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SUMMARY

Experimental autoimmune thyroiditis (EAT) in mice induced by thyroglobulin

(Tg) and adjuvant has been studied as a model for Hashimow's thyroiditis. The disease is

MHC-controlled and T-cell mediated but little is known about the natute and the

number of immunopathogenic T g T-cell epitopes. In this study, we attempted to define

such epitopes by testing Tg sequences, previously identified as potential T·cell epitopes

through the AMPHJ and "tetramer motif" algorithms, in various strains of mice for both

immunogenidty and pathogenicity. From the three ~yntheticTg peptldes tested tWO

sequences, TgPl and TgPZ, were found to be pathogenic in classical high respondet (H­

Zk andlot H·ZS) mice. The third sequence, TgP3, was not pathogenic In mice ofk,b,d,s

haplotypes. AU three sequences were immunogenic in mice because they Induced

peptide-specific antibodies and/or T cells which were main dependent. TgPl and TgPZ

were shown to encompass non-dominant determinant(s) at both B· and T ·ccllleveis.

Similarly, TgP3 was found to involve non-dominant B-cell epitope(s) although its

abilitY to be recognized by T cells was never tested. EAT Induction with defined Tg T·

cell epitopes constitutes a system where the fine mechanisms leading to thyroid

autoimmunity can be extensively studied at both cellular and molecular levels. [n an

approach to study these mechanisms using deAned T g peptldes, we attempted to map the

H·Z regton(s) responnblefor EAT Induction by TgP!. As in Tg.induced EAT, TgPt.

induced EAT was shown to be under the direct control ofMHC.region proJucu and to

follow a pattern similar to Tg disease susceptibility. However, within the It haplotype,

expression of H·2E but not H·2A molecules was necessary for EAT induction.

Moreover, TgPl was shown to elicit IgG specific antibodlCll which were rcacth'e to

purified Tg in vitro and Tgsrored in the lumen of normal mouse thyroids. This finding

may imply involvement of TgPl-spedfic JgG In EAT pathogenicity although lluch



j,

involvement has not been further investigated [n this study. In summary, the

application of algorithms for prediction of Tg T cell·reactive sites was proved to be

successful and reliable. Defined immunoparnogenic Tg T -cen epitopes can be usd as

tools to study immunoregulation in autoimmunity and to design specific

immunotherapeutic strategies.
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CHAPTER 1

INTRODUCTION

1.1 THYROID GLAND AND CLINICAL AUTOIMMUNE THYROID
DISEASE

1.1.1 Thyroid gland

1.1.1.1 Localization and morphotorv

The thyroid gland Is the largest and firn endocrine gland to appear in the human

embryo. It begins Its development during the fOlmh embryonic week, assuming luadult

position anterior to the trachea near the base of the neck by the seventh weck (].

Hansen, 1990). The adult thyroid derives its name (,om in shield shape configuration

(thyreocidos: rhyreos, shield; eidas, form), (8. Turlington. 1991). It is a bilobed suucture

with the two lobes joined together by the Isthmulwhich is a bridge of thyroid tWuc that

tuns anterior [0 the second and third tracheal rinp 0. HanleR, 1990).

1.1.1.2 Phya{otog:y

The basic function of the thyroid is the production of (wo iodinated amino-add

hormones, thyroxin (Til anl.t triiodothyronine (TJ). These are paned inro the

bloodstream affecting many metabolic procesSt:S by virtue of their actions on various

cells and tissues (8. Turlington, 1991; R.I. S. Bayliss &. W. M. G. Tunbridgc, 1991).

Abnormalities of thyroid hormone producrion and release result in tnyroid disorders.

Thus, excessive or insufficient ourput of thyroid hormon!':1 rcsult in the pathological

situation of hyperthyroidism and hypothyroidism respectively (8. Turllngton, 1991).



1.1.1.3 HiItololY .nd ultraltTUcture

The thyroid lland is organized into spherical cyst.like structures called follicles

(reviewed in R. Ekholm &. U. Bjorkman, 1990). The thyroid follicle is the primary unit

of the gland both in terms c:l structure and function because within its hiE:hly orpnized

cdlular compartment, biosynthesis andsecrerlon of thyroid hormones take place.

A thyroid follicle consists of a lumen stlttounded by a lingle monolayer of epithelial

cells (folllc.ulat or adnar cdls) and Is enclosed by a thin bal8l membrane (reviewed In R.

Ekholm & U. Bjorkman. 1990). The lumen is filled with a proteinaceous, viscous

solution. the colloid. which Is retained at that location because tight junctions

(dcsmosomes) join the edges of follicular cells together. limiting Its spread. The colloid

contains II mixture of proteins, mainly Tg, a 660 kilo·dalton (kDa) glycoprotein, which

is the preaJnor cl thyroid hormone, as weU as other lower mol«ular weight iodoproteins

and albumin (L J. ~Groot er aJ., 1984a). The shape of the follicular cells varies from

cuboidal to columnar, dt:pending on the activation status of the thyroid gland. The

apical or lumlnar surface of. the follicular cells is ch:illtacterized by numerous microvillar

projections which are transformed to pseudopods after stimulation, thus increasing

considerably contacr between follicular cell5 and the colloid. The basal stlMaCe of the

aclnar cell5 borders on a capillary and is separated (rom it by a tWO layer basement

membrane (L J. DeGroot eral., 1984a).

A prominent characteristic of the foUicular cells is their ·polarity· (reviewed In R.

Ekholm &. U. Bjorkman, 1990). This is expressed as differences In both the chemical

composition between the apical and basal (facing the exuafoltlcular space) plasma

membrone, and the distribution of or~aneUeswithin the follicular cells. The presence of

ti&ht junctions between the follicular cells contributes to the preservation of di[crences



in composition between the apical and basal plasma membrane because these tight

junctions act as barden inhibiting free diffusion of proteins and lipids (reViewed In R.

Ekholm &. U. Bjorkman. 1990). Withtn the folllcular cells. the cellular organelles follow

a certain distribution pattern; for example, the nucleus is situated In the basal or the

central part of the cell and secretory vesicles In the apical zone, Obviously such aceUular

polarity and organimtion evolved to assist certain functions. Within the follicular cells

rhere ate two major processes operating in opposite directions. The f1ut process involves

production and transportation of Tg ro the follicular lumen and th.e second endocytosis

of iodinated Tg and production of thyroid hormones that are delivered at the basal

membrane.

A second less abundant endocrine cell population, consisting of about 1% of the

thytoid epithelial cell mau, exists within the thyroid. This population is the

parafollicular or C cells (B, Turlington, 1991). C cells have no access to the follicular

lumen andarech.aractedrOO by the ploduction of the peptide hormone calcitonin (C. C.

Capen. 1991).

The thyroid gland is highly vascularlredcontaining a network of Inret- and intta·

follicular caplltaties lying close to the follicular basement membranes (C. C. Capen,

1991). A network oflymphatics as well as nerve fibers that are mainly sympathetic and

occasionally parasympathetic, arc alsodetcctcd (t. J. DeGroot era!.. 198+a).

1.1.1.. Re(Ulationof thyroid function through the hypoth.alamo-pitultary 0\.1.

The maintenance of normal thyroid functlon Is highly dependent on the tuned

interactions arr.ong hypothalamus, pituitary and thyroid gland operating through a

hierarchicalsynem of hormones and neurotransmirrers (I. R. McDougall, 1992a). The



principal modulator of thyroid hormone S)lnthesis tiind release Is thyroid stimulating

hormone (TSH), a glycoproteln of 28 kOa. Thyroid stimulating hormone is synthesized

and se<.reted by anterlor pituitary cells called thyrotrophs. Thyrold~tlmulating hormone

exerts its effects after specific binding to a transmembrane receptor (TSH.R) expressed

by the follicular epithelial cel1s. Such binding activates a receptor.linked adenyl cyclase

producing increased cAM P levels which in turn trigger Intracellular productionofT3

and Tf. Although several facton Including hormones and neurotransmitters, influence

TSH production and secretion, the levels ofTSH are predominantly regulated by a

hypothalamic.derlved factor cal1ed thyrotrophin releasing hormone (TRH).

Thyrotrophin releasing hormone is known to bind with high affinity to specific receptors

on thyrotrophs stimulating TSH production whkh subsequently triggers blos'inthesis

and telease of thyroid hormones. The circulatory levels of T) and T4 In turn exert

ncgadve feedback control on TSH production by virtue of their action on pitulrary

thyrorrophs (P. R. Larsen. 1982).

1.1.1 Autolmmunityand therhyroid

1.1.1.1 Autolmm.unlty .nd autoimmune t:~;.-~old dbeale

The term· autoimmunity "Is used t04escrlbe an immune response direcred to "seW'

constituents of an organism. According to the clonal selection theory, a primary

function of the immune system Is self non-self discdmlnation (F. M. Burnet, 1969).

Burnet proposed that while Band T lymphocytes specific for foreign antigens are

selected to survive and mature to Immunocompetent cells, self-reacdve lymphocytes are

eliminated during their ontogeny via a process called clonal deletlon (F. M. Burnet,



1959). Recent advances in immunology, however, have suggested autoreactivity to be a

normal feature of the imlllune system CIS autoreactlve clones arc detected not only In

patients but also in healthy individurlls (So Avmmeas, 1991). What keeps those

auto reactive clones from being autoaggressive! In other words what regulates the

autoreactive clones and prevents them from attacking self tissues? It is suggested that a

regulatory network exists within an organism that controls autoreactivity (t. R. Cohen

& D. B, Young, 1991; S. Avrmllea~, 1991). Disturbance of that fine balance, due for

examplc to cnvifOlllllcntaluiggcrssuch as infection, leads to uncontrolled alltoreactivity

dun is expresscdh\ the form oLmalitoimlllUI\e disorder (Lit Cohen, 1991; L. R. Cohen

& D. B, Young, 1991).

Autoimlllune disorders ;ue classified :lS systemic or orf::m.spcclfic

dCjlcnJinc ~H\ ..llstri!.>IJtioll of the alltillell tow;lrds whkh the UUWiLUll\Ulie response Is

directed,anu the number of tiSSlll.:S or orgims in which <I11toaggression is observed (I. M,

ROLtt ct af" 199Z). Thyroid nutoimmUlle disorders belong to the second category

because the immune response is directed to :mtigens within the thyroid and the lesions

arc rcscricwd to the sallie orgnn, Autoimmune thyroid diseases arc deCined as primary or

secondary depemlinG upon the CxistCf\CC of lymphocytes ill thc peripheral blood which

nrc specific for thyroid antigcns. Primary thy wid disorders itwolvc Hashimoto's

thyroiditi~ (liT) ;lnd its V:lri;lnts 111\l1 (Jw\'e~' dise:lsc IGD) (Table l,l). These twO

disorders have opposite m:lni(eHatiolls in humans. HT is characterized by

hypothywidi~lll, hil:lI lcvcl~o( TSI I :lIld lulY Icvcl~ o( thywld hormones 11\ the periphery,

GO is charnctcrized by hyperthyroidism, 101Y levels of circulnrory TSH and high levels of

thyroid hormones. In spite of differences ill their clinical appearance the-two disordcrs

share cOlI\mon features (reviewed in J. Charreire, 1969). j:or example, both diseases

HGllrCC;lte il\ the ~:llIlC 1;llllilk~ ,)r evell CllL'xisr ill Ihe 5;Ul\e thyroid (reviewed III R, Volpt,



Table 1.1: Classification ofpriman autoimmune thyroid diseases (R. VoltXi, 1990),

Primary autoimmune th.yroid disease

~
Autoimmune th.yroidltis Graves' disease

Huhlmoto', thyroiditil (goi",,",)'
• Chronic 6br0Ul thyroiditis
• Lymphocytic thyroiditil ofchildhood and adoleocence
• POIt-pattUm thyroiditis
• Idiopathic myxoodema (arrophic)
• Atrophlcuy-Iptomatic thyroiditil
• paln_ or silent thyroiditis (rnre)

* prototype

• variants



1990}. Similarly prol:rcssion frolll one thyroid condition to the othcr has been rcponed.

Lymphocytic infiltration and antiboJics specific for Tg anJ thyroid peroxidase (TPO)

arc observed in both HT and GO (reviewed in R. Vol~, 1990). Based on such (eatures

it has been suggested that the underlying autoimmune process is similar in both thyroid

disorders (L. J. DeGroot &. J. Quintsl\s, 1989). However, other investigators consider

them as separate but closely related autoimmune disorders mainly based on diffcrences in

other genetic, immunologic. and clinical (eatures (rcviewcd in R. Volpe. 1990). For

cxample, thyrotropin receptor antibodies arc found in virtually all GD patients but they

me vmiahly present in !'IT paticnrs. Similarly, in cases where HT and GDoccur in the

5<lIltC familics they tCtlJ to ussodate with thc smne haplotypes but when largc

populations of HT and GD patients arc srudied the tWO thyroid disorders appear to

associate with differelH human leukocyte antigen (HLA) haplotypes (reviewed in R.

Volpe. 1990). j:or cxamplc. in Caucasians GO has been found to be associated with

DR3 and HT with DRS. HT has mostly been slUdied through the induction of an

31\alogue of the diSC3sc in mice (EAT). An overvicw of HT follows.

1.1.2.2 Hashimoto's thyroiditis

The tcrm "srruma lylllpllOlIllltOS;t was initially uscd in 1912 by a surgeon to

characterize the thyroid condition of four middle aged women with diffuse and massive

infiltration of the thyroid gland (reviewcd in P. E. 3igani &. N. R. Rose, 1985). The

same thyroidcondltlon was later called HT although the term is currently used generally

to Jcscribe the goitrous form of nutoilllluune thyroiditis. Sevcral other synonyms such as

chronic thyroiditis. lymphocytic thyrOiditis. lymphadcnoid goiter and autoimmunc

thyroiJitis havc Ix:Cll usc:J to refcr to thc samc pathologic conJition (L J. DeGroot era!,.



1984b). The term auroimmune thyroiditis is relatively broad, encompassing not only

I-IT but nbo sevcrnl othcr less common varimHs wllich arc slightly different in their

clinical appearance frolll the prototype (Table 1.1), (R. Volpe et al., 1990).

Although I-IT a[fccts all ages and both sexcs, It is observed 9-25 dmes more

frequently in women than in men (I. R. McDougall, 1992b), The peak of disease

incidence is observed between 30 and 60 years of age although a juvenile variant occurs

in children and adolescents (Tnble 1.1), (R, Volpe ct al., 1973).

Clinically thc disease is characterized by the presence of diffuse. painless enlargement

of the thyroid gland (thyroid gland weight ranges between 25-250 g), (V. A, LiVolsi,

1990) which is associated with euthyroidism, hypothyroidism or even in rarc occasions

with hyperthyroidism (see secrion 1.1.1.2), (reviewed in P, E, Blgazd & N. R. Rose,

1985). Evidcnce ofhuliloral immunity to thyroid antigcns is nlso obscrvcd accompanicd

by characteristic histological changes of the thyroid,

The autoimmune nature of the disease was initially demonstrated in 1956 by Raitt er

a/. who werc able to precipitate illllllunogiobulins from HT patiellts' scra rcactive to

thyroid antigens and Tg (I. M. Raitt era1., 1956). Approxlm:ltcly 40 years later, the

ctiology of the disease is still obscure and the precise antigen il\Volved in

autosensitization oflymphacytes is undeCined (R. Volpe, 1991). Candidates involved in

this process includc Tg and TIlO, the principnl thyroid antigens to which most of the

antibody response is directed.

Serology: AntilhyroglobuliLl (HllIi.TIl) :lI\tiboJies have Ix:t:ll demollstrated in the sera

of HT patients by a variety of methods such as indirect immunoOuorescence, passive

hemagglutination, radioimmunoassay andenzyme.linked immunosorbentassay (ELISA).

Depending on the sensitivity of the method employed, Tg·speciCic antibodies have been

(oulHl in 5S-9U% or lIT p:ltit:l\l5, hilt the :llltibody levcl~ do not corrclnre well with



thyroid patholoGY (P. E. Bill3zzi & N. R. Rose, 1985). Thus, the presence of anti.Tg

:mribodics is not illJicativc of lIT since a1ch antilJudk-s have lx:cn oUscrvcd In patients

with other thyroid disorders of autoimmune or non·autoimmune origin (GO,

multinodular goiter, thyroid carcinoma) as welt as in 38% of healthy euthyroid

individuals (P. E. Biganl & N. R. Rose, 1985; T. Kohno er aI., 1988). In addition.

several HT cases have been reponed in the absence of circulatory anti.Tg antibodies (J.

R. Bak.er et al., 1988). ConvefSCly, anti.thyroid peroxidase (anti.TPO) antibodies M\:e

been found in virtually all HT patients, In most of those with GO, and less frequently in

those with other thyroid disorders (R. Volpe, 1991). A close association also exists

between 3l\tl-TPO antibody tltefS and histologic lesions of nT patients (H. Yoshida cr

01.,1978). In adJition many patients with thyroid autoimmunity 13ck Tg.speclflc

antibodies In the periphery, but have TPO.specific antibodies which closely relate to

their thyroid abnormalities (1\. R. Tanner cr a/., 1982). This sUGgests that TPO is the

principal initiating autoontigen in human thyroiditis (1-1. Yoshida et ;II., 1978; reviewed

in R. Volpe, 1990). Ahhough Ihe illlpOft3l\Ce of Tg in the initiation of human

thyroiditis is not conclusive it should not be undcTt'Stimatoo for several reasons. Hut. in

liT P'ldents seronegative for anti.Tg antibodies, It has been proposed that Tg.spedfic

antibody production is localucd within the thyroid (5. R. Baker (Or al.• 1988). Second.

nn initial mnmcnsitiz:nillll flJ Til lIIil:lu hl~ fnllnwl,,1 hy anti-TPO antilxxly production.

This concept is supported by Rose who Jct~tLod anti·TPO antibodies after immunizing

animals with TG (J. A. Andrada ct <11.• 1968; N. R. Rose, 1988). Third, Tg and TPO

were shown to express common epitopcs for both B (Y. Kohno et al., 1988; J. Ruf er ai"

1991l :HilI T cells (S. M. Mcl.achl:llI & 1\. l~llll\lport, 1989, A. Iloshiok:l, 1993). In

other words TPO.specific 1I\0noclonal antibodies (MoAbs) cross·reacted strongly wIth

Tg and vice versa (Y. Kohno et at., 1988). Similarly. LNC derived from animals
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immunized with the T g.P4 (2730-2743) peptide responded signifkantly to TPO and

TPO.P4 (llB.UJ) peptide (A. Ilo~hioka, 1993). Fourth, the principal trigGering event

in the disease cascade could be based on Tg.spccHk T -cdl reactivity with the antibody

having a marginal role in the disc::Jsc process. Evidence (rom experimental models

supports such a ttotioa (sec section 1.2.3.1). Finally in both spontaneous and

experimental models of thyroiditis, Tg was shown to be the principal aUIoantigen for the

diseaSe etiopathogenesis (reviewed in G. Wick eral., 1986).

Although most of the antibody responsc is directed toward Tg and TPO. ~mtibodics

to other thyroid antigens, such as thyroid hormones (reviewed in R. Volpe. 1990),

second colloid antigen (B. M.l3alfour eral" 1961), a new autoimmune rhyrolddlsease

related·antigen (ARTA.l) (1-1. Hirayu ct nl., 1987) ond other undefined thyroid surfacc

antigcns havc occasionally been observed (reviewed in It Volpe, 1990). In addition,

there have been reports of HT patients whose sera were characterized by the presence

antibodies with thyroid growth stimulatory (H. i\. Drexhage ec al., 1980) or inhibitoty

antibodies (H. A. Drexl13gc ct ai" 1981) thnt l:!.i&ht be responsible for the goitrous and

atrophic features rcspectively of nutoimmune thyrolJltis.

I-lisroPMllOlogy: Histologically dw thyroid Chllld cxhlbits invns!on by mononuclear

cells and the accumulation of these cells leads to disruption of thyroid follicles and

damages thc follicular bascmcnt membrnnc. Occasional1y, characteristic ncrminal

centers similar to these of secondary lymplloid organs are formed duc to accumulation

withil' t1w f"llku!nr IUlllcn of mainly II lymph",ytcs hut 11150 T lymphocytes lind

macrophages (reviewed in P. E. Blgaui & N. R. Rose, 1985). Thyroid follicles change

ftom normal to nec.rotic and gradually the thyroid parenchyma undergoes fibrosis.

Occasionally the thyroid epithelial cells appear swollen or oxyphilic duc to accumulation

of numcrous large-she mitochOlHlri3, Such cells nrc known ns Hurthlc or Ask:mazy's
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cells. Since the thyroid gland is slowly damaged, a parr of the thyroid parencnyma

<::11111.,[ cuntribute IU thyrul(1 hUlIllUllC ~Ylllh"''1is:Jmllil,,'\:rcllun. I(the J:1lIH1Gc Ls extelulvc

the patient expresses hypothyroidism. If, on the other hand, the thyroid eland

destruction is not extensive, hypothyroidism is not ohlCtVcd. In such cases, the gland

homeostasis is retained through the "healthy· functional pan of the gland which

compensatCli with overproduction of thyroid hormones under excessive TSH stimulation

(sec section 1.1,1.4), (reviewed in P. Laurbcrg, 1990). In SOlile patients, hyperthyroidism

is observed as a result of the coexistence of autoimmune thyroiditis and GO within the

sallie thyroid gland. Such a cOI\dition is known by the [CUll "Hmt,iroxicosjj" Dnd is due

to the preSel!CC of 3nt!.thyroi\1 stimulatinG hormollc receptor (anti.TSI-!-R) antibodies

that mimic the TSII cffect (scc scction 1.1.1.4), (rcviewcd In it Volpe, 1990)."Antl­

TSJ-I-R andbodies have becn detected in approximately 26% of HT patients (5.

Atkinson et al., 1988). Thclr net dfC<:t on the thyroid clinical picture depends on th:,,:

thyroid follicular integrity since extensive thyroid damage abrogates hyperthyroidbm (So

Atkinson craL, 1988).

HT is associatcd with other endocrine and non.endocrine :lUtoimmune diseases.

More common endocrine associations includc, GD, insulin-dcpendcnt diabetes mellitu:J

(IODM) and Addison's disease (autoimnlunc adrenalitis). The most common non-

clldncrlllC \li5,C:I5l'S :lUl1o.:iatt:\1 with liT ill<:hltle IWrl\iclnU5 anClllia, virilil:0' llIyaSlheni~

gravis and Sjogren's sylll.lrollle (tcvicwcJ itl It Volp~, 1990). The reason for such

associations is preselltly unknown. It is pro[}()SCt! [IHlt coc)listing diseases might share

similar etiologies as, fot it\Stance, a defect in organ.specific suppressor T cells (reviewed

in It VolpJ, 1990). Such n defcct has becII illllllicatc..J as nn etiologic factor in both HT

(reviewed in R. Volpe, 1990) :lIld 100M (1. F. Bach, 198B), however, its relative

Importance in coinddel\ml disorders such :15 those llientiollcd above remains elusive,
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Alternatively, coexisting diseases might associate with particular HLA polymorphism!.

For example, the form of lOOM that is related to autoimmune thyroid disease has been

related to HLA.&l and Dw) (reviewed in R. Volpe, 1990).

Even though the etiology of HT is still undefined It is considered to be a

multifactorial disease. Genetic, immunological and environmental risk factors have been

imptlcatcd in its pathogenesis, part of which will be discussed further in the following

sections. In the Induced murine model of thyroiditis the disease is clearly T-cell

mediated and the antibody rolc is less prominent but In human thyroiditis the individual

contribution of hUllloml O'md cclllll:lr (:lefnrs in tlw di:;c:uc process nrc still unlcsolvcd.

Several imlllunological mechanisms have becn proposcd to operate in thyroid gland

histological c1ulllges. Thosc include direct cytoly~is of thyrocytes by cytotoxic T -cells

(G. W. Canonica et al., 1986}j antibody-dependent cell medi:lted cytotoxicity (ADCC)

by natutal killer (NK) cells vi:! interaction with immunoglobulin (Jg) bound to

thyrocytes, complemcnt mediated cytotoxicity via formation of immune complexes on a

target cell, or direct injury of the gland by cytokincs released by the infHtrated thyroid

(reviewed in A. P. Wectman, 1992). In spite of the proposed mccl\anisms the prccise

sequence of events le:Jding (0 thyroid<1mlHlge is still unknown.

1.1.3 Major thyroid autoandgenl.

In primary autoimmunc thyroid disordcrs most of the autoreactive response is

directed to three cardinal thyroid specific antigens, Tg, TPO and TSH·R. Although

autoreactivity has been demonstrated to all three autoantigens in both HT and GO, the

etiopathogenic candh..latr.:~ of the former disorder are thought to be Tg, TPO and for the

latter TSH·R. Autoreactlve rcsponses to other thyroid antigcns such as the second
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coltoidanrigen (8. M. Balfour eta!" 1961), ATRA·} (H. Hirayu et al., 1987). the 70

kDa (]. Y. C. Chan eral.• 1989) and 65 kOa antigen. (Q. Dong etal., 1991) have alia

been reported however their silf\iflcan~ in thyroidaurolmmunhy is undefined. Since

the present study focuses on T g, its nructure, cellular distribution and physiological role

will~ further discussed.

1.1.3.1 Thyrollobulin

Tg Is a large homodlmetlc glycoprotein of a molecular mass of 660 ltoa and

sedimentation coefficient of 195. It is composed of two l2S identical subunits. 330 kDa

each, joined through covalent (disulfide bond) or non-covalent linkage (reviewed In G.

Medeiros·Nero er al., 1993). The ability ofT II: subunln [0 associate firmly via disulflde

bonds depends on their iodination level. Poorly iodinated Til easily dissociates into 125

subunits because the numb~r of inter-chaln disulfide bonds Is low (r~vi~\Wed in U.

Bjorkman &. R. Ekholm. 1990).

Til: is synrhesiredabundandy on roueh ~ndoplasmk r~tkulum polysomes by thyroid

follicular cdl.s and is subsequently transported to the Galgi apparatus where it undergoes

postranslatlonal modifications such as e1ycosylation and phophorylation. Finally th~

molecule is secreted into the fotlkular lumen for Iodination and storage. Tg composes

approximardy 15·80% of total thyroid protein although th~ amount that Is present In

the thyroid :It any time depenu. on the functional status of the gland. Thus, the

hyperactive thyroid gland contains small deposits ofTg (A. J. Van Herle ec al.. 1919a;

reviewed in U. Bjorkman &. R. Ekholm, 1990).

Tg serves t\1/0 fundamental purposes necessary for normal thyroid gland function.

First. within iu protein matrix are incorporat~ tyrosine residu~ that facilitate iodln~



trapping. Following Iodination the Tg tyrosyl residu~s form monolodotyrosines (MIT)

and dilodotyrosines (DIT) that partlcipat~ In th~ coupling reaction which results In

synthesis of thyroid hormon~s. Second, stored T g consists of a pool of iodine and bound

thyroid hormones which ar~ available for use upon demand (reviewed in G. Medeiros­

Neto etsI., 199J).

Based on r~comblnant DNA t~chnol('gy It has been possible to derive the amino

acid (a.a.) sequence of human Tg (Y. Mahhiery &. S. Lissitzky.1967), bovine Tg (L.

M,~tcken etal., 1985) and pact of rat Til (R. DiLauro eta!.• 1985) from menager RNA

(mRNA). Howev~r, the mouse Tg (MTg) sequence Is stlU undefined. High homology

between the primary structure ofTg from various species is observed. For example

human and bovine Tg exhibit 81% homology at the mRNA level (reviewed in G.

Medelr('ls-Neto et al., 1993).

Analysis of the primary a.a. Tg sequence reveals internal homologies. Based on

those homologies. human Tg (HTg) is subdivided In four domains. The first Intemal

homology Is a 10 (times) repeat of approximately 50 a,a. positioned In the A domnln

between a.a. 29 and 1196. The second Internal homology comprises 3 repeats of 15-17

residues each, localized in domain BofTg between a.a 1436 and 1483. Finally the last

internal homology is rituated in domain C ofTg and consists of a motif existing in two

subWpes and repeated five times between tesidues 1603 and 2186 (Y. Malthiery &. S.

Lissttzky, 1987). The carbo~y-termlnalof Tg corresponds to domain D. It is composed

of approximately 600 a.a. and exhibits no Internal homology (reviewed in G. Medeiros­

Neto et a/.• 1993). However It shows sequence similarity (28%) with about 90% of the

sequence of acetylcholinesterases from both vectebrates and Invertebrates (J. T. Dunn,

1991). Bovine T gfollows a slml1at pattem of internal homologies.
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Tg can nap. via tyrosine Iodination, 90-95% of the iodine that is available (or

protein binding (L J. ~tOOt et a/.• 19Sic). AlthoUllh it contains about liO tyrosine

residues per mole. only 'fa tyrosine residues ate Iodinated at an iodination level of 1%

(reviewed in U. Bjorkman &. R. Ekholm. 1990). The: iodine content ofTg in vivovaries

depending on the iodine Intak.e by the thyroid. the species and the physiological

condition. In most mammals. it rangt'5 from 0.2. to 1% per molecule which corresponds

[010·50 atoms of Iodine ~r mole oCTI' The normal physiological range efTa·lodine

content in humans Is 0.25·0.5% per molecule (reviewed in U. Bjorkman &. R. Ekholm,

1990). The distribution of Iodinated tyTosi.nes on T; varies with the level of iodination.

Among the iodinated tyrosines only a sm;l\l part contributes to thyroid hormone

synthesis. e, g, in a 0.5% Iodinated Tg molecule no more than one T4 residue is present

peT molecule and T3 is present only In few of them. Tn cases of poor Tg iodination

where the Iodine content is less than 0,1%, no Ti or TJ is present per Tg molecule (L. J.

DeGroot eta/., 198ic). In HTg, four acceptor hormonogenlc sirel (sites converted to

thyroid hormones) have~n demonstrated and are localized at the amino and carboxy

termini of the molecule, a feature that makes them easily accessible to thyroid proteases.

The hormonogenlc sites have been mapped at positions S. 2553, 2561 and 21i6 of HTIL

(Y. Malthi~ry &. S. LiJsluky, 1981). Although no hormonogenic site has been observed

at the central part tl the Til molecule. ir has been proposed that rhb pouion influences

the Tg sttueture and is therefore exuemel.y Implmant (or thyroid hormone formation.

Ten per cent of thyroglobulin's weight is made up of carbohydrates. AU species

encompass two carbohydrate units, the polymannose chain and the complex chain. The

polymannose chain contains two N.acetylglucosamlne residues and 5·9 mannose

residues that are linked to asparagine. The complex chain is also attached to an

asparagine residue and is composed of a polymannose chain with three mannose residues
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and various numbers of other peripheral sugars such as galactose, N-accrylglucosamine,

sialic add and fucose (reviewed In U. Bjorkman & R. Ekholm, 1990). HTg contains

tWO addttlon::.! carbohydrate units that are linked to the Tg COTe via serine or threonine

residues.

Low circulating Tg- levels ranging from 1 to 30 ng/rot have been detected In the sera

of many normal individuals. It b sugge$ted that trace amounts ofTg. less than 1 ng/mL

and practically undetectable with current radioimmunoassays are present in virtually all

health)! subjects (A.]. Van Herle era1., 1973). A rise in the circulatory levels of Tg

however was demonstrated in cases of autoimmune thyroid disease or ocher thyroid

dysfunction such as thyroid carcinoma, subacute thyroiditis, etc. (G. Torrigiani er al.,

1969). In addition, increased levels ofTg were detected In the bloodstream of neonates

and Tg- binding lymphocytes were present in healthy subjects before birth, suggestive of

the abUhy ofT and B lymphocytes to tolerize to Tg In early life (A. J. Van Herle er al.,

1973; revIewed in A. J. Van Herle, 1990;1. M. Robem etal., 1973). Similarly based on

sensitive a~says, Tg-spedflc antibodies were detected in healthy Individuals (36%

women and 15% men), (reviewed in L. J. DeGroot & J. Quintans, 1989). Moreover, B

cells derived from control subjcca were triggered to secrete Tg.speclfic antibodies in vitro

suggesting that a low level of autoreactlvity to Tg, ("normal autoreactivity"), exists in

healthy subjects.
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1.2 EXPERIMENTAt THYROID AUTOIMMUNITY. AN OVERVIEW

1.1.1 Animal modell ofautoimmune thyroldldl.

In an attempt rodesign preventive and therapeutic strategies, early studies seeking to

elucidate the mechanisms underlying the pathogenesis of autoimmune thyroid disease,

were focused on animal models. Although animal models can only mimic the human

autoimmune condition to a certain extent, they aTe advant:lgeous relative to their

human counterparts for several reasons. First. they provide a system where both the

immunologic and pathogenic (eatureso( thyroid disease can be studied under controlled

conditions. They can be manipulated by experimental procedures that cannot be

employed in humans such as thvrnecromv, thyroidectomy, adoptIve transfers of serum or

cells etc. They include species with short life spans so that the natural historv of the

autoimmune process can be easUv followed and detailed genetic studies can be easilv

performed. Finally theV are composed of Inbred populations and, In experiments, large

numbers of animals allow valid statistical analvsis.

No representative experimental model has been reported to date in GO but a vadetv

of both spontaneous and induced experimental models exist fot HT. Spontaneous

thvroldltis arises naturallv without requirement of anv experimental manipulation. thus

its etiopathogenic factor (5) Is (are) unknown. Attempts to discern such factor(s) can be

hindered bV the long Interval that might Intervene between the disease triggering event

and the full expression of its clinical signs. Induced thvrolditis. on the other hand,

develops after specific in vlvoexperimenral manipulation. Induced models of thvroiditis

constitute more artificial analogues of human thvrolddisease compared to spontaneous

models, however, theV allow one to initiate rhe autoimmune process at a certain time
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point and follow it from that point through its entire CD\l15l!. Regardless of their nature

(spontaneous or cxperilncntal) anlmalmodcls of autoimmune thyroiditis contribute

considerably to our understanding of the risk factors involved in thyroid autoimmunity

(see following sections).

1.2.1.1 Spontaneous animal models of tbyroldlri.

Spontaneous autoimmune thyroiditis (SAT) has been obse!ved in several animal

species Including chickens (reviewed in G. Wick at ::II., 1989), rats (A. Hajdu &. G.

Ron::!, 1969 j E. Stcrnthal cral., 1981), dogs (W. E. Tucker &. V. C. Copt:!ln, 19621 W.

H. Bcicrwnltcs &. R. 1-1. Nlshlymnn. 196f.), monkeys (reviewed In P. E. Billarzl &. N. R.

Rosc, 1975) mice (N. I:, Bernard erol.• 1991) and mastolnys (a desert rodent) (H. A.

SoUeveld at al.• 19823).

. Chtekens: The best studied spontaUl..'OUs model of thyroiditis that closely resembles

the hUJnan autoimUlune dlsoulcr. in cliniCAl, histop:ltholos:ic.,I, endocrinolOGical and

Illllllunologlcal aspects, Is theo~ strain (OS) chicken (reviewed in G. Wick ct al.,

1985). as chicken is a White Leghorn line derived from hypothyroid Cornetlsualn

(CS) chickens by selective breedinG' Initially hypothyroidism was observed in a small

core «1%) of female CS chickens (R. K. Cole, 1966). After about 1~ gcnerations of

breeding the hypothyroid characteristics were expanded within the neck to such an

extend that approximately 100% or chickens exhibited severe hypothyroidism at the age

of 3·5 weeks regardless of their sex. Apart froRi hypothyroidism other additional features

oros chickens include small body sIze, snmll combs, long silky fcathers, lipaemlc scrum,

lorge subcutaneous and abdominal dCl>osits of (at, sensitivity [0 temperatures < 20 0 C

;'lnd low fertility and hatchability.
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Histoloiically OS chlc1u~nl exhiLh a thyroid picture very similar [0 that of HT

patients. characterized by mononuclear infi(tra[ion of the thyroid by plasma cells, small

3ad large lymphoid cells and macrophage. Bcells arc often distributed, between thy:old

follides and acinar cells, a feature known as -peripolesis·. Although characteristic

gcrmin31 centen ate observed, no Hunhle, giant cells or granulocvtes are present In dv If

thyroids. Usually In6hrati,:m starts multifocally 1-2 weeksaftcr huching and expands

c<Jnsiderabty leading to complete disruption of the thyroid follicular architecture after J

weeks when the hyporh.yrold condition is prominent. In advanced cases of

hypothyroidism some pam of the thyroids arc characterized by fibrosis due to

proliferation of Ihe connective tissue.

Serologically 90% o(OS chickens are characterized by the presence o( antibodies to

thyroid antigens including Tg (>65%). thyroid hormonel and microsomal antigen

(26%). However no antibodies to the second colloid antigen are observed (G. Wick er

al., 1989; P. E, Rigani &.. N. R. Rose. 1975; G. Akhinger er al., 198+). Antibodies to

other non.thyroid autoanlilens have also been demonstrated in the serum o( OS

chickens (G. Akhini:er et al.. 198+) however, no lesions In other org<lns have been

repoTtM

Even though severaispontaneoul models of autoimmune thyrolditb exist, the OS

chicken model Is the best nudled to date for several reasoRS. It is the only model where

severe hypothyroidism develops that closely resembles the human disorder because it

develops naturally in the absence of any experimental manipulation (reviewed In W.

Wick et al., 1989). In contran to other models of thyroiditis almost all animals develop

thyroid autoimmunity. Diseased animals can be clearly Identified within the flock

because they exhibit oven clinical signs of hypothyroidism such as small body S!Ie, fat

deposits, etc. In birds there is a clear distinction between the B· and T ·cell
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compartment, therefore tneit immune system can be casil)' manipulated. Avian

erytnrocytes are nucleated constituting a convenient source of DNA for molecular

studies (G. Wick er a/., 1989). The chicken embryo, once extra maternal, can be

accessedeasity. A large number of offspring dedved from. the same parents are available,

facilitaringstatisticatanalysis.

Ratl: There are tWO spontaneous models of autoimmune thyroiditis in ran, The

first model was identified in 1969 by Hajdu and Rona who observed that inbred Buffalo

(BUF) male rats at 36 weeks of age exhibited spontaneous histological changes of their

thyroid.! comparable to thoseofHT (A. Hajdu & G. Rona, 1969). Thyroid lesions were

characterized by the presence oflymphocyrcs, plasma cells and macrophages, Similarly

coOS chickens, germinal centers were prominent within their thyroids whereas Hunhle

cells were ab~nt, Further studies indicated that the histological alterations of BUF rats

were aSS<'Ciated with a hypothytoid condition estimated by elevated and decreased levels

ofTSH and T4 respectively (j, D. Kieffer eraJ" 1978).

The incidence of the disease was shown [0 be age.dependent rising from 14% at 12

wk of age to 48% at 30 wk (D, A. Silverman &. N. R. Rose, 1971), and sex-dependent

with iii female: male ratio of 3:1 (B. Noble eral" 1976). BUF rats appeared to be highly

susceptible to the development of autoimmune thyroiditis because. under certain

treatments such as subcutaneous Injection with uypan blue, methylcholanthrene

(chemical catcinogen), neonatal thymectomy etc., the disease incidence increased in

young animals (P, E. Bigaui &. N. R. Rose, 1975, D. A. Silverman &. N. R. Rose. 19H),

Employine: a variety of techniques such as indirect immunofluorescence and tanned cell

hemagglutination tests, T g.specific bur not TPO-speclfic antibodies were detected in the

serum of those animals with extensive thyroid lesions but not in those with mild or

moderate thyroiditis (P. E. Bigazzi &. N. R. Rose, 1975).
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A second spontan~1model ofautoimmune thyroiditis In tars is the Bio.brcNine

IWorcester (BBiW) model (E. Stcrnrhal.:or a/., 1981). In addition to lymphocytic

thyroiditis, BBJW tau exhibit inmtration of the pancreatic islets thus constituting a

spontaneous model fot 100M. The Incidence cl. autoimmune thYfOiditis in this animal

model is quite high (59%) at the age cl.8-10mondu in both Sl!:xts. The prevalence and

Intensity of the disease can vary considerably ftom 4,9% to 100% in different inbred

sublines which arc selected on the basis oflDDM pathogenesis, suggesting that the [\\'0

hereditary autoimmune disorders are not tightly Iink.ed (R. Rajaranavin et a/., 1991).

