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ABSTRACT 

Online user-generated content has the potential to become a valuable social and 

economic resource. In many domains – including business, science, health and 

politics/governance – content produced by ordinary people is seen as a way to expand the 

scope of information available to support decision making and analysis. To make 

effective use of user-generated contributions, understanding and improving information 

quality in this environment is important. Traditional information quality research offers 

limited guidance for understanding information quality issues in user-generated content. 

This thesis analyzes the concept of user-generated information quality, considers the 

limits and consequences of traditional approaches, and offers an alternative path for 

improving information quality. In particular, using three laboratory experiments the thesis 

provides empirical evidence of the negative impact of class-based conceptual modeling 

approaches on information accuracy. The results of the experiments demonstrate that 

accuracy is contingent on the classes used to model a domain and that accuracy increases 

when data collection is guided by classes at more generic levels. Using these generic 

classes, however, undermines information completeness (resulting in information loss), as 

they fail to capture many attributes of instances that online contributors are able to report. 

In view of the negative consequences of class-based conceptual modeling approaches, the 

thesis investigates the information quality implications of instance-based data 

management. To this extent this thesis proposes principles for modeling user-generated 

content based on individual instances rather than classes. The application of the proposed 

principles is demonstrated in the form of an information system artifact - a real system 
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designed to capture user-generated content. The principles are further evaluated in a field 

experiment. The results of the experiment demonstrate that an information system 

designed based on the proposed principles allows capturing more instances and more 

instances of novel classes compared with an information system designed based on 

traditional class-based approaches to conceptual modeling. This thesis concludes by 

summarizing contributions for research and practice of information/conceptual modeling, 

information quality and user-generated content and provides directions for future 

research. 
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1 Introduction 

1.1 Background and Motivation 

1.1.1 Growth of User-generated Content 

Information systems (IS) were traditionally considered as being conceived, 

designed, implemented and used primarily within an organization for well-defined 

purposes determined during systems development (e.g., Mason and Mitroff 1973). This 

organizational focus enabled control over mechanisms to collect, store, and use data. The 

growth of inter-organizational systems challenged this view to some degree, as it became 

necessary to standardize methods for information exchange between independent systems 

in different organizations (Choudhury 1997; Markus et al. 2006; Vitale and Johnson 

1988; Zhu and Wu 2011). The proliferation of social media (e.g., Facebook, Twitter, see 

Susarla et al. 2012) and crowdsourcing (engaging online users to work on specific tasks, 

see Doan et al. 2011) has further changed the IS landscape. There is growing interest in 

user-generated content (UGC) (Cha et al. 2007; Daugherty et al. 2008; Krumm et al. 

2008), defined here as various forms of digital information (e.g., comments, forum posts, 

tags, product reviews, videos, maps) produced by members of the general public – who 

often are casual content contributors (the crowd) – rather than by employees or others 

closely associated with an organization. 

Social media and crowdsourcing encourage rapid user contributions. The scale of 

human engagement with content-producing technologies is staggering: for example, a 
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2011 Pew Institute survey reports half of US adults use social media / networking 

websites
1
. The rise of content-producing technologies offers an opportunity to collect 

information from anyone who has access to the Internet. 

User-generated contributions increasingly support decision making and analysis in 

many domains. Companies nurture user-generated content by creating digital platforms 

for user participation (Gallaugher and Ransbotham 2010; Gangi et al. 2010; Piskorski 

2011), in part to monitor what potential customers are saying (Barwise and Meehan 2010; 

Culnan et al. 2010). In health care, UGC promises to improve quality, for example, via 

feedback on hospital visits posted online (Gao et al. 2010). Many governments provide 

digital outlets for citizens to participate in the political process, report civic issues, or help 

with emergency management (Johnson and Sieber 2012; Majchrzak and More 2011; 

Sieber 2006). Honing in on the promises of UGC, businesses have begun to encourage 

employees to create and share information using internal social media and crowdsourcing 

platforms to augment corporate knowledge management activities (Andriole 2010; 

Erickson et al. 2012; Hemsley and Mason 2012). 

Scientists also actively seek contributions from ordinary people, and build for this 

purpose novel IS that harness the enthusiasm and local knowledge of lay observers 

                                                 

 

1
http://www.pewglobal.org/2011/12/20/global-digital-communication-texting-

social-networking-popular-worldwide/.  

http://www.pewglobal.org/2011/12/20/global-digital-communication-texting-social-networking-popular-worldwide/#fn-17655-1
http://www.pewglobal.org/2011/12/20/global-digital-communication-texting-social-networking-popular-worldwide/#fn-17655-1
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(citizen scientists). Citizen scientists participate in a diverse range of online projects, such 

as folding proteins, finding interstellar dust, classifying galaxies, deciphering ancient 

scripts, identifying species, and mapping the planet (Fortson et al. 2011; Goodchild 2007; 

Hand 2010). Citizen science promises to reduce research costs and has led to significant 

discoveries (Lintott et al. 2009).  

Of particular interest to organizations is structured user-generated content 

(relative to less-structured forms, such as forums, blogs, or tweets). Structured user-

generated information has the advantage of consistency (i.e., the form in which data is 

produced is known in advance), facilitating analysis and aggregation. Structured UGC 

can also be easily integrated into internal information systems, connecting internal 

processes with real-time input from distributed human sensors. Online users tend to 

produce vast amounts of content extremely fast (Hanna et al. 2011; Kwak et al. 2010; 

Susarla et al. 2012), making UGC a key contributor to "big data" or massive, rapidly 

growing and heterogeneous datasets (Chen et al. 2012; Heath and Bizer 2011; Lohr 

2012). Structured "big UGC" enables real-time analysis and action. For example, in 

response to the information provided by the user, a system can automatically and 

immediately perform some useful action (e.g., recommend a product to buy, ask a follow-

up question, flag data for verification or some follow-up action).  

Organizations harnessing structured UGC can sponsor innovative information 

systems to address specific organizational goals or subscribe to existing general-purpose 

systems to supplement internal information production. For example, Cornell University 

launched eBird (www.ebird.com) to collect amateur bird sightings to support its 

http://www.ebird.com/
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ornithology research program (Hochachka et al. 2012; Sullivan et al. 2009). The project 

attracts millions of bird watchers globally and, as of 2014, collects five million bird 

observations per month (Sheppard et al. 2014). There is also a growing cohort of general-

purpose UGC applications. For instance, CitySourced (www.citysourced.com) is a US-

wide project that encourages people to report civic issues (e.g., crime, public safety, 

environmental issues) and makes this data available to participating municipalities for 

analysis and action. OpenStreetMap (www.openstreetmap.org) constructs user-generated 

maps, thereby providing affordable geographical information to individuals, non-profit 

organizations and small businesses (Haklay and Weber 2008). Projects such as Amazon‟s 

Mechanical Turk (www.mturk.com) and CrowdFlower (www.crowdflower.com) 

maintain a virtual workforce and lease it to clients for specific projects (e.g., to classify 

products in an e-commerce catalog).  

1.2 Information Quality Challenges of User-generated Content 

Despite its pervasiveness, UGC holds potential risks. First, by opening up 

participation to the crowd, it is more difficult to control the content or form of data 

supplied. Casual users often lack domain expertise, have little stake in the success of 

projects, and cannot be held accountable for the quality of data they contribute (Coleman 

et al. 2009). To produce contributions of acceptable quality to project sponsors (e.g., 

scientists, e-commerce vendors, businesses or public policy makers), some level of 

domain knowledge (e.g., bird taxonomy, geography, consumer products) is required. 

However, this requirement may not generally hold for a public increasingly engaged in 

http://www.citysourced.com/
http://www.openstreetmap.org/
http://www.mturk.com/
http://www.crowdflower.com/
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content creation. As a result, there is a potential trade-off between level of participation 

and information quality. Ordinary people unfamiliar with the domain of a specific project 

may either avoid contributing or provide incorrect data (e.g., by misidentifying a bird or a 

product).  

Second, in a crowd environment casual participants may lack incentives to 

contribute and may be dissuaded if the process of making contributions is difficult. For 

example, if an interface requires data to be recorded at a level of specificity that a casual 

contributor cannot easily provide, potential contributions might be lost.  

Third, different contributors have different perceptions of what is relevant and 

interesting for a particular observation. If the system is not flexible enough to allow 

unanticipated data to be captured systematically, potentially useful information might be 

lost.  

Thus, an important challenge in making effective use of UGC is crowd 

information quality
2
 (crowd IQ) – the quality of information contributed by Internet users  

(Arazy and Kopak 2011; Arazy et al. 2011; Flanagin and Metzger 2008; Hochachka et al. 

2012; Mackechnie et al. 2011; Nov et al. 2011a; Wiggins et al. 2011). Perceived or actual 

low quality of UGC can severely curtail its value in decision-making. 

                                                 

 

2
 Following Wang (1998) and Redman (1996), this thesis uses the terms 

information and data interchangeably. Crowd IQ is formally defined in Section 2.1.2.  
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The potential low crowd IQ poses a dilemma in harnessing collective intelligence 

or the “wisdom of crowds” (Surowiecki 2005). On the one hand, mounting evidence of 

the potential value in UGC strongly favors allowing users to freely express themselves 

(Hand 2010; Lintott et al. 2009). Placing restrictions on the kind of information users may 

wish to contribute threatens to preclude them from communicating valuable insights. On 

the other hand, as platforms harnessing user contributions attract more diverse audiences, 

restrictions upon user input seem to be necessary to ensure the quality of information 

collected (e.g., Hochachka et al. 2012).  

Currently, there is little theoretical guidance to address emerging challenges of 

crowd IQ. Although information quality has been studied extensively in the information 

systems field, prior research focused on corporate data collection (e.g., Ballou et al. 1998; 

Lee 2003; Volkoff et al. 2007). A typical strategy to increasing quality in corporate 

environments is training of data entry operators (Redman 1996). Training or providing 

quality feedback appears to be considerably less effective, and often is infeasible, among 

casual online users. In traditional IQ management, it is considered important to ensure 

that all parties (e.g., data creators, data consumers) share a common understanding of 

what data is relevant, how to capture it and why it is important (e.g., Lee and Strong 

2003, p. 33). This clearly becomes problematic in UGC settings as online users may not 

be willing to adopt or be capable of fully understanding the organizational perspectives. 
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1.3 Objectives of the Thesis 

Given the limitations of traditional approaches to IQ in UGC, novel approaches 

are needed. This thesis examines the effect of a largely ignored, but important, factor 

influencing IQ in UGC – conceptual modeling. Conceptual modeling and IQ management 

have traditionally been seen as distinct activities. Conceptual modeling is concerned with 

representing knowledge about a domain, deliberately abstracting from implementation 

issues (Clarke et al. 2013; Guizzardi and Halpin 2008; Mylopoulos 1998; Wand and 

Weber 2002).  

Conceptual modeling has been defined as “the activity of formally describing 

some aspects of the physical and social world around us for the purposes of 

understanding and communication” (Mylopoulos 1992; emphasis added). Conceptual 

models are constructed by systems analysts at the early stages of IS development to 

express concepts in the domain as viewed by IS users (e.g., decision makers, data 

consumers). Conceptual models typically inform the design of such IS artifacts as 

database schema, user interface, and programming code.
3
 By comparison, research on IQ 

                                                 

 

3
 This thesis uses the term "conceptual modeling" to specifically refer to the 

activity of capturing concepts in the domain as viewed by data consumers (e.g., scientists) 

interested in harnessing UGC. Unless indicated otherwise, the resulting conceptual 

models are independent of implementation considerations (e.g., logical and physical 

representation of UGC). 
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has emphasized the needs of data consumers and their experiences with IQ. These 

experiences can be characterized using dimensions such as consistency, timeliness, 

believability, accessibility, security, completeness, value-added, ease of manipulation, 

and freedom from error (accuracy) (Lee et al. 2002; Wang and Strong 1996). Some 

studies suggest that the intersection of modeling and crowd IQ warrants attention. Girres 

and Touya (2010) note the importance of the data model used by the OpenStreetMap 

project, and argue for a better balance between contributor freedom and compliance with 

specifications.  

This thesis claims that IQ is affected by decisions about underlying conceptual 

models. Investigating conceptual modeling as a factor affecting IQ is a promising avenue 

for research. Online users in UGC settings may resist traditional IQ methods such as 

training, instructions and quality feedback. In contrast, conceptual modeling is an activity 

that is typically performed before users are allowed to contribute data and thus remains 

firmly within organizational control. At the moment, however, little is known about the 

relationship between conceptual modeling approaches and crowd IQ. This thesis 

contributes to a better understanding of the impact of the process of creating a conceptual 

model of the domain on information quality. The first research question of this thesis, 

therefore, is: 

Research Question 1: How does conceptual modeling affect IQ in UGC settings? 

This thesis proposes that the IQ of structured user contributions can be positively 

or negatively influenced by conceptual modeling decisions. In particular, the dominant 

approach, in which data are conceived and recorded in terms of classes (e.g., phenomena 
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are assigned to classes such as product type, biological species, or landscape form), may 

have a significant negative impact on IQ when the classification structure provided by a 

system based on the needs of data consumers (e.g., decision-makers in the organization 

looking to draw insights from UGC) does not align with that of data contributors (i.e., 

the online users participating in UGC projects and contributing data). Once defined, 

classes constrain the degree to which an information system is able to reflect users‟ views 

of reality. Relaxing the rigid constraints of class-based models may help in capturing user 

input more objectively and completely, leading to higher quality of stored data while 

simultaneously mitigating the constraints on participation arising from insufficient 

expertise and differences in domain conceptualizations among online users. It may also 

fuel discovery by creating an environment that facilitates the discovery of previously 

unknown classes of phenomena. This further promises an opportunity to use conceptual 

modeling as a mechanism for crowd improving IQ. Therefore, the second research 

question is:  

Research Question 2: What conceptual modeling principles can be developed to 

improve quality of UGC? 

As traditional modeling approaches may have detrimental effects on crowd IQ, the 

thesis raises the question of what alternative approaches may help mitigate the 

shortcomings of traditional modeling. The thesis thus proposes theory-based principles 

for modeling UGC, intended to improve crowd IQ while relaxing restrictions on the kind 

of information users can provide.  



 

 

10 

 

1.4 Thesis Organization 

The remainder of the thesis is organized as follows (see also Figure 1). The next 

chapter situates the problem of crowd IQ in the context of the current conceptualizations 

of IQ and conceptual modeling. As the chapter uncovers the limitations of the prevailing 

approaches to IQ in UGC settings, it proposes a novel definition of crowd IQ.  

Chapter 3 provides a theoretical foundation for crowd IQ and conceptual 

modeling and uses theories in philosophy and psychology to derive propositions about the 

impact of conceptual modeling on important IQ dimensions of accuracy and 

completeness (including information loss and dataset completeness).  

Chapter 4 presents three laboratory experiments that test hypotheses about the 

impact of conceptual modeling on accuracy and information loss based on the 

propositions from Chapter 3.  

Chapter 5 develops principles for modeling UGC intended to address identified 

challenges of IS development in these settings.  

Chapter 6 demonstrates how to model UGC following the principles proposed in 

Chapter 5 in the form of an information system artifact - a real system designed to capture 

UGC.  

Chapter 7 presents a field experiment in the context of citizen science in biology 

and evaluates the impact of conceptual modeling approaches on dataset completeness.   

The thesis concludes by summarizing the primary contributions of the research to 

theory and practice and suggesting several areas for future research.  
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Overall objective: Improving Information Quality in User-generated Content 

 

Research Question 1: How does conceptual modeling affect information quality in UGC settings? 

C
h

ap
te

rs
 1

, 
2
 

 Problem of managing information quality of UGC 

 Definition of crowd IQ 

 Limitations of existing approaches to crowd IQ 

 Identification of conceptual modeling as a promising direction 

 Exposition of the gap in understanding how conceptual modeling affects crowd IQ  

C
h
ap

te
r 

3
 

 Theoretical explanation of the potential impact of conceptual modeling on 

o information accuracy 

o information loss 

o dataset completeness 

C
h
ap

te
rs

 4
 a

n
d
 7

  Three laboratory experiments to evaluate the impact of conceptual modeling on: 

o accuracy 

o information loss 

 Field experiment to evaluate the impact of conceptual modeling on: 

o dataset completeness 

 Summary of findings:  

o Traditional approaches to conceptual modeling may have negative impact on accuracy, 

information loss and dataset completeness dimensions of IQ 

 

 

Research Question 2: What conceptual modeling principles can be developed to improve quality of 

UGC? 

C
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,6
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 Principles of modeling UGC based on representation of instances (rather than classes) 

 Demonstration of the proposed principles in the form or a real IS 

 Evaluation of the proposed principles in a field experiment 

o IS designed based on the proposed principles allows capturing more instances and more 

instances of novel classes compared with IS designed based on traditional approaches to 

conceptual modeling 

C
h
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te
r 
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 Thesis contributions 

 Directions for future research  

Figure 1. The roadmap and key contributions of this thesis 
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2 The Problem of Crowd IQ in Existing Research 

2.1 Defining Crowd IQ 

2.1.1 Traditional Views on IQ 

Information quality has been studied extensively in the information systems field, 

with the primary focus on corporate uses of IS, in which user input may be relatively 

well-controlled (Ballou et al. 1998; Madnick et al. 2009; Storey et al. 2012; Wang and 

Strong 1996). In this environment, it is common to distinguish three parties to IQ 

processes: users who create data, IT professionals who secure, maintain and store it, and 

data consumers (Lee 2003). These three parties are typically in close contact and work 

jointly to refine and improve information quality (e.g., IT professionals may coach data 

entry operators; data consumers may monitor and evaluate information quality). The 

context (Lee 2003) in which information was produced, managed and used was frequently 

amenable to scrutiny and change (for a review of IQ research, see Madnick et al. 2009).  

