993) portions of the PB in Labrador.

The Groswater Bay Terrane is the eastern most representative of the PB and has produced titanite ages of 972 ± 4 Ma, to indicate the end of metamorphism in the area, with primary zircon ages of 1709 + 7/-6 Ma (Schärer et al., 1986). Schärer et al. also determined the age of metamorphic rutile in the Groswater Bay Terrane at approximately 930 Ma, indicating growth very late during the Grenvillian Orogeny.

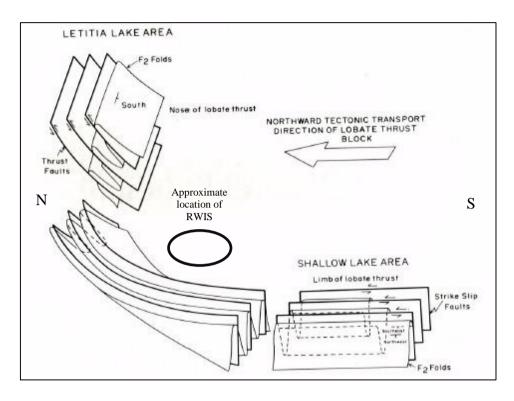


Figure 1-2: Generalized figure from Thomas (1981) describing the structure of the Red Wine-Letitia Lake area. RWIS would be located to the southwest of Letitia Lake and northeast of Shallow Lake.

Miller (1987) documented Nb-Be mineralization in the LLG. The LLG consists of peralkaline quartz-feldspar porphyry and felsic volcanic rocks along with sediments derived from the other two units. Five types of mineralization (M1-M5) were described, all of which include fine-grained Nb-Be minerals with sporadic Y mineralization. M1 consists of sheared and lineated gneissic syenite and amphibolite, as alternating felsic/mafic bands of variable thickness. M2 is made up of an aegirine-feldspar unit, which is dominantly fine grained and dark grey. M3 consists of aegirine-feldspar veins, up to 10mm thick. M4 is made up of albite rich veins (>90%) containing barylite and eudidymite in mm scale clots. M5 is disseminated mineralization in a syenitic host, comprising pyrochlore and other Nb bearing minerals. The conclusions obtained from mapping led Miller (1987) to suggest that mineralization in the LLG occurs very near the unconformity between Letitia Lake and the RWIS.

The only samples taken from the LLG for this thesis are for geochronology and minor petrographic analysis. LLG mineralization was not addressed.

Other relevant works

Salvi and Williams-Jones (1990) discussed the possibility of remobilization of REE, Zr and Y during fluid circulation in the Strange Lake pluton and used fluid inclusion microthermometry to further their understanding of the history of these rocks. They concluded that there were two main stages of metasomatism, first Na-rich then Ca-rich. The Ca-rich event consisted of circulation of multiple coeval fluids. These included low temperature, high- and low-salinity aqueous fluids along with an immiscible methane-rich fluid, which were possibly driven into circulation by the heat from the initial intrusion. F

is believed to be the anionic species which permitted the rare metals to be kept in solution, which is supported by the amount of fluorite present in the altered rock associated with mineralization. The deposition model suggested is that the fluoride bearing fluid remobilized already-present rare metals, and then interacted with the Ca-rich fluid to precipitate fluorite and REE bearing minerals during the extensive Ca-rich metasomatic event, leading to concentration to potentially economic levels.

Upton et al. (1996) discussed several cases of layering in alkaline intrusions of the Gardar Province. These range in age from 1350 to 1150 Ma and are intraplate- and rift-related bodies. The intrusions are commonly cylindrical or tabular, 1-5 km thick, and have roughly cone- or saucer-shaped bodies. Modal layering is common throughout these intrusions where it is seen as concentrations of mafic minerals in <20 cm thick layers, and some occasional arfvedsonite layers >1 m, all within more predominantly felsic rocks. 'Sedimentary' structures such as graded bedding, cross beds, trough structures, load casts, and sag structures are commonly observed. Typically these bodies are believed to have crystallized from the bottom up, with fewer showing top downward characteristics. Layers are commonly seen across the entire width of the intrusion, though in places, the layers may be discontinuous. The textures and features seen indicate low viscosity magmas with crystal nucleation beginning at the boundary layers and moving inwards. Layering was interpreted to have been controlled by the nucleation rates of different minerals combined with gravitational effects within the magma chamber.

Wu et al. (2010) discuss the possibility of using in situ analysis of eudialyte for both isotopic tracer studies and U-Pb dating. Whereas different minerals would normally have

to be used for different types of isotopic study, eudialyte can be used for Sr, ϵ Nd, and ϵ Hf in some cases, but are be dependent on the highly variable composition of eudialyte. Requirements such as low Rb/Sr (<0.02), relatively high Nd (>200 ppm) and low Lu/Hf (<0.4) are not always met. Eudialyte may also be of use for U-Pb dating in agpaitic assemblages in the absence of zircon and baddelyite, which do not occur due to high solubility of Zr. Problems arise since eudialyte can commonly be replaced or altered, or be entirely hydrothermal. Also, the amount of common Pb may be up 60-100% of total Pb. Therefore, careful petrographic evaluation and a specific range of chemical compositions are required in order to use eudialyte as a both geochronometer and isotopic tracer.

Regional Geology

In general the RWIS comprises two silica undersaturated bodies, the north and south Red Wine Intrusions, referred to here as the RWU, which are enveloped by the genetically-related silica-oversaturated units of the Arc Lake and Shallow Lake granites (RWO). In addition to the two main intrusive bodies there are many smaller intrusions throughout the area with a general northeast-southwest trend. Minerals, that initially suggested the peralkaline affinity of these rocks, are nepheline, arfvedsonite, aegirine, and eudialyte (Curtis and Currie, 1981).

Geological units in the area are discussed below in order of oldest to youngest. Figure 1-3 is a map of the project area, taken from Wardle et al. (1997).

Wapustan River Metamorphic Suite

The Wapustan River Metamorphic Suite consists of meso- to melanocratic gneisses dated to be 1660 +/- 22 Ma (Rb-Sr age, Thomas, 1981). The essential minerals include quartz, plagioclase, biotite and magnetite. Although most of the complex is highly metamorphosed, minor sections of lesser-deformed metasedimentary rocks, granite and gabbro are present. This group is typically found as 'rafts' which can be up to 12 km by 4 km, and are intruded by, as well as surrounded by, the North Pole Brook Intrusive Suite.

Subdivisions of this unit include quartzofeldspathic gneiss, pelitic schist, metagreywacke, metaquartzite, and amphibolite. These sub-units all weather grey to white and have a grey fresh surface. All consist of quartz, plagioclase, K-feldspar, muscovite, biotite, and lesser chlorite and epidote. The quartzofeldspathic gneiss contains mafic bands up to 1.5 cm thick, and felsic bands which are about 1 cm thick and tend to pinch and swell. It is pink to grey on fresh surfaces and reddish pink when weathered. The dominant minerals are quartz, plagioclase, K-feldspar, muscovite and biotite with lesser epidote, chlorite, magnetite, apatite and zircon, plus local sillimanite and garnet. This unit is believed to be of sedimentary origin based on its well banded appearance and the presence of abundant muscovite, sillimanite, and garnet.

One example of mafic metavolcanic rock is present over an area about 1.5 km long. This unit contains actinolite, epidote, and magnetite. It is light to dark green, fine-grained and massive.

The amphibolite unit is seen as pods in other units and may be either massive or banded and is made up of augite, hornblende, cummingtonite-actinolite, biotite and lesser quartz and plagioclase. Minerals also found locally include magnetite, epidote, muscovite, calcite, pyrite and pyrrhotite (Thomas, 1981).

North Pole Brook Intrusive Suite

The most common member of this suite is biotite granodiorite-quartz monzonite with smaller amounts of biotite granite (increased K-feldspar and/or quartz to plagioclase ratios), as well as quartz diorite and diorite, which vary from massive equigranular to cataclastic textures. The average emplacement age for this suite is believed to be 1654 ± 22 Ma based on combined Rb-Sr ages from multiple samples. This unit is believed to have intruded into the Wapustan River Suite, based on the presence of xenoliths that appear to be from the metamorphosed mafic units from that suite (Thomas, 1981).

Letitia Lake Group

The Letitia Lake Group includes peralkaline quartz-feldspar porphyry and felsic volcanic rocks, which make up a 30 km by 8 km belt. These units are overlain by sedimentary rocks believed to be derived from the underlying units (Thomas, 1981).

The peralkaline feldspar and quartz-feldspar porphyry are interpreted to represent the basal portion of the group. The dominant mineral in this unit is orthoclase, which ranges from 3 mm to 2 cm and can be euhedral to anhedral to crushed grains. Quartz in this unit is commonly seen as blue, oval-shaped grains up to 4mm. Also present are microcline,

plagioclase, biotite, stilpnomelane, magnetite, and zircon, with local aegirine and arfvedsonite-riebeckite.

The volcanic rocks are peralkaline and include porphyritic rhyolite, banded rhyolite, crystal tuff and ignimbritic tuff. These units resemble the extrusive lithologies of the basal unit but, in general, are finer grained and have significant amounts of muscovite-sericite.

The top of this group is sedimentary, resulting from weathering, oxidation, and leaching of the lower two units. The two main variations seen here are hematized equivalents of the lower units and schists and wackes that occur locally due to physical weathering.

This group has been dated to be 1327 ± 4 Ma (U-Pb, zircon), with a Rb-Sr date of 1067 ± 86 Ma, which is believed to be the approximate age of metamorphism (Thomas, 1981).

Red Wine Silica-Oversaturated Units (RWO)

Initially named the Arc Lake Intrusive Suite, or Arc Lake Gneisses, the RWO is made up of oversaturated peralkaline gneiss. The predominant mineral assemblage is perthite and aegirine with lesser quartz, biotite, and riebeckite, and local fluorite, astrophyllite, and neptunite. This unit is typically seen enveloping RWU members, and is believed to be genetically related to them. The sub-units of this suite include a dark green mafic alkali syenite, intermediate alkali-quartz syenite, felsic alkali-quartz syenite and alkali-quartz feldspar porphyry, and peralkaline granite (Thomas, 1981; Curtis and Currie, 1981).

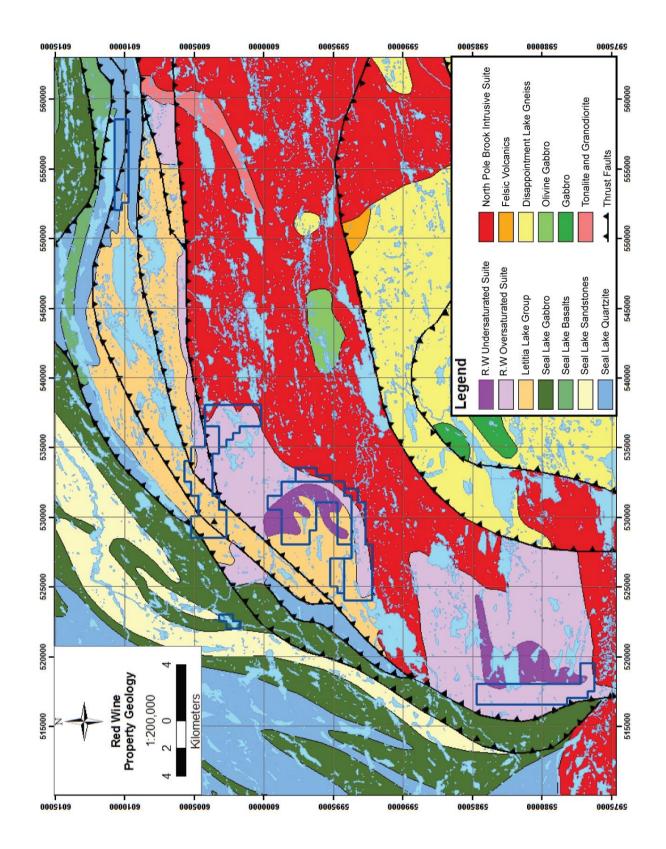


Figure 1-3: Regional Geology of the Red Wine Project area (from Wardle et al., 1997).

The dark green mafic alkali syenite is massive and displays relict igneous textures. The main mineral assemblage includes orthoclase, albite, microcline, arfvedsonite-riebeckite, aegirine, aenigmatite ((Na, Ca)₄(Fe²⁺, Ti, Mg)₁₂Si₁₂O₄₀) and biotite. Accessory minerals in this unit include astrophyllite ($K_2Na(Fe^{2+},Mn)_7(Ti_2Si_8O_{26}(OH)_4)$, ilmenite, titanite, rosenbuschite ((Ca, Na)₃(Zr, Ti)Si₂O₈F), and quartz (Thomas, 1981).

The intermediate alkali-quartz syenite is made up of quartz, orthoclase, plagioclase, arfvedsonite-riebeckite, aegirine, aenigmatite, astrophyllite, fluorite and rosenbuschite. This unit also displays igneous textures and is a tan to grey (Thomas, 1981).

The felsic alkali-quartz syenite and alkali-quartz-feldspar porphyry are made up of quartz, orthoclase, plagioclase, microcline, arfvedsonite,-riebeckite, aegirine, biotite, magnetite, ilmenite and titanite. These rocks are white to grey, have equigranular, porphyritic, or pegmatitic textures and grade into the peralkaline granite (Thomas, 1981).

The peralkaline granite is white to grey with a porphyroclastic texture. Quartz, orthoclase, plagioclase, arfvedsonite-riebeckite, aegirine, aenigmatite, biotite, rosenbuschite, allanite, titanite, magnetite, and multiple unidentified minerals are present in this unit (Thomas, 1981).

Red Wine Silica-Undersaturated Units (RWU)

The RWU consists of two main bodies, the north and south plutons with smaller intrusions throughout the area. There are six sub-units present; green melanocratic gneiss, blue-black gneiss, leucocratic gneiss, arfvedsonite melteigite (defined as a melanocratic alkali

pyroxene rock), nepheline syenite and malignite, and hybrid syenites. The details on these units below are summarized from Curtis and Currie (1981).

The green melanocratic gneiss occurs as highly deformed pods and bands, is dominated by acicular pyroxene (typically aegirine-jadeite) associated with lesser amphibole (arfvedsonite), nepheline and feldspar (commonly perthite), and local eudialyte and pectolite. Estimates of peak metamorphic conditions are 580-640 °C at 6 to 7.5 kb, based on relationships between pyroxene, albite and nepheline (Curtis and Currie, 1981).

The blue-black gneiss is dominated by arfvedsonite and nepheline, with augen of albite and veinlets of titanium silicates. Omphacite is present locally, as well as minor amounts of pectolite (NaCa₂Si₃O₈(OH)), lamprophyllite (Na₂(Sr, Ba)₂Ti₃(SiO₄)₄(OH, F)₂), murmanite ((Na,[])₂ {(Na,Ti)₄ [Ti₂(O, H₂O)₄Si₄O₁₄](OH, F)₂·2H₂O), ramsayite (Na₂Ti₂Si₂O₉), astrophyllite, titanite, aenigmatite, apatite, catapleiite ((Na, Ca, [])₂ZrSi₃O₉2H₂O), lepidomelane (Fe-rich mica), and multiple unidentified minerals. This unit is normally associated with the green melanocratic gneiss.

Leucocratic gneiss, according to Curtis and Currie (1981) is present only in the southern RW pluton. This is a pale grey unit containing greenish mafic minerals and strong gneissosity. Lath-like feldspar and layers of pyroxene and/or amphibole are common, with minor eudialyte and aenigmatite in amphibole-rich localities.

Arfvedsonite melteigite is a minor rock type, and is generally contained within the green and blue-black gneiss units. It is dominated by nepheline and acicular arfvedsonite, and, typically, is not peralkaline.

Nepheline syenite and malignite are common in both the north and south plutons, and occur as pods up to 2 km long. It is typically coarse grained with pegmatitic and eudialyte-rich localities. The predominant mineral assemblage is albite-microcline-arfvedsonite-nepheline with accessory minerals such as pectolite, apatite, and titanian ferro-omphacite, with aegirine in recrystallized zones. It contains poikilitic crystals of amphibole and aenigmatite, as well as large euhedral feldspars and may show gneissic or igneous-textures. Variations in bulk trace-element composition may be largely controlled by the presence or absence of eudialyte and aenigmatite.

Hybrid syenite occurs near the outer portion of both the north and south plutons and is typically pale-coloured with a saccharoidal or gneissic texture. Granoblastic quartz and feldspar are predominant with accessory amounts of titanian aegirine, joaquinite (NaFe²⁺Ba₂Ce₂(Ti, Nb)₂ [Si₄O₁₂]₂O₂(OH, F)(H₂O), astrophyllite, eudialyte, riebeckite, fluorite, and aenigmatite. These syenites were believed by Curtis and Currie (1981) to result from hybridization of the country rock during intrusion of the RWU.

Igneous-textured samples from this suite have given Rb/Sr ages of 1345 ± 75 Ma (Thomas, 1981) and a preliminary U-Pb zircon age determination of 1337 + 10/-8 Ma (Gandhi et al, 1988).

More details on selected units of the RWIS are presented in Chapter 2: Petrography.

Seal Lake Group

The Seal Lake Group is made up of clastic sedimentary rocks, basaltic flows and gabbro sills that cover close to 10,000 km². The information below is from van Nostrand (2009),

van Nostrand and Lowe (2010), van Nostrand and Macfarlane (2011), van Nostrand and Corcoran (2013).

This group is cut by the Grenville front zone, giving a strong metamorphic overprint in the south and minimal metamorphism in the north. The Group overlies the North Pole Brook Intrusive Suite to the south at a thrust contact and the Letitia Lake Group to the southwest along an unconformity that has been reworked by faulting. It overlies the Bruce River Group in the east, Harp Lake Complex in the north and the Churchill Province in the west (van Nostrand, 2009). Two gabbros in the western portion of the Seal Lake Group have been dated by U-Pb isotopic methods to be 1250 +15/-7 Ma with baddeleyite, and 1224 +6/-7 Ma with zircon (Romer, 1995), however no date is currently available for the volcanic units. There are six formations in the Seal Lake Group; the Bessie Lake, Wuchusk Lake, Whiskey Lake, Salmon Lake, Adeline Island, and Upper Red Quartzite.

These formations commonly consist of interlayered sedimentary rocks and volcanics, which are typically intruded by gabbros. The Adeline Island and Salmon Lake formations both contain copper mineralization, present as chalcocite bearing veins and shear zones, with local azurite, bornite, chalcopyrite, pyrite and native copper.

Structural Geology

Detailed structural analysis was not prioritized in the thesis project due to limited outcrop in the area. In general the area is structurally complex, with multiple shear zones seen in outcrop and drill core samples, as well as tight small-scale folds seen in the melasyenite units. Thomas (1981) described the area as being made up of many large, relatively tight regional scale folds associated with thrust faults parallel to the fold limbs (Figure 1-2).

Numerous attempts were made to create cross-sections from drill logs, but were somewhat unsuccessful. Correlation attempts were also made to correlate based on rock types from core logs, as well as by comparing a combination of compositional characteristics of drill core samples, emphasizing as large variations in key distinguishing elements such as SiO₂, Zr and REE. Correlation is complicated by the fact that dips of the foliation relative to the core axis do not change in a systematic way down hole, and may vary from 0 to almost 90° relative to core axis and oriented core barrels were not deployed during the exploration program.

The conclusion from these attempts is that there is limited unit continuity from one drill hole to the next. Whether the component of interest is the REE mineralization, or a specific rock type, it is difficult to find enough correlations to create a unified cross-section incorporating two or more drill holes, even when these are spaced only 50 m apart.

There are several possible causes of this problem; in addition to the general structures noted by Thomas (1981), peralkaline intrusions have commonly been described as either ring- or saucer-shaped bodies, which may develop repetitive layering. They may also contain sedimentary-like structures such as troughs, where cumulates have collected creating discontinuous units within the intrusive body (Upton et al, 1996). This would give rise to even more complexity after deformation. In outcrop and drill core, small scale folds-including probable sheath folds - occur more commonly in melasyenite (Figure -1-4) and

near-mylonitic textures are observed in drill core (Figure 1-5), differing from the cataclastic textures noted in the LLG (Curtis and Currie, 1981). This leads to the interpretation that deformation in the area is relatively heterogeneous, a conclusion supported by the observation of units displaying an igneous texture over 10s of metres that are surrounded by highly deformed units, likely due to rheological differences dependent on the dominant mineral assemblage in different rock types.

Note on Fluid Inclusions

Fluid inclusion analysis of the REE mineralization in this project area would probably have been informative, in order to better understand the conditions of formation of the REE-mineralization and to enable correlation with the results of other methods used in this study. During preliminary petrographic studies eudialyte and type-2 minerals were inspected for fluid inclusions. In general, eudialyte and associated feldspar and nepheline contained significant amounts of secondary fluid inclusions but few identifiable primary inclusions. Those primary inclusions that were found did not appear to be of a workable size for microthermometry. The minerals of interest in type-2 mineralization are generally very fine grained aggregates, and therefore also do not contain any fluid inclusions of a workable size.

Figure -1-4: Sheath fold in a melasyenite. Shape of the fold is most obviously indicated by a layer of nepheline that has been weathered out just above the position of the pencil. Picture taken from near the Barbera Prospect.

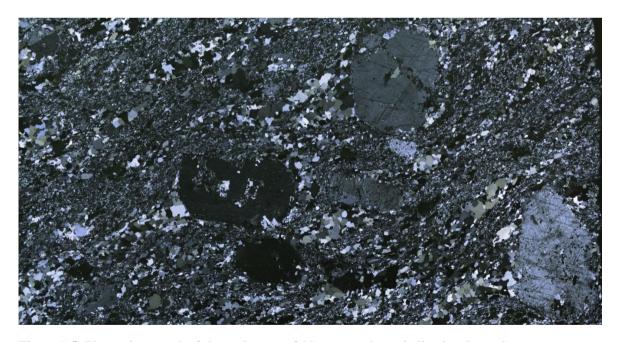


Figure 1-5: Photomicrograph of sheared quartz-feldspar porphyry, indicating dynamic recrystallization of large quartz grains in a mylonitic texture. Image is taken from sample CBD-11-07-19, with a scale of 25 mm across.

CHAPTER 2: PETROGRAPHY OF THE ROCKS OF THE RWIS

The main lithologies of the RWIS in the study area are composed of varying proportions of distinctive varieties of common rock-forming minerals. The rocks display textures varying from near pristine igneous, to highly sheared, mylonitic units and commonly grade from one unit to the next with few sharp contacts. Below are short descriptions of the key minerals present in these rocks. Following mineral descriptions, detailed descriptions of the main units are presented; melasyenite, (undersaturated) leucosyenite, pegmatite, oversaturated syenite (RWO), metavolcanic rocks and quartz feldspar porphyry.

All thin sections were prepared from samples taken from diamond drill core in order to have a better control on where samples are in relation to one another, with the exception of 5 samples taken as representative samples for geochronology. Petrographic descriptions are based on 63 thin sections. Notes from each sample are available in Appendix A.

Essential Minerals

K-feldspar and albite are both major rock forming minerals in the main units. Some samples having sub-equal amounts of each, but generally K-feldspar is more abundant than albite. These minerals occur together as coarse perthite in igneous-textured samples. They are progressively broken down and recrystalized into individual feldspar grains as deformation increases, resulting in equant grains ranging from up to 1 cm (most commonly <0.5 cm), to less than 1 mm elongate or sub-equant grains, depending on the extent of shearing.

Nepheline is present in most units, from minor to near 30%. It is commonly fine- to medium-grained and appears to be altered or largely replaced in many samples by fine-

grained clay minerals or cancrinite. In some cases nepheline may have been removed altogether leaving void spaces, some of which were later filled by late REE-minerals.

Aenigmatite ((Na, Ca)₄(Fe²⁺, Ti, Mg)₁₂Si₁₂O₄₀) is most common in samples less affected by metamorphism. Typically, it forms roughly equant grains that appear black to dark brown in hand specimen, but are a very deep red to nearly black in thin section (Figure 2-1). It is usually associated with amphibole and/or pyroxene grains, in clusters rich in mafic minerals within predominantly felsic rocks.

Amphibole is black to very dark green in hand specimen, but has two distinct colour varieties in thin section. Most common is a very dark green to black pleochroic type, which is commonly medium- to coarse-grained. Also common is a pale brown to light green type, which is most often medium-grained.

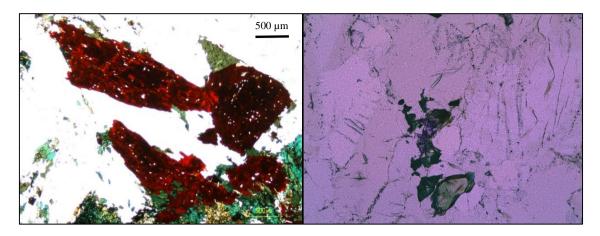


Figure 2-1: (Left) Medium-grained aenigmatite with associated amphibole, surrounded by feldspar (photo is overexposed in order to better show the distinct red colour of the aenigmatite) from sample CBD-10-01-01, igneous-textured leucosyenite.

Figure 2-2: (Right) Very fine-grained fluorite, associated with fine-grained amphibole, surrounded by feldspar, from sample CBD-11-07-14. Field of view is 2.2 mm.

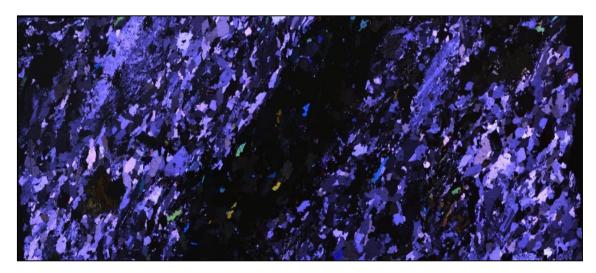


Figure 2-3: Leucosyenite (sample CBD-11-07-14, deformed leucosyenite) with an amphibole-rich band in crossed polarized light (XP). High birefringence, yellow-green-blue, elongate grains within amphibole portion are pectolite. Field of view is 25 mm horizontally.

The most common pyroxene is a distinct green colour in hand specimen and most commonly occurs as acicular crystals; less commonly as coarse equant grains. Certain samples contain a slightly bluish pyroxene, which is attributed to elevated Ti content (Curtis and Currie, 1981). In thin section pyroxene is pleochroic green to pale yellow with high second to third order birefringence. It commonly appears to be a progressive replacement of amphibole and aenigmatite in samples affected by a higher degree of metamorphism; however its presence may also be controlled by oxidation state during igneous processes (Schonenberger, 2008; Singh, 1972) and is also seen in samples having igneous textures, indicating the likely presence of multiple phases of growth of pyroxene.

In contrast to the blue pyroxene noted above, a second blue variety occurs (in samples with preserved igneous textures) as rims on amphiboles where there is contact with perthite grains. More details on the chemistry of these pyroxenes presented in Chapter 4: Mineral Chemistry.

Accessory Minerals

Fluorite has been observed sporadically but in large quantities in REE-enriched samples from drill core in irregular patches within very pyroxene-rich units. In thin section, very fine grains of fluorite are common, but not in significant percentages (Figure 2-2).

Pectolite (NaCa₂Si₃O₈(OH)) is a clear colourless mineral in plane polarized light, displaying third-order birefringence (Figure 2-3) and is chalky white in hand specimen. In most of the samples, it appears as acicular grains parallel to foliation. Pectolite tends to occur only in close association with amphibole.

Natrolite (Na₂(Al₂Si₃O₁₀)·2(H₂O) has been seen in small cavities, which can be up to 1 cm but are typically smaller (Figure 2-4). It is a clear colourless mineral which commonly occurs as long prismatic grains. Very small needles of what may be natrolite have been observed in thin section but are too fine grained for a positive identification; it has also been seen as a late-stage, space-filling mineral associated with type-2 mineralization (see below).

Cancrinite (Na₆Ca₂Al₆Si₆O₂₄(CO₃)₂) is a common alteration product of nepheline. It may form pseudomorphs of nepheline after interaction with CO₂-bearing fluids (Pichler and Riegraf, 1997), or as part of a mixture of fine-grained minerals produced during alteration. Both textures have been seen in this study. This mineral is clear and colourless in plane polarized light, and has second- to third- order, yellow to red, birefringence (Figure 2-5).

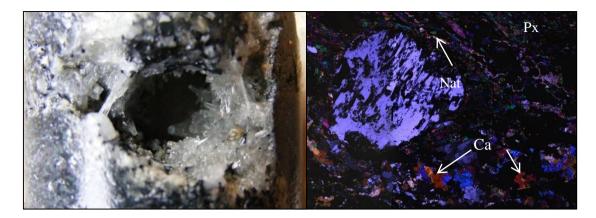


Figure 2-4: (Left) Natrolite-bearing cavity in a piece of NQ drill core from the Cabernet Prospect (core width approximately 48 mm).

Figure 2-5: (Right) There are three high birefringence minerals in the image. 1: along the bottom of the field of view are ~1-2 mm grains of cancrinite, 2: the predominant mineral in the groundmass is very fine pyroxene, and 3: natrolite which appears to be very fine grains which are growing into open space. Horizontal field of view is ~15 mm. Image is from sample CBD-11-07-15.

Figure 2-6 - Melasyenite with amphibole (dark green to black) predominant over pyroxene (pale green to yellow) in sample CBD-10-01-18, a weakly deformed melasyenite.

Main Lithological Units

Melasyenite

As a group the melasyenite units contain <55% silica and >50% mafic minerals; medium grained amphibole, fine-grained pyroxene, fine- to medium-grained feldspars and lesser nepheline constitute the typical mineral assemblage. The two main sub-units of this rock type are differentiated by the predominance of either amphibole (Figure 2-6) or pyroxene (Figure 2-9) typically based on visual examination of outcrop or drill core samples. These were designated units 1a (pyroxene predominant) and 1b (amphibole predominant).

Apart from the proportion of pyroxene and amphibole, the mineral assemblages of these two sub-units of melasyenite are very similar. The amphibole tends to be coarse-grained, but in more sheared examples begins to break down into finer grains. Pyroxene is typically fine-grained and elongate or appears as rims on amphibole. The main felsic mineral present in these units is K-feldspar with lesser nepheline and albite. It is common for these felsic minerals to be highly altered, particularly nepheline, in samples that contain high REE contents (Figure 2-7). Aenigmatite is a common accessory phase. It is typically fine- to medium-grained, and is closely associated with, and commonly rimmed by, amphibole. Coarse-grained aenigmatite may be present but is more common in leucocratic samples. Pectolite appears in some of these samples primarily associated with amphibole as fine acicular grains.

A third sub-unit in this group is very rich in mafic minerals (>75%), and has very low silica (as low as \sim 40% SiO₂), and high Fe₂O₃ values (up to 41%). This unit typically contains

pyroxene which is very fine-grained and elongate in samples that are highly sheared, and appears to be a replacement of coarse amphibole in less sheared samples. Coarse- to very coarse-grained amphibole and/or feldspar occur locally and are commonly broken fragments of original megacrystic grains. These were labeled as unit 1c for fine pyroxene units, or 3b for units with larger amounts of coarse amphibole and feldspar (Figure 2-8).

Isolated samples have variably preserved igneous cumulate textures, comprising coarse-grained pyroxene with amphibole preserved in their cores. A progression of igneous textured to highly sheared pyroxene-rich units is shown in Figure 2-9. The transition from igneous texture to a deformed sample does not generally display major changes in mineral assemblage with the exception of a general decrease in amphibole with increased pyroxene. Pyroxene (jadeite) also develops during metamorphism with the reaction:

Nepheline + albite
$$\rightarrow$$
 2 jadeite

As discussed by Curtis and Gittins (1976).

In outcrop, the melasyenite units can be tightly folded. In some locations, the strike of the foliation differs by 90 degrees over only a few metres and in drill core the orientation changes irregularly down hole.

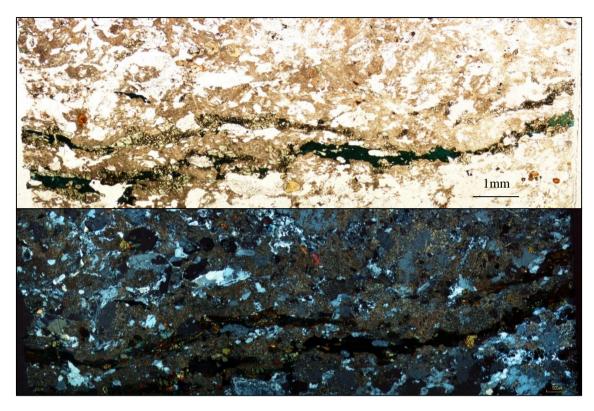


Figure 2-7: Highly altered nepheline (light dusty brown) in a type-2 bearing melasyenite (sample CBD-10-01-15) in both plane polarized light (upper) and crossed polarized light (lower).

Figure 2-8: Megacrystic amphibole and lesser coarse feldspar in a pyroxene rich matrix in a channel sample from the Cabernet Prospect.

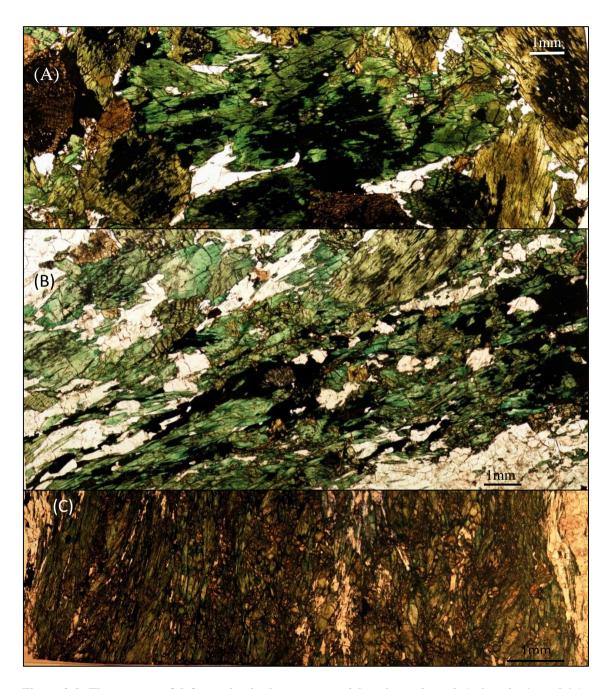


Figure 2-9: Three stages of deformation in the pyroxene-rich melasyenite unit (sub-units 1a and 1c).

(a) Preserved igneous cumulate texture made up of coarse grains which appear to be amphibole largely replaced by pyroxene. From sample CBD-10-01-11. (b) Further along in the progression- fine elongate grains of pyroxene are more common but coarse grains with a small amount of amphibole preserved in the core are still present but less dominant. Image from sample CBD-10-01-32. (c) The final stage- here amphibole is insignificant and fine-grained elongate pyroxene makes up most of the unit. From sample CBD-10-01-12.

Although leucosyenitic units (see below) are predominant in the RWIS, the melasyenite units occur throughout the entire area. These units vary in thickness from a few centimetres to 10s of metres. Although the main constituent minerals in different units of melasyenite are the same, there are notable differences in trace element compositions with respect to LREE/HREE, U/Th and other trace elements in different locations within the study area (more detail in Chapter 3).

1c and 3b are important units since they host the highest grade REE-mineralization on the Red Wine Property. High-grade zones of several metres have been found and can be identified easily by their slightly radioactive signature, due to an increase in Th and U with REE enrichment. These mineralized units are typically highly deformed with abundant vugs. More detail on REE mineralization is presented later in this chapter.

Leucosyenite

Fine- to medium-grained feldspar with variable amounts of nepheline (minor to near 30%) comprise the majority of this rock unit. As with the melasyenite units, subsidiary amounts of pyroxene or amphibole serve as a means of differentiating between sub-units, denoted as 2a or 2b respectively. These two sub-units can form in close proximity and display another with abrupt or gradational boundaries. In general pyroxene-bearing units appear to be subject to a higher degree of shearing (Figure 2-10).

Perthitic feldspar is common in coarse-grained samples, but it is commonly progressively recrystallized with increased deformation. Perthitic samples have the best preserved igneous textures, and commonly contain coarse aenigmatite crystals. This group contains

55 to 62% SiO₂, but varies considerably depending on proportions of pyroxene, amphibole, and nepheline content. This sub-unit was termed 2c.

Amphibole present in the igneous textured syenite is blocky to irregular shaped, and commonly wedge shaped on one end (Figure 2-11), indicating that it crystallized after the coarse perthite in the interstitial space. As noted previously the coarse amphibole is commonly dark green to brown and commonly rimmed by a bluish, fine-grained pyroxene. This indicates a disequilibrium reaction between the primary amphibole and perthite to form a pyroxene that is more stable under subsequent conditions, or a possible infiltration of a fluid along grain boundaries.

These rocks vary from having preserved igneous textures to being highly sheared, near mylonite zones. The highly sheared zones may range from 10s of metres to millimetre scale, as observed in drill core and thin section respectively (Figure 2-12).

Also seen in igneous-textured leucosyenite is rimming and replacement of aenigmatite by amphibole, and then amphibole by pyroxene in response to with increased metamorphism (Figure 2-13). This relationship is observed in many samples, but these minerals occur just as commonly in clusters together with no indication of which came first, or their relative stability as conditions evolved.

Figure 2-10: Contact area between two subunits of leucosyenite, pyroxene-rich (2a-left) versus amphibole-rich (2b-right). Field of view is ~24 mm. From sample CBD-10-01-24.

Figure 2-11: Igneous textured leucosyenite, made up of large grains of perthite, with lesser amphibole that is commonly wedge shaped (best examples in the bottom left and top right). From sample CBD-11-07-03.

Red Wine Oversaturated Units (RWO)

As noted in the Regional Geology section there are many members of the RWO, but the only member studied in detail here is similar to the alkali-quartz syenite of the Arc Lake Intrusive Suite from Curtis and Currie (1981). It consists of quartz, feldspars, amphibole and minor aenigmatite, with accessory amounts of apatite and fluorite (Figure 2-14).

Pegmatite

Bodies of pegmatite occur locally throughout the RWU. They are typically made up of medium- to coarse-grained feldspar with coarse- to very coarse-grained (up to ~10 cm) amphibole (Figure 2-15 and Figure 2-16). These rocks locally contain coarse (1-2 cm) grains of eudialyte, tend to be enriched in incompatible elements and are slightly radioactive. Due to the difficulty of taking a representative thin section from these samples none were studied herein. Pegmatites were designated as unit 3a.

The predominant mineral assemblage is essentially the same as the other units present, albeit with increased grain size. These units were described as 'sweats' by Curtis and Gittins (1979), and Curtis and Currie (1981). These are presumed to be partial melts of the host syenites and may be locations of concentration of remobilized eudialyte (Curtis and Currie, 1981).

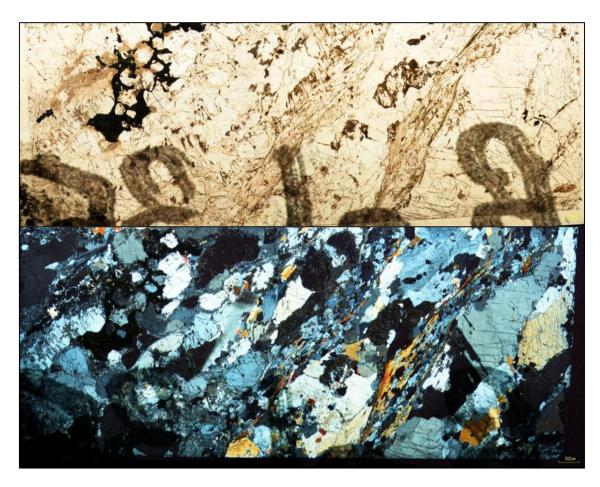


Figure 2-12: Plane-polarized (upper) and cross-polarized light (lower) images of a leucosyenite with two small sheared bands which contain eudialyte and other REE-bearing minerals. From sample CBD-10-01-32.

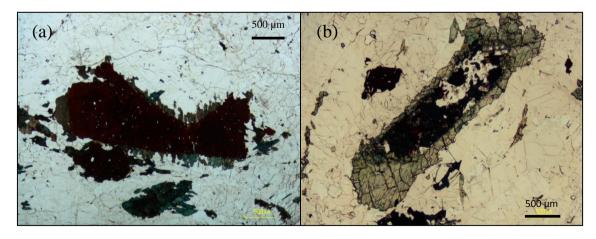


Figure 2-13: (a) Deep-red aenigmatite rimmed by amphibole, in sample CBD-10-01-01. Lower portion of the slide appears to have two different generations of amphibole, one (bluish tint) rimming the other (dark green). (b) Light-green pyroxene rimming dark green amphibole and lesser aenigmatite, in sample CBD-10-01-33.

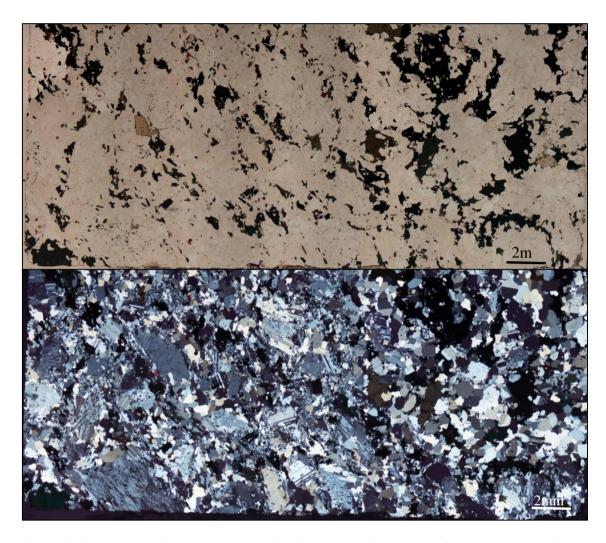


Figure 2-14: Plane polarized and cross polarized light photomicrographs of the Arc Lake alkaliquartz syenite. From sample RWOS-01 (a representative thin section from RWO geochronology sample).

Figure 2-15: Syenitic unit with small pegmatitic bands throughout. This sample was taken from the Zinfandel Prospect.

Figure 2-16: Pegmatite (located on the Cabernet Prospect) with coarse-grained amphibole and feldspars, and fine- to medium-grained altered eudialyte (pink to orange grains). Pen magnet for scale.

Figure 2-17: Representative section of quartz-feldspar porphyry from sample CBD-11-07-19.

Ouartz-Feldspar Porphyry

This unit is most commonly seen as small slivers (a few metres) in drill core or scattered small outcrops. These slivers have been incorporated by shearing, but some are present in drill core in sections up to 10s of metres thick, and likely underlies the RWU in a larger volume. The quartz feldspar porphyry comprises very fine-grained quartz and feldspar with feldspar phenocrysts and clusters of quartz that are likely recrystallized phenocrysts (Figure 2-17). Fine-grained amphibole and minor biotite are present along certain bands, but typically are only present in sections close to the contact with syenite units. Quartz-feldspar porphyry is designated as unit 5 for core logging. [Unit 4 is a fine-grained metavolcanic unit that is compositionally similar to the quartz feldspar porphyry, but this unit was only present on the Pinot Rose Prospect and was not sampled for petrographic analysis.]

Volcanic Rocks of the Letitia Lake Group

This unit is dark grey, very fine-grained and frequently has very fine black veining and local porphyritic or brecciated texture. As a group these rocks are considerably more enriched in silica than the Red Wine Intrusion. SiO₂ values are typically around 75%, but with intercalated units containing less than 60% SiO₂. The representative sample taken for petrographic analysis was mostly made up of very fine feldspar with medium- to coarse-grained quartz and feldspar phenocrysts, fine- to medium-grained amphibole, and fine-grained needles of aenigmatite (Figure 2-18). The group is interpreted to be the product of bimodal volcanism that occurred relatively close to a volcanic vent (Miller, personal communication 2011). After deposition, there was hydrothermal alteration which caused

removal of Na along with REE-Nb-Be bearing veining related to the intrusion of the RWU (Miller, 1987).

REE Mineralization

Primary Igneous Mineralization (Type-1)

Eudialyte (Na₁₅(Ca, Ce)₆Fe₃Zr₃Si(Si₂₅O₇₃(O, OH, Cl)₂) is a significant mineral in the RWU and attracted recent exploration to the area. After being discovered in the 1950s (Cruft and Robinson, 1958), eudialyte was further documented by Curtis et al. (1975, 1976, 1981), Thomas (1981) and Hill and Thomas, but became of economic interest only recently. Eudialyte is pink to red, translucent, and vitreous to dull. It typically shows irregular fracture, is brittle and has a hardness of 5-6. It is locally altered to a yellow to orange colour in both outcrop and drill core and occurs as either centimetre-scale phenocrysts or very fine-grained disseminations in most silica undersaturated units. A eudialyte-rich band within a syenite is shown in Figure 2-19, displaying minor yellow to brown surficial alteration.

In thin section, eudialyte is a very pale pink in plane-polarized light, and in cross polarized light displays a low order grey birefringence that is typically slightly lighter grey at the edges of grains and along fractures, which may indicate alteration (Schilling et al., 2009). A representative photomicrograph of RWU eudialyte in both plane polarized light and crossed polarized light is present in Figure 2-20.

Figure 2-18: Photomicrograph from sample LL-GC-01 of the Letitia Lake quartz-feldspar porphyry. Field of view is 25 mm (horizontal).

Figure 2-19: Eudialyte in outcrop, within an amphibole-rich syenite on the Cabernet Prospect.

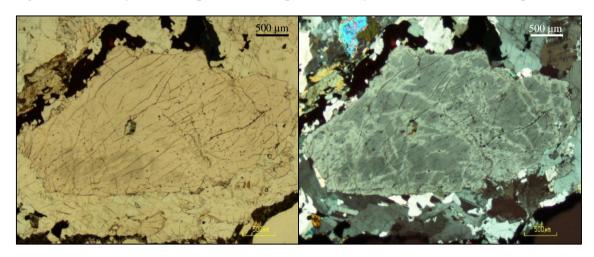


Figure 2-20: Large eudialyte grain in thin section, plane polarized light on the right and crossed-polarized light on the left (from sample CBD-10-01-33).

Secondary Mineralization (Type-2)

Type-2 mineralization was recognized during drill exploration for eudialyte mineralization. As sections with increased REE contents, lower Zr than eudialyte-bearing samples and considerable elevations in P_2O_5 values. Typically this mineralization is present in highly sheared pyroxene-rich units but has also been recognized less commonly in felsic units.

The main REE mineral in these samples is britholite ((Ca, REE, Th, Nd)₅(SiO₄,PO₄)₃(OH, F), which may be closely associated apatite and monazite. In nature, there exists a compositional spectrum from low-REE apatite, to REE-bearing apatite, to low-P britholite-due to the coupled substitution of REE³⁺ + Si⁴⁺ \leftrightarrow Ca²⁺ + P⁵⁺ (Macdonald et al., 2008). In most cases monazite is not readily observable in thin section but appears as very fine-grained rims on britholite using BSE imaging. In addition, there is a currently unidentified Y-bearing mineral that is typically associated with this mineral assemblage. Most high grade REE samples also contain sphalerite.

This group of minerals is very difficult to image clearly with a regular petrographic microscope since the minerals commonly occur as very fine grained aggregates or pseudomorphs. BSE images were used to evaluate the textures. The type-2 mineralization assemblage displays at least four different modes;

 Replacement of igneous, subhedral to euhedral apatite (Figure 2-21) by fine-grained aggregates of britholite. In this case the surrounding nepheline is highly altered and the host rock is very sheared.

- 2. As observed in a felsic rock (Figure 2-22); former ~1 mm grains of nepheline have been largely replaced, and the remnants are surrounded by type-2 minerals (Figure 2-23).
- 3. A space-filling texture. Bladed grains of britholite have grown into fluid filled space, and have very fine-grained rims of monazite (Figure 2-24). These cavities have cuspate boundaries in relation to the surrounding minerals, indicating they were initially formed by removal of a primary intercumulus phase during fluid interactions. Based on the second textural variant, this phase is likely to have been nepheline or another feldspathoid mineral.
- 4. Observed in only two samples, a pyroxene-rich host comprised of very elongate metamorphic pyroxene containing many cracks, which are filled by britholite (Figure 2-25). The type-2 mineralization is also seen filling spaces between grains, and is closely associated with iron-rich sphalerite.

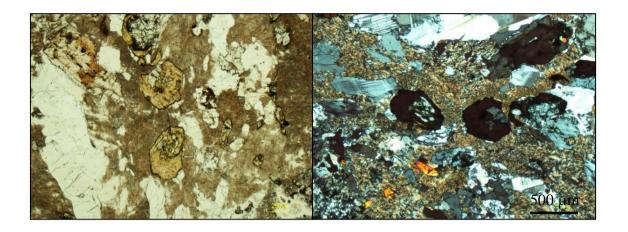


Figure 2-21: Left image is in plane-polarized light; yellow grains are fine-grained aggregates of britholite with small amounts of apatite remaining in the cores surrounded by highly altered nepheline. Right image is the same area rotated 90° in crossed polarized light (from sample CBD-10-01-15).

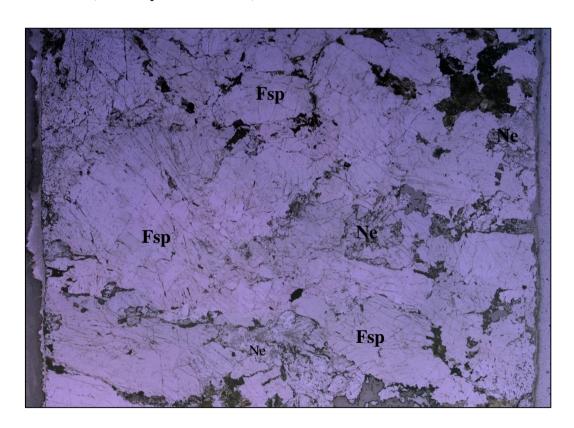


Figure 2-22: A cumulate textured leucosyenite (sample CBD-11-07-17) with type-2 mineralization (largest portion is in the top right, dark brown grains). Feldspar (Fsp), consists of coarse-grained perthite, which is relatively unaltered whereas intercumulus nepheline (Ne) is consistently altered, indicated by a dusty appearance in plane polarized light. Field of view is 25 mm (horizontal).

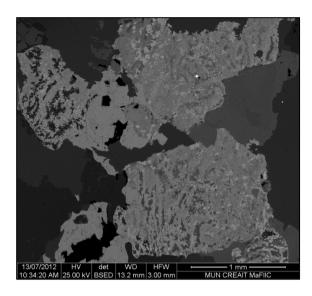


Figure 2-23: Three ~1 mm grains, which may have been nepheline, now replaced by P- and REE-bearing minerals. In order of increasing brightness the grains are made up of apatite, REE-apatite, britholite and minor monazite, with one small grain of sphalerite in the top right grain. The darkest portions (such as the near black in the top left grain) appear to be the remnants of nepheline. This area is located in the top right-hand-corner of the image in Figure 2-22.

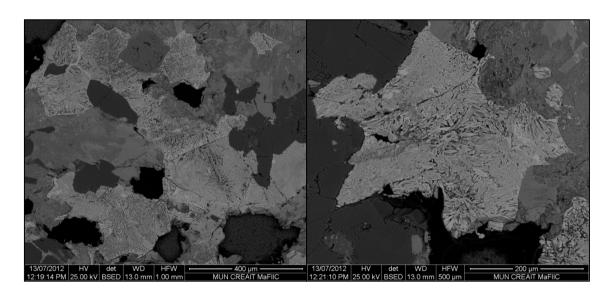


Figure 2-24: Right and left images are from sample CBD-11-07-17. The same texture is shown at different magnifications. Elongate/bladed britholite grains appear to have grown freely into a cavity; interstitial portions are filled by natrolite.

Though all of these textures differ slightly from each other, they all indicate late secondary mineralization. The first type can be compared to igneous-textured melasyenites of the RWU, which also contain euhedral apatite- but in contrast, contain low REE contents (See Chapter 4: Mineral Chemistry), and have largely unaltered interstitial felsic minerals. The second variant is an obvious replacement texture, which is logical considering the relative ease with which nepheline may be altered relative to other minerals in the unit. In outcrop nepheline is always the first mineral weathered out, therefore it is likely that during hydrothermal fluid interaction it would be the first mineral to be altered or entirely removed.

The third texture suggests a very late phase of mineralization, since space would need to exist in order for the minerals to form such a texture. This may also be related to the removal of nepheline during earlier fluid interactions.

The fourth texture is significant in comparing the age of mineralization with the age of metamorphism. The pyroxene present is interpreted to be metamorphic, due to its elongate habit and the sheared appearance of the unit. Based on this, it seems that the type-2 minerals would have crystallized late, during metamorphism, or immediately afterwards, with possible multiple phases of hydrothermal fluid interaction.

Summary/Petrogenetic Sequence

The following section describes the petrogenetic sequence for the leucosyenite and melasyenite. Some exceptions may occur, but the order discussed represents the most

common relationships observed. The sequence is summarized in Figure 2-32 at the end of this section.

Leucosyenite

Feldspar was the first phase to crystallize, which can be observed in relation to amphibole in Figure 2-11, and to nepheline in Figure 2-22. Coarse-grained euhedral perthite occurs in many units, and is in contact with interstitial amphibole or nepheline depending on the specific sample. Local perthite contains fine grains of amphibole or pyroxene, indicating that these were crystallizing before the perthite became the predominant crystallizing phase. It is interpreted that the euhedral perthite is the pre-deformation equivalent of the individual feldspar grains seen in highly sheared units; therefore the original crystallization sequence would be the same for those samples, but feldspars may be considered to be of metamorphic origin in their current state due to the breakdown of perthite into individual grains of albite and K-feldspar.

Pyroxene in certain samples has been determined to be igneous based on compositional zoning and its inclusion within amphibole (Figure 2-26). Thus it appears likely that in at least some cases (since conditions of different zones/layers may not have allowed for pyroxene crystallization) pyroxene was the next phase to crystallize after feldspar. However, it also clearly forms on edges of aenigmatite and amphibole grains, possibly as both late igneous phases (Figure 2-13) and as metamorphic phases (Figure 2-10), giving at least three different generations of pyroxene growth.

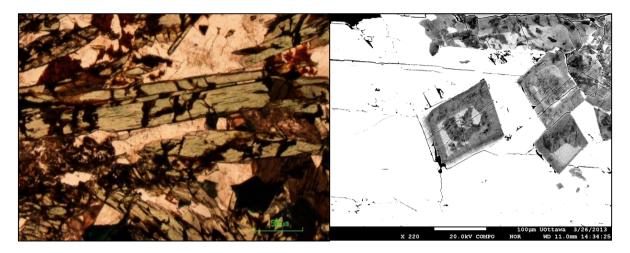


Figure 2-25: (Left) Elongate metamorphic pyroxene with REE minerals (mainly britholite - dark brown to orange mineral) filling cracks. This image is taken from sample CBD-10-01-26.

Figure 2-26: (Right) Back-scattered electron image of euhedral zoned pyroxene included within an amphibole grain from sample CBD-11-07-21. This image has the illumination at a very high level to increase the visibility of pyroxene zones.

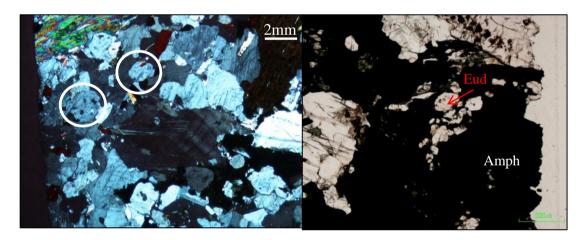


Figure 2-27: (Left) Circled grains are eudialyte with very small included grains of aenigmatite in sample CBD-10-01-30.

Figure 2-28: (Right) Small grains of very pale pink eudialyte (Eud) included in a large dark green amphibole (Amph) in sample CBD-10-01-18.

Eudialyte is not present in all samples, but has been observed with aenigmatite inclusions (Figure 2-27) and as inclusions in amphibole (Figure 2-28). These observations demonstrate that eudialyte was a relatively early crystallizing phase, likely just after or concurrent with aenigmatite, and before amphibole.

Aenigmatite and amphibole both occur as irregular or wedge shaped grains, interstitial to coarse-grained perthite, and are therefore interpreted to have formed later. In relative terms, aenigmatite is more commonly seen as inclusions in amphibole (Figure 2-13) but in some cases both minerals appear to be in equilibrium with one another - with no explicit indication of which crystallized first.

Nepheline rarely has well developed crystal faces, and is commonly interstitial to feldspar or mafic minerals. Therefore, it was a later magmatic phase that formed in variable amounts dependent on igneous layering - and therefore may have occurred slightly earlier or later depending on the unit in question.

Blue pyroxene, which is seen as rims on amphibole, appears to have come late in the crystallization sequence from the breakdown of aenigmatite and amphibole. (Figure 2-29).

Unzoned, elongate, green pyroxene has been interpreted as being of metamorphic origin. This mineral commonly comprises large portions of highly strained rocks, growing with the foliation, and likely entirely replacing amphibole. In less metamorphosed samples pyroxenes may still be seen rimming both amphibole and aenigmatite (Figure 2-13). Certain relationships between grains of pyroxene may indicate multiple phases of

deformation, since the grains tend to grow with the foliation, but are then broken in certain localities, indicating increased strain after recrystallization (Figure 2-25).

Pectolite also appears to be metamorphic, as it typically only occurs parallel to the foliation in certain amphibole-rich layers. Its occurrence may be controlled by the specific type of amphibole being recrystallized, as pectolite will contain significantly more Ca than any of the varieties of pyroxene present.

Melasyenite

The first mineral to crystallize in these units appears to have been apatite. This is seen in igneous-textured melasyenite where fine-grained apatite is included within the coarse amphibole/pyroxene grains. (Figure 2-30)

It appears that amphibole was the most common original cumulate phase, as most units are currently pyroxene-rich but the pyroxene consistently contains amphibole cores. However, another mafic mineral must have originally been present in certain samples as the SiO₂ content is too low (~40%) for any amphibole, and the FeO content (up to 41%) is very high. These samples display evidence of grains that appear to have been plucked out during processing of the sample to create the thin section. One sample with these grains intact contains small amounts of olivine (fayalite) surrounded by aenigmatite and amphibole (Figure 2-31). Therefore the first mafic mineral to crystallize in some cases was olivine, followed by aenigmatite and amphibole.

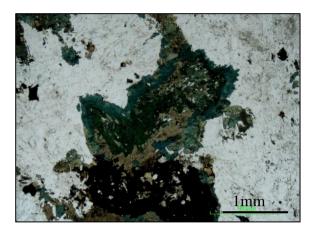


Figure 2-29: Green and brown amphibole with a rim of blue pyroxene, with associated dark red to black aenigmatite. From sample CBD-11-07-03.

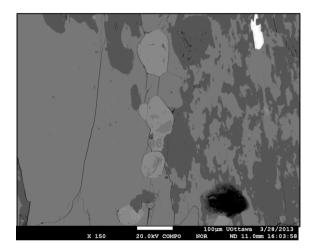


Figure 2-30: Back-scattered electron image (sample CBD-10-01-11) of equant apatite grains (lightest grey) within a large amphibole crystal (middle shade of grey) that has been partially replaced by pyroxene (darkest grey).

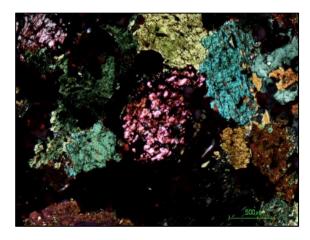


Figure 2-31: One grain of olivine (pink birefringence) surrounded by aenigmatite and amphibole.

Although in many samples feldspar appears to be interstitial to pyroxene, feldspar would have been present first, as pyroxene has been inferred to be of metamorphic origin.

Cancrinite, which also occurs in leucosyenite, is a late-forming mineral since it commonly occurs as an alteration of nepheline. This is typically due to interaction with a CO₂-rich fluid (as noted previously) which is commonly associated with late-stage peralkaline intrusive activity and therefore could have occurred before metamorphism and type-2 mineralization.

Fine-grained clay minerals appear to be the result of nepheline alteration in some units, which may be associated with the same hydrothermal activity as type-2 mineralization. These minerals were too fine grained to identify specifically.

Due to the evidence present in Figure 2-24 and Figure 2-25, it is inferred that the type-2 associated minerals formed late during metamorphism- or post-metamorphism, and at least one stage of fluid interaction occurred that created open spaces by dissolution of nepheline.

Natrolite would have been the last mineral to form in this sequence. This mineral typically forms during interaction with meteoric fluids, and can be seen in melasyenite and leucosyenite, as prismatic grains growing into open cavities. Although britholite also forms in similar cavities it was likely much earlier in the sequence due to the typically higher temperatures of crystallization, >450°C (Imbach et al., 2002; Clark et al., 2005; Gieré and Sorensen, 2004; Budzyn et al., 2011), compared with the low temperatures for natrolite at <250°C (Konya and Szakall, 2011).

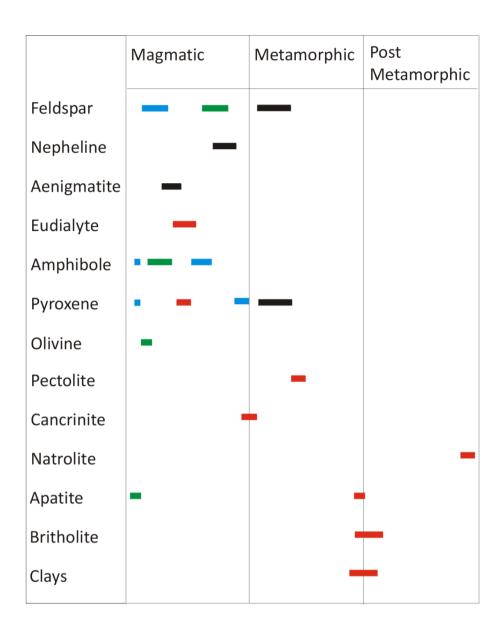


Figure 2-32: Summary of petrogenetic sequence. Bars represent the relative crystallization order of the listed minerals, not an exact length of time. Blue represents the leucosyenite and green melasyenite for minerals that occur in a different relative order in each rock type. Red represents minerals that are not present in all units and black represents minerals that occur with a consistent timing in both units.

Sample selection

Samples were collected to be representative of major rock units, interesting rocks that were

unlike previously selected samples, eudialyte-rich rocks, or samples that displayed elevated

radioactive signatures (likely indicating type-2 mineralization). These samples were

collected with as little weathering as possible, and where possible a representative hand

sample was kept for future reference.

Both channel samples and drill core were sampled in the same manner, in areas prospective

for REE-rich units. Sample lengths were chosen based on visual differentiation of units,

using both overall rock type as well as indicators of REE enrichment, with a typical

maximum length of 1m. All samples analyzed during the Search Minerals 2010 and 2011

exploration programs were available for this thesis, for a total of 7777 analyses. Only

selected drill hole and channel samples were used as representative samples, along with all

grab samples.

Lithogeochemical Analysis

After collection in the field, and cleaning and labeling in camp, samples were shipped to

Actlabs in Goose Bay. There they were crushed to 80% -10 mesh and mixed to produce a

homogeneous sample, then milled to 95% -200 mesh. They were then shipped to Ancaster,

Ontario where they were processed using a lithium metaborate/tetraborate fusion technique

59

before analysis by Inductively Coupled Plasma Emission Spectrometry (ICP-ES) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS).

ICP-ES is commonly used to analyze most elements on the periodic table. Preparation for analysis is straightforward and consists of silicate dissolution during heating of the sample to 6000-10000 K. During analysis the sample solution is aerosolized and passed into argon plasma, where it dissociates and emits element-specific spectral lines. These emissions are detected by a photomultiplier, and signal intensities are converted into concentrations by comparing them to values in a calibration standard. ICP-MS uses similar sample preparation, but involves analyzing ions produced in the plasma using mass spectrometry with a secondary electron multiplier for detection (Rollinson, 1993).

Lithogeochemistry of Main Units

The major element compositions for the main units described in Chapter 2 are presented in Table 3-1 through Table 3-5. Representative samples were selected from three drill holes, CBD-10-01, CBD-11-02, and CBD-11-07, which lie along one cross section (Figure 3-1). Complete lithogeochemical analyses for these three drill holes are present in Appendix B. Note that any negative loss-on-ignition values are assumed to be due to the oxidation of FeO to Fe₂O₃ (Vandenberghe et al., 2010).

The compositional differences between these main units are relatively minor, and can be easily explained by the differing proportions of the cumulate phases; for example, increased Fe due to amphibole, pyroxene, or olivine content, or increased Al due to feldspar and nepheline. Combined with the absence of chilled margins, and a general gradational contact

between many differing units, cumulate layering does seem to be the best explanation for the relationship between units.

Sub-units 1a and 1b are very similar in chemical composition, as are 2a and 2b - and in general the units labelled (a) are simply more deformed than the respective (b) units. This, along with the predominately metamorphic character of pyroxene, would indicate that these units are closely related but are simply at different stages of deformation, even when in close proximity. The deformation in this area is very heterogeneous allowing for relatively undeformed units to be closely associated with highly deformed units.

Melasyenite

Sub-units 1a and 1b (Table 3-1) both typically containing 50 to 55% SiO₂ (average ~53%); 12 to ~20% Fe₂O_{3(tot)}; 10-15% Al₂O₃; with ~6-10% Na₂O and 2-5% K₂O- giving a range in peralkaline index from ~1.04 to 2.0 with some outliers and an average of ~1.60 for sub-unit 1a and a slightly lower average of 1.48 for 1b. MgO and MnO have typical values around 0.3 and 0.35% respectively. However, MnO values can be double this where associated with REE mineralization. CaO contents range from <1% to >6% averaging ~2%. TiO₂ and P₂O₅ both vary greatly, having ranges of 0.1 to 1.88 and 0.01 to 1.54% respectively. These elements are likely variable due to periodic crystallization of minerals like eudialyte and apatite.

Within the given ranges above, the observable minor differences between the two sub-units are that the more deformed 1a may be slightly higher in $Fe_2O_{3(tot)}$, MnO, and Na₂O, whereas 1b may have greater MgO and K_2O .

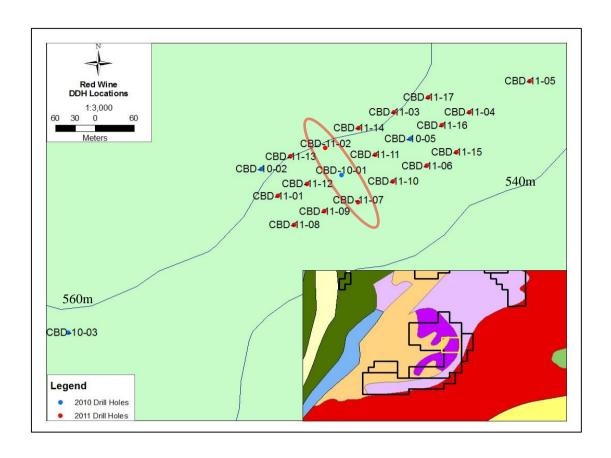


Figure 3-1: Cabernet Prospect diamond drill hole locations, with drill holes studied in this chapter circled in red. Inset map shows local geology, as shown in Chapter 1, with the larger map area marked in yellow.

Sub-unit 1c (Table 3-2) differs from 1a in that it contains substantially more pyroxene. As mentioned in the Chapter 2, subunit 1c contains >70% mafic minerals, which most commonly consist largely of pyroxene with lesser amphibole and minor olivine. Sub-unit 1c typically has less than 52% SiO₂, with one very mafic-rich sample as low as 39% SiO₂. These very low-silica samples have high Fe₂O_{3(tot)} contents, up to 42%, with considerably higher CaO and TiO₂ contents, slightly elevated MnO and MgO values and lower Al₂O₃ and Na₂O contents in comparison the rest of 1c.

More commonly, 1c is compositionally similar to 1a, but with slightly lower SiO₂, Al₂O₃ and alkalis, and moderately higher Fe₂O_{3(tot)}, MnO, MgO, CaO, TiO₂, and P₂O₅. These differences are clearly linked to the higher pyroxene to feldspar ratio, with associated apatite.

Sub-unit 3b is also very similar in chemical composition to 1a, but has a different texture. The key difference between these sub-units in terms of chemical composition is that 3b is more often associated with elevated REE values; however this is likely related to secondary process and not a primary igneous association.

Table 3-1: Major-element compositions of representative melasyenite units; 1a (pyroxene > amphibole) and 1b (amphibole > pyroxene).

Unit	1a		1b			
		11-02-	10-01-	11-02-	10-01-	10-01-
SAMPLE#	11-07-24	204	173	213	187	262
CHEM#	512936	513020	512985	513029	416062	416137
SiO2	51.86	52.48	54.59	53.19	52.46	51.34
A12O3	11.05	10.54	12.99	13.65	12.63	11.54
Fe2O3(T)	18.58	20.88	14.50	15.01	16.73	17.81
MnO	0.50	0.38	0.30	0.29	0.40	0.38
MgO	0.34	0.11	0.22	0.13	0.16	0.18
CaO	4.05	1.76	2.08	1.95	1.69	2.20
Na2O	6.94	10.89	8.78	9.38	9.85	9.85
K2O	3.73	2.00	4.28	4.49	4.66	3.26
TiO2	1.12	0.22	0.71	0.80	0.60	0.18
P2O5	0.46	0.04	0.25	0.07	0.05	0.07
LOI	-0.16	0.22	-0.24	0.17	0.04	0.70
Total	96.32	99.53	98.45	99.13	99.26	97.49

Table 3-2: Major-element compositions of representative melasyenite units; 1c (>70% mafic) and 3b (pyroxene-rich with amphibole and feldspar megacrysts). Note: sample 11-07-19 is a very mafic rich cumulate textured sample, primarily made up of pyroxene but with a notable amount of olivine.

Unit	1c		3b			
					11-07-	
SAMPLE#	11-07-19	11-02-94	10-01-91	11-02-13	197	11-07-87
CHEM#	514399	512910	104766	512829	514577	514467
SiO2	39.56	51.91	51.70	51.30	52.21	53.51
Al2O3	3.36	11.18	10.60	10.78	11.39	12.05
Fe2O3(T)	41.01	18.31	21.16	20.90	16.39	17.08
MnO	1.12	0.59	0.32	0.54	0.56	0.38
MgO	0.74	0.31	0.09	0.12	0.01	0.28
CaO	7.53	1.83	1.34	1.59	0.99	1.75
Na2O	3.15	10.45	10.24	9.21	9.09	8.77
K2O	2.18	2.47	2.54	2.80	3.77	4.40
TiO2	2.33	0.21	0.15	0.47	0.17	0.34
P2O5	0.59	0.67	0.10	0.27	0.72	0.14
LOI	-2.71	0.80	-0.21	0.38	1.42	0.17
Total	98.86	98.73	98.02	99.83	96.73	98.87

Generally, melasyenite units have a widely variable REE contents. All sub-units contain samples in the low range (<1000 ppm total REE (TREE), as low as 200-300 ppm), with high grade samples containing >5000 ppm TREE. As noted above, the highest grades are more commonly seen in 3b, which on average contains 3500 ppm TREE, and up to ~13000 ppm TREE. The other units have similar maximum values but on average are closer to ~1300 ppm. More detail on TREE values and associations with Y, Zr, and Nb is presented in the drill core sample section, below.

Leucosyenite

As with the melasyenite group, the main leucosyenite sub-units are very similar in chemical composition and are distinguished by the predominance of either pyroxene or amphibole. However, for the leucosyenite unit as a whole, the mafic minerals comprise <50%. Sub-units 2a and 2b range in SiO₂ content from 53 to 63 % (Table 3-3). The average for these units is just over 55 % and the overlap with the melasyenite units is likely due to samples showing an increased proportion of nepheline rather than more abundant mafic minerals. Al₂O₃ contents range from \sim 13 to 20 %, but the average is near the lower end of this range. Fe₂O_{3(tot)} contents are typically from 12-15 %, with MnO and MgO averages \sim 0.3 % and CaO typically near 2 %. P₂O₅ contents are typically low, usually <0.2 %, and TiO₂ ranges from 0.04 % to 1.6 %. This relatively wide range in TiO₂ is likely due to the abundance of aenigmatite and, to a lesser extent, pyroxene and eudialyte.

Typical values for Na₂O and K₂O are \sim 6-11 % and 3-6 % respectively. These values combined with the relatively high Al₂O₃ contents indicate that some of these samples are not peralkaline, but on average have a peralkalinity index of \sim 1.35.

TREE contents in these units vary greatly, as also seen with 1a and 1b. An average sample of leucosyenite contains ~900 ppm (and an overall range from <200 ppm to ~18000 ppm TREE) slightly lower than the average for melasyenite.

A typical 2c sub-unit contains 56-58 % SiO₂, with an observed range of 55 to 63 %. All other major elements are essentially the same as the higher silica 2a and 2b units (Table 3-4). TREE values are typically low compared to other units studied, with an average below 900 ppm TREE and samples typically in the 500-700 ppm range. The peralkalinity index in 2c ranges from \sim 1.04 to 1.45 with an average of \sim 1.24.

Based on these similarities in composition it appears as though the feldspar-dominant units were more structurally competent, as these units are typically present in larger continuous sections (>10 m) than many of the other units, and have experienced little alteration or secondary REE mineralization.

As seen with 3b units relative to other melasyenite units, the 3a unit (predominantly felsic pegmatite) is very similar in composition to other leucocratic units (Table 3-4), simply with a larger grain size and a slightly higher average TREE values. These samples have a strong positive correlation between Zr and TREE, implying predominantly primary mineralization, observed in drill core as coarse-grained eudialyte.

Table 3-3: Major-element composition of representative leucosyenite units; 2a (pyroxene > amphibole) and 2b (amphibole > pyroxene). Representative samples from moderately deformed samples.

Unit	2a		2b			
		11-07-	10-01-	10-01-	11-07-	11-02-
SAMPLE#	11-02-49	185	192	220	192	167
CHEM#	512865	514565	416067	416095	514572	512983
SiO2	56.74	53.41	62.42	58.73	53.82	62.24
Al2O3	13.18	14.80	13.21	12.16	15.40	13.56
Fe2O3(T)	12.59	13.12	9.91	11.95	11.68	9.84
MnO	0.32	0.29	0.20	0.30	0.27	0.20
MgO	0.26	0.19	0.06	0.13	0.14	0.15
CaO	2.08	2.14	0.82	1.59	1.96	0.84
Na2O	7.76	9.58	8.33	7.46	9.18	8.08
K2O	3.97	4.30	3.70	4.58	4.62	4.17
TiO2	0.67	0.73	0.24	0.51	0.59	0.26
P2O5	0.13	0.11	0.28	0.07	0.13	0.14
LOI	0.21	-0.05	-0.02	0.25	0.00	0.76
Total	97.91	98.61	99.15	97.73	97.79	100.20

Table 3-4: Major-element composition of representative units 2c (igneous-textured syenite) and 3a (pegmatite).

Unit	2c		3a			
						11-02-
SAMPLE#	11-02-01	11-07-31	10-01-42	11-07-33	11-07-61	127
CHEM#	512817	514411	104717	514413	514441	512943
SiO2	58.08	56.68	59.69	55.03	59.06	52.95
Al2O3	14.66	13.40	14.90	14.09	14.10	13.38
Fe2O3(T)	10.79	13.09	10.17	13.24	11.85	14.20
MnO	0.29	0.33	0.27	0.29	0.27	0.32
MgO	0.27	0.24	0.24	0.18	0.22	0.31
CaO	2.31	2.49	2.29	1.20	2.32	2.13
Na2O	6.52	7.26	6.99	8.21	7.12	9.08
K2O	4.96	4.89	5.11	5.65	4.96	3.93
TiO2	0.61	0.57	0.54	0.16	0.53	0.38
P2O5	0.15	0.20	0.13	0.08	0.18	0.19
LOI	0.26	-0.20	0.04	0.55	-0.11	0.43
Total	98.89	98.93	100.40	98.67	100.50	97.30

Quartz-feldspar Porphyry

The quartz-feldspar porphyry generally has >70 % silica, with ~11-12 % Al_2O_3 , 3-4 % $Fe_2O_{3(tot)}$ and approximately 4-5 % Na_2O and 4-6 % K_2O (Table 3-5). MnO, MgO, and P_2O_5 are generally less than 0.1%. CaO and TiO_2 are also very low, at ~1% and 0.3%, respectively. These are values for clean samples of this unit, but other analyses showed compositions that appeared to be a mixture of porphyry and syenite. This is likely due to either alteration, or to mechanical mixing of the units along sheared contacts that are commonly observed in drill core.

The quartz-feldspar porphyry is mostly peralkaline, with a typical peralkalinity index of 0.93 to 1.21, and an average 1.12. Based on the sheared appearance and silica-oversaturated, peralkaline composition it is possible that this unit is a tectonically dismembered portion of the RWO.

Table 3-5: Major-element composition for representative unit 5 (quartz-feldspar porphyry) samples.

Unit		5	
SAMPLE#	11-02-182	11-07-238	11-02-183
CHEM#	512998	514618	512999
SiO2	73.92	70.67	71.46
Al2O3	11.67	11.68	11.38
Fe2O3(T)	3.50	3.80	3.79
MnO	0.06	0.07	0.07
MgO	0.08	0.08	0.07
CaO	0.54	1.20	0.62
Na2O	4.56	4.60	4.54
K2O	5.20	6.03	4.86
TiO2	0.29	0.31	0.29
P2O5	0.04	0.01	0.02
LOI	0.76	0.75	0.67
Total	100.60	99.20	97.76

Note on Classification of Igneous Rocks Using Trace Elements

Chemical classification of igneous rocks is commonly accomplished by referencing incompatible and immobile elements to compare their ratios to those in rocks with known origins. Trace element concentrations are also used to gain an understanding of the samples involved in a study or to determine if given rocks are petrogenetically related to one another, using plots such as Nb/Y versus Zr/Ti (Pearce and Peate, 1995). In this study, this method of interpretation may be severely limited due to the uncommon nature of these rocks.

Element ratios such as Y/Ho (chondritic range: 24 to 34) and Zr/Hf (chondritic range: 26 to 46) will normally remain consistent during fractionation of a given suite of rocks due to their similarities in electronegativity and ionic radii. However, in certain highly evolved rock units, or systems that have experienced aqueous fluid flow, these ratios will change and may be highly variable. For the Zr/Hf ratio, highly evolved melts will develop very low values (9-13), whereas samples which have interacted with fluid (e.g., seawater as an easily identifiable reference) will increase up to 50-90 (Bau, 1996).

In the samples collected from the RWIS, the Y/Ho ratios are typically in the normal range. However, Zr/Hf ratios in the 50-100 range are common- with some samples >200. According to Bau (1996) it is likely that an attempt at classifying rocks with Zr/Hf in this range will yield unreliable results, even when using elements that are commonly considered to be incompatible and immobile.

The work of Bau (1996) supports the petrographic and geochemical trends described here, that indicate that the REE in these rocks have been modified to some extent by hydrothermal fluid interaction and/or autometasomatic processes. It is currently undetermined why the Zr/Hf has been altered whereas Y/Ho is relatively unaffected, but it could possibly be due to the specific ligand associated with the mobilization of HFSE.

Lithogeochemistry Results from Field Sampling

Due to the general absence of RWO and LLG rock types in drill core and most channel samples; comparisons of these units to the RWU rocks were made using outcrop samples collected from the property as a whole. Based on similarities seen in the RW samples, with minor chemical differences being explained by the variable proportions of the same essential minerals, further discussions of geochemical characteristics will treat all the subunits discussed above as one related group. Figure 3-2 and Figure 3-3 show geochemical plots comparing these rock types. Complete lithogeochemical analyses from outcrop sampling are present in Appendix C.

Element plots such as total alkalis, $Fe_2O_{3(tot)}$, and Al_2O_3 versus SiO_2 indicate a somewhat consistent relationship between the three groups. These elements typically plot a smooth trend from high silica (>80%) down to lower silica values (<60%) with increased scatter in the lower silica portions for $Fe_2O_{3(tot)}$ and Al_2O_3 that is linked to the cumulate textures observed. These cumulates likely contain variable proportions of mafic minerals, feldspar, or nepheline that create an enrichment above, or depletion below the otherwise continuous trends.

A slight deviation from the trend by the LLG samples on the total alkalis versus silica (TAS) plot is explained by the observations of Miller (1987), who inferred Na removal during alteration (Figure 3-2). This alteration is also the reason why many LLG samples do not have a peralkaline geochemical signature, and lack typical peralkaline indicator minerals. However, when these rocks are found in an unaltered, or less altered, state they do contain alkaline pyroxene and amphibole as well as local aenigmatite, but few unaltered samples were encountered during this project.

Increased peralkalinity is seen in the RWU compared to the RWO. This would be expected in a single large intrusive body which contained silica oversaturated and undersaturated units, as the peralkalinity increases and the silica content decreases moving toward the centre and/or top of the intrusion (Riishuus et al., 2008). More detail on the Riishuus et al. model will be presented in Chapter 6.

CaO and P₂O₅ are likely controlled by apatite crystallization, since P₂O₅ is present in few other igneous minerals, and CaO is not present in such large quantities in any other mineral (Chapter 4). Apatite has been noted to be more abundant in melanocratic samples, agreeing with the general trend of increasing CaO and P₂O₅ with declining silica values, with scatter possibly explained by cumulate layering (Figure 3-2).

When comparing immobile elements, distinct trends are commonly seen for LLG, RWU, and RWO (Figure 3-3). Allowing for minor scatter due to REE remobilization and possible cumulate layering of minerals with high contents of high field strength elements- such as eudialyte - these trends define a consistent progression, with minor scatter. For elements

that appear to have been affected less by hydrothermal events (Zr and Nb, and to a lesser extent Y and HREE) a clear colinearity of the three groups can be seen (Figure 3-3). An exception to this relationship is in some RWU samples when comparing HREE and Y to Zr. These elements are not as easily mobilized as LREE but are still affected; giving rise to an enrichment trend that does not correlate with Zr contents.

With the observed general similarities and trends seen between these three groups it is highly likely that they are all related, especially the LLG and RWO which show a great deal of overlap in unaltered samples.

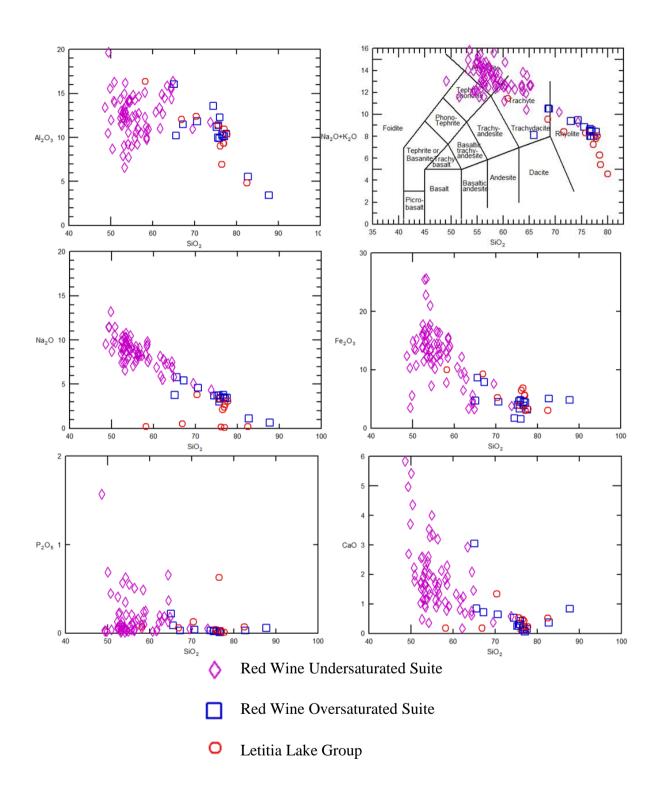


Figure 3-2: Selected Harker diagrams (Harker, 1909) for Al₂O₃, Na₂O, Fe₂O_{3(tot)}, P₂O₅, and CaO, and the total alkalis versus silica (Le Bas et al, 1986) for outcrop samples from around the entire RW property. All elements are in wt%.

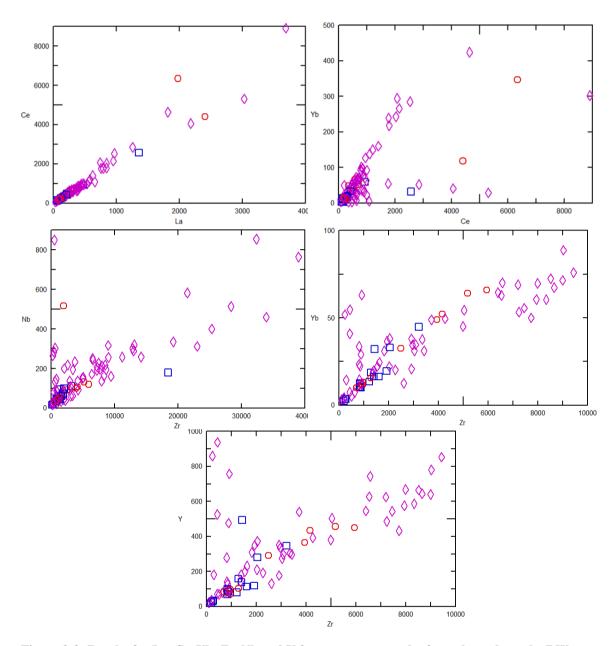


Figure 3-3: Results for La, Ce, Yb, Zr, Nb and Y from outcrop samples from throughout the RW property. Elements are in ppm values and the legend is the same as in Figure 3-2.

Lithogeochemistry Results from Drill Hole CBD-11-02

Due to the large amount of data available, one DDH (CBD-11-02, location shown in Figure 3-1) was selected to demonstrate general geochemical trends that are commonly observed in the RWU. All rocks in the area tend to have relatively high REE values, making a direct 'mineralized vs. nonmineralizaed' contrast difficult. Highest and lowest grade samples are used to approximate this task, along with indicating which are believed to be igneous versus secondary REE contents.

Major elements such as Fe₂O_{3(tot)}, K₂O, and Na₂O show continuous trends when plotted against silica. MnO shows a similar behavior, with the exception of notably higher values correlated with type-2 mineralization (Figure 3-4). MgO and CaO are typically scattered, likely due to cumulate layering and compositional change with crystallization. Somewhat lower CaO values in association with high REE contents are a possible result of removal of apatite during britholite deposition.

P₂O₅ is most likely controlled by apatite crystallization and is associated with type-2 mineralization, and therefore high REE values (Figure 3-5). In certain samples it has been observed that igneous apatite has been replaced by britholite and REE-bearing apatite (Figure 3-6A), therefore the P₂O₅ contents likely remained similar to that of the igneous host rock. However, certain textures indicate that phosphate minerals are of a secondary nature (Figure 3-6B), making it difficult to deduce if the P₂O₅ was enhanced after primary igneous crystallization.

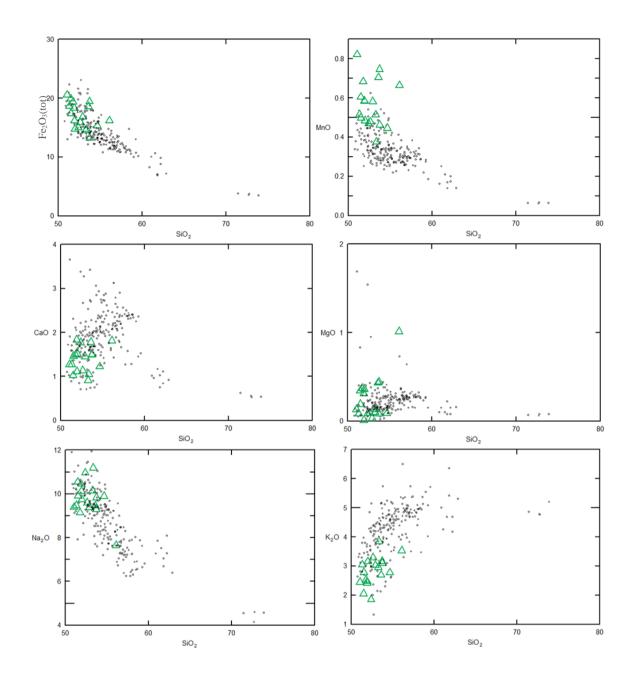


Figure 3-4: Harker diagrams for $Fe_2O_3(tot)$, MnO, CaO, MgO, Na₂O, and K₂O from CBD-11-02. This drill hole contained significant type-2 mineralization, as well as eudialyte, and was selected as a representative of the Cabernet prospect. The green triangles represent high grade type-2 bearing samples and all others are represented by black circles. Elements in wt %.

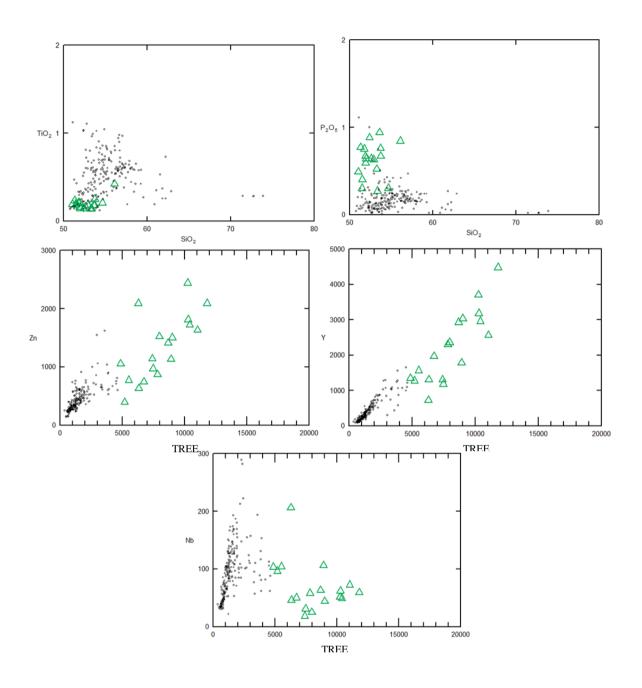
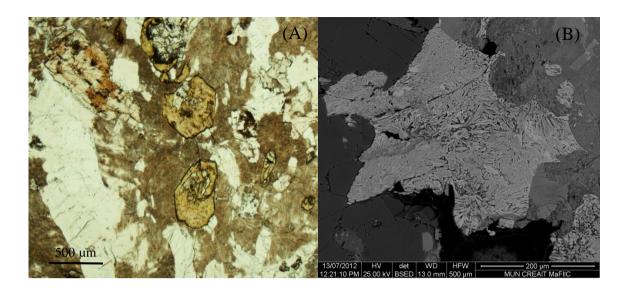
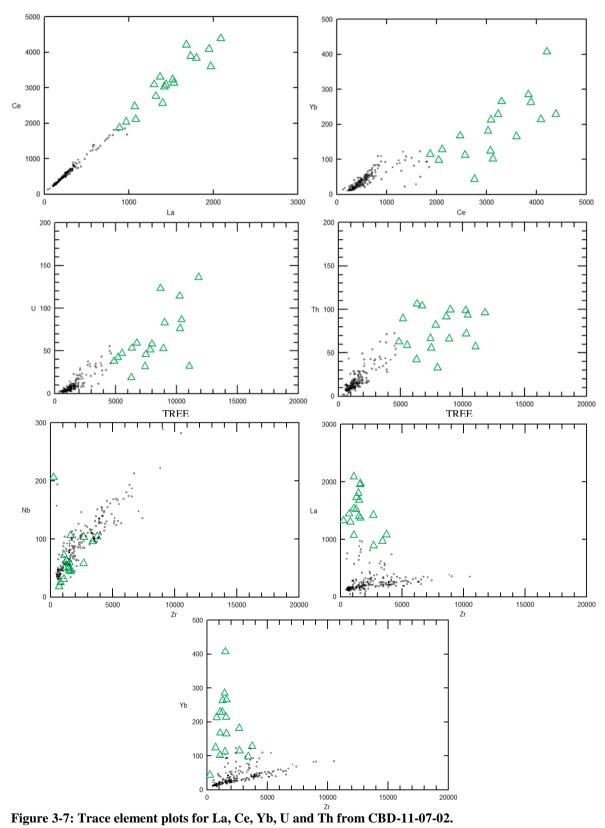


Figure 3-5: Geochemical plots for TiO_2 and P_2O_5 versus SiO_2 , and Zn, Nb, Y versus total rare earth elements (TREE) DDH CBD-11-02. TiO_2 and P_2O_5 are in wt%, all other elements are in ppm.




Figure 3-6: (A) Replacement of subhedral to euhedral apatite (clear, in core of grains) by britholite (yellow to orange outer portion of grains). (B) Elongate britholite grains which appear to have grown (in part in a radiating pattern) into fluid filled space.

TiO₂ typically appears scattered when plotted against silica content (Figure 3-5). It is likely that the TiO₂ content is highly dependent on the quantity of aenigmatite present, and to a lesser degree, in pyroxene and amphibole.

Nb and Zr appear to have been the most immobile elements in these samples, as they have a relatively consistent positive correlation with one another (Figure 3-7) as well as with REE values in most samples, with the exception of type-2 mineralization bearing units (Figure 3-5 and Figure 3-7). Both Nb and Zr contents are likely controlled to a large extent by the presence of eudialyte, with trace contributions from amphibole, aenigmatite and possibly other accessory minerals.

Y and Zn both produce a near-linear trend when plotted against total rare earth elements (TREE), but with a little scatter at ~3000 ppm and an offset at ~5000 ppm TREE (Figure 3-5). This pattern is linked with the presence of type-2 mineralization, in which Y mimics HREE in typical type-2 mineral ration, as well as in a currently unidentified accessory mineral (see Chapter 4), and Zn is commonly be present in associated sphalerite.

LREE behave much the same in this suite of rocks, as expected, but tend to deviate from HREE in type-2 mineralized samples.

Both groups of REE show well defined trends compared with Zr for most samples, but are more scattered where type-2 mineralization is encountered (Figure 3-7). In these latter samples, the LREE tend to be further from the regular trend (*i.e.* more enriched) than the respective HREE (Ce/Yb in Figure 3-7). All the comparisons using REE indicate that this is a closely related suite of rocks that have been variably altered and subject to reconcentration of REE in a heterogeneous manner (La vs Zr and Yb vs Zr in Figure 3-7).

U and Th exhibit positive correlations with increased REE contents (Figure 3-7), as expected from the elements radioactive signature detected in type-2 samples, and due to the high U and Th contents of britholite (See Chapter 4: Mineral Chemistry). There is also a rough correlation of increasing U/Th ratio with higher HREE/TREE.

The elemental relationships discussed above do not show any distinct pattern with depth in hole in most cases, and may change abruptly from one unit to the next due to the combined factors of concentration of certain silicate minerals in cumulate layers (such as pyroxene, amphibole, aenigmatite, apatite, and eudialyte) and variable shearing (that in turn allows for increased hydrothermal fluid interaction and therefore alteration and possible REE reconcentration), which may juxtapose units that were not initially in contact. Shearing effects can most easily be recognized in the quartz-feldspar porphyry, as well as in certain melasyenite outcrops. More detail on shearing effects is given in Chapter 6.

Type-2 Mineralization

In general, the melasyenite host rocks to type-2 mineralization all have similar major element compositions, as they are predominantly comprised of pyroxene with lesser feldspar, nepheline and amphibole. The named prospective areas displaying type-2 mineralization include the Amarone, Barbera, Cabernet, Malbec, Merlot, and Shiraz prospects (Figure 3-8). Figure 3-9 shows REE diagrams for type-2 mineralized channel samples from these prospects. Complete lithogeochemical analyses for channel samples are presented in Appendix D.

These REE diagrams indicate largely similar compositions, except for slight variations in the slope of LREE, the shape of the HREE (concave, flat or convex) and the HREE/TREE ratio. These variations can be explained by the variable proportions of britholite/monazite (LREE-rich), apatite (MREE-rich) and the unidentified Y mineral (HREE-rich) in each respective unit. For example; the Merlot Prospect has the highest HREE/TREE and has been noted to contain a relatively large amount of the unidentified Y-mineral.

Figure 3-10 shows the primary differences between type-2 mineralized zones in different areas of the RW property. There is a great deal of variation in correlations between REE and other elements such as Zr, Nb, Y, and Zn which are important elements depending on different styles of mineralization (Zr and Nb will be increased with eudialyte mineralization, Y with the unknown mineral, Zn with sphalerite) as well as in LREE versus HREE at each different prospect. This is likely to be controlled by slight differences after

initial crystallization, likely due to different accessory minerals, and/or by variable interactions with the fluids responsible for REE remobilization.

The largest differences in trace element composition are seen between the Merlot and Barbera Prospects (Figure 3-10). Both are high grade mineralized areas, but show distinct differences in elements such as Zr, Y, and HREE. The Merlot Prospect contains much larger amounts of Y and HREE, with considerably less Zr relative to Barbera. This is linked to the presence of the unidentified Y-mineral (increased Y and HREE) at the Merlot Prospect, and the presence of eudialyte at the Barbera Prospect (increased Zr). Eudialyte is not consistently associated with type-2 mineralization elsewhere, but occurs in at least minor amounts in all channels cut at this prospect. Eudialyte is also intermittently present in close association with type-2 at the Cabernet prospect, leading to a large range of Zr contents at this location. Eudialyte is not seen at the Merlot prospect.

Summary

In general the lithogeochemical data demonstrate that it is highly likely that the RWU, RWO, and LLG are genetically related. Similar trends in major and, more importantly, trace elements support a likely link between all three rock groups, especially with respect to considerable overlap between the LLG and RWO. This agrees with observations by Hill and Miller (1990) that the two units are closely related, based on mineralogical, geochemical, and spatial relationships. It appears likely that that these units are representative of the same magmatic event, but they occurred at different levels in the crust. The similarities between the RWU and RWO members also indicate a close relationship,

which is further discussed in Chapter 6. Available geochronological dada (see Chapter 5: Geochronology) allow for all these igneous units to be coeval.

Based on trends in Zr and Nb compared with REE, it appears likely that remobilization of REE (LREE to a greater extent than HREE) has occurred in certain units. These units show slight variations in trace element chemistry, which may indicate that they were not all similar units to begin with (likely various cumulate layers rather than a series of dykes for example) or have encountered varying degrees of hydrothermal fluid interaction. This may correlate well with cumulate textures described in Chapter 2, to indicate a repetitive layering sequence where the mafic rich layers which became hosts of type-2 mineralization all could have had slightly different accessory mineral contents and therefore different original trace element compositions during igneous crystallization. This could easily give rise to minor differences such as HREE/TREE ratios and Nb or Zr content.

Although type-2 mineralization indicates a secondary event, affected rocks were relatively high in REE content initially. This is indicated by the correlation of TREE values relative to Zr and Nb in many samples. Most of these samples contain igneous-textured eudialyte as noted in Chapter 2. These values are considerably higher than average crustal rocks, but do not reach economic grades without the addition of type-2 mineralization.

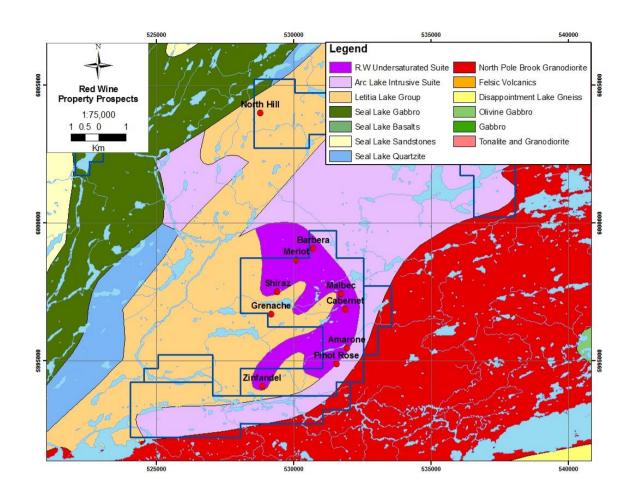


Figure 3-8: Location of named prospects on the RW property.

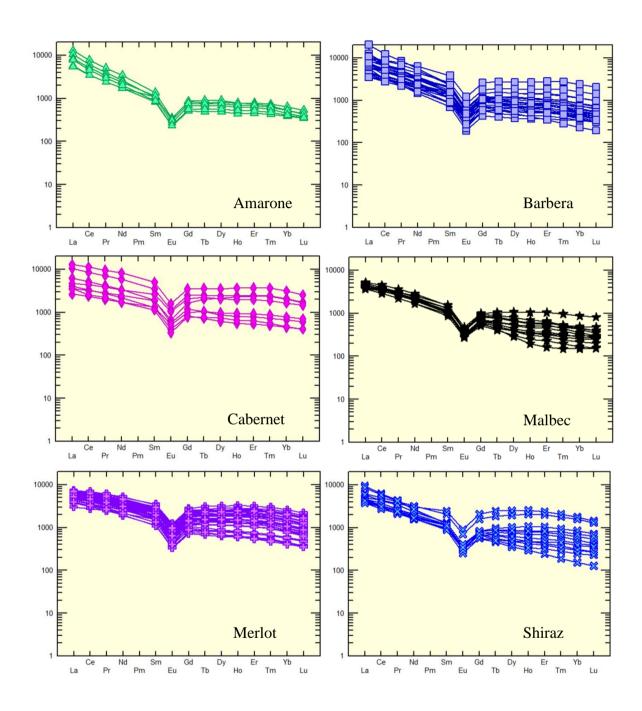


Figure 3-9: REE diagrams for high grade (>5000 ppm TREE) channels from six prospects in the RWU, using the chondrite normalization values of Sun and McDonough (1989).

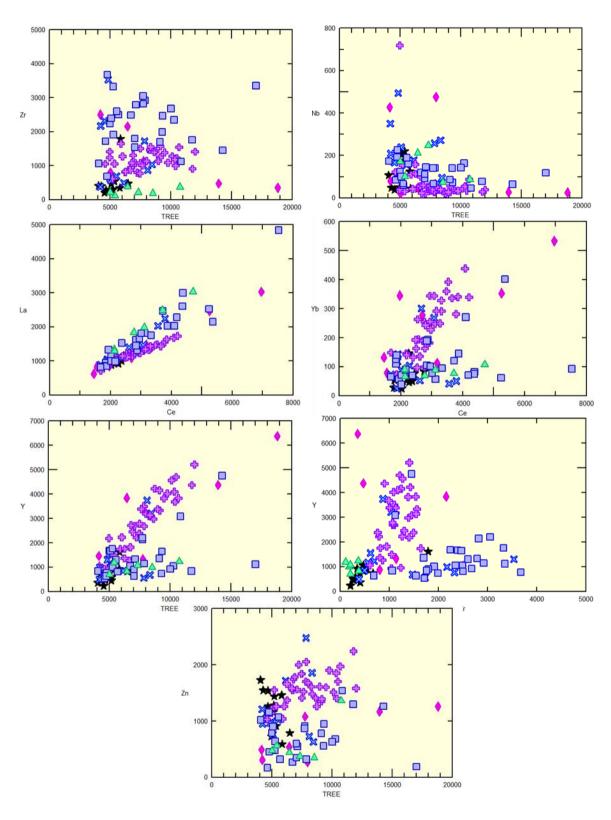


Figure 3-10: Geochemical results from high grade REE channels (>4000 ppm TREE) for REE, Y, Zr, Nb, and Zn. Symbols are the same as in Figure 3-9.

CHAPTER 4: MINERAL CHEMISTRY

Due to the very small grain size and complex chemical formulae of many of the REE-bearing minerals, petrographic studies and SEM/EDX analysis were not capable of determining the exact identity and composition of some minerals present. The electron probe microanalyzer (EPMA) was used to further resolve these compositions.

The main focus was type-2 mineralization-bearing samples, three of which were pyroxenerich melasyenite, and one of less common mineralized leucosyenite. Most samples were taken from Cabernet Prospect drill core (CBD), with one from the Merlot Prospect (MRGC-01) for comparison. The main focus of attention in all these samples was on fine grained mixtures of apatite, britholite, and minor monazite. The specific samples were:

CBD-11-07-15: Fine-grained, pyroxene-rich melasyenite with scattered coarse feldspar, medium grained amphibole, and altered nepheline, as well as multiple other secondary minerals. This is a typical type-2 mineralized sample.

CBD-10-01-15: Fine grained melasyenite with replacement of euhedral apatite by britholite.

CBD-11-07-17: Leucocratic syenite predominantly made up of K-feldspar and lesser albite and nepheline showing type-2 mineralization.

MRGC-01: Melasyenite bearing type-2 mineralization from the Merlot prospect. In general this sample has coarser, more rounded, equant grains of britholite compared with the other type-2 mineralized samples.

Four eudialyte-bearing samples were selected to compare eudialyte having a range of slightly different textures;

CBD-11-07-01: Amphibole and eudialyte-bearing vein.

CBD-11-07-12: Banded fine-grained leuco- and melasyenitic units with fine non-zoned grains of eudialyte within the leucocratic portion.

CBD-11-07-21: Moderately deformed coarse-grained leucosyenite (approaching melasyenite, ~40% amphibole + pyroxene) containing relatively coarse-grained eudialyte with fine-grained bright rims.

CBD-10-01-30: Mildly deformed fine- to medium-grained leucosyenite with relatively coarse, patchy zoned crystals of eudialyte.

Two igneous-textured samples were also selected in order to document the freshest, least-deformed units;

CBD-11-07-03: Coarse-grained leucosyenite

CBD-10-01-11: Coarse-grained melasyenite

Mineralized samples were inspected to establish differences in important minerals in different locations, and with different host rocks, as well as to compare host mineral assemblage in samples having slightly different trace element values. In addition, major rock forming silicate minerals were analyzed in all samples to advance understanding of any relationships they may have with REE mineralization.

Analyses were carried out at the University of Ottawa, using a 'JEOL JXA-8230 Superprobe' electron probe microanalyzer. This system has five wavelength-dispersive

spectrometers (WDS) and one energy dispersive spectrometer (EDS), allowing for accurate analysis of many elements at one time, on areas as small as $1 \mu m^2$.

Results

Minerals of similar major element composition were analyzed in groups for convenience during calibration and data reduction. The results are presented here in the same analytical groupings. The data in this chapter is representative, all available data are presented in Appendix E. Note that for all data presented here, FeO represents total Fe. For all data presented below, 0.00 values indicate values that were below detection or simply values that were <0.01, in either case these were insignificant concentrations of the given element.

Group 1- K-feldspar, Albite, Nepheline, Natrolite, and Cancrinite

These minerals were analyzed for SiO₂, TiO₂, Al₂O₃, FeO, MnO, MgO, CaO, Na₂O, K₂O, BaO, SrO, and ZrO₂. Mineral standards were used for calibration of each element, sanidine for K₂O, Al₂O₃ and SiO₂, diopside for CaO and MgO, albite for Na₂O, zircon for ZrO₂, hematite for FeO, tephroite for MnO, sanbornite for BaO, and celestine for SrO.

Table 4-1: Ideal mineral formulae used for Group 1.

Mineral	Formula
K-Feldspar	KAlSi₃O ₈
Albite	NaAlSi ₃ O ₈
Nepheline	(Na, K)AlSiO ₄
Natrolite	$Na_2(Al_2Si_3O_{10})\cdot(H_2O)$
Cancrinite	Na ₆ Ca ₂ Si ₆ O ₂₄ (CO ₃) ₂

Feldspar

As discussed in Chapter 2, feldspars commonly crystallized as coarse-grained intergrowths and were progressively recrystallized into individual grains of K-feldspar and albite during

subsequent deformation. The intergrowths studied are all perthitic, which is also reflected by the general predominance of K-feldspar over albite in most recrystallized samples- only a few samples contain more albite than K-feldspar. Less commonly, samples contain predominantly K-feldspar with nepheline present as the predominant Na-bearing phase.

Feldspar analyses support the petrographic observation that these grains occur as perthite or as near pure end members, with very little deviation from the expected formulae for each member. Changes in SiO₂ content reflect quality of analysis more than real compositional changes (*i.e.* lower SiO₂ values correlate with lower total values). Figure 4-1A shows locations of analyses from a large perthite grain, whereas Figure 4-1B shows analyses from a sample with K-feldspar and nepheline. Corresponding data from both images is presented in Table 4-3 and Table 4-4. Aside from the key major elements (Na, K, Al, and Si) these minerals contained insignificant amounts of other elements (generally <0.1 wt %).

In sample MRGC-01, the dominant felsic mineral is K-feldspar with lesser nepheline, however in select locations, surrounding large britholite grains albite is present (Figure 4-1C and Table 4-5). This textural relationship may indicate secondary albitization (Nametasomatism) associated with the fluid interactions responsible for type-2 mineralization.

Nepheline

Nepheline occurs in association with feldspar as a later crystallizing phase. As discussed in the previous section and in Chapter 2, it is commonly altered and may be entirely replaced by cancrinite, clay minerals, or type-2 REE minerals. Due to alteration, many analyses of nepheline were found to be unreliable, and have very low totals. Examples of

nepheline compositions and textures are presented in Figure 4-1B, C and D; and Table 4-4 to Table 4-6.

Natrolite

Natrolite has been observed in drill core filling cavities up to 1cm in diameter and in thin section filling very small (<1mm scale) cavities as well as in very fine replacement grains (Figure 4-2). There is minor variation between analyses, which generally contain only the essential elements in the typical formula, and show expected low totals due to H₂O content (Table 4-6). One excursive sample contains minor CaO, but this may be attributed to the close association with apatite and britholite and fine grain size.

Cancrinite

Cancrinite is commonly formed during late stage crystallization in nepheline syenite intrusions, or by subsequent alteration of nepheline or sodalite (Bonaccorsi and Merlino, 2005). In the rocks of the Red Wine Intrusive Suite it may have pseudomorphed nepheline, as well as formed mixtures with fine clay minerals in highly altered samples bearing type-2 mineralization. Due to its common fine grained nature, and mixing with other fine grained minerals, it was difficult to obtain reliable analyses of this mineral. The total values for analyses of cancrinite were expected to be significantly lower than 100% due to CO₃ content, however, many of these samples gave totals as low as <60% and therefore it is difficult to make any conclusions based on these analyses.

Group 2- Amphibole, pyroxene, biotite, and pectolite

These minerals were analyzed for SiO₂, TiO₂, Al₂O₃, FeO, MnO, MgO, CaO, K₂O, Na₂O, ZnO, BaO, SrO ZrO₂, La₂O₃, Ce₂O₃, Nd₂O₃, Pr₂O₃, Sm₂O₃, Gd₂O₃, F, and Cl. Like group 1 sanidine, diopside, zircon, rutile, and celestine were used as standards for this group, with the addition of calcite for BaO, fluorite for F, phosphates of each REE element, tugtupite for Cl, zincite for ZnO - and using Na-amphibole for Na₂O and SiO₂, and fayalite for FeO.

Table 4-2: End-member mineral formulae for Group 2

Mineral	Formula
Amphibole	
Riebeckite	(Na ₂ (Fe ²⁺ ₃ , Fe ³⁺ ₂),Si ₈ O ₂₂ (OH) ₂
Arfvedsonite	NaNa ₂ (Fe ²⁺ ₄ , Fe ³⁺),Si ₈ O ₂₂ (OH) ₂
Ferro-eckermanite	NaNa ₂ (Fe ²⁺ , Al)Si ₈ O ₂₂ (OH) ₂
K-Fe Kataphorite	K(NaCa)(Fe ²⁺ ₄ , AI)(AISi ₇ O ₂₂)(OH) ₂
Pyroxene	
Aegirine	NaFe ³⁺ (Si ₂ O ₆)
Jadeite	Na(Al, Fe ³⁺)Si ₂ O ₆
Omphacite	(Ca, Na)Mg, Fe ²⁺ , Al)Si ₂ O ₆
Biotite	K(Mg, Fe ²⁺) ₃ AlSi ₃ O ₁₀ (OH, F) ₂
Pectolite	NaCa ₂ Si ₃ O ₈ (OH)

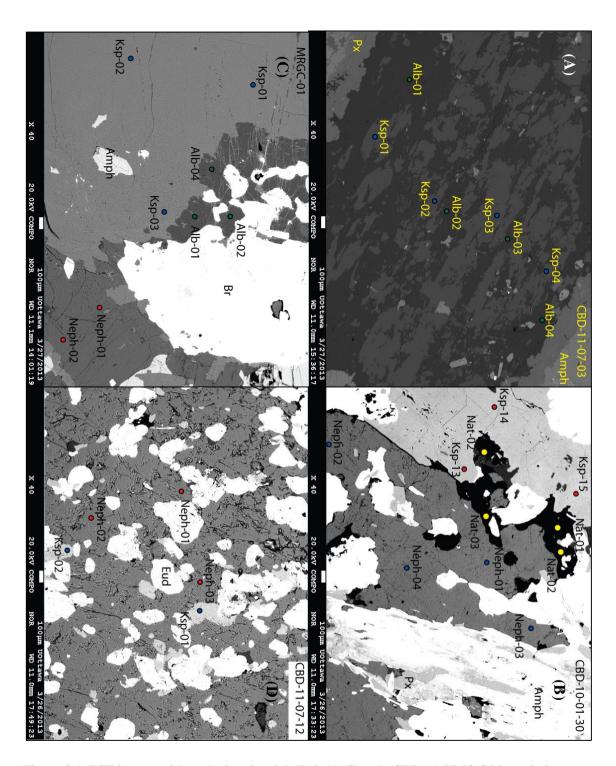


Figure 4-1: BSE images with analysis points labelled. (A) Sample CBD-11-07-03, feldspar in igneous-textured leucosyenite with associated pyroxene and amphibole; (B) Sample CBD-10-01-30, feldspar and nepheline in leucosyenite; (C) Sample MRGC-01, feldspar and nepheline in pyroxene-rich melasyenite with associated britholite and amphibole; (D) Sample CBD-11-07-12, K-feldspar and nepheline in leucocratic portion of a eudialyte-rich banded unit. Associated results presented in Table 4-3 to 4-4.

Table 4-3: EPMA results for feldspar from sample CBD-11-07-03, in both wt% and atoms per formula unit.

		Sample: Cl	BD-11-07-0	03- Igneous	s-textured l	eucosyenite	e	
Analysis ‡	Alb-01	Alb-02	Alb-03	Alb-04	Ksp-01	Ksp-02	Ksp-03	Ksp-04
SiO2	69.61	69.40	69.01	68.39	64.61	64.74	64.79	64.81
Al2O3	20.01	19.94	19.93	19.70	18.49	18.59	18.56	18.57
TiO2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
FeO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02
MnO	< 0.01	0.12	0.06	< 0.01	0.09	0.04	0.11	0.12
MgO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
CaO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Na2O	11.93	11.99	12.06	11.91	0.35	0.35	0.35	0.28
K2O	0.04	0.05	0.04	0.06	16.33	16.44	16.43	16.43
BaO	< 0.01	< 0.01	0.05	< 0.01	0.04	0.01	< 0.01	< 0.01
SrO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
ZrO2	0.10	0.05	0.09	0.02	0.03	0.04	0.04	0.03
Total	101.72	101.55	101.24	100.08	99.94	100.22	100.29	100.26
Atoms pe	r formula	unit						
Si	9.03	9.02	8.90	8.91	8.97	8.97	8.98	8.97
Al	2.98	2.99	3.09	3.09	3.04	3.03	3.03	3.04
Ti	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fe	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Mn	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Mg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ca	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Na	2.85	2.86	3.02	3.02	0.09	0.09	0.08	< 0.01
K	0.09	0.08	0.10	0.08	2.91	2.90	2.90	2.98
Ba	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Sr	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Zr	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01
Total	14.95	14.96	15.12	15.10	15.01	15.01	15.00	15.01

Table 4-4: EPMA results for feldspar and nepheline from samples CBD-10-01-30.

	Sa	mple: CBD-	10-01-30- M	lildly deform	ed leucosyer	nite	
Analysis #	Ksp-01	Ksp-02	Ksp-03	Neph-01	Neph-02	Neph-03	Neph-04
SiO2	61.28	64.25	65.48	48.03	47.60	45.60	45.39
Al2O3	17.08	17.96	17.95	26.96	27.44	26.98	24.29
TiO2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
FeO	0.03	< 0.01	< 0.01	0.03	0.01	0.04	< 0.01
MnO	0.03	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
MgO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01
CaO	< 0.01	< 0.01	< 0.01	< 0.01	0.02	0.02	< 0.01
Na2O	0.30	0.37	0.45	14.98	15.18	15.13	13.13
K2O	15.45	15.86	15.96	0.01	0.02	0.01	3.51
BaO	0.06	0.07	0.08	< 0.01	< 0.01	< 0.01	< 0.01
SrO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
ZrO2	< 0.01	0.03	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total	94.23	98.56	99.93	90.03	90.29	87.80	86.34
Atoms per	formula un	it					
Si	9.02	9.03	9.07	7.28	7.21	7.12	7.33
Al	2.97	2.97	2.93	4.82	4.90	4.97	4.62
Ti	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fe	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Mn	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Mg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ca	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Na	0.09	0.10	0.12	4.40	4.46	4.58	4.11
K	2.90	2.84	2.82	< 0.01	< 0.01	< 0.01	0.72
Ba	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Sr	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Zr	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total	14.99	14.96	14.94	16.51	16.58	16.69	16.78

Table 4-5: EPMA results from feldspar and nepheline from sample MRGC-01.

			Sampl	e: MRGC-	01 - Defor	med melasy	enite			
Analysis #	Ksp-01	Ksp-02	Ksp-03	Alb-01	Alb-02	Alb-03	Alb-04	Neph-01	Neph-02	Neph-03
SiO2	65.19	66.52	65.66	69.23	69.47	65.50	68.31	51.59	41.72	41.81
Al2O3	18.63	17.78	18.27	19.73	19.44	18.78	19.71	28.40	34.33	34.54
TiO2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
FeO	0.02	< 0.01	< 0.01	< 0.01	< 0.01	0.16	0.03	< 0.01	< 0.01	< 0.01
MnO	0.09	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01	0.02	0.10
MgO	< 0.01	< 0.01	< 0.01	0.02	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01
CaO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01	< 0.01	< 0.01
Na2O	0.27	0.29	0.31	11.73	11.58	5.40	11.82	13.97	15.93	16.11
K2O	16.23	16.23	16.31	0.08	0.10	8.15	0.07	3.22	7.26	7.29
BaO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
SrO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
ZrO2	0.02	0.01	< 0.01	0.02	< 0.01	0.12	0.01	< 0.01	0.03	< 0.01
Total	100.45	100.84	100.57	100.81	100.60	98.12	100.01	97.19	99.29	99.87
Atoms per	formula u	ınit								
Si	8.99	9.12	9.04	8.99	9.03	8.99	8.96	7.33	6.10	6.08
Al	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ti	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fe	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01
Mn	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Mg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ca	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Na	3.03	2.87	2.96	3.02	2.98	3.04	3.05	4.75	5.91	5.92
K	2.86	2.84	2.86	0.01	0.02	1.43	0.01	0.58	1.35	1.35
Ba	0.07	0.08	0.08	2.95	2.92	1.44	3.01	3.85	4.51	4.54
Sr	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Zr	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total	14.96	14.91	14.95	14.98	14.95	14.93	15.03	16.51	17.88	17.91

Table 4-6: EPMA results from nepheline and K-feldspar from sample CBD-11-07-12 and natrolite from sample CBD-11-07-17.

	Sample: C	CBD-11-07	-12- Bande	d syenite		CBD-11-	07-17- Leu	cosyenite
Analysis #	Neph-01	Neph-02	Neph-03	Ksp-01	Ksp-02	Nat-01	Nat-02	Nat-03
SiO2	42.15	40.55	40.33	62.76	63.31	52.28	49.57	52.68
Al2O3	34.13	34.37	34.22	18.12	18.25	29.64	27.47	29.14
TiO2	< 0.01	< 0.01	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01
FeO	0.06	0.06	0.02	< 0.01	< 0.01	0.01	< 0.01	< 0.01
MnO	0.02	< 0.01	0.02	0.01	< 0.01	0.08	0.07	0.11
MgO	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
CaO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	2.28	0.03
Na2O	16.18	16.09	16.20	0.47	0.45	15.08	12.89	13.86
K2O	7.46	7.40	7.47	15.77	15.72	< 0.01	0.01	< 0.01
BaO	< 0.01	0.02	< 0.01	0.11	0.10	< 0.01	0.16	< 0.01
SrO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
ZrO2	0.04	< 0.01	< 0.01	0.03	< 0.01	0.02	0.07	0.02
Total	100.04	98.50	98.27	97.29	97.84	97.12	92.52	95.85
Atoms per	formula ı	unit						
Si	6.12	6.00	5.99	8.96	8.97	7.31	7.30	7.42
Al	5.84	5.99	5.99	3.05	3.05	< 0.01	0.01	< 0.01
Ti	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fe	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Mn	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Mg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ca	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.36	< 0.01
Na	4.56	4.62	4.66	0.13	0.12	4.89	4.77	4.84
K	1.38	1.40	1.41	2.87	2.84	< 0.01	< 0.01	< 0.01
Ba	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	4.09	3.68	3.78
Sr	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Zr	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total	17.92	18.01	18.06	15.02	14.99	16.29	16.14	16.06

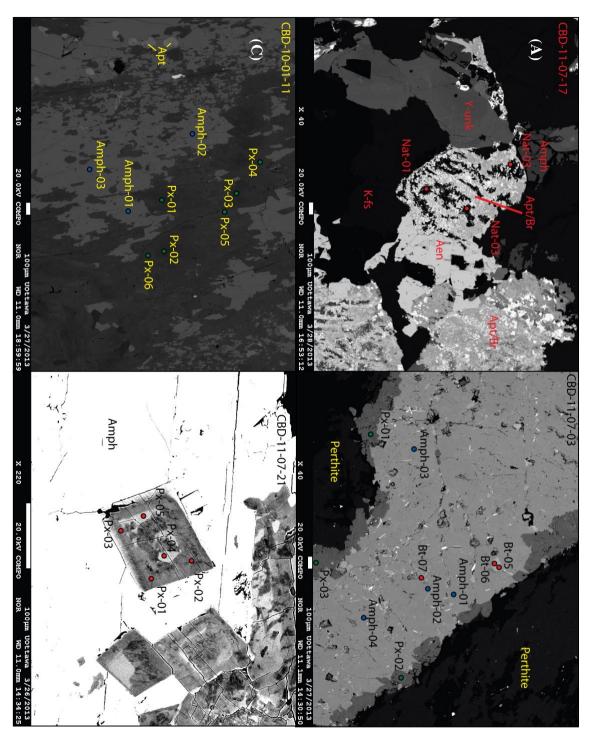


Figure 4-2: BSE images with analysis points labelled. (A) Sample CBD-11-07-17, natrolite in a leucosyenite bearing type-2 mineralization; (B) Sample CBD-11-07-03, amphibole, pyroxene and biotite in igneous-textured leucosyenite; (C) Sample CBD-10-01-11, amphibole and pyroxene in igneous-textured melasyenite; (D) Sample CBD-11-07-21, igneous pyroxene in a leucosyenite. Associated results are presented in Table 4-6 to Table 4-9.

Table 4-7: EPMA results from amphibole, pyroxene and biotite from sample CBD-11-07-03.

Analysis #	Δ mnh_Ω1			D-11-07-03 Δ mph-04	Px-01	Px-02	Px-03	Bt-05	Bt-06	Bt-07
SiO2	48.87	48.76	48.57	47.41	53.66	54.36	54.19	36.64	36.46	36.45
TiO2	0.77	0.68	0.63	1.16	0.90	0.68	0.48	1.64	1.60	1.64
Al2O3	3.86	3.55	3.51	4.46	7.11	7.74	7.77	10.92	11.04	11.13
FeO	31.91	31.74	32.66	31.97	19.75	18.96	19.53	38.24	37.79	37.78
MnO	0.78	0.86	0.84	0.87	0.66	0.63	0.51	0.65	0.61	0.62
	0.78	0.86	0.84	1.13	0.41	0.03	0.39	1.08	1.05	1.12
MgO	3.49			4.76				< 0.01		<0.01
CaO Na2O	5.47	3.47 5.22	3.65 5.31	5.24	11.07 7.14	7.32	10.54 7.49	0.05	<0.01	0.06
K2O	3.59	3.51	3.53	2.72	<0.01	<0.01	<0.01	8.81	8.25	8.43
ZnO	0.10	0.02	0.10	0.07	<0.01	<0.01	<0.01	0.16	0.19	0.07
BaO	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.10	0.19	0.07
SrO	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.02	<0.03	<0.10
ZrO2	0.37	0.32	0.27	0.51	0.49	0.35	0.23	<0.01	<0.01	0.02
La2O3 Ce2O3	<0.01	0.12 <0.01	<0.01	0.02 <0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.06 <0.01
Sm2O3	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.03	0.03	<0.01	< 0.01
Nd2O3	<0.01	0.01	0.01	0.01	<0.01	0.05	<0.01	< 0.01	<0.01	0.01
Pr2O3	<0.01	0.02	0.07	<0.01	<0.01	< 0.01	0.04	<0.01	0.11	< 0.01
Gd2O3	<0.01	0.02	0.07	<0.01	0.03	<0.01	< 0.01	<0.01	<0.11	< 0.01
F	0.52	0.01	0.01	0.01	<0.01	<0.01	<0.01	0.08	0.01	0.10
Cl	< 0.01	<0.01	<0.01	0.23	<0.01	<0.01	<0.01	0.08	0.11	0.10
Total	100.71	99.56		100.66	101.22	101.64	101.30	98.34	97.38	97.62
Atoms per			100.44	100.00	101.22	101.04	101.30	98.34	97.38	97.02
Si	8.02	8.07	8.01	7.79	8.14	8.16	8.18	6.51	6.53	6.51
Ti	0.09	0.09	0.08	0.14	0.10	0.08	0.05	0.22	0.33	0.22
Al	0.09	0.69	0.68	0.14	1.27	1.37	1.38	2.29	2.33	2.34
Fe	4.38	4.39	4.51	4.39	2.51	2.38	2.46	5.69	5.66	5.64
Mn	0.11	0.12	0.12	0.12	0.08	0.08	0.07	0.10	0.09	0.09
Mg	0.11	0.12	0.12	0.12	0.08	0.08	0.09	0.10	0.09	0.30
Ca	0.61	0.62	0.65	0.28	1.80	1.79	1.70	<0.01	<0.01	< 0.01
Na Na	1.74	1.68	1.70	1.67	2.10	2.13	2.19	0.02	0.03	0.02
K	0.75	0.74	0.74	0.57	<0.01	<0.01	<0.01	2.00	1.88	1.92
Zn	0.73	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	0.02	0.03	< 0.01
Ba	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01
Sr	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Zr	0.03	0.03	0.02	0.04	0.04	0.03	0.02	< 0.01	<0.01	< 0.01
Nd	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01
Ce	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01
La	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Pr	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Sm	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Gd	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
F	0.01	0.14	0.15	0.01	<0.01	<0.01	<0.01	0.01	0.06	0.06
Cl	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.04	< 0.01	< 0.01
CI	17.00	16.82	16.92	16.85	16.13	<0.01 16.11	16.15	~0.01	17.12	\U.U1

Table 4-8: EPMA results from amphibole and pyroxene from samples CBD-10-01-11.

A1 11		Sample: CE					A 1. 02	A 1 .03
Analysis #	Px-01	Px-02	Px-03	Px-04	Px-06		Amph-02	_
SiO2	56.53	56.77	56.86	55.70	54.91	48.52	49.02	48.39
TiO2	0.17	0.04	0.01	0.26	0.20	0.18	0.19	0.18
Al2O3	12.83	12.52	12.68	9.25	9.29	2.63	2.56	2.61
FeO	14.70	15.69	15.57	19.54	19.47	33.18	33.84	33.11
MnO	0.03	0.02	0.01	0.04	0.06	0.79	0.77	0.79
MgO	0.02	0.04	0.05	0.02	0.03	0.27	0.26	0.23
CaO	1.30	0.38	0.38	1.69	1.28	1.17	1.03	1.16
Na2O	13.30	13.92	13.81	13.10	13.15	6.84	6.93	6.93
K2O	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	3.70	3.69	3.68
ZnO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
BaO	< 0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01	0.02	0.02
SrO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
ZrO2	0.12	0.06	< 0.01	0.11	0.07	0.09	0.07	0.09
La2O3	0.02	< 0.01	< 0.01	0.02	0.02	< 0.01	< 0.01	< 0.01
Ce2O3	0.05	0.02	< 0.01	< 0.01	0.04	< 0.01	< 0.01	0.02
Nd2O3	0.02	0.02	0.03	0.01	< 0.01	< 0.01	0.04	0.02
Pr2O3	0.03	< 0.01	0.03	0.08	< 0.01	< 0.01	< 0.01	< 0.01
Sm2O3	0.02	< 0.01	0.04	< 0.01	0.02	< 0.01	< 0.01	0.03
Gd2O3	< 0.01	< 0.01	0.04	< 0.01	< 0.01	< 0.01	< 0.01	0.03
F	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.24	0.39	0.33
Cl	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total	99.15	99.48	99.53	99.84	98.58	97.62	98.82	97.62
Atoms per								
Si	8.33	8.36	8.36	8.39	8.38	8.25	8.26	8.25
Ti	0.02	< 0.01	< 0.01	0.03	0.02	0.02	0.02	0.02
Al	2.23	2.18	2.20	1.64	1.67	0.53	0.51	0.53
Fe	1.81	1.93	1.92	2.46	2.49	4.72	4.77	4.72
Mn	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.11	0.11	0.11
Mg	< 0.01	< 0.01	0.01	< 0.01	< 0.01	0.07	0.07	0.06
Ca	0.21	0.06	0.06	0.27	0.21	0.21	0.19	0.21
Na	3.80	3.98	3.94	3.83	3.89	2.26	2.26	2.29
K	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.80	0.79	0.80
Zn	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01
Ba	<0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01
Sr	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zr	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01
La	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01
Ce	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Nd	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Pr	< 0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
		<0.01						
Sm	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Gd	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
F	<0.01	<0.01	<0.01	<0.01	<0.01	0.13	0.21	0.18
Cl	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01
Total	16.42	16.53	16.50	16.66	16.69	17.11	17.19	17.18

Table 4-9: EPMA results from pyroxene from samples CBD-11-07-21.

Sample: C	BD-11-07-	-21- Moder	ately metai	norphosed	leucosy.
Analysis #	Px-01	Px-02	Px-03	Px-04	Px-05
SiO2	57.19	56.35	56.81	56.06	55.58
TiO2	0.33	0.42	0.30	0.32	0.36
Al2O3	12.92	13.53	13.24	12.14	11.28
FeO	15.04	14.67	15.06	16.26	17.47
MnO	0.03	0.02	0.05	0.03	0.07
MgO	0.07	0.05	0.04	0.07	0.08
CaO	0.88	0.80	0.81	1.06	1.27
Na2O	13.67	13.37	13.32	13.13	12.74
K2O	0.01	< 0.01	< 0.01	< 0.01	< 0.01
BaO	< 0.01	< 0.01	< 0.01	< 0.01	0.03
SrO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
ZrO2	0.07	0.10	< 0.01	0.04	0.08
La2O3	< 0.01	< 0.01	0.03	< 0.01	< 0.01
Ce2O3	0.02	< 0.01	< 0.01	< 0.01	0.06
Nd2O3	< 0.01	0.03	< 0.01	< 0.01	0.01
Pr2O3	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Sm2O3	< 0.01	< 0.01	0.10	< 0.01	0.03
Gd2O3	< 0.01	< 0.01	0.03	< 0.01	< 0.01
ZnO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
F	0.09	< 0.01	0.10	< 0.01	< 0.01
Cl	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total	100.32	99.35	99.91	99.12	99.06
Atoms per	formula u	nit			
Si	8.33	8.27	8.31	8.32	8.32
Ti	0.04	0.05	0.03	0.04	0.04
Al	2.22	2.34	2.28	2.12	1.99
Fe	1.83	1.80	1.84	2.02	2.19
Mn	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Mg	0.02	0.01	< 0.01	0.02	0.02
Ca	0.14	0.13	0.13	0.17	0.20
Na	3.86	3.81	3.78	3.78	3.70
K	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ba	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Sr	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Zr	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
La	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ce	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Nd	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pr	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Sm	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Gd	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Zn	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
F	0.04	< 0.01	0.05	< 0.01	< 0.01
Cl	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total	16.49	16.41	16.45	16.47	16.48

Amphibole

From previous work (Curtis and Currie, 1981), varieties of amphibole known in the RWIS rocks are riebeckite and arfvedsonite.

The analyses of this study were classified using the Hawthorne et al. (2012) classification scheme. The most common amphibole present in these samples is K-arfvedsonite, which is present in eight of the ten analyzed samples (Figure 4-2B and C, Table 4-7, and Table 4-8). Two samples contain other compositions of amphibole: CBD-11-07-03 (igneous textured syenite) which contains K-Fe-katophorite, and CBD-10-01-30 (leucosyenite) which contains K-Fe-eckermannite.

Minor compositional variation between samples, or even between grains in a single sample, is present, but typically no zonation within crystals is seen. The plotted compositional variations tend to be either scattered or continuous trends with considerable overlap between samples. The only elements which appear to show a distinct difference between amphibole in different samples are MgO and MnO (Figure 4-3). In general, the samples that are closer to an igneous texture, have experienced limited metamorphism and alteration, contain lower (near 1wt % or less) MnO. Samples that contain type-2 mineralization have elevated MnO and, in most cases, depleted MgO. This correlation may indicate a greater level of metasomatism in association with the REE deposition, or differences in initial composition after igneous crystallization.

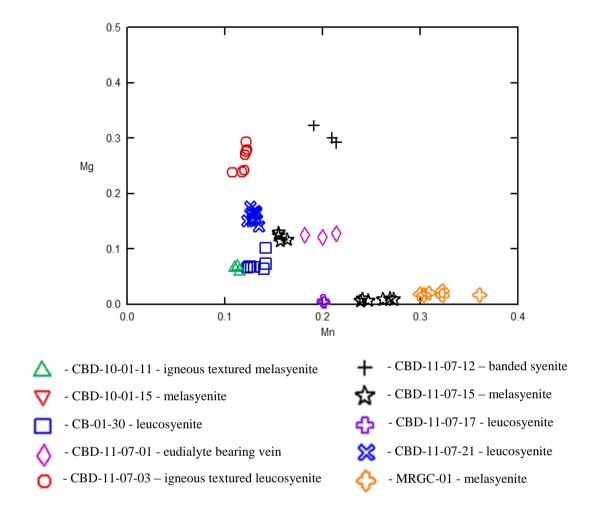


Figure 4-3: MnO versus MgO for all amphibole samples analyzed.

Increased values of CaO in amphibole are observed in samples CBD-11-07-01, CBD-11-07-03, and CB-01-11. All other samples typically contain <0.9 wt% CaO whereas CBD-11-07-01 and CB-01-11 contain ~1.46-1.65 wt% and 1.03-1.17 wt% respectively, and CBD-11-07-03 contains >3.5 wt%. This could indicate that amphibole that has not been metamorphosed or altered may contain a greater amount of CaO as these three samples are the least metamorphosed. Sample CBD-11-07-03 also contains significantly more ZrO₂ than other samples analyzed, which could also indicate a difference between igneous versus metamorphosed/altered amphibole.

Pyroxene

Pyroxene is most commonly seen as fine elongate grains that are green in hand specimen and green-yellow pleochroic in thin section, and is inferred to be of metamorphic origin. Less common is a blue variety which forms on rims of amphiboles that are in contact with perthite (Figure 4-2B), as well as rare zoned pyroxene showing an igneous texture (Figure 4-2D). As discussed by Curtis and Gittins (1979) multiple varieties of pyroxene are present in the area; aegirine, calcic-aegirine, titanian-aegirine, aegirine-jadeite, and titaniferous ferro-omphacite. Therefore the key elements of interest for analysis of pyroxene were Na, Al, Fe, Ca, and Ti.

The blue variety of pyroxene contains significantly more CaO, MgO, MnO, and ZrO₂ with considerably less Na₂O than other samples analyzed. As with amphibole analyses, there is a great deal of compositional overlap between pyroxene from different samples and little compositional distinction, with the exception of sample CBD-11-07-03, which is notably enriched in MnO (Figure 4-4C).

Although some samples contain pyroxene that is visibly zoned in BSE images, there is little compositional variation from the core to rim of such samples (Figure 4-2D and Table 4-9). The main variation in composition is due to the solid solution between aegirine and jadeite, indicated by a variation of Fe versus Al (Figure 4-4) with consistently high Na. All samples essentially show a continuous trend in terms of Fe versus Al, with a tendency for cores to be slightly enriched in Al and lower in Fe but only in select samples since many samples contain pyroxene that shows no visible zonation in BSE images.

As noted in Chapter 1, Curtis and Gittins (1979) produced a detailed study of pyroxene compositions of the RWIS. The results presented here match closely to the results of Curtis and Gittins on a Na/Na+Ca versus Al/Al+Fe³⁺ diagram, assuming Fe³⁺ to be 0.85 of the FeO (total) - as calculated by Singh and Bonardi (1972) (Figure 4-5). One notable difference is the average composition of pyroxene from CBD-11-07-03 is significantly lower in terms of Na/Na+Ca which correlates with differences observed in amphibole chemistry. Both pyroxene and amphibole in all other samples have Na/Na+Ca>0.8, whereas this sample contains <0.6 for both minerals.

TiO₂ content is noticeably higher in two samples, CBD-11-07-03 and CBD-01-30, which both are leucocratic and have experienced a lower level of metamorphism compared to other samples that were analyzed.

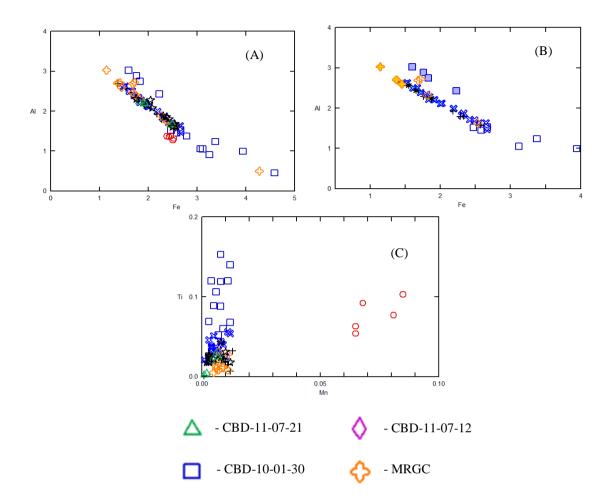


Figure 4-4: Compositional variation in pyroxene, Al₂O₃ versus FeO (A and B) and TiO₂ versus MnO (C). Symbols in (A) and (C) are the same as those used in the amphibole section (Figure 4-3), symbols for (B) are listed in legend - only samples with visible differences between core and rim in BSE images are shown. A hollow symbol indicates a rim and solid indicates core.

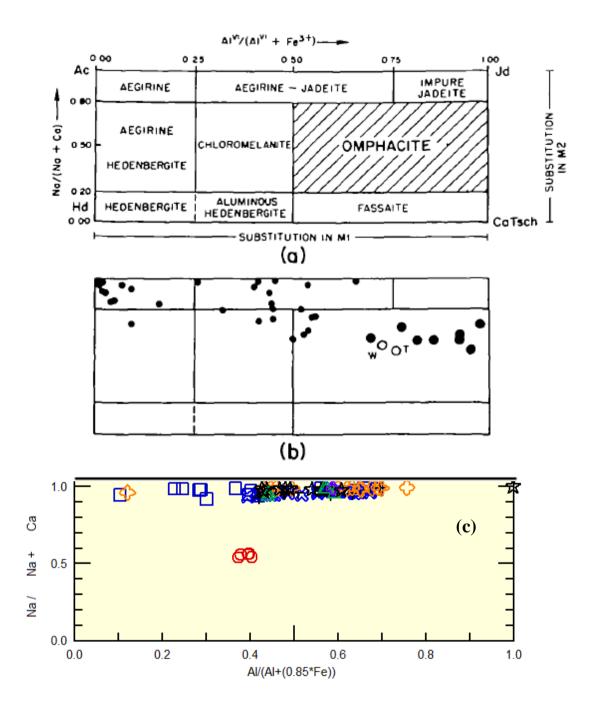


Figure 4-5: Composition of pyroxene from Curtis and Gittins (1979) using Na/(Na+Ca) versus Al/(Al+Fe) (a and b), compared with analyses from this study (c). Fe $^{3+}$ was determined using FeO*0.85 based on the calculated oxidation ratio of Singh and Bonardi (1972).

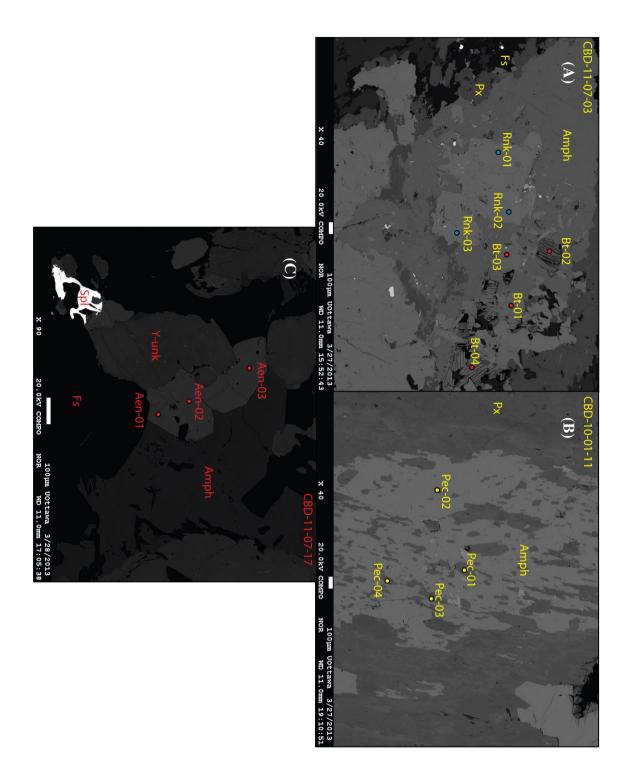


Figure 4-6: BSE images with analysis points labelled. (A) Sample CBD-11-07-03, biotite (Bt) in igneous textured leucosyenite with associated rinkite (Rnk); (B) Sample CBD-10-01-11, pectolite (pec) in igneous textured melasyenite; (C) Sample CBD-11-07-17, aenigmatite (Aen) in leucosyenite with associated unknown Y-mineral (Y-unk). Associated results are presented in Table 4-10 and Table 4-11.

 $\begin{tabular}{ll} \textbf{Table 4-10: EPMA results from biotite and pectolite from samples CBD-11-07-03 and CBD-10-01-11 \\ respectively. \end{tabular}$

CBD-11	-07-03- Is	gneous text	ured leucos	yenite	CBD-1	0-01-11- Ig	n. Txt mel	asyenite
Analysis #	Bt-01	Bt-02	Bt-03	Bt-04	Pe c-01	Pec-02	Pec-03	Pe c-04
SiO2	35.42	32.11	35.55	32.71	54.82	55.10	54.59	55.00
TiO2	1.32	1.33	1.30	1.32	< 0.01	< 0.01	< 0.01	< 0.01
Al2O3	9.90	10.26	10.54	10.63	< 0.01	< 0.01	< 0.01	< 0.01
FeO	37.17	36.08	37.67	36.16	1.97	2.00	2.34	2.13
MnO	0.56	0.63	0.65	0.61	1.82	1.94	1.82	1.97
MgO	1.24	1.46	1.16	1.26	< 0.01	< 0.01	< 0.01	< 0.01
CaO	< 0.01	0.54	< 0.01	0.26	29.89	30.32	29.82	30.25
Na2O	0.09	0.26	0.05	0.27	8.88	8.59	8.64	8.81
K2O	8.16	5.82	8.71	7.14	< 0.01	< 0.01	< 0.01	< 0.01
ZnO	0.23	0.18	0.10	0.17	< 0.01	< 0.01	0.02	< 0.01
BaO	0.01	0.04	0.04	< 0.01	< 0.01	< 0.01	< 0.01	0.02
SrO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
ZrO2	< 0.01	0.01	0.02	< 0.01	< 0.01	0.04	0.04	0.17
La2O3	0.07	0.02	< 0.01	< 0.01	0.06	0.06	< 0.01	< 0.01
Ce2O3	< 0.01	< 0.01	< 0.01	< 0.01	0.08	0.03	< 0.01	0.05
Nd2O3	0.05	< 0.01	0.01	< 0.01	< 0.01	< 0.01	0.09	0.01
Pr2O3	< 0.01	0.08	< 0.01	0.01	0.06	0.10	< 0.01	0.04
Sm2O3	0.02	0.05	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01
Gd2O3	< 0.01	0.01	< 0.01	< 0.01	0.08	< 0.01	0.04	< 0.01
F	0.15	0.43	0.12	0.28	< 0.01	< 0.01	< 0.01	< 0.01
Cl	0.01	0.02	0.02	0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total	94.39	89.33	95.94	90.85	97.67	98.20	97.41	98.46
Atoms per								
Si	6.58	6.32	6.50	6.33	8.56	8.56	8.56	8.54
Ti	0.18	0.20	0.18	0.19	< 0.01	< 0.01	< 0.01	< 0.01
Al	2.17	2.38	2.27	2.42	< 0.01	< 0.01	< 0.01	< 0.01
Fe	5.77	5.94	5.76	5.85	0.26	0.26	0.31	0.28
Mn	0.09	0.11	0.10	0.10	0.24	0.26	0.24	0.26
Mg	0.34	0.43	0.32	0.36	< 0.01	< 0.01	< 0.01	< 0.01
Ca	<0.01	0.11	< 0.01	0.05	5.00	5.05	5.01	5.03
Na	0.03	0.10	0.02	0.10	2.69	2.59	2.63	2.65
K	1.93	1.46	2.03	1.76	< 0.01	< 0.01	< 0.01	< 0.01
Zn	0.03	0.03	0.01	0.02	<0.01	<0.01	<0.01	< 0.01
Ba	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01
Sr	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Zr	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	0.01
La	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Ce	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Nd	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Pr	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Sm	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Gd	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
F	0.09	0.01	0.01	0.01	<0.01	<0.01	<0.01	< 0.01
Cl	< 0.09	<0.01	<0.07	<0.01	<0.01	<0.01	<0.01	< 0.01
Total	17.23	17.34	17.28	17.37	16.77	16.73	16.75	16.77

Table 4-11: EPMA results from aenigmatite and rinkite from samples CBD-11-07-17 and CBD-11-07-03 respectively. No image is available to correlate with rinkite analyses.

CBI	D-11-07-17	- leucosyei	nite	CBD-11-07-03			
Analysis #	Aen-01	Aen-02	Aen-03	Rnk-01	Rnk-02	Rnk-03	
SiO2	42.83	42.76	42.98	30.06	30.35	30.13	
TiO2	9.44	9.39	9.47	7.49	7.36	7.79	
Al2O3	0.03	0.04	0.03	0.03	0.03	0.06	
FeO	40.93	40.61	40.62	0.93	0.79	1.05	
MnO	1.76	1.77	1.68	< 0.01	0.02	0.04	
MgO	0.06	0.04	0.04	< 0.01	< 0.01	<0.01	
CaO	<0.01	0.02	0.02	24.85	24.24	25.94	
Na2O	7.77	7.82	7.81	8.05	8.12	6.55	
K2O	0.00	0.02	0.01	0.04	0.02	0.08	
P2O5	0.02	<0.01	<0.01	0.02	<0.01	<0.01	
ZnO	< 0.02	<0.01	0.02	<0.01	0.02	<0.01	
As2O5	0.04	0.01	0.03	<0.01	<0.01	<0.01	
BaO	< 0.01	0.02	<0.01	<0.01	<0.01	0.01	
SrO	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	
Sb2O5	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	
Nb2O5	0.01	0.02	<0.01	3.22	3.65	3.20	
ZrO2	0.01	0.01	< 0.01	0.27	0.45	0.44	
Y2O3	< 0.01	< 0.01	< 0.01	4.56	5.81	1.12	
La2O3	0.03	< 0.01	0.09	1.07	0.71	2.14	
Ce2O3	< 0.01	< 0.01	< 0.01	3.02	1.97	5.23	
Nd2O3	< 0.01	< 0.01	< 0.01	2.66	2.64	3.32	
Pr2O3	0.05	0.05	< 0.01	0.54	0.41	0.88	
Sm2O3	< 0.01	0.01	< 0.01	0.72	0.81	0.74	
Gd2O3	< 0.01	< 0.01	< 0.01	1.12	1.23	0.87	
F	0.04	< 0.01	< 0.01	6.61	7.15	6.69	
C1	< 0.01	< 0.01	0.01	< 0.01	< 0.01	0.03	
Total	103.02	102.59	102.81	95.26	95.79	96.29	
Atoms per	formula u	nit					
Si	11.95	11.97	11.99	10.09	10.14	10.11	
Ti	1.98	1.98	1.99	1.89	1.85	1.97	
Al	0.01	0.01	0.01	0.01	0.01	0.03	
Fe	9.55	9.50	9.48	0.26	0.22	0.29	
Mn	0.42	0.42	0.40	< 0.01	0.01	0.01	
Mg	0.02	0.02	0.01	< 0.01	<0.01	<0.01	
Ca	< 0.01	0.01	<0.01	8.94	8.68	9.32	
Na	4.20	4.24	4.22	5.24	5.26	4.26	
K	<0.01	0.01	<0.01	0.02	0.01	0.03	
P		<0.01					
	<0.01		<0.01	<0.01	<0.01	<0.01	
Zn	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
As	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Ba	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	
Sr	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Sb	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Nb	< 0.01	< 0.01	< 0.01	0.49	0.55	0.49	
Zr	< 0.01	< 0.01	< 0.01	0.04	0.07	0.07	
Y	< 0.01	< 0.01	< 0.01	0.81	1.03	0.20	
La	< 0.01	< 0.01	0.01	0.13	0.09	0.27	
Ce	< 0.01	< 0.01	< 0.01	0.37	0.24	0.64	
Nd	< 0.01	< 0.01	< 0.01	0.32	0.32	0.40	
Pr	< 0.01	0.01	0.00	0.07	0.05	0.11	
Sm	< 0.01	< 0.01	< 0.01	0.08	0.09	0.09	
Gd	< 0.01	0.00	0.00	0.12	0.14	0.10	
F	0.03	< 0.01	< 0.01	7.01	7.55	7.09	
Cl	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02	
			28.13			35.48	

In summary, the analyzed pyroxene shows little consistent chemical variation apart from a slight tendency for decreasing Al/Fe from cores to rims of grains, and an apparent decrease in TiO₂ and MnO content in metamorphosed samples (Figure 4-4). Na₂O and Al₂O₃ content are likely higher in metamorphosed samples due to the close proximity of pyroxene and feldspar during recrystallization, and the change from core to rim was attributed to the P-T path taken during metamorphism with the stability of jadeite in a nepheline bearing rock (Curtis and Gittins, 1979).

Biotite

Biotite was analyzed in one sample and occurs as inclusions in amphibole (Figure 4-2 and Figure 4-6). It is not commonly seen in hand specimen due to its fine grain size. The compositions determined are very near to the annite (Fe) end-member, with an average of ~37% FeO and just over 1% MgO (Table 4-7 and Table 4-10).

Pectolite

Pectolite is chalky white and acicular in hand sample, and clear and colourless with high birefringence in thin section. It occurs in some metamorphosed samples in close association with amphibole, but has also been seen as inclusions within coarse-grained amphibole (Figure 4-6). The smaller inclusions may simply have been recrystallized into fewer large grains during metamorphism and the breakdown/recrystallization of amphibole. Representative pectolite compositions are listed in Table 4-10.

Group 3- Aenigmatite, Rinkite, and an unknown Y-bearing mineral

In addition to the elements analyzed in group 2 these minerals were analyzed for P₂O₅, As₂O₅, Sb₂O₅, Nb₂O₅, and Y₂O₃. The same standards as Group 1 were used for any elements common to both groups, with the addition of phosphates for REE elements, tugtupite for Cl and zincite for ZnO as used in Group 2, and Mn-columbite for Nb₂O₅, apatite for P₂O₅, microlite for F, YIG (yttrium iron garnet) for Y₂O₃, stibnite for Sb₂O₅, and GaAs for As₂O₅.

Table 4-12: End-member mineral formulae for Group 3

Mineral	Formula
Aenigmatite	(Na, Ca) ₂ (Fe ²⁺ , Ti, Mg) ₆ Si ₆ O ₂₀
Rinkite	Na(Na, Ca) ₂ (Ca, Ce) ₄ (Ti, Nb)(Si ₂ O ₇) ₂ (O, F) ₂

Aenigmatite

Aenigmatite typically forms fine- to medium-grained, subhedral to euhedral grains, is a very deep red in thin section, and dark brown to black in hand specimen. It is generally unzoned and is typically found in close association with amphibole and/or pyroxene. The compositions recorded show little variation, and are fairly typical for aenigmatite (Figure 4-6 and Table 4-11).

Unknown Y-bearing mineral

This mineral was observed in samples bearing type-2 mineralization as patchy yellow-brown grains up to ~1mm closely associated with britholite. The main compositional components are SiO₂ (~50%), Na₂O (9-14%), CaO (8-14%), MnO (2-4%), and Y₂O₃ (8-18%) and significant quantities of REE. An image of this mineral is presented in Figure 4-7

and representative analyses in Table 4-13. Comparisons with mineralogical databases yielded no obvious matches for this chemical composition but it could possibly be;

Proschenkoite- Ca(Y, REE, Ca, Na, Mn)₁₅Fe²⁺(P, Si)Si₆B₃O₃₄F₁₄

Caleybeborosilite- $(Y, Ca)(\Box, Fe^{2+})(B, Be)(SiO_4)_2(OH, O)_2$

Hingganite- $(Y, REE, Ca)_2(\Box, Fe^{2+})Be_2(SiO_4)_2(OH)_2$

Rinkite

One sample, CBD-11-07-03, contains rinkite. This mineral is present within large amphibole grains and is associated with biotite and aenigmatite. Results from rinkite analyses are presented in Table 4-11. This is one mineral in addition to eudialyte that has an igneous texture as well as significant REE values. The REE pattern of rinkite is fairly flat with a very slight positive slope. Figure 4-8 illustrates this pattern along with the whole rock analysis.

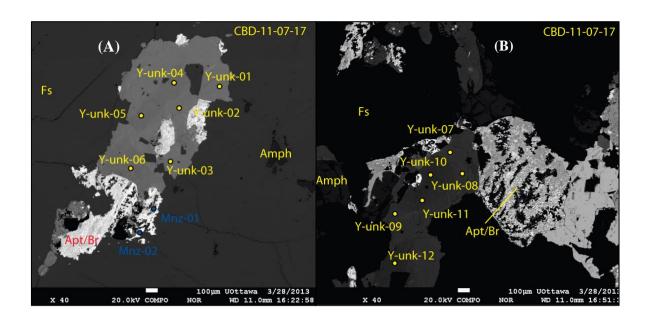


Figure 4-7: BSE images with analysis points labelled. (A) Sample CBD-11-07-17, unknown Y-mineral in leucosyenite; (B) Sample CBD-10-01-17, unknown Y-mineral in leucosyenite.

Associated results are presented in Table 4-13.

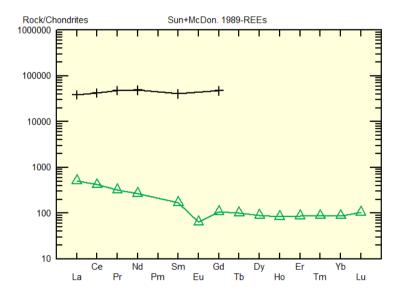


Figure 4-8: Whole rock analysis of sample CBD-11-07-11 (green) with a representative rinkite analysis (black).

Table 4-13: EPMA results from unknown Y-mineral from sample CBD-11-07-17.

CBD-11-07-17- leucosyenite Analysis # Y-unk-01 Y-unk-02 Y-unk-03 Y-unk-04 Y-unk-05 Y-unk-06 Y-unk-07 Y-unk-08 Y-unk-09 Y-unk-10 Y-unk-11 Y-unk-1												
Analysis #	Y-unk-01		Y-unk-03	Y-unk-04	Y-unk-05	Y-unk-06	Y-unk-07	Y-unk-08	Y-unk-09	Y-unk-10	Y-unk-11	Y-unk-1
SiO2	51.11	51.16	51.19	51.38	51.51	50.93	51.41	49.53	51.21	50.96	51.57	51.54
TiO2	< 0.01	< 0.01	0.00	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Al2O3	0.02	0.00	0.00	0.02	0.02	0.00	0.01	0.05	0.02	0.02	0.00	0.01
FeO	1.48	1.49	1.54	1.46	1.49	1.25	1.45	1.45	1.57	1.57	1.58	1.58
MnO	2.88	2.82	2.81	3.15	3.30	3.07	2.60	2.65	2.96	3.39	3.28	3.65
MgO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01
CaO	13.68	13.53	12.59	14.48	14.22	14.52	11.54	12.12	12.55	13.97	14.25	14.29
K2O	0.04	0.04	0.03	0.05	0.02	0.01	0.02	0.06	0.03	0.04	0.03	0.03
Na2O	8.50	9.44	9.71	9.21	9.32	10.58	9.66	7.64	8.97	9.05	9.25	9.36
P2O5	< 0.01	0.03	0.01	0.04	0.03	0.05	0.02	0.02	0.04	0.05	< 0.01	0.05
ZnO	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.06	0.00	< 0.01	< 0.01	< 0.01	0.04
As2O5	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
BaO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.02	0.02	0.00	0.01	0.02	< 0.01
SrO	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01
Sb2O5	< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Nb2O5	0.02	<0.01	<0.01	<0.01	0.02	0.03	0.04	0.04	0.04	0.00	<0.01	0.08
ZrO2	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01
Y2O3	9.92	9.72	10.18	8.66	8.53	7.90	11.85	11.92	10.47	8.81	8.91	8.29
La2O3	<0.01	0.04	<0.01	< 0.01	0.03	0.05	0.17	0.02	0.15	0.12	0.03	0.03
Ce2O3	0.14	0.18	0.22	0.22	0.17	0.10	0.18	0.21	0.22	0.18	0.15	0.15
Nd2O3	0.39	0.39	0.41	0.31	0.28	0.44	0.33	0.44	0.31	0.30	0.33	0.23
Pr2O3	<0.01	0.14	0.20	0.09	0.04	0.00	0.01	0.14	0.11	0.01	0.12	<0.01
Sm2O3	0.23	0.40	0.26	0.30	0.26	0.28	0.28	0.38	0.31	0.25	0.25	0.35
Gd2O3	0.84	0.66	0.75	0.63	0.58	0.70	0.77	0.90	0.76	0.65	0.70	0.66
F	0.09	0.13	0.02	0.05	0.12	< 0.01	0.08	0.23	0.07	0.01	0.10	0.14
Cl	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	< 0.01	0.00	0.02	0.02
Total	89.34	90.17	89.94	90.05	89.95	89.93	90.54	87.83	89.79	89.38	90.59	90.48
Atoms per	formula ui											
Si	14.86	14.79	14.83	14.79	14.83	14.70	14.85	14.82	14.86	14.79	14.80	14.78
Ti	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Al	0.01	< 0.01	< 0.01	0.01	0.01	< 0.01	< 0.01	0.02	0.01	0.01	< 0.01	< 0.01
Fe	0.36	0.36	0.37	0.35	0.36	0.30	0.35	0.36	0.38	0.38	0.38	0.38
Mn	0.71	0.69	0.69	0.77	0.80	0.75	0.64	0.67	0.73	0.84	0.80	0.89
Mg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ca	4.26	4.19	3.91	4.47	4.39	4.49	3.57	3.88	3.90	4.34	4.38	4.39
Na	4.79	5.29	5.46	5.14	5.20	5.92	5.41	4.43	5.04	5.09	5.15	5.20
K	0.02	0.01	0.01	0.02	0.01	< 0.01	0.01	0.02	0.01	0.02	0.01	0.01
P	< 0.01	0.01	< 0.01	0.01	0.01	0.01	< 0.01	< 0.01	0.01	0.01	< 0.01	0.01
Zn	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01
As	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ba	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Sr	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Sb	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01
Nb	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	0.01	0.01	<0.01	<0.01	0.01
Zr	<0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Y	1.53	1.50	1.57	1.33	1.31	1.21	1.82	1.90	1.62	1.36	1.36	1.27
La	<0.01	< 0.01	<0.01	<0.01	<0.01	0.01	0.02	<0.01	0.02	0.01	<0.01	<0.01
Ce	0.02	0.02	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.01	0.01
Nd	0.04	0.04	0.04	0.03	0.03	0.05	0.03	0.05	0.03	0.03	0.03	0.02
Pr	<0.01	0.01	0.02	0.01	<0.01	<0.01	<0.01	0.02	0.01	<0.01	0.01	<0.01
Sm	0.02	0.04	0.03	0.03	0.03	0.03	0.03	0.04	0.03	0.02	0.02	0.03
Gd	0.08	0.06	0.07	0.06	0.06	0.07	0.07	0.09	0.07	0.06	0.07	0.06
F	0.08	0.12	0.02	0.05	0.11	< 0.01	0.08	0.22	0.06	0.01	0.09	0.12
Cl	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.01
Total	26.78	27.13	27.05	27.08	27.16	27.56	26.93	26.55	26.81	27.00	27.13	27.23

Group 4- Eudialyte

Eudialyte grains were analyzed for the same elements as Group 3 plus SnO₂, Eu₂O₃, Dy₂O₃, HfO₂, WO₃, and Ta₂O₅. Standards were the same as Group 3 but using zircon for SiO₂, cassiterite for SnO₂, phosphates for Eu₂O₃ and Dy₂O₃, CoW₄ for WO₃, NiTa₂O₆ for Ta₂O₅ and hafnon ((Hr, Zr)SiO₄) for HfO₂.

Eudialyte

Eudialyte is a complex Na-Zr silicate, which typically occurs as red to pink equant grains that are very pale pink in thin section and show low first order birefringence. It occurs in leucosyenite, melasyenite and pegmatite sub-units of the Red Wine Intrusive Suite. The most generalized formula for the eudialyte group is $N_{15}[M(1)]_6[M(2)]_3[M(3)]$ $[M(4)]Z_3[Si_{24}O_{72}]O'_4X_2$ (Johnsen et al., 2003; Schilling et al., 2011), where:

N= Na, Ca, K, Sr, REE, Ba, Mn, H₃O⁺

M(1)= Ca, Mn, REE, Na, Sr, Fe

M(2)= Fe, Mn, Na, Zr, Ta, Ti, K, Ba, H₃O⁺

M(3, 4) = Si, Nb, Ti, W, Na

Z= Zr, Ti, Nb

O'=O, OH^- , H_2O

X= H₂O, Cl⁻, F⁻, OH⁻, CO₃²⁻, SO₄²⁻, SiO₄⁴⁻.

Due to the very complex structure of the eudialyte group, the exact member of the group present is difficult to determine based on microprobe analyses, but the concentrations of key elements can still provide important information. REE contents were a main focus of

the analysis of eudialyte, as this is the mineral that drew interest to the area for REE exploration. The REE patterns were somewhat variable, with a generally flat slope and jagged appearance (Figure 4-9). This variation is likely due to zonation in individual crystals, as well as variation in composition throughout the intrusion. This is readily understood due to the large compositional range of eudialyte and the somewhat variable rock types in which it occurs.

Eudialyte exhibits several distinct textures in BSE images. Some samples display bright (higher Z) outer rims which contain increased REE and F contents (Figure 4-10A and Table 4-14). This may be related to later fluid interactions or possibly to a change in magma composition during igneous crystallization. This distinct zoning is not present in all samples, as some have fairly homogenous crystals of eudialyte (Figure 4-10B and Table 4-15) or a somewhat patchy zonation (Figure 4-10C and Table 4-15). In one sample studied the grains appear to be intergrown in some cases, but zoned in others even those in close proximity (Figure 4-10D and Table 4-14).

Some eudialyte textures have important implications when considering the general a texture of the rocks in which eudialyte is found. CBD-11-07-30 has a texture that is close to igneous, with only mild deformation. The eudialyte in this sample is relatively coarse-grained (0.5-1mm), euhedral, and displays patchy zonation (Figure 4-10C), and therefore also conforms to an igneous texture. Sample CBD-11-07-12 is banded/highly deformed, with extensive recrystallization visible in pyroxene. The eudialyte here is not zoned, which may indicate diffusion and elimination of zoning during metamorphism. This loss of zonation can be explained in terms of the U-Pb age determined (Chapter 5, 976 Ma), which

correlates with late stage Grenvillian metamorphism, providing the conditions for diffusion within eudialyte grains.

As discussed in Chapter 3, Zr/Hf variability in eudialyte may indicate magmatic or other processes. In the eudialyte samples analyzed this ratio is highly variable (ranging from 86 to 315), which would not indicate igneous conditions of crystallization. However, due to eudialytes tendency to readily alter, it is difficult to determine whether these ratios are due to the uncommon composition of the magma, autometasomatic processes, or late hydrothermal fluid interactions.

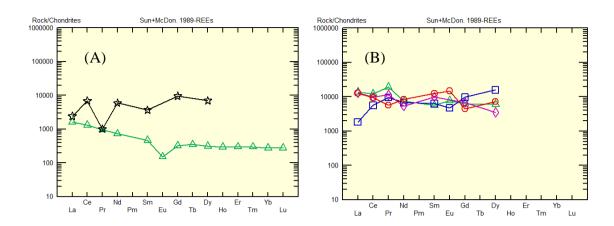


Figure 4-9: (A) Sample CBD-11-07-21 (green) whole rock REE pattern compared with EPMA analysis of eudialyte (black) from this sample. (B) Eudialyte EPMA results from samples CBD-11-07-01 (purple), CBD-11-07-12 (blue), CBD-11-07-21 (green) and CBD-10-01-30 (red), indicate some heterogeneity among eudialyte analyses.

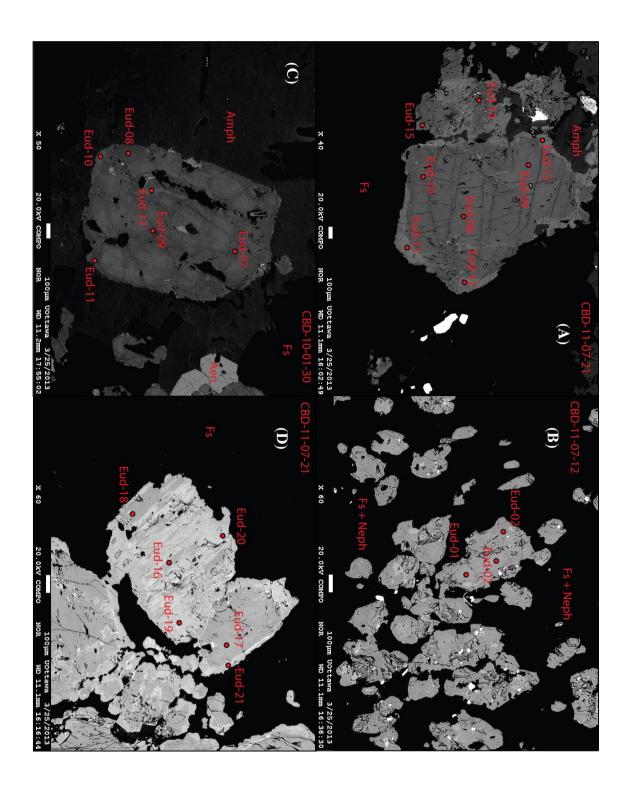


Figure 4-10: BSE images with eudialyte spot analyses labelled. (A) Sample CBD-11-07-21, leucosyenite. Note bright REE rich rims; (B) Sample CBD-11-07-12, leucocratic portion of a banded unit; (C) Sample CBD-10-01-30, leucosyenite; (D) Sample CBD-11-07-21, leucosyenite. Note patchy zoning in largest grains. Associated results are presented in Table 4-14 and Table 4-15.

Table 4-14: EPMA results of eudialyte from sample CBD-11-07-21.

A 1	E 100	E 100	E 110				_		leucosyenite	_	Fud 10	E. 1.10	Fud 20	E. 121
Analysis #		Eud-09	Eud-10	Eud-11	Eud-12	Eud-13	Eud-14	Eud-15	Eud-16	Eud-17	Eud-18	Eud-19	Eud-20	Eud-21
SiO2	49.98	52.58	50.33	50.50	49.73	50.89	51.41	52.24	50.59	52.33	51.69	51.29	51.88	50.72
TiO2	0.02	0.04	0.03	0.02	0.05	0.03	0.04	0.05	0.03	0.02	0.03	0.04	0.03	0.04
Al2O3	0.18	0.18	0.18	0.14	0.15	0.15	0.52	0.14	0.19	0.18	0.14	0.18	0.13	0.15
FeO	6.20	6.14	5.95	6.02	5.90	6.08	6.02	5.88	5.98	6.17	5.84	5.63	5.69	5.89
MnO	0.54	0.52	0.53	0.61	0.68	0.72	0.61	0.66	0.53	0.50	0.64	0.67	0.73	0.60
MgO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
CaO	10.03	10.06	9.96	9.77	9.79	10.05	10.06	9.95	9.77	9.97	9.77	9.65	9.83	9.80
Na2O	13.49	12.32	13.04	13.05	12.84	11.95	12.53	12.14	13.35	12.77	12.64	12.66	12.37	12.52
K2O	0.39	0.27	0.44	0.45	0.43	0.28	0.19	0.19	0.38	0.27	0.31	0.34	0.29	0.35
BaO	0.03	0.16	0.25	0.14	0.18	0.10	0.09	0.05	0.08	0.09	0.16	0.20	0.21	0.17
SrO	< 0.01	< 0.01	< 0.01	< 0.01	0.00	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02
SnO2	0.04	< 0.01	0.03	0.03	0.04	0.08	< 0.01	0.02	0.01	0.01	0.03	< 0.01	0.03	0.01
ZrO2	12.95	13.44	13.00	13.24	13.12	13.51	13.54	13.45	12.99	13.43	13.18	13.15	13.20	13.15
Nb2O5	0.16	0.17	0.06	0.61	0.60	0.56	0.18	0.34	0.15	0.05	0.76	0.63	0.90	0.53
Y2O3		1.02	0.90				1.09			0.03	1.26		1.29	
	0.71			1.23	1.10	1.18		1.16	1.10			1.38		1.15
La2O3	0.20	0.22	0.07	0.32	0.32	0.46	0.19	0.25	0.27	0.19	0.48	0.33	0.48	0.33
Ce2O3	0.65	0.54	0.49	0.91	0.70	0.64	0.49	0.70	0.56	0.56	0.98	0.91	1.24	0.79
Nd2O3	0.47	0.39	0.32	0.50	0.59	0.45	0.37	0.39	0.41	0.52	0.46	0.55	0.50	0.43
Pr2O3	0.02	0.11	0.01	0.06	0.22	0.12	0.07	0.19	0.09	0.09	0.27	0.19	< 0.01	0.20
Sm2O3	0.10	0.12	0.06	0.15	0.22	0.10	0.10	0.19	0.11	0.15	0.17	0.15	0.15	0.10
Gd2O3	0.15	0.21	0.22	0.14	0.08	0.14	0.18	0.15	0.22	0.16	0.18	0.23	0.20	0.25
Eu2O3	0.03	< 0.01	< 0.01	0.03	< 0.01	0.12	0.04	0.03	0.05	0.01	< 0.01	0.04	0.02	0.03
Dy2O3	0.21	0.15	0.20	0.36	0.08	0.46	0.18	0.19	0.30	0.33	0.27	0.18	0.14	0.33
HfO2	0.19	0.19	0.18	0.20	0.16	0.14	0.17	0.20	0.17	0.18	0.12	0.16	0.17	0.20
WO3	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ta2O5	< 0.01	< 0.01	0.03	0.02	0.06	0.07	0.05	0.03	0.04	0.07	< 0.01	0.05	0.02	< 0.01
F	< 0.01	0.02	0.00	0.03	0.01	0.08	0.06	0.03	0.04	0.01	0.02	0.05	0.03	< 0.01
Cl	1.33	1.03	1.24	1.16	1.25	1.09	1.19	1.22	1.32	1.29	1.16	1.32	1.07	1.29
Total	98.07	99.87	97.55	99.68	98.30	99.44	99.38	99.84	98.73	100.29	100.57	99.99	100.60	99.05
Atoms per			77.00	77.00	70.50	22.11	77.50	77.01	70.75	100.27	100.57	,,,,,	100.00	77.03
Si	8.30	8.46	8.36	8.28	8.27	8.33	8.35	8.44	8.34	8.43	8.36	8.36	8.37	8.34
Ti	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
				0.03					0.01		0.03			
Al	0.04	0.03	0.04		0.03	0.03	0.10	0.03		0.03		0.03	0.02	0.03
Fe	0.86	0.83	0.83	0.83	0.82	0.83	0.82	0.80	0.82	0.83	0.79	0.77	0.77	0.81
Mn	0.08	0.07	0.07	0.08	0.10	0.10	0.08	0.09	0.07	0.07	0.09	0.09	0.10	0.08
Mg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ca	1.79	1.73	1.77	1.72	1.75	1.76	1.75	1.72	1.73	1.72	1.69	1.69	1.70	1.73
Na	4.34	3.84	4.20	4.15	4.14	3.79	3.95	3.80	4.27	3.99	3.96	4.00	3.87	3.99
K	0.08	0.05	0.09	0.10	0.09	0.06	0.04	0.04	0.08	0.06	0.06	0.07	0.06	0.07
Ba	< 0.01	0.01	0.02	0.01	0.01	0.01	0.01	< 0.01	< 0.01	0.01	0.01	0.01	0.01	0.01
Sr	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Sn	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Zr	1.05	1.05	1.05	1.06	1.06	1.08	1.07	1.06	1.04	1.06	1.04	1.05	1.04	1.06
Nb	0.01	0.01	< 0.01	0.05	0.05	0.04	0.01	0.03	0.01	< 0.01	0.06	0.05	0.07	0.04
Y	0.06	0.09	0.08	0.11	0.10	0.10	0.09	0.10	0.10	0.08	0.11	0.12	0.11	0.10
La	0.01	0.01	< 0.01	0.02	0.02	0.03	0.01	0.01	0.02	0.01	0.03	0.02	0.03	0.02
Ce	0.04	0.03	0.03	0.05	0.04	0.04	0.03	0.04	0.03	0.03	0.06	0.05	0.07	0.05
Nd	0.03	0.02	0.02	0.03	0.03	0.03	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.03
Pr	< 0.01	0.02	<0.01	<0.01	0.03	0.01	0.00	0.01	0.02	0.03	0.02	0.01	< 0.01	0.03
Sm	0.01	0.01	<0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.02	0.01	0.01	0.01
Gd	0.01	0.01	0.01	0.01	<0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Eu	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Dy	0.01	0.01	0.01	0.02	<0.01	0.02	0.01	0.01	0.02	0.02	0.01	0.01	0.01	0.02
Hf	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
W	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ta	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
F	< 0.01	0.01	< 0.01	0.02	< 0.01	0.04	0.03	0.02	0.02	0.01	0.01	0.03	0.02	< 0.01
C1	0.38	0.28	0.35	0.32	0.35	0.30	0.33	0.34	0.37	0.35	0.32	0.37	0.29	0.36
Total	17.10	16.59	16.96	16.90	16.92	16.64	16.74	16.59	17.02	16.76	16.70	16.79	16.60	16.79

Table 4-15: EPMA results of eudialyte from samples CBD-11-07-12 and CBD-10-01-30.

CBD-	11-07-12-	Banded sy	enite		CB	D-10-01-30	- Leucosye	nite	
Analysis #	Eud-01	Eud-02	Eud-03	Eud-07	Eud-08	Eud-09	Eud-10	Eud-11	Eud-12
SiO2	51.15	50.95	50.54	51.96	52.70	52.67	51.75	47.53	50.84
TiO2	0.06	0.07	0.08	0.12	0.07	0.10	0.32	0.48	0.07
Al2O3	0.21	0.22	0.22	0.15	0.13	0.16	0.12	2.07	0.12
FeO	6.02	6.21	5.97	5.87	6.29	5.90	6.41	33.20	6.03
MnO	0.67	0.71	0.78	0.68	0.71	0.72	0.82	0.90	0.65
MgO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.34	< 0.01
CaO	10.03	9.99	9.99	10.10	9.98	10.04	9.89	0.52	9.84
K2O	0.14	0.25	0.22	0.24	0.20	0.23	0.21	3.80	0.38
Na2O	13.12	13.40	13.70	11.73	12.66	11.52	13.05	7.22	14.05
BaO	0.17	0.08	0.14	0.12	0.17	0.00	0.18	0.00	0.08
SrO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
SnO2	0.04	0.06	< 0.01	0.00	0.00	0.01	0.06	< 0.01	0.00
ZrO2	13.20	13.17	13.10	13.61	13.54	13.54	12.85	0.02	13.04
Nb2O5	0.02	0.05	0.07	0.23	0.07	0.14	0.08	< 0.01	0.03
Y2O3	0.97	0.85	0.94	0.77	0.71	0.71	0.84	< 0.01	0.57
La2O3	0.16	0.10	0.05	0.35	0.28	0.33	0.20	0.11	0.30
Ce2O3	0.53	0.41	0.54	0.67	0.62	0.73	0.76	0.03	0.81
Nd2O3	0.43	0.36	0.32	0.46	0.47	0.36	0.58	< 0.01	0.41
Pr2O3	0.07	0.16	0.02	0.06	0.18	0.20	0.07	0.04	0.05
Sm2O3	0.12	0.12	0.07	0.22	0.15	0.15	0.15	< 0.01	0.20
Gd2O3	0.08	0.14	0.14	0.11	0.06	0.12	0.14	0.02	0.10
Eu2O3	0.07	< 0.01	<0.01	0.10	0.07	< 0.01	< 0.01	0.03	0.02
Dy2O3	0.17	0.23	0.25	0.10	0.15	0.20	0.09	0.14	0.02
HfO2	0.17	0.10	0.12	0.18	0.13	0.20	0.16	<0.01	0.26
WO3	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Ta2O5	<0.01	<0.01	<0.01	0.10	<0.01	<0.01	0.07	<0.01	0.07
F	0.01	0.03	0.02	0.10	<0.01	0.04	< 0.01	0.10	<0.01
Cl	1.43	1.47		1.04	1.32	0.84	1.56		1.34
Total	99.03	99.12	1.40	99.14		98.91	100.37	0.01	99.48
Atoms per fe			98.71	99.14	100.77	98.91	100.57	96.56	99.48
Si	8.37	8.34	8.32	8.44	8.44	8.51	8.38	8.23	8.33
Ti	0.01	0.01	0.01	0.01	0.01	0.01	0.04	0.06	0.01
Al	0.01	0.04	0.01	0.01	0.01	0.03	0.04	0.42	0.01
Fe	0.82	0.85	0.82	0.80	0.84	0.80	0.87	4.81	0.83
Mn	0.09	0.10	0.11	0.09	0.10	0.10	0.11	0.13	0.09
Mg	<0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	0.09	<0.01
Ca	1.76	1.75	1.76	1.76	1.71	1.74	1.72	0.10	1.73
Na	4.16	4.26	4.37	3.69	3.93	3.61	4.10	2.42	4.46
K	0.03	0.05	0.05	0.05	0.04	0.05	0.04	0.84	0.08
Sn	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Nb	<0.01	<0.01	0.01	0.02	0.01	0.01	0.01	0.00	<0.01
F	0.01	0.02	0.01	0.02	<0.01	0.02	<0.01	0.06	< 0.01
Zr	1.05	1.05	1.05	1.08	1.06	1.07	1.02	<0.01	1.04
Ba	0.01	<0.01	0.01	0.01	0.01	<0.01	0.01	<0.01	0.01
Ce	0.03	0.02	0.03	0.04	0.04	0.04	0.05	<0.01	0.05
La	0.01	0.01	< 0.01	0.02	0.02	0.02	0.01	0.01	0.02
Nd	0.03	0.02	0.02	0.03	0.03	0.02	0.03	<0.01	0.02
Pr	< 0.01	0.01	< 0.01	< 0.01	0.01	0.01	< 0.01	< 0.01	< 0.01
Sm	0.01	0.01	< 0.01	0.01	0.01	0.01	0.01	< 0.01	0.01
Gd	< 0.01	0.01	0.01	0.01	< 0.01	0.01	0.01	< 0.01	0.01
Eu	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dy	0.01	0.01	0.01	0.01	0.01	0.01	< 0.01	0.01	0.01
Cl	0.40	0.41	0.39	0.29	0.36	0.23	0.43	< 0.01	0.37
Sr	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
W	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ta	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Y	0.08	0.07	0.08	0.07	0.06	0.06	0.07	< 0.01	0.05
Hf	0.01	0.00	0.01	0.01	0.01	0.01	0.01	< 0.01	0.01

Group 5- Britholite, Apatite, and Monazite

Group 5 encompasses the type-2 mineralogy. These minerals were analyzed for; SiO₂, TiO₂, Al₂O₃, FeO, MnO, MgO, CaO, Na₂O, K₂O, P₂O₅, BaO, SrO, ZrO₂, Y₂O₃, La₂O₃, Ce₂O₃, Nd₂O₃, Pr₂O₃, Sm₂O₃, Gd₂O₃, Eu₂O₃, Dy₂O₃, ThO₂, UO₂, PbO, Cl, F, and SO₃. The same standards were used as in Group 3 for the elements they have in common, with the exception of using apatite for CaO and F, and sanbornite for BaO, and with the addition of phosphates for Dy and Eu, and barite for SO₃.

Table 4-16: Mineral formulae for Group 5

Mineral	Formula
Apatite	Ca ₅ (PO ₄) ₃ (OH, F, Cl)
Britholite	(Ca, Th, REE) ₅ (SiO ₄ , PO ₄) ₃ (OH, F)
Monazite	REEPO ₄

Apatite and Britholite

Britholite is the main REE-bearing mineral present in type-2 mineralization. It is typically yellow to orange in thin section, and difficult to recognize in hand specimen due to fine grain size, but is associated with white-yellow patchy alteration in hand specimen. As previously noted in Chapter 2, there tends to be an almost continuous spectrum of compositions from britholite to apatite due to coupled substitutions. The substitutions include Ca²⁺ and P⁺⁵ being replaced by REE³⁺ and Si⁴⁺ (Figure 4-11), or Ca²⁺ replaced by Na⁺ and REE³⁺ (Coulson and Chambers, 1996). The first substitution is more common, but the second likely plays a minor role throughout the range of compositions.

In terms of nomenclature, up until the point where SiO₄ and PO₄ are approximately equal the mineral is still referred to as apatite. When the composition is between Ca_{3.5} with REE_{1.5} and Ca_{2.5} with REE_{2.5}, with SiO₄>PO₄ the name calciobritholite is used, and when REE and SiO₄ predominate over Ca and PO₅ britholite is used (Pasero, 2010). However, here these minerals will generally be referred to as the groupings below as there is some overlap between the names and the group break down, and the term calcibritholite is omitted.

The range of compositions seen can be divided into three groups which correspond in both composition and textural aspects. First are the igneous-textured samples which contain the mineral closest to the pure apatite end member (Group 1- Figure 4-11, Figure 4-13A and), second are the analyses taken from britholite/apatite that appear to have secondary textures that indicate space-filling crystallization (Group 2- Figure 4-11, Figure 4-13B and Table 4-17), and the third group are britholite grains which have entirely (Group 3-Figure 4-11, Figure 4-13C and Table 4-18), or partially (Group 3- Figure 4-11, Figure 4-13D, and Table 4-19) replaced original igneous apatite. With the exception of a couple of analyses, these textural groups match very closely in terms of compositional variation of $Ca^{2+} + P^{5+}$ versus $Si^{4+} + REE^{3+}$, where group 1 and 3 are closest to end members and group 2 represent intermediate compositions.

The strongest differences in composition across britholite-apatite groups include variation in REE, Cl and F contents, FeO and Na₂O contents, and Th concentrations. Values for Ce should typically correlate with La as these elements have essentially the same geochemical behavior, however sample MRGC, and to a lesser extent CB-10-15 and CBD-11-07-17, begin to deviate from the typical trend seen in other samples. This deviation may be related

to the predominance of britholite relative to apatite in these samples, which may also be the cause of increased amounts of FeO, Na₂O, and Th in MRGC and CBD-11-07-17 relative to other samples.

Apatite generally gives near ideal values for APFU calculations, at 4.84 for the M site (should sum to 5), which is predominantly filled Ca^{2+} , and an average of 3.18 (should sum to 3) in the T site which is filled by P^{5+} . In britholite, these values are significantly more variable. The M site is typically 3.81, and may be filled by Ca^{2+} , REE^{3+} , Y^{3+} , Sr^{2+} , Mn^{2+} , Na^{+} and numerous other 1^{+} , 2^{+} or 3^{+} elements. The T site is generally 3.69, and can be filled by P^{5+} , As^{5+} , V^{5+} , Si^{4+} , S^{6+} , and B^{3+} (Pasero et al., 2010).

The low values for the M site are likely due to an analytically incomplete set of elements, as every element that can be present in this site was not analyzed for during EPMA work. The reason for the high values for the T site is currently uncertain. One source of variability for both sites may be due to mixing of britholite with apatite and/or the unknown Y-mineral. This can be seen in more irregular grains, such as Figure 4-13c, which have a sum of site T cations of 4.25 and site M cations at 3, whereas Figure 4-13d has a sum of site T cations of 3.24 and site M cations of 4.62, and is a much more homogeneous grain.

In terms of Cl versus F contents, apatite having an igneous texture contains little Cl, but all contain >2% F. Samples with a space filling texture (Group 2) contain elevated Cl and those that are a replacement type britholite (Group 3) have lower Cl contents, but variable F content - likely due to the mixture of both igneous apatite (high F) and secondary britholite (low F).

REE patterns for apatite and britholite are very similar, simply having higher REE values and a slight increase in LREE relative to MREE and HREE in britholite. This pattern is generally smooth, excluding Eu, with a negative slope. This is considerably different from the unknown Y-mineral, which has a positive slope and somewhat jagged appearance (Figure 4-12).

The similarity of britholite and apatite REE slopes, but difference in magnitude, along with the replacement textures clearly indicates that REE have been remobilized and reconcentrated with type-2 mineralization, rather than simply recrystallized. The britholite and unknown Y-bearing mineral likely would have combined effects on the whole rock REE patterns, which likely would control the small variations in REE slopes seen between different areas of the property, as discussed in Chapter 3.

Monazite

Monazite appears to be present as very fine rims on britholite or in fine grained mixtures with apatite and britholite. Due to this extremely fine grain size, EPMA analysis of pure monazite was not possible. Figure 4-7A shows the sites of two attempted analyses of monazite and Table 4-17 presents the results, which show significant portions of SiO₂ and CaO likely due to partial analysis of nearby britholite, but show increased REE values, with high P₂O₅ rather than high SiO₂, as seen in britholite or lower REE values of apatite.

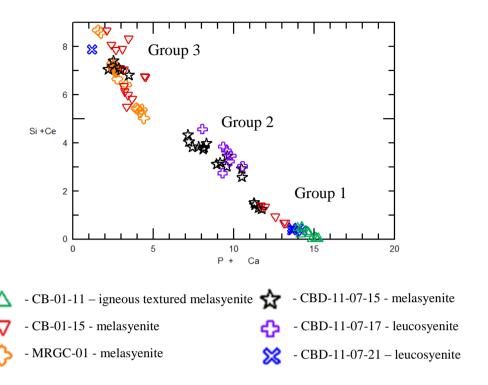


Figure 4-11: Plot of P₂O₅ + CaO versus Ce₂O₃ + SiO₂ for all analyses of apatite – britholite, with separate symbols representing each thin section.

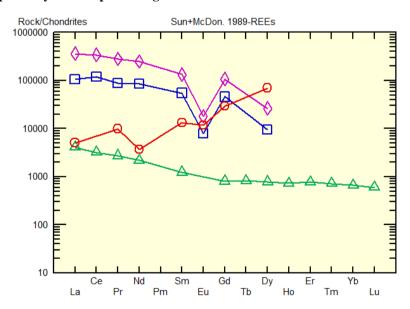


Figure 4-12: Whole rock analysis of sample CBD-10-01-15 (green) with representative analyses of britholite (purple), apatite (blue) and the unknown Y-mineral (red) from the same sample.

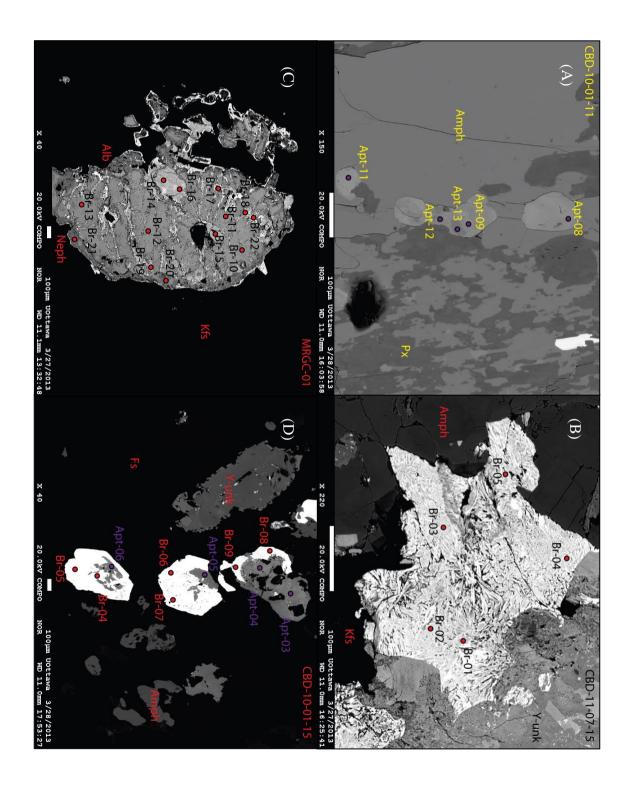


Figure 4-13: BSE images with locations of apatite and britholite analyses labelled. (A) Sample CBD-10-01-30, igneous textured melasyenite; (B) Sample CBD-11-07-15, leucosyenite bearing type-2 mineralization; (C) Sample MRGC-01, melasyenite; (D) Sample CBD-10-01-15, melasyenite. Associated results are presented Table 4-17 to 4-19.

Table 4-17: EPMA results of apatite, britholite and monazite from samples CBD-10-01-11, CBD-11-07-15, and CBD-11-07-17, respectively.

			eous textu	red melasy				BD-11-07-					1-07-17
Analysis #	Apt-07	Apt-08	Apt-09	Apt-11	Apt-12	Apt-13	Br-01	Br-02	Br-03	Br-04	Br-05	Mnz-01	Mnz-02
SiO2	1.53	1.75	0.64	1.26	0.01	0.09	11.84	10.83	12.70	11.17	12.16	5.80	8.91
TiO2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Al2O3	< 0.01	1.21	< 0.01	< 0.01	< 0.01	< 0.01	0.15	0.12	0.12	0.10	0.15	0.02	0.11
FeO	0.39	0.27	0.18	0.45	0.31	0.26	0.33	0.24	0.17	0.22	0.32	0.13	0.48
MnO	0.01	0.02	< 0.01	< 0.01	0.02	0.04	0.08	0.02	0.06	0.08	0.08	< 0.01	0.11
MgO	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.04	< 0.01	< 0.01	< 0.01	< 0.01
CaO	49.46	49.50	51.16	47.98	55.80	57.10	28.14	17.88	16.50	15.06	20.56	9.26	15.35
Na2O	0.75	0.76	0.66	0.72	0.07	0.02	0.29	0.23	0.22	0.27	0.27	0.34	0.39
K2O	0.01	<0.01	<0.01	0.02	0.01	<0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.04
P2O5	39.67	40.25	41.04	40.60	44.45	43.42	19.50	20.90	18.12	20.99	21.69	24.11	21.84
BaO	<0.01	0.12	0.09	0.03	1.49	0.35	0.07	0.20	0.02	0.16	0.18	0.06	0.09
SrO	0.28	<0.01	<0.01	2.61	0.03	<0.01	0.07	0.26	0.02	0.10	0.18	0.31	0.09
ZrO2	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Y2O3	0.18	0.11	0.06	0.11	0.02	0.02	2.36	2.85	3.94	2.97	2.99	1.10	1.42
La2O3	1.65	1.23	0.86	1.27	0.02	<0.01	4.47	7.44	7.26	8.54	6.47	16.71	12.21
Ce2O3	3.59	3.05	2.12	< 0.01	0.10	< 0.01	13.64	19.90	20.00	21.46	18.20	24.63	21.45
Nd2O3	1.82	3.02	0.87	2.23	0.17	0.12	8.74	11.07	11.49	11.28	10.02	8.94	9.02
Pr2O3	0.52	0.32	0.39	0.77	0.12	0.06	1.79	2.39	2.25	2.18	2.25	2.62	2.17
Sm2O3	0.23	0.03	0.15	0.32	0.01	< 0.01	1.77	1.91	2.05	1.83	1.79	1.48	1.61
Gd2O3	0.34	0.26	0.13	0.31	0.00	0.36	1.85	2.07	2.25	2.27	1.98	1.74	2.10
Eu2O3	0.00	0.06	< 0.01	< 0.01	1.69	0.00	0.26	0.10	0.22	0.12	0.05	0.00	0.09
Dy2O3	0.15	0.02	< 0.01	0.10	2.50	0.14	0.70	0.64	0.65	0.42	0.49	0.39	0.34
ThO2	0.05	0.06	< 0.01	< 0.01	< 0.01	< 0.01	0.19	0.22	0.11	0.21	0.15	0.54	0.72
UO2	< 0.01	0.32	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.05	0.07	0.09	< 0.01	0.04	0.08
PbO	0.02	0.04	0.27	0.19	0.02	0.03	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
SO3	< 0.01	0.03	< 0.01	0.03	< 0.01	< 0.01	0.30	0.09	0.12	0.16	0.30	0.05	0.10
F	2.51	2.60	2.44	2.60	2.29	2.37	1.68	1.13	1.48	1.30	1.21	0.83	1.23
Cl	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.29	0.17	0.14	0.13	0.17	0.05	0.10
Total	103.14	105.03	101.05	101.62	109.12	104.38	98.66	100.71	100.18	101.29	101.72	99.17	100.20
-O=F	1.45	1.51	1.41	1.51	1.33	1.37	0.97	0.65	0.86	0.75	0.70	0.48	0.71
Total	101.69	103.52	99.64	100.11	107.80	103.01	97.69	100.06	99.32	100.53	101.02	98.68	99.49
toms per for		103.32	99.04	100.11	107.80	103.01	97.09	100.00	99.32	100.55	101.02	96.06	99.49
-		0.29	0.10	0.21	< 0.01	0.01	2.42	2.20	2.75	2.20	2.46	1 15	5.25
Si	0.25	0.28	0.10	0.21		0.01	2.43	2.30	2.75	2.38	2.46	4.45	5.25
Ti	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Al	<0.01	0.23	<0.01	<0.01	<0.01	<0.01	0.04	0.03	0.03	0.02	0.04	0.07	< 0.01
Fe	0.05	0.04	0.02	0.06	0.04	0.03	0.06	0.04	0.03	0.04	0.05	0.10	0.01
Mn	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	0.01	0.01	0.01	0.11	0.01
Mg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ca	8.72	8.51	8.99	8.49	9.13	9.53	6.20	4.06	3.83	3.44	4.45	3.04	2.39
Na	0.24	0.24	0.21	0.23	0.02	0.01	0.12	0.09	0.09	0.11	0.11	0.74	0.63
K	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02	0.01
P	5.52	5.47	5.70	5.68	5.75	5.73	3.39	3.75	3.33	3.78	3.71	1.83	0.56
Ba	< 0.01	0.01	0.01	< 0.01	0.09	0.02	0.01	0.02	< 0.01	0.01	0.01	< 0.01	< 0.01
Sr	0.03	< 0.01	< 0.01	0.25	< 0.01	< 0.01	0.02	0.03	0.02	0.03	0.03	0.08	0.01
Zr	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.00	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Y	0.02	0.01	0.01	0.01	< 0.01	< 0.01	0.26	0.32	0.45	0.34	0.32	0.40	0.48
La	0.10	0.07	0.05	0.08	< 0.01	< 0.01	0.34	0.58	0.58	0.67	0.48	0.73	1.06
Ce	0.22	0.18	0.13	< 0.01	0.01	< 0.01	1.03	1.55	1.59	1.67	1.35	1.69	2.48
Nd	0.11	0.17	0.05	0.13	0.01	0.01	0.64	0.84	0.89	0.86	0.72	0.94	1.29
Pr	0.03	0.02	0.02	0.05	0.01	<0.01	0.13	0.19	0.18	0.17	0.17	0.22	0.30
Sm	0.01	< 0.01	0.01	0.02	<0.01	<0.01	0.13	0.14	0.15	0.17	0.12	0.14	0.19
Gd	0.01	0.01	0.01	0.02	<0.01	0.02	0.13	0.14	0.16	0.16	0.12	0.14	0.19
Eu	<0.01	< 0.01	<0.01	<0.02	0.09	<0.01	0.13	0.13	0.10	0.10	<0.13	<0.01	0.20
Dy	0.01	<0.01	<0.01	0.01	0.12	0.01	0.05	0.04	0.05	0.03	0.03	0.05	0.07
Th	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	0.01	0.01	0.01	0.01	0.09	0.10
U	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	0.02	0.04
Pb	< 0.01	< 0.01	0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01
S	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.02	0.02	0.05	0.01	< 0.01
F	1.31	1.32	1.26	1.36	1.11	1.17	1.09	0.76	1.02	0.88	0.77	1.33	1.49
Cl	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.10	0.06	0.05	0.05	0.06	0.01	0.02
	16.63	16.59	16.58	16.59	16.38	16.55	16.25	14.98	15.28	14.84	15.08	16.21	16.58

Table 4-18: EPMA results of britholite from sample MRGC-01.

						GC-01- M					1		
Analysis #	Br-10	Br-11	Br-12	Br-13	Br-14	Br-15	Br-16	Br-17	Br-18	Br-19	Br-20	Br-21	Br-22
SiO2	30.56	30.34	30.76	29.63	27.98	18.76	24.41	16.73	22.88	14.85	28.49	30.31	17.27
TiO2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Al2O3	0.01	< 0.01	< 0.01	< 0.01	0.07	0.01	0.57	0.71	1.21	0.09	0.01	0.02	0.76
FeO	4.40	4.13	4.33	4.10	4.93	3.56	4.60	3.42	4.18	2.97	4.00	4.12	3.72
MnO	4.94	4.39	4.90	4.75	5.15	6.54	6.20	4.07	2.26	3.13	3.93	3.78	4.05
MgO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.05	0.04	0.02	0.01	< 0.01	0.01	0.06
CaO	2.81	2.22	3.09	2.49	3.73	5.51	3.46	4.39	4.44	4.32	1.27	1.32	4.21
Na2O	2.38	1.87	2.37	1.68	0.64	0.72	0.50	0.11	0.05	0.00	0.29	0.55	0.08
K2O	0.01	0.02	< 0.01	< 0.01	0.11	0.26	0.43	0.10	0.12	0.07	0.03	0.05	0.10
P2O5	12.24	12.78	11.95	13.13	8.53	16.64	10.60	16.68	12.24	17.26	13.73	12.68	16.34
BaO	0.02	< 0.01	< 0.01	< 0.01	< 0.01	0.17	0.04	0.05	0.04	< 0.01	< 0.01	0.02	0.02
SrO	0.05	0.02	0.02	< 0.01	< 0.01	0.06	<0.01	0.05	<0.01	0.02	< 0.01	0.01	0.04
ZrO2	0.26	0.45	0.25	0.03	<0.01	0.13	<0.01	< 0.01	0.10	0.07	2.21	1.96	< 0.01
Y2O3	2.59	3.41	2.22	2.95	3.85	2.31	2.94	2.59	3.83	3.31	2.57	2.74	2.72
	10.97	9.29	11.53		9.84		11.56		12.87		7.59	7.18	16.83
La2O3				11.06		13.64		16.15		16.71			
Ce2O3	14.74	15.00	15.39	13.99	15.62	17.36	16.68	19.18	17.72	19.22	14.38	13.95	19.69
Nd2O3	4.22	5.45	3.97	4.39	5.50	4.18	5.08	4.71	5.63	5.60	6.26	6.55	4.73
Pr2O3	1.03	1.31	1.04	1.10	1.41	1.36	1.53	1.60	1.40	1.39	1.35	1.59	1.04
Sm2O3	0.52	0.88	0.45	0.66	1.08	0.49	0.82	0.56	0.77	0.78	1.06	1.14	0.41
Gd2O3	1.15	1.36	1.18	1.21	1.60	1.22	1.44	1.29	1.26	1.53	1.40	1.31	1.31
Eu2O3	0.12	< 0.01	0.05	0.09	0.03	0.01	< 0.01	0.01	0.10	0.02	0.05	0.08	0.21
Dy2O3	0.53	0.43	0.47	0.51	0.64	0.34	0.69	0.27	0.46	0.62	0.22	0.39	0.25
ThO2	1.27	0.85	1.27	1.15	2.09	1.33	2.31	1.02	1.16	0.85	0.46	0.65	1.27
UO2	0.18	0.07	0.23	0.09	< 0.01	0.19	< 0.01	0.16	0.16	0.18	0.20	0.20	0.08
PbO	0.04	0.03	0.04	0.08	0.17	0.01	< 0.01	< 0.01	0.02	0.08	0.09	0.04	< 0.01
SO3	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	0.02
F	< 0.01	0.03	0.07	0.05	0.10	0.10	0.08	0.01	0.02	0.06	0.05	0.11	0.07
Cl	< 0.01	0.01	< 0.01	< 0.01	0.01	0.01	< 0.01	0.01	0.02	0.01	0.01	0.01	0.01
Total	95.02	94.34	95.58	93.14	93.08	94.91	94.00	93.90	92.95	93.17	89.67	90.76	95.30
-O=F	0.00	0.02	0.04	0.03	0.06	0.06	0.04	0.01	0.01	0.03	0.03	0.07	0.04
Total	95.02	94.32	95.54	93.11	93.02	94.86	93.95	93.89	92.95	93.14	89.64	90.70	95.26
Atoms per for		74.52	75.54	75.11	75.02	74.00	75.75	75.07	72.75	75.14	07.04	70.70	75.20
Si	6.04	6.02	6.08	5.94	6.06	4.02	5.33	3.72	5.00	3.41	5.87	6.16	3.81
Ti	< 0.01		< 0.01		< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
		<0.01		<0.01									
Al	<0.01	<0.01	<0.01	<0.01	0.02	<0.01	0.15	0.19	0.31	0.02	<0.01	0.01	0.20
Fe	0.73	0.68	0.72	0.69	0.89	0.64	0.84	0.64	0.76	0.57	0.69	0.70	0.69
Mn	0.83	0.74	0.82	0.81	0.95	1.19	1.15	0.77	0.42	0.61	0.69	0.65	0.76
Mg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02	0.01	0.01	< 0.01	< 0.01	0.00	0.02
Ca	0.60	0.47	0.66	0.53	0.87	1.27	0.81	1.05	1.04	1.06	0.28	0.29	0.99
Na	0.91	0.72	0.91	0.65	0.27	0.30	0.21	0.05	0.02	< 0.01	0.12	0.22	0.04
K	< 0.01	< 0.01	< 0.01	< 0.01	0.03	0.07	0.12	0.03	0.03	0.02	0.01	0.01	0.03
P	2.05	2.15	2.00	2.23	1.57	3.02	1.96	3.14	2.27	3.36	2.40	2.18	3.05
Ba	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Sr	0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Zr	0.02	0.04	0.02	< 0.01	< 0.01	0.01	< 0.01	< 0.01	0.01	0.01	0.22	0.19	< 0.01
Y	0.27	0.36	0.23	0.31	0.44	0.26	0.34	0.31	0.45	0.41	0.28	0.30	0.32
La	0.80	0.68	0.84	0.82	0.79	1.08	0.93	1.33	1.04	1.42	0.58	0.54	1.37
Ce	1.07	1.09	1.11	1.03	1.24	1.36	1.33	1.56	1.42	1.62	1.09	1.04	1.59
Nd	0.30	0.39	0.28	0.31	0.43	0.32	0.40	0.37	0.44	0.46	0.46	0.48	0.37
Pr	0.07	0.09	0.07	0.08	0.11	0.11	0.12	0.13	0.11	0.12	0.10	0.12	0.08
Sm	0.04	0.06	0.07	0.05	0.08	0.04	0.12	0.13	0.06	0.12	0.10	0.12	0.08
Gd	0.04	0.06	0.03	0.05	0.08	0.04	0.10	0.10	0.06	0.06	0.08	0.08	0.03
					<0.12								
Eu	0.01	<0.01	<0.01	0.01		<0.01	<0.01	<0.01	0.01	0.00	<0.01	0.01	0.02
Dy	0.03	0.03	0.03	0.03	0.04	0.02	0.05	0.02	0.03	0.05	0.01	0.03	0.02
Th	0.06	0.04	0.06	0.05	0.10	0.07	0.12	0.05	0.06	0.04	0.02	0.03	0.06
U	0.01	< 0.01	0.01	< 0.01	< 0.01	0.01	< 0.01	0.01	0.01	0.01	0.01	0.01	0.00
Pb	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.01	< 0.01	< 0.01
S	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.00	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
F	< 0.01	0.02	0.04	0.03	0.07	0.07	0.05	0.01	0.01	0.04	0.03	0.07	0.05
C1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.00	< 0.01	< 0.01	< 0.01
Total	13.92	13.67	14.00	13.66	14.08	13.97	14.09	13.53	13.59	13.42	13.04	13.19	13.59

Table 4-19: EPMA results of apatite and britholite from sample CBD-10-01-15.

				CBD-10-01	1-15- Mela:	syenite				
Analysis #	Apt-03	Apt-04	Apt-05	Apt-06	Br-04	Br-05	Br-06	Br-07	Br-08	Br-09
SiO2	2.23	3.64	1.48	3.32	20.94	20.29	18.02	17.85	20.21	18.35
TiO2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Al2O3	< 0.01	0.02	< 0.01	< 0.01	0.14	< 0.01	< 0.01	< 0.01	0.09	0.10
FeO	< 0.01	0.02	< 0.01	< 0.01	0.03	< 0.01	0.02	0.01	0.00	0.04
MnO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.04
MgO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
CaO	37.96	35.01	41.29	33.09	6.82	9.15	11.79	11.65	7.03	5.90
Na2O	2.68	2.67	2.42	2.42	1.19	0.92	1.22	1.31	1.23	0.56
K2O	< 0.01	< 0.01	< 0.01	0.02	0.03	< 0.01	< 0.01	0.01	0.05	0.08
P2O5	36.01	33.09	37.79	32.42	2.01	2.40	6.34	6.80	3.03	7.12
BaO	0.11	0.01	< 0.01	0.10	< 0.01	0.09	0.12	0.11	< 0.01	0.10
SrO	0.25	0.24	0.22	0.14	0.29	< 0.01	0.11	<0.01	0.16	0.15
ZrO2	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Y2O3	1.12	1.20	0.93	1.30	2.31	2.24	2.07	1.94	2.22	2.23
La2O3	2.95	4.12	2.82	5.49	12.38	11.51	11.24	11.82	10.81	10.03
Ce2O3	8.52	10.24	6.62	11.38	25.78	27.23	25.31	25.75	25.87	24.40
Nd2O3	4.67			5.77	13.16	13.27	12.33			
		5.61	4.20					11.88	13.63	13.53
Pr2O3	0.98	1.12	0.93	1.20	3.20	3.28	2.87	2.62	3.22	3.13
Sm2O3	0.97	1.21	0.78	1.15	2.18	2.22	2.09	1.92	2.10	2.36
Gd2O3	1.08	1.22	0.66	1.37	2.53	2.40	2.48	2.31	2.45	2.53
Eu2O3	0.05	0.04	<0.01	0.07	0.02	0.06	0.18	0.16	<0.01	0.12
Dy2O3	0.28	0.40	0.40	0.39	0.65	0.73	0.78	0.58	0.79	0.77
ThO2	<0.01	0.03	<0.01	0.05	1.33	1.31	0.85	0.80	1.19	1.43
UO2	0.04	0.04	0.06	0.12	0.25	0.58	0.48	0.43	0.51	0.38
PbO	< 0.01	0.09	< 0.01	< 0.01	0.03	0.01	< 0.01	0.02	0.02	< 0.0
SO3	< 0.01	< 0.01	< 0.01	0.05	0.04	< 0.01	< 0.01	0.01	0.09	0.20
F	2.14	2.15	2.21	2.79	2.15	1.27	1.39	1.46	2.17	0.81
C1	0.01	< 0.01	0.01	0.01	0.03	0.02	0.04	0.01	0.02	0.01
Total	102.05	102.18	102.83	102.64	97.48	98.97	99.73	99.47	96.89	94.38
-O=F	1.24	1.24	1.28	1.62	1.24	0.74	0.80	0.85	1.26	0.47
Total	100.81	100.94	101.55	101.03	96.23	98.23	98.93	98.62	95.63	93.91
toms per for	mula unit									
Si	0.40	0.66	0.26	0.62	5.57	5.29	4.47	4.42	5.36	4.74
Ti	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0
Al	< 0.01	< 0.01	< 0.01	< 0.01	0.04	< 0.01	< 0.01	< 0.01	0.03	0.03
Fe	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01
Mn	< 0.01	< 0.01	< 0.01	< 0.01	0.00	< 0.01	< 0.01	< 0.01	< 0.01	0.01
Mg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0
Ca	7.20	6.84	7.62	6.60	1.95	2.56	3.14	3.09	2.00	1.63
Na	0.92	0.94	0.81	0.87	0.61	0.46	0.59	0.63	0.63	0.28
K	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	0.02	0.03
P	5.40	5.11	5.51	5.11	0.45	0.53	1.33	1.42	0.68	1.56
Ba	0.01	< 0.01	< 0.01	0.01	< 0.01	0.01	0.01	0.01	< 0.01	0.01
Sr	0.03	0.03	0.02	0.02	0.04	< 0.01	0.02	< 0.01	0.02	0.02
Zr	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.0
Y	0.11	0.12	0.09	0.13	0.33	0.31	0.27	0.26	0.31	0.31
La	0.19	0.28	0.18	0.38	1.22	1.11	1.03	1.08	1.06	0.96
Ce	0.55	0.68	0.42	0.78	2.51	2.60	2.30	2.33	2.51	2.31
Nd	0.30	0.37	0.26	0.38	1.25	1.24	1.09	1.05	1.29	1.25
Pr	0.06	0.07	0.06	0.08	0.31	0.31	0.26	0.24	0.31	0.29
Sm	0.06	0.08	0.05	0.07	0.20	0.20	0.18	0.16	0.19	0.29
Gd	0.06	0.08	0.03	0.07	0.20	0.20	0.18	0.10	0.19	0.21
	< 0.01		< 0.04							
Eu		<0.01		<0.01	<0.01	0.01	0.02	0.01	<0.01	0.01
Dy	0.02	0.02	0.02	0.02	0.06	0.06	0.06	0.05	0.07	0.06
Th	<0.01	<0.01	<0.01	<0.01	0.08	0.08	0.05	0.04	0.07	0.08
U	<0.01	<0.01	<0.01	<0.01	0.01	0.03	0.03	0.02	0.03	0.02
Pb	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.0
S	< 0.01	< 0.01	< 0.01	0.01	0.01	< 0.01	< 0.01	< 0.01	0.02	0.04
F	1.20	1.24	1.20	1.64	1.81	1.05	1.09	1.14	1.82	0.66
Cl	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.01	0.02	0.01	0.01	0.01
Total	16.50	16.53	16.53	16.82	16.70	16.07	16.15	16.16	16.64	14.7

CHAPTER 5: GEOCHRONOLOGY

U-Pb geochronology was applied with the goals of determining: (i) the primary igneous age of the RWIS, and it's regional geological context and; (ii) whether or not the REE mineralization is approximately the same age as the RWIS host rocks, or was it occurred during a later event, such as the Grenvillian Orogeny.

Sample Selection

Three of the samples selected for U-Pb dating were taken from one site on the property (Figure 5-1; blue dot). In this location, within a small area, a contact is seen between the Letitia Lake Group (LL-GC-01) and the Red Wine Oversaturated Suite (RWOS-01), and another between the Oversaturated and Undersaturated Red Wine (RWUS-01) members. This area is highly sheared, obscuring original relationships. However, all three units occur in close proximity. Approximately 1 m of channel was cut for each unit, and then processed by the method outlined below.

Two geochronology samples were also selected from areas of high grade type-2 mineralization, one each on the Merlot (RWMR) and Cabernet (RWCB) Prospects (Figure 5-1; red dots). These two areas were selected to determine the age of the mineralization relative to the intrusion as a whole and to compare these two zones, since there are minor differences in trace-element geochemistry between them (see discussion in Chapter 3: Lithogeochemistry).

The final sample (CB-Eud-01) used for U-Pb dating was not processed in the same manner as the others. This sample was selected from a channel sample to obtain grains of eudialyte

for use as a potential geochronometer. Due to the abundance of eudialyte and the small size of the sample, it was hand ground with a mortar and pestle and then the cleanest, clearest grains of eudialyte were selected using tweezers and a microscope. As noted previously (Wu et al., 2010), eudialyte can be used as a geochronometer but commonly contains a large amount of common Pb, so successful dating of this mineral at Red Wine was initially uncertain.

Sample Processing

Except for CB-Eud-01, the samples were washed, split in a hydraulic splitter or cut with a wet saw, crushed into small (less than ~3 cm) pieces in a jaw crusher, and ground into a fine powder using a BICO disk mill. A heavy mineral concentrate was then created using a Wilfley table to remove light minerals and larger pieces that were not sufficiently crushed in the disk mill. The heavy mineral concentrate was then passed through the heavy liquid methylene iodide to collect the densest minerals, followed by a Frantz magnetic separator to collect the least magnetic grains. In general, this process is used to collect the highest quality zircon grains, but also permitted collection of other minerals of interest since limited zircon was expected in this case. From the mineral separates, the clearest, cleanest grains were selected using a microscope and tweezers.

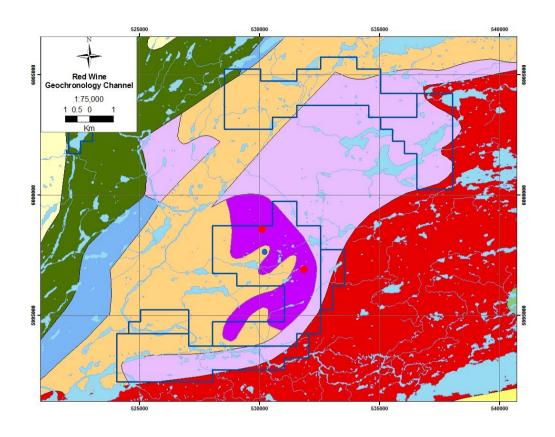


Figure 5-1: Locations of samples used for U-Pb geochronology. The blue symbol represents the area where a contact was inferred between the LLG, RWO, and RWU. The red symbols represent the Merlot (Northern) and Cabernet (Southern) Prospects (map from Wardle et al., 1997).

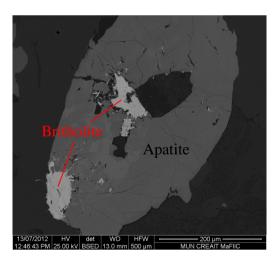


Figure 5-2: Apatite grain which is partially altered to britholite. SEM-BSE image of sample CB-01-15.

Sample processing was initially targeted to obtain zircon but, after processing, only the LLG sample was found to contain any. This was not entirely unexpected since against rocks commonly lack zircon and titanite, which are the most widely used for U-Pb dating. Thus, alternative minerals that have suitable sites for incorporation of U in their structure were selected in order to attempt to date these units.

Apatite was found in all heavy mineral separates and, in most samples, it occurs as clean euhedral grains. Apatite can contain U and be used as a geochronometer, but may contain large amounts of common Pb that may cause difficulties in obtaining accurate ages (Chew et al., 2011). In addition to apatite, both the RWO and RWU samples contain an as yet unidentified clear yellow mineral (Ti-REE bearing silicate) which occurred predominantly as large rounded grains. Due to similarities with titanite, this mineral was collected for geochronological purposes.

In both the RWCB and RWMR samples, apatite appears to be progressively replaced by britholite. Some very clear and clean grains of apatite are present, but some have varying amounts of yellow staining, as well as partial to complete replacement by dark yellow to orange britholite. This is seen in thin section sample CB-01-15 from the Cabernet Prospect, illustrated in Figure 5-2. Texturally, britholite represents a later phase of mineralization relative to igneous crystallization. Both apatite and britholite grains were selected to determine their ages.

The cleanest grains of each of the minerals noted above were selected and placed on a grain mount for a preliminary analysis by SEM in order to determine if they contain significant

U. Although small, many of the grains indicated spikes for U and were deemed worthwhile to continue processing for U-Pb TIMS analysis.

The pre-selected grains were washed in HNO₃ and doubly distilled H₂O in order to clean any foreign Pb off the surface of the grains. An isotopic tracer (spike) with a known ²⁰⁵Pb/²³⁵U ratio was added. After this, the samples were loaded into Teflon dissolution bombs, as described by Krogh (1973), with either HF or HCl depending on the mineral (HF for silicates, HCl for phosphates) and placed in an oven at 210°C for four days. After dissolution, the samples were processed through ion-exchange chemistry (Krogh, 1973) but using one tenth the reagent volumes listed, to collect the purified Pb and U from the samples. These were then collected in one drop of H₃PO₄, and then deposited with silica gel and dilute H₃PO₄, on single Re filaments for loading into the mass spectrometer.

The mass spectrometer used was a MAT 262, with faraday cups calibrated to NBS 981 Pb standard and an ion-counting SEM detector calibrated by measuring a known Pb isotope ratio. Pb ratios were measured by peak jumping on the ion counter, within a temperature range of 1400 to 1550°C, and U was measured using the range of 1550 to 1640°C and static double faraday collection. From various sets of measurements, the best data sets were combined to calculate an average for each ratio. The ratios were then corrected for Pb and U fractionation using values of 0.1%/amu for Pb and 0.03%/amu for U - which were determined from numerous measurements of NBS standards. Laboratory blanks of 1-2 picograms for Pb and 0.3 picograms for U were subtracted, and common Pb above blank was subtracted using the predicted composition for the age of the sample from the two-

stage model of Stacey and Kramers (1975). The decay constants from Jaffey et al. (1971) were used to calculate the ages.

Results

Among the minerals selected from separates; zircon, eudialyte and britholite yielded reliable U-Pb data. Apatite and the Ti-REE mineral contained essentially only common Pb. Each of the three minerals analyzed show a distinct data distribution and is interpreted separately.

Zircon

Ten analyses were carried out on zircon from sample LL-GC-01. The grains were small, grey, turbid and of poor optical quality. Each analysis consisted of 1 or 2 grains depending on size. Five of the ten analyses are plotted in Figure 5-3 and are 14 to 34% discordant on a simple lead-loss line. U contents these of zircon (Table 5-1) range from 400 to 1900 ppm, however these values are only approximate as the weights of the grains were estimated, but the U-contents are high nonetheless. The other five analyses were too contaminated with common Pb to be useable. The U-Pb data yield an upper intercept age for igneous crystallization of 1330 + 40/-20 Ma with a 30% probability of fit (Davis, 1982). The lower intercept of 612 ± 120 Ma may reflect a real geological event (faulting and fluid interactions) related to rifting that formed the Double Mer graben and the start of the opening of the Iapetus Ocean (Kamo et al., 1989), but this correlation is not strong due to the large uncertainty and the distance between the two areas.

Eudialyte

Eudialyte has been observed with an igneous texture in the rocks of the RWIS (as discussed in Chapter 2). This mineral contains significant Zr and therefore was anticipated to incorporate enough U by substitution into the Zr site to be datable. Two analyses, comprised of two large crystal fragments each were analyzed and contained 210 ppm and 352 ppm U respectively (Table 5-1). These analyses are concordant and overlapping-giving a weighted average 206 Pb/ 238 U age of 976 \pm 3 Ma using ISOPLOT (MSWD= 1.3, 95% confidence interval) (Figure 5-3).

This age does not coincide with the primary igneous texture of the grains as the RWO has been previously dated at 1337 + 10/-8 Ma (Gandhi et al., 1988) and the RWU has been interpreted to be only slightly younger, dated at 1317 ± 75 Ma using Rb/Sr (Blaxland and Curtis 1977). It is likely that Pb diffused out of eudialyte during a late thermal event in the Grenville Province that ended at ~980 Ma (Rivers, 2012), and therefore reset the isotopic system.

Whole rock K-Ar ages determined in the Groswater Bay terrane reflect a similar age as the metamorphic temperatures of the Grenvillian Orogeny were falling. These ages were determined to be 974 ± 13 Ma, 972 ± 18 , and 958 ± 19 (Gratsy et al., 1969). Some ages from this study were considerably lower, but these were speculated to have been altered and therefore produced younger ages. Titanite from the Groswater Day terrane was dated at 968 + 7/-8 Ma and 972 ± 4 Ma (Schärer, 1986). These ages were determined to indicate intense metamorphism at that time. These ages along with eudialyte of this study are in close agreement in representing the end of Grenvillian metamorphism.

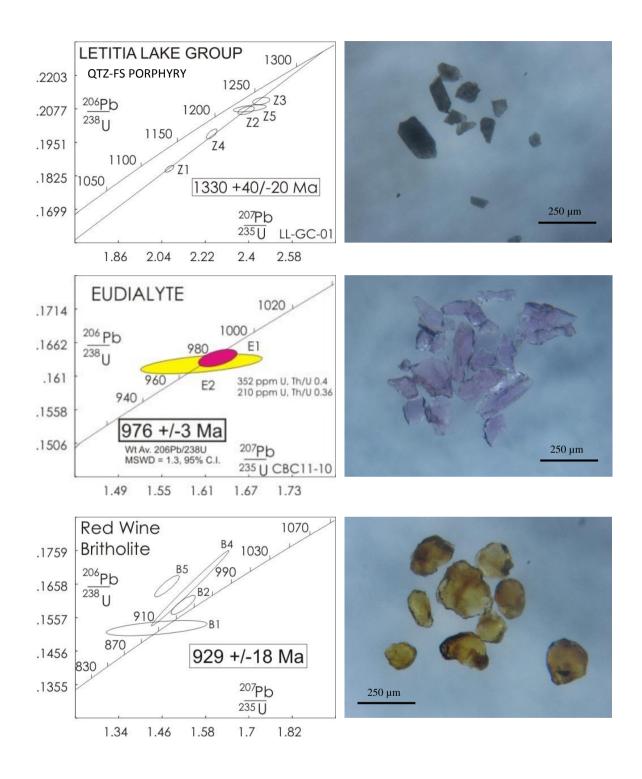


Figure 5-3: U/Pb concordia diagrams for LL-GC-01 zircon, CBC-11-10 eudialyte, and RWMR britholite, along with images of picked grains from each sample.

Britholite

As noted above, two samples (RWCB and RWMR) were used to attempt to constrain the age of type-2 mineralization. Of these two samples only RWMR was successful, RWCB contained very few, very small grains of pure britholite and these grains dissolved almost immediately during washing with nitric acid. Most heavy mineral grains in this sample were apatite showing minor alteration patches to britholite and the decision was made to not attempt further analyses of these since apatite dating from other samples was unsuccessful.

The grains collected from RWMR are predominantly yellow-orange britholite containing minor clear patches of probable apatite. One attempt at cleaning these grains with the chemical abrasion technique left only clear flakes of material, which when analyzed only contained 4 ppm U and high common Pb making a reliable age impossible to obtain. A second set of grains was washed in dilute HNO₃ for one minute, and then single grains were loaded for dissolution. Weights of these grains were estimated, and therefore U concentrations are relatively inaccurate (± 50%). One grain contained just 31 ppm U and 52 ppm Th, whereas the other three contained 9500-14000 ppm U and 16700-24000 ppm Th (Table 5-1). These very high U values allowed for calculation of an age despite considerable common Pb content.

The high U grains plot above concordia (reversely discordant) (Figure 5-3), with $^{206}\text{Pb}/^{238}\text{U}$ ages of 954 to 985 Ma. The $^{207}\text{Pb}/^{235}\text{U}$ ages are more closely clustered at 928 to 946 Ma for the four analyses, with a weighted average $^{207}\text{Pb}/^{235}\text{U}$ age of 929 \pm 18 Ma (MSWD= 2.3, 95% confidence interval). This may be the more reliable age considering that excess ^{206}Pb

may be present as an intermediate decay product due to the large amount of Th (Th/U 1.6 to 1.8). This bias in ²⁰⁶Pb/²³⁸U is comparable to what is commonly seen in geochronology studies using monazite, where data points may also plot above concordia (Schärer, 1984). The data spread may also be a result of variable amounts of relict apatite inclusions that reflect primary igneous crystallization age.

Comparable ages were also determined in the Groswater Bay terrane with K-Ar dating of biotite and muscovite; these ages were 917 ± 11 and 934 ± 12 respectively (Gratsy, 1969). Another U-Pb age that is comparable to the britholite samples analyzed here was determined by Schärer et al. (1986). This age was calculated with rutile from Cuff Island, in the Groswater Bay area. The rutile samples present a range from 920-930 Ma, and were speculated to have been formed from a late Grenvillian metasomatic phase which was likely rich in U.

Summary

The ages determined from these three different minerals yield several conclusions. The zircon age for igneous crystallization of the LLG (1330 \pm 40/-20 Ma) agrees with previous work (1327 \pm 4 Ma, Fryer in Thomas, 1981) for the age of the LLG and the lower intercept may correlate with rifting associated with the opening of the Iapetus Ocean. Although eudialyte preserves an igneous texture, the eudialyte age (976 \pm 3 Ma) is different from the igneous crystallization ages of the RWIS previously determined by the U-Pb zircon technique (1337 \pm 10/-8 Ma, Gandhi, 1988), but correlates well with late Grenvillian metamorphism and therefore appears to have been reset by elevated temperatures during this event. In agreement with textural evidence described in Chapter 2, britholite grains

indicate an even younger age (929 ±18 Ma) than the igneous host rock and regional metamorphism. This age is comparable to rutile dated from the Groswater Bay terrane, 920-930 Ma, which is suggested to have formed during a late Grenvillian metasomatic phase (Scharer et al, 1986). This age is younger than the reset age determined for eudialyte, and is most likely associated with later fluid migration during post-Grenvillian orogenic collapse, comparable to the Kwjibo sector in the Mantou Lake area of Quebec. The area is host to magnetite deposits that also contain elevated Cu, REE, Y, P, F, and Ag with Th, U, Mo, W, Zr and Au (Clark et al., 2005). A further comparison of these two areas is presented in Chapter 6.

Table 5-1: U-Pb data from zircon, eudialyte and britholite from the Red Wine Intrusive Suite.

			Concentration	tration	7	Measured		Corrected Atomic Ratios	Atomic	Ratios				Age [Ma]	ſa]	
Fraction		Weight [mg]	U	Pb rad	Total Common Pb	206Pb 204Pb	208Pb 206Pb	206Pb 238U		<u>207Pb</u> 235U		<u>207Pb</u> 206Pb		206Pb 238U	<u>207Pb</u> 235U	<u>207Рь</u> 206Рь
			[ppm]		[pg]											
		(a)		(b)												
LETITIA PORPHY	LETITIA LAKE QTZ-FS PORPHYRY (LL-GC-01)															
Z1 1	dark plate	0.002	1578	310	114	258	0.1504	0.18515	106	2.0714	150	0.08114	42	1095	1139	1225
Z2 1	sml equant dark	0.002	548	114	59	197	0.082	0.20705	126	2.3886	280	0.08367	84	1213	1239	1285
Z3 1	sml dark prm	0.002	400	88.4	48	181	0.1335	0.21063	112	2.4517	290	0.08442	94	1232	1258	1302
Z4 1	It grey dirty	0.002	801	153	60	268	0.0369	0.19824	150	2.2465	182	0.08219	48	1166	1196	1250
Z5 2	sml prm	0.002	1908	419	1169	59	0.1438	0.20785	110	2.404	560	0.08388	176	1217	1244	1290
EUDIAL	EUDIALYTE MINERALIZATION (CBC-11-10)	V (CBC-11-	-10)													
E1 2	clr pink grains	0.005	253	61.7	230	95	0.1723	0.1638	110	1.6271	218	0.07204	82	978	981	987
E2 2	clr grains	0.005	210	36	399	42	0.1534	0.16287	124	1.6046	686	0.07146	278	973	972	971
RED WIN	RED WINE BRITHOLITE (RWMRBRIT)	RBRIT)														
B1 1	grain	0.001	31	6.4	24	30	0.5257	0.15251	186	1.4452	1138	0.06873	500	915	908	891
B2 1	lrg dark orange	0.002	9567	2085	1093	193	0.5159	0.15951	234	1.5182	274	0.06903	68	954	938	900
В3 2	yel-orange	0.002	14641	3112	3066	117	0.4791	0.16457	928	1.5377	874	0.06777	44	982	946	861
В4 2	yel-orange	0.002	9967	2247	3926	70	0.5185	0.16518	264	1.4735	278	0.0647	60	985	920	765
Notes: Z=	Notes: Z= zircon, 1,2= number of grains, clr=clear, lt=light, prm=prism, sml=small, yel=yellow.	rains, clr=c	lear, It=li	ght, prm	≔prism, sml	=small, ye	l=yellow.									
Zircon wa	Zircon was physically abraded (cf. Krogh, 1982). (a) Weights were estimated, (b) radiogenic lead	Krogh, 198	2). (a) W	eights w	ere estimateo	d, (b) radio	genic lead	,-								
* Atomic	Atomic ratios corrected for fractionation, spike, laboratory blank of 1-2 picograms of common lead and initial common lead at the age of the sample calculated from the model	onation, sp	ike, labor	atory bla	ank of 1-2 pi	cograms	of common	lead and in	nitial co	mmon lea	d at the	age of the s	ample c	alculated	from the n	nodel

^{*} Atomic ratios corrected for fractionation, spike, laboratory blank of 1-2 picograms of common lead and initial common lead at the age of the of Stacey and Kramers (1975), and 0.3 picograms U blank. Two sigma uncertainties are reported after the ratios and refer to the final digits.

CHAPTER 6: DISCUSSION

As laid out in Chapter 1, there were four general questions to be addressed in this study. Here the results presented in chapters 2 through 5 will be used to discuss these four questions.

What is the nature of the Red Wine Intrusive Suite, the main rock forming minerals and their petrogenetic relationship?

The main minerals present are feldspar (perthite in igneous-textured samples), nepheline, pyroxene (aegirine, jadeite, and lesser omphacite), amphibole (K-arfvedsonite with lesser K-Fe-katophorite, and K-Fe-eckermannite) and aenigmatite, ± apatite, eudialyte, and rinkite, with local biotite and pectolite. Secondary minerals include cancrinite, natrolite, britholite and unknown very fine-grained alteration minerals. The K-feldspar, albite and aenigmatite are near end member compositions, with minimal amounts of non-stoichiometric elements. Pyroxene compositions typically range from aegirine to jadeite, with one sample containing a more Ca-rich variant produced by a sub-solidus reaction, possibly between amphibole, aenigmatite, and perthite. Amphibole is generally K-arfvedsonite, with minor outliers that may contain slightly more Ca or Al. Although igneous pyroxene is present in some samples, in most cases it occurs as metamorphic rims on amphiboles.

Either pyroxene/amphibole or feldspar +/- nepheline may predominate in different units. However, all rock types contain these same key minerals and are cumulate textured where they are not deformed, although they are typically highly sheared (Figure -6-1). This, along

with the absence of chilled margins at contacts, suggests that these rocks have been formed by cumulate layering in a large intrusive body, which has subsequently been variably deformed and recrystallized.

What are the main REE-bearing minerals and their relationships to each other and the host rocks?

Eudialyte may occur as patchy zoned grains in an igneous texture, commonly with bright rims (higher atomic number) in BSE images or as homogenous crystals exhibiting no zoning or rims (Figure 6-2). The absence of zoning is likely related to diffusion at high temperatures during metamorphism. Bright rims may be related to late magmatic processes or secondary hydrothermal processes, but this has not yet been determined. However, patchy zoned and rimmed examples of eudialyte tend to be more common in less deformed samples, whereas hydrothermal type-2 mineralization occurs primarily in deformed samples, which rarely contain eudialyte. This may indicate that rims formed during a late magmatic process, or a much older hydrothermal event. Autometasomatic processes are common in this type of intrusion (Schilling et al., 2009) and therefore represent a likely cause of these rims.

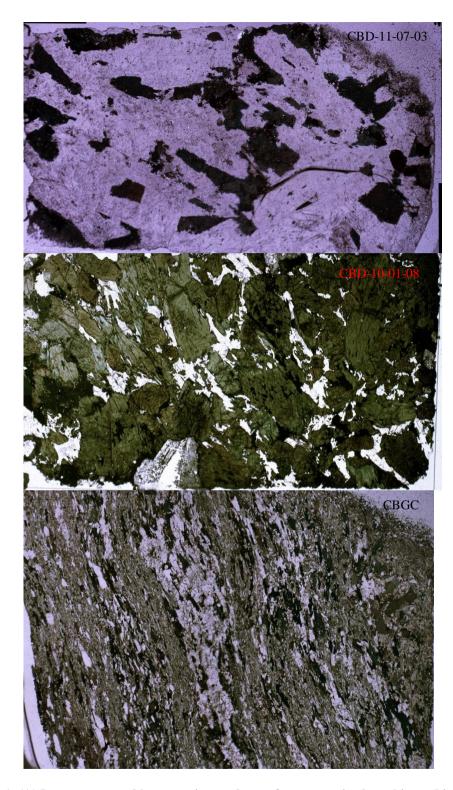


Figure -6-1: (A) Igneous-textured leucosyenite, made up of coarse-grained perthite and interstitial amphibole. (B) Igneous-textured melasyenite, made up of pyroxene which has largely replaced amphibole. (C) Sheared melasyenite, with fine bands of mafic minerals and slightly coarser felsic minerals. The height of each image is 25 mm.

Apatite is present as subhedral to euhedral crystals in igneous-textured melasyenite units, but is locally partially or totally replaced by britholite in deformed and/or altered examples (Figure 6-3). Apatite and britholite form a near continuous spectrum of composition primarily due to the coupled substitution of $Ca^{2+} + P^{5+} \leftrightarrow REE^{3+} + SiO_2^{4+}$, where apatite may contain almost no REE and britholite can contain >50 wt% REE. Increased alteration of nepheline and feldspar is almost always apparent in rocks containing britholite; in addition these rocks also contain sphalerite which is not seen in the absence of type-2 mineralization.

What are the ages of the units?

Three units were successfully dated using U-Pb geochronological methods and gave three different ages. The crystallization age of the LLG sample, using zircon, was determined to be 1330 +40/-20 Ma. The large uncertainty in this age is due to metamict zircon grains and elevated common Pb. This is an igneous age, which agrees with those determined for the LLG (Fryer, in Thomas (1981)) and the RWO (Gandhi, 1988) of 1327 +/- 4 Ma and 1337 +10/-8 Ma respectively. As noted in Chapter 1, Hill and Miller (1990) have provided evidence that the RWO and LLG are likely intrusive and extrusive counterparts of the same magmatic event.

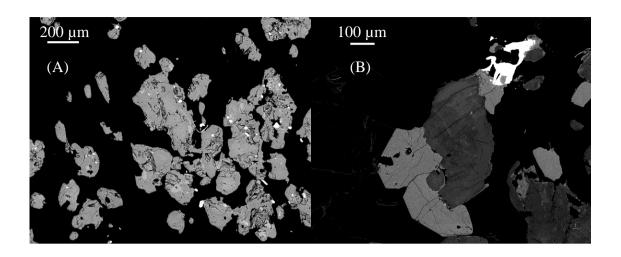


Figure 6-2: (A) Eudialyte crystals surrounded by feldspar (dark), no zoning or bright rims are present, minor inclusions (of a Zr-silicate) are the small bright areas and darker portions are likely damage due to polishing (CBD-11-07-12). (B) Eudialyte with faint patchy zonation (centre) associated with aenigmatite, light grey, feldspar (dark) and minor sphalerite (brightest grain) from sample CBD-10-01-30.

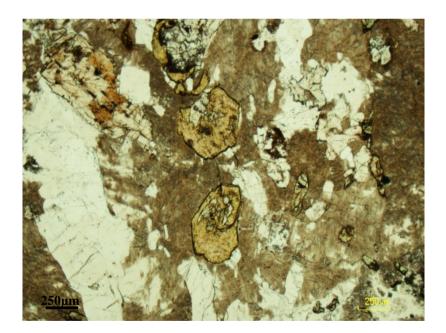


Figure 6-3: Euhedral apatite crystals which have been almost completely replaced by britholite, in a highly altered unit (sample (CBD-10-01-15). Clear portions are remnant apatite and yellow portion is britholite, grains are surrounded by very fine grained alteration minerals.

A direct igneous age for the RWU was not successfully determined, but it is believed to be closely related, but slightly younger than the RWO – for which a Rb/Sr age of 1317 +/- 75 Ma has been reported (Curtis and Currie, 1981).

The age determined from eudialyte U-Pb analysis is 976 ± 7.3 Ma and britholite has an age of 929 ± 1.3 Ma. The significance of these ages will be discussed in the following section.

How do these rocks fit into the regional geological history? How do their ages and petrogenetic history relate to the surrounding rocks?

The formation of these rocks and their mineralization can be connected to known geological events in the region, spanning many hundreds of millions of years. First, based on the peralkaline (agpaitic) composition of the RWIS, it is highly likely that they were derived from a mantle melt (Sorensen, 1997). This is quite common in rocks of this variety, which are also generally related to periods of extension (Curtis and Currie, 1981). In this case, the extensional event would have been a failed rift that also has been interpreted to be key in the formation of many units that have been mapped in southern Greenland such as the Igaliko and Gronnedal-Ika complexes of the Gardar Province (Blaxland and Curtis, 1977). Mantle-derived melts intruded into the crust are typically contaminated by partial melting

of nearby rocks (Riishuus et al., 2008). This is likely responsible for the creation of both the silica-oversaturated and -undersaturated components. It is also the reason why radiogenic isotopic studies were not carried out, as these types of rocks typically show mixed signatures between mantle and crustal rocks.

The model of Riishuus et al. (2008) for the Kangerlussuaq intrusion may be applicable in interpreting the spatial relationship between the over- and under-saturated components, since the oversaturated component is seen to envelope the undersaturated components in both the north and south Red Wine plutons (Curtis and Currie, 1981). As crustally contaminated silica-oversaturated units begin to crystallize from the magma, periodic reinjection of the mantle-derived melt would have permitted a silica-undersaturated portion to crystallize toward the core of the intrusive body (Riishuus et al., 2008) (Figure 6-4). Compositions and structures in the Kangerlussuaq intrusion are not identical to those of the RWIS - where deformation is far more prevalent. Therefore this comparison is only used in a very general sense to provide a conceptual understanding of initial zoning of the RWIS.

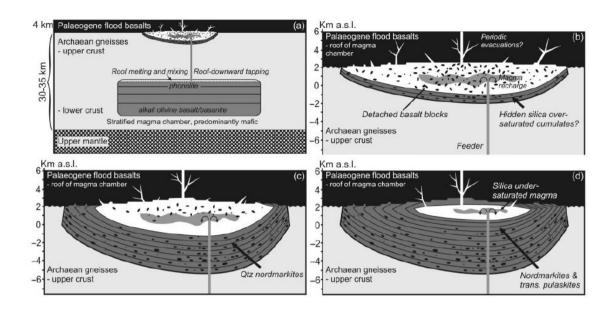


Figure 6-4: Schematic diagram for the formation of the Kangerlussuaq Intrusion in eastern Greenland from Riishuus et al. (2008). The general process involves repeated injections from a mantle derived, stratified magma chamber. The theorized method of emplacement includes top downward tapping of the magma chamber - which would have been contaminated by crustal sources at the top of the magma chamber leading to decreased levels of silica saturation with progressive injections into the upper intrusive body.

Due to the complex structure and deformation of the RWIS, it is very difficult to directly compare the two intrusions, but as a basic model comparison this seems plausible. The closest comparison may be with rocks encountered in drill hole CBD-10-01-03. These rocks are located nearly 400m to the southwest of the main Cabernet Prospect drill grid and appear to be the least deformed lithologies in the area. Supporting observations are the absence of significant type-2 mineralization and much more consistent Zr/Hf values (37-72, versus up to >200 for some Cabernet drill holes), both of which should indicate less deformation since fluid flow was likely structurally controlled. These rocks display a fairly continuous trend of increasing SiO₂ with depth, and when coupled with the map pattern (from Curtis and Currie, 1981) of the RWO surrounding the RWU (making the assumption that these units have not been overturned in this area), this could be support the Kangerlussuaq model of increasing SiO₂ away from the centre of the intrusion.

The RWO is closely linked to the LLG, as demonstrated by geochemical similarities (Chapter 3) as well as field relationships (Hill and Miller 1990). Therefore the age of the intrusion should be close to that of the U-Pb zircon ages from the LLG, at 1330 +40/-20 Ma.

As discussed previously, the calculated eudialyte age correlates with late Grenvillian metamorphism. These rocks have been interpreted to have reached amphibolite facies conditions (Curtis and Currie, 1981), and it is likely that temperatures remained elevated for some time after the peak; eudialyte would have recorded the time at which the temperatures dropped below its closure temperature. However, this closure temperature is not well established since eudialyte can crystallize during either igneous, 720-820°C, or

hydrothermal, <350°C, processes (Wu et al., 2010). Based on the observed textures, eudialyte in the RWIS is interpreted to be originally igneous in origin but reset by Grenvillian Metamorphism.

The age determined for britholite is 929 ± 18 Ma. This agrees with textures observed in thin section where very fine britholite and sphalerite are present in cracks within elongate grains of metamorphic pyroxene within a highly sheared unit indicating late or post-metamorphic crystallization (Figure 6-5). After the Grenvillian Orogeny, there was a period of orogenic collapse (Rivers, 2012), which likely would have put the rocks under extensional forces and provided the fluid pathways necessary to create this secondary mineralization.

One other event that can be linked to the data of this study is the extensive rifting related to the formation of the Double Mer graben (Gower et al., 1985) and the intrusion of the Long Range Dykes (Stukas and Reynolds, 1974; Owen et al, 1989). This was precursor activity that eventually led to the formation of the Iapetus Ocean and is interpreted to have occurred at approximately 600 Ma (Stukas and Reynolds, 1974), which coincides with the lower intercept of the LLG zircon U-Pb age at 612 ± 120 Ma. This activity would have been regionally extensive and may have initiated fluid flow that could have disturbed the U/Pb systematics in zircon present in the LLG volcanic rocks and caused the small amount of Pb loss manifested as the discordance of the LLG zircon, however, the large uncertainty of this data makes this correlation difficult to confirm.

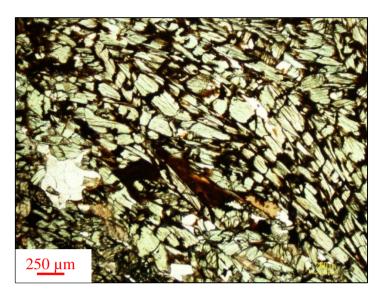


Figure 6-5: Pyroxene-rich melasyenite with secondary britholite (yellow-light brown) and sphalerite (dark red-brown), some larger grains are present between grains of pyroxene but very fine amounts also appear to be filling fractures in pyroxene grains (sample CBD-10-01-26).

Structural Influence on REE Mineralization

At the thin section scale, it was noted that in a banded mafic/felsic unit, the mafic portion is fractured (Figure 6-6) whereas the felsic component is not. This has not been directly documented on a larger scale (*i.e.* layers 10s of metres in thickness), but this observation, along with the presence of typically more elongate recrystallized grains present in melasyenite, indicates that mafic layers were deformed more readily - possibly during multiple stages of deformation, as both ductile and brittle deformation characteristics are observed. Therefore, these mafic sub-units may have been more easily subjected to increased hydrothermal fluid migration, indicated by the presence of type-2 mineralization only in deformed units.

Another indication that there was a strong structural control on the mineralizing fluids is the existence of significantly older eudialyte in the area. Since eudialyte will be altered/disturbed easily at relatively low temperatures (Wu et al., 2010), it is likely that it would have encountered very little contact with the fluids associated with type-2 mineralization. Eudialyte is not seen in type-2 bearing units, but has been seen in similar pyroxene rich rocks, indicating that if eudialyte had been initially present in these units it has been removed during either deformation/metamorphism or later hydrothermal activity.

Figure 6-6: Layered sample, predominantly pyroxene (top) and feldspar (below) in sample CBD-11-07-12. Pyroxene exhibits many fractures perpendicular to mineralogical layering, whereas feldspars do not appear to contain any fractures. Width= 25 mm.

As noted in the beginning of this chapter, igneous-textured melasyenite contains subhedral to euhedral apatite grains that have very low total REE - ~5% on average and as low as 0.68% for the 8 REE analyzed. In contrast, very deformed specimens originally contained euhedral apatite, but it now has been almost completely replaced by secondary britholite having an average of ~40% total REE. This is an important comparison and suggests that the melasyenite did not acquire elevated REE values from primary, igneous crystallization, but, rather was enriched during a secondary event. The occurrence of sphalerite in some samples may be an indicator of the presence of SO₄⁻ in the REE mobilizing fluid. Rolland et al (2003) discuss the mobility of REE in shear zones, and the presence of both SO₄²⁻ and PO₄²⁻ in this process. Both of these species may have played a part in the RWIS. Phosphorus was commonly present in situ - in apatite from igneous crystallization - but in other cases britholite crystallized in a cavity, requiring the mobilization of both the REE and P, and a reactive process to precipitate these elements in the form of britholite.

Although type-2 mineralization occurs within melasyenitic units, it is more closely associated with the subordinate felsic minerals present and/or apatite, as mentioned above. The felsic mineral is most commonly nepheline that is very highly altered, or entirely replaced. Nepheline would be expected to be the first mineral to be removed during fluid interaction because, even during surficial processes nepheline is very susceptible to weathering. Therefore, a combination of a mafic subunit, allowing for increased deformation and consequent greater fluid interactions, coupled with the presence of apatite or nepheline (especially nepheline) which allowed for creation of space for the secondary REE minerals, were required to generate type-2 mineralization.

Comparison to Other Deposits

Thor Lake (Nechalacho Deposit)- Northwest Territories

The Nechalacho deposit of the Thor Lake area is one of the largest deposits of HREE, Zr, and Nb in the world (Sheard, et al., (2012). The mineralization here is largely magmatic with some remobilization by hydrothermal fluids. The source of the magma is interpreted to have been derived from partial melting of metasomatized mantle, with possible fractional crystallization in order to further enrich the magma in incompatible elements. The deposit is hosted in the Nechalacho layered alkaline suite (NLAS), which intruded into the Thor Lake syenite (2094 \pm 10 Ma) of the Blachford Lake Intrusive Suite.

The NLAS is a silica-undersaturated intrusive body that displays an increase in alkalinity with depth. It is a dome shaped intrusion, with a sodalite cumulate roof zone, followed by a coarse-grianed aegirine (± arfvedsonite) syenite with layers of cumulate zircon, and foyaite aegirine nepheline syenite, with common gradational boundaries. Metasomatized rocks indicate remobilization of LREE within the area, with only micron scale movement of HREE. These rocks typically have vugs, which indicate loss of volume during alteration (Sheard et al., 2012).

The events that led to the Nechalacho deposit consisted of intrusion of the NLAS into the Thor Lake syenite, with repeated injections from 60-100 km depth where partial melting took place; layering in the intrusion was caused by these repeated injections along with fractional crystallization and convective overturn. Potassic alteration was caused by a fluid exsolved from the magma at depth, which also allowed for remobilization of the

LREE. Therefore, magmatic and secondary hydrothermal processes were both vital in the genesis of this deposit.

Although not spatially or temporally associated, the RWIS likely formed in a comparable manner to the NLAS, with repeated injections of a mantle derived melt to a higher level in the crust. Then the RWIS may have also experienced autometasomatism from exsolved fluids, which would likely be obscured by metamorphism, but was perhaps a factor in the area as it may be linked to the mineralization seen in the LLG (Miller, 1987). As with the NLAS, the LREE were more easily remobilized and concentrated in the RWIS. Although the absolute values for HREE have increased in britholite-bearing samples relative to eudialyte-bearing samples, the LREE/HREE ratio in britholite is also considerably higher.

Kwyjibo Sector- Quebec

Clark et al. (2005) described the Kwyjibo sector of the Manitou Lake area of the Grenville Province in eastern Quebec which is host to iron oxide-copper-gold type mineralization, enriched in Cu, REE, Y, P, F and Ag with notable values of Th, U, Mo, W, Zr, and Au. The Kwyjibo sector is hosted in the Canatiche Complex which is made up of orthogneiss, paragneiss, biotite-hornblende granite (dated at 1181 ± 2 Ma), and leucogranite (dated at 1175 ± 5 Ma). The leucogranite is the main host of mineralization, and displays characteristics of a typical A-type, anorogenic granite with enrichments of Ba, La, Ce, Zr, and Nb resembling peralkaline granite. This suite was subjected to a maximum of amphibolite facies metamorphism, with the peak at 1083-1076 Ma agreeing with the range interpreted across the Grenville Province of 1080-985 Ma (Gower and Krogh, 2002).

The mineralization is believed to be largely of secondary origin, involving replacement and fracture filling textures with associated potassic metasomatism. The high temperature, chloride-rich fluids that brought this metasomatism are believed to have been controlled by large scale active faults associated with orogenic collapse of the Grenvillian Orogeny. Ductile deformation is seen in the area with multiple phases interpreted, and some deposits hosted in mylonitic rocks. Titanite that was interpreted to be syn-mineralization has been dated at 972 ± 5 Ma. The authors note the likelihood that the fluid flow was driven by alkalic intrusions which are common in the Grenville between 985 and 955 Ma (Clark et al., 2005; Gower and Krogh, 2002), and dated in the Manitou Complex 1005-989 Ma with felsic and mafic dykes dated at >974 Ma (Clark et al., 2005).

The RWIS is comparable to the Kwyjibo sector in that it was initially enriched in REE and other HFSE, which were then reconcentrated at a much later time (100s of millions of years after intrusion, and 10s of millions after peak Grenvillian metamorphism). These two areas likely underwent very similar processes during/after the Grenvillian Orogeny. Although the ages of the two differ in terms of metamorphism and mineralization, this is expected as ages of peak metamorphism and post-tectonic processes differ throughout the Grenville Province (Gower and Krogh, 2002). The Kwyjibo sector reached peak metamorphic conditions earlier, and experience orogenic collapse/post-tectonic magmatism earlier, so it is understandable that mineralization ages are ~50Ma older than those in the RWIS.

Conclusion

During this study a great deal has been learned regarding the modes of REE-mineralization in the RWIS. This includes the interpretation that eudialyte was an original igneous phase controlled by repetitive cumulate layering and possible remobilization during partial melting during Grenvillian metamorphism, whereas type-2 (britholite) mineralization came significantly later, during or after Grenvillian deformation during orogenic collapse.

An apparent control on this secondary mineralization is that it occurs in highly sheared mafic sub-units, but is more closely associated with the lesser felsic minerals within these rocks. Any future work should involve extensive structural analysis. The use of oriented drill core would be helpful, as well as attempts at studying the contacts between units closely in order to better understand their spatial relationships. Attempts to map patterns of relative degrees of deformation may also be of use in determining distribution patterns for type-2 mineralization.

Melasyenites hosting type-2 mineralization have been interpreted to be cumulate layers that have typically been highly deformed, rather than, say, a late dyke phase. This is supported by observations in thin section of cumulate textures in igneous textured samples, some of which contain coarse perthite along with pyroxene and amphibole. This interpretation is also supported by similarities in compositions of amphibole and pyroxene between melasyenite and leucosyenite.

Along with cumulate layering, a general trend during the formation of the RWIS may have been increasing peralkalinity and silica under-saturation moving toward the centre of the crystallizing intrusion. This is primarily based on similarities to peralkaline complexes studied elsewhere and observations from least deformed areas, but the precise original morphology of this intrusion is difficult to interpret due to the subsequent intense and heterogeneous deformation.

The geochronological data have also yielded very useful results. Although the age of the RWU was not determined directly (presumably it is very close in age to the LLG at 1330 \pm 40/-20 Ma), interesting correlations have been made - using key REE minerals - to various large scale events in the region including the Grenvillian Orogeny (eudialyte was affected during this event and the U-Pb system was reset giving an age of 976 \pm 3 Ma), fluid migration during orogenic collapse (britholite determined to be 929 \pm 18 Ma) and possibly the initiation of spreading to create the Iapetus Ocean (lower intercept of the LLG zircon age, 612 \pm 120 Ma). These results are also quite interesting in a procedural sense - as both britholite and eudialyte have been infrequently used as U-Pb geochronometers, but both yielded reliable results here that can be linked to regional geological events.

REFERENCES

Bau, M. (1996). Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. *Contributions to Mineralogy and Petrology*. **123**, 323-333.

Blaxland, A.B. and Curtis, L.C. (1977). Chronology of the Red Wine alkaline province, central Labrador. *Canadian Journal of Earth Sciences*. **14**, 1940-1946.

Bonaccorsi, E., and Merlino, S. (2005). Modular microporous minerals: cancrinite and davyne group and C-S-H phases. *Reviews in Mineralogy and Geochemistry*. **57**, 241-290.

Budzyń, B., Harlov, D.E., Williams, M.L., and Jercinovic, M.J. (2011) Experimental determination of stability relations between monazite, fluorapatite, allanite, and REE-epidote as a function of pressure, temperature, and fluid composition. *American Mineralogist.* **96**, 1547-1567.

Chew, D.M., Sylvester, P.J., and Tubrett, M.N. (2011). U-Pb and Th-Pb dating of apatite by LA-ICPMS. *Chemical Geology*. **280**, 200-216.

Clark, T., Gobeil, A., and David, J. (2005). Iron oxide- copper- gold-type and related deposits in the Manitou Lake area, eastern Grenville Province, Quebec: variations in setting, composition, and style. *Canadian Journal of Earth Sciences*. **42**, 1829-1847.

Coulson, I.M. and Chambers, A.D. (1996). Patterns of zonation in rare-earth-bearing minerals in nepheline syenites of the north Qoroq Center, south Greenland. *The Canadian Mineralogist.* **34**, 1163-1178.

