
Bindings in Colored Petri Nets

by

c© Sadegh Ekrami, M.Sc.

A thesis submitted to the

School of Graduate Studies

in partial fulfillment of the

requirements for the degree of

Master of Science

Department of Computer Science

Memorial University of Newfoundland

August 2014

St. John’s Newfoundland Canada

ii

Abstract

Performance analysis of systems is an important part of system evaluation. If the

analyzed system exists, performance analysis can be based on system’s measurements

(using some sort of instrumentation). If the analyzed system does not exist (as is

the case of system upgrading, improvement or design), the approach is to build a

(mathematical) model of the system and to use this model for performance analysis.

For systems exhibiting concurrency, resource sharing or synchronization of activities,

Petri nets are very often used as the modeling formalism. In colored Petri nets,

one of nontrivial tasks is to find bindings, i.e. mapping of free variables used in

arc expressions to specific colors. Bindings are needed to determine state transitions

of a system, therefore, are needed in all analyses of system’s behavior. A heuristic

approach is proposed which enhances the efficiency of finding bindings in colored Petri

nets. Also, performance analysis is used to compare the proposed approach with some

other approaches to finding bindings and some remarkable improvements are shown

through this analysis.

iii

Acknowledgments

I would like to sincerely thank my supervisor Dr. Wlodek Zuberek for his great help,

support and thoughtfulness throughout my program.

I am grateful to School of Graduate Studies and to the Department of Computer

Science for financial support. The Natural Sciences and Engineering Research Council

of Canada (NSERC) deserves some credit for his financial funding during my time at

work on this project.

Also, I should thank Nolan White for his technical assistance and special thanks

to my wife, Momeneh Taban, for her love, kindness and support toward my project.

Finally, I want to thank my parents for their love and moral support.

iv

Contents

Abstract iii

Acknowledgments iv

1 Introduction 3

1.1 Related Work . 5

1.2 Notation . 6

1.3 Outline . 7

2 Petri Nets 8

2.1 Petri Nets . 8

2.2 Colored Petri Nets . 11

2.2.1 Colored Markings . 13

2.2.2 Colored Nets . 14

2.2.3 Bindings . 15

2.3 Summary . 16

3 Finding Bindings in Colored Petri Nets 17

3.1 Potential Transitions . 17

1

3.2 The “Brute Force” Approach . 18

3.3 Partial Bindings . 20

3.4 The Proposed Approach . 23

3.5 Summary . 27

4 Performance Analysis of the Proposed Approach 28

4.1 Model Analysis . 28

4.1.1 Example 1: Dinning Philosophers 29

4.1.2 Example 2: Multithreaded Shared Memory System 34

4.1.3 Example 3: Extreme Example 37

4.2 Summary . 39

5 Concluding Remarks 40

5.1 Implementation . 40

5.2 Future Work . 41

Bibliography 43

2

Chapter 1

Introduction

Petri nets are a powerful graphical formalism for the modeling and analysis of systems,

especially for systems which exhibit synchronization and concurrency [1, 2, 3]. There

are several classes of Petri nets with different properties and different applications.

The basic version of Petri nets is known as place/transition nets. The three main

components of such nets are places, which represent conditions of a system (drawn as

circle or ellipses), transitions, which represent the events (drawn as bars or rectangles),

and arcs, which connect places to transitions and transitions to places. This basic

model can be extended in several different ways. Petri nets with time [4, 5] include

the duration of modeled activities. Colored Petri nets [6, 7, 8, 9] provide a simple

representation of complex Petri nets by eliminating replication of similar parts. In

colored Petri nets tokens have attributes (called colors), and these attributes can

represent a wide range of information associated with tokens. In particular, colors

can be used to “fold” similar components of large models (e.g., individual processors

of a multiprocessor system) with colors indicating specific components and simplify

3

the structure of the models.

In colored Petri nets, the process of checking if transitions are enabled is more

sophisticated than in basic Petri nets because it may involve some relationships be-

tween colors of tokens in the input (and output) places. For example, a token with

attribute “a” in one place may require two tokens with the same attribute in another

input place for a transition to fire. Such relationships are described by so called arc

expressions. Usually arc expressions are parameterized by using free variables, so

they describe the same relationships for different colors. To fire a transition then, all

free variables must be associated with specific colors. Such an association of colors to

free variables is called binding. An efficient method of finding all possible bindings in

colored Petri nets is an important aspect of any approach to the analysis of colored

nets.

This thesis proposes a heuristic approach to finding bindings in a colored Petri

net model. The proposed appraoch is based on an observation that most arc ex-

pressions are very simple, so an efficient handling of such expressions can improve the

performance of the analysis of colored nets. A performance analysis of some examples

is provided to evaluate efficiency of the analysis. A comparison of the performance

of the proposed approach with some other approaches is shown for several exam-

ples. Also, some other improvements are discussed to simplify the process of finding

bindings. The proposed approach has been implemented in Java and uses MySQL

database as its data structure.

4

1.1 Related Work

Some proposed solutions to the binding problem are overviewed in this section. The

approach proposed in [10], uses unfolding of colored nets to eliminate arc expressions

and to simplify the checking if a transition is enabled. However, the method cannot be

used for all colored Petri nets. In [11] a unification technique (the process of finding

assignments under which two algebraic terms are equivalent is often referred to as

unification) is used to calculate enabled transition instances for the algebraic nets

(another kind of high-level Petri nets). Some optimization techniques are considered,

however some limitations are that variables on input arcs may not be multiset-valued,

and all data types must have finite domains. Stochastic Well-Formed Nets (SWNs)

are discussed in [12] where an optimized model for computation of firing sets is

proposed. It is also pointed out that the number of transitions that are affected by the

firing of a transition is much smaller than the number of the enabled transitions for a

given marking. Hence, this technique can reduce the execution time to find the list of

enabled transitions. A simulation has been done according to the presented algorithm

and performance improvement has been reported for some specific examples. In [13]

an efficient data-structures and algorithms are used to improve the performance of a

simulator for colored Petri nets. Only disabled transitions are considered which are

discovered during the search for an enabled transition, and the locality principle for

an occurring transition is used in order to minimize the changes of enabling status

of other transitions. A partial binding method as well as some other optimization

techniques are used in [14] to find complete bindings. First the partial bindings are

determined for each arc expression and then all partial bindings are merged into

5

complete bindings. During the partial binding test, the number of assignments to

free variables decreases. This approach is described in greater details in Chapter 3.