A core principle of traditional IS analysis and design is user-driven development, 

according to which user (or, more commonly, eventual data consumer) requirements are 

captured during systems analysis and reflected to the extent possible in the design of the 

resulting information system (Checkland and Holwell 1998; Hirschheim et al. 1995). This 

consumer-oriented view is reflected in seminal definitions of information quality: the 

prevailing conceptualization of IQ is fitness for use of data by information consumers for 

specific purposes (Lee and Baskerville 2003; Lee and Strong 2003; Wang and Strong 

1996; Zhu and Wu 2011). This focus underlies another popular IQ definition – 
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“conformance to specification and as exceeding consumer expectations” (Kahn et al. 

2002). Both definitions focus IQ improvement on ways to shape the “information 

product” (Ballou and Pazer 1985; Wang 1998) to better satisfy data consumers‟ needs and 

are concomitant with conceptions of quality in marketing and management science (Juran 

and Gryna 1988; Reeves and Bednar 1994).  

The conceptualizations of dimensions of IQ further adopted the fitness for use 

perspective. Thus, Parssian et al. (2004) define completeness "as availability of all 

relevant data to satisfy the user requirement" (p. 968).  Lee et al. (2002) developed 

measurement items to evaluate completeness, asking whether "information includes all 

necessary values", "information is sufficiently complete for our needs", "information 

covers the needs of our tasks", "information has sufficient breadth and depth for our 

needs" (p. 143). To this extent, completeness has been classified as a contextual IQ 

dimension (Wang and Strong 1996). Nelson et al. (2005) explain (p. 203): 

It is important to recognize that the assessment of completeness only can be 

made relative to the contextual demands of the user and that the system may 

be complete as far as one user is concerned, but incomplete in the eyes of 

another. While completeness is a design objective, its assessment is based on 

the collective experience and perceptions of the system users.  

In consumer-focused IQ, it becomes important to ensure that all parties to IQ 

management (e.g., data creators, data consumers) share a common understanding of what 

data is relevant, how to capture it and why it is important; Lee and Strong describe this 

process (2003, p. 33): 

To process organizational data, a firm‟s data production process is 

conceptually divided into three distinct areas: data collection, data storage, 

and data utilization. Members in each process, regardless of one‟s functional 
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specialty, focus on collecting, storing, or utilizing data. To achieve high data 

quality, all three processes must work properly.  

Most organizations handle data quality problems by establishing routine 

control procedures in organizational databases. To solve data quality 

problems effectively, the members in all three processes must hold and use 

sufficient knowledge about solving data quality problems appropriate for 

their process domains. At minimum, data collectors must know what, how, 

and why to collect the data; data custodians must know what, how, and why 

to store the data; and data consumers must know what, how, and why to use 

the data. 

2.1.2 IQ in UGC 

Important differences between traditional organizational settings and UGC 

applications require extending the prevailing data consumer focus of IQ. Consumer-

centric definitions ignore the characteristics of crowd (volitional) information creation 

and may not reflect the information contributor‟s perspective. UGC projects are often 

designed at the request of project sponsors – those who allocate resources (e.g., financial, 

management, and technical) to the project and evaluate its success in serving the needs of 

(potential) data consumers. However, ordinary people are the key contributors of 

information and the main drivers of success in these projects. The abilities, motivation, 

and domain knowledge of contributors in UGC can have a strong impact on the level of 

engagement and quality of contributions (Coleman et al. 2009; Hand 2010; Nov et al. 

2011b). Furthermore, contributors to UGC projects may be neither aware of the intended 

use of contributed data nor motivated to fully satisfy (or exceed) expectations of data 

consumers (Daugherty et al. 2008; Nov et al. 2011a; Nov et al. 2011b). Overemphasizing 

the data consumer‟s perspective in systems designed to harness UGC may preclude 
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contributors from accurately and fully describing the phenomena about which they are 

contributing data. In cases where the data consumer‟s information needs are incongruent 

with what a user can provide, potential contributors may simply abandon data entry. 

Often contributors provide what they are able (or are willing), not necessarily what is 

required. Such information can be useful for purposes not anticipated when a project was 

designed. To be effective, information systems in UGC settings should be sensitive to 

information contributors‟ capabilities, as well as to data consumers‟ requirements.  

In an online environment, traditional processes of quality control break down. 

Reaching and influencing (e.g., training, providing quality feedback to) content creators is 

often infeasible. The role of information producers and consumers is frequently blurred, 

making it difficult for information consumers to evaluate the quality of their own 

contributions. Finally, the context of information production (and, rarely, information 

consumption) is opaque (e.g., the conditions under which online contributors make 

observations may drastically vary). The nature of crowd information precludes a 

straightforward application of traditional principles of information quality management. 

The thesis therefore proposes a definition of crowd IQ that amends the traditional 

definition of information quality to account for the issues and challenges of the emerging 

area of UGC. Specifically, crowd Information Quality (crowd IQ) is defined as the 

extent to which stored information represents the phenomena of interest to data 

consumers (and project sponsors), as perceived by information contributors. This 

definition does not rely on “fitness for use”, but is driven by what data contributors 

consider relevant when they use an IS. It is use-agnostic, recognizing that “the 
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phenomena…as perceived by information contributors” accommodates both known uses 

and future, unanticipated uses. 

A consequence of a use-agnostic notion of IQ is that information relevance is 

“irrelevant,” as relevance must be evaluated with respect to some use or purpose. Data 

provided by online contributors may be collected with one use in mind (and may not be 

relevant for that use), but used for many different tasks and support anticipated future 

uses.  

Crowd IQ assumes that any information about some “phenomena of potential 

interest” to data consumers is better than (or no worse than) no information at all, as 

information irrelevant to a particular use can be ignored/filtered (e.g., a query on species 

observed in some area will ignore contributions that are not reported at the species level).  

At the same time, the definition is explicitly concerned with the needs of data 

consumers - who typically sponsor or have other vested interests in the success of UGC 

projects. Thus, UGC quality is evaluated and measured by data consumers. For example, 

a contributor to a citizen science project in biology (e.g., eBird.org) may classify a bird as 

American robin. The extent to which this is accurate (in this case accords with the 

established biological nomenclature) is left up to the data consumers (e.g., scientists) to 

determine (assuming they have an independent way to verify the observation). As 

demonstrated in more details in Chapters 4 and 7, this thesis allows the contributors to 

determine what information to provide, which results in higher information accuracy and 

completeness (as measured by data consumers). 
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The Crowd IQ definition provides guidance for research aimed at improving the 

quality of UGC. By addressing consumer needs, this thesis advocates making IQ 

improvements that lead to desirable and useful outcomes for consumers. At the same 

time, the definition recognizes the pivotal role of information contributors and motivates 

an effort to design systems sensitive to their points of view. 

2.2 Approaches to Improving Crowd IQ 

In response to the growing interest in UGC, two perspectives on how to better 

understand and improve crowd IQ have emerged. Consistent with broader IQ research, 

the prevailing approach is fitness for use, which focuses on the organization, 

qualifications and expertise of contributors so as to better align information capture with 

needs of data consumers. This approach assumes that potential uses of information are 

known and understood by data contributors (in contrast, the thesis advocates a 

contributor-oriented perspective that examines ways to design IS to better capture 

observations of information providers). Below I briefly consider some of the emerging 

approaches to crowd IQ. 

Considering low domain expertise of users to be the principal detriment to high 

information quality, some research investigates the role of organizational processes 

governing information collection on data quality. Here a central element of social media, 

collaboration among users, is considered important. For example, this approach is the 

basis for iSpot (www.ispot.org.uk), a project that relies on social networking for 

collaborative identification of species of plants and animals (Silvertown 2010). 

Collaboration is also at the heart of Wikipedia (Arazy et al. 2011). The success of the 

http://www.ispot.org.uk/
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iterative process by which Wikipedia articles are refined suggests that data quality may, 

in fact, improve with continuous use. Social networking is suggested to increase data 

quality through the increased scale of data collection. According to Heipke (2010), in 

crowdsourcing “from a statistical point of view one can expect to have a rather low rate 

and size of errors” (p. 553). 

While peer or collaborative review appears promising, it has a number of 

limitations. Despite being likened to the “scientific peer review process” (Bishr and 

Mantelas 2008, p. 235), peer review is appropriate only for projects with a large number 

of users. Web sites with a small number of users will not have sufficient user activity per 

unit of data to ensure adequate critique, but even in larger projects less popular content 

may escape peer scrutiny (Cha et al. 2007). The peer review process also raises a 

philosophical issue of whose perceived reality is being represented and stored: that of the 

original user who submitted data or that of other users who verified and corrected it? 

Finally, extensive collaboration often engenders task-related conflicts among members, 

which can diminish the quality of the product unless conflict-mediating mechanisms are 

in place (Arazy et al. 2011). 

Another measure is engineering online governance structures (e.g., hierarchies of 

users), in which contributions are constrained by the organizational roles of their authors. 

For example, in order to edit certain content of Wikipedia or OpenStreetMap, one needs 

to have moderating or administrative privileges. Ensuring high quality on Wikipedia 

requires an elaborate and complex system of coordination. The basic assumption 

underlying this approach is that users in different roles (e.g., moderator vs. rookie 
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member) tend to produce information that differs in quality. Arazy et al. (2011) 

demonstrated the importance of content-oriented members as sources of domain 

expertise, and administrative members as mediators of internal conflicts. Liu and Ram 

(2011) found that users engaging in different collaboration patterns on Wikipedia (e.g., 

moderation, editing, and new content production) tend to produce data that differs in 

quality. Despite the benefits, user specialization and structures that support it have a 

propensity to create what Kittur et al. (2007) call the online “elite” or “bourgeoisie,” 

wherein a few privileged users control the collaborative enterprise. In extreme cases, this 

may lead to information censorship.  

Considering quality to be rooted in expertise, organizations attempt to educate and 

train users. Here, intensive user interaction and training are frequently prescribed. 

Intensive interaction among users tends to foster learning and domain expertise. Most 

collaborative projects benefit from users supporting and educating each other.  

Quality improvement via user interaction is a passive strategy. Training, on the 

other hand, is an active process enacted by project sponsors. It is typical in domains with 

high demands for data quality and established standards to which contributions should 

adhere (Dickinson et al. 2010; Foster-Smith and Evans 2003). For example, in Galaxy 

Zoo (www.galaxyzoo.com), users are required to pass a tutorial before they are allowed 

to classify galaxies (Fortson et al. 2011). However, training can sometimes introduce 

biases as participants who know the objective of the project may overinflate or exaggerate 

information (Galloway et al. 2006). In addition, training is not always realistic, especially 

among uncommitted online users. Some training requires gradual acquisition of 

http://www.galaxyzoo.com/
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knowledge over time, which can be prohibitive among casual contributors. Finally, 

depending upon the scope of a project, the knowledge gap might be too large to bridge in 

a short span of time (e.g., iSpot accepts observations of all natural history phenomena, 

and Wikipedia allows users to contribute to any article). 

Quality can also be enhanced after data is produced. Content filtering is a form of 

design-oriented data quality that aims to maximize the quality data of a given data set 

(e.g., by verifying it or only considering contributions matching certain criteria). Here, 

there may be no contributor manipulation before data entry, as data can be collected “as 

is” and filtered to retrieve only that of acceptable quality. Filtering may be performed by 

experts, peers or intelligent artificial agents. For example, eBird uses a combination of 

human and machine verification mechanisms to filter bird sightings (Hochachka et al. 

2012; Sullivan et al. 2009). Content filtering (or data cleaning) typically precedes more 

complex analysis of UGC (Provost and Fawcett 2013). 

As the size of data sets increases, manual verification becomes less realistic (e.g., 

Delort et al. 2011; Hochachka et al. 2012). Verification is also impossible for evanescent 

events that are over before experts can verify observation accuracy (e.g., vagrant bird 

sightings). At the same time, it can be difficult to develop automatic procedures that can 

deal with the full range of unanticipated UGC. Data filtering for some crowdsourcing 

projects, such as the website www.oldweather.org, where users transcribe historical ship 

logs, can only be verified by cross-validation between peers, since the task at hand 

(interpreting hand writing) requires human cognitive skills and is not something a 

computer can readily be trained to do. As with peer verification, content filtering raises 

http://www.oldweather.org/
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concerns about the final data reflecting biases and perceptions of humans or agents 

involved in the verification process. 

In contrast to the use-oriented approaches to crowd IQ, this thesis investigates 

ways to design IS to better capture observations of information providers. Specifically, 

this thesis proposes conceptual modeling as a mechanism for improving crowd IQ. 

Investigating conceptual modeling as a factor affecting IQ appears promising. Online 

users in the UGC settings may resist traditional IQ methods such as training, instructions 

and quality feedback. In contrast, conceptual modeling is an activity that is typically 

performed before users are allowed to contribute data and thus remains firmly within 

organizational control.  

Currently, there is little research on the impact of conceptual modeling on 

information quality. The connection between conceptual modeling and information 

quality is not well understood. This may be partially due to the fact that conceptual 

modeling and information quality management are generally seen as distinct activities. 

Conceptual modeling is concerned with representing knowledge about a domain, often 

deliberately abstracting from implementation concerns (Mylopoulos 1998; Olivé 2007; 

Wand and Weber 2002), while research on information quality typically examines 

dimensions of quality in existing databases (Arazy and Kopak 2011; Tayi and Ballou 

1998; Wang and Strong 1996). 

It is further unclear how to carry out conceptual modeling of UGC. Modeling 

UGC appears to be significantly different from modeling corporate domains, since 

reaching all potential (and even all representative) online users and reconciling their 
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views may not be feasible. Finally, information quality has been generally outside the 

scope of conceptual modeling research that has been traditionally more concerned with 

more proximal consequents such as the ability of users to comprehend and verify 

conceptual models (Bodart et al. 2001; Burton-Jones and Weber 1999; Burton-Jones and 

Meso 2006; Burton-Jones and Meso 2008; Figl and Derntl 2011; Gemino and Wand 

2005; Parsons and Cole 2005; Parsons 2011; Recker et al. 2011; Topi and Ramesh 2002). 

In a study of data quality in OpenStreetMap, Girres and Touya (2010) note the 

importance of the database model used by the project and argue for a better balance 

between contributor freedom and compliance to specifications. In a seminal theoretical 

article on IQ, Wand and Wang (1996) draw upon ontological theory to examine the extent 

to which an IS permits mapping of lawful states of reality to states of the IS. Wand and 

Wang, however, do not specifically consider conceptual modeling grammars or methods.  

This thesis aims to increase theoretical understanding of the impact of conceptual 

modeling on information quality. Underlying the prevailing conceptualization of IQ is the 

assumption that quality depends on the contributor‟s expertise. Since only a small number 

of potential contributors are experts, this implies that the best data quality can come from 

a limited number of people. Such an approach can thereby severely limit the scope of 

UGC. Furthermore, the focus on expertise assumes a particular intended use of 

collaborative data (i.e., expertise in something). Yet, harnessing the "wisdom in crowds" 

presents an opportunity to embrace diverse and unanticipated insights and uses of 

information. Recognizing UGC as a source of unanticipated insights, some scientists are 

considering the benefits of collecting citizen data in a hypothesis-free manner (Wiersma 
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2010). In this context, I aim to develop an information quality approach that does not 

depend on user expertise or intended use.  

2.3 Traditional Conceptual Modeling Approaches 

Concomitant with traditional research on IQ, traditional approaches to conceptual 

modeling generally assumed corporate settings. Major tenets of traditional conceptual 

modeling research included user-, use- and consensus-driven development, whereby users 

of information (stakeholders, subject-matter experts) specify intended functions of the 

system and provide supporting requirements. This perspective, therefore agrees with the 

fitness for use paradigm of traditional IQ research (Lee 2006; Lee 2003; Strong et al. 

1997; Wang and Strong 1996). Below I briefly examine key assumptions of traditional 

conceptual modeling research that I argue are problematic in UGC settings. 

A core principle of traditional modeling is design in anticipation of typical uses of 

an IS. For example, UML diagrams typically originate in use cases that communicate at a 

high level the purposes for the designed system including data flows and activities to 

support (Jacobson et al. 1999). Once the system is designed, its quality is assessed insofar 

as it provides functionality and information necessary to fulfill the needs of its users 

(DeLone and McLean 1992; Petter et al. 2013). The uses and purposes of the IS originate 

in users and are determined at the earliest stages of development.  

Traditionally, analysts rely on users (or, more generally, stakeholders) for subject-

matter expertise and system requirements. The information is typically elicited through 

direct contact with end-users or their representatives (e.g., supervisors, team leaders). 

Analysts are thus freed from having to become domain experts and are mostly proscribed 



 

24 

 

from relying on their own independent judgment about modeled domains: “[i]n general, 

assumptions are made by the problem owners” (Kotiadis and Robinson 2008, p. 952). 

Similarly, research on conceptual modeling grammars assumes user views as given, 

however derived or “impoverished” they may be (e.g., Wand and Weber 1995, p. 206). At 

the same time, cognitive models and biases of users have been investigated with the 

objective of increasing the veracity of users‟ assumptions about domains (Appan and 

Browne 2012; Appan and Browne 2010; Browne and Ramesh 2002). As users provide 

information requirements, it becomes vital to ensure that all representative users have 

been considered during requirements determination.  

The availability of users made it possible for analysts to gather requirements, 

verify their fidelity, and resolve any conflicting perspectives before implementation 

(Dobing and Parsons 2006; Gemino and Wand 2004). As users were mostly employees or 

parties closely affiliated with the organization (e.g., clients, suppliers, business partners), 

any individual or divergent views were generally subsumed by an agreed-on view. 