Cruft, E.F., and Robinson, W.G. (1958). Exploration during 1957 in an area adjacent to the Frobisher concession in Labrador. *Frobisher Limited, unpublished report-from Search Minerals Inc. data compilation files*.

Curtis, L.W., Currie, K.L., and Gittins, J. (1974). Red Wine Alkaline Province, Labrador. *Geological Survey of Canada Report of Activities*. **74-1**, 145-146.

Curtis, L.W., Currie, K.L., and Gittins, J. (1975). Petrology of the Red Wine alkaline complexes, central Labrador and a comparison with the Ilimaussaq complex, Southwest Greenland. *Geological Survey of Canada Report of Activities*. **75-1**, 265-270.

Curtis, L.W. and Currie, K.L. (1981). Geology and petrology of the Red Wine Alkaline Complex, central Labrador. *Geological Survey of Canada Bulletin.* **294**, 61 pages.

Curtis, L.W., and Gittins, J. (1979). Aluminous and Titaniferous Clinopyroxenes from Regionally Metamorphosed Agpaitic Rocks in Central Labrador. *Journal of Petrology*. **20**, 165-186.

Davis, D.W. (1982). Optimum linear regression and error estimation applied to U-Pb data. *Canadian Journal of Earth Sciences*. **19**, 2141-2149.

Evans, E.L. and Dujardin, R.A. (1961). A unique beryllium deposit in the vicinity of Ten Mile Lake, Seal Lake area, Labrador. *Geological Association of Canada, Proceedings*. **13**, 45-51.

Gandhi, S.S., Krogh, T.E., and Corfu, F. (1988). U-Pb zircon and titanite dates on two granitic intrusions of the Makkovik Orogen and a peralkaline granite of the Red Wine

Intrusive Conplex, central Labrador. *Geological Assocaition of Canada – Mineralogical Association of Canada- Canadian Society of Petroleum Geologists Program with Abstracts.* **13**, p.A42.

Gandhi, S. and Brown, A.C. (1971). Regional Geology of the Seal Lake area, Labrador (unpublished 1:250,000 scale map, prepared for Brinex Corp.)

Gieré, R., and Sorensen, S.S. (2004). Allanite and other REE-rich epidote-group minerals. *Reviews in mineralogy and geochemistry.* **56**, 431-493.

Gower, C.F., Erdmer, P., and Wardle, R.J. (1985). The Double Mer Formation and the Melville rift system, eastern Labrador. *Canadian Journal of Earth Sciences.* **23**, 359-369.

Gower, C.H., and Krogh, T.E. (2002). A U-Pb geochronological review of the Proterozoic history of the eastern Grenville Province. *Candian Journal of Earth Sciences*. **39**, 795-829.

Gratsy, R.L., Rucklidge, J.C., and Elders, W.A. (2005). New K-Ar age determinations on rocks from the east coast of Labrador. *Canadian Journal of Earth Sciences.* **6**, 340-344.

Harker, A. (1909). The natural history of igneous rocks. Macmillan. New York.

Hawthorne, F.C., and Oberti, R. (2006). On the classification of amphiboles. The *Canadian Mineralogist.* **44**, 1-21.

Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C., and Welch, M.D. (2012). Nomenclature of the amphibole supergroup. *American Mineralogist.* **97**, 2031-2048.

Heinrich E.W., and Quon, S.H. (1963). Neptunite from Seal Lake, Labrador. *Canadian Mineralogist.* **7**, 650-654.

Hill, J.D. and Miller, R.R. (1990). A review of middle Proterozoic epigenic felsic magmatism in Labrador, in Gower, C.F., Rivers, T., and Ryan, B., eds., Mid-Proterozoic Laurentia-Baltica: Geological Association of Canada, Special Paper 38, p. 417-431.

Hill, J.D., and Thomas, A. (1983). Correlation of two Helikian peralkaline granite-volcanic centres in central Labrador. *Canadian Journal of Earth Sciences*. **20**, 753-763.

Hynes, A., and Rivers, T. (2010). Protracted continental collision - evidence from the Grenville Orogen. *Canadian Journal of Earth Sciences*. **47**, 591-620.

Imbach, J., Brunet, F., Charpentier, T., and Virlet, J., (2002). Synthesis and NMR characterization (¹H and ³¹P MAS) of the fluorine-free hydroxlyapatite-britholite-(Y) series. *American Mineralogist.* **87**, 947-957.

Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C., and Essling, A.M. (1971). Precision measurement of half-lives and specific activities of ²³⁵U and ²³⁸U. *Physics Reviews*. **C4**, 1889-1906.

Johnsen, O., Ferraris, G., Gault, R.A., Grice, J.D., Kampf, A.R., and Pekov, I.V. (2003). The nomenclature of eudialyte-group minerals. *The Canadian Mineralogist.* **41**,785-794.

Kamo, S.L., Gower, C.F., and Krogh, T.E. (1989). Birthdate for the Iapetus Ocean? A precise U-Pb zircon and baddeleyite age for the Long Range dikes, southeast Labrador. *Geology.* **17**, 602-605.

Kogarko, L.N. (1974). *Problems of the genesis of agpaitic magmas*. Nauka, Moskva, 294 pages (in Russian).

Kogarko, L.N. and Romanchev, B.P. (1983). Phase equilibria in alkaline melts. *Internat*. *Geol. Rev.*, **25**, 534-46.

Kramm, I., and Kogarko, L.N. (1994). Nd and Sr isotope signatures of the Khibina and Lovozero agpaitic centres, Kola alkaline province, Russia. *Lithos*, **32**, 225-42.

Krogh, T.E. (1973). A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. *Geochimica et Cosmochimica Acta.* **37**, 485-494

Le Bas, M.J., LeMaitre, R.W., Streckeisen, A.L., and Zanettin, B. (1986). A chemical classification of volcanic rocks based on total alkali-silica diagram. *Journal of Petrology*. **27**, 745-750.

Macdonald, R., Baginski, B., Belkin, H.E., Dzierzanowski, H.E., and Jezak, L. (2008). REE partitioning between apatite and melt in a peralkaline volcanic suite, Kenya Rift Valley. *Mineralogical Magazine*. **72**, 1147-1161.

Miller, R.R. (1987). Relationship between Mann-type Nb-Be mineralization and felsic peralkaline intrusives, Letitia Lake project, Labrador. *Current Research Newfoundland Department of Mines and Energy.* **87-1**, 83-91.

Owen, J.V., Greenough, J.D., and Bellefontaine, K.A. (1989). Preservation of primary geochemical signatures in polymetamorphosed tholeiite: the Long Range dyke swarm, Newfoundland, Canada. *Lithos.* **24**, 55-64.

Pasero, M., Kampf, A.R., Ferraris, C., Pekov, I.V., Rakovan, J., and White, T.J. (2010). Nomenclature of the apatite supergroup minerals. *European Journal of Mineralogy*. **22**, 163-179.

Pearce, J.A., and Peate, D.W. (1995). Tectonic Implications of the composition of volcanic arc magmas. *Annual Review of Planetary Sciences*. **23**, 251-285.

Pichler, H. and Schmitt-Riegrag, C. (1997). Rock-forming minerals in thin section. Springer Publishing.

Riishuus, M.S., Peate, D.W., Tegner, C., Wilson, J.R., and Brooks, C.K. (2008). Petrogenesis of cogenetic silica-oversaturated and –undersaturated syenites by periodic recharge in a crustally contaminated magma chamber: the Kangerlussuaq Intrusion, East Greenland. *Journal of Petrology*. **49**, 493-522.

Rivers, T., Martignole, J., Gower, C.F., and Davidson, A. (1989). New tectonic divisions of the Grenville Province, southeast Canadaian Shield. *Tectonics*. **8**, 63-84.

Rivers, T., van Gool, J.A.M, and Connelly, J.N. (1993). Contrasting tectonic styles in the northern Grenville province: Implications for the dynamics of orogenic fronts. *Geology*. **21**, 1127-1130.

Rivers, T. (2012). Upper-crustal orogenic lid and mid-crustal core complexes: signature of a collapsed orogenic plateau in the hinterland of the Grenville Province. *Candian Journal of Earth Sceinces*. **49**, 1-42.

Rollinson, H. (1993). Using geochemical data: evaluation, presentation, interpretation.

Pearson Education Limited, New Jersey. Chapter 1: Geochemical data.

Romer, R.L., Scharer, U., Wardle, R.J., and Wilton, D.H.C. (1995). U-Pb age of the Seal Lake Group, Labrador: relationship to Mesoproterozoic extension-related magmatism of Laurasia. *Canadian Journal of Earth Sciences*. **32**, 1401-1410.

Ryabchikov, I.D., and Kogarko, L.N. (2006). Magnetite compositions and oxygen fugacities of the Khibina magmatic system. *Lithos*. **91**, 35-45.

Salvi, S., and Williams-Jones, A.E. (1990). The role of hydrothermal processes in the granite-hosted Zr, Y, REE deposit at Strange Lake, Quebec/Labrador: Evidence from fluid inclusions. *Geochimica et Cosmochimica Acta*. **54**, 2403-2418.

Schärer, U (1984). The effect of initial ²³⁰Th disequilibrium on young U-Pb ages: the Makalu case, Himalaya. *Earth and Planetary Science Letters*. **67**, 191-204.

Schärer, U., Krogh, T.E., and Gower, C.F. (1986). Age and evolution of the Grenville Province in eastern Labrador from U-Pb systematics in accessory minerals. *Contributions to Mineralogy and Petrology.* **94**, 438-451.

Schilling, J., Marks, M.A.W., Wenzel, T. and Markl, G. (2009). Reconstruction of magmatic to subsolidus processes in an agpaitic system using eudialyte textures and

composition: a case study from Tamazeght, Morocco. *The Canadian Mineralogist.* **47**, 351-365.

Schilling, J., Wu, F.-Y., McCammon, C., Wenzel, T., Marks, M. A.W., Pfaff, K., Jacob, D.E., and Markl, G. (2011). The compositional variability of eudialyte-group minerals.

Mineralogical Magazine. 75, 87-115.

Singh, S.K. and Kamineni, D.C. (1971). Mineralogy and textures of some cordierite-sillimanite rocks from Labrador, Canada. *Geological Magazine*. **108**, 439-444.

Singh, S.K. and Bonardi, M. (1972). Mossbauer resonance of arfvedsonite and aegirine-augite from the Joan Lake agaitic complex, Labrador. *Lithos.* **5**, 217-225.

Sorensen, H. (1997). The agnatic rocks – an overview. *Mineralogical Magazine*. **61**, 485-498.

Stacey and Krammers (1975). Approximation of terrestrial lead isotope evolution by a two-stage model. *Earth and Planetary Science Letters.* **26**, 207-221.

Stukas, V. and Reynolds, P.H. (1974). ⁴⁰Ar/³⁹Ar Dating of the Long Range Dikes, Newfoundland. *Earth and Planetary Science Letters*. **22**, 256-266.

Sun, S.S., and McDonough, W.F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. *Geological Society, London, Special Publications*. **42**, 313-345.

Thomas, A. (1981). Geology along the southwestern margin of the Central Mineral Belt. Mineral Development Division, Department of Mines and Energy, Government of Newfoundland and Labrador. Report **81-4**, 40 pages.

Upton, B.G.J., Parsons, P., Emeleus, C.H., and Hodson, M.E. (1996). Layered alkaline igneous rocks of the Gardar Province, South Greenland. Developments in Petrology 15. 331-363. Elsevier Science. Amsterdam.

van Nostrand, T. (2009). Geology of the Seal Lake Group, central Labrador (parts of NTS map areas 13K/5 and 6). *Current Research, Newfoundland and Labrador Department of Natural Resources, Geological Survey.* **09-1**, 249-270.

van Nostrand, T. and Lowe, D. (2010). Geology of the Seal Lake Group, central Labrador (parts of NTS map areas 13K/3, 4, 5 and 6). *Current Research, Newfoundland and Labrador Department of Natural Resources, Geological Survey.* **10-1**, 351-371.

van Nostrand, T. and Macfarlane, A. (2011). Geology of the Seal Lake Group, central Labrador (including parts of NTS map areas 13K/4, 5 and 12, and 13L/1, 8 and 9). Current Research, Newfoundland and Labrador Department of Natural Resources, Geological Survey. 11-1, 313-351.

van Nostrand, T. and Corcoran, C. (2013). Geology of the western Mesoproterozoic Seal Lake Group, central Labrador (including all of NTS map areas 13L/2 and 7 and parts of 13L/1, 3, 6, 8, 9, 10, 11, 14, 15 and 16 and 13E/14 and 15). *Current Research,*Newfoundland and Labrador Department of Natural Resources, Geological Survey. 13-1, 301-326.

Vandenberghe, R.E., de Resende, V.G., da Costa, G.M., and de Grave, E. (2010). Study of loss-on-ignition anaomalies found in ashes from combustion of iron-rich coal. *Fuel.*89, 2405-2410.

Wardle, R.J., Gower, C.F., Ryan, B., Nunn, G.A.G., James, D.T., and Kerr, A. (1997). Geological Map of Labrador; 1: 1 million scale. *Government of Newfoundland and Labrador, Department of Mines and Energy, Geological Survey*, Map 97-07.

Wu, F.-Y., Yang, Y.-H., Marks, M.A.W., Liu, Z.-C., Zhou, Q., Ge, W.-C., Yang, J.-J., Zhao, Mitchell, R.H., and Markl, G. (2010). In situ U-Pb, Sr, Nd, and Hf isotopic analysis of eudialyte by LA-(MC)-ICP-MS. *Chemical Geology*. **273**, 8-34.

APPENDIX A: PETROGRAPHY TABLE

10	med perthites, fine grains are highly sericitized	75	fine	1a	CB-01-15
minor	fine with minor med perthite	70	fine	1a	CB-01-14
minor	crs-vcrs. Carlsbad twins in some grains, one grain with intergrowth look	58	CIS	2b	CB-01-13
			fine-med	1c	CB-01-12
45	interstitial	10	crs	1c/3a	CB-01-11
15	mostly med grained, orange biref interstitial min	85	fine	1c	CB-01-10
minor	fine (recrystallized) med-crs perthite		med to crs	2a	CB-01-09
80	interstitial to px	10	med to crs	1c	CB-01-08
minor, in fi	fine elongate, no intergrowths as seen elsewhere	80	fine	2b	CB-01-07
minor	Alb ~=Ksp, neph 10%(of felsics)		fine (crs)	2a	CB-01-06
	crs		fine(crs)	3a	CB-01-05
	mostlye ksp, minor neph, med-crs perthites		fine	2a	CB-01-04
80	fine grained and appear to be altered	15	v.f to fine	1c	CB-01-03
minor	Albite>ksp>>neph	08	fine-med	2с	CB-01-02
minor	fine kspar/neph with med-crs perthites	50	fine-med	2c	CB-01-01
Px%	Note	Felsic %	Grain size	Rock type	Sample

15	common med-crs twinned grains, fine nontwinned grains	70	fine(med)	1b	CB-01-28
35	med-crs intergrowth and microcline/albite twinned grains surrounded by finer non-twinned or intergrown grains	65	fine-med	1a	CB-01-27
55	scattered crs intergrown grain, fine rextalized grains more common	15	fine(crs)	1c	CB-01-26
minor	some med intergrowths, fine-med t/o	60	fine-med	1a	CB-01-25
15	few intergrowths (well aligned), many carlsbad twins	60	fine	1a	CB-01-24
ري. د	albite twins common, microcline and intergrowths	55	fine-med	1b	CB-01-23
25	med, grains appear to be twinned(microcline and albite) rather than intergrown like many other samples	50	fine-med	1a	CB-01-22
20	crs intergrowths surrounded by mafics	55	fine (crs)	2a	CB-01-21
30	fine, common carlsbad twins in larger grains	40	fine (crs)	1a	CB-01-20
35	crs intergrowths, higher biref than usual. Lower biref clusters of smaller grains	45	fine (crs)	1a	CB-01-19
30	fine-med, commonly vf around grain boundaries of other felsics	45	fine (crs)	1a	CB-01-18
				1a	CB-01-17
		(1
Px%	Note	Felsic %	Grain size	Rock type	Sample CB_01_16

	crs perthitic grains, very little recrystallization	85	crs	2c	CBD-11-07-03
	fine interstitial grians, between larger amphiboles. Appear to be very stressed/damaged indicated by many lines of secondary fluid inclusions	5	med-crs	2a	CBD-11-07-02
5	fine-med somewhat polygonal crystals, possible recrystallized but no well defined foliation	80	fine-med	2bm	CBD-11-07-01
5	Many perthite grains, common altered grains as well	50	med-crs	1b	CB-01-36
minor	crs- some intergrowths, some single grains, commonly altered. Also rimmed by very fine felsic material (could be alt of rextal)	95	CL2	2a	CB-01-35
20	fine-med few intergrowths, becoming aligned	65	med	1a	CB-01-34
10	typical med range - fine grains surrounding perthites or large twinned xtals	75	med to crs	1b/2b	CB-01-33
60		20	fine-med	1c	CB-01-32
	fine rounded grains with common carlsbad twins, also med-crs perthites	80	fine	2a	CB-01-31
10	common albite, lesser vf grains	55	fine-med	1a	CB-01-30
minor	med with many inclusions. Kspar>albite	100	fine-med	2a	CB-01-29
Px%	Note	Felsic %	Grain size	Rock type	Sample

70	Caorse perthite within fine pyroxene matrix	20	fine (crs)	1c	CBD-11-07-15
5	Scattered medium grained perthites, but largely recrystallized into fine elongate feldpsar	80	fine-med	2b	CBD-11-07-14
65	Coarse perthites	25	crs	1c	CBD-11-07-13
	Near 80% in felsic bands, ~10 in pyroxene rich bands. Feldspar and lesser nepheline		fine (crs)	1a/2a	CBD-11-07-12
80	interstitial feldspar	5	med-crs	3a	CBD-11-07-11
50	med perthite, some very fine recrystallized grains	25	fine(crs)	3a	CBD-11-07-10
	mostly fine-med recrystallized feldspar, some remnant med grained perthite	80	med-crs	2b	CBD-11-07-09
	fine-med grained, mostly recrystallized. K-spar>albite	70	med-crs	2b-c	CBD-11-07-08
60	fine-med feldspar, K-feldpsar>albite	15	med	3a	CBD-11-07-07
30	very coarse perthite, with lesser broken/recrystallized feldspar	30	crs	2c	CBD-11-07-06
	mostly coarse perthites with some recrystallization around edges of grains	75	med-crs	2c	CBD-11-07-05
20	subhedral feldpsar	10	med-crs	3b	CBD-11-07-04
Px%	Note	Felsic %	Grain size	Rock type	Sample

5	fine-medium grained feldspar	85	fine-med	2b	CBD-11-07-22
10	Crs perthite	65	crs	2b	CBD-11-07-21
2.5	Hand specimen similar to above, but medium grained and less recrystallization. More common twinning visible	95	fine-med	5	CBD-11-07-20
	appears recrystallized. Large feldspar phenoscrysts with recrstal. Tails				
	very fine groundmass, select bands are slightly more coarse and	95	fine (crs)	5	CBD-11-07-19
	scattered throughout that exhibit carlsbad and albite twinning				
	fine recrystallized grains, moderately aligned. Some med grains	85	fine-med	2b	CBD-11-07-18
	to feldspar (slightly altered)				
minor	coarse feldspar and nepheline, nepheline generally looks dusty relative minor	95	crs	2a	CBD-11-07-17
	crs grains				
5	fine graiend, slight foliation, largely recrstallized with scattered med-	75	med	2b	CBD-11-07-16
Px%	Note	Felsic %	Grain size	Rock type	Sample

15 rimmed by px	15	fine needles along certain bands	CB-01-15
med/interstitial to felsics			CB-01-14
scattered med-crs grains	minor	vf needles	CB-01-13
			CB-01-12
	45		CB-01-11
		fine needles, present in patches	CB-01-10
light brown and dark green varieties		on egdes of amph	CB-01-09
10 small blebs remaining in middle of large px grains, also present on egdes of grains (?)	10	crs, appear to be replacing amph	CB-01-08
20 fine, int to felsics	20	vf needles	CB-01-07
	~25%		CB-01-06
crs/irregular		fine	CB-01-05
clustered, commonly with aen			CB-01-04
scattered crs grains with minor bands	5	v.f-fine clustered t/o	CB-01-03
20 green-brown and blue in xpl, fine grained clusters (replacement?)	20		CB-01-02
40 rimming/replacing Aen, green-brown to bluish	40	light green to yellow	CB-01-01
Note	Amph%	Note	Sample

15 irregular/int fine to med grains	15	fine bladed/needly grains	CB-01-28
scattered fine to med grains	minor	rich bands	CB-01-27
30 med-crs, dom in one area	30	fine elongated grains t/o	CB-01-26
fine-med, rimming aen			CB-01-25
	25	very fine elongate grains	CB-01-24
40 moslty fine, scattered crs grains	40		CB-01-23
25 med scatter t/o, associated (appears to be rimming) px	25	fine-med elongate grains	CB-01-22
25 fine-med, in mafic clusters	25	present in clusters with amph and aenigmatite	CB-01-21
30 fine	30	v.f-fine	CB-01-20
20 very dark green, mixed in clusters with px and a dark brown min	20	fine needles	CB-01-19
25 crs scattered t/o. very dark green	25	common on edges of amph, fine elongate grains	CB-01-18
			CB-01-17
15 rimming a dusty looking patch, unknown mineral. Also on aenigmatite grain edges	15	fine bladed/needly grains	CB-01-16
Note	Amph%	Note	Sample

fine blue grains. Possibly igneous diseqiul not metamorphic reaction (?)			
15 med-crs green grains typically rimmed by	15	essentially absent	CBD-11-07-03
brown-green which is commonly rimmed by fine-med green-blue			
80 two varieties in terms of colour, coarse	08		CBD-11-07-02
15 abundant med-crs grains in one band/vein but minor very fine in main gm	15	only in band/vein with amph	CBD-11-07-01
crs	45 crs		CB-01-36
5 interstitial	5		CB-01-35
15 in bands with px, also scattered med grains	15	very fine needles t/o	CB-01-34
9 0000			
15 med- looks inerstitial locally, also appears to be rimming appigmatite	15		CB-01-33
20 possbily being replaced by px, typically in core of grains or surrounded by many small px grians	20	mostly fine needles but scattered med-crs grains with amph core	CB-01-32
20 interstitial along certain bands	20		CB-01-31
35 med patches, interstitial appearance	35	fine needles, some coarser bladed grains	CB-01-30
	minor		CB-01-29
Note	Amph%	Note	Sample

10 Medium grained, scattered throughout pyroxene	10	CBD-11-07-15 fine elongate grains	CBD-11-07-15
15 fine-medium grains throughout, med- coarse grains in one mafic rich band	15	Dark green to blue, rimming amphibole	CBD-11-07-14
with px			
10 Largely present as cores in pyroxene but some grains within feldspar with no contact	10	Med-crs, some with amphibole in cores	CBD-11-0/-13
present in felsic bands.		feslic bands. Fine grained	
Med-crs grains in pyroxene rich bands, not	~15%	Up to 80% in some bands, not present in	CBD-11-07-12
toward one end of sample			
pyroxene, increasing to med sized grains		amphibole	
15 predominantly seen as small remnants in	15	med-crs grain that have largely replaced	CBD-11-07-11
elongate grains			
25 Crs equant grains and fine-medium	25	fine grained, strongly foliated	CBD-11-07-10
lighter green grains around edges of grains			
20 Crs dark green to black grains with fine	20		CBD-11-07-09
crystallization			
grain boundaries with feldspar due to later			
30 Coarse, lesser fine-medium grains. Irregular	30		CBD-11-07-08
		other, rimming amphibole	
25 med on one side, coarse on the other	25	fine on one side of sample, med on the	CBD-11-07-07
grains in one area portion of the sample			
40 very coarse grains, finer recrystallized	40	fine grained, rimming amphibole	CBD-11-07-06
growth between felsics			
pincjed at the ends due to interstitial			
25% coarse, near euhedral but some grains are	25%		CBD-11-07-05
grains		aenigmatite and amphibole	
35 Coarse dark green, somewhat elongate	35	fine to medium grained, rimming	CBD-11-07-04
Note	Amph%	Note	Sample

10 fine-medium grained	10	fine grained	CBD-11-07-22 fine grained
25 Coarse, lesser fine-grains in pyroxene	25	Fine grained, rimming amphibole	CBD-11-07-21
2.5 Very fine, interstitial	2.5	CBD-11-07-20 Fine elongate grains, sub-euhedral	CBD-11-07-20
5 Very fine throughout, sometimes as inclusions in coarse feldspar	5		CBD-11-07-19
15 Fine elongate grains, indicating weak foliation	15		CBD-11-07-18
5 fine-medium interstitial	5	CBD-11-07-17 associated with amphibole	CBD-11-07-17
20 Coarse grains with fine pectolite inclusions	20	CBD-11-07-16 fine elongate grains, indicating foliation	CBD-11-07-16
Note	Amph%	Note	Sample

	red-brown min- also possible REE min	possible REE min. light brown-yellow isotroppic, hexagonal	CB-01-15
	possible pectolite	aenigmatite- fine scattered t/o	CB-01-14
			CB-01-13
			CB-01-12
			CB-01-11
	possibl minor bio	unidentified white min	CB-01-10
Pec-minor, needly and assoc with amph	aenigmatite	some type of mica is present, uncertain which variety	CB-01-09
		high biref white min, in interstices with felsics	CB-01-08
		possible pectolite- white very high biref mineral	CB-01-07
	Aen- felsic inclusions, amph associated with grain edges	Eud 2-3%, up to 1mm grains	CB-01-06
			CB-01-05
		aen- v.f elongate grains, associated with other mafics	CB-01-04
			CB-01-03
	bio rimming amph	Aen 3-5%	CB-01-02
	biotite assoc with amp	Aen (5-10%) with inclusions of fine felsics	CB-01-01
Accessory 3	Accessory 2	Accessory 1	Sample

	clear/colouless min with very high biref, possibly pectolite	aenigmatite- fine assoc with amph	CB-01-28
fine sphalerite	common alteration patches(sericite)	unidentified brown mineral	CB-01-27
	fine sphalerite		CB-01-26
		aenigmatite, scattered crz grains	CB-01-25
			CB-01-24
	grungy/polished out patches associated with amph	Eud- 2-3mm scale, rounded grains, included in amph commonly	CB-01-23
	fine sphalerite	aenigmatite- minor associated with px and amph	CB-01-22
	fine sphalerite		CB-01-21
		grungy altered looking material	CB-01-20
	fine sphalerite	dark brown to red mineral (Ti phase ?)	CB-01-19
			CB-01-18
			CB-01-17
		aenigmatite fine to med-crs. Med-crs grains have many inclusions of felsics. Finer grains are associated with clusters of px and amph	CB-01-16
Accessory 3	Accessory 2	Accessory 1	Sample

		Aen- small amounts in clusters with amphibole(s)	CBD-11-07-03
	with blue-green amph	surrounded by amphiboles	
	Sheet silicate (len/hio), associated	Aen (15%) med-crs. commonly	CRD-11-07-02
		alteration?	
		Associated with very fine high	
		Eud- rich in one band, med grains.	CBD-11-07-01
		grains present in felsics	
	Aen- crs, similar occurance as amph	Eud- couple of mm scale rounded	CB-01-36
		along more intensley sheared zones	
		possible mica of some kind present	CB-01-35
		grains	
		aen- mafic bands and scattered med	CB-01-34
		unaltered	
		times surrounded my felsics and	
		other mafics in some cases, other	
		Aen- med grains associated with	CB-01-33
		end	CB-01-32
		eud	CB-01-31
	high amount of eud	aenigmatite- minor fine grains sometimes assoc with other mafics	CB-01-30
	other mafics	resorbed grains	
	matite associatred with	mafics associated with apparently	_
Accessory 3	Accessory 2	Accessory 1	Sample

_			2
CBD-11-07-04	Aen- near equal proportion as	Olivine, small amount of medium,	BIOTITE, TINE grained rimming matics
	amphibole, rimming olivine	equant grains	
CBD-11-07-05	Pectolite- very fine equant grains		
	associated with amphibole		
CBD-11-07-06	Fine brown material- likely mix of		fine sphalerite
	britholite and sphalerite		
CBD-11-07-07			
CBD-TT-0/-08			
CBD-11-07-09			
CBD-11-07-10			fine sphalerite
CBD-11-07-11	Eudialyte- one patch, interstitial to		
	pyroxene		
CBD-11-07-12	Cancrinite- minor amount as possible alteration of nepheline	Fluorite- minor, very fine grained	Dusty brown mineral (britholite)
┸			
CBD-11-07-13	Eudialyte- scattered coarse grains		
CBD-11-07-14	Pectolite- very fine equant grains associated with amphibole	Aenigmatite- very fine, associated with amphibole	Fluorite- very fine, scattered within felsics
CBD-11-07-15	Cancrinite- present in one end of	Natrolite- present in select areas,	fine sphalerite/pyrrhotite
	sample, likely replacement of	possible space filling	
	nepheline		

Sample	Accessory 1	Accessory 2	Accessory 3
CBD-11-07-16	Pectolite- fine elongate grains		
	associated with/included in		
	amphibole		
CBD-11-07-17	Unknown Y mineral	Type-2 minerals	
CBD-11-07-18	e grains	Aenigmatite- very fine, associated	
	associated with amphibole	with amphibole	
CBD-11-07-19			
CBD-11-07-20			
CBD-11-07-21	CBD-11-07-21 Eudialyte- scattered med-crs grains	Minor cancrinite	
CBD-11-07-22	CBD-11-07-22 Eudialyte- medium grained equant		
	grains scattered throughout		

	well aligned but discontinuous bands on one end, continuous on the other	CB-01-15
felsics dominant in ts but not over entire drill interval, so chem does not match well	slight alignment E-W, no continuous bands	CB-01-14
	felsic cumulate?	CB-01-13
3 individual layers- leuco w amph, px rich mela, and near 100% felsic leuco	bands shown in fine px grains as well as by amph within felsics	CB-01-12
	best example of cumulate texture, appears to be replacement of a very dark green amph by px	CB-01-11
felsics dominant in ts but not over entire drill interval, so chem does not match well	no well developed fol, minor alignment of grains in px patches	CB-01-10
	not well developed fol, perthite rextal	CB-01-09
	possible cumulate, may have initially been amph or aenigmatite	CB-01-08
	well developed fol. Elongate felsics with fine int mafics. Mafics more continuous bands in finer grained portions	CB-01-07
		CB-01-06
		CB-01-05
	moderate foliation	CB-01-04
	well foliated	CB-01-03
	slight alignment of elongate feldspars, similar recrystalization texture seen in perthites and gm	CB-01-02
	weak foliation defined by mafics	CB-01-01
Notes	Texture/foliation	Sample

	foliaion defined by mafic bands, but variable in different areas of the section	CB-01-28
		CB-01-27
	one well aligned section in px rich portion, but no well developed fol on either side	CB-01-26
	slight alignment of mafics visible but not well developed	CB-01-25
layered- felsic with px, with amph and with minor mafics	well foliated when px is present, good but not continuous in amph layer	CB-01-24
	nearly preserved igneous texture	CB-01-23
		CB-01-22
borderline leuco/mela. Crs felsics dominate some of the section but finer grained material is mafic rich	not well developed fol. Little to no rextal of felsics	CB-01-21
generally appears altered, many patches of grungy looking material which is commonly seen with amph	wavy bands of mafics	CB-01-20
	enough mafics present to not be a felsic cumulate	CB-01-19
	slight alignment of px grains but no continuous bands	CB-01-18
very similar to previous, slightly better development of mafic bands		CB-01-17
	no continuous bands but slight alignment of elongate grains	CB-01-16
Notes	Ш	Sample

one of the least deformed samples collected	preserved igneous texture	CBD-11-07-03
		CBD-11-07-02
	massive syenite with irregular amphibole and eudialyte bearing band/vein	CBD-11-07-01
appears to be just slightly more deformed than a 2c sample	nearly preserved igneous texture	CB-01-36
		CB-01-35
	somewhat developed bands of mafics	CB-01-34
	no well developed fol, very good example of py rimming amph	CB-01-33
crs grains look similar to cumulate samples but are being broken down/rextalized into finer needles	felsic/mafic layering beginning to dvelop	CB-01-32
		CB-01-31
	not well developed, slight alignment of px grains	CB-01-30
	massive	CB-01-29
Notes	Texture/foliation	Sample

Fine grained pyroxene with coarse feldspar. High grade type-2 sample	moderate foliation	CBD-11-07-15
	Strongly banded	CBD-11-07-14
	Massive	CBD-11-07-13
No evidence of interusive contact between bands, likely cumulate texture not a vein	Banded pyroxene rich and eudialyte bearing leucocratic syenite	CBD-11-07-12
Some zoning visible in crossed polarized light in pyroxene, possible later grown rim since centre contains more amphibole	Cumulate texture, amphibole/pyroxene with interstitial feldspar and minor eudialyte	CBD-11-07-11
	strong foliation in pyroxene	CBD-11-07-10
	preserved igneous texture	CBD-11-07-09
	moderate foliation	CBD-11-07-08
	massive	CBD-11-07-07
		CBD-11-07-06
	igneous textured	CBD-11-07-05
a lot of grains plucked out by polishing, amphibole and aenigmatite are predom, with minor felsics and biotite	mafic cumulate, mildly foliated and recrystallized	CBD-11-07-04
Notes	Texture/foliation	Sample

Sample	Texture/foliation	Notes
CBD-11-07-16		
CBD-11-07-17 Massive	Massive	Type-2 occurs as replacement texture
CBD-11-07-18	CBD-11-07-18 weak-moderate foliation	
CBD-11-07-19	CBD-11-07-19 Medium grained recrystallized bands and tails on phenocrysts are generally well aligned	
CBD-11-07-20	CBD-11-07-20 weak alignment of felsics	
CBD-11-07-21	massive	
CBD-11-07-22	CBD-11-07-22 Near igneous texture	

APPENDIX B- DIAMOND DRILL CORE LITHOGEOCHEMISTRY RESULTS

Chem#	DDH#	Sample	From	То	Length	Rock unit
104676	CBD-10-01	1	7.6	8.6	1	2b
104677	CBD-10-01	2	8.6	9.6	1	2b
104678	CBD-10-01	3	9.6	10.6	1	2b
104679	CBD-10-01	4	10.6	11.2	0.6	2d
104680	CBD-10-01	5	11.2	12.1	0.9	1c-3b
104681	CBD-10-01	6	12.1	13.1	1	2b
104682	CBD-10-01	7	13.1	14.1	1	2b
104683	CBD-10-01	8	14.1	14.45	0.35	2b
104684	CBD-10-01	9	14.45	14.6	0.15	2b
104685	CBD-10-01	10	14.6	15.6	1	2b
104686	CBD-10-01	11	15.6	15.9	0.3	2b
104687	CBD-10-01	12	15.9	16.9	1	2b
104688	CBD-10-01	13	16.9	17.9	1	1 c
104689	CBD-10-01	14	17.9	18.8	0.9	3b
104690	CBD-10-01	15	18.8	19.8	1	2b
104691	CBD-10-01	16	19.8	20.8	1	2b
104692	CBD-10-01	17	20.8	21.1	0.3	2b
104693	CBD-10-01	18	21.1	21.8	0.7	3a
104694	CBD-10-01	19	21.8	22.4	0.6	1c-3b
104695	CBD-10-01	20	22.4	23.4	1	2b
104696	CBD-10-01	21	23.4	24.4	1	2b-2d
104697	CBD-10-01	22	24.4	25.4	1	3a (3b)M
104698	CBD-10-01	23	25.4	26.1	0.7	2b
104699	CBD-10-01	24	26.1	27.1	1	2b
104700	CBD-10-01	25	27.1	28.1	1	2b
104701	CBD-10-01	26	28.1	29.1	1	2b
104702	CBD-10-01	27	29.1	30.1	1	2b
104703	CBD-10-01	28	30.1	31.1	1	2b
104704	CBD-10-01	29	31.1	32.1	1	2b
104705	CBD-10-01	30	32.1	33.1	1	2b
104706	CBD-10-01	31	33.1	33.9	0.8	2b
104707	CBD-10-01	32	33.9	34.9	1	2b
104708	CBD-10-01	33		35.8		2b
104709	CBD-10-01	34	35.8	36.5	0.7	3a
104710	CBD-10-01	35	36.5	37.55	1.05	2b
104711	CBD-10-01	36	37.55	37.95	0.4	3a
104712	CBD-10-01	37	37.95	39	1.05	2b
104713	CBD-10-01	38	39	40	1	2b
104714	CBD-10-01	39	40	41	1	2b
104715	CBD-10-01	40	41	42	1	2b
104716	CBD-10-01	41	42	43	1	2b
104717	CBD-10-01	42	43	44	1	2b
104718	CBD-10-01	43	44	45	1	2b
104719	CBD-10-01	44	45	46	1	2b
104720	CBD-10-01	45	46	47	1	2b
104721	CBD-10-01	46	47	48	1	2b

Chem #	DDH#	Sample	From	То	Length	Rock unit
104722	CBD-10-01	47	48	49	1	2d
104723	CBD-10-01	48	49	50	1	2d
104724	CBD-10-01	49	50	51	1	2d
104725	CBD-10-01	50	51	52	1	2d
104726	CBD-10-01	51	52	53	1	2d
104727	CBD-10-01	52	53	53.5	0.5	2d
104728	CBD-10-01	53	53.5	54.5	1	3bM
104729	CBD-10-01	54	54.5	55.5	1	3b
104730	CBD-10-01	55	55.5	56.4	0.9	3b
104731	CBD-10-01	56	56.4	56.7	0.3	1c
104732	CBD-10-01	57	56.7	57.5	0.8	1c
104733	CBD-10-01	58	57.5	58.5	1	2d
104734	CBD-10-01	59	58.5	59.5	1	2d
104735	CBD-10-01	60	59.5	60.1	0.6	2d
104736	CBD-10-01	61	60.1	61.1	1	1a
104737	CBD-10-01	62	61.1	62.1	1	1a
104738	CBD-10-01	63	62.1	62.45	0.35	1aM
104739	CBD-10-01	64	62.45	63.5	1.05	2d
104740	CBD-10-01	65	63.5	64.2	0.7	2d
104741	CBD-10-01	66	64.2	64.9	0.7	2d
104742	CBD-10-01	67	64.9	66.1	1.2	1c
104743	CBD-10-01	68	66.1	66.7	0.6	1a
104744	CBD-10-01	69	66.7	67.7	1	3b
104745	CBD-10-01	70	67.7	68.7	1	3b
104746	CBD-10-01	71	68.7	69.7	1	3b
104747	CBD-10-01	72	69.7	70.7	1	3b
104748	CBD-10-01	73	70.7	71.3	0.6	3b
104749	CBD-10-01	74	71.3	72.2	0.9	2a-b
104750	CBD-10-01	75	72.2	72.9	0.7	2a-1cM
104751	CBD-10-01	76	72.9	74	1.1	2b
104752	CBD-10-01	77	74	75	1	2b
104753	CBD-10-01	78	75	76	1	2d
104754	CBD-10-01	79	76	76.7	0.7	2d
104755	CBD-10-01	80	76.7	77.7	1	1 c
104756	CBD-10-01	81	77.7	78.7	1	2d
104757	CBD-10-01	82	78.7	79.2	0.5	2d
104758	CBD-10-01	83	79.2	80.65	1.45	1c
104759	CBD-10-01	84	80.65	81.5	0.85	2d
104760	CBD-10-01	85	81.5	82.5	1	3b
104761	CBD-10-01	86	82.5	83.5	1	3b
104762	CBD-10-01	87	83.5	84.5	1	3b
104763	CBD-10-01	88	84.5	85.5	1	3b
104764	CBD-10-01	89	85.5	86	0.5	3b
104765	CBD-10-01	90	86	87	1	1c
104766	CBD-10-01	91	87	87.9	0.9	1c
104767	CBD-10-01	92	87.9	88.9	1	1c

Chem #	DDH#	Sample	From	То	Length	Rock unit
104768	CBD-10-01	93	88.9	89.2	0.3	1c-2d
104769	CBD-10-01	94	89.2	90.2	1	1c-2d
104770	CBD-10-01	95	90.2	91.2	1	1c-2d
104771	CBD-10-01	96	91.2	92	0.8	2d-2b
104772	CBD-10-01	97	92	92.7	0.7	1c
104773	CBD-10-01	98	92.7	93.7	1	1c
104774	CBD-10-01	99	93.7	94.3	0.6	1c
104775	CBD-10-01	100	94.3	94.6	0.3	1c
104776	CBD-10-01	101	94.6	95.6	1	1c
104777	CBD-10-01	102	95.6	96.6	1	1c
104778	CBD-10-01	103	96.6	97.6	1	1c
104779	CBD-10-01	104	97.6	98.8	1.2	1c
104780	CBD-10-01	105	98.8	99.8	1	1c/3b
104781	CBD-10-01	106	99.8	100.5	0.7	1c/3b
104782	CBD-10-01	107	100.5	101.3	0.8	1c
104783	CBD-10-01	108	101.3	102.3	1	3b
104784	CBD-10-01	109	102.3	103.3	1	1c
104785	CBD-10-01	110	103.3	104.1	0.8	1c
104786	CBD-10-01	111	104.1	105.1	1	2d
104787	CBD-10-01	112	105.1	105.7	0.6	1c
104788	CBD-10-01	113	105.7	106.1	0.4	1c
104789	CBD-10-01	114	106.1	106.4	0.3	2d
104790	CBD-10-01	115	106.4	106.8	0.4	1c
104791	CBD-10-01	116	106.8	108	1.2	1a
104792	CBD-10-01	117	108	108.6	0.6	1c
104793	CBD-10-01	118	108.6	108.9	0.3	2d
104794	CBD-10-01	119	108.9	109.3	0.4	1c
104795	CBD-10-01	120	109.3	110.05	0.75	2d
104796	CBD-10-01	121	110.05	110.2	0.15	1c-2d
104797	CBD-10-01	122	110.2	110.5	0.3	2d
104798	CBD-10-01	123	110.5	111.5	1	1c(3a)
104799	CBD-10-01	124	111.5	111.9	0.4	1c
104800	CBD-10-01	125	111.9	112.9	1	2d
416001	CBD-10-01	126	112.9	113.9	1	2d
416002	CBD-10-01	127	113.9	114.9	1	2d
416003	CBD-10-01	128	114.9	115.3		2d
416004	CBD-10-01	129	115.3	116.3	1	2a
416005	CBD-10-01	130	116.3	117.3	1	1c
416006	CBD-10-01	131	117.3	118.5	1.2	1c
416007	CBD-10-01	132	118.5	119.6	1.1	2a
416008	CBD-10-01	133	119.6	120	0.4	1aM
416009	CBD-10-01	134	120	120.7	0.7	1aM
416010	CBD-10-01	135	120.7	121.4	0.7	3bM
416011	CBD-10-01	136	121.4	122.4	1	1aM
416012	CBD-10-01	137	122.4	123.4	1	1aM
416013	CBD-10-01	138	123.4	124.4	1	1aM

Chem #	DDH#	Sample	From	То	Length	Rock unit
416014	CBD-10-01	139	124.4	124.8	0.4	1aM
416015	CBD-10-01	140	124.8	125.4	0.6	1aM
416016	CBD-10-01	141	125.4	126.4	1	2bM
416017	CBD-10-01	142	126.4	127.6	1.2	1a
416018	CBD-10-01	143	127.6	128.6	1	2b
416019	CBD-10-01	144	128.6	129.6	1	2b
416020	CBD-10-01	145	129.6	130.6	1	1a
416021	CBD-10-01	146	130.6	131.6	1	1a
416022	CBD-10-01	147	131.6	132.6	1	1aM
416023	CBD-10-01	148	132.6	133.6	1	2bM
416024	CBD-10-01	149	133.6	134.7	1.1	1aM
416025	CBD-10-01	150	134.7	135.7	1	1c
416026	CBD-10-01	151	135.7	136.7	1	3b
416027	CBD-10-01	152	136.7	137.7	1	3b
416028	CBD-10-01	153	137.7	138.7	1	1c/3b
416029	CBD-10-01	154	138.7	139.7	1	1c/3b
416030	CBD-10-01	155	139.7	140.7	1	1c/3b
416031	CBD-10-01	156	140.7	141.7	1	1c/3b
416032	CBD-10-01	157	141.7	142.7	1	1c/3b
416033	CBD-10-01	158	142.7	143.7	1	1c/3b
416034	CBD-10-01	159	143.7	144.7	1	1c/3b
416035	CBD-10-01	160	144.7	145.7	1	1c/3b
416036	CBD-10-01	161	145.7	147	1.3	1c
416037	CBD-10-01	162	147	148	1	1a
416038	CBD-10-01	163	148	148.5	0.5	1a
416039	CBD-10-01	164	148.5	149.65	1.15	1c
416040	CBD-10-01	165	149.65	150.5	0.85	1c-1d
416041	CBD-10-01	166	150.5	150.8	0.3	1c-1d
416042	CBD-10-01	167	150.8	151.8	1	2bm
416043	CBD-10-01	168	151.8	152.5	0.7	2bm
416044	CBD-10-01	169	152.5	153.5	1	2dm
416045	CBD-10-01	170	153.5	154.5	1	2dm
416046	CBD-10-01	171	154.5	155.2	0.7	1aM
416047	CBD-10-01	172	155.2	155.9	0.7	1aM
416048	CBD-10-01	173	155.9	156.5	0.6	1aM
416049	CBD-10-01	174	156.5	157	0.5	1aM
416050	CBD-10-01	175	157	158	1	1aM
416051	CBD-10-01	176	158	158.6	0.6	1aM
416052	CBD-10-01	177	158.6	159.6	1	3b
416053	CBD-10-01	178	159.6	160.6	1	3b
416054	CBD-10-01	179	160.6	161.6	1	1c
416055	CBD-10-01	180	161.6	162.6	1	1c
416056	CBD-10-01	181	162.6	163.6	1	1c
416057	CBD-10-01	182	163.6	164.5	0.9	3b
416058	CBD-10-01	183	164.5	165.3	0.8	1cm-1dm
416059	CBD-10-01	184	165.3	165.5	0.2	1c

Chem #	DDH#	Sample	From	То	Length	Rock unit
416060	CBD-10-01	185	165.5	166.1	0.6	1c
416061	CBD-10-01	186	166.1	166.7	0.6	1c
416062	CBD-10-01	187	166.7	167	0.3	1am
416063	CBD-10-01	188	167	168	1	1c
416064	CBD-10-01	189	168	169	1	1a
416065	CBD-10-01	190	169	169.9	0.9	1c
416066	CBD-10-01	191	169.9	170.5	0.6	2bm
416067	CBD-10-01	192	170.5	171.2	0.7	2b
416068	CBD-10-01	193	171.2	171.8	0.6	2bm
416069	CBD-10-01	194	171.8	172.8	1	2d
416070	CBD-10-01	195	172.8	173.8	1	2d
416071	CBD-10-01	196	173.8	174.3	0.5	2d
416072	CBD-10-01	197	174.3	175	0.7	2d
416073	CBD-10-01	198	175	175.4	0.4	2d
416074	CBD-10-01	199	175.4	176.3	0.9	1cm
416075	CBD-10-01	200	176.3	177.4	1.1	2d
416076	CBD-10-01	201	177.4	177.7	0.3	1c
416077	CBD-10-01	202	177.7	178.2	0.5	2dm-1am
416078	CBD-10-01	203	178.2	178.7	0.5	1c
416079	CBD-10-01	204	178.7	179.4	0.7	2b
416080	CBD-10-01	205	179.4	179.9	0.5	2bm
416081	CBD-10-01	206	179.9	180.4	0.5	1c
416082	CBD-10-01	207	180.4	181.4	1	2d
416083	CBD-10-01	208	181.4	182.4	1	2bm
416084	CBD-10-01	209	182.4	183.4	1	1a
416085	CBD-10-01	210	183.4	184.4	1	1a
416086	CBD-10-01	211	184.4	185.4	1	5
416087	CBD-10-01	212	185.4	186.4	1	4
416088	CBD-10-01	213	186.4	186.7	0.3	4
416089	CBD-10-01	214	186.7	187.7	1	5
416090	CBD-10-01	215	187.7	188.3	0.6	5
416091	CBD-10-01	216	188.3	188.7	0.4	5
416092	CBD-10-01	217	188.7	189.7	1	5
416093	CBD-10-01	218	189.7	190.7	1	5
416094	CBD-10-01	219	190.7	190.9	0.2	5
416095	CBD-10-01	220	190.9	191.9	1	1am
416096	CBD-10-01	221	191.9	192.9	1	1cm
416097	CBD-10-01	222	192.9	193.9	1	1cm
416098	CBD-10-01	223	193.9	195.05	1.15	1cm
416099	CBD-10-01	224	195.05	195.4	0.35	1cm
416100	CBD-10-01	225	195.4	196.4	1	1cm
416101	CBD-10-01	226	196.4	196.8	0.4	1am
416102	CBD-10-01	227	196.8	197.8	1	1am
416103	CBD-10-01	228	197.8	198.8	1	1am
416104	CBD-10-01	229	198.8	199	0.2	1am
416105	CBD-10-01	230		200		1am

Chem #	DDH#	Sample	From	То	Length	Rock unit
416106	CBD-10-01	231	200	200.8	0.8	1am
416107	CBD-10-01	232	200.8	201.8	1	2d
416108	CBD-10-01	233	201.8	202.8	1	2d
416109	CBD-10-01	234	202.8	203.2	0.4	2d
416110	CBD-10-01	235	203.2	204.2	1	1cm
416111	CBD-10-01	236	204.2	205.2	1	1cm
416112	CBD-10-01	237	205.2	206.2	1	1cm
416113	CBD-10-01	238	206.2	207.2	1	1cm
416114	CBD-10-01	239	207.2	207.5	0.3	1cm
416115	CBD-10-01	240	207.5	207.8	0.3	1cm
416116	CBD-10-01	241	207.8	208.8	1	1cm
416117	CBD-10-01	242	208.8	209.6	0.8	1cm
416118	CBD-10-01	243	209.6	210	0.4	2d
416119	CBD-10-01	244	210	211	1	1c
416120	CBD-10-01	245	211	212	1	1c
416121	CBD-10-01	246	212	212.9	0.9	1c
416122	CBD-10-01	247	212.9	213.5	0.6	1c
416123	CBD-10-01	248	213.5	214.1	0.6	1c
416124	CBD-10-01	249	214.1	214.7	0.6	1c
416125	CBD-10-01	250	214.7	214.9	0.2	1c
416126	CBD-10-01	251	214.9	215.2	0.3	2b
416127	CBD-10-01	252	215.2	215.9	0.7	1c
416128	CBD-10-01	253	215.9	216.9	1	1a
416129	CBD-10-01	254	216.9	217.9	1	1a
416130	CBD-10-01	255	217.9	218.9	1	1am
416131	CBD-10-01	256	218.9	219.9	1	1am
416132	CBD-10-01	257	219.9	220.2	0.3	1am
416133	CBD-10-01	258	220.2	220.6	0.4	1c
416134	CBD-10-01	259	220.6	221.6	1	1am
416135	CBD-10-01	260	221.6	222.6	1	1am
416136	CBD-10-01	261	222.6	223.1	0.5	1am
416137	CBD-10-01	262	223.1	223.25	0.15	1am
416138	CBD-10-01	263	223.25	224.25	1	1c (3bm)
416139	CBD-10-01	264	224.25	225.25	1	1c (3bm)
416140	CBD-10-01	265	225.25	225.6	0.35	1am
416141	CBD-10-01	266	225.6	226	0.4	1am
416142	CBD-10-01	267	226	227	1	1am
416143	CBD-10-01	268	227	227.4	0.4	1am
416144	CBD-10-01	269	227.4	228	0.6	1c (3bm)
416145	CBD-10-01	270	228	228.6	0.6	1c (3bm)
416146	CBD-10-01	271	228.6	229.6	1	1c (3bm)
416147	CBD-10-01	272	229.6	230.6	1	1c (3bm)
416148	CBD-10-01	273	230.6	231.5	0.9	2b
416149	CBD-10-01	274	231.5	232	0.5	2b
416150	CBD-10-01	275	232	232.6	0.6	2b
416151	CBD-10-01	276	232.6	233.6	1	2b

Chem #	DDH#	Sample	From	То	Length	Rock unit
416152	CBD-10-01	277	233.6	234.6	1	2b
416153	CBD-10-01	278	234.6	235.6	1	2b
416154	CBD-10-01	279	235.6	236	0.4	2b
512817	CBD-11-02	1	14.9	15.9	1	2c
512818	CBD-11-02	2	15.9	16.9	1	2c
512819	CBD-11-02	3	16.9	17.9	1	2c
512820	CBD-11-02	4	17.9	18.9	1	2c
512821	CBD-11-02	5	18.9	19.9	1	2c
512822	CBD-11-02	6	19.9	20.9	1	2c
512823	CBD-11-02	7	20.9	21.9	1	2c
512824	CBD-11-02	8	21.9	22.9	1	2c
512825	CBD-11-02	9	22.9	23.9	1	2c
512826	CBD-11-02	10	23.9	24.9	1	2c
512827	CBD-11-02	11	24.9	25.9	1	2c
512828	CBD-11-02	12	25.9	26.2	0.3	2c
512829	CBD-11-02	13	26.2	26.42	0.22	3b
512830	CBD-11-02	14	26.42	26.95	0.53	2a
512831	CBD-11-02	15	26.95	27.95	1	2c
512832	CBD-11-02	16	27.95	28.81	0.86	2c
512833	CBD-11-02	17	28.81	29.39	0.58	2a
512834	CBD-11-02	18	29.39	29.97	0.58	3b
512835	CBD-11-02	19	29.97	30.55	0.58	3b
512836	CBD-11-02	20	30.55	31.55	1	1a-2a
512837	CBD-11-02	21	31.55	32.4	0.85	1a-2a
512838	CBD-11-02	22	32.4	33.4	1	1c/1a
512839	CBD-11-02	23	33.4	34.4	1	1c/1a
512840	CBD-11-02	24	34.4	35.05	0.65	1c/1a
512841	CBD-11-02	25	35.05	36.05	1	1a-2a
512842	CBD-11-02	26	36.05	37.05	1	1a-2a
512843	CBD-11-02	27	37.05	38.05	1	1a-2a
512844	CBD-11-02	28	38.05	39.05	1	1a-2a
512845	CBD-11-02	29	39.05	39.6	0.55	1a-2a
512846	CBD-11-02	30	39.6	40.14	0.54	3b
512847	CBD-11-02	31	40.14	40.67	0.53	1 a
512848	CBD-11-02	32	10.67	41.27	30.6	1 a
512849	CBD-11-02	33	41.27	41.87	0.6	1 a
512850	CBD-11-02	34	41.87	42.48	0.61	1 a
512851	CBD-11-02	35	42.48	43.08	0.6	1a
512852	CBD-11-02	36	43.08	44.16	1.08	1aM
512853	CBD-11-02	37	44.16	44.84	0.68	1a
512854	CBD-11-02	38	44.84	45.23	0.39	1a
512855	CBD-11-02	39	45.23	46.23	1	1a
512856	CBD-11-02	40	46.23	46.64	0.41	1a
512857	CBD-11-02	41	46.64	47.24	0.6	3b
512858	CBD-11-02	42	47.24	48.08	0.84	2b
512859	CBD-11-02	43	48.08	49.08	1	1aM

Chem #	DDH#	Sample	From	То	Length	Rock unit
512860	CBD-11-02	44	49.08	49.42	0.34	1aM
512861	CBD-11-02	45	49.42	49.91	0.49	2b
512862	CBD-11-02	46	49.91	50.39	0.48	1a
512863	CBD-11-02	47	50.39	51.39	1	2aM
512864	CBD-11-02	48	51.39	52.39	1	2aM
512865	CBD-11-02	49	52.39	53.39	1	2aM
512866	CBD-11-02	50	53.39	54.47	1.08	1aM
512867	CBD-11-02	51	54.47	55.47	1	1aM
512868	CBD-11-02	52	55.47	56.47	1	1aM
512869	CBD-11-02	53	56.47	57.47	1	1aM
512870	CBD-11-02	54	57.47	58	0.53	1aM
512871	CBD-11-02	55	58	59	1	2b
512872	CBD-11-02	56	59	60	1	2b
512873	CBD-11-02	57	60	61	1	2b
512874	CBD-11-02	58	61	62	1	2b
512875	CBD-11-02	59	62	62.47	0.47	2b
512876	CBD-11-02	60	62.47	63.47	1	1a (2b)
512877	CBD-11-02	61	63.47	64.47	1	1a (2b)
512878	CBD-11-02	62	64.47	65.47	1	1a (2b)
512879	CBD-11-02	63	65.47	66.47	1	1a (2b)
512880	CBD-11-02	64	66.47	67.3	0.83	1a (2b)
512881	CBD-11-02	65	67.3	68.3	1	2b
512882	CBD-11-02	66	68.3	68.6	0.3	2b
512883	CBD-11-02	67	68.6	69.6	1	1a
512884	CBD-11-02	68	69.6	70.6	1	1a
512885	CBD-11-02	69	70.6	71.6	1	1a
512886	CBD-11-02	70	71.6	72.42	0.82	1 a
512887	CBD-11-02	71	72.42	73.49	1.07	2b
512888	CBD-11-02	72	73.49	74.49	1	1a (2b)
512889	CBD-11-02	73	74.49	75.49	1	1a (2b)
512890	CBD-11-02	74	75.49	76.3	0.81	1a (2b)
512891	CBD-11-02	75	76.3	77.3	1	2b
512892	CBD-11-02	76	77.3	78.3	1	2b
512893	CBD-11-02	77	78.3	79.3	1	2b
512894	CBD-11-02	78	79.3	80.3	1	2b
512895	CBD-11-02	79	80.3	80.53	0.23	2b
512896	CBD-11-02	80	80.53	81.53	1	2b
512897	CBD-11-02	81	81.53	82.17	0.64	2b
512898	CBD-11-02	82	82.17	83.17	1	2bM
512899	CBD-11-02	83	83.17	84.117	0.947	2bM
512900	CBD-11-02	84	84.117	85.17	1.053	2bM
512901	CBD-11-02	85	85.17	86.17	1	2bM
512902	CBD-11-02	86	86.17	87.17	1	2bM
512903	CBD-11-02	87	87.17	88.17	1	2bM
512904	CBD-11-02	88	88.17	89.17	1	2bM
512905	CBD-11-02	89	89.17	90.17	1	2bM

Chem #	DDH#	Sample	From	То	Length	Rock unit
512906	CBD-11-02	90	90.17	90.45	0.28	2bM
512907	CBD-11-02	91	90.45	91.36	0.91	1a
512908	CBD-11-02	92	91.36	92.36	1	2b
512909	CBD-11-02	93	92.36	92.83	0.47	2b
512910	CBD-11-02	94	92.83	93.83	1	2a
512911	CBD-11-02	95	93.83	94	0.17	2a
512912	CBD-11-02	96	94	95	1	2a
512913	CBD-11-02	97	95	95.26	0.26	2a
512914	CBD-11-02	98	95.26	96.26	1	1a
512915	CBD-11-02	99	96.26	96.63	0.37	1a
512916	CBD-11-02	100	96.63	97.63	1	2b (3bM)
512917	CBD-11-02	101	97.63	98.63	1	2b (3bM)
512918	CBD-11-02	102	98.63	99.63	1	2b (3bM)
512919	CBD-11-02	103	99.63	99.83	0.2	2b (3bM)
512920	CBD-11-02	104	99.83	100.25	0.42	1aM
512921	CBD-11-02	105	100.25	100.72	0.47	2b
512922	CBD-11-02	106	100.72	100.84	0.12	3bM
512923	CBD-11-02	107	100.84	101.84	1	2b (M)
512924	CBD-11-02	108	101.84	102.84	1	2b (M)
512925	CBD-11-02	109	102.84	103.1	0.26	2b (M)
512926	CBD-11-02	110	103.1	104.1	1	3b
512927	CBD-11-02	111	104.1	105.1	1	1a-2a
512928	CBD-11-02	112	105.1	106.1	1	1a-2a
512929	CBD-11-02	113	106.1	107.1	1	1a-2a
512930	CBD-11-02	114	107.1	108.1	1	1a-2a
512931	CBD-11-02	115	108.1	108.24	0.14	1a-2a
512932	CBD-11-02	116	108.24	108.48	0.24	3a-b
512933	CBD-11-02	117	108.48	109	0.52	2bM
512934	CBD-11-02	118	109	109.92	0.92	1aM
512935	CBD-11-02	119	109.92	110.12	0.2	3b
512936	CBD-11-02	120	110.12	110.58	0.46	1 a
512937	CBD-11-02	121	110.58	110.93	0.35	1 a
512938	CBD-11-02	122	110.93	111.8	0.87	1 a
512939	CBD-11-02	123	111.8	112.8	1	1a/3bM
512940	CBD-11-02	124	112.8	113.72	0.92	1aM
512941	CBD-11-02	125	113.72	114.34	0.62	2b
512942	CBD-11-02	126	114.34	114.95	0.61	2b
512943	CBD-11-02	127	114.95	115.23	0.28	3a-b
512944	CBD-11-02	128	115.23	116.01	0.78	2b
512945	CBD-11-02	129	116.01	116.79	0.78	1a
512946	CBD-11-02	130	116.79	117.31	0.52	1a
512947	CBD-11-02	131	117.31	118.02	0.71	1aM
512948	CBD-11-02	132	118.02	118.72	0.7	2b
512949	CBD-11-02	133	118.72	118.93	0.21	3bM
512950	CBD-11-02	134	118.93	120	1.07	2b (3aM)
512951	CBD-11-02	135	120	121	1	2a

Chem #	DDH#	Sample	From	То	Length	Rock unit
512952	CBD-11-02	136	121	122	1	2a
512953	CBD-11-02	137	122	123	1	2a
512954	CBD-11-02	138	123	124	1	2a
512955	CBD-11-02	139	124	124.32	0.32	2a
512956	CBD-11-02	140	124.32	125.32	1	2a (1a)
512957	CBD-11-02	141	125.32	126.32	1	2a (1a)
512958	CBD-11-02	142	126.32	126.87	0.55	2a (1a)
512959	CBD-11-02	143	126.87	127.41	0.54	2a (1a)
512960	CBD-11-02	144	127.41	128.41	1	1a
512961	CBD-11-02	145	128.41	128.6	0.19	1a
512962	CBD-11-02	146	128.6	129.6	1	2bM
512963	CBD-11-02	147	129.6	130.6	1	2bM
512964	CBD-11-02	148	130.6	131.63	1.03	2bM
512965	CBD-11-02	149	131.63	132.63	1	1a (2b)
512966	CBD-11-02	150	132.63	133.63	1	1a (2b)
512967	CBD-11-02	151	133.63	134.63	1	1a (2b)
512968	CBD-11-02	152	134.63	135.63	1	1a (2b)
512969	CBD-11-02	153	135.63	136.63	1	1a (2b)
512970	CBD-11-02	154	136.63	137.07	0.44	1a (2b)
512971	CBD-11-02	155	137.07	138.07	1	1c/3bM
512972	CBD-11-02	156	138.07	139.07	1	1c/3bM
512973	CBD-11-02	157	139.07	140.07	1	1c/3bM
512974	CBD-11-02	158	140.07	141.07	1	1c/3bM
512975	CBD-11-02	159	141.07	141.7	0.63	1c/3bM
512976	CBD-11-02	160	141.7	142.7	1	1aM/2b
512977	CBD-11-02	161	142.7	143.3	0.6	1aM/2b
512978	CBD-11-02	162	143.3	143.8	0.5	1aM/2b
512979	CBD-11-02	163		144.8	1	2b (1c)
512980	CBD-11-02	164	144.8	145.8	1	2b (1c)
512981	CBD-11-02	165	145.8	146.48	0.68	2b (1c)
512982	CBD-11-02	166	146.48	147.48	1	2b
512983	CBD-11-02	167	147.48	148.48	1	2b
512984	CBD-11-02	168			0.57	2b
512985	CBD-11-02	169	149.05	150.05	1	1a
512986	CBD-11-02	170		150.58	0.53	1a
512987	CBD-11-02	171	150.58	151.58	1	2b
512988	CBD-11-02	172		152.2		2b
512989	CBD-11-02	173		153.04		1aM
512990	CBD-11-02	174		153.96	0.92	1aM
512991	CBD-11-02	175		154.96	1	2b
512992	CBD-11-02	176		155.96	1	2b
512993	CBD-11-02	177	155.96	156.96	1	2b
512994	CBD-11-02	178		157.96	1	2b
512995	CBD-11-02	179	157.96	158.96		2b
512996	CBD-11-02	180		159.5		2b
512997	CBD-11-02	181	159.5	160.07	0.57	2b

Chem #	DDH#	Sample	From	То	Length	Rock unit
512998	CBD-11-02	182	160.07	161.07	1	2b
512999	CBD-11-02	183	161.07	162.1	1.03	2b
513000	CBD-11-02	184	162.1	163.1	1	2b
513001	CBD-11-02	185	163.1	163.92	0.82	2b
513002	CBD-11-02	186	163.92	164.92	1	2b
513003	CBD-11-02	187	164.92	165.2	0.28	2b
513004	CBD-11-02	188	165.2	166.2	1	1aM
513005	CBD-11-02	189	166.2	166.53	0.33	1aM
513006	CBD-11-02	190	166.53	167.53	1	1aM
513007	CBD-11-02	191	167.53	168.53	1	1aM
513008	CBD-11-02	192	168.53	169.53	1	1aM
513009	CBD-11-02	193	169.53	170.53	1	1aM
513010	CBD-11-02	194	170.53	171.53	1	1aM
513011	CBD-11-02	195	171.53	172.2	0.67	1aM
513012	CBD-11-02	196	172.2	173.2	1	2b
513013	CBD-11-02	197	173.2	173.7	0.5	2b
513014	CBD-11-02	198	173.7	174.64	0.94	1b
513015	CBD-11-02	199	174.64	175.22	0.58	1a
513016	CBD-11-02	200	175.22	175.8	0.58	1a
513017	CBD-11-02	201	175.8	176.37	0.57	1a
513018	CBD-11-02	202	176.37	177.37	1	1aM
513019	CBD-11-02	203	177.37	178.4	1.03	1aM
513020	CBD-11-02	204	178.4	178.98	0.58	1a
513021	CBD-11-02	205	178.98	179.98	1	1a (1b)
513022	CBD-11-02	206	179.98	180.98	1	1a (1b)
513023	CBD-11-02	207	180.98	181.98	1	1a (1b)
513024	CBD-11-02	208	181.98	182.98	1	1a (1b)
513025	CBD-11-02	209	182.98	183.98	1	1a (1b)
513026	CBD-11-02	210	183.98	184.98	1	1a (1b)
513027	CBD-11-02	211	184.98	185.87	0.89	1a (1b)
513028	CBD-11-02	212	185.87	186.54	0.67	1bM
513029	CBD-11-02	213	186.54	187.2	0.66	1bM
513030	CBD-11-02	214	187.2	187.87	0.67	1 a
513031	CBD-11-02	215	187.87	188.54	0.67	1 a
513032	CBD-11-02	216	188.54	188.84	0.3	1a
513033	CBD-11-02	217	188.84	189.84	1	1 a
513034	CBD-11-02	218	189.84	190.84	1	1a
513035	CBD-11-02	219	190.84	191.84	1	1a
513036	CBD-11-02	220	191.84	192.05	0.21	1 a
513037	CBD-11-02	221	192.05	193.05	1	2b
513038	CBD-11-02	222	193.05	193.37	0.32	2b
513039	CBD-11-02	223	193.37	194.37	1	2bM
513040	CBD-11-02	224	194.37	195.37	1	2bM
513041	CBD-11-02	225	195.37	195.95	0.58	2bM
513042	CBD-11-02	226	195.95	196.65	0.7	1a
513043	CBD-11-02	227	196.65	197	0.35	2b

Chem #	DDH#	Sample	From	То	Length	Rock unit
513044	CBD-11-02	228	197	198	1	1b-2a
513045	CBD-11-02	229	198	199	1	1b-2a
513046	CBD-11-02	230	199	200	1	1b-2a
513047	CBD-11-02	231	200	201	1	1b-2a
513048	CBD-11-02	232	201	202	1	1b-2a
514381	CBD-11-07	1	7.55	8.55	1	1a
514382	CBD-11-07	2	8.55	9.55	1	1a
514383	CBD-11-07	3	9.55	10.16	0.61	1a
514384	CBD-11-07	4	10.16	10.82	0.66	3aM
514385	CBD-11-07	5	10.82	11.82	1	1a
514386	CBD-11-07	6	11.82	12.82	1	1a
514387	CBD-11-07	7	12.82	13.82	1	1a
514388	CBD-11-07	8	13.82	14.71	0.89	1a
514389	CBD-11-07	9	14.71	15.16	0.45	3b-1a
514390	CBD-11-07	10	15.16	16.16	1	1a
514391	CBD-11-07	11	16.16	17.16	1	1a
514392	CBD-11-07	12	17.16	18.16	1	1a
514393	CBD-11-07	13	18.16	19.08	0.92	1 a
514394	CBD-11-07	14	19.08	20.08	1	2c->1a
514395	CBD-11-07	15	20.08	21.08	1	2c->1a
514396	CBD-11-07	16	21.08	22.08	1	2c->1a
514397	CBD-11-07	17	22.08	23.08	1	2c->1a
514398	CBD-11-07	18	23.08	23.82	0.74	2c->1a
514399	CBD-11-07	19	23.82	24.22	0.4	1c
514400	CBD-11-07	20	24.22	24.62	0.4	1 a
514401	CBD-11-07	21	24.62	25.25	0.63	2c/2b
514402	CBD-11-07	22	25.25	26.25	1	2b
514403	CBD-11-07	23	26.25	26.56	0.31	2b
514404	CBD-11-07	24	26.56	26.77	0.21	1a
514405	CBD-11-07	25	26.77	27.77	1	2b-2c
514406	CBD-11-07	26	27.77	28.77	1	2b-2c
514407	CBD-11-07	27	28.77	29.05	0.28	2b-2c
514408	CBD-11-07	28	29.05	30.05	1	2 c
514409	CBD-11-07	29	30.05	31.05	1	2 c
514410	CBD-11-07	30	31.05	31.36	0.31	2c
514411	CBD-11-07	31	31.36	32.36	1	2c
514412	CBD-11-07	32	32.36	33	0.64	2c
514413	CBD-11-07	33	33	33.36	0.36	3aM
514414	CBD-11-07	34	33.36	34.36	1	3b(m)
514415	CBD-11-07	35	34.36	35.36	1	3b(m)
514416	CBD-11-07	36	35.36	36.36	1	3b(m)
514417	CBD-11-07	37	36.36	37.36	1	3b(m)
514418	CBD-11-07	38	37.36	37.77	0.41	3b(m)
514419	CBD-11-07	39	37.77	38.55	0.78	3bM
514420	CBD-11-07	40	38.55	39.35	0.8	2a
514421	CBD-11-07	41	39.35	39.9	0.55	3bM

Chem #	DDH#	Sample	From	То	Length	Rock unit
514422	CBD-11-07	42	39.9	40.38	0.48	2b
514423	CBD-11-07	43	40.38	41.38	1	1c-3b
514424	CBD-11-07	44	41.38	41.75	0.37	1c-3b
514425	CBD-11-07	45	41.75	42.75	1	3bM
514426	CBD-11-07	46	42.75	43.42	0.67	3bM
514427	CBD-11-07	47	43.42	44.42	1	3bM
514428	CBD-11-07	48	44.42	45.42	1	3bM
514429	CBD-11-07	49	45.42	46.42	1	3bM
514430	CBD-11-07	50	46.42	47.03	0.61	3bM
514431	CBD-11-07	51	47.03	47.7	0.67	1b(3a)
514432	CBD-11-07	52	47.7	48.48	0.78	1a
514433	CBD-11-07	53	48.48	49.48	1	2a
514434	CBD-11-07	54	49.48	50.48	1	2a
514435	CBD-11-07	55	50.48	51.18	0.7	2a
514436	CBD-11-07	56	51.18	52.18	1	2a
514437	CBD-11-07	57	52.18	53.18	1	2a
514438	CBD-11-07	58	53.18	54.18	1	2a
514439	CBD-11-07	59	54.18	55.18	1	2a
514440	CBD-11-07	60	55.18	55.4	0.22	2a
514441	CBD-11-07	61	55.4	55.88	0.48	3aM
514442	CBD-11-07	62	55.88	56.88	1	2a
514443	CBD-11-07	63	56.88	57.88	1	2a
514444	CBD-11-07	64	57.88	58.88	1	2a
514445	CBD-11-07	65	58.88	59.88	1	2a
514446	CBD-11-07	66	59.88	60.88	1	2a
514447	CBD-11-07	67	60.88	61.88	1	2a
514448	CBD-11-07	68	61.88	62.88	1	2a
514449	CBD-11-07	69	62.88	63.88	1	2a
514450	CBD-11-07	70	63.88	64.88	1	2a
514451	CBD-11-07	71	64.88	65.88	1	2a
514452	CBD-11-07	72	65.88	66.88	1	2a
514453	CBD-11-07	73	66.88	67.63	0.75	2a
514454	CBD-11-07	74	67.63	68.63	1	2a
514455	CBD-11-07	75	68.63	69.63	1	2a
514456	CBD-11-07	76	69.63	70.63	1	2a
514457	CBD-11-07	77	70.63	71.63	1	2a
514458	CBD-11-07	78	71.63	72.63	1	2a
514459	CBD-11-07	79	72.63	73.63	1	2 a
514460	CBD-11-07	80	73.63	74.63	1	2a
514461	CBD-11-07	81	74.63	75.63	1	2a
514462	CBD-11-07	82	75.63	75.8	0.17	2a
514463	CBD-11-07	83	75.8	76.8	1	2a
514464	CBD-11-07	84	76.8	77.8	1	2a
514465	CBD-11-07	85	77.8	78.11	0.31	2a
514466	CBD-11-07	86	78.11	79.11	1	3bM
514467	CBD-11-07	87	79.11	79.68	0.57	3bM

Chem #	DDH#	Sample	From	То	Length	Rock unit
514468	CBD-11-07	88	79.68	80.68	1	1a/2a
514469	CBD-11-07	89	80.68	81.6	0.92	1a/2a
514470	CBD-11-07	90	81.6	82.6	1	1a
514471	CBD-11-07	91	82.6	83.6	1	1a
514472	CBD-11-07	92	83.6	84.6	1	1a
514473	CBD-11-07	93	84.6	85.15	0.55	1a
514474	CBD-11-07	94	85.15	86.15	1	2a->1a
514475	CBD-11-07	95	86.15	87.15	1	2a->1a
514476	CBD-11-07	96	87.15	88.27	1.12	2a->1a
514477	CBD-11-07	97	88.27	88.62	0.35	1a/3b
514478	CBD-11-07	98	88.62	89.5	0.88	2b
514479	CBD-11-07	99	89.5	90.5	1	3b
514480	CBD-11-07	100	90.5	91.06	0.56	3b
514481	CBD-11-07	101	91.06	92.06	1	3bM
514482	CBD-11-07	102	92.06	92.56	0.5	3bM
514483	CBD-11-07	103	92.56	93.56	1	2a
514484	CBD-11-07	104	93.56	94.56	1	2a
514485	CBD-11-07	105	94.56	94.93	0.37	2a
514486	CBD-11-07	106	94.93	95.93	1	1a/3b
514487	CBD-11-07	107	95.93	96.93	1	1a/3b
514488	CBD-11-07	108	96.93	97.61	0.68	1a/3b
514489	CBD-11-07	109	97.61	98.61	1	2b->a
514490	CBD-11-07	110	98.61	99.06	0.45	2b->a
514491	CBD-11-07	111	99.06	100.1	1.04	2b
514492	CBD-11-07	112	100.1	101.1	1	1c (3b)
514493	CBD-11-07	113	101.1	101.95	0.85	1c (3b)
514494	CBD-11-07	114	101.95	103	1.05	1a
514495	CBD-11-07	115	103	104	1	2b(1c)
514496	CBD-11-07	116	104	105	1	1c/ 3b
514497	CBD-11-07	117	105	106	1	1c/ 3b
514498	CBD-11-07	118	106	107	1	1c/ 3b
514499	CBD-11-07	119	107	108	1	1c/ 3b
514500	CBD-11-07	120	108	109	1	1c/ 3b
514501	CBD-11-07	121	109	109.2	0.2	1c/ 3b
514502	CBD-11-07	122	109.2	110.2	1	2b
514503	CBD-11-07	123	110.2	111.2	1	2b
514504	CBD-11-07	124	111.2	112.2	1	2b
514505	CBD-11-07	125	112.2	113.2	1	2b
514506	CBD-11-07	126	113.2	114.2	1	2b
514507	CBD-11-07	127	114.2	115.2	1	2b
514508	CBD-11-07	128		115.84	0.64	2b
514509	CBD-11-07	129		116.84	1	2b
514510	CBD-11-07	130	116.84	117.84	1	2b
514511	CBD-11-07	131	117.84	118.84	1	2b
514512	CBD-11-07	132	118.84	118.94	0.1	2b
514513	CBD-11-07	133		119.94		3b

DDH#	Sample	From	То	Length	Rock unit
CBD-11-07	134	119.94	120.94	1	3b
CBD-11-07	135	120.94	121.94	1	3b
CBD-11-07	136	121.94	122.94	1	3b
CBD-11-07	137	122.94	123.52	0.58	3b
CBD-11-07	138	123.52	123.81	0.29	2a/3a
CBD-11-07	139	123.81	124.81	1	1a/3b
CBD-11-07	140	124.81	125.81	1	1a/3b
CBD-11-07	141	125.81	126.81	1	1a/3b
CBD-11-07	142	126.81	127.81	1	1a/3b
CBD-11-07	143	127.81	128.81	1	1a/3b
CBD-11-07	144	128.81	129.16	0.35	1a/3b
				1	2b
CBD-11-07	146	130.16	131.16	1	2b
CBD-11-07	147	131.16	132.16	1	2b
CBD-11-07	148	132.16	132.76	0.6	2b
		132.76		1	1a
		133.76		0.5	1a
				1	1a
				1.02	1a
					2b/3a
				1	1a-3b
				1	1a-3b
				0.49	1a-3b
				1	2b
				0.88	2b
				1	1c(2b)
				0.73	1c(2b)
				1	3b
				1	3b
				1.04	3b
				1	2b->1a
				1	2b->1a
				1	2b->1a
				1	2b->1a
				0.18	2b->1a
					1a
					1a
					1a
				1	2a
					2a
				1	2a
				_	2a
				1.00	2b (3aM)
					2b (3aM)
				_	2b (3aM)
					2b (3aM)
	CBD-11-07	CBD-11-07 134 CBD-11-07 135 CBD-11-07 136 CBD-11-07 137 CBD-11-07 138 CBD-11-07 140 CBD-11-07 144 CBD-11-07 142 CBD-11-07 144 CBD-11-07 144 CBD-11-07 145 CBD-11-07 146 CBD-11-07 147 CBD-11-07 148 CBD-11-07 149 CBD-11-07 150 CBD-11-07 151 CBD-11-07 153 CBD-11-07 153 CBD-11-07 153 CBD-11-07 155 CBD-11-07 155 CBD-11-07 155 CBD-11-07 158 CBD-11-07 158 CBD-11-07 160 CBD-11-07 163 CBD-11-07 163 CBD-11-07 163 CBD-11-07 164 CBD-11-07 <td>CBD-11-07 134 119.94 CBD-11-07 135 120.94 CBD-11-07 136 121.94 CBD-11-07 137 122.94 CBD-11-07 138 123.52 CBD-11-07 139 123.81 CBD-11-07 140 124.81 CBD-11-07 141 125.81 CBD-11-07 142 126.81 CBD-11-07 143 127.81 CBD-11-07 144 128.81 CBD-11-07 148 132.16 CBD-11-07 148 132.16 CBD-11-07 150 133.76 CBD-11-07 151 134.26 CBD-11-07</td> <td>CBD-11-07 134 119.94 120.94 CBD-11-07 135 120.94 121.94 CBD-11-07 136 121.94 122.94 CBD-11-07 137 122.94 123.52 CBD-11-07 138 123.52 123.81 CBD-11-07 140 124.81 125.81 CBD-11-07 141 125.81 126.81 CBD-11-07 141 125.81 127.81 CBD-11-07 142 126.81 127.81 CBD-11-07 144 128.81 129.16 CBD-11-07 143 127.81 128.81 CBD-11-07 144 128.81 129.16 CBD-11-07 143 130.16</td> <td>CBD-11-07 134 119.94 120.94 1 CBD-11-07 135 120.94 121.94 1 CBD-11-07 136 121.94 122.94 1 CBD-11-07 137 122.94 123.52 0.58 CBD-11-07 138 123.52 123.81 0.29 CBD-11-07 140 124.81 125.81 1 CBD-11-07 140 124.81 125.81 1 CBD-11-07 141 125.81 126.81 1 CBD-11-07 142 126.81 127.81 1 CBD-11-07 143 127.81 128.81 1 CBD-11-07 144 128.81 129.16 0.35 CBD-11-07 144 130.16 131.16 1</td>	CBD-11-07 134 119.94 CBD-11-07 135 120.94 CBD-11-07 136 121.94 CBD-11-07 137 122.94 CBD-11-07 138 123.52 CBD-11-07 139 123.81 CBD-11-07 140 124.81 CBD-11-07 141 125.81 CBD-11-07 142 126.81 CBD-11-07 143 127.81 CBD-11-07 144 128.81 CBD-11-07 148 132.16 CBD-11-07 148 132.16 CBD-11-07 150 133.76 CBD-11-07 151 134.26 CBD-11-07	CBD-11-07 134 119.94 120.94 CBD-11-07 135 120.94 121.94 CBD-11-07 136 121.94 122.94 CBD-11-07 137 122.94 123.52 CBD-11-07 138 123.52 123.81 CBD-11-07 140 124.81 125.81 CBD-11-07 141 125.81 126.81 CBD-11-07 141 125.81 127.81 CBD-11-07 142 126.81 127.81 CBD-11-07 144 128.81 129.16 CBD-11-07 143 127.81 128.81 CBD-11-07 144 128.81 129.16 CBD-11-07 143 130.16	CBD-11-07 134 119.94 120.94 1 CBD-11-07 135 120.94 121.94 1 CBD-11-07 136 121.94 122.94 1 CBD-11-07 137 122.94 123.52 0.58 CBD-11-07 138 123.52 123.81 0.29 CBD-11-07 140 124.81 125.81 1 CBD-11-07 140 124.81 125.81 1 CBD-11-07 141 125.81 126.81 1 CBD-11-07 142 126.81 127.81 1 CBD-11-07 143 127.81 128.81 1 CBD-11-07 144 128.81 129.16 0.35 CBD-11-07 144 130.16 131.16 1

Chem #	DDH#	Sample	From	То	Length	Rock unit
514560	CBD-11-07	180	159.95	160.29	0.34	3B
514561	CBD-11-07	181	160.29	161.29	1	2a (3aM)
514562	CBD-11-07	182	161.29	162.4	1.11	2a (3aM)
514563	CBD-11-07	183	162.4	162.63	0.23	2bM
514564	CBD-11-07	184	162.63	163.26	0.63	3B
514565	CBD-11-07	185	163.26	164.26	1	2aM
514566	CBD-11-07	186	164.26	165.26		2aM
514567	CBD-11-07	187	165.26	165.55	0.29	2aM
514568	CBD-11-07	188	165.55	166.55	1	2aM
514569	CBD-11-07	189	166.55	167.55	1	2aM
514570	CBD-11-07	190	167.55	168.48	0.93	2aM
514571	CBD-11-07	191	168.48	168.86		1A
514572	CBD-11-07	192	168.86	169.92	1.06	2B
514573	CBD-11-07	193	169.92	170.92	1.00	3bM
514574	CBD-11-07	194	170.92	171.92	_	3bM
514575	CBD-11-07	195	170.92	171.92	1	3bM
514576	CBD-11-07	196	171.92	173.92	1	3bM
514577	CBD-11-07	190	172.92	173.92		3bM
514578	CBD-11-07	197	173.92	174.92	0.57	3bM
514578	CBD-11-07	198	174.92	175.49	0.37	3B
514580	CBD-11-07	200	175.95	176.43	0.48	2B
514581	CBD-11-07	201	176.43	177.25	0.82	1aM
514582	CBD-11-07	202	177.25	178.25	1	2bM
514583	CBD-11-07	203	178.25	179	0.75	2bM
514584	CBD-11-07	204	179	179.38	0.38	3B
514585	CBD-11-07	205	179.38	180.38	1	2B
514586	CBD-11-07	206	180.38	180.97	0.59	2B
514587	CBD-11-07	207	180.97	182	1.03	1A(3B)
514588	CBD-11-07	208	182	182.21	0.21	3B
514589	CBD-11-07	209	182.21	182.93		1A
514590	CBD-11-07	210	182.93	183.77	0.84	3B
514591	CBD-11-07	211	183.77	184.45	0.68	2A
514592	CBD-11-07	212		185.45		2aM
514593	CBD-11-07	213		186.13	0.68	2aM
514594	CBD-11-07	214	186.13	187.13	1	2B
514595	CBD-11-07	215	187.13	188.13		2B
514596	CBD-11-07	216		188.31		2B
514597	CBD-11-07	217	188.31	188.53		1A
514598	CBD-11-07	218		189.41		2A
514599	CBD-11-07	219		190.41		<1%
514600	CBD-11-07	220		191.25		<1%
514601	CBD-11-07	221	191.25	192.25		
514602	CBD-11-07	222	192.25	193.24	0.99	
514603	CBD-11-07	223	193.24	194.24	1	1 a
514604	CBD-11-07	224		195.08		1 a
514605	CBD-11-07	225	195.08	196.08	1	2b

Chem #	DDH#	Sample	From	То	Length	Rock unit
514606	CBD-11-07	226	196.08	197.14	1.06	2b
514607	CBD-11-07	227	197.14	198.13	0.99	2a
514608	CBD-11-07	228	198.13	198.78	0.65	5
514609	CBD-11-07	229	198.78	199.27	0.49	1a
514610	CBD-11-07	230	199.27	200.27	1	2b
514611	CBD-11-07	231	200.27	201.27	1	2b
514612	CBD-11-07	232	201.27	201.93	0.66	2b
514613	CBD-11-07	233	201.93	202.8	0.87	1a
514614	CBD-11-07	234	202.8	203.8	1	2b
514615	CBD-11-07	235	203.8	204.1	0.3	2b
514616	CBD-11-07	236	204.1	204.55	0.45	5
514617	CBD-11-07	237	204.55	205.55	1	5
514618	CBD-11-07	238	205.55	206.55	1	5
514619	CBD-11-07	239	206.55	207.45	0.9	5
514620	CBD-11-07	240	207.45	208.41	0.96	1aM
514621	CBD-11-07	241	208.41	209.41	1	1aM
514622	CBD-11-07	242	209.41	210.41	1	1aM
514623	CBD-11-07	243	210.41	211	0.59	1aM
514624	CBD-11-07	244	211	212	1	1aM
514625	CBD-11-07	245	212	212.83	0.83	1aM
514626	CBD-11-07	246	212.83	213.83	1	1aM
514627	CBD-11-07	247	213.83	214.83	1	1aM
514628	CBD-11-07	248	214.83	215.44	0.61	1aM
514629	CBD-11-07	249	215.44	215.74	0.3	2A
514630	CBD-11-07	250	215.74	216.74	1	1aM
514631	CBD-11-07	251	216.74	217.74	1	1aM
514632	CBD-11-07	252	217.74	218.73	0.99	1aM
514633	CBD-11-07	253	218.73	218.95	0.22	3aM
514634	CBD-11-07	254	218.95	219.75	0.8	2a
514635	CBD-11-07	255	219.75	220.75	1	1aM
514636	CBD-11-07	256	220.75	221.75	1	1aM
514637	CBD-11-07	257	221.75	222.75	1	1aM
514638	CBD-11-07	258	222.75	223.75	1	1aM
514639	CBD-11-07	259	223.75	224.41	0.66	1aM
514640	CBD-11-07	260	224.41	225.41	1	2B
514641	CBD-11-07	261	225.41	226.41	1	2B
514642	CBD-11-07	262	226.41	226.88	0.47	1aM
514643	CBD-11-07	263	226.88	227.88	1	1aM
514644	CBD-11-07	264	227.88	228.88	1	1aM
514645	CBD-11-07	265	228.88	229.88	1	1aM
514646	CBD-11-07	266	229.88	230.88	1	1aM
514647	CBD-11-07	267	230.88	231.88	1	1aM
514648	CBD-11-07	268	231.88	232.88	1	1aM
514649	CBD-11-07	269	232.88	233.88	1	1aM
514650	CBD-11-07	270	233.88	234.88	1	1aM
514651	CBD-11-07	271	234.88	235.88	1	1aM

Chem #	DDH#	Sample	From	То	Length	Rock unit
514652	CBD-11-07	272	235.88	236.88	1	1aM
514653	CBD-11-07	273	236.88	237.88	1	1aM
514654	CBD-11-07	274	237.88	238.88	1	1aM
514655	CBD-11-07	275	238.88	239.88	1	1aM
514656	CBD-11-07	276	239.88	240.44	0.56	3b
514657	CBD-11-07	277	240.44	241.44	1	1aM
514658	CBD-11-07	278	241.44	242.23	0.79	1aM
514659	CBD-11-07	279	242.23	243.23	1	1aM
514660	CBD-11-07	280	243.23	244.23	1	1aM
514661	CBD-11-07	281	244.23	245.23	1	1aM
514662	CBD-11-07	282	245.23	246.23	1	1aM
514663	CBD-11-07	283	246.23	247.9	1.67	1aM
514664	CBD-11-07	284	247.9	248.77	0.87	1aM
514665	CBD-11-07	285	248.77	249.44	0.67	1a
514666	CBD-11-07	286	249.44	250.44	1	1aM
514667	CBD-11-07	287	250.44	251.2	0.76	1aM
514668	CBD-11-07	288	251.2	251.84	0.64	3b
514669	CBD-11-07	289	251.84	252.84	1	
514670	CBD-11-07	290	252.84	253.84	1	
514671	CBD-11-07	291	253.84	254.84	1	
514672	CBD-11-07	292	254.84	255.84	1	
514673	CBD-11-07	293	255.84	257	1.16	

Chem #	DDH#	Sample	SiO2	Al2O3	Fe2O3(T)	MnO
104676	CBD-10-01	1	56.74	13.78	12.32	0.329
104677	CBD-10-01	2	57.87	14.45	11.45	0.312
104678	CBD-10-01	3	56.47	13.89	12.09	0.326
104679	CBD-10-01	4	57.93	13.93	11.3	0.301
104680	CBD-10-01	5	52.16	11.65	18.93	0.563
104681	CBD-10-01	6	58.84	15.24	10.19	0.255
104682	CBD-10-01	7	58.45	14.45	11.2	0.301
104683	CBD-10-01	8	58.78	14.63	10.73	0.291
104684	CBD-10-01	9	56.57	13.2	13.43	0.361
104685	CBD-10-01	10	58.29	14.18	11.59	0.299
104686	CBD-10-01	11	57.14	13.84	12.06	0.294
104687	CBD-10-01	12	57.12	13.52	12.76	0.339
104688	CBD-10-01	13	52.86	11.53	18.39	0.413
104689	CBD-10-01	14	52.33	9.72	21.72	0.474
104690	CBD-10-01	15	58.11	14.13	10.97	0.279
104691	CBD-10-01	16	58.2	14.33	11.32	0.297
104692	CBD-10-01	17	57.1	13.37	12.7	0.353
104693	CBD-10-01	18	56.53	12.59	13.7	0.377
104694	CBD-10-01	19	52.4	9.62	20.07	0.602
104695	CBD-10-01	20	57.85	13.82	11.29	0.298
104696	CBD-10-01	21	57.56	13.75	11.14	0.285
104697	CBD-10-01	22	53.77	12.15	15.7	0.383
104698	CBD-10-01	23	55.37	12.42	15.74	0.409
104699	CBD-10-01	24	58.29	14.38	11.48	0.31
104700	CBD-10-01	25	57.71	14.05	11.51	0.313
104701	CBD-10-01	26	57.78	14.23	11.36	0.309
104702	CBD-10-01	27	57.69	14.04	11.28	0.302
104703	CBD-10-01	28	58.65	14.74	10.46	0.278
104704	CBD-10-01	29	58.17	14.49	10.67	0.283
104705	CBD-10-01	30	58.26	14.39	10.36	0.273
104706	CBD-10-01	31	58.41	14.73	9.95	0.265
104707	CBD-10-01	32	58.95	14.52	10.47	0.272
104708	CBD-10-01	33		14.52	10.73	0.285
104709	CBD-10-01	34		12.34	14.96	0.417
104710	CBD-10-01	35	57.84	14.05	12.03	0.335
104711	CBD-10-01	36	58.02	13.67	11.72	0.297
104712	CBD-10-01	37	58.27	14.67	10.31	0.278
104713	CBD-10-01	38	58.83	14.73	10.1	0.274
104714	CBD-10-01	39	58.55	14.49	10.16	0.276
104715	CBD-10-01	40	58.62	14.49	10.36	0.284
104716	CBD-10-01	41	58.6	14.51	10.39	0.277
104717	CBD-10-01	42	59.69	14.9	10.17	0.27
104718	CBD-10-01	43	59.13	14.78	10.02	0.266
104719	CBD-10-01	44	58.87	14.54	10.31	0.273
104720	CBD-10-01	45	58.37	14.12	10.75	0.288
104721	CBD-10-01	46	58.51	14.61	9.88	0.264

Chem #	DDH#	Sample	SiO2	Al2O3	Fe2O3(T)	MnO
104722	CBD-10-01	47	58.28	13.83	11.43	0.313
104723	CBD-10-01	48	57.27	13.61	12.2	0.344
104724	CBD-10-01	49	58.41	14.45	10.65	0.267
104725	CBD-10-01	50	57.53	13.97	12.38	0.307
104726	CBD-10-01	51	57.54	14.19	11.53	0.304
104727	CBD-10-01	52	56.49	13.91	12.17	0.264
104728	CBD-10-01	53	50.99	11.68	20.04	0.386
104729	CBD-10-01	54	52.01	10.77	20.19	0.474
104730	CBD-10-01	55	50.54	7.98	21.91	0.714
104731	CBD-10-01	56	57.3	13.58	11.38	0.293
104732	CBD-10-01	57	52.23	11.29	18.44	0.435
104733	CBD-10-01	58	55.11	13.38	13.41	0.308
104734	CBD-10-01	59	55.17	12.44	14.61	0.318
104735	CBD-10-01	60	56.63	13.22	12.44	0.25
104736	CBD-10-01	61	56.03	12.89	12.81	0.279
104737	CBD-10-01	62	55.73	12.76	13.38	0.313
104738	CBD-10-01	63	55	11.46	15.15	0.31
104739	CBD-10-01	64	53.55	11.8	15.48	0.359
104740	CBD-10-01	65	53.57	11.6	15.95	0.399
104741	CBD-10-01	66	52.87	11.98	15.79	0.357
104742	CBD-10-01	67	51.8	12.94	16.36	0.216
104743	CBD-10-01	68	51.5	11.24	13.89	0.32
104744	CBD-10-01	69	52.71	10.45	20.79	0.589
104745	CBD-10-01	70	52.62	12.84	17.06	0.704
104746	CBD-10-01	71	51.98	6.8	25.89	0.673
104747	CBD-10-01	72	51.62	6.71	27.97	0.714
104748	CBD-10-01	73	53.44	8.16	22.55	0.575
104749	CBD-10-01	74	56.53	13.11	13.08	0.322
104750	CBD-10-01	75	55.07	12.4	13.83	0.373
104751	CBD-10-01	76	57.57	13.46	11.74	0.312
104752	CBD-10-01	77	57.12	13.24	11.86	0.311
104753	CBD-10-01	78	56.19	13.69	12.94	0.299
104754	CBD-10-01	79	56.13	13.61	12.76	0.301
104755	CBD-10-01	80	53.74	13.09	13.48	0.407
104756	CBD-10-01	81	52.73	12.28	14.5	0.354
104757	CBD-10-01	82		12.57	13.22	0.315
104758	CBD-10-01	83	52.19	11.44	19.18	0.299
104759	CBD-10-01	84	52.08	14.06	10.6	0.361
104760	CBD-10-01	85	53.27	13.02	14.64	0.238
104761	CBD-10-01	86		11.71	18.23	0.477
104762	CBD-10-01	87	51.6	10.25	21.66	0.614
104763	CBD-10-01	88		11.73	18.57	0.492
104764	CBD-10-01	89	51.46	10.56	21.46	0.48
104765	CBD-10-01	90	51.9	10.24	21.83	0.273
104766	CBD-10-01	91	51.7	10.6	21.16	0.318
104767	CBD-10-01	92	56.2	13.18	12.81	0.306

Chem #	DDH#	Sample	SiO2	Al203	Fe2O3(T)	MnO
104768	CBD-10-01	93	56.3	13.19	13.61	0.275
104769	CBD-10-01	94	57.72	13.4	11.92	0.325
104770	CBD-10-01	95	57.14	13.29	12.43	0.32
104771	CBD-10-01	96	56.92	13.31	13.09	0.376
104772	CBD-10-01	97	54.1	12.25	16.38	0.367
104773	CBD-10-01	98	53.02	12.52	18.03	0.285
104774	CBD-10-01	99	52.92	13.08	16.8	0.273
104775	CBD-10-01	100	51.13	11.34	18.29	0.408
104776	CBD-10-01	101	53.13	12.35	17.93	0.298
104777	CBD-10-01	102	52.93	10.53	20.5	0.355
104778	CBD-10-01	103	52.04	10.76	21.32	0.407
104779	CBD-10-01	104	52.67	11.76	19.39	0.325
104780	CBD-10-01	105	52.31	11.86	20	0.305
104781	CBD-10-01	106	52.25	11.88	20.32	0.293
104782	CBD-10-01	107	52.11	13.41	17.17	0.269
104783	CBD-10-01	108	51.37	10.03	22.95	0.515
104784	CBD-10-01	109	52.01	11.1	21.22	0.378
104785	CBD-10-01	110	51.33	10.6	19.93	0.418
104786	CBD-10-01	111	56.09	13.46	12.54	0.307
104787	CBD-10-01	112	55.2	12.4	14.04	0.421
104788	CBD-10-01	113	54.59	10.35	18.39	0.272
104789	CBD-10-01	114	53.35	9.92	15.9	0.708
104790	CBD-10-01	115	53.52	10.98	18.52	0.331
104791	CBD-10-01	116	56.24	12.91	13.7	0.297
104792	CBD-10-01	117	53.5	11.85	16.95	0.359
104793	CBD-10-01	118	55.87	12.87	13.88	0.365
104794	CBD-10-01	119	54.32	10.41	18.6	0.366
104795	CBD-10-01	120	56.03	12.57	13.59	0.384
104796	CBD-10-01	121	54.84	13.64	14.25	0.325
104797	CBD-10-01	122	56.3	13.24	12.57	0.385
104798	CBD-10-01	123	53.35	10.74	18.88	0.585
104799	CBD-10-01	124	54.36	11.95	17.59	0.499
104800	CBD-10-01	125	55.26	13.34	13.62	0.355
416001	CBD-10-01	126		12.84	16.09	0.387
416002	CBD-10-01	127	52.89	12.07	17.44	0.381
416003	CBD-10-01	128		12.24	15.97	0.368
416004	CBD-10-01	129	54.19	13.11	14.68	0.376
416005	CBD-10-01	130	51.92	11.34	18.92	0.401
416006	CBD-10-01	131	53.26	12.52	15.24	0.415
416007	CBD-10-01	132	53.84	12.49	14.36	0.368
416008	CBD-10-01	133	53.43	12.17	16.42	0.375
416009	CBD-10-01	134	54.44	13.29	13.69	0.307
416010	CBD-10-01	135	55.78	13.28	13.25	0.341
416011	CBD-10-01	136	52.79	12.39	16.13	0.373
416012	CBD-10-01	137	54.69	13.79	13.15	0.291
416013	CBD-10-01	138	54.66	15.17	12.79	0.249

Chem #	DDH#	Sample	SiO2	Al203	Fe2O3(T)	MnO
416014	CBD-10-01	139	53.93	15.66	12.8	0.246
416015	CBD-10-01	140	52.99	11.56	18.59	0.448
416016	CBD-10-01	141	54.98	15.98	11.68	0.261
416017	CBD-10-01	142	54.92	14.88	12.42	0.285
416018	CBD-10-01	143	53.88	13.73	14.7	0.393
416019	CBD-10-01	144	55.13	13.5	13.36	0.333
416020	CBD-10-01	145	53.56	13.32	14.46	0.296
416021	CBD-10-01	146	52.39	12.3	17.41	0.424
416022	CBD-10-01	147	52.72	12.65	16.95	0.359
416023	CBD-10-01	148	53.27	13.34	15.76	0.398
416024	CBD-10-01	149	52.03	12.3	17.7	0.417
416025	CBD-10-01	150	53.45	13.79	15.06	0.449
416026	CBD-10-01	151	52.61	12.63	15.12	0.477
416027	CBD-10-01	152	52.13	11.61	16.44	0.537
416028	CBD-10-01	153	52.96	12.98	16.2	0.484
416029	CBD-10-01	154	53.31	13.17	15.49	0.481
416030	CBD-10-01	155	52.61	12.24	15.94	0.532
416031	CBD-10-01	156	54.12	13.1	14.48	0.413
416032	CBD-10-01	157	53.42	12.4	15.75	0.452
416033	CBD-10-01	158	52.12	11.88	16.01	0.497
416034	CBD-10-01	159	51.31	12.72	15.81	0.509
416035	CBD-10-01	160	52.45	12.39	15.9	0.486
416036	CBD-10-01	161	51.96	12.6	15.35	0.48
416037	CBD-10-01	162	52.96	12.48	15.57	0.383
416038	CBD-10-01	163	53.15	12.7	16.29	0.407
416039	CBD-10-01	164	53.17	12.2	15.76	0.443
416040	CBD-10-01	165	52.78	12.28	15.85	0.345
416041	CBD-10-01	166	54.51	13.65	13.23	0.292
416042	CBD-10-01	167	53.95	13.24	14.93	0.33
416043	CBD-10-01	168	52.16	12.13	16.37	0.374
416044	CBD-10-01	169	51.97	12.28	15.57	0.418
416045	CBD-10-01	170	53.99	12.54	14.2	0.328
416046	CBD-10-01	171	55.05	13.07	13.65	0.292
416047	CBD-10-01	172	55.54	14.02	12.54	0.25
416048	CBD-10-01	173	54.59	12.99	14.5	0.295
416049	CBD-10-01	174		12.72	15.35	0.364
416050	CBD-10-01	175	56.32	13.69	12.46	0.304
416051	CBD-10-01	176	55.66	12.49	13.59	0.322
416052	CBD-10-01	177	54.67	11.23	16.84	0.587
416053	CBD-10-01	178	51.76	11.39	15.38	0.592
416054	CBD-10-01	179	54.24	12.1	13.5	0.48
416055	CBD-10-01	180	53.38	11.82	14.81	0.558
416056	CBD-10-01	181	52.17	11.29	17.87	0.354
416057	CBD-10-01	182	52.16	10.01	20.82	0.532
416058	CBD-10-01	183	51.81	11.33	19.8	0.467
416059	CBD-10-01	184	53.71	14.05	13.19	0.317

Chem #	DDH#	Sample	SiO2	Al203	Fe2O3(T)	MnO
416060	CBD-10-01	185	52.01	10.58	19.54	0.404
416061	CBD-10-01	186	51.69	9.6	20.72	0.273
416062	CBD-10-01	187	52.46	12.63	16.73	0.404
416063	CBD-10-01	188	55.93	11.94	15.97	0.302
416064	CBD-10-01	189	55.67	12.79	13.67	0.289
416065	CBD-10-01	190	55.38	12.43	14.75	0.415
416066	CBD-10-01	191	59.21	11.55	13.35	0.369
416067	CBD-10-01	192	62.42	13.21	9.91	0.202
416068	CBD-10-01	193	63.86	15.34	5.29	0.094
416069	CBD-10-01	194	56.78	10.65	12.67	0.381
416070	CBD-10-01	195	54.08	10.67	14.56	0.514
416071	CBD-10-01	196	53.66	11.29	13.71	0.508
416072	CBD-10-01	197	51.97	12.1	16.62	0.458
416073	CBD-10-01	198	52.54	10.99	15.07	0.571
416074	CBD-10-01	199	52.61	12.51	15.57	0.389
416075	CBD-10-01	200	53.75	12.39	15.03	0.329
416076	CBD-10-01	201	54.23	10.85	17.99	0.429
416077	CBD-10-01	202	53.7	14.02	13.25	0.281
416078	CBD-10-01	203	53.15	11.94	16.54	0.325
416079	CBD-10-01	204	56.65	12.12	14.81	0.32
416080	CBD-10-01	205	59.46	12.23	12.54	0.265
416081	CBD-10-01	206	56.71	12.26	13.98	0.286
416082	CBD-10-01	207	59.83	12.77	12.64	0.298
416083	CBD-10-01	208	58.15	12.22	12.43	0.263
416084	CBD-10-01	209	53.22	12.32	14.31	0.331
416085	CBD-10-01	210	56.58	11.49	15.52	0.399
416086	CBD-10-01	211	63.34	15.02	6.52	0.121
416087	CBD-10-01	212	63.37	13.81	7.49	0.127
416088	CBD-10-01	213	71.47	12.69	3.38	0.059
416089	CBD-10-01	214	74.44	11.58	3.25	0.067
416090	CBD-10-01	215	72.11	12.15	3.75	0.071
416091	CBD-10-01	216	65.03	13.64	7	0.124
416092	CBD-10-01	217	69.6	12.01		0.081
416093	CBD-10-01	218		13.11	4.54	0.073
416094	CBD-10-01	219		14.62	5.98	0.103
416095	CBD-10-01	220		12.16	11.95	0.297
416096	CBD-10-01	221	55.03	12.43	13.96	0.318
416097	CBD-10-01	222	53.37	12.38	15.53	0.305
416098	CBD-10-01	223	52.4	12.83	15.18	0.29
416099	CBD-10-01	224	52.54	12.73	13.27	0.3
416100	CBD-10-01	225	54.33	12.13	16.08	0.287
416101	CBD-10-01	226	52.3	11.43	17.33	0.356
416102	CBD-10-01	227	53.46	13.16	13.5	0.302
416103	CBD-10-01	228	52.99	12.12	15.65	0.363
416104	CBD-10-01	229	53.73	12.45	15.5	0.325
416105	CBD-10-01	230	53.13	13.28	15.07	0.336

Chem #	DDH#	Sample	SiO2	Al2O3	Fe2O3(T)	MnO
416106	CBD-10-01	231	54.4	14.77	11.95	0.283
416107	CBD-10-01	232	53.99	12.52	14.53	0.35
416108	CBD-10-01	233	55.28	13.18	13.95	0.348
416109	CBD-10-01	234	53.91	12.74	15.11	0.378
416110	CBD-10-01	235	55.02	13.94	13.99	0.298
416111	CBD-10-01	236	54.15	13.98	14.67	0.265
416112	CBD-10-01	237	54.79	13.64	13.83	0.265
416113	CBD-10-01	238	54.98	13.3	13.39	0.272
416114	CBD-10-01	239	54.61	13.81	13.7	0.273
416115	CBD-10-01	240	53.23	11.38	19.58	0.32
416116	CBD-10-01	241	53.78	14.68	13.68	0.233
416117	CBD-10-01	242	52.88	14.82	13.89	0.248
416118	CBD-10-01	243	53.62	13.09	15.33	0.35
416119	CBD-10-01	244	54.41	12.31	18.29	0.312
416120	CBD-10-01	245	53.3	13.23	17.47	0.297
416121	CBD-10-01	246	53.78	13.55	15.43	0.359
416122	CBD-10-01	247	51.74	11.76	19.71	0.377
416123	CBD-10-01	248	52.69	13.45	15.39	0.307
416124	CBD-10-01	249	52.01	14.12	14.08	0.314
416125	CBD-10-01	250	52.55	12.28	17.32	0.347
416126	CBD-10-01	251	55.75	16.52	8.27	0.246
416127	CBD-10-01	252	53.68	10.28	19.62	0.51
416128	CBD-10-01	253	54.42	13.2	14.41	0.325
416129	CBD-10-01	254	54.8	13.74	14.44	0.276
416130	CBD-10-01	255	53.81	14.29	13.72	0.255
416131	CBD-10-01	256	54.01	13.47	13.66	0.295
416132	CBD-10-01	257	54.83	13.95	14.38	0.269
416133	CBD-10-01	258	52.75	12.33	17.64	0.342
416134	CBD-10-01	259	52.11	11.23	19.05	0.377
416135	CBD-10-01	260	53.59	12.43	14.77	0.3
416136	CBD-10-01	261	53.32	11.85	17.3	0.342
416137	CBD-10-01	262	51.34	11.54	17.81	0.375
416138	CBD-10-01	263	50.64	11.36	20.16	0.385
416139	CBD-10-01	264	51.22	10.76	21.3	0.41
416140	CBD-10-01	265	52.73	12.59	17.48	0.319
416141	CBD-10-01	266		12.51	15.13	0.289
416142	CBD-10-01	267	54.34	12	16.6	0.267
416143	CBD-10-01	268	53.25	12.7	15.1	0.272
416144	CBD-10-01	269	52.13	10.87	19.17	0.38
416145	CBD-10-01	270		11.74	17.6	0.389
416146	CBD-10-01	271	52.25	12.21	16.73	0.367
416147	CBD-10-01	272	54.36	13.6	14.18	0.274
416148	CBD-10-01	273	55.42	14.34	12.98	0.238
416149	CBD-10-01	274	54.44	14.15	13.29	0.269
416150	CBD-10-01	275	53.49	13.93	13.75	0.283
416151	CBD-10-01	276	53.66	13.08	15.23	0.301

Chem#	DDH#	Sample	SiO2	Al203	Fe2O3(T)	MnO
416152	CBD-10-01	277	53.92	13.24	13.87	0.276
416153	CBD-10-01	278	54.26	13.18	12.81	0.299
416154	CBD-10-01	279	55.84	14.26	12.54	0.251
512817	CBD-11-02	1	58.08	14.66	10.79	0.286
512818	CBD-11-02	2	59.31	14.31	10.72	0.283
512819	CBD-11-02	3	57.89	14.4	11.54	0.303
512820	CBD-11-02	4	58.18	14.57	11.13	0.303
512821	CBD-11-02	5	57.34	14.74	10.84	0.293
512822	CBD-11-02	6	57.86	14.2	11.66	0.324
512823	CBD-11-02	7	58.51	14.49	11.25	0.312
512824	CBD-11-02	8	58.69	14.72	10.57	0.289
512825	CBD-11-02	9	57.08	14.68	10.98	0.297
512826	CBD-11-02	10	58.35	14.44	11.23	0.315
512827	CBD-11-02	11	58.01	14.23	11.42	0.315
512828	CBD-11-02	12	57.65	13.62	12.37	0.383
512829	CBD-11-02	13	51.3	10.78	20.9	0.535
512830	CBD-11-02	14	57.03	13.69	12.03	0.291
512831	CBD-11-02	15	56.37	13.29	12.93	0.348
512832	CBD-11-02	16	58.62	14.05	11.02	0.286
512833	CBD-11-02	17	56.46	13.73	12.51	0.3
512834	CBD-11-02	18	57.33	14.64	11.26	0.296
512835	CBD-11-02	19	53.25	11.48	17.85	0.417
512836	CBD-11-02	20	57.21	13.74	11.07	0.23
512837	CBD-11-02	21	56.77	14.3	11.38	0.257
512838	CBD-11-02	22	51.95	12.36	17.33	0.404
512839	CBD-11-02	23	54.53	13.17	14.2	0.324
512840	CBD-11-02	24	56.98	14.24	11.78	0.299
512841	CBD-11-02	25	55.73	13.88	12.76	0.269
512842	CBD-11-02	26	56.59	13.1	13.37	0.292
512843	CBD-11-02	27	56.8	13.35	13.06	0.304
512844	CBD-11-02	28	57.44	13.32	12.22	0.322
512845	CBD-11-02	29	58.1	13.67	11.86	0.328
512846	CBD-11-02	30	54.72	12.99	13.74	0.314
512847	CBD-11-02	31	52.18	12.03	16.73	0.374
512848	CBD-11-02	32	56.67	13.95	11.56	0.256
512849	CBD-11-02	33	56.1	13.75	12.48	0.284
512850	CBD-11-02	34	57.06	13.19	12.45	0.278
512851	CBD-11-02	35	56.7	13.76	12.45	0.27
512852	CBD-11-02	36	54.65	12.5	14.25	0.308
512853	CBD-11-02	37	55.83	13.61	12.87	0.33
512854	CBD-11-02	38	54.46	12.11	14.35	0.334
512855	CBD-11-02	39	55.11	12.26	14.73	0.344
512856	CBD-11-02	40	56.51	13.23	12.48	0.276
512857	CBD-11-02	41	51.53	9.9	20.17	0.443
512858	CBD-11-02	42	55.66	13.25	12.78	0.275
512859	CBD-11-02	43	52.67	10.52	20.62	0.624

Chem #	DDH#	Sample	SiO2	Al2O3	Fe2O3(T)	MnO
512860	CBD-11-02	44	51.04	10.1	20.53	0.821
512861	CBD-11-02	45	56.1	10	16.15	0.663
512862	CBD-11-02	46	53.58	9.74	21.52	0.487
512863	CBD-11-02	47	56.33	12.31	14.46	0.384
512864	CBD-11-02	48	56.64	13.13	11.92	0.298
512865	CBD-11-02	49	56.74	13.18	12.59	0.317
512866	CBD-11-02	50	57.16	13.49	12.67	0.303
512867	CBD-11-02	51	52.63	10.93	20.92	0.446
512868	CBD-11-02	52	50.77	14.26	16.08	0.339
512869	CBD-11-02	53	51.58	12.41	18.73	0.365
512870	CBD-11-02	54	52.74	8.69	23.07	0.278
512871	CBD-11-02	55	53.86	12.23	15.65	0.374
512872	CBD-11-02	56	58.99	14.68	9.99	0.219
512873	CBD-11-02	57	57.44	14.58	10.87	0.293
512874	CBD-11-02	58	55.26	13.76	13.17	0.34
512875	CBD-11-02	59	54.83	13.13	13.87	0.357
512876	CBD-11-02	60	51.87	10.12	19.92	0.253
512877	CBD-11-02	61	52.66	10.54	18.8	0.456
512878	CBD-11-02	62	51.31	11.63	18.86	0.509
512879	CBD-11-02	63	51.01	11.21	19.44	0.469
512880	CBD-11-02	64	52.28	11.81	18.1	0.334
512881	CBD-11-02	65	56.24	13.54	11.57	0.312
512882	CBD-11-02	66	56.9	13.54	11.49	0.26
512883	CBD-11-02	67	52.38	12.83	16.24	0.355
512884	CBD-11-02	68	53.42	11.17	18.45	0.356
512885	CBD-11-02	69	52.39	10.65	21.6	0.54
512886	CBD-11-02	70	52.4	11.86	19.76	0.405
512887	CBD-11-02	71	53.6	11.52	15.82	0.39
512888	CBD-11-02	72	54.13	11.1	17.96	0.293
512889	CBD-11-02	73	54.87	11.07	16.67	0.362
512890	CBD-11-02	74	53.46	9.73	17.9	0.522
512891	CBD-11-02	75	54.55	11.66	14.93	0.461
512892	CBD-11-02	76	54.76	15.05	12.85	0.338
512893	CBD-11-02	77	56.19	15.09	11.5	0.303
512894	CBD-11-02	78	54.89	13.34	13.94	0.34
512895	CBD-11-02	79	54.29	11.92	16.15	0.521
512896	CBD-11-02	80	55.99	14.51	11.38	0.282
512897	CBD-11-02	81	56.73	13.93	11.94	0.324
512898	CBD-11-02	82	53.52	12.68	14.81	0.378
512899	CBD-11-02	83	57.05	13.82	13.32	0.343
512900	CBD-11-02	84	55.17	13.69	13.89	0.345
512901	CBD-11-02	85	56.21	13.76	13.67	0.341
512902	CBD-11-02	86	55.38	13.3	13.98	0.366
512903	CBD-11-02	87	55.52	13.34	13.63	0.343
512904	CBD-11-02	88	55.13	13.25	13.69	0.306
512905	CBD-11-02	89	54.49	12.56	15.65	0.422

Chem #	DDH#	Sample	SiO2	Al203	Fe2O3(T)	MnO
512906	CBD-11-02	90	53.6	10.67	18.57	0.704
512907	CBD-11-02	91	52.4	12.12	15.02	0.469
512908	CBD-11-02	92	51.76	10.17	19.32	0.683
512909	CBD-11-02	93	53.73	10.45	19.4	0.746
512910	CBD-11-02	94	51.91	11.18	18.31	0.585
512911	CBD-11-02	95	51.49	11.02	19.91	0.604
512912	CBD-11-02	96	52.94	12.58	16.32	0.455
512913	CBD-11-02	97	53.67	13.33	13.55	0.431
512914	CBD-11-02	98	52.64	12.46	15.89	0.477
512915	CBD-11-02	99	51.53	11.55	17.4	0.498
512916	CBD-11-02	100	52.33	14.44	13.34	0.33
512917	CBD-11-02	101	55.11	14.03	12.09	0.298
512918	CBD-11-02	102	54.52	13.05	14.24	0.343
512919	CBD-11-02	103	54.4	14.53	12.97	0.301
512920	CBD-11-02	104	53.32	11.89	16.6	0.412
512921	CBD-11-02	105	56.72	14.87	11.82	0.263
512922	CBD-11-02	106	55.44	14.5	12.85	0.269
512923	CBD-11-02	107	51.32	10.37	18.62	0.515
512924	CBD-11-02	108	52.98	13.47	15.68	0.346
512925	CBD-11-02	109	52.39	14.95	14.01	0.294
512926	CBD-11-02	110	51.57	14.65	13.83	0.389
512927	CBD-11-02	111	55.36	16.18	10.82	0.218
512928	CBD-11-02	112	53.57	15.12	12.12	0.293
512929	CBD-11-02	113	54.99	15.08	12.52	0.296
512930	CBD-11-02	114	53.55	14.42	12.89	0.347
512931	CBD-11-02	115	53.76	11.78	18.73	0.41
512932	CBD-11-02	116	52.21	11.61	18.31	0.461
512933	CBD-11-02	117	53.01	13.82	13.17	0.346
512934	CBD-11-02	118	51.67	11.48	18.99	0.419
512935	CBD-11-02	119	53.15	12.39	17.61	0.515
512936	CBD-11-02	120	51.33	12.32	17.52	0.423
512937	CBD-11-02	121	53.36	14.78	14.72	0.375
512938	CBD-11-02	122	51.88	12.66	17.23	0.383
512939	CBD-11-02	123	53.2	13.83	15.04	0.47
512940	CBD-11-02	124	52.79	12.89	17.76	0.376
512941	CBD-11-02	125	56.31	15.24	11.31	0.269
512942	CBD-11-02	126	56.59	14.48	11.3	0.305
512943	CBD-11-02	127	52.95	13.38	14.2	0.317
512944	CBD-11-02	128	55.25	13.67	13.15	0.29
512945	CBD-11-02	129	54.26	13.66	13.32	0.29
512946	CBD-11-02	130	54.06	14.66	13.52	0.339
512947	CBD-11-02	131	53.91	13.38	15.19	0.444
512948	CBD-11-02	132	56.52	14.33	12.01	0.272
512949	CBD-11-02	133	53.9	11.29	17.96	0.542
512950	CBD-11-02	134	53.5	12.69	14.92	0.351
512951	CBD-11-02	135	54.36	13.79	13.72	0.422

Chem #	DDH#	Sample	SiO2	Al2O3	Fe2O3(T)	MnO
512952	CBD-11-02	136	53.09	12.85	15.51	0.436
512953	CBD-11-02	137	52.25	13.3	15.67	0.446
512954	CBD-11-02	138	52.33	12.63	14.92	0.445
512955	CBD-11-02	139	54.67	12.01	15.31	0.445
512956	CBD-11-02	140	56	11.29	14.78	0.413
512957	CBD-11-02	141	52.4	12.43	16.15	0.413
512958	CBD-11-02	142	54.31	12.98	14.11	0.309
512959	CBD-11-02	143	52.77	12.84	13.96	0.327
512960	CBD-11-02	144	53.17	10.72	18.67	0.314
512961	CBD-11-02	145	54.18	10.45	17.9	0.281
512962	CBD-11-02	146	59.55	13.43	10.18	0.186
512963	CBD-11-02	147	61.87	15.36	7.04	0.139
512964	CBD-11-02	148	60.88	14.33	8.23	0.162
512965	CBD-11-02	149	51.93	12.56	15.56	0.303
512966	CBD-11-02	150	51.81	12.21	17.3	0.313
512967	CBD-11-02	151	52.52	11.97	18.6	0.305
512968	CBD-11-02	152	52.61	12.3	17.74	0.331
512969	CBD-11-02	153	55.8	14.45	13.31	0.328
512970	CBD-11-02	154	55.23	13.72	13.01	0.421
512971	CBD-11-02	155	52.92	11.36	16.8	0.581
512972	CBD-11-02	156	51.93	11.29	16.17	0.582
512973	CBD-11-02	157	53.27	12.68	14.47	0.513
512974	CBD-11-02	158	52	12.25	14.74	0.483
512975	CBD-11-02	159	53.74	12.81	13.23	0.462
512976	CBD-11-02	160	54.8	11.5	15.75	0.486
512977	CBD-11-02	161	54.85	11.6	16.03	0.495
512978	CBD-11-02	162	54.2	12.08	15.09	0.45
512979	CBD-11-02	163	55.13	12.91	13.09	0.334
512980	CBD-11-02	164	54.92	13.34	14.53	0.33
512981	CBD-11-02	165	57.23	11.88	13.53	0.336
512982	CBD-11-02	166	61.84	15.02	6.89	0.168
512983	CBD-11-02	167	62.24	13.56	9.84	0.2
512984	CBD-11-02	168	61.11	13.09	10.04	0.251
512985	CBD-11-02	169	54.73	10.92	16.06	0.377
512986	CBD-11-02	170	55.15	9.68	17.16	0.409
512987	CBD-11-02	171	51.11	12.02	13.05	0.435
512988	CBD-11-02	172		11.16	14.23	0.506
512989	CBD-11-02	173		12.6	14.88	0.325
512990	CBD-11-02	174	53.28	12.15	15.12	0.34
512991	CBD-11-02	175	57.75	13.32	12.08	0.256
512992	CBD-11-02	176	56.34	12.45	14	0.271
512993	CBD-11-02	177	56.17	13.24	12.45	0.294
512994	CBD-11-02	178		11.95	13.65	0.352
512995	CBD-11-02	179	58.45	11.23	14.79	0.344
512996	CBD-11-02	180	59.26	11.43	13.02	0.273
512997	CBD-11-02	181	62.92	14.14	7.18	0.14

Chem #	DDH#	Sample	SiO2	Al2O3	Fe2O3(T)	MnO
512998	CBD-11-02	182	73.92	11.67	3.5	0.064
512999	CBD-11-02	183	71.46	11.38	3.79	0.065
513000	CBD-11-02	184	62.23	13.58	8.84	0.174
513001	CBD-11-02	185	61.55	12.59	10.66	0.209
513002	CBD-11-02	186	72.72	11.1	3.58	0.062
513003	CBD-11-02	187	72.78	11.16	3.71	0.067
513004	CBD-11-02	188	58	13.72	11.44	0.253
513005	CBD-11-02	189	53.74	12.29	14.05	0.37
513006	CBD-11-02	190	53.9	12.57	14.29	0.316
513007	CBD-11-02	191	52.93	12.78	15.16	0.312
513008	CBD-11-02	192	53.5	11.73	15.85	0.301
513009	CBD-11-02	193	53.81	13.48	14.07	0.293
513010	CBD-11-02	194	54.03	13.15	13.34	0.282
513011	CBD-11-02	195	53.88	13.67	13.03	0.266
513012	CBD-11-02	196	53.93	13.14	14.4	0.334
513013	CBD-11-02	197	53.97	13.2	15.88	0.339
513014	CBD-11-02	198	54.23	13.29	13.85	0.341
513015	CBD-11-02	199	53.4	14.95	13.18	0.255
513016	CBD-11-02	200	53.52	9.86	20.79	0.357
513017	CBD-11-02	201	54.63	14.65	13.11	0.251
513018	CBD-11-02	202	52.74	14.2	13.55	0.278
513019	CBD-11-02	203	53.64	13.38	15.42	0.283
513020	CBD-11-02	204	52.48	10.54	20.88	0.381
513021	CBD-11-02	205	53.42	14.1	13.53	0.267
513022	CBD-11-02	206	52.9	14.11	14.3	0.262
513023	CBD-11-02	207	52.47	13.35	14.14	0.319
513024	CBD-11-02	208	51.13	11.84	17.3	0.336
513025	CBD-11-02	209	50.9	11.95	18.71	0.379
513026	CBD-11-02	210	52.08	12.77	16.9	0.385
513027	CBD-11-02	211	55.25	14.15	13.89	0.288
513028	CBD-11-02	212	52.66	14.02	13.86	0.268
513029	CBD-11-02	213	53.19	13.65	15.01	0.292
513030	CBD-11-02	214				0.271
513031	CBD-11-02	215	53.3	11.95	16.94	0.348
513032	CBD-11-02	216		10.25	22.32	0.408
513033	CBD-11-02	217	52.33	12.57	17.59	0.349
513034	CBD-11-02	218	53.82	13.63	13.57	0.282
513035	CBD-11-02	219	53.86	12.95	15.1	0.281
513036	CBD-11-02	220	52.31	11.07	17.87	0.408
513037	CBD-11-02	221	54.34	14.48	12.22	0.258
513038	CBD-11-02	222	54.73	14.13	13.25	0.272
513039	CBD-11-02	223	55.73	14.71	12.11	0.225
513040	CBD-11-02	224	54.97	14.23	12.55	0.253
513041	CBD-11-02	225	54.28	14.53	12.22	0.236
513042	CBD-11-02	226		12.08	16.51	0.36
513043	CBD-11-02	227	54.76	13.72	13.27	0.287

Chem #	DDH#	Sample	SiO2	Al2O3	Fe2O3(T)	MnO
513044	CBD-11-02	228	52.75	12.94	15.01	0.333
513045	CBD-11-02	229	53.37	13.65	13.95	0.289
513046	CBD-11-02	230	55.46	14.55	12.16	0.274
513047	CBD-11-02	231	54.69	13.27	13.28	0.283
513048	CBD-11-02	232	54.95	14.55	12.43	0.259
514381	CBD-11-07	1	47.29	7.81	26.32	0.679
514382	CBD-11-07	2	48.76	8.6	23.78	0.607
514383	CBD-11-07	3	50.56	12.21	18.57	0.378
514384	CBD-11-07	4	54.85	20.1	6.72	0.183
514385	CBD-11-07	5	46.72	7.94	25.52	0.635
514386	CBD-11-07	6	45.42	6.44	29.22	0.796
514387	CBD-11-07	7	44.91	6.84	28.54	0.795
514388	CBD-11-07	8	45.79	5.61	28.78	0.82
514389	CBD-11-07	9	54.6	10.45	17.79	0.503
514390	CBD-11-07	10	51.34	7.85	24.21	0.666
514391	CBD-11-07	11	51.37	9.4	21.23	0.576
514392	CBD-11-07	12	50.8	9.84	21.03	0.542
514393	CBD-11-07	13	51.86	11.05	18.58	0.499
514394	CBD-11-07	14	56.81	13.47	12.98	0.326
514395	CBD-11-07	15	52.06	10.92	19.87	0.535
514396	CBD-11-07	16	57.25	13.84	12.55	0.334
514397	CBD-11-07	17	53.28	11.44	19.13	0.509
514398	CBD-11-07	18	44.9	7.8	27.74	0.701
514399	CBD-11-07	19	39.56	3.36	41.01	1.115
514400	CBD-11-07	20	48.79	10.28	21.55	0.533
514401	CBD-11-07	21	56.41	12.66	13.79	0.378
514402	CBD-11-07	22	49.18	8.87	22.52	0.631
514403	CBD-11-07	23	53.79	10.48	18.13	0.556
514404	CBD-11-07	24	53.15	10.63	17.68	0.609
514405	CBD-11-07	25	53.01	11.73	17.21	0.427
514406	CBD-11-07	26	54.58	12.57	15.4	0.424
514407	CBD-11-07	27	54.81	13	14.32	0.387
514408	CBD-11-07	28		13.09		0.407
514409	CBD-11-07	29		14.36		0.317
514410	CBD-11-07	30	56.99	12.87	13.4	0.352
514411	CBD-11-07	31	56.68	13.4	13.09	0.328
514412	CBD-11-07	32	56.43	13.4	13.26	0.323
514413	CBD-11-07	33	55.03	14.09	13.24	0.29
514414	CBD-11-07	34	51.47	10.08	22.01	0.436
514415	CBD-11-07	35	51.9	11	19.67	0.471
514416	CBD-11-07	36	51.75	11.05	19.77	0.45
514417	CBD-11-07	37	52.21	11.31	19.2	0.485
514418	CBD-11-07	38	56.96	13.79	11.33	0.272
514419	CBD-11-07	39	52.61	13.25	15.3	0.324
514420	CBD-11-07	40	57.92	14.36	11.82	0.294
514421	CBD-11-07	41	52.33	10.59	19.89	0.404

Chem #	DDH#	Sample	SiO2	Al2O3	Fe2O3(T)	MnO
514422	CBD-11-07	42	55.58	13.11	13.22	0.296
514423	CBD-11-07	43	50.42	9.9	21.77	0.359
514424	CBD-11-07	44	51.53	9.57	22.2	0.29
514425	CBD-11-07	45	52.5	9.45	23.72	0.449
514426	CBD-11-07	46	53.73	12.67	15.54	0.347
514427	CBD-11-07	47	54.95	12.23	17.02	0.404
514428	CBD-11-07	48	53.83	9.29	22	0.573
514429	CBD-11-07	49	51.7	11.55	20.28	0.533
514430	CBD-11-07	50	53.25	7.32	24.16	0.479
514431	CBD-11-07	51	51.52	11.11	20.11	0.463
514432	CBD-11-07	52	44.61	7.22	31.91	0.922
514433	CBD-11-07	53	53.63	11.94	17.21	0.456
514434	CBD-11-07	54	54.63	12.12	15.98	0.44
514435	CBD-11-07	55	54.36	11.6	17.58	0.476
514436	CBD-11-07	56	57.87	13.62	12.36	0.32
514437	CBD-11-07	57	57.78	13.47	12.66	0.315
514438	CBD-11-07	58	56.25	13.33	13.32	0.329
514439	CBD-11-07	59	56.6	13.39	13.63	0.361
514440	CBD-11-07	60	53.46	12.38	17.05	0.356
514441	CBD-11-07	61	59.06	14.1	11.85	0.267
514442	CBD-11-07	62	57.77	14.58	10.74	0.281
514443	CBD-11-07	63	57.33	14	12.05	0.314
514444	CBD-11-07	64	58.02	14.65	11.34	0.298
514445	CBD-11-07	65	58.7	14.96	10.96	0.288
514446	CBD-11-07	66	58.29	14.59	10.02	0.264
514447	CBD-11-07	67	57.91	14.09	11.45	0.29
514448	CBD-11-07	68	57.29	13.95	11.74	0.298
514449	CBD-11-07	69	56.94	13.91	12.17	0.301
514450	CBD-11-07	70	58.53	14.47	10.43	0.275
514451	CBD-11-07	71	57.22	14.23	11.02	0.302
514452	CBD-11-07	72	57.34	14.31	11.41	0.297
514453	CBD-11-07	73	57.38	13.93	11.49	0.299
514454	CBD-11-07	74		15.21	10.87	0.285
514455	CBD-11-07	75		14.96	11.18	0.293
514456	CBD-11-07	76		14.98	10.87	0.285
514457	CBD-11-07	77	58.08	14.73	11.01	0.291
514458	CBD-11-07	78	59.23	14.73	11.38	0.303
514459	CBD-11-07	79		13.13	13.59	0.353
514460	CBD-11-07	80	58.75	14.52	12.04	0.328
514461	CBD-11-07	81	57.85	13.88	12.01	0.316
514462	CBD-11-07	82	58.27	14.01	11.99	0.282
514463	CBD-11-07	83	58.04	13.99	12.58	0.311
514464	CBD-11-07	84	57.25	13.74	11.98	0.3
514465	CBD-11-07	85	58.05	14.08	11.61	0.305
514466	CBD-11-07	86		11.17	20.21	0.474
514467	CBD-11-07	87	53.51	12.05	17.08	0.383

Chem #	DDH#	Sample	SiO2	Al2O3	Fe2O3(T)	MnO
514468	CBD-11-07	88	57.36	13.25	12.55	0.274
514469	CBD-11-07	89	56.53	13.38	12.88	0.285
514470	CBD-11-07	90	56.31	13.83	12.43	0.276
514471	CBD-11-07	91	55.31	12.8	13.98	0.299
514472	CBD-11-07	92	56.39	13.18	12.8	0.248
514473	CBD-11-07	93	57.89	12.08	13.98	0.288
514474	CBD-11-07	94	56.78	12.92	13.68	0.271
514475	CBD-11-07	95	57.1	12.07	14.09	0.284
514476	CBD-11-07	96	56.54	12.49	13.25	0.263
514477	CBD-11-07	97	51.67	10.92	19.36	0.682
514478	CBD-11-07	98	54.74	10.3	14.35	0.544
514479	CBD-11-07	99	52.88	10.12	20.92	0.441
514480	CBD-11-07	100	53.93	13.82	12.98	0.295
514481	CBD-11-07	101	52.77	9.06	23.59	0.503
514482	CBD-11-07	102	54.59	12.77	14.26	0.309
514483	CBD-11-07	103	56.28	13.52	12.71	0.291
514484	CBD-11-07	104	58.05	13.81	11.81	0.3
514485	CBD-11-07	105	58.03	13.56	11.89	0.275
514486	CBD-11-07	106	52	12.1	17.57	0.296
514487	CBD-11-07	107	52.5	9.84	20.25	0.396
514488	CBD-11-07	108	53.31	9.66	21.04	0.245
514489	CBD-11-07	109	56.54	13.47	12.54	0.341
514490	CBD-11-07	110	55.1	13.68	12.46	0.293
514491	CBD-11-07	111	56.23	12.62	14.37	0.391
514492	CBD-11-07	112	51.59	11.26	19.97	0.276
514493	CBD-11-07	113	52.81	11.23	21.07	0.248
514494	CBD-11-07	114	52.43	13.58	16.14	0.326
514495	CBD-11-07	115	53.36	12.17	16	0.424
514496	CBD-11-07	116	52.33	12.36	18.52	0.461
514497	CBD-11-07	117	53.37	11.67	18.43	0.535
514498	CBD-11-07	118	52.19	11.89	19.01	0.513
514499	CBD-11-07	119	52.67	11.59	17.95	0.36
514500	CBD-11-07	120	52.69	10.04	21.32	0.356
514501	CBD-11-07	121	52.81	10.11	22.02	0.36
514502	CBD-11-07	122	54.81	11.54	15.63	0.369
514503	CBD-11-07	123		11.25	16.81	0.454
514504	CBD-11-07	124		12.71	13.6	0.339
514505	CBD-11-07	125	58.4	13.01	12.17	0.292
514506	CBD-11-07	126	54.08	11.12	14.99	0.436
514507	CBD-11-07	127	55.03	13.13	13.09	0.343
514508	CBD-11-07	128	54.58	12.27	15.17	0.382
514509	CBD-11-07	129		12.96	12.93	0.365
514510	CBD-11-07	130	57.28	12.69	13.44	0.372
514511	CBD-11-07	131	52.69	11.62	16.44	0.39
514512	CBD-11-07	132	50.7	10.11	18.48	0.44
514513	CBD-11-07	133	52.7	10.86	20	0.408

Chem #	DDH#	Sample	SiO2	Al2O3	Fe2O3(T)	MnO
514514	CBD-11-07	134	52.74	12.1	17.43	0.364
514515	CBD-11-07	135	51.81	10.71	20.37	0.548
514516	CBD-11-07	136	51.68	10.82	21.3	0.472
514517	CBD-11-07	137	51.88	10.72	20.29	0.416
514518	CBD-11-07	138	54.36	19.51	8.01	0.156
514519	CBD-11-07	139	52.61	10.17	20.74	0.477
514520	CBD-11-07	140	53.04	10.92	18.78	0.303
514521	CBD-11-07	141	52.93	9.86	20.35	0.397
514522	CBD-11-07	142	52.14	11.19	20.28	0.407
514523	CBD-11-07	143	53.14	10.55	19.58	0.308
514524	CBD-11-07	144	55.28	10.93	17.36	0.232
514525	CBD-11-07	145	56.33	12.57	13.2	0.361
514526	CBD-11-07	146	55.48	12.99	13.09	0.349
514527	CBD-11-07	147	55.67	13.15	12.52	0.324
514528	CBD-11-07	148	55.11	13.31	12.89	0.343
514529	CBD-11-07	149	54.03	9.97	20.65	0.525
514530	CBD-11-07	150	52.63	11.36	19.67	0.525
514531	CBD-11-07	151	51.5	11.81	19.66	0.521
514532	CBD-11-07	152	50.65	11.73	19.7	0.588
514533	CBD-11-07	153	48.96	16.29	14.27	0.461
514534	CBD-11-07	154	50.66	11.6	20.04	0.54
514535	CBD-11-07	155	51.83	11.19	20.46	0.473
514536	CBD-11-07	156	52.45	12.19	18.29	0.419
514537	CBD-11-07	157	54.88	13.26	13.6	0.328
514538	CBD-11-07	158	53.9	13.14	13.53	0.416
514539	CBD-11-07	159	51.52	11.48	16.32	0.52
514540	CBD-11-07	160	53	13.06	15	0.378
514541	CBD-11-07	161	50.84	9.64	19.05	0.597
514542	CBD-11-07	162	50.85	10.67	17.47	0.497
514543	CBD-11-07	163	51.49	11.25	17.05	0.509
514544	CBD-11-07	164	53.88	12.11	14.38	0.352
514545	CBD-11-07	165	53.18	12.84	15.43	0.379
514546	CBD-11-07	166				0.216
514547	CBD-11-07	167	54.56	15.65	11.65	0.255
514548	CBD-11-07	168		15.32	11.01	0.25
514549	CBD-11-07	169	52.83	12.13	16.76	0.387
514550	CBD-11-07	170	51.99	10.96	19.11	0.404
514551	CBD-11-07	171	51.82	12.51	16.55	0.395
514552	CBD-11-07	172	55.1	13.63	12.2	0.307
514553	CBD-11-07	173	53.3	13.4	14.25	0.307
514554	CBD-11-07	174	52.96	15.47	12.7	0.249
514555	CBD-11-07	175	54.12	14.35	13.88	0.325
514556	CBD-11-07	176		14.39	12.34	0.275
514557	CBD-11-07	177	54.29	14.11	13.09	0.286
514558	CBD-11-07	178		13.85	13.35	0.35
514559	CBD-11-07	179	55.51	13.15	12.81	0.328

Chem #	DDH#	Sample	SiO2	Al2O3	Fe2O3(T)	MnO
514560	CBD-11-07	180	54.48	12.83	15.25	0.397
514561	CBD-11-07	181	53.04	12.37	14.87	0.405
514562	CBD-11-07	182	54.95	12.7	14.59	0.337
514563	CBD-11-07	183	54.14	14.48	14.19	0.314
514564	CBD-11-07	184	52.02	10.24	21.28	0.53
514565	CBD-11-07	185	53.41	14.8	13.12	0.287
514566	CBD-11-07	186	55.45	14.96	11.51	0.225
514567	CBD-11-07	187	53.02	14.11	13.54	0.281
514568	CBD-11-07	188	52.03	11.14	18.22	0.397
514569	CBD-11-07	189	53.08	12.06	16.32	0.403
514570	CBD-11-07	190	52.9	13.05	17.08	0.434
514571	CBD-11-07	191	52.81	13.67	15.72	0.449
514572	CBD-11-07	192	53.82	15.4	11.68	0.267
514573	CBD-11-07	193	53.46	13.71	14.52	0.41
514574	CBD-11-07	194	52.88	12.94	14.14	0.456
514575	CBD-11-07	195	53.33	13.73	13.71	0.428
514576	CBD-11-07	196	53.42	13.01	15.05	0.493
514577	CBD-11-07	197	52.21	11.39	16.39	0.563
514578	CBD-11-07	198	54.76	13.77	12.51	0.314
514579	CBD-11-07	199	53.51	9.36	20.27	0.477
514580	CBD-11-07	200	54.09	13.12	13.62	0.299
514581	CBD-11-07	201	53.45	11.5	17.31	0.3
514582	CBD-11-07	202	52.87	13.59	14.39	0.304
514583	CBD-11-07	203	50.86	11.87	16.15	0.381
514584	CBD-11-07	204	53.86	11.86	13.78	0.498
514585	CBD-11-07	205	54.53	13.48	12.65	0.276
514586	CBD-11-07	206	55.57	13.58	12.83	0.329
514587	CBD-11-07	207	52.76	10.86	15.87	0.542
514588	CBD-11-07	208	50.84	7.83	21.76	0.802
514589	CBD-11-07	209	53.28	10.9	15.15	0.511
514590	CBD-11-07	210	51.48	10.02	19.83	0.492
514591	CBD-11-07	211	55.37	13.57	12.3	0.296
514592	CBD-11-07	212	53.76	14.12	12.69	0.316
514593	CBD-11-07	213		14.09	11.66	0.279
514594	CBD-11-07	214	55.59	14.08	11.53	0.282
514595	CBD-11-07	215	55.85	14.24	11.53	0.283
514596	CBD-11-07	216		14.23	11.44	0.309
514597	CBD-11-07	217	54.22	12.62	15.4	0.317
514598	CBD-11-07	218	56.02	12.03	14.05	0.314
514599	CBD-11-07	219	63.71	15.73	4.92	0.111
514600	CBD-11-07	220	63.68	14.64	7.52	0.136
514601	CBD-11-07	221	56.12	11.74	13.11	0.378
514602	CBD-11-07	222	53.71	11.3	13.76	0.522
514603	CBD-11-07	223	54.11	12.93	13.77	0.3
514604	CBD-11-07	224	52.38	11.98	17.06	0.274
514605	CBD-11-07	225	52.84	12.97	15.76	0.313

Chem #	DDH#	Sample	SiO2	Al203	Fe2O3(T)	MnO
514606	CBD-11-07	226	55.23	13.22	13.4	0.302
514607	CBD-11-07	227	54.99	12.81	14.32	0.326
514608	CBD-11-07	228	62.56	13.86	9.34	0.186
514609	CBD-11-07	229	54.57	12.95	13.6	0.236
514610	CBD-11-07	230	52.67	12.57	12.93	0.296
514611	CBD-11-07	231	55	12.62	13.5	0.35
514612	CBD-11-07	232	57.18	12.68	13.02	0.324
514613	CBD-11-07	233	55.78	12.08	14.47	0.323
514614	CBD-11-07	234	58.39	11.48	14.33	0.334
514615	CBD-11-07	235	58.25	10.8	15.18	0.363
514616	CBD-11-07	236	62.76	13.11	7.59	0.123
514617	CBD-11-07	237	73.58	10.62	3.33	0.054
514618	CBD-11-07	238	70.67	11.68	3.8	0.065
514619	CBD-11-07	239	62.09	14.13	7.78	0.16
514620	CBD-11-07	240	55.49	13.23	12.73	0.295
514621	CBD-11-07	241	55.92	13.36	12.99	0.299
514622	CBD-11-07	242	53.68	14.02	13.23	0.297
514623	CBD-11-07	243	52.97	13.37	13.59	0.317
514624	CBD-11-07	244	53.76	11.76	16.52	0.313
514625	CBD-11-07	245	53.58	11.1	18.14	0.322
514626	CBD-11-07	246	54.51	13.73	12.95	0.283
514627	CBD-11-07	247	54.64	14.6	11.97	0.264
514628	CBD-11-07	248	54.6	15.12	12.75	0.25
514629	CBD-11-07	249	54.43	13.14	13.36	0.336
514630	CBD-11-07	250	53.81	12.77	15.39	0.326
514631	CBD-11-07	251	52.83	12.58	15.75	0.312
514632	CBD-11-07	252	53.04	12.45	15.97	0.316
514633	CBD-11-07	253	56.18	11.89	12.45	0.301
514634	CBD-11-07	254	53.83	12.87	13.89	0.367
514635	CBD-11-07	255	55.1	13.85	12.44	0.274
514636	CBD-11-07	256	55.52	13.11	13.64	0.26
514637	CBD-11-07	257	54.18	14.26	13.22	0.25
514638	CBD-11-07	258	52.89	11.52	17.61	0.297
514639	CBD-11-07	259	53.97	13.7	13.19	0.274
514640	CBD-11-07	260	53.97	13.38	13.93	0.33
514641	CBD-11-07	261	53.87	13.71	12.82	0.313
514642	CBD-11-07	262	53.88	12.76	15.1	0.37
514643	CBD-11-07	263	52.94	12.91	15.66	0.283
514644	CBD-11-07	264	51.71	11.15	17.93	0.332
514645	CBD-11-07	265	53.47	14.16	13.18	0.3
514646	CBD-11-07	266	54.56	13.62	13.55	0.277
514647	CBD-11-07	267	54.32	15.37	12.01	0.261
514648	CBD-11-07	268	54.96	14.84	11.9	0.243
514649	CBD-11-07	269	54.13	13.81	13.99	0.282
514650	CBD-11-07	270	54.04	13.91	13.28	0.239
514651	CBD-11-07	271	53.97	13.48	14.18	0.278

Chem #	DDH#	Sample	SiO2	Al2O3	Fe2O3(T)	MnO
514652	CBD-11-07	272	52.72	14.05	13.7	0.265
514653	CBD-11-07	273	53.14	13.13	15.59	0.317
514654	CBD-11-07	274	53.46	13.05	14.47	0.272
514655	CBD-11-07	275	53.84	13.82	14.2	0.225
514656	CBD-11-07	276	52.5	10.47	20.6	0.582
514657	CBD-11-07	277	54.37	12.04	15.16	0.315
514658	CBD-11-07	278	53.6	11.98	16.66	0.307
514659	CBD-11-07	279	52.44	11.55	18.6	0.391
514660	CBD-11-07	280	53.74	12.79	16.27	0.342
514661	CBD-11-07	281	53.76	12.63	14.5	0.279
514662	CBD-11-07	282	52.94	13.3	14.94	0.294
514663	CBD-11-07	283	52.8	12.07	17.94	0.385
514664	CBD-11-07	284	54.92	14.33	13.12	0.273
514665	CBD-11-07	285	53.4	13.2	13.3	0.231
514666	CBD-11-07	286	55.49	13.42	13.21	0.269
514667	CBD-11-07	287	54.55	13.38	12.66	0.249
514668	CBD-11-07	288	56.9	10.51	16.02	0.391
514669	CBD-11-07	289	55.78	12.74	12.26	0.254
514670	CBD-11-07	290	61.65	14.75	4.68	0.079
514671	CBD-11-07	291	59.5	15.05	4.28	0.064
514672	CBD-11-07	292	61.3	15.76	3.54	0.061
514673	CBD-11-07	293	58.01	14	10.42	0.219

Chem #	DDH#	Sample	MgO	CaO	Na2O	K20
104676	CBD-10-01	1	0.27	2.61	7.39	4.78
104677	CBD-10-01	2	0.25	2.31	7.23	5.12
104678	CBD-10-01	3	0.26	2.56	7.62	4.99
104679	CBD-10-01	4	0.23	2.18	7.94	5.15
104680	CBD-10-01	5	0.1	1.3	10.64	2.77
104681	CBD-10-01	6	0.18	2.06	7.5	5.44
104682	CBD-10-01	7	0.21	2.35	7.32	5.02
104683	CBD-10-01	8	0.21	2.26	7.34	5.02
104684	CBD-10-01	9	0.25	2.53	7.66	4.57
104685	CBD-10-01	10	0.22	2.33	7.41	4.84
104686	CBD-10-01	11	0.22	2.47	7.49	4.69
104687	CBD-10-01	12	0.24	2.72	7.08	4.92
104688	CBD-10-01	13	0.13	1.45	8.72	4.02
104689	CBD-10-01	14	0.09	1.11	9.05	2.93
104690	CBD-10-01	15	0.22	2.36	7.09	5.09
104691	CBD-10-01	16	0.23	2.5	7.05	5.02
104692	CBD-10-01	17	0.28	2.64	7.09	4.82
104693	CBD-10-01	18	0.23	2.11	7.91	3.72
104694	CBD-10-01	19	0.25	1.73	8.45	3.24
104695	CBD-10-01	20	0.25	2.3	7.08	4.98
104696	CBD-10-01	21	0.25	2.41	7.2	4.99
104697	CBD-10-01	22	0.36	1.93	8.7	3.81
104698	CBD-10-01	23	0.3	2.59	7.27	4.65
104699	CBD-10-01	24	0.24	2.36	7.12	5.18
104700	CBD-10-01	25	0.24	2.46	6.71	5.01
104701	CBD-10-01	26	0.23	2.38	6.69	4.97
104702	CBD-10-01	27	0.24	2.53	6.5	4.98
104703	CBD-10-01	28	0.21	2.28	6.64	5.04
104704	CBD-10-01	29	0.22	2.35	6.75	4.99
104705	CBD-10-01	30	0.22	2.33	6.76	5.02
104706	CBD-10-01	31	0.21	2.26	6.81	5.03
104707	CBD-10-01	32	0.23	2.34	6.79	4.89
104708	CBD-10-01	33		2.36	6.98	5.05
104709	CBD-10-01	34		1.98	6.81	4.6
104710	CBD-10-01	35	0.28	2.56	6.93	4.98
104711	CBD-10-01	36	0.24	2.08	6.66	4.96
104712	CBD-10-01	37	0.25	2.42	6.75	4.99
104713	CBD-10-01	38	0.24	2.33	6.66	5.03
104714	CBD-10-01	39	0.24	2.37	6.57	5.02
104715	CBD-10-01	40	0.25	2.38	6.56	5.02
104716	CBD-10-01	41	0.25	2.39	6.87	4.96
104717	CBD-10-01	42	0.24	2.29	6.99	5.11
104718	CBD-10-01	43	0.24	2.28	6.91	5.1
104719	CBD-10-01	44	0.24	2.32	6.88	4.98
104720	CBD-10-01	45	0.26	2.42	6.83	4.94
104721	CBD-10-01	46	0.24	2.24	7.29	5.09

Chem #	DDH#	Sample	MgO	CaO	Na2O	K20
104722	CBD-10-01	47	0.23	2.16	8.15	4.49
104723	CBD-10-01	48	0.26	2.25	7.89	4.24
104724	CBD-10-01	49	0.24	2.24	7.8	5.25
104725	CBD-10-01	50	0.3	2.33	7.77	4.99
104726	CBD-10-01	51	0.26	2.33	7.51	5.1
104727	CBD-10-01	52	0.28	2.29	7.8	5.15
104728	CBD-10-01	53	0.17	1.18	10.26	3.6
104729	CBD-10-01	54	0.08	0.9	9.2	3.85
104730	CBD-10-01	55	0.06	1.36	9.3	2.95
104731	CBD-10-01	56	0.28	2.32	7.25	5.45
104732	CBD-10-01	57	0.35	1.46	8.99	3.83
104733	CBD-10-01	58	0.25	2.25	8.47	4.47
104734	CBD-10-01	59	0.28	2	8.36	4.25
104735	CBD-10-01	60	0.3	2.24	7.75	4.83
104736	CBD-10-01	61	0.31	2.34	7.81	4.55
104737	CBD-10-01	62	0.37	2.85	7.27	4.64
104738	CBD-10-01	63	0.28	2.08	7.86	4.28
104739	CBD-10-01	64	0.45	3.17	7.9	4.05
104740	CBD-10-01	65	0.59	3.86	7.37	4.2
104741	CBD-10-01	66	0.39	3.18	7.99	4.51
104742	CBD-10-01	67	0.1	1.53	11.68	2
104743	CBD-10-01	68	0.36	5.18	7.43	4.84
104744	CBD-10-01	69	0.13	1.21	10.17	2.74
104745	CBD-10-01	70	0.08	1.22	9.67	3.51
104746	CBD-10-01	71	0.1	0.72	8.13	3.44
104747	CBD-10-01	72	0.1	0.67	7.58	4.13
104748	CBD-10-01	73	0.1	0.73	8.25	3.86
104749	CBD-10-01	74	0.27	2.12	7.43	4.8
104750	CBD-10-01	75	0.25	1.87	8.49	4.4
104751	CBD-10-01	76	0.29	2.5	7.13	4.79
104752	CBD-10-01	77	0.29	2.53	7.28	4.68
104753	CBD-10-01	78	0.33	2.62	7.49	4.94
104754	CBD-10-01	79	0.29	2.52	7.41	5.13
104755	CBD-10-01	80	1.33	2.67	9.36	2.89
104756	CBD-10-01	81	1.24	2.92	9.57	2.89
104757	CBD-10-01	82	0.35	2.7	7.27	5.41
104758	CBD-10-01	83	0.14	1.27	10.95	2.38
104759	CBD-10-01	84	1.71	3.41	8.35	5.22
104760	CBD-10-01	85	0.17	1.67	9.67	4.37
104761	CBD-10-01	86	0.11	0.8	9.53	3.86
104762	CBD-10-01	87	0.06	0.77	9.33	3.55
104763	CBD-10-01	88	0.05	0.94	9.8	3.69
104764	CBD-10-01	89	0.08	0.9	9.09	3.92
104765	CBD-10-01	90	0.05	1.13	10.51	2.21
104766	CBD-10-01	91	0.09	1.34	10.24	2.54
104767	CBD-10-01	92	0.25	2.04	7.26	5.6

Chem #	DDH#	Sample	MgO	CaO	Na2O	K20
104768	CBD-10-01	93	0.18	1.81	8.41	4.49
104769	CBD-10-01	94	0.25	2.17	7.15	4.85
104770	CBD-10-01	95	0.26	2.36	7.25	4.62
104771	CBD-10-01	96	0.28	2.35	7.03	4.77
104772	CBD-10-01	97	0.27	1.98	8.6	4.28
104773	CBD-10-01	98	0.08	1.41	11.94	1.84
104774	CBD-10-01	99	0.09	1.55	11.21	2.86
104775	CBD-10-01	100	0.21	1.8	9.77	3.66
104776	CBD-10-01	101	0.06	1.15	10.71	2.75
104777	CBD-10-01	102	0.05	0.99	11.06	1.69
104778	CBD-10-01	103	0.04	0.78	11.02	1.99
104779	CBD-10-01	104	0.05	1.02	11.46	2.3
104780	CBD-10-01	105	0.1	1.22	10.16	3.4
104781	CBD-10-01	106	0.13	1.27	10.37	3.07
104782	CBD-10-01	107	0.04	1.05	11.3	2.77
104783	CBD-10-01	108	0.05	0.74	9.29	3.39
104784	CBD-10-01	109	0.05	1	10.62	2.71
104785	CBD-10-01	110	0.22	1.75	9.2	3.61
104786	CBD-10-01	111	0.23	2.09	7.75	5.06
104787	CBD-10-01	112	0.29	2.37	7.06	5.97
104788	CBD-10-01	113	0.11	1.28	11.67	1.15
104789	CBD-10-01	114	0.47	3.39	5.77	6.19
104790	CBD-10-01	115	0.1	1.06	12.34	1
104791	CBD-10-01	116	0.28	1.81	8.4	5.2
104792	CBD-10-01	117	0.37	1.81	10.01	3.63
104793	CBD-10-01	118	0.28	2.09	7.9	4.99
104794	CBD-10-01	119	0.12	1.25	11.07	1.82
104795	CBD-10-01	120	0.25	2.38	7.35	5.24
104796	CBD-10-01	121	0.14	1.48	10.14	3.91
104797	CBD-10-01	122	0.21	2.35	7.5	5.12
104798	CBD-10-01	123	0.16	1.18	10.07	2.14
104799	CBD-10-01	124	0.15	1.17	9.86	3.22
104800	CBD-10-01	125	0.24	2.49	7.68	4.95
416001	CBD-10-01	126	0.29	2.88	8.7	4.14
416002	CBD-10-01	127	0.3	2.64	8.42	4.17
416003	CBD-10-01	128	0.32	2.55	8.14	4.4
416004	CBD-10-01	129	0.19	1.75	9.34	3.57
416005	CBD-10-01	130	0.32	1.53	9.49	3.39
416006	CBD-10-01	131	0.13	1.84	8.74	3.95
416007	CBD-10-01	132	0.61	3.62	7.93	3.92
416008	CBD-10-01	133	0.24	1.77	8.54	4.24
416009	CBD-10-01	134		1.94	8.8	4.5
416010	CBD-10-01	135	0.24	2.24	8.33	4.34
416011	CBD-10-01	136	0.24	1.87	9.45	3.92
416012	CBD-10-01	137	0.18	2.05	8.64	4.58
416013	CBD-10-01	138	0.13	1.96	9.66	4.48

Chem#	DDH#	Sample	MgO	CaO	Na2O	K20
416014	CBD-10-01	139	0.16	2.04	9.48	4.61
416015	CBD-10-01	140	0.25	1.43	9.18	3.85
416016	CBD-10-01	141	0.17	1.89	9.27	4.5
416017	CBD-10-01	142	0.18	2.23	9.02	4.56
416018	CBD-10-01	143	0.2	2	9.19	4.01
416019	CBD-10-01	144	0.26	2.26	7.98	5.08
416020	CBD-10-01	145	0.21	2.11	8.94	4.41
416021	CBD-10-01	146	0.25	1.38	9.9	3.4
416022	CBD-10-01	147	0.3	1.66	9.81	3.69
416023	CBD-10-01	148	0.08	1.06	9.41	4.26
416024	CBD-10-01	149	0.23	1.33	10.03	3.32
416025	CBD-10-01	150	0.04	0.9	9.78	3.59
416026	CBD-10-01	151	0.03	0.96	8.1	4.95
416027	CBD-10-01	152	0.04	1.36	7.44	5.33
416028	CBD-10-01	153	0.02	0.79	9.74	3.71
416029	CBD-10-01	154	0.03	0.77	8.72	4.52
416030	CBD-10-01	155	0.03	0.95	8.33	4.3
416031	CBD-10-01	156	0.03	0.71	8.7	4.45
416032	CBD-10-01	157	0.03	0.86	8.76	4.04
416033	CBD-10-01	158	0.03	1.13	8.56	4.03
416034	CBD-10-01	159	0.02	0.79	9.19	3.63
416035	CBD-10-01	160	0.03	0.78	8.86	3.98
416036	CBD-10-01	161	0.02	0.94	9.89	3.05
416037	CBD-10-01	162	0.3	1.94	9.28	3.83
416038	CBD-10-01	163	0.11	1.21	10.49	3.18
416039	CBD-10-01	164	0.06	1.08	10.19	3.02
416040	CBD-10-01	165	0.5	2.57	9.04	3.91
416041	CBD-10-01	166	0.27	1.66	9.08	4.22
416042	CBD-10-01	167	0.33	1.73	9.18	3.92
416043	CBD-10-01	168	0.51	2.36	9.33	3.65
416044	CBD-10-01	169	0.56	2.52	9.38	3.52
416045	CBD-10-01	170	0.52	2.95	8.75	4.09
416046	CBD-10-01	171	0.24	2.08	8.45	4.33
416047	CBD-10-01	172			9.03	4.34
416048	CBD-10-01	173	0.22	2.08	8.78	4.28
416049	CBD-10-01	174		1.54	8.67	4.44
416050	CBD-10-01	175		2.27	8.44	4.7
416051	CBD-10-01	176		2.16	8.2	4.53
416052	CBD-10-01	177	0.05	1.78	9.07	3.8
416053	CBD-10-01	178	0.14	2.47	9.01	3.22
416054	CBD-10-01	179	0.02	2.05	8.73	4.27
416055	CBD-10-01	180	0.02	1.75	9.43	3.38
416056	CBD-10-01	181	0.06		10.23	2.44
416057	CBD-10-01	182	0.06	1.31	10.07	2.66
416058	CBD-10-01	183	0.09	1.18	10.64	2.93
416059	CBD-10-01	184	0.1	1.29	9.22	5.29

Chem#	DDH#	Sample	MgO	CaO	Na2O	K20
416060	CBD-10-01	185	0.09	1.43	10.26	2.91
416061	CBD-10-01	186	0.11	2.06	10.68	2.25
416062	CBD-10-01	187	0.16	1.69	9.85	4.66
416063	CBD-10-01	188	0.15	1.82	10.21	3.44
416064	CBD-10-01	189	0.16	1.85	9.22	4.26
416065	CBD-10-01	190	0.11	1.34	10.77	2.08
416066	CBD-10-01	191	0.12	1.75	8.13	3.51
416067	CBD-10-01	192	0.06	0.82	8.33	3.7
416068	CBD-10-01	193	0.06	0.76	7.36	5.57
416069	CBD-10-01	194	1.19	3.22	8.58	3.17
416070	CBD-10-01	195	1.66	3.75	9.36	2.88
416071	CBD-10-01	196	1.62	3.48	9.12	3.02
416072	CBD-10-01	197	0.81	2.09	10.19	2.94
416073	CBD-10-01	198	1.33	2.98	8.42	3.76
416074	CBD-10-01	199	0.27	1.66	10	3.62
416075	CBD-10-01	200	0.36	1.9	8.89	3.94
416076	CBD-10-01	201	0.15	1.51	9.67	3.18
416077	CBD-10-01	202	0.15	1.89	9.31	4.37
416078	CBD-10-01	203	0.2	1.95	9.64	3.67
416079	CBD-10-01	204	0.31	1.45	7.6	4.87
416080	CBD-10-01	205	0.14	1.38	7.85	4.49
416081	CBD-10-01	206	0.12	1.58	8.79	4.2
416082	CBD-10-01	207	0.2	1.6	8.11	4.5
416083	CBD-10-01	208	0.26	1.49	7.46	4.44
416084	CBD-10-01	209	0.79	3.1	8.42	3.76
416085	CBD-10-01	210	0.19	1.3	8.27	3.02
416086	CBD-10-01	211	0.11	0.79	6.39	5.95
416087	CBD-10-01	212	0.14	1.28	7.1	5.05
416088	CBD-10-01	213	0.09	0.75	4.76	5.67
416089	CBD-10-01	214	0.21	0.72	4.28	5.61
416090	CBD-10-01	215	0.13	0.81	5.08	5.02
416091	CBD-10-01	216	0.09	0.95	6.32	5.99
416092	CBD-10-01	217	0.08	0.83	5.13	5.14
416093	CBD-10-01	218		0.79	5.67	5.63
416094	CBD-10-01	219	0.1	1.6	6.54	6.36
416095	CBD-10-01	220		1.59	7.46	4.58
416096	CBD-10-01	221	0.14	1.58	9.29	4.02
416097	CBD-10-01	222	0.12	1.83	10.32	3.42
416098	CBD-10-01	223	0.12	1.7	9.73	4.12
416099	CBD-10-01	224	0.08	3.16	11.64	3.39
416100	CBD-10-01	225	0.13	1.84	9.79	4.07
416101	CBD-10-01	226	0.17	1.82	9.35	3.93
416102	CBD-10-01	227	0.17	2.45	8.6	4.69
416103	CBD-10-01	228	0.24	2.6	8.74	3.94
416104	CBD-10-01	229	0.29	2.64	8.54	4.26
416105	CBD-10-01	230	0.2	2.12	9.06	4.13

Chem #	DDH#	Sample	MgO	CaO	Na2O	K20
416106	CBD-10-01	231	0.12	1.75	9.41	4.27
416107	CBD-10-01	232	0.51	3.12	7.45	4.66
416108	CBD-10-01	233	0.56	3.32	7.83	4.97
416109	CBD-10-01	234	0.61	3.6	8.03	4.44
416110	CBD-10-01	235	0.15	1.72	8.74	4.65
416111	CBD-10-01	236	0.1	1.47	9.42	4.4
416112	CBD-10-01	237	0.12	1.51	8.96	4.75
416113	CBD-10-01	238	0.16	1.73	8.38	4.71
416114	CBD-10-01	239	0.18	1.86	9.06	4.45
416115	CBD-10-01	240	0.13	1.48	10.84	2.36
416116	CBD-10-01	241	0.14	1.78	9.19	4.49
416117	CBD-10-01	242	0.13	1.67	9.39	4.61
416118	CBD-10-01	243	0.39	2.9	8.11	4.84
416119	CBD-10-01	244	0.15	1.64	9.82	3.64
416120	CBD-10-01	245	0.11	2.04	10.86	3.15
416121	CBD-10-01	246	0.34	2.81	8.37	4.98
416122	CBD-10-01	247	0.17	1.99	10.15	2.58
416123	CBD-10-01	248	0.25	1.99	9.21	3.67
416124	CBD-10-01	249	0.15	2.14	9.85	4.26
416125	CBD-10-01	250	0.16	1.83	9.68	3.25
416126	CBD-10-01	251	0.07	1.81	9.2	4.36
416127	CBD-10-01	252	0.18	1.58	9.18	2.91
416128	CBD-10-01	253	0.21	2.02	8.37	4.48
416129	CBD-10-01	254	0.18	2.2	8.47	4.37
416130	CBD-10-01	255	0.15	2.12	8.89	4.34
416131	CBD-10-01	256	0.12	2.28	8.98	4.29
416132	CBD-10-01	257	0.12	2.2	8.99	4.38
416133	CBD-10-01	258	0.17	2.23	9.61	3.29
416134	CBD-10-01	259	0.41	2.38	8	3.62
416135	CBD-10-01	260	0.22	2.27	7.67	4.18
416136	CBD-10-01	261	0.18	1.71	8.5	4.19
416137	CBD-10-01	262	0.18	2.2	9.85	3.26
416138	CBD-10-01	263	0.18	1.74	9.85	3.11
416139	CBD-10-01	264	0.18	1.89	9.87	3.16
416140	CBD-10-01	265	0.2	2.14	9.52	4.16
416141	CBD-10-01	266	0.18	2.43	9.14	4.2
416142	CBD-10-01	267	0.19	2.73	8.47	4.43
416143	CBD-10-01	268	0.26	2.6	8.46	4.08
416144	CBD-10-01	269	0.23	2	9.49	3.45
416145	CBD-10-01	270	0.45	1.97	8.74	3.58
416146	CBD-10-01	271	1.49	1.21	6.75	4.01
416147	CBD-10-01	272	1.19	1.26	6.23	4.58
416148	CBD-10-01	273		1.16	5.86	4.81
416149	CBD-10-01	274	0.39	1.75	7.12	4.5
416150	CBD-10-01	275	0.28	2.38	8.03	4.07
416151	CBD-10-01	276	1.3	1.68	5.88	4.53

Chem #	DDH#	Sample	MgO	CaO	Na2O	K20
416152	CBD-10-01	277	2.29	1.18	5.62	4.6
416153	CBD-10-01	278	2.48	0.93	5.42	4.37
416154	CBD-10-01	279	0.74	1.3	6.33	4.69
512817	CBD-11-02	1	0.27	2.31	6.52	4.96
512818	CBD-11-02	2	0.27	2.36	6.65	5.08
512819	CBD-11-02	3	0.27	2.37	6.44	4.82
512820	CBD-11-02	4	0.27	2.39	6.31	4.95
512821	CBD-11-02	5	0.26	2.37	6.24	4.82
512822	CBD-11-02	6	0.29	2.5	6.25	4.84
512823	CBD-11-02	7	0.28	2.4	6.53	4.94
512824	CBD-11-02	8	0.26	2.34	6.57	5.13
512825	CBD-11-02	9	0.28	2.39	6.38	4.84
512826	CBD-11-02	10	0.28	2.32	6.89	4.99
512827	CBD-11-02	11	0.29	2.37	7.24	5.09
512828	CBD-11-02	12	0.33	2.41	7.42	4.9
512829	CBD-11-02	13	0.12	1.59	9.21	2.8
512830	CBD-11-02	14	0.29	2.35	6.98	4.83
512831	CBD-11-02	15	0.36	3.12	6.74	4.85
512832	CBD-11-02	16	0.27	2.4	6.91	5.37
512833	CBD-11-02	17	0.29	2.35	7.04	4.88
512834	CBD-11-02	18	0.27	2.1	7.11	5.36
512835	CBD-11-02	19	0.17	1.35	8.87	3.64
512836	CBD-11-02	20	0.24	2.2	7.22	4.94
512837	CBD-11-02	21	0.25	2.04	7.26	4.99
512838	CBD-11-02	22	0.2	1.59	9.92	3.48
512839	CBD-11-02	23	0.26	1.6	8.34	4.77
512840	CBD-11-02	24	0.28	1.81	7.45	4.78
512841	CBD-11-02	25	0.31	2.18	7.61	4.86
512842	CBD-11-02	26	0.32	2.65	7.29	4.58
512843	CBD-11-02	27	0.33	2.57	7.26	4.84
512844	CBD-11-02	28	0.31	2.56	7.22	4.69
512845	CBD-11-02	29	0.3	2.44	7.27	4.6
512846	CBD-11-02	30	0.35		8.09	4.6
512847	CBD-11-02	31		1.93	8.65	4.28
512848	CBD-11-02	32	0.25	2.08	7.31	4.98
512849	CBD-11-02	33		2.07	7.63	4.53
512850	CBD-11-02	34	0.25	2.25	7.2	4.69
512851	CBD-11-02	35	0.28	2.16	7.62	4.71
512852	CBD-11-02	36		2.35	7.93	4.38
512853	CBD-11-02	37	0.24	1.94	9.22	4.39
512854	CBD-11-02	38		2.32	7.74	4.22
512855	CBD-11-02	39	0.33	2.02	7.47	4.38
512856	CBD-11-02	40	0.29	2.14	7.8	4.92
512857	CBD-11-02	41	0.83	2.31	7.91	3.97
512858	CBD-11-02	42	0.28	2.49	7.62	4.95
512859	CBD-11-02	43	0.08	1.02	10.04	2.37

Chem #	DDH#	Sample	MgO	CaO	Na2O	K20
512860	CBD-11-02	44	0.13	1.27	9.39	2.44
512861	CBD-11-02	45	1.01	1.81	7.64	3.52
512862	CBD-11-02	46	0.08	0.74	10.2	2.13
512863	CBD-11-02	47	0.37	3.13	7.67	4.98
512864	CBD-11-02	48	0.25	1.88	8.46	4.09
512865	CBD-11-02	49	0.26	2.08	7.76	3.97
512866	CBD-11-02	50	0.26	2.19	7.37	5.74
512867	CBD-11-02	51	0.09	0.97	11.41	2
512868	CBD-11-02	52	0.06	1.1	11.9	2.63
512869	CBD-11-02	53	0.07	0.96	11.29	2.7
512870	CBD-11-02	54	0.07	1.47	11.45	1.33
512871	CBD-11-02	55	0.25	1.99	7.6	5.73
512872	CBD-11-02	56	0.23	2.25	7.88	5.54
512873	CBD-11-02	57	0.22	1.95	7.53	5.38
512874	CBD-11-02	58	0.28	2.31	7.73	4.98
512875	CBD-11-02	59	0.29	2.74	8.47	5.19
512876	CBD-11-02	60	0.12	2.05	10.05	2.45
512877	CBD-11-02	61	0.43	2.67	9.19	4.04
512878	CBD-11-02	62	0.05	0.89	10.23	3.29
512879	CBD-11-02	63	0.06	1.03	10.26	3.41
512880	CBD-11-02	64	0.09	1.32	10.23	3.68
512881	CBD-11-02	65	0.25	2.16	6.89	6.49
512882	CBD-11-02	66	0.26	2.25	7.29	5.07
512883	CBD-11-02	67	0.23	1.56	10.09	4.16
512884	CBD-11-02	68	0.14	1.38	10.27	3.18
512885	CBD-11-02	69	0.05	0.71	9.96	3.11
512886	CBD-11-02	70	0.06	0.99	10.53	3
512887	CBD-11-02	71	0.37	2.7	7.7	5.15
512888	CBD-11-02	72	0.13	1.68	10.51	2.3
512889	CBD-11-02	73	0.17	1.7	10.23	2.64
512890	CBD-11-02	74	0.27	1.99	9.01	3.75
512891	CBD-11-02	75	0.28	2.93	7.19	4.9
512892	CBD-11-02	76	0.17	2.02	9.21	4.28
512893	CBD-11-02	77	0.2	2.07	8.11	5.13
512894	CBD-11-02	78	0.23	2.68	8.31	4.46
512895	CBD-11-02	79	0.28	2.85	8.52	3.93
512896	CBD-11-02	80	0.23	1.6	8.29	5.36
512897	CBD-11-02	81	0.23	2.43	7.86	4.95
512898	CBD-11-02	82	0.31	3.42	8.06	4.25
512899	CBD-11-02	83	0.27	2.9	7.91	4.7
512900	CBD-11-02	84	0.24	2.85	7.73	4.47
512901	CBD-11-02	85	0.21	2.09	7.62	4.71
512902	CBD-11-02	86	0.27	2.88	8.05	4.57
512903	CBD-11-02	87	0.26	2.62	7.92	4.6
512904	CBD-11-02	88	0.26	2.73	8.01	4.61
512905	CBD-11-02	89	0.28	2.38	8.91	4.26

Chem #	DDH#	Sample	MgO	CaO	Na2O	K20
512906	CBD-11-02	90	0.43	1.78	9.45	2.69
512907	CBD-11-02	91	0.09	1.77	10.96	1.85
512908	CBD-11-02	92	0.37	1.49	9.14	2.52
512909	CBD-11-02	93	0.44	1.49	9.29	3.16
512910	CBD-11-02	94	0.31	1.83	10.45	2.47
512911	CBD-11-02	95	0.34	1.02	10.53	2.05
512912	CBD-11-02	96	0.28	1.67	9.59	3.25
512913	CBD-11-02	97	0.12	2.28	8.52	5.16
512914	CBD-11-02	98	0.09	1.13	9.59	3.29
512915	CBD-11-02	99	0.19	1.46	9.9	2.78
512916	CBD-11-02	100	0.16	1.74	9.9	4.19
512917	CBD-11-02	101	0.21	2.47	8.17	4.5
512918	CBD-11-02	102	0.19	1.93	9.23	3.73
512919	CBD-11-02	103	0.14	2.04	9.21	4.43
512920	CBD-11-02	104	0.19	1.92	9.32	4.01
512921	CBD-11-02	105	0.18	2.26	8.46	5.08
512922	CBD-11-02	106	0.2	2.38	8.63	4.94
512923	CBD-11-02	107	0.08	1.27	9.46	3.04
512924	CBD-11-02	108	0.21	2.06	9.61	4.19
512925	CBD-11-02	109	0.15	2.21	9.59	4.3
512926	CBD-11-02	110	0.06	1.37	10.42	3.44
512927	CBD-11-02	111	0.13	1.92	9.67	4.88
512928	CBD-11-02	112	0.16	1.59	9.49	4.55
512929	CBD-11-02	113	0.16	1.66	9.28	5.15
512930	CBD-11-02	114	0.17	1.94	9.02	4.31
512931	CBD-11-02	115	0.32	1.97	9.4	3.82
512932	CBD-11-02	116	0.29	1.68	8.13	4.84
512933	CBD-11-02	117	0.17	2.24	9.68	4.44
512934	CBD-11-02	118	0.4	1.8	9.59	3.79
512935	CBD-11-02	119	0.18	1.15	10.81	2.83
512936	CBD-11-02	120	0.4	1.7	10.01	3.8
512937	CBD-11-02	121	0.13	1.05	11.18	3.84
512938	CBD-11-02	122	0.37	1.74	10.53	3.67
512939	CBD-11-02	123		1.03	11.95	2.14
512940	CBD-11-02	124	0.38	1.84	10.63	3.88
512941	CBD-11-02	125		2.2	8.35	5.32
512942	CBD-11-02	126	0.27	2.79	7.61	4.89
512943	CBD-11-02	127	0.31	2.13	9.08	3.93
512944	CBD-11-02	128	0.24	2.72	7.92	4.57
512945	CBD-11-02	129	0.26	2.24	8.28	4.63
512946	CBD-11-02	130	0.08	0.75	9.32	5.11
512947	CBD-11-02	131	0.02	0.9	11.03	3.21
512948	CBD-11-02	132	0.2	2.21	9	5.36
512949	CBD-11-02	133	0.05	1.09	10.23	3.98
512950	CBD-11-02	134	0.26	2.73	8.53	4.41
512951	CBD-11-02	135	0.03	0.82	10.1	3.09

Chem #	DDH#	Sample	MgO	CaO	Na2O	K2O
512952	CBD-11-02	136	0.02	0.71	9.54	3.93
512953	CBD-11-02	137	0.02	0.85	10.2	3.13
512954	CBD-11-02	138	0.11	1.11	10.43	2.82
512955	CBD-11-02	139	0.09	1.22	9.89	2.77
512956	CBD-11-02	140	0.13	1.64	8.26	3.91
512957	CBD-11-02	141	0.15	1.44	10.45	3.27
512958	CBD-11-02	142	0.38	2	8.75	3.94
512959	CBD-11-02	143	0.95	3.27	8.88	4.1
512960	CBD-11-02	144	0.16	1.81	10.16	2.65
512961	CBD-11-02	145	0.11	2.03	10.19	2.46
512962	CBD-11-02	146	0.15	1.52	6.82	5.71
512963	CBD-11-02	147	0.22	1.03	6.68	6.35
512964	CBD-11-02	148	0.1	1.02	7.27	5
512965	CBD-11-02	149	0.18	1.61	9.8	3.75
512966	CBD-11-02	150	0.29	2.11	10.62	3.02
512967	CBD-11-02	151	0.13	1.64	10.89	2.87
512968	CBD-11-02	152	0.23	1.94	10.17	2.99
512969	CBD-11-02	153	0.27	1.76	9.22	4
512970	CBD-11-02	154	0.09	1.3	9.3	3.64
512971	CBD-11-02	155	0.03	1.45	9.37	3.02
512972	CBD-11-02	156	0.01	1.11	10.12	2.41
512973	CBD-11-02	157	0.1	0.91	10.14	2.95
512974	CBD-11-02	158	0.36	1.51	9.73	3.15
512975	CBD-11-02	159	0.08	1.5	9.82	3.09
512976	CBD-11-02	160	0.09	1.48	10.42	2.6
512977	CBD-11-02	161	0.09	1.55	9.4	3.5
512978	CBD-11-02	162	0.08	1.48	9.79	3.03
512979	CBD-11-02	163	0.18	2.23	9.02	4.25
512980	CBD-11-02	164	0.2	2.37	9.41	4.09
512981	CBD-11-02	165	0.15	1.66	8.3	3.5
512982	CBD-11-02	166	0.08	0.75	7.05	5.41
512983	CBD-11-02	167	0.15	0.84	8.08	4.17
512984	CBD-11-02	168	0.15	0.96	7.85	4.26
512985	CBD-11-02	169	0.12	1.25	9.5	3.19
512986	CBD-11-02	170	0.3	1.42	8.77	3.54
512987	CBD-11-02	171	1.69	3.65	9.12	3.12
512988	CBD-11-02	172	1.54	3.38	8.98	2.97
512989	CBD-11-02	173	0.19	1.61	10.04	3.82
512990	CBD-11-02	174	0.35	1.71	9.23	3.84
512991	CBD-11-02	175	0.16	1.27	7.86	4.7
512992	CBD-11-02	176	0.13	1.43	9.56	3.3
512993	CBD-11-02	177	0.73	2.46	8.58	4.07
512994	CBD-11-02	178	0.64	1.78	8.47	3.82
512995	CBD-11-02	179	0.32	1.28	8.02	3.47
512996	CBD-11-02	180	0.26	1.45	7.62	4.02
512997	CBD-11-02	181	0.16	0.92	6.39	5.31

Chem #	DDH#	Sample	MgO	CaO	Na2O	K20
512998	CBD-11-02	182	0.08	0.54	4.56	5.2
512999	CBD-11-02	183	0.07	0.62	4.54	4.86
513000	CBD-11-02	184	0.08	1.11	7.28	4.69
513001	CBD-11-02	185	0.1	1.17	7.52	4.68
513002	CBD-11-02	186	0.06	0.56	4.15	4.78
513003	CBD-11-02	187	0.08	0.53	4.6	4.77
513004	CBD-11-02	188	0.15	1.58	7.9	4.4
513005	CBD-11-02	189	0.21	1.68	8.63	4.98
513006	CBD-11-02	190	0.14	1.54	9.41	3.93
513007	CBD-11-02	191	0.15	1.47	10.51	3.73
513008	CBD-11-02	192	0.13	1.63	10.07	3.51
513009	CBD-11-02	193	0.15	1.55	9.69	4.79
513010	CBD-11-02	194	0.16	1.68	9.68	4.32
513011	CBD-11-02	195	0.16	1.68	9.13	4.65
513012	CBD-11-02	196	0.22	1.9	8.53	4.4
513013	CBD-11-02	197	0.26	2.02	8.27	4.4
513014	CBD-11-02	198	0.44	3.06	8.15	4.39
513015	CBD-11-02	199	0.12	1.59	9.52	4.44
513016	CBD-11-02	200	0.15	1.67	9.53	3.09
513017	CBD-11-02	201	0.15	1.74	9.04	4.77
513018	CBD-11-02	202	0.13	1.5	9.5	4.21
513019	CBD-11-02	203	0.15	1.67	9.39	4.16
513020	CBD-11-02	204	0.11	1.76	10.89	2
513021	CBD-11-02	205	0.15	1.6	9.41	4.64
513022	CBD-11-02	206	0.13	1.55	9.42	4.35
513023	CBD-11-02	207	0.22	1.99	9.27	5.15
513024	CBD-11-02	208	0.12	1.91	11.01	2.81
513025	CBD-11-02	209	0.14	1.72	10.43	3.31
513026	CBD-11-02	210	0.16	1.64	10.42	3.38
513027	CBD-11-02	211	0.14	1.97	9.25	4.8
513028	CBD-11-02	212	0.12	2.03	9.43	4.38
513029	CBD-11-02	213	0.13	1.95	9.38	4.49
513030	CBD-11-02	214		2	9.53	4.32
513031	CBD-11-02	215			9.36	4.2
513032	CBD-11-02	216	0.18		10.18	2.81
513033	CBD-11-02	217	0.14		10.3	3.55
513034	CBD-11-02	218		1.93	9.05	4.67
513035	CBD-11-02	219		2	9.82	4.31
513036	CBD-11-02	220	0.14	1.68	9.93	3.52
513037	CBD-11-02	221	0.13	1.86	9.34	5.24
513038	CBD-11-02	222	0.15	2.14	9.11	4.58
513039	CBD-11-02	223			8.89	4.6
513040	CBD-11-02	224			9.02	4.68
513041	CBD-11-02	225	0.13	2.1	9.48	4.72
513042	CBD-11-02	226	0.2	1.91	10	3.8
513043	CBD-11-02	227	0.27	2.33	8.61	4.6

Chem #	DDH#	Sample	MgO	CaO	Na2O	K2O
513044	CBD-11-02	228		1.82	9.48	4.4
513045	CBD-11-02	229	0.17	2.13	9.29	4.45
513046	CBD-11-02	230	0.17	2.05	9.15	4.7
513047	CBD-11-02	231	0.17	2.07	8.37	4.54
513048	CBD-11-02	232	0.15	1.99	9.46	4.73
514381	CBD-11-07	1	0.49	6.03	7.25	2.66
514382	CBD-11-07	2	0.43	4.84	7.31	3.39
514383	CBD-11-07	3	0.28	2.86	8.58	3.26
514384	CBD-11-07	4	0.04	0.91	10.12	4.85
514385	CBD-11-07	5	0.46	5.72	7.48	2.32
514386	CBD-11-07	6	0.52	6.61	6.58	2.47
514387	CBD-11-07	7	0.53	6.74	6.4	2.4
514388	CBD-11-07	8	0.51	6.76	6.11	2.36
514389	CBD-11-07	9	0.3	3.04	6.24	4.49
514390	CBD-11-07	10	0.39	3.72	7.01	2.73
514391	CBD-11-07	11	0.32	3.59	6.81	3.5
514392	CBD-11-07	12	0.35	4.12	7.05	3.51
514393	CBD-11-07	13	0.34	4.05	6.94	3.73
514394	CBD-11-07	14	0.24	2.99	6.62	4.85
514395	CBD-11-07	15	0.38	4.48	6.02	3.98
514396	CBD-11-07	16	0.25	2.87	6.54	4.9
514397	CBD-11-07	17	0.35	3.78	6.56	4.02
514398	CBD-11-07	18	0.51	5.89	6.29	2.35
514399	CBD-11-07	19	0.74	7.53	3.15	2.18
514400	CBD-11-07	20	0.44	5.4	7.54	2.56
514401	CBD-11-07	21	0.23	2.31	6.86	4.72
514402	CBD-11-07	22	0.39	4.55	8.16	3.18
514403	CBD-11-07	23	0.25	2.88	7.67	4.18
514404	CBD-11-07	24	0.14	1.6	9.91	2.27
514405	CBD-11-07	25	0.32	3.24	7.72	4.12
514406	CBD-11-07	26	0.3	3.09	7.47	4.49
514407	CBD-11-07	27	0.28	2.83	7.24	4.57
514408	CBD-11-07	28			6.82	4.64
514409	CBD-11-07	29	0.23	2.56	6.74	4.92
514410	CBD-11-07	30	0.3	2.65	6.73	4.93
514411	CBD-11-07	31	0.24	2.49	7.26	4.89
514412	CBD-11-07	32	0.28	2.23	7.49	5
514413	CBD-11-07	33	0.18	1.2	8.21	5.65
514414	CBD-11-07	34	0.12	1.08	9.47	3.1
514415	CBD-11-07	35		0.81	9.46	3.12
514416	CBD-11-07	36	0.06	1.03	10.67	2.05
514417	CBD-11-07	37	0.09	1.18	9.17	3.54
514418	CBD-11-07	38	0.22	2.26	7.55	5.21
514419	CBD-11-07	39	0.27	1.68	9.91	3.84
514420	CBD-11-07	40		2.18	7.41	5.15
514421	CBD-11-07	41	0.3	1.65	9.6	3.04

Chem #	DDH#	Sample	MgO	CaO	Na2O	K20
514422	CBD-11-07	42	0.28	2.6	8.26	4.6
514423	CBD-11-07	43	0.3	2.31	9.5	2.88
514424	CBD-11-07	44	0.11	2.12	10.39	2.01
514425	CBD-11-07	45	0.19	1.65	9.84	2.79
514426	CBD-11-07	46	0.38	2.38	8.83	4.02
514427	CBD-11-07	47	0.12	1.34	9.34	3.46
514428	CBD-11-07	48	0.06	1	8.84	3.65
514429	CBD-11-07	49	0.05	0.93	10.31	2.5
514430	CBD-11-07	50	0.09	1.36	8.59	2.84
514431	CBD-11-07	51	0.28	2.26	9.1	2.98
514432	CBD-11-07	52	0.58	4.89	5.75	3.33
514433	CBD-11-07	53	0.35	3.41	7.23	3.85
514434	CBD-11-07	54	0.35	3.55	6.68	4.48
514435	CBD-11-07	55	0.37	4.12	6.63	4.06
514436	CBD-11-07	56	0.22	2.42	7.12	4.4
514437	CBD-11-07	57	0.23	2.48	6.82	4.76
514438	CBD-11-07	58	0.27	2.63	7.03	4.42
514439	CBD-11-07	59	0.25	2.56	7.03	4.67
514440	CBD-11-07	60	0.48	2.03	8.5	3.74
514441	CBD-11-07	61	0.22	2.32	7.12	4.96
514442	CBD-11-07	62	0.21	2.38	7.02	4.88
514443	CBD-11-07	63	0.24	2.56	6.74	4.69
514444	CBD-11-07	64	0.24	2.51	6.49	4.92
514445	CBD-11-07	65	0.24	2.41	6.52	4.99
514446	CBD-11-07	66	0.2	2.06	6.76	5.4
514447	CBD-11-07	67	0.24	2.25	7.06	4.95
514448	CBD-11-07	68	0.23	2.32	6.8	4.92
514449	CBD-11-07	69	0.22	2.33	7.06	4.65
514450	CBD-11-07	70	0.24	2.2	7.59	4.99
514451	CBD-11-07	71	0.23	2.31	7.29	4.82
514452	CBD-11-07	72	0.25	2.41	7	4.77
514453	CBD-11-07	73	0.25	2.41	7.25	4.55
514454	CBD-11-07	74		2.36	7.12	4.73
514455	CBD-11-07	75		2.44	6.83	4.62
514456	CBD-11-07	76	0.26	2.33	6.7	4.57
514457	CBD-11-07	77	0.25	2.35	6.99	4.63
514458	CBD-11-07	78		2.29	7.21	4.62
514459	CBD-11-07	79	0.33	2.48	6.95	4.72
514460	CBD-11-07	80	0.26	2.45	7.21	4.7
514461	CBD-11-07	81	0.26	2.49	7.17	4.89
514462	CBD-11-07	82	0.25	2.52	7.17	4.76
514463	CBD-11-07	83		2.58	7.38	4.68
514464	CBD-11-07	84	0.27	2.51	7.49	4.83
514465	CBD-11-07	85	0.26	2.37	7.62	5.14
514466	CBD-11-07	86	0.08	0.84	10.09	3.07
514467	CBD-11-07	87	0.28	1.75	8.77	4.4

Chem #	DDH#	Sample	MgO	CaO	Na2O	K20
514468	CBD-11-07	88	0.27	2.08	7.74	5.09
514469	CBD-11-07	89	0.23	1.93	8.2	4.8
514470	CBD-11-07	90	0.29	1.84	8.03	4.83
514471	CBD-11-07	91	0.27	1.94	7.82	4.52
514472	CBD-11-07	92	0.26	2.05	8.26	4.8
514473	CBD-11-07	93	0.29	2.17	7.69	4.65
514474	CBD-11-07	94	0.29	2.06	7.93	4.6
514475	CBD-11-07	95	0.31	2.56	7.53	4.44
514476	CBD-11-07	96	0.26	1.94	7.94	4.69
514477	CBD-11-07	97	0.12	0.98	10.06	2.25
514478	CBD-11-07	98	1.4	2.74	7.5	3.13
514479	CBD-11-07	99	0.09	0.63	9.34	2.97
514480	CBD-11-07	100	0.21	1.52	9.3	4.28
514481	CBD-11-07	101	0.09	0.66	8.84	3.48
514482	CBD-11-07	102	0.31	1.67	8.13	4.95
514483	CBD-11-07	103	0.31	2.86	7.63	4.67
514484	CBD-11-07	104	0.26	2.36	7.29	4.86
514485	CBD-11-07	105	0.26	2.24	7.34	4.91
514486	CBD-11-07	106	0.19	1.67	9.48	3.39
514487	CBD-11-07	107	0.19	1.55	9.76	2.7
514488	CBD-11-07	108	0.11	1.63	10.43	1.71
514489	CBD-11-07	109	0.26	2.29	7.52	4.72
514490	CBD-11-07	110	0.23	2.16	8.74	4.61
514491	CBD-11-07	111	0.31	2.8	7.93	4.69
514492	CBD-11-07	112	0.11	1.41	10.61	2.53
514493	CBD-11-07	113	0.07	1.11	11.89	1.87
514494	CBD-11-07	114	0.2	1.99	11.02	3.94
514495	CBD-11-07	115	0.55	2.6	8.76	4.77
514496	CBD-11-07	116	0.05	0.83	11.52	2.87
514497	CBD-11-07	117	0.06	1.13	10.46	3.77
514498	CBD-11-07	118	0.04	0.73	10.31	3.83
514499	CBD-11-07	119	0.06	1.02	10.96	1.91
514500	CBD-11-07	120	0.09		10.35	2.09
514501	CBD-11-07	121	0.14	1.62	10.04	2.51
514502	CBD-11-07	122	0.32	2.79	7.37	4.85
514503	CBD-11-07	123	0.42	3.31	7.42	4.14
514504	CBD-11-07	124	0.33	2.92	7.75	4.82
514505	CBD-11-07	125	0.27	2.3	7.1	4.5
514506	CBD-11-07	126	0.47	3.65	7.84	4.13
514507	CBD-11-07	127	0.34	2.93	7.5	4.58
514508	CBD-11-07	128		2.79	7.53	4.52
514509	CBD-11-07	129	0.27	2.43	7.56	4.84
514510	CBD-11-07	130	0.3	2.28	7.72	5.37
514511	CBD-11-07	131	0.39	2.88	7.17	5.49
514512	CBD-11-07	132	0.5	4.04	7.52	4.46
514513	CBD-11-07	133	0.11	1.18	10.27	2.97

Chem #	DDH#	Sample	MgO	CaO	Na2O	K20
514514	CBD-11-07	134		0.78	10.16	3.73
514515	CBD-11-07	135	0.07	0.92	9.99	2.8
514516	CBD-11-07	136	0.08	1.09	10.46	2.8
514517	CBD-11-07	137	0.05	0.94	11.13	1.9
514518	CBD-11-07	138	0.02	0.43	9.92	6.69
514519	CBD-11-07	139	0.08	0.88	9.83	2.83
514520	CBD-11-07	140	0.12	1.36	9.51	3.57
514521	CBD-11-07	141	0.23	1.42	8.88	3.72
514522	CBD-11-07	142	0.05	0.77	10.46	2.95
514523	CBD-11-07	143	0.08	1.02	11.3	1.65
514524	CBD-11-07	144	0.06	0.94	11.41	1.51
514525	CBD-11-07	145	0.2	2.35	8.03	4.28
514526	CBD-11-07	146	0.22	2.64	7.47	4.81
514527	CBD-11-07	147	0.22	2.72	7.24	5.25
514528	CBD-11-07	148	0.22	2.61	7.1	5.64
514529	CBD-11-07	149	0.06	0.93	10.61	2.29
514530	CBD-11-07	150	0.06	0.85	9.74	3.42
514531	CBD-11-07	151	0.06	0.78	9.43	3.97
514532	CBD-11-07	152	0.09	0.85	9.39	3.89
514533	CBD-11-07	153	0.06	0.89	10.26	4.99
514534	CBD-11-07	154	0.06	0.88	9.65	3.62
514535	CBD-11-07	155	0.06	0.85	10.06	3.28
514536	CBD-11-07	156	0.08	1.13	10.67	2.82
514537	CBD-11-07	157	0.26	2.83	8.3	4.67
514538	CBD-11-07	158	0.75	2.44	9.24	3.44
514539	CBD-11-07	159	0.06	1.79	10.7	1.68
514540	CBD-11-07	160	0.23	2.14	9.31	3.72
514541	CBD-11-07	161	0.03	1.7	8.47	3.63
514542	CBD-11-07	162	0.02	1.69	9.22	3.09
514543	CBD-11-07	163	0.02	1.51	9.21	3.32
514544	CBD-11-07	164	0.44	2.8	8.42	3.99
514545	CBD-11-07	165	0.23	1.93	9.37	3.98
514546	CBD-11-07	166	0.11		9.7	4.64
514547	CBD-11-07	167		1.61	9.67	5.15
514548	CBD-11-07	168		2.08	9.13	5.23
514549	CBD-11-07	169		1.23	10.08	3.22
514550	CBD-11-07	170	0.3	1.45	9.4	3.97
514551	CBD-11-07	171	0.23	1.6	10.71	3.53
514552	CBD-11-07	172	0.25	2.67	8.1	4.93
514553	CBD-11-07	173	0.19	2.15	9.08	4.39
514554	CBD-11-07	174		1.76	10.13	4.14
514555	CBD-11-07	175		2.01	9.38	4.35
514556	CBD-11-07	176		2.36	8.78	4.37
514557	CBD-11-07	177	0.22	2.27	8.82	4.54
514558	CBD-11-07	178		3.09	8.3	4.64
514559	CBD-11-07	179	0.33	2.86	8.19	4.6

Chem #	DDH#	Sample	MgO	CaO	Na2O	K2O
514560	CBD-11-07	180	0.1	1.25	9.29	3.78
514561	CBD-11-07	181	0.43	3.51	8.11	4.23
514562	CBD-11-07	182	0.26	2.79	8.27	4.23
514563	CBD-11-07	183	0.18	2	9.55	4.57
514564	CBD-11-07	184	0.12	0.94	9.23	3.29
514565	CBD-11-07	185	0.19	2.14	9.58	4.3
514566	CBD-11-07	186	0.15	2.29	8.59	5.06
514567	CBD-11-07	187	0.15	2.23	9.76	4.14
514568	CBD-11-07	188	0.32	1.62	9.63	3.47
514569	CBD-11-07	189	0.22	1.34	10.18	2.97
514570	CBD-11-07	190	0.15	0.95	9.88	3.64
514571	CBD-11-07	191	0.02	0.81	10.45	3.6
514572	CBD-11-07	192	0.14	1.96	9.18	4.62
514573	CBD-11-07	193	0.02	0.85	8.73	4.57
514574	CBD-11-07	194	0.02	1.16	7.7	5.26
514575	CBD-11-07	195	0.02	0.84	9.91	3.35
514576	CBD-11-07	196	0.03	0.9	9.31	4.01
514577	CBD-11-07	197	0.01	0.99	9.09	3.77
514578	CBD-11-07	198	0.17	1.66	9.35	4.48
514579	CBD-11-07	199	0.22	1.11	9.38	2.9
514580	CBD-11-07	200	0.24	1.99	9.62	4.11
514581	CBD-11-07	201	0.14	1.71	11.15	2.5
514582	CBD-11-07	202	0.25	1.84	9.79	4.23
514583	CBD-11-07	203	0.8	3.38	9.32	3.75
514584	CBD-11-07	204	0.01	2.67	9.7	2.47
514585	CBD-11-07	205	0.21	2.18	8.96	4.35
514586	CBD-11-07	206	0.23	2.29	8.24	4.29
514587	CBD-11-07	207	0.01	1.83	9.33	3.12
514588	CBD-11-07	208	0.01	1.77	8.31	3.41
514589	CBD-11-07	209	0.02	1.69	9.37	3.29
514590	CBD-11-07	210	0.07	1.61	10.02	2.52
514591	CBD-11-07	211	0.22	2.32	8.69	4.89
514592	CBD-11-07	212	0.14	1.84	10.18	3.64
514593	CBD-11-07	213	0.18	2.35	8.71	4.53
514594	CBD-11-07	214	0.22	2.63	8.53	4.6
514595	CBD-11-07	215	0.21	2.56	8.48	4.73
514596	CBD-11-07	216	0.21	2.7	8.67	4.73
514597	CBD-11-07	217	0.05	1.19	11.37	2.04
514598	CBD-11-07	218	0.18	2.07	8.43	4.06
514599	CBD-11-07	219	0.07	0.72	6.45	6.95
514600	CBD-11-07	220	0.1	0.58	7.55	5.38
514601	CBD-11-07	221	1.02	2.89	8.63	4.12
514602	CBD-11-07	222	1.51	3.33	9.11	3.23
514603	CBD-11-07	223	0.11	1.45	9.68	4.24
514604	CBD-11-07	224	0.13	1.72	10.15	3.92
514605	CBD-11-07	225	0.29	1.64	9.87	4.03

Chem#	DDH#	Sample	MgO	CaO	Na2O	K20
514606	CBD-11-07	226	0.19	2.1	8.65	4.53
514607	CBD-11-07	227	0.15	1.59	9.86	3.51
514608	CBD-11-07	228	0.17	1.11	7.16	6.09
514609	CBD-11-07	229	0.13	1.83	9.84	3.34
514610	CBD-11-07	230	1.47	3.44	9.48	3.51
514611	CBD-11-07	231	0.81	2.64	8.74	4.14
514612	CBD-11-07	232	0.29	1.79	8.04	4.27
514613	CBD-11-07	233	0.16	1.35	9.02	3.72
514614	CBD-11-07	234	0.12	1.32	7.56	4.05
514615	CBD-11-07	235	0.08	1.18	8.19	2.7
514616	CBD-11-07	236	0.13	1.73	7.03	5.39
514617	CBD-11-07	237	0.07	0.52	4.32	5.24
514618	CBD-11-07	238	0.08	1.2	4.6	6.03
514619	CBD-11-07	239	0.12	1.49	7.26	5.71
514620	CBD-11-07	240	0.17	1.61	8.87	4.55
514621	CBD-11-07	241	0.17	1.59	9.17	4.61
514622	CBD-11-07	242	0.13	1.42	9.66	4.81
514623	CBD-11-07	243	0.14	1.61	10.04	4.73
514624	CBD-11-07	244	0.15	1.74	9.53	4.41
514625	CBD-11-07	245	0.12	1.62	10.17	3.42
514626	CBD-11-07	246	0.11	1.64	9.67	4.9
514627	CBD-11-07	247	0.14	1.73	9.47	4.72
514628	CBD-11-07	248	0.13	1.63	9.69	4.53
514629	CBD-11-07	249	0.41	3.04	8.37	4.73
514630	CBD-11-07	250	0.17	1.5	8.64	4.46
514631	CBD-11-07	251	0.16	1.62	10.01	3.52
514632	CBD-11-07	252	0.18	1.56	9.72	3.75
514633	CBD-11-07	253	0.15	2.65	7.4	5.38
514634	CBD-11-07	254	0.51	3.3	8.1	4.6
514635	CBD-11-07	255	0.17	1.72	8.62	4.53
514636	CBD-11-07	256	0.18	1.8	8.03	4.48
514637	CBD-11-07	257	0.12	1.51	9.05	4.58
514638	CBD-11-07	258	0.12	1.74	9.86	3.34
514639	CBD-11-07	259	0.12	1.49	9.09	4.75
514640	CBD-11-07	260	0.32	2.64	8.16	4.51
514641	CBD-11-07	261	0.45	2.74	8.01	4.75
514642	CBD-11-07	262	0.44	3.03	8.08	4.65
514643	CBD-11-07	263	0.15	1.77	9.97	3.67
514644	CBD-11-07	264	0.14	2.13	10.36	2.44
514645	CBD-11-07	265	0.23	1.95	9	4.67
514646	CBD-11-07	266	0.23	2.2	8.68	4.6
514647	CBD-11-07	267	0.14	1.76	9.15	4.6
514648	CBD-11-07	268	0.14	1.93	9.02	4.52
514649	CBD-11-07	269	0.9	1.72	7.55	4.68
514650	CBD-11-07	270	0.58	1.81	7.76	4.42
514651	CBD-11-07	271	0.32	2.25	8.29	4.53

Chem #	DDH#	Sample	MgO	CaO	Na2O	K20
514652	CBD-11-07	272	0.22	2.49	8.74	4.18
514653	CBD-11-07	273	0.24	2.5	9.12	3.9
514654	CBD-11-07	274	0.13	2.25	9	4.2
514655	CBD-11-07	275	0.13	2.33	8.52	4.54
514656	CBD-11-07	276	0.32	1.78	7.99	3.69
514657	CBD-11-07	277	0.18	2.44	8.38	4.04
514658	CBD-11-07	278	0.7	2.36	7.35	4.14
514659	CBD-11-07	279	0.61	2.07	8.32	3.52
514660	CBD-11-07	280	0.44	2.29	8.82	3.9
514661	CBD-11-07	281	0.15	2.35	9.08	4.22
514662	CBD-11-07	282	0.29	2.22	8.44	4.17
514663	CBD-11-07	283	0.82	1.95	7.76	3.63
514664	CBD-11-07	284	0.19	2.51	7.93	4.39
514665	CBD-11-07	285	2.93	2.04	5.47	4.26
514666	CBD-11-07	286	0.19	2.48	8.22	4.37
514667	CBD-11-07	287	1.15	2	6.14	5.41
514668	CBD-11-07	288	0.61	0.8	6.38	5.5
514669	CBD-11-07	289	2.09	1.36	5.86	4.25
514670	CBD-11-07	290	1.43	2.34	5.26	6.37
514671	CBD-11-07	291	2.06	2.74	3.63	8.27
514672	CBD-11-07	292	1.39	1.32	3.83	9.25
514673	CBD-11-07	293	1.24	1.13	5.79	5.85

Chem #	DDH#	Sample	TiO2	P2O5	LOI	Total
104676	CBD-10-01	1	0.739	0.22	-0.04	99.14
104677	CBD-10-01	2	0.613	0.2	-0.02	99.77
104678	CBD-10-01	3	0.662	0.28	0.03	99.19
104679	CBD-10-01	4	0.558	0.17	0.13	99.82
104680	CBD-10-01	5	0.157	0.34	0.75	99.37
104681	CBD-10-01	6	0.824	0.14	-0.02	100.7
104682	CBD-10-01	7	0.629	0.15	-0.28	99.78
104683	CBD-10-01	8	0.477	0.12	-0.16	99.7
104684	CBD-10-01	9	0.559	0.16	-0.16	99.12
104685	CBD-10-01	10	0.503	0.15	0.23	100.1
104686	CBD-10-01	11	0.824	0.15	-0.84	98.34
104687	CBD-10-01	12	0.591	0.16	-0.18	99.29
104688	CBD-10-01	13	0.231	0.13	0.22	98.1
104689	CBD-10-01	14	0.21	0.07	0.5	98.21
104690	CBD-10-01	15	0.648	0.16	-0.13	98.92
104691	CBD-10-01	16	0.652	0.14	-0.09	99.65
104692	CBD-10-01	17	0.528	0.12	0.02	99.02
104693	CBD-10-01	18	0.638	0.13	0.47	98.41
104694	CBD-10-01	19	0.248	0.64	0.49	97.74
104695	CBD-10-01	20	0.582	0.15	0.01	98.61
104696	CBD-10-01	21	0.6	0.15	0.13	98.46
104697	CBD-10-01	22	0.289	0.11	0.74	97.95
104698	CBD-10-01	23	0.71	0.19	-0.25	99.41
104699	CBD-10-01	24	0.616	0.15	0.6	100.7
104700	CBD-10-01	25	0.622	0.15	0	98.79
104701	CBD-10-01	26	0.61	0.14	0.12	98.82
104702	CBD-10-01	27	0.654	0.14	-0.05	98.31
104703	CBD-10-01	28	0.625	0.12	-0.12	98.94
104704	CBD-10-01	29	0.611	0.13	-0.07	98.61
104705	CBD-10-01	30	0.554	0.14	0.02	98.34
104706	CBD-10-01	31	0.623	0.12	0.19	98.62
104707	CBD-10-01	32	0.618	0.14	0.01	99.24
104708	CBD-10-01	33		0.15	-0.32	99.28
104709	CBD-10-01	34		0.13	-0.17	98.48
104710	CBD-10-01	35	0.653	0.15	-0.19	99.62
104711	CBD-10-01	36	0.762	0.14	-0.04	98.5
104712	CBD-10-01	37	0.577	0.14	-0.06	98.59
104713	CBD-10-01	38	0.576	0.13	-0.05	98.85
104714	CBD-10-01	39	0.579	0.15	-0.13	98.27
104715	CBD-10-01	40	0.581	0.14	-0.17	98.51
104716	CBD-10-01	41	0.572	0.13	0.01	98.97
104717	CBD-10-01	42	0.538	0.13	0.04	100.4
104718	CBD-10-01	43	0.56	0.13	-0.09	99.34
104719	CBD-10-01	44	0.581	0.13	-0.2	98.93
104720	CBD-10-01	45	0.567	0.15	-0.16	98.54
104721	CBD-10-01	46	0.534	0.14	-0.15	98.63

Chem #	DDH#	Sample	TiO2	P2O5	LOI	Total
104722	CBD-10-01	47	0.525	0.17	0.05	99.62
104723	CBD-10-01	48	0.533	0.18	-0.02	98.77
104724	CBD-10-01	49	0.537	0.19	-0.04	99.99
104725	CBD-10-01	50	0.742	0.13	-0.07	100.4
104726	CBD-10-01	51	0.394	0.19	-0.06	99.3
104727	CBD-10-01	52	0.8	0.14	-0.12	99.17
104728	CBD-10-01	53	0.219	0.06	-0.19	98.4
104729	CBD-10-01	54	0.169	0.15	0.42	98.22
104730	CBD-10-01	55	0.233	0.87	0.09	96.01
104731	CBD-10-01	56	0.63	0.19	0.21	98.88
104732	CBD-10-01	57	0.284	0.23	0.54	98.08
104733	CBD-10-01	58	0.622	0.15	0.09	98.5
104734	CBD-10-01	59	0.539	0.16	-0.15	97.97
104735	CBD-10-01	60	0.569	0.16	0.5	98.89
104736	CBD-10-01	61	0.642	0.23	-0.11	97.77
104737	CBD-10-01	62	0.839	0.28	-0.26	98.17
104738	CBD-10-01	63	0.557	0.18	-0.08	97.08
104739	CBD-10-01	64	0.843	0.34	-0.39	97.55
104740	CBD-10-01	65	1.08	0.51	-0.43	98.7
104741	CBD-10-01	66	1.018	0.4	-0.34	98.14
104742	CBD-10-01	67	0.181	0.25	0.42	97.48
104743	CBD-10-01	68	0.336	2.22	0.12	97.44
104744	CBD-10-01	69	0.14	0.36	0.07	99.37
104745	CBD-10-01	70	0.116	0.25	0.7	98.77
104746	CBD-10-01	71	0.144	0.03	-0.43	97.46
104747	CBD-10-01	72	0.149	0.02	-0.38	99.28
104748	CBD-10-01	73	0.163	0.03	-0.3	97.54
104749	CBD-10-01	74	0.544	0.19	-0.1	98.3
104750	CBD-10-01	75	0.269	0.09	0.17	97.21
104751	CBD-10-01	76	0.535	0.21	-0.14	98.4
104752	CBD-10-01	77	0.614	0.19	-0.15	97.97
104753	CBD-10-01	78	0.706	0.24	-0.03	99.41
104754	CBD-10-01	79	0.716	0.26		99.05
104755	CBD-10-01	80	0.477	0.71	0.15	98.32
104756	CBD-10-01	81	0.483	0.72	0.2	97.87
104757	CBD-10-01	82	0.562	0.27	-0.01	98.4
104758	CBD-10-01	83	0.153	0.19	2.73	100.9
104759	CBD-10-01	84	0.609	0.96	0.91	98.27
104760	CBD-10-01	85	0.259	0.19	0.33	97.83
104761	CBD-10-01	86	0.142	0.18	0.18	97.35
104762	CBD-10-01	87	0.145	0.22	-0.53	97.66
104763	CBD-10-01	88	0.136	0.33	0.1	97.03
104764	CBD-10-01	89	0.143	0.13	-0.1	98.13
104765	CBD-10-01	90	0.145	0.11	-0.22	98.18
104766	CBD-10-01	91	0.145	0.1	-0.21	98.02
104767	CBD-10-01	92	0.444	0.14	0.09	98.34

Chem #	DDH#	Sample	TiO2	P2O5	LOI	Total
104768	CBD-10-01	93	0.368	0.14	0.22	99
104769	CBD-10-01	94	0.466	0.16	0.16	98.56
104770	CBD-10-01	95	0.643	0.19	-0.25	98.26
104771	CBD-10-01	96	0.503	0.16	-0.34	98.44
104772	CBD-10-01	97	0.287	0.13	-0.06	98.58
104773	CBD-10-01	98	0.153	0.07	-0.18	99.17
104774	CBD-10-01	99	0.141	0.2	-0.04	99.08
104775	CBD-10-01	100	0.15	0.27	0.04	97.07
104776	CBD-10-01	101	0.144	0.19	-0.06	98.65
104777	CBD-10-01	102	0.129	0.08	-0.12	98.21
104778	CBD-10-01	103	0.114	0.07	-0.1	98.45
104779	CBD-10-01	104	0.125	0.06	-0.07	99.09
104780	CBD-10-01	105	0.133	0.08	-0.43	99.14
104781	CBD-10-01	106	0.14	0.05	0.27	100.1
104782	CBD-10-01	107	0.116	0.13	0.21	98.58
104783	CBD-10-01	108	0.122	0.05	-0.58	97.93
104784	CBD-10-01	109	0.129	0.09	-0.43	98.87
104785	CBD-10-01	110	0.331	0.11	-0.21	97.28
104786	CBD-10-01	111	0.754	0.18	-0.17	98.29
104787	CBD-10-01	112	0.552	0.57	-0.1	98.77
104788	CBD-10-01	113	0.285	0.16	0.15	98.38
104789	CBD-10-01	114	0.385	1.79	0.08	97.97
104790	CBD-10-01	115	0.242	0.16	0.11	98.36
104791	CBD-10-01	116	0.503	0.14	0.2	99.68
104792	CBD-10-01	117	0.346	0.19	-0.09	98.93
104793	CBD-10-01	118	0.88	0.28	-0.24	99.16
104794	CBD-10-01	119	0.238	0.35	-0.06	98.5
104795	CBD-10-01	120	0.625	0.34	0.35	99.11
104796	CBD-10-01	121	0.32	0.32	0.06	99.41
104797	CBD-10-01	122	0.588	0.3	0.07	98.64
104798	CBD-10-01	123	0.222	0.15	0.03	97.52
104799	CBD-10-01	124	0.343	0.13	0.05	99.34
104800	CBD-10-01	125	0.674	0.29	-0.26	
416001	CBD-10-01	126	1.005	0.26	-0.48	99.39
416002	CBD-10-01	127	1.004	0.21	-0.58	98.93
416003	CBD-10-01	128		0.27	-0.37	99.01
416004	CBD-10-01	129	0.476	0.51	0.04	98.23
416005	CBD-10-01	130	0.218	0.12	0.01	97.65
416006	CBD-10-01	131	0.355	0.44	0.53	97.43
416007	CBD-10-01	132	0.872	0.41	-0.26	98.16
416008	CBD-10-01	133	0.478	0.13	-0.15	97.63
416009	CBD-10-01	134	0.548	0.11	-0.07	97.73
416010	CBD-10-01	135	0.498	0.49	-0.2	98.58
416011	CBD-10-01	136	0.342	0.14	-0.18	97.45
416012	CBD-10-01	137	0.552	0.15	-0.12	97.95
416013	CBD-10-01	138	0.712	0.14	-0.2	99.74

Chem #	DDH#	Sample	TiO2	P2O5	LOI	Total
416014	CBD-10-01	139	0.796	0.09	-0.17	99.64
416015	CBD-10-01	140	0.245	0.18	-0.02	98.69
416016	CBD-10-01	141	0.502	0.1	-0.1	99.25
416017	CBD-10-01	142	0.607	0.22	-0.23	99.09
416018	CBD-10-01	143	0.554	0.25	-0.1	98.82
416019	CBD-10-01	144	0.559	0.32	-0.22	98.57
416020	CBD-10-01	145	0.592	0.08	-0.32	97.66
416021	CBD-10-01	146	0.164	0.16	0.21	97.99
416022	CBD-10-01	147	0.211	0.08	-0.11	98.33
416023	CBD-10-01	148	0.291	0.06	0.01	97.94
416024	CBD-10-01	149	0.152	0.1	0.4	97.99
416025	CBD-10-01	150	0.128	0.07	0.94	98.2
416026	CBD-10-01	151	0.136	0.52	2.24	97.77
416027	CBD-10-01	152	0.148	1	1.56	97.61
416028	CBD-10-01	153	0.15	0.15	1.38	98.55
416029	CBD-10-01	154	0.144	0.33	1.42	98.39
416030	CBD-10-01	155	0.143	0.6	1.07	96.75
416031	CBD-10-01	156	0.124	0.12	1.55	97.8
416032	CBD-10-01	157	0.136	0.17	1.61	97.62
416033	CBD-10-01	158	0.146	0.62	1.46	96.5
416034	CBD-10-01	159	0.155	0.66	1.74	96.53
416035	CBD-10-01	160	0.139	0.52	1.12	96.65
416036	CBD-10-01	161	0.152	0.63	1.43	96.51
416037	CBD-10-01	162	0.414	0.5	0.21	97.86
416038	CBD-10-01	163	0.209	0.42	0.57	98.74
416039	CBD-10-01	164	0.191	0.39	0.73	97.25
416040	CBD-10-01	165	0.734	0.34	-0.52	97.83
416041	CBD-10-01	166	0.523	0.16	-0.14	97.45
416042	CBD-10-01	167	0.616	0.19	-0.19	98.24
416043	CBD-10-01	168	0.712	0.29	0.3	98.19
416044	CBD-10-01	169	0.706	0.4	0.4	97.73
416045	CBD-10-01	170	0.874	0.39	-0.35	98.28
416046	CBD-10-01	171	0.723	0.25	-0.1	98.03
416047	CBD-10-01	172		0.18	-0.19	98.11
416048	CBD-10-01	173		0.25	-0.24	98.45
416049	CBD-10-01	174		0.17	-0.05	100.1
416050	CBD-10-01	175	0.58	0.16	-0.12	99.02
416051	CBD-10-01	176	0.543	0.31	-0.13	97.89
416052	CBD-10-01	177	0.231	0.53	0.57	99.36
416053	CBD-10-01	178	0.195	1.01	1.18	96.34
416054	CBD-10-01	179	0.14	0.81	1.52	97.87
416055	CBD-10-01	180	0.143	0.54	1.13	96.96
416056	CBD-10-01	181	0.189	0.36	0.47	97.23
416057	CBD-10-01	182	0.16	0.15	0.43	98.37
416058	CBD-10-01	183	0.175	0.2	0.09	98.72
416059	CBD-10-01	184	0.524	0.09	0.2	97.98

Chem #	DDH#	Sample	TiO2	P2O5	LOI	Total
416060	CBD-10-01	185	0.155	0.15	0.24	97.78
416061	CBD-10-01	186	0.174	0.12	-0.18	97.49
416062	CBD-10-01	187	0.602	0.05	0.04	99.26
416063	CBD-10-01	188	0.407	0.12	0.04	100.3
416064	CBD-10-01	189	0.459	0.13	-0.03	98.47
416065	CBD-10-01	190	0.178	0.09	0.51	98.05
416066	CBD-10-01	191	0.262	0.33	0.04	98.61
416067	CBD-10-01	192	0.243	0.28	-0.02	99.15
416068	CBD-10-01	193	0.323	0.03	0.12	98.81
416069	CBD-10-01	194	0.896	0.84	0.24	98.61
416070	CBD-10-01	195	1.036	0.99	0.13	99.61
416071	CBD-10-01	196	1.139	1.11	0.2	98.85
416072	CBD-10-01	197	0.502	0.58	0.2	98.47
416073	CBD-10-01	198	0.732	1.15	0.17	97.69
416074	CBD-10-01	199	0.299	0.21	0.29	97.44
416075	CBD-10-01	200	0.512	0.23	0.21	97.54
416076	CBD-10-01	201	0.259	0.02	0.21	98.5
416077	CBD-10-01	202	0.634	0.07	0.03	97.7
416078	CBD-10-01	203	0.291	0.04	0.13	97.89
416079	CBD-10-01	204	0.341	0.1	-0.04	98.52
416080	CBD-10-01	205	0.3	0.08	-0.07	98.67
416081	CBD-10-01	206	0.353	0.12	0.13	98.53
416082	CBD-10-01	207	0.451	0.16	0.09	100.7
416083	CBD-10-01	208	0.379	0.11	0.08	97.28
416084	CBD-10-01	209	0.904	0.54	0.02	97.71
416085	CBD-10-01	210	0.243	0.25	0.19	97.46
416086	CBD-10-01	211	0.28	0.16	0.21	98.9
416087	CBD-10-01	212	0.325	0.06	0.74	99.47
416088	CBD-10-01	213	0.304	< 0.01	0.3	99.47
416089	CBD-10-01	214	0.285	0.03	0.51	101
416090	CBD-10-01	215	0.303	0.07	0.31	99.8
416091	CBD-10-01	216	0.267	0.08	0.12	99.61
416092	CBD-10-01	217	0.297	0.02	0.19	98.03
416093	CBD-10-01	218	0.321	0.01	0.19	98.03
416094	CBD-10-01	219	0.5	0.05	0.38	99.87
416095	CBD-10-01	220		0.07	0.25	97.73
416096	CBD-10-01	221	0.372	0.05	0.14	97.33
416097	CBD-10-01	222	0.219	0.08	0.11	97.68
416098	CBD-10-01	223	0.427	0.06	0.06	96.91
416099	CBD-10-01	224		0.04	0.57	97.84
416100	CBD-10-01	225	0.273	0.07	0.02	99.02
416101	CBD-10-01	226		0.07	0.1	97.06
416102	CBD-10-01	227	0.517	0.09	0.51	97.46
416103	CBD-10-01	228	0.734	0.24	-0.1	97.52
416104	CBD-10-01	229	0.745	0.26	-0.21	98.53
416105	CBD-10-01	230	1.069	0.19	-0.15	98.43

Chem #	DDH#	Sample	TiO2	P2O5	LOI	Total
416106	CBD-10-01	231	0.876	0.18	-0.06	97.94
416107	CBD-10-01	232	1.031	0.53	-0.34	98.36
416108	CBD-10-01	233	0.985	0.62	-0.12	100.9
416109	CBD-10-01	234	1.048	0.67	-0.14	100.4
416110	CBD-10-01	235	0.726	0.22	-0.25	99.2
416111	CBD-10-01	236	0.817	0.09	-0.13	99.24
416112	CBD-10-01	237	0.557	0.07	0.19	98.68
416113	CBD-10-01	238	0.498	0.14	0.19	97.75
416114	CBD-10-01	239	0.549	0.11	0.05	98.66
416115	CBD-10-01	240	0.21	0.08	0.05	99.68
416116	CBD-10-01	241	0.697	0.14	-0.17	98.63
416117	CBD-10-01	242	0.796	0.09	-0.21	98.31
416118	CBD-10-01	243	0.906	0.39	-0.06	99.87
416119	CBD-10-01	244	0.369	0.1	-0.2	100.9
416120	CBD-10-01	245	0.2	0.11	0.17	100.9
416121	CBD-10-01	246	0.849	0.37	0.05	100.9
416122	CBD-10-01	247	0.149	0.12	0.43	99.19
416123	CBD-10-01	248	0.229	0.24	0.96	98.38
416124	CBD-10-01	249	0.806	0.25	0.26	98.24
416125	CBD-10-01	250	0.266	0.25	0.2	98.12
416126	CBD-10-01	251	0.381	0.01	1.28	97.9
416127	CBD-10-01	252	0.272	0.13	0.2	98.55
416128	CBD-10-01	253	0.578	0.23	0.3	98.53
416129	CBD-10-01	254	0.705	0.22	0.23	99.62
416130	CBD-10-01	255	0.71	0.12	0.12	98.52
416131	CBD-10-01	256	0.69	0.11	0.36	98.26
416132	CBD-10-01	257	0.663	0.07	0.33	100.2
416133	CBD-10-01	258	0.307	0.09	0.57	99.33
416134	CBD-10-01	259	0.447	0.17	1.03	98.82
416135	CBD-10-01	260	0.463	0.09	1.08	97.08
416136	CBD-10-01	261	0.318	0.08	0.24	98.04
416137	CBD-10-01	262	0.181	0.07	0.7	97.49
416138	CBD-10-01	263		0.07	0.38	98.03
416139	CBD-10-01	264		0.07	0.17	99.18
416140	CBD-10-01	265		0.08	0.09	99.73
416141	CBD-10-01	266		0.05	0.23	97.16
416142	CBD-10-01	267	0.603	0.2	-0.1	99.72
416143	CBD-10-01	268		0.13	0.54	98.03
416144	CBD-10-01	269	0.217	0.09	0.17	98.19
416145	CBD-10-01	270	0.211	0.08	0.78	97.71
416146	CBD-10-01	271	0.363	0.1	2.1	97.59
416147	CBD-10-01	272	0.635	0.11	1.8	98.22
416148	CBD-10-01	273	0.627	0.12	1.71	98.24
416149	CBD-10-01	274	0.714	0.12	1.01	97.75
416150	CBD-10-01	275	0.704	0.24	0.79	97.97
416151	CBD-10-01	276	0.772	0.19	1.66	98.29

Chem #	DDH#	Sample	TiO2	P2O5	LOI	Total
416152	CBD-10-01	277	0.748	0.11	2.39	98.24
416153	CBD-10-01	278	0.77	0.1	2.43	97.05
416154	CBD-10-01	279	0.662	0.17	1.09	97.88
512817	CBD-11-02	1	0.605	0.15	0.26	98.89
512818	CBD-11-02	2	0.583	0.14	0.08	99.78
512819	CBD-11-02	3	0.682	0.16	0.02	98.88
512820	CBD-11-02	4	0.61	0.15	0.07	98.94
512821	CBD-11-02	5	0.612	0.15	0.18	97.85
512822	CBD-11-02	6	0.639	0.16	0.18	98.88
512823	CBD-11-02	7	0.582	0.15	0.17	99.6
512824	CBD-11-02	8	0.651	0.17	0.22	99.61
512825	CBD-11-02	9	0.604	0.15	0.35	98.02
512826	CBD-11-02	10	0.587	0.19	0.26	99.85
512827	CBD-11-02	11	0.59	0.16	0.04	99.76
512828	CBD-11-02	12	0.188	0.18	0.38	99.83
512829	CBD-11-02	13	0.47	0.27	-0.3	97.67
512830	CBD-11-02	14	0.657	0.21	0.02	98.36
512831	CBD-11-02	15	0.613	0.27	-0.12	98.76
512832	CBD-11-02	16	0.424	0.24	0.01	99.58
512833	CBD-11-02	17	0.59	0.21	0.12	98.48
512834	CBD-11-02	18	0.601	0.19	0.39	99.55
512835	CBD-11-02	19	0.358	0.13	0.24	97.76
512836	CBD-11-02	20	0.634	0.18	0.01	97.67
512837	CBD-11-02	21	0.619	0.18	-0.01	98.02
512838	CBD-11-02	22	0.171	0.04	0.21	97.65
512839	CBD-11-02	23	0.431	0.09	0.04	97.75
512840	CBD-11-02	24	0.589	0.17	0.26	98.65
512841	CBD-11-02	25	0.77	0.21	0.18	98.78
512842	CBD-11-02	26	0.943	0.22	-0.21	99.13
512843	CBD-11-02	27	0.722	0.26	-0.2	99.29
512844	CBD-11-02	28	0.651	0.23	-0.25	98.69
512845	CBD-11-02	29	0.444	0.26	-0.05	99.22
512846	CBD-11-02	30				97.68
512847	CBD-11-02	31		0.13	0.28	97.23
512848	CBD-11-02	32	0.979	0.16	-0.05	98.16
512849	CBD-11-02	33		0.27	0.04	98.24
512850	CBD-11-02	34	0.967	0.18	-0.22	98.31
512851	CBD-11-02	35	0.899	0.14	-0.06	98.94
512852	CBD-11-02	36		0.18	0.08	97.65
512853	CBD-11-02	37	0.345	0.03	0.26	99.07
512854	CBD-11-02	38		0.22	0.54	97.2
512855	CBD-11-02	39	0.478	0.24	0.17	97.52
512856	CBD-11-02	40	0.565	0.15	0.15	98.5
512857	CBD-11-02	41	0.22	0.2	0.46	97.94
512858	CBD-11-02	42	0.789	0.24	0.07	98.42
512859	CBD-11-02	43	0.144	0.22	0.49	98.79

Chem #	DDH#	Sample	TiO2	P2O5	LOI	Total
512860	CBD-11-02	44	0.188	0.49	0.56	96.96
512861	CBD-11-02	45	0.421	0.84	0.03	98.19
512862	CBD-11-02	46	0.144	0.03	-0.24	98.41
512863	CBD-11-02	47	0.378	0.24	0.23	100.5
512864	CBD-11-02	48	0.583	0.14	-0.02	97.38
512865	CBD-11-02	49	0.67	0.13	0.21	97.91
512866	CBD-11-02	50	0.609	0.17	0.14	100.1
512867	CBD-11-02	51	0.159	0.02	0.21	99.79
512868	CBD-11-02	52	0.136	0.04	0.19	97.51
512869	CBD-11-02	53	0.154	0.08	0.31	98.64
512870	CBD-11-02	54	0.199	0.02	-0.18	99.15
512871	CBD-11-02	55	0.566	0.19	0.2	98.65
512872	CBD-11-02	56	0.576	0.24	0.15	100.7
512873	CBD-11-02	57	0.493	0.16	-0.07	98.86
512874	CBD-11-02	58	0.604	0.2	-0.18	98.44
512875	CBD-11-02	59	0.635	0.25	0.23	99.98
512876	CBD-11-02	60	0.295	0.53	0.06	97.72
512877	CBD-11-02	61	0.604	0.64	0.37	100.4
512878	CBD-11-02	62	0.142	0.3	0.37	97.58
512879	CBD-11-02	63	0.161	0.2	0.49	97.75
512880	CBD-11-02	64	0.215	0.1	0.34	98.51
512881	CBD-11-02	65	0.591	0.19	0.2	98.45
512882	CBD-11-02	66	0.551	0.19	0.09	97.89
512883	CBD-11-02	67	0.154	0.05	0.39	98.44
512884	CBD-11-02	68	0.236	0.07	0.12	98.79
512885	CBD-11-02	69	0.117	0.05	-0.11	99.07
512886	CBD-11-02	70	0.135	0.05	0	99.17
512887	CBD-11-02	71	0.689	0.38	-0.29	98.02
512888	CBD-11-02	72	0.275	0.22	0.05	98.66
512889	CBD-11-02	73	0.456	0.29	0.05	98.49
512890	CBD-11-02	74	0.288	0.75	-0.08	97.59
512891	CBD-11-02	75	0.686	0.3	-0.08	97.8
512892	CBD-11-02	76	0.569	0.15	0.01	99.4
512893	CBD-11-02	77	0.533	0.16	-0.09	99.19
512894	CBD-11-02	78	1.044	0.28	-0.16	99.35
512895	CBD-11-02	79	0.475	0.19	0.11	99.24
512896	CBD-11-02	80	0.455	0.18	0.35	98.62
512897	CBD-11-02	81	0.509	0.21	-0.09	99.04
512898	CBD-11-02	82	0.991	0.36	-0.36	98.43
512899	CBD-11-02	83	0.643	0.28	-0.24	101
512900	CBD-11-02	84	0.832	0.29	-0.15	99.35
512901	CBD-11-02	85	0.547	0.16	-0.03	99.28
512902	CBD-11-02	86	0.485	0.22	-0.02	99.47
512903	CBD-11-02	87	0.691	0.22	-0.04	99.1
512904	CBD-11-02	88	0.854	0.25	0.01	99.1
512905	CBD-11-02	89	0.586	0.43	0.18	100.1

Chem #	DDH#	Sample	TiO2	P2O5	LOI	Total
512906	CBD-11-02	90	0.178	0.94	0.53	99.55
512907	CBD-11-02	91	0.141	0.88	1.23	96.92
512908	CBD-11-02	92	0.206	0.75	0.29	96.7
512909	CBD-11-02	93	0.18	0.76	0.33	99.97
512910	CBD-11-02	94	0.207	0.67	0.8	98.73
512911	CBD-11-02	95	0.181	0.3	0.46	97.9
512912	CBD-11-02	96	0.333	0.47	0.31	98.19
512913	CBD-11-02	97	0.388	0.51	0.83	98.77
512914	CBD-11-02	98	0.16	0.64	1.26	97.63
512915	CBD-11-02	99	0.199	0.4	0.79	96.7
512916	CBD-11-02	100	0.514	0.1	0.25	97.29
512917	CBD-11-02	101	0.558	0.18	0.09	97.7
512918	CBD-11-02	102	0.313	0.15	-0.44	97.24
512919	CBD-11-02	103	0.824	0.14	-0.71	98.26
512920	CBD-11-02	104	0.604	0.05	-0.92	97.41
512921	CBD-11-02	105	0.802	0.27	-0.8	99.93
512922	CBD-11-02	106	0.693	0.18	-0.66	99.42
512923	CBD-11-02	107	0.233	0.77	0.21	95.88
512924	CBD-11-02	108	0.677	0.24	-0.3	99.17
512925	CBD-11-02	109	1.027	0.15	-0.31	98.76
512926	CBD-11-02	110	0.427	0.24	0.38	96.78
512927	CBD-11-02	111	0.475	0.13	-0.11	99.67
512928	CBD-11-02	112	0.556	0.13	-0.31	97.27
512929	CBD-11-02	113	0.54	0.19	-0.46	99.41
512930	CBD-11-02	114	0.483	0.28	0.11	97.52
512931	CBD-11-02	115	0.453	0.12	-0.6	100.2
512932	CBD-11-02	116	0.313	0.31	0.12	98.28
512933	CBD-11-02	117	0.429	0.12	0.02	97.46
512934	CBD-11-02	118	0.188	0.11	-0.02	98.42
512935	CBD-11-02	119	0.158	0.13	0.11	99.02
512936	CBD-11-02	120	0.168	0.1	0.06	97.84
512937	CBD-11-02	121	0.14	0.27	0.54	100.4
512938	CBD-11-02	122		0.13		98.85
512939	CBD-11-02	123		0.19	0.48	98.53
512940	CBD-11-02	124	0.194	0.11	-0.16	100.7
512941	CBD-11-02	125		0.16	-0.24	99.68
512942	CBD-11-02	126	0.605	0.23	-0.06	98.99
512943	CBD-11-02	127	0.378	0.19	0.43	97.3
512944	CBD-11-02	128	0.815	0.24	-0.17	98.7
512945	CBD-11-02	129	0.7	0.16	-0.05	97.76
512946	CBD-11-02	130	0.162	0.08	0.2	98.28
512947	CBD-11-02	131	0.145	0.04	1.13	99.42
512948	CBD-11-02	132	0.575	0.2	0.28	101
512949	CBD-11-02	133	0.244	0.01	1.35	100.6
512950	CBD-11-02	134	0.607	0.29	-0.1	98.18
512951	CBD-11-02	135	0.121	0.11	1.35	97.91

Chem #	DDH#	Sample	TiO2	P2O5	LOI	Total
512952	CBD-11-02	136	0.121	0.06	2.1	98.37
512953	CBD-11-02	137	0.124	0.08	2.46	98.52
512954	CBD-11-02	138	0.138	0.13	2.02	97.08
512955	CBD-11-02	139	0.206	0.3	1.24	98.15
512956	CBD-11-02	140	0.387	0.32	0.61	97.74
512957	CBD-11-02	141	0.322	0.28	0.67	97.98
512958	CBD-11-02	142	0.777	0.25	0.18	97.99
512959	CBD-11-02	143	1.105	0.63	0.1	98.92
512960	CBD-11-02	144	0.217	0.1	0.11	98.08
512961	CBD-11-02	145	0.172	0.07	0.3	98.14
512962	CBD-11-02	146	0.271	0.02	0.48	98.32
512963	CBD-11-02	147	0.369	0.12	0.54	99.73
512964	CBD-11-02	148	0.189	0.02	0.75	97.95
512965	CBD-11-02	149	0.328	0.18	1.94	98.15
512966	CBD-11-02	150	0.333	0.28	0.24	98.52
512967	CBD-11-02	151	0.17	0.14	0.18	99.41
512968	CBD-11-02	152	0.363	0.24	0.45	99.37
512969	CBD-11-02	153	0.552	0.23	0.65	100.6
512970	CBD-11-02	154	0.291	0.42	0.86	98.28
512971	CBD-11-02	155	0.178	0.63	1.67	98
512972	CBD-11-02	156	0.156	0.59	1.63	96.01
512973	CBD-11-02	157	0.138	0.52	1.61	97.3
512974	CBD-11-02	158	0.142	0.64	2.24	97.27
512975	CBD-11-02	159	0.247	0.67	1.26	96.91
512976	CBD-11-02	160	0.332	0.24	0.78	98.47
512977	CBD-11-02	161	0.323	0.38	0.84	99.04
512978	CBD-11-02	162	0.282	0.4	0.84	97.72
512979	CBD-11-02	163	0.528	0.21	0.46	98.34
512980	CBD-11-02	164	0.557	0.17	0.57	100.5
512981	CBD-11-02	165	0.381	0.18	0.43	97.6
512982	CBD-11-02	166	0.256	0.27	0.87	98.61
512983	CBD-11-02	167	0.256	0.14	0.76	100.2
512984	CBD-11-02	168	0.347	0.08	0.41	98.55
512985	CBD-11-02	169	0.247	0.09	0.59	97.08
512986	CBD-11-02	170	0.335	0.09	0.35	97.21
512987	CBD-11-02	171	1.123	1.11	0.86	97.29
512988	CBD-11-02	172	1.033	1	0.66	97.85
512989	CBD-11-02	173	0.366	0.11	0.58	98.38
512990	CBD-11-02	174	0.439	0.23	0.59	97.27
512991	CBD-11-02	175	0.554	0.07	0.55	98.56
512992	CBD-11-02	176	0.369	0.08	0.55	98.48
512993	CBD-11-02	177	0.804	0.42	0.46	99.67
512994	CBD-11-02	178	0.532	0.47	0.39	99.09
512995	CBD-11-02	179	0.333	0.23	0.22	98.7
512996	CBD-11-02	180	0.422	0.24	0.63	98.64
512997	CBD-11-02	181	0.337	0.24	0.85	98.59

Chem #	DDH#	Sample	TiO2	P2O5	LOI	Total
512998	CBD-11-02	182	0.287	0.04	0.76	100.6
512999	CBD-11-02	183	0.286	0.02	0.67	97.76
513000	CBD-11-02	184	0.732	0.05	0.37	99.13
513001	CBD-11-02	185	0.53	0.06	0.24	99.29
513002	CBD-11-02	186	0.279	0.02	0.6	97.91
513003	CBD-11-02	187	0.286	0.02	0.6	98.59
513004	CBD-11-02	188	0.592	0.12	0.61	98.77
513005	CBD-11-02	189	0.437	0.13	0.46	96.97
513006	CBD-11-02	190	0.295	0.08	0.5	96.97
513007	CBD-11-02	191	0.231	0.08	-0.08	97.26
513008	CBD-11-02	192	0.346	0.1	0.42	97.6
513009	CBD-11-02	193	0.528	0.07	0.38	98.8
513010	CBD-11-02	194	0.589	0.14	0.26	97.63
513011	CBD-11-02	195	0.58	0.11	0.27	97.44
513012	CBD-11-02	196	0.838	0.22	0.16	98.08
513013	CBD-11-02	197	1.024	0.19	-0.83	98.72
513014	CBD-11-02	198	0.903	0.37	-0.23	98.8
513015	CBD-11-02	199	0.963	0.11	0.03	98.55
513016	CBD-11-02	200	0.285	0.03	0.3	99.59
513017	CBD-11-02	201	0.755	0.17	0.13	99.4
513018	CBD-11-02	202	0.721	0.07	0.18	97.07
513019	CBD-11-02	203	0.571	0.07	0.24	98.99
513020	CBD-11-02	204	0.22	0.04	0.22	99.53
513021	CBD-11-02	205	0.411	0.06	0.54	98.12
513022	CBD-11-02	206	0.599	0.07	0.14	97.84
513023	CBD-11-02	207	0.55	0.14	0.5	98.1
513024	CBD-11-02	208	0.166	0.07	0.41	97.1
513025	CBD-11-02	209	0.152	0.1	0.38	98.16
513026	CBD-11-02	210	0.336	0.15	0.69	98.91
513027	CBD-11-02	211	0.565	0.2	0.34	100.8
513028	CBD-11-02	212	0.808	0.09	0.13	97.79
513029	CBD-11-02	213	0.801	0.07	0.17	99.13
513030	CBD-11-02	214		0.07	0.56	100.3
513031	CBD-11-02	215	0.584	0.2	0.19	99.82
513032	CBD-11-02	216	0.166	0.07	0.06	99.4
513033	CBD-11-02	217	0.303	0.08	0.19	99.41
513034	CBD-11-02	218	0.553	0.18	0.24	98.05
513035	CBD-11-02	219	0.519	0.14	0.03	99.16
513036	CBD-11-02	220	0.226	0.08	0.32	97.55
513037	CBD-11-02	221	0.42	0.06	0.36	98.71
513038	CBD-11-02	222	0.699	0.12	0.04	99.23
513039	CBD-11-02	223		0.15	0.02	99.24
513040	CBD-11-02	224	0.737	0.13	0.43	99.37
513041	CBD-11-02	225	0.662	0.06	0.5	98.91
513042	CBD-11-02	226	0.378	0.07	0.13	98.4
513043	CBD-11-02	227	0.667	0.17	-0.04	98.64

Chem #	DDH#	Sample	TiO2	P2O5	LOI	Total
513044	CBD-11-02	228	0.353	0.03	0.24	97.6
513045	CBD-11-02	229	0.659	0.06	0.08	98.09
513046	CBD-11-02	230	0.712	0.09	0.32	99.64
513047	CBD-11-02	231	0.858	0.08	0.08	97.7
513048	CBD-11-02	232	0.696	0.1	0.3	99.61
514381	CBD-11-07	1	1.46	0.69	-1.21	99.48
514382	CBD-11-07	2	1.471	0.68	-0.98	98.88
514383	CBD-11-07	3	1.887	0.32	-0.66	98.24
514384	CBD-11-07	4	0.135	0.07	0.26	98.23
514385	CBD-11-07	5	1.586	0.66	-1.34	97.72
514386	CBD-11-07	6	1.571	0.74	-1.31	99.06
514387	CBD-11-07	7	1.627	0.85	-1.33	98.3
514388	CBD-11-07	8	1.624	1.1	-1.13	98.33
514389	CBD-11-07	9	0.72	0.29	0.22	98.65
514390	CBD-11-07	10	1.101	0.45	-0.51	98.96
514391	CBD-11-07	11	1.036	0.74	-0.64	97.93
514392	CBD-11-07	12	1.083	0.73	-0.88	98.18
514393	CBD-11-07	13	1.117	0.46	-0.61	98.02
514394	CBD-11-07	14	0.867	0.22	-0.35	99.03
514395	CBD-11-07	15	1.171	0.3	-0.79	98.93
514396	CBD-11-07	16	0.592	0.17	-0.22	99.06
514397	CBD-11-07	17	1.118	0.26	-0.54	99.92
514398	CBD-11-07	18	2.007	0.53	-0.93	97.79
514399	CBD-11-07	19	2.333	0.59	-2.71	98.86
514400	CBD-11-07	20	1.629	0.38	-0.83	98.28
514401	CBD-11-07	21	0.585	0.16	0.33	98.42
514402	CBD-11-07	22	1.19	0.6	-0.71	98.57
514403	CBD-11-07	23	0.632	0.36	-0.23	98.69
514404	CBD-11-07	24	0.238	0.26	-0.16	96.32
514405	CBD-11-07	25	0.896	0.38	-0.49	98.57
514406	CBD-11-07	26	0.853	0.25	-0.37	99.07
514407	CBD-11-07	27	0.891	0.21	-0.37	98.18
514408	CBD-11-07	28		0.3		99.28
514409	CBD-11-07	29	0.645	0.22	-0.15	98.54
514410	CBD-11-07	30	0.614	0.23	-0.21	98.86
514411	CBD-11-07	31	0.565	0.2	-0.2	98.93
514412	CBD-11-07	32	0.522	0.2	0.18	99.31
514413	CBD-11-07	33	0.163	0.08	0.55	98.67
514414	CBD-11-07	34	0.145	0.12	-0.08	97.96
514415	CBD-11-07	35	0.12	0.15	0.82	97.58
514416	CBD-11-07	36	0.147	0.29	0.52	97.77
514417	CBD-11-07	37	0.209	0.27	0.66	98.32
514418	CBD-11-07	38	0.545	0.18	0.08	98.39
514419	CBD-11-07	39	0.151	0.1	0.32	97.77
514420	CBD-11-07	40	0.719	0.19	-0.01	100.3
514421	CBD-11-07	41	0.191	0.09	0	98.09

Chem #	DDH#	Sample	TiO2	P2O5	LOI	Total
514422	CBD-11-07	42	0.743	0.19	-0.14	98.73
514423	CBD-11-07	43	0.217	0.19	-0.03	97.83
514424	CBD-11-07	44	0.144	0.35	-0.24	98.48
514425	CBD-11-07	45	0.169	0.18	-0.01	100.9
514426	CBD-11-07	46	0.448	0.13	0.37	98.85
514427	CBD-11-07	47	0.227	0.33	0.53	99.96
514428	CBD-11-07	48	0.163	0.34	0.72	100.5
514429	CBD-11-07	49	0.131	0.23	0.55	98.77
514430	CBD-11-07	50	0.164	0.22	-0.17	98.31
514431	CBD-11-07	51	0.668	0.2	-0.21	98.48
514432	CBD-11-07	52	1.152	0.45	-0.38	100.4
514433	CBD-11-07	53	0.866	0.29	-0.16	99.07
514434	CBD-11-07	54	0.655	0.28	-0.14	99.03
514435	CBD-11-07	55	0.702	0.32	-0.23	99.98
514436	CBD-11-07	56	0.539	0.15	0.03	99.04
514437	CBD-11-07	57	0.613	0.18	-0.21	99.09
514438	CBD-11-07	58	0.644	0.23	-0.1	98.37
514439	CBD-11-07	59	0.621	0.19	-0.1	99.2
514440	CBD-11-07	60	0.218	0.1	0.18	98.49
514441	CBD-11-07	61	0.532	0.18	-0.11	100.5
514442	CBD-11-07	62	0.559	0.14	0.06	98.63
514443	CBD-11-07	63	0.639	0.17	-0.02	98.71
514444	CBD-11-07	64	0.584	0.15	0.02	99.22
514445	CBD-11-07	65	0.549	0.14	-0.03	99.72
514446	CBD-11-07	66	0.49	0.15	0.06	98.28
514447	CBD-11-07	67	0.501	0.15	-0.1	98.79
514448	CBD-11-07	68	0.631	0.13	0.16	98.48
514449	CBD-11-07	69	0.784	0.22	0.04	98.63
514450	CBD-11-07	70	0.517	0.2	0.35	99.79
514451	CBD-11-07	71	0.524	0.16	0.19	98.3
514452	CBD-11-07	72	0.531	0.17	0.09	98.57
514453	CBD-11-07	73	0.573	0.18	0.12	98.42
514454	CBD-11-07	74		0.14	0.09	100.9
514455	CBD-11-07	75		0.16	0.22	100.6
514456	CBD-11-07	76	0.594	0.15	0.18	98.77
514457	CBD-11-07	77	0.556	0.15	0.06	99.09
514458	CBD-11-07	78		0.21	-0.05	100.7
514459	CBD-11-07	79		0.15	-0.2	99.61
514460	CBD-11-07	80	0.53	0.17	-0.18	100.8
514461	CBD-11-07	81	0.573	0.16	-0.08	99.51
514462	CBD-11-07	82	0.834	0.16	-0.11	100.1
514463	CBD-11-07	83		0.22	-0.13	100.6
514464	CBD-11-07	84	0.738	0.16	-0.1	99.16
514465	CBD-11-07	85	0.595	0.15	-0.06	100.1
514466	CBD-11-07	86	0.151	0.11	0.13	98.62
514467	CBD-11-07	87	0.339	0.14	0.17	98.87

Chem #	DDH#	Sample	TiO2	P2O5	LOI	Total
514468	CBD-11-07	88	0.63	0.17	0	99.41
514469	CBD-11-07	89	0.523	0.14	-0.06	98.83
514470	CBD-11-07	90	0.52	0.13	0	98.48
514471	CBD-11-07	91	0.44	0.13	-0.05	97.45
514472	CBD-11-07	92	0.58	0.11	0	98.68
514473	CBD-11-07	93	0.688	0.17	-0.22	99.66
514474	CBD-11-07	94	0.705	0.18	-0.17	99.24
514475	CBD-11-07	95	0.714	0.26	-0.17	99.17
514476	CBD-11-07	96	0.449	0.2	0.22	98.24
514477	CBD-11-07	97	0.164	0.21	0.28	96.68
514478	CBD-11-07	98	0.658	1.06	0.62	97.04
514479	CBD-11-07	99	0.121	0.03	-0.21	97.34
514480	CBD-11-07	100	0.282	0.04	0.33	96.98
514481	CBD-11-07	101	0.133	0.01	-0.37	98.77
514482	CBD-11-07	102	0.482	0.08	0.02	97.57
514483	CBD-11-07	103	0.726	0.2	0	99.2
514484	CBD-11-07	104	0.532	0.17	-0.08	99.36
514485	CBD-11-07	105	0.434	0.19	0.01	99.14
514486	CBD-11-07	106	0.242	0.08	-0.1	96.92
514487	CBD-11-07	107	0.241	0.07	-0.25	97.25
514488	CBD-11-07	108	0.239	0.1	-0.04	98.45
514489	CBD-11-07	109	0.478	0.13	0.25	98.55
514490	CBD-11-07	110	0.284	0.11	0.23	97.9
514491	CBD-11-07	111	0.675	0.27	0.04	100.3
514492	CBD-11-07	112	0.162	0.15	-0.01	98.06
514493	CBD-11-07	113	0.142	0.03	-0.1	100.4
514494	CBD-11-07	114	0.231	0.09	0.17	100.1
514495	CBD-11-07	115	0.61	0.43	0.07	99.72
514496	CBD-11-07	116	0.138	0.14	0.26	99.48
514497	CBD-11-07	117	0.142	0.31	0.7	100.6
514498	CBD-11-07	118	0.129	0.15	0.33	99.13
514499	CBD-11-07	119	0.148	0.07	0.52	97.25
514500	CBD-11-07	120	0.164	0.02	0.14	98.4
514501	CBD-11-07	121	0.2	0.08	-0.2	99.7
514502	CBD-11-07	122	0.589	0.25	-0.25	98.28
514503	CBD-11-07	123	0.74	0.36	-0.28	97.73
514504	CBD-11-07	124	0.58	0.41	-0.08	99.1
514505	CBD-11-07	125	0.461	0.24	0.12	98.86
514506	CBD-11-07	126	0.819	0.41	0.04	97.99
514507	CBD-11-07	127	0.788	0.35	0.03	98.13
514508	CBD-11-07	128	0.774	0.25	-0.07	98.48
514509	CBD-11-07	129	0.459	0.19	0.09	98.18
514510	CBD-11-07	130	0.434	0.2	0.14	100.2
514511	CBD-11-07	131	0.638	0.32	-0.14	97.89
514512	CBD-11-07	132	1	0.6	0.12	97.97
514513	CBD-11-07	133	0.171	0.14	-0.1	98.7

Chem #	DDH#	Sample	TiO2	P2O5	LOI	Total
514514	CBD-11-07	134	0.105	0.11	0.14	97.71
514515	CBD-11-07	135	0.13	0.12	-0.1	97.37
514516	CBD-11-07	136	0.151	0.25	-0.15	98.96
514517	CBD-11-07	137	0.113	0.09	0.05	97.57
514518	CBD-11-07	138	0.047	0.03	0.46	99.64
514519	CBD-11-07	139	0.137	0.09	-0.05	97.8
514520	CBD-11-07	140	0.136	0.28	-0.01	97.99
514521	CBD-11-07	141	0.157	0.19	0	98.12
514522	CBD-11-07	142	0.116	0.09	-0.14	98.31
514523	CBD-11-07	143	0.152	0.1	0.07	97.95
514524	CBD-11-07	144	0.237	0.03	0.17	98.16
514525	CBD-11-07	145	0.54	0.26	0	98.12
514526	CBD-11-07	146	0.618	0.2	-0.09	97.78
514527	CBD-11-07	147	0.625	0.26	0.07	98.05
514528	CBD-11-07	148	0.704	0.27	0.02	98.23
514529	CBD-11-07	149	0.2	0.03	0.05	99.34
514530	CBD-11-07	150	0.159	0.03	0.04	98.49
514531	CBD-11-07	151	0.146	0.07	-0.13	97.82
514532	CBD-11-07	152	0.155	0.11	-0.03	97.1
514533	CBD-11-07	153	0.114	0.15	0.26	96.7
514534	CBD-11-07	154	0.145	0.13	-0.04	97.29
514535	CBD-11-07	155	0.137	0.08	-0.14	98.28
514536	CBD-11-07	156	0.217	0.1	-0.06	98.32
514537	CBD-11-07	157	0.75	0.31	0	99.17
514538	CBD-11-07	158	0.568	0.82	0.44	98.7
514539	CBD-11-07	159	0.143	0.96	1.36	96.53
514540	CBD-11-07	160	0.439	0.33	0.95	98.56
514541	CBD-11-07	161	0.16	0.9	0.9	95.92
514542	CBD-11-07	162	0.139	0.84	1.29	95.76
514543	CBD-11-07	163	0.172	0.76	1.54	96.85
514544	CBD-11-07	164	0.636	0.32	0.25	97.58
514545	CBD-11-07	165	0.496	0.2	0.17	98.21
514546	CBD-11-07	166		0.07	0.19	98.63
514547	CBD-11-07	167	0.516	0.07	0.01	99.28
514548	CBD-11-07	168		0.13	0.02	99.89
514549	CBD-11-07	169		0.08	0.3	97.41
514550	CBD-11-07	170	0.177	0.07	-0.09	97.73
514551	CBD-11-07	171	0.155	0.06	0.21	97.77
514552	CBD-11-07	172	0.627	0.26	0.11	98.19
514553	CBD-11-07	173	0.612	0.16	0	97.84
514554	CBD-11-07	174		0.13	-0.15	98.45
514555	CBD-11-07	175	0.534	0.21	0.07	99.42
514556	CBD-11-07	176	0.704	0.26	0.06	98.04
514557	CBD-11-07	177	0.543	0.18	-0.03	98.32
514558	CBD-11-07	178		0.3	0.14	99.33
514559	CBD-11-07	179	0.852	0.26	0.1	98.99