1.2 Notation

The notation used in algorithms in this thesis is summarized in an example called

Algorithm 0.

Algorithm 0. An algorithm with all notations used in this thesis.

c := RED
for all x in X do

Print x
end for
select := true
for all x in X while select do
if x = c then

Print x, “is equal to RED”
select := false

else
Print x, “is not equal to RED”

end if
end for

The assignment operator is “:=” and “=” is used as relational equating operator.

“for all x in X” specifies a for loop which iterates x over all elements of the set

X. In Algorithm 0, the result of the first loop is to print all elements of the set X.

The next for loop “for all x in X while select” prints all elements of X until an

element is equal to RED then the select becomes false, and the for loop ends. All

if statements end with end if and all for statement end with end for.

6

1.3 Outline

This thesis is organized as follows: Chapter 2 presents the basic concepts of Petri nets

and Colored Petri nets. It also formally introduces the concept of binding. Chapter

3 discusses the proposed approach as well as some other approaches to finding the

bindings. An evaluation analysis and performance analysis for some examples is

given in Chapter 4. Chapter 5 discusses some of the possible extensions, limitation

and future works.

7

Chapter 2

Petri Nets

This chapter introduces some basic concepts of Petri nets and colored Petri nets.

It also introduces the notion of bindings in colored Petri nets and the concept of

reachable markings for a Petri net.

2.1 Petri Nets

Petri-nets, proposed by Carl A.Petri in 1962 [15], became one of the most popular

formalisms for the description of systems in which the communication between com-

ponents, synchronization of component operations and resource sharing are essential.

Graphically Petri nets are bipartite directed graphs, i.e., directed graphs with two

types of vertices called places and transitions. These two types of vertices represent

(in a very general sense) conditions (places) and events (transitions). For this reason

Petri nets are sometimes called condition-event systems. An event can occur only

when some conditions are satisfied (e.g., a car can start its engine if the battery is

charged and the start button is pressed), the transition modeling such an event is

8

connected with input places representing these conditions. i.e.,“battery is charged”

and “start button is pressed” in this example. An occurrence of an event results in

some other conditions that become satisfied (e.g., “the engine is running”), so the

transition representing this event will also be connected to some (output) places.

Occurrences of events are also called firings of (the corresponding) transitions.

Formally, a Petri net N (also called net structure [16]) is defined as a finite

directed bipartite graph, N = (P, T, A), where P is a finite set of places, P =

{p1, p2, ..., pn}, T is a finite set of transitions, T = {t1, t2, ..., tm}, and A is a set of

directed arcs connecting places with transitions and transitions with places, A ⊆ (P×

T) ∪ (T×P). Sometimes the set of arcs is defined in two parts, N = (P,T,A1,A2)

where A1 ⊆ P × T and A2 ⊆ T × P. It is convenient to define the input and output

sets for each place p ∈ P, and each transition t ∈ T:

Inp(t) = {p ∈ P | (p, t) ∈ A} , (2.1)

Inp(p) = {t ∈ T | (t, p) ∈ A} , (2.2)

Out(t) = {p ∈ P | (t, p) ∈ A} , (2.3)

Out(p) = {t ∈ T | (p, t) ∈ A} . (2.4)

The dynamic behavior of net models is represented by the so called tokens which

are associated with places of nets. Any assignment of tokens to places is called a

marking function, m : P → {0, 1, ..}, or simply a marking in a net N . For each

9

p ∈ P, m(p) specifies the number of indistinguishable tokens assigned to place p by

m. A marked netM is defined as a pairM = (N ,m0) where N is a Petri net and m0

is the initial marking function, m0 : P→ {0, 1, ...}. In a marked net M, a transition

t is enabled by a marking m if and only if its all input places contain at least one

token, i.e.,

∀ p ∈ Inp(t) : m(p) > 0. (2.5)

If a transition is enabled, an event represented by this transition can occur (i.e.,

the transition can fire), and such occurrence changes the marking function m into the

marking m′ for which:

∀p ∈ P : m′(p) =

m(p) + 1, if p ∈ Out(t)− Inp(t);

m(p)− 1, if p ∈ Inp(t)−Out(t);

m(p), otherwise.

(2.6)

It is said that m′ is directly reachable from m by firing transition t, in notation:

m
t→ m′. A marking mj is said to be generally reachable from marking mi in M,

notation mi
∗→ mj, if it is reachable from mi by a sequence of directly reachable

markings. The set M(M) of reachable markings of a marked net M is the set of all

markings that are generally reachable from the initial marking m0 (including m0):

M(M) = {m | m0
∗→ m}. (2.7)

The reachability graph (or the graph of reachable markings) of M, R(M),

a directed, arc-labeled graph R(M) = (V,E, l), in which vertices are reachable

markings, V = M(M), arcs represent the direct reachability relation, (mi, mj)

∈ E⇔ mi
t→ mj, and l is a labeling function which assigns subsets of transitions to

elements of E, l(mi, mj) = {t ∈ T | mi
t→ mj}.

10

A marked net M is bounded if there exist a positive number of k such that:

∀ m ∀ p : m(p) ≤ k. (2.8)

k is called the bound of M. If the bound is equal to 1, the net is called safe [1].

It is straightforward to observe that if the set M(M) is finite, the net is bounded;

if M(M) is infinite, the net is unbounded.

Petri net properties such as boundedness [17], liveness [18], reversibility or home

state [19], persistence [20] and other can be used to check some characteristics of the

modeled systems [21, 22]. For example, liveness is closely related to the absence of

deadlock, an important aspect of operating systems [23].