Regardless of the histological picture of the thyroid, estimation of the serum levclsofT3,

T+ and TSH in BBIW rau indicates normal values sugp;esting that thyroid infiltration by

mononuclear cells is not extensive enough to result in thyroid failure (E. Sternthal et al"

1981).

Dap: Initial uudies by Tucker eral. in 1962. ckmonmatt'd lymphocytic thyroiditis

to develop spontaneously in 16.2% of beagle dogs. The disease was equally prevalent in

mal~ and females and. apart from the thyroid Illand histo!ollical alterations, no other

clinical signs of thyroid dysfunction were reported (W. E Tucker &. V. C. Captain.

1962). Histolollical examination of the thyroids revealed scattered foci and diffuse

infiltrates characteri1ed by the presence of lymphocytes, plasma cells, macrophages and

smalt numbers of neunophlls. Infiltrated cells were arranged in germinal centers and the

presence or eosinophilic epithelial cells (Hunhle cells) was prominent. In most beallIe

dogs thyroid gland histological alterations wete mild to modetate, thus resuhinilin

normal thyroid Illand function. However In those animals with severe thyroid eland

changes, a decreased U11 uptake was observed (W. H. Belerwaltes &. R. H. Nishiyama.

1968).
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Serologicallv. dog thyroiditis patanels the human disorder characterized by the

presence of antibodies to Til, microsomal and second coltoid antigens (W. H.

Beierwalres &. R. H. Nishiyama, 1968; G. J, Mirejewrlll Cf aI,. 1971).

MowJI: Marmoset monkeys of the genus Ca/lirhrixdevelop chronic thyroiditiS

(reviewed in p, E. Bigazri &.. N. R. Rose. 1975). Monkeys of the genus Saguinusdevelop

thyroiditis occasionally. Chronic thyroiditis in marmoset monkeys exhibits a female

preponderance (female: male ratio 2:1). Thyroid glandJ are characterized by focal

collections o(inflammarory cells or total replacement of the follicular architectuTe by

small and large lymphocytes and a few plasma cells. Follicles close to the infiltrated

areas ate atrophic, filled with very little or no colloid. Frequently mononuclear cells are

present in the follicular lumen.

Serum derived from marmoset monkeys reacted weakly with rhesus monkey thyroid

extract in hemagglutination assays (rev~ewed In P. E. Btgaui &. N. R. Rose, 1975).

Mice: An analogous model to the BB/W rat that spontaneously dev~lops diabetes

and lymphocytic thyroiditis was identified in mice. The NOD mouse exhibits

infiltration of both Langerhans islets and thyroid within the lst and 2nd month ofHfe

(N. F. Bernard et al.• 1991). The incidence andseveriry of the disease were shown to be

age.dependent and equally prevalent in both sexes. No association of the disease with

diabetes has been reported. Autoantibodies to thyroid antigens develop in 35% of the

mice but are not reactive to Tg.

Preliminary studies have suggested that lymphocytic infiltration develops

spontaneously in the thytoids of double transgenic mice that exptess the transgene for

membrane-bound hen-egg lysozyme (HEL) under the control of rat Tg promoter and

HEL specific T-cell receptor (TCR) (S. Alliraju et al., 1994). No signs of histological

thyroid abnormality are observed In single HEL uansgentc animals or in normal H.2b
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animals immunized with HEL or HEL peptides. In the same study. presence of auto­

antibodies to t1\yroid specific a:\tillcns was ltot assessed.

Mastom'Y1: Lymphocytic th)'roiditis with.out any other clinical signs of

hypothyroidism was observed. ill Praomys nata/ensista desert rodent commonly known as

maltomys (H. A. SoUevcld er al., 19820). The disease deyeloped in 16% of mates and

IJ% offemalcs and was~rotogicallycharacterized by the prc~enceof auto-antibodies to

second cotloid antigen. Antibodies to Tg or TPO have not been reponed (H. A.

Solleveld er a/., 1982b). The thyroid infiltrate exhibited a diffuse or nodular pattern

occflslonally 3Ssoclatcd with either follicular cpidlcHal celt hyperplasia or follicular

distr;lction. Thyroid lesions were r:haractcrizcd by the prc~[\Ceoflymphc.cytes. plasma

cells, and few macrophal:es. Noclear-cut l:crminal centers were observed.

1.2.1.2 Induced models of autoimmune thyrolditll.

A step forward in the development of e>:perimental thyroiditis were the expetlments

of Rose and Witcbsky 11\ 1956. Intradermal immunization of rabbits with isologous,

autologous Of heterologous thyroid extr:1Ct ill complete Freund's ndjuvant (CFA)

resulted in autoscnsitization and autOalllihody IJruJuction (E. Witebsky & N. R. Rosc,

1956; C. Witebsky "'- N. R. Rose, 1958; K. L. Terplan et al., 1960). Significant

histological changes, correspondir,g to partial or extensive replacement of the tl\'/Toid

tissue by infiltratillt": Iuollonut:!ear cells, were also obsefved in the thyroids of the

immunized al\illlnis (N. R. Rose &. Co Witebsky, 1956). EAT was later induced in a

variety of animal species such as guinea pigs (M. H. Flax, 1963), rats (R. S. Metzgar &1·

T. Gracc 1r.. 1961 ; H. E. I-I. Jot\CS &. I. M. Roitt, 19(1), monkc7s (N. R. Rose era!.•

1966),00gs (K. L. Terphm et a1..196U), chickens (B. D. Jankovic &. K. MilTovic, 1963)



and mice (R. S. Metzgar &.j. T. Gracejr., 19611A. 0. Vladutiu &. N. R. Rose. 1972) by

injection of homologous or heterologous thyroid extract in adjuvant. In those studies.

the diagnosis of EAT was based on two criteria: the presence of mononuclear cell

inAittation within the th'J'roidof immunized animals and the existence of autoantibodies

specific for thyroid antigens. These two criteria, however. are not equi'/alent since

existence of anti-thyroid antibodies did not correlate welt with the thyroid pathology

and. ahernf:tively, thyroiditis could be observed in the absence of circulatory

autoantibodies (reviewed In N. R. Rose era/., 1965; reviewed in j. Charreire, 1989).

Direct approach of EAT Induction: Subsequent srudies were focused on the

identification of the cardinal factor within the thyroid extract that triggers the

autoimmune process. Initial observations in rabbits pointed to Tg (E. Wltebsky et a/"

1958). As In the initial studk~, and based on the same animal model of EAT, thyroiditis

was induceJafte, immu'llzation of the animal~ with heterologous Tg or chemically

modified homologous Tg in the absence of adjuvant (W. O. Weigle, 1965). Par-dUel

observations In rats Indicated that more severe thyroid histological alterations develcped

in immuniz:!d animals when a highly purified Tgfraction prepared by ultracentrifugation

on sucrose density gradient was used for immunization instead of whole thyroid extract

(l. M. Raitt cr aI., 1965). The "light fraction" obtained through the same process,

cor.sisting of proteins with sedimentation constants less than 195, and comprising

microsomal and st,.'Cond colloid antigenr" was not pathogenic (I. M. Roitt er al., 1965).

Analogous studies in mice indicated that thyroiditis develops afrer repeated

immuniratlon of tht animals with soluble T g (M. Eirehew~ etaI., 1981). Although alt of

the above studies highlighted the principal role of Tg in the development of

autoimmune thyroiditis, recent studies in mice suggest that purified and ttypsini.zed

porcine TPO (PTPO) (T. Kotani et aI., 1990) or the immunodominant PTPO peptide
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which corresponds to 774·788 a.3. ofPTPO. were also thyroidltogenk in H_2.b mice (T.

Kotan! et aI" 1992).

Thyroiditis via 1"g immunization depends on the optimitation of various parameters

such as immunogenidty and quantity of the antigen (8. Shulman, 1971; J. Charreit.:,

1989), the route of antigen administration, the immunization schedule and the time of

thyroiditis assessment.

Molecular modiEcarion o£Tg: Various str<ltegies have been employed in attempts to

increase the immunogenidty of Til. such as immuniuation with native Tgin adjuvant or

immunization with both modified homologous or heterologous Tg dther in a soluble

form or emulsified In incomplete Freund's adjuvant (IFA) (W. O. Weigl~, 1965). A

variety of ways have been used for modification of homologous Tg such as heat-

denaturation. enzymatic digestion and haptenization (W. O. W~lgle, 1965; W. O.

Weigle et a/., 1969). Such treatments terminate th.e itatural tolerance of an org:lnlsm to

its own Tg. possibly via exposure oC l',ntigenir: determinants of the molecule th.1t are

maske1 on native Tg and against which the T :md B lymphocytes of the organism have

not been tolerizcd. An additional factor that affects Tg immunogenicity resides in the

procedure ofTg purification itself. Tg prepared by the ammonium-sulfate precipitation

method was more porent In Inducing autoantibodies and thyroid lesions in rabbits than

that prepared by ultracentrifullation (N. R. Rose er a/., 1965). However. both Tg

preparations were comparable in purity and identical immunochemically when aMayed

by agar ele<:trophC'resis and immunoelcctIophore$ls. The discordance of the above results

has been attributed to changes in configuration that the Te molecule might have

undergone during purification by the ammonium-I:,lfare precipitation method and

which might have rendeted it more immunogenic.
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Adjuvant: The nature of the adjuvant has also been shown to influence Tg

lmmunogcnlclty. CFA (N. R. Rose er af.• 1971) and Iipopot~!acharlde(LPS) (P. S.

Esquivel etal., 1917) were shown to be the most potent adjuvants In eliciting both anti­

Tg antibodies and thyroid lesions in mice. The role of CFA in enhancing Tg

immunogenldty could reside in its ability to produce a depot effect at the site of

Immunization where neutrophils and macrophages could be attracted and release their

lysosomal enZ'tmes, resulting in partial digestion ofTg. This process might Increase its

immunogenicity (W. O. Weigle. 1969). Alternatively. the adjuvant could alter the

mode of andgen presentation rcsuitinilin disturbance In the clonal balance between

aurcoantigen specific helper and suppressor cells (see section l.Z.3.1), (N. R, Rose &. E.

Taylor, 1991). Other adjuvanusuch aslFA (N. R. Rose era!., 1965; F. J. Twarog etal"

1970 ), silica (P. S. Esquivel cral., 1917), alhyJrogel (P. S. Esquivel ef al., 1977),

pertussis vaccine (F. J. Twarog et al., 1970) and atum (W, O. Weigle, 1965) were

Ineffective in Inducing thyroiditis although some of t~\ose could elielt autoantibodies in

various species, suggesting that the Induction of autea' Jy and thyroid lesions rely on

distinct processes. The same cCtliclusion was drawn In a recent study In mice, in which

the natural tolelance to Tg was abrogated b)' conjugation of the molecule to class II

MHC·spedfic MoAb~. Although this approach was successful in eliciting Tg.speciflc

antibodies in genetically susceptible mice, possibly via a mechanism that targets the

autoantlgen on <lntigen-presenting ceUs (APC), It was ineffective in induelng thyroid

lesions (8. Balasa &. G. Cat'3yannlotis, 1993a). An alternative §pproach for th)'roiditis

induction which bypasses the necessity for Tg purification, and the possible alteration in

its structure whl.ch results in enhanced Immunogenicity, \las employed by Okayasu and

Hatakeyama (19B+). They produced thyroid lesions by implanting a fresh thyroid gland

within the peritoneal caVity or under the kidney capsule of mice and followed this with
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an intravenous Injection of LP5. The induced autoimmune response was attributed to

the combined effecu of aotieen lealc.agelnto the circulation oriiirulting (rom necrotic

implanted thyroid tiuue and polyclonal activation of B cells under the influence ofLPS.

T,.jodinsrion: Both epidemiological and animaluudies suggest that iodine content

may enhance Ti immunOlenicity U. Charrelre. 1989). Iodinwnriched T g (containlna

at least 60 iodine atoms/molecule) obtained from CS chickens. when Injected

Innavc:'\ously Into normal birds in the absence of adjuvant, Induced higher levels of

anti.TI: antibodies than those observed following ImmunlUltlon with lodine-defidenr Tg

«13 atoms of iodine/molecule), (R. S. Sundick er aI" 1987). Analogous studies In mice

suggested that poorly Iodinated Tg. although it could elicit antibodies in susc~ptible

strains, could neither be recognlted by Tgsp~ific [.Ak.restrlcted T <ell hybrldomas nor

did It result In significant thyroid lesions (8. R. Champion er sl., 1987a). The

mechanism by which rhe Iodine content ofTg affects immunogenidty i.s not dear. It has

been suggested that hillhly lodin:iilted T <ell determinants ofTg are thyroidltogenic (8.

R. Champion er al•• 1992; K. Dawe er af., 1993). Alternatively, an incteased level ofTil

Iodination might modify in processing by APe relulting in presenration of novel Tg

epiropes that are not generated after proces5ing of poorly iodinated Tg (8. R. Champion

eral,.19873i G, Carayanniotis eraL, 1994).

The assessmenr time of establlshed EAT is critical. Unlike HT, rhedl$C8$C ptelf·

Iimirins in several species. Rats immuniIed wirh homologous or heterologous thyroid

extract Ot purified Tg In CFA, developed thyroid lesions 2·4 weeks after immunitation.

Three to five months later no signs of inflammatory ceUs In the thyroid were observed

(H. E. H. Jones &. t. M. Roht. 1961). Similarly, established EAT In 3 Rhesus monkey

underwent regression to such an extent that almost no Indication of InOltrate was

visible within the th)'roid 18 months after immunl18t1on and there was only a limited
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degree of fibrosis. Therefore, absence of thyroiditis assessed at a certain time point docs

not assure inability of a particular Immunlratlon regimen to nigger the disease cascade.

Indirect Ipproacb at EAT Induction: Apart from direct 1m munization of animals

with Tg tn adjuvant. an lliternative approach to Induce EAT is to increase the numbers

ofTg.speclfic effector cells. Thus thyroiditis has been induced indirectly in guinea pigs

(G. C. Sharp et a/., 1974; H. Braley·Mullen era/., 1981). rabbits (R. M. Nakamura &. W.

O. Weigle, 1967). rats (F,J. Twarog &. N. R. Rose, 1970) and mice (H. Braley.Mullen.

1985; L. L. Simon er a/.• 1986) with transfer of spleen or lymph node cells (LNG)

derived from animals actively immunized with Tg in CFA and activated in virrowith Tg

or concanavalin A (con A) (I. Okayasu. 1985). Several studies attempted to isotate

homogeneous populations of th·~se effector cells and characterite them. Based on those

studies. it was shown that EAT is a T -cetl mediated disease since it could be adoptively

transferred to naive recipients wlth Tg-specific T lymphocytes generated either In vitro

by coculture with syngeneic thyroid epithelial cells (TEC) (j. Charreire &. M. Michel­

Bechet. 198Z)or in vivo from animals with EAT (R. Maron etal.• 1983; C. G. Romball

&. W.O. Weigle, 1987).

Recent studies by Bruley-Mullen and colleagues have indicated that a severe form of

EAT, called granulomatous thyroiditis, is induced in naive recipients by adoptive

transfer ofMTg-primed spleen cells activated in vitro in the presence of either anti·IL·ZR

oranti-IFN-yMoAbs (H. Braley-Mullen etal., 1991 ; S. J. Stull et al.• 199Z). As in

lymphocytic EAT. CD++ cells are required for the transfer of granulomatous EAT.

Although the previous studies suggested that T cells were the fundamental effector

subset for mouse EAT. a recent study indicated that dendritic cetls could also initiate

and maintain the thyroid autoimmune process. Small numbers of dendritic cells (lOS

cells) exposed to Tgeither in vitro or in vivo could initiate autoantIbody production and
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thyroid lesions in naive recipients (5. C. Knight cr al., 1988). Even though dendritic

cells nrc 1I0t considered by themselves the effector 5ubsct for lUouse EAT, they may

provide a stimulus in the host (or the production of :ll.ltoteactivc effector cells by

presenting MTg continuously in the periphery or in tne target organ (P. J. Kabel eral.,

1988) and thcrcforcsusraining the autoimmune activation.

An alternative approach fOT inducing EAT is through manipulation of the T ·cel1

subsets. Wistar rats subjecteJ to thymectomy and whole body irwdintion (5xZOO fads)

spontaneously developed both thyroiditis :Illd :mti.Tg antibodies (W. J. Penhale er al.•

1973). Typical HT lesions and Tg.spcdrte t\mlbodics also developed spontaneously tn T·

cell depicted micc ufter adoptive trunsfer of cells <lcpleted in ClJ5!xidlt T cells (S.

SUllihar:l ~'r ill., jlJfllI). SllhSt~'i\lClif dnniul: :llltl dlaractcrll:lfiUll of ehe cfrecwr $uU$cfS

rcvealed CD5Wl1 CD4+T cells recognizing the ;mtigen in the context of I·A (S. Sugihara

et al., 1993). M"st of the clones \Vere T Il.spccific, supporting the concept of Tg as a

princip;l\ uutoantigcn, although sOllie of thelll were reactive to a yet unidentil'icd thyroid

component.

As staecd previously, one of the ndvantagcs of ;lnimnlmodcls is the ability to

mnnipulme their imlllunc environmcllt in ways eh;Jt cmlllot be cmployed in humans. In

the human condition. nmnipulation of il\lmune system cells can only be performed in il

vitm STlu.lics alltl dll:sc rl[ll'wndll's may n'rrdnw poorly or not nt all with the dinlcnl

conditiol\. The aV;lilahility o[s..::v..::re·t:omuined imlllunoocficlcl\CY (SeID) anuathymlc

"nude" lUke. provided tools for the study of human·derived thyroid tissue and

lymphocytes in an ill vivo environment (reviewed in R. Volpe et al.• 1993). Both SCID

and l\udc mice havc certain features which ellnble them to accept xenogeneic grafes.

SCID mice nrc charncterized by Im:k of lI\;Jturc B nl\d T cells due to a genctic defect in

the functiol\ of the recombinnsc that is required for successful reanangcments ofhoth
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the Ig andehe TCR genes (reviewed in M. A. Duchosal.1992; revlewed!n R. Volp~ er

al., 1993), Therefore they can accept both lymphoid cdls and thyroid grafts from

human donors. Arhymic nude mice can only accept human thyroid tlSIlue xenogtaft~

because, although they lack mature T cells, they do express sufficient numbers of B and

natural killer cells [0 lyse human lymphocytes (reviewed in R. Volpe et al., 1993).

AmonR the models for Inductlon of thyroiditis, the Mouse model is the most

extensively studied. It Is an excellent model for Immunogenetic studies due [0 the

extensive characterization of Its major histocompatibility complex (M HC) and the great

availabilitY of congenie, intra H·2-recombinant and congenic mutant suain,;, Mice can

be easily handled and maintained in large numbers and at a lower COst than any other

animal developing EAT. There is an enormous variety of mou,se.speciflc reagents such as

MoAbsllpecific for T- and B-eell surface markers which can be used in phenotypic and

functionaillnal'yses of the cells involved in Immune reactions. The generation time In

mice is shoft,fadlitatlng genetic studies (G. Wick era/., 1981). For these reasons the

mouse model was used in the current INdy.

1.1.2 R1U. (acton to thyroid autoimmunity

Both animal and human studies suggest that autoimmune thyroiditis is a

multifactorial disorder. Early observations suggested that the disease is partly inherite<!

because of Irscoincldence in monozygotic twIns and Its tendency to cluster in families

(W, J. Irvine er 2/., 1961; N. R. Farid, 1992). Because the coincidence rate of the d\se'd5e

among identical twins was less than 100% it was evident that other non·genetlc facton

also contributed to Its pathogenesis. Therefore the dlse:;lse was envisaged as the result of

an interplay between genetic and environmental factors. Genetic factors playa
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fUl\damenral role because they are fl!$ponsible for the dysregulation of the Immune

system as well as the sUlCcpribility of the target organ. Environmental factors such as

infectious agena and iodine Intake arc thought to act as lnitiarine: or preclpitatins 3KeRti

leading genetically predisposed individuals to the development of thyroid autoimmunity

(ste ful10wing sections).

1.U.1 Geaeric haeqround

The study of genctic factors in human autoimmune rhyroiddisease isa difficult task.

because populations are heterogeneous and large family studies require several

ilcnerations to complete. In addition, the frequency of the disease at the population level

is low, therefore it is not easy to readily findslgniflcanr numbers of pa[ienrs to perform

such srudits, Thus the hereditary component of autoimmune thyroiditiS has been

mainly addressed In animal models of the disorder (C. L. BUtelr. &. H. S. Bresler, 1990).

Such models have contributed considerably taour understandlnll: of the number, the

nature and localwnion of genes that mill:ht be hupllcated In the human disease. With

respect to findlnls from both induced and spontaneous models of autoimmune

thyroiditis, It is evident that the disease is multillenlc and that both MHC and non·

MHC genes contribute to In pathogenesis.

Current advances in the genetic aspects ofexperimental autolmmmune thyroiditis In

mice will be discussed further in the next two sections, The genetic factors of

:spontaneous autoimmune thytolditis in chickens, rats and humans will be addtessed only

bridly since they are beYClnd the ICopeof this sNdy.
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1.2.Z.1.1 MHC lenn

&i:Ju.e: The fundamental role of MHC genes\n EAT susceptibility W:l$ nlghllglucd

by the pioneering worker Vladuriu and Rose. In 1971. Their study Involved 33 Inbred

seraln! represeMing 11 different haplotypes In which EA T was Induced by direct

immunltation with thyroid extract in CFA. Mice with different H·2 alleles were not

classified as responders or non·responders but rather exhibited a graded degree of

susceptibility. Mice carrying the H.2k., haplotype! were designated as excellent

responders, the H·2q strains were good, strains with H·2a m,p were fairly good, where,u,

H.Zb.dand H·2Y were poor and very poor re.sponders respectively. This classification of a

,qiven haplotype was based on the existence of mononuclear cell infiltration within the

thyroid and the extent of Its follicular destruction. Crosses between good (H.Z~ and

poor (H.2d) responders resulted in Fl hybrids that were also susceptible to EAT

suggesting that the feature of susceptlbllltV wn transmitted to tne progeny as an

autosomal dominant trait (A, 0, Vladutlu & N, R, Rose, 1971a). In the same study,

cougenic strains for the H-Z locus could be classified as good or poor reloponders

depending on their H·t type. For example, the congenic mains CYf.SW (H.Zb) and

CYllHeJ (H.tk) characterized by the same background genes but different H·2 alleles.

were etassi6edas low and high respondeuTe$pectlvely. Although the geneTal pattern of

susceptibility to EAT was conflrm~ by suhsequent studie$, deviations were occasionally

observed. For Instance the H-2q haplotype repTcscntedby ~.Ie BI0.Q strain was later

shown to exhibit a poor response to Til although In the Initial study ofVladutiu and

Ros~ it had been designated l'IS a good responder (K. W. Beisel et al., 1982a: K. W. Beisel

er al., 1982b). The difference between Initial and later results was attributed to
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differences In the Tg dose, the nature of the adjuvant (LPS VI CFA) and other non­

MHC gene influences (see next paragraph) (K. W. Beisel et al.• 1981b).

Vladutiu and Rose addreued the cellular basis of H·I·linked susceptibility to

thyroiditis. They produced bone marrow chimemby thymectomy, lethal irradiation and

reconstitution of the animals with either Bcells, T cel\s or a combination of both subsets

(A. O. Vladutiu &. N. R. Rose, 1975). They subsequcntly"assessed the thyroid pathology

of chimeras derived from susceptible (H_ZK, H.II) or resluant (H.Zd) strains following

Tg immunization. Poor responders reconstituted with T lymphocytes either alone or in

combination with B cells derived from high responders resulted in pathology indices

markedly higher than the indices of animals reconstituted with poor responder T and B

lymphocytes. These studies suggested that the H.Z.linkedsusceptlbllity to thyrOiditis is

T ·cell based. Analogous results were revealed by studies in which EAT was induced

after adoptive transfer of effector cells into naive animals (see sectlon 1.2,1.Z). In those

studies, the disease was transferrable to normal syngeneic recipients by MTg.prlmed T

lymphocytes (H. Braley·Mullen er al., 1985; I. Okayasu, 1985; W. V. Williams eral"

1987), T·celllines (R. Maron eral.. 1983) or clones (C. G. Romball &. W, O. Weigle,

1987; S, SugIhara er al.. 1993) derived from donors carrying a susceptible H·Z genotype,

Similarly the ability of normal T lymphocytes to be primarily sensitized by syngeneIc

thyroid epithel!al cells and to transfer thyroiditis to normal syngenek <lonors was

dependent on their H·2 type 0· Salamero &. J. Charreire. 1983a; J. Charrelre J. &. M.

Michel·Becher, 198Z).

The M HC expression of the thyroid gland itself Ulas shoUln to influence susceptibility

to EAT. implicadng a T<ell mediated damage of rhe target organ (A. Ben·Nun er al,.

1980). SusceptIble (H.Zk x H.Zb) Fl hybrids Implanted uncler the kidney capsule with

thyroids that had originated from the susceptible parent (H.Zk.) or resistant parent (H.
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lb) strains and subsequently injected with Tg in adjuvant. exhibited H-I restriction of

EAT susceptibility at the level of the implanted target organ. [n other words. the

incidence of lesions was high (81%) in implants derived from EAT susceptible H_Ik.

haplotype and low (IO%) in those originated from EAT resistant H_2b haplotype.

Similar results were obtained by Okayasu using a different EAT model where the disease

was induced by implantation of a thyroid gland under the kidney c3p.!iule and subsequent

Injection of the animals 6 hours later WIth LPS (I. Okayasu, 1986), (reesection I.I.Ll).

In the same study, It was shown that the implanted thyroid gland, regardless of its origin

(poor or high responder) produced Tg of the same immunogenici.ty. This last result

contrasts with previous studies which reported that snain influenced the

immunogenicity ofTg. Purified Tg derived from the congenic mains BIO.D2 (H_2d)

and BIO.Br (H_2k) which are low and high responders respectively, differed in irs ability

to induce thyroid lesions and autoantibodies (V. Tomatic & N. R. Rose, 1976).

I·A region control. From the previous studies, it is evident that EAT induction in

mice is under the genetic influences ofMHC genes. Subsequent studies attempted to

localize the responsible locus for EAT susceptibility within the H-2 complex.

Preliminary reports based on intra-H-Z recombinant mouse strains which had been

derived from recombinations among H_2k, H_2d and H_2 b haplotypes positioned the

MTg response locus at the centromeric side of the H-2 region (V. Tomazic er al., 197+).

However, the lack of suhable inna·H-2-recombinant strains did not permit precise

localiziltion of the susceptibility gene(s). Further studies, based on new intra H·2

recombinant congenic strains of BI0 background with various combinations ofk, b, q

alleles at the K and lor I-A regions, further 1~lized the disease susceptibility to the I-A

locus of the H·2 gene. This locus was called the Tg immune response gene (Ir-Tg) (K.

W. Beisel ec al., 1982a). The significance of the I-A locus in EAT susceptibility was
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further highlighted by the study ofVladutiu and Steinman who were able to completely

prevent EAT induction in mice by treating the animuls with anti.I·A MoAb either

before or at the time of antigenic challenge with Tg in CFA. Treatment with anti-I·A

MoAb after antigenic challenge could not completely prevent disease development,

although it significantly reduced its severity (A. O. Vladutiu & L. Steinman, 1987).

Similar results supporting localization of EA T susceptibility to the I·A locus were

revealed by the study of Salmncto mul Charrcirc (1983b). These investigaton developed

a system in which lymphocytes could be scnsirircd ill vitro (primarily senSitization) by

thyroid cpithdinl cells. The pri1l1arily scnsitiwd [ympllOcytcs wcrcchnmctCrtlOO as CD4+

and were restricted to the I-A locus of the H-l complex.

D-rcgioll influcnccs. Although the I·A locus is the major predisposil\G locus in the

mouse EAT model. 0 and K Gel\CS can funher modify its effect. UsinG four sets of

(Ccomhimmt strains which were exprcssil\~ s, k, d. Ii allelcs at the I-A locus al\U identical

or different alleles <It the K and D loci respectively, it was demonstrated that the D-cnd

genes exert a reGulatory effect 01\ the disease process (Y. M. Kong er al.• 1979).

However, the extent of this influence was highly dependent upon the origin ofooth Ir­

T~alHl K-enll as w...·ll as I1-el\(1 r,CI\('S. Fnr illsr:ll\C<', wl1\"n r1w Ir-T~ ~('n(' hndorij:llnarc(t

from the good responder k and s suains 1l1\J the II-ID·end gene from the d strain, both

antibody levels and cellular infiltration werc reduced. The greatest degree of thyroid

inL .tration was observed when k or f alleles were expressed at the D-cnd locus. This

suggestS that an inter.u.:tioll among the I·A, D and K regiol\ Gene products controls the

outcome of the EA T phenotype. In [he smne study an attempt was made to study the

modulatory effect of D-cnd genes using low responder strains of b alld d haplotypes,

However, in that casc no c1ear·cut result coutJ be discerned because the cellular
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infiltration In low responder strains was minimal or nonexistent. It was suggested chat

the D-end gene(s) connot(s) the effector mechanism of thyroid inftltraticn.

K.region influences: Genetic influences on EAT development were 3150 attributed to

the K-region of the H·2 complex. Initial studies by Maron and Cohen suggested an

involvement ofK-end genes in EAT incidence. Their conclusion was based on the use

of the B6.H.ll:a(HZI) strain of the b haplotype in which the H·lK locus has undergone a

point mutation and instead of Kbexprt$ses KID, Interestingly, it was shown that the

point mutation at the H-2K gene transformed a tow responder strain to a high raponder.

Thus. HZ! mutants developed thyroiditis with an incidence similar to that observed in

the high responder C3H (H_2.k) mice \R. Maron &. I. R. Cohen, 1979). Subsequent

studies by Beisel and colleagues re·examined a possible role of K·end genes in EAT

induction using a series of H.2.Kbmutants, It wa~ :;hown that mutational differences at

the K end gene in the absence of the high responder !r·Tg ((.Ak) gene in the I·A

subregion of the H-2. complex had no effect on EAT susceptibility (K. W. Beisel etal.,

1982.a). Howevet, such an effect was clearly evident in suains carrying the high

responder k allele at the I-A locus of the H-2. complex. For instance the percentage of

animals with thyroid lesions in BI0.A (k k kd) and BIO.AQR (q k k d) was 52.% and

70% respectively implying modulation of the disease incidence by K-end genes (K. W.

Beisel etal., 1982.aireviewe<!in R. C. Kuppersetal.• 1988).

The expression of H-2.K in both thyroid gland and thymus was shown to be critical

for the cAT phenotype (R. Maron & I. R. Cohen, 1980). The above conclusion was

based on experiments in which either (B6.C_H_2.br:n·lx B6)F1 (A. Ben-Nun er al., 1980)

or (B6.H.2.m x B6)F1 hybrids (R. Maron & I. R. Cohen, 1980) received under their

kidney capsules thyroid gland implants derived from their respective parental strains.

Infiltration of the implanted target organ was dependent upon its expression of the H-2.K
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allele. implicating .::vtorax!c T cells in the eff&tor phase of EAT. Similarly, implantation

of donor irradiated thymus in nude recipient (CjI/eB x 86) Fl mice and subsequent

Immunization with Tgln adjuvant resuhed In severe EAT only In the care where the

grafted thymus had originated from the high responder strain (R. Maron &. l. R. Cohen.

1980).

Rat: The contribution of genetic factors in the rat model of EAT \5 more complex

and less undetstood than in the mouse model. From 13 inbred rat strains 5tudied, no

clear association between the RTllocus (MHC genes in raul and EAT susceptibility

has been revealed (H. S. Liltehoj &. N. R. Rose, 1982). However, in recentstudies it h<ls

been shown that MHC genes contribute substantially to the final outcome of the

disease. Using congenic PVG rats tha[ differ onl)' at the RTllocus, it was demonstrated

that animals carr)'ing the Rile haplot)'pe were high responders Wllere3S RTluand RTl:l

were poor responders (H, J. De Assis-Paiva er al., 1989).

Chteketa: SATin the obese strain chicken is a multigenic trait. hs pathogenesis is

based on three defects that are controlled b)' at least three genes or gene complexes.

Thus, a three-locus model has been proposed to explain the pattern of its inheritance

(reviewed in R. C, Kuppers et aI., 1988 ; reviewed in G. Wick er a/., 1989). The first

locus is MHC-flssociated and determines the immune response to Tg (M. D. Livezey et

al" 1981), whereas the other tWO are linked to non·MHC genes and are associated with

abnormalities in the th)'mus and rhe thyroid giand (see section 1.2.2.1.2). Birds with the

greatest incldence of SAT were shown to inherit all three loci, whereas those that carr)'

onl)' the MHC susceptibilit)' locus exhibited only a minor degree of th)'roiditis (G. Wick

eraL, 1985). The relationship between the B locus (MHC genes in birds) and SAT was

revealed by the scud)' of Bacon and coUeagues (l. D. Bacon er aI., 1974). Assessment of

SAT development in homozn,ous birds carr)'ine [he B13, as ~ BI.S haplot)'pe revealed
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extensive lymphoid infiltration in the thyroid glands of the B13 and BlSanima\s and mild

In thore with B5(L. D. Bacon eral., 1974: L. D. Bacon cra1., 1976). Those initial [el;u!ts

were not verified by subsequent studies on an as cotony separated from the odginal

flock (or almost 10 years, suggesting ',he existence of non·MHC genes in the regulation

of the SAT phenorype(reviewed In G. Wick er al., 1989). Taken together, the studies

show that the MHC·assodated susceptibility In SAT is less clrof than mouse EAT and

no information exists as to where the susceptibility locus resides within the B region

(reviewed in G. Wick ct al., 1989).

Human: In human thyroiditis, l:lttempts to identify, within the HLA complex. an

lmmuae response gene rimibr to the H·2A region of murine EAT have been unfruitful.

Although HLA associariom with autoimmune th'lroiditis have been observed, these

appear to be weak and inconsistenr in different populations (A. P. Weetman. 1992 ; N.

R. Farid, 1992). Earl'l studies revealed immunogenedc heterogeneit'l between the

atrophic and goitrous variants of autoimmune th'lroiditis (see table 1.1), For instance

HT was associated with HLA.DRS and primary myxoedema with HLA·DR3 (N. R.

Farid er a/., 1981). In other studies, HT was associated with other alleles such as DR3

and DR'!- (A. p, Weetman, 1991). All of these studies were based on the typing of

haplotypes by serological anal'lsis, a method who$(.' sensitivity depends directly on the

specificit'l of the typing reagents. Recent studies based on molecular typing by the

restriction fragment length polymorphism (RFLP) method have revealed a strong

association with the DQw7 specificity, which lsencoded by the DQBl and DQA1 genes

rather than the DR locus (K. Badenhoop et al., 1990). This last result was not

confirmed in other studies in which HT was associated with DQwl (N. Tandon et a1.,

1991) or Was not associated with any of the 'illieles at the DQ or DR loci {A.

Mangk1abruks er 81., 1991; D. Jenkins et al., 1991). Since the relative risks associated
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with HLA markers are low the inconsistency of the above resulucould be due to ethnic

differences between the study populations,

What is the basis of an association ben~een MHC and thyroiditis? It is well

established that both MHC class I· anddass lI·encoded gene products playa critical role

in T.lymphocyre activation. In both normal and autoimmune responses, T cells

recognize short antigenic sequence~ associated with MHC gene products that arc

expressed on the surface of antigen presenting cells (reviewed in R. H. Schwartz, 1985).

Due to MHC-restricted T-cell recognition, MHC gene products may participate in

thyroi(~ autoimmunity via two pathways. First, certain MHC class II products might

favour the interaction with thyroiditogenic peptides. The resulting MHC-peptide

complexes might in turn be recognized by pathogenic T cells. Second, MHC class II

gene products expressed in the thymus might regulate the developmental selection

(posilive or negative) of thyroiditogenic T cells duting T-cell differentiation and

maturation In the thymus (reviewed In G. T. Nepom, 1991; reviewed in C. L. Burek &.

H. S. Bresler, 1990).

1.2.2.1.2. Non·MHC lenel

The contribution of non·MHC genes to the development of thyroidids has been

assessed using con genic mouse strains carrying the same H-l but different background

genes and employing mild immunization protocols such as injection of the animals with

MTII followed 3 hours later by LPS (K. W. Beisel er al., 1981b). Significant influences of

non-H·I genes have been observed both on the severity and the incidence of thyroiditis

as well as the levels of Tg-specific antibodies. For example. using the BID, BALB.B,

C3H.SW and A.BY strains. all of which carry the H.Ib haplotype, the follOWing
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observations were made. First, strains C3tt'Yl.ng the C3H or BAtS backgrounds exhibited

higher autoimmune responses to thyroglobulin than 810 and A strains. Second, the

highest antithyroglobulin titers and most severe lesions were found In the congenic

strain of C3H background, Similar results were obtained when the BlO.BR, BALB.K

and C3H/Anf strains of the high responder H_Zk haplotype were compared. Other

Studies based on the use of recombinant inbred and congenic strains suggested that the

Igh locus has an effect on the levels and the subclass discrihution of anti-Tg antibodies

(reviewed In R. C. Kuppers eral., 1988). For example, following immunization of eBA·

Tu (Ighi) and CBA-Ighb congenic strains with MTg in CFA it has been shown that the

Ighb haplotype produces minimal levels of IgG2a MTg.specific antibody compared to

the Ighihaplotype (reviewed in R. C. Kuppers era/.• 1988).

The most informative model in which the non·M HC effects have been studied is the

os model. In this animal model two addhional factors contributing to SAT

susceptibility have been identified (see section 1.2.2.1.1), over and above MHC·

regulated immune responses. These are controlled by genes residing outside the B locus.

The fits[ set of genes affects the function of the thymus by altering the balance of helper

and suppressor T·cell populations (reviewed in N. R, Rose et 81.. 1980). It has been

proposed that the thymus of the OS chicken undergoes an abnormal T-cell maruration.

This becomes apparent as the effector cells are released in the periphery early by the OS

thymus followed by a delayed release of the suppressor cells (reviewed in N. R. Rose er

a/.• 1980). Evidence for such a thymic abnormality comes from the experiments of

Jankobisiakand colleagues who carried out transplantation experiments between B·locus

matched normal or OS chickens (M. Jankobisiak er af.• 1976). Under those conditions

skin graft rejection is due to differences at the minor histocompatibility antigens,

According to thoseexpetiments neonatally thymectomized OS. but noc normal chickens
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exhibited an accelerated rejection of skin grafts. The last result suggesccxl chat in as
chickens the effector cells arc released early to the periphery (rom the thymus. The

second set of genes act on the target organ promoting its susceptibility to autoimmune

attack. The first indication of the existence of a primary alteration of the target organ

has been revealed from the experiments of Sundick and Wick (1974). The authors

injected as embryos ~md newly hatched chicks with 131[ and they estimated 131 1

uptake by their thymids W hr lilfcr. 1311upmkc iL\ OS chicks was significantly higher

than that in ourbred New White Leghorn (NWL) chickens. A subsequent study by

Sundick and colleagues proved that the elevated 131 1was an intrinsic property of the

thyroid and not an outcOlUC of diITerences in the levels ofTSI·1 benl/ccn as and normal

chickens (It S. $lIndick cr nf., 1979). Tn d:1te the mltllre (If the vulller<lbility of as
thyroid Cl:md hilS not been dctermillcd. Apart ftom the increased. rate of iodine uptake

by the as thyroid several other f"ctors hnve beell proposed. r:irst, an altered iodine

cOlilpo~ition ofTg could increase th", itlllllunoccnidty of the molecule {reviewed in G,

\'(Iick ct :I/., 1989; k'<.' secti"n I.Z.I.2).•C\tnllld,:l prim:lfy :lherT:lnT cxprcssion Jt clnss It

antlcells by as thyroid eplthcli"l cells could nigcer SAT development. Class II antigen

expression by TEC il\ chickens is thought to be a secondary event of SAT induction

because c1<Jss Uantigens ate expressed ollly in the neighborhood of infiltrating T cells.