Chem#	DDH#	Sample	TiO2	P2O5	LOI	Total
514560	CBD-11-07	180	0.361	0.16	0.48	98.39
514561	CBD-11-07	181	0.91	0.29	-0.2	97.98
514562	CBD-11-07	182	0.73	0.54	-0.15	99.24
514563	CBD-11-07	183	0.87	0.12	-0.11	100.3
514564	CBD-11-07	184	0.245	0.06	-0.11	97.85
514565	CBD-11-07	185	0.728	0.11	-0.05	98.61
514566	CBD-11-07	186	0.757	0.09	-0.13	98.94
514567	CBD-11-07	187	0.791	0.11	-0.14	98
514568	CBD-11-07	188	0.163	0.11	0.05	97.13
514569	CBD-11-07	189	0.137	0.1	0.46	97.28
514570	CBD-11-07	190	0.138	0.06	0.13	98.43
514571	CBD-11-07	191	0.132	0.06	1.01	98.72
514572	CBD-11-07	192	0.591	0.13	0	97.79
514573	CBD-11-07	193	0.135	0.17	1.36	97.92
514574	CBD-11-07	194	0.138	0.64	1.37	96.72
514575	CBD-11-07	195	0.139	0.24	1.34	97.04
514576	CBD-11-07	196	0.142	0.57	1.5	98.43
514577	CBD-11-07	197	0.167	0.72	1.42	96.73
514578	CBD-11-07	198	0.356	0.39	0.52	98.28
514579	CBD-11-07	199	0.323	0.11	-0.41	97.24
514580	CBD-11-07	200	0.543	0.17	0.09	97.89
514581	CBD-11-07	201	0.18	0.07	0.06	98.57
514582	CBD-11-07	202	0.456	0.16	0.03	97.91
514583	CBD-11-07	203	1.084	0.58	-0.23	97.94
514584	CBD-11-07	204	0.131	0.53	1.36	96.88
514585	CBD-11-07	205	0.539	0.25	0.13	97.56
514586	CBD-11-07	206	0.625	0.39	0.41	98.78
514587	CBD-11-07	207	0.149	0.66	1.47	96.61
514588	CBD-11-07	208	0.249	0.8	0.31	96.09
514589	CBD-11-07	209	0.134	0.72	1.27	96.35
514590	CBD-11-07	210	0.227	0.38	0.54	97.18
514591	CBD-11-07	211	0.5	0.21	0.09	98.45
514592	CBD-11-07	212	0.318	0.2	0.74	97.94
514593	CBD-11-07	213	0.632	0.18	0.05	97.87
514594	CBD-11-07	214	0.654	0.17	0.06	98.35
514595	CBD-11-07	215	0.62	0.19	-0.12	98.56
514596	CBD-11-07	216	0.626	0.25	0.12	98.95
514597	CBD-11-07	217	0.174	0.16	0.77	98.31
514598	CBD-11-07	218	0.517	0.21	0.05	97.92
514599	CBD-11-07	219	0.251	< 0.01	0.25	99.17
514600	CBD-11-07	220	0.241	< 0.01	0.36	100.2
514601	CBD-11-07	221	0.795	0.72	0.27	99.79
514602	CBD-11-07	222	1.002	1.03	0.31	98.81
514603	CBD-11-07	223	0.311	0.1	0.38	97.39
514604	CBD-11-07	224	0.27	0.06	0.15	98.07
514605	CBD-11-07	225	0.446	0.14	0.15	98.45

Chem #	DDH#	Sample	TiO2	P2O5	LOI	Total
514606	CBD-11-07	226	0.579	0.14	-0.09	98.26
514607	CBD-11-07	227	0.462	0.07	0.09	98.19
514608	CBD-11-07	228	0.355	0.07	0.02	100.9
514609	CBD-11-07	229	0.332	0.1	1.39	98.31
514610	CBD-11-07	230	1.131	0.87	0.32	98.69
514611	CBD-11-07	231	0.825	0.52	0.02	99.17
514612	CBD-11-07	232	0.467	0.23	-0.12	98.2
514613	CBD-11-07	233	0.25	0.2	0.16	97.53
514614	CBD-11-07	234	0.27	0.19	0.16	98.31
514615	CBD-11-07	235	0.259	0.34	-0.14	97.2
514616	CBD-11-07	236	0.322	0.1	1.03	99.32
514617	CBD-11-07	237	0.29	0.03	0.22	98.27
514618	CBD-11-07	238	0.307	0.01	0.75	99.2
514619	CBD-11-07	239	0.595	0.06	0.19	99.6
514620	CBD-11-07	240	0.551	0.11	0.05	97.66
514621	CBD-11-07	241	0.542	0.09	0.01	98.75
514622	CBD-11-07	242	0.565	0.05	-0.02	97.84
514623	CBD-11-07	243	0.677	0.04	0.09	97.59
514624	CBD-11-07	244	0.364	0.12	-0.06	98.59
514625	CBD-11-07	245	0.412	0.12	-0.11	98.95
514626	CBD-11-07	246	0.708	0.05	0.04	98.59
514627	CBD-11-07	247	0.894	0.08	-0.15	98.35
514628	CBD-11-07	248	0.87	0.06	-0.33	99.3
514629	CBD-11-07	249	1.082	0.34	-0.24	98.99
514630	CBD-11-07	250	0.17	0.06	0.19	97.49
514631	CBD-11-07	251	0.192	0.12	0.14	97.25
514632	CBD-11-07	252	0.206	0.17	0.1	97.46
514633	CBD-11-07	253	0.187	0.16	1.01	97.76
514634	CBD-11-07	254	0.946	0.53	0.13	99.06
514635	CBD-11-07	255	0.687	0.15	-0.01	97.52
514636	CBD-11-07	256	0.427	0.12	0.2	97.76
514637	CBD-11-07	257	0.924	0.1	-0.02	98.18
514638	CBD-11-07	258		0.06	0.16	97.78
514639	CBD-11-07	259	0.474	0.05	0.14	97.25
514640	CBD-11-07	260	0.848	0.24	-0.14	98.19
514641	CBD-11-07	261	0.857	0.34	-0.08	97.79
514642	CBD-11-07	262	0.961	0.36	-0.31	99.31
514643	CBD-11-07	263	0.403	0.07	0.18	98.02
514644	CBD-11-07	264	0.182	0.13	0.55	97.05
514645	CBD-11-07	265	0.666	0.2	0.22	98.04
514646	CBD-11-07	266	0.663	0.18	-0.09	98.47
514647	CBD-11-07	267	0.485	0.05	0.38	98.53
514648	CBD-11-07	268	0.66	0.1	0.24	98.54
514649	CBD-11-07	269	0.474	0.22	1.64	99.4
514650	CBD-11-07	270	0.605	0.14	1.31	98.08
514651	CBD-11-07	271	0.675	0.13	0.52	98.62

Chem #	DDH#	Sample	TiO2	P205	LOI	Total
514652	CBD-11-07	272	0.693	0.1	0.7	97.85
514653	CBD-11-07	273	0.733	0.1	0.47	99.22
514654	CBD-11-07	274	0.607	0.05	0.34	97.82
514655	CBD-11-07	275	0.747	0.1	0.04	98.48
514656	CBD-11-07	276	0.343	0.14	0.58	99
514657	CBD-11-07	277	0.467	0.16	0.54	98.1
514658	CBD-11-07	278	0.561	0.2	1.07	98.92
514659	CBD-11-07	279	0.265	0.06	1.1	98.92
514660	CBD-11-07	280	0.338	0.09	1.07	100.1
514661	CBD-11-07	281	0.491	0.07	0.39	97.91
514662	CBD-11-07	282	0.447	0.04	0.59	97.68
514663	CBD-11-07	283	0.363	0.05	1.31	99.06
514664	CBD-11-07	284	0.742	0.12	0.67	99.2
514665	CBD-11-07	285	0.819	0.15	3.53	99.33
514666	CBD-11-07	286	0.54	0.1	0.79	99.08
514667	CBD-11-07	287	0.638	0.62	1.46	98.23
514668	CBD-11-07	288	0.243	0.23	0.62	98.21
514669	CBD-11-07	289	0.536	0.39	2.4	97.91
514670	CBD-11-07	290	0.356	0.65	2.1	99.67
514671	CBD-11-07	291	0.332	1.24	2.71	99.87
514672	CBD-11-07	292	0.309	0.59	1.75	99.1
514673	CBD-11-07	293	0.546	0.29	1.45	98.94

Chem #	DDH#	Sample	Sc	Ве	V	Cr
104676	CBD-10-01	1	8	9	< 5	< 20
104677	CBD-10-01	2	8	8	< 5	< 20
104678	CBD-10-01	3	9	9	< 5	< 20
104679	CBD-10-01	4	7	17	< 5	< 20
104680	CBD-10-01	5	< 1	36	< 5	< 20
104681	CBD-10-01	6	4	8	< 5	< 20
104682	CBD-10-01	7	5	8	< 5	< 20
104683	CBD-10-01	8	5	9	< 5	< 20
104684	CBD-10-01	9	4	12	< 5	< 20
104685	CBD-10-01	10	5	10	< 5	< 20
104686	CBD-10-01	11	5	9	< 5	< 20
104687	CBD-10-01	12	6	10	< 5	< 20
104688	CBD-10-01	13	< 1	23	< 5	< 20
104689	CBD-10-01	14	< 1	12	< 5	< 20
104690	CBD-10-01	15	5	8	< 5	< 20
104691	CBD-10-01	16	6	6	< 5	< 20
104692	CBD-10-01	17	6	8	< 5	< 20
104693	CBD-10-01	18	4	55	< 5	< 20
104694	CBD-10-01	19	2	19	< 5	< 20
104695	CBD-10-01	20	6	8	< 5	< 20
104696	CBD-10-01	21	6	8	< 5	< 20
104697	CBD-10-01	22	2	17	< 5	< 20
104698	CBD-10-01	23	5	11	< 5	< 20
104699	CBD-10-01	24	6	8	< 5	30
104700	CBD-10-01	25	6	7	< 5	< 20
104701	CBD-10-01	26	6	8	< 5	< 20
104702	CBD-10-01	27	6	7	< 5	< 20
104703	CBD-10-01	28	6	7	< 5	< 20
104704	CBD-10-01	29	6	7	< 5	< 20
104705	CBD-10-01	30	6	7	< 5	< 20
104706	CBD-10-01	31	6	7	< 5	< 20
104707	CBD-10-01	32	6	7	< 5	< 20
104708	CBD-10-01	33	6	8	< 5	20
104709	CBD-10-01	34		14	< 5	< 20
104710	CBD-10-01	35	7	7	< 5	< 20
104711	CBD-10-01	36	4	10	< 5	< 20
104712	CBD-10-01	37	7	7	< 5	< 20
104713	CBD-10-01	38	7	6	< 5	< 20
104714	CBD-10-01	39	7	6	< 5	< 20
104715	CBD-10-01	40	7	6	< 5	20
104716	CBD-10-01	41	7	6		< 20
104717	CBD-10-01	42	7	6	< 5	< 20
104718	CBD-10-01	43	7	6	< 5	< 20
104719	CBD-10-01	44	7	6		< 20
104720	CBD-10-01	45	7	6	< 5	< 20
104721	CBD-10-01	46	7	6	< 5	< 20

Chem #	DDH#	Sample	Sc	Ве	V	Cr
104722	CBD-10-01	47	6	14	< 5	20
104723	CBD-10-01	48	6	15	< 5	< 20
104724	CBD-10-01	49	6	9	< 5	< 20
104725	CBD-10-01	50	6	10	< 5	< 20
104726	CBD-10-01	51	6	8	< 5	< 20
104727	CBD-10-01	52	7	10	< 5	< 20
104728	CBD-10-01	53	< 1	24	< 5	< 20
104729	CBD-10-01	54	< 1	13	< 5	< 20
104730	CBD-10-01	55	2	12	< 5	< 20
104731	CBD-10-01	56	6	15	< 5	< 20
104732	CBD-10-01	57	3	30	< 5	< 20
104733	CBD-10-01	58	6	13	< 5	< 20
104734	CBD-10-01	59	6	13	< 5	< 20
104735	CBD-10-01	60	9	11	< 5	< 20
104736	CBD-10-01	61	9	10	< 5	< 20
104737	CBD-10-01	62	14	9	< 5	< 20
104738	CBD-10-01	63	6	10	< 5	< 20
104739	CBD-10-01	64	15	10	< 5	< 20
104740	CBD-10-01	65	23	8	< 5	< 20
104741	CBD-10-01	66	14	12	< 5	< 20
104742	CBD-10-01	67	1	48	< 5	< 20
104743	CBD-10-01	68	13	47	< 5	< 20
104744	CBD-10-01	69	1	95	< 5	< 20
104745	CBD-10-01	70	< 1	146	< 5	< 20
104746	CBD-10-01	71	< 1	16	< 5	< 20
104747	CBD-10-01	72	< 1	14	6	< 20
104748	CBD-10-01	73	< 1	12	< 5	< 20
104749	CBD-10-01	74	7	14	< 5	< 20
104750	CBD-10-01	75	2	11	< 5	< 20
104751	CBD-10-01	76	8	10	< 5	< 20
104752	CBD-10-01	77	8	11	< 5	< 20
104753	CBD-10-01	78	8	13	< 5	< 20
104754	CBD-10-01	79		14	< 5	< 20
104755	CBD-10-01	80	7	28	47	< 20
104756	CBD-10-01	81	6	21	38	< 20
104757	CBD-10-01	82	8	17	< 5	< 20
104758	CBD-10-01	83	< 1	20	< 5	< 20
104759	CBD-10-01	84	9	25	55	< 20
104760	CBD-10-01	85	2	19	< 5	< 20
104761	CBD-10-01	86	< 1	22	< 5	< 20
104762	CBD-10-01	87	< 1	20	< 5	< 20
104763	CBD-10-01	88	< 1	16	< 5	< 20
104764	CBD-10-01	89	< 1	16	< 5	< 20
104765	CBD-10-01	90	< 1	12	< 5	< 20
104766	CBD-10-01	91	< 1	26	< 5	< 20
104767	CBD-10-01	92	6	12	< 5	< 20

Chem #	DDH#	Sample	Sc	Ве	V	Cr
104768	CBD-10-01	93	5	16	< 5	< 20
104769	CBD-10-01	94	7	12	< 5	< 20
104770	CBD-10-01	95	7	12	< 5	< 20
104771	CBD-10-01	96	7	11	< 5	< 20
104772	CBD-10-01	97	4	18	< 5	< 20
104773	CBD-10-01	98	1	49	< 5	< 20
104774	CBD-10-01	99	1	84	< 5	< 20
104775	CBD-10-01	100	1	62	< 5	< 20
104776	CBD-10-01	101	< 1	27	< 5	< 20
104777	CBD-10-01	102	< 1	19	< 5	< 20
104778	CBD-10-01	103	< 1	32	< 5	< 20
104779	CBD-10-01	104	< 1	20	< 5	< 20
104780	CBD-10-01	105	< 1	24	< 5	< 20
104781	CBD-10-01	106	1	14	< 5	< 20
104782	CBD-10-01	107	< 1	16	< 5	< 20
104783	CBD-10-01	108	< 1	15	< 5	< 20
104784	CBD-10-01	109	< 1	15	< 5	< 20
104785	CBD-10-01	110	1	14	< 5	< 20
104786	CBD-10-01	111	6	16	< 5	< 20
104787	CBD-10-01	112	7	20	< 5	< 20
104788	CBD-10-01	113	2	3	< 5	< 20
104789	CBD-10-01	114	18	26	< 5	< 20
104790	CBD-10-01	115	1	7	< 5	< 20
104791	CBD-10-01	116	5	21	< 5	< 20
104792	CBD-10-01	117	3	28	< 5	< 20
104793	CBD-10-01	118	6	22	< 5	< 20
104794	CBD-10-01	119	2	5	< 5	< 20
104795	CBD-10-01	120	6	22	< 5	< 20
104796	CBD-10-01	121	2	18	< 5	< 20
104797	CBD-10-01	122	6	28	< 5	< 20
104798	CBD-10-01	123	< 1	19	< 5	< 20
104799	CBD-10-01	124	1	26	< 5	< 20
104800	CBD-10-01	125	7	24	< 5	< 20
416001	CBD-10-01	126		15		< 20
416002	CBD-10-01	127	6	15	< 5	< 20
416003	CBD-10-01	128		25	< 5	< 20
416004	CBD-10-01	129		14	< 5	< 20
416005	CBD-10-01	130		21	< 5	< 20
416006	CBD-10-01	131	2	21	< 5	< 20
416007	CBD-10-01	132	17	17	< 5	< 20
416008	CBD-10-01	133	3	21	< 5	< 20
416009	CBD-10-01	134	4	17	< 5	< 20
416010	CBD-10-01	135	6	18	< 5	< 20
416011	CBD-10-01	136	2	18	< 5	< 20
416012	CBD-10-01	137	3	14	< 5	< 20
416013	CBD-10-01	138	2	13	< 5	< 20

Chem #	DDH#	Sample	Sc	Be	V	Cr
416014	CBD-10-01	139	2	14	< 5	< 20
416015	CBD-10-01	140	1	23	< 5	< 20
416016	CBD-10-01	141	3	15	< 5	< 20
416017	CBD-10-01	142	4	17	< 5	< 20
416018	CBD-10-01	143	6	17	< 5	< 20
416019	CBD-10-01	144	8	18	< 5	< 20
416020	CBD-10-01	145	2	17	< 5	< 20
416021	CBD-10-01	146	1	21	< 5	< 20
416022	CBD-10-01	147	2	21	< 5	< 20
416023	CBD-10-01	148	< 1	15	< 5	< 20
416024	CBD-10-01	149	< 1	21	< 5	< 20
416025	CBD-10-01	150	< 1	21	< 5	< 20
416026	CBD-10-01	151	< 1	18	< 5	< 20
416027	CBD-10-01	152	2	14	< 5	< 20
416028	CBD-10-01	153	< 1	17	< 5	< 20
416029	CBD-10-01	154	< 1	18	< 5	< 20
416030	CBD-10-01	155	< 1	17	< 5	< 20
416031	CBD-10-01	156	< 1	16	< 5	< 20
416032	CBD-10-01	157	< 1	11	< 5	< 20
416033	CBD-10-01	158	1	11	< 5	< 20
416034	CBD-10-01	159	1	15	< 5	< 20
416035	CBD-10-01	160	1	11	< 5	< 20
416036	CBD-10-01	161	2	12	< 5	< 20
416037	CBD-10-01	162	5	25	< 5	< 20
416038	CBD-10-01	163	1	20	< 5	< 20
416039	CBD-10-01	164	< 1	15	< 5	< 20
416040	CBD-10-01	165	9	16	< 5	< 20
416041	CBD-10-01	166	4	16	< 5	< 20
416042	CBD-10-01	167	5	15	< 5	< 20
416043	CBD-10-01	168	9	13	< 5	< 20
416044	CBD-10-01	169	10	17	< 5	< 20
416045	CBD-10-01	170	11	11	< 5	< 20
416046	CBD-10-01	171		9	< 5	< 20
416047	CBD-10-01	172	4	9	< 5	< 20
416048	CBD-10-01	173		11	< 5	< 20
416049	CBD-10-01	174		11	< 5	< 20
416050	CBD-10-01	175	4	12	< 5	< 20
416051	CBD-10-01	176	4	26	< 5	< 20
416052	CBD-10-01	177	1	24	< 5	< 20
416053	CBD-10-01	178	3	19	< 5	< 20
416054	CBD-10-01	179	1	13	< 5	< 20
416055	CBD-10-01	180	< 1	10	< 5	< 20
416056	CBD-10-01	181	1	15	< 5	< 20
416057	CBD-10-01	182	< 1	13	< 5	< 20
416058	CBD-10-01	183	< 1	17	< 5	< 20
416059	CBD-10-01	184	< 1	17	< 5	< 20

Chem #	DDH#	Sample	Sc	Be	V	Cr
416060	CBD-10-01	185	< 1	13	< 5	< 20
416061	CBD-10-01	186	< 1	12	< 5	< 20
416062	CBD-10-01	187	< 1	25	< 5	< 20
416063	CBD-10-01	188	2	11	< 5	< 20
416064	CBD-10-01	189	3	13	< 5	< 20
416065	CBD-10-01	190	< 1	9	< 5	< 20
416066	CBD-10-01	191	2	14	< 5	< 20
416067	CBD-10-01	192	< 1	5	< 5	< 20
416068	CBD-10-01	193	1	5	< 5	< 20
416069	CBD-10-01	194	11	26	23	< 20
416070	CBD-10-01	195	15	17	32	< 20
416071	CBD-10-01	196	15	19	33	< 20
416072	CBD-10-01	197	7	12	18	< 20
416073	CBD-10-01	198	13	15	24	< 20
416074	CBD-10-01	199	2	12	6	< 20
416075	CBD-10-01	200	5	14	< 5	< 20
416076	CBD-10-01	201	< 1	7	< 5	< 20
416077	CBD-10-01	202	< 1	14	< 5	< 20
416078	CBD-10-01	203	< 1	10	< 5	< 20
416079	CBD-10-01	204	3	11	< 5	< 20
416080	CBD-10-01	205	< 1	8	< 5	< 20
416081	CBD-10-01	206	< 1	9	< 5	< 20
416082	CBD-10-01	207	2	9	5	< 20
416083	CBD-10-01	208	2	7	< 5	< 20
416084	CBD-10-01	209	13	22	9	< 20
416085	CBD-10-01	210	1	12	< 5	< 20
416086	CBD-10-01	211	2	9	< 5	< 20
416087	CBD-10-01	212	1	5	< 5	< 20
416088	CBD-10-01	213	2	4	< 5	< 20
416089	CBD-10-01	214	1	7	< 5	< 20
416090	CBD-10-01	215	2	10	< 5	< 20
416091	CBD-10-01	216	< 1	8	< 5	< 20
416092	CBD-10-01	217		8	< 5	< 20
416093	CBD-10-01	218		5	< 5	< 20
416094	CBD-10-01	219		10	< 5	< 20
416095	CBD-10-01	220	< 1	12	< 5	< 20
416096	CBD-10-01	221	< 1	12	< 5	< 20
416097	CBD-10-01	222	< 1	17	< 5	< 20
416098	CBD-10-01	223	< 1	16	< 5	< 20
416099	CBD-10-01	224	< 1	20	6	20
416100	CBD-10-01	225	< 1	12	< 5	< 20
416101	CBD-10-01	226	< 1	17	< 5	< 20
416102	CBD-10-01	227	2	15	< 5	< 20
416103	CBD-10-01	228	5	16	< 5	< 20
416104	CBD-10-01	229	7	16	< 5	< 20
416105	CBD-10-01	230	4	15	< 5	< 20

Chem #	DDH#	Sample	Sc	Be	V	Cr
416106	CBD-10-01	231	< 1	16	< 5	< 20
416107	CBD-10-01	232	19	16	< 5	< 20
416108	CBD-10-01	233	22	18	< 5	< 20
416109	CBD-10-01	234	24	22	< 5	< 20
416110	CBD-10-01	235	1	18	< 5	< 20
416111	CBD-10-01	236	1	16	< 5	< 20
416112	CBD-10-01	237	1	14	< 5	< 20
416113	CBD-10-01	238	2	15	< 5	< 20
416114	CBD-10-01	239	2	17	< 5	< 20
416115	CBD-10-01	240	< 1	19	< 5	< 20
416116	CBD-10-01	241	2	14	< 5	< 20
416117	CBD-10-01	242	3	13	< 5	< 20
416118	CBD-10-01	243	14	19	< 5	< 20
416119	CBD-10-01	244	2	13	< 5	< 20
416120	CBD-10-01	245	1	20	< 5	< 20
416121	CBD-10-01	246	11	24	< 5	< 20
416122	CBD-10-01	247	< 1	20	< 5	< 20
416123	CBD-10-01	248	< 1	16	< 5	< 20
416124	CBD-10-01	249	2	24	< 5	< 20
416125	CBD-10-01	250	1	16	< 5	< 20
416126	CBD-10-01	251	< 1	14	< 5	< 20
416127	CBD-10-01	252	< 1	11	< 5	< 20
416128	CBD-10-01	253	4	18	< 5	< 20
416129	CBD-10-01	254	3	13	< 5	< 20
416130	CBD-10-01	255	2	13	< 5	< 20
416131	CBD-10-01	256	1	12	< 5	< 20
416132	CBD-10-01	257	2	15	< 5	< 20
416133	CBD-10-01	258	1	15	< 5	< 20
416134	CBD-10-01	259	4	13	< 5	< 20
416135	CBD-10-01	260	3	14	< 5	< 20
416136	CBD-10-01	261	2	12	< 5	< 20
416137	CBD-10-01	262	< 1	17	< 5	< 20
416138	CBD-10-01	263	< 1	21	< 5	< 20
416139	CBD-10-01	264	1	23	< 5	< 20
416140	CBD-10-01	265	3	18	< 5	< 20
416141	CBD-10-01	266	3	15	< 5	< 20
416142	CBD-10-01	267	6	11	< 5	< 20
416143	CBD-10-01	268	4	15	6	20
416144	CBD-10-01	269	1	16	< 5	< 20
416145	CBD-10-01	270	1	20	< 5	< 20
416146	CBD-10-01	271	2	20	< 5	< 20
416147	CBD-10-01	272	3	13	< 5	< 20
416148	CBD-10-01	273	3	11	< 5	< 20
416149	CBD-10-01	274	3	10	< 5	< 20
416150	CBD-10-01	275	3	10	< 5	< 20
416151	CBD-10-01	276	4	11	< 5	< 20

Chem #	DDH#	Sample	Sc	Be	V	Cr
416152	CBD-10-01	277	3	15	< 5	< 20
416153	CBD-10-01	278		12	< 5	< 20
416154	CBD-10-01	279	4	11	< 5	< 20
512817	CBD-11-02	1	7	7	< 5	30
512818	CBD-11-02	2	8		< 5	< 20
512819	CBD-11-02	3			< 5	< 20
512820	CBD-11-02	4	7		< 5	< 20
512821	CBD-11-02	5	7		< 5	20
512822	CBD-11-02	6	8	6		< 20
512823	CBD-11-02	7	7	7	5	< 20
512824	CBD-11-02	8	7	7		< 20
512825	CBD-11-02	9	8	7		< 20
512826	CBD-11-02	10	8		< 5	< 20
512827	CBD-11-02	11	8	7		< 20
512828	CBD-11-02	12	8	12	< 5	< 20
512829	CBD-11-02	13	1		< 5	< 20
512830	CBD-11-02	14	6	9		< 20
512831	CBD-11-02	15	10		< 5	< 20
512832	CBD-11-02	16	8	7		
512833	CBD-11-02	17	7		< 5	< 20
512834	CBD-11-02	18	7	10	_	< 20
512835	CBD-11-02	19	3	11		< 20
512836	CBD-11-02	20	7	8	< 5	< 20
512837	CBD-11-02	21	7		< 5	< 20
512838	CBD-11-02	22	2		< 5	< 20
512839	CBD-11-02	23	3		< 5	< 20
512840	CBD-11-02	24		12	5	< 20
512841	CBD-11-02	25	9	11	6	< 20
512842	CBD-11-02	26		9	6	< 20
512843	CBD-11-02	27	11	11	< 5	< 20
512844	CBD-11-02	28	11	11	6	< 20
512845	CBD-11-02	29	10	11	< 5	< 20
512846	CBD-11-02	30	6	12	< 5	< 20
512847	CBD-11-02	31	3	19	6	< 20
512848	CBD-11-02	32	7	10	7	< 20
512849	CBD-11-02	33	7	11	6	< 20
512850	CBD-11-02	34	7	9	7	< 20
512851	CBD-11-02	35	6	10	< 5	< 20
512852	CBD-11-02	36	7	14	< 5	< 20
512853	CBD-11-02	37	1	14	< 5	< 20
512854	CBD-11-02	38	6	21	5	< 20
512855	CBD-11-02	39	6	14	6	< 20
512856	CBD-11-02	40		13	< 5	< 20
512857	CBD-11-02	41	5	30	8	< 20
512858	CBD-11-02	42		13	7	< 20
512859	CBD-11-02	43	< 1	62	6	< 20

Chem #	DDH#	Sample	Sc	Ве	V	Cr
512860	CBD-11-02	•	< 1	25	7	< 20
512861	CBD-11-02	45		8		< 20
512862	CBD-11-02		< 1	7		< 20
512863	CBD-11-02	47		18		< 20
512864	CBD-11-02	48	_		< 5	< 20
512865	CBD-11-02	49		12		< 20
512866	CBD-11-02	50			< 5	< 20
512867	CBD-11-02		< 1		< 5	< 20
512868	CBD-11-02		< 1		< 5	< 20
512869	CBD-11-02		< 1	13	8	< 20
512870	CBD-11-02		< 1	6	7	< 20
512871	CBD-11-02	55		18	-	< 20
512872	CBD-11-02 CBD-11-02	56		_	< 5	< 20
					< 5	< 20
512873	CBD-11-02	57	5			
512874	CBD-11-02	58			< 5	< 20
512875	CBD-11-02	59			< 5	< 20
512876	CBD-11-02	60			< 5	< 20
512877	CBD-11-02	61	_	40		< 20
512878	CBD-11-02		< 1	18		< 20
512879	CBD-11-02		< 1	16		< 20
512880	CBD-11-02	64		16		20
512881	CBD-11-02	65			< 5	< 20
512882	CBD-11-02	66			< 5	< 20
512883	CBD-11-02	67	1		< 5	< 20
512884	CBD-11-02	68		14		< 20
512885	CBD-11-02		< 1		< 5	< 20
512886	CBD-11-02		< 1		< 5	< 20
512887	CBD-11-02	71			< 5	< 20
512888	CBD-11-02	72	_	70		< 20
512889	CBD-11-02	73		10		< 20
512890	CBD-11-02	74		16	< 5	< 20
512891	CBD-11-02	75		27	7	< 20
512892	CBD-11-02	76	4	16	< 5	< 20
512893	CBD-11-02	77	5	13	< 5	< 20
512894	CBD-11-02	78	6	14	7	< 20
512895	CBD-11-02	79	8		< 5	< 20
512896	CBD-11-02	80	4	15	< 5	< 20
512897	CBD-11-02	81	8	11	< 5	< 20
512898	CBD-11-02	82	12	10	7	< 20
512899	CBD-11-02	83	10	9	< 5	< 20
512900	CBD-11-02	84	9	13	< 5	< 20
512901	CBD-11-02	85	5	15	< 5	< 20
512902	CBD-11-02	86	8	13	< 5	< 20
512903	CBD-11-02	87	8	13	< 5	< 20
512904	CBD-11-02	88	10	15	< 5	< 20
512905	CBD-11-02	89	9	14	10	< 20

Chem #	DDH#	Sample	Sc	Be	V	Cr
512906	CBD-11-02	90	4	7	27	< 20
512907	CBD-11-02	91	1	5		< 20
512908	CBD-11-02	92	4	10	26	< 20
512909	CBD-11-02	93	4	9	30	< 20
512910	CBD-11-02	94	3	10	19	< 20
512911	CBD-11-02	95	2	9	14	< 20
512912	CBD-11-02	96	3	16	9	< 20
512913	CBD-11-02	97	4	54	6	< 20
512914	CBD-11-02	98	1	20	< 5	< 20
512915	CBD-11-02	99	1	16	< 5	< 20
512916	CBD-11-02	100	1	21	5	< 20
512917	CBD-11-02	101	6	14	< 5	< 20
512918	CBD-11-02	102	4	17	< 5	< 20
512919	CBD-11-02	103	3	18	< 5	< 20
512920	CBD-11-02	104	1	17	7	< 20
512921	CBD-11-02	105	5	12	5	< 20
512922	CBD-11-02	106	5	11	< 5	< 20
512923	CBD-11-02	107	3	7	< 5	< 20
512924	CBD-11-02	108	2	17	< 5	< 20
512925	CBD-11-02	109	2	19	< 5	< 20
512926	CBD-11-02	110	< 1	23	< 5	< 20
512927	CBD-11-02	111	2	16	< 5	< 20
512928	CBD-11-02	112	1	20	< 5	< 20
512929	CBD-11-02	113	3	24	< 5	< 20
512930	CBD-11-02	114	4	33	< 5	< 20
512931	CBD-11-02	115	3	18	< 5	< 20
512932	CBD-11-02	116	2	44	5	< 20
512933	CBD-11-02	117	2	18	< 5	< 20
512934	CBD-11-02	118	3	22	7	< 20
512935	CBD-11-02	119	1	15	6	< 20
512936	CBD-11-02	120	2	25	< 5	< 20
512937	CBD-11-02	121	< 1	23	< 5	< 20
512938	CBD-11-02	122	2	35	< 5	< 20
512939	CBD-11-02	123	< 1	11	< 5	< 20
512940	CBD-11-02	124	2	27	6	< 20
512941	CBD-11-02	125	8	12	< 5	< 20
512942	CBD-11-02	126	10	7	< 5	< 20
512943	CBD-11-02	127	2	20	< 5	< 20
512944	CBD-11-02	128		9	< 5	< 20
512945	CBD-11-02	129	5	12	< 5	< 20
512946	CBD-11-02	130	< 1	19	< 5	< 20
512947	CBD-11-02	131			< 5	< 20
512948	CBD-11-02	132			< 5	< 20
512949	CBD-11-02	133	< 1	13	< 5	< 20
512950	CBD-11-02	134	6	25	< 5	< 20
512951	CBD-11-02	135	<1	19	< 5	< 20

Chem #	DDH#	Sample	Sc	Ве	V	Cr
512952	CBD-11-02	136	< 1	23	< 5	< 20
512953	CBD-11-02	137	< 1	27	< 5	< 20
512954	CBD-11-02	138	< 1	33	< 5	< 20
512955	CBD-11-02	139	< 1	11	< 5	< 20
512956	CBD-11-02	140	1	16	< 5	< 20
512957	CBD-11-02	141	2	18	< 5	< 20
512958	CBD-11-02	142	5	22	9	< 20
512959	CBD-11-02	143	14	26	16	< 20
512960	CBD-11-02	144	2	9	< 5	< 20
512961	CBD-11-02	145	1	6	7	< 20
512962	CBD-11-02	146	2	6	6	< 20
512963	CBD-11-02	147	3	6	6	< 20
512964	CBD-11-02	148	< 1	4	< 5	< 20
512965	CBD-11-02	149	2	18	< 5	< 20
512966	CBD-11-02	150	4	19	8	< 20
512967	CBD-11-02	151	2	16	< 5	< 20
512968	CBD-11-02	152	4	16	8	< 20
512969	CBD-11-02	153	5	13	6	< 20
512970	CBD-11-02	154	2	29	< 5	< 20
512971	CBD-11-02	155	< 1	17	6	< 20
512972	CBD-11-02	156	< 1	13	< 5	< 20
512973	CBD-11-02	157	1	13	< 5	< 20
512974	CBD-11-02	158	1	11	< 5	< 20
512975	CBD-11-02	159	3	16	< 5	< 20
512976	CBD-11-02	160	2	10	< 5	< 20
512977	CBD-11-02	161	4	12	< 5	< 20
512978	CBD-11-02	162	3	12	< 5	< 20
512979	CBD-11-02	163	5	17	< 5	< 20
512980	CBD-11-02	164	4	16	< 5	< 20
512981	CBD-11-02	165	3	15	< 5	< 20
512982	CBD-11-02	166	1	5	< 5	< 20
512983	CBD-11-02	167			< 5	< 20
512984	CBD-11-02	168			< 5	< 20
512985	CBD-11-02	169	< 1	4	< 5	< 20
512986	CBD-11-02	170	2	6	< 5	< 20
512987	CBD-11-02	171	16	24		< 20
512988	CBD-11-02	172	14	14		< 20
512989	CBD-11-02	173		12	< 5	< 20
512990	CBD-11-02	174		21	6	< 20
512991	CBD-11-02	175			< 5	< 20
512992	CBD-11-02	176	< 1		< 5	< 20
512993	CBD-11-02	177		15		< 20
512994	CBD-11-02	178		18		< 20
512995	CBD-11-02	179			< 5	< 20
512996	CBD-11-02	180			< 5	< 20
512997	CBD-11-02	181	2	7	< 5	< 20

Chem #	DDH#	Sample	Sc	Be	V	Cr
512998	CBD-11-02	182		8	< 5	30
512999	CBD-11-02	183			< 5	20
513000	CBD-11-02	184	< 1	10	< 5	20
513001	CBD-11-02	185	< 1	8	< 5	< 20
513002	CBD-11-02	186	1	9	< 5	20
513003	CBD-11-02	187	2	8	< 5	20
513004	CBD-11-02	188	2	25	< 5	< 20
513005	CBD-11-02	189	1		< 5	< 20
513006	CBD-11-02	190	< 1	16	< 5	< 20
513007	CBD-11-02	191	< 1	15	< 5	< 20
513008	CBD-11-02	192	< 1	12	< 5	< 20
513009	CBD-11-02	193	2	16	< 5	< 20
513010	CBD-11-02	194	2	14	< 5	< 20
513011	CBD-11-02	195	3	16	< 5	< 20
513012	CBD-11-02	196	4	14	< 5	< 20
513013	CBD-11-02	197	4	18	< 5	< 20
513014	CBD-11-02	198	16	15	< 5	< 20
513015	CBD-11-02	199	2	19	< 5	< 20
513016	CBD-11-02	200	< 1	10	< 5	< 20
513017	CBD-11-02	201	2	16	< 5	< 20
513018	CBD-11-02	202	< 1	14	< 5	< 20
513019	CBD-11-02	203	1	16	< 5	< 20
513020	CBD-11-02	204	< 1	14	< 5	< 20
513021	CBD-11-02	205	< 1	16	< 5	< 20
513022	CBD-11-02	206	1	16	< 5	< 20
513023	CBD-11-02	207	5	19	< 5	< 20
513024	CBD-11-02	208	< 1	22	< 5	< 20
513025	CBD-11-02	209	< 1	19	< 5	< 20
513026	CBD-11-02	210	2	17	< 5	< 20
513027	CBD-11-02	211	2	16	< 5	< 20
513028	CBD-11-02	212	1	11	< 5	< 20
513029	CBD-11-02	213	1	11	< 5	< 20
513030	CBD-11-02	214	2	12	< 5	< 20
513031	CBD-11-02	215	5	16	< 5	< 20
513032	CBD-11-02	216	1	15	< 5	< 20
513033	CBD-11-02	217	1	19	< 5	< 20
513034	CBD-11-02	218	2	16	< 5	< 20
513035	CBD-11-02	219	4	14	< 5	< 20
513036	CBD-11-02	220	< 1	16	< 5	< 20
513037	CBD-11-02	221	2	17	< 5	< 20
513038	CBD-11-02	222	4	13	< 5	< 20
513039	CBD-11-02	223	3	11	< 5	< 20
513040	CBD-11-02	224	3	11	< 5	< 20
513041	CBD-11-02	225	3	12	< 5	< 20
513042	CBD-11-02	226	2	15	< 5	< 20
513043	CBD-11-02	227	5	11	5	< 20

Chem #	DDH#	Sample	Sc	Be	V	Cr
513044	CBD-11-02	228			< 5	< 20
513045	CBD-11-02	229			< 5	< 20
513046	CBD-11-02	230			< 5	< 20
513047	CBD-11-02	231	3		< 5	< 20
513048	CBD-11-02	232	2		< 5	< 20
514381	CBD-11-02	1	12	16		< 20
514382	CBD-11-07	2			< 5	40
514383	CBD-11-07	3			< 5	70
514384	CBD-11-07		< 1		< 5	80
514385	CBD-11-07	5	11	19	10	40
514386	CBD-11-07	6		_	< 5	< 20
514387	CBD-11-07	7	14		< 5	< 20
514388	CBD-11-07	8	14		< 5	< 20
514389	CBD-11-07	9			< 5	< 20
					< 5	
514390	CBD-11-07	10			_	< 20
514391	CBD-11-07	11			< 5	< 20
514392	CBD-11-07	12		20		< 20
514393	CBD-11-07	13			< 5	< 20
514394	CBD-11-07	14	7		< 5	< 20
514395	CBD-11-07	15	11		< 5	< 20
514396	CBD-11-07	16			< 5	< 20
514397	CBD-11-07	17	10	8	7	< 20
514398	CBD-11-07	18		7		< 20
514399	CBD-11-07	19			< 5	< 20
514400	CBD-11-07	20	13		< 5	< 20
514401	CBD-11-07	21	6		< 5	< 20
514402	CBD-11-07	22	11		< 5	< 20
514403	CBD-11-07	23			< 5	< 20
514404	CBD-11-07	24			< 5	< 20
514405	CBD-11-07	25			< 5	< 20
514406	CBD-11-07	26			< 5	< 20
514407	CBD-11-07	27	8		< 5	< 20
514408	CBD-11-07	28			< 5	< 20
514409	CBD-11-07	29			< 5	< 20
514410	CBD-11-07	30			< 5	< 20
514411	CBD-11-07	31			< 5	< 20
514412	CBD-11-07	32			< 5	< 20
514413	CBD-11-07	33	< 1		< 5	< 20
514414	CBD-11-07		< 1		< 5	< 20
514415	CBD-11-07		< 1		< 5	< 20
514416	CBD-11-07		< 1		< 5	< 20
514417	CBD-11-07	37	< 1		< 5	< 20
514418	CBD-11-07	38			< 5	< 20
514419	CBD-11-07	39			< 5	< 20
514420	CBD-11-07	40			< 5	< 20
514421	CBD-11-07	41	1	17	< 5	< 20

Chem #	DDH#	Sample	Sc	Be	V	Cr
514422	CBD-11-07	42		12	< 5	< 20
514423	CBD-11-07	43	2	31	< 5	< 20
514424	CBD-11-07	44	1	43	< 5	< 20
514425	CBD-11-07	45	1	28	< 5	< 20
514426	CBD-11-07	46	5	17	< 5	< 20
514427	CBD-11-07	47		17	< 5	< 20
514428	CBD-11-07	48	< 1	13	< 5	< 20
514429	CBD-11-07	49	< 1		< 5	< 20
514430	CBD-11-07	50	< 1	32	< 5	< 20
514431	CBD-11-07	51	2	20	< 5	< 20
514432	CBD-11-07	52	11	8	< 5	< 20
514433	CBD-11-07	53	7	7	< 5	< 20
514434	CBD-11-07	54	8	8	< 5	< 20
514435	CBD-11-07	55	9	10	< 5	< 20
514436	CBD-11-07	56	5	10	< 5	< 20
514437	CBD-11-07	57	5	9	< 5	< 20
514438	CBD-11-07	58	6	11	< 5	< 20
514439	CBD-11-07	59	6	10	< 5	< 20
514440	CBD-11-07	60	3	17	< 5	< 20
514441	CBD-11-07	61	6	10	< 5	< 20
514442	CBD-11-07	62	6	7	< 5	< 20
514443	CBD-11-07	63	6	7	< 5	< 20
514444	CBD-11-07	64	7	6	< 5	< 20
514445	CBD-11-07	65	6	6	< 5	< 20
514446	CBD-11-07	66	5	7	< 5	< 20
514447	CBD-11-07	67	6	7	< 5	< 20
514448	CBD-11-07	68	5	10	< 5	< 20
514449	CBD-11-07	69	5	11	< 5	< 20
514450	CBD-11-07	70	6	7	< 5	< 20
514451	CBD-11-07	71	6	13	< 5	< 20
514452	CBD-11-07	72	6	9	< 5	< 20
514453	CBD-11-07	73	6	11	< 5	< 20
514454	CBD-11-07	74	7	7	< 5	< 20
514455	CBD-11-07	75	7	7	< 5	< 20
514456	CBD-11-07	76	7	7	< 5	< 20
514457	CBD-11-07	77	7	8	< 5	< 20
514458	CBD-11-07	78	7	17	< 5	< 20
514459	CBD-11-07	79	7	8	< 5	< 20
514460	CBD-11-07	80	7	8	< 5	< 20
514461	CBD-11-07	81	7	7	< 5	< 20
514462	CBD-11-07	82	7		< 5	< 20
514463	CBD-11-07	83	6	8	< 5	< 20
514464	CBD-11-07	84	7	8	< 5	< 20
514465	CBD-11-07	85	7	12	< 5	< 20
514466	CBD-11-07	86	< 1	17	< 5	< 20
514467	CBD-11-07	87	4	29	< 5	< 20

Chem #	DDH#	Sample	Sc	Be	V	Cr
514468	CBD-11-07	88		11	< 5	< 20
514469	CBD-11-07	89	5		< 5	< 20
514470	CBD-11-07	90	5	12	< 5	< 20
514471	CBD-11-07	91	7	12	< 5	< 20
514472	CBD-11-07	92	6	10	< 5	< 20
514473	CBD-11-07	93		9	6	< 20
514474	CBD-11-07	94	9	10	< 5	< 20
514475	CBD-11-07	95			< 5	< 20
514476	CBD-11-07	96	7	19	< 5	< 20
514477	CBD-11-07	97	< 1	50	< 5	< 20
514478	CBD-11-07	98	9	32	56	< 20
514479	CBD-11-07	99	< 1	10	< 5	< 20
514480	CBD-11-07	100	1	18	< 5	< 20
514481	CBD-11-07	101	< 1	10	< 5	< 20
514482	CBD-11-07	102	3	12	< 5	< 20
514483	CBD-11-07	103	8	11	< 5	< 20
514484	CBD-11-07	104	7	10	< 5	< 20
514485	CBD-11-07	105	7	12	< 5	< 20
514486	CBD-11-07	106	2	16	< 5	< 20
514487	CBD-11-07	107	1	12	< 5	< 20
514488	CBD-11-07	108	2	13	< 5	< 20
514489	CBD-11-07	109	6	13	< 5	< 20
514490	CBD-11-07	110	4	15	< 5	< 20
514491	CBD-11-07	111	9	24	< 5	< 20
514492	CBD-11-07	112	< 1	15	< 5	< 20
514493	CBD-11-07	113	< 1	11	< 5	< 20
514494	CBD-11-07	114	3	21	< 5	< 20
514495	CBD-11-07	115	8	23	15	< 20
514496	CBD-11-07	116	< 1	29	< 5	< 20
514497	CBD-11-07	117	< 1	22	< 5	< 20
514498	CBD-11-07	118	< 1	33	< 5	< 20
514499	CBD-11-07	119		27	< 5	< 20
514500	CBD-11-07	120	< 1	45	< 5	< 20
514501	CBD-11-07	121	2	16	< 5	< 20
514502	CBD-11-07	122	9	14	< 5	< 20
514503	CBD-11-07	123	13	19	5	< 20
514504	CBD-11-07	124	12	20	< 5	< 20
514505	CBD-11-07	125		38	< 5	< 20
514506	CBD-11-07	126	17	124	< 5	< 20
514507	CBD-11-07	127			< 5	< 20
514508	CBD-11-07	128			< 5	< 20
514509	CBD-11-07	129	7		< 5	< 20
514510	CBD-11-07	130	8		< 5	< 20
514511	CBD-11-07	131	11		< 5	< 20
514512	CBD-11-07	132		25		< 20
514513	CBD-11-07	133	< 1	27	< 5	< 20

Chem #	DDH#	Sample	Sc	Be	V	Cr
514514	CBD-11-07	134		16	< 5	< 20
514515	CBD-11-07	135			< 5	< 20
514516	CBD-11-07	136			< 5	< 20
514517	CBD-11-07	137			< 5	< 20
514518	CBD-11-07	138			< 5	< 20
514519	CBD-11-07	139			< 5	< 20
514515	CBD-11-07	140			< 5	< 20
514521	CBD-11-07	140			< 5	< 20
514521	CBD-11-07	141			< 5	< 20
514523	CBD-11-07	143			< 5	< 20
514524	CBD-11-07	143			< 5	< 20
514525	CBD-11-07	144			< 5	< 20
514526	CBD-11-07	145			< 5	< 20
514527		146			< 5	< 20
	CBD-11-07					
514528	CBD-11-07	148			< 5	< 20
514529	CBD-11-07	149			< 5	< 20
514530	CBD-11-07	150			< 5	< 20
514531	CBD-11-07	151			< 5	< 20
514532	CBD-11-07	152			< 5	< 20
514533	CBD-11-07	153			< 5	< 20
514534	CBD-11-07	154			< 5	< 20
514535	CBD-11-07	155			< 5	< 20
514536	CBD-11-07	156			< 5	< 20
514537	CBD-11-07	157			< 5	< 20
514538	CBD-11-07	158		28		< 20
514539	CBD-11-07	159			< 5	< 20
514540	CBD-11-07	160			< 5	< 20
514541	CBD-11-07	161			< 5	< 20
514542	CBD-11-07	162			< 5	< 20
514543	CBD-11-07	163			< 5	< 20
514544	CBD-11-07	164		25	< 5	< 20
514545	CBD-11-07	165			< 5	< 20
514546	CBD-11-07	166	1	10	< 5	< 20
514547	CBD-11-07	167	2		< 5	< 20
514548	CBD-11-07	168	4	12	< 5	< 20
514549	CBD-11-07	169	< 1	16	< 5	< 20
514550	CBD-11-07	170	1	22	< 5	< 20
514551	CBD-11-07	171	< 1	21	< 5	< 20
514552	CBD-11-07	172	10	10	< 5	< 20
514553	CBD-11-07	173	3	12	< 5	< 20
514554	CBD-11-07	174	< 1	12	< 5	< 20
514555	CBD-11-07	175	4	12	< 5	< 20
514556	CBD-11-07	176	6	13	< 5	< 20
514557	CBD-11-07	177	6	16	< 5	< 20
514558	CBD-11-07	178	15		< 5	< 20
514559	CBD-11-07	179	14	10	< 5	< 20

Chem #	DDH#	Sample	Sc	Be	V	Cr
514560	CBD-11-07	180		15	< 5	< 20
514561	CBD-11-07	181			< 5	< 20
514562	CBD-11-07	182			< 5	< 20
514563	CBD-11-07	183			< 5	< 20
514564	CBD-11-07	184			< 5	< 20
514565	CBD-11-07	185			< 5	< 20
514566	CBD-11-07	186			< 5	< 20
514567	CBD-11-07	187	2		< 5	< 20
514568	CBD-11-07	188			< 5	< 20
514569	CBD-11-07	189			< 5	< 20
514570	CBD-11-07	190			< 5	< 20
514571	CBD-11-07	190			< 5	< 20
514571	CBD-11-07	191			< 5	< 20
		192			< 5	< 20
514573	CBD-11-07 CBD-11-07	193				
514574 514575		194			< 5	< 20 < 20
	CBD-11-07				< 5	
514576	CBD-11-07	196			< 5	< 20
514577	CBD-11-07	197			< 5	< 20
514578	CBD-11-07	198			< 5	< 20
514579	CBD-11-07	199		11		< 20
514580	CBD-11-07	200			< 5	< 20
514581	CBD-11-07	201			< 5	< 20
514582	CBD-11-07	202			< 5	< 20
514583	CBD-11-07	203		15		< 20
514584	CBD-11-07	204			< 5	< 20
514585	CBD-11-07	205			< 5	< 20
514586	CBD-11-07	206			< 5	< 20
514587	CBD-11-07	207			< 5	< 20
514588	CBD-11-07	208			< 5	< 20
514589	CBD-11-07	209			< 5	< 20
514590	CBD-11-07	210			< 5	< 20
514591	CBD-11-07	211	5		< 5	< 20
514592	CBD-11-07	212	2	14	< 5	< 20
514593	CBD-11-07	213			< 5	< 20
514594	CBD-11-07	214			< 5	< 20
514595	CBD-11-07	215	7		< 5	< 20
514596	CBD-11-07	216			< 5	< 20
514597	CBD-11-07	217			< 5	< 20
514598	CBD-11-07	218			< 5	< 20
514599	CBD-11-07	219		9	< 5	< 20
514600	CBD-11-07	220	1	8	< 5	< 20
514601	CBD-11-07	221	9	39		< 20
514602	CBD-11-07	222	14	18	29	< 20
514603	CBD-11-07	223	< 1	9	< 5	< 20
514604	CBD-11-07	224	< 1	14	< 5	< 20
514605	CBD-11-07	225	2	14	< 5	< 20

Chem #	DDH#	Sample	Sc	Be	V	Cr
514606	CBD-11-07	226			< 5	< 20
514607	CBD-11-07	227	2		< 5	< 20
514608	CBD-11-07	228			< 5	< 20
514609	CBD-11-07	229			< 5	< 20
514610	CBD-11-07	230		17		< 20
514611	CBD-11-07	231		13		< 20
514612	CBD-11-07	232			< 5	< 20
514613	CBD-11-07	233			< 5	< 20
514614	CBD-11-07	234			< 5	< 20
514615	CBD-11-07	235			< 5	< 20
514616	CBD-11-07	236			< 5	< 20
514617	CBD-11-07	237	2		< 5	< 20
514618	CBD-11-07	238			< 5	< 20
514619	CBD-11-07	238			< 5	< 20
514619	CBD-11-07	239			< 5	< 20
514621	CBD-11-07	240			< 5	< 20
514621	CBD-11-07	241			< 5	< 20
514623	CBD-11-07	242			< 5	< 20
514624	CBD-11-07	243			< 5	< 20
	CBD-11-07	244			< 5	< 20
514625						
514626	CBD-11-07	246 247			< 5	< 20 < 20
514627	CBD-11-07	247			< 5	< 20
514628	CBD-11-07 CBD-11-07	248			< 5 < 5	< 20
514629		250			< 5	< 20
514630	CBD-11-07	250				
514631	CBD-11-07				< 5	< 20
514632	CBD-11-07	252			< 5	< 20 < 20
514633	CBD-11-07	253		2470		_
514634	CBD-11-07	254			< 5 < 5	< 20
514635	CBD-11-07	255				< 20
514636	CBD-11-07	256			< 5	< 20
514637	CBD-11-07	257	2		< 5	< 20
514638	CBD-11-07	258			< 5	< 20
514639	CBD-11-07	259			< 5	< 20
514640	CBD-11-07	260			< 5	< 20
514641	CBD-11-07	261			< 5	< 20
514642	CBD-11-07	262		23		
514643	CBD-11-07	263			< 5	< 20
514644	CBD-11-07	264			< 5	< 20
514645	CBD-11-07	265			< 5	< 20
514646	CBD-11-07	266			< 5	< 20
514647	CBD-11-07	267	1		< 5	< 20
514648	CBD-11-07	268			< 5	< 20
514649	CBD-11-07	269			< 5	< 20
514650	CBD-11-07	270			< 5	< 20
514651	CBD-11-07	271	3	16	< 5	< 20

Chem #	DDH#	Sample	Sc	Ве	V	Cr
514652	CBD-11-07	272	3	16	< 5	< 20
514653	CBD-11-07	273	1	17	< 5	< 20
514654	CBD-11-07	274	1	16	< 5	< 20
514655	CBD-11-07	275	4	10	< 5	< 20
514656	CBD-11-07	276	< 1	15	< 5	< 20
514657	CBD-11-07	277	3	15	< 5	< 20
514658	CBD-11-07	278	4	13	< 5	< 20
514659	CBD-11-07	279	1	19	< 5	< 20
514660	CBD-11-07	280	2	14	< 5	< 20
514661	CBD-11-07	281	3	14	< 5	< 20
514662	CBD-11-07	282	2	13	< 5	< 20
514663	CBD-11-07	283	< 1	18	< 5	< 20
514664	CBD-11-07	284	2	12	< 5	< 20
514665	CBD-11-07	285	4	13	< 5	< 20
514666	CBD-11-07	286	2	11	< 5	< 20
514667	CBD-11-07	287	3	26	< 5	< 20
514668	CBD-11-07	288	< 1	8	< 5	< 20
514669	CBD-11-07	289	2	15	< 5	< 20
514670	CBD-11-07	290	2	7	< 5	< 20
514671	CBD-11-07	291	2	12	< 5	< 20
514672	CBD-11-07	292	2	9	< 5	< 20
514673	CBD-11-07	293	2	15	< 5	< 20

Chem #	DDH#	Sample	Со	Ni	Cu	Zn
104676	CBD-10-01	1	< 1	< 20	< 10	330
104677	CBD-10-01	2	< 1	< 20	10	310
104678	CBD-10-01	3	< 1	< 20	< 10	290
104679	CBD-10-01	4	< 1	< 20	< 10	310
104680	CBD-10-01	5	< 1	< 20	< 10	780
104681	CBD-10-01	6	< 1	< 20	< 10	270
104682	CBD-10-01	7	< 1	< 20	< 10	300
104683	CBD-10-01	8	< 1	< 20	< 10	290
104684	CBD-10-01	9	< 1	< 20	< 10	390
104685	CBD-10-01	10	< 1	< 20	< 10	330
104686	CBD-10-01	11	< 1	< 20	< 10	340
104687	CBD-10-01	12	< 1	< 20	10	320
104688	CBD-10-01	13	< 1	< 20	< 10	650
104689	CBD-10-01	14	< 1	< 20	10	730
104690	CBD-10-01	15	< 1	< 20	10	270
104691	CBD-10-01	16	< 1	< 20	10	260
104692	CBD-10-01	17	1	< 20	10	310
104693	CBD-10-01	18	< 1	< 20	10	1170
104694	CBD-10-01	19	< 1	< 20	< 10	880
104695	CBD-10-01	20	< 1	< 20	10	300
104696	CBD-10-01	21	< 1	< 20	10	290
104697	CBD-10-01	22	< 1	< 20	< 10	660
104698	CBD-10-01	23	1	< 20	20	370
104699	CBD-10-01	24	< 1	< 20	10	280
104700	CBD-10-01	25	< 1	< 20	10	270
104701	CBD-10-01	26	< 1	< 20	< 10	280
104702	CBD-10-01	27	< 1	< 20	10	270
104703	CBD-10-01	28	< 1	< 20	< 10	260
104704	CBD-10-01	29	< 1	< 20	10	290
104705	CBD-10-01	30	< 1	< 20	10	280
104706	CBD-10-01	31	< 1	< 20	< 10	260
104707	CBD-10-01	32	< 1	< 20	< 10	140
104708	CBD-10-01	33	< 1		< 10	270
104709	CBD-10-01	34	< 1	< 20	< 10	440
104710	CBD-10-01	35	< 1	< 20	< 10	280
104711	CBD-10-01	36	1	< 20	10	320
104712	CBD-10-01	37	< 1	< 20	< 10	260
104713	CBD-10-01	38	< 1	< 20	< 10	250
104714	CBD-10-01	39	< 1	< 20	< 10	240
104715	CBD-10-01	40	< 1	< 20	< 10	260
104716	CBD-10-01	41	< 1	< 20	< 10	250
104717	CBD-10-01	42	< 1	< 20	< 10	250
104718	CBD-10-01	43	< 1	< 20	< 10	260
104719	CBD-10-01	44	< 1	< 20	10	250
104720	CBD-10-01	45		< 20	10	260
104721	CBD-10-01	46	< 1	< 20	< 10	260

Chem #	DDH#	Sample	Co	Ni	Cu	Zn
104722	CBD-10-01	47	< 1	< 20	< 10	760
104723	CBD-10-01	48	< 1	< 20	< 10	690
104724	CBD-10-01	49	< 1	< 20	< 10	260
104725	CBD-10-01	50	< 1	< 20	< 10	250
104726	CBD-10-01	51	< 1	< 20	10	430
104727	CBD-10-01	52	< 1	< 20	< 10	210
104728	CBD-10-01	53	< 1	< 20	< 10	470
104729	CBD-10-01	54	< 1	< 20	< 10	730
104730	CBD-10-01	55	< 1	< 20	< 10	2790
104731	CBD-10-01	56	< 1	< 20	< 10	230
104732	CBD-10-01	57	< 1	< 20	< 10	940
104733	CBD-10-01	58	< 1	< 20	< 10	300
104734	CBD-10-01	59	< 1	< 20	< 10	370
104735	CBD-10-01	60	< 1	< 20	< 10	270
104736	CBD-10-01	61	< 1	< 20	< 10	280
104737	CBD-10-01	62	< 1	< 20	< 10	250
104738	CBD-10-01	63	< 1	< 20	< 10	380
104739	CBD-10-01	64	< 1	< 20	10	290
104740	CBD-10-01	65	1	< 20	10	250
104741	CBD-10-01	66	< 1	< 20	< 10	310
104742	CBD-10-01	67	< 1	< 20	< 10	430
104743	CBD-10-01	68	< 1	< 20	10	320
104744	CBD-10-01	69	< 1	< 20	< 10	520
104745	CBD-10-01	70	< 1	< 20	< 10	1600
104746	CBD-10-01	71	< 1	< 20	< 10	1040
104747	CBD-10-01	72	< 1	< 20	< 10	890
104748	CBD-10-01	73	< 1	< 20	< 10	1030
104749	CBD-10-01	74	< 1	< 20	< 10	450
104750	CBD-10-01	75	< 1	< 20	< 10	530
104751	CBD-10-01	76	< 1	< 20	< 10	280
104752	CBD-10-01	77	< 1	< 20	< 10	300
104753	CBD-10-01	78	< 1	< 20	< 10	320
104754	CBD-10-01	79			< 10	340
104755	CBD-10-01	80	6	< 20	30	1170
104756	CBD-10-01	81	6	< 20	30	550
104757	CBD-10-01	82	< 1	< 20	10	290
104758	CBD-10-01	83	< 1	< 20	< 10	450
104759	CBD-10-01	84	8	< 20	< 10	610
104760	CBD-10-01	85	< 1	< 20	< 10	420
104761	CBD-10-01	86	< 1	< 20	< 10	730
104762	CBD-10-01	87	< 1	< 20	10	1030
104763	CBD-10-01	88	< 1	< 20	< 10	780
104764	CBD-10-01	89	< 1	< 20	< 10	470
104765	CBD-10-01	90	< 1	< 20	10	390
104766	CBD-10-01	91	< 1	< 20	10	430
104767	CBD-10-01	92	< 1	< 20	< 10	260

Chem #	DDH#	Sample	Со	Ni	Cu	Zn
104768	CBD-10-01	93	< 1	< 20	< 10	280
104769	CBD-10-01	94	< 1	< 20	< 10	250
104770	CBD-10-01	95	< 1	< 20	< 10	260
104771	CBD-10-01	96	< 1	< 20	10	230
104772	CBD-10-01	97	< 1	< 20	< 10	400
104773	CBD-10-01	98	< 1	< 20	10	410
104774	CBD-10-01	99	< 1	< 20	< 10	490
104775	CBD-10-01	100	< 1	< 20	< 10	500
104776	CBD-10-01	101	< 1	< 20	< 10	510
104777	CBD-10-01	102	< 1	< 20	< 10	780
104778	CBD-10-01	103	< 1	< 20	< 10	570
104779	CBD-10-01	104	< 1	< 20	< 10	530
104780	CBD-10-01	105	< 1	< 20	10	460
104781	CBD-10-01	106	< 1	< 20	< 10	370
104782	CBD-10-01	107	< 1	< 20	< 10	400
104783	CBD-10-01	108	< 1	< 20	< 10	660
104784	CBD-10-01	109	< 1	< 20	< 10	580
104785	CBD-10-01	110	< 1	< 20	< 10	550
104786	CBD-10-01	111	< 1	< 20	< 10	280
104787	CBD-10-01	112	< 1	< 20	< 10	320
104788	CBD-10-01	113	< 1	< 20	< 10	200
104789	CBD-10-01	114	< 1	< 20	< 10	420
104790	CBD-10-01	115	< 1	< 20	< 10	750
104791	CBD-10-01	116	< 1	< 20	< 10	300
104792	CBD-10-01	117	< 1	< 20	10	430
104793	CBD-10-01	118	< 1	< 20	< 10	340
104794	CBD-10-01	119	< 1	< 20	< 10	490
104795	CBD-10-01	120	< 1	< 20	< 10	350
104796	CBD-10-01	121	< 1	< 20	< 10	320
104797	CBD-10-01	122	< 1	< 20	< 10	340
104798	CBD-10-01	123	< 1	< 20	< 10	720
104799	CBD-10-01	124	< 1	< 20	< 10	500
104800	CBD-10-01	125	< 1	< 20	10	340
416001	CBD-10-01	126	< 1	< 20	< 10	340
416002	CBD-10-01	127	< 1	< 20	10	380
416003	CBD-10-01	128	< 1	< 20	10	370
416004	CBD-10-01	129	< 1	< 20	< 10	600
416005	CBD-10-01	130	< 1	< 20	10	580
416006	CBD-10-01	131	< 1	< 20	< 10	720
416007	CBD-10-01	132	2	< 20	10	330
416008	CBD-10-01	133	< 1	< 20	< 10	560
416009	CBD-10-01	134	< 1	< 20	< 10	410
416010	CBD-10-01	135	<1	< 20	< 10	420
416011	CBD-10-01	136	<1	< 20	< 10	470
416012	CBD-10-01	137	<1	< 20	< 10	320
416013	CBD-10-01	138	< 1	< 20	< 10	280

Chem #	DDH#	Sample	Co	Ni	Cu	Zn
416014	CBD-10-01	139	< 1	< 20	< 10	280
416015	CBD-10-01	140	< 1	< 20	< 10	580
416016	CBD-10-01	141	< 1	< 20	< 10	320
416017	CBD-10-01	142	< 1	< 20	< 10	310
416018	CBD-10-01	143	< 1	< 20	< 10	400
416019	CBD-10-01	144	< 1	< 20	< 10	350
416020	CBD-10-01	145	< 1	< 20	< 10	360
416021	CBD-10-01	146	< 1	< 20	< 10	650
416022	CBD-10-01	147	< 1	< 20	< 10	510
416023	CBD-10-01	148	< 1	< 20	< 10	500
416024	CBD-10-01	149	< 1	< 20	< 10	560
416025	CBD-10-01	150	< 1	< 20	< 10	660
416026	CBD-10-01	151	< 1	< 20	< 10	2250
416027	CBD-10-01	152	< 1	< 20	< 10	2720
416028	CBD-10-01	153	< 1	< 20	< 10	1150
416029	CBD-10-01	154	< 1	< 20	< 10	1400
416030	CBD-10-01	155	< 1	< 20	< 10	2260
416031	CBD-10-01	156	< 1	< 20	< 10	680
416032	CBD-10-01	157	< 1	< 20	< 10	700
416033	CBD-10-01	158	< 1	< 20	< 10	2820
416034	CBD-10-01	159	< 1	< 20	< 10	2120
416035	CBD-10-01	160	< 1	< 20	< 10	2140
416036	CBD-10-01	161	< 1	< 20	< 10	2120
416037	CBD-10-01	162	< 1	< 20	< 10	680
416038	CBD-10-01	163	< 1	< 20	< 10	970
416039	CBD-10-01	164	< 1	< 20	< 10	1010
416040	CBD-10-01	165	2	< 20	< 10	440
416041	CBD-10-01	166	< 1	< 20	< 10	330
416042	CBD-10-01	167	1	< 20	< 10	340
416043	CBD-10-01	168	2	< 20	< 10	380
416044	CBD-10-01	169	2	< 20	< 10	590
416045	CBD-10-01	170	2	< 20	< 10	310
416046	CBD-10-01	171	< 1	< 20	< 10	310
416047	CBD-10-01	172	< 1	< 20	< 10	260
416048	CBD-10-01	173	< 1	< 20	< 10	290
416049	CBD-10-01	174		< 20	10	500
416050	CBD-10-01	175	< 1	< 20	< 10	360
416051	CBD-10-01	176	< 1	< 20	< 10	390
416052	CBD-10-01	177	< 1	< 20	< 10	2480
416053	CBD-10-01	178	< 1	< 20	< 10	6760
416054	CBD-10-01	179	< 1	< 20	< 10	2940
416055	CBD-10-01	180	<1	< 20	< 10	1910
416056	CBD-10-01	181	< 1	< 20	< 10	730
416057	CBD-10-01	182	< 1	< 20	< 10	630
416058	CBD-10-01	183	1	< 20	< 10	510
416059	CBD-10-01	184	1	< 20	< 10	330

Chem #	DDH#	Sample	Co	Ni	Cu	Zn
416060	CBD-10-01	185	1	< 20	< 10	480
416061	CBD-10-01	186	1	< 20	< 10	390
416062	CBD-10-01	187	1	< 20	< 10	440
416063	CBD-10-01	188	1	< 20	< 10	480
416064	CBD-10-01	189	1	< 20	< 10	330
416065	CBD-10-01	190	1	< 20	< 10	450
416066	CBD-10-01	191	< 1	< 20	< 10	710
416067	CBD-10-01	192	< 1	< 20	< 10	290
416068	CBD-10-01	193	< 1	< 20	< 10	110
416069	CBD-10-01	194	6	< 20	< 10	850
416070	CBD-10-01	195	8	< 20	< 10	1240
416071	CBD-10-01	196	9	< 20	< 10	1450
416072	CBD-10-01	197	4	< 20	< 10	1520
416073	CBD-10-01	198	6	< 20	< 10	1190
416074	CBD-10-01	199	1	< 20	< 10	1000
416075	CBD-10-01	200	2	< 20	< 10	470
416076	CBD-10-01	201	1	< 20	< 10	650
416077	CBD-10-01	202	1	< 20	< 10	670
416078	CBD-10-01	203	1	< 20	< 10	440
416079	CBD-10-01	204	2	< 20	< 10	450
416080	CBD-10-01	205	1	< 20	10	370
416081	CBD-10-01	206	1	< 20	< 10	420
416082	CBD-10-01	207	1	< 20	< 10	420
416083	CBD-10-01	208	2	< 20	< 10	420
416084	CBD-10-01	209	4	< 20	20	420
416085	CBD-10-01	210	1	< 20	< 10	960
416086	CBD-10-01	211	< 1	< 20	< 10	180
416087	CBD-10-01	212	1	< 20	< 10	140
416088	CBD-10-01	213	< 1	< 20	< 10	60
416089	CBD-10-01	214	< 1	< 20	< 10	140
416090	CBD-10-01	215	< 1	< 20	< 10	150
416091	CBD-10-01	216	< 1	< 20	< 10	200
416092	CBD-10-01	217	< 1	< 20	< 10	170
416093	CBD-10-01	218	< 1	< 20	< 10	100
416094	CBD-10-01	219	< 1	< 20	< 10	170
416095	CBD-10-01	220	< 1	< 20	< 10	580
416096	CBD-10-01	221	< 1	< 20	< 10	570
416097	CBD-10-01	222	< 1	< 20	< 10	570
416098	CBD-10-01	223	< 1	< 20	< 10	400
416099	CBD-10-01	224	< 1	< 20	< 10	420
416100	CBD-10-01	225	<1	< 20	< 10	450
416101	CBD-10-01	226	1	< 20	< 10	640
416102	CBD-10-01	227	<1	< 20	< 10	380
416103	CBD-10-01	228	1	< 20	10	440
416104	CBD-10-01	229	2	< 20	10	400
416105	CBD-10-01	230	1	< 20	< 10	410

Chem #	DDH#	Sample	Со	Ni	Cu	Zn
416106	CBD-10-01	231	< 1	< 20	< 10	380
416107	CBD-10-01	232	2	< 20	10	370
416108	CBD-10-01	233	2	< 20	< 10	350
416109	CBD-10-01	234	2	< 20	< 10	410
416110	CBD-10-01	235	1	< 20	10	450
416111	CBD-10-01	236	1	< 20	< 10	370
416112	CBD-10-01	237	< 1	< 20	< 10	440
416113	CBD-10-01	238	1	< 20	< 10	390
416114	CBD-10-01	239	2	< 20	10	390
416115	CBD-10-01	240	1	< 20	< 10	570
416116	CBD-10-01	241	1	< 20	10	310
416117	CBD-10-01	242	1	< 20	< 10	290
416118	CBD-10-01	243	2	< 20	< 10	400
416119	CBD-10-01	244	1	< 20	10	490
416120	CBD-10-01	245	< 1	< 20	< 10	570
416121	CBD-10-01	246	2	< 20	< 10	470
416122	CBD-10-01	247	1	< 20	10	730
416123	CBD-10-01	248	< 1	< 20	< 10	1590
416124	CBD-10-01	249	1	< 20	< 10	380
416125	CBD-10-01	250	1	< 20	10	630
416126	CBD-10-01	251	< 1	< 20	< 10	330
416127	CBD-10-01	252	1	< 20	< 10	770
416128	CBD-10-01	253	1	< 20	< 10	510
416129	CBD-10-01	254	1	< 20	10	360
416130	CBD-10-01	255	1	< 20	< 10	320
416131	CBD-10-01	256	< 1	< 20	< 10	500
416132	CBD-10-01	257	< 1	< 20	10	360
416133	CBD-10-01	258	1	< 20	< 10	570
416134	CBD-10-01	259	1	< 20	10	490
416135	CBD-10-01	260	1	< 20	< 10	480
416136	CBD-10-01	261	1	< 20	10	500
416137	CBD-10-01	262	2	< 20	10	600
416138	CBD-10-01	263		< 20	10	650
416139	CBD-10-01	264	2	< 20	10	770
416140	CBD-10-01	265	1	< 20	< 10	490
416141	CBD-10-01	266		< 20	< 10	350
416142	CBD-10-01	267	1	< 20	10	300
416143	CBD-10-01	268	2	< 20	< 10	330
416144	CBD-10-01	269	2	< 20	< 10	560
416145	CBD-10-01	270	2	< 20	170	680
416146	CBD-10-01	271	2	< 20	< 10	640
416147	CBD-10-01	272	1	< 20	< 10	520
416148	CBD-10-01	273	1	< 20	< 10	380
416149	CBD-10-01	274	1	< 20	< 10	330
416150	CBD-10-01	275	1	< 20	10	310
416151	CBD-10-01	276	2	< 20	< 10	380

Chem #	DDH#	Sample	Co	Ni	Cu	Zn
416152	CBD-10-01	277	2	< 20	< 10	430
416153	CBD-10-01	278	2	< 20	< 10	350
416154	CBD-10-01	279	2	< 20	< 10	290
512817	CBD-11-02	1	1	< 20	< 10	230
512818	CBD-11-02	2	1	< 20	10	250
512819	CBD-11-02	3	1	< 20	< 10	240
512820	CBD-11-02	4	1	< 20	< 10	240
512821	CBD-11-02	5	1	< 20	< 10	230
512822	CBD-11-02	6	1	< 20	< 10	240
512823	CBD-11-02	7	1	< 20	< 10	250
512824	CBD-11-02	8	1	< 20	< 10	230
512825	CBD-11-02	9	1	< 20	< 10	240
512826	CBD-11-02	10	1	< 20	< 10	310
512827	CBD-11-02	11	1	< 20	< 10	250
512828	CBD-11-02	12	1	< 20	< 10	270
512829	CBD-11-02	13	< 1	< 20	< 10	1550
512830	CBD-11-02	14	1	< 20	< 10	310
512831	CBD-11-02	15	1	< 20	< 10	240
512832	CBD-11-02	16	< 1	< 20	< 10	230
512833	CBD-11-02	17	1	< 20	< 10	270
512834	CBD-11-02	18	< 1	< 20	< 10	240
512835	CBD-11-02	19	< 1	< 20	< 10	620
512836	CBD-11-02	20	< 1	< 20	< 10	250
512837	CBD-11-02	21	< 1	< 20	< 10	260
512838	CBD-11-02	22	< 1	< 20	< 10	520
512839	CBD-11-02	23	1	< 20	< 10	370
512840	CBD-11-02		< 1	< 20	< 10	300
512841	CBD-11-02	25	< 1	< 20	< 10	290
512842	CBD-11-02	26	1	< 20	< 10	270
512843	CBD-11-02	27	1	< 20	< 10	280
512844	CBD-11-02	28		< 20	< 10	300
512845	CBD-11-02	29		< 20	< 10	320
512846	CBD-11-02	30		< 20	< 10	320
512847	CBD-11-02	31		< 20	< 10	450
512848	CBD-11-02	32	< 1	< 20	< 10	250
512849	CBD-11-02	33		< 20	< 10	280
512850	CBD-11-02		< 1	< 20	< 10	250
512851	CBD-11-02		< 1	< 20	< 10	260
512852	CBD-11-02	36		< 20	< 10	340
512853	CBD-11-02		< 1	< 20	< 10	410
512854	CBD-11-02	38		< 20	< 10	420
512855	CBD-11-02	39		< 20	< 10	430
512856	CBD-11-02		< 1	< 20	< 10	320
512857	CBD-11-02	41		< 20	< 10	610
512858	CBD-11-02		< 1	< 20	< 10	270
512859	CBD-11-02	43	< 1	< 20	< 10	650

Chem #	DDH#	Sample	Co	Ni	Cu	Zn
512860	CBD-11-02	44		< 20	< 10	740
512861	CBD-11-02	45		< 20	< 10	2090
512862	CBD-11-02	46		< 20	10	760
512863	CBD-11-02	47			10	290
512864	CBD-11-02		< 1	< 20	< 10	430
512865	CBD-11-02	49		< 20	< 10	280
512866	CBD-11-02	50		< 20	< 10	250
512867	CBD-11-02	51		< 20	< 10	540
512868	CBD-11-02		< 1	< 20	< 10	530
512869	CBD-11-02		< 1	< 20	< 10	910
512870	CBD-11-02		< 1	< 20	< 10	400
512870	CBD-11-02	55			< 10	400
512871	CBD-11-02		< 1	< 20	< 10	220
512872	CBD-11-02	57	< 1	< 20	< 10	230
512874	CBD-11-02	58			10	290
512875	CBD-11-02 CBD-11-02	59			< 10	390
512876	CBD-11-02 CBD-11-02	60		< 20	40	360
512877	CBD-11-02 CBD-11-02	61		< 20	< 10	620
512878	CBD-11-02	62		< 20	100	900
	CBD-11-02		< 1			
512879	CBD-11-02 CBD-11-02			< 20	< 10	730 450
512880			< 1	< 20 < 20	< 10	
512881	CBD-11-02		< 1	< 20	< 10	310
512882	CBD-11-02		< 1 < 1		< 10	240
512883	CBD-11-02			< 20	< 10	460
512884	CBD-11-02		< 1	< 20	< 10	510
512885	CBD-11-02		< 1	< 20	< 10	740
512886	CBD-11-02		< 1	< 20	< 10	600
512887	CBD-11-02	71			20	380
512888	CBD-11-02		< 1	< 20	10	400
512889	CBD-11-02		< 1	< 20	< 10	240
512890	CBD-11-02		< 1	< 20	< 10	380
512891	CBD-11-02	75		< 20	10	430
512892	CBD-11-02	76		< 20	< 10	360
512893	CBD-11-02		< 1	< 20	< 10	280
512894	CBD-11-02		< 1	< 20	< 10	350
512895	CBD-11-02	79		< 20	< 10	580
512896	CBD-11-02		< 1	< 20	< 10	710
512897	CBD-11-02		<1	< 20	< 10	290
512898	CBD-11-02	82		_	< 10	270
512899	CBD-11-02		< 1	< 20	10	270
512900	CBD-11-02		< 1	< 20	< 10	310
512901	CBD-11-02		< 1	< 20	< 10	440
512902	CBD-11-02		< 1	< 20	10	330
512903	CBD-11-02	87			< 10	340
512904	CBD-11-02		< 1	< 20	< 10	310
512905	CBD-11-02	89	< 1	< 20	< 10	530

Chem #	DDH#	Sample	Co	Ni	Cu	Zn
512906	CBD-11-02		< 1	< 20	< 10	1520
512907	CBD-11-02		< 1	< 20	< 10	1500
512908	CBD-11-02	92		< 20	< 10	970
512909	CBD-11-02		< 1	< 20	< 10	1140
512910	CBD-11-02		< 1	< 20	< 10	870
512911	CBD-11-02	95		< 20	30	630
512912	CBD-11-02		< 1	< 20	< 10	810
512913	CBD-11-02		< 1	< 20	< 10	650
512914	CBD-11-02		<1	< 20	< 10	1130
512915	CBD-11-02		< 1	< 20	< 10	770
512916	CBD-11-02	100		< 20	< 10	460
512917	CBD-11-02	100		< 20	< 10	290
512917	CBD-11-02 CBD-11-02	101		< 20	< 10	580
512918	CBD-11-02 CBD-11-02	102		< 20	10	320
512919	CBD-11-02 CBD-11-02	103		< 20	< 10	530
512920	CBD-11-02 CBD-11-02	104		< 20	< 10	250
512921	CBD-11-02 CBD-11-02	105		< 20	< 10	270
512922	CBD-11-02 CBD-11-02	100		< 20	< 10	1630
512923	CBD-11-02 CBD-11-02	107		< 20	< 10	450
	CBD-11-02 CBD-11-02	108				
512925		110		< 20	< 10	330
512926	CBD-11-02			< 20	< 10	620
512927	CBD-11-02	111 112		< 20	< 10	310
512928	CBD-11-02			< 20	< 10	380
512929	CBD-11-02	113		< 20	< 10	400
512930	CBD-11-02	114		< 20	< 10	520
512931	CBD-11-02	115		_	< 10	580
512932	CBD-11-02	116			< 10	520
512933	CBD-11-02	117		< 20 < 20	< 10	400
512934	CBD-11-02	118 119			< 10	620
512935	CBD-11-02			< 20	< 10	610
512936	CBD-11-02	120			< 10	630
512937	CBD-11-02	121		< 20	< 10	390
512938	CBD-11-02	122		< 20	< 10	600
512939	CBD-11-02	123		< 20	< 10	890
512940	CBD-11-02	124		< 20	< 10	600
512941	CBD-11-02	125		< 20	< 10	280
512942	CBD-11-02	126		< 20	< 10	240
512943	CBD-11-02	127		< 20	< 10	420
512944	CBD-11-02	128		< 20	< 10	240
512945	CBD-11-02	129		< 20	< 10	270
512946	CBD-11-02	130		< 20	< 10	400
512947	CBD-11-02	131		< 20	< 10	700
512948	CBD-11-02	132		< 20	10	270
512949	CBD-11-02	133		< 20	< 10	520
512950	CBD-11-02	134			< 10	320
512951	CBD-11-02	135	< 1	< 20	< 10	690

Chem #	DDH#	Sample	Со	Ni	Cu	Zn
512952	CBD-11-02	136	< 1	< 20	< 10	660
512953	CBD-11-02	137	< 1	< 20	< 10	720
512954	CBD-11-02	138	< 1	< 20	< 10	860
512955	CBD-11-02	139	< 1	< 20	< 10	1050
512956	CBD-11-02	140	< 1	< 20	< 10	600
512957	CBD-11-02	141	< 1	< 20	< 10	1040
512958	CBD-11-02	142	2	< 20	< 10	340
512959	CBD-11-02	143	4	< 20	< 10	330
512960	CBD-11-02	144	< 1	< 20	< 10	400
512961	CBD-11-02	145	< 1	< 20	< 10	370
512962	CBD-11-02	146	< 1	< 20	< 10	250
512963	CBD-11-02	147	< 1	< 20	< 10	150
512964	CBD-11-02	148	< 1	< 20	< 10	190
512965	CBD-11-02	149	< 1	< 20	< 10	420
512966	CBD-11-02	150	1	< 20	< 10	430
512967	CBD-11-02	151	< 1	< 20	< 10	420
512968	CBD-11-02	152	< 1	< 20	< 10	470
512969	CBD-11-02	153	1	< 20	< 10	470
512970	CBD-11-02	154		< 20	< 10	670
512971	CBD-11-02	155	< 1	< 20	< 10	1810
512972	CBD-11-02	156		< 20	< 10	2090
512973	CBD-11-02	157		< 20	< 10	2440
512974	CBD-11-02	158		< 20	< 10	1720
512975	CBD-11-02	159		< 20	< 10	1410
512976	CBD-11-02	160		< 20	< 10	710
512977	CBD-11-02	161		< 20	< 10	750
512978	CBD-11-02	162		< 20	< 10	600
512979	CBD-11-02	163		< 20	< 10	350
512980	CBD-11-02	164		< 20	< 10	340
512981	CBD-11-02	165		< 20	< 10	470
512982	CBD-11-02	166		< 20	< 10	240
512983	CBD-11-02	167		< 20	< 10	280
512984	CBD-11-02	168		< 20	< 10	370
512985	CBD-11-02	169		< 20	< 10	770
512986	CBD-11-02	170		< 20	< 10	570
512987	CBD-11-02	171		< 20	< 10	1060
512988	CBD-11-02	172		< 20	< 10	1620
512989	CBD-11-02	173		< 20	< 10	500
512990	CBD-11-02	174			< 10	530
512991	CBD-11-02	175		< 20	< 10	410
512992	CBD-11-02	176		< 20	< 10	450
512993	CBD-11-02	177		< 20	< 10	430
512994	CBD-11-02	178		< 20	< 10	620
512995	CBD-11-02	179		< 20	< 10	560
512996	CBD-11-02	180			< 10	460
512997	CBD-11-02	181	< 1	< 20	< 10	210

Chem #	DDH#	Sample	Со	Ni	Cu	Zn
512998	CBD-11-02	182	< 1	< 20	< 10	160
512999	CBD-11-02	183	< 1	< 20	< 10	140
513000	CBD-11-02	184	< 1	< 20	< 10	270
513001	CBD-11-02	185	< 1	< 20	< 10	340
513002	CBD-11-02	186	< 1	< 20	< 10	160
513003	CBD-11-02	187	< 1	< 20	< 10	150
513004	CBD-11-02	188	< 1	< 20	< 10	370
513005	CBD-11-02	189	< 1	< 20	< 10	650
513006	CBD-11-02	190	< 1	< 20	< 10	650
513007	CBD-11-02	191	< 1	< 20	< 10	510
513008	CBD-11-02	192	< 1	< 20	< 10	440
513009	CBD-11-02	193	< 1	< 20	< 10	430
513010	CBD-11-02	194	< 1	< 20	< 10	410
513011	CBD-11-02	195	< 1	< 20	< 10	350
513012	CBD-11-02	196	1	< 20	< 10	590
513013	CBD-11-02	197	1	< 20	20	360
513014	CBD-11-02	198	1	< 20	20	300
513015	CBD-11-02	199	< 1	< 20	< 10	320
513016	CBD-11-02	200	< 1	< 20	< 10	590
513017	CBD-11-02	201	< 1	< 20	< 10	300
513018	CBD-11-02	202	< 1	< 20	< 10	360
513019	CBD-11-02	203	< 1	< 20	< 10	400
513020	CBD-11-02	204	< 1	< 20	< 10	650
513021	CBD-11-02	205	< 1	< 20	< 10	400
513022	CBD-11-02	206	< 1	< 20	10	340
513023	CBD-11-02	207	< 1	< 20	< 10	440
513024	CBD-11-02	208	< 1	< 20	< 10	550
513025	CBD-11-02	209	< 1	< 20	< 10	610
513026	CBD-11-02	210	< 1	< 20	< 10	1000
513027	CBD-11-02	211	< 1	< 20	< 10	430
513028	CBD-11-02	212	< 1	< 20	< 10	290
513029	CBD-11-02	213		< 20	< 10	290
513030	CBD-11-02	214		< 20	< 10	510
513031	CBD-11-02	215	< 1	< 20	< 10	370
513032	CBD-11-02	216	< 1	< 20	< 10	570
513033	CBD-11-02	217		< 20	< 10	490
513034	CBD-11-02	218	< 1	< 20	< 10	430
513035	CBD-11-02	219	< 1	< 20	< 10	350
513036	CBD-11-02	220	< 1	< 20	< 10	590
513037	CBD-11-02	221		< 20	< 10	340
513038	CBD-11-02	222		< 20	< 10	350
513039	CBD-11-02	223		< 20	< 10	270
513040	CBD-11-02	224	< 1	< 20	< 10	270
513041	CBD-11-02	225		< 20	< 10	270
513042	CBD-11-02	226	< 1	< 20	10	490
513043	CBD-11-02	227	1	< 20	10	250

Chem #	DDH#	Sample	Co	Ni	Cu	Zn
513044	CBD-11-02	228	< 1	< 20	< 10	460
513045	CBD-11-02	229	< 1	< 20	< 10	330
513046	CBD-11-02	230	< 1	< 20	< 10	280
513047	CBD-11-02	231	< 1	< 20	< 10	280
513048	CBD-11-02	232	< 1	< 20	20	260
514381	CBD-11-07	1	2	< 20	20	370
514382	CBD-11-07	2	2	< 20	20	480
514383	CBD-11-07	3	2	< 20	10	390
514384	CBD-11-07	4	< 1	< 20	< 10	570
514385	CBD-11-07	5	2	< 20	20	400
514386	CBD-11-07	6	3	< 20	30	440
514387	CBD-11-07	7	3	< 20	30	480
514388	CBD-11-07	8	2	< 20	20	590
514389	CBD-11-07	9	2	< 20	< 10	560
514390	CBD-11-07	10	2	< 20	< 10	720
514391	CBD-11-07	11	2	< 20	10	610
514392	CBD-11-07	12	2	< 20	20	500
514393	CBD-11-07	13	2	< 20	20	380
514394	CBD-11-07	14	1	< 20	10	280
514395	CBD-11-07	15	2	< 20	10	340
514396	CBD-11-07	16	1	< 20	< 10	280
514397	CBD-11-07	17	2	< 20	10	290
514398	CBD-11-07	18	3	< 20	20	430
514399	CBD-11-07	19	4	< 20	30	540
514400	CBD-11-07	20	2	< 20	10	340
514401	CBD-11-07	21	1	< 20	< 10	180
514402	CBD-11-07	22	2	< 20	20	430
514403	CBD-11-07	23		< 20	10	420
514404	CBD-11-07	24	< 1	< 20	10	470
514405	CBD-11-07	25	2	< 20	10	310
514406	CBD-11-07	26	1	< 20	10	300
514407	CBD-11-07	27		< 20	10	290
514408	CBD-11-07	28	1	< 20	10	280
514409	CBD-11-07	29		< 20	< 10	280
514410	CBD-11-07	30		< 20	< 10	270
514411	CBD-11-07	31		< 20	< 10	260
514412	CBD-11-07	32		< 20	< 10	250
514413	CBD-11-07	33		< 20	< 10	440
514414	CBD-11-07	34		< 20	< 10	640
514415	CBD-11-07		< 1	< 20	< 10	780
514416	CBD-11-07		< 1	< 20	< 10	620
514417	CBD-11-07		< 1	< 20	< 10	650
514418	CBD-11-07	38		< 20	< 10	270
514419	CBD-11-07	39		< 20	< 10	490
514420	CBD-11-07	40		< 20	10	290
514421	CBD-11-07	41	1	< 20	< 10	570

Chem #	DDH#	Sample	Со	Ni	Cu	Zn
514422	CBD-11-07	42	1	< 20	< 10	290
514423	CBD-11-07	43	< 1	< 20	10	470
514424	CBD-11-07	44	< 1	< 20	10	410
514425	CBD-11-07	45	< 1	< 20	< 10	600
514426	CBD-11-07	46	< 1	< 20	< 10	430
514427	CBD-11-07	47	< 1	< 20	< 10	560
514428	CBD-11-07	48	< 1	< 20	< 10	820
514429	CBD-11-07	49	< 1	< 20	< 10	820
514430	CBD-11-07	50	< 1	< 20	< 10	970
514431	CBD-11-07	51	< 1	< 20	10	530
514432	CBD-11-07	52	1	< 20	20	430
514433	CBD-11-07	53	< 1	< 20	10	330
514434	CBD-11-07	54	< 1	< 20	10	300
514435	CBD-11-07	55	< 1	< 20	< 10	410
514436	CBD-11-07	56	< 1	< 20	10	350
514437	CBD-11-07	57	< 1	< 20	< 10	290
514438	CBD-11-07	58	< 1	< 20	< 10	310
514439	CBD-11-07	59	< 1	< 20	< 10	300
514440	CBD-11-07	60	< 1	< 20	20	530
514441	CBD-11-07	61	< 1	< 20	< 10	270
514442	CBD-11-07	62	< 1	< 20	< 10	240
514443	CBD-11-07	63	< 1	< 20	< 10	260
514444	CBD-11-07	64	< 1	< 20	< 10	240
514445	CBD-11-07	65	< 1	< 20	< 10	240
514446	CBD-11-07	66	< 1	< 20	< 10	240
514447	CBD-11-07	67	< 1	< 20	30	280
514448	CBD-11-07	68	< 1	< 20	< 10	390
514449	CBD-11-07	69	< 1	< 20	< 10	290
514450	CBD-11-07	70	< 1	< 20	< 10	250
514451	CBD-11-07	71	< 1	< 20	< 10	360
514452	CBD-11-07	72	< 1	< 20	< 10	270
514453	CBD-11-07	73	< 1	< 20	< 10	290
514454	CBD-11-07	74	< 1	< 20	< 10	270
514455	CBD-11-07	75	< 1	< 20	< 10	260
514456	CBD-11-07	76	< 1	< 20	< 10	270
514457	CBD-11-07	77	< 1	< 20	< 10	270
514458	CBD-11-07	78	< 1	< 20	< 10	290
514459	CBD-11-07	79	< 1	< 20	< 10	320
514460	CBD-11-07	80	< 1	< 20	< 10	300
514461	CBD-11-07	81	< 1	< 20	< 10	290
514462	CBD-11-07	82	< 1	< 20	< 10	250
514463	CBD-11-07	83	< 1	< 20	< 10	300
514464	CBD-11-07	84	3	< 20	20	290
514465	CBD-11-07	85	3	< 20	20	290
514466	CBD-11-07	86	2	< 20	20	640
514467	CBD-11-07	87	2	< 20	20	500

Chem #	DDH#	Sample	Co	Ni	Cu	Zn
514468	CBD-11-07	88		< 20	20	300
514469	CBD-11-07	89		< 20	20	390
514470	CBD-11-07	90	2		20	370
514471	CBD-11-07	91	2		30	410
514472	CBD-11-07	92		< 20	20	320
514473	CBD-11-07	93		< 20	20	360
514474	CBD-11-07	94		< 20	20	330
514475	CBD-11-07	95		< 20	20	350
514476	CBD-11-07	96	2		20	350
514477	CBD-11-07	97	2		20	3350
514478	CBD-11-07	98		< 20	20	1560
514479	CBD-11-07	99		< 20	20	600
514480	CBD-11-07	100		< 20	20	440
514481	CBD-11-07	100		< 20	30	660
514482	CBD-11-07	101	2	< 20	20	360
514483	CBD-11-07	102			20	290
514484	CBD-11-07	103		< 20	30	310
514485	CBD-11-07	104		< 20	20	300
514486	CBD-11-07	105		< 20	20	420
514487	CBD-11-07	100	2		20	630
514488						
	CBD-11-07	108			30	320
514489	CBD-11-07	109			30 20	370
514490 514491	CBD-11-07 CBD-11-07	110 111		< 20 < 20	20	360 450
514491	CBD-11-07	111		< 20	20	470
			2			_
514493	CBD-11-07	113			20	410
514494 514495	CBD-11-07	114 115		< 20 < 20	20 30	430 540
514496	CBD-11-07 CBD-11-07	116		< 20	20	630
514496	CBD-11-07	117		< 20	20	910
514498	CBD-11-07	117		< 20	20	870
			2			
514499 514500	CBD-11-07 CBD-11-07	119 120		< 20	20 20	570 560
				< 20	30	510
514501 514502	CBD-11-07	121 122		< 20	40	
	CBD-11-07				_	350
514503	CBD-11-07	123		< 20	30	380
514504	CBD-11-07	124		< 20	20	360
514505	CBD-11-07	125		< 20	20	390
514506	CBD-11-07	126		< 20	< 10	500
514507	CBD-11-07	127		< 20	< 10	410
514508	CBD-11-07	128		< 20	< 10	440
514509	CBD-11-07	129		< 20	< 10	460
514510	CBD-11-07	130		< 20	10	460
514511	CBD-11-07	131		< 20	20	490
514512	CBD-11-07	132		< 20	< 10	510
514513	CBD-11-07	133	1	< 20	< 10	820

Chem #	DDH#	Sample	Со	Ni	Cu	Zn
514514	CBD-11-07	134	1	< 20	< 10	650
514515	CBD-11-07	135	2	< 20	< 10	1170
514516	CBD-11-07	136	2	< 20	< 10	750
514517	CBD-11-07	137	1	< 20	< 10	640
514518	CBD-11-07	138	1	< 20	< 10	510
514519	CBD-11-07	139	1	< 20	< 10	930
514520	CBD-11-07	140	2	< 20	< 10	510
514521	CBD-11-07	141	2	< 20	< 10	650
514522	CBD-11-07	142	1	< 20	< 10	650
514523	CBD-11-07	143	2	< 20	< 10	620
514524	CBD-11-07	144	1	< 20	< 10	290
514525	CBD-11-07	145	2	< 20	< 10	460
514526	CBD-11-07	146	3	< 20	< 10	390
514527	CBD-11-07	147	3	< 20	< 10	360
514528	CBD-11-07	148	2	< 20	< 10	420
514529	CBD-11-07	149	1	< 20	< 10	710
514530	CBD-11-07	150	1	< 20	< 10	910
514531	CBD-11-07	151	1	< 20	< 10	770
514532	CBD-11-07	152		< 20	< 10	790
514533	CBD-11-07	153	1	< 20	< 10	1070
514534	CBD-11-07	154		< 20	< 10	790
514535	CBD-11-07	155	2		< 10	770
514536	CBD-11-07	156			< 10	630
514537	CBD-11-07	157	3		< 10	460
514538	CBD-11-07	158		< 20	10	760
514539	CBD-11-07	159		< 20	< 10	1690
514540	CBD-11-07	160	2		< 10	630
514541	CBD-11-07	161			< 10	1460
514542	CBD-11-07	162			< 10	1320
514543	CBD-11-07	163		< 20	< 10	1040
514544	CBD-11-07	164		< 20	10	570
514545	CBD-11-07	165		< 20	< 10	620
514546	CBD-11-07	166		< 20	< 10	360
514547	CBD-11-07	167		< 20	< 10	260
514548	CBD-11-07	168		< 20	< 10	210
514549	CBD-11-07	169		< 20	< 10	610
514550	CBD-11-07	170		< 20	< 10	490
514551	CBD-11-07	171		< 20	< 10	510
514552	CBD-11-07	172		< 20	< 10	230
514553	CBD-11-07	173		< 20	< 10	330
514554	CBD-11-07	174		< 20	< 10	260
514555	CBD-11-07	175		< 20	< 10	310
514556	CBD-11-07	176		< 20	< 10	250
514557	CBD-11-07	177		< 20	< 10	340
514558	CBD-11-07	178		< 20	10	220
514559	CBD-11-07	179	3	< 20	< 10	210

Chem #	DDH#	Sample	Со	Ni	Cu	Zn
514560	CBD-11-07	180		< 20	< 10	430
514561	CBD-11-07	181	4	< 20	< 10	260
514562	CBD-11-07	182	3	< 20	< 10	410
514563	CBD-11-07	183	2	< 20	< 10	540
514564	CBD-11-07	184	1	< 20	< 10	890
514565	CBD-11-07	185	2	< 20	< 10	260
514566	CBD-11-07	186	2	< 20	< 10	210
514567	CBD-11-07	187	2	< 20	< 10	250
514568	CBD-11-07	188	2	< 20	< 10	570
514569	CBD-11-07	189	1	< 20	< 10	610
514570	CBD-11-07	190	1	< 20	< 10	610
514571	CBD-11-07	191	< 1	< 20	< 10	720
514572	CBD-11-07	192	2	< 20	< 10	260
514573	CBD-11-07	193	< 1	< 20	120	1040
514574	CBD-11-07	194	< 1	< 20	< 10	3030
514575	CBD-11-07	195	< 1	< 20	< 10	1150
514576	CBD-11-07	196	< 1	< 20	< 10	2060
514577	CBD-11-07	197	< 1	< 20	< 10	1970
514578	CBD-11-07	198	2	< 20	< 10	440
514579	CBD-11-07	199	2	< 20	10	2160
514580	CBD-11-07	200	2	< 20	< 10	350
514581	CBD-11-07	201	< 1	< 20	< 10	430
514582	CBD-11-07	202	2	< 20	< 10	300
514583	CBD-11-07	203	5	< 20	10	300
514584	CBD-11-07	204	< 1	< 20	< 10	1530
514585	CBD-11-07	205	2	< 20	< 10	230
514586	CBD-11-07	206	1	< 20	< 10	330
514587	CBD-11-07	207	< 1	< 20	< 10	1680
514588	CBD-11-07	208		< 20	< 10	2450
514589	CBD-11-07	209		< 20	< 10	2040
514590	CBD-11-07	210	2	< 20	< 10	640
514591	CBD-11-07	211	3		< 10	380
514592	CBD-11-07	212		< 20	< 10	450
514593	CBD-11-07	213		< 20	< 10	300
514594	CBD-11-07	214		< 20	< 10	320
514595	CBD-11-07	215		< 20	< 10	310
514596	CBD-11-07	216		< 20	< 10	330
514597	CBD-11-07	217		< 20	< 10	840
514598	CBD-11-07	218			< 10	390
514599	CBD-11-07	219		< 20	< 10	180
514600	CBD-11-07	220		< 20	< 10	250
514601	CBD-11-07	221		< 20	< 10	790
514602	CBD-11-07	222		< 20	< 10	1510
514603	CBD-11-07	223		< 20	< 10	490
514604	CBD-11-07	224		< 20	< 10	360
514605	CBD-11-07	225	3	< 20	< 10	430

Chem #	DDH#	Sample	Со	Ni	Cu	Zn
514606	CBD-11-07	226		< 20	< 10	370
514607	CBD-11-07	227	2	< 20	< 10	460
514608	CBD-11-07	228	2	< 20	< 10	250
514609	CBD-11-07	229	2	< 20	< 10	320
514610	CBD-11-07	230	9	< 20	< 10	480
514611	CBD-11-07	231	5	< 20	< 10	590
514612	CBD-11-07	232	2	< 20	< 10	510
514613	CBD-11-07	233	2	< 20	< 10	650
514614	CBD-11-07	234	< 1	< 20	< 10	600
514615	CBD-11-07	235	1	< 20	< 10	1070
514616	CBD-11-07	236	2	< 20	< 10	170
514617	CBD-11-07	237	< 1	< 20	< 10	190
514618	CBD-11-07	238	1	< 20	< 10	190
514619	CBD-11-07	239	1	< 20	< 10	270
514620	CBD-11-07	240	2	< 20	< 10	460
514621	CBD-11-07	241	2	< 20	< 10	450
514622	CBD-11-07	242	2	< 20	< 10	440
514623	CBD-11-07	243		< 20	< 10	420
514624	CBD-11-07	244	2	< 20	< 10	510
514625	CBD-11-07	245	< 1	< 20	< 10	570
514626	CBD-11-07	246		< 20	< 10	380
514627	CBD-11-07	247	2	< 20	< 10	350
514628	CBD-11-07	248		< 20	< 10	310
514629	CBD-11-07	249		< 20	< 10	380
514630	CBD-11-07	250		< 20	< 10	540
514631	CBD-11-07	251		< 20	< 10	460
514632	CBD-11-07	252			< 10	470
514633	CBD-11-07	253		< 20	< 10	610
514634	CBD-11-07	254			< 10	360
514635	CBD-11-07	255		< 20	< 10	360
514636	CBD-11-07	256		< 20	< 10	310
514637	CBD-11-07	257		< 20	< 10	280
514638	CBD-11-07	258		< 20	< 10	470
514639	CBD-11-07	259		< 20	< 10	380
514640	CBD-11-07	260		_	< 10	300
514641	CBD-11-07	261		< 20	10	260
514642	CBD-11-07	262		< 20	10	340
514643	CBD-11-07	263		< 20	< 10	390
514644	CBD-11-07	264			< 10	1080
514645	CBD-11-07	265		< 20	< 10	470
514646	CBD-11-07	266		< 20	10	330
514647	CBD-11-07	267		< 20	< 10	350
514648	CBD-11-07	268		< 20	< 10	290
514649	CBD-11-07	269		< 20	< 10	760
514650	CBD-11-07	270		< 20	< 10	380
514651	CBD-11-07	271	< 1	< 20	< 10	350

Chem #	DDH#	Sample	Co	Ni	Cu	Zn
514652	CBD-11-07	272	< 1	< 20	< 10	340
514653	CBD-11-07	273	< 1	< 20	< 10	360
514654	CBD-11-07	274	< 1	< 20	< 10	340
514655	CBD-11-07	275	< 1	< 20	10	240
514656	CBD-11-07	276	< 1	< 20	10	560
514657	CBD-11-07	277	< 1	< 20	< 10	390
514658	CBD-11-07	278	< 1	< 20	< 10	560
514659	CBD-11-07	279	1	< 20	10	730
514660	CBD-11-07	280	< 1	< 20	< 10	510
514661	CBD-11-07	281	< 1	< 20	< 10	380
514662	CBD-11-07	282	< 1	< 20	< 10	370
514663	CBD-11-07	283	1	< 20	< 10	580
514664	CBD-11-07	284	< 1	< 20	< 10	330
514665	CBD-11-07	285	< 1	< 20	< 10	770
514666	CBD-11-07	286	< 1	< 20	< 10	290
514667	CBD-11-07	287	< 1	< 20	< 10	310
514668	CBD-11-07	288	< 1	< 20	< 10	490
514669	CBD-11-07	289	1	< 20	10	300
514670	CBD-11-07	290	< 1	< 20	< 10	90
514671	CBD-11-07	291	1	< 20	< 10	40
514672	CBD-11-07	292	1	< 20	< 10	50
514673	CBD-11-07	293	2	< 20	< 10	270

Chem #	DDH#	Sample	Ga	Ge	As	Rb
104676	CBD-10-01	1	44	4	< 5	144
104677	CBD-10-01	2	43	4	< 5	161
104678	CBD-10-01	3	42	4	< 5	183
104679	CBD-10-01	4	44	4	< 5	246
104680	CBD-10-01	5	86	7	30	192
104681	CBD-10-01	6	46	4	< 5	202
104682	CBD-10-01	7	42	4	< 5	146
104683	CBD-10-01	8	44	4	< 5	160
104684	CBD-10-01	9	46	5	< 5	196
104685	CBD-10-01	10	47	4	< 5	183
104686	CBD-10-01	11	47	5	< 5	187
104687	CBD-10-01	12	43	4	< 5	210
104688	CBD-10-01	13	63	5	39	230
104689	CBD-10-01	14	69	5	22	136
104690	CBD-10-01	15	42	4	< 5	147
104691	CBD-10-01	16	42	4	< 5	134
104692	CBD-10-01	17	41	4	< 5	150
104693	CBD-10-01	18	64	6	9	153
104694	CBD-10-01	19	75	9	22	188
104695	CBD-10-01	20	44	4	< 5	171
104696	CBD-10-01	21	44	4	< 5	197
104697	CBD-10-01	22	68	6	16	195
104698	CBD-10-01	23	45	5	< 5	173
104699	CBD-10-01	24	40	4	< 5	152
104700	CBD-10-01	25	39	4	< 5	136
104701	CBD-10-01	26	40	4	< 5	134
104702	CBD-10-01	27	40	4	< 5	139
104703	CBD-10-01	28	41	4	< 5	133
104704	CBD-10-01	29	42	4	< 5	138
104705	CBD-10-01	30	41	4	< 5	134
104706	CBD-10-01	31	42	4	< 5	136
104707	CBD-10-01	32	23	2	< 5	98
104708	CBD-10-01	33	41	4	< 5	129
104709	CBD-10-01	34	46	5	9	150
104710	CBD-10-01	35	39	4	< 5	148
104711	CBD-10-01	36	48	4	< 5	136
104712	CBD-10-01	37	40	4	< 5	127
104713	CBD-10-01	38	40	4	< 5	131
104714	CBD-10-01	39	39	3	< 5	123
104715	CBD-10-01	40	40	4	< 5	126
104716	CBD-10-01	41	40	3	< 5	124
104717	CBD-10-01	42	40	3	< 5	126
104718	CBD-10-01	43	41	4	< 5	128
104719	CBD-10-01	44	41	4	< 5	128
104720	CBD-10-01	45	40	4	< 5	130
104721	CBD-10-01	46	40	4	< 5	131

Chem #	DDH#	Sample	Ga	Ge	As	Rb
104722	CBD-10-01	47	48	4	< 5	182
104723	CBD-10-01	48	51	5	6	179
104724	CBD-10-01	49	37	3	< 5	155
104725	CBD-10-01	50	37	3	< 5	136
104726	CBD-10-01	51	36	3	< 5	165
104727	CBD-10-01	52	37	3	< 5	208
104728	CBD-10-01	53	56	3	24	197
104729	CBD-10-01	54	54	3	15	225
104730	CBD-10-01	55	70	6	15	160
104731	CBD-10-01	56	35	3	< 5	274
104732	CBD-10-01	57	54	4	14	199
104733	CBD-10-01	58	44	3	8	186
104734	CBD-10-01	59	45	4	6	176
104735	CBD-10-01	60	41	3	< 5	207
104736	CBD-10-01	61	39	3	< 5	159
104737	CBD-10-01	62	35	3	< 5	156
104738	CBD-10-01	63	42	3	< 5	161
104739	CBD-10-01	64	37	4	< 5	141
104740	CBD-10-01	65	31	3	< 5	142
104741	CBD-10-01	66	38	4	< 5	194
104742	CBD-10-01	67	60	3	< 5	121
104743	CBD-10-01	68	39	3	7	310
104744	CBD-10-01	69	49	3	7	142
104745	CBD-10-01	70	51	4	9	200
104746	CBD-10-01	71	42	4	10	158
104747	CBD-10-01	72	38	4	6	203
104748	CBD-10-01	73	49	3	10	215
104749	CBD-10-01	74	38	3	5	198
104750	CBD-10-01	75	45	3	21	161
104751	CBD-10-01	76	35	3	< 5	146
104752	CBD-10-01	77	36	3	< 5	146
104753	CBD-10-01	78	35	3	< 5	198
104754	CBD-10-01	79	35	3	< 5	237
104755	CBD-10-01	80	46	3	< 5	137
104756	CBD-10-01	81	41	3	6	131
104757	CBD-10-01	82	34	3	< 5	243
104758	CBD-10-01	83	53	3	18	118
104759	CBD-10-01	84	36	2	< 5	294
104760	CBD-10-01	85	52	3	25	264
104761	CBD-10-01	86	57	3		265
104762	CBD-10-01	87	51	4	32	210
104763	CBD-10-01	88	60	4	28	227
104764	CBD-10-01	89	43	3	29	181
104765	CBD-10-01	90	58	3	16	131
104766	CBD-10-01	91	59	3		154
104767	CBD-10-01	92	38	3	< 5	298

Chem #	DDH#	Sample	Ga	Ge	As	Rb
104768	CBD-10-01	93	45	3	9	206
104769	CBD-10-01	94	35	3	< 5	181
104770	CBD-10-01	95	37	3	< 5	160
104771	CBD-10-01	96	33	3	< 5	159
104772	CBD-10-01	97	55	4	< 5	209
104773	CBD-10-01	98	72	3	20	91
104774	CBD-10-01	99	63	3	26	175
104775	CBD-10-01	100	51	3	< 5	215
104776	CBD-10-01	101	67	3	28	194
104777	CBD-10-01	102	66	2	31	108
104778	CBD-10-01	103	63	3	77	125
104779	CBD-10-01	104	69	3	29	150
104780	CBD-10-01	105	62	3	21	211
104781	CBD-10-01	106	64	3	7	185
104782	CBD-10-01	107	73	3	38	190
104783	CBD-10-01	108	57	4	37	203
104784	CBD-10-01	109	66	3	37	169
104785	CBD-10-01	110	58	4	10	204
104786	CBD-10-01	111	38	3	< 5	280
104787	CBD-10-01	112	37	3	< 5	356
104788	CBD-10-01	113	66	2	22	74
104789	CBD-10-01	114	31	4	8	437
104790	CBD-10-01	115	70	3	31	57
104791	CBD-10-01	116	49	3	< 5	300
104792	CBD-10-01	117	59	4	< 5	198
104793	CBD-10-01	118	41	3	< 5	283
104794	CBD-10-01	119	59	3	22	100
104795	CBD-10-01	120	41	3	< 5	291
104796	CBD-10-01	121	56	3	20	223
104797	CBD-10-01	122	36	3	< 5	298
104798	CBD-10-01	123	65	4	20	101
104799	CBD-10-01	124	60	4	17	175
104800	CBD-10-01	125	44	3	< 5	297
416001	CBD-10-01	126	43	4	< 5	188
416002	CBD-10-01	127	44	5	7	186
416003	CBD-10-01	128		4	< 5	278
416004	CBD-10-01	129	64	4	7	243
416005	CBD-10-01	130	63	4	10	205
416006	CBD-10-01	131	64	5	10	265
416007	CBD-10-01	132	34	3	< 5	172
416008	CBD-10-01	133	54	4	6	227
416009	CBD-10-01	134	55	3	< 5	269
416010	CBD-10-01	135	43	3	< 5	215
416011	CBD-10-01	136	53	4	6	192
416012	CBD-10-01	137	51	4	< 5	222
416013	CBD-10-01	138	51	4	< 5	216

Chem #	DDH#	Sample	Ga	Ge	As	Rb
416014	CBD-10-01	139	49	3	< 5	228
416015	CBD-10-01	140	58	4	10	197
416016	CBD-10-01	141	53	3	< 5	202
416017	CBD-10-01	142	48	3	< 5	226
416018	CBD-10-01	143	54	3	8	226
416019	CBD-10-01	144	43	3	< 5	295
416020	CBD-10-01	145	50	4	< 5	224
416021	CBD-10-01	146	64	4	7	222
416022	CBD-10-01	147	60	3	< 5	229
416023	CBD-10-01	148	61	3	35	310
416024	CBD-10-01	149	63	4	10	235
416025	CBD-10-01	150	72	3	12	300
416026	CBD-10-01	151	77	5	13	448
416027	CBD-10-01	152	81	8	22	457
416028	CBD-10-01	153	76	3	8	307
416029	CBD-10-01	154	75	4	10	408
416030	CBD-10-01	155	75	6	15	369
416031	CBD-10-01	156	70	3	8	407
416032	CBD-10-01	157	70	3	7	359
416033	CBD-10-01	158	74	5	15	335
416034	CBD-10-01	159	84	5	12	312
416035	CBD-10-01	160	79	4	11	354
416036	CBD-10-01	161	88	5	14	243
416037	CBD-10-01	162	60	3	6	279
416038	CBD-10-01	163	72	4	10	228
416039	CBD-10-01	164	78	4	10	222
416040	CBD-10-01	165	49	4	< 5	232
416041	CBD-10-01	166	52	3	< 5	253
416042	CBD-10-01	167	52	4	9	232
416043	CBD-10-01	168	50	4	8	208
416044	CBD-10-01	169	53	4	10	202
416045	CBD-10-01	170	43	4	< 5	207
416046	CBD-10-01	171	48	4	< 5	237
416047	CBD-10-01	172	55	3	< 5	248
416048	CBD-10-01	173	48	4	< 5	229
416049	CBD-10-01	174		4	< 5	226
416050	CBD-10-01	175		3	< 5	245
416051	CBD-10-01	176		4	< 5	240
416052	CBD-10-01	177	72	5	10	263
416053	CBD-10-01	178	81	8	17	279
416054	CBD-10-01	179	82	7	15	341
416055	CBD-10-01	180	74	5	11	255
416056	CBD-10-01	181	67	4	7	153
416057	CBD-10-01	182	66	4	8	144
416058	CBD-10-01	183	70	4	9	186
416059	CBD-10-01	184	61	4	< 5	407

Chem #	DDH#	Sample	Ga	Ge	As	Rb
416060	CBD-10-01	185	66	4	13	181
416061	CBD-10-01	186	59	4	< 5	125
416062	CBD-10-01	187	58	5	< 5	296
416063	CBD-10-01	188	59	3	< 5	185
416064	CBD-10-01	189	55	4	< 5	245
416065	CBD-10-01	190	79	5	13	121
416066	CBD-10-01	191	63	5	7	170
416067	CBD-10-01	192	63	2	< 5	186
416068	CBD-10-01	193	50	< 1	< 5	320
416069	CBD-10-01	194	54	4	5	153
416070	CBD-10-01	195	57	5	6	145
416071	CBD-10-01	196	63	5	5	167
416072	CBD-10-01	197	79	6	10	174
416073	CBD-10-01	198	68	6	9	220
416074	CBD-10-01	199	73	5	9	243
416075	CBD-10-01	200	59	5	6	227
416076	CBD-10-01	201	68	5	12	167
416077	CBD-10-01	202	57	4	< 5	254
416078	CBD-10-01	203	59	4	< 5	200
416079	CBD-10-01	204	46	3	< 5	260
416080	CBD-10-01	205	51	3	< 5	244
416081	CBD-10-01	206	61	4	5	258
416082	CBD-10-01	207	57	4	< 5	254
416083	CBD-10-01	208	49	3	< 5	234
416084	CBD-10-01	209	46	3	< 5	191
416085	CBD-10-01	210	76	5	7	198
416086	CBD-10-01	211	47	1	< 5	298
416087	CBD-10-01	212	47	1	< 5	230
416088	CBD-10-01	213	32	< 1	< 5	258
416089	CBD-10-01	214	30	2	< 5	237
416090	CBD-10-01	215	33	2	< 5	222
416091	CBD-10-01	216	45	2	< 5	248
416092	CBD-10-01	217	35	2	< 5	229
416093	CBD-10-01	218	37	1	< 5	240
416094	CBD-10-01	219	43	2	< 5	281
416095	CBD-10-01	220	55	4	< 5	246
416096	CBD-10-01	221	64	4	< 5	227
416097	CBD-10-01	222	65	4	< 5	188
416098	CBD-10-01	223	61	4	< 5	239
416099	CBD-10-01	224	68	6	25	209
416100	CBD-10-01	225	63	4	< 5	246
416101	CBD-10-01	226	64	5	< 5	215
416102	CBD-10-01	227	55	4	< 5	244
416103	CBD-10-01	228	53	5	< 5	169
416104	CBD-10-01	229	48	5		186
416105	CBD-10-01	230	51	4	6	192

Chem #	DDH#	Sample	Ga	Ge	As	Rb
416106	CBD-10-01	231	54	4	6	203
416107	CBD-10-01	232	35	4	< 5	194
416108	CBD-10-01	233	35	4	< 5	211
416109	CBD-10-01	234	36	4	< 5	205
416110	CBD-10-01	235	54	4	6	237
416111	CBD-10-01	236	54	4	< 5	240
416112	CBD-10-01	237	55	4	5	258
416113	CBD-10-01	238	51	4	6	240
416114	CBD-10-01	239	54	5	18	236
416115	CBD-10-01	240	60	4	10	103
416116	CBD-10-01	241	52	4	6	235
416117	CBD-10-01	242	50	4	5	244
416118	CBD-10-01	243	40	5	7	241
416119	CBD-10-01	244	55	4	6	180
416120	CBD-10-01	245	61	4	6	170
416121	CBD-10-01	246	42	5	7	262
416122	CBD-10-01	247	64	4	9	134
416123	CBD-10-01	248	69	5	11	220
416124	CBD-10-01	249	55	5	8	270
416125	CBD-10-01	250	62	4	8	177
416126	CBD-10-01	251	57	5	12	298
416127	CBD-10-01	252	66	5	10	148
416128	CBD-10-01	253	52	4	7	251
416129	CBD-10-01	254	50	4	8	214
416130	CBD-10-01	255	51	4	7	212
416131	CBD-10-01	256	52	5	7	220
416132	CBD-10-01	257	51	4	6	227
416133	CBD-10-01	258	59	4	7	164
416134	CBD-10-01	259	52	4	9	173
416135	CBD-10-01	260	53	4	7	219
416136	CBD-10-01	261	52	4	7	220
416137	CBD-10-01	262	60	5	10	168
416138	CBD-10-01	263	58	4	8	156
416139	CBD-10-01	264		5		150
416140	CBD-10-01	265	52	5		222
416141	CBD-10-01	266		4	6	222
416142	CBD-10-01	267	43	4	5	213
416143	CBD-10-01	268		4	5	207
416144	CBD-10-01	269	57	5	7	163
416145	CBD-10-01	270	57	4	8	179
416146	CBD-10-01	271	51	4	7	190
416147	CBD-10-01	272	47	4	5	198
416148	CBD-10-01	273		4	< 5	181
416149	CBD-10-01	274	46	5	6	175
416150	CBD-10-01	275	49	5		171
416151	CBD-10-01	276	44	5	7	172

Chem #	DDH#	Sample	Ga	Ge	As	Rb
416152	CBD-10-01	277	44	5	9	189
416153	CBD-10-01	278	44	5	6	161
416154	CBD-10-01	279	45	4	6	173
512817	CBD-11-02	1	31	2	< 5	119
512818	CBD-11-02	2	32	3	< 5	116
512819	CBD-11-02	3	31	2	< 5	121
512820	CBD-11-02	4	32	2	< 5	110
512821	CBD-11-02	5	31	2	< 5	107
512822	CBD-11-02	6	32	2	< 5	120
512823	CBD-11-02	7	32	2	< 5	120
512824	CBD-11-02	8	31	2	< 5	120
512825	CBD-11-02	9	31	2	< 5	114
512826	CBD-11-02	10	31	2	< 5	117
512827	CBD-11-02	11	31	2	< 5	125
512828	CBD-11-02	12	31	2	< 5	150
512829	CBD-11-02	13	54	4	27	83
512830	CBD-11-02	14	37	3	< 5	151
512831	CBD-11-02	15	33	3	< 5	123
512832	CBD-11-02	16	35	2	< 5	139
512833	CBD-11-02	17	37	3	< 5	163
512834	CBD-11-02	18	35	2	< 5	173
512835	CBD-11-02	19	50	3	14	153
512836	CBD-11-02	20	39	3	< 5	185
512837	CBD-11-02	21	39	3	< 5	189
512838	CBD-11-02	22	61	4	16	163
512839	CBD-11-02	23	47	3	15	208
512840	CBD-11-02	24	40		< 5	186
512841	CBD-11-02	25	37		< 5	178
512842	CBD-11-02	26	37		< 5	156
512843	CBD-11-02	27	36		< 5	171
512844	CBD-11-02	28	36	3	< 5	138
512845	CBD-11-02	29	37		< 5	157
512846	CBD-11-02	30	43	3	7	188
512847	CBD-11-02	31	49	3		186
512848	CBD-11-02	32	37		< 5	183
512849	CBD-11-02	33	38	3		162
512850	CBD-11-02	34	37		< 5	172
512851	CBD-11-02	35	38	3	5	185
512852	CBD-11-02	36	42	3	6	190
512853	CBD-11-02	37	51	3		190
512854	CBD-11-02	38	47	4		185
512855	CBD-11-02	39	42	3		160
512856	CBD-11-02	40	42		< 5	222
512857	CBD-11-02	41	44	4	10	159
512858	CBD-11-02	42	40		< 5	233
512859	CBD-11-02	43	55	4	14	125

Chem #	DDH#	Sample	Ga	Ge	As	Rb
512860	CBD-11-02	44	64	6	18	138
512861	CBD-11-02	45	68	4	10	191
512862	CBD-11-02	46	55	3	15	99
512863	CBD-11-02	47	34	4	6	224
512864	CBD-11-02	48	46	3	36	148
512865	CBD-11-02	49	42	4	17	170
512866	CBD-11-02	50	36	3	< 5	295
512867	CBD-11-02	51	67	3	72	93
512868	CBD-11-02	52	67	3	89	151
512869	CBD-11-02	53	68	3	62	154
512870	CBD-11-02	54	59	3	39	50
512871	CBD-11-02	55	35	4	17	269
512872	CBD-11-02	56	37	3	< 5	204
512873	CBD-11-02	57	35	3	< 5	168
512874	CBD-11-02	58	36	3	< 5	172
512875	CBD-11-02	59	39	3	14	263
512876	CBD-11-02	60	56	3	50	148
512877	CBD-11-02	61	49	4	15	208
512878	CBD-11-02	62	64	4	29	217
512879	CBD-11-02	63	59	4	30	189
512880	CBD-11-02	64	54	3	32	198
512881	CBD-11-02	65	35	3	< 5	299
512882	CBD-11-02	66	37	3	< 5	210
512883	CBD-11-02	67	58	4	13	205
512884	CBD-11-02	68	56	3	18	176
512885	CBD-11-02	69	55	4	65	184
512886	CBD-11-02	70	59	3	47	164
512887	CBD-11-02	71	37	4	7	246
512888	CBD-11-02	72	52	3	15	110
512889	CBD-11-02	73	48	3	21	140
512890	CBD-11-02	74	44	3	15	204
512891	CBD-11-02	75	38		< 5	226
512892	CBD-11-02	76	49	4	30	182
512893	CBD-11-02	77	40		< 5	233
512894	CBD-11-02	78	41		< 5	190
512895	CBD-11-02	79	47	4		165
512896	CBD-11-02	80	45	3		241
512897	CBD-11-02	81	38		< 5	178
512898	CBD-11-02	82	36		< 5	143
512899	CBD-11-02	83	36		< 5	134
512900	CBD-11-02	84	38		< 5	141
512901	CBD-11-02	85	44	3		187
512902	CBD-11-02	86	39		< 5	173
512903	CBD-11-02	87	39	3		176
512904	CBD-11-02	88	40		< 5	224
512905	CBD-11-02	89	49	4	< 5	209

Chem #	DDH#	Sample	Ga	Ge	As	Rb
512906	CBD-11-02	90	66	6	10	83
512907	CBD-11-02	91	83	6	13	89
512908	CBD-11-02	92	65	6	14	85
512909	CBD-11-02	93	62	6	8	118
512910	CBD-11-02	94	70	5	24	92
512911	CBD-11-02	95	74	5	17	71
512912	CBD-11-02	96	62	4	9	165
512913	CBD-11-02	97	52	3	8	330
512914	CBD-11-02	98	77	5	13	251
512915	CBD-11-02	99	68	4	17	164
512916	CBD-11-02	100	55	4	< 5	246
512917	CBD-11-02	101	42	3	< 5	215
512918	CBD-11-02	102	53	3	5	185
512919	CBD-11-02	103	49	3	< 5	234
512920	CBD-11-02	104	50	4	< 5	186
512921	CBD-11-02	105	42	3	< 5	221
512922	CBD-11-02	106	41	3	< 5	196
512923	CBD-11-02	107	67	7	13	125
512924	CBD-11-02	108	51	4	6	213
512925	CBD-11-02	109	47	4	< 5	229
512926	CBD-11-02	110	65	4	12	213
512927	CBD-11-02	111	51	3	< 5	244
512928	CBD-11-02	112	56	3	< 5	278
512929	CBD-11-02	113	54	3	< 5	321
512930	CBD-11-02	114	51	3	< 5	254
512931	CBD-11-02	115	47		< 5	189
512932	CBD-11-02	116	50	3	6	277
512933	CBD-11-02	117	51		< 5	234
512934	CBD-11-02	118	52		< 5	207
512935	CBD-11-02	119	66	3	14	168
512936	CBD-11-02	120	53	3	< 5	225
512937	CBD-11-02	121	75	4	18	285
512938	CBD-11-02	122	58		< 5	228
512939	CBD-11-02	123		3		133
512940	CBD-11-02	124	55		< 5	181
512941	CBD-11-02	125			< 5	188
512942	CBD-11-02	126			< 5	144
512943	CBD-11-02	127	49	4		151
512944	CBD-11-02	128	38		< 5	178
512945	CBD-11-02	129	41		< 5	223
512946	CBD-11-02	130		3		355
512947	CBD-11-02	131	65	4		190
512948	CBD-11-02	132			< 5	265
512949	CBD-11-02	133	60	4	9	166
512950	CBD-11-02	134	39		< 5	244
512951	CBD-11-02	135	67	3	16	234

Chem #	DDH#	Sample	Ga	Ge	As	Rb
512952	CBD-11-02	136	66	3	10	313
512953	CBD-11-02	137	68	3	11	234
512954	CBD-11-02	138	68	4	12	202
512955	CBD-11-02	139	69	4	11	182
512956	CBD-11-02	140	50	4	10	236
512957	CBD-11-02	141	61	4	7	197
512958	CBD-11-02	142	43	4	< 5	220
512959	CBD-11-02	143	36	4	11	220
512960	CBD-11-02	144	55	3	9	142
512961	CBD-11-02	145	57	3	< 5	148
512962	CBD-11-02	146	41	2	< 5	302
512963	CBD-11-02	147	41	1	< 5	358
512964	CBD-11-02	148	47	2	< 5	278
512965	CBD-11-02	149	53	3	< 5	234
512966	CBD-11-02	150	57	3	8	165
512967	CBD-11-02	151	60	3	13	165
512968	CBD-11-02	152	58	3	< 5	173
512969	CBD-11-02	153	52	3	< 5	225
512970	CBD-11-02	154	64	4	7	255
512971	CBD-11-02	155	77	6	12	229
512972	CBD-11-02	156	85	7	14	161
512973	CBD-11-02	157	83	6	12	228
512974	CBD-11-02	158	80	6	13	247
512975	CBD-11-02	159	74	5	11	207
512976	CBD-11-02	160	64	4	7	151
512977	CBD-11-02	161	60	4	8	206
512978	CBD-11-02	162	65	4	10	185
512979	CBD-11-02	163	44		< 5	214
512980	CBD-11-02	164	45		< 5	190
512981	CBD-11-02	165	51	3	8	175
512982	CBD-11-02	166	46	1	< 5	293
512983	CBD-11-02	167	54		< 5	205
512984	CBD-11-02	168	50		< 5	237
512985	CBD-11-02	169		4		210
512986	CBD-11-02	170	50	4	9	197
512987	CBD-11-02	171			< 5	173
512988	CBD-11-02	172			< 5	144
512989	CBD-11-02	173		•	< 5	245
512990	CBD-11-02	174	55	4	13	214
512991	CBD-11-02	175	48	4	9	257
512992	CBD-11-02	176	57	3	5	171
512993	CBD-11-02	177	40			176
512994	CBD-11-02	178	53	3	8	204
512995	CBD-11-02	179	54	4	8	164
512996	CBD-11-02	180	49	4	8	156
512997	CBD-11-02	181	40	2	< 5	229

Chem #	DDH#	Sample	Ga	Ge	As	Rb
512998	CBD-11-02	182	27	2	< 5	214
512999	CBD-11-02	183	28	2	< 5	199
513000	CBD-11-02	184	42	3	< 5	194
513001	CBD-11-02	185	43	4	< 5	163
513002	CBD-11-02	186	28	2	< 5	216
513003	CBD-11-02	187	28	2	< 5	192
513004	CBD-11-02	188	49	4	9	214
513005	CBD-11-02	189	47	4	< 5	252
513006	CBD-11-02	190	52	4	5	212
513007	CBD-11-02	191	57	4	< 5	193
513008	CBD-11-02	192	56	3	15	182
513009	CBD-11-02	193	51	3	5	244
513010	CBD-11-02	194	53	4	< 5	210
513011	CBD-11-02	195	49	3	< 5	212
513012	CBD-11-02	196	47	4	< 5	181
513013	CBD-11-02	197	43	4	< 5	177
513014	CBD-11-02	198	38	4	< 5	181
513015	CBD-11-02	199	50	4	< 5	221
513016	CBD-11-02	200	54	4	< 5	130
513017	CBD-11-02	201	45	4	< 5	222
513018	CBD-11-02	202	51	4	< 5	201
513019	CBD-11-02	203	52	4	5	206
513020	CBD-11-02	204	61	4	< 5	76
513021	CBD-11-02	205	54	4	< 5	240
513022	CBD-11-02	206	53	4	< 5	233
513023	CBD-11-02	207	50	4	< 5	279
513024	CBD-11-02	208	62	4	9	143
513025	CBD-11-02	209	61	4	7	191
513026	CBD-11-02	210	66	4	9	186
513027	CBD-11-02	211	54	4	< 5	248
513028	CBD-11-02	212	52	4	< 5	208
513029	CBD-11-02	213	50		< 5	206
513030	CBD-11-02	214	52		< 5	225
513031	CBD-11-02	215	48		< 5	217
513032	CBD-11-02	216	53	4	< 5	118
513033	CBD-11-02	217			< 5	195
513034	CBD-11-02	218		4	< 5	237
513035	CBD-11-02	219	54		< 5	233
513036	CBD-11-02	220	58		< 5	175
513037	CBD-11-02	221	50		< 5	271
513038	CBD-11-02	222	49		< 5	182
513039	CBD-11-02	223	49		< 5	193
513040	CBD-11-02	224			< 5	181
513041	CBD-11-02	225	51		< 5	215
513042	CBD-11-02	226	55		< 5	174
513043	CBD-11-02	227	43	4	< 5	202

Chem #	DDH#	Sample	Ga	Ge	As	Rb
513044	CBD-11-02	228		4	< 5	196
513045	CBD-11-02	229	50	4	< 5	199
513046	CBD-11-02	230	48		< 5	185
513047	CBD-11-02	231	44	4	< 5	190
513048	CBD-11-02	232	46	4	< 5	192
514381	CBD-11-07	1	29	6	< 5	100
514382	CBD-11-07	2	33	5	< 5	142
514383	CBD-11-07	3	44		< 5	178
514384	CBD-11-07	4	77	2	8	307
514385	CBD-11-07	5	32	5	< 5	80
514386	CBD-11-07	6	27	6	< 5	92
514387	CBD-11-07	7	29	6	< 5	122
514388	CBD-11-07	8	31	5	< 5	118
514389	CBD-11-07	9	36	4	24	212
514390	CBD-11-07	10	36	5	8	79
514391	CBD-11-07	11	32	5	10	130
514392	CBD-11-07	12	34	4	5	138
514393	CBD-11-07	13	32	4	< 5	127
514394	CBD-11-07	14	33	3	< 5	115
514395	CBD-11-07	15	30	4	< 5	117
514396	CBD-11-07	16	33	3	< 5	118
514397	CBD-11-07	17	31	4	< 5	96
514398	CBD-11-07	18	29	5	< 5	101
514399	CBD-11-07	19	23	7	< 5	107
514400	CBD-11-07	20	30	4	< 5	52
514401	CBD-11-07	21	34	3	< 5	153
514402	CBD-11-07	22	35	6	6	95
514403	CBD-11-07	23	44	4	6	155
514404	CBD-11-07	24	71	7	23	76
514405	CBD-11-07	25	35	4	< 5	130
514406	CBD-11-07	26	33	3	< 5	116
514407	CBD-11-07	27	32	3	< 5	130
514408	CBD-11-07	28	33	3	< 5	130
514409	CBD-11-07	29	33	3	< 5	125
514410	CBD-11-07	30	33	3	< 5	124
514411	CBD-11-07	31	36	3	< 5	134
514412	CBD-11-07	32	36	3	< 5	161
514413	CBD-11-07	33	51	3	6	302
514414	CBD-11-07	34	54	4	53	157
514415	CBD-11-07	35	57	3		194
514416	CBD-11-07	36	67	5	18	117
514417	CBD-11-07	37	55	4	20	214
514418	CBD-11-07	38			< 5	248
514419	CBD-11-07	39	59	3	11	212
514420	CBD-11-07	40	36		< 5	183
514421	CBD-11-07	41	52	4	16	125

Chem #	DDH#	Sample	Ga	Ge	As	Rb
514422	CBD-11-07	42	37	3	< 5	203
514423	CBD-11-07	43	50	4	14	148
514424	CBD-11-07	44	56	3	33	111
514425	CBD-11-07	45	51	4	12	138
514426	CBD-11-07	46	44	4	< 5	195
514427	CBD-11-07	47	59	4	16	212
514428	CBD-11-07	48	65	5	16	239
514429	CBD-11-07	49	63	4	28	177
514430	CBD-11-07	50	57	4	15	181
514431	CBD-11-07	51	48	5	6	151
514432	CBD-11-07	52	24	5	< 5	144
514433	CBD-11-07	53	33	4	< 5	115
514434	CBD-11-07	54	31	4	< 5	124
514435	CBD-11-07	55	32	4	< 5	116
514436	CBD-11-07	56	37	3	< 5	145
514437	CBD-11-07	57	35	4	< 5	158
514438	CBD-11-07	58	36	4	< 5	156
514439	CBD-11-07	59	35	3	< 5	162
514440	CBD-11-07	60	52	4	8	142
514441	CBD-11-07	61	37	4	< 5	206
514442	CBD-11-07	62	32	3	< 5	129
514443	CBD-11-07	63	33	3	< 5	120
514444	CBD-11-07	64	33	3	< 5	122
514445	CBD-11-07	65	32	3	< 5	118
514446	CBD-11-07	66	35	3	< 5	154
514447	CBD-11-07	67	35	3	< 5	139
514448	CBD-11-07	68	35	4	< 5	138
514449	CBD-11-07	69	36	4	< 5	140
514450	CBD-11-07	70	32	3	< 5	138
514451	CBD-11-07	71	35	3	< 5	158
514452	CBD-11-07	72	33	4	< 5	130
514453	CBD-11-07	73	34		< 5	142
514454	CBD-11-07	74	32	3	< 5	120
514455	CBD-11-07	75	31	3	< 5	113
514456	CBD-11-07	76	34	3	< 5	121
514457	CBD-11-07	77	33	3	< 5	138
514458	CBD-11-07	78	34	3	< 5	142
514459	CBD-11-07	79	34		< 5	128
514460	CBD-11-07	80	34	3	< 5	139
514461	CBD-11-07	81	34	4	< 5	155
514462	CBD-11-07	82	34	4	6	163
514463	CBD-11-07	83	36	4		160
514464	CBD-11-07	84	34		< 5	124
514465	CBD-11-07	85	33		< 5	169
514466	CBD-11-07	86	63	4	30	139
514467	CBD-11-07	87	49	4	10	225

Chem #	DDH#	Sample	Ga	Ge	As	Rb
514468	CBD-11-07	88	39	3	< 5	227
514469	CBD-11-07	89	44	3	6	223
514470	CBD-11-07	90	45	4	< 5	195
514471	CBD-11-07	91	44	4	6	196
514472	CBD-11-07	92	45	3	< 5	229
514473	CBD-11-07	93	43	4	< 5	200
514474	CBD-11-07	94	43	3	< 5	198
514475	CBD-11-07	95	41	4	< 5	183
514476	CBD-11-07	96	48	3	< 5	268
514477	CBD-11-07	97	58	5	13	128
514478	CBD-11-07	98	61	6	11	205
514479	CBD-11-07	99	54	3	14	189
514480	CBD-11-07	100	63	4	37	278
514481	CBD-11-07	101	49	4	13	191
514482	CBD-11-07	102	48	4	8	251
514483	CBD-11-07	103	39	4	< 5	186
514484	CBD-11-07	104	36	3	< 5	180
514485	CBD-11-07	105	39	3	< 5	205
514486	CBD-11-07	106	58	4	19	165
514487	CBD-11-07	107	55	4	10	123
514488	CBD-11-07	108	54	3	19	80
514489	CBD-11-07	109	38	3	< 5	219
514490	CBD-11-07	110	46	3	8	215
514491	CBD-11-07	111	38	3	< 5	201
514492	CBD-11-07	112	58	3	24	138
514493	CBD-11-07	113	59	3	15	94
514494	CBD-11-07	114	60	4	44	219
514495	CBD-11-07	115	42	4	14	252
514496	CBD-11-07	116	65	4	51	191
514497	CBD-11-07	117	67	5	36	267
514498	CBD-11-07	118	61	4	31	246
514499	CBD-11-07	119	79	5	43	127
514500	CBD-11-07	120	57	3	8	108
514501	CBD-11-07	121	54	3	18	120
514502	CBD-11-07	122	38	3	9	228
514503	CBD-11-07	123	33	4	6	170
514504	CBD-11-07	124	39	3	7	228
514505	CBD-11-07	125	40	3	< 5	224
514506	CBD-11-07	126	40	4	7	172
514507	CBD-11-07	127	36	4	< 5	174
514508	CBD-11-07	128	39	4	< 5	164
514509	CBD-11-07	129	40	4	< 5	220
514510	CBD-11-07	130	46	4	9	302
514511	CBD-11-07	131	43	4	7	311
514512	CBD-11-07	132	35	4	5	243
514513	CBD-11-07	133	66	5	29	167

Chem #	DDH#	Sample	Ga	Ge	As	Rb
514514	CBD-11-07	134	73	4	56	273
514515	CBD-11-07	135	70	5	47	164
514516	CBD-11-07	136	62	4	32	148
514517	CBD-11-07	137	68	3	49	102
514518	CBD-11-07	138	61	3	606	592
514519	CBD-11-07	139	63	4	103	168
514520	CBD-11-07	140	56	3	9	250
514521	CBD-11-07	141	54	4	16	230
514522	CBD-11-07	142	61	4	46	179
514523	CBD-11-07	143	64	3	45	94
514524	CBD-11-07	144	67	2	27	92
514525	CBD-11-07	145	42	3	9	187
514526	CBD-11-07	146	36	4	< 5	154
514527	CBD-11-07	147	36	4	< 5	171
514528	CBD-11-07	148	36	3	< 5	312
514529	CBD-11-07	149	65	4	35	108
514530	CBD-11-07	150	63	4	26	209
514531	CBD-11-07	151	64	4	38	269
514532	CBD-11-07	152	67	5	48	267
514533	CBD-11-07	153	78	8	39	429
514534	CBD-11-07	154	66	5	48	242
514535	CBD-11-07	155	64	4	45	211
514536	CBD-11-07	156	63	4	31	180
514537	CBD-11-07	157	44	4	< 5	308
514538	CBD-11-07	158	57	5	12	216
514539	CBD-11-07	159	92	10	28	99
514540	CBD-11-07	160	57	4	11	246
514541	CBD-11-07	161	87	12	30	266
514542	CBD-11-07	162	93	12	29	247
514543	CBD-11-07	163	88	8	21	291
514544	CBD-11-07	164	43	4	10	240
514545	CBD-11-07	165	55		< 5	201
514546	CBD-11-07	166	54		< 5	243
514547	CBD-11-07	167	51		< 5	244
514548	CBD-11-07	168	44	4	< 5	229
514549	CBD-11-07	169		4		193
514550	CBD-11-07	170			< 5	218
514551	CBD-11-07	171	63	5		204
514552	CBD-11-07	172	36		< 5	211
514553	CBD-11-07	173			< 5	229
514554	CBD-11-07	174	54		< 5	217
514555	CBD-11-07	175	48	4		189
514556	CBD-11-07	176			< 5	190
514557	CBD-11-07	177	45		< 5	203
514558	CBD-11-07	178	35		< 5	176
514559	CBD-11-07	179	32	3	< 5	212

Chem #	DDH#	Sample	Ga	Ge	As	Rb
514560	CBD-11-07	180	61	4	16	186
514561	CBD-11-07	181	32	4	< 5	189
514562	CBD-11-07	182	41	4	< 5	200
514563	CBD-11-07	183	50	4	< 5	224
514564	CBD-11-07	184	59	4	16	167
514565	CBD-11-07	185	49	4	< 5	224
514566	CBD-11-07	186	46	4	< 5	215
514567	CBD-11-07	187	50	4	< 5	228
514568	CBD-11-07	188	57	4	9	209
514569	CBD-11-07	189	64	4	11	184
514570	CBD-11-07	190	61	3	21	256
514571	CBD-11-07	191	71	4	14	255
514572	CBD-11-07	192	50	3	< 5	280
514573	CBD-11-07	193	74	4	12	371
514574	CBD-11-07	194	76	7	17	474
514575	CBD-11-07	195	79	5	13	281
514576	CBD-11-07	196	82	7	17	334
514577	CBD-11-07	197	84	8	17	293
514578	CBD-11-07	198	61	4	7	334
514579	CBD-11-07	199	58	4	5	150
514580	CBD-11-07	200	53	4	6	273
514581	CBD-11-07	201	60	3	< 5	139
514582	CBD-11-07	202	49	4	< 5	230
514583	CBD-11-07	203	40	4	< 5	184
514584	CBD-11-07	204	79	8	20	180
514585	CBD-11-07	205	44	3	< 5	259
514586	CBD-11-07	206	41	4	< 5	285
514587	CBD-11-07	207	86	8	19	251
514588	CBD-11-07	208	73	9	18	231
514589	CBD-11-07	209	89	10	26	273
514590	CBD-11-07	210	64	6	11	148
514591	CBD-11-07	211	39	4	7	291
514592	CBD-11-07	212	58	4		223
514593	CBD-11-07	213	38	3	< 5	191
514594	CBD-11-07	214	37	3	< 5	173
514595	CBD-11-07	215		3	< 5	150
514596	CBD-11-07	216	35		< 5	213
514597	CBD-11-07	217	81	5	13	106
514598	CBD-11-07	218			7	197
514599	CBD-11-07	219	45	< 1	< 5	353
514600	CBD-11-07	220			< 5	248
514601	CBD-11-07	221	_			209
514602	CBD-11-07	222		4		156
514603	CBD-11-07	223		4		294
514604	CBD-11-07	224			< 5	178
514605	CBD-11-07	225	55	4	11	235

Chem #	DDH#	Sample	Ga	Ge	As	Rb
514606	CBD-11-07	226	45	4	< 5	192
514607	CBD-11-07	227	58	4	9	174
514608	CBD-11-07	228	42	2	< 5	274
514609	CBD-11-07	229	59	3	< 5	180
514610	CBD-11-07	230	38	3	< 5	151
514611	CBD-11-07	231	44	4	6	180
514612	CBD-11-07	232	47	3	5	215
514613	CBD-11-07	233	61	4	9	230
514614	CBD-11-07	234	56	3	5	246
514615	CBD-11-07	235	70	5	15	141
514616	CBD-11-07	236	39	2	< 5	254
514617	CBD-11-07	237	26	2	< 5	226
514618	CBD-11-07	238	29	2	< 5	259
514619	CBD-11-07	239	40	3	< 5	226
514620	CBD-11-07	240	52	4	< 5	216
514621	CBD-11-07	241	52	4	6	217
514622	CBD-11-07	242	53	4	< 5	229
514623	CBD-11-07	243	53	4	5	232
514624	CBD-11-07	244	50	4	< 5	243
514625	CBD-11-07	245	58	4	6	180
514626	CBD-11-07	246	52	4	< 5	258
514627	CBD-11-07	247	50	4	< 5	224
514628	CBD-11-07	248	56	4	< 5	240
514629	CBD-11-07	249	38	4	< 5	208
514630	CBD-11-07	250	57	4	< 5	234
514631	CBD-11-07	251	57	4	< 5	166
514632	CBD-11-07	252	54	4	< 5	174
514633	CBD-11-07	253	33	3	< 5	255
514634	CBD-11-07	254	34	4	< 5	204
514635	CBD-11-07	255	50	4	< 5	215
514636	CBD-11-07	256	46	3	< 5	203
514637	CBD-11-07	257	49		< 5	223
514638	CBD-11-07	258	54		< 5	165
514639	CBD-11-07	259	53		< 5	246
514640	CBD-11-07	260	41		< 5	178
514641	CBD-11-07	261			< 5	199
514642	CBD-11-07	262			< 5	204
514643	CBD-11-07	263	55		< 5	191
514644	CBD-11-07	264	61	5		113
514645	CBD-11-07	265			< 5	230
514646	CBD-11-07	266		4		195
514647	CBD-11-07	267	51		< 5	186
514648	CBD-11-07	268	50		< 5	207
514649	CBD-11-07	269	61	5	9	240
514650	CBD-11-07	270	53	4	< 5	217
514651	CBD-11-07	271	48	4	< 5	216

Chem #	DDH#	Sample	Ga	Ge	As	Rb
514652	CBD-11-07	272	54	4	< 5	203
514653	CBD-11-07	273	52	4	< 5	195
514654	CBD-11-07	274	51	4	< 5	208
514655	CBD-11-07	275	46	3	< 5	233
514656	CBD-11-07	276	52	5	7	152
514657	CBD-11-07	277	53	5	7	190
514658	CBD-11-07	278	48	4	< 5	195
514659	CBD-11-07	279	54	4	< 5	161
514660	CBD-11-07	280	57	4	6	200
514661	CBD-11-07	281	51	4	< 5	217
514662	CBD-11-07	282	48	4	< 5	192
514663	CBD-11-07	283	53	4	< 5	152
514664	CBD-11-07	284	47	4	< 5	177
514665	CBD-11-07	285	45	4	< 5	172
514666	CBD-11-07	286	46	4	< 5	187
514667	CBD-11-07	287	50	3	< 5	289
514668	CBD-11-07	288	57	5	10	291
514669	CBD-11-07	289	47	4	11	240
514670	CBD-11-07	290	40	1	< 5	264
514671	CBD-11-07	291	34	2	< 5	326
514672	CBD-11-07	292	35	1	< 5	423
514673	CBD-11-07	293	52	4	7	301

Chem #	DDH#	Sample	Sr	Υ	Zr	Nb
104676	CBD-10-01	1	53	141	842	51
104677	CBD-10-01	2	48	121	760	52
104678	CBD-10-01	3	46	116	732	43
104679	CBD-10-01	4	47	111	622	59
104680	CBD-10-01	5	36	1338	2741	98
104681	CBD-10-01	6	49	127	750	47
104682	CBD-10-01	7	56	135	886	50
104683	CBD-10-01	8	52	123	804	45
104684	CBD-10-01	9	53	253	1952	75
104685	CBD-10-01	10	47	152	777	54
104686	CBD-10-01	11	42	113	595	53
104687	CBD-10-01	12	46	121	675	45
104688	CBD-10-01	13	33	605	3211	120
104689	CBD-10-01	14	22	396	1248	67
104690	CBD-10-01	15	53	116	788	42
104691	CBD-10-01	16	55	107	743	40
104692	CBD-10-01	17	52	103	677	39
104693	CBD-10-01	18	44	266	1280	134
104694	CBD-10-01	19	42	1166	2035	70
104695	CBD-10-01	20	54	124	688	48
104696	CBD-10-01	21	51	108	712	42
104697	CBD-10-01	22	41	553	4996	131
104698	CBD-10-01	23	47	120	719	52
104699	CBD-10-01	24	61	122	812	46
104700	CBD-10-01	25	61	115	824	41
104701	CBD-10-01	26	56	123	869	46
104702	CBD-10-01	27	58	114	802	39
104703	CBD-10-01	28	58	107	752	39
104704	CBD-10-01	29	60	116	812	45
104705	CBD-10-01	30	59	112	753	45
104706	CBD-10-01	31	58	113	769	41
104707	CBD-10-01	32	61	108	769	37
104708	CBD-10-01	33	61	118	804	44
104709	CBD-10-01	34	45	159	730	65
104710	CBD-10-01	35	58	114	725	38
104711	CBD-10-01	36	46	190	588	66
104712	CBD-10-01	37	66	111	768	41
104713	CBD-10-01	38	64	111	718	37
104714	CBD-10-01	39	66	109	721	38
104715	CBD-10-01	40	67	108	736	39
104716	CBD-10-01	41	68	107	762	38
104717	CBD-10-01	42	66	106	756	38
104718	CBD-10-01	43	69	108	760	39
104719	CBD-10-01	44	66	107	752	39
104720	CBD-10-01	45	65	106	763	40
104721	CBD-10-01	46	66	109	749	40

Chem #	DDH#	Sample	Sr	Υ	Zr	Nb
104722	CBD-10-01	47	57	196	728	51
104723	CBD-10-01	48	59	199	718	64
104724	CBD-10-01	49	63	135	765	56
104725	CBD-10-01	50	54	130	901	59
104726	CBD-10-01	51	57	172	719	51
104727	CBD-10-01	52	47	88	667	45
104728	CBD-10-01	53	21	290	2178	126
104729	CBD-10-01	54	24	543	1211	63
104730	CBD-10-01	55	52	2686	567	65
104731	CBD-10-01	56	59	106	690	37
104732	CBD-10-01	57	39	663	1744	103
104733	CBD-10-01	58	49	418	3848	128
104734	CBD-10-01	59	42	306	2796	115
104735	CBD-10-01	60	38	168	1744	83
104736	CBD-10-01	61	51	218	2122	86
104737	CBD-10-01	62	51	126	865	59
104738	CBD-10-01	63	48	428	4520	200
104739	CBD-10-01	64	50	317	3846	129
104740	CBD-10-01	65	61	129	1025	55
104741	CBD-10-01	66	50	241	2524	100
104742	CBD-10-01	67	34	543	4707	183
104743	CBD-10-01	68	90	342	770	73
104744	CBD-10-01	69	40	743	1684	97
104745	CBD-10-01	70	45	1596	1643	77
104746	CBD-10-01	71	27	237	1085	111
104747	CBD-10-01	72	26	188	783	82
104748	CBD-10-01	73	28	342	1346	139
104749	CBD-10-01	74	45	169	1106	75
104750	CBD-10-01	75	61	742	7227	264
104751	CBD-10-01	76	48	133	897	56
104752	CBD-10-01	77	46	150	959	62
104753	CBD-10-01	78	51	132	753	59
104754	CBD-10-01	79	52	135	698	66
104755	CBD-10-01	80	351	281	747	196
104756	CBD-10-01	81	384	260	959	134
104757	CBD-10-01	82	55	112	684	42
104758	CBD-10-01	83	36	214	1533	87
104759	CBD-10-01	84	472	272	670	145
104760	CBD-10-01	85	55	393	2503	104
104761	CBD-10-01	86	43	591	2402	101
104762	CBD-10-01	87	28	602	1422	70
104763	CBD-10-01	88	32	1225	2560	101
104764	CBD-10-01	89	36	697	3026	86
104765	CBD-10-01	90	16	213	1310	43
104766	CBD-10-01	91	33	291	1752	79
104767	CBD-10-01	92	42	131	894	39

Chem #	DDH#	Sample	Sr	Υ	Zr	Nb
104768	CBD-10-01	93	41	148	1269	39
104769	CBD-10-01	94	66	155	905	46
104770	CBD-10-01	95	56	138	825	42
104771	CBD-10-01	96	57	104	618	30
104772	CBD-10-01	97	42	494	5092	83
104773	CBD-10-01	98	22	576	3053	88
104774	CBD-10-01	99	29	809	4034	75
104775	CBD-10-01	100	38	643	6440	90
104776	CBD-10-01	101	21	303	1979	60
104777	CBD-10-01	102	21	403	2112	116
104778	CBD-10-01	103	20	300	1747	91
104779	CBD-10-01	104	20	558	3086	95
104780	CBD-10-01	105	18	263	1712	55
104781	CBD-10-01	106	13	143	1025	42
104782	CBD-10-01	107	19	688	2432	68
104783	CBD-10-01	108	20	378	1878	85
104784	CBD-10-01	109	20	424	2284	91
104785	CBD-10-01	110	41	670	6537	122
104786	CBD-10-01	111	41	160	953	49
104787	CBD-10-01	112	52	196	1024	47
104788	CBD-10-01	113	21	515	2649	97
104789	CBD-10-01	114	115	527	622	95
104790	CBD-10-01	115	26	478	2923	86
104791	CBD-10-01	116	43	307	2872	79
104792	CBD-10-01	117	53	683	5864	168
104793	CBD-10-01	118	42	183	1300	67
104794	CBD-10-01	119	37	487	2345	93
104795	CBD-10-01	120	43	170	989	59
104796	CBD-10-01	121	41	749	3114	90
104797	CBD-10-01	122	40	197	868	38
104798	CBD-10-01	123	37	1143	3015	101
104799	CBD-10-01	124	37	748	2776	80
104800	CBD-10-01	125	41	229	1138	59
416001	CBD-10-01	126	40	240	1758	65
416002	CBD-10-01	127	42	287	2875	81
416003	CBD-10-01	128		244	1211	72
416004	CBD-10-01	129	59	1170	1701	62
416005	CBD-10-01	130	40	565	4121	102
416006	CBD-10-01	131	79	1231	1875	90
416007	CBD-10-01	132	185	155	959	43
416008	CBD-10-01	133	59	480	4171	94
416009	CBD-10-01	134	45	391	3478	111
416010	CBD-10-01	135	60	320	2200	92
416011	CBD-10-01	136	46	549	5341	93
416012	CBD-10-01	137	37	577	2463	113
416013	CBD-10-01	138	32	252	2773	110

Chem #	DDH#	Sample	Sr	Υ	Zr	Nb
416014	CBD-10-01	139	26	164	1494	66
416015	CBD-10-01	140	38	556	3787	94
416016	CBD-10-01	141	29	230	1691	95
416017	CBD-10-01	142	37	225	1623	71
416018	CBD-10-01	143	47	809	2099	76
416019	CBD-10-01	144	52	249	1524	64
416020	CBD-10-01	145	34	381	4244	105
416021	CBD-10-01	146	132	721	3519	104
416022	CBD-10-01	147	34	444	4496	108
416023	CBD-10-01	148	29	581	3177	96
416024	CBD-10-01	149	49	687	4187	92
416025	CBD-10-01	150	78	735	2866	87
416026	CBD-10-01	151	142	1790	1184	67
416027	CBD-10-01	152	232	3720	628	45
416028	CBD-10-01	153	72	931	2711	93
416029	CBD-10-01	154	68	1183	1629	76
416030	CBD-10-01	155	84	2475	1147	53
416031	CBD-10-01	156	45	679	2282	81
416032	CBD-10-01	157	48	684	1776	81
416033	CBD-10-01	158	81	2126	869	53
416034	CBD-10-01	159	85	1429	1131	68
416035	CBD-10-01	160	64	1595	1190	56
416036	CBD-10-01	161	83	2380	1482	66
416037	CBD-10-01	162	64	698	2167	85
416038	CBD-10-01	163	73	1161	2086	86
416039	CBD-10-01	164	75	1606	2675	104
416040	CBD-10-01	165	60	273	2356	70
416041	CBD-10-01	166	43	476	5303	100
416042	CBD-10-01	167	43	378	3796	103
416043	CBD-10-01	168	61	461	4178	93
416044	CBD-10-01	169	103	865	3299	94
416045	CBD-10-01	170	73	207	1867	75
416046	CBD-10-01	171	40	184	1657	61
416047	CBD-10-01	172	35	171	1701	65
416048	CBD-10-01	173	36	169	1705	65
416049	CBD-10-01	174		357	3836	136
416050	CBD-10-01	175		209	1685	76
416051	CBD-10-01	176	67	240	1795	91
416052	CBD-10-01	177	147	2985	1168	87
416053	CBD-10-01	178	217	2711	349	37
416054	CBD-10-01	179	190	4664	1082	36
416055	CBD-10-01	180	143	3442	1166	43
416056	CBD-10-01	181	90	871	1237	52
416057	CBD-10-01	182	94	703	1904	78
416058	CBD-10-01	183	60	622	3060	109
416059	CBD-10-01	184	40	528	6076	180

Chem #	DDH#	Sample	Sr	Υ	Zr	Nb
416060	CBD-10-01	185	51	741	1767	72
416061	CBD-10-01	186	27	166	1698	65
416062	CBD-10-01	187	61	583	7608	214
416063	CBD-10-01	188	43	218	1856	80
416064	CBD-10-01	189	36	307	2575	75
416065	CBD-10-01	190	101	1287	4869	111
416066	CBD-10-01	191	184	1217	1815	56
416067	CBD-10-01	192	64	511	868	17
416068	CBD-10-01	193	25	110	931	19
416069	CBD-10-01	194	199	337	959	150
416070	CBD-10-01	195	188	398	850	157
416071	CBD-10-01	196	172	321	640	196
416072	CBD-10-01	197	89	858	3718	196
416073	CBD-10-01	198	119	522	678	231
416074	CBD-10-01	199	55	745	5670	125
416075	CBD-10-01	200	64	439	4072	111
416076	CBD-10-01	201	74	898	4165	116
416077	CBD-10-01	202	49	504	7252	190
416078	CBD-10-01	203	36	447	4798	117
416079	CBD-10-01	204	39	342	3134	86
416080	CBD-10-01	205	34	377	3783	92
416081	CBD-10-01	206	37	520	4300	129
416082	CBD-10-01	207	40	397	3209	96
416083	CBD-10-01	208	49	371	3455	76
416084	CBD-10-01	209	135	288	1386	65
416085	CBD-10-01	210	72	931	2386	95
416086	CBD-10-01	211	30	57	285	11
416087	CBD-10-01	212	60	124	1318	24
416088	CBD-10-01	213	36	64	758	15
416089	CBD-10-01	214	47	103	851	40
416090	CBD-10-01	215	44	102	830	36
416091	CBD-10-01	216	41	183	1962	52
416092	CBD-10-01	217	35	97	929	25
416093	CBD-10-01	218	22	85		21
416094	CBD-10-01	219	49	82	860	24
416095	CBD-10-01	220	72	550	6120	188
416096	CBD-10-01	221	75	596	5213	154
416097	CBD-10-01	222	43	588	6285	163
416098	CBD-10-01	223	53	497	5388	162
416099	CBD-10-01	224	101	1642	18520	384
416100	CBD-10-01	225	67	456	5249	126
416101	CBD-10-01	226	64	618	5654	172
416102	CBD-10-01	227	114	374	3912	130
416103	CBD-10-01	228	46	373	4223	149
416104	CBD-10-01	229	43	247	2875	96
416105	CBD-10-01	230	29	257	2840	108

Chem #	DDH#	Sample	Sr	Υ	Zr	Nb
416106	CBD-10-01	231	46	519	6869	226
416107	CBD-10-01	232	49	138	962	41
416108	CBD-10-01	233	56	140	1039	38
416109	CBD-10-01	234	55	143	995	37
416110	CBD-10-01	235	38	413	3840	126
416111	CBD-10-01	236	22	222	1958	81
416112	CBD-10-01	237	29	347	3541	110
416113	CBD-10-01	238	34	269	2508	89
416114	CBD-10-01	239	31	324	3386	104
416115	CBD-10-01	240	16	177	1101	69
416116	CBD-10-01	241	25	182	1897	63
416117	CBD-10-01	242	23	220	2503	74
416118	CBD-10-01	243	38	171	1191	64
416119	CBD-10-01	244	28	219	1966	72
416120	CBD-10-01	245	36	408	3438	118
416121	CBD-10-01	246	54	242	2282	79
416122	CBD-10-01	247	67	397	2394	96
416123	CBD-10-01	248	95	1113	4026	96
416124	CBD-10-01	249	52	660	7823	207
416125	CBD-10-01	250	48	386	3040	101
416126	CBD-10-01	251	87	4176	3909	319
416127	CBD-10-01	252	50	1253	2380	153
416128	CBD-10-01	253	61	456	2646	105
416129	CBD-10-01	254	76	198	1673	71
416130	CBD-10-01	255	36	237	3188	92
416131	CBD-10-01	256	72	497	7385	217
416132	CBD-10-01	257	74	297	4056	124
416133	CBD-10-01	258	122	400	3775	116
416134	CBD-10-01	259	141	218	1863	61
416135	CBD-10-01	260	165	360	4193	130
416136	CBD-10-01	261	57	241	1719	68
416137	CBD-10-01	262	100	646	8104	201
416138	CBD-10-01	263	54	410	3558	125
416139	CBD-10-01	264	46	426	3559	121
416140	CBD-10-01	265	39	373	4161	99
416141	CBD-10-01	266	66	525	7360	170
416142	CBD-10-01	267	49	177	2217	57
416143	CBD-10-01	268	90	318	3847	105
416144	CBD-10-01	269	76	347	3469	91
416145	CBD-10-01	270	96	519	5202	139
416146	CBD-10-01	271	151	454	4315	97
416147	CBD-10-01	272	173	262	3360	91
416148	CBD-10-01	273	162	138	1660	60
416149	CBD-10-01	274	93	182	2416	69
416150	CBD-10-01	275	85	329	4233	107
416151	CBD-10-01	276	152	155	2078	68

Chem #	DDH#	Sample	Sr	Υ	Zr	Nb
416152	CBD-10-01	277	117	428	6396	162
416153	CBD-10-01	278	140	527	8289	204
416154	CBD-10-01	279	143	95	935	43
512817	CBD-11-02	1	66	107	667	34
512818	CBD-11-02	2	65	106	696	36
512819	CBD-11-02	3	62	106	684	35
512820	CBD-11-02	4	66	101	655	35
512821	CBD-11-02	5	62	98	642	31
512822	CBD-11-02	6	64	104	670	34
512823	CBD-11-02	7	63	111	728	39
512824	CBD-11-02	8	64	107	640	36
512825	CBD-11-02	9	64	107	661	34
512826	CBD-11-02	10	66	115	648	65
512827	CBD-11-02	11	66	109	682	36
512828	CBD-11-02	12	61	112	598	31
512829	CBD-11-02	13	43	846	3354	110
512830	CBD-11-02	14	51	191	1041	52
512831	CBD-11-02	15	50	117	717	32
512832	CBD-11-02	16	56	104	549	34
512833	CBD-11-02	17	49	145	1026	49
512834	CBD-11-02	18	55	112	521	38
512835	CBD-11-02	19	32	414	1054	87
512836	CBD-11-02	20	43	123	755	48
512837	CBD-11-02	21	46	117	611	46
512838	CBD-11-02	22	47	719	7100	148
512839	CBD-11-02	23	44	392	4082	108
512840	CBD-11-02	24	51	209	1584	70
512841	CBD-11-02	25	48	163	1310	61
512842	CBD-11-02	26	46	112	595	50
512843	CBD-11-02	27	48	132	680	47
512844	CBD-11-02	28	53	150	845	52
512845	CBD-11-02	29	52	129	617	47
512846	CBD-11-02	30				110
512847 512848	CBD-11-02	31	44	513	5543	160
	CBD-11-02 CBD-11-02	32		89	514	39
512849		33	43	123	617	43
512850	CBD-11-02 CBD-11-02	34	40	84 191	493	41 75
512851 512852	CBD-11-02 CBD-11-02	35 36	55 49	324	1845 3338	116
512853	CBD-11-02	37	73	877	10520	282
512854	CBD-11-02 CBD-11-02	38	59	510	4826	161
512855	CBD-11-02	39	47	315	2457	114
512856	CBD-11-02	40	50	344	3934	136
512857	CBD-11-02	41	45	407	3934	134
512858	CBD-11-02	42		166	1352	59
512859	CBD-11-02	43		1030		57
212033	CDD-11-05	43	31	1030	1111	57

Chem #	DDH#	Sample	Sr	Υ	Zr	Nb
512860	CBD-11-02	44	47	1962	1077	50
512861	CBD-11-02	45	95	716	238	206
512862	CBD-11-02	46	23	341	1164	104
512863	CBD-11-02	47	45	131	903	48
512864	CBD-11-02	48	54	435	2257	126
512865	CBD-11-02	49	47	354	1358	92
512866	CBD-11-02	50	40	110	591	44
512867	CBD-11-02	51	24	315	1703	99
512868	CBD-11-02	52	28	535	3300	111
512869	CBD-11-02	53	25	554	2118	53
512870	CBD-11-02	54	12	198	1671	43
512871	CBD-11-02	55	41	269	1970	70
512872	CBD-11-02	56	48	98	526	35
512873	CBD-11-02	57	44	116	593	39
512874	CBD-11-02	58	52	119	577	47
512875	CBD-11-02	59	48	291	1464	53
512876	CBD-11-02	60	52	266	2107	64
512877	CBD-11-02	61	66	328	1301	79
512878	CBD-11-02	62	52	1063	1527	81
512879	CBD-11-02	63	42	728	2402	85
512880	CBD-11-02	64	29	369	1932	79
512881	CBD-11-02	65	48	151	667	38
512882	CBD-11-02	66	48	105	752	43
512883	CBD-11-02	67	39	710	7420	136
512884	CBD-11-02	68	25	307	2290	90
512885	CBD-11-02	69	23	363	1762	98
512886	CBD-11-02	70	23	462	2690	96
512887	CBD-11-02	71	49	214	1085	93
512888	CBD-11-02	72	32	162	1103	69
512889	CBD-11-02	73	38	468	2022	102
512890	CBD-11-02	74	65	447	970	72
512891	CBD-11-02	75	42	169	708	73
512892	CBD-11-02	76	39	568	2378	102
512893	CBD-11-02	77	30	218	1267	60
512894	CBD-11-02	78	35	194	1542	97
512895	CBD-11-02	79	51	878	3481	109
512896	CBD-11-02	80	33	314	2315	90
512897	CBD-11-02	81	43	141	800	54
512898	CBD-11-02	82	40	115	726	40
512899	CBD-11-02	83	42	139	824	46
512900	CBD-11-02	84	42	169	1002	60
512901	CBD-11-02	85	35	253	1029	79
512902	CBD-11-02	86	42	204	1291	57
512903	CBD-11-02	87	44	156	985	59
512904	CBD-11-02	88	39	152	1005	59
512905	CBD-11-02	89	65	580	1581	62

Chem #	DDH#	Sample	Sr	Υ	Zr	Nb
512906	CBD-11-02	90	121	2358	797	25
512907	CBD-11-02	91	118	3031	1615	44
512908	CBD-11-02	92	107	1179	1063	31
512909	CBD-11-02	93	120	1305	697	18
512910	CBD-11-02	94	120	2296	2668	58
512911	CBD-11-02	95	62	1302	1487	46
512912	CBD-11-02	96	67	1094	1668	62
512913	CBD-11-02	97	86	740	1502	77
512914	CBD-11-02	98	155	1780	1612	106
512915	CBD-11-02	99	98	1559	3737	104
512916	CBD-11-02	100	58	653	6760	213
512917	CBD-11-02	101	47	238	1783	76
512918	CBD-11-02	102	40	499	4121	128
512919	CBD-11-02	103	35	380	4161	149
512920	CBD-11-02	104	53	871	8843	222
512921	CBD-11-02	105	40	212	1541	77
512922	CBD-11-02	106	38	178	1900	86
512923	CBD-11-02	107	68	2560	1083	72
512924	CBD-11-02	108	41	389	3687	122
512925	CBD-11-02	109	33	353	3782	151
512926	CBD-11-02	110	41	878	4165	153
512927	CBD-11-02	111	29	196	1519	80
512928	CBD-11-02	112	42	501	4565	165
512929	CBD-11-02	113	32	328	1826	84
512930	CBD-11-02	114	44	529	2040	115
512931	CBD-11-02	115	31	292	1719	100
512932	CBD-11-02	116	80	729	2417	94
512933	CBD-11-02	117	82	849	9040	289
512934	CBD-11-02	118	35	429	3663	139
512935	CBD-11-02	119	37	1081	3287	110
512936	CBD-11-02	120	35	423	4003	128
512937	CBD-11-02	121	76	1267	3396	96
512938	CBD-11-02	122	46	473	4339	148
512939	CBD-11-02	123	89	1279	3193	117
512940	CBD-11-02	124	41	535	5076	168
512941	CBD-11-02	125	48	148	1161	57
512942	CBD-11-02	126	56	113	719	36
512943	CBD-11-02	127	55	547	6391	193
512944	CBD-11-02	128	41	122	1009	45
512945	CBD-11-02	129	40	244	2876	105
512946	CBD-11-02	130	32	623	3401	108
512947	CBD-11-02	131	69	1298	5289	124
512948	CBD-11-02	132	40	144	973	46
512949	CBD-11-02	133	47	1276	4603	155
512950	CBD-11-02	134	39	184	1538	57
512951	CBD-11-02	135	64	1043	3614	95

Chem #	DDH#	Sample	Sr	Υ	Zr	Nb
512952	CBD-11-02	136	49	746	2732	85
512953	CBD-11-02	137	55	1031	3830	102
512954	CBD-11-02	138	61	1070	4354	114
512955	CBD-11-02	139	126	1339	2685	103
512956	CBD-11-02	140	115	1560	3598	131
512957	CBD-11-02	141	112	1247	2365	89
512958	CBD-11-02	142	61	237	1781	70
512959	CBD-11-02	143	140	201	1594	66
512960	CBD-11-02	144	46	232	1905	83
512961	CBD-11-02	145	34	180	1265	83
512962	CBD-11-02	146	25	120	793	39
512963	CBD-11-02	147	92	178	1632	34
512964	CBD-11-02	148	37	219	2095	63
512965	CBD-11-02	149	58	296	1912	95
512966	CBD-11-02	150	52	286	2307	94
512967	CBD-11-02	151	28	277	1748	88
512968	CBD-11-02	152	77	295	1855	87
512969	CBD-11-02	153	84	615	1893	71
512970	CBD-11-02	154	99	1073	1636	82
512971	CBD-11-02	155	285	3179	1296	62
512972	CBD-11-02	156	212	4478	1517	59
512973	CBD-11-02	157	135	3699	1448	51
512974	CBD-11-02	158	159	2949	1577	49
512975	CBD-11-02	159	153	2923	1266	63
512976	CBD-11-02	160	85	1648	2426	106
512977	CBD-11-02	161	106	998	1742	113
512978	CBD-11-02	162	107	1214	1540	88
512979	CBD-11-02	163	65	364	2227	86
512980	CBD-11-02	164	60	251	1831	67
512981	CBD-11-02	165	101	663	2649	85
512982	CBD-11-02	166	42	559	916	22
512983	CBD-11-02	167	33	250	1963	44
512984	CBD-11-02	168	32	270	1575	56
512985	CBD-11-02	169	93	817	3473	100
512986	CBD-11-02	170	75	731	4111	155
512987	CBD-11-02	171	247	308	505	157
512988	CBD-11-02	172	175	441	550	194
512989	CBD-11-02	173	45	529	5174	136
512990	CBD-11-02	174	56	460	4142	140
512991	CBD-11-02	175	34	404	3991	112
512992	CBD-11-02	176	38	399	3925	103
512993	CBD-11-02	177		245	1518	66
512994	CBD-11-02	178		510	1755	102
512995	CBD-11-02	179		640	2832	123
512996	CBD-11-02	180	135	410	2494	146
512997	CBD-11-02	181	94	154	1115	32

Chem #	DDH#	Sample	Sr	Υ	Zr	Nb
512998	CBD-11-02	182	38	102	804	36
512999	CBD-11-02	183	30	94	829	32
513000	CBD-11-02	184	27	166	1684	73
513001	CBD-11-02	185	33	207	2003	71
513002	CBD-11-02	186	31	104	862	40
513003	CBD-11-02	187	39	98	778	40
513004	CBD-11-02	188	64	321	3181	115
513005	CBD-11-02	189	48	570	6555	187
513006	CBD-11-02	190	38	627	5911	169
513007	CBD-11-02	191	34	573	6117	180
513008	CBD-11-02	192	28	433	3950	130
513009	CBD-11-02	193	29	376	4247	140
513010	CBD-11-02	194	35	447	5290	169
513011	CBD-11-02	195	27	304	3483	101
513012	CBD-11-02	196	31	242	2209	99
513013	CBD-11-02	197	36	247	2463	106
513014	CBD-11-02	198	49	139	988	51
513015	CBD-11-02	199	28	257	2539	94
513016	CBD-11-02	200	24	243	1548	92
513017	CBD-11-02	201	37	308	3502	103
513018	CBD-11-02	202	35	409	4370	121
513019	CBD-11-02	203	33	304	3023	110
513020	CBD-11-02	204	31	353	1891	108
513021	CBD-11-02	205	34	380	3880	127
513022	CBD-11-02	206	32	277	2861	105
513023	CBD-11-02	207	44	413	4292	146
513024	CBD-11-02	208	48	467	4424	126
513025	CBD-11-02	209	42	685	3478	97
513026	CBD-11-02	210	58	708	3554	101
513027	CBD-11-02	211	38	375	2532	109
513028	CBD-11-02	212	31	371	5416	167
513029	CBD-11-02	213	35	426	6572	173
513030	CBD-11-02	214	33	323	3268	96
513031	CBD-11-02	215	35	445	3751	95
513032	CBD-11-02	216	23	261	2015	87
513033	CBD-11-02	217	47	562	5443	131
513034	CBD-11-02	218	37	366	2458	103
513035	CBD-11-02	219	31	245	1898	66
513036	CBD-11-02	220	43	537	2986	121
513037	CBD-11-02	221	38	387	5135	127
513038	CBD-11-02	222	28	152	1254	56
513039	CBD-11-02	223	28	107	718	46
513040	CBD-11-02	224	52	243	3142	90
513041	CBD-11-02	225	38	278	3489	103
513042	CBD-11-02	226	44	445	4939	143
513043	CBD-11-02	227	52	173	2252	63

Chem #	DDH#	Sample	Sr	Υ	Zr	Nb
513044	CBD-11-02	228	35	507	6292	174
513045	CBD-11-02	229	32	337	4513	130
513046	CBD-11-02	230	56	377	5156	131
513047	CBD-11-02	231	48	277	3876	102
513048	CBD-11-02	232	62	371	5714	127
514381	CBD-11-07	1	25	191	1403	43
514382	CBD-11-07	2	28	172	1257	47
514383	CBD-11-07	3	21	170	1202	72
514384	CBD-11-07	4	32	523	3862	141
514385	CBD-11-07	5	26	180	1311	49
514386	CBD-11-07	6	23	193	1390	47
514387	CBD-11-07	7	23	203	1291	44
514388	CBD-11-07	8	34	230	1281	40
514389	CBD-11-07	9	23	404	1891	74
514390	CBD-11-07	10	28	380	1335	77
514391	CBD-11-07	11	30	271	1359	59
514392	CBD-11-07	12	33	169	990	49
514393	CBD-11-07	13	34	130	934	40
514394	CBD-11-07	14	37	127	848	40
514395	CBD-11-07	15	32	138	987	36
514396	CBD-11-07	16	39	122	810	38
514397	CBD-11-07	17	31	136	979	39
514398	CBD-11-07	18	25	149	1039	41
514399	CBD-11-07	19	15	177	1226	46
514400	CBD-11-07	20	29	136	1016	34
514401	CBD-11-07	21	33	158	630	41
514402	CBD-11-07	22	29	447	1025	53
514403	CBD-11-07	23	33	481	836	52
514404	CBD-11-07	24	43	2488	4295	114
514405	CBD-11-07	25	33	142	883	47
514406	CBD-11-07	26	35	129	810	38
514407	CBD-11-07	27	34	112	738	38
514408	CBD-11-07	28	38	127	802	38
514409	CBD-11-07	29	40	120	768	37
514410	CBD-11-07	30	42	131	903	43
514411	CBD-11-07	31	40	166	1350	55
514412	CBD-11-07	32	37	144	994	52
514413	CBD-11-07	33	26	381	3517	123
514414	CBD-11-07	34	17	214	1288	87
514415	CBD-11-07	35	20	454	1276	85
514416	CBD-11-07	36	23	914	1384	85
514417	CBD-11-07	37	22	1162	1283	82
514418	CBD-11-07	38	38	113	716	42
514419	CBD-11-07	39	34	609	6087	158
514420	CBD-11-07	40	41	116	725	41
514421	CBD-11-07	41	30	554	4710	135

Chem #	DDH#	Sample	Sr	Υ	Zr	Nb
514422	CBD-11-07	42	38	127	948	53
514423	CBD-11-07	43	34	289	3215	95
514424	CBD-11-07	44	23	195	1463	60
514425	CBD-11-07	45	28	391	2765	100
514426	CBD-11-07	46	52	489	5667	149
514427	CBD-11-07	47	34	622	1137	73
514428	CBD-11-07	48	31	1228	702	87
514429	CBD-11-07	49	34	681	2598	109
514430	CBD-11-07	50	30	638	2505	135
514431	CBD-11-07	51	45	663	7131	176
514432	CBD-11-07	52	33	174	1247	41
514433	CBD-11-07	53	47	188	1642	64
514434	CBD-11-07	54	47	140	1007	37
514435	CBD-11-07	55	47	143	997	36
514436	CBD-11-07	56	47	171	974	43
514437	CBD-11-07	57	48	123	623	43
514438	CBD-11-07	58	46	122	790	36
514439	CBD-11-07	59	51	109	631	34
514440	CBD-11-07	60	44	498	4881	144
514441	CBD-11-07	61	49	106	565	38
514442	CBD-11-07	62	61	115	791	36
514443	CBD-11-07	63	59	123	784	37
514444	CBD-11-07	64	63	114	771	36
514445	CBD-11-07	65	65	116	793	36
514446	CBD-11-07	66	55	124	824	37
514447	CBD-11-07	67	58	112	669	45
514448	CBD-11-07	68	60	182	1162	57
514449	CBD-11-07	69	57	125	711	42
514450	CBD-11-07	70	69	131	730	35
514451	CBD-11-07	71	63	167	753	57
514452	CBD-11-07	72	63	130	783	42
514453	CBD-11-07	73	62	152	695	44
514454	CBD-11-07	74	69	115	739	35
514455	CBD-11-07	75	70	115	756	35
514456	CBD-11-07	76	70	115	748	38
514457	CBD-11-07	77	67	114	728	38
514458	CBD-11-07	78	67	121	735	41
514459	CBD-11-07	79	58	100	591	41
514460	CBD-11-07	80	61	113	579	36
514461	CBD-11-07	81	60	93	574	33
514462	CBD-11-07	82	54	87	539	32
514463	CBD-11-07	83	53	132	934	39
514464	CBD-11-07	84	65	119	851	42
514465	CBD-11-07	85	61	126	873	40
514466	CBD-11-07	86	31	622	2114	90
514467	CBD-11-07	87	43	347	3024	103

Chem#	DDH#	Sample	Sr	Υ	Zr	Nb
514468	CBD-11-07	88	54	145	1291	51
514469	CBD-11-07	89	52	225	2065	65
514470	CBD-11-07	90	46	270	2980	104
514471	CBD-11-07	91	42	228	2071	68
514472	CBD-11-07	92	42	253	3259	96
514473	CBD-11-07	93	42	202	1996	70
514474	CBD-11-07	94	38	122	845	52
514475	CBD-11-07	95	43	110	567	53
514476	CBD-11-07	96	37	216	1851	80
514477	CBD-11-07	97	35	1286	1405	54
514478	CBD-11-07	98	200	671	245	356
514479	CBD-11-07	99	25	340	1016	72
514480	CBD-11-07	100	46	724	7690	175
514481	CBD-11-07	101	29	219	1129	71
514482	CBD-11-07	102	51	497	6825	156
514483	CBD-11-07	103	49	229	2525	70
514484	CBD-11-07	104	51	131	987	50
514485	CBD-11-07	105	39	121	880	52
514486	CBD-11-07	106	40	478	5415	121
514487	CBD-11-07	107	34	489	3855	89
514488	CBD-11-07	108	29	217	1704	86
514489	CBD-11-07	109	43	134	603	43
514490	CBD-11-07	110	53	430	4700	108
514491	CBD-11-07	111	53	157	751	71
514492	CBD-11-07	112	23	245	1942	64
514493	CBD-11-07	113	15	147	1486	49
514494	CBD-11-07	114	49	815	7745	112
514495	CBD-11-07	115	103	317	1516	92
514496	CBD-11-07	116	70	749	3097	105
514497	CBD-11-07	117	133	1512	2135	116
514498	CBD-11-07	118	49	690	2732	118
514499	CBD-11-07	119	39	825	3561	184
514500	CBD-11-07	120	16	190	1266	57
514501	CBD-11-07	121	20	139	1175	57
514502	CBD-11-07	122	44	151	887	53
514503	CBD-11-07	123	57	152	936	46
514504	CBD-11-07	124	51	153	910	42
514505	CBD-11-07	125	37	166	995	55
514506	CBD-11-07	126	62	185	1291	479
514507	CBD-11-07	127	66	130	720	45
514508	CBD-11-07	128	53	125	693	50
514509	CBD-11-07	129	50	184	916	64
514510	CBD-11-07	130	48	218	1045	92
514511	CBD-11-07	131	45	212	1334	68
514512	CBD-11-07	132	54	166	845	39
514513	CBD-11-07	133	29	429	1956	100

Chem #	DDH#	Sample	Sr	Υ	Zr	Nb
514514	CBD-11-07	134	24	623	2865	108
514515	CBD-11-07	135	33	655	2251	115
514516	CBD-11-07	136	31	353	1663	69
514517	CBD-11-07	137	25	466	3004	101
514518	CBD-11-07	138	23	612	2084	151
514519	CBD-11-07	139	26	487	1853	145
514520	CBD-11-07	140	28	308	2057	79
514521	CBD-11-07	141	30	349	2955	84
514522	CBD-11-07	142	21	375	2048	70
514523	CBD-11-07	143	18	317	1861	94
514524	CBD-11-07	144	11	369	1623	86
514525	CBD-11-07	145	43	229	1022	91
514526	CBD-11-07	146	41	145	863	51
514527	CBD-11-07	147	42	122	815	39
514528	CBD-11-07	148	43	146	969	36
514529	CBD-11-07	149	33	753	3103	94
514530	CBD-11-07	150	31	998	3403	93
514531	CBD-11-07	151	30	916	2946	85
514532	CBD-11-07	152	34	1383	3184	94
514533	CBD-11-07	153	42	2195	4223	105
514534	CBD-11-07	154	35	887	3346	90
514535	CBD-11-07	155	29	600	3263	79
514536	CBD-11-07	156	31	788	2929	79
514537	CBD-11-07	157	38	182	993	51
514538	CBD-11-07	158	129	707	940	89
514539	CBD-11-07	159	135	3198	1519	44
514540	CBD-11-07	160	59	622	3607	121
514541	CBD-11-07	161	144	3593	877	74
514542	CBD-11-07	162	162	3686	1120	93
514543	CBD-11-07	163	164	1474	1853	125
514544	CBD-11-07	164	137	414	2327	159
514545	CBD-11-07	165	62	520	4192	133
514546	CBD-11-07	166	28	212	2352	87
514547	CBD-11-07	167	39	288	3306	112
514548	CBD-11-07	168	41	264	3065	105
514549	CBD-11-07	169		733	4781	132
514550	CBD-11-07	170	32	383	3758	114
514551	CBD-11-07	171	46	789	7494	139
514552	CBD-11-07	172	60	222	1294	52
514553	CBD-11-07	173	35	310	2998	101
514554	CBD-11-07	174	24	203	1748	93
514555	CBD-11-07	175	45	441	2341	84
514556	CBD-11-07	176		195	1296	63
514557	CBD-11-07	177	38	197	1595	88
514558	CBD-11-07	178	66	189	1011	44
514559	CBD-11-07	179	65	121	700	35

Chem #	DDH#	Sample	Sr	Υ	Zr	Nb
514560	CBD-11-07	180	35	703	2670	93
514561	CBD-11-07	181	63	117	911	41
514562	CBD-11-07	182	50	183	1324	60
514563	CBD-11-07	183	38	330	3604	119
514564	CBD-11-07	184	27	592	2516	90
514565	CBD-11-07	185	38	284	3171	101
514566	CBD-11-07	186	30	164	1562	61
514567	CBD-11-07	187	38	427	5279	143
514568	CBD-11-07	188	40	493	4980	135
514569	CBD-11-07	189	76	765	4956	116
514570	CBD-11-07	190	38	699	4396	110
514571	CBD-11-07	191	74	1184	4188	113
514572	CBD-11-07	192	30	184	1269	62
514573	CBD-11-07	193	67	964	1958	77
514574	CBD-11-07	194	119	2340	967	61
514575	CBD-11-07	195	75	1170	2496	78
514576	CBD-11-07	196	98	1789	1425	64
514577	CBD-11-07	197	87	2527	1414	79
514578	CBD-11-07	198	68	655	2968	88
514579	CBD-11-07	199	41	317	1528	86
514580	CBD-11-07	200	50	486	4666	135
514581	CBD-11-07	201	29	414	4003	101
514582	CBD-11-07	202	39	339	3716	87
514583	CBD-11-07	203	106	206	1638	67
514584	CBD-11-07	204	152	3367	1824	61
514585	CBD-11-07	205	62	240	1946	70
514586	CBD-11-07	206	112	223	1829	64
514587	CBD-11-07	207	212	3935	1482	93
514588	CBD-11-07	208	292	3226	589	63
514589	CBD-11-07	209	225	4108	1621	37
514590	CBD-11-07	210	128	999	1464	88
514591	CBD-11-07	211	63	235	1889	86
514592	CBD-11-07	212	74	639	2818	98
514593	CBD-11-07	213	61	196	1641	62
514594	CBD-11-07	214	61	142	1231	55
514595	CBD-11-07	215	61	142	1108	50
514596	CBD-11-07	216	66	157	1003	46
514597	CBD-11-07	217	107	1462	1834	84
514598	CBD-11-07	218	56	428	1774	68
514599	CBD-11-07	219	20	169	885	15
514600	CBD-11-07	220	30	425	2786	50
514601	CBD-11-07	221	201	438	2355	143
514602	CBD-11-07	222	180	442	611	211
514603	CBD-11-07	223	59	534	4261	120
514604	CBD-11-07	224	41	421	4856	69
514605	CBD-11-07	225	53	481	4881	117

Chem#	DDH#	Sample	Sr	Υ	Zr	Nb
514606	CBD-11-07	226	46	270	2857	83
514607	CBD-11-07	227	44	432	3878	104
514608	CBD-11-07	228	37	262	2633	57
514609	CBD-11-07	229	63	469	4823	125
514610	CBD-11-07	230	252	199	905	55
514611	CBD-11-07	231	139	371	2255	102
514612	CBD-11-07	232	104	453	1653	60
514613	CBD-11-07	233	171	873	3219	92
514614	CBD-11-07	234	69	718	3329	113
514615	CBD-11-07	235	73	1228	3483	138
514616	CBD-11-07	236	54	223	1697	40
514617	CBD-11-07	237	43	125	926	37
514618	CBD-11-07	238	52	115	1026	34
514619	CBD-11-07	239	43	146	1408	50
514620	CBD-11-07	240	52	495	5327	152
514621	CBD-11-07	241	50	488	5191	144
514622	CBD-11-07	242	33	457	5762	151
514623	CBD-11-07	243	40	570	7926	196
514624	CBD-11-07	244	29	342	3685	120
514625	CBD-11-07	245	27	479	3426	133
514626	CBD-11-07	246	35	460	5910	172
514627	CBD-11-07	247	27	285	3690	120
514628	CBD-11-07	248	23	224	2557	88
514629	CBD-11-07	249	41	169	1317	57
514630	CBD-11-07	250	31	415	4507	148
514631	CBD-11-07	251	31	516	5768	145
514632	CBD-11-07	252	28	385	4529	110
514633	CBD-11-07	253	31	202	2030	73
514634	CBD-11-07	254	48	152	1098	47
514635	CBD-11-07	255	30	267	2903	103
514636	CBD-11-07	256	30	218	2385	68
514637	CBD-11-07	257	25	202	2120	64
514638	CBD-11-07	258	25	346	3247	101
514639	CBD-11-07	259	31	404	4638	127
514640	CBD-11-07	260	35	157	1582	54
514641	CBD-11-07	261	42	126	1043	42
514642	CBD-11-07	262	42	159	1429	57
514643	CBD-11-07	263	37	350	3741	109
514644	CBD-11-07	264	74	645	3624	101
514645	CBD-11-07	265	48	427	3230	104
514646	CBD-11-07	266	40	228	2789	79
514647	CBD-11-07	267	41	271	2900	86
514648	CBD-11-07	268	33	216	2102	71
514649	CBD-11-07	269	153	983	2801	92
514650	CBD-11-07	270		231	2092	86
514651	CBD-11-07	271	73	359	3178	105

Chem #	DDH#	Sample	Sr	Υ	Zr	Nb
514652	CBD-11-07	272	119	288	2977	114
514653	CBD-11-07	273	75	499	4707	132
514654	CBD-11-07	274	55	362	5029	158
514655	CBD-11-07	275	36	139	1103	39
514656	CBD-11-07	276	126	1290	2971	94
514657	CBD-11-07	277	79	793	3600	118
514658	CBD-11-07	278	105	277	2157	61
514659	CBD-11-07	279	142	441	4400	119
514660	CBD-11-07	280	160	577	6763	145
514661	CBD-11-07	281	58	342	4192	131
514662	CBD-11-07	282	116	317	3987	105
514663	CBD-11-07	283	158	379	3943	131
514664	CBD-11-07	284	109	265	3576	105
514665	CBD-11-07	285	115	297	2712	76
514666	CBD-11-07	286	71	333	4344	139
514667	CBD-11-07	287	110	240	2428	79
514668	CBD-11-07	288	64	730	918	99
514669	CBD-11-07	289	72	576	4564	133
514670	CBD-11-07	290	88	186	791	20
514671	CBD-11-07	291	185	244	354	47
514672	CBD-11-07	292	64	194	969	46
514673	CBD-11-07	293	77	472	3304	190

Chem #	DDH#	Sample	Мо	Ag	In	Sn
104676	CBD-10-01	1	4	7.2	< 0.2	11
104677	CBD-10-01	2	4	6.5	< 0.2	10
104678	CBD-10-01	3	4	6.1	< 0.2	12
104679	CBD-10-01	4	4	5.6	< 0.2	14
104680	CBD-10-01	5	119		< 0.2	133
104681	CBD-10-01	6	4	6.8	< 0.2	11
104682	CBD-10-01	7	4	8	< 0.2	11
104683	CBD-10-01	8	4	9	< 0.2	11
104684	CBD-10-01	9	5		< 0.2	18
104685	CBD-10-01	10	6	7.3	< 0.2	15
104686	CBD-10-01	11	4	5.9	< 0.2	14
104687	CBD-10-01	12	3	6.5	< 0.2	14
104688	CBD-10-01	13	111		< 0.2	51
104689	CBD-10-01	14	118		< 0.2	55
104690	CBD-10-01	15	4	6.9	< 0.2	10
104691	CBD-10-01	16	4	6.7	< 0.2	9
104692	CBD-10-01	17	3	5.9	< 0.2	12
104693	CBD-10-01	18	7		< 0.2	22
104694	CBD-10-01	19	16		< 0.2	64
104695	CBD-10-01	20	4	6	< 0.2	12
104696	CBD-10-01	21	4	6.3	< 0.2	14
104697	CBD-10-01	22	16		< 0.2	36
104698	CBD-10-01	23	3	6.8	< 0.2	15
104699	CBD-10-01	24	4	7	< 0.2	10
104700	CBD-10-01	25	4	6.8	< 0.2	9
104701	CBD-10-01	26	4	7.1	< 0.2	10
104702	CBD-10-01	27	3	6.8	< 0.2	9
104703	CBD-10-01	28	4	6.4	< 0.2	9
104704	CBD-10-01	29	4	7.3	< 0.2	10
104705	CBD-10-01	30	3	6.2	< 0.2	10
104706	CBD-10-01	31	5	6.8	< 0.2	10
104707	CBD-10-01	32	3	3.6	< 0.2	9
104708	CBD-10-01	33		6.7	< 0.2	10
104709	CBD-10-01	34	6	6.1	< 0.2	18
104710	CBD-10-01	35	4	6.1	< 0.2	9
104711	CBD-10-01	36		4.7	< 0.2	12
104712	CBD-10-01	37	4	6.3	< 0.2	9
104713	CBD-10-01	38		5.9	< 0.2	9
104714	CBD-10-01	39	4	5.9	< 0.2	8
104715	CBD-10-01	40	4	6.1	< 0.2	9
104716	CBD-10-01	41	3	6.2	< 0.2	9
104717	CBD-10-01	42	4	6.1	< 0.2	8
104718	CBD-10-01	43	4	6.1	< 0.2	9
104719	CBD-10-01	44	4	6.3	< 0.2	8
104720	CBD-10-01	45		6.6	< 0.2	8
104721	CBD-10-01	46	3	6.4	< 0.2	8

Chem#	DDH#	Sample	Мо	Ag	In	Sn
104722	CBD-10-01	47	7	6.2	< 0.2	16
104723	CBD-10-01	48	7	6.7	< 0.2	17
104724	CBD-10-01	49	3	1.8	< 0.2	12
104725	CBD-10-01	50	3	1.9	< 0.2	12
104726	CBD-10-01	51	4	1.5	< 0.2	12
104727	CBD-10-01	52	2	1.4	< 0.2	16
104728	CBD-10-01	53	12		< 0.2	44
104729	CBD-10-01	54	99		< 0.2	44
104730	CBD-10-01	55	12	2.2	< 0.2	71
104731	CBD-10-01	56	5	1.5	< 0.2	15
104732	CBD-10-01	57	43		< 0.2	42
104733	CBD-10-01	58	8		< 0.2	28
104734	CBD-10-01	59	7		< 0.2	28
104735	CBD-10-01	60	4		< 0.2	24
104736	CBD-10-01	61	4		< 0.2	19
104737	CBD-10-01	62	3	1.8	< 0.2	15
104738	CBD-10-01	63	4		< 0.2	27
104739	CBD-10-01	64	3		< 0.2	19
104740	CBD-10-01	65	3		< 0.2	11
104741	CBD-10-01	66	3		< 0.2	23
104742	CBD-10-01	67	6		< 0.2	73
104743	CBD-10-01	68	4	1.1	< 0.2	23
104744	CBD-10-01	69	13		< 0.2	71
104745	CBD-10-01	70	54		< 0.2	61
104746	CBD-10-01	71	47		< 0.2	36
104747	CBD-10-01	72	48	1.9	< 0.2	32
104748	CBD-10-01	73	33		< 0.2	37
104749	CBD-10-01	74	10		< 0.2	17
104750	CBD-10-01	75	7		< 0.2	27
104751	CBD-10-01	76	4	1.7	< 0.2	12
104752	CBD-10-01	77	5	1.9	< 0.2	13
104753	CBD-10-01	78	4	1.5	< 0.2	16
104754	CBD-10-01	79		1.5	< 0.2	19
104755	CBD-10-01	80	7	1.7	< 0.2	28
104756	CBD-10-01	81	7	2	< 0.2	33
104757	CBD-10-01	82	3	1.4	< 0.2	18
104758	CBD-10-01	83	5		< 0.2	69
104759	CBD-10-01	84	6	1.4	< 0.2	18
104760	CBD-10-01	85	16		< 0.2	58
104761	CBD-10-01	86	182		< 0.2	57
104762	CBD-10-01	87	158		< 0.2	54
104763	CBD-10-01	88	154		< 0.2	63
104764	CBD-10-01	89	109		< 0.2	42
104765	CBD-10-01	90	17		< 0.2	89
104766	CBD-10-01	91	12		< 0.2	74
104767	CBD-10-01	92	4	2.8	< 0.2	20

Chem #	DDH#	Sample	Mo	Ag	In	Sn
104768	CBD-10-01	93	4	_	< 0.2	33
104769	CBD-10-01	94	5	2.8	< 0.2	11
104770	CBD-10-01	95	3	2.4	< 0.2	13
104771	CBD-10-01	96	2	1.9	< 0.2	8
104772	CBD-10-01	97	7		< 0.2	44
104773	CBD-10-01	98	61		< 0.2	70
104774	CBD-10-01	99	54		< 0.2	74
104775	CBD-10-01	100	8		< 0.2	56
104776	CBD-10-01	101	5		< 0.2	72
104777	CBD-10-01	102	5		< 0.2	73
104778	CBD-10-01	103	20		< 0.2	55
104779	CBD-10-01	104	17		< 0.2	77
104780	CBD-10-01	105	8		< 0.2	61
104781	CBD-10-01	106	4		< 0.2	60
104782	CBD-10-01	107	36		< 0.2	73
104783	CBD-10-01	108	173		< 0.2	49
104784	CBD-10-01	109	34		< 0.2	67
104785	CBD-10-01	110	23		< 0.2	58
104786	CBD-10-01	111	7	3.6	< 0.2	16
104787	CBD-10-01	112	3		< 0.2	19
104788	CBD-10-01	113	6		< 0.2	71
104789	CBD-10-01	114	10	1	< 0.2	23
104790	CBD-10-01	115	105		< 0.2	80
104791	CBD-10-01	116	6		< 0.2	29
104792	CBD-10-01	117	10		< 0.2	50
104793	CBD-10-01	118	4		< 0.2	17
104794	CBD-10-01	119	28		< 0.2	57
104795	CBD-10-01	120	14	2.9	< 0.2	16
104796	CBD-10-01	121	12		< 0.2	60
104797	CBD-10-01	122	7	2.5	< 0.2	22
104798	CBD-10-01	123	10		< 0.2	89
104799	CBD-10-01	124	48		< 0.2	67
104800	CBD-10-01	125	6		< 0.2	20
416001	CBD-10-01	126			< 0.2	17
416002	CBD-10-01	127	5		< 0.2	18
416003	CBD-10-01	128			< 0.2	21
416004	CBD-10-01	129			< 0.2	57
416005	CBD-10-01	130	43		< 0.2	44
416006	CBD-10-01	131	39		< 0.2	50
416007	CBD-10-01	132	4	2.4	< 0.2	13
416008	CBD-10-01	133	7		< 0.2	35
416009	CBD-10-01	134			< 0.2	31
416010	CBD-10-01	135			< 0.2	20
416011	CBD-10-01	136	6		< 0.2	41
416012	CBD-10-01	137	4		< 0.2	26
416013	CBD-10-01	138	4		< 0.2	28

Chem #	DDH#	Sample	Мо	Ag	In	Sn
416014	CBD-10-01	139	4		< 0.2	22
416015	CBD-10-01	140	36		< 0.2	48
416016	CBD-10-01	141	5		< 0.2	19
416017	CBD-10-01	142	6		< 0.2	21
416018	CBD-10-01	143	31		< 0.2	43
416019	CBD-10-01	144	16		< 0.2	24
416020	CBD-10-01	145	6		< 0.2	28
416021	CBD-10-01	146	22		< 0.2	52
416022	CBD-10-01	147	8		< 0.2	39
416023	CBD-10-01	148	96		< 0.2	48
416024	CBD-10-01	149	34		< 0.2	71
416025	CBD-10-01	150	68		< 0.2	62
416026	CBD-10-01	151	37		< 0.2	52
416027	CBD-10-01	152	22	2.4	< 0.2	46
416028	CBD-10-01	153	52		< 0.2	109
416029	CBD-10-01	154	46		< 0.2	70
416030	CBD-10-01	155	35		< 0.2	63
416031	CBD-10-01	156	45		< 0.2	72
416032	CBD-10-01	157	42		< 0.2	69
416033	CBD-10-01	158	18	3.2	< 0.2	58
416034	CBD-10-01	159	29		< 0.2	76
416035	CBD-10-01	160	36		< 0.2	78
416036	CBD-10-01	161	28		< 0.2	96
416037	CBD-10-01	162	10		< 0.2	70
416038	CBD-10-01	163	15		< 0.2	96
416039	CBD-10-01	164	20		< 0.2	103
416040	CBD-10-01	165	5		< 0.2	34
416041	CBD-10-01	166	3		< 0.2	34
416042	CBD-10-01	167	3		< 0.2	37
416043	CBD-10-01	168	3		< 0.2	41
416044	CBD-10-01	169	23		< 0.2	67
416045	CBD-10-01	170	3		< 0.2	25
416046	CBD-10-01	171	3		< 0.2	29
416047	CBD-10-01	172	3		< 0.2	31
416048	CBD-10-01	173	3		< 0.2	32
416049	CBD-10-01	174	6		< 0.2	43
416050	CBD-10-01	175	4		< 0.2	24
416051	CBD-10-01	176	3		< 0.2	27
416052	CBD-10-01	177	10		< 0.2	80
416053	CBD-10-01	178	3	1	< 0.2	63
416054	CBD-10-01	179	9		< 0.2	105
416055	CBD-10-01	180	12		< 0.2	112
416056	CBD-10-01	181	7		< 0.2	86
416057	CBD-10-01	182	17		< 0.2	91
416058	CBD-10-01	183	7		< 0.2	90
416059	CBD-10-01	184	< 2		< 0.2	71

Chem #	DDH#	Sample	Мо	Ag	In	Sn
416060	CBD-10-01	185	50		< 0.2	93
416061	CBD-10-01	186	4		< 0.2	97
416062	CBD-10-01	187	3		< 0.2	52
416063	CBD-10-01	188	3		< 0.2	52
416064	CBD-10-01	189	4		< 0.2	42
416065	CBD-10-01	190	24		< 0.2	106
416066	CBD-10-01	191	6		< 0.2	73
416067	CBD-10-01	192	2	2.6	< 0.2	38
416068	CBD-10-01	193	< 2	3.1	< 0.2	14
416069	CBD-10-01	194	4	3	< 0.2	30
416070	CBD-10-01	195	3	2.7	< 0.2	26
416071	CBD-10-01	196	2	2.1	< 0.2	34
416072	CBD-10-01	197	11		< 0.2	60
416073	CBD-10-01	198	6	2	< 0.2	26
416074	CBD-10-01	199	9		< 0.2	72
416075	CBD-10-01	200	3		< 0.2	58
416076	CBD-10-01	201	27		< 0.2	80
416077	CBD-10-01	202	< 2		< 0.2	35
416078	CBD-10-01	203	2		< 0.2	57
416079	CBD-10-01	204	9		< 0.2	50
416080	CBD-10-01	205	3		< 0.2	34
416081	CBD-10-01	206	2		< 0.2	62
416082	CBD-10-01	207	< 2		< 0.2	45
416083	CBD-10-01	208	8		< 0.2	34
416084	CBD-10-01	209	3		< 0.2	37
416085	CBD-10-01	210	12		< 0.2	113
416086	CBD-10-01	211	< 2	0.8	< 0.2	12
416087	CBD-10-01	212	< 2		< 0.2	18
416088	CBD-10-01	213	< 2	2.1	< 0.2	4
416089	CBD-10-01	214	< 2	2.1	< 0.2	8
416090	CBD-10-01	215	< 2	2.1	< 0.2	10
416091	CBD-10-01	216	< 2		< 0.2	13
416092	CBD-10-01	217	< 2	2.5	< 0.2	11
416093	CBD-10-01	218	< 2		< 0.2	12
416094	CBD-10-01	219	< 2	2.1	< 0.2	15
416095	CBD-10-01	220	5		< 0.2	33
416096	CBD-10-01	221	17		< 0.2	52
416097	CBD-10-01	222	< 2		< 0.2	64
416098	CBD-10-01	223	3		< 0.2	59
416099	CBD-10-01	224	5		< 0.2	104
416100	CBD-10-01	225	3		< 0.2	61
416101	CBD-10-01	226	< 2		< 0.2	50
416102	CBD-10-01	227	< 2		< 0.2	33
416103	CBD-10-01	228	< 2		< 0.2	29
416104	CBD-10-01	229	3		< 0.2	25
416105	CBD-10-01	230	4		< 0.2	25

Chem #	DDH#	Sample	Мо	Ag	In	Sn
416106	CBD-10-01	231	4		< 0.2	24
416107	CBD-10-01	232	4	1.9	< 0.2	14
416108	CBD-10-01	233	4		< 0.2	17
416109	CBD-10-01	234	3	1.8	< 0.2	23
416110	CBD-10-01	235	5		< 0.2	40
416111	CBD-10-01	236	3		< 0.2	46
416112	CBD-10-01	237	4		< 0.2	42
416113	CBD-10-01	238	4		< 0.2	36
416114	CBD-10-01	239	7		< 0.2	39
416115	CBD-10-01	240	7		< 0.2	63
416116	CBD-10-01	241	4		< 0.2	39
416117	CBD-10-01	242	3		< 0.2	39
416118	CBD-10-01	243	4		< 0.2	19
416119	CBD-10-01	244	4		< 0.2	50
416120	CBD-10-01	245	5		< 0.2	68
416121	CBD-10-01	246	3		< 0.2	26
416122	CBD-10-01	247	5		< 0.2	69
416123	CBD-10-01	248	7		< 0.2	70
416124	CBD-10-01	249	5		< 0.2	47
416125	CBD-10-01	250	6		< 0.2	65
416126	CBD-10-01	251	14		< 0.2	88
416127	CBD-10-01	252	9		< 0.2	80
416128	CBD-10-01	253	4		< 0.2	39
416129	CBD-10-01	254	4		< 0.2	29
416130	CBD-10-01	255	3		< 0.2	30
416131	CBD-10-01	256	3		< 0.2	32
416132	CBD-10-01	257	3		< 0.2	36
416133	CBD-10-01	258	6		< 0.2	56
416134	CBD-10-01	259	3		< 0.2	55
416135	CBD-10-01	260	4		< 0.2	39
416136	CBD-10-01	261	5		< 0.2	42
416137	CBD-10-01	262	4		< 0.2	56
416138	CBD-10-01	263	6		< 0.2	53
416139	CBD-10-01	264	9		< 0.2	59
416140	CBD-10-01	265	4		< 0.2	46
416141	CBD-10-01	266			< 0.2	42
416142	CBD-10-01	267	3		< 0.2	46
416143	CBD-10-01	268	3		< 0.2	38
416144	CBD-10-01	269	4		< 0.2	42
416145	CBD-10-01	270	5		< 0.2	47
416146	CBD-10-01	271	3		< 0.2	57
416147	CBD-10-01	272	< 2		< 0.2	27
416148	CBD-10-01	273	< 2		< 0.2	24
416149	CBD-10-01	274	3		< 0.2	23
416150	CBD-10-01	275	3		< 0.2	30
416151	CBD-10-01	276	< 2		< 0.2	24

Chem #	DDH#	Sample	Мо	Ag	In	Sn
416152	CBD-10-01	277	2		< 0.2	31
416153	CBD-10-01	278			< 0.2	21
416154	CBD-10-01	279	3	1.5	< 0.2	20
512817	CBD-11-02	1	< 2	2.8	< 0.2	7
512818	CBD-11-02	2	< 2	3	< 0.2	7
512819	CBD-11-02	3	< 2	2.9	< 0.2	7
512820	CBD-11-02	4	< 2	2.8	< 0.2	7
512821	CBD-11-02		< 2	2.7	< 0.2	6
512822	CBD-11-02	6	< 2	3	< 0.2	6
512823	CBD-11-02	7	< 2	3.1	< 0.2	7
512824	CBD-11-02	8	< 2	2.6	< 0.2	6
512825	CBD-11-02	9	< 2	2.8	< 0.2	6
512826	CBD-11-02	10	3	2.7	< 0.2	8
512827	CBD-11-02	11	< 2	2.8	< 0.2	8
512828	CBD-11-02	12	< 2	2.4	< 0.2	13
512829	CBD-11-02	13	30		< 0.2	58
512830	CBD-11-02	14	3		< 0.2	15
512831	CBD-11-02	15	< 2	3	< 0.2	9
512832	CBD-11-02	16	< 2	2.4	< 0.2	11
512833	CBD-11-02	17	2		< 0.2	15
512834	CBD-11-02	18	2	2.2	< 0.2	9
512835	CBD-11-02	19	47		< 0.2	39
512836	CBD-11-02	20	2	3.3	< 0.2	19
512837	CBD-11-02	21	2	2.6	< 0.2	18
512838	CBD-11-02	22	9		< 0.2	72
512839	CBD-11-02	23	5		< 0.2	33
512840	CBD-11-02	24	< 2		< 0.2	16
512841	CBD-11-02	25	< 2		< 0.2	18
512842	CBD-11-02	26	< 2	2.6	< 0.2	14
512843	CBD-11-02	27	2	3.1	< 0.2	15
512844	CBD-11-02	28	3	3.8	< 0.2	13
512845	CBD-11-02	29	3	2.7	< 0.2	14
512846	CBD-11-02	30	2		< 0.2	22
512847	CBD-11-02	31	5		< 0.2	33
512848	CBD-11-02	32	5	2.3	< 0.2	15
512849	CBD-11-02	33	5	2.8	< 0.2	16
512850	CBD-11-02	34	< 2	2.2	< 0.2	15
512851	CBD-11-02	35	11		< 0.2	17
512852	CBD-11-02	36	4		< 0.2	26
512853	CBD-11-02	37	10		< 0.2	31
512854	CBD-11-02	38	4		< 0.2	34
512855	CBD-11-02	39	5		< 0.2	26
512856	CBD-11-02	40	4		< 0.2	22
512857	CBD-11-02	41	5		< 0.2	31
512858	CBD-11-02	42	2		< 0.2	20
512859	CBD-11-02	43	20		< 0.2	64

Chem #	DDH#	Sample	Мо	Ag	In	Sn
512860	CBD-11-02	44	23		< 0.2	96
512861	CBD-11-02	45	10	1.2	< 0.2	29
512862	CBD-11-02	46	33		< 0.2	47
512863	CBD-11-02	47	5		< 0.2	16
512864	CBD-11-02	48	24		< 0.2	28
512865	CBD-11-02	49	9		< 0.2	24
512866	CBD-11-02	50	3	2.5	< 0.2	17
512867	CBD-11-02	51	19		< 0.2	75
512868	CBD-11-02	52	12		< 0.2	74
512869	CBD-11-02	53	28		< 0.2	75
512870	CBD-11-02	54	3		< 0.2	119
512871	CBD-11-02	55	3		< 0.2	30
512872	CBD-11-02	56	3	2.3	< 0.2	14
512873	CBD-11-02	57	3	2.6	< 0.2	11
512874	CBD-11-02	58	3	2.6	< 0.2	13
512875	CBD-11-02	59	9		< 0.2	33
512876	CBD-11-02	60	9		< 0.2	104
512877	CBD-11-02	61	7		< 0.2	55
512878	CBD-11-02	62	128		< 0.2	63
512879	CBD-11-02	63	123		< 0.2	75
512880	CBD-11-02	64	49		< 0.2	66
512881	CBD-11-02	65	10	3	< 0.2	20
512882	CBD-11-02	66	2	3.4	< 0.2	16
512883	CBD-11-02	67	15		< 0.2	57
512884	CBD-11-02	68	15		< 0.2	61
512885	CBD-11-02	69	96		< 0.2	52
512886	CBD-11-02	70	118		< 0.2	65
512887	CBD-11-02	71	10		< 0.2	23
512888	CBD-11-02	72	9		< 0.2	67
512889	CBD-11-02	73	16		< 0.2	60
512890	CBD-11-02	74	13		< 0.2	47
512891	CBD-11-02	75	6	3.3	< 0.2	18
512892	CBD-11-02	76	80		< 0.2	35
512893	CBD-11-02	77	13		< 0.2	16
512894	CBD-11-02	78	9		< 0.2	16
512895	CBD-11-02	79	76		< 0.2	34
512896	CBD-11-02	80	10		< 0.2	19
512897	CBD-11-02	81	3		< 0.2	12
512898	CBD-11-02	82	2	3.3	< 0.2	12
512899	CBD-11-02	83	3	3.4	< 0.2	11
512900	CBD-11-02	84	3		< 0.2	12
512901	CBD-11-02	85	14		< 0.2	19
512902	CBD-11-02	86	15		< 0.2	16
512903	CBD-11-02	87	3	4	< 0.2	14
512904	CBD-11-02	88			< 0.2	17
512905	CBD-11-02	89	5		< 0.2	46

Chem #	DDH#	Sample	Мо	Ag	In	Sn
512906	CBD-11-02	90	12	3.2	< 0.2	73
512907	CBD-11-02	91	32		< 0.2	116
512908	CBD-11-02	92	32		< 0.2	77
512909	CBD-11-02	93	8	3	< 0.2	63
512910	CBD-11-02	94	58		< 0.2	119
512911	CBD-11-02	95	116		< 0.2	150
512912	CBD-11-02	96	55		< 0.2	79
512913	CBD-11-02	97	27		< 0.2	55
512914	CBD-11-02	98	40		< 0.2	87
512915	CBD-11-02	99	82		< 0.2	116
512916	CBD-11-02	100	6		< 0.2	35
512917	CBD-11-02	101	4		< 0.2	19
512918	CBD-11-02	102	5		< 0.2	39
512919	CBD-11-02	103	3		< 0.2	26
512920	CBD-11-02	104	4		< 0.2	48
512921	CBD-11-02	105	3		< 0.2	16
512922	CBD-11-02	106	2		< 0.2	16
512923	CBD-11-02	107	16		< 0.2	40
512924	CBD-11-02	108	18		< 0.2	34
512925	CBD-11-02	109	4		< 0.2	28
512926	CBD-11-02	110	46		< 0.2	64
512927	CBD-11-02	111	7		< 0.2	26
512928	CBD-11-02	112	5		< 0.2	29
512929	CBD-11-02	113	4		< 0.2	30
512930	CBD-11-02	114	9		< 0.2	38
512931	CBD-11-02	115	6		< 0.2	38
512932	CBD-11-02	116	13		< 0.2	50
512933	CBD-11-02	117	14		< 0.2	38
512934	CBD-11-02	118	7		< 0.2	37
512935	CBD-11-02	119	48		< 0.2	77
512936	CBD-11-02	120	5		< 0.2	43
512937	CBD-11-02	121	43		< 0.2	76
512938	CBD-11-02	122	7		< 0.2	39
512939	CBD-11-02	123	57		< 0.2	94
512940	CBD-11-02	124	6		< 0.2	41
512941	CBD-11-02	125	3		< 0.2	12
512942	CBD-11-02	126	3	2.5	< 0.2	9
512943	CBD-11-02	127	4		< 0.2	27
512944	CBD-11-02	128	3	3.3	< 0.2	13
512945	CBD-11-02	129	3		< 0.2	20
512946	CBD-11-02	130	141		< 0.2	45
512947	CBD-11-02	131	91		< 0.2	95
512948	CBD-11-02	132	6	3.4	< 0.2	18
512949	CBD-11-02	133	34		< 0.2	83
512950	CBD-11-02	134	6		< 0.2	20
512951	CBD-11-02	135	72		< 0.2	76

Chem #	DDH#	Sample	Мо	Ag	In	Sn
512952	CBD-11-02	136	63		< 0.2	75
512953	CBD-11-02	137	68		< 0.2	97
512954	CBD-11-02	138	52		< 0.2	98
512955	CBD-11-02	139	37		< 0.2	90
512956	CBD-11-02	140	32		< 0.2	66
512957	CBD-11-02	141	13		< 0.2	72
512958	CBD-11-02	142	4		< 0.2	30
512959	CBD-11-02	143	11		< 0.2	24
512960	CBD-11-02	144	5		< 0.2	66
512961	CBD-11-02	145	9		< 0.2	83
512962	CBD-11-02	146	7	2.7	< 0.2	23
512963	CBD-11-02	147	10		< 0.2	16
512964	CBD-11-02	148	5		< 0.2	23
512965	CBD-11-02	149	6		< 0.2	54
512966	CBD-11-02	150	4		< 0.2	63
512967	CBD-11-02	151	2		< 0.2	80
512968	CBD-11-02	152	5		< 0.2	70
512969	CBD-11-02	153	9		< 0.2	41
512970	CBD-11-02	154	11		< 0.2	58
512971	CBD-11-02	155	9		< 0.2	90
512972	CBD-11-02	156	8		< 0.2	122
512973	CBD-11-02	157	8		< 0.2	129
512974	CBD-11-02	158	5		< 0.2	106
512975	CBD-11-02	159	10		< 0.2	103
512976	CBD-11-02	160	18		< 0.2	105
512977	CBD-11-02	161	11		< 0.2	84
512978	CBD-11-02	162	18		< 0.2	88
512979	CBD-11-02	163	3		< 0.2	36
512980	CBD-11-02	164	3		< 0.2	31
512981	CBD-11-02	165	10		< 0.2	57
512982	CBD-11-02	166	4	2.9	< 0.2	34
512983	CBD-11-02	167	4		< 0.2	23
512984	CBD-11-02	168	2		< 0.2	28
512985	CBD-11-02	169	12		< 0.2	94
512986	CBD-11-02	170	8		< 0.2	68
512987	CBD-11-02	171	4	1.7	< 0.2	20
512988	CBD-11-02	172	4	1.7	< 0.2	24
512989	CBD-11-02	173	5		< 0.2	60
512990	CBD-11-02	174	5		< 0.2	58
512991	CBD-11-02	175	8		< 0.2	38
512992	CBD-11-02	176	5		< 0.2	49
512993	CBD-11-02	177	3		< 0.2	26
512994	CBD-11-02	178	10		< 0.2	58
512995	CBD-11-02	179	15		< 0.2	84
512996	CBD-11-02	180	12		< 0.2	71
512997	CBD-11-02	181	6		< 0.2	23

Chem #	DDH#	Sample	Mo	Ag	In	Sn
512998	CBD-11-02	182	< 2		< 0.2	9
512999	CBD-11-02	183	< 2	2.4	< 0.2	10
513000	CBD-11-02	184	4		< 0.2	20
513001	CBD-11-02	185	4		< 0.2	20
513002	CBD-11-02	186	< 2	2.8	< 0.2	9
513003	CBD-11-02	187	< 2	2.4	< 0.2	8
513004	CBD-11-02	188	3		< 0.2	26
513005	CBD-11-02	189	3		< 0.2	33
513006	CBD-11-02	190	5		< 0.2	40
513007	CBD-11-02	191	3		< 0.2	43
513008	CBD-11-02	192	9		< 0.2	52
513009	CBD-11-02	193	4		< 0.2	37
513010	CBD-11-02	194	3		< 0.2	37
513011	CBD-11-02	195	2		< 0.2	29
513012	CBD-11-02	196	4		< 0.2	20
513013	CBD-11-02	197	5		< 0.2	19
513014	CBD-11-02	198	3	3.1	< 0.2	14
513015	CBD-11-02	199	3		< 0.2	29
513016	CBD-11-02	200	3		< 0.2	51
513017	CBD-11-02	201	< 2		< 0.2	27
513018	CBD-11-02	202	4		< 0.2	34
513019	CBD-11-02	203	3		< 0.2	39
513020	CBD-11-02	204	6		< 0.2	61
513021	CBD-11-02	205	4		< 0.2	36
513022	CBD-11-02	206	4		< 0.2	35
513023	CBD-11-02	207	4		< 0.2	33
513024	CBD-11-02	208	3		< 0.2	69
513025	CBD-11-02	209	13		< 0.2	71
513026	CBD-11-02	210	13		< 0.2	70
513027	CBD-11-02	211			< 0.2	34
513028	CBD-11-02	212			< 0.2	30
513029	CBD-11-02	213	3		< 0.2	31
513030	CBD-11-02	214	< 2		< 0.2	45
513031	CBD-11-02	215			< 0.2	54
513032	CBD-11-02	216			< 0.2	44
513033	CBD-11-02	217			< 0.2	63
513034	CBD-11-02	218			< 0.2	32
513035	CBD-11-02	219			< 0.2	51
513036	CBD-11-02	220			< 0.2	62
513037	CBD-11-02	221			< 0.2	35
513038	CBD-11-02	222			< 0.2	23
513039	CBD-11-02	223	_	1.3	< 0.2	26
513040	CBD-11-02	224			< 0.2	25
513041	CBD-11-02	225			< 0.2	31
513042	CBD-11-02	226			< 0.2	43
513043	CBD-11-02	227	< 2		< 0.2	21

Chem #	DDH#	Sample	Мо	Ag	In	Sn
513044	CBD-11-02	228			< 0.2	31
513045	CBD-11-02	229	2		< 0.2	31
513046	CBD-11-02	230			< 0.2	24
513047	CBD-11-02	231	2		< 0.2	24
513048	CBD-11-02	232			< 0.2	20
514381	CBD-11-07	1			0.2	13
514382	CBD-11-07	2			< 0.2	20
514383	CBD-11-07	3	< 2		< 0.2	21
514384	CBD-11-07	4	4		< 0.2	28
514385	CBD-11-07	5	< 2		< 0.2	17
514386	CBD-11-07	6	< 2		0.2	12
514387	CBD-11-07	7	< 2		0.2	14
514388	CBD-11-07	8	< 2		0.2	25
514389	CBD-11-07	9	21		< 0.2	29
514390	CBD-11-07	10	6		< 0.2	34
514391	CBD-11-07	11	6		< 0.2	22
514392	CBD-11-07	12	3	3.5	< 0.2	19
514393	CBD-11-07	13	3	3	< 0.2	11
514394	CBD-11-07	14	2	2.7	< 0.2	8
514395	CBD-11-07	15	2	2.9	< 0.2	7
514396	CBD-11-07	16	3	2.4	< 0.2	8
514397	CBD-11-07	17	3	3.1	< 0.2	7
514398	CBD-11-07	18	3		< 0.2	7
514399	CBD-11-07	19	< 2		0.2	6
514400	CBD-11-07	20	2		< 0.2	8
514401	CBD-11-07	21	11	1.9	< 0.2	10
514402	CBD-11-07	22	10		< 0.2	16
514403	CBD-11-07	23	13	4.2	< 0.2	35
514404	CBD-11-07	24	40		< 0.2	140
514405	CBD-11-07	25	3	3	< 0.2	13
514406	CBD-11-07	26	3	2.4	< 0.2	10
514407	CBD-11-07	27	2	2.2	< 0.2	10
514408	CBD-11-07	28	2	2.4	< 0.2	9
514409	CBD-11-07	29	3	2.1	< 0.2	9
514410	CBD-11-07	30	2	2.6	< 0.2	10
514411	CBD-11-07	31	3		< 0.2	11
514412	CBD-11-07	32	2	3.1	< 0.2	11
514413	CBD-11-07	33	8		< 0.2	30
514414	CBD-11-07	34	38		< 0.2	53
514415	CBD-11-07	35	130		< 0.2	46
514416	CBD-11-07	36	101		< 0.2	74
514417	CBD-11-07	37	51		< 0.2	56
514418	CBD-11-07	38	3	2.2	< 0.2	12
514419	CBD-11-07	39	7		< 0.2	38
514420	CBD-11-07	40	3	2.4	< 0.2	12
514421	CBD-11-07	41	12		< 0.2	43

Chem#	DDH#	Sample	Мо	Ag	In	Sn
514422	CBD-11-07	42	2		< 0.2	16
514423	CBD-11-07	43	5		< 0.2	53
514424	CBD-11-07	44	6		< 0.2	76
514425	CBD-11-07	45	17		< 0.2	58
514426	CBD-11-07	46	5		< 0.2	25
514427	CBD-11-07	47	20		< 0.2	46
514428	CBD-11-07	48	21	2.3	< 0.2	56
514429	CBD-11-07	49	124		< 0.2	64
514430	CBD-11-07	50	18		< 0.2	85
514431	CBD-11-07	51	8		< 0.2	40
514432	CBD-11-07	52	3		< 0.2	8
514433	CBD-11-07	53	3		< 0.2	10
514434	CBD-11-07	54	3		< 0.2	8
514435	CBD-11-07	55	3	2.8	< 0.2	11
514436	CBD-11-07	56	3	3	< 0.2	15
514437	CBD-11-07	57	4	1.8	< 0.2	13
514438	CBD-11-07	58	3	2.5	< 0.2	14
514439	CBD-11-07	59	3	1.8	< 0.2	11
514440	CBD-11-07	60	10		< 0.2	24
514441	CBD-11-07	61	3	1.6	< 0.2	17
514442	CBD-11-07	62	3	1.9	< 0.2	7
514443	CBD-11-07	63	4	2.3	< 0.2	9
514444	CBD-11-07	64	3	2.2	< 0.2	7
514445	CBD-11-07	65	3	2	< 0.2	7
514446	CBD-11-07	66	5	2	< 0.2	9
514447	CBD-11-07	67	3	1.7	< 0.2	10
514448	CBD-11-07	68	5		< 0.2	10
514449	CBD-11-07	69	3	1.9	< 0.2	10
514450	CBD-11-07	70	3	1.9	< 0.2	6
514451	CBD-11-07	71	7	2.1	< 0.2	10
514452	CBD-11-07	72	4	2.2	< 0.2	9
514453	CBD-11-07	73	4	1.9	< 0.2	10
514454	CBD-11-07	74	3	2	< 0.2	7
514455	CBD-11-07	75	7		< 0.2	8
514456	CBD-11-07	76	4		< 0.2	8
514457	CBD-11-07	77	3		< 0.2	8
514458	CBD-11-07	78	4		< 0.2	10
514459	CBD-11-07	79	3	1.6	< 0.2	10
514460	CBD-11-07	80	4	1.7	< 0.2	10
514461	CBD-11-07	81	3		< 0.2	10
514462	CBD-11-07	82	3		< 0.2	12
514463	CBD-11-07	83	6		< 0.2	13
514464	CBD-11-07	84	3		< 0.2	9
514465	CBD-11-07	85	2	1.7	< 0.2	10
514466	CBD-11-07	86	52		< 0.2	50
514467	CBD-11-07	87	6		< 0.2	26

Chem #	DDH#	Sample	Мо	Ag	In	Sn
514468	CBD-11-07	88	2		< 0.2	21
514469	CBD-11-07	89	5		< 0.2	27
514470	CBD-11-07	90	3		< 0.2	20
514471	CBD-11-07	91	4		< 0.2	26
514472	CBD-11-07	92	3		< 0.2	29
514473	CBD-11-07	93	3		< 0.2	26
514474	CBD-11-07	94	2	1.7	< 0.2	20
514475	CBD-11-07	95	3	1.2	< 0.2	21
514476	CBD-11-07	96	10		< 0.2	32
514477	CBD-11-07	97	44		< 0.2	59
514478	CBD-11-07	98	7	0.9	< 0.2	27
514479	CBD-11-07	99	75		< 0.2	37
514480	CBD-11-07	100	11		< 0.2	33
514481	CBD-11-07	101	14		< 0.2	34
514482	CBD-11-07	102	3		< 0.2	24
514483	CBD-11-07	103	3		< 0.2	17
514484	CBD-11-07	104	3	1.9	< 0.2	11
514485	CBD-11-07	105	2	1.7	< 0.2	16
514486	CBD-11-07	106	5		< 0.2	53
514487	CBD-11-07	107	11		< 0.2	58
514488	CBD-11-07	108	4		< 0.2	81
514489	CBD-11-07	109	3	1.3	< 0.2	13
514490	CBD-11-07	110	5		< 0.2	26
514491	CBD-11-07	111	5	1.5	< 0.2	15
514492	CBD-11-07	112	2		< 0.2	76
514493	CBD-11-07	113	2		< 0.2	84
514494	CBD-11-07	114	8		< 0.2	62
514495	CBD-11-07	115	7		< 0.2	31
514496	CBD-11-07	116	139		< 0.2	59
514497	CBD-11-07	117	79		< 0.2	69
514498	CBD-11-07	118	162		< 0.2	57
514499	CBD-11-07	119	44		< 0.2	80
514500	CBD-11-07	120			< 0.2	75
514501	CBD-11-07	121	3		< 0.2	64
514502	CBD-11-07	122	4	2	< 0.2	17
514503	CBD-11-07	123	3	2.1	< 0.2	12
514504	CBD-11-07	124	3		< 0.2	22
514505	CBD-11-07	125	3	2.1	< 0.2	20
514506	CBD-11-07	126	3		< 0.2	11
514507	CBD-11-07	127	3		< 0.2	11
514508	CBD-11-07	128	5		< 0.2	13
514509	CBD-11-07	129	3	2.1	< 0.2	13
514510	CBD-11-07	130	4		< 0.2	17
514511	CBD-11-07	131	9		< 0.2	23
514512	CBD-11-07	132	3	1.8	< 0.2	30
514513	CBD-11-07	133	16		< 0.2	61

Chem #	DDH#	Sample	Mo	Ag	In	Sn
514514	CBD-11-07	134	147	-	< 0.2	56
514515	CBD-11-07	135	153		< 0.2	52
514516	CBD-11-07	136			< 0.2	61
514517	CBD-11-07	137	85		< 0.2	71
514518	CBD-11-07	138	16		< 0.2	30
514519	CBD-11-07	139	72		< 0.2	57
514520	CBD-11-07	140	14		< 0.2	60
514521	CBD-11-07	141	17		< 0.2	56
514522	CBD-11-07	142	79		< 0.2	50
514523	CBD-11-07	143	15		< 0.2	67
514524	CBD-11-07	144	3		< 0.2	77
514525	CBD-11-07	145	17		< 0.2	22
514526	CBD-11-07	146	7	1.9	< 0.2	10
514527	CBD-11-07	147	3	1.7	< 0.2	9
514528	CBD-11-07	148	4	2	< 0.2	13
514529	CBD-11-07	149	90		< 0.2	69
514530	CBD-11-07	150	144		< 0.2	71
514531	CBD-11-07	151	181		< 0.2	71
514532	CBD-11-07	152	192		< 0.2	89
514533	CBD-11-07	153	120		< 0.2	73
514534	CBD-11-07	154	171		< 0.2	79
514535	CBD-11-07	155	190		< 0.2	71
514536	CBD-11-07	156	158		< 0.2	79
514537	CBD-11-07	157	6	2.1	< 0.2	21
514538	CBD-11-07	158	20	2	< 0.2	39
514539	CBD-11-07	159	37		< 0.2	130
514540	CBD-11-07	160	21		< 0.2	47
514541	CBD-11-07	161	16	2.7	< 0.2	61
514542	CBD-11-07	162	22		< 0.2	71
514543	CBD-11-07	163	30		< 0.2	85
514544	CBD-11-07	164	9		< 0.2	40
514545	CBD-11-07	165	5		< 0.2	36
514546	CBD-11-07	166	2		< 0.2	25
514547	CBD-11-07	167	5		< 0.2	20
514548	CBD-11-07	168	2		< 0.2	15
514549	CBD-11-07	169	8		< 0.2	47
514550	CBD-11-07	170	4		< 0.2	32
514551	CBD-11-07	171	6		< 0.2	52
514552	CBD-11-07	172	3		< 0.2	11
514553	CBD-11-07	173	6		< 0.2	26
514554	CBD-11-07	174	6		< 0.2	23
514555	CBD-11-07	175	12		< 0.2	25
514556	CBD-11-07	176	4		< 0.2	16
514557	CBD-11-07	177	4		< 0.2	19
514558	CBD-11-07	178	18		< 0.2	12
514559	CBD-11-07	179	4	1.5	< 0.2	12

Chem #	DDH#	Sample	Mo	Ag	In	Sn
514560	CBD-11-07	180			< 0.2	50
514561	CBD-11-07	181	2	1.9	< 0.2	17
514562	CBD-11-07	182			< 0.2	21
514563	CBD-11-07	183			< 0.2	26
514564	CBD-11-07	184			< 0.2	48
514565	CBD-11-07	185	_		< 0.2	18
514566	CBD-11-07	186			< 0.2	17
514567	CBD-11-07	187	8		< 0.2	26
514568	CBD-11-07	188	9		< 0.2	36
514569	CBD-11-07	189	15		< 0.2	50
514570	CBD-11-07	190	80		< 0.2	46
514570	CBD-11-07	191	76		< 0.2	98
514571	CBD-11-07	191			< 0.2	18
514572	CBD-11-07	193	62		< 0.2	61
514574	CBD-11-07	193		6	< 0.2	42
514575	CBD-11-07	194		0	< 0.2	83
514576	CBD-11-07	193			< 0.2	59
514577	CBD-11-07	190	21		< 0.2	74
514578	CBD-11-07	197	10		< 0.2	52
514579	CBD-11-07	198	25		< 0.2	43
514579	CBD-11-07	200			< 0.2	39
514581	CBD-11-07	200	5		< 0.2	
514581	CBD-11-07	201			< 0.2	66 35
514583	CBD-11-07	202			< 0.2	18
514584	CBD-11-07	203	21		< 0.2	72
514585	CBD-11-07	204			< 0.2	32
514586	CBD-11-07	203			< 0.2	28
514587	CBD-11-07	200	11		< 0.2	95
514588	CBD-11-07	207		2.1	< 0.2	65
514589	CBD-11-07	208		3.1	< 0.2	106
514590	CBD-11-07	210	7		< 0.2	63
514590	CBD-11-07	210	3		< 0.2	23
514591	CBD-11-07	211			< 0.2	44
514593	CBD-11-07	212			< 0.2	17
514594	CBD-11-07	213			< 0.2	11
514595	CBD-11-07	214	3		< 0.2	10
514596					< 0.2	13
514596	CBD-11-07 CBD-11-07	216 217	12		< 0.2	
					< 0.2	106
514598	CBD-11-07	218		1.0		35
514599	CBD-11-07	219		1.8	< 0.2	11
514600	CBD-11-07	220			< 0.2	19
514601	CBD-11-07	221	10	4.4	< 0.2	34
514602	CBD-11-07	222		1.1	< 0.2	22
514603	CBD-11-07	223			< 0.2	55
514604	CBD-11-07	224			< 0.2	39
514605	CBD-11-07	225	16		< 0.2	58

Chem #	DDH#	Sample	Мо	Ag	In	Sn
514606	CBD-11-07	226	3		< 0.2	24
514607	CBD-11-07	227	5		< 0.2	46
514608	CBD-11-07	228	4		< 0.2	23
514609	CBD-11-07	229	4		< 0.2	48
514610	CBD-11-07	230	4	1.7	< 0.2	20
514611	CBD-11-07	231	5		< 0.2	27
514612	CBD-11-07	232	7		< 0.2	35
514613	CBD-11-07	233			< 0.2	78
514614	CBD-11-07	234	6		< 0.2	60
514615	CBD-11-07	235	2		< 0.2	97
514616	CBD-11-07	236	< 2		< 0.2	19
514617	CBD-11-07	237		1.8	< 0.2	8
514618	CBD-11-07	238	< 2		< 0.2	9
514619	CBD-11-07	239	< 2		< 0.2	15
514620	CBD-11-07	240	3		< 0.2	30
514621	CBD-11-07	241	3		< 0.2	31
514622	CBD-11-07	242	4		< 0.2	29
514623	CBD-11-07	243			< 0.2	31
514624	CBD-11-07	244	2		< 0.2	41
514625	CBD-11-07	245	5		< 0.2	53
514626	CBD-11-07	246	3		< 0.2	32
514627	CBD-11-07	247	3		< 0.2	22
514628	CBD-11-07	248	2		< 0.2	26
514629	CBD-11-07	249	3		< 0.2	13
514630	CBD-11-07	250	6		< 0.2	29
514631	CBD-11-07	251	3		< 0.2	37
514632	CBD-11-07	252	3		< 0.2	36
514633	CBD-11-07	253	6		< 0.2	15
514634	CBD-11-07	254	2		< 0.2	12
514635	CBD-11-07	255	2		< 0.2	25
514636	CBD-11-07	256	< 2		< 0.2	28
514637	CBD-11-07	257	2		< 0.2	31
514638	CBD-11-07	258	6		< 0.2	50
514639	CBD-11-07	259	4		< 0.2	34
514640	CBD-11-07	260	2		< 0.2	17
514641	CBD-11-07	261	3		< 0.2	12
514642	CBD-11-07	262	2		< 0.2	15
514643	CBD-11-07	263	3		< 0.2	44
514644	CBD-11-07	264	7		< 0.2	63
514645	CBD-11-07	265	4		< 0.2	27
514646	CBD-11-07	266	3		< 0.2	22
514647	CBD-11-07	267	5		< 0.2	22
514648	CBD-11-07	268			< 0.2	24
514649	CBD-11-07	269	4		< 0.2	38
514650	CBD-11-07	270	4		< 0.2	35
514651	CBD-11-07	271	3		< 0.2	27

Chem #	DDH#	Sample	Mo	Ag	In	Sn
514652	CBD-11-07	272	3		< 0.2	32
514653	CBD-11-07	273	4		< 0.2	36
514654	CBD-11-07	274	3		< 0.2	36
514655	CBD-11-07	275	4		< 0.2	38
514656	CBD-11-07	276	6		< 0.2	48
514657	CBD-11-07	277	3		< 0.2	42
514658	CBD-11-07	278	4		< 0.2	43
514659	CBD-11-07	279	5		< 0.2	42
514660	CBD-11-07	280	3		< 0.2	49
514661	CBD-11-07	281	5		< 0.2	36
514662	CBD-11-07	282	4		< 0.2	30
514663	CBD-11-07	283	5		< 0.2	35
514664	CBD-11-07	284	3		< 0.2	20
514665	CBD-11-07	285	2		< 0.2	19
514666	CBD-11-07	286	2		< 0.2	23
514667	CBD-11-07	287	2		< 0.2	31
514668	CBD-11-07	288	11	3.4	< 0.2	37
514669	CBD-11-07	289	4		< 0.2	25
514670	CBD-11-07	290	< 2	3.1	< 0.2	13
514671	CBD-11-07	291	< 2	3	< 0.2	9
514672	CBD-11-07	292	15	2	< 0.2	9
514673	CBD-11-07	293	12		< 0.2	30

Chem #	DDH#	Sample	Sb	Cs	Ва	Bi
104676	CBD-10-01	1	< 0.5	5.2	352	< 0.4
104677	CBD-10-01	2	< 0.5	6.7	377	< 0.4
104678	CBD-10-01	3	< 0.5	10.4	360	< 0.4
104679	CBD-10-01	4	< 0.5	18.5	311	< 0.4
104680	CBD-10-01	5	< 0.5	11.2	95	< 0.4
104681	CBD-10-01	6	< 0.5	7.1	332	< 0.4
104682	CBD-10-01	7	< 0.5	5.2	342	< 0.4
104683	CBD-10-01	8	< 0.5	6	321	< 0.4
104684	CBD-10-01	9	< 0.5	6.5	253	< 0.4
104685	CBD-10-01	10	< 0.5	8.2	299	< 0.4
104686	CBD-10-01	11	< 0.5	8.7	282	< 0.4
104687	CBD-10-01	12	< 0.5	9	302	< 0.4
104688	CBD-10-01	13	< 0.5	8	181	0.7
104689	CBD-10-01	14	< 0.5	4.5	114	< 0.4
104690	CBD-10-01	15	< 0.5	5.9	297	< 0.4
104691	CBD-10-01	16	< 0.5	4.9	289	< 0.4
104692	CBD-10-01	17	< 0.5	6	286	< 0.4
104693	CBD-10-01	18	< 0.5	6.9	253	< 0.4
104694	CBD-10-01	19	< 0.5	7	88	< 0.4
104695	CBD-10-01	20	< 0.5	6.2	323	< 0.4
104696	CBD-10-01	21	< 0.5	6.8	333	< 0.4
104697	CBD-10-01	22	< 0.5	5.7	173	< 0.4
104698	CBD-10-01	23	< 0.5	5.7	263	< 0.4
104699	CBD-10-01	24	< 0.5	5.4	365	< 0.4
104700	CBD-10-01	25	< 0.5	7.7	357	< 0.4
104701	CBD-10-01	26	< 0.5	5.5	358	< 0.4
104702	CBD-10-01	27	< 0.5	5.6	360	< 0.4
104703	CBD-10-01	28	< 0.5	4.7	370	< 0.4
104704	CBD-10-01	29	< 0.5	4.9	365	< 0.4
104705	CBD-10-01	30	< 0.5	3.8	377	< 0.4
104706	CBD-10-01	31	< 0.5	4.3	391	< 0.4
104707	CBD-10-01	32	< 0.5	4.4	380	< 0.4
104708	CBD-10-01	33				< 0.4
104709	CBD-10-01	34		3.6	300	< 0.4
104710	CBD-10-01	35	< 0.5	5.4	364	< 0.4
104711	CBD-10-01	36		3.9	355	< 0.4
104712	CBD-10-01	37	< 0.5	4	422	< 0.4
104713	CBD-10-01	38	< 0.5	3.5	440	< 0.4
104714	CBD-10-01	39	< 0.5	3	444	< 0.4
104715	CBD-10-01	40	< 0.5	3.1	436	< 0.4
104716	CBD-10-01	41	< 0.5	2.9	435	< 0.4
104717	CBD-10-01	42	< 0.5	2.9	433	< 0.4
104718	CBD-10-01	43	< 0.5	3.1	439	< 0.4
104719	CBD-10-01	44	< 0.5	3.3	433	< 0.4
104720	CBD-10-01	45	< 0.5	5.1	437	< 0.4
104721	CBD-10-01	46	< 0.5	5.6	441	< 0.4

Chem #	DDH#	Sample	Sb	Cs	Ва	Bi
104722	CBD-10-01	47	< 0.5	8.8	388	< 0.4
104723	CBD-10-01	48	< 0.5	9.5	359	< 0.4
104724	CBD-10-01	49	< 0.5	7	361	< 0.4
104725	CBD-10-01	50	< 0.5	5.4	331	< 0.4
104726	CBD-10-01	51	< 0.5	5.2	405	< 0.4
104727	CBD-10-01	52	< 0.5	4.9	342	< 0.4
104728	CBD-10-01	53	< 0.5	3	91	0.5
104729	CBD-10-01	54	< 0.5	2.7	101	< 0.4
104730	CBD-10-01	55	< 0.5	1.6	77	< 0.4
104731	CBD-10-01	56	< 0.5	5.1	396	< 0.4
104732	CBD-10-01	57	< 0.5	4.3	148	< 0.4
104733	CBD-10-01	58	< 0.5	4.9	279	< 0.4
104734	CBD-10-01	59	< 0.5	4	265	< 0.4
104735	CBD-10-01	60	< 0.5	3.7	322	< 0.4
104736	CBD-10-01	61	< 0.5	3.5	378	< 0.4
104737	CBD-10-01	62	< 0.5	4	477	< 0.4
104738	CBD-10-01	63	< 0.5	5.4	344	< 0.4
104739	CBD-10-01	64	< 0.5	7	377	< 0.4
104740	CBD-10-01	65	< 0.5	5.9	569	< 0.4
104741	CBD-10-01	66	< 0.5	8.9	397	< 0.4
104742	CBD-10-01	67	< 0.5	7	129	< 0.4
104743	CBD-10-01	68	< 0.5	11.4	456	< 0.4
104744	CBD-10-01	69	< 0.5	6.2	100	< 0.4
104745	CBD-10-01	70	2.9	6.9	101	< 0.4
104746	CBD-10-01	71	< 0.5	2.4	67	< 0.4
104747	CBD-10-01	72	< 0.5	2.2	63	< 0.4
104748	CBD-10-01	73	< 0.5	2.9	112	0.5
104749	CBD-10-01	74	< 0.5	6.2	318	< 0.4
104750	CBD-10-01	75	< 0.5	6.6	282	< 0.4
104751	CBD-10-01	76	< 0.5	4.8	368	< 0.4
104752	CBD-10-01	77	< 0.5	5	336	< 0.4
104753	CBD-10-01	78	< 0.5	5.5	338	< 0.4
104754	CBD-10-01	79	< 0.5	6	436	< 0.4
104755	CBD-10-01	80	< 0.5	2.7		< 0.4
104756	CBD-10-01	81	< 0.5	3.2	529	< 0.4
104757	CBD-10-01	82	< 0.5	5.2	306	< 0.4
104758	CBD-10-01	83	< 0.5	3.6	98	0.4
104759	CBD-10-01	84	< 0.5	5.8	918	< 0.4
104760	CBD-10-01	85	< 0.5	5.7	276	< 0.4
104761	CBD-10-01	86	< 0.5	5.1	121	< 0.4
104762	CBD-10-01	87	< 0.5	4.3	70	< 0.4
104763	CBD-10-01	88	< 0.5	5.2	90	< 0.4
104764	CBD-10-01	89	< 0.5	3.2	109	< 0.4
104765	CBD-10-01	90	< 0.5	2.6	48	< 0.4
104766	CBD-10-01	91	< 0.5	2.7	64	< 0.4
104767	CBD-10-01	92	< 0.5	5.6	376	< 0.4

Chem #	DDH#	Sample	Sb	Cs	Ва	Bi
104768	CBD-10-01	93	< 0.5	4.9	342	< 0.4
104769	CBD-10-01	94	< 0.5	4.6	432	< 0.4
104770	CBD-10-01	95	< 0.5	5	394	< 0.4
104771	CBD-10-01	96	< 0.5	5.3	362	< 0.4
104772	CBD-10-01	97	< 0.5	7.9	201	< 0.4
104773	CBD-10-01	98	< 0.5	3.5	64	0.7
104774	CBD-10-01	99	< 0.5	6.7	116	0.9
104775	CBD-10-01	100	< 0.5	7.7	115	0.4
104776	CBD-10-01	101	< 0.5	6.4	101	< 0.4
104777	CBD-10-01	102	< 0.5	5.6	45	< 0.4
104778	CBD-10-01	103	< 0.5	5.7	26	0.7
104779	CBD-10-01	104	< 0.5	5.1	58	< 0.4
104780	CBD-10-01	105	< 0.5	6.4	87	0.6
104781	CBD-10-01	106	< 0.5	6.1	57	0.4
104782	CBD-10-01	107	< 0.5	5.7	57	0.6
104783	CBD-10-01	108	< 0.5	3.8	87	0.7
104784	CBD-10-01	109	< 0.5	4.7	53	< 0.4
104785	CBD-10-01	110	< 0.5	11.7	103	0.7
104786	CBD-10-01	111	< 0.5	6.9	293	< 0.4
104787	CBD-10-01	112	< 0.5	7.8	379	< 0.4
104788	CBD-10-01	113	< 0.5	2.1	123	< 0.4
104789	CBD-10-01	114	< 0.5	11.9	663	< 0.4
104790	CBD-10-01	115	< 0.5	3.9	39	< 0.4
104791	CBD-10-01	116	< 0.5	11	273	< 0.4
104792	CBD-10-01	117	< 0.5	9.4	201	0.7
104793	CBD-10-01	118	< 0.5	8.2	317	< 0.4
104794	CBD-10-01	119	< 0.5	3.8	132	< 0.4
104795	CBD-10-01	120	< 0.5	8.8	300	< 0.4
104796	CBD-10-01	121	< 0.5	7.8	200	< 0.4
104797	CBD-10-01	122	< 0.5	9.6	257	< 0.4
104798	CBD-10-01	123	< 0.5	3.7	68	< 0.4
104799	CBD-10-01	124	< 0.5	6.1	112	< 0.4
104800	CBD-10-01	125	< 0.5	10.4	320	< 0.4
416001	CBD-10-01	126	< 0.5	8.9	201	< 0.4
416002	CBD-10-01	127	< 0.5	9.6	206	< 0.4
416003	CBD-10-01	128	< 0.5	9.2	195	< 0.4
416004	CBD-10-01	129	< 0.5	7.6	130	< 0.4
416005	CBD-10-01	130	< 0.5	8	94	0.6
416006	CBD-10-01	131	< 0.5	6.9	174	< 0.4
416007	CBD-10-01	132	< 0.5	5.5	1821	< 0.4
416008	CBD-10-01	133	< 0.5	4	441	< 0.4
416009	CBD-10-01	134	< 0.5	3.8	351	< 0.4
416010	CBD-10-01	135	< 0.5	3	305	< 0.4
416011	CBD-10-01	136	< 0.5	3.1	234	< 0.4
416012	CBD-10-01	137	< 0.5	3.3	256	< 0.4
416013	CBD-10-01	138	< 0.5	3.3	166	< 0.4

Chem #	DDH#	Sample	Sb	Cs	Ва	Bi
416014	CBD-10-01	139	< 0.5	3.3	162	< 0.4
416015	CBD-10-01	140	< 0.5	2.7	118	< 0.4
416016	CBD-10-01	141	< 0.5	3.3	202	< 0.4
416017	CBD-10-01	142	< 0.5	3.8	265	< 0.4
416018	CBD-10-01	143	< 0.5	3.5	295	< 0.4
416019	CBD-10-01	144	< 0.5	4.3	507	< 0.4
416020	CBD-10-01	145	< 0.5	3.6	184	< 0.4
416021	CBD-10-01	146	< 0.5	3.3	109	< 0.4
416022	CBD-10-01	147	< 0.5	3.8	124	0.5
416023	CBD-10-01	148	< 0.5	3.4	111	< 0.4
416024	CBD-10-01	149	< 0.5	2.7	80	< 0.4
416025	CBD-10-01	150	< 0.5	3.5	83	< 0.4
416026	CBD-10-01	151	< 0.5	3.6	104	< 0.4
416027	CBD-10-01	152	< 0.5	3.5	129	< 0.4
416028	CBD-10-01	153	< 0.5	4.8	78	< 0.4
416029	CBD-10-01	154	< 0.5	4.7	100	< 0.4
416030	CBD-10-01	155	< 0.5	3.9	86	< 0.4
416031	CBD-10-01	156	< 0.5	5	104	< 0.4
416032	CBD-10-01	157	< 0.5	3.2	95	< 0.4
416033	CBD-10-01	158	< 0.5	2.7	89	< 0.4
416034	CBD-10-01	159	< 0.5	4.4	80	< 0.4
416035	CBD-10-01	160	< 0.5	4.2	85	< 0.4
416036	CBD-10-01	161	< 0.5	3.9	112	< 0.4
416037	CBD-10-01	162	< 0.5	6	245	< 0.4
416038	CBD-10-01	163	< 0.5	4.7	188	0.9
416039	CBD-10-01	164	< 0.5	3.9	142	< 0.4
416040	CBD-10-01	165	< 0.5	3.9	425	< 0.4
416041	CBD-10-01	166	< 0.5	4	325	< 0.4
416042	CBD-10-01	167	< 0.5	3.5	288	< 0.4
416043	CBD-10-01	168	< 0.5	3.5	336	< 0.4
416044	CBD-10-01	169	< 0.5	3.5	487	< 0.4
416045	CBD-10-01	170	< 0.5	3.8	534	< 0.4
416046	CBD-10-01	171	< 0.5	3.6	306	< 0.4
416047	CBD-10-01	172	< 0.5	3.9	328	< 0.4
416048	CBD-10-01	173	< 0.5	3.6	277	< 0.4
416049	CBD-10-01	174	< 0.5	3.7	332	< 0.4
416050	CBD-10-01	175	< 0.5	4.4	364	< 0.4
416051	CBD-10-01	176	< 0.5	5.3	378	< 0.4
416052	CBD-10-01	177	< 0.5	5.3	137	< 0.4
416053	CBD-10-01	178	< 0.5	4.3	85	< 0.4
416054	CBD-10-01	179	< 0.5	4.9	90	< 0.4
416055	CBD-10-01	180	< 0.5	5.3	87	< 0.4
416056	CBD-10-01	181	< 0.5	3.6	76	< 0.4
416057	CBD-10-01	182	< 0.5	3.1	45	< 0.4
416058	CBD-10-01	183	< 0.5	3	54	0.4
416059	CBD-10-01	184	< 0.5	5.5	172	< 0.4

Chem #	DDH#	Sample	Sb	Cs	Ва	Bi
416060	CBD-10-01	185	< 0.5	2.6	63	0.5
416061	CBD-10-01	186	< 0.5	1.7	33	0.5
416062	CBD-10-01	187	< 0.5	5.3	165	< 0.4
416063	CBD-10-01	188	< 0.5	3.3	136	< 0.4
416064	CBD-10-01	189	< 0.5	4.7	217	< 0.4
416065	CBD-10-01	190	< 0.5	3.1	99	< 0.4
416066	CBD-10-01	191	< 0.5	2.3	82	< 0.4
416067	CBD-10-01	192	< 0.5	1.7	23	< 0.4
416068	CBD-10-01	193	< 0.5	3.1	31	< 0.4
416069	CBD-10-01	194	< 0.5	2.1	324	< 0.4
416070	CBD-10-01	195	< 0.5	1.2	431	< 0.4
416071	CBD-10-01	196	0.9	1.3	291	< 0.4
416072	CBD-10-01	197	< 0.5	1.3	268	< 0.4
416073	CBD-10-01	198	< 0.5	1.5	228	< 0.4
416074	CBD-10-01	199	< 0.5	2.2	165	< 0.4
416075	CBD-10-01	200	< 0.5	2.5	192	< 0.4
416076	CBD-10-01	201	< 0.5	2	174	< 0.4
416077	CBD-10-01	202	< 0.5	3.5	194	< 0.4
416078	CBD-10-01	203	< 0.5	3.1	160	< 0.4
416079	CBD-10-01	204	< 0.5	3.3	231	< 0.4
416080	CBD-10-01	205	< 0.5	2.7	112	< 0.4
416081	CBD-10-01	206	< 0.5	3.3	228	< 0.4
416082	CBD-10-01	207	< 0.5	3.1	180	< 0.4
416083	CBD-10-01	208	< 0.5	2.6	283	< 0.4
416084	CBD-10-01	209	< 0.5	3.2	1069	< 0.4
416085	CBD-10-01	210	< 0.5	5.3	240	< 0.4
416086	CBD-10-01	211	< 0.5	3	23	< 0.4
416087	CBD-10-01	212	< 0.5	2.3	66	< 0.4
416088	CBD-10-01	213	< 0.5	2.7	48	< 0.4
416089	CBD-10-01	214	< 0.5	3	65	< 0.4
416090	CBD-10-01	215	< 0.5	2.9	138	< 0.4
416091	CBD-10-01	216	< 0.5	2.6	95	< 0.4
416092	CBD-10-01	217	< 0.5	2.4	50	< 0.4
416093	CBD-10-01	218	< 0.5	2.5	51	< 0.4
416094	CBD-10-01	219	< 0.5	3.5	54	< 0.4
416095	CBD-10-01	220	< 0.5	4.2	260	< 0.4
416096	CBD-10-01	221	< 0.5	3.5	180	0.6
416097	CBD-10-01	222	< 0.5	3.3	115	0.5
416098	CBD-10-01	223	< 0.5	3.8	135	< 0.4
416099	CBD-10-01	224	< 0.5	4.2	244	0.9
416100	CBD-10-01	225	< 0.5	3.4	137	0.4
416101	CBD-10-01	226	3.2	3.4	141	< 0.4
416102	CBD-10-01	227	< 0.5	3.7	176	< 0.4
416103	CBD-10-01	228	< 0.5	2.7	159	< 0.4
416104	CBD-10-01	229	< 0.5	3	180	< 0.4
416105	CBD-10-01	230	< 0.5	3.2	157	< 0.4