2.2 Colored Petri Nets

In colored Petri nets, tokens have attributes (called colors) and these attributes can

represent a wide range of information associated with tokens (such as integers for

representing number of items in a store or warehouse). In particular, colors can be

used to “fold” similar components of large models (e.g., individual processors of a

multiprocessor system) where colors indicate specific components and simplifying the

structure of the models. However, the analysis of colored Petri nets is much more

complex than that of ordinary Petri nets. In Figure 2.2 the three subnets representing

the processors in Figure 2.1 are ”folded” into one subnet, while the processors are

represented by three colored tokens which are quite independent from each other with

the exception of accessing memory. If more than one processor accesses memory at

the same time, the original priorities are taken into account - the details are discussed

in Chapter 4.

11

Figure 2.1: The regular Petri net model of three shared memory system.

Figure 2.2: The colored Petri net model of three shared memory system.

12

2.2.1 Colored Markings

In a colored Petri net, a marking of a place is a collection of colored tokens, which is

conveniently represented by a function a : C → {0, 1, ...}, often called a bag. A bag

is a generalization of a set that allows multiple occurrences of the same element.

An alternative representation of bags, assuming some ordering of colors in the

set C, is in the form of vectors:

[n1, n2, ...] (2.9)

where ni = g(ci), i = 1, 2, ...

Moreover, there is one more popular notation for bags, in which the nonzero ele-

ments are written in a form of (linear) expression, for example, if C={blue, green, black,

red} and if m(p) is:

∀ c ∈ C : m(p) =

1, if c = red;

2, if c ∈ {blue, green};

0, otherwise.

(2.10)

Then this marking can be written as: 1red + 2blue + 2green.

Similarly, in colored nets a marking function m is a mapping:

C : P→ C→ {0, 1, ...} (2.11)

i.e., it assigns a bag of colored tokens to each place p in P (the associativity of

the mapping operator → is from right to left, so A → B → C is the same as

A→ (B → C)).

13

2.2.2 Colored Nets

There are several slightly different definitions of colored Petri nets in the literature

[6, 9], however, the basic concepts are the same for all these definitions. For this thesis,

a colored Petri net N is defined as N = (P, T, A, C, V, a) where: (P, T, A)

is a Petri-net structure; C is a set of attributes called colors; V is a set of free

variables; a is an arc function which assigns bags of colors to arcs of N , a : A →

(C ∪ V)→ {0, 1, ...}; these bags are in the form of expressions labeling the arcs and

they determine the numbers and specific colors of tokens which are used for firing the

transitions.

The definition of colored Petri nets, with arc expressions, should be accompanied

by some explanations. The arc expressions are actually parameterized bags of colors,

with free variables used as parameters. Free variables provide a mechanism of using

the same combination of tokens for different colors. There is an implied process of

association of free variables with specific colors which is called binding. Formally,

binding is a mapping of free variables to colors. A convention used in colored Petri

nets is that each binding is restricted to a single transition, i.e., the meaning of free

variables in all expressions of arcs incident with the same transition is the same, but

the same free variable in arc expressions associated with different transitions may

have different bindings. A transition is enabled only if there is a complete binding,

i.e., all free variables can be assigned to colors.

14

2.2.3 Bindings

In colored Petri nets, a transition t is enabled by a marking m if there is such an

assignment of colors to free variables in arc expressions associated with t, that the

numbers of (colored) tokens in input places of t are not smaller than the values of

corresponding arc expressions, i.e., there is a function b : V(t)→ C such that:

∀ p ∈ Inp(t) : m(p) > subst(a(p, t), b) (2.12)

where subst(a(p, t), b) is the expression associated with arc (p, t) in which free variables

are replaced by the values of b.

For example, in Figure 2.3, m(pi) = 2white + 1black + 1gray, and m(pj) =

2black + 2white + 2gray. For this marking, there are two possible bindings. (1) x =

white, y = black, z = gray and (2) x = white, y = gray, z = black. After t’s firing,

the marking of pk becomes 1white + 1gray for the first binding, or 1white + 1black

for the second binding. Therefore, the transition t is enabled and can fire with one of

these two bindings and these are two different markings reachable from m.

Figure 2.3: Occurrences of colored nets.

15

A marking m′ is reachable from m by firing t with binding b if:

∀ p ∈ P : m′(p) =

m(p) + subst(a(t, p), b), if p ∈ Inp(t)−Out(p);

m(p)− subst(a(p, t), b), if p ∈ Out(t)− Inp(p);

m(p) + subst(a(t, p), b)− subst(a(p, t), b), if p ∈ Inp(t) ∩Out(p);

m(p) otherwise.

(2.13)

2.3 Summary

This chapter has introduced the basic concepts of ordinary Petri nets and colored

Petri nets (CPNs). Formal definitions have been provided and bindings in colored

Petri nets also have been discussed.

16

Chapter 3

Finding Bindings in Colored Petri

Nets

An efficient method of finding bindings in colored Petri nets is essential for any be-

havioral analysis of a colored net. An overview of approaches to finding all possible

bindings is presented in this chapter. It is assumed that predicates (or conditions asso-

ciated with transition) are transformed to arc expressions, so they are not considered

explicitly.

3.1 Potential Transitions

Finding bindings in colored net is a rather intricate process, which can be made

more efficient by eliminating steps which cannot be successful. Selecting potential

transitions eliminates - from the further process - all transitions which cannot be

enabled. For a marking m, the set of potential transitions, (denoted as TP (m)),

contains those transitions whose input places are all marked and colors of the marked

17

places can be assigned to their arc expressions, so:

t ∈ TP (m) ⇔ ∀ p ∈ Inp(t) ∃ c ∈ C(p) : nzn(m(p)) ≥ card(V(a(p, t))) (3.1)

where C(p) is the set of colors of tokens assigned to p by m, nzn(m(p)) is the number

of nonzero elements in bag m(p) and card(V(a(p, t))) is the number of free variables

in the arc expression a(p, t).

In other words, if an input place of a transition is not marked, then there is

no need to check this transition for bindings. Also, places which are marked but

they do not have enough colored tokens to satisfy the binding assignment of their arc

expressions are not good candidates to be considered for the enabling test.

Algorithm 1 outlines the procedure of finding the set of potential transitions.

Algorithm 1 Finding potential transitions for marking m.