Existing organizational structures made it easier for analysts to discover user perspectives 

and resolve any conflicts. Close contact with users, such as in joint or participative 

development is widely encouraged (Gould and Lewis 1985; Moody 2005; Mylopoulos 

1998). In contrast, “lack of user input” is considered among “leading reasons for project 

failures” (Gemino and Wand 2004, p. 248). 

Given the centrality of users to information systems development, analysts are 

encouraged to be directly engaged with users. Gould and Lewis (1985), for example, 

stipulate “bringing  the  design team into  direct  contact  with  potential  users, as 
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opposed to hearing  or reading  about  them  through  human intermediaries, or through  

an „examination of user profiles‟” (p. 301, original emphasis). Indeed, an important role 

of conceptual models is facilitating mutual understanding and supporting user-analyst 

communications (Wand and Weber 2002). 

Traditional corporate environments made it feasible to strive for complete and 

accurate requirements (Olivé 2007; Wand and Weber 2002), provided that an adequate 

elicitation process that mitigates biases takes place (Appan and Browne 2012). With 

much research and practice premised on having accurate and complete information 

available as input to conceptual modeling, scant attention has been paid to modeling when 

all representative users are not available. 

A final conceptual model typically represents a global, integrated view of a 

domain but often does not represent any view of an individual user (Parsons 2003). Close 

contact with users provides an opportunity to resolve conflicts in individual views and 

generates an agreed-upon conceptualization of a domain: "[t]he difficulty here lies in 

conflict identification (how to find out that there is a conflict), rather than in conflict 

resolution (usually, one view is modified to remove the naming conflict)" (Spaccapietra 

and Parent 1994, p. 259-260). Analysts thus turn to relevant stakeholders to determine 

how to resolve conflicts: “conflict must be solved through communication among people” 

(Pohl 1994, p. 250).  This parallels a typical organizational process of reaching a 

collective judgment through dialog, negotiation or specialized techniques (Easterby-

Smith et al. 2012; Eden and Ackermann 1998). The unified global schema then serves as 
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“the basis for understanding by all users and applications” (Roussopoulos and 

Karagiannis 2009).  

The fundamental approach to conveying domain semantics in a unified conceptual 

model is representation by abstraction (Mylopoulos 1998; Peckham and Maryanski 1988; 

Smith and Smith 1977). Abstraction enables analysts to deliberately ignore the many 

individual differences among phenomena and represent only relevant information, where 

consumers of data determine what is relevant. Abstraction is foundational to major 

conceptual modeling grammars. For example, a typical script made using the popular 

entity-relationship (ER) or Unified Modeling Language (UML) grammars may depict 

classes (which are similar to kinds, entity types, categories), attributes of classes (or 

properties) and relationships between classes. Classes (e.g., student, tree, chair) abstract 

from differences among instances (e.g., a particular student, or a specific chair), instead 

capturing the perceived equivalence of instances. Indeed, many conceptual modeling 

grammars consider instances (objects) to be members of their classes (entity types): 

“[o]ne principle of conceptual modeling is that domain objects are instances of entity 

types” (Olivé 2007, p. 383). Abstraction-based modeling is critical to “organize the 

information base and guide its use, making it easier to update or search it” (Mylopoulos 

and Borgida 2006, p. 35). With representation by abstraction as a modeling method, it is 

then possible to completely and accurately represent relevant domain semantics: “a 

conceptual schema is the definition of the general domain knowledge that the information 

system needs to perform its functions; therefore, the conceptual schema must include all 

the required knowledge” (Olivé 2007, p. 29, emphasis added).  
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The goal of accurate and complete specifications (for intended uses) has been the 

cornerstone of conceptual modeling since the early days (e.g., Parnas 1972) and persists 

to this day (Burton-Jones et al. 2013; Lukyanenko and Parsons 2013). At the same time, 

challenges and limitations of conceptual modeling have been well-researched.  One 

challenge is effectively engaging subject-matter experts to identify and record relevant 

information (Appan and Browne 2010; Browne and Parsons 2012). Another is to ensure 

that grammars are expressive enough to capture the semantics important to the users 

(Clarke et al. 2013; Wand and Weber 1993). To ensure that users can then verify the 

captured semantics, conceptual models further require clarity and understandability 

(Bodart et al. 2001; Gemino and Wand 2005; Topi and Ramesh 2002). Wand and Wang 

(1996) note inherent limitations of traditional modeling in capturing unanticipated 

information. The notion of “complete and correct set of requirements” that “sweeps away 

the multiple perspectives and ambiguities of organizational life” has been criticized by 

interpretive researchers (Walsham 1993, p. 29). The challenges of view integration 

arising as a result of traditional modeling assumptions have been explored (Parsons and 

Wand 2000; Parsons 2003). Parsons and Wand (2000) examined the negative 

consequences of inherent classification (a major form of abstraction) on conceptual 

modeling and database operations. Samuel (2012) argues that abstraction-driven 

grammars impose cognitive effort by forcing users to identify instances that fit the 

predefined abstractions. Reaching remote users, especially on the Internet, has also been 

noted as a modeling challenge (Wand and Weber 2002). Despite these shortcomings, 
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traditional approaches to conceptual modeling continue to dominate and are also being 

adopted in UGC (e.g., Wiggins et al. 2013).  

This survey of traditional conceptual modeling research suggests a number of 

reasons why employing these approaches to modeling UGC may be problematic. In 

contrast to more traditional settings where information creation was (or was assumed to 

be) well understood and controlled, in UGC projects there are typically no constraints on 

who can contribute information. Indeed, engaging broad and diverse audiences is their 

raison d'être. While traditional systems represented a "consensus view" among various 

parties, the diverse and often unpredictable user views in UGC settings makes it 

infeasible to reach such consensus. Finally, whereas more traditional systems supported 

predefined uses of data, in opening IS to the external environments, organizations hope to 

discover something new, triggering flexible and innovative ways to use and re-use 

collected information.  

When developing conceptual models for UGC, some requirements may originate 

from system owners or sponsors - a relatively well understood group - but the actual 

information comes from distributed heterogeneous users. Many such users lack domain 

expertise (e.g., product taxonomy or deep medical knowledge) and have unique views or 

conceptualizations that may be incongruent with those of project sponsors and other users 

(Erickson et al. 2012). Unable to reach every potential contributor, analysts may not be 

able to construct an accurate and complete representation of modeled domains. I argue 

that fundamental assumptions about modeling may not hold in UGC environments and 

modeling using traditional grammars may result in poor IQ. The next chapter uses 
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theories of ontology and cognition to derive specific propositions about the impact of 

conceptual modeling on crowd IQ.  

2.4 Chapter Conclusion 

This chapter reviewed existing research in IQ and conceptual modeling as it 

relates to UGC. Previous research on IQ paid relatively scant attention to factors related 

to data contributors and focused instead on satisfying data consumers' needs. In contrast, 

this chapter argued IS in UGC settings should be sensitive to information contributors‟ 

capabilities, as well as to data consumers‟ requirements. This chapter proposed a 

definition of crowd IQ that amended the traditional definition of information quality to 

account for the important role of information contributors in UGC. It then identified 

conceptual modeling as a promising mechanism for improving crowd IQ.  

A survey of conceptual modeling research, however, revealed inadequacies of 

existing approaches to modeling UGC. In contrast to more traditional settings where 

information creation was (or was assumed to be) well understood and controlled, in UGC 

there are typically no constraints on who can contribute information and engaging broad 

and diverse audiences is highly desirable. Applying traditional modeling to UGC 

environments may result in poor IQ. Chapter 3 proposes specific mechanisms by which 

conceptual modeling affects quality. 
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3 Impact of Conceptual Modeling on Information Quality 

As implied by the proposed definition of crowd IQ, stored information should, to 

the extent possible, reflect the views of data contributors. Having identified conceptual 

modeling as a promising factor for improving IQ in the previous chapter, this chapter 

investigates the impact of class-based conceptual modeling on IQ. Specifically, I draw on 

theories of ontology and cognition to propose specific mechanisms by which conceptual 

modeling affect quality. As conceptual modeling deals with representing the world as 

understood by humans (Hirschheim et al. 1995; Wand et al. 1995), two theoretical 

foundations have been shown to be appropriate for understanding conceptual modeling 

grammars – ontology and cognition. 

Ontology, the philosophical study of what exists, has been used as a theoretical 

foundation of conceptual modeling to prescribe modeling constructs and evaluate the 

fidelity with which models represent reality (Guizzardi 2010; Wand and Weber 2002; 

Wand et al. 1995). Bunge‟s (1977) ontology has been popular in conceptual modeling 

research as it maps well to IS constructs (Wand and Weber 1990) and has been able to 

explain and predict a variety of information systems phenomena (Burton-Jones and Meso 

2006; Gemino and Wand 2005; Indulska et al. 2011; Shanks et al. 2008; Weber 1996). It 

has also been used to theoretically derive data quality dimensions (Wand and Wang 

1996).  

As human understanding of the real world is moderated by cognitive processes, it 

is appropriate to augment ontology with theories of cognition. In particular, classification 

theory “attempts to explain the nature of concepts (categories/classes) and why humans 
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classify” phenomena (Parsons 1996, p. 1438). Importantly, prominent conceptual 

modeling grammars, such as the Entity-Relationship (ER) model and Unified Modeling 

Language (UML) Class Diagrams, rely on class constructs (e.g., ER entity types, UML 

classes). Based on these foundations, I evaluate prevailing approaches to conceptual 

modeling and examine the potential impact of conceptual modeling on IQ. 

According to Bunge, the world is made of “things” (individuals or entities). Every 

thing possesses properties; properties do not exist independent of things. People are 

unable to directly observe properties, and see them instead as attributes. Properties of 

things may change over time.  

Things possessing common properties can be grouped together to form kinds 

(which are similar to classes). Unlike material things, classes (kinds) exist in human 

minds (Parsons and Wand 2008). According to cognitive theories, classes provide 

cognitive economy and inference, enabling humans to efficiently store and retrieve 

information about phenomena of interest (instances) (Parsons 1996; Posner 1993; Rosch 

and Muller 1978). In particular, cognitive economy is achieved by focusing on shared 

attributes, ignoring differences among instances deemed irrelevant in a particular 

situation. 

The notion of class is a core conceptual modeling construct (Parsons and Wand 

2008). Indeed, the prevailing method of representing information in an IS is recording an 

instance in terms of usually one a priori defined class (cf. Parsons and Wand 2000). This 

means instance information in a database derived from a class-based conceptual model is 

constrained by the properties of the classes to which the instance belongs. For example, 
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Tsichritzis and Lochovsky (1982)  define datum (data item) in a strictly-typed data model 

as members of an a priori class. Therefore “data that do not fall into a [class]… have 

either to be subverted to fall into one, or they cannot be handled in the data model” 

(Tsichritzis and Lochovsky 1982, p. 8). Information about an instance that is not captured 

in any class to which it belongs cannot be captured in a class-based conceptual model or 

in a database designed from it (Parsons and Wand 1997). 

This thesis examines the impact of storing instances in classes on two key IQ 

dimensions – accuracy and completeness. While research recognizes more than a dozen 

IQ dimensions (Wand and Wang 1996), accuracy and completeness are the most heavily 

studied (Redman 1996; Wand 1996). In this thesis, information completeness is broken 

down into two dimensions: dataset completeness (that is concerned with the number of 

instances stored) and information loss (or the extent to which perceived attributes of 

instances are captured).  

First, there is a potential mismatch between the classes familiar to a contributor 

and those defined in the IS. A class is a mental model of perceived reality learned or 

derived from prior experience (Murphy 2004). Thus, a contributor may reasonably see an 

instance as a member of a different class than the one(s) defined for an IS. When required 

to conform to the class structure imposed by an IS, a contributor may classify an observed 

phenomenon incorrectly (from the data consumer perspective, as follows from the 

proposed definition of crowd IQ), leading to lower data accuracy (i.e., whether a 

statement C(x) about an instance, x‟s, membership in class C is true or false). For 

example, a system may provide classes C1,…,CN, while a contributor may see an 
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observation as a member of class Y (Y may be more general than any of C1,…,CN, or 

orthogonal to that structure). If the contributor is forced to guess (Ci), the statement Ci(x) 

may be false, but if s/he can classify the observation confidently as an instance of Y, the 

statement Y(x) will be true.  

Second, class-based models may have a negative effect on data completeness (i.e., 

the degree to which observed information about an instance is captured). Class-based 

models inevitably result in property loss, as no class is able to capture all potentially 

observable properties of an instance. Ontologically, every “thing” is unique by the virtue 

of having unique properties: “what makes a thing what it is, i.e., a distinct individual, is 

the totality of its properties: different individuals fail to share some of their properties” 

(Bunge 1977, p. 111). Classification is based on similarity (shared properties) of instances 

and ignores properties deemed irrelevant for the purpose of classification. Therefore, 

completeness is necessarily reduced whenever a class is used to store instances. Below I 

elaborate on this analysis and develop two theoretical propositions regarding accuracy 

and completeness. 

3.1 Impact of Conceptual Modeling on Data Accuracy 

Accuracy is frequently suggested as the closest proxy for IQ (Ballou and Pazer 

1995; Wand 1996; Wand and Wang 1996). Accuracy is typically defined as degree of 

conformity of a stored value to the actual (reference) value (Ballou and Pazer 1995; 

Pipino et al. 2002; Redman 1996; Wand 1996), or to some accepted fact in a domain 

(e.g., Barack Obama was born August 4, 1961). 



 

34 

 

As classes are observer-dependent, differences in prior experience, domain 

expertise, or intended uses may result in the same thing being classified differently by 

different people and by the same person over time (Barsalou 1983; McCloskey and 

Glucksberg 1978; Murphy 2004). For example a passport can be an identity document, a 

thing to take on a trip abroad and an item to take from a burning house (see Barsalou 

1983). Naturally, humans employ only those classes with which they are familiar. People 

also attempt to match candidate classes to the situation at hand (Winograd and Flores 

1987). Thus, the process of classification is a fluid interplay of context, purpose and prior 

knowledge. In contrast, class-based models require information contributors to conform 

to a particular classification (presumably driven by some predefined uses of data). In 

general, we assume that in the context of UGC it is impractical to determine the set of 

classes that would be familiar and natural to use for each potential contributor in every 

situation. If the set of classes presented by the system is unfamiliar to an information 

contributor or is incongruent with a contributor‟s domain conceptualization, the result 

may be a forced choice that does not reflect reality as perceived by the contributor and 

may be inaccurate with respect to a reference value adopted by the data consumers (e.g., 

the species of bird selected by a non-expert contributor to a system that classifies bird 

sightings may not be biologically correct).  

Proposition 1 (Classification Accuracy): Class-based conceptual models result 

in lower information accuracy (more classification errors) when the classes defined in an 

information system do not match those familiar to the information contributor. 
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3.2 Impact of Conceptual Modeling on Information Loss 

Support for the classification accuracy proposition would suggest the potential 

benefit of implementing IS that employ classes more familiar to potential contributors 

(assuming they could be determined in advance). While this can increase classification 

accuracy, it will fail to prevent a second problem – information (property) loss. 

Using classes to store information about instances will always result in a failure to 

fully capture reality, no matter how “good” the chosen classes are. According to Bunge, 

any complex instance has a large number of attributes and no one class can encompass 

them all. Here lies a key difference between human and computerized representation. 

When humans classify, they focus on some equivalence among instances, but remain 

aware of individual differences. In contrast, when instances are stored only as members of 

classes derived from class-based conceptual models, attributes not captured by class 

definitions are lost. For example, if one defines a class student (assuming it has no 

subclasses) in an IS, every instance of that class will possess only those attributes that are 

part of the class definition. All other attributes will be lost. However, a human 

encountering a particular student may easily notice additional attributes of the individual 

(e.g., works part-time) that are not implied by the fact the person is a student, even if 

student is the class the person initially associates with that instance. As (ontologically) 

classes are unable to capture all instance attributes that might be observed, class-based 

conceptual models will result in information loss as long as contributors are able to 

observe attributes of an instance not implied by the class(es) they can provide.  
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Proposition 2 (Information Loss): Class-based conceptual models result in 

information loss when the class that a contributor uses to record an instance does not 

imply some attributes of the instance observed by the contributor.      

3.3 Impact of Conceptual Modeling on Dataset Completeness 

Whereas information loss deals with the representation of attributes of things, 

dataset completeness addresses the issue of whether any information about a thing is 

captured at all. For example, if an online contributor attempts to provide some 

information about an instance (e.g., product, planet, animal), but the IS rejects the entire 

attempt resulting in failure to capture any information about the instance, dataset 

completeness is undermined. Dataset completeness is of critical concern to organizations. 

Fan and Geerts (2012) warn, "not only attribute values but also tuples are often missing 

from our databases" (pp. 93-94).   

Informing the approach to dataset completeness is the perspective taken by Wand 

and Wang (1996) who argued that "completeness is the ability of an information system 

to represent every meaningful state of the represented real world system" (p. 93). 

Although their analysis is premised on IQ that reflects "the intended use of information" 

(p. 87), it suggests that dataset completeness maybe undermined if an IS is incapable of 

representing every potentially relevant state of the world.  

This thesis argues class-based modeling negatively impacts dataset completeness 

due to the requirement to comply with the constraints specified in class-based conceptual 

models. For example, an instance will be rejected by an IS if a class a contributor wishes 

to use to report the instance is not specified in the conceptual model. Similarly, if, when 
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reporting an instance of a class, some attributes do not match those defined by the IS, the 

entire instance may be rejected. This places unnecessary limitations on providing 

information especially in domains such as UGC where completely specifying the relevant 

classes in advance is unrealistic. Furthermore, a mismatch between models of a 

contributor and those defined in the IS may dissuade data contributors from reporting 

information.
 