The latter observ<ltioll SUIlI:l:sts that aherl:lllt c1;Js.~ tl eXIHCs.,ion is induced by i!\terferon

y (lFN.y) that is secreted by T cells invlldillg the thyroid (reviewl.u ill G, Wic~ eral"

1989), III virrosrudies, however, have shown cultured TEC frolll OS chickens to have a

lowCf r1\reshold for the induction of MHC C[;lSS I[ antigen expression with IFN.y than

cells from norlllal str:lillS (reviewed in G. Wick cr til" 1989). Huntly a vir;ll infection

might bc rcsllollsiblc for rhe illcreascd susceptibility of the as thyroid to autoimmune

aunek, E"iucllce to support the !;Itter possibility cOllies frolll recent studies showing that
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in orher snains teued (A. Zlemleck.i er al., 1988; reviewed in G. Wick. et a1.• 1989).

Other genetic factors. x-linked aenes for example, could also contribute to disease

W5Ceptibiliry (L D. Bacon eral.• 1981).

1.1.3 CONTRIBUTION OF THE IMMUNE SYSTEM

Attempts to explore the individual Contributions of humoral and cellular facrors In

EAT parhogenesls have been based mainly on two strategies. The first approach employs

adoptive transfer ofcells or serum from diseased donors to healthy animals, a procedure

that can dearly discern the significance of cellular and humoral factors in EAT

development. The other method looks for associations between Tg-specific T-cell

responses or levels of Ta-speclfic antibodies and rhyroid lesions, since such associations

could offer dues to the potential involvement of T cells or antibody in the disease

cascade.

Based on such methods, It was proposed that humoral and cellular factors combine

ro produce the final picture c:J. autoimmune thyroiditis (reviewed in P. E. Bigazri &. N. R.

RO$(!, 1985). However, the extent c:J.their contribution to EAT pathogenicity varies,

depending upon the species studied and the immunlration procedure employed for

tbyroiditis induction (reviewed in A. O. Vladutiu, 1990). For example, in rabbits, close

a$$OCidtlOn betw«n humoral autoimmune responses and thyroid lesions has been found

(reviewed in P. E. Blganl &. N. R. Rose, 1985): In contrast, in the rat, a significant

correlation between thyroiditis and cell-mediated immunity has been teported (H. S.

Llllehoj &. N. R. Rose, 1982). In guinea pigs it has been sugaested that cellular and

humoral factors combine to modulate both the incidence and the 5everity of EAT (G. C
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humoral or cellular contribution may vary depending upon the immunization regimen

used for thyroiditis induction. Thus in thyroiditis induced by Immunization with

heterologous or self·altered Tg (haptenized, heat denatured or enzymaticaUy digested

Tg) it has been proposed that humoral factors have a predominant role but in EAT

induced by immunization with Tg in adjuvant, T cells playa predominant role (C. G.

RombaU& W.O. Weigle, 1984).

1.2.3.1 TceU.

Each organism normally responds strongly to Invading foreign substances but

exhibits an unresponsive nate, or tolerance to its own constituents, In rhe past, self·

tolerance was attributed to the donal deletion of autoreactive immunocompetent cells

(see paragraph 1.tLl). Since immune responsiveness to T-cell dependent antigens such

as proteins requires the collaboration of both B· and T· cell subsets, the state of

immunological rolerance to a self protein antigen could be achieved by donal deletion

of both Band T cells or T ce\1s alone. Initial studies in autoimmune thyroiditis suggested

that acquired Immune unresponsiveness to Tg, an antigen found in relatively low leveis

in the circulation (G.Torrigiani er al.• 1969), was a result of deletion of Tg.specific T

cells while the autoreactive B·cell subset remained unaffected (]. A. Clagget &. W. O.

Weigle, 19H). This view was further supported by two lines of evidence. First, Tg.

reactive B cells CA. D. Bunkhurst et a/., 1973) and anti.Tg antibodies (T. Kohno at d"

1988; reviewed in S. Avrameas, 1991) were identified in healthy subjects. Second, the

tolerant state ofT-cell help could be overridden in mice using LPS together with the

immunizing antigen (P. S. Esquivel eral., 1977).oT either foreign or altered.selfTg as
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could be by.passed by polyrlonal activation of the Tg.reacrive B cells induced by LPS

whereas in the lauer case, Bcells cc·..:d receive help from cro~·reacdve T cells produced

against altered Tg determinants. Subsequent evidence suggests that clonal deletion of

Tg.reactlve T cells was inadequate in explaining self·tolerance. Tg.reactive T cells not

only exist in good responder mice (P. S. Esquivel etal" 1978; M. Eirehewy etal., 1981;

S. Sugihara et a/.. 1988) but also playa substantial role in the regulation of the

autoimmune response (N. R. Rose et aI., 1981). Since both Tg.reactive Band T cells

coexist in normal H-2 susceptible mice how is the tolerant state mainrained~ It was

hypothesized that regulatory systems exist, such as T.suppressor circuits (Y. M.l<ong er

a/.. 1982. N. R. Rose er al., 1981) and Idiorypic anti.idiotypic networks (M. Zanetti & P.

E. Bigani, 1981; C. Roubaty eral., 1990; B. Texier eral., 1992a) and that these control

the tolerant state (N. R. Rose er ai., 1980; N. R. Rose etal., 1981. A. P. Weetman,

1992), The final outcome, abrogation ofT.cell response aT maintenance of immune

unresponsiveness to Tg, depends on a fine balance between the ceU populatlons that

promote autoreactivity and those that conuol it (N. R. Rose er al" 1981. G. Wick,

1985). Such regulatory mechanisms can be overridden In experimentally induced

thyroiditls either by employing strong antigenic stimuli such as immunogens in

adjuvants or by increasing the cell populations that mediate thyroiditis versus those that

suppress it (see section 1.2.1.2). T cells appear to have a prominent role in EAT

operating both as effector as well as regulatory cells.

Effector celli: Several lines of evidence both In vivo and in vitro are available to

indicate that T cells playa critical role as effectors in murine EAT. First, as already

discussed, the disease in mice is MHC·restricted and the cellular basis of that restriction

has been attributed to the T-cell subset (see section 1.2.2.1.1). Second, direct evidence
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supporting the critleal role ofT cells as effectors in EAT comes from adoptive transfer

experiments (see section 1.2.LZ). Furthermore. thyroiditis was transferred successfully by

T-cell Hnes to both irradiated (550 tad) and nude mice, mongly arguing against the

participation of host B or T lymphocytes in the effeCTor phase of the disease (R. Maron

&. I. R. Cohen, 1980). Similarly, m Isfer of mouse Tg-sensitired. B-cel1 depleted

I)'mphocyres to either normal or B·cell depleted recipients resulted in thyroiditis. This

further suggests that the disease does not require either MTg.primed B cells or Bcells

recruited from the host to develop (H. Braley.Mullen et 81,,1985; H. Braley.Mutien et

a/., 1994). Third. nude mlceactlvely Immunired with either Tg emulsified in CFA (A.

O. Vladutiu & N. R. Rose, 1975) or soluble Tg followed by LPS (P. S. Esquivel etal..

1977) did not develop EAT. Fourth, in virroproHferativeresponsesofTg.sensitized

lymphocytes to Tgconstitute an early marker of subsequent EAT development. Thus, in

both mice and tats a close correlation was found to exist between the proliferative T·cell

responses and susceptibility to thyroiditis (I. Okayaru er al., 1981: H. S. LiUehoj &. N. R.

Rose, 1982: L L. Simon er al., 1985), Fifth, histological examination of mouse thyroid

infiltrating lymphocytes, using membrane immunolluorescence to define the nature of

the cell surn;ets included within the thyroid infiltrate, revealed T cells as the dominant

.SUbset. Although the numbers ofT cells varied with time, they ranged from 27 to 50%

throughout the second and third weekaftcr ImmunizatIon (P. Creemers et al., 1984). In

contrast, B cells in the thyroid were constantly below 5% during the same period, In

spIte of theIr high levels (19-24%) In peripheral blood (P, Creemers et al.. 1984).

Similar Andings were revealed after in siru examination by tissue immunofluorescence of

thyroid sections originating from diseased animals (0, Conaway er a/., 1987).

As soon as the importance of T celts in the induction of mouse thyroiditis was

demonstrated, interest was directed towards the Identification of the effector T ·cell
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subset{s) and elucidation of the mechanisms by which they nlediate EAT. Stich studies

however, required the Isolation. phenotypic characterization and functlon..l analysis of

the cell populations. The mouse model was the ideal animal system fOT those studies for

cwo reasons. Fim, it was technically feasible to phenotypically characterize the different

mouse T ·cell subsets (see section 1.2..1.2.). Second, the identification of eeU growth

factors and the advances In ceHular cloning offered an opportunity to generate

homogeneous mouse T .cell populations and retain them in culture for long periods.

Takingadvantflge of the mouse system, investigators proceeded to isolate homogeneous

Tg-specific T-cell populations by generating Tg·specific T-cel1lines (R. Maron & I. R.

Cohc!n, 1980; S. R. Champion et af., 1985), clones (C. G. Romball & W. O. Weigle.

1987; S. Sugihara eral., 1993) and hybridomas (]. 1. Remy etal., 1989, D. C. Rayner et

al., 1987). Phenotypic analysis and use of those populations in functional assays

revealed that borh helper and cytoro"ic T cells participate in the effector phase of EA r.

However, T-helper (Th) cells also play an essential rol~ in the Induction of thyroiditis.

The contrlbutlon of Th cells as inducers leffectors Was based on several observations.

First. the in virroLytl +2 - T-cell proliferative responses to MTg represent early markers

of subsequent EAT induction (L. L. Simon et al., 1985). Secol',d, Sugihara and

colle:'lgues (1988) using adoptive transfer ofT -cells depleted in a particular T-cell subset

as a model of EAT. have shown that Lyt_ldJD. UT4b!f1rcells are required for thyroiditis

development. Third, EAT has been transferred to naive animals by Th clones derived

either from lymph node cells of actively Immunited mice (C. G. Romhall & W. O.

Weigle, 1987j Y. Hlyama etsl., 1993) or from thyroid lelionsof diseased animals (5.

Sugihara et al., 1993). Fourth. Lyt-I+ cells have been found to be the predominant

suhset by either membrane immunofluorescence of thyroid infiltrating lymphocytes (P.
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with EAT (D. Conaway eta1., 1987).

These lines of evidence c1earlv indicate thst Th cells participate in the effector phase

of EAT, however, these are not the only subset Involved. Evidence suggests that MTg.

sensitited cellsehner in vivo(P. Creemers eraI., 1983; L L Simon eta/., 1986; Y. M.

Kong et a/., 1986b) or in virro 0. Salamero & J. Charreire, 1985) exhibit cytotoxicity for

syngeneic thyroid monolayers. These cytotoxic cells were shown to be class I·restricted

and they required the presence of Lyt-I +cel!s for their eKpansion and differentiation (P.

Creemers eta/., 1983: Y. M. Kong et af.. 1986b). AdJitional evidence supporting the

Involvement of cytoTOxic T cells in the effector phase of EAT comes from the study of

Ben· Nun and colleagues who demonstrated in thyroid transplantation eKperiments, that

H-l restriction of thyroid damage relied 011 the derivation of the transplanted thyroid

(to Ben· Nun er a/., 1980). (see section l'?"l.I.l). The modulation of disease severity by

H·lK (lnd H·lD region products further arauC5 for cytotoxic cell involvement in thyroid

damage (see section 1.2.2.1.1). Moreover, examination of the thyroid infiltrate at

v~tious time points of EAT development revealed that the earty predominance ofLyt.1+

cells was followed by an increase of LYT.Z+ cells resulting in Lyt-l +: Lyt.Z+ ratios very

differcnt from thOlie in peripheral blood (P. CreemeTS et a/., 1984). The significance of

both helper and cytotoxic T cells as effector celts in murine EAT was recently

reexamined (j. C. Flynn et a/., 1989) using the adoptive transfer ofMTji.sensitited cells

as a method fOt EAT induction. The participation of the two T -cdl subpopulatlons of

both donor and reclpienT mice was STudied at various Time points of disease activity by

selective depletion of respe<:tlve populations WiTh MoAbs. tr was demonstrated that

UT4 cells were the important cells for EAT induction, whereas both UTi and Lyt.2+

cells had an effect on the severity of the disease. The involvement of Th cells In th('
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inductive and effector phase of EAT was further supported by the study of Stull and

coworkers, (1988). Using the same adoptive transfer system, they were able to prevent

or arrest EAT development in recipient mice by trf':lting the donors or the recipients

with anti·UT4· MoAb.

aelularory cell.: Evidence for the exinence of regulatory cells that suppress the

development of autoimmune thyroiditis comes from both spontaneous and induced

animal models. Early studies in hoth OS chlckens (G. Wick er a/., 1910) and BUF rats

(D. A. Silverman &. N, R. Rose, 1974) demonstrated the critical role of thymus-derived

cells in thyroid autosensitization. Neonatal thymectomy of the animals increased the

incidence and/or severity of thyroid damage in both species. Analogous results were

revealed by Penhale and colleagues who developed a model of SAT in rats by neonatal

thymectomy and irradiation (W. J. Penhale eral., 1973) without the requirement of

immunization with Tg (see section 1.2.1.2), Development of SAT, however, was

abrogated in the thymectomized animals after recomtitution with lymphoid cells from

syngeneic recipients, This suggests the presence of regulatory cells within the lymphoid

cell population (W. J. Penhale ec al., 1976). Similarly thymectomy of cerrain mouse

mains within the secDnd to fourth day following birth resulted in SA1 (A. Kojima er a.l.,

19700). The full development of the disorder, however, could be prevented in the

thymectomized recipients by adoptive transfers oftymph node and spleen cells from old

mice or thymic cells derived from very young syngeneic donors (A. Kojima et al.,

1976b). To explain this difference in the etfectiveness of thymectomy over time it was

hypothesized that regulatory cells appear in the thymus in early life but shortly after

birth migrate to the peripheral tissues where they participate in the regulation of

autoimmune responses (N. R. Rose et a1., 1981). The presence of those regulatory ceils

in the periphery of adult animals was demonmated by recent studies of Sugihara and
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colleagues. They induced thyroidi!is in mice after depleting them of particular T-cell

subsets. The regulatory T-cell subset was shown (0 express the Lyr.lbif!r phenotype (5.

Sugihara cTal., 1988; S. Sugihara er a1., 1990).

Kong and coworkers, (1982) were able to induce artificial suppression in EAT

susceptible mice after manipulation of the Tg circulatory levels. They treated mice

either with soluble deaggregated Tg or with TSH (M. Lewis et al., 1987). Both

treatments increased the circulatory Tg levels but via different pathways (exogenous or

endogenous). Immunological tolerance was expressed as reduced antibody tlrers, reduced

in vitro lymphocyte proliferation to mouse Tg and a low incidence of thyroid lesions.

The suppressive effect in both cases was attributed to an antigen-specific T-cell subset

bearing the CD4+CDS- phenotype and was shown to operate at the afferent phase of

EAT (Yo M. Kong eral.. 1989; B. E. Fuller eral., 1993). The suppressive effect of both

the above treatments was long lasting. but differed in duration depending on the

treatment employed to in-luce that suppres~ion. For example, in animals treated with

soluble deaggregated T g the suppression was detectable for at least 73 days post­

treatment whereas in animals treated with TSH it was detectable for only 66 days (B. E.

Fuller et al., 1993). On the basis of these studies it was hypothesized that suppressor cells

exist naturally in normal mice and elevation of the circulating Tg levels above a

threshold results In their differentiation and expansion (Y. M. Kong er aI" 1989). Rose

and colleagues developed an in virro sysrem rhat permitted the assessment of the

suppressor effect of such tegulatory cells. The test depended upon the ability ofT cells,

derived from mice treated with deaggregl:lted Tg, to inhibit autoantibody production by

syngeneic B celts in culture (N. R. Rose & E. Taylor, 1991). Regulatory cells wete

detected in the thymus as well as in the spleen and were characterized phenotypically as

CD4·CD8+. Their existence is genetically controlled since 3!»ence of those cells was
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demonstrated in particular srrainse.g. SJL Their inhibitory effect was prominent not

only in vitro but also In vivo since they were effective in suppressing autoantibody

production in scm mice (N. R. Rose &. E. Taylor. 1991).

In summary. T cells playa critical role in both the induction, severity and

prevention of EAT. Peptide sequences exist (T-cell determinants or ephopes) that

associate with certain H·l gene products. These peptide.MHC complexes stimulate

particular T-cell subsets. The final O\Jccome, "health" or "disease", depends on which

peptides are generated during Tg processing and on the functional role of the T cells

recognizing such complexes. If theelenal balance between effectors and regulatory cells

is disturbed, then autoimmunity is established.

1.2.3.2 B cells

Although the tole ofT cells in auwlmmune thyroiditis is well established the Tole of

B cells and their products is still controversial. The contribution of B cells in the disease

process has been dearly addressed in the chicken model of thyrOiditis because, in that

model, the B·cell effects can be eliminated easily by bursectomy. Following such an

approach it was shown that the extent of B-cell influences in thyroiditis depends upon

the nature of the animal model to be studied. For instance, in the induced chicken

model of thyroiditis, neonatal bursectomy decreases EAT susceptibility only minimally

(B. D. Jankovic et al., 1965), whereas in the spontaneous model of as chicken, it

reduces significantly both the frequency and the severity ofSAT (G. Wick et a/., 1970a).

In mice, the role of B celts in EAT has been studied In both actively immunized

animals (L. S, Rayfield et ai" 1989; A. O. Vladutiu, 1989) and adoptively transferred

recipients with in virroactivated MTg.prlmedspleen cells (H. Braley·Mullen eta!"
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1994). In both cases, Bcells were depleted by treatment of the immunized animals or

the adoptively transferred recipients \Vith MoAbsspecific for B<ell surface JgG. On the

basis of those studies it has been demonstrated ,hat B cells are not essential for disease

induction although they have a prominent positive effect on the severity of the disease.

To explain B-ccll inQuc!I1ccs OIl thyroiditis, two :Iltcrnativc and not mutually

exclusive hypotheses have beell proposed. First, Bcells might trigger or maintain the

dise~secascade by vittucof their c[fectlveness in presenting aucoantigen to auto reactive

T cells at [ow Tg concentrations (A. K. Abbas et al., 1985). Second, the

immunoglobulills secreted by Dcells could be pathogenic to the thyroid (see section

1.2.3.3). Evidencc supportillg the first \lotion COlUes from thc study of Hutchings and

co\l(Y.Igues, (1981). Using an invirro system, theydcmonswltcd that in conwlse t.oother

professional APC, Tg-primed ncells could trigger the acrivation of a Tg.spedfic T·cell

hybridom3 at low COIlCentrlltiollS of T~. The in vivo relevance of such a system,

llOwevcr, rcumins unddllll.:J.

1.2.3.3 Antibody

evidence from hUUlat~ studies slJggJ.:srs dUll both anri·Tg and ami-TPO antibodies

constitute markers of thyroid autoimmunity (reviewed in C. L. Burek &. H. S. Bresler,

1990). The existence or tllt'sc lIntiho,lics indkmcs (lredi~posiliol\ to autoimmune

thyroiditis bcrausc disease hilS not been observed in thcir absence although their

presellce is not always IIssociarcd with a patholOjlkconditioll (sccsccttonl.L2.2).

In 3nimalmodcls of thyrOiditis the question of the role of antibody has been

addressed either directly by adoptive transfers of scrum or indirectly based on
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correlations between autoantibody levels and EAT. On the basis of those studies, it has

been shown that mild thyroid lesions can be transferred by immune serum derived from

animals actively Immunized with Te: in CFA in several species such as mice (A. O.

Vladutiu &. N. R. Rose. 1971bi V. Tornatic& N. R. Rose, 1975), guinea pigs (T. Gadal

&. R. Klresen. 1967; G. C.Sharp etaJ., 1967) and rabbits (R. M. Nakamura &. W. O.

Weigle, 1969; K. Inoue era/" 1993b). In contrast, similar !ransfers of homologous serum

in rau (N. R. Rose er a1.• 1973) and monkeys (I. M. Reitt &. D. Donlath. 1958) have no

pathogenic effect in the thyroids of the recipient animals. In some cases the successful

Initial transfers of the lesions by immune serum have not been reproduced. For example,

Sugihara and colleagues, (1988) have failed to induce thyroid lesions by infusing

immune serum derived from diseased animals into·B mice" .... SlmHarly, weekly

intravenous injections of serum containing antibodies to Tg or to other thyroid antigens

into susceptible (H.Zk.) mice have failed to transfer lymphoC)'tlc thyroiditis (I. Okayasu,

1985).

Correlations between circulating autoantibody titers andscverity of EAT have not

been generally observed and whenever they were found, proved to be weak andspe<:ies.

dependent. For example, in chickens (G. Wick et al., 1970a) a good correlation between

Tg autoantibody levels and magnitude of thyroid le~lons has been observed, but in

rabbits (R. M. Nakamura &. W. O. Weigle, 1967). guInea pigs (R. S. Metzgar & R. H.

Buckley. 1967), mice (A.O. Vladutlu &. N. R. Rose,197Zi R.l. Esquivel et al.• 1978),

rats (H. S. Lillchoj & N. R. Rose, 198Z) and humans (rcvicwcd in J. Charrclre.1989)

such a correlation has not been found. Thus no conclusion can be drawn with respect to

the Importance of the antibody response in EAT pathogenesis because such a response

•• B mIte were genetated by adult thymectomy and treatment Idol'S larer, with antl.thymocyte serum.
Three weeks !atet the mice received total body lmdlation (850R) and lmmedi:lte lec:omtltutlan With
syngeneicT<ell deopleredbone manowcelb (S.5Ilgih:naetll., 1988).
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may involve a wide variety of immunoglobulins in terms of specificity, affinity and

function. Thus, only a small portion of 8nd·Tg antibodies may contribute to tissue

injury (pathogenic) whereas the rest may be harmless to the thyroid ("bystander"),

(reviewed in A. O. Vladutiu, 1990). To address the humoral conuibution in

autoimmune thyroiJiris it is necessary [0 generate monoclonal or at lean oligodonal

antibodies specific for Tg and subsequently test the ability of these reagents to transfer

EAT. 'Initial attempts to transfer thyroiditis in mice using a mixture of eight different

MoAhs representing fivc classes 8ndsubc.lasscs of lUouse illlmunogiobulins did not result

in Jisc:lsc (reviewed in A. O. Vladutiu, 1990). In subsequent preliminary studies

however, Guamona and colleagues succeeded In transferring thyroid fcsions to mice by

MTg-speciCic MoAbs of IgM or Igot class (G. Guamoua er al., 1982.). However, the

last results were ItOt reproducible leaving the question of the humoral factors in EAT

inductiollunresolved.

, Based 011 the uncertainty of the previous studies concerning the role of anti·Tg

antibodies in the initintion of thyroid dmnnge and on the well demonstrated nbility ofT

cells to mediate such nn effect in various species (see scction 1.2.3.1), it is rensonable to

cOlKtlldc d\:lt humornl fact<lts lIHly \11;1'1;1 S.S<lIHlary mle ill E/\T pilthngel\Csis, In fnct,

(mri-Tg antibodies appear to porcntiate thyroid damage in several species, For example,

OS chickel\s of 04B4 haplotype that llornwl1y <levclop mild thyroiditis. were severely

amictcd by the Jisense Dfter tre:JtlUelH with serum containing a high tirer ofanti-Tg

al\tibody 0, Jaroszewski ,:r .r/., 1978). Similarly. the combincd tr:lI\sfet of heterologous

Tg-specific nnrioodies and sCl\sitizcu lymph node cells to guinea pigs augmented the

histological altenuiol\s in the thyroids of the recipient animals (G, C. Sharp et at"

1974), Furthermore mice treated frolll birth with anri.lgM MoAb, a procedure that

decreases bOlh the numbers of B lymphlJ..~Vtes fmd the circulnrory levels of their secreted
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immunoglobulins, and subsequently immunized with Tg in CFA developed thyroid

lesions of reJuced severity (A. O. Vl:iJuriu, 19B9).

Thyroidauroantlbodies might induce tissue injury via two different pathways. First.

they may be cytotoxic for the thyroid by virtue of their ability to fix complement and

mediate thyroid damaGe either by immediate lysis of thyroid cells (see next paragraph) or

by rcpcacc<.l or continuous sub·lethal complement attacks (A. p, Wectl1lan at al.• 1990).

Second, they may confer specificity of thyroid damage by actlvating non.specific, Fe­

receptor bearing killer cells (antibody dependetlt cell cytolysis). In both cases, it is

required that the thyroid antibodies bind to the surface o(TEC and (orm immune

complexes with surface Tg, TPO Ot another yet undcfil\cd surface thyroid autoantigen,

Expressiol\ ofTc on thc bnscllIcnt lIlcmbnlllc of thyrocytcs h~s bccn shown by in situ

tissue immunofluorcscence in mice injectc(! with rabbitanti-MTg antibodies (reviewed

in A. O. Vladuriu, 1990). In contrast, TPO is known to be expressed on the apical

surface of thyrocytes which, in an intact thyroid, is not accessible to eithcr antibodies or

mOl\ol\uc1car cells (E. L. Khoury et nl., 1984: T. l-Ianafusa ct al., 1984). Thyroglobulin.

anti.Tg complex depositions have been demonstrated by both immunofluorescence and

elecnon microscopy on the follicular basclllent membrane in chickens (D. V. Katz er aI"

1981), mice (J. A. Clagett craL, 1974) and humans CA. E, KlIlJcron & H. A. Bogaars,

1977). On the other hand. J~('j <!cposirlol1s corrcspomlinr. to TIlO·ant!.TPO il1\IIIUI\C

complexes have been rarely dctectedon the apical surface of thyroid cells of HT glands

(E. L. Khoury et nt., 1984). Tl\ts is I\ot surprising if wcconsidcr that thc follicular cells

are polatized and that the pcnenation of illllllunogiobulins to the apical surface is

obmuctcdby dcslllosomcs (sccSL'Ction 1.1.1.3).

Complement mediared cytotoxicity. Complcment mcdiatcdcytowxiclty as a potential

pathogenic meehanlsnl in autoimmune thyroiditis has been only partially elucidated.
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Conflicting results have been reponed in various species suggesting the existence of

Inter-species variability In theeffectot mechanisms of thyroiditis, Early studies In mice

indicated that the late complement components are not essendal for EAT induction.

Thus, severe disease has been induced in mice defident in the fifth complement

component (C5.D) by immunization with heterologous Tg In the absence of adjuvant

(R. M. Nakamura & W. O. Weigle. 1968). In contrast, following a similar approach in

rabbits using animals deficient In the sixth complement component (C6.D), It has been

shown that the severity of thyroiditis Is considerably reduced (1<. Inoue er al., 1993a).

Similarly in the rat. complement levels in the serum have been studied throughout the

course of disease development (N. R. Rose & Marie-F. Molotchnicoff. 1973). In those

animals, a drop in the complement levels correlates well with the severity of thyroid

lesions. In humans, Forbes and colleagues. (1962) first observed that serum from HT

patients is cytotoxic for autologous thyroid cells in culture (I. J. Forbes er al" 1962). The

in vivo relevance of such a cytotoxic effect must be of secondary importance in the

process of tissue injury because cytotoxic anrlbodies have been identified both in

individuals with overt hypothyroidism and in euthyroid HT patients (t. Chiovato et a1.,

1993).

Anti-Tg antibodies do not fix complement. This inability is not due to the

preponderance of IgO subclaMeswith non-complement fixation properties (L. C. P. De

Carvalho & 1. M. Roitt. 1982: A. P. Weetman er sf.• 1989) but is related to the

antigenic features ofTg. It has been suggested that the amigenic sites are not distributed

close enough on the Tg molecule to facilitate complement activation (T. R. Adler et al.,

1981).

ADCC: Antibody-dependent cell-mediated cytotoxicity has been exclusively

associated with microsomal antibodies (E. L. Khoury et a/.• 1981). As mentioned
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previously, Tg.antl·Tg Immune complexes have been demonstrated on the basal surface

of the thyroid follkular celb in leVeral species. However. inter-species variability h.1S

been observed with respect to the ahility of such antibodies to activate killer celh

hearins Fe r~eptOfl. For example. in boch guinea pigs and OS chick.ens, antibodies

derived (rom diseased animals rendered homologous normal lymphocytes cytotoxic (or

Tg-eoated.eryrhroc:yres (8. Ringern er aI., 1971; G. Wick er ai" 1981). Similarly, serum

(rom HT patients rendered Tg-coated chicken red·blood cells (E. A. Calder cr al., 1973),

porcine thyroid cells (P. Rodien er al.• 1992) or human thyroid cells (U. Bogner er al.,

1984) susceptible to lysis by normal human lymphocytl!S. In che last study, the cytotoxic

effect in the serum was attributed exclusively to thyroid microsomal antibodies (U.

Bogner ec a1., 198f) although such a correlation was not observed in other studies (J.

Sack ecal., 1986; P. Rodien eC al., 1992).

1.2."'.1 An overview «the exUtln.llmowleclte ofT, T -et:llepl.topeL

Although a vut body ofevidence is available to support the crucial role oCT cells In

both the Inductive and the efl'ector stages oCTI-induced EAT. very linle is known about

the precise mechanisms that generate and maintain It. Progress in that direction has

been hindered by both the antigenic complexi.ty and dimlbution ofTg. As a huge

macromolecule. Tg Is likely to encompass several antigenic sequences (epitopes or T-cell

determinants) recognlted by diverse T-ceU populations which may function

synergistically or antagonistically. Moreover, Tg circulates at low levels In the

bloodstream (G. Torriglanl et 81., 1969), and Influences the natural tolerogenlc
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mechanisms established to abrogate auroreactivity such as suppression (see section

1.2.3.1) or inhibition via the idiocypic network (M. Zanetti & P. E. Billarzi, 1981; C.

Roubaty etal,. 1990; B. Texicr er al., 1992a). In the process of elucidation of the cellular

and molecular events leading to EAT, it was evident that a simplified system was

ne<:essary in which the lmmunoregulatoryeffecu (syMrgism or antagonism) of diverse

T-cell subsets would be eliminated, so that disease development by a pathogenic T g T·

celt subset could be easily followed. Therefore, interest was focused on the mapping of

pathogenic T-cell sequences of Tg.

Despite extensive studies in the past decade, very limited information exists

regarding the number and nature of pathogenic T-cell epitopes. This Is basically due to

the fact that the a.a. sequences ofMTg are still undefined and the sequence ofhuman,

bovine and part of tat Tg (RTg) only recently have become available (see section

1.1.3.1). ·In addition, Tg is a large and complex molecule and these features make the

characterization of its antigenic fragments by biochemical methoch a long and laborious

process. Despite its huge size (see section 1.1.3.1) however, Tg is believed to include

only a small number of pathogenic T·cell epitopes. As a consequence of the MHC·

control of susceptibility to EAT,one would expe<:t that only a few Tg peptldes that bind

to the thyroiditis.associated allele and form \fHC-peptide complexes that are recognized

by Rsel£" T cells wit! be parhogenic (reviewed in C. A. Janeway, Jr., 1994).

In the process of mapping thyroiditogenic T-cell determinants of Tg, several

questions have been raised regarding their nature. Are they evolutionarily conserved

sequences! Do they differ in terms of antigenicity in high and low responder mice!

What is the nature of those epitopes with respect to antigenldty?

Evidence concerning the first question was presented by Kong and colleagues in the

beginning of the last decade and was subsequently confirmed by other Investigators.
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Early in vitro assays revealed that proliferative T cells having the potential to transfer

thyroiditis to normal syngeneic recipients or to display cytotoxicity for thyroid

monolayers recognize shared determlnanuon HTgand MTg (Y. M, Kong era/., 1986bi

L. L. Simon era!., 1986). As with HTg,pordne Tg (PTg) and bovine Tg (BTg) could

also activate MTg-sensitized cells to transfer EAT (reViewed in R, C. Kuppers etal.,

1988). In analogous studies, MTg T·celt lines, dones (C. G. Romball & W. O. Weigle,

1987) and hybrldomas were shown to recognize epitopes on Tg that were highly

conserved throughout a large number of speeles (B. R. Champion et a/., 1987b). Such

MT g-sensitized clonal populations could transfer thyroiditis [0 normal syngeneic

recipl.entsafrer in vitro activation with MTg or BTg (R, Maron er ai" 1983). On the

basis of these findings. it was proposed that pathogenic T cells recognize epitopes that

are evolutlonarily conserved among different species.

Other studie~ were focused on the nature of Tg T ·cell determ inants recognized by

high and low responders. Both susceptible and resistant mice were primed with MTg or

HTg and the proliferative responses of their sensitized lymphocytes were teste<! in virro to

both homologous (MTg) and heterologous (HTg) Tg (L. L. Simon etal" 1985; y. M.

Kong, 1986b). Proliferative T cells from high responders appeared to ret:ognlze both

species.specific determinanu and determinants shared between HTg and MTg,

Proliferative cells from low responders were directed only to species.speclflc

determinants. This latter observarion suggested that T-cell clones recognizing shared Tg

determinants were absent from low responders. This hypothesis was not confirmed by a

recent study however, in which EAT was transferred to normal syngeneic recipients by a

T-cell line derived from a [ow responder (H.lb) strain (R. Zerubavel·Welss et af., 1992).

The pathogenic T cells identified in this study were specific for an epltope cross·reactlve

to both MTg and BTg (R. Zerubavel.Welss eral., 1992) and had been generated after
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primina of H.Zbmice with BTII and subsequent in virroexpansion of the sensitized T-cell

clones with MTc. In addition, EAT has been recently transferred to low responders by a

CD++T-cel1 clone derivai from H-2.kh mice, by immunitation with MTg in LPS and

acdvattd in virrowith dther MIlOt BTg (Y. Hiyama cra/., 1993). The pathogenic

clone Is H.2b.restrictedand responds in in vitro proliferative assays to both PTe and RTa.

On the basis of the above findings it is dear that evolutionarily conservai T <ell

epito~ of Tg can ~ antigenic In both high and low responders. T cells recognizing

such epltopes arc harmless to the thyroid of low responders either because the

fu:quendes of their precursors ate low OT because they are successfully suppressed by

regulatory synems (R. Zerubavel·Weiss cr a1., 1992) such as suppressor cells or anti·

idiotypic antibodies reactive with the TCR of the thyroiditogenlc done (B. Texler er al.,

1992a).

T -cell determinants nave bun classified as Immunodominant, subdominant or

cryptic (reviewed In G. Gammon er 01., 1987). A feature considered during the

classification of a certain epitope into one of these categories is Its ability to stimulate il

virro proliferation of T cetls sensitized in vivo by the native protein. An

Immunodominant determinant strongly stimulates the in vino proliferation of such cells

whereas a cryptic determinant fails to do so. Both immunodomlnant and cryptiC

determinants can successfully stimulate T celts derived from mice that have been

Immunized whh the re1pectlve determinant Itself in adjuvant. Cryptic T -cel.1

determinants are further classified as "absolute" or "latent" epitopes. The term "absolute"

refers to a cryptic determinant whose in vivo administration generata T cells responsive

to the epltope Itself bur not to the native protein. Conversely, If the generated T cells

respond to both the epltope ItSelf and to high doses of the native antigen, the cryptic

determinant is derilnated as MlatentM(reviewed In E. E. Sercarz er al.• 1993). Between
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:hecrypticand immunodomlnant determinants an additional -subdominant- cateeory

exist... A subdominaM determinant is one that Induces proliferative celb responsive i1

triaotO both the dewmlnant itself and to the native antigen (reviewed in E. E. Sncan

er al., 1993). T celt. induced by immunization with the n.3tive antigen respond

inconsinently in v;rroto the subdomilun.t determinant (reviewed In G. Gammon er a/.•

1981).

In the thyroiditis Reid, the stgnlficance of Irnmunodomlnant and cryptic Tg

determinants in the disease process is unknown, because thyroidirogenic T<ell epltopes

on TI are monly undefined. Thus, in the last three yean, interest has been focwsed on

the mapping of such pathogenic T-cell epltopes of Tg based all. two independent

stratei!es. The first strategy bbased on the generation ofMTg.specific T-cell hvbrldoma

clones and subsequent use of those clones as tools for screenine; for T g T·cell epltopes

with tnV"Coidltogenlc potential. The second mategy uses computerized algorithms to

predict potential T <.ell epitopes within the Tg~uenuand thelUbsequent testlne of

the candiclatesequencell for thyrolditogeniciryln animals. The latter approach hasbeen

previously used successfully for identification of T-cell determinants in other

autoimmune models IUCh as that ci. experimenal autoimmune uvcoretinitb (EA U), (T.

M. RedmondecaJ•• 1989). However, tl\e same approach had not been employed in EAT

prior to thbltudy, pouibly because Te is a huge molecule (1.1.3.1) and the u5Col a

stnale algorithm for identiflcatlon of potential T-celt epltopcs preselects a relatively brg~

number ofcllndldate sequencd.

Followine the fiut apptoach, two Tg T .cellepitopel have bren recently defined.

The first epltope is a 9.mer peptlde corresponding to amIno acid 2551·2559 of HTeand

containing T4 at politlon 2553 (B. R. Champion er al., 1991). Its identification was

based on the use of CH9 and ADA2 hybridoma clones. Slight variability In the
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respanstvenessof the two hybridomas to Tg (tom various species suggested that the Tg

epitopes recognized by them are similar but not ldentical. Moreover it wassnown that

both hybridomas responded to the Tg fraction carrying Tol·and that their activation was

highly dependent on the Iodination level of that fraction, S\Iggcsting that the pathogenic

T <ell epitope was localized at a hormonogenic region ofTg (reviewed in K. Dawe era/..

1993). Since there are only four hormonogenlc sites on Tg pOSitioned at residues 5,

2.553.2567, and 1H6 (Y. Malthiery & S. LissltIky, 1981), an array of 5 to IZ·mer

overlapping synthetic peptides covering the four hormonogenic sites was S)'ntheslzedand

each peptide was tened for its ability to activate the twO hybridoma clones (B. R.

Champion etal.. 1991), [n this way. the minimal T cellepitope was mapped tothe C­

terminal ofTgincluding the residue 2553 (B. R, Champion et al.. 1991). Ahhougn the

minimal sequence recognized bV rhe h,/bridoma dones, which corresponds to a 9·mer

peptide. was ineffective in inducing th'/roiditis after direct challenge. it generated

effector cells that, after in vitro activation, could successfully transfer th'/roidltls to

normal syngeneic recipients (P, R. Hurchings et ai" 1992), The second T g T-cell epitope

(F40D) deflned by the same strategy is a 40·amino add sequence localized between

residues 1672 and 1111 of HTg (B. Texier et al" 1992~:, This pathogenic sequence

constitutes a part of rhe <10 kDa porcine Tg tryptic digest fraction that was shown to be

thyrolditogenk in CBA mice (]. Salamero et al,. 1987), With the aid of a cytotoxic

hybrldoma HTCl generated by immunization of mice with PT g. it was shown that

syngeneic macrophages, pulsed with porcine Tg tryptic fragments containing the

pathogenic epltope, were lysed In a dose-dependent manner (reviewed in C. Bedln er a/.,

1992), To identify within the 10 kDa fraction of PTg ~he sequence(s) respon~blefor

the activation of HTC2 cells the <10k-Oa fraction of PTg was separated by lD-gel

electrophoresis, Those products of electrophoresis that could successfully activate the
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HTe2 cells were ccUeeted and further purified by high-performance liquid

chromatography (HPLC). Hille fractions corresponding to the major peak that could

successfully activate the HTC~ ceUs were used for N-tcrminal sequencing. Following

the above procedure Ihe higldy hydrophobic sequcllce F40D was defined within the 10

kDa fraction of PTg, chat could transfer minimal tnyroiditis [0 eBA mice after direct

subcutaneous challenge (8. Tcxier cuJl., 1992b).