TP (m) := ø
for all t in T do
check := true
for all p in Inp(t) while check do
if nzn(m(p)) < card(V(a(p, t))) then
check := false

end if
end for
if check then
TP (m) := TP (m) ∪ {t}

end if
end for

3.2 The “Brute Force” Approach

For a given marking m, the “brute force” approach systematically checks all possible

assignments of colors to free variables in order to find the bindings for which a transi-

18

tion is enabled. So, if the set of free variables for a transition t is V(t) = {v1, ..., vk},

the approach can be as follows:

Algorithm 2 Brute force algorithm to find possible bindings for the transition t at
marking m.

for all v1 in C(m, t) do
for all v2 in C(m, t) do
if v2 6= v1 then
for all v3 in C(m, t) do
if v3 6= v2 and v3 6= v1 then
...
for all vk in C(m, t) do
if vk 6= vk−1 and ... and vk 6= v1 then
for all p in Inp(t) do

check if t is enabled by m
end for

end if
end for

end if
end for

end if
end for

end for

where C(m, t) is the set of colors of tokens in input places of transition t for marking

m: C(m, t) =
⋃

p∈Inp(t)
C(m, p) and C(m, p) is the set of colors of tokens in place p in

marking m:

C(m, p) = {c ∈ C | m(p)(c) > 0} (3.2)

In Algorithm 2, the number of for loops corresponds to the number of free variables

in all arc expressions associated with transition t. All if conditions check whether

the color assigned to each variable is not the same as colors assigned to the other

variables. This procedure is applied to all potential transitions for a given marking

m.

19

For example, in Figure 2.3, a(pj, t) is “x + 2z” and a(pi, t) is “2x + y”. The

algorithm will assign x = black and y = white and z = gray in one of its iterations

which is an unsuccessful assignment for a(pi, t). There are five other assignments for

this example. Two of the six assignments enable the transition t, i.e. one is x = white,

y = black, z = gray and the other is x = white, y = gray, z = black.

Although this approach finds all possible successful assignments, it can be quite

time consuming if several free variables are used. The brute force approach is used in

Chapter 4 as the basis for performance comparison with other approaches to finding

the bindings. For the performance analysis of this approach the operation counts are

considered as the comparison analysis in Chapter 4.

3.3 Partial Bindings

The partial binding approach proposed in [14], first finds a partial binding for each

arc expression and then merges the partial bindings into complete bindings. During

the partial binding test, the number of assignments to free variables decreases. In

fact, each of the variables is processed sequentially and before the verification of other

variables. This method processes all expressions specified for the selected transition

and finds all valid assignments of colors to variables. This process ends when all free

variables have been checked.

The partial binding process assigns all colors of the input place p of the transition

t to the variables of arc expression associated with this place and transition.

In [14] the partial binding principle has been used as well as some other techniques

for preprocessing and ordering the colored Petri net structure. As mentioned earlier,

20

partial binding sets of a transition need to be compatible. Two bindings, b1 and b2,

are compatible, which is denoted as Compatible(b1, b2), when

∀ v ∈ V(t) : b1(v) 6=⊥ ∧ b2(v) 6=⊥ ⇒ b1(v) = b2(v). (3.3)

Where V(t) is the set of free variables associated with transition t (i.e., used in all

arc expressions incident with t), and ⊥ indicated that the value is undefined.

A combined binding, denoted as Combine(b1, b2), of two compatible partial bind-

ing defined as:

∀ v ∈ V(t) : Combine(b1, b2)(v) =

b1(v), if b1(v) 6=⊥

b2(v), if b2(v) 6=⊥

⊥, otherwise.

(3.4)

Moreover, merging of two partial binding sets B1 and B2, denoted as Merge(B1,B2),

is defined as:

Merge(B1,B2) = {Combine(b1, b2) | b1 ∈ B1 ∧ b2 ∈ B2 ∧ Compatible(b1, b2)}.

(3.5)

Algorithm 3 shows the process of finding bindings and merging partial bindings.

This algorithm searches for all input arc expressions associated with transition t and

does the process of partial binding test for each color c in the color set C(m, p) by

calling the function PartialBindings(e, c). C(m, p) contains the colors for place p

at marking m. PartialBindings(e, c) performs the successful assignment of colors to

variables in the expression e. All partial bindings are stored in B′ and are merged

with binding set B. B(m, t) is the set of bindings for transition t and marking m.

PartialBindings(e, c) is the partial binding function with assigns the colors c to the

variables of arc expression e and returns a binding.

21

Algorithm 3 Partial binding algorithm to find possible bindings for the transition t at
marking m

B := ø
for all p in Inp(t) do
B′ := ø
e := a(p, t)
for all c in C(m, p) do
B′ := B′ ∪ {PartialBindings(e, c)}

end for
B := Merge(B,B′)

end for

Figure 3.1 shows a single transition of a colored Petri net. Algorithm 3 is per-

formed for this example to find bindings as follows. To get the complete bindings,

first the partial bindings are created for place p1 with marking 2black+2white+2gray

and with the arc expression “2x+ 2gray”. The gray tokens are used by the constant

part of the arc expression so the two partial bindings are:

b1 = (x = black, y =⊥).

b2 = (x = white, y =⊥).

For place p2 with the arc expression “x + y”, there are six partial bindings:

b′1 = (x = black, y = white).

b′2 = (x = black, y = gray).

b′3 = (x = white, y = black).

b′4 = (x = white, y = gray).

b′5 = (x = gray, y = black).

b′6 = (x = gray, y = white).

Therefore, the compatible bindings of these two sets of bindings, {b1, b2} and {b′1, b′2, b′3,

b′4, b
′
5, b
′
6}, are: B′ = {(x = black, y = white), (x = white, y = black)}. The next arc

expression is “x+ gray” with one partial binding because the gray token is explicitly

22

required by the arc expression so the free variable can only have the value black:

b′′1 = (x = black, y =⊥).

Consequently, the final merged set of bindings is: B = {(x = black, y = white)}.

Figure 3.1: A part of a colored Petri net example.