For example, users may be apprehensive of submitting potentially incorrect 

data (e.g., an instance of an animal for which no specific class is found), or even be 

frustrated by the gulf between his or her own model and that reflected in the IS and thus 

avoid using the system. 

Proposition 3 (Dataset Completeness): Class-based conceptual models 

undermine dataset completeness (resulting in fewer instances stored) when the classes 

defined in an information system do not match those familiar to the information 

contributor.  

3.4 Chapter Conclusion 

This chapter provided a theoretical foundation for crowd IQ and conceptual 

modeling. Specifically, it leveraged theories in philosophy and psychology to derive 

propositions about the impact of conceptual modeling on important IQ dimensions of 

accuracy and completeness (including information loss and dataset completeness). These 

provide the basis for testable propositions that this thesis evaluates in laboratory and field 

settings in subsequent chapters. 

The next chapter presents three laboratory experiments that examine the impact of 

class-based conceptual models on accuracy and information loss in the context of UGC. 
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Chapter 7 presents a field experiment in the context of citizen science in biology to test 

the relationship between conceptual modeling approaches and dataset completeness.   
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4 Impact of Conceptual Modeling on Accuracy and Information 

Loss 

4.1 Introduction 

As outlined in Chapter 1, UGC is rapidly becoming a valuable organizational 

resource. In many domains – including business, science, health and governance – UGC 

is seen as a way to expand the scope of information available to support decision making 

and analysis. To make effective use of UGC, understanding and improving crowd IQ is 

critical. Traditional IQ research focuses on corporate databases, and views users as data 

consumers. However, as users with varying levels of knowledge or expertise increasingly 

contribute information in an open online setting, current conceptualizations of IQ break 

down.  

The previous chapters introduced the concept of crowd information quality (crowd 

IQ), and proposed the impact of traditional class-based modeling approaches on crowd 

IQ. In particular, I argued that the traditional practice of modeling information 

requirements in terms of a fixed structure of classes, such as an Entity-Relationship 

diagram or relational database tables, unnecessarily restricts the level of IQ that can be 

achieved in user-generated datasets. To evaluate these propositions regarding accuracy 

and completeness (information loss) in UGC, I conducted three laboratory experiments in 

the context of a citizen science project in the natural history domain. Citizen science 

epitomizes the concept of UGC (Hamel et al. 2009; Hochachka et al. 2012; Kim et al. 

2011; Wiggins et al. 2011). Citizen science is a type of crowdsourcing in which scientists 
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enlist ordinary people to generate data to be used in scientific research (Louv et al. 2012; 

Silvertown 2009). Citizen science promises to reduce information acquisition costs and 

facilitate discoveries (see, for example, Hand 2010).  

    Citizen science in biology is a convenient ground for research in IQ: it has 

established standards for information quality (e.g., biological nomenclature) and a well-

defined cohort of data consumers (scientists). This makes it easier to evaluate the impact 

of modeling approaches on real decision making. Further, citizen science has an 

immutable requirement for high-quality data - an important requisite for valid research. 

Citizen science is a voluntary endeavor and the challenge is to induce data of acceptable 

quality while keeping participation open to broad audiences (Louv et al. 2012).  

Within the broader context of citizen science, biology has a well-established 

conceptual schema. Specifically, species is considered the focal classification level into 

which instances in this domain are commonly organized. Species are units of research, 

international protection and conservation (Mayden 2002). Major citizen science projects 

(e.g., eBird.org collecting millions of bird sightings) implement prevailing modeling 

approaches (e.g., Entity-Relationship) and collect observations of instances as biological 

species (Parsons et al. 2011; Wiggins et al. 2013).  

Major science projects, such as eBird (see Table 1) focus on species identification 

and advocate Entity-Relationship Diagrams as “best practice" for modeling citizen 

science domains (Wiggins et al. 2013). Therefore, evaluating the impact of class-based 

models on the quality of contributions in these projects is of great practical importance. 
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Table 1. Major citizen science projects that harness UGC 

Project Scope Collection focus* No of records ** 

eBird 

www.ebird.org 

Birds, globally Species-level Over 100 million 

The Atlas of Living Australia 

http://www.ala.org.au/ 

All taxa, Australia Species-level Over 35 million 

iSpot 

http://www.ispotnature.org/ 

All taxa, globally  

(UK primarily) 

Species-level Over 250,000 

South Asia Birds 

http://www.worldbirds.org/  

Birds, India primarily Species-level Over 50,000 

Treezilla 

http://www.treezilla.org/ 

Trees, UK Species-level 48,000 

*Projects may allow other levels, but species is the principal level at which data 

collection is expected. **As of May. 2014; records come from various sources (e.g., citizens, 

experts, and existing collections).  

4.2 Experiment 1  

4.2.1 Impact of Conceptual Modeling on Accuracy in a Free-form Data Collection 

First, I investigate the impact of conceptual modeling on accuracy and information 

loss in a free-form data reporting task. While users typically select from predefined 

classes, a free-form task makes it possible to investigate the impact of modeling on IQ in 

the absence of potential confounds arising from guiding participants to particular classes 

(e.g., priming, cuing effects). The unprompted setting enables exploration of the kinds of 

classes and attributes contributors naturally choose when describing familiar and 

unfamiliar phenomena (in Experiments 2 and 3 in this chapter, I guide participants to 

predefined classes).  

Information systems supporting many natural history citizen science projects are 

class-based and involve positive identification (i.e., classification) of genera or species 

(Parsons et al. 2011; Silvertown 2010), as this information is demonstrably useful for 

scientific research (Bonter and Cooper 2012). Therefore, data collection involves 

http://www.ebird.org/
http://www.ala.org.au/
http://www.ispotnature.org/
http://www.worldbirds.org/v3/india.php
http://www.treezilla.org/
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classifying observations at the species-genus level and contributors are presented with 

options based on this conceptual model (see Table 1). 

However, citizen scientists generally are not biology experts.
4
 In general, I expect 

individuals with low expertise to have limited skill in identifying species, and to be only 

able to correctly identify relatively few, widely known (familiar) species. Requiring 

contributors to classify observations at the species-genus level may lead to guessing and, 

thereby, result in inaccurate data. As an alternative, the basic level is widely accepted in 

cognitive psychology as the generally preferred classification level for non-experts 

(Rosch et al. 1976). In biology, the basic level is an intermediate taxonomic level (e.g., 

“bird” is a level higher than “American Robin”, and lower than “animal”). Jolicoeur et al. 

(1984) suggest the basic level is typically the first class people think about when they 

encounter an instance. Children appear to learn basic level classes ahead of other classes, 

and people use them most frequently in daily speech (Cruse 1977; Murphy and 

Wisniewski 1989). Experimental studies have shown that people are generally able to 

                                                 

 

4
 Defining expertise is not straightforward and not necessarily based on formal 

credentials. An individual may be recognized as an expert in one domain, but not in 

another, similar one. Expertise is also likely to exist along a continuum rather than as a 

binary condition (Collins and Evans 2007). This thesis considers expertise as the level of 

contributor domain knowledge relative to an intended use of information as determined 

by project sponsors. In the case of natural history citizen science, this can be 

operationalized as species identification skill.  
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classify objects more quickly (e.g.  Murphy 1982) and more accurately (e.g. Rosch et al. 

1976) at the basic level than at subordinate or superordinate levels. 

The contrast between basic and species-genus levels clearly illustrates the 

potential mismatch between the classification structure of a contributor and the one 

defined in an IS, resulting in a potential deterioration of data quality (Proposition 1, 

Chapter 3).
5
 As the expected preferred level for non-experts is the basic level, I therefore 

expect that, in an unprompted setting (i.e., participants do not choose from a pre-

determined set of classes), non-experts will classify more often and more accurately at the 

basic level than at the species-genus level. This leads to the following hypothesis: 

H-1.1 (Information Accuracy). In a free-form data entry task, contributors will 

classify instances with higher accuracy (fewer errors) at the basic level than at the 

species-genus level, when classes at the species-genus level are unfamiliar to the 

contributors.  

                                                 

 

5
 Proposition 1 (Classification Accuracy) states that class-based conceptual 

models result in lower information accuracy (more classification errors) when the classes 

defined in an information system do not match those familiar to the information 

contributor 
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4.2.2 Impact of Conceptual Modeling on Information Loss in a Free-form Data 

Collection 

Although basic level classes are expected to increase crowd IQ by producing 

higher (classification) accuracy from non-expert contributors (by matching classification 

levels familiar to contributors), the question also arises “to what extent does basic level 

classification result in information loss?” Following Bunge (1977) and cognitive 

principles (and consistent with Proposition 2, Chapter 3)
6
, I expect that contributors will 

tend to report attributes that describe particular instances, rather than attributes associated 

with a specific class (including a basic level one). For example, when describing a bird 

(e.g., American Robin, Caspian Tern), I expect non-experts will tend to focus on 

observable attributes of the instance, such as “standing on the ground,” and “orange 

beak,” as opposed to those associated with its basic level, bird (i.e., “can fly,” “has 

feathers”). This can be generalized to the claim that a conceptual model based on a 

particular class level (however useful or intuitive it may be) can preclude (potentially 

useful) instance-level properties from being recorded, thereby contributing to lower 

crowd IQ by failing to accommodate the phenomena of interest as perceived by 

information contributors. This leads to the following hypothesis: 

                                                 

 

6
 Proposition 2 (Information Loss) states that class-based conceptual models result 

in information loss when the class that a contributor uses to record an instance does not 

imply some attributes of the instance observed by the contributor. 
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H-1.2 (Information loss). In a free-form data entry task, contributors will 

describe instances using terms than include attributes subordinate to the level of the class 

at which they can identify instances. 

4.2.3 Experiment 1 Method 

To test these hypotheses, I conducted a study with 247 undergraduate business 

students (141 female, 106 male) in eight experimental sessions at Memorial University of 

Newfoundland. Participants in each session were shown the same set of stimuli, with the 

sequence randomized between sessions to mitigate any order effect. Business students 

were chosen to ensure a low overall level of biology expertise, reflecting the intended 

context where information contributors are non-experts with respect to the intended 

information uses of project sponsors (in this case, biologists). Low domain expertise was 

verified using self-reported expertise measures: most participants (83%) either strongly or 

somewhat disagreed (on a 5-point scale) with the statement that they are “experts” in 

local wildlife (mean=1.90; s.d.=0.886). Most participants (77%) had never taken any 



 

46 

 

post-secondary biology courses.
7
 Participants indicated that they spend an average of 10 

hours per week outdoors (s.d. = 9.038).
8
 Moreover, the structure of the undergraduate 

business program did not include formal training in conceptual modeling.  

Participation was voluntary and anonymous. Participants were selected from 

senior business courses and were told the purpose of the study only at the beginning of 

the session to ensure nobody could prepare in advance and to prevent bias that might arise 

from attracting students with specific interest in the subject, and vice versa. No incentives 

(e.g., to encourage correct answers) were provided. 

While students are a relatively homogeneous group and unrepresentative of the 

broader citizen science population, the use of this group as study participants is 

appropriate. The hypotheses tested are assumed to be universally applicable, as they are 

derived from fundamental principles of human cognition. The participants were selected 

with low biology expertise because those with little domain knowledge may be most 

                                                 

 

7
 While the demographic data indicate an overall low level of biology expertise 

among participants, 47 participants reported they had taken more than one course in 

biology and 12 participants strongly or somewhat agreed with the statement that they 

were “experts” in local wildlife. To justify using these participants together with the rest 

of the sample in the test of accuracy (H-1.1), I compared the number of correct responses 

at: (1) species/genus and (2) basic levels, between non-experts and these potential experts. 

Welch‟s t-test showed no significant difference between the groups (p-values of 0.11 and 

0.81); therefore, I used the full sample in further analysis. 
8
 Finally, the low proportion of species-level responses obtained in Experiment 1 

(discussed below) is further evidence of low expertise. 
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disenfranchised in UGC designed based on class-based conceptual models. Furthermore, 

students can be good predictors of where the rest of the society is moving vis-à-vis 

information technology adoption (Gallagher et al. 2001). 

4.2.3.1 Materials 

The stimuli were 24 full-color images of plants and animals (see Appendix 1) 

native to Newfoundland and Labrador. The plants and animals were selected by an 

ecology professor well-versed in flora and fauna of the region. Species were chosen to 

include some organisms believed to be familiar and some believed to be unfamiliar to 

people living in the area. In each image, the organism of interest was in focus and 

occupied most of the image area. 

Participants were randomly assigned into one of two study conditions. Those in 

the first condition (Categories and Attributes; 122 participants) were given a printed form 

with two columns - one asking participants to name the object on the image (using one or 

more words) and the second asking them to list features that best describe the object on 

the image. In the second condition (Attributes only; 125 participants), there was only one 

column asking participants to list features that best describe the object.  

4.2.3.2 Procedure 

Images were displayed to participants in a random sequence on a large screen. 

Each image was shown for 50 seconds. This time was deemed reasonable, as observers 

often have only short encounters with fauna in the wild, and in a pre-test it was 
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determined sufficient to elicit several attributes and classes. The transition between 

images was a blank screen shown for one second, accompanied by a beep.  

4.2.3.3 Data Entry 

I transcribed the responses to ensure consistency. I recorded verbatim the 

categories and attributes provided by participants, following practices used in similar 

studies (Jones and Rosenberg 1974; Lambert et al. 2009). When faced with illegible 

handwriting I attempted to decipher handwriting but avoided making interpretations and 

skipped unreadable entries. Obvious spelling errors were corrected (e.g., coyotaie was 

coded as coyote); redundant words (e.g., its antlers look heavy was coded as heavy 

antlers) and symbols (e.g., brackets, tilde) that did not carry additional meaning were 

removed. Complex attributes were broken down into individual components (e.g., “long 

yellow beak” was coded as “long beak” and “yellow beak”), based on considerations 

suggested by Rosenberg and Jones (1972). Following psychology research (e.g., Tanaka 

and Taylor 1991), attributes for the same species with clearly similar meanings were 

grouped together (e.g., “horns” and “antlers”).  

4.2.3.4 Coding 

Categories were coded as either “basic level,” “species-genus level,” or “other” 

and attributes as either “basic level,” “superordinate to basic,” “subordinate to basic,” or 

“other.” The species-genus level was determined based on biological convention, while 

the basic level was adopted from prior studies in cognitive psychology (Klibanoff and 

Waxman 2000; Lassaline et al. 1992; Mervis and Crisafi 1982; Michael et al. 2008; 
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Murphy 1982; Rhemtulla and Hall 2009; Rosch 1974; Tanaka and Taylor 1991). All 

categorical responses at other biological levels (e.g., subordinate) were coded as “other”. 

A thorough survey of cognitive literature failed to reveal an agreed-upon basic-level for 6 

out of the 24 species used (lung lichen, Old Man‟s beard, coyote, chipmunk, moose, and 

caribou), so these were excluded from further analysis. The final data set contained 3,737 

categories and 7,330 attributes. 

For internal consistency, I coded all the data. To assess coding accuracy, another 

person independently recoded category responses, resulting in 94.8% agreement with the 

original coding (Cohen‟s Kappa = 0.913). This agreement is considered “almost perfect” 

(Landis and Koch 1977). The third individual independently recoded the attributes, with 

76.3% agreement
 9

 with the original coding.
 
 

                                                 

 

9
 Cohen‟s Kappa for attributes was 0.209, which is borderline “fair agreement” 

(Landis and Koch 1977). The decrease in Kappa is due to the high prevalence of 

subordinate attributes which, according to both coders, accounted for at least 74% of all 

attributes (prevalence index = 0.66, which is considered high, see Sim and Wright 2005). 

Coders agreed on what to code as “subordinate” 86.6% of the time, but the pervasiveness 

of subordinate attributes influences the Kappa statistic as an indicator of chance 

agreement (Sim and Wright 2005). In cases of high prevalence, raw agreement and 

prevalence index tend to be more informative than Kappa values (Sim and Wright 2005). 

All indicators are consistent with the hypothesis H-1.2 that predicts more subordinate 

attributes. 
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4.2.4 Experiment 1 Results 

4.2.4.1 Information Accuracy: Free-form Data Entry (H-1.1)  

To assess accuracy, I focused on the “Categories and Attributes” study condition, 

in which 122 participants were explicitly asked to classify observed stimuli. Participants 

provided a total of 3,737 categories (on average 1.28 per image per participant). I 

analyzed data for each image separately. The categories for each species were grouped 

into basic and combined species-genus levels (categories at other levels were not relevant 

this analysis). The basic level (e.g., bird) was expected to be preferred by participants, 

while species (e.g., American Robin, Turdus migratorius) and genus (e.g., “true thrush,” 

Turdus) levels are useful to data consumers (e.g., biologists) and are the levels at which 

many citizen science projects expect contributors to report sightings.  