Chem #	DDH#	Sample	Sb	Cs	Ва	Bi
416106	CBD-10-01	231	< 0.5	3.9	187	< 0.4
416107	CBD-10-01	232	< 0.5	3.8	413	< 0.4
416108	CBD-10-01	233	< 0.5	5	480	< 0.4
416109	CBD-10-01	234	< 0.5	4.2	341	< 0.4
416110	CBD-10-01	235	< 0.5	4	201	< 0.4
416111	CBD-10-01	236	< 0.5	3.6	124	< 0.4
416112	CBD-10-01	237	< 0.5	3.8	154	< 0.4
416113	CBD-10-01	238	0.8	3.4	165	< 0.4
416114	CBD-10-01	239	1.5	4.2	169	0.6
416115	CBD-10-01	240	< 0.5	1.7	57	< 0.4
416116	CBD-10-01	241	< 0.5	3.7	141	< 0.4
416117	CBD-10-01	242	< 0.5	3.9	142	< 0.4
416118	CBD-10-01	243	< 0.5	3.9	257	< 0.4
416119	CBD-10-01	244	< 0.5	2.6	129	< 0.4
416120	CBD-10-01	245	< 0.5	3.2	121	0.8
416121	CBD-10-01	246	< 0.5	4.9	238	< 0.4
416122	CBD-10-01	247	< 0.5	2.7	72	1.6
416123	CBD-10-01	248	< 0.5	5.1	113	< 0.4
416124	CBD-10-01	249	< 0.5	6.4	269	< 0.4
416125	CBD-10-01	250	< 0.5	3.5	133	0.5
416126	CBD-10-01	251	< 0.5	7.7	194	< 0.4
416127	CBD-10-01	252	< 0.5	3.2	109	< 0.4
416128	CBD-10-01	253	< 0.5	6.3	194	< 0.4
416129	CBD-10-01	254	< 0.5	4.5	149	< 0.4
416130	CBD-10-01	255	< 0.5	4.3	134	< 0.4
416131	CBD-10-01	256	< 0.5	4.9	157	< 0.4
416132	CBD-10-01	257	< 0.5	4.7	137	< 0.4
416133	CBD-10-01	258	< 0.5	3.3	117	< 0.4
416134	CBD-10-01	259	< 0.5	3.6	124	< 0.4
416135	CBD-10-01	260	< 0.5	4.3	154	< 0.4
416136	CBD-10-01	261	< 0.5	3.2	121	< 0.4
416137	CBD-10-01	262	< 0.5	3.4	132	0.5
416138	CBD-10-01	263		2.8	87	0.5
416139	CBD-10-01	264		2.8	97	0.4
416140	CBD-10-01	265	< 0.5	3.6	138	< 0.4
416141	CBD-10-01	266		3.9	195	0.5
416142	CBD-10-01	267	< 0.5	3.3	187	< 0.4
416143	CBD-10-01	268	0.6	3.8	192	< 0.4
416144	CBD-10-01	269	< 0.5	2.8	106	0.6
416145	CBD-10-01	270	< 0.5	4.7	123	< 0.4
416146	CBD-10-01	271	< 0.5	7.4	158	< 0.4
416147	CBD-10-01	272	< 0.5	8.8	195	< 0.4
416148	CBD-10-01	273	< 0.5	7.6	225	< 0.4
416149	CBD-10-01	274	< 0.5	5.1	202	< 0.4
416150	CBD-10-01	275	< 0.5	4.4	230	< 0.4
416151	CBD-10-01	276	< 0.5	7.7	235	< 0.4

Chem #	DDH#	Sample	Sb	Cs	Ва		Bi
416152	CBD-10-01	277		7.7	213		< 0.4
416153	CBD-10-01	278	< 0.5	6.7	276		< 0.4
416154	CBD-10-01	279	< 0.5	12.9	403		< 0.4
512817	CBD-11-02	1	< 0.5	5.1	426	< 0.4	
512818	CBD-11-02	2	< 0.5	3.9	429	< 0.4	
512819	CBD-11-02	3	< 0.5	5.3	393	< 0.4	
512820	CBD-11-02	4	< 0.5	4.3	408	< 0.4	
512821	CBD-11-02	5	< 0.5	4.9	401	< 0.4	
512822	CBD-11-02	6	< 0.5	6.2	400	< 0.4	
512823	CBD-11-02	7	< 0.5	5.5	403	< 0.4	
512824	CBD-11-02	8	< 0.5	5.4	460	< 0.4	
512825	CBD-11-02	9	< 0.5	5.2	402	< 0.4	
512826	CBD-11-02	10	< 0.5	2.9	408	< 0.4	
512827	CBD-11-02	11	< 0.5	3.8	430	< 0.4	
512828	CBD-11-02	12	< 0.5	3.5	393	< 0.4	
512829	CBD-11-02	13	< 0.5	5.1	109		1.1
512830	CBD-11-02	14	< 0.5	4.8	365	< 0.4	
512831	CBD-11-02	15	< 0.5	5.2	337	< 0.4	
512832	CBD-11-02	16	< 0.5	5.1	374	< 0.4	
512833	CBD-11-02	17	< 0.5	4.8	342	< 0.4	
512834	CBD-11-02	18	< 0.5	5.6	391	< 0.4	
512835	CBD-11-02	19	< 0.5	2.7	144		0.8
512836	CBD-11-02	20	< 0.5	4.2	313	< 0.4	
512837	CBD-11-02	21	< 0.5	4.4	333	< 0.4	
512838	CBD-11-02	22	< 0.5	4.2	138		1.6
512839	CBD-11-02	23	< 0.5	4.1	253		0.9
512840	CBD-11-02	24	< 0.5	3.5	337	< 0.4	
512841	CBD-11-02	25	< 0.5	3.5	351		0.4
512842	CBD-11-02		< 0.5	3.3		< 0.4	
512843	CBD-11-02		< 0.5	3.6		< 0.4	
512844	CBD-11-02	28	< 0.5	3.7	433	< 0.4	
512845	CBD-11-02		< 0.5	3.7		< 0.4	
512846	CBD-11-02		< 0.5	3.8	276		1.1
512847	CBD-11-02		< 0.5	3.7			1.4
512848	CBD-11-02		< 0.5	4.1		< 0.4	
512849	CBD-11-02		< 0.5	3.4		< 0.4	
512850	CBD-11-02		< 0.5	3.3		< 0.4	
512851	CBD-11-02		< 0.5	4.4		< 0.4	
512852	CBD-11-02		< 0.5	4.3	257		0.5
512853	CBD-11-02		< 0.5	6.1	302		1.1
512854	CBD-11-02		< 0.5	4.8	285		1.1
512855	CBD-11-02		< 0.5	3.9	318		1
512856	CBD-11-02		< 0.5	6.4	288		0.4
512857	CBD-11-02		< 0.5	5.2	120		1.3
512858	CBD-11-02		< 0.5	10.4		< 0.4	
512859	CBD-11-02	43	0.8	4.8	59		1.2

Chem #	DDH#	Sample	Sb	Cs	Ва	Bi
512860	CBD-11-02	44		6.9	75	0.6
512861	CBD-11-02	45	3.8	6	87	< 0.4
512862	CBD-11-02	46	0.6	3.4	55	1.1
512863	CBD-11-02	47	< 0.5	11.1	250	< 0.4
512864	CBD-11-02	48	< 0.5	6.6	251	< 0.4
512865	CBD-11-02	49	< 0.5	6.5	257	< 0.4
512866	CBD-11-02	50	< 0.5	8.2	366	< 0.4
512867	CBD-11-02	51	0.9	2.8	62	3.5
512868	CBD-11-02	52	0.8	4	97	2.8
512869	CBD-11-02	53	0.5	3.7	75	1.4
512870	CBD-11-02	54	< 0.5	1.6	57	0.7
512871	CBD-11-02	55	< 0.5	5.2	342	0.4
512872	CBD-11-02	56	< 0.5	3.9	358	< 0.4
512873	CBD-11-02	57	< 0.5	4.2	362	< 0.4
512874	CBD-11-02	58	< 0.5	4.5	381	< 0.4
512875	CBD-11-02	59	< 0.5	5.3	390	< 0.4
512876	CBD-11-02	60	< 0.5	3.1	206	2.8
512877	CBD-11-02		< 0.5	3.8	249	0.5
512878	CBD-11-02	62	1.7	3.8	117	0.6
512879	CBD-11-02	63	0.6	3.4	105	< 0.4
512880	CBD-11-02	64		4	171	0.7
512881	CBD-11-02	65	< 0.5	6.5		< 0.4
512882	CBD-11-02		< 0.5	4.4		< 0.4
512883	CBD-11-02		< 0.5	8.4	117	2.3
512884	CBD-11-02	68	< 0.5	6.8	137	0.8
512885	CBD-11-02	69	< 0.5	6.1	92	1.9
512886	CBD-11-02	70	< 0.5	5.8	85	1.5
512887	CBD-11-02		< 0.5	5	318	1.1
512888	CBD-11-02	72	< 0.5	5.9	141	1.6
512889	CBD-11-02	73	< 0.5	3.1	180	0.5
512890	CBD-11-02	74	< 0.5	5.8	258	0.8
512891	CBD-11-02		< 0.5	8.8		< 0.4
512892	CBD-11-02	76	< 0.5	8.6	239	1.1
512893	CBD-11-02	77	< 0.5	7.9	330	< 0.4
512894	CBD-11-02	78	< 0.5	6.5	269	< 0.4
512895	CBD-11-02		< 0.5	5.4	232	0.7
512896	CBD-11-02	80	< 0.5	7.9	284	0.4
512897	CBD-11-02		< 0.5	7.7		< 0.4
512898	CBD-11-02	82	< 0.5	8.1		< 0.4
512899	CBD-11-02	83	< 0.5	9.2		< 0.4
512900	CBD-11-02	84	0.5	6.6		< 0.4
512901	CBD-11-02		< 0.5	6.1		< 0.4
512902	CBD-11-02		< 0.5	6.1		< 0.4
512903	CBD-11-02		< 0.5	6		< 0.4
512904	CBD-11-02		< 0.5	6.4		< 0.4
512905	CBD-11-02	89		5.5		< 0.4

Chem #	DDH#	Sample	Sb	Cs	Ва	Bi
512906	CBD-11-02	90	5.3	2.6	24	< 0.4
512907	CBD-11-02	91	1.5	3.3	71	< 0.4
512908	CBD-11-02	92	4.5	2.8	44	< 0.4
512909	CBD-11-02	93	5.4	3.4	106	< 0.4
512910	CBD-11-02	94	2.1	2.9	74	< 0.4
512911	CBD-11-02	95	2.2	2.9	30	< 0.4
512912	CBD-11-02	96	1.9	5.2	129	< 0.4
512913	CBD-11-02	97	0.5	8.2	223	< 0.4
512914	CBD-11-02	98	0.8	8.7	139	< 0.4
512915	CBD-11-02	99	0.7	4.8	210	< 0.4
512916	CBD-11-02	100	< 0.5	4.5	241	0.7
512917	CBD-11-02	101	< 0.5	3.5	366	0.4
512918	CBD-11-02	102	< 0.5	2.9	212	0.8
512919	CBD-11-02	103	< 0.5	3.5	178	< 0.4
512920	CBD-11-02	104	< 0.5	3.3	182	0.9
512921	CBD-11-02	105	< 0.5	3.6	326	< 0.4
512922	CBD-11-02	106	< 0.5	3.1	293	< 0.4
512923	CBD-11-02	107	1	1.5	175	< 0.4
512924	CBD-11-02	108	< 0.5	3.3	160	0.7
512925	CBD-11-02	109	< 0.5	3.3	151	< 0.4
512926	CBD-11-02	110	0.5	3.2	109	< 0.4
512927	CBD-11-02	111	0.5	3.7	169	< 0.4
512928	CBD-11-02	112	< 0.5	3.9	145	< 0.4
512929	CBD-11-02	113	0.5	4.7	232	< 0.4
512930	CBD-11-02	114	< 0.5	5.3	256	< 0.4
512931	CBD-11-02	115	< 0.5	4.7	128	0.6
512932	CBD-11-02	116	< 0.5	5.2	179	< 0.4
512933	CBD-11-02	117	< 0.5	6.8	377	0.5
512934	CBD-11-02	118	< 0.5	5.1	119	1.4
512935	CBD-11-02	119		4	75	1
512936	CBD-11-02	120	< 0.5	5.3	99	0.8
512937	CBD-11-02	121	_	6.5	137	0.6
512938	CBD-11-02		< 0.5	5.6		
512939	CBD-11-02	123	0.5	3.2	68	< 0.4
512940	CBD-11-02	124	< 0.5	4.8	155	1.1
512941	CBD-11-02		< 0.5	5.4	438	< 0.4
512942	CBD-11-02	126		5.7	538	< 0.4
512943	CBD-11-02	127	< 0.5	4.8	208	
512944	CBD-11-02	128	0.7	4.2	300	< 0.4
512945	CBD-11-02	129	0.8	4.1		< 0.4
512946	CBD-11-02	130		5		< 0.4
512947	CBD-11-02	131	0.9	3.6	110	< 0.4
512948	CBD-11-02	132		4.2		< 0.4
512949	CBD-11-02	133	0.5	2.7		< 0.4
512950	CBD-11-02	134		4.1	167	< 0.4
512951	CBD-11-02	135	1	3.9	81	< 0.4

Chem #	DDH#	Sample	Sb	Cs	Ва	Bi
512952	CBD-11-02	136	1.8	3.7	81	< 0.4
512953	CBD-11-02	137	1.3	4.3	73	< 0.4
512954	CBD-11-02	138	0.9	4.4	118	< 0.4
512955	CBD-11-02	139	1.2	3.3	165	< 0.4
512956	CBD-11-02	140	0.8	3.7	208	< 0.4
512957	CBD-11-02	141	0.6	4.4	150	0.9
512958	CBD-11-02	142	0.5	4.1	343	< 0.4
512959	CBD-11-02	143	1	4.7	795	0.4
512960	CBD-11-02	144	0.5	2.9	302	2.2
512961	CBD-11-02	145	0.7	2.5	217	1.4
512962	CBD-11-02	146	0.7	3.3	146	0.7
512963	CBD-11-02	147	0.9	4.1	267	0.4
512964	CBD-11-02	148	0.6	2.7	78	< 0.4
512965	CBD-11-02	149	0.6	3.3	287	1
512966	CBD-11-02	150	0.8	2.5	296	0.9
512967	CBD-11-02	151	0.6	2.4	118	1.1
512968	CBD-11-02	152	0.7	2.7	180	1.1
512969	CBD-11-02	153	0.7	4.1	317	< 0.4
512970	CBD-11-02	154	0.8	6.3	166	< 0.4
512971	CBD-11-02	155	0.8	4.8	78	< 0.4
512972	CBD-11-02	156	0.7	3.7	58	< 0.4
512973	CBD-11-02	157	1	5	86	< 0.4
512974	CBD-11-02	158	0.9	4	84	< 0.4
512975	CBD-11-02	159	0.6	5.4	109	< 0.4
512976	CBD-11-02	160	0.7	3.2	140	< 0.4
512977	CBD-11-02	161	0.7	4.6	184	< 0.4
512978	CBD-11-02	162	0.6	3.8	138	< 0.4
512979	CBD-11-02	163	0.6	5.1	279	0.5
512980	CBD-11-02	164	< 0.5	4.9	258	0.7
512981	CBD-11-02	165	< 0.5	3.4	181	0.6
512982	CBD-11-02	166	0.5	2.9	28	< 0.4
512983	CBD-11-02		< 0.5	2.1	42	0.5
512984	CBD-11-02	168	< 0.5	2.4	98	0.4
512985	CBD-11-02		< 0.5	2.9	238	0.7
512986	CBD-11-02	170	< 0.5	2.4	304	0.9
512987	CBD-11-02	171		1.9	593	< 0.4
512988	CBD-11-02	172		1.4	403	< 0.4
512989	CBD-11-02	173	< 0.5	2.7	198	0.8
512990	CBD-11-02	174	0.6	2.3	158	0.9
512991	CBD-11-02	175	0.6	2.8	150	0.8
512992	CBD-11-02	176	0.6	2.1	171	1.3
512993	CBD-11-02	177		2.4		< 0.4
512994	CBD-11-02	178		1.9	358	0.8
512995	CBD-11-02		< 0.5	1.7	238	0.6
512996	CBD-11-02		< 0.5	1.4	160	0.7
512997	CBD-11-02	181	< 0.5	2.8	60	0.8

Chem #	DDH#	Sample	Sb	Cs	Ва	Bi
512998	CBD-11-02	182	< 0.5	3.6	118	< 0.4
512999	CBD-11-02	183	< 0.5	3.7	94	0.4
513000	CBD-11-02	184	< 0.5	3.1	135	< 0.4
513001	CBD-11-02	185	< 0.5	2.6	164	0.6
513002	CBD-11-02	186	< 0.5	3.2	72	0.5
513003	CBD-11-02		< 0.5	2.9	128	< 0.4
513004	CBD-11-02	188	0.7	3.6	200	0.5
513005	CBD-11-02	189	< 0.5	4.1	232	0.7
513006	CBD-11-02	190	< 0.5	3.3	147	0.8
513007	CBD-11-02	191	< 0.5	3	97	0.8
513008	CBD-11-02		< 0.5	2.7	105	0.9
513009	CBD-11-02		< 0.5	4.1	167	0.7
513010	CBD-11-02	194	< 0.5	3.5	154	0.5
513011	CBD-11-02	195	0.5	3.4	151	1
513012	CBD-11-02	196		3.3	210	0.5
513013	CBD-11-02	197	< 0.5	4.1	253	0.5
513014	CBD-11-02	198		4.2		< 0.4
513015	CBD-11-02	199		4	166	
513016	CBD-11-02		< 0.5	1.9	120	0.9
513017	CBD-11-02		< 0.5	3.7	170	0.6
513018	CBD-11-02		< 0.5	3.3	140	0.6
513019	CBD-11-02		< 0.5	3.3	140	0.7
513020	CBD-11-02	204		1.2	43	1
513021	CBD-11-02		< 0.5	3.8	150	0.7
513022	CBD-11-02	206		3.5	136	1.2
513023	CBD-11-02		< 0.5	4	220	0.7
513024	CBD-11-02		< 0.5	2.4	86	1.1
513025	CBD-11-02	209		2.7	88	1.4
513026	CBD-11-02		< 0.5	3.4	117	1
513027	CBD-11-02	211		5.7	180	0.4
513028	CBD-11-02		< 0.5	4.4	139	0.6
513029	CBD-11-02		< 0.5	4	150	0.7
513030	CBD-11-02		< 0.5	3.5		
513031	CBD-11-02		< 0.5	3	167	0.9
513032	CBD-11-02		< 0.5	1.8	60	1.6
513033	CBD-11-02		< 0.5	3	120	1.6
513034	CBD-11-02		< 0.5	5.3	176	0.5
513035	CBD-11-02	219		3.2	148	1
513036	CBD-11-02	220		2.6		
513037	CBD-11-02		< 0.5	4.7	185	
513037	CBD-11-02		< 0.5	3.2		< 0.4
513039	CBD-11-02		< 0.5	3.7		< 0.4
513040	CBD-11-02	224		3.5		< 0.4
513041	CBD-11-02		< 0.5	4.1		< 0.4
513041	CBD-11-02		< 0.5	3.4	164	0.9
513043	CBD-11-02		< 0.5	2.9	_	< 0.4
213043	CDD-11-07		` 0.5	2.3	207	` U.4

Chem #	DDH#	Sample	Sb	Cs	Ва	Bi
513044	CBD-11-02	228	< 0.5	3.3	166	0.7
513045	CBD-11-02	229	0.5	3	161	0.7
513046	CBD-11-02	230	< 0.5	3.5	230	< 0.4
513047	CBD-11-02	231	< 0.5	2.9	223	< 0.4
513048	CBD-11-02	232	< 0.5	3.7	237	< 0.4
514381	CBD-11-07	1	< 0.5	10.6	78	< 0.4
514382	CBD-11-07	2	< 0.5	5.7	180	< 0.4
514383	CBD-11-07	3	< 0.5	6.5	126	< 0.4
514384	CBD-11-07	4	< 0.5	6.9	171	< 0.4
514385	CBD-11-07	5	< 0.5	3.2	56	< 0.4
514386	CBD-11-07	6	< 0.5	12.3	45	< 0.4
514387	CBD-11-07	7	< 0.5	23.3	62	< 0.4
514388	CBD-11-07	8	< 0.5	21.1	95	< 0.4
514389	CBD-11-07	9	< 0.5	5.6	536	< 0.4
514390	CBD-11-07	10	< 0.5	3.2	133	< 0.4
514391	CBD-11-07	11	< 0.5	3.9	265	< 0.4
514392	CBD-11-07	12	< 0.5	4	174	< 0.4
514393	CBD-11-07	13	< 0.5	4.8	205	< 0.4
514394	CBD-11-07	14	< 0.5	3.8	323	< 0.4
514395	CBD-11-07	15	< 0.5	14.1	242	< 0.4
514396	CBD-11-07	16	< 0.5	4.5	349	< 0.4
514397	CBD-11-07	17	< 0.5	5.6	248	< 0.4
514398	CBD-11-07	18	< 0.5	19.6	104	< 0.4
514399	CBD-11-07	19	< 0.5	24.9	94	< 0.4
514400	CBD-11-07	20	< 0.5	5.1	128	< 0.4
514401	CBD-11-07	21	< 0.5	5.6	296	< 0.4
514402	CBD-11-07	22	< 0.5	2.9	157	< 0.4
514403	CBD-11-07	23	0.5	5.2	196	< 0.4
514404	CBD-11-07	24	< 0.5	3	156	< 0.4
514405	CBD-11-07	25	< 0.5	9.3	183	< 0.4
514406	CBD-11-07	26	< 0.5	4.3	250	< 0.4
514407	CBD-11-07	27	< 0.5	4.7	261	< 0.4
514408	CBD-11-07	28	< 0.5	9.8	312	< 0.4
514409	CBD-11-07	29	< 0.5	4.3	347	< 0.4
514410	CBD-11-07	30	< 0.5	4.4	323	< 0.4
514411	CBD-11-07	31	< 0.5	4.4	294	< 0.4
514412	CBD-11-07	32	< 0.5	5.3	281	< 0.4
514413	CBD-11-07	33	< 0.5	6.3	200	0.5
514414	CBD-11-07	34	< 0.5	4.3	70	0.6
514415	CBD-11-07	35	< 0.5	4	79	< 0.4
514416	CBD-11-07	36	< 0.5	2.4	47	< 0.4
514417	CBD-11-07	37	< 0.5	4.9	123	< 0.4
514418	CBD-11-07	38	< 0.5	6.6	302	< 0.4
514419	CBD-11-07	39	< 0.5	5.8	154	0.6
514420	CBD-11-07	40	< 0.5	6.2	334	< 0.4
514421	CBD-11-07	41	< 0.5	4.4	116	0.6

Chem #	DDH#	Sample	Sb	Cs	Ва	В
514422	CBD-11-07	42	< 0.5	6.2	288	< 0.4
514423	CBD-11-07		< 0.5	5.2	84	0.5
514424	CBD-11-07	44	< 0.5	4.3	58	< 0.4
514425	CBD-11-07	45	< 0.5	4.2	78	0.4
514426	CBD-11-07	46	< 0.5	7.1	222	0.6
514427	CBD-11-07		< 0.5	6.3	147	< 0.4
514428	CBD-11-07	48	< 0.5	4	96	< 0.4
514429	CBD-11-07	49	< 0.5	6.3		< 0.4
514430	CBD-11-07	50	< 0.5	3.8	106	< 0.4
514431	CBD-11-07	51	< 0.5	7.8	158	0.6
514432	CBD-11-07	52	< 0.5	34.6	144	< 0.4
514433	CBD-11-07	53	< 0.5	9.8	214	< 0.4
514434	CBD-11-07	54	< 0.5	5.8	267	< 0.4
514435	CBD-11-07	55	< 0.5	3	253	< 0.4
514436	CBD-11-07	56	< 0.5	3.6	341	< 0.4
514437	CBD-11-07	57	< 0.5	3.6	303	< 0.4
514438	CBD-11-07	58	< 0.5	3.7	279	< 0.4
514439	CBD-11-07	59	< 0.5	3.9	327	< 0.4
514440	CBD-11-07	60	< 0.5	3.9	155	0.5
514441	CBD-11-07	61	< 0.5	4.4	378	< 0.4
514442	CBD-11-07	62	< 0.5	2.5	384	< 0.4
514443	CBD-11-07	63	< 0.5	3.3	359	< 0.4
514444	CBD-11-07	64	< 0.5	3.7	399	< 0.4
514445	CBD-11-07	65	< 0.5	3.9	402	< 0.4
514446	CBD-11-07	66	< 0.5	3.8	366	< 0.4
514447	CBD-11-07	67	< 0.5	4.2	384	< 0.4
514448	CBD-11-07	68	< 0.5	4.2	352	< 0.4
514449	CBD-11-07	69	< 0.5	4.9	337	< 0.4
514450	CBD-11-07	70	< 0.5	5.7	455	< 0.4
514451	CBD-11-07	71	< 0.5	6.1	446	< 0.4
514452	CBD-11-07	72	< 0.5	5.1	420	< 0.4
514453	CBD-11-07	73	< 0.5	3.2	400	< 0.4
514454	CBD-11-07	74	< 0.5	3.4	455	< 0.4
514455	CBD-11-07	75	< 0.5	3.3	462	< 0.4
514456	CBD-11-07	76	< 0.5	3.7	451	< 0.4
514457	CBD-11-07	77	< 0.5	2.6	467	< 0.4
514458	CBD-11-07	78	< 0.5	2.6	473	< 0.4
514459	CBD-11-07	79	< 0.5	3	362	< 0.4
514460	CBD-11-07	80	< 0.5	2.8	420	< 0.4
514461	CBD-11-07	81	< 0.5	2.7	384	< 0.4
514462	CBD-11-07	82	< 0.5	2.9	427	< 0.4
514463	CBD-11-07	83	< 0.5	3.1	368	< 0.4
514464	CBD-11-07	84	< 0.5	4.3	372	< 0.4
514465	CBD-11-07	85	< 0.5	5.7	374	< 0.4
514466	CBD-11-07	86	< 0.5	3.8	126	< 0.4
514467	CBD-11-07	87	< 0.5	9.1	204	< 0.4

Chem #	DDH#	Sample	Sb	Cs	Ва	Bi
514468	CBD-11-07	88	< 0.5	10.9	390	< 0.4
514469	CBD-11-07	89	< 0.5	7.9	358	0.5
514470	CBD-11-07	90	< 0.5	5.1	305	< 0.4
514471	CBD-11-07	91	< 0.5	3.7	280	< 0.4
514472	CBD-11-07	92	< 0.5	4.2	264	< 0.4
514473	CBD-11-07	93	< 0.5	4.3	299	< 0.4
514474	CBD-11-07	94	< 0.5	5	306	< 0.4
514475	CBD-11-07	95	< 0.5	6.1	331	< 0.4
514476	CBD-11-07	96	< 0.5	9.8	280	< 0.4
514477	CBD-11-07	97	13.4	5.6	52	< 0.4
514478	CBD-11-07	98	2.7	3.5	168	< 0.4
514479	CBD-11-07	99	< 0.5	3.6	75	2.7
514480	CBD-11-07	100	< 0.5	8.6	172	1
514481	CBD-11-07	101	< 0.5	2.8	87	< 0.4
514482	CBD-11-07	102	< 0.5	8.3	198	0.9
514483	CBD-11-07	103	< 0.5	5.5	258	< 0.4
514484	CBD-11-07	104	< 0.5	5.6	288	< 0.4
514485	CBD-11-07	105	< 0.5	4.7	267	< 0.4
514486	CBD-11-07	106	< 0.5	5.9	130	0.9
514487	CBD-11-07	107	< 0.5	5.5	93	0.6
514488	CBD-11-07	108	< 0.5	3	84	0.4
514489	CBD-11-07	109	< 0.5	5.2	262	< 0.4
514490	CBD-11-07	110	< 0.5	7	255	0.7
514491	CBD-11-07	111	< 0.5	5.3	330	< 0.4
514492	CBD-11-07	112	< 0.5	3.3	110	0.9
514493	CBD-11-07	113	< 0.5	2.7	56	1
514494	CBD-11-07	114	< 0.5	6.4	162	1
514495	CBD-11-07	115	< 0.5	5.1	295	< 0.4
514496	CBD-11-07	116	< 0.5	4.9	101	< 0.4
514497	CBD-11-07	117	< 0.5	5.7	141	< 0.4
514498	CBD-11-07	118	< 0.5	5	148	< 0.4
514499	CBD-11-07	119	< 0.5	3.6	116	0.7
514500	CBD-11-07	120	< 0.5	1.9	80	< 0.4
514501	CBD-11-07	121	< 0.5	2.4	97	< 0.4
514502	CBD-11-07	122	< 0.5	4.9	420	< 0.4
514503	CBD-11-07	123	< 0.5	3.7	304	< 0.4
514504	CBD-11-07		< 0.5	4.7	374	< 0.4
514505	CBD-11-07	125	< 0.5	4.9	341	< 0.4
514506	CBD-11-07	126	< 0.5	4.5		< 0.4
514507	CBD-11-07		< 0.5	5.5		< 0.4
514508	CBD-11-07	128	< 0.5	4.7	306	< 0.4
514509	CBD-11-07		< 0.5	5.4	312	< 0.4
514510	CBD-11-07		< 0.5	7.4	371	
514511	CBD-11-07		< 0.5	7	363	< 0.4
514512	CBD-11-07		< 0.5	5.2	251	< 0.4
514513	CBD-11-07	133	< 0.5	4.8	118	2.5

Chem #	DDH#	Sample	Sb	Cs	Ва	Bi
514514	CBD-11-07		< 0.5	8.5	124	3.2
514515	CBD-11-07	135	< 0.5	3.5	77	0.7
514516	CBD-11-07	136	< 0.5	4.2	79	1
514517	CBD-11-07	137	< 0.5	5.3	39	< 0.4
514518	CBD-11-07	138	0.8	10.7	364	1.1
514519	CBD-11-07	139	0.9	4	106	1
514520	CBD-11-07	140	< 0.5	5.6	151	0.8
514521	CBD-11-07		< 0.5	6.3	131	0.7
514522	CBD-11-07	142	< 0.5	4.9	67	0.7
514523	CBD-11-07	143	< 0.5	2.9	72	0.5
514524	CBD-11-07	144	< 0.5	2.3	104	< 0.4
514525	CBD-11-07	145	< 0.5	6.5	288	< 0.4
514526	CBD-11-07	146	< 0.5	6.3	299	< 0.4
514527	CBD-11-07	147	< 0.5	6.3	311	< 0.4
514528	CBD-11-07	148	< 0.5	7.2	296	< 0.4
514529	CBD-11-07	149	< 0.5	2.4	65	3.5
514530	CBD-11-07	150	< 0.5	4.1	96	< 0.4
514531	CBD-11-07	151	< 0.5	5.7	99	< 0.4
514532	CBD-11-07	152	< 0.5	5.8	94	< 0.4
514533	CBD-11-07	153	< 0.5	10.1	126	< 0.4
514534	CBD-11-07	154	< 0.5	7.5	73	< 0.4
514535	CBD-11-07	155	< 0.5	8.4	74	< 0.4
514536	CBD-11-07	156	< 0.5	5.3	98	0.5
514537	CBD-11-07	157	< 0.5	8.7	222	< 0.4
514538	CBD-11-07	158	2.4	6.7	131	< 0.4
514539	CBD-11-07	159	< 0.5	4.2	53	< 0.4
514540	CBD-11-07	160	< 0.5	7	155	< 0.4
514541	CBD-11-07	161	< 0.5	3.8	125	< 0.4
514542	CBD-11-07	162	< 0.5	3.5	118	< 0.4
514543	CBD-11-07	163	< 0.5	5	173	< 0.4
514544	CBD-11-07	164	< 0.5	3.5	1225	< 0.4
514545	CBD-11-07	165	< 0.5	3.4	430	< 0.4
514546	CBD-11-07	166	< 0.5	3.7	157	< 0.4
514547	CBD-11-07	167	< 0.5	3.8	162	< 0.4
514548	CBD-11-07	168	< 0.5	4.1	278	< 0.4
514549	CBD-11-07	169	< 0.5	3	110	< 0.4
514550	CBD-11-07	170	< 0.5	3.2	106	< 0.4
514551	CBD-11-07	171	< 0.5	3.4	108	0.8
514552	CBD-11-07	172	< 0.5	3.5	572	< 0.4
514553	CBD-11-07	173	< 0.5	3.5	174	< 0.4
514554	CBD-11-07	174	< 0.5	3.5	112	< 0.4
514555	CBD-11-07	175	0.9	3.3	296	< 0.4
514556	CBD-11-07	176	< 0.5	3.8	329	< 0.4
514557	CBD-11-07	177	< 0.5	3.8	322	< 0.4
514558	CBD-11-07	178	< 0.5	5.6	640	< 0.4
514559	CBD-11-07	179	< 0.5	3.4	696	< 0.4

Chem #	DDH#	Sample	Sk	Cs	Ва	Bi
514560	CBD-11-07	180	< 0.5	3.3	263	< 0.4
514561	CBD-11-07	181	< 0.5	4.1	549	< 0.4
514562	CBD-11-07	182	< 0.5	3.3	254	< 0.4
514563	CBD-11-07	183	< 0.5	3.8	243	< 0.4
514564	CBD-11-07	184	< 0.5	2.6		< 0.4
514565	CBD-11-07	185	< 0.5	3.5	241	< 0.4
514566	CBD-11-07	186	< 0.5	3.5	184	< 0.4
514567	CBD-11-07	187	< 0.5	3	146	< 0.4
514568	CBD-11-07	188	< 0.5	2.9	106	< 0.4
514569	CBD-11-07	189	< 0.5	2.4	79	< 0.4
514570	CBD-11-07	190	< 0.5	2.6	92	< 0.4
514571	CBD-11-07	191	0.7	7 2.8	86	< 0.4
514572	CBD-11-07	192	< 0.5	4	135	< 0.4
514573	CBD-11-07	193	1.3	3 4.2	126	< 0.4
514574	CBD-11-07	194	< 0.5	3.7	124	< 0.4
514575	CBD-11-07	195	0.7	7 5.6	77	< 0.4
514576	CBD-11-07	196	7	5.3	93	< 0.4
514577	CBD-11-07	197	< 0.5	3.2	92	< 0.4
514578	CBD-11-07	198	< 0.5	6.9	328	< 0.4
514579	CBD-11-07	199	< 0.5	2.2	223	< 0.4
514580	CBD-11-07	200	< 0.5	4.7	387	0.6
514581	CBD-11-07	201	< 0.5	2.2	114	< 0.4
514582	CBD-11-07	202	< 0.5	3.5	257	< 0.4
514583	CBD-11-07	203	< 0.5	4.1	675	< 0.4
514584	CBD-11-07	204	1.3	4.7	124	< 0.4
514585	CBD-11-07	205	< 0.5	5.7	376	< 0.4
514586	CBD-11-07	206	< 0.5	6.3	335	< 0.4
514587	CBD-11-07	207	< 0.5	3.3	88	< 0.4
514588	CBD-11-07	208	< 0.5	2.3	56	< 0.4
514589	CBD-11-07	209	< 0.5	3.8	75	< 0.4
514590	CBD-11-07	210	< 0.5	2.2	78	< 0.4
514591	CBD-11-07	211	< 0.5	5.4	353	< 0.4
514592	CBD-11-07	212	< 0.5	3.5	198	< 0.4
514593	CBD-11-07	213	< 0.5	3.1	416	< 0.4
514594	CBD-11-07	214	< 0.5	3.3	457	< 0.4
514595	CBD-11-07	215	< 0.5	3.7	491	< 0.4
514596	CBD-11-07	216	< 0.5	5.1	392	< 0.4
514597	CBD-11-07	217	< 0.5	2.9	153	< 0.4
514598	CBD-11-07	218	< 0.5	3.9	252	< 0.4
514599	CBD-11-07	219	< 0.5	2.8	24	< 0.4
514600	CBD-11-07	220	< 0.5	2.2	60	< 0.4
514601	CBD-11-07	221	< 0.5	3	501	< 0.4
514602	CBD-11-07	222	1.1	1.8	363	< 0.4
514603	CBD-11-07	223	< 0.5	3.1	210	< 0.4
514604	CBD-11-07	224	< 0.5	2	109	< 0.4
514605	CBD-11-07	225	< 0.5	2.7	185	0.4

Chem #	DDH#	Sample	Sb	Cs	Ва	В
514606	CBD-11-07	226	< 0.5	3.3	276	< 0.4
514607	CBD-11-07	227	< 0.5	2.9	181	0.5
514608	CBD-11-07	228	< 0.5	2.7	93	< 0.4
514609	CBD-11-07	229	< 0.5	2.4	276	< 0.4
514610	CBD-11-07	230	< 0.5	2.5	1007	< 0.4
514611	CBD-11-07	231	< 0.5	2.8	758	< 0.4
514612	CBD-11-07	232	< 0.5	2.8	405	< 0.4
514613	CBD-11-07	233	< 0.5	3.2	147	< 0.4
514614	CBD-11-07	234	< 0.5	3.4	125	< 0.4
514615	CBD-11-07	235	< 0.5	6.8	143	0.4
514616	CBD-11-07	236	< 0.5	2.4	54	0.4
514617	CBD-11-07	237	< 0.5	2.4	38	< 0.4
514618	CBD-11-07	238	< 0.5	2.6	40	< 0.4
514619	CBD-11-07	239	< 0.5	2.8	111	< 0.4
514620	CBD-11-07	240	< 0.5	3.2	177	< 0.4
514621	CBD-11-07	241	< 0.5	3.2	172	< 0.4
514622	CBD-11-07	242	< 0.5	3.4	132	< 0.4
514623	CBD-11-07	243	< 0.5	3.6	141	< 0.4
514624	CBD-11-07	244	< 0.5	3.4	142	< 0.4
514625	CBD-11-07	245	0.9	2.3	105	< 0.4
514626	CBD-11-07	246	< 0.5	3.7	152	< 0.4
514627	CBD-11-07	247	< 0.5	3.3	142	< 0.4
514628	CBD-11-07	248	< 0.5	3.5	143	1
514629	CBD-11-07	249	< 0.5	3.1	179	< 0.4
514630	CBD-11-07	250	< 0.5	3.7	150	0.5
514631	CBD-11-07	251	< 0.5	3	108	0.6
514632	CBD-11-07	252	< 0.5	3.1	117	0.6
514633	CBD-11-07	253	< 0.5	3.8	249	< 0.4
514634	CBD-11-07	254	< 0.5	3.7	297	< 0.4
514635	CBD-11-07	255	< 0.5	3.7	171	< 0.4
514636	CBD-11-07	256	< 0.5	3.4	163	< 0.4
514637	CBD-11-07	257	< 0.5	3.9	143	< 0.4
514638	CBD-11-07	258	< 0.5	2.9	112	0.6
514639	CBD-11-07	259	< 0.5	4.4	171	< 0.4
514640	CBD-11-07	260	< 0.5	3.7	201	< 0.4
514641	CBD-11-07	261	< 0.5	3.9	320	< 0.4
514642	CBD-11-07	262	< 0.5	4.1	298	< 0.4
514643	CBD-11-07	263	< 0.5	3.5	139	< 0.4
514644	CBD-11-07	264	< 0.5	2	80	0.4
514645	CBD-11-07	265	< 0.5	4.5	229	< 0.4
514646	CBD-11-07	266	< 0.5	4.6	219	< 0.4
514647	CBD-11-07	267	< 0.5	4.8	177	< 0.4
514648	CBD-11-07	268	< 0.5	4.9	171	< 0.4
514649	CBD-11-07	269	< 0.5	6.9	140	< 0.4
514650	CBD-11-07		< 0.5	6.3		< 0.4
514651	CBD-11-07		< 0.5	5.3		< 0.4

Chem #	DDH#	Sample	Sb	Cs	Ва		Bi
514652	CBD-11-07	272	< 0.5	4	127		0.5
514653	CBD-11-07	273	< 0.5	4.5	128	< 0.4	
514654	CBD-11-07	274	< 0.5	5.1	133	< 0.4	
514655	CBD-11-07	275	< 0.5	4.3	184	< 0.4	
514656	CBD-11-07	276	< 0.5	3.3	90	< 0.4	
514657	CBD-11-07	277	< 0.5	4.1	193	< 0.4	
514658	CBD-11-07	278	< 0.5	4.4	174	< 0.4	
514659	CBD-11-07	279	< 0.5	5.2	113	< 0.4	
514660	CBD-11-07	280	< 0.5	4.2	172		0.5
514661	CBD-11-07	281	< 0.5	4.5	155	< 0.4	
514662	CBD-11-07	282	< 0.5	5	137	< 0.4	
514663	CBD-11-07	283	< 0.5	6.7	131	< 0.4	
514664	CBD-11-07	284	< 0.5	5.9	186	< 0.4	
514665	CBD-11-07	285	< 0.5	5.6	178	< 0.4	
514666	CBD-11-07	286	< 0.5	8.3	213		0.4
514667	CBD-11-07	287	< 0.5	14.6	267	< 0.4	
514668	CBD-11-07	288	< 0.5	5	137	< 0.4	
514669	CBD-11-07	289	0.6	18.6	231	< 0.4	
514670	CBD-11-07	290	< 0.5	2.8	24	< 0.4	
514671	CBD-11-07	291	< 0.5	3	40		0.6
514672	CBD-11-07	292	< 0.5	2.7	18	< 0.4	
514673	CBD-11-07	293	< 0.5	5.2	217	< 0.4	

Chem #	DDH#	Sample	La	Ce	Pr	Nd
104676	CBD-10-01	1	165	357	43.5	179
104677	CBD-10-01	2	158	341	41.3	171
104678	CBD-10-01	3	149	328	40	168
104679	CBD-10-01	4	146	309	38	157
104680	CBD-10-01	5	742	1640	203	847
104681	CBD-10-01	6	152	321	39.1	162
104682	CBD-10-01	7	149	322	38.3	158
104683	CBD-10-01	8	148	315	37.8	155
104684	CBD-10-01	9	234	490	58.1	235
104685	CBD-10-01	10	183	394	48	198
104686	CBD-10-01	11	163	355	43.2	176
104687	CBD-10-01	12	160	351	42.6	176
104688	CBD-10-01	13	246	530	66.1	282
104689	CBD-10-01	14	397	835	97.6	385
104690	CBD-10-01	15	143	311	37.6	156
104691	CBD-10-01	16	132	289	35.3	147
104692	CBD-10-01	17	129	285	35.4	148
104693	CBD-10-01	18	647	1190	126	471
104694	CBD-10-01	19	948	2000	256	1030
104695	CBD-10-01	20	154	328	40.4	166
104696	CBD-10-01	21	143	312	38.1	160
104697	CBD-10-01	22	620	1140	123	472
104698	CBD-10-01	23	180	392	48.6	201
104699	CBD-10-01	24	134	286	34.7	142
104700	CBD-10-01	25	127	271	32.7	135
104701	CBD-10-01	26	132	283	34.1	140
104702	CBD-10-01	27	124	269	32.5	135
104703	CBD-10-01	28	120	257	31	128
104704	CBD-10-01	29	136	290	34.8	142
104705	CBD-10-01	30	137	296	35.3	145
104706	CBD-10-01	31	123	263	31.6	130
104707	CBD-10-01	32	122	255	30.6	121
104708	CBD-10-01	33		279	34	141
104709	CBD-10-01	34		429	50.2	200
104710	CBD-10-01	35	126	275	33.8	140
104711	CBD-10-01	36	195	421	51.4	208
104712	CBD-10-01	37	121	260	31.1	128
104713	CBD-10-01	38	115	248	29.8	123
104714	CBD-10-01	39	117	253	30.5	125
104715	CBD-10-01	40	116	251	30.4	126
104716	CBD-10-01	41	118	253	30.6	126
104717	CBD-10-01	42	113	242	29.2	121
104718	CBD-10-01	43	119	256	30.4	126
104719	CBD-10-01	44	119	257	30.8	127
104720	CBD-10-01	45	117	254	31	128
104721	CBD-10-01	46	117	249	30.2	126

Chem #	DDH#	Sample	La	Ce	Pr	Nd
104722	CBD-10-01	47	252	479	54.3	213
104723	CBD-10-01	48	495	831	85.9	313
104724	CBD-10-01	49	167	360	42	173
104725	CBD-10-01	50	157	336	38.8	162
104726	CBD-10-01	51	186	403	47	196
104727	CBD-10-01	52	127	272	32.3	134
104728	CBD-10-01	53	195	424	48.3	200
104729	CBD-10-01	54	461	896	98.1	396
104730	CBD-10-01	55	3370	5740	625	2330
104731	CBD-10-01	56	136	296	34.7	145
104732	CBD-10-01	57	783	1300	143	541
104733	CBD-10-01	58	267	613	73.4	316
104734	CBD-10-01	59	266	549	61.6	250
104735	CBD-10-01	60	168	363	42.2	174
104736	CBD-10-01	61	205	444	51.4	216
104737	CBD-10-01	62	176	385	45.3	190
104738	CBD-10-01	63	372	750	83.5	339
104739	CBD-10-01	64	236	532	63.2	266
104740	CBD-10-01	65	189	417	49.9	212
104741	CBD-10-01	66	219	485	58.2	246
104742	CBD-10-01	67	302	664	76.3	322
104743	CBD-10-01	68	605	1210	153	645
104744	CBD-10-01	69	457	857	91.8	368
104745	CBD-10-01	70	1200	2050	231	908
104746	CBD-10-01	71	274	526	55.4	213
104747	CBD-10-01	72	228	415	42.2	159
104748	CBD-10-01	73	309	557	57	224
104749	CBD-10-01	74	200	408	45.6	186
104750 104751	CBD-10-01	75 76	410	835	93.4	391
104751	CBD-10-01 CBD-10-01	70	170 183	359 386	41.3 44.2	169 181
104752	CBD-10-01	77	188	398	45.3	184
104754	CBD-10-01	78		427		199
104755	CBD-10-01	80	582	1090		416
104756	CBD-10-01	81	392	768	81.2	317
104757	CBD-10-01	82	176	376	43.4	178
104758	CBD-10-01	83	205	415	45.4	182
104759	CBD-10-01	84	446	846	87.1	326
104760	CBD-10-01	85	340	700	77.4	317
104761	CBD-10-01	86	317	701	81	349
104762	CBD-10-01	87	398	890	105	446
104763	CBD-10-01	88	685	1480	191	814
104764	CBD-10-01	89	270	563	74.4	308
104765	CBD-10-01	90	175	375	45	177
104766	CBD-10-01	91	206	408	51.2	200
104767	CBD-10-01	92	141	301	36.6	145

Chem #	DDH#	Sample	La	Ce	Pr	Nd
104768	CBD-10-01	93	143	304	37.4	148
104769	CBD-10-01	94	176	372	45.4	177
104770	CBD-10-01	95	175	368	45	177
104771	CBD-10-01	96	128	278	34.5	139
104772	CBD-10-01	97	300	637	84.7	344
104773	CBD-10-01	98	300	650	89.3	370
104774	CBD-10-01	99	284	595	80.1	340
104775	CBD-10-01	100	240	550	76.3	322
104776	CBD-10-01	101	193	403	53.4	217
104777	CBD-10-01	102	247	506	67.3	272
104778	CBD-10-01	103	193	389	51.3	204
104779	CBD-10-01	104	231	501	69.3	289
104780	CBD-10-01	105	143	325	41.7	171
104781	CBD-10-01	106	99	212	26.1	103
104782	CBD-10-01	107	357	768	106	432
104783	CBD-10-01	108	213	434	58.3	234
104784	CBD-10-01	109	269	538	70.8	284
104785	CBD-10-01	110	345	775	106	433
104786	CBD-10-01	111	151	322	40.7	163
104787	CBD-10-01	112	200	418	58.2	235
104788	CBD-10-01	113	364	794	105	413
104789	CBD-10-01	114	338	731	106	456
104790	CBD-10-01	115	326	660	89.6	363
104791	CBD-10-01	116	216	451	61.3	249
104792	CBD-10-01	117	336	699	93.2	376
104793	CBD-10-01	118	171	365	46.8	186
104794	CBD-10-01	119	344	674	87.1	345
104795	CBD-10-01	120	278	511	63.9	244
104796	CBD-10-01	121	358	784	105	434
104797	CBD-10-01	122	181	373	45.4	180
104798	CBD-10-01	123	639	1260	159	622
104799	CBD-10-01	124	442	853	107	419
104800	CBD-10-01	125	228	450	58.8	231
416001	CBD-10-01	126	215	437	58.6	233
416002	CBD-10-01	127	214	448	59.7	242
416003	CBD-10-01	128		547	75	298
416004	CBD-10-01	129		1540	214	870
416005	CBD-10-01	130	359	797	108	429
416006	CBD-10-01	131	967	1960	257	1010
416007	CBD-10-01	132	154	332	41.4	166
416008	CBD-10-01	133	293	570	73.7	289
416009	CBD-10-01	134	303	599	78.5	307
416010	CBD-10-01	135	328	630	79.2	301
416011	CBD-10-01	136	287	628	84.8	345
416012	CBD-10-01	137	316	747	109	459
416013	CBD-10-01	138	217	440	57.6	225

Chem #	DDH#	Sample	La	Ce	Pr	Nd
416014	CBD-10-01	139	146	310	38.5	151
416015	CBD-10-01	140	482	984	127	492
416016	CBD-10-01	141	192	388	50.1	197
416017	CBD-10-01	142	271	493	62.6	240
416018	CBD-10-01	143	609	1080	132	504
416019	CBD-10-01	144	186	378	49	194
416020	CBD-10-01	145	241	493	65.3	261
416021	CBD-10-01	146	442	971	130	520
416022	CBD-10-01	147	278	571	75.2	300
416023	CBD-10-01	148	250	568	79.3	338
416024	CBD-10-01	149	318	697	95.9	398
416025	CBD-10-01	150	420	932	124	504
416026	CBD-10-01	151	1790	3520	424	1700
416027	CBD-10-01	152	2560	5730	736	3050
416028	CBD-10-01	153	492	1060	144	587
416029	CBD-10-01	154	1120	2240	276	1120
416030	CBD-10-01	155	1700	3630	461	1920
416031	CBD-10-01	156	518	1010	128	501
416032	CBD-10-01	157	678	1230	150	559
416033	CBD-10-01	158	1840	3850	490	2010
416034	CBD-10-01	159	2590	4390	491	1840
416035	CBD-10-01	160	1790	3390	404	1600
416036	CBD-10-01	161	2460	4550	534	2090
416037	CBD-10-01	162	404	871	118	474
416038	CBD-10-01	163	959	1820	230	880
416039	CBD-10-01	164	1210	2340	296	1140
416040	CBD-10-01	165	237	487	64.1	255
416041	CBD-10-01	166	285	610	82.6	337
416042	CBD-10-01	167	241	511	68.6	276
416043	CBD-10-01	168	282	606	81.9	330
416044	CBD-10-01	169	315	683	94.1	400
416045	CBD-10-01	170	213	444	59	233
416046	CBD-10-01	171	209	431	56.2	219
416047	CBD-10-01	172		398		205
416048	CBD-10-01	173	185	391	48.4	189
416049	CBD-10-01	174		650	85.9	337
416050	CBD-10-01	175		449	57.9	223
416051	CBD-10-01	176		576	72.3	295
416052	CBD-10-01	177	1420	3380	432	1800
416053	CBD-10-01	178	3070	6660	799	3170
416054	CBD-10-01	179	2180	5380	694	2920
416055	CBD-10-01	180	1810	3890	477	1930
416056	CBD-10-01	181	849	1670	192	743
416057	CBD-10-01	182	503	964	116	469
416058	CBD-10-01	183	486	967	109	424
416059	CBD-10-01	184	238	579	78.2	335

Chem #	DDH#	Sample	La	Ce	Pr	Nd
416060	CBD-10-01	185	427	923	112	457
416061	CBD-10-01	186	171	359	44.1	175
416062	CBD-10-01	187	261	649	86.4	370
416063	CBD-10-01	188	163	355	45.6	189
416064	CBD-10-01	189	195	454	60.1	252
416065	CBD-10-01	190	376	987	133	610
416066	CBD-10-01	191	491	1190	154	663
416067	CBD-10-01	192	188	424	56.2	240
416068	CBD-10-01	193	36	108	16	74.9
416069	CBD-10-01	194	547	1110	124	471
416070	CBD-10-01	195	702	1420	163	617
416071	CBD-10-01	196	787	1500	164	610
416072	CBD-10-01	197	720	1610	199	816
416073	CBD-10-01	198	1040	2150	244	926
416074	CBD-10-01	199	525	1270	156	633
416075	CBD-10-01	200	414	876	103	401
416076	CBD-10-01	201	434	991	123	517
416077	CBD-10-01	202	285	617	78.8	329
416078	CBD-10-01	203	189	452	59.3	259
416079	CBD-10-01	204	176	406	52.6	223
416080	CBD-10-01	205	171	422	55.5	241
416081	CBD-10-01	206	368	796	95.2	384
416082	CBD-10-01	207	315	688	86.9	347
416083	CBD-10-01	208	172	416	55.2	239
416084	CBD-10-01	209	220	495	63.2	260
416085	CBD-10-01	210	452	1090	138	573
416086	CBD-10-01	211	62.5	133	16.3	66.3
416087	CBD-10-01	212	55	142	19.3	84
416088	CBD-10-01	213	20.3	69.4	10	45.5
416089	CBD-10-01	214	151	305	34.7	130
416090	CBD-10-01	215	138	281	32.4	123
416091	CBD-10-01	216	122	287	36.7	154
416092	CBD-10-01	217	94.3	203	24.4	96.5
416093	CBD-10-01	218	50.5	121	15.6	65.6
416094	CBD-10-01	219	55.6	127	16.1	67.8
416095	CBD-10-01	220	415	939	115	465
416096	CBD-10-01	221	350	786	101	414
416097	CBD-10-01	222	268	614	78.7	332
416098	CBD-10-01	223	263	582	73.2	308
416099	CBD-10-01	224	557	1430	185	809
416100	CBD-10-01	225	240	541	67.9	288
416101	CBD-10-01	226	632	1260	140	535
416102	CBD-10-01	227	243	536	67.7	279
416103	CBD-10-01	228	318	690	86.7	353
416104	CBD-10-01	229	196	421	52.2	214
416105	CBD-10-01	230	247	524	63.6	256

Chem #	DDH#	Sample	La	Ce	Pr	Nd
416106	CBD-10-01	231	383	800	96.6	392
416107	CBD-10-01	232	151	321	39.2	160
416108	CBD-10-01	233	142	308	38.1	160
416109	CBD-10-01	234	152	331	41.8	174
416110	CBD-10-01	235	282	604	73.4	304
416111	CBD-10-01	236	197	426	51	207
416112	CBD-10-01	237	231	515	63.2	263
416113	CBD-10-01	238	249	536	64.9	264
416114	CBD-10-01	239	224	496	61.2	256
416115	CBD-10-01	240	189	378	43.4	169
416116	CBD-10-01	241	173	372	45.4	188
416117	CBD-10-01	242	149	333	41.4	173
416118	CBD-10-01	243	214	461	56.6	231
416119	CBD-10-01	244	173	367	43.9	178
416120	CBD-10-01	245	291	610	73.6	300
416121	CBD-10-01	246	237	500	60.2	248
416122	CBD-10-01	247	283	605	73.2	299
416123	CBD-10-01	248	633	1510	200	840
416124	CBD-10-01	249	335	766	95.6	403
416125	CBD-10-01	250	269	575	69.3	282
416126	CBD-10-01	251	603	1400	191	865
416127	CBD-10-01	252	603	1230	151	620
416128	CBD-10-01	253	277	594	72.5	299
416129	CBD-10-01	254	220	472	58.2	237
416130	CBD-10-01	255	180	399	49.3	208
416131	CBD-10-01	256	299	675	83.7	348
416132	CBD-10-01	257	202	450	55.7	230
416133	CBD-10-01	258	243	553	68.6	283
416134	CBD-10-01	259	181	397	48.5	202
416135	CBD-10-01	260	263	561	67.7	278
416136	CBD-10-01	261	137	305	37.3	157
416137	CBD-10-01	262	311	730	91.3	390
416138	CBD-10-01	263	247	537	64.4	267
416139	CBD-10-01	264	277	589	69.8	286
416140	CBD-10-01	265	202	453	56.2	238
416141	CBD-10-01	266		607	75.6	331
416142	CBD-10-01	267	152	339	42.1	181
416143	CBD-10-01	268	217	488	59.1	254
416144	CBD-10-01	269	230	507	61.6	258
416145	CBD-10-01	270	245	571	72.2	314
416146	CBD-10-01	271	222	538	67.6	289
416147	CBD-10-01	272	170	384	47.3	204
416148	CBD-10-01	273	137	308	38.3	160
416149	CBD-10-01	274	155	345	42.4	180
416150	CBD-10-01	275	259	577	71	297
416151	CBD-10-01	276	173	382	47.2	198

Chem #	DDH#	Sample	La	Ce	Pr	Nd
416152	CBD-10-01	277	210	498	63	278
416153	CBD-10-01	278	245	571	70.3	304
416154	CBD-10-01	279	131	281	34.4	143
512817	CBD-11-02	1	111	243	30.7	122
512818	CBD-11-02	2	110	241	30.5	121
512819	CBD-11-02	3	111	243	30.5	121
512820	CBD-11-02	4	109	239	30.2	118
512821	CBD-11-02	5	106	234	29.7	117
512822	CBD-11-02	6	117	257	32.5	129
512823	CBD-11-02	7	114	249	31.5	125
512824	CBD-11-02	8	115	257	33	130
512825	CBD-11-02	9	112	245	30.9	122
512826	CBD-11-02	10	132	282	34.3	135
512827	CBD-11-02	11	120	262	33.3	131
512828	CBD-11-02	12	128	281	35.6	139
512829	CBD-11-02	13	504	1120	138	547
512830	CBD-11-02	14	210	462	58.7	229
512831	CBD-11-02	15	148	336	43.5	176
512832	CBD-11-02	16	144	320	40.3	161
512833	CBD-11-02	17	157	349	44.4	177
512834	CBD-11-02	18	135	294	37.5	148
512835	CBD-11-02	19	283	579	73.1	286
512836	CBD-11-02	20	154	332	42.2	163
512837	CBD-11-02	21	147	320	40.4	154
512838	CBD-11-02	22	339	824	105	437
512839	CBD-11-02	23	208	469	61.4	247
512840	CBD-11-02	24	176	384	48.3	190
512841	CBD-11-02	25	162	351	44.5	174
512842	CBD-11-02	26	157	345	44.4	176
512843	CBD-11-02	27	158	345	43.9	173
512844	CBD-11-02	28	176	383	48.7	189
512845	CBD-11-02	29	167	360	45.2	175
512846	CBD-11-02	30	194	440	56.7	230
512847	CBD-11-02	31	263	597	77.6	313
512848	CBD-11-02	32	124	271	34.6	135
512849	CBD-11-02	33		326	41.4	162
512850	CBD-11-02	34	126	278	35.4	139
512851	CBD-11-02	35	155	345	44.2	176
512852	CBD-11-02	36	214	477	61.2	245
512853	CBD-11-02	37	352	823	105	435
512854	CBD-11-02	38		714	91.2	364
512855	CBD-11-02	39	263	566	71.7	279
512856	CBD-11-02	40	213	465	58.7	232
512857	CBD-11-02	41	249	585	76.1	299
512858	CBD-11-02	42	171	379	48.7	194
512859	CBD-11-02	43	573	1240	159	648

Chem #	DDH#	Sample	La	Ce	Pr	Nd
512860	CBD-11-02	44	1070	2470	325	1370
512861	CBD-11-02	45	1320	2760	322	1210
512862	CBD-11-02	46	246	481	57.9	220
512863	CBD-11-02	47	159	361	48.8	200
512864	CBD-11-02	48	309	645	83.6	332
512865	CBD-11-02	49	187	427	58.7	250
512866	CBD-11-02	50	125	271	35.3	145
512867	CBD-11-02	51	264	509	62.8	243
512868	CBD-11-02	52	260	548	72.6	304
512869	CBD-11-02	53	252	590	81.5	350
512870	CBD-11-02	54	126	280	36.5	150
512871	CBD-11-02	55	140	327	45.5	195
512872	CBD-11-02	56	123	267	34.9	141
512873	CBD-11-02	57	118	258	33.8	137
512874	CBD-11-02	58	142	307	40.1	161
512875	CBD-11-02	59	206	466	62.6	261
512876	CBD-11-02	60	197	412	53.6	221
512877	CBD-11-02	61	287	622	82.8	333
512878	CBD-11-02	62	716	1500	184	722
512879	CBD-11-02	63	311	712	98.4	416
512880	CBD-11-02	64	202	434	56.7	231
512881	CBD-11-02	65	148	321	42.2	169
512882	CBD-11-02	66	126	275	36.5	147
512883	CBD-11-02	67	282	654	89.9	382
512884	CBD-11-02	68	194	418	54.6	220
512885	CBD-11-02	69	166	349	45.1	186
512886	CBD-11-02	70	216	478	63.4	263
512887	CBD-11-02	71	160	358	47.3	199
512888	CBD-11-02	72	132	259	32.3	127
512889	CBD-11-02	73	204	451	59.5	245
512890	CBD-11-02	74	277	608	81.9	335
512891	CBD-11-02	75	174	368	47.7	195
512892	CBD-11-02	76	435	778	92.4	357
512893	CBD-11-02	77	147	317	41.8	171
512894	CBD-11-02	78	206	431	56	226
512895	CBD-11-02	79	339	706	94.6	409
512896	CBD-11-02	80	222	464	59.9	237
512897	CBD-11-02	81	154	329	42.4	171
512898	CBD-11-02	82	141	313	42	172
512899	CBD-11-02	83	148	321	41.8	169
512900	CBD-11-02	84	185	400	50	208
512901	CBD-11-02	85	274	546	65.3	262
512902	CBD-11-02	86	158	345	44.3	189
512903	CBD-11-02	87	167	358	45.1	186
512904	CBD-11-02	88	161	348	44.4	183
512905	CBD-11-02	89	977	1680	177	628

Chem #	DDH#	Sample	La	Ce	Pr	Nd
512906	CBD-11-02	90	1300	3090	388	1620
512907	CBD-11-02	91	1370	3300	426	1850
512908	CBD-11-02	92	1530	3130	365	1430
512909	CBD-11-02	93	1440	3080	366	1480
512910	CBD-11-02	94	1420	3030	361	1490
512911	CBD-11-02	95	1400	2570	285	1110
512912	CBD-11-02	96	822	1810	222	908
512913	CBD-11-02	97	642	1300	157	634
512914	CBD-11-02	98	1970	3600	407	1630
512915	CBD-11-02	99	1080	2110	247	1010
512916	CBD-11-02	100	348	783	102	439
512917	CBD-11-02	101	193	409	51.3	214
512918	CBD-11-02	102	266	617	80.9	347
512919	CBD-11-02	103	210	464	60	253
512920	CBD-11-02	104	384	856	106	461
512921	CBD-11-02	105	148	325	41.7	176
512922	CBD-11-02	106	138	304	38.9	164
512923	CBD-11-02	107	2090	4390	529	2230
512924	CBD-11-02	108	222	496	62.9	268
512925	CBD-11-02	109	204	450	57.9	248
512926	CBD-11-02	110	736	1550	187	761
512927	CBD-11-02	111	164	351	44	183
512928	CBD-11-02	112	255	575	74.6	319
512929	CBD-11-02	113	222	473	59.9	249
512930	CBD-11-02	114	328	655	82	341
512931	CBD-11-02	115	182	379	46.7	196
512932	CBD-11-02	116	402	745	89.3	358
512933	CBD-11-02	117	356	782	101	435
512934	CBD-11-02	118	247	535	67.5	282
512935	CBD-11-02	119	616	1260	150	628
512936	CBD-11-02	120	217	497	64.8	276
512937	CBD-11-02	121	968	2040	246	997
512938	CBD-11-02	122	258	569	72.6	305
512939	CBD-11-02	123		1370	178	783
512940	CBD-11-02	124	278	604	77.2	326
512941	CBD-11-02	125	120	265	34	143
512942	CBD-11-02	126	118	254	32.1	133
512943	CBD-11-02	127	261	572	71.9	298
512944	CBD-11-02	128		303	39.2	162
512945	CBD-11-02	129		393	50.3	209
512946	CBD-11-02	130		591	78.8	341
512947	CBD-11-02	131	340	890	128	588
512948	CBD-11-02	132		297	38.4	161
512949	CBD-11-02	133		826	115	535
512950	CBD-11-02	134		361	47.4	197
512951	CBD-11-02	135	548	1210	151	641

Chem #	DDH#	Sample	La	Ce	Pr	Nd
512952	CBD-11-02	136	369	773	100	423
512953	CBD-11-02	137	366	892	123	546
512954	CBD-11-02	138	399	970	132	588
512955	CBD-11-02	139	888	1870	228	915
512956	CBD-11-02	140	576	1330	174	744
512957	CBD-11-02	141	591	1390	180	756
512958	CBD-11-02	142	205	442	55.7	227
512959	CBD-11-02	143	189	407	51.4	211
512960	CBD-11-02	144	251	503	59.9	231
512961	CBD-11-02	145	303	569	64.1	234
512962	CBD-11-02	146	47.1	130	18.4	83.3
512963	CBD-11-02	147	65.4	163	22.4	99.3
512964	CBD-11-02	148	98.3	252	33.6	146
512965	CBD-11-02	149	251	530	65.8	264
512966	CBD-11-02	150	228	481	59.4	239
512967	CBD-11-02	151	234	497	61.1	245
512968	CBD-11-02	152	241	522	64.9	260
512969	CBD-11-02	153	290	679	90.8	382
512970	CBD-11-02	154	774	1650	206	831
512971	CBD-11-02	155	1730	3890	491	2060
512972	CBD-11-02	156	1680	4210	553	2390
512973	CBD-11-02	157	1800	3840	469	1910
512974	CBD-11-02	158	1950	4090	488	1970
512975	CBD-11-02	159	1520	3230	394	1620
512976	CBD-11-02	160	812	1670	200	797
512977	CBD-11-02	161	958	1850	208	792
512978	CBD-11-02	162	880	1800	216	867
512979	CBD-11-02	163	264	578	73.4	300
512980	CBD-11-02	164	191	425	54.1	222
512981	CBD-11-02	165	277	634	83	350
512982	CBD-11-02	166	167	415	56.7	246
512983	CBD-11-02	167	122	303	41.3	173
512984	CBD-11-02	168	119	288	38.7	160
512985	CBD-11-02	169		716		363
512986	CBD-11-02	170	301	687	89.2	365
512987	CBD-11-02	171	660	1360	156	559
512988	CBD-11-02	172		1590	184	666
512989	CBD-11-02	173		640	84.3	342
512990	CBD-11-02	174	337	734	93.7	374
512991	CBD-11-02	175	213	489	62.4	250
512992	CBD-11-02	176	255	555	69	270
512993	CBD-11-02	177	202	435	53.8	211
512994	CBD-11-02	178		903	114	436
512995	CBD-11-02	179	306	708	92.9	379
512996	CBD-11-02	180	300	608	73.5	282
512997	CBD-11-02	181	134	296	37.2	146

Chem #	DDH#	Sample	La	Ce	Pr	Nd
512998	CBD-11-02	182	138	279	31.8	116
512999	CBD-11-02	183	106	222	26.3	97.7
513000	CBD-11-02	184	163	333	39.6	152
513001	CBD-11-02	185	187	382	45.9	173
513002	CBD-11-02	186	129	264	30.8	111
513003	CBD-11-02	187	144	288	32.8	118
513004	CBD-11-02	188	246	524	64.6	252
513005	CBD-11-02	189	298	659	84.1	336
513006	CBD-11-02	190	309	692	88.8	357
513007	CBD-11-02	191	322	701	88.2	352
513008	CBD-11-02	192	261	555	69	273
513009	CBD-11-02	193	220	484	61.2	244
513010	CBD-11-02	194	287	627	79.1	316
513011	CBD-11-02	195	194	427	54.5	221
513012	CBD-11-02	196	253	536	66.5	261
513013	CBD-11-02	197	216	467	58.5	230
513014	CBD-11-02	198	162	352	44.6	178
513015	CBD-11-02	199	205	440	54.6	215
513016	CBD-11-02	200	247	492	57.3	215
513017	CBD-11-02	201	207	461	59.4	242
513018	CBD-11-02	202	224	503	64.6	260
513019	CBD-11-02	203	193	419	52.5	209
513020	CBD-11-02	204	251	489	57.7	221
513021	CBD-11-02	205	207	467	59.2	240
513022	CBD-11-02	206	185	410	51.9	207
513023	CBD-11-02	207	259	584	74.8	300
513024	CBD-11-02	208	256	572	71.2	296
513025	CBD-11-02	209	254	623	80.1	343
513026	CBD-11-02	210	479	993	119	477
513027	CBD-11-02	211	331	678	79.5	318
513028	CBD-11-02	212	218	493	61.3	264
513029	CBD-11-02	213	218	507	64.3	271
513030	CBD-11-02	214		463	57.2	
513031	CBD-11-02	215	229	540	69.3	298
513032	CBD-11-02	216	191	408	48.9	192
513033	CBD-11-02	217	272	620	78.9	329
513034	CBD-11-02	218	324	656	77.9	310
513035	CBD-11-02	219	201	431	52.7	214
513036	CBD-11-02	220	384	745	85.5	336
513037	CBD-11-02	221	189	439	55.2	234
513038	CBD-11-02	222	165	347	42.3	171
513039	CBD-11-02	223	160	338	40.6	162
513040	CBD-11-02	224	177	393	49.4	203
513041	CBD-11-02	225	184	417	52	216
513042	CBD-11-02	226	265	596	74.3	309
513043	CBD-11-02	227	144	336	43	182

Chem #	DDH#	Sample	La	Ce	Pr	Nd
513044	CBD-11-02	228	261	573	70.6	298
513045	CBD-11-02	229	191	433	54.4	229
513046	CBD-11-02	230	192	441	56.7	242
513047	CBD-11-02	231	165	368	46.6	195
513048	CBD-11-02	232	237	500	58.3	239
514381	CBD-11-07	1	271	638	81.1	346
514382	CBD-11-07	2	262	582	72.2	301
514383	CBD-11-07	3	220	478	56.8	228
514384	CBD-11-07	4	262	581	70.2	302
514385	CBD-11-07	5	270	607	75.8	318
514386	CBD-11-07	6	298	678	86.7	363
514387	CBD-11-07	7	300	673	83	351
514388	CBD-11-07	8	339	731	87.2	370
514389	CBD-11-07	9	291	660	81.8	330
514390	CBD-11-07	10	330	745	90.5	381
514391	CBD-11-07	11	299	649	76.1	320
514392	CBD-11-07	12	257	545	65.5	270
514393	CBD-11-07	13	170	370	44.2	187
514394	CBD-11-07	14	146	318	38.2	156
514395	CBD-11-07	15	153	347	42.7	182
514396	CBD-11-07	16	120	256	30.7	126
514397	CBD-11-07	17	155	353	44.7	187
514398	CBD-11-07	18	195	441	57	238
514399	CBD-11-07	19	225	532	67.1	293
514400	CBD-11-07	20	186	429	53.8	231
514401	CBD-11-07	21	167	358	40.8	168
514402	CBD-11-07	22	442	954	113	460
514403	CBD-11-07	23	766	1330	133	479
514404	CBD-11-07	24	1660	3130	331	1300
514405	CBD-11-07	25	204	453	56.7	234
514406	CBD-11-07	26	153	336	40.2	166
514407	CBD-11-07	27	140	308	37.4	155
514408	CBD-11-07	28		340	40.9	167
514409	CBD-11-07	29		300	36.4	147
514410	CBD-11-07	30	155	338	40.3	165
514411	CBD-11-07	31	166	369	45.2	185
514412	CBD-11-07	32	154	345	41.9	173
514413	CBD-11-07	33	231	492	56.9	231
514414	CBD-11-07	34	215	434	48.9	193
514415	CBD-11-07	35		692	79.9	318
514416	CBD-11-07	36	664	1570	196	811
514417	CBD-11-07	37	580	1420	173	709
514418	CBD-11-07	38	138	304	36	149
514419	CBD-11-07	39	398	849	98.7	403
514420	CBD-11-07	40	144	305	36.4	145
514421	CBD-11-07	41	322	694	83.7	339

Chem #	DDH#	Sample	La	Ce	Pr	Nd
514422	CBD-11-07	42	152	322	38.6	157
514423	CBD-11-07	43	197	438	50	201
514424	CBD-11-07	44	184	391	44	175
514425	CBD-11-07	45	276	574	63.9	250
514426	CBD-11-07	46	286	632	72.9	300
514427	CBD-11-07	47	670	1400	161	607
514428	CBD-11-07	48	792	1760	230	916
514429	CBD-11-07	49	477	965	108	425
514430	CBD-11-07	50	593	1210	133	505
514431	CBD-11-07	51	362	834	96.8	405
514432	CBD-11-07	52	204	470	56.7	234
514433	CBD-11-07	53	180	404	48	194
514434	CBD-11-07	54	166	375	43.5	180
514435	CBD-11-07	55	176	402	48	194
514436	CBD-11-07	56	164	360	42.2	169
514437	CBD-11-07	57	154	330	37.3	151
514438	CBD-11-07	58	159	347	39.7	159
514439	CBD-11-07	59	132	292	34.3	134
514440	CBD-11-07	60	293	629	71	281
514441	CBD-11-07	61	140	310	35.2	143
514442	CBD-11-07	62	123	266	30.2	121
514443	CBD-11-07	63	132	290	33.2	136
514444	CBD-11-07	64	116	253	28.3	116
514445	CBD-11-07	65	120	262	29.6	119
514446	CBD-11-07	66	198	373	39	147
514447	CBD-11-07	67	156	340	38.5	151
514448	CBD-11-07	68	153	327	36.6	149
514449	CBD-11-07	69	166	349	38.7	151
514450	CBD-11-07	70	129	272	30.5	121
514451	CBD-11-07	71	181	382	42.9	167
514452	CBD-11-07	72	145	311	35.6	139
514453	CBD-11-07	73	160	341	38.2	151
514454	CBD-11-07	74				117
514455	CBD-11-07	75	122	265	30.5	123
514456	CBD-11-07	76		265	30.7	124
514457	CBD-11-07	77	123	273	32	129
514458	CBD-11-07	78	139	293	33.8	132
514459	CBD-11-07	79		291	35	136
514460	CBD-11-07	80	138	307	35.2	140
514461	CBD-11-07	81	127	280	32.7	130
514462	CBD-11-07	82	120	266	31.5	124
514463	CBD-11-07	83	153	336	39.3	160
514464	CBD-11-07	84	152	327	37.3	139
514465	CBD-11-07	85		312	36.2	134
514466	CBD-11-07	86		1270	142	513
514467	CBD-11-07	87	259	558	65.6	243

Chem #	DDH#	Sample	La	Ce	Pr	Nd
514468	CBD-11-07	88	167	365	42.3	158
514469	CBD-11-07	89	212	466	55.1	202
514470	CBD-11-07	90	223	486	56.5	211
514471	CBD-11-07	91	204	452	53.2	197
514472	CBD-11-07	92	189	428	50.4	190
514473	CBD-11-07	93	197	430	49.6	185
514474	CBD-11-07	94	160	341	39.6	145
514475	CBD-11-07	95	198	421	47.8	174
514476	CBD-11-07	96	210	448	51.8	194
514477	CBD-11-07	97	745	1450	166	601
514478	CBD-11-07	98	1250	2620	290	1010
514479	CBD-11-07	99	283	568	63.2	226
514480	CBD-11-07	100	360	842	102	393
514481	CBD-11-07	101	214	417	45	158
514482	CBD-11-07	102	284	638	76.4	292
514483	CBD-11-07	103	187	416	48.9	184
514484	CBD-11-07	104	187	390	43.7	159
514485	CBD-11-07	105	162	348	39.6	148
514486	CBD-11-07	106	267	606	72.8	277
514487	CBD-11-07	107	405	808	92.1	330
514488	CBD-11-07	108	165	334	37.4	138
514489	CBD-11-07	109	175	368	42	157
514490	CBD-11-07	110	253	579	69.2	266
514491	CBD-11-07	111	198	430	49.9	185
514492	CBD-11-07	112	157	347	40.1	155
514493	CBD-11-07	113	137	275	30.2	108
514494	CBD-11-07	114	319	823	105	425
514495	CBD-11-07	115	371	774	88.1	317
514496	CBD-11-07	116	465	907	104	393
514497	CBD-11-07	117	732	1730	216	830
514498	CBD-11-07	118	301	676	80.3	319
514499	CBD-11-07	119	803	1720	197	720
514500	CBD-11-07	120	193	384	41.6	149
514501	CBD-11-07	121	161	331	37.4	136
514502	CBD-11-07	122	204	452	53.5	203
514503	CBD-11-07	123		448	53	199
514504	CBD-11-07	124	196	428	49.7	189
514505	CBD-11-07	125	207	443	50.5	187
514506	CBD-11-07	126	196	445	53.8	214
514507	CBD-11-07	127	160	354	42.7	167
514508	CBD-11-07	128		391	46.6	185
514509	CBD-11-07	129	198	431	51.6	200
514510	CBD-11-07	130	207	476	57.7	221
514511	CBD-11-07	131	185	418	52.2	208
514512	CBD-11-07	132	212	457	55.2	214
514513	CBD-11-07	133	537	1010	116	412

Chem #	DDH#	Sample	La	Ce	Pr	Nd
514514	CBD-11-07	134	326	707	83.9	323
514515	CBD-11-07	135	873	1510	159	546
514516	CBD-11-07	136	667	1110	116	394
514517	CBD-11-07	137	221	508	62.6	260
514518	CBD-11-07	138	551	1050	118	438
514519	CBD-11-07	139	353	676	76.3	290
514520	CBD-11-07	140	194	424	50.8	199
514521	CBD-11-07	141	207	470	56.7	225
514522	CBD-11-07	142	199	438	52.9	213
514523	CBD-11-07	143	217	466	56.1	216
514524	CBD-11-07	144	225	498	60.7	239
514525	CBD-11-07	145	208	430	50.8	201
514526	CBD-11-07	146	140	301	36	142
514527	CBD-11-07	147	133	291	35.2	140
514528	CBD-11-07	148	139	312	38.3	151
514529	CBD-11-07	149	404	794	91.1	339
514530	CBD-11-07	150	331	743	95.6	400
514531	CBD-11-07	151	266	651	84.4	366
514532	CBD-11-07	152	415	945	124	530
514533	CBD-11-07	153	1330	3050	380	1560
514534	CBD-11-07	154	405	922	118	492
514535	CBD-11-07	155	284	646	80.2	330
514536	CBD-11-07	156	268	577	69.6	295
514537	CBD-11-07	157	202	428	50.9	198
514538	CBD-11-07	158	640	1390	170	644
514539	CBD-11-07	159	1590	4060	528	2190
514540	CBD-11-07	160	416	850	104	406
514541	CBD-11-07	161	1870	4620	593	2430
514542	CBD-11-07	162	2130	5010	630	2570
514543	CBD-11-07	163	2460	4230	459	1650
514544	CBD-11-07	164	292	658	78.2	305
514545	CBD-11-07	165	272	604	74.4	302
514546	CBD-11-07	166	152	338	40.6	158
514547	CBD-11-07	167	216		52.1	206
514548	CBD-11-07	168	175	371	44.3	176
514549	CBD-11-07	169		880	112	443
514550	CBD-11-07	170		494	58.5	230
514551	CBD-11-07	171	352	790	102	424
514552	CBD-11-07	172	151	334	41.3	168
514553	CBD-11-07	173	217	465	56.1	225
514554	CBD-11-07	174	203	418	49.2	190
514555	CBD-11-07	175	277	623	78.1	315
514556	CBD-11-07	176		420	49.1	189
514557	CBD-11-07	177	173	353	41.1	161
514558	CBD-11-07	178	135	285	34.5	143
514559	CBD-11-07	179	136	275	32.6	128

Chem #	DDH#	Sample	La	Ce	Pr	Nd
514560	CBD-11-07	180	349	740	92.7	377
514561	CBD-11-07	181	128	270	32.7	129
514562	CBD-11-07	182	232	441	50.8	195
514563	CBD-11-07	183	190	400	47.7	192
514564	CBD-11-07	184	298	615	75.3	296
514565	CBD-11-07	185	191	409	49.2	195
514566	CBD-11-07	186	156	327	38.5	150
514567	CBD-11-07	187	286	598	71.8	282
514568	CBD-11-07	188	330	683	83.5	316
514569	CBD-11-07	189	355	818	105	424
514570	CBD-11-07	190	289	667	84.9	355
514571	CBD-11-07	191	432	1040	136	566
514572	CBD-11-07	192	195	406	48.3	189
514573	CBD-11-07	193	1100	2000	225	826
514574	CBD-11-07	194	1900	3760	456	1720
514575	CBD-11-07	195	1180	2020	221	825
514576	CBD-11-07	196	2180	4090	464	1710
514577	CBD-11-07	197	2730	4690	526	1930
514578	CBD-11-07	198	692	1250	143	543
514579	CBD-11-07	199	562	1020	110	374
514580	CBD-11-07	200	346	715	84.9	336
514581	CBD-11-07	201	249	544	67.1	268
514582	CBD-11-07	202	211	457	55.5	224
514583	CBD-11-07	203	211	450	54.3	218
514584	CBD-11-07	204	1620	3880	504	2020
514585	CBD-11-07	205	227	476	58.4	232
514586	CBD-11-07	206	207	448	56	219
514587	CBD-11-07	207	1670	4070	539	2200
514588	CBD-11-07	208	1630	4000	523	2130
514589	CBD-11-07	209	2380	4970	602	2370
514590	CBD-11-07	210	1360	2330	260	945
514591	CBD-11-07	211	236	488	58.2	226
514592	CBD-11-07	212	490	1050	132	518
514593	CBD-11-07	213		403	48.2	187
514594	CBD-11-07	214	185	388	46.7	181
514595	CBD-11-07	215	184	375	44.1	171
514596	CBD-11-07	216	169	359	43.2	170
514597	CBD-11-07	217	681	1560	205	833
514598	CBD-11-07	218	234	498	61.4	246
514599	CBD-11-07	219	41.4	130	18.8	86.6
514600	CBD-11-07	220	105	324	45.6	208
514601	CBD-11-07	221	499	971	112	417
514602	CBD-11-07	222	871	1750	200	713
514603	CBD-11-07	223	446	944	117	455
514604	CBD-11-07	224	158	365	45.6	190
514605	CBD-11-07	225	247	556	70.5	285

Chem #	DDH#	Sample	La	Ce	Pr	Nd
514606	CBD-11-07	226	205	443	54.2	217
514607	CBD-11-07	227	253	554	68.5	276
514608	CBD-11-07	228	126	291	36.9	152
514609	CBD-11-07	229	334	700	84.8	324
514610	CBD-11-07	230	292	574	66.1	244
514611	CBD-11-07	231	337	713	86.6	332
514612	CBD-11-07	232	254	588	75.2	305
514613	CBD-11-07	233	460	1040	136	552
514614	CBD-11-07	234	347	796	103	424
514615	CBD-11-07	235	636	1450	190	760
514616	CBD-11-07	236	100	249	32.6	135
514617	CBD-11-07	237	161	310	34.2	122
514618	CBD-11-07	238	119	248	28.7	106
514619	CBD-11-07	239	153	317	36.9	138
514620	CBD-11-07	240	292	621	74.9	300
514621	CBD-11-07	241	274	587	71.4	282
514622	CBD-11-07	242	282	585	70.2	272
514623	CBD-11-07	243	318	682	82.7	326
514624	CBD-11-07	244	259	519	60.7	236
514625	CBD-11-07	245	302	647	77.7	303
514626	CBD-11-07	246	271	579	70	272
514627	CBD-11-07	247	224	462	54.5	210
514628	CBD-11-07	248	176	396	47	178
514629	CBD-11-07	249	194	400	47.6	186
514630	CBD-11-07	250	380	799	90.5	339
514631	CBD-11-07	251	231	542	66.9	269
514632	CBD-11-07	252	215	479	58.9	230
514633	CBD-11-07	253	145	326	39	153
514634	CBD-11-07	254	180	388	46	177
514635	CBD-11-07	255	257	539	64.8	248
514636	CBD-11-07	256	186	403	49.4	187
514637	CBD-11-07	257	172	379	46	174
514638	CBD-11-07	258	208		57.8	227
514639	CBD-11-07	259	242	534	65.9	258
514640	CBD-11-07	260	158	357	43.1	169
514641	CBD-11-07	261	138	309	37.7	145
514642	CBD-11-07	262	165	372	46.2	179
514643	CBD-11-07	263	214	489	59.7	234
514644	CBD-11-07	264	468	1130	140	550
514645	CBD-11-07	265	267	583	71.7	277
514646	CBD-11-07	266	179	398	49.2	197
514647	CBD-11-07	267	200	426	51.4	196
514648	CBD-11-07	268	168	362	45.1	172
514649	CBD-11-07	269	579	1420	181	714
514650	CBD-11-07	270	213	460	54.5	208
514651	CBD-11-07	271	264	583	71.6	276

Chem #	DDH#	Sample	La	Ce	Pr	Nd
514652	CBD-11-07	272	242	545	67.5	264
514653	CBD-11-07	273	283	651	85.1	334
514654	CBD-11-07	274	203	450	56.3	222
514655	CBD-11-07	275	99.2	228	28.5	113
514656	CBD-11-07	276	417	1070	134	549
514657	CBD-11-07	277	501	1100	130	492
514658	CBD-11-07	278	206	467	58.7	231
514659	CBD-11-07	279	237	528	65.2	256
514660	CBD-11-07	280	281	634	76	314
514661	CBD-11-07	281	227	523	64.6	253
514662	CBD-11-07	282	189	421	51.7	207
514663	CBD-11-07	283	245	525	64.9	254
514664	CBD-11-07	284	203	444	54.4	208
514665	CBD-11-07	285	163	367	46.3	187
514666	CBD-11-07	286	215	487	58.9	233
514667	CBD-11-07	287	214	456	55	212
514668	CBD-11-07	288	1080	2230	255	951
514669	CBD-11-07	289	294	690	87.5	349
514670	CBD-11-07	290	63.2	146	18.3	74
514671	CBD-11-07	291	151	279	28.8	99.3
514672	CBD-11-07	292	149	264	27.6	99.3
514673	CBD-11-07	293	398	925	116	465

Chem #	DDH#	Sample	Sm	Eu	Gd	Tb
104676	CBD-10-01	1	33.4	4.91	31.8	5.1
104677	CBD-10-01	2	31.8	4.64	29.7	4.6
104678	CBD-10-01	3	31.1	4.46	28.7	4.4
104679	CBD-10-01	4	29	4.17	26.6	4.1
104680	CBD-10-01	5	184	22.9	212	39.6
104681	CBD-10-01	6	30	4.5	29.1	4.5
104682	CBD-10-01	7	30.1	4.73	29.8	4.7
104683	CBD-10-01	8	29.4	4.44	28.2	4.4
104684	CBD-10-01	9	47.4	6.46	49.6	8.5
104685	CBD-10-01	10	37.1	5.16	35.4	5.6
104686	CBD-10-01	11	32.3	4.44	30.1	4.6
104687	CBD-10-01	12	32.4	4.58	30.1	4.7
104688	CBD-10-01	13	70.1	9.67	86	17.2
104689	CBD-10-01	14	71.4	8	72.2	12.2
104690	CBD-10-01	15	29	4.43	27.7	4.3
104691	CBD-10-01	16	27.4	4.35	25.9	4.1
104692	CBD-10-01	17	27.5	4	25.1	3.9
104693	CBD-10-01	18	75.9	8.75	69.4	10.2
104694	CBD-10-01	19	200	24.4	210	36.8
104695	CBD-10-01	20	30.5	4.44	28.8	4.4
104696	CBD-10-01	21	29.6	4.26	27.3	4.2
104697	CBD-10-01	22	88.4	11.2	96.9	17.6
104698	CBD-10-01	23	35.5	4.65	32.1	4.7
104699	CBD-10-01	24	26.9	4.36	26.2	4.1
104700	CBD-10-01	25	25.2	4.17	24.3	3.8
104701	CBD-10-01	26	26.6	4.27	25.7	4.1
104702	CBD-10-01	27	25.5	4.17	24.1	3.8
104703	CBD-10-01	28	24.1	4.11	22.8	3.7
104704	CBD-10-01	29	26.8	4.42	25.7	4.2
104705	CBD-10-01	30	26.9	4.26	24.8	4
104706	CBD-10-01	31	24.8	4.15	23.8	3.9
104707	CBD-10-01	32	23.5	3.9	22.4	3.6
104708	CBD-10-01	33	26.8	4.27	25.2	4.1
104709	CBD-10-01	34	36.9	4.79	34.2	5.5
104710	CBD-10-01	35	26.5	4.19	24.7	4
104711	CBD-10-01	36	41.1	5.69	40	6.6
104712	CBD-10-01	37	24.5	4.24	23.4	3.8
104713	CBD-10-01	38	23.4	4.15	22.5	3.7
104714	CBD-10-01	39	23.9	4.24	22.6	3.8
104715	CBD-10-01	40	23.7	4.22	23	3.7
104716	CBD-10-01	41	23.7	4.17	22.4	3.7
104717	CBD-10-01	42	22.8	4.04	21.6	3.6
104718	CBD-10-01	43	23.8	4.28	22.8	3.7
104719	CBD-10-01	44	24.2	4.26	22.9	3.8
104720	CBD-10-01	45	24.4	4.2	23.3	3.8
104721	CBD-10-01	46	23.9	4.24	23.1	3.8

Chem #	DDH#	Sample	Sm	Eu	Gd	Tb
104722	CBD-10-01	47	38.7	5.51	37.7	6.2
104723	CBD-10-01	48	49.3	6.51	48.2	7.7
104724	CBD-10-01	49	32.9	4.36	26.6	4.3
104725	CBD-10-01	50	30.6	4.09	25	4.1
104726	CBD-10-01	51	37.1	4.56	30.2	5
104727	CBD-10-01	52	24.7	3.12	19.6	3
104728	CBD-10-01	53	44.4	5.08	43.2	8
104729	CBD-10-01	54	80.8	9.14	78.9	14.4
104730	CBD-10-01	55	377	39.6	350	64.7
104731	CBD-10-01	56	27.3	3.48	21.6	3.3
104732	CBD-10-01	57	105	11.8	101	18.5
104733	CBD-10-01	58	69.7	8.82	66.1	11.9
104734	CBD-10-01	59	51.1	6.22	47	8.4
104735	CBD-10-01	60	34.1	4.23	29.2	4.9
104736	CBD-10-01	61	43	5.44	37.8	6.4
104737	CBD-10-01	62	35.4	4.45	27.9	4.4
104738	CBD-10-01	63	69.8	8.3	65.9	11.9
104739	CBD-10-01	64	55.4	7.02	50.4	9
104740	CBD-10-01	65	39.6	4.81	30.8	4.7
104741	CBD-10-01	66	49.6	6.15	43.4	7.4
104742	CBD-10-01	67	74.4	8.66	74.3	14.3
104743	CBD-10-01	68	114	11.9	87.8	12.5
104744	CBD-10-01	69	86.1	10.1	93	18.4
104745	CBD-10-01	70	200	22.2	204	39.3
104746	CBD-10-01	71	42.6	4.47	37.7	6.5
104747	CBD-10-01	72	30.7	3.28	28.5	5.1
104748	CBD-10-01	73	50.6	5.74	51.6	9.4
104749	CBD-10-01	74	35.6	4.28	30.3	5
104750	CBD-10-01	75	91.8	11.5	96.7	19
104751	CBD-10-01	76	32.3	4.14	26.6	4.2
104752	CBD-10-01	77	34.8	4.44	28.7	4.6
104753	CBD-10-01	78	34.4	4.19	27.7	4.2
104754	CBD-10-01	79	36.9	4.47	29.3	4.4
104755	CBD-10-01	80	71.7	7.87	55.6	9.1
104756	CBD-10-01	81	57.6	6.59	47.1	7.9
104757	CBD-10-01	82	32	3.75	24.3	3.7
104758	CBD-10-01	83	37.7	4.09	34	6
104759	CBD-10-01	84	58.6	7.15	48	8
104760	CBD-10-01	85	67.5	7.91	64.3	11.6
104761	CBD-10-01	86	89.9	10.5		17.2
104762	CBD-10-01	87	103	11.4	99.4	17.4
104763	CBD-10-01	88	173	18.8	166	30.5
104764	CBD-10-01	89	77.5	9.38	84	15.9
104765	CBD-10-01	90	36.4	4	33.4	5.9
104766	CBD-10-01	91	44.3	5.08	44.4	8.2
104767	CBD-10-01	92	28.6	3.81	24	4

Chem #	DDH#	Sample	Sm	Eu	Gd	Tb
104768	CBD-10-01	93	29.9	3.9	27.1	4.6
104769	CBD-10-01	94	34.8	4.87	29.5	4.8
104770	CBD-10-01	95	33.7	4.53	27.9	4.4
104771	CBD-10-01	96	26.4	3.69	21.6	3.4
104772	CBD-10-01	97	78.3	10.5	78.6	15
104773	CBD-10-01	98	88	10.6	87.8	16.7
104774	CBD-10-01	99	90.7	12	104	20.5
104775	CBD-10-01	100	82	11.3	85.8	16.8
104776	CBD-10-01	101	50	5.9	49	9
104777	CBD-10-01	102	61.4	7.18	60.6	11.6
104778	CBD-10-01	103	46.8	5.36	45.7	8.7
104779	CBD-10-01	104	74.3	9.12	79.2	15.3
104780	CBD-10-01	105	41.5	4.95	41.1	7.6
104781	CBD-10-01	106	21.9	2.55	20.9	3.8
104782	CBD-10-01	107	99.1	11.9	102	19.8
104783	CBD-10-01	108	54.6	6.44	55.6	10.7
104784	CBD-10-01	109	64.8	7.41	65.1	12.4
104785	CBD-10-01	110	101	13.2	102	19.3
104786	CBD-10-01	111	32.9	4.39	28.6	4.9
104787	CBD-10-01	112	46.2	5.66	38.7	6.4
104788	CBD-10-01	113	84.2	9.65	78.9	14.9
104789	CBD-10-01	114	108	13.6	101	17.4
104790	CBD-10-01	115	81.7	9.62	78.5	15
104791	CBD-10-01	116	53.7	6.95	50.2	9.3
104792	CBD-10-01	117	88.5	12.2	92.3	18.2
104793	CBD-10-01	118	36.6	4.57	31.5	5.4
104794	CBD-10-01	119	73.6	8.71	71	13.2
104795	CBD-10-01	120	43.3	5.16	34.8	5.5
104796	CBD-10-01	121	108	13.7	113	21.1
104797	CBD-10-01	122	36.8	4.97	33.3	5.8
104798	CBD-10-01	123	147	18.9	157	30.1
104799	CBD-10-01	124	98.4	12.3	102	19.7
104800	CBD-10-01	125	45.9	5.65	39.2	6.8
416001	CBD-10-01	126	46.9	5.78	40.6	7.1
416002	CBD-10-01	127	50.5	6.3	44.9	8.1
416003	CBD-10-01	128	56.7	6.49	45.5	7.6
416004	CBD-10-01	129	178	20.2	162	29.9
416005	CBD-10-01	130	91.4	11.1	84.4	15.9
416006	CBD-10-01	131	189	21.3	165	30.5
416007	CBD-10-01	132	32.5	5.48	27.1	4.5
416008	CBD-10-01	133	64.7	8.4	63.2	12.5
416009	CBD-10-01	134	63.9	7.95	58.1	10.7
416010	CBD-10-01	135	59.9	7.04	53.2	9
416011	CBD-10-01	136	82.9	10.3	85.5	15.8
416012	CBD-10-01	137	99.9	11.3	92.3	15.8
416013	CBD-10-01	138	47.2	5.34	43.3	7.4

Chem #	DDH#	Sample	Sm	Eu	Gd	Tb
416014	CBD-10-01	139	31.6	3.5	28	4.8
416015	CBD-10-01	140	102	11.4	94.6	16.6
416016	CBD-10-01	141	42.1	4.83	38.9	6.8
416017	CBD-10-01	142	46.7	5.3	40	6.7
416018	CBD-10-01	143	105	12.4	106	20.4
416019	CBD-10-01	144	42.7	5.54	40.3	7.1
416020	CBD-10-01	145	60.3	7.18	60.8	11
416021	CBD-10-01	146	115	12.8	113	20.6
416022	CBD-10-01	147	69.2	8.1	71.2	12.9
416023	CBD-10-01	148	88.5	10.3	95.3	17.3
416024	CBD-10-01	149	101	12	108	19.5
416025	CBD-10-01	150	124	13.7	126	21.6
416026	CBD-10-01	151	310	31.3	268	45.6
416027	CBD-10-01	152	573	58.1	511	87.6
416028	CBD-10-01	153	143	15.1	148	25.6
416029	CBD-10-01	154	216	21.7	192	31.6
416030	CBD-10-01	155	368	38.3	342	59.6
416031	CBD-10-01	156	114	12.3	113	19.9
416032	CBD-10-01	157	114	11.9	109	19.3
416033	CBD-10-01	158	368	36.6	310	52
416034	CBD-10-01	159	305	29.6	243	39.7
416035	CBD-10-01	160	284	28.6	243	41.2
416036	CBD-10-01	161	379	38.8	335	58.6
416037	CBD-10-01	162	103	11.6	101	17.8
416038	CBD-10-01	163	171	18.1	158	27.7
416039	CBD-10-01	164	231	24.7	223	40.7
416040	CBD-10-01	165	54.2	6.35	50.5	8.4
416041	CBD-10-01	166	77.5	9.17	78.7	13.6
416042	CBD-10-01	167	62.2	7.32	61.7	10.7
416043	CBD-10-01	168	74.9	9.05	75.2	13.1
416044	CBD-10-01	169	109	13.7	128	22.9
416045	CBD-10-01	170	47.4	5.52	41.1	6.5
416046	CBD-10-01	171	42.7	4.64	36.4	5.8
416047	CBD-10-01	172	40.2	4.31	34.5	5.4
416048	CBD-10-01	173		4.06	32.5	5.2
416049	CBD-10-01	174		7.86	64.4	10.6
416050	CBD-10-01	175	44.4	4.95	38.4	6.3
416051	CBD-10-01	176	55.3	6.27	48.3	7.7
416052	CBD-10-01	177	365	42.3	368	71.5
416053	CBD-10-01	178	554	58.6	489	79.7
416054	CBD-10-01	179	582	66.1	582	108
416055	CBD-10-01	180	390	45.9	409	77.1
416056	CBD-10-01	181	131	14.2	120	21
416057	CBD-10-01	182	102	11.5	106	19.2
416058	CBD-10-01	183	82.1	10.6	86.8	16
416059	CBD-10-01	184	78.2	11.4	85.1	15.5

Chem#	DDH#	Sample	Sm	Eu	Gd	Tb
416060	CBD-10-01	185	93.7	11.6	99.6	18.5
416061	CBD-10-01	186	32.2	3.96	29.4	5
416062	CBD-10-01	187	85.4	13.6	91.6	16.9
416063	CBD-10-01	188	37.7	4.83	36.7	6.3
416064	CBD-10-01	189	53.5	6.79	53.5	9.2
416065	CBD-10-01	190	159	19.9	186	35.2
416066	CBD-10-01	191	138	16.7	150	28.5
416067	CBD-10-01	192	49.3	5.81	55.7	11.3
416068	CBD-10-01	193	18.4	1.95	18.7	3.4
416069	CBD-10-01	194	78.2	9.28	64.7	10.1
416070	CBD-10-01	195	105	12.4	84.7	12.8
416071	CBD-10-01	196	100	11.2	76.7	10.9
416072	CBD-10-01	197	163	19.5	157	26.4
416073	CBD-10-01	198	158	17.8	126	18.1
416074	CBD-10-01	199	129	15.6	125	22
416075	CBD-10-01	200	75	9.44	72.6	13
416076	CBD-10-01	201	118	14.3	131	24.6
416077	CBD-10-01	202	71.3	9.52	75.2	13.8
416078	CBD-10-01	203	60.1	7.76	65.6	12.3
416079	CBD-10-01	204	48	5.75	50	9
416080	CBD-10-01	205	55	6.64	57.7	10.5
416081	CBD-10-01	206	81.3	10.1	81.2	14.6
416082	CBD-10-01	207	68.3	8.04	64.7	11.1
416083	CBD-10-01	208	54.6	6.61	57.6	10.6
416084	CBD-10-01	209	51.8	7.23	49.4	8.4
416085	CBD-10-01	210	128	15.9	137	25.5
416086	CBD-10-01	211	11.3	1.08	10	1.7
416087	CBD-10-01	212	18.4	1.79	19.1	3.4
416088	CBD-10-01	213	10.7	0.48	10.5	1.9
416089	CBD-10-01	214	21.8	0.74	17.5	2.8
416090	CBD-10-01	215	21	1.05	17.6	2.8
416091	CBD-10-01	216	32.1	2.37	30.3	5.4
416092	CBD-10-01	217	17.9		16.4	2.7
416093	CBD-10-01	218		0.93	13.5	2.4
416094	CBD-10-01	219		1.54	13.7	2.4
416095	CBD-10-01	220	91.5	10.8	87.9	15.3
416096	CBD-10-01	221	90.1	11.5	93.3	16.7
416097	CBD-10-01	222	78	10.1	85.5	16.2
416098	CBD-10-01	223	68.7	8.91	73.6	13.6
416099	CBD-10-01	224	200	27.4	230	43.7
416100	CBD-10-01	225	64.2	8.61	69	12.5
416101	CBD-10-01	226	99	11.9	96	17.2
416102	CBD-10-01	227	57.7	7.31	57.8	10.4
416103	CBD-10-01	228	67.5	8.24	62.9	10.7
416104	CBD-10-01	229	43.1	5.43	39.8	7
416105	CBD-10-01	230	49	5.82	43.1	7.5

Chem #	DDH#	Sample	Sm	Eu	Gd	Tb
416106	CBD-10-01	231	81.4	10.5	77.8	14.6
416107	CBD-10-01	232	30.4	4.72	26.3	4.1
416108	CBD-10-01	233	29.6	5	26.2	4.2
416109	CBD-10-01	234	33.4	5.25	28.8	4.6
416110	CBD-10-01	235	64.2	8	61.6	11.3
416111	CBD-10-01	236	41.3	4.9	37.2	6.5
416112	CBD-10-01	237	56.7	7.28	54.3	9.9
416113	CBD-10-01	238	51.3	6.16	45.9	8
416114	CBD-10-01	239	54.9	7.26	52.2	9.6
416115	CBD-10-01	240	32.3	3.74	28.8	5
416116	CBD-10-01	241	36.2	4.36	31.8	5.5
416117	CBD-10-01	242	37.4	4.82	35.3	6.4
416118	CBD-10-01	243	42.8	5.5	35.1	5.5
416119	CBD-10-01	244	36.4	4.56	34.5	6.2
416120	CBD-10-01	245	65.4	7.98	62.5	11.7
416121	CBD-10-01	246	47.4	6.22	42.4	7.3
416122	CBD-10-01	247	63	7.37	60.3	11.1
416123	CBD-10-01	248	171	19.9	157	28.9
416124	CBD-10-01	249	92.3	13.3	94.4	18
416125	CBD-10-01	250	58.7	7.35	57.6	10.7
416126	CBD-10-01	251	281	41.7	409	95.3
416127	CBD-10-01	252	138	17.7	146	28.9
416128	CBD-10-01	253	61.9	8.13	61.2	11.5
416129	CBD-10-01	254	44.9	5.43	38.7	6.3
416130	CBD-10-01	255	42.8	5.56	40.2	7.2
416131	CBD-10-01	256	75.8	10.6	74.5	13.9
416132	CBD-10-01	257	49	6.47	46.6	8.5
416133	CBD-10-01	258	60.9	7.83	60	11.2
416134	CBD-10-01	259	41.7	5.06	37.5	6.6
416135	CBD-10-01	260	59.6	7.83	57.9	10.4
416136	CBD-10-01	261	35	4.42	35	6.4
416137	CBD-10-01	262	90.7	13	94.4	18.1
416138	CBD-10-01	263	59.8	7.53	60.7	11.4
416139	CBD-10-01	264	62.5	7.57	63.3	11.8
416140	CBD-10-01	265	54.6	6.94	54.9	10.4
416141	CBD-10-01	266		10	75	14.4
416142	CBD-10-01	267	35.8	4.27	30.3	5.1
416143	CBD-10-01	268	54.7	6.61	50.4	9
416144	CBD-10-01	269	55.6	6.52	52.7	9.7
416145	CBD-10-01	270	74.8	9.6	72.9	14.1
416146	CBD-10-01	271	66.1	8.71	65.1	12.2
416147	CBD-10-01	272	43.4	5.38	40.4	7.4
416148	CBD-10-01	273	31.8	3.71	25.7	4.4
416149	CBD-10-01	274	36	4.28	31.2	5.4
416150	CBD-10-01	275	60.8	7.07	53.3	9.7
416151	CBD-10-01	276	37.3	4.11	29.5	4.8

Chem #	DDH#	Sample	Sm	Eu	Gd	Tb
416152	CBD-10-01	277	62.9	8.48	60.6	11.7
416153	CBD-10-01	278	70.6	9.52	71.4	13.9
416154	CBD-10-01	279	25.8	2.97	19.5	3.1
512817	CBD-11-02	1	24.3	4.24	21.1	3.4
512818	CBD-11-02	2	24.1	4.08	21	3.2
512819	CBD-11-02	3	24.4	4.05	21.2	3.4
512820	CBD-11-02	4	24.3	4.02	20.5	3.3
512821	CBD-11-02	5	23.8	3.96	20.2	3.2
512822	CBD-11-02	6	25.7	4.25	21.7	3.4
512823	CBD-11-02	7	24.9	4.13	21.6	3.5
512824	CBD-11-02	8	26.5	4.29	22	3.4
512825	CBD-11-02	9	24.3	4.12	21.1	3.3
512826	CBD-11-02	10	27.3	4.29	22.8	3.6
512827	CBD-11-02	11	26.1	4.02	22	3.4
512828	CBD-11-02	12	27.4	4.08	23.1	3.5
512829	CBD-11-02	13	124	15.5	122	22.6
512830	CBD-11-02	14	45.3	5.68	38.4	6.2
512831	CBD-11-02	15	35	4.61	27.9	4.2
512832	CBD-11-02	16	30.4	4.07	24.7	3.6
512833	CBD-11-02	17	35.5	4.64	31	4.8
512834	CBD-11-02	18	28.5	3.99	23.5	3.6
512835	CBD-11-02	19	63.7	7.7	63.3	11.3
512836	CBD-11-02	20	31.6	4.02	26.2	4.1
512837	CBD-11-02	21	29.7	3.81	24	3.6
512838	CBD-11-02	22	107	14.7	111	21.2
512839	CBD-11-02	23	58.8	8	58.3	10.7
512840	CBD-11-02	24	39.7	5.37	36	6.1
512841	CBD-11-02	25	35.3	4.51	30	5
512842	CBD-11-02	26	33	4.36	26	3.8
512843	CBD-11-02	27	33.1	4.41	27.5	4.2
512844	CBD-11-02	28	37.6	4.92	31.7	5
512845	CBD-11-02	29	33.7	4.6	27.4	4.2
512846	CBD-11-02	30	53	7.46	52.2	9.6
512847	CBD-11-02	31	74.1	10.6	75.9	14.2
512848	CBD-11-02	32	25.8	3.36	20.7	3
512849	CBD-11-02	33	31.5	3.98	26.9	4
512850	CBD-11-02	34	26.4	3.34	20.8	3.1
512851	CBD-11-02	35	36.8	4.78	33	5.6
512852	CBD-11-02	36	54.2	7.64	52.1	9.3
512853	CBD-11-02	37	110	16	118	23
512854	CBD-11-02	38	82.5	11.1	80.8	14.7
512855	CBD-11-02	39	58.9	7.56	54.4	9.2
512856	CBD-11-02	40	52.6	7.31	50.4	9.3
512857	CBD-11-02	41	68.4	9.47	65	11.8
512858	CBD-11-02	42	38.8	5.21	33.6	5.4
512859	CBD-11-02	43	143	16.7	140	26.1

Chem #	DDH#	Sample	Sm	Eu	Gd	Tb
512860	CBD-11-02	44	307	36.1	288	52.6
512861	CBD-11-02	45	206	22.2	163	23.3
512862	CBD-11-02	46	46.1	5.5	44.9	8.7
512863	CBD-11-02	47	37.1	4.66	29.5	4.4
512864	CBD-11-02	48	70.2	8.6	67.4	12.5
512865	CBD-11-02	49	60.8	7.89	59.7	11.1
512866	CBD-11-02	50	27.2	3.51	21.7	3.3
512867	CBD-11-02	51	51.3	5.81	48.3	8.8
512868	CBD-11-02	52	76	9.65	79.8	15.3
512869	CBD-11-02	53	86.3	10.7	85.6	16.2
512870	CBD-11-02	54	31.8	3.64	29.6	5.5
512871	CBD-11-02	55	43.9	6	42	7.5
512872	CBD-11-02	56	26.1	3.47	20.5	3.1
512873	CBD-11-02	57	26.7	3.64	21.8	3.5
512874	CBD-11-02	58	30.3	4.07	23.9	3.6
512875	CBD-11-02	59	54.5	6.83	48.9	8.4
512876	CBD-11-02	60	47.3	5.57	42.3	7.4
512877	CBD-11-02	61	67.9	8.17	59.7	9.8
512878	CBD-11-02	62	140	16	133	25
512879	CBD-11-02	63	105	12.7	108	20.1
512880	CBD-11-02	64	52.8	6.55	52.1	9.8
512881	CBD-11-02	65	33.4	4.54	27.6	4.5
512882	CBD-11-02	66	27.5	3.64	21.6	3.4
512883	CBD-11-02	67	92.5	13.4	94.1	18.4
512884	CBD-11-02	68	47.9	5.85	45.5	8.5
512885	CBD-11-02	69	44.9	5.6	47.3	9.2
512886	CBD-11-02	70	61.7	7.45	62.6	12
512887	CBD-11-02	71	42	5.33	36.6	6.2
512888	CBD-11-02	72	25.1	3.04	22.6	4.1
512889	CBD-11-02	73	59.3	7.73	62.1	12.2
512890	CBD-11-02	74	73.6	9.13	67.8	11.9
512891	CBD-11-02	75	39.5	5.08	33.7	5.6
512892	CBD-11-02	76	79.9	10.2	80.7	15.2
512893	CBD-11-02	77	36.5	4.93	34.9	6.3
512894	CBD-11-02	78	44.6	5.42	37.4	6.2
512895	CBD-11-02	79	111	14.4	122	23.3
512896	CBD-11-02	80	50.5	6.35	46.6	8.4
512897	CBD-11-02	81	32.7	4.3	27.1	4.4
512898	CBD-11-02	82	32.3	4.03	25.2	3.8
512899	CBD-11-02	83	32.3	4.24	27	4.2
512900	CBD-11-02	84	39.4	5.1	32.6	5.2
512901	CBD-11-02	85	47.8	5.86	42.5	7.3
512902	CBD-11-02	86	38.7	5.17	33.8	5.8
512903	CBD-11-02	87	34.7	4.64	28.7	4.7
512904	CBD-11-02	88	34.6	4.42	28.6	4.6
512905	CBD-11-02	89	92.5	10.3	81.4	14.2

Chem #	DDH#	Sample	Sm	Eu	Gd	Tb
512906	CBD-11-02	90	297	34.6	273	50.7
512907	CBD-11-02	91	379	45	361	70.2
512908	CBD-11-02	92	242	26.4	211	35.4
512909	CBD-11-02	93	238	24.8	198	32.9
512910	CBD-11-02	94	293	33.6	274	52
512911	CBD-11-02	95	195	21.7	181	33.1
512912	CBD-11-02	96	171	19.8	155	28.1
512913	CBD-11-02	97	117	13.9	104	18.3
512914	CBD-11-02	98	274	31.1	238	41.9
512915	CBD-11-02	99	200	25.2	197	37.6
512916	CBD-11-02	100	96.5	13.7	93.7	17.8
512917	CBD-11-02	101	42.2	5.99	37.3	6.8
512918	CBD-11-02	102	78.7	10.5	73.9	13.9
512919	CBD-11-02	103	54.7	7.48	53.1	10
512920	CBD-11-02	104	109	14.9	113	22.7
512921	CBD-11-02	105	35.5	4.75	31.3	5.4
512922	CBD-11-02	106	32.8	4.25	28.5	5
512923	CBD-11-02	107	384	43.2	328	56.4
512924	CBD-11-02	108	58.1	7.72	54.6	10.3
512925	CBD-11-02	109	53.2	6.92	51	9.6
512926	CBD-11-02	110	144	16.9	129	23.3
512927	CBD-11-02	111	36.7	4.39	31	5.6
512928	CBD-11-02	112	69.1	9.86	66.9	13
512929	CBD-11-02	113	49.5	6.35	45.2	8.4
512930	CBD-11-02	114	71.7	9.24	68.3	13
512931	CBD-11-02	115	41.9	5.08	39.7	7.4
512932	CBD-11-02	116	76.1	9.44	77.4	16
512933	CBD-11-02	117	101	14.3	105	20.9
512934	CBD-11-02	118	61	7.97	59.6	11.5
512935	CBD-11-02	119	145	18.5	142	27.6
512936	CBD-11-02	120	61	8.13	59	11.3
512937	CBD-11-02	121	198	24.1	184	33.1
512938	CBD-11-02	122	67	8.7	65.2	12.5
512939	CBD-11-02	123		23.2	186	34.9
512940	CBD-11-02	124	72.8	9.43	71.5	13.8
512941	CBD-11-02	125		4.19	24.3	4.2
512942	CBD-11-02	126			21.9	3.5
512943	CBD-11-02	127	70.8	9.77	73.1	14.4
512944	CBD-11-02	128	31.1	4.1	24.9	3.8
512945	CBD-11-02	129	44.1	5.77	40.4	7.1
512946	CBD-11-02	130	85.7	10.7	86.5	17.3
512947	CBD-11-02	131	168	21.8	177	34.8
512948	CBD-11-02	132		4.21	27.2	4.5
512949	CBD-11-02	133	164	20.8	171	33.4
512950	CBD-11-02	134	40.2	4.86	33.6	5.5
512951	CBD-11-02	135	159	20.1	155	28.9

Chem #	DDH#	Sample	Sm	Eu	Gd	Tb
512952	CBD-11-02	136	110	13.5	109	20.8
512953	CBD-11-02	137	144	18.3	148	28.5
512954	CBD-11-02	138	156	19.7	157	30.1
512955	CBD-11-02	139	191	22.6	180	33.4
512956	CBD-11-02	140	184	21.1	192	37.6
512957	CBD-11-02	141	162	19.5	154	29
512958	CBD-11-02	142	46.3	5.63	41.1	7
512959	CBD-11-02	143	42	6.46	37.1	6.3
512960	CBD-11-02	144	44.3	5.03	38.2	6.8
512961	CBD-11-02	145	38.7	4.34	32.5	5.3
512962	CBD-11-02	146	20.7	2.07	19.1	3.4
512963	CBD-11-02	147	25.2	2.74	24.6	4.7
512964	CBD-11-02	148	34.8	4.29	33.7	6.3
512965	CBD-11-02	149	54.2	6.5	48.4	8.5
512966	CBD-11-02	150	49.6	6.19	46.1	8.1
512967	CBD-11-02	151	49.4	5.55	44.4	7.7
512968	CBD-11-02	152	53.6	6.4	48.4	8.6
512969	CBD-11-02	153	84.7	10.6	81.9	15.5
512970	CBD-11-02	154	164	19.2	145	25.7
512971	CBD-11-02	155	403	47.5	374	70.2
512972	CBD-11-02	156	503	61.9	487	98
512973	CBD-11-02	157	390	47.2	378	75.2
512974	CBD-11-02	158	380	46.4	354	65.7
512975	CBD-11-02	159	337	42.1	339	67.1
512976	CBD-11-02	160	178	22.9	186	37.2
512977	CBD-11-02	161	155	18.8	143	25.6
512978	CBD-11-02	162	176	21.1	166	30.4
512979	CBD-11-02	163	63.9	8.33	57.4	10.1
512980	CBD-11-02	164	46.3	5.92	40.6	7.1
512981	CBD-11-02	165	84.2	10.8	86.5	17.1
512982	CBD-11-02	166	58.6	6.95	61.1	12.5
512983	CBD-11-02	167	40.4	4.23	37	6.8
512984	CBD-11-02	168	39.5	4.59	38.7	7.4
512985	CBD-11-02	169	88.9	11.8	96	20
512986	CBD-11-02	170	92.2	10.9	95	19
512987	CBD-11-02	171	97.9	11.7	73.7	10.7
512988	CBD-11-02	172	119	13.6	91.5	13.9
512989	CBD-11-02	173	82.9	10.8	78.3	14.7
512990	CBD-11-02	174	80.2	9.56	72.5	13
512991	CBD-11-02	175	58.5	7.36	56.5	10.7
512992	CBD-11-02	176	62.2	7.53	58.9	10.9
512993	CBD-11-02 CBD-11-02	177	44.6	5.88	39.8	7.1
512994		178	91.5	10.9	81.2	14.7
512995	CBD-11-02	179	88.9	10.6	87 55.7	16.6
512996	CBD-11-02	180	59.5	6.47	55.7	10.4
512997	CBD-11-02	181	27.8	2.6	23.9	4.2

Chem #	DDH#	Sample	Sm	Eu	Gd	Tb
512998	CBD-11-02	182	21.5	0.89	16.8	2.8
512999	CBD-11-02	183	19.3	0.88	16.1	2.8
513000	CBD-11-02	184	30.3	3.17	26.6	4.7
513001	CBD-11-02	185	35.2	3.81	31.6	5.6
513002	CBD-11-02	186	21.2	0.79	17.5	3
513003	CBD-11-02	187	21.8	0.91	17.6	2.9
513004	CBD-11-02	188	54.7	6.38	50.1	9.2
513005	CBD-11-02	189	79.5	10.4	79.2	15.3
513006	CBD-11-02	190	86.6	10.8	84.3	16.4
513007	CBD-11-02	191	81.8	10.8	80.8	15.6
513008	CBD-11-02	192	61.3	7.73	59.4	11.6
513009	CBD-11-02	193	55.5	7.05	53.4	10.1
513010	CBD-11-02	194	72	9.33	68.6	13
513011	CBD-11-02	195	49.6	6.28	46.9	8.8
513012	CBD-11-02	196	51.6	6.15	44.2	7.5
513013	CBD-11-02	197	46.8	5.84	40.5	7.1
513014	CBD-11-02	198	34.9	4.68	28.2	4.5
513015	CBD-11-02	199	46	5.57	41	7.4
513016	CBD-11-02	200	43.5	5	37.7	6.6
513017	CBD-11-02	201	52.9	6.56	47.8	8.7
513018	CBD-11-02	202	60.8	7.91	60.1	11.4
513019	CBD-11-02	203	48.4	6.14	45.4	8.6
513020	CBD-11-02	204	51.6	6.07	50.1	9.6
513021	CBD-11-02	205	57.1	7.52	55.1	10.5
513022	CBD-11-02	206	45.9	6.03	42.4	7.9
513023	CBD-11-02	207	67.1	8.69	62.2	11.4
513024	CBD-11-02	208	67.6	8.69	66.7	12.7
513025	CBD-11-02	209	82	10.4	85.5	17.3
513026	CBD-11-02	210	97.6	12.4	96.2	17.7
513027	CBD-11-02	211	61.2	7.72	54.3	9.8
513028	CBD-11-02	212	56.5	8.09	54.3	10.3
513029	CBD-11-02	213	60.7	8.77	58.7	11.1
513030	CBD-11-02	214		6.83	48	8.7
513031	CBD-11-02	215		8.68	64.5	11.7
513032	CBD-11-02	216	39.7	4.67	36.2	6.5
513033	CBD-11-02	217	78.2	10.3	77.1	14.5
513034	CBD-11-02	218		7.49	53.6	9.5
513035	CBD-11-02	219		5.5	38.9	6.7
513036	CBD-11-02	220	72.5	8.99	70.9	13.6
513037	CBD-11-02	221	53.3	7.56	52.3	10
513038	CBD-11-02	222	32	3.89	26.3	4.3
513039	CBD-11-02	223		3.28	21.6	3.3
513040	CBD-11-02	224		5.5	37.4	6.4
513041	CBD-11-02	225	45	6.13	41.7	7.6
513042	CBD-11-02	226	68	8.92	65.3	12.1
513043	CBD-11-02	227	35.5	4.39	30.8	5.1

Chem #	DDH#	Sample	Sm	Eu	Gd	Tb
513044	CBD-11-02	228	68.3	9.59	69.3	13.3
513045	CBD-11-02	229	49.9	6.8	48.1	9
513046	CBD-11-02	230	54.3	7.23	53.3	9.9
513047	CBD-11-02	231	43.8	5.67	41.1	7.7
513048	CBD-11-02	232	58.4	7.24	53.2	9.9
514381	CBD-11-07	1	63.7	7.35	48.1	7.1
514382	CBD-11-07	2	56.1	6.41	44.4	6.8
514383	CBD-11-07	3	42.4	4.84	35.2	5.7
514384	CBD-11-07	4	76	9.75	81.2	15.6
514385	CBD-11-07	5	60.1	6.76	48	6.9
514386	CBD-11-07	6	67.6	7.48	53.9	7.9
514387	CBD-11-07	7	65.9	7.42	54	8.1
514388	CBD-11-07	8	68	7.93	56.7	8.6
514389	CBD-11-07	9	70.9	8.63	62.7	11.5
514390	CBD-11-07	10	77.4	9.55	70.4	11.9
514391	CBD-11-07	11	62.6	7.38	54.6	9
514392	CBD-11-07	12	49.2	5.69	41	6
514393	CBD-11-07	13	35	4.47	30.3	4.7
514394	CBD-11-07	14	30.5	4.14	26	4.4
514395	CBD-11-07	15	35.1	4.43	29.7	4.8
514396	CBD-11-07	16	26.1	3.69	22.2	3.8
514397	CBD-11-07	17	36	4.64	28.4	4.6
514398	CBD-11-07	18	46.8	5.35	36.3	5.5
514399	CBD-11-07	19	55.9	6.49	45.1	6.7
514400	CBD-11-07	20	43.8	5.26	35.6	5.3
514401	CBD-11-07	21	32.8	4.18	29.1	4.9
514402	CBD-11-07	22	89.6	10.2	77.4	13.3
514403	CBD-11-07	23	81.6	9.65	77	14.4
514404	CBD-11-07	24	278	35.3	296	62.7
514405	CBD-11-07	25	44	5.16	32.3	5
514406	CBD-11-07	26	32	4.21	28	4.6
514407	CBD-11-07	27	30.2	3.96	25.7	4.1
514408	CBD-11-07	28	32.7	4.13	27.7	4.5
514409	CBD-11-07	29	29.2	3.89	25.2	4.1
514410	CBD-11-07	30	31.8	4.28	26.7	4.3
514411	CBD-11-07	31		4.56	30.4	5
514412	CBD-11-07	32	33.8	4.17	27	4.4
514413	CBD-11-07	33	53.8	7.01	54.6	10.9
514414	CBD-11-07	34	38.2	4.31	35.5	6.3
514415	CBD-11-07	35	69.8	8.06	66.7	12.8
514416	CBD-11-07	36	171	19.9	162	29.9
514417	CBD-11-07	37	152	18.7	155	31.2
514418	CBD-11-07	38		3.63	24.3	3.9
514419	CBD-11-07	39		12	90.4	18
514420	CBD-11-07	40	27.6	3.76	24.2	4.1
514421	CBD-11-07	41	76.1	10.1	78.3	15.6

Chem #	DDH#	Sample	Sm	Eu	Gd	Tb
514422	CBD-11-07	42	30.2	3.74	25.9	4.3
514423	CBD-11-07	43	45.2	5.93	44.7	8.5
514424	CBD-11-07	44	36.9	4.16	34.6	6.1
514425	CBD-11-07	45	56.8	7.2	56.6	11.1
514426	CBD-11-07	46	67.7	9.75	70.8	13.3
514427	CBD-11-07	47	117	13	103	17.3
514428	CBD-11-07	48	192	22.3	174	32.2
514429	CBD-11-07	49	94.7	11.6	100	19.3
514430	CBD-11-07	50	104	12.2	99.3	18.4
514431	CBD-11-07	51	94.7	13.2	97	18.8
514432	CBD-11-07	52	45.9	5.52	38.1	5.9
514433	CBD-11-07	53	38.4	5.04	33.7	5.7
514434	CBD-11-07	54	34.1	4.37	29.3	4.7
514435	CBD-11-07	55	37.4	4.8	31.5	4.9
514436	CBD-11-07	56	34.9	4.4	31	5.2
514437	CBD-11-07	57	29.1	3.86	24.6	3.9
514438	CBD-11-07	58	30.1	3.82	25.3	4
514439	CBD-11-07	59	26.4	3.47	22.3	3.5
514440	CBD-11-07	60	65.1	8.61	65.8	13
514441	CBD-11-07	61	26.8	3.4	22.5	3.3
514442	CBD-11-07	62	23.8	3.71	20.8	3.5
514443	CBD-11-07	63	26.3	3.9	22.6	3.8
514444	CBD-11-07	64	22.8	3.43	20.4	3.4
514445	CBD-11-07	65	23.2	3.62	20.7	3.4
514446	CBD-11-07	66	26	3.43	22.8	3.7
514447	CBD-11-07	67	29.2	3.84	24.6	3.9
514448	CBD-11-07	68	31.5	4.33	28.4	5.1
514449	CBD-11-07	69	28.9	3.84	24.2	3.9
514450	CBD-11-07	70	23.4	3.68	22.2	3.7
514451	CBD-11-07	71	33.5	4.47	29.8	5.2
514452	CBD-11-07	72	27.9	3.99	24.3	4
514453	CBD-11-07	73	29	4.16	25.9	4.3
514454	CBD-11-07	74	23.5	3.6	20.4	3.5
514455	CBD-11-07	75	23.9	3.7	20.8	3.6
514456	CBD-11-07	76	24.9	3.59	22.9	3.7
514457	CBD-11-07	77	25.9	3.65	21.1	3.7
514458	CBD-11-07	78	26.2	3.64	23.5	3.7
514459	CBD-11-07	79	26.7	3.58	21.6	3.4
514460	CBD-11-07	80	27.2	3.69	22.7	3.6
514461	CBD-11-07	81	25.2	3.29	20.7	3.2
514462	CBD-11-07	82	23.7	3.16	19.6	3
514463	CBD-11-07	83	30.9	4.26	27.1	4.4
514464	CBD-11-07	84	28.8	4.02	23.9	4
514465	CBD-11-07	85	27.6	3.96	23.7	4.1
514466	CBD-11-07	86	110	12.9	101	19.6
514467	CBD-11-07	87	56.7	7.2	52.8	10.4

Chem #	DDH#	Sample	Sm	Eu	Gd	Tb
514468	CBD-11-07	88	33.5	4.27	27.5	5
514469	CBD-11-07	89	44	5.69	39.6	7.4
514470	CBD-11-07	90	47.8	6.44	44.2	8.4
514471	CBD-11-07	91	43.5	5.73	39.2	7.4
514472	CBD-11-07	92	43.7	5.89	40.7	7.9
514473	CBD-11-07	93	40.5	5.1	35.7	6.7
514474	CBD-11-07	94	29.4	3.58	23.6	4.1
514475	CBD-11-07	95	32.9	3.63	25.1	4
514476	CBD-11-07	96	41.9	5.23	38.7	7
514477	CBD-11-07	97	148	18.3	155	33
514478	CBD-11-07	98	189	21.6	150	23.9
514479	CBD-11-07	99	49.2	5.85	48.7	9.5
514480	CBD-11-07	100	103	15.2	106	21.9
514481	CBD-11-07	101	34.6	4.05	33.5	6.3
514482	CBD-11-07	102	73	10.9	73.3	15.1
514483	CBD-11-07	103	41.2	5.4	38.2	7.1
514484	CBD-11-07	104	31.6	4.08	25.9	4.5
514485	CBD-11-07	105	30	3.68	24.1	4.2
514486	CBD-11-07	106	70	10.1	70.8	14.8
514487	CBD-11-07	107	71.6	9.65	68.2	13.8
514488	CBD-11-07	108	31.2	3.66	29.2	5.9
514489	CBD-11-07	109	34.7	4.42	29.1	5
514490	CBD-11-07	110	65.2	9.33	62.9	12.7
514491	CBD-11-07	111	39.2	4.92	32.5	5.5
514492	CBD-11-07	112	38	4.74	37.2	7.4
514493	CBD-11-07	113	23.9	2.95	22.9	4.4
514494	CBD-11-07	114	116	16.1	119	24.6
514495	CBD-11-07	115	67.3	7.96	58.5	10.3
514496	CBD-11-07	116	102	12.7	105	21.6
514497	CBD-11-07	117	196	23.8	189	38.2
514498	CBD-11-07	118	89.8	11.3	96.4	19.8
514499	CBD-11-07	119		19	147	27
514500	CBD-11-07	120		3.67	29.8	5.8
514501	CBD-11-07	121	27.9	3.22		4.4
514502	CBD-11-07	122	41.2	4.96	33.3	5.5
514503	CBD-11-07	123		4.97		5.4
514504	CBD-11-07	124		4.9	32.8	5.3
514505	CBD-11-07	125		4.5		5.4
514506	CBD-11-07	126		5.09	37.1	5.9
514507	CBD-11-07	127	32.7	4.07	27	4.3
514508	CBD-11-07	128		4.04	28.8	4.3
514509	CBD-11-07	129		4.96	35.5	5.7
514510	CBD-11-07	130		5.65		6.6
514511	CBD-11-07	131	43.7	5.28	39.9	6.8
514512	CBD-11-07	132	41.5	4.89	34.8	5.3
514513	CBD-11-07	133	79.9	8.99	77.5	12.6

Chem #	DDH#	Sample	Sm	Eu	Gd	Tb
514514	CBD-11-07	134	77.9	9.7	89.3	16.5
514515	CBD-11-07	135	93.4	10.7	92.5	17.2
514516	CBD-11-07	136	62.9	7.08	59.6	10.3
514517	CBD-11-07	137	64.6	7.9	68.4	13.1
514518	CBD-11-07	138	93.7	11.1	94.5	17.6
514519	CBD-11-07	139	65.8	8.07	70.3	13.4
514520	CBD-11-07	140	45.5	5.6	46.3	8.8
514521	CBD-11-07	141	51.8	6.54	53.6	10
514522	CBD-11-07	142	50.4	6.31	54.5	10.3
514523	CBD-11-07	143	48.9	5.8	47.8	9
514524	CBD-11-07	144	54.5	6.49	54.7	10.4
514525	CBD-11-07	145	43.4	5.64	41.8	7.1
514526	CBD-11-07	146	28.8	3.93	26.4	4.4
514527	CBD-11-07	147	27.1	3.67	23.5	3.8
514528	CBD-11-07	148	31.2	4.03	27.4	4.4
514529	CBD-11-07	149	84.9	11.4	101	19.8
514530	CBD-11-07	150	111	14.6	127	25.7
514531	CBD-11-07	151	107	13.9	121	23.8
514532	CBD-11-07	152	148	19.6	173	35.3
514533	CBD-11-07	153	368	44.6	367	63.8
514534	CBD-11-07	154	123	14.7	130	24.6
514535	CBD-11-07	155	83.3	10.4	90.1	17
514536	CBD-11-07	156	85.6	11.7	105	21.4
514537	CBD-11-07	157	38.4	4.52	33.2	5.4
514538	CBD-11-07	158	120	13.3	110	19.1
514539	CBD-11-07	159	455	54.1	448	80.9
514540	CBD-11-07	160	87.3	11.3	86.4	16.3
514541	CBD-11-07	161	474	58.2	446	83.1
514542	CBD-11-07	162	503	59.8	485	88.3
514543	CBD-11-07	163	267	29.2	230	38.9
514544	CBD-11-07	164	65.6	7.59	63.7	11.7
514545	CBD-11-07	165	73.3	9.75	75.9	14.3
514546	CBD-11-07	166	34.6		33.2	6.2
514547	CBD-11-07	167	46.8	6.25	45.1	8.3
514548	CBD-11-07	168	40.9	5.42	39.4	7.3
514549	CBD-11-07	169		13.7	107	19.8
514550	CBD-11-07	170	55.7	7.48	54.6	10.5
514551	CBD-11-07	171	109	15.1	112	21.8
514552	CBD-11-07	172	38	5.35	35.1	6.2
514553	CBD-11-07	173	51.7	6.64	48.5	8.8
514554	CBD-11-07	174		4.72	35.5	6.1
514555	CBD-11-07	175	70.2	8.75	63.8	11.6
514556	CBD-11-07	176	38	4.71	32.7	5.5
514557	CBD-11-07	177	35	4.44	31.1	5.6
514558	CBD-11-07	178		4.87	30.9	5.5
514559	CBD-11-07	179	26.5	3.95	22.6	3.8

Chem #	DDH#	Sample	Sm	Eu	Gd	Tb
514560	CBD-11-07	180	95.1	11.7	96.2	18.5
514561	CBD-11-07	181	26.9	3.84	23.1	3.8
514562	CBD-11-07	182	39.2	4.74	33.2	5.6
514563	CBD-11-07	183	47.9	6.15	47.2	8.9
514564	CBD-11-07	184	74.6	9.21	76.7	14.9
514565	CBD-11-07	185	45.1	6.11	43.2	8
514566	CBD-11-07	186	32.4	3.94	29	5
514567	CBD-11-07	187	65.5	8.96	63.8	12.2
514568	CBD-11-07	188	72.1	9.38	70.6	13.3
514569	CBD-11-07	189	101	13.6	105	20
514570	CBD-11-07	190	95.4	12.4	101	19.6
514571	CBD-11-07	191	159	20.2	166	32.3
514572	CBD-11-07	192	39.2	4.86	33.2	5.6
514573	CBD-11-07	193	161	18	144	24.5
514574	CBD-11-07	194	342	38.7	301	51.2
514575	CBD-11-07	195	173	20.4	167	30.8
514576	CBD-11-07	196	316	35	269	44
514577	CBD-11-07	197	352	40.3	323	57.2
514578	CBD-11-07	198	112	13.1	101	18
514579	CBD-11-07	199	62.8	6.59	52.8	9
514580	CBD-11-07	200	79.1	10.3	76.5	14.4
514581	CBD-11-07	201	65	8.18	63.6	11.9
514582	CBD-11-07	202	53.1	6.69	50.8	9.6
514583	CBD-11-07	203	46.4	5.61	40.1	6.6
514584	CBD-11-07	204	442	53.7	415	77.2
514585	CBD-11-07	205	48.2	5.72	42.4	7.4
514586	CBD-11-07	206	45.3	5.53	40.2	6.5
514587	CBD-11-07	207	464	58	441	83.5
514588	CBD-11-07	208	444	52.4	408	72.8
514589	CBD-11-07	209	464	54.1	446	91.1
514590	CBD-11-07	210	159	18.3	139	25.8
514591	CBD-11-07	211	45.6	5.87	40.1	7.2
514592	CBD-11-07	212	105			18.5
514593	CBD-11-07	213	36.4	4.58	30.9	5.7
514594	CBD-11-07	214	34.2	4.37	28	4.9
514595	CBD-11-07	215	32.6	4.04	27.2	4.7
514596	CBD-11-07	216	34.2	4.55	28.9	4.9
514597	CBD-11-07	217	189	23.1	183	37.8
514598	CBD-11-07	218	55	6.31	55.3	11.3
514599	CBD-11-07	219	24.1	2.62	24.6	5.1
514600	CBD-11-07	220	61.4	5.95	63.6	13.4
514601	CBD-11-07	221	81	9.81	69.6	12.7
514602	CBD-11-07	222	125	14	95.4	15.2
514603	CBD-11-07	223	94.6	11.8	87.7	16.7
514604	CBD-11-07	224	46.7	5.91	47.3	9.8
514605	CBD-11-07	225	66.6	8.64	67.8	13.5

Chem #	DDH#	Sample	Sm	Eu	Gd	Tb
514606	CBD-11-07	226	45.2	5.69	42.4	8.2
514607	CBD-11-07	227	65	8.46	63.8	12.8
514608	CBD-11-07	228	35.5	4.08	34.8	7.1
514609	CBD-11-07	229	70.6	8.79	68.9	13.7
514610	CBD-11-07	230	45.3	5.63	37.4	6.4
514611	CBD-11-07	231	67.7	8.18	59.4	11
514612	CBD-11-07	232	70.4	8.9	68.7	12.5
514613	CBD-11-07	233	125	15.1	123	24.5
514614	CBD-11-07	234	103	12.2	102	19.1
514615	CBD-11-07	235	173	20.7	172	34.5
514616	CBD-11-07	236	31.6	2.94	32.1	6.5
514617	CBD-11-07	237	23.1	0.75	19.6	3.5
514618	CBD-11-07	238	20.9	0.74	17.6	3.3
514619	CBD-11-07	239	27.2	2.87	23.6	4.3
514620	CBD-11-07	240	68.6	8.88	68.3	13.6
514621	CBD-11-07	241	64.7	8.4	64	12.9
514622	CBD-11-07	242	62.7	8.25	61.9	12.7
514623	CBD-11-07	243	75.8	10.4	75.6	15.7
514624	CBD-11-07	244	50.5	6.57	49	9.9
514625	CBD-11-07	245	70.4	9.03	69.5	12.7
514626	CBD-11-07	246	63.5	8.22	63.5	12.8
514627	CBD-11-07	247	45.2	5.48	41.7	8.1
514628	CBD-11-07	248	38.7	4.66	38.4	6.5
514629	CBD-11-07	249	36.8	4.92	31.7	5.5
514630	CBD-11-07	250	70.6	8.79	66.1	13
514631	CBD-11-07	251	66.8	8.91	69.6	14.8
514632	CBD-11-07	252	54.6	7.06	54.8	11.3
514633	CBD-11-07	253	33	3.97	31.5	6.1
514634	CBD-11-07	254	34.9	4.72	29.6	5.1
514635	CBD-11-07	255	50.1	5.98	47	8.5
514636	CBD-11-07	256	40.3	5.06	38	7.2
514637	CBD-11-07	257	36.9	4.49	33.7	6.4
514638	CBD-11-07	258	52.5	6.76	51.3	10.3
514639	CBD-11-07	259	59.5	8	59.9	11.8
514640	CBD-11-07	260	34	4.45	29.7	5.1
514641	CBD-11-07	261	29.1	4.02	25.2	4.4
514642	CBD-11-07	262	35.3	4.66	31.9	5.5
514643	CBD-11-07	263	53.7	7	52.8	10.6
514644	CBD-11-07	264	115	13.6	103	19.7
514645	CBD-11-07	265	61.2	7.86	59.3	11.8
514646	CBD-11-07	266	41.6	5.31	37.7	7.1
514647	CBD-11-07	267	42.5	5.57	42.1	8.3
514648	CBD-11-07	268	35.3	4.42	31.5	6.2
514649	CBD-11-07	269	141	16.4	125	24.4
514650	CBD-11-07	270	43.4	5.46	37.8	6.9
514651	CBD-11-07	271	58.6	7.61	54.7	10.4

Chem #	DDH#	Sample	Sm	Eu	Gd	Tb
514652	CBD-11-07	272	55.2	7.05	50.5	9.4
514653	CBD-11-07	273	73.6	9.77	73.2	14.1
514654	CBD-11-07	274	50.5	7.17	49.8	10
514655	CBD-11-07	275	23.8	2.88	21.1	4.1
514656	CBD-11-07	276	131	17.1	143	29.7
514657	CBD-11-07	277	101	13.1	98.7	19.9
514658	CBD-11-07	278	51.2	6.19	46.2	8.7
514659	CBD-11-07	279	61.4	7.93	62.6	12.8
514660	CBD-11-07	280	77.3	11.2	81.7	16.6
514661	CBD-11-07	281	55.9	7.35	53.9	10.5
514662	CBD-11-07	282	47.3	6.35	47.9	9.5
514663	CBD-11-07	283	58.2	7.28	58.5	11.5
514664	CBD-11-07	284	44.4	5.81	42.5	8
514665	CBD-11-07	285	42.2	6.03	43.3	8.2
514666	CBD-11-07	286	52.3	6.94	51.6	10.1
514667	CBD-11-07	287	43.1	5.33	38.8	7.2
514668	CBD-11-07	288	166	16.3	139	23.7
514669	CBD-11-07	289	81.8	13.9	83.5	16.5
514670	CBD-11-07	290	18.1	2.22	21.1	4.5
514671	CBD-11-07	291	19.5	2.13	22.5	4.8
514672	CBD-11-07	292	22.1	2.26	24.6	4.7
514673	CBD-11-07	293	99.9	12.6	88.2	15

Chem #	DDH#	Sample	Dy	Но	Er	Tm
104676	CBD-10-01	1	30.5	6	17.7	2.69
104677	CBD-10-01	2	26.9	5.2	15.3	2.36
104678	CBD-10-01	3	25.7	5	14.6	2.25
104679	CBD-10-01	4	24.2	4.6	13.9	2.16
104680	CBD-10-01	5	256	52.3	151	21.7
104681	CBD-10-01	6	27.3	5.3	15.7	2.34
104682	CBD-10-01	7	28.3	5.6	16.5	2.51
104683	CBD-10-01	8	26.6	5.3	15.7	2.43
104684	CBD-10-01	9	53	10.8	32.2	4.87
104685	CBD-10-01	10	32.6	6.3	18.5	2.78
104686	CBD-10-01	11	25.7	4.9	14.5	2.24
104687	CBD-10-01	12	26.3	5.1	15.1	2.36
104688	CBD-10-01	13	114	24.4	73.5	11.2
104689	CBD-10-01	14	77.5	16.1	48.6	7.56
104690	CBD-10-01	15	25.1	4.9	14.4	2.22
104691	CBD-10-01	16	23.4	4.6	13.7	2.14
104692	CBD-10-01	17	22.1	4.4	13.2	2.1
104693	CBD-10-01	18	59	11.6	33.1	4.77
104694	CBD-10-01	19	228	45.7	131	18.7
104695	CBD-10-01	20	26	5	14.9	2.27
104696	CBD-10-01	21	24	4.6	13.8	2.15
104697	CBD-10-01	22	112	23.2	68.1	10.1
104698	CBD-10-01	23	26.8	5.1	15.5	2.46
104699	CBD-10-01	24	24.7	4.9	14.5	2.23
104700	CBD-10-01	25	23.3	4.6	13.7	2.13
104701	CBD-10-01	26	24.6	4.9	14.5	2.25
104702	CBD-10-01	27	23.2	4.6	13.9	2.15
104703	CBD-10-01	28	22.2	4.4	13	2.03
104704	CBD-10-01	29	24.4	4.8	14.2	2.18
104705	CBD-10-01	30	23	4.5	13.3	2.07
104706	CBD-10-01	31	23.2	4.6	13.6	2.09
104707	CBD-10-01	32	21.5	4.3	12.9	1.99
104708	CBD-10-01	33				2.15
104709	CBD-10-01	34		6.2	17.9	2.77
104710	CBD-10-01	35	23.4	4.6	13.7	2.13
104711	CBD-10-01	36	38.3	7.3	20.8	3
104712	CBD-10-01	37	22.8	4.5	13.3	2.04
104713	CBD-10-01	38		4.4	13.2	1.99
104714	CBD-10-01	39		4.3	12.8	1.97
104715	CBD-10-01	40	22.1	4.4	13	1.99
104716	CBD-10-01	41	21.9	4.3	12.9	1.97
104717	CBD-10-01	42	20.9	4.1	12.3	1.92
104718	CBD-10-01	43		4.3		1.96
104719	CBD-10-01	44		4.4	13.2	2.02
104720	CBD-10-01	45		4.3	12.8	2
104721	CBD-10-01	46	22.5	4.4	13.2	2.01

Chem #	DDH#	Sample	Dy	Но	Er	Tm
104722	CBD-10-01	47	36.7	7.5	22	3.27
104723	CBD-10-01	48	44.8	8.9	25.5	3.7
104724	CBD-10-01	49	25.3	4.9	14.5	2.21
104725	CBD-10-01	50	24.7	4.8	14.4	2.27
104726	CBD-10-01	51	30.8	6.2	18.6	2.9
104727	CBD-10-01	52	17.4	3.3	9.8	1.61
104728	CBD-10-01	53	51.7	10.8	32.5	5.1
104729	CBD-10-01	54	92.3	18.7	55.2	8.14
104730	CBD-10-01	55	436	89.9	266	38.7
104731	CBD-10-01	56	19.4	3.7	11	1.8
104732	CBD-10-01	57	117	23.6	67.4	9.81
104733	CBD-10-01	58	76.4	15.6	46.1	6.78
104734	CBD-10-01	59	53.9	11.1	32.6	4.96
104735	CBD-10-01	60	30.6	6.2	18.5	2.86
104736	CBD-10-01	61	40.1	8	23.4	3.56
104737	CBD-10-01	62	24.8	4.7	13.5	2.13
104738	CBD-10-01	63	77.4	16	47.6	7.08
104739	CBD-10-01	64	57.2	11.8	34.8	5.33
104740	CBD-10-01	65	26.1	4.9	14.3	2.24
104741	CBD-10-01	66	46	9.2	27	4.16
104742	CBD-10-01	67	94.2	19.7	59.3	8.88
104743	CBD-10-01	68	69	12.5	33.1	4.58
104744	CBD-10-01	69	123	25.8	77.6	11.7
104745	CBD-10-01	70	261	54.1	162	24.3
104746	CBD-10-01	71	40.9	8.3	25.8	4.3
104747	CBD-10-01	72	32.6	6.9	21.8	3.87
104748	CBD-10-01	73	60.4	12	35.1	5.4
104749	CBD-10-01	74	30.5	6.1	18.1	2.86
104750	CBD-10-01	75	126	26.5	79.7	11.7
104751	CBD-10-01	76	25	4.8	14	2.2
104752	CBD-10-01	77	27.5	5.3	15.6	2.44
104753	CBD-10-01	78	24.8	4.8	13.9	2.19
104754	CBD-10-01	79	25.2	4.9	14.2	2.22
104755	CBD-10-01	80	52.6	10.1	28.9	4.1
104756	CBD-10-01	81	46.9	8.9	25.4	3.73
104757	CBD-10-01	82	21.4	4.2	12.2	1.95
104758	CBD-10-01	83	38.2	7.8	23	3.62
104759	CBD-10-01	84	47.3	9	25.3	3.59
104760	CBD-10-01	85	72.8	14.5	42.5	6.25
104761	CBD-10-01	86	110	22.3	65.5	9.72
104762	CBD-10-01	87	107	21	61.7	9.01
104763	CBD-10-01	88	201	41.7	124	18.6
104764	CBD-10-01	89	100	19.9	57.5	8
104765	CBD-10-01	90	37.9	7.8	23.9	3.58
104766	CBD-10-01	91	52.7	11	33.1	4.88
104767	CBD-10-01	92	24.6	5.1	15.3	2.35

Chem #	DDH#	Sample	Dy	Но	Er	Tm
104768	CBD-10-01	93	28.4	5.8	17.5	2.62
104769	CBD-10-01	94	29.5	6	17.4	2.56
104770	CBD-10-01	95	26.6	5.3	15.4	2.29
104771	CBD-10-01	96	20.3	4.1	12.1	1.9
104772	CBD-10-01	97	96.3	20.3	61.3	8.88
104773	CBD-10-01	98	106	22.4	65.6	9.47
104774	CBD-10-01	99	139	28.7	84.8	12.1
104775	CBD-10-01	100	109	23.2	69.1	9.91
104776	CBD-10-01	101	56.3	11.6	34.2	4.89
104777	CBD-10-01	102	74.1	15.8	46.8	6.77
104778	CBD-10-01	103	56.7	12.2	37.4	5.73
104779	CBD-10-01	104	100	20.9	62.5	8.9
104780	CBD-10-01	105	48.6	9.9	30.2	4.47
104781	CBD-10-01	106	25	5.4	17.1	2.73
104782	CBD-10-01	107	129	27	80.2	11.4
104783	CBD-10-01	108	71.3	15.2	47.1	7.23
104784	CBD-10-01	109	80.6	17.1	51.3	7.56
104785	CBD-10-01	110	125	26.3	77.3	11.1
104786	CBD-10-01	111	30.3	6.2	18.7	2.82
104787	CBD-10-01	112	38.5	7.7	23	3.44
104788	CBD-10-01	113	96.4	20.1	62.5	9.02
104789	CBD-10-01	114	105	20.7	61.1	8.75
104790	CBD-10-01	115	96.2	19.7	59.5	8.57
104791	CBD-10-01	116	59.2	12.1	36.6	5.3
104792	CBD-10-01	117	118	24.5	74.8	10.8
104793	CBD-10-01	118	33.2	6.9	20.3	3.03
104794	CBD-10-01	119	84.8	17.5	54	7.87
104795	CBD-10-01	120	32.6	6.4	18.6	2.73
104796	CBD-10-01	121	134	27.2	77.4	10.7
104797	CBD-10-01	122	35.6	7	20.7	3.08
104798	CBD-10-01	123	195	40	115	15.9
104799	CBD-10-01	124	129	26.7	77.4	11
104800	CBD-10-01	125	41.8	8.3	24.1	3.55
416001	CBD-10-01	126	42.8	8.6	25.5	3.8
416002	CBD-10-01	127	50.3	10.4	31	4.57
416003	CBD-10-01	128	45.7	9	26.3	3.94
416004	CBD-10-01	129	193	39.8	121	17.4
416005	CBD-10-01	130	101	20.8	62.9	9.26
416006	CBD-10-01	131	198	41.1	127	18.3
416007	CBD-10-01	132	26.9	5.3	15.5	2.35
416008	CBD-10-01	133	82.9	17.5	52.4	7.89
416009	CBD-10-01	134	69.6	14.3	42.8	6.33
416010	CBD-10-01	135	56.3	12.1	36.2	5.23
416011	CBD-10-01	136	101	21.7	64.9	9.23
416012	CBD-10-01	137	99.5	21.3	60.2	8.16
416013	CBD-10-01	138	47.3	10.2	31.3	4.6

Chem #	DDH#	Sample	Dy	Но	Er	Tm
416014	CBD-10-01	139		6.5	19.9	2.99
416015	CBD-10-01	140	104	22.3	67.9	9.73
416016	CBD-10-01	141	43	9.3	28.2	4.14
416017	CBD-10-01	142	42.2	9	27.5	4.08
416018	CBD-10-01	143	138	31.7	101	14.9
416019	CBD-10-01	144	45.6	10	31	4.67
416020	CBD-10-01	145	71.9	15.9	49	7.08
416021	CBD-10-01	146	131	28.7	86.6	12.4
416022	CBD-10-01	147	82.9	18.3	55.9	8.11
416023	CBD-10-01	148	112	24.4	71.8	10.2
416024	CBD-10-01	149	127	27.7	80.9	11.6
416025	CBD-10-01	150	137	29.2	84.6	12
416026	CBD-10-01	151	288	63.2	192	26.9
416027	CBD-10-01	152	567	126	381	54.3
416028	CBD-10-01	153	167	36.3	107	15.1
416029	CBD-10-01	154	199	43.1	133	19.4
416030	CBD-10-01	155	392	88.7	279	41.1
416031	CBD-10-01	156	124	26.6	80.1	11.6
416032	CBD-10-01	157	121	26	78.6	11.3
416033	CBD-10-01	158	338	75.5	238	34.8
416034	CBD-10-01	159	246	51.7	156	22.2
416035	CBD-10-01	160	263	57.9	180	26.4
416036	CBD-10-01	161	381	84	258	37.5
416037	CBD-10-01	162	113	24.6	74.6	10.7
416038	CBD-10-01	163	178	39.4	120	17.4
416039	CBD-10-01	164	267	59.8	180	26.2
416040	CBD-10-01	165	52.1	11.1	33.8	4.88
416041	CBD-10-01	166	88.3	19.3	57.9	8.28
416042	CBD-10-01	167	69.7	15.4	46.8	6.66
416043	CBD-10-01	168	83.6	18.5	56	7.95
416044	CBD-10-01	169	148	31.9	93.4	13
416045	CBD-10-01	170		8.2	24.9	3.61
416046	CBD-10-01	171		7.4	22.2	3.3
416047	CBD-10-01	172	32.8	6.8	20.7	3.07
416048	CBD-10-01	173	31.6	6.7	20.4	3.06
416049	CBD-10-01	174		14.3	42	5.99
416050	CBD-10-01	175		8.1	24.3	3.6
416051	CBD-10-01	176		9.5	27.8	4.04
416052	CBD-10-01	177	465	104	314	45.4
416053	CBD-10-01	178		94	252	31.7
416054	CBD-10-01	179		163	477	67.3
416055	CBD-10-01	180		118	354	49.9
416056	CBD-10-01	181		31.1	94.5	14
416057	CBD-10-01	182	124	26.8	79.3	11.5
416058	CBD-10-01	183		22.5	68	10.3
416059	CBD-10-01	184	98.1	20.5	60.8	8.75

Chem #	DDH#	Sample	Dy	Но	Er	Tm
416060	CBD-10-01	185	122	25.6	75.4	10.9
416061	CBD-10-01	186	31.3	6.4	19.7	3.05
416062	CBD-10-01	187	109	22.8	68.4	10
416063	CBD-10-01	188	39.5	8.1	24.5	3.62
416064	CBD-10-01	189	58.2	11.9	35.4	5.16
416065	CBD-10-01	190	228	46.6	137	19.3
416066	CBD-10-01	191	189	40	120	17.2
416067	CBD-10-01	192	78.1	17.1	53.1	7.72
416068	CBD-10-01	193	21.3	4.3	12.4	1.76
416069	CBD-10-01	194	58.9	11.2	31	4.23
416070	CBD-10-01	195	74.2	13.8	37.6	4.95
416071	CBD-10-01	196	60.4	10.7	29	3.73
416072	CBD-10-01	197	159	30.6	85.3	11.3
416073	CBD-10-01	198	100	17.3	45.2	5.64
416074	CBD-10-01	199	137	27.2	78.8	11.2
416075	CBD-10-01	200	82	17	50.9	7.33
416076	CBD-10-01	201	155	31.5	92.3	13
416077	CBD-10-01	202	88.7	18.9	57.3	8.36
416078	CBD-10-01	203	79	16.6	50.5	7.34
416079	CBD-10-01	204	58.9	12.3	37.5	5.56
416080	CBD-10-01	205	67.7	14.2	42.7	6.29
416081	CBD-10-01	206	90.6	18.6	54.4	7.71
416082	CBD-10-01	207	69.4	13.9	40.6	5.81
416083	CBD-10-01	208	67	14	41.4	6.06
416084	CBD-10-01	209	52	10.4	29.9	4.19
416085	CBD-10-01	210	160	32.2	90.5	12.4
416086	CBD-10-01	211	10.7	2.2	6.7	1.02
416087	CBD-10-01	212	21.8	4.5	13.8	2.06
416088	CBD-10-01	213	12	2.4	7.4	1.16
416089	CBD-10-01	214	17.3	3.6	10.6	1.67
416090	CBD-10-01	215	17.7	3.5	10.6	1.63
416091	CBD-10-01	216	33.6	7	21.2	3.13
416092	CBD-10-01	217	16.8		10.8	1.66
416093	CBD-10-01	218	15.2	3.2	9.7	1.51
416094	CBD-10-01	219	14.6	3	8.9	1.37
416095	CBD-10-01	220		19.6	58.9	8.55
416096	CBD-10-01	221	106	21.2	61.8	8.77
416097	CBD-10-01	222	105	22.1	65.6	9.57
416098	CBD-10-01	223	86.7	18.5	55.5	8.21
416099	CBD-10-01	224	287	60.9	181	26.4
416100	CBD-10-01	225	81.1	17	50.6	7.5
416101	CBD-10-01	226	110	23	68.7	9.98
416102	CBD-10-01	227	66.5	13.9	41.3	6.11
416103	CBD-10-01	228	67.8	13.9	41.9	6.2
416104	CBD-10-01	229	46.4	9.8	30.2	4.62
416105	CBD-10-01	230	48.2	10	30.6	4.46

Chem #	DDH#	Sample	Dy	Но	Er	Tm
416106	CBD-10-01	231	100	21.5	65.9	9.7
416107	CBD-10-01	232	25.3	5	14.5	2.18
416108	CBD-10-01	233	25	4.9	14.4	2.17
416109	CBD-10-01	234	27.7	5.3	15.5	2.33
416110	CBD-10-01	235	74.9	15.8	47.6	6.91
416111	CBD-10-01	236	41.5	8.5	25.1	3.58
416112	CBD-10-01	237	65.1	13.5	40.4	5.76
416113	CBD-10-01	238	52	10.6	31.9	4.63
416114	CBD-10-01	239	62.8	13	38.6	5.87
416115	CBD-10-01	240	32.4	6.7	20.7	3.31
416116	CBD-10-01	241	35.3	7.1	21.7	3.2
416117	CBD-10-01	242	42.5	8.8	26.5	3.97
416118	CBD-10-01	243	33.1	6.5	19.4	2.92
416119	CBD-10-01	244	41.3	8.5	26.3	4.04
416120	CBD-10-01	245	77.3	15.8	47.9	7.1
416121	CBD-10-01	246	46.2	9.5	28.4	4.27
416122	CBD-10-01	247	72.6	15	45.2	6.74
416123	CBD-10-01	248	196	41.1	123	17.2
416124	CBD-10-01	249	123	26.1	79.6	11.7
416125	CBD-10-01	250	71.4	15	45.7	6.88
416126	CBD-10-01	251	718	161	484	66.7
416127	CBD-10-01	252	204	44.6	139	20.7
416128	CBD-10-01	253	78.2	16.6	51.6	7.75
416129	CBD-10-01	254	38.9	7.7	23.3	3.41
416130	CBD-10-01	255	46.7	9.6	29.4	4.37
416131	CBD-10-01	256		19.8	60.7	9
416132	CBD-10-01	257	55.9	11.8	36.1	5.36
416133	CBD-10-01	258	74.7	15.4	47.1	6.95
416134	CBD-10-01	259	42.4	8.6	26.2	4.05
416135	CBD-10-01	260	69.2	14.6	44.5	6.61
416136	CBD-10-01	261	43.6	9.2	28.6	4.5
416137	CBD-10-01	262	123	26.1	79.4	11.6
416138	CBD-10-01	263		16.2	49.1	7.4
416139	CBD-10-01	264		16.6	51.2	7.81
416140	CBD-10-01	265		14.7	45.2	6.8
416141	CBD-10-01	266			63.3	9.34
416142	CBD-10-01	267	33.9	6.8	20.5	3.22
416143	CBD-10-01	268		12.5	37.3	5.5
416144	CBD-10-01	269	65.9	13.4	40.5	6.11
416145	CBD-10-01	270		19.7	58.6	8.66
416146	CBD-10-01	271	82.3	17	50.4	7.42
416147	CBD-10-01	272		10.4	31	4.76
416148	CBD-10-01	273		5.7	17.1	2.65
416149	CBD-10-01	274		7.2	22	3.49
416150	CBD-10-01	275		13.2	39.3	5.91
416151	CBD-10-01	276	30.5	6.1	18.9	2.99

Chem #	DDH#	Sample	Dy	Но	Er	Tm
416152	CBD-10-01	277	78.8	16.7	50.2	7.62
416153	CBD-10-01	278	96.6	20.8	64.3	9.72
416154	CBD-10-01	279	19.6	3.8	11.5	1.87
512817	CBD-11-02	1	20.3	4	26.75	12.1
512818	CBD-11-02	2	19.9	3.8	27.8947368	11.6
512819	CBD-11-02	3	20.1	3.9	27.1794872	11.8
512820	CBD-11-02	4	20	3.9	25.8974359	11.8
512821	CBD-11-02	5	19.4	3.9	25.1282051	11.5
512822	CBD-11-02	6	20.5	4	26	12
512823	CBD-11-02	7	21.4	4.2	26.4285714	13
512824	CBD-11-02	8	20.2	3.9	27.4358974	11.8
512825	CBD-11-02	9	20.8	4.1	26.097561	12.3
512826	CBD-11-02	10	21.7	4.3	26.744186	12.9
512827	CBD-11-02	11	21	4.1	26.5853659	12.5
512828	CBD-11-02	12	21.1	4.1	27.3170732	12.3
512829	CBD-11-02	13	148	30	28.2	90.2
512830	CBD-11-02	14	37.2	7.2	26.5277778	21.5
512831	CBD-11-02	15	24.3	4.5	26	13.5
512832	CBD-11-02	16	20.8	3.9	26.6666667	11.9
512833	CBD-11-02	17	29.3	5.8	25	17.5
512834	CBD-11-02	18	21.8	4	28	12
512835	CBD-11-02	19	72.4	14.5	28.5517241	43.9
512836	CBD-11-02	20	24	4.6	26.7391304	13.7
512837	CBD-11-02	21	21.5	4.2	27.8571429	12.5
512838	CBD-11-02	22	138	29.1	24.7079038	86.4
512839	CBD-11-02	23	70.6	14.7	26.6666667	44.4
512840	CBD-11-02	24	38.8	7.8	26.7948718	23.7
512841	CBD-11-02	25	30.5	5.9	27.6271186	18
512842	CBD-11-02	26	22.4	4.2	26.6666667	12.6
512843	CBD-11-02	27	25.4	4.9	26.9387755	14.8
512844	CBD-11-02	28		5.7	26.3157895	16.6
512845	CBD-11-02	29	25.1	4.8	26.875	14.4
512846	CBD-11-02	30		13.4	26.2686567	40.9
512847	CBD-11-02	31		19.8	25.9090909	60.5
512848	CBD-11-02	32	17.7	3.3	26.969697	10
512849	CBD-11-02	33		4.5	27.3333333	13.2
512850	CBD-11-02	34		3.2	26.25	9.6
512851	CBD-11-02	35		7.1	26.9014085	21.4
512852	CBD-11-02	36	60.6	12.4	26.1290323	37.5
512853	CBD-11-02	37	153	32.2	27.2360248	98
512854	CBD-11-02	38		19.7	25.8883249	59.9
512855	CBD-11-02	39		11.8	26.6949153	35.5
512856	CBD-11-02	40	61.2	12.9	26.6666667	40.2
512857	CBD-11-02	41	76.3	15.6	26.0897436	47.4
512858	CBD-11-02	42	32.9	6.5	25.5384615	19.3
512859	CBD-11-02	43	169	35.8	28.7709497	108

Chem #	DDH#	Sample	Dy	Но	Er	Tm
512860	CBD-11-02	44	333	67.9	28.8954345	196
512861	CBD-11-02	45	131	23.7	30.2109705	61.8
512862	CBD-11-02	46	57.4	12.4	27.5	37.6
512863	CBD-11-02	47	26	5.1	25.6862745	15.2
512864	CBD-11-02	48	79.2	16.5	26.3636364	46.8
512865	CBD-11-02	49	69.1	13.9	25.4676259	38.7
512866	CBD-11-02	50	19.5	3.9	28.2051282	11.5
512867	CBD-11-02	51	55.8	11.6	27.1551724	34.7
512868	CBD-11-02	52	100	20.9	25.5980861	59.8
512869	CBD-11-02	53	99.6	20.1	27.5621891	56.1
512870	CBD-11-02	54	36.6	7.8	25.3846154	23
512871	CBD-11-02	55	47.6	9.8	27.4489796	28.3
512872	CBD-11-02	56	18.4	3.5	28	10.4
512873	CBD-11-02	57	20.7	4.2	27.6190476	12.3
512874	CBD-11-02	58	21.6	4.2	28.3333333	12.3
512875	CBD-11-02	59	51.9	10.4	27.9807692	30.4
512876	CBD-11-02	60	46.5	9.6	27.7083333	27.7
512877	CBD-11-02	61	58.4	11.7	28.034188	32.5
512878	CBD-11-02	62	168	37.2	28.5752688	111
512879	CBD-11-02	63	126	25.9	28.1081081	73.9
512880	CBD-11-02	64	63.9	13.4	27.5373134	40.1
512881	CBD-11-02	65	27.2	5.4	27.962963	15.6
512882	CBD-11-02	66	20	3.9	26.9230769	11.5
512883	CBD-11-02	67	121	26	27.3076923	76
512884	CBD-11-02	68	55.2	11.5	26.6956522	34
512885	CBD-11-02	69	61.6	13.3	27.2932331	40.5
512886	CBD-11-02	70	80.7	17.2	26.8604651	50.6
512887	CBD-11-02	71	38.1	7.6	28.1578947	22.1
512888	CBD-11-02	72	27.1	5.9	27.4576271	18.4
512889	CBD-11-02	73	81.1	17.5	26.7428571	51.5
512890	CBD-11-02	74		15.7	28.4713376	45.4
512891	CBD-11-02	75	33.7	6.6	25.6060606	19.1
512892	CBD-11-02	76		20.5	27.7073171	58.9
512893	CBD-11-02	77	40.1	8.2	26.5853659	23.7
512894	CBD-11-02	78		7.6	25.5263158	22.3
512895	CBD-11-02	79		30.3	28.9768977	86.1
512896	CBD-11-02	80		11.1	28.2882883	31.5
512897	CBD-11-02	81	26.4	5.4	26.1111111	15.9
512898	CBD-11-02	82	22.2	4.4	26.1363636	12.7
512899	CBD-11-02	83		5	27.8	14.8
512900	CBD-11-02	84	30.8	6.2	27.2580645	18.1
512901	CBD-11-02	85	44.5	9.2	27.5	26.3
512902	CBD-11-02	86		7.3	27.9452055	21.6
512903	CBD-11-02	87	28.3	5.7	27.3684211	16.9
512904	CBD-11-02	88		5.7	26.6666667	17
512905	CBD-11-02	89	91.8	19.4	29.8969072	57.6

Chem #	DDH#	Sample	Dy	Но	Er	Tm
512906	CBD-11-02	90	344	76	31.0263158	235
512907	CBD-11-02	91	472	102	29.7156863	307
512908	CBD-11-02	92	215	42.9	27.4825175	121
512909	CBD-11-02	93	212	45.3	28.807947	138
512910	CBD-11-02	94	349	76.6	29.9738903	223
512911	CBD-11-02	95	215	45.9	28.3660131	135
512912	CBD-11-02	96		38.3	28.5639687	112
512913	CBD-11-02	97	120	25.8	28.6821705	76.9
512914	CBD-11-02	98	277	60.7	29.324547	185
512915	CBD-11-02	99	247	53	29.4150943	156
512916	CBD-11-02	100	116	24.9	26.2248996	73.2
512917	CBD-11-02	101	43.1	9.1	26.1538462	26.6
512918	CBD-11-02	102	90.3	19	26.2631579	56.2
512919	CBD-11-02	103	65.7	14.4	26.3888889	43
512920	CBD-11-02	104	147	31.8	27.3899371	93.5
512921	CBD-11-02	105	33.8	7.2	29.444444	21.4
512922	CBD-11-02	106	31.5	6.7	26.5671642	19.8
512923	CBD-11-02	107	371	81.3	31.4883149	249
512924	CBD-11-02	108	67.2	14.4	27.0138889	43.1
512925	CBD-11-02	109	62	13.3	26.5413534	39.1
512926	CBD-11-02	110	150	31.5	27.8730159	93.3
512927	CBD-11-02	111	34.9	7.4	26.4864865	21.9
512928	CBD-11-02	112	85.4	18.5	27.0810811	55.5
512929	CBD-11-02	113	54.4	11.6	28.2758621	35.6
512930	CBD-11-02	114	86	18.5	28.5945946	56.5
512931	CBD-11-02	115	48.5	10.5	27.8095238	32
512932	CBD-11-02	116	111	25.6	28.4765625	80.9
512933	CBD-11-02	117	141	31.4	27.0382166	93.4
512934	CBD-11-02	118	73.8	15.7	27.3248408	47.3
512935	CBD-11-02	119	178	37.8	28.5978836	109
512936	CBD-11-02	120	73.5	15.9	26.6037736	47.2
512937	CBD-11-02	121	210	43.3	29.26097	122
512938	CBD-11-02	122	81.5	17.6	26.875	52
512939	CBD-11-02	123	218	44.4	28.8063063	124
512940	CBD-11-02	124	88.9	19.2	27.8645833	56.6
512941	CBD-11-02	125	25.8	5.4	27.4074074	15.9
512942	CBD-11-02	126	21	4.2	26.9047619	12.3
512943	CBD-11-02	127	94.7	20.7	26.4251208	61.5
512944	CBD-11-02	128	22.5	4.5	27.1111111	13
512945	CBD-11-02	129	45.9	9.6	25.4166667	28.7
512946	CBD-11-02	130	114	24.2	25.7438017	69.3
512947	CBD-11-02	131	224	46.9	27.6759062	134
512948	CBD-11-02	132		5.4	26.6666667	15.7
512949	CBD-11-02	133	219	45.8	27.860262	131
512950	CBD-11-02	134		6.9	26.6666667	19.9
512951	CBD-11-02	135	183	37.5	27.8133333	106

Chem #	DDH#	Sample	Dy	Но	Er	Tm
512952	CBD-11-02	136	134	27.9	26.7383513	79.3
512953	CBD-11-02	137	186	38.6	26.7098446	111
512954	CBD-11-02	138	192	39.5	27.0886076	112
512955	CBD-11-02	139	219	46.2	28.982684	135
512956	CBD-11-02	140	247	52	30	149
512957	CBD-11-02	141	195	42.5	29.3411765	124
512958	CBD-11-02	142	43.7	8.9	26.6292135	25.7
512959	CBD-11-02	143	39.1	7.9	25.443038	22.2
512960	CBD-11-02	144	42.9	9	25.7777778	26.4
512961	CBD-11-02	145	33.8	6.9	26.0869565	20.1
512962	CBD-11-02	146	21.3	4.4	27.2727273	13.1
512963	CBD-11-02	147	31	6.5	27.3846154	19.4
512964	CBD-11-02	148	40.9	8.7	25.1724138	24.9
512965	CBD-11-02	149	53.4	11	26.9090909	31.2
512966	CBD-11-02	150	52.8	11	26	31.7
512967	CBD-11-02	151	49.3	10.1	27.4257426	28.9
512968	CBD-11-02	152	53.6	10.9	27.0642202	31.6
512969	CBD-11-02	153	102	21.6	28.4722222	61.4
512970	CBD-11-02	154	168	36.2	29.640884	106
512971	CBD-11-02	155	478	103	30.8640777	308
512972	CBD-11-02	156	683	153	29.2679739	463
512973	CBD-11-02	157	519	114	32.4473684	341
512974	CBD-11-02	158	436	92.5	31.8810811	266
512975	CBD-11-02	159	460	98.3	29.7355036	284
512976	CBD-11-02	160	249	53.1	31.0357815	153
512977	CBD-11-02	161	163	33.2	30.060241	94.9
512978	CBD-11-02	162	199	40.7	29.8280098	115
512979	CBD-11-02	163	63.9	12.9	28.2170543	36.8
512980	CBD-11-02	164	44.7	9.3	26.9892473	27.1
512981	CBD-11-02	165	112	23.8	27.8571429	67.7
512982	CBD-11-02	166	86.9	18.9	29.5767196	55.8
512983	CBD-11-02	167	43.7	9.1	27.4725275	26.9
512984	CBD-11-02	168	47.7	10	27	29.4
512985	CBD-11-02	169	135	29.5	27.6949153	87.5
512986	CBD-11-02	170	126	27	27.0740741	78.9
512987	CBD-11-02	171	59.6	10.8	28.5185185	28.6
512988	CBD-11-02	172		14.5	30.4137931	39.2
512989	CBD-11-02	173	93.3	19.5	27.1282051	56.9
512990	CBD-11-02	174	83.1	17.3	26.5895954	50.6
512991	CBD-11-02	175		14.7	27.4829932	43.3
512992	CBD-11-02	176	70.1	14.8	26.9594595	43.8
512993	CBD-11-02	177	44.4	9	27.222222	26
512994	CBD-11-02	178		18.6	27.4193548	52.8
512995	CBD-11-02	179	107	22.4	28.5714286	64.4
512996	CBD-11-02	180	67.3	14.4	28.4722222	42.8
512997	CBD-11-02	181	25.8	5.4	28.5185185	15.7

Chem #	DDH#	Sample	Dy	Но	Er	Tm
512998	CBD-11-02	182		3.6	28.3333333	10.7
512999	CBD-11-02	183	17	3.5	26.8571429	10.5
513000	CBD-11-02	184	29.7	6.1	27.2131148	18.2
513001	CBD-11-02	185	35.6	7.6	27.2368421	22.8
513002	CBD-11-02	186	18.8	3.9	26.6666667	11.8
513003	CBD-11-02	187	17.6	3.7	26.4864865	10.9
513004	CBD-11-02	188	58.1	12.1	26.5289256	35.7
513005	CBD-11-02	189	98.1	21	27.1428571	62
513006	CBD-11-02	190	106	22.8	27.5	67.2
513007	CBD-11-02	191	102	21.9	26.1643836	65.5
513008	CBD-11-02	192	75.2	15.9	27.2327044	47.2
513009	CBD-11-02	193	65	13.8	27.2463768	41.4
513010	CBD-11-02	194	83.3	17.6	25.3977273	52.6
513011	CBD-11-02	195	56	11.8	25.7627119	35.4
513012	CBD-11-02	196	46	9.3	26.0215054	27.5
513013	CBD-11-02	197	43.9	9.1	27.1428571	27.4
513014	CBD-11-02	198	26.8	5.3	26.2264151	15.4
513015	CBD-11-02	199	47	9.8	26.2244898	28.8
513016	CBD-11-02	200	42.9	8.9	27.3033708	27.4
513017	CBD-11-02	201	55.4	11.8	26.1016949	35.3
513018	CBD-11-02	202	74.1	15.8	25.8860759	46.9
513019	CBD-11-02	203	54.6	11.5	26.4347826	34
513020	CBD-11-02	204	61.7	12.9	27.3643411	38
513021	CBD-11-02	205	69.1	14.5	26.2068966	43.1
513022	CBD-11-02	206	50.7	10.6	26.1320755	31.6
513023	CBD-11-02	207	73.3	15.4	26.8181818	45.2
513024	CBD-11-02	208	82	17.5	26.6857143	52.7
513025	CBD-11-02	209	115	25.1	27.2908367	74.3
513026	CBD-11-02	210	115	24.4	29.0163934	71.7
513027	CBD-11-02	211	62.6	13.1	28.6259542	37.6
513028	CBD-11-02	212		14.6	25.4109589	44.5
513029	CBD-11-02	213		15.9	26.7924528	48.1
513030	CBD-11-02	214		11.4	28.3333333	32.9
513031	CBD-11-02	215		15.1	29.4701987	44.9
513032	CBD-11-02	216		9.1	28.6813187	28.3
513033	CBD-11-02	217		20	28.1	60.1
513034	CBD-11-02	218		12.8	28.59375	37.5
513035	CBD-11-02	219		8.6	28.4883721	25.3
513036	CBD-11-02	220		18.6	28.8709677	55.2
513037	CBD-11-02	221	65.2	14.2	27.2535211	42.3
513038	CBD-11-02	222		5.4	28.1481481	16
513039	CBD-11-02	223		3.7	28.9189189	11
513040	CBD-11-02	224		8.8	27.6136364	26.8
513041	CBD-11-02	225		10.3	26.9902913	30.2
513042	CBD-11-02	226		17	26.1764706	50.1
513043	CBD-11-02	227	32	6.7	25.8208955	20.5

Chem #	DDH#	Sample	Dy	Но	Er	Tm
513044	CBD-11-02	228	87.8	19.4	26.1340206	58.6
513045	CBD-11-02	229	58.6	12.7	26.5354331	38.4
513046	CBD-11-02	230	64.3	13.8	27.3188406	40.9
513047	CBD-11-02	231	49.7	10.7	25.8878505	32.7
513048	CBD-11-02	232	65.8	14	26.5	42.4
514381	CBD-11-07	1	38.9	7.8	22.5	3.56
514382	CBD-11-07	2	36.3	7	21.1	3.19
514383	CBD-11-07	3	33.3	6.6	19.3	2.9
514384	CBD-11-07	4	97.4	21.1	60.3	8.49
514385	CBD-11-07	5	38.2	7.6	22.1	3.36
514386	CBD-11-07	6	42.3	8.4	24.5	3.85
514387	CBD-11-07	7	43.7	8.7	25.4	4.04
514388	CBD-11-07	8	46.9	9.3	26.6	4.01
514389	CBD-11-07	9	67.8	14.5	42.5	6.47
514390	CBD-11-07	10	69.8	14.6	41.1	6.09
514391	CBD-11-07	11	52.1	10.7	31.1	4.54
514392	CBD-11-07	12	33.9	6.9	19.9	3.14
514393	CBD-11-07	13	27	5.5	16.4	2.62
514394	CBD-11-07	14	25.4	5.2	15.6	2.39
514395	CBD-11-07	15	27.5	5.7	17.1	2.78
514396	CBD-11-07	16	22.8	4.8	14.3	2.23
514397	CBD-11-07	17	26.7	5.4	16.5	2.63
514398	CBD-11-07	18	31.3	6.3	19	3.03
514399	CBD-11-07	19	36.7	7.6	24	3.96
514400	CBD-11-07	20	28.8	5.6	17.1	2.75
514401	CBD-11-07	21	28.9	6	17.6	2.73
514402	CBD-11-07	22	77.1	15.9	45.1	6.37
514403	CBD-11-07	23	88.4	18.8	52.8	7.29
514404	CBD-11-07	24	408	90.4	268	39.1
514405	CBD-11-07	25	28.3	5.8	16.5	2.56
514406	CBD-11-07	26	26.2	5.4	15.8	2.49
514407	CBD-11-07	27	23.8	4.8	14.2	2.16
514408	CBD-11-07	28	25.7	5	14.7	2.36
514409	CBD-11-07	29	24.1	5	14.5	2.11
514410	CBD-11-07	30	25.9	5.3	15.4	2.34
514411	CBD-11-07	31	30.6	6.4	19	2.94
514412	CBD-11-07	32	27.2	5.8	16.9	2.56
514413	CBD-11-07	33	70.5	15.7	45.4	6.86
514414	CBD-11-07	34	39	8.7	26.6	4.29
514415	CBD-11-07	35	81.2	17.7	52.7	7.91
514416	CBD-11-07	36	183	38	110	15.5
514417	CBD-11-07	37	205	44.8	135	19.4
514418	CBD-11-07	38	23.1	4.8	14.1	2.14
514419	CBD-11-07	39	116	26.3	75.9	11.2
514420	CBD-11-07	40	23.6	4.8	14	2.18
514421	CBD-11-07	41	99.7	22.1	66.6	9.83

Chem #	DDH#	Sample	Dy	Но	Er	Tm
514422	CBD-11-07	42	24.7	5.1	15.7	2.46
514423	CBD-11-07	43	54.3	12.1	37.8	5.63
514424	CBD-11-07	44	37.4	8.3	24.6	3.61
514425	CBD-11-07	45	70.3	15.5	47.2	6.84
514426	CBD-11-07	46	87.2	19.5	58.9	8.41
514427	CBD-11-07	47	108	22.5	65.8	8.82
514428	CBD-11-07	48	204	44.3	133	18.3
514429	CBD-11-07	49	122	26.9	80.1	11.1
514430	CBD-11-07	50	113	24.5	72.2	10.1
514431	CBD-11-07	51	122	26.7	81.2	11.4
514432	CBD-11-07	52	34.5	7.1	22.3	3.41
514433	CBD-11-07	53	34.5	7.4	22.8	3.38
514434	CBD-11-07	54	27.3	5.6	17.4	2.6
514435	CBD-11-07	55	28.5	5.7	17.2	2.7
514436	CBD-11-07	56	30.9	6.5	19.6	2.88
514437	CBD-11-07	57	22.3	4.5	13.9	2.08
514438	CBD-11-07	58	24.1	4.8	14.5	2.2
514439	CBD-11-07	59	20.7	4.2	13	1.87
514440	CBD-11-07	60	84.7	19	59.2	8.38
514441	CBD-11-07	61	20	4	11.9	1.82
514442	CBD-11-07	62	21.6	4.3	13.6	1.99
514443	CBD-11-07	63	23.4	4.9	14.7	2.19
514444	CBD-11-07	64	20.4	4.3	13.6	1.95
514445	CBD-11-07	65	21	4.4	13.1	2
514446	CBD-11-07	66	22.7	4.7	14.1	2.04
514447	CBD-11-07	67	22.3	4.5	14	2.06
514448	CBD-11-07	68	31.4	6.6	20.3	2.89
514449	CBD-11-07	69	22.8	4.7	13.8	2.07
514450	CBD-11-07	70	23	4.9	14.8	2.21
514451	CBD-11-07	71	30.3	6.4	19.4	2.74
514452	CBD-11-07	72	23.5	5	15	2.19
514453	CBD-11-07	73	27.1	5.7	17.3	2.52
514454	CBD-11-07	74	21.6	4.4	13.2	1.98
514455	CBD-11-07	75	21.4	4.3	13.7	1.99
514456	CBD-11-07	76	22.3	4.6	14.5	1.99
514457	CBD-11-07	77	21.9	4.6	13.9	2.08
514458	CBD-11-07	78	22.1	4.6	13.9	2.05
514459	CBD-11-07	79	20.2	4.3	12.7	1.92
514460	CBD-11-07	80	21.6	4.3	13.1	1.97
514461	CBD-11-07	81	18.8	3.8	11.5	1.82
514462	CBD-11-07	82	17.3	3.5	10.5	1.6
514463	CBD-11-07	83	26.5	5.3	16.3	2.34
514464	CBD-11-07	84	23	4.6	13.7	2.06
514465	CBD-11-07	85	23.8	4.9	14.5	2.13
514466	CBD-11-07	86	117	24.4	69.7	9.81
514467	CBD-11-07	87	63.1	13.4	39.9	5.75

Chem #	DDH#	Sample	Dy	Но	Er	Tm
514468	CBD-11-07	88	28.6	5.8	17.4	2.52
514469	CBD-11-07	89	44.2	9.1	27.1	3.99
514470	CBD-11-07	90	51.8	10.9	33.1	4.74
514471	CBD-11-07	91	44.2	9.1	27.1	3.98
514472	CBD-11-07	92	47.7	10.2	30.8	4.43
514473	CBD-11-07	93	38.9	8.1	23.8	3.57
514474	CBD-11-07	94	23.2	4.7	14	2.08
514475	CBD-11-07	95	21.6	4.3	12.5	1.93
514476	CBD-11-07	96	42.1	8.7	26	3.71
514477	CBD-11-07	97	208	45.5	138	19.5
514478	CBD-11-07	98	129	23.6	62.8	7.65
514479	CBD-11-07	99	58.2	12.3	37.1	5.29
514480	CBD-11-07	100	137	29.2	86.8	12.3
514481	CBD-11-07	101	38.4	8.3	26.2	4.08
514482	CBD-11-07	102	95.2	20.8	61.9	8.88
514483	CBD-11-07	103	42.7	9	27.5	3.97
514484	CBD-11-07	104	25.7	5.2	16	2.35
514485	CBD-11-07	105	23.2	4.8	14.5	2.15
514486	CBD-11-07	106	92	19.6	59.5	8.47
514487	CBD-11-07	107	86.8	18.9	56.3	8.11
514488	CBD-11-07	108	37.6	8.3	26.1	3.98
514489	CBD-11-07	109	27.7	5.3	15.6	2.2
514490	CBD-11-07	110	78.1	16.7	50.1	7.08
514491	CBD-11-07	111	30.5	6.1	17.5	2.58
514492	CBD-11-07	112	44.8	9.5	28	4.08
514493	CBD-11-07	113	27.1	5.8	17.8	2.65
514494	CBD-11-07	114	152	32.7	96.5	13.3
514495	CBD-11-07	115	59.5	12	34.7	4.76
514496	CBD-11-07	116	132	28	81	11.4
514497	CBD-11-07	117	240	52.3	159	22.6
514498	CBD-11-07	118	121	25.3	73.9	10.1
514499	CBD-11-07	119	158	32.2	91.1	12.2
514500	CBD-11-07	120	35.1	7.3	21.7	3.21
514501	CBD-11-07	121	25.6	5.4	16.8	2.6
514502	CBD-11-07	122	30.1	5.9	17.7	2.62
514503	CBD-11-07	123	30	6	17.7	2.67
514504	CBD-11-07	124	29.8	5.9	17.2	2.46
514505	CBD-11-07	125	31.3	6.4	18.7	2.73
514506	CBD-11-07	126	35.3	7.1	20.2	2.98
514507	CBD-11-07	127	24.7	4.9	14.1	2.09
514508	CBD-11-07	128	24.5	4.8	14.3	2.14
514509	CBD-11-07	129	34.5	7	19.8	2.84
514510	CBD-11-07	130	43.4	8.2	23.9	3.66
514511	CBD-11-07	131	40.9	8.4	24.3	3.51
514512	CBD-11-07	132	29.9	5.9	16.5	2.42
514513	CBD-11-07	133	86.4	16.8	47.2	7.13

Chem #	DDH#	Sample	Dy	Но	Er	Tm
514514	CBD-11-07	134	118	24.5	69.1	10.3
514515	CBD-11-07	135	112	24.6	72.1	10.3
514516	CBD-11-07	136	64.9	13.4	39	5.62
514517	CBD-11-07	137	84.4	18.3	53.8	7.71
514518	CBD-11-07	138	111	23.1	65.6	8.86
514519	CBD-11-07	139	86.3	18.2	52.7	7.58
514520	CBD-11-07	140	56.3	12	34.7	5.07
514521	CBD-11-07	141	63.3	13.3	38.9	5.63
514522	CBD-11-07	142	67	14.4	42.5	6.14
514523	CBD-11-07	143	57.5	12.2	35.7	5.17
514524	CBD-11-07	144	67.1	14.4	42.6	5.98
514525	CBD-11-07	145	43.4	8.8	24	3.35
514526	CBD-11-07	146	26.7	5.5	15.8	2.28
514527	CBD-11-07	147	22.3	4.7	13.6	2.03
514528	CBD-11-07	148	26.4	5.4	15.7	2.37
514529	CBD-11-07	149	142	29.3	82.4	12.3
514530	CBD-11-07	150	169	36.1	103	14.5
514531	CBD-11-07	151	157	33.1	93.5	13.1
514532	CBD-11-07	152	235	50.4	146	20.1
514533	CBD-11-07	153	390	80.6	225	30.9
514534	CBD-11-07	154	157	33.4	95.6	13.5
514535	CBD-11-07	155	110	23.7	68.6	9.76
514536	CBD-11-07	156	138	29.3	83	11.5
514537	CBD-11-07	157	32.6	6.6	19.1	2.82
514538	CBD-11-07	158	118	24.4	65.9	8.74
514539	CBD-11-07	159	524	113	324	45.1
514540	CBD-11-07	160	106	22.7	66.6	9.43
514541	CBD-11-07	161	563	124	376	55
514542	CBD-11-07	162	585	130	383	55.3
514543	CBD-11-07	163	244	52.5	152	21.7
514544	CBD-11-07	164	73.7	15.5	45.4	6.63
514545	CBD-11-07	165	93.1	19.6	56.3	8.2
514546	CBD-11-07	166	38.5	8.3	24.4	3.51
514547	CBD-11-07	167	50.8	11.2	34.6	4.91
514548	CBD-11-07	168	45.8	10.1	31.1	4.51
514549	CBD-11-07	169		29.5	87.6	12.9
514550	CBD-11-07	170	65.6	14.5	44.6	6.47
514551	CBD-11-07	171	138	30.5	92.4	13
514552	CBD-11-07	172	37.6	8.2	24.5	3.54
514553	CBD-11-07	173	54.7	11.9	36.3	5.19
514554	CBD-11-07	174		7.6	23.2	3.25
514555	CBD-11-07	175	71	15.6	47.8	6.89
514556	CBD-11-07	176	33.3	7.1	21.9	3.31
514557	CBD-11-07	177	32.7	7.1	22	3.29
514558	CBD-11-07	178		7	20.7	3.04
514559	CBD-11-07	179	21.3	4.5	13.7	1.99

Chem #	DDH#	Sample	Dy	Но	Er	Tm
514560	CBD-11-07	180	115	25.2	76.6	10.8
514561	CBD-11-07	181	21.3	4.5	14	2.14
514562	CBD-11-07	182	32.4	6.9	20.5	3.14
514563	CBD-11-07	183	54.7	12	37.7	5.35
514564	CBD-11-07	184	103	22.7	66	10.5
514565	CBD-11-07	185	50.2	11.2	33.7	4.94
514566	CBD-11-07	186	29.4	6.3	19.5	2.9
514567	CBD-11-07	187	75.3	16.8	51.2	7.33
514568	CBD-11-07	188	88.1	19.5	55.5	8.63
514569	CBD-11-07	189	133	29.8	83.3	13.1
514570	CBD-11-07	190	131	28.5	79.4	12.4
514571	CBD-11-07	191	215	45.4	128	19.3
514572	CBD-11-07	192	32.4	6.7	20.8	2.96
514573	CBD-11-07	193	162	34.8	99.1	15
514574	CBD-11-07	194	353	77.7	227	34.5
514575	CBD-11-07	195	190	41.2	124	16.9
514576	CBD-11-07	196	281	62.2	178	28
514577	CBD-11-07	197	391	87.8	255	39.1
514578	CBD-11-07	198	109	23.3	69.7	9.72
514579	CBD-11-07	199	58	12.5	35.6	5.36
514580	CBD-11-07	200	86.5	18.5	55.5	7.74
514581	CBD-11-07	201	78.1	17.2	47.6	7.43
514582	CBD-11-07	202	59.7	13.3	40.2	5.77
514583	CBD-11-07	203	38.3	7.9	24	3.47
514584	CBD-11-07	204	525	116	328	48
514585	CBD-11-07	205	42.8	9	27.4	3.87
514586	CBD-11-07	206	40	8.6	24.1	3.8
514587	CBD-11-07	207	585	133	388	58.8
514588	CBD-11-07	208	484	106	297	43.1
514589	CBD-11-07	209	621	144	455	67.3
514590	CBD-11-07	210	165	36.9	115	17
514591	CBD-11-07	211	42.1	9.1	27.6	4.07
514592	CBD-11-07	212	113	24.1	71.3	9.8
514593	CBD-11-07	213	33.8	7.3	22.5	3.39
514594	CBD-11-07	214	27.4	5.8	17.5	2.72
514595	CBD-11-07	215	27	5.7	17.1	2.6
514596	CBD-11-07	216	28.6	5.9	17.9	2.63
514597	CBD-11-07	217	238	53.3	161	22.7
514598	CBD-11-07	218	72.7	16.5	50.5	7.38
514599	CBD-11-07	219	31.4	6.8	20	2.89
514600	CBD-11-07	220	83.6	18.3	53.1	7.46
514601	CBD-11-07	221	75	15.6	45.5	6.37
514602	CBD-11-07	222	82	15.4	41.2	5.16
514603	CBD-11-07	223	99.9	21.3	61.8	8.48
514604	CBD-11-07	224	61.8	13.9	42.7	6.09
514605	CBD-11-07	225	86.8	19.4	59.6	8.68

Chem #	DDH#	Sample	Dy	Но	Er	Tm
514606	CBD-11-07	226	49.2	10.8	32.3	4.77
514607	CBD-11-07	227	79.1	17	51	7.24
514608	CBD-11-07	228	44.8	9.9	30.3	4.35
514609	CBD-11-07	229	85.7	18.8	57	8.16
514610	CBD-11-07	230	36.8	7.5	21.5	2.95
514611	CBD-11-07	231	65	13.7	39.7	5.53
514612	CBD-11-07	232	82.1	17.4	46.9	7.2
514613	CBD-11-07	233	149	31.9	90	12
514614	CBD-11-07	234	127	27	72.5	11
514615	CBD-11-07	235	213	45.4	130	17.1
514616	CBD-11-07	236	39.7	8.6	25.6	3.64
514617	CBD-11-07	237	20.7	4.5	14	2.11
514618	CBD-11-07	238	19.7	4.3	13.3	2.01
514619	CBD-11-07	239	25.6	5.5	16.2	2.32
514620	CBD-11-07	240	84.7	18.7	56.4	8.11
514621	CBD-11-07	241	80.8	17.8	54	7.64
514622	CBD-11-07	242	81.3	18	55.2	7.93
514623	CBD-11-07	243	100	22.7	69	9.99
514624	CBD-11-07	244	61.7	13.6	41.7	6.08
514625	CBD-11-07	245	83.7	18.1	49.5	7.69
514626	CBD-11-07	246	82.4	18.5	56.2	8.09
514627	CBD-11-07	247	51.6	11.6	35.1	5.17
514628	CBD-11-07	248	42.8	9.2	25.9	4.01
514629	CBD-11-07	249	32.4	6.9	20.5	3
514630	CBD-11-07	250	79.3	16.5	49.6	7.56
514631	CBD-11-07	251	90.9	19.6	60	8.8
514632	CBD-11-07	252	68.4	14.9	45.7	7.01
514633	CBD-11-07	253	36.3	7.6	23.2	3.61
514634	CBD-11-07	254	28.6	5.5	16.5	2.5
514635	CBD-11-07	255	50.7	10.3	32.2	4.88
514636	CBD-11-07	256	43	8.8	26.7	4.04
514637	CBD-11-07	257	37.5	7.5	22.5	3.42
514638	CBD-11-07	258	62.4	13.4	40.2	
514639	CBD-11-07	259	73	15.7	46.1	6.88
514640	CBD-11-07	260	30.1	5.9	18.1	2.88
514641	CBD-11-07	261	23.8	4.9	14.2	2.24
514642	CBD-11-07	262	31	6.5	18.4	2.93
514643	CBD-11-07	263	64.9	13.7	41.3	6.25
514644	CBD-11-07	264	117	23.9	69.5	10.5
514645	CBD-11-07	265	70.5	14.9	44	6.46
514646	CBD-11-07	266	42.8	8.9	25.8	4.03
514647	CBD-11-07	267	49.4	10.7	31.8	4.95
514648	CBD-11-07	268	38	7.9	23.4	3.69
514649	CBD-11-07	269	149	31.5	93.9	14.3
514650	CBD-11-07	270	42.6	8.7	25.6	3.87
514651	CBD-11-07	271	61.8	12.9	38.5	5.75

Chem #	DDH#	Sample	Dy	Но	Er	Tm
514652	CBD-11-07	272	54.7	11.1	33.2	5.02
514653	CBD-11-07	273	84.6	17.7	52.1	7.68
514654	CBD-11-07	274	61.7	13.5	41.1	6.52
514655	CBD-11-07	275	23.7	4.9	14.7	2.32
514656	CBD-11-07	276	186	39.9	120	17.9
514657	CBD-11-07	277	126	27	82.5	12.4
514658	CBD-11-07	278	52	10.8	31.5	4.81
514659	CBD-11-07	279	77.8	16.8	50.3	7.78
514660	CBD-11-07	280	103	22.4	65	9.67
514661	CBD-11-07	281	62.7	13.1	38.4	5.75
514662	CBD-11-07	282	59.1	12.4	37	5.49
514663	CBD-11-07	283	69.2	14.9	44.3	6.86
514664	CBD-11-07	284	48.5	10	30.3	4.73
514665	CBD-11-07	285	49.1	10	29.5	4.38
514666	CBD-11-07	286	58.9	12.7	37.6	5.74
514667	CBD-11-07	287	43.1	8.9	26.6	3.86
514668	CBD-11-07	288	140	27.5	81.9	12
514669	CBD-11-07	289	97.1	20.4	59.3	8.63
514670	CBD-11-07	290	28.3	5.9	17	2.47
514671	CBD-11-07	291	31.6	7.2	21.6	3
514672	CBD-11-07	292	28.8	6.3	18.8	2.7
514673	CBD-11-07	293	87	18	52.1	6.93

Chem #	DDH#	Sample	Yb	Lu	Hf	Та
104676	CBD-10-01	1	18.2	2.97	20.2	2.7
104677	CBD-10-01	2	16.3	2.66	18.2	2.4
104678	CBD-10-01	3	15.7	2.69	17.7	2
104679	CBD-10-01	4	15.1	2.57	16.2	2.1
104680	CBD-10-01	5	127	16.4	42.7	15.7
104681	CBD-10-01	6	15.5	2.51	18.5	2.6
104682	CBD-10-01	7	17	2.75	21.9	2.8
104683	CBD-10-01	8	16.3	2.74	20.6	2.5
104684	CBD-10-01	9	31.2	4.75	44.5	5.8
104685	CBD-10-01	10	18.6	3.02	19.4	2.5
104686	CBD-10-01	11	16	2.77	16	2.3
104687	CBD-10-01	12	16.8	2.91	17.3	2
104688	CBD-10-01	13	69.1	9.71	62.9	10.2
104689	CBD-10-01	14	49.3	7.33	19.5	6.1
104690	CBD-10-01	15	15.4	2.61	19.2	2.2
104691	CBD-10-01	16	15.1	2.6	18.2	2.1
104692	CBD-10-01	17	15.8	2.84	17.2	1.8
104693	CBD-10-01	18	29.9	4.47	28	6.4
104694	CBD-10-01	19	110	14.4	41.5	4.9
104695	CBD-10-01	20	15.8	2.67	16.8	2.1
104696	CBD-10-01	21	15.2	2.63	17.5	2
104697	CBD-10-01	22	62	8.74	98.6	11.6
104698	CBD-10-01	23	17.9	3.14	18.7	2.3
104699	CBD-10-01	24	15.3	2.56	19.5	2.3
104700	CBD-10-01	25	14.8	2.5	19.5	2.2
104701	CBD-10-01	26	15.2	2.56	20.9	2.4
104702	CBD-10-01	27	14.8	2.53	19.6	2.3
104703	CBD-10-01	28	14	2.34	18.7	2.2
104704	CBD-10-01	29	15	2.5	20	2.4
104705	CBD-10-01	30	14.4	2.45	18.2	2.2
104706	CBD-10-01	31	14.1	2.33	19.1	2.3
104707	CBD-10-01	32	13.5	2.23	17.2	2.2
104708	CBD-10-01	33	14.7	2.48	19.3	2.4
104709	CBD-10-01	34	19.1	3.12	16.1	2.4
104710	CBD-10-01	35	14.8	2.51	17.8	2.1
104711	CBD-10-01	36	19	2.83	13.7	2.9
104712	CBD-10-01	37	14.1	2.36	18.5	2.2
104713	CBD-10-01	38	13.4	2.24	17.3	2.1
104714	CBD-10-01	39	13.4	2.25	17.7	2
104715	CBD-10-01	40	13.6	2.27	17.8	2.1
104716	CBD-10-01	41	13.5	2.3	18	2.1
104717	CBD-10-01	42	13.2	2.21	17.3	2
104718	CBD-10-01	43	13.3	2.26	17.4	2.1
104719	CBD-10-01	44	13.8	2.34	17.9	2.1
104720	CBD-10-01	45	14.1	2.36	18	2
104721	CBD-10-01	46	13.6	2.27	17.4	2.1

Chem #	DDH#	Sample	Yb	Lu	Hf	Та
104722	CBD-10-01	47	21	3.18	16.7	2.3
104723	CBD-10-01	48	22.9	3.46	17.6	2.6
104724	CBD-10-01	49	15.5	2.57	14.3	2.2
104725	CBD-10-01	50	16.2	2.71	16.8	2.5
104726	CBD-10-01	51	19.9	3.1	13.3	1.7
104727	CBD-10-01	52	12.1	2.11	12.9	1.7
104728	CBD-10-01	53	33.8	5.12	29	5.5
104729	CBD-10-01	54	50.7	7.31	14.9	4.5
104730	CBD-10-01	55	229	28	7.4	3.9
104731	CBD-10-01	56	13.3	2.27	14.1	1.6
104732	CBD-10-01	57	59.2	8.23	24.3	6.6
104733	CBD-10-01	58	42.5	6.2	59.2	8.7
104734	CBD-10-01	59	32	4.95	45	6.7
104735	CBD-10-01	60	19.8	3.16	31	4
104736	CBD-10-01	61	23.6	3.61	35.8	4.5
104737	CBD-10-01	62	15	2.58	16.3	2.3
104738	CBD-10-01	63	44.3	6.4	82.1	11.6
104739	CBD-10-01	64	34.6	5.25	67.7	8
104740	CBD-10-01	65	16.7	2.85	20.4	2.3
104741	CBD-10-01	66	27.4	4.19	44.6	5.6
104742	CBD-10-01	67	55.5	8.04	67.7	9.6
104743	CBD-10-01	68	28.9	4.26	9	3.1
104744	CBD-10-01	69	72.3	10.1	25.3	5.8
104745	CBD-10-01	70	150	20.9	20.6	7.6
104746	CBD-10-01	71	31.4	5.15	15.1	4.1
104747	CBD-10-01	72	29.2	4.99	11.6	2.8
104748	CBD-10-01	73	36.1	5.37	19.2	6.5
104749	CBD-10-01	74	19.9	3.16	19.1	2.9
104750	CBD-10-01	75	71.9	10.5	123	17.3
104751	CBD-10-01	76	15.3	2.53	15.8	2.1
104752	CBD-10-01	77	17	2.74	17.8	2.4
104753	CBD-10-01	78	15.6	2.56	15.4	2.1
104754	CBD-10-01	79	15.6	2.68	14.4	2.1
104755	CBD-10-01	80	25.1	3.57	11.6	6
104756	CBD-10-01	81	23.1	3.42	14.2	5
104757	CBD-10-01	82	14.7	2.51	13.6	1.6
104758	CBD-10-01	83	24.5	3.8	23.2	3.4
104759	CBD-10-01	84	21.1	2.92	10.2	4.2
104760	CBD-10-01	85	38.3	5.39	37.3	5.9
104761	CBD-10-01	86	60	8.42	32.6	8.7
104762	CBD-10-01	87	56.9	7.98	18.1	6.3
104763	CBD-10-01	88	113	15.2	30.4	10.3
104764	CBD-10-01	89	48.4	6.81	29.6	8.9
104765	CBD-10-01	90	24.1	3.78	22.1	3.1
104766	CBD-10-01	91	32.1	4.93	25.7	4.5
104767	CBD-10-01	92	16.7	2.74	17.4	2.2

Chem #	DDH#	Sample	Yb	Lu	Hf	Та
104768	CBD-10-01	93	18.2	2.95	22.2	2.5
104769	CBD-10-01	94	17.4	2.83	17.7	2.6
104770	CBD-10-01	95	16	2.72	16.4	2.3
104771	CBD-10-01	96	13.6	2.43	12.8	1.6
104772	CBD-10-01	97	55.6	7.72	87.8	9.1
104773	CBD-10-01	98	57.3	8.08	47.4	7.6
104774	CBD-10-01	99	72.2	9.98	62.6	9.4
104775	CBD-10-01	100	61.4	8.75	86.7	9.2
104776	CBD-10-01	101	30.5	4.48	29.8	5.2
104777	CBD-10-01	102	42.2	6	29.9	7
104778	CBD-10-01	103	38.2	5.89	25	5.9
104779	CBD-10-01	104	53.9	7.77	46.1	8
104780	CBD-10-01	105	29.7	4.53	27.2	4.2
104781	CBD-10-01	106	20	3.24	17.1	2.2
104782	CBD-10-01	107	67.8	9.67	36.5	6.8
104783	CBD-10-01	108	48.1	7.18	27.2	6.7
104784	CBD-10-01	109	47.6	7.08	33.5	7.3
104785	CBD-10-01	110	68.1	9.32	114	12.4
104786	CBD-10-01	111	18.4	2.84	18.4	2.8
104787	CBD-10-01	112	22.9	3.57	21.3	2.5
104788	CBD-10-01	113	55.4	7.49	39.1	7.1
104789	CBD-10-01	114	56.4	7.92	3.9	7.6
104790	CBD-10-01	115	52.5	7.04	42.4	8.3
104791	CBD-10-01	116	33.5	4.72	51.1	6.3
104792	CBD-10-01	117	66	8.92	99.6	13.5
104793	CBD-10-01	118	20.5	3.28	24.1	3.3
104794	CBD-10-01	119	48.9	6.72	33.4	6.3
104795	CBD-10-01	120	18.7	2.96	19.6	2.7
104796	CBD-10-01	121	63.8	8.94	48.1	10.8
104797	CBD-10-01	122	20.5	3.31	17.2	2.5
104798	CBD-10-01	123	93	12.9	39.9	10.9
104799	CBD-10-01	124	65.9	9.1	39	8.7
104800	CBD-10-01	125	22.8	3.57	21.2	3.4
416001	CBD-10-01	126	25	3.81	32.2	4.2
416002	CBD-10-01	127	30.2	4.53	51.2	6.4
416003	CBD-10-01	128	26.1	3.99	24.2	3.7
416004	CBD-10-01	129		14	26.9	7
416005	CBD-10-01	130	57.8	7.96	69.9	9.4
416006	CBD-10-01	131	112	15.2	29.3	9.2
416007	CBD-10-01	132	16.3	2.57	18.3	2.4
416008	CBD-10-01	133	50	6.88	73.4	9.3
416009	CBD-10-01	134		5.81	64.2	8.6
416010	CBD-10-01	135		4.82	46.1	6.6
416011	CBD-10-01	136	56.4	7.94	89.5	10.4
416012	CBD-10-01	137	47.9	6.45	46.3	6.5
416013	CBD-10-01	138	28.3	4.28	57.7	8.5

Chem#	DDH#	Sample	Yb	Lu	Hf	Та
416014	CBD-10-01	139	19.7	3.18	29.9	4.2
416015	CBD-10-01	140	59.2	8.43	61.9	10.8
416016	CBD-10-01	141	25.9	3.95	34.7	5.6
416017	CBD-10-01	142	25.8	4.02	33.9	5.2
416018	CBD-10-01	143	89.8	12.3	33.8	9
416019	CBD-10-01	144	28.9	4.37	27.6	4.7
416020	CBD-10-01	145	44	6.51	87	10.9
416021	CBD-10-01	146	72.8	10.1	57.2	9.4
416022	CBD-10-01	147	48.8	7.15	76.9	9.5
416023	CBD-10-01	148	60.5	8.21	51.8	9.4
416024	CBD-10-01	149	70.1	9.71	63.6	11.6
416025	CBD-10-01	150	70.5	9.54	40.1	12.3
416026	CBD-10-01	151	164	21.4	14.8	6.9
416027	CBD-10-01	152	333	43.5	7.3	1.5
416028	CBD-10-01	153	92.2	13.1	33.1	17.2
416029	CBD-10-01	154	116	15.9	19.4	11.5
416030	CBD-10-01	155	244	32.6	14.8	5.6
416031	CBD-10-01	156	68.9	9.56	29	11.8
416032	CBD-10-01	157	69.6	9.86	21.5	11.7
416033	CBD-10-01	158	209	28.3	10.7	5.7
416034	CBD-10-01	159	130	17.4	12.9	11.4
416035	CBD-10-01	160	155	20.8	14.5	8.2
416036	CBD-10-01	161	215	27.8	17.1	11
416037	CBD-10-01	162	63.3	8.6	35.4	7.1
416038	CBD-10-01	163	102	13.5	28	11.4
416039	CBD-10-01	164	156	21	36.4	14.1
416040	CBD-10-01	165	30.2	4.63	40.6	5.3
416041	CBD-10-01	166	48.2	6.81	93.1	10.3
416042	CBD-10-01	167	39.8	5.68	66.5	8.8
416043	CBD-10-01	168	46.9	6.67	74.4	9.9
416044	CBD-10-01	169	73.3	10.1	49.1	9.2
416045	CBD-10-01	170	23.3	3.6	35.6	4.8
416046	CBD-10-01	171	20.7	3.19	31.7	4.1
416047	CBD-10-01	172		3.06	31.2	4.2
416048	CBD-10-01	173	19.7	3.12	32.3	4.1
416049	CBD-10-01	174		5.22	66	10.2
416050	CBD-10-01	175	23.7	3.72	33	4.5
416051	CBD-10-01	176	26	4	33.8	5.5
416052	CBD-10-01	177	265	35.7	16.4	4.9
416053	CBD-10-01	178	171	21	6.9	1.7
416054	CBD-10-01	179	388	51.4	14.7	2.5
416055	CBD-10-01	180	295	38.8	14.4	4.1
416056	CBD-10-01	181	87.3	12.2	20.3	3.6
416057	CBD-10-01	182	70.1	9.87	26.1	11
416058	CBD-10-01	183	65.2	9.2	58.4	10.6
416059	CBD-10-01	184	54.1	7.45	127	14.5

Chem #	DDH#	Sample	Yb	Lu	Hf	Та
416060	CBD-10-01	185	65.7	8.55	28.2	6.2
416061	CBD-10-01	186	21.1	3.41	36.3	4.3
416062	CBD-10-01	187	61.9	8.73	164	18.9
416063	CBD-10-01	188	24.4	3.64	33	5.4
416064	CBD-10-01	189	32.6	4.82	47.5	6
416065	CBD-10-01	190	112	14.1	73.3	15.9
416066	CBD-10-01	191	101	12.8	30.4	5
416067	CBD-10-01	192	47.3	6.49	15.1	3
416068	CBD-10-01	193	11	1.58	21.8	2.7
416069	CBD-10-01	194	25.4	3.41	17.9	5.6
416070	CBD-10-01	195	28.9	3.82	16	6.8
416071	CBD-10-01	196	21.5	2.77	12.7	9.2
416072	CBD-10-01	197	64.3	8.02	59.7	19.5
416073	CBD-10-01	198	31.3	3.88	11.8	10.1
416074	CBD-10-01	199	67	9.03	110	13.1
416075	CBD-10-01	200	45.2	6.34	80.5	10.2
416076	CBD-10-01	201	77.6	10.1	68.3	13.3
416077	CBD-10-01	202	52.3	7.58	156	16.8
416078	CBD-10-01	203	46.5	6.81	95.6	8.4
416079	CBD-10-01	204	35.1	5.03	56.9	8.1
416080	CBD-10-01	205	39.2	5.67	77	7.2
416081	CBD-10-01	206	47.2	6.58	85.5	9.6
416082	CBD-10-01	207	36	5.03	62.9	8.5
416083	CBD-10-01	208	38.1	5.38	71.1	7.6
416084	CBD-10-01	209	25.9	3.71	27.9	3.8
416085	CBD-10-01	210	71.6	9.01	43.4	8.9
416086	CBD-10-01	211	7	1.19	6.1	0.4
416087	CBD-10-01	212	13.4	2.05	27.9	3.4
416088	CBD-10-01	213	7.8	1.26	17.2	1.9
416089	CBD-10-01	214	11.5	1.87	18.6	2
416090	CBD-10-01	215	11.2	1.79	17.9	2
416091	CBD-10-01	216	20.5	3.06	43.8	5.3
416092	CBD-10-01	217	11.6	1.84	20.3	1.9
416093	CBD-10-01	218	9.9	1.56	22.6	2.3
416094	CBD-10-01	219	9.6	1.59	18.8	1.7
416095	CBD-10-01	220	52.2	7.34	132	14.2
416096	CBD-10-01	221	52.8	7.27	105	10.8
416097	CBD-10-01	222	58.7	8.15	122	11.8
416098	CBD-10-01	223	50.1	7	107	11.7
416099	CBD-10-01	224	157	21.1	344	30.2
416100	CBD-10-01	225	46	6.45	103	10
416101	CBD-10-01	226	62.2	8.69	111	10.8
416102	CBD-10-01	227	38.3	5.51	83.1	10.1
416103	CBD-10-01	228	39.4	5.88	91.2	10.9
416104	CBD-10-01	229	30.1	4.67	61.5	6.4
416105	CBD-10-01	230	28.7	4.5	62.5	7.7

Chem #	DDH#	Sample	Yb	Lu	Hf	Та
416106	CBD-10-01	231	57.3	8.2	152	21.4
416107	CBD-10-01	232	14.5	2.41	19.7	2.4
416108	CBD-10-01	233	14.1	2.3	19.8	2.2
416109	CBD-10-01	234	15.4	2.55	21.5	2.2
416110	CBD-10-01	235	41.1	5.83	74.4	8.5
416111	CBD-10-01	236	21.7	3.27	38.5	4.7
416112	CBD-10-01	237	35.4	5.03	70.8	7
416113	CBD-10-01	238	28.8	4.32	51.2	5.6
416114	CBD-10-01	239	35.9	5.49	67.9	6.8
416115	CBD-10-01	240	21.6	3.56	21.4	3
416116	CBD-10-01	241	20.6	3.29	39	3.9
416117	CBD-10-01	242	24.7	3.71	52	5.1
416118	CBD-10-01	243	19	3.1	25.9	3.2
416119	CBD-10-01	244	26	4.14	38.4	4.1
416120	CBD-10-01	245	42.4	6.18	64.8	6.7
416121	CBD-10-01	246	27.1	4.27	47.6	4.9
416122	CBD-10-01	247	41.1	5.97	40.5	5.5
416123	CBD-10-01	248	97.4	12.7	69.5	7.1
416124	CBD-10-01	249	69.5	9.86	172	18.7
416125	CBD-10-01	250	42.3	6.13	57.1	6
416126	CBD-10-01	251	360	41.5	59.3	18.6
416127	CBD-10-01	252	122	16.1	47	7.2
416128	CBD-10-01	253	46.7	6.64	57.1	6.8
416129	CBD-10-01	254	22.2	3.54	36.5	4
416130	CBD-10-01	255	28.3	4.36	70.2	7.1
416131	CBD-10-01	256	53.3	7.94	170	19.5
416132	CBD-10-01	257	33.3	5.06	87.6	9.5
416133	CBD-10-01	258	42.3	6.28	71.5	8
416134	CBD-10-01	259	26	4.17	34.7	4.2
416135	CBD-10-01	260	39.7	5.98	91.8	9.6
416136	CBD-10-01	261	29.2	4.6	31.4	3.9
416137	CBD-10-01	262	70.9	10.3	172	16.9
416138	CBD-10-01	263	46.1	6.93	60.8	7
416139	CBD-10-01	264	48.7	7.25	60.6	7
416140	CBD-10-01	265	41.4	6.14	79.3	6.5
416141	CBD-10-01	266		8.17	181	13.9
416142	CBD-10-01	267	21.3	3.56	51	3.7
416143	CBD-10-01	268	34.5	5.13	85.8	6.9
416144	CBD-10-01	269	38.6	5.83	68.9	6.6
416145	CBD-10-01	270	53.3	7.51	111	9.6
416146	CBD-10-01	271	45.4	6.55	83.6	8.3
416147	CBD-10-01	272	29.7	4.46	79	6.6
416148	CBD-10-01	273	18	2.91	37.9	3.3
416149	CBD-10-01	274	23.4	3.77	55.6	4.7
416150	CBD-10-01	275	37	5.63	90.4	7.3
416151	CBD-10-01	276	20.8	3.45	53.1	4.5

Chem #	DDH#	Sample	Yb	Lu	Hf	Та
416152	CBD-10-01	277	47.2	7.06	160	14.1
416153	CBD-10-01	278	60	8.68	211	19.1
416154	CBD-10-01	279	13.2	2.39	23.7	2.1
512817	CBD-11-02	1	1.88	12.4	2.14	14.1
512818	CBD-11-02	2	1.85	12.3	2.13	15
512819	CBD-11-02	3	1.87	12.9	2.14	14.7
512820	CBD-11-02	4	1.89	12.5	2.15	14.7
512821	CBD-11-02	5	1.81	12.3	2.13	14.5
512822	CBD-11-02	6	1.91	12.9	2.16	14.7
512823	CBD-11-02	7	2.03	13	2.25	15.7
512824	CBD-11-02	8	1.8	12.3	2.1	13.5
512825	CBD-11-02	9	1.89	12.4	2.17	14.7
512826	CBD-11-02	10	1.97	12.9	2.22	13.5
512827	CBD-11-02	11	1.98	13.4	2.25	14.4
512828	CBD-11-02	12	2	13.8	2.4	12.6
512829	CBD-11-02	13	13.6	77.2	10.5	63.1
512830	CBD-11-02	14	3.29	20.6	3.27	20.4
512831	CBD-11-02	15	2.16	15.2	2.66	15.9
512832	CBD-11-02	16	1.93	13.5	2.37	12
512833	CBD-11-02	17	2.71	18.2	2.99	19.3
512834	CBD-11-02	18	1.92	12.9	2.18	11.1
512835	CBD-11-02	19	6.67	40.8	6	16.5
512836	CBD-11-02	20	2.16	14.6	2.47	14.9
512837	CBD-11-02	21	1.97	13.5	2.26	12.2
512838	CBD-11-02	22	13.1	74.7	10.2	107
512839	CBD-11-02	23	6.86	40.3	5.87	64.8
512840	CBD-11-02	24	3.64	22.3	3.46	30.6
512841	CBD-11-02	25	2.82	18.5	3.04	25.4
512842	CBD-11-02	26	2.01	14.1	2.48	13.5
512843	CBD-11-02	27	2.31	15.7	2.63	15
512844	CBD-11-02	28	2.57	16.7	2.75	17.8
512845	CBD-11-02	29	2.3	15.2	2.61	13.8
512846	CBD-11-02	30		38.4	5.64	74.5
512847	CBD-11-02	31				104
512848	CBD-11-02	32	1.63	11.4	2.06	11.5
512849	CBD-11-02	33		13.5	2.22	12.3
512850	CBD-11-02	34	1.58			11.5
512851	CBD-11-02	35		21.6		34.6
512852	CBD-11-02	36	5.78	35	5.29	67.8
512853	CBD-11-02	37	14.7	84.4		200
512854	CBD-11-02	38		53.2	7.74	97.2
512855	CBD-11-02	39			4.93	44.4
512856	CBD-11-02	40	6.11	37.4		81
512857	CBD-11-02	41	7.28	44.4	6.82	69.8
512858	CBD-11-02	42	3.02	19.8		28.4
512859	CBD-11-02	43	16.2	97.2	13.3	16.5

Chem #	DDH#	Sample	Yb	Lu	Hf	Та
512860	CBD-11-02	44	29.1	167	21.2	15.4
512861	CBD-11-02	45	8.04	43.2	5.51	4.2
512862	CBD-11-02	46	6.06	37.5	5.63	17.1
512863	CBD-11-02	47	2.5	17.9	3.16	18.4
512864	CBD-11-02	48	6.76	39.8	5.47	33.9
512865	CBD-11-02	49	5.67	33.3	4.71	23.1
512866	CBD-11-02	50	1.86	13.4	2.2	11.3
512867	CBD-11-02	51	5.51	33.9	4.95	25
512868	CBD-11-02	52	8.98	52.1	7.28	48.5
512869	CBD-11-02	53	8.01	45	6	28.7
512870	CBD-11-02	54	3.6	22.8	3.5	25.9
512871	CBD-11-02	55	4.42	27.7	4.21	34.2
512872	CBD-11-02	56	1.69	12.1	2.09	11.2
512873	CBD-11-02	57	1.95	13.3	2.23	11.2
512874	CBD-11-02	58	1.95	13.9	2.39	12
512875	CBD-11-02	59	4.59	28.4	4.12	23.3
512876	CBD-11-02	60	4.17	25.8	4	33.1
512877	CBD-11-02	61	4.7	28.8	4.21	21.6
512878	CBD-11-02	62	17.5	104	14.2	20.1
512879	CBD-11-02	63	10.9	63.7	8.86	31
512880	CBD-11-02	64	6.23	38.1	5.65	29.4
512881	CBD-11-02	65	2.41	16	2.53	13.2
512882	CBD-11-02	66	1.87	13.2	2.25	15.3
512883	CBD-11-02	67	11.5	68.7	9.71	116
512884	CBD-11-02	68	5.29	32.8	4.85	38.1
512885	CBD-11-02	69	6.49	41.4	6.29	22.4
512886	CBD-11-02	70	7.85	47.6	6.86	35.2
512887	CBD-11-02	71	3.48	22.1	3.49	20.3
512888	CBD-11-02	72	3.03	20.3	3.16	20.1
512889	CBD-11-02	73	7.91	47.4	6.66	30
512890	CBD-11-02	74	6.94	42.4	6.15	22.2
512891	CBD-11-02	75	2.98	19.9	3.22	16.1
512892	CBD-11-02	76		52.3	7.02	39.6
512893	CBD-11-02	77	3.59	22.4	3.32	24.7
512894	CBD-11-02	78	3.47	22.1	3.53	32.2
512895	CBD-11-02	79	12.6	71.9	9.75	56.6
512896	CBD-11-02	80	4.34	26.1	3.78	43.6
512897	CBD-11-02	81	2.47	16.6	2.71	16.5
512898	CBD-11-02	82	2.07	15.1	2.72	15.9
512899	CBD-11-02	83	2.33	16.2	2.73	16.7
512900	CBD-11-02	84	2.71	17.6	2.8	19.9
512901	CBD-11-02	85	3.87	23.8	3.52	20.6
512902	CBD-11-02	86	3.3	21	3.41	25.7
512903	CBD-11-02	87	2.62	17.6	2.88	20.3
512904	CBD-11-02	88	2.59	17.3	2.83	20.6
512905	CBD-11-02	89	8.5	50.6	6.9	28.4

Chem #	DDH#	Sample	Yb	Lu	Hf	Та
512906	CBD-11-02	90	35.7	213	28	11.9
512907	CBD-11-02	91	46.1	265	33.7	20.6
512908	CBD-11-02	92	17.5	102	13.9	15
512909	CBD-11-02	93	20.6	124	16.7	10
512910	CBD-11-02	94	32.5	181	22.9	35.3
512911	CBD-11-02	95	19.8	112	14.2	20
512912	CBD-11-02	96	16.3	94.4	12	27.4
512913	CBD-11-02	97	11.4	67.8	9.3	26.7
512914	CBD-11-02	98	27.8	165	21.6	21.3
512915	CBD-11-02	99	22.8	128	16.1	51
512916	CBD-11-02	100	10.8	62.6	8.76	143
512917	CBD-11-02	101	4.1	25.6	3.85	38.8
512918	CBD-11-02	102	8.2	48.6	6.85	77
512919	CBD-11-02	103	6.53	39.3	5.86	93.2
512920	CBD-11-02	104	13.9	81.4	11.2	159
512921	CBD-11-02	105	3.24	20.6	3.26	33.3
512922	CBD-11-02	106	3.08	20.5	3.29	41.4
512923	CBD-11-02	107	37.9	229	30.1	19.7
512924	CBD-11-02	108	6.46	39.5	5.67	71.3
512925	CBD-11-02	109	5.99	36.3	5.36	84.1
512926	CBD-11-02	110	13.8	81.7	11.1	75.3
512927	CBD-11-02	111	3.41	21.9	3.41	32.7
512928	CBD-11-02	112	8.29	50.4	7.02	97.1
512929	CBD-11-02	113	5.46	34.6	4.96	35.5
512930	CBD-11-02	114	8.64	53.6	7.58	41.5
512931	CBD-11-02	115	5.11	33.5	5.19	31.8
512932	CBD-11-02	116	13.1	82.8	11.8	43.2
512933	CBD-11-02	117	14	83.6	11.8	193
512934	CBD-11-02	118	7.11	44.9	6.6	66.5
512935	CBD-11-02	119	15.6	89.2	11.7	48.5
512936	CBD-11-02	120	7.37	45.4	6.71	72.9
512937	CBD-11-02	121	17.4	98.1	12.6	50.3
512938	CBD-11-02	122	7.91	48.2	7.02	78.8
512939	CBD-11-02	123		97.3	12.3	46.9
512940	CBD-11-02	124	8.6	52.5	7.66	89.5
512941	CBD-11-02	125		16.7	2.72	24.8
512942	CBD-11-02	126		13	2.26	15.1
512943	CBD-11-02	127	9.32	56	8.15	121
512944	CBD-11-02	128	2.13	14.6	2.62	20.7
512945	CBD-11-02	129	4.4	27.7	4.29	57.1
512946	CBD-11-02	130		58.3	7.8	50.4
512947	CBD-11-02	131	19.5	109	13.8	66.4
512948	CBD-11-02	132		17.3	2.88	18.5
512949	CBD-11-02	133	19.3	110	14.5	56.5
512950	CBD-11-02	134	3.23	21.8	3.66	29.8
512951	CBD-11-02	135	15.3	87.8	11.3	47.9

Chem#	DDH#	Sample	Yb	Lu	Hf	Та
512952	CBD-11-02	136	11.8	69	9.26	35.7
512953	CBD-11-02	137	16.4	93.4	12.3	49.7
512954	CBD-11-02	138	16.3	91.9	12.1	60.4
512955	CBD-11-02	139	20	115	15	36.8
512956	CBD-11-02	140	21.6	121	15.5	47.8
512957	CBD-11-02	141	18.5	108	13.9	37.5
512958	CBD-11-02	142	3.87	24.1	3.65	32.6
512959	CBD-11-02	143	3.36	20.7	3.2	29.4
512960	CBD-11-02	144	4.1	25.2	3.9	31.1
512961	CBD-11-02	145	3.17	20.4	3.13	22.7
512962	CBD-11-02	146	2.12	13.8	2.23	15.8
512963	CBD-11-02	147	2.97	18.1	2.68	33.2
512964	CBD-11-02	148	3.75	22.8	3.24	43.9
512965	CBD-11-02	149	4.71	28.5	4.07	33.3
512966	CBD-11-02	150	4.77	29.3	4.28	38.1
512967	CBD-11-02	151	4.34	26.5	3.8	26.4
512968	CBD-11-02	152	4.71	28.5	4.11	30.5
512969	CBD-11-02	153	9.01	52.4	6.95	32.5
512970	CBD-11-02	154	16	94	12.4	26.3
512971	CBD-11-02	155	46.1	263	33.2	18.3
512972	CBD-11-02	156	71.1	407	51.3	20.7
512973	CBD-11-02	157	50.8	285	35	18
512974	CBD-11-02	158	38.6	214	26.2	20.6
512975	CBD-11-02	159	41.6	229	28	18.8
512976	CBD-11-02	160	22.3	123	15.5	36.4
512977	CBD-11-02	161	13.5	77.3	10.2	28.4
512978	CBD-11-02	162	16.5	92.4	11.8	24.2
512979	CBD-11-02	163	5.56	34	4.84	41.7
512980	CBD-11-02	164	4.13	26.4	4.03	33.9
512981	CBD-11-02	165	9.78	56.7	7.45	44.8
512982	CBD-11-02	166	8.24	47.5	6.06	18
512983	CBD-11-02	167	4.09	24.7	3.53	35.9
512984	CBD-11-02	168	4.39	26.1	3.67	29.1
512985	CBD-11-02	169		75.9	9.8	61.1
512986	CBD-11-02	170	11.7	68.7	9.09	72.9
512987	CBD-11-02	171	3.83	21.8	2.79	10.5
512988	CBD-11-02	172	5.21	28.5	3.64	10.3
512989	CBD-11-02	173	8.5	50	6.93	96.2
512990	CBD-11-02	174	7.54	44.4	6.24	77.9
512991	CBD-11-02	175	6.55	39.6	5.57	78.9
512992	CBD-11-02	176	6.59	39.4	5.56	72
512993	CBD-11-02	177	3.89	23.2	3.38	31
512994	CBD-11-02	178	7.61	43.7	5.67	31.3
512995	CBD-11-02	179	9.42	53.5	7.11	47.2
512996	CBD-11-02	180	6.53	40.6	5.75	45.2
512997	CBD-11-02	181	2.42	14.8	2.19	19.6

Chem #	DDH#	Sample	Yb	Lu	Hf	Та
512998	CBD-11-02	182	1.76	11.2	1.74	16.5
512999	CBD-11-02	183	1.63	10.8	1.76	18.6
513000	CBD-11-02	184	2.85	17.7	2.71	35.2
513001	CBD-11-02	185	3.52	22	3.4	38.6
513002	CBD-11-02	186	1.9	12.4	2	20.2
513003	CBD-11-02	187	1.76	11.2	1.82	17.6
513004	CBD-11-02	188	5.4	32.7	4.76	66.3
513005	CBD-11-02	189	9.37	55	7.82	130
513006	CBD-11-02	190	10.1	59.1	8.43	113
513007	CBD-11-02	191	9.81	59.1	8.29	120
513008	CBD-11-02	192	7.21	43	6.25	78.4
513009	CBD-11-02	193	6.28	38.2	5.54	82.2
513010	CBD-11-02	194	7.86	46.9	6.78	112
513011	CBD-11-02	195	5.34	33.1	4.9	68.2
513012	CBD-11-02	196	4.18	26.3	3.98	45.4
513013	CBD-11-02	197	4.23	26.6	4	46.9
513014	CBD-11-02	198	2.45	16.5	2.72	22.4
513015	CBD-11-02	199	4.3	25.8	3.82	50.1
513016	CBD-11-02	200	4.37	28.7	4.49	31
513017	CBD-11-02	201	5.28	32.8	4.74	70.9
513018	CBD-11-02	202	7	41.9	5.97	82.6
513019	CBD-11-02	203	5.17	31.9	4.74	58
513020	CBD-11-02	204	5.81	35.4	5.23	32.2
513021	CBD-11-02	205	6.51	39.3	5.64	76.4
513022	CBD-11-02	206	4.8	29.5	4.27	55.4
513023	CBD-11-02	207	6.8	40.9	5.89	79.9
513024	CBD-11-02	208	7.55	48.4	7.16	70.1
513025	CBD-11-02	209	10.3	64.6	8.88	54.7
513026	CBD-11-02	210	10	63.1	8.55	61
513027	CBD-11-02	211	5.22	34	4.95	49.6
513028	CBD-11-02	212	6.36	41.8	6.18	122
513029	CBD-11-02	213	6.88	44.6	6.63	136
513030	CBD-11-02	214		29.8	4.36	58.5
513031	CBD-11-02	215		39.8	5.87	67.9
513032	CBD-11-02	216	4.24	30.2	4.8	32.2
513033	CBD-11-02	217	8.26	52.9	7.68	92.2
513034	CBD-11-02	218		33.5	4.81	47.5
513035	CBD-11-02	219		23.4	3.56	32.9
513036	CBD-11-02	220	7.85	50.5	7.21	48.2
513037	CBD-11-02	221	6.03	38.8	5.74	102
513038	CBD-11-02	222	2.44	17.5	2.99	25.9
513039	CBD-11-02	223		12.4	2.16	14.9
513040	CBD-11-02	224		26.3	4	63.8
513041	CBD-11-02	225	4.32	28.4	4.34	70.6
513042	CBD-11-02	226	7.11	46.3	6.59	91.4
513043	CBD-11-02	227	3.12	21.7	3.56	45

Chem #	DDH#	Sample	Yb	Lu	Hf	Ta
513044	CBD-11-02	228	8.46	53.6	8.07	122
513045	CBD-11-02	229	5.5	35.9	5.46	91.2
513046	CBD-11-02	230	5.84	38.6	5.57	98
513047	CBD-11-02	231	4.81	31.7	4.84	75.1
513048	CBD-11-02	232	6.37	39.3	5.58	105
514381	CBD-11-07	1	24.9	4.73	32	2.6
514382	CBD-11-07	2	22.7	4.36	28.3	2.5
514383	CBD-11-07	3	19.1	3.29	23.4	3.8
514384	CBD-11-07	4	47.4	6.29	59.1	10.9
514385	CBD-11-07	5	25.7	4.82	29.5	2.7
514386	CBD-11-07	6	28.2	5.47	32.1	2.6
514387	CBD-11-07	7	28.4	5.51	30	2.7
514388	CBD-11-07	8	28.7	5.37	30	2.4
514389	CBD-11-07	9	40.7	6.47	32.4	4.9
514390	CBD-11-07	10	36.9	5.79	25.2	4.3
514391	CBD-11-07	11	28.8	4.76	26.6	3.6
514392	CBD-11-07	12	21.4	4.01	23	2.5
514393	CBD-11-07	13	18.3	3.51	21.2	2.2
514394	CBD-11-07	14	16.5	2.94	19.4	2.3
514395	CBD-11-07	15	20.4	3.86	22.5	2.2
514396	CBD-11-07	16	14.9	2.63	17.3	1.9
514397	CBD-11-07	17	18	3.38	21.7	2.3
514398	CBD-11-07	18	23.1	4.57	24.1	2.5
514399	CBD-11-07	19	30.6	5.94	29.8	2.6
514400	CBD-11-07	20	20.6	4.12	23.9	2.4
514401	CBD-11-07	21	18.1	3.07	13.3	2.2
514402	CBD-11-07	22	39.4	6.25	21.7	2.9
514403	CBD-11-07	23	41.5	6.13	17.1	2.8
514404	CBD-11-07	24	223	29.4	57	22.4
514405	CBD-11-07	25	17.1	3.02	19.1	2.4
514406	CBD-11-07	26	17.1	2.99	17.5	2.1
514407	CBD-11-07	27	15.3	2.79	16.6	2.2
514408	CBD-11-07	28		2.77	17.2	2
514409	CBD-11-07	29	14.2	2.48	16	1.9
514410	CBD-11-07	30	16.5	2.81	18.6	2.2
514411	CBD-11-07	31		3.08	27.1	3.5
514412	CBD-11-07	32		2.75	19.2	2.7
514413	CBD-11-07	33		6.01	57.4	7.3
514414	CBD-11-07	34	27.8	4.68	17.4	5
514415	CBD-11-07	35		7.15	15.1	7.8
514416	CBD-11-07	36	86.2	11.9	16.9	8.7
514417	CBD-11-07	37	111	15.3	18.1	6.6
514418	CBD-11-07	38		2.64	15.8	2
514419	CBD-11-07	39		9.36	105	12
514420	CBD-11-07	40	14.5	2.5	15.4	2.3
514421	CBD-11-07	41	57.6	8.77	82.1	9.9

Chem #	DDH#	Sample	Yb	Lu	Hf	Та
514422	CBD-11-07	42	16.9	2.94	20	2.7
514423	CBD-11-07	43	36.9	5.92	57.5	6.5
514424	CBD-11-07	44	24.9	4.05	23.3	3.3
514425	CBD-11-07	45	44.4	6.59	41.9	6.5
514426	CBD-11-07	46	53.1	7.84	105	11.5
514427	CBD-11-07	47	52.4	7.46	17.4	5
514428	CBD-11-07	48	109	14.9	10.1	4.6
514429	CBD-11-07	49	66.9	9.53	32.2	13.5
514430	CBD-11-07	50	61.1	8.67	34.1	11
514431	CBD-11-07	51	69.6	10.3	131	16.6
514432	CBD-11-07	52	26.5	4.97	28.6	2.6
514433	CBD-11-07	53	23.2	3.92	33.3	4.6
514434	CBD-11-07	54	18.5	3.45	21.6	2.2
514435	CBD-11-07	55	19.6	3.67	22.9	2
514436	CBD-11-07	56	19.3	3.19	20	2.7
514437	CBD-11-07	57	14.4	2.54	13.5	2.1
514438	CBD-11-07	58	15.3	2.68	17.4	2
514439	CBD-11-07	59	14.4	2.59	13.8	1.8
514440	CBD-11-07	60	52.7	7.96	86.7	10.2
514441	CBD-11-07	61	12.8	2.37	12.2	1.7
514442	CBD-11-07	62	13.7	2.38	17.6	2.1
514443	CBD-11-07	63	15.3	2.52	18.3	2.3
514444	CBD-11-07	64	13.5	2.34	16.9	2.1
514445	CBD-11-07	65	13.4	2.26	17	2.1
514446	CBD-11-07	66	14	2.37	16.1	2.2
514447	CBD-11-07	67	14.8	2.69	14.4	2.1
514448	CBD-11-07	68	18.6	3.02	24.7	3.6
514449	CBD-11-07	69	13.8	2.35	15.3	2.2
514450	CBD-11-07	70	14.4	2.42	15.8	2.1
514451	CBD-11-07	71	17.6	2.89	16.4	2.6
514452	CBD-11-07	72	14.9	2.61	16.5	2.3
514453	CBD-11-07	73	16.7	2.74	15.5	2.3
514454	CBD-11-07	74		2.3	16	2.1
514455	CBD-11-07	75		2.41	16.3	2.1
514456	CBD-11-07	76		2.42	17.1	2.3
514457	CBD-11-07	77		2.41	16.3	2.2
514458	CBD-11-07	78		2.51	15.5	2.2
514459	CBD-11-07	79		2.68	13.2	1.8
514460	CBD-11-07	80	13.6	2.52	12.8	1.7
514461	CBD-11-07	81	12.9	2.42	12.8	1.6
514462	CBD-11-07	82		2.21	12.4	1.7
514463	CBD-11-07	83		2.8	19.9	2.6
514464	CBD-11-07	84		2.65	17.9	2.4
514465	CBD-11-07	85		2.59	17.7	2.3
514466	CBD-11-07	86	61.9	8.56	27	7.6
514467	CBD-11-07	87	38	5.78	45.7	6.5

Chem #	DDH#	Sample	Yb	Lu	Hf	Та
514468	CBD-11-07	88	18.1	2.95	24.4	3.2
514469	CBD-11-07	89	26.4	4.07	35.6	4.5
514470	CBD-11-07	90	30.6	4.71	57.9	7.7
514471	CBD-11-07	91	26.7	4.16	35.6	4.5
514472	CBD-11-07	92	29.6	4.5	61.1	7.7
514473	CBD-11-07	93	24.5	3.94	34.4	4.4
514474	CBD-11-07	94	15.3	2.63	15.3	2.5
514475	CBD-11-07	95	14.8	2.6	12.2	2
514476	CBD-11-07	96	24.8	3.81	31.7	4.8
514477	CBD-11-07	97	124	16.5	18.2	5.5
514478	CBD-11-07	98	43.4	5.26	4.7	15.4
514479	CBD-11-07	99	35.8	5.48	15.5	4.6
514480	CBD-11-07	100	74.3	10.1	139	15.2
514481	CBD-11-07	101	30.9	5.05	17	3.9
514482	CBD-11-07	102	56.7	8.04	126	13
514483	CBD-11-07	103	27	4.28	47.3	5.3
514484	CBD-11-07	104	17.5	2.87	19.4	2.6
514485	CBD-11-07	105	15.7	2.74	17.9	2.7
514486	CBD-11-07	106	54.2	7.95	91.8	10.8
514487	CBD-11-07	107	52.5	7.7	63.1	7.8
514488	CBD-11-07	108	27.9	4.36	28.3	4.2
514489	CBD-11-07	109	16.3	2.67	13	1.8
514490	CBD-11-07	110	45.1	6.59	77.5	8.2
514491	CBD-11-07	111	18.5	3.08	15.4	2.6
514492	CBD-11-07	112	27.7	4.31	31.4	3.7
514493	CBD-11-07	113	18.9	3.22	24.7	2.8
514494	CBD-11-07	114	83.2	11.5	116	12.3
514495	CBD-11-07	115	30.4	4.54	25.4	4.9
514496	CBD-11-07	116	71.8	9.82	38.9	10.8
514497	CBD-11-07	117	142	18.8	25.4	9.9
514498	CBD-11-07	118	63.9	8.84	34.3	11.3
514499	CBD-11-07	119	75.1	9.91	48.4	13.3
514500	CBD-11-07	120		3.64		2.9
514501	CBD-11-07	121	20.2	3.55	19.1	2.5
514502	CBD-11-07	122	19	3.29	17.4	2.6
514503	CBD-11-07	123		3.41	18.3	2.3
514504	CBD-11-07	124	17.3	2.9	17.9	2.1
514505	CBD-11-07	125	19.2	3.15	19.1	2.8
514506	CBD-11-07	126	20.8 15.1	3.62	25.3	6.4
514507	CBD-11-07	127	_	2.71	15.2	2.2
514508	CBD-11-07	128		3.04	15.1	2.2
514509 514510	CBD-11-07 CBD-11-07	129 130	19.2 22.2	3.24 3.36	18.8 20.1	3.1
514510	CBD-11-07	130		4.13	23.7	3.4 4.1
514511		131	24.6 18		23.7 17.8	
	CBD-11-07	132		3.34		1.9
514513	CBD-11-07	133	41.2	5.87	29.2	5.4

Chem #	DDH#	Sample	Yb	Lu	Hf	Та
514514	CBD-11-07	134	58.3	7.78	39	7.8
514515	CBD-11-07	135	67.3	10.2	29.9	7.5
514516	CBD-11-07	136	39.1	6.38	24.5	3.5
514517	CBD-11-07	137	49.3	7.66	38.8	8.6
514518	CBD-11-07	138	54	7.57	27.3	9.9
514519	CBD-11-07	139	49	7.27	25.4	7
514520	CBD-11-07	140	33.6	5.26	32.4	5.3
514521	CBD-11-07	141	37.3	5.87	46.6	6
514522	CBD-11-07	142	41.1	6.18	28	6.1
514523	CBD-11-07	143	34.3	5.23	26.3	5.7
514524	CBD-11-07	144	37.4	5.64	24.1	5.3
514525	CBD-11-07	145	22.7	3.68	18.6	4.3
514526	CBD-11-07	146	16.2	2.96	17.7	2.9
514527	CBD-11-07	147	14.9	2.7	17.5	2.2
514528	CBD-11-07	148	16.9	2.98	19.7	2
514529	CBD-11-07	149	72.6	9.72	48.9	8.2
514530	CBD-11-07	150	88.2	12.4	42.5	13.2
514531	CBD-11-07	151	79.8	11.3	37.5	13
514532	CBD-11-07	152	121	16.6	40.7	15.1
514533	CBD-11-07	153	182	24.5	54.1	18.1
514534	CBD-11-07	154	82.4	11.7	43.3	13.5
514535	CBD-11-07	155	61	9.01	43	10.8
514536	CBD-11-07	156	69.8	10.1	40.4	9.8
514537	CBD-11-07	157	20	3.5	20.8	2.9
514538	CBD-11-07	158	51.5	6.97	16.1	5.9
514539	CBD-11-07	159	276	37.5	19.5	12.5
514540	CBD-11-07	160	59.8	8.9	64.4	10.9
514541	CBD-11-07	161	344	47.5	13.8	3.7
514542	CBD-11-07	162	345	46.7	15.5	8.9
514543	CBD-11-07	163	137	19.1	22.9	18.2
514544	CBD-11-07	164	43.1	6.6	48.6	10.2
514545	CBD-11-07	165	50.9	7.64	76.1	9.9
514546	CBD-11-07	166				6.7
514547	CBD-11-07	167	31.3	4.77	65.5	9.2
514548	CBD-11-07	168		4.49	62.6	8.4
514549	CBD-11-07	169		10.4	84.7	10.9
514550	CBD-11-07	170		6.32	58.8	7.2
514551	CBD-11-07	171	79.8	11.2	117	13.1
514552	CBD-11-07	172	22.8	3.73	25.6	3.3
514553	CBD-11-07	173	33.7	5.13	57.3	7.6
514554	CBD-11-07	174		3.34	36.1	6
514555	CBD-11-07	175	43.7	6.41	41.2	6.6
514556	CBD-11-07	176	22.8	3.66	27.4	3.9
514557	CBD-11-07	177	22.4	3.69	31.9	4.9
514558	CBD-11-07	178		3.19	19.7	3.5
514559	CBD-11-07	179	13.9	2.41	14.6	2.3

Chem #	DDH#	Sample	Yb	Lu	Hf	Та
514560	CBD-11-07	180	66.9	9.38	37.6	11.8
514561	CBD-11-07	181	15.4	2.75	18.9	2.3
514562	CBD-11-07	182	21.5	3.54	26.2	3.5
514563	CBD-11-07	183	34.5	5.23	66	9.8
514564	CBD-11-07	184	59.9	8.24	35.1	9.1
514565	CBD-11-07	185	31.7	4.83	61.9	8
514566	CBD-11-07	186	20	3.34	32.1	4
514567	CBD-11-07	187	46.2	6.92	103	13.1
514568	CBD-11-07	188	51.6	7.45	82.2	9
514569	CBD-11-07	189	73	9.94	80.2	10.2
514570	CBD-11-07	190	69.7	9.17	68	10.2
514571	CBD-11-07	191	107	13.6	54.4	17.2
514572	CBD-11-07	192	20.2	3.26	24.1	3.9
514573	CBD-11-07	193	91.4	12.3	24.8	10.6
514574	CBD-11-07	194	211	27.7	14.2	4.8
514575	CBD-11-07	195	104	14.1	30.4	15.7
514576	CBD-11-07	196	160	20.3	19.1	9.1
514577	CBD-11-07	197	234	32.7	18.7	9.4
514578	CBD-11-07	198	60.3	8.48	49.6	9.6
514579	CBD-11-07	199	34.1	4.76	25.6	4.5
514580	CBD-11-07	200	47.1	6.8	88.5	10
514581	CBD-11-07	201	43.7	5.99	70.6	7.9
514582	CBD-11-07	202	36.9	5.54	61.8	7.3
514583	CBD-11-07	203	23.4	3.74	29.8	4.1
514584	CBD-11-07	204	273	35.3	28.4	4.7
514585	CBD-11-07	205	25.4	3.99	34.5	4.9
514586	CBD-11-07	206	23.9	3.56	36	4
514587	CBD-11-07	207	353	47.6	21.2	5.3
514588	CBD-11-07	208	247	30.6	10.6	1.5
514589	CBD-11-07	209	391	52.2	19.9	1.9
514590	CBD-11-07	210	104	15	23.5	6.6
514591	CBD-11-07	211	25.5	4.25	36.7	4.7
514592	CBD-11-07	212	56.5	7.81	52.3	9.2
514593	CBD-11-07	213	21.4	3.5	32	3.9
514594	CBD-11-07	214	18.5	3.26	27.5	2.9
514595	CBD-11-07	215		3.02	23.6	2.8
514596	CBD-11-07	216	17.9	3.13	21.2	2.6
514597	CBD-11-07	217	128	17.3	25.4	13.7
514598	CBD-11-07	218	43.4	6.51	32.3	5.4
514599	CBD-11-07	219	17.4	2.6	19.2	3.1
514600	CBD-11-07	220	42.6	6.11	57.7	11.5
514601	CBD-11-07	221	36.6	5.31	40.5	7.5
514602	CBD-11-07	222	27.3	3.77	10.9	9.3
514603	CBD-11-07	223	49.7	7.25	79.6	10.3
514604	CBD-11-07	224	37.3	5.71	71.3	6.1
514605	CBD-11-07	225	51.4	7.71	93.3	11.1

Chem #	DDH#	Sample	Yb	Lu	Hf	Та
514606	CBD-11-07	226	29.6	4.78	55.1	6.2
514607	CBD-11-07	227	43	6.59	73.1	9.3
514608	CBD-11-07	228	26.9	4.04	47.8	5.2
514609	CBD-11-07	229	48.4	7.3	94.2	9
514610	CBD-11-07	230	17.9	2.82	15.8	3.2
514611	CBD-11-07	231	33.1	4.95	40.5	6.3
514612	CBD-11-07	232	40.2	5.55	33.6	4.3
514613	CBD-11-07	233	66.5	9.12	55.2	9
514614	CBD-11-07	234	58.8	7.92	66.2	6.8
514615	CBD-11-07	235	94.8	12.5	65.1	10
514616	CBD-11-07	236	21.2	3.25	35.4	4.6
514617	CBD-11-07	237	13.8	2.31	19.8	2.4
514618	CBD-11-07	238	13	2.17	21.1	2.5
514619	CBD-11-07	239	14.9	2.46	26.2	3.1
514620	CBD-11-07	240	47.1	7.03	96.3	10.4
514621	CBD-11-07	241	44.6	6.84	93	9.9
514622	CBD-11-07	242	47.6	7.21	108	11.9
514623	CBD-11-07	243	58.8	9.08	152	16.9
514624	CBD-11-07	244	37	5.91	74.2	8
514625	CBD-11-07	245	43.3	6.09	69.1	8.9
514626	CBD-11-07	246	48.3	7.3	116	14.5
514627	CBD-11-07	247	31.1	4.95	75	10.1
514628	CBD-11-07	248	23.9	3.55	54.7	5.2
514629	CBD-11-07	249	19.5	3.33	27.4	3.6
514630	CBD-11-07	250	46.9	6.95	88.3	9.3
514631	CBD-11-07	251	55.1	8.14	107	10.1
514632	CBD-11-07	252	44	6.45	84.3	8
514633	CBD-11-07	253	23.2	3.61	38.5	4.3
514634	CBD-11-07	254	17.4	2.83	23.3	2.7
514635	CBD-11-07	255	30.6	4.58	59.5	7.2
514636	CBD-11-07	256	26.9	4.21	48.6	5.2
514637	CBD-11-07	257	21.5	3.31	37.8	4.4
514638	CBD-11-07	258	38.8	5.65	64.8	6.4
514639	CBD-11-07	259	42.3	6.31	90.7	9.3
514640	CBD-11-07	260	19.9	3.24	31.6	3.6
514641	CBD-11-07	261	15.2	2.5	21.3	2.5
514642	CBD-11-07	262	19.9	3.36	30.8	3.5
514643	CBD-11-07	263	38.9	5.86	70.4	7.5
514644	CBD-11-07	264	63.2	8.92	62.2	6.9
514645	CBD-11-07	265		5.6	60.6	7.1
514646	CBD-11-07	266	25.9	4.12	55.6	5.6
514647	CBD-11-07	267	31.4	4.75	55.1	6.1
514648	CBD-11-07	268		3.81	42.3	4.7
514649	CBD-11-07	269		10.6	53.9	6.4
514650	CBD-11-07	270		3.77	42.1	4.8
514651	CBD-11-07	271	36	5.38	71.1	8.7

Chem #	DDH#	Sample	Yb	Lu	Hf	Та
514652	CBD-11-07	272	31.3	4.72	59.4	7.3
514653	CBD-11-07	273	47.7	6.93	103	12.3
514654	CBD-11-07	274	41.9	6.32	105	13.7
514655	CBD-11-07	275	15.9	2.67	22.4	2.2
514656	CBD-11-07	276	105	13.9	57.2	9.8
514657	CBD-11-07	277	73.7	10.5	62.8	6.6
514658	CBD-11-07	278	31.4	4.78	39.4	4.8
514659	CBD-11-07	279	49.4	7.46	77.2	8.8
514660	CBD-11-07	280	58.4	8.11	138	14.3
514661	CBD-11-07	281	36	5.48	81.3	9
514662	CBD-11-07	282	35.5	5.52	77.1	7.8
514663	CBD-11-07	283	43.7	6.62	77.7	9.4
514664	CBD-11-07	284	30.2	5	73.2	8.6
514665	CBD-11-07	285	28.6	4.55	57.4	5.9
514666	CBD-11-07	286	37.4	5.62	97.1	10.8
514667	CBD-11-07	287	25	3.89	46.8	5.5
514668	CBD-11-07	288	71.9	10.5	14	4.4
514669	CBD-11-07	289	51.4	7.39	95.9	12.5
514670	CBD-11-07	290	14.5	2.2	19	1.8
514671	CBD-11-07	291	18	2.63	16.5	2.2
514672	CBD-11-07	292	17	2.71	21.6	2.3
514673	CBD-11-07	293	42.7	6.29	71.2	13.1

Chem #	DDH#	Sample	W	TI	Pb	Th
104676	CBD-10-01	1	< 1	0.5	33	10
104677	CBD-10-01	2	< 1	0.6	35	9.6
104678	CBD-10-01	3	< 1	0.8	31	8.4
104679	CBD-10-01	4	< 1	1.1	34	10
104680	CBD-10-01	5	< 1	1	803	67
104681	CBD-10-01	6	< 1	0.7	35	9.6
104682	CBD-10-01	7	< 1	0.5	40	10.3
104683	CBD-10-01	8	< 1	0.7	36	10.2
104684	CBD-10-01	9	< 1	1	34	13.8
104685	CBD-10-01	10	< 1	0.8	45	11.4
104686	CBD-10-01	11	< 1	0.7	33	9.5
104687	CBD-10-01	12	< 1	0.7	31	9.2
104688	CBD-10-01	13	< 1	0.8	102	14.6
104689	CBD-10-01	14	< 1	0.4	792	30
104690	CBD-10-01	15	< 1	0.5	33	8.9
104691	CBD-10-01	16	< 1	0.4	29	7.7
104692	CBD-10-01	17	< 1	0.6	26	6.9
104693	CBD-10-01	18	< 1	0.6	67	52.7
104694	CBD-10-01	19	< 1	0.5	477	66.6
104695	CBD-10-01	20	< 1	0.6	37	9.4
104696	CBD-10-01	21	< 1	0.7	31	8.2
104697	CBD-10-01	22	< 1	0.8	230	59.3
104698	CBD-10-01	23	< 1	0.6	27	8.9
104699	CBD-10-01	24	< 1	0.6	40	9.1
104700	CBD-10-01	25	< 1	0.5	31	8.5
104701	CBD-10-01	26	< 1	0.5	38	9.6
104702	CBD-10-01	27	< 1	0.5	26	8.2
104703	CBD-10-01	28	< 1	0.4	30	8.5
104704	CBD-10-01	29	< 1	0.5	32	9.1
104705	CBD-10-01	30	< 1	0.4	29	8.5
104706	CBD-10-01	31	< 1	0.5	34	8.8
104707	CBD-10-01	32	< 1	0.4	31	7.2
104708	CBD-10-01	33	< 1	0.5	29	8.6
104709	CBD-10-01	34	< 1	0.4	51	15
104710	CBD-10-01	35	< 1	0.6	29	8.1
104711	CBD-10-01	36	< 1	0.4	19	13.6
104712	CBD-10-01	37	< 1	0.5	31	9
104713	CBD-10-01	38	< 1	0.4	30	8.5
104714	CBD-10-01	39	< 1	0.4	29	8.3
104715	CBD-10-01	40	<1	0.4	30	8.2
104716	CBD-10-01	41	<1	0.4	27	8.1
104717	CBD-10-01	42	<1	0.4	30	8.1
104718	CBD-10-01	43	< 1	0.4	31	8.4
104719	CBD-10-01	44	< 1	0.4	29	8
104720	CBD-10-01	45	< 1	0.4	26	7.8
104721	CBD-10-01	46	< 1	0.5	31	8.2