3.4 The Proposed Approach

The proposed approach is based on an observation that many arc expressions are very

simple (are linear). If the types of arc expressions (for some nets guard expressions

are also considered[10]) are different, the implementation of transition enabling and

firing algorithms might change significantly[12]. One of the approaches would be to

unify different patterns that can cover all possible arc expressions.

For linear arc expressions, a specialized approach can be used to process such

expressions more efficiently than general arc expressions. Therefore, arc expressions

are divided into 2 classes:

23

1) Linear expressions: written as a sum of colors or free variables, possibly as-

sociated with an integer coefficient indicating the number of tokens of a respective

color:

expr ::= count | expr + count

count ::= color | integer color | var | integer var |

A logical function linear(expr) returns true if the argument expr is a linear expres-

sion. For example; linear(2x + y) returns true.

2) General expressions (e.g. functions, conditions etc).

Algorithm 4 shows the process of finding all possible assignment of colors to free

variables for a transition t ∈ TP (m). As before V(t) is the set of free variables for

transition t. For each variable v in V(t), place p′ is sought whose arc expression

contains v (v ∈ V(a(p, t))). In this way the number of checks whether a color can be

assigned to a variable is reduced. Then, for all colors of the places that are associated

with the transition t (c ∈ C(m, t)) and for all places whose arc expressions contain

the variable v (p ∈ Inp(t, v)) a checking is performed to investigate valid assignments.

If an expression is linear (linear(a(p, t))) then this checking is based on the number

of colors and the coefficients of the selected variable. Otherwise, the substitution

of variables and colors is checked to investigate its validity. For example, in Figure

2.3 m(p1) is 2white + 1black + 1gray and the arc expression a(p1, t) is “2x + y”.

m(p1)(black) is 1 and if the color black is assigned to the variable x, the result of this

substitution will be 2black + y. As subst(a(p1, t), black)(black) is 2, this assignment

is unsuccessful. This process ends with a set of the valid assignments of colors to

variables in S as a collection of pairs (variable, color).

24

Algorithm 4 Finding Bindings for transition t and marking m

S := ø
for all v in V(t) do
Success := true
First := true
for all p ∈ Inp(t, v) do
if First then
First := false
p′ := p

end if
for all c in C(m, p′) while Success do
if linear(a(p′, t)) and m(p′)(c) < num(a(p′, t), v) then
Success := false

else if ¬linear(a(p′, t)) and m(p′)(c) < subst(a(p′, t), c)(c) then
Success := false

end if
for all p in Inp(t, v) while Success do
if linear(a(p, t)) and num((a(p, t), v) > m(p)(c) then
Success := false

else if ¬linear(a(p, t)) and m(p)(c) < subst(a(p, t), c)(c) then
Success := false

end if
end for
if Success then
S := S ∪ {(v, c)}

end if
end for

end for
end for

In Algorithm 4 it is assumed that all colors of the marking m are ordered with

respect to the numbers of tokens assigned by m in descending order; the variables

of linear expressions are also ordered based on their coefficients in descending order.

This helps to reduce the number of checks performed. Inp(t, v) is the set of input

places of t such that arc expressions a(p, t) contain the variable v; num((a(p, t), v)

is the coefficient of the variable v in the arc expression a(p, t). Success is used to

25

indicate a successful assignment of a color to a variable. First is used to select the first

place whose arc expression contains variable v and which contains sufficient number

of tokens. Figure 3.2 illustrates this process for a transition with all arc expressions

that are linear.

Figure 3.2: A part of a colored Petri net example.

The set of all free variables for transition t is V (t) = {a, b, c}. Let the first

variable be a. The first arc expression which contains this variable is (p1, t). The

colors available in all places are sorted based on the numbers of tokens so that p1

contains {2black, 2gray, 1white}, p2 contains {2black, 2gray, 2white} and p3 contains

{1black, 1white}. A comparison based on the number of each color and the coef-

ficient of variables is made to find possible assignments. This helps to reduce the

number of comparisons since the coefficient of a variable might be greater than the

number of colored tokens which means that the rest of the color set will not be com-

pared. Then for all places whose arc expressions contain a (i.e. “2a+ b”,”2b+a”), all

possible colors available in all input places will be assigned to the selected variable

26

(which is a for the first iteration). Two colors, black and gray, could be associ-

ated with the variable a. So, at the end of the first iteration over the first vari-

able, the pairs (a, black) and (a, gray) are added to S. The variable b is considered

next and the first place whose arc expression contains the variable is selected (p1

in this example). Again, for all colors in p1 the algorithm checks for valid assign-

ment. The first color is black (as it has sorted). The other arc expression con-

taining variable b is ”b + c”. The first assignment is (b, black), however, b can not

be assigned to gray as there is no gray in p3. The added sets to the S after the

second iteration are (b, black) and (b, white). Consequently, after the last iteration

S = {(a, black), (a, gray), (b, black), (b, white), (c, black), (c, white)}).

In this example two bindings are created in S. b1 is: a = gray, b = black and

c = white. b2 is a = gray, b = white and c = black. For the performance analysis

of this approach the operation counts are considered as the comparison analysis in

Chapter 4.

3.5 Summary

In this chapter, the proposed approach for finding enabled transitions and their bind-

ing(s) has been discussed. The counts of basic steps are introduced which are used

in chapter 4 for comparisons of different approaches.

27

Chapter 4

Performance Analysis of the

Proposed Approach

This chapter compares the properties of the proposed approach with some other ones.

Several examples (small and large models) are used to compare the performance of

finding possible bindings and new markings. The analysis is performed by software

in the Java programming language combined with databases for the data structures

of colored Petri nets.

4.1 Model Analysis

All algorithms for finding bindings in colored Petri nets depend on many factors such

as the size of net models, the number of enabled transitions at each marking, complex-

ity of arc expressions and many other elements which might have significant effects

on analysis efficiency. Several popular examples were used to check the influence of

some factors that affect the efficiency of the analysis of colored nets.

28

4.1.1 Example 1: Dinning Philosophers

The dinning philosopher example is one of popular examples used to illustrate syn-

chronization and concurrency of processes. It has been proposed by Dijkstra[24]. As

is known, philosophers follow a cycle of two operations, thinking and dinning. Their

favorite food is spaghetti and to eat spaghetti in a proper way two forks are needed.