As expected, basic-level categories were most frequent. To compare the frequency 

of basic and species-genus level responses, the Chi-square goodness of fit statistic was 

used. The observed frequencies of basic and species-genus labels were compared with the 

null model assuming equal proportions of basic and species-genus level categories 

(aggregating species and genus categories into one group increased the test‟s 

conservativeness). For example, when observing Common Tern, participants provided 

107 basic level (e.g., bird) and 3 species-genus level responses. The expected frequency 

for each group is 55 (χ
2
=98.33, d.f.=1, p < 0.001). This shows a strong tendency to report 

basic-level categories, consistent with prior research in cognitive psychology.  
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Table 2. Chi-square (χ
2
) goodness-of-fit for the number of basic vs. species-genus level 

categories 

Species Basic and 

species-genus  

Basic Species-

genus 

Ratio of basic  

to species-

genus 

χ
2 

p-value 

American Robin 164 86 78 1.10 0.39 0.532 

Atlantic salmon 125 100 25 4.00 45.00 0.000 

Blue Jay 168 69 99 0.70 5.36 0.021 

Blue Winged Teal 149 144 5 28.80 129.6

7 

0.000 

Bog Labrador tea 112 108 4 27.00 96.57 0.000 

Calypso orchid 104 92 12 7.67 61.54 0.000 

Caspian Tern 113 111 2 55.50 105.1

4 

0.000 

Common Tern 110 107 3 35.67 98.33 0.000 

False morel 34 34 0 N/A 34.00 0.000 

Fireweed 120 94 26 3.62 38.53 0.000 

Greater 

Yellowlegs 

109 108 1 108.00 105.0

4 

0.000 

Indian pipe 96 89 7 12.71 70.04 0.000 

Killer whale 142 54 88 0.61 8.14 0.004 

Mallard Duck 153 133 20 6.65 83.46 0.000 

Red fox 124 110 14 7.86 74.32 0.000 

Red squirrel 123 105 18 5.83 61.54 0.000 

Sheep laurel 105 103 2 51.50 97.15 0.000 

Spotted Sandpiper 114 112 2 56.00 106.1

4 

0.000 

 

Table 2 summarizes the results. In 15 of 18 images, there was a significant (p < 

0.001) preference for basic-level categories.
10

 Only in the case of American Robin, killer 

whale and Blue Jay did basic-level classification not dominate. In the case of killer whale 

and Blue Jay, participants favored the species, rather than the basic, level (bird or whale). 

                                                 

 

10
 Allowing for multiple comparisons (18 in this case), a Bonferroni correction 

can be made to calculate a more conservative p-value (.05/18=.0028). Note that the 

results are robust to this adjustment, as the significant results favoring basic-level 

categories remain significant. 
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This can be explained by the familiarity with these animals among participants. The 

prevalence of basic-level category responses across most of the stimuli is further evidence 

of the low level of domain expertise in the sample.  

Table 3. Fisher‟s exact test of independence in Categories and Attributes condition 

Species Correct 

basic 

Incorrect 

basic 

Correct 

species-

genus 

Incorrect 

species-

genus 

Fisher’s 

exact 

(p-value) 

American Robin 86 0 74 4 0.049 

Atlantic salmon  100 0 0 24 0.000 

Blue Jay 69 0 98 1 1.000 

Blue Winged Teal 143 1 0 5 0.000 

Bog Labrador tea 108 0 0 4 0.000 

Calypso orchid 91 1 0 12 0.000 

Caspian Tern 111 0 0 2 0.000 

Common Tern 107 0 0 3 0.000 

False morel 22 12 0 0 N/A 

Fireweed 94 0 1 25 0.000 

Greater Yellowlegs 107 1 0 1 0.018 

Indian pipe 88 1 0 7 0.000 

Killer whale 48 6 86 2 0.054 

Mallard Duck 133 0 15 5 0.000 

Red fox 104 6 10 4 0.015 

Red squirrel 100 5 1 17 0.000 

Sheep laurel 103 0 0 2 0.000 

Spotted Sandpiper  112 0 0 2 0.000 

 

To test accuracy (H-1.1), I assigned a binary variable for each response indicating 

whether it was correct for the stimulus it described. For example, in descriptions of 

Common Tern, all labels bird were coded as correct (at the basic level); Common Tern 

was coded as correct at the species-genus level, while Arctic Tern, Kittiwake, and Osprey 

were coded as incorrect. I performed Fisher‟s exact test of independence to determine if 
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information accuracy was contingent on level of classification. As show in Table 2, for 

half of the images very few species-genus level categories were provided.
11

  

The results are significant (using a threshold of p=0.05) for 15 out of 17 species 

(excluding False morel, for which a p value could not be calculated due to a complete 

absence of species-genus level responses, while 22 participants correctly provided its 

basic level, mushroom), indicating a strong relationship between level of classification 

and accuracy (see Table 3).
12

 In all significant cases, the number of correct basic level 

responses was higher than the number of correct species-genus level responses. The cases 

for which accuracy was not significantly higher for basic level categories (i.e., Blue Jay 

and killer whale) involved familiar or commonly known species that non-experts may see 

often, either in nature or in the media. It is reasonable to postulate that high prior 

exposure to these species resulted in high accuracy at the species level, and these two 

species accounted for a high proportion of all correct species-genus level responses. 

Notwithstanding these charismatic cases, the remainder of the data demonstrates that, as 

                                                 

 

11
 Fisher‟s exact test was chosen over Chi-square due to low frequencies in 

species or genus cells. Unlike Chi-square, Fisher‟s exact test provides exact 

hypergeometric probability (expressed as a p-value) of observing this particular 

arrangement of the data. Despite criticisms of being unnecessarily conservative, it 

remains a popular method to detect contingency in categorical data and is preferred in 

data with low expected cell values (Agresti 1992).  
12

 Allowing for multiple comparisons (17 in this case), a Bonferroni correction 

can be made to the p-value (.05/17=.0029). The results are robust, favoring basic-level 

categories in 12 of the 17 cases. 
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the level of classification changes from basic to species-genus, accuracy declines. 

Overall, the results provide strong support for H-1.1.  

4.2.4.2 Information Loss (H-1.2)  

I measured information loss in terms of the number of attributes reported by 

participants that could not be inferred from the classes provided by those participants for 

an image. The results from the accuracy test above demonstrate the dominant 

performance of basic level categories over species-genus level categories. This finding is 

critical in testing the degree of information loss, as the question can now be asked “to 

what extent do participants employ basic-level attributes (e.g., can fly, has feathers for 

bird) versus lower-level attributes (e.g., red breast) when they are not required to classify 

observations?” The greater the number of sub-basic level attributes reported, the greater 

the degree of potential information loss if the basic level is the one at which information 

is collected and stored. 

To investigate information loss, all attributes (7,330) in the Attributes-only 

condition for the 18 plants and animals with an agreed-on basic level category were 

classified into: sub-basic, basic (and superordinate), or other, resulting in 6,429 sub-basic, 

824 basic, and 77 other attributes. Table 4 illustrates the sub-basic, basic and other 

attributes provided for one of the organisms in the study (American robin).  
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Table 4. Sample of basic, sub-basic and other attributes provided for American robin in 

the Attributes-only condition 

Frequency 

count 
Basic Sub-basic Other 

85  red breast  

31  small  

26  yellow beak  

22 has feathers   

20  black  

15  black head  

14  small beak  

12  brown  

9  pointy beak  

9  black back  

8 can fly   

… … … … 

1   never seen before 

 

I tested for differences using the Chi-square goodness of fit test, where the 

observed frequencies of sub-basic and basic level attributes were compared with expected 

frequencies (assuming equal probabilities of obtaining basic and sub-basic attributes). In 

contrast with the prevalence of basic level categorization, there were 9.38 times more 

sub-basic than basic level attributes, with an average p-value approaching zero.  Table 5 

summarizes the results across the 18 species used in this analysis. The data strongly 

support H-1.2 and indicate that, despite the salience of a particular classification level, the 

basic-level does not capture all information available to and easily reported by 

contributors. 
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Table 5. Number of sub-basic, basic, super-basic and other attributes in Attributes-only 

condition 

Species Total Sub-

basic 

Basic Sub-basic 

to basic 

ratio 

Super-

basic 

Other* χ
2 
p-value 

(basic and 

super vs. 

sub-basic) 

American Robin  400 362 35 10.3 1 2 0.000 

Atlantic salmon  337 273 45 6.1 4 15 0.000 

Blue Jay  453 397 51 7.8 1 4 0.000 

Blue Winged 

Teal   

439 350 76 4.6 2 11 0.000 

Bog Labrador tea  274 266 3 88.7 2 3 0.000 

Calypso orchid  364 358 3 119.3 0 3 0.000 

Caspian Tern  511 460 47 9.8 1 3 0.000 

Common Tern  479 435 41 10.6 0 3 0.000 

False morel  248 238 9 26.4 0 1 0.000 

Fireweed  312 302 3 100.7 0 7 0.000 

Greater 

Yellowlegs  

534 486 39 12.5 4 5 0.000 

Indian pipe  351 342 6 57.0 0 3 0.000 

Killer whale  388 325 54 6.0 0 9 0.000 

Mallard Duck  497 421 74 5.7 0 2 0.000 

Red fox  476 340 46 7.4 88 2 0.000 

Red squirrel  503 362 105 3.4 35 1 0.000 

Sheep laurel  326 319 4 79.8 0 3 0.000 

Spotted 

Sandpiper  

438 393 44 8.9 1 0 0.000 

*Some attributes provided could not be associated with biological classes of organisms. 

For example, some participants used adjectives such as “beautiful” and “standing on rock” to 

describe organisms. 

4.3 Experiment 2 

In Experiment 1, the classes that would be of interest to project sponsors did not in 

most cases match contributor classifications of phenomena in the domain. However, the 

experimental task did not direct participants to a particular level of classification. In 

practice, data collection (whether for UGC or traditional applications) typically involves 

populating pre-existing class structures. Experiment 1 demonstrates that class-based 

models can impair accuracy and result in information loss, but does not provide direct 

evidence of the impact of a predefined schema (i.e., when classes are predefined in 



 

57 

 

advance and contributors are asked to select among these classes) on accuracy. Hence, I 

conducted a second experiment to assess whether the findings from Experiment 1 (free-

form) change when a predefined class-based schema is imposed. 

In Experiment 2, participants classify each stimulus by selecting one option from 

pre-specified options. Based on the results of Experiment 1, the classification choices 

(levels) available to participants were manipulated. The first condition simulated a class-

based model at a single (species) level, typical of existing projects (i.e., select a species 

from a set of potential species). The second condition simulated a hierarchical class-based 

model (e.g., species options, as well as superordinate and subordinate classes). In 

particular, there were correct classes at different levels (e.g., superordinate to basic, basic, 

subordinate to basic, species). Importantly, each set of classes in this condition included 

the most frequent (and always correct) response from Experiment 1 (e.g., bird, fish). It 

also included multiple incorrect options (at different levels) to make the task more 

realistic (the number of incorrect options varied slightly for different organisms). For 

example, the options for Common Tern (Sterna hirundo) were: animal (correct, 

superordinate), bird (correct, basic), Common Tern (correct, species-level), Iceland Gull 

(incorrect, species-level), loon (incorrect, subordinate), shorebird (incorrect, subordinate), 

tern (correct, subordinate), warm-blooded organism (correct, superordinate), waterfowl 
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(incorrect, subordinate).
13

 In addition, each condition included “I don‟t know” and 

“Other” (with space for an alternate response) options to allow participants to either avoid 

classifying (typical to volitional IS use) or respond using classes that were not among the 

predefined choices. 

Experiment 1 showed that non-experts favor basic level classes. Therefore 

participants are expected to classify more often and more accurately at the basic level, 

leading to higher accuracy in the multi-level condition, where the basic-level option is 

explicitly provided as one of the options. Consistent with Proposition 1, this leads to the 

following hypothesis:   

H-2 (Information Accuracy). In a constrained (class-based) data entry task, 

contributors will classify instances with fewer errors in a multi-level (super-, basic- and 

sub-basic) model than in a single-level (species-genus) model, when the classes in the 

single-level model are unfamiliar to the contributors. 

4.3.1 Experiment 2 Method 

Seventy seven undergraduate students (24 female, 53 male) participated in the 

study. Almost all (94.8%) strongly or somewhat disagreed (on a 5-point Likert scale) with 

                                                 

 

13
 A complete listing of options provided to participants for all species used is 

provided in Appendix 2. 
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the statement that they are “experts” in local wildlife, and most (68.8%) had never taken a 

post-secondary course in biology.  

4.3.1.1 Materials and Procedure 

The materials used were a subset of those in Experiment 1.
14

 The procedure for 

presenting the images was the same as in Experiment 1. Participants were randomly 

assigned into one of two conditions. In the single-level condition (38 participants), 

participants chose from a list of possible species-level responses; in the multi-level 

condition (39 participants), participants chose from options that included the basic level 

and levels above and below the basic (including species). Nothing in the study materials 

suggested that the responses were required at a particular (i.e., specific or more general) 

level. 

In the single-level condition, of the nine species provided as options, only one was 

correct. The eight others were selected as plausible options based on similarity in 

appearance and/or habitat, and their occurrence in the same geographic region. In the 

multi-level condition, the options were selected based on Experiment 1 to increase 

congruence with non-expert classifications. There was the same number of 

                                                 

 

14
 Experiment 2 excluded a number of images used in Experiment 1 (see 

Appendix 1) – those for which there is no agreed-on basic-level category (e.g., lung 

lichen, Old Man‟s beard), and those familiar species that participants were able to identify 

correctly in Experiment 1 (i.e., American Robin, Blue Jay, killer whale).  
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correct/incorrect options across all ten images. The full list of options presented to 

participants is listed in Appendix 2. The options were printed on paper with each set of 

options on its own page. In both conditions the order of options was randomized for each 

participant, and participants were asked to select one option (the options were not 

grouped in any way and the classification level was not indicated). In addition to 

facilitating comparison between groups, the options in the single-level condition were 

mutually exclusive, while in the multi-level condition, lower level options implied higher 

level ones (e.g., American Robin implied bird) and options at the same level were 

mutually exclusive.  

4.3.2 Experiment 2 Results  

In assessing accuracy, I compared the answers given by participants in the single-

level and multi-level conditions. The responses from the predefined list of 9 options and 

the responses written in “Other” field were combined. The “I don‟t know” responses were 

excluded from the count – making the test more conservative (there were 108 “I don‟t 

know” responses in the single-level condition and only 15 in the multi-level condition). In 

total, 271 responses in the single-level condition were compared with 375 responses in 

the multi-level condition. Each response was coded as “correct” or “incorrect” based on 

biological convention (e.g., the answer bird was accurate for Common Tern, but seagull 

was inaccurate). 
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Table 6. Comparison of accuracy in Experiment 2: single (E2SL) vs. multi-level 

conditions (E2ML) 

Species E2SL E2ML E2ML vs. E2SL 

Correct Incorrect % 

Correct 

Correct Incorrect % 

Correct 

% 

Diff. 

χ2 p-

value 

Atlantic salmon 10 23 30.3 32 7 82.1 51.7 19.694 0.000 

Blue Winged 

Teal 

6 27 18.2 32 7 82.1 63.9 29.257 0.000 

Calypso orchid 7 17 29.2 29 8 78.4 49.2 14.576 0.000 

Caspian Tern 4 20 16.7 23 15 60.5 43.9 11.510 0.001 

Common Tern 5 22 18.5 22 17 56.4 37.9 9.476 0.002 

False morel 0 24 0.0 30 4 88.2 88.2 43.866 0.000 

Fireweed 7 17 29.2 29 10 74.4 45.2 12.390 0.000 

Indian pipe 4 21 16.0 16 20 44.4 28.4 5.417 0.020 

Mallard Duck 26 11 70.3 36 3 92.3 22.0 6.136 0.013 

Sheep laurel 4 16 20.0 28 7 80.0 60.0 18.832 0.000 

AVERAGE   26.9  73.9  47.0   

 

As expected, accuracy in the multi-level condition was significantly greater than 

in the single-level condition (73.9% versus 26.9%, p=0.000, χ
2
=139.56, 1 d.f.). This was 

largely due to the prevalence of correct responses at the basic level in the multi-level 

condition: there were more basic-level (148 or 39.5%) than species-level (103 responses, 

27.5%) responses (p=0.005, χ
2
=8.07, 1 d.f.). Accuracy of basic-level responses was 

99.3% compared with 53.4% for species-level responses. Basic-level responses accounted 

for 53.1% of correct responses in the multi-level condition (while only 20.2% of correct 

responses were at the species-level, 7.6% at the subordinate level, and 19.1% at the 
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superordinate level).
15

 To test if the results varied across species, the Chi-square goodness 

of fit statistic was computed for each pair (Table 6). In all cases, accuracy in the multi-

level condition was significantly greater than in the single-level condition.
16

 These results 

strongly support H-2 (and are consistent with H-1.1).  

4.4 Experiment 3 

Experiments 1 and 2 demonstrate that accuracy declines if the classes specified in 

a conceptual model do not match the classes contributors are able to provide competently. 

Experiment 3 sought to rule out possible alternative explanations for the finding in 

Experiments 1 and 2. First, it was necessary to ensure that participants in the species-level 

condition were not drawn to incorrect options merely due to greater familiarity with these 

options than with the correct one. Therefore, I examined the results of Experiment 2 and 

removed and replaced all incorrect classes that received a larger than average number of 

responses (a possible indicator of participant familiarity with these options). For example, 

                                                 

 

15
 Greater accuracy in the multi-level condition was not merely a function of the 

number of correct options available in the single-level condition (one correct response) 

versus the multi-level condition (several correct responses). While most options available 

were at levels other than basic, participants consistently favored the correct basic option 

and avoided other levels (including incorrect basic, species, superordinate). A detailed 

analysis of the responses is provided in Appendix 3. 
16

 Allowing for multiple comparisons (10 in this case), a Bonferroni correction 

can be made to calculate a more conservative p-value (.05/10=.005). Note that the results 

are robust to this adjustment, with 8 of 10 cases remaining significant. 
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Jelly leaf fungus was removed as an option for False morel because it was incorrectly 

chosen 13 times in Experiment 2, whereas the next most frequent incorrect response was 

selected 5 times. All frequent incorrect responses were replaced with new classes deemed 

by the ecology professor (who selected options in Experiment 1) to be unfamiliar to non-

experts. 