Chem #	DDH#	Sample	W	TI	Pb	Th
104722	CBD-10-01	47	< 1	0.8	85	27
104723	CBD-10-01	48	< 1	0.8	62	58
104724	CBD-10-01	49	< 1	0.5	39	9.5
104725	CBD-10-01	50	< 1	0.5	30	8.7
104726	CBD-10-01	51	< 1	0.5	45	9.8
104727	CBD-10-01	52	< 1	0.6	23	6.6
104728	CBD-10-01	53	< 1	0.7	68	14
104729	CBD-10-01	54	< 1	0.5	1430	46
104730	CBD-10-01	55	< 1	0.2	707	423
104731	CBD-10-01	56	< 1	1	62	8.1
104732	CBD-10-01	57	< 1	1	446	91.9
104733	CBD-10-01	58	< 1	0.7	53	14.1
104734	CBD-10-01	59	< 1	0.5	120	17.4
104735	CBD-10-01	60	< 1	0.5	37	9
104736	CBD-10-01	61	< 1	0.5	38	9.5
104737	CBD-10-01	62	< 1	0.4	33	8.2
104738	CBD-10-01	63	< 1	0.4	142	22
104739	CBD-10-01	64	< 1	0.5	37	8.2
104740	CBD-10-01	65	< 1	0.4	27	6
104741	CBD-10-01	66	< 1	0.7	31	9.8
104742	CBD-10-01	67	< 1	0.9	52	25.4
104743	CBD-10-01	68	< 1	0.8	33	11.5
104744	CBD-10-01	69	< 1	0.5	1060	40.1
104745	CBD-10-01	70	< 1	0.8	1610	131
104746	CBD-10-01	71	< 1	0.3	1730	28.7
104747	CBD-10-01	72	< 1	0.3	1990	19.8
104748	CBD-10-01	73	< 1	0.3	773	26.9
104749	CBD-10-01	74	< 1	0.6	250	14.1
104750	CBD-10-01	75	< 1	0.6	99	23.8
104751	CBD-10-01	76	< 1	0.5	47	9.6
104752	CBD-10-01	77	< 1	0.5	47	10.5
104753	CBD-10-01	78	< 1	0.7	40	10.7
104754	CBD-10-01	79	< 1	0.7	40	12.6
104755	CBD-10-01	80	< 1	0.6	161	50.2
104756	CBD-10-01	81	< 1	0.8	98	27.3
104757	CBD-10-01	82	< 1	0.6	25	9.9
104758	CBD-10-01	83	< 1	0.6	79	15.3
104759	CBD-10-01	84	< 1	1	131	35.1
104760	CBD-10-01	85	< 1	1	122	22
104761	CBD-10-01	86	<1	1	1550	31.5
104762	CBD-10-01	87	<1	0.8	1370	35
104763	CBD-10-01	88	<1	0.9	1220	37.6
104764	CBD-10-01	89	<1	0.7	1040	19
104765	CBD-10-01	90	<1	0.6	129	13.6
104766	CBD-10-01	91	<1	0.7	115	16.8
104767	CBD-10-01	92	< 1	0.7	41	8.4

Chem #	DDH#	Sample	W	TI	Pb	Th
104768	CBD-10-01	93	< 1	0.6	58	10.2
104769	CBD-10-01	94	< 1	0.6	52	10.7
104770	CBD-10-01	95	< 1	0.5	38	9.9
104771	CBD-10-01	96	< 1	0.5	27	6.7
104772	CBD-10-01	97	< 1	0.8	47	15.8
104773	CBD-10-01	98	< 1	0.6	686	36.1
104774	CBD-10-01	99	< 1	0.9	432	23.9
104775	CBD-10-01	100	< 1	1	88	11.5
104776	CBD-10-01	101	< 1	0.8	95	13.8
104777	CBD-10-01	102	< 1	0.5	204	19.8
104778	CBD-10-01	103	< 1	0.7	110	15.6
104779	CBD-10-01	104	< 1	0.7	189	19
104780	CBD-10-01	105	< 1	0.9	74	11.8
104781	CBD-10-01	106	< 1	0.8	33	7.4
104782	CBD-10-01	107	< 1	0.9	232	28.1
104783	CBD-10-01	108	< 1	0.6	1170	15.5
104784	CBD-10-01	109	< 1	0.7	135	19.9
104785	CBD-10-01	110	< 1	0.9	179	18.5
104786	CBD-10-01	111	< 1	0.9	47	9.6
104787	CBD-10-01	112	< 1	0.9	56	8.1
104788	CBD-10-01	113	< 1	0.2	276	34.4
104789	CBD-10-01	114	< 1	0.7	33	11
104790	CBD-10-01	115	< 1	0.3	499	34.8
104791	CBD-10-01	116	< 1	1	50	11.3
104792	CBD-10-01	117	< 1	1.3	105	27.1
104793	CBD-10-01	118	< 1	0.8	35	11.2
104794	CBD-10-01	119	< 1	0.3	450	15.8
104795	CBD-10-01	120	< 1	0.7	32	21.5
104796	CBD-10-01	121	2	0.7	313	36.8
104797	CBD-10-01	122	< 1	1.1	58	11.4
104798	CBD-10-01	123	< 1	0.4	623	69.4
104799	CBD-10-01	124	< 1	0.7	475	49.4
104800	CBD-10-01	125	< 1	1.1	92	17.3
416001	CBD-10-01	126	< 1	1	63	13.7
416002	CBD-10-01	127	< 1	1	45	11.3
416003	CBD-10-01	128		1.1	33	18.5
416004	CBD-10-01	129		0.8	196	51.3
416005	CBD-10-01	130	< 1	1	259	25
416006	CBD-10-01	131	< 1	0.7	455	45.1
416007	CBD-10-01	132	< 1	0.7	35	11.2
416008	CBD-10-01	133	< 1	0.7	69	16.6
416009	CBD-10-01	134	< 1	0.8	58	21.3
416010	CBD-10-01	135	< 1	0.7	30	17.7
416011	CBD-10-01	136	< 1	0.8	69	15
416012	CBD-10-01	137	1	0.7	77	20
416013	CBD-10-01	138	<1	0.8	42	11.2

Chem #	DDH#	Sample	W	TI	Pb	Th
416014	CBD-10-01	139	< 1	0.9	32	10.1
416015	CBD-10-01	140	< 1	0.7	326	20.7
416016	CBD-10-01	141	< 1	1	41	14.1
416017	CBD-10-01	142	< 1	0.9	53	10.8
416018	CBD-10-01	143	< 1	1.3	234	25.5
416019	CBD-10-01	144	< 1	1.1	106	12.2
416020	CBD-10-01	145	< 1	0.8	56	11.6
416021	CBD-10-01	146	< 1	1.1	332	25.2
416022	CBD-10-01	147	< 1	0.8	85	16.8
416023	CBD-10-01	148	< 1	1	713	16.8
416024	CBD-10-01	149	< 1	0.8	381	20.1
416025	CBD-10-01	150	< 1	1.1	654	40.3
416026	CBD-10-01	151	< 1	0.9	634	54.9
416027	CBD-10-01	152	< 1	0.9	471	118
416028	CBD-10-01	153	< 1	1.1	757	44.4
416029	CBD-10-01	154	< 1	1.1	689	45.7
416030	CBD-10-01	155	< 1	0.8	579	53.8
416031	CBD-10-01	156	< 1	0.9	683	26.8
416032	CBD-10-01	157	< 1	1.1	646	36.8
416033	CBD-10-01	158	< 1	0.4	532	52.2
416034	CBD-10-01	159	< 1	1.2	612	71.7
416035	CBD-10-01	160	< 1	1.7	583	56.1
416036	CBD-10-01	161	< 1	0.4	525	105
416037	CBD-10-01	162	< 1	0.9	160	30.5
416038	CBD-10-01	163	< 1	0.9	307	57.1
416039	CBD-10-01	164	< 1	0.8	387	56.9
416040	CBD-10-01	165	< 1	0.9	49	19.5
416041	CBD-10-01	166	< 1	0.8	50	15.6
416042	CBD-10-01	167	< 1	0.8	50	11.1
416043	CBD-10-01	168	< 1	0.8	55	13.7
416044	CBD-10-01	169	< 1	0.8	260	23.7
416045	CBD-10-01	170	< 1	0.8	30	9
416046	CBD-10-01	171	< 1	0.6	31	9.1
416047	CBD-10-01	172	< 1	0.7	26	12
416048	CBD-10-01	173	< 1	0.7	28	6.2
416049	CBD-10-01	174	< 1	0.6	42	15.7
416050	CBD-10-01	175	< 1	0.8	38	14.2
416051	CBD-10-01	176	< 1	0.7	30	11.3
416052	CBD-10-01	177	< 1	0.7	329	68.1
416053	CBD-10-01	178	< 1	0.4	347	108
416054	CBD-10-01	179	2	0.3	357	111
416055	CBD-10-01	180	<1	0.9	337	111
416056	CBD-10-01	181	< 1	0.7	199	25
416057	CBD-10-01	182	<1	0.6	418	41.6
416058	CBD-10-01	183	<1	1.2	184	24.2
416059	CBD-10-01	184	< 1	1.5	55	3.5

Chem #	DDH#	Sample	W	TI	Pb	Th
416060	CBD-10-01	185	< 1	0.8	275	27.3
416061	CBD-10-01	186	< 1	0.7	40	13.1
416062	CBD-10-01	187	1	1.6	59	5.3
416063	CBD-10-01	188	< 1	0.6	53	14
416064	CBD-10-01	189	< 1	1	58	19.7
416065	CBD-10-01	190	< 1	0.7	327	40.2
416066	CBD-10-01	191	< 1	0.5	150	34.4
416067	CBD-10-01	192	< 1	0.2	162	112
416068	CBD-10-01	193	< 1	0.3	21	30.9
416069	CBD-10-01	194	< 1	0.7	72	61.2
416070	CBD-10-01	195	< 1	0.8	82	33
416071	CBD-10-01	196	< 1	0.8	81	36.6
416072	CBD-10-01	197	< 1	0.8	124	26.6
416073	CBD-10-01	198	< 1	0.7	122	42.5
416074	CBD-10-01	199	< 1	1	144	22.9
416075	CBD-10-01	200	< 1	1	73	14.2
416076	CBD-10-01	201	< 1	0.6	286	38.3
416077	CBD-10-01	202	< 1	1.3	32	9.1
416078	CBD-10-01	203	< 1	1	67	6
416079	CBD-10-01	204	< 1	0.8	110	6.5
416080	CBD-10-01	205	< 1	0.5	41	6.5
416081	CBD-10-01	206	< 1	0.6	58	29.1
416082	CBD-10-01	207	< 1	0.6	45	19.1
416083	CBD-10-01	208	< 1	0.5	78	8.3
416084	CBD-10-01	209	< 1	1.3	62	23.4
416085	CBD-10-01	210	< 1	0.6	224	46.3
416086	CBD-10-01	211	< 1	0.5	33	20.8
416087	CBD-10-01	212	< 1	1.2	56	10.8
416088	CBD-10-01	213	< 1	0.5	42	12.1
416089	CBD-10-01	214	< 1	0.9	41	13.6
416090	CBD-10-01	215	< 1	0.3	31	13.5
416091	CBD-10-01	216	< 1	1.1	28	8.8
416092	CBD-10-01	217	< 1	1	47	14
416093	CBD-10-01	218	< 1	0.6	28	10.2
416094	CBD-10-01	219	< 1	0.4	19	6.9
416095	CBD-10-01	220	< 1	0.5	73	29.3
416096	CBD-10-01	221	< 1	0.8	76	31.9
416097	CBD-10-01	222	< 1	0.9	61	17
416098	CBD-10-01	223	< 1	1	52	15.7
416099	CBD-10-01	224	6	1.3	54	21.5
416100	CBD-10-01	225	< 1	0.8	56	15.1
416101	CBD-10-01	226	<1	0.9	50	56.6
416102	CBD-10-01	227	< 1	0.9	46	17.9
416103	CBD-10-01	228	< 1	0.8	37	18.4
416104	CBD-10-01	229	< 1	0.9	32	9.2
416105	CBD-10-01	230	< 1	1	40	12

Chem #	DDH#	Sample	W	TI	Pb	Th
416106	CBD-10-01	231	5	1	37	14.5
416107	CBD-10-01	232	< 1	0.8	27	8.9
416108	CBD-10-01	233	< 1	0.9	23	8
416109	CBD-10-01	234	< 1	1	18	8.5
416110	CBD-10-01	235	< 1	1	57	16.3
416111	CBD-10-01	236	2	1	42	13.7
416112	CBD-10-01	237	< 1	0.9	45	14.9
416113	CBD-10-01	238	< 1	0.8	73	15.3
416114	CBD-10-01	239	< 1	1.1	36	13
416115	CBD-10-01	240	< 1	0.6	36	19.8
416116	CBD-10-01	241	< 1	0.9	31	8.7
416117	CBD-10-01	242	< 1	1	25	8.4
416118	CBD-10-01	243	< 1	0.9	23	14
416119	CBD-10-01	244	< 1	0.6	38	13.3
416120	CBD-10-01	245	< 1	0.9	52	22.6
416121	CBD-10-01	246	< 1	1.2	26	12
416122	CBD-10-01	247	< 1	1	84	22.5
416123	CBD-10-01	248	< 1	1.1	133	42.3
416124	CBD-10-01	249	4	1.4	52	8.8
416125	CBD-10-01	250	< 1	1.3	81	14.4
416126	CBD-10-01	251	< 1	1.3	269	92.5
416127	CBD-10-01	252	< 1	0.6	115	72.6
416128	CBD-10-01	253	< 1	1.2	46	21.3
416129	CBD-10-01	254	< 1	1	35	13.3
416130	CBD-10-01	255	< 1	1.1	30	8
416131	CBD-10-01	256	3	1.1	35	11.5
416132	CBD-10-01	257	< 1	1.2	41	11.5
416133	CBD-10-01	258	< 1	1.3	66	17.5
416134	CBD-10-01	259	< 1	1.6	65	11.8
416135	CBD-10-01	260	< 1	1.6	55	17.6
416136	CBD-10-01	261	< 1	1.4	40	10
416137	CBD-10-01	262	2	1.2	73	11.6
416138	CBD-10-01	263	< 1		83	19.5
416139	CBD-10-01	264	< 1	1	82	22.9
416140	CBD-10-01	265	< 1	1	39	13.6
416141	CBD-10-01	266	2	1.1	41	13
416142	CBD-10-01	267	< 1	0.8	29	7
416143	CBD-10-01	268	< 1	1.4	34	12.5
416144	CBD-10-01	269	< 1	1.1	81	15.4
416145	CBD-10-01	270	< 1	0.8	78	15.9
416146	CBD-10-01	271	< 1	0.3	113	17.6
416147	CBD-10-01	272	< 1	0.4	69	9
416148	CBD-10-01	273	< 1	0.3	50	8.4
416149	CBD-10-01	274	< 1	0.7	40	8.6
416150	CBD-10-01	275	< 1	0.9	43	11.9
416151	CBD-10-01	276	< 1	0.5	62	7.5

Chem #	DDH#	Sample	W	TI	Pb	Th
416152	CBD-10-01	277	< 1	0.4	70	9.8
416153	CBD-10-01	278	< 1	0.3	63	9.5
416154	CBD-10-01	279	< 1	0.5	25	7.2
512817	CBD-11-02	1	1.7	2	0.5	26
512818	CBD-11-02	2	1.7	1	0.5	26
512819	CBD-11-02	3	1.7	1	0.5	25
512820	CBD-11-02	4	1.6	2	0.5	25
512821	CBD-11-02	5	1.6	2	0.5	24
512822	CBD-11-02	6	1.7	1	0.5	24
512823	CBD-11-02	7	1.8	2	0.5	27
512824	CBD-11-02	8	1.6	1	0.5	23
512825	CBD-11-02	9	1.6	4	0.5	27
512826	CBD-11-02	10	2.3	1	0.4	30
512827	CBD-11-02	11	1.7	1	0.5	27
512828	CBD-11-02	12	1.1	1	0.5	29
512829	CBD-11-02	13	9.5	4	0.6	525
512830	CBD-11-02	14	2.9	2	0.5	35
512831	CBD-11-02	15	1.4	< 1	0.5	25
512832	CBD-11-02	16	1.3	1	0.5	23
512833	CBD-11-02	17	2.4	1	0.6	29
512834	CBD-11-02	18	1.5	< 1	0.6	31
512835	CBD-11-02	19	4.2	2	0.5	663
512836	CBD-11-02	20	2	< 1	0.6	33
512837	CBD-11-02	21	1.8	< 1	0.7	32
512838	CBD-11-02	22	14.2	4	0.8	79
512839	CBD-11-02	23	7.1	3	0.8	66
512840	CBD-11-02	24	3.9	2	0.7	29
512841	CBD-11-02	25	3	1	0.7	32
512842	CBD-11-02	26	1.9		0.5	32
512843	CBD-11-02	27	2	< 1	0.6	31
512844	CBD-11-02	28	2.2	< 1	0.6	39
512845	CBD-11-02	29	1.6	1	0.5	58
512846	CBD-11-02	30			0.7	34
512847	CBD-11-02	31		4	0.8	60
512848	CBD-11-02	32		< 1	0.6	28
512849	CBD-11-02	33		2	0.5	58
512850	CBD-11-02	34		< 1	0.6	22
512851	CBD-11-02	35	4.4	2	0.6	44
512852	CBD-11-02	36		3	0.6	46
512853	CBD-11-02	37	23.8	11	0.8	147
512854	CBD-11-02	38		4	0.7	89
512855	CBD-11-02	39		3	0.5	94
512856	CBD-11-02	40		4	0.7	46
512857	CBD-11-02	41	7.6	3	0.7	113
512858	CBD-11-02	42	3.2	1	0.9	32
512859	CBD-11-02	43	3.4	3	0.8	875

Chem #	DDH#	Sample	W	TI	Pb	Th
512860	CBD-11-02	44	3.4	3	1.7	1040
512861	CBD-11-02	45	14	2	0.5	289
512862	CBD-11-02	46	4.4	3	0.3	762
512863	CBD-11-02	47	1.7	2	1	25
512864	CBD-11-02	48	6	3	0.8	62
512865	CBD-11-02	49	4.3	2	0.9	44
512866	CBD-11-02	50	1.6	1	0.9	32
512867	CBD-11-02	51	4.4	2	0.8	195
512868	CBD-11-02	52	7.5	4	1.4	139
512869	CBD-11-02	53	5.9	3	0.9	289
512870	CBD-11-02	54	2.6	2	0.2	33
512871	CBD-11-02	55	4	3	0.9	30
512872	CBD-11-02	56	1.3	1	0.7	24
512873	CBD-11-02	57	1.7	4	0.7	34
512874	CBD-11-02	58	1.7	1	0.8	29
512875	CBD-11-02	59	3.5	2	1	39
512876	CBD-11-02	60	3.5	2	0.5	81
512877	CBD-11-02	61	4.5	2	0.8	127
512878	CBD-11-02	62	5.5	3	1.3	1100
512879	CBD-11-02	63	9.4	3	1.1	1040
512880	CBD-11-02	64	4.7	3	1.1	386
512881	CBD-11-02	65	1.9	< 1	1	88
512882	CBD-11-02	66	1.7	< 1	0.8	23
512883	CBD-11-02	67	10.5	3	1.2	88
512884	CBD-11-02	68	5.4	2	0.7	73
512885	CBD-11-02	69	4.9	2	0.9	997
512886	CBD-11-02	70	7	2	0.9	562
512887	CBD-11-02	71	2.8	1	1	28
512888	CBD-11-02	72	2	39	0.5	85
512889	CBD-11-02	73	5.9	2	0.5	189
512890	CBD-11-02	74	4.6	2	0.5	157
512891	CBD-11-02	75	2.3	1	1	44
512892	CBD-11-02	76	7.4	2	1.1	348
512893	CBD-11-02	77	3.5	1	0.9	46
512894	CBD-11-02	78	4.5	1	0.8	37
512895	CBD-11-02	79	8.7	3	0.7	268
512896	CBD-11-02	80	5.5	1	0.8	46
512897	CBD-11-02	81	2.3	< 1	0.8	32
512898	CBD-11-02	82	1.7	< 1	0.9	18
512899	CBD-11-02	83	1.9	6	0.7	32
512900	CBD-11-02	84	3	1	0.8	42
512901	CBD-11-02	85	3.7	1	0.8	73
512902	CBD-11-02	86	3	2	0.8	55
512903	CBD-11-02	87	2.7	1	1	35
512904	CBD-11-02	88	2.8	1	1.3	31
512905	CBD-11-02	89	4	2	1	116

Chem #	DDH#	Sample	W	TI	Pb	Th
512906	CBD-11-02	90	2.9	3	0.4	437
512907	CBD-11-02	91	11.7	3	0.4	542
512908	CBD-11-02	92	4.9	2	0.6	517
512909	CBD-11-02	93	2.6	2	0.5	353
512910	CBD-11-02	94	12.6	3	0.7	695
512911	CBD-11-02	95	7.1	4	1	1470
512912	CBD-11-02	96	6.6	2	1.1	645
512913	CBD-11-02	97	8.3	3	1.1	369
512914	CBD-11-02	98	10.4	3	0.9	633
512915	CBD-11-02	99	12.3	3	0.9	746
512916	CBD-11-02	100	17.2	8	1.3	85
512917	CBD-11-02	101	4.5	2	1	48
512918	CBD-11-02	102	8.4	4	0.9	74
512919	CBD-11-02	103	11.2	4	1.1	32
512920	CBD-11-02	104	16.5	6	0.7	86
512921	CBD-11-02	105	4.2	2	0.9	39
512922	CBD-11-02	106	5.2	3	0.9	24
512923	CBD-11-02	107	3.8	3	0.4	426
512924	CBD-11-02	108	8.9	4	1	145
512925	CBD-11-02	109	11.2	5	1.2	39
512926	CBD-11-02	110	15.4	5	1.3	378
512927	CBD-11-02	111	4.3	2	1.2	55
512927	CBD-11-02	112	13.9	16	1.2	48
512929	CBD-11-02	113	5.3	2	1.4	63
512930	CBD-11-02	114	7.5	2	1.4	121
512931	CBD-11-02	115	4.9	1	0.9	68
512932	CBD-11-02	116	7.4	2	1.1	129
512933	CBD-11-02	117	23.4	10	1.2	128
512934	CBD-11-02	118	7.1	3	1.2	89
512935	CBD-11-02	119	13.5	3	1	438
512936	CBD-11-02	120	7.1	3	1.3	66
512937	CBD-11-02	120	13.4	3	1.5	641
512937	CBD-11-02	121	8.2	3	1.3	92
512939	CBD-11-02	123	13.5	3	0.9	569
512940	CBD-11-02 CBD-11-02	123	8.8	3	1.1	88
512940	CBD-11-02 CBD-11-02	125	2.8	2	0.8	27
512941	CBD-11-02 CBD-11-02	125	1.7	2	0.6	24
512942		127			0.8	55
512944	CBD-11-02		13.6 2.1	6 3		38
	CBD-11-02	128			0.6	
512945	CBD-11-02	129	6.7	8	1	30
512946	CBD-11-02	130	8.3	4	1.5	812
512947	CBD-11-02	131	17.5	4	1.2	905
512948	CBD-11-02	132	2.3	2	1	66
512949	CBD-11-02	133	21.2	4	0.5	465
512950	CBD-11-02	134	3.1	2	1.1	38
512951	CBD-11-02	135	14.6	4	1	734

Chem #	DDH#	Sample	W	TI	Pb	Th
512952	CBD-11-02	136	11.8	4	1.5	882
512953	CBD-11-02	137	16	4	1.5	894
512954	CBD-11-02	138	16.7	4	1	716
512955	CBD-11-02	139	11.5	4	0.8	499
512956	CBD-11-02	140	14.7	4	0.8	383
512957	CBD-11-02	141	7.5	3	1.2	225
512958	CBD-11-02	142	4.2	2	1.3	63
512959	CBD-11-02	143	3.7	2	1.7	36
512960	CBD-11-02	144	4.6	2	0.8	63
512961	CBD-11-02	145	4	2	0.6	48
512962	CBD-11-02	146	2	2	1.2	43
512963	CBD-11-02	147	3.9	2	0.8	45
512964	CBD-11-02	148	4.6	2	0.6	34
512965	CBD-11-02	149	6.2	2	1	97
512966	CBD-11-02	150	5.4	3	0.9	62
512967	CBD-11-02	151	6.5	2	1	82
512968	CBD-11-02	152	6.9	2	0.9	77
512969	CBD-11-02	153	5.1	4	0.9	159
512970	CBD-11-02	154	7.8	3	0.8	278
512971	CBD-11-02	155	3	3	0.6	407
512972	CBD-11-02	156	2.4	4	0.7	469
512973	CBD-11-02	157	3.4	4	0.4	422
512974	CBD-11-02	158	3.7	4	0.4	437
512975	CBD-11-02	159	4.9	9	0.6	333
512976	CBD-11-02	160	8.8	4	0.9	327
512977	CBD-11-02	161	7.5	2	0.7	340
512978	CBD-11-02	162	7.2	3	0.7	384
512979	CBD-11-02	163	5	3	1	57
512980	CBD-11-02	164	3.6	2	1.1	48
512981	CBD-11-02	165	6.8	3	0.8	176
512982	CBD-11-02	166	2.8	2	0.5	79
512983	CBD-11-02	167	4.3	2	0.5	83
512984	CBD-11-02	168	3.8	2	0.5	37
512985	CBD-11-02	169	8.4	4	0.6	133
512986	CBD-11-02	170	10.6	4	0.4	143
512987	CBD-11-02	171	5.2	1	1	70
512988	CBD-11-02	172	6.9	1	0.9	93
512989	CBD-11-02	173	10.2	4	1	72
512990	CBD-11-02	174	9.4	3	1	75
512991	CBD-11-02	175	8.4	3		111
512992	CBD-11-02	176	7.1	5	0.7	7 5
512993	CBD-11-02	177	4	2	1	48
512994	CBD-11-02	178	6.8	3	0.6	163
512995	CBD-11-02	179	8.8	3	0.5	207
512996	CBD-11-02	180	7.1	5	0.4	196
512997	CBD-11-02	181	2.8	2	0.6	146

Chem #	DDH#	Sample	W	TI	Pb	Th
512998	CBD-11-02	182	1.9	2	0.6	40
512999	CBD-11-02	183	2.1	1	0.8	42
513000	CBD-11-02	184	3.5	2	0.6	21
513001	CBD-11-02	185	3.7	3	0.7	53
513002	CBD-11-02	186	2.1	1	0.9	46
513003	CBD-11-02	187	1.9	1	0.9	39
513004	CBD-11-02	188	6.4	3	1	54
513005	CBD-11-02	189	11.9	5	1.1	40
513006	CBD-11-02	190	10.3	5	1	71
513007	CBD-11-02	191	10.6	6	1.1	61
513008	CBD-11-02	192	8.6	4	0.9	60
513009	CBD-11-02	193	8.3	4	1.1	40
513010	CBD-11-02	194	11.8	6	0.9	47
513011	CBD-11-02	195	6	3	1	29
513012	CBD-11-02	196	5.2	3	0.9	41
513013	CBD-11-02	197	5.9	4	1.1	63
513014	CBD-11-02	198	2.5	1	1	33
513015	CBD-11-02	199	5.2	2	1.3	40
513016	CBD-11-02	200	3.9	14	0.4	58
513017	CBD-11-02	201	6.7	3	1.2	20
513018	CBD-11-02	202	7.6	4	1	53
513019	CBD-11-02	203	5.4	3	0.8	39
513020	CBD-11-02	204	4.6	3	0.5	165
513021	CBD-11-02	205	7.1	4	0.9	46
513022	CBD-11-02	206	5.4	3	1	54
513023	CBD-11-02	207	7.9	3	1	55
513024	CBD-11-02	208	7.6	< 1	0.8	67
513025	CBD-11-02	209	6.3	< 1	0.9	111
513026	CBD-11-02	210	7.3	1	1	134
513027	CBD-11-02	211	5.4	1	1	41
513028	CBD-11-02	212	14.1	4	1	31
513029	CBD-11-02	213	13.9	4	0.9	29
513030	CBD-11-02	214	6.2	< 1	0.8	34
513031	CBD-11-02	215		< 1	1	35
513032	CBD-11-02	216		< 1	0.8	62
513033	CBD-11-02	217	9.5		1.2	50
513034	CBD-11-02	218	5.2	< 1	0.9	37
513035	CBD-11-02	219	3.6	< 1	1.1	51
513036	CBD-11-02	220	6.4	< 1	0.8	94
513037	CBD-11-02	221	9	2	1.2	39
513038	CBD-11-02	222		< 1	0.9	35
513039	CBD-11-02	223	1.7	<1	0.7	33
513040	CBD-11-02	224	6.2	1	0.7	29
513041	CBD-11-02	225	6.7	1	0.9	37
513042	CBD-11-02	226		4	0.8	35
513043	CBD-11-02	227	4.1	< 1	0.9	6

Chem #	DDH#	Sample	W	TI	Pb	Th
513044	CBD-11-02	228	11.5	3	0.9	63
513045	CBD-11-02	229	8.8	2	0.8	36
513046	CBD-11-02	230	9.3	2	0.9	34
513047	CBD-11-02	231	7.2	2	0.8	27
513048	CBD-11-02	232	9.5	3	0.9	44
514381	CBD-11-07	1	3	0.8	19	8.4
514382	CBD-11-07	2	< 1	0.8	18	10.4
514383	CBD-11-07	3	< 1	1.2	21	12.3
514384	CBD-11-07	4	3	1.9	62	19.4
514385	CBD-11-07	5	< 1	0.7	20	8.4
514386	CBD-11-07	6	< 1	0.8	20	7.5
514387	CBD-11-07	7	< 1	0.9	20	9.3
514388	CBD-11-07	8	< 1	0.6	14	14.6
514389	CBD-11-07	9	2	0.4	86	32.4
514390	CBD-11-07	10	< 1	0.4	21	30.4
514391	CBD-11-07	11	< 1	0.5	21	20.5
514392	CBD-11-07	12	< 1	0.6	22	9.9
514393	CBD-11-07	13	< 1	0.6	24	7.1
514394	CBD-11-07	14	< 1	0.5	29	8.1
514395	CBD-11-07	15	< 1	0.7	31	6
514396	CBD-11-07	16	< 1	0.4	26	7.7
514397	CBD-11-07	17	< 1	0.5	20	7.2
514398	CBD-11-07	18	1	0.6	15	5
514399	CBD-11-07	19	< 1	0.9	11	5.2
514400	CBD-11-07	20	< 1	0.6	24	5.8
514401	CBD-11-07	21	< 1	0.5	18	9.7
514402	CBD-11-07		< 1	0.8	135	28.3
514403	CBD-11-07	23	< 1	0.7	78	71.5
514404	CBD-11-07	24	4	0.5	567	198
514405	CBD-11-07	25	< 1	0.7	20	8
514406	CBD-11-07		< 1	0.5	28	8
514407	CBD-11-07		< 1	0.5	28	7.5
514408	CBD-11-07	28	< 1	0.5	24	7.6
514409	CBD-11-07	29		0.5	29	8.2
514410	CBD-11-07		< 1	0.4	24	7.9
514411	CBD-11-07		< 1	0.5	24	7.9
514412	CBD-11-07		< 1	0.6	21	7.5
514413	CBD-11-07	33		1	63	15.5
514414	CBD-11-07		< 1	0.8	122	15.8
514415	CBD-11-07		< 1	0.7	809	26.5
514416	CBD-11-07		< 1	0.7	1240	55.4
514417	CBD-11-07		< 1	0.8	526	43.2
514418	CBD-11-07	38		0.9	37	7.8
514419	CBD-11-07	39		1.1	87	25.1
514420	CBD-11-07		< 1	0.8	31	8.4
514421	CBD-11-07	41	2	0.7	256	21.8

Chem #	DDH#	Sample	W	TI	Pb	Th
514422	CBD-11-07	42	< 1	0.8	29	8.7
514423	CBD-11-07	43	1	0.9	54	10.6
514424	CBD-11-07	44	< 1	0.6	44	13.8
514425	CBD-11-07	45	1	0.7	154	21.7
514426	CBD-11-07	46	3	1.1	63	13.7
514427	CBD-11-07	47	< 1	0.6	464	45.7
514428	CBD-11-07	48	< 1	0.4	1220	60.6
514429	CBD-11-07	49	2	1.1	374	47.2
514430	CBD-11-07	50	2	0.3	173	52.4
514431	CBD-11-07	51	4	0.9	75	15.6
514432	CBD-11-07	52	< 1	1.1	24	6.7
514433	CBD-11-07	53	1	0.6	29	6.8
514434	CBD-11-07	54	< 1	0.6	28	8.2
514435	CBD-11-07	55	< 1	0.6	30	8.1
514436	CBD-11-07	56	< 1	0.6	34	10.2
514437	CBD-11-07	57	< 1	0.6	35	8.9
514438	CBD-11-07	58	< 1	0.7	23	8
514439	CBD-11-07	59	< 1	0.7	33	7.2
514440	CBD-11-07	60	4	0.8	125	20.1
514441	CBD-11-07	61	< 1	0.6	29	8.1
514442	CBD-11-07	62	< 1	0.6	30	8.2
514443	CBD-11-07	63	< 1	0.5	33	8.4
514444	CBD-11-07	64	< 1	0.4	30	7.6
514445	CBD-11-07	65	< 1	0.4	30	8
514446	CBD-11-07	66	< 1	0.5	38	15.7
514447	CBD-11-07	67	< 1	0.6	43	8.6
514448	CBD-11-07	68	1	0.6	45	10.9
514449	CBD-11-07	69	< 1	0.7	32	9.4
514450	CBD-11-07	70	< 1	0.7	30	9.5
514451	CBD-11-07	71	< 1	0.8	50	14.3
514452	CBD-11-07	72	< 1	0.5	34	9
514453	CBD-11-07	73	< 1	0.6	47	11.9
514454	CBD-11-07	74	< 1	0.5	30	7.6
514455	CBD-11-07	75	< 1	0.5	31	7.5
514456	CBD-11-07	76	< 1	0.5	34	7.7
514457	CBD-11-07	77	< 1	0.6	30	7.4
514458	CBD-11-07	78	< 1	0.5	22	8.2
514459	CBD-11-07	79	< 1	0.5	29	7.6
514460	CBD-11-07	80	1	0.5	33	8.1
514461	CBD-11-07	81	< 1	0.5	25	6.8
514462	CBD-11-07	82	< 1	0.6	26	5.8
514463	CBD-11-07		< 1	0.6	42	7
514464	CBD-11-07		< 1	0.6		8.2
514465	CBD-11-07	85	< 1	0.8	31	9.1
514466	CBD-11-07	86		0.7	591	63.5
514467	CBD-11-07	87	1	1.2	70	16.6

Chem #	DDH#	Sample	W	TI	Pb	Th
514468	CBD-11-07	88	< 1	1	30	7.9
514469	CBD-11-07	89	< 1	0.9	41	13.1
514470	CBD-11-07	90	2	0.8	45	11.6
514471	CBD-11-07	91	< 1	0.7	75	11.5
514472	CBD-11-07	92	1	0.8	41	8.7
514473	CBD-11-07	93	< 1	0.7	39	10.5
514474	CBD-11-07	94	< 1	0.8	34	8.7
514475	CBD-11-07	95	< 1	0.7	34	10.1
514476	CBD-11-07	96	< 1	1	46	12.1
514477	CBD-11-07	97	< 1	1.2	952	76.2
514478	CBD-11-07	98	< 1	1	220	79.4
514479	CBD-11-07	99	< 1	1	2880	24.9
514480	CBD-11-07	100	4	1.5	129	15.2
514481	CBD-11-07	101	1	0.6	233	18
514482	CBD-11-07	102	3	1.1	43	9.7
514483	CBD-11-07	103	1	0.9	30	7.6
514484	CBD-11-07	104	< 1	0.8	28	10.2
514485	CBD-11-07	105	< 1	0.7	24	8.2
514486	CBD-11-07	106	2	1	53	11.9
514487	CBD-11-07	107	2	0.7	86	22.1
514488	CBD-11-07	108	1	0.3	51	12.1
514489	CBD-11-07	109	< 1	0.9	39	11.8
514490	CBD-11-07	110		1.2	45	11.5
514491	CBD-11-07	111	2	0.9	30	12.6
514492	CBD-11-07	112	1	0.8	78	9.7
514493	CBD-11-07	113	< 1	0.6	35	9.4
514494	CBD-11-07	114	3	1.3	63	11.8
514495	CBD-11-07	115	< 1	1.3	107	31.8
514496	CBD-11-07	116		1.2	1060	47
514497	CBD-11-07	117	3	1	928	51
514498	CBD-11-07	118		1.3	1260	31.5
514499	CBD-11-07	119		0.8	720	100
514500	CBD-11-07	120		0.7	57	21.7
514501	CBD-11-07	121		0.7	40	15.2
514502	CBD-11-07	122		0.8	35	11
514503	CBD-11-07	123		0.9	21	9
514504	CBD-11-07	124		0.9	27	13.2
514505	CBD-11-07	125		0.7	35	16
514506	CBD-11-07	126		0.8	35	13.8
514507	CBD-11-07	127		0.9	30	9.6
514508	CBD-11-07	128		0.9	31	11.1
514509	CBD-11-07	129		0.9	37	14.1
514510	CBD-11-07	130		0.9	53	13.4
514511	CBD-11-07	131		1.2	65	11.2
514512	CBD-11-07	132		1	19	20.6
514513	CBD-11-07	133	2	0.8	142	55.1

Chem #	DDH#	Sample	W	TI	Pb	Th
514514	CBD-11-07	134	3	1.1	741	30.1
514515	CBD-11-07	135	1	0.8	1060	106
514516	CBD-11-07	136	< 1	0.7	574	77.1
514517	CBD-11-07	137	1	0.6	107	21
514518	CBD-11-07	138	1	2.6	1200	64.5
514519	CBD-11-07	139		0.6	1190	33.8
514520	CBD-11-07	140	1	0.8	149	13
514521	CBD-11-07	141	< 1	0.8	78	13.4
514522	CBD-11-07	142	< 1	0.9	419	16.1
514523	CBD-11-07	143	< 1	0.5	139	22.4
514524	CBD-11-07	144	< 1	0.3	333	20.5
514525	CBD-11-07	145	< 1	0.8	90	15.6
514526	CBD-11-07	146	< 1	0.8	40	9.5
514527	CBD-11-07	147	< 1	0.9	27	9.2
514528	CBD-11-07	148	< 1	1.1	28	9.4
514529	CBD-11-07	149	3	0.6	1240	35.3
514530	CBD-11-07	150	2	0.9	1390	42.1
514531	CBD-11-07	151	1	1.3	1530	30.7
514532	CBD-11-07	152	2	1.3	1230	45.6
514533	CBD-11-07	153	3	2.5	751	187
514534	CBD-11-07	154	1	1.3	1380	39.2
514535	CBD-11-07	155	2	1.1	1020	22
514536	CBD-11-07	156	1	1.2	895	28.3
514537	CBD-11-07	157	< 1	1.5	36	15.3
514538	CBD-11-07	158	< 1	1.1	257	46.2
514539	CBD-11-07	159	2	0.9	670	94.6
514540	CBD-11-07	160	1	1	201	20.5
514541	CBD-11-07	161		1.2	514	77.4
514542	CBD-11-07	162		1.4	664	78.6
514543	CBD-11-07	163	2	0.6	661	55.7
514544	CBD-11-07	164	1	1.1	146	34.6
514545	CBD-11-07	165		0.9	74	16.7
514546	CBD-11-07	166		1	26	8.7
514547	CBD-11-07	167		1.1	47	10.1
514548	CBD-11-07	168		1.1	25	9.2
514549	CBD-11-07	169		0.9	226	25.5
514550	CBD-11-07	170		1	55	15.9
514551	CBD-11-07	171		1.1	89	17.4
514552	CBD-11-07	172		0.8	36	7.8
514553	CBD-11-07	173		0.9	41	11.4
514554	CBD-11-07	174		1.1	41	10.5
514555	CBD-11-07	175		0.9	82	14
514556	CBD-11-07	176		0.9	34	11.2
514557	CBD-11-07	177		0.9	37	11.1
514558	CBD-11-07	178	< 1	1	98	7.2
514559	CBD-11-07	179	< 1	1.1	39	6.9

Chem #	DDH#	Sample	W	TI	Pb	Th
514560	CBD-11-07	180	2	1.1	624	31.6
514561	CBD-11-07	181	< 1	1.1	18	8.9
514562	CBD-11-07	182	< 1	0.9	38	10.3
514563	CBD-11-07	183	2	1.6	54	11.1
514564	CBD-11-07	184	2	1	573	25.7
514565	CBD-11-07	185	2	1.4	40	10.3
514566	CBD-11-07	186	< 1	0.7	31	8.9
514567	CBD-11-07	187	4	1.1	55	10.7
514568	CBD-11-07	188	2	1.1	90	21.7
514569	CBD-11-07	189	3	1	233	19.7
514570	CBD-11-07	190	4	1.4	524	20.7
514571	CBD-11-07	191	3	1.6	754	39.1
514572	CBD-11-07	192	< 1	1.2	44	14.9
514573	CBD-11-07	193	2	1.6	671	55.5
514574	CBD-11-07	194	2	1.3	488	92.9
514575	CBD-11-07	195	1	1.1	610	52
514576	CBD-11-07	196	2	0.9	492	83.2
514577	CBD-11-07	197	3	1.3	524	68.4
514578	CBD-11-07	198	1	1	176	23.6
514579	CBD-11-07	199	1	0.4	376	36.5
514580	CBD-11-07	200	6	1	61	9.9
514581	CBD-11-07	201	3	0.6	71	12
514582	CBD-11-07	202	1	1	27	9.9
514583	CBD-11-07	203	< 1	1.1	33	9.4
514584	CBD-11-07	204	4	0.4	481	78.9
514585	CBD-11-07	205	< 1	1.1	55	13.4
514586	CBD-11-07	206	1	1.2	27	4.2
514587	CBD-11-07	207	4	0.4	396	86
514588	CBD-11-07	208		1.4	389	74.5
514589	CBD-11-07	209	2	0.3	396	96.4
514590	CBD-11-07	210	< 1	2.1	324	36
514591	CBD-11-07	211		1	37	10.2
514592	CBD-11-07	212	3	1.2	179	38.6
514593	CBD-11-07	213	1	1	26	9
514594	CBD-11-07	214	< 1	0.9	24	9.7
514595	CBD-11-07	215		0.9	21	10.5
514596	CBD-11-07	216	< 1	1.2	20	5
514597	CBD-11-07	217	1	0.5	333	62.9
514598	CBD-11-07	218		0.8	94	38.9
514599	CBD-11-07	219		0.5	19	17.3
514600	CBD-11-07	220		0.4	11	10
514601	CBD-11-07	221		1.7	108	29.3
514602	CBD-11-07	222		1	85	43
514603	CBD-11-07	223		0.9	141	19.5
514604	CBD-11-07	224		0.7	22	8.2
514605	CBD-11-07	225	2	1	182	10.5

Chem #	DDH#	Sample	W	TI	Pb	Th
514606	CBD-11-07	226	1	0.9	38	11.2
514607	CBD-11-07	227	2	0.7	70	14.1
514608	CBD-11-07	228	1	0.6	37	6.4
514609	CBD-11-07	229	3	0.4	58	13.8
514610	CBD-11-07	230	< 1	1.1	43	15.9
514611	CBD-11-07	231	1	1	59	19.2
514612	CBD-11-07	232	1	0.9	103	16.8
514613	CBD-11-07	233	2	0.8	184	46.2
514614	CBD-11-07	234	2	0.6	90	13.4
514615	CBD-11-07	235	1	1	135	54.3
514616	CBD-11-07	236	< 1	0.5	69	23.9
514617	CBD-11-07	237	< 1	0.9	50	16.1
514618	CBD-11-07	238	< 1	0.9	52	15.2
514619	CBD-11-07	239	< 1	0.6	33	12.4
514620	CBD-11-07	240	3	0.9	50	15.9
514621	CBD-11-07	241	3	0.9	56	14.6
514622	CBD-11-07	242	4	1.1	43	17.4
514623	CBD-11-07	243	_	1.2	53	14.1
514624	CBD-11-07	244	2	0.8	37	16.9
514625	CBD-11-07	245	3	0.6	165	21.7
514626	CBD-11-07	246	4	1.1	40	11.7
514627	CBD-11-07	247	3	1.1	35	14.6
514628	CBD-11-07	248		1.1	33	12.3
514629	CBD-11-07	249	< 1	1	29	13.1
514630	CBD-11-07	250	3	1.1	65	26
514631	CBD-11-07	251	3	0.9	44	10.7
514632	CBD-11-07	252	2	0.9	45	10.6
514633	CBD-11-07	253	1	0.4	300	6.2
514634	CBD-11-07	254		1.1	25	14.2
514635	CBD-11-07	255	2	1	30	13.4
514636	CBD-11-07	256		0.8	23	8.9
514637	CBD-11-07	257		1	25	9.2
514638	CBD-11-07	258	2	0.8	75	13.3
514639	CBD-11-07	259		1	40	14.4
514640	CBD-11-07	260	< 1	0.9	15	8.8
514641	CBD-11-07	261		1	22	8
514642	CBD-11-07	262		1	18	11
514643	CBD-11-07	263		0.9	37	15.5
514644	CBD-11-07	264		0.7	86	42.7
514645	CBD-11-07	265		1	48	18.1
514646	CBD-11-07	266		0.9	25	9.2
514647	CBD-11-07	267	1	1	54	13.4
514648	CBD-11-07	268		1	27	11.5
514649	CBD-11-07	269		0.7	126	37.1
514650	CBD-11-07	270		0.9	56	15.2
514651	CBD-11-07	271	2	1.1	46	14.8

Chem#	DDH#	Sample	W	TI	Pb	Th
514652	CBD-11-07	272	2	1.1	35	17.9
514653	CBD-11-07	273	3	1.2	42	16
514654	CBD-11-07	274	4	1.2	33	10.7
514655	CBD-11-07	275	< 1	1.1	15	6.7
514656	CBD-11-07	276	3	1.1	152	34.9
514657	CBD-11-07	277	1	0.8	61	44.1
514658	CBD-11-07	278	< 1	0.7	88	12.2
514659	CBD-11-07	279	1	0.9	92	16
514660	CBD-11-07	280	4	1.3	75	11.3
514661	CBD-11-07	281	2	1	35	13
514662	CBD-11-07	282		1	41	11.9
514663	CBD-11-07	283	2	0.7	61	17.3
514664	CBD-11-07	284	2	0.8	28	10.8
514665	CBD-11-07	285	2	0.4	39	8
514666	CBD-11-07	286	3	1.2	28	9.6
514667	CBD-11-07	287	1	0.7	27	12.6
514668	CBD-11-07	288		0.5	146	105
514669	CBD-11-07	289	2	1	12	13.9
514670	CBD-11-07	290	2	0.4	< 5	10.1
514671	CBD-11-07	291	< 1	0.3	6	12.6
514672	CBD-11-07	292	< 1	0.5	11	13.5
514673	CBD-11-07	293	1	0.6	54	23.8

Chem #	DDH#	Sample	U
104676	CBD-10-01	1	2.9
104677	CBD-10-01	2	2.8
104678	CBD-10-01	3	2.5
104679	CBD-10-01	4	2.7
104680	CBD-10-01	5	53.6
104681	CBD-10-01	6	3.2
104682	CBD-10-01	7	3.1
104683	CBD-10-01	8	3
104684	CBD-10-01	9	5.1
104685	CBD-10-01	10	3.2
104686	CBD-10-01	11	2.9
104687	CBD-10-01	12	2.9
104688	CBD-10-01	13	10.8
104689	CBD-10-01	14	14.7
104690	CBD-10-01	15	2.7
104691	CBD-10-01	16	2.2
104692	CBD-10-01	17	2
104693	CBD-10-01	18	11.2
104694	CBD-10-01	19	22.5
104695	CBD-10-01	20	2.8
104696	CBD-10-01	21	2.8
104697	CBD-10-01	22	12.5
104698	CBD-10-01	23	2.6
104699	CBD-10-01	24	2.7
104700	CBD-10-01	25	2.5
104701	CBD-10-01	26	2.8
104702	CBD-10-01	27	2.4
104703	CBD-10-01	28	2.4
104704	CBD-10-01	29	2.6
104705	CBD-10-01	30	2.5
104706	CBD-10-01	31	2.5
104707	CBD-10-01	32	2
104708	CBD-10-01	33	2.5
104709	CBD-10-01	34	4.6
104710	CBD-10-01	35	2.3
104711	CBD-10-01	36	4.5
104712	CBD-10-01	37	2.5
104713	CBD-10-01	38	2.5
104714	CBD-10-01	39	2.4
104715	CBD-10-01	40	2.3
104716	CBD-10-01	41	2.3
104717	CBD-10-01	42	2.3
104718	CBD-10-01	43	2.4
104719	CBD-10-01	44	2.3
104720	CBD-10-01	45	2.2
104721	CBD-10-01	46	2.4

Chem #	DDH#	Sample	U
104722	CBD-10-01	47	5.4
104723	CBD-10-01	48	8.7
104724	CBD-10-01	49	2.8
104725	CBD-10-01	50	2.5
104726	CBD-10-01	51	3.9
104727	CBD-10-01	52	1.9
104728	CBD-10-01	53	6
104729	CBD-10-01	54	13.7
104730	CBD-10-01	55	60.2
104731	CBD-10-01	56	2.2
104732	CBD-10-01	57	20.2
104733	CBD-10-01	58	8.3
104734	CBD-10-01	59	5.9
104735	CBD-10-01	60	2.9
104736	CBD-10-01	61	3.1
104737	CBD-10-01	62	2.3
104738	CBD-10-01	63	6.2
104739	CBD-10-01	64	3.2
104740	CBD-10-01	65	1.8
104741	CBD-10-01	66	3.3
104742	CBD-10-01	67	9.1
104743	CBD-10-01	68	4.4
104744	CBD-10-01	69	31
104745	CBD-10-01	70	73.7
104746	CBD-10-01	71	8.4
104747	CBD-10-01	72	6.3
104748	CBD-10-01	73	8.6
104749	CBD-10-01	74	4.2
104750	CBD-10-01	75	8
104751	CBD-10-01	76	2.9
104752	CBD-10-01	77	3.1
104753	CBD-10-01	78	3.2
104754	CBD-10-01	79	3.7
104755	CBD-10-01	80	10.6
104756	CBD-10-01	81	7.9
104757	CBD-10-01	82	2.5
104758	CBD-10-01	83	4.7
104759	CBD-10-01	84	10
104760	CBD-10-01	85	8
104761	CBD-10-01	86	18.4
104762	CBD-10-01	87	18.3
104763	CBD-10-01	88	28.2
104764	CBD-10-01	89	13.8
104765	CBD-10-01	90	6.4
104766	CBD-10-01	91	7
104767	CBD-10-01	92	2.8

Chem #	DDH#	Sample	U
104768	CBD-10-01	93	3.4
104769	CBD-10-01	94	3.4
104770	CBD-10-01	95	3
104771	CBD-10-01	96	2
104772	CBD-10-01	97	7.4
104773	CBD-10-01	98	17.7
104774	CBD-10-01	99	15.2
104775	CBD-10-01	100	8.6
104776	CBD-10-01	101	6.5
104777	CBD-10-01	102	9.1
104778	CBD-10-01	103	8.1
104779	CBD-10-01	104	12.2
104780	CBD-10-01	105	5.8
104781	CBD-10-01	106	3.4
104782	CBD-10-01	107	22.3
104783	CBD-10-01	108	9.7
104784	CBD-10-01	109	10.6
104785	CBD-10-01	110	11
104786	CBD-10-01	111	3.3
104787	CBD-10-01	112	4.8
104788	CBD-10-01	113	14.9
104789	CBD-10-01	114	7.5
104790	CBD-10-01	115	22.5
104791	CBD-10-01	116	5.1
104792	CBD-10-01	117	15.7
104793	CBD-10-01	118	6.6
104794	CBD-10-01	119	7.1
104795	CBD-10-01	120	5.1
104796	CBD-10-01	121	21.8
104797	CBD-10-01	122	5.4
104798	CBD-10-01	123	42.7
104799	CBD-10-01	124	24.4
104800	CBD-10-01	125	6.8
416001	CBD-10-01	126	4.8
416002	CBD-10-01	127	4.3
416003	CBD-10-01	128	6.8
416004	CBD-10-01	129	29.9
416005	CBD-10-01	130	12.3
416006	CBD-10-01	131	35
416007	CBD-10-01	132	3.5
416008	CBD-10-01	133	9.6
416009	CBD-10-01	134	8.4
416010	CBD-10-01	135	9.2
416011	CBD-10-01	136	7.9
416012	CBD-10-01	137	9.8
416013	CBD-10-01	138	3.7

Chem #	DDH#	Sample	U
416014	CBD-10-01	139	3.2
416015	CBD-10-01	140	11.6
416016	CBD-10-01	141	5.4
416017	CBD-10-01	142	4.4
416018	CBD-10-01	143	29.1
416019	CBD-10-01	144	5.6
416020	CBD-10-01	145	5.8
416021	CBD-10-01	146	16.2
416022	CBD-10-01	147	7.5
416023	CBD-10-01	148	13.3
416024	CBD-10-01	149	19.9
416025	CBD-10-01	150	23.2
416026	CBD-10-01	151	31.4
416027	CBD-10-01	152	48.5
416028	CBD-10-01	153	35.5
416029	CBD-10-01	154	25.8
416030	CBD-10-01	155	46.7
416031	CBD-10-01	156	22.5
416032	CBD-10-01	157	19.4
416033	CBD-10-01	158	26.7
416034	CBD-10-01	159	30.5
416035	CBD-10-01	160	31.3
416036	CBD-10-01	161	59.3
416037	CBD-10-01	162	25.8
416038	CBD-10-01	163	37.3
416039	CBD-10-01	164	46
416040	CBD-10-01	165	6
416041	CBD-10-01	166	6.3
416042	CBD-10-01	167	6
416043	CBD-10-01	168	7.9
416044	CBD-10-01	169	33.9
416045	CBD-10-01	170	3.9
416046	CBD-10-01	171	4.6
416047	CBD-10-01	172	3.8
416048	CBD-10-01	173	3.6
416049	CBD-10-01	174	6.5
416050	CBD-10-01	175	5
416051	CBD-10-01	176	5.6
416052	CBD-10-01	177	87.1
416053	CBD-10-01	178	59.7
416054	CBD-10-01	179	137
416055	CBD-10-01	180	135
416056	CBD-10-01	181	27.5
416057	CBD-10-01	182	29.9
416058	CBD-10-01	183	22.4
416059	CBD-10-01	184	9.3

Chem #	DDH#	Sample	U
416060	CBD-10-01	185	21.4
416061	CBD-10-01	186	4.8
416062	CBD-10-01	187	5
416063	CBD-10-01	188	4.5
416064	CBD-10-01	189	7.6
416065	CBD-10-01	190	33.3
416066	CBD-10-01	191	38
416067	CBD-10-01	192	31.1
416068	CBD-10-01	193	4.5
416069	CBD-10-01	194	12.5
416070	CBD-10-01	195	8.9
416071	CBD-10-01	196	10
416072	CBD-10-01	197	13.9
416073	CBD-10-01	198	14.1
416074	CBD-10-01	199	17.8
416075	CBD-10-01	200	11
416076	CBD-10-01	201	22.5
416077	CBD-10-01	202	5.2
416078	CBD-10-01	203	7.1
416079	CBD-10-01	204	9.9
416080	CBD-10-01	205	5.1
416081	CBD-10-01	206	11.6
416082	CBD-10-01	207	10.1
416083	CBD-10-01	208	6.1
416084	CBD-10-01	209	10.7
416085	CBD-10-01	210	37
416086	CBD-10-01	211	3.2
416087	CBD-10-01	212	2.9
416088	CBD-10-01	213	2.3
416089	CBD-10-01	214	3
416090	CBD-10-01	215	3.9
416091	CBD-10-01	216	2.5
416092	CBD-10-01	217	3.2
416093	CBD-10-01	218	1.9
416094	CBD-10-01	219	1.6
416095	CBD-10-01	220	11.1
416096	CBD-10-01	221	13.8
416097	CBD-10-01	222	7.4
416098	CBD-10-01	223	6.9
416099	CBD-10-01	224	14.7
416100	CBD-10-01	225	5.5
416101	CBD-10-01	226	14.9
416102	CBD-10-01	227	7.1
416103	CBD-10-01	228	5.1
416104	CBD-10-01	229	3.3
416105	CBD-10-01	230	3.8

Chem #	DDH#	Sample	U
416106	CBD-10-01	231	4.9
416107	CBD-10-01	232	2.7
416108	CBD-10-01	233	2.6
416109	CBD-10-01	234	2.7
416110	CBD-10-01	235	7
416111	CBD-10-01	236	4.6
416112	CBD-10-01	237	5.4
416113	CBD-10-01	238	5.3
416114	CBD-10-01	239	5.3
416115	CBD-10-01	240	4.6
416116	CBD-10-01	241	3.2
416117	CBD-10-01	242	3
416118	CBD-10-01	243	3.8
416119	CBD-10-01	244	3.9
416120	CBD-10-01	245	7.3
416121	CBD-10-01	246	4.4
416122	CBD-10-01	247	9.5
416123	CBD-10-01	248	23.5
416124	CBD-10-01	249	7.3
416125	CBD-10-01	250	6.5
416126	CBD-10-01	251	204
416127	CBD-10-01	252	41.2
416128	CBD-10-01	253	13.1
416129	CBD-10-01	254	3.8
416130	CBD-10-01	255	2.7
416131	CBD-10-01	256	4.1
416132	CBD-10-01	257	3
416133	CBD-10-01	258	7.6
416134	CBD-10-01	259	5.9
416135	CBD-10-01	260	5.8
416136	CBD-10-01	261	5.3
416137	CBD-10-01	262	8.6
416138	CBD-10-01	263	8
416139	CBD-10-01	264	8.9
416140	CBD-10-01	265	5.2
416141	CBD-10-01	266	4.4
416142	CBD-10-01	267	2.4
416143	CBD-10-01	268	4.7
416144	CBD-10-01	269	5.7
416145	CBD-10-01	270	9.4
416146	CBD-10-01	271	11.8
416147	CBD-10-01	272	3.2
416148	CBD-10-01	273	3
416149	CBD-10-01	274	3.1
416150	CBD-10-01	275	4.7
416151	CBD-10-01	276	2.3

Chem #	DDH#	Sample	U
416152	CBD-10-01	277	3.7
416153	CBD-10-01	278	4.1
416154	CBD-10-01	279	2
512817	CBD-11-02	1	9.2
512818	CBD-11-02	2	7.9
512819	CBD-11-02	3	7.3
512820	CBD-11-02	4	7.3
512821	CBD-11-02	5	6.6
512822	CBD-11-02	6	6.9
512823	CBD-11-02	7	7.1
512824	CBD-11-02	8	7
512825	CBD-11-02	9	7.1
512826	CBD-11-02	10	10.1
512827	CBD-11-02	11	6.8
512828	CBD-11-02	12	7.8
512829	CBD-11-02	13	42.5
512830	CBD-11-02	14	12.2
512831	CBD-11-02	15	6.9
512832	CBD-11-02	16	6.6
512833	CBD-11-02	17	7.9
512834	CBD-11-02	18	7.4
512835	CBD-11-02	19	24.7
512836	CBD-11-02	20	9
512837	CBD-11-02	21	8.3
512838	CBD-11-02	22	17.9
512839	CBD-11-02	23	11.7
512840	CBD-11-02	24	10.7
512841	CBD-11-02	25	8.7
512842	CBD-11-02	26	7.8
512843	CBD-11-02	27	8.2
512844	CBD-11-02	28	11.2
512845	CBD-11-02	29	9.5
512846	CBD-11-02	30	8.9
512847	CBD-11-02	31	11.8
512848	CBD-11-02	32	6.3
512849	CBD-11-02	33	8
512850	CBD-11-02	34	6.1
512851	CBD-11-02	35	8.3
512852	CBD-11-02	36	9.8
512853	CBD-11-02	37	17
512854	CBD-11-02	38	21.1
512855	CBD-11-02	39	16
512856	CBD-11-02	40	10.5
512857	CBD-11-02	41	11.6
512858	CBD-11-02	42	8.3
512859	CBD-11-02	43	62.9

Chem #	DDH#	Sample	U
512860	CBD-11-02	44	104
512861	CBD-11-02	45	42.4
512862	CBD-11-02	46	27.8
512863	CBD-11-02	47	8.3
512864	CBD-11-02	48	27.7
512865	CBD-11-02	49	18.7
512866	CBD-11-02	50	8.3
512867	CBD-11-02	51	26
512868	CBD-11-02	52	29.2
512869	CBD-11-02	53	28.7
512870	CBD-11-02	54	12.3
512871	CBD-11-02	55	8.8
512872	CBD-11-02	56	6.9
512873	CBD-11-02	57	6.7
512874	CBD-11-02	58	8.4
512875	CBD-11-02	59	18.4
512876	CBD-11-02	60	11.6
512877	CBD-11-02	61	23.4
512878	CBD-11-02	62	71.2
512879	CBD-11-02	63	34.7
512880	CBD-11-02	64	20.1
512881	CBD-11-02	65	12.3
512882	CBD-11-02	66	6.8
512883	CBD-11-02	67	14.9
512884	CBD-11-02	68	15.9
512885	CBD-11-02	69	15.6
512886	CBD-11-02	70	19
512887	CBD-11-02	71	11.5
512888	CBD-11-02	72	12.3
512889	CBD-11-02	73	10.9
512890	CBD-11-02	74	15.4
512891	CBD-11-02	75	12.3
512892	CBD-11-02	76	42.2
512893	CBD-11-02	77	10.1
512894	CBD-11-02	78	12
512895	CBD-11-02	79	27.4
512896	CBD-11-02	80	17.7
512897	CBD-11-02	81	9.5
512898	CBD-11-02	82	6
512899	CBD-11-02	83	8.5
512900	CBD-11-02	84	13.6
512901	CBD-11-02	85	20.3
512902	CBD-11-02	86	10.4
512903	CBD-11-02	87	11.1
512904	CBD-11-02	88	10.2
512905	CBD-11-02	89	30.8

Chem #	DDH#	Sample	U
512906	CBD-11-02	90	32.8
512907	CBD-11-02	91	99.6
512908	CBD-11-02	92	55.4
512909	CBD-11-02	93	66.6
512910	CBD-11-02	94	82.1
512911	CBD-11-02	95	106
512912	CBD-11-02	96	47.5
512913	CBD-11-02	97	33.4
512914	CBD-11-02	98	66
512915	CBD-11-02	99	58.8
512916	CBD-11-02	100	15.8
512917	CBD-11-02	101	12.2
512918	CBD-11-02	102	17.2
512919	CBD-11-02	103	10.5
512920	CBD-11-02	104	17.3
512921	CBD-11-02	105	7.2
512922	CBD-11-02	106	6.3
512923	CBD-11-02	107	57.2
512924	CBD-11-02	108	10.3
512925	CBD-11-02	109	10.8
512926	CBD-11-02	110	28.2
512927	CBD-11-02	111	10
512928	CBD-11-02	112	12.6
512929	CBD-11-02	113	14.8
512930	CBD-11-02	114	22
512931	CBD-11-02	115	13.7
512932	CBD-11-02	116	37.8
512933	CBD-11-02	117	15.5
512934	CBD-11-02	118	15.4
512935	CBD-11-02	119	42.8
512936	CBD-11-02	120	10.9
512937	CBD-11-02	121	89.5
512938	CBD-11-02	122	15.3
512939	CBD-11-02	123	62
512940	CBD-11-02	124	21.8
512941	CBD-11-02	125	8.5
512942	CBD-11-02	126	7.8
512943	CBD-11-02	127	10.8
512944	CBD-11-02	128	6.5
512945	CBD-11-02	129	8.1
512946	CBD-11-02	130	17.1
512947	CBD-11-02	131	41
512948	CBD-11-02	132	6.6
512949	CBD-11-02	133	53.9
512950	CBD-11-02	134	5.9
512951	CBD-11-02	135	45.4

Chem #	DDH#	Sample	U
512952	CBD-11-02	136	21.1
512953	CBD-11-02	137	31.6
512954	CBD-11-02	138	36.9
512955	CBD-11-02	139	62.7
512956	CBD-11-02	140	38
512957	CBD-11-02	141	43.6
512958	CBD-11-02	142	15.3
512959	CBD-11-02	143	9.9
512960	CBD-11-02	144	15.9
512961	CBD-11-02	145	16.7
512962	CBD-11-02	146	1.9
512963	CBD-11-02	147	1.6
512964	CBD-11-02	148	0.9
512965	CBD-11-02	149	16
512966	CBD-11-02	150	18.1
512967	CBD-11-02	151	14.9
512968	CBD-11-02	152	10.1
512969	CBD-11-02	153	22.1
512970	CBD-11-02	154	42
512971	CBD-11-02	155	72
512972	CBD-11-02	156	96
512973	CBD-11-02	157	98.7
512974	CBD-11-02	158	93.5
512975	CBD-11-02	159	91.5
512976	CBD-11-02	160	57.9
512977	CBD-11-02	161	72.5
512978	CBD-11-02	162	54.3
512979	CBD-11-02	163	15.4
512980	CBD-11-02	164	15.3
512981	CBD-11-02	165	24.2
512982	CBD-11-02	166	14.6
512983	CBD-11-02	167	43.4
512984	CBD-11-02	168	3.5
512985	CBD-11-02	169	28.1
512986	CBD-11-02	170	15.1
512987	CBD-11-02	171	30.7
512988	CBD-11-02	172	35
512989	CBD-11-02	173	11
512990	CBD-11-02	174	18.5
512991	CBD-11-02	175	10.8
512992	CBD-11-02	176	13.4
512993	CBD-11-02	177	17.9
512994	CBD-11-02	178	26.3
512995	CBD-11-02	179	29.3
512996	CBD-11-02	180	24.9
512997	CBD-11-02	181	11.8

Chem #	DDH#	Sample	U
512998	CBD-11-02	182	12.4
512999	CBD-11-02	183	12.9
513000	CBD-11-02	184	9.5
513001	CBD-11-02	185	26
513002	CBD-11-02	186	13.7
513003	CBD-11-02	187	13.1
513004	CBD-11-02	188	19.3
513005	CBD-11-02	189	15.1
513006	CBD-11-02	190	17.8
513007	CBD-11-02	191	19.7
513008	CBD-11-02	192	16.3
513009	CBD-11-02	193	11.8
513010	CBD-11-02	194	14.7
513011	CBD-11-02	195	13.3
513012	CBD-11-02	196	14.4
513013	CBD-11-02	197	13.5
513014	CBD-11-02	198	9.8
513015	CBD-11-02	199	14.1
513016	CBD-11-02	200	28.8
513017	CBD-11-02	201	7.6
513018	CBD-11-02	202	12
513019	CBD-11-02	203	10
513020	CBD-11-02	204	25.4
513021	CBD-11-02	205	10.5
513022	CBD-11-02	206	10.2
513023	CBD-11-02	207	13.5
513024	CBD-11-02	208	19.7
513025	CBD-11-02	209	17.8
513026	CBD-11-02	210	42.9
513027	CBD-11-02	211	25.8
513028	CBD-11-02	212	9.4
513029	CBD-11-02	213	6.4
513030	CBD-11-02	214	13.6
513031	CBD-11-02	215	13.4
513032	CBD-11-02	216	15.1
513033	CBD-11-02	217	20.1
513034	CBD-11-02	218	24.8
513035	CBD-11-02	219	17.4
513036	CBD-11-02	220	49
513037	CBD-11-02	221	10.8
513038	CBD-11-02	222	11.6
513039	CBD-11-02	223	10.3
513040	CBD-11-02	224	9.2
513041	CBD-11-02	225	9.7
513042	CBD-11-02	226	17.5
513043	CBD-11-02	227	4.2

Chem #	DDH#	Sample	U
513044	CBD-11-02	228	15
513045	CBD-11-02	229	9.9
513046	CBD-11-02	230	8.7
513047	CBD-11-02	231	8.8
513048	CBD-11-02	232	9
514381	CBD-11-07	1	2
514382	CBD-11-07	2	2.7
514383	CBD-11-07	3	3.5
514384	CBD-11-07	4	12.2
514385	CBD-11-07	5	2
514386	CBD-11-07	6	1.9
514387	CBD-11-07	7	2.4
514388	CBD-11-07	8	4.2
514389	CBD-11-07	9	11
514390	CBD-11-07	10	9.1
514391	CBD-11-07	11	6.1
514392	CBD-11-07	12	2.7
514393	CBD-11-07	13	2.1
514394	CBD-11-07	14	2.3
514395	CBD-11-07	15	1.8
514396	CBD-11-07	16	2.3
514397	CBD-11-07	17	2
514398	CBD-11-07	18	1.3
514399	CBD-11-07	19	1.3
514400	CBD-11-07	20	1.5
514401	CBD-11-07	21	3.8
514402	CBD-11-07	22	8.4
514403	CBD-11-07	23	17.2
514404	CBD-11-07	24	106
514405	CBD-11-07	25	2.3
514406	CBD-11-07	26	2.4
514407	CBD-11-07	27	2.2
514408	CBD-11-07	28	2.2
514409	CBD-11-07	29	2.4
514410	CBD-11-07	30	2.4
514411	CBD-11-07	31	2.5
514412	CBD-11-07	32	2.5
514413	CBD-11-07	33	7
514414	CBD-11-07	34	6.4
514415	CBD-11-07	35	19.6
514416	CBD-11-07	36	40.5
514417	CBD-11-07	37	39.7
514418	CBD-11-07	38	2.6
514419	CBD-11-07	39	10
514420	CBD-11-07	40	2.7
514421	CBD-11-07	41	10

Chem #	DDH#	Sample	U
514422	CBD-11-07	42	2.6
514423	CBD-11-07	43	4.3
514424	CBD-11-07	44	5.5
514425	CBD-11-07	45	9
514426	CBD-11-07	46	5
514427	CBD-11-07	47	17.2
514428	CBD-11-07	48	25.5
514429	CBD-11-07	49	27.5
514430	CBD-11-07	50	21.2
514431	CBD-11-07	51	8.1
514432	CBD-11-07	52	1.8
514433	CBD-11-07	53	2.1
514434	CBD-11-07	54	2.2
514435	CBD-11-07	55	2.2
514436	CBD-11-07	56	4
514437	CBD-11-07	57	2.5
514438	CBD-11-07	58	2.3
514439	CBD-11-07	59	2.2
514440	CBD-11-07	60	7.2
514441	CBD-11-07	61	2.1
514442	CBD-11-07	62	2.2
514443	CBD-11-07	63	2.5
514444	CBD-11-07	64	2.1
514445	CBD-11-07	65	2.1
514446	CBD-11-07	66	3.1
514447	CBD-11-07	67	2.4
514448	CBD-11-07	68	3.4
514449	CBD-11-07	69	2.6
514450	CBD-11-07	70	2.6
514451	CBD-11-07	71	3.5
514452	CBD-11-07	72	2.5
514453	CBD-11-07	73	3.1
514454	CBD-11-07	74	2.1
514455	CBD-11-07	75	2
514456	CBD-11-07	76	2.2
514457	CBD-11-07	77	2.1
514458	CBD-11-07	78	2.2
514459	CBD-11-07	79	2.2
514460	CBD-11-07	80	2.3
514461	CBD-11-07	81	1.9
514462	CBD-11-07	82	1.7
514463	CBD-11-07	83	2.2
514464	CBD-11-07	84	2.5
514465	CBD-11-07	85	2.6
514466	CBD-11-07	86	21.9
514467	CBD-11-07	87	6.9

Chem #	DDH#	Sample	U
514468	CBD-11-07	88	2.9
514469	CBD-11-07	89	5.1
514470	CBD-11-07	90	4.2
514471	CBD-11-07	91	4.8
514472	CBD-11-07	92	3.4
514473	CBD-11-07	93	4.1
514474	CBD-11-07	94	3
514475	CBD-11-07	95	3
514476	CBD-11-07	96	4.9
514477	CBD-11-07	97	57.1
514478	CBD-11-07	98	26.5
514479	CBD-11-07	99	11
514480	CBD-11-07	100	9.1
514481	CBD-11-07	101	6.9
514482	CBD-11-07	102	4.4
514483	CBD-11-07	103	3.2
514484	CBD-11-07	104	2.8
514485	CBD-11-07	105	2.5
514486	CBD-11-07	106	6.1
514487	CBD-11-07	107	9.3
514488	CBD-11-07	108	4.1
514489	CBD-11-07	109	3.1
514490	CBD-11-07	110	5.6
514491	CBD-11-07	111	4.5
514492	CBD-11-07	112	5
514493	CBD-11-07	113	3.5
514494	CBD-11-07	114	9.7
514495	CBD-11-07	115	11.5
514496	CBD-11-07	116	26.9
514497	CBD-11-07	117	44.3
514498	CBD-11-07	118	23.5
514499	CBD-11-07	119	33.5
514500	CBD-11-07	120	6.4
514501	CBD-11-07	121	4.3
514502	CBD-11-07	122	3.7
514503	CBD-11-07	123	2.9
514504	CBD-11-07	124	4.6
514505	CBD-11-07	125	5.3
514506	CBD-11-07	126	3.5
514507	CBD-11-07	127	2.8
514508	CBD-11-07	128	3.2
514509	CBD-11-07	129	4.5
514510	CBD-11-07	130	5
514511	CBD-11-07	131	4.3
514512	CBD-11-07	132	6.5
514513	CBD-11-07	133	14.9

Chem #	DDH#	Sample	U
514514	CBD-11-07	134	15.4
514515	CBD-11-07	135	21.7
514516	CBD-11-07	136	14
514517	CBD-11-07	137	13.9
514518	CBD-11-07	138	22.2
514519	CBD-11-07	139	12.3
514520	CBD-11-07	140	5.5
514521	CBD-11-07	141	7.2
514522	CBD-11-07	142	9.9
514523	CBD-11-07	143	11.2
514524	CBD-11-07	144	8.4
514525	CBD-11-07	145	7.3
514526	CBD-11-07	146	3.1
514527	CBD-11-07	147	2.5
514528	CBD-11-07	148	4.5
514529	CBD-11-07	149	20.1
514530	CBD-11-07	150	37.8
514531	CBD-11-07	151	26
514532	CBD-11-07	152	42.9
514533	CBD-11-07	153	116
514534	CBD-11-07	154	29.9
514535	CBD-11-07	155	19.7
514536	CBD-11-07	156	20.8
514537	CBD-11-07	157	6.4
514538	CBD-11-07	158	31.8
514539	CBD-11-07	159	96.6
514540	CBD-11-07	160	17.5
514541	CBD-11-07	161	63.8
514542	CBD-11-07	162	88.4
514543	CBD-11-07	163	42.6
514544	CBD-11-07	164	12.7
514545	CBD-11-07	165	11.5
514546	CBD-11-07	166	2.9
514547	CBD-11-07	167	3.9
514548	CBD-11-07	168	3
514549	CBD-11-07	169	15
514550	CBD-11-07	170	6.8
514551	CBD-11-07	171	12
514552	CBD-11-07	172	3.2
514553	CBD-11-07	173	4.7
514554	CBD-11-07	174	3.9
514555	CBD-11-07	175	8.3
514556	CBD-11-07	176	4.4
514557	CBD-11-07	177	3.5
514558	CBD-11-07	178	3.7
514559	CBD-11-07	179	2.8

Chem #	DDH#	Sample	U
514560	CBD-11-07	180	21.1
514561	CBD-11-07	181	2.7
514562	CBD-11-07	182	4.1
514563	CBD-11-07	183	4.4
514564	CBD-11-07	184	13.7
514565	CBD-11-07	185	4
514566	CBD-11-07	186	3.1
514567	CBD-11-07	187	4.7
514568	CBD-11-07	188	8.9
514569	CBD-11-07	189	16.7
514570	CBD-11-07	190	15.7
514571	CBD-11-07	191	40.2
514572	CBD-11-07	192	4.3
514573	CBD-11-07	193	29.3
514574	CBD-11-07	194	54.5
514575	CBD-11-07	195	44.8
514576	CBD-11-07	196	38.7
514577	CBD-11-07	197	71.1
514578	CBD-11-07	198	20.3
514579	CBD-11-07	199	14.9
514580	CBD-11-07	200	10.5
514581	CBD-11-07	201	6.9
514582	CBD-11-07	202	5.9
514583	CBD-11-07	203	4.7
514584	CBD-11-07	204	76.4
514585	CBD-11-07	205	7.1
514586	CBD-11-07	206	7.4
514587	CBD-11-07	207	86.9
514588	CBD-11-07	208	75.1
514589	CBD-11-07	209	114
514590	CBD-11-07	210	26.2
514591	CBD-11-07	211	5.9
514592	CBD-11-07	212	18.8
514593	CBD-11-07	213	4.3
514594	CBD-11-07	214	2.9
514595	CBD-11-07	215	3
514596	CBD-11-07	216	5
514597	CBD-11-07	217	48.8
514598	CBD-11-07	218	15.3
514599	CBD-11-07	219	4.2
514600	CBD-11-07	220	4.5
514601	CBD-11-07	221	11.7
514602	CBD-11-07	222	12.3
514603	CBD-11-07	223	11.7
514604	CBD-11-07	224	5.2
514605	CBD-11-07	225	11.5

Chem #	DDH#	Sample	U
514606	CBD-11-07	226	4.9
514607	CBD-11-07	227	8.2
514608	CBD-11-07	228	4.9
514609	CBD-11-07	229	7.4
514610	CBD-11-07	230	5.2
514611	CBD-11-07	231	9.1
514612	CBD-11-07	232	14
514613	CBD-11-07	233	29.4
514614	CBD-11-07	234	15.4
514615	CBD-11-07	235	23.8
514616	CBD-11-07	236	4.5
514617	CBD-11-07	237	3.5
514618	CBD-11-07	238	3.6
514619	CBD-11-07	239	4
514620	CBD-11-07	240	8
514621	CBD-11-07	241	7.1
514622	CBD-11-07	242	5.6
514623	CBD-11-07	243	5.6
514624	CBD-11-07	244	4.8
514625	CBD-11-07	245	10.7
514626	CBD-11-07	246	5.6
514627	CBD-11-07	247	4.3
514628	CBD-11-07	248	3.5
514629	CBD-11-07	249	3.3
514630	CBD-11-07	250	6.5
514631	CBD-11-07	251	7
514632	CBD-11-07	252	5.3
514633	CBD-11-07	253	3
514634	CBD-11-07	254	3.3
514635	CBD-11-07	255	4.5
514636	CBD-11-07	256	4
514637	CBD-11-07	257	3.7
514638	CBD-11-07	258	5.4
514639	CBD-11-07	259	5.5
514640	CBD-11-07	260	2.9
514641	CBD-11-07	261	2.3
514642	CBD-11-07	262	2.9
514643	CBD-11-07	263	5.9
514644	CBD-11-07	264	17.5
514645	CBD-11-07	265	7.3
514646	CBD-11-07	266	3.2
514647	CBD-11-07	267	4.8
514648	CBD-11-07	268	4.3
514649	CBD-11-07	269	17.6
514650	CBD-11-07	270	6.4
514651	CBD-11-07	271	7.9

Chem #	DDH#	Sample	U
514652	CBD-11-07	272	5.4
514653	CBD-11-07	273	6.8
514654	CBD-11-07	274	3.9
514655	CBD-11-07	275	4.5
514656	CBD-11-07	276	40.9
514657	CBD-11-07	277	25.5
514658	CBD-11-07	278	63.2
514659	CBD-11-07	279	9.7
514660	CBD-11-07	280	9.2
514661	CBD-11-07	281	4.7
514662	CBD-11-07	282	4.4
514663	CBD-11-07	283	7.7
514664	CBD-11-07	284	3.7
514665	CBD-11-07	285	6.1
514666	CBD-11-07	286	3.2
514667	CBD-11-07	287	5.7
514668	CBD-11-07	288	27
514669	CBD-11-07	289	13.8
514670	CBD-11-07	290	5.4
514671	CBD-11-07	291	8
514672	CBD-11-07	292	7.2
514673	CBD-11-07	293	10.1

APPENDIX C- GRAB SAMPLE LITHOGEOCHEMISTRY RESULTS

Chem #	Sample	UTM E	UTM N	SiO2	Al2O3	Fe2O3(T)
474801	SZB-11-01	530208	5997640	56.5	12.02	11.41
474802	SZH-11-01	530672	5997286	73.48	8.33	7.38
474803	BRH-11-01	530691	5999118	53.38	9.04	22.21
474804	GRH-11-01	529125	5996733	65.41	16.91	2.42
474805	CBB-11-02	532214	5997051	51.66	10.73	16.48
474806	CBB-11-02	532182	5997029	58.1	11.25	11.4
474807	CBB-11-03	532222	5997055	53.16	9.97	18.81
474808	CBB-11-04	532283	5997076	50.17	7.74	22.52
474809	CBB-11-05	532359	5997067	56.76	9.89	16.79
423501	LL-001	536350	6003080	82.79	5.54	5.09
423502	LL-002	536325	6003171	67.26	11.49	7.91
423503	LL-003	536196	6003601	75.7	11.37	3.31
423504	LL-004	536598	6003798	87.74	3.43	4.85
423505	LL-005	536778	6003438	58.12	15.13	7.81
423506	LL-006	536599	6003151	70.66	11.84	4.52
423507	LL-007	534371	6003595	65.57	10.22	8.63
423508	LL-008	528670	6003710	77	9.33	5.6
423509	LL-009	528870	6003710	76.54	6.92	6.87
423510	LL-010	528744	6003786	66.92	12.04	9.28
423511	LL-011	528753	6003900	76.13	9.02	6.45
423512	LL-012	528754	6003995	82.56	4.84	3.05
423513	LL-013	528810	6004040	58.25	16.35	9.99
104401	SL-001	517060	5976475	75.24	11.19	4
104402	SL-002	517163	5976507	75.95	9.91	4.8
104403	SL-003	517900	5976806	53.95	12.24	15.41
104404	SL-004	518899	5976917	76.75	10.15	4.5
104405	SL-005	519355	5977012	77.09	10.14	4.39
423514	SL-009	517924	5981146	58.14	12.31	12.95
104301	SL-201	517869	5981095	53.46	12.31	14.85
104302	SL-202	517643	5980968	76.03	12.28	1.58
104303	SL-203	517411	5979424	76.65	10.33	3.89
104304	SL-204	517295	5980072	65.1	16.04	4.71
104305	SL-205	517650	5979000	75.58	9.97	4.66
104306	SL-206	518000	5978000	74.51	13.58	1.75
104307	SL-207	519500	5976769	77.58	10.43	3.15
103436	SRW-001	524395	5993855	77.74	10.36	3.27
103437	SRW-002	524683	5993679	77.07	10.95	3.02
103438	SRW-003	525376	5993531	75.66	11.39	3.93
103439	SRW-004	525942	5993501	70.41	12.39	5.25
423515	SRW-005	530237	5994359	64.47	14.38	4.26
423516	SRW-006	530524	5994466	63.46	15.89	3.39
423517	SRW-007	530631	5994554	62.38	12.68	9.56

Chem #	Sample	UTM E	UTM N	SiO2	Al2O3	Fe2O3(T)
101604	RW-022	531270	5994803	54.17	10.57	17.8
101605	RW-023	531338	5994798	50.06	11.98	14.88
101606	RW-024	531173	5997034	56.68	12.76	12.76
101607	RW-025	529905	5998423	52.45	12.99	13.84
101608	RW-026	530006	5998406	50.7	14.14	13.42
101609	RW-027	528860	5998406	56.39	11.02	14.48
101610	RW-028	528808	5993781	56.31	12.14	13.65
101611	RW-029	528213	5998299	58.46	11.2	12.07
101612	RW-030	528958	5997774	56.01	10.53	16.4
101613	RW-031	529142	5997653	55.15	12.38	14.43
101614	RW-032	529244	5997651	53.29	6.6	25.6
101615	RW-033	530018	5997672	56.49	10.94	16.37
101616	RW-109	531632	5997260	53.23	13.24	13.37
101617	RW-110	531639	5997303	53.46	16.2	12.11
101618	RW-111	531767	5997308	64.38	15.49	5.64
101619	RW-112	531696	5997223	55.32	14.82	10.18
101620	RW-113	531953	5996817	52.27	12.23	16.1
101621	RW-114	532120	5996817	58.57	9.77	15.29
101622	RW-115	530034	5998495	52.63	11.36	16.17
103428	RW-118	531116	5998009	52.89	7.92	25.46
103429	RW-119	531278	5997940	69.51	10.96	7.61
103430	RW-120	531492	5997881	49.83	15.57	5.61
103431	RW-121	531533	5997876	54.38	14.15	11.05
103432	RW-122	532037	5997289	53.24	14.97	13.4
103433	RW-123	532484	5997049	53.44	12.86	16.19
103434	RW-124	532140	5996257	49.32	10.49	10.31
103435	RW-125	532012	5995683	53.84	11.74	17.15
103441	RW-038	531121	5996103	54.29	11.72	13.28
103442	RW-039	530790	5996237	60.72	12.88	10.45
103443	RW-040	531173	5996947	53.54	12.85	13.95
104317	RW-100	528246	5996503	76.91	9.34	5.7
104318	RW-101	528266	5996350	64.42	15.71	4.68
104319	RW-102	528959	5996390	61.59	13.37	9.28
104320	RW-103	529308	5996487	59.03	10.97	14.02
104321	RW-104	529716	5996405	62.84	14.48	8.46
104323	RW-106	529832	5996451	62.19	14.89	6.5
104324	RW-107	530482	5996274	58.54	9.99	15.57
104325	RW-108	531632	5997221	54.49	14	7.26
104406	RW-001	531426	5994688	56.33	9.2	12.62
104407	RW-002	531500	5994625	55.72	9.94	16.64
104408	RW-003	531515	5994651	58.68	10.77	13.79
104409	RW-004	531601	5994721	57.2	10.51	13.85

Chem #	Sample	UTM E	UTM N	SiO2	Al2O3	Fe2O3(T)
104410	RW-005	531519	5994438	56.64	14.67	11.49
104411	RW-006	531519	5994721	54.08	9.24	16.85
104412	RW-007	531511	5994721	54.96	8.99	11.65
104413	RW-009	531902	5996817	53.42	13.48	12.33
104414	RW-010	531844	5996813	52.24	14.35	13.87
104415	RW-011	531951	5996816	49.45	19.67	3.5
104416	RW-012	531959	5996776	50.91	14.02	15.21
104417	RW-013	531979	5996773	50.36	8.7	13.59
104418	RW-014	532003	5996768	52.67	12.5	11.49
104419	RW-015	532080	5996760	52.46	11.54	17.79
104420	RW-016	532080	5996769	50.83	16.28	10.78
104421	RW-017	532190	5996763	54.23	14.17	12.15
104422	RW-018	531245	5994607	55.72	14.25	12.26
104423	RW-019	531063	5994523	64.85	16.42	3.24
104424	RW-020	531120	5994621	53.14	9.08	22.81
104425	RW-021	531246	5994686	48.62	13.4	12.37
423518	RW-041	531173	5996853	52.84	12.22	16.77
423515	SRW-005	530237	5994359	64.47	14.38	4.26
423516	SRW-006	530524	5994466	63.46	15.89	3.39
423517	SRW-007	530631	5994498	62.38	12.68	9.56

Chem #	Sample	MnO	MgO	CaO	Na2O	K20
474801	SZB-11-01	0.354	0.03	0.55	7.6	4.72
474802	SZH-11-01	0.103	0.06	0.22	1.44	5.7
474803	BRH-11-01	0.503	0.09	0.74	9.76	2.1
474804	GRH-11-01	0.112	0.48	0.87	7.77	4.94
474805	CBB-11-02	0.49	0.14	1.59	10.72	1.71
474806	CBB-11-02	0.342	0.77	2.87	8.91	2.22
474807	CBB-11-03	0.516	0.19	1.05	9.53	3.08
474808	CBB-11-04	0.858	0.14	2.01	8.91	2.75
474809	CBB-11-05	0.974	0.24	2.49	9.09	1.43
423501	LL-001	0.11	0.07	0.37	1.13	2.73
423502	LL-002	0.128	0.05	0.72	5.42	4.84
423503	LL-003	0.047	0.09	0.32	3.01	4.92
423504	LL-004	0.093	0.11	0.84	0.64	2.11
423505	LL-005	0.182	0.03	1.07	8.38	5.82
423506	LL-006	0.15	0.05	0.65	4.59	4.49
423507	LL-007	0.16	0.08	0.85	5.8	4.26
423508	LL-008	0.073	0.08	0.11	0.09	6.08
423509	LL-009	0.412	0.07	0.47	2.14	2.24
423510	LL-010	0.122	0.12	0.18	0.53	8.8
423511	LL-011	0.091	0.07	0.12	0.15	5.1
423512	LL-012	0.28	0.15	0.52	0.21	2.87
423513	LL-013	0.132	0.23	0.18	0.21	10.74
104401	SL-001	0.041	0.14	0.25	3.73	5.09
104402	SL-002	0.064	0.1	0.32	3.41	4.51
104403	SL-003	0.419	0.11	2.44	9.82	3.73
104404	SL-004	0.046	0.06	0.11	3.54	4.85
104405	SL-005	0.041	0.08	0.07	3.37	4.61
423514	SL-009	0.316	0.05	1.83	8.39	4.3
104301	SL-201	0.324	0.19	1.66	9.82	3.8
104302	SL-202	0.049	0.16	0.43	3.35	5.25
104303	SL-203	0.055	0.05	0.2	3.81	4.7
104304	SL-204	0.104	1.37	3.05	3.78	4.24
104305	SL-205	0.053	0.04	0.26	3.74	4.64
104306	SL-206	0.04	0.19	0.53	3.71	5.79
104307	SL-207	0.041	0.05	0.16	3.46	4.95
103436	SRW-001	0.041	0.05	0.23	3.1	4.91
103437	SRW-002	0.043	0.09	0.23	2.7	5.02
103438	SRW-003	0.015	0.05	0.53	3.35	4.94
103439	SRW-004	0.077	0.43	1.34	3.79	4.47
423515	SRW-005	0.205	0.96	2.09	6.96	5.58
423516	SRW-006	0.111	0.81	2.93	7.31	4.43
423517	SRW-007	0.15	0.11	1.24	7.81	4.06

Chem #	Sample	MnO	MgO	CaO	Na2O	K20
101604	RW-022	0.328	0.51	1.98	9.03	3.35
101605	RW-023	0.259	2.6	5.43	8.71	2.53
101606	RW-024	0.196	0.11	1.35	9.13	4.13
101607	RW-025	0.245	0.23	1.73	9.82	4.73
101608	RW-026	0.341	0.12	2.23	10.57	3.68
101609	RW-027	0.555	0.56	1.6	8.51	3.79
101610	RW-028	0.284	0.22	1.46	8.59	4.18
101611	RW-029	0.413	0.11	0.79	9.32	2.75
101612	RW-030	0.43	0.11	0.9	7.95	3.91
101613	RW-031	0.365	0.73	3.34	7.07	4.29
101614	RW-032	0.596	0.25	0.95	7.44	3.7
101615	RW-033	0.325	0.35	1.04	8.31	4.53
101616	RW-109	0.316	0.43	2.06	6.58	7.33
101617	RW-110	0.227	0.07	1.16	10.32	4.08
101618	RW-111	0.11	0.12	0.62	7.54	4.94
101619	RW-112	0.209	0.09	1.89	8.45	4.82
101620	RW-113	0.236	0.05	1.03	8.47	3.79
101621	RW-114	0.561	0.32	1.65	9.85	2.32
101622	RW-115	0.502	0.04	0.48	8.79	3.6
103428	RW-118	0.537	0.24	1.16	8.89	2.79
103429	RW-119	0.166	0.11	0.38	5.1	4.94
103430	RW-120	0.314	0.02	3.71	13.2	2.9
103431	RW-121	0.253	0.13	2.03	8.83	4.61
103432	RW-122	0.271	0.1	1.37	10.3	4.01
103433	RW-123	0.41	0.03	0.9	10.8	1.5
103434	RW-124	0.368	0.09	4.97	11.47	2.27
103435	RW-125	0.295	0.41	1.17	7.88	4.17
103441	RW-038	0.369	1.86	3.54	8.87	3.19
103442	RW-039	0.307	0.27	1.34	6.91	5.07
103443	RW-040	0.374	0.52	2.32	8.67	3.89
104317	RW-100	0.074	0.06	0.43	2.41	4.82
104318	RW-101	0.083	0.17	0.75	6.91	6.6
104319	RW-102	0.152	0.14	0.81	8.16	3.95
104320	RW-103	0.268	0.33	0.92	7.89	4.56
104321	RW-104	0.201	0.11	0.69	7.26	5.26
104323	RW-106	0.132	0.12	0.17	5.54	7.94
104324	RW-107	0.864	0.16	2.29	9.52	1.38
104325	RW-108	0.207	0.06	3.27	10.5	4.12
104406	RW-001	0.403	0.17	3.2	8.26	3.11
104407	RW-002	0.355	0.46		7.47	4.3
104408	RW-003	0.342	0.21	1.93	7.53	4.73
104409	RW-004	0.364	0.21	2.13	8.22	3.93

Chem #	Sample	MnO	MgO	CaO	Na2O	K20
104410	RW-005	0.262	0.2	1.71	8.16	4.95
104411	RW-006	0.422	0.18	2.61	8.15	3.68
104412	RW-007	0.4	0.04	4	9.1	3.65
104413	RW-009	0.298	0.16	2.15	9.69	4.25
104414	RW-010	0.227	0.09	1.71	9.15	4.83
104415	RW-011	0.212	< 0.01	2.7	11.47	5.54
104416	RW-012	0.289	0.1	1.97	9.69	3.72
104417	RW-013	0.454	0.09	4.36	9.84	2.81
104418	RW-014	0.326	0.07	2.6	10.46	2.79
104419	RW-015	0.333	0.48	2.56	7.44	4.3
104420	RW-016	0.294	0.05	1.77	11.49	3.55
104421	RW-017	0.301	0.08	1.49	10.01	4.11
104422	RW-018	0.265	0.11	1.43	8.86	4.82
104423	RW-019	0.105	0.74	1.46	5.83	6.71
104424	RW-020	0.451	0.32	1.66	9.46	2.37
104425	RW-021	0.265	3.38	5.84	9.54	3.37
423518	RW-041	0.363	0.15	1.9	7.49	4.58
423515	SRW-005	0.205	0.96	2.09	6.96	5.58
423516	SRW-006	0.111	0.81	2.93	7.31	4.43
423517	SRW-007	0.15	0.11	1.24	7.81	4.06

Chem #	Sample	TiO2	P2O5	LOI	Total	Sc
474801	SZB-11-01	0.502	0.17	1.7	95.57	6
474802	SZH-11-01	0.375	< 0.01	0.46	97.55	< 1
474803	BRH-11-01	0.334	0.07	0.32	98.54	2
474804	GRH-11-01	0.116	0.29	0.42	99.75	6
474805	CBB-11-02	0.17	0.93	1.45	96.07	< 1
474806	CBB-11-02	0.895	0.36	0.89	98	10
474807	CBB-11-03	0.186	0.67	0.4	97.56	1
474808	CBB-11-04	0.134	0.49	0.92	96.65	< 1
474809	CBB-11-05	0.258	0.38	0.28	98.58	2
423501	LL-001	0.258	0.03	0.96	99.07	< 1
423502	LL-002	0.705	0.03	0.66	99.22	1
423503	LL-003	0.295	0.03	0.63	99.72	1
423504	LL-004	0.336	0.06	0.58	100.8	1
423505	LL-005	0.502	0.06	0.93	98.03	< 1
423506	LL-006	0.308	0.04	0.53	97.83	2
423507	LL-007	0.732	0.09	0.65	97.05	< 1
423508	LL-008	0.331	0.03	1.4	100.1	< 1
423509	LL-009	0.048	0.63	2.04	98.38	2
423510	LL-010	0.493	0.06	1.27	99.82	1
423511	LL-011	0.333	0.01	1.39	98.84	< 1
423512	LL-012	0.146	0.07	1.37	96.08	1
423513	LL-013	0.514	0.07	2.03	98.7	2
104401	SL-001	0.305	0.02	0.6	100.6	2
104402	SL-002	0.304	< 0.01	0.52	99.91	< 1
104403	SL-003	0.804	0.07	0.67	99.66	4
104404	SL-004	0.302	0.01	0.45	100.8	< 1
104405	SL-005	0.302	< 0.01	0.53	100.6	< 1
423514	SL-009	0.484	0.1	0.27	99.16	1
104301	SL-201	0.209	0.07	1.87	98.58	1
104302	SL-202	0.24	0.02	0.47	99.86	3
104303	SL-203	0.291	0.02	0.38	100.4	1
104304	SL-204	0.655	0.22	1.38	100.7	11
104305	SL-205	0.235	< 0.01	0.33	99.52	1
104306	SL-206	0.287	0.03	0.49	100.9	4
104307	SL-207	0.202	< 0.01	0.4	100.4	1
103436	SRW-001	0.219	0.01	0.37	100.3	< 1
103437	SRW-002	0.244	0.02	0.57	99.96	< 1
103438	SRW-003	0.297	0.04	0.59	100.8	2
103439	SRW-004	0.581	0.13	1.08	99.95	6
423515	SRW-005	0.266	0.37	0.92	100.5	9
423516	SRW-006	0.433	0.19	1.3	100.3	8
423517	SRW-007	0.696	0.2	0.29	99.18	2

Chem #	Sample	TiO2	P205	LOI	Total	Sc
101604	RW-022	0.471	0.06	0.56	98.84	4
101605	RW-023	1.376	0.69	1.25	99.75	21
101606	RW-024	0.665	0.14	0.76	98.68	2
101607	RW-025	0.34	0.05	0.88	97.31	2
101608	RW-026	0.885	0.45	0.69	97.22	< 1
101609	RW-027	0.559	0.51	0.93	98.91	10
101610	RW-028	0.456	0.04	1.07	98.4	2
101611	RW-029	0.607	0.49	1.3	97.51	3
101612	RW-030	0.313	0.1	0.98	97.62	2
101613	RW-031	1.087	0.55	0.03	99.42	26
101614	RW-032	0.232	0.09	0.06	98.8	2
101615	RW-033	0.515	0.05	0.54	99.47	4
101616	RW-109	0.569	0.03	0.22	97.38	3
101617	RW-110	0.853	0.13	0.54	99.16	1
101618	RW-111	0.224	0.13	0.62	99.82	2
101619	RW-112	0.754	0.08	0.56	97.16	1
101620	RW-113	0.284	0.13	2.63	97.23	3
101621	RW-114	0.479	0.17	0.65	99.64	6
101622	RW-115	0.148	0.22	3.3	97.24	< 1
103428	RW-118	0.211	0.07	0.01	100.2	2
103429	RW-119	0.262	0.05	0.2	99.29	1
103430	RW-120	0.076	0.02	1.28	92.54	< 1
103431	RW-121	0.526	0.04	0.67	96.67	< 1
103432	RW-122	0.336	0.05	0.8	98.85	< 1
103433	RW-123	0.153	0.06	1.1	97.44	< 1
103434	RW-124	0.403	0.03	2.68	92.4	< 1
103435	RW-125	0.442	0.06	1.38	98.53	4
103441	RW-038	0.961	0.63	0.84	99.54	14
103442	RW-039	0.661	0.02	0.47	99.09	3
103443	RW-040	0.632	0.57	0.68	97.99	12
104317	RW-100	0.336	0.02	0.37	100.5	< 1
104318	RW-101	0.354	0.66	0.56	100.9	2
104319	RW-102	0.403	0.03	0.71	98.61	2
104320	RW-103	1.076	0.25	0.56	99.88	8
104321	RW-104	0.329	0.14	1.18	101	3
104323	RW-106	0.57	0.12	0.92	99.07	1
104324	RW-107	0.212	0.24	0.26	99.03	2
104325	RW-108	0.402	0.03	0.91	95.25	1
104406	RW-001	0.309	0.03	1.06	94.69	< 1
104407	RW-002	0.338	0.04	1.08	98.07	2
104408	RW-003	0.51	0.1	0.71	99.3	3
104409	RW-004	0.656	0.16	0.7	97.92	1

Chem #	Sample	TiO2	P2O5	LOI	Total	Sc
104410	RW-005	0.42	0.14	0.59	99.24	4
104411	RW-006	1.094	0.01	0.13	96.45	1
104412	RW-007	1.066	0.02	0.92	94.8	< 1
104413	RW-009	0.377	0.06	0.89	97.09	< 1
104414	RW-010	0.373	< 0.01	0.68	97.53	< 1
104415	RW-011	0.047	0.02	1.56	94.18	< 1
104416	RW-012	1.115	0.04	0.57	97.63	< 1
104417	RW-013	1.006	< 0.01	1.48	92.69	< 1
104418	RW-014	0.26	< 0.01	1.6	94.78	< 1
104419	RW-015	1.029	0.41	0.38	98.72	4
104420	RW-016	0.961	< 0.01	0.9	96.92	< 1
104421	RW-017	0.281	0.05	0.91	97.78	< 1
104422	RW-018	0.58	0.21	0.5	99	2
104423	RW-019	0.359	0.18	0.61	100.5	7
104424	RW-020	0.265	0.01	0.31	99.87	2
104425	RW-021	1.935	1.57	0.53	100.8	23
423518	RW-041	0.56	0.23	0.72	97.83	2
423515	SRW-005	0.266	0.37	0.92	100.5	9
423516	SRW-006	0.433	0.19	1.3	100.3	8
423517	SRW-007	0.696	0.2	0.29	99.18	2

Chem #	Sample	Ве	V	Cr	Со	Ni
474801	SZB-11-01	305	< 5	< 20	< 1	< 20
474802	SZH-11-01	20	< 5	< 20	< 1	< 20
474803	BRH-11-01	9	< 5	< 20	< 1	< 20
474804	GRH-11-01	8	15	< 20	1	< 20
474805	CBB-11-02	3	< 5	< 20	< 1	< 20
474806	CBB-11-02	113	9	< 20	3	< 20
474807	CBB-11-03	7	< 5	< 20	< 1	< 20
474808	CBB-11-04	104	< 5	< 20	< 1	< 20
474809	CBB-11-05	44	< 5	< 20	1	< 20
423501	LL-001	25	< 5	< 20	< 1	< 20
423502	LL-002	10	< 5	< 20	< 1	< 20
423503	LL-003	6	< 5	< 20	< 1	< 20
423504	LL-004	6	< 5	< 20	1	< 20
423505	LL-005	8	< 5	< 20	< 1	< 20
423506	LL-006	186	< 5	< 20	< 1	< 20
423507	LL-007	24	< 5	< 20	1	< 20
423508	LL-008	7	< 5	< 20	< 1	< 20
423509	LL-009	185	< 5	< 20	< 1	< 20
423510	LL-010	18	8	< 20	1	< 20
423511	LL-011	34	< 5	< 20	< 1	< 20
423512	LL-012	446	6	< 20	< 1	< 20
423513	LL-013	12	9	< 20	3	< 20
104401	SL-001	8	< 5	< 20	< 1	< 20
104402	SL-002	17	< 5	< 20	< 1	< 20
104403	SL-003	24	< 5	< 20	<1	< 20
104404	SL-004	6	< 5	< 20	<1	< 20
104405	SL-005	6	< 5	< 20	<1	< 20
423514	SL-009	11	< 5	< 20	<1	< 20
104301	SL-201	24	< 5	< 20	< 1	< 20
104302	SL-202	3	6	< 20	< 1	< 20
104303	SL-203	9	< 5	< 20	< 1	< 20
104304	SL-204	4	62	< 20	6	< 20
104305	SL-205	12	< 5	< 20	< 1	< 20
104306	SL-206	2	7	< 20	< 1	< 20
104307	SL-207	7	< 5	< 20	< 1	< 20
103436	SRW-001	5	< 5	< 20	< 1	< 20
103437	SRW-002	6	< 5	< 20	< 1	< 20
103438	SRW-003	8	6	< 20	< 1	< 20
103439	SRW-004	7	21	< 20	4	< 20
423515	SRW-005	19	38	< 20	6	< 20
423516	SRW-006	10	33	< 20	5	< 20
423517	SRW-007	15	< 5	< 20	< 1	< 20

Chem #	Sample	Ве	V	Cr	Со	Ni
101604	RW-022	17	13	< 20	5	< 20
101605	RW-023	34	96	40	16	< 20
101606	RW-024	6	< 5	< 20	< 1	< 20
101607	RW-025	26	< 5	< 20	< 1	< 20
101608	RW-026	32	< 5	< 20	< 1	< 20
101609	RW-027	9	9	< 20	3	< 20
101610	RW-028	24	< 5	< 20	< 1	< 20
101611	RW-029	410	< 5	< 20	1	< 20
101612	RW-030	22	< 5	< 20	< 1	< 20
101613	RW-031	13	7	< 20	2	< 20
101614	RW-032	12	7	< 20	1	< 20
101615	RW-033	10	< 5	< 20	2	< 20
101616	RW-109	19	< 5	< 20	2	< 20
101617	RW-110	22	< 5	< 20	< 1	< 20
101618	RW-111	7	< 5	< 20	< 1	< 20
101619	RW-112	9	< 5	< 20	< 1	< 20
101620	RW-113	4	< 5	< 20	< 1	< 20
101621	RW-114	12	< 5	< 20	2	< 20
101622	RW-115	4	< 5	< 20	< 1	< 20
103428	RW-118	17	< 5	< 20	2	< 20
103429	RW-119	9	< 5	< 20	< 1	< 20
103430	RW-120	31	< 5	< 20	< 1	< 20
103431	RW-121	12	12	< 20	< 1	< 20
103432	RW-122	19	< 5	< 20	< 1	< 20
103433	RW-123	8	< 5	< 20	< 1	< 20
103434	RW-124	30	< 5	< 20	< 1	< 20
103435	RW-125	20	7	< 20	2	< 20
103441	RW-038	26	63	30	11	< 20
103442	RW-039	5	< 5	< 20	1	< 20
103443	RW-040	18	7	< 20	2	< 20
104317	RW-100	22	< 5	< 20	< 1	< 20
104318	RW-101	32	6	< 20	< 1	< 20
104319	RW-102	95	< 5	< 20	< 1	< 20
104320	RW-103	166	< 5	< 20	< 1	< 20
104321	RW-104	14	< 5	< 20	< 1	< 20
104323	RW-106	4	< 5	< 20	< 1	< 20
104324	RW-107	49	< 5	< 20	1	< 20
104325	RW-108	10	< 5	< 20	< 1	< 20
104406	RW-001	14	< 5	< 20	< 1	< 20
104407	RW-002	11	5	< 20	< 1	< 20
104408	RW-003	15	< 5	< 20	< 1	< 20
104409	RW-004	20	< 5	< 20	< 1	< 20

Chem #	Sample	Ве	V	Cr	Co	Ni
104410	RW-005	15	< 5	< 20	< 1	< 20
104411	RW-006	9	< 5	< 20	< 1	< 20
104412	RW-007	4	< 5	< 20	< 1	< 20
104413	RW-009	21	< 5	< 20	< 1	< 20
104414	RW-010	19	5	< 20	< 1	< 20
104415	RW-011	31	< 5	< 20	<1	< 20
104416	RW-012	15	< 5	< 20	< 1	< 20
104417	RW-013	12	< 5	< 20	< 1	< 20
104418	RW-014	14	< 5	< 20	<1	< 20
104419	RW-015	19	< 5	< 20	< 1	< 20
104420	RW-016	23	10	< 20	< 1	< 20
104421	RW-017	14	< 5	< 20	<1	< 20
104422	RW-018	14	< 5	< 20	< 1	< 20
104423	RW-019	12	30	< 20	5	< 20
104424	RW-020	10	< 5	< 20	1	< 20
104425	RW-021	33	91	< 20	18	< 20
423518	RW-041	12	< 5	< 20	< 1	< 20
423515	SRW-005	19	38	< 20	6	< 20
423516	SRW-006	10	33	< 20	5	< 20
423517	SRW-007	15	< 5	< 20	< 1	< 20

Chem #	Sample	Cu	Zn	Ga	Ge	As
474801	SZB-11-01	20	1740	176	5	9
474802	SZH-11-01	20	310	35	2	< 5
474803	BRH-11-01	20	360	76	5	5
474804	GRH-11-01	20	260	32	2	< 5
474805	CBB-11-02	20	620	67	5	9
474806	CBB-11-02	20	450	55	3	< 5
474807	CBB-11-03	20	570	63	4	9
474808	CBB-11-04	10	500	54	5	30
474809	CBB-11-05	20	640	55	3	< 5
423501	LL-001	20	560	17	1	< 5
423502	LL-002	< 10	110	45	3	< 5
423503	LL-003	< 10	200	30	1	< 5
423504	LL-004	70	150	17	1	< 5
423505	LL-005	< 10	160	59	2	< 5
423506	LL-006	< 10	3600	43	4	< 5
423507	LL-007	< 10	120	42	3	< 5
423508	LL-008	< 10	390	30	1	< 5
423509	LL-009	70	1250	86	4	8
423510	LL-010	< 10	590	44	2	< 5
423511	LL-011	< 10	800	39	1	< 5
423512	LL-012	140	560	79	11	17
423513	LL-013	< 10	930	46	1	< 5
104401	SL-001	< 10	170	26	2	< 5
104402	SL-002	< 10	320	29	3	< 5
104403	SL-003	< 10	680	40	4	< 5
104404	SL-004	< 10	220	27	3	< 5
104405	SL-005	< 10	190	27	3	< 5
423514	SL-009	< 10	440	52	3	< 5
104301	SL-201	< 10	680	52	4	10
104302	SL-202	< 10	40	12	2	< 5
104303	SL-203	< 10	170	26	2	< 5
104304	SL-204	20	90	17	2	< 5
104305	SL-205	< 10	240	27	3	< 5
104306	SL-206	< 10	50	13	2	< 5
104307	SL-207	< 10	150	23	2	< 5
103436	SRW-001	< 10	90	28	2	< 5
103437	SRW-002	< 10	140	27	2	< 5
103438	SRW-003	< 10	40	26	2	< 5
103439	SRW-004	< 10	160	28	2	< 5
423515	SRW-005	< 10	510	32	< 1	23
423516	SRW-006	20	100	18	2	< 5
423517	SRW-007	< 10	170	54	2	< 5

Chem #	Sample	Cu	Zn	Ga	Ge	As
101604	RW-022	50	510	50	3	< 5
101605	RW-023	60	360	31	3	< 5
101606	RW-024	< 10	310	55	2	< 5
101607	RW-025	< 10	330	57	4	6
101608	RW-026	< 10	340	47	4	< 5
101609	RW-027	< 10	710	44	3	5
101610	RW-028	< 10	360	49	4	< 5
101611	RW-029	< 10	3150	126	7	12
101612	RW-030	< 10	800	52	3	11
101613	RW-031	< 10	320	29	3	< 5
101614	RW-032	< 10	710	42	4	< 5
101615	RW-033	< 10	420	52	3	< 5
101616	RW-109	20	360	34	4	< 5
101617	RW-110	< 10	310	58	3	< 5
101618	RW-111	< 10	130	50	1	< 5
101619	RW-112	20	180	43	3	< 5
101620	RW-113	40	1220	103	14	34
101621	RW-114	< 10	1750	91	5	10
101622	RW-115	< 10	2190	99	8	21
103428	RW-118	< 10	680	47	4	< 5
103429	RW-119	< 10	210	34	2	< 5
103430	RW-120	< 10	350	73	6	12
103431	RW-121	< 10	280	41	4	< 5
103432	RW-122	< 10	340	59	3	< 5
103433	RW-123	< 10	830	82	3	29
103434	RW-124	< 10	350	53	7	10
103435	RW-125	< 10	370	61	3	10
103441	RW-038	< 10	1020	44	3	< 5
103442	RW-039	< 10	480	41	3	< 5
103443	RW-040	< 10	580	47	4	10
104317	RW-100	< 10	400	27	2	< 5
104318	RW-101	< 10	130	46	2	< 5
104319	RW-102	< 10	1230	70	2	< 5
104320	RW-103	10	240	50	4	< 5
104321	RW-104	< 10	330	62	1	< 5
104323	RW-106	< 10	100	52	< 1	< 5
104324	RW-107	< 10	2640	64	4	9
104325	RW-108	< 10	140	45	4	6
104406	RW-001	30	350	47	6	11
104407	RW-002	20	370	36	4	< 5
104408	RW-003	< 10	420	38	4	< 5
104409	RW-004	< 10	420	39	5	< 5

Chem #	Sample	Cu	Zn	Ga	Ge	As
104410	RW-005	< 10	370	42	3	< 5
104411	RW-006	10	380	36	5	21
104412	RW-007	10	210	36	6	15
104413	RW-009	< 10	340	49	4	< 5
104414	RW-010	< 10	270	50	3	< 5
104415	RW-011	< 10	540	75	5	47
104416	RW-012	< 10	290	45	4	< 5
104417	RW-013	< 10	340	33	6	9
104418	RW-014	< 10	480	58	4	64
104419	RW-015	< 10	470	40	5	< 5
104420	RW-016	< 10	240	56	4	5
104421	RW-017	< 10	580	58	3	< 5
104422	RW-018	< 10	370	58	3	< 5
104423	RW-019	< 10	140	18	1	6
104424	RW-020	< 10	490	52	4	< 5
104425	RW-021	< 10	290	25	3	< 5
423518	RW-041	< 10	410	55	3	6
423515	SRW-005	< 10	510	32	< 1	23
423516	SRW-006	20	100	18	2	< 5
423517	SRW-007	< 10	170	54	2	< 5

Chem #	Sample	Rb	Sr	Υ	Zr	Nb
474801	SZB-11-01	483	660	347	487	179
474802	SZH-11-01	579	25	301	3803	133
474803	BRH-11-01	73	92	300	663	60
474804	GRH-11-01	249	113	58	68	13
474805	CBB-11-02	97	111	4114	1076	32
474806	CBB-11-02	83	278	181	656	479
474807	CBB-11-03	194	103	1941	510	40
474808	CBB-11-04	119	74	786	2956	115
474809	CBB-11-05	29	113	417	435	165
423501	LL-001	217	21	346	3215	110
423502	LL-002	184	15	80	1222	51
423503	LL-003	211	24	93	846	40
423504	LL-004	207	29	159	1279	94
423505	LL-005	327	48	587	8340	163
423506	LL-006	216	162	494	1434	
423507	LL-007	239	24	465	18450	179
423508	LL-008	562	13	365	3946	99
423509	LL-009	168	89	1619	1987	517
423510	LL-010	927	28	450	5947	120
423511	LL-011	667	15	434	4159	107
423512	LL-012	144	51	4289	10950	
423513	LL-013	1080	27	457	5182	132
104401	SL-001	159	11	100	846	34
104402	SL-002	302	14	280	2047	98
104403	SL-003	178	28	231	1628	73
104404	SL-004	308	5	119	1917	72
104405	SL-005	272	3	114	1612	59
423514	SL-009	221	24	200	1543	34
104301	SL-201	194	53	743	6578	244
104302	SL-202	199	48	22	201	16
104303	SL-203	196	12	70	847	42
104304	SL-204	127	476	34	284	16
104305	SL-205	281	11	139	1406	44
104306	SL-206	161	48	29	266	17
104307	SL-207	254	6	84	880	46
103436	SRW-001	264	10	103	1290	52
103437	SRW-002	244	14	71	952	44
103438	SRW-003	174	33	97	967	42
103439	SRW-004	168	52	83	711	31
423515	SRW-005	162	352	181	296	29
423516	SRW-006	168	366	30	200	24
423517	SRW-007	200	62	84	908	45

Chem #	Sample	Rb	Sr	Υ	Zr	Nb
101604	RW-022	180	133	504	5041	156
101605	RW-023	99	459	94	919	59
101606	RW-024	228	36	177	2915	137
101607	RW-025	322	44	668	7993	214
101608	RW-026	210	50	627	6534	252
101609	RW-027	158	140	757	913	84
101610	RW-028	200	81	486	7242	207
101611	RW-029	317	198	476	887	23
101612	RW-030	242	44	349	1939	43
101613	RW-031	110	72	141	825	45
101614	RW-032	163	21	278	815	63
101615	RW-033	230	45	297	3423	194
101616	RW-109	318	146	780	9030	256
101617	RW-110	228	22	210	2031	86
101618	RW-111	203	35	192	2267	38
101619	RW-112	244	46	432	7730	196
101620	RW-113	233	114	2709	635	303
101621	RW-114	139	268	526	436	81
101622	RW-115	364	39	4106	1129	34
103428	RW-118	87	23	129	846	87
103429	RW-119	217	27	142	1366	68
103430	RW-120	186	135	2820	33950	460
103431	RW-121	199	63	877	12990	289
103432	RW-122	279	31	625	7206	191
103433	RW-123	98	112	1488	4184	138
103434	RW-124	108	99	2436	39030	764
103435	RW-125	278	75	298	3086	61
103441	RW-038	157	212	278	814	147
103442	RW-039	326	81	540	3723	234
103443	RW-040	182	90	309	1824	90
104317	RW-100	326	30	291	2499	91
104318	RW-101	370	97	79	633	134
104319	RW-102	78	120	69	510	850
104320	RW-103	276	52	131	2606	218
104321	RW-104	271	75	23	121	25
104323	RW-106	417	60	22	100	20
104324	RW-107	28	112	937	438	284
104325	RW-108	199	111	1396	21500	582
104406	RW-001	153	151	2520	25350	400
104407	RW-002	183	69	644	8661	194
104408	RW-003	169	56	664	8520	217
104409	RW-004	125	78	976	11200	258

Chem #	Sample	Rb	Sr	Υ	Zr	Nb
104410	RW-005	162	23	180	1387	58
104411	RW-006	163	150	1268	14200	259
104412	RW-007	163	248	2449	28370	514
104413	RW-009	235	79	972	12870	302
104414	RW-010	258	32	575	7947	136
104415	RW-011	400	95	3306	23050	312
104416	RW-012	179	39	543	7456	228
104417	RW-013	121	140	2162	32390	855
104418	RW-014	167	83	1739	19270	335
104419	RW-015	171	55	274	3039	109
104420	RW-016	209	65	1013	13100	320
104421	RW-017	250	63	852	9443	160
104422	RW-018	265	31	336	2961	90
104423	RW-019	228	271	36	207	17
104424	RW-020	95	39	392	4266	92
104425	RW-021	153	612	71	436	34
423518	RW-041	314	37	304	3353	62
423515	SRW-005	162	352	181	296	29
423516	SRW-006	168	366	30	200	24
423517	SRW-007	200	62	84	908	45

Chem #	Sample	Mo	Ag	In	Sn	Sb
474801	SZB-11-01	< 2	1.3	< 0.2	25	2.5
474802	SZH-11-01	< 2		< 0.2	11	< 0.5
474803	BRH-11-01	3	1.7	< 0.2	40	< 0.5
474804	GRH-11-01	< 2	< 0.5	< 0.2	3	< 0.5
474805	CBB-11-02	6		< 0.2	106	< 0.5
474806	CBB-11-02	11	1.8	< 0.2	23	< 0.5
474807	CBB-11-03	6	3.5	< 0.2	64	< 0.5
474808	CBB-11-04	7		< 0.2	57	< 0.5
474809	CBB-11-05	4	2.2	< 0.2	39	< 0.5
423501	LL-001	< 2		< 0.2	36	0.5
423502	LL-002	2		< 0.2	17	< 0.5
423503	LL-003	< 2		< 0.2	7	< 0.5
423504	LL-004	11		< 0.2	9	< 0.5
423505	LL-005	4		< 0.2	28	< 0.5
423506	LL-006	< 2		< 0.2	25	< 0.5
423507	LL-007	4		< 0.2	23	0.7
423508	LL-008	5		< 0.2	41	< 0.5
423509	LL-009	< 2		< 0.2	49	1.1
423510	LL-010	2		< 0.2	43	< 0.5
423511	LL-011	< 2		< 0.2	43	< 0.5
423512	LL-012	6		< 0.2	53	1.6
423513	LL-013	10		< 0.2	47	0.6
104401	SL-001	< 2	3.5	< 0.2	7	< 0.5
104402	SL-002	< 2		< 0.2	25	< 0.5
104403	SL-003	5		< 0.2	14	< 0.5
104404	SL-004	< 2		< 0.2	18	< 0.5
104405	SL-005	< 2		< 0.2	14	< 0.5
423514	SL-009	3		< 0.2	20	< 0.5
104301	SL-201	6		< 0.2	45	0.5
104302	SL-202	< 2	0.8	< 0.2	2	< 0.5
104303	SL-203	< 2	3.6	< 0.2	9	< 0.5
104304	SL-204	< 2	1.2	< 0.2	2	< 0.5
104305	SL-205	< 2		< 0.2	12	< 0.5
104306	SL-206	< 2	1.1	< 0.2	2	< 0.5
104307	SL-207	< 2		< 0.2	9	< 0.5
103436	SRW-001	< 2		< 0.2	14	< 0.5
103437	SRW-002	2		< 0.2	11	< 0.5
103438	SRW-003	< 2		< 0.2	10	< 0.5
103439	SRW-004	< 2		< 0.2	6	< 0.5
423515	SRW-005	< 2	1.1	< 0.2	5	3.3
423516	SRW-006	< 2	0.8	< 0.2	4	0.9
423517	SRW-007	2		< 0.2	20	< 0.5

Chem #	Sample	Мо	Ag	In	Sn	Sb
101604	RW-022	4		< 0.2	54	< 0.5
101605	RW-023	8		< 0.2	32	< 0.5
101606	RW-024	< 2		< 0.2	34	< 0.5
101607	RW-025	5		< 0.2	44	< 0.5
101608	RW-026	< 2		< 0.2	49	< 0.5
101609	RW-027	16		< 0.2	36	< 0.5
101610	RW-028	< 2		< 0.2	36	< 0.5
101611	RW-029	< 2		< 0.2	22	1.1
101612	RW-030	20		< 0.2	51	< 0.5
101613	RW-031	2	3.3	< 0.2	11	< 0.5
101614	RW-032	13	3.5	< 0.2	24	< 0.5
101615	RW-033	18		< 0.2	47	< 0.5
101616	RW-109	7		< 0.2	17	< 0.5
101617	RW-110	4		< 0.2	32	< 0.5
101618	RW-111	9		< 0.2	15	< 0.5
101619	RW-112	< 2		< 0.2	22	< 0.5
101620	RW-113	25	2.9	< 0.2	44	0.8
101621	RW-114	5	1.8	< 0.2	30	< 0.5
101622	RW-115	20		< 0.2	118	1.3
103428	RW-118	5	3.3	< 0.2	38	< 0.5
103429	RW-119	< 2		< 0.2	14	< 0.5
103430	RW-120	5		< 0.2	108	0.8
103431	RW-121	2		< 0.2	37	< 0.5
103432	RW-122	4		< 0.2	57	< 0.5
103433	RW-123	115		< 0.2	112	< 0.5
103434	RW-124	5		< 0.2	80	< 0.5
103435	RW-125	8		< 0.2	74	< 0.5
103441	RW-038	2	3	< 0.2	26	1.8
103442	RW-039	7		< 0.2	37	< 0.5
103443	RW-040	5		< 0.2	26	< 0.5
104317	RW-100	< 2		< 0.2	24	< 0.5
104318	RW-101	< 2	2.7	< 0.2	21	< 0.5
104319	RW-102	< 2	2	< 0.2	30	< 0.5
104320	RW-103	< 2		< 0.2	46	< 0.5
104321	RW-104	6	< 0.5	< 0.2	3	< 0.5
104323	RW-106	4	< 0.5	< 0.2	4	< 0.5
104324	RW-107	8	1.8	< 0.2	43	< 0.5
104325	RW-108	4		< 0.2	35	< 0.5
104406	RW-001	4		< 0.2	62	1.4
104407	RW-002	3		< 0.2	27	< 0.5
104408	RW-003	3		< 0.2	28	< 0.5
104409	RW-004	4		< 0.2	27	< 0.5

Chem #	Sample	Мо	Ag	In	Sn	Sb
104410	RW-005	3		< 0.2	11	< 0.5
104411	RW-006	8		< 0.2	45	1.2
104412	RW-007	3		< 0.2	46	< 0.5
104413	RW-009	3		< 0.2	35	< 0.5
104414	RW-010	< 2		< 0.2	40	< 0.5
104415	RW-011	3		< 0.2	96	< 0.5
104416	RW-012	3		< 0.2	32	< 0.5
104417	RW-013	8		< 0.2	49	< 0.5
104418	RW-014	3		< 0.2	108	0.7
104419	RW-015	3		< 0.2	26	< 0.5
104420	RW-016	5		< 0.2	44	< 0.5
104421	RW-017	5		< 0.2	51	< 0.5
104422	RW-018	11		< 0.2	33	< 0.5
104423	RW-019	< 2	0.8	< 0.2	3	< 0.5
104424	RW-020	< 2		< 0.2	53	< 0.5
104425	RW-021	3	1.2	< 0.2	12	1
423518	RW-041	16		< 0.2	56	0.8
423515	SRW-005	< 2	1.1	< 0.2	5	3.3
423516	SRW-006	< 2	0.8	< 0.2	4	0.9
423517	SRW-007	2	_	< 0.2	20	< 0.5

Chem #	Sample	Cs	Ва	Bi	La	Ce
474801	SZB-11-01	9.6	1378	< 0.4	5390	9330
474802	SZH-11-01	38.4	133	0.4	391	763
474803	BRH-11-01	1.9	108	< 0.4	2030	3850
474804	GRH-11-01	5.5	246	< 0.4	204	395
474805	CBB-11-02	2.1	74	< 0.4	1510	3600
474806	CBB-11-02	1.9	949	< 0.4	590	1150
474807	CBB-11-03	4.4	119	< 0.4	1600	3440
474808	CBB-11-04	2.8	58	1	1390	2380
474809	CBB-11-05	0.6	111	< 0.4	373	886
423501	LL-001	6.9	52	< 0.4	220	499
423502	LL-002	3.7	113	< 0.4	72.4	155
423503	LL-003	4	139	< 0.4	121	245
423504	LL-004	15.6	78	1	148	301
423505	LL-005	4.9	282	< 0.4	254	623
423506	LL-006	3.5	232	1.4	1360	2570
423507	LL-007	14.6	106	< 0.4	484	931
423508	LL-008	5.4	99	< 0.4	167	358
423509	LL-009	8.7	58	3.7	2410	4410
423510	LL-010	16.1	127	< 0.4	242	576
423511	LL-011	9.2	39	< 0.4	277	678
423512	LL-012	1.1	90	5.4	1980	6350
423513	LL-013	6.7	198	< 0.4	306	708
104401	SL-001	1.2	43	< 0.4	64.2	144
104402	SL-002	2.1	15	< 0.4	208	425
104403	SL-003	5	103	< 0.4	389	645
104404	SL-004	1.2	34	< 0.4	156	307
104405	SL-005	3.2	34	< 0.4	150	291
423514	SL-009	3.9	243	< 0.4	375	621
104301	SL-201	5.1	177	< 0.4	485	933
104302	SL-202	6.6	151	< 0.4	97.5	160
104303	SL-203	5	80	< 0.4	121	233
104304	SL-204	6.7	1560	< 0.4	58.6	122
104305	SL-205	3.5	27	< 0.4	127	255
104306	SL-206	1.7	204	< 0.4	53.7	109
104307	SL-207	3.2	21	< 0.4	119	235
103436	SRW-001	1.8	51	< 0.4	83.2	176
103437	SRW-002	1.2	106	< 0.4	110	220
103438	SRW-003	0.6	174	< 0.4	95	202
103439	SRW-004	1	350	< 0.4	123	248
423515	SRW-005	2.7	609	< 0.4	89.5	175
423516	SRW-006	1.9	1697	< 0.4	33.6	71.6
423517	SRW-007	2	134	< 0.4	174	307

Chem #	Sample	Cs	Ва	Bi	La	Ce
101604	RW-022	3.3	1590	< 0.4	230	482
101605	RW-023	1.7	1248	< 0.4	90.2	194
101606	RW-024	5.2	435	< 0.4	178	347
101607	RW-025	4.8	230	< 0.4	318	712
101608	RW-026	4.3	259	< 0.4	333	702
101609	RW-027	2.7	683	< 0.4	454	979
101610	RW-028	4.6	281	< 0.4	293	620
101611	RW-029	15.4	83	< 0.4	3030	5310
101612	RW-030	4.2	243	< 0.4	410	815
101613	RW-031	3	803	< 0.4	160	337
101614	RW-032	2.3	61	< 0.4	170	330
101615	RW-033	5.6	365	< 0.4	197	395
101616	RW-109	7.1	1942	< 0.4	382	807
101617	RW-110	3.8	100	< 0.4	222	448
101618	RW-111	2.4	116	< 0.4	118	293
101619	RW-112	4.2	258	< 0.4	215	466
101620	RW-113	1.9	159	< 0.4	3690	8910
101621	RW-114	1.6	413	< 0.4	2180	4060
101622	RW-115	3.1	84	< 0.4	1820	4640
103428	RW-118	1.2	91	< 0.4	88.1	189
103429	RW-119	2	84	< 0.4	167	345
103430	RW-120	4.7	453	2.2	970	2530
103431	RW-121	4.2	196	< 0.4	367	782
103432	RW-122	3.2	125	< 0.4	288	672
103433	RW-123	1.6	69	< 0.4	566	1100
103434	RW-124	4.3	287	< 0.4	950	2150
103435	RW-125	4.1	278	< 0.4	144	333
103441	RW-038	2.7	325	< 0.4	538	992
103442	RW-039	4.2	573	< 0.4	227	526
103443	RW-040	3.8	338	< 0.4	430	895
104317	RW-100	14.7	55	< 0.4	266	507
104318	RW-101	15.6	66	< 0.4	306	636
104319	RW-102	0.8	1123	< 0.4	659	1080
104320	RW-103	7.6	476	< 0.4	311	580
104321	RW-104	5.2	32	< 0.4	271	474
104323	RW-106	5.6	131	< 0.4	155	347
104324	RW-107	0.7	89	< 0.4	793	1760
104325	RW-108	5	356	< 0.4	582	1210
104406	RW-001	7.7	330	5	846	2030
104407	RW-002	4.3	212	< 0.4	255	577
104408	RW-003	4	223	< 0.4	305	626
104409	RW-004	4	196	< 0.4	408	807

Chem #	Sample	Cs	Ва	Bi	La	Ce
104410	RW-005	5.8	208	< 0.4	190	382
104411	RW-006	3.6	432	1.5	436	951
104412	RW-007	3.6	721	< 0.4	757	1770
104413	RW-009	4.9	191	< 0.4	409	847
104414	RW-010	4.1	124	< 0.4	228	517
104415	RW-011	7.7	400	0.7	743	2070
104416	RW-012	3.7	103	< 0.4	268	570
104417	RW-013	3.2	439	< 0.4	844	1790
104418	RW-014	3.3	209	1.2	625	1410
104419	RW-015	3.5	236	0.5	308	624
104420	RW-016	5.1	171	< 0.4	482	1000
104421	RW-017	4.7	173	0.5	392	869
104422	RW-018	3.5	176	< 0.4	271	569
104423	RW-019	3.7	2068	< 0.4	51.5	102
104424	RW-020	1.3	140	< 0.4	89	196
104425	RW-021	4.7	1052	< 0.4	102	214
423518	RW-041	1.7	123	< 0.4	174	401
423515	SRW-005	2.7	609	< 0.4	89.5	175
423516	SRW-006	1.9	1697	< 0.4	33.6	71.6
423517	SRW-007	2	134	< 0.4	174	307

Chem #	Sample	Pr	Nd	Sm	Eu	Gd
474801	SZB-11-01	865	2590	282	19.6	157
474802	SZH-11-01	80.1	278	49.5	2.25	41.1
474803	BRH-11-01	421	1430	188	16.7	109
474804	GRH-11-01	42	146	21.7	2.07	14.3
474805	CBB-11-02	485	2000	472	59	472
474806	CBB-11-02	117	393	70.9	7.41	47.9
474807	CBB-11-03	435	1700	330	36.7	277
474808	CBB-11-04	238	850	163	17.4	147
474809	CBB-11-05	107	409	96	11.8	77.7
423501	LL-001	57.6	220	49.5	1.6	48.4
423502	LL-002	19.5	76.3	15.8	1.49	13.7
423503	LL-003	28.7	107	20.1	0.66	16.1
423504	LL-004	35.6	133	26.9	1.75	23.9
423505	LL-005	78.4	330	82	12.4	87.9
423506	LL-006	273	927	153	5.96	102
423507	LL-007	100	375	75.5	6.63	67.8
423508	LL-008	44.5	170	37.1	1.3	38.9
423509	LL-009	458	1520	277	32.1	275
423510	LL-010	62.4	234	50.6	1.91	50.3
423511	LL-011	74.3	285	63.3	2.04	60.4
423512	LL-012	878	3460	873	76	810
423513	LL-013	76.8	297	67.5	2.73	63.7
104401	SL-001	15.8	60.7	14	0.67	13
104402	SL-002	51	188	41	1.16	37.2
104403	SL-003	74	276	52.2	5.79	42.7
104404	SL-004	35.2	124	21.5	0.69	16.4
104405	SL-005	34.1	121	20.9	0.63	15.7
423514	SL-009	61.6	218	41.5	4.8	38.7
104301	SL-201	124	486	109	13.5	107
104302	SL-202	16.6	52.2	7.1	0.64	4.5
104303	SL-203	26.6	95.2	16.8	0.64	13.2
104304	SL-204	14.8	55.8	9.8	2.02	7
104305	SL-205	30.5	111	23	0.74	20
104306	SL-206	12.7	45.1	7.9	0.65	5.7
104307	SL-207	27.1	94.4	16.8	0.39	12.4
103436	SRW-001	19.7	75.1	16.3	0.5	13
103437	SRW-002	23.9	87.8	15.9	0.46	11.1
103438	SRW-003	22.2	85.7	16.9	0.54	13.1
103439	SRW-004	27.6	107	19.3	1.09	14.3
423515	SRW-005	20.3	78.6	18.9	2.83	22.2
423516	SRW-006	8.39	31.7	6.5	1.12	5.3
423517	SRW-007	35.3	129	20.9	1.62	15.6

Chem #	Sample	Pr	Nd	Sm	Eu	Gd
101604	RW-022	63.1	264	67.6	8.25	69.2
101605	RW-023	24.7	102	21.2	3.65	17.8
101606	RW-024	37.1	143	28	2.99	25.6
101607	RW-025	95.5	401	96.6	13.4	95.6
101608	RW-026	91.5	377	87.6	10.7	86.7
101609	RW-027	126	505	112	13	106
101610	RW-028	81.8	332	74.9	10.6	69.2
101611	RW-029	527	1820	210	15	125
101612	RW-030	102	400	77.3	9.49	60
101613	RW-031	41.1	168	32.7	5.03	26.9
101614	RW-032	38.9	153	33.8	3.61	34.8
101615	RW-033	46.5	188	44.6	4.91	42
101616	RW-109	108	458	110	14	106
101617	RW-110	51.6	203	40.4	4.33	34.2
101618	RW-111	38.2	162	36.9	3.85	32
101619	RW-112	58.9	251	60.3	7.62	57.9
101620	RW-113	1110	4450	779	80.1	585
101621	RW-114	394	1490	213	20.1	144
101622	RW-115	601	2750	549	66.5	534
103428	RW-118	20.6	79.9	16.8	1.94	16.5
103429	RW-119	37.8	144	26.8	2.12	23.5
103430	RW-120	317	1530	364	49.8	385
103431	RW-121	108	463	109	14.5	115
103432	RW-122	94.5	408	94.5	12.4	95.7
103433	RW-123	143	591	149	19.7	179
103434	RW-124	282	1180	274	37.4	293
103435	RW-125	42.1	185	44.9	4.98	42.3
103441	RW-038	113	408	64.7	7.72	50.5
103442	RW-039	76.9	342	87.3	10.2	85.9
103443	RW-040	113	432	74.5	8.62	61.2
104317	RW-100	63.5	239	48.1	1.7	41.2
104318	RW-101	81.4	308	47.8	2.95	25.8
104319	RW-102	109	339	47.5	3.94	28.9
104320	RW-103	58.5	213	39.1	3.99	28.5
104321	RW-104	50	173	18.8	1.28	8.8
104323	RW-106	38.6	139	17.8	1.36	7.6
104324	RW-107	231	941	207	25	179
104325	RW-108	160	677	170	24.1	171
104406	RW-001	288	1210	307	37.4	322
104407	RW-002	76.6	315	80	10.9	83.1
104408	RW-003	83.5	335	81.2	10.3	83.7
104409	RW-004	111	448	110	13.8	116

Chem #	Sample	Pr	Nd	Sm	Eu	Gd
104410	RW-005	47.7	186	36.8	4.45	30.8
104411	RW-006	139	589	154	21.3	167
104412	RW-007	251	1070	280	38.7	305
104413	RW-009	117	478	117	16.7	124
104414	RW-010	69.7	292	72.9	9.78	75.5
104415	RW-011	319	1440	411	54	455
104416	RW-012	73.9	298	69.9	9.65	72.2
104417	RW-013	242	994	241	34.8	261
104418	RW-014	202	866	228	30.9	240
104419	RW-015	79.5	314	59.2	6.81	50.1
104420	RW-016	137	563	135	19	137
104421	RW-017	123	504	120	17.6	118
104422	RW-018	72.9	297	60.3	6.82	52.7
104423	RW-019	11.3	42.4	7.8	1.48	6.3
104424	RW-020	24	104	32.7	4.23	39.4
104425	RW-021	26.8	111	21	4.51	16.2
423518	RW-041	53.6	229	50.7	6.09	50
423515	SRW-005	20.3	78.6	18.9	2.83	22.2
423516	SRW-006	8.39	31.7	6.5	1.12	5.3
423517	SRW-007	35.3	129	20.9	1.62	15.6

Chem #	Sample	Tb	Dy	Но	Er	Tm
474801	SZB-11-01	16.4	72.1	12.8	32.3	3.41
474802	SZH-11-01	7.5	47.4	10.7	34.1	5.43
474803	BRH-11-01	13.2	67.3	13.3	39.2	5.73
474804	GRH-11-01	2	11.2	2.1	5.7	0.79
474805	CBB-11-02	95.4	647	141	424	61.1
474806	CBB-11-02	6.9	35.4	6.5	17.4	2.51
474807	CBB-11-03	49.1	320	71.2	207	30.8
474808	CBB-11-04	24.6	148	31.3	85	11.8
474809	CBB-11-05	13.7	75.5	14.1	40.2	7.07
423501	LL-001	9	61.2	14.3	45.7	6.99
423502	LL-002	2.5	15.9	3.5	11.5	1.87
423503	LL-003	2.8	17.8	3.9	12.1	1.89
423504	LL-004	4.4	28.8	6.4	20.4	3.01
423505	LL-005	16.2	111	24.8	75.7	10.7
423506	LL-006	15.6	83.5	15.3	40.9	5.57
423507	LL-007	12.5	82	18.5	59.1	9.35
423508	LL-008	7.6	55	13.7	47.2	7.53
423509	LL-009	50	307	60.9	167	22.1
423510	LL-010	9.6	68.9	16.8	58.7	9.83
423511	LL-011	11	73	16.4	53.1	8.22
423512	LL-012	143	877	175	494	65
423513	LL-013	11.7	78.7	18.1	60.7	9.64
104401	SL-001	2.6	17.2	3.8	11.8	1.88
104402	SL-002	7.2	47.5	10.4	31.8	5.05
104403	SL-003	7.1	42.7	8.7	25.2	3.82
104404	SL-004	3.1	21.6	4.8	16.2	2.73
104405	SL-005	2.7	18.1	4.1	13.7	2.3
423514	SL-009	6.5	40.8	8.4	24.7	3.56
104301	SL-201	20.9	136	28.9	85.4	12.1
104302	SL-202	0.7	4	0.8	2.5	0.39
104303	SL-203	2.3	14.2	3	9.3	1.47
104304	SL-204	1	6	1.2	3.6	0.52
104305	SL-205	3.7	23.8	5.1	15.4	2.45
104306	SL-206	0.9	5.6	1.2	3.5	0.54
104307	SL-207	2	13	2.8	8.8	1.43
103436	SRW-001	2.4	16.5	3.7	12.6	2.14
103437	SRW-002	1.9	11.8	2.5	8.5	1.52
103438	SRW-003	2.3	15.2	3.3	10.7	1.82
103439	SRW-004	2.3	13.9	2.9	8.9	1.4
423515	SRW-005	4.5	30.5	6.6	19.4	2.65
423516	SRW-006	0.9	5.5	1.2	3.7	0.61
423517	SRW-007	2.6	15.8	3.3	10.3	1.68

Chem #	Sample	Tb	Dy	Но	Er	Tm
101604	RW-022	13.2	87.3	19.3	58.5	8.69
101605	RW-023	2.9	16.9	3.4	10.1	1.62
101606	RW-024	4.7	29.8	6.7	20.7	3.17
101607	RW-025	17.5	118	26.6	78.2	11.4
101608	RW-026	16.1	106	23.8	72	10.4
101609	RW-027	19.5	124	25.7	74.5	10.6
101610	RW-028	12.6	83.3	18.6	56.5	8.5
101611	RW-029	15.4	82.6	15	38.9	5.07
101612	RW-030	9.9	60.4	12.9	38.4	5.64
101613	RW-031	4.3	24.8	5	14.6	2.17
101614	RW-032	6.6	45.9	10.4	33.2	5.1
101615	RW-033	7.6	50.2	11.1	33.6	4.98
101616	RW-109	20.6	138	31.8	97.4	14.7
101617	RW-110	6.1	39.7	8.5	25.1	3.56
101618	RW-111	5.8	37.1	7.8	23.1	3.35
101619	RW-112	11.3	79	17.6	53.9	8.15
101620	RW-113	91.5	548	116	346	50.1
101621	RW-114	20	107	19.2	51.3	6.97
101622	RW-115	104	685	154	463	70.3
103428	RW-118	3.3	22.3	5	16.2	2.89
103429	RW-119	4.2	27	5.7	17	2.67
103430	RW-120	76	506	109	328	47.9
103431	RW-121	23.2	156	33.8	102	15.3
103432	RW-122	18.9	121	25.8	76.1	11.3
103433	RW-123	38.8	262	55.5	165	23.6
103434	RW-124	60.8	418	91.8	286	43.1
103435	RW-125	8	52.4	11.3	35	5.37
103441	RW-038	8	47.5	9.3	26.8	3.8
103442	RW-039	15.7	96.1	19.5	55.8	8.01
103443	RW-040	10.2	61.2	12.1	34.5	4.94
104317	RW-100	7.3	47	10.3	32.2	4.9
104318	RW-101	3.4	17.2	3.1	8.5	1.21
104319	RW-102	4	17.1	2.6	6.1	0.81
104320	RW-103	4.5	26.1	5.3	15.1	2.09
104321	RW-104	0.9	4.7	0.9	2.7	0.44
104323	RW-106	1	5	0.9	2.6	0.37
104324	RW-107	31.1	176	33.3	83.6	10.3
104325	RW-108	34.8	243	54.6	168	24.5
104406	RW-001	66.1	443	97.1	296	42
104407	RW-002	17.2	115	25.1	76.5	11.3
104408	RW-003	17.4	118	26.4	82.3	12.1
104409	RW-004	24.2	165	36.9	115	16.9

Chem #	Sample	Tb	Dy	Но	Er	Tm
104410	RW-005	5.4	33.3	6.8	19.9	2.94
104411	RW-006	34.1	227	50.1	151	21.7
104412	RW-007	63.6	436	95.8	288	41
104413	RW-009	25.4	171	38	116	16.7
104414	RW-010	15.2	102	22.2	69.7	10.1
104415	RW-011	93	617	132	385	53.4
104416	RW-012	14.5	97	21	64.6	9.27
104417	RW-013	54.3	369	82.1	250	36.7
104418	RW-014	48.9	324	68.9	201	28.2
104419	RW-015	8.5	51.6	10.9	33.1	4.88
104420	RW-016	27.3	178	38.4	113	16
104421	RW-017	23.3	151	32	94.3	13.4
104422	RW-018	9.4	58.1	12.2	37.2	5.55
104423	RW-019	1	6	1.2	3.7	0.55
104424	RW-020	8.8	62.3	14.4	47.1	7.62
104425	RW-021	2.4	13.3	2.5	7.3	1.08
423518	RW-041	9.3	59.6	13.3	41.2	6.13
423515	SRW-005	4.5	30.5	6.6	19.4	2.65
423516	SRW-006	0.9	5.5	1.2	3.7	0.61
423517	SRW-007	2.6	15.8	3.3	10.3	1.68

Chem #	Sample	Yb	Lu	Hf	Та	W
474801	SZB-11-01	16.3	2.09	10	4.6	< 1
474802	SZH-11-01	38.7	6.44	82.1	8.7	< 1
474803	BRH-11-01	37.8	5.85	9	3.8	< 1
474804	GRH-11-01	4.8	0.71	1.5	0.5	< 1
474805	CBB-11-02	366	51.5	14	2.9	2
474806	CBB-11-02	15.8	2.39	12.5	8.3	< 1
474807	CBB-11-03	189	27.3	6.8	0.6	< 1
474808	CBB-11-04	69.2	9.69	37.4	8	2
474809	CBB-11-05	54.9	10	7	2.5	< 1
423501	LL-001	44.9	6.81	80.3	8.9	< 1
423502	LL-002	13.5	2.34	30.1	2.7	< 1
423503	LL-003	12.4	1.97	21.1	2	< 1
423504	LL-004	18.8	2.83	30.1	4	< 1
423505	LL-005	60.4	7.94	190	19.5	9
423506	LL-006	32.1	4.21	30.1	14.3	4
423507	LL-007	59.1	8.59	393	15.9	4
423508	LL-008	49	7.46	93.9	8.5	< 1
423509	LL-009	118	13.9	38.7	18	2
423510	LL-010	65.9	10.4	140	9.8	< 1
423511	LL-011	52.1	7.92	99.8	8.8	< 1
423512	LL-012	347	41.7	179	107	14
423513	LL-013	64.1	9.93	126	9.8	2
104401	SL-001	12.5	2.01	19	2	< 1
104402	SL-002	33	5.09	46.6	6.3	< 1
104403	SL-003	24.6	4	34.6	3.5	< 1
104404	SL-004	19.6	3.27	43.3	5	< 1
104405	SL-005	16.4	2.73	37	3.6	< 1
423514	SL-009	22.2	3.37	37.6	1.1	2
104301	SL-201	70.1	9.51	127	15.7	6
104302	SL-202	2.5	0.4	4.9	0.8	< 1
104303	SL-203	10.4	1.8	20.4	2.5	< 1
104304	SL-204	3.4	0.55	6.8	1	< 1
104305	SL-205	16.4	2.63	32.6	2.8	1
104306	SL-206	3.5	0.54	7	1.2	< 1
104307	SL-207	10	1.71	22.1	2.9	< 1
103436	SRW-001	15.6	2.58	30.6	3.4	< 1
103437	SRW-002	11.6	1.99	23.7	2.5	< 1
103438	SRW-003	13.1	2.18	23.5	2.5	< 1
103439	SRW-004	10	1.64	16.6	1.5	< 1
423515	SRW-005	14.4	1.72	7.2	0.7	< 1
423516	SRW-006	4.3	0.67	5.3	1.8	< 1
423517	SRW-007	12.5	2.18	23.2	2.7	< 1

Chem #	Sample	Yb	Lu	Hf	Та	W
101604	RW-022	54.3	7.37	86.7	9.5	5
101605	RW-023	11.8	1.98	20	1.3	< 1
101606	RW-024	20.8	3.01	59.9	6.8	3
101607	RW-025	69.7	9.32	158	17.7	7
101608	RW-026	62.8	8.59	112	13.7	6
101609	RW-027	63.1	7.96	16.7	5.1	< 1
101610	RW-028	53.3	7.54	143	12.5	4
101611	RW-029	29.1	3.74	19.8	3.6	< 1
101612	RW-030	36.6	5.2	36.2	4.6	< 1
101613	RW-031	14.6	2.26	17.1	2.1	< 1
101614	RW-032	33.7	5.08	14.9	3.4	< 1
101615	RW-033	31.1	4.43	62.8	8.7	4
101616	RW-109	88.7	12.4	162	16.5	6
101617	RW-110	22.2	3.05	38.2	4.4	2
101618	RW-111	20.3	2.72	44.7	5.9	2
101619	RW-112	50	6.98	161	18.6	7
101620	RW-113	302	39.6	13.1	4.3	4
101621	RW-114	40.9	5.62	9.5	2.2	< 1
101622	RW-115	424	54.7	18.7	3.2	5
103428	RW-118	22.4	3.96	14	3.2	< 1
103429	RW-119	18.2	2.89	28.1	2.8	2
103430	RW-120	285	39.6	550	44.9	19
103431	RW-121	93.2	12.9	235	23.7	9
103432	RW-122	68.9	9.73	140	13.8	6
103433	RW-123	138	18.4	60.7	19.8	3
103434	RW-124	266	37.4	738	81.1	33
103435	RW-125	34.7	5.17	53.3	8.3	1
103441	RW-038	23.4	3.37	15.5	5.5	< 1
103442	RW-039	48.9	6.87	74.5	21.4	9
103443	RW-040	31	4.41	32.3	5.9	1
104317	RW-100	32.5	5.07	55.1	5.4	< 1
104318	RW-101	7.3	1.01	14.5	3.3	2
104319	RW-102	5.1	0.88	10.8	24.1	< 1
104320	RW-103	12.6	1.78	49.6	11.9	2
104321	RW-104	3.4	0.66	2.6	0.5	13
104323	RW-106	2.5	0.44	2.5	1.9	< 1
104324	RW-107	54.7	6.48	9.3	4.1	< 1
104325	RW-108	150	20.2	468	58.9	26
104406	RW-001	243	32.6	452	41.6	16
104407	RW-002	67.3	9.67	171	15.4	10
104408	RW-003	72.4	10.4	188	19.8	8
104409	RW-004	101	14.1	223	23.5	11

Chem #	Sample	Yb	Lu	Hf	Та	W
104410	RW-005	19.6	3.17	29.1	2.9	< 1
104411	RW-006	127	16.9	268	30.9	12
104412	RW-007	239	32.1	551	48.3	23
104413	RW-009	97.4	13.7	262	29.6	13
104414	RW-010	60.5	8.69	156	11.3	5
104415	RW-011	294	36.8	331	37.1	11
104416	RW-012	55.6	8.01	160	18.5	6
104417	RW-013	218	31.2	718	87.1	39
104418	RW-014	160	21	326	33.6	11
104419	RW-015	31.1	4.85	55.7	6.2	1
104420	RW-016	92.5	12.6	265	29.2	10
104421	RW-017	75.9	10.2	162	16.6	6
104422	RW-018	34.5	4.82	60.9	7.6	2
104423	RW-019	3.7	0.58	5.2	1.2	< 1
104424	RW-020	49.6	7.32	75.4	6.5	3
104425	RW-021	7.5	1.17	6	1.1	< 1
423518	RW-041	37.7	5.56	70.5	8	2
423515	SRW-005	14.4	1.72	7.2	0.7	< 1
423516	SRW-006	4.3	0.67	5.3	1.8	< 1
423517	SRW-007	12.5	2.18	23.2	2.7	< 1

Chem #	Sample	TI	Pb	Th	U
474801	SZB-11-01	3.5	99	1010	21
474802	SZH-11-01	4.1	135	51.6	13.8
474803	BRH-11-01	0.2	95	152	36.3
474804	GRH-11-01	0.4	26	210	2.5
474805	CBB-11-02	0.7	546	172	131
474806	CBB-11-02	0.3	80	75.1	10.1
474807	CBB-11-03	0.3	605	100	46.3
474808	CBB-11-04	0.5	497	127	20.9
474809	CBB-11-05	0.2	163	99.2	22.3
423501	LL-001	0.8	115	45.6	13.2
423502	LL-002	0.5	20	10.5	2.8
423503	LL-003	0.8	52	13.1	3.5
423504	LL-004	1.3	64	30	27.1
423505	LL-005	1	29	7.7	3.2
423506	LL-006	0.8	683	167	68.8
423507	LL-007	1.4	110	55.4	25.3
423508	LL-008	2.1	20	52.8	12.7
423509	LL-009	0.9	256	1920	56.8
423510	LL-010	3.8	80	90.1	56.9
423511	LL-011	2.5	136	65.1	29
423512	LL-012	0.7	564	1190	204
423513	LL-013	3.6	228	81.5	35
104401	SL-001	0.3	7	12.6	4
104402	SL-002	1.1	117	42.5	10.6
104403	SL-003	0.7	57	7.1	3.9
104404	SL-004	1.1	8	34.3	9
104405	SL-005	1.1	27	22.8	6.4
423514	SL-009	0.6	61	6.7	1.4
104301	SL-201	1.2	94	34.2	10.9
104302	SL-202	0.8	25	10.1	2.8
104303	SL-203	0.8	27	15.8	3.9
104304	SL-204	0.5	22	14.4	3.9
104305	SL-205	1.4	56	20.2	6.5
104306	SL-206	0.6	24	10.1	1.7
104307	SL-207	0.9	40	20.8	4.9
103436	SRW-001	0.8	45	22.5	6.9
103437	SRW-002	0.7	95	16.3	4.8
103438	SRW-003	0.5	47	16.6	4.7
103439	SRW-004	0.6	40	10.8	2.6
423515	SRW-005	0.6	28	16.7	4.7
423516	SRW-006	0.6	66	13.8	4.3
423517	SRW-007	0.6	30	11.7	1.9

Chem #	Sample	TI	Pb	Th	U
101604	RW-022	1.1	83	21.1	8.1
101605	RW-023	1.4	27	17.1	2.2
101606	RW-024	0.9	14	7.7	2.9
101607	RW-025	1.4	74	8.9	6.5
101608	RW-026	1	47	14.7	10.5
101609	RW-027	0.6	253	38.9	25
101610	RW-028	0.8	16	10.9	4.3
101611	RW-029	0.3	79	988	29.2
101612	RW-030	0.4	171	30.5	10.5
101613	RW-031	0.6	29	16.2	2.9
101614	RW-032	0.2	148	5.7	5.4
101615	RW-033	0.5	47	22.4	6
101616	RW-109	1.1	34	22.9	8.8
101617	RW-110	1.2	52	20.3	5.4
101618	RW-111	0.5	17	7.8	1.5
101619	RW-112	1.3	20	5.2	2.7
101620	RW-113	0.8	615	183	57.5
101621	RW-114	0.3	198	190	16.1
101622	RW-115	0.5	637	156	118
103428	RW-118	0.2	46	10.1	3
103429	RW-119	0.6	27	28.1	1.1
103430	RW-120	1.8	91	25.6	26.3
103431	RW-121	0.8	44	13.1	6
103432	RW-122	1.2	42	7.5	11.6
103433	RW-123	0.4	992	25.1	28.3
103434	RW-124	0.9	127	99.3	19.5
103435	RW-125	0.6	41	11.4	10.9
103441	RW-038	0.8	80	43.6	12.5
103442	RW-039	1	111	4.3	8.1
103443	RW-040	0.9	93	35.6	11.6
104317	RW-100	1.5	113	37	8.1
104318	RW-101	1.2	52	171	11.9
104319	RW-102	0.4	76	344	23.9
104320	RW-103	0.9	35	136	9.4
104321	RW-104	0.6	12	146	8.1
104323	RW-106	1.1	64	1030	3.6
104324	RW-107	0.2	322	101	35.4
104325	RW-108	0.9	68	24.2	6.8
104406	RW-001	1	202	20.7	16.1
104407	RW-002	0.5	42	15.1	5
104408	RW-003	0.4	31	16.2	5.5
104409	RW-004	0.5	58	16.1	7.1

Chem#	Sample	TI	Pb	Th	U
104410	RW-005	0.7	45	16.5	3.4
104411	RW-006	0.6	765	14.4	16.6
104412	RW-007	0.6	229	17.4	12.5
104413	RW-009	0.7	50	11.8	6.6
104414	RW-010	1	22	8.7	6.2
104415	RW-011	1.9	155	29.9	43.6
104416	RW-012	0.9	38	11.2	3.8
104417	RW-013	0.8	82	20.1	12.3
104418	RW-014	0.8	102	18	26.1
104419	RW-015	0.6	77	13.1	3.9
104420	RW-016	1.4	60	13.5	9.1
104421	RW-017	1.1	92	12.2	7.7
104422	RW-018	0.8	78	16.2	7.6
104423	RW-019	1	25	12.2	3
104424	RW-020	0.3	19	6.9	3.9
104425	RW-021	1.6	17	4.4	0.8
423518	RW-041	0.5	101	10.3	8.9
423515	SRW-005	0.6	28	16.7	4.7
423516	SRW-006	0.6	66	13.8	4.3
423517	SRW-007	0.6	30	11.7	1.9

APPENDIX D- CHANNEL SAMPLE LITHOGEOCHEMISTRY RESULTS

CHEM#	CHANNEL	UTM E	UTM N	SAMPLE#	FROM (m)	TO (m)
104201	CBC-10-06a	531650	5996650	1	0	0.5
104202	CBC-10-06a	531650	5996650	2	0.5	0.9
104203	CBC-10-06a	531650	5996650	3	0.9	1.2
104204	CBC-10-06a	531650	5996650	4	1.2	1.5
104205	CBC-10-06a	531650	5996650	5	1.5	1.8
104206	CBC-10-06a	531650	5996650	6	1.8	2.2
104207	CBC-10-06a	531650	5996650	7	2.2	2.5
104208	CBC-10-06a	531650	5996650	8	2.5	3
104209	CBC-10-06a	531650	5996650	9	3	3.4
104210	CBC-10-06a	531650	5996650	10	3.4	3.9
104211	CBC-10-06a	531650	5996650	11	3.9	4.3
104212	CBC-10-06a	531650	5996650	12	4.3	4.8
104213	CBC-10-06a	531650	5996650	13	4.8	5.1
104214	CBC-10-06a	531650	5996650	14	5.1	5.4
104215	CBC-10-06a	531650	5996650	15	5.4	5.7
104216	CBC-10-06a	531650	5996650	16	5.7	6
104217	CBC-10-07	531645	5996620	1	0	0.4
104218	CBC-10-07	531645	5996620	2	0.4	0.9
104219	CBC-10-07	531645	5996620	3	0.9	1.1
104220	CBC-10-07	531645	5996620	4	1.1	1.5
104221	CBC-10-07	531645	5996620	5	1.5	1.9
104222	CBC-10-07	531645	5996620	6	1.9	2.4
104223	CBC-10-07	531645	5996620	7	2.4	2.7
104224	CBC-10-07	531645	5996620	8	2.7	3.3
104225	CBC-10-07	531645	5996620	9	3.3	3.7
104226	CBC-10-07	531645	5996620	10	3.7	4
104227	CBC-10-08	531571	5996447	1	0	0.5
104228	CBC-10-08	531571	5996447	2	0.5	0.65
104229	CBC-10-08	531571	5996447	3	0.65	0.85
104230	CBC-10-08	531571	5996447	4	0.85	1.1
104231	CBC-10-08	531571	5996447	5	1.1	1.4
104232	CBC-10-08	531571	5996447	6	1.4	1.7
104233	CBC-10-08	531571	5996447	7	1.7	2.1
104234	CBC-10-08	531571	5996447	8	2.1	2.4
104235	CBC-10-08	531571	5996447	9	2.4	2.7
104236	CBC-10-08	531571	5996447	10	2.7	3.1
104237	CBC-10-08	531571	5996447	11	3.1	3.5
104238	CBC-10-08	531571	5996447	12	3.5	3.9
104239	CBC-10-08	531571	5996447	13	3.9	4.2
104240	CBC-10-08	531571	5996447	14	4.2	5.1
104241	CBC-10-08	531571	5996447	15	5.1	5.35
104242	CBC-10-08	531571	5996447	16	5.35	5.7
104243	CBC-10-08	531571	5996447	17	5.7	6
104244	CBC-10-08	531571	5996447	18	6	6.3
104245	CBC-10-08	531571	5996447	19	6.3	6.65
104246	CBC-10-08	531571	5996447	20	6.65	7

CHEM #	CHANNEL	UTM E	UTM N	SAMPLE#	FROM (m)	TO (m)
104247	CBC-10-08	531571	5996447	21	7	7.35
104248	CBC-10-08	531571	5996447	22	7.35	7.65
104249	CBC-10-08	531571	5996447	23	7.65	8
104250	CBC-10-08	531571	5996447	24	8	8.4
104251	CBC-10-08	531571	5996447	25	8.4	8.8
104252	CBC-10-08	531571	5996447	26	8.8	9.1
104253	CBC-10-08	531571	5996447	27	9.1	9.2
104254	CBC-10-09	531785	5996591	1	0	0.25
104255	CBC-10-09	531785	5996591	2	0.25	0.45
104256	CBC-10-09	531785	5996591	3	0.45	0.9
104257	CBC-10-09	531785	5996591	4	0.9	1.3
104258	CBC-10-09	531785	5996591	5	13	1.6
104259	CBC-10-09	531785	5996591	6	1.6	1.9
104260	CBC-10-09	531785	5996591	7	1.9	2.2
104261	CBC-10-09	531785	5996591	8	2.2	2.5
104262	CBC-10-09	531785	5996591	9	2.5	3.1
104263	CBC-10-09	531785	5996591	10	3.1	3.5
104264	CBC-10-09	531785	5996591	11	3.5	3.8
104265	CBC-10-09	531785	5996591	12	3.8	4.2
104266	CBC-10-09	531785	5996591	13	4.2	4.6
104267	CBC-10-09	531785	5996591	14	4.6	4.9
104268	CBC-10-09	531785	5996591	15	4.9	5.2
104269	CBC-10-10	531898	5996679	1	0	0.2
104270	CBC-10-10	531898	5996679	2	0.2	0.85
104271	CBC-10-10	531898	5996679	3	0.85	1.15
104272	CBC-10-10	531898	5996679	4	1.15	1.3
104273	CBC-10-10	531898	5996679	5	1.3	1.6
104274	CBC-10-10	531898	5996679	6	1.6	1.85
104275	CBC-10-10	531898	5996679	7	1.85	2.3
104276	CBC-10-10	531898	5996679	8	2.3	2.5
104277	CBC-10-10	531898	5996679	9	2.5	2.8
104278	CBC-10-10	531898	5996679	10	2.8	3.1
104279	CBC-10-10	531898	5996679	11	3.1	3.5
104280	CBC-10-10	531898	5996679	12	3.5	4
104281	CBC-10-10	531898	5996679	13	4	4.3
104282	CBC-10-10	531898	5996679	14	4.3	4.4
104283	CBC-10-10	531898		15	4.4	4.7
104284	CBC-10-10	531898	5996679	16	4.7	5.1
104285	CBC-10-10	531898	5996679	17	5.1	5.4
104286	CBC-10-10	531898		18		5.8
104287	CBC-10-10	531898	5996679	19	5.8	6
104288	CBC-10-11b	531900		6	2	2.25
104289	CBC-10-11b	531900		7	2.25	2.5
104290	CBC-10-11b	531900		8	2.5	2.8
104291	CBC-10-11b	531900		9	2.8	3.1
104292	CBC-10-11b	531900	5996816	10	3.1	3.4

CHEM #	CHANNEL	UTM E	UTM N	SAMPLE#	FROM (m)	TO (m)
104293	CBC-10-11b	531900	5996816	11	3.4	3.6
104294	CBC-10-11b	531900	5996816	12	3.6	4
104295	CBC-10-11b	531900	5996816	13	4	4.4
104296	CBC-10-11b	531900	5996816	14	4.4	5
104297	CBC-10-11b	531900		15	5	5.5
104298	CBC-10-11b	531900		16	5.5	6.1
104299	CBC-10-11b	531900		17	6.1	6.5
104300	CBC-10-11b	531900		18	6.5	6.75
104326	CBC-10-11b	531900		19	6.75	7.1
104327	CBC-10-11b	531900		20	7.1	7.5
104328	CBC-10-11b	531900	5996816	21	7.5	8.1
104329	CBC-10-11b	531900	5996816	22	8.1	8.4
104330	CBC-10-11b	531900		23	8.4	8.8
104331	CBC-10-11b	531900	5996816	24	8.8	9.1
104331	CBC-10-11b	531900		25	9.1	9.3
104332	CBC-10-11b	531900		26	9.3	9.55
104333	CBC-10-11b	531900	5996816	27	9.55	9.65
104334	CBC-10-11b	531900		28	9.65	9.03
104336	CBC-10-11b	531900		29	9.9	10.15
104337	CBC-10-11b	531900		30	10.15	10.4
104338	CBC-10-11b	531900		31	10.4	10.8
104339	CBC-10-11b	531900		32	10.8	11
104340	CBC-10-11b	531900		33	11	11.05
104341	CBC-10-11b	531900	5996816	34	11.05	11.2
104342	CBC-10-11b	531900	5996816	35	11.2	11.45
104343	CBC-10-11b	531900		36	11.45	11.6
104344	CBC-10-11b	531900		37	11.6	12.1
104345	CBC-10-11b	531900		38	12.1	12.7
104346	CBC-10-11b	531900		39	12.7	13.1
104347	CBC-10-11b	531900		40	13.1	13.4
104348	CBC-10-11b	531900		41	13.4	13.5
416155	CBC-10-11a	531900		1	0	0.35
416156	CBC-10-11a	531900		2	0.35	0.7
416157	CBC-10-11a	531900	5996816	3	0.7	1
416158	CBC-10-11a	531900	5996816	4	1	1.2
416159	CBC-10-11a	531900		5	1.2	1.6
416160	CBC-10-11a	531900		6	1.6	2
416161	CBC-10-11a	531900	5996816	7	2	2.35
416162	CBC-10-11a	531900	5996816	8	2.35	2.8
416163	CBC-10-11a	531900	5996816	9	2.8	3.25
416164	CBC-10-11a	531900	5996816	10	3.25	3.75
416165	CBC-10-11a	531900	5996816	11	3.75	4.3
416166	CBC-10-11a	531900	5996816	12	4.3	4.55
416167	CBC-10-11a	531900	5996816	13	4.55	4.85
416168	CBC-10-11a	531900	5996816	14	4.85	5.2
416169	CBC-10-11a	531900	5996816	15	5.2	5.55

CHEM#	CHANNEL	UTM E	UTM N	SAMPLE#	FROM (m)	TO (m)
416170	CBC-10-11a	531900	5996816	16	5.55	5.85
416171	CBC-10-12	531946	5996797	1	0	0.2
416172	CBC-10-12	531946	5996797	2	0.2	0.4
416173	CBC-10-12	531946	5996797	3	0.4	0.7
416174	CBC-10-12	531946	5996797	4	0.7	1
416175	CBC-10-12	531946	5996797	5	1	1.35
416176	CBC-10-12	531946	5996797	6		1.7
416177	CBC-10-12	531946	5996797	7	1.7	1.9
416178	CBC-10-12	531946	5996797	8	1.9	2.4
416179	CBC-10-12	531946	5996797	9	2.4	2.9
416180	CBC-10-12	531946	5996797	10	2.9	3.3
416181	CBC-10-12	531946	5996797	11	3.3	3.7
416182	CBC-10-12	531946	5996797	12	3.7	4.4
416183	CBC-10-12	531946	5996797	13	4.4	4.6
416184	CBC-10-12	531946	5996797	14	4.6	4.8
416185	CBC-10-12	531946	5996797	15	4.8	5.2
416186	CBC-10-12	531946	5996797	16	5.2	5.5
416187	CBC-10-12	531946	5996797	17	5.5	5.8
416188	CBC-10-13	531984	5996787	1	0	0.5
416189	CBC-10-13	531984	5996787	2	0.5	0.8
416190	CBC-10-13	531984	5996787	3	0.8	1
416191	CBC-10-13	531984	5996787	4	1	1.3
416192	CBC-10-13	531984	5996787	5	1.3	1.6
416193	CBC-10-13	531984	5996787	6	1.6	1.9
416194	CBC-10-13	531984	5996787	7	1.9	2.1
416195	CBC-10-13	531984	5996787	8	2.1	2.3
416196	CBC-10-13	531984	5996787	9	2.3	2.6
416197	CBC-10-13	531984	5996787	10	2.6	2.9
416198	CBC-10-13	531984	5996787	11	2.9	3.3
416199	CBC-10-13	531984	5996787	12	3.3	3.8
416200	CBC-10-13	531984	5996787	13	3.8	4.2
416201	CBC-10-14	531987	5991787	1	0	0.2
416202	CBC-10-14	531987	5991787	2	0.2	0.4
416203	CBC-10-14	531987	5991787	3	0.4	0.6
416204	CBC-10-14	531987	5991787	4	0.6	0.9
416205	CBC-10-14	531987	5991787	5	0.9	1.3
416206	CBC-10-14	531987	5991787	6	1.3	1.5
416207	CBC-10-14	531987	5991787	7		1.6
416208	CBC-10-14	531987	5991787	8		2
416209	CBC-10-14	531987	5991787	9	2	2.4
416210	CBC-10-14	531987	5991787	10	2.4	2.7
416211	CBC-10-14	531987	5991787	11		2.85
416212	CBC-10-14	531987	5991787	12		3.2
416213	CBC-10-14	531987	5991787	13	3.2	3.6
416214	CBC-10-14	531987	5991787	14		4
416215	CBC-10-14	531987	5991787	15	4	4.4

CHEM#	CHANNEL	UTM E	UTM N	SAMPLE#	FROM (m)	TO (m)
416216	CBC-10-14	531987	5991787	16	4.4	4.7
416217	CBC-10-14	531987	5991787	17	4.7	5
416218	CBC-10-14	531987	5991787	18	5	5.3
416219	CBC-10-14	531987	5991787	19	5.3	5.6
416220	CBC-10-14	531987	5991787	20	5.6	5.8
416221	CBC-10-14	531987	5991787	21	5.8	6.1
416222	CBC-10-14	531987	5991787	22	6.1	6.4
416223	CBC-10-14	531987	5991787	23	6.4	6.6
416224	CBC-10-14	531987	5991787	24	6.6	6.8
416225	CBC-10-14	531987	5991787	25	6.8	7.3
416226	CBC-10-15	532000	5996817	1	0	0.3
416227	CBC-10-15	532000	5996817	2	0.3	0.6
416228	CBC-10-15	532000	5996817	3	0.6	1
416229	CBC-10-15	532000	5996817	4	1	1.4
416230	CBC-10-15	532000	5996817	5	1.4	1.8
416231	CBC-10-15	532000	5996817	6	1.8	2.2
416232	CBC-10-15	532000	5996817	7	2.2	2.4
416233	CBC-10-15	532000	5996817	8	2.4	2.5
416234	CBC-10-15	532000	5996817	9	2.5	2.9
416235	CBC-10-15	532000	5996817	10	2.9	3.1
416236	CBC-10-15	532000	5996817	11	3.1	3.4
416237	CBC-10-15	532000	5996817	12	3.4	3.7
416238	CBC-10-15	532000	5996817	13	3.7	4
416239	CBC-10-15	532000	5996817	14	4	4.3
416240	CBC-10-15	532000	5996817	15	4.3	4.6
416241	CBC-10-15	532000	5996817	16	4.6	4.9
416242	CBC-10-15	532000	5996817	17	4.9	5.3
416243	CBC-10-15	532000	5996817	18	5.3	5.7
416244	CBC-10-16	532016	5996815	1	0	0.45
416245	CBC-10-16	532016	5996815	2	0.45	0.9
416246	CBC-10-16	532016	5996815	3	0.9	1.2
416247	CBC-10-16	532016	5996815	4	1.2	1.5
416248	CBC-10-16	532016	5996815	5	1.5	1.9
416249	CBC-10-16	532016	5996815	6	1.9	2.1
416250	CBC-10-16	532016	5996815	7	2.1	2.6
416251	CBC-10-16	532016	5996815	8	2.6	3
416252	CBC-10-16	532016	5996815	9	3	3.3
416253	CBC-10-16	532016	5996815	10	3.3	3.65
416254	CBC-10-16	532016	5996815	11	3.65	4
416255	CBC-10-16	532016	5996815	12	4	4.4
416256	CBC-10-16	532016	5996815	13	4.4	4.8
416257	CBC-10-16	532016	5996815	14	4.8	5.25
416258	CBC-10-16	532016	5996815	15	5.25	5.7
416259	CBC-10-16	532016	5996815	16	5.7	6.1
416260	CBC-10-16	532016	5996815	17	6.1	6.5
416261	CBC-10-16	532016	5996815	18	6.5	6.8

CHEM #	CHANNEL	UTM E	UTM N	SAMPLE#	FROM (m)	TO (m)
416262	CBC-10-16	532016	5996815	19	6.8	7
416263	CBC-10-18a	531950	5996812	1	0	0.3
416264	CBC-10-18a	531950	5996812	2	0.3	0.6
416265	CBC-10-18a	531950	5996812	3	0.6	1
416266	CBC-10-18a	531950	5996812	4	1	1.3
416267	CBC-10-18a	531950	5996812	5	1.3	1.7
416268	CBC-10-18a	531950	5996812	6	1.7	1.95
416269	CBC-10-18a	531950	5996812	7	1.95	2.2
416270	CBC-10-18a	531950	5996812	8	2.2	2.6
416271	CBC-10-18a	531950	5996812	9	2.6	3
416272	CBC-10-18a	531950	5996812	10	3	3.4
416273	CBC-10-18a	531950	5996812	11	3.4	3.8
416274	CBC-10-18a	531950	5996812	12	3.8	4.2
416275	CBC-10-18a	531950	5996812	13	4.2	4.6
416276	CBC-10-18a	531950	5996812	14	4.6	5
416277	CBC-10-18b	531950	5996812	1	0	0.3
416278	CBC-10-18b	531950	5996812	2	0.3	0.55
416279	CBC-10-18b	531950	5996812	3	0.55	0.8
416280	CBC-10-18b	531950	5996812	4	0.8	1
416782	MBC-10-01	531000	5997000	1	0	0.25
416783	MBC-10-01	531000	5997000	2	0.25	0.38
416784	MBC-10-01	531000	5997000	3	0.38	0.48
416785	MBC-10-01	531000	5997000	4	0.48	0.65
416786	MBC-10-01	531000	5997000	5	0.65	0.85
416787	MBC-10-01	531000	5997000	6	0.85	1.05
416788	MBC-10-01	531000	5997000	7	1.05	1.25
416789	MBC-10-01	531000	5997000	8	1.25	1.35
416790	MBC-10-01	531000	5997000	9	1.35	1.55
416791	MBC-10-01	531000	5997000	10	1.55	1.75
416792	MBC-10-01	531000	5997000	11	1.75	1.95
416793	MBC-10-01	531000	5997000	12	1.95	2.2
416794	MBC-10-01	531000	5997000	13	2.2	2.4
416795	MBC-10-01	531000	5997000	14	2.4	2.6
416796	MBC-10-01	531000	5997000	15	2.6	2.8
416797	MBC-10-01	531000	5997000	16	2.8	3.1
416798	MBC-10-01	531000	5997000	17	3.1	3.4
423637	CBC-10-01	531813	5996691	1	0	0.7
423638	CBC-10-01	531813	5996691	2	0.7	1.12
423639	CBC-10-01	531813	5996691	3	1.12	1.4
423640	CBC-10-01	531813	5996691	4	1.4	1.7
423641	CBC-10-01	531813	5996691	5	1.7	2.16
423642	CBC-10-01	531813	5996691	6	2.16	2.48
423643	CBC-10-01	531813	5996691	7	2.48	2.85
423644	CBC-10-01	531813	5996691	8	2.85	3.05
423645	CBC-10-01	531813	5996691	9	3.05	3.38
423646	CBC-10-01	531813	5996691	10	3.38	3.79

CHEM#	CHANNEL	UTM E	UTM N	SAMPLE#	FROM (m)	TO (m)
423647	CBC-10-01	531813	5996691	11	3.79	4.55
423648	CBC-10-01	531813	5996691	12	4.55	4.84
423649	CBC-10-01	531813	5996691	13	4.84	5.43
423666	CBC-10-02	531769	5996692	1	0	0.28
423667	CBC-10-02	531769		2	0.28	1.01
423668	CBC-10-02	531769	5996692	3	1.01	1.4
423669	CBC-10-02	531769	5996692	4	1.4	1.61
423670	CBC-10-02	531769		5	1.61	2.2
423671	CBC-10-02	531769	5996692	6	2.2	2.72
423672	CBC-10-02	531769		7	2.72	3.36
423673	CBC-10-02	531769	5996692	8	3.36	3.72
423674	CBC-10-02	531769	5996692	9	3.72	4.15
423675	CBC-10-02	531769		10	4.15	4.53
423676	CBC-10-02	531769	5996692	11	4.53	5.03
423677	CBC-10-02	531769	5996692	12	5.03	5.51
423678	CBC-10-02	531769		13	5.51	6.3
423679	CBC-10-02	531786	5990729	13	0	0.5
423679	CBC-10-03	531786		2	0.6	1.1
				3		
423681	CBC-10-03	531786			1.1	1.59
423682	CBC-10-03	531786		4	1.59	2.25
423683	CBC-10-03	531786		5	2.25	2.52
423684	CBC-10-03	531786	5990729	6	2.52	2.84
423685	CBC-10-03	531786	5990729	7	2.84	3.13
423686	CBC-10-03	531786	5990729	8	3.13	3.48
423687	CBC-10-03	531786		9	3.48	4.14
423688	CBC-10-03	531786		10	4.14	4.34
423689	CBC-10-03	531786		11	4.34	4.94
423690	CBC-10-03	531786	5990729	12	4.94	5.37
423691	CBC-10-03	531786		13	5.37	5.84
423692	CBC-10-03	531786		14	5.84	6.34
423693	CBC-10-03	531786		15	6.34	6.66
423694	CBC-10-03	531786		16	6.66	6.86
423695	CBC-10-03	531786		17	6.86	7.06
423708	CBC-10-04	531727		1		
423709	CBC-10-04	531727	5996756	2	0.35	0.7
423710	CBC-10-04	531727		3	0.7	1.26
423711	CBC-10-04	531727	5996756	4	1.26	1.68
423712	CBC-10-04	531727	5996756	5	1.68	2.24
423713	CBC-10-04	531727	5996756	6	2.24	2.62
423714	CBC-10-04	531727	5996756	7	2.62	2.78
423715	CBC-10-04	531727	5996756	8	2.78	2.98
423716	CBC-10-04	531727	5996756	9	2.98	3.1
423717	CBC-10-04	531727	5996756	10	3.1	3.8
423718	CBC-10-04	531727	5996756	11	3.8	4.3
423719	CBC-10-04	531727	5996756	12	4.3	4.9
423720	CBC-10-04	531727	5996756	13	4.9	5.25

CHEM#	CHANNEL	UTM E	UTM N	SAMPLE#	FROM (m)	TO (m)
423721	CBC-10-05	531723	5996755	1	0	0.51
423722	CBC-10-05	531723	5996755	2	0.51	0.72
423723	CBC-10-05	531723	5996755	3	0.72	0.93
423724	CBC-10-05	531723	5996755	4	0.93	1.2
423725	CBC-10-05	531723	5996755	5	1.2	1.6
423726	CBC-10-05	531723	5996755	6	1.6	1.93
423727	CBC-10-05	531723	5996755	7	1.93	2.21
423728	CBC-10-05	531723	5996755	8	2.21	2.37
423729	CBC-10-05	531723	5996755	9	2.37	2.81
423730	CBC-10-05	531723	5996755	10	2.81	3.16
423731	CBC-10-05	531723	5996755	11	3.16	3.6
423732	CBC-10-05	531723	5996755	12	3.6	3.91
423733	CBC-10-05	531723	5996755	13	3.91	4.43
423734	CBC-10-05	531723	5996755	14	4.43	4.81
423735	CBC-10-05	531723	5996755	15	4.81	5.1
423736	CBC-10-05	531723	5996755	16	5.1	5.18
423737	CBC-10-05	531723	5996755	17	5.18	5.53
423738	CBC-10-05	531723	5996755	18	5.53	5.84
423739	CBC-10-05	531723	5996755	19	5.84	6.32
423740	CBC-10-05	531723	5996755	20	6.32	6.71
423746	CBC-10-11b	531900	5996816	1	0	0.6
423747	CBC-10-11b	531900	5996816	2	0.6	0.9
423748	CBC-10-11b	531900	5996816	3	0.9	1.4
423749	CBC-10-11b	531900	5996816	4	53.64	1.7
423750	CBC-10-11b	531900	5996816	5	1.7	2
474120	MBC-11-02	531703	5997519	1	0	0.6
474121	MBC-11-02	531703	5997519	2	0.6	0.87
474122	MBC-11-02	531703	5997519	3	0.87	1.35
474123	MBC-11-02	531703	5997519	4	1.35	1.65
474124	MBC-11-02	531703	5997519	5	1.65	2.12
474125	MBC-11-02	531703	5997519	6	2.12	2.3
474126	MBC-11-02	531703	5997519	7	2.3	2.62
474127	MBC-11-02	531703	5997519	8	2.62	2.9
474128	MBC-11-03	531709	5997498	1	0	0.18
474129	MBC-11-03	531709	5997498	2	0.18	0.32
474130	MBC-11-03	531709	5997498	3	0.32	1
474131	MBC-11-03	531709	5997498	4	1	1.68
474132	MBC-11-03	531709	5997498	5	1.68	1.82
474133	MBC-11-03	531709	5997498	6	1.82	2.2
474134	MBC-11-03	531709	5997498	7	2.2	3
474135	MBC-11-04	531729	5997425	1	0	0.17
474136	MBC-11-04	531729	5997425	2	0.17	1.1
474137	MBC-11-04	531729	5997425	3	1.1	1.5
474138	MBC-11-04	531729	5997425	4	1.5	1.98
474139	MBC-11-04	531729	5997425	5	1.98	2.35
474140	MBC-11-04	531729	5997425	6	2.35	2.64

CHEM #	CHANNEL	UTM E	UTM N	SAMPLE#	FROM (m)	TO (m)
474141	MBC-11-04	531729	5997425	7	2.64	3.23
474142	MBC-11-04	531729	5997425	8	3.23	3.6
474143	MBC-11-04	531729	5997425	9	3.6	3.78
474144	MBC-11-02B	531703	5997519	1	0	0.72
474145	MBC-11-02B	531703	5997519	2	0.72	1.72
474146	MBC-11-02B	531703	5997519	3	1.72	2.05
474147	MBC-11-02B	531703	5997519	4	2.05	2.85
474148	MBC-11-02B	531703	5997519	5	2.85	3
474149	MBC-11-05	531703	5997469	1	0	0.1
474150	MBC-11-05	531703	5997469	2	0.1	0.5
474151	MBC-11-05	531703	5997469	3	0.5	0.9
474152	MBC-11-05	531703	5997469	4	0.9	1.12
474153	MBC-11-05	531703	5997469	5	1.12	1.63
474154	MBC-11-05	531703	5997469	6	1.63	1.98
474155	MBC-11-05	531703	5997469	7	1.98	2.45
474156	MBC-11-06	531723	5997447	1	0	0.71
474157	MBC-11-06	531723	5997447	2	0.71	0.93
474158	MBC-11-06	531723	5997447	3	0.93	1.67
474159	MBC-11-06	531723	5997447	4	1.67	1.81
474160	MBC-11-06	531723	5997447	5	1.81	2.56
474161	MBC-11-06	531723	5997447	6	2.56	3.31
474162	MBC-11-06	531723	5997447	7	3.31	4.56
474163	MBC-11-06	531723	5997447	8	4.56	5.13
474164	MBC-11-09	531695	5997437	1	0	0.6
474165	MBC-11-09	531695	5997437	2	0.6	1.2
474166	MBC-11-09	531695	5997437	3	1.2	1.95
474167	MBC-11-10B	531792	5997434	1	0	0.35
474168	MBC-11-10B	531792	5997434	2	0.35	0.5
474169	MBC-11-10B	531792	5997434	3	0.5	0.8
474170	MBC-11-10B	531792	5997434	4	0.8	1.25
474171	MBC-11-10A	531790	5997434	1	0	0.31
474172	MBC-11-10A	531790	5997434	2	0.31	0.82
474173	MBC-11-10A	531790	5997434	3	0.82	1.1
474174	MBC-11-10A	531790	5997434	4	1.1	1.85
474175	MBC-11-01	531371	5997230	1	0	1
474176	MBC-11-01	531371	5997230	2	1	1.5
474177	MBC-11-01	531371	5997230	3	1.5	2.5
474178	MBC-11-01	531371	5997230	4	2.5	2.9
474179	MBC-11-01	531371	5997230	5	2.9	3.79
474180	MBC-11-01	531371	5997230	6	3.79	4.75
474181	MBC-11-01	531371	5997230	7	4.75	5.15
474182	MBC-11-01	531371	5997230	8	5.15	5.47
474183	MBC-11-01	531371	5997230	9	5.47	6.4
474184	MBC-11-01	531371	5997230	10	6.4	7.1
474185	MBC-11-01	531371		11	7.1	7.35
474186	MBC-11-01	531371	5997230	12	7.35	8.4

CHEM#	CHANNEL	UTM E	UTM N	SAMPLE#	FROM (m)	TO (m)
474187	MBC-11-01	531371	5997230	13	8.4	8.55
474188	MBC-11-08	531223	5997300	1	0	1
474189	MBC-11-08	531223	5997300	2	1	2
474190	MBC-11-08	531223	5997300	3	2	2.78
474191	MBC-11-08	531223	5997300	4	2.78	3.78
474192	MBC-11-08	531223	5997300	5	3.78	4.48
474193	CBC-11-01	531149	5996986	1	0	1
474194	CBC-11-01	531149	5996986	2	1	1.75
474195	CBC-11-01	531149	5996986	3	1.75	2.35
474196	CBC-11-01	531149	5996986	4	2.35	3
474197	CBC-11-01	531149	5996986	5	3	3.8
474198	CBC-11-01	531149	5996986	6	3.93	4.25
474199	CBC-11-01	531149	5996986	7	4.25	5
474200	CBC-11-01	531149	5996986	8	5	5.93
474201	CBC-11-02	532040	5996987	1	0	0.35
474202	CBC-11-02	532040	5996987	2	0.35	0.6
474203	CBC-11-02	532040	5996987	3	0.6	1.5
474204	CBC-11-02	532040	5996987	4	1.5	1.8
474205	CBC-11-02	532040	5996987	5	1.8	2.5
474206	CBC-11-02	532040	5996987	6	2.5	2.9
474207	CBC-11-03	532015	5997008	1	0	1
474208	CBC-11-03	532015	5997008	2	1	2.08
474209	CBC-11-03	532015	5997008	3	2.08	2.21
474210	CBC-11-09	532920	5996986	1	0	0.86
474211	CBC-11-09	532920	5996986	2	0.86	1.72
474212	CBC-11-09	532920	5996986	3	1.72	1.83
474213	CBC-11-09	532920	5996986	4	1.83	2.67
474214	CBC-11-09	532920	5996986	5	2.67	3.51
474215	CBC-11-09	532920	5996986	6	3.51	4.21
474216	CBC-11-09	532920	5996986	7	4.21	4.96
474217	CBC-11-05	532920	5996986	1	0	0.5
474218	CBC-11-05	532920	5996986	2	0.5	0.83
474219	CBC-11-05	532920	5996986	3	0.83	1.55
474220	CBC-11-05	532920	5996986	4	1.55	1.7
474221	CBC-11-05	532920	5996986	5	1.7	2.2
474222	CBC-11-05	532920	5996986	6	2.2	2.4
474223	CBC-11-07a	532920	5996986	1	0	0.23
474224	CBC-11-07a	532920	5996986	2	0.23	0.9
474225	CBC-11-07a	532920	5996986	3	0.9	0.95
474226	CBC-11-07a	532920	5996986	4	0.95	1.95
474227	CBC-11-07a	531939	5996947	5	1.95	2.42
474228	CBC-11-07a	531939	5996947	6	2.42	2.66
474229	CBC-11-07a	531939	5996947	7	2.66	2.8
474230	CBC-11-07b	531939	5996947	4	0	0.62
474231	CBC-11-07b	531939	5996947	5	0.62	1.23
474232	CBC-11-06	531971	5996892	1	0	0.35

CHEM#	CHANNEL	UTM E	UTM N	SAMPLE#	FROM (m)	TO (m)
474233	CBC-11-06	531971	5996892	2	0.35	0.45
474234	CBC-11-06	531971	5996892	3	0.45	1
474235	CBC-11-06	531971	5996892	4	1	1.1
474236	CBC-11-06	531971	5996892	5	1.1	1.5
474237	CBC-11-06	531971	5996892	6	1.5	1.8
474238	CBC-11-06	531971	5996892	7	1.8	1.95
474239	CBC-11-06	531971	5996892	8	1.95	2.55
474240	CBC-11-06	531971	5996892	9	2.55	2.65
474241	CBC-11-06	531971	5996892	10	2.65	2.9
474242	CBC-11-10	531971	5996892	10	0	0.5
474243	CBC-11-10	532019	5996897	1	0.5	1.07
474244	CBC-11-10	532019	5996897	2	1.07	1.35
474245	CBC-11-10	532019	5996897	3	1.35	2
474246	CBC-11-10	532019	5996897	4	2	2.5
474247	CBC-11-04	532019	5996897	1	0	0.86
474248	CBC-11-04	532019	5996897	2	0.86	1.72
474249	CBC-11-04	532019	5996897	3	1.72	1.83
474250	CBC-11-04	532019	5996897	4	1.83	2.67
474251	CBC-11-04	532019	5996897	5	2.67	3.51
474252	CBC-11-04	532202	5997066	6	3.51	4.21
474253	CBC-11-04	532202	5997066	7	4.21	4.96
474254	CBC-11-04	532202	5997066	8	4.96	5.49
474255	CBC-11-04	532202	5997066	9	5.49	6
474256	CBC-11-04	532079	5997033	10	6	6.7
474257	CBC-11-04	532079	5997033	11	6.7	7.68
474258	CBC-11-04	532079	5997033	12	7.68	8.2
474259	CBC-11-04	532079	5997033	13	8.2	9.18
474260	CBC-11-04	532079	5997033	14	9.18	10.16
474261	CBC-11-04	532079	5997033	15	10.16	10.3
474262	CBC-11-04	532079	5997033	16	10.3	10.75
474263	CBC-11-04	532079	5997033	17	10.75	11
474264	CBC-11-08	532079	5997033	1	0	0.59
474265	CBC-11-08	532079	5997033	2	0.59	1.5
474266	CBC-11-08	532079	5997033	3	1.5	2.5
474267	CBC-11-08	532079	5997033	4	2.5	3.5
474268	CBC-11-11	532079	5997033	1	0	1
474269	CBC-11-11	532079	5997033	2	1	1.63
474270	CBC-11-11	532079	5997033	3	1.63	2.63
474271	CBC-11-11	532053	5997025	4	2.63	3.63
474272	CBC-11-11	532053	5997025	5	3.63	4.58
474273	CBC-11-09b	532053	5997025	3	0	0.98
474274	CBC-11-09b	532053		4		1.53
474275	CBC-11-09b	532053	5997025	5	1.53	2.08
474276	CBC-11-09b	532149	5996986	1		2.26
474277	CBC-11-09b	532149	5996986	2		3.05
474278	CBC-11-09b	532149	5996986	3	3.05	3.85

CHEM #	CHANNEL	UTM E	UTM N	SAMPLE#	FROM (m)	TO (m)
474279	CBC-11-09b	532149	5996986	4	3.85	4.32
474280	CBC-11-09b	532149	5996986	5	4.32	4.96
474281	SZC-11-04	529567	5997518	1	0	0.44
474282	SZC-11-04	529567	5997518	2	0.44	0.59
474283	SZC-11-04	529567	5997518	3		0.77
474284	SZC-11-04	529567	5997518	4	0.77	1.75
474285	SZC-11-04	529567	5997518	5	1.75	2.03
474286	SZC-11-04	529567	5997518	6		
474287	SZC-11-04	529567	5997518	7	2.5	2.72
474288	SZC-11-15a	529210	5997517	1	0	0.19
474289	SZC-11-15a	529210	5997517	2		0.22
474290	SZC-11-15a	529210	5997517	3		0.36
474291	SZC-11-15b	529210	5997517	4	0.22	0.2
474292	SZC-11-15b	529210	5997517	5	•	0.24
474293	SZC-11-15b	529210	5997517	6	0.24	0.36
474294	SZC-11-15c	529210	5997517	7	0.24	0.2
474295	SZC-11-15c	529210	5997517	8		0.23
474296	SZC-11-15c	529210	5997517	9	0.23	0.42
474297	SZC-11-05	529557	5997533	1	0.23	0.52
474298	SZC-11-05	529557	5997533	2	0.52	1.22
474299	SZC-11-05	529557	5997533	3		2.16
474233	SZC-11-05	529557	5997533	4	2.16	2.49
474301	SZC-11-05	529557	5997533	5		3.02
474301	SZC-11-05	529557	5997533	6		3.65
474303	SZC-11-09	529406	5997416	1	0	
474304	SZC-11-09	529406	5997416	2	0.49	1.07
474305	SZC-11-09	529406	5997416	3		1.65
474305	SZC-11-09	529406		4	1.65	2.42
474307	SZC-11-09	529406		5	2.42	3.19
474307	SZC-11-09	529406	5997416	6		3.19
474308	SZC-11-09	529406		7	3.52	4.02
474309	SZC-11-09 SZC-11-09	529406	5997416	8		4.02
474310	SZC-11-09 SZC-11-09	529406		9		_
474311	SZC-11-09	529406		10		
474312	SZC-11-09 SZC-11-09	529406		10		6.25
474313	SZC-11-09 SZC-11-09	529406		12		
474314	SZC-11-09 SZC-11-09	529406		13		
	SZC-11-09 SZC-11-02b					
474316 474317	SZC-11-02b	529573 529573		2	0.77	0.77 1.05
474318	SZC-11-02b	529573		3		1.8
474319	SZC-11-02b	529573	5997690	4		
474320	SZC-11-02b	529573	5997690	5		2.68
474321	SZC-11-03a	529589		1		
474322	SZC-11-03a	529589		2		1.16
474323	SZC-11-03a	529589		3		
474324	SZC-11-03a	529589	5997647	4	1.85	2.36

CHEM#	CHANNEL	UTM E	UTM N	SAMPLE#	FROM (m)	TO (m)
474325	SZC-11-03a	529589	5997647	5	2.36	2.78
474326	SZC-11-03b	529589	5997647	1	0	0.86
474327	SZC-11-03b	529589	5997647	2	0.86	1.72
474328	SZC-11-03b	529589	5997647	3	1.72	2.58
474329	SZC-11-03b	529589	5997647	4	2.58	2.8
474330	SZC-11-06	529225	5997513	1	0	0.75
474331	SZC-11-06	529225	5997513	2	0.75	1.7
474332	SZC-11-06	529225	5997513	3	1.7	2.5
474333	SZC-11-06	529225	5997513	4	2.5	3.25
474334	SZC-11-06	529225	5997513	5	3.25	4
474335	SZC-11-06	529225	5997513	6	4	4.75
474336	SZC-11-06	529225	5997513	7	4.75	5.15
474337	SZC-11-07	529552	5997557	1	0	0.78
474338	SZC-11-07	529552	5997557	2	0.78	1.56
474339	SZC-11-07	529552	5997557	3	1.56	2.35
474340	SZC-11-07	529552	5997557	4	2.35	3.14
474341	SZC-11-07	529552	5997557	5	3.14	3.36
474342	SZC-11-07	529552	5997557	6	3.36	3.82
474343	SZC-11-08	529573	5997501	1	0	0.69
474344	SZC-11-08	529573	5997501	2	0.69	1.05
474345	SZC-11-08	529573	5997501	3	1.05	1.89
474346	SZC-11-08	529573	5997501	4	1.89	3.3
474347	SZC-11-08	529573	5997501	5	3.3	4.11
474348	SZC-11-10	529411	5997466	1	0	0.45
474349	SZC-11-10	529411	5997466	2	0.45	0.75
474350	SZC-11-10	529411	5997466	3	0.75	1.29
474351	SZC-11-10	529411	5997466	4	1.29	1.82
474352	SZC-11-10	529411	5997466	5	1.82	2.4
474353	SZC-11-10	529411	5997466	6	2.4	2.98
474354	SZC-11-10	529411	5997466	7	2.98	3.99
474355	SZC-11-10	529411	5997466	8	3.99	5
474356	SZC-11-10	529411	5997466	9	5	6
474357	SZC-11-10	529411	5997466	10	6	7
474358	SZC-11-10	529411	5997466	11	7	8
474359	SZC-11-10	529411	5997466	12	8	9
474360	SZC-11-10	529411	5997466	13	9	10.38
474361	SZC-11-10	529411	5997466	14	10.38	11.38
474362	SZC-11-10	529411	5997466	15	11.38	11.82
474363	SZC-11-10	529411	5997466	16	11.82	12.54
474364	SZC-11-10	529411	5997466	17	12.54	13.25
474365	SZC-11-10	529411	5997466	18	13.25	14.04
474366	SZC-11-10	529411	5997466	19	14.04	14.83
474367	SZC-11-10	529411	5997466	20	14.83	15.62
474368	SZC-11-10	529411	5997466	21	15.62	16.26
474369	SZC-11-10	529411	5997466	22	16.26	16.75
474370	SZC-11-10	529411	5997466	23	16.75	17.59

CHEM#	CHANNEL	UTM E	UTM N	SAMPLE#	FROM (m)	TO (m)
474371	SZC-11-10	529411	5997466	24	17.59	18.61
474372	SZC-11-10	529411	5997466	25	18.61	19.63
474373	SZC-11-10	529411	5997466	26	19.63	20.37
474374	SZC-11-10	529411	5997466	27	20.37	21.1
474375	SZC-11-11	529369	5997498	1	0	0.21
474376	SZC-11-11	529369	5997498	2	0.21	0.33
474377	SZC-11-11	529369	5997498	3	0.33	0.51
474378	SZC-11-11	529369	5997498	4	0.51	1
474379	SZC-11-11	529369	5997498	5	1	1.45
474380	SZC-11-11	529369	5997498	6	1.45	1.76
474381	SZC-11-11	529369	5997498	7	1.76	2.02
474382	SZC-11-11	529369	5997498	8	2.02	2.5
474383	SZC-11-11	529369	5997498	9	2.5	3.25
474384	SZC-11-11	529369	5997498	10	3.25	3.91
474385	SZC-11-11	529369	5997498	11	3.91	4.56
474386	SZC-11-11	529369	5997498	12	4.56	5.33
474387	SZC-11-11	529369	5997498	13	5.33	6.1
474388	SZC-11-11	529369	5997498	14	6.1	6.87
474389	SZC-11-11	529369	5997498	15	6.87	7.65
474390	SZC-11-11	529369	5997498	16	7.65	7.36
474391	SZC-11-11	529369	5997498	17	7.36	7.65
474392	SZC-11-11	529369	5997498	18	7.65	8.65
474393	SZC-11-11	529369	5997498	19	8.65	9.65
474394	SZC-11-11	529369	5997498	20	9.65	10.65
474395	SZC-11-11	529369	5997498	21	10.65	11.42
474396	SZC-11-11	529369	5997498	22	11.42	11.65
474397	SZC-11-11	529369	5997498	23	11.65	12.65
474398	SZC-11-11	529369	5997498	24	12.65	13.65
474399	SZC-11-11	529369	5997498	25	13.65	14.65
474400	SZC-11-11	529369	5997498	26	14.65	15.14
474401	SZC-11-11	529369	5997498	27	15.14	15.36
474402	SZC-11-12	529212	5997515	1	0	1
474403	SZC-11-12	529212	5997515	2	1	1.25
474404	SZC-11-12	529212	5997515	3	1.25	1.5
474405	SZC-11-12	529212	5997515	4	1.5	2.3
474406	SZC-11-12	529212	5997515	5	2.3	3.11
474407	SZC-11-12	529212	5997515	6	3.11	3.71
474408	SZC-11-12	529212	5997515	7	3.71	4.3
474409	SZC-11-02a	529574	5997696	1	0	0.47
474410	SZC-11-02a	529574	5997696	2	0.47	0.61
474411	SZC-11-02a	529574	5997696	3	0.61	1.61
474412	SZC-11-02a	529574	5997696	4	1.61	2.19
474413	SZC-11-02a	529574	5997696	5	2.19	2.33
474414	SZC-11-02a	529574	5997696	6	2.33	3
474415	SZC-11-02a	529574	5997696	7	3	3.67
474416	SZC-11-02a	529574	5997696	8	3.67	4.45

CHEM #	CHANNEL	UTM E	UTM N	SAMPLE#	FROM (m)	TO (m)
474417	SZC-11-02a	529574	5997696	9	4.45	4.6
474418	SZC-11-02a	529574	5997696	10	4.6	4.71
474419	SZC-11-02a	529574	5997696	11	4.71	5.3
474420	MRC-11-04	530100	5998706	1	0	0.55
474421	MRC-11-04	530100	5998706	2		1.03
474422	MRC-11-04	530100	5998706	3		1.5
474423	MRC-11-04	530100	5998706	4		2.2
474424	MRC-11-04	530100	5998706	5		2.95
474425	MRC-11-04	530100	5998706	6		3.51
474426	MRC-11-04	530100	5998706	7	3.51	3.6
474427	MRC-11-04	530100	5998706	8		3.91
474428	MRC-11-04	530100	5998706	9		4.17
474429	MRC-11-04	530100	5998706	10		4.75
474430	MRC-11-04	530100	5998706	11		5.52
474431	SZC-11-16	529146	5997580	1		0.75
474431	SZC-11-16	529146	5997580	2		1.5
474433	SZC-11-16	529146	5997580	3		1.75
474434	SZC-11-16	529146	5997580	4		2.5
				5		
474435	SZC-11-16	529146	5997580			3.25
474436	SZC-11-16	529146	5997580	6		5.06
474437	SZC-11-16	529146	5997580	7	4	5.06
474438	SZC-11-16	529146	5997580	8		5.35
474439	SZC-11-16	529146	5997580	9		6.1
474440	SZC-11-16	529146	5997580	10		6.85
474441	SZC-11-16	529146	5997580	11		7.05
474442	SZC-11-16	529146	5997580	12		7.57
474443	SZC-11-16	529146	5997580	13		7.99
474444	SZC-11-16	529146	5997580	14		8.51
474445	SZC-11-16	529146	5997580	15		9.42
474446	SZC-11-16	529146	5997580	16		9.75
474447	SZC-11-16	529146	5997580	17	9.75	10.5
474448	SZC-11-16	529146	5997580	18		11.25
474449	SZC-11-16	529146		19		12
474450	SZC-11-16	529146	5997580	20	12	13.12
474451	MRC-11-03	530150	5998662	1		1
474452	MRC-11-03	530150		2		2
474453	MRC-11-03	530150	5998662	3	2	3
474454	MRC-11-03	530150		4		3.56
474455	MRC-11-03	530150	5998662	5	3.56	4.56
474456	MRC-11-03	530150	5998662	6	4.56	5.07
474457	MRC-11-03	530150	5998662	7	5.07	6.07
474458	MRC-11-03	530150	5998662	8	6.07	6.75
474459	MRC-11-03	530150	5998662	9	6.75	7.58
474460	MRC-11-03	530150	5998662	10	7.58	8.41
474461	MRC-11-05	530130	5998710	1	0	0.98
474462	MRC-11-05	530130	5998710	2	0.98	1.77

CHEM #	CHANNEL	UTM E	UTM N	SAMPLE#	FROM (m)	TO (m)
474463	MRC-11-05	530130	5998710	3	1.77	2.56
474464	MRC-11-05	530130	5998710	4	2.56	3.34
474465	MRC-11-05	530130	5998710	5	3.34	4.12
474466	MRC-11-05	530130	5998710	6	4.12	4.81
474467	MRC-11-05	530130	5998710	7	4.81	5.49
474468	MRC-11-05	530130	5998710	8	5.49	5.83
474469	MRC-11-05	530130	5998710	9	5.83	6.85
474470	MRC-11-05	530130	5998710	10	6.85	7.87
474471	MRC-11-05	530130	5998710	11	7.87	8.88
474472	MRC-11-02	530134	5998622	1	0	0.66
474473	MRC-11-02	530134	5998622	2	0.66	1.31
474474	MRC-11-02	530134	5998622	3	1.31	2.32
474475	MRC-11-02	530134	5998622	4	2.32	2.88
474476	MRC-11-02	530134	5998622	5	2.88	3.44
474477	MRC-11-02	530134	5998622	6	3.44	4.06
474478	MRC-11-02	530134	5998622	7	4.06	4.68
474479	BRC-11-06	530900	5998719	1	0	1
474480	BRC-11-06	530900	5998719	2	1	1.92
474481	BRC-11-06	530900	5998719	3	1.92	2
474482	BRC-11-06	530900	5998719	4	2	2.74
474483	BRC-11-06	530900	5998719	5	2.74	3.48
474484	BRC-11-06	530900	5998719	6	3.48	4.22
474485	BRC-11-06	530900	5998719	7	4.22	4.5
474486	MRC-11-01	530039	5998657	1	0	1.05
474487	MRC-11-01	530039	5998657	2	1.05	2.09
474488	MRC-11-01	530039	5998657	3	2.09	2.82
474489	MRC-11-01	530039	5998657	4	2.82	3.55
474499	BRC-11-02a	530783	5999105	1	0	0.62
474500	BRC-11-02a	530783	5999105	2	0.62	1.2
474501	BRC-11-02b	530783	5999105	1	0	0.69
474502	BRC-11-02b	530783	5999105	2	0.69	1.38
474503	BRC-11-02b	530783	5999105	3	1.38	1.52
474504	BRC-11-05	530723	5999083	1	0	0.25
474505	BRC-11-05	530723	5999083	2	0.25	0.58
474506	BRC-11-05	530723	5999083	3	0.58	1.35
474507	BRC-11-05	530723	5999083	4	1.35	1.5
474508	BRC-11-05	530723	5999083	5	1.5	2.1
474509	BRC-11-05	530723	5999083	6	2.1	2.76
474510	BRC-11-01	530751	5999088	1	0	0.65
474511	BRC-11-01	530751	5999088	2	0.65	0.85
474512	BRC-11-01	530751	5999088	3	0.85	1.39
474513	BRC-11-01	530751	5999088	4	1.39	1.92
474514	BRC-11-01	530751	5999088	5	1.92	2.71
474515	BRC-11-01	530751	5999088	6	2.71	3.71
474516	BRC-11-01	530751	5999088	7	3.71	4.7
474517	BRC-11-01	530751	5999088	8	4.7	5.7

CHEM#	CHANNEL	UTM E	UTM N	SAMPLE#	FROM (m)	TO (m)
474518	BRC-11-01	530751	5999088	9	5.7	6.7
474519	BRC-11-01	530751	5999088	10	6.7	7.4
474520	BRC-11-01	530751	5999088	11	7.4	7.95
474521	BRC-11-03a	530675	5999117	1	0	0.38
474522	BRC-11-03a	530675	5999117	2	0.38	0.75
474523	BRC-11-03a	530675	5999117	3	0.75	0.99
474524	BRC-11-03a	530675	5999117	4	0.99	1.37
474525	BRC-11-03a	530675	5999117	5	1.37	1.88
474526	BRC-11-03b	530675	5999117	1	0	0.6
474527	BRC-11-03b	530675	5999117	2	0.6	1.1
474528	BRC-11-03b	530675	5999117	3	1.1	2
474529	BRC-11-03b	530675	5999117	4	2	2.25
474530	BRC-11-03b	530675	5999117	5	2.25	2.7
474531	BRC-11-03b	530675	5999117	6	2.7	3.52
474611	MRC-11-06	529843	5998715	1	0	0.92
474612	MRC-11-06	529843	5998715	2	0.92	1.83
474613	MRC-11-06	529843	5998715	3	1.83	2.98
474614	MRC-11-06	529843	5998715	4	2.98	3.88
474615	MRC-11-06	529843	5998715	5	3.88	4.88
474616	MRC-11-06	529843	5998715	6	4.88	5.52
474617	MRC-11-06	529843	5998715	7	5.52	6.52
474618	MRC-11-06	529843	5998715	8	6.52	7.28
474619	MRC-11-06	529843	5998715	9	7.28	7.53
474620	MRC-11-06	529843	5998715	10	7.53	8.5
474621	MRC-11-06	529843	5998715	11	8.5	9.37
474622	MRC-11-06	529843	5998715	12	9.37	10.23
474623	MRC-11-06	529843	5998715	13	10.23	11.15
474624	MRC-11-06	529843	5998715	14	11.15	12.02
474625	MRC-11-06	529843	5998715	15	12.02	12.85
474626	MRC-11-06	529843	5998715	16	12.85	13.07
4744490	BRC-11-04	530838	5998830	1	0	0.32
4744491	BRC-11-04	530838	5998830	2	0.32	0.59
4744492	BRC-11-04	530838	5998830	3	0.59	0.94
4744493	BRC-11-04	530838	5998830	4		1.44
4744494	BRC-11-04	530838	5998830	5	1.44	2.45
4744495	BRC-11-04	530838	5998830	6	2.45	2.75
4744496	BRC-11-04	530838	5998830	7	2.75	3.05
4744497	BRC-11-04	530838	5998830	8	3.05	3.25
4744498	BRC-11-04	530838	5998830	9	3.25	3.53
474565	AMC-11-05	531790	5995418	1	0	0.95
474566	AMC-11-05	531790	5995418	2	0.95	1.95
474567	AMC-11-05	531790		3	1.95	2.85
474568	AMC-11-05	531790		4	2.85	3.81
474569	AMC-11-05	531790		5	3.81	4.75
474570	AMC-11-05	531790	5995418	6	4.75	5.91
474571	AMC-11-01	531948	5995522	1	0	1

CHEM #	CHANNEL	UTM E	UTM N	SAMPLE#	FROM (m)	TO (m)
474572	AMC-11-01	531948	5995522	2	1	1.83
474573	AMC-11-01	531948	5995522	3	1.83	3.3
474574	AMC-11-01	531948	5995522	4	3.3	4.33
474575	AMC-11-01	531948	5995522	5	4.33	5.13
474576	AMC-11-02	531962	5995522	1	0	1.05
474577	AMC-11-02	531962	5995522	2	1.05	2.08
474578	AMC-11-02	531962	5995522	3	2.08	3.05
474593	AMC-11-04	532127	5995345	1	0	0.98
474594	AMC-11-04	532127	5995345	2	0.98	1.95
474595	AMC-11-04	532127	5995345	3	1.95	3.29
474596	AMC-11-04	532127	5995345	4	3.29	3.72
474597	AMC-11-04	532127	5995345	5	3.72	4.44
474598	AMC-11-04	532127	5995345	6	4.44	4.97
474599	AMC-11-03	531954	5995442	1	0	1
474600	AMC-11-03	531954	5995442	2	1	2
474601	AMC-11-03	531954	5995442	3	2	3
474602	AMC-11-03	531954	5995442	4	3	3.98
474603	AMC-11-03	531954	5995442	5	3.98	4.9
474604	AMC-11-03	531954	5995442	6	4.9	5.79
474605	AMC-11-03	531954	5995442	7	5.79	7
474606	AMC-11-03	531954	5995442	8	7	7.5
474607	AMC-11-03	531954	5995442	9	7.5	8.4
474608	AMC-11-03	531954	5995442	10	8.4	9.8
474609	AMC-11-03	531954	5995442	11	9.8	11
474610	AMC-11-03	531954	5995442	12	11	11.45

CHEM#	CHANNEL	LENGTH (m)	UNIT#	SiO2	Al203	Fe2O3(T)	MnO
104201	CBC-10-06a	0.5	1a	52.45	13.15	14.07	0.321
104202	CBC-10-06a	0.4	1a	52.99	13.69	12.81	0.306
104203	CBC-10-06a	0.3	1a	57.03	12.71	12.21	0.28
104204	CBC-10-06a	0.3	1b	56	12.08	14.04	0.306
104205	CBC-10-06a	0.3	1b	57.3	9.79	15.71	0.332
104206	CBC-10-06a	0.4	1b	56.7	10.88	14.33	0.318
104207	CBC-10-06a	0.3	1b	57.96	13.18	11.67	0.266
104208	CBC-10-06a	0.5	1b	56.03	12.97	12.94	0.268
104209	CBC-10-06a	0.4	1b	55.73	13.7	12.62	0.246
104210	CBC-10-06a	0.5	1b	54.79	12.8	14.35	0.296
104211	CBC-10-06a	0.4	1b	54.14	12.42	15.84	0.348
104212	CBC-10-06a	0.5	1b	54.26	13.33	14.04	0.302
104213	CBC-10-06a	0.3	1b	57.51	13.48	11.63	0.237
104214	CBC-10-06a	0.3	1g	62.12	14.91	6.84	0.132
104215	CBC-10-06a	0.3	1g	64.11	16.37	4.47	0.092
104216	CBC-10-06a	0.3	1g	62.5	15.07	7.23	0.172
104217	CBC-10-07	0.4	1a	58.18	14.93	10.03	0.199
104218	CBC-10-07	0.5	1a	56.82	14.06	12.04	0.239
104219	CBC-10-07	0.2	1a	56.81	14.34	11.67	0.214
104220	CBC-10-07	0.4	1b	56.38	14.41	11.07	0.213
104221	CBC-10-07	0.4	1b	53.4	15.02	11.49	0.261
104222	CBC-10-07	0.5	1b	53.61	14.75	11.94	0.279
104223	CBC-10-07	0.3	1d	52.44	13.73	14.08	0.322
104224	CBC-10-07	0.6	1b	53.53	13.67	13.13	0.323
104225	CBC-10-07	0.4	1b	53.54	15.23	12.04	0.27
104226	CBC-10-07	0.3	1b	54.85	13.89	13.26	0.258
104227	CBC-10-08	0.5	1d	52.06	14.25	12.9	0.304
104228	CBC-10-08	0.15	1d	53	13.1	13.33	0.329
104229	CBC-10-08	0.2	1f	51.25	11.26	18.7	0.398
104230	CBC-10-08	0.35	1f	51.22	10.65	18.3	0.432
104231	CBC-10-08	0.3	1d	52.64	13.15	13.11	0.327
104232	CBC-10-08	0.3	1d	53.39	14.31	12.95	0.288
104233	CBC-10-08	0.4	1d	51.39	12.84	15.54	0.36
104234	CBC-10-08	0.3	1d	53.73	14.42	11.7	0.25
104235	CBC-10-08	0.3	1d	53.62	14.02	12.24	0.264
104236	CBC-10-08	0.4	1d	F2 76	1101	42.22	0.220
104237	CBC-10-08	0.4	1d	53.76	14.84	12.33	0.238
104238	CBC-10-08	0.4	1d	53.34	15.16	11.47	0.235
104239	CBC-10-08	0.3	1d	53.25	13.92	13.36	0.313
104240	CBC-10-08	0.9	1d	52.06	14.53	11.63	0.284
104241	CBC-10-08	0.25	1d	52.07	14.08	12.04	0.305
104242	CBC-10-08	0.35	1d	52.33	14.19	12.03	0.269
104243	CBC-10-08	0.3	1d	52.83	14.21	12.99	0.269
104244	CBC-10-08	0.3	1d	53.07	14.7	12.42	0.249
104245	CBC-10-08	0.35	1d	54	14.69	12.09	0.242
104246	CBC-10-08	0.35	1d	53.58	14.68	13.06	0.259

CHEM#	CHANNEL	LENGTH (m)	UNIT#	SiO2	Al2O3	Fe2O3(T)	MnO
104247	CBC-10-08	0.35	1d	51.8	15.5	12.95	0.262
104248	CBC-10-08	0.3	1d	52.54	14.9	11.86	0.269
104249	CBC-10-08	0.35	1d	53.6	15.16	11.5	0.248
104250	CBC-10-08	0.4	1d	53.71	14.34	12.19	0.269
104251	CBC-10-08	0.4	1d	53.73	13.77	13.61	0.289
104252	CBC-10-08	0.3	1d	53.12	14.64	12.81	0.283
104253	CBC-10-08	0.1	1d	52.14	15.5	11.93	0.271
104254	CBC-10-09	0.25	1b	58.51	14.43	10.12	0.249
104255	CBC-10-09	0.2	1b	56.4	13.09	12.62	0.292
104256	CBC-10-09	0.45	1d	52.57	11.96	17.99	0.353
104257	CBC-10-09	0.4	1d	54.21	11.06	17.53	0.329
104258	CBC-10-09	0.3	1e	52.8	10.69	16.57	0.477
104259	CBC-10-09	0.3	1e	50.91	12.74	12.09	0.33
104260	CBC-10-09	0.3	1e	49.81	12.77	12.74	0.297
104261	CBC-10-09	0.3	1 f	52.64	9.92	18.77	0.351
104262	CBC-10-09	0.6	1c	53.61	12.55	16.98	0.128
104263	CBC-10-09	0.4	1c	57.31	12.8	12.86	0.15
104264	CBC-10-09	0.3	1c	53.32	12.65	15.54	0.229
104265	CBC-10-09	0.4	1 f	53.43	13.12	14.91	0.254
104266	CBC-10-09	0.4	1 f	54.89	13.64	12.77	0.24
104267	CBC-10-09	0.3	1 f	56.99	13.85	11.61	0.158
104268	CBC-10-09	0.3	1 f	57.75	14.18	11.1	0.166
104269	CBC-10-10	0.2	1a	52.29	12.92	15.97	0.387
104270	CBC-10-10	0.65	1d	51.8	10.72	19.38	0.414
104271	CBC-10-10	0.3	1d	55.7	14.02	12.88	0.264
104272	CBC-10-10	0.15	1c	53.91	13.21	14.62	0.318
104273	CBC-10-10	0.3	1c	54.8	13.15	14.55	0.313
104274	CBC-10-10	0.25	1d	54.27	13.38	14.46	0.3
104275	CBC-10-10	0.45	1d	53.79	13.81	13.62	0.294
104276	CBC-10-10	0.2	1d	54.63	13.68	13.26	0.306
104277	CBC-10-10	0.3	1c	54.39	12.09	15.04	0.314
104278	CBC-10-10	0.3	1d	52.43	10.77	18.68	0.394
104279	CBC-10-10	0.4	1d	52.2	13.09	15.94	0.334
104280	CBC-10-10	0.5	1b	53.42	13.04	15.4	0.358
104281	CBC-10-10	0.3	1b	52.47	9.92	20.48	0.494
104282	CBC-10-10	0.1	1b	51.57	8.79	22.12	0.563
104283	CBC-10-10	0.3	1 f	51.75	9.55	22.24	0.594
104284	CBC-10-10	0.4	1b	50.85	13.66	16.05	0.459
104285	CBC-10-10	0.3	1b	51.65	12.67	16.87	0.482
104286	CBC-10-10	0.4	1b	51.68	11.09	18.06	0.539
104287	CBC-10-10	0.2	1b	52.6	11.38	17.92	0.501
104288	CBC-10-11b	-3.75	1 a	52.63	12.71	14.38	0.379
104289	CBC-10-11b	0.25	1 a	50.88	11.94	15.62	0.406
104290	CBC-10-11b	0.3	1d	55.28	13.58	10.84	0.268
104291	CBC-10-11b	0.3	1d	54.85	12.59	14.78	0.369
104292	CBC-10-11b	0.3	1d	53.12	13.91	13.82	0.325

CHEM#	CHANNEL	LENGTH (m)	UNIT#	SiO2	Al2O3	Fe2O3(T)	MnO
104293	CBC-10-11b	0.2	1g	56.51	13.62	12.62	0.329
104294	CBC-10-11b	0.4	1d	52.56	14.22	13.93	0.285
104295	CBC-10-11b	0.4	1d	53.85	13.88	13.84	0.292
104296	CBC-10-11b	0.6	1d	54.26	13.59	13.33	0.258
104297	CBC-10-11b	0.5	1d	54.67	13.35	13.37	0.286
104298	CBC-10-11b	0.6	1d	55.07	12.99	13.24	0.298
104299	CBC-10-11b	0.4	1f	52.64	7.06	25.11	0.539
104300	CBC-10-11b	0.25	1e	48.76	10.66	17.73	0.451
104326	CBC-10-11b	0.35	1b	51.81	10.34	18.09	0.432
104327	CBC-10-11b	0.4	1b	50.59	11.46	17.02	0.39
104328	CBC-10-11b	0.6	1b	55.17	13.16	13.53	0.254
104329	CBC-10-11b	0.3	1a	55.43	12.75	14.33	0.278
104330	CBC-10-11b	0.4	1a	55.52	13.32	14.18	0.26
104331	CBC-10-11b	0.3	1a	55.6	13.03	14.28	0.252
104332	CBC-10-11b	0.2	1a	54.85	14.69	12.28	0.224
104333	CBC-10-11b	0.25	1b	54.05	14.41	11.99	0.23
104334	CBC-10-11b	0.1	1a	56.1	14.57	10.79	0.316
104335	CBC-10-11b	0.25	1b	54.66	13.58	13.75	0.299
104336	CBC-10-11b	0.25	1b	55.29	13.81	10.13	0.318
104337	CBC-10-11b	0.25	1b	57.7	15.14	8.5	0.275
104338	CBC-10-11b	0.4	1b	54.29	13.94	10.65	0.293
104339	CBC-10-11b	0.2	1b	51.17	11.9	16.47	0.435
104340	CBC-10-11b	0.05	1b	55.41	10.64	12.74	0.322
104341	CBC-10-11b	0.15	1a	50.28	11.46	15.37	0.403
104342	CBC-10-11b	0.25	1b	56.69	11.08	14.31	0.409
104343	CBC-10-11b	0.15	1a	50.76	11.43	16.03	0.438
104344	CBC-10-11b	0.5	1d	53.13	11.52	15.39	0.42
104345	CBC-10-11b	0.6	1d	55.98	11.38	14.56	0.399
104346	CBC-10-11b	0.4	1d	57.19	10.86	12.29	0.357
104347	CBC-10-11b	0.3	1d	54.88	11.61	13.94	0.387
104348	CBC-10-11b	0.1	1d	56.8	10.86	14.95	0.42
416155	CBC-10-11a	0.35	2a	57.63	14.13	11.21	0.29
416156	CBC-10-11a	0.35	2a	56.77	14.12	11.14	0.289
416157	CBC-10-11a	0.3	1a	52.46	15.1	13.4	0.35
416158	CBC-10-11a	0.2	2c	55.89	22.8	3.17	0.056
416159	CBC-10-11a	0.4	1a	51.16	15.78	14.66	0.344
416160	CBC-10-11a	0.4	1a	53.75	16.63	10.46	0.196
416161	CBC-10-11a	0.35	1a	53.28	13.62	13.8	0.273
416162	CBC-10-11a	0.45	2c	56.17	13.7	11.96	0.249
416163	CBC-10-11a	0.45	2c	56.8	13.95	10.74	0.291
416164	CBC-10-11a	0.5	1a	56.64	13.68	11.22	0.267
416165	CBC-10-11a	0.55	1a	56.38	15.91	9.35	0.204
416166	CBC-10-11a	0.25	1a	49.5	15.61	15.95	0.285
416167	CBC-10-11a	0.3	2b	53.98	16.08	11.1	0.244
416168	CBC-10-11a	0.35	1c	52.31	11.57	17.44	0.49
416169	CBC-10-11a	0.35	1a	52.71	17.48	10.84	0.277

CHEM#	CHANNEL	LENGTH (m)	UNIT#	SiO2	Al2O3	Fe2O3(T)	MnO
416170	CBC-10-11a	0.3	1a	55.45	15.75	9.96	0.222
416171	CBC-10-12	0.2	1b	52.43	14.36	12.83	0.358
416172	CBC-10-12	0.2	1b	52.17	15.8	11.42	0.323
416173	CBC-10-12	0.3	1a	51.37	13.92	15.38	0.299
416174	CBC-10-12	0.3	2a/3c	54.59	11.89	16.63	0.375
416175	CBC-10-12	0.35	1a	54.7	12.53	15.08	0.43
416176	CBC-10-12	0.35	1a	54.11	14.48	12.69	0.247
416177	CBC-10-12	0.2	1a	52.84	14.19	13.97	0.384
416178	CBC-10-12	0.5	2a	55.94	14.3	12.42	0.297
416179	CBC-10-12	0.5	2a	57.09	13.96	12.25	0.283
416180	CBC-10-12	0.4	1a	53.44	15.07	13.11	0.289
416181	CBC-10-12	0.4	1a	53.05	13.91	15.59	0.33
416182	CBC-10-12	0.7	1a/1c	53.18	13.76	14.22	0.304
416183	CBC-10-12	0.2	1 a	51.94	12.76	13.03	0.304
416184	CBC-10-12	0.2	1c/1a	52.74	12.57	16.77	0.441
416185	CBC-10-12	0.4	1c/1a	53.4	14.72	12.84	0.281
416186	CBC-10-12	0.3	2b	53.4	15.12	12.84	0.265
416187	CBC-10-12	0.3	2b	52.89	13.59	14.4	0.302
416188	CBC-10-13	0.5	1a	54.5	12.72	12.61	0.279
416189	CBC-10-13	0.3	1a	53.71	12.62	13.84	0.307
416190	CBC-10-13	0.2	1a/2c	55.74	14.42	11.77	0.29
416191	CBC-10-13	0.3	1a	55.09	14.81	11.81	0.241
416192	CBC-10-13	0.3	1a	53.28	15.14	11.94	0.264
416193	CBC-10-13	0.3	1a	52.53	14.02	13.23	0.288
416194	CBC-10-13	0.2	2a	54.86	14.88	11.74	0.275
416195	CBC-10-13	0.2	2a	55.03	14.4	11.63	0.234
416196	CBC-10-13	0.3	2c	56.99	13.6	11.61	0.295
416197	CBC-10-13	0.3	2c	56.92	14.3	12.53	
416198	CBC-10-13	0.4	2c/1c	54.87	14.12	12.1	0.284
416199	CBC-10-13	0.5	2c/1c	52.8	13.87	14.89	0.408
416200	CBC-10-13	0.4	2c/1c	55.4	15.55	11.29	0.291
416201	CBC-10-14	0.2	1a	51.66	16.57	12.19	0.248
416202	CBC-10-14	0.2	1a	51.65	16.01	12.57	
416203	CBC-10-14	0.2	1a	51.41	14.79	13.9	
416204	CBC-10-14	0.3	1a	52.68	14.8	15.83	0.276
416205	CBC-10-14	0.4	1a	54.32	14.64	13.43	
416206	CBC-10-14	0.2	1a/2c	55.44	14.69	13.02	
416207	CBC-10-14	0.1	1c	53.61	14.06	14.07	0.251
416208 416209	CBC-10-14	0.4	1a	55.09 55.9	13.65 14.25	12.55	
	CBC-10-14	0.4	1a				
416210	CBC-10-14	0.3	1a	55.15	13.78	12.32	0.24
416211	CBC-10-14	0.15	1c	53.16	13.27	13.92	0.28
416212	CBC-10-14	0.35	1b	53.63	14.78	11.43	0.239
416213	CBC-10-14	0.4	2a	54.09	13.76	13.05	0.228
416214	CBC-10-14	0.4	2a	54.66	14.27	12.73	
416215	CBC-10-14	0.4	2a	56.54	16.07	9.81	0.162

CHEM#	CHANNEL	LENGTH (m)	UNIT#	SiO2	Al2O3	Fe2O3(T)	MnO
416216	CBC-10-14	0.3	2a	54.92	15.48	12.25	0.224
416217	CBC-10-14	0.3	2a	54.42	15.77	11.49	0.198
416218	CBC-10-14	0.3	1a	53.76	15.4	12.12	0.223
416219	CBC-10-14	0.3	1a	55.12	16.09	10.57	0.227
416220	CBC-10-14	0.2	1c	52.69	14.89	13.07	0.291
416221	CBC-10-14	0.3	1a	55.14	13.92	12.01	0.269
416222	CBC-10-14	0.3	1 a	53.98	14.68	11.31	0.23
416223	CBC-10-14	0.2	1a	54.88	15.22	11.34	0.264
416224	CBC-10-14	0.2	1c	53.75	15.8	11.74	0.228
416225	CBC-10-14	0.5	1a	53.87	15.98	11.23	0.227
416226	CBC-10-15	0.3	2c	57.75	14.74	10.16	0.264
416227	CBC-10-15	0.3	2c	57.36	14.23	10.99	0.288
416228	CBC-10-15	0.4	2c	58.55	14.64	10.09	0.259
416229	CBC-10-15	0.4	2c	56.47	14.25	11.49	0.289
416230	CBC-10-15	0.4	2c	57.32	14.15	11.16	0.275
416231	CBC-10-15	0.4	2c	57.02	14.36	11.89	0.316
416232	CBC-10-15	0.2	2c	57.4	14.42	10.45	0.257
416233	CBC-10-15	0.1	3с	58.91	14.18	10.02	0.28
416234	CBC-10-15	0.4	2a	56.1	14.21	11.66	0.248
416235	CBC-10-15	0.2	2b	55.39	14.27	11.9	0.267
416236	CBC-10-15	0.3	2 c	55.64	13.38	12.83	0.282
416237	CBC-10-15	0.3	2 c	56.84	14.38	11.2	0.239
416238	CBC-10-15	0.3	3с	53.74	11.06	18.54	0.382
416239	CBC-10-15	0.3	2c	56.91	13.65	12.44	0.297
416240	CBC-10-15	0.3	2c	57.25	14.37	11.68	0.298
416241	CBC-10-15	0.3	2c	57.25	13.92	11.12	0.288
416242	CBC-10-15	0.4	2a	57.28	14.53	10.63	0.275
416243	CBC-10-15	0.4	2a	57.06	14.14	10.69	0.27
416244	CBC-10-16	0.45	1a	60.25	14.21	7.9	0.173
416245	CBC-10-16	0.45	1a	58.62	12.58	12.28	0.248
416246	CBC-10-16	0.3	3a	53.52	7.2	24.7	0.595
416247	CBC-10-16	0.3	3a	50.98	4.26	30.6	0.773
416248	CBC-10-16	0.4	1a	57	9.54	15.59	0.45
416249	CBC-10-16	0.2	1a	58.83	11.27	14.76	
416250	CBC-10-16	0.5	2a	63.57	15.45	6.15	0.158
416251	CBC-10-16	0.4	2a	63.27	15.11	7.35	0.18
416252	CBC-10-16	0.3	3c	56.32	9	18.44	0.479
416253	CBC-10-16	0.35	1a/2a	61.54	14.69	7.96	0.203
416254	CBC-10-16	0.35	1a/2a	59.02	11.41	11.88	0.307
416255	CBC-10-16	0.4	1b	58.09	10.82	14.5	
416256	CBC-10-16	0.4	1b	58.46	12.23	11.74	0.286
416257	CBC-10-16	0.45	1a	57.15	13.01	12.23	0.256
416258	CBC-10-16	0.45	1a	57.98	12.01	13.41	0.234
416259	CBC-10-16	0.4	1a	53.49	14.52	12.99	0.232
416260	CBC-10-16	0.4	1a	53.34	15.04	12.8	0.245
416261	CBC-10-16	0.3	1 a	53.24	15.34	12.99	0.234

CHEM #	CHANNEL	LENGTH (m)	UNIT#	SiO2	Al2O3	Fe2O3(T)	MnO
416262	CBC-10-16	0.2	2a	56.22	14.09	11.63	0.292
416263	CBC-10-18a	0.3	1b	50.38	16.64	9.2	0.253
416264	CBC-10-18a	0.3	1b	50.16	16.26	11.35	0.312
416265	CBC-10-18a	0.4	1a	52.27	11.7	18.92	0.434
416266	CBC-10-18a	0.3	1a	52.02	10.12	20.66	0.484
416267	CBC-10-18a	0.4	1a	51.32	13.82	15.81	0.355
416268	CBC-10-18a	0.25	1a	51.6	10.69	19.74	0.442
416269	CBC-10-18a	0.25	1a	51.28	11.65	19.1	0.422
416270	CBC-10-18a	0.4	1a	51.4	11.13	19.45	0.432
416271	CBC-10-18a	0.4	1a	51.55	9.83	21.21	0.472
416272	CBC-10-18a	0.4	1a	51.45	9.4	21.38	0.472
416273	CBC-10-18a	0.4	1 a	51.26	11.52	18.04	0.405
416274	CBC-10-18a	0.4	1a	51.49	11.03	19.85	0.438
416275	CBC-10-18a	0.4	1a	50.51	12.31	18.02	0.395
416276	CBC-10-18a	0.4	1a	50.41	9.4	21.36	0.492
416277	CBC-10-18b	0.3	1a	50.66	12.05	17.82	0.47
416278	CBC-10-18b	0.25	1c	52.67	10.89	17.92	0.5
416279	CBC-10-18b	0.25	1c	51.03	10.34	19.1	0.474
416280	CBC-10-18b	0.2	1 a	51.58	11.33	19.11	0.405
416782	MBC-10-01	0.25	1a	53.5	13.15	13.79	0.317
416783	MBC-10-01	0.13	2c	54.36	12.38	14.86	0.392
416784	MBC-10-01	0.1	1a	53.83	12.64	14.93	0.339
416785	MBC-10-01	0.17	1b	54.3	12.92	14.48	0.357
416786	MBC-10-01	0.2	1b	53.4	13.33	15.11	0.373
416787	MBC-10-01	0.2	1 c	53.26	13.63	14.71	0.234
416788	MBC-10-01	0.2	1c	52.95	14.64	12.52	0.298
416789	MBC-10-01	0.1	2 c	54.89	18.99	5.85	0.115
416790	MBC-10-01	0.2	1d	52.81	10.24	17.97	0.356
416791	MBC-10-01	0.2	1a	53	12.07	14.15	0.368
416792	MBC-10-01	0.2	1a	52.32	4.93	27.41	0.435
416793	MBC-10-01	0.25	1a	53.2	11.05	17.22	0.356
416794	MBC-10-01	0.2	1a	52.85	15.23	11.79	0.29
416795	MBC-10-01	0.2	1a	51.68	13.38	13.98	0.333
416796	MBC-10-01	0.2	1a	53.07	12.9		0.318
416797	MBC-10-01	0.3	1a	52.07	12.54	15.72	0.357
416798	MBC-10-01	0.3	1a	52.25	11.27	17.42	0.397
423637	CBC-10-01	0.7	2a	53.56	11.84	15.88	0.354
423638	CBC-10-01	0.42	1c	55.08	12.8	14.17	0.322
423639	CBC-10-01	0.28	1c	55.59	13.78	12.64	0.306
423640	CBC-10-01	0.3	1c	55.69	13.4	13.63	0.297
423641	CBC-10-01	0.46	1d	55.01	13.07	14.31	0.302
423642	CBC-10-01	0.32	1d	53.87	13.87	14.5	0.265
423643	CBC-10-01	0.37	1d	54.43	12.63	15.18	0.311
423644	CBC-10-01	0.2	1d	55.68	13.24	13.77	0.299
423645	CBC-10-01	0.33	1d	56.42	13.17	12.83	0.305
423646	CBC-10-01	0.41	1b	55.22	13.1	13.85	0.314

CHEM#	CHANNEL	LENGTH (m)	UNIT#	SiO2	Al203	Fe2O3(T)	MnO
423647	CBC-10-01	0.76	1 j	54.96	12.91	13.58	0.311
423648	CBC-10-01	0.29	1h	55.74	12.84	13.38	0.307
423649	CBC-10-01	0.59	1h/j	55.03	13.12	12.98	0.295
423666	CBC-10-02	0.28	1d	52	14.23	13.53	0.315
423667	CBC-10-02	0.73	1d	53.13	12.29	15.76	0.28
423668	CBC-10-02	0.39	1c	51.95	11.93	17.67	0.326
423669	CBC-10-02	0.21	1c	53.78	13.51	14.09	0.259
423670	CBC-10-02	0.59	1d	53.78	14.24	13.4	0.262
423671	CBC-10-02	0.52	1c	52.87	12.44	15.92	0.296
423672	CBC-10-02	0.64	1c	52.87	12.38	16.18	0.32
423673	CBC-10-02	0.36	1d	52.08	12.77	15.59	0.327
423674	CBC-10-02	0.43	1d	52.66	12.62	14.81	0.315
423675	CBC-10-02	0.38	1d	51.38	12.24	16.74	0.357
423676	CBC-10-02	0.5	1c	52	12.53	16.07	0.318
423677	CBC-10-02	0.48	1c	51.88	13.48	14.72	0.304
423678	CBC-10-02	0.79	1c	52.1	10.4	20.22	0.407
423679	CBC-10-03	0.6	1c	54.16	12.1	16.37	0.444
423680	CBC-10-03	0.5	1c	54.83	11.69	16.07	0.406
423681	CBC-10-03	0.49	1a	55.2	13.2	14.16	0.354
423682	CBC-10-03	0.66	1a	56.41	14.16	11.38	0.291
423683	CBC-10-03	0.27	1h	56.55	14.64	10.51	0.269
423684	CBC-10-03	0.32	1 j	55.34	13.2	13.13	0.325
423685	CBC-10-03	0.29	1c	54.57	11.15	17.34	0.355
423686	CBC-10-03	0.35	1a	54.74	12.89	14	0.319
423687	CBC-10-03	0.66	1c	53.49	12.82	15.3	0.292
423688	CBC-10-03	0.2	1a	52.39	12.94	15.54	0.342
423689	CBC-10-03	0.6	1 c	52.7	12.26	16.57	0.323
423690	CBC-10-03	0.43	1c	52.79	11.83	16.69	0.29
423691	CBC-10-03	0.47	1d	53.2	11.66	16.53	0.318
423692	CBC-10-03	0.5	1c	53.92	12.66	14.96	0.303
423693	CBC-10-03	0.32	1c	55.08	11.08	16.26	0.253
423694	CBC-10-03	0.2	1 j	56.27	10.77	14.68	0.403
423695	CBC-10-03	0.2	1c	54.68	13.56	12.58	0.277
423708	CBC-10-04	0.35	1c	52.39	13.09	15.13	0.31
423709	CBC-10-04	0.35	1c	51.97	13.04	14.9	0.298
423710	CBC-10-04	0.56	1b	52.18	13.12	14.79	0.32
423711	CBC-10-04	0.42	1b	52.83	12.2	15.55	0.33
423712	CBC-10-04	0.56	1c-a	53.17	10.65	18.59	0.377
423713	CBC-10-04	0.38	1d	51.4	13.29	14.77	0.312
423714	CBC-10-04	0.16	1h	51.37	12.79	15.64	0.352
423715	CBC-10-04	0.2	1c	51.47	12.9	15.25	0.336
423716	CBC-10-04	0.12	1g	52.19	13.6	14.18	0.298
423717	CBC-10-04	0.7	1h	51.85	12.18	16.18	0.363
423718	CBC-10-04	0.5	1b-d	52.7	13.81	13.79	0.317
423719	CBC-10-04	0.6	1b	51.44	12.83	15.03	0.357
423720	CBC-10-04	0.35	1e	51.25	9.67	21.65	0.438

CHEM #	CHANNEL	LENGTH (m)	UNIT#	SiO2	Al203	Fe2O3(T)	MnO
423721	CBC-10-05	0.51	1c	53.1	12.43	16.2	0.333
423722	CBC-10-05	0.21	1a	53.97	12.56	16.45	0.33
423723	CBC-10-05	0.21	1c	53.4	12.36	17.21	0.32
423724	CBC-10-05	0.27	1c	52.52	13.03	15.03	0.316
423725	CBC-10-05	0.4	1d	52.59	14.38	12.97	0.305
423726	CBC-10-05	0.33	1d	52.32	13.25	14.31	0.311
423727	CBC-10-05	0.28	1b	52.99	12.82	15	0.299
423728	CBC-10-05	0.16	1a	52.8	11.95	16.61	0.398
423729	CBC-10-05	0.44	1b	52.85	12.42	14.76	0.346
423730	CBC-10-05	0.35	1d	52.75	12.34	14.74	0.309
423731	CBC-10-05	0.44	1a	53.4	12.92	15.18	0.3
423732	CBC-10-05	0.31	1e	51.93	7.78	24.04	0.507
423733	CBC-10-05	0.52	1d	52.88	12.95	14.66	0.292
423734	CBC-10-05	0.38	1b/c	51.98	12.85	15.16	0.326
423735	CBC-10-05	0.29	1a	53.69	12.11	15.75	0.294
423736	CBC-10-05	0.08	1b	54.68	13.08	13.36	0.27
423737	CBC-10-05	0.35	1b	53.45	12.86	15.22	0.287
423738	CBC-10-05	0.31	1b	53.33	13.43	14.46	0.283
423739	CBC-10-05	0.48	1b	53.6	13.36	13.8	0.278
423740	CBC-10-05	0.39	1b/d	53.4	13.8	12.76	0.273
423746	CBC-10-11b	0.6	1c	53.64	14.79	11.91	0.231
423747	CBC-10-11b	0.3	1 f	55.77	14.46	11.36	0.263
423748	CBC-10-11b	0.5	1e	55.2	13.55	12.56	0.316
423749	CBC-10-11b	0.3	1d	55.42	14.81	10.26	0.251
423750	CBC-10-11b	0.3	1d	55.7	11.13	15.23	0.345
474120	MBC-11-02	0.6	2a-1a	52.95	14.53	14.39	0.296
474121	MBC-11-02	0.27	1a	53.84	17.17	11.25	0.221
474122	MBC-11-02	0.48	1a	54.52	14.25	13.89	0.28
474123	MBC-11-02	0.3	1a	54.26	15.34	13.42	0.268
474124	MBC-11-02		1aM-2aM	53.75	14.66	14.19	0.294
474125	MBC-11-02	0.18	1aM	56.53	14.38	10.02	0.241
474126	MBC-11-02	0.32	1a-2a	53.9	12.64	15.35	0.334
474127	MBC-11-02	0.28		55.52	12.77	14.74	
474128	MBC-11-03	0.18		53.76	14.16	14.23	0.287
474129	MBC-11-03	0.14		53.16	12.13	12.77	0.331
474130	MBC-11-03	0.68		54.54	14.02	13.79	
474131	MBC-11-03	0.68	1aM	54.27	13.9	14.13	0.271
474132	MBC-11-03	0.14	2a	55.54	16.69	10.42	0.21
474133	MBC-11-03	0.38		54.74	15.5	12.27	0.226
474134	MBC-11-03	0.8		53.81	13.2	14.35	0.255
474135	MBC-11-04	0.17	1a	52.02	10.15	21.92	0.387
474136	MBC-11-04	0.93	1a	51.5	10.84	20.62	0.354
474137	MBC-11-04	0.4	1a	51.6	10.89	20.46	
474138	MBC-11-04	0.48	1a	53.82	10.31	19.28	0.322
474139	MBC-11-04	0.37	1a	54.66	11.59	16.5	0.31
474140	MBC-11-04	0.29	1a	54.84	12.83	14.05	0.271

CHEM#	CHANNEL	LENGTH (m)	UNIT#	SiO2	Al2O3	Fe2O3(T)	MnO
474141	MBC-11-04	0.59	1a	56.04	12.93	12.75	0.25
474142	MBC-11-04	0.37	1aM	57.9	14.03	10.75	0.24
474143	MBC-11-04	0.18	1aM	55.2	11.09	15.69	0.288
474144	MBC-11-02B	0.72	1c	54.91	12.23	15.16	0.324
474145	MBC-11-02B	1	2b	56.91	13.29	12.71	0.261
474146	MBC-11-02B	0.33	2c	65.48	15.77	4.2	0.073
474147	MBC-11-02B	0.8	2b	58.33	9.65	16.5	0.462
474148	MBC-11-02B	0.15	1c	56.55	11.89	16.57	0.305
474149	MBC-11-05	0.1	2aM	51.01	18.32	8.03	0.244
474150	MBC-11-05	0.4	2aM-1aM	52.34	14.32	13.45	0.332
474151	MBC-11-05	0.4	2a-1a	52.99	15.08	13.36	0.296
474152	MBC-11-05	0.22	2bM	53.49	13.25	15.92	0.352
474153	MBC-11-05	0.51	2b	52.35	12.32	15.58	0.342
474154	MBC-11-05	0.35	1a-2a	52.93	11.7	16.61	0.349
474155	MBC-11-05	0.47	1c	51.68	9.04	19.99	0.454
474156	MBC-11-06	0.71	2aM	56.5	13.39	11.87	0.253
474157	MBC-11-06	0.22	1a	53.11	10.84	18.93	0.361
474158	MBC-11-06	0.74	1a	51.93	10.49	20.88	0.291
474159	MBC-11-06	0.14	2a	50.15	10.72	22.03	0.325
474160	MBC-11-06	0.75	2a	52.61	11.02	20.5	0.364
474161	MBC-11-06	0.75	2a	51.3	10.51	21.48	0.369
474162	MBC-11-06	1.25	2a	52.44	10.69	20.79	0.345
474163	MBC-11-06	0.57	2a	51.56	12.31	19.33	0.298
474164	MBC-11-09	0.6	2a	53.7	13.58	15.77	0.268
474165	MBC-11-09	0.6	2a	52.6	14.12	16.5	0.287
474166	MBC-11-09	0.75	2aM	52.04	14.84	14.03	0.255
474167	MBC-11-10B	0.35	1a	54.08	11.37	16.78	0.346
474168	MBC-11-10B	0.15	1cM	52.47	10.67	18.85	0.538
474169	MBC-11-10B	0.3	1a	55.63	12.77	13.84	0.374
474170	MBC-11-10B	0.45	2a	55.59	13.08	13.08	0.33
474171	MBC-11-10A	0.31	2a	54.72	14.28	12.89	0.283
474172	MBC-11-10A	0.51	1aM	53.08	13.19	14.15	0.263
474173	MBC-11-10A	0.28	1aM	53.12	14.06	13.05	0.28
474174	MBC-11-10A	0.75	1aM	52.74	11.94	17.95	0.384
474175	MBC-11-01	1	2b	54.62	11.6	12.89	0.36
474176	MBC-11-01	0.5	2b	54.11	9.57	16.33	0.465
474177	MBC-11-01	1	2b	53.14	9.8	16.95	0.48
474178	MBC-11-01	0.4	2b	53.49	9.27	18.5	0.515
474179	MBC-11-01	0.89	2b	52.12	11.77	13.07	0.406
474180	MBC-11-01	0.96	2b	54.21	9.57	16.85	0.539
474181	MBC-11-01	0.4	2b	55.44	11.3	11.74	0.367
474182	MBC-11-01	0.32		52.68	8.69	19.8	0.514
474183	MBC-11-01	0.93		55.65	9.8	16.1	0.518
474184	MBC-11-01	0.7	2a (2b)	53.68	8.81	19.28	0.566
474185	MBC-11-01	0.25	2b	55.66	9.84	15.56	0.547
474186	MBC-11-01	1.05	1a (2b)	54.09	9.63	18.59	0.424

CHEM #	CHANNEL	LENGTH (m)	UNIT#	SiO2	Al203	Fe2O3(T)	MnO
474187	MBC-11-01	0.15	2b	56.03	9.25	16.25	0.652
474188	MBC-11-08	1	2b	54.72	10.11	16.48	0.526
474189	MBC-11-08	1	2b	54.27	8.79	17.2	0.599
474190	MBC-11-08	0.78	1a	58.74	12.07	12.26	0.378
474191	MBC-11-08	1	1a	57.21	11.82	14.68	0.335
474192	MBC-11-08	0.7	1a	55.67	11.55	15.2	0.415
474193	CBC-11-01	1	1aM	51.82	10.75	20.89	0.461
474194	CBC-11-01	0.75	1aM	50.88	10.99	20.47	0.437
474195	CBC-11-01	0.6	1aM	52.12	10.11	21.55	0.378
474196	CBC-11-01	0.65	1aM	51.96	9.46	21.54	0.218
474197	CBC-11-01	0.8	1aM	52.26	9.72	20.51	0.198
474198	CBC-11-01	0.32	1c	52.18	9.65	21.41	0.316
474199	CBC-11-01	0.23	1aM	55.26	13.33	11.78	0.325
474200	CBC-11-01	0.93	3aM	54.71	13.22	12.77	0.315
474201	CBC-11-02	0.35	1aM	53.26	9.16	22.93	0.422
474202	CBC-11-02	0.25	3bM	50.05	4.19	31.19	0.748
474203	CBC-11-02	0.9	3aM	51.14	5.78	28.44	0.698
474204	CBC-11-02	0.3	1aM	49.34	15.27	13.91	0.364
474205	CBC-11-02	0.7	3bM	51.5	5.52	27.76	0.673
474206	CBC-11-02	0.4	2aM	52.9	15.02	10.99	0.239
474207	CBC-11-03	1	1aM	54.03	14.92	11.12	0.288
474208	CBC-11-03	1.08	1aM	52.43	14.85	12.14	0.342
474209	CBC-11-03	0.13	1aM	52.32	12.66	14.7	0.406
474210	CBC-11-09	0.86	3bM	52.13	9.09	21.41	0.475
474211	CBC-11-09	0.86	3bM	57.45	14.55	7.83	0.199
474212	CBC-11-09	0.11	3bM	58.67	13.52	11.91	0.262
474213	CBC-11-09	0.84	3bM	58.8	12.17	10.78	0.266
474214	CBC-11-09	0.84	3bM	57.82	13.68	10.84	0.241
474215	CBC-11-09	0.7	1aM	53.13	15.72	11.72	0.263
474216	CBC-11-09	0.75	1aM	53.03	15.34	13.85	0.254
474217	CBC-11-05	0.5	1a	52.78	15	12.99	0.235
474218	CBC-11-05	0.33	3b	50.84	13.23	18.09	0.354
474219	CBC-11-05	0.72	1a	51.71	15.08	13.96	0.255
474220	CBC-11-05	0.15	1aM	52.86	16.08	11.45	0.272
474221	CBC-11-05	0.5	3b	51.42	10.06	20.88	0.515
474222	CBC-11-05	0.2	1 a	54.53	13.45	13.98	0.247
474223	CBC-11-07a	0.23	1a	53.97	8.69	22.11	0.532
474224	CBC-11-07a	0.67	3b	54.26	8.73	21.99	0.456
474225	CBC-11-07a	0.05	1 a	53.93	9.28	20.63	0.576
474226	CBC-11-07a	1	3b	52.11	8.79	22.97	0.558
474227	CBC-11-07a	0.47	3b	53.6	7.97	24.19	0.534
474228	CBC-11-07a	0.24	1a	53.63	9.33	21.67	0.412
474229	CBC-11-07a	0.14	3b	53.18	10.45	20.68	0.411
474230	CBC-11-07b	0.62	1a	52.79	7.24	24.95	0.636
474231	CBC-11-07b	0.61	1a	52.46	8.19	23.82	0.511
474232	CBC-11-06	0.35	1a	53.73	9.88	20.51	0.632

CHEM #	CHANNEL	LENGTH (m)	UNIT#	SiO2	Al2O3	Fe2O3(T)	MnO
474233	CBC-11-06	0.1	1a	52.83	9.9	20.06	0.616
474234	CBC-11-06	0.55	3b	52.23	10.16	21.25	0.631
474235	CBC-11-06	0.1	1a	52.12	12.4	17.45	0.531
474236	CBC-11-06	0.4	3bM	51.22	10.61	17.99	0.543
474237	CBC-11-06	0.3	1aM	51.07	11.28	16.31	0.502
474238	CBC-11-06	0.15	3b	54.07	10.37	19.58	0.523
474239	CBC-11-06	0.6	1a	55.17	11.92	14.9	0.414
474240	CBC-11-06	0.1	3b	50.55	8.32	22.02	0.851
474241	CBC-11-06	0.25	1a	53.45	11.1	18.23	0.572
474242	CBC-11-10	0.5	3aM	54.67	8.45	22.18	0.538
474243	CBC-11-10	0.57	3aM	55.77	10.16	13.53	0.45
474244	CBC-11-10	0.28	1aM	52.51	13.7	12.6	0.349
474245	CBC-11-10	0.65	1a	56.48	14.18	13.03	0.308
474246	CBC-11-10	0.5	1aM	56.44	7.96	10.5	0.481
474247	CBC-11-04	0.86	2b	52.44	14.66	14.11	0.319
474248	CBC-11-04	0.86	2b	53.35	13.75	15.05	0.314
474249	CBC-11-04	0.11	2bm	51.31	12.99	16.57	0.294
474250	CBC-11-04	0.84	2b	52.92	13.91	14.91	0.281
474251	CBC-11-04	0.84	2b	53.09	14.12	13.94	0.243
474252	CBC-11-04	0.7	1am	53.62	13.94	16	0.431
474253	CBC-11-04	0.75	1am	52.74	13.59	15.98	0.47
474254	CBC-11-04	0.53	1am	52.82	12.24	17.14	0.404
474255	CBC-11-04	0.51	1a/2a	52.34	14.83	14.46	0.323
474256	CBC-11-04	0.7	1am(2a)	54.73	13.69	14.49	0.388
474257	CBC-11-04	0.98	2a-b	54.31	14.2	13.61	0.34
474258	CBC-11-04	0.52	1 a	57.95	14.22	12.44	0.369
474259	CBC-11-04	0.98	2am	54.68	14.18	13.46	0.364
474260	CBC-11-04	0.98	1am	53.46	13.21	14.54	0.444
474261	CBC-11-04	0.14	3a	51.42	12.11	18.14	0.714
474262	CBC-11-04	0.45	1c	52.53	12.71	16.4	0.464
474263	CBC-11-04	0.25	2b	52.74	13.66	13.79	0.318
474264	CBC-11-08	0.59	1am	54.42	11.35	17.22	0.15
474265	CBC-11-08	0.91	1am	53.61	9.69		
474266	CBC-11-08	1	1am	53.5	8.96		
474267	CBC-11-08	1	1c	55.51	11.74	16.26	0.322
474268	CBC-11-11	1	1am	52.03	12.54	15.45	
474269	CBC-11-11	0.63	1am	52.18	12.23	15.95	
474270	CBC-11-11	1	1am	53.62	14.18	13.59	
474271	CBC-11-11	1	1a	54	13.91	13.91	0.266
474272	CBC-11-11	0.95	1a	53.7	13.87	13.72	0.269
474273	CBC-11-09b	0.98	1a	54.39	15.61	12.18	
474274	CBC-11-09b	0.55	1a	54.09	15.51	12.27	0.219
474275	CBC-11-09b	0.55	1a	53.41	15.4	12.36	0.22
474276	CBC-11-09b	0.18	1a	53.85	13.81	13.58	0.281
474277	CBC-11-09b	0.79	1a	54.12	13.48	14.8	
474278	CBC-11-09b	0.8	1 a	53.38	13.29	14.43	0.283