However, there are only five forks, so, the philosophers share the forks at a round

dinning table and only those philosophers who have two forks can eat their spaghetti.

Usually the forks are placed (on the dinning table) between philosophers, so each

philosopher has its right and left fork. Figure 4.1 shows a colored net model of this

example.

Figure 4.1: Colored Petri net model of five dinning philosophers.

In this example philosophers are represented by colors a, b, c, d and e. The

29

forks are represented by colors A, B, C, D and E. The two functions, lf(x) and

rf(x) assign the left and right fork to each philosopher x, so, as shown in Table 4.1,

lf(a) = A, rf(a) = B, lf(b) = B, rf(b) = C, and so on; i.e., fork A is shared by

philosophers a and e, fork B by philosophers a and b, and so on.

Table 4.1: Left and right forks for each philosophers.

Philosopher x lf(x) rf(x)

a A B

b B C

c C D

d D E

e E A

In Figure 4.1, place p4 represents available (i.e. not used) forks. Place p1 repre-

sents philosophers who are waiting to get their forks and eat, place p2 philosophers

who are eating and place p3 philosophers who are thinking. The initial marking in

Figure 4.1 represents a situation where all forks are available, philosophers b and e

are thinking, while the remaining three philosophers (a, c and d) are ready to eat.

Transition t1 corresponds to fetching the two forks in order to start eating. The

free variable x, representing a philosopher, is used in the functions lf(x) and rf(x)

which associate the forks with each philosopher. For the initial marking shown in

Figure 4.1, there are three possibilities of firing t1, with x corresponding to a, or to c

or to d. Consequently, there are 3 next marking functions created by firing t1 in m0.

30

Transition t2 represents end of eating and depositing the left and right forks to

p4, and beginning of the thinking phase.

Transition t3 correspond to the end of thinking and readiness for eating (if the

forks are available). For the marking shown in Figure 4.1, there are two possible firing

of t3, one corresponding to philosopher b, and the other to philosopher e.

For the initial marking showed in Figure 4.1, there are 5 next markings, each

of which creates a number of subsequence markings, and so on. The net shown in

Figure 4.1, has 152 reachable markings (including the initial marking).

The number of markings for different number of philosophers (from 3 to 7) is

shown in Figure 4.2. It can be easily shown that the number of markings grows

exponentially with the number of philosophers.

Figure 4.2: The number of reachable markings for dinning philosophers as a function of the

number of philosophers.

To compare the performance of different approaches to finding the bindings, the

31

number of required common steps can be used. The checking if a transition is enabled

is used as the basis of performance comparison. Tables 4.2 and 4.3 show the number

of checks for the brute force approach and the proposed approach.

Table 4.2: The number of checks for finding possible bindings for marking m0 with brute

force approach and the proposed approach.

For m0 Number of Checks

Brute force approach 8

Proposed approach 5

Table 4.3: The number of checks for finding possible bindings for all markings with brute

force approach and the proposed approach.

For all markings Number of Checks

Brute force approach 780

Proposed approach 620

The arc expressions in this example are quite simple so the number of checks in

brute-force approach is fairly low. However, the efficiency of the proposed approach

is showing an improvement in the whole number of checks over the running of the

program to find all possible markings of the net.

An analysis for different number of philosophers is performed in Figure 4.3 to

show the trend of the total number of checks as a function of the number of dinning

philosophers.

32

Figure 4.3: The performance of the proposed approach and the brute-force approach as a

function of the number of dinning philosopher.

As it can be seen in Figure 4.3, the number of checks for the brute-force approach

is growing similarly to the number of checks for the proposed approach.

Figure 4.4: The ratio of performance of the brute-force approach to the proposed approach

as a function of the number of philosophers.

33

Figure 4.4 shows the ratio of these two number of checks (the brute-force ap-

proach over the proposed approach) as a function of the number of philosophers.

4.1.2 Example 2: Multithreaded Shared Memory System

In this example, several multithreaded processors are connected to a shared memory,

so only one of these processors can access the memory at any time. Figure 4.5,

shows a colored Petri net model of multithreaded shared memory system with four

multithreaded processors.

Figure 4.5: Colored Petri net model of shared memory system with four processors.

Processors are represented by colors A, B, C and D. Initially all processors are

in the place Proc. If there are available threads in Pready, the execution can begin by

firing Tsel. Execution of consecutive instructions of the selected thread is performed

in the loop Pnxt, Trun, Pend and Tnxt. If Tend is chosen for firing rather than Tnxt the

execution of the thread ends and a request to access the shared memory is placed in

Psmem where it waits for availability of local memory by Pmemory. Also, a token is

deposited in Pcsw to perform context switching by firing Tcsw.

34

Accessing shared memory (Tsmem) is controlled by priorities of processors. If

a processor with higher priority requires the memory then processors with lower

priorities cannot access the memory until the processor with higher priority finishes

its memory access. Table 4.4 shows the priority list of this multithreaded shared

memory example. The highest priority is denoted by 1, the lowest by 4. Therefore,

the processor A has higher priority than processors B, C and D. The processor B

has higher priority than processors C and D and so on.

Table 4.4: Priority list of processors.

processor Priority

A 1

B 2

C 3

D 4

For the initial marking showed in Figure 4.5, there are 4 next markings, each of

which creates a number of subsequence markings, and so on. For the net shown in

this figure, there are 1296 reachable markings (including the initial marking).

The number of markings for different numbers of processors (from 2 to 5) is shown

in Figure 4.6. It can be shown that the number of markings grows exponentially as

a function of the number of processors.

35

Figure 4.6: The number of reachable markings for multithreaded shared memory as a

function of the number of processors.

The performance for different number of processors is shown in Figure 4.7.

Figure 4.7: The performance of the proposed approach and the brute-force approach as a

function of the number of processors.

As it can be seen in Figure 4.7, the number of checks required by the brute-force

36

approach is significantly greater than that for the proposed approach. Figure 4.8

shows the ratio of these two numbers of checks (for the brute-force approach to the

proposed approach) as a function of the number of processors. The results indicate

that the performance of the proposed method actually improves as the models become

more complex, although more evidence is needed supporting this observation.