Second, to ensure that the results in Experiment 2 were not influenced by omitting 

the species from Experiment 1 that were known to participants, Experiment 3 added the 

species from Experiment 1 that were removed in Experiment 2 (i.e., American Robin, 

killer whale and Blue Jay). Including these created a familiar (or “schema-congruent”) set 

of stimuli, based on the finding from Experiment 1 that participants were able to identify 

these organisms at the species level and on research on basic-level categorization showing 

participants prefer more specific classification when they are experts in a domain (Tanaka 

and Taylor 1991). This “schema-congruent” set could be compared with an unfamiliar 

(“schema-incongruent”) group – the 10 classes from Experiment 2 for which accuracy 

was greater in the multi-level condition. Consistent with Proposition 1 and H-2, this leads 

to the following hypothesis: 

H-3.1 (Information Accuracy). In a constrained (class-based) data entry task, 

contributors will classify instances with fewer errors in a multi-level (super-, basic- and 

sub-basic) model than in a single-level (species-genus) model, when classes in the single-

level model are unfamiliar to the contributors. 

Finally, to further evaluate the claim that requiring non experts to conform to a 

predetermined class-based schema has negative consequences on IQ, I compare 
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classification accuracy in free-form vs. constrained data entry tasks. While constrained 

data entry provides participants with cues and may help in recalling applicable 

classifications, it may also bias participants to choices they might not otherwise make, 

leading to wrong classification decisions (Parsons et al. 2011). For example, whereas 

non-experts can provide accurate responses in a free-form data task (as seen in 

Experiment 1 where the overall accuracy of categories provided was 86.7%), the presence 

of different options may influence data contributors to select incorrect classes. Consistent 

with Proposition 1, this leads to the following hypothesis:  

H-3.2 (Information Accuracy). In a free-form data entry task, contributors will 

classify instances with fewer errors than in a constrained (class-based) data entry task, 

whether the latter uses single-level or multi-level classification, when classes at the 

species-genus level are unfamiliar to the contributors. 

4.4.1 Experiment 3 Method 

Sixty six undergraduate business students (36 female, 30 male) participated, 

drawn from the same population of biology non-experts as in Experiments 1 and 2. 

Almost all participants (89.4%) strongly or somewhat disagreed (on a 5-point Likert 

scale) with the statement that they were “experts” in local wildlife, and most (83.3%) had 

never taken a post-secondary course in biology.  

4.4.1.1 Materials and Procedure 

The materials used were the same as in Experiment 2, with the addition of the 

three familiar species used in Experiment 1. The procedure for presenting the images was 
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the same as in Experiments 1 and 2. Participants were randomly assigned into one of 

three conditions. In condition 1 (23 participants), participants chose one option from a list 

of possible species-level responses. In condition 2 (21 participants), participants chose 

one option from classes at the basic level and at levels above and below the basic 

(including species). In both conditions, “I don‟t know” and “Other” (with space for an 

alternate response) options were included to allow participants to either avoid classifying 

or respond using classes that were not included in the predefined lists. In condition 3 (22 

participants), participants were presented with an empty sheet and asked to name the 

object using one category or write "I don't know".  

In the single-level condition, of the nine species provided as options, only one was 

correct. The eight others were selected as plausible alternatives based on similarity in 

appearance and/or habitat, and their occurrence in the same geographic region. In the 

multi-level condition, there were four correct (including the most frequent correct 

responses from Experiment 1, such as fish, bird, and mushroom) and 5 incorrect options 

for each species.
17

 The options were printed on paper, with each set of options on its own 

page. In both conditions, the order of options was randomized for each participant and 

participants were asked to select one option for each stimulus.  

                                                 

 

17
 Appendix 3 provides detailed analysis showing that the results are not 

compromised by the potential bias of different numbers of correct responses in the single-

level and multi-level conditions. 
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4.4.2 Experiment 3 Results  

4.4.2.1 Impact of Schema on Accuracy: Single vs. Multiple Level Class-Based 

Model (H-3.1) 

 In assessing accuracy, the same procedure used to test H-2 was followed. The “I 

don‟t know” responses were excluded from the count, thereby making the test 

conservative (there were 86 “I don‟t know” responses in the single-level condition and 19 

in the multi-level condition). In total, 213 responses in the single-level condition were 

compared with 254 responses in the multi-level condition. Each response was coded as 

“correct” or “incorrect” based on biological convention.  

As expected, accuracy in the multi-level condition was significantly greater than 

in the single-level condition (71.1% versus 49.8%, χ
2
=23.48, 1 d.f., p<0.001). Accuracy 

between conditions did not significantly vary for the three familiar species from 

Experiment 1: 92.1% in the species-only and 91.9% in the multi-level condition with all 

responses in the single-level condition and most (85.5%) responses in the multi-level 

condition being at the species level (see Table 7). Participants were comfortable 

classifying American robin, Blue jay and Killer whale at the species level, suggesting that 

the species level was congruent with their mental schema for these organisms. 

Importantly, classification accuracy was not higher for these species in the single-level 

condition than in the multi-level condition.   
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Table 7. Accuracy in Single-level (E3SL) and Multi-level condition (E3ML) for 

"Familiar” species. 

Species E3SL E3ML 

Correct Total % 

Accuracy 

Correct Total % 

Accuracy 

American Robin 16 19 84.2 16 21 76.2 

 Species-level 16 19 84.2 12 17 70.6 

 Other levels 0 0 - 4 4 100.0 

Blue jay 23 23 100.0 20 20 100.0 

 Species-level 23 23 100.0 16 16 100.0 

 Other levels 0 0   4 4 100.0 

Killer Whale 19 21 90.5 21 21 100.0 

 Species-level 19 21 90.5 19 19 100.0 

 Other levels 0 0  - 2 2 100.0 

TOTAL   92.1   91.9 

 Species-level   92.1   90.6 

 Other levels*   - 10 10 100.0 

* Consisting of 9 basic-level responses (bird, whale) and 1 superordinate (mammal). 

For the remaining, unfamiliar group of species, accuracy was greater in the multi-

level than in the single-level condition: 65.1% vs. 32.0% (p-value = 0.000, χ
2
=36.92, d.f. 

= 1). In this group, basic-level responses accounted for 63.2% of correct responses in the 

multi-level condition (while only 20.8% of correct responses were at the species-level). 

As in Experiment 2, in the multi-level condition for Experiment 3 basic level 

categorization largely contributed to the greater accuracy for the unfamiliar group of 

species as compared with the single-level condition: there were more basic-level 

responses (82 out of 210 responses or 39.0%), compared to the species-level (61 

responses, 29.0%); 30 (14.3%) responses were subordinate, 19 (9.0%) responses were 

superordinate and 19 (9.1%) were “I don't know”. Accuracy of basic-level responses was 

96.3% compared to 42.6% at the species-level (accuracy at the subordinate and 

superordinate levels was 13.3% and 84.2% respectively).   
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These results support H-3.1 and are consistent with H-1.1 (free-form category 

elicitation) and H-2, providing additional evidence that accuracy is contingent on 

providing users with classification structures more congruent with preferred user 

classification models. The lack of difference among the familiar group is consistent with 

H-3.1 as it suggests that, for these species, most contributors are comfortable classifying 

at the species-genus level. 

4.4.2.2 Impact of Schema on Accuracy: Free-form vs. Class-Based Models (H-3.2) 

In assessing accuracy of free-form versus class-based data collection, I followed 

the procedure used in testing H-3.1, but coded the “I don‟t know” responses as incorrect – 

making the test more conservative when comparing free-form to the multi-level condition 

(there were 32 “I don‟t know” responses in the free-form condition compared with 19 in 

the multi-level condition). In total 299 responses in the single-level condition were 

compared with 273 responses in the multi-level condition and 286 responses in the free-

form condition.  

Overall accuracy in the free-form condition was 77.3% compared to 35.5% in the 

single-level condition and 66.7% in the multi-level condition (both are significantly lower 

than the free-form condition based on Fisher‟s exact test, p < 0.05). I then investigated the 

differences for each organism separately. As shown in Table 8, in 9 of 13 cases 

participants in the free-form condition provided a significantly higher percentage of 

accurate responses compared to those in the single-level condition.  
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Table 8. Accuracy in Experiment 3, Single-level condition (E3SL), Multi-level condition 

(E3ML) and Free-form condition (E3FF). * significant at 0.05, ** significant at 0.01 level 

(using Fisher's exact test). 

Species 

E3SL E3ML E3FF Δ % Correct 

Correct / 

incorrect 

% 

Cor-

rect 

Correct/ 

incorrect 

% 

Cor-

rect 

Correct/ 

incorrect 

% 

Cor-

rect 

E3FF vs. 

E3SL 

E3FF vs. 

E3ML 

American Robin 16 / 7 69.6 16 / 5 76.2 20 / 2 90.9 21.3** 14.7* 

Atlantic Salmon 4 / 19 17.4 13 / 8 61.9 17 / 5 77.3 59.9** 15.4* 

Blue jay 23 / 0 100.0 20 / 1 95.2 20 / 2 90.9 -9.1** -4.3* 

Blue Winged 

Teal 

11 / 12 47.8 16 / 5 76.2 22 / 0 100.0 52.2** 23.8* 

Calypso Orchid 3 / 20 13.0 12 / 9 57.1 17 / 5 77.3 64.2** 20.1* 

Caspian Tern 1 / 22 4.3 10 / 11 47.6 18 / 4 81.8 77.5** 34.2* 

Common Tern 2 / 21 8.7 8 / 13 38.1 12 / 10 54.5 45.8** 16.5* 

False morel 0 / 23 0.0 14 / 7 66.7 8 / 14 36.4 36.4** -30.3* 

Fireweed 7 / 16 30.4 10 / 11 47.6 14 / 8 63.6 33.2** 16.0* 

Indian Pipe 1 / 22 4.3 6 / 15 28.6 12 / 10 54.5 50.2** 26.0* 

Killer Whale 19 / 4 82.6 21 / 0 100.0 20 / 2 90.9 8.3** -9.1* 

Mallard 19 / 4 82.6 19 / 2 90.5 22 / 0 100.0 17.4** 9.5* 

Sheep Laurel 0 / 23 0.0 17 / 4 81.0 19 / 3 86.4 86.4** 5.4* 

AVERAGE  35.5  66.7  77.3 41.8** 10.6* 

 

Accuracy in multi-level classification was greater than in single-level 

classification (as shown in H-2.1 and H-3.1 above). In addition, as Table 8 shows, in 2 of 

13 cases accuracy in the free-form condition was significantly higher than in the multi-

level condition. In part, the increase in accuracy in the free-form condition is due to the 

greater accuracy when classifying at the basic level (which was close to 100% correct 

regardless of condition). There were significantly more basic-level responses in the free-

form condition than in the multi-level condition; 158 out of 286 times (55.2%) compared 

to 91 out of 273 times (33.3%) (p=0.000, χ
2
=27.15, 1 d.f.). There was only one basic-

level response (duck) in the species-only condition (provided in the "Other" field). 



 

70 

 

Considering that overall accuracy in the free-form condition was significantly higher than 

in both of the constrained-choice conditions, the results support H-3.2. 

4.5 Chapter Discussion and Conclusion 

This chapter evaluates the impact of conceptual modeling on classification 

accuracy and information loss. Appendix 4 summarizes the findings of the three 

laboratory experiments. The results demonstrate that accuracy is contingent on the classes 

used to model a domain. In free-form data collection, except for familiar organisms, the 

results demonstrate higher accuracy when using basic-level classification. Similarly, in 

schema-mediated data collection, the results indicate higher accuracy when data 

collection is organized in terms of classes at multiple levels (including the basic level) as 

opposed to a single level.  

In addition, the comparison between unconstrained and schema-mediated data 

collection shows that accuracy does not necessarily improve when intuitive and accurate 

options are provided for users. Indeed, the overall classification accuracy in the free-form 

condition of Experiment 3 was significantly greater than in either single or multi-level 

conditions. This is particularly notable, because the most frequent correct options from 

the free-form task in Experiment 1 (the basic-level categories bird, fish, mushroom) were 

available as options in the multi-level condition of Experiment 3, making the comparison 

more conservative. This further indicates the potential IQ implications of using a 

predefined schema in UGC settings: while predefined classes provide non-expert data 

contributors with cues that may guide them to correct choices, they may also bias non-

experts to wrong classification decisions.  



 

71 

 

The experiments point to a data quality dilemma in using class-based models to 

capture UGC. The classes non-experts are comfortable using tend to be general ones. 

However, for many applications, more specific classes are required. Experiment 1 shows 

that, when contributors attempt to classify observations at a lower level, accuracy 

generally declines. Thus, there is the potential for low accuracy in real-world UGC 

datasets that rely on specialized classification choices. However, the results also show 

that participants can contribute substantial amounts of information (attributes) beyond 

what is implied by the high-level classes to which they can assign an observed 

phenomenon.
18

  

While the support for H-1.1, H-2, and H-3.1 (i.e., improved accuracy when classes 

are congruent with contributor views) demonstrates the merits of using more familiar 

classes (e.g., basic-level categories) in designing information systems to harness UGC, 

this thesis also examines an alternative to the class-based approach to harnessing 

collective intelligence. Based on ontology and cognition, I argue that representing 

instances in terms of classes results in the loss of potentially valuable properties. The test 

of H-1.2 demonstrated that a significant number of low-level attributes can be generated 

by non-expert contributors. These attributes cannot be inferred from the classes that can 

                                                 

 

18
 An interesting question for future research is whether these attributes can be 

used to infer more specific classes.  
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be accurately identified by non-experts. Experiments 1, 2 and 3 show that basic-level 

categories are generally the most frequently provided and typically most accurate of the 

classification levels, whether in a free-form or schema-mediated data collection tasks. 

Notwithstanding this, the results also show that modeling using basic level classes can be 

expected to lead to a significant loss of properties.  

Finally, the results provide an empirical evidence of the advantages of the use-

agnostic and contributor-focused crowd IQ in UGC settings. Currently, many UGC 

projects (e.g., various active citizen science initiatives) focus data collection on 

classifying phenomena using classes that are useful to data consumers. This research 

suggests that such approaches not only can sometimes lead to data accuracy problems, but 

can preclude valuable information from being collected (leading to information loss). The 

results highlight an opportunity to extract additional data from the crowd that is routinely 

neglected in applications with fixed classification structure. Chapter 8 discusses further 

implications of these findings. 

The next chapter proposes principles for modeling UGC intended to overcome the 

negative consequences of traditional conceptual modeling on IQ.  
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5 Principles for Modeling User-generated Content 

The increasing reliance of organizations on UGC challenges long-held 

propositions about conceptual modeling rooted in the assumptions of traditional (e.g., 

corporate) domains. As demonstrated in the previous chapter, employing traditional class-

based conceptual modeling approaches can have negative consequences for crowd IQ. It 

appears that the potential of UGC is not being fully realized. Motivated by the findings 

from the three laboratory experiments presented above, this chapter proposes principles 

underlying an alternative approach to modeling UGC.  

5.1 Emergent Approaches to Conceptual Modeling 

Recognizing shortcomings of traditional conceptual modeling, several alternative 

approaches to modeling dynamic, heterogeneous or distributed information have 

emerged. One approach is to reduce the extent and depth of specifications. For example, 

models may employ only very basic concepts (McGinnes 2011). This concords with agile 

development which relies on lightweight (“barely good enough”) models that capture 

semantics minimally necessary for the next design iteration (Ambler 2003). Here one 

challenge is to convey essential semantics while keeping models simple and lean (Anwar 

and Parsons 2010).  

Whereas lightweight modeling relies on a small number of “core” constructs, an 

alternative is to use grammars that capture extended semantics. Thus, extensions to 

popular conceptual modeling grammars have been motivated by the need to support 

dynamic information (Chen 2006; Liu et al. 1994). For example, in dealing with 
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unpredictability of heterogeneous information, such extensions may employ probabilistic 

classification models (Ma and Yan 2008). Prior research considered combining 

abstraction-based constructs with instances (by showing instances that instantiate classes) 

(Samuel 2012) and icons depicting stylized and typical examples of the abstract 

constructs (Masri 2009) to improve domain comprehension and understanding by users.  

A growing interest is in domain ontologies that can “bridge” different systems and 

users (McGinnes 2011). These ontologies can be constructed by experts or be 

“outsourced” to the crowd thus purportedly generating more intuitive representations 

(Braun et al. 2007; Robal et al. 2007). Indeed, such approaches tend to encapsulate 

diverse user perspectives and are increasingly prolific. Yet even these models may 

potentially neglect all valid views and thus have a negative impact on IQ. Furthermore, 

domain ontologies generally require commitment of parties to a predefined (albeit often 

flexible) conceptual structure (McGinnes 2011).  

Another promising approach is putting the onus of modeling on users by allowing 

them to dynamically change models (Krogstie et al. 2003; Roussopoulos and Karagiannis 

2009). This approach may be combined with lightweight modeling in which only a basic 

model is developed with the expectation that users update the model. This, however, 

invites unresolved issues of cooperative schema evolution and concurrent access and 

modification of schemas (Roussopoulos and Karagiannis 2009). It is also unclear if this 

approach is scalable online, as some users may lack skills and motivation to create and 

alter models.  
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The approaches reviewed above presuppose some a priori structures and in this 

sense may have limitations and IQ consequences similar to those of traditional modeling. 