From the previous discussion it is evident that mapping ofT-cell epiropes with the

aid aCTg-specific T-cell populations is a difficult task. First, the process of generation of

T-cell clones is itself long and laborious. Second, the technical procedure chat is

involved in the separation frolll amon~ protein digests those fraglllents that activate such

clonal POPUllltiolls l!lld their subs(:quent sequencing are complex. Third, in the case of

imlllUllitation with MTg in mice (homologous systcm) an additional problem exists.

hom our cxpcricnl.:e, we [ound it cxrrclIldy tlilTkult ttl cst:lhli5h MTf:,sl't:dfic clol\:ll T·

cell populations ttl mice possibly due to the supprcssor lIlech~llisl\ls that 0renltc

inhibiting the activatioll of (lutoreactive cells. Analogous observatiom have been

teportedby other investigators (CO G. Romball & W. O. Weigle, 1984). In their study

It Is highlighted dun rhe T.cellrespome to a homologous Tg is lIH1rkcdly dcflclent

compared to the response to hcterologous Tg. Finlllly MoAb induced by intact Tg will

ol,ly rccognile lnllllUnotlolllinant cpitopcs. Ilence, crypric epitopes call he missed by

such lin approach. Sit,ce the individual signific:lncc of immuno<lominant ami cryptic T·

cell epitolles ill the S)lOllU1lleous llisellse process is complctely unknown,:11\ alternative

str:ltegy that can detect both types of determinants was explored. In the current study,

we attempted to define pathogcnic epitopcs of Tg bllsed Oil thc algorithm approach.
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1.2.4.2 AIBorithm·bucd prediction of T-cell epltopell.

It has been well established that the binding ofT cells to antigen involves a ternary

complex of protein antigen, MHC molecule and T-cell receptor. The antigen must be

proreolytlcally processed by an accessory cell such as macrophage, dendritic celt or B

cell. The processed antigenic fragments are subsequently presented to T tells on the

surface of the accessory cell after association with an MHC molecule (reviewed in R. H.

Schwam, 1985). The binding of the antigenic peptide on the MHC molecule probably

stabilites its conformation and allows its recognition by the TCR leading to activation of

the T cel\. The antigenic site has been postulated to form an amphiparhic helical

structure characterized by both hydrophilic (polar) and hydrophobic (apolar) portions

(c. Delisi &.J. A. Berrofsky, 1985). It has been proposed that the apolar face of such. a

conformation stabilizes via hydrophobic forces the interaction with the APC, whereas

the polar face confers specificity on the interaction with the TCR (C. Delisi &. J. A.

Berzofsky, 1985). Alternatively. because amphipathic helical structures exhibit a natural

affinity for lipid membranes, they may selectively accumulate on th.e surface of APC in

numbers sufficient to saturate MHC molecules of low affinity thus increasing the

probability of activation of specific TCR (C. Delisi &. J. A. Berzofsky, 1985. reviewed in

J. A. Berzofsky, 1988). Amphipathlc helicity might also render the structure less

susceptible to protein degradation and thus facilitate the eSCape of the antigenic

determinant from fragmentation during antigen processing (reviewed In J. A. Berzofsky,

1988). Analysis ofother antigenic properties of peptides tecognized by Th cells revealed

a tendency to form a·helical conformations (]. L. Spouge er al., 1987). A peptide is

characterized as a-amphipathlc when it adopts a helical conformation characterized by

one hydrophobic and one hydrophilic side. An analysis of 12 antigenic sites in 6
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proteins revealed that 10 of them were satisfying the a·helical hypothesis (c. Delisi &

J. A. Benofsky. 1985). Considering the predisposition of antigenic sites [0 form

amphipathic structures, Margallt and colleagues developed an algorithm that could

predict potential T-cell epiropes within protein sequences (H. Margatir eral., 1981). On

the basis of this algorithm, a computer program was formulated designated as AMPHI.

This can be used to screen for possible antigenic sites in any protein sequence. Such a

prediction is based on the following strategy. The amino add sequence of a certain

protein is converted [0 a sequence of hydrophobicity values. The hydrophobicity

sequence is subsequently divided into overlapping blocks. The first block extends from

residue 1 to residue 1(where 1=7 or 11 a.a.), the second from 2 to 1+ 1, etc. Block length /

of 7 and 11 a.a. corresponds to two and three turns of an a-helix respectively. Each

block is tested for periodicity in hydrophobicity to demonstrate whether or not it can

form an amphipathic helical structure, The final step is to distinguish between stable

and unstable amphipathic helices. After having predicted all the possible amphipathic

hellcal segments within a protein sequence, it is possible to grade them hierarchically in

terms of amphipathicity ba~don their amphipathk score. Theamphipathlc score Is the

sum of amphipathic indices of the blocks that compose a particular segment. Based on

the proposed algorithm, 18 out of 23 known immunodominant Th antigenic sites

located on 12 different proteins could be predicted (P<O,OOl) Le. The ability of the

AMPHI algorithm to predict precisely the antigenic sites is limited to 75% (H. Margali~

et al., 1987). However a number of consideratio .s have to be kept in mind when

considering algorithmic analyses. For example, the algorithm may not be recogniziLlg all

amphipathic sequences or alternatively it could be producing false positive predictions.

Therefore, although based on this algorithm's results one may be tempted to conclude

that an antigenic site is not necessarily amphipathic the above possibl\ltl~s cannot be
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excluded. Therefore. once determined, funher testing of the candidate peprides is

required because additional factors suen as the genetic constitution of the animal and

the ability of the candidate peptide to be generated by antigen processing, etc.,

contribute to its antigenicity (reviewed in J. A. Berzofs!ty, 1988).

In the process of searching for antigenic sites, Rothbard and Taylor analy~ed the

primary sequences of 57 known helper and cytotoxic T ·cell determinants in fOUl

different proteins of human, mouse or guinea pig origin in an attempt to detect common

motifs. On the basis of this analysis, they formulated tWO patterns of consecutive

residues that could predict eight new helper and four cytotoxic T-cel1 epitopes (]. B.

Rothbard & W. R. Taylor, 1988). Their work messed the importance of the $ide chain

contacts of an epitope for selective binding to the MHC. The first pattern is a four

residue motif composed of a charged residue or glycine, followed by two hydrophobic

residues anda polar residue or glycine. The second pattern is a pentamer motif composed

of the first three residues of the previous motif, followed by a hydrophobic residue or

proline ending with a polar residue or glycine. Within the 57 known T-cel1 epitopes

tested, the tetramer motif was identified in i6 (81%) whereas the pentamer in only 18

(3Z%). Although no physical interpretation has been given for those motifs it is

noteworthy that the tenamer motif corresponds to one turn of an amphipathlc a·helix

(reviewed in J. A. Berrofsky, 1988).

Of the two algorithms mentioned previously the former characterizes many.

determinants regardless of their MHC restriction whereas the latter characterizes

peptides that bind to a limited number of MHC alleles (teviewed in J. B. Rothbard &. M.

L. Gefter, 1991). Recent studies however, have focussed on the identification of specific

motifs that allow peptides to bind to cettain MHC class II al1eles. 1n that regard,

structural motifs have been defined for both non·self peptide sequences that stimulate T
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cells In the context ofMHC class II alleles (j. Leighton etal., 1991; J, I. Krieger etal"

1991) and for self peptide sequences acid·eluted from purified MHC class II molecules

(R. M. Chic! et al., 1992.; R. M. Chic! et al., 1993; H. Kropshofer et al., 1991.; A. Y.

Rudensky er al., 1992). On the basis of those studies peptide binding motifs have been

reported for I.Ad (A. Sette er al., 1989), I.Ed {A. Sette et ai" 1989; J. Leighton er a1.,

1991}, t_Ek (J. Leighton et al., 1991), I_AS (A. Y. Rudensky et al., 1992), l.Eb (A. Y.

Rudensky etaI" 1992), I.Ab (A. Y. Rudensky etal.• 1992), DRl (c. M, HiUeral., 1991;

H.l<ropshofer cral., 1992; D. O'Sullivan etal., 1991; R. M. Chic: etal., 1992), DRZ (D.

O'Sullivan et af., 1991; R. M. Chicz et aI" 1993), DR3 (J. Sidney et al., 1992; R. M.

Chicz era/., 1993), OM (J. Hammer eraL, 1993; R. M. Chicz etal" 1993. A. Sene etat.•

1993), DR7 (0, O'Sullivan eta/., 1991; R. M. Chic: etaJ., 1993; J. I. Krieger eta/.. 1991)

and DRll(J. Hammer et af., 1993. D. O'Sullivan et al., 1991). Several strategies have

been employed to identify such allele-specific structural motifs. One common strategy

employed by several groups has involved the usage of analogue peptides containing

single-residue amino acidsubsdrudon! (')r binding (Os particular class II molecule. Such

an approach aims to determine the physicochemical characteristics that are required for

each residue within a peptide sequence in order to bind to an MHC-allele(J. Sidney et

al., 1992.; D. O'Sultivan er al., 1991; A. Ge1uk et al., 1994), A modification of the above

approach which allows quantification of peptide binding with the MHC, has been the

production of analogues of class 11 binding peptides, substituted ar each position with

long chain.blotinylated lysine. Through this approach it is possible to quantitate binding

of each biotlnylated analogue to class II by using fluorescent avidin and flow·cytomeny

(C, M. HIli et al., 1991). Alternatively, the characteristics of peptides binding to MHC

class 1I have been defined by analysing the binding of purified class II molecules to

peptides displayed on a phage surface (J. Hammer et al.• 199Z; J. Hammer et al., 1993).
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For this purpose M13 peptide libraries have been produced by introducing

ollgonucleoddes that encode peptides to gene III of M13 phages and have been

subsequently screened for binding to a particular HLA class II allele. The structural

characteristics of peptides capable of binding to a given HLA allele have been revealed

after aligning the peptide sequences of those phages that bind to that allele. On the basis

of the above studies it has been shown that for 3 peptide ro bind [0 a particular MHC

class Uallele, a limited number of residues exist (anchor residues) that are critical for its

binding to that allele. The anchor residues' side chains are known to in.eract with

polymorphic pockets formed by the MHC allele (reviewed in C. A. Janeway Jr., 1994),

Since MHC class II allele.specific motifs were not available at the start of this

project, we preselected potential T-cell epitopes within the Tg molecule on the basis of

the AMPHI (H. Margalit etal., 1987) and the tetra mer motif (]. B. Rothbard & W. R.

Taylor, 1988) algorithms. The outcome of such an approach will be described in the

next chapters.

1.2.+.3 SllI:nlficance of non-dominant venul immuno-domtnant epltopel tn oraan·

lpecl£l.C autoimmunity.

[n the past, interest has been focussed on the identification of immunodominant Th

cell epitopes of autoantigens involved in organ specific autoimmunity. Thi5 is because

Th cells playa cennal role In the induction of such diseases and the majority of the

autoimmune response has been directed to Th determinants, Organ specific

autoimmunity to immunodominant T ·cell epitopes has formed the basis for designing

specific therapeutic strategies (see section 1.2....4) to prevent or ameliorate

autoaggression. Cryptic determinants of autoantlgens, on the other hand, have been less
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studied because of the notion that those non-dominant epitopes have II relatively

insignificant effect on the induction of autoimmunity. This is the first report

demonstrating that pathogenic T cells speciCic for non.oomlnanr determinanu exist in

EAT·susceptible indlvlduah. Analogous findings have allo been obtained in the

autoimmune model ofEAU (W. J. Lipham et al.. 1991). In that srudy it was speculated

that cells speci£ic fOt non-domlnant T-cell epitopes constituted II potential source of

-selr ·reactive cells in the periphery of naive animals which could be transformed to

auroaggressive cells after activation by various elements such as cross.reactive infectious

agents, endogenous or exogenous superantlgens or altered ~self" antigen. The

experimental results of the Lipham group, in conjunction with recent reports suggesting

that tolerance Is not Induced to non·domlnant T ·cell epltopes when these are

components ofconjugated peptldes (F. Ria et a/., 1990) or intact proteins (R. eihanl er

al., 1992), requires that the role of cryptic ephopes in autoimmunity (reviewed in E. E.

$ercsn eral., 1993) be re-examined.

There is considerable evide:nce to wagest that both the antigenicity and tolerogenlcity

oCT-cell epitopesare influenced by similar antigen processing andanrigenic competition

mKhanisms and it has been proposed that T cells recogniEinl non-dominant T <ell

epitopes escape tolerance because the lauer are not sufficiently presented to reach the

tolerogenlc level (G. Gammon &. E. Sercarz, 1989). Evidence for such 3 claim coml!$

from the study of Sasamoto er a1. (1993). In that study, the investigators auempted t~

tolerbe rats by injecting them Intravenously with either Immunodominant or non·

dominant T·cell epltopes derived from interphotoreceptor retinoid.binding protein

(IRBP). They subsequently tested the level of tolerance archieved, as expressed by lack

of development of E.~ lJ,after Injection of the respective epitopes in an antigenic form.

Following such an approach it has been shown that both Immunodomlnant and non·



69

dominant T·cell epitopes are capable of inducing tolerance against tnemselves. In

contrast, when intact IRBP was used, tolerance was restricted [0 the immunodominant

epitopes. The lack of tolerance to non·dominant T-cell epitopes WllS attributed to their

insufficient presentation. In addition, usinl; the same autoimmune model, it has been

shown that disease mediated by a non-clominant eplrope cannot be inhibited by Lv.

immunization of the animals with an immunodominant epitope although such an

inhibition is observed when disease is Induced by Intact IRBP (Y. Sasamoto cIsI.,

199Z). Finally, evidence coming from the mouse model of experimental autoimmune

encephalomyelitis (EAE) suggests that auroaggression evolves over time, In other words,

EAE mediated by intact myelln basic protein (MBP) or the immunodominant epitope

Ac1·11 can spread both inter-molecularly to other autoantigens and intra.molecularly to

other epitopes, including the non·dominant determinants (P. V. Lehmann et a/., 1992;

P. V. Lehmann et a/., 1993). ReportS such as these raise concerns regarding the

efficiency of specific Immunointervention that is based on the immunodominant

ephopes of an autoantlgen.

l.Z.4.... Therapeutic Implication. of deflned T -celt epitopel in organ••peclflc

autoimmunity.

As mentioned previously immunodominant T-cell epiropes of autoantigens hav~

been used as tools in the process of developing specific immunotherapy. The murine

model of EAE constitutes a reference model, in which a variety of specific approaches

that aim for the prevention or amelioration of the disease have been employed. Various

strategies have targeted each individual element of the trimolecular complex, namely

the pathogenic immunodominant epitope, the MHC atlele to which that epltope binds
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and the TeR recognizing the epitope-MHC complex. One strategy is tolerance

induction. Following, for example, tolerance Induction with the Immunodomlnant

determinant ofMBP, Ad.9. EAE has been inhibited in both neonatal (1. P. Clayton et

al., 1989) and adult animals (A. Gaur eral., 199Z). Another strategy involves preventing

the pathogenic effect of an epirape by blocking the MHC molecule that accommodates

that epitope (L. Adorini er al., 1988). For example, based on the sequence of the

immunodominant determinant Ac1·9 and taking into account the residues that are

critical for T-cell activation and MHC-binding, peptide analogs have been created with

high ~HC.bindingaffinity that couldwccesd'ulty reduce the clinical signs of developing

EAE (J. L Urban et al., 1989; D. C. Wrairh et al., 1989). The peptide analogs varied

from slightly to completely different from the pathogenic epitope and their therapeutic

effects have been attributed both to their effectiveness in vivo ro compete with the

pathogenic ephope for binding to the same MHC and to their Inability to activate

autoreactive T cells. Another approach has focussed on the T -celt subset that recognizes

the immunodominant T·cell determinant. This approach requires that the TCR V~

usage recognizing the determinanc·MHC complex is restricted. Evidence of restriction in

the TCR V genes has already been shown to exist In PUJ mice, an EAE-susceptible

strain. The majority ofT cells recognizing the Acl-9·MHC complex In that strain were

shown to employ the VfYJ.2 segment (1. L Urban et 031.,1988). Taking advantage of this

restriction of the Vp usage in encephalitogenic T cells, the onset of EAE has bee~

successfully ptevented in PLfJ mice by selective depletion of those celts using an anti·

V~8 specific MoAb (H. Acha·Orbea et a/., 1988i J. L. Urban er 81.,1988). Finally, a

long·lasting therapeutic effect has been achieved by vaccinating susceptible animals

with peptide sequences derived from the variable region of the ~ chain of the TCR and
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thus preventing the subsequent development of. EAE Of even reverting the clinical silins

of~(ablishedd~se(A. A. Vandenbark cral.• 1989;M. D. Howell ctal.. 1989).

EAT therapeutic strategies such as these have been hampered by a limited

knowledge of pathogenic T <cit epitopes. To employ those approaches, two requirements

must be sluisfied. Fim, the number of pathogenic T-cell ephopes must be limited.

Second, the TCR usage aCVIl segments must be restricted. If a wide range of epitopts

and TCR.Vll segmenu an~ used, strategies such as antl.V13 antibody therapy and

vaccination with TCR Vp chain peptides cannot be employed, because the deletion or

suppression of the large number ofT·cell populations that would be required could lead

to general ImmunO$uppreSliion of the immunized individuals.

1.2.5 Characterization of the Ts·,pedflc antibody.

In the process of Investillatinll Tg-speciflc antibodies as risk factors in thyroid

autoimmunity Interest has been focussed on the characterization of their immunological

nature. Based on the fact rhat such antibodies exist in the serum of bath patients and

healthy individuals (8. Guilbert er al.• 1982; J. Ruf er al.• 1985) it has been hypothesized

that Tg-specific antibodies might differ between the two. in terms of quality (tIlG

sulx:lass distribution pattern. affinity) and epitope speciflchy (M. Bouanani er al,. 1989).

If this hypothesis is true. differences in the Ta-speciflc antibodies could be used. as

diagnostic or prognostic markers to detect thyroiditis in Individuals with subclinical

hypothy.oldism or In siblings of diseasedsubjecu.

In humans, a number of studies have been devoted to the determination of the

subclass distribution pattern of the Tg-speciflc antibody for several reasons, Fim. a

restricted subclass distribution pattern might be associated with an abnormal Immune
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response to anrigenically altered Tg (reviewed in C. L. Burek. &. H. S. Bresler, 1990).

Second, a restricted pattern may indicate whether or not antibody.mediated mechanisms

are essential In thediStlUl! pathogenicity (see section 1.2.3.3), Finally, such a pattern

might provide some evidence: regarding the epitope lpeCifidry of those antibodies (N.

Fukuma er al.• 1989). It hal been shown that the IgO subc.bSl distribution ofTg-spedftc

antibody is indeed restricted. The relative proportions, however. of individuallgG

subclasses vary depending upon the patient sample studied (5. M. McLachlan er al.•

1987) and the method employed for IgG 5Ubcws determination (A. B. Parkes er al.,

1984; A. P. Weerman &. S. Cohen, 1986: M. E. Devey ctal., 1989: A. P. Weetman eta/.•

1989). In mice. the Tg.speciflc IgG response has been compared in both susceptible and

non-susceptible strains (L. C. p, De Carvalho &. I. M. Roitt, 1982). No detectable

differences in the IgG subclass distribution pattern have been revealed that could

explain the striking differences in disease susceptibility between high and low responders

(t. C. P. De Carvalho &.1. M. Raitt, 1982).

Numerous surdies have examined rhe binding specificities of anti.Tg antibodies

directed to either homologous (MTg) or heterologous Tg (HTg) (reViewed In R. C.

Kup~rs er al., 1991). ThOR studies have been based on two cardinal strategies. The

Am strategy relies on the production of MoAbs speciOc for T g. The fine specilkity of

those antibodies is unknown but they can be classified Into clusters of reactivity based

upon their ability to ctoss·inhibit bindinil of other MoAbs to Tg. MoAbs of the sa~e

cluster are thOUilht to recognize antigenic determinants close to each other on Til,

whereas MoAbs of different clusters recognize Tg determinants distant from each other.

Employing cross.inhibition experiments between MoAbs and serum derived from

patients or normal Individuals. Ie is possible [0 identify those clusters of reactiVity that

ate .usociated with pathogenicity and those that correspond to natural autoreactivlty.
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B;lscd on this ~ppro<Jch,a limited number of ;mtillcnic D-ccll determinants on both MTg

and I-ITg have been identified which, ill COI\trust to T·cell determinants, arc species

spccifk (D. R. Ch;lllLpion ct al., 1987b). [n (;let, fouf to six dctcrmimlllts have been

found on HTC and five to eicht on MTg but their precise amino acid sequence and

localization on Tgare unknown (reviewed in R. C. Kuppcrs eral., 1991). Following a

mooificlltion of the approach described previously, Chartcirc and colleagues could define

a MoAb to Tg (JB8G9) t1wt could bind to the rhyroiditogcnic 40·mcr sequence F40D

(reviewed ill K. Mignoll·Godcfroy eral" 1994).

The second strategy attempts to define B·ccll cpitopcs of T g bnscd all the primary

structure of the protein, To this tlul, hU\llfln thyroid cDNI\ lihrmies were est::Jhlished

and ~uhst:qllenrly~n~<:ned fnr rcncTivity with Ilt:T.:rologous St:ra contnininll Tll-S\lCcific

mltibody. FollowinG such:1(\ uppro<1ch, Dong allli colleagues, (1989) hnve demonstrated

10 epitope.bearing sequences o[HTg recognized by rabbit Ilolyclonat sera although none

of them wm recognized by p:lticnts' scra. Using the same method, other investigators

have idcntiflcJ. thtee il11l1lunodomlllnnt regions o(Tg located at the extremities and the

central part of tlw llIolet;ule. ILl :ldJiriOIl, set;, derived [tom HT patients were ShOWll to

renet with two of those regions (M. llenry ct "I., 1990: Y. Malthicry (.'r al., 1991; M.

Henryeral" 1991).

I\ltl\<)URh the lIlethods tles<::rihcd previously have t:OlItrihuteJ to the iJelltification of

illltigcllk reRIl>nsofTg, they h:1Ve r.:erraill limitatiol\s. The MoAb method C:Jn be used

only fot the lJel\tit'u.:atioll of iU\lllul\OJomin:lllt ll'l:dlllcteflnillams bCCllUS(' the MoAbs

have ocell rilisoo against illt::lCt T g ::Ind therefore ::Ire directed to such epitopes. Moreover,

for those B·cdl epitopes detected by Mo,\bs thc amino add sequcnce hilS not been

detefmined.ln contrast to the MoAb method, the eDNA method tc<:ogni1:t.'S only linear

epitopc.be:lrlllg sequeIlCl'S. Any <letermil1:111t which is conformational or dependent on



postranslational modifications ofTg, such as gtyc05ylation or iodination, can be missed.

The current study (see Chapter 8) provides an exampl~of a defined, cryptic, linear T·

cen epitope of Til which has not been detected by previous methods.



CHAPTER 2

THESIS PROPOSAL AND RATIONALE

At the start of this project, the T-cell role in EAT pathogenesis was well established

but limited information (see section 1.2.... 1) was available regarding the number and

nature of the antigenic determinants on Tg recognized by such cells. Instead of

generating clonal populations to use them as tools in the identification ofTg T·cel! sites

(see section 1.2.4.1), we sought to identify T-cell epitopes among Tg sequences that had

been predicted as potential T-cell sites through algorithms (see section 1.2.4.2),

Algorlthm.based prediction of T·eel! epitopes is a simple method and can he

enlployed for the identification of potentially T-cell reactive sequences in any protein

molecule whose primary a.a sequence is available. However, employment of such a

method does not assure that the identification of T-cell sites within a given molecule

wHl be successful. This is because other factors outside the determinallt site which affect

its processing and presentation are also critical (reviewed in G. Gammon er a/., 1987). In

addition, in several cases T ·celt epitopes have ~en defined by the MoAb method that

lack MHC·bindlng motifs (T. Kotani era/., 1992).

In the past, the algorithm approach has been successfully used for the identification

of T-cell epitopes within protein molecules derived from vatious pathogens such as

parnsites and viruses with the purpose of designing vaccines (reviewed in J. A. Benofsky

eta!., 1987; reviewed in j. A. Benofsky, 1988). The same approach has also been

employed in autoimmunity, for the identification ofT-cell sires within autoantigens such

as the achetylcholine receptor (R. Hohlfeld eral., 1988) and IRBP (T. M. Redmond er

&1.- 1989) which constitute the principal candidate autoantigens in myasthen!a gravis

and EAU, respectively.
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Encouraged by these succc~we proceeded to employ the same method for Tg.

the principal <lucoancigen in EAT (reviewed in J. Charrcirc, 1989) and most likely in

human autoimmune thyroiditis (reviewed in R. Volpe. 1990). Because the primary a,a

sequence of MTg was unknown, we used the known portion of RTII as a reference

molecule to predict such sites (see section 3.1) assuming that the differences in rhe a.a.

sequence between the two molecules would be minimaL Our assumption was based on

several observations. First, the Tg molecule is highly conserved among species (revielVed

in G. Medeiros·Nero er al., 1993). Second, the rat is close in phylogeny to the mouse

implying homologies between the two species. Third, it has been proposed that

pathogenic Tg T.ccll epltopes are common throughout species (reviewed in R. C.

Kuppers et a1., 1988; R. Maron etaL, 1983; see section 1,lA.l).

In the current study, Tg sequences identified as potencial T-cell determlnanu

employing the AMPHI and" tetramer motif· algorithms (see section 1.2.4.2), were

tested in mice for both Immunogenicity and pathogenicity. For this purpose various

mouse strains have been used, including susceptible (H.2k,s) and non-susceptible (1-1­

2b,d) haplotypes to EAT. In analogy to immune responses to foreign or ocher self

antigens such as MBP (reviewed in E. Heber-Katz, 1994) it was assumed that mice of

different MHC haplotypes would respond to different Tg determinants. In addition, the

level of immunogenicity for a given determinant would be cxpect~d to vary among the

different mouse haplotypes depending upon the ability of that determinant to bind to

MHC, its availability after antigen processing, its ability to induce help.::r .::ather than

suppressor celts etc. (reviewed in L Adorlnl era/" 1988).

What Is the value of defining pathogenic Tg T-cell dererminants ? It was envisaged

that identification of pathogenic Tg T-cell epitopes would provide a simplified model

compared to that ofTg, for the study of rhe disease at both the cellular and molecular
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levels (sec section 1.2.4.1). The knowledge obtained by those studies could further

[:ldJitatcour undcrst:lnding of the illllllunorcgulatory mechanisms that operate in human

thyroiditis :mel in autoimmunity generally. !l.s reported previously (sec section 1.1.2.2)

HT usu:llly often occurs with other autoimll\une diseases such as IDDM I autoimmune

ndrClwlitis etc. sUGl:csting that these conditions share similar etiology. Since such

diseases :JITcer org:ll\s that arc less accessible than the thyroid, conclusions revealed by

studies ill autoimmune thyroiditis would be valuable In helping us understand other

org:lll'spcci[ic tlutoiml\lulIC diseases. B:lscu on rlult information, specific strategies of

illlllltll\l)il\tctvcntioll such as llllti.Vl3 thcrallY al\(l ~llui-clol\otypic v3ccin3tioll could be

designcd (scc scction 1.2.4.4). Since illllllunopathogcnic Tg determinants are

evolutionarily conserved, pathogcnic T-cel1 epitopes identified in the -nouse system

might nlso be pathogenic in humans. Thus,an immunological response directed to such

cllitopcs migln be a uscfulmarkcr of thyroid autoimmunity in humans. In view of the

above. thc specific :Iims of this study were:

To tcst the algorithm-based preselected sequences (TgPl. TgP2, TgP3) in

r,(:nctkally llivcrfoC min: in t(~rIll5Ilf pathor,cnicity r1l1t1lltltif:cnicity.

ii) To classify the thyroiditogcnic sequenccs (TgPl, TgP2) with respect to their

antigcnicity os immunooomin:mt, cryptic or subdominant T-cell epitopes.

Hi) To compare thc MHC-rcstrictil>lI rCl[uirclIlcnts of pathogenic sequences with the

wclll'Stablishcd I-A rCllion cOlmol ofTg-illduced EAT.
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Iv} To ten the nature of the MTg.reactive IgG that Is Induced 3ft~r immuni:arion

with thtl thyroiditogenic T g peptide. TgP!.



CHAPTER 3

MATERIALS AND METHODS

3.1 PREDICTION OFT·CELL EPITOPES WITHIN RAT T•.

Since the mouse Tg sequence is currently undefined and the '[g molecule is fairly

conserved among the species (see section 1.1.3.1), we based-our searching for potential

T-cell sites on RTg which is phylogenetlcally c1cr.e to the mouse molecule. The known

portion of RTg sequence, composed of 967 amino adds at the COOH terminal of the

molecule (R. Di Lauro et aI., 1985), was screened by the AMPHI (H. Margalit et aI.,

1987) and retramer motif (j. B. Rothhard &. W. R. Taylor, 1988) algorithms. The

outcome of such screening bV either algorithm is shown in the Appendices 1 and Z.

Data presented in Appendix 1 were obtained by the Macintosh version of the AMPHI

program that was kindly provided to Dr. G. Carayannlotis by Dr. J. Berrofsky. Because

the number of potenria! T·cell epltopes predicted by each algorithm was large, \[ was

dec! l~d to limit the lin by se!ectingonly those sequences predicted by both algoritnms.

TIle selected sequences were subsequently listed hieratchically based on the value of

theh' amphiparhic score. In table 3.1 the first five sequence~ characterired by the highest

amphipathic scores are shown. The sequences of table 3.1 have been provided by Dr. G.

Carayanniotis. From those, three peptldes (TgP1, TgP2, TgP3), characterized by high

arnphlpllt:\ldt'y and encompassing one or more terramer motifs, were further tested (or

both immunogenidty and pathogenicity in mice (seefollowlnll chapters) (Table 3.1).



Table J t· PredjrtjoQ of 1.«11 epj'QQc$ on RIg

Arnphipathic Midpoint of
score amohioilthic sce.ment

SEQUENCE

y Y
67.4 404-432 DSFGQLQGGSQVVKVGTAWK~VYQFLGVP

39.6 918·934 Arts~JSKYlQn.KDADQI\~DAQLTKS'
38.8 770-783 SLEH;:ljl,o.l2.YaS.FSRA..l..£N..l1RD~F ••

29.2 49·61 PEGA Y PV;;;:;:~VIVNT
28.1 856-867 LSLK;~YF;N;'R;:;r.;NYPH
25.6 720·729 !m.lliRAK.tl.YKQFalQCjRTN

• TePl, •• TgP3. ••• Tgrl sequences are defined by the vertical lines, Y
amplUpschicqrnena according to the AMPHI program (H. MargaHt e[ al.,1987).
~,tetrametmotif (J. B. Rothbard &. W. R. Taylot .1988).

!l
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I
H ANIMALS AND ANTIGENS

IFcm'le C57BUlOj, SJUJ, C3HIHej, BALBI'J, BIO.BRlSgSej, BIM, BIO,A(2R).

Bl~.A(4R), BlO.A(5R) mlcewere purchased from the Jackson Labot'atories, Bar Ha.rbor.

ME and were used in experiments at 6-10 weeks of age.

FrOlen thyroids of outbred leR mice and Sprague-Dawley roIts (Bioproducu for

Science, Indianapolis, IN) were used for the purification of MTg and RT g respectively

(see section 3.2.1). HTg wassimilarly purified from frozen human thyroids.. BTg and

Hg and ovalbumin (OVA) were purchased (lorn Sigma (St. Louis, MO). Tuberculin

purified protein derivative (PPD, Statens Seruminstirur, Denmark) was purchased from

Cedarlane, OntariQ, Canada. TgPI (acetyl.GLlNRAKAVI<QFEESQG.amlde), C·

TgPl.Y, TgPl (acetyl.C(acetamide)SFWSKYIQTLKDADGAK.amide) and C.TeP3

{acetyl.C.TDDYASFSRALENATRDY-amide} were $ynthesited at >70% purity at the

Alberta Peptide Institute on an Applied BlosY:ltemS (Foster City, CA, USA) 430A

synthesizer using a general procedure for solid phase synthesis outlined by Erickson and

Meuifield, (1976) with modifications by Hodges et aL, (1988). Briefly, hydrogen

nuorlde cleavage of peptide resin was performed by stirring peptide tesln at -5 OC for 1 Ilr

in HF: anisole: dlmethylsulfide: p-thlocresol:peptlde resin (10 m1:1 ml: 0.5 ml:O.2 rot: 1

g). Peptide pUrity was determined by HPLC and a.a. analysis. All in vivo and most of the

in virroexperimenu utlltted TgPl carrying an N·terminal cysteine and a C.terminal

tyrosine that were added to the sequence for cross-linking and labelling purposes

respectively. To exclude any possible effect on the antigenic potential of T gPl created

by the presence of the two external to Its sequence amino acids, we tested the

antigenicity at the Band T-cel1 level ofTgPl tacking those amino acids (see Chapter

8). Similatly.an N.termina[ cysteine was added to TgP3 for cross-linking purposes.
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3.2.1 Thyroglobulin purlfl.cation

For MTg or RTg purification. {rolen thyroids of outbrL'l.llCR mice aud mrs were

homogenized in phosphate buffer, pH 7.0 alld tht.: sUllcrnatmH was Ct'IHri{ugcu three

times at 16,000,,&. Mouse Tg Of RTg was obtained. frolll the supernatant by gel filtration

using Sepharose CL-4B (Pharmacia, Baie d'Urfc. Quebec, Call<!lb). By this IIIcrhoJ, two

fractions ofTg were obtained designated as peak I mHI peak II (sec Fig. 3.1). All the .il

vivo and in vitro studies were carried out using lyophilized matcri,l1 of the peak 11 fmetion

efTg, which corresponds to fractions 46·59 (fraction sire: 80 (Irops). l'e:lk tI wHs!\hown

to overlap with the eluate of BTC {Sigma, St. Louis, MOl that hOld been used as

molecular marker to standardite the Scphnrosc Ct.-in columl'.

3.2.2 Heat denaturatlon of T g

Heat·denatured Tg was produccd according to a modified mcthod of Shimojo c[ aI.,

(1988) by boiHI,g an aqueous Tgsolutiol\ (Imglml) for JU mill.

3.2.3 Puriflcatlon of MaAbs

HybridonHls secreting MoAhs speclfic for I_Ak lk, r, f, or sl (lgGZa) (V. T.Oi eta!.,

1918), I_J:k (IIlGZa) (K. Omtn t:t til., 198(1), Thy l.Z (J. A. Lc:dh.:rt<:r &. I.. A.

Hetzenberg, 1979) and NP (influcnza A nucleoprotein) (lgGla) (J. W. Yewdcll et al.,

1981) were purchased from ATCC (ll,ockville, MD) and antibodies wcre purified on

protein G.Sepharose affinity chromatograpl\y columns (PharuHlcia, B<lie d'Urfc, Quebcc,

Canada). The columns were cquilibmtcd wilh Ttis·buffcn:d salinc, pH 8.6. The
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hybridoma supernatant was subsequently loaded to the column and the antibody W:lS

eluted (rom the column using buffered saline at pH 7,2, 3.5 and 2.3. The (r;ll.:ti!)I\S

corresponding to the elution volume of the antibody wer~ dialyrcd against double

distilled water (ddHZO) and were subsequently lyophilized and uored at -20.

l.l EAT INDUCTION

3.3.1 Immunlmtion

M ice were challenged subcutaneously (s.c.) at the base of the tall with 100 nmol of

Tg peptide (TgPl=Z18}11l:. TgP2=Z06jJll, TgP3::224 pg) or 0.15 nmol (lOOpg) ofMTg

in 100,u1 of 1: 1PBS/CFA (with. Myccbacterium buryricum, Difco Laboratories, Detroit,

MI) emulsion. Three weeks later, they were boosted s.c. with 50 nmol of peptide or

0.075 nmol (50JJg) ofMTg in IFA. Two weeks after the second challenge mice were bled

from the retrobulbar sinus to obtain sera for ELISA assays and the thytoids were removed

and fixed in buffered formalin.

3.3.2 Adoptive tranuer.

Adoptive transfers were performed according to a modification of the protocol of

Hutchings et al. (199Z). 5JL donor mice were immunized wirh 50 nmol ofTgPl in 100

J.ll of CFA emulsion or 100 /-II of CFA emulsion alone (controls). Ten days afrer

challenge, peptide-primed inguinlil LNC were cultured in the presence of TgPl

(lO}1g/ml) whereas CFA.primed cells were incubated with con A (+ palmi). Three days

later, the cells were washed 3x with balanced salt solution (BSS) and transferred
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(ntwpcritonc;,lly (i,p.) in nss, to normal syngeneic recipients at 2xl07 cellsl animal.

COll[r,}l nllilll:lls were injc<.:tc\1 with eFA-primeJ cells activated ill virrowirh con A.

Fourteen days after transfer, recipient animals were bled to obtain sera and sacrificed.

Their thyroid glands were collected in buffered formalin, processed, histologically

cx:u1\incd and scored as descriUcd in the folloWing pawgraph.

J.J.J Evaluation of tI\yrold pathology

FixC11 rhyroiJ·glnnds wew sectioned serially (80.100 sections/mouse). The sections

were st:Jincd with hematoxylin Dlld eosin :md scored' as follows: 0 = no infiltration; 0.5

= illtl:r~titi:ll :l";":IlIliIl[:ltillll tlf illn:HlllLUilory cd Is ,listributcd hctwcca two or Illorc

Collides; 1 = Ol\e to t\Yo foci of inflalll1ll3cory cells at least the size of one follicle; 2 =

cxtensive infiltration, 10-40% or total arca; 3 = extensive infiltration, 40-80% of total

area; 4 = cxtcnsivc infiltration, >80% of total area.

J.+ CELLULAR ASSAYS.

3.'!-.1 Proliferation Assays.

Micc ·.verc s.c. immul\iwJat the pascof tllc tail with Tg (50 }-Ig) or TgFl or TgPl

(50-100 nnlOl) cmubificd in erA. Ten days later, the inguinal lymph nodes were

collected aseptically and single cell suspensions were prepared in RPM I 1640 medium

supplcmcntcd with 10% fctal bovine scrum (rDS) (Bioproducu for Science,

llll!i:m<lpolis, IN), 20 mM HEPESbuffer, 2 mM L·glutamine, 100 U Iml penicillin, 100

" ThcoriginoflhetlsluclI'mknollntothcrcrnlcr.
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Chemical Co., St. Louis, Mo.}, After centrifugation and washing, cells (4 x loS/lOO

jJllwell) were cultured with and without antigen in flat-bottomed 96·well microculrur~

plates and incubated for" days at 37 oC in a 5% COZ, 95% air humidified in..:uhator.

At 18 hr before harvesting, 1 }lei of IJH]thymidine (IJH]TdR) (6.7 Cifmmo\, leN

Radiochemicals, Milolisauga, Ont.) was added roeach well in Z5 ~ll of medium. The cells

were harvested using a semiautomatic celt harvester (Skartan Inc. Sterling, VA) and

counted in a liquid scintillation counter (LS3801, Beckman Instruments Inc.).

Stimulation index (51) is defined as (cpm in the presence of antigen I cpm in the

absence of antigen).