CHEM #	CHANNEL	LENGTH (m)	UNIT#	SiO2	Al2O3	Fe2O3(T)	MnO
474279	CBC-11-09b	0.47	1a	52.89	13.72	14.94	0.273
474280	CBC-11-09b	0.64	1a	54.39	12.71	14.99	0.301
474281	SZC-11-04	0.44	1a	53.05	12.53	14.71	0.327
474282	SZC-11-04	0.15	2b	52.46	11.95	17.26	0.379
474283	SZC-11-04	0.18	1a/3b	53.73	11	18.89	0.467
474284	SZC-11-04	0.98	2b	52.06	11.26	19.48	0.392
474285	SZC-11-04	0.28	2b	53.06	11.17	19.15	0.391
474286	SZC-11-04	0.47	1a	50.56	9.4	21.78	0.457
474287	SZC-11-04	0.22	2b	51.21	10.96	20.17	0.354
474288	SZC-11-15a	0.19	2bm	53.38	11.04	17.12	0.39
474289	SZC-11-15a	0.03	2bm	60.85	13.1	10.53	0.263
474290	SZC-11-15a	0.14	2bm	55.25	12.04	15.37	0.383
474291	SZC-11-15b	0.2	2bm	55.93	12.27	15.01	0.382
474292	SZC-11-15b	0.04	2bm	62.22	13.55	9.94	0.25
474293	SZC-11-15b	0.12	2bm	55.56	12.34	14.71	0.366
474294	SZC-11-15c	0.2	2bm	54.88	11.89	15.22	0.375
474295	SZC-11-15c	0.03	2bm	59.22	12.22	12.03	0.332
474296	SZC-11-15c	0.19	2bm	59.13	11.25	14.45	0.4
474297	SZC-11-05	0.52	2b	55.08	12.67	14.27	0.372
474298	SZC-11-05	0.7	2b	55.89	14.41	12.34	0.302
474299	SZC-11-05	0.94	2b	55.7	13.01	13.79	0.341
474300	SZC-11-05	0.33	2b	55.98	13.35	13.63	0.343
474301	SZC-11-05	0.53	2b	55.83	13.65	13.3	0.318
474302	SZC-11-05	0.63	2b	56.43	13.99	13.09	0.312
474303	SZC-11-09	0.49	3b	54.67	10.72	17.34	0.397
474304	SZC-11-09	0.58	2b	55.77	12.72	14.4	0.352
474305	SZC-11-09	0.58	2b	54.02	12.52	14.73	0.366
474306	SZC-11-09	0.77	2b	54.02	12.43	15.05	0.378
474307	SZC-11-09	0.77	2b	53.48	12.99	15.07	0.372
474308	SZC-11-09	0.33	2b-3a	54.63	13.48	15.14	0.381
474309	SZC-11-09	0.5	2b	54.04	12.56	15.36	0.396
474310	SZC-11-09	0.26	2b-3a	57.32	13.28	13.41	0.341
474311	SZC-11-09	0.57	2b	54.96	13.43	13.63	0.337
474312	SZC-11-09	0.56	2b	54.63	13.57	13.82	0.344
474313	SZC-11-09	0.84	2b	54.26	13.6	14.75	0.384
474314	SZC-11-09	0.84	2b	54.71	14.23	13.19	0.339
474315	SZC-11-09	0.66	2b	55.17	13.05	14.43	0.367
474316	SZC-11-02b	0.77	1c	53.84	10.01	17.5	0.49
474317	SZC-11-02b	0.28	2b	53.48	11.13	13.14	0.511
474318	SZC-11-02b	0.75	1c	54.92	11.17	16.12	0.584
474319	SZC-11-02b	0.75	1c	54.57	10.59	18.9	0.381
474320	SZC-11-02b	0.13	2b	54.25	11.98	14.65	0.493
474321	SZC-11-03a	0.58	2b	55.3	11.1	13.65	0.556
474322	SZC-11-03a	0.58	2b	54.15	11.24	12.63	0.503
474323	SZC-11-03a	0.69	1c	53.5	10.46	17.93	0.408
474324	SZC-11-03a	0.51	2b	53.31	10.86	13.24	0.514

CHEM #	CHANNEL	LENGTH (m)	UNIT#	SiO2	Al2O3	Fe2O3(T)	MnO
474325	SZC-11-03a	0.42	1c	54.97	11.35	15.5	0.456
474326	SZC-11-03b	0.86	1c (2b)	54.15	11.29	15	0.364
474327	SZC-11-03b	0.86	1c (2b)	54.78	11.28	15.38	0.423
474328	SZC-11-03b	0.86	1c (2b)	53.75	11.12	17.12	0.374
474329	SZC-11-03b	0.22	2b	53.87	12.91	13.52	0.473
474330	SZC-11-06	0.75	2b	55.44	13.19	13.89	0.342
474331	SZC-11-06	0.95	2b	54.51	12.86	14.12	0.351
474332	SZC-11-06	0.8	2b	54.44	12.64	15.39	0.382
474333	SZC-11-06	0.75	2b	54.51	12.12	15.77	0.385
474334	SZC-11-06	0.75	2b	53.98	12.16	15.4	0.382
474335	SZC-11-06	0.75	2b	54.66	12.31	14.56	0.367
474336	SZC-11-06	0.4	2b	53.56	12.16	15.32	0.372
474337	SZC-11-07	0.78	2b	55.76	13.24	12.79	0.336
474338	SZC-11-07	0.78	2b	56.65	13.11	13.34	0.348
474339	SZC-11-07	0.79	2b	55.56	12.6	13.41	0.285
474340	SZC-11-07	0.79	2b	56.39	12.76	13.15	0.318
474341	SZC-11-07	0.22	1c (2b)	55.14	11.67	15.87	0.411
474342	SZC-11-07	0.46	2b (1c)	56.31	11.94	14.06	0.353
474343	SZC-11-08	0.69	2b	54.65	11.58	16.21	0.393
474344	SZC-11-08	0.46	3bm	50.7	11.71	16.85	0.373
474345	SZC-11-08	0.84	2b(1c)	53.35	11.69	15.27	0.392
474346	SZC-11-08	0.95	2b	55.59	13.52	13.37	0.339
474347	SZC-11-08	0.81	2b	53.33	12.81	14.8	0.383
474348	SZC-11-10	0.45	2b(1c)	53.33	11.76	15.41	0.378
474349	SZC-11-10	0.3	3b	54.79	11.54	16.03	0.376
474350	SZC-11-10	0.54	3bm(2b)	52.98	10.61	17.68	0.429
474351	SZC-11-10	0.53	3bm(2b)	52.55	11.24	16.7	0.391
474352	SZC-11-10	0.58	3bm	54.25	10.09	18.29	0.453
474353	SZC-11-10	0.58	3bm	53.76	11.68	15.74	0.416
474354	SZC-11-10	1.01	2b	55.86	12.82	12.28	0.331
474355	SZC-11-10	1.01	2b	54.47	13.94	13	0.341
474356	SZC-11-10	1	2b(1c)	55.76	12.56	12.73	0.352
474357	SZC-11-10	1	2b(1c)	55.74	13.1	12.95	0.338
474358	SZC-11-10	1	2b(1c)	55.41	13.6	12.56	0.322
474359	SZC-11-10	1	2b(1c)	54.84	14.64	12.51	0.33
474360	SZC-11-10	0.95	2b(1c)	55.05	14.95	12.3	0.31
474361	SZC-11-10	1	2b	55.91	14.77	12.06	0.328
474362	SZC-11-10	0.44	2b	54.95	14.28	11.89	0.315
474363	SZC-11-10	0.72	2b	54.07	13.97	13.02	0.343
474364	SZC-11-10	0.71	2b	54.07	13.51	13.21	0.344
474365	SZC-11-10	0.79	2bm	54.27	13.15	13.05	0.313
474366	SZC-11-10	0.79	2bm	53.8	13.42	13.07	0.309
474367	SZC-11-10	0.79	2bm	54.12	13.7	13.04	0.317
474368	SZC-11-10	0.64	3b	55.11	10.64	17.42	0.403
474369	SZC-11-10	0.49	2b	54.85	13.2	12.83	0.363
474370	SZC-11-10	0.84	2b-1c	56.15	13.31	13.36	0.331

CHEM#	CHANNEL	LENGTH (m)	UNIT#	SiO2	Al2O3	Fe2O3(T)	MnO
474371	SZC-11-10	1.02	2b	56.31	14.35	12.61	0.311
474372	SZC-11-10	1.02	2b	55.18	13.99	13.47	0.331
474373	SZC-11-10	0.74	2b	53.16	12.76	15.63	0.401
474374	SZC-11-10	0.73	2b	56.57	13.52	12.44	0.336
474375	SZC-11-11	0.21	2B	54.72	12.12	14.42	0.372
474376	SZC-11-11	0.12	1A	55.36	10.56	16.74	0.459
474377	SZC-11-11	0.18	2B	53.37	12.35	14.97	0.383
474378	SZC-11-11	0.49	1A	53.1	12.91	15.31	0.331
474379	SZC-11-11	0.45	1A	53.88	13.22	14.4	0.311
474380	SZC-11-11	0.31	2B	53.22	12.97	14.3	0.377
474381	SZC-11-11	0.12	1B	53.81	13.07	14.23	0.291
474382	SZC-11-11	0.48	1A (M?)	54.33	11.94	14.44	0.374
474383	SZC-11-11	0.75	2b	54.01	12.3	15.11	0.34
474384	SZC-11-11	0.66	2b	55.5	12.65	14.57	0.35
474385	SZC-11-11	0.65	2b	55.67	13.16	13.21	0.344
474386	SZC-11-11	0.77	2b	54.85	13.1	14.76	0.369
474387	SZC-11-11	0.77	2b	54.21	14.56	12.8	0.323
474388	SZC-11-11	0.77	2b	54.56	13.14	14.22	0.37
474389	SZC-11-11	0.78	2b	54.33	13.36	15.02	0.355
474390	SZC-11-11	0.14	2b	53.35	12.21	16.11	0.443
474391	SZC-11-11	0.29	2b	54.92	11.92	15.6	0.411
474392	SZC-11-11	1	2b	54.57	13.39	13.76	0.326
474393	SZC-11-11	1	2b	54.34	12.79	14.55	0.375
474394	SZC-11-11	1	2b	54.86	13.21	13.76	0.354
474395	SZC-11-11	0.77	2b	56.51	13.78	12.96	0.308
474396	SZC-11-11	0.23	1B	56.53	13.1	12.68	0.328
474397	SZC-11-11	1	2B	57.88	13.66	12.64	0.336
474398	SZC-11-11	1	2B	55.72	13.57	13.08	0.334
474399	SZC-11-11	1	2B	55.89	13.75	13.13	0.329
474400	SZC-11-11	0.49	2B	55.57	14.27	12.36	0.319
474401	SZC-11-11	0.22	2B	55.41	13.71	12.43	0.306
474402	SZC-11-12	1	2c	53.98	12.48	14.91	0.382
474403	SZC-11-12	0.25	2c	56.18	12.14	13.17	0.359
474404	SZC-11-12	0.25	2 c	58.13	12.17	13.22	0.377
474405	SZC-11-12	0.8	2 c	55.31	13	14.44	0.37
474406	SZC-11-12	0.81	2 c	54.63	12.72	14.92	0.371
474407	SZC-11-12	0.6	2 c	54.16	12.46	14.91	0.373
474408	SZC-11-12	0.59	2c	54.25	12.06	15.91	0.38
474409	SZC-11-02a	0.47	2b	49.34	13.04	12.14	0.257
474410	SZC-11-02a	0.14	1 a	54.3	10.25	18.21	0.306
474411	SZC-11-02a	1	2b	53.79	11.79	13.54	0.339
474412	SZC-11-02a	0.58	2b	47.96	12.03	13.29	0.3
474413	SZC-11-02a	0.14	1 a	55.14	12.32	14.84	0.383
474414	SZC-11-02a	0.67	1b	53.13	10.96	14.35	0.451
474415	SZC-11-02a	0.67	1b	56.48	10.16	13.85	0.653
474416	SZC-11-02a	0.88	1a	54.9	10.02	17.3	0.567

CHEM#	CHANNEL	LENGTH (m)	UNIT#	SiO2	Al2O3	Fe2O3(T)	MnO
474417	SZC-11-02a	0.16	1b	54.25	10.29	15.89	0.502
474418	SZC-11-02a	0.11	1a	54.45	9.85	16.62	0.531
474419	SZC-11-02a	0.61	1b	52.9	11.68	11.5	0.417
474420	MRC-11-04	0.55	1A	51.96	11.68	15.26	0.517
474421	MRC-11-04	0.48	1B	52.59	11.54	15.43	0.601
474422	MRC-11-04	0.47	1A	52.2	10.37	19.11	0.569
474423	MRC-11-04	0.7	1A	52.94	11.31	17.22	0.489
474424	MRC-11-04	0.75	1B	54.26	12.31	11.83	0.588
474425	MRC-11-04	0.56	1A	52.66	10.89	17.69	0.566
474426	MRC-11-04	0.09	2B	52.9	11.07	18.01	0.636
474427	MRC-11-04	0.31	1A	52.67	10.95	17.93	0.572
474428	MRC-11-04	0.26	2B	53.25	11.4	15.66	0.625
474429	MRC-11-04	0.58	2A	54.29	11.9	16.2	0.573
474430	MRC-11-04	0.77	2A	53.87	12.54	14.53	0.47
474431	SZC-11-16	0.75	1a	56.13	12.81	13.94	0.343
474432	SZC-11-16	0.75	1a	56.82	12.1	12.96	0.369
474433	SZC-11-16	0.25	1a	55.32	11	14.51	0.415
474434	SZC-11-16	0.75	1a	56.9	10.73	14.98	0.379
474435	SZC-11-16	0.75	1a	56.93	10.98	14.99	0.34
474436	SZC-11-16	0.75	1a	57.59	10.78	15.18	0.38
474437	SZC-11-16	1.06	1a	56.52	10.61	15.85	0.397
474438	SZC-11-16	0.29	1b	58.22	10.1	15.15	0.766
474439	SZC-11-16	0.75	1a	57.97	11.21	14.82	0.447
474440	SZC-11-16	0.75	1a	56.98	11.43	15.69	0.302
474441	SZC-11-16	0.2	1a	56.83	11.04	16	0.276
474442	SZC-11-16	0.52	2a	59.34	12.51	11.11	0.376
474443	SZC-11-16	0.42	1a	56.82	9.68	15.56	0.549
474444	SZC-11-16	0.52	1a	57.68	11.46	11.88	0.356
474445	SZC-11-16	0.91	1b	57.81	11.92	11.92	0.44
474446	SZC-11-16	0.33	1a	61.39	14.28	6.06	0.4
474447	SZC-11-16	0.75	1a	55.9	11.07	14.63	0.321
474448	SZC-11-16	0.75	1a	56.87	10.76	14.19	0.33
474449	SZC-11-16	0.75	1 a	56.63	10.28	15.06	0.311
474450	SZC-11-16	1.12	1 a	56.14	10.7	14.38	0.329
474451	MRC-11-03	1	1a/3b	51.01	11.07	16.88	0.55
474452	MRC-11-03	1	1a/3b	51.5	11.41	16.61	0.555
474453	MRC-11-03	1	1a/3b	51.32	10.91	17.85	0.61
474454	MRC-11-03	0.56	1a/3b	51.82	10.96	17.92	0.635
474455	MRC-11-03	1	1a/3b	52.48	11.31	18.03	0.612
474456	MRC-11-03	0.51	1a/3b	52.44	10.41	18.53	0.648
474457	MRC-11-03	1	1a/3b	53.33	11	15.41	0.506
474458	MRC-11-03	0.68	1a/3b	52.92	11.4	15.91	0.531
474459	MRC-11-03	0.83	1a/3b	53.2	11.72	15.89	0.491
474460	MRC-11-03	0.83	1a/3b	52.26	11.43	17.93	0.515
474461	MRC-11-05	0.98	3b	51.65	11.32	16.8	0.599
474462	MRC-11-05	0.79	1a	52.51	11.47	16.89	0.577

CHEM #	CHANNEL	LENGTH (m)	UNIT#	SiO2	Al2O3	Fe2O3(T)	MnO
474463	MRC-11-05	0.79	1a	52.34	11.46	16.32	0.594
474464	MRC-11-05	0.78	1a	51.74	11.44	17.01	0.542
474465	MRC-11-05	0.78	1a	52.1	11.65	16.48	0.546
474466	MRC-11-05	0.69	1a/3b	52.28	12.31	14.78	0.509
474467	MRC-11-05	0.68	1a/3b	52.65	12.43	15.6	0.521
474468	MRC-11-05	0.34	2b	53.71	12.15	14.61	0.616
474469	MRC-11-05	1.02	1a(3b)	53.56	10.97	16.57	0.606
474470	MRC-11-05	1.02	1a(3b)	53.56	12.17	14.63	0.52
474471	MRC-11-05	1.01	1a(3b)	52.45	11.09	16.01	0.591
474472	MRC-11-02	0.66	1a	55.34	11.22	15.07	0.395
474473	MRC-11-02	0.65	1a	56.48	10.73	17.11	0.523
474474	MRC-11-02	1.01	2b	52.25	11.99	14.7	0.465
474475	MRC-11-02	0.56	3b/2b	52.74	10.94	17.74	0.393
474476	MRC-11-02	0.56	3b/2b	54.05	11.78	17.01	0.439
474477	MRC-11-02	0.62	2b	54.75	11.54	14.3	0.505
474478	MRC-11-02	0.62	2b	54.41	11.46	15.94	0.55
474479	BRC-11-06	1	1a	52.98	13.26	14.27	0.263
474480	BRC-11-06	0.92	1a	51.13	11.94	17.3	0.295
474481	BRC-11-06	0.08	3a	53.69	15.96	11.12	0.234
474482	BRC-11-06	0.74	1a	51.56	10.87	18.8	0.282
474483	BRC-11-06	0.74	1a	52.06	12.08	17.01	0.197
474484	BRC-11-06	0.74	1a	51.57	13.27	15.7	0.289
474485	BRC-11-06	0.28	1a	51.94	15.2	12.22	0.259
474486	MRC-11-01	1.05	3b	52.78	7.95	24.78	0.527
474487	MRC-11-01	1.04	3b	52.09	8.02	22.83	0.533
474488	MRC-11-01	0.73	2b/1c	54.72	14.05	13.96	0.449
474489	MRC-11-01	0.73	2b/1c	54.34	10.82	16.77	0.56
474499	BRC-11-02a	0.62	1am	52.73	15.67	12.42	0.315
474500	BRC-11-02a	0.58	1 a	55.19	13.13	13.57	0.299
474501	BRC-11-02b	0.69	1 a	54.07	14.56	14.13	0.476
474502	BRC-11-02b	0.69	1 a	54.44	12.56	15.21	0.329
474503	BRC-11-02b	0.14	1am	53.82	18.63	7.34	0.177
474504	BRC-11-05	0.25	1a	53.63	10.83	18.4	0.313
474505	BRC-11-05	0.33	1a	56.15	12.37	14.9	
474506	BRC-11-05	0.77	3bm	56.03	10.99	16.99	0.335
474507	BRC-11-05	0.15	1cm	57.9	15.01	10.2	0.108
474508	BRC-11-05	0.6	1am	57.63	12.07	14.11	0.2
474509	BRC-11-05		1am/3bm	55	11.96	15.43	0.413
474510	BRC-11-01	0.65	1a(2b)	57.71	13.02	13.72	0.351
474511	BRC-11-01	0.2	3a	65.24	17	4.1	0.098
474512	BRC-11-01	0.54	2b-1a	59.73	11.63	13.5	0.361
474513	BRC-11-01	0.53	2b-1a	53.94	10.97	15.96	0.496
474514	BRC-11-01	0.79	2b	56.53	11.26	16.33	0.571
474515	BRC-11-01	1	1a(2b)	56.65	10.76	17.65	0.568
474516	BRC-11-01	0.99	1a(2b)	56.45	12.07	15.26	0.419
474517	BRC-11-01	1	1a(m)	55.01	12.37	16.19	0.371

CHEM #	CHANNEL	LENGTH (m)	UNIT#	SiO2	Al2O3	Fe2O3(T)	MnO
474518	BRC-11-01	1	1a(m)	55.26	12.65	14.53	0.467
474519	BRC-11-01	0.7	1a(m)	58.17	11.67	13.81	0.355
474520	BRC-11-01	0.55	1b/3a	57.37	9.17	18.95	0.463
474521	BRC-11-03a	0.38	3a	57.64	10.58	16.37	0.377
474522	BRC-11-03a	0.37	3a	57.77	10.41	15	0.385
474523	BRC-11-03a	0.24	2a	60.84	12.2	13.68	0.262
474524	BRC-11-03a	0.38	2b	64.28	14.23	8.05	0.166
474525	BRC-11-03a	0.51	1a	56.97	12.78	14.51	0.205
474526	BRC-11-03b	0.6	1am	53.8	12.19	15.22	0.442
474527	BRC-11-03b	0.5	1am/3bm	51.83	12	15.79	0.484
474528	BRC-11-03b	0.9	1am/3bm	53.95	11.58	15.29	0.496
474529	BRC-11-03b	0.25	1am/3bm	55.38	12.52	14.34	0.375
474530	BRC-11-03b	0.45	1am/3bm	57	10.65	16.78	0.573
474531	BRC-11-03b	0.82	1am/3bm	55.72	12.22	14.68	0.45
474611	MRC-11-06	0.92	1a	52.67	9.65	18.18	1.04
474612	MRC-11-06	0.91	1a/1b	52.63	10.08	19.38	1.196
474613	MRC-11-06	1.15	1a/1b	52.67	8.24	20.97	1.333
474614	MRC-11-06	0.9	1a/1b	53.19	9.35	19.78	1.079
474615	MRC-11-06	1	1a/1b	52.59	8.64	20.99	1.249
474616	MRC-11-06	0.64	1a	51.33	7.59	22.62	1.187
474617	MRC-11-06	1	1a/1b	53.2	9.28	20.21	1.294
474618	MRC-11-06	0.76	1a	52.68	10.6	17.79	0.808
474619	MRC-11-06	0.25	1a/1b	53.63	9.26	20.22	1.162
474620	MRC-11-06	0.97	1a/1b	52.6	8.09	21.99	1.238
474621	MRC-11-06	0.87	1a/1b	52.71	8.85	21.17	1.152
474622	MRC-11-06	0.86	1a/1b	52.12	9.14	20.58	1.1
474623	MRC-11-06	0.92	1a/1b	52.25	9.25	19.67	1.239
474624	MRC-11-06	0.87	1a/1b	52.07	9.87	19.42	1.184
474625	MRC-11-06	0.83	1a/1b	51.63	9.18	20.19	1.285
474626	MRC-11-06	0.22	1a/1b	52.9	9.76	20.4	1.208
4744490	BRC-11-04	0.32	1bm	57.18	10.8	12.42	0.399
4744491	BRC-11-04	0.27	1cm	53.22	10.85	14.68	0.247
4744492	BRC-11-04	0.35	1b	52.48	10.52	15.11	0.532
4744493	BRC-11-04	0.5	1am	53.51	9.55	16.65	0.499
4744494	BRC-11-04	1.01	1b	55.28	10.62	13.39	0.397
4744495	BRC-11-04	0.3	1bm	53.97	10.46	15.35	0.461
4744496	BRC-11-04	0.3	1b	54.71	10.91	14.94	0.433
4744497	BRC-11-04	0.2	1am	53.66	9.8	18.17	0.429
4744498	BRC-11-04	0.28	1b	50.04	12.9	12.24	0.332
474565	AMC-11-05	0.95	1a/3b	55.79	9.8	15.88	0.591
474566	AMC-11-05	1	1a/3b	56.82	10.09	15.27	0.625
474567	AMC-11-05	0.9	1a/3b	56.29	10.06	14.79	0.593
474568	AMC-11-05	0.96	1a/3b	53.77	9.27	19.29	0.644
474569	AMC-11-05	0.94	1a/3b	50.67	8.35	22.74	0.766
474570	AMC-11-05	1.16	1a/3b	52.57	8.61	20.77	0.664
474571	AMC-11-01	1	1a/1b	57.61	15.73	8.95	0.199

CHEM #	CHANNEL	LENGTH (m)	UNIT#	SiO2	Al2O3	Fe2O3(T)	MnO
474572	AMC-11-01	0.83	1a/1b	58.15	16.08	8.89	0.191
474573	AMC-11-01	1.47	1a/1b	57.88	15.88	9.36	0.211
474574	AMC-11-01	1.03	1a/1b	57.45	15.45	9.79	0.212
474575	AMC-11-01	0.8	1a/1b	56.87	15.62	10.04	0.222
474576	AMC-11-02	1.05	1a/1b	56.13	14.99	10.95	0.238
474577	AMC-11-02	1.03	1a/1b	57.58	14.2	11.58	0.235
474578	AMC-11-02	0.97	1a/1b	59.28	14.4	9.86	0.186
474593	AMC-11-04	0.98	2b	56.62	14.7	11.51	0.294
474594	AMC-11-04	0.97	2b	56.8	14.37	11.09	0.291
474595	AMC-11-04	1.34	2b	57.98	15.5	10.13	0.26
474596	AMC-11-04	0.43	1aM	54.73	11.24	16.47	0.386
474597	AMC-11-04	0.72	2b	58.14	15.42	9.61	0.249
474598	AMC-11-04	0.53	2b	58.19	15.27	10.26	0.257
474599	AMC-11-03	1	1a/1b	57.16	14.98	9.68	0.238
474600	AMC-11-03	1	1a/1b	54.07	12.85	13.92	0.384
474601	AMC-11-03	1	1a/1b	55.21	13.59	11.3	0.331
474602	AMC-11-03	0.98	1a/1b	57.47	15.7	9.33	0.285
474603	AMC-11-03	0.92	1a/1b	57.42	14.64	9.78	0.259
474604	AMC-11-03	0.89	1a/1b	56.66	15.35	10.14	0.264
474605	AMC-11-03	1.21	1a/1b	57.52	16.48	8.82	0.216
474606	AMC-11-03	0.5	1a/1b	57.47	16.44	8.57	0.215
474607	AMC-11-03	0.9	1a/1b	58.55	16.14	8.65	0.205
474608	AMC-11-03	1.4	1b	58.98	15.7	8.85	0.217
474609	AMC-11-03	1.2	1a	58.06	15.34	9	0.203
474610	AMC-11-03	0.45	1a	55.54	14.96	11.58	0.223

CHEM#	CHANNEL	MgO	CaO	Na2O	K20	TiO2	P205
104201	CBC-10-06a	1.21	3.93	7.57	4.02	1.326	0.74
104202	CBC-10-06a	1.18	3.76	7.91	4.17	1.274	0.59
104203	CBC-10-06a	0.74	2.39	7.43	4.17	0.842	0.34
104204	CBC-10-06a	0.58	2.04	7.51	3.99	0.809	0.31
104205	CBC-10-06a	0.38	1.83	6.99	4.94	0.557	0.04
104206	CBC-10-06a	0.43	2.07	6.7	4.73	0.699	0.22
104207	CBC-10-06a	0.37	2.34	7.76	4.19	0.702	0.18
104208	CBC-10-06a	0.2	1.74	8.14	4.36	0.512	0.1
104209	CBC-10-06a	0.2	2.06	8	4.62	0.576	0.19
104210	CBC-10-06a	0.22	1.57	8.27	4.76	0.423	0.1
104211	CBC-10-06a	0.25	1.53	8.82	4.01	0.351	0.09
104212	CBC-10-06a	0.22	1.52	8.58	4.19	0.412	0.08
104213	CBC-10-06a	0.22	1.38	7.68	5.02	0.535	0.08
104214	CBC-10-06a	0.31	0.83	6.78	5.94	0.177	0.3
104215	CBC-10-06a	0.21	0.47	6.65	6.14	0.229	0.09
104216	CBC-10-06a	0.17	0.45	7.47	4.81	0.155	0.18
104217	CBC-10-07	0.2	1.68	7.8	5.16		0.15
104218	CBC-10-07	0.22	1.98	7.77	4.9		0.22
104219	CBC-10-07	0.2	2.14	7.75	5.19		0.18
104220	CBC-10-07	0.19	1.77	8.02	5.21	0.456	0.12
104221	CBC-10-07	0.14	1.96	9.9	4.28		0.03
104222	CBC-10-07	0.17	1.64	9.46	4.57	0.564	0.06
104223	CBC-10-07	0.22	1.81	10.46	3.38		0.06
104224	CBC-10-07	0.2	1.9	9.27	4.32	0.518	0.06
104225	CBC-10-07	0.13	1.64	9.61	4.33		0.04
104226	CBC-10-07	0.18	2.13	8.54	4.54		0.2
104227	CBC-10-08	0.16	1.98	9.97	3.81	0.824	0.06
104228	CBC-10-08	0.13	1.91	9.42	3.87	1.16	0.06
104229	CBC-10-08	0.5	2.11	9.02	4.27	0.457	0.06
104230	CBC-10-08	0.42	2.15	8.9	3.91	0.615	0.04
104231	CBC-10-08	0.17	1.9	9.6	4.17	0.936	0.02
104232	CBC-10-08	0.17	1.7	9.85	4.24	0.869	0.08
104233	CBC-10-08	0.18	1.89	9.76			0.09
104234	CBC-10-08	0.16	1.78	9.09 9.24	4.72		
104235	CBC-10-08	0.15	1.93	9.24	4.61	0.696	0.08
104236 104237	CBC-10-08	0.15	1.56	0.10	4.9	0.778	0.00
104237	CBC-10-08	0.15	1.72	9.18 9.9	4.65		0.09 0.13
	CBC-10-08						0.13
104239 104240	CBC-10-08	0.19	1.95	9.71	4.49		
104240	CBC-10-08 CBC-10-08	0.12 0.13	2.19 2.14	10.72 9.96	3.91 4.25		0.02
104241	CBC-10-08	0.13	2.14	9.96	4.23		0.03
104242	CBC-10-08	0.13	1.89	9.75	4.19		0.04
104243	CBC-10-08	0.14	1.65	9.30	4.33	1.009	0.05
104244	CBC-10-08	0.12	1.62	9.29	4.44		0.05
104246	CBC-10-08	0.18	1.75	9.3	4.58	0.816	0.05

CHEM #	CHANNEL	MgO	CaO	Na2O	K20	TiO2	P2O5
104247	CBC-10-08	0.13	1.59	10.08	3.98	1.055	0.04
104248	CBC-10-08	0.12	1.84	9.69	4.3	0.959	0.1
104249	CBC-10-08	0.12	1.82	9.65	4.59	0.87	0.07
104250	CBC-10-08	0.16	1.99	9.68	4.38	0.703	0.05
104251	CBC-10-08	0.2	1.82	9	4.56	0.746	0.06
104252	CBC-10-08	0.18	2.01	9.85	4.41	0.785	0.03
104253	CBC-10-08	0.09	1.86	10.65	3.98	1.164	0.03
104254	CBC-10-09	0.15	1.1	8.52	4.59	0.35	0.1
104255	CBC-10-09	0.18	1.17	8.71	4.11	0.304	0.08
104256	CBC-10-09	0.21	1.11	8.81	4.55	0.28	0.05
104257	CBC-10-09	0.27	1.35	9.02	3.81	0.301	0.12
104258	CBC-10-09	1.19	2.64	8.54	3.49	0.89	0.9
104259	CBC-10-09	2.04	4.16	9.88	3.36	1.465	1.27
104260	CBC-10-09	2.08	4.3	9.86	3.38	1.521	1.36
104261	CBC-10-09	0.45	2.07	10.72	2.11	0.417	0.27
104262	CBC-10-09	0.06	1.23	11.59	2.44	0.145	0.02
104263	CBC-10-09	0.09	0.93	9.41	4.4	0.136	0.03
104264	CBC-10-09	0.13	1.35	10.24	3.76	0.189	0.07
104265	CBC-10-09	0.21	1.18	9.54	4.63	0.33	0.04
104266	CBC-10-09	0.32	1.4	8.18	5.4	0.464	0.02
104267	CBC-10-09	0.15	1.42	8.52	5.45	0.282	0.04
104268	CBC-10-09	0.17	1.13	7.73	5.43	0.3	0.06
104269	CBC-10-10	0.3	2.52	8.36	4.79	0.805	0.2
104270	CBC-10-10	0.35	1.75	8.87	3.46	0.263	0.13
104271	CBC-10-10	0.2	2.11	8.01	5.14	0.787	0.15
104272	CBC-10-10	0.23	2.23	8.14	4.56	0.733	0.18
104273	CBC-10-10	0.26	2.36	8.17	4.65	0.621	0.15
104274	CBC-10-10	0.2	1.85	9.4	3.8	0.495	0.15
104275	CBC-10-10	0.22	2.01	8.52	4.61	0.817	0.12
104276	CBC-10-10	0.27	2.32	8.29	4.84	0.599	0.16
104277	CBC-10-10	0.29	2.04	7.85	5.25	0.497	0.11
104278	CBC-10-10	0.34	1.5	9.7	2.92	0.182	0.11
104279	CBC-10-10	0.24	1.52	10.06	3.47		0.08
104280	CBC-10-10	0.24	1.94	8.19	5.1		0.15
104281	CBC-10-10	0.31	1.91	7.6	4.55	0.355	0.35
104282	CBC-10-10	0.25	1.39	9.37	2.66		0.1
104283	CBC-10-10	0.21	1.41	9.56			0.2
104284	CBC-10-10	0.07	1.33	10.06			0.22
104285	CBC-10-10	0.1	1.25	10	2.77		0.26
104286	CBC-10-10	0.15	1.73	7.98	4.1		1.11
104287	CBC-10-10	0.06	1	8.57	3.89		0.77
104288	CBC-10-11b	0.76	3.79	8.9	3.83		0.54
104289	CBC-10-11b	0.96	4.38	9.3	3.26		0.6
104290	CBC-10-11b	0.31	2.64	9.33	4.48		0.19
104291	CBC-10-11b	0.28	2.83	8.11	4.26	0.875	0.25
104292	CBC-10-11b	0.16	1.84	9.37	4.7	0.469	0.1

CHEM#	CHANNEL	MgO	CaO	Na2O	K20	TiO2	P2O5
104293	CBC-10-11b	0.11	1.54	8.26	5.04	0.42	0.1
104294	CBC-10-11b	0.13	1.96	9.63	4.42	0.54	0.21
104295	CBC-10-11b	0.11	1.75	9.3	4.5	0.5	0.15
104296	CBC-10-11b	0.16	1.84	9.19	4.59	0.441	0.05
104297	CBC-10-11b	0.28	2.28	8.42	4.86	0.515	0.12
104298	CBC-10-11b	0.34	2.75	8.1	4.68	0.672	0.18
104299	CBC-10-11b	0.38	1.71	7.24	3.79	0.392	0.11
104300	CBC-10-11b	0.82	4.69	9.09	3.03	1.106	0.68
104326	CBC-10-11b	0.33	2.64	8.55	3.69	0.59	0.21
104327	CBC-10-11b	0.76	4.07	9.01	3.41	1.14	0.47
104328	CBC-10-11b	0.18	2.55	7.75	5.09	0.763	0.13
104329	CBC-10-11b	0.2	2.44	7.46	5.07	0.747	0.22
104330	CBC-10-11b	0.19	2.49	7.71	5.05	0.634	0.1
104331	CBC-10-11b	0.21	2.63	7.84	4.92	0.679	0.13
104332	CBC-10-11b	0.13	2.03	9.03	4.78	0.634	0.07
104333	CBC-10-11b	0.13	2.31	9.08	4.66	0.593	0.08
104334	CBC-10-11b	0.16	2.27	7.64	4.88	0.682	0.37
104335	CBC-10-11b	0.2	2.26	8.77	4.43	0.637	0.18
104336	CBC-10-11b	0.07	1.72	8.68	4.96	0.647	0.03
104337	CBC-10-11b	0.04	1.29	8.61	5.4	0.642	< 0.01
104338	CBC-10-11b	0.18	2.5	9.39	4.58	0.639	0.13
104339	CBC-10-11b	0.66	3.71	8.54	4.04	1.171	0.54
104340	CBC-10-11b	0.27	2.83	8.47	4.14	0.441	0.07
104341	CBC-10-11b	0.96	4.59	9.13	3.61	1.256	0.58
104342	CBC-10-11b	0.2	1.34	7.25	5.28	0.529	0.08
104343	CBC-10-11b	0.9	4.25	8.91	3.64	1.333	0.64
104344	CBC-10-11b	0.37	2.53	8.52	4.1	0.623	0.22
104345	CBC-10-11b	0.13	1.49	8.51	4.47	0.26	0.02
104346	CBC-10-11b	0.12	1.81	8.17	4.76	0.34	< 0.01
104347	CBC-10-11b	0.34	2.95	8.7	4.03	0.832	0.32
104348	CBC-10-11b	0.13	1.59	8.06	4.43	0.538	0.09
416155	CBC-10-11a	0.35	2.4	7.31	4.85	0.631	0.2
416156	CBC-10-11a	0.31	2.56	7.44	4.72	0.633	0.21
416157	CBC-10-11a	0.14	1.56	10.21	4.01	0.646	0.1
416158	CBC-10-11a	0.04	0.6	11.36	3.65	0.169	0.03
416159	CBC-10-11a	0.08	1.06	10.77	3.2	1.504	0.11
416160	CBC-10-11a	0.1	1.53	9.73	4.69	0.649	0.06
416161	CBC-10-11a	0.19	2.3	8.76	4.27	1.037	0.16
416162	CBC-10-11a	0.2	2.37	7.49	4.68	0.702	0.18
416163	CBC-10-11a	0.24	2.44	7.6	4.65	0.422	0.2
416164	CBC-10-11a	0.22	2.11	8.23	4.64	0.31	0.13
416165	CBC-10-11a	0.11	1.64	8.94	5.03	0.37	0.08
416166	CBC-10-11a	0.09	1.39	10.5	3.25	1.676	0.05
416167	CBC-10-11a	0.12	0.92	9.32	4.56	0.347	0.05
416168	CBC-10-11a	0.08	1.28	9.17	3.39	0.409	0.64
416169	CBC-10-11a	0.06	1.04	10.76	4.26	1.017	0.04

CHEM #	CHANNEL	MgO	CaO	Na2O	K20	TiO2	P2O5
416170	CBC-10-11a	0.14	1.17	8.86	5.14	0.391	0.06
416171	CBC-10-12	0.11	1.75	10.94	3.36	0.504	< 0.01
416172	CBC-10-12	0.09	1.49	9.99	4.37	0.863	0.05
416173	CBC-10-12	0.14	1.88	9.99	3.8	0.916	0.17
416174	CBC-10-12	0.36	2.24	7.65	4.09	0.453	0.14
416175	CBC-10-12	0.12	1.37	9.11	3.12	0.472	0.13
416176	CBC-10-12	0.17	1.82	8.66	4.58	0.863	0.19
416177	CBC-10-12	0.1	1.28	9.23	3.59	0.347	0.18
416178	CBC-10-12	0.24	2.59	8.65	4.9	0.781	0.27
416179	CBC-10-12	0.24	2.49	7.98	4.93	0.706	0.22
416180	CBC-10-12	0.16	1.94	9.22	4.46	0.457	0.18
416181	CBC-10-12	0.2	1.94	8.74	4.34	0.904	0.15
416182	CBC-10-12	0.22	2.08	9.06	4.57	0.532	0.26
416183	CBC-10-12	0.12	2.79	9.88	3.45	0.711	0.09
416184	CBC-10-12	0.06	0.9	9.89	2.97	0.241	0.19
416185	CBC-10-12	0.13	1.66	9.31	4.41	0.747	0.12
416186	CBC-10-12	0.18	1.62	9.17	4.79	0.353	0.1
416187	CBC-10-12	0.21	2.47	8.7	4.29	0.647	0.24
416188	CBC-10-13	0.18	2.69	8.41	4.55		0.17
416189	CBC-10-13	0.23	2.81	8.44	4.36	0.831	0.17
416190	CBC-10-13	0.2	2.3	8.17	4.92	0.532	0.15
416191	CBC-10-13	0.17	2.15	8.21	4.89	0.723	0.2
416192	CBC-10-13	0.11	1.79	9.33	4.64	0.738	0.1
416193	CBC-10-13	0.13	2.38	9.67	4		0.18
416194	CBC-10-13	0.22	2.58	8.37	4.72	0.744	0.14
416195	CBC-10-13	0.2	2.57	8.03	4.68		0.16
416196	CBC-10-13	0.34	3.56	7.9	5.16		0.13
416197	CBC-10-13	0.24	2.51	7.73	5.08		0.19
416198	CBC-10-13	0.22	2.69	7.45	4.6		0.18
416199	CBC-10-13	0.32	3.31	7.88	4.24	0.704	0.15
416200	CBC-10-13	0.22	2.54	7.95	4.79		0.11
416201	CBC-10-14	0.09	1.49	10.54	4.64	1.092	0.12
416202	CBC-10-14	0.08	1.54	10.42	4.44		0.06
416203	CBC-10-14	0.1	1.54	9.99	4.11		0.07
416204	CBC-10-14	0.13	1.69	9.67	4.57		0.14
416205	CBC-10-14	0.12	2.06	9.21	4.92		0.19
416206	CBC-10-14	0.13	2.2	8.88	5.15		0.18
416207	CBC-10-14	0.13	2.12	9.68	4.28		0.13
416208	CBC-10-14	0.16	2.14	8.37	5.07		0.17
416209	CBC-10-14	0.17	2.24	7.99	5.09		0.19
416210	CBC-10-14	0.22	2.65	8.28	4.78		0.13
416211	CBC-10-14	0.22	2.66	8.74	4.45		0.26
416212	CBC-10-14	0.13	2.23	9.57	4.6		0.09
416213	CBC-10-14	0.16	2.57	8.69	4.47	0.652	0.15
416214	CBC-10-14	0.14	1.92	8.94	4.62		0.08
416215	CBC-10-14	0.08	1.56	9.03	5.32	0.46	0.07

CHEM#	CHANNEL	MgO	CaO	Na2O	K20	TiO2	P205
416216	CBC-10-14	0.12	1.62	9.16	4.83	0.735	0.11
416217	CBC-10-14	0.11	1.71	9.29	4.69	0.612	0.09
416218	CBC-10-14	0.15	2.08	9.7	4.55	0.534	0.12
416219	CBC-10-14	0.09	1.61	9.41	4.87	0.615	0.11
416220	CBC-10-14	0.12	2.07	9.57	4.25	0.778	0.17
416221	CBC-10-14	0.13	2.04	9.18	4.54	0.463	0.06
416222	CBC-10-14	0.09	1.85	9.69	4.83	0.525	0.08
416223	CBC-10-14	0.09	1.65	9.77	4.59	0.682	0.12
416224	CBC-10-14	0.09	1.51	10.22	4.38	0.6	0.09
416225	CBC-10-14	0.1	1.5	10	4.66	0.498	0.11
416226	CBC-10-15	0.22	2.19	7.44	5.11	0.513	0.13
416227	CBC-10-15	0.24	2.39	7.34	5.01	0.552	0.18
416228	CBC-10-15	0.22	2.3	7.23	5.29	0.55	0.18
416229	CBC-10-15	0.25	2.65	7.29	4.93	0.769	0.3
416230	CBC-10-15	0.24	2.48	7.31	5.07	0.831	0.22
416231	CBC-10-15	0.3	2.91	7.58	5.03	0.541	0.22
416232	CBC-10-15	0.21	2.33	7.78	5.21	0.62	0.23
416233	CBC-10-15	0.12	1.28	7.59	4.83	0.392	0.17
416234	CBC-10-15	0.22	2.21	8.04	5.02	0.607	0.18
416235	CBC-10-15	0.2	1.91	8.28	4.88	0.511	0.13
416236	CBC-10-15	0.24	2.16	7.9	4.88	0.588	0.13
416237	CBC-10-15	0.22	1.96	7.59	5.29	0.585	0.15
416238	CBC-10-15	0.37	2.23	7.55	4.41	0.443	0.15
416239	CBC-10-15	0.25	2.21	7.37	5.14	0.687	0.2
416240	CBC-10-15	0.25	2.52	7.55	5.03		0.19
416241	CBC-10-15	0.25	2.34	7.43	5.07	0.576	0.18
416242	CBC-10-15	0.23	2.31	7.43	5.09	0.543	0.18
416243	CBC-10-15	0.23	2.47	7.62	4.96		0.22
416244	CBC-10-16	0.05	1.14	7.99	5.12	0.197	0.01
416245	CBC-10-16	0.1	0.97	8.94	3.45	0.18	< 0.01
416246	CBC-10-16	0.25	1.14	7.88	3.5		0.02
416247	CBC-10-16	0.32	1.1	7.37	3.39	0.318	0.04
416248	CBC-10-16	0.11	1.78	9.04	2.14 1.47		< 0.01
416249	CBC-10-16	0.09 0.06	0.86	9.22			0.02
416250	CBC-10-16		0.63	9.5	1.68		< 0.01
416251 416252	CBC-10-16 CBC-10-16	0.04	0.52 1.21	9.8 8.33	0.92 2.13		0.01 < 0.01
416252	CBC-10-16 CBC-10-16	0.2	0.83	8.98	2.13	0.201	0.05
416254	CBC-10-16	0.08	1.43	6.42	5.93		0.03
416255	CBC-10-16	0.12	1.43	7.2	4.59		0.02
416256	CBC-10-16	0.13	1.25	6.33	6.14		< 0.04
416257	CBC-10-16	0.11	1.23	8.19	4.36		0.03
416258	CBC-10-16	0.07	1.24	8.12	4.30		0.03
416259	CBC-10-16	0.08	1.37	9.51	4.04	1.017	0.02
416260	CBC-10-16	0.08	1.55	9.46		0.922	0.06
416260							
410201	CBC-10-16	0.1	1.74	9.66	4.51	0.966	0.06

CHEM #	CHANNEL	MgO	CaO	Na2O	K20	TiO2	P2O5
416262	CBC-10-16	0.23	2.47	7.82	5.01	0.702	0.17
416263	CBC-10-18a	0.07	1.94	11.89	3.61	0.095	0.02
416264	CBC-10-18a	0.1	1.59	11.75	3.81	0.106	0.02
416265	CBC-10-18a	0.26	1.29	9.61	4.14	0.171	0.22
416266	CBC-10-18a	0.22	1.2	9.17	3.65	0.176	0.67
416267	CBC-10-18a	0.22	1.42	10.4	4.13	0.141	0.27
416268	CBC-10-18a	0.3	1.59	9.68	3.73	0.176	0.16
416269	CBC-10-18a	0.27	1.39	9.85	3.67	0.172	0.21
416270	CBC-10-18a	0.27	1.39	9.76	3.74	0.176	0.19
416271	CBC-10-18a	0.31	1.28	8.93	3.91	0.192	0.1
416272	CBC-10-18a	0.32	1.37	8.95	3.66	0.192	0.11
416273	CBC-10-18a	0.25	1.59	9.92	3.72	0.162	0.07
416274	CBC-10-18a	0.31	1.42	9.56	3.74	0.184	0.08
416275	CBC-10-18a	0.27	1.44	10.04	3.6	0.162	0.13
416276	CBC-10-18a	0.33	1.57	8.88	3.43	0.196	0.5
416277	CBC-10-18b	0.2	1.48	10.22	3.11	0.159	0.46
416278	CBC-10-18b	0.06	0.97	8.6	4.34	0.135	0.86
416279	CBC-10-18b	0.04	0.94	9.09	3.28	0.151	0.51
416280	CBC-10-18b	0.31	1.4	9.4	3.85	0.173	0.08
416782	MBC-10-01	0.94	3.55	8.5	4.32	1.076	0.58
416783	MBC-10-01	0.49	2.7	7.09	5.37	0.946	0.51
416784	MBC-10-01	0.55	3.48	8.47	3.99	1.062	0.51
416785	MBC-10-01	0.24	1.9	8.85	4.62	0.425	0.06
416786	MBC-10-01	0.22	1.63	9.44	4.4	0.366	0.02
416787	MBC-10-01	0.15	1.42	9.4	4.55	0.637	0.06
416788	MBC-10-01	0.17	1.88	10.46	3.66	0.529	< 0.01
416789	MBC-10-01	0.02	1.44	11.17	4.41	0.171	< 0.01
416790	MBC-10-01	0.19	2.46	10.11	2.99	0.437	0.06
416791	MBC-10-01	0.31	3.14	9.98	3.4	0.516	0.19
416792	MBC-10-01	0.18	2.22	9.25	2.57	0.312	0.06
416793	MBC-10-01	0.21	2.26	10.24	3.09	0.46	0.07
416794	MBC-10-01	0.1	1.71	10.3	4.34	0.494	0.04
416795	MBC-10-01	0.29	2.36	9.46	4.32	0.615	0.17
416796	MBC-10-01	0.41	2.83	8.49	4.23	0.904	0.31
416797	MBC-10-01	0.53	3.32	8.36	4.12	0.946	0.38
416798	MBC-10-01	0.65	3.68	7.69	4.08	1.08	0.53
423637	CBC-10-01	0.64	2.59	8.65	3.93	0.947	0.49
423638	CBC-10-01	0.34	2.04	8.74	3.9	0.71	0.28
423639	CBC-10-01	0.22	1.52	8.53	4.5	0.661	0.18
423640	CBC-10-01	0.21	1.32	8.44	4.42	0.75	0.18
423641	CBC-10-01	0.2	1.45	8.71	4.24	0.646	0.16
423642	CBC-10-01	0.14	1.21	10.47	3.21	0.438	0.02
423643	CBC-10-01	0.16	1.31	9.33	3.89	0.344	0.04
423644	CBC-10-01	0.2	1.78	8.5	4.28	0.68	0.28
423645	CBC-10-01	0.19	1.78	7.9	4.76	0.687	0.28
423646	CBC-10-01	0.24	2.14	8.06	4.46	0.688	0.23

CHEM#	CHANNEL	MgO	CaO	Na2O	K20	TiO2	P2O5
423647	CBC-10-01	0.25	2.05	7.95	4.29	0.733	0.2
423648	CBC-10-01	0.25	2.02	7.76	4.63	0.718	0.17
423649	CBC-10-01	0.25	2.05	7.88	4.63	0.701	0.18
423666	CBC-10-02	0.19	1.69	9.68	4.54	0.54	0.04
423667	CBC-10-02	0.17	1.52	9.21	4.22	0.375	0.06
423668	CBC-10-02	0.27	1.58	9.11	4.23	0.376	0.07
423669	CBC-10-02	0.14	1.31	9.03	4.54	0.413	0.01
423670	CBC-10-02	0.15	1.53	9.44	4.71	0.392	< 0.01
423671	CBC-10-02	0.2	1.69	9.68	3.79	0.28	0.05
423672	CBC-10-02	0.24	1.58	9.58	3.87	0.356	0.03
423673	CBC-10-02	0.2	1.77	9.98	3.76	0.491	0.03
423674	CBC-10-02	0.19	1.7	9.87	3.6	0.304	0.03
423675	CBC-10-02	0.25	1.77	9.47	4.02	0.336	0.1
423676	CBC-10-02	0.19	1.66	10.44	3.43	0.223	0.09
423677	CBC-10-02	0.19	1.52	10.36	4.04	0.169	0.07
423678	CBC-10-02	0.28	1.31	8.35	3.85	0.2	0.09
423679	CBC-10-03	0.4	1.27	8.31	4.31	0.382	0.31
423680	CBC-10-03	0.42	1.55	7.94	4.49	0.351	0.46
423681	CBC-10-03	0.21	2.01	8.09	4.49	0.485	0.27
423682	CBC-10-03	0.29	2.31	7.89	4.67	0.581	0.23
423683	CBC-10-03	0.27	2.22	7.94	4.6	0.599	0.17
423684	CBC-10-03	0.34	2.27	7.71	4.78	0.567	0.28
423685	CBC-10-03	0.21	1.14	8.92	3.17	0.324	0.01
423686	CBC-10-03	0.2	1.61	8.1	4.77	0.363	0.09
423687	CBC-10-03	0.12	1.6	9.28	3.9	0.333	0.03
423688	CBC-10-03	0.1	1.52	8.27	5.01	0.316	0.04
423689	CBC-10-03	0.11	1.49	9.67	3.4	0.252	0.03
423690	CBC-10-03	0.15	1.68	9.5	3.92	0.353	0.02
423691	CBC-10-03	0.15	1.67	9.79	4.24	0.379	0.02
423692	CBC-10-03	0.11	1.71	9.59	4.08	0.427	< 0.01
423693	CBC-10-03	0.1	1.29	10.16	2.69	0.376	0.03
423694	CBC-10-03	0.14	1.58	6.88	5.48	0.332	0.03
423695	CBC-10-03	0.13	2.07	8.2	5.51	0.562	0.18
423708	CBC-10-04	0.28	1.69	9.31	4.17	0.327	0.05
423709	CBC-10-04	0.25	1.92	9.87	3.91	0.312	0.06
423710	CBC-10-04	0.29	1.85	9.81	4.01	0.346	0.04
423711	CBC-10-04	0.29	1.81	9.43	4.06	0.237	0.04
423712	CBC-10-04	0.3	1.37	8.94	4.01	0.222	0.03
423713	CBC-10-04	0.27	1.79	10.58	3.69	0.184	0.03
423714	CBC-10-04	0.28	1.76	9.93	3.87	0.441	0.03
423715	CBC-10-04	0.29	1.75	9.84	4	0.332	0.05
423716	CBC-10-04	0.22	1.68	10.01	3.87	0.423	0.05
423717	CBC-10-04	0.3	1.74	9.19	4.27	0.417	0.07
423718	CBC-10-04	0.21	1.77	9.53	4.39	0.507	0.04
423719	CBC-10-04	0.31	2	10.03	3.77	0.439	0.06
423720	CBC-10-04	0.41	1.45	9.13	3.61	0.206	0.08

CHEM#	CHANNEL	MgO	CaO	Na2O	K20	TiO2	P205
423721	CBC-10-05	0.26	1.69	9.13	4.24	0.316	0.07
423722	CBC-10-05	0.25	1.72	8.46	4.96	0.444	0.09
423723	CBC-10-05	0.22	1.48	9.57	4	0.284	0.06
423724	CBC-10-05	0.25	1.75	10	3.86	0.194	0.05
423725	CBC-10-05	0.17	1.71	10.07	4.02	0.463	0.04
423726	CBC-10-05	0.21	1.74	9.7	4.22	0.547	0.04
423727	CBC-10-05	0.24	2.2	9.18	4.35	0.636	0.19
423728	CBC-10-05	0.26	1.38	8.78	4.38	0.486	0.01
423729	CBC-10-05	0.21	1.7	9.31	4.08	0.552	< 0.01
423730	CBC-10-05	0.18	1.88	9.02	4.21	0.751	0.05
423731	CBC-10-05	0.26	2.19	8.69	4.51	0.726	0.2
423732	CBC-10-05	0.35	1.33	8.13	3.51	0.383	0.07
423733	CBC-10-05	0.21	1.74	10.47	3.71	0.271	0.04
423734	CBC-10-05	0.2	1.9	9.46	4.12	0.528	0.08
423735	CBC-10-05	0.28	2.08	8.26	4.63	0.629	0.29
423736	CBC-10-05	0.16	1.72	8.92	4.77	0.693	0.08
423737	CBC-10-05	0.24	1.94	8.44	4.42	0.683	0.21
423738	CBC-10-05	0.17	1.69	9.52	4.21	0.694	0.05
423739	CBC-10-05	0.13	1.67	9.16	4.45	0.846	0.05
423740	CBC-10-05	0.11	1.85	9.45	4.43	0.635	0.03
423746	CBC-10-11b	0.11	1.71	9.69	4.42	0.573	0.04
423747	CBC-10-11b	0.26	2.02	8.21	5.17	0.546	0.18
423748	CBC-10-11b	0.38	2.76	8.44	4.34	0.671	0.2
423749	CBC-10-11b	0.21	1.88	8.42	5.33	0.367	0.13
423750	CBC-10-11b	0.3	1.98	7.65	4.39	0.388	0.11
474120	MBC-11-02	0.18	1.59	9.73	4.01	0.866	0.12
474121	MBC-11-02	0.09	1.33	10.49	4.11	0.735	0.13
474122	MBC-11-02	0.18	1.29	9.12	4.43	0.649	0.12
474123	MBC-11-02	0.13	1.43	10.51	4.07	0.796	0.09
474124	MBC-11-02	0.16	1.52	9.67	4.19	0.886	0.09
474125	MBC-11-02	0.12	1.69	9.12	4.81	0.343	< 0.01
474126	MBC-11-02	0.23	1.51	9.6	3.75	0.35	
474127	MBC-11-02	0.16	1.39	9.51	4.09	0.241	0.09
474128	MBC-11-03	0.15	1.46	9.36	4.57	0.795	0.36
474129	MBC-11-03	0.09	2.67	10.3	3.64	1.264	0.08
474130	MBC-11-03	0.21	1.92	9.42	4.45	0.806	0.27
474131	MBC-11-03	0.23	2.1	9.08	4.67	0.854	0.21
474132	MBC-11-03	0.14	1.61	9.63	4.79	0.462	0.08
474133	MBC-11-03	0.15	1.87	9.7	4.68	0.785	0.07
474134	MBC-11-03	0.28	2.5	8.21	4.38	0.913	0.29
474135	MBC-11-04	0.16	1.34	9.77	2.71	0.185	0.11
474136	MBC-11-04	0.14	1.67	10.45	2.69		
474137	MBC-11-04	0.13	1.49	9.97	2.76	0.144	0.07
474138	MBC-11-04	0.1	1.45	11.35	1.35	0.156	0.1
474139	MBC-11-04	0.1	1.5	10.54	2.43	0.206	0.06
474140	MBC-11-04	0.15	1.5	9.55	4.11	0.477	0.1

CHEM#	CHANNEL	MgO	CaO	Na2O	K20	TiO2	P2O5
474141	MBC-11-04	0.15	1.77	9.42	4.19	0.36	0.07
474142	MBC-11-04	0.16	1.99	8.51	4.48	0.654	0.12
474143	MBC-11-04	0.12	1.97	9.85	2.74	0.447	0.05
474144	MBC-11-02B	0.21	1.75	8.86	4.19	0.616	0.25
474145	MBC-11-02B	0.23	2.12	8.12	4.32	0.881	0.2
474146	MBC-11-02B	0.17	0.67	6.45	6.77	0.286	0.08
474147	MBC-11-02B	0.34	0.91	8.02	3.06	0.337	0.24
474148	MBC-11-02B	0.14	1.1	10.99	1.36	0.44	0.01
474149	MBC-11-05	0.07	2.08	12.36	3.74	0.289	< 0.01
474150	MBC-11-05	0.21	2.03	10.21	4.14	0.794	0.1
474151	MBC-11-05	0.19	1.1	9.34	4.65	0.368	0.04
474152	MBC-11-05	0.29	2.03	9.37	4.21	0.821	0.14
474153	MBC-11-05	0.56	3.32	8.07	4.23	1.019	0.43
474154	MBC-11-05	0.49	2.97	7.94	4.52	0.865	0.47
474155	MBC-11-05	0.31	2.32	9.08	3.29	0.422	0.08
474156	MBC-11-06	0.17	1.98	8.34	4.5	0.724	0.1
474157	MBC-11-06	0.23	1.5	8.21	4.25	0.309	0.06
474158	MBC-11-06	0.11	1.99	10.53	2.01	0.17	0.07
474159	MBC-11-06	0.12	1.89	10.52	2.4	0.157	0.04
474160	MBC-11-06	0.13	1.53	9.92	3.08	0.151	0.03
474161	MBC-11-06	0.14	1.68	9.86	2.87	0.157	0.06
474162	MBC-11-06	0.12	1.41	10.54	2.51	0.152	0.09
474163	MBC-11-06	0.11	1.79	11.17	2.57	0.133	0.07
474164	MBC-11-09	0.14	1.77	9.63	4.13	0.64	0.11
474165	MBC-11-09	0.14	1.59	9.67	4.02	0.968	0.06
474166	MBC-11-09	0.11	1.57	9.64	4.17	0.894	0.04
474167	MBC-11-10B	0.17	1.53	8.92	3.8	0.237	0.22
474168	MBC-11-10B	0.08	0.85	10.13	2.24	0.209	0.2
474169	MBC-11-10B	0.13	1.3	9.32	3.75	0.323	0.17
474170	MBC-11-10B	0.13	1.45	8.67	4.34	0.367	0.2
474171	MBC-11-10A	0.1	1.58	8.6	5.33	0.634	0.11
474172	MBC-11-10A	0.12	1.51	10.24	3.34	0.216	0.05
474173	MBC-11-10A	0.11	1.79	9.79	4.24	0.291	0.04
474174	MBC-11-10A	0.21	1.37	9.41	3.51	0.226	0.12
474175	MBC-11-01	1.5	3.51	8.93	2.53	1.152	0.98
474176	MBC-11-01	1.38	3.1	8.76	2.08	0.883	0.9
474177	MBC-11-01	1.31	2.73	8.83	2.21	0.706	1.07
474178	MBC-11-01	1	2.15	8.88	2.1	0.472	1.02
474179	MBC-11-01	2.17	4.13	8.97	2.96	1.277	1.43
474180	MBC-11-01	1.4	2.89	8.42	2.51	0.684	1.13
474181	MBC-11-01	1.96	3.92	8.53	2.56	1.337	1.34
474182	MBC-11-01	1.2	2.49	9.06	2.01	0.591	0.89
474183	MBC-11-01	1.41	2.53	8.71	2.16	0.661	1.06
474184	MBC-11-01	0.98	1.98	9.46	2.24	0.409	0.94
474185	MBC-11-01	1.3	2.47	8.64	2.73	0.499	1.19
474186	MBC-11-01	0.73	1.82	10.67	1.92	0.453	0.54

CHEM #	CHANNEL	MgO	CaO	Na2O	K20	TiO2	P2O5
474187	MBC-11-01	1.1	3.69	8.88	2.45	0.638	0.92
474188	MBC-11-08	1.05	2.47	9.09	2.48	0.832	0.92
474189	MBC-11-08	1.22	3.16	8.06	2.87	0.99	0.94
474190	MBC-11-08	0.72	2.13	8.13	4.07	0.762	0.51
474191	MBC-11-08	0.35	1.91	9.59	3.37	0.619	0.32
474192	MBC-11-08	0.35	2.27	8.45	3.13	0.621	0.34
474193	CBC-11-01	0.04	0.82	9.97	3.36	0.113	0.07
474194	CBC-11-01	0.06	0.97	10.37	2.86	0.115	0.06
474195	CBC-11-01	0.05	0.92	10.57	2.6	0.121	0.1
474196	CBC-11-01	0.04	1.12	11.49	1.51	0.143	0.18
474197	CBC-11-01	0.04	1.14	11.22	1.73	0.142	0.18
474198	CBC-11-01	0.06	1.43	11.37	1.61	0.157	0.35
474199	CBC-11-01	0.37	2.15	5.82	8	0.459	0.36
474200	CBC-11-01	0.35	1.87	7.55	6.29	0.812	0.14
474201	CBC-11-02	0.15	0.73	10.61	1.75	0.229	0.01
474202	CBC-11-02	0.36	0.96	7.65	3.11	0.275	0.03
474203	CBC-11-02	0.24	0.86	8.91	2.4	0.277	< 0.01
474204	CBC-11-02	0.14	1.67	11.79	2.9	0.145	0.02
474205	CBC-11-02	0.45	1.3	7.83	3.41	0.276	0.04
474206	CBC-11-02	0.06	1.84	10.28	4.44	0.74	0.04
474207	CBC-11-03	0.07	1.2	10.33	4.06	0.508	0.04
474208	CBC-11-03	0.08	1.32	10.93	3.49	0.587	0.02
474209	CBC-11-03	0.09	1.52	11.46	2.23	0.54	0.01
474210	CBC-11-09	0.32	1.42	9.29	2.83	0.246	0.05
474211	CBC-11-09	0.04	1.64	10.02	3.61	0.094	< 0.01
474212	CBC-11-09	0.12	0.84	9.01	3.99	0.156	0.01
474213	CBC-11-09	0.09	1.17	7.57	4.97	0.205	0.02
474214	CBC-11-09	0.07	1.04	9.19	3.91	0.226	< 0.01
474215	CBC-11-09	0.09	1.59	9.73	4.57	0.948	0.08
474216	CBC-11-09	0.1	1.74	9.74	4.41	1.094	0.07
474217	CBC-11-05	0.13	2.02	9.2	4.53	0.928	0.12
474218	CBC-11-05	0.19	1.36	9.43	3.88	0.837	0.08
474219	CBC-11-05	0.12	2.02	9.93	4.15	1.134	0.16
474220	CBC-11-05	0.08	1	10.84	3.9	0.416	0.08
474221	CBC-11-05	0.14	1.09	9.94	2.55	0.325	0.09
474222	CBC-11-05	0.14	1.96	8.95	4.69	0.786	0.23
474223	CBC-11-07a	0.22	0.7	9.68	2.55	0.169	0.06
474224	CBC-11-07a	0.14	0.62	8.66	3.77	0.144	0.02
474225	CBC-11-07a	0.73	1.01	9	2.86	0.319	0.32
474226	CBC-11-07a	0.12	0.54	8.81	3.77	0.137	< 0.01
474227	CBC-11-07a	0.09	0.64	8.57	3.59	0.135	0.02
474228	CBC-11-07a	0.08	0.79	9.87	3.04	0.134	0.07
474229	CBC-11-07a	0.07	0.79	9.89	3.52	0.122	0.06
474230	CBC-11-07b	0.2	0.75	8.75	3.2	0.163	0.03
474231	CBC-11-07b	0.08	0.72	9.08	3.22	0.139	< 0.01
474232	CBC-11-06	0.08	0.83	9.05	3.28	0.176	0.46

CHEM#	CHANNEL	MgO	CaO	Na2O	K20	TiO2	P2O5
474233	CBC-11-06	0.07	0.64	8.96	3.18	0.178	0.25
474234	CBC-11-06	0.08	0.82	9.88	2.05	0.185	0.36
474235	CBC-11-06	0.05	1.07	10.57	1.94	0.163	0.3
474236	CBC-11-06	0.1	1.48	9.95	2.17	0.146	1.06
474237	CBC-11-06	0.1	1.75	10.2	1.98	0.135	1.37
474238	CBC-11-06	0.1	0.85	10.21	2.37	0.163	0.55
474239	CBC-11-06	0.09	1.08	9.94	2.81	0.124	0.57
474240	CBC-11-06	0.24	1.41	8.7	3.03	0.173	0.91
474241	CBC-11-06	0.07	0.74	8.86	3.72	0.161	0.29
474242	CBC-11-10	0.14	0.94	8.99	2.46	0.189	0.08
474243	CBC-11-10	0.12	2.28	8.88	3.92	0.3	0.04
474244	CBC-11-10	0.09	1.77	10.3	3.93	0.924	0.08
474245	CBC-11-10	0.23	2.02	8.37	4.79	0.747	0.19
474246	CBC-11-10	0.06	4.08	11.18	2.14	0.117	0.02
474247	CBC-11-04	0.19	2.48	9.11	4.31	0.62	0.17
474248	CBC-11-04	0.2	2.45	8.72	4.38	0.813	0.19
474249	CBC-11-04	0.18	2.26	9.14	3.93	1.184	0.1
474250	CBC-11-04	0.19	2.59	8.78	4.27	0.859	0.21
474251	CBC-11-04	0.18	2.26	8.64	4.56	0.723	0.15
474252	CBC-11-04	0.04	0.53	9.35	4.58	0.142	0.03
474253	CBC-11-04	0.02	0.62	9.84	3.37	0.128	0.08
474254	CBC-11-04	0.1	1.04	9.09	3.8	0.442	0.1
474255	CBC-11-04	0.11	1.08	10.76	3.04	0.418	0.11
474256	CBC-11-04	0.08	1.03	10.07	2.88	0.334	0.16
474257	CBC-11-04	0.14	1.44	9.41	3.88	0.542	0.22
474258	CBC-11-04	0.02	0.66	11.27	1.76	0.131	0.03
474259	CBC-11-04	0.11	1.27	9.64	3.47	0.535	0.22
474260	CBC-11-04	0.03	0.7	10.62	2.43	0.124	0.13
474261	CBC-11-04	0.18	1.22	8.77	4.38	0.179	0.34
474262	CBC-11-04	0.03	0.8	11.32	2.2	0.144	0.09
474263	CBC-11-04	0.16	2.04	8.77	4.77	0.496	0.32
474264	CBC-11-08	0.06	1.77	10.08	2.89	0.129	0.2
474265	CBC-11-08	0.08	1.19	9.89	2.72	0.128	0.11
474266	CBC-11-08	0.06		10.42	2.21	0.127	0.06
474267	CBC-11-08	0.04	0.81	11.46	1.81	0.12	0.13
474268	CBC-11-11	0.16	1.86	9.33	4.3		0.08
474269	CBC-11-11	0.18	1.75	8.96	4.39	0.398	0.08
474270	CBC-11-11	0.12	1.6	9.47	4.3	0.518	0.06
474271	CBC-11-11	0.13	1.61	9.59	4.19	0.658	0.06
474272	CBC-11-11	0.14	1.65	9.21	4.58		0.05
474273	CBC-11-09b	0.11	1.72	9.21	4.82	0.753	0.05
474274	CBC-11-09b	0.09	1.9	9.51	4.74	0.775	0.05
474275	CBC-11-09b	0.09	1.86	9.67	4.29		0.05
474276	CBC-11-09b	0.14	1.97	9.67	4.07	0.527	0.08
474277	CBC-11-09b	0.17	1.89	9.01	4.29	0.701	0.15
474278	CBC-11-09b	0.2	1.82	9.51	4.01	0.484	0.09

CHEM#	CHANNEL	MgO	CaO	Na2O	K20	TiO2	P2O5
474279	CBC-11-09b	0.12	1.59	9.22	4.33	0.674	0.05
474280	CBC-11-09b	0.17	1.66	8.99	4.47	0.406	0.08
474281	SZC-11-04	1.04	2.95	9.04	4.02	1	0.55
474282	SZC-11-04	0.93	2.77	8.82	3.8	1.272	0.56
474283	SZC-11-04	0.4	1.74	9.48	3.48	0.282	0.16
474284	SZC-11-04	0.47	1.93	9.09	3.66	0.503	0.2
474285	SZC-11-04	0.3	1.69	9.18	3.52	0.382	0.13
474286	SZC-11-04	0.29	2.01	9	3.46	0.404	0.1
474287	SZC-11-04	0.29	1.88	9.01	3.83	0.458	0.09
474288	SZC-11-15a	0.46	2.69	7.67	4	0.779	0.34
474289	SZC-11-15a	0.34	2.41	8.77	2.46	0.646	0.41
474290	SZC-11-15a	0.52	3.31	7.64	4.47	1.025	0.54
474291	SZC-11-15b	0.53	3.29	7.74	4.41	0.939	0.59
474292	SZC-11-15b	0.28	1.87	9.14	2.3	0.832	0.36
474293	SZC-11-15b	0.53	3.19	7.76	4.49	0.945	0.51
474294	SZC-11-15c	0.47	3.2	7.67	4.27	1.031	0.48
474295	SZC-11-15c	0.38	2.52	8.64	2.47	0.625	0.39
474296	SZC-11-15c	0.46	2.5	7.83	3.24		0.34
474297	SZC-11-05	0.17	2.36	8.78	4.28		0.22
474298	SZC-11-05	0.15	2.1	8.69	4.63		0.18
474299	SZC-11-05	0.23	2.62	7.8	4.71	0.677	0.23
474300	SZC-11-05	0.22	2.56	8	4.75		0.23
474301	SZC-11-05	0.21	2.36	8.35	4.51	0.862	0.24
474302	SZC-11-05	0.28	2.16	8.21	4.59		0.2
474303	SZC-11-09	0.44	1.66	9.32	3.39		0.14
474304	SZC-11-09	0.21	2.43	8.46	4.23		0.34
474305	SZC-11-09	0.23	2.7	8.09	4.33		0.4
474306	SZC-11-09	0.24	2.85	7.83	4.42		0.25
474307	SZC-11-09	0.23	2.97	7.94	4.38		0.27
474308	SZC-11-09	0.26	2.42	8.23	4.32	0.721	0.23
474309	SZC-11-09	0.24	2.86	7.93	4.4		0.24
474310	SZC-11-09	0.19	2.13	7.24	5.13	0.549	0.19
474311	SZC-11-09	0.2	2.39	7.83	4.61		0.2
474312	SZC-11-09	0.2		7.75			0.19
474313	SZC-11-09	0.26	2.31	7.93	4.77	0.589	0.27
474314	SZC-11-09	0.22	2.32	8			0.21
474315	SZC-11-09	0.24	2.48	7.84	4.63		0.31
474316	SZC-11-02b	0.53	1.95	11.26			0.35
474317	SZC-11-02b	1.67	3.54	9.07	3.44		1.27
474318	SZC-11-02b	0.2	1.64	11.32	1.71		0.3
474319	SZC-11-02b	0.14	1.09	12.23	0.9		0.13
474320	SZC-11-02b	0.44	2.17	8.1	5.19		0.56
474321	SZC-11-03a	1.63	3.21	9.56			1.08
474322	SZC-11-03a	1.74	3.54	9.62	2.79		1.06
474323	SZC-11-03a	0.29	1.35	12.1	0.83		0.16
474324	SZC-11-03a	1.66	3.58	8.97	3.51	1.125	1.21

CHEM#	CHANNEL	MgO	CaO	Na2O	K20	TiO2	P2O5
474325	SZC-11-03a	0.18	1.54	11.17	2.07	0.266	0.32
474326	SZC-11-03b	0.43	1.81	9.65	3.58	0.79	0.52
474327	SZC-11-03b	0.46	2.06	8.91	4.48	0.747	0.68
474328	SZC-11-03b	0.36	1.65	10.46	2.5	0.737	0.25
474329	SZC-11-03b	0.49	2.55	7.88	6.21	0.797	0.53
474330	SZC-11-06	0.54	3.1	7.61	4.7	0.942	0.45
474331	SZC-11-06	0.56	3.27	7.82	4.55	0.995	0.47
474332	SZC-11-06	0.62	3.37	7.94	4.68	1.024	0.48
474333	SZC-11-06	0.61	3.04	7.39	4.32	0.991	0.51
474334	SZC-11-06	0.57	3.46	7.73	4.48	0.977	0.47
474335	SZC-11-06	0.6	3.22	7.83	4.31	1.008	0.61
474336	SZC-11-06	0.62	3.25	7.81	4.48	1.12	0.48
474337	SZC-11-07	0.22	2.4	8.53	4.32	0.657	0.22
474338	SZC-11-07	0.25	2.2	8.22	4.25	0.655	0.19
474339	SZC-11-07	0.4	2.12	8.17	4.27	0.754	0.21
474340	SZC-11-07	0.32	2.15	8.32	4.12	0.691	0.24
474341	SZC-11-07	0.27	1.67	8.42	4.4	0.363	0.29
474342	SZC-11-07	0.45	2.22	8.33	3.85	0.665	0.43
474343	SZC-11-08	0.4	2.43	8.65	4.2	0.893	0.34
474344	SZC-11-08	0.31	1.88	10.05	3.46	0.808	0.17
474345	SZC-11-08	0.35	2.25	8.76	3.81	0.856	0.37
474346	SZC-11-08	0.24	2.27	8.22	4.54	0.739	0.25
474347	SZC-11-08	0.19	2.42	8.57	4.44	0.719	0.18
474348	SZC-11-10	0.36	2.4	8.45	4.12	0.822	0.37
474349	SZC-11-10	0.33	1.79	8.92	3.58	0.538	0.22
474350	SZC-11-10	0.31	1.92	9.19	3.31	0.596	0.19
474351	SZC-11-10	0.29	2.07	9.18	3.88	0.646	0.39
474352	SZC-11-10	0.14	1.34	10.12	2.77	0.314	0.11
474353	SZC-11-10	0.25	1.59	8.99	4.03	0.484	0.22
474354	SZC-11-10	0.22	2.17	8.51	4.42	0.62	0.2
474355	SZC-11-10	0.14	2.17	8.49	4.27	0.648	0.15
474356	SZC-11-10	0.19	1.94	8.83	4.22	0.582	0.2
474357	SZC-11-10	0.25	2.19	8.67	4.38	0.633	
474358	SZC-11-10	0.2	2.17	8.7	4.51	0.672	0.22
474359	SZC-11-10	0.16	2.15	8.64	4.8	0.741	0.17
474360	SZC-11-10	0.17	1.8	8.62	4.83	0.722	0.21
474361	SZC-11-10	0.17	2.01	8.61	4.88	0.687	0.22
474362	SZC-11-10	0.15	2.01	8.57	4.74	0.721	0.17
474363	SZC-11-10	0.18	2.29	8.29	4.52	0.722	0.31
474364	SZC-11-10	0.17	2.4	8.47	4.33	0.781	0.2
474365	SZC-11-10	0.64	2.3	8.53	4.12	0.721	0.39
474366	SZC-11-10	0.51	2.11	8.9	4.26	0.686	0.17
474367	SZC-11-10	0.39	1.59	9.01	4.09	0.582	0.08
474368	SZC-11-10	0.26	1.39	9.64	3.16	0.531	0.1
474369	SZC-11-10	0.32	2.41	8.53	4.14	0.699	0.27
474370	SZC-11-10	0.14	1.98	8.65	4.47	0.625	0.2

CHEM#	CHANNEL	MgO	CaO	Na2O	K20	TiO2	P2O5
474371	SZC-11-10	0.16	2.1	8.63	4.5	0.789	0.21
474372	SZC-11-10	0.23	2.58	8.24	4.72	0.786	0.27
474373	SZC-11-10	0.25	2.68	7.83	4.11	0.907	0.31
474374	SZC-11-10	0.2	2.37	8.22	4.22	0.723	0.38
474375	SZC-11-11	0.34	2.56	8.5	4.31	0.774	0.36
474376	SZC-11-11	0.24	1.84	8.93	3.58	0.515	0.09
474377	SZC-11-11	0.32	2.16	8.87	3.79	0.806	0.24
474378	SZC-11-11	0.29	1.52	9.03	3.96	0.625	0.08
474379	SZC-11-11	0.36	1.5	9.23	4.34	0.523	0.07
474380	SZC-11-11	0.66	1.88	9.03	4.31	0.693	0.13
474381	SZC-11-11	0.29	1.58	9.02	4.28	0.506	0.15
474382	SZC-11-11	0.66	2.36	8.62	3.88	0.675	0.26
474383	SZC-11-11	0.29	1.49	8.61	4.04	0.647	0.09
474384	SZC-11-11	0.25	2.1	8.38	4.25	0.702	0.19
474385	SZC-11-11	0.22	2.41	8.36	4.25	0.74	0.29
474386	SZC-11-11	0.23	2.48	7.91	4.58	0.824	0.29
474387	SZC-11-11	0.21	2.29	8.43	4.53	0.598	0.25
474388	SZC-11-11	0.24	2.85	7.74	4.41	0.863	0.28
474389	SZC-11-11	0.23	2.76	7.8	4.52	0.798	0.24
474390	SZC-11-11	0.24	2.94	7.77	4.29	0.815	0.25
474391	SZC-11-11	0.24	2.82	7.58	4.36	0.78	0.29
474392	SZC-11-11	0.21	2.63	7.71	4.58	1.003	0.21
474393	SZC-11-11	0.23	2.76	7.79	4.3	0.796	0.27
474394	SZC-11-11	0.22	2.66	7.78	4.54	0.746	0.25
474395	SZC-11-11	0.21	2.16	7.7	4.65	0.641	0.3
474396	SZC-11-11	0.22	1.89	6.99	4.66	0.666	0.35
474397	SZC-11-11	0.19	2.35	7.77	4.71	0.632	0.3
474398	SZC-11-11	0.2	2.49	7.82	4.65	0.642	0.21
474399	SZC-11-11	0.21	2.33	7.62	4.69	0.684	0.24
474400	SZC-11-11	0.18	2.17	8.02	4.5	0.647	0.18
474401	SZC-11-11	0.16	2.24	8.12	4.52	0.642	0.17
474402	SZC-11-12	0.53	3.26	7.38	4.34	0.991	0.43
474403	SZC-11-12	0.43		7.7			0.39
474404	SZC-11-12	0.45	2.63	7.76			0.34
474405	SZC-11-12	0.53	3.22	7.61	4.46		0.48
474406	SZC-11-12	0.52	3.14	7.43	4.37	0.977	0.42
474407	SZC-11-12	0.49	3.27	7.48	4.33		0.41
474408	SZC-11-12	0.48	3.19	7.42	4.23		0.44
474409	SZC-11-02a	2.51	4.64	10.33	3.57	1.771	1.41
474410	SZC-11-02a	0.86	1.89	9.04	2.77	0.726	0.34
474411	SZC-11-02a	1.82	3.94	9.83	2.62		0.91
474412	SZC-11-02a	2.25	4.35	9.74	3.32	1.544	1.21
474413	SZC-11-02a	0.59	2.14	10.57	1.71	0.734	0.32
474414	SZC-11-02a	1.84	3.8	9.46	3.11	1.305	1.05
474415	SZC-11-02a	1.24	2.7	7.69	4.09		0.97
474416	SZC-11-02a	0.6	1.58	9.92	2.64	0.498	0.62

CHEM #	CHANNEL	MgO	CaO	Na2O	K20	TiO2	P2O5
474417	SZC-11-02a	0.85	2.01	9.79	2.3	0.621	0.69
474418	SZC-11-02a	0.74	1.85	8.38	3.61	0.556	0.7
474419	SZC-11-02a	1.91	3.87	9.41	3.32	1.394	1.18
474420	MRC-11-04	0.06	1.06	11.09	1.69	0.125	0.22
474421	MRC-11-04	0.63	1.39	9.93	2.77	0.239	0.22
474422	MRC-11-04	0.1	0.65	10.43	2.68	0.175	0.21
474423	MRC-11-04	0.09	0.73	10.78	2.72	0.16	0.19
474424	MRC-11-04	1.22	2.49	9.38	3.69	0.387	0.25
474425	MRC-11-04	0.1	0.8	10.49	2.46	0.169	0.2
474426	MRC-11-04	0.32	0.86	9.28	3.4	0.191	0.24
474427	MRC-11-04	0.26	0.86	10.05	2.63	0.213	0.23
474428	MRC-11-04	0.47	1.25	9.52	3.05	0.217	0.2
474429	MRC-11-04	0.16	1.04	10.52	2.78	0.153	0.18
474430	MRC-11-04	0.07	1.14	10.78	2.56	0.122	0.16
474431	SZC-11-16	0.16	2.04	9.67	3.95	0.611	0.12
474432	SZC-11-16	0.17	2.03	9.14	3.92	0.542	0.08
474433	SZC-11-16	0.21	2.19	8.93	3.56	0.538	0.12
474434	SZC-11-16	0.23	1.68	9.15	3.68	0.49	0.04
474435	SZC-11-16	0.22	1.54	9.17	4.03	0.478	0.04
474436	SZC-11-16	0.2	1.3	9.49	3.73	0.391	0.05
474437	SZC-11-16	0.27	1.08	9.23	3.78	0.453	0.09
474438	SZC-11-16	0.68	1.97	9.51	3.01	0.398	0.06
474439	SZC-11-16	0.17	1.42	10.05	3.58	0.392	0.05
474440	SZC-11-16	0.09	0.99	10.19	3.72	0.278	0.06
474441	SZC-11-16	0.09	0.8	9.97	3.76	0.27	0.07
474442	SZC-11-16	0.16	1.4	8.85	4.46	0.276	0.05
474443	SZC-11-16	0.2	1.46	9.8	2.87	0.41	0.03
474444	SZC-11-16	0.08	0.83	7.39	6.1	0.41	0.03
474445	SZC-11-16	0.2	1.53	9.12	3.41	0.433	0.07
474446	SZC-11-16	0.06	1.7	6.92	6.34	0.172	0.03
474447	SZC-11-16	0.08	1.02	9.69	3.41	0.301	0.04
474448	SZC-11-16	0.11	1.18	9.17	3.74	0.331	0.04
474449	SZC-11-16	0.09	0.97	9.3	3.62	0.289	0.04
474450	SZC-11-16	0.08	0.99	9.05	3.91	0.307	0.05
474451	MRC-11-03	0.09	0.95	9.38	3.48	0.185	0.57
474452	MRC-11-03	0.1	0.9	9.93	3.07	0.16	0.53
474453	MRC-11-03	0.05	0.73	10.22	2.74	0.174	0.53
474454	MRC-11-03	0.04	0.74	10.85	2.35	0.172	0.42
474455	MRC-11-03	0.07	0.74	10.71	2.64	0.165	0.28
474456	MRC-11-03	0.13	0.79	8.78	2.59	0.183	0.39
474457	MRC-11-03	0.03	0.74	9.33	3.76	0.153	0.53
474458	MRC-11-03	0.03	0.74	9.61	3.64	0.167	0.42
474459	MRC-11-03	0.05	0.8	10.18	3.19	0.184	0.34
474460	MRC-11-03	0.09	0.89	10.62	2.85	0.217	0.24
474461	MRC-11-05	0.04	1.11	9.79	3.19	0.169	0.24
474462	MRC-11-05	0.27	1.16	9.72	3.23	0.2	0.23

CHEM #	CHANNEL	MgO	CaO	Na2O	K20	TiO2	P2O5
474463	MRC-11-05	0.29	1.05	9.55	2.74	0.233	0.22
474464	MRC-11-05	0.13	1.01	10.17	2.8	0.206	0.17
474465	MRC-11-05	0.21	0.9	9.98	3.04	0.215	0.17
474466	MRC-11-05	0.07	1.11	10.81	2	0.125	0.2
474467	MRC-11-05	0.1	0.93	11.18	1.8	0.135	0.21
474468	MRC-11-05	0.84	1.82	10.11	2.67	0.258	0.25
474469	MRC-11-05	0.06	0.96	10.08	2.82	0.166	0.22
474470	MRC-11-05	0.14	0.96	10.15	2.88	0.136	0.17
474471	MRC-11-05	0.05	0.92	9.62	3.09	0.155	0.26
474472	MRC-11-02	0.06	0.97	10.05	2.79	0.264	0.11
474473	MRC-11-02	0.47	1.31	9.81	2.28	0.261	0.31
474474	MRC-11-02	0.94	1.98	9.59	3.21	0.378	0.62
474475	MRC-11-02	0.29	1.4	10.08	2.83	0.346	0.41
474476	MRC-11-02	0.42	1.76	9.61	3.57	0.349	0.46
474477	MRC-11-02	0.95	1.93	9.53	2.75	0.368	0.44
474478	MRC-11-02	0.74	1.4	9.6	2.71	0.242	0.12
474479	BRC-11-06	0.09	1.53	10.08	4.68	0.265	0.05
474480	BRC-11-06	0.13	1.52	10.89	3.37	0.165	0.04
474481	BRC-11-06	0.09	1.26	9.04	6.17	0.124	0.02
474482	BRC-11-06	0.09	1.59	11.3	2.39	0.198	0.08
474483	BRC-11-06	0.07	1.66	11.29	2.72	0.158	0.07
474484	BRC-11-06	0.13	1.56	10.02	4.26	0.304	0.03
474485	BRC-11-06	0.09	1.53	10.93	3.9	0.252	0.04
474486	MRC-11-01	0.16	0.58	8.63	3.31	0.188	0.06
474487	MRC-11-01	0.15	0.99	9.38	2.64	0.211	0.07
474488	MRC-11-01	0.26	0.86	9.81	2.87	0.204	0.09
474489	MRC-11-01	0.5	1.31	9.31	2.74	0.239	0.13
474499	BRC-11-02a	0.21	1.4	11.09	3.31	0.194	0.23
474500	BRC-11-02a	0.16	0.97	11.23	2.42	0.179	0.1
474501	BRC-11-02b	0.06	0.66	11.99	1.76		0.07
474502	BRC-11-02b	0.03	0.78	11.55	1.64	0.2	0.07
474503	BRC-11-02b	0.03	0.89	10.89	4.87	0.096	0.03
474504	BRC-11-05	0.11	1.16	10.08	1.97		0.03
474505	BRC-11-05	0.06	0.79	10.44	1.95		0.08
474506	BRC-11-05	0.07	0.73	8.16	3.49		0.1
474507	BRC-11-05	0.06	0.95	9.33	3.7	0.193	0.09
474508	BRC-11-05	0.06	0.7	9.42	2.33		0.07
474509	BRC-11-05	0.08	0.78	9.02	3.55		0.16
474510	BRC-11-01	0.07	0.7	10.51	1.68		0.14
474511	BRC-11-01	0.07	0.15	5.51	8.44	0.087	0.02
474512	BRC-11-01	0.44	1.08	9.07	2.1	0.384	0.35
474513	BRC-11-01 BRC-11-01	0.69	2.37	8.68	2.97	0.615	1.15 0.32
474514		0.49	1.03	8.94	2.72	0.293	
474515	BRC-11-01	0.18	0.88	9.13	2.75		0.23
474516	BRC-11-01	0.07	0.71	10.53	1.82	0.157	0.09
474517	BRC-11-01	0.08	0.65	10.92	1.51	0.175	0.21

CHEM #	CHANNEL	MgO	CaO	Na2O	K20	TiO2	P2O5
474518	BRC-11-01	0.14	0.81	10.7	1.93	0.132	0.32
474519	BRC-11-01	0.12	0.9	8.62	2.64	0.35	0.33
474520	BRC-11-01	0.33	0.9	7.07	4.35	0.436	0.14
474521	BRC-11-03a	0.11	0.7	7.07	4.23	0.33	0.04
474522	BRC-11-03a	0.17	0.83	6.84	4.82	0.327	0.03
474523	BRC-11-03a	0.06	0.58	8.67	2.24	0.272	0.04
474524	BRC-11-03a	0.05	0.69	9.21	2.57	0.195	0.05
474525	BRC-11-03a	0.07	0.71	10.73	2.17	0.279	0.06
474526	BRC-11-03b	0.02	1.07	10.51	1.73	0.158	0.4
474527	BRC-11-03b	0.04	1.24	8.86	3	0.137	0.77
474528	BRC-11-03b	0.04	1.53	8.61	3.66	0.132	0.64
474529	BRC-11-03b	0.04	0.94	9.38	3.24	0.137	0.5
474530	BRC-11-03b	0.05	0.78	8.43	2.93	0.228	0.15
474531	BRC-11-03b	0.04	0.81	9.49	2.65	0.129	0.35
474611	MRC-11-06	0.04	0.97	10.42	2.39	0.108	0.3
474612	MRC-11-06	0.03	0.87	9.37	3.42	0.087	0.26
474613	MRC-11-06	0.02	0.76	7.37	4.24	0.094	0.21
474614	MRC-11-06	0.02	0.7	8.78	3.42	0.093	0.16
474615	MRC-11-06	0.02	0.77	7.57	3.81	0.097	0.21
474616	MRC-11-06	0.03	0.93	8.76	2.57	0.113	0.35
474617	MRC-11-06	0.02	0.89	8.56	4.05	0.093	0.34
474618	MRC-11-06	0.05	0.98	11.12	1.59	0.119	0.28
474619	MRC-11-06	0.02	0.85	8.34	3.95		0.22
474620	MRC-11-06	0.02	0.94	8.3	3.72	0.107	0.33
474621	MRC-11-06	0.03	0.84	9.57	2.72	0.106	0.33
474622	MRC-11-06	0.03	0.71	9.71	2.48		0.26
474623	MRC-11-06	0.02	0.78	8.96	3.38		0.3
474624	MRC-11-06	0.02	1.03	9.75	2.79		0.28
474625	MRC-11-06	0.02	0.86	8.87	3.21	0.093	0.32
474626	MRC-11-06	0.03	0.89	9.57	3.19	0.095	0.31
4744490	BRC-11-04	1.26	2.58	7.35	5		0.53
4744491	BRC-11-04	0.3	2.67	11.98	0.97	0.436	0.77
4744492	BRC-11-04	1.31	3	7.94	4.24		1.09
4744493	BRC-11-04	0.94	2.84	8.65			0.92
4744494	BRC-11-04	1.3	2.85	8.28	3.85		0.71
4744495	BRC-11-04	1.46	3.22	9.11			0.86
4744496	BRC-11-04	1.32	3.12	9.64	2.7	0.961	0.93
4744497	BRC-11-04 BRC-11-04	0.97	2.41 4.58	10.28			0.46
4744498		2.28		10.22	3.59		1.45
474565	AMC-11-05	0.24	1.36	7.4	5.69		0.15
474566	AMC-11-05	0.12	1.72	6.8	6.69		0.11
474567 474568	AMC-11-05 AMC-11-05	0.1 0.09	2.92	8.51 9.67	4.8 2.8		0.14 0.14
474569	AMC-11-05	0.09	2.11 1.57	10.1	1.84	0.188	0.14
474570	AMC-11-05	0.39	1.44	9.49	2.55		0.21
474571	AMC-11-01	0.16	1.46	8.38	5.04	0.436	0.15

CHEM #	CHANNEL	MgO	CaO	Na2O	K20	TiO2	P2O5
474572	AMC-11-01	0.15	1.37	8.67	5.13	0.388	0.11
474573	AMC-11-01	0.16	1.51	8.83	5.09	0.404	0.11
474574	AMC-11-01	0.16	1.52	8.68	5.08	0.599	0.08
474575	AMC-11-01	0.28	1.5	8.71	5.2	0.425	0.09
474576	AMC-11-02	0.22	1.81	8.99	4.78	0.576	0.14
474577	AMC-11-02	0.23	1.79	8.34	4.95	0.437	0.17
474578	AMC-11-02	0.14	1.1	8.02	5.58	0.213	0.11
474593	AMC-11-04	0.18	1.75	8.87	4.61	0.506	0.16
474594	AMC-11-04	0.18	1.74	8.9	4.63	0.404	0.19
474595	AMC-11-04	0.15	1.78	8.8	4.77	0.433	0.18
474596	AMC-11-04	0.16	1.6	9.88	3.47	0.264	0.19
474597	AMC-11-04	0.14	1.65	8.53	4.91	0.434	0.21
474598	AMC-11-04	0.16	1.77	8.78	4.76	0.379	0.17
474599	AMC-11-03	0.15	1.64	8.8	4.84	0.692	0.2
474600	AMC-11-03	0.13	1.43	9.41	3.93	1.059	0.07
474601	AMC-11-03	0.12	1.8	9.49	4.25	0.75	0.12
474602	AMC-11-03	0.09	1.35	8.85	5.32	0.592	0.11
474603	AMC-11-03	0.11	1.68	8.73	5.2	0.413	0.15
474604	AMC-11-03	0.11	1.43	9.02	5.26	0.364	0.12
474605	AMC-11-03	0.16	1.53	8.82	5.3	0.199	0.2
474606	AMC-11-03	0.17	1.5	8.62	5.37	0.202	0.22
474607	AMC-11-03	0.17	1.53	8.33	5.22	0.338	0.2
474608	AMC-11-03	0.22	1.72	8.15	5.37	0.188	0.2
474609	AMC-11-03	0.16	1.42	8.18	5.69	0.205	0.17
474610	AMC-11-03	0.19	1.55	9.42	4.53	0.184	0.11

CHEM#	CHANNEL	LOI	Total	Sc	Ве	V	Cr
104201	CBC-10-06a	-0.07	98.71	21	13	15	< 20
104202	CBC-10-06a	0.07	98.77	22	16	13	< 20
104203	CBC-10-06a	0.44	98.57	12	11	< 5	< 20
104204	CBC-10-06a	0.66	98.33	9	12	< 5	< 20
104205	CBC-10-06a	0.14	98	4	8	< 5	< 20
104206	CBC-10-06a	0.42	97.5	7	8	< 5	< 20
104207	CBC-10-06a	0.21	98.82	7	9	< 5	< 20
104208	CBC-10-06a	0.54	97.8	2	10	< 5	< 20
104209	CBC-10-06a	0.37	98.32	4	10	< 5	< 20
104210	CBC-10-06a	0.7	98.28	3	14	< 5	< 20
104211	CBC-10-06a	0.6	98.41	2	16	< 5	< 20
104212	CBC-10-06a	0.69	97.62	1	18	< 5	< 20
104213	CBC-10-06a	0.57	98.34	2	13	< 5	< 20
104214	CBC-10-06a	0.29	98.63	2	8	< 5	< 20
104215	CBC-10-06a	0.72	99.54	3	5	< 5	< 20
104216	CBC-10-06a	0.36	98.56	1	4		< 20
104217	CBC-10-07	0.33	99.14	4	9		< 20
104218	CBC-10-07	0.32	99.09	5	9	< 5	< 20
104219	CBC-10-07	0.4	99.45	6	9	< 5	< 20
104220	CBC-10-07	0.61	98.44	4	10	< 5	< 20
104221	CBC-10-07	0.31	97.41	2	14	< 5	< 20
104222	CBC-10-07	0.59	97.65	1	18		< 20
104223	CBC-10-07	0.87	97.59	2	16	< 5	< 20
104224	CBC-10-07	0.54	97.46	1	19	10	< 20
104225	CBC-10-07	0.34	97.87	1	15	< 5	< 20
104226	CBC-10-07	0.44	98.98	5	12	< 5	< 20
104227	CBC-10-08	0.49	96.82	1	18		< 20
104228	CBC-10-08	0.59	96.88	1	15	10	< 20
104229	CBC-10-08	0.71	98.74	3	24		< 20
104230	CBC-10-08	0.63	97.25	2	22	< 5	< 20
104231	CBC-10-08	1.06	97.09	< 1	17	< 5	< 20
104232	CBC-10-08	0.68	98.53	1	17	< 5	< 20
104233	CBC-10-08	0.49		< 1			< 20
104234	CBC-10-08	0.97	97.5	2	14		< 20
104235	CBC-10-08	0.83	97.67		13	< 5	< 20
104236 104237	CBC-10-08 CBC-10-08	0.33	98.16	2	12	< 5	< 20 < 20
104237	CBC-10-08	0.53	98.16	1	11	< 5	< 20
104238	CBC-10-08		98.56	< 1	14		< 20
104239	CBC-10-08	0.6 0.62	96.78	<1	15		< 20
104240	CBC-10-08	0.62	96.78	< 1	15		< 20
104241	CBC-10-08	5.23	100.9	1	13		< 20
104242	CBC-10-08	0.31	97.28	1	12		< 20
104244	CBC-10-08	2.14	99.12	1	12	< 5	< 20
104244	CBC-10-08	0.36	97.72	2	12		< 20
				2			
104246	CBC-10-08	0.27	98.51		14	< 5	< 20

CHEM#	CHANNEL	LOI	Total	Sc	Ве	V	Cr
104247	CBC-10-08	0.41	97.8	1	15	< 5	< 20
104248	CBC-10-08	0.27	96.84	< 1	15	< 5	< 20
104249	CBC-10-08	2.57	100.2	1	13	< 5	< 20
104250	CBC-10-08	0.65	98.11	1	12	< 5	< 20
104251	CBC-10-08	0.52	98.31	2	12	< 5	< 20
104252	CBC-10-08	0.66	98.78	1	13	< 5	< 20
104253	CBC-10-08	0.37	97.99	< 1	13	< 5	< 20
104254	CBC-10-09	0.65	98.79	1	10	< 5	< 20
104255	CBC-10-09	0.44	97.4	1	11	< 5	< 20
104256	CBC-10-09	0.33	98.21	2	17	< 5	< 20
104257	CBC-10-09	0.34	98.34	3	11	< 5	< 20
104258	CBC-10-09	0.39	98.58	11	32	23	< 20
104259	CBC-10-09	0.79	99.03	19	38	36	< 20
104260	CBC-10-09	0.62	98.73	19	38	39	< 20
104261	CBC-10-09	0.45	98.17	4	14	11	< 20
104262	CBC-10-09	0.46	99.21	< 1	19	< 5	< 20
104263	CBC-10-09	0.52	98.64	1	4	< 5	< 20
104264	CBC-10-09	0.37	97.86	1	19	< 5	< 20
104265	CBC-10-09	0.5	98.13	3	21	< 5	< 20
104266	CBC-10-09	0.64	97.97	5	26	< 5	< 20
104267	CBC-10-09	0.43	98.89	4	17	< 5	< 20
104268	CBC-10-09	0.51	98.52	3	27	< 5	< 20
104269	CBC-10-10	0.28	98.83	4	23	< 5	< 20
104270	CBC-10-10	0.51	97.65	3	18	< 5	< 20
104271	CBC-10-10	0.2	99.48	5	14	< 5	< 20
104272	CBC-10-10	0.27	98.41	4	15	< 5	< 20
104273	CBC-10-10	0.15	99.17	5	15	< 5	< 20
104274	CBC-10-10	0.59	98.9	2	14	< 5	< 20
104275	CBC-10-10	0.35	98.18	4	18	< 5	< 20
104276	CBC-10-10	0.22	98.57	6	21	< 5	< 20
104277	CBC-10-10	0.32	98.19	4	20	< 5	< 20
104278	CBC-10-10	0.64	97.67	2	13	< 5	< 20
104279	CBC-10-10	0.69	97.82	2	17	< 5	< 20
104280	CBC-10-10	0.33	98.54	5	20	< 5	< 20
104281	CBC-10-10	0.23	98.67	4	36	< 5	< 20
104282	CBC-10-10	0.92	97.91	2	18	< 5	< 20
104283	CBC-10-10	0.85	99.19	1	16	< 5	< 20
104284	CBC-10-10	2.01	97.43	< 1	18	< 5	< 20
104285	CBC-10-10	1.73	97.96	< 1	16	< 5	< 20
104286	CBC-10-10	1.51	98.23	3	10	< 5	< 20
104287	CBC-10-10	1.38	98.23	< 1	8	< 5	< 20
104288	CBC-10-11b	0.16	99.1	18	15	7	< 20
104289	CBC-10-11b	0.28	98.88	21	14	10	< 20
104290	CBC-10-11b	0.5	97.94	6	10	< 5	< 20
104291	CBC-10-11b	-0.05	99.13	8	14	< 5	< 20
104292	CBC-10-11b	0.44	98.26	1	22	< 5	< 20

CHEM#	CHANNEL	LOI	Total	Sc	Ве	V	Cr
104293	CBC-10-11b	0.27	98.81	1	16	< 5	< 20
104294	CBC-10-11b	0.32	98.2	2	22	< 5	< 20
104295	CBC-10-11b	0.45	98.62	< 1	15	< 5	< 20
104296	CBC-10-11b	0.18	97.88	2	12	< 5	< 20
104297	CBC-10-11b	0.53	98.69	6	12	< 5	< 20
104298	CBC-10-11b	0.17	98.47	9	10	< 5	< 20
104299	CBC-10-11b	-0.28	98.69	4	14	5	< 20
104300	CBC-10-11b	3.43	100.4	21	18	8	< 20
104326	CBC-10-11b	0.09	96.78	6	12	5	< 20
104327	CBC-10-11b	0.24	98.56	17	8	8	< 20
104328	CBC-10-11b	0.18	98.75	5	7	< 5	< 20
104329	CBC-10-11b	-0.09	98.83	5	8	< 5	< 20
104330	CBC-10-11b	0.21	99.67	5	10	< 5	40
104331	CBC-10-11b	0	99.57	6	10	< 5	< 20
104332	CBC-10-11b	0.03	98.76	2	11	< 5	< 20
104333	CBC-10-11b	0.78	98.32	4	14	< 5	< 20
104334	CBC-10-11b	1	98.78	5	15	< 5	< 20
104335	CBC-10-11b	0.21	98.99	4	18	< 5	< 20
104336	CBC-10-11b	0.48	96.12	< 1	14	< 5	< 20
104337	CBC-10-11b	0.44	98.04	< 1	15	< 5	< 20
104338	CBC-10-11b	0.41	97	3	17	< 5	< 20
104339	CBC-10-11b	-0.17	98.45	15	27	6	< 20
104340	CBC-10-11b	0.97	96.3	2	14	< 5	< 20
104341	CBC-10-11b	0.21	97.85	20	28	9	< 20
104342	CBC-10-11b	0.53	97.69	1	12	< 5	< 20
104343	CBC-10-11b	0.15	98.47	18	28	12	< 20
104344	CBC-10-11b	1.01	97.83	6	21	< 5	< 20
104345	CBC-10-11b	1.07	98.26	< 1	15	< 5	420
104346	CBC-10-11b	0.88	96.78	< 1	7	< 5	< 20
104347	CBC-10-11b	0.96	98.94	6	17	< 5	< 20
104348	CBC-10-11b	0.19	98.05	< 1	14	< 5	< 20
416155	CBC-10-11a	0.2	99.23	11	7	< 5	< 20
416156	CBC-10-11a	0.11	98.31	12	6	< 5	< 20
416157	CBC-10-11a	0.3	98.29	< 1	21	< 5	20
416158	CBC-10-11a	1.55	99.33	< 1	16	< 5	< 20
416159	CBC-10-11a	-0.29	98.37	< 1	18	< 5	< 20
416160	CBC-10-11a	0.27	98.07	2	15	< 5	< 20
416161	CBC-10-11a	-0.05	97.64	5	14	< 5	20
416162	CBC-10-11a	0.13	97.82	5	13	< 5	< 20
416163	CBC-10-11a	0.4	97.72	9	13	< 5	< 20
416164	CBC-10-11a	0.31	97.76	6	11	< 5	< 20
416165	CBC-10-11a	0.3	98.33	2	13	< 5	< 20
416166	CBC-10-11a	-0.51	97.79	1	17	< 5	< 20
416167	CBC-10-11a	0.45	97.18	< 1	13	< 5	< 20
416168	CBC-10-11a	0.18	96.98	1	13	< 5	< 20
416169	CBC-10-11a	0	98.47	< 1	17	< 5	< 20

CHEM#	CHANNEL	LOI	Total	Sc	Ве	V	Cr
416170	CBC-10-11a	0.29	97.43	< 1	13	< 5	< 20
416171	CBC-10-12	0.56	97.2	< 1	15	7	< 20
416172	CBC-10-12	0.17	96.73	< 1	20	< 5	20
416173	CBC-10-12	0.03	97.89	1	16	< 5	20
416174	CBC-10-12	0.16	98.57	8	13	< 5	< 20
416175	CBC-10-12	0.55	97.61	2	15	< 5	< 20
416176	CBC-10-12	0.07	97.89	5	15	< 5	< 20
416177	CBC-10-12	0.81	96.92	1	15	< 5	< 20
416178	CBC-10-12	0.1	100.5	9	16	< 5	< 20
416179	CBC-10-12	0.02	100.2	9	14	< 5	< 20
416180	CBC-10-12	0.26	98.57	3	14	< 5	< 20
416181	CBC-10-12	0.15	99.28	4	11	< 5	< 20
416182	CBC-10-12	0.31	98.48	4	17	< 5	< 20
416183	CBC-10-12	0.79	95.88	< 1	15	< 5	20
416184	CBC-10-12	1.31	98.1	< 1	16	< 5	< 20
416185	CBC-10-12	0.05	97.66	2	16	< 5	< 20
416186	CBC-10-12	0.49	98.32	2	16	< 5	< 20
416187	CBC-10-12	0.25	97.99	5	9	< 5	< 20
416188	CBC-10-13	0.22	97.19	5	11	< 5	< 20
416189	CBC-10-13	0.24	97.58	6	14	< 5	< 20
416190	CBC-10-13	0.25	98.75	6	13	< 5	< 20
416191	CBC-10-13	0.19	98.49	5	11	< 5	< 20
416192	CBC-10-13	0.31	97.64	1	15	< 5	< 20
416193	CBC-10-13	0.17	97.71	2	16	< 5	< 20
416194	CBC-10-13	0	98.53	7	12	< 5	< 20
416195	CBC-10-13	-0.04	97.93	7	9	< 5	< 20
416196	CBC-10-13	0.19	100.3	16	10	< 5	< 20
416197	CBC-10-13	0.12	100.6	9	9	< 5	< 20
416198	CBC-10-13	-0.18	97.32	8	9	< 5	< 20
416199	CBC-10-13	-0.3	98.28	11	10	< 5	< 20
416200	CBC-10-13	-0.16	98.6	7	11	< 5	< 20
416201	CBC-10-14	0.09	98.74	< 1	20	< 5	< 20
416202	CBC-10-14	-0.05	98.03	2	17	< 5	< 20
416203	CBC-10-14	-0.09	97.3	1	15	< 5	< 20
416204	CBC-10-14	-0.4	100.9	3	12	< 5	< 20
416205	CBC-10-14	-0.31	99.79	3	10		< 20
416206	CBC-10-14	-0.16	100.7	4	10	< 5	< 20
416207	CBC-10-14	0.51	99.87	2	12	< 5	< 20
416208	CBC-10-14	0.07	98.42	5	12	< 5	< 20
416209	CBC-10-14	-0.16	98.19	6	12	< 5	< 20
416210	CBC-10-14	0.01	98.54	9	14	< 5	< 20
416211	CBC-10-14	2.9	100.8	7	17	< 5	< 20
416212	CBC-10-14	0.38	97.58	2	15	< 5	< 20
416213	CBC-10-14	0.03	97.87	4	11	< 5	< 20
416214	CBC-10-14	0.08	98.33	3	11	< 5	< 20
416215	CBC-10-14	0.1	99.2	2	11	< 5	< 20

CHEM #	CHANNEL	LOI	Total	Sc	Be	V	Cr
416216	CBC-10-14	-0.07	99.37	2	14	< 5	< 20
416217	CBC-10-14	0.19	98.57	2	13	< 5	< 20
416218	CBC-10-14	-0.08	98.55	2	14	< 5	< 20
416219	CBC-10-14	-0.01	98.7	1	14	< 5	< 20
416220	CBC-10-14	0.03	97.93	2	16	< 5	< 20
416221	CBC-10-14	0.31	98.07	1	12	< 5	< 20
416222	CBC-10-14	0.4	97.67	< 1	13	< 5	< 20
416223	CBC-10-14	0.04	98.64	< 1	15	< 5	< 20
416224	CBC-10-14	0.19	98.6	< 1	15	< 5	< 20
416225	CBC-10-14	0.3	98.48	1	17	< 5	< 20
416226	CBC-10-15	0.03	98.54	8	9	< 5	< 20
416227	CBC-10-15	-0.25	98.32	8	9	< 5	< 20
416228	CBC-10-15	-0.31	99.01	8	8	< 5	< 20
416229	CBC-10-15	-0.3	98.38	9	8	< 5	< 20
416230	CBC-10-15	-0.31	98.75	9	8	< 5	< 20
416231	CBC-10-15	-0.26	99.91	11	9	< 5	< 20
416232	CBC-10-15	0.13	99.05	7	10	< 5	< 20
416233	CBC-10-15	0.31	98.1	3	9	< 5	< 20
416234	CBC-10-15	0.17	98.66	6	12	< 5	< 20
416235	CBC-10-15	-0.05	97.69	4	12	< 5	< 20
416236	CBC-10-15	-0.02	97.99	5	10	< 5	< 20
416237	CBC-10-15	0.36	98.82	5	9	< 5	< 20
416238	CBC-10-15	0.28	99.15	5	15	< 5	< 20
416239	CBC-10-15	0.17	99.33	8	9	< 5	< 20
416240	CBC-10-15	-0.13	99.61	9	9	< 5	< 20
416241	CBC-10-15	0.1	98.54	9	9	< 5	< 20
416242	CBC-10-15	0	98.51	8	10	< 5	< 20
416243	CBC-10-15	0.03	98.34	8	13	< 5	< 20
416244	CBC-10-16	0.41	97.45	< 1	3	< 5	< 20
416245	CBC-10-16	0.2	97.57	< 1	5	< 5	< 20
416246	CBC-10-16	-0.26	98.82	1	13	< 5	< 20
416247	CBC-10-16	-0.57	98.58	2	18	< 5	< 20
416248	CBC-10-16	0.3	96.17	< 1	8	< 5	< 20
416249	CBC-10-16	0.12	97.34	< 1	9	< 5	< 20
416250	CBC-10-16	0.31	97.68	< 1	6	< 5	< 20
416251	CBC-10-16	0.26	97.59	< 1	6	< 5	< 20
416252	CBC-10-16	-0.13	96.26	< 1	13	< 5	< 20
416253	CBC-10-16	0.3	97.3	< 1	8	< 5	< 20
416254	CBC-10-16	0.15	96.99	< 1	9	< 5	< 20
416255	CBC-10-16	0.18	97.61	< 1	11	< 5	< 20
416256	CBC-10-16	0.34	97.27	< 1	10	< 5	< 20
416257	CBC-10-16	0.36	97.6	< 1	12	< 5	< 20
416258	CBC-10-16	-0.05	97.89	< 1	11	< 5	< 20
416259	CBC-10-16	0.35	97.65	1	15	< 5	< 20
416260	CBC-10-16	0.21	98.21	1	16	< 5	< 20
416261	CBC-10-16	-0.04	98.79	2	16	< 5	< 20

CHEM#	CHANNEL	LOI	Total	Sc	Ве	V	Cr
416262	CBC-10-16	0.2	98.84	8	15	< 5	< 20
416263	CBC-10-18a	1.09	95.19	< 1	22	< 5	< 20
416264	CBC-10-18a	0.74	96.2	< 1	24	< 5	< 20
416265	CBC-10-18a	0.44	99.45	1	14	< 5	30
416266	CBC-10-18a	0.69	99.07	2	10	< 5	< 20
416267	CBC-10-18a	0.68	98.58	< 1	16	< 5	30
416268	CBC-10-18a	0.25	98.38	1	14	< 5	< 20
416269	CBC-10-18a	0.49	98.51	1	15	< 5	30
416270	CBC-10-18a	0.26	98.19	1	14	< 5	< 20
416271	CBC-10-18a	0.07	97.86	1	13	< 5	< 20
416272	CBC-10-18a	0.21	97.51	1	13	< 5	< 20
416273	CBC-10-18a	0.46	97.41	< 1	15	< 5	< 20
416274	CBC-10-18a	0.2	98.29	1	16	< 5	< 20
416275	CBC-10-18a	0.4	97.27	< 1	17	< 5	< 20
416276	CBC-10-18a	0.47	97.03	1	14	< 5	< 20
416277	CBC-10-18b	0.94	97.58	< 1	15	< 5	< 20
416278	CBC-10-18b	1.07	98	2	7	< 5	20
416279	CBC-10-18b	1	95.96	2	8	< 5	< 20
416280	CBC-10-18b	0.28	97.92	1	14	< 5	< 20
416782	MBC-10-01	0.17	99.89	16	18	12	< 20
416783	MBC-10-01	0.02	99.12	8	17	6	< 20
416784	MBC-10-01	0.1	99.91	12	17	9	< 20
416785	MBC-10-01	-0.18	97.96	2	14	< 5	< 20
416786	MBC-10-01	0.24	98.53	< 1	15	< 5	< 20
416787	MBC-10-01	0.11	98.16	3	12	< 5	< 20
416788	MBC-10-01	0.67	97.78	1	17	< 5	< 20
416789	MBC-10-01	0.83	97.88	< 1	12	< 5	< 20
416790	MBC-10-01	1.01	98.65	2	17	< 5	< 20
416791	MBC-10-01	0.64	97.76	5	15	< 5	< 20
416792	MBC-10-01	0.11	99.79	1	9	< 5	< 20
416793	MBC-10-01	0.45	98.6	< 1	14	< 5	< 20
416794	MBC-10-01	0.53	97.67	< 1	17	< 5	< 20
416795	MBC-10-01	0.17	96.76	4	16	< 5	< 20
416796	MBC-10-01	0.36	99.04	8	13	6	< 20
416797	MBC-10-01	-0.12	98.2	10	12	8	< 20
416798	MBC-10-01	-0.15	98.9	13	12	9	< 20
423637	CBC-10-01	0.24	99.12	12	18	< 5	< 20
423638	CBC-10-01	0.42	98.8	6	16	5	< 20
423639	CBC-10-01	0.4	98.32	3	16	< 5	< 20
423640	CBC-10-01	0.5	98.84	2	15	< 5	< 20
423641	CBC-10-01	0.63	98.74	2	16	< 5	< 20
423642	CBC-10-01	0.29	98.28	2	15	< 5	< 20
423643	CBC-10-01	0.56	98.17	1	12	< 5	< 20
423644	CBC-10-01	0.25	98.97	3	14	< 5	< 20
423645	CBC-10-01	0.03	98.36	3	12	< 5	< 20
423646	CBC-10-01	0.07	98.38	5	12	< 5	< 20

CHEM#	CHANNEL	LOI	Total	Sc	Ве	V	Cr
423647	CBC-10-01	0.29	97.54	5	10	< 5	< 20
423648	CBC-10-01	0.34	98.17	4	8	< 5	< 20
423649	CBC-10-01	0.35	97.47	5	8	< 5	< 20
423666	CBC-10-02	0.48	97.24	< 1	20	< 5	< 20
423667	CBC-10-02	0.36	97.37	< 1	15	< 5	< 20
423668	CBC-10-02	0.36	97.88	1	19	< 5	< 20
423669	CBC-10-02	0.48	97.57	< 1	17	< 5	< 20
423670	CBC-10-02	0.64	98.54	< 1	18	< 5	< 20
423671	CBC-10-02	0.33	97.55	< 1	15	< 5	< 20
423672	CBC-10-02	0.45	97.85	< 1	18	< 5	< 20
423673	CBC-10-02	0.4	97.41	< 1	20	< 5	< 20
423674	CBC-10-02	0.65	96.74	< 1	18	< 5	< 20
423675	CBC-10-02	0.51	97.19	1	22	< 5	< 20
423676	CBC-10-02	0.38	97.33	< 1	16	< 5	< 20
423677	CBC-10-02	0.5	97.22	< 1	16	< 5	< 20
423678	CBC-10-02	0.48	97.68	1	15	< 5	< 20
423679	CBC-10-03	0.4	98.46	4	17	< 5	< 20
423680	CBC-10-03	0.4	98.58	4	13	9	< 20
423681	CBC-10-03	0.27	98.73	5	20	< 5	< 20
423682	CBC-10-03	0.43	98.65	7	19	< 5	< 20
423683	CBC-10-03	0.09	97.85	6	17	< 5	< 20
423684	CBC-10-03	0.23	98.17	7	21	< 5	< 20
423685	CBC-10-03	0.4	97.59	2	10	< 5	< 20
423686	CBC-10-03	0.53	97.61	3	15	< 5	< 20
423687	CBC-10-03	0.49	97.67	< 1	18	< 5	< 20
423688	CBC-10-03	0.32	96.78	< 1	25	< 5	< 20
423689	CBC-10-03	0.42	97.23	< 1	15	< 5	< 20
423690	CBC-10-03	0.31	97.52	1	17	< 5	< 20
423691	CBC-10-03	0.06	98.01	1	18	< 5	< 20
423692	CBC-10-03	0.48	98.26	< 1	18	< 5	< 20
423693	CBC-10-03	0.78	98.09	< 1	3	< 5	< 20
423694	CBC-10-03	0.65	97.22	< 1	9	< 5	< 20
423695	CBC-10-03	0.28	98.02	2	14	< 5	< 20
423708	CBC-10-04	1.06	97.8	2	19	< 5	< 20
423709	CBC-10-04	0.74	97.25	2	19	< 5	< 20
423710	CBC-10-04	0.74	97.5	2	26	< 5	< 20
423711	CBC-10-04	0.58	97.36	1	19	< 5	< 20
423712	CBC-10-04	0.45	98.1	1	14	< 5	< 20
423713	CBC-10-04	0.58	96.91	1	19	< 5	< 20
423714	CBC-10-04	0.49	96.98	1	26	6	< 20
423715	CBC-10-04	0.61	96.83	2	24	< 5	< 20
423716	CBC-10-04	0.51	97.03	1	20	< 5	< 20
423717	CBC-10-04	0.54	97.1	2	22	< 5	< 20
423718	CBC-10-04	0.51	97.57	1	21	< 5	< 20
423719	CBC-10-04	0.65	96.92	1	28	< 5	< 20
423720	CBC-10-04	0.32	98.21	2	19	< 5	< 20

CHEM#	CHANNEL	LOI	Total	Sc	Ве	V	Cr
423721	CBC-10-05	0.51	98.29	3	22	< 5	< 20
423722	CBC-10-05	0.29	99.51	4	19	< 5	< 20
423723	CBC-10-05	0.34	99.25	2	14	< 5	< 20
423724	CBC-10-05	0.66	97.66	1	15	< 5	< 20
423725	CBC-10-05	0.73	97.45	< 1	20	< 5	< 20
423726	CBC-10-05	0.8	97.44	2	16	< 5	< 20
423727	CBC-10-05	0.33	98.24	7	15	< 5	< 20
423728	CBC-10-05	0.47	97.53	2	16	5	< 20
423729	CBC-10-05	0.51	96.76	1	15	< 5	< 20
423730	CBC-10-05	0.26	96.49	2	13	< 5	< 20
423731	CBC-10-05	0.32	98.7	8	15	< 5	< 20
423732	CBC-10-05	0.12	98.15	4	14	< 5	< 20
423733	CBC-10-05	0.52	97.74	1	13	< 5	< 20
423734	CBC-10-05	0.38	96.99	3	19	6	< 20
423735	CBC-10-05	0.39	98.4	7	17	6	< 20
423736	CBC-10-05	0.6	98.33	3	13	< 5	< 20
423737	CBC-10-05	0.28	98.03	6	16	< 5	< 20
423738	CBC-10-05	0.29	98.11	3	15	< 5	< 20
423739	CBC-10-05	0.36	97.7	2	14	< 5	< 20
423740	CBC-10-05	0.53	97.27	2	14	< 5	< 20
423746	CBC-10-11b	0.42	97.54	< 1	13	< 5	< 20
423747	CBC-10-11b	0.68	98.92	7	13	< 5	< 20
423748	CBC-10-11b	0.16	98.58	9	10	< 5	< 20
423749	CBC-10-11b	0.52	97.6	3	15	< 5	< 20
423750	CBC-10-11b	0.54	97.77	3	12	< 5	< 20
474120	MBC-11-02	0.01	98.67	2	16	< 5	< 20
474121	MBC-11-02	0.12	99.49	< 1	17	< 5	< 20
474122	MBC-11-02	0.07	98.79	1	17	< 5	< 20
474123	MBC-11-02	0.05	100.4	< 1	20	< 5	< 20
474124	MBC-11-02	0.01	99.41	< 1	21	< 5	< 20
474125	MBC-11-02	0.43	97.7	< 1	11	< 5	< 20
474126	MBC-11-02	0.09	97.81	< 1	22	< 5	< 20
474127	MBC-11-02	0.18	99.01	1	24	< 5	< 20
474128	MBC-11-03	-0.01	99.12	3		< 5	< 20
474129	MBC-11-03	0.05	96.49	< 1	9	< 5	< 20
474130	MBC-11-03	-0.04	99.67	6		< 5	< 20
474131	MBC-11-03	-0.13	99.58	6	10	< 5	< 20
474132	MBC-11-03	0.18	99.75	3	13	< 5	< 20
474133	MBC-11-03	-0.06	99.94	3		< 5	< 20
474134	MBC-11-03	-0.08	98.12	10		< 5	< 20
474135	MBC-11-04	0.05	98.83	< 1	20	< 5	< 20
474136	MBC-11-04	-0.03	98.45	1	20		< 20
474137	MBC-11-04	-0.06	97.82			< 5	< 20
474138	MBC-11-04	0.04	98.28			< 5	< 20
474139	MBC-11-04	0.17	98.07			< 5	< 20
474140	MBC-11-04	0.11	97.98	3	11	< 5	< 20

CHEM#	CHANNEL	LOI	Total	Sc	Ве	V	Cr
474141	MBC-11-04	0.14	98.08	3	10	< 5	< 20
474142	MBC-11-04	-0.02	98.82	4	13	< 5	< 20
474143	MBC-11-04	0.24	97.71	2	8	< 5	< 20
474144	MBC-11-02B	0.19	98.69	2	32	< 5	< 20
474145	MBC-11-02B	-0.02	99.01	7	12	< 5	< 20
474146	MBC-11-02B	0.36	100.3	2	7	< 5	< 20
474147	MBC-11-02B	0.18	98.04	2	26	< 5	< 20
474148	MBC-11-02B	0.27	99.62	1	3	< 5	< 20
474149	MBC-11-05	0.45	96.6	< 1	15	< 5	< 20
474150	MBC-11-05	0.27	98.19	2	13	< 5	< 20
474151	MBC-11-05	0.26	97.67	< 1	15	< 5	< 20
474152	MBC-11-05	-0.02	99.85	3	13	< 5	< 20
474153	MBC-11-05	-0.09	98.12	12	13	9	< 20
474154	MBC-11-05	0.22	99.06	10	13	5	< 20
474155	MBC-11-05	0.14	96.8	2	11	< 5	< 20
474156	MBC-11-06	0.25	98.07	2	11	< 5	< 20
474157	MBC-11-06	0.42	98.22	2	14	< 5	< 20
474158	MBC-11-06	0.08	98.56	< 1	18	< 5	< 20
474159	MBC-11-06	0.03	98.38	< 1	16	< 5	< 20
474160	MBC-11-06	0.18	99.53	< 1	22	< 5	< 20
474161	MBC-11-06	0.08	98.5	< 1	22	< 5	< 20
474162	MBC-11-06	-0.02	99.09	< 1	19	< 5	< 20
474163	MBC-11-06	0	99.36	< 1	21	< 5	< 20
474164	MBC-11-09	0.06	99.8	2	16	< 5	< 20
474165	MBC-11-09	-0.11	99.85	2	14	< 5	< 20
474166	MBC-11-09	0.06	97.64	2	11	< 5	< 20
474167	MBC-11-10B	0.46	97.93	3	8	7	< 20
474168	MBC-11-10B	0.68	96.92	1	4	< 5	< 20
474169	MBC-11-10B	0.57	98.18	1	5	< 5	< 20
474170	MBC-11-10B	0.5	97.74	2	9	< 5	< 20
474171	MBC-11-10A	0.56	99.1	< 1	11	< 5	< 20
474172	MBC-11-10A	0.63	96.79	< 1		< 5	< 20
474173	MBC-11-10A	0.64	97.42	< 1	19	< 5	< 20
474174	MBC-11-10A	0.66	98.5	< 1	14	< 5	< 20
474175	MBC-11-01	-0.09	97.99	18	22	28	< 20
474176	MBC-11-01	-0.12	97.46	15	18		< 20
474177	MBC-11-01	-0.08	97.15	13	20	29	< 20
474178	MBC-11-01	-0.22	97.18	11	11		< 20
474179	MBC-11-01	0.17	98.47	17	40		< 20
474180	MBC-11-01	-0.01	98.19	14	20		< 20
474181	MBC-11-01	0.23	98.71	17	29		< 20
474182	MBC-11-01	-0.05	97.88	14	18		< 20
474183	MBC-11-01	-0.06	98.54	14	22		< 20
474184	MBC-11-01	-0.17	98.18	12	6		< 20
474185	MBC-11-01	-0.07	98.37	14	10		< 20
474186	MBC-11-01	-0.14	98.73	10	4	17	< 20

CHEM#	CHANNEL	LOI	Total	Sc	Ве	V	Cr
474187	MBC-11-01	-0.19	99.67	14	13	23	< 20
474188	MBC-11-08	-0.05	98.63	11	17	27	< 20
474189	MBC-11-08	-0.13	97.97	15	20	26	< 20
474190	MBC-11-08	-0.1	99.68	11	15	18	< 20
474191	MBC-11-08	-0.14	100.1	6	7	8	< 20
474192	MBC-11-08	-0.18	97.82	6	8	7	< 20
474193	CBC-11-01	0.68	98.97	< 1	23	< 5	< 20
474194	CBC-11-01	0.57	97.79	< 1	19	< 5	< 20
474195	CBC-11-01	0.37	98.88	< 1	17	< 5	< 20
474196	CBC-11-01	0.75	98.42	< 1	16	< 5	< 20
474197	CBC-11-01	0.91	98.04	< 1	16	< 5	< 20
474198	CBC-11-01	0.39	98.92	< 1	21	< 5	< 20
474199	CBC-11-01	1.12	98.97	11	28	< 5	< 20
474200	CBC-11-01	0.66	98.68	6	22	< 5	< 20
474201	CBC-11-02	0.58	99.84	1	6	< 5	< 20
474202	CBC-11-02	-0.05	98.51	2	13	< 5	< 20
474203	CBC-11-02	0.26	99	1	9	< 5	< 20
474204	CBC-11-02	1.26	96.82	< 1	32	< 5	< 20
474205	CBC-11-02	0.16	98.93	4	12	< 5	< 20
474206	CBC-11-02	0.7	97.25	< 1	13	< 5	< 20
474207	CBC-11-03	0.89	97.44	< 1	12	< 5	< 20
474208	CBC-11-03	0.72	96.9	< 1	17	< 5	< 20
474209	CBC-11-03	0.89	96.82	< 1	13	< 5	< 20
474210	CBC-11-09	0.56	97.83	1	12	< 5	< 20
474211	CBC-11-09	1.13	96.57	< 1	6	< 5	< 20
474212	CBC-11-09	0.57	99.06	< 1	7	< 5	< 20
474213	CBC-11-09	0.49	96.52			< 5	< 20
474214	CBC-11-09	0.61	97.63			< 5	< 20
474215	CBC-11-09	0.41	98.25			< 5	< 20
474216	CBC-11-09	0.31	99.93		17	< 5	< 20
474217	CBC-11-05	0.06	97.98	4		< 5	< 20
474218	CBC-11-05	0.2	98.48		18		
474219	CBC-11-05	0.16				< 5	< 20
474220	CBC-11-05	0.53	97.5			< 5	< 20
474221	CBC-11-05	0.44	97.45			< 5	< 20
474222	CBC-11-05	0.16	99.13			< 5	< 20
474223	CBC-11-07a	0.16	98.82		5		< 20
474224	CBC-11-07a	0.14	98.93			< 5	< 20
474225	CBC-11-07a	0.66	99.32		10		< 20
474226	CBC-11-07a	0.09	97.89		7		< 20
474227	CBC-11-07a	-0.23	99.11			< 5	< 20
474228	CBC-11-07a	0.13	99.16		11		< 20
474229	CBC-11-07a	0.21	99.37			< 5	< 20
474230	CBC-11-07b	-0.16	98.56		9		< 20
474231	CBC-11-07b	-0.05	98.18		10		< 20
474232	CBC-11-06	1.09	99.72	< 1	8	< 5	< 20

CHEM #	CHANNEL	LOI	Total		Sc	Ве	V		Cr
474233	CBC-11-06	1.02	97.7	< 1		9	< 5	< 20	\neg
474234	CBC-11-06	1.27	98.92	< 1		11	< 5	< 20	
474235	CBC-11-06	1.85	98.45	< 1		16	< 5	< 20	
474236	CBC-11-06	1.71	96.99		2	7	< 5	< 20	
474237	CBC-11-06	2.34	97.04		2	8	< 5	< 20	
474238	CBC-11-06	0.65	99.43	< 1		5	6	< 20	_
474239	CBC-11-06	0.8	97.82	< 1		5	< 5	< 20	
474240	CBC-11-06	0.58	96.78		2	12	9	< 20	
474241	CBC-11-06	1.41	98.6	< 1		10	< 5	< 20	
474242	CBC-11-10	0.24	98.88	< 1		11	< 5	< 20	
474243	CBC-11-10	0.65	96.1	< 1		12	< 5	< 20	
474244	CBC-11-10	0.37	96.63	< 1		19	< 5	< 20	
474245	CBC-11-10	0.47	100.8		7	13	5	< 20	
474246	CBC-11-10	1.17	94.15	< 1		2	7	< 20	
474247	CBC-11-04	0.07	98.48		5	11	< 5	< 20	
474248	CBC-11-04	0	99.23		5	8	< 5	< 20	
474249	CBC-11-04	-0.26	97.68		2	7	< 5	< 20	
474250	CBC-11-04	-0.06	98.86		5	8	< 5	< 20	
474251	CBC-11-04	-0.09	97.81		4	9	< 5	< 20	
474252	CBC-11-04	0.12	98.78	< 1		17	< 5	< 20	
474253	CBC-11-04	1.36	98.19	< 1		19	< 5	< 20	
474254	CBC-11-04	0.41	97.58	< 1		14	< 5	< 20	
474255	CBC-11-04	1.02	98.49	< 1		14	< 5	< 20	
474256	CBC-11-04	1.01	98.87	< 1		10	< 5	< 20	
474257	CBC-11-04	0.27	98.35		2	18	< 5	< 20	
474258	CBC-11-04	0.83	99.67	< 1		7	< 5	< 20	
474259	CBC-11-04	0.37	98.3	< 1		15	< 5	< 20	
474260	CBC-11-04	1.31	97	< 1		17	< 5	< 20	
474261	CBC-11-04	0.59	98.04	< 1		30	< 5	< 20	
474262	CBC-11-04	0.67	97.35	< 1		15	< 5	< 20	
474263	CBC-11-04	0.35	97.4		3	22	< 5	< 20	
474264	CBC-11-08	1.25	99.53	< 1			< 5	< 20	
474265	CBC-11-08	0.66					< 5	< 20	
474266	CBC-11-08	0.52	100.5				< 5	< 20	
474267	CBC-11-08	0.56	98.76	< 1		1	< 5	< 20	
474268	CBC-11-11	0.52	97.01			16	< 5	< 20	
474269	CBC-11-11	0.74	97.18	< 1		16	< 5	< 20	
474270	CBC-11-11	0.74	98.44		1		< 5	< 20	
474271	CBC-11-11	0.56	98.88				< 5	< 20	
474272	CBC-11-11	0.78	98.69		1		< 5	< 20	
474273	CBC-11-09b	0.59	99.64				< 5	< 20	
474274	CBC-11-09b	0.57	99.73				< 5	< 20	
474275	CBC-11-09b	0.69	98.94				< 5	< 20	
474276	CBC-11-09b	0.98	98.95				< 5	< 20	
474277	CBC-11-09b	0.27	99.15		2		< 5	< 20	
474278	CBC-11-09b	0.4	97.91		1	14	< 5	< 20	

CHEM#	CHANNEL	LOI	Total	Sc	Ве	V	Cr
474279	CBC-11-09b	0.26	98.08	< 1	19	< 5	< 20
474280	CBC-11-09b	0.49	98.66	< 1	24	< 5	< 20
474281	SZC-11-04	0.34	99.56	13	38	13	< 20
474282	SZC-11-04	-0.01	100.2	14	28	9	< 20
474283	SZC-11-04	0.1	99.73	3	30	5	< 20
474284	SZC-11-04	0.05	99.1	4	35	< 5	< 20
474285	SZC-11-04	0.04	99	< 1	24	< 5	< 20
474286	SZC-11-04	0.08	97.53	2	27	< 5	< 20
474287	SZC-11-04	-0.13	98.12	2	24	< 5	< 20
474288	SZC-11-15a	-0.16	97.72	14	21	< 5	< 20
474289	SZC-11-15a	0.04	99.83	13	1607	< 5	< 20
474290	SZC-11-15a	-0.34	100.2	21	36	< 5	< 20
474291	SZC-11-15b	-0.17	100.9	21	34	< 5	< 20
474292	SZC-11-15b	0.08	100.8	11	1315	< 5	< 20
474293	SZC-11-15b	-0.15	100.3	20	42	< 5	< 20
474294	SZC-11-15c	-0.2	99.29	20	57	< 5	< 20
474295	SZC-11-15c	0.24	99.07	21	1019	11	< 20
474296	SZC-11-15c	-0.2	100.3	18	279	< 5	< 20
474297	SZC-11-05	-0.08	98.79	3	42	< 5	< 20
474298	SZC-11-05	-0.1	99.34	3	26	< 5	< 20
474299	SZC-11-05	-0.03	99.06	8	17	< 5	< 20
474300	SZC-11-05	-0.05	99.74	8	16	< 5	< 20
474301	SZC-11-05	-0.1	99.54	5	14	< 5	< 20
474302	SZC-11-05	0.03	100	6	17	< 5	< 20
474303	SZC-11-09	0.2	98.82	5	13	6	< 20
474304	SZC-11-09	0.1	99.68	6	37	< 5	< 20
474305	SZC-11-09	-0.17	97.97	6	33	< 5	< 20
474306	SZC-11-09	-0.1	98.17	6	13	< 5	< 20
474307	SZC-11-09	-0.14	98.41	7		< 5	< 20
474308	SZC-11-09	0.21	100	7		< 5	< 20
474309	SZC-11-09	-0.06	98.72	7	19	< 5	< 20
474310	SZC-11-09	0.02	99.79	5		< 5	< 20
474311	SZC-11-09	-0.1		5		< 5	< 20
474312	SZC-11-09	0.02			13	< 5	< 20
474313	SZC-11-09	0.25	99.37	8		< 5	< 20
474314	SZC-11-09	0.16				< 5	< 20
474315	SZC-11-09	0.07	99.36			< 5	< 20
474316	SZC-11-02b	0.6	98.54		11		< 20
474317	SZC-11-02b	0.62	99.13	17	39		< 20
474318	SZC-11-02b	1.24	99.42	1		< 5	< 20
474319	SZC-11-02b	0.31	99.5	1		< 5	< 20
474320	SZC-11-02b	0.27	98.76	14		< 5	< 20
474321	SZC-11-03a	0.64	100.7	17	90		< 20
474322	SZC-11-03a	0.76	99.31	18	45		< 20
474323	SZC-11-03a	0.41	97.77	3		< 5	< 20
474324	SZC-11-03a	0.71	98.69	17	43	31	< 20

CHEM#	CHANNEL	LOI	Total	Sc	Ве	V		Cr
474325	SZC-11-03a	1.02	98.86	2	4	< 5	< 20	
474326	SZC-11-03b	1.67	99.25	14	14	< 5	< 20	
474327	SZC-11-03b	0.31	99.51	15	34	< 5	< 20	
474328	SZC-11-03b	0.31	98.63	11	17	< 5	< 20	
474329	SZC-11-03b	0.2	99.43	17	32	< 5	< 20	
474330	SZC-11-06	-0.08	100.1	20	16	< 5	< 20	
474331	SZC-11-06	-0.15	99.34	21	50	< 5	< 20	
474332	SZC-11-06	-0.14	100.8	23	18	< 5	< 20	
474333	SZC-11-06	-0.07	99.58	23	23	< 5	< 20	
474334	SZC-11-06	-0.22	99.39	23	16	< 5	< 20	
474335	SZC-11-06	-0.08	99.38	22	55	< 5	< 20	
474336	SZC-11-06	-0.02	99.15	23	13	< 5	< 20	
474337	SZC-11-07	0.15	98.63	7	22	< 5	< 20	
474338	SZC-11-07	0.03	99.24	7	34	< 5	< 20	
474339	SZC-11-07	-0.01	97.77	3	51	< 5	< 20	
474340	SZC-11-07	0.14	98.62	5	44	< 5	< 20	
474341	SZC-11-07	0.13	98.63	7	17	< 5	< 20	
474342	SZC-11-07	0.33	98.92	7	18	5	< 20	
474343	SZC-11-08	0.18	99.93	13	24	< 5	< 20	
474344	SZC-11-08	0.18	96.48	4	24	< 5	< 20	
474345	SZC-11-08	0.32	97.39	11	19	< 5	< 20	
474346	SZC-11-08	0.03	99.11	7	17	< 5	< 20	
474347	SZC-11-08	-0.04	97.8	3	14	< 5	< 20	
474348	SZC-11-10	0.22	97.62	13	21	< 5	< 20	
474349	SZC-11-10	0.28	98.39	9	31	< 5	< 20	
474350	SZC-11-10	0.31	97.51	8	17	< 5	< 20	
474351	SZC-11-10	0.35	97.68	9	17	< 5	< 20	
474352	SZC-11-10	0.26	98.14	2	5	5	< 20	
474353	SZC-11-10	0.42	97.57	5	17	< 5	< 20	
474354	SZC-11-10	0.19	97.62	7	20	< 5	< 20	
474355	SZC-11-10	0.2	97.81	3	19	< 5	< 20	
474356	SZC-11-10	0.3	97.67	5	18	< 5	< 20	
474357	SZC-11-10	0.2	98.71	8	21	< 5	< 20	
474358	SZC-11-10	0.04	98.42	6	21	< 5	< 20	
474359	SZC-11-10	-0.08	98.9	4	16	< 5	< 20	
474360	SZC-11-10	0.27	99.22	4	21	< 5	< 20	
474361	SZC-11-10	0.13	99.76	4	50	< 5	< 20	
474362	SZC-11-10	-0.03	97.79	3	22	< 5	< 20	
474363	SZC-11-10	0	97.73	5	25	< 5	< 20	
474364	SZC-11-10	0.02	97.51	5		< 5	< 20	
474365	SZC-11-10	0.24	97.73	9	20	< 5	< 20	
474366	SZC-11-10	0.17	97.41	4		< 5	< 20	
474367	SZC-11-10	0.48	97.41	5		< 5	< 20	
474368	SZC-11-10	0.38	99.04	6	9	< 5	< 20	
474369	SZC-11-10	0.14	97.74	6	12		< 20	
474370	SZC-11-10	0.17	99.37	3	12	< 5	< 20	

CHEM #	CHANNEL	LOI	Total	Sc	Be	V	Cr
474371	SZC-11-10	-0.1	99.88	3	33	< 5	< 20
474372	SZC-11-10	-0.15	99.66	7	13	< 5	< 20
474373	SZC-11-10	0.06	98.09	7	9	< 5	< 20
474374	SZC-11-10	0.02	98.99	7	157	< 5	< 20
474375	SZC-11-11	0.16	98.63	11	23	< 5	< 20
474376	SZC-11-11	0.49	98.82	7	10	< 5	< 20
474377	SZC-11-11	0.13	97.4	7	16	5	< 20
474378	SZC-11-11	0.31	97.46	4	17	< 5	< 20
474379	SZC-11-11	0.51	98.34	4	20	< 5	< 20
474380	SZC-11-11	0.39	97.97	6	26	< 5	< 20
474381	SZC-11-11	0.42	97.64	5	21	< 5	< 20
474382	SZC-11-11	0.58	98.12	9	20	< 5	< 20
474383	SZC-11-11	0.33	97.26	4	18	< 5	< 20
474384	SZC-11-11	0.11	99.07	6	40	< 5	< 20
474385	SZC-11-11	0.04	98.68	6	98	< 5	< 20
474386	SZC-11-11	0.06	99.44	7	20	< 5	< 20
474387	SZC-11-11	-0.03	98.16	7	14	< 5	< 20
474388	SZC-11-11	-0.14	98.54	7	21	< 5	< 20
474389	SZC-11-11	-0.09	99.31	7	9	< 5	< 20
474390	SZC-11-11	-0.02	98.4	6	11	< 5	< 20
474391	SZC-11-11	-0.17	98.75	7	20	< 5	< 20
474392	SZC-11-11	-0.27	98.13	6	12	< 5	< 20
474393	SZC-11-11	-0.2	98	6	27	< 5	< 20
474394	SZC-11-11	-0.08	98.29	6	12	< 5	< 20
474395	SZC-11-11	0.15	99.37	6	11	< 5	< 20
474396	SZC-11-11	0.32	97.73	6	15	< 5	< 20
474397	SZC-11-11	0.07	100.5	5	14	< 5	< 20
474398	SZC-11-11	-0.02	98.69	5	12	< 5	< 20
474399	SZC-11-11	0.06	98.94	5	12	< 5	< 20
474400	SZC-11-11	0.14	98.35	4	14	< 5	< 20
474401	SZC-11-11	0.4	98.11	4	49	< 5	< 20
474402	SZC-11-12	-0.18	98.51	20	15	< 5	< 20
474403	SZC-11-12	-0.12	97.74	17	407	< 5	< 20
474404	SZC-11-12	-0.1	99.41	18	203	< 5	< 20
474405	SZC-11-12	-0.12	100.3	20	25	< 5	< 20
474406	SZC-11-12	-0.05	99.45	21	11	< 5	< 20
474407	SZC-11-12	-0.27	98.66	20	11	< 5	< 20
474408	SZC-11-12	-0.14	99.08	19	12	5	< 20
474409	SZC-11-02a	0.39	99.4	25	17		< 20
474410	SZC-11-02a	-0.02	98.65	11	12		< 20
474411	SZC-11-02a	0.46	100.5	18	59		< 20
474412	SZC-11-02a	2.94	98.94	22	49		< 20
474413	SZC-11-02a	1.58	100.3	7	23		< 20
474414	SZC-11-02a	0.62	100.1	19	53		< 20
474415	SZC-11-02a	0.43	99.1	13	28		< 20
474416	SZC-11-02a	0.83	99.49	5	12	11	< 20

CHEM #	CHANNEL	LOI	Total	Sc	Be	V	Cr
474417	SZC-11-02a	0.5	97.7	6	26	22	< 20
474418	SZC-11-02a	0.39	97.7	6	21	21	< 20
474419	SZC-11-02a	0.71	98.3	19	91	35	< 20
474420	MRC-11-04	2.26	95.92	< 1	16	< 5	< 20
474421	MRC-11-04	2.07	97.41	3	22	17	< 20
474422	MRC-11-04	1.64	98.13	< 1	10	< 5	< 20
474423	MRC-11-04	1.81	98.43	< 1	12	< 5	< 20
474424	MRC-11-04	1.61	98.02	6	29	35	< 20
474425	MRC-11-04	1.65	97.69	< 1	6	< 5	< 20
474426	MRC-11-04	1.64	98.55	2	10	7	< 20
474427	MRC-11-04	1.8	98.15	1	8	5	< 20
474428	MRC-11-04	1.6	97.26	2	7	11	< 20
474429	MRC-11-04	2.16	99.97	< 1	5	< 5	< 20
474430	MRC-11-04	1.95	98.17	< 1	5	< 5	< 20
474431	SZC-11-16	0.32	100.1	4	27	< 5	< 20
474432	SZC-11-16	0.34	98.48	5	22	< 5	< 20
474433	SZC-11-16	0.24	97.03	6	18	< 5	< 20
474434	SZC-11-16	0.35	98.61	3	12	< 5	< 20
474435	SZC-11-16	0.37	99.07	2	11	< 5	< 20
474436	SZC-11-16	0.37	99.46	2	8	< 5	< 20
474437	SZC-11-16	0.55	98.84	3	12	< 5	< 20
474438	SZC-11-16	0.59	100.5	6	15	12	< 20
474439	SZC-11-16	0.51	100.6	4	10	< 5	< 20
474440	SZC-11-16	0.51	100.2	1	19	< 5	< 20
474441	SZC-11-16	0.48	99.58	< 1	20	< 5	< 20
474442	SZC-11-16	0.57	99.1	3	14	< 5	< 20
474443	SZC-11-16	0.55	97.93	6	16	< 5	< 20
474444	SZC-11-16	0.45	96.68	2	31	< 5	< 20
474445	SZC-11-16	0.45	97.3	6	30	< 5	< 20
474446	SZC-11-16	0.59	97.93	1	6	< 5	< 20
474447	SZC-11-16	0.56	97.03	2	13	< 5	< 20
474448	SZC-11-16	0.53	97.26	2	7	< 5	< 20
474449	SZC-11-16	0.52			_	< 5	< 20
474450	SZC-11-16	0.62	96.56			< 5	< 20
474451	MRC-11-03	1.81	95.97			< 5	< 20
474452	MRC-11-03	1.99	96.75			< 5	< 20
474453	MRC-11-03	1.98	97.11			< 5	< 20
474454	MRC-11-03	1.54	97.46			< 5	< 20
474455	MRC-11-03	1.32	98.37			< 5	< 20
474456	MRC-11-03	2.15	97.06			< 5	< 20
474457	MRC-11-03	1.78	96.58			< 5	< 20
474458	MRC-11-03	1.8	97.16			< 5	< 20
474459	MRC-11-03	1.7	97.73			< 5	< 20
474460	MRC-11-03	0.77	97.81			< 5	< 20
474461	MRC-11-05	1.99	96.89			< 5	< 20
474462	MRC-11-05	1.46	97.7	2	11	7	< 20

CHEM #	CHANNEL	LOI	Total	Sc	Ве	V	Cr
474463	MRC-11-05	2.79	97.58	1	15	6	< 20
474464	MRC-11-05	2.18	97.41	< 1	9	< 5	< 20
474465	MRC-11-05	2.05	97.33			< 5	< 20
474466	MRC-11-05	2.08	96.29		20	< 5	< 20
474467	MRC-11-05	2.43	97.99		17	< 5	< 20
474468	MRC-11-05	1.81	98.85	5	30		< 20
474469	MRC-11-05	1.93	97.94			< 5	< 20
474470	MRC-11-05	2.29	97.61		7		< 20
474471	MRC-11-05	2.06	96.29		-	< 5	< 20
474472	MRC-11-02	0.7	96.97				< 20
474473	MRC-11-02	0.67	99.94	2	16		< 20
474473	MRC-11-02	0.07	97.05	5	22		< 20
474474	MRC-11-02	0.92	97.03	2	16		< 20
474475	MRC-11-02			4	18		< 20
_		0.23	99.69				
474477	MRC-11-02	0.62	97.68	5	19		< 20
474478	MRC-11-02	0.51	97.68	5	16		< 20
474479	BRC-11-06	0.54		< 1		< 5	< 20
474480	BRC-11-06	0.32	97.09			< 5	< 20
474481	BRC-11-06	0.84	98.55			< 5	< 20
474482	BRC-11-06	0.28	97.43			< 5	< 20
474483	BRC-11-06	0.24	97.53			< 5	< 20
474484	BRC-11-06	0.49	97.62			< 5	< 20
474485	BRC-11-06	0.74	97.1			< 5	< 20
474486	MRC-11-01	0.22	99.19			< 5	< 20
474487	MRC-11-01	0.56	97.47		14	5	< 20
474488	MRC-11-01	0.5	97.76	< 1	33	8	< 20
474489	MRC-11-01	0.72	97.43	3	24	20	< 20
474499	BRC-11-02a	0.69	98.27	1		< 5	< 20
474500	BRC-11-02a	0.76	98.01	1		< 5	< 20
474501	BRC-11-02b	1.23	99.14	< 1	9	< 5	< 20
474502	BRC-11-02b	0.7	97.49	< 1	3	5	< 20
474503	BRC-11-02b	0.97	97.76	< 1	18	< 5	< 20
474504	BRC-11-05	1.14	98	< 1	5	7	< 20
474505	BRC-11-05	0.9	98.15	< 1	7	< 5	< 20
474506	BRC-11-05	0.35	97.56	< 1	11	< 5	< 20
474507	BRC-11-05	1.87	99.41	< 1	8	< 5	< 20
474508	BRC-11-05	0.48	97.36	< 1	6	5	< 20
474509	BRC-11-05	1.32	97.91	< 1	5	< 5	< 20
474510	BRC-11-01	0.52	98.58	< 1	5	< 5	< 20
474511	BRC-11-01	0.24	100.9	< 1	12	< 5	< 20
474512	BRC-11-01	0.24	98.89	5	17	16	< 20
474513	BRC-11-01	0.6	98.46	10	24	16	< 20
474514	BRC-11-01	0.32	98.82	3	10	25	< 20
474515	BRC-11-01	0.22	99.27	2	9	9	< 20
474516	BRC-11-01	0.63	98.21	< 1	4		< 20
474517	BRC-11-01	0.86			3		< 20

CHEM #	CHANNEL	LOI	Total		Sc	Ве	V		Cr
474518	BRC-11-01	0.92	97.84	< 1		4	5	< 20	
474519	BRC-11-01	0.25	97.23		2	9	5	< 20	
474520	BRC-11-01	-0.04	99.14		3	11	9	< 20	
474521	BRC-11-03a	0.34	97.79	< 1		10	5	< 20	
474522	BRC-11-03a	0.2	96.78		1	9	< 5	< 20	
474523	BRC-11-03a	0.13	98.96	< 1		11	< 5	< 20	
474524	BRC-11-03a	0.55	100	< 1		7	< 5	< 20	
474525	BRC-11-03a	1.11	99.6	< 1		19	< 5	< 20	
474526	BRC-11-03b	1.39	96.93	< 1		11	< 5	< 20	
474527	BRC-11-03b	1.74	95.88	< 1		16	< 5	< 20	
474528	BRC-11-03b	1.48	97.41	< 1		7	< 5	< 20	
474529	BRC-11-03b	1.73	98.57	< 1		4	< 5	< 20	
474530	BRC-11-03b	0.77	98.34	< 1		8	< 5	< 20	
474531	BRC-11-03b	1.43	97.96	< 1		4	< 5	< 20	
474611	MRC-11-06	0.45	96.21	< 1		72	< 5	< 20	
474612	MRC-11-06	0.47	97.8	< 1		45	< 5	< 20	
474613	MRC-11-06	0.18	96.09	< 1		15	< 5	< 20	
474614	MRC-11-06	0.31	96.89	< 1		12	< 5	< 20	
474615	MRC-11-06	0.32	96.26	< 1		12	< 5	< 20	
474616	MRC-11-06	0.17	95.66		2	16	< 5	< 20	
474617	MRC-11-06	0.36	98.29	< 1		24	< 5	< 20	
474618	MRC-11-06	0.71	96.72	< 1		41	< 5	< 20	
474619	MRC-11-06	0.33	98.07	< 1		13	< 5	< 20	
474620	MRC-11-06	0.18	97.53		1	15	< 5	< 20	
474621	MRC-11-06	0.29	97.76		1	17	< 5	< 20	
474622	MRC-11-06	0.33	96.55	< 1		28	< 5	< 20	
474623	MRC-11-06	0.34	96.29	< 1		20	< 5	< 20	
474624	MRC-11-06	0.52	97.01	< 1		34	< 5	< 20	
474625	MRC-11-06	0.45	96.13	< 1			< 5	< 20	
474626	MRC-11-06	0.5	98.86	< 1		25	< 5	< 20	
4744490	BRC-11-04	0.53	98.74		10	25	46		20
4744491	BRC-11-04	0.55	96.68		3	4		< 20	
4744492	BRC-11-04	0.49	97.55		12	33		< 20	
4744493	BRC-11-04	0.22	98.22		9	17		< 20	
4744494	BRC-11-04	0.37	97.88		11	24		< 20	
4744495	BRC-11-04	0.18	99.47		13	32		< 20	
4744496	BRC-11-04	0.4	100.1		12	28		< 20	
4744497	BRC-11-04	0.14	98.89		10	18		< 20	
4744498	BRC-11-04	0.62	99.85		21	53		< 20	
474565	AMC-11-05	0.4	97.44		2		< 5	< 20	
474566	AMC-11-05	0.44	98.86		1		< 5	< 20	
474567	AMC-11-05	0.72	99.14				< 5	< 20	
474568	AMC-11-05	0.83	98.79				< 5	< 20	
474569	AMC-11-05	0.71	97.23				< 5	< 20	
474570	AMC-11-05	0.91	97.77				< 5	< 20	
474571	AMC-11-01	0.18	98.31		3	10	< 5	< 20	

CHEM #	CHANNEL	LOI	Total	Sc	Be	V	Cr
474572	AMC-11-01	0.37	99.5	4	9	< 5	< 20
474573	AMC-11-01	0.54	99.98	3	10	< 5	< 20
474574	AMC-11-01	0.35	99.37	4	12	< 5	< 20
474575	AMC-11-01	0.57	99.52	3	11	< 5	< 20
474576	AMC-11-02	0.27	99.1	4	12	< 5	< 20
474577	AMC-11-02	0.32	99.81	6	11	< 5	< 20
474578	AMC-11-02	0.51	99.38	2	9	< 5	< 20
474593	AMC-11-04	0.39	99.6	4	20	< 5	< 20
474594	AMC-11-04	0.5	99.09	4	20	< 5	< 20
474595	AMC-11-04	0.46	100.4	5	20	< 5	< 20
474596	AMC-11-04	0.44	98.84	< 1	11	< 5	< 20
474597	AMC-11-04	0.5	99.78	4	25	< 5	< 20
474598	AMC-11-04	0.32	100.3	4	20	< 5	< 20
474599	AMC-11-03	0.36	98.74	3	23	< 5	< 20
474600	AMC-11-03	0.22	97.48	< 1	11	< 5	< 20
474601	AMC-11-03	0.56	97.52	< 1	20	< 5	< 20
474602	AMC-11-03	0.52	99.62	< 1	17	< 5	< 20
474603	AMC-11-03	0.64	99.02	2	25	< 5	< 20
474604	AMC-11-03	0.77	99.48	< 1	21	< 5	< 20
474605	AMC-11-03	0.5	99.75	4	20	< 5	< 20
474606	AMC-11-03	0.39	99.16	5	12	< 5	< 20
474607	AMC-11-03	0.29	99.62	5	12	< 5	< 20
474608	AMC-11-03	0.35	99.94	6	10	< 5	< 20
474609	AMC-11-03	0.4	98.83	4	9	< 5	< 20
474610	AMC-11-03	0.3	98.6	3	15	< 5	< 20

CHEM#	CHANNEL	Со	Ni	Cu	Zn	Ga	Ge
104201	CBC-10-06a	6	< 20	20	270	34	3
104202	CBC-10-06a	7	< 20	< 10	300	35	2
104203	CBC-10-06a	3	< 20	< 10	330	39	3
104204	CBC-10-06a	3	< 20	20	820	42	4
104205	CBC-10-06a	2	< 20	< 10	410	38	4
104206	CBC-10-06a	2	< 20	10	380	37	4
104207	CBC-10-06a	2	< 20	< 10	300	40	3
104208	CBC-10-06a	1	< 20	< 10	330	52	4
104209	CBC-10-06a	1	< 20	< 10	240	43	4
104210	CBC-10-06a	1	< 20	< 10	390	49	4
104211	CBC-10-06a	2	< 20	10	460	53	3
104212	CBC-10-06a	1	< 20	< 10	430	54	4
104213	CBC-10-06a	1	< 20	< 10	290	51	4
104214	CBC-10-06a	1	< 20	< 10	170	47	2
104215	CBC-10-06a	< 1	< 20	< 10	100	45	< 1
104216	CBC-10-06a	< 1	< 20	< 10	330	67	1
104217	CBC-10-07	1	< 20	< 10	220	45	3
104218	CBC-10-07	2	< 20	< 10	260	44	3
104219	CBC-10-07	1	< 20	< 10	210	40	4
104220	CBC-10-07	1	< 20	< 10	230	43	3
104221	CBC-10-07	< 1	< 20	< 10	260	53	4
104222	CBC-10-07	1	< 20	< 10	340	52	4
104223	CBC-10-07	1	< 20	< 10	460	60	3
104224	CBC-10-07	< 1	< 20	< 10	430	52	4
104225	CBC-10-07	< 1	< 20	< 10	320	55	4
104226	CBC-10-07	< 1	< 20	< 10	230	44	4
104227	CBC-10-08	< 1	< 20	< 10	320	53	4
104228	CBC-10-08	< 1	< 20	< 10	290	50	5
104229	CBC-10-08	2	< 20	< 10	590	51	5
104230	CBC-10-08	2	< 20	< 10	550	47	5
104231	CBC-10-08	< 1	< 20	< 10	340	50	4
104232	CBC-10-08	< 1	< 20	< 10	330	52	4
104233	CBC-10-08	< 1	< 20	< 10			5
104234	CBC-10-08	< 1	< 20	< 10	270	50	3
104235	CBC-10-08	< 1	< 20	< 10	290	49	4
104236	CBC-10-08	< 1	< 20	< 10	280	50	3
104237	CBC-10-08	< 1	< 20	< 10	260	50	3
104238	CBC-10-08	< 1	< 20	< 10	190	48	3
104239	CBC-10-08	< 1	< 20	< 10	290	46	4
104240	CBC-10-08	< 1	< 20	< 10	300	51	4
104241	CBC-10-08	1	< 20	< 10	300	49	4
104242	CBC-10-08	< 1	< 20	< 10	250	50	4
104243	CBC-10-08	1	< 20	< 10	260	48	4
104244	CBC-10-08	< 1	< 20	< 10	230	49	4
104245	CBC-10-08	< 1	< 20	< 10	240	47	3
104246	CBC-10-08	< 1	< 20	< 10	290	47	4

CHEM#	CHANNEL	Со	Ni	Cu	Zn	Ga	Ge
104247	CBC-10-08	< 1	< 20	< 10	250	50	4
104248	CBC-10-08	< 1	< 20	< 10	290	48	4
104249	CBC-10-08	1	< 20	< 10	280	55	3
104250	CBC-10-08	1	< 20	< 10	270	52	4
104251	CBC-10-08	1	< 20	< 10	300	51	4
104252	CBC-10-08	1	< 20	< 10	290	50	4
104253	CBC-10-08	< 1	< 20	< 10	240	51	4
104254	CBC-10-09	1	< 20	< 10	310	53	3
104255	CBC-10-09	1	< 20	< 10	480	56	3
104256	CBC-10-09	2	< 20	< 10	410	51	3
104257	CBC-10-09	2	< 20	< 10	380	51	3
104258	CBC-10-09	6	< 20	< 10	910	52	4
104259	CBC-10-09	11	< 20	< 10	570	37	3
104260	CBC-10-09	11	< 20	10	320	31	3
104261	CBC-10-09	3	< 20	10	1040	57	3
104262	CBC-10-09	1	< 20	10	400	67	2
104263	CBC-10-09	1	< 20	< 10	170	62	1
104264	CBC-10-09	1	< 20	10	380	58	2
104265	CBC-10-09	2	< 20	10	370	56	3
104266	CBC-10-09	2	< 20	< 10	370	58	3
104267	CBC-10-09	1	< 20	< 10	250	60	2
104268	CBC-10-09	1	< 20	< 10	260	61	3
104269	CBC-10-10	2	< 20	< 10	350	38	4
104270	CBC-10-10	2	< 20	10	550	50	4
104271	CBC-10-10	1	< 20	< 10	310	41	3
104272	CBC-10-10	2	< 20	< 10	290	40	4
104273	CBC-10-10	1	< 20	10	340	40	3
104274	CBC-10-10	1	< 20	< 10	350	54	3
104275	CBC-10-10	1	< 20	< 10	300	44	3
104276	CBC-10-10	1	< 20	< 10	300	40	3
104277	CBC-10-10	2	< 20	10	350	40	3
104278	CBC-10-10	2	< 20	10	530	54	4
104279	CBC-10-10	2	< 20	20	400	54	3
104280	CBC-10-10	2	< 20	10	390	42	3
104281	CBC-10-10	2	< 20	10	600	39	4
104282	CBC-10-10	4	< 20	20	560	50	4
104283	CBC-10-10	4	< 20	20	730	51	4
104284	CBC-10-10	1	< 20	< 10	610	70	4
104285	CBC-10-10	1	< 20	< 10	600	67	4
104286	CBC-10-10	2	< 20	< 10	650	67	7
104287	CBC-10-10	< 1	< 20	< 10	780	70	5
104288	CBC-10-11b	3	< 20	< 10	300	32	3
104289	CBC-10-11b	4	< 20	< 10	300	29	3
104290	CBC-10-11b	1	< 20	< 10	390	63	4
104291	CBC-10-11b	1	< 20	< 10	350	39	4
104292	CBC-10-11b	< 1	< 20	< 10	430	54	4

CHEM#	CHANNEL	Co	Ni	Cu	Zn	Ga	Ge
104293	CBC-10-11b	< 1	< 20	< 10	580	56	3
104294	CBC-10-11b	< 1	< 20	< 10	350	53	3
104295	CBC-10-11b	< 1	< 20	< 10	360	53	4
104296	CBC-10-11b	< 1	< 20	< 10	310	52	4
104297	CBC-10-11b	1	< 20	< 10	310	44	3
104298	CBC-10-11b	1	< 20	< 10	350	38	4
104299	CBC-10-11b	2	< 20	< 10	820	38	5
104300	CBC-10-11b	3	< 20	< 10	470	33	4
104326	CBC-10-11b	2	< 20	20	590	47	4
104327	CBC-10-11b	3	< 20	10	290	33	4
104328	CBC-10-11b	< 1	< 20	< 10	230	40	3
104329	CBC-10-11b	1	< 20	10	240	38	4
104330	CBC-10-11b	1	< 20	< 10	240	40	3
104331	CBC-10-11b	< 1	< 20	< 10	240	40	3
104332	CBC-10-11b	< 1	< 20	< 10	250	51	3
104333	CBC-10-11b	< 1	< 20	< 10	250	49	3
104334	CBC-10-11b	< 1	< 20	< 10	320	56	3
104335	CBC-10-11b	1	< 20	40	1320	46	3
104336	CBC-10-11b	< 1	< 20	< 10	940	62	4
104337	CBC-10-11b	< 1	< 20	< 10	430	67	3
104338	CBC-10-11b	< 1	< 20	< 10	340	56	4
104339	CBC-10-11b	3	< 20	< 10	470	33	3
104340	CBC-10-11b	1	< 20	< 10	430	45	5
104341	CBC-10-11b	4	< 20	< 10	340	28	4
104342	CBC-10-11b	2	< 20	< 10	770	48	3
104343	CBC-10-11b	4	< 20	< 10	390	32	4
104344	CBC-10-11b	2	< 20	< 10	550	48	3
104345	CBC-10-11b	5	180	10	650	66	4
104346	CBC-10-11b	< 1	< 20	< 10	460	62	4
104347	CBC-10-11b	2	< 20	< 10	390	44	4
104348	CBC-10-11b	< 1	< 20	< 10	580	56	4
416155	CBC-10-11a	2	< 20	< 10	230	33	4
416156	CBC-10-11a	2	< 20	< 10	230	32	4
416157	CBC-10-11a	1	< 20	< 10	470	63	5
416158	CBC-10-11a	< 1	< 20	< 10	1560	79	3
416159	CBC-10-11a	1	< 20	< 10	370	64	5
416160	CBC-10-11a	1	< 20	< 10	270	57	4
416161	CBC-10-11a	1	< 20	< 10	350	47	5
416162	CBC-10-11a	1	< 20	10	320	42	4
416163	CBC-10-11a	1	< 20	10	350	36	4
416164	CBC-10-11a	1	< 20	< 10	370	46	4
416165	CBC-10-11a	1	< 20	< 10	290	54	4
416166	CBC-10-11a	1	< 20	< 10	320	54	6
416167	CBC-10-11a	1	< 20	< 10	330	62	4
416168	CBC-10-11a	1	< 20	< 10	1000	70	7
416169	CBC-10-11a	1	< 20	< 10	300	61	4

CHEM#	CHANNEL	Со	Ni	Cu	Zn	Ga	Ge
416170	CBC-10-11a	1	< 20	< 10	320	57	4
416171	CBC-10-12	1	< 20	< 10	420	63	5
416172	CBC-10-12	< 1	< 20	< 10	350	58	5
416173	CBC-10-12	1	< 20	< 10	390	54	5
416174	CBC-10-12	2	< 20	< 10	590	39	5
416175	CBC-10-12	1	< 20	< 10	470	57	5
416176	CBC-10-12	1	< 20	10	320	48	4
416177	CBC-10-12	1	< 20	< 10	840	70	6
416178	CBC-10-12	< 1	< 20	< 10	350	43	3
416179	CBC-10-12	1	< 20	< 10	320	39	4
416180	CBC-10-12	1	< 20	< 10	410	50	4
416181	CBC-10-12	2	< 20	< 10	330	45	5
416182	CBC-10-12	1	< 20	< 10	340	48	5
416183	CBC-10-12	1	< 20	10	310	51	6
416184	CBC-10-12	< 1	< 20	< 10	540	78	4
416185	CBC-10-12	< 1	< 20	390	530	55	2
416186	CBC-10-12	< 1	< 20	< 10	350	58	3
416187	CBC-10-12	1	< 20	< 10	300	49	3
416188	CBC-10-13	1	< 20	< 10	250	49	4
416189	CBC-10-13	1	< 20	< 10	270	48	4
416190	CBC-10-13	1	< 20	< 10	240	44	3
416191	CBC-10-13	< 1	< 20	< 10	210	46	3
416192	CBC-10-13	< 1	< 20	< 10	300	62	3
416193	CBC-10-13	< 1	< 20	< 10	230	56	4
416194	CBC-10-13	< 1	< 20	< 10	190	43	3
416195	CBC-10-13	< 1	< 20	< 10	170	43	3
416196	CBC-10-13	< 1	< 20	< 10	230	40	3
416197	CBC-10-13	1	< 20	< 10	210	39	3
416198	CBC-10-13	1	< 20	< 10	210	43	3
416199	CBC-10-13	2	< 20	< 10	240	41	3
416200	CBC-10-13	1	< 20	< 10	240	46	3
416201	CBC-10-14	1	< 20	< 10	270	60	3
416202	CBC-10-14	< 1	< 20	< 10	240	59	3
416203	CBC-10-14	< 1	< 20	< 10	250	58	3
416204	CBC-10-14	1	< 20	< 10	240	52	4
416205	CBC-10-14	< 1	< 20	< 10	210	52	3
416206	CBC-10-14	< 1	< 20	< 10	210	50	3
416207	CBC-10-14	< 1	< 20	< 10	230	52	4
416208	CBC-10-14	1	< 20	< 10	270	48	3
416209	CBC-10-14	< 1	< 20	< 10	250	46	3
416210	CBC-10-14	< 1	< 20	< 10	260	46	3
416211	CBC-10-14	1	< 20	< 10	310	47	3
416212	CBC-10-14	< 1	< 20	< 10	230	61	3
416213	CBC-10-14	< 1	< 20	< 10	250	50	3
416214	CBC-10-14	< 1	< 20	< 10	260	52	3
416215	CBC-10-14	< 1	< 20	< 10	220	57	2

CHEM#	CHANNEL	Со	Ni	Cu	Zn	Ga	Ge
416216	CBC-10-14	< 1	< 20	< 10	310	53	3
416217	CBC-10-14	< 1	< 20	< 10	260	54	3
416218	CBC-10-14	< 1	< 20	< 10	290	54	3
416219	CBC-10-14	< 1	< 20	< 10	280	56	3
416220	CBC-10-14	< 1	< 20	< 10	380	55	4
416221	CBC-10-14	< 1	< 20	< 10	370	59	4
416222	CBC-10-14	1	< 20	< 10	280	53	4
416223	CBC-10-14	1	< 20	10	320	53	5
416224	CBC-10-14	1	< 20	< 10	280	58	4
416225	CBC-10-14	2	< 20	10	360	63	4
416226	CBC-10-15	2	< 20	10	230	37	4
416227	CBC-10-15	2	< 20	10	240	37	4
416228	CBC-10-15	2	< 20	< 10	230	37	4
416229	CBC-10-15	2	< 20	10	240	38	4
416230	CBC-10-15	2	< 20	10	230	38	4
416231	CBC-10-15	2	< 20	10	240	38	4
416232	CBC-10-15	1	< 20	< 10	250	43	4
416233	CBC-10-15	1	< 20	< 10	400	67	6
416234	CBC-10-15	1	< 20	< 10	270	44	4
416235	CBC-10-15	1	< 20	< 10	330	49	4
416236	CBC-10-15	1	< 20	10	300	43	4
416237	CBC-10-15	1	< 20	< 10	240	41	4
416238	CBC-10-15	2	< 20	< 10	440	39	5
416239	CBC-10-15	1	< 20	< 10	260	39	4
416240	CBC-10-15	2	< 20	< 10	260	38	4
416241	CBC-10-15	1	< 20	< 10	260	39	4
416242	CBC-10-15	1	< 20	< 10	240	38	4
416243	CBC-10-15	1	< 20	< 10	300	39	4
416244	CBC-10-16	< 1	< 20	< 10	200	61	4
416245	CBC-10-16	1	< 20	< 10	340	60	4
416246	CBC-10-16	2	< 20	< 10	850	45	5
416247	CBC-10-16	2	< 20	< 10	1150	40	7
416248	CBC-10-16	1	< 20	50	610	51	6
416249	CBC-10-16	1	< 20	< 10	540	59	5
416250	CBC-10-16	1	< 20	< 10	250	49	4
416251	CBC-10-16	1	< 20	< 10	270	60	4
416252	CBC-10-16	2	< 20	< 10	730	42	6
416253	CBC-10-16	1	< 20	< 10	290	48	4
416254	CBC-10-16	1	< 20	< 10	480	36	5
416255	CBC-10-16	1	< 20	< 10	540	44	5
416256	CBC-10-16	1	< 20	< 10	500	45	6
416257	CBC-10-16	1	< 20	< 10	440		5
416258	CBC-10-16	1	< 20	< 10	420		5
416259	CBC-10-16	1	< 20	< 10	320	57	5
416260	CBC-10-16	1	< 20	< 10	360	54	5
416261	CBC-10-16	1	< 20	< 10	310	55	5

CHEM#	CHANNEL	Co	Ni	Cu	Zn	Ga	Ge
416262	CBC-10-16	2	< 20	< 10	340	39	5
416263	CBC-10-18a	1	< 20	< 10	450	92	6
416264	CBC-10-18a	1	< 20	< 10	640	82	5
416265	CBC-10-18a	2	< 20	< 10	730	59	4
416266	CBC-10-18a	1	< 20	< 10	1340	74	9
416267	CBC-10-18a	2	< 20	< 10	550	67	5
416268	CBC-10-18a	2	< 20	< 10	700	60	5
416269	CBC-10-18a	2	< 20	< 10	710	61	4
416270	CBC-10-18a	2	< 20	< 10	630	58	4
416271	CBC-10-18a	2	< 20	< 10	700	54	4
416272	CBC-10-18a	2	< 20	< 10	700	52	5
416273	CBC-10-18a	2	< 20	< 10	580	61	5
416274	CBC-10-18a	2	< 20	< 10	710	61	5
416275	CBC-10-18a	2	< 20	< 10	590	64	4
416276	CBC-10-18a	2	< 20	< 10	790	55	5
416277	CBC-10-18b	1	< 20	< 10	720	70	6
416278	CBC-10-18b	1	< 20	< 10	1880	86	11
416279	CBC-10-18b	< 1	< 20	10	1700	89	12
416280	CBC-10-18b	2	< 20	< 10	630	59	5
416782	MBC-10-01	4	< 20	< 10	320	39	3
416783	MBC-10-01	2	< 20	< 10	420	37	4
416784	MBC-10-01	2	< 20	< 10	360	42	4
416785	MBC-10-01	< 1	< 20	10	410	51	4
416786	MBC-10-01	< 1	< 20	< 10	420	54	4
416787	MBC-10-01	< 1	< 20	< 10	280	49	3
416788	MBC-10-01	< 1	< 20	< 10	360	59	4
416789	MBC-10-01	< 1	< 20	< 10	80	89	4
416790	MBC-10-01	< 1	< 20	< 10	410	53	5
416791	MBC-10-01	1	< 20	< 10	430	52	5
416792	MBC-10-01	1	< 20	20	950	49	5
416793	MBC-10-01	< 1	< 20	< 10	400	54	5
416794	MBC-10-01	< 1	< 20	< 10	340	60	4
416795	MBC-10-01	1	< 20	70	380	52	4
416796	MBC-10-01	1	< 20	< 10	280	45	4
416797	MBC-10-01	2	< 20	10	300	45	4
416798	MBC-10-01	2	< 20	< 10	300	38	4
423637	CBC-10-01	3	< 20	10	410	40	4
423638	CBC-10-01	2	< 20	< 10	340	49	
423639	CBC-10-01	1	< 20	< 10	330	50	3
423640	CBC-10-01	1	< 20	< 10	300	47	3
423641	CBC-10-01	1	< 20	< 10	290	50	3
423642	CBC-10-01	1	< 20	< 10	260	62	3
423643	CBC-10-01	1	< 20	10	290	59	
423644	CBC-10-01	< 1	< 20	< 10	250	48	
423645	CBC-10-01	< 1	< 20	< 10	250	49	
423646	CBC-10-01	1	< 20	10	250	48	3

CHEM#	CHANNEL	Со	Ni	Cu	Zn	Ga	Ge
423647	CBC-10-01	1	< 20	< 10	220	47	3
423648	CBC-10-01	1	< 20	< 10	210	46	3
423649	CBC-10-01	1	< 20	< 10	200	46	3
423666	CBC-10-02	< 1	< 20	< 10	300	54	3
423667	CBC-10-02	1	< 20	20	300	56	3
423668	CBC-10-02	< 1	< 20	< 10	390	53	3
423669	CBC-10-02	< 1	< 20	< 10	250	55	3
423670	CBC-10-02	< 1	< 20	< 10	250	57	3
423671	CBC-10-02	1	< 20	10	310	54	3
423672	CBC-10-02	1	< 20	< 10	340	55	3
423673	CBC-10-02	< 1	< 20	10	330	56	3
423674	CBC-10-02	1	< 20	< 10	320	59	3
423675	CBC-10-02	1	< 20	< 10	490	50	4
423676	CBC-10-02	1	< 20	10	450	55	3
423677	CBC-10-02	1	< 20	< 10	440	53	3
423678	CBC-10-02	3	< 20	20	540	47	4
423679	CBC-10-03	2	< 20	< 10	530	46	3
423680	CBC-10-03	2	< 20	< 10	580	43	3
423681	CBC-10-03	1	< 20	< 10	450	33	3
423682	CBC-10-03	1	< 20	< 10	320	32	2
423683	CBC-10-03	1	< 20	130	350	34	2
423684	CBC-10-03	1	< 20	< 10	440	37	3
423685	CBC-10-03	1	< 20	< 10	460	48	3
423686	CBC-10-03	< 1	< 20	< 10	380	39	2
423687	CBC-10-03	< 1	< 20	< 10	420	51	3
423688	CBC-10-03	< 1	< 20	< 10	490	44	3
423689	CBC-10-03	< 1	< 20	< 10	580	57	3
423690	CBC-10-03	< 1	< 20	< 10	480	49	3
423691	CBC-10-03	< 1	< 20	< 10	510	50	3
423692	CBC-10-03	< 1	< 20	< 10	380	48	3
423693	CBC-10-03	< 1	< 20	< 10	710	60	3
423694	CBC-10-03	< 1	< 20	< 10	650	43	3
423695	CBC-10-03	< 1	< 20	< 10	320	41	3
423708	CBC-10-04	2	< 20	10	430	59	4
423709	CBC-10-04	2	< 20	< 10	410	60	4
423710	CBC-10-04	1	< 20	< 10	490	57	4
423711	CBC-10-04	< 1	< 20	< 10	530	60	4
423712	CBC-10-04	2	< 20	10	720	55	4
423713	CBC-10-04	1	< 20	10	460	63	4
423714	CBC-10-04	1	< 20	< 10	520		4
423715	CBC-10-04	1	< 20	< 10	500	56	4
423716	CBC-10-04	< 1	< 20	< 10	410		4
423717	CBC-10-04	1	< 20	< 10	560		4
423718	CBC-10-04	< 1	< 20	< 10	440		4
423719	CBC-10-04	< 1	< 20	< 10	560		4
423720	CBC-10-04	2	< 20	< 10	660	53	4

CHEM #	CHANNEL	Со	Ni	Cu	Zn	Ga	Ge
423721	CBC-10-05	1	< 20	< 10	440	52	4
423722	CBC-10-05	1	< 20	10	430	43	4
423723	CBC-10-05	1	< 20	10	440	56	3
423724	CBC-10-05	1	< 20	< 10	430	59	4
423725	CBC-10-05	< 1	< 20	< 10	420	59	4
423726	CBC-10-05	< 1	< 20	< 10	390	54	4
423727	CBC-10-05	< 1	< 20	< 10	350	47	4
423728	CBC-10-05	1	< 20	< 10	530	53	4
423729	CBC-10-05	< 1	< 20	< 10	440	52	4
423730	CBC-10-05	1	< 20	< 10	330	51	4
423731	CBC-10-05	1	< 20	10	340	46	4
423732	CBC-10-05	2	< 20	30	800	44	4
423733	CBC-10-05	< 1	< 20	< 10	410	62	3
423734	CBC-10-05	< 1	< 20	10	440	50	4
423735	CBC-10-05	< 1	< 20	< 10	330	42	4
423736	CBC-10-05	< 1	< 20	< 10	290	51	4
423737	CBC-10-05	< 1	< 20	< 10	300	44	4
423738	CBC-10-05	< 1	< 20	10	310	52	4
423739	CBC-10-05	1	< 20	10	300	54	4
423740	CBC-10-05	< 1	< 20	< 10	310	57	3
423746	CBC-10-11b	< 1	< 20	< 10	290	55	4
423747	CBC-10-11b	1	< 20	< 10	270	47	3
423748	CBC-10-11b	2	< 20	< 10	300	39	3
423749	CBC-10-11b	< 1	< 20	< 10	420	57	3
423750	CBC-10-11b	1	< 20	10	380	47	4
474120	MBC-11-02	1	< 20	< 10	360	54	5
474121	MBC-11-02	1	< 20	< 10	350	59	5
474122	MBC-11-02	1	< 20	< 10	440	56	5
474123	MBC-11-02	1	< 20	< 10	410	55	5
474124	MBC-11-02	1	< 20	< 10	410	55	5
474125	MBC-11-02	1	< 20	< 10	350	54	5
474126	MBC-11-02	1	< 20	< 10	540	53	6
474127	MBC-11-02		< 20	< 10	590	59	
474128	MBC-11-03	1	< 20	< 10	360	53	5
474129	MBC-11-03	1	< 20	< 10	260	46	8
474130	MBC-11-03	1	< 20	< 10	300	48	6
474131	MBC-11-03	1	< 20	< 10	260	45	6
474132	MBC-11-03		< 20	< 10	330	56	5
474133	MBC-11-03	1	< 20	< 10	250	50	5
474134	MBC-11-03	1	< 20	< 10	210	42	6
474135	MBC-11-04	2	< 20	< 10	610	51	5
474136	MBC-11-04	1	< 20	< 10	530	56	4
474137	MBC-11-04	2	< 20	< 10	540	53	5
474138	MBC-11-04	1	< 20	< 10	720	60	5
474139	MBC-11-04	1	< 20	< 10	500	57	5
474140	MBC-11-04	1	< 20	< 10	340	45	5

CHEM #	CHANNEL	Со		Ni	Cu	Zn	Ga	Ge
474141	MBC-11-04	1	< 20	< 10	\neg	390	47	5
474142	MBC-11-04	1	< 20	< 10		290	41	5
474143	MBC-11-04	1	< 20	< 10		360	53	6
474144	MBC-11-02B	1	< 20	< 10		470	51	4
474145	MBC-11-02B	1	< 20	< 10		290	42	3
474146	MBC-11-02B	1	< 20	< 10		130	39	< 1
474147	MBC-11-02B	2	< 20		10	740	58	4
474148	MBC-11-02B	1	< 20	< 10		560	80	3
474149	MBC-11-05	< 1	< 20	< 10		270	66	3
474150	MBC-11-05	1	< 20	< 10		340	51	4
474151	MBC-11-05	1	< 20	< 10		410	56	3
474152	MBC-11-05	2	< 20	< 10		370	48	4
474153	MBC-11-05	2	< 20	< 10		320	38	4
474154	MBC-11-05	2	< 20		10	330	39	4
474155	MBC-11-05	2	< 20		10	450	43	4
474156	MBC-11-06	1	< 20	< 10		280	43	3
474157	MBC-11-06	2	< 20	< 10		510	44	4
474158	MBC-11-06	1	< 20	< 10		450	55	3
474159	MBC-11-06	1	< 20	< 10		560	49	3
474160	MBC-11-06	2	< 20	< 10		510	53	3
474161	MBC-11-06	1	< 20	< 10		600	50	4
474162	MBC-11-06	1	< 20	< 10		530	53	3
474163	MBC-11-06	1	< 20	< 10		430	56	3
474164	MBC-11-09	1	< 20	< 10		300	46	3
474165	MBC-11-09	1	< 20	< 10		310	46	4
474166	MBC-11-09	< 1	< 20	< 10		260	48	4
474167	MBC-11-10B	1	< 20	< 10		520	54	3
474168	MBC-11-10B	< 1		30	10	590	69	5
474169	MBC-11-10B	< 1	< 20	< 10		660	61	3
474170	MBC-11-10B	< 1	< 20	< 10		560	55	3
474171	MBC-11-10A	< 1	< 20	< 10		350	53	3
474172	MBC-11-10A	< 1	< 20	< 10		350	59	3
474173	MBC-11-10A	< 1	< 20	< 10		330	54	3
474174	MBC-11-10A		< 20	< 10		590	57	3
474175	MBC-11-01		< 20	< 10		900	45	4
474176	MBC-11-01		< 20	< 10		1730	59	5
474177	MBC-11-01		< 20		10	1260	58	5
474178	MBC-11-01		< 20		10	1170	68	5
474179	MBC-11-01		< 20	< 10		1080	51	4
474180	MBC-11-01	7		< 10		1540	58	5
474181	MBC-11-01		< 20	< 10		790	50	4
474182	MBC-11-01		< 20		50	1280	71	8
474183	MBC-11-01		< 20	< 10		1440	63	5
474184	MBC-11-01		< 20	< 10		790	70	6
474185	MBC-11-01		< 20	< 10		1460	60	5
474186	MBC-11-01	3	< 20	< 10		730	76	4

CHEM #	CHANNEL	Со	Ni	Cı	ı Zn	Ga	Ge
474187	MBC-11-01	5	< 20	< 10	1550	57	4
474188	MBC-11-08	6	< 20	< 10	1160	61	6
474189	MBC-11-08	6	< 20	< 10	910	46	7
474190	MBC-11-08	4	< 20	< 10	720	44	4
474191	MBC-11-08	3	< 20	< 10	790	66	3
474192	MBC-11-08	2	< 20	< 10	920	64	5
474193	CBC-11-01	1	< 20	< 10	580	63	3
474194	CBC-11-01	1	< 20	< 10	640	67	3
474195	CBC-11-01	1	< 20	< 10	520	61	3
474196	CBC-11-01	< 1	< 20	< 10	280	60	2
474197	CBC-11-01	< 1	< 20	< 10	300	62	2
474198	CBC-11-01	< 1	< 20	< 10	290	60	3
474199	CBC-11-01	2	< 20	< 10	300	34	3
474200	CBC-11-01	2	< 20	< 10	300	42	4
474201	CBC-11-02	< 1	< 20	< 10	400	65	3
474202	CBC-11-02	3	< 20	< 10	1410	39	6
474203	CBC-11-02	1	< 20	< 10	890	53	4
474204	CBC-11-02	< 1	< 20	< 10	480	74	4
474205	CBC-11-02	2	< 20	< 10	1150	41	5
474206	CBC-11-02	< 1	< 20	< 10	230	58	4
474207	CBC-11-03	< 1	< 20	< 10	560	72	4
474208	CBC-11-03	< 1	< 20	< 10	500	70	4
474209	CBC-11-03	< 1	< 20	20	540	70	4
474210	CBC-11-09	2	< 20	< 10	670	59	5
474211	CBC-11-09	< 1	< 20	< 10	210	78	3
474212	CBC-11-09	< 1	< 20	< 10	310	70	3
474213	CBC-11-09	< 1	< 20	< 10	340	55	3
474214	CBC-11-09	< 1	30	< 10	280	73	3
474215	CBC-11-09	< 1	< 20	< 10	330	58	4
474216	CBC-11-09	< 1	< 20	< 10	310	57	4
474217	CBC-11-05	< 1	< 20	< 10	250	48	3
474218	CBC-11-05	1	< 20	< 10	380	52	4
474219	CBC-11-05	1	< 20	< 10	270	54	4
474220	CBC-11-05	< 1	< 20	< 10	400	68	2
474221	CBC-11-05	1	< 20	10	610	59	4
474222	CBC-11-05	< 1	< 20	< 10	240		
474223	CBC-11-07a		< 20	20	660	55	4
474224	CBC-11-07a	1	< 20	10	540	56	
474225	CBC-11-07a	4	< 20	< 10	910	59	
474226	CBC-11-07a		< 20	20		51	
474227	CBC-11-07a		< 20	20		51	3
474228	CBC-11-07a		< 20	20		55	
474229	CBC-11-07a		< 20	10		57	3
474230	CBC-11-07b		< 20	10		50	
474231	CBC-11-07b		< 20	< 10	620	51	3
474232	CBC-11-06	1	< 20	< 10	900	58	3

CHEM#	CHANNEL	Со	Ni	Cu	Zn	Ga	Ge
474233	CBC-11-06	1	< 20	< 10	980	56	2
474234	CBC-11-06	1	< 20	< 10	810	62	3
474235	CBC-11-06	< 1	< 20	< 10	500	67	3
474236	CBC-11-06	< 1	< 20	< 10	1170	77	7
474237	CBC-11-06	< 1	< 20	< 10	1260	81	8
474238	CBC-11-06	< 1	< 20	< 10	860	74	4
474239	CBC-11-06	< 1	< 20	< 10	540	72	4
474240	CBC-11-06	2	< 20	< 10	1080	59	6
474241	CBC-11-06	< 1	< 20	< 10	430	64	3
474242	CBC-11-10	1	< 20	< 10	530	59	4
474243	CBC-11-10	< 1	< 20	< 10	490	52	4
474244	CBC-11-10	< 1	< 20	< 10	330	54	4
474245	CBC-11-10	1	< 20	< 10	300	42	4
474246	CBC-11-10	< 1	< 20	< 10	270	50	6
474247	CBC-11-04	1	< 20	< 10	270	47	4
474248	CBC-11-04	1	< 20	10	250	44	4
474249	CBC-11-04	1	< 20	< 10	250	44	5
474250	CBC-11-04	1	< 20	< 10	230	44	4
474251	CBC-11-04	1	< 20	< 10	220	45	3
474252	CBC-11-04	< 1	< 20	< 10	530	64	3
474253	CBC-11-04	< 1	< 20	< 10	650	72	4
474254	CBC-11-04	1	< 20	< 10	450	57	4
474255	CBC-11-04	1	< 20	< 10	300	73	5
474256	CBC-11-04	< 1	< 20	< 10	430	74	5
474257	CBC-11-04	1	< 20	< 10	470	59	4
474258	CBC-11-04	< 1	< 20	< 10	420	83	4
474259	CBC-11-04	< 1	< 20	< 10	390	63	4
474260	CBC-11-04	< 1	< 20	< 10	940	80	4
474261	CBC-11-04	2	< 20	< 10	780	50	5
474262	CBC-11-04	< 1	< 20	< 10	910	79	5
474263	CBC-11-04	< 1	< 20	< 10	380	48	4
474264	CBC-11-08	1	< 20	< 10	250	65	2
474265	CBC-11-08	< 1	< 20	< 10	520	51	3
474266	CBC-11-08	1	< 20	< 10	600	53	4
474267	CBC-11-08	< 1	< 20	< 10	310	58	4
474268	CBC-11-11	1	< 20	10	450	53	4
474269	CBC-11-11	2	< 20	< 10	470	50	4
474270	CBC-11-11	1	< 20	< 10	330	53	3
474271	CBC-11-11	1	< 20	< 10	360	53	4
474272	CBC-11-11	1	< 20	< 10	330	50	4
474273	CBC-11-09b		< 20	10		48	4
474274	CBC-11-09b	1	< 20	10		50	4
474275	CBC-11-09b	2		10		49	3
474276	CBC-11-09b	1	< 20	10	410	58	4
474277	CBC-11-09b	1	< 20	10	330	48	4
474278	CBC-11-09b	1	< 20	< 10	380	51	4

CHEM#	CHANNEL	Со	Ni		Cu	Zn	Ga	Ge
474279	CBC-11-09b	1	< 20	< 10		420	49	4
474280	CBC-11-09b	1	< 20		20	490	52	4
474281	SZC-11-04	5	< 20	< 10		390	37	4
474282	SZC-11-04	4	< 20		20	420	37	4
474283	SZC-11-04	2	< 20	< 10		820	58	5
474284	SZC-11-04	3	< 20		20	450	46	4
474285	SZC-11-04	2	< 20		10	480	48	4
474286	SZC-11-04	2	< 20		10	420	39	5
474287	SZC-11-04	2	< 20		20	390	45	4
474288	SZC-11-15a	2	< 20		10	470	39	4
474289	SZC-11-15a	1	< 20	< 10		440	39	3
474290	SZC-11-15a	2	< 20		10	380	34	4
474291	SZC-11-15b	2	< 20	< 10		370	35	4
474292	SZC-11-15b	1	< 20	< 10		900	42	3
474293	SZC-11-15b	2	< 20	< 10		370	36	4
474294	SZC-11-15c	2	< 20		10	420	36	4
474295	SZC-11-15c	2	< 20	< 10		540	37	3
474296	SZC-11-15c	2	< 20	< 10		600	38	4
474297	SZC-11-05	1	< 20		10	440	44	4
474298	SZC-11-05	< 1	< 20		10	370	45	4
474299	SZC-11-05	1	< 20	< 10		360	36	3
474300	SZC-11-05	1	< 20		10	360	38	3
474301	SZC-11-05	1	< 20		10	370	43	4
474302	SZC-11-05	2	< 20		10	360	42	4
474303	SZC-11-09	3	< 20		20	720	59	4
474304	SZC-11-09	2	< 20		10	400	45	4
474305	SZC-11-09	2	< 20		10	360	41	5
474306	SZC-11-09	2	< 20		10	300	40	5
474307	SZC-11-09	2	< 20		10	270	40	4
474308	SZC-11-09	2	< 20		10	340	44	4
474309	SZC-11-09	2	< 20		10	320	41	4
474310	SZC-11-09	2	< 20		10	360	43	4
474311	SZC-11-09	2	_		10	300	43	4
474312	SZC-11-09	2	< 20		10	330	45	4
474313	SZC-11-09	2	< 20		10	260		4
474314	SZC-11-09	2	< 20		10	290		4
474315	SZC-11-09		< 20		10	350	41	4
474316	SZC-11-02b		< 20	< 10		990		5
474317	SZC-11-02b	10	< 20	< 10		970	55	5
474318	SZC-11-02b	2	< 20	< 10		730		8
474319	SZC-11-02b		< 20		10	550	67	3
474320	SZC-11-02b		< 20	< 10		410		4
474321	SZC-11-03a		< 20	< 10		1170		5
474322	SZC-11-03a		< 20		20	1130	62	4
474323	SZC-11-03a	3			50	1030		4
474324	SZC-11-03a	9	< 20	< 10		1150	52	5

CHEM#	CHANNEL	Со	Ni		Cu	Zn	Ga	Ge
474325	SZC-11-03a	1	< 20	< 10		630	98	8
474326	SZC-11-03b	2	< 20	< 10		560	52	4
474327	SZC-11-03b	2	< 20	< 10		450	50	4
474328	SZC-11-03b	2	< 20		10	560	56	3
474329	SZC-11-03b	2	< 20	< 10		530	38	4
474330	SZC-11-06	2	< 20		10	330	35	4
474331	SZC-11-06	3	< 20		10	320	34	4
474332	SZC-11-06	3	< 20		10	320	34	4
474333	SZC-11-06	3	< 20		10	330	33	4
474334	SZC-11-06	3	< 20		10	310	35	4
474335	SZC-11-06	3	< 20		10	360	36	4
474336	SZC-11-06	3	< 20		10	310	35	4
474337	SZC-11-07	2	< 20	< 10		470	45	3
474338	SZC-11-07	2	< 20		10	600	51	4
474339	SZC-11-07	4	< 20	< 10		640	58	4
474340	SZC-11-07	3	< 20	< 10		680	54	4
474341	SZC-11-07	2	< 20	< 10		670	53	3
474342	SZC-11-07	3	< 20	< 10		560	48	4
474343	SZC-11-08	2	< 20	< 10		490	43	5
474344	SZC-11-08	3	< 20		20	570	57	5
474345	SZC-11-08	2	< 20	< 10		430	43	4
474346	SZC-11-08	2	< 20	< 10		350	43	4
474347	SZC-11-08	2	< 20		10	350	43	5
474348	SZC-11-10	2	< 20	< 10		350	42	4
474349	SZC-11-10	3	< 20	< 10		460	52	4
474350	SZC-11-10	2	< 20	< 10		540	48	4
474351	SZC-11-10	2	< 20	< 10		500	50	4
474352	SZC-11-10	1	< 20	< 10		820	70	4
474353	SZC-11-10	2	< 20	< 10		610	53	4
474354	SZC-11-10	2	< 20	< 10		460	44	4
474355	SZC-11-10	2	< 20	< 10		300	46	4
474356	SZC-11-10	1		< 10		480	50	4
474357	SZC-11-10	2	_	< 10		470		4
474358	SZC-11-10		< 20	< 10		400	45	4
474359	SZC-11-10		< 20		10	280	44	4
474360	SZC-11-10		< 20		10	270		4
474361	SZC-11-10		< 20	< 10		300	43	4
474362	SZC-11-10		< 20		10	280	44	4
474363	SZC-11-10		< 20	< 10		340		4
474364	SZC-11-10	1	< 20	< 10		320		4
474365	SZC-11-10		< 20	< 10		410		4
474366	SZC-11-10		< 20	< 10		370		4
474367	SZC-11-10	2		< 10		450	49	4
474368	SZC-11-10		< 20	< 10		700	59	3
474369	SZC-11-10	2		< 10		340		4
474370	SZC-11-10	2	< 20		10	380	49	3

CHEM #	CHANNEL	Со	Ni	C	u Zn	Ga	Ge
474371	SZC-11-10	2	< 20	< 10	320	43	4
474372	SZC-11-10	3	< 20	1	0 240	42	4
474373	SZC-11-10	2	< 20	1	0 270	38	4
474374	SZC-11-10	2	< 20	< 10	350	38	4
474375	SZC-11-11	3	< 20	< 10	490	41	4
474376	SZC-11-11	3	< 20	1	0 850	57	4
474377	SZC-11-11	2	< 20	< 10	460	42	3
474378	SZC-11-11	2	< 20	< 10	380	50	4
474379	SZC-11-11	2	< 20	< 10	470	55	3
474380	SZC-11-11	3	< 20	< 10	510	45	4
474381	SZC-11-11	2	< 20	< 10	380	53	3
474382	SZC-11-11	4	< 20	< 10	560	45	3
474383	SZC-11-11	2	< 20	1	0 420	49	4
474384	SZC-11-11	2	< 20	< 10	400	46	4
474385	SZC-11-11	2	< 20	< 10	410	44	4
474386	SZC-11-11	2	< 20	1	0 300	41	5
474387	SZC-11-11	2	< 20	2	0 270	43	4
474388	SZC-11-11	2	< 20	< 10	300	39	4
474389	SZC-11-11	2	< 20	1	0 240	38	4
474390	SZC-11-11	2	< 20	2	0 260	38	5
474391	SZC-11-11	1	< 20	1	0 400	41	5
474392	SZC-11-11	2	< 20	1	0 220	38	4
474393	SZC-11-11	2	< 20	1	0 320	42	4
474394	SZC-11-11	2	< 20	1	0 250	39	4
474395	SZC-11-11	1	< 20	1	0 240	38	4
474396	SZC-11-11	1	< 20	2	0 400	38	4
474397	SZC-11-11	1	< 20	2	0 260	39	4
474398	SZC-11-11	2	< 20	1	0 280	41	4
474399	SZC-11-11	1	< 20	1	0 250	39	4
474400	SZC-11-11	2	< 20	1	0 320	44	4
474401	SZC-11-11	1	< 20	1	0 330	46	4
474402	SZC-11-12	3	< 20	1	0 280	34	4
474403	SZC-11-12	2	< 20	< 10	340	37	4
474404	SZC-11-12		< 20	< 10	530	37	4
474405	SZC-11-12		< 20	1	0 310	35	4
474406	SZC-11-12	2	< 20	1	0 270	33	
474407	SZC-11-12	2	< 20	1	0 270	33	
474408	SZC-11-12	2	< 20	1	0 310		
474409	SZC-11-02a	13	20	1	0 220	25	
474410	SZC-11-02a		< 20	3	0 410	44	
474411	SZC-11-02a		< 20	2	0 580	41	3
474412	SZC-11-02a		< 20	< 10	380		
474413	SZC-11-02a		< 20	< 10	760		6
474414	SZC-11-02a		< 20		0 760		4
474415	SZC-11-02a	6	< 20	< 10	1210	59	
474416	SZC-11-02a	4	< 20	1	0 1020	80	5

CHEM #	CHANNEL	Co	Ni	Cu	Zn	Ga	Ge
474417	SZC-11-02a	5	< 20	< 10	1330	71	4
474418	SZC-11-02a	4	< 20	< 10	920	74	5
474419	SZC-11-02a	11	< 20	< 10	670	44	3
474420	MRC-11-04	< 1	< 20	< 10	1400	83	7
474421	MRC-11-04	3	< 20	< 10	1550	64	5
474422	MRC-11-04	1	< 20	< 10	2050	75	6
474423	MRC-11-04	< 1	< 20	< 10	1560	79	5
474424	MRC-11-04	6	< 20	10	1550	54	4
474425	MRC-11-04	1	< 20	< 10	1740	69	5
474426	MRC-11-04	2	< 20	< 10	1580	64	6
474427	MRC-11-04	2	< 20	< 10	1260	57	4
474428	MRC-11-04	3	< 20	< 10	2000	70	5
474429	MRC-11-04	< 1	< 20	< 10	1700	83	6
474430	MRC-11-04	< 1	< 20	< 10	1260	87	6
474431	SZC-11-16	< 1	< 20	< 10	630	52	4
474432	SZC-11-16	< 1	< 20	< 10	610	49	4
474433	SZC-11-16	< 1	< 20	< 10	950	45	4
474434	SZC-11-16	< 1	< 20	< 10	910	56	4
474435	SZC-11-16	< 1	< 20	< 10	740	56	4
474436	SZC-11-16	< 1	< 20	< 10	930	57	4
474437	SZC-11-16	2	< 20	< 10	910	54	4
474438	SZC-11-16	3	< 20	< 10	1720	53	6
474439	SZC-11-16	< 1	< 20	< 10	950	67	4
474440	SZC-11-16	< 1	< 20	< 10	890	78	4
474441	SZC-11-16	1	< 20	< 10	1050	77	4
474442	SZC-11-16	< 1	< 20	< 10	670	40	3
474443	SZC-11-16	< 1	< 20	< 10	1860	67	5
474444	SZC-11-16	< 1	< 20	< 10	2480	57	5
474445	SZC-11-16	< 1	< 20	< 10	1480	58	4
474446	SZC-11-16	< 1	< 20	< 10	340	43	3
474447	SZC-11-16	< 1	< 20	< 10	910	75	4
474448	SZC-11-16	< 1	< 20	< 10	760	70	4
474449	SZC-11-16	< 1	< 20	< 10	970	70	
474450	SZC-11-16	< 1	< 20	< 10	970	73	5
474451	MRC-11-03	1	< 20	< 10	1580	92	9
474452	MRC-11-03	1	< 20	< 10	1410	88	7
474453	MRC-11-03	< 1	< 20	< 10	1600	84	7
474454	MRC-11-03	< 1	< 20	< 10	1840	84	6
474455	MRC-11-03	< 1	< 20	< 10	1210	78	5
474456	MRC-11-03	1	< 20	20	1260	74	6
474457	MRC-11-03	< 1	< 20	< 10	1350	88	7
474458	MRC-11-03	< 1	< 20	< 10	1700	90	8
474459	MRC-11-03	< 1	< 20	20	1510	93	8
474460	MRC-11-03	< 1	< 20	< 10	1780	82	6
474461	MRC-11-05	< 1	< 20	< 10	2240	89	9
474462	MRC-11-05	2	< 20	< 10	1410	79	6

CHEM#	CHANNEL	Со	Ni		Cu	Zn	Ga	Ge
474463	MRC-11-05	2	< 20	< 10		1850	80	9
474464	MRC-11-05	1	< 20	< 10		1610	86	7
474465	MRC-11-05	2	< 20	< 10		1680	86	7
474466	MRC-11-05	< 1	< 20	< 10		1390	93	7
474467	MRC-11-05	< 1	< 20	< 10		1480	90	7
474468	MRC-11-05	4	< 20	< 10		1660	67	5
474469	MRC-11-05	< 1	< 20	< 10		1610	82	7
474470	MRC-11-05	1	< 20	< 10		1520	88	6
474471	MRC-11-05	< 1	< 20	< 10		1900	91	9
474472	MRC-11-02	1	< 20	< 10		1970	87	8
474473	MRC-11-02	4	< 20	< 10		1040	62	6
474474	MRC-11-02	5	< 20	< 10		1030	54	5
474475	MRC-11-02	3	< 20	< 10		640	59	4
474476	MRC-11-02	3	< 20	< 10		820	57	4
474477	MRC-11-02	6	< 20	< 10		1370	61	6
474478	MRC-11-02	4	< 20	:	LO :	1840	67	7
474479	BRC-11-06	1	< 20	:	LO	480	59	4
474480	BRC-11-06	1	< 20	< 10		440	62	4
474481	BRC-11-06	< 1	< 20	< 10		420	58	3
474482	BRC-11-06	< 1	< 20	:	LO	570	65	3
474483	BRC-11-06	< 1	< 20		20	400	66	2
474484	BRC-11-06	1	< 20	:	LO	370	56	4
474485	BRC-11-06	< 1	< 20	< 10		400	67	4
474486	MRC-11-01	1	< 20		LO	560	52	5
474487	MRC-11-01	2	< 20		LO	810	62	5
474488	MRC-11-01	2	< 20	< 10		2380	63	5
474489	MRC-11-01	3	< 20	< 10		1140	69	6
474499	BRC-11-02a	< 1	< 20	< 10		580	68	3
474500	BRC-11-02a	1	< 20	< 10		190	115	9
474501	BRC-11-02b	1	< 20	< 10		680	99	6
474502	BRC-11-02b	< 1	< 20	< 10		630	105	7
474503	BRC-11-02b	< 1	< 20	< 10		320	66	3
474504	BRC-11-05	3	< 20		30	570	81	4
474505	BRC-11-05	< 1	< 20	< 10		320	107	
474506	BRC-11-05	1	< 20		20	560	89	7
474507	BRC-11-05	< 1	< 20	< 10		270	91	4
474508	BRC-11-05	< 1	< 20		LO	350	88	5
474509	BRC-11-05	< 1	< 20	< 10		170	81	4
474510	BRC-11-01	< 1	< 20	< 10		760	85	4
474511	BRC-11-01	< 1	< 20	< 10		150	53	< 1
474512	BRC-11-01	2	< 20	< 10		640	51	
474513	BRC-11-01		< 20	< 10		790	60	
474514	BRC-11-01		< 20	< 10		900	65	
474515	BRC-11-01	1	< 20	:	LO	950	84	
474516	BRC-11-01	< 1	< 20		50	910	98	
474517	BRC-11-01	< 1	< 20	< 10		640	94	5

CHEM #	CHANNEL	Co	Ni		Cu	Zn	Ga	Ge
474518	BRC-11-01	< 1	< 20	< 10		480	86	5
474519	BRC-11-01	1	< 20	< 10		610	68	4
474520	BRC-11-01	2	< 20	< 10		590	43	4
474521	BRC-11-03a	2	< 20		20	380	56	5
474522	BRC-11-03a	2	< 20	< 10		450	51	5
474523	BRC-11-03a	< 1	< 20		10	490	72	4
474524	BRC-11-03a	< 1	< 20		20	260	66	3
474525	BRC-11-03a	< 1	< 20	< 10		320	99	5
474526	BRC-11-03b	< 1	< 20	< 10		870	92	6
474527	BRC-11-03b	< 1	< 20	< 10		1260	82	7
474528	BRC-11-03b	< 1	< 20	< 10		1540	91	8
474529	BRC-11-03b	< 1	< 20	< 10		780	90	6
474530	BRC-11-03b	< 1	< 20	< 10		550	59	6
474531	BRC-11-03b	< 1	< 20	< 10		600	77	6
474611	MRC-11-06	< 1	< 20	< 10		1480	82	4
474612	MRC-11-06	< 1	< 20	< 10		1670	85	4
474613	MRC-11-06	< 1	< 20	< 10		1640	67	4
474614	MRC-11-06	< 1	< 20	< 10		1830	77	3
474615	MRC-11-06	< 1	< 20	< 10		1750	70	4
474616	MRC-11-06	< 1	< 20	< 10		1800	74	5
474617	MRC-11-06	< 1	< 20	< 10		1530	74	4
474618	MRC-11-06	< 1	< 20	< 10		1400	94	3
474619	MRC-11-06	< 1	< 20	< 10		1360	73	3
474620	MRC-11-06	< 1	< 20	< 10		1520	65	4
474621	MRC-11-06	< 1	< 20	< 10		1640	70	3
474622	MRC-11-06	< 1	< 20	< 10		1200	73	3
474623	MRC-11-06	< 1	< 20	< 10		1370	70	3
474624	MRC-11-06	< 1	< 20	< 10		1610	78	4
474625	MRC-11-06	< 1	< 20	< 10		1110	80	4
474626	MRC-11-06	< 1	< 20	< 10		1270	83	4
4744490	BRC-11-04	8	< 20	< 10		750	47	3
4744491	BRC-11-04		< 20		10	1300	109	9
4744492	BRC-11-04		< 20	< 10		1160	50	
4744493	BRC-11-04		< 20		10	1070	57	6
4744494	BRC-11-04		< 20	< 10		1230	56	5
4744495	BRC-11-04		< 20		10	1060	50	4
4744496	BRC-11-04		< 20	< 10		1140	56	4
4744497	BRC-11-04	5	< 20		10	1020	71	5
4744498	BRC-11-04	12	< 20	< 10		520	37	3
474565	AMC-11-05	< 1	< 20	< 10		1360	61	3
474566	AMC-11-05	< 1	< 20	< 10		350	63	3
474567	AMC-11-05	< 1	< 20	< 10		560	68	2
474568	AMC-11-05	< 1	< 20	< 10		370	64	3
474569	AMC-11-05	1	< 20	< 10		470	60	3
474570	AMC-11-05	1	< 20	< 10		440	63	3
474571	AMC-11-01	< 1	< 20	< 10		240	51	3

CHEM #	CHANNEL	Co	Ni	Cu	Zn	Ga	Ge
474572	AMC-11-01	1	< 20	< 10	240	51	2
474573	AMC-11-01	< 1	< 20	10	250	50	2
474574	AMC-11-01	< 1	< 20	< 10	280	51	3
474575	AMC-11-01	1	< 20	< 10	290	53	3
474576	AMC-11-02	< 1	< 20	10	280	52	3
474577	AMC-11-02	< 1	< 20	< 10	310	51	3
474578	AMC-11-02	< 1	< 20	< 10	270	55	2
474593	AMC-11-04	< 1	< 20	< 10	380	50	3
474594	AMC-11-04	< 1	< 20	< 10	400	53	3
474595	AMC-11-04	< 1	< 20	< 10	440	51	2
474596	AMC-11-04	1	< 20	10	560	60	3
474597	AMC-11-04	< 1	< 20	< 10	370	51	3
474598	AMC-11-04	< 1	< 20	< 10	360	50	2
474599	AMC-11-03	< 1	< 20	< 10	290	51	3
474600	AMC-11-03	1	< 20	10	490	58	3
474601	AMC-11-03	< 1	< 20	10	460	55	3
474602	AMC-11-03	< 1	< 20	< 10	460	59	3
474603	AMC-11-03	< 1	< 20	< 10	380	55	2
474604	AMC-11-03	< 1	< 20	< 10	410	60	2
474605	AMC-11-03	< 1	< 20	10	350	54	2
474606	AMC-11-03	< 1	< 20	< 10	300	50	2
474607	AMC-11-03	< 1	< 20	< 10	270	49	2
474608	AMC-11-03	< 1	< 20	< 10	280	46	2
474609	AMC-11-03	< 1	< 20	< 10	290	51	2
474610	AMC-11-03	< 1	< 20	10	320	56	2

CHEM#	CHANNEL	As	Rb	Sr	Υ	Zr	Nb
104201	CBC-10-06a	< 5	147	204	146	976	49
104202	CBC-10-06a	< 5	174	178	135	1021	9
104203	CBC-10-06a	< 5	184	126	318	2798	76
104204	CBC-10-06a	< 5	178	115	308	3393	89
104205	CBC-10-06a	6	222	100	732	8158	189
104206	CBC-10-06a	< 5	209	96	420	3067	93
104207	CBC-10-06a	5	194	108	284	2318	71
104208	CBC-10-06a	< 5	205	70	532	5399	140
104209	CBC-10-06a	< 5	198	51	194	2420	51
104210	CBC-10-06a	< 5	209	63	331	3596	90
104211	CBC-10-06a	< 5	182	54	476	5289	25
104212	CBC-10-06a	< 5	207	61	458	5534	126
104213	CBC-10-06a	< 5	253	53	366	4556	94
104214	CBC-10-06a	< 5	295	41	124	1014	29
104215	CBC-10-06a	< 5	318	19	90	636	19
104216	CBC-10-06a	< 5	249	24	166	693	21
104217	CBC-10-07	< 5	203	51	110	927	40
104218	CBC-10-07	< 5	183	78	130	1048	43
104219	CBC-10-07	< 5	196	80	72	640	30
104220	CBC-10-07	< 5	205	72	197	2324	63
104221	CBC-10-07	< 5	189	52	641	9311	171
104222	CBC-10-07	< 5	205	46	546	7408	130
104223	CBC-10-07	< 5	156	52	673	7817	124
104224	CBC-10-07	< 5	197	50	761	10430	174
104225	CBC-10-07	< 5	212	37	494	6626	125
104226	CBC-10-07	< 5	199	40	220	2844	60
104227	CBC-10-08	< 5	189	40	757	10750	205
104228	CBC-10-08	< 5	190	47	776	11430	254
104229	CBC-10-08	< 5	172	46	447	6492	155
104230	CBC-10-08	8	158	51	657	9468	197
104231	CBC-10-08	5	196	58	770	11930	248
104232	CBC-10-08	< 5	206	41	574	8384	187
104233	CBC-10-08	< 5		41	676	9997	237
104234	CBC-10-08	5	232	38	490	7177	146
104235	CBC-10-08	< 5	221	44	500	7439	148
104236	CBC-10-08	< 5	233				124
104237	CBC-10-08	< 5	232	26	250		85
104238	CBC-10-08	< 5	217	31	492	7398	138
104239	CBC-10-08	< 5	193	37	680		199
104240	CBC-10-08	6	184	43	966		233
104241	CBC-10-08	5	197	43	952	13500	236
104242	CBC-10-08	< 5	196	36	713		209
104243	CBC-10-08	< 5		34	558		172
104244	CBC-10-08	< 5	213	29	421	6251	134
104245	CBC-10-08	< 5	210	31	405	6002	133
104246	CBC-10-08	< 5	201	31	367	5262	121

CHEM#	CHANNEL	As	Rb	Sr	Υ	Zr	Nb
104247	CBC-10-08	< 5	188	29	417	6135	132
104248	CBC-10-08	< 5	199	40	665	9948	193
104249	CBC-10-08	< 5	228	33	503	7359	166
104250	CBC-10-08	< 5	200	36	646	9627	198
104251	CBC-10-08	< 5	208	34	465	6892	164
104252	CBC-10-08	< 5	194	38	593	9486	179
104253	CBC-10-08	< 5	181	38	702	11050	204
104254	CBC-10-09	6	260	40	390	4102	109
104255	CBC-10-09	6	247	41	504	5306	112
104256	CBC-10-09	13	271	35	482	4354	69
104257	CBC-10-09	6	217	49	459	4569	79
104258	CBC-10-09	6	157	186	473	1424	245
104259	CBC-10-09	< 5	167	354	219	535	151
104260	CBC-10-09	< 5	179	384	156	588	88
104261	CBC-10-09	32	115	106	515	3945	77
104262	CBC-10-09	42	190	20	208	1716	49
104263	CBC-10-09	12	309	14	326	2366	20
104264	CBC-10-09	35	251	35	568	4969	63
104265	CBC-10-09	36	316	32	460	4073	58
104266	CBC-10-09	6	371	37	268	3103	63
104267	CBC-10-09	9	390	34	361	4150	72
104268	CBC-10-09	12	374	30	280	2940	88
104269	CBC-10-10	< 5	253	44	386	3933	95
104270	CBC-10-10	< 5	163	50	545	5288	118
104271	CBC-10-10	< 5	291	35	163	1316	53
104272	CBC-10-10	< 5	225	34	145	1166	53
104273	CBC-10-10	< 5	228	36	198	1908	73
104274	CBC-10-10	6	211	41	537	4353	88
104275	CBC-10-10	< 5	269	38	329	3592	81
104276	CBC-10-10	< 5	276	38	277	2782	70
104277	CBC-10-10	< 5	299	45	408	5526	110
104278	CBC-10-10	< 5	135	41	531	5432	101
104279	CBC-10-10	< 5	191	39	528	5379	79
104280	CBC-10-10	< 5	301	38	260	2346	53
104281	CBC-10-10	< 5	244	49	254	1842	62
104282	CBC-10-10	< 5	110	47	664	5721	88
104283	CBC-10-10	8	111	62	723	4618	77
104284	CBC-10-10	24	139	186	1610	5917	94
104285	CBC-10-10	15	154	146	1551	5005	85
104286	CBC-10-10	15	281	81	1626	801	36
104287	CBC-10-10	11	287	66	1237	1184	48
104288	CBC-10-11b	< 5	167	196	176	1152	39
104289	CBC-10-11b	< 5	127	232	205	1710	41
104290	CBC-10-11b	12	222	106	817	8357	102
104291	CBC-10-11b	< 5	186	50	165	1268	47
104292	CBC-10-11b	6	244	40	594	6894	124

CHEM#	CHANNEL	As	Rb	Sr	Υ	Zr	Nb
104293	CBC-10-11b	< 5	250	30	600	4453	96
104294	CBC-10-11b	< 5	249	30	423	3401	75
104295	CBC-10-11b	< 5	236	35	574	3795	83
104296	CBC-10-11b	< 5	224	35	326	3837	69
104297	CBC-10-11b	< 5	217	53	290	3388	64
104298	CBC-10-11b	< 5	209	67	163	1552	51
104299	CBC-10-11b	< 5	106	47	168	1292	75
104300	CBC-10-11b	< 5	108	127	261	1944	44
104326	CBC-10-11b	11	140	99	976	7579	121
104327	CBC-10-11b	< 5	124	139	228	2523	50
104328	CBC-10-11b	< 5	213	30	166	2011	47
104329	CBC-10-11b	< 5	212	38	102	1085	35
104330	CBC-10-11b	< 5	214	31	83	872	31
104331	CBC-10-11b	< 5	209	27	84	943	29
104332	CBC-10-11b	< 5	233	28	284	3743	64
104333	CBC-10-11b	< 5	227	26	311	4050	60
104334	CBC-10-11b	< 5	235	65	464	2577	136
104335	CBC-10-11b	< 5	210	44	365	4573	79
104336	CBC-10-11b	5	276	57	917	11020	149
104337	CBC-10-11b	6	304	44	758	8615	123
104338	CBC-10-11b	6	250	73	854	9830	115
104339	CBC-10-11b	< 5	183	96	128	808	25
104340	CBC-10-11b	15	205	123	1326	15740	184
104341	CBC-10-11b	< 5	160	196	332	3074	37
104342	CBC-10-11b	< 5	266	76	647	5143	65
104343	CBC-10-11b	< 5	171	182	236	1870	39
104344	CBC-10-11b	5	195	96	570	5088	76
104345	CBC-10-11b	7	248	81	790	7427	107
104346	CBC-10-11b	8	258	82	1186	13220	151
104347	CBC-10-11b	5	208	116	622	5927	78
104348	CBC-10-11b	7	217	69	769	6948	137
416155	CBC-10-11a	< 5	150	75	104	862	36
416156	CBC-10-11a	< 5	150	87	99	711	33
416157	CBC-10-11a	23	230	52	619		270
416158	CBC-10-11a	19	228	21	317	727	139
416159	CBC-10-11a	7	199	21	266		132
416160	CBC-10-11a	5	274	17	130	1125	60
416161	CBC-10-11a	5	230	29	169	1661	72
416162	CBC-10-11a	< 5	218	37	138	1158	63
416163	CBC-10-11a	< 5	207	49	112	709	41
416164	CBC-10-11a	6	258	45	250	2777	100
416165	CBC-10-11a	7	305	29	262	2874	103
416166	CBC-10-11a	10	192	11	83	781	54
416167	CBC-10-11a	6	251	25	287	3061	92
416168	CBC-10-11a	14	218	57	1564	1224	65
416169	CBC-10-11a	7	257	34	478	5749	189

CHEM #	CHANNEL	As	Rb	Sr	Υ	Zr	Nb
416170	CBC-10-11a	5	297	33	389	4811	152
416171	CBC-10-12	7	211	65	1013	10850	377
416172	CBC-10-12	7	272	53	751	9204	306
416173	CBC-10-12	6	218	30	307	3765	144
416174	CBC-10-12	6	153	63	176	1084	64
416175	CBC-10-12	14	169	44	852	5145	111
416176	CBC-10-12	6	252	32	183	1495	70
416177	CBC-10-12	14	212	46	1074	2619	85
416178	CBC-10-12	< 5	238	46	190	1391	74
416179	CBC-10-12	6	201	45	126	921	50
416180	CBC-10-12	9	227	32	297	1845	62
416181	CBC-10-12	5	201	28	177	1573	63
416182	CBC-10-12	7	246	34	190	1517	60
416183	CBC-10-12	9	162	61	1114	15180	371
416184	CBC-10-12	< 5	178	57	1376	1670	70
416185	CBC-10-12	< 5	276	31	282	2433	73
416186	CBC-10-12	< 5	246	29	376	4018	120
416187	CBC-10-12	< 5	206	32	274	2222	67
416188	CBC-10-13	< 5	229	51	471	5850	111
416189	CBC-10-13	< 5	216	51	387	4697	102
416190	CBC-10-13	< 5	245	42	124	964	43
416191	CBC-10-13	< 5	253	36	110	939	42
416192	CBC-10-13	< 5	275	37	442	5385	134
416193	CBC-10-13	< 5	220	41	483	5959	144
416194	CBC-10-13	< 5	213	36	101	900	34
416195	CBC-10-13	< 5	196	36	103	1016	36
416196	CBC-10-13	< 5	170	43	125	834	37
416197	CBC-10-13	< 5	156	45	117	868	35
416198	CBC-10-13	< 5	143	41	109	879	36
416199	CBC-10-13	< 5	119	40	105	932	31
416200	CBC-10-13	< 5	141	41	144	1117	46
416201	CBC-10-14	< 5	302	29	224	2728	98
416202	CBC-10-14	< 5	283	16	129	1293	59
416203	CBC-10-14	< 5	237	21	218	2632	103
416204	CBC-10-14	< 5	233	25	112	1125	50
416205	CBC-10-14	< 5	248	31	77	668	34
416206	CBC-10-14	< 5	250	31	84	687	36
416207	CBC-10-14	< 5	210	33	278	3866	106
416208	CBC-10-14	< 5	251	30	171	1707	65
416209	CBC-10-14	< 5	262	31	137	736	46
416210	CBC-10-14	< 5	252	29	138	842	51
416211	CBC-10-14	< 5	246	31	129	1079	44
416212	CBC-10-14	< 5	274	44	482	4848	184
416213	CBC-10-14	< 5	223	22	115	800	42
416214	CBC-10-14	< 5	228	21	109	676	62
416215	CBC-10-14	< 5	272	20	94	403	46

CHEM#	CHANNEL	As	Rb	Sr	Υ	Zr	Nb
416216	CBC-10-14	< 5	234	21	90	420	46
416217	CBC-10-14	< 5	233	21	89	458	41
416218	CBC-10-14	< 5	222	28	180	2031	67
416219	CBC-10-14	< 5	257	22	170	645	51
416220	CBC-10-14	< 5	226	29	285	1215	65
416221	CBC-10-14	< 5	242	33	653	2754	138
416222	CBC-10-14	8	273	47	595	7883	242
416223	CBC-10-14	7	249	47	527	6081	181
416224	CBC-10-14	< 5	254	27	313	3374	120
416225	CBC-10-14	10	276	31	286	2835	105
416226	CBC-10-15	< 5	176	55	113	866	37
416227	CBC-10-15	< 5	163	57	118	880	38
416228	CBC-10-15	5	161	54	109	781	36
416229	CBC-10-15	< 5	142	55	111	779	34
416230	CBC-10-15	5	159	56	141	1068	47
416231	CBC-10-15	5	161	55	131	1061	40
416232	CBC-10-15	< 5	192	50	202	2173	87
416233	CBC-10-15	23	187	57	567	3647	168
416234	CBC-10-15	6	190	47	304	3729	137
416235	CBC-10-15	7	180	51	428	5315	199
416236	CBC-10-15	6	173	55	351	4658	177
416237	CBC-10-15	5	183	51	230	2738	104
416238	CBC-10-15	5	128	68	203	2171	87
416239	CBC-10-15	< 5	173	48	112	896	45
416240	CBC-10-15	5	168	54	117	857	37
416241	CBC-10-15	5	171	53	125	917	41
416242	CBC-10-15	7	172	52	107	761	34
416243	CBC-10-15	7	181	51	109	745	40
416244	CBC-10-16	18	331	51	1134	7043	162
416245	CBC-10-16	21	186	40	662	4203	116
416246	CBC-10-16	9	120	61	212	1492	51
416247	CBC-10-16	8	81	40	127	1016	39
416248	CBC-10-16	15	74	72	1318	10760	213
416249	CBC-10-16	17	33	37	1073		118
416250	CBC-10-16	12	77	30	720	3798	156
416251	CBC-10-16	12	25	24	637	2411	78
416252	CBC-10-16	12	47	52	949	4839	193
416253	CBC-10-16	18	126	48	691	3800	148
416254	CBC-10-16	20	319	70	1262	7408	319
416255	CBC-10-16	14	230	62	828	4954	228
416256	CBC-10-16	18	350	60	942	5148	255
416257	CBC-10-16	12	251	44	510	4489	162
416258	CBC-10-16	8	224	24	232	2241	86
416259	CBC-10-16	8	234	28	204	2189	101
416260	CBC-10-16	8	243	24	199	2066	92
416261	CBC-10-16	9	230	23	135	1267	61

CHEM#	CHANNEL	As	Rb	Sr	Υ	Zr	Nb
416262	CBC-10-16	8	226	40	111	813	39
416263	CBC-10-18a	55	267	70	2181	14060	180
416264	CBC-10-18a	38	274	57	1307	11440	148
416265	CBC-10-18a	11	234	61	588	4808	103
416266	CBC-10-18a	25	193	133	2370	2441	64
416267	CBC-10-18a	46	276	52	980	6292	106
416268	CBC-10-18a	13	218	46	639	6620	138
416269	CBC-10-18a	14	227	44	618	5461	129
416270	CBC-10-18a	7	230	37	535	5280	124
416271	CBC-10-18a	13	232	34	386	3973	101
416272	CBC-10-18a	9	209	35	432	4422	106
416273	CBC-10-18a	8	243	45	718	7423	152
416274	CBC-10-18a	9	231	38	503	4882	136
416275	CBC-10-18a	7	235	39	581	5461	143
416276	CBC-10-18a	9	187	52	556	4273	134
416277	CBC-10-18b	14	195	84	1403	4550	145
416278	CBC-10-18b	28	284	92	2926	706	49
416279	CBC-10-18b	29	197	102	3003	676	47
416280	CBC-10-18b	9	247	34	458	4591	127
416782	MBC-10-01	< 5	197	130	120	930	38
416783	MBC-10-01	< 5	248	79	267	1657	75
416784	MBC-10-01	< 5	176	99	261	2843	87
416785	MBC-10-01	< 5	216	65	655	7586	200
416786	MBC-10-01	< 5	196	57	643	8303	181
416787	MBC-10-01	< 5	224	18	146	1546	53
416788	MBC-10-01	6	183	65	741	8619	249
416789	MBC-10-01	7	261	54	971	7461	282
416790	MBC-10-01	< 5	129	71	852	10950	255
416791	MBC-10-01	< 5	161	72	798	10220	183
416792	MBC-10-01	< 5	88	36	500	5231	143
416793	MBC-10-01	< 5	137	57	796	10850	268
416794	MBC-10-01	< 5	230	52	720	9838	252
416795	MBC-10-01	10		77	630	8670	225
416796	MBC-10-01	< 5	201	69	330	4498	121
416797	MBC-10-01	< 5	187	84	336	4244	125
416798	MBC-10-01	< 5	173	88	152	1629	57
423637	CBC-10-01	14	198	88	289	2530	106
423638	CBC-10-01	11	215	54	305	2685	75
423639	CBC-10-01	< 5	274	40	275	1945	65
423640	CBC-10-01	< 5	258	37	234	2168	54
423641	CBC-10-01	10	247	41	363	4054	99
423642	CBC-10-01	20	191	28	358		81
423643	CBC-10-01	21	229	35	519	4672	102
423644	CBC-10-01	< 5	234	43	290	3107	66
423645	CBC-10-01	6	244	44	258	2623	72
423646	CBC-10-01	< 5	213	39	165	1708	65

CHEM#	CHANNEL	As	Rb	Sr	Υ	Zr	Nb
423647	CBC-10-01	< 5	194	43	172	1932	54
423648	CBC-10-01	< 5	201	45	259	2939	76
423649	CBC-10-01	< 5	204	43	216	2614	64
423666	CBC-10-02	< 5	247	43	666	8601	158
423667	CBC-10-02	6	233	35	484	6204	119
423668	CBC-10-02	< 5	221	29	322	4227	80
423669	CBC-10-02	9	253	35	509	6377	116
423670	CBC-10-02	5	274	41	657	8146	151
423671	CBC-10-02	< 5	206	32	475	6108	104
423672	CBC-10-02	< 5	204	38	551	7065	124
423673	CBC-10-02	< 5	210	42	719	8976	150
423674	CBC-10-02	< 5	195	41	704	9002	147
423675	CBC-10-02	< 5	203	42	645	8059	197
423676	CBC-10-02	< 5	169	39	629	7593	189
423677	CBC-10-02	< 5	201	37	645	7255	181
423678	CBC-10-02	< 5	185	29	368	4116	127
423679	CBC-10-03	9	213	49	570	2619	145
423680	CBC-10-03	7	205	57	437	2325	106
423681	CBC-10-03	< 5	205	58	185	1203	72
423682	CBC-10-03	< 5	221	82	179	1186	70
423683	CBC-10-03	< 5	214	89	304	1884	125
423684	CBC-10-03	< 5	253	66	244	1903	101
423685	CBC-10-03	5	155	32	441	3358	115
423686	CBC-10-03	< 5	251	44	515	4558	131
423687	CBC-10-03	< 5	226	34	515	6179	143
423688	CBC-10-03	8	291	34	566	6305	127
423689	CBC-10-03	8	199	30	534	5184	157
423690	CBC-10-03	< 5	215	32	471	5703	142
423691	CBC-10-03	8	226	38	527	6253	172
423692	CBC-10-03	< 5	241	40	536	6238	161
423693	CBC-10-03	< 5	150	45	637	3576	108
423694	CBC-10-03	< 5	291	48	800	4965	135
423695	CBC-10-03	< 5	307	41	314	3747	108
423708	CBC-10-04	< 5	210	42	566		138
423709	CBC-10-04	< 5	205	47	571	7193	122
423710	CBC-10-04	< 5	199	41	683	8647	164
423711	CBC-10-04	< 5	204	37	673	7912	145
423712	CBC-10-04	< 5	187	29	440	4613	98
423713	CBC-10-04	6	190	40	715	8659	164
423714	CBC-10-04	< 5	192	38	663	8762	187
423715	CBC-10-04	< 5	199	39	698	8969	180
423716	CBC-10-04	7	209	31	535	6436	136
423717	CBC-10-04	< 5	206	36	559	7349	144
423718	CBC-10-04	< 5	235	40	643	8213	160
423719	CBC-10-04	< 5	185	44	771	10300	191
423720	CBC-10-04	< 5	148	28	359	3402	86

CHEM #	CHANNEL	As	Rb	Sr	Υ	Zr	Nb
423721	CBC-10-05	< 5	197	36	449	5214	96
423722	CBC-10-05	< 5	221	36	279	2949	73
423723	CBC-10-05	< 5	179	29	277	2875	63
423724	CBC-10-05	< 5	188	35	630	8098	139
423725	CBC-10-05	< 5	202	41	772	10270	182
423726	CBC-10-05	< 5	199	40	573	7984	155
423727	CBC-10-05	< 5	200	39	376	5116	99
423728	CBC-10-05	< 5	200	32	556	4629	121
423729	CBC-10-05	< 5	188	45	577	7996	157
423730	CBC-10-05	6	201	44	538	8031	160
423731	CBC-10-05	< 5	208	38	246	2967	68
423732	CBC-10-05	< 5	126	24	181	1600	42
423733	CBC-10-05	< 5	179	37	740	7547	147
423734	CBC-10-05	< 5	194	37	511	6698	129
423735	CBC-10-05	< 5	204	35	182	2226	49
423736	CBC-10-05	< 5	225	36	469	6741	124
423737	CBC-10-05	< 5	198	46	245	3361	69
423738	CBC-10-05	< 5	194	34	414	5986	118
423739	CBC-10-05	< 5	220	36	471	6979	153
423740	CBC-10-05	< 5	226	34	509	7211	145
423746	CBC-10-11b	6	244	42	522	7122	125
423747	CBC-10-11b	< 5	239	60	268	2484	37
423748	CBC-10-11b	< 5	181	127	273	2916	57
423749	CBC-10-11b	< 5	260	89	654	7164	97
423750	CBC-10-11b	< 5	191	98	738	8020	123
474120	MBC-11-02	< 5	235	36	314	4036	119
474121	MBC-11-02	< 5	261	27	275	2374	110
474122	MBC-11-02	5	266	26	210	1758	84
474123	MBC-11-02	7	245	24	234	2095	89
474124	MBC-11-02	5	251	26	263	2657	111
474125	MBC-11-02	5	296	47	728	9175	258
474126	MBC-11-02	< 5	211	38	515	5859	177
474127	MBC-11-02	5	236	36	475	4805	129
474128	MBC-11-03	8		27	172		85
474129	MBC-11-03	8	217	73	1105	16550	411
474130	MBC-11-03	7	223	35	268	2884	110
474131	MBC-11-03	6	219	31	183	2156	78
474132	MBC-11-03	7	258	20	127	655	62
474133	MBC-11-03	< 5	233	23	158	1940	65
474134	MBC-11-03	< 5	202	38	139	1710	50
474135	MBC-11-04	< 5	127	30	205	1065	83
474136	MBC-11-04	< 5	118	28	393	3327	111
474137	MBC-11-04	< 5	134	25	295	1853	103
474138	MBC-11-04	< 5	56	23	292	1545	110
474139	MBC-11-04	7	135	25	381	2087	113
474140	MBC-11-04	< 5	251	26	240	1535	103

CHEM #	CHANNEL	As	Rb	Sr	Υ	Zr	Nb
474141	MBC-11-04	< 5	245	25	195	1878	73
474142	MBC-11-04	< 5	245	25	122	959	47
474143	MBC-11-04	6	149	36	420	3858	146
474144	MBC-11-02B	6	223	48	420	4412	106
474145	MBC-11-02B	< 5	192	39	219	2624	72
474146	MBC-11-02B	< 5	306	15	24	178	5
474147	MBC-11-02B	7	120	43	652	2800	121
474148	MBC-11-02B	< 5	60	24	871	3433	128
474149	MBC-11-05	6		76	1294	14950	259
474150	MBC-11-05	< 5	205	65	820	10760	234
474151	MBC-11-05	< 5	237	27	366	3930	114
474152	MBC-11-05	< 5	200	53	511	6384	167
474153	MBC-11-05	< 5	206	84	176	1848	64
474154	MBC-11-05	< 5	220	72	192	1796	66
474155	MBC-11-05	< 5	144	61	865	10420	190
474156	MBC-11-06	< 5	220	42	374	4769	128
474157	MBC-11-06	< 5	195	32	380	3937	101
474158	MBC-11-06	< 5	88	19	242	2317	69
474159	MBC-11-06	< 5	98	16	137	1222	41
474160	MBC-11-06	< 5	145	24	279	2511	89
474161	MBC-11-06	< 5	135	22	242	1483	83
474162	MBC-11-06	< 5	120	20	202	1053	73
474163	MBC-11-06	< 5	132	22	311	2702	79
474164	MBC-11-09	< 5	194	24	183	2352	62
474165	MBC-11-09	< 5	181	25	211	2474	75
474166	MBC-11-09	< 5	198	30	313	4178	103
474167	MBC-11-10B	< 5	241	33	448	3056	68
474168	MBC-11-10B	9	120	30	1620	1791	44
474169	MBC-11-10B	< 5	254	35	1063	3339	96
474170	MBC-11-10B	< 5	296	42	581	3352	103
474171	MBC-11-10A	< 5	349	37	362	3411	85
474172	MBC-11-10A	< 5	203	39	573	6644	150
474173	MBC-11-10A	< 5	270	48	789	9472	199
474174	MBC-11-10A	< 5	204	38	574	4614	107
474175	MBC-11-01	< 5	119	224	325	478	131
474176	MBC-11-01	6	73	169	366	408	107
474177	MBC-11-01	7	84	174	466	286	110
474178	MBC-11-01	7	80	107	237	209	40
474179	MBC-11-01	< 5	149	386	303	339	116
474180	MBC-11-01	8	96	177	516	261	90
474181	MBC-11-01	< 5	121	329	371	473	177
474182	MBC-11-01	< 5	60	132	462	278	44
474183	MBC-11-01	7	70	164	592	307	165
474184	MBC-11-01	10	83	97	818	473	43
474185	MBC-11-01	7	109	132	930	348	125
474186	MBC-11-01	7	94	72	742	670	51

CHEM #	CHANNEL	As	Rb	Sr	Υ	Zr	Nb
474187	MBC-11-01	7	106	137	735	402	48
474188	MBC-11-08	8	83	203	1058	469	205
474189	MBC-11-08	7	96	210	903	540	221
474190	MBC-11-08	< 5	215	131	352	949	102
474191	MBC-11-08	12	200	91	355	1877	155
474192	MBC-11-08	8	202	105	393	2448	173
474193	CBC-11-01	49	235	32	575	3139	102
474194	CBC-11-01	44	193	37	655	3865	103
474195	CBC-11-01	39	168	24	421	2754	86
474196	CBC-11-01	5	92	19	79	1391	20
474197	CBC-11-01	7	116	23	112	1699	28
474198	CBC-11-01	< 5	83	31	176	1192	26
474199	CBC-11-01	< 5	405	65	127	867	28
474200	CBC-11-01	< 5	269	53	209	1917	56
474201	CBC-11-02	< 5	56	19	199	701	63
474202	CBC-11-02	17	69	27	153	456	55
474203	CBC-11-02	< 5	52	26	197	869	81
474204	CBC-11-02	11	171	75	1133	9290	226
474205	CBC-11-02	6	106	39	301	1497	86
474206	CBC-11-02	< 5	274	54	722	8887	234
474207	CBC-11-03	6	267	48	1018	6548	255
474208	CBC-11-03	6	231	51	1024	7778	288
474209	CBC-11-03	7	130	56	1160	8638	295
474210	CBC-11-09	< 5	128	57	454	4544	103
474211	CBC-11-09	14	246	68	1393	11230	168
474212	CBC-11-09	7	232	43	501	3185	83
474213	CBC-11-09	12	280	60	1102	6750	188
474214	CBC-11-09	14	226	53	839	5051	142
474215	CBC-11-09	< 5	268	31	263	2956	107
474216	CBC-11-09	< 5	235	24	141	1370	58
474217	CBC-11-05	< 5	240	22	122	969	45
474218	CBC-11-05	< 5	199	27	295	3513	86
474219	CBC-11-05	< 5	248	22	127	1129	52
474220	CBC-11-05	< 5	234	30	517	4179	100
474221	CBC-11-05	< 5	107	33	676	3761	106
474222	CBC-11-05	< 5	255	31	221	2403	62
474223	CBC-11-07a	15	139	31	452	1227	84
474224	CBC-11-07a	8	231	26	201	1288	57
474225	CBC-11-07a	7	129	67	292	726	65
474226	CBC-11-07a	21	206	22	149	691	42
474227	CBC-11-07a	17	197	26	289	1613	84
474228	CBC-11-07a	29	171	30	372	2280	82
474229	CBC-11-07a	50	215	32	405	2500	81
474230	CBC-11-07b	17	152	38	362	1588	72
474231	CBC-11-07b	14	171	30	358	1964	87
474232	CBC-11-06	19	208	48	1181	1196	38

CHEM #	CHANNEL	As	Rb	Sr	Υ	Zr	Nb
474233	CBC-11-06	10	197	55	748	1193	40
474234	CBC-11-06	14	105	99	977	1363	40
474235	CBC-11-06	16	103	242	2557	4590	104
474236	CBC-11-06	17	154	95	4373	473	28
474237	CBC-11-06	18	151	113	6376	354	26
474238	CBC-11-06	8	174	42	883	803	21
474239	CBC-11-06	8	221	72	3839	2156	48
474240	CBC-11-06	12	148	107	1326	1137	32
474241	CBC-11-06	6	278	44	1055	1989	58
474242	CBC-11-10	15	79	56	497	1969	97
474243	CBC-11-10	< 5	208	132	1461	16850	427
474244	CBC-11-10	< 5	229	86	915	11880	337
474245	CBC-11-10	< 5	214	46	178	1501	57
474246	CBC-11-10	13	87	192	3247	36760	476
474247	CBC-11-04	< 5	199	24	126	909	39
474248	CBC-11-04	< 5	188	27	119	1051	41
474249	CBC-11-04	< 5	166	31	282	3610	77
474250	CBC-11-04	< 5	189	28	105	1189	38
474251	CBC-11-04	< 5	239	26	108	1212	43
474252	CBC-11-04	52	376	27	582	2868	77
474253	CBC-11-04	18	262	48	894	3603	95
474254	CBC-11-04	27	271	34	561	3201	82
474255	CBC-11-04	17	211	50	943	3746	82
474256	CBC-11-04	17	196	59	918	3085	73
474257	CBC-11-04	9	278	52	473	3045	78
474258	CBC-11-04	13	111	49	951	4102	80
474259	CBC-11-04	10	244	45	550	2792	76
474260	CBC-11-04	15	171	52	963	3604	90
474261	CBC-11-04	10	299	72	976		115
474262	CBC-11-04	22	139	39	1239	4019	96
474263	CBC-11-04	6	340	56	508	4498	101
474264	CBC-11-08	71	234	186	434	3196	54
474265	CBC-11-08	52	156	121	309	1973	70
474266	CBC-11-08	53	115	74	452	1533	69
474267	CBC-11-08	34	132	49	1033	2506	80
474268	CBC-11-11	10	243	40	538		166
474269	CBC-11-11	11	248	37	501	5737	142
474270	CBC-11-11	14	249	29	418	4877	121
474271	CBC-11-11	10	235	29	401	5402	141
474272	CBC-11-11	7	257	38	457	6404	144
474273	CBC-11-09b	11	239	22	260	4057	90
474274	CBC-11-09b	8	245	23	373	5987	115
474275	CBC-11-09b	9	224	20	331	5534	110
474276	CBC-11-09b	10	224	32	590	7960	179
474277	CBC-11-09b	7	229	29	344	4686	114
474278	CBC-11-09b	< 5	210	29	471	6363	155

CHEM #	CHANNEL	As	Rb	Sr	Υ	Zr	Nb
474279	CBC-11-09b	8	240	24	293	4081	104
474280	CBC-11-09b	11	247	38	459	5633	167
474281	SZC-11-04	15	212	176	245	2201	86
474282	SZC-11-04	18	195	146	264	2159	95
474283	SZC-11-04	17	172	55	491	3670	238
474284	SZC-11-04	12	192	48	343	3682	125
474285	SZC-11-04	18	190	26	373	4360	107
474286	SZC-11-04	18	151	29	390	4979	102
474287	SZC-11-04	16	208	21	340	4476	101
474288	SZC-11-15a	15	156	42	241	1922	105
474289	SZC-11-15a	10	76	56	132	902	315
474290	SZC-11-15a	19	150	53	148	1131	95
474291	SZC-11-15b	15	149	54	150	1119	82
474292	SZC-11-15b	23	73	51	142	934	449
474293	SZC-11-15b	19	154	51	146	1086	103
474294	SZC-11-15c	16	150	50	142	1037	117
474295	SZC-11-15c	13	66	63	175	928	283
474296	SZC-11-15c	16	104	49	180	1022	346
474297	SZC-11-05	13	186	29	328	3094	145
474298	SZC-11-05	14	198	31	239	2636	111
474299	SZC-11-05	16	180	40	130	710	41
474300	SZC-11-05	17	191	41	134	784	42
474301	SZC-11-05	22	194	44	281	3017	113
474302	SZC-11-05	19	195	33	150	1105	61
474303	SZC-11-09	13	146	89	357	1698	127
474304	SZC-11-09	8	167	44	220	1155	157
474305	SZC-11-09	5	158	40	135	868	122
474306	SZC-11-09	< 5	161	37	139	975	45
474307	SZC-11-09	< 5	160	39	134	955	45
474308	SZC-11-09	6	153	36	195	1145	54
474309	SZC-11-09	5	156	35	130	883	51
474310	SZC-11-09	5	175	41	203	908	57
474311	SZC-11-09	< 5	167	31	133	672	51
474312	SZC-11-09	< 5	173	31	133	686	49
474313	SZC-11-09	< 5	164	37	125	946	37
474314	SZC-11-09	< 5	170	34	147	1010	47
474315	SZC-11-09	< 5	161	42	130	935	76
474316	SZC-11-02b	16	69	79	1552	616	121
474317	SZC-11-02b	9	163	240	302	312	381
474318	SZC-11-02b	26	104	45	3739	871	71
474319	SZC-11-02b	18	41	41	560	1088	130
474320	SZC-11-02b	9	289	87	438	1596	166
474321	SZC-11-03a	10	117	218	334	373	267
474322	SZC-11-03a	9	119	232	236	316	340
474323	SZC-11-03a	33	34	49	1486	1648	197
474324	SZC-11-03a	9	169	279	433	429	285

CHEM #	CHANNEL	As	Rb	Sr	Υ	Zr	Nb
474325	SZC-11-03a	27	130	40	3213	1039	95
474326	SZC-11-03b	7	209	71	306	1380	188
474327	SZC-11-03b	7	252	87	225	1065	167
474328	SZC-11-03b	10	135	38	258	1133	146
474329	SZC-11-03b	7	359	63	305	1403	136
474330	SZC-11-06	< 5	138	62	151	879	86
474331	SZC-11-06	< 5	136	59	149	930	66
474332	SZC-11-06	< 5	143	61	160	1035	63
474333	SZC-11-06	< 5	127	59	166	1219	60
474334	SZC-11-06	< 5	139	59	166	1114	58
474335	SZC-11-06	< 5	140	63	143	937	83
474336	SZC-11-06	< 5	141	63	151	967	50
474337	SZC-11-07	7	200	47	244	1517	123
474338	SZC-11-07	8	209	48	295	1911	141
474339	SZC-11-07	7	282	101	479	4174	204
474340	SZC-11-07	8	241	79	424	3191	225
474341	SZC-11-07	12	218	58	290	1158	124
474342	SZC-11-07	8	190	87	396	1907	119
474343	SZC-11-08	10	175	57	346	2226	131
474344	SZC-11-08	16	154	76	714	8224	237
474345	SZC-11-08	9	171	56	285	2341	116
474346	SZC-11-08	< 5	174	43	232	2476	97
474347	SZC-11-08	6	154	36	316	3799	122
474348	SZC-11-10	< 5	192	49	208	1539	84
474349	SZC-11-10	8	169	42	367	2917	114
474350	SZC-11-10	9	158	41	399	2207	122
474351	SZC-11-10	8	188	52	425	1835	141
474352	SZC-11-10	11	150	32	774	1390	116
474353	SZC-11-10	9	194	47	562	2110	132
474354	SZC-11-10	7	182	36	251	1751	115
474355	SZC-11-10	< 5	178	28	275	2666	93
474356	SZC-11-10	7	176	35	380	2122	118
474357	SZC-11-10	6	192	42	309	1687	104
474358	SZC-11-10	6		36	218		92
474359	SZC-11-10	5	177	27	243	2078	83
474360	SZC-11-10	< 5	183	29	227	2870	101
474361	SZC-11-10	< 5	183	33	270	3268	113
474362	SZC-11-10	5	181	28	246	3156	119
474363	SZC-11-10	< 5	174	34	195	1698	80
474364	SZC-11-10	< 5	179	35	202	1791	77
474365	SZC-11-10	5	176	132	293	2440	128
474366	SZC-11-10	6	191	122	478		158
474367	SZC-11-10	7	192	76	416	3087	122
474368	SZC-11-10	6	148	54	443	2528	126
474369	SZC-11-10	< 5	172	74	302	1767	87
474370	SZC-11-10	< 5	205	45	276	2468	111

CHEM#	CHANNEL	As	Rb	Sr	Υ	Zr	Nb
474371	SZC-11-10	< 5	181	33	252	2635	100
474372	SZC-11-10	< 5	171	39	142	1461	51
474373	SZC-11-10	< 5	152	38	160	1528	56
474374	SZC-11-10	< 5	146	36	119	931	73
474375	SZC-11-11	< 5	193	61	258	2124	117
474376	SZC-11-11	8	173	75	760	3171	192
474377	SZC-11-11	5	179	78	310	2257	88
474378	SZC-11-11	7	204	68	348	2913	131
474379	SZC-11-11	< 5	232	50	309	2531	72
474380	SZC-11-11	8	204	91	343	2613	107
474381	SZC-11-11	6	208	49	220	1621	58
474382	SZC-11-11	< 5	190	110	298	1667	45
474383	SZC-11-11	< 5	205	51	330	3038	72
474384	SZC-11-11	< 5	185	48	259	2095	99
474385	SZC-11-11	< 5	168	45	164	1283	149
474386	SZC-11-11	< 5	161	34	163	1311	69
474387	SZC-11-11	< 5	164	38	136	835	48
474388	SZC-11-11	< 5	152	37	125	995	77
474389	SZC-11-11	< 5	154	34	121	1027	36
474390	SZC-11-11	< 5	143	42	235	2674	76
474391	SZC-11-11	< 5	147	38	147	1231	112
474392	SZC-11-11	< 5	160	32	85	882	36
474393	SZC-11-11	< 5	156	35	133	930	68
474394	SZC-11-11	< 5	158	38	149	1375	54
474395	SZC-11-11	< 5	156	42	125	888	47
474396	SZC-11-11	< 5	155	45	119	714	56
474397	SZC-11-11	< 5	154	47	236	2591	90
474398	SZC-11-11	< 5	158	39	177	1166	47
474399	SZC-11-11	< 5	156	39	174	1263	51
474400	SZC-11-11	< 5	161	37	258	1901	90
474401	SZC-11-11	< 5	165	43	238	2312	140
474402	SZC-11-12	< 5	128	50	156	1176	52
474403	SZC-11-12	< 5	116	49	149	957	195
474404	SZC-11-12	< 5	102	49	167	973	292
474405	SZC-11-12	< 5	131	52	152	1125	77
474406	SZC-11-12	< 5	116	51	145	1141	49
474407	SZC-11-12	< 5	125	50	145	1085	48
474408	SZC-11-12	< 5	133	50	161	1065	55
474409	SZC-11-02a	< 5	134	382	76	371	42
474410	SZC-11-02a	< 5	88	107	206	758	77
474411	SZC-11-02a	< 5	87	375	150	509	175
474412	SZC-11-02a	< 5	152	371	155	422	
474413	SZC-11-02a	16	89	145	1165	564	239
474414	SZC-11-02a	8	146	270	250	474	245
474415	SZC-11-02a	10	205	208	496	380	350
474416	SZC-11-02a	16	156	139	1227	693	157

CHEM #	CHANNEL	As	Rb	Sr	Υ	Zr	Nb
474417	SZC-11-02a	9	113	185	623	421	345
474418	SZC-11-02a	12	234	181	660	435	283
474419	SZC-11-02a	< 5	179	287	240	342	310
474420	MRC-11-04	15	129	47	3679	993	56
474421	MRC-11-04	10	182	88	1815	947	99
474422	MRC-11-04	13	197	65	2676	1105	26
474423	MRC-11-04	14	229	54	2688	1074	20
474424	MRC-11-04	7	300	133	1056	609	153
474425	MRC-11-04	16	171	64	2719	1078	23
474426	MRC-11-04	13	246	90	1261	869	56
474427	MRC-11-04	10	148	85	1485	1055	31
474428	MRC-11-04	11	235	79	2211	795	52
474429	MRC-11-04	13	220	53	3497	1104	31
474430	MRC-11-04	12	238	40	4218	1429	20
474431	SZC-11-16	18	224	38	350	2399	87
474432	SZC-11-16	18	224	43	335	2139	125
474433	SZC-11-16	7	191	52	360	2035	85
474434	SZC-11-16	9	233	52	530	3183	127
474435	SZC-11-16	8	266	50	505	3589	107
474436	SZC-11-16	12	247	56	562	2692	138
474437	SZC-11-16	31	236	45	457	2364	174
474438	SZC-11-16	58	151	80	851	494	179
474439	SZC-11-16	18	267	64	986	2173	209
474440	SZC-11-16	32	277	46	865	2366	191
474441	SZC-11-16	49	281	40	770	2324	167
474442	SZC-11-16	11	268	54	484	1751	203
474443	SZC-11-16	16	218	64	687	1472	272
474444	SZC-11-16	16	409	62	564	1724	258
474445	SZC-11-16	10	265	40	427	1111	180
474446	SZC-11-16	7	518	55	655	1547	273
474447	SZC-11-16	26	252	47	853	2387	250
474448	SZC-11-16	17	309	35	685	2080	169
474449	SZC-11-16	25	301	33	752	1920	142
474450	SZC-11-16	35	301	105	1304	3534	494
474451	MRC-11-03	20	303	52	5207	1411	38
474452	MRC-11-03	20	243	42	2977	1393	30
474453	MRC-11-03	21	214	42	3817	1387	35
474454	MRC-11-03	13	180	38	2777	1071	33
474455	MRC-11-03	9	217	36	2183	1408	38
474456	MRC-11-03	10	216	43	2222	1269	42
474457	MRC-11-03	15	388	37	4150	1243	26
474458	MRC-11-03	16	347	39	4694	1217	34
474459	MRC-11-03	15	279	39	4559	1273	43
474460	MRC-11-03	15	195	37	2447	1308	60
474461	MRC-11-05	18	282	66	4362	907	28
474462	MRC-11-05	13	286	95	2372	1499	41