A promising approach that does not rely on a priori structures is to store information in a 

flexible data model such as the entity–attribute–value (EAV) model. Resource 

Description Framework (RDF) data model and Datalog logic programming language 

implement the EAV (Patel-Schneider and Horrocks 2007). The RDF framework supports 

current approach to the Semantic web by which things and concepts on the web can be 

described using triplets of subject-predicate-object (Heath and Bizer 2011). In Datalog 

individuals can be declared without a reference to a class. Datalog can be used to declare 

and store facts about individuals, such as married (Mary, John) that describe 

relationships between individuals Mary and John. While these approaches appear 

promising, they also have potential limitations. For example, their simplicity potentially 

comes at the expense of construct overload (Wand and Weber 1993) - whereby the same 

construct (e.g., object in the RDF triplet) can be used to express different ontological 

concepts, such as a thing or a class. Empirical evidence suggests ontological deficiencies 

(i.e., lack of clarity and expressiveness) lead to lower domain understanding (Saghafi and 

Wand 2014) and negatively impact beliefs about usefulness and ease of use of the 

grammars (Recker et al. 2011). The applicability of these approaches to modeling UGC is 

not well understood. Little theoretical understanding exists for how to employ flexible 

data models to model UGC. A promising approach to model UGC is MIMIC, which 

advocates principles of flexible representation based on reference theories of psychology 

(Parsons 1996). MIMIC is based on classical classification theory in cognitive 
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psychology and assumes the primacy of instances and attributes over classes. The 

instance independence makes it possible to describe instances using attributes that do not 

necessarily exist or comply with existing classification structures. Classes can then be 

formed by abstracting common attributes of instances. While this model was not 

explicitly tailored to UGC, its propositions regarding instances and attributes are 

inherently applicable to these settings (a point considered in section 5.3). At the same 

time, a number of the propositions in this model may not fit well with the nature of UGC 

settings.  

First, MIMIC is based on the classical theory of concepts - defining concepts as 

bundles of necessary and sufficient attributes (Estes 1996; Murphy 2004; Parsons 1996; 

Smith and Medin 1981). This may not be problematic in an environment where shared 

understanding of how to define a class can be reached and maintained. However, this 

approach appears limiting in UGC settings, as modern psychology research demonstrates 

that people generally struggle to define classes (concepts) using necessary and sufficient 

attributes (Murphy 2004; Rosch 1978).  

Second, classes in MIMIC are formed by intension (Kimura et al. 1985) - as sets 

of attributes. This does not permit users to directly provide classes as descriptors of 

instances. According to modern psychology, in most cases crowd users are unable to 

generate necessary and sufficient attributes for the classes that they otherwise may easily 

provide (e.g., a user may easily provide a class bird, but struggle to provide enough 

attributes for definitive identification of instances as members of this class). Indeed, the 

laboratory experiments in Chapter 4 demonstrate that non-expert crowds can easily and 
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with high accuracy classify at generic levels (basic-level categories). Allowing users to 

attach classes to instances directly can exploit the human innate ability to classify (Berlin 

et al. 1973) and carries a number of other desirable effects (see section 5.3 for more 

discussion).  

Third, MIMIC was originally created to support traditional IS and not all 

propositions of the model may be germane to UGC settings. For example, MIMIC 

distinguishes between structural, relational and behavioral attributes and reserves special 

operations for each (see Parsons 1996). In a UGC setting, it is unrealistic to expect users 

to understand the differences between these notions and it may be more appropriate to 

collapse different notions of attributes into one. Similarly, the provision of principles of 

"good" classification structures do not appear to be applicable to the content users provide 

in UGC environments as holding crowd users to these principles is challenging (however 

these principles appear applicable to scientists working with crowd data and constructing 

classification structures over UGC - a point further developed in Chapter 8).  

This thesis shares the ontological and cognitive foundations of MIMIC and builds 

upon it, but also considers unique challenges and characteristics of UGC. This leads to 

proposing principles are more closely tailored to the domain of UGC. The next section 

provides analysis of UGC settings that informs principles of modeling UGC.  

5.2 Challenges of Modeling User-generated Content 

This section analyzes modeling challenges in UGC settings where traditional 

conceptual modeling appears to be ill-equipped. Specifically, it focuses on online citizen 

science, in which scientists seek contributions of ordinary people for research purposes 
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(Louv et al. 2012; Silvertown 2009). As discussed in Chapters 1 and 4, a major aspect of 

online citizen science is the democratic nature of participation. While projects are 

developed primarily to serve the needs of scientists (the subject matter experts), the users 

or contributors (i.e., citizen scientists) are ordinary people, often lacking subject matter 

expertise and possessing diverse domain views (Coleman et al. 2009). In addition, many 

projects require only minimal information in order to participate (e.g., to encourage 

broader participation and/or comply with anonymity requirements of research protocols). 

As a result, some requirements and domain knowledge may originate from system owners 

or sponsors, but the actual data are provided by diverse and anonymous users. In this 

environment modeling must embrace the assumption that it may be impossible to reach 

every relevant and representative stakeholder, making it difficult to determine appropriate 

and adequate conceptual structures (e.g., classes, relationship types). Similarly, modeling 

must account for the possibility that some legitimate users are domain non-experts and 

may not fully understand or be able to comply with the domain views of others. An 

emerging modeling challenge is having to represent and encourage diversity of user 

views. 

Modeling challenge #1. Represent and encourage diversity of user views. 

The scope of many citizen science projects can be extensive and very complex. 

For example, iSpot.org.uk collects sightings of all natural history in Great Britain. 

Similarly, Galaxy Zoo images contain a variety of cosmic objects, some unknown to 

scientists themselves (Lintott et al. 2009). This means no single user is likely to be an 

expert in the entire application domain. Online citizen science is increasingly used to 
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answer emerging questions about material and social phenomena. Similarly, scientists 

may be interested in unique local knowledge or divergent perspectives. As a result, a 

particular contribution may involve previously unidentified phenomena (instances), 

creating a challenge to decide how to model the unknown. 

Modeling challenge #2. Represent instances of "unknown" classes. 

In many projects, the phenomena about which users supply data may be available 

only to the original contributor (or a handful of people). For example, in projects that map 

biodiversity, the objects of interest (e.g., birds, animals) may be fleeting with an 

extremely short exposure time. In such cases, it is difficult to exploit redundancy 

(Franklin et al. 2011; Liu et al. 2012). The focus on representing individual data points 

does not align well with traditional notions of unified global schema and modeling 

abstractions, rather than concrete things.  

Many citizen science projects explicitly recognize that purposes and uses of the 

system maybe be undefined at the onset or change over time. For example, the objectives 

of the Great Sunflower Project (http://www.greatsunflower.org) include evolving 

questions in ecology (e.g., how often do bees pollinate), social sciences (e.g., does 

participation in citizen science lead to behavioral changes), and computer science and 

information systems (e.g., how to design systems to increase data quality) (Wiggins et al. 

2013). Consequently, the requirement is for modeling to recognize and support undefined 

and evolving uses of data. Traditionally, modeling assumed intended uses expressed 

through predefined abstractions. Recognition of evolving uses, however, suggests that 

http://www.greatsunflower.org/
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approaches to modeling, be to the extent possible, use agnostic – thus providing more 

flexibility in repurposing information based on ad hoc needs.   

Modeling challenge #3. Encourage unanticipated uses of data. 

Unlike many corporate environments, which can be conceptually “frozen” to 

develop abstract conceptual structures that represent domains, citizen science projects are 

inherently open: it appears extremely difficult, if not infeasible, to develop appropriate 

structures that would be congruent with every potential user (stakeholder) in this setting. 

A conceptual model representing a domain as perceived by some users may marginalize, 

bias, or exclude possibly valuable conceptualizations of other users. The incongruence 

between a model of reality embedded in information systems and the one natural for a 

particular user may preclude the user from effectively engaging and contributing. One 

consequence of this is low quality (e.g., accuracy, completeness) of information stored in 

IS. Another consequence is lower engagement (i.e., psychological reaction) with IS that 

under-represents perspectives of a particular user. On the other hand, freedom from 

incongruent structures, simplicity and ease of content creation foster greater usage and 

creativity in usage of IS (Van Kleek et al. 2011). 

Modeling challenge #4. Avoid forcing or biasing user viewsby predefined 

structures.  
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Table 9. Modeling challenges in UGC settings 

Challenge Description 

MC 1 Represent and encourage diversity of user views 

MC 2 Represent instances of the "unknown" classes 

MC 3 Encourage unanticipated uses of data 

MC 4 Avoid forcing or biasing user views by predefined structures. 

 

In summary, traditional approaches to modeling appear ill-equipped to address the 

challenges of UGC environments (summarized in Table 9). In the next section I use 

fundamental theories of philosophy and psychology to propose principles of modeling 

intended to address the emergent challenges of citizen science and other UGC settings. 

5.3 Principles for Modeling User-generated Content 

Modeling UGC environments is difficult using traditional abstraction-driven 

modeling premised on the a priori availability of specifications of the kinds of data users 

might contribute. The analysis of citizen science domains reveals fundamental limitations 

of the prevailing abstraction-based approaches to domain representation, including the 

need for consensus among parties involved in modeling and a relatively clear 

understanding of and agreement on the uses of data.  

Abstraction-based conceptual models depict stylized (Kaldor 1961, p. 178) - 

generalized and simplified - representations of actual complex user experiences and 

beliefs. Psychologically, abstraction is a mental mechanism essential for humans to 

survive in a diverse and changing world (Harnad 2005; Lakoff 1987; Parsons and Wand 

2008). Conceptual modeling grammars based on representation by abstraction assume 
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that different models elicited from users will be reasonably similar making it possible to 

create a unified view. UGC environments enable new possibilities in which different 

users are free to maintain their own view of reality, so that capturing individual views 

becomes critical. Furthermore, focusing users on any one view biases UGC projects to the 

view of some users and may preclude other views from being represented. 

Ontologically, it can be argued that the world is made of unique objects that 

humans perceive as stimuli (Bunge 1977; Rosch 1978). Humans create abstractions, such 

as classes, to capture some equivalence among objects for some purpose (Murphy 2004; 

Smith and Medin 1981). Psychology research contends that prior experience, domain 

expertise, conceptualization, and ad hoc utility result in different abstractions of the same 

domain between contributors and for the same contributor over time (McCloskey and 

Glucksberg 1978; Murphy 2004; Smith 2005). For example, a citizen scientist may create 

a class of oiled birds to refer to distinct objects (birds) that are covered in oil; this class 

helps the citizen scientist to communicate vital cues about a potential environmental 

disaster. The same birds seen a few days earlier could have been classified as beautiful 

birds by a group of tourists or Double-crested Cormorants by scientists. Modeling using 

particular "privileged" classes (e.g., species-level, such as Double-crested cormorants) 

promotes some uses, possibly at the expense of others. 

In summary, multiple and unique perspectives are part of human experience; it 

may not be possible or necessary to achieve an agreement among all parties. In UGC 

settings, user views may not be static and may frequently change. Finally, recognizing the 

value of information re-use (as implied by the use-agnostic notion of crowd IQ), 
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modeling in UGC settings needs to be to the extent possible flexible to accommodate 

evolving, and even unanticipated, uses of data. To achieve these properties, the 

foundation of UGC modeling should rely on structures that are invariant across people 

and do not assume specific uses. This leads to the formulation of the first principle: 

Principle 1. Modeling UGC should be based on user and use-invariant 

representations. 

This principle is a fundamental departure from traditional conceptual modeling 

driven by abstractions (Mylopoulos 1998). As abstractions naturally vary across people 

and uses, they do not satisfy the first principle. To derive user and use-invariant 

structures, this thesis turns to ontology that studies what exists in the world independent 

of human observers. Philosophy (in particular, ontology) provides a basis for discussing 

what exists in reality (March and Allen 2012; Wand 1996). Consequently, this thesis 

adopts a particular ontology (of Mario Bunge) to generate specific statements about 

reality that are used as the foundation for modeling UGC.  

As discussed in Chapter 3, Bunge (1977) postulates that the world consists of 

“things” (which can also be thought as instances, objects, or entities). This thesis applies 

the notion of instances to things in the physical, social and mental worlds (Wand et al. 
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1995).
19

 Examples of instances include specific objects that can be sensed in the physical 

world (e.g., this chair, bird sitting on a tree, Barack Obama) as well any mental objects 

humans conceive of (e.g., specific promise, rule of algebra, Hamlet, Anna Karenina). The 

fundamental role of instances is supported in psychology, other reference disciplines and 

in traditional conceptual modeling grammars. According to psychology, instance 

representation (e.g., spatiotemporal permanence) is a fundamental mental process 

(Kahneman 1992; Michael et al. 2008; Scholl 2002). People consider individual stimuli 

(concrete or imaginary) and use abstraction mechanisms to reason (e.g., predict 

unobserved features) and communicate about them (Falkowski and Feret 1990; Medin 

and Schaffer 1978; Nosofsky 1986; Rips et al. 2006). People experience a continuous 

sensory input (e.g., light falling on retina, sound waves) but then eventually transform it 

into discrete representations (Harnad 1990). Instances become units of attention (Scholl 

2002): humans perceive sensory fields (e.g., visual space) to be made of discriminable 

objects and an undifferentiated perceptual background (Carey 2009; Kahneman 1992). 

And attention tends to be “allocated to individual objects that are traced through time and 

                                                 

 

19
 That instances "exist" in physical reality is widely accepted; there is a debate, 

however, about the extent to which Bunge's ontology applies to imaginary and social 

worlds (Allen and March 2012; March and Allen 2012; Wand and Weber 2006; 

Wyssusek 2006). 
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space” (Carey 2009, p. 70). Classification typically happens after the existence of an 

instance is established.
20

  

Instances may also compose to form complex, composite things (Bunge 1977). 

For example, a computer is made of a central processing unit, a motherboard, random 

access memory, storage and other components. Composite things may have different 

attributes of interest than their constitute things, including emergent properties - those that 

arise as a result of components being put together. Whether a user chooses to represent 

things as a simple or composite depends on the situation, views and beliefs of the 

individual user. 

Following Bunge, this thesis argues that an instance is an elementary and 

fundamental construct and, as a consequence, the objective of modeling is to represent 

instances as fully and faithfully as possible. This leads to the formulation of the second 

principle: 

Principle 2: Instance should be the primary construct in UGC; instances should 

be represented independent of any other construct. 

According to Bunge, every instance is unique in some way and different 

individuals fail to share some of their properties (see also Proposition 2 in Chapter 3). 

                                                 

 

20
 Note, however, that existing classes may influence what objects in the world are 

recognized and attended to. 
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Properties are always attached to things and cannot exist without them: materiality of 

properties directly derives from materiality of things.  

According to Bunge (1977), people are unable to observe properties directly, and 

perceive them instead as attributes. Several attributes can potentially refer to the same 

property. The existence of an attribute does not imply that a particular property exists 

(e.g., the attribute name is an abstraction of an undifferentiated bundle of properties). 

While material things exist independent of an observer, individual observers may 

consider different attributes of things at different points in time. Indeed, attributes are 

basic abstractions of reality insofar as any attribute (e.g., color red, roughness of texture, 

height of a building) is a generalization formed by compressing diverse sensorimotor 

input (or memory) into a mentally stable coherent element
21

. Attributes are fundamental 

building blocks of representation to the extent that they can be used to identify instances 

and form higher-level abstractions (e.g., things with similar attributes can be grouped into 

classes). Properties can be intrinsic if they are inherent in things (e.g., height or mass) or 

mutual if they belong to more than one thing. The third principle states: 

Principle 3: Attributes can be attached to an instance to describe its properties. 

                                                 

 

21
 When considering visual modality, with every input interruption or environment 

change, such as movement of eyes (saccades) or of the object of interest, the focal object 

(stationary, or moving) is sensed differently by the retina, but operational constancy and 

equivalence of attributes, such as shape, color, length, texture, size are maintained (see, 

for example, Harnad 1990). 
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People use classes to group instances they deem equivalent in some way (see 

Fodor 1998; Murphy 2004; Smith and Medin 1981). According to Bunge, the equivalence 

is based on shared properties of things at a given moment in time. Classification allows 

humans to abstract from differences among instances, thereby gaining cognitive economy 

and ability to infer unobservable properties of things (Parsons and Wand 2008; Rosch 

1978). For example, by stating something is a bird speakers can save the effort to 

communicate attributes they assume are true of birds (e.g., has heart, has feathers, 

probably can fly). Using classes improves the communicability and lessens the effort of 

having to provide an exhaustive list of attributes per instance. Classes are also intuitive 

when reasoning about instances. It is unnatural for users to refer to instance x in terms of 

its attributes alone. It is likely that users refer to x using some class (e.g., dog, employee, 

bank, account). Finally, knowing what classes users assign to instances reveals any biases 

in the kinds of attributes users attach to instances. The classes known to a person 

influence human perception, as illustrated by stereotype effects (Jussim et al. 1995) and 

categorical perception (Harnad 1990); knowing the classes users attach to instances, 

therefore, illuminates gaps and biases in the provided attributes. In summary, classes 

become a convenient and natural mechanism by which users can reason about instances 

and describe their properties of interest. They also help to understand the attributes 

provided. Finally, as demonstrated in Chapter 4, when given freedom to classify in an 

open-ended manner, non-expert users tend to provide classes (generally generic, "basic" 

classes) with high accuracy. Therefore classes are conceptualized as constructs that can 

be attached to instances. 
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Principle 4: A class can be attached to an instance to represent bundles of 

properties possessed by other instances described by the same class. 