3.+.2. T-cell depletion

LNC (1.2.xl01Itube) were suspended in RPMIIMO in the absence of serum. After

centrifugation and washing (lx), the cells were resuspended in 1 ml neat cuiture

supernatant containing Thy l.l.specific antibody. The cells were incubared wirh rhe

supernatant for 30 min at room remperature. They wete washed lx in medium without

FBS and incubated with rabbit complement (1:10), (GIBCO) which had been

previously absorbed with mouse tissue including lymph nodes, spleen and thymus (see

section 3.5.4). After 60 min of incubation at 2.0 OC the cells were washed 2x with

medium without serum and resuspended in complete medium. LNC depleted In T celts

follOWing this method were subsequently tested for proliferadon to TgPl or TgP2.

Controls includedcetls incubated in the presence of complement but no Thy 1.2.spccific

MoAb and cells incubated with Thy.l.l-specific MoAb In theahsence of complement.
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J.i.J Generation erE.nd~ IpeCIik T-ecllllnel

Antigen·spec:i£lc T -<ell lines were generated according to a modification of the

protocol of Champion et al. (1985). Mice immunlttd whh 100 nrno! oCTg.peptide were

sacrifked 8 day. later, and their lymph nodes and 'Plccns were colleered in complete

medium (see section 3.•. 1). The cells were washed twice and placed in flasks at

l07ceUslmi in the presence of 5% con A su~rnatant· and Ta·pepdde (4Opglml). The

cells were Incubated (or 11 daysar 37 OC in a 5% C02. 95% air-humidified incubator in

25 cm 20asks standing In an upright position. By the end of the Incubation period, the

viable cells were separated over Ficoll-Hypaque (see section ).4.•> (Pharmacla,

PiK3raway. New Jersey) and were restimulated with feeders and 3ntigen for 13 days.

The cells were subsequently tested fot spcclflCity In a proltf~rarlve assay.

Restimularion «rheal&: 2xl()6vlabl~T c~lIs w~re placed in 25 cm2 0asb with

2xl07mitomycin C tr~tedspl~n ails (see section 3.7.1) and peptide (i(\lglml).

i"esrol'specihciry: T cetls (hloS/mt) w~r~ plac~d in f1at·bottom~d 96·well

microculture plates wirh mitomycin C·treated spl~n cells (2xl07 Iml) and titrated­

concentrations of TS-peptide (lO}Jglml starring antigen concentration). The cells were

incubated (OT .. days at 37 OC and their proliCerative ability was determined via the

(3HITdR Uptake method (see section 3....1).

• Supematantw.derl¥ed&01Ilrat'Pltencellscult\ltc<!tn vtrrowlth Z-iJle!mlc:onA for )da",. All'
oddldonalc:on Ain thelUpe'fNltant woslnaetivated by 8ddl.doncl a-mtthylmannoslcle prior to\lSe'.
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3.-1-.4 Separation ofvtable eelb by Ftcoll-Hypaque

The lymphocyte stJspension W:I$ centrifuged st JODg (1200 rpm) and the obtahH.,<1

pellet was resuspended in BSS. The cetls wete spun again under the same conditions

and resuspended in" rot of BSS. They were tubsequently layered cllrefully over 3 ml of

Flcol1.Hypaqueand were centrifuged at fOOg (1400rpm) for 30 min. The interface layer

was collecreJ and was suspended In 5 volumes of SSS, The cells were <:enrri(uged nt

200g (1200 rpm) for 10 min. The last step was repeated twice Rna the cells obtained

were resuspended in complete medium. Viability of the cells was assessed by the Trypan

blue exclusion test. Briefly, cells were resuspended hi trypan blue saline solution lmd

loaded to a haemocyromerer, The numbers of unstained (viable) white blood cells and

stained (dead) cells were couraed separately and the percentage of viable cells was

calculated as follows:

% viablecelts= Dumher ofyiable cells X 100 %
number of viable cells +number of dead cells

For greater accuracy in the estimation ofviabllity the total cetl number counted was not

less than 200 cells.

J.S DETERMINATION OF ANTIGEN-SPECIFIC I,G RESPONSE

3.5.1 Enzyme.Unked tmmuhOlOrbent a.y (ELISA).

Wells of polyvinyl chloride microtiter plates (Dynatech Laboratorles. VA) were

coated overnight at +0C with a.z ~g of Tg.peptlde or 1 ~g ofTg In 100 ~I of carbonate

buffet pH 9.6. Aftet washing. the wells were blocked overnight \\:.h 0.1% BSA In PBS.

The serum samples were incubated for 1 hr with the antigen and .,fter washing 3x with
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20U JII PI3S-TWCCll (PBST), IOU ml of alk::![illC phosphatase-conjugated goat antl·mouse

II:G (Si~IlHl CllClIlic:JI Co.) W1ISllJJcU co C;](:11 well for 1 hr. The plmes werc wilshcdJx

with PBS·Tween lInd p.nitrophcnyl phosphate substrate was added (1 fig/1lI1 in 10%

dicthallolnm;nc, 100 ~ll/wcll, 1 lit). Absorbance of the p-nitrophcnolatc product at 405

lUll was measured using a Titcrtck Plus rcader,

3.5.2 Competition by TgPl ofTgPl-spcclflc IgG binding to MTg.

Plates were coated with Tg:md blocked with 1% BSA in PBS for 2.hr. After washing

with 0.1% BS/\ in PBS, they were incubated with both immune serum (50 J.lllwetl)

derived from TgPl-prilllcd animals (1:200) :md titrated amounts ofTgP! or TgPI (50

Jll/well) for 1 hr. Thcsmrtillg inhibitor concentration Was 1.983 pM which corresponds

to 4.33 pg/llI! of TgPl or 4.0ll pg/mt of TgPI. The following steps were the same as

ucserilx.J in the previous sectioll.

3.5.3 IgG. subclass dctcrminatLon

Eswblishmcnt of standard curves for quantitation of individual IgG subdasses within

thc serum dcriveJ from norlllal lmimnls (scc Hg II) was performed by coating wells with

a gont anti·mousc IgG (Fab.spccH\c, 5}lglwcH) (M-6898, Sigma) followed by blocking

with U.t 0/" BSA ill PHS. The wells were thclI incubatcO with titrated amounts of a

mouse immullogiobutil\ referellce serum (leN Biocnemicals, Costa Mesa, CA, cat.no.

64-901) cOllwining known quantities of IgG subclasses. Subsequently, the wells were

washed, (lnd lOOpl of neat TOIbbit anti-mouse IgG su1x:lass.specific antibodies were added

for 1 hr (MOlll;C Typer Suh-ll><ltYllil\G Plllld, (at. no 172·2055, me·Rul! Laboratories,
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Richoond, CA)followed by a wash (5x) with PBST, Then the wells were incubated

with a goat :anti-rabbit IgG (H+L),alk.aline ph~hawe<onjugatedantibody (Bio-ROO)

(1:2000) for 1 hr. The data were rransforml!d to IInearl[}' usini the lOR form of the von

Krogh equation (D. P. Sthes et aI., 1987) and antibody concentration values in the

experimental sera were extrapolated (rom painu in the mid region of the straight lina

obtained for each 'gG subclass (ste Appendix 3). The experimental sera were tested on

MTg (lJ.lg/IOOJJl/well) at 1:128 dilution for det«:tion of IgGl or IgGlb. and 1:32 fOf

detection of Ig02a or JaG3. These dilution polnu were found in preliminary

experiments [0 yleldO,D. values within the appropriate region of the standard curves.

The subsequent Incubations with rabbit anti-mouse leG and AP·labetied goat anti·

rabbit were as described above,

3.5.+ Abaorpdon at. rabbit complement with moUM: tlalue

Absorption of rabbit complement with mouse tiuue was performed according to a

modification or a protocol previously described (B. B. Mishell &. S, M. Shiigi, 1980 ),

Lyophilized rabbit RrotCl (GISeO) was reconstituted according to the manufacturer's

specifications with J ml or distilled water. The spleens and lymph nodes from twO

animals were removed and a single cell suspension was prepared in BSS. The cdls were

washed twice and pelletised. Three milliliters of reconstituted rabbit serum were

subsequently added to the pellet. The rubes were placed on ice for 30 min. They were

then centrifuged (or 15 min at lSOg (1100 rpm). The supernatant containinll: the

absorbed complement was filtered and aliquoted. Aliquotl were kept in -70 OC.



.,
3.6 TISSUE IMMUNOFLUORESCENCE

Following a previously described protocol (T. l. Michalak eral.,.1989),fivt:.micron

thlckcrymtat sections were cut {rom normal SJL thyroid glands, previously frozen at ·80

Dc and embedded in Hislo-Prep (Fisher Scientific, Fair Lawn. NJl. The sections were

alr.dried, fixed in cold acetone for 5 min at room temperature and hydrated in PBS.

Susequently, the sections were incubated with TgPl.primed SJt serum III 1:10 dilution

for i5 min at room temperature, fotlowed by three washes with PBS, Control sectIons

were similarly incubated with normal SJL serum. Staining was performed with an

fluorescent isothiocyanyate (FITC).conjugared, Fab.specific, goat anti-mouse IgG

antibody (Sigma) at 1:120 dilution for 30 min. The sections were again washed 3)( with

PBS, and were mounted in 20% buffered glycerol prior to being examined for

immunofluorescence using a l.eiu Diaplan microscope.

3.1 OTHER TECHNIQUES USED.

3.7.1 Trearmentof celt. with mitomycin C

The spleen-cell suspension was adjusted to 1_6xl07/ml and incubated with 25 JIg of

mitomycin C (Sigma, St. Louis, MO) per ml of cell suspension, for 20 min at 37 0 C,

Throughout the incubation period the cells were protected from light. After incubation

they were washed 3x and used as andgen-presenting cells in the generation ofTg­

peptide specific T -cell lines (see section 3.4.3).
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3.8 STATISTICAL ANALYSIS

Within each strolln, statinical differences between the experimental groups and a

control groop of seven mice rhn received adjuvant only and exhibited no infiltration,

were determined by the non-parametric Mann-Whitney U test (5. Siegel, 1956).



CHAPTER 4

IDENTIFICATION OF A THYROIDITOGENIC SEQUENCE WITHIN THE

THYROGLOBULIN MOLECULE'

4.1 SUMMARY

T g-specific T cells are important in the Induction of EAT I but the nature and the

number of the TgT-cell epitopes involved in the disease process are unknown. Through

the use of computerized algorithms that search £01 putative T ·cell epitopes, a 17-mer

peptide (TUPI) was identified within the known portion of the RTg sequence

(corresponding to amino adds 2i95 to 2511 of the human Tg sequence) that Induc·~d

suong mononuclear cell infiltration of the thyroId in classic EAT-susceptible murine

strains such as SJL. C3H, and BIO,BR and tow or undetectable infiltration In EAT­

resistant strains such as BALBlc and BI0. TgPI appears to be phylogenerical1y conserved

since it is completely homologous to its bovine counterpart and differs at a single amino·

acid position from its human analogue. After ptlming with TgPl in vivo,slgniftcant

proliferative T <ell responses to TgPt in vitro were observed only with lymphocytes from

susceptible (high responder) strains, thus correlating proliferative capacity with EAT

induction. TePI-primed T cells did not respond to Intact MTe or RTg In vlrroand,

conversely, T cells primed in vivo with MTII or RTII did not respond to TgFl in culture,

suggesting that TgPI is composed of non·immunodominant T.celt determinants. TgPI

was defined as a serologically non·immunodomlnant epltope as well, since in vivo

priming ofall strains with MTg led to strong MTg.specific fgG res;.>onses but no TgPI.

I Partofthe :esIlla presenred In thlschllpTet h. been publ13htd as: Chrooop<H.llou E.llnd CaroYlirmiotll
0, 199Z, ldentlflclldon ofa th'l'toidlroienl.C sequence wilhln the thytolllobuUn molecule. ) Immullo/.,
Vol.H9:1039·1044.



'5

specific responses in ELISA nssays. This was not due to lack of immunogenic B·cell

determinants on T CPl, however, bcGlUSC peptide challenge of EAT·susce ;.'tiblc strains

elicited TgPI,SI}cdfic leG that also cross-reacted with mouse, rat, human, bovine and

porcine Tg. The pc.nk of T gP1 specific antibody response was reached 21 days after

priming and was dependent on the peptide dose used for Immunization. The data

demonstrate that Tgll! delineates nOIl.illllllunoJominant but highly immunogenic

uctcrmlnlll1ts at both the T· or B·ccl! level which may play an important role in the

development ofautoimlllunc thyroiJitis.

1.2 INTRODUCTION

Murine EAT, an analogue of HT in humans, Is an inflammatory autoimmune disease

that can be induced by injcctlon arMTg and adjuvant (J. Chan-eire, 1989). A crucial

role for EA T inllucfioll lms been ;lssi~l\c(lroT cells since rhyroiditis can be nuoptlvcly

transferred by MTg-specific T cells, CDi+T-cell lines, or dones (H. Braley-Mullen a

al., 1985, R. Maron eta/., 1983; C. G. Romball &. W. O. Weigle, 1987), EAT is

g~netlcally controlled by the H·I complex, and I.A is the main locus regulating EAT

susceptibility within the high responder H.2k haplotype (A. O. Vladuriu & N. R. Rose,

19713; K, W. Beisel cr al., 1982a). These findings have Indicated that MHC·rcstricted

recognition ofa limited number of thyrolditogenic MTg pcptlctes by T cells is a key

event hI the development of the disease. No information exists, however, as to the

nntureo[ such pcptiucs, purtly bccuusc MTg has not been sequenced, and pardy because

the 660·kD<l molecular mass of the MTg hOlllooll1lcr discourages the use of enzymatic

technillllcs that could resolve this issue,

In this study, an attempt was made to identify EAT-inducing epitopes by using a

synthetic peptide approach. To sHly phylogenetkally dose to MTg, attention was
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focussed on the known portion of the RTg sequence, which consisuof the (ast 967 a.a.

at the carboxyl.end of the molecule (R. Dilauro et al., 1985). The sequence was

screened by the "AMPHI" and "tetrsmer motiC' algorithms (H. MargaHr et a/., 1987; J. B.

Rothbard &. W. R. Taylor, 1988) for potential T-cell epltopes with the view to test

candidate peptides, ldentiA.ed by both algorithms, for their ability to induce EAT in vivo.

Through this approach, we are able to report here the identification of a 17-mer T gP 1

that Induces EAT, stimulates T-cell responses, and elicits antibodies that crou·react

with T g from various species.

4.J RESULTS

".3.1 T .PI b a conserved epltope and carrln multiple MHC-bindinl motl&.

The rat TgPl sequence (Fig. 4.1) is identical to its bovine counterpart (a.a. Z497.

2513) (t. Mercken et aI" 1985) and differs at a sinille a.a. position from its human

analogue (a,a, 2495.2511) (Y. Malthiery &. S. Lissitzky, 1987), This is suggestive ora

conserved sequence in phylogeny and renders It likely that TgPI is identical to its

murine counterpart as well, constituting a self antigen in the mouse, TgPl was Initially

selected as a putative T-cell epitope site because it carries two ~tetmmermotifs~ (J. B.

Rothbard &. W, R. Taylor, 1988) starting at positions 2495 and 2501 respectively, as

welt ~s an amphipathic segment (2500.2.509) with a relatively high amphipathlc score of

25.e (block length=ll) (H. MargaHt etal., 1981). In addition, TgPI although it is

characterized by a lower amphlpathlc index compared ro other sequences (sec table 3.1)

was selected as a candidate epltope because It lac1u Internal proline. Presence of proline

in the middle of TgP! would rather favor a turn In the helix thus interrupting Its

continuity (H, Margalit et a/., 1987), TgPI has structural characteristics of an MHC·

binding peptide according to recently described algorithms: it encompasses tWO
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Ftaute ".1: Prim..., amioo-acld ~quC'Qceof TIPI. Underlines,
Rothbard and "!"aylor tenamet motifs; shorr snows, amphipathic
segment, according to the -AMPHI- pragtam (amphipathic
score:25.6, block. lenath-ll); ., .. or -. pailS of a.a. obeying the
MHC·bindinl motif of Hill et al.. (1991); Y, a.a delineate an
HLA-DR8-binding motif (R. M. Chic: et aI., 1993); long arrows, a,a.
in agreement with the I-E-binding motifof Leighton et a1., (1991)i"
a.a. identity between 1"8t and bovine or human sequences st the
positions shown. All in vivo and in vitro studies of this chapter
ucilired TgPl cauying an N·terminal cystein and C-tetminal
tytc»ine that were added to the 5equence for cross.linking and
labelllni purposes respectively.

lJWe .. J. P1mieocltew1c:;1 cbuaeteriltiq q£ UPl S

Molecular weicht (MW) 1.815
lsoelectric point (pi) 10.08
Half.lifeinvitro
mammalian tedcu1ocyt~ 30 hI
Half-life in vivo

yeast >20 ht
&:hmchiaaJiJ >10 hr

!i Ph)'stcochemlcal patametet$ accotding to the
PHYSCHEM proCtam of PCGENE (see section
4.3.1).

~
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sequences with the motifofHI11 eral. (1991), In which bulk.y hydrophobic amino acids

(lleli97 and Phe2506) ate separated by four residues from a small amino acid (Ala250l

and Gly2511 respectively),and contains an I.Ell.blndln.. motif according to the method

of Leighton et a/. (1991), since two hydrophobic residues (LeuH96 and llezt97) are

separated by six residuesftom Lysl504 (Fig....1). TgP! also carries a motif of naturally

processed peptldes bound to HLA-DR8 (lleZ497·Lys2501), (R. M. Chic! er a1., 1993).

An analysis of the TgPI sequence using the PHYSCHEM program ofFCGENE revealed

the phYSicochemical features of the sequence which are lined in Tabie 4.1. The

algorithm used In this program to estimate the isoelectric point (pi) starU to calculate

the tot-.i1 charge (number of positive-number of negative groups) of a given peptide at

pH 7.0. If the total charge of a peptide at pH 7.0 has positive charge this it an

indication ofexistence on that peptide of protons that are not neutralized. Thus the pH

value Is taised to 10,5 and the total charge is re·estlmated. If the total charge at pH 10.5

Is negative the pH value Is dropped between 10,5 and 7.0 and the total charge is

calculated again. This process continues up to that pH value where the total charge will

approach O. That pH value is defined as pI. It should be noted, however, that the pi

estimation based on the primary a.a. sequence of a given pepddt: is only an

approximation. This Is because the charge of the a.a. side chains ofone peptide can be

influenced by the environment such as solution conditions, neighbouring a.a. resldu,~s in

three dimensional space etc, The algorithm that estimates the half. life of a given

sequence is based on the uN·end rule" of Bachmair and colleagues (1986). Briefly, the

authors have shown that the klentlty of the N·termlnal residue of a protein Is critical In

determining lustability in vivo. It appears that the N·termlnal residue Is Important in

the process of ublqultin.mediated proteolytic degradation, Employing site directed

mutagenesis Bachmalt and colleagues generated beta.galactosidase proteins with
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different N ·tc:tminal amino acids. The beta-galoclosidase proteins were shown to dil'fer

in their half·lIves in vivo, from more than 100 hr to less than 2 min depending on the

amino-terminal a.a. and on the experimental model used (yeast in vivo; mammalian

reticulocytes in vitro; Escherichia coli in vivo) (A. Bachmair eral., 1986).

4.3.1 TIPl.induced EAT tn mtee exhtbttll .,cuedc pattern Iniliolou. to thlt

_illedofrerMT,cluollen,..

In preliminary studies, TgPl was identified as being able to induce EAT in C3H (H.

Zk) mice (Table ••2). Subsequently, high- and low responder strains were s.c. challenged

with TgPl or MTg to [est whether TgPl medIated EAT was under similar genetic

control as EAT Induced with inractMTg. The results (Fig. ".2) demonstrated that TgPl

could Induce significant mononuclear Infllrration of the thyroid In classic high responder

sttalnssuch as C3H and BI0.BR (H.Zk)or SJL (H_2S) (A. O. Vladutiu &. N. R. Rose,

1971a). In contrast, after TgPl challenge, no sIgnificant Infiltration was observed in

BALBlc (H_2d), and no Infiltration at all was detected In BID (H.Zb) mice. Both of

these low responder strain! exhibited low but !lgniflcant infiltration Indices after

challenge with MTg, perhaps due to Influences of other thyroldltogenlc epltopes on

MTg. The dramatic dllference tn TgPl.induced Inflltratlon between the H·2 congenic

strains BIO.BR and BlO Indicated that this process is under the direct control of genes

located within the H.2complex, and analogous to [he findings with native MTg (V.

Tomarlc eta/" 197+).

The EAT lesions Induced by TgPl varied In appearance ranging {rom small

Inflammatory foci, especially at low infiltration indices (Fig. +.3 A, 8), to diffuse

mononuclear cell infiltrates accompanied by follteular destruction at higher Infiltration
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Figure 4.2: EAT Induction measured al InfUtradon index in Individual mice from

dlfferentlttalnl after challenee with TIPl or MTr. InllUUnizl.ltion ~llld histologic

lISSCSSlIlcnt of thyroi\1 i nfiltmtion were performed as described in Materials andMedJ<xIs.

Jl values were obtained by comparing inCHtration in TgPI or MTlllnjecterl mice to

infiltration in mice injected with eFA-PBS only (non-parametric Mann-Whitney U

[t>$t).
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Ftr~lff: 4.3 A·D: TIPI.lnduc.ed Intemttbl tt18ltr8tlon of mononuclear eel" in the

thyroid. Thyroid infUtrate ranged from small foci with limited follicular distraction, A

(X250), B (XiOO) to extensive replacement of the thyroid with inOammatory cells C

(XI50), D (XiOO). Whitearrowspoint to a t:ianr fatlicll!(C, D).
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levels. Occlisioll:llly, giant follicles with little colloid and surrounded by inflammatory

cells were observed (Fig. 4.3 C, D).

".3.3 TgPl elicits specific proliferative T -celt responses that correlate with EAT

induction.

To detcrmine the immunogenicity ofTgPl, mice wcre s.c. challenged at the base of

tllC tail with 100 ulliol of peptidc, and 10 days latcr the proliferative responses of their

in~uill1ll LNC were delCrmillt.xL As shown'ln Fig. 4.4, vigorous responses were obralned

frolll lymphocytes of SJL, C3H and BIO.fiR strains that expressed the highest degree of

tllyroid mononuclear infiltration after TgPl challenge. BALBlc lymphocytes proliferated

less well, and BIO lymphocytes were completely unresponsive to TgPl. LNC

llroliferation was abrogated after lymphocyte treatment wilh an anti-Thyl.2. MoAb plus

cOlilplclllcllt (C'l, suggesting speclfic recognition of TgPl by T cells (Table +.3). These

results confirmed the predictive value of the algorithms used for identifying the TgPl

sequence and revealcd complete correlation between T-cell reactivity and

thyroi<iitol:enicity ofT1:1'1.

".3." TePl does not encompasslmmunodom{nant T -celt determinants.

To tcst wh~thcr T gPl is an imlllunooominantcpitopc, we examined the capacity of

MTg-sensitizcd lymphocytes to recognize TgPl as well as the capacity ofTgPl-primed

lymphocytes to recognize intact Tg in vitro. To exclude that unresponsiveness might be

due to lack ofTgPl determinants within MTg, RTg was used In parallel, for in vivo

priming or ill virro testing of lymphocytes. As seen in Table 4.4, MTg-prlmed
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ina:uinallymph node cells were removed and incubated in the presence of either TePI (A) or
OVA (B) for +days tI vitro. P H)TdR was added during the last 18h of culture. Background
means of quadruplicate wells were: SJL. SOJ4. cpmi C3H, 822 cpmi BlO.BR, 3861 cpmi BALB/c,
1332 cpm. and B10. 595 cpm. SO values did not exceed 15% of the means.
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TABLE 43· Abrogatiop of"'PI~ tpeclftc I NC proJjfmtioD by T-cdl denletign

.IwwnwS LQ 10
1.5 +/. 0.7 (6.1)b 2.2 +/. 0.6 (3.9)

anti-Thy!.! + C' 0.7 +/. M (1.2) 0.4 +/. 0.1 (O.6)

anti.Thy1.2 5.2 +/. 0.5 (9.2) 4.3 +/. 1.2 (7.6)

C' 86+f.J61l52) 93 +/. 32 (]64)

a TgPl.primed cells from SJL mice were treated with Thy·1.2·sgecific
antibody plus co~nptement 85 indicated In Mst-eria/s and Methods.

b Values represent the c!'mxlOJ means of quadruplicate wells. The values
in parenthesis correspond to stimulation Indices. In the absence of
antigen cpm mean of quadruplicate wells wa.~ 567.
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TABLE +i' T,Pt mcom.paWi pon.immunodgmin.pt T-cell dctetmlDlDn

Celt proliferation (nimulation index)f1
Antigen Antlgenconc. ~«ocballeD"ewjtb

~-in..l:irmlnMlc' M....I .., _-OR..I ..._---'I...l:JP'L.

MI, 750 ,d 1-3
75 5,; U 1.2
7-5 2,6 1.9 1.6

RI, 750 1.6
75 2-7 17,8 Ll

7,5 U H.6 Ll

TgP! 750 1.2 11.5
75 2,0 1-3 2.5
75 11 09 10

a In the absence of antigen, cpm means of quadruplicate wetls
were: MIg·prlmed LNC = 6,125, RIg-primed LNC=7,257. TgPl­
primed LNC= 5,03"

b 51L mice ( .. mice/group) were primed s.c. at the base of the tail
with either 75,u1l (O.ll nmol) of MIg or RIg, or ll8,ug (100
nmol) of TgP! in CFA. Ten days beer their Ingolnal LNC were
stimulated In vitro with the Indicated antigens and at the doses
shown. (3HlTdR was added at n hr of culture and the cells were
harvested 18 hr later (see Materials and Methods).

c 750 oM of MIg or RIg corresponds to 495 ).Ig/ml. 750 oM of
TgPl corresponds to 1.6jJg/mi.

d (.),ootdone.
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lymphocytes (rom SJL mice responded significantly to MTg in culture bur failed to

respQnd to TgPl under equimolar (75 nM)or lO·fotd higher concentration (750 nM),

Similarly, RTg.primed lymphocytes responded strongly to RTg in vitro••perhaps due to

recognition offorcign (rat) determinants on Tg •. but did not yield detectable responses

to TgPl at 75 or 150 nM. Unresponsiveness was not due to insufficienrdoses afTgPl il

vitro because TgPl-primed lyrr::phocyres responded strongly to T gPl at the highest dose

tested (750 nM). In addition, TgPI primed lymphocytes did not react:o any significant

extent with 75 nM MTg, a dose that was clearly stimulatory for MTg-primed cells. Lack

of response to MTg was observed at 750 nM (Table 4.4) anclat doses between 7S and

750 nM (data not shown), suggesting lack of antigenic stimulation rather than

suppressive effecu at high antigen dose in vitro.

The question of immunodominance was further studied using instead of TgPl­

primed LNC, a TgPl.specific T·cell [ine. The T -cell line was generated from lymph

node and spleen cells derived from TgPl.primed mice. It was established after two

rounds of in vitro stimulation with TgPl fot a total of 2+ days (see Materials andMethods).

The TgPl.speclfic line responded over a wide range ofTgPl (+.6)JM to O.07)JM) in virro

but failed to respond to MTg at doses ranging from l.lJ.lM to 0.018 JJM (Fig. 4.5). These

resulu confirmed the findings of bulk cultutes and further indicate the non-dominant

nature ofT-cell determinants delineated by the TgPl sequence.

".J.5 TIPl doe. Dot cantlin .etolo.teaUy Immunodominant epltopea but eHdu

IpflClfk aDdhody taponaea that do not correlate with peptlde·mediated EAT.

In vivo priming with MTg elicited strong MTg·specific IgG responses in atl strains tested,

but failed to induce IgG cross·re.lctlve with the peptide (Table ".5), clearly indicating
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IABLE1 S· T,Pt Yopt, Kt010riqlbimmyppdpmlpmtepitppt

o D (105 om) ofsera tested in vjtrqagainstEl
Antigen Mle I,Pl
~ Sttalp Sst Pi! 11256 III OM Jl256 III 024
TgP1 810 < 0.05 <0.05 <0.05 <0.05

810.BR 0.66 0.41 1.39 1.00
C3H 0.56 0.16 0.88 0.38
5JL 0.33 0.14 1.50 1.19
8ALB/e < 0.05 <0.05 0.75 0.52

MT. BIO 1.25 1.21 <0.05 < 0.05
B10.BR 1.51 1.34 <0.05 < 0.05
C3H 1.34 0.80 <0.05 < 0.05
SJL 1.39 1.13 <0.05 < 0.05
BALBfe 1.15 0.61 <0.05 < 0.05

CFA B10 <0.08 <0.08 <0.05 <0.05
BlO.8R <0.08 <0.08 <0.05 <0.05
C3H <0.05 <0.05 <0.05 <0.05
5JL <0.08 <0.08 <0.05 <0.05
BALBfe <0.08 <0.08 <0.05 <0.05

EI Pooled sen! (rom the mouse ,roups depicted in Fig. ".2 were assessed (or
antlgen.rpeciflc J,G by ELISA as described in Materials and Methods. The
data were obtained from futl titration curves and are expres$ed as means
of triplicate wells at the indicated dilutions of serum. Standard deviations
did not exceed 5% of the mean values.

b Mice were ptimed and boosted with the indicated antigens for EAT
induction as described in Marerials and Methods.
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that TgPlls not a serologically immunodominant epitope. This was not due to a 13ck of

immunogenic B-cell epitopes un TgPL however. because after TgPl challenge in vivo,

strong serologic antl·TgP! responses were detected in the susceptible (high responder)

BIO.SR. C3H and SJL mains (Table +.5). EAT·reslstant BI0 mice that were

umesponsive to TgPlln proliferative T·cell assays did not yield a peptlde.specific

antibody response either, suggesting lack of TgPi immunogenldty in that strain.

Interestingly, BALBlc mice that were not significantly susceptible UI EAT, and mounted

moderate anti-TgPl proliferative T-cell responses, showed significant JgG responses to

TgPl (Table 4.5). This was not an effect ofpootlng the BALB/c sera because the six

BALB/c mice that did not exhibit mononuclear cell Infiltration of the thyroid after

priming (Fig. 4.2) were found to be indlvlduaUy reactive to TgPt in ELISA auays (Fig.

4.6). Such lack of conelatlon between TgPt-specific titers and EAT ruggested that the

presence of circulating IgG specific for TgPt is not pivotal In the induction of thyroid

pathology.

4.3.6 Influence of IIndlen dole lind Im.munlsation time on the induction of TIPI·

_lfIcl,G.

To examine the effect of antigen dose on the production of TgPt-speclfic JgG,

BtO.BR mice were immunized twice one week apart with either 5 nrnol (tt,LIg) or 50

nrool (109 ,LIg) ofTgPl. The ability of the»e mice to produce TgPt-specific fgG was

subsequently tested by ELISA. As shown in Fig. 4.7 the two TgPt doses tested were not

equally immunogenic. '"he end.tlter point of TgPt-speclflc IgG In the sera of mice

primed with the tOO nmol regimen cannot be calculated precisely from the present

data, because the titer of that llntibody was still significant even at the highest-tested
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Figure +.6: Measutment ofTgPl.spec.ifte leG in BALB/e
mice, Sera from individual mice (see Figure 4.2) were tested
for reactivity to TgPl by ELISA. Each symbol represents a
different 01\111131 ilndcnch point the mean value of triplicate
wells at the indicated dilutlolls of the serum. SD ulu not
exceed 10% of the mean. Pooled scra from the same mice
cxcibitoo no reactivity to OVA. Values were less than 0.05 at
SCIUlli dilutions lallcinc from lI11B to V8In (data not
shown).
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scrum dilution (1132.768). In approxilllatiol\, IlOwcver, it appears that the level of

TIlPl.spcd[k leG ill the sera of mice rCl.:civillg the lOU 1I1l101 peptide regimen versus

those re<:civing the 10 nmolllcptidc regimen wasae least a IO·fold higher.

To examine the effect of time on the production ofTePt-spedfic TgG. CJH/HeJ

mice were immunized with 100 lunol of peptide and boosted one week later with 50

1111I01 of Til!'!. Pooled scm frolll such animals were [csted for the prescnce of 1 g1>1

antibodies by ELISA, 21, 2711nu 34 d<lys after priming (Fig. i.8). No clear difference

among the T gil l-spcdfic IgG titers was observed at the three time points tested.

".3.7 TgPl.prlmcd Icra cron-react extensively with thyroglobullnafrom vadou.

species.

When TgPl.s[lccific sera were examined for cross.reactivity to MTg, significant

rcsi>Ollses were observed hl sera from EAT .susceptible strllins (BIO.BR, C3H, and SJL)

but not il\ EAT -resistant BALB/c mice (Table 4.5). TgPI-primed sera from BIO,BR,

C3I-! and SJL mice also reacted va(iably with rat, human, bovine, and porcine Tg (Fig.

".9). No response was detected against the control antigen OVA (Fig....9). BALB/c

sera yielded detectable but, again, consistently low cross·reactive responses to the above

T~, V:uiability in himlinl:: pOS1iihly rcOcctcd illOucllccs orT~ tertiary conformation on

determinant accessibility or interference by post-translational modifications such as

Clycosylation or phosl'horyl<ltion (J. Charreire, 1989). These data demonstrate the

presence of serological determinants delineated by T gPl on thyroglobulins (rom various

s\lCdL'S :Il\.l Slipport tile C(lIlCt~pt tlmt TRill cxprC5.';(:li conserved ellitopc(s).
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M DISCUSSION

The prescnt findings dClIlOnstratc [or the first time the iclcntific:ltlon of a

t!lyroiditollcnk peptide on the Tg llIolct:ulc dHOUCh the usc of (;Olllllutcrlze.:J :llgodthms

that predict the presence ofT.ccllcpiropes within a protein sequence (H. Mmgalit cr al.,

1987; J. B. Rothbard & W. R. Taylor, 1988). Since EAT inJuced with intilct Tg is

under MHC control (see section 1.2.2.1.1) only a few thyroiditogcnic peptide! must be

present withil\ the large Tg molecule. The observation th:lt TgPl.1l\cdi:ltcd EAT is

under similar MHC control suggests that TgPl is possibly Ol\e of the lIIaln

thyroidirogcnic sequences wid\in Tg. The illlta p:uallcl those from other experimental

autoimmune diseases which can be induced with defined auroantigcllic T-cell cpitopcs

(M. Krol\Cl\bcrg, 1991). For example, in EI\E, imluccd by dircct immunizalioll of the

animals with MBP H·lu has becn shown to be a susceptibility haplotype. In two inbred

suains canying the H_lU haplotype the T-cell responses included pathogcnlc T cclls

that were directed to the 1·9 a.a. N-terminal detcnninant ofMBP (5. S. ZamvU et aI.,

1986). Similarly in collagen-induced anlultls, immunization of rats with type II collagen

induces T cells sOllie of which arc pathogcnic and recogl\ize a single 12. a.a cpitope of

type II collagen (M. Kronenberg, 1991). In this regard, small Tg fragmcnts, gencratcd by

proteolysis, have becn isolated with thc ability to induce EI\T andlor stimulate T-cel!

responses ill vitw (D. K. Mate eral., 1985; J. Salmncro cr al., 1987). In OllC of thosc

studics thc prilll:uy amino-add sC1lucnc.:c or a 40 :lluino_ac!l!pcpti(!c (localizc(llJ.ctwccll

rcsidues 1672 and 1711 of HTg has bcen determined (F40D), that could induce

minimal thyroiditis to CllA mice after direct subcutaneous challengc (B. Texier ct al.,

1992b). Inaddllion, the Tg peptide (2549-2559) STDD(T4)ASFRALcontainingT4 at

position 2553 was shown to be recognizetl by Tg-reactivc T-ccH hybtldollws (D. R.

Champion eta1., 1991). This pcptidc could not directly induce t1\yroiditis ill CBMJ
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mice at dosn ranillne (rom 1-25 }Ill, but LNC primed in vivo and boosted in virrowith

peptide could transfer EAT In naive recipients (P, R. Hutchings er al., 1991). We have

also been unable to induce directly mononuclear infiltration of the thyroid in all strains

shown in Fie. +.2 with the 18-met peptide TDDYASFSRALENATROY (2550.2567)

canying ill tyrosine InneadoCT+ at position 2.553. by using 100 nmol pepti~ per mouse

and of mi~ per smin (see Chapter 8).

The observation that TgPl,sp«iAc T-cell pro!iferadon was intense only with primed

lymphocytes from EAT ·susceptible strains is in 3Kreement with earlier studies that

correlated Tg.medlated EAT with T-cell proliferation [0 MTlLln cultu..e (L. L Simon et

al.• 1985). - e functional profile ofthe TgPl.specific proliferative T cells remains to he

established but it is reasonable to predict thac they include Th cells pivotal In the

induction ofTgPl-s~ci£lcantibody. Studies with TIPI-speclfic T-cell clones will be

needed to map the minimal T <ell epitope(s) within the T gPI sequence and to conelate

T-cell function and phenotype with epitoperecoenition (P. Parham. 1991).

The inability ofLNC, primed with MTC or RTI in vj"\oO, to recognize TgPI in virroat

peptide doses (750 nM) that are c:Iearl'Y ttimulatory (or TgPI primed cells suggests tlult

TIPI consisu of non-immunodominant T -u11 epitope(.) (Tabie 1..3). In additional

experiments. higher peptide cor.cennations In vitro (up to 3 J.lM) did not increase

specific proliferation c:J MTi-primed cells. That TgPl is not immunodominant can also

be supported by the observation tnat TgPI-primed LNC (Table 4,3) or a TIPI specific

T-cell line (Fia:. 45) from SjL mice can clearly proliferate against TgPl in virro; they fail

to do so against an equlmolar dose ofMTg (750 nM) which is stimulatory for MTg­

primed cells. This latter result has to be interpreted with caution, !\owever.since it Is not

known whether such a high dose ofTg can be quantitatively processed in virroand to

what extent pracenlna: of the lara:e Tg molecule car. generare sufficient quantity of



no

relevant peptide in vitro to actlvare specific T celb. Therefore, although TgPl appears

non.lmmunodominanr, its classilkation as subdominant or cryptic (see section 1.2.4.1)

wilt be easier tc establish comparati....ely, once an immunodomlnanr Tg epitope i~

identified. The non-immunodomlnant nature ofTgPl w&Salso sllggested by the laclto!'

TgPI.react!vity of MTg-primed sera. and is supported by the fact that TgPI does nor

overlap with epitope.bearing sequences on HTg that are known to be recognized. by

heteroandser3 (Q. DongeraJ,,1989: M. Henry etal., 1990j¥. Malrhlhy era/., 1991).

The lack of TgPl !mmunodominance raises the question of how TgPt-primed

lymphocytes recognize Tg in vivo in order to inidate the autoimmune pathogenic process

(H.ls is a susceptible haplotype after TgPl challenge). In that regard, it can be

hypothesized that TgPI is not a product of Tg processing by lymph node antigen.

presenting cells but is produced by th)lrold pr::Jteases. Altematlvely, partially digested Tg

fragments leaking from the thyroid Into the chculation (j. Charreire, 1989, L. j.

DeGroot &. J. Qulntans, 1989) may be processed differently from intact Tg by peripheral

antigen-presenting cells. Analogous hypothes<:i have been proposed about the role of

antigen processing on the generation of cryptic but irnrnullopathogen{c peptides of the

retinal p;oteilllRBP (W.J. Lipham ttal" 1991).

Re.;ent studies of Dunn tit al. on thyroglobulin proces.sing by thyroidal proteases (A.