Figure 4.8: The ratio of performance of the brute-force approach to the proposed approach

as a function of the number of processors.

4.1.3 Example 3: Extreme Example

In the previous examples the differences between the two approaches were rather

limited because of the simple arc expressions as well as simple input places associated

with transitions. Therefore, to show the differences between these approaches, an

extreme example has been created only with a single transition. Figure 4.9 shows

this special example.

37

Figure 4.9: Colored Petri net model of an extreme example for one transition.

There are 5 different input places associated with transition t. There are 40

different colors in C(t). p1 contains 20 tokens with colors denoted 1 to 20. p2 contains

four different colors denoted 1, 4, 5 and 16. p3 contains three different colors denoted

1, 3 and 5. p4 contains 30 different colors denoted 1 to 30 and p5 contains 40 different

colors denoted 1 to 40. There is only 1 token of each color all places.

Performance analysis has been performed by three different approaches described

in Chapter 3, i.e. the brute force approach, the partial binding approach and the

proposed approach. In Table 4.5 the best result of each approach is shown. As it

can be clearly seen the number of marking produced for this example is 152 and the

result of the proposed approach is much better than the brute-force approach and

almost 3 times better than the partial binding approach.

38

Table 4.5: Performance analysis of the special extreme case with three different approaches

Approach Number of bindings Number of checks

Proposed approach 240

Partial binding 152 605

Brute-force 20880

4.2 Summary

The performance of several net models has been compared. These results indicate

that practical implementations of the proposed approach is showing an improvement

of the proposed approach with the other approaches for complex cases.

39

Chapter 5

Concluding Remarks

A heuristic approach for finding bindings in colored Petri nets is proposed. In this

thesis the results of performance analysis presented in Chapter 4 show that the gains of

the proposed approach are more significant for larger and more complex nets. In this

thesis, the performance evaluation is based on the numbers of steps needed for finding

the bindings. However, consideration of execution time for different approaches may

be more relevant for colored net models. The execution time is mostly dependent

on the implementation techniques, the interpretation of the net models and the Petri

net structure [25]. It is expected that these ideas will be further developed in future

work.

5.1 Implementation

All performance results were obtained by a simple net analyzer implemented in the

Java programing language combined with the MySQL database. A colored Petri

net structure is defined in the MySQL database and the Java program simply uses

40

the information of a net to perform enabling test for finding bindings and creating

new markings. The approaches are developed following the algorithms presented in

Chapter 3.

5.2 Future Work

As mentioned earlier, Petri net structures have a significant effect on the efficiency of

analysis. Unfolding is one of the approaches which transform a colored Petri net model

into a regular Petri net model. As the specification of regular Petri nets is simpler

than colored Petri nets, the process of finding all markings is more straightforward.

So, an analysis of the unfolding approach versus the presented approaches is one of

the possible future projects. This helps to estimate how a net structure can affect the

overhead of the unfolding process. Also, the performance analysis of the approaches

according to the net structure will be considered. Net unfolding, however, can be a

challenging task.

Unbounded colored net models are challenging because the unfolding process

is quite impossible. In order to make the proposed approach working for some un-

bounded net models, similar and repetitive markings should be stored and compared

with other markings to prevent repetitive process of finding bindings. This can help

to reduce the overhead of enabling test process. If similar markings (similar patterns)

can have same effect for enabling test then the pattern matching of markings could

help to find bindings easier. Memoization is one of the possible techniques which can

be used to save time at the expense of space. This technique stores the results corre-

sponding to some set of specific inputs [26]. This can help to reduce the overhead of

41

calling a function (i.e. firing of a transition and producing markings) based on inputs

that have been calculated before.

Moreover, as the analysis presented in Chapter 4 are all based on number of

the computational steps, a better comparison can be based on the execution time

specifically for the binding process (not for the whole part of the program, as it

may cause other effects on execution time). Execution time is depended on many

parameters such as the net structure, the implementation techniques and also different

interpretation of net models (i.e. how inputs, actions and code are associated with

the net elements). So, a standard implementation should be considered to estimate

and analyze the execution time accurately.

42

Bibliography

[1] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proceedings of

the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[2] W. Reisig, Understanding Petri Nets: Modeling Techniques, Analysis Methods,

Case Studies. Springer Verlag, 2013.

[3] W. Reisig, Petri Nets: An Introduction, vol. 4 of EATCS Monographs in Com-

puter Science. Springer-Verlag, 1985.

[4] W. M. Zuberek, “Timed Petri Nets and Preliminary Performance Evaluation,”

in Proceedings of the 7th Annual Symposium on Computer Architecture, (ISCA

’80), pp. 88–96, ACM, 1980.

[5] J. Wang, Timed Petri Nets - Theory and Application, vol. 9 of The International

Series on Discrete Event Dynamic Systems. Kluwer Academic Publisher, 1998.

[6] K. Jensen, “Coloured Petri Nets: A High Level Language for System Design and

Analysis,” Advances in Petri Nets 1990; Lecture Notes in Computer Science,

vol. 483, pp. 342–416, Springer-Verlag, 1991.

43

[7] K. Jensen, “An Introduction to the Theoretical Aspects of Coloured Petri Nets,”

in A Decade of Concurrency, Lecture Notes in Computer Science, pp. 230–272,

Springer-Verlag, 1994.

[8] K. Jensen, Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical

Use, vol. 1 of An EATCS Series. Monographs in Theoretical Computer Science.

Springer, 1996.

[9] K. Jensen, L. M. Kristensen, and L. Wells, “Coloured Petri Nets and CPN Tools

for Modelling and Validation of Concurrent Systems,” IEEE Trans. Inf. Theor.,

vol. 22, pp. 213–254, Sept. 2006.

[10] M. Sanders, “Efficient Computation of Enabled Transition Bindings in High-

Level Petri Nets,” in 2000 IEEE International Conference on Systems, Man,

and Cybernetics, vol. 5, pp. 3153–3158, 2000.