CHEM#	CHANNEL	As	Rb	Sr	Υ	Zr	Nb
474463	MRC-11-05	17	200	79	4092	1176	54
474464	MRC-11-05	15	249	80	3080	1460	37
474465	MRC-11-05	14	264	77	3172	1134	52
474466	MRC-11-05	16	183	53	3319	1566	56
474467	MRC-11-05	16	131	58	3130	1548	39
474468	MRC-11-05	9	168	123	1358	809	158
474469	MRC-11-05	15	244	51	3384	1133	27
474470	MRC-11-05	12	258	48	3374	1007	38
474471	MRC-11-05	17	285	45	4018	1087	33
474472	MRC-11-02	16	228	46	3832	1540	88
474473	MRC-11-02	14	79	126	1736	1643	109
474474	MRC-11-02	7	150	233	935	1048	122
474475	MRC-11-02	17	145	122	561	2033	161
474476	MRC-11-02	9	206	110	679	1430	126
474477	MRC-11-02	9	127	190	1750	822	113
474478	MRC-11-02	12	115	107	2375	769	56
474479	BRC-11-06	14	311	37	520	5681	161
474480	BRC-11-06	< 5	213	33	518	5424	127
474481	BRC-11-06	< 5	445	18	312	1567	58
474482	BRC-11-06	< 5	148	26	411	3386	93
474483	BRC-11-06	< 5	196	20	294	2944	74
474484	BRC-11-06	5	277	36	508	6466	135
474485	BRC-11-06	10	279	38	638	6475	148
474486	MRC-11-01	7	176	33	478		92
474487	MRC-11-01	10		50	627	1831	242
474488	MRC-11-01	11	168	62	1237	1892	
474489	MRC-11-01	13		62	951	1236	718
474499	BRC-11-02a	< 5	215	62	989		177
474500	BRC-11-02a	22		71	1123		118
474501	BRC-11-02b	15		49	1052	2351	164
474502	BRC-11-02b	14		53	921	2680	143
474503	BRC-11-02b	7	368	54	1321	6230	297
474504	BRC-11-05	11			1090		214
474505	BRC-11-05	11		84	1145		142
474506	BRC-11-05	12		84	743		141
474507	BRC-11-05	9		103	1044		119
474508	BRC-11-05	9		52	632		91
474509	BRC-11-05	8		101	530		84
474510	BRC-11-01	15		34	2215		104
474511	BRC-11-01 BRC-11-01	< 5	516	12	106		21
474512		6		71	896 1697		112
474513 474514	BRC-11-01 BRC-11-01	10		133 83	1687 1660	2242	124
474514	BRC-11-01 BRC-11-01	14		65	1660	2393 2470	100 73
					1650		
474516	BRC-11-01	16		50	2142		67
474517	BRC-11-01	9	80	43	1005	1913	59

CHEM#	CHANNEL	As	Rb	Sr	Υ	Zr	Nb
474518	BRC-11-01	13	103	52	1758	3327	67
474519	BRC-11-01	7	128	56	1108	2425	110
474520	BRC-11-01	< 5	199	74	854	3228	148
474521	BRC-11-03a	6	220	67	1073	3361	187
474522	BRC-11-03a	9	233	78	777	3679	226
474523	BRC-11-03a	< 5	85	51	582	2152	162
474524	BRC-11-03a	< 5	134	69	1384	4605	276
474525	BRC-11-03a	7	139	66	817	2502	161
474526	BRC-11-03b	10	100	176	2200	3053	141
474527	BRC-11-03b	14	182	220	4750	1454	64
474528	BRC-11-03b	16	263	191	3081	1122	46
474529	BRC-11-03b	10	230	101	1363	1700	86
474530	BRC-11-03b	8	146	73	1330	2789	146
474531	BRC-11-03b	13	151	110	907	1798	112
474611	MRC-11-06	7	162	66	3119	1944	277
474612	MRC-11-06	< 5	248	51	3250	2095	212
474613	MRC-11-06	9	346	52	2925	1159	109
474614	MRC-11-06	7	269	46	2934	1374	147
474615	MRC-11-06	9	322	49	3027	1375	139
474616	MRC-11-06	12	171	54	3142	1292	116
474617	MRC-11-06	9	317	54	3463	1687	170
474618	MRC-11-06	8	122	53	3122	2556	177
474619	MRC-11-06	8	313	49	3002	1656	175
474620	MRC-11-06	9	257	54	3424	1285	127
474621	MRC-11-06	7	182	49	2600	1318	142
474622	MRC-11-06	6	169	44	2319	1053	135
474623	MRC-11-06	6	260	51	3126	1493	170
474624	MRC-11-06	8	216	59	3680	2677	248
474625	MRC-11-06	8	256	55	3464	2024	194
474626	MRC-11-06	8	244	56	3378	1995	197
4744490	BRC-11-04	< 5	315	124	339	1779	134
4744491	BRC-11-04	26	60	110	845	1761	78
4744492	BRC-11-04	7	233	163	639	684	192
4744493	BRC-11-04	14	215	155	1307	2603	189
4744494	BRC-11-04	5	229	149	436	658	233
4744495	BRC-11-04	< 5	172	192	436	904	199
4744496	BRC-11-04	6	128	200	483	1068	211
4744497	BRC-11-04	7	80	109	836	1063	173
4744498	BRC-11-04	< 5	198	373	142	505	48
474565	AMC-11-05	7	378	60	1233	370	87
474566	AMC-11-05	< 5	458	49	990	185	74
474567	AMC-11-05	8	335	76	1184	109	101
474568	AMC-11-05	11	157	109	1072	206	248
474569	AMC-11-05	8	52	119	696	208	170
474570	AMC-11-05	14	134	120	824	377	211
474571	AMC-11-01	< 5	195	38	237	2430	76

CHEM #	CHANNEL	As	Rb	Sr	Υ	Zr	Nb
474572	AMC-11-01	< 5	194	26	167	1610	54
474573	AMC-11-01	< 5	201	50	327	3889	92
474574	AMC-11-01	< 5	216	38	229	2231	75
474575	AMC-11-01	< 5	232	44	295	3121	88
474576	AMC-11-02	< 5	221	37	270	2982	95
474577	AMC-11-02	< 5	221	29	167	1234	66
474578	AMC-11-02	< 5	273	27	222	1982	60
474593	AMC-11-04	< 5	188	37	264	1835	92
474594	AMC-11-04	< 5	197	37	317	1956	111
474595	AMC-11-04	< 5	206	30	226	1148	80
474596	AMC-11-04	6	142	39	580	5029	161
474597	AMC-11-04	< 5	211	30	242	1797	82
474598	AMC-11-04	< 5	188	30	242	1667	85
474599	AMC-11-03	< 5	219	44	374	4227	117
474600	AMC-11-03	7	190	51	660	7041	199
474601	AMC-11-03	< 5	209	66	771	9130	215
474602	AMC-11-03	< 5	261	54	591	5871	186
474603	AMC-11-03	< 5	247	53	551	6370	161
474604	AMC-11-03	< 5	242	50	545	5909	149
474605	AMC-11-03	< 5	244	34	180	1009	56
474606	AMC-11-03	< 5	239	35	171	831	52
474607	AMC-11-03	< 5	220	35	141	715	53
474608	AMC-11-03	< 5	215	36	144	723	53
474609	AMC-11-03	< 5	262	37	222	1755	70
474610	AMC-11-03	< 5	202	34	259	2172	71

CHEM#	CHANNEL	Мо	Ag	In	Sn	Sb	Cs
104201	CBC-10-06a	4	2.7	< 0.2	10	0.5	2.9
104202	CBC-10-06a	3		< 0.2	21	2.8	3.7
104203	CBC-10-06a	< 2		< 0.2	20	< 0.5	3.8
104204	CBC-10-06a	< 2		< 0.2	24	< 0.5	3.7
104205	CBC-10-06a	3		< 0.2	29	< 0.5	4.1
104206	CBC-10-06a	< 2		< 0.2	23	< 0.5	3.5
104207	CBC-10-06a	< 2		< 0.2	24	< 0.5	3.3
104208	CBC-10-06a	3		< 0.2	23	0.6	3.7
104209	CBC-10-06a	2		< 0.2	21	< 0.5	3.2
104210	CBC-10-06a	6		< 0.2	26	< 0.5	3.5
104211	CBC-10-06a	7		< 0.2	35	2.9	3.9
104212	CBC-10-06a	4		< 0.2	25	< 0.5	4
104213	CBC-10-06a	3		< 0.2	24	< 0.5	4.3
104214	CBC-10-06a	3		< 0.2	7	< 0.5	3.6
104215	CBC-10-06a	< 2	1.9	< 0.2	8	< 0.5	3.6
104216	CBC-10-06a	3	2.2	< 0.2	18	< 0.5	3.2
104217	CBC-10-07	2	2.9	< 0.2	16	< 0.5	3.8
104218	CBC-10-07	2		< 0.2	20	< 0.5	3.6
104219	CBC-10-07	< 2	2	< 0.2	21	< 0.5	3.9
104220	CBC-10-07	3		< 0.2	18	< 0.5	3.7
104221	CBC-10-07	3		< 0.2	23	< 0.5	3.9
104222	CBC-10-07	5		< 0.2	20	< 0.5	4
104223	CBC-10-07	4		< 0.2	36	< 0.5	3.6
104224	CBC-10-07	4		< 0.2	26	< 0.5	4.4
104225	CBC-10-07	3		< 0.2	24	< 0.5	4.2
104226	CBC-10-07	2		< 0.2	21	< 0.5	3.5
104227	CBC-10-08	5		< 0.2	25	< 0.5	4.2
104228	CBC-10-08	5		< 0.2	25	< 0.5	4
104229	CBC-10-08	< 2		< 0.2	21	< 0.5	3.3
104230	CBC-10-08	7		< 0.2	23	< 0.5	3.3
104231	CBC-10-08	5		< 0.2	23	< 0.5	3.9
104232	CBC-10-08	6		< 0.2	23	< 0.5	4
104233	CBC-10-08	4		< 0.2	23	< 0.5	3.7
104234	CBC-10-08	4		< 0.2	22	< 0.5	4.3
104235	CBC-10-08	6		< 0.2	21	< 0.5	4.1
104236	CBC-10-08	5		< 0.2	20	< 0.5	4.1
104237	CBC-10-08	4		< 0.2	19	< 0.5	4
104238	CBC-10-08	3		< 0.2	21	< 0.5	4
104239	CBC-10-08	4		< 0.2	21	< 0.5	3.8
104240	CBC-10-08	5		< 0.2	29	< 0.5	4.2
104241	CBC-10-08	5		< 0.2	28	< 0.5	4.1
104242	CBC-10-08	4		< 0.2	26	< 0.5	3.8
104243	CBC-10-08	4		< 0.2	24	< 0.5	3.7
104244	CBC-10-08	3		< 0.2	21	0.7	3.7
104245	CBC-10-08	3		< 0.2	21	< 0.5	3.7
104246	CBC-10-08	4		< 0.2	20	< 0.5	3.6

CHEM #	CHANNEL	Mo	Ag	In	Sn	Sb	Cs
104247	CBC-10-08	4		< 0.2	22	< 0.5	3.8
104248	CBC-10-08	5		< 0.2	23	< 0.5	4.1
104249	CBC-10-08	4		< 0.2	26	0.6	4.2
104250	CBC-10-08	5		< 0.2	31	< 0.5	3.8
104251	CBC-10-08	3		< 0.2	25	0.7	3.8
104252	CBC-10-08	4		< 0.2	23	< 0.5	3.8
104253	CBC-10-08	4		< 0.2	23	< 0.5	4.1
104254	CBC-10-09	3		< 0.2	24	< 0.5	3.6
104255	CBC-10-09	6		< 0.2	48	0.6	3.6
104256	CBC-10-09	5		< 0.2	49	0.6	4.9
104257	CBC-10-09	4		< 0.2	57	0.6	3.8
104258	CBC-10-09	10		< 0.2	30	0.7	3
104259	CBC-10-09	3	1.4	< 0.2	17	0.9	4.1
104260	CBC-10-09	3	1.7	< 0.2	14	0.7	4.2
104261	CBC-10-09	6		< 0.2	102	0.7	2.4
104262	CBC-10-09	5		< 0.2	115	0.7	3.8
104263	CBC-10-09	< 2		< 0.2	72	0.5	4.7
104264	CBC-10-09	5		< 0.2	116	< 0.5	4.1
104265	CBC-10-09	3		< 0.2	85	0.5	5
104266	CBC-10-09	< 2		< 0.2	67	1.2	5.8
104267	CBC-10-09	< 2		< 0.2	91	0.7	6.1
104268	CBC-10-09	< 2		< 0.2	77	0.8	5.8
104269	CBC-10-10	3		< 0.2	25	0.5	7.6
104270	CBC-10-10	8		< 0.2	53	0.7	6
104271	CBC-10-10	3		< 0.2	26	0.6	8
104272	CBC-10-10	3		< 0.2	22	0.6	6.6
104273	CBC-10-10	4		< 0.2	24	0.6	6.8
104274	CBC-10-10	11		< 0.2	51	0.9	7.5
104275	CBC-10-10	4		< 0.2	29	0.8	7.9
104276	CBC-10-10	6		< 0.2	23	0.6	7.5
104277	CBC-10-10	4		< 0.2	36	0.7	9
104278	CBC-10-10	10		< 0.2	55	0.9	5.2
104279	CBC-10-10	9		< 0.2	54	0.9	6.9
104280	CBC-10-10	4		< 0.2	33	0.7	7.7
104281	CBC-10-10	5		< 0.2	50	0.7	5.9
104282	CBC-10-10	23		< 0.2	102	0.7	4.1
104283	CBC-10-10	28		< 0.2	98	0.6	4.1
104284	CBC-10-10	102		< 0.2	138	1	8.4
104285	CBC-10-10	85		< 0.2	141	1	7.3
104286	CBC-10-10	15	2.4	< 0.2	53	0.8	4.9
104287	CBC-10-10	60		< 0.2	89	0.8	3.8
104288	CBC-10-11b	3		< 0.2	13	0.7	2.6
104289	CBC-10-11b	3		< 0.2	16	1.2	2.2
104290	CBC-10-11b	2		< 0.2	71	< 0.5	3.8
104291	CBC-10-11b	3		< 0.2	15	< 0.5	2.6
104292	CBC-10-11b	4		< 0.2	39	< 0.5	4

CHEM#	CHANNEL	Мо	Ag	In	Sn	Sb	Cs
104293	CBC-10-11b	2		< 0.2	36	< 0.5	3
104294	CBC-10-11b	4		< 0.2	49	< 0.5	4
104295	CBC-10-11b	4		< 0.2	41	< 0.5	3.7
104296	CBC-10-11b	4		< 0.2	38	0.6	3.6
104297	CBC-10-11b	< 2		< 0.2	25	< 0.5	3.3
104298	CBC-10-11b	3		< 0.2	18	0.7	3.1
104299	CBC-10-11b	4		< 0.2	30	< 0.5	1.3
104300	CBC-10-11b	5		< 0.2	18	0.8	1.9
104326	CBC-10-11b	30		< 0.2	36	0.5	2.5
104327	CBC-10-11b	3		< 0.2	19	1	2.2
104328	CBC-10-11b	< 2		< 0.2	21	< 0.5	2.9
104329	CBC-10-11b	2		< 0.2	19	0.5	2.8
104330	CBC-10-11b	2	1.9	< 0.2	20	0.6	2.9
104331	CBC-10-11b	< 2	2	< 0.2	19	< 0.5	2.9
104332	CBC-10-11b	3		< 0.2	35	0.6	3.6
104333	CBC-10-11b	2		< 0.2	34	< 0.5	3.6
104334	CBC-10-11b	< 2		< 0.2	23	< 0.5	3
104335	CBC-10-11b	3		< 0.2	28	< 0.5	3.4
104336	CBC-10-11b	10		< 0.2	65	0.6	4.6
104337	CBC-10-11b	28		< 0.2	55	< 0.5	4.7
104338	CBC-10-11b	6		< 0.2	54	< 0.5	4.4
104339	CBC-10-11b	2	1.4	< 0.2	13	1.1	2.8
104340	CBC-10-11b	3		< 0.2	108	0.7	4.2
104341	CBC-10-11b	< 2		< 0.2	22	1.1	2.8
104342	CBC-10-11b	4		< 0.2	54	0.5	3.6
104343	CBC-10-11b	3		< 0.2	18	2.2	2.7
104344	CBC-10-11b	18		< 0.2	49	0.8	3.3
104345	CBC-10-11b	10		< 0.2	81	0.9	4.1
104346	CBC-10-11b	< 2		< 0.2	116	0.6	3.9
104347	CBC-10-11b	10		< 0.2	51	0.8	3.4
104348	CBC-10-11b	18		< 0.2	75	0.7	3.2
416155	CBC-10-11a	3	1.4	< 0.2	10	< 0.5	2.9
416156	CBC-10-11a	3	1.2	< 0.2	9	< 0.5	2.6
416157	CBC-10-11a	13		< 0.2	29	< 0.5	3.5
416158	CBC-10-11a	19	1.3	< 0.2	14	< 0.5	3.1
416159	CBC-10-11a	4		< 0.2	39	< 0.5	3.1
416160	CBC-10-11a	3		< 0.2	27	< 0.5	3.8
416161	CBC-10-11a	3		< 0.2	26	< 0.5	3.2
416162	CBC-10-11a	3		< 0.2	18	< 0.5	3.2
416163	CBC-10-11a	2	1.3	< 0.2	11	< 0.5	3.4
416164	CBC-10-11a	5		< 0.2	24	< 0.5	3
416165	CBC-10-11a	5		< 0.2	27	< 0.5	3.7
416166	CBC-10-11a	2	1.4	< 0.2	34	< 0.5	3
416167	CBC-10-11a	4		< 0.2	29	< 0.5	4.3
416168	CBC-10-11a	9		< 0.2	74	0.5	3.5
416169	CBC-10-11a	5		< 0.2	25	< 0.5	3.9

CHEM#	CHANNEL	Мо	Ag	In	Sn	Sb	Cs
416170	CBC-10-11a	4		< 0.2	25	< 0.5	3.7
416171	CBC-10-12	4		< 0.2	36	< 0.5	3.5
416172	CBC-10-12	2		< 0.2	24	< 0.5	4.1
416173	CBC-10-12	3		< 0.2	36	< 0.5	3
416174	CBC-10-12	7		< 0.2	20	< 0.5	2.3
416175	CBC-10-12	26		< 0.2	86	< 0.5	2.4
416176	CBC-10-12	4		< 0.2	28	< 0.5	3.5
416177	CBC-10-12	16	4.8	< 0.2	62	< 0.5	3.2
416178	CBC-10-12	3	3.9	< 0.2	20	< 0.5	3.3
416179	CBC-10-12	3	1.6	< 0.2	14	< 0.5	3.2
416180	CBC-10-12	15		< 0.2	34	< 0.5	3.8
416181	CBC-10-12	4		< 0.2	22	< 0.5	3.8
416182	CBC-10-12	6		< 0.2	31	< 0.5	4.2
416183	CBC-10-12	5		< 0.2	51	< 0.5	4.1
416184	CBC-10-12	33		< 0.2	81	< 0.5	2.2
416185	CBC-10-12	< 2		< 0.2	33	< 0.5	4.1
416186	CBC-10-12	< 2		< 0.2	32	< 0.5	3.9
416187	CBC-10-12	< 2		< 0.2	28	< 0.5	3.4
416188	CBC-10-13	< 2		< 0.2	47	< 0.5	3.1
416189	CBC-10-13	< 2		< 0.2	40	< 0.5	2.9
416190	CBC-10-13	< 2	2.4	< 0.2	18	< 0.5	3.1
416191	CBC-10-13	< 2	2.3	< 0.2	19	< 0.5	3
416192	CBC-10-13	3		< 0.2	48	< 0.5	3.8
416193	CBC-10-13	< 2		< 0.2	48	< 0.5	3.2
416194	CBC-10-13	< 2	2.1	< 0.2	13	< 0.5	3
416195	CBC-10-13	< 2		< 0.2	14	< 0.5	3.4
416196	CBC-10-13	< 2	1.9	< 0.2	12	< 0.5	2.8
416197	CBC-10-13	< 2	2	< 0.2	9	< 0.5	3.2
416198	CBC-10-13	< 2	2	< 0.2	11	< 0.5	3.8
416199	CBC-10-13	< 2	2.1	< 0.2	10	< 0.5	3.2
416200	CBC-10-13	< 2		< 0.2	11	< 0.5	3.5
416201	CBC-10-14	< 2		< 0.2	33	< 0.5	4.4
416202	CBC-10-14	< 2		< 0.2	37		3.7
416203	CBC-10-14	< 2		< 0.2			3.1
416204	CBC-10-14	< 2		< 0.2	36		2.8
416205	CBC-10-14	< 2	2.1	< 0.2			2.6
416206	CBC-10-14	< 2	1.9	< 0.2	35		2.5
416207	CBC-10-14	< 2		< 0.2	43		2.6
416208	CBC-10-14	< 2		< 0.2	27	< 0.5	2.9
416209	CBC-10-14	< 2	2.1	< 0.2	19		2.8
416210	CBC-10-14	< 2	2.4	< 0.2	22	< 0.5	2.9
416211	CBC-10-14	< 2		< 0.2	30		2.9
416212	CBC-10-14	< 2		< 0.2	42	< 0.5	3.4
416213	CBC-10-14	< 2	2.2	< 0.2	30		2.5
416214	CBC-10-14	< 2	1.8	< 0.2	31	< 0.5	2.8
416215	CBC-10-14	< 2	1.1	< 0.2	33	< 0.5	3.3

CHEM#	CHANNEL	Мо	Ag	In	Sn	Sb	Cs
416216	CBC-10-14	< 2	1.1	< 0.2	28	< 0.5	2.8
416217	CBC-10-14	< 2	1.1	< 0.2	30	< 0.5	2.8
416218	CBC-10-14	< 2		< 0.2	30	< 0.5	2.7
416219	CBC-10-14	< 2	1.3	< 0.2	27	< 0.5	3
416220	CBC-10-14	< 2		< 0.2	34	< 0.5	2.8
416221	CBC-10-14	< 2		< 0.2	41	< 0.5	2.8
416222	CBC-10-14	3		< 0.2	44	< 0.5	3.6
416223	CBC-10-14	4		< 0.2	38	< 0.5	2.9
416224	CBC-10-14	4		< 0.2	43	< 0.5	3.2
416225	CBC-10-14	4		< 0.2	39	< 0.5	3.5
416226	CBC-10-15	3	1.1	< 0.2	11	< 0.5	3.4
416227	CBC-10-15	3	1.4	< 0.2	11	< 0.5	3.3
416228	CBC-10-15	3	1.1	< 0.2	10	< 0.5	3.3
416229	CBC-10-15	3	1.1	< 0.2	9	< 0.5	3.2
416230	CBC-10-15	3		< 0.2	10	< 0.5	3.5
416231	CBC-10-15	3		< 0.2	11	< 0.5	3.4
416232	CBC-10-15	3		< 0.2	17	< 0.5	3.4
416233	CBC-10-15	21		< 0.2	28	< 0.5	2.7
416234	CBC-10-15	3		< 0.2	19	< 0.5	3
416235	CBC-10-15	5		< 0.2	21	< 0.5	2.9
416236	CBC-10-15	3		< 0.2	19	< 0.5	2.8
416237	CBC-10-15	3		< 0.2	15	< 0.5	3
416238	CBC-10-15	4		< 0.2	20	0.6	2.7
416239	CBC-10-15	3	1.3	< 0.2	14	< 0.5	3.5
416240	CBC-10-15	3	1.3	< 0.2	13	< 0.5	3.3
416241	CBC-10-15	3	1.2	< 0.2	12	< 0.5	3.8
416242	CBC-10-15	4	1.1	< 0.2	12	< 0.5	3.6
416243	CBC-10-15	4	1	< 0.2	13	< 0.5	3.6
416244	CBC-10-16	2		< 0.2	60	< 0.5	4.2
416245	CBC-10-16	< 2		< 0.2	53	< 0.5	3
416246	CBC-10-16	< 2		< 0.2	44	< 0.5	1.8
416247	CBC-10-16	< 2		< 0.2	43	< 0.5	0.9
416248	CBC-10-16	< 2		< 0.2	76	< 0.5	1.3
416249	CBC-10-16	< 2		< 0.2	63	< 0.5	0.7
416250	CBC-10-16	< 2		< 0.2	18	< 0.5	1
416251	CBC-10-16	< 2		< 0.2	24	< 0.5	< 0.5
416252	CBC-10-16	< 2		< 0.2	39	< 0.5	0.6
416253	CBC-10-16	< 2		< 0.2	23	< 0.5	1.7
416254	CBC-10-16	< 2		< 0.2	29	< 0.5	3.8
416255	CBC-10-16	< 2		< 0.2	34	0.6	2.7
416256	CBC-10-16	< 2		< 0.2	31	0.5	4.1
416257	CBC-10-16	3		< 0.2	58	< 0.5	3.6
416258	CBC-10-16	3		< 0.2	72	< 0.5	2.8
416259	CBC-10-16	5		< 0.2	46	< 0.5	3.4
416260	CBC-10-16	5		< 0.2	34	< 0.5	3.4
416261	CBC-10-16	4		< 0.2	37	0.6	3.3

CHEM #	CHANNEL	Mo	Ag	In	Sn	Sb	Cs
416262	CBC-10-16	4	1.1	< 0.2	12	< 0.5	3
416263	CBC-10-18a	5		< 0.2	123	0.5	5.3
416264	CBC-10-18a	8		< 0.2	97	< 0.5	4.3
416265	CBC-10-18a	8		< 0.2	54	< 0.5	2.7
416266	CBC-10-18a	8		< 0.2	48	< 0.5	2
416267	CBC-10-18a	6		< 0.2	51	0.5	3.6
416268	CBC-10-18a	7		< 0.2	57	0.5	2.6
416269	CBC-10-18a	10		< 0.2	52	< 0.5	3
416270	CBC-10-18a	8		< 0.2	50	< 0.5	3
416271	CBC-10-18a	5		< 0.2	44	< 0.5	2.6
416272	CBC-10-18a	9		< 0.2	46	< 0.5	2.3
416273	CBC-10-18a	7		< 0.2	54	< 0.5	2.9
416274	CBC-10-18a	5		< 0.2	47	< 0.5	2.7
416275	CBC-10-18a	6		< 0.2	50	< 0.5	3
416276	CBC-10-18a	11		< 0.2	42	< 0.5	2.4
416277	CBC-10-18b	9		< 0.2	40	< 0.5	3
416278	CBC-10-18b	29	1.6	< 0.2	50	< 0.5	1.7
416279	CBC-10-18b	33	1.9	< 0.2	51	0.7	1.2
416280	CBC-10-18b	10		< 0.2	45	< 0.5	3.2
416782	MBC-10-01	< 2	3.1	< 0.2	20	0.8	3.3
416783	MBC-10-01	< 2		< 0.2	18	< 0.5	4.3
416784	MBC-10-01	2		< 0.2	22	< 0.5	3.1
416785	MBC-10-01	4		< 0.2	25	< 0.5	4.1
416786	MBC-10-01	4		< 0.2	28	< 0.5	3.8
416787	MBC-10-01	< 2		< 0.2	48	< 0.5	3.4
416788	MBC-10-01	5		< 0.2	36	< 0.5	3.5
416789	MBC-10-01	11		< 0.2	38	< 0.5	5
416790	MBC-10-01	4		< 0.2	78	< 0.5	3
416791	MBC-10-01	3		< 0.2	62	< 0.5	3.4
416792	MBC-10-01	4		< 0.2	98	< 0.5	1.4
416793	MBC-10-01	4		< 0.2	62	< 0.5	3
416794	MBC-10-01	3		< 0.2	33	< 0.5	4.3
416795	MBC-10-01	3		< 0.2	30	< 0.5	3.9
416796	MBC-10-01	2		< 0.2	26	< 0.5	3.4
416797	MBC-10-01	2		< 0.2	19	< 0.5	3.7
416798	MBC-10-01	2		< 0.2	20	< 0.5	3.3
423637	CBC-10-01	4		< 0.2	29	0.6	3.1
423638	CBC-10-01	3		< 0.2	39	0.6	3.1
423639	CBC-10-01	2		< 0.2	37	0.7	3.5
423640	CBC-10-01	< 2		< 0.2	34	0.7	3.4
423641	CBC-10-01	2		< 0.2	37	0.6	3.2
423642	CBC-10-01	3		< 0.2	44	0.7	2.8
423643	CBC-10-01	4		< 0.2	45	0.7	3.2
423644	CBC-10-01	< 2		< 0.2	34	0.6	3.2
423645	CBC-10-01	3		< 0.2	23	0.6	3
423646	CBC-10-01	2		< 0.2	22	0.8	3

CHEM #	CHANNEL	Мо	Ag	In	Sn	Sb	Cs
423647	CBC-10-01	3		< 0.2	20	0.7	3.7
423648	CBC-10-01	2		< 0.2	23	0.6	3.2
423649	CBC-10-01	< 2		< 0.2	23	0.6	3.3
423666	CBC-10-02	3		< 0.2	32	0.7	4.3
423667	CBC-10-02	7		< 0.2	44	0.6	3.6
423668	CBC-10-02	4		< 0.2	39	0.8	3.3
423669	CBC-10-02	6		< 0.2	39	0.7	4
423670	CBC-10-02	5		< 0.2	39	0.8	4.4
423671	CBC-10-02	3		< 0.2	47	0.8	3.2
423672	CBC-10-02	3		< 0.2	43	0.8	3.3
423673	CBC-10-02	3		< 0.2	48	0.8	3.5
423674	CBC-10-02	3		< 0.2	48	0.8	3.3
423675	CBC-10-02	5		< 0.2	38	0.9	3.3
423676	CBC-10-02	4		< 0.2	44	1	2.9
423677	CBC-10-02	4		< 0.2	40	0.8	3.3
423678	CBC-10-02	6		< 0.2	35	1	2.7
423679	CBC-10-03	19		< 0.2	56	0.8	2.3
423680	CBC-10-03	9		< 0.2	42	1.3	2.3
423681	CBC-10-03	< 2		< 0.2	17	0.8	2.6
423682	CBC-10-03	< 2		< 0.2	14	0.8	2.9
423683	CBC-10-03	6		< 0.2	18	0.7	2.9
423684	CBC-10-03	3		< 0.2	18	0.9	3.4
423685	CBC-10-03	3		< 0.2	42	0.8	2
423686	CBC-10-03	3		< 0.2	32	0.7	3.7
423687	CBC-10-03	4		< 0.2	47	0.9	3.5
423688	CBC-10-03	6		< 0.2	45	0.9	4.2
423689	CBC-10-03	5		< 0.2	52	0.9	3
423690	CBC-10-03	2		< 0.2	43	0.8	3.3
423691	CBC-10-03	5		< 0.2	45	1	3.6
423692	CBC-10-03	2		< 0.2	43	0.8	4.2
423693	CBC-10-03	< 2		< 0.2	45	0.8	2.5
423694	CBC-10-03	< 2		< 0.2	37	0.8	5.2
423695	CBC-10-03	< 2		< 0.2	27	0.9	5.9
423708	CBC-10-04	5		< 0.2	32	< 0.5	4.2
423709	CBC-10-04	3		< 0.2	41	< 0.5	4.4
423710	CBC-10-04	6		< 0.2	29	< 0.5	4.4
423711	CBC-10-04	7		< 0.2	31	< 0.5	4.3
423712	CBC-10-04	4		< 0.2	34	< 0.5	3.4
423713	CBC-10-04	5		< 0.2	38	< 0.5	4.5
423714	CBC-10-04	5		< 0.2	29	< 0.5	4.6
423715	CBC-10-04	5		< 0.2	30	< 0.5	4.8
423716	CBC-10-04	6		< 0.2	32	< 0.5	4.7
423717	CBC-10-04	3		< 0.2	27	< 0.5	4.3
423718	CBC-10-04	4		< 0.2	30	< 0.5	5.2
423719	CBC-10-04	6		< 0.2	29	< 0.5	4.3
423720	CBC-10-04	5		< 0.2	31	< 0.5	2.7

CHEM#	CHANNEL	Мо	Ag	In	Sn	Sb	Cs
423721	CBC-10-05	2		< 0.2	37	0.5	4.3
423722	CBC-10-05	< 2		< 0.2	30	< 0.5	4.5
423723	CBC-10-05	4		< 0.2	48	< 0.5	3.7
423724	CBC-10-05	5		< 0.2	36	< 0.5	4.6
423725	CBC-10-05	7		< 0.2	31	< 0.5	5.2
423726	CBC-10-05	7		< 0.2	33	< 0.5	4.8
423727	CBC-10-05	3		< 0.2	34	< 0.5	4.5
423728	CBC-10-05	6		< 0.2	30	< 0.5	4.7
423729	CBC-10-05	4		< 0.2	29	< 0.5	4.7
423730	CBC-10-05	6		< 0.2	36	< 0.5	5
423731	CBC-10-05	3		< 0.2	31	< 0.5	4.8
423732	CBC-10-05	8		< 0.2	37	< 0.5	2.6
423733	CBC-10-05	4		< 0.2	49	< 0.5	4.6
423734	CBC-10-05	3		< 0.2	36	< 0.5	4.9
423735	CBC-10-05	< 2		< 0.2	27	< 0.5	4.4
423736	CBC-10-05	2		< 0.2	39	< 0.5	5
423737	CBC-10-05	2		< 0.2	27	< 0.5	4.4
423738	CBC-10-05	3		< 0.2	41	< 0.5	4.7
423739	CBC-10-05	5		< 0.2	40	< 0.5	5.2
423740	CBC-10-05	3		< 0.2	40	< 0.5	5.4
423746	CBC-10-11b	3		< 0.2	40	< 0.5	3.8
423747	CBC-10-11b	5		< 0.2	25	0.5	3.1
423748	CBC-10-11b	2		< 0.2	19	< 0.5	3
423749	CBC-10-11b	3		< 0.2	44	0.6	3.9
423750	CBC-10-11b	2		< 0.2	49	< 0.5	3.1
474120	MBC-11-02	2		< 0.2	34	< 0.5	3.3
474121	MBC-11-02	3		< 0.2	36	< 0.5	3.7
474122	MBC-11-02	3		< 0.2	35	< 0.5	3.8
474123	MBC-11-02	3		< 0.2	42	0.5	3.8
474124	MBC-11-02	4		< 0.2	38	< 0.5	4
474125	MBC-11-02	4		< 0.2	41	< 0.5	5.3
474126	MBC-11-02	5		< 0.2	42	< 0.5	3.5
474127	MBC-11-02	6		< 0.2	53	< 0.5	3.9
474128	MBC-11-03	4		< 0.2	34	< 0.5	4.7
474129	MBC-11-03	3		< 0.2	40	< 0.5	5.5
474130	MBC-11-03	3		< 0.2	30	< 0.5	3.8
474131	MBC-11-03	< 2		< 0.2	31	< 0.5	3.6
474132	MBC-11-03	4	2.5	< 0.2	26	< 0.5	4.3
474133	MBC-11-03	< 2		< 0.2	31	< 0.5	4.1
474134	MBC-11-03	< 2		< 0.2	29	< 0.5	3
474135	MBC-11-04	5		< 0.2	56	< 0.5	1.8
474136	MBC-11-04	4		< 0.2	60	< 0.5	1.9
474137	MBC-11-04	4		< 0.2	61	< 0.5	2
474138	MBC-11-04	8		< 0.2	78	< 0.5	1.1
474139	MBC-11-04	17		< 0.2	65	< 0.5	2.2
474140	MBC-11-04	3		< 0.2	44	< 0.5	3.4

CHEM#	CHANNEL	Мо	Ag	In	Sn	Sb	Cs
474141	MBC-11-04	5		< 0.2	46	< 0.5	3.3
474142	MBC-11-04	2		< 0.2	24	< 0.5	2.8
474143	MBC-11-04	7		< 0.2	61	< 0.5	2.3
474144	MBC-11-02B	10		< 0.2	39	< 0.5	4
474145	MBC-11-02B	< 2		< 0.2	23	< 0.5	2.9
474146	MBC-11-02B	< 2	0.6	< 0.2	5	< 0.5	3.4
474147	MBC-11-02B	3		< 0.2	74	0.5	1.5
474148	MBC-11-02B	3		< 0.2	128	< 0.5	1
474149	MBC-11-05	3		< 0.2	40	< 0.5	5.1
474150	MBC-11-05	3		< 0.2	31	< 0.5	4.3
474151	MBC-11-05	5		< 0.2	25	< 0.5	4
474152	MBC-11-05	3		< 0.2	28	< 0.5	4
474153	MBC-11-05	2		< 0.2	21	0.6	3.6
474154	MBC-11-05	< 2		< 0.2	24	0.6	3.8
474155	MBC-11-05	4		< 0.2	57	< 0.5	3.8
474156	MBC-11-06	< 2		< 0.2	24	< 0.5	2.9
474157	MBC-11-06	3		< 0.2	39	< 0.5	2.5
474158	MBC-11-06	5		< 0.2	79	< 0.5	1.4
474159	MBC-11-06	4		< 0.2	68	< 0.5	1.4
474160	MBC-11-06	2		< 0.2	57	< 0.5	2.1
474161	MBC-11-06	10		< 0.2	55	< 0.5	1.7
474162	MBC-11-06	5		< 0.2	57	< 0.5	1.6
474163	MBC-11-06	4		< 0.2	65	< 0.5	1.9
474164	MBC-11-09	< 2		< 0.2	43	< 0.5	3.3
474165	MBC-11-09	3		< 0.2	39	< 0.5	3.1
474166	MBC-11-09	2		< 0.2	35	< 0.5	3.5
474167	MBC-11-10B	3		< 0.2	84	0.9	2.9
474168	MBC-11-10B	3		< 0.2	107	0.5	1.3
474169	MBC-11-10B	< 2		< 0.2	104	< 0.5	3.1
474170	MBC-11-10B	3		< 0.2	67	< 0.5	4.1
474171	MBC-11-10A	4		< 0.2	34	< 0.5	3.8
474172	MBC-11-10A	5		< 0.2	49	< 0.5	2.7
474173	MBC-11-10A	5		< 0.2	49	< 0.5	3.5
474174	MBC-11-10A	5		< 0.2	59	< 0.5	2.5
474175	MBC-11-01	2	0.9	< 0.2	35	0.8	2.5
474176	MBC-11-01	4	0.9	< 0.2	50	1.3	1.7
474177	MBC-11-01	3	< 0.5	< 0.2	49	1.5	1.7
474178	MBC-11-01	8	< 0.5	< 0.2	65	0.8	1.4
474179	MBC-11-01	< 2	0.6	< 0.2	30	2.6	2.8
474180	MBC-11-01	3	< 0.5	< 0.2	42	1.5	1.7
474181	MBC-11-01	< 2	1.5	< 0.2	32	1.8	2.3
474182	MBC-11-01	< 2	0.7	< 0.2	50	< 0.5	1.1
474183	MBC-11-01	3	< 0.5	< 0.2	40	1.5	1
474184	MBC-11-01	5	0.7	< 0.2	75	0.8	1.3
474185	MBC-11-01	3	0.6	< 0.2	42	2	1.4
474186	MBC-11-01	11		< 0.2	81	0.7	1.8

CHEM #	CHANNEL	Мо	Ag	In	Sn	Sb	Cs
474187	MBC-11-01	8	0.5	< 0.2	48	1.9	1.5
474188	MBC-11-08	16	0.9	< 0.2	41	1.4	2.1
474189	MBC-11-08	5	0.7	< 0.2	29	0.7	2.1
474190	MBC-11-08	7	1.7	< 0.2	26	3	4.4
474191	MBC-11-08	24		< 0.2	49	< 0.5	3.9
474192	MBC-11-08	6		< 0.2	40	< 0.5	4.2
474193	CBC-11-01	151		< 0.2	78	< 0.5	8.1
474194	CBC-11-01	105		< 0.2		< 0.5	7
474195	CBC-11-01	35		< 0.2	84	< 0.5	4.6
474196	CBC-11-01	6		< 0.2		< 0.5	1.9
474197	CBC-11-01	10		< 0.2		< 0.5	2.4
474198	CBC-11-01	5		< 0.2	106	< 0.5	2.4
474199	CBC-11-01	3	1.5	< 0.2		< 0.5	10.7
474200	CBC-11-01	2		< 0.2	19	< 0.5	9.9
474201	CBC-11-02	20	1.5	< 0.2	56	1.2	0.7
474202	CBC-11-02	7	1	< 0.2	35	1.2	< 0.5
474203	CBC-11-02	11	2	< 0.2	45	1.9	< 0.5
474204	CBC-11-02	6		< 0.2	63	2.1	3.8
474205	CBC-11-02	5		< 0.2	38	1.3	1
474206	CBC-11-02	3		< 0.2	45	< 0.5	4.7
474207	CBC-11-03	7		< 0.2	39	< 0.5	3.7
474208	CBC-11-03	7		< 0.2	36	0.5	3.5
474209	CBC-11-03	13		< 0.2	44	0.8	2.8
474210	CBC-11-09	2		< 0.2	65	0.7	2.9
474211	CBC-11-09	12		< 0.2	120	< 0.5	4
474212	CBC-11-09	4		< 0.2	57	< 0.5	3.3
474213	CBC-11-09	< 2		< 0.2	50	< 0.5	3.2
474214	CBC-11-09	4		< 0.2	54	< 0.5	3.6
474215	CBC-11-09	3		< 0.2	32	< 0.5	3.8
474216	CBC-11-09	2		< 0.2	36	< 0.5	3.4
474217	CBC-11-05	3	4	< 0.2	21	0.9	3.3
474218	CBC-11-05	2		< 0.2	28	< 0.5	2.8
474219	CBC-11-05	< 2		< 0.2	26	< 0.5	3.3
474220	CBC-11-05	7		< 0.2	39	< 0.5	3.9
474221	CBC-11-05	8		< 0.2	46	< 0.5	1.9
474222	CBC-11-05	3		< 0.2	29	0.7	3.6
474223	CBC-11-07a	74		< 0.2	43	0.6	1.6
474224	CBC-11-07a	72		< 0.2	41	< 0.5	2.8
474225	CBC-11-07a	24	2.8	< 0.2	33	1.5	2.5
474226	CBC-11-07a	98	2.8	< 0.2	31	0.8	2
474227	CBC-11-07a	71		< 0.2	35	< 0.5	2.3
474228	CBC-11-07a	27		< 0.2	48	< 0.5	3.5
474229	CBC-11-07a	75		< 0.2	46	< 0.5	4.2
474230	CBC-11-07b	75		< 0.2	39	1.7	1.7
474231	CBC-11-07b	98		< 0.2	38	< 0.5	3.3
474232	CBC-11-06	72		< 0.2	73	< 0.5	2.5

CHEM#	CHANNEL	Мо	Ag	In	Sn	Sb	Cs
474233	CBC-11-06	95		< 0.2	68	< 0.5	1.9
474234	CBC-11-06	84		< 0.2	80	< 0.5	1.7
474235	CBC-11-06	80		< 0.2	94	< 0.5	5.8
474236	CBC-11-06	27	2.6	< 0.2	66	0.9	1.8
474237	CBC-11-06	5	2.7	< 0.2	57	1.7	2
474238	CBC-11-06	3	3.1	< 0.2	85	4.1	2.2
474239	CBC-11-06	23		< 0.2	79	< 0.5	3.3
474240	CBC-11-06	33		< 0.2	70	0.6	1.6
474241	CBC-11-06	46		< 0.2	84	< 0.5	3.4
474242	CBC-11-10	5		< 0.2	38	1.2	0.7
474243	CBC-11-10	3		< 0.2	50	< 0.5	3.6
474244	CBC-11-10	5		< 0.2	32	< 0.5	4.1
474245	CBC-11-10	2		< 0.2	12	< 0.5	3.2
474246	CBC-11-10	3		< 0.2	168	0.8	3.5
474247	CBC-11-04	2	2.1	< 0.2	18	< 0.5	3.1
474248	CBC-11-04	< 2		< 0.2	17	< 0.5	3.3
474249	CBC-11-04	2		< 0.2	31	< 0.5	2.9
	CBC-11-04	< 2		< 0.2	19	< 0.5	3.2
474251	CBC-11-04	< 2		< 0.2	19	< 0.5	3.1
474252	CBC-11-04	159		< 0.2	40	< 0.5	3.7
474253	CBC-11-04	81		< 0.2	77	0.7	2.4
474254	CBC-11-04	71		< 0.2	44	< 0.5	3.3
474255	CBC-11-04	48		< 0.2	79	0.5	2.9
474256	CBC-11-04	47		< 0.2		< 0.5	2.4
	CBC-11-04	18		< 0.2		< 0.5	3.4
	CBC-11-04	33		< 0.2		< 0.5	1.7
	CBC-11-04	23		< 0.2		< 0.5	3.4
	CBC-11-04	58		< 0.2	84	0.6	
	CBC-11-04	20		< 0.2		< 0.5	4.3
	CBC-11-04	80		< 0.2		< 0.5	2.6
	CBC-11-04	8		< 0.2		< 0.5	5
	CBC-11-08	42		< 0.2		< 0.5	3.1
	CBC-11-08	99		< 0.2		< 0.5	2
	CBC-11-08	97		< 0.2		< 0.5	1.6
	CBC-11-08	< 2		< 0.2		< 0.5	2.7
	CBC-11-11	12		< 0.2		< 0.5	6.2
	CBC-11-11	3		< 0.2		< 0.5	5.8
	CBC-11-11	3		< 0.2		< 0.5	5.4
	CBC-11-11	3		< 0.2		< 0.5	5.5
	CBC-11-11	3		< 0.2		< 0.5	6.2
	CBC-11-09b	< 2		< 0.2		< 0.5	3.8
	CBC-11-09b	< 2		< 0.2		< 0.5	4
	CBC-11-09b	< 2		< 0.2		< 0.5	3.8
	CBC-11-09b	3		< 0.2		< 0.5	4
	CBC-11-09b	3		< 0.2		< 0.5	3.5
474278	CBC-11-09b	3		< 0.2	27	< 0.5	4.1

CHEM#	CHANNEL	Мо	Ag	In	Sn	Sb	Cs
474279	CBC-11-09b	< 2		< 0.2	28	< 0.5	4.8
474280	CBC-11-09b	5		< 0.2	28	< 0.5	5.6
474281	SZC-11-04	3		< 0.2	11	< 0.5	4.4
474282	SZC-11-04	3		< 0.2	11	< 0.5	3.5
474283	SZC-11-04	10		< 0.2	26	< 0.5	2.6
474284	SZC-11-04	3		< 0.2	27	< 0.5	2.8
474285	SZC-11-04	4		< 0.2	35	< 0.5	2.7
474286	SZC-11-04	2		< 0.2	28	< 0.5	2.5
474287	SZC-11-04	3		< 0.2	33	< 0.5	3.6
474288	SZC-11-15a	5		< 0.2	18	< 0.5	3.1
474289	SZC-11-15a	< 2	2.9	< 0.2	10	< 0.5	1.1
474290	SZC-11-15a	2		< 0.2	12	< 0.5	3
474291	SZC-11-15b	< 2		< 0.2	11	< 0.5	3.1
474292	SZC-11-15b	< 2	2.8	< 0.2	10	< 0.5	1.1
474293	SZC-11-15b	2		< 0.2	11	< 0.5	3.2
474294	SZC-11-15c	3		< 0.2	12	< 0.5	3.2
474295	SZC-11-15c	< 2	2.6	< 0.2	11	< 0.5	1.1
474296	SZC-11-15c	< 2		< 0.2	13	< 0.5	1.9
474297	SZC-11-05	3		< 0.2	16	< 0.5	3.1
474298	SZC-11-05	3		< 0.2	13	< 0.5	3.3
474299	SZC-11-05	3	2.2	< 0.2	11	< 0.5	3.4
474300	SZC-11-05	3	2.5	< 0.2	11	< 0.5	3.6
474301	SZC-11-05	5		< 0.2	15	< 0.5	3.6
474302	SZC-11-05	3		< 0.2	12	< 0.5	3.7
474303	SZC-11-09	36		< 0.2	32	0.6	2.2
474304	SZC-11-09	5		< 0.2	14	< 0.5	3
474305	SZC-11-09	3		< 0.2	12	< 0.5	3.1
474306	SZC-11-09	3	2.2	< 0.2	12	< 0.5	3.6
474307	SZC-11-09	2	1.8	< 0.2	11	< 0.5	3.8
474308	SZC-11-09	4		< 0.2		< 0.5	4
474309	SZC-11-09	3		< 0.2	10	< 0.5	4.1
474310	SZC-11-09	5		< 0.2		< 0.5	4.4
474311	SZC-11-09	4		< 0.2		< 0.5	4.6
474312	SZC-11-09	3		< 0.2		< 0.5	4.7
474313	SZC-11-09	2		< 0.2		< 0.5	4.7
474314	SZC-11-09	3		< 0.2		< 0.5	4.6
474315	SZC-11-09	2		< 0.2	11		4
474316	SZC-11-02b	7		< 0.2		< 0.5	2.1
474317	SZC-11-02b	4		< 0.2	16		4.7
474318	SZC-11-02b	5		< 0.2		< 0.5	3.1
474319	SZC-11-02b	4		< 0.2		< 0.5	1.6
474320	SZC-11-02b	5		< 0.2	25		8.5
474321	SZC-11-03a	2		< 0.2	27		3.2
474322	SZC-11-03a	< 2		< 0.2	18		3.1
474323	SZC-11-03a	8		< 0.2		< 0.5	2.3
474324	SZC-11-03a	< 2	1	< 0.2	20	1.5	4.6

CHEM #	CHANNEL	Мо	Ag	In	Sn	Sb	Cs
474325	SZC-11-03a	< 2		< 0.2	82	< 0.5	3.2
474326	SZC-11-03b	4		< 0.2	31	< 0.5	5.8
474327	SZC-11-03b	5		< 0.2	24	< 0.5	7.2
474328	SZC-11-03b	8		< 0.2	30	< 0.5	4
474329	SZC-11-03b	5		< 0.2	20	< 0.5	10.2
474330	SZC-11-06	3	1.8	< 0.2	8	< 0.5	3.3
474331	SZC-11-06	3	2	< 0.2	9	< 0.5	3.2
474332	SZC-11-06	3		< 0.2	11	< 0.5	3.5
474333	SZC-11-06	2		< 0.2	12	< 0.5	3.3
474334	SZC-11-06	3		< 0.2	11	< 0.5	3.8
474335	SZC-11-06	< 2	2.1	< 0.2	10	< 0.5	3.9
474336	SZC-11-06	3	2.1	< 0.2	9	< 0.5	4.1
474337	SZC-11-07	5		< 0.2	17	< 0.5	4.8
474338	SZC-11-07	7		< 0.2	22	< 0.5	4.4
474339	SZC-11-07	13		< 0.2	43	1.5	4.4
474340	SZC-11-07	7		< 0.2	30	< 0.5	3.7
474341	SZC-11-07	51		< 0.2	30	< 0.5	3.2
474342	SZC-11-07	9		< 0.2	26	< 0.5	2.7
474343	SZC-11-08	19		< 0.2	20	< 0.5	3.5
474344	SZC-11-08	41		< 0.2	41	< 0.5	4.9
474345	SZC-11-08	12		< 0.2	20	< 0.5	3.6
474346	SZC-11-08	3		< 0.2	12	< 0.5	3.7
474347	SZC-11-08	4		< 0.2	16	< 0.5	4.4
474348	SZC-11-10	3		< 0.2	17	< 0.5	3.5
474349	SZC-11-10	< 2		< 0.2	28	< 0.5	3.2
474350	SZC-11-10	10		< 0.2		< 0.5	3.3
474351	SZC-11-10	7		< 0.2		< 0.5	3.4
474352	SZC-11-10	20		< 0.2	44	< 0.5	2.1
474353	SZC-11-10	7		< 0.2		< 0.5	3.6
474354	SZC-11-10	4		< 0.2		< 0.5	4.2
474355	SZC-11-10	< 2		< 0.2		< 0.5	5
474356	SZC-11-10	7		< 0.2		< 0.5	4.3
474357	SZC-11-10	4		< 0.2		< 0.5	4.3
474358	SZC-11-10	3		< 0.2		< 0.5	4.9
474359	SZC-11-10	4		< 0.2		< 0.5	4.6
474360	SZC-11-10	3		< 0.2		< 0.5	4.9
474361	SZC-11-10	3		< 0.2		< 0.5	4.5
474362	SZC-11-10	4		< 0.2		< 0.5	4.5
474363	SZC-11-10	3		< 0.2		< 0.5	4
474364	SZC-11-10	4		< 0.2		< 0.5	3.8
474365	SZC-11-10	3		< 0.2		< 0.5	3.4
474366	SZC-11-10	3		< 0.2		< 0.5	3.6
474367	SZC-11-10	3		< 0.2		< 0.5	3.3
474368	SZC-11-10	5		< 0.2		< 0.5	2.2
474369	SZC-11-10	3		< 0.2		< 0.5	2.7
474370	SZC-11-10	4		< 0.2	24	< 0.5	3.3

CHEM#	CHANNEL	Мо	Ag	In	Sn	Sb	Cs
474371	SZC-11-10	< 2		< 0.2	14	< 0.5	3.3
474372	SZC-11-10	< 2		< 0.2	9	< 0.5	3.1
474373	SZC-11-10	2		< 0.2	9	< 0.5	3
474374	SZC-11-10	< 2	1.9	< 0.2	10	< 0.5	2.6
474375	SZC-11-11	< 2		< 0.2	15	< 0.5	3.2
474376	SZC-11-11	6		< 0.2	44	< 0.5	2.3
474377	SZC-11-11	3		< 0.2	19	< 0.5	2.9
474378	SZC-11-11	4		< 0.2	29	< 0.5	3.2
474379	SZC-11-11	2		< 0.2	28	< 0.5	3.5
474380	SZC-11-11	2		< 0.2	20	< 0.5	3.2
474381	SZC-11-11	5		< 0.2	26	< 0.5	3.3
474382	SZC-11-11	< 2		< 0.2	23	< 0.5	2.8
474383	SZC-11-11	< 2		< 0.2	28	< 0.5	3.1
474384	SZC-11-11	< 2		< 0.2	19	< 0.5	2.9
474385	SZC-11-11	2		< 0.2	11	< 0.5	2.8
474386	SZC-11-11	3		< 0.2	10	1.2	3
474387	SZC-11-11	4	1.6	< 0.2	9	< 0.5	3.6
474388	SZC-11-11	2	1.8	< 0.2	9	< 0.5	3.3
474389	SZC-11-11	2		< 0.2	9	< 0.5	3.7
474390	SZC-11-11	2		< 0.2	11	< 0.5	3.7
474391	SZC-11-11	2		< 0.2	13	< 0.5	3.7
474392	SZC-11-11	< 2	1.4	< 0.2	8	< 0.5	3.4
474393	SZC-11-11	3	1.7	< 0.2	10	< 0.5	3.3
474394	SZC-11-11	2		< 0.2	9	< 0.5	3.2
474395	SZC-11-11	2	1.7	< 0.2	8	< 0.5	2.9
474396	SZC-11-11	2	1.3	< 0.2	7	< 0.5	2.5
474397	SZC-11-11	2		< 0.2	10	< 0.5	2.8
474398	SZC-11-11	3		< 0.2	12	< 0.5	3
474399	SZC-11-11	3		< 0.2	11	< 0.5	3
474400	SZC-11-11	5		< 0.2	12	< 0.5	3.3
474401	SZC-11-11	3		< 0.2	16	< 0.5	3.8
474402	SZC-11-12	3		< 0.2	9	< 0.5	3.5
474403	SZC-11-12	< 2	1.7	< 0.2	11	< 0.5	2.5
474404	SZC-11-12	< 2	1.6	< 0.2	12	< 0.5	2.1
474405	SZC-11-12	2		< 0.2	11	< 0.5	3.5
474406	SZC-11-12	2		< 0.2	9	< 0.5	3.5
474407	SZC-11-12	3		< 0.2	9	< 0.5	3.5
474408	SZC-11-12	3		< 0.2	9	< 0.5	3.7
474409	SZC-11-02a	< 2	1	< 0.2	8	< 0.5	7.9
474410	SZC-11-02a	7	1.5	< 0.2	35	< 0.5	5.3
474411	SZC-11-02a	3	1	< 0.2	11	< 0.5	6.7
474412	SZC-11-02a	< 2	0.8	< 0.2	10	< 0.5	8.3
474413	SZC-11-02a	3	1.9	< 0.2	54	< 0.5	2.6
474414	SZC-11-02a	2	1.3	< 0.2	22	1.1	5.8
474415	SZC-11-02a	< 2	0.6	< 0.2	18	1.7	5.5
474416	SZC-11-02a	3	1.4	< 0.2	64	1.1	4.9

CHEM#	CHANNEL	Мо	Ag	In	Sn	Sb	Cs
474417	SZC-11-02a	3		< 0.2	57	1.7	3
474418	SZC-11-02a	3	1.3	< 0.2	63	2.6	6.7
474419	SZC-11-02a	< 2	0.6	< 0.2	13	0.8	5.3
474420	MRC-11-04	27	3.9	< 0.2	128	1	2.1
474421	MRC-11-04	13	3.3	< 0.2	88	3.1	4.4
474422	MRC-11-04	29		< 0.2	116	0.8	2.5
474423	MRC-11-04	28		< 0.2	113	0.9	3
474424	MRC-11-04	6	2.1	< 0.2	53	3	4.3
474425	MRC-11-04	20		< 0.2	106	< 0.5	2.4
474426	MRC-11-04	37	3.4	< 0.2	74	2.4	2.8
474427	MRC-11-04	33		< 0.2	74	1.8	1.8
474428	MRC-11-04	18	2.9	< 0.2	95	4	2.8
474429	MRC-11-04	11		< 0.2	126	1.3	3
474430	MRC-11-04	10		< 0.2	138	0.8	3.3
474431	SZC-11-16	< 2		< 0.2	24	< 0.5	4.9
474432	SZC-11-16	< 2		< 0.2	21	< 0.5	5
474433	SZC-11-16	< 2		< 0.2	18	< 0.5	4.2
474434	SZC-11-16	< 2		< 0.2	23	< 0.5	3.9
474435	SZC-11-16	< 2		< 0.2	27	< 0.5	4.3
474436	SZC-11-16	< 2		< 0.2	25	< 0.5	2.9
474437	SZC-11-16	< 2		< 0.2	28	< 0.5	2.8
474438	SZC-11-16	< 2	1.5	< 0.2	15	< 0.5	1.4
474439	SZC-11-16	2		< 0.2		< 0.5	3
474440	SZC-11-16	3		< 0.2	27	< 0.5	3.3
474441	SZC-11-16	5		< 0.2	29	0.5	3.5
474442	SZC-11-16	< 2		< 0.2	14	< 0.5	3.3
474443	SZC-11-16	< 2		< 0.2	27	< 0.5	1.9
474444	SZC-11-16	< 2		< 0.2	50	< 0.5	2.2
474445	SZC-11-16	< 2		< 0.2	27	< 0.5	3
474446	SZC-11-16	< 2		< 0.2	19	< 0.5	5.9
474447	SZC-11-16	3		< 0.2	37	< 0.5	3.3
474448	SZC-11-16	3		< 0.2		< 0.5	3.6
474449	SZC-11-16	3		< 0.2		< 0.5	3.4
474450	SZC-11-16	4		< 0.2		< 0.5	3.5
474451	MRC-11-03	24		< 0.2	93		2.7
474452	MRC-11-03	11		< 0.2	101		2.2
474453	MRC-11-03	15		< 0.2		< 0.5	1.8
474454	MRC-11-03	4		< 0.2		< 0.5	1.3
474455	MRC-11-03	11		< 0.2		< 0.5	1.8
474456	MRC-11-03	3		< 0.2	104		1.9
474457	MRC-11-03	11		< 0.2		< 0.5	2.4
474458	MRC-11-03	12		< 0.2		< 0.5	2.5
474459	MRC-11-03	13		< 0.2	68		2.8
474460	MRC-11-03	9		< 0.2		< 0.5	2.6
474461	MRC-11-05	18	4.6	< 0.2	104		2.7
474462	MRC-11-05	13		< 0.2	115	0.6	3.8

CHEM#	CHANNEL	Мо	Ag	In	Sn	Sb	Cs
474463	MRC-11-05	10		< 0.2	113	0.7	2.9
474464	MRC-11-05	14		< 0.2	123	0.6	3.1
474465	MRC-11-05	19		< 0.2	134	0.9	3.1
474466	MRC-11-05	31		< 0.2	170	< 0.5	3.3
474467	MRC-11-05	24		< 0.2	159	0.7	2.1
474468	MRC-11-05	11	3.5	< 0.2	76	4.7	2.4
474469	MRC-11-05	19		< 0.2	115	< 0.5	2.5
474470	MRC-11-05	9		< 0.2	136	1.5	2.7
474471	MRC-11-05	22		< 0.2	122	1.5	2.3
474472	MRC-11-02	< 2		< 0.2	93	< 0.5	2.1
474473	MRC-11-02	< 2		< 0.2	58	1.5	1.6
474474	MRC-11-02	16		< 0.2	34	4.2	2.3
474475	MRC-11-02	15		< 0.2	56	< 0.5	3.2
474476	MRC-11-02	10		< 0.2	45	0.8	3.9
474477	MRC-11-02	< 2	3.9	< 0.2	42	3.2	2
474478	MRC-11-02	< 2	3.4	< 0.2	47	4.3	1.8
474479	BRC-11-06	3		< 0.2	54	< 0.5	5.3
474480	BRC-11-06	5		< 0.2	61	< 0.5	3.3
474481	BRC-11-06	< 2		< 0.2	46	< 0.5	5.1
474482	BRC-11-06	5		< 0.2	86	< 0.5	2.2
474483	BRC-11-06	2		< 0.2	78	< 0.5	3.3
474484	BRC-11-06	4		< 0.2	45	< 0.5	4.9
474485	BRC-11-06	< 2		< 0.2	54	< 0.5	5.7
474486	MRC-11-01	21	3.1	< 0.2	41	< 0.5	1.9
474487	MRC-11-01	35		< 0.2	62	< 0.5	1.5
474488	MRC-11-01	30		< 0.2	56	< 0.5	2.8
474489	MRC-11-01	15		< 0.2	47	2.9	2
474499	BRC-11-02a	5		< 0.2	50	< 0.5	3.1
474500	BRC-11-02a	15		< 0.2	77	< 0.5	2.4
474501	BRC-11-02b	12		< 0.2	77	< 0.5	1.9
474502	BRC-11-02b	15		< 0.2	90	< 0.5	1.7
474503	BRC-11-02b	10		< 0.2	54	< 0.5	6.1
474504	BRC-11-05	50		< 0.2	89	< 0.5	1.8
474505	BRC-11-05	13		< 0.2	84	< 0.5	2.2
474506	BRC-11-05	14		< 0.2	49	< 0.5	2.4
474507	BRC-11-05	10		< 0.2	64	< 0.5	3.9
474508	BRC-11-05	14		< 0.2	59	< 0.5	1.6
474509	BRC-11-05	50		< 0.2	55	< 0.5	2.7
474510	BRC-11-01	64		< 0.2	120	< 0.5	2.3
474511	BRC-11-01	4	1.7	< 0.2	6	< 0.5	5.7
474512	BRC-11-01	10		< 0.2	33	1	1
474513	BRC-11-01	9		< 0.2	37	2	2
474514	BRC-11-01	17		< 0.2	54	4.2	1.6
474515	BRC-11-01	20		< 0.2	75	1.1	1.9
474516	BRC-11-01	24		< 0.2	83	< 0.5	1.8
474517	BRC-11-01	20		< 0.2	72	0.9	2.4

CHEM #	CHANNEL	Мо	Ag	In	Sn	Sb	Cs
474518	BRC-11-01	19		< 0.2	71	0.6	2.8
474519	BRC-11-01	22		< 0.2	53	< 0.5	1.8
474520	BRC-11-01	10		< 0.2	36	< 0.5	2.8
474521	BRC-11-03a	28		< 0.2	50	< 0.5	2.4
474522	BRC-11-03a	16		< 0.2	38	< 0.5	2.7
474523	BRC-11-03a	24		< 0.2	26	< 0.5	0.9
474524	BRC-11-03a	16		< 0.2	54	< 0.5	2.3
474525	BRC-11-03a	19		< 0.2	88	0.6	2.9
474526	BRC-11-03b	16		< 0.2	97	< 0.5	4.9
474527	BRC-11-03b	20		< 0.2	68	1	5
474528	BRC-11-03b	14		< 0.2	68	0.7	5.2
474529	BRC-11-03b	17		< 0.2	75	< 0.5	3.7
474530	BRC-11-03b	14		< 0.2	71	0.7	1.9
474531	BRC-11-03b	24		< 0.2	58	0.6	2.5
474611	MRC-11-06	21		< 0.2	101	< 0.5	2
474612	MRC-11-06	21		< 0.2	96	< 0.5	3.7
474613	MRC-11-06	27		< 0.2	63	0.8	6
474614	MRC-11-06	22		< 0.2	71	0.5	4.1
474615	MRC-11-06	23		< 0.2	69	0.6	4.8
474616	MRC-11-06	48		< 0.2	77	0.7	2.3
474617	MRC-11-06	27		< 0.2	81	0.7	4.4
474618	MRC-11-06	41		< 0.2	125	< 0.5	1.5
474619	MRC-11-06	22		< 0.2	79	< 0.5	4.5
474620	MRC-11-06	35		< 0.2	74	0.7	3.6
474621	MRC-11-06	33		< 0.2	87	0.9	2.1
474622	MRC-11-06	17		< 0.2	79	< 0.5	1.9
474623	MRC-11-06	23		< 0.2	81	< 0.5	3.1
474624	MRC-11-06	22		< 0.2	113	< 0.5	2.7
474625	MRC-11-06	17		< 0.2	95	0.7	2.7
474626	MRC-11-06	14		< 0.2	92	< 0.5	2.6
4744490	BRC-11-04	< 2		< 0.2	35	1.8	7.1
4744491	BRC-11-04	< 2		< 0.2		< 0.5	1.3
4744492	BRC-11-04	5		< 0.2	29	< 0.5	4.4
4744493	BRC-11-04	8		< 0.2	57	< 0.5	4.2
4744494	BRC-11-04	6	2.8	< 0.2	34	1.2	4.5
4744495	BRC-11-04	6	3.2	< 0.2	33	< 0.5	3.6
4744496	BRC-11-04	5		< 0.2	38		2.6
4744497	BRC-11-04	6		< 0.2	62	< 0.5	1.6
4744498	BRC-11-04	< 2		< 0.2	10	0.8	5.5
474565	AMC-11-05	9		< 0.2	21	< 0.5	2.1
474566	AMC-11-05	3		< 0.2	18	< 0.5	1.7
474567	AMC-11-05	< 2		< 0.2		< 0.5	1.6
474568	AMC-11-05	4		< 0.2		< 0.5	1
474569	AMC-11-05	6		< 0.2		< 0.5	< 0.5
474570	AMC-11-05	46	2.9	< 0.2	31	< 0.5	0.8
474571	AMC-11-01	4		< 0.2	13	< 0.5	3

CHEM #	CHANNEL	Мо	Ag	In	Sn	Sb	Cs
474572	AMC-11-01	3		< 0.2	14	< 0.5	3
474573	AMC-11-01	3		< 0.2	16	< 0.5	3.4
474574	AMC-11-01	4		< 0.2	16	< 0.5	3.8
474575	AMC-11-01	4		< 0.2	17	< 0.5	4
474576	AMC-11-02	4		< 0.2	15	< 0.5	4.5
474577	AMC-11-02	5		< 0.2	19	< 0.5	4
474578	AMC-11-02	6		< 0.2	23	< 0.5	4.2
474593	AMC-11-04	5		< 0.2	15	< 0.5	4.5
474594	AMC-11-04	8		< 0.2	17	< 0.5	4.4
474595	AMC-11-04	6		< 0.2	15	< 0.5	4.7
474596	AMC-11-04	7		< 0.2	31	< 0.5	3.9
474597	AMC-11-04	5		< 0.2	13	< 0.5	5.1
474598	AMC-11-04	5		< 0.2	13	< 0.5	4.3
474599	AMC-11-03	5		< 0.2	17	< 0.5	3.2
474600	AMC-11-03	11		< 0.2	24	< 0.5	3.7
474601	AMC-11-03	9		< 0.2	22	< 0.5	4
474602	AMC-11-03	7		< 0.2	17	< 0.5	4.1
474603	AMC-11-03	8		< 0.2	20	< 0.5	3.6
474604	AMC-11-03	7		< 0.2	21	< 0.5	3.9
474605	AMC-11-03	5		< 0.2	14	< 0.5	3.6
474606	AMC-11-03	4	5.7	< 0.2	12	< 0.5	3.5
474607	AMC-11-03	3	5.5	< 0.2	11	< 0.5	3.3
474608	AMC-11-03	3		< 0.2	10	< 0.5	3.3
474609	AMC-11-03	4		< 0.2	15	< 0.5	3.7
474610	AMC-11-03	4		< 0.2	24	< 0.5	2.8

CHEM#	CHANNEL	Ва	Bi	La	Ce	Pr	Nd
104201	CBC-10-06a	1676	< 0.4	149	299	39.1	169
104202	CBC-10-06a	1477	< 0.4	156	330	37.3	147
104203	CBC-10-06a	936	< 0.4	265	566	64.8	267
104204	CBC-10-06a	735	< 0.4	240	524	58.5	244
104205	CBC-10-06a	634	0.4	498	1010	117	487
104206	CBC-10-06a	706	< 0.4	512	1010	112	449
104207	CBC-10-06a	745	< 0.4	310	689	77.9	314
104208	CBC-10-06a	434	< 0.4	308	751	91.3	402
104209	CBC-10-06a	258	< 0.4	175	333	50.6	223
104210	CBC-10-06a	252	< 0.4	203	418	54.8	233
104211	CBC-10-06a	183	< 0.4	278	623	72.9	291
104212	CBC-10-06a	202	< 0.4	252	564	65.9	282
104213	CBC-10-06a	191	< 0.4	203	417	54.3	234
104214	CBC-10-06a	82	< 0.4	146	232	26.7	106
104215	CBC-10-06a	60	< 0.4	78	138	16.6	66.2
104216	CBC-10-06a	40	< 0.4	172	332	38.4	154
104217	CBC-10-07	412	< 0.4	123	248	32.6	137
104218	CBC-10-07	621	< 0.4	175	353	46.2	195
104219	CBC-10-07	751	< 0.4	114	237	31.7	135
104220	CBC-10-07	452	< 0.4	145	304	40.2	174
104221	CBC-10-07	226	< 0.4	250	600	72.3	322
104222	CBC-10-07	209	< 0.4	235	542	64.1	281
104223	CBC-10-07	179	0.6	264	621	74.4	329
104224	CBC-10-07	196	< 0.4	304	711	85.1	375
104225	CBC-10-07	157	< 0.4	219	461	61	267
104226	CBC-10-07	204	< 0.4	157	328	43.9	191
104227	CBC-10-08	154	< 0.4	318	735	86.8	380
104228	CBC-10-08	181	< 0.4	340	792	93.9	411
104229	CBC-10-08	117	< 0.4	200	404	51.6	224
104230	CBC-10-08	136	< 0.4	275	616	71.7	309
104231	CBC-10-08	188	< 0.4	330	753	88.1	383
104232	CBC-10-08	151	< 0.4	281	649	77.2	334
104233	CBC-10-08	138	< 0.4	333	779	92.3	401
104234	CBC-10-08	152	< 0.4	243	491	63.3	274
104235	CBC-10-08	151	< 0.4	251	510	66.6	289
104236	CBC-10-08		< 0.4	210	431	56.5	242
104237	CBC-10-08	117	< 0.4	174	354	45.9	195
104238	CBC-10-08	133	< 0.4	227	475	63	274
104239	CBC-10-08	135	< 0.4	272	631	74.6	329
104240	CBC-10-08	145	< 0.4	354	830	99.5	440
104241	CBC-10-08	145	< 0.4	344	804	96.1	428
104242	CBC-10-08	129	< 0.4	288	684	81.7	364
104243	CBC-10-08	135	< 0.4	247	520	69.5	306
104244	CBC-10-08	133	< 0.4	204	425	56.1	244
104245	CBC-10-08	149	< 0.4	199	413	54.6	235
104246	CBC-10-08	141	< 0.4	197	402	52.2	225

CHEM#	CHANNEL	Ва	Bi	La	Ce	Pr	Nd
104247	CBC-10-08	124	< 0.4	205	425	55.7	242
104248	CBC-10-08	167	< 0.4	285	660	77.4	339
104249	CBC-10-08	143	< 0.4	259	547	70.2	287
104250	CBC-10-08	136	< 0.4	297	646	84.5	351
104251	CBC-10-08	136	< 0.4	258	558	72.2	294
104252	CBC-10-08	145	< 0.4	266	573	73.8	302
104253	CBC-10-08	132	< 0.4	292	632	81.5	339
104254	CBC-10-09	130	< 0.4	276	587	74.9	300
104255	CBC-10-09	168	< 0.4	290	619	79.6	325
104256	CBC-10-09	156	0.4	160	376	52	228
104257	CBC-10-09	207	< 0.4	207	459	60.3	253
104258	CBC-10-09	448	< 0.4	747	1520	185	701
104259	CBC-10-09	1536	< 0.4	447	725	80.3	292
104260	CBC-10-09	1593	< 0.4	255	500	61	236
104261	CBC-10-09	378	0.5	426	820	99.5	391
104262	CBC-10-09	104	0.8	166	326	42.1	170
104263	CBC-10-09	135	< 0.4	118	280	40.2	178
104264	CBC-10-09	149	0.6	258	610	83.2	353
104265	CBC-10-09	206	0.7	224	533	71.5	302
104266	CBC-10-09	310	< 0.4	208	472	61.5	252
104267	CBC-10-09	334	< 0.4	216	476	62.2	259
104268	CBC-10-09	394	< 0.4	212	455	58	238
104269	CBC-10-10	206	< 0.4	235	521	69.7	290
104270	CBC-10-10	199	< 0.4	289	621	79.2	325
104271	CBC-10-10	283	< 0.4	167	355	45.4	182
104272	CBC-10-10	182	< 0.4	159	329	43.7	179
104273	CBC-10-10	160	< 0.4	179	379	49	201
104274	CBC-10-10	165	< 0.4	311	670	86.7	362
104275	CBC-10-10	181	< 0.4	199	426	54.1	224
104276	CBC-10-10	197	< 0.4	193	415	53.6	221
104277	CBC-10-10	259	< 0.4	219	489	64	267
104278	CBC-10-10	108	0.6	267	578	74.3	309
104279	CBC-10-10	121	0.9	264	589	76.3	317
104280	CBC-10-10	201	< 0.4	166	370	48.1	197
104281	CBC-10-10	191	< 0.4	200	419	53.6	218
104282	CBC-10-10	85	< 0.4	194	473	65.1	292
104283	CBC-10-10	77	< 0.4	298	700	95	410
104284	CBC-10-10	90	< 0.4	490	1230	176	803
104285	CBC-10-10	96	< 0.4	405	1010	147	682
104286	CBC-10-10	114	< 0.4	1880	3900	507	1980
104287	CBC-10-10	77	< 0.4	1360	2800	358	1370
104288	CBC-10-11b	1840	< 0.4	142	327	37.9	161
104289	CBC-10-11b	2091	< 0.4	162	388	45.4	195
104290	CBC-10-11b	1087	< 0.4	458	1180	141	601
104291	CBC-10-11b	393	< 0.4	183	429	48.4	199
104292	CBC-10-11b	320	< 0.4	279	693	82.1	348

CHEM #	CHANNEL	Ва	Bi	La	Ce	Pr	Nd
104293	CBC-10-11b	215	< 0.4	333	705	79.2	322
104294	CBC-10-11b	157	< 0.4	216	511	58.8	246
104295	CBC-10-11b	142	< 0.4	294	654	76.2	313
104296	CBC-10-11b	244	< 0.4	179	441	51.2	217
104297	CBC-10-11b	479	< 0.4	173	424	48.6	206
104298	CBC-10-11b	686	< 0.4	135	310	37.3	156
104299	CBC-10-11b	406	< 0.4	155	328	36.2	145
104300	CBC-10-11b	472	< 0.4	187	421	47.9	202
104326	CBC-10-11b	1283	< 0.4	373	885	103	437
104327	CBC-10-11b	1277	< 0.4	151	370	43.4	191
104328	CBC-10-11b	277	< 0.4	125	296	36	152
104329	CBC-10-11b	225	< 0.4	120	279	33.3	139
104330	CBC-10-11b	174	< 0.4	96.7	228	27.6	114
104331	CBC-10-11b	166	< 0.4	96.3	225	27.4	115
104332	CBC-10-11b	235	< 0.4	151	371	44.3	190
104333	CBC-10-11b	199	< 0.4	151	376	45.4	198
104334	CBC-10-11b	451	< 0.4	276	600	66.8	276
104335	CBC-10-11b	323	< 0.4	191	469	55.8	239
104336	CBC-10-11b	469	< 0.4	385	973	115	498
104337	CBC-10-11b	450	< 0.4	352	844	98.2	421
104338	CBC-10-11b	655	< 0.4	382	964	115	495
104339	CBC-10-11b	390	< 0.4	152	326	37.8	156
104340	CBC-10-11b	1165	0.7	488	1310	157	689
104341	CBC-10-11b	1309	< 0.4	179	453	54.2	236
104342	CBC-10-11b	345	< 0.4	236	538	66.9	285
104343	CBC-10-11b	448	< 0.4	165	373	44.7	190
104344	CBC-10-11b	266	< 0.4	282	684	79.1	334
104345	CBC-10-11b	280	< 0.4	418	993	115	485
104346	CBC-10-11b	404	< 0.4	484	1260	150	643
104347	CBC-10-11b	723	< 0.4	377	917	107	448
104348	CBC-10-11b	649	0.5	446	1050	120	494
416155	CBC-10-11a	771	< 0.4	99	220	26.9	116
416156	CBC-10-11a	815	< 0.4	101	222	27.4	119
416157	CBC-10-11a	143	< 0.4	338	778	96	411
416158	CBC-10-11a	106	< 0.4	612	1360	163	643
416159	CBC-10-11a	105	< 0.4	186	415	50.9	216
416160	CBC-10-11a	153	< 0.4	132	282	33.6	138
416161	CBC-10-11a	202	< 0.4	156	342	41.8	177
416162	CBC-10-11a	332	< 0.4	159	350	42.1	177
416163	CBC-10-11a	473	< 0.4	130	280	33.8	142
416164	CBC-10-11a	328	< 0.4	171	384	46.5	197
416165	CBC-10-11a	251	< 0.4	200	426	50.1	207
416166	CBC-10-11a	63	< 0.4	101	219	26.2	108
416167	CBC-10-11a	130	< 0.4	159	357	43.3	189
416168	CBC-10-11a	79	< 0.4	1010	2270	291	1230
416169	CBC-10-11a	155	< 0.4	241	535	64.7	278

CHEM#	CHANNEL	Ва	Bi	La	Ce	Pr	Nd
416170	CBC-10-11a	197	< 0.4	203	449	54.4	232
416171	CBC-10-12	173	< 0.4	457	1060	135	577
416172	CBC-10-12	163	< 0.4	414	898	109	456
416173	CBC-10-12	102	< 0.4	248	543	66.2	280
416174	CBC-10-12	487	< 0.4	133	287	34.5	147
416175	CBC-10-12	158	< 0.4	348	809	104	464
416176	CBC-10-12	259	< 0.4	174	383	46.8	197
416177	CBC-10-12	138	< 0.4	912	1820	224	916
416178	CBC-10-12	363	< 0.4	167	366	44	186
416179	CBC-10-12	417	< 0.4	149	318	38.6	161
416180	CBC-10-12	146	< 0.4	178	409	51.9	228
416181	CBC-10-12	153	< 0.4	153	340	42.2	182
416182	CBC-10-12	136	< 0.4	170	372	45.5	191
416183	CBC-10-12	246	< 0.4	454	1060	134	589
416184	CBC-10-12	68	< 0.4	586	1250	158	678
416185	CBC-10-12	118	< 0.4	134	324	43.2	190
416186	CBC-10-12	161	< 0.4	183	422	54.6	233
416187	CBC-10-12	162	< 0.4	168	387	52.3	230
416188	CBC-10-13	278	< 0.4	230	563	76.9	341
416189	CBC-10-13	263	< 0.4	209	495	66.3	291
416190	CBC-10-13	286	< 0.4	137	306	39.3	165
416191	CBC-10-13	253	< 0.4	128	286	37.2	157
416192	CBC-10-13	180	< 0.4	216	511	66.8	296
416193	CBC-10-13	181	< 0.4	227	549	73.5	320
416194	CBC-10-13	273	< 0.4	99.8	228	29.8	127
416195	CBC-10-13	347	< 0.4	105	241	32	137
416196	CBC-10-13	336	< 0.4	125	279	35.5	150
416197	CBC-10-13	396	< 0.4	117	260	33.4	141
416198	CBC-10-13	347	< 0.4	119	265	34	146
416199	CBC-10-13	268	< 0.4	107	244	31.8	139
416200	CBC-10-13	336	< 0.4	139	305	38.9	162
416201	CBC-10-14	124	< 0.4	160	330	40.6	171
416202	CBC-10-14	95	< 0.4	122	262	31.7	132
416203	CBC-10-14	121	< 0.4	152	337	41.8	178
416204	CBC-10-14	157	< 0.4	124	273	34.3	145
416205	CBC-10-14	177	< 0.4	150	330	42.3	178
416206	CBC-10-14	210	< 0.4	128	270	33.8	143
416207	CBC-10-14	182	< 0.4	178	419	53.6	230
416208	CBC-10-14	213	< 0.4	153	348	43.4	185
416209	CBC-10-14	233	< 0.4	146	320	39.9	166
416210	CBC-10-14	216	< 0.4	141	316	39.3	167
416211	CBC-10-14	174	< 0.4	139	311	39.8	168
416212	CBC-10-14	182	< 0.4	275	642	83.3	359
416213	CBC-10-14	132	< 0.4	138	308	39.6	169
416214	CBC-10-14	157	< 0.4	139	311	39.3	161
416215	CBC-10-14	184	< 0.4	137	289	35.2	141

CHEM#	CHANNEL	Ва	Bi	La	Ce	Pr	Nd
416216	CBC-10-14	129	< 0.4	132	283	34.4	139
416217	CBC-10-14	134	< 0.4	130	275	33.5	137
416218	CBC-10-14	147	< 0.4	161	351	43.8	183
416219	CBC-10-14	147	< 0.4	163	359	45	184
416220	CBC-10-14	128	< 0.4	243	557	71.6	301
416221	CBC-10-14	217	< 0.4	380	949	128	551
416222	CBC-10-14	177	< 0.4	323	723	89.8	390
416223	CBC-10-14	199	< 0.4	301	677	84	362
416224	CBC-10-14	141	< 0.4	220	510	63.4	271
416225	CBC-10-14	121	< 0.4	226	496	59.5	249
416226	CBC-10-15	550	< 0.4	110	242	29.6	127
416227	CBC-10-15	523	< 0.4	124	271	33.1	142
416228	CBC-10-15	523	< 0.4	115	250	30.8	132
416229	CBC-10-15	482	< 0.4	131	289	36	156
416230	CBC-10-15	527	< 0.4	135	294	36	154
416231	CBC-10-15	468	< 0.4	131	287	35.5	152
416232	CBC-10-15	412	< 0.4	158	345	42.8	180
416233	CBC-10-15	236	< 0.4	1310	2530	279	1030
416234	CBC-10-15	335	< 0.4	182	402	48.7	212
416235	CBC-10-15	308	< 0.4	262	571	68.8	290
416236	CBC-10-15	370	< 0.4	198	435	53.1	232
416237	CBC-10-15	386	< 0.4	161	357	44	188
416238	CBC-10-15	275	< 0.4	145	315	38	161
416239	CBC-10-15	402	< 0.4	126	270	32.7	137
416240	CBC-10-15	476	< 0.4	127	275	33.7	141
416241	CBC-10-15	488	< 0.4	129	275	33.8	143
416242	CBC-10-15	466	< 0.4	118	253	30.5	129
416243	CBC-10-15	434	< 0.4	131	277	33.1	142
416244	CBC-10-16	418	0.6	515	1110	135	580
416245	CBC-10-16	225	< 0.4	348	748	90.4	386
416246	CBC-10-16	109	< 0.4	128	267	30.6	124
416247	CBC-10-16	54	< 0.4	157	304	33.4	127
416248	CBC-10-16	203		426	1050		630
416249	CBC-10-16	55		341	780	95.8	421
416250	CBC-10-16	108	< 0.4	268	665	84.9	380
416251	CBC-10-16	55	< 0.4	395	825	99.2	408
416252	CBC-10-16	93	< 0.4	341	758	97.9	434
416253	CBC-10-16	156	< 0.4	213	489	62.5	278
416254	CBC-10-16	519	< 0.4	448	1010	133	592
416255	CBC-10-16	292	< 0.4	542	1200	150	629
416256	CBC-10-16	457	< 0.4	556	1300	171	743
416257	CBC-10-16	383	< 0.4	435	946		470
416258	CBC-10-16	266	< 0.4	295	637	74.8	298
416259	CBC-10-16	172	< 0.4	196	407	48.1	196
416260	CBC-10-16	133	< 0.4	171	358	42.4	173
416261	CBC-10-16	168	< 0.4	134	280	32.8	135

CHEM#	CHANNEL	Ва	Bi	La	Ce	Pr	Nd
416262	CBC-10-16	323	< 0.4	120	258	31.3	133
416263	CBC-10-18a	173	1.3	735	1700	222	1020
416264	CBC-10-18a	135	0.8	364	1000	137	651
416265	CBC-10-18a	97	< 0.4	220	542	67.5	282
416266	CBC-10-18a	87	< 0.4	1350	3410	458	1900
416267	CBC-10-18a	122	0.5	279	755	99.1	433
416268	CBC-10-18a	105	< 0.4	282	693	85.9	354
416269	CBC-10-18a	102	0.5	272	655	81.1	332
416270	CBC-10-18a	100	< 0.4	267	626	76.2	312
416271	CBC-10-18a	91	< 0.4	232	511	60	239
416272	CBC-10-18a	90	0.4	205	482	58.9	241
416273	CBC-10-18a	118	< 0.4	334	786	97	405
416274	CBC-10-18a	93	< 0.4	297	656	77.6	309
416275	CBC-10-18a	88	< 0.4	299	695	84.2	341
416276	CBC-10-18a	67	< 0.4	335	735	85.7	341
416277	CBC-10-18b	73	< 0.4	734	1830	240	981
416278	CBC-10-18b	83	< 0.4	2050	5150	693	2850
416279	CBC-10-18b	66	< 0.4	2080	5480	737	3070
416280	CBC-10-18b	98	< 0.4	256	589	70.5	285
416782	MBC-10-01	673	< 0.4	182	366	44.2	182
416783	MBC-10-01	739	< 0.4	374	725	83.5	330
416784	MBC-10-01	477	< 0.4	276	575	69	285
416785	MBC-10-01	496	< 0.4	410	908	114	474
416786	MBC-10-01	344	< 0.4	340	756	93.6	402
416787	MBC-10-01	171	< 0.4	145	287	33	133
416788	MBC-10-01	266	0.5	567	1150	140	573
416789	MBC-10-01	302	2.1	1310	2040	248	950
416790	MBC-10-01	297	0.6	501	1040	122	506
416791	MBC-10-01	284	0.7	437	957	121	522
416792	MBC-10-01	128	< 0.4	436	893	109	449
416793	MBC-10-01	187	< 0.4	475	1010	126	539
416794	MBC-10-01	187	< 0.4	495	1010	122	504
416795	MBC-10-01	404	0.8	423	895	110	462
416796	MBC-10-01	385	< 0.4	273	568	70.8	295
416797	MBC-10-01	532	< 0.4	305	649	79.9	335
416798	MBC-10-01	553	< 0.4	205	426	52.9	221
423637	CBC-10-01	720	< 0.4	239	541	64.7	285
423638	CBC-10-01	412	< 0.4	240	544	64.2	280
423639	CBC-10-01	265	< 0.4	221	491	57.4	248
423640	CBC-10-01	195	< 0.4	188	419	49.7	217
423641	CBC-10-01	177	< 0.4	253	578	69	304
423642	CBC-10-01	130	< 0.4	158	381	46.9	216
423643	CBC-10-01	197	< 0.4	177	412	50.2	235
423644	CBC-10-01	216	< 0.4	247	542	64.1	279
423645	CBC-10-01	280	< 0.4	272	587	68.1	293
423646	CBC-10-01	253	< 0.4	203	449	52.6	228

CHEM#	CHANNEL	Ва	Bi	La	Ce	Pr	Nd
423647	CBC-10-01	274	< 0.4	201	457	54.3	238
423648	CBC-10-01	367	< 0.4	224	513	61.5	272
423649	CBC-10-01	327	< 0.4	196	453	54.5	242
423666	CBC-10-02	132	0.5	289	695	84.7	385
423667	CBC-10-02	131	0.6	243	575	68.8	307
423668	CBC-10-02	94	0.7	167	384	45.9	205
423669	CBC-10-02	142	0.5	210	517	63.7	291
423670	CBC-10-02	152	0.5	272	679	84	387
423671	CBC-10-02	99	< 0.4	204	494	60.7	282
423672	CBC-10-02	112	0.6	245	600	74.1	340
423673	CBC-10-02	92	0.7	312	784	97.2	448
423674	CBC-10-02	98	0.6	308	754	92.8	425
423675	CBC-10-02	97	0.5	307	720	88	382
423676	CBC-10-02	80	< 0.4	332	773	94.9	401
423677	CBC-10-02	93	< 0.4	308	721	89.6	390
423678	CBC-10-02	77	0.4	185	423	52.5	226
423679	CBC-10-03	216	< 0.4	219	510	63.1	272
423680	CBC-10-03	263	< 0.4	303	644	76.6	314
423681	CBC-10-03	340	< 0.4	248	540	64.7	262
423682	CBC-10-03	655	< 0.4	204	438	51.7	211
423683	CBC-10-03	723	< 0.4	272	606	72.3	296
423684	CBC-10-03	517	< 0.4	237	528	64.1	263
423685	CBC-10-03	233	0.5	295	616	71.4	285
423686	CBC-10-03	332	< 0.4	221	515	63.9	276
423687	CBC-10-03	167	< 0.4	266	594	71.5	305
423688	CBC-10-03	183	< 0.4	234	557	70.8	315
423689	CBC-10-03	117	0.4	405	814	92.7	378
423690	CBC-10-03	123	0.4	181	437	56.5	253
423691	CBC-10-03	130	0.6	236	591	76.4	336
423692	CBC-10-03	161	0.5	216	530	68.1	301
423693	CBC-10-03	117	< 0.4	868	1630	177	663
423694	CBC-10-03	192	< 0.4	766	1460	166	647
423695	CBC-10-03	184	< 0.4	201	477	59.8	260
423708	CBC-10-04	141	0.5	269	618		298
423709	CBC-10-04	183	0.5	268	609	70.1	294
423710	CBC-10-04	127	0.6	338	779	89	374
423711	CBC-10-04	134	< 0.4	315	712	80.8	335
423712	CBC-10-04	163	0.5	238	517	57.1	235
423713	CBC-10-04	141	0.8	324	742	85.7	359
423714	CBC-10-04	121	0.6	329	756	85.7	355
423715	CBC-10-04	124	0.6	330	757	86	360
423716	CBC-10-04	106	0.5	267	600	68	283
423717	CBC-10-04	105	0.5	285	640	71.8	297
423718	CBC-10-04	137	0.4	307	703	79.5	329
423719	CBC-10-04	132	< 0.4	351	809	91.9	383
423720	CBC-10-04	82	< 0.4	241	518	56.8	227

CHEM #	CHANNEL	Ва	Bi	La	Ce	Pr	Nd
423721	CBC-10-05	171	< 0.4	217	521	60	253
423722	CBC-10-05	217	< 0.4	157	383	44.3	184
423723	CBC-10-05	157	< 0.4	169	376	41.6	168
423724	CBC-10-05	119	0.5	278	647	74.3	313
423725	CBC-10-05	124	0.6	342	787	88.5	374
423726	CBC-10-05	166	< 0.4	287	643	72.2	298
423727	CBC-10-05	189	< 0.4	235	523	59.5	246
423728	CBC-10-05	184	< 0.4	295	641	68.6	271
423729	CBC-10-05	168	< 0.4	283	628	69.1	283
423730	CBC-10-05	190	< 0.4	261	591	66.6	277
423731	CBC-10-05	207	< 0.4	177	424	48.8	202
423732	CBC-10-05	112	< 0.4	113	254	27.8	111
423733	CBC-10-05	173	< 0.4	233	562	66.2	291
423734	CBC-10-05	163	< 0.4	249	582	67.2	282
423735	CBC-10-05	194	< 0.4	155	366	43	179
423736	CBC-10-05	193	< 0.4	214	512	60.1	259
423737	CBC-10-05	173	< 0.4	203	446	49.4	202
423738	CBC-10-05	161	< 0.4	186	464	55.4	237
423739	CBC-10-05	175	< 0.4	243	573	67	284
423740	CBC-10-05	156	< 0.4	256	589	67.1	280
423746	CBC-10-11b	183	0.5	266	650	77.2	327
423747	CBC-10-11b	550	< 0.4	174	406	47.5	201
423748	CBC-10-11b	1280	< 0.4	179	429	50.9	215
423749	CBC-10-11b	1118	< 0.4	268	692	82.9	360
423750	CBC-10-11b	1340	< 0.4	277	721	87	378
474120	MBC-11-02	114	1	210	438	55.4	215
474121	MBC-11-02	111	0.7	271	557	69.5	265
474122	MBC-11-02	131	0.9	205	406	49.8	187
474123	MBC-11-02	104	0.8	211	421	51.4	194
474124	MBC-11-02	113	0.9	217	447	55.4	211
474125	MBC-11-02	201	0.8	358	782	102	406
474126	MBC-11-02	142	1.8	253	560	72.5	293
474127	MBC-11-02	147	1.6	266	570	71.9	283
474128	MBC-11-03	111	1.1	267	555	70	265
474129	MBC-11-03	222	0.6	448	990	134	543
474130	MBC-11-03	183	1.1	262	560	72.3	278
474131	MBC-11-03	191	0.9	172	375	47.9	189
474132	MBC-11-03	133	0.8	175	352	42.8	156
474133	MBC-11-03	154	0.8	115	248	32.1	127
474134	MBC-11-03	214	0.7	145	322	43.6	175
474135	MBC-11-04	79	3.2	163	339	42.1	158
474136	MBC-11-04	79	1	203	452	57.7	231
474137	MBC-11-04	85	1.6	192	412	52.6	201
474138	MBC-11-04	44	1.8	313	620	75.6	281
474139	MBC-11-04	135	4.7	416	858	107	397
474140	MBC-11-04	216	0.9	242	558	73.2	282

CHEM #	CHANNEL	Ва	Bi	La	Ce	Pr	Nd
474141	MBC-11-04	155	2.2	164	346	44.3	171
474142	MBC-11-04	130	0.7	139	289	36.3	140
474143	MBC-11-04	191	2.7	499	1040	133	500
474144	MBC-11-02B	173	0.8	281	580	70.2	285
474145	MBC-11-02B	249	< 0.4	182	378	47.4	199
474146	MBC-11-02B	14	< 0.4	33.1	64.3	7.72	30.1
474147	MBC-11-02B	154	1	386	826	108	441
474148	MBC-11-02B	72	0.8	288	679	89.6	394
474149	MBC-11-05	352	1.1	508	1280	164	730
474150	MBC-11-05	227	< 0.4	390	895	118	501
474151	MBC-11-05	132	0.8	216	464	57.6	238
474152	MBC-11-05	262	0.7	288	640	81	337
474153	MBC-11-05	507	< 0.4	183	402	51.1	213
474154	MBC-11-05	412	< 0.4	196	422	53.5	222
474155	MBC-11-05	363	2.8	274	661	89.5	400
474156	MBC-11-06	208	< 0.4	210	457	57.5	240
474157	MBC-11-06	151	0.8	207	480	63.8	268
474158	MBC-11-06	59	1.8	170	358	43.8	179
474159	MBC-11-06	31	0.9	117	243	29.5	118
474160	MBC-11-06	114	0.8	211	436	53	214
474161	MBC-11-06	91	1	216	435	51.7	203
474162	MBC-11-06	64	0.5	179	366	43.6	170
474163	MBC-11-06	72	1.6	174	391	49.3	204
474164	MBC-11-09	136	0.4	129	277	34.3	141
474165	MBC-11-09	127	0.6	137	300	37.3	155
474166	MBC-11-09	148	1.1	159	363	45.9	195
474167	MBC-11-10B	137	1.1	212	490	65.8	285
474168	MBC-11-10B	68	< 0.4	925	2260	286	1190
474169	MBC-11-10B	160	0.8	311	742	98.8	429
474170	MBC-11-10B	199	0.9	312	702	90.9	377
474171	MBC-11-10A	175	0.5	211	459	57.8	243
474172	MBC-11-10A	109	0.9	273	625	80.5	341
474173	MBC-11-10A	155	0.6	358	819	107	454
474174	MBC-11-10A	94		258	590	75.7	325
474175	MBC-11-01	946	< 0.4	376	780	95	366
474176	MBC-11-01		< 0.4	866	1770	211	781
474177	MBC-11-01		< 0.4	950	2020	246	920
474178	MBC-11-01		< 0.4	882	2030	248	937
474179	MBC-11-01		< 0.4	473	924	107	396
474180	MBC-11-01		< 0.4	957	2030	244	905
474181	MBC-11-01		< 0.4	444	920	107	391
474182	MBC-11-01		< 0.4	997	2370	269	987
474183	MBC-11-01		< 0.4	1080	2260	268	994
474184	MBC-11-01		< 0.4	1220	2750	344	1310
474185	MBC-11-01		< 0.4	1160	2430	297	1100
474186	MBC-11-01	360	< 0.4	944	2080	257	971

CHEM #	CHANNEL	Ва	Bi	La	Ce	Pr	Nd
474187	MBC-11-01	385	< 0.4	872	1790	211	785
474188	MBC-11-08	364	< 0.4	944	2020	255	997
474189	MBC-11-08	305	< 0.4	1050	2210	271	1020
474190	MBC-11-08	682	< 0.4	455	885	105	388
474191	MBC-11-08	524	< 0.4	419	817	95.4	359
474192	MBC-11-08	516	< 0.4	736	1330	147	532
474193	CBC-11-01	76	0.6	183	415	52.5	210
474194	CBC-11-01	69	0.4	282	629	79.8	318
474195	CBC-11-01	77	0.7	187	417	52.3	206
474196	CBC-11-01	56	0.8	107	210	25.4	93.7
474197	CBC-11-01	97	0.9	143	277	33.2	126
474198	CBC-11-01	82	0.5	292	509	54.3	190
474199	CBC-11-01	613	< 0.4	142	296	36.8	142
474200	CBC-11-01	355	0.7	138	307	39.8	155
474201	CBC-11-02	48	0.4	91	173	21.1	78.3
474202	CBC-11-02	28	0.5	293	477	55	187
474203	CBC-11-02	28	< 0.4	125	228	27.8	100
474204	CBC-11-02	162	0.9	342	829	113	470
474205	CBC-11-02	94	< 0.4	212	362	45.4	167
474206	CBC-11-02	244	< 0.4	338	764	98.7	400
474207	CBC-11-03	233	< 0.4	561	1130	142	552
474208	CBC-11-03		< 0.4	467	1030	133	520
474209	CBC-11-03	114	< 0.4	461	1030	134	545
474210	CBC-11-09	135	0.6	230	456	64.9	253
474211	CBC-11-09	260	0.5	395	1010	138	589
474212	CBC-11-09	255	< 0.4	191	423	55.3	220
474213	CBC-11-09		< 0.4	322	744	100	422
474214	CBC-11-09	290	0.6	461	939	118	456
474215	CBC-11-09		< 0.4	188	397	49	187
474216	CBC-11-09		< 0.4	131	265	32.7	120
474217	CBC-11-05		< 0.4	143	292	36.7	145
474218	CBC-11-05	106		135	299	38.7	162
474219	CBC-11-05		< 0.4	149	308	38.8	154
474220	CBC-11-05	138		276	562	71.4	289
474221	CBC-11-05		< 0.4	863	1420	161	583
474222	CBC-11-05		< 0.4	170	361	46.4	188
474223	CBC-11-07a	103		309	635	76.3	293
474224	CBC-11-07a	178		149	290	34.3	132
474225	CBC-11-07a		< 0.4	613	1270	149	545
474226	CBC-11-07a	116		89	177	20.9	77.8
474227	CBC-11-07a	146		168	350	42.1	164
474228	CBC-11-07a	142		224	479	59.7	242
474229	CBC-11-07a	175		207	437	54.8	221
474230	CBC-11-07b	124	0.8	292	561	64.6	239
474231	CBC-11-07b	127	0.9	206	404	49.3	199
474232	CBC-11-06	53	< 0.4	533	1120	150	605

CHEM#	CHANNEL	Ва	E	Bi La	Ce	Pr	Nd
474233	CBC-11-06	59	< 0.4	179	398	54.1	235
474234	CBC-11-06	46	< 0.4	364	771	104	435
474235	CBC-11-06	66	< 0.4	276	730	112	540
474236	CBC-11-06	43	< 0.4	2460	5250	676	2750
474237	CBC-11-06	56	< 0.4	3030	6960	906	3810
474238	CBC-11-06	48	< 0.4	973	2000	258	1020
474239	CBC-11-06	62	< 0.4	845	1960	269	1140
474240	CBC-11-06	40	< 0.4	1480	3170	402	1560
474241	CBC-11-06	69	< 0.4	378	842	118	500
474242	CBC-11-10	52	< 0.4	504	932	109	401
474243	CBC-11-10	279	0.	7 626	1450	188	792
474244	CBC-11-10	263	< 0.4	451	963	124	504
474245	CBC-11-10	285	< 0.4	169	342	43.5	173
474246	CBC-11-10	461		2 1090	2690	363	1550
474247	CBC-11-04	128	< 0.4	143	303	38.5	153
474248	CBC-11-04	156	< 0.4	134	294	37.7	151
474249	CBC-11-04	169	< 0.4	144	331	43	180
474250	CBC-11-04	147	< 0.4	129	283	36.4	148
474251	CBC-11-04	156	< 0.4	101	225	29.3	121
474252	CBC-11-04	108	< 0.4	212	493	65.4	276
474253	CBC-11-04	69	< 0.4	355	795	104	441
474254	CBC-11-04	94	< 0.4	237	544	71.2	297
474255	CBC-11-04	79	< 0.4	398	882	113	472
474256	CBC-11-04	81	< 0.4	613	1290	158	633
474257	CBC-11-04	103	< 0.4	316	676	85.1	340
474258	CBC-11-04	55	< 0.4	314	783	108	472
474259	CBC-11-04	102	< 0.4	263	599	78.7	324
474260	CBC-11-04	59	< 0.4	511	1080	137	565
474261	CBC-11-04	108	< 0.4	402	918	121	514
474262	CBC-11-04	62	< 0.4	571	1240	159	647
474263	CBC-11-04	305	< 0.4	235	532	68.7	281
474264	CBC-11-08	195	2.	1 193	449	58.8	247
474265	CBC-11-08	115	0.	5 182	373	47.1	181
474266	CBC-11-08	72	< 0.4	444	866	109	404
474267	CBC-11-08	159	0.	5 836	1550	210	803
474268	CBC-11-11	176	< 0.4	293	635	84.1	331
474269	CBC-11-11	186		4 248	536	69.5	284
474270	CBC-11-11	176	< 0.4	215	437	56.7	228
474271	CBC-11-11	179	< 0.4	256	532	66.6	262
474272	CBC-11-11	205	< 0.4	279	575	74.6	292
474273	CBC-11-09b	107	< 0.4	154	326	42.5	170
474274	CBC-11-09b		< 0.4	176	396	52.1	213
474275	CBC-11-09b	102	< 0.4	161	359	47.4	195
474276	CBC-11-09b	142	0.	6 398	806	103	405
474277	CBC-11-09b	158	< 0.4	268	530	68.7	262
474278	CBC-11-09b	139	0.	4 307	625	79.6	315

CHEM#	CHANNEL	Ва	Bi	La	Ce	Pr	Nd
474279	CBC-11-09b	126	< 0.4	200	397	50.5	196
474280	CBC-11-09b	172	< 0.4	365	701	84.7	325
474281	SZC-11-04	1201	< 0.4	230	442	55	210
474282	SZC-11-04	756	< 0.4	257	508	63.7	244
474283	SZC-11-04	362	0.4	528	973	120	445
474284	SZC-11-04	326	< 0.4	233	474	60.5	235
474285	SZC-11-04	227	< 0.4	265	513	64.8	249
474286	SZC-11-04	168	< 0.4	307	560	69.3	261
474287	SZC-11-04	239	< 0.4	212	446	57.2	224
474288	SZC-11-15a	422	< 0.4	269	524	63.7	241
474289	SZC-11-15a	501	< 0.4	254	447	50.8	183
474290	SZC-11-15a	562	< 0.4	202	399	50.6	196
474291	SZC-11-15b	526	< 0.4	199	399	51.4	198
474292	SZC-11-15b	543	< 0.4	278	507	57.2	207
474293	SZC-11-15b	563	< 0.4	195	389	49.8	192
474294	SZC-11-15c	543	< 0.4	212	410	52.8	202
474295	SZC-11-15c	445	< 0.4	249	440	50.6	183
474296	SZC-11-15c	869	< 0.4	270	479	55.5	202
474297	SZC-11-05	309	< 0.4	269	539	68.1	264
474298	SZC-11-05	279	< 0.4	233	455	57.5	220
474299	SZC-11-05	331	< 0.4	185	362	46	174
474300	SZC-11-05	350	< 0.4	199	392	48.7	186
474301	SZC-11-05	361	< 0.4	269	530	69.2	268
474302	SZC-11-05	276	< 0.4	197	390	49.4	189
474303	SZC-11-09	459	< 0.4	329	642	78.2	295
474304	SZC-11-09	255	< 0.4	246	523	66.1	257
474305	SZC-11-09	242	< 0.4	190	400	50.5	198
474306	SZC-11-09	232	< 0.4	182	384	48.3	189
474307	SZC-11-09	244	< 0.4	169	371	44.3	182
474308	SZC-11-09	232	< 0.4	210	433	54	211
474309	SZC-11-09	224	< 0.4	177	376	47.6	184
474310	SZC-11-09	294	< 0.4	248	507	61.7	236
474311	SZC-11-09	250	< 0.4	184	380	46.5	181
474312	SZC-11-09	251	< 0.4	202	405	50.6	190
474313	SZC-11-09	256	< 0.4	150	321	41.7	167
474314	SZC-11-09	249	< 0.4	167	347	43.5	173
474315	SZC-11-09	268	< 0.4	160	338	43.5	170
474316	SZC-11-02b	71	< 0.4	961	1900	223	837
474317	SZC-11-02b	430	< 0.4	854	1570	173	609
474318	SZC-11-02b	116	< 0.4	1200	2660	344	1410
474319	SZC-11-02b	110	0.5	235	507	64.5	263
474320	SZC-11-02b	610	< 0.4	314	663	82.8	326
474321	SZC-11-03a	793	< 0.4	799	1530	172	600
474322	SZC-11-03a	1121	< 0.4	988	1720	182	607
474323	SZC-11-03a	54	< 0.4	607	1270	157	622
474324	SZC-11-03a	694	< 0.4	663	1320	156	569

CHEM#	CHANNEL	Ва	Bi	La	Ce	Pr	Nd
474325	SZC-11-03a	163	< 0.4	1470	3070	382	1490
474326	SZC-11-03b	482	< 0.4	361	704	84.4	320
474327	SZC-11-03b	561	< 0.4	450	859	101	371
474328	SZC-11-03b	313	< 0.4	217	450	54.2	211
474329	SZC-11-03b	587	< 0.4	280	576	72.5	279
474330	SZC-11-06	548	< 0.4	180	378	47.4	182
474331	SZC-11-06	541	< 0.4	163	348	43.9	172
474332	SZC-11-06	593	< 0.4	174	373	46.7	185
474333	SZC-11-06	546	< 0.4	183	388	49	190
474334	SZC-11-06	540	< 0.4	182	388	48.9	195
474335	SZC-11-06	624	< 0.4	183	381	47.3	184
474336	SZC-11-06	564	< 0.4	171	363	46.3	183
474337	SZC-11-07	301	< 0.4	298	577	70.5	262
474338	SZC-11-07	374	< 0.4	366	690	81.1	297
474339	SZC-11-07	461	< 0.4	448	866	102	375
474340	SZC-11-07	469	< 0.4	462	880	103	377
474341	SZC-11-07	380	< 0.4	336	650	76.5	277
474342	SZC-11-07	393	< 0.4	373	740	91.2	340
474343	SZC-11-08	354	< 0.4	292	591	74.2	288
474344	SZC-11-08	490	< 0.4	486	941	123	479
474345	SZC-11-08	341	< 0.4	321	662	78.8	311
474346	SZC-11-08	300	< 0.4	242	480	59.7	230
474347	SZC-11-08	215	< 0.4	245	507	62.9	248
474348	SZC-11-10	324	< 0.4	249	520	63	254
474349	SZC-11-10	315	0.6	266	544	70.4	275
474350	SZC-11-10	247	< 0.4	296	613	75.2	304
474351	SZC-11-10	266	< 0.4	306	632	78.4	306
474352	SZC-11-10	157	< 0.4	365	739	90.1	373
474353	SZC-11-10	269	< 0.4	373	749	92.9	361
474354	SZC-11-10	256	< 0.4	299	582	69.9	261
474355	SZC-11-10	204	< 0.4	221	445	56.3	217
474356	SZC-11-10	271	< 0.4	376	717	86.6	327
474357	SZC-11-10		< 0.4	305	594	71.7	273
474358	SZC-11-10		< 0.4	294	564	66.6	250
474359	SZC-11-10	197	< 0.4	211	446	56	220
474360	SZC-11-10		< 0.4	187	392	48.7	192
474361	SZC-11-10	289	< 0.4	209	428	53	206
474362	SZC-11-10	268	< 0.4	190	401	49.7	194
474363	SZC-11-10	255	< 0.4	190	391	48.5	190
474364	SZC-11-10		< 0.4	200	423	51.9	207
474365	SZC-11-10		< 0.4	260	557	70.6	276
474366	SZC-11-10	441	0.7	256	597	76.8	311
474367	SZC-11-10	316	0.8	346	693	84.9	326
474368	SZC-11-10		< 0.4	514	842	100	370
474369	SZC-11-10	263	< 0.4	274	552	67.6	264
474370	SZC-11-10	297	< 0.4	251	493	63.3	245

CHEM#	CHANNEL	Ва	Bi	La	Ce	Pr	Nd
474371	SZC-11-10	244	< 0.4	217	434	55.3	214
474372	SZC-11-10	280	< 0.4	160	335	44	174
474373	SZC-11-10	263	< 0.4	184	405	50.4	206
474374	SZC-11-10	253	< 0.4	186	380	46.2	178
474375	SZC-11-11	316	< 0.4	317	615	78.3	298
474376	SZC-11-11	313	< 0.4	491	930	122	476
474377	SZC-11-11	268	< 0.4	276	575	69.3	275
474378	SZC-11-11	255	0.5	282	582	71.7	277
474379	SZC-11-11	239	1.1	273	524	64	242
474380	SZC-11-11	216	0.8	293	592	72.1	275
474381	SZC-11-11	241	0.6	234	465	55.6	210
474382	SZC-11-11	444	0.5	390	657	76.2	279
474383	SZC-11-11	271	0.5	294	550	67.6	257
474384	SZC-11-11	321	< 0.4	266	503	61.9	236
474385	SZC-11-11	297	< 0.4	234	493	59.1	230
474386	SZC-11-11	276	< 0.4	181	397	48.7	195
474387	SZC-11-11	243	< 0.4	176	376	46.3	184
474388	SZC-11-11	252	< 0.4	169	366	45.7	182
474389	SZC-11-11	228	< 0.4	144	318	40.3	163
474390	SZC-11-11	313	< 0.4	179	408	51.8	214
474391	SZC-11-11	287	< 0.4	214	440	55.3	217
474392	SZC-11-11	240	< 0.4	113	257	32.8	133
474393	SZC-11-11	245	< 0.4	179	381	48.4	194
474394	SZC-11-11	283	< 0.4	167	363	45.8	186
474395	SZC-11-11	307	< 0.4	143	309	38.6	157
474396	SZC-11-11	343	< 0.4	154	324	40.6	164
474397	SZC-11-11	421	< 0.4	168	365	45.3	185
474398	SZC-11-11	283	< 0.4	172	370	46.1	185
474399	SZC-11-11	309	< 0.4	162	347	43.6	176
474400	SZC-11-11	303	< 0.4	223	459	58.7	234
474401	SZC-11-11	450	< 0.4	211	445	51	200
474402	SZC-11-12	462	< 0.4	172	375	46.5	188
474403	SZC-11-12		< 0.4	188	390	45.8	181
474404	SZC-11-12	639	< 0.4	203	401	45.6	175
474405	SZC-11-12	546	< 0.4	163	354	44.4	180
474406	SZC-11-12		< 0.4	162	351	44.1	178
474407	SZC-11-12	469	< 0.4	155	342	42.6	174
474408	SZC-11-12	426	< 0.4	180	387	48.5	193
474409	SZC-11-02a	1974	< 0.4	117	232	29.2	115
474410	SZC-11-02a	682	< 0.4	249	499	59.2	224
474411	SZC-11-02a		< 0.4	253	454	51.8	199
474412	SZC-11-02a		< 0.4	271	525	59.8	227
474413	SZC-11-02a		< 0.4	1100	2030	238	890
474414	SZC-11-02a		< 0.4	532	937	107	387
474415	SZC-11-02a	679	< 0.4	913	1860	202	751
474416	SZC-11-02a	366	< 0.4	1110	2280	251	962

CHEM#	CHANNEL	Ва	Bi	La	Ce	Pr	Nd
474417	SZC-11-02a	304	< 0.4	687	1540	175	689
474418	SZC-11-02a	486	< 0.4	728	1370	173	651
474419	SZC-11-02a	1456	< 0.4	450	893	91.4	330
474420	MRC-11-04	36	< 0.4	1550	3790	529	2030
474421	MRC-11-04	189	< 0.4	1240	2620	345	1260
474422	MRC-11-04	55	< 0.4	1320	2920	399	1480
474423	MRC-11-04	58	< 0.4	1150	2570	354	1350
474424	MRC-11-04	237	< 0.4	1140	2140	261	882
474425	MRC-11-04	57	< 0.4	1140	2500	334	1280
474426	MRC-11-04	83	< 0.4	1320	2770	355	1230
474427	MRC-11-04	62	< 0.4	1020	2150	276	1010
474428	MRC-11-04	100	< 0.4	1330	2780	359	1310
474429	MRC-11-04	66	< 0.4	1230	2770	373	1420
474430	MRC-11-04	69	< 0.4	1300	2950	406	1560
474431	SZC-11-16	288	< 0.4	583	1040	113	373
474432	SZC-11-16	336	< 0.4	522	1020	116	399
474433	SZC-11-16	273	< 0.4	630	1090	118	383
474434	SZC-11-16	346	< 0.4	686	1270	142	478
474435	SZC-11-16	328	< 0.4	550	1050	118	410
474436	SZC-11-16	292	< 0.4	580	1120	128	443
474437	SZC-11-16	304	< 0.4	485	1060	109	374
474438	SZC-11-16	278	< 0.4	1400	2610	319	1090
474439	SZC-11-16	236	< 0.4	894	1680	207	729
474440	SZC-11-16	294	0.4	788	1460	166	569
474441	SZC-11-16	315	0.7	1050	1900	225	759
474442	SZC-11-16	293	0.5	740	1340	139	438
474443	SZC-11-16	225	0.7	2240	3790	414	1230
474444	SZC-11-16	677	0.7	2030	3560	399	1250
474445	SZC-11-16	232	< 0.4	970	1680	192	634
474446	SZC-11-16	295	< 0.4	473	1100	133	502
474447	SZC-11-16	281	0.5	849	1520	170	574
474448	SZC-11-16	212	< 0.4	696	1410	162	556
474449	SZC-11-16	227	0.4	633	1300	157	542
474450	SZC-11-16	413	0.5	1010	1880	228	782
474451	MRC-11-03	62	< 0.4	1680	4080	549	2340
474452	MRC-11-03	41	< 0.4	1320	3110	424	1760
474453	MRC-11-03	34	< 0.4	1360	3320	446	1910
474454	MRC-11-03	30	< 0.4	1150	2720	367	1520
474455	MRC-11-03	43	< 0.4	712	1690	232	989
474456	MRC-11-03	51	< 0.4	979	2180	286	1170
474457	MRC-11-03	60	< 0.4	1290	3080	420	1800
474458	MRC-11-03	76	< 0.4	1490	3540	485	2040
474459	MRC-11-03	71	< 0.4	1460	3480	470	1980
474460	MRC-11-03	64	< 0.4	1100	2480	324	1350
474461	MRC-11-05	59	< 0.4	1730	4210	579	2430
474462	MRC-11-05	103	< 0.4	1330	2790	357	1440

CHEM #	CHANNEL	Ва	Bi	La	Ce	Pr	Nd
474463	MRC-11-05	71	< 0.4	1430	3660	511	2170
474464	MRC-11-05	73	< 0.4	1240	2950	404	1660
474465	MRC-11-05	143	< 0.4	1190	2800	385	1620
474466	MRC-11-05	31	< 0.4	1320	3270	449	1880
474467	MRC-11-05	42	< 0.4	1230	2970	412	1700
474468	MRC-11-05	189	< 0.4	1200	2530	309	1200
474469	MRC-11-05	54	< 0.4	1340	3150	425	1780
474470	MRC-11-05	59	< 0.4	1110	2550	350	1490
474471	MRC-11-05	47	< 0.4	1430	3310	460	1970
474472	MRC-11-02	86	< 0.4	1630	3850	511	2120
474473	MRC-11-02	51	< 0.4	994	2190	290	1170
474474	MRC-11-02	305	< 0.4	885	1860	232	904
474475	MRC-11-02	136	< 0.4	376	801	100	407
474476	MRC-11-02	213	< 0.4	507	1040	127	493
474477	MRC-11-02	359	< 0.4	1140	2400	304	1190
474478	MRC-11-02	42	< 0.4	1240	2800	362	1450
474479	BRC-11-06	171	0.5	329	718	88.7	357
474480	BRC-11-06	105	0.9	269	605	74.2	310
474481	BRC-11-06	179	0.8	467	844	90.2	335
474482	BRC-11-06	77	0.8	275	570	70.4	280
474483	BRC-11-06	81	0.9	192	413	49.4	201
474484	BRC-11-06	106	0.6	249	575	71.8	308
474485	BRC-11-06	116	0.7	331	726	97.3	379
474486	MRC-11-01	101	< 0.4	169	343	42.8	164
474487	MRC-11-01	115	< 0.4	301	645	78.4	316
474488	MRC-11-01	143	< 0.4	536	1340	194	846
474489	MRC-11-01	160	< 0.4	930	1980	252	998
474499	BRC-11-02a	272	1	393	828	114	462
474500	BRC-11-02a	255	< 0.4	4840	7530	810	2620
474501	BRC-11-02b	151	< 0.4	3000	4380	466	1520
474502	BRC-11-02b	194	< 0.4	2610	4370	490	1640
474503	BRC-11-02b	643	0.5	423	835	114	475
474504	BRC-11-05	241	< 0.4	736	1380	167	600
474505	BRC-11-05		< 0.4	1750	3340	406	1420
474506	BRC-11-05	205	< 0.4	2280	4180	480	1600
474507	BRC-11-05	432	< 0.4	1620	2840	332	1130
474508	BRC-11-05	259	< 0.4	1820	3120	350	1160
474509	BRC-11-05		< 0.4	1330	1940	210	690
474510	BRC-11-01	175	< 0.4	512	1110	158	641
474511	BRC-11-01		< 0.4	36.4	82.5	10.4	41.7
474512	BRC-11-01	138	< 0.4	345	741	97.5	383
474513	BRC-11-01	325	< 0.4	945	1850	234	884
474514	BRC-11-01		< 0.4	852	1840	249	967
474515	BRC-11-01		< 0.4	2030	3870	467	1650
474516	BRC-11-01		< 0.4	1310	2880	393	1520
474517	BRC-11-01	113	< 0.4	1030	2150	271	1010

CHEM #	CHANNEL	Ва	Bi	La	Ce	Pr	Nd
474518	BRC-11-01	157	< 0.4	842	1860	258	1030
474519	BRC-11-01	221	< 0.4	739	1480	188	695
474520	BRC-11-01	272	0.5	260	556	73.8	296
474521	BRC-11-03a	298	< 0.4	734	1450	176	609
474522	BRC-11-03a	238	< 0.4	1130	2020	225	786
474523	BRC-11-03a	121	< 0.4	923	1640	190	629
474524	BRC-11-03a	277	< 0.4	575	1090	137	506
474525	BRC-11-03a	272	< 0.4	1530	2370	271	895
474526	BRC-11-03b	149	< 0.4	1450	2840	364	1450
474527	BRC-11-03b	130	< 0.4	2150	5370	718	2940
474528	BRC-11-03b	175	< 0.4	2030	4100	537	2080
474529	BRC-11-03b	198	< 0.4	2470	3720	414	1450
474530	BRC-11-03b	166	< 0.4	1660	2950	344	1190
474531	BRC-11-03b	129	< 0.4	1810	3010	324	1150
474611	MRC-11-06	120	< 0.4	1480	3270	437	1780
474612	MRC-11-06	153	< 0.4	1480	3370	426	1790
474613	MRC-11-06	148	< 0.4	1850	4200	555	2250
474614	MRC-11-06	125	< 0.4	1550	3450	459	1880
474615	MRC-11-06	139	< 0.4	1660	3790	507	2060
474616	MRC-11-06	77	< 0.4	2410	5500	718	2950
474617	MRC-11-06	169	< 0.4	1900	4340	577	2350
474618	MRC-11-06	102	< 0.4	1350	2960	390	1590
474619	MRC-11-06	160	< 0.4	1600	3630	485	2000
474620	MRC-11-06	131	< 0.4	2140	4850	643	2630
474621	MRC-11-06	88	< 0.4	1720	3820	506	2070
474622	MRC-11-06	81	< 0.4	1410	3110	409	1660
474623	MRC-11-06	154	< 0.4	1600	3590	475	1950
474624	MRC-11-06	143	< 0.4	1570	3460	453	1860
474625	MRC-11-06	157	< 0.4	1580	3520	471	1910
474626	MRC-11-06	173	< 0.4	1630	3630	475	1940
4744490	BRC-11-04	1141	< 0.4	570	1070	126	443
4744491	BRC-11-04	181	0.8	2530	5240	650	2330
4744492	BRC-11-04	621	< 0.4	1000	2020	249	896
4744493	BRC-11-04	360	< 0.4	983	2160	283	1090
4744494	BRC-11-04	481	< 0.4	819	1590	192	690
4744495	BRC-11-04	350	< 0.4	790	1500	176	618
4744496	BRC-11-04	570	< 0.4	727	1430	178	633
4744497	BRC-11-04	135	< 0.4	822	1680	207	743
4744498	BRC-11-04	1945	< 0.4	259	439	50.6	179
474565	AMC-11-05	346	< 0.4	3030	4710	475	1600
474566	AMC-11-05	340	0.5	2490	3710	372	1210
474567	AMC-11-05	325	< 0.4	1340	2120	227	807
474568	AMC-11-05	309	< 0.4	1980	3110	320	1090
474569	AMC-11-05	44	< 0.4	1290	2130	229	797
474570	AMC-11-05	168	< 0.4	1840	2770	282	935
474571	AMC-11-01	234	< 0.4	176	361	45.1	181

CHEM#	CHANNEL	Ва	Bi	La	Ce	Pr	Nd
474572	AMC-11-01	217	< 0.4	141	290	36.1	145
474573	AMC-11-01	231	< 0.4	200	426	53.2	214
474574	AMC-11-01	217	< 0.4	172	356	43.9	177
474575	AMC-11-01	228	0.5	202	419	52.9	210
474576	AMC-11-02	205	< 0.4	187	390	49.1	198
474577	AMC-11-02	196	< 0.4	162	336	41.7	166
474578	AMC-11-02	207	< 0.4	157	336	42.2	168
474593	AMC-11-04	223	< 0.4	298	564	67.3	255
474594	AMC-11-04	241	< 0.4	389	708	82.9	315
474595	AMC-11-04	228	< 0.4	262	511	61.8	240
474596	AMC-11-04	224	0.6	406	855	108	432
474597	AMC-11-04	250	< 0.4	243	487	60.2	237
474598	AMC-11-04	237	< 0.4	257	520	64.5	252
474599	AMC-11-03	237	< 0.4	231	483	60.8	243
474600	AMC-11-03	192	< 0.4	411	841	105	419
474601	AMC-11-03	219	< 0.4	426	902	114	464
474602	AMC-11-03	258	< 0.4	425	842	104	410
474603	AMC-11-03	252	< 0.4	364	743	91.8	366
474604	AMC-11-03	235	< 0.4	331	685	85.8	348
474605	AMC-11-03	249	< 0.4	206	407	49.4	192
474606	AMC-11-03	272	< 0.4	203	402	49.1	193
474607	AMC-11-03	293	< 0.4	177	354	43.6	169
474608	AMC-11-03	301	< 0.4	177	359	43.9	175
474609	AMC-11-03	353	< 0.4	218	444	54.1	213
474610	AMC-11-03	210	0.8	175	370	46.9	191

CHEM #	CHANNEL	Sm	Eu	Gd	Tb	Dy	Но
104201	CBC-10-06a	33.7	5.77	27.9	4.6	27.7	5.5
104202	CBC-10-06a	28.8	5.04	25.8	4.1	25	5
104203	CBC-10-06a	54.9	7.47	49.6	8.8	56.1	11.8
104204	CBC-10-06a	51.5	6.86	46.6	8.6	55.1	11.6
104205	CBC-10-06a	107	14.4	100	18.8	125	26.5
104206	CBC-10-06a	83	9.45	66.8	11.7	71.4	14.6
104207	CBC-10-06a	59.2	7.11	47.8	8.2	50.2	10.3
104208	CBC-10-06a	93	11.7	86.1	15.8	98.8	20.1
104209	CBC-10-06a	55.7	5.15	54.5	10.5	66.9	13.4
104210	CBC-10-06a	52.4	6.66	49.4	9.3	60.5	12.8
104211	CBC-10-06a	66.2	8.19	67.2	12.6	83.8	18
104212	CBC-10-06a	65.8	8.56	63.4	12.1	81.3	17.4
104213	CBC-10-06a	54.9	6.91	53	10.3	68.2	14.6
104214	CBC-10-06a	20.9	2.23	18.2	3.4	22.4	4.7
104215	CBC-10-06a	13.7	1.5	12.7	2.4	15.4	3.3
104216	CBC-10-06a	29.4	3.14	25.4	4.7	30.8	6.4
104217	CBC-10-07	26.8	3.25	21.2	3.6	21.1	4.3
104218	CBC-10-07	36.5	4.38	27.5	4.5	25.9	5.2
104219	CBC-10-07	25	3.29	17.7	2.8	15.2	2.9
104220	CBC-10-07	37.4	4.82	33.1	5.9	37.2	7.7
104221	CBC-10-07	83	11.5	86.9	17.2	117	25.3
104222	CBC-10-07	70	9.47	71.5	14.1	94.6	20.6
104223	CBC-10-07	84.6	11.1	86.7	17	115	24.8
104224	CBC-10-07	95.3	13.1	98.7	20	133	29
104225	CBC-10-07	66	9.01	67.1	13.2	88.7	19.3
104226	CBC-10-07	40.8	5.19	35.5	6.4	40.8	8.6
104227	CBC-10-08	93.5	12.6	96.7	19.5	133	29.3
104228	CBC-10-08	101	13.9	103	20.7	139	30.5
104229	CBC-10-08	54.8	7.45	57	11.5	77.7	17.4
104230	CBC-10-08	78.3	10.9	81.9	16.5	113	25.3
104231	CBC-10-08	95	13.5	98.7	19.6	135	29.9
104232	CBC-10-08	78.8	10.6	78	15	103	22.2
104233	CBC-10-08	94.4	12.7	92.6	18	120	26
104234	CBC-10-08	66	9.07	66	13.2	86.4	19
104235	CBC-10-08	68.3	9.23	67.7	13.3	89.5	19.7
104236	CBC-10-08	55.5	7.26	53.6	10.2	68.1	14.8
104237	CBC-10-08	42.3	5.25	38.4	7.1	46.7	9.9
104238	CBC-10-08	65.6	9	65.4	12.8	85.9	18.9
104239	CBC-10-08	82.4	11.3	85.3	17.2	117	25.8
104240	CBC-10-08	115	15.4	122	24.8	169	37.6
104241	CBC-10-08	113	15.2	122	24.4	169	37.4
104242	CBC-10-08	91.4	12.4	93.8	18.7	127	27.8
104243	CBC-10-08	74.7	10.1	75.2	14.7	99.2	21.8
104244	CBC-10-08	58.7	7.85	57.8	11.3	74.5	16.2
104245	CBC-10-08	55.9	7.57	54.9	10.8	71.1	15.4
104246	CBC-10-08	51.6	6.85	50	9.8	64.7	14

CHEM #	CHANNEL	Sm	Eu	Gd	Tb	Dy	Но
104247	CBC-10-08	58.7	7.93	57.4	11	75.5	16.3
104248	CBC-10-08	85	11.8	86.4	16.8	116	25.5
104249	CBC-10-08	67.8	9.45	69.3	13.3	91.2	19.9
104250	CBC-10-08	84.4	11.5	87.9	16.9	117	25.3
104251	CBC-10-08	67.1	8.91	66.9	13	87.2	18.9
104252	CBC-10-08	73.3	10.4	77.1	15.2	106	23.2
104253	CBC-10-08	83.5	12.1	88.6	18	122	26.9
104254	CBC-10-09	65.2	8.15	61.4	11.5	73.4	15.4
104255	CBC-10-09	76.1	9.33	77	14.6	97.9	20.8
104256	CBC-10-09	61	7.36	67.4	13.9	93	20.3
104257	CBC-10-09	62	7.61	65.1	12.8	86.2	18.7
104258	CBC-10-09	129	14.3	100	16.1	93.6	17.4
104259	CBC-10-09	53.1	7.71	41.9	6.9	40.4	7.8
104260	CBC-10-09	43.4	6.96	34.2	5.4	31.2	5.9
104261	CBC-10-09	88.8	11	85.3	15.9	103	21.2
104262	CBC-10-09	38.7	4.61	36.1	6.7	41.5	8.4
104263	CBC-10-09	47.2	6.07	49.3	10	65.2	13.8
104264	CBC-10-09	88.9	11.6	88.2	17.4	110	22.9
104265	CBC-10-09	75.9	9.42	75.1	14.4	91.5	19
104266	CBC-10-09	59	7.14	52.5	9.3	56.3	11.3
104267	CBC-10-09	63.5	7.7	61.9	11.8	74.3	15.3
104268	CBC-10-09	54.7	6.62	50.5	9.2	57	11.6
104269	CBC-10-10	66.1	8.64	61.3	11.4	72.2	15
104270	CBC-10-10	79.1	10.4	80	15.8	103	21.9
104271	CBC-10-10	36.2	4.58	30.2	5.2	31.7	6.6
104272	CBC-10-10	35.3	4.27	28.5	4.8	28.7	5.9
104273	CBC-10-10	40.9	5.13	35	6.1	38.2	7.8
104274	CBC-10-10	83.5	10.6	81.3	15.5	101	21.3
104275	CBC-10-10	51.3	6.74	50.5	9.7	62.1	13.3
104276	CBC-10-10	48.7	6.41	45.3	8.4	53.8	11.2
104277	CBC-10-10	61.8	8.61	62	11.8	77.7	16.6
104278	CBC-10-10	74.2	10.2	75.8	14.8	99.1	21.2
104279	CBC-10-10	77.8	10.8	78.6	15.5	100	21.4
104280	CBC-10-10	43.3	5.84	40.5	7.6	48.6	10.1
104281	CBC-10-10	46.4	5.8	41.4	7.4	46.6	9.6
104282	CBC-10-10	84.9	11.9	93	18.7	121	25.3
104283	CBC-10-10	103	13.6	105	20.4	130	27.4
104284	CBC-10-10	226	29.2	241	46.2	290	59.4
104285	CBC-10-10	204	26.8	222	43.3	274	56.1
104286	CBC-10-10	357	39.1	285	48.8	302	59.9
104287	CBC-10-10	250	27.3	198	33.7	209	42.7
104288	CBC-10-11b	34.3	6.42	31.8	5.3	32.4	6.5
104289	CBC-10-11b	41.7	7.85	38.2	6.3	39	8
104290	CBC-10-11b	144	22.6	139	24.8	160	32.5
104291	CBC-10-11b	39	5.13	33.1	5.2	31.3	6.3
104292	CBC-10-11b	83.2	11.7	88	16.3	108	22.8

CHEM#	CHANNEL	Sm	Eu	Gd	Tb	Dy	Но
104293	CBC-10-11b	72.2	9.43	75.3	14.2	95.9	21
104294	CBC-10-11b	56.2	7.35	57.5	10.8	72	15.5
104295	CBC-10-11b	68.9	9.19	71.8	13.7	93.8	20.8
104296	CBC-10-11b	50.2	6.82	50.8	9.2	61.8	13.1
104297	CBC-10-11b	45.6	6.31	44.7	8	52.4	11.1
104298	CBC-10-11b	32.2	4.71	29	4.9	30.9	6.4
104299	CBC-10-11b	28.7	3.65	26.4	4.7	30.2	6.6
104300	CBC-10-11b	43.6	7.03	41.5	7.3	47	9.9
104326	CBC-10-11b	109	15.9	123	24.2	167	36.6
104327	CBC-10-11b	41.7	6.74	39.8	6.9	43.7	9.2
104328	CBC-10-11b	31.8	3.99	28.4	4.8	30.5	6.3
104329	CBC-10-11b	26.2	3.23	21.6	3.4	20.2	4.1
104330	CBC-10-11b	21.7	2.69	17.3	2.7	16.3	3.3
104331	CBC-10-11b	22	2.64	17.4	2.7	16.1	3.3
104332	CBC-10-11b	44.1	5.87	44.2	8	53.1	11.3
104333	CBC-10-11b	46.5	6.46	47.5	8.8	57.3	12.2
104334	CBC-10-11b	63.4	8.05	64.7	12.2	79	16.5
104335	CBC-10-11b	55.1	7.55	55.9	10.3	67.3	14.1
104336	CBC-10-11b	126	17.5	136	25.6	170	36.2
104337	CBC-10-11b	104	14.2	111	21.1	141	29.7
104338	CBC-10-11b	121	17.1	129	24.3	162	34.8
104339	CBC-10-11b	30	4.69	25.6	4	24	4.9
104340	CBC-10-11b	174	25.1	188	36	240	52.1
104341	CBC-10-11b	53.7	9.47	53.9	9.5	61.1	12.8
104342	CBC-10-11b	69.9	10.3	79.8	15.4	108	23.6
104343	CBC-10-11b	40.7	7.17	38	6.4	41.2	8.7
104344	CBC-10-11b	79.2	11.3	82.5	15.4	102	21.6
104345	CBC-10-11b	120	16.7	124	23.1	154	32.3
104346	CBC-10-11b	162	23.3	170	32.4	216	46.6
104347	CBC-10-11b	100	14.8	100	18.3	118	24.9
104348	CBC-10-11b	109	14.5	109	20.2	134	28.5
416155	CBC-10-11a	22.7	4.33	18.9	3.2	20.4	4.1
416156	CBC-10-11a	23.2	4.43	18.8	3.1	19.4	3.8
416157	CBC-10-11a	92.9	13.2	89.1	17	116	24
416158	CBC-10-11a	106	10.1	75.3	11.3	65.2	11.4
416159	CBC-10-11a	45.3	5.4	39.9	7.3	48.9	9.9
416160	CBC-10-11a	26.7	3.18	22.2	4	25.3	5.1
416161	CBC-10-11a	34.9	4.18	29.2	5	31.7	6.5
416162	CBC-10-11a	34.1	4.21	26.7	4.4	27.2	5.4
416163	CBC-10-11a	26.8	3.93	21.3	3.5	21.2	4.2
416164	CBC-10-11a	42.9	6.13	39.2	7.1	47.6	10
416165	CBC-10-11a	43.5	5.61	40	7.3	49.4	10.4
416166	CBC-10-11a	20.7	2.25	15.9	2.7	16.8	3.3
416167	CBC-10-11a	42.4	5.38	40.9	7.8	54.4	11.4
416168	CBC-10-11a	232	25.5	200	36	251	52.8
416169	CBC-10-11a	65.1	8.76	63.7	12.4	84.9	17.9

CHEM#	CHANNEL	Sm	Eu	Gd	Tb	Dy	Но
416170	CBC-10-11a	53.5	7.17	52.7	10.3	70.2	15
416171	CBC-10-12	135	19.8	133	25.5	176	37
416172	CBC-10-12	103	14.2	101	19.3	134	28.1
416173	CBC-10-12	56.1	7	49.1	8.7	56.9	11.7
416174	CBC-10-12	31.1	4.52	27	4.7	29.5	6.2
416175	CBC-10-12	115	14.7	116	22.4	154	32.1
416176	CBC-10-12	38.1	4.57	32.4	5.4	33.1	6.9
416177	CBC-10-12	170	19.1	147	26.6	182	38.3
416178	CBC-10-12	36.8	4.89	33.1	5.6	35.3	7
416179	CBC-10-12	29.7	3.83	23.8	3.9	24	4.6
416180	CBC-10-12	50	6.17	46.5	8.4	55	11
416181	CBC-10-12	35.2	4.25	30.7	5.2	33.4	6.7
416182	CBC-10-12	37.5	4.49	31.6	5.4	34.3	6.9
416183	CBC-10-12	142	19.5	146	28.9	202	43
416184	CBC-10-12	147	18.5	157	32.8	234	49.6
416185	CBC-10-12	41.4	5.42	39	7.4	49.6	10.3
416186	CBC-10-12	52.7	6.65	51.2	9.9	68.8	14.5
416187	CBC-10-12	47.5	5.71	41.7	7.5	49.8	10.3
416188	CBC-10-13	76.5	10.5	70.9	13.6	93	19.4
416189	CBC-10-13	63.5	8.62	58.9	11.2	75.3	15.8
416190	CBC-10-13	30.7	4.24	24.7	4.1	25.3	5.1
416191	CBC-10-13	29	3.7	22.7	3.6	21.6	4.3
416192	CBC-10-13	66.8	9.05	64.3	12.5	85.5	18.1
416193	CBC-10-13	73	10.1	70.4	13.7	92.4	19.4
416194	CBC-10-13	23.6	3.26	19.2	3.1	18.7	3.8
416195	CBC-10-13	25.9	3.46	20.2	3.3	19.6	3.9
416196	CBC-10-13	28.4	4.03	23.3	3.9	23.7	4.8
416197	CBC-10-13	27.1	4.11	22.5	3.7	23	4.6
416198	CBC-10-13	27.5	3.97	22	3.5	21.5	4.2
416199	CBC-10-13	25.9	3.65	20.6	3.3	20.3	4.2
416200	CBC-10-13	31.1	4.3	25.4	4.4	27.5	5.6
416201	CBC-10-14	35.3	4.5	32.8	6.2	40.9	8.6
416202	CBC-10-14	25.8	3	21.6	3.8	24.8	5
416203	CBC-10-14	37.1	4.56	33.4	6.3	41.8	8.7
416204	CBC-10-14	26.5	3.14	21.5	3.5	21.9	4.5
416205	CBC-10-14	29.1	3.27	21.4	3.1	16.8	3.1
416206	CBC-10-14	24.8	2.85	18.7	2.8	16.5	3.2
416207	CBC-10-14	48.3	6.35	44.6	8.3	54.5	11.4
416208	CBC-10-14	35.7	4.52	30	5.1	32.8	6.5
416209	CBC-10-14	31.4	4.09	25.1	4.2	26.2	5.1
416210	CBC-10-14	31.8	4.1	26	4.4	26.9	5.3
416211	CBC-10-14	31	3.84	25	4	25.2	5.1
416212	CBC-10-14	77.8	10.8	72.9	13.8	93.8	19.5
416213	CBC-10-14	30.5	3.4	23.6	3.7	22.3	4.4
416214	CBC-10-14	29.2	3.26	22.8	3.6	21.6	4.2
416215	CBC-10-14	24.6	2.75	19.3	3	18.1	3.4

CHEM#	CHANNEL	Sm	Eu	Gd	Tb	Dy	Но
416216	CBC-10-14	24.3	2.74	17.9	2.9	16.8	3.3
416217	CBC-10-14	23.9	2.68	17.5	2.8	16.8	3.3
416218	CBC-10-14	35.3	4.35	29.6	5.2	33.7	7
416219	CBC-10-14	33.6	3.84	27.8	4.8	30.2	6
416220	CBC-10-14	56.6	6.47	47.9	8.1	52	10.4
416221	CBC-10-14	113	13.4	100	18	119	23.7
416222	CBC-10-14	88.3	11.6	83.6	16	109	22.4
416223	CBC-10-14	80.1	9.89	73.5	13.8	93.2	19.2
416224	CBC-10-14	57.4	6.97	50.4	8.7	58.1	11.6
416225	CBC-10-14	51.5	6.36	44.1	7.9	52.3	10.6
416226	CBC-10-15	25.1	3.99	20	3.3	21.5	4.2
416227	CBC-10-15	27.2	4.34	22.6	3.7	22.7	4.5
416228	CBC-10-15	25.6	4.09	20.1	3.3	20.9	4.1
416229	CBC-10-15	29.9	4.32	22.9	3.5	21.6	4.2
416230	CBC-10-15	30.1	4.71	25.6	4.1	26.6	5.3
416231	CBC-10-15	30.1	4.42	24.2	4	25.1	4.9
416232	CBC-10-15	35.9	4.94	31.2	5.5	36.5	7.6
416233	CBC-10-15	143	13.5	99.5	15.9	103	20.3
416234	CBC-10-15	45.6	6.15	42.1	8	53.5	11.3
416235	CBC-10-15	62.7	8.5	59	11.2	75.8	16.1
416236	CBC-10-15	51	6.71	48.3	9.2	62.6	13.4
416237	CBC-10-15	39.7	5.22	34.8	6.3	41.9	8.7
416238	CBC-10-15	33.4	4.24	29.5	5.3	36.4	7.7
416239	CBC-10-15	26.1	3.57	20.8	3.3	20.9	4.1
416240	CBC-10-15	27.3	3.96	22.2	3.6	22.1	4.3
416241	CBC-10-15	27.9	4.19	22.8	3.7	23.4	4.7
416242	CBC-10-15	24.9	3.66	19.9	3.2	20	3.9
416243	CBC-10-15	27	4.04	21.6	3.4	21.6	4.1
416244	CBC-10-16	141	17.2	148	28.2	192	39.6
416245	CBC-10-16	89.5	10.9	86.5	16.7	112	23.3
416246	CBC-10-16	27.1	3.23	25.9	5	34.8	7.4
416247	CBC-10-16	21.2	2.5	17.4	3.2	21.7	4.6
416248	CBC-10-16	168	21.9	170	33.6		48.2
416249	CBC-10-16	112		128			37.9
416250	CBC-10-16	93.7	11.5	93.4	18.2	124	25.3
416251	CBC-10-16	83.8	9.17	81.2			22.2
416252	CBC-10-16	109	13.2	116	23		33.4
416253	CBC-10-16	72.9	8.86	77.2	15.7	113	23.7
416254	CBC-10-16	152	19.3	152	29.8		42.8
416255	CBC-10-16	129	15.1	117	21.1	140	28.1
416256	CBC-10-16	160	19.3	144	25.5		33
416257	CBC-10-16	94.2	11	79.6			18.6
416258	CBC-10-16	54	5.72	41.7	6.8		8.4
416259	CBC-10-16	39.2	4.58	33.1	5.8		7.4
416260	CBC-10-16	36	4.06	30.7	5.4	35.6	7.3
416261	CBC-10-16	26.5	3.04	21.7	3.8	24.7	4.8

CHEM#	CHANNEL	Sm	Eu	Gd	Tb	Dy	Но
416262	CBC-10-16	25.7	3.49	20.2	3.4	21	4.1
416263	CBC-10-18a	275	35.2	295	58.4	402	83.6
416264	CBC-10-18a	177	23.2	184	35.8	243	50.6
416265	CBC-10-18a	70.5	9.94	73.9	14.5	98.1	20.5
416266	CBC-10-18a	363	41.3	319	55.4	375	80.9
416267	CBC-10-18a	114	15.5	122	24	163	34
416268	CBC-10-18a	88.3	12.4	89.8	17.5	117	24.8
416269	CBC-10-18a	82.8	11	85.3	16.3	109	23
416270	CBC-10-18a	75.3	9.94	76	14.3	96.8	20.6
416271	CBC-10-18a	54.4	7.43	56.2	10.6	70.9	15
416272	CBC-10-18a	59.8	8.19	62.4	12	79.1	16.7
416273	CBC-10-18a	99.8	13.5	103	19.8	132	28
416274	CBC-10-18a	71.6	9.62	73.6	13.7	92.2	19.6
416275	CBC-10-18a	82.1	11	82.8	15.7	104	22
416276	CBC-10-18a	76.4	9.97	76.5	14.1	96.2	19.9
416277	CBC-10-18b	209	25.9	197	34.5	224	46.6
416278	CBC-10-18b	530	57.7	437	69.1	454	98.6
416279	CBC-10-18b	574	63.3	477	78.7	516	109
416280	CBC-10-18b	67.1	8.94	66.9	12.5	83.7	17.3
416782	MBC-10-01	33.8	4.81	27	4.2	23.7	4.5
416783	MBC-10-01	61.7	8.03	51.8	8.6	50.2	9.7
416784	MBC-10-01	56.6	7.87	47.7	8.1	49.7	9.9
416785	MBC-10-01	107	14.9	102	19.4	125	26.2
416786	MBC-10-01	94	13.2	90.3	17.7	115	24.1
416787	MBC-10-01	26.4	3.33	23.3	4.1	25.7	5.3
416788	MBC-10-01	125	17.5	117	22.1	141	28.9
416789	MBC-10-01	188	23.1	172	31	192	38.1
416790	MBC-10-01	116	15.7	113	22.5	147	31.4
416791	MBC-10-01	123	17.4	118	23.2	149	31.3
416792	MBC-10-01	93.6	12.1	84.8	15.3	95.5	19.5
416793	MBC-10-01	123	17.9	118	22.9	150	31.4
416794	MBC-10-01	111	16.8	108	20.7	134	28.2
416795	MBC-10-01	101	14.9	95.8	18.1	117	24.7
416796	MBC-10-01	61.3	8.56	54.2	9.8	63.3	13
416797	MBC-10-01	69.2	9.81	60.7	10.9	66.6	13.7
416798	MBC-10-01	41.9	5.41	33.1	5.4	31.4	6.1
423637	CBC-10-01	54.5	6.68	47.3	8.2	51.2	10.9
423638	CBC-10-01	54	6.3	48.3	8.6	54.9	11.9
423639	CBC-10-01	49.2	5.75	43.7	7.8	48.9	10.3
423640	CBC-10-01	42.2	5.04	37.5	6.7	42.1	8.7
423641	CBC-10-01	61	7.62	56.2	10.5	66.8	14.5
423642	CBC-10-01	50.3	6.48	51	9.9	65.5	14.2
423643	CBC-10-01	60.4	7.75	66.9	13.7	92.1	20.7
423644	CBC-10-01	52.8	6.08	46.5	8.2	52.4	11.3
423645	CBC-10-01	52.6	5.91	44.1	7.6	46.9	10
423646	CBC-10-01	40	4.26	31.3	5.3	31.4	6.4

CHEM#	CHANNEL	Sm	Eu	Gd	Tb	Dy	Но
423647	CBC-10-01	42.5	4.65	33.7	5.5	33.7	7
423648	CBC-10-01	52.1	6.01	44.6	7.7	48.8	10.4
423649	CBC-10-01	45	5.15	37.7	6.6	41	8.7
423666	CBC-10-02	86.5	11.4	87.9	17.1	117	26.1
423667	CBC-10-02	66.6	8.6	65.3	12.7	85.2	19.1
423668	CBC-10-02	45	5.83	44.3	8.7	58.1	12.7
423669	CBC-10-02	66.4	8.66	67.1	13.7	93.5	20.6
423670	CBC-10-02	88.6	11.7	88.7	17.5	119	27
423671	CBC-10-02	64.9	8.55	64.6	12.9	85.5	19.1
423672	CBC-10-02	77.5	10.5	77	15.4	102	22.9
423673	CBC-10-02	103	14	101	19.5	133	29.7
423674	CBC-10-02	97.1	13.4	95.9	18.9	128	28.5
423675	CBC-10-02	85.7	11.3	86.9	16.5	115	26.2
423676	CBC-10-02	90	11.8	88.4	17.1	116	25.8
423677	CBC-10-02	88.9	11.5	89.8	17.3	117	26.1
423678	CBC-10-02	51.4	6.28	51.4	10	67.6	15.1
423679	CBC-10-03	61.2	7.71	63.4	12.7	89.6	19.9
423680	CBC-10-03	59.8	6.62	57.1	10.9	71.1	15.6
423681	CBC-10-03	46.1	5.09	36.9	6	34	6.8
423682	CBC-10-03	38	4.92	31.2	5.1	31.3	6.4
423683	CBC-10-03	55.8	6.77	47.8	8.3	51.5	10.8
423684	CBC-10-03	49	5.81	41.5	7.3	43.7	9.2
423685	CBC-10-03	56.7	6.14	55.8	10.6	70.8	15.4
423686	CBC-10-03	62	7.52	62.3	11.8	79.5	17.4
423687	CBC-10-03	68.2	8.45	67.8	13	87.9	19.4
423688	CBC-10-03	75.6	9.37	75.1	14.3	97.1	21.5
423689	CBC-10-03	79.2	9.37	77	14.7	96.7	20.9
423690	CBC-10-03	60.9	7.65	61.5	12.3	81.7	18.2
423691	CBC-10-03	77.4	9.37	75.8	14.7	97.4	21.2
423692	CBC-10-03	71.5	8.97	71.4	13.7	90.4	19.5
423693	CBC-10-03	113	11.8	100	18	110	22.6
423694	CBC-10-03	123	13.1	116	22	136	28
423695	CBC-10-03	51.9	6	47.1	8.4	54.2	
423708	CBC-10-04	70	9.68	75.1	14.7	97.7	21.3
423709	CBC-10-04	69.1	9.4	74.5	14.4	96.3	21
423710	CBC-10-04	86.8	12.2	93.6	17.9	119	26.2
423711	CBC-10-04	79	10.9	85.6	16.4	112	24.8
423712	CBC-10-04	53.5	7.06	56.9	11.2	73	15.9
423713	CBC-10-04	85.7	11.9	92.5	17.5	120	26.3
423714	CBC-10-04	81	11.8	87.1	16.6	113	24.5
423715	CBC-10-04	83.7	12	91.4	17.9	117	25.6
423716	CBC-10-04	65	9.04	70.6	13.9	90	19.6
423717	CBC-10-04	67.7	9.69	72.1	14.2	93.2	20.3
423718	CBC-10-04	77.1	11.1	83.2	16.4	107	23.3
423719	CBC-10-04	90.1	12.9	98.3	19.6	129	28.4
423720	CBC-10-04	47.8	5.99	48.6	9.3	60	12.9

CHEM#	CHANNEL	Sm	Eu	Gd	Tb	Dy	Но
423721	CBC-10-05	58.2	7.81	60.8	11.9	76.5	16.6
423722	CBC-10-05	39.8	5.19	40	7.5	47.6	10.1
423723	CBC-10-05	36.2	4.66	37.4	7.2	46.4	10
423724	CBC-10-05	73.5	10.4	79.7	15.9	105	23
423725	CBC-10-05	88.6	13.1	97.3	19.5	128	28.2
423726	CBC-10-05	68.5	10.3	73.7	14.5	94.4	20.8
423727	CBC-10-05	53	7.26	53	10.2	64.5	14
423728	CBC-10-05	59.5	8.17	65.2	13.2	87.7	19.6
423729	CBC-10-05	64	9.55	70.2	14	92.7	20.6
423730	CBC-10-05	63.8	9.61	68.2	13.6	89.7	19.6
423731	CBC-10-05	40.6	5.4	38.6	6.9	42.8	9
423732	CBC-10-05	22.9	2.93	22.7	4.3	28.2	6.2
423733	CBC-10-05	75.4	10.9	85.9	16.9	115	25.2
423734	CBC-10-05	63.4	9.1	67.1	13.2	85.2	18.4
423735	CBC-10-05	34.7	4.43	31.1	5.4	33.3	6.9
423736	CBC-10-05	61.7	8.87	65	12.6	82.7	17.8
423737	CBC-10-05	39.9	5.56	38.2	6.9	44	9.3
423738	CBC-10-05	55.2	7.95	57.2	11.2	72.8	15.7
423739	CBC-10-05	65.1	9.51	67.4	12.8	84.9	18.1
423740	CBC-10-05	63.2	9.72	67.2	13	86.4	18.9
423746	CBC-10-11b	77.8	11.1	80.1	14.9	97.3	20.7
423747	CBC-10-11b	43.8	6.14	43.1	7.5	48.3	10
423748	CBC-10-11b	47.7	7.69	46.2	8.1	52	11
423749	CBC-10-11b	90.7	13.2	96.8	18.5	123	26.4
423750	CBC-10-11b	98.2	14.1	106	20.4	137	29.7
474120	MBC-11-02	49.3	6.16	48.2	8.9	57.1	12.3
474121	MBC-11-02	54.7	6.07	49.7	8.6	51.5	10.6
474122	MBC-11-02	38.2	4.35	35.3	6.3	38.1	8
474123	MBC-11-02	40.9	4.76	38.9	6.9	43.2	9
474124	MBC-11-02	45.8	5.37	43.1	7.7	49.4	10.4
474125	MBC-11-02	99.5	13.8	104	20.1	131	28.1
474126	MBC-11-02	73.3	9.28	75.4	14.6	92.3	20
474127	MBC-11-02	71.4	9.15	71.5	13.9	88.8	19
474128	MBC-11-03	48.2	5.05	39.3	6	34.7	6.8
474129	MBC-11-03	140	19.2	149	30.2	200	43.6
474130	MBC-11-03	56.4	6.53	50.4	8.7	52.5	10.8
474131	MBC-11-03	39.2	4.63	34.3	6		7.4
474132	MBC-11-03	30.3	3.36	25.9	4.1	24.2	4.9
474133	MBC-11-03	28.1	3.37	27	4.8	30.7	6.5
474134	MBC-11-03	35.5	4.17	29.8	4.7	28.2	5.7
474135	MBC-11-04	34.2	4.07	31.9	5.9		7.6
474136	MBC-11-04	53.5	7.01	55.5	10.1	64.2	13.5
474137	MBC-11-04	46.5	5.7	45.3	8.3	53.5	11.2
474138	MBC-11-04	57.8	6.48	52.1	8.8	54.9	11.1
474139	MBC-11-04	80.6	9.01	71	12	73	14.8
474140	MBC-11-04	57.9	6.78	48.3	7.8	45	8.8

CHEM #	CHANNEL	Sm	Eu	Gd	Tb	Dy	Но
474141	MBC-11-04	37.6	4.61	34.6	6.2	37.9	8
474142	MBC-11-04	28.6	3.57	23.9	4	22.8	4.6
474143	MBC-11-04	99.7	11.4	86.5	14.1	84.1	17.1
474144	MBC-11-02B	63.3	8.28	60.4	11.5	75.9	16.6
474145	MBC-11-02B	42	5.16	36.7	6.5	41.7	8.9
474146	MBC-11-02B	5.3	0.55	4.3	0.7	4.2	0.9
474147	MBC-11-02B	104	13	97.4	18	115	23
474148	MBC-11-02B	115	14.4	118	23.3	153	31.8
474149	MBC-11-05	189	26.3	185	36.6	244	52.1
474150	MBC-11-05	121	17.9	117	23	153	32.8
474151	MBC-11-05	55.2	7.36	53.1	10.2	69.4	15
474152	MBC-11-05	79.1	11.2	74.5	14.2	95.1	20.5
474153	MBC-11-05	43.7	5.73	35.1	5.9	36.3	7.6
474154	MBC-11-05	44.4	5.55	36.2	5.9	36.6	7.7
474155	MBC-11-05	113	15.2	115	24	162	35.4
474156	MBC-11-06	56.2	7.33	52.2	10.4	69.3	15.1
474157	MBC-11-06	63.3	8.14	57.9	11.2	73.3	16
474158	MBC-11-06	39.7	4.71	36	6.9	45.4	9.9
474159	MBC-11-06	24.6	2.85	21.5	3.9	25.3	5.4
474160	MBC-11-06	47	5.58	41.9	7.9	52.2	11.1
474161	MBC-11-06	42.4	4.93	36.8	6.8	43.9	9.4
474162	MBC-11-06	36.1	4.17	30.7	5.5	36.2	7.6
474163	MBC-11-06	48.5	6.14	45.2	8.8	57.6	12.3
474164	MBC-11-09	31.3	3.93	27.3	5.2	33.8	7.4
474165	MBC-11-09	35.5	4.49	31.4	6	40	8.5
474166	MBC-11-09	47.6	6.47	44.9	9	59.5	13
474167	MBC-11-10B	69.4	8.78	66.1	12.6	80.9	16.9
474168	MBC-11-10B	238	27.5	202	39.1	271	59
474169	MBC-11-10B	120	17.6	128	26.7	178	37.8
474170	MBC-11-10B	89.5	12.1	84.9	16.1	105	21.5
474171	MBC-11-10A	55.5	7.41	51.9	9.9	65.5	13.9
474172	MBC-11-10A	83.8	11.8	80.4	16.1	108	23.5
474173	MBC-11-10A	114	15.8	108	21.8	145	32.1
474174	MBC-11-10A	82.4	11.2	79.6	16	106	22.4
474175	MBC-11-01	70.2	9.64	64.2	10.4	60.5	11.3
474176	MBC-11-01	133	15.7	104	15	76.1	14
474177	MBC-11-01	160	17.3	127	18.4	97.2	17.2
474178	MBC-11-01	162	16	119	15.9	71.9	11
474179	MBC-11-01	68.8	9.09	59	9.1	51.5	10.3
474180	MBC-11-01	155	17.3	123	18.4	99	18.9
474181	MBC-11-01	76.7	10.5	64.4	10.6	65.1	12.6
474182	MBC-11-01	163	17.3	113	16.9	98.3	19.2
474183	MBC-11-01	171	19.2	134	20.5	112	21.2
474184	MBC-11-01	232	24.2	185	29.2	164	32.3
474185	MBC-11-01	198	22.8	171	28.3	167	33.4
474186	MBC-11-01	175	19	145	23.7	138	28.4

CHEM#	CHANNEL	Sm	Eu	Gd	Tb	Dy	Но
474187	MBC-11-01	147	17.4	133	22.8	133	25.7
474188	MBC-11-08	203	24.5	194	33.7	203	39.2
474189	MBC-11-08	201	23.4	180	30.3	175	33
474190	MBC-11-08	73.8	8.84	66.5	11	64.3	12.5
474191	MBC-11-08	70.4	7.88	63.6	10.5	60.9	12.4
474192	MBC-11-08	91.4	10	78.2	12.4	70.6	13.8
474193	CBC-11-01	59	7.6	63.9	13.7	96.4	20.6
474194	CBC-11-01	86.5	10.6	88.4	17.2	118	24.7
474195	CBC-11-01	54.7	6.58	55.6	11.1	75.4	16.3
474196	CBC-11-01	19.4	2.16	15.5	2.4	14.9	2.9
474197	CBC-11-01	26.5	2.85	22.3	3.4	21	4.2
474198	CBC-11-01	36	4.01	30.4	5	31.2	6.3
474199	CBC-11-01	30.6	4.39	24.9	4.1	24.2	4.6
474200	CBC-11-01	37.2	5.03	33.7	6	38.1	7.7
474201	CBC-11-02	20.1	2.52	22	4.5	31.8	6.8
474202	CBC-11-02	31.1	3.28	25.3	4.1	26.9	5.5
474203	CBC-11-02	25.4	2.86	25.4	4.9	33.2	6.9
474204	CBC-11-02	137	19.4	146	29	197	40.7
474205	CBC-11-02	37.7	4.72	36.8	7.1	47.6	10.1
474206	CBC-11-02	105	15.2	102	19.7	133	27.4
474207	CBC-11-03	137	18.5	132	25.2	171	35
474208	CBC-11-03	134	18.6	131	25.9	178	37.2
474209	CBC-11-03	145	21	144	28.6	198	41.3
474210	CBC-11-09	65.3	8.71	65	12.5	84.2	17.6
474211	CBC-11-09	172	23.5	181	36.7	252	51.9
474212	CBC-11-09	62.6	8.24	64.2	13	85.9	17.8
474213	CBC-11-09	129	16.3	138	27.9	191	39.6
474214	CBC-11-09	119	15	117	22.1	146	29.5
474215	CBC-11-09	43.4	5.69	39.3	7.3	47.3	9.8
474216	CBC-11-09	27.2	3.15	22.4	3.9	24.8	5
474217	CBC-11-05	28.4	3.38	23.8	3.8	22	4.5
474218	CBC-11-05	39.2	5.27	40.1	7.8	49.3	11.1
474219	CBC-11-05	30.3	3.68	25.6	4.1	23.8	4.9
474220	CBC-11-05	70.4	10	72.4	14	88.8	19.4
474221	CBC-11-05	104	12.5	94.1	16.8	109	24.5
474222	CBC-11-05	39.8	5.37	36.4	6.4	38.5	8.3
474223	CBC-11-07a	62.2	7.15	56.3	11.2	75.6	17.6
474224	CBC-11-07a	29	3.32	27.9	5.1	33.4	7.5
474225	CBC-11-07a	92.2	9.37	67.7	10.2	56.8	11.2
474226	CBC-11-07a	16.7	2.01	16.4	3.4	23	5.5
474227	CBC-11-07a	37.6	4.6	36.9	7.3	47.2	10.5
474228	CBC-11-07a	56.2	6.7	53.9	10.2	65.1	14.1
474229	CBC-11-07a	54.6	6.82	56.1	10.9	70.6	15.6
474230	CBC-11-07b	49.9	5.96	47	8.9	57.9	12.9
474231	CBC-11-07b	46.9	5.68	46.8	9		13
474232	CBC-11-06	134	17.4	137	26.9	179	40.4

CHEM#	CHANNEL	Sm	Eu	Gd	Tb	Dy	Но
474233	CBC-11-06	62.3	8.59	71	15.6	109	25.7
474234	CBC-11-06	106	13.9	111	22	148	33.2
474235	CBC-11-06	185	27.3	235	52.8	360	79.5
474236	CBC-11-06	535	65.4	503	93.5	615	138
474237	CBC-11-06	759	91.1	718	135	895	206
474238	CBC-11-06	197	23.5	171	27.1	155	31.3
474239	CBC-11-06	284	38.7	331	75.1	537	129
474240	CBC-11-06	291	32.8	243	38.7	222	45.6
474241	CBC-11-06	124	15.8	127	25	162	35.6
474242	CBC-11-10	74.8	8.48	68.5	12.5	78.1	16.7
474243	CBC-11-10	203	30	204	39.2	246	53.5
474244	CBC-11-10	120	18.2	121	23.6	152	33.3
474245	CBC-11-10	34.5	4.78	30.1	4.9	29.8	6.3
474246	CBC-11-10	400	60.3	418	82.2	518	112
474247	CBC-11-04	29.7	3.51	25.1	4.2	23.8	4.7
474248	CBC-11-04	29.2	3.45	24.4	3.9	22.7	4.3
474249	CBC-11-04	41.5	5.34	41.6	8.3	52.1	10.8
474250	CBC-11-04	28.2	3.31	23.3	3.7	21.2	4.1
474251	CBC-11-04	23.8	2.94	20.2	3.5	21.1	4.2
474252	CBC-11-04	74.9	9.49	81.4	16.6	106	22
474253	CBC-11-04	118	14.9	126	25.5	163	33.7
474254	CBC-11-04	75.8	9.77	80.4	16.4	105	21.6
474255	CBC-11-04	131	17.7	145	28.9	174	33.8
474256	CBC-11-04	153	18.6	153	29.1	172	33.3
474257	CBC-11-04	76.6	9.66	75.5	14.5	90.7	18.3
474258	CBC-11-04	134	17.3	144	29.3	182	37.2
474259	CBC-11-04	82.3	10.6	84.6	16.5	104	20.8
474260	CBC-11-04	141	17.5	147	28.8	182	36.8
474261	CBC-11-04	135	18.9	143	28.5	179	36.4
474262	CBC-11-04	154	18.9	159	32.2	206	43.5
474263	CBC-11-04	66.8	8.7	67.9	13.3	85	17.8
474264	CBC-11-08	65.1	7.76	65.1	12.7	84.1	17.4
474265	CBC-11-08	43.9	5.08	42.8	8.2	56.1	12
474266	CBC-11-08	82.7	9.21	70.4	12.6		17.3
474267	CBC-11-08	173	19.4	159	28.4	188	36.8
474268	CBC-11-11	80.3	10.3	77.7	15	100	20.6
474269	CBC-11-11	70.2	9.1	69.9	13.5	91.8	19.3
474270	CBC-11-11	55.6	7.51	56.4	10.8		16.3
474271	CBC-11-11	61.7	7.88	58.9	11.2	75.2	15.6
474272	CBC-11-11	69.6	8.98	67.2	12.6		18.3
474273	CBC-11-09b	40.4	5.09	38	7.2	48.4	10.2
474274	CBC-11-09b	52.9	6.75	52	10.1	68.6	15
474275	CBC-11-09b	48	6.25	47.2	9.2	63.3	13.2
474276	CBC-11-09b	94.4	12.3	93.8	17.3	118	25.1
474277	CBC-11-09b	58.4	7.3	53.3	9.8	66.3	13.9
474278	CBC-11-09b	73.8	9.43	70.6	13.3	89.4	18.9

CHEM#	CHANNEL	Sm	Eu	Gd	Tb	Dy	Но
474279	CBC-11-09b	47.4	5.83	44.2	8.2	56	11.9
474280	CBC-11-09b	73.8	8.93	69.1	12.9	85.4	17.9
474281	SZC-11-04	43.5	5.12	38.9	6.9	45.4	9.1
474282	SZC-11-04	50.2	6.14	44.4	7.5	49.1	9.8
474283	SZC-11-04	91.5	10.2	82.5	14.2	90.4	18.3
474284	SZC-11-04	54.1	6.38	51.6	9.5	63.2	13.2
474285	SZC-11-04	56.7	6.58	54.2	10.2	67.7	14.2
474286	SZC-11-04	58.2	6.68	54.4	10	65.9	13.9
474287	SZC-11-04	52.8	6.21	49.8	9.3	62.1	13.4
474288	SZC-11-15a	50.5	5.75	44.1	7.4	45.7	9.1
474289	SZC-11-15a	34.7	4.04	28.5	4.2	25	4.7
474290	SZC-11-15a	38.4	4.68	31.8	4.9	29.6	5.6
474291	SZC-11-15b	39	4.66	30.8	4.7	28.4	5.5
474292	SZC-11-15b	39.7	4.75	31.5	4.7	27.7	5
474293	SZC-11-15b	38.2	4.51	31.2	4.7	29	5.6
474294	SZC-11-15c	40.6	4.67	32.2	4.9	29	5.5
474295	SZC-11-15c	35.4	4.2	29	4.6	28.8	5.8
474296	SZC-11-15c	39.3	4.12	32.1	5.2	32.2	6.4
474297	SZC-11-05	57.2	7.05	53.2	9.4	62	12.7
474298	SZC-11-05	45.6	5.34	39.9	7	44.9	9.2
474299	SZC-11-05	33.7	3.97	26.6	4.1	24.8	4.7
474300	SZC-11-05	35.7	4.28	28.5	4.4	26.4	5
474301	SZC-11-05	56.1	6.61	48.3	8.4	54.1	11
474302	SZC-11-05	36.3	3.95	29.1	4.6	28.6	5.6
474303	SZC-11-09	64.3	8.13	56.3	10.5	66.2	14.4
474304	SZC-11-09	53.4	6.43	42.2	7.1	42.1	8.9
474305	SZC-11-09	39.1	4.81	28.8	4.6	27.2	5.6
474306	SZC-11-09	37.8	4.74	28.6	4.6	27.4	5.9
474307	SZC-11-09	36.2	4.18	28.7	4.4	26.3	5.4
474308	SZC-11-09	44	5.54	35.8	6.2	36.8	7.8
474309	SZC-11-09	36.8	4.59	27.9	4.5	25.8	5.4
474310	SZC-11-09	48.2	6.3	38.8	6.6	39.2	8
474311	SZC-11-09	35	4.33	26.2	4.3	26	5.3
474312	SZC-11-09	37.7	4.58	28.2	4.6		5.7
474313	SZC-11-09	34.1	4.31	26	4.2	25.2	5.2
474314	SZC-11-09	35.5	4.6	28.7	4.7	28.7	6
474315	SZC-11-09	35.5		27	4.3	25.8	5.3
474316	SZC-11-02b	173	21.4	168	36	258	60.5
474317	SZC-11-02b	114	13.6	80.8	11.6	62.6	11.4
474318	SZC-11-02b	375	52.5	423	91.4	627	144
474319	SZC-11-02b	70.6	9.38	74.5	15.1	98.7	21.1
474320	SZC-11-02b	77.6	10.6	70.5	12.7	78.2	16.5
474321	SZC-11-03a	109	13.8	78.9	11.7	63.3	11.6
474322	SZC-11-03a	104	12	67.9	9.2	47.6	8.3
474323	SZC-11-03a	165	22.4	182	38.3	251	53.8
474324	SZC-11-03a	117	14.8	88.8	14.1	80.7	15.3

CHEM #	CHANNEL	Sm	Eu	Gd	Tb	Dy	Но
474325	SZC-11-03a	317	40.7	323	69.2	499	117
474326	SZC-11-03b	68	8.29	54.9	9.3	55.6	11.4
474327	SZC-11-03b	66.9	7.91	48.3	7.5	43.4	8.6
474328	SZC-11-03b	47.3	6.05	41.6	7.4	46.2	9.9
474329	SZC-11-03b	62.2	8.3	52.3	9	54.9	11.5
474330	SZC-11-06	38.6	5.65	30.1	4.9	29	6.1
474331	SZC-11-06	35.3	5.48	28.8	4.7	28.6	6
474332	SZC-11-06	38.4	5.68	31.1	5.1	30.7	6.4
474333	SZC-11-06	40.1	5.79	31.9	5.4	31.6	6.8
474334	SZC-11-06	40.4	5.88	32.1	5.3	31.9	6.8
474335	SZC-11-06	37	5.38	29.5	4.8	28.6	5.8
474336	SZC-11-06	37.6	5.66	29.6	5	29.4	6.2
474337	SZC-11-07	53.6	6.44	43.1	7.3	44.1	9.1
474338	SZC-11-07	59.8	6.81	48.5	8.4	53.7	11.6
474339	SZC-11-07	79.1	6.42	68	12.7	83.3	18.8
474340	SZC-11-07	76.5	7.48	63	11.4	72.3	15.7
474341	SZC-11-07	55.8	6.71	46.5	8.1	49.8	10.8
474342	SZC-11-07	71.4	8.59	61.1	11.2	72.1	15.3
474343	SZC-11-08	63.4	8.3	55.8	10	62.6	13.5
474344	SZC-11-08	108	13.3	109	19.5	133	29.4
474345	SZC-11-08	65.4	7.41	53.8	9.9	58.9	12.4
474346	SZC-11-08	46.2	5.8	43	7	45.5	9.8
474347	SZC-11-08	54.8	7.38	53.3	10	63.1	14.3
474348	SZC-11-10	52.8	5.94	41.6	7.4	42.5	8.7
474349	SZC-11-10	60.1	7.49	58.7	10.3	69.1	14.6
474350	SZC-11-10	71.2	8.58	64.9	12.6	77.1	16.1
474351	SZC-11-10	72.3	9.63	74.8	13.7	83.9	17.9
474352	SZC-11-10	107	13.9	115	23.9	149	30.7
474353	SZC-11-10	82.6	10.9	86.4	16.5	105	22.4
474354	SZC-11-10	53.9	6.65	47.1	8.3	49.7	10.7
474355	SZC-11-10	45.7	5.66	43.9	7.5	50	10.9
474356	SZC-11-10	69.2	8.32	65.5	11.9	73.8	15.9
474357	SZC-11-10	58.6	7.31	54.9	9.8	59.8	13
474358	SZC-11-10	50	6.15	44.9	7.7	45.3	9.7
474359	SZC-11-10	45.8	5.97	42.6	7.8	48.9	10.7
474360	SZC-11-10	41.8	5.39	39.3	7.2	45.5	10.1
474361	SZC-11-10	45.5	6.01	42.9	7.9	50.6	11.5
474362	SZC-11-10	42.3	5.7	41	7.5	48.4	10.9
474363	SZC-11-10	39.4	4.95	35.8	6.2	37.8	8.3
474364	SZC-11-10	44.4	5.09	35.9	6.7	39.8	8.3
474365	SZC-11-10	59.2	7.76	54.2	9.6	59.7	12.9
474366	SZC-11-10	75.1	10.2	74.8	14.3	90.7	20.5
474367	SZC-11-10	74.7	9.97	72.4	13.3	80.9	17.6
474368	SZC-11-10	77.8	9.21	76.6	13	84.2	17.7
474369	SZC-11-10	60.8	8.26	56.8	9.8	58.3	12.2
474370	SZC-11-10	51.6	6.27	47.7	8.1	52.9	11.3

CHEM #	CHANNEL	Sm	Eu	Gd	Tb	Dy	Но
474371	SZC-11-10	45.3	5.4	41.4	7.1	45.8	9.9
474372	SZC-11-10	34.5	4.11	30.2	4.6	29	6
474373	SZC-11-10	42.5	4.78	33.1	5.7	33	6.8
474374	SZC-11-10	34.3	4.1	27.7	4.3	25.2	5.2
474375	SZC-11-11	58.3	7.1	51.1	8.1	51	10.6
474376	SZC-11-11	117	15.6	121	21.7	141	29.9
474377	SZC-11-11	60.5	7.43	51.4	9.6	56.6	12
474378	SZC-11-11	63.5	8.39	61.2	11.1	68.1	14.7
474379	SZC-11-11	52.7	6.39	51.1	8.8	58	12.4
474380	SZC-11-11	62.1	8.29	59.7	10.7	67.1	14.3
474381	SZC-11-11	43.5	5.06	39.9	7	43.2	9.4
474382	SZC-11-11	56	6.78	52.3	8.8	56.4	11.7
474383	SZC-11-11	56.2	7.3	54.7	9.5	62.8	13.5
474384	SZC-11-11	47.2	5.79	43.8	7.3	47.8	10.2
474385	SZC-11-11	42.1	5.43	35.5	5.8	32.9	7.1
474386	SZC-11-11	38.7	4.98	33	5.6	31.6	7
474387	SZC-11-11	35.2	4.54	29.2	4.7	26.8	5.7
474388	SZC-11-11	34.6	4.39	28.2	4.4	23.8	5
474389	SZC-11-11	31.3	4.01	25.8	4.1	23.1	4.9
474390	SZC-11-11	43.8	5.65	40.8	7.2	42.8	9.8
474391	SZC-11-11	43.1	5.13	32.4	5.2	30.4	5.9
474392	SZC-11-11	25.3	3.22	19.6	3.1	16.7	3.4
474393	SZC-11-11	37.8	4.57	29.7	4.7	25.9	5.5
474394	SZC-11-11	36	4.47	30.5	5.1	28.8	6.2
474395	SZC-11-11	29.5	3.9	24.8	4	22.7	4.6
474396	SZC-11-11	31	4.03	25.1	4	22.3	4.6
474397	SZC-11-11	38.4	5.23	37.1	6.7	40.5	8.6
474398	SZC-11-11	36.6	4.76	31.9	5.5	31.8	6.6
474399	SZC-11-11	34.4	4.48	30.9	5.2	30.1	6.4
474400	SZC-11-11	47.6	6.11	43.9	7.7	46.3	9.8
474401	SZC-11-11	45	5.35	40.1	7.4	47.6	10.1
474402	SZC-11-12	37.1	5.09	31.2	5.2	29.1	6
474403	SZC-11-12	34.7	4.78	29.3	4.8	26.9	5.5
474404	SZC-11-12	33.4	4.72	28.9	4.9	28	5.9
474405	SZC-11-12	35.2	4.95	29.8	4.9	27.5	5.7
474406	SZC-11-12	34.1	4.89	28.9	4.6	26.3	5.6
474407	SZC-11-12	34	4.69	29.2	4.7	26.3	5.8
474408	SZC-11-12	37.7	5.31	32	5.2	29.8	6.5
474409	SZC-11-02a	21.6	4.92	17.3	2.6	15.7	2.9
474410	SZC-11-02a	43	5.7	37.8	6.6		8.2
474411	SZC-11-02a	36.4	5.83	30.4	4.9	26.6	5.6
474412	SZC-11-02a	40.6	6.62	32.6	5.3	30.3	6.3
474413	SZC-11-02a	173	18.7	153	29	187	40.1
474414	SZC-11-02a	72.3	9.78	54.7	8.6	51.4	9.3
474415	SZC-11-02a	142	18.1	115	17.4	90.7	16.7
474416	SZC-11-02a	181	21.3	169	32.2	203	43.9

CHEM#	CHANNEL	Sm	Eu	Gd	Tb	Dy	Но
474417	SZC-11-02a	139	17.5	127	21.3	119	24.3
474418	SZC-11-02a	132	15.5	115	20.3	128	24.9
474419	SZC-11-02a	60.4	8.64	50.9	8.1	43.8	8.8
474420	MRC-11-04	452	56.6	471	88.7	600	129
474421	MRC-11-04	257	30.3	249	44.4	294	62.2
474422	MRC-11-04	328	41.3	334	62.4	412	87.7
474423	MRC-11-04	299	38.5	308	58.8	402	87.4
474424	MRC-11-04	170	20.2	159	26.9	173	35.7
474425	MRC-11-04	280	35.8	297	55.2	371	79.2
474426	MRC-11-04	230	24.9	200	32.5	214	43.8
474427	MRC-11-04	204	22.4	187	31	202	41.5
474428	MRC-11-04	277	34	281	50.6	344	73.3
474429	MRC-11-04	329	43	360	72	502	111
474430	MRC-11-04	373	49.3	419	85	615	140
474431	SZC-11-16	69.4	7.88	61.4	9.9	63	13.3
474432	SZC-11-16	78.3	9.11	65.2	10.2	61.4	12.4
474433	SZC-11-16	70.7	8.1	63.2	9.8	61.7	12.3
474434	SZC-11-16	95.1	10.8	86.2	14.3	91.8	19.1
474435	SZC-11-16	85.8	9.86	81.4	14	89.8	18.7
474436	SZC-11-16	95.4	11.4	90.8	15.6	96.6	19.5
474437	SZC-11-16	78.2	9.26	73	12.2	79.8	15.8
474438	SZC-11-16	199	23.5	165	24.8	141	27
474439	SZC-11-16	153	18.3	142	25.1	159	32.6
474440	SZC-11-16	115	12.9	107	19.4	133	29.8
474441	SZC-11-16	135	14.7	118	19.1	123	26.6
474442	SZC-11-16	75.7	7.87	64.9	10.1	62.5	12.4
474443	SZC-11-16	192	18.3	151	20.9	123	23.3
474444	SZC-11-16	190	17.1	143	18.7	102	19.1
474445	SZC-11-16	115	12.7	92.6	13.4	77.7	15.1
474446	SZC-11-16	113	12.6	104	17.8	111	22.7
474447	SZC-11-16	115	13.4	109	20.1	133	30.1
474448	SZC-11-16	110	12.1	102	17.3	113	24.3
474449	SZC-11-16	115	13	108	18.8	125	26.5
474450	SZC-11-16	172	20.1	170	32.5	219	47.5
474451	MRC-11-03	536	71	567	116	800	185
474452	MRC-11-03	381	48.4	375	69.7	455	104
474453	MRC-11-03	433	56.4	449	87	579	132
474454	MRC-11-03	328	41.6	327	61.8	411	90.3
474455	MRC-11-03	236	31.1	248	49.2	330	72.9
474456	MRC-11-03	262	33.6	274	52.7	345	75.3
474457	MRC-11-03	402	53	422	85.9	589	138
474458	MRC-11-03	462	62.9	496	99.8	707	161
474459	MRC-11-03	436	57.9	468	94.3	648	152
474460	MRC-11-03	290	35.8	294	59.6	399	87.9
474461	MRC-11-05	520	65.6	522	98.1	652	146
474462	MRC-11-05	299	37.5	295	55.5	364	79.5

CHEM#	CHANNEL	Sm	Eu	Gd	Tb	Dy	Но
474463	MRC-11-05	456	59.4	456	87.4	583	134
474464	MRC-11-05	363	46.6	361	68.6	469	105
474465	MRC-11-05	360	46.5	363	70.9	475	105
474466	MRC-11-05	425	52.6	427	80.2	520	112
474467	MRC-11-05	390	47.8	392	72.4	471	103
474468	MRC-11-05	231	26.5	213	36.6	222	46.7
474469	MRC-11-05	395	50.3	399	77.2	534	119
474470	MRC-11-05	346	47.1	376	76.2	516	116
474471	MRC-11-05	441	56.9	463	90.1	607	138
474472	MRC-11-02	446	55.9	443	86.8	593	137
474473	MRC-11-02	249	30.7	237	43.6	284	62.7
474474	MRC-11-02	166	19.2	149	25.1	158	33.5
474475	MRC-11-02	90.8	11.4	86.6	15.3	96.2	20
474476	MRC-11-02	105	12.6	98.6	17.9	110	23.5
474477	MRC-11-02	244	30.1	234	44.2	288	63.4
474478	MRC-11-02	296	37.1	293	57.4	386	84.7
474479	BRC-11-06	84.2	10.9	79.7	15	96.2	20.9
474480	BRC-11-06	75.9	9.96	76.6	14.8	94.9	21.3
474481	BRC-11-06	64.5	7.12	59.9	10	61.3	12.9
474482	BRC-11-06	66.8	8.22	65.7	12	77.2	16.9
474483	BRC-11-06	48	5.72	46.5	8.9	56.4	12.4
474484	BRC-11-06	75.8	10.3	76.2	14.6	95	21
474485	BRC-11-06	99.6	13.8	108	20.4	132	27.6
474486	MRC-11-01	43.1	5.82	53.7	11.2	79	17.7
474487	MRC-11-01	75.2	9.24	81.5	15.6	105	22.9
474488	MRC-11-01	216	24.3	199	34.8	213	44.1
474489	MRC-11-01	203	23.2	180	29.1	171	34.3
474499	BRC-11-02a	120	16.1	126	25.1	164	34.5
474500	BRC-11-02a	363	35.2	272	40	233	45.8
474501	BRC-11-02b	224	23.4	189	31.7	195	39.2
474502	BRC-11-02b	257	26	201	30.9	180	35.8
474503	BRC-11-02b	141	19.2	161	34	220	47.1
474504	BRC-11-05	124	12.1	130	26.9	182	40
474505	BRC-11-05	230	21.6	190	32.2	206	43.3
474506	BRC-11-05	229	20.3	158	22.9	137	28.4
474507	BRC-11-05	170	15.7	140	24.8	167	37.8
474508	BRC-11-05	164	15.1	117	18.2	115	23.9
474509	BRC-11-05	106	11.1	87.8	15.2	94.9	20.5
474510	BRC-11-01	188	25.2	221	51	355	76.5
474511	BRC-11-01	11.9	1.44	12.8	2.8	18.7	4
474512	BRC-11-01	98.5	12.3	106	22.3	152	33.3
474513	BRC-11-01	207	26.4	209	41.3	263	54.5
474514	BRC-11-01	226	28	220	44.6	288	59.7
474515	BRC-11-01	287	32	251	44.8	285	60.6
474516	BRC-11-01	319	37.3	297	57.5	376	80.7
474517	BRC-11-01	183	20.5	158	28.5	180	37.7

CHEM #	CHANNEL	Sm	Eu	Gd	Tb	Dy	Но
474518	BRC-11-01	240	29.6	240	45.7	300	62.9
474519	BRC-11-01	140	15.9	130	26.1	181	40.1
474520	BRC-11-01	83.2	10.1	94.2	20.4	138	29.9
474521	BRC-11-03a	118	11.9	113	25	177	40.4
474522	BRC-11-03a	129	13.5	118	21.8	139	28.7
474523	BRC-11-03a	101	9.79	82.3	14.8	97.4	21.3
474524	BRC-11-03a	121	12.8	141	32	223	50.2
474525	BRC-11-03a	133	12.7	118	20.8	138	30
474526	BRC-11-03b	305	36.9	299	56.9	374	79.2
474527	BRC-11-03b	581	69.3	540	103	680	150
474528	BRC-11-03b	401	47	364	70.5	469	103
474529	BRC-11-03b	234	25.5	206	35.6	222	48.7
474530	BRC-11-03b	203	19.7	190	36.4	228	47
474531	BRC-11-03b	178	18.4	151	25.1	155	30.7
474611	MRC-11-06	383	45.3	356	68.8	492	105
474612	MRC-11-06	385	45.2	371	70.9	490	114
474613	MRC-11-06	457	50.6	388	67.7	475	100
474614	MRC-11-06	393	45.5	353	65.2	465	101
474615	MRC-11-06	426	49.4	380	69.5	495	106
474616	MRC-11-06	580	62.8	475	80	530	109
474617	MRC-11-06	485	56.4	435	80.3	571	122
474618	MRC-11-06	364	43.9	357	70.8	506	109
474619	MRC-11-06	429	50.7	392	72	499	106
474620	MRC-11-06	534	60.5	466	81.3	555	115
474621	MRC-11-06	431	48.2	370	65.6	447	92.1
474622	MRC-11-06	343	38.5	300	54.5	383	81.8
474623	MRC-11-06	411	47.8	370	70	501	109
474624	MRC-11-06	421	51.7	410	82.2	608	134
474625	MRC-11-06	413	48.9	387	74.3	539	119
474626	MRC-11-06	415	48.8	386	74.4	542	117
4744490	BRC-11-04	87.5	10.2	71.5	11.2	62.5	11.9
4744491	BRC-11-04	352	33.1	231	31.9	174	32.4
4744492	BRC-11-04	171	19.9	140	21.9	122	22.7
4744493	BRC-11-04	236	27.8	217	39.5	237	47.5
4744494	BRC-11-04	128	14.7	104	15.5	87.8	16.4
4744495	BRC-11-04	115	13.4	92.1	14.6	82.5	15.7
4744496	BRC-11-04	123	14.1	98.1	15.8	88.2	17
4744497	BRC-11-04	138	15.6	118	22	140	29.2
4744498	BRC-11-04	32.1	5.57	26.7	4.1	24.7	4.9
474565	AMC-11-05	208	19.9	173	29.4	209	43.1
474566	AMC-11-05	158	15.6	139	24.6	173	34.7
474567	AMC-11-05	163	19.3	176	33.7	225	44.4
474568	AMC-11-05	170	17.9	155	27.7	191	38.4
474569	AMC-11-05	125	13.3	105	18.1	123	24.8
474570	AMC-11-05	132	13.5	114	20.6	143	29.3
474571	AMC-11-01	39.4	5.1	34.8	6.3	43.2	8.9

CHEM #	CHANNEL	Sm	Eu	Gd	Tb	Dy	Но
474572	AMC-11-01	30.4	3.75	26.2	4.6	30.5	6.2
474573	AMC-11-01	49.1	6.78	45.9	8.6	58.9	12.4
474574	AMC-11-01	38.2	4.97	34.2	6.1	40.8	8.4
474575	AMC-11-01	47.2	6.33	43.3	8	53.7	11.1
474576	AMC-11-02	43.5	5.59	38.9	7.2	48.7	10.2
474577	AMC-11-02	33.5	3.81	26.9	4.5	29.4	6
474578	AMC-11-02	37.2	4.49	32.1	5.8	38.8	7.8
474593	AMC-11-04	50.5	6.12	42.3	7.4	48.6	9.8
474594	AMC-11-04	61.8	7.08	52.4	9.1	58.6	11.8
474595	AMC-11-04	47.8	5.59	39.2	6.5	41.7	8.2
474596	AMC-11-04	95.8	11.7	87.8	15.9	106	21.7
474597	AMC-11-04	48.5	5.69	40.5	6.8	44.7	8.8
474598	AMC-11-04	50.7	5.98	40.8	6.8	44	8.6
474599	AMC-11-03	55.9	7.37	52	9.9	67.1	14.3
474600	AMC-11-03	94.6	12.3	88.2	16.9	118	24.6
474601	AMC-11-03	109	14.9	105	20.2	138	28.7
474602	AMC-11-03	89.6	11.4	83.3	15.5	105	21.5
474603	AMC-11-03	81	10.8	75.3	14.3	96.6	19.9
474604	AMC-11-03	78.8	9.94	75.4	14	96	19.8
474605	AMC-11-03	37.7	4.52	30.6	5.1	33.4	6.6
474606	AMC-11-03	37.1	4.51	29.9	4.9	31.2	6.1
474607	AMC-11-03	33.2	4.16	27.1	4.3	26.5	5.3
474608	AMC-11-03	34	4.2	27.3	4.3	26.9	5.2
474609	AMC-11-03	42.8	5.39	36.5	6.2	40.7	8.2
474610	AMC-11-03	43.1	5.42	39.6	7.3	48.5	9.8

CHEM#	CHANNEL	Er	Tm	Yb	Lu	Hf	Та
104201	CBC-10-06a	16.3	2.33	15.3	2.46	16.1	3
104202	CBC-10-06a	14.6	2.1	13.7	2.14	22.1	2.7
104203	CBC-10-06a	35.3	5	31.6	4.62	63.4	8
104204	CBC-10-06a	35.2	5.09	32.1	4.8	74.6	9.2
104205	CBC-10-06a	80.5	11.7	71.6	10.2	175	22.1
104206	CBC-10-06a	43.2	6.15	38.2	5.6	61	8.4
104207	CBC-10-06a	30.4	4.35	27.6	4.07	47.6	5.9
104208	CBC-10-06a	58.9	8.23	49	6.97	110	14.8
104209	CBC-10-06a	39.8	6.03	40.7	6.45	51.3	5.7
104210	CBC-10-06a	38.9	5.63	35.5	5.31	68.7	8.6
104211	CBC-10-06a	54.3	7.88	48.6	7	106	11.8
104212	CBC-10-06a	52.4	7.58	47.2	6.76	112	13.5
104213	CBC-10-06a	44.3	6.49	40.6	5.84	97.9	11.7
104214	CBC-10-06a	14.7	2.19	14.2	2.11	21.3	2.7
104215	CBC-10-06a	10.2	1.5	9.7	1.44	13.4	1.5
104216	CBC-10-06a	19.2	2.79	17.6	2.48	13.2	5.1
104217	CBC-10-07	12.8	1.94	13.8	2.36	20.1	2.3
104218	CBC-10-07	15.4	2.32	16.5	2.77	20.9	2.9
104219	CBC-10-07	8.9	1.42	11.2	2.09	14.5	1.4
104220	CBC-10-07	23.4	3.46	22.6	3.54	48.7	5.3
104221	CBC-10-07	77.1	11.1	67.5	9.53	199	23.3
104222	CBC-10-07	63.1	9.1	55.5	7.86	150	17.6
104223	CBC-10-07	75.5	11	66.9	9.6	144	15.3
104224	CBC-10-07	88.5	12.8	76.8	10.7	208	23
104225	CBC-10-07	58.8	8.52	51.9	7.38	139	16.3
104226	CBC-10-07	26.1	3.82	25.3	3.98	58.8	6.9
104227	CBC-10-08	90.2	13.1	80.1	11.5	234	32.1
104228	CBC-10-08	93.8	13.5	82.7	11.8	267	41.4
104229	CBC-10-08	54.4	8.16	52.7	7.98	145	20.6
104230	CBC-10-08	79.3	11.8	74	10.9	212	30.5
104231	CBC-10-08	92.1	13.4	82.3	11.8	274	39.8
104232	CBC-10-08	68.4	9.87	60.9	8.77	187	28.3
104233	CBC-10-08	79.2	11.5	70.8	10.2	225	34.1
104234	CBC-10-08	58.7	8.57	52.9	7.71	162	23.2
104235	CBC-10-08	61.1	8.89	55.2	8.07	170	23.4
104236	CBC-10-08	45.7	6.68	41.9	6.18	120	16.9
104237	CBC-10-08	30.1	4.45	28.1	4.23	71.3	10.3
104238	CBC-10-08	58.2	8.45	51.9	7.53	165	23.6
104239	CBC-10-08	80.4	11.7	72.3	10.4	224	31
104240	CBC-10-08	116	16.8	102	14.4	285	37.6
104241	CBC-10-08	115	16.7	102	14.3	292	37.2
104242	CBC-10-08	85.7	12.4	76	10.9	236	32.4
104243	CBC-10-08	67.3	9.74	60.4	8.8	189	26.5
104244	CBC-10-08	49.7	7.28	45.1	6.44	139	19.7
104245	CBC-10-08	47.2	6.87	42.7	6.3	132	18.5
104246	CBC-10-08	43	6.23	39.5	5.91	115	16.3

CHEM#	CHANNEL	Er	Tm	Yb	Lu	Hf	Та
104247	CBC-10-08	50.4	7.29	44.9	6.49	138	19.6
104248	CBC-10-08	78.3	11.3	68.9	9.78	216	30.2
104249	CBC-10-08	61.5	8.94	54.8	7.94	173	24.3
104250	CBC-10-08	78.5	11.3	68.8	9.89	216	30.7
104251	CBC-10-08	58.6	8.52	53.3	8.35	161	22.8
104252	CBC-10-08	72.6	10.7	64.7	9.45	215	28.8
104253	CBC-10-08	84.1	12.2	73	10.4	241	32.9
104254	CBC-10-09	46.3	6.48	38.9	5.54	84.2	12.4
104255	CBC-10-09	63.7	9.03	54.9	7.71	108	14.6
104256	CBC-10-09	62.4	9	54	7.54	79	10.2
104257	CBC-10-09	57	8.24	49.9	7.05	86.6	10.6
104258	CBC-10-09	48.4	6.19	35.1	4.66	26.1	10.9
104259	CBC-10-09	21.3	2.87	16.9	2.36	11	4.2
104260	CBC-10-09	16	2.19	13.3	1.97	12.2	3.3
104261	CBC-10-09	61.4	8.54	49.4	6.62	64.7	10.7
104262	CBC-10-09	24.6	3.58	22.3	3.32	31.1	4.8
104263	CBC-10-09	40.9	5.84	34.4	4.78	42.9	3.9
104264	CBC-10-09	68	9.45	54.4	7.39	87	10.5
104265	CBC-10-09	55.3	7.84	45.3	6.1	67	11.2
104266	CBC-10-09	32.8	4.6	27.3	3.77	57.2	12.8
104267	CBC-10-09	44.1	6.17	36	4.85	76.8	13.1
104268	CBC-10-09	33.3	4.63	27.3	3.74	55	10.5
104269	CBC-10-10	45.8	6.58	41.3	6.23	81.4	10.9
104270	CBC-10-10	65.8	9.61	58.4	8.37	96.2	12.4
104271	CBC-10-10	19.4	2.85	19.1	3.07	26.4	3.6
104272	CBC-10-10	17.5	2.61	17.8	2.96	23.6	3.4
104273	CBC-10-10	23.4	3.53	23.6	3.83	40.3	5.6
104274	CBC-10-10	63.3	9.02	53.7	7.57	75	11.5
104275	CBC-10-10	39.7	5.83	36	5.25	72.3	10.1
104276	CBC-10-10	33.8	4.99	31.5	4.79	57.1	7.6
104277	CBC-10-10	50.3	7.4	45.4	6.68	109	13.4
104278	CBC-10-10	64.5	9.42	57.5	8.2	92.9	10.9
104279	CBC-10-10	64.4	9.26	56.4	8.01	87.1	9.5
104280	CBC-10-10	30.3	4.61	29.7	4.52	40.7	4.8
104281	CBC-10-10	28.7	4.3	28.5	4.45	30.8	4.5
104282	CBC-10-10	76.3	10.8	64.6	8.95	87.4	13.4
104283	CBC-10-10	81.4	11.5	68	9.38	69.8	10.9
104284	CBC-10-10	173	23.5	132	16.7	75.1	31.5
104285	CBC-10-10	164	21.9	124	15.7	63.4	29
104286	CBC-10-10	175	23.8	140	18.7	10.8	3.1
104287	CBC-10-10	130	18.2	106	14	14.9	13.1
104288	CBC-10-11b	18.8	2.68	17.5	2.71	20.1	2.7
104289	CBC-10-11b	23.1	3.33	21.1	3.22	31	3.8
104290	CBC-10-11b	93.9	12.9	76.2	10.2	141	15.4
104291	CBC-10-11b	18.4	2.77	19.4	3.25	26.5	3.1
104292	CBC-10-11b	66.8	9.62	58.4	8.25	136	16.1

CHEM #	CHANNEL	Er	Tm	Yb	Lu	Hf	Та
104293	CBC-10-11b	63	9.09	55.2	7.59	76.9	10
104294	CBC-10-11b	46.5	6.73	42.2	6.06	70.7	9.8
104295	CBC-10-11b	63.6	9.48	59.3	8.44	78.2	10.4
104296	CBC-10-11b	38.6	5.7	35.5	5.25	73.5	7.6
104297	CBC-10-11b	32.9	4.89	31.2	4.65	64.9	7.1
104298	CBC-10-11b	19.2	2.88	19.5	3.19	31.2	3.6
104299	CBC-10-11b	20.7	3.47	25.2	4.28	24.2	3.7
104300	CBC-10-11b	29.2	4.29	27.7	4.21	40.6	4.6
104326	CBC-10-11b	110	16.1	96.5	12.9	145	15.3
104327	CBC-10-11b	27.1	3.98	25.8	3.97	49.4	5.3
104328	CBC-10-11b	19	2.94	19.9	3.25	40.3	4.1
104329	CBC-10-11b	12.5	2	15.1	2.71	22.2	2.3
104330	CBC-10-11b	10.4	1.7	13.6	2.95	19	1.8
104331	CBC-10-11b	10	1.68	13.2	2.5	20.4	1.8
104332	CBC-10-11b	33.2	4.76	29.9	4.52	75.5	8.3
104333	CBC-10-11b	35.7	5.23	32.9	4.88	79.4	7.6
104334	CBC-10-11b	47.6	6.84	41.8	6.14	46.4	7.6
104335	CBC-10-11b	42.2	6.2	38.7	5.85	88.1	9.1
104336	CBC-10-11b	106	15	87.5	11.7	191	21.7
104337	CBC-10-11b	86	12.2	71.8	9.57	151	17.5
104338	CBC-10-11b	102	14.4	85	11.5	179	18.2
104339	CBC-10-11b	14.2	2.14	14.8	2.5	16.2	1.9
104340	CBC-10-11b	154	21.9	131	17.8	266	27.6
104341	CBC-10-11b	37.6	5.48	33.5	4.93	48.2	5.8
104342	CBC-10-11b	69.1	9.65	56.1	7.75	80.8	10
104343	CBC-10-11b	25	3.6	22.7	3.51	30.6	4.1
104344	CBC-10-11b	63.4	9.09	55	7.61	82.6	10.7
104345	CBC-10-11b	94.9	13.4	81.1	11.4	130	17.4
104346	CBC-10-11b	136	19.3	115	15.6	216	25.7
104347	CBC-10-11b	73.6	10.5	62.7	8.8	95.7	11.5
104348	CBC-10-11b	84.6	12	71.8	9.87	110	14.1
416155	CBC-10-11a	12.1	1.87	12.7	2.12	21.5	2.2
416156	CBC-10-11a	11.4	1.74	11.6	1.99	17.4	1.7
416157	CBC-10-11a	73.2	10.6	63.3	9.01	207	24.3
416158	CBC-10-11a	30.3	3.69	19.5	2.39	13	4.6
416159	CBC-10-11a	29.2	4.25	25.2	3.53	49.5	7.5
416160	CBC-10-11a	15.3	2.32	15.3	2.43	28.1	3.2
416161	CBC-10-11a	19.1	2.93	19.6	3.15	40.3	4.3
416162	CBC-10-11a	16	2.43	16.7	2.81	29.7	3.2
416163	CBC-10-11a	12.4	1.95	13.4	2.26	18.4	1.7
416164	CBC-10-11a	29.8	4.52	27.8	4.3	71.4	6.9
416165	CBC-10-11a	30.9	4.6	28.2	4.23	69.6	7
416166	CBC-10-11a	9.5	1.44	10	1.65	20.2	3
416167	CBC-10-11a	34.3	5.04	31.1	4.39	68.4	7
416168	CBC-10-11a	160	22.9	136	17.6	20.9	7.4
416169	CBC-10-11a	54	7.91	46.4	6.42	142	14.4

CHEM#	CHANNEL	Er	Tm	Yb	Lu	Hf	Та
416170	CBC-10-11a	44.8	6.68	40.4	5.82	120	11.8
416171	CBC-10-12	111	16.2	96.7	13.3	293	33.1
416172	CBC-10-12	84.5	12.2	72.7	10.1	247	28.2
416173	CBC-10-12	34.3	5.2	32.4	4.87	98.7	11.3
416174	CBC-10-12	19.3	3.14	21.1	3.42	23.7	3
416175	CBC-10-12	93.6	13.5	77.8	10.4	96.3	14.7
416176	CBC-10-12	20	2.97	19.1	2.99	35.1	4.1
416177	CBC-10-12	115	17	102	13.8	53.3	8.6
416178	CBC-10-12	21	3.3	20.9	3.36	31.9	4.1
416179	CBC-10-12	13.9	2.14	14.8	2.49	22.6	2.3
416180	CBC-10-12	32.4	4.74	29.9	4.51	40.2	5.2
416181	CBC-10-12	20.5	3.15	21	3.45	37.5	3.8
416182	CBC-10-12	20.6	3.14	21.4	3.44	34.4	3.4
416183	CBC-10-12	129	19.1	113	15.8	365	32.3
416184	CBC-10-12	148	21.4	127	16.2	23.4	8.8
416185	CBC-10-12	30.9	4.56	28.7	4.2	45.4	5.4
416186	CBC-10-12	43.5	6.43	40.8	5.82	75	8.2
416187	CBC-10-12	30.5	4.5	29.9	4.74	43.9	4.9
416188	CBC-10-13	57.3	8.15	51.7	7.16	105	10.3
416189	CBC-10-13	47.5	6.96	43.9	6.42	86.4	8.8
416190	CBC-10-13	14.9	2.33	16.7	2.82	21.5	2
416191	CBC-10-13	12.7	1.97	14.2	2.46	19.9	2.1
416192	CBC-10-13	53.6	7.76	47.3	6.59	104	12.1
416193	CBC-10-13	57.9	8.51	52	7.45	115	13.1
416194	CBC-10-13	11.7	1.84	13.7	2.4	18.4	1.9
416195	CBC-10-13	11.9	1.86	13.6	2.35	21.1	2.3
416196	CBC-10-13	14.5	2.25	16.3	2.86	18.5	1.8
416197	CBC-10-13	13.8	2.05	14.5	2.41	18.3	2.1
416198	CBC-10-13	12.7	1.93	14.2	2.41	19.6	2
416199	CBC-10-13	12.9	2.09	16.1	2.93	21	1.7
416200	CBC-10-13	16.7	2.54	17.5	2.89	24	2.5
416201	CBC-10-14	26	3.8	24.3	3.62	57.1	7.2
416202	CBC-10-14	15	2.25	15	2.44	27.8	3.7
416203	CBC-10-14	26.2	3.83	24.5	3.59	55.8	7.4
416204	CBC-10-14	13	1.95	13.4	2.14	23.8	3.1
416205	CBC-10-14	8.9	1.33	10.1	1.8	15.4	1.6
416206	CBC-10-14	9.4	1.46	11.1	1.94	15.9	1.7
416207	CBC-10-14	34	4.96	31.4	4.66	81.3	9
416208	CBC-10-14	19.3	2.87	19.6	3.02	32.9	4
416209	CBC-10-14	15	2.25	16.1	2.66	20.4	2.3
416210	CBC-10-14	16	2.43	17.3	2.87	23.3	2.6
416211	CBC-10-14	15.4	2.41	17.6	3.08	29.5	2.9
416212	CBC-10-14	58.1	8.44	52.3	7.48	138	17.1
416213	CBC-10-14	13.5	2.13	15.7	2.77	22	2
416214	CBC-10-14	12.3	1.83	13.5	2.34	18.8	2.6
416215	CBC-10-14	9.9	1.43	10.5	1.76	12	1.7

CHEM#	CHANNEL	Er	Tm	Yb	Lu	Hf	Та
416216	CBC-10-14	9.8	1.47	11.3	1.95	12.1	1.7
416217	CBC-10-14	9.6	1.49	11	1.95	12.9	1.6
416218	CBC-10-14	21.2	3.18	21.8	3.41	42.6	4.2
416219	CBC-10-14	17.7	2.58	16.8	2.59	13.4	2.1
416220	CBC-10-14	29.9	4.23	26.5	3.77	25.7	3.1
416221	CBC-10-14	67.9	9.33	54.6	7.25	55.7	7.5
416222	CBC-10-14	70.4	9.86	59.7	8.46	170	22.5
416223	CBC-10-14	59.6	8.39	49.8	7.07	120	15.8
416224	CBC-10-14	34.5	4.92	29.9	4.37	67.5	9.4
416225	CBC-10-14	31.9	4.63	28.4	4.12	56	8
416226	CBC-10-15	13.2	1.93	13.3	2.26	17.2	2.1
416227	CBC-10-15	13.8	2.05	14.2	2.46	18.5	2.2
416228	CBC-10-15	12.6	1.87	13.1	2.17	17	2.1
416229	CBC-10-15	13	1.92	13	2.29	16.8	2
416230	CBC-10-15	16.4	2.4	15.8	2.53	22.6	3
416231	CBC-10-15	15.4	2.35	16	2.75	22.5	2.5
416232	CBC-10-15	23	3.36	22.1	3.45	49.4	7.1
416233	CBC-10-15	62.3	8.49	50	6.7	72.5	12.4
416234	CBC-10-15	35.8	5.29	33	4.94	80.6	11.8
416235	CBC-10-15	50.9	7.36	45.2	6.53	117	17.7
416236	CBC-10-15	42.4	6.25	39.1	5.87	106	16.1
416237	CBC-10-15	27.6	3.95	25.6	3.96	59.8	8.6
416238	CBC-10-15	24.4	3.85	26.4	4.33	40.9	5.2
416239	CBC-10-15	13	1.97	13.7	2.34	18	2.4
416240	CBC-10-15	13.4	2.06	13.9	2.41	17.7	1.9
416241	CBC-10-15	14.5	2.16	14.4	2.44	19.5	2.3
416242	CBC-10-15	12.2	1.86	12.7	2.22	16.2	1.8
416243	CBC-10-15	12.5	1.91	13.5	2.24	15.7	2
416244	CBC-10-16	119	16.6	95.4	12.3	111	17
416245	CBC-10-16	72.2	10.1	59	7.81	63.3	9.9
416246	CBC-10-16	24.2	3.83	26.8	4.41	22.8	3.6
416247	CBC-10-16	15.6	2.71	21.2	3.83		2.4
416248	CBC-10-16	146	20.7	121	15.8	171	22.2
416249	CBC-10-16	115	16	92.6	12.1	38.2	12.7
416250	CBC-10-16	77	10.4	59.4	7.81	66.3	13.1
416251	CBC-10-16	67.7	9.42	54.3	7.06		9
416252	CBC-10-16	102	14.6	85.4	11.7	74.6	16.2
416253	CBC-10-16	73.3	10.3	60	7.93	63	13.6
416254	CBC-10-16	130	18	103	13.7	136	24.7
416255	CBC-10-16	84.6	11.7	67.4	9.12	93.4	15.9
416256	CBC-10-16	97.8		74.4	9.75	97.3	18.4
416257	CBC-10-16	55.8	7.63	45.7	6.24		13.6
416258	CBC-10-16	24.7	3.63	22.2	3.29		5.9
416259	CBC-10-16	23.2	3.33	20.7	3.18	45.4	6.8
416260	CBC-10-16	23.1	3.36	21.7	3.39		6.4
416261	CBC-10-16	15.1	2.32	15.6	2.56	25	3.5

CHEM#	CHANNEL	Er	Tm	Yb	Lu	Hf	Та
416262	CBC-10-16	12.9	1.98	13.9	2.4	17.6	2.1
416263	CBC-10-18a	251	34.8	195	24.7	203	25.8
416264	CBC-10-18a	153	21.2	121	15.8	168	19
416265	CBC-10-18a	62.4	8.98	54.7	7.91	78	8.6
416266	CBC-10-18a	255	37.9	229	30.1	37.6	4.7
416267	CBC-10-18a	103	14.5	86.4	11.7	90.4	10.8
416268	CBC-10-18a	75.3	10.9	66.6	9.59	110	11
416269	CBC-10-18a	70.2	9.84	61.2	8.73	88.3	9.8
416270	CBC-10-18a	61.4	8.88	54.1	7.94	88.6	9.1
416271	CBC-10-18a	46.3	6.76	43.3	6.5	66.7	7.2
416272	CBC-10-18a	52.2	7.61	47.5	7.07	73.3	8
416273	CBC-10-18a	83.9	12	72.3	10.1	119	12.4
416274	CBC-10-18a	58.3	8.67	53.7	7.84	80.3	9.1
416275	CBC-10-18a	66.9	9.71	59.8	8.61	89.3	10.2
416276	CBC-10-18a	61.2	9.05	56.3	8.22	70	8.5
416277	CBC-10-18b	140	20.1	122	16.7	67.3	9.3
416278	CBC-10-18b	317	47.3	291	39.1	9.3	1.8
416279	CBC-10-18b	343	50.9	316	42.5	9.9	2.4
416280	CBC-10-18b	53.4	7.85	49.6	7.3	76.6	8.3
416782	MBC-10-01	13	1.98	13.3	2.3	20.2	1.9
416783	MBC-10-01	27.9	4.05	25.4	3.93	35.6	4.2
416784	MBC-10-01	28.7	4.29	27	4.25	60.3	5.9
416785	MBC-10-01	75.8	11.3	66.1	9.28	152	13.8
416786	MBC-10-01	71	10.6	63.6	8.97	156	13.4
416787	MBC-10-01	15.6	2.32	14.8	2.33	27.8	2.7
416788	MBC-10-01	85	12.6	73.6	10.4	189	21.3
416789	MBC-10-01	107	15.3	84.9	11.2	149	23.1
416790	MBC-10-01	94.7	14.3	86.1	12.1	215	22.3
416791	MBC-10-01	91.8	13.6	80.9	11.3	193	16.9
416792	MBC-10-01	56.7	8.2	50	7.3	92.5	9.2
416793	MBC-10-01	92.9	14	83	11.6	227	25.2
416794	MBC-10-01	82.5	12.3	71.3	9.94	213	23.6
416795	MBC-10-01	72.4	10.8	64.6	9.32	183	19.4
416796	MBC-10-01	39.3	5.91	36.4	5.67	97.9	9.8
416797	MBC-10-01	40.5	6.02	38.1	5.85	97.5	10.5
416798	MBC-10-01	18.1	2.9	20.3	3.46	37	3.4
423637	CBC-10-01	32.5	4.78	29.9	4.48	49.5	5.9
423638	CBC-10-01	35.8	5.23	32.5	4.8	52.2	6.4
423639	CBC-10-01	30.2	4.31	25.3	3.61	41.2	5
423640	CBC-10-01	24.9	3.66	23.3	3.42	44.7	5
423641	CBC-10-01	44.7	6.44	38	5.51	86.2	9.4
423642	CBC-10-01	44	6.46	37.8	5.38	72.7	8
423643	CBC-10-01	62.9	9.08	54.7	7.67	86.6	10.3
423644	CBC-10-01	34.2	5.01	30.5	4.51	63.8	6.7
423645	CBC-10-01	30.2	4.48	27.3	4.06	58.3	6.4
423646	CBC-10-01	18.9	2.91	20	3.24	40.2	4.3

CHEM#	CHANNEL	Er	Tm	Yb	Lu	Hf	Ta
423647	CBC-10-01	21	3.2	21.5	3.35	45.4	4.7
423648	CBC-10-01	32	4.74	30	4.52	65.4	6.9
423649	CBC-10-01	26.4	3.96	25.8	4.1	58.7	5.9
423666	CBC-10-02	80.2	11.8	69.9	9.92	184	15.2
423667	CBC-10-02	60	8.82	52.3	7.59	135	10.9
423668	CBC-10-02	40.3	6.08	38.4	5.85	96.2	7.3
423669	CBC-10-02	63.6	9.17	54.9	7.87	138	11.3
423670	CBC-10-02	82.1	12.1	71.5	10.2	180	14.5
423671	CBC-10-02	59.3	8.69	51.3	7.37	134	9.7
423672	CBC-10-02	70.7	10.2	60.6	8.78	158	11.9
423673	CBC-10-02	90.7	13.3	79.6	11	205	15.3
423674	CBC-10-02	87.5	12.9	75.1	10.7	201	14.8
423675	CBC-10-02	81.5	12.1	72.5	10.1	182	14.1
423676	CBC-10-02	80.4	11.6	68.2	9.59	170	13
423677	CBC-10-02	81	11.9	69.7	9.65	160	12.6
423678	CBC-10-02	46.3	6.93	42.3	6.32	89.5	7.1
423679	CBC-10-03	61.1	8.94	50.9	6.75	47.6	9.7
423680	CBC-10-03	47.8	6.95	40.9	5.61	42.5	7.4
423681	CBC-10-03	19.7	2.89	18.8	3.06	26.3	2.7
423682	CBC-10-03	18.9	2.76	17.6	2.84	25.7	2.7
423683	CBC-10-03	31.9	4.45	25.6	3.6	36.5	5.3
423684	CBC-10-03	27.4	4.11	25.5	3.9	42.5	4.4
423685	CBC-10-03	46.3	6.77	40.1	5.54	63.2	7
423686	CBC-10-03	52.4	7.61	44.9	6.16	84.4	9
423687	CBC-10-03	59.5	8.85	52.9	7.33	129	9.7
423688	CBC-10-03	64.9	9.67	57	8.02	131	10.1
423689	CBC-10-03	62.9	9.12	54	7.46	113	9.2
423690	CBC-10-03	56.4	8.11	48.1	7.09	125	10.3
423691	CBC-10-03	64	9.17	54.9	8.05	140	11.6
423692	CBC-10-03	59.2	8.36	48.6	7.09	135	11.3
423693	CBC-10-03	63.2	8.42	44.7	5.9	78.7	7.3
423694	CBC-10-03	81	10.9	59.8	8.08	111	11.1
423695	CBC-10-03	35.1	5.05	31.7	4.94	85.1	8.1
423708	CBC-10-04	64.6	9.52	59.6	8.74	153	14.4
423709	CBC-10-04	63.2	9.29	56.9	8.35	140	12.9
423710	CBC-10-04	80.9	11.7	71.7	10.7	193	18.6
423711	CBC-10-04	76.5	11	69.1	10.1	163	15.2
423712	CBC-10-04	49.2	7.24	46.1	6.96	90.7	8.9
423713	CBC-10-04	80.6	11.5	71	10.3	183	17.5
423714	CBC-10-04	74.9	10.9	67.4	9.94	192	19.8
423715	CBC-10-04	77.3	11.4	70.3	10.3	192	19.3
423716	CBC-10-04	60.4	8.67	53.6	7.91	137	13.8
423717	CBC-10-04	63.1	9.17	57.5	8.54	159	16.9
423718	CBC-10-04	71.4	10.2	62.5	9.12	177	18.8
423719	CBC-10-04	86.8	12.9	78.4	11.5	225	23.9
423720	CBC-10-04	40.1	6.01	39.5	6.14	64.1	7.1

CHEM#	CHANNEL	Er	Tm	Yb	Lu	Hf	Ta
423721	CBC-10-05	50.7	7.41	46.8	6.95	100	9.8
423722	CBC-10-05	31.5	4.66	30.6	4.8	57.6	6.3
423723	CBC-10-05	31.4	4.71	31	4.93	50.4	5.9
423724	CBC-10-05	71	10.3	63.7	9.38	166	15.2
423725	CBC-10-05	86.9	12.7	76.8	11.2	227	22.4
423726	CBC-10-05	64.7	9.36	58	8.55	175	18.9
423727	CBC-10-05	43.3	6.33	40.1	6.13	112	11.7
423728	CBC-10-05	61.6	9.15	56.9	8.31	99.6	11
423729	CBC-10-05	65	9.58	59.6	8.87	179	20.1
423730	CBC-10-05	61.2	8.9	56	8.45	186	22.5
423731	CBC-10-05	27.8	4.09	27.2	4.45	65.4	7.3
423732	CBC-10-05	20	3.22	23.2	3.95	31	3.3
423733	CBC-10-05	76.6	11.3	70	10.2	155	15.9
423734	CBC-10-05	56.2	8.2	51.3	7.69	143	15
423735	CBC-10-05	20.6	3.1	21.1	3.61	46.8	4.9
423736	CBC-10-05	53.4	7.74	47.5	6.98	150	16.6
423737	CBC-10-05	28.1	4.2	27.7	4.45	76.2	8.4
423738	CBC-10-05	47.1	6.87	42.8	6.42	130	14.8
423739	CBC-10-05	54.9	8.02	49.1	7.35	165	20.8
423740	CBC-10-05	57.5	8.46	52.2	7.82	168	21.9
423746	CBC-10-11b	60.6	8.61	52.1	7.34	147	19.2
423747	CBC-10-11b	29.9	4.27	26.7	3.95	41.6	4.8
423748	CBC-10-11b	32.2	4.65	29.6	4.37	55.3	6.1
423749	CBC-10-11b	76.8	10.7	63.8	8.62	123	13.1
423750	CBC-10-11b	86.8	12.5	74.3	10.2	135	14.3
474120	MBC-11-02	36.8	5.38	33.6	4.87	87.4	7.6
474121	MBC-11-02	30.4	4.34	25.7	3.67	49.4	5.6
474122	MBC-11-02	23.8	3.61	22.4	3.25	37.8	3.9
474123	MBC-11-02	26.1	4.03	24.3	3.55	43.3	4.1
474124	MBC-11-02	30.3	4.58	29.1	4.17	58.6	5.9
474125	MBC-11-02	84.3	12.2	74.7	10.4	215	18.7
474126	MBC-11-02	60.3	8.61	53.3	7.59	126	10.3
474127	MBC-11-02	56	7.98	49.2	7.03	98.2	9.1
474128	MBC-11-03	19.6	2.85	17.6	2.66	29	3.6
474129	MBC-11-03	132	19.3	118	16.6	407	36.2
474130	MBC-11-03	31.2	4.57	28.7	4.34	66.5	6.3
474131	MBC-11-03	22.2	3.28	21	3.31	49.9	4.4
474132	MBC-11-03	14.4	2.29	15.6	2.62	16.8	2
474133	MBC-11-03	19.8	3.01	20.2	3.26	46.3	4.1
474134	MBC-11-03	16.8	2.63	18	3.04	39.4	3
474135	MBC-11-04	23.8	3.64	25.5	4.18	22.3	2.6
474136	MBC-11-04	40	5.84	38.5	5.95	53.2	4.7
474137	MBC-11-04	33.5	5.01	32.4	4.98	36.5	3.8
474138	MBC-11-04	32.3	4.67	29.2	4.3	29.6	4.2
474139	MBC-11-04	43.3	6.27	38.4	5.58	39	4.7
474140	MBC-11-04	24.5	3.57	22.2	3.28	34.8	3.9

CHEM #	CHANNEL	Er	Tm	Yb	Lu	Hf	Та
474141	MBC-11-04	23.5	3.77	24.1	3.74	41.9	3.4
474142	MBC-11-04	14.2	2.29	15.3	2.63	22.7	2
474143	MBC-11-04	49.5	7.05	43.5	6.23	80.9	8
474144	MBC-11-02B	49.6	7.2	44.6	6.38	81.8	7.4
474145	MBC-11-02B	26.8	4.13	25.7	3.92	53.8	4.9
474146	MBC-11-02B	2.6	0.4	2.8	0.47	4.4	0.3
474147	MBC-11-02B	63.3	8.73	52.1	7.3	48.1	9.9
474148	MBC-11-02B	86.2	11.7	67.1	9.32	60.8	11.9
474149	MBC-11-05	147	20.5	121	17	276	22.5
474150	MBC-11-05	96.2	13.9	83.8	12	231	23.5
474151	MBC-11-05	44.7	6.34	39.2	5.72	79.6	7.7
474152	MBC-11-05	60.7	8.83	53.8	7.61	130	13.9
474153	MBC-11-05	23.3	3.51	23.1	3.68	42.4	4.2
474154	MBC-11-05	22.2	3.43	24	3.9	38	3.8
474155	MBC-11-05	106	15.1	91	12.9	188	16.7
474156	MBC-11-06	45.7	6.73	41.3	5.9	103	11.3
474157	MBC-11-06	48.1	6.92	42.6	6.14	77	7.2
474158	MBC-11-06	28.9	4.43	29	4.46	42.5	3.7
474159	MBC-11-06	16.2	2.62	19.1	3.33	23.4	1.9
474160	MBC-11-06	32.5	4.98	32.3	4.95	43.1	4.3
474161	MBC-11-06	27.1	4.2	28.2	4.3	26.8	3.1
474162	MBC-11-06	22	3.41	23.2	3.73	20.3	2.5
474163	MBC-11-06	37.4	5.5	34.2	5.01	47.1	4.1
474164	MBC-11-09	23	3.53	22.7	3.45	47.6	4.2
474165	MBC-11-09	25.7	3.79	23.9	3.52	48.4	4.8
474166	MBC-11-09	38.7	5.7	34	4.89	86.2	7.9
474167	MBC-11-10B	48.7	6.79	39.2	5.29	55	5.5
474168	MBC-11-10B	172	24.5	146	20.6	29.9	4.4
474169	MBC-11-10B	104	14.4	82.7	11.3	60.6	8.9
474170	MBC-11-10B	61.9	8.74	47.9	6.36	63.9	8.2
474171	MBC-11-10A	41.9	6.07	36.6	5.24	69.7	6.9
474172	MBC-11-10A	70.5	10.4	60.6	8.33	133	11.7
474173	MBC-11-10A	95.1	13.8	78.7	10.7	190	16
474174	MBC-11-10A	65.7	9.5	54.8	7.37	89.4	8.3
474175	MBC-11-01	31.1	4.09	23.1	3.24	10.1	6.4
474176	MBC-11-01	37.4	4.9	28	3.99	8.3	5.9
474177	MBC-11-01	47.4	6.18	36.6	5.02	5.4	4.4
474178	MBC-11-01	26.8	3.77	25.2	3.91	4.2	2.2
474179	MBC-11-01	30.2	4.23	24.7	3.32	6.7	3.9
474180	MBC-11-01	53.4	7.1	42.9	6.28	5.4	4.2
474181	MBC-11-01	35.3	4.57	25.7	3.52	9.8	7.4
474182	MBC-11-01	55	7.78	50.1	7.43	4.7	1.2
474183	MBC-11-01	60.7	8.08	47.6	6.56	5.9	8.8
474184	MBC-11-01	95.9	13.5	83.6	12	7.6	2.9
474185	MBC-11-01	98.5	13.2	76.7	10	5.7	11
474186	MBC-11-01	84.5	11.9	74.5	9.9	11.2	3.9

CHEM#	CHANNEL	Er	Tm	Yb	Lu	Hf	Та
474187	MBC-11-01	74.3	9.7	54.1	6.73	8.1	2.6
474188	MBC-11-08	107	13.3	71.2	8.75	9.4	7.1
474189	MBC-11-08	89.9	11.1	60	7.5	11.1	8.7
474190	MBC-11-08	35.4	4.8	29.3	4.17	18.6	4.1
474191	MBC-11-08	36.5	5.11	31.6	4.6	33.1	7.6
474192	MBC-11-08	40.1	5.48	34.1	4.93	43	8.1
474193	CBC-11-01	63.7	9.55	59.4	8.36	36.7	9.1
474194	CBC-11-01	73.9	10.8	66	9.04	44.1	11.4
474195	CBC-11-01	48.5	7.25	45.4	6.47	35.4	7
474196	CBC-11-01	8.7	1.48	10.7	1.85	24.4	1.5
474197	CBC-11-01	12.4	1.94	13	2.19	30.2	2.1
474198	CBC-11-01	19.2	3.24	21.6	3.47	20.1	1.7
474199	CBC-11-01	13.6	2.1	14.2	2.31	16.3	1.9
474200	CBC-11-01	22.9	3.48	22	3.31	33.3	4.2
474201	CBC-11-02	21.4	3.35	22	3.41	8.7	3.1
474202	CBC-11-02	18.2	3.22	24.9	4.35	6.6	1.9
474203	CBC-11-02	21.8	3.65	24.2	3.97	11.3	3.7
474204	CBC-11-02	120	17.3	102	13.5	128	18.1
474205	CBC-11-02	32	5.29	35.6	5.71	22.5	4
474206	CBC-11-02	82.7	12.3	70.8	9.86	195	26.4
474207	CBC-11-03	105	15	88.5	11.6	131	24.1
474208	CBC-11-03	110	16.3	92.7	12.3	165	26
474209	CBC-11-03	126	18.2	107	14.2	184	27.8
474210	CBC-11-09	53.5	7.98	51.1	7.39	71.9	9
474211	CBC-11-09	155	22.1	127	16.5	159	30.5
474212	CBC-11-09	53.2	7.86	46.1	6.2	46.1	9
474213	CBC-11-09	118	16.6	97	12.5	102	19.4
474214	CBC-11-09	86.8	12	71.6	9.2	76.3	13.6
474215	CBC-11-09	30.2	4.63	27.9	4.16	58.9	9.8
474216	CBC-11-09	15.5	2.43	15.7	2.62	26.3	3.7
474217	CBC-11-05	13.2	2.09	14.8	2.49	20	2.2
474218	CBC-11-05	32.4	5.07	31.2	4.56	59.3	5.5
474219	CBC-11-05	13.8	2.22	15.4	2.51	24.3	2.9
474220	CBC-11-05	55.8	8.3	48.7	6.35	73.1	9.3
474221	CBC-11-05	73.7	11.6	72.9	10.1	59.8	8.1
474222	CBC-11-05	23.6	3.63	23.2	3.43	44.1	3.8
474223	CBC-11-07a	54	8.57	56.8	9.17	16.9	5.7
474224	CBC-11-07a	22.5	3.66	26.7	4.39	18.4	2.9
474225	CBC-11-07a	31.6	4.76	30.6	4.67	10.2	3.8
474226	CBC-11-07a	18.1	3.3	26.3	4.67	9.6	2.5
474227	CBC-11-07a	32.4	5.24	36.9	5.78	22.9	4.2
474228	CBC-11-07a	41	6.31	40.9	6.04	33.2	4.8
474229	CBC-11-07a	45.9	7.02	43.9	6.5	35.3	5.3
474230	CBC-11-07b	39.3	6.06	41	6.46	20.6	6.1
474231	CBC-11-07b	39	6.13	41.3	6.36	27.4	4.8
474232	CBC-11-06	119	18.4	111	14.6	15	5

CHEM#	CHANNEL	Er	Tm	Yb	Lu	Hf	Та
474233	CBC-11-06	76.8	12.3	74.5	10.1	14.4	5.9
474234	CBC-11-06	97.6	15.2	90.9	12	16.4	6.7
474235	CBC-11-06	223	32.8	184	22.2	53.2	21
474236	CBC-11-06	410	61.3	353	43.5	7.9	1.9
474237	CBC-11-06	614	92.5	533	64.4	10.8	< 0.1
474238	CBC-11-06	87.4	12.7	76	10.3	10.9	3.5
474239	CBC-11-06	385	59	345	42.3	28.6	11.1
474240	CBC-11-06	128	18.5	112	15.1	9.6	6.9
474241	CBC-11-06	101	15.2	89.6	11.5	23.9	15.2
474242	CBC-11-10	48	7.05	43.4	6.26	30.3	6
474243	CBC-11-10	152	22.2	132	17.7	328	38.4
474244	CBC-11-10	97.2	14.2	85.5	11.9	252	31.6
474245	CBC-11-10	18.1	2.97	19.4	3.15	30.5	3.2
474246	CBC-11-10	326	47.3	278	36.9	570	54.5
474247	CBC-11-04	14	2.32	16.4	2.99	19.3	1.8
474248	CBC-11-04	13.6	2.31	16.4	2.97	22.6	1.9
474249	CBC-11-04	33	5.11	31.6	4.79	65.4	5.8
474250	CBC-11-04	12.8	2.12	16	3.04	25.8	2
474251	CBC-11-04	13.2	2.22	15.7	2.82	24.9	2.1
474252	CBC-11-04	66.4	9.81	57.2	7.82	41.7	7.3
474253	CBC-11-04	100	14.6	85	11.1	47.5	14.2
474254	CBC-11-04	63.9	9.49	56	7.57	48.2	7.7
474255	CBC-11-04	95.6	13.4	73.8	9.44	62.4	12
474256	CBC-11-04	94.8	13.4	73.8	9.5	45	14
474257	CBC-11-04	54.1	8.07	47.1	6.41	52	7.9
474258	CBC-11-04	109	15.8	86.7	10.8	57.9	16.2
474259	CBC-11-04	60.8	8.89	50.6	6.81	43.3	9.2
474260	CBC-11-04	110	16.3	91.5	12	48.4	17.4
474261	CBC-11-04	107	15.6	89	11.7	73.3	12.3
474262	CBC-11-04	130	19	108	13.9	51.4	15.3
474263	CBC-11-04	53.9	8.06	47.9	6.79	81.8	9
474264	CBC-11-08	51.5	7.28	41.5	5.59	50.5	5.4
474265	CBC-11-08	37.9	5.94	39.2	6.11	27.9	4.9
474266	CBC-11-08	53.1	8.18	52.5	7.93	20.8	4.6
474267	CBC-11-08	105	14.2	78.6	10.3	28.8	6.9
474268	CBC-11-11	62.4	9.3	55.6	7.95	118	
474269	CBC-11-11	58.2	8.63	53.1	7.7	107	10.6
474270	CBC-11-11	49.3	7.48	43.9	6.34	91.1	9.3
474271	CBC-11-11	48.6	7.08	42.3	6.22	103	11
474272	CBC-11-11	56.1	8.29	49.5	7.23	122	12.4
474273	CBC-11-09b	31.4	4.81	29	4.35	77.8	
474274	CBC-11-09b	45.2	6.93	42.4	6.22	116	
474275	CBC-11-09b	41	5.98	37.4	5.65	110	10.5
474276	CBC-11-09b	74.7	10.9	65.8	9.56	161	14.9
474277	CBC-11-09b	41.6	6.36	37.8	5.63	89.8	9.3
474278	CBC-11-09b	57.5	8.5	51.4	7.39	124	12

CHEM #	CHANNEL	Er	Tm	Yb	Lu	Hf	Та
474279	CBC-11-09b	36	5.45	33.6	4.94	78.5	8.1
474280	CBC-11-09b	54.6	8.04	49.3	7.29	109	11.8
474281	SZC-11-04	26.8	3.97	25	3.76	40	4.7
474282	SZC-11-04	29.3	4.43	27	4.03	38.5	5.3
474283	SZC-11-04	54.9	7.99	48.4	6.95	61.7	9.9
474284	SZC-11-04	41.6	6.39	41	6.12	69.8	7.3
474285	SZC-11-04	43.3	6.66	40.8	6.17	83.1	7.7
474286	SZC-11-04	41.5	6.27	39.6	6.03	84.4	7.6
474287	SZC-11-04	40.8	6.28	39.5	6.03	86	8.3
474288	SZC-11-15a	27	4	25.6	4.07	36.8	4.8
474289	SZC-11-15a	13.2	1.96	12.4	1.99	18.2	4.5
474290	SZC-11-15a	16.9	2.66	17.9	2.98	23.1	2.6
474291	SZC-11-15b	16.6	2.6	17.4	2.89	22.4	2.8
474292	SZC-11-15b	13.7	1.88	11.4	1.76	18.3	5.9
474293	SZC-11-15b	16.5	2.57	17.6	3.01	22.4	2.7
474294	SZC-11-15c	16.7	2.55	17.9	3.07	22.3	2.6
474295	SZC-11-15c	17.3	2.69	17.7	2.88	17.1	4
474296	SZC-11-15c	19.9	3.04	20.5	3.38	21.3	4.9
474297	SZC-11-05	37.9	5.58	34.6	5.37	67.1	8.5
474298	SZC-11-05	27.7	4.23	26.8	4.15	55.4	7.5
474299	SZC-11-05	14.1	2.25	16.4	2.78	14.3	1.6
474300	SZC-11-05	15.3	2.39	16.8	2.93	16.1	1.8
474301	SZC-11-05	32.7	4.9	30.8	4.6	61.9	8.6
474302	SZC-11-05	16.9	2.62	17.4	2.95	20.9	2.7
474303	SZC-11-09	39.8	5.56	36.2	5.2	36	7.7
474304	SZC-11-09	24.7	3.59	24.8	3.88	25.6	5.8
474305	SZC-11-09	15.9	2.45	18.9	3.33	20.5	3.4
474306	SZC-11-09	16.6	2.45	18.3	3.29	23.4	2
474307	SZC-11-09	15.8	2.47	18.5	3.31	22.3	1.8
474308	SZC-11-09	21.4	3.01	21.4	3.51	26	2.4
474309	SZC-11-09	15.6	2.43	18.6	3.34	22	1.9
474310	SZC-11-09	21.8	3.02	20.8	3.36	20.1	2.3
474311	SZC-11-09	15.3	2.39	17.7	3.19	16.6	2
474312	SZC-11-09	16.2	2.51	19.3	3.36	20.5	1.9
474313	SZC-11-09	14.5	2.26	17.6	3.14	22.8	1.7
474314	SZC-11-09	16.8	2.44	18.2	3.18	23.3	2
474315	SZC-11-09	14.8	2.18	17	3.01	22.8	2.8
474316	SZC-11-02b	173	24	143	18.1	9.8	3.8
474317	SZC-11-02b	27.8	3.34	19.4	2.6	6.9	9.2
474318	SZC-11-02b	390	53	301	36.3	13.9	3.3
474319	SZC-11-02b	57.8	7.56	46.2	6.13	18.3	7.4
474320	SZC-11-02b	43.2	5.77	36.4	4.93	30.7	8.8
474321	SZC-11-03a	28.3	3.38	19	2.56	7.8	10
474322	SZC-11-03a	20.1	2.33	13.4	1.77	6.8	9.3
474323	SZC-11-03a	142	18.5	104	12.9	23.4	11.9
474324	SZC-11-03a	37.5	4.54	25.7	3.35	9.1	9.2

CHEM #	CHANNEL	Er	Tm	Yb	Lu	Hf	Та
474325	SZC-11-03a	334	45.3	268	32.9	15.7	4
474326	SZC-11-03b	30.6	4.09	25.9	3.64	27.6	8.6
474327	SZC-11-03b	22.9	3.13	20.3	3.01	22	5.9
474328	SZC-11-03b	27.3	3.83	24.9	3.74	22.6	5.5
474329	SZC-11-03b	30.7	4.2	26.9	3.9	29.3	4.7
474330	SZC-11-06	17	2.47	17.1	2.68	19.1	3.8
474331	SZC-11-06	16.7	2.4	16.8	2.7	20.6	2.9
474332	SZC-11-06	17.8	2.57	18	2.94	23	2.9
474333	SZC-11-06	18.3	2.65	18.1	3.03	24.4	3
474334	SZC-11-06	18.5	2.68	19.2	3.19	26	3
474335	SZC-11-06	16.4	2.35	16.7	2.74	21.7	2.9
474336	SZC-11-06	16.9	2.45	16.9	2.79	22.5	3
474337	SZC-11-07	25.6	3.7	24.5	3.83	33.4	4.9
474338	SZC-11-07	32.6	4.57	30.6	4.55	41.8	6.2
474339	SZC-11-07	53.2	8.03	53.3	7.76	92.8	10.8
474340	SZC-11-07	44.9	6.61	43.3	6.38	69.4	9.5
474341	SZC-11-07	29.9	4.35	29	4.34	21	6.6
474342	SZC-11-07	43.6	6	38	5.59	40.2	5.9
474343	SZC-11-08	37.4	5.2	32.9	4.82	44.1	6.6
474344	SZC-11-08	84.1	11.7	70.8	9.96	137	14.7
474345	SZC-11-08	36.5	5.39	33.6	5.1	43.1	6.7
474346	SZC-11-08	27.9	4.14	27.3	4.28	50.3	6
474347	SZC-11-08	41.8	6.03	40	6.19	80.7	9.2
474348	SZC-11-10	25.8	3.92	24.7	3.98	28.8	4.3
474349	SZC-11-10	41.8	5.97	38.3	5.67	46.7	5.8
474350	SZC-11-10	48.8	7.35	43.3	6.19	37.8	7.1
474351	SZC-11-10	48.7	6.54	41.3	6.01	32.5	7.4
474352	SZC-11-10	86.6	12.2	68.5	8.9	21.1	9.5
474353	SZC-11-10	62.8	8.51	52.2	7.53	37.8	6.8
474354	SZC-11-10	30.2	4.2	28.3	4.33	35.6	5.8
474355	SZC-11-10	31.3	4.5	29.9	4.62	56.3	6.6
474356	SZC-11-10	45.3	6.15	39.6	5.82	43	6.6
474357	SZC-11-10	36.6	5.09	33.5	4.94		5.1
474358	SZC-11-10	27.2	4	26.4	4.17	38.6	5.4
474359	SZC-11-10	30.9	4.5	30.1	4.75	46.3	5.9
474360	SZC-11-10	29.7	4.43	29.7	4.78		8.7
474361	SZC-11-10	33.9	4.95	32.7	5.19		8.8
474362	SZC-11-10	32.1	4.73	31.4	5	71.3	9.7
474363	SZC-11-10	23.6	3.51	24.2	4.04	37.7	4.9
474364	SZC-11-10	25.2	3.82	25	4.03	37.8	4.9
474365	SZC-11-10	36.4	5.11	33	5.13	46.2	7.1
474366	SZC-11-10	59.1	8.37	53.2	7.93		11.5
474367	SZC-11-10	49.8	6.98	42.9	6.38	61	8.5
474368	SZC-11-10	49.7	6.72	42.4	6.1	44.9	8.7
474369	SZC-11-10	33.4	4.56	29.3	4.41	35.6	5.6
474370	SZC-11-10	32.5	4.66	30.3	4.71	49.4	6.1

CHEM#	CHANNEL	Er	Tm	Yb	Lu	Hf	Та
474371	SZC-11-10	28	4.1	27.4	4.24	53.6	6.5
474372	SZC-11-10	17.5	2.68	19.9	3.39	31.2	2.7
474373	SZC-11-10	20.3	3.26	21.5	3.75	31.9	3.5
474374	SZC-11-10	15	2.24	16.2	2.98	20.5	2.4
474375	SZC-11-11	30.2	4.36	29.1	4.49	43.1	6.1
474376	SZC-11-11	81.8	11.3	67.7	9.19	54.3	11.5
474377	SZC-11-11	35	5.29	32.3	4.77	39.8	5.8
474378	SZC-11-11	41.7	5.87	37.3	5.43	55.4	9.1
474379	SZC-11-11	35.6	5.2	32.8	4.85	44.2	4.6
474380	SZC-11-11	40.8	5.82	36.3	5.5	48.5	6.6
474381	SZC-11-11	26.8	3.81	25.2	3.88	28.9	3.7
474382	SZC-11-11	32.9	4.61	29.3	4.41	30.4	2.1
474383	SZC-11-11	38	5.44	34.9	5.15	58.4	5.4
474384	SZC-11-11	29.1	4.19	28.2	4.31	39.4	4.8
474385	SZC-11-11	20.1	3.05	21.7	3.64	30.4	4.3
474386	SZC-11-11	19.8	3.1	21.4	3.7	29.9	3.4
474387	SZC-11-11	16.5	2.45	18.2	3.13	19.9	2
474388	SZC-11-11	14.6	2.32	17.3	3.11	22.9	2.8
474389	SZC-11-11	14.3	2.22	17.4	3.15	23.5	1.9
474390	SZC-11-11	28.5	4.47	30.9	4.99	56.3	5.5
474391	SZC-11-11	17.7	2.67	19.9	3.57	27.4	3.6
474392	SZC-11-11	10.5	1.75	14.2	2.72	20	1.8
474393	SZC-11-11	16.1	2.53	18.7	3.41	22.3	2.2
474394	SZC-11-11	17.9	2.78	20.1	3.57	30.9	3.1
474395	SZC-11-11	13.8	2.16	16.1	2.85	19.6	1.8
474396	SZC-11-11	14	2.19	16.6	2.97	16.5	1.7
474397	SZC-11-11	26.9	4.08	27.4	4.44	51.9	5.6
474398	SZC-11-11	19.1	2.79	19.5	3.34	23.7	2.3
474399	SZC-11-11	18.3	2.77	19	3.27	25.2	2.4
474400	SZC-11-11	28.7	4.28	27.8	4.31	40.6	5.1
474401	SZC-11-11	29.4	4.49	28.5	4.45	49.8	4.8
474402	SZC-11-12	17.8	2.68	19.2	3.24	25.2	2.7
474403	SZC-11-12	16.1	2.43	17			3.4
474404	SZC-11-12	17.5	2.65	18.4			4.2
474405	SZC-11-12	16.5	2.49	17.6		_	2.6
474406	SZC-11-12	16.2	2.45	17.7	3.1	23.8	2.5
474407	SZC-11-12	16.1	2.47	17.7	3.01	22.5	2.4
474408	SZC-11-12	18.6	2.83	20.5	3.52	23.9	2.5
474409	SZC-11-02a	8.3	1.23	7.3	1.08	7.1	1.2
474410	SZC-11-02a	23.1	3.32	22	3.34	12.9	3.1
474411	SZC-11-02a	14.7	2	13.2	2	10.4	2.9
474412	SZC-11-02a	16.8	2.27	14.2	2.01	7.9	2.4
474413	SZC-11-02a	112	15.6	86.5	10.8	9.5	3.8
474414	SZC-11-02a	25.2	3.37	18.4	2.55	9.4	5.2
474415	SZC-11-02a	40	4.8	26	3.24	6.4	12
474416	SZC-11-02a	129	17.7	104	13.8	10	4.6

CHEM#	CHANNEL	Er	Tm	Yb	Lu	Hf	Та
474417	SZC-11-02a	61.7	7.8	43.2	5.46	7.1	12.2
474418	SZC-11-02a	70.1	9.49	49.7	6.42	7.1	8.5
474419	SZC-11-02a	22.1	2.89	16.7	2.23	6.6	6.4
474420	MRC-11-04	359	50.8	281	34.9	14.8	5.2
474421	MRC-11-04	173	24.3	135	17.1	13	7.8
474422	MRC-11-04	243	34.1	182	22.2	15.2	3
474423	MRC-11-04	243	35.4	194	24.3	14.3	2.5
474424	MRC-11-04	97.7	13.7	75.6	9.52	9.5	9.6
474425	MRC-11-04	217	30.3	162	19.5	13.7	3.1
474426	MRC-11-04	125	17.3	99.3	12.7	11.8	5.7
474427	MRC-11-04	117	16.5	93.4	11.9	11.1	3.5
474428	MRC-11-04	207	29.7	163	20.3	12	3.7
474429	MRC-11-04	316	46.1	255	31.5	15	3.5
474430	MRC-11-04	403	60.9	344	43.1	19.7	3.3
474431	SZC-11-16	37.3	5.57	34	4.89	50.8	5.4
474432	SZC-11-16	34.4	5.02	30.2	4.43	45.6	7.4
474433	SZC-11-16	34.4	4.95	29	4.12	38.2	4.5
474434	SZC-11-16	53.6	7.89	46.4	6.35	61.3	8.8
474435	SZC-11-16	53.1	7.62	43.6	5.98	68.5	8.9
474436	SZC-11-16	52.6	7.59	43	5.74	49.8	9.6
474437	SZC-11-16	43.2	6.35	37.2	5.01	44	10.3
474438	SZC-11-16	69.9	9.5	53	6.85	9.9	5.2
474439	SZC-11-16	89	12.8	73.3	9.69	40	14
474440	SZC-11-16	88	13.2	76.1	10.8	37	10.8
474441	SZC-11-16	76.7	11.5	66.1	9.12	36.2	8.3
474442	SZC-11-16	35.2	5	29.5	4.07	25.3	9.6
474443	SZC-11-16	64.7	8.64	50.6	6.73	28.2	14.2
474444	SZC-11-16	52.3	7.21	42	5.83	33.8	15.8
474445	SZC-11-16	40.2	5.51	31.3	4.3	21.5	9
474446	SZC-11-16	60.9	9.05	52.8	7.41	32.2	13.8
474447	SZC-11-16	88.4	13.7	80.9	11.1	38.8	14.2
474448	SZC-11-16	70	10.3	59.3	7.87	37.5	8.2
474449	SZC-11-16	74.9	11.1	65.2	8.78	33	7.2
474450	SZC-11-16	136	20.4	118	16	63.3	28.2
474451	MRC-11-03	523	76.7	438	55.1	21.4	1.7
474452	MRC-11-03	289	42.9	247	31.4	20.2	6.4
474453	MRC-11-03	360	52.7	291	35.9	20.9	5.3
474454	MRC-11-03	244	34.7	189	22.4	17.7	4.1
474455	MRC-11-03	197	27.3	148	18.1	23.3	5.7
474456	MRC-11-03	199	27.4	145	17.8	21.2	4.7
474457	MRC-11-03	396	60.4	344	44	18	3.2
474458	MRC-11-03	459	68.4	392	48.2	18.1	3
474459	MRC-11-03	428	62.6	360	44.9	18.4	2.7
474460	MRC-11-03	238	34.6	192	23.2	22.1	3.6
474461	MRC-11-05	415	59.5	339	42.4	14.6	2
474462	MRC-11-05	221	32	182	23	25	5.2

CHEM#	CHANNEL	Er	Tm	Yb	Lu	Hf	Та
474463	MRC-11-05	390	57.8	336	42.6	18	3.7
474464	MRC-11-05	299	44	255	32	24	4.5
474465	MRC-11-05	291	42.9	243	30.3	16.3	5.6
474466	MRC-11-05	306	43.8	249	30.6	21.7	9
474467	MRC-11-05	279	39.3	227	28.3	21.5	8.5
474468	MRC-11-05	125	17.4	96.6	11.9	11.9	11.1
474469	MRC-11-05	339	50	292	36.3	16.6	3.5
474470	MRC-11-05	326	46.2	263	31.9	14.6	4.2
474471	MRC-11-05	394	57.1	328	41.7	15.9	3.1
474472	MRC-11-02	398	58.5	340	42	22	6.2
474473	MRC-11-02	169	24.6	140	17.7	24.4	9.4
474474	MRC-11-02	91.7	13.2	72.9	9.41	16.7	7.9
474475	MRC-11-02	55.7	8	47.5	6.61	33.5	10.3
474476	MRC-11-02	65	9.23	53.1	7.13	22.7	8.3
474477	MRC-11-02	171	23.8	132	16	13.7	6.3
474478	MRC-11-02	236	33	181	22.2	11.7	1.7
474479	BRC-11-06	59	8.53	50.2	7.16	117	10.9
474480	BRC-11-06	59.9	8.97	54.8	7.72	108	8
474481	BRC-11-06	35.2	5.1	30.5	4.36	29.7	3
474482	BRC-11-06	47	6.96	42	6.11	59.8	5.7
474483	BRC-11-06	35.3	5.21	32	4.57	56.8	4.6
474484	BRC-11-06	58.6	8.8	52.6	7.47	126	9.6
474485	BRC-11-06	75.3	10.6	61.6	8.63	137	12.9
474486	MRC-11-01	51.2	7.46	46.3	6.82	12.5	3.9
474487	MRC-11-01	66.2	10.1	60.9	8.54	26.3	21.1
474488	MRC-11-01	118	16.7	93.8	12.1	24.7	64.9
474489	MRC-11-01	89.5	12.1	69.2	8.9	17	29.5
474499	BRC-11-02a	98.6	14.1	83.2	11.1	95.9	12.7
474500	BRC-11-02a	125	16.6	92.7	12	46.7	16.5
474501	BRC-11-02b	110	14.4	82.6	10.8	30.2	14.5
474502	BRC-11-02b	99.9	13.5	75.2	9.81	37.4	14.1
474503	BRC-11-02b	132	18.6	106	13.7	115	21.6
474504	BRC-11-05	114	16.3	94.4	12.5	51.8	20
474505	BRC-11-05	123	17.1	95.3	12.3	40.4	11.6
474506	BRC-11-05	82.5	11.7	70.9	9.49	28.8	9.5
474507	BRC-11-05	118	17.4	105	13.9	31.4	10.6
474508	BRC-11-05	70	9.77	56.7	7.75	21.1	7.2
474509	BRC-11-05	59.9	8.88	56.6	8.11	20.4	8.5
474510	BRC-11-01	218	31.2	174	21.2	57.9	13.8
474511	BRC-11-01	11.6	1.77	10.6	1.53	9.5	1.8
474512	BRC-11-01	94.9	13.5	77.4	10.1	42.5	8.5
474513	BRC-11-01	151	20.4	110	13.5	24.3	10.5
474514	BRC-11-01	165	22.4	126	15.7	37.3	9.3
474515	BRC-11-01	175	25.1	145	18.8	35.4	5.3
474516	BRC-11-01	233	33.5	193	25	39	3.9
474517	BRC-11-01	106	14.8	86.8	11.6	25.1	5.7

CHEM #	CHANNEL	Er	Tm	Yb	Lu	Hf	Та
474518	BRC-11-01	175	24.7	140	17.9	46.1	13
474519	BRC-11-01	121	17.7	103	13.4	36.9	7.1
474520	BRC-11-01	86.1	12.5	74.1	9.76	58.2	7.9
474521	BRC-11-03a	127	19.1	118	16.1	50.7	13.8
474522	BRC-11-03a	82.7	12.5	71.5	9.82	62	16.9
474523	BRC-11-03a	63.2	9.02	52.5	7.04	30.2	12.1
474524	BRC-11-03a	143	20.6	117	15.2	65.2	26.5
474525	BRC-11-03a	86.5	12.2	69.8	9.28	33.8	14.9
474526	BRC-11-03b	229	32.2	189	24.7	38.1	20.2
474527	BRC-11-03b	459	69.9	402	52	19.1	2.6
474528	BRC-11-03b	309	45.7	271	35.6	16.1	1.5
474529	BRC-11-03b	141	20.4	121	16.3	22.1	12.3
474530	BRC-11-03b	132	18.1	101	13.2	33.3	21.3
474531	BRC-11-03b	88.7	13.1	77.6	10.6	21.3	13.6
474611	MRC-11-06	326	47.9	279	34.9	25.4	13.5
474612	MRC-11-06	354	52.9	310	39.2	25.8	9
474613	MRC-11-06	313	45.8	265	33.6	14.8	5.3
474614	MRC-11-06	316	46.8	267	33.6	17.5	6.7
474615	MRC-11-06	328	47.8	277	35.4	17.3	7.2
474616	MRC-11-06	328	46.9	266	33.4	16.6	8.6
474617	MRC-11-06	384	55.8	321	40.3	21.2	7.6
474618	MRC-11-06	332	48.7	279	35.6	31.3	12.2
474619	MRC-11-06	323	47.4	271	34.1	20.4	9.9
474620	MRC-11-06	350	50.4	292	36.9	16.6	7.2
474621	MRC-11-06	276	39.7	226	28.4	17.2	9.1
474622	MRC-11-06	250	36	210	26.9	13.2	6.3
474623	MRC-11-06	339	50.4	291	37.2	18.3	7.4
474624	MRC-11-06	422	62.8	364	46.2	33.4	12
474625	MRC-11-06	370	55.2	318	40.8	24	8.6
474626	MRC-11-06	362	53.7	307	38.8	24.2	9.3
4744490	BRC-11-04	32.3	4.36	25.6	3.55	32.6	7.7
4744491	BRC-11-04	89.6	11.2	61.6	7.84	24.5	6.6
4744492	BRC-11-04	57.9	7.14	38.6	4.91	13.8	7.2
4744493	BRC-11-04	126	16.2	89.8	11.6	38.2	12.5
4744494	BRC-11-04	43.7	5.58	31.3	4.11	12.6	9.3
4744495	BRC-11-04	42.5	5.51	31.8	4.29		6.9
4744496	BRC-11-04	45.8		32.5	4.34	18.4	8.4
4744497	BRC-11-04	83.1	11.6	65	8.62	19.8	8
4744498	BRC-11-04	13.9	1.94	12	1.8	9.7	1.6
474565	AMC-11-05	130	18.6	107	13.5	6.1	1.2
474566	AMC-11-05	101	14.1	77	9.48	3.2	1.1
474567	AMC-11-05	124	16.8	90.1	10.9		2.4
474568	AMC-11-05	112	15.7	88.6	11.1	3.8	6.7
474569	AMC-11-05	73.8	10.9	65.4	8.81	3.2	3.5
474570	AMC-11-05	85	12.1	69	9		4.7
474571	AMC-11-01	27.6	4.18	25.6	3.72	52.9	6.1