D. Dunn et af., 1991a) have revealed that cmhepsins Band L isolated from human

thyroids can cleave rabbit Tg at P': residues 1487 and 1490 respectively. This would

position YgPl (N-terminal residue 2495) very dose to the N-termini of 27-33 kDa

fragments ofT!l' (A. D. Dunn etal., 1991a) w hleh potentially could enter the circulation

and be processed further in the periphery. Since there is high homolOgy at the P4·Pl

:sequenCe3 between rat, b,:,vine and human Tg (A. D. Dunn ec al., 1991a. R. DiLaurc.· et

aI., 1985, L. Mercken er al., 1985. Y. Malthi~ry & S. LissitzKy,1987), it would be
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Interesting to test whether limited MTgor RTg digestion with these enzymes would

generate immunogenic fragments recognized in vltroby TgPl-primed lymphocytes. It is

noteworthy that these cysteine endoprotcinases along with cathepsin D account for most

or al11ysosomal endopeptidase aclvity found in human thyroid (A. D. Dunn cr a1.,

19918, A. D. Dunn et al., 1991b) and that the TgPl.containing Tg (ragn:cnts would

Include a thyroxine.(orr.ilng site corresponding to hum8u residue 2553 (A. D. Dunn er

al., 19913).

The induction ofTgPI-specific 19O was unexpected since T gPl was selected by the

algorithms only for it~ potential to bind to MHC antigens. The fact that BALB/c mice

mounted TgPI.specific IgG responses hut exhibited minimal thyroid infiltration suggests

that the pres>~nceof antibody alone is nor sufficient for EAT induction. This finding is

in agreement with earlier studies indicating that Tg-specific antibodies flre not necessary

(or the development of mutine EAT (reviewed in J. Charreite 1989; A. O. Vladutiu,

1989; I. Okayasu, 1985 i L. £. Rayfield eta!', 1989). Particularly intriguing, however, was

the cross..reacr!vity ofTIlPl-induced antiserfl with MTg. Cross-reactivity 1;0:l1d be

completely inhibited by TgPl in competitive inhibition assays and was indepen~ u of

the tertiary conformation ofTg (Chapter 7) suggesting thac croS!-reactlve JgG was not

induced .recondarily co TgPl challeng~andwas not directed to ecC'ler determinants on

the Tg molecule. These data implicate cross_reactive B cells as possible antigen_

presenting cells in TgPl-mediared EAT. Even thou,'; B cells are not obligatory in EAT

development (section 1.2.3.2), Tg-specific B cells have bp.en shown to process and

present self-Tg to T ceUs (P. Hutchings et a/., 1981) and they may precipitate orampHfy

the disease cascade. Thus, if infectious agents could induce T gPl-reactive B celts

through "molecular mimicry" (M. B. A. Oldstone, 1987), ptimingofMTg-rellctive T

cells could ensue. ~uch a mechanism for abrogation of T-cell self tolerance through the
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induction of auro.'cacdve B cells has been described by Lin et a/. with studies on

cytochrome c (R-H. Un etal., 1991). In tllis regard, it would be wonhwhile to elrnminc

the role of TgPI-specific B cells in murine EAT and certainty the TgPI.reactivity of

both T and B cells in patients with autoimmune thyroid disease.

Recent studies confirmed the rhyroiditogenic nature of TgPl lacking the amino.

terminal cy:nein and carboxyl-terminal tyrosine in an autologous system (B. Balasa &. G.

Carayanniotis. 199Jb). In analogy to the mouse synem, TgPI induced thyroid

infiltration in three susceptible rat strains (WKY, FJH, WF) and the Incidence of

thyroiditis correlated well with the T -celt reactivity. The abi\it'Y of TgPl to induce

thyroid lesions in two different species was aurlbuted to the presence of multiple MHC·

binding motifs (Fig. 4.1), a featute that enables T gPl to bind to vadous MHC molecules,

The last ttalt In conjunction with the high !~::lmology of mouse and HIt MHC and the

possible sequence identity of TgPl between those species could explain its pathogenic

nature (B, Batasa &. G, Carayannlotls. 1993b). Similatly to the mouse system. TgPl was

shown to contain non·immunodominant T·cell epitope(s) because LNC derived from

rau after priming with either homotClgous (RTg) or heterologous (MTg or H1:g) Tg

fanee{ to respond in viera to TiPl although they tesponded significantly to their

corresrondl.ng antigen. Although no differences in rhe T-cell reactivity to T gPl have

been observed between the. mouse and the rat system, differences in the B-cell reactivity

do exist. The TgPl.specific antibodies generally have not been observed in rau and

wherever found were tow and failed to react with RTg. To explain the apparent

differences in the antibody levels it 'vas proposed that mouse and rat immune sera

reccl:nize distinct B-cetl dererminantson TgPl (B. Balasa &. G. Carayanniotls, 1993b).

Alternatively, because in the current lltudy TgPl has been used for immunizations, a part

of the antibody could be specific for determinants form.o:d by dimerization of the TgPl
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amino-rerm:nal cysteine. In view of the shon: length of TgPI and the lack of use of

carrier.peptide conjugates for peptide coaring during ELISA assays, dimerization ofTgPl

might also increase its coating efficiency. evidenCe5Upportinll both of the hypotheses

stateclabove Is provided In chapter 7. In addition, roexplaln the lack of reactivity of rat

immune sera derived (rom TgPt-primed animals with IiI! Tg in vitro, it has beetl

speculated that Tg might adopt a tertiary conformadon that renders the T gPl epirope

non-accessible to TgPl.spedne IgG (B. Balasa &. G. Carayanniotis, 1993b),

Idemlfication of additional EAT-inducing peptldes will aid in our undemanding of

the peptldc.MHC interactions regulating thyroiditis and will afford derailed studies on

the heterogeneity ofT·cell receptors fecognitingsuch peptide-MHC complexes. The

feasibility of immunotherapies based on MHC-blocking peptide analogs or

anriclollotypic antibodies will then be moreeasity assessed.



CHAPTER 5

H-2E' EXPRESSION INFLUENCES THYROIDlT1S INDUCTION BY THE
THYROGLOBULIN PEPTIDE (2+95-2511)1

5.1 SUMMARY

This study attempts to map the H·I region{s) responsible (or EAT induction using a

defined Tg peptide TgPl(H95.2.511) and inua·H·l recombinant mice. We fin(! thac,

within the suscepdble H.lle. haplotype, H·lE expression Is a necessary requirement for

EAT Induction but It requires concomitant expression of H·lA and/or H·lK products.

tacit of H·lE expression Is associated with toss of proliferative LNC responses to TgPl i1

vion but does not affect the TgPI.specific fgG response. The loss of proliferative LNC

responses might not be due to the lack of proliferadon of H·ZE·renricted T cells but

rathetoC H·ZA·restricredcells whOle proliferation depends upon the help cl the former

cell population. These results contrast with earlk:t findings with Tg.mediated EAT that

have assigned a major regulatory rote to the H.2AX. reiion and may reflect processes

detectable only after chaUmS" with thyroiditogenic pepridel but not with intact Tg,

5.2 INTRODUCTION

EAT induced with Tg and adjuvant has been studied extensively In mice as a model or
HT (J. Charrelre, 1989), Early studies, Involving 33 Inbred strains of mice representing

1 Part of thu thaptcf h. ~n pubUshed as: Cbronopoulou E. &. Q!rayannlotls G, 19?}, H,ZEIr.
expression influences thytoldltb Induction by the rbyrol1obulln pt'pttdr (Z;95,Z5 11). ft1Jmuno,mrria.
Vol38: 150·1SJ,
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11 different H·}. haplotypes, correlated EAT with MHC sene. (A.a. Vladuriu &. N. R.

Rose, 1971a). Strains rJ. the H_llt, H-21 , or H·2Q haplotypc$sppeated to be particularly

susceptible to the dhease (Iood responders). whereas H_Zb at H.ld mains were

relatively resistant (poor responders). The fiut ex~rimenuwhich addressed EAT

induction in intra·H·Z·recombinant mice mapped susceptibility within the centromeric

side of the H-lcomplex (V. Tomarlc eral.• 197-4). Further studies on Tg.mediau~d EAT

localized control of susceptibility in the H·2A region of the H.Zk haplotype (K. W.

Beisel er al., 1982a). Genetic influences on EAT development have al50 been attributed

to the Kor the D rcglon of the H-2 complex (R. Maron &. I. R. Cohel~, 1979; A. Ben­

Nun eral., 1980:R. Maron &. I. R. Cohen, 1980i Y. M. Kong ctal" 1979) and to non·H.

1. genes (K. W. Beisel era/., 198Zb).

An impouant role for Ihe Induction of EAT has also been assigned to T cells (J.

Charreire. 1989). The primary response of mouse lymphocytes to syngeneic thyroid

epilhelial cells was found to be under similar H-Z conuol as EAT suscepdbility (j.

Salamero & J. Chaneire, 1983a) and proliferation was attribuled to recognidon ofl·A

region producu (]. Salamero & J. ChaIIeire. 198Jb). The combined evidence thaI Tg­

mediated EAT is under H·l conuol and that Ta·spedrtc T cells are responsible for the

disease SUllens that Ihe larle TI molecule (MW=660 iDa) harbon only a limited

number of thyroimrogenic~ that can be recogni1ed by MHC·restrU:ted T cells.

We have recently ldentlAed such a rhyroidhogenic ephope (TgPl) localized at a.a.

Z+95.l511of rat TI (see Chapter +). TgPI isstriklngty similar ro TI as far as Ihree main

EAT ctlrerla ate concerned: il Induces lymphocytic infiltration of the thyroid, It is

recognized by T celli, and It elichs IgG antibodies which cross-react with Tgs ftorn

various species. Furthermore, It causes EAT with a genetic pattern analogous ro thlit of

Tg-mediared EAT: BIO.BR or C3H (H_Zk) and SJL (H_2S) mice are susceptible.
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BALB/c (H.2d ) mice ate relatively resistant and B10 (H_lb) mice ate ..:omp1ete1v

resistant and immunologically unresponsive to T gPI. These sim ihullies prompted us tl)

examine ..... hether EAT mediated by the 17·rner TgPl would also be controlled h'l

products of the H·lA region in a manner analogous to EAT caused by intact Tg.

5.J RESULTS

5.3.1 I·E repon products are critical for tnyrotdltil in.ductton

Intra·H·2 recombinant mice with B10 background were challenged s,c. with 100

nrnol TgPl in CFA andboosreds.c. 3 weeks later with 50 nrnot peptide In IFA. EAT

induction was monitored five weeks after the nut challenge. as previously described

(Chapter 4). All BIO.BR but no BIO mice developed EAT (Table 5.1) confirming our

earllerobservadon that this model of EAT ls under direct H-lcontroL All seven BIO.A

and five out of slx BID.A(2R) mice were also '~usceptible, suggesting that the H·lD

region does not control TgPl.medlated EAT within the H.lK haplotype. Interestingly,

BIO.A(4R) mice that expre&S H.2Kk and H.2Ak but not H.2Ek molecules Were

completely resistant to the disease. This Indicated that H.2Ekexpression Is ncce!S3ry for

the induction oflymphocytlc infiltration. The presence of H.ZEk molecules alone Is not

sufficient for EAT susceptlbility, however, since BIO.A(5R) mice tharexpress H_ZKb,

H.2Ab and H.ZEk molecules are also resistant. These data Indicate a possible synergism

or Interaction between H.ZEk.restricted and H.2Kk. or H-ZAk-restrlcted TgPI.specific

T celts in the development of the disease. Evidence that H.2AK and H·lEk·tesrrlcted T

cells are being generated against TgPl in vivo Is presented in the section 5.3.4. In

addition, V. P. Rao and colleagues have isolated TgPl-speciAc clonal populations in the



TABLE 5 1· EAI 1nduGripn by Ip MpriW= <2495_2.511) In jnrn.H.2. res:omblnaDI; mplOJ 0

H.2 Joe:! Infilmnjon jndex .Mlce
SHain K ARAg ED Eg P 0 05 I 2. 3 4 u,hh EAr

810 b b (b)Y.t b 1 0 0 0 0 0 011
BIO.BR k k k k k 0 Z Z 1 Z 0 717
BlO.A k k k k d 0 Z Z 1 Z 0 7/7

BlO.A(ZR) k k k k b 1 0 0 3 1 1 5/6

BIO.A(4R) k k (k)Y - t b 1 0 0 0 0 0 0/1

B10.AC5R) b b b k d 6 0 0 0 Q 0 0/6

a Reagenu, method of immunization and scoring of mononuclear cdl infiltration of the thyroid
were as dc$Cribedln Mererials and .Werhods. For all strains, female mice were purchased from the
jackson Laboratory, Bar Harbor, MEand were wed at 1 weeks of age.

Y nOt expressed on the eel( surface

t No gene product.
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form ofT-ceil hybridomas, which are either H·2A or H·ZE restricted (V. P. Rao er a/..

199+). On the other hand, a possible requirement for H.lKkexpression is compatible

with the notion that H·ZK product expression on the thyroid regulates EAT induction

within the H.2K haplotype (R. Maron &. I. R. Cohen, 1979: A. Ben.Nun. er til" 1980:

R. Maron &.1. R. Cohen, 1980).

HZ Correlation between prollfe",tton ODd ouoceptIb!llty to thytoldlrll.

The c1earcut profile of EAT observed in rheintra.H.l.recomhinant mice (see table

5.1) allowed us to reS[ whether peptlde.speciflc prollferative T-cell responses correlate

with susceptibility. Mice from each strain wcrechallengcd s,c. at the base of the rail with

SO nmot TgPl and, ten days later, Inguinal LNC were tested (or proliferation to TgP 1 tl

lJitro (see Msrerialsand Methods). Data from two exptorlmenu (Table 5.2) indicate that

only LNC from tne susceptible strains BID.SR, BlO.A and BIO.A(2R) responded

consist;;i\t1y and significantly (S,l, values >2,8) to the peptide in vitro. Among the

resistant strains, BIO.A(4R) and BID mice that are H·2E- were unresponsive, whereas

BI0.A(5R) that are H.2E+ showed significant proliferation in one of the tWO

experiments. These observations support our earlier data Indicating that strains of

various H·! haplotypes. susceptible to TgPI.mediated EAT, exhibit strong proliferative

T ·cell responses [0 TgPI in vitro (Chapter 4) and arc analogous [0 findings whh Tg.

mediated EAT (I. Okayasu et al., 1981).



TABLE 51· T,Pl.prlmM LNe frOM IlFf'Mible miDI prolt£mt!! mon,ly to T,P! Ip riuq

PIolifmtlye IesponS Ioanrlrens in vjaa (com tl- S p.)(1000 is I )b

llliWo.n Exp 1 Exp.2-" KAEp Nenc I,l'l rrp Ngn.. Ierl

81D bbbb 14.0 +/- 1.1 18.5 t/· 1.3(1.3) 34.5 +/.1.3(2.5) 6.5+/-0.4 5.6 +/.1.5(0.9) 11.5 +/.1.8(1.1)

&IO.BR lill lz..l +1- 2..7 9z..1 +1- 0.1 (1.2.) 1SS fl· 3.oU.0} S.3 +/.0.2. 11.9 +1, ,).9(1.8) 3J.O +1, -t.5 (6.3)

BIO"" 1110 4.5 +/- 0.9 18.9 +/- 1.1 (4.Z) 20.0 +/·1.8(4.5) NO' ND ND

&10,",,(lR) iiib 7.1 +/.0.1 13.8 +/_ 6.)<.5.9) 2.8.2. +1· l.2.(J.8) 11,0 -+1- 1.8 35.7 +1· 1.7 (J.2.) )5.7 +1· .5.0(3.2)

B1D.A(4R) Hbb 6.4 +/. 1.6 10.3 +/. 2.2(1.6) 54.6 +'.3.2(1)6) 2.8 +'- 0.1 2.3 +,. 0.6(0.8) 18.1 +'- 1.5(5.1) :0

Q10Al5R) h hkd 171 ±'_ OS 491 ...1. 'SUU 148./.11/10\ S} ±I_ 10 14 */. 18(4) 221 ±" }'j(421

8 Mice were priUlSid $.C.liiIr the base of the tail with 50 nmol TaPl in CFA. Ten days later. the dralnina intuinal LNC were
cultured in triplicatc wclls with TePl (2.0 p&,ml) or PPO (10 p&,ml) (or 1 da~ Tritiated thymidine (1 J.lCllwell) was added
durine the last 18 hr ofculture. Cells were harvested on filters and incorporated radioactivity was measured in a scintillation
counter. Dataareobc.dfrom fuU.ntl,en dntlrion cu!vc$. No response was observed:Jg:Jinn OVA (not shown).

b The S.1. is ddlnedas described in MareciahandMerhods.

c notdone
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5.3.3 Carrel.tloD. between TIP1·lnduced T••re.ctlve antibody and EAT

-.p<IhIIlty.

When the sera from mice shown in Table 5.1 wefe analyzed for the presence of

TgPt.specifk leG by ELISA, all strains responded serongly except for 810 mice that

were unrespotulve (Fig. SolA). Noconclation. cherd'arc. ~lsu between the presence eX

TgPt.specific laG and EAT susceptibility as previously repouN with other strains

(Chapter +). Interestingly, peptlde.specific IgG ctou-reacted wilh MTg only in the

susceptible BIO.BR, BIO.A and BIO.A(2R) mice (Fill:. 5.18). Thyroglobulln blndina

could be conlpterely inhibited by free T8Pt (see Chapter 7). This flndlng IUlgests rhllI

different strains recognize distinct serological epltopes on TgPt, some of which are

accessible by antibodies on native Tg. but It Is not dear at present [owha[ extent crosl'

reactive antibodit$ contribute to EAT Inducdon.

5.3.+ T ce11a recop.tu TIPl in ~iarion with I·A- and I·E-rqton producta.

To determine the MHC-reltTiction prot'lle of the proliferative LNC In the H_ZIt

haplotype. CJHJHeJ (H.Zk) mice were Immunized with 50 nmol TIPI and ten days larer

their inguinal LNC were cultured in virrowlth TgPI in the presence of anti·I·Ak and

antl_I.Ek or both MaAhs (Fig. 5.2). In control wells a MoAb specific (or Innuema A

nucleoprotein (anti-NP) was added. As shown In Fig S.Z, addlrlon of !.Ak.spednc

MoAb Inhibited the proliferation of LNC in a dose·dependent manner sUllgesdng the

presenceofTgPI.speciflc I.Ak.reltrictedcells. In contrast to the above resuh,additlon

of I.Et.specific MoAb Inhibited the LNC proliferation completely at all doses tested.

The last finding was surprislnlh but It is likely due to the antibody-doses used for
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FlJUre 5.1: Meuuremeo.t of the lefotolical tClponte to TaPl in inttl. H-2.
recombinant mice. A. IgD response to TgPl; B. laG responses to mouse Ta:.
Pooled seta (day 35) from the mice of Table 5.1 were used in an alkaHne
phosphatB$e'based ELISA as described in Materials sndMethods.
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Figure 5.2: MHC~restriction of the in vitro LNC.
proliferative response in H-Zk(C3H/HeJ) mice. TIlPl-primcd
LNC from J mice were cultured in vitro for 4 days (sec
Macerials8ndMedlOds) with the I.A~spccinc (TIB 92.), I_Ek

-specific (HB 32.) MaAbs or with a control ontibo,ly to
influenza nucleoprotein (1m 65). MoAb conccl\tnltioll
varied between 0.625 JJg/ml to lOpg/mJ. TgPl concentration

e~~r:~f~u~d~!~lf;~:t.~~1~~c:::c23~42~a~~i;~n ~~\~~~rrk
constantly blocks proliferation.



IlJ

blocking of LNC proliferation. Evidence to support the Ian speculation comes from a

recent uudy In which the ume anti.t.Ekspecifl.c MoAb has been used to block. TgP!­

specific recognition by an I.flt.restricted T·ccl! hybrldoma clone (V. P. Rao er aI.,

1m). In that study, the aurhan have sho\,1ln that only and_I_Ell MoAb doses less than

Ipg/ml allow TaPl recognition by the hybridoma clone. :n this nudy, however, even an

antibody dose r:i. 0.625 Jlglml could completely Inhibit the proliferation of I-Ek..restricted

cells. The above observation is striking because one would expect that a certain level of

pto!iferation would exist due to proliferation of I-Ai..restrlcted cells. To explain the

lack of proliferation ofLNC inhibited by I.Ek..spedAc MoAb we could hypothesize that

I.Ak cells, in order to proliferate in culture, require helper signals (rom I.Ek cells. In

favor of that hypothesis all! recent data showing that LNC restricted to tht: I_Ak.binding

epitope of TgPI do not proliferate (V. P. Rao erat., 1994). To address synergisms

between dlfferenr cell SUb5CU in virro, however, it is necessary to generate donal

populations ofTIlPl-tpeciflC, H-2A· and H·2E· r~trictedcells. The block.inll ofTgPI.

induced LNC proHferation in viuoby l_Ak_ or l_Ek-spedfic MaAhs was specific for the

antibodies used because LNC proliferation was not affected by a MoAb spe'::lfic for

influenza A nucleoprotein. The present data SUilecst that T aPI delineates 5Cquences

recogni:ted by T cells is the context ofH-lAkand H.2Et. molecules.

5.i DISCUSSION

Our finding that H.IEk region products are critical in the development of TgPI.

mediated EAT is in apparent discrepancy with previous studies that show a strong H·

IAk Influence In EAT Induction with intact Tg (K. W. Beisel eral., 1982a). Also no

effect of the H·lD region on peptlde.mediated EAT was discerned in contrast to earlier
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data documenting influence of this region on Tg-lIIcdiatcll EAT (Y. M. Kong ct til.,

19';9). Two possibic cxpl:1l\3tions limy 'll:COUllt for our undings. Hrst, if EAT -regulating

T·cell dOllCS recognize the uwjoriry of Tg cpitopcs ill rhe context of H.IAIt, the

influence of H.ZEk molecules in the presentation ofindivirlual patlmgcnic pcpridcs such

as TgPI may be masked when Tg is used. (or in vivo chatlcngc. Similarly, it is conceivable

that Tg epitopes other than TgPlmay bc prcsented in thc contcxt of H-lD. This

concept ne~ds to be testcd with other Tg cllitopes such :IS thc ones t1mt were recel\t1y

described causing EAT in H_Zk lUice (P. R. Hutchillgs <:i" !II., 1992.; B. Texicr cr Ill.,

1992b). Second, T gP l·mediated EAT may differ significantly from T C-lIIcdiatcJ. EAT in

antigen processing and presentation requiremellts. TgPl contains nOI\·imlllunooomillant

detefminaa[S (Chapter 4), and it may be prevented frolll binding to E molecules by

higher-affinity Tg epitopes. Moreover, binding of Tg to A molecules via dominant

d~terminantsmay reduce the possibility of an adjoining non-dominant E restricted

determinant such as TgPl to form a productive class 1Iligal\ds (I-I. Deng eral., 1993).

Alternatively, Tgll1 may not be generated in vivo after processing of cxogenous Tg by

professional APC. Instead, it might be gcnerated by thyroid protcases and cxpressed in

the context of class I or class II products on rhe thyroid glana where it would be

recognized by specific T cells activated in the peripllcry by Tgt>l and adjuvant. In

nature, TgPl-reactivity could be elicited via molecular mimicry of this peptidc by

proteins derived frol\\ various pathogens, such as the reovirus, which is know 1\ to cause

mouse thyroiditis (reviewed ill Y. TOlller & T. F. Davics, 199]; J. SrinilllJs:lIIll:J ct 1I1.,

1966).

The association ofTgPl-speciuc reactivity with H-2E exprc5Slon was surprising since

E molecules are known to control suppression of the immune response to prOtcLn
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antigens (c. N. Baxevanis ct al., 1982; D. Oliveira er al., 1985) although responses [0

synth.!tic polypeptides such as GLT atC channelled through the E molecule (N. IshU er

al., 1981). In naturesevera[ A+E' strains have been observed but not A-Eof-. Thus, it

was speculated that Eand A molecules are not functionally equivalent. Recently, A' E+

mice were produced by crossing the Ea16Iin,: which carries an Ea uansgc:ne on a non­

MHC chromosome with the AO~ line, th:n carries a mutated Ap gene (D. Cosgrove er

al.,1991.). A and E molecules were equally capable of restoring the eDf+ cells in the

periphery, of promoting maturation ofCDf+CD8' cells in the thymus, of permitting

efficient CTL generation and of reestablishing normal antibody production to T-cell

dependent antigens compared to class II-deficient animals. The last result is In

agreement with this study and prov:des further evidence of EAT regulation by E

molecules, a feature previously assigned to A molecules. Such regulation may Involve

TgPl-spedfic T cdlsrecruited from subsets such as Tcrb-VIOb+ Ot Tcrb.v6+ T cells

that are known to be positively sele<:ted in H-2S+ mice (K. Tomonari er aL, 1992; H. R.

MacDonald er al., 1988). On the other hand, our data demonstrate rhat TgPl.mediated

EAT requires H·2E expression only within the susceptible H.2k haplotype since H·2E­

SJL mice do develop EAT and specific T-cell responses after challenge with TgPl and

adjuvant (Chapter 4). It is, therefore, difficulr to reconcile the present findings with

results from other experimental models such as the NOD mice which spontaneously

develop diabetes (5. Makino er a/., 1980) and thyroiditis (N. F. Bernard et al., 1991).

Although such comparisons cannot be made, It Is noteworthy ro mention that our data

are in agreement with reCent studies In 100M. Early studies on rhe development of

insuHtis and diabetes In NOD mice suggested that H-2E expression prevents rather than

enhances the autoimmune insulitis (H. Nishimoro et a!., 1987). However, a recent

report in which I-E+ Fl mice carrying a single dose of NOD·MHC in the NOD
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background were used, shows that I·E expression does not prevent development r

insulids or diabetes. In fact l-E+ Fl mice developed insuliris anu cydoph,)sphamidc.

induced dLaberes at 5.ll months (mo) of age. lOOM could also develop spontauc.'Ously

in those mice aged 9-17 mo (P, L. Podolin er a1., 1993).

In this study it is shown [bat TePIls recognized in the context of both Ak and

Ek molecules. suggesting that it encompasses at teast two distinct or overlapping T-cell

epitopes. This assumption has been confirmed in both the rat (B. Balasa &. G.

Carayanniotis, 1993b) and the mousesyJtem ofTgPI-induced thyroiditis (V. P. Roo c."

al., 199+). In the rat system, rhe TgPt-specific prollferarion of LNC derived from strains

susceptible to EAT (F3H, WF. WKY) was significantly blocked by MaAhs directed to

either RT1·B (l.A equivalent) or RTI-D (I-Eequivalent) antigens. (B. Balasa & G.

Carayanniotls,I99Jb). In addition, clonal populations in the form ofT..cell hybrldomas

have been obtained that recognize TgPIIn the context of I·Ak and I_Ek molecules (V.

P. Rao er al., 1994). Two of those TgPl.speclfic hybridoma clones (4Al and Mil)

have been successfully used as tools to identify among truncated TgPl pep tides the

minimal thyroiditogenic epitopes within TgPI. As an outcome of that study TgPI was

shown to delineate two nanomeric overlapping Ek_ and Ak-binding epitopes with a.a.

coordinates (2496.l50i) and (2499.2507) tespectively (V. P. Rao er al" 1994). Mice

directly challenged by the I.E.binding epitope developed lesions equivalent to those

obtained after challenge with TgPI. The last finding suggests the I-Ek_binding cpitopc as

the main thyroidltogenic sequence within TgPI (V. P. Rao cr al., 1994) and explains

why TgPl·induced EAT is under the control of Ek genes (current study).

Our findings suggest that the I·E.restrlcted cell proliferation is not consistent (Table

5.2). Several speeulationscan be made about the role of I·E·resrrictedcells. They might

!luisr in rhedevelopment ofa serological response to TgPI or thcy may be helping in the
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activation of effector cells (I.A restricted?). Further studies using clonal H-ZA and H·

ZE restricted T-cell populations are required to clarif)' their individual roles in disease

pathogeniciry.



CHAPTER 6

DISTINCT GENETIC PATTERN OF SUSCEPTIBILITY TO THYROIDITIS
IN MICE INDUCED BY A NOVEL NON·DOMINANT THYROGLOBULIN

PEPTIDE (2695.2713)\

•.1 SUMMARY

EAT, induced by Til and adjuvant, is MHC-connolled and dependent on Tg­

reactive T cells, hut the immunopathogenlc T·cel1 eplropes on Tg remain mostly

undefined. We report here the thyroiditogenicity of a novel rat Tg peptide (TgPl;

corresponding to human Tgamino acids 2695-27lJ), identified by algorithms as a site of

putative T <ell epitope(s). TgP2 causes EAT in SJL (H_2S) but not in C3H or BlO.BR

(H.2k), BALB/c (H.2d) and 810 (H.Zb) mice. This reveals a new genetic pattern of

EAT stJsceptibilhy since H_Zk mice are known to be high responders (susceptible) after

Tg challenge (see paragraph 1.2.2.1.1). Following in vivo priming with TgP!, onty T

cells from SJL mice proliferatedslgniflcantly and consistently to TgPl in viero, whereas

TgP2.specific IgG was observed in all strains tested. Adoptive transfer of TgPl-primed

5JL LNC ro naive syngeneic recirients induced a pronounce.~ mononuclear infiltration

of the thyroid, which was more extensive than that observed after direct peptide

challenge. TgPZ Is non.immunodomlnant,since priming of SJL mice with RTg did not

consistently elicit T-cell responses to TgPZ in vitro. Similarly. a TgPl-speci(ic !lne

failed to proliferate to MTg in vitro at doses between 100 ,ug/mt to 10,ug/ml. The dam

support the notion that Tg epitopes need not beelther iodinated or immunodominant In

1 Part of the results presented in this ChapleT has been published as: Qlrayannlotb 0., Chrcncpoulou E.
&. Rao V. P. 1994. Dbtinet gmerlc Plmem ofmcU$eS\J$(eprlblllty (0 thyroiditis Induced with tl novel
thYtoglobultn peptide. Immuno,enMCl, Vol. 39:21·28.
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order to cause scvcre thyroiditis and that the genetic pattern of the disease they induce

can be distinct from that ofTg.mediated EAT,

6.2 INTRODUCTION

The delineation of defined pathogenic T-cell epitopes within the large Tg molecule

(homodimeric MW=660 kDa) remains a high-priority objective in EAT, an animal

prototype of Hr. Such knowledge can facilitate experimental design at the donal level

and will greatly aid in our undemanding of the Immunoregulation of EAT and the

human disease. Recent studies In this area have ','Ielded frUitful results by meaRS of tWO

approaches: First, cloned T <ell hybridomas generated after challenge with intact Tg,

and reactive with immunodominant determinanu have been used to screen

enzymatically derived 19 fragments of decreasing tire or synthetic Tg pepddes for T-cell

epltope mapping. With this method, the nanomeric Tg peptide 2551·2559, containing

T4 at position 2553, was characterized as a minimal T <ell epltope (8. R. Champion et

al., 1991), and it was subsequently shown that T cells reacting to this peptide could

adoptively transfer EAT to naive recipients (P. R. Hurchings et al., 1992). Also,

through the USIl of cytolytic T-cel! hybridomas, a 40 a.a, sequence was identified from

the central, non-hormonogenic Tg region, which Induced thyroid infiltration in mice

(B. Texier eral., 1992b).

Second, we have shown that the use ofalgOrithms predicting T-cell epitopcs within

a protein sequence (H. MatgaHt et aI" 1981; J. B. Rothbatd &.W. R. Taylot, 1988) can

be a successful alternative method for the identification of pathogenic T g sequences.

With thlt approach we have identified a non-dominant 11-mer Ts: peptide (a.a. 2495­

2511; TgPl) that InducelO EAT in mice (Chapters 4, 5) and rats (B. Balasa &. G.
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Carayanniotis, 199Jb), is recognized by T cells, and elicit! IgG TC$FOnscs that cr03ll.react

with Tgs from various species. Furthermore, TgPl causes EAT in mice with a genetic

pattern similar to that of Tg·mediated EAT: H.Zk and H-lsmice are susceptible, H.Zd

mice are relatively resistant, and H.2b mice are completely resistant to EAT and

unresponsive after TgPl chaUenge. In the present report, we have similarly used several

rnouscnrains to examine the Immunogenicity and pathogenicity of a novel Tg peptide

(a.a. 2695-2713; TgPl), which was delineated by predictive algorithms as a putative site

ofT <ell epitope(s).

6.3 RESULTS

6.3.1 T,PZ hu f..tu...ofMHC·bl.dl., pepddoo

Scanning data ofrhe known portion of the RTg sequence (R. 01 Lauro er al.• 1985)

by the AMPHI (H. MargaH, ef al.• 1987) and Rothbard and Taylor "tetromer motiC' (J.

B, Rothbard &. W. R. Taylor. 19BB) algorithms strongly suggested the IB-mer peptide

TgP2. with the amino-terminal Cys2.695 as a potential site for T .cell ephope(s). This

peptide is located very close to the carboxy-terminus of Tg (Fig. 6.1A), is mostly

conserved among the rat, catde, and human Tg sequences (Fig. 6,1 B), and, due to the

deletion of Ser2.70B within RTg, it was assigned the coordinates of the human 19.mer

sequence 2695-2.713. since the complete RTg sequence is unknown. TgP2 carries an

amphlpathic segment (a,a, 1,698.2.712., amphipathic score 39,6, 1=11) and a tenamer

motifstatting at position 2.700 (Fig, 6,IB), It also contains two sequences with an MHC­

binding modf (C. M. Hill et al., 1991) in which the hydrophobic a.a. lIel70l and

Leul705 are four residues apart from the small a.a, Aspl707 and Gly 2711, respectively.
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FllUre 6.1: A. The carboxy termini 348 amino actell ofhum.an TI (Y. Malthiery &

S. Lissitzky, 1981: single lener code; numbering does not include the 19·rcsidue leader

sequence). It shows the relative positions (bold underlined) of: thyroiditogenic human

9mer sequence (ZSSl.2559) containing thyroxine instead of tyrosine at position 2553

(P. Hutchings et aI., 1992) and homologous positions of rhyroidltogenic tat peptides

Tgfl (a.3. 2495.2511) (Chapter 4) and TgPZ (2695.7.713: present report). B. Primllry

amino acid Il!!quence ofT.PI and homolotlm with ttl ante and human c.aunterpartL

Underlined, tetramer motif 0. B. Rothbard &. W. R. Taylor. 198B}: shorr arrows,

amphipathic segment according to the AMPHI program (amphipathicscore 39,6.1=11)

(H. MargaHt et at. 1987); long arrows Of ., pairs of a.a. obeying an MHC-btnding motif

(C. M. Hill et a!., 1991); ·,a.a. in~gfeementwith an Ek.blnding motiC(j. Leighton et

aI., 1991); (.) identical a.a. between rat and cattle or human sequences; 0,

deletion.
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2401 AAVlSHERAQQQAIALAKEVSCPMSSSQEVVSCLRQKPANVLNDAQTKLL 2450
2451 AVSGPFHYWGPVIDGHFLREPPARALKRSLWVEVDLUGSSQDDGLINRA 2500
2501 KAVKOFEESRGRTSSKTAFYQALQNSLGGEDSDARVEAAATWYYSLEHST 2550
255 I DDIUlASFSRALENATRDYFIICPIIDMASAWAKRARGNVFMYHAPENYGHG 2600
2601 SLELLADVQFALGLPFYPAYEGQFSLEEKSLSLKIMQYFSHFIRSGNPNY 2650
265 I PYEFSRKVPTFATPWPDFVPRAGGENYKEFSELLPNRQGLKKADCSFWSK 2700
2701 YISSLKTSADGAKGGQSAESEEEELTAGSGLREDLLSLQEPGSKTYSK 2748

Ii

B.

RAT

BOVINE

HUMAN

t + .*+ .t
CSFWS~IQTLKDOADGAK

--S--AS-- ET-
--- -----SS-- TS-- ---

(2697-2715)

(2695.2713)
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The po~ltlonlnll:of the two aromatic a.a. Phel691 and Trp169B, seYen residues away

(rom Lysl706 also reveals an H-ZEK.blndinll modf (1. Leighton eraL, 1991). TgPZ also

carries two motifs that are observed in 50·80% of good DR.binding peptides. Those

motifs 3rc composed of the aromatic residue Phe1697 and hydrophobic residue Itcl70Z

in position I followed respectively by the non-chareed and relatively small residues

I1e170Z and Alal109ln position 6 and the relatively hydrophobic residues Lysl705 and

AlaI1l2In posit{on 9 (D. O'Sullivan et al., 1991) (see Pig 6.2). TgPZ also encompasse5

binding motifs that are found in self peptldes that ate released from class II HLA·DRI

(1Ie1702.AlaZ712) (H. Kropshofer eta/., 1992), DR 3/DRw5l (Tyr2701-Thr270i) (R.

M. Chic, er al., 1993i A. Gduk et a/.. 1994), ORB (ne1101-Lys2706) (R. M. Chic: era/..

1993) and DRlaIDR2b molecules (1IC!l70Z-LysI713) (R. M. Chlcz eta/., 1993) (Fig.

6.1). Analysis of the TgP2 sequence via the PHYSCHEM program of PCGENE revealed

a list of physicochemical characteristics that are reviewed In Table 6.1. The esdmatlon

ofpl,and half·life in vivo for TgPl were based on algorithms described in section i.3.1.

6.3.2 TIP2induca thyrotditiJ in H·l' but not H·llt mice

EAT Induction was monitored in BI0, BlO,BR, S;L, C3H and BALBJc mice (eight

mice per group) primed and boosted with TgPI.\$ described in Table 6,2. Small but

quite distinct fod of mononuclear Infiltration of the thyroid (Fig. 6.3 A, C) were

observed In 6 of BSJL (H_2S) mice, astraln commonly susceptible to T g.medlated EAT

(A, 0, Vladutiu &. N, R. Rose, 1971a). Mice from the other strains did not exhibit

detectable Intllttatlon of the thyroid (Table 6.2), including H.2lt. mice such as C3H and

BI0.BR which are al50 known to be susceptible to Tg-medlated EAT. The split In

TgP2.medlated EAT between the sand It. haplotypes WSli unexpected and demonstrates
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rat TKPZ C 5 FWSKYIQTLKDADGAK (2695-2713)

FllUre 6.2: TIP2 carria leven! DR.bindinl mottD. The numben correspond
to the human TgPl homolo,uc. SbortaCTOWs and -. DR.binding motifs
accordln. to D. O'Sullivan ct aI., (1991). Lon, arrows, delineate a
DRJIDRwSZ·binding motif (R. M. Chia et a1.. 1993i A. Geluk et al., 1991").••
a.a In arreemcnt with a DR2aJ2b.binding motif (R. M. Chlcz et a1.. 1993}.O ,a.a
in aeteement with a DRl·blndine motif (H.l<ropsbofer et al..1992), ., a.a
obeyinean DRS.bindine motif (R. M. Chiaet at.. 1993)

i
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TABLE 6.1' PhyrLcqcbepaICllcb'mctqirttgofT,PZI
Molecular weight (MW) 1061
Isoelectrlc point (pI) 9.04
Half-life in vitro
mammalian reticulocyte! 1.2 hI
Hatf·life in vivo
yeast >20hr
EscberjchiacoU >lQhr

t Physichochemical characteristics of TiPZ
according to the PHYSCHEM program of
PCGENE (see section 4.3.1).

TABLE 6.2: EAT InductioQ by Tsr! fp v'rlgy. mOYie main. 8

Strain

Bl0
B10.BR
S]L
BALB/cem

IU
haplotype 05

In6!rrarlQD lndexb

Mi«..l<llh
EAT

018
Offl
618
018
018

a
Mice were challenged s.c. with 100 nrool TgPZ and three weeks later they were
boosted $.c. with 50 nrnol of peptide.

b Lymphocytic infiltration of the thyroid was assessed five weeks after the
Initial challenge as described in Materials and Methods.
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Figure 6.3 A.D: T8P2.tnduced mononuclear celt InfUtradon of the thyroid In SJL

mice. Thyroid seclions were 1..l..:rivu.! (wm animals cilhcr challcngC\1 dir(.~dy with Tgn

IA(XlSO), C(X"OO)!, or i.p.adoptivcly wmsfcrroowith lXI07 syngeneic Tglllos pl."Cirll:

LNClB(Xl50), D(XiOO)/.
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that the classification of a strain as EAT.susceptlble or tc!slsrant can differ significantly,

depending on whether Intact Tgot individual Tg.peptidesare used.