[11] M. Makela, “Optimising Enabling Tests and Unfoldings of Algebraic System

Nets,” in International Conference on Application and Theory of Petri Nets,

Lecture Notes in Computer Science, pp. 283–302, Springer, 2001.

[12] R. Gaeta, “Efficient Discrete-Event Simulation of Colored Petri Nets,” IEEE

Trans. Software Eng., vol. 22, no. 9, pp. 629–639, 1996.

[13] K. Mortensen, “Efficient Data-Structures and Algorithms for a Coloured Petri

Nets Simulator”, pp. 57–75. DAIMI PB, Department of Computer Science,

Aarhus University, 2001.

44

[14] F. Liu and M. Heiner, “Computation of Enabled Transition Instances for Colored

Petri Nets,” in Proc. 17th German Workshop on Algorithms and Tools for Petri

Nets, CEUR Workshop Proceedings, vol. 643, pp. 51–65, 2010.

[15] C. A. Petri, Kommunikation mit Automaten. PhD thesis, Institut für Instru-

mentelle Mathematik, Bonn, 1962.

[16] W. M. Zuberek, “Petri Nets and Timed Petri Nets - Basic Concepts and Proper-

ties,” Technical Report, Department of Computer Science, Memorial University,

December 2001.

[17] E. Pastor, J. Cortadella, and O. Roig, “Symbolic Analysis of Bounded Petri

Nets,” IEEE Trans. Comput., vol. 50, pp. 432–448, May 2001.

[18] E. Kindler and W. van der Aalst, “Liveness, Fairness, and Recurrence in Petri

Nets,” Inf. Process. Lett., vol. 70, no. 6, pp. 269–274, 1999.

[19] T. Miyamoto and S. Kumagai, “Reversibility Verification of Petri Nets Using

Unfoldings,” in 1997 IEEE International Conference on Computational Cyber-

netics and Simulation in Systems, Man, and Cybernetics, vol. 5, pp. 4274–4278,

1997.

[20] E. Best and J. Esparza, “Model Checking of Persistent Petri Nets,” in Proceedings

of the 5th Workshop on Computer Science Logic, (CSL ’91), pp. 35–52, Springer-

Verlag, 1992.

[21] R. Bonnet, “The Reachability Problem for Vector Addition System with One

Zero-test,” in Proceedings of the 36th International Conference on Mathematical

45

Foundations of Computer Science, (MFCS’11), pp. 145–157, Springer-Verlag,

2011.

[22] P. Abdulla and R. Mayr, “Computing Optimal Coverability Costs in Priced

Timed Petri Nets,” in 26th Annual IEEE Symposium on Logic in Computer

Science (LICS), pp. 399–408, 2011.

[23] L. Jiao, “A Method for Verifying Deadlock Freedom and Liveness of Petri Nets,”

in IEEE International Symposium on Circuit and System, pp. 209–211, 2008.

[24] J. Dı́az and I. Ramos, “Communicating Sequential Processes,” in International

Colloquium in Formalization of Programming Concepts, vol. 107, pp. vii – 478,

Springer-Verlag, 1981.

[25] R. P. Moreno and J. L. V. Salcedo, “Performance Evaluation of Petri Nets Ex-

ecution Algorithms.,” in System, Man, and Cybernetics, pp. 1400–1407, IEEE,

2007.

[26] Memoization, “Memoization — Wikipedia, the free encyclopedia,”

http://en.wikipedia.org/wiki/Memoization 2014. [Online; accessed 11 April

2014 at 10:58].

[27] L. Popova-Zeugmann, Time and Petri Nets. Springer Verlag, 2013.

[28] C. Girault and R. Valk, Petri Nets for System Engineering: A Guide to Modeling,

Verification, and Applications. Springer-Verlag, 2002.

46

[29] E. Smith, “Principles of High-Level Net Theory,” in Lectures on Petri Nets I:

Basic Models, Advances in Petri Nets, the Volumes Are Based on the Advanced

Course on Petri Nets, pp. 174–210, Springer-Verlag, 1998.

[30] J. M. Ilié and O. Rojas, “On Well-Formed Nets and Optimizations in Enabling

Tests,” in Proceedings of the 14th International Conference on Application and

Theory of Petri Nets, pp. 300–318, Springer-Verlag, 1993.

[31] S. Haddad, F. Kordon, L. Petrucci, J.-F. Pradat-Peyre, and L. Treves, “Efficient

State-Based Analysis by Introducing Bags in Petri Nets Color Domains,” in

American Control Conference, 2009. ACC ’09., pp. 5018–5025, 2009.

[32] L. M. Kristensen and A. Valmari, “Finding Stubborn Sets of Coloured Petri

Nets Without Unfolding,” in Proceedings of the 19th International Conference

on Application and Theory of Petri Nets, ICATPN ’98, pp. 104–123, Springer-

Verlag, 1998.

[33] M. Mäkelä, “Optimising Enabling Tests and Unfoldings of Algebraic System

Nets,” in Proceedings of the 22Nd International Conference on Application and

Theory of Petri Nets, ICATPN ’01, pp. 283–302, Springer-Verlag, 2001.

[34] Y. Xu, X. Xie, D. Xia, Z. Liu, and L. Chen, “Modeling and Analysis of an Online

Score System Using Colored Petri Nets,” in Proceedings of the 3rd International

Conference on Anti-Counterfeiting, Security, and Identification in Communica-

tion, ASID’09, pp. 432–436, IEEE Press, 2009.

47

48

	Abstract
	Acknowledgments
	Introduction
	Related Work
	Notation
	Outline

	Petri Nets
	Petri Nets
	Colored Petri Nets
	Colored Markings
	Colored Nets
	Bindings

	Summary

	Finding Bindings in Colored Petri Nets
	Potential Transitions
	The ``Brute Force'' Approach
	Partial Bindings
	The Proposed Approach
	Summary

	Performance Analysis of the Proposed Approach
	Model Analysis
	Example 1: Dinning Philosophers
	Example 2: Multithreaded Shared Memory System
	Example 3: Extreme Example

	Summary

	Concluding Remarks
	Implementation
	Future Work

	Bibliography