CHEM#	CHANNEL	Er	Tm	Yb	Lu	Hf	Та
474572	AMC-11-01	18.8	2.9	18.4	2.76	33.6	3.9
474573	AMC-11-01	37.7	5.71	34	4.95	79.5	8.2
474574	AMC-11-01	25.7	3.82	23.5	3.44	46.8	5.4
474575	AMC-11-01	34	5.06	31.5	4.44	65.4	7.2
474576	AMC-11-02	30.2	4.71	29.4	4.27	67.6	7.7
474577	AMC-11-02	17.9	2.82	18.1	2.86	26.1	3.7
474578	AMC-11-02	23.8	3.58	21.8	3.09	41.1	4.6
474593	AMC-11-04	29.6	4.31	27.2	3.96	40.6	5.1
474594	AMC-11-04	34.7	5.05	30.8	4.35	43.2	6
474595	AMC-11-04	24.1	3.53	22.1	3.24	24.7	4.4
474596	AMC-11-04	64.9	9.6	58.3	8.13	109	12
474597	AMC-11-04	26.2	3.9	24.3	3.49	40	5.2
474598	AMC-11-04	25.9	3.93	24.5	3.66	36.1	5.1
474599	AMC-11-03	43.1	6.41	38.7	5.48	89.9	9.6
474600	AMC-11-03	75.2	11.3	65.4	8.93	154	16
474601	AMC-11-03	87.3	12.9	75.1	10.1	206	21.2
474602	AMC-11-03	65	9.44	54.4	7.34	131	14.6
474603	AMC-11-03	59.9	8.93	53.2	7.3	141	14.7
474604	AMC-11-03	60.7	8.95	52.5	7.14	131	13.5
474605	AMC-11-03	19.5	2.91	18.3	2.74	23.1	3.1
474606	AMC-11-03	18	2.57	16.2	2.45	18.7	2.8
474607	AMC-11-03	15.4	2.29	15	2.24	15.7	2.7
474608	AMC-11-03	15.3	2.31	15.2	2.4	16.3	2.4
474609	AMC-11-03	24.3	3.65	22.5	3.29	38.8	4.7
474610	AMC-11-03	30	4.55	28.1	4.16	44	4.5

CHEM#	CHANNEL	W	TI	Pb	Th	U
104201	CBC-10-06a	< 1	0.8	33	10.6	8.5
104202	CBC-10-06a	< 1	1.1	64	13.7	4.3
104203	CBC-10-06a	3	0.7	47	12.2	7.1
104204	CBC-10-06a	2	0.7	35	13.3	6.7
104205	CBC-10-06a	7	0.5	54	11	8.7
104206	CBC-10-06a	2	0.5	43	15	9.1
104207	CBC-10-06a	2	0.6	40	11.9	6.7
104208	CBC-10-06a	4	0.7	61	15.3	9.3
104209	CBC-10-06a	2	0.7	71	8.7	2.8
104210	CBC-10-06a	2	0.6	73	15.2	5.6
104211	CBC-10-06a	2	0.8	87	24.5	7.8
104212	CBC-10-06a	3	0.9	70	19.4	6.7
104213	CBC-10-06a	3	0.8	38	9.9	3.9
104214	CBC-10-06a	< 1	0.6	31	5	1.9
104215	CBC-10-06a	< 1	0.5	18	3.3	1.8
104216	CBC-10-06a	< 1	0.3	119	2.4	2.2
104217	CBC-10-07	< 1	0.5	27	7.4	2.2
104218	CBC-10-07	< 1	0.5	39	7.5	2.5
104219	CBC-10-07	< 1	0.6	22	5.7	1.5
104220	CBC-10-07	1	0.6	35	7.9	2.6
104221	CBC-10-07	6	0.9	40	11.5	4.2
104222	CBC-10-07	5	0.9	55	15.6	5.3
104223	CBC-10-07	4	0.8	74	14.7	9.2
104224	CBC-10-07	7	1	61	15.6	7.3
104225	CBC-10-07	4	1	44	10.4	5.2
104226	CBC-10-07	2	0.7	20	7.2	2.5
104227	CBC-10-08	10	0.8	60	14.9	6.2
104228	CBC-10-08	12	0.7	62	12.7	6.2
104229	CBC-10-08	6	0.6	36	7.1	3.5
104230	CBC-10-08	9	0.7	60	8.3	5
104231	CBC-10-08	11	0.7	61	9.7	5.1
104232	CBC-10-08	8	0.8	56	14.1	4.7
104233	CBC-10-08	10		48	16.6	5.4
104234	CBC-10-08	6		87	14.1	14.3
104235	CBC-10-08	7	0.7	56	12.3	4.2
104236	CBC-10-08	5	0.6		12.8	4.7
104237	CBC-10-08	3	0.7	43	11.2	3.3
104238	CBC-10-08	7	0.7	42	9.8	3.8
104239	CBC-10-08	9	0.6	40	12	4.5
104240	CBC-10-08	11	0.8	63	15.9	7.3
104241	CBC-10-08	11	0.8		15.1	7
104242	CBC-10-08	9	0.7	49	11.8	5.3
104243	CBC-10-08	8	0.7	44	10.1	4.1
104244	CBC-10-08	6	0.7	41	10	3.5
104245	CBC-10-08	5	0.6	37	10.1	3.4
104246	CBC-10-08	4	0.7	41	11.9	3.6

CHEM#	CHANNEL	W	TI	Pb	Th	U
104247	CBC-10-08	5	0.8	44	10.2	3.6
104248	CBC-10-08	8	0.7	57	13.1	5.2
104249	CBC-10-08	9	0.7	51	12.2	4
104250	CBC-10-08	11	0.7	53	9.8	4.3
104251	CBC-10-08	8	0.6	48	9.8	3.5
104252	CBC-10-08	10	0.8	44	8.8	3.5
104253	CBC-10-08	11	0.8	47	8	3.9
104254	CBC-10-09	4	0.5	53	11.3	4.5
104255	CBC-10-09	5	0.5	83	16.6	6.9
104256	CBC-10-09	4	1	69	7	7
104257	CBC-10-09	4	0.6	67	8.3	6.2
104258	CBC-10-09	2	0.7	171	35.2	10.4
104259	CBC-10-09	2	1.2	45	23	5.8
104260	CBC-10-09	1	1.4	39	27.3	4.3
104261	CBC-10-09	5	0.6	74	17.6	6.7
104262	CBC-10-09	2	0.8	85	10.8	3.8
104263	CBC-10-09	2	0.4	92	3.5	4.6
104264	CBC-10-09	3	0.8	52	11	9
104265	CBC-10-09	3	1	49	11	9.2
104266	CBC-10-09	2	0.9	19	11.6	5.5
104267	CBC-10-09	3	0.7	19	13	6
104268	CBC-10-09	2	0.7	24	16	5.8
104269	CBC-10-10	3	1	34	10.8	5.4
104270	CBC-10-10	4	0.8	66	17.2	7.2
104271	CBC-10-10	2	0.8	30	8.4	2.6
104272	CBC-10-10	1	0.9	29	7.3	2
104273	CBC-10-10	2	0.8	33	8.6	2.5
104274	CBC-10-10	4	0.8	73	17.5	6.9
104275	CBC-10-10	4	0.9	36	10.2	3.5
104276	CBC-10-10	3	0.9	48	10.9	3.5
104277	CBC-10-10	5	0.8	34	14.3	4.4
104278	CBC-10-10	4	0.6	74	19.6	6.6
104279	CBC-10-10	3	0.9	82	22.8	9.1
104280	CBC-10-10	3	0.9	35	15.6	6.6
104281	CBC-10-10	1	0.6	45	12.6	8.1
104282	CBC-10-10	3	0.4	112	20.6	14.2
104283	CBC-10-10	3	0.5	213	22.8	16.1
104284	CBC-10-10	4	0.9	632	39.6	41.2
104285	CBC-10-10	4	0.7	551	45.8	36
104286	CBC-10-10	2	0.6	533	45.4	11.6
104287	CBC-10-10	2	0.6	710	31.1	23.5
104288	CBC-10-11b	< 1	0.8	30	5.9	2.4
104289	CBC-10-11b	< 1	0.8	24	6.1	2.5
104290	CBC-10-11b	3	0.7	36	23.4	9.1
104291	CBC-10-11b	< 1	0.7	28	10.5	3
104292	CBC-10-11b	4	1	46	9.3	6.6

CHEM#	CHANNEL	W	TI	Pb	Th	U
104293	CBC-10-11b	2	0.6	118	23.8	10.5
104294	CBC-10-11b	2	1	69	8.7	7.5
104295	CBC-10-11b	2	0.8	77	13.6	10.9
104296	CBC-10-11b	2	0.9	44	8.5	3.9
104297	CBC-10-11b	2	0.8	25	9.5	3.2
104298	CBC-10-11b	< 1	0.7	20	7.2	2.3
104299	CBC-10-11b	< 1	0.3	25	12.5	3.6
104300	CBC-10-11b	1	0.8	20	5.7	2.8
104326	CBC-10-11b	6	0.5	133	13.8	10.6
104327	CBC-10-11b	1	0.8	17	5.1	2
104328	CBC-10-11b	< 1	0.6	13	5	2
104329	CBC-10-11b	< 1	0.6	19	5.7	1.7
104330	CBC-10-11b	< 1	0.7	18	5.3	1.7
104331	CBC-10-11b	< 1	0.6	15	4.3	1.4
104332	CBC-10-11b	1	0.8	26	6.5	2.6
104333	CBC-10-11b	1	0.9	24	5.5	2.6
104334	CBC-10-11b	< 1	0.5	19	10.5	8.9
104335	CBC-10-11b	2	0.8	23	6	3.5
104336	CBC-10-11b	4	0.9	106	16.9	11.4
104337	CBC-10-11b	3	0.8	110	22.5	10.8
104338	CBC-10-11b	4	1	51	13.8	10.1
104339	CBC-10-11b	< 1	1	17	4.2	1.5
104340	CBC-10-11b	6	0.8	54	21	17.7
104341	CBC-10-11b	2	1	17	5.6	4.2
104342	CBC-10-11b	2	0.4	122	7.1	7.8
104343	CBC-10-11b	< 1	1.1	28	5.5	3.3
104344	CBC-10-11b	2	0.6	75	16.9	11.2
104345	CBC-10-11b	3	0.5	62	49.2	18.4
104346	CBC-10-11b	3	0.4	113	18.6	19.6
104347	CBC-10-11b	2	0.8	86	18.7	10.4
104348	CBC-10-11b	3	0.4	351	31.6	15
416155	CBC-10-11a	< 1	0.7	26	6.1	1.7
416156	CBC-10-11a	< 1	0.8	25	6.1	1.7
416157	CBC-10-11a	6	1.5	124	10.1	5.8
416158	CBC-10-11a	< 1	1.7	268	78.3	15.4
416159	CBC-10-11a	< 1	1.5	49	8.6	4.8
416160	CBC-10-11a	< 1	1.4	36	10.4	3.4
416161	CBC-10-11a	< 1	1	29	8.9	3.3
416162	CBC-10-11a	< 1	0.9	29	9.4	3.3
416163	CBC-10-11a	< 1	0.8	25	6.1	2.3
416164	CBC-10-11a	< 1	0.7	35	6.6	3.9
416165	CBC-10-11a	< 1	1.2	57	12.5	4.2
416166	CBC-10-11a	< 1	1.6	27	7.8	2.4
416167	CBC-10-11a	< 1	1.2	85	7.6	4.5
416168	CBC-10-11a	< 1	1	274	46.4	30.8
416169	CBC-10-11a	< 1	1.5	51	7.3	5.1

CHEM#	CHANNEL	W	TI	Pb	Th	U
416170	CBC-10-11a	< 1	1	48	5	3.9
416171	CBC-10-12	9	1.2	78	8.2	8.8
416172	CBC-10-12	7	1.5	56	19.9	7.2
416173	CBC-10-12	< 1	1.2	36	10.6	3.8
416174	CBC-10-12	< 1	0.7	67	9.1	4.1
416175	CBC-10-12	< 1	0.7	128	25.9	22.5
416176	CBC-10-12	< 1	1	41	10.6	3.9
416177	CBC-10-12	< 1	1	255	37.2	30.4
416178	CBC-10-12	< 1	1	36	7.9	3.3
416179	CBC-10-12	< 1	0.9	31	10.6	3.5
416180	CBC-10-12	< 1	1.1	91	13.1	8
416181	CBC-10-12	< 1	1	52	8	3.1
416182	CBC-10-12	< 1	1.1	65	5.4	5
416183	CBC-10-12	8	1	70	13	7.6
416184	CBC-10-12	< 1	1	716	41.5	53.7
416185	CBC-10-12	< 1	1.2	78	5.8	5.6
416186	CBC-10-12	< 1	1	63	10.3	5.1
416187	CBC-10-12	< 1	1.1	36	12	5.7
416188	CBC-10-13	< 1	0.8	46	11.8	6.1
416189	CBC-10-13	< 1	0.8	34	11.6	5.1
416190	CBC-10-13	< 1	0.9	34	10.6	3
416191	CBC-10-13	< 1	0.9	19	7.2	2
416192	CBC-10-13	1	1.1	54	11.4	5.9
416193	CBC-10-13	1	1.1	41	12.5	6.4
416194	CBC-10-13	< 1	1	18	6.5	1.8
416195	CBC-10-13	< 1	0.8	16	6.1	1.8
416196	CBC-10-13	< 1	0.7	31	9.2	2.4
416197	CBC-10-13	< 1	0.6	25	8.4	2.2
416198	CBC-10-13	< 1	0.6	27	8.1	2.1
416199	CBC-10-13	< 1	0.6	23	7.4	1.9
416200	CBC-10-13	< 1	0.6	34	10.5	2.7
416201	CBC-10-14	< 1	1.5	31	11.6	3.1
416202	CBC-10-14	< 1	1.3	26	11.2	2.9
416203	CBC-10-14	< 1	1.2	30	10.6	3.1
416204	CBC-10-14	< 1	1	23	7.6	2.3
416205	CBC-10-14	< 1	0.9	17	7.3	1.9
416206	CBC-10-14	< 1	0.9	20	7.3	2
416207	CBC-10-14	< 1	1	25	9	3.4
416208	CBC-10-14	< 1	0.8	35	10.7	3.2
416209	CBC-10-14	< 1	0.8		11.4	3.1
416210	CBC-10-14	< 1	0.9	35	12.4	3.2
416211	CBC-10-14	< 1	1	23	7.9	2.2
416212	CBC-10-14	2	1.2	43	10.9	4.7
416213	CBC-10-14	< 1	0.9	26	8.6	2.7
416214	CBC-10-14	< 1	0.9	47	10.3	2.7
416215	CBC-10-14	< 1	0.9	39	13.2	3

CHEM #	CHANNEL	W	TI	Pb	Th	U
416216	CBC-10-14	< 1	0.9	36	11.2	2.9
416217	CBC-10-14	< 1	1	35	11.1	2.8
416218	CBC-10-14	<1	1	28	8.4	3.1
416219	CBC-10-14	< 1	0.9	35	10.9	4.6
416220	CBC-10-14	<1	1	26	12.6	7.9
416221	CBC-10-14	<1	0.7	46	23.6	18
416221	CBC-10-14	4	1.1	40	10.5	5.6
416223	CBC-10-14	2	1.1	44	7.4	6.7
416224	CBC-10-14	< 1	1	43	8.2	4.4
416225	CBC-10-14	<1	1.2	54	11	4.4
416226	CBC-10-15	< 1	0.8	28	6.8	2
416227	CBC-10-15	< 1	0.8	26	7.1	2
416228	CBC-10-15	< 1	0.7	25	6.9	1.9
416229	CBC-10-15	< 1	0.8	21	6.7	1.7
416230	CBC-10-15	< 1	0.7	25	7.5	2.1
416231	CBC-10-15	< 1	0.9	25	7.4	2
416232	CBC-10-15	< 1	0.8	25	8.6	2.4
416233	CBC-10-15	2	0.6		71.2	15.5
416234	CBC-10-15	1	0.9	24	7.8	2.5
416235	CBC-10-15	4	1	44	11.1	3.4
416236	CBC-10-15	3	0.8	33	7.7	2.5
416237	CBC-10-15	< 1	0.8	24	6.9	2.2
416238	CBC-10-15	< 1	0.6	33	7.5	2.5
416239	CBC-10-15	< 1	0.7	24	7.8	2.2
416240	CBC-10-15	< 1	0.8	25	8.2	2.2
416241	CBC-10-15	< 1	0.7	30	8.7	2.4
416242	CBC-10-15	< 1	0.8	28	8.7	2.2
416243	CBC-10-15	9	0.8	28	10.8	3
416244	CBC-10-16	3	0.5	132	37.8	18.8
416245	CBC-10-16	< 1	0.3	95	33.8	11.4
416246	CBC-10-16	< 1	0.2	72	8.9	3.7
416247	CBC-10-16	< 1	0.2	115	13.6	3.3
416248	CBC-10-16	3	0.2	174	18.2	20.8
416249	CBC-10-16	< 1	0.2	241	20.8	29.1
416250	CBC-10-16	1	0.2	79	10.1	8.5
416251	CBC-10-16	< 1	< 0.1	270	19.7	14.7
416252	CBC-10-16	2	0.2	209	12.9	16.9
416253	CBC-10-16	1	0.2	93	6.8	9
416254	CBC-10-16	6	0.5	184	9.3	14
416255	CBC-10-16	2	0.4	68	15.2	10.6
416256	CBC-10-16	3	0.6	55	17.5	15.2
416257	CBC-10-16	2	0.8	75	18.7	10.3
416258	CBC-10-16	< 1	0.6	61	13	6
416259	CBC-10-16	< 1	1.2	36	14.2	4.2
416260	CBC-10-16	< 1	1.4	44	13.6	3.8
416261	CBC-10-16	< 1	1.4	43	11	3.1

CHEM#	CHANNEL	W	TI	Pb	Th	U
416262	CBC-10-16	< 1	1	28	8.2	2.4
416263	CBC-10-18a	3	1.9	206	36.8	36.4
416264	CBC-10-18a	2	1.6	129	12.2	15.6
416265	CBC-10-18a	< 1	0.9	117	5.9	8.8
416266	CBC-10-18a	< 1	0.5	295	38	14.8
416267	CBC-10-18a	< 1	1.2	95	4.7	13.2
416268	CBC-10-18a	< 1	1	80	8.7	8.2
416269	CBC-10-18a	1	1.1	114	7.9	9.3
416270	CBC-10-18a	< 1	1	93	7.7	8.9
416271	CBC-10-18a	< 1	0.8	69	11.4	6.1
416272	CBC-10-18a	< 1	0.7	109	10.6	6.5
416273	CBC-10-18a	< 1	1.2	129	19.8	9.8
416274	CBC-10-18a	< 1	1.1	88	19.1	7.8
416275	CBC-10-18a	< 1	1.3	102	16.5	9.6
416276	CBC-10-18a	< 1	0.7	149	5.3	10.1
416277	CBC-10-18b	4	1.1	207	19.9	11.7
416278	CBC-10-18b	< 1	0.6	554	92	21.6
416279	CBC-10-18b	< 1	0.7	596	132	63.6
416280	CBC-10-18b	< 1	1.2	96	15.9	7.4
416782	MBC-10-01	< 1	1	25	8.1	2.2
416783	MBC-10-01	< 1	0.8	13	20.7	6.3
416784	MBC-10-01	< 1	0.8	31	12.5	4.6
416785	MBC-10-01	3	0.9	46	17.9	8.3
416786	MBC-10-01	3	1	67	11.9	5.7
416787	MBC-10-01	< 1	0.9	22	11.2	3.3
416788	MBC-10-01	8	1.1	79	30.7	9.9
416789	MBC-10-01	7	1.5	158	74.1	19.8
416790	MBC-10-01	6	0.7	110	26.9	10.4
416791	MBC-10-01	4	0.8	69	14.8	7.7
416792	MBC-10-01	< 1	0.2	105	20	7.9
416793	MBC-10-01	7	0.8	72	12.9	7
416794	MBC-10-01	7	1.1	59	15.4	5.5
416795	MBC-10-01	6	1.1		13.2	4.5
416796	MBC-10-01	1	0.9	39	8	2.7
416797	MBC-10-01	2	0.9	30	8.7	2.8
416798	MBC-10-01	< 1	0.7	26	7.4	2.1
423637	CBC-10-01	1	0.7	36	14.1	5.3
423638	CBC-10-01	2	0.7	54	14.7	6.5
423639	CBC-10-01	1	0.8	35	18.6	9.8
423640	CBC-10-01	< 1	0.7	24	11.2	6.2
423641	CBC-10-01	3	0.7	37	12.1	5.7
423642	CBC-10-01	2	0.8	43	9.1	5.8
423643	CBC-10-01	3	0.6	61	9	6.8
423644	CBC-10-01	2	0.7	27	12	7
423645	CBC-10-01	2	0.6	33	10.8	5.1
423646	CBC-10-01	< 1	0.7	23	12.9	3.9

CHEM#	CHANNEL	W	TI	Pb	Th	U
423647	CBC-10-01	1	0.6	20	9.7	3.8
423648	CBC-10-01	2	0.6	28	7.8	4.3
423649	CBC-10-01	1	0.6	18	6	4.3
423666	CBC-10-02	5	1	61	14	6.2
423667	CBC-10-02	3	0.8	63	12.3	5.3
423668	CBC-10-02	3	0.8	33	7.2	3.3
423669	CBC-10-02	4	0.8	62	11.2	5.2
423670	CBC-10-02	5	1	56	15.8	6.9
423671	CBC-10-02	3	0.7	46	8.6	4.7
423672	CBC-10-02	4	0.8	41	12.7	5.5
423673	CBC-10-02	5	0.9	46	15	6.7
423674	CBC-10-02	5	0.8	55	16.4	6.5
423675	CBC-10-02	6	0.7	46	11.5	5.7
423676	CBC-10-02	6	0.6	62	20.6	6
423677	CBC-10-02	5	0.7	63	15.7	6.6
423678	CBC-10-02	3	0.5	64	11.9	4.1
423679	CBC-10-03	2	0.5	262	4.5	10.1
423680	CBC-10-03	2	0.3	146	14.1	10.1
423681	CBC-10-03	1	0.5	26	15.4	5.2
423682	CBC-10-03	1	0.6	38	15.9	4.6
423683	CBC-10-03	3	0.6	52	19	6.1
423684	CBC-10-03	2	0.7	35	16.2	6.3
423685	CBC-10-03	3	0.3	67	32.8	10.5
423686	CBC-10-03	3	0.5	41	13.5	7.4
423687	CBC-10-03	4	0.7	63	17.7	8.8
423688	CBC-10-03	4	0.8	73	12.1	10.9
423689	CBC-10-03	3	0.6	79	37.7	11.8
423690	CBC-10-03	5	0.6	31	4.8	6.4
423691	CBC-10-03	5	0.7	50	9.5	8.1
423692	CBC-10-03	5	0.7	31	8.4	7.3
423693	CBC-10-03	3	0.2	73	63.5	11.3
423694	CBC-10-03	4	0.4	66	48.4	13.7
423695	CBC-10-03	3	0.8		7.1	5.6
423708	CBC-10-04	4	0.8	57	16.4	5.8
423709	CBC-10-04	3	0.8	47	18.2	6
423710	CBC-10-04	5	1	73	18.4	7.3
423711	CBC-10-04	4	0.8	70	19	7.3
423712	CBC-10-04	2	0.6	53	20.6	6.8
423713	CBC-10-04	6	1	75	15.1	8.5
423714	CBC-10-04	6	1	55	15.7	6.5
423715	CBC-10-04	5	1	92	15	6.7
423716	CBC-10-04	4	1	69	15.8	6.2
423717	CBC-10-04	5	0.9	57	12.6	5.4
423718	CBC-10-04	5	0.9	69	13.8	6.1
423719	CBC-10-04	7	1	66	13.5	6.8
423720	CBC-10-04	< 1	0.5	54	25.6	5.7

CHEM #	CHANNEL	W	TI	Pb	Th	U
423721	CBC-10-05	2	0.7	28	16	5.5
423722	CBC-10-05	1	0.7	16	12.8	4.7
423723	CBC-10-05	< 1	0.6	42	18.1	5.2
423724	CBC-10-05	4	0.7	64	17.3	6.4
423725	CBC-10-05	7	0.9	104	17.7	7.7
423726	CBC-10-05	5	0.8	63	14.2	5.7
423727	CBC-10-05	3	0.8	30	10.3	4.4
423728	CBC-10-05	2	0.7	88	20.8	9.8
423729	CBC-10-05	6	0.8	54	9.1	5.9
423730	CBC-10-05	7	0.8	54	7	4.6
423731	CBC-10-05	1	0.8	29	10.5	4.3
423732	CBC-10-05	< 1	0.3	54	11.2	4.1
423733	CBC-10-05	4	0.7	57	8.5	11.7
423734	CBC-10-05	5	0.9	46	12.7	8.4
423735	CBC-10-05	< 1	0.7	17	8.7	2
423736	CBC-10-05	4	0.6	35	11.3	4
423737	CBC-10-05	3	0.7	20	7.6	2.2
423738	CBC-10-05	3	0.8	35	10.5	3.8
423739	CBC-10-05	6	0.7	45	12.6	4.5
423740	CBC-10-05	6	0.7	52	14.4	5.1
423746	CBC-10-11b	5	1	40	11.6	5.3
423747	CBC-10-11b	< 1	0.8	42	9.8	4.1
423748	CBC-10-11b	< 1	0.8	34	9.2	3.4
423749	CBC-10-11b	3	0.9	32	10.9	7.1
423750	CBC-10-11b	3	0.5	57	11.9	9.3
474120	MBC-11-02	3	1.1	32	12.1	3.5
474121	MBC-11-02	1	1.3	60	18.5	5.6
474122	MBC-11-02	1	1.2	54	14.5	4.5
474123	MBC-11-02	1	1.4	50	15.8	5.1
474124	MBC-11-02	2	1.4	52	17.7	5
474125	MBC-11-02	7	1.2	69	15.1	7.3
474126	MBC-11-02	4	1.3	64	17.8	6.8
474127	MBC-11-02	3	1	95	22	6.7
474128	MBC-11-03	1	1.1	50	10.9	3.5
474129	MBC-11-03	15	1.1	56	9.6	5.9
474130	MBC-11-03	2	0.9	36	9.9	3.8
474131	MBC-11-03	1	0.9	22	6.5	2.6
474132	MBC-11-03	< 1	1.1	53	13.9	3.7
474133	MBC-11-03	1	1.1	26	6.4	2.4
474134	MBC-11-03	< 1	0.9	9	3.3	1.7
474135	MBC-11-04	< 1	0.7	59	12.4	4
474136	MBC-11-04	< 1	0.8	66	13.4	5.7
474137	MBC-11-04	<1	0.8	57	15.1	5.2
474138	MBC-11-04	1	0.5	113	31.1	6.6
474139	MBC-11-04	2	0.6	124	43.4	12
474140	MBC-11-04	< 1	0.8	37	21.5	10

CHEM#	CHANNEL	W	TI	Pb	Th	U
474141	MBC-11-04	1	0.8	46	9.9	3.7
474142	MBC-11-04	< 1	0.9	30	10.3	3.1
474143	MBC-11-04	3	0.6	81	33	10
474144	MBC-11-02B	2	1	75	17.5	6.6
474145	MBC-11-02B	2	0.9	37	9.4	3.7
474146	MBC-11-02B	7	0.6	16	14.6	1.2
474147	MBC-11-02B	1	0.7	85	35.1	19.3
474148	MBC-11-02B	2	0.3	148	26.9	23.6
474149	MBC-11-05	8	1.5	51	13.6	9.3
474150	MBC-11-05	10	1.1	46	8.5	4.4
474151	MBC-11-05	3	1.2	74	11.4	4
474152	MBC-11-05	6	1	49	10.4	4.2
474153	MBC-11-05	1	0.9	41	7.9	2.2
474154	MBC-11-05	1	0.8	17	9.6	2.7
474155	MBC-11-05	9	0.7	56	9.3	8.3
474156	MBC-11-06	4	0.7	37	9.7	3.6
474157	MBC-11-06	2	0.6	43	7.5	4.2
474158	MBC-11-06	1	0.5	50	11.9	4.1
474159	MBC-11-06	< 1	0.7	60	9.3	2.9
474160	MBC-11-06	1	0.6	55	16.5	5.1
474161	MBC-11-06	1	0.6	93	19.2	5.6
474162	MBC-11-06	< 1	0.5	63	15.1	4.8
474163	MBC-11-06	1	0.9	58	11.5	5.1
474164	MBC-11-09	2	0.9	26	10.7	2.6
474165	MBC-11-09	2	0.9	34	9.2	3.1
474166	MBC-11-09	3	1.1	34	7	2.7
474167	MBC-11-10B	1	0.8	57	7.3	12.8
474168	MBC-11-10B	1	0.6	245	169	57.9
474169	MBC-11-10B	3	0.6	78	21.6	29.1
474170	MBC-11-10B	2	1	63	14.8	18.4
474171	MBC-11-10A	4	1.3	58	3.5	5.3
474172	MBC-11-10A	5	1.1	60	9	7.4
474173	MBC-11-10A	6	1.4	70	12.1	6.9
474174	MBC-11-10A	2	1.1	71	14	12.1
474175	MBC-11-01	< 1	0.7	115	28	6.8
474176	MBC-11-01	< 1	0.3	181	69.2	13.8
474177	MBC-11-01	< 1	0.5	187	63.8	17.8
474178	MBC-11-01	< 1	0.4	305	52.3	13.5
474179	MBC-11-01	< 1	1.3	76	30.6	8
474180	MBC-11-01	< 1	0.5	154	57.2	15.6
474181	MBC-11-01	< 1	0.4	63	36.6	10.2
474182	MBC-11-01	< 1	0.3	228	83.4	20.9
474183	MBC-11-01	< 1	0.3	173	76	18.8
474184	MBC-11-01	< 1	0.2	327	57.6	25.2
474185	MBC-11-01	1	0.3	163	54.2	20.5
474186	MBC-11-01	< 1	0.3	343	48.2	20.9

CHEM#	CHANNEL	W	TI	Pb	Th	U
474187	MBC-11-01	< 1	0.3	155	46.9	11
474188	MBC-11-08	< 1	0.5	368	48.5	22.4
474189	MBC-11-08	< 1	0.4	194	55.9	23.8
474190	MBC-11-08	< 1	0.9	114	27.1	9.2
474191	MBC-11-08	1	0.7	161	18.2	7.2
474192	MBC-11-08	1	0.7	103	34.9	9.4
474193	CBC-11-01	< 1	1.2	361	19.2	13.9
474194	CBC-11-01	< 1	1.2	85	21.6	16.8
474195	CBC-11-01	< 1	0.9	103	17	10
474196	CBC-11-01	< 1	0.6	21	5.8	2.6
474197	CBC-11-01	< 1	0.6	43	8.3	3.7
474198	CBC-11-01	< 1	0.6	32	32.2	7.4
474199	CBC-11-01	< 1	1.8	25	9.3	3.3
474200	CBC-11-01	< 1	1.5	37	11.6	5.8
474201	CBC-11-02	< 1	0.3	351	20.9	6.1
474202	CBC-11-02	< 1	0.3	198	17.7	5.3
474203	CBC-11-02	1	0.2	253	11.5	5.1
474204	CBC-11-02	5	2.4	112	14.2	22.4
474205	CBC-11-02	< 1	0.3	51	14.5	6.3
474206	CBC-11-02	9	1.5	37	7.6	6.7
474207	CBC-11-03	8	1	146	32.9	13.3
474208	CBC-11-03	9	1.2	114	24.3	11.3
474209	CBC-11-03	10	0.9	204	22	12.4
474210	CBC-11-09	4	0.7	66	9	8.9
474211	CBC-11-09	6	0.8	150	15.5	37.5
474212	CBC-11-09	2	0.6	56	9.9	11
474213	CBC-11-09	6	0.6	86	13.3	18.3
474214	CBC-11-09	4	0.6	103	32.5	19.5
474215	CBC-11-09	3	1.6	38	13.8	6
474216	CBC-11-09	< 1	1.5	28	10.9	3.3
474217	CBC-11-05	< 1	1	33	9.8	2.8
474218	CBC-11-05	1	0.9	27	6.2	3.6
474219	CBC-11-05	< 1	1.2	29		3.1
474220	CBC-11-05	5	1.4	150	11.5	8.7
474221	CBC-11-05	2	0.6	278	38.1	18.9
474222	CBC-11-05	< 1	1	28	5.8	3.2
474223	CBC-11-07a	1	0.4	1710	48.2	23.6
474224	CBC-11-07a	< 1	0.6	1020	16.8	5.4
474225	CBC-11-07a	< 1	0.3	612	51.7	16
474226	CBC-11-07a	< 1	0.5	2070	20.6	4.4
474227	CBC-11-07a	1	0.4	1610	18.8	7.4
474228	CBC-11-07a	2	0.7	508	19.3	7.6
474229	CBC-11-07a	2	1.1	363	16.5	7.3
474230	CBC-11-07b	1	0.4	1620	17.2	7.5
474231	CBC-11-07b	1	0.4	592	16.4	6.5
474232	CBC-11-06	< 1	1.1	839	33.1	51.5

CHEM #	CHANNEL	W	TI	Pb	Th	U
474233	CBC-11-06	< 1	1.1	981	12.4	22.2
474234	CBC-11-06	2	1.2	1000	48.4	55
474235	CBC-11-06	3	0.5	746	56.6	74.6
474236	CBC-11-06	4	0.7	818	104	79.6
474237	CBC-11-06	6	0.6	693	110	93.7
474238	CBC-11-06	< 1	0.3	470	36.7	25.9
474239	CBC-11-06	4	0.4	593	44.1	91.1
474240	CBC-11-06	1	0.5	1120	58	41.1
474241	CBC-11-06	1	0.6	756	61.8	23.2
474242	CBC-11-10	1	0.2	112	48.4	12.7
474243	CBC-11-10	12	0.5	103	34.9	13
474244	CBC-11-10	11	1.2	67	17	5.9
474245	CBC-11-10	< 1	0.9	38	10.6	2.8
474246	CBC-11-10	17	0.3	131	42.5	31.4
474247	CBC-11-04	< 1	0.8	26	7.9	2.6
474248	CBC-11-04	< 1	0.7	18	7.6	2.3
474249	CBC-11-04	1	0.7	22	5.7	3.2
474250	CBC-11-04	< 1	0.7	11	5.2	1.6
474251	CBC-11-04	< 1	0.7	14	4	1.8
474252	CBC-11-04	1	1.4	1130	13.1	12.5
474253	CBC-11-04	2	1.3	921	22.9	28.7
474254	CBC-11-04	1	1.2	637	12.5	12.4
474255	CBC-11-04	2	1.4	459	48	38.1
474256	CBC-11-04	1	1	457	60.8	31.8
474257	CBC-11-04	1	1.3	185	13.7	11.7
474258	CBC-11-04	2	0.7	473	36.6	24.3
474259	CBC-11-04	2	1.1	232	15.4	13.8
474260	CBC-11-04	2	1.6	800	39.8	35.1
474261	CBC-11-04	3	2	235	4.8	20.4
474262	CBC-11-04	3	1.4	748	36.3	33.8
474263	CBC-11-04	3	1.8	116	5.7	8.8
474264	CBC-11-08	2	0.7	234	24.6	9.8
474265	CBC-11-08	< 1	1.1	1300	18	8.6
474266	CBC-11-08	< 1	1.1	1200	47.6	11.1
474267	CBC-11-08	1	0.3	599	53.6	20.1
474268	CBC-11-11	4	1.1	89	12.4	7.8
474269	CBC-11-11	4	0.9	53	14	6.9
474270	CBC-11-11	3	1.2	36	11.2	4.2
474271	CBC-11-11	3		34	13.3	4
474272	CBC-11-11	4		46	12.6	4.7
474273	CBC-11-09b	2	0.9	26	9.8	2.4
474274	CBC-11-09b	4	0.9	21	5.1	2.5
474275	CBC-11-09b	3		17	6.4	2.1
474276	CBC-11-09b	5		60	23.9	7.1
474277	CBC-11-09b	3		39	11.6	3.9
474278	CBC-11-09b	4	0.9	42	12.8	4.5

CHEM#	CHANNEL	W	TI	Pb	Th	U
474279	CBC-11-09b	2	1	31	10.2	2.7
474280	CBC-11-09b	3	0.9	85	24.6	6
474281	SZC-11-04	2	1.2	41	19.4	3.7
474282	SZC-11-04	2	1	38	25.7	3.8
474283	SZC-11-04	3	0.9	180	32.6	8.1
474284	SZC-11-04	2	1.1	41	21.3	4.6
474285	SZC-11-04	2	1	49	13.1	5.2
474286	SZC-11-04	2	0.9	34	21.3	4.9
474287	SZC-11-04	6	1.3	40	11.8	4.4
474288	SZC-11-15a	1	0.8	77	28.1	5
474289	SZC-11-15a	< 1	0.2	24	582	16.5
474290	SZC-11-15a	< 1	0.8	38	37.6	3.7
474291	SZC-11-15b	2	0.7	30	32.4	5.6
474292	SZC-11-15b	< 1	0.2	44	242	12
474293	SZC-11-15b	< 1	0.8	36	35.7	3.8
474294	SZC-11-15c	< 1	0.9	45	45.5	3.7
474295	SZC-11-15c	< 1	0.2	137	6940	197
474296	SZC-11-15c	< 1	0.3	38	645	23
474297	SZC-11-05	3	1.1	55	47.9	6.5
474298	SZC-11-05	2	1.1	42	17.4	3.8
474299	SZC-11-05	< 1	0.9	37	25.2	3.3
474300	SZC-11-05	< 1	0.9	40	13.9	3
474301	SZC-11-05	3	1.1	49	13.2	4
474302	SZC-11-05	< 1	1	40	13.2	3.5
474303	SZC-11-09	2	0.9	655	15.4	7.9
474304	SZC-11-09	1	0.9	58	20.6	4.8
474305	SZC-11-09	1	0.9	34	25	3.4
474306	SZC-11-09	1	0.9	31	11.8	2.7
474307	SZC-11-09	< 1	0.9	35	10.4	2.5
474308	SZC-11-09	1	1	55	15.6	4.7
474309	SZC-11-09	< 1	0.9	32	11.4	2.5
474310	SZC-11-09	1	0.8	73	19.6	4.4
474311	SZC-11-09	< 1	0.9	36	12.6	3.2
474312	SZC-11-09	< 1	1.1	40	15.9	3.3
474313	SZC-11-09	< 1	1.2	30	9.1	2.1
474314	SZC-11-09	< 1	1.1	32	11.4	2.9
474315	SZC-11-09	2	0.9	27	17.1	2.9
474316	SZC-11-02b	< 1	0.3	317	322	33.8
474317	SZC-11-02b	2	0.8	59	46.9	11.6
474318	SZC-11-02b	2	0.3	444	220	113
474319	SZC-11-02b	3	0.2	89	129	18.4
474320	SZC-11-02b	1	1.1	48	6.8	9.6
474321	SZC-11-03a	< 1	0.5	72	39.1	12.5
474322	SZC-11-03a	< 1	0.9	47	70.8	8.1
474323	SZC-11-03a	2	0.2	134	174	44.3
474324	SZC-11-03a	< 1	0.8	67	19.3	15

CHEM#	CHANNEL	W	TI	Pb	Th	U
474325	SZC-11-03a	2	0.3	387	628	77.9
474326	SZC-11-03b	1	0.4	78	6.7	8.3
474327	SZC-11-03b	1	0.7	48	7.3	6
474328	SZC-11-03b	1	0.5	60	12.9	6
474329	SZC-11-03b	1	1.7	76	4.5	8.5
474330	SZC-11-06	< 1	1	28	14.3	2.9
474331	SZC-11-06	3	1	26	17.5	2.8
474332	SZC-11-06	< 1	1.1	29	13.7	2.7
474333	SZC-11-06	1	1	40	14.1	3.2
474334	SZC-11-06	1	1	31	12.7	3
474335	SZC-11-06	< 1	1	28	37.7	3.7
474336	SZC-11-06	1	1.1	29	9.9	2.5
474337	SZC-11-07	1	1.3	61	18.4	5.4
474338	SZC-11-07	1	1.3	91	37.7	7.5
474339	SZC-11-07	2	1.5	129	52.4	12.2
474340	SZC-11-07	2	1.4	142	53	12.5
474341	SZC-11-07	1	1.2	456	38	9.5
474342	SZC-11-07	2	1	117	19	9.1
474343	SZC-11-08	2	1	64	20.4	6.4
474344	SZC-11-08	5	1.4	113	32.4	11.9
474345	SZC-11-08	1	0.9	82	27.2	5.8
474346	SZC-11-08	2	1	34	14	3.5
474347	SZC-11-08	4	1	41	14.6	3.8
474348	SZC-11-10	< 1	1	51	15.5	3.8
474349	SZC-11-10	1	0.7	63	19.7	7.2
474350	SZC-11-10	1	0.9	110	21.2	8
474351	SZC-11-10	< 1	0.8	82	11.6	8.2
474352	SZC-11-10	< 1	0.4	311	36.6	15.1
474353	SZC-11-10	< 1	0.9	108	28.1	11.4
474354	SZC-11-10	1	1.2	48	17.6	4.7
474355	SZC-11-10	1	1.1	52	18.1	5.2
474356	SZC-11-10	2	1	104	26.4	8.2
474357	SZC-11-10	1	1	66	20.2	7.1
474358	SZC-11-10	1	1.2	40	16.1	4.3
474359	SZC-11-10	8	1.3	50	14.7	4.2
474360	SZC-11-10	3	1.3	25	10.5	3.2
474361	SZC-11-10	3	1.2	42	19	4
474362	SZC-11-10	4	1.2	27	16.3	3.7
474363	SZC-11-10	2	1.1	38	33.5	4.5
474364	SZC-11-10	1	1.2	41	14	4.1
474365	SZC-11-10	2	1.3	48	7.4	4.2
474366	SZC-11-10	4	1.2	45	6	5.5
474367	SZC-11-10	2	1.2	69	6.3	5.7
474368	SZC-11-10	2	0.7	208	5.9	6.7
474369	SZC-11-10	3	1.1	34	4.2	3.9
474370	SZC-11-10	1	1	64	7.1	4.5

CHEM#	CHANNEL	W	TI	Pb	Th	U
474371	SZC-11-10	2	1.1	39	11.7	4.6
474372	SZC-11-10	< 1	1	22	9.4	2.4
474373	SZC-11-10	1	0.9	30	9.8	2.4
474374	SZC-11-10	< 1	0.9	28	31.9	3.8
474375	SZC-11-11	1	1.1	46	6.8	5.4
474376	SZC-11-11	3	0.6	238	7.3	12.4
474377	SZC-11-11	1	1.2	54	4.2	4.6
474378	SZC-11-11	3	1.3	53	6.1	4.5
474379	SZC-11-11	< 1	1.6	71	6.5	6.1
474380	SZC-11-11	2	1.6	54	7.1	5.5
474381	SZC-11-11	1	1.5	59	8.7	4.1
474382	SZC-11-11	< 1	1.1	49	5.8	4.9
474383	SZC-11-11	1	1.3	50	5.7	5.4
474384	SZC-11-11	< 1	1.1	48	23.7	4.9
474385	SZC-11-11	< 1	1	37	80.7	4.9
474386	SZC-11-11	< 1	1	33	15.6	3
474387	SZC-11-11	2	1.2	46	13.3	2.9
474388	SZC-11-11	< 1	0.9	24	15.4	2.4
474389	SZC-11-11	< 1	1	27	7.7	2
474390	SZC-11-11	2	0.9	21	7.8	2.2
474391	SZC-11-11	< 1	0.8	24	19.6	2.8
474392	SZC-11-11	< 1	0.9	12	6.2	1.2
474393	SZC-11-11	< 1	1	29	16.5	2.7
474394	SZC-11-11	< 1	1.1	21	8.6	2.1
474395	SZC-11-11	< 1	0.9	21	7.7	2
474396	SZC-11-11	< 1	0.6	72	5.7	1.6
474397	SZC-11-11	2	0.8	27	7.6	2.4
474398	SZC-11-11	< 1	1	35	12.3	3.5
474399	SZC-11-11	< 1	0.9	28	10.3	3.1
474400	SZC-11-11	2	1	45	12.6	3.9
474401	SZC-11-11	1	0.8	43	22.3	4.2
474402	SZC-11-12	< 1	0.9	30	10.8	2.6
474403	SZC-11-12	< 1	0.6	25	51.4	5.1
474404	SZC-11-12	< 1	0.4	46	394	13.1
474405	SZC-11-12	< 1	0.8	41	19.3	3.2
474406	SZC-11-12	< 1	0.6	29	11.1	2.5
474407	SZC-11-12	< 1	0.7	31	9.4	2.5
474408	SZC-11-12	< 1	0.8	31	10.5	2.9
474409	SZC-11-02a	< 1	1.4	20	11	2.6
474410	SZC-11-02a	< 1	0.4	65	24	4.6
474411	SZC-11-02a	< 1	0.8	46	26.9	4.1
474412	SZC-11-02a	< 1	1.1	37	30.8	3.7
474413	SZC-11-02a	< 1	0.6	279	118	32.2
474414	SZC-11-02a	< 1	1.3	41	33.4	6.8
474415	SZC-11-02a	< 1	0.4	69	37.6	13
474416	SZC-11-02a	< 1	0.3	295	249	31.8

CHEM #	CHANNEL	W	TI	Pb	Th	U
474417	SZC-11-02a	< 1	0.5	252	39.9	15.4
474418	SZC-11-02a	< 1	0.5	225	47.6	15.1
474419	SZC-11-02a	< 1	0.8	46	58.6	12.2
474420	MRC-11-04	2		529	116	105
474421	MRC-11-04	< 1	4.4	385	66.5	56.8
474422	MRC-11-04	1		791	92.5	91.2
474423	MRC-11-04	1		532	85.3	81.6
474424	MRC-11-04	< 1	12.8	210	45	32.4
474425	MRC-11-04	<1	0.7	369	86.7	81
474426	MRC-11-04	<1	1	695	56.2	40
474427	MRC-11-04	<1	2.6	580	56.8	38.2
474428	MRC-11-04	1		453	82	75.6
474429	MRC-11-04	1		400	97.8	119
474430	MRC-11-04	2		431	101	138
474431	SZC-11-16	1		69	30.5	9.4
474432	SZC-11-16	< 1	1.0	59	33.6	9
474433	SZC-11-16	<1	1	75	26.4	8.4
474434	SZC-11-16	<1	0.8	154	32	17
474435	SZC-11-16	< 1	0.9	127	29.5	17.3
474436	SZC-11-16	<1	0.8	206	27.3	16.3
474437	SZC-11-16	<1	0.8	144	38.5	12.6
474438	SZC-11-16	<1	0.6	177	98.1	23.6
474439	SZC-11-16	3		260	77.8	27.3
474440	SZC-11-16	<1	1.3	472	84.1	35.4
474441	SZC-11-16	1		695	136	37.5
474442	SZC-11-16	< 1	0.6	157	51.5	12.7
474443	SZC-11-16	1		478	163	29.6
474444	SZC-11-16	<1	1.9	410	447	78.8
474445	SZC-11-16	< 1	0.7	127	62	14.5
474446	SZC-11-16	1		138	53.4	12.4
474447	SZC-11-16	2		534	76.9	30.7
474448	SZC-11-16	< 1	1.2	331	64.4	25.4
474449	SZC-11-16	< 1	1.1		70.5	25.1
474450	SZC-11-16	3	1.7	491	101	40.8
474451	MRC-11-03	3		544	135	150
474452	MRC-11-03	2		575	80.7	67.1
474453	MRC-11-03	< 1	0.9	534	113	107
474454	MRC-11-03	< 1	0.8	324	99.8	86.2
474455	MRC-11-03	< 1	0.9	308	65.3	76.1
474456	MRC-11-03	< 1	0.8	235	100	68
474457	MRC-11-03	2		514	94.3	93.5
474458	MRC-11-03	2		538	119	126
474459	MRC-11-03	3		491	139	121
474460	MRC-11-03	1		335	124	81.2
474461	MRC-11-05	1		545	114	110
		-				

CHEM #	CHANNEL	W	TI	Pb	Th	U
474463	MRC-11-05	1	0.6	480	99.5	88.3
474464	MRC-11-05	1	0.6	469	83.8	81.1
474465	MRC-11-05	< 1	2.4	532	85.7	88.4
474466	MRC-11-05	< 1	0.8	546	116	106
474467	MRC-11-05	< 1	0.8	579	91.2	83.7
474468	MRC-11-05	< 1	8.3	318	57	41.6
474469	MRC-11-05	1	0.7	532	101	86.8
474470	MRC-11-05	< 1	0.9	365	91.4	114
474471	MRC-11-05	1	1	521	105	109
474472	MRC-11-02	3	0.5	534	159	116
474473	MRC-11-02	2	0.6	412	73.3	52
474474	MRC-11-02	< 1	0.8	314	61	38.1
474475	MRC-11-02	< 1	0.8	259	10.5	13.5
474476	MRC-11-02	< 1	0.6	287	25.7	15.5
474477	MRC-11-02	< 1	0.8	283	89.1	63.2
474478	MRC-11-02	< 1	0.8	269	105	97.4
474479	BRC-11-06	3	1.5	54	14.5	5.6
474480	BRC-11-06	2	1.4	72	12.4	6
474481	BRC-11-06	< 1	1.6	67	58.1	8
474482	BRC-11-06	< 1	0.9	90	21.1	7.3
474483	BRC-11-06	< 1	1.1	36	12.7	4.5
474484	BRC-11-06	2	1.5	44	9.2	4.8
474485	BRC-11-06	4	1.9	44	24.1	9.2
474486	MRC-11-01	< 1	0.5	150	28.7	13.5
474487	MRC-11-01	< 1	0.6	599	246	28.6
474488	MRC-11-01	2	1.1	525	375	50.6
474489	MRC-11-01	< 1	0.7	513	160	35.1
474499	BRC-11-02a	4	1.9	95	14	11.6
474500	BRC-11-02a	3	0.4	153	209	64.6
474501	BRC-11-02b	3	0.9	825	117	40.9
474502	BRC-11-02b	3	0.5	584	123	39.1
474503	BRC-11-02b	6	2.7	379	11	13.8
474504	BRC-11-05	4	0.9	559	31.7	27.2
474505	BRC-11-05	2	0.4	388	110	50.5
474506	BRC-11-05	2	0.8	479	129	41.2
474507	BRC-11-05	2	0.6	537	74.2	36.9
474508	BRC-11-05	1	0.9	584	89.9	25
474509	BRC-11-05	1	0.3	85	43.7	15.6
474510	BRC-11-01	4	0.4	586	65	47.5
474511	BRC-11-01	< 1	1.1	47	2.5	1.6
474512	BRC-11-01	4	0.3	201	15.6	16
474513	BRC-11-01	3	0.6	176	40.7	37.5
474514	BRC-11-01	3	0.4	186	45.2	45.6
474515	BRC-11-01	3	0.5	373	112	61.7
474516	BRC-11-01	3	0.4	444	86.7	67.1
474517	BRC-11-01	1	0.4	589	53	24.1

CHEM #	CHANNEL	W	TI	Pb	Th	U
474518	BRC-11-01	2	0.4	220	28	25
474519	BRC-11-01	3	0.5	296	70.1	27.2
474520	BRC-11-01	3	0.4	103	11.9	12.3
474521	BRC-11-03a	4	0.5	550	71.6	33.2
474522	BRC-11-03a	5	0.4	428	33.6	19.7
474523	BRC-11-03a	2	0.8	519	35.3	14.7
474524	BRC-11-03a	5	0.8	218	37.7	23.8
474525	BRC-11-03a	2	0.4	511	65	22.7
474526	BRC-11-03b	2	0.6	525	110	62.2
474527	BRC-11-03b	4	1.2	549	52.7	47.5
474528	BRC-11-03b	2	0.7	528	45.4	37.3
474529	BRC-11-03b	2	0.6	757	48.3	28.1
474530	BRC-11-03b	2	0.4	476	43.2	35.9
474531	BRC-11-03b	< 1	0.4	543	49.3	25.3
474611	MRC-11-06	< 1	1.2	598	121	84.2
474612	MRC-11-06	< 1	1.3	590	94	87.8
474613	MRC-11-06	< 1	1.4	854	88.3	47.7
474614	MRC-11-06	< 1	1.1	658	84.8	59.2
474615	MRC-11-06	< 1	1.4	776	88.2	59.2
474616	MRC-11-06	< 1	0.9	989	112	44.2
474617	MRC-11-06	< 1	1.5	847	99.8	69.6
474618	MRC-11-06	1	1.3	623	138	108
474619	MRC-11-06	< 1	1.2	701	91.9	61
474620	MRC-11-06	< 1	0.9	929	103	55.3
474621	MRC-11-06	< 1	1	945	103	55.2
474622	MRC-11-06	< 1	1	657	80	48.9
474623	MRC-11-06	< 1	1.1	731	90.3	64.6
474624	MRC-11-06	1	1.3	695	117	111
474625	MRC-11-06	< 1	1.2	679	108	81.7
474626	MRC-11-06	< 1	1.2	696	112	83.6
4744490	BRC-11-04	1	0.6	55	66.4	17.2
4744491	BRC-11-04	2	0.5	458	284	50.4
4744492	BRC-11-04	< 1	0.8		79	30.7
4744493	BRC-11-04	3	0.6	183	58.3	33.3
4744494	BRC-11-04	< 1	0.6	127	54.1	12.1
4744495	BRC-11-04	< 1	1.1	102	54.5	13
4744496	BRC-11-04	< 1	0.6	122	46.7	12
4744497	BRC-11-04	2	0.5	123	68.7	18.3
4744498	BRC-11-04	< 1	2.3	37	7.3	1.7
474565	AMC-11-05	< 1	0.7	491	370	49.5
474566	AMC-11-05	< 1	0.5	155	278	33.3
474567	AMC-11-05	< 1	0.5	347	170	19.8
474568	AMC-11-05	< 1	0.7	482	246	29.7
474569	AMC-11-05	< 1	0.7	629	156	20.8
474570	AMC-11-05	< 1	1	740	233	28.6
474571	AMC-11-01	< 1	0.8	37	9.4	3.1

CHEM #	CHANNEL	W	TI	Pb	Th	U
474572	AMC-11-01	< 1	0.8	32	8.5	2.7
474573	AMC-11-01	1	0.8	41	9.5	3.6
474574	AMC-11-01	< 1	0.8	47	10.7	3.6
474575	AMC-11-01	< 1	0.9	50	11	3.8
474576	AMC-11-02	2	1	40	10.2	3.5
474577	AMC-11-02	< 1	0.8	46	10.2	3.6
474578	AMC-11-02	< 1	0.8	79	9.2	3.9
474593	AMC-11-04	< 1	1	96	29.2	5.1
474594	AMC-11-04	< 1	0.9	113	34.1	6.9
474595	AMC-11-04	< 1	0.9	67	21.7	5
474596	AMC-11-04	2	0.6	93	44.3	9.2
474597	AMC-11-04	1	1	58	12.1	4.7
474598	AMC-11-04	< 1	0.9	54	22.7	5.3
474599	AMC-11-03	2	0.9	53	14.8	4.5
474600	AMC-11-03	4	0.9	113	23.9	7.2
474601	AMC-11-03	5	1	110	19.7	7.5
474602	AMC-11-03	3	1	95	26.6	7.9
474603	AMC-11-03	4	0.9	86	21.8	6.2
474604	AMC-11-03	3	1	84	16.7	6.3
474605	AMC-11-03	< 1	1.1	53	13.3	3.8
474606	AMC-11-03	< 1	1.1	44	12.8	3.7
474607	AMC-11-03	< 1	1	43	11.2	3.1
474608	AMC-11-03	< 1	0.8	37	10.2	2.9
474609	AMC-11-03	< 1	0.8	50	12.9	3.9
474610	AMC-11-03	< 1	0.9	50	9.6	3.6

APPENDIX E- EPMA RESULTS

Group 1 Results

Group 1 Results							
Analysis #	No.	K2O	CaO	BaO	Na2O	Al203	ZrO2
CBD-11-07-21-Alb-01	13	0.0314	0	0	11.71	18.99	0.0457
CBD-11-07-21-Alb-02	14	0.058	0.0045	0.0236	11.53	19.04	0
CBD-11-07-21-Alb-03	15	0.0433	0.0126	0.0058	11.6	18.94	0.025
CBD-11-07-21-ksp-04	16	16.21	0	0.0087	0.2208	18.25	0.0143
CBD-11-07-21-ksp-05	17	16.16	0	0.0279	0.2742	18.08	0
CBD-11-07-21-ksp-06	18	16.2	0	0	0.2209	18.02	0
CBD-11-07-21-ksp-07	19	16.05	0	0.0498	0.2707	18.1	0
CBD-11-07-21-ksp-08	20	15.98	0	0.0447	0.3273	18.08	0.0047
CBD-11-07-21-ksp-09	21	16.01	0	0.059	0.3125	18.09	0
CBD-11-07-21-ksp-10	22	15.96	0	0.0449	0.3577	17.7	0
CBD-11-07-21-ksp-11	23	15.99	0	0.0198	0.2678	17.69	0.0386
CBD-11-07-21-ksp-12	24	15.98	0	0.0669	0.2745	17.46	0.017
CBD-11-07-21-Can-01	25	0	0.1344	0.0029	14.69	19.28	0.0539
CBD-11-07-21-Can-02	26	7.5	0	0.0114	15.86	33.42	0
CBD-11-07-21-Can-03	27	7.43	0	0	15.92	33.56	0.0455
CBD-11-07-21-Can-04	28	7.49	0	0	15.86	33.62	0.0097
CBD-11-07-21-Alb-04	29	7.43	0	0	16.01	34.08	0
CBD-11-07-21-Alb-05	30	7.51	0	0.029	15.86	33.61	0.05
CBD-11-07-21-Alb-06	31	7.34	0	0	16.35	34.11	0.027
CBD-11-07-21-Alb-07	32	7.56	0	0	16.03	33.91	0
CBD-11-07-21-ksp-13	33	15.45	0	0.0611	0.298	17.08	0
CBD-11-07-21-ksp-14	34	15.86	0	0.0681	0.3735	17.96	0.0317
CBD-11-07-21-ksp-15	35	15.96	0	0.0781	0.4455	17.95	0.0021
CBD-11-07-21-neph-01	36	0.0129	0.005	0	14.98	26.96	0
CBD-11-07-21-neph-02	37	0.0248	0.0249	0	15.18	27.44	0
CBD-11-07-21-neph-03	38	0.0129	0.0218	0	15.13	26.98	0
CBD-11-07-21-neph-04	39	3.51	0	0	13.13	24.29	0
CBD-11-07-12-neph-01	40	7.46	0	0.0022	16.18	34.13	0.0389
CBD-11-07-12-neph-02	41	7.4	0	0.0249	16.09	34.37	0
CBD-11-07-12-neph-03	42	7.47	0	0	16.2	34.22	0.0026
CBD-11-07-12-ksp-01	43	15.77	0	0.1133	0.4669	18.12	0.0271
CBD-11-07-12-ksp-02	44	15.72	0	0.0972	0.4453	18.25	0
MRGC-KSP-01	45	16.23	0	0	0.2722	18.63	0.0177
MRGC-KSP-02	46	16.23	0	0.0002	0.2906	17.78	0.0132
MRGC-KSP-03	47	16.31	0	0	0.3128	18.27	0.0026
MRGC-Alb-01	48	0.0837	0.0004	0	11.73	19.73	0.0191
MRGC-Alb-02	49	0.097	0	0	11.58	19.44	0.0059
MRGC-Alb-03	50	8.15	0	0	5.4	18.78	0.1231
MRGC-Alb-04	51	0.0695	0.0152	0	11.82	19.71	0.0138
MRGC-Neph-01	52	3.22	0	0	13.97	28.4	0.0066
MRGC-Neph-02	53	7.26	0	0	15.93	34.33	0.0334
MRGC-Neph-03	54	7.29	0	0	16.11	34.54	0
CDB-11-07-03-Ksp-01	55	16.33	0	0.0433	0.3454	18.49	0.0303
CDB-11-07-03-Ksp-02	56	16.44	0	0.0131	0.3501	18.59	0.0422
CDB-11-07-03-Ksp-03	57	16.43	0	0.0067	0.3492	18.56	0.0369

Group 1 Results

Group 1 Results							
Analysis #	No.	K2O	CaO	BaO	Na2O	Al203	ZrO2
CDB-11-07-03-Ksp-04	58	16.43	0	0	0.2823	18.57	0.0283
CDB-11-07-03-Alb-01	59	0.0392	0.0041	0	11.93	20.01	0.1008
CDB-11-07-03-Alb-02	60	0.0518	0	0	11.99	19.94	0.0501
CDB-11-07-03-Alb-03	61	0.0371	0	0.0472	12.06	19.93	0.0889
CDB-11-07-03-Alb-04	62	0.0607	0	0	11.91	19.7	0.0164
CDB-11-07-15-Can-01	63	0.0302	18.52	0.6139	2.5	0.0372	0.7908
CDB-11-07-15-Can-02	64	0.0816	6.93	0.0686	4.22	0.0595	1.31
CDB-11-07-15-Can-03	65	0.0268	9.18	0	6.56	0	0.9626
CDB-11-07-15-Can-04	66	0.0646	3.86	0	1.93	0.1172	1.1713
CDB-11-07-15-Can-05	67	0.0228	8.84	0	4.53	0.0168	0.8881
CDB-11-07-15-Nat-01	68	0	0.0329	0	10.7	30.35	0.002
CDB-11-07-15-Nat-02	69	0	0	0.0414	10.56	31.19	0.0197
CDB-11-07-15-Nat-03	70	0	0.0071	0	10.86	29.75	0
CDB-11-07-15-Nat-04	71	16.6	0	0.0049	0.0672	18.81	0.1171
CDB-11-07-15-Nat-05	72	16.67	0	0	0.0574	18.72	0.1757
CDB-11-07-15-Nat-06	73	16.57	0	0.0116	0.0573	18.62	0.2817
CDB-11-07-15-Nat-07	74	0.0075	0.0524	0.0385	14.42	29.51	0.0545
CDB-11-07-15-Nat-08	75	0.001	0.0652	0	14.78	29.74	0.0577
CDB-11-07-15-Ksp-05	76	16.34	0	0.0118	0.2571	18.47	0.0125
CDB-11-07-15-Neph-01	77	0	0.02	0.0151	14.74	29.15	0.0571
CDB-11-07-15-Neph-02	78	0	0.0787	0.0058	12.87	29.9	0.0322
CDB-11-07-15-Neph-03	79	0.0139	3.06	0	13.74	28.31	0.0151
CDB-11-07-15-Can-06	80	4.67	6.39	0	5.24	29.26	0.7528
CDB-11-07-15-Can-07	81	2.72	55.17	0.0312	0.2048	11.26	0.2725
CDB-11-07-15-Can-08	82	2.6	0.349	0.04	11.58	20.8	17.97
CD-10-11-Ksp-01	83	3.59	1.3359	0.1476	7.22	2.95	31.97
CD-10-11-Ksp-02	84	16.39	0	0	0.3204	18.31	0.0711
CD-10-11-Ksp-03	85	16.31	0	0	0.3553	18.51	0.0717
CD-10-11-Ksp-04	86	16.35	0	0	0.3113	18.4	0.0191
CD-10-11-Ksp-05	87	16.2	0	0	0.2964	18.66	0.0303
CD-10-11-Ksp-06	88	16.23	0	0.0058	0.3648	18.53	0.0409
CBD-11-07-17-KSP-01	89	16.07	0	0	0.2537	18.86	0.0327
CBD-11-07-17-KSP-02	90	16.42	0	0.0235	0.259	18.36	0.0282
CBD-11-07-17-KSP-03	91	16.41	0	0	0.2351	18.27	0.0151
CBD-11-07-17-Ksp-04	92	16.29	0	0	0.2327	18.07	0.0006
CBD-11-07-17-KSP-05	93	16.54	0	0	0.1615	18.27	0.0276
CBD-11-07-17-Neph-01	94	0.0044	0.0045	0.0023	15.08	29.64	0.0157
CBD-11-07-17-Neph-02	95	0.0113	2.28	0.1637	12.89	27.47	0.0706
CBD-11-07-17-Neph-03	96	0.0083	0.032	0	13.86	29.14	0.0236
CBD-11-07-17-Neph-04	97	3.77	1.2134	0	6.53	31.88	0.0602
CBD-11-07-17-Neph-05	98	10.11	0	0.0137	1.47	38.74	0.0948
CBD-11-07-17-Neph-06	99	10.69	0	0	0.821	39.2	0.0719
CBD-11-07-17-KSP-06	100	16.18	0	0	0.3505	18.48	0.0085
CBD-11-07-17-KSP-07	101	16.4	0	0	0.341	18.39	0.0282
CBD-11-07-17-KSP-08	102	16.11	0	0	0.3649	18.63	0.0131

Group 1 Results

Analysis # FeO MnO TiO2 SrO MgO CBD-11-07-21-Alb-01 0.0009 0.0178 0.0058 0 0.0098 CBD-11-07-21-Alb-02 0.0243 0.0178 0.0041 0 0 CBD-11-07-21-Alb-03 0.0321 0 0.0168 0 0.006 CBD-11-07-21-ksp-04 0.0148 0 0 0 0 CBD-11-07-21-ksp-05 0.0114 0 0 0 0.0078 CBD-11-07-21-ksp-06 0.0296 0.0045 0 0 0 0 CBD-11-07-21-ksp-07 0 <t< th=""><th>\$i02 67.74 67.66 67.55 64.46 64.97 65.11 65.06 64.7 64.44 59.98 60.17</th><th>Total 98.5515 98.3624 98.2317 99.1787 99.5313 99.5851 99.5364 99.139 98.9421 94.0471</th></t<>	\$i02 67.74 67.66 67.55 64.46 64.97 65.11 65.06 64.7 64.44 59.98 60.17	Total 98.5515 98.3624 98.2317 99.1787 99.5313 99.5851 99.5364 99.139 98.9421 94.0471
CBD-11-07-21-Alb-02 0.0243 0.0178 0.0041 0 0 CBD-11-07-21-Alb-03 0.0321 0 0.0168 0 0.006 CBD-11-07-21-ksp-04 0.0148 0 0 0 0 CBD-11-07-21-ksp-05 0.0114 0 0 0 0.0078 CBD-11-07-21-ksp-06 0.0296 0.0045 0 0 0 CBD-11-07-21-ksp-07 0 0 0 0.0058 CBD-11-07-21-ksp-08 0 0.0023 0 0 CBD-11-07-21-ksp-09 0.0305 0 0 0 CBD-11-07-21-ksp-10 0.0044 0 0 0 CBD-11-07-21-ksp-11 0.041 0.0191 0 0 CBD-11-07-21-ksp-12 0.0226 0.0023 0 0 0	67.66 67.55 64.46 64.97 65.11 65.06 64.7 64.44 59.98	98.3624 98.2317 99.1787 99.5313 99.5851 99.5364 99.139 98.9421
CBD-11-07-21-Alb-03 0.0321 0 0.0168 0 0.006 CBD-11-07-21-ksp-04 0.0148 0 0 0 0 CBD-11-07-21-ksp-05 0.0114 0 0 0 0.0078 CBD-11-07-21-ksp-06 0.0296 0.0045 0 0 0 CBD-11-07-21-ksp-07 0 0 0 0.0058 CBD-11-07-21-ksp-08 0 0.0023 0 0 0 CBD-11-07-21-ksp-09 0.0305 0 0 0 0 0 CBD-11-07-21-ksp-10 0.0044 0 0 0 0 0 CBD-11-07-21-ksp-11 0.041 0.0191 0 0 0 CBD-11-07-21-ksp-12 0.0226 0.0023 0 0 0	67.55 64.46 64.97 65.11 65.06 64.7 64.44 59.98	98.2317 99.1787 99.5313 99.5851 99.5364 99.139 98.9421
CBD-11-07-21-ksp-04 0.0148 0 0 0 CBD-11-07-21-ksp-05 0.0114 0 0 0.0078 CBD-11-07-21-ksp-06 0.0296 0.0045 0 0 0 CBD-11-07-21-ksp-07 0 0 0 0.0058 CBD-11-07-21-ksp-08 0 0.0023 0 0 CBD-11-07-21-ksp-09 0.0305 0 0 0 CBD-11-07-21-ksp-10 0.0044 0 0 0 CBD-11-07-21-ksp-11 0.041 0.0191 0 0 CBD-11-07-21-ksp-12 0.0226 0.0023 0 0 0	64.46 64.97 65.11 65.06 64.7 64.44 59.98	99.1787 99.5313 99.5851 99.5364 99.139 98.9421
CBD-11-07-21-ksp-05 0.0114 0 0 0.0078 CBD-11-07-21-ksp-06 0.0296 0.0045 0 0 0 CBD-11-07-21-ksp-07 0 0 0 0.0058 CBD-11-07-21-ksp-08 0 0.0023 0 0 0 CBD-11-07-21-ksp-09 0.0305 0 0 0 0 CBD-11-07-21-ksp-10 0.0044 0 0 0 0 CBD-11-07-21-ksp-11 0.041 0.0191 0 0 0 CBD-11-07-21-ksp-12 0.0226 0.0023 0 0 0	64.97 65.11 65.06 64.7 64.44 59.98	99.5313 99.5851 99.5364 99.139 98.9421
CBD-11-07-21-ksp-06 0.0296 0.0045 0 0 0 CBD-11-07-21-ksp-07 0 0 0 0 0.0058 CBD-11-07-21-ksp-08 0 0.0023 0 0 0 CBD-11-07-21-ksp-09 0.0305 0 0 0 0 CBD-11-07-21-ksp-10 0.0044 0 0 0 0 CBD-11-07-21-ksp-11 0.041 0.0191 0 0 0 CBD-11-07-21-ksp-12 0.0226 0.0023 0 0 0	65.11 65.06 64.7 64.44 59.98	99.5851 99.5364 99.139 98.9421
CBD-11-07-21-ksp-07 0 0 0 0 0.0058 CBD-11-07-21-ksp-08 0 0.0023 0 0 0 CBD-11-07-21-ksp-09 0.0305 0 0 0 0 CBD-11-07-21-ksp-10 0.0044 0 0 0 0 CBD-11-07-21-ksp-11 0.041 0.0191 0 0 0 CBD-11-07-21-ksp-12 0.0226 0.0023 0 0 0	65.06 64.7 64.44 59.98	99.5364 99.139 98.9421
CBD-11-07-21-ksp-08 0 0.0023 0 0 CBD-11-07-21-ksp-09 0.0305 0 0 0 CBD-11-07-21-ksp-10 0.0044 0 0 0 CBD-11-07-21-ksp-11 0.041 0.0191 0 0 CBD-11-07-21-ksp-12 0.0226 0.0023 0 0	64.7 64.44 59.98	99.139 98.9421
CBD-11-07-21-ksp-09 0.0305 0 0 0 CBD-11-07-21-ksp-10 0.0044 0 0 0 CBD-11-07-21-ksp-11 0.041 0.0191 0 0 CBD-11-07-21-ksp-12 0.0226 0.0023 0 0	64.44 59.98	98.9421
CBD-11-07-21-ksp-10 0.0044 0 0 0 CBD-11-07-21-ksp-11 0.041 0.0191 0 0 CBD-11-07-21-ksp-12 0.0226 0.0023 0 0	59.98	
CBD-11-07-21-ksp-11 0.041 0.0191 0 0 CBD-11-07-21-ksp-12 0.0226 0.0023 0 0		94 0471
CBD-11-07-21-ksp-12	60.17	J U - / 1
·		94.2364
CBD-11-07-21-Can-01 7.63 0.0044 0.0286 0 0.0157	59.08	92.9034
	51.95	93.79
CBD-11-07-21-Can-02 0.0754 0 0 0 0.002	38.85	95.7188
CBD-11-07-21-Can-03 0.1255 0.0056 0.0069 0 0.0098	39.06	96.1634
CBD-11-07-21-Can-04 0.0779 0 0.0047 0 0	39.3	96.3624
CBD-11-07-21-Alb-04 0.0562 0.0233 0 0 0	40.94	98.5396
CBD-11-07-21-Alb-05 0.0381 0 0.0087 0 0	39.35	96.4559
CBD-11-07-21-Alb-06 0.0666 0.0089 0 0 0	41.67	99.5726
CBD-11-07-21-Alb-07 0.0311 0 0.005 0 0	40.59	98.1262
CBD-11-07-21-ksp-13 0.0288 0.028 0 0 0	61.28	94.226
CBD-11-07-21-ksp-14	64.25	98.563
CBD-11-07-21-ksp-15 0 0.0078 0.0066 0 0	65.48	99.9302
CBD-11-07-21-neph-01 0.0304 0.0067 0 0 0	48.03	90.025
CBD-11-07-21-neph-02	47.6	90.2918
CBD-11-07-21-neph-03 0.0373 0 0.0076 0 0.0083	45.6	87.798
CBD-11-07-21-neph-04 0 0.0056 0 0 0.0116	45.39	86.3373
CBD-11-07-12-neph-01 0.0624 0.0167 0 0 0	42.15	100.0402
CBD-11-07-12-neph-02 0.0588	40.55	98.4981
CBD-11-07-12-neph-03	40.33	98.2736
CBD-11-07-12-ksp-01 0.0061 0.0101 0.0163 0 0.0031	62.76	97.293
CBD-11-07-12-ksp-02 0 0.009 0 0 0.0051	63.31	97.8367
MRGC-KSP-01 0.0203 0.088 0.0047 0 0.0003	65.19	100.4531
MRGC-KSP-02 0.0009 0 0 0 0.002	66.52	100.8368
MRGC-KSP-03 0 0 0.0089 0 0.0087	65.66	100.573
MRGC-Alb-01 0 0 0.0012 0 0.0163	69.23	100.8106
MRGC-Alb-02 0 0 0 0.0022	69.47	100.595
MRGC-Alb-03 0.1631 0 0 0 0	65.5	98.1163
MRGC-Alb-04 0.0311 0.0247 0.0067 0 0.0119	68.31	100.0128
MRGC-Neph-01 0 0 0 0	51.59	97.1867
MRGC-Neph-02 0 0.0185 0.0007 0 0	41.72	99.2927
MRGC-Neph-03 0.0017 0.1049 0.0011 0 0.0077	41.81	99.8655
CDB-11-07-03-Ksp-01 0 0.0943 0.001 0 0	64.61	99.9444
CDB-11-07-03-Ksp-02	64.74	100.2246
CDB-11-07-03-Ksp-03 0 0.1069 0.0062 0 0.0003	64.79	100.2861

Group 1 Results

Group 1 Results							•
Analysis #	FeO	MnO	TiO2	SrO	MgO	SiO2	Total
CDB-11-07-03-Ksp-04	0.0194	0.1195	0.0043	0	0.0008	64.81	100.2645
CDB-11-07-03-Alb-01	0.021	0	0	0	0	69.61	101.715
CDB-11-07-03-Alb-02	0	0.117	0.0006	0	0	69.4	101.5494
CDB-11-07-03-Alb-03	0.0009	0.0616	0	0	0	69.01	101.2356
CDB-11-07-03-Alb-04	0.0042	0	0	0	0	68.39	100.0812
CDB-11-07-15-Can-01	0.4547	0	0	0	0	30.4	53.3469
CDB-11-07-15-Can-02	0.7114	0	0	0	0.0122	44.23	57.6233
CDB-11-07-15-Can-03	0.5695	0	0	0	0	46.66	63.959
CDB-11-07-15-Can-04	0.6952	0	0.0032	0	0.0409	36.47	44.3525
CDB-11-07-15-Can-05	0.5549	0	0.0024	0	0	44.12	58.975
CDB-11-07-15-Nat-01	0.0117	0	0	0	0	54.69	95.7867
CDB-11-07-15-Nat-02	0.0042	0	0	0	0	55.62	97.4354
CDB-11-07-15-Nat-03	0.026	0.0184	0.0027	0	0	54.06	94.7243
CDB-11-07-15-Nat-04	0.0152	0	0.0052	0	0	64.59	100.2095
CDB-11-07-15-Nat-05	0.0017	0.1885	0	0	0.0084	64.09	99.9118
CDB-11-07-15-Nat-06	0.0092	0.1446	0	0	0.0087	64.47	100.173
CDB-11-07-15-Nat-07	0.005	0	0.001	0	0	52.43	96.519
CDB-11-07-15-Nat-08	0.01	0	0	0	0	51.6	96.254
CDB-11-07-15-Ksp-05	0.0076	0.044	0.0015	0	0	64.11	99.2546
CDB-11-07-15-Neph-01	0.0159	0.0061	0.0071	0	0	51.47	95.4813
CDB-11-07-15-Neph-02	0.0042	0.0798	0.0027	0	0.0026	52.29	95.2661
CDB-11-07-15-Neph-03	0.0201	0	0.0003	0	0	49.38	94.5395
CDB-11-07-15-Can-06	0.0453	0.0934	0.0111	0.0408	0.0361	43.05	89.5895
CDB-11-07-15-Can-07	0.0171	0.1742	0.0105	0.7134	0.0107	10.58	81.1644
CDB-11-07-15-Can-08	0.2123	0.0584	0.0062	0	0.1383	43.91	97.6643
CD-10-11-Ksp-01	0.7746	0	0.182	0	0.2718	50.04	98.482
CD-10-11-Ksp-02	0.0025	0	0.0066	0	0	65.86	100.9605
CD-10-11-Ksp-03	0.0127	0.2323	0.0078	0	0	65.21	100.7097
CD-10-11-Ksp-04	0	0.0188	0.0136	0	0.0056	63.13	98.2485
CD-10-11-Ksp-05	0.0067	0.2262	0.0039	0	0	63.64	99.0636
CD-10-11-Ksp-06	0	0.1634	0.0057	0	0	63.75	99.0907
CBD-11-07-17-KSP-01	0	0.0063	0	0	0	54.51	89.7327
CBD-11-07-17-KSP-02	0.0025	0.0501	0	0	0	64.33	99.4734
CBD-11-07-17-KSP-03	0.0076	0	0.0047	0	0.0073	64.78	99.7299
CBD-11-07-17-Ksp-04	0	0.0564	0.0026	0	0.0036	62.92	97.576
CBD-11-07-17-KSP-05	0	0.1253	0	0	0.0058	62.45	97.5803
CBD-11-07-17-Neph-01	0.0125	0.0794	0	0	0	52.28	97.1189
CBD-11-07-17-Neph-02	0	0.0675	0	0	0	49.57	92.5232
CBD-11-07-17-Neph-03	0	0.11	0	0	0	52.68	95.854
CBD-11-07-17-Neph-04	0.0076	0	0	0	0	50.48	93.9412
CBD-11-07-17-Neph-05	0.0017	0.0186	0.0149	0	0	45.03	95.4938
CBD-11-07-17-Neph-06	0	0	0.0047	0	0	45.24	96.0277
CBD-11-07-17-KSP-06	0.0193	0.0376	0	0	0	64.36	99.436
CBD-11-07-17-KSP-07	0	0.1564	0	0	0.0048	64.18	99.5005
CBD-11-07-17-KSP-08	0	0.3689	0.012	0	0	64.57	100.0688

Group 2 Results

Analysis #	No.	К2О	CaO	BaO	F	Al203
CBD-11-07-21-Amph-01	13	3.60	0.79	0.01	0.06	2.54
CBD-11-07-21-Amph-02	14	3.55	1.13	0.01	0.18	2.36
CBD-11-07-21-Amph-03	15	3.52	0.91	0.00	0.42	2.54
CBD-11-07-21-Amph-04	16	3.57	0.98	0.02	0.46	2.21
CBD-11-07-21-Amph-05	17	3.51	0.97	0.00	0.30	2.22
CBD-11-07-21-Amph-06	18	3.51	1.06	0.05	0.48	2.27
CBD-11-07-21-Px-01	19	0.01	0.88	0.00	0.09	12.92
CBD-11-07-21-Px-02	20	0.00	0.80	0.01	0.00	13.53
CBD-11-07-21-Px-03	21	0.00	0.81	0.00	0.10	13.24
CBD-11-07-21-Px-04	22	0.00	1.06	0.00	0.00	12.14
CBD-11-07-21-Px-05	23	0.00	1.27	0.03	0.00	11.28
CBD-11-07-21-Px-06	24	3.56	0.89	0.00	0.33	2.06
CBD-11-07-21-Px-07	25	3.56	1.24	0.00	0.37	2.52
CBD-11-07-21-Px-08	26	3.67	0.90	0.00	0.34	2.08
CBD-11-07-21-Px-09	27	3.59	0.88	0.00	0.26	2.16
CBD-11-07-21-Px-10	28	3.56	0.87	0.00	0.06	2.16
CBD-11-07-21-Px-11	29	3.63	0.95	0.00	0.14	2.17
CBD-11-07-21-Px-12	30	0.01	0.78	0.01	0.00	12.01
CBD-11-07-21-Px-13	31	0.01	0.90	0.03	0.00	14.60
CBD-11-07-21-Px-14	32	0.00	0.63	0.00	0.03	12.65
CBD-11-07-21-Px-15	33	0.00	0.81	0.03	0.00	13.74
CBD-11-07-21-Px-16	34	0.00	0.38	0.00	0.00	12.67
CBD-11-07-21-Px-17	35	0.01	1.51	0.01	0.00	8.12
CBD-11-07-21-Px-18	36	0.00	1.36	0.00	0.07	9.61
CBD-11-07-21-Px-19	37	0.01	0.71	0.00	0.15	10.29
CBD-11-07-21-Px-20	38	0.00	1.00	0.04	0.08	8.96
CBD-11-07-21-Px-21	39	0.00	0.97	0.00	0.08	10.42
CBD-11-07-21-Px-22	40	0.00	1.22	0.00	0.00	9.41
CBD-11-07-21-Px-23	41	0.00	1.19	0.01	0.00	9.01
CBD-11-07-21-Px-24	42	0.01	28.99	0.00	0.13	0.00
CBD-11-07-21-Px-25	43	0.00	0.73	0.00	0.01	15.21
CBD-11-07-21-Px-26	44	0.00	1.03	0.00	0.01	14.40
CBD-11-07-21-Px-27	45	0.00	0.88	0.00	0.00	15.15
CB-01-30-Amph-01	46	3.65	0.75	0.03	0.20	2.69
CB-01-30-Amph-02	47	3.64	0.82	0.00	0.21	2.65
CB-01-30-Amph-03	48	3.62	0.82	0.00	0.30	2.63
CB-01-30-Amph-04	49	3.68	0.58	0.00	0.00	2.05
CB-01-30-Amph-05	50	3.56	0.64	0.01	0.35	2.15
CB-01-30-Px-01	51	0.00	0.27	0.00	0.00	12.72
CB-01-30-Px-02	52	0.01	0.47	0.01	0.03	13.32
CB-01-30-Px-03	53	0.00	0.66	0.00	0.00	11.92
CB-01-30-Px-04	54	0.01	0.34	0.00	0.00	10.37
CB-01-30-Px-05	55	0.01	0.38	0.01	0.19	4.07
CB-01-30-Px-06	56	0.00	2.04	0.02	0.00	5.16
CB-01-30-Px-07	57	0.00	0.54	0.01	0.00	5.70

Group 2 Results

Analysis #	No.	K20	CaO	BaO	F	Al203
CB-01-30-Px-08	58	0.00	1.48	0.02	0.00	8.50
CB-01-30-Px-09	59	0.00	1.26	0.00	0.01	8.03
CB-01-30-Px-10	60	0.01	0.62	0.01	0.00	8.44
CD-01-30-Px-11	61	3.58	0.74	0.03	0.25	2.31
CB-01-30-Amph-06	62	3.53	0.91	0.01	0.25	2.18
CB-01-30-Amph-07	63	3.57	0.76	0.00	0.34	2.79
CB-01-30-Px-12	64	0.01	0.37	0.00	0.00	4.87
CB-01-30-Px-13	65	0.01	0.34	0.00	0.00	7.59
CB-01-30-Px-14	66	0.00	0.53	0.00	0.00	5.67
CBD-11-07-12-Amph-01	67	3.37	0.85	0.00	0.60	2.11
CBD-11-07-12-Amph-10	68	3.48	0.95	0.00	0.45	2.70
CBD-11-07-12-Amph-03	69	3.49	0.91	0.00	0.45	2.85
CBD-11-07-12-Px-01	70	0.01	1.26	0.00	0.04	12.88
CBD-11-07-12-Px-02	71	0.00	0.85	0.00	0.06	14.95
CBD-11-07-12-Px-03	72	0.00	1.15	0.00	0.01	14.04
CBD-11-07-12-Px-04	73	0.01	0.27	0.00	0.00	15.85
CBD-11-07-12-Px-05	74	0.00	0.94	0.00	0.07	13.21
CBD-11-07-12-Px-06	75	0.00	1.72	0.00	0.00	8.68
CBD-11-07-12-Px-07	76	0.00	1.05	0.00	0.00	10.12
CBD-11-07-12-Px-08	77	0.01	0.99	0.02	0.04	10.92
CBD-11-07-12-Px-09	78	0.00	1.05	0.01	0.06	10.14
CBD-11-07-01-Amph-01	79	3.48	1.65	0.00	0.42	1.90
CBD-11-07-01-Amph02	80	3.44	1.46	0.00	0.33	2.15
CBD-11-07-01-Amph-03	81	3.57	1.65	0.00	0.32	2.16
MRGC-Amph-01	82	3.80	0.49	0.00	0.26	2.42
MRGC-Amph-02	83	3.81	0.44	0.00	0.34	2.38
MRGC-Amph-03	84	3.76	0.28	0.00	0.02	1.93
MRGC-Px-01	85	0.01	0.23	0.01	0.00	16.11
MRGC-Px-02	86	0.00	0.24	0.00	0.01	15.69
MRGC-Px-03	87	0.02	0.16	0.01	0.08	18.25
MRGC-Px-04	88	0.00	0.38	0.00	0.00	13.56
MRGC-Px-05	89	0.04	0.35	0.00	0.22	14.71
MRGC-Px-06	90	0.05	0.29	0.00	0.00	15.49
MRGC-Px-07	91	0.01	0.31	0.00	0.00	9.21
MRGC-Amph-04	92	3.80	0.55	0.01	0.33	2.54
MRGC-Amph-05	93	3.87	0.47	0.00	0.14	2.38
MRGC-Amph-06	94	3.83	0.46	0.00	0.35	2.24
MRGC-Px-08	95	0.00	0.22	0.00	0.00	14.53
MRGC-Px-09	96	0.00	0.34	0.01	0.00	14.13
MRGC-Px-10	97	3.90	0.52	0.00	0.27	2.55
MRGC-Px-11	98	0.00	0.17	0.01	0.03	16.15
MRGC-Px-12	99	0.00	0.26	0.01	0.00	10.80
MRGC-Px-13	100	0.00	0.32	0.01	0.00	9.59
MRGC-Px-14	101	0.01	0.28	0.00	0.02	9.85
CBD-11-07-03-Amph-01	102	3.59	3.49	0.00	0.52	3.86

Group 2 Results

Analysis #	No.	K20	CaO	BaO	F	Al203
CBD-11-07-03-Amph-02	103	3.51	3.47	0.00	0.27	3.55
CBD-11-07-03-Amph-03	104	3.53	3.65	0.00	0.29	3.51
CBD-11-07-03-Amph-04	105	2.72	4.76	0.01	0.25	4.46
CBD-11-07-03-Amph-05	106	0.00	11.07	0.00	0.00	7.11
CBD-11-07-03-Amph-06	107	0.00	11.15	0.00	0.00	7.74
CBD-11-07-03-Amph-07	108	0.00	10.54	0.00	0.00	7.77
CBD-11-07-03-Amph-08	109	0.01	10.61	0.00	0.00	7.77
CBD-11-07-03-Amph-09	110	0.01	10.58	0.00	0.00	7.60
CBD-11-07-03-Amph-10	111	8.81	0.00	0.02	0.08	10.92
CBD-11-07-03-Amph-11	112	8.25	0.00	0.05	0.11	11.04
CBD-11-07-03-Amph-12	113	8.43	0.00	0.10	0.10	11.13
CBD-11-07-03-Amph-13	114	0.01	10.94	0.02	0.00	6.56
CBD-11-07-03-Amph-14	115	2.07	5.32	0.00	0.10	4.56
CBD-11-07-03-Amph-15	116	2.18	5.24	0.01	0.26	4.15
CBD-11-07-03-Amph-16	117	2.35	4.77	0.00	0.38	4.77
CBD-11-07-03-Amph-17	118	0.60	0.82	0.00	0.00	1.80
CBD-11-07-03-Amph-18	119	0.34	0.74	0.01	0.13	1.69
CBD-11-07-03-Amph-19	120	0.00	0.11	0.01	0.00	0.18
CBD-11-07-03-Amph-20	121	0.00	10.70	0.00	0.00	6.95
CBD-11-07-03-Amph-21	122	0.00	10.20	0.01	0.01	7.08
CBD-11-07-03-Amph-22	123	0.00	10.20	0.00	0.00	7.05
CBD-11-07-03-Amph-23	124	0.00	10.67	0.02	0.06	7.05
CBD-11-07-03-Bt-01	125	8.16	0.00	0.01	0.15	9.90
CBD-11-07-03-Bt-02	126	5.82	0.54	0.04	0.43	10.26
CBD-11-07-03-Bt-03	127	8.71	0.00	0.04	0.12	10.54
CBD-11-07-03-Bt-04	128	7.14	0.26	0.01	0.28	10.63
CBD-11-07-15-Amph-01	129	3.58	0.31	0.00	0.42	2.38
CBD-11-07-15-Amph-02	130	3.67	0.33	0.01	0.45	2.39
CBD-11-07-15-Amph-03	131	3.56	0.36	0.00	0.36	2.61
CBD-11-07-15-Px-01	132	0.00	0.40	0.00	0.00	10.11
CBD-11-07-15-Px-02	133	0.00	0.47	0.01	0.00	9.34
CBD-11-07-15-Px-03	134	0.00	0.48	0.01	0.00	12.69
CBD-11-07-15-Px-04	135	0.00	0.33	0.02	0.00	10.55
CBD-11-07-15-Px-05	136	0.00	0.51	0.01	0.00	12.69
CBD-11-07-15-Px-06	137	0.00	0.57	0.01	0.09	12.36
CBD-11-07-15-Px-07	138	0.00	0.34	0.00	0.00	9.09
CBD-11-07-15-Px-08	139	0.00	0.40	0.00	0.00	10.50
CBD-11-07-15-Amph-04	140	3.66	0.36	0.02	0.36	2.52
CBD-11-07-15-Amph-05	141	3.78	0.42	0.00	0.38	2.89
CBD-11-07-15-Amph-06	142	3.76	0.31	0.01	0.40	2.22
CB-01-11-Px-01	143	0.01	1.30	0.00	0.00	12.83
CB-01-11-Px-02	144	0.01	0.38	0.00	0.00	12.52
CB-01-11-Px-03	145	0.00	0.38	0.01	0.00	12.68
CB-01-11-Px-04	146	0.01	1.69	0.00	0.00	9.25
CB-01-11-Px-05	147	0.00	29.63	0.00	0.00	0.00

Group 2 Results

Analysis #	No.	K20	CaO	BaO	F	Al2O3
CB-01-11-Px-06	148	0.00	1.28	0.02	0.00	9.29
CB-01-11-Amph-01	149	3.70	1.17	0.01	0.24	2.63
CB-01-11-Amph-02	150	3.69	1.03	0.02	0.39	2.56
CB-01-11-Amph-03	151	3.68	1.16	0.02	0.33	2.61
CB-01-11-Pec-01	152	0.00	29.89	0.00	0.00	0.00
CB-01-11-Pec-02	153	0.00	30.32	0.01	0.00	0.00
CB-01-11-Pec-03	154	0.01	29.82	0.00	0.00	0.00
CB-01-11-Pec-04	155	0.00	30.25	0.02	0.00	0.00
CBD-11-07-17-Amph-01	156	2.23	0.26	0.00	0.16	16.11
CBD-11-07-17-Amph-02	157	3.62	0.49	0.00	0.18	2.19
CBD-11-07-17-Amph-03	158	3.64	0.46	0.01	0.48	2.19
CBD-11-07-15-Amph-01	159	3.67	0.45	0.00	0.26	2.69
CBD-11-07-15-Amph-02	160	3.52	0.46	0.01	0.39	2.44
CBD-11-07-15-Amph-03	161	3.60	0.45	0.02	0.40	2.67
CBD-11-07-15-Amph-04	162	3.52	0.48	0.01	0.32	2.65
CBD-11-07-15-Px-01	163	0.00	0.73	0.00	0.00	9.10
CBD-11-07-15-Px-02	164	0.01	0.37	0.00	0.00	9.52
CBD-11-07-15-Px-03	165	0.00	0.56	0.00	0.00	13.52
CBD-11-07-15-Px-04	166	0.00	0.58	0.01	0.00	13.52
CBD-11-07-15-Px-05	167	0.00	0.43	0.00	0.00	12.00
CBD-11-07-15-Px-06	168	16.46	0.00	0.05	0.00	18.55

Group 2 Results

Analysis #	ZrO2	FeO	MnO	Ce2O3	La2O3	Nd2O3
CBD-11-07-21-Amph-01	0.12	32.47	0.94	0.02	0.01	0.04
CBD-11-07-21-Amph-02	0.12	32.69	0.94	0.00	0.00	0.00
CBD-11-07-21-Amph-03	0.05	32.47	0.89	0.03	0.06	0.01
CBD-11-07-21-Amph-04	0.31	33.09	0.94	0.02	0.00	0.01
CBD-11-07-21-Amph-05	0.13	33.23	0.90	0.06	0.00	0.00
CBD-11-07-21-Amph-06	0.03	32.99	0.89	0.00	0.00	0.00
CBD-11-07-21-Px-01	0.07	15.04	0.03	0.02	0.00	0.00
CBD-11-07-21-Px-02	0.10	14.67	0.02	0.00	0.00	0.03
CBD-11-07-21-Px-03	0.01	15.06	0.05	0.00	0.03	0.00
CBD-11-07-21-Px-04	0.04	16.26	0.03	0.00	0.00	0.00
CBD-11-07-21-Px-05	0.08	17.47	0.07	0.06	0.00	0.01
CBD-11-07-21-Px-06	0.00	33.08	0.92	0.00	0.00	0.01
CBD-11-07-21-Px-07	0.00	32.24	0.92	0.01	0.11	0.00
CBD-11-07-21-Px-08	0.04	33.45	0.95	0.00	0.07	0.02
CBD-11-07-21-Px-09	0.07	33.71	0.91	0.00	0.00	0.00
CBD-11-07-21-Px-10	0.04	33.35	0.87	0.05	0.12	0.00
CBD-11-07-21-Px-11	0.03	33.37	0.91	0.00	0.12	0.00
CBD-11-07-21-Px-12	0.07	16.06	0.03	0.00	0.08	0.06
CBD-11-07-21-Px-13	0.08	13.24	0.05	0.00	0.00	0.00
CBD-11-07-21-Px-14	0.01	15.37	0.02	0.00	0.00	0.05
CBD-11-07-21-Px-15	0.00	13.92	0.05	0.00	0.07	0.03
CBD-11-07-21-Px-16	0.03	15.53	0.00	0.00	0.00	0.00
CBD-11-07-21-Px-17	0.07	20.72	0.09	0.00	0.00	0.00
CBD-11-07-21-Px-18	0.00	19.09	0.04	0.00	0.00	0.00
CBD-11-07-21-Px-19	0.03	18.35	0.04	0.00	0.00	0.02
CBD-11-07-21-Px-20	0.04	20.42	0.04	0.00	0.00	0.00
CBD-11-07-21-Px-21	0.08	18.28	0.03	0.00	0.00	0.00
CBD-11-07-21-Px-22	0.07	19.32	0.06	0.00	0.02	0.00
CBD-11-07-21-Px-23	0.02	19.78	0.08	0.00	0.02	0.00
CBD-11-07-21-Px-24	0.02	2.02	2.28	0.15	0.00	0.07
CBD-11-07-21-Px-25	0.00	12.43	0.00	0.00	0.03	0.02
CBD-11-07-21-Px-26	0.00	13.53	0.08	0.05	0.01	0.00
CBD-11-07-21-Px-27	0.04	12.22	0.02	0.00	0.00	0.00
CB-01-30-Amph-01	0.00	31.84	0.88	0.00	0.06	0.00
CB-01-30-Amph-02	0.00	32.16	0.93	0.00	0.00	0.03
CB-01-30-Amph-03	0.03	31.99	1.00	0.00	0.00	0.00
CB-01-30-Amph-04	0.08	33.59	0.99	0.00	0.00	0.00
CB-01-30-Amph-05	0.04	33.07	0.88	0.00	0.03	0.00
CB-01-30-Px-01	0.00	10.94	0.06	0.00	0.00	0.02
CB-01-30-Px-02	0.03	9.94	0.04	0.09	0.00	0.00
CB-01-30-Px-03	0.00	11.20	0.04	0.00	0.00	0.08
CB-01-30-Px-04	0.00	13.41	0.03	0.00	0.00	0.05
CB-01-30-Px-05	0.01	22.79	0.02	0.00	0.05	0.00
CB-01-30-Px-06	0.08	19.88	0.17	0.00	0.00	0.02
CB-01-30-Px-07	0.06	23.80	0.06	0.00	0.00	0.00

Group 2 Results

Analysis #	ZrO2	FeO	MnO	Ce2O3	La2O3	Nd2O3
CB-01-30-Px-08	0.08	19.50	0.06	0.00	0.00	0.01
CB-01-30-Px-09	0.07	20.19	0.10	0.00	0.02	0.00
CB-01-30-Px-10	0.00	20.79	0.10	0.00	0.00	0.01
CD-01-30-Px-11	0.02	32.95	0.92	0.00	0.00	0.00
CB-01-30-Amph-06	0.07	32.06	1.01	0.00	0.00	0.00
CB-01-30-Amph-07	0.04	31.18	0.90	0.00	0.10	0.06
CB-01-30-Px-12	0.02	24.65	0.06	0.00	0.08	0.00
CB-01-30-Px-13	0.00	21.69	0.02	0.04	0.07	0.00
CB-01-30-Px-14	0.06	23.21	0.08	0.00	0.01	0.02
CBD-11-07-12-Amph-01	0.05	30.61	1.39	0.00	0.00	0.06
CBD-11-07-12-Amph-10	0.08	30.90	1.52	0.10	0.06	0.00
CBD-11-07-12-Amph-03	0.13	31.11	1.50	0.03	0.00	0.00
CBD-11-07-12-Px-01	0.11	15.18	0.07	0.03	0.00	0.00
CBD-11-07-12-Px-02	0.02	12.74	0.09	0.00	0.04	0.00
CBD-11-07-12-Px-03	0.10	13.43	0.09	0.01	0.00	0.00
CBD-11-07-12-Px-04	0.01	11.47	0.01	0.07	0.04	0.00
CBD-11-07-12-Px-05	0.05	14.35	0.05	0.00	0.10	0.00
CBD-11-07-12-Px-06	0.10	19.86	0.10	0.03	0.04	0.05
CBD-11-07-12-Px-07	0.16	18.13	0.08	0.11	0.00	0.03
CBD-11-07-12-Px-08	0.11	17.44	0.08	0.00	0.12	0.00
CBD-11-07-12-Px-09	0.05	18.49	0.07	0.00	0.00	0.04
CBD-11-07-01-Amph-01	0.11	32.58	1.50	0.02	0.15	0.00
CBD-11-07-01-Amph02	0.04	32.94	1.27	0.00	0.00	0.00
CBD-11-07-01-Amph-03	0.07	32.06	1.40	0.00	0.16	0.04
MRGC-Amph-01	0.03	31.40	2.36	0.05	0.05	0.03
MRGC-Amph-02	0.03	31.60	2.18	0.02	0.00	0.04
MRGC-Amph-03	0.00	32.22	2.22	0.00	0.05	0.00
MRGC-Px-01	0.02	11.53	0.09	0.00	0.00	0.00
MRGC-Px-02	0.00	12.37	0.05	0.00	0.08	0.03
MRGC-Px-03	0.00	9.71	0.05	0.00	0.00	0.03
MRGC-Px-04	0.00	15.01	0.05	0.00	0.01	0.00
MRGC-Px-05	0.03	12.96	0.07	0.00	0.00	0.03
MRGC-Px-06	0.05	13.80	0.07	0.00	0.00	0.04
MRGC-Px-07	0.03	20.18	0.05	0.00	0.00	0.00
MRGC-Amph-04	0.03	30.47	2.55	0.00	0.00	0.00
MRGC-Amph-05	0.10	31.55	2.16	0.00	0.00	0.00
MRGC-Amph-06	0.02	31.60	2.23	0.00	0.00	0.02
MRGC-Px-08	0.01	14.02	0.05	0.02	0.03	0.00
MRGC-Px-09	0.04	14.31	0.06	0.00	0.00	0.02
MRGC-Px-10	0.08	30.85	2.47	0.05	0.04	0.05
MRGC-Px-11	0.01	11.89	0.00	0.00	0.05	0.01
MRGC-Px-12	0.00	18.30	0.04	0.00	0.07	0.00
MRGC-Px-13	0.00	19.65	0.09	0.00	0.01	0.00
MRGC-Px-14	0.02	19.21	0.06	0.01	0.02	0.09
CBD-11-07-03-Amph-01	0.37	31.91	0.78	0.00	0.00	0.01

Group 2 Results

Analysis #	ZrO2	FeO	MnO	Ce2O3	La2O3	Nd2O3
CBD-11-07-03-Amph-02	0.32	31.74	0.86	0.00	0.12	0.02
CBD-11-07-03-Amph-03	0.27	32.66	0.84	0.00	0.00	0.01
CBD-11-07-03-Amph-04	0.51	31.97	0.87	0.00	0.02	0.07
CBD-11-07-03-Amph-05	0.49	19.75	0.66	0.00	0.00	0.00
CBD-11-07-03-Amph-06	0.35	18.96	0.63	0.00	0.01	0.05
CBD-11-07-03-Amph-07	0.23	19.53	0.51	0.08	0.00	0.00
CBD-11-07-03-Amph-08	0.23	19.89	0.51	0.00	0.00	0.00
CBD-11-07-03-Amph-09	0.47	19.23	0.53	0.00	0.05	0.03
CBD-11-07-03-Amph-10	0.01	38.24	0.65	0.00	0.01	0.00
CBD-11-07-03-Amph-11	0.00	37.79	0.61	0.00	0.00	0.00
CBD-11-07-03-Amph-12	0.02	37.78	0.62	0.00	0.06	0.01
CBD-11-07-03-Amph-13	0.66	19.78	0.59	0.00	0.02	0.00
CBD-11-07-03-Amph-14	0.46	31.35	0.86	0.00	0.00	0.03
CBD-11-07-03-Amph-15	0.49	31.22	0.87	0.00	0.03	0.00
CBD-11-07-03-Amph-16	0.48	31.34	0.87	0.00	0.02	0.05
CBD-11-07-03-Amph-17	0.03	39.80	1.25	0.00	0.00	0.00
CBD-11-07-03-Amph-18	0.16	39.58	1.33	0.00	0.00	0.00
CBD-11-07-03-Amph-19	0.00	40.62	1.37	0.00	0.04	0.00
CBD-11-07-03-Amph-20	0.26	20.04	0.47	0.00	0.06	0.00
CBD-11-07-03-Amph-21	0.34	19.45	0.49	0.00	0.05	0.00
CBD-11-07-03-Amph-22	0.32	19.98	0.52	0.00	0.07	0.00
CBD-11-07-03-Amph-23	0.63	19.55	0.54	0.04	0.05	0.02
CBD-11-07-03-Bt-01	0.00	37.17	0.56	0.00	0.07	0.05
CBD-11-07-03-Bt-02	0.01	36.08	0.63	0.00	0.02	0.00
CBD-11-07-03-Bt-03	0.02	37.67	0.65	0.00	0.00	0.01
CBD-11-07-03-Bt-04	0.00	36.16	0.61	0.00	0.00	0.00
CBD-11-07-15-Amph-01	0.00	32.28	1.77	0.00	0.00	0.00
CBD-11-07-15-Amph-02	0.01	32.57	1.87	0.00	0.04	0.00
CBD-11-07-15-Amph-03	0.05	31.94	1.71	0.00	0.00	0.00
CBD-11-07-15-Px-01	0.00	19.13	0.02	0.02	0.00	0.00
CBD-11-07-15-Px-02	0.02	19.88	0.08	0.00	0.01	0.00
CBD-11-07-15-Px-03	0.00	16.04	0.07	0.07	0.05	0.03
CBD-11-07-15-Px-04	0.03	18.17	0.09	0.00	0.00	0.00
CBD-11-07-15-Px-05	0.00	15.88	0.04	0.00	0.09	0.00
CBD-11-07-15-Px-06	0.01	15.96	0.02	0.00	0.00	0.01
CBD-11-07-15-Px-07	0.04	20.28	0.06	0.03	0.00	0.06
CBD-11-07-15-Px-08	0.01	18.90	0.03	0.00	0.02	0.00
CBD-11-07-15-Amph-04	0.10	32.01	1.96	0.00	0.00	0.00
CBD-11-07-15-Amph-05	0.01	31.22	1.74	0.07	0.04	0.00
CBD-11-07-15-Amph-06	0.00	32.60	1.93	0.00	0.01	0.00
CB-01-11-Px-01	0.12	14.70	0.03	0.05	0.02	0.02
CB-01-11-Px-02	0.06	15.69	0.02	0.02	0.00	0.02
CB-01-11-Px-03	0.00	15.57	0.01	0.00	0.00	0.03
CB-01-11-Px-04	0.11	19.54	0.04	0.01	0.02	0.01
CB-01-11-Px-05	0.10	1.63	2.01	0.05	0.00	0.05

Group 2 Results

Analysis #	ZrO2	FeO	MnO	Ce2O3	La2O3	Nd2O3
CB-01-11-Px-06	0.07	19.47	0.06	0.04	0.02	0.00
CB-01-11-Amph-01	0.09	33.18	0.79	0.00	0.00	0.00
CB-01-11-Amph-02	0.07	33.84	0.77	0.00	0.00	0.04
CB-01-11-Amph-03	0.09	33.11	0.79	0.02	0.00	0.02
CB-01-11-Pec-01	0.01	1.97	1.82	0.08	0.06	0.00
CB-01-11-Pec-02	0.04	2.00	1.94	0.03	0.06	0.00
CB-01-11-Pec-03	0.04	2.34	1.82	0.00	0.01	0.09
CB-01-11-Pec-04	0.17	2.13	1.97	0.05	0.00	0.01
CBD-11-07-17-Amph-01	0.00	18.65	0.79	0.00	0.00	0.00
CBD-11-07-17-Amph-02	0.00	31.82	1.45	0.00	0.00	0.00
CBD-11-07-17-Amph-03	0.04	32.27	1.44	0.02	0.00	0.01
CBD-11-07-15-Amph-01	0.01	31.77	1.19	0.06	0.02	0.00
CBD-11-07-15-Amph-02	0.05	31.07	1.09	0.06	0.12	0.00
CBD-11-07-15-Amph-03	0.02	31.45	1.12	0.00	0.00	0.00
CBD-11-07-15-Amph-04	0.02	31.37	1.12	0.00	0.01	0.00
CBD-11-07-15-Px-01	0.06	19.95	0.06	0.03	0.00	0.00
CBD-11-07-15-Px-02	0.03	19.14	0.04	0.00	0.00	0.01
CBD-11-07-15-Px-03	0.02	14.42	0.04	0.02	0.02	0.04
CBD-11-07-15-Px-04	0.07	14.48	0.02	0.00	0.00	0.00
CBD-11-07-15-Px-05	0.03	16.92	0.01	0.04	0.00	0.00
CBD-11-07-15-Px-06	0.00	0.04	0.00	0.03	0.00	0.04

Group 2 Results

Analysis #	Pr2O3	Sm2O3	Gd2O3	Cl	TiO2	SrO
CBD-11-07-21-Amph-01	0.00	0.00	0.00	0.00	0.33	0.00
CBD-11-07-21-Amph-02	0.00	0.00	0.00	0.01	0.33	0.00
CBD-11-07-21-Amph-03	0.08	0.02	0.00	0.01	0.34	0.00
CBD-11-07-21-Amph-04	0.00	0.02	0.03	0.00	0.34	0.00
CBD-11-07-21-Amph-04	0.04	0.00	0.03	0.00	0.27	0.00
CBD-11-07-21-Amph-06	0.04	0.08	0.02	0.00	0.29	0.00
CBD-11-07-21-Ampin-00	0.00	0.00	0.00	0.00	0.23	0.00
CBD-11-07-21-FX-01	0.00	0.00	0.00	0.00	0.33	0.00
CBD-11-07-21-Px-02	0.00	0.10	0.03	0.00	0.42	0.00
CBD-11-07-21-Fx-04	0.00	0.00	0.00	0.00	0.32	0.00
CBD-11-07-21-Px-04	0.00	0.00	0.00	0.01	0.32	0.00
CBD-11-07-21-Px-06	0.00	0.00	0.01	0.00	0.30	0.00
CBD-11-07-21-Px-07	0.10	0.00	0.00	0.00	0.22	0.00
CBD-11-07-21-Px-08	0.02	0.00	0.01	0.00	0.21	0.00
CBD-11-07-21-Px-09	0.00	0.02	0.00	0.00	0.23	0.00
CBD-11-07-21-Px-09 CBD-11-07-21-Px-10	0.09	0.07	0.00	0.00	0.24	0.00
CBD-11-07-21-Px-10 CBD-11-07-21-Px-11	0.00	0.00	0.04	0.00	0.23	0.00
CBD-11-07-21-Px-11	0.00	0.00	0.00		0.24	0.00
CBD-11-07-21-Px-12	0.00	0.00	0.00	0.00	0.34	0.00
CBD-11-07-21-Px-13	0.00	0.07	0.00	0.00		0.00
CBD-11-07-21-Px-14 CBD-11-07-21-Px-15	0.00	0.00	0.00	0.00	0.23 0.28	0.00
CBD-11-07-21-Px-15	0.00	0.00	0.00	0.00	0.20	0.00
CBD-11-07-21-Px-16 CBD-11-07-21-Px-17	0.02	0.00	0.02	0.00	0.20	0.00
CBD-11-07-21-Px-17 CBD-11-07-21-Px-18	0.12	0.03	0.00	0.00	0.47	0.00
CBD-11-07-21-Px-18	0.18	0.00	0.02	0.00	0.43	0.00
CBD-11-07-21-Px-19	0.00	0.03	0.00	0.00	0.27	0.00
CBD-11-07-21-Px-21	0.04	0.07	0.02	0.00	0.31	0.00
CBD-11-07-21-FX-21	0.00	0.00	0.04	0.00	0.27	0.00
CBD-11-07-21-Px-23	0.00	0.00	0.04	0.01	0.38	0.00
CBD-11-07-21-Fx-24	0.00	0.02	0.06	0.00	0.48	0.00
CBD-11-07-21-Fx-25	0.09	0.00	0.01	0.00	0.19	0.00
CBD-11-07-21-Px-26	0.00	0.02	0.00	0.00	0.13	0.00
CBD-11-07-21-Px-27	0.00	0.00	0.00	0.00	0.23	0.00
CB-01-30-Amph-01	0.00	0.00	0.00	0.00	0.86	0.00
CB-01-30-Amph-02	0.00	0.03	0.02	0.00	0.84	0.00
CB-01-30-Amph-03	0.00	0.00	0.02	0.00	0.84	0.00
CB-01-30-Amph-04	0.00	0.00	0.01	0.00	0.54	0.00
CB-01-30-Amph-05	0.00	0.03	0.00	0.00	0.70	0.00
CB-01-30-Px-01	0.01	0.00	0.00	0.01	0.41	0.00
CB-01-30-Px-02	0.01	0.00	0.00	0.00	0.36	0.00
CB-01-30-Px-03	0.00	0.00	0.03	0.00	0.72	0.00
CB-01-30-Px-04	0.03	0.00	0.02	0.01	0.60	0.00
CB-01-30-Px-05	0.00	0.00	0.03	0.00	0.77	0.00
CB-01-30-Px-06	0.07	0.01	0.02	0.01	1.90	0.00
CB-01-30-Px-07	0.01	0.01	0.00	0.00	1.01	0.00
CD-01-20-LY-01	0.01	0.04	0.00	0.00	1.01	0.00

Group 2 Results

Analysis #	Pr2O3	Sm2O3	Gd2O3	Cl	TiO2	SrO
CB-01-30-Px-08	0.00	0.07	0.00	0.00	1.34	0.00
CB-01-30-Px-09	0.00	0.00	0.00	0.00	1.21	0.00
CB-01-30-Px-10	0.00	0.00	0.08	0.00	0.59	0.00
CD-01-30-Px-11	0.12	0.00	0.00	0.00	0.59	0.00
CB-01-30-Amph-06	0.06	0.00	0.00	0.00	0.48	0.00
CB-01-30-Amph-07	0.00	0.00	0.03	0.00	0.80	0.00
CB-01-30-Px-12	0.03	0.00	0.00	0.01	0.74	0.00
CB-01-30-Px-13	0.07	0.00	0.00	0.01	0.59	0.00
CB-01-30-Px-14	0.10	0.01	0.00	0.00	1.01	0.00
CBD-11-07-12-Amph-01	0.02	0.01	0.00	0.00	0.17	0.00
CBD-11-07-12-Amph-10	0.00	0.00	0.00	0.00	0.21	0.00
CBD-11-07-12-Amph-03	0.00	0.00	0.03	0.00	0.20	0.00
CBD-11-07-12-Px-01	0.00	0.02	0.00	0.00	0.20	0.00
CBD-11-07-12-Px-02	0.13	0.00	0.00	0.00	0.07	0.00
CBD-11-07-12-Px-03	0.00	0.00	0.00	0.01	0.13	0.00
CBD-11-07-12-Px-04	0.01	0.01	0.00	0.00	0.01	0.00
CBD-11-07-12-Px-05	0.00	0.00	0.05	0.00	0.16	0.00
CBD-11-07-12-Px-06	0.00	0.00	0.00	0.01	0.27	0.00
CBD-11-07-12-Px-07	0.00	0.01	0.02	0.00	0.17	0.00
CBD-11-07-12-Px-08	0.00	0.01	0.02	0.00	0.16	0.00
CBD-11-07-12-Px-09	0.00	0.00	0.06	0.00	0.19	0.00
CBD-11-07-01-Amph-01	0.11	0.00	0.00	0.00	0.29	0.00
CBD-11-07-01-Amph02	0.00	0.00	0.03	0.00	0.35	0.00
CBD-11-07-01-Amph-03	0.00	0.01	0.00	0.00	0.40	0.00
MRGC-Amph-01	0.03	0.01	0.00	0.01	0.14	0.00
MRGC-Amph-02	0.01	0.00	0.03	0.00	0.16	0.00
MRGC-Amph-03	0.00	0.03	0.00	0.01	0.15	0.00
MRGC-Px-01	0.00	0.00	0.04	0.00	0.08	0.00
MRGC-Px-02	0.03	0.03	0.01	0.00	0.05	0.00
MRGC-Px-03	0.00	0.05	0.03	0.00	0.10	0.00
MRGC-Px-04	0.05	0.01	0.01	0.00	0.12	0.00
MRGC-Px-05	0.00	0.00	0.00	0.01	0.10	0.00
MRGC-Px-06	0.01	0.04	0.00	0.00	0.10	0.00
MRGC-Px-07	0.11	0.01	0.04	0.00	0.20	0.00
MRGC-Amph-04	0.13	0.00	0.00	0.01	0.15	0.00
MRGC-Amph-05	0.00	0.00	0.00	0.00	0.14	0.00
MRGC-Amph-06	0.02	0.03	0.03	0.01	0.17	0.00
MRGC-Px-08	0.00	0.00	0.00	0.00	0.07	0.00
MRGC-Px-09	0.00	0.00	0.00	0.00	0.10	0.00
MRGC-Px-10	0.00	0.01	0.00	0.00	0.17	0.00
MRGC-Px-11	0.00	0.00	0.00	0.01	0.04	0.00
MRGC-Px-12	0.05	0.00	0.00	0.00	0.14	0.00
MRGC-Px-13	0.04	0.00	0.00	0.00	0.25	0.00
MRGC-Px-14	0.03	0.00	0.00	0.00	0.28	0.00
CBD-11-07-03-Amph-01	0.00	0.00	0.00	0.01	0.77	0.00

Group 2 Results

Analysis #	Pr2O3	Sm2O3	Gd2O3	Cl	TiO2	SrO
CBD-11-07-03-Amph-02	0.02	0.00	0.01	0.00	0.68	0.01
CBD-11-07-03-Amph-03	0.07	0.00	0.01	0.01	0.63	0.00
CBD-11-07-03-Amph-04	0.00	0.00	0.01	0.01	1.16	0.00
CBD-11-07-03-Amph-05	0.00	0.00	0.03	0.00	0.90	0.00
CBD-11-07-03-Amph-06	0.00	0.00	0.00	0.00	0.68	0.00
CBD-11-07-03-Amph-07	0.04	0.03	0.00	0.01	0.48	0.00
CBD-11-07-03-Amph-08	0.04	0.00	0.05	0.00	0.55	0.00
CBD-11-07-03-Amph-09	0.11	0.00	0.00	0.00	0.81	0.00
CBD-11-07-03-Amph-10	0.00	0.03	0.00	0.02	1.64	0.00
CBD-11-07-03-Amph-11	0.11	0.00	0.00	0.03	1.60	0.00
CBD-11-07-03-Amph-12	0.00	0.01	0.00	0.03	1.64	0.00
CBD-11-07-03-Amph-13	0.00	0.00	0.08	0.00	0.92	0.00
CBD-11-07-03-Amph-14	0.04	0.02	0.04	0.01	1.29	0.00
CBD-11-07-03-Amph-15	0.00	0.02	0.00	0.01	1.17	0.00
CBD-11-07-03-Amph-16	0.00	0.04	0.01	0.01	1.33	0.00
CBD-11-07-03-Amph-17	0.00	0.06	0.00	0.01	8.46	0.00
CBD-11-07-03-Amph-18	0.02	0.01	0.04	0.01	8.91	0.00
CBD-11-07-03-Amph-19	0.00	0.00	0.01	0.00	9.50	0.00
CBD-11-07-03-Amph-20	0.00	0.02	0.00	0.00	0.74	0.00
CBD-11-07-03-Amph-21	0.01	0.02	0.00	0.00	0.92	0.00
CBD-11-07-03-Amph-22	0.00	0.04	0.00	0.00	0.93	0.00
CBD-11-07-03-Amph-23	0.01	0.01	0.01	0.00	0.76	0.00
CBD-11-07-03-Bt-01	0.00	0.02	0.00	0.01	1.32	0.00
CBD-11-07-03-Bt-02	0.08	0.05	0.01	0.02	1.33	0.00
CBD-11-07-03-Bt-03	0.00	0.00	0.00	0.02	1.30	0.00
CBD-11-07-03-Bt-04	0.01	0.01	0.00	0.01	1.32	0.00
CBD-11-07-15-Amph-01	0.00	0.00	0.11	0.00	0.19	0.00
CBD-11-07-15-Amph-02	0.11	0.00	0.00	0.01	0.20	0.00
CBD-11-07-15-Amph-03	0.12	0.00	0.00	0.00	0.22	0.00
CBD-11-07-15-Px-01	0.00	0.00	0.00	0.00	0.23	0.00
CBD-11-07-15-Px-02	0.02	0.02	0.01	0.00	0.27	0.00
CBD-11-07-15-Px-03	0.00	0.00	0.06	0.01	0.18	0.00
CBD-11-07-15-Px-04	0.00	0.00	0.00	0.00	0.15	0.00
CBD-11-07-15-Px-05	0.00	0.00	0.00	0.00	0.20	0.00
CBD-11-07-15-Px-06	0.00	0.00	0.01	0.00	0.25	0.00
CBD-11-07-15-Px-07	0.00	0.04	0.00	0.00	0.21	0.00
CBD-11-07-15-Px-08	0.00	0.00	0.01	0.00	0.22	0.00
CBD-11-07-15-Amph-04	0.00	0.00	0.03	0.00	0.15	0.00
CBD-11-07-15-Amph-05	0.00	0.04	0.00	0.00	0.17	0.00
CBD-11-07-15-Amph-06	0.01	0.00	0.00	0.00	0.17	0.00
CB-01-11-Px-01	0.03	0.02	0.01	0.00	0.17	0.00
CB-01-11-Px-02	0.00	0.00	0.00	0.00	0.04	0.00
CB-01-11-Px-03	0.03	0.04	0.04	0.00	0.01	0.00
CB-01-11-Px-04	0.08	0.00	0.00	0.00	0.26	0.00
CB-01-11-Px-05	0.03	0.09	0.00	0.00	0.00	0.00

Group 2 Results

Analysis #	Pr2O3	Sm2O3	Gd2O3	Cl	TiO2	SrO
CB-01-11-Px-06	0.00	0.02	0.00	0.00	0.20	0.00
CB-01-11-Amph-01	0.00	0.00	0.00	0.00	0.18	0.00
CB-01-11-Amph-02	0.00	0.00	0.01	0.00	0.19	0.00
CB-01-11-Amph-03	0.00	0.03	0.03	0.00	0.18	0.00
CB-01-11-Pec-01	0.06	0.00	0.08	0.00	0.00	0.00
CB-01-11-Pec-02	0.10	0.00	0.00	0.00	0.01	0.00
CB-01-11-Pec-03	0.00	0.00	0.04	0.00	0.00	0.00
CB-01-11-Pec-04	0.04	0.00	0.00	0.00	0.00	0.00
CBD-11-07-17-Amph-01	0.00	0.00	0.00	0.00	0.23	0.00
CBD-11-07-17-Amph-02	0.00	0.01	0.02	0.00	0.42	0.00
CBD-11-07-17-Amph-03	0.00	0.00	0.00	0.01	0.43	0.00
CBD-11-07-15-Amph-01	0.03	0.00	0.05	0.00	0.22	0.00
CBD-11-07-15-Amph-02	0.05	0.00	0.00	0.05	0.18	0.00
CBD-11-07-15-Amph-03	0.08	0.00	0.02	0.00	0.23	0.00
CBD-11-07-15-Amph-04	0.00	0.04	0.05	0.00	0.21	0.00
CBD-11-07-15-Px-01	0.06	0.00	0.02	0.00	0.38	0.00
CBD-11-07-15-Px-02	0.00	0.00	0.00	0.01	0.23	0.00
CBD-11-07-15-Px-03	0.00	0.00	0.03	0.00	0.17	0.00
CBD-11-07-15-Px-04	0.13	0.00	0.00	0.00	0.16	0.00
CBD-11-07-15-Px-05	0.02	0.03	0.01	0.00	0.16	0.00
CBD-11-07-15-Px-06	0.03	0.00	0.00	0.00	0.00	0.00

Group 2 Results

CBD-11-07-21-Amph-01 7.08 0.66 49.88 0.14 9 CBD-11-07-21-Amph-02 6.89 0.61 50.02 0.05 9 CBD-11-07-21-Amph-03 6.93 0.71 50.06 0.10 9 CBD-11-07-21-Amph-04 6.83 0.67 49.86 0.16 9 CBD-11-07-21-Amph-05 6.87 0.65 49.78 0.00 9 CBD-11-07-21-Px-01 13.67 0.07 57.19 0.00 10 CBD-11-07-21-Px-02 13.37 0.05 56.35 0.00 9 CBD-11-07-21-Px-03 13.32 0.04 56.81 0.00 9 CBD-11-07-21-Px-04 13.13 0.07 56.06 0.00 9 CBD-11-07-21-Px-05 12.74 0.08 55.58 0.00 9 CBD-11-07-21-Px-06 6.85 0.63 49.89 0.00 9 CBD-11-07-21-Px-08 6.86 0.57 50.23 0.04 9 CBD-11-07-21-Px-09 6.82	8.69 8.89 9.15 9.44 8.95 5.59 00.32 9.35 9.91
CBD-11-07-21-Amph-02 6.89 0.61 50.02 0.05 9 CBD-11-07-21-Amph-03 6.93 0.71 50.06 0.10 9 CBD-11-07-21-Amph-04 6.83 0.67 49.86 0.16 9 CBD-11-07-21-Amph-05 6.87 0.65 49.78 0.00 9 CBD-11-07-21-Px-01 13.67 0.07 57.19 0.00 10 CBD-11-07-21-Px-02 13.37 0.05 56.35 0.00 9 CBD-11-07-21-Px-03 13.32 0.04 56.81 0.00 9 CBD-11-07-21-Px-04 13.13 0.07 55.58 0.00 9 CBD-11-07-21-Px-05 12.74 0.08 55.58 0.00 9 CBD-11-07-21-Px-06 6.85 0.63 49.89 0.00 9 CBD-11-07-21-Px-06 6.85 0.63 49.89 0.00 9 CBD-11-07-21-Px-09 6.82 0.61 49.94 0.06 9 CBD-11-07-21-Px-10 6.80	8.89 9.15 9.44 8.95 5.59 00.32 9.35 9.91 9.12
CBD-11-07-21-Amph-03 6.93 0.71 50.06 0.10 9 CBD-11-07-21-Amph-04 6.83 0.67 49.86 0.16 9 CBD-11-07-21-Amph-05 6.87 0.65 49.78 0.00 9 CBD-11-07-21-Px-01 13.67 0.07 57.19 0.00 10 CBD-11-07-21-Px-02 13.37 0.05 56.35 0.00 9 CBD-11-07-21-Px-03 13.32 0.04 56.81 0.00 9 CBD-11-07-21-Px-04 13.13 0.07 56.06 0.00 9 CBD-11-07-21-Px-05 12.74 0.08 55.58 0.00 9 CBD-11-07-21-Px-06 6.85 0.63 49.89 0.00 9 CBD-11-07-21-Px-07 6.72 0.67 50.44 0.01 9 CBD-11-07-21-Px-08 6.86 0.57 50.23 0.04 9 CBD-11-07-21-Px-10 6.80 0.61 50.10 0.00 9 CBD-11-07-21-Px-11 6.95 <	9.15 9.44 8.95 5.59 00.32 9.35 9.91 9.12
CBD-11-07-21-Amph-04 6.83 0.67 49.86 0.16 9 CBD-11-07-21-Amph-05 6.87 0.65 49.78 0.00 9 CBD-11-07-21-Amph-06 6.30 0.65 46.95 0.05 9 CBD-11-07-21-Px-01 13.67 0.07 57.19 0.00 10 CBD-11-07-21-Px-02 13.37 0.05 56.35 0.00 9 CBD-11-07-21-Px-03 13.32 0.04 56.81 0.00 9 CBD-11-07-21-Px-04 13.13 0.07 56.06 0.00 9 CBD-11-07-21-Px-05 12.74 0.08 55.58 0.00 9 CBD-11-07-21-Px-06 6.85 0.63 49.89 0.00 9 CBD-11-07-21-Px-07 6.72 0.67 50.44 0.01 9 CBD-11-07-21-Px-08 6.86 0.57 50.23 0.04 9 CBD-11-07-21-Px-09 6.82 0.61 49.94 0.06 9 CBD-11-07-21-Px-11 6.95 <	9.44 8.95 5.59 00.32 9.35 9.91
CBD-11-07-21-Amph-05 6.87 0.65 49.78 0.00 9 CBD-11-07-21-Amph-06 6.30 0.65 46.95 0.05 9 CBD-11-07-21-Px-01 13.67 0.07 57.19 0.00 10 CBD-11-07-21-Px-02 13.37 0.05 56.35 0.00 9 CBD-11-07-21-Px-03 13.32 0.04 56.81 0.00 9 CBD-11-07-21-Px-04 13.13 0.07 56.06 0.00 9 CBD-11-07-21-Px-05 12.74 0.08 55.58 0.00 9 CBD-11-07-21-Px-06 6.85 0.63 49.89 0.00 9 CBD-11-07-21-Px-07 6.72 0.67 50.44 0.01 9 CBD-11-07-21-Px-08 6.86 0.57 50.23 0.04 9 CBD-11-07-21-Px-09 6.82 0.61 49.94 0.06 9 CBD-11-07-21-Px-11 6.95 0.62 50.56 0.02 9 CBD-11-07-21-Px-13 12.92 <t< td=""><td>8.95 5.59 00.32 9.35 9.91 9.12</td></t<>	8.95 5.59 00.32 9.35 9.91 9.12
CBD-11-07-21-Amph-06 6.30 0.65 46.95 0.05 9 CBD-11-07-21-Px-01 13.67 0.07 57.19 0.00 10 CBD-11-07-21-Px-02 13.37 0.05 56.35 0.00 9 CBD-11-07-21-Px-03 13.32 0.04 56.81 0.00 9 CBD-11-07-21-Px-04 13.13 0.07 56.06 0.00 9 CBD-11-07-21-Px-05 12.74 0.08 55.58 0.00 9 CBD-11-07-21-Px-06 6.85 0.63 49.89 0.00 9 CBD-11-07-21-Px-07 6.72 0.67 50.44 0.01 9 CBD-11-07-21-Px-08 6.86 0.57 50.23 0.04 9 CBD-11-07-21-Px-09 6.82 0.61 49.94 0.06 9 CBD-11-07-21-Px-10 6.80 0.61 50.10 0.00 9 CBD-11-07-21-Px-11 6.95 0.62 50.56 0.02 9 CBD-11-07-21-Px-13 12.92	5.59 00.32 9.35 9.91 9.12
CBD-11-07-21-Px-01 13.67 0.07 57.19 0.00 10 CBD-11-07-21-Px-02 13.37 0.05 56.35 0.00 9 CBD-11-07-21-Px-03 13.32 0.04 56.81 0.00 9 CBD-11-07-21-Px-04 13.13 0.07 56.06 0.00 9 CBD-11-07-21-Px-05 12.74 0.08 55.58 0.00 9 CBD-11-07-21-Px-06 6.85 0.63 49.89 0.00 9 CBD-11-07-21-Px-07 6.72 0.67 50.44 0.01 9 CBD-11-07-21-Px-08 6.86 0.57 50.23 0.04 9 CBD-11-07-21-Px-09 6.82 0.61 49.94 0.06 9 CBD-11-07-21-Px-10 6.80 0.61 50.10 0.00 9 CBD-11-07-21-Px-11 6.95 0.62 50.56 0.02 9 CBD-11-07-21-Px-12 13.10 0.01 56.06 0.00 9 CBD-11-07-21-Px-13 12.92 0	9.35 9.91 9.12
CBD-11-07-21-Px-02 13.37 0.05 56.35 0.00 9 CBD-11-07-21-Px-03 13.32 0.04 56.81 0.00 9 CBD-11-07-21-Px-04 13.13 0.07 56.06 0.00 9 CBD-11-07-21-Px-05 12.74 0.08 55.58 0.00 9 CBD-11-07-21-Px-06 6.85 0.63 49.89 0.00 9 CBD-11-07-21-Px-07 6.72 0.67 50.44 0.01 9 CBD-11-07-21-Px-08 6.86 0.57 50.23 0.04 9 CBD-11-07-21-Px-09 6.82 0.61 49.94 0.06 9 CBD-11-07-21-Px-10 6.80 0.61 50.10 0.00 9 CBD-11-07-21-Px-11 6.95 0.62 50.56 0.02 9 CBD-11-07-21-Px-12 13.10 0.01 56.06 0.00 9 CBD-11-07-21-Px-13 12.92 0.03 57.02 0.00 9 CBD-11-07-21-Px-15 12.96 0.	9.35 9.91 9.12
CBD-11-07-21-Px-03 13.32 0.04 56.81 0.00 9 CBD-11-07-21-Px-05 12.74 0.08 55.58 0.00 9 CBD-11-07-21-Px-06 6.85 0.63 49.89 0.00 9 CBD-11-07-21-Px-07 6.72 0.67 50.44 0.01 9 CBD-11-07-21-Px-08 6.86 0.57 50.23 0.04 9 CBD-11-07-21-Px-09 6.82 0.61 49.94 0.06 9 CBD-11-07-21-Px-10 6.80 0.61 50.10 0.00 9 CBD-11-07-21-Px-11 6.95 0.62 50.56 0.02 9 CBD-11-07-21-Px-12 13.10 0.01 56.06 0.00 9 CBD-11-07-21-Px-13 12.92 0.03 57.02 0.00 9 CBD-11-07-21-Px-14 13.22 0.04 56.40 0.00 9 CBD-11-07-21-Px-15 12.96 0.03 56.39 0.00 9 CBD-11-07-21-Px-18 12.76 0.	9.91 9.12
CBD-11-07-21-Px-05 12.74 0.08 55.58 0.00 9 CBD-11-07-21-Px-06 6.85 0.63 49.89 0.00 9 CBD-11-07-21-Px-07 6.72 0.67 50.44 0.01 9 CBD-11-07-21-Px-08 6.86 0.57 50.23 0.04 9 CBD-11-07-21-Px-09 6.82 0.61 49.94 0.06 9 CBD-11-07-21-Px-10 6.80 0.61 50.10 0.00 9 CBD-11-07-21-Px-11 6.95 0.62 50.56 0.02 9 CBD-11-07-21-Px-12 13.10 0.01 56.06 0.00 9 CBD-11-07-21-Px-13 12.92 0.03 57.02 0.00 9 CBD-11-07-21-Px-14 13.22 0.04 56.40 0.00 9 CBD-11-07-21-Px-15 12.96 0.03 56.39 0.00 9 CBD-11-07-21-Px-16 13.16 0.03 56.79 0.00 9 CBD-11-07-21-Px-19 13.22 0.	9.12
CBD-11-07-21-Px-05 12.74 0.08 55.58 0.00 9 CBD-11-07-21-Px-06 6.85 0.63 49.89 0.00 9 CBD-11-07-21-Px-07 6.72 0.67 50.44 0.01 9 CBD-11-07-21-Px-08 6.86 0.57 50.23 0.04 9 CBD-11-07-21-Px-09 6.82 0.61 49.94 0.06 9 CBD-11-07-21-Px-10 6.80 0.61 50.10 0.00 9 CBD-11-07-21-Px-11 6.95 0.62 50.56 0.02 9 CBD-11-07-21-Px-12 13.10 0.01 56.06 0.00 9 CBD-11-07-21-Px-13 12.92 0.03 57.02 0.00 9 CBD-11-07-21-Px-14 13.22 0.04 56.40 0.00 9 CBD-11-07-21-Px-15 12.96 0.03 56.39 0.00 9 CBD-11-07-21-Px-16 13.16 0.03 56.79 0.00 9 CBD-11-07-21-Px-18 12.76 0.	
CBD-11-07-21-Px-06 6.85 0.63 49.89 0.00 9 CBD-11-07-21-Px-07 6.72 0.67 50.44 0.01 9 CBD-11-07-21-Px-08 6.86 0.57 50.23 0.04 9 CBD-11-07-21-Px-09 6.82 0.61 49.94 0.06 9 CBD-11-07-21-Px-10 6.80 0.61 50.10 0.00 9 CBD-11-07-21-Px-11 6.95 0.62 50.56 0.02 9 CBD-11-07-21-Px-12 13.10 0.01 56.06 0.00 9 CBD-11-07-21-Px-13 12.92 0.03 57.02 0.00 9 CBD-11-07-21-Px-14 13.22 0.04 56.40 0.00 9 CBD-11-07-21-Px-15 12.96 0.03 56.39 0.00 9 CBD-11-07-21-Px-16 13.16 0.03 56.79 0.00 9 CBD-11-07-21-Px-18 12.76 0.07 55.30 0.01 9 CBD-11-07-21-Px-20 12.33 0.	
CBD-11-07-21-Px-07 6.72 0.67 50.44 0.01 9 CBD-11-07-21-Px-08 6.86 0.57 50.23 0.04 9 CBD-11-07-21-Px-09 6.82 0.61 49.94 0.06 9 CBD-11-07-21-Px-10 6.80 0.61 50.10 0.00 9 CBD-11-07-21-Px-11 6.95 0.62 50.56 0.02 9 CBD-11-07-21-Px-12 13.10 0.01 56.06 0.00 9 CBD-11-07-21-Px-13 12.92 0.03 57.02 0.00 9 CBD-11-07-21-Px-14 13.22 0.04 56.40 0.00 9 CBD-11-07-21-Px-15 12.96 0.03 56.39 0.00 9 CBD-11-07-21-Px-16 13.16 0.03 56.79 0.00 9 CBD-11-07-21-Px-17 12.39 0.09 54.86 0.00 9 CBD-11-07-21-Px-18 12.76 0.07 55.30 0.01 9 CBD-11-07-21-Px-20 12.33 0	9.06
CBD-11-07-21-Px-08 6.86 0.57 50.23 0.04 9 CBD-11-07-21-Px-09 6.82 0.61 49.94 0.06 9 CBD-11-07-21-Px-10 6.80 0.61 50.10 0.00 9 CBD-11-07-21-Px-11 6.95 0.62 50.56 0.02 9 CBD-11-07-21-Px-12 13.10 0.01 56.06 0.00 9 CBD-11-07-21-Px-13 12.92 0.03 57.02 0.00 9 CBD-11-07-21-Px-14 13.22 0.04 56.40 0.00 9 CBD-11-07-21-Px-15 12.96 0.03 56.39 0.00 9 CBD-11-07-21-Px-16 13.16 0.03 56.79 0.00 9 CBD-11-07-21-Px-17 12.39 0.09 54.86 0.00 9 CBD-11-07-21-Px-19 13.22 0.04 56.04 0.00 9 CBD-11-07-21-Px-20 12.33 0.06 54.04 0.00 9 CBD-11-07-21-Px-21 12.64	8.59
CBD-11-07-21-Px-09 6.82 0.61 49.94 0.06 9 CBD-11-07-21-Px-10 6.80 0.61 50.10 0.00 9 CBD-11-07-21-Px-11 6.95 0.62 50.56 0.02 9 CBD-11-07-21-Px-12 13.10 0.01 56.06 0.00 9 CBD-11-07-21-Px-13 12.92 0.03 57.02 0.00 9 CBD-11-07-21-Px-14 13.22 0.04 56.40 0.00 9 CBD-11-07-21-Px-15 12.96 0.03 56.39 0.00 9 CBD-11-07-21-Px-16 13.16 0.03 56.79 0.00 9 CBD-11-07-21-Px-17 12.39 0.09 54.86 0.00 9 CBD-11-07-21-Px-18 12.76 0.07 55.30 0.01 9 CBD-11-07-21-Px-19 13.22 0.04 56.04 0.00 9 CBD-11-07-21-Px-20 12.33 0.06 54.04 0.00 9 CBD-11-07-21-Px-21 12.64 <td< td=""><td>9.06</td></td<>	9.06
CBD-11-07-21-Px-10 6.80 0.61 50.10 0.00 9 CBD-11-07-21-Px-11 6.95 0.62 50.56 0.02 9 CBD-11-07-21-Px-12 13.10 0.01 56.06 0.00 9 CBD-11-07-21-Px-13 12.92 0.03 57.02 0.00 9 CBD-11-07-21-Px-14 13.22 0.04 56.40 0.00 9 CBD-11-07-21-Px-15 12.96 0.03 56.39 0.00 9 CBD-11-07-21-Px-16 13.16 0.03 56.79 0.00 9 CBD-11-07-21-Px-17 12.39 0.09 54.86 0.00 9 CBD-11-07-21-Px-18 12.76 0.07 55.30 0.01 9 CBD-11-07-21-Px-19 13.22 0.04 56.04 0.00 9 CBD-11-07-21-Px-20 12.33 0.06 54.04 0.00 9 CBD-11-07-21-Px-21 12.64 0.06 54.93 0.00 9 CBD-11-07-21-Px-23 12.68 <t< td=""><td>9.48</td></t<>	9.48
CBD-11-07-21-Px-11 6.95 0.62 50.56 0.02 9 CBD-11-07-21-Px-12 13.10 0.01 56.06 0.00 9 CBD-11-07-21-Px-13 12.92 0.03 57.02 0.00 9 CBD-11-07-21-Px-14 13.22 0.04 56.40 0.00 9 CBD-11-07-21-Px-15 12.96 0.03 56.39 0.00 9 CBD-11-07-21-Px-16 13.16 0.03 56.79 0.00 9 CBD-11-07-21-Px-17 12.39 0.09 54.86 0.00 9 CBD-11-07-21-Px-18 12.76 0.07 55.30 0.01 9 CBD-11-07-21-Px-19 13.22 0.04 56.04 0.00 9 CBD-11-07-21-Px-20 12.33 0.06 54.04 0.00 9 CBD-11-07-21-Px-21 12.64 0.06 54.93 0.00 9 CBD-11-07-21-Px-22 12.53 0.05 54.48 0.00 9 CBD-11-07-21-Px-23 12.68 <	9.40
CBD-11-07-21-Px-12 13.10 0.01 56.06 0.00 9 CBD-11-07-21-Px-13 12.92 0.03 57.02 0.00 9 CBD-11-07-21-Px-14 13.22 0.04 56.40 0.00 9 CBD-11-07-21-Px-15 12.96 0.03 56.39 0.00 9 CBD-11-07-21-Px-16 13.16 0.03 56.79 0.00 9 CBD-11-07-21-Px-17 12.39 0.09 54.86 0.00 9 CBD-11-07-21-Px-18 12.76 0.07 55.30 0.01 9 CBD-11-07-21-Px-19 13.22 0.04 56.04 0.00 9 CBD-11-07-21-Px-20 12.33 0.06 54.04 0.00 9 CBD-11-07-21-Px-21 12.64 0.06 54.93 0.00 9 CBD-11-07-21-Px-22 12.53 0.05 54.48 0.00 9 CBD-11-07-21-Px-23 12.68 0.05 54.47 0.00 9 CBD-11-07-21-Px-25 13.03	8.89
CBD-11-07-21-Px-13 12.92 0.03 57.02 0.00 9 CBD-11-07-21-Px-14 13.22 0.04 56.40 0.00 9 CBD-11-07-21-Px-15 12.96 0.03 56.39 0.00 9 CBD-11-07-21-Px-16 13.16 0.03 56.79 0.00 9 CBD-11-07-21-Px-17 12.39 0.09 54.86 0.00 9 CBD-11-07-21-Px-18 12.76 0.07 55.30 0.01 9 CBD-11-07-21-Px-19 13.22 0.04 56.04 0.00 9 CBD-11-07-21-Px-20 12.33 0.06 54.04 0.00 9 CBD-11-07-21-Px-21 12.64 0.06 54.93 0.00 9 CBD-11-07-21-Px-22 12.53 0.05 54.48 0.00 9 CBD-11-07-21-Px-23 12.68 0.05 54.47 0.00 9 CBD-11-07-21-Px-24 8.39 0.00 53.20 0.00 9 CBD-11-07-21-Px-25 13.03 <	9.73
CBD-11-07-21-Px-14 13.22 0.04 56.40 0.00 9 CBD-11-07-21-Px-15 12.96 0.03 56.39 0.00 9 CBD-11-07-21-Px-16 13.16 0.03 56.79 0.00 9 CBD-11-07-21-Px-17 12.39 0.09 54.86 0.00 9 CBD-11-07-21-Px-18 12.76 0.07 55.30 0.01 9 CBD-11-07-21-Px-19 13.22 0.04 56.04 0.00 9 CBD-11-07-21-Px-20 12.33 0.06 54.04 0.00 9 CBD-11-07-21-Px-21 12.64 0.06 54.93 0.00 9 CBD-11-07-21-Px-22 12.53 0.05 54.48 0.00 9 CBD-11-07-21-Px-23 12.68 0.05 54.47 0.00 9 CBD-11-07-21-Px-24 8.39 0.00 53.20 0.00 9 CBD-11-07-21-Px-25 13.03 0.00 56.22 0.00 9	8.62
CBD-11-07-21-Px-15 12.96 0.03 56.39 0.00 9 CBD-11-07-21-Px-16 13.16 0.03 56.79 0.00 9 CBD-11-07-21-Px-17 12.39 0.09 54.86 0.00 9 CBD-11-07-21-Px-18 12.76 0.07 55.30 0.01 9 CBD-11-07-21-Px-19 13.22 0.04 56.04 0.00 9 CBD-11-07-21-Px-20 12.33 0.06 54.04 0.00 9 CBD-11-07-21-Px-21 12.64 0.06 54.93 0.00 9 CBD-11-07-21-Px-22 12.53 0.05 54.48 0.00 9 CBD-11-07-21-Px-23 12.68 0.05 54.47 0.00 9 CBD-11-07-21-Px-24 8.39 0.00 53.20 0.00 9 CBD-11-07-21-Px-25 13.03 0.00 56.22 0.00 9	9.26
CBD-11-07-21-Px-16 13.16 0.03 56.79 0.00 9 CBD-11-07-21-Px-17 12.39 0.09 54.86 0.00 9 CBD-11-07-21-Px-18 12.76 0.07 55.30 0.01 9 CBD-11-07-21-Px-19 13.22 0.04 56.04 0.00 9 CBD-11-07-21-Px-20 12.33 0.06 54.04 0.00 9 CBD-11-07-21-Px-21 12.64 0.06 54.93 0.00 9 CBD-11-07-21-Px-22 12.53 0.05 54.48 0.00 9 CBD-11-07-21-Px-23 12.68 0.05 54.47 0.00 9 CBD-11-07-21-Px-24 8.39 0.00 53.20 0.00 9 CBD-11-07-21-Px-25 13.03 0.00 56.22 0.00 9	8.66
CBD-11-07-21-Px-17 12.39 0.09 54.86 0.00 9 CBD-11-07-21-Px-18 12.76 0.07 55.30 0.01 9 CBD-11-07-21-Px-19 13.22 0.04 56.04 0.00 9 CBD-11-07-21-Px-20 12.33 0.06 54.04 0.00 9 CBD-11-07-21-Px-21 12.64 0.06 54.93 0.00 9 CBD-11-07-21-Px-22 12.53 0.05 54.48 0.00 9 CBD-11-07-21-Px-23 12.68 0.05 54.47 0.00 9 CBD-11-07-21-Px-24 8.39 0.00 53.20 0.00 9 CBD-11-07-21-Px-25 13.03 0.00 56.22 0.00 9	8.32
CBD-11-07-21-Px-18 12.76 0.07 55.30 0.01 9 CBD-11-07-21-Px-19 13.22 0.04 56.04 0.00 9 CBD-11-07-21-Px-20 12.33 0.06 54.04 0.00 9 CBD-11-07-21-Px-21 12.64 0.06 54.93 0.00 9 CBD-11-07-21-Px-22 12.53 0.05 54.48 0.00 9 CBD-11-07-21-Px-23 12.68 0.05 54.47 0.00 9 CBD-11-07-21-Px-24 8.39 0.00 53.20 0.00 9 CBD-11-07-21-Px-25 13.03 0.00 56.22 0.00 9	8.83
CBD-11-07-21-Px-19 13.22 0.04 56.04 0.00 9 CBD-11-07-21-Px-20 12.33 0.06 54.04 0.00 9 CBD-11-07-21-Px-21 12.64 0.06 54.93 0.00 9 CBD-11-07-21-Px-22 12.53 0.05 54.48 0.00 9 CBD-11-07-21-Px-23 12.68 0.05 54.47 0.00 9 CBD-11-07-21-Px-24 8.39 0.00 53.20 0.00 9 CBD-11-07-21-Px-25 13.03 0.00 56.22 0.00 9	8.48
CBD-11-07-21-Px-20 12.33 0.06 54.04 0.00 9 CBD-11-07-21-Px-21 12.64 0.06 54.93 0.00 9 CBD-11-07-21-Px-22 12.53 0.05 54.48 0.00 9 CBD-11-07-21-Px-23 12.68 0.05 54.47 0.00 9 CBD-11-07-21-Px-24 8.39 0.00 53.20 0.00 9 CBD-11-07-21-Px-25 13.03 0.00 56.22 0.00 9	8.96
CBD-11-07-21-Px-21 12.64 0.06 54.93 0.00 9 CBD-11-07-21-Px-22 12.53 0.05 54.48 0.00 9 CBD-11-07-21-Px-23 12.68 0.05 54.47 0.00 9 CBD-11-07-21-Px-24 8.39 0.00 53.20 0.00 9 CBD-11-07-21-Px-25 13.03 0.00 56.22 0.00 9	9.23
CBD-11-07-21-Px-22 12.53 0.05 54.48 0.00 9 CBD-11-07-21-Px-23 12.68 0.05 54.47 0.00 9 CBD-11-07-21-Px-24 8.39 0.00 53.20 0.00 9 CBD-11-07-21-Px-25 13.03 0.00 56.22 0.00 9	7.46
CBD-11-07-21-Px-23 12.68 0.05 54.47 0.00 9 CBD-11-07-21-Px-24 8.39 0.00 53.20 0.00 9 CBD-11-07-21-Px-25 13.03 0.00 56.22 0.00 9	7.79
CBD-11-07-21-Px-24 8.39 0.00 53.20 0.00 9 CBD-11-07-21-Px-25 13.03 0.00 56.22 0.00 9	7.59
CBD-11-07-21-Px-25 13.03 0.00 56.22 0.00 9	7.87
	5.34
	8.00
	8.09
CBD-11-07-21-Px-27 13.05 0.01 56.67 0.00 9	8.22
	8.57
CB-01-30-Amph-02 7.10 0.27 50.33 0.08 9	9.12
·	8.90
·	8.22
	8.73
	7.74
	7.14
	6.93
	6.87
	9.49
<u> </u>	
CB-01-30-Px-07 12.80 0.03 54.23 0.00 9	9.43

Group 2 Results

Group 2 Results					
Analysis #	Na2O	MgO	SiO2	ZnO	Total
CB-01-30-Px-08	12.65	0.04	55.48	0.00	99.23
CB-01-30-Px-09	12.81	0.04	54.94	0.00	98.68
CB-01-30-Px-10	13.01	0.02	54.85	0.00	98.53
CD-01-30-Px-11	6.99	0.33	50.12	0.01	98.96
CB-01-30-Amph-06	7.04	0.41	50.80	0.11	98.93
CB-01-30-Amph-07	6.84	0.27	50.18	0.08	97.93
CB-01-30-Px-12	13.05	0.02	54.15	0.00	98.05
CB-01-30-Px-13	13.32	0.01	55.04	0.00	98.80
CB-01-30-Px-14	12.85	0.03	53.87	0.00	97.45
CBD-11-07-12-Amph-01	7.82	1.34	52.49	0.07	100.97
CBD-11-07-12-Amph-10	6.84	1.18	50.13	0.06	98.66
CBD-11-07-12-Amph-03	7.00	1.22	50.10	0.16	99.18
CBD-11-07-12-Px-01	12.96	0.09	56.24	0.00	99.10
CBD-11-07-12-Px-02	13.10	0.10	57.01	0.00	99.17
CBD-11-07-12-Px-03	12.95	0.12	56.33	0.00	98.37
CBD-11-07-12-Px-04	13.40	0.06	57.66	0.00	98.88
CBD-11-07-12-Px-05	13.31	0.11	56.81	0.00	99.21
CBD-11-07-12-Px-06	12.04	0.16	54.47	0.00	97.55
CBD-11-07-12-Px-07	13.03	0.11	55.96	0.00	98.98
CBD-11-07-12-Px-08	12.84	0.08	56.26	0.00	99.10
CBD-11-07-12-Px-09	13.14	0.13	55.80	0.00	99.23
CBD-11-07-01-Amph-01	6.46	0.51	49.50	0.16	98.83
CBD-11-07-01-Amph02	6.50	0.50	49.14	0.00	98.15
CBD-11-07-01-Amph-03	6.47	0.48	49.66	0.04	98.49
MRGC-Amph-01	7.32	0.10	52.63	0.13	101.28
MRGC-Amph-02	7.23	0.07	52.42	0.09	100.85
MRGC-Amph-03	7.26	0.08	51.78	0.11	99.90
MRGC-Px-01	13.69	0.01	58.29	0.00	100.12
MRGC-Px-02	14.11	0.00	59.39	0.00	102.09
MRGC-Px-03	13.35	0.02	58.39	0.00	100.25
MRGC-Px-04	13.65	0.00	57.70	0.00	100.56
MRGC-Px-05	11.40	0.02	53.09	0.00	93.02
MRGC-Px-06	12.07	0.03	54.86	0.00	96.89
MRGC-Px-07	13.51	0.00	56.44	0.00	100.10
MRGC-Amph-04	7.02	0.07	50.58	0.16	98.40
MRGC-Amph-05	6.71	0.07	50.89	0.00	98.48
MRGC-Amph-06	6.32	0.06	49.12	0.09	96.59
MRGC-Px-08	13.66	0.00	57.77	0.00	100.38
MRGC-Px-09	13.54	0.00	57.54	0.00	100.09
MRGC-Px-10	7.02	0.03	50.95	0.13	99.10
MRGC-Px-11	13.62	0.01	58.17	0.00	100.18
MRGC-Px-12	13.56	0.00	57.00	0.00	100.24
MRGC-Px-13	13.54	0.00	56.92	0.00	100.42
MRGC-Px-14	13.52	0.00	56.90	0.00	100.29
CBD-11-07-03-Amph-01	5.47	0.97	48.87	0.10	100.71

Group 2 Results

Analysis #	N-20	N4-0	6:02	7:-0	T-4-1
Analysis #	Na2O	MgO	SiO2	ZnO	Total
CBD-11-07-03-Amph-02	5.22	0.98	48.76	0.02	99.56
CBD-11-07-03-Amph-03	5.31	0.97	48.57	0.10	100.44
CBD-11-07-03-Amph-04	5.24	1.13	47.41	0.07	100.66
CBD-11-07-03-Amph-05	7.14	0.41	53.66	0.00	101.22
CBD-11-07-03-Amph-06	7.32	0.37	54.36	0.00	101.64
CBD-11-07-03-Amph-07	7.49	0.39	54.19	0.00	101.30
CBD-11-07-03-Amph-08	7.42	0.37	53.92	0.00	100.92
CBD-11-07-03-Amph-09	7.50	0.40	54.04	0.00	101.37
CBD-11-07-03-Amph-10	0.05	1.08	36.64	0.16	98.34
CBD-11-07-03-Amph-11	0.08	1.05	36.46	0.19	97.38
CBD-11-07-03-Amph-12	0.06	1.12	36.45	0.07	97.62
CBD-11-07-03-Amph-13	7.44	0.43	53.65	0.04	101.13
CBD-11-07-03-Amph-14	5.32	1.09	46.74	0.04	99.34
CBD-11-07-03-Amph-15	5.33	1.13	47.08	0.02	99.20
CBD-11-07-03-Amph-16	5.40	1.19	47.00	0.06	100.05
CBD-11-07-03-Amph-17	6.73	0.29	41.94	0.00	101.79
CBD-11-07-03-Amph-18	6.69	0.25	41.73	0.04	101.69
CBD-11-07-03-Amph-19	7.50	0.15	43.12	0.00	102.60
CBD-11-07-03-Amph-20	7.52	0.52	53.95	0.01	101.25
CBD-11-07-03-Amph-21	7.87	0.47	54.18	0.00	101.11
CBD-11-07-03-Amph-22	7.74	0.40	54.14	0.01	101.40
CBD-11-07-03-Amph-23	7.38	0.55	53.81	0.00	101.16
CBD-11-07-03-Bt-01	0.09	1.24	35.42	0.23	94.39
CBD-11-07-03-Bt-02	0.26	1.46	32.11	0.18	89.33
CBD-11-07-03-Bt-03	0.05	1.16	35.55	0.10	95.94
CBD-11-07-03-Bt-04	0.27	1.26	32.71	0.17	90.85
CBD-11-07-15-Amph-01	7.18	0.03	51.40	0.08	99.74
CBD-11-07-15-Amph-02	7.05	0.04	51.25	0.00	100.00
CBD-11-07-15-Amph-03	7.16	0.02	51.19	0.11	99.43
CBD-11-07-15-Px-01	13.10	0.00	55.57	0.00	98.59
CBD-11-07-15-Px-02	13.02	0.00	55.05	0.01	98.20
CBD-11-07-15-Px-03	12.25	0.01	54.37	0.01	96.32
CBD-11-07-15-Px-04	13.01	0.01	55.38	0.00	97.74
CBD-11-07-15-Px-05	13.19	0.01	57.08	0.00	99.70
CBD-11-07-15-Px-06	13.23	0.02	56.97	0.00	99.49
CBD-11-07-15-Px-07	13.42	0.00	56.03	0.00	99.60
CBD-11-07-15-Px-08	13.37	0.00	55.87	0.00	99.33
CBD-11-07-15-Amph-04	7.23	0.04	51.29	0.03	99.76
CBD-11-07-15-Amph-05	7.33	0.04	51.76	0.09	99.99
CBD-11-07-15-Amph-06	7.35	0.05	51.30	0.05	100.16
CB-01-11-Px-01	13.30	0.02	56.53	0.00	99.15
CB-01-11-Px-02	13.92	0.04	56.77	0.00	99.48
CB-01-11-Px-03	13.81	0.05	56.86	0.00	99.53
CB-01-11-Px-04	13.10	0.02	55.70	0.00	99.84
CB-01-11-Px-05	9.07	0.01	53.82	0.00	96.49

Group 2 Results

Analysis #	Na2O	MgO	SiO2	ZnO	Total
CB-01-11-Px-06	13.15	0.03	54.91	0.00	98.58
CB-01-11-Amph-01	6.84	0.27	48.52	0.00	97.62
CB-01-11-Amph-02	6.93	0.26	49.02	0.00	98.82
CB-01-11-Amph-03	6.93	0.23	48.39	0.00	97.62
CB-01-11-Pec-01	8.88	0.00	54.82	0.00	97.67
CB-01-11-Pec-02	8.59	0.00	55.10	0.00	98.20
CB-01-11-Pec-03	8.64	0.00	54.59	0.02	97.41
CB-01-11-Pec-04	8.81	0.00	55.00	0.00	98.46
CBD-11-07-17-Amph-01	10.76	0.00	51.58	0.01	100.79
CBD-11-07-17-Amph-02	7.20	0.01	51.54	0.05	99.00
CBD-11-07-17-Amph-03	7.15	0.02	51.59	0.11	99.87
CBD-11-07-15-Amph-01	7.33	0.48	51.86	0.01	100.09
CBD-11-07-15-Amph-02	6.92	0.51	50.27	0.00	97.18
CBD-11-07-15-Amph-03	7.26	0.46	51.18	0.07	99.04
CBD-11-07-15-Amph-04	7.35	0.51	51.71	0.08	99.44
CBD-11-07-15-Px-01	13.26	0.01	56.53	0.00	100.20
CBD-11-07-15-Px-02	13.34	0.01	56.07	0.00	98.79
CBD-11-07-15-Px-03	13.40	0.04	57.74	0.00	100.01
CBD-11-07-15-Px-04	13.44	0.04	57.79	0.00	100.24
CBD-11-07-15-Px-05	13.17	0.03	57.14	0.00	100.01
CBD-11-07-15-Px-06	0.29	0.00	66.12	0.01	101.62

Group 3 Results

Analysis #	No.	K2O	CaO	BaO	Nb2O5	P2O5
MRGC-Unk-02	81	0.01	7.81	0.00	0.00	0.00
MRGC-Unk-03	82	0.03	9.68	0.00	0.06	0.02
MRGC-Unk-04	83	0.02	8.73	0.01	0.02	0.01
MRGC-Unk-05	84	0.02	8.38	0.02	0.00	0.00
MRGC-Unk-06	85	0.24	6.56	0.20	1.13	0.00
MRGC-Unk-07	86	0.01	8.92	0.00	0.04	0.02
CBD-11-07-03-Rnk-01	87	0.04	24.85	0.00	3.22	0.02
CBD-11-07-03-Rnk-02	88	0.02	24.24	0.00	3.65	0.00
CBD-11-07-03-Rnk-03	89	0.08	25.94	0.01	3.20	0.00
CBD-11-07-15-Unk-01	90	0.05	4.39	0.02	0.07	0.30
CBD-11-07-15-Unk-02	91	0.06	3.43	0.00	0.07	0.01
CBD-11-07-15-Unk-03	92	0.04	4.42	0.00	0.05	0.05
CBD-11-07-17-Unk(Y)-01	93	0.04	13.68	0.00	0.02	0.00
CBD-11-07-17-Unk(Y)-02	94	0.04	13.53	0.00	0.00	0.03
CBD-11-07-17-Unk(Y)-03	95	0.03	12.59	0.00	0.00	0.01
CBD-11-07-17-Unk(Y)-04	96	0.05	14.48	0.00	0.00	0.04
CBD-11-07-17-Unk(Y)-05	97	0.02	14.22	0.00	0.02	0.03
CBD-11-07-17-Unk(Y)-06	98	0.01	14.52	0.01	0.03	0.05
CBD-11-07-17-Unk(Y)-07	99	0.02	11.54	0.02	0.04	0.02
CBD-11-07-17-Unk(Y)-08	100	0.06	12.12	0.02	0.04	0.02
CBD-11-07-17-Unk(Y)-09	101	0.03	12.55	0.00	0.04	0.04
CBD-11-07-17-Unk(Y)-10	102	0.04	13.97	0.01	0.00	0.05
CBD-11-07-17-Unk(Y)-11	103	0.03	14.25	0.02	0.00	0.00
CBD-11-07-17-Unk(Y)-12	104	0.03	14.29	0.00	0.08	0.05
CBD-11-07-17-Aen-01	105	0.00	0.00	0.00	0.01	0.02
CBD-11-07-17-Aen-02	106	0.02	0.02	0.02	0.02	0.00
CBD-11-07-17-Aen-03	107	0.01	0.02	0.00	0.00	0.00
CBD-11-07-17-Aen-04	108	0.00	0.01	0.00	0.00	0.00
CBD-11-07-17-Aen-05	109	0.01	0.01	0.00	0.00	0.00
CBD-11-07-17-Aen-06	110	0.00	0.02	0.03	0.03	0.00
CBD-11-07-17-Aen-07	111	0.00	0.03	0.01	0.00	0.00
CBD-11-07-17-Aen-08	112	0.00	0.00	0.01	0.00	0.00
CBD-11-07-17-Aen-09	113	0.01	0.01	0.02	0.00	0.00

Group 3 Results

Analysis #	F	Al2O3	ZrO2	Y2O3	FeO	MnO
MRGC-Unk-02	0.10	0.00	0.00	12.57	1.28	3.54
MRGC-Unk-03	0.00	0.01	0.00	10.86	1.12	3.93
MRGC-Unk-04	0.03	0.00	0.00	11.75	1.26	3.76
MRGC-Unk-05	0.09	0.00	0.03	12.20	1.19	3.53
MRGC-Unk-06	0.10	0.18	12.62	3.28	2.36	1.76
MRGC-Unk-07	0.11	0.05	0.18	10.14	1.07	3.99
CBD-11-07-03-Rnk-01	6.61	0.03	0.27	4.56	0.93	0.00
CBD-11-07-03-Rnk-02	7.15	0.03	0.45	5.81	0.79	0.02
CBD-11-07-03-Rnk-03	6.69	0.06	0.44	1.12	1.05	0.04
CBD-11-07-15-Unk-01	0.15	0.23	0.00	15.85	0.93	0.68
CBD-11-07-15-Unk-02	0.21	0.10	0.00	11.15	0.99	0.60
CBD-11-07-15-Unk-03	0.15	0.08	0.00	18.01	1.10	0.84
CBD-11-07-17-Unk(Y)-01	0.09	0.02	0.00	9.92	1.48	2.88
CBD-11-07-17-Unk(Y)-02	0.13	0.00	0.00	9.72	1.49	2.82
CBD-11-07-17-Unk(Y)-03	0.02	0.00	0.00	10.18	1.54	2.81
CBD-11-07-17-Unk(Y)-04	0.05	0.02	0.00	8.66	1.46	3.15
CBD-11-07-17-Unk(Y)-05	0.12	0.02	0.00	8.53	1.49	3.30
CBD-11-07-17-Unk(Y)-06	0.00	0.00	0.00	7.90	1.25	3.07
CBD-11-07-17-Unk(Y)-07	0.08	0.01	0.00	11.85	1.45	2.60
CBD-11-07-17-Unk(Y)-08	0.23	0.05	0.00	11.92	1.45	2.65
CBD-11-07-17-Unk(Y)-09	0.07	0.02	0.00	10.47	1.57	2.96
CBD-11-07-17-Unk(Y)-10	0.01	0.02	0.00	8.81	1.57	3.39
CBD-11-07-17-Unk(Y)-11	0.10	0.00	0.00	8.91	1.58	3.28
CBD-11-07-17-Unk(Y)-12	0.14	0.01	0.00	8.29	1.58	3.65
CBD-11-07-17-Aen-01	0.04	0.03	0.01	0.00	40.93	1.76
CBD-11-07-17-Aen-02	0.00	0.04	0.01	0.00	40.61	1.77
CBD-11-07-17-Aen-03	0.00	0.03	0.00	0.00	40.62	1.68
CBD-11-07-17-Aen-04	0.00	0.06	0.00	0.00	40.69	1.68
CBD-11-07-17-Aen-05	0.00	0.04	0.00	0.00	40.55	1.71
CBD-11-07-17-Aen-06	0.00	0.03	0.00	0.00	40.50	1.74
CBD-11-07-17-Aen-07	0.00	0.06	0.00	0.00	40.81	1.71
CBD-11-07-17-Aen-08	0.00	0.03	0.00	0.00	40.22	1.77
CBD-11-07-17-Aen-09	0.03	0.13	0.00	0.00	40.88	1.73

Group 3 Results

Analysis #	Ce2O3	La2O3	Nd2O3	Pr2O3	Sm2O3	Gd2O3
MRGC-Unk-02	0.10	0.14	0.54	0.06	0.46	1.07
MRGC-Unk-03	0.12	0.00	0.36	0.00	0.57	1.00
MRGC-Unk-04	0.29	0.08	0.53	0.09	0.45	1.05
MRGC-Unk-05	0.11	0.01	0.32	0.21	0.39	0.95
MRGC-Unk-06	0.65	0.30	0.69	0.21	0.36	0.62
MRGC-Unk-07	0.13	0.01	0.56	0.00	0.75	1.43
CBD-11-07-03-Rnk-01	3.02	1.07	2.66	0.54	0.72	1.12
CBD-11-07-03-Rnk-02	1.97	0.71	2.64	0.41	0.81	1.23
CBD-11-07-03-Rnk-03	5.23	2.14	3.32	0.88	0.74	0.87
CBD-11-07-15-Unk-01	0.92	0.45	1.85	0.33	0.87	1.53
CBD-11-07-15-Unk-02	1.12	0.21	1.33	0.24	0.73	1.59
CBD-11-07-15-Unk-03	0.76	0.13	0.89	0.07	0.57	1.53
CBD-11-07-17-Unk(Y)-01	0.14	0.00	0.39	0.00	0.23	0.84
CBD-11-07-17-Unk(Y)-02	0.18	0.04	0.39	0.14	0.40	0.66
CBD-11-07-17-Unk(Y)-03	0.22	0.00	0.41	0.20	0.26	0.75
CBD-11-07-17-Unk(Y)-04	0.22	0.00	0.31	0.09	0.30	0.63
CBD-11-07-17-Unk(Y)-05	0.17	0.03	0.28	0.04	0.26	0.58
CBD-11-07-17-Unk(Y)-06	0.10	0.05	0.44	0.00	0.28	0.70
CBD-11-07-17-Unk(Y)-07	0.18	0.17	0.33	0.01	0.28	0.77
CBD-11-07-17-Unk(Y)-08	0.21	0.02	0.44	0.14	0.38	0.90
CBD-11-07-17-Unk(Y)-09	0.22	0.15	0.31	0.11	0.31	0.76
CBD-11-07-17-Unk(Y)-10	0.18	0.12	0.30	0.01	0.25	0.65
CBD-11-07-17-Unk(Y)-11	0.15	0.03	0.33	0.12	0.25	0.70
CBD-11-07-17-Unk(Y)-12	0.15	0.03	0.23	0.00	0.35	0.66
CBD-11-07-17-Aen-01	0.00	0.03	0.00	0.05	0.00	0.00
CBD-11-07-17-Aen-02	0.00	0.00	0.00	0.05	0.01	0.00
CBD-11-07-17-Aen-03	0.00	0.09	0.00	0.00	0.00	0.00
CBD-11-07-17-Aen-04	0.00	0.00	0.00	0.05	0.00	0.02
CBD-11-07-17-Aen-05	0.00	0.01	0.00	0.05	0.01	0.00
CBD-11-07-17-Aen-06	0.00	0.00	0.04	0.01	0.00	0.03
CBD-11-07-17-Aen-07	0.00	0.04	0.00	0.00	0.00	0.00
CBD-11-07-17-Aen-08	0.00	0.00	0.00	0.00	0.00	0.00
CBD-11-07-17-Aen-09	0.00	0.03	0.00	0.00	0.06	0.04

Group 3 Results

Analysis #	Cl	TiO2	SrO	Sb2O5	Na2O	MgO
MRGC-Unk-02	0.00	0.00	0.00	0.00	14.32	0.00
MRGC-Unk-03	0.00	0.00	0.00	0.00	14.02	0.00
MRGC-Unk-04	0.01	0.00	0.00	0.00	13.70	0.00
MRGC-Unk-05	0.00	0.00	0.00	0.00	14.08	0.00
MRGC-Unk-06	1.08	0.01	0.02	0.00	9.36	0.00
MRGC-Unk-07	0.01	0.00	0.00	0.00	14.12	0.00
CBD-11-07-03-Rnk-01	0.00	7.49	0.00	0.00	8.05	0.00
CBD-11-07-03-Rnk-02	0.00	7.36	0.00	0.00	8.12	0.00
CBD-11-07-03-Rnk-03	0.03	7.79	0.00	0.00	6.55	0.00
CBD-11-07-15-Unk-01	0.00	0.01	0.00	0.00	0.93	0.12
CBD-11-07-15-Unk-02	0.01	0.00	0.00	0.00	2.15	0.04
CBD-11-07-15-Unk-03	0.01	0.00	0.00	0.00	3.44	0.00
CBD-11-07-17-Unk(Y)-01	0.01	0.00	0.00	0.00	8.50	0.00
CBD-11-07-17-Unk(Y)-02	0.01	0.00	0.00	0.00	9.44	0.00
CBD-11-07-17-Unk(Y)-03	0.01	0.00	0.00	0.00	9.71	0.00
CBD-11-07-17-Unk(Y)-04	0.01	0.01	0.00	0.00	9.21	0.00
CBD-11-07-17-Unk(Y)-05	0.01	0.00	0.00	0.00	9.32	0.00
CBD-11-07-17-Unk(Y)-06	0.01	0.00	0.00	0.00	10.58	0.00
CBD-11-07-17-Unk(Y)-07	0.01	0.00	0.00	0.00	9.66	0.00
CBD-11-07-17-Unk(Y)-08	0.01	0.00	0.00	0.00	7.64	0.01
CBD-11-07-17-Unk(Y)-09	0.00	0.00	0.00	0.00	8.97	0.00
CBD-11-07-17-Unk(Y)-10	0.00	0.00	0.00	0.00	9.05	0.00
CBD-11-07-17-Unk(Y)-11	0.02	0.00	0.00	0.00	9.25	0.00
CBD-11-07-17-Unk(Y)-12	0.02	0.00	0.00	0.00	9.36	0.00
CBD-11-07-17-Aen-01	0.00	9.44	0.00	0.00	7.77	0.06
CBD-11-07-17-Aen-02	0.00	9.39	0.00	0.00	7.82	0.04
CBD-11-07-17-Aen-03	0.01	9.47	0.00	0.00	7.81	0.04
CBD-11-07-17-Aen-04	0.00	9.36	0.00	0.00	7.82	0.03
CBD-11-07-17-Aen-05	0.00	9.33	0.00	0.00	7.67	0.05
CBD-11-07-17-Aen-06	0.01	9.38	0.00	0.00	7.92	0.04
CBD-11-07-17-Aen-07	0.00	9.36	0.00	0.00	7.89	0.04
CBD-11-07-17-Aen-08	0.00	9.39	0.00	0.00	7.67	0.05
CBD-11-07-17-Aen-09	0.00	9.22	0.00	0.00	7.92	0.03

Group 3 Results

Arabasa #	C:CO I	70	A - 2.0.E	T-1-1
Analysis #	SiO2	ZnO	As205	Total
MRGC-Unk-02	49.45	0.02	0.00	91.46
MRGC-Unk-03	50.61	0.00	0.00	92.38
MRGC-Unk-04	49.02	0.00	0.00	90.79
MRGC-Unk-05	49.67	0.00	0.00	91.20
MRGC-Unk-06	56.17	0.00	0.00	97.90
MRGC-Unk-07	51.27	0.01	0.00	92.81
CBD-11-07-03-Rnk-01	30.06	0.00	0.00	95.26
CBD-11-07-03-Rnk-02	30.35	0.02	0.00	95.79
CBD-11-07-03-Rnk-03	30.13	0.00	0.00	96.29
CBD-11-07-15-Unk-01	37.16	0.07	0.00	66.91
CBD-11-07-15-Unk-02	19.66	0.00	0.00	43.69
CBD-11-07-15-Unk-03	40.03	0.00	0.00	72.17
CBD-11-07-17-Unk(Y)-01	51.11	0.00	0.00	89.34
CBD-11-07-17-Unk(Y)-02	51.16	0.01	0.00	90.17
CBD-11-07-17-Unk(Y)-03	51.19	0.00	0.00	89.94
CBD-11-07-17-Unk(Y)-04	51.38	0.00	0.00	90.05
CBD-11-07-17-Unk(Y)-05	51.51	0.00	0.00	89.95
CBD-11-07-17-Unk(Y)-06	50.93	0.00	0.00	89.93
CBD-11-07-17-Unk(Y)-07	51.41	0.06	0.00	90.54
CBD-11-07-17-Unk(Y)-08	49.53	0.00	0.00	87.83
CBD-11-07-17-Unk(Y)-09	51.21	0.00	0.00	89.79
CBD-11-07-17-Unk(Y)-10	50.96	0.00	0.00	89.38
CBD-11-07-17-Unk(Y)-11	51.57	0.00	0.00	90.59
CBD-11-07-17-Unk(Y)-12	51.54	0.04	0.00	90.48
CBD-11-07-17-Aen-01	42.83	0.00	0.04	103.02
CBD-11-07-17-Aen-02	42.76	0.00	0.01	102.59
CBD-11-07-17-Aen-03	42.98	0.02	0.03	102.81
CBD-11-07-17-Aen-04	42.94	0.00	0.01	102.68
CBD-11-07-17-Aen-05	43.04	0.00	0.03	102.50
CBD-11-07-17-Aen-06	42.96	0.08	0.01	102.83
CBD-11-07-17-Aen-07	43.03	0.04	0.01	103.03
CBD-11-07-17-Aen-08	42.77	0.00	0.00	101.91
CBD-11-07-17-Aen-09	42.99	0.00	0.00	103.08

Group 4 Results						
Analysis #	No.	K2O	CaO	SnO2	Nb2O5	F
CBD-11-07-21-01	13	0.22	9.82	0.01	0.46	0.00
CBD-11-07-21-02	14	0.29	9.95	0.03	0.13	0.00
CBD-11-07-21-03	15	0.25	9.78	0.04	0.35	0.02
CBD-11-07-21-04	16	0.36	9.51	0.00	0.61	0.01
CBD-11-07-21-05	17	0.37	9.70	0.00	0.61	0.00
CBD-11-07-21-06	18	0.26	9.94	0.02	0.23	0.00
CBD-11-07-21-07	19	0.28	9.70	0.05	0.77	0.00
CBD-11-07-21-08	20	0.39	10.03	0.04	0.16	0.00
CBD-11-07-21-09	21	0.27	10.06	0.00	0.17	0.02
CBD-11-07-21-10	22	0.44	9.96	0.03	0.06	0.00
CBD-11-07-21-11	23	0.45	9.77	0.03	0.61	0.03
CBD-11-07-21-12	24	0.43	9.79	0.04	0.60	0.01
CBD-11-07-21-13	25	0.28	10.05	0.08	0.56	0.08
CBD-11-07-21-14	26	0.19	10.06	0.00	0.18	0.06
CBD-11-07-21-15	27	0.19	9.95	0.02	0.34	0.03
CBD-11-07-21-16	28	0.38	9.77	0.01	0.15	0.04
CBD-11-07-21-17	29	0.27	9.97	0.01	0.05	0.01
CBD-11-07-21-18	30	0.31	9.77	0.03	0.76	0.02
CBD-11-07-21-19	31	0.34	9.65	0.00	0.63	0.05
CBD-11-07-21-20	32	0.29	9.83	0.03	0.90	0.03
CBD-11-07-21-21	33	0.35	9.80	0.01	0.53	0.00
CBD-11-07-12-01	34	0.40	9.55	0.00	0.02	0.13
CBD-11-07-12-02	35	0.42	9.61	0.08	0.00	0.15
CBD-11-07-12-03	36	0.34	9.82	0.00	0.03	0.08
CBD-11-07-12-04	37	0.31	9.75	0.00	0.00	0.11
CBD-11-07-12-05	38	0.27	9.71	0.00	0.00	0.12
CBD-11-07-12-06	39	0.26	9.73	0.06	0.00	0.18
CBD-11-07-12-i01	40	0.13	6.11	0.02	0.00	0.08
CBD-11-07-01-01	41	0.14	10.03	0.04	0.02	0.01
CBD-11-07-01-02	42	0.25	9.99	0.06	0.05	0.03
CBD-11-07-01-03	43	0.22	9.99	0.00	0.07	0.02
CBD-11-07-01-04	44	0.26	9.97	0.00	0.62	0.03
CBD-11-07-01-05	45	0.27	9.79	0.00	0.85	0.13
CBD-11-07-01-06	46	0.19	9.75	0.00	0.19	0.00
CBD-11-07-01-07	47	0.21	8.76	0.04	0.01	0.08
CBD-11-07-01-08	48	0.23	8.92	0.10	0.04	0.14
CBD-11-07-01-09	49	0.24	8.16	0.05	0.29	0.18
CBD-11-07-01-10	50	0.18	8.90	0.01	0.34	0.10
CBD-11-07-01-11	51	0.22	9.03	0.00	0.34	0.17
CBD-11-07-01-12	52	0.21	8.94	0.02	0.42	0.09
CBD-11-07-01-13	53	0.32	10.23	0.05	0.05	0.00
CBD-11-07-01-14	54	0.29	10.24	0.06	0.13	0.04
CBD-11-07-01-15	55	0.28	10.18	0.08	0.00	0.05
CBD-11-07-01-16	56	0.13	10.41	0.00	0.24	0.01
CB-01-30-01	57	0.25	10.00	0.05	0.24	0.02

Group 4 Results

Analysis #	No.	K2O	CaO	SnO2	Nb2O5	F
CB-01-30-02	58	0.24	10.34	0.04	0.23	0.00
CB-01-30-03	59	0.21	9.87	0.01	0.21	0.02
CB-01-30-04	60	0.30	9.85	0.08	0.02	0.01
CB-01-30-05	61	0.38	10.00	0.00	0.00	0.05
CB-01-30-06	62	0.26	9.86	0.00	0.00	0.01
CB-01-30-07	63	0.24	10.10	0.00	0.23	0.04
CB-01-30-08	64	0.20	9.98	0.00	0.07	0.00
CB-01-30-09	65	0.23	10.04	0.01	0.14	0.04
CB-01-30-10	66	0.21	9.89	0.06	0.08	0.00
CB-01-30-11	67	3.80	0.52	0.00	0.00	0.10
CB-01-30-12	68	0.38	9.84	0.00	0.03	0.00

Group 4 Results						
Analysis #	MgO	Al2O3	ZrO2	BaO	FeO	MnO
CBD-11-07-21-01	0.00	0.15	13.25	0.06	5.86	0.62
CBD-11-07-21-02	0.00	0.17	13.01	0.19	6.01	0.52
CBD-11-07-21-03	0.00	0.21	13.28	0.18	6.09	0.52
CBD-11-07-21-04	0.00	0.18	12.74	0.21	5.52	0.68
CBD-11-07-21-05	0.00	0.17	13.18	0.18	5.51	0.69
CBD-11-07-21-06	0.00	0.18	13.28	0.00	6.22	0.56
CBD-11-07-21-07	0.00	0.15	12.87	0.18	5.81	0.66
CBD-11-07-21-08	0.00	0.18	12.95	0.03	6.20	0.54
CBD-11-07-21-09	0.00	0.18	13.44	0.16	6.14	0.52
CBD-11-07-21-10	0.00	0.18	13.00	0.25	5.95	0.53
CBD-11-07-21-11	0.00	0.14	13.24	0.14	6.02	0.61
CBD-11-07-21-12	0.00	0.15	13.12	0.18	5.90	0.68
CBD-11-07-21-13	0.00	0.15	13.51	0.10	6.08	0.72
CBD-11-07-21-14	0.01	0.52	13.54	0.09	6.02	0.61
CBD-11-07-21-15	0.00	0.14	13.45	0.05	5.88	0.66
CBD-11-07-21-16	0.00	0.19	12.99	0.08	5.98	0.53
CBD-11-07-21-17	0.00	0.18	13.43	0.09	6.17	0.50
CBD-11-07-21-18	0.00	0.14	13.18	0.16	5.84	0.64
CBD-11-07-21-19	0.00	0.18	13.15	0.20	5.63	0.67
CBD-11-07-21-20	0.00	0.13	13.20	0.21	5.69	0.73
CBD-11-07-21-21	0.00	0.15	13.15	0.17	5.89	0.60
CBD-11-07-12-01	0.00	0.26	13.01	0.12	5.60	0.98
CBD-11-07-12-02	0.00	0.25	12.87	0.22	5.69	0.99
CBD-11-07-12-03	0.00	0.25	13.42	0.11	5.76	0.99
CBD-11-07-12-04	0.00	0.27	13.33	0.21	5.84	0.97
CBD-11-07-12-05	0.00	0.27	13.45	0.05	5.76	1.03
CBD-11-07-12-06	0.02	0.28	13.32	0.07	5.72	1.03
CBD-11-07-12-i01	0.00	0.70	22.21	0.12	3.47	0.58
CBD-11-07-01-01	0.00	0.21	13.20	0.17	6.02	0.67
CBD-11-07-01-02	0.00	0.22	13.17	0.08	6.21	0.71
CBD-11-07-01-03	0.00	0.22	13.10	0.14	5.97	0.78
CBD-11-07-01-04	0.00	0.23	13.09	0.26	5.84	0.80
CBD-11-07-01-05	0.00	0.17	13.17	0.30	5.65	0.97
CBD-11-07-01-06	0.00	0.24	13.19	0.14	5.91	0.79
CBD-11-07-01-07	0.00	0.29	12.72	0.17	5.06	0.70
CBD-11-07-01-08	0.00	0.25	12.61	0.17	5.31	0.77
CBD-11-07-01-09	0.00	0.27	11.69	0.08	4.72	0.72
CBD-11-07-01-10	0.00	0.23	12.28	0.25	5.16	0.81
CBD-11-07-01-11	0.00	0.26	12.30	0.21	5.09	0.86
CBD-11-07-01-12	0.00	0.27	12.34	0.00	5.12	0.79
CBD-11-07-01-13	0.00	0.20	13.03	0.27	6.21	0.76
CBD-11-07-01-14	0.00	0.17	12.87	0.31	6.15	0.74
CBD-11-07-01-15	0.00	0.16	13.14	0.23	6.11	0.76
CBD-11-07-01-16	0.00	0.22	13.43	0.16	6.01	0.99
CB-01-30-01	0.01	0.11	12.98	0.23	5.87	0.69

Group 4 Results

Analysis #	MgO	Al203	ZrO2	BaO	FeO	MnO
CB-01-30-02	0.01	0.12	13.12	0.12	6.29	0.79
CB-01-30-03	0.00	0.14	12.97	0.00	5.99	0.65
CB-01-30-04	0.00	0.14	13.02	0.20	6.00	0.63
CB-01-30-05	0.00	0.17	13.51	0.08	6.03	0.68
CB-01-30-06	0.00	0.17	13.40	0.10	5.97	0.62
CB-01-30-07	0.00	0.15	13.61	0.12	5.87	0.68
CB-01-30-08	0.00	0.13	13.54	0.17	6.29	0.71
CB-01-30-09	0.00	0.16	13.54	0.00	5.90	0.72
CB-01-30-10	0.00	0.12	12.85	0.18	6.41	0.82
CB-01-30-11	0.34	2.07	0.02	0.00	33.20	0.90
CB-01-30-12	0.00	0.12	13.04	0.08	6.03	0.65

Group 4 Results						
Analysis #	Ce2O3	La2O3	Nd2O3	Pr2O3	Sm2O3	Gd2O3
CBD-11-07-21-01	0.59	0.19	0.38	0.06	0.11	0.17
CBD-11-07-21-02	0.69	0.16	0.42	0.00	0.14	0.17
CBD-11-07-21-03	0.59	0.17	0.45	0.18	0.20	0.12
CBD-11-07-21-04	0.81	0.43	0.50	0.02	0.20	0.20
CBD-11-07-21-05	0.98	0.22	0.59	0.00	0.16	0.15
CBD-11-07-21-06	0.53	0.12	0.42	0.01	0.21	0.12
CBD-11-07-21-07	0.87	0.38	0.41	0.21	0.10	0.15
CBD-11-07-21-08	0.65	0.20	0.47	0.02	0.10	0.15
CBD-11-07-21-09	0.54	0.22	0.39	0.11	0.12	0.21
CBD-11-07-21-10	0.49	0.07	0.32	0.01	0.06	0.22
CBD-11-07-21-11	0.91	0.32	0.50	0.06	0.15	0.14
CBD-11-07-21-12	0.70	0.32	0.59	0.22	0.22	0.08
CBD-11-07-21-13	0.64	0.46	0.45	0.12	0.10	0.14
CBD-11-07-21-14	0.49	0.19	0.37	0.07	0.10	0.18
CBD-11-07-21-15	0.70	0.25	0.39	0.19	0.19	0.15
CBD-11-07-21-16	0.56	0.27	0.41	0.09	0.11	0.22
CBD-11-07-21-17	0.56	0.19	0.52	0.09	0.15	0.16
CBD-11-07-21-18	0.98	0.48	0.46	0.27	0.17	0.18
CBD-11-07-21-19	0.91	0.33	0.55	0.19	0.15	0.23
CBD-11-07-21-20	1.24	0.48	0.50	0.00	0.15	0.20
CBD-11-07-21-21	0.79	0.33	0.43	0.20	0.10	0.25
CBD-11-07-12-01	0.39	0.12	0.47	0.08	0.18	0.16
CBD-11-07-12-02	0.47	0.21	0.50	0.15	0.11	0.19
CBD-11-07-12-03	0.40	0.05	0.37	0.11	0.11	0.23
CBD-11-07-12-04	0.40	0.22	0.47	0.10	0.18	0.18
CBD-11-07-12-05	0.30	0.11	0.45	0.00	0.19	0.18
CBD-11-07-12-06	0.47	0.15	0.45	0.04	0.14	0.21
CBD-11-07-12-i01	0.19	0.04	0.24	0.07	0.06	0.07
CBD-11-07-01-01	0.53	0.16	0.43	0.07	0.12	0.08
CBD-11-07-01-02	0.41	0.10	0.36	0.16	0.12	0.14
CBD-11-07-01-03	0.54	0.05	0.32	0.02	0.07	0.14
CBD-11-07-01-04	0.69	0.36	0.29	0.13	0.17	0.16
CBD-11-07-01-05	0.98	0.55	0.44	0.07	0.06	0.18
CBD-11-07-01-06	0.49	0.14	0.35	0.04	0.16	0.21
CBD-11-07-01-07	0.39	0.12	0.33	0.17	0.16	0.29
CBD-11-07-01-08	0.50	0.16	0.38	0.03	0.19	0.23
CBD-11-07-01-09	0.57	0.07	0.38	0.01	0.20	0.24
CBD-11-07-01-10	0.53	0.23	0.55	0.02	0.21	0.26
CBD-11-07-01-11	0.48	0.36	0.46	0.05	0.22	0.40
CBD-11-07-01-12	0.65	0.19	0.39	0.12	0.15	0.30
CBD-11-07-01-13	0.47	0.24	0.26	0.06	0.18	0.12
CBD-11-07-01-14	0.39	0.11	0.37	0.00	0.03	0.15
CBD-11-07-01-15	0.35	0.01	0.30	0.19	0.07	0.11
CBD-11-07-01-16	0.56	0.20	0.27	0.00	0.10	0.12
CB-01-30-01	0.76	0.30	0.53	0.20	0.14	0.12

Analysis #	Ce2O3	La2O3	Nd2O3	Pr2O3	Sm2O3	Gd2O3
CB-01-30-02	0.85	0.43	0.44	0.23	0.17	0.12
CB-01-30-03	0.74	0.21	0.50	0.01	0.19	0.13
CB-01-30-04	0.81	0.25	0.50	0.06	0.08	0.17
CB-01-30-05	0.63	0.14	0.42	0.12	0.13	0.12
CB-01-30-06	0.67	0.21	0.42	0.09	0.11	0.08
CB-01-30-07	0.67	0.35	0.46	0.06	0.22	0.11
CB-01-30-08	0.62	0.28	0.47	0.18	0.15	0.06
CB-01-30-09	0.73	0.33	0.36	0.20	0.15	0.12
CB-01-30-10	0.76	0.20	0.58	0.07	0.15	0.14
CB-01-30-11	0.03	0.11	0.00	0.04	0.00	0.02
CB-01-30-12	0.81	0.30	0.41	0.05	0.20	0.10

Group 4 Results

Group 4 Results	·				_	
Analysis #	Eu2O3	Dy2O3	Cl	TiO2	SrO	WO3
CBD-11-07-21-01	0.08	0.33	1.15	0.04	0.00	0.00
CBD-11-07-21-02	0.00	0.06	1.41	0.01	0.00	0.00
CBD-11-07-21-03	0.00	0.12	1.21	0.03	0.00	0.00
CBD-11-07-21-04	0.08	0.31	1.51	0.02	0.00	0.01
CBD-11-07-21-05	0.06	0.30	1.22	0.07	0.00	0.00
CBD-11-07-21-06	0.00	0.18	1.24	0.05	0.00	0.00
CBD-11-07-21-07	0.05	0.17	1.36	0.05	0.00	0.00
CBD-11-07-21-08	0.03	0.21	1.33	0.02	0.00	0.00
CBD-11-07-21-09	0.00	0.15	1.03	0.04	0.00	0.00
CBD-11-07-21-10	0.00	0.20	1.24	0.03	0.00	0.00
CBD-11-07-21-11	0.03	0.36	1.16	0.02	0.00	0.00
CBD-11-07-21-12	0.00	0.08	1.25	0.05	0.00	0.00
CBD-11-07-21-13	0.12	0.46	1.09	0.03	0.00	0.00
CBD-11-07-21-14	0.04	0.18	1.19	0.04	0.00	0.00
CBD-11-07-21-15	0.03	0.19	1.22	0.05	0.00	0.00
CBD-11-07-21-16	0.05	0.30	1.32	0.03	0.01	0.00
CBD-11-07-21-17	0.01	0.33	1.29	0.02	0.00	0.00
CBD-11-07-21-18	0.00	0.27	1.16	0.03	0.00	0.00
CBD-11-07-21-19	0.04	0.18	1.32	0.04	0.00	0.00
CBD-11-07-21-20	0.02	0.14	1.07	0.03	0.00	0.01
CBD-11-07-21-21	0.03	0.33	1.29	0.04	0.02	0.00
CBD-11-07-12-01	0.02	0.19	1.01	0.04	0.00	0.00
CBD-11-07-12-02	0.00	0.22	0.94	0.04	0.00	0.00
CBD-11-07-12-03	0.03	0.46	1.03	0.04	0.00	0.00
CBD-11-07-12-04	0.05	0.29	1.02	0.04	0.00	0.00
CBD-11-07-12-05	0.02	0.19	1.03	0.03	0.00	0.00
CBD-11-07-12-06	0.08	0.35	1.04	0.04	0.03	0.00
CBD-11-07-12-i01	0.00	0.13	0.69	0.03	0.00	0.00
CBD-11-07-01-01	0.07	0.17	1.43	0.06	0.00	0.00
CBD-11-07-01-02	0.00	0.23	1.47	0.07	0.00	0.00
CBD-11-07-01-03	0.00	0.25	1.40	0.08	0.00	0.00
CBD-11-07-01-04	0.00	0.10	1.45	0.11	0.03	0.00
CBD-11-07-01-05	0.10	0.36	1.37	0.06	0.00	0.00
CBD-11-07-01-06	0.09	0.06	1.53	0.08	0.00	0.00
CBD-11-07-01-07	0.00	0.51	1.59	0.11	0.00	0.00
CBD-11-07-01-08	0.12	0.34	1.60	0.12	0.00	0.00
CBD-11-07-01-09	0.08	0.45	1.34	0.10	0.00	0.00
CBD-11-07-01-10	0.00	0.17	1.64	0.13	0.00	0.00
CBD-11-07-01-11	0.00	0.25	1.60	0.11	0.05	0.00
CBD-11-07-01-12	0.02	0.44	1.46	0.08	0.00	0.04
CBD-11-07-01-13	0.00	0.16	1.55	0.03	0.00	0.00
CBD-11-07-01-14	0.02	0.19	1.58	0.04	0.00	0.01
CBD-11-07-01-15	0.02	0.00	1.50	0.02	0.00	0.00
CBD-11-07-01-16	0.04	0.31	1.36	0.05	0.00	0.02
CB-01-30-01	0.04	0.10	1.43	0.33	0.00	0.00

Group 4 Results

Analysis #	Eu2O3	Dy2O3	Cl	TiO2	SrO	WO3
CB-01-30-02	0.05	0.00	1.62	0.32	0.00	0.00
CB-01-30-03	0.05	0.19	1.43	0.25	0.00	0.00
CB-01-30-04	0.00	0.31	1.45	0.03	0.00	0.00
CB-01-30-05	0.05	0.20	1.33	0.07	0.00	0.00
CB-01-30-06	0.03	0.04	1.43	0.06	0.00	0.00
CB-01-30-07	0.10	0.21	1.04	0.12	0.00	0.00
CB-01-30-08	0.07	0.15	1.32	0.07	0.00	0.00
CB-01-30-09	0.00	0.20	0.84	0.10	0.00	0.00
CB-01-30-10	0.00	0.09	1.56	0.32	0.00	0.00
CB-01-30-11	0.03	0.14	0.01	0.48	0.00	0.00
CB-01-30-12	0.02	0.23	1.34	0.07	0.00	0.00

Group 4 Results						
Analysis #	Ta2O5	Na2O	SiO2	Y2O3	HfO2	Total
CBD-11-07-21-01	0.08	12.54	50.73	1.15	0.22	98.27
CBD-11-07-21-02	0.01	13.55	50.68	0.96	0.20	98.76
CBD-11-07-21-03	0.06	13.26	50.84	1.03	0.16	99.14
CBD-11-07-21-04	0.08	13.42	48.51	1.36	0.16	97.44
CBD-11-07-21-05	0.05	12.66	49.38	1.27	0.16	97.68
CBD-11-07-21-06	0.00	12.93	50.86	0.96	0.16	98.48
CBD-11-07-21-07	0.02	13.04	51.03	1.49	0.18	99.99
CBD-11-07-21-08	0.00	13.49	49.98	0.71	0.19	98.07
CBD-11-07-21-09	0.00	12.32	52.58	1.02	0.19	99.87
CBD-11-07-21-10	0.03	13.04	50.33	0.90	0.18	97.55
CBD-11-07-21-11	0.02	13.05	50.50	1.23	0.20	99.68
CBD-11-07-21-12	0.06	12.84	49.73	1.10	0.16	98.30
CBD-11-07-21-13	0.07	11.95	50.89	1.18	0.14	99.44
CBD-11-07-21-14	0.05	12.53	51.41	1.09	0.17	99.38
CBD-11-07-21-15	0.03	12.14	52.24	1.16	0.20	99.84
CBD-11-07-21-16	0.04	13.35	50.59	1.10	0.17	98.73
CBD-11-07-21-17	0.07	12.77	52.33	0.92	0.18	100.29
CBD-11-07-21-18	0.00	12.64	51.69	1.26	0.12	100.57
CBD-11-07-21-19	0.05	12.66	51.29	1.38	0.16	99.99
CBD-11-07-21-20	0.02	12.37	51.88	1.29	0.17	100.60
CBD-11-07-21-21	0.00	12.52	50.72	1.15	0.20	99.05
CBD-11-07-12-01	0.00	13.76	49.90	1.22	0.15	97.75
CBD-11-07-12-02	0.00	13.27	50.75	1.26	0.17	98.56
CBD-11-07-12-03	0.00	12.92	52.05	1.20	0.12	99.92
CBD-11-07-12-04	0.00	13.20	51.75	1.19	0.16	100.05
CBD-11-07-12-05	0.00	12.80	51.51	1.22	0.12	98.81
CBD-11-07-12-06	0.03	13.04	51.83	1.20	0.09	99.85
CBD-11-07-12-i01	0.05	12.41	50.25	0.77	0.26	98.68
CBD-11-07-01-01	0.00	13.12	51.15	0.97	0.15	99.03
CBD-11-07-01-02	0.00	13.40	50.95	0.85	0.10	99.12
CBD-11-07-01-03	0.00	13.70	50.54	0.94	0.12	98.71
CBD-11-07-01-04	0.00	13.66	49.18	1.23	0.09	98.74
CBD-11-07-01-05	0.00	12.97	48.64	1.20	0.15	98.41
CBD-11-07-01-06	0.00	13.70	49.49	1.19	0.07	98.00
CBD-11-07-01-07	0.03	14.60	48.13	2.51	0.13	97.11
CBD-11-07-01-08	0.13	13.07	50.42	2.41	0.10	98.34
CBD-11-07-01-09	0.02	11.67	42.44	2.14	0.12	86.22
CBD-11-07-01-10	0.14	14.29	47.52	1.97	0.11	96.05
CBD-11-07-01-11	0.24	14.43	48.11	2.22	0.17	97.65
CBD-11-07-01-12	0.10	13.92	47.71	2.13	0.07	95.98
CBD-11-07-01-13	0.09	13.60	50.27	0.71	0.14	99.00
CBD-11-07-01-14	0.00	13.81	50.64	0.69	0.10	99.14
CBD-11-07-01-15	0.00	13.44	50.37	0.63	0.10	98.11
CBD-11-07-01-16	0.00	12.67	51.09	0.94	0.19	99.51
CB-01-30-01	0.03	12.57	52.84	0.85	0.20	100.87

Group 4 Results

Analysis #	Ta2O5	Na2O	SiO2	Y2O3	HfO2	Total
CB-01-30-02	0.15	0.32	55.63	0.89	0.19	92.72
CB-01-30-03	0.00	12.57	51.05	0.86	0.22	98.46
CB-01-30-04	0.00	13.88	50.67	0.70	0.20	99.35
CB-01-30-05	0.00	13.27	51.91	0.74	0.13	100.16
CB-01-30-06	0.03	13.09	51.48	0.67	0.20	98.98
CB-01-30-07	0.10	11.73	51.96	0.77	0.18	99.14
CB-01-30-08	0.00	12.66	52.70	0.71	0.23	100.77
CB-01-30-09	0.00	11.52	52.67	0.71	0.20	98.91
CB-01-30-10	0.07	13.05	51.75	0.84	0.16	100.37
CB-01-30-11	0.00	7.22	47.53	0.00	0.00	96.56
CB-01-30-12	0.07	14.05	50.84	0.57	0.26	99.48

Group 5 Results							
Comment	No.	P2O5	K2O	CaO	SO3	ZrO2	F
CBD-11-07-21-Apt-01	4	40.16	0.02	48.52	0.00	0.00	2.56
CBD-11-07-21-Apt-02	5	39.08	0.01	43.74	0.03	0.00	2.58
CBD-11-07-21-Apt-03	6	1.42	0.05	4.17	0.02	0.01	1.13
CBD-11-07-21-Apt-04	7	41.17	0.00	45.55	0.01	0.00	2.32
CBD-11-07-21-Apt-05	8	39.06	0.04	46.14	0.00	0.00	2.70
CBD-11-07-21-Apt-06	9	39.09	0.03	41.32	0.01	0.00	2.50
CBD-11-07-21-Unknown-01	10	3.36	0.01	7.86	0.00	0.00	1.90
CBD-11-07-21-Unknown-02	11	4.02	0.03	3.43	0.09	0.00	2.45
CBD-11-07-21-Unknown-03	12	2.69	0.05	3.97	0.07	0.00	1.74
CBD-11-07-21-Unknown-04	13	5.22	0.01	7.68	0.00	0.00	2.00
MRGC-Br-01	14	17.15	0.22	4.01	0.02	1.02	0.12
MRGC-Br-02	15	12.98	0.06	1.52	0.00	0.85	0.02
MRGC-Br-03	16	13.58	0.01	1.17	0.01	1.96	0.09
MRGC-Br-04	17	13.04	0.01	1.49	0.01	1.19	0.03
MRGC-Br-05	18	12.87	0.01	1.57	0.00	1.08	0.00
MRGC-Br-06	19	13.73	0.00	1.21	0.00	2.07	0.03
MRGC-Br-07	20	0.02	0.01	8.50	0.00	0.00	0.02
MRGC-Br-08	21	12.25	0.28	1.87	0.00	1.08	0.04
MRGC-Br-09	22	0.04	0.00	9.35	0.00	0.02	0.00
MRGC-Br-10	23	12.24	0.01	2.81	0.00	0.26	0.00
MRGC-Br-11	24	12.78	0.02	2.22	0.00	0.45	0.03
MRGC-Br-12	25	11.95	0.00	3.09	0.00	0.25	0.07
MRGC-Br-13	26	13.13	0.00	2.49	0.00	0.03	0.05
MRGC-Br-14	27	8.53	0.11	3.73	0.00	0.00	0.10
MRGC-Br-15	28	16.64	0.26	5.51	0.00	0.13	0.10
MRGC-Br-16	29	10.60	0.43	3.46	0.00	0.00	0.08
MRGC-Br-17	30	16.68	0.10	4.39	0.00	0.00	0.01
MRGC-Br-18	31	12.24	0.12	4.44	0.00	0.10	0.02
MRGC-Br-19	32	17.26	0.07	4.32	0.00	0.07	0.06
MRGC-Br-20	33	13.73	0.03	1.27	0.01	2.21	0.05
MRGC-Br-21	34	12.68	0.05	1.32	0.00	1.96	0.11
MRGC-Br-22	35	16.34	0.10	4.21	0.02	0.00	0.07
CBD-11-07-15-Br-01	36	19.50	0.02	28.14	0.30	0.00	1.68
CBD-11-07-15-Br-02	37	20.90	0.02	17.88	0.09	0.00	1.13
CBD-11-07-15-Br-03	38	18.12	0.02	16.50	0.12	0.00	1.48
CBD-11-07-15-Br-04	39	20.99	0.02	15.06	0.16	0.00	1.30
CBD-11-07-15-Br-05	40	21.69	0.01	20.56	0.30	0.00	1.21
CBD-11-07-15-Br-06	41	19.67	0.02	19.84	0.60	0.00	1.42
CBD-11-07-15-Br-07	42	22.54	0.00	25.04	1.13	0.00	1.80
CBD-11-07-15-Br-08	43	23.76	0.01	22.83	0.95	0.00	1.88
CBD-11-07-15-Br-09	44	21.01	0.02	17.09	0.65	0.00	1.49
CBD-11-07-15-Br-10	45	6.90	0.04	3.02	0.00	0.00	0.68
CBD-11-07-15-Br-11	46	6.19	0.04	6.42	0.04	0.00	0.62
CBD-11-07-15-Br-12	47	21.80	0.02	34.59	2.13	0.00	2.23
CBD-11-07-15-Br-13	48	21.15	0.00	33.04	0.56	0.00	1.80
: :	. •						

Group 5 Results							
Comment	No.	P2O5	K2O	CaO	SO3	ZrO2	F
CBD-11-07-15-Apt-01	49	33.75	0.00	32.90	0.00	0.00	2.08
CBD-11-07-15-Apt-02	50	32.61	0.00	30.64	0.00	0.00	2.23
CBD-11-07-15-Apt-03	51	32.14	0.00	30.78	0.00	0.00	2.46
CBD-11-07-15-Apt-04	52	33.70	0.00	31.86	0.00	0.00	2.00
CBD-11-07-15-Br-14	53	18.07	0.01	24.05	0.82	0.00	1.54
CBD-11-07-15-Br-15	54	22.87	0.00	27.30	1.21	0.00	1.95
CBD-11-07-15-Br-16	55	6.81	0.04	8.25	0.10	0.00	0.78
CBD-11-07-15-Br-17	56	3.97	0.03	6.46	0.02	0.00	0.75
CBD-11-07-15-Br-18	57	6.61	0.00	6.16	0.00	0.00	0.69
CB-01-11-Apt-01	58	38.92	0.01	48.32	0.00	0.00	2.75
CB-01-11-Apt-02	59	38.57	0.02	48.32	0.00	0.00	2.84
CB-01-11-Apt-03	60	41.02	0.00	50.99	0.00	0.00	3.39
CB-01-11-Apt-04	61	40.94	0.02	51.17	0.00	0.00	3.30
CB-01-11-Apt-05	62	42.47	0.00	54.88	0.00	0.00	3.89
CB-01-11-Apt-06	63	42.85	0.00	54.96	0.00	0.00	3.62
CB-01-11-Unk-01	64	2.97	0.09	4.68	0.20	0.00	1.27
CB-01-11-Unk-02	65	2.58	0.02	8.35	0.08	0.00	1.96
CB-01-11-Unk-03	66	0.00	0.00	1.09	0.01	0.09	0.00
CB-01-11-Apt-07	67	39.67	0.01	49.46	0.00	0.00	2.51
CB-01-11-Apt-08	68	40.25	0.00	49.50	0.03	0.00	2.60
CB-01-11-Apt-09	69	41.04	0.00	51.16	0.00	0.00	2.44
CB-01-11-Apt-10	70	39.18	0.02	49.37	0.00	0.00	2.13
CB-01-11-Apt-11	71	40.60	0.02	47.98	0.03	0.00	2.60
CB-01-11-Apt-12	72	44.45	0.01	55.80	0.00	0.00	2.29
CB-01-11-Apt-13	73	43.42	0.00	57.10	0.00	0.00	2.37
CBD-11-07-17-Br-01	74	19.82	0.02	28.69	0.09	0.00	1.80
CBD-11-07-17-Br-02	75	20.34	0.01	29.89	0.18	0.00	2.16
CBD-11-07-17-Br-03	76	23.26	0.02	33.14	0.25	0.00	2.06
CBD-11-07-17-Unk-01	77	14.45	0.03	9.58	0.06	0.00	1.17
CBD-11-07-17-Unk-02	78	3.28	0.01	7.09	0.01	0.00	1.18
CBD-11-07-17-Unk-03	79	4.84	0.02	7.21	0.01	0.00	1.08
CBD-11-07-17-Br-04	80	22.25	0.02	27.30	0.17	0.00	1.57
CBD-11-07-17-Br-05	81	18.46	0.02	28.01	0.11	0.00	1.88
CBD-11-07-17-Br-06	82	16.10	0.06	23.44	0.13	1.94	1.27
CBD-11-07-17-Mz-01	83	24.11	0.02	9.26	0.05	0.00	0.83
CBD-11-07-17-Mz-02	84	21.84	0.04	15.35	0.10	0.00	1.23
CBD-11-07-17-W2-02	85	25.25	0.02	21.86	0.10	0.00	1.36
CB-01-15-Br-01	86	14.04	0.02	3.76	0.00	0.45	0.29
CB-01-15-Br-02	87	12.78	0.07	3.65	0.00	0.43	0.40
CB-01-15-Br-03	88	12.78	0.17	4.17	0.00	0.63	0.40
CB-01-15-Apt-01	89	1.14	0.08	18.20	0.08	0.00	0.33
CB-01-15-Apt-01	90	37.45	0.00	41.84	0.23	0.00	2.72
CB-01-15-Apt-03	90	0.44	0.00	11.23	0.00	0.00	
CB-01-15-Apt-03 CB-01-15-Ukn-01	91	9.20	0.22	12.05	0.08	0.00	0.07 1.79
CB-01-15-0kn-01	93	2.51	0.07	8.49	0.03		1.79
CD-01-12-0KII-07	93	2.51	0.04	0.49	0.00	0.00	1.0∪

Group 5 Results

Comment	No.	P2O5	K20	CaO	SO3	ZrO2	F
CB-01-15-Apt-03	94	36.01	0.00	37.96	0.00	0.00	2.14
CB-01-15-Apt-04	95	33.09	0.00	35.01	0.00	0.00	2.15
CB-01-15-Apt-05	96	37.79	0.00	41.29	0.00	0.00	2.21
CB-01-15-Apt-06	97	32.42	0.02	33.09	0.05	0.00	2.79
CB-01-15-Br-04	98	2.01	0.03	6.82	0.04	0.00	2.15
CB-01-15-Br-05	99	2.40	0.00	9.15	0.00	0.00	1.27
CB-01-15-Br-06	100	6.34	0.00	11.79	0.00	0.00	1.39
CB-01-15-Br-07	101	6.80	0.01	11.65	0.01	0.00	1.46
CB-01-15-Br-08	102	3.03	0.05	7.03	0.09	0.00	2.17
CB-01-15-Br-09	103	7.12	0.08	5.90	0.20	0.00	0.81
CB-01-15-Ukn(Y)-01	104	0.01	0.00	10.44	0.00	0.04	0.00
CB-01-15-Ukn(Y)-02	105	0.00	0.02	11.17	0.00	0.16	0.00
CB-01-15-Ukn(Y)-03	106	0.00	0.00	10.38	0.00	0.08	0.00
CB-01-07-15-Unk-01	107	2.66	0.46	6.87	0.59	3.17	0.11
CB-01-15-Ukn(Y)-05	108	0.03	0.01	1.82	0.00	0.00	0.05
CB-01-15-Ukn(Y)-06	109	0.05	0.01	4.34	0.00	0.00	0.00
CB-01-15-Ukn(Y)-07	110	5.86	0.34	5.90	0.39	5.49	0.28
CB-01-15-Br-10	111	14.28	0.11	4.42	0.10	0.00	0.43
CB-01-15-Br-11	112	14.21	0.14	3.93	2.55	0.00	0.26

Group 5 Results						
Comment	MgO	Al203	BaO	FeO	MnO	Ce2O3
CBD-11-07-21-Apt-01	0.01	0.00	0.06	0.43	0.00	3.50
CBD-11-07-21-Apt-02	0.00	0.03	0.00	0.37	0.00	5.60
CBD-11-07-21-Apt-03	0.00	8.16	0.01	3.94	0.27	20.06
CBD-11-07-21-Apt-04	0.00	0.01	0.13	0.37	0.00	5.16
CBD-11-07-21-Apt-05	0.00	0.00	0.00	0.47	0.00	4.80
CBD-11-07-21-Apt-06	0.00	0.00	0.08	0.41	0.05	3.61
CBD-11-07-21-Unknown-01	0.00	0.01	0.13	0.11	0.00	31.66
CBD-11-07-21-Unknown-02	0.04	0.05	0.51	0.84	0.55	28.31
CBD-11-07-21-Unknown-03	0.01	1.15	0.25	4.18	0.29	25.96
CBD-11-07-21-Unknown-04	0.00	0.00	0.09	0.02	0.00	31.36
MRGC-Br-01	0.07	1.58	0.04	2.15	3.93	18.93
MRGC-Br-02	0.00	0.00	0.00	3.93	3.92	14.59
MRGC-Br-03	0.00	0.01	0.06	4.22	3.72	14.21
MRGC-Br-04	0.00	0.02	0.02	4.17	3.81	14.26
MRGC-Br-05	0.00	0.02	0.00	4.13	4.06	14.13
MRGC-Br-06	0.00	0.03	0.00	3.98	3.60	14.39
MRGC-Br-07	0.00	0.00	0.00	1.40	3.78	0.25
MRGC-Br-08	0.00	0.24	0.00	4.18	4.00	14.71
MRGC-Br-09	0.00	0.00	0.01	1.22	3.84	0.21
MRGC-Br-10	0.00	0.01	0.02	4.40	4.94	14.74
MRGC-Br-11	0.00	0.00	0.00	4.13	4.39	15.00
MRGC-Br-12	0.00	0.00	0.00	4.33	4.90	15.39
MRGC-Br-13	0.00	0.00	0.00	4.10	4.75	13.99
MRGC-Br-14	0.00	0.07	0.00	4.93	5.15	15.62
MRGC-Br-15	0.00	0.01	0.17	3.56	6.54	17.36
MRGC-Br-16	0.05	0.57	0.04	4.60	6.20	16.68
MRGC-Br-17	0.04	0.71	0.05	3.42	4.07	19.18
MRGC-Br-18	0.02	1.21	0.04	4.18	2.26	17.72
MRGC-Br-19	0.01	0.09	0.00	2.97	3.13	19.22
MRGC-Br-20	0.00	0.01	0.00	4.00	3.93	14.38
MRGC-Br-21	0.01	0.02	0.02	4.12	3.78	13.95
MRGC-Br-22	0.06	0.76	0.02	3.72	4.05	19.69
CBD-11-07-15-Br-01	0.00	0.15	0.07	0.33	0.08	13.64
CBD-11-07-15-Br-02	0.00	0.12	0.20	0.24	0.02	19.90
CBD-11-07-15-Br-03	0.04	0.12	0.02	0.17	0.06	20.00
CBD-11-07-15-Br-04	0.00	0.10	0.16	0.22	0.08	21.46
CBD-11-07-15-Br-05	0.00	0.15	0.18	0.32	0.08	18.20
CBD-11-07-15-Br-06	0.00	0.08	0.12	0.15	0.05	17.48
CBD-11-07-15-Br-07	0.00	0.06	0.00	0.18	0.01	15.80
CBD-11-07-15-Br-08	0.00	0.05	0.07	0.18	0.04	17.75
CBD-11-07-15-Br-09	0.00	0.10	0.10	0.23	0.13	20.70
CBD-11-07-15-Br-10	0.00	0.43	0.08	3.06	0.46	20.66
CBD-11-07-15-Br-11	0.00	0.87	0.03	1.71	0.30	21.36
CBD-11-07-15-Br-12	0.00	0.11	0.12	0.40	0.18	7.47
CBD-11-07-15-Br-13	0.00	0.10	0.04	0.26	0.16	9.30

Group 5 Results						
Comment	MgO	Al203	BaO	FeO	MnO	Ce2O3
CBD-11-07-15-Apt-01	0.00	0.00	0.05	0.00	0.00	11.89
CBD-11-07-15-Apt-02	0.00	0.00	0.02	0.02	0.00	12.57
CBD-11-07-15-Apt-03	0.00	0.00	0.00	0.02	0.00	12.95
CBD-11-07-15-Apt-04	0.00	0.00	0.03	0.01	0.00	12.02
CBD-11-07-15-Br-14	0.00	0.12	0.04	0.38	0.11	12.71
CBD-11-07-15-Br-15	0.00	0.06	0.00	0.15	0.04	15.40
CBD-11-07-15-Br-16	0.00	0.93	0.00	1.82	0.21	21.96
CBD-11-07-15-Br-17	0.00	0.81	0.05	2.10	0.33	20.83
CBD-11-07-15-Br-18	0.00	0.77	0.07	1.93	0.17	23.09
CB-01-11-Apt-01	0.00	0.01	0.04	0.13	0.00	3.34
CB-01-11-Apt-02	0.00	0.01	0.00	0.06	0.00	3.58
CB-01-11-Apt-03	0.00	0.00	0.05	0.18	0.02	2.69
CB-01-11-Apt-04	0.00	0.00	0.12	0.12	0.00	2.59
CB-01-11-Apt-05	0.01	0.00	0.68	0.12	0.00	0.38
CB-01-11-Apt-06	0.00	0.00	0.25	0.44	0.00	0.39
CB-01-11-Unk-01	0.00	0.27	0.25	1.08	0.18	27.30
CB-01-11-Unk-02	0.00	0.02	0.16	0.53	0.08	28.50
CB-01-11-Unk-03	0.01	11.02	0.00	17.34	0.07	0.01
CB-01-11-Apt-07	0.00	0.00	0.00	0.39	0.01	3.59
CB-01-11-Apt-08	0.00	1.21	0.12	0.27	0.02	3.05
CB-01-11-Apt-09	0.01	0.00	0.09	0.18	0.00	2.12
CB-01-11-Apt-10	0.00	0.02	0.03	0.47	0.03	2.78
CB-01-11-Apt-11	0.00	0.00	0.03	0.45	0.00	0.00
CB-01-11-Apt-12	0.00	0.00	1.49	0.31	0.02	0.10
CB-01-11-Apt-13	0.00	0.00	0.35	0.26	0.04	0.00
CBD-11-07-17-Br-01	0.01	0.18	0.00	0.26	0.29	14.89
CBD-11-07-17-Br-02	0.00	0.17	0.08	0.23	0.30	13.73
CBD-11-07-17-Br-03	0.00	0.20	0.06	0.19	0.26	12.55
CBD-11-07-17-Unk-01	0.00	0.55	0.05	0.90	0.86	24.85
CBD-11-07-17-Unk-02	0.00	0.95	0.00	1.02	1.33	26.49
CBD-11-07-17-Unk-03	0.00	1.00	0.00	1.13	1.05	26.70
CBD-11-07-17-Br-04	0.00	0.19	0.00	0.35	0.05	15.41
CBD-11-07-17-Br-05	0.00	0.24	0.17	0.31	0.17	14.58
CBD-11-07-17-Br-06	0.00	0.23	0.00	0.28	0.15	14.36
CBD-11-07-17-Mz-01	0.00	0.02	0.06	0.13	0.00	24.63
CBD-11-07-17-Mz-02	0.00	0.11	0.09	0.48	0.11	21.45
CBD-11-07-17-Br-09	0.00	0.10	0.00	0.22	0.00	18.60
CB-01-15-Br-01	0.01	0.77	0.09	8.24	2.72	17.60
CB-01-15-Br-02	0.05	0.95	0.00	7.86	3.02	16.77
CB-01-15-Br-03	0.00	0.67	0.09	7.30	2.31	16.51
CB-01-15-Apt-01	0.01	0.32	0.00	2.22	2.62	0.22
CB-01-15-Apt-02	0.00	0.02	0.06	0.24	0.11	6.05
CB-01-15-Apt-03	0.02	0.56	0.00	5.89	6.43	1.18
CB-01-15-Ukn-01	0.00	0.26	0.02	0.50	0.57	19.64
CB-01-15-Ukn-02	0.00	0.00	0.00	0.03	0.04	25.89

Group 5 Results

Comment	MgO	Al203	BaO	FeO	MnO	Ce2O3
CB-01-15-Apt-03	0.00	0.00	0.11	0.00	0.00	8.52
CB-01-15-Apt-04	0.00	0.02	0.01	0.02	0.00	10.24
CB-01-15-Apt-05	0.00	0.00	0.00	0.00	0.00	6.62
CB-01-15-Apt-06	0.00	0.00	0.10	0.00	0.00	11.38
CB-01-15-Br-04	0.00	0.14	0.00	0.03	0.00	25.78
CB-01-15-Br-05	0.00	0.00	0.09	0.00	0.00	27.23
CB-01-15-Br-06	0.00	0.00	0.12	0.02	0.00	25.31
CB-01-15-Br-07	0.00	0.00	0.11	0.01	0.00	25.75
CB-01-15-Br-08	0.00	0.09	0.00	0.00	0.00	25.87
CB-01-15-Br-09	0.00	0.10	0.10	0.04	0.04	24.40
CB-01-15-Ukn(Y)-01	0.00	0.00	0.00	1.12	2.02	0.37
CB-01-15-Ukn(Y)-02	0.00	0.00	0.06	1.29	2.13	0.06
CB-01-15-Ukn(Y)-03	0.00	0.00	0.00	1.18	1.60	0.00
CB-01-07-15-Unk-01	0.00	0.27	0.00	3.32	1.22	4.98
CB-01-15-Ukn(Y)-05	0.00	0.04	0.00	0.10	0.29	0.01
CB-01-15-Ukn(Y)-06	0.00	0.00	0.00	0.45	0.82	0.24
CB-01-15-Ukn(Y)-07	0.00	0.55	0.00	3.13	1.54	9.67
CB-01-15-Br-10	0.03	0.45	0.05	4.31	3.20	18.59
CB-01-15-Br-11	0.00	0.62	0.02	6.75	4.15	17.52

Group 5 Results						
Comment	La2O3	Nd2O3	Pr2O3	Sm2O3	Gd2O3	Eu2O3
CBD-11-07-21-Apt-01	1.50	1.69	0.47	0.31	0.22	0.00
CBD-11-07-21-Apt-02	2.57	2.75	0.74	0.43	0.45	0.13
CBD-11-07-21-Apt-03	9.73	7.85	1.75	1.10	1.52	0.17
CBD-11-07-21-Apt-04	1.83	4.79	0.50	0.15	0.49	1.51
CBD-11-07-21-Apt-05	2.29	1.59	0.54	0.35	0.00	0.00
CBD-11-07-21-Apt-06	1.85	1.65	0.47	0.20	0.29	0.01
CBD-11-07-21-Unknown-01	16.43	11.00	2.75	1.15	1.65	0.01
CBD-11-07-21-Unknown-02	13.73	10.87	3.05	1.19	1.71	0.00
CBD-11-07-21-Unknown-03	13.31	8.49	2.40	0.98	1.56	0.00
CBD-11-07-21-Unknown-04	15.82	12.07	2.81	1.35	1.83	0.08
MRGC-Br-01	9.53	9.16	2.10	1.31	1.52	0.00
MRGC-Br-02	6.89	7.37	1.61	1.32	1.29	0.00
MRGC-Br-03	6.46	7.37	1.68	1.24	1.35	0.07
MRGC-Br-04	6.62	7.83	1.65	1.42	1.36	0.02
MRGC-Br-05	6.84	7.41	1.76	1.25	1.40	0.01
MRGC-Br-06	6.21	7.38	1.71	1.09	1.24	0.06
MRGC-Br-07	0.21	0.57	0.21	0.54	1.08	0.06
MRGC-Br-08	6.63	7.49	1.60	1.27	1.21	0.03
MRGC-Br-09	0.01	0.46	0.00	0.38	1.01	0.16
MRGC-Br-10	10.97	4.22	1.03	0.52	1.15	0.12
MRGC-Br-11	9.29	5.45	1.31	0.88	1.36	0.00
MRGC-Br-12	11.53	3.97	1.04	0.45	1.18	0.05
MRGC-Br-13	11.06	4.39	1.10	0.66	1.21	0.09
MRGC-Br-14	9.84	5.50	1.41	1.08	1.60	0.03
MRGC-Br-15	13.64	4.18	1.36	0.49	1.22	0.01
MRGC-Br-16	11.56	5.08	1.53	0.82	1.44	0.00
MRGC-Br-17	16.15	4.71	1.60	0.56	1.29	0.01
MRGC-Br-18	12.87	5.63	1.40	0.77	1.26	0.10
MRGC-Br-19	16.71	5.60	1.39	0.78	1.53	0.02
MRGC-Br-20	7.59	6.26	1.35	1.06	1.40	0.05
MRGC-Br-21	7.18	6.55	1.59	1.14	1.31	0.08
MRGC-Br-22	16.83	4.73	1.04	0.41	1.31	0.21
CBD-11-07-15-Br-01	4.47	8.74	1.79	1.77	1.85	0.26
CBD-11-07-15-Br-02	7.44	11.07	2.39	1.91	2.07	0.10
CBD-11-07-15-Br-03	7.26	11.49	2.25	2.05	2.25	0.22
CBD-11-07-15-Br-04	8.54	11.28	2.18	1.83	2.27	0.12
CBD-11-07-15-Br-05	6.47	10.02	2.25	1.79	1.98	0.05
CBD-11-07-15-Br-06	6.29	10.41	2.30	1.86	2.09	0.25
CBD-11-07-15-Br-07	5.59	9.55	2.22	1.67	1.72	0.25
CBD-11-07-15-Br-08	7.06	9.61	2.19	1.68	1.83	0.23
CBD-11-07-15-Br-09	7.95	10.81	2.58	2.12	2.31	0.33
CBD-11-07-15-Br-10	6.64	14.92	3.12	3.36	3.67	0.23
CBD-11-07-15-Br-11	7.52	14.45	3.07	2.83	3.30	0.28
CBD-11-07-15-Br-12	1.64	6.75	1.16	1.88	1.76	0.39
CBD-11-07-15-Br-13	2.93	6.94	1.52	1.58	1.73	1.26

1.17 1.47 1.56 1.36 1.81 1.72 2.78 3.54 3.32 0.38 0.42	0.05 0.04 0.12 0.09 0.23 0.37 0.45 0.33 0.00
1.47 1.56 1.36 1.81 1.72 2.78 3.54 3.32 0.38 0.42	0.04 0.12 0.09 0.23 0.37 0.37 0.45 0.33 0.00
1.56 1.36 1.81 1.72 2.78 3.54 3.32 0.38 0.42	0.12 0.09 0.23 0.37 0.37 0.45 0.33 0.00
1.36 1.81 1.72 2.78 3.54 3.32 0.38 0.42	0.09 0.23 0.37 0.37 0.45 0.33 0.00
1.81 1.72 2.78 3.54 3.32 0.38 0.42	0.23 0.37 0.37 0.45 0.33 0.00
1.72 2.78 3.54 3.32 0.38 0.42	0.37 0.37 0.45 0.33 0.00
2.78 3.54 3.32 0.38 0.42	0.37 0.45 0.33 0.00
3.54 3.32 0.38 0.42	0.45 0.33 0.00
3.32 0.38 0.42	0.33 0.00
0.38 0.42	0.00
0.42	
	0.09
0.21	0.00
0.21	0.19
0.26	0.00
0.08	0.00
0.09	0.00
1.98	0.05
2.05	0.06
0.00	0.00
0.34	0.00
0.26	0.06
0.13	0.00
0.23	0.00
0.31	0.00
0.00	1.69
0.36	0.00
1.23	0.00
1.36	0.00
1.08	0.08
2.43	0.00
2.19	0.00
2.43	0.00
1.32	0.03
1.31	0.08
1.25	0.01
1.74	0.00
2.10	0.09
1.73	0.20
1.31	0.07
1.21	0.01
1.52	0.01
0.22	0.02
0.82	0.00
0.24	0.08
1.88	0.00
2.34	0.00
	0.26 0.08 0.09 1.98 2.05 0.00 0.34 0.26 0.13 0.23 0.31 0.00 0.36 1.23 1.36 1.08 2.43 2.19 2.43 1.32 1.31 1.25 1.74 2.10 1.73 1.31 1.25 1.74 2.10 1.73 1.31 1.21 1.52 0.22 0.82 0.24 1.88

Group 5 Results

Comment	La2O3	Nd2O3	Pr2O3	Sm2O3	Gd2O3	Eu2O3
CB-01-15-Apt-03	2.95	4.67	0.98	0.97	1.08	0.05
CB-01-15-Apt-04	4.12	5.61	1.12	1.21	1.22	0.04
CB-01-15-Apt-05	2.82	4.20	0.93	0.78	0.66	0.00
CB-01-15-Apt-06	5.49	5.77	1.20	1.15	1.37	0.07
CB-01-15-Br-04	12.38	13.16	3.20	2.18	2.53	0.02
CB-01-15-Br-05	11.51	13.27	3.28	2.22	2.40	0.06
CB-01-15-Br-06	11.24	12.33	2.87	2.09	2.48	0.18
CB-01-15-Br-07	11.82	11.88	2.62	1.92	2.31	0.16
CB-01-15-Br-08	10.81	13.63	3.22	2.10	2.45	0.00
CB-01-15-Br-09	10.03	13.53	3.13	2.36	2.53	0.12
CB-01-15-Ukn(Y)-01	0.00	0.56	0.13	0.52	1.12	0.06
CB-01-15-Ukn(Y)-02	0.02	0.19	0.00	0.20	0.48	0.03
CB-01-15-Ukn(Y)-03	0.14	0.20	0.11	0.23	0.69	0.08
CB-01-07-15-Unk-01	2.29	2.69	0.62	0.47	0.56	0.21
CB-01-15-Ukn(Y)-05	0.01	0.25	0.10	0.33	0.89	0.00
CB-01-15-Ukn(Y)-06	0.05	0.38	0.02	0.35	0.75	0.07
CB-01-15-Ukn(Y)-07	4.64	5.15	1.30	0.80	1.05	0.05
CB-01-15-Br-10	9.33	8.24	1.90	1.13	1.44	0.05
CB-01-15-Br-11	9.21	7.75	1.74	1.17	1.37	0.06

Group 5 Results							
Comment	Dy2O3	Cl	TiO2	SrO	ThO2	UO2	PbO
CBD-11-07-21-Apt-01	0.15	0.00	0.00	0.25	0.03	0.01	0.04
CBD-11-07-21-Apt-02	0.15	0.00	0.00	0.48	0.01	0.00	0.08
CBD-11-07-21-Apt-03	0.21	0.11	0.00	0.06	0.90	0.06	0.00
CBD-11-07-21-Apt-04	0.00	0.00	0.00	0.58	0.00	0.35	0.21
CBD-11-07-21-Apt-05	0.07	0.00	0.00	0.29	0.05	0.00	0.00
CBD-11-07-21-Apt-06	0.09	0.00	0.00	0.34	0.03	0.00	0.01
CBD-11-07-21-Unknown-01	0.21	0.02	0.00	0.12	0.49	0.04	0.00
CBD-11-07-21-Unknown-02	0.09	0.07	0.00	0.00	3.66	0.15	0.00
CBD-11-07-21-Unknown-03	0.23	0.12	0.00	0.00	2.13	0.18	0.01
CBD-11-07-21-Unknown-04	0.00	0.02	0.00	0.22	0.27	0.04	0.00
MRGC-Br-01	0.49	0.02	0.00	0.05	0.58	0.26	0.03
MRGC-Br-02	0.26	0.01	0.00	0.00	0.50	0.29	0.05
MRGC-Br-03	0.34	0.01	0.00	0.00	0.49	0.26	0.00
MRGC-Br-04	0.35	0.02	0.00	0.02	0.47	0.37	0.00
MRGC-Br-05	0.37	0.01	0.00	0.04	0.50	0.31	0.06
MRGC-Br-06	0.39	0.01	0.00	0.00	0.79	0.19	0.10
MRGC-Br-07	2.32	0.01	0.01	0.00	0.00	0.00	0.03
MRGC-Br-08	0.38	0.01	0.00	0.00	0.43	0.27	0.00
MRGC-Br-09	1.95	0.01	0.00	0.00	0.00	0.00	0.00
MRGC-Br-10	0.53	0.00	0.00	0.05	1.27	0.18	0.04
MRGC-Br-11	0.43	0.01	0.00	0.02	0.85	0.07	0.03
MRGC-Br-12	0.47	0.00	0.00	0.02	1.27	0.23	0.04
MRGC-Br-13	0.51	0.00	0.00	0.00	1.15	0.09	0.08
MRGC-Br-14	0.64	0.01	0.00	0.00	2.09	0.00	0.17
MRGC-Br-15	0.34	0.01	0.00	0.06	1.33	0.19	0.01
MRGC-Br-16	0.69	0.00	0.00	0.00	2.31	0.00	0.00
MRGC-Br-17	0.27	0.01	0.00	0.05	1.02	0.16	0.00
MRGC-Br-18	0.46	0.02	0.00	0.00	1.16	0.16	0.02
MRGC-Br-19	0.62	0.01	0.00	0.02	0.85	0.18	0.08
MRGC-Br-20	0.22	0.01	0.00	0.00	0.46	0.20	0.09
MRGC-Br-21	0.39	0.01	0.00	0.01	0.65	0.20	0.04
MRGC-Br-22	0.25	0.01	0.00	0.04	1.27	0.08	0.00
CBD-11-07-15-Br-01	0.70	0.29	0.00	0.18	0.19	0.01	0.00
CBD-11-07-15-Br-02	0.64	0.17	0.00	0.26	0.22	0.05	0.00
CBD-11-07-15-Br-03	0.65	0.14	0.00	0.19	0.11	0.07	0.00
CBD-11-07-15-Br-04	0.42	0.13	0.00	0.27	0.21	0.09	0.00
CBD-11-07-15-Br-05	0.49	0.17	0.00	0.23	0.15	0.00	0.00
CBD-11-07-15-Br-06	0.69	0.13	0.00	0.23	0.21	0.03	0.00
CBD-11-07-15-Br-07	0.57	0.16	0.00	0.16	0.12	0.01	0.00
CBD-11-07-15-Br-08	0.45	0.14	0.00	0.23	0.22	0.02	0.08
CBD-11-07-15-Br-09	1.04	0.07	0.00	0.19	0.04	0.04	0.00
CBD-11-07-15-Br-10	1.64	0.02	0.00	0.15	0.24	0.10	0.00
CBD-11-07-15-Br-11	1.11	0.05	0.00	0.27	0.35	0.05	0.00
CBD-11-07-15-Br-12	0.92	0.16	0.00	0.15	0.03	0.00	0.00
CBD-11-07-15-Br-13	0.76	0.18	0.00	0.09	0.03	0.00	0.00

Group 5 Results							
Comment	Dy2O3	Cl	TiO2	SrO	ThO2	UO2	PbO
CBD-11-07-15-Apt-01	0.47	0.01	0.00	0.22	0.07	0.07	0.00
CBD-11-07-15-Apt-02	0.21	0.01	0.00	0.24	0.14	0.01	0.01
CBD-11-07-15-Apt-03	0.27	0.01	0.00	0.31	0.14	0.04	0.00
CBD-11-07-15-Apt-04	0.18	0.01	0.00	0.29	0.11	0.03	0.00
CBD-11-07-15-Br-14	0.92	0.15	0.00	0.19	0.17	0.03	0.00
CBD-11-07-15-Br-15	0.53	0.17	0.00	0.20	0.13	0.02	0.03
CBD-11-07-15-Br-16	0.96	0.05	0.00	0.15	0.27	0.05	0.00
CBD-11-07-15-Br-17	1.12	0.05	0.00	0.12	0.28	0.03	0.00
CBD-11-07-15-Br-18	0.74	0.07	0.00	0.11	0.16	0.09	0.00
CB-01-11-Apt-01	0.15	0.00	0.00	0.08	0.14	0.07	0.15
CB-01-11-Apt-02	0.23	0.00	0.00	0.25	0.00	0.02	0.27
CB-01-11-Apt-03	0.05	0.00	0.00	0.22	0.00	0.00	0.22
CB-01-11-Apt-04	0.16	0.00	0.00	0.15	0.01	0.00	0.00
CB-01-11-Apt-05	0.00	0.00	0.00	0.10	0.00	0.00	0.00
CB-01-11-Apt-06	0.06	0.00	0.01	0.02	0.02	0.02	0.02
CB-01-11-Unk-01	0.36	0.09	0.00	0.04	2.02	0.22	0.00
CB-01-11-Unk-02	0.35	0.15	0.00	0.03	1.15	0.29	0.02
CB-01-11-Unk-03	0.00	0.00	0.21	0.00	0.01	0.00	0.04
CB-01-11-Apt-07	0.15	0.00	0.00	0.28	0.05	0.00	0.02
CB-01-11-Apt-08	0.02	0.00	0.00	0.00	0.06	0.32	0.04
CB-01-11-Apt-09	0.00	0.00	0.00	0.00	0.00	0.00	0.27
CB-01-11-Apt-10	0.09	0.01	0.00	0.00	0.00	0.00	16.54
CB-01-11-Apt-11	0.10	0.00	0.00	2.61	0.00	0.00	0.19
CB-01-11-Apt-12	2.50	0.00	0.00	0.03	0.00	0.00	0.02
CB-01-11-Apt-13	0.14	0.00	0.00	0.00	0.00	0.00	0.03
CBD-11-07-17-Br-01	0.19	0.10	0.00	0.66	0.05	0.11	0.00
CBD-11-07-17-Br-02	0.28	0.09	0.00	0.86	0.18	0.04	0.00
CBD-11-07-17-Br-03	0.15	0.14	0.00	1.18	0.17	0.06	0.00
CBD-11-07-17-Unk-01	0.61	0.04	0.00	0.79	0.23	0.08	0.00
CBD-11-07-17-Unk-02	0.43	0.10	0.00	0.68	0.07	0.03	0.00
CBD-11-07-17-Unk-03	0.45	0.12	0.00	0.38	0.17	0.08	0.00
CBD-11-07-17-Br-04	0.10	0.26	0.00	0.15	0.30	0.03	0.00
CBD-11-07-17-Br-05	0.36	0.23	0.00	0.16	0.15	0.09	0.00
CBD-11-07-17-Br-06	0.37	0.19	0.00	0.08	0.80	0.48	0.00
CBD-11-07-17-Mz-01	0.39	0.05	0.00	0.31	0.54	0.04	0.00
CBD-11-07-17-Mz-02	0.34	0.10	0.00	0.25	0.72	0.08	0.00
CBD-11-07-17-Br-09	0.32	0.14	0.00	0.29	0.34	0.05	0.02
CB-01-15-Br-01	0.12	0.02	0.00	0.05	1.21	0.28	0.00
CB-01-15-Br-02	0.41	0.02	0.00	0.02	0.77	0.31	0.04
CB-01-15-Br-03	0.51	0.02	0.00	0.05	0.91	0.24	0.00
CB-01-15-Apt-01	0.53	0.01	0.00	0.00	0.21	0.00	0.00
CB-01-15-Apt-02	0.23	0.01	0.00	0.12	0.06	0.02	0.01
CB-01-15-Apt-03	0.32	0.01	0.00	0.00	0.56	0.03	0.10
CB-01-15-Ukn-01	0.64	0.03	0.00	0.57	1.63	0.36	0.00
CB-01-15-Ukn-02	0.80	0.05	0.00	0.04	1.65	0.63	0.11

Group 5 Results

Comment	Dy2O3	Cl	TiO2	SrO	ThO2	UO2	PbO
CB-01-15-Apt-03	0.28	0.01	0.00	0.25	0.00	0.04	0.00
CB-01-15-Apt-04	0.40	0.00	0.00	0.24	0.03	0.04	0.09
CB-01-15-Apt-05	0.40	0.01	0.00	0.22	0.00	0.06	0.00
CB-01-15-Apt-06	0.39	0.01	0.00	0.14	0.05	0.12	0.00
CB-01-15-Br-04	0.65	0.03	0.00	0.29	1.33	0.25	0.03
CB-01-15-Br-05	0.73	0.02	0.00	0.00	1.31	0.58	0.01
CB-01-15-Br-06	0.78	0.04	0.00	0.11	0.85	0.48	0.00
CB-01-15-Br-07	0.58	0.01	0.00	0.00	0.80	0.43	0.02
CB-01-15-Br-08	0.79	0.02	0.00	0.16	1.19	0.51	0.02
CB-01-15-Br-09	0.77	0.01	0.00	0.15	1.43	0.38	0.00
CB-01-15-Ukn(Y)-01	2.07	0.00	0.00	0.00	0.03	0.00	0.02
CB-01-15-Ukn(Y)-02	1.78	0.00	0.00	0.00	0.00	0.00	0.06
CB-01-15-Ukn(Y)-03	2.04	0.01	0.00	0.00	0.01	0.01	0.00
CB-01-07-15-Unk-01	0.37	0.02	0.00	0.00	5.21	0.87	0.12
CB-01-15-Ukn(Y)-05	2.70	0.00	0.00	0.00	0.00	0.00	0.02
CB-01-15-Ukn(Y)-06	2.59	0.00	0.00	0.00	0.00	0.00	0.04
CB-01-15-Ukn(Y)-07	0.40	0.11	0.01	0.00	1.80	0.54	0.01
CB-01-15-Br-10	0.56	0.02	0.00	0.00	3.41	0.24	0.11
CB-01-15-Br-11	0.33	0.02	0.00	0.04	1.87	0.37	0.05

Na2O	SiO2	Y2O3	Total	-O=F	Total
			101.89	1.48	100.41
			101.99		100.49
		0.57	98.58		97.93
1.84	0.34	0.08	107.39	1.34	106.04
1.38	0.99	0.05	100.82	1.56	99.25
1.38	1.03	0.05	94.49	1.45	93.04
1.32	18.11	0.23	98.56	1.10	97.46
2.72	17.78	0.30	95.64	1.42	94.22
4.24	24.12	0.27	98.41	1.01	97.40
1.81	16.49	0.18	99.38	1.16	98.22
0.57	19.06	2.77	96.68	0.07	96.62
0.35	29.78	3.53	91.13	0.01	91.12
0.83	29.82	3.26	92.23	0.05	92.18
0.89	30.02	3.55	92.65	0.02	92.63
0.85	29.91	3.40	92.01	0.00	92.01
0.70	29.78	3.37	92.06	0.02	92.04
11.52	50.90	14.59	96.03	0.01	96.02
0.30	29.55	3.39	91.23	0.02	91.20
13.50	49.37	12.61	94.15	0.00	94.15
2.38	30.56	2.59	95.02	0.00	95.02
1.87	30.34	3.41	94.34	0.02	94.32
2.37	30.76	2.22	95.58	0.04	95.54
1.68	29.63	2.95	93.14	0.03	93.11
0.64	27.98	3.85	93.08	0.06	93.02
0.72	18.76	2.31	94.91	0.06	94.86
0.50	24.41	2.94	94.00	0.04	93.95
0.11	16.73	2.59	93.90	0.01	93.89
0.05	22.88	3.83	92.95	0.01	92.95
0.00	14.85	3.31	93.17	0.03	93.14
0.29	28.49	2.57	89.67	0.03	89.64
0.55	30.31	2.74	90.76	0.07	90.70
0.08	17.27	2.72	95.30	0.04	95.26
0.29	11.84	2.36	98.66	0.97	97.69
0.23	10.83	2.85	100.71	0.65	100.06
0.22	12.70	3.94	100.18	0.86	99.32
0.27	11.17	2.97	101.29	0.75	100.53
0.27	12.16	2.99	101.72	0.70	101.02
0.35	11.13	3.14	98.53	0.82	97.71
0.40	10.15	2.22	101.36	1.04	100.32
0.40	9.02	1.93	102.60	1.09	101.51
0.44	11.05	3.97	104.44	0.86	103.58
0.38	21.52	5.62	96.93	0.39	96.54
0.22	22.24	4.91	98.24	0.36	97.88
0.73	10.89	4.41	99.90	1.29	98.61
0.24	11.42	3.40	98.48	1.04	97.43
	1.02 1.92 4.82 1.84 1.38 1.38 1.32 2.72 4.24 1.81 0.57 0.35 0.83 0.89 0.85 0.70 11.52 0.30 13.50 2.38 1.87 2.37 1.68 0.64 0.72 0.50 0.11 0.05 0.00 0.29 0.55 0.08 0.29 0.23 0.22 0.27 0.27 0.27 0.35 0.40 0.40 0.44 0.38 0.22 0.73	1.02 0.86 1.92 0.70 4.82 30.49 1.84 0.34 1.38 1.03 1.32 18.11 2.72 17.78 4.24 24.12 1.81 16.49 0.57 19.06 0.35 29.78 0.83 29.82 0.89 30.02 0.85 29.91 0.70 29.78 11.52 50.90 0.30 29.55 13.50 49.37 2.38 30.56 1.87 30.34 2.37 30.76 1.68 29.63 0.64 27.98 0.72 18.76 0.50 24.41 0.11 16.73 0.05 22.88 0.00 14.85 0.29 28.49 0.55 30.31 0.08 17.27 0.27 11.17 0.27 12.16 0.35 11.13 </td <td>1.02 0.86 0.08 1.92 0.70 0.13 4.82 30.49 0.57 1.84 0.34 0.08 1.38 0.99 0.05 1.38 1.03 0.05 1.32 18.11 0.23 2.72 17.78 0.30 4.24 24.12 0.27 1.81 16.49 0.18 0.57 19.06 2.77 0.35 29.78 3.53 0.83 29.82 3.26 0.89 30.02 3.55 0.85 29.91 3.40 0.70 29.78 3.37 11.52 50.90 14.59 0.30 29.55 3.39 13.50 49.37 12.61 2.38 30.56 2.59 1.87 30.34 3.41 2.37 30.76 2.22 1.68 29.63 2.95 0.64 27.98 3</td> <td>1.02 0.86 0.08 101.89 1.92 0.70 0.13 101.99 4.82 30.49 0.57 98.58 1.84 0.34 0.08 107.39 1.38 0.99 0.05 100.82 1.38 1.03 0.05 94.49 1.32 18.11 0.23 98.56 2.72 17.78 0.30 95.64 4.24 24.12 0.27 98.41 1.81 16.49 0.18 99.38 0.57 19.06 2.77 96.68 0.35 29.78 3.53 91.13 0.83 29.82 3.26 92.23 0.89 30.02 3.55 92.65 0.85 29.91 3.40 92.01 0.70 29.78 3.37 92.06 11.52 50.90 14.59 96.03 0.30 29.55 3.39 91.23 13.50 49.37 12.61</td> <td>1.02 0.86 0.08 101.89 1.48 1.92 0.70 0.13 101.99 1.49 4.82 30.49 0.57 98.58 0.65 1.84 0.34 0.08 107.39 1.34 1.38 0.99 0.05 100.82 1.56 1.38 1.03 0.05 94.49 1.45 1.32 18.11 0.23 98.56 1.10 2.72 17.78 0.30 95.64 1.42 4.24 24.12 0.27 98.41 1.01 1.81 16.49 0.18 99.38 1.16 0.57 19.06 2.77 96.68 0.07 0.35 29.78 3.53 91.13 0.01 0.85 29.91 3.40 92.01 0.00 0.85 29.91 3.40 92.01 0.00 0.70 29.78 3.37 92.06 0.02 11.52 50.90 14.59</td>	1.02 0.86 0.08 1.92 0.70 0.13 4.82 30.49 0.57 1.84 0.34 0.08 1.38 0.99 0.05 1.38 1.03 0.05 1.32 18.11 0.23 2.72 17.78 0.30 4.24 24.12 0.27 1.81 16.49 0.18 0.57 19.06 2.77 0.35 29.78 3.53 0.83 29.82 3.26 0.89 30.02 3.55 0.85 29.91 3.40 0.70 29.78 3.37 11.52 50.90 14.59 0.30 29.55 3.39 13.50 49.37 12.61 2.38 30.56 2.59 1.87 30.34 3.41 2.37 30.76 2.22 1.68 29.63 2.95 0.64 27.98 3	1.02 0.86 0.08 101.89 1.92 0.70 0.13 101.99 4.82 30.49 0.57 98.58 1.84 0.34 0.08 107.39 1.38 0.99 0.05 100.82 1.38 1.03 0.05 94.49 1.32 18.11 0.23 98.56 2.72 17.78 0.30 95.64 4.24 24.12 0.27 98.41 1.81 16.49 0.18 99.38 0.57 19.06 2.77 96.68 0.35 29.78 3.53 91.13 0.83 29.82 3.26 92.23 0.89 30.02 3.55 92.65 0.85 29.91 3.40 92.01 0.70 29.78 3.37 92.06 11.52 50.90 14.59 96.03 0.30 29.55 3.39 91.23 13.50 49.37 12.61	1.02 0.86 0.08 101.89 1.48 1.92 0.70 0.13 101.99 1.49 4.82 30.49 0.57 98.58 0.65 1.84 0.34 0.08 107.39 1.34 1.38 0.99 0.05 100.82 1.56 1.38 1.03 0.05 94.49 1.45 1.32 18.11 0.23 98.56 1.10 2.72 17.78 0.30 95.64 1.42 4.24 24.12 0.27 98.41 1.01 1.81 16.49 0.18 99.38 1.16 0.57 19.06 2.77 96.68 0.07 0.35 29.78 3.53 91.13 0.01 0.85 29.91 3.40 92.01 0.00 0.85 29.91 3.40 92.01 0.00 0.70 29.78 3.37 92.06 0.02 11.52 50.90 14.59

Group 5 Results						
Comment	Na2O	SiO2	Y2O3	Total	-O=F	
CBD-11-07-15-Apt-01	3.27	2.42	0.73	103.00	1.20	101.80
CBD-11-07-15-Apt-02	3.25	3.03	0.80	102.86	1.29	101.57
CBD-11-07-15-Apt-03	3.27	3.35	0.84	103.39	1.42	101.97
CBD-11-07-15-Apt-04	3.18	2.62	0.76	103.21	1.16	102.05
CBD-11-07-15-Br-14	0.48	15.04	5.30	98.62	0.89	97.73
CBD-11-07-15-Br-15	0.45	9.69	1.89	102.59	1.13	101.46
CBD-11-07-15-Br-16	0.26	20.48	3.87	97.81	0.45	97.36
CBD-11-07-15-Br-17	0.30	22.66	4.54	97.65	0.43	97.22
CBD-11-07-15-Br-18	0.31	20.27	2.99	97.85	0.40	97.45
CB-01-11-Apt-01	0.70	1.71	0.14	100.91	1.59	99.32
CB-01-11-Apt-02	0.89	1.51	0.18	101.14	1.64	99.50
CB-01-11-Apt-03	0.63	0.85	0.09	103.71	1.96	101.75
CB-01-11-Apt-04	0.58	0.82	0.09	103.21	1.91	101.30
CB-01-11-Apt-05	0.21	0.05	0.10	103.73	2.25	101.47
CB-01-11-Apt-06	0.23	0.10	0.06	103.73	2.10	101.63
CB-01-11-Unk-01	1.00	20.47	0.56	96.19	0.74	95.46
CB-01-11-Unk-02	1.94	21.15	0.60	100.40	1.13	99.27
CB-01-11-Unk-03	13.90	57.15	0.00	101.09	0.00	101.09
CB-01-11-Apt-07	0.75	1.53	0.18	103.14	1.45	101.69
CB-01-11-Apt-08	0.76	1.75	0.11	105.03	1.51	103.52
CB-01-11-Apt-09	0.66	0.64	0.06	101.05	1.41	99.64
CB-01-11-Apt-10	0.74	1.22	0.12	116.76	1.23	115.53
CB-01-11-Apt-11	0.72	1.26	0.11	101.62	1.51	100.11
CB-01-11-Apt-12	0.07	0.01	0.02	109.12	1.33	107.80
CB-01-11-Apt-13	0.02	0.09	0.02	104.38	1.37	103.01
CBD-11-07-17-Br-01	0.34	12.83	0.89	99.87	1.04	98.83
CBD-11-07-17-Br-02	0.40	12.28	0.96	100.01	1.25	98.76
CBD-11-07-17-Br-03	0.35	11.20	0.73	101.23	1.19	100.04
CBD-11-07-17-Unk-01	0.38	16.47	1.49	103.38	0.68	102.70
CBD-11-07-17-Unk-02	0.24	22.95	1.56	99.54	0.68	98.86
CBD-11-07-17-Unk-03	0.20	21.05	1.23	99.77	0.63	99.14
CBD-11-07-17-Br-04	0.36	10.26	1.76	98.46	0.91	97.55
CBD-11-07-17-Br-05	0.40	13.41	1.63	98.78	1.09	97.70
CBD-11-07-17-Br-06	0.34	16.67	1.33	95.83	0.74	95.09
CBD-11-07-17-Mz-01	0.34	5.80	1.10	99.17	0.48	98.68
CBD-11-07-17-Mz-02	0.39	8.91	1.42	100.20	0.71	99.49
CBD-11-07-17-Br-09	0.28	6.33	1.00	100.46	0.79	99.67
CB-01-15-Br-01	0.23	21.35	2.85	94.39	0.17	94.23
CB-01-15-Br-02	0.25	21.83	3.11	92.44	0.23	92.21
CB-01-15-Br-03	0.12	23.82	4.14	94.90	0.19	94.71
CB-01-15-Apt-01	8.31	49.09	9.27	93.37	0.12	93.25
CB-01-15-Apt-02	2.11	1.69	1.08	102.52	1.57	100.95
CB-01-15-Apt-03	6.63	50.29	8.15	93.95	0.04	93.91
CB-01-15-Ukn-01	1.62	18.91	3.22	96.75	1.04	95.71
CB-01-15-Ukn-02	1.24	20.03	3.41	99.07	1.04	98.02
				_		

Group 5 Results

Comment	Na2O	SiO2	Y2O3	Total	-O=F	Total
CB-01-15-Apt-03	2.68	2.23	1.12	102.05	1.24	100.81
CB-01-15-Apt-04	2.67	3.64	1.20	102.18	1.24	100.94
CB-01-15-Apt-05	2.42	1.48	0.93	102.83	1.28	101.55
CB-01-15-Apt-06	2.42	3.32	1.30	102.64	1.62	101.03
CB-01-15-Br-04	1.19	20.94	2.31	97.48	1.24	96.23
CB-01-15-Br-05	0.92	20.29	2.24	98.97	0.74	98.23
CB-01-15-Br-06	1.22	18.02	2.07	99.73	0.80	98.93
CB-01-15-Br-07	1.31	17.85	1.94	99.47	0.85	98.62
CB-01-15-Br-08	1.23	20.21	2.22	96.89	1.26	95.63
CB-01-15-Br-09	0.56	18.35	2.23	94.38	0.47	93.91
CB-01-15-Ukn(Y)-01	13.79	49.83	12.66	94.80	0.00	94.80
CB-01-15-Ukn(Y)-02	12.91	50.21	13.33	94.12	0.00	94.11
CB-01-15-Ukn(Y)-03	13.60	50.00	13.95	94.32	0.00	94.32
CB-01-07-15-Unk-01	0.24	40.08	7.54	84.93	0.06	84.87
CB-01-15-Ukn(Y)-05	15.55	47.35	21.78	91.35	0.03	91.32
CB-01-15-Ukn(Y)-06	11.38	50.83	20.23	92.60	0.00	92.60
CB-01-15-Ukn(Y)-07	0.04	20.19	2.46	71.69	0.16	71.53
CB-01-15-Br-10	0.22	19.76	3.95	96.34	0.25	96.09
CB-01-15-Br-11	0.32	20.21	3.31	97.98	0.15	97.83