6.3.3 TIPl elida conriltently proltfetttl.ve T-cell reaponas only In SJL mice

Mice from the above strains were subsequently challenged s.c. with 100 nmol T g?l

and ten days later, the proliferative response of primed inguinal LNC was dercflnineJ il

viao lIgainst TgP2. TgPl and OVA were used in virro as antigen controls. Results from

three independent experiments (Table 6.3) show that only tNC from S]L mice

responded consistently and signlf\candy to TgPlln vin-o, exhibiting S.I. values >2.2.. The

response was specific since background proliferation was observed against T gPI or OVA

(not shown). LNC from H.Zk (C3H and BIO.BR) or H_2b (810) mice were not

activated by TgP2 in virro, whereas LNCfrom H.ld (BAl.81c) mice responded in one of

three experiments (5.1. = 2.8). Treatment of SJL LNC with anti-Thy 1.2 plus

complement but not with complement or antibody alone, abrogated completely the

proliferative response (Table M)suggestlng that the responding cells were Tcells.

6..3.4 T,Plit Dot a dominant T-cell det:ermlDlnt.

Since sensitization to dominant T-cell epitope$ occursconsislcntly after challenge

with the intact protein antigen in vivo (G. Gammon et al., 1987), we sought to

determine whether priming of SJL mice with RTg would lead to a detectable TgP2.

specific LNCreactivity in vitro. In three experiments, shown in Table 6.5, RTg-prlmed

lymphocytes responded strongly to RTg In virrohut failed to respond to equimotar (O.l

and 0.01 }.1M) concentrations ofTgP2 that were clearly stimularory for TgP2_plimed

cel1s(Exp.4). In one of the three eXpe1'imenu (Exp. 2) RTg-primed LNC responded to



TAIU 6.l; Pxp!'r...rin ........... t#LNC rgTrP2 19 rtrmCaencpa.'- so ) 11000 ($,( ,.

ILl. ""'.2 EXD.l

Strain tttlPD M"'iYA T,P2 Mcsli'DD T,Pl Ya!iym Tlpz

610 b 3.3+1·0.4 S•• +1- 1.0(1.1) 1.1 +,. D.S 3.2"'1-1.Z(1.8) O.h/·D.I 1.0 ..1· 0.1 (1.9)

RIO.BR , l.9 ./- 0.1 ~,S +/- 0.)(1.) 1.4+1-0.5 1.6.1-0,S{l.2) 0.2./.0.1 0.4+1- 0.1(1.8)

SJL 21.;./· 3.) 98.6 +1, S.II(".") 1.0+/-1.5 17.-+ +/....2 (~,S) 7.6+/- 1.2 16.11 +/- J.Hl.lj

OH , US ./.2.1 15.2 ./.2.5(1.1) 15.1 ...1·2.9 21.1 +/. 1.5(1.1) 0.2 +,. 0.1 0.1 ...1- 0 (0.8)

RAlIlk d 7!1+'-16 211.,_56/zil H±f.Q9 H+,_ lQ(J91 11.'-Ql 17#·p2 !Ill

a Mice were primed ..c. at th"baIC! oCthoe tail with 100 nmol TtPZand ten days later lnlUlnallNC were cultured
in triplicate wells with Tefl for t days <_ Mluerials andMethods). Data are obtained from anriacn rltration
curves and denote the response to 1.2~ TgP2 In Vitro. Culrure with OVA (20 JJclml) or another
thyrolditogcnlc pepride orT. (TgPl. 1.l~) yielded a background response (data not shown). The 5.1.. is
de6ned as described In MaflrillsandMerhods.

~
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TABI E 64· Alnoprion gfT,Pl....1fi& LNe ptq1Jfmtlgn by I.e," dcokdon

IiPl dose in Yitro lug/mD

..Ir<anw:",,8 20 IQ

16.0 +1. U b (U) 14.7 +1- J.l (7.5)

anti-Thy!.2 + C' 0.3 +1· 0.09 (0.1) 0.4 +/' 0.1 (O.l)

anti-Thy!.! f3.3 +1. 3.6 (Z2.l) 32.0+1- 6,2(1M)

C' }l 1 +1. 5 0 06 Ol 2.8} +/. Q Jilt 5)

a TgP! primed LNC from SJL mice \IIere treated with antl.Thy.l.2
antibody plus complement as indicated in Materials and Methods, Conuots
included cells treated with either anti·Thy 1.2 antibody or complement
alone.

b Values represent the mean cpmxl03 of quadruplicate wells. The values
in parenthesis correspond to stimulation Indices. In the absence of antigen
the cpm mean of quadruplicate wells was 1950.
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TABLE 65· Te?! doc, Dot encompass dominant I.cc;lI determlni!Dts a

Prolifcrntjve responses of incuipal J NC exmcs;o;OO ns :;tj!lJllli!rjo!l ipdex b

Exp. Antigen used Antigen concentration
1\0. fordmllcJlllc (JIM) in virro

iuvjvll inyjm, 10 01 Q(Jl

RTg RTg NO' NO 5.7 3.5
TgP2 1.1 1.0 1.3 1.1

RTg RT. NO ND 22.5 17.6
TgPl 6.5 4.4 1.5 1.4

RTg RT. NO ND 14.4 11.3
Tg1'2 0.9 0.7 0.8 1.3

TePZ TgpZ. 11.2 107 58 lB

a SJL mice wcrcchallcngcds.c. at the base of the tail with 75,ug RTg
(Exp. 1.3) or 103,ug TgPZ (Exp. 4) in 0.1 m[ complete Freund's
adjuvanr/phosphate buffered saline emulsion. Tell da'Ys tater, their
inguinal LNC wcre stimulated for 4 Jays in vitro as shown. In tlte
nuscncc of mlJed 3l1tigel\ in vitro, backgrounJcpm were: Exp. 1,2,423;
Exp. 2, 9,325; Exp. 3,05,023; Exp. 4,1,713. 0.1 J.lM RIg =66,ug/ml;
O.IJlM TgPI=0.21 J.lg/mL

b Stimulation index: cpm in the presence of 3Dtigen/cpm in the
absence oflll\tigcn.

C nordolle.
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lO·lOO·fold higher concentrations ofTgPZ in vlero, This!\lggcned that TgP2 was not

adequately processed in RTg.

The dominance versus cryptlcity question (or TgP! was re·examined usin!: a

TgP! specific T·cellline generated from TgPl.speclfic cells which were derived from

both the lymph nodes and the spleens of mice 8 days after priming with T gP!. Briefly.

the TgPZ.specific ceUs were stimulated in vitro Twice with antigen and feeders and the

TgP2.specific T.line was selecredafter 24 days of In virrocuhure. The TgPZ.speciHc T·

cell tine responded strongty to TgP2 in virro but it Cailed to respond to MTg at doses

ranging between O.151jJM (lO(\Jgfml) to 0.018 J.lM (12.5 pg/ml) (Fig 6.4), The inability

of the TgP2.specific T-cell Hne to respond to such doses of MTg was interpreted as

follows: First, the countetpart sequence ofTgP2 on MTg mip,h.t differ to such an extent

that It falls to activate tne T ·cellline. Although TgPl is not highly conserved among

those species whose Tg a.a. sequence is available (Fig. 6.18), this explanation is rather

implausible. Second. TgP2 might not be an immunodominant sequence ofMTg. This

hypothesis is favored both by results obtained (rom bulk cultures (Exp. 1,3, Table 6.5)

and by data obtained from a TgP2.specific T·cell hybridoma (6ElO) (G. Carayanniotis et

aI., 1994). Although the6ElO T..cell hybridoma could strongly respond to TgP2 invirro

it failed to respond to MTg. or RTg.pulsed APC suggesting thar T gP2 is not generated it

vitro after MTg or RTg processing. The former data strongly indicate the non·dominant

natureofTgP2.

6.3.5 T IP2.-prImed LNC adoptively tRuer EAT to naive rectptenu

Donor mice were s.c. challenged at the base of the tail with 50 nmo( TgP2ln CFA or

CFA alone, and ten days later their inguinal LNC were obtained and cultured in the

presence of TgP2 or con A. Three days latet. T gP2.activated LNC were transferred i.p.



153

"

/\
.-1---~"":::"_-~---~
.01 .1 1 10

Ant\oeD con<entmlon (pM)

Fillure 6.": DOle tClponae curve of a T,PI·specific T-cell
Une, The TgP~·$peciflc line was generated as described in
MatenalsandMerhcx:lsanditsability to proliferate in viao for
'I- days to either MTg or TeP2 was tested in a thymidine
uptake assay. TgPZ and MTg starting concentrations were
20pglml (9.7 .uM), and 100 ,uglml (0.15 pM) respectively. In
the absence of antigen the mean value of quadrupliGlte wells
was,6854.
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to six normal synGeneic rCd!l\cncs (2)( 107 ccll:vanimaJ), WhC1NlS fivc concwl l1nltuals

received an clluivalcnt number of I.NC prillwu ill vivuwith CFA and slilllUbltcd ill viero

With con A. Fourteen daysa(tcr transfer, severe thyroiditis off~'Ctil\gllllllt)st50% of one

or both lobes of the thyroidglalld (fig. 6.3 B, D) was observed in mice that received

TcP2.spedfic LNC(Table6.6). Nolymphocyric infiltration WUSObSClvcd ill thccol1trol

animals. To ascertain that the cells tr~.msfcrring EAT were indeed TgIl2-speclfic. n

portion of the cells that were tramfcrrcd was left in culture for an Hllditiollal Jay unu

their ability to proliferate to TgPl was assessed by [hll-TllR upmkc. To exclude the

possibility thm the eFA-primed cells were dead rtt dIe time of transfcr their llbility to

prolifcrate to con A was also tested. TgPZ.prilllcd cells could suolIgly proliferatc to

TgPZ (Table 6.7). Similarly, CFA.pdmcd cclls wcremongly rcsponslvc ill viuoto can

A suggesting that theit inability to transfcr thyroiditis was not duc to rcduced viability.

TgPZ-specific IgG was not detected in the sem of recipiellts with EAT (Fig. 6.5)

suggestillg that antibody docs !lot playa significant role in thedevclolllllcnt of the EAT

lesions.

6,3.6 TgPZ-specific IgG crou-reactl with heat-denatured but not Intact

thyroglobulins.

Scra from till sf(:lins ofTal)le 6.l, lluraillL,lar rllc tilllc of thyroid 1:1al\tl rCllluv;11 (day

35), expressed high titers of TgPl.specific IgO antibody (Fig. 6.6). Thus, in several

strains, despite the:lbscllCeofEAT lind the lack of octecwblc Tgl>l.specific proliferative

T cells in vitro. TgPZ appealed clearly imlllullogenicat the level orthe B·ccll response.

hI a SUbscllueltt auay. tlw tlmc dcpcm!cllce fur die dcvelopl11Cllt of ~uch II response W;JS

studied. Mice immunized with Tgl'Z as indicated in the legelld of Figure 6.7, were

sacrificed at different time poil\tS (Zl.17,3nd 34 (bysaftcflldmlng) 31u1 thclevcl of
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TABLE 66· Adoptlye ttaNfer of EAT by T,PZ.mc:d6c LNC in 51L mice

Prjrninv of adoptively
trilord'ew;d cells
10 viyO 10 yirrq

InfiltratioD index a

05
Mlcewith

EAT

TRP2 + CFA

CFA

T,PI

con A

6/6

0/5

a Inguinal tNC were primed as shown and transferred Lp. into syngeneic
normal recipients. Thyroid glands were collected 14 days later and the thyroid
pathology was alsesed as previously described (5ee Materials and Methods).
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IAW.L6.7: Spcclftdty tat gf t,mpbosytet ulCd for adopttye tran.,r--Prollferatlyc rqMDI<'i$ of Ingu!na1lymgb node cell, (mean epm+l. SDW QOO (S ( )

Antigen a
jnvim

TgPI

Agd=
in yjrrp(uglmtl
10
5
1.5
1.25

Andgen in yjqp (uglmll
TgPl cgo A

109.5 +'·1.6 (7.9) NOb
105.8 +'·1.3 (7.6)
110.9 'H.9 (8.0)
100.1 +'.6.6 (7.1)
13.9 +/·4.6

CFA +
I
1
0.5

NO 74.+./·8.118.9)
77.8 +,. 6.+ (9.3)
60.3 ./. 4.+ 17.2)
+2.3 .,. 8.7 (5.1)
83 tl. 15

a SJL mice were immunizeds,c.at the base of the tail with 50 nmol ofTgP2 in
CFA or CFAIPBS. Ten davs after priming, the Inguinal LNC were cultured In
the presence of either TgPZ or con A. Proliferadon Vial assessed by (3H1TdR
uptak.e (see Marerla~andMethods).

b oar done.
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Loll reciprocal RnIm dilution

FIIUTe 6.5: t..ek. of T.P2-.pec!Etc: 1.0 retpenUeI in recipient: mlee
adoptively naDlfencd with TIPL.prlmcd lymphocytet;. Pooled &eta
from SJLmice (see Table 6..... ) (day 14) wete te5tedfoT TgPt-speclflc
antibodies by ELISA. Standard deviation did norexceed;.5% of the
mean.
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Lol ~mptoeallCN11l. dilution

FtlUte 6.6: Measurement o£TIPl-.pect& laG In the
leTa of varl0Ul1ll0Ule m-aina. Pooled leta (day 35)
&om four mice of the indicated strains,a~ by
ELISA based on alkaline phosphatase. 00 values ate
expressed as means of trlplkate wells at the Indicated
dilutions ofserum. SO did not exceed <+% of the mean
values.
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Log~ teciptocal setum dilution

FlIU" 6.1: TIP~-rpeclfic IIG Bcrtvlty In Ie" harveated n. ~1
and 34 daJl after immunbation. C3H/Hej mice were immunized
with 100 nmol TgPl and boosted one week later with 50 nrool of
peptide. Pooled sera from three animals was tested by ELISA (see
Materialsand Methods) for binding to TgPl. Each point represents
the mean value of an a$$8Y in triplicate. Standard deviations did
not exceed 5% of the mean.
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TgPZ.specific antibodies was determined by ELISA (Fig. 6.1). Interestingly. no

detectable 3mibodles were demonsnsred in the sera of those mice at 21 or 27 days after

priming, althoullh such antibodies were present in the serum on day 3+. Based on the

previous findings. no direct correlation between the appearance of TgPl.specific

antibodies and EAT establishment could be made. becaule the CJHJHej main Is

resistant to TgPZ-induced EAT. When we examined the reactivity ofTgP2.primed sera

from SJL mice against intact th'lToglobulins from various species, cross·reactive IgG

responses were not observed (Fig. 6.8A). However, heat-denaruration of thyroglobulins

enhanced specific binding significantly (Fig. 6.8B), an outcome compatibtewith the IgG

response being directed against a linear Til decenninanr.

6.+ DISCUSSION

In tht: field of EAT, genetic susceptibility as well as immunoregula(Ory mechanisms

have been commonly studied using intact Ig as an immunogen (1. Charreire, 1989).

The valid assumption that EAT results from an autoreactive response to

immunodominant T g determinanu has led to intense efforts to map T <ell epitopes on

T g. using doned T <en hybridomas that have been induced after challenge with tbe

intact protein (see section 1.2.4.1). At the same time, the use cJ. predictive algorithms

has allowed us to identify tWO Tg pcptides.(Z495-2511, TgPI), (Chaptets 4, 5) and

(2695-2713, TgP2), (the current chapter).that elicit T-cell responses and cause severe

thyroiditis. Moreover both peptides encompass T<ell epitopes which are defined as

non-dominant. This definition is based on the observation that tbese epitopes are not

consistently recognized by T g-prlmed T cells and are not detected by peptide-specific T

celb during Tg-processlng in vitro (see section 1.2.4.1). For e)(ample, Tg-processing by
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0.6 A. 0.6 B.
MT.

-+-- BTl-- RT.
a 0.' --t>- PT.• ~ HI.
~
d D.'
ci

0,°
6

10 12 D.06'--~=-"-1Z

Lol teelprocahe,U1Il dilution
Figure 6.8: Reactivity ofTIPl-~cifieIIlG to intact and
heat-denatured Til: from varioul .pecici. Pooled
TgP2.-primedsera from foul SJLmice (Table 6,Z) were tested
to intact (A) or heat·denatured (B) mouse, rat, human,

~~~~~~~~~i'g1g~~~~kf~i~h;p~LI$~~toD~~r~g~:;~:~~
means of triplicate wells. SD did not exceed 5% ofthe mean
V1l.1ues,
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splenic cells reportedly generates the dominant peptide 2551-2559 recognized by rhe

CH9 hybridoma in vitro (B. R. Champion er al., 1991). hut it does not create the TgP2

peptide that stimulates the TgP2.specific doned T·cell hybridoma, 6EIO (G.

Carayanniotis er al.• 1994). The tack of generation of TgP! by splenic cells is nlso

evident from their inability to trigger proliferation of a TgP2-speclfic line at doses as

high as 100 pglml (Fig. 6.4).

Initial studies with TgPl and TgP2 have yielded results that do not always conform

with observations made In Tg·mediated EAT. Thus, we have preViously shown that, in

H.2k mice, EAT mediated by TgPl requires expression ofH-ZEk determinants (Chapter

5), whereas such a requirement has not been reported for Tg.mediated EAT. Also in the

present study, mice carr';ling the "classic" susceptibility H.2k haplotype do not develop

EAT after Tg?2 challenge. It is possible that in the absence of intramolecular

competition with higher affinit',' peptides, individual non·dominant Tg epitopes exhibit

distinct MHC·blndlng and pathogenic properties. A haplotype classified as a low

responder (resistant) to Tg rna',' appear susceptible when challenged with a Tg peptide

and alternatively, as shown here a high responder (susceptible) haplot','pe may not

respond to an individual pathogenic epitope. In fact, the Inabllit',' ofTgP2 to Inuuce

EAT in H.2k. mice could be due to the expression of I·E molecules that might exert a

protective tole. I·E molecules could capture the determinant that is pathogenic in th~

context of I-A molecules and thus abolish its pathogenic effect (H. Deng er al., 1993).

SJL mice, however, develop the disease because the',' lack. expression of I-E molecules

due to a deletion of the promoter of the Ea gene. Such a mechanism of abrogation of

autoimmunity has been postulated to operate in transgenic Ead NOD mice that are

protected from 100M (H. Nishimoto etal., 1987;T. Lunderal., 1990).
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To explain the lack of immunodominance of TgPZ we could speculate that its

rhyroiditogenic effect is masked by other epi[Qpes that bind with high affinity to the

MHC. An alternative explanation could be that TgP2 is not generated at all after Tg.

processing, although some data (Table 6.5, Exp. 2) do not favour this hypothesis.

Studies with rabbit Tg (A. O. Dunn er aI., 1991a) have suggested that thyroidal

cathe~ins Dand Lcleave Tg at poSitions 26f3 and 2657, respectively, generating lS·H

kDa carboxy-terminal fragments chat contain TgP2. Such fragments may leak from the

thyroid and could form bener 5ubmates for TgP2 generation by APC in vivo than Tg

provided exogenously [0 APC in vitro. The fact that EAT is observed after adopt-i.ve

transfer of Tgpz.-pTimed LNC strongly suggests that TgP2 is generated either in

innathyroidal dendritic celts or in thyrocytes following degradation ofTg by thyroid

proteases. The latter hypothesis will be further substantiated ifTEC can be found to

present TgPZ directly to T cells.

At present we do not know whetheT the distinct genetic pattern of EA T, observed

with non·domlnant Tg ephopes. represents a new model of thyroiditis and, if so,

whether such a model mimbevents that precipitate the human disease. Non-domlnant

Tg peptides may contribute to the pathogenesis within the context of two main [heorles

ofthYJOiditls induction; namely, Tg iodination (R. S. Sundick ec a/., 1987).and infection

(1. Srinivasappa eral., 1988). Compelling evidence (B. R. Champion ec a/., 1987a; B. R.

Champion er al., 1992; R. S. Sundick er al., 1987; B. R. Champion er 81" 1991) suggests

that Iodination enhances Tg immunogenicity, but It Is not yet clear whetheT this

enhancement re:;ults solely from the creation of dominant (and/or) iodinated T-cell

epitopes or involves novel (non-dominant!) epitopes as well. Such epitopes could be

generated if iodinated Tg offers new substrate sites for antigen processing (L. Lamas &. S.

H. lngbaT, 1918; F. Fouchier er al.• 1983). TgP2 contains a tyrosyl residue at position
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2701 but this is not one of the iodoryrosine sites identified in HTg (L. Lamas er al.,

1989). It is, therefore, unlikely that it constitutes a ~donor" tyrosine during

hormonogenesis (R. DiLauro era!., 1985). As shown in chapters i, 5, the current

chapter and other studies (B. Tcxier er al.• 1992b), Tg determinants do not need to be

iodinated in order to cause EAT. Those studies are-in agreement with the previously

observed induction cfEAT in CBA mice with ccUs activated in vitro With H·poor Tg

(reviewed in D. C, Rayner er aI,. 1993). Tn the context of infection. non-dominant Tg

peptides may be recognized via molecular mimicry with proteins from various pathogens

such as the reovirus that causes mouse thyroiditis (1. Srinivasappa er al., 1988) and

induces class II expression on thyroid cells (D. S. Neufeld er al.• 1989). They may also

cross react with proteins from microbial Oora that predispose for thyroidhis (W. J.

Penhale & P. R. Young, 1988). RegardleSJ of the etiology, the involvement of non­

dominant Tg epitopes in the development of thyroid pathology requires careful

consideration in view of recent evidence that demonstrates "spreading" of autoreactivity

from dominant to cryptic epitopes of autoantigens (P. V. Lehmann ct al., 1992) and

tolerance induction to immunodominant but not to subdominant and cryptic epitopes of

an autoantigen (R. Ciootti eral., 1992).

The TgFl sequence lies within a larger HTg determinant (a.a. 26;+-2730) that was

previously reported (Q. Dong er aI., 1989) to be recognized by rabbit antibodies but not

by sera from patienu with thyroid dbease. In contrast, screening of HTg fusion

fl1lgmenu by rabbit antisera did not detect TgP2<ontaining determinants in another

study (M. Hemy et al., 1990). While it remains to be established whether the human

analog ofTgPZ is recognized by antibodies or T cells from patients with thyroid disease,

priming of mice with homologous intact Tg does not elicit significant TgP2-specific IgG

(data not shown), whereas following challenge with TgP2. mouse sera cross-react
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detectably to denatured but not intact MTg, asshown in this study. These data suggen

that accc.:ssibility to the TiP! cpitopc by antibodies llIay vary, depending on the nature

of the immunogen ;]nd the system ofnudy used.

The presence of TcP1.-spcciOc IgG in mouse mains which do net exhibit T-cell

pfoli(cmtivc responses or EAT a(ter T gPl challenge SUG&CI[S distinct cpitope recognition

by Tit cells that participate only in the induction of the serological response. Analogous

data were obtained with the TgPl sequence in intra-H·], recombinant mice (Chapter 5).

In studies with the human fibrinopepride B in mice (L n. Peterson er a1.. 1983) it has

heen IlllmesTed flwr rhe fine specificities or T-ccll responses to peptide antigens nrc

di[crcnt for helper mill proliferating T cells. It has been postulated (T. R. Mossman &.

R.t. Co[[m:lll, 1989) tlw[ this lIIay reOeet recognition or dlstinctdetermill::Jnts byThl

and Thl cells. Cleilrly, [un her studies with TgPZ.spcclfic clonal T·cell populations will

be needed ro eh:lr:lcterize d\e prdtlc o[Th cells ill\/olvc..-d ill the gClIer:nion of 311tlbody

and to distinguish them (rom Th cells responsible (or"the development of EAT.



CHAPTER 1

AUTOREACTlVE IIG ELICITED IN MICE BY THE NON·DOMINANT BUT

PATHOGENIC THYROGLOBULIN PEPTIDE (2i9S.lS11), IMPLICATIONS

FOR THYROID AUTOIMMUNITY 1

7.1 SUMMARY

We have previously shown that mice challenged with the RTg peptide TgP! develop

EAT and produce JgG antibodies that cross react with thyroglobulins from various

species (Chapter 4). It was not dear, however. whether such anribodies were TgPl.

specific or were induced secondarily I Le. by autologous T g released from the destroyed

gland, and therefore directed to determinantS other than TgP!. In this report we

describe that, five weeks after priming with TgPl. the binding of rerum IgG on native

Tg is completely inhibited by free peptide, suggesting lack of recognition of other

determinants on MTg, In addition. TgPl.induced but not MTg-induced IgO bound

better to heat-denatured than intact MTg, a result compatible wirh rhe recognition of a

linear epitope by the peptide Induced antibodies. Comparison of the IgG subclass

distribution among MTg·induced vs TgPl.induced IgG did not reveal qualirative

differences, since all subclasses were represented in the order IgGl> IgGZb> IgG2a>

IgG3. Finatly, TgPl.specific rgG re3ctedsuongly with the follicular colloid in sections

of normal thyroids, indicating its potential to bind to native Tg in vivo. These dara: I)

highlight TgPl as the only, so far, Tgsequence known ro generate both EAT and Tg.

1 PattoC the data pTelenledln IhlachaptC'T ha:s been publbhedltl: Chtonopoulou E" Michalak T.!. and
Canyannlotla G, 199+. AutOteacllve I&G ellclted in mice by lhe non.domlnant but pothogenlc
thytoglobulln peptide (249S·2511): IlQpllclldolUfor thy:old autollQlQunlty. Clln. exp./mmunol.• Vol.
98:89·94.
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reactive IgG in mice and 2) do not provide evidence (or an amplification of tne Te­

specific fiG resporue rhroueh the involvement ofendogenous auroantigen In EAT.

7.1 INTRODUCTION

In earlier work we have reported thac the Tg ~ptide2+95.2511 (TgPI) encompasses

non-dominant T-celt determinants and induces EAT In mice (Chapters i, 5) and rats

(B. Balasa &. G. Carayannloti., 1993b). This l7·mer peptide was selected (or EAT

Induction because of its relatively high amphipathic score and the presence of amino­

acid sequence motifs that characterize T-cell epitopes (Chapter 4). It was unexpected,

therefore, to see that in mice, TaPI elicited not only peptlde.spedllc T cells but also IgG

antibodies that bound to MTg. This finding waS demonstrable despite the fact that mice

challenged with MTg do not develop TgPl.speci£ic. IgG responses, mongly arguing

againsrTgPI being a B-cell epitope as well {Chapter 4).

An apparent co"elarlon emerged, however, in thar, following challenge with TIPI.

the titer of. MTI·reactive IiG was frequently high in mouse strains that developed EAT

(Chapters i. 5). This titer was Uluatty lower or undetectable in mlce which, after a

similar challenge, exhibited no signs cJ.lymphocytic Infiltration of the thyroid. One

interpretation we assitned to these data was that. following challenge with TgPl. EAT·

susceptible.but not EAT·resistant strains elicited IIG reactive to a distinct TgPl

determinant which was accessible on MTB' An alternative Interpreration. however.

could be that rhe MTlI·reactive IgG did not originate from TgPI·reactlve B cells but was

secondarily induced by self·Tg that entered rhe circulation as a result of thyroid damalle.

In the present study we have tested the latter hypotheris by companng the reactivity
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profile and subclass distribution of the MTg.speciftc IgG In the sera of susceptible mice

challenged with either TgPl or intact MTg.

7.3 RESULTS

7.3.1 In T.Pl-primed mice, Tg-reactlve IIG andbodiel do not recolnhe

determinants other than T aPt

In a competitive ELISA. poo\edsera (day 35) from TgPl.primed (see legend toTable

5.1) or MTg-prlmed (legend to mble +.2) B10.BR mice were allowed to bind to MTg in

the presence of varying concentradons offree (soluble) TgPl. Asshown In Figure 7.1,

TgPl concentrations higher than 0.2.2}JM completely inhibited IgG binding to MTg in

sera from TgPl·primed animals. Inhibition was TgPI.dose.dependent and specific

because it was not observed with another Tg peptide, TgP2 (:t.a. 2695·2713) that causes

EAT in mice (see Chapter 6) (clata nouhown). These results demonstrated that TgPl.

specific IgG gained access to TgPl on native Tg and was accountable for all the MTg­

specific reactivity in the sera ofTgPl.primed mice. On the other hand, the peptide did

not Inhibit IgG binding to MTg in sera ofMTg-primed mice. This result confirms our

earlier observations (see Chapter") which demonstrated that challenge with intact MTg

does not elicit TgPl-specific IgG responses, thus defining TgPl as a serologically non­

dominant epitope.
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7.3.1 MT,.reac:t'lYe laG tn TIPI.primed mice don not recolDue conformatlon.1

epl-<.).

!fMTe-reactive taG in TaPI.prlmed 5er:ll recognltesllllnear epirope (TgPl), one

would expect thb recognition not to depend on the tertiary conformation oCMTa. To

test this. we utilized ma from CJH mkeimmunized with TSPI or MTg (see legend to

Table ...2) in order to compare their bin&ingpn intact VI heat-denatured MTg. Heat·

denaturation ofMTg did not reduce the binding ofTgPl-specific leG [0 MTg. ;lnd In

fact, slightly increased It (Fig. 7,lA) probably becaulC the panlal unfolding of the

molecule allowed better access of this determinant [0 antibodies. It would be unlikeI)'.

therefore, that a more extensive den;lturatlon of Tg (e.g. reductlon·alkylation) would

abrogate binding o£TgPl. speciRe IgG. In contrast, MTg.prlm~ sera known to contain

IgG directed to conformational Tg determinants bound less well to denatur~ than

intact Tg (Fig. 7,28). These data prOVide no evidence (or the presence of-secondary·

IgG Induced against conformarlonal determinants of endogenous Tg during TgPI

challenge.

1.3.3 T.Pland MT. eliett: TI-lpeclfte I.G with aat.lIar tubel.. dlttrtbutlon

........
Because ci its cryptic nature and short length. the pathogenic TgPl sequence might

stimulate the induction of Tg.reactlve IgG that could significantly differ In terms of

subclass distribution ftom the -conventlonal"lgG Induced by Intact MTllin EAT (sec

section 1,2.5; N. FUKuma et a1.. 1989). To ascertain thiS, day 35 sera of high responder

810.BR mice challenged either with TgPI (seeTable5.1)orMTg(seeTable+.2)(7
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mean value from triplicate wens. Standard deviations did not exceed 5% of the means. O. D.
values are representative ofdata obtained in twO replicate assays.
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mice per group} were analyzed for the IgG subclass profile of Tg.rcactlve antibodies using

an ELISA assay. As shown in Figure 7.3, allsubclaaes were represented in each group in

the order IgG!> IgGZb> IgG2a>lgG3. However. TgPl.primed mice had. on aver3R:C, a

IO·50·fold lower concentration ofTg.reactiveantibody (Fig. "l.3A) dum mice ptimed

with the intact antigen (Fig. 7.3B). This quantitative differenCIl was demonstrable with

all subclasses (lgGl: 9 YI 308)Jgfml serum; 19G2b: 1.2 VI 60 Jlg/ml serum; Ig02a: 0.2 VI

".6 pg/ml serum; IgG3: 0.2 VI 2.8 J-lg/ml serum) and was expected since the intact self

antigen can present a target number of serolOilicat epiropes on Its surface than TgPL (n

addition, the observed quantitative differences were not sualn.dependent because

pooled TgPl.prlmed sera from SjL mice exhibited a similar pattern of subclass

disuiburion as MTg-primed sera (Table 7.1). The data, however, did nor provide

evidence for restricted use of one or more IgG subclasses in rhe response ro MTg aftet

mouse challenge with T 8PI.

1.3.+ Pdmlng with Tgl'llnduces IIIG that reactl with the fol1lcutar colloid of

normal moU1e thyrotdl

To confirm thar Te-speclfic IgG responses couid be detected In an assay other

than ELISA, we used fluorescence microscopy to examine the binding ofTg-reactivc

IgG on cryostat sections of normal SjL thyroids. After fixation with acetone, the

sections were incubated with sera from TgPI-primed, T gP2-prlmed or normal SjL mice

and then Incubated with FITC-conjugared goar anti-mouse JgG. Sera from TgPl­

primed mice reacted strongly to the follicular cotloid (Fig. 7." Al whereas TgPl-primed

or normal sera were non-reactive (Fig. 7.4 B, C). These results confirmed the ELISA

observations and the notlon that TgPt-induced IgG can react with rhis peptide
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TABJ E 1 1· Subelaa distributloo ofT, reactiye ISQ In different straio,

Antibody concentratioD (ugfm!)b

S==>l

=' Ae jnyjvo leGl IgGZb Igma Ipm

TgPI 8.94 b l.Zl 0.13 0.16
RIO.BR

MTg 308 60.3 4.61 1.81

T,PI 15.7 1.18 0.51 0.24
SJL

MIg 652 5356 1034 411

a Pooled sera (7 mice Igroup}from BlO.BR and SJL mice of fig. ".2 were used.

b Values represent the means of triplicate wells.
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}:'{Iure 7.-+ A·C: Blnd-tDI of SJL teta to leedOR' of norm.l .ynlenck th.yrold. ••

Indicated by imIDU:loOUOfeteeUce. Binding pattern of Immune sera following in vivo

challe.lgewtth the l7·mer TaPI (Al, TgP2 (B). (C) Binding pattern of normal SJL

serum (A. B. C X13S).
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sequence on intrathyroidat Til. In Ddditbn, the lack. of reactivity (,fT RPl.~~m with till.'

fotlicular colloid is compatible with the lack ofblnuingof rhose scra to Intact MTI: in

ELlSAassays(Fig.6.8A).

7.3.5 C.TgPl·Y dimerizatlon affects its tmmunogenldty at the S- but not the T-cell

level.

As noted In Marerials and Methods in all of the in vivo and in most of the in virro

studies TgP! carrying an amino·terminal cyueln and a carooxy-rcrminal tyrosine (C.

TgPl·Y) has been used. These two residues. foreign to the original sequence of amino

acim, had be~n added for cross-linking and labelling purposes respectivdy. Sequences

expressing amino·terminal cysteine, such as C.TgPl.Y. have the potential to create

dlmers that could affect the immunogenlcity of the sequence at the B· .and/or T· cell

level. To exclude this ponlbility for C.TgPl·¥, we te~ted the ability of C.TgP\.Y·

primed cells to proliferate in vitro to ehher TgPl at C.TgPl.Y (Table 7.2). Tht.'SC<L,fa

show that C·TgPl·Y.prlmed T ceUscan be equally well activated by both TgPl an<l C·

TgPI.Y sequences. Therefore, dimerlzadon ofC·TgPI.¥ does not affect the cpltopc

recognized by T cells on TgPl. To determine If the B·cetl epltope is affected by

dlmerlzation, we attempted to inhibit the binding of S':ra from C.TgPl.¥.prlmed mice 10

C.TgPl.Y by either C.TgPl·Yor TgPl. tn place of a negative control TgP! was used as

an inhibitor (Fig. 7.5). Although C.TgPl.Y could completely inhibit such binding.

TgPl produced a partial inhibition and TgP2 no inhibition at all. These results indicate

that while a part of the C.TgPl·Y specific antibody is directed to TgPl. another part Is

directed to neo-cleterminanu created after dimerization of C·TgPl.Y.
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TABLE 7,2· Dimetlt.adon «C,I,el.Y does not

d ect T.cI!!I1 mqrnldop, olIge1

Agconcentration
jnyjtrpluglmJ)

10
5
2.5
1.25
Q 625

TePI
23.8 (5.I)b
31.1 (6.8)
25.8 (5.6)
25.6 (5.6)
229 'jQ)

C.IgPI.Y
24.8 (5.5)
27.2 (6.0)
26.8 (5.9)
26.\ (5.8)
ZOO (4il

a C.TgPI-Y specific T·celllllle (s':e legend to fig.
i,5) was tested for reactivity in vitro to either 19Pt
or C.TgPt.Y, Proliferative responses were assessed
by PHjTdR incorporation. Cpm in the absence of
antigen was +.577.

b Values represent the mean ofan assay in triplicate.
Values in parenthesis represent the stimulation
indkes.
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Fleure 7.5, Competitive ELISAof.....m leG·hl,di'e to C·TeP1-Yb, TeP1.
Pooled sera from BIO.BR mice aCTable 5.1 immunized with C.TgPl.Y were
inhibited from binding to C·TgPl·Y by frce C·TgPl·Y. TePI, and TIPl.
Starfine inhibitor concentration used was 36.6+ pM. Sc:rum dilution used was
112048. Each point represents the mean ofan assay in tripilcare.
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7.3.6 C.T.PI.Y dtmeriZlltion influmcelltl COlItinl efficiency durin. ELISA acYl.

In all the ELiSAsdescribed in Chapters. andS. 2JlVml c:1C.TgPl.Y had been ~d

(or microdter.plate co.ting during the assays for C.TgPl·Y-specific antibody. In the

current experiment, pooled sera (day J5) (rom various Intf3 H·Z recombinant urains

(Table 5.1) immuniud ....hlt C-TgPI-Y were tested for bindine to plates coated with 2

pglml rie!therTaPl or C-TgP!-Y. Surprisingly, TgPl-primedserum boundsrrongly to

C-TgPI-Y and less sttongly [0 TgPl<oatedplates (Fill' 7.6). To address whether the last

result was simply due to the prescnce of additional antibodies within the C·TgPl·Y

primed serum directed to neo·determinants (see previous paragraph) or to Inefficient

plate coadng by TgPI, weser up the following assay, C.TgPl·Y prlmedS(:r3 from BIO,A

mice were tested for binding to plates coated with increaslnllamounts of TgPl. As

shown in Fig. 7.1 the higher the concentration ofTgPI used. the better the binding of

C.TgPl.Y primed serum to TgPI. The last result SllUeltI that the coating efficiency 0(

the two peptide(orms varies.

7.+ DISCUSSION

EAT induction through the use ofinracr Tg in adjuvant implies initial recognition

of dominant epitopes by T Ot B cells during the immunopathological process. We have

recently shown. however. that. at least at the level c:J.Bcells, thyroid autoreactivity does

not have to start from recognition of dominant determinants on Tg. EJ\T.susceptlble

mains such as BIO.BR. C3H or SJL, challenged with Intact MTg, do not elicit IIIG that

recognile TgPI and yet TgPI induces EAT and MTg-spedfic IgO in these animals.

Since blood Tg levels, normally in the range of60·120 nglml in mice (M. Lewis et a1..
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FlJUre 7.7: C-TgPI-Y-apeciAc liO binding to
TIP!. Pooled sera from C-TgPl·Y·primed,
BIO.A mice (see legend to Table 5.1) were
tested for binding to microdtcr plates coated
with various concentrations of TgPl. ELISA
was performed as described in Materials and
Methods.
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1981), could increase during thyroid disease (A. J. Van Hetle er a\., 1979b) the

possibility was raised rharfollowing TgPl.induced EAT, MTg.reactive IgG wnseHcircd

by endollenous T g and directed [0 dominant T g epiropes. The present data exclude this

possibility and assign all the MTg-specific IgG ieactivity to Tg?l spedfic IgG.

The present results also highlight TgPl as the only, so far, Tg sequence known to

elicit both EAT and Tg reactive IgG in mice. Other known pathogen!c Tg peptides

either do not behave similarly (see Chapter 6,8i B. Teder er aI., 1991b),or have not

been tested for the above parameters (P. R. Hutchings er at, 1992.). Auroreactive B

cells might be triggered against non·dominant Tg peptides such as TgPl by cross·

reactive epiropes from bacteria (W. J. Penhale &. P. R. Young, 1988) or viruses 0.
Srlnivasappa et aI., 1988; T. Onodeta &. A. Awaya, 1990) link.ed to thyroid

pathogenesis, although ditecc evidence for such events is stil1lack.ing. Once elicited,

these autoantibodies may playa role in the initiation or amplification of the disease

cascade via mechanisms such as ADCC (E. A. Calder et aL, 1975) or immune complex

deposition (j. A. Clagett et ai., 1974) that have been suggested co participate in the

dlse'3se process. It should be emphasized, however, that In TgPI.medlated EAT, the

concomitant IgG response Is not necessary for the development of thyroid lesions, sinct:

the disease can be adoptively transferred by peptide.speclfic T cells to naive recipients

and it occurs in the absence of circulating autoantibody (V. P. Rao &. G. Carayannlotls,

unpublished observations). Stmil3t data have also been obtained with TgPl (see

Chapter 6). Also, it remains to be seen whether transfer of serum containing TgPl.

specific IgG Is sufficient to induce EAT.

The eatlierdetectlon (Chapter 5)o£TgPI specific, non.MTg.reactive IgG in strains

such as BIO.A(4R) and BI0,A(5R), thac do not develop EAT after TgPl challenge, can

be partly attributed to recognition of necdeterminanu, since the TgPl peptide used in
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initi:11 HudiL'lo ClJrrlcJ an CXU311L"O\.IS amino-terminal cystein and could be subject [0

diul<:rir:uillll. SUPI"'Tlilll: cvj,kllt;C' 1m this dahll Is SIIllWU in Hgurc 7.5. It Is dear,

however, that thccXll311COll5 aminolclminal Cys andcarboxytcrminal Tyr residues in

TgPl:lre llot rcquiredfor immunogcnicity since the native 17·mer peptide can Induce a

suong MTg-spccific lilG response in micc,3S shown by the reactivity ofimmune SJLsera

to thyroid colloid (Fig. 7.4A) and by spccific 19G binding to MTg In ELISA tem (Fig.

7.2). Silllitilrly the two nlllitiO acids cxtr.:meaus to the sequence alTect neither T-cell

reactivity (T:lblc 7.l) 1I0r p:Hhogcniciry 0Cc3U5C thyroiditogcnicity has been mapped to

n:lllomcric T-ccll cpitopt.'S within the T gPI SCqUCllCC (V. P. Rao ct at, 1994).

Fivc weeks nfter imll1ul\lzatloll, the subclass proCilc or thc TgPl.spcciCic IgG response

ill IlIkt.., is cluodif1lrlvdy simil;!r ttl ell(: ntH: clidwcl hy hOllllJ!olllJUS Til. showilill

represcntation of nil subclasscs with a ptepOI\Ucr<Jnce of IgGI (mean values>80% or the

toral response) (ollow~'l1 by IgG2.b (lIle:m values lO-ZO%of the rotal response), The data

are" in good agrecmcnt with previous findings of DeCarvalho and Raitt (1982.) who

llcscrihcd. by RIA. a similar 11:0 subclass distribution in the auroantibody response to

homologou:s Tg in mlcc. Thus. the small molecular size and the non-dominant nature of

rhc pathogenic T!llli peptide. arc nor features that predispose induction of specific IgO

with a limitt...J subd'lS$ distdbution. Our findings contrast with previous omervations

thar !lave sum:esr('''ll rhat rhe anrihody ll..'SllOnse 10 Jennetl determinants of HTg is

restrictelilo particul;u subclasscs (N, Fukuma Ct al.. 1989). The apparent cOlHradictlon

lIIay [Lll.."l:t <li(rcrcn<:cs il\ thc time point that tllc subclass distributlol\ was studlcdandlor

the systcm stuuk.J (cll:perimcntnl vs spontaneous), Ahhough it is possibl~ that this

subclass prorHc may dHln!:c over timc. evidence rtOlil HT patients indicates an

cS!Cntially ulIchallc..-osubdassJlsttibutioll orre-speciflc IgG over 2. 1/2-4 years (5. M,

McL'lch1:mctal..1987).
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OUf data are in apparent contrast to the findings of lou and run~ (19?j) in

autoinlffiune oophoritis. whe found that a T·cell peptide of tht' 10M pdlud\l;l

glycoprotein IP3 elidted autoantibodies to IP) determinants localized outside the

peptide (Y. Lou &. K. S. K. Tung. 1993). Th.~ phenomenon was obscrveJ within H dnys

following immunization, when oophoritis is established. but it was als:> dctecred flscarly

as dar 7after challenge when oophoritis is not present. It was interpreted to ilWl,lvc

endogenous ovarian antigen since It did not occur In ovariectomized mlce illulIun!wl!

with the ZP3 peptide and this peptide did not contain B-ccll epitopes that could cross­

react with the native antigen. In our ca.OIe, lo EAT established 35 days after challenge

with TgPl{Chapter i) such MamplificationMis not observed although it is possible thnt it

might be detected at a later time. The differences in the experimental systems me too

numerous to allow an assessment as to why TgPl cannot act in analogous fashion in

EAT. For example, the endogenous Tg levels may aot rise sufficiently durinG TGPl­

mediated EAT to facilitate Induction of such a polyc1onal BoCell response, or If they rise

they may have suppressive effects (M. Lewis et aI., 1981, M. Lewiset al., 1991). It is

noteworthy that In experimental myasthenia gravis (T.M. Yeh & K. A. Krolick, 1990),

rats immunized with a dominant T·cell pepdde from acetylcholine receptor produce

antibodies of broad specificities (multiple c1onotypes) against the protein antigen only if

they are subsequently challenged with acetylcholine receptor in saline. It remains to be

seen whether injection of whoIe MTg In mice primed with the non-dominant TgPI

peptide can lead to an amplified anti.Tg antibody response.

A final point highlighted by our data is that the pathogenic TgP! sequence is likely

to be missed by methods employing mouse MoAbs for the Identification of MTg.

ephopes associated with thyroid disease (reviewed in R. C. Kuppers et al., 1991, see

section 1.2.5). Such MoAbs are commonly derived using intact T l as an Immunogen
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and thus allow rec:ollnition only of dominant epito~ on MTa. A similar panlal

assessment of determlnanu can be made on human Til usina: heteroandsera induced by

intact HTll. Indeed, several patients' sera with hiah and.HTg titers do not Inhibit the

binding of murine MaAhs to HTa (R. C. Kup~rs et aI., 1991). In addition, $C!:tl of

patients with autoimmune thyroiditis reactive with HTI may respond only to SOme (M.

Henry et al.. 1990) or no (Q. Donger aI., 1989) heteroepltope-bearing HTg fragments.

In thu regard, it is norewonny that TgPI does not overlap with any of these (ragmenu

(M. Henryet al.• 1990;Q. Donger 3\..1989). AlthOUllh rhedinlc.aJ relevance ofTrPl

at both the T· or B·cel11evel remains to be established, our findings underline the

Importance of the synthetic peptide approach In the daunting task of mapping

pathogenic Tg determinants, A combination of the above techniques with the

availabllily of new algorithms and methodologies that ascertain MHC-boundepitopes

may eventually allow a more rapid progress in this area.



CHAPTER 8

DISTINCTION BETWEEN IMMUNOGENICITY AND PATHOGENICITY IN

THYROIDITIS. IDENTIFICATION OF AN IMMUNOGENIC T. SEQUENCE

THAT IS NOT PATHOGENIC.

8.1 SUMMARY

In the process of searching for Til pathogenic T -celt epitopes through the algorithm

approach, an IS·mer sequence, corresponding to a.3. 2500 to 2567 of HTII (TgP)), of the

RTg molecule, was found to be immunogenic but not pathogenic in mice. Genetic

analysis of the phenomenon using mice of various MHC haplorypes such 35 H_lS, H.2.k ,

H_Zb and H.ld, revealed a complete absence of thyroid abnormality. The peptide was

clearly immunogenic in C3H, BIO, BID.BR and BAlB1c mice inducing TgP3.specific

IgG. TgP) failed to elidt antibodies in SJL mice. It is not known whether the lack of

TgP3-specific IgG In SJL mice is due [0 absence of TgP3-specific B cells. T cells or to

absence ofboth subsets. Sera derived from MTg.primed mice did not react significantly

In vitro with TgP3 indicating that the peptide is not an immunodominant sequence at

the B-cetllevel.

8.2 INTRODUCTION

In the tast three yean research has been focussed on the identlfication of Tg

pathogenic T -cet! epltopes aiming to use them for studying immunoregulatory

mechanisms in thyroiditis (reviewed in K. Mignon-Godefroy et a/., 199+). In that
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regard, four Tg pathogenic sequenCe1 recognized by autoreactive T <eUs have been

defined [0 induce EAT in mice (Chapters 4.5,B. Texier eraJ., 1992b; p, R. Hutchings,

1992). Among those pathogenic sequences the nanomeric Tg peptide 2551-2559

carrying T4 at position 2553 h.as been reported to generate effe<tor cells and activate

them in vitro to transfer EAT in normal recipients (P. R. Hutchings er ai" 199Z).

In the current study, an 18-mer Tgsequence (TgP3) identified as a potential T·eel!

site by the ~AMPHI" and "tmarner motif" algorithms has been tested (or pathogenicity

and antigenicity in various strains of mice. TgP] encompasses the nanometic pathogenic

sequence reported previously but carriet. tyrosine insreadoCT4 at position 2553.

8.3 RESULTS

8.3.1 TiP] en.compallellll!veral MHC·btndtnl morl&.

TgP3 was selected as a potential T-cell epitope because it carries an amphipathic

segment (positions 2550 to 2565) with high amphipathic score of 38.8 (Mock length,

1=11) and two renamer motifs starting at positions 2552 and 2558, respectively. TgP3

has also characteristics of t.Ek-binding peptides because it encompasses two hydrophobic

residues, PheZS56 and Ser2557. seven residues-apart (rom ArgZ567 (J. A. Leighton er aI.,

1991). In addition, it contains one sequence that follows the motif of DR-binding

peptides (C. M. Hill et a/., 1991), since the bulky hydrophobic amino·acid Phe2556 is

four residues apart from the small amino acid Glu2561. TgPJencompasses a motif of

naturally processed peptides bound to the HLA.DRi allele (Phe2556.Thr256+), (R. M.

Chicz eta/., 1993). A comparison of the counterpart to TgP3 sequences in other,species

reveals a great homology (Fig. 8.1). Its human homologue is identical to TgP3 whereas
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FilUre 8.11 PriULaTy amino.acid lequence ofTaP3. Underlines, Rothbard and Taylor
tenamer motifs; short arrows, amphlpethic segment, according to the -AMPHl- prollram
(amphipathic score=J8.8, block length 1=11); long arrows, a.a. in agreement with the
I-E-bindiDa motif of Leighton et at.. (1991); " a.a obeying the motif of Hill et aI"
(1991); •. UI. delineate an HLA-DR4-binding moru(R. M. Chicz:~ at.. 1993); _, a.8.

identity between rat, bovine or human sequences at the posirlonl shown. TgP) carries an
external to the sequence N·terminal cystein,
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its bovine counterpan differs at:a single amino-ada position from the rat sequence

suggesting that TgP) is a phylogeneticallyconserved Tg sequence. In addition TgP)

canies a hormonogenic tyrosine at position 2553 (see Chapter 1). Screening T gP) with

the PHYSCHEM program of PCGENE (see for details section ".3.1) revealed other

physicochemical features ofTgP] which aTC listed in Table a.l.

8.3.2 TIP) doe. not Induce lymphocytic InRluation in tbe thyroid of H.l k, b,d,:!

mice.

810, BIO,BR, C3H, SJL and BALB/c mleewere primed s.c. at the base of the taU

with 100 nmol ofemulrifled TgP] in CFA and boosted three weeks later with 50 nrnol of

peptide in IFA. Control mice weresimilarly immunized with CFA/PBS. The thyroid

glands of the immunized animals werc examined histologically.3 weeks tater for thyroid

infiltration and scored as described in Marerialsand Methods. Under such conditions no

rhyrold infiltration was orn;erved in any of the strains examined (Table 8.2; Fig. A, B).

The thyroid architecture was sit,lilar to that obtained after immunization of the animals

with CFA/PBS (Fig. 8.2 C, D).

11.3.3. TIP3 11 lmmunoaen{c in H.lk,b,d mice but not in H-l1 mtc.e.

To address whether the lack of pathogenicity of TgP3 was due to lack of

Immun0l:enicity we measured TgP3.spedfic antibodies in the immunlred animals.

Pootedsera from the animals of Table 8.2 were tested for reactivity to TgP3 by ELISA

(see Materials and Methods). TgP3·spedfic antibodies were demonstrated In BIO,
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TABLE 8 1· Pbnt"x;bClll1raJ ,btIlCtcrln{g qf T,P] i
Mokc:ular weight (MW) 2095

lsoekctric point (pI) 3.8

Half·Ufl!in Yirro

mammalian redculocytfi 7.2 hr

Half.life in vivo

yeast

~CCl'cb/acql/

>ZOhr
?IObr

§ Physicochemical parameters of TgP) according to the

PHYSCHEM program of PCGENE (sce section 4.3.1).

TABLE 8 2· EAT Induction by TIP) In variou, mouR !tralnL

Strain
III

baploNDS os

InOluatiop index a_
Mkuith

EAT

m M
B10.BR OIt
~ M
BALB/c OIt
QJi.b, ...L. -'__"-------"_....lL._-"----lL---""'0I5

a Mice were challenged s.c. with 100 Drool TgP) and three weeks later they were
boosted ..c. with ~O Dmol of peptide. Lymphocytic InfHtratlon of the thyroid was
assessed five week. after the Initial challenge 8' described in Materials and
Methods.

b Mice came from a separate experiment. Immunization was performed as
descrlbed In a.
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Figure 8.2 A·D: Laclt of abnormalitie. In the thyroid of CJH mice after TaP)

Immunbatlon. Thyroid K'CtioliS were derived (roln animals Immunized with either

TgP3 A IX250). B(X400)o, PBSlCFA. C (X150). 0 (X400j.
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BIO.BR. C3H, and BALBle mice suggesting that TgP) [1 immunogenic in all of the

above strains (Table 8.3), This last resuh provided indirect evidence that TgPJ is

recognized by T cells. TgP3 (ailed to induce antibodies in SJL mice. Whether this lack

of responsiveness to TgP) is due to lack of T-cell help or to the absence ofTgP3-spedfic

B cells is unknown since, given the absence of pathogenicity, T-cell responses to TgP)

were not tested directly.

8.3.+ TIP3 II Qot aaerolopaU, Immunodomlnlnt epltope.

Because TgP) b recognized by B cells, although it had not been selected as a B·cell

binding sequence, we attempted to determine If it was an lrnmunodominant B-cell

determinant. Pooled sera from the MTg·primed mice of Figure 4.2, were tested for

reactivity to TgP3 by ELISA. Optical densities ofless than 0.05 were observed in aU the

strains tested under conditions that produce strong reactions with MTg (Table 8.3).

These results indicate that TgP31s not aserologically Immunodominant epitope. Finally

TgP3.primed seta failed to react with MTgin ELiSAs (Table 8.3).

U DISCUSSION

Uling the algorithm approach we could define an 18·mer TgP3 sequence within RTg

that failed to Induce thyroid lesions in avariety of mouse strains. Lack of pathogenicity,

however. was not due to lack of lmmunogenlcity In the straIns tested because the peptide

induced serological responses in the majority of those strains excluding SJL. Our

findings are In agreement with recent results obtained by Hutchings et a/., (199l). Using

the nanomerlc sequence beginning at Asp2S51 and carrying T+ at pmition 2553 (see
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TABLE 8 3: IgP3 I, npt a set010ricafu igunynodominlnt epitQP<i

o P liDS om) Qegro [fired in Yirroagajnstll

Antigen MIg TgPJ
~b Srxajn Srt pH 11128 1I51i 11128 11512
MTg BID 1.59 1.34 < 0.05 < 0.05

BIO.BR 1.65 1.48 < 0.05 < 0.05
C3HC 1.3, 1.19 < 0.05 < 0.05
SJL 1.52 1.21 < 0.05 < 0.05
BALB/c 1.24 0.96 < 0.05 < 0.05

TgP3 BID < 0.05 <0.05 l.Zl 0.'8
BIO.BR < 0.05 <0.05 0.89 0.59
C3H < 0.05 < 0.05 0.85 0.31
SJL < 0.05 <0,05 < 0,05 <0.05
RAI RIc < 0,05 < DOS 1.16 075

a Pooled sera from the moose groups depicted in Table 8.2 were assessed for
antigen.specific IgG by ELISA as described in Materials and Merhcx1s. The data
were obtained {tom full titration curves and are expressed as means of
triplicate wells at the indicated dilutions of serum. Standard deviations did
not exceed 5% of the mean values.

b Mice were primed and boosted with MTgar TgPJ as descrlbed In Materials
andMahods.

C Data come from a separate immunization.
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Figure (dA) they wefe ahle ttl :I~tlvme IYlllph "mle cdb ill vitw to transfer £/\T to

syngcucic aniuwls. The presence of T4 was shown to be critical for the pathogenlc

potential of the sequence bec:Jusc replacement ofT4 with cysrein or other amino-acids

~6rogatcJ its thyroiJitogcnic eITects ( B. R. Champion er al., 1991; reviewed In K. Dawe

cr ul., 1993). Since this IHlnomeric sequence: is included within TgP3, our study is

consistent with the idl'tl that iodination of that particulm epitope is cruclal for Its

lIa~~lOgcnicity. The underlying mechanism by which Iodination influences disease

pathogcnicity in this case is possibly through (ormation of an InuuunoJominant

Jercrlllin:lllt rlun Is recognized by :Jutoreactive T cells (reviewed in R. S. Sundick etal.,

1')92). It is worthwhile to mendOI\, however, that in ourscudy weattemptcd to induce

EAT following the direct approach (see section 1.2.1.2). Following the sallie approacl\

:llId using the ll:JlIOllicric sequence at doses ranging from 1 to 25 }Jg per animal,

Hutchings :md colleagues failed to il\duce EAT in CBA/J mice. In the latter case lack of

thyroiditis could bc mtribut<:d to the low al\tigcnic dose used for illllllunization of the

:llIimnls. As showl\ In Chaptcrs 4,5. 6 all Imlllunizing dose of 100 nmol which Is

approximately ZOO}Jg ofTe: peptide was required for thyroidirogenicity.

Thc Ilrcscnt study sllOws tllM SJL mice lIrc non.responsive to TgP3. Since we hllve

lll)t lookl.'t[ Cor T·ccll responscs in rhat strllin wc do not know whcther unrcsponsiveness

is duo.: to lack of 1l ur T cells recol;nizillg the epltopc or to the inability of the epirope to

bind to class 1I1l10lecuies of 1-I.2s haplotype. Since T gP3 has been selected by two

lligorithms that iJcntify T-cell slles on the bilsis of their iuuinslc ability to form stable

MHC.bin<tlng structures and Jo not take into account other factors such as the MHC

l111t.:k·s of tht.: rt.·51'0ndillglllliuml, thc last cxpl:uwtion could be possible. For example

TgP 3 does not follow the motif found in natural peptldcs Isolated and sequenced from l­

AS lI\olc~u[cs (A. Y. RudcIISky erRI" 1992).
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TgP3 hal been shown to induce strong serological responses in various sUllins.

although presence of TgPJ.specific antibodies did not correlate with thyroiditis

induction. The tast finding is compmible <.vith Te5ults obtained bV TgPl (ChapteTS +, 5),

TgPZ (Chapter 6) and Tg (see section l.l.3.J) and shows that antibodies cannol be

used as ma,kef$ of subsequent disease development, To explain the lack of pathogenicity

of TgP3 in various strains several speculations can be made. First. TgP3 immunized

animals may lack effector T cells. Second, they may lack Th cells that assist in

th'Yroiditis induction. If that is the case, then the Th cells i.nvolved in the serologkal

response venus those that participate in the disease pathogenicity, may be distinct.

Third, T gP3 might not be expressed on the target organ as a product of Tg processing.

The present study demonstrates that TgP3 is serologically a non·dominant Bcelt.

determinant. The non-lmmunodominant character ofTgP3 is furrher supported by the

study of Dong er al,. who failed to detect TgP3 among the 10 epitope.bearing fragments

of HTg that are known to be recognized by heteroantisera (Q. Dong cr n1., 1989).



CHAPTER 9

9.1 GENERAL OVERVIEW

Because T cells have been shown to playa crucial role In both induction Ind

regulation of EAT (see section 1,2.3.1),10 understandlna of the CIne mechanisms that

o~rate in thyroid disease can only be achieved by focusing on this cell sub~t. One

fundamental problem in that approach is to characterize those cells in terms of

specificity. Such a chaucreritatlon is crucial for the designing of specific

Immunointerventlon strategies. This problem can be tackled by two independent

strategies. The first method relies on the isolation of the lutoreactlve T cells and the

subsequent tenlnl of their reactivity with antigenic frlgments of the auroantlgen.

Alternatively, using defl.ned T<ell eplropes, it Is po5:llble to isolate and characterize the

autoreactive T cells. This 3tudy has betn based on the leCond approach. Using as tools

the AMPHI and -tenamer motU" ala:orithms, we were able to predict an array of

~quenceswithin rat T g with structural characterisllCi of MHC.bindinll peptld~.

Among the candidate sequences, three were selectai (see section 3.1) T eP1, TgPl, TgF]

and further tested In mice for both padl0geniclty and lmmunosenicity. Bak.-d on the

Andlngs of this study the following conclusions can be drawn. First, the algorhhm

approach was successful in predictins T-cell sites but in several cases strain differences in

the immune responJe to a a:lven sequence were obsetved. Those differences were not

unexpected because the algorithms used for the IdentiOcation of the T-cell epitopel had

not taken Into comlderatlon the allelic variability of MHC m":ecule3 that might

Influence the ability of the sequences to bind to the MHC. Moreover, various MHC

alleles could influence the development ofT-cells specific for a given self sequence in
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the thymus by mechanisms of positive and negative selection. Second, although all three

sequences were immunogenic in mice as revealed by their ability to elicit scrologknl

responses in various strains, only two of them (TgP!' TgP2) were p:lthogenic. This

suggests that T gP1. and T gP2.spedfic antibodies cannot be used as diilgnostil: nllukers of

mouse EAT and31so that the Th cells that assiSt in the serological response venus those

that help in the autoimmune attack of the thyroid might be diuln..:t. Third, using

defined T-cell epltopes to Induce EAT. it is possible to investigate regulatory elements of

the dhease that are not recognitable In EAT induced by intact T g. For example. T gP 1·

Induced thyroiditis depends upon the control of I·E-region products whereas Tg.induced

EAT is controlled by I.A.region products. Moreover, it was shown that TgPI.spcl:iOc

JgG which is elicited after Immunization with TgPl can bind to Tg storcd in the

follleular colloid of normal thyroids. Thb finding might imply a role for TgPI-speciflc

IgG in EAT pathogenicitY via mechanisms of ADCC or Immune complex disposition,

Further studies, however. are required to clarify such a role. Fifth, the pathogenic

peptides TgPl and TgPZ wete characterized as non.oominant determinants at both the

B· and T-cell levels. This last finding raises several questions. First, if the peptides

constitute non.oominant determinants then how does EAT develop In mice! Second,

what is the importance of cryptic epitopes in spontaneously-Induced autoimmune

thyroiditis in both animals and humans? Although, we ha~'e not directly studied such

qucStions in the current study we now have the tools to address thcrn.
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9,1 FUTURE DIRECTIONS,

This study provides an ;lltcrlHltivc,simplH'led .!lodd for studying immunoregularory

mechaniSllIs in EAT (sec section 1.2.4.1). Such immunoregularocy studies require, at an

initial Stllgc, generation of clonal T-cell populations specific for pathogenic epitopes of

Tg lmd their subsC(IUcnt characterization in terms of lymphokine secretion, MHC

restrictioll, TCR .mll mlhcsiol\ molccule expression, ilnd function. This is an essential

Cirst step ill undef5tanding the cellular interactions and the costimularory molecules

involved in the activation of thyroiditogcnic T cells. For example, evidence derived from

the bulk cultures used in this study, suggests that T gPl is recognized by both I·A- and I­

E.restricted cdls (sec section 5.14). This ha. been confirmed by a recent study in which

1·1\- :Iud I-E-restricted clonal populations have been Isolated in the form of T-cell

l\ybridomas (V. P. Rao ec al., 1994). With the aid of I_A_ and I-E-restricted T-cell

hybridomas and an amlY of truncated peptides of TgPl, it has been possible to define

within TgPI the minimal sequences that activate the hybridoma dones. The pathogenic

snll antigenic potentinl of I-A- al\d I-E-restricted epitopes hns been then directly rested

in thyroiditis susceptible pouse strains (V. P. Rao et at., 1994). The identification of the

minimal pathogenic sequences within TgPl and TgPl could be further used to address

questions cOI\ccrning the types of cells that are involved in EAT. By means of gene

mrgeting technology it has been possible co disrupt genes of immunological importance

such us the genes encoding inrerleukin-IZ (lL.ll), intcrleukin·4 (IL·4) (R. Kuhn et at.,

1991) and generate mutant strains of mke, "knock out- mice, that lack IL·12 and IL-4

respectively. Using such mice carrying the thyroiditis susceptibility haplotype and the

lIIininm! puthogenic epitopes ofTgPI mentioned previously, it is now feasible roanalyze

the imporrance of pathogenic TCP1.sp<.'CiCic Th subsct(s) in EAT pa-'Iogenesis by
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immunizing IL-ll and IL-4 "knock out" mice with the I-A :md I·E·rcstrktcd T ·..:;cll

epitopcs. An alternative approach that aJJrcssL'S the role of ccnain Th subsets :md their

secreted Iymphokincs in EAT, is to usc the minimal cpitopcs as tools for the gCllctatiol\

of I-A- ::md I-E-restricted T·ceU clones. Such clones c(m be used for functional assavs

both ill vivoalld ill vitro. For example, direct involvclIICI\[ of an il\divi~lual Th subset ill

EAT induction can be revealed by adoptive transfer of all individual, well chamctcrhcd

T·cell clone to naive animals. Also, the involvement of a given T·cel1 dOI\e in the

antibody response can be determined in vitro by using it as a hdper for purified T cP \.

specific 13 cells.

Characterization. of the MHC·restrlcrion profile of the pathogcnic Th c10ncs and

their TCR eXllression would facilitate the application of immunointcrvcntioll

approaches such as those described for the EAE model (sce scction 1.2.4.4). Prcvious

studies hflvc shown rlmt Tg-illduccd 1:1\T C;III he prevented in fllIiuwl$ by "vnccinfltion~

with irradiated Tg-specific T-cell lines (it. Maron eta!., 1983) or a cytotoxic hybriJoma

clone that is specific for the epltope FiOD (C. Roubaty Ct al., 1990). In the latter case

protection has been attributed to the production of anti-idiotypic 3lHibody that reacts

with the TCR of the cytotoxic T·cell clone (B. Texicr cr ai" 1992a). Analogous

immunoregulatory studies can also be attemptcd with the non-dominant T-cell epltopes

described in this study. Whether or not specific inUlIullothernpeutic strategies such as the

anti.Vp therapy or and.c!onotyplc vaccination can be employed in human thyroid

disease in still a mattcr of debate (rcviewed in C. M. Dayan era/., 1992). The variablcs

in the human system are too numerous to allow predictions. For example, in humans the

T-cell specificities involved in the disease induction are still unknown, because the

immunogen and the site of immunization have not be determillCd. In addition,

experimentalmanipulatiol\s such as adoptive transfers that would reveal inform3tiol\
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about the function of those ceU, cannot be employed in humans. Because the HLA

allele$ 3fe highly polymorphic in humans. they allow binding of RVer21 peptldcssome of

which might be path0ll:enic. Therefore. for one [0 employ 5UCcemul immunotherapy in a

particular individual. it might be necessary co suppress several pathogenic dones or [0

block mOte than one of the HLA al1eles that are known to bind rhyroiditogenic ptptida

In that regard. to design speci6c immunotherapy:n the population level it is necasary to

i«knra.,. the thyroiditis.associated HLA haplotypes, the pathogenic epitopes that bind to

them and the specific T-cell rl!CeprOMi that recognize the epitope-HLA complexes.

In the current study, we have shown that the elCpreulon of H-lE molecules is a

necessary but not suH'ldent requirement for EAT Induction. It appears that other H-2

region products such as H·lK and! or H-ZA molecules ate also involved in rhe disease

process. The last conclU!lon is based on the Anding thar BlO.A{+R) mice expressing H·

n::k and H.lAk but not H.lEk molecules were completely resistant to thyroiditls

induction. BlO.A(5R) mice that express H-ZEk molecules but H-ZAb and H-ZKb were

also resistant to thyroiditis sugeesrlng that H·2E expression is not sufficient for EAT

induc.rlon (see Otapter 5). A recent study, however, does not Cavor the above conclusion

(V. P. Rae er sL, 1994). In that srudy, the apparenr resistance of B10.A(5R) mice to

developing EAT, has been attributed to the expreuion of hybrid H-2E (E~b:Eak)

molecules which may not possibly be suitable heterodimers for T gPl presentation. To

determine whether or not J6istance of BlO.A(5R) animals is indeed due to the

expression of a non·suitable E molecule and not to influences by H·2A and H·ZK

molecules, it is necessary to generate BIO.A(5R) animals that express the EjYt transgene.

1£ a H·lE heterooimer derived from the susceptible haplotype is requited, then E~k.

transgenic animals should develop thyroiditis. Alternatively, the same question can be

addressed by generating BID mice that express H·lEk molecules. Should these animals
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develop EAT, this would indicate that TgPl.jnduccd EAT is regulated solelV by H-2E

molecules.

TJ:Pl 3l\1I TnP1 arc lIon-JomilUlnt T·ccll determinants which whould

need,presumably, [0 be presented on d\c target organ in immul\ogct\ic fOfm to be able to

exert their pathogenic effect. To test this idea one could establish TEe cultures that

originate from normal animals. TEe cultures that normally do not express class II Call be

transformed todass 11+ by IFN.y (S. A. Ebner cr al., 1987) and C;J1\ subsequently be used

as APC for the activation of syllgcncic TgPl and TgP2 specific T·ccl! hybriJoma clones

In the absence of exogenously added peptide. This approach has been used previously for

the immunodominant nanomeric pathogenic sequence that carries T4 (3. R. Chmnplon

cral.• 1991).

We do not yet know i( TgP! and TgP2 me imlJortalH in spontalleously induced

thyroiditis in either animals or humans or if. in fact. these pathogenic sequences ate

recognized by T cells o( HT patients or by n amVor T cells of animals that sl>ontaneously

develop thyroiditis. Despite the lack o( information in that direction. several

speculations can be made. First, because the immune rcspOllSC directed to the pcptides is

MHC-dependent and the MHC gelles are extremely polymorphic in humans. we expect

to find variability in the responsiveness to those epitopes among individuals. Second, a

sequence that appears as a cryptic epitope ill an induced model o( thyroiditis could be

immunodolllinant in a spontaneous moocl. hlllllullOOOmitHlllce or crypticity must

depend upon the antigenic (actor that initiatc:5 the inlll\unopa[holi~nicprocess. Itlother

words, although in the mouse modelofTg.induced EAT. TgPl and TgP2 sequences 3re

characterhed as cryptic because other epitopes o( T g dominate the response, in

spontaneously induced autoimmune thyroiditis TgPl and TgP2 might be

illllllunodominallt. Such a concept can ue easily tested usine one of the available
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animal models that develop SAT such as the NOD mouse or the OS chicken (see

section l.Z.1.!). IfTIPl, TIl:Pl arc immunodominant epitopcs at the B· and/or the T.

ccllieve! in a lpontan~us model of autoimmune thyroiditis. then antibodies andlot T

cells reactive t() those epitopes should be found. Alternatively, the disease could staft

(rom a cryptic sequence, if that sequence happens to be recoanized by cross-reactive T

cells which an~ specific for an immunt'dominant determinant of a pathogen. In this

context, it would be interesting to test whether or nut human MHC can bind TgPl and

TIPl and lehurnan T cells specific for TgPl and TgPl exist in the thyroid infiltrate of

patients with autoimmune thyroiditis. Preliminary studies in QUI" laboratory Indicate

existence of TgP! Dnd TgPZ_reacdvc IgG in patlenu with thyroid disease (G.

Cara)'annlods unpublished observationi). However existence of TgPl or TgP2 specific

T cells hai not )'et been determined. We could also envisaRe that approaches such 35

those of complJter.asslsted modt:ling for MHC class II molecules would be Valuable in

predicting the bindinRof ephopessuch 35 TRPI and TgPl to various MHC class II alkles

(E. L, HucUo «al.• 1993).

In the past. several attempts have been made to detect T-cell reactivity to Tg in the

peripheral blood of patienuwlth thyroid disease (N. Shlmojo et al.• 1988; N. Fukuma et

af.• 1990). Those studies were somewhat inconclusive for two reasons (reviewed In C.

M. Da)'an et al" 1992). Flnt, T-cell reacdvit)' to T RIn the periphery has been derected

In healrhylndivlduals as a part of rhe natural respon.se. Second, since rhyrolditis is not a

systemic autoimmune disorder I rhe profile ofT-cell reactivity in the periphery may not

be representative of the sltuarion in the rarget organ. Evidence supporting the larter

point comes from studies in which only T-celt clones from the thyroid (M. Londei ct a/••

1985) and not from the periphery (B. Grubeck.·Loehensteln et al., 1988) of Graves'

di5ease patients could be activated by autologous TEC. It would be worthwhile to test if
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clonal T ·cell populations derived from the th.'l'roids of patients with autoimmune

thyroiditis can be activated {n vitro by TgPI or TgP2 and whether or nor autologous TEe

can stimulate such celts in the absence of exogenously supplemented peptide. A positive

result would Indicate a ro(e (or TgPl and TgP2 in human disease.

It was formerly thought that the pathogenic epiropes on Tg must be limited. This

notion \lias based on the observation that Tg.induced EAT is MHC·restricted (sec

section 1.2.2.1.1) and the conclusion that such a restriction profile could not be

observed if a large number of thyroidhogenlc determinants were included. In the

molecule. Our finding, do not favor this assumption be<:ause two of the three potential

T·ceH epitopes rested were shown to be pathogenic. In terms ofimmunogenicity, both

pathogenic T -celt epitopes wete characterized as non-dominant. This is a result that one

could hardly get by chance. It sN:mslikely that the huge Tg molecule harbors a large

number of cryptic, potentially pathogenic, T·cell epltopes and a limited number of

immunodominant, thyrolditogenk T_cel1 epltopes. In EAT induced hy Tg

immunization, the effects of non-domlnant epitopes could be masked by those of the

Immunodominant T-cell epltopes towards which most of the autoimmune reactivity is

dlrecred. Cryptic epltopes, however, could be of importance in the evolution of Tg­

induced EAT or In thyroiditis induced by infcctlon or Iodination. It would therefore be

worthwhile to Investigate, using immunodominant and non-dominant thyroldltogenlc

epitopes such as the nanomerlc thyroxin-containing sequent;e (P. R. Hutchings er al.•

1992) and TgPl, TgP2 (this study), whether the spreadiO\g of autoimmunity from

immunodominant to non-dominanr T-cell epitopes, observed for EA E (P. V. Lehmann

cr aI., 1992.; P. V. Lehmann eraJ., 1993; K. D. Moudgit & E. E. Sercarz, 199i) lsalso

found in EAT. If non-dominanr epitopes are involved. then specific immunotherapy In

autoimmunity might not be effective when directed to immuno,bminant epitopes ofan
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auroantigen only but might require that. (or each haplorype,sll the potential pathogenic

epitopes be available.

It has been suggested that EAT induced by cryptic epitopessuch as TgP! and TgPl

might represent a model for the thyroiditis that develops spontaneously after infectlon or

after increase of iodhe uptake through the diet (see section 6.4). There are animal

models in which thyroiditis Induction has been attributed to pathogens such as the

reovirus type I {S.Srlnlvasappa eral.,1988),or ranormat gamoinresdnai flora (W. S.

Penhalc &. P. R. Young, 1988). In these modeh, one might ten whether T or B cells

exist whleh are reactive to TgP 1and T ilP2. This can similarly be tested in thyroiditis

models where dietary Iodine has been shown to influence the Incidence and! or severity

of the disease (N. Bagchi etal., 1985; E. M, Allen eta!., 1986), In 5ummaty, TgP! and

TgP2 are important tools for dissecting the mechanisms and cellular interactions of the

autoimmune response in both animals and humans.
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APPENDIX 1

PREDICTED AMPHIPATHIC SEGMENTS

MID POINTS ANGLES AS
OF BLOCKS

............................................................

45.+7 115,·130 6.4
49·61 90,·130, 19.1

101·109 110,·135, 17,7
l3J·1l5 105,·105, 5,6

P 138·141 80,·100. 10.0
P 159·161 90,·100, 9,1

194·195 110,·115, 406
lO7·114 1l5,·135, 18,1
276.280 80,·95, 9,1
292·296 130,·135. 11.6
309·310 135,·135, 4,9
317·321 1l5,·135, 8,0
329.m 80.. 85, 5,7
JJl·m 105.-115. 6,8

P 394·397 110,·135, 7,1
KP 404-432 90,·135, 67.4

oK 445·455 115,·135, 23.9
P +72·474 1l5,·135, 5,1

521·516 100,·105, 7,9
540·542 1l5,·135, 5,0
548.550 90,·95, 5,9
553·563 110,·130, 21.8

P 570·576 90,·105, 12,5
KP 603·605 1l5,·130, 5,7

635.636 95,·100, 4.2
646.651 85,·110, 13.2

K 657·666 85..110. 18,2
P 67l-684 80,·115, 21,2

KP 687·700 80.·13S, 23,9
720·729 95,·120, 25.6
740.745 80,·95, 15,6
770·783 90..120, 38.8
796·797 105,·115, 4,7
814·818 80,·115, 8,7
823·818 100,·125, 12,2
840·842 90,·100, 7,5
856.867 95..135, 28.1
873-875 90,·95, 6,9



P
P

K

KP

881-890
894-904
918·931­
938-940
956-962

85_-110. lJ.3
80.·120. 14.1
95,·1]0. 39,6
80.. 90. 4.9

100.·105. 18.+
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NO. OF PREDICTED BLOCKS 301

• Indicates glycosytation site

P proline exists within the last 10 residues of the predicted sellment

K is included at the N terminus of the predicted segment
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APPENDlX2

Prq#ction cf"rcrmmer mprjt' S"Q"enm within che mt TV mq/cqde

Sequence

EAPE
DMAT
ELFS
DlTQ
HLFS
DIME
KUS
GFFE
GFLN
GWYQ
DAPS
DVAH
GVVK
EVLN
DATK
RTPT
GVFG
EVAG
GLLD
GAFG
DVAS
EVVS
HYWG
ELPS
GUN
KAVK
DYAS
RALE
HYPE
GYKS
KVMQ
KAAE
KYIQ

a.a. position within RTg

~2.~5

~8.51

52·55
58·61
80·83

106·109
185·188
190·193
208·211
259·262
269·272
310·JlJ
~9.352

H1.~50

+S6.~59

m·m
538·Sll
5~9.552

555·558
571·57+
590·593
6~9.652

67J.680
690·693
715·118
721·12+
772·115
718·781
m·8lS
842·8~5

85~.857

87J.880
920·923
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Appendix 3: Linear mn.conaation of Itlndard curvet (or IIG ...bel.leee, Standard

curves for indlvlduallgG subclasses were established as described in Mllteria/sand

MetJuxa (data not shown). The I-shaped SUbClalS titration curves were subsequently

converted to straight lines according to the Von Krogh equation:

logx=logk.+lIn logy/l-y,

where y is theD.D. of a wbc:lassat a certain serum dilution expressed as a percentage of

the maximum 0.0. obtained for that subclass and x is the antlbod~1 concentration

e)(pr~ed in mglml of solution.
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