Despite the advantages, classes have a notable limitation. As discussed earlier, any 

two observers may fail to share the same class definition. In UGC settings, however, 

predicting how a particular user may understand a given class is challenging: 

“[c]lassifications that appear natural, eloquent, and homogeneous within a given human 

context appear forced and heterogeneous outside of that context” (Bowker and Star 2000, 

p. 131). For example, when two users "label" (the same) instance x as employee, it is 

unclear whether both users agree on attributes that define this class. For example, user 1 

may consider employee to include part-timers and contractors, while user 2 may only 

consider full-time employees. In a UGC environment both perspectives may be valid, but 

it may be important to explicate each user's definition of the classes used.
22

 This leads to 

the formulation of the following principle. 

Principle 5: Classes may be defined explicitly (e.g., in terms of attributes). 

                                                 

 

22
 Whether it is necessary to make class definitions explicit may vary depending 

on context and classes used. For example, generally we may want to clarify the definition 

of a bank account or planet rather than more 'obvious' classes such as human or rain. 

This, however, depends on the target application: a paleontological or weather monitoring 

IS may be specifically interested in understanding how users define human or rain. 

Broadly, since all uses of data are infeasible to discover in advance, it is recommended to 

be explicit in class definitions. 
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The principles above can be summarized in a conceptual meta-model shown in 

Figure 2. It uses the proposed constructs of instances, attributes, and classes. As follows 

from Principle 2, instance is the main construct used to model UGC. An instance is 

manifested via one or more attributes. Since attributes cannot exist without instances, for 

an attribute to exist, it must be assigned to at least one instance. Attributes can also be 

used to form classes such that instances with shared attributes are considered members of 

the same class. A class, however, can also be attached to an instance directly, without 

having to specify the attributes – resulting in attributes being optional. Finally, as classes 

in UGC settings are attached to instances, no class can exist without an instance. 

 

Figure 2. Instance-based meta-model  

Following from the above principles, modeling UGC is based on representing 

particular instances via attributes, classes and interactions as perceived by particular users 

at certain moments in time. In contrast to representation by abstraction, the principles 

proposed above are founded on the assumption of representational uniqueness - each 

representation of the same instance may be different (i.e., expressed using different 

attributes and classes), including representations by the same user at different times. At 

the same time, representational uniqueness does not imply that every stored 

representation be unique, as two different users may independently provide the same set 
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of attributes and classes for the same instance; however in UGC environments all shared 

classes and attributes are difficult to determine in advance. 

A consequence of representational uniqueness is the fact that capturing class-

based abstractions a priori no longer becomes necessary. This deviates fundamentally 

from traditional conceptual modeling that guides analysis toward discovery and 

representation of domain specific class-based abstractions that capture commonalities 

among instances. This approach resolves the dilemma in modeling UGC uncovered in 

Chapter 4, whereby users were accurate when classifying at generic levels (which are not 

typically useful to the organizations), but using these levels engenders information 

(attribute) loss. In an instance-based representation, users can provide generic classes 

(e.g., bird) and then further describe the instance using any number of attributes (which, 

as Chapter 4 demonstrates, tend to be low-level, more specific, ones). 

Representational uniqueness leads to IS development without relying on 

abstraction-driven grammars.
23

 Under this approach, development proceeds by selecting a 

"flexible data model" and a "flexible user interface" (discussed in detail below). Users are 

then able to provide information according to their own conceptualization of reality 

                                                 

 

23
 This does not suggest that modeling is completely absent from IS development - 

it merely emphasizes the absence of a traditional specification of the classes of 

information that an IS is designed to manage. This thesis recognizes, however, that any 

development inherently involves some degree of modeling, a point considered in Chapter 

6. 
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without having to conform to a particular structure. Such information can be stored in a 

flexible data model such as instance-based (Parsons and Wand 2000), graph (Angles and 

Gutierrez 2008), or semi-structured (Abiteboul 1997) data models. Several other 

promising schema-less databases have been proposed (Cattell 2011; Pokorny 2013). 

For example, using the instance-based data model, information can be collected 

without having to classify relevant instances; information about instances can be stored in 

terms of attributes (Parsons and Wand 2000). Different users can supply different 

attributes for the same instance. Failure to agree on classes, relationship types or 

attributes is no longer problematic as any attributes and classes can be seamlessly 

captured. The attributes can be then queried to select instances stored based on classes of 

interest or other criteria. Thus, classes and other abstract constructs are not necessary 

before implementing such a system and conceptual modeling may not be needed for the 

design phase (at least not for the purposes of generating a database schema and other 

design elements).
24

 

                                                 

 

24
 This chapter focused on the advantages of the proposed modeling approach. 

The limitations of this approach are considered in the Section 8.2 in the context of future 

research. 
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5.4 Chapter Conclusion 

This chapter proposed principles of modeling intended to support development in 

UGC settings. With the growing importance of UGC, as exemplified by the case of 

citizen science, a pressing question is how to carry out conceptual modeling in this 

environment. Predominantly grounded in the realities of corporate settings, traditional 

conceptual models struggle to handle the diversities and uncertainties of the new 

environment. One consequence of modeling domains using the traditional modeling 

paradigm is decreased quality of information stored in these systems (as empirically 

demonstrated in Chapter 4).  

In this chapter, I argue that modeling UGC should be to the extent possible driven 

by representation of (unique) instances rather than domain-specific abstractions. As a 

consequence, traditional activities performed during systems analysis (as described in 

Chapter 2), including creation of a global unified schema, no longer apply. Under this 

approach, development proceeds by selecting a flexible data model and a flexible user 

interface. Users are able to provide information on the instances of interest to an 

organization. Hence online contributors become free to provide information according to 

their own conceptualization of reality without having to conform to a particular structure.  

The principles of modeling proposed here can be converted into testable 

propositions. For example, research can measure the impact of these principles on 

dependent variables of interest (e.g., domain understanding, problem solving, or 

information quality) (Topi and Ramesh 2002). This can be done by deriving IS objects 

based on the proposed principles and comparing them with those based on traditional 
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conceptual modeling. The principles can be further used to design IS or its components in 

a real (i.e., action design research) (Sein et al. 2011) or laboratory settings. The principles 

can also be used to evaluate existing conceptual modeling grammars or even suggest 

ways to develop graphic notations that could support communication and interaction 

during UGC IS development. 

The next chapter further demonstrates the usage of the proposed principles by 

describing the development of an information system artifact - a real system designed to 

capture user-generated content. Chapter 7 employs the proposed principles to evaluate the 

impact of conceptual modeling on dataset completeness in a real citizen science IS. 
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6 Demonstration of the Principles for Modeling UGC in a Real 

Citizen Science Information System 

To provide a "proof by construction" (Hevner et al. 2004; Nunamaker et al. 1991) 

and demonstrate the application (Gregor and Jones 2007; March and Smith 1995)  of the 

proposed principles of modeling UGC presented in Chapter 5, I implemented the 

principles by re-designing a real citizen science IS, NLNature (www.nlnature.com). 

Exposing abstract principles via instantiation follows a general recommendation in the 

design science literature (Gleasure et al. 2012; Gregor and Jones 2007). 

6.1 NLNature Background 

The NLNature project was launched in 2009 by Dr. Yolanda Wiersma, a biologist 

at Memorial University, Canada, as part of a larger Canada-wide initiative (the 

Participatory Geoweb for Engaging the Public on Global Environmental Change) to 

investigate how to engage the general public with issues of environmental change by 

means of interactive communication technologies (Parfitt 2013; Sieber 2012).
25

 The 

project is a partnership among leading Canadian universities, including University of 

British Columbia, McGill, University of New Brunswick, University of Calgary, Ryerson 

                                                 

 

25
 http://rose.geog.mcgill.ca/geoide/ 
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University and Memorial University. The specific scientific objective of NLNature is 

creating an online IS to map biodiversity of Newfoundland and Labrador (a territory of 

over 150,000 square kilometers) based on amateur sightings of nature (e.g., plants, 

animals).  

Investigating NLNature reveals challenges of conceptual modeling in UGC 

environments. I have been engaged in NLNature from the beginning (2009): first as an IT 

consultant and later, as a co-investigator. Typical to other design science research, the 

academic involvement was triggered by a real-world problem (Hevner et al. 2004) of 

representing unpredictable user input from non-experts with high veracity.  

The project proceeded through two phases: class-based (2009-May 2013) and 

instance-based (May 2013 - Present). In the first, as no principles of conceptual modeling 

for citizen science existed (Lukyanenko and Parsons 2012), the project was developed 

using a traditional class-based approach to conceptual modeling. An evaluation phase 

began as soon as the project was launched and revealed limitations and negative 

consequences of approaching citizen science with traditional modeling. I then re-designed 

the project in 2013 to implement the proposed modeling principles.  
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6.2 Phase 1 Design 

In Phase 1, the design strategy to ensure information quality and participation was 

informed by prevailing practices in online citizen science.
26

 Traditionally the first step in 

conceptual modeling is to identify a set of concepts (entity types, classes) that describe 

the domain (Parsons and Wand 1997). Consistent with similar projects (e.g., 

www.eBird.org, www.iSpot.org.uk), the objective of data collection was positive 

identification of species. Consistent with traditional conceptual modeling, therefore the 

observed instances would be primarily classified as species-level classes.    

Focusing on species-level classes was driven by the information requirements of 

the scientists - the sponsors of the project. Species are widely-established units of 

monitoring, international protection and conservation (Mayden 2002). This level of 

classification has been focal in broader citizen science research and practice (Dickinson et 

al. 2010; Parfitt 2013; Wiersma 2010). Major citizen science projects (e.g., eBird.org, 

which collects millions of bird sightings monthly) implement prevailing modeling 

approaches (e.g., Entity-Relationship) and collect observations of instances as biological 

species (Parsons et al. 2011; Wiggins et al. 2013). 

                                                 

 

26
 As this thesis is concerned with the impact of conceptual modeling on IQ, it 

focuses on conceptual modeling phase of the project and considers other phases only 

when relevant. 

http://www.ebird.org/
http://www.ispot.org.uk/
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The project sponsors suggested a mixed convention of biological nomenclature 

and general knowledge (“folksonomy”) to conceptually organize entities about which 

information was to be collected. In this approach, species-level classes became lower-

level classes in a generalization-specialization hierarchy where higher-level classes were 

intuitive ones (see Figure 3). Hence, if a user was to select the top-level class first (e.g., 

"Sea Bird"), this could limit the species-level options (e.g., to only sea birds) helping the 

user to locate the intended one. 

Conceptual modeling was performed using the popular UML grammar (Dobing 

and Parsons 2006; Evermann and Wand 2006; Grossman et al. 2005; Jacobson et al. 

1999). A relational database was designed based on the conceptual model (Teorey et al. 

1986); the same model informed menu items and the options in the data collection 

interface (see Figure 3). To improve information quality, users were allowed to 

collaborate and assist each other in identifying species in a social-networking style (e.g., 

post comments, exchange emails) - a practice recommended by researchers in citizen 

science (Silvertown 2010). Additionally, verification mechanisms (e.g., location analysis 

and expert verification) were implemented.  

 

 

 

 

 



 

98 

 

Conceptual Model Menu Options Data Collection Interface 

 
 

 

Figure 3. Conceptual model fragment and user interface elements based on the model in 

Phase 1 NLNature. 

Once the project was launched, assessments of IQ were performed (including 

analysis of contributions, comments from users, and benchmark comparisons with 

parallel scientific sampling).
27 

The project team (e.g., Kallio 2012) determined that the 

quality and level of participation were below expectations. Based on the arguments 

outlined in Chapter 3 of the thesis, I identified the class-based approach to conceptual 

modeling that supported the system as a detriment to both quality and participation. The 

                                                 

 

27
 A detailed discussion of the IQ issues on the Phase 1 NLNature is outside the 

scope of this thesis. 
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analysis of user comments suggested that some users, when unsure how to classify 

unfamiliar organisms, made guesses (to satisfy the requirement to classify organisms). A 

vignette with an observation classified as Merlin (Falco columbarius) where the 

observation creator admits to guessing is given in Figure 4. Notably, it took almost a year 

for another member to report an incorrect classification.  

Screenshot of the observation 

Public correspondence between the 

observation creator, Lynette, and 

another user, Timothy. 

 

Lynette 

 

Nov. 17 2011 

 

I think this is a merlin... 

she (he?) killed a pigeon 

in my garden and ate 

breakfast right there, as 

the pigeon was too heavy 

to carry off... 

Timothy  

 

July 28 2012 

Actually an accipiter. 

Sharpshinned hawk 

Lynette 

 

July 28 2012 

Thank-you, Timothy! I'm 

an amateur, I Was 

guessing as to what it was! 
 

Figure 4. A vignette of an observation classified as Merlin (Falco columbarius) where the 

observation creator admits to guessing. 

Additionally, in several cases, the organisms could not be fully described using 

attributes of the correctly chosen species-level class (e.g., morph foxes had additional 

attributes not deducible from the class Red fox). Finally, there was evidence that many 

observations were not reported because of the incongruence between the conceptual 

model and user views. For example, in contrast to biological nomenclature shown in 
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Figure 3, Double-crested cormorants may be considered by non-experts as shore birds, 

rather than sea birds, due to the strong association with shore areas; as a result a user may 

not be able to locate a Double-crested cormorant option under the shore bird level). The 

identified threats to information quality and user engagement motivated an effort to 

implement instance-based modeling on NLNature and, at the same time, provided an 

opportunity to offer an expository "proof of concept" of the proposed design principles in 

a real setting.  

6.3 Phase 2 Design 

IS development guided by instance-based modeling principles represents a 

fundamental shift from the traditional paradigm. Whereas traditional IS development 

begins with the elicitation and analysis of user requirements (Browne and Ramesh 2002; 

Jacobson et al. 1999), instance-based modeling suggests representation of individual 

(unique) instances. Consequently, although the project had access to a stable cohort of 

users - the scientists - I chose not to represent their views explicitly in a conceptual model 

(unlike in Phase 1). Instead, I elicited the intended project objectives, which included 

monitoring species distributions, informing conservation policy, protecting endangered 

species, and educating students and the general public. At the same time, the project was 

to be sensitive to the contributors' points of view and to the extent possible facilitate 

discoveries and unanticipated uses of data.  

During the interviews with scientists, I identified the domain of the project to be 

all of natural history (i.e., plants, animals, and other taxa). Instance-based modeling 

according to the principles in Chapter 5 has no mechanisms to set domain boundaries - a 
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user may report an instance of a rock along with an instance of a bird. However, 

knowledge of the target domain can be leveraged in generating instructions to guide data 

collection to the potentially relevant (for the sponsoring organization) instances. Since 

NLNature's mandate was the provision of data to satisfy the sponsoring organizations' 

information needs, the IS design should remain sensitive to these views. However 

embedding these views in the deep structure of the IS (Wand and Weber 1990), such as 

the conceptual models and, consequently, database tables, would violate the 

representational uniqueness assumption. Consequently, I embedded organizational views 

in the surface structure (i.e., more mutable user interface elements) of NLNature. The 

organizational information requirements were reflected in the data collection instructions 

to accompany data collection fields and descriptions and explanations of the objectives 

and purposes of the project (e.g., see Figure 5). 
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Figure 5. The "About Us" page on NLNature Phase 2 that describes project's focus. 

 Confining the organization's information requirements to surface elements 

constitutes a reasonable compromise between instance-based modeling and the 

pragmatics of projects driven by specific interests and agenda. As surface elements of IS, 

instructions and descriptions become mutable and can be refined without having to 

modify the deep structure. They also do not stand in the way of user expression (in 

contrast to traditional class-based structures when they are incongruent with data 

contributors' views), particularly if they make an explicit call for unanticipated kinds of 

instances.  

Following the assumption of representational uniqueness, I did not engage in 

additional requirements elicitation to discover views of potential citizen scientists. Hence, 
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no consensus-building or view integration activities were conducted. A major part of IS 

development – the creation of a formal representation of knowledge in a domain - was a 

relatively minor phase - mostly aimed at understanding organizational needs to be 

reflected in surface elements of NLNature.  Compared with Phase 1, following the 

instance-based principles significantly simplified systems analysis of citizen science and 

appeared to address the challenges of modeling UGC (discussed in Chapter 5).  

Instance-based modeling advances the principle of representing instances and 

implies a schema-less database design. There has been increased interest in and 

development of flexible NoSQL databases providing several schema-less databases to 

store user input (Cattell 2011; Pokorny 2013). Potential candidate data models included 

key-value pair (DeCandia et al. 2007), document-focused (Chang et al. 2008) instance-

based (Parsons and Wand 2000) and graph (Angles and Gutierrez 2008) data models. Of 

these, the closest model was instance-based (Parsons and Wand 2000) as it shares the 

ontological and cognitive foundations underlying this research and includes the relevant 

modeling constructs. Consequently, NLNature adopted the instance-based data model to 

store UGC.  

The instance-based data model upholds the primacy of instances and assumes 

every instance may possess unique attributes (Parsons and Wand 2000). Classes are 

formed based on the principle that one can classify things based on a subset of their 

shared attributes. Since an instance can possess very many attributes, it can belong to a 

very large number of potential classes, depending on the context.  Under the instance-

based data model (Parsons and Wand 2000), users are not forced to classify instances 
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using predefined classes (such as biological species), which relaxes the constraint for 

non-experts to understand and conform to a chosen taxonomy. Using attributes makes it 

then possible to capture individual variations of organisms (addressing the issue of storing 

unique insights of contributors). The attributes can be queried post hoc to infer classes of 

interest (e.g., species). 

An instance-based data architecture can be deployed on top of the popular and 

widely available relational database management software (Parsons and Wand 2013; 

Parsons and Wand 2000). To hold information about instances at a specific moment in 

time I created the "Observations" table (see Figure 6). The table contained date and time 

of the instance observation (guided by the assumption that instances are observed at some 

moment in time).
28

 NLNature stored attributes and classes in a generic table “Concepts” 

that contained a unique identifier, a concept name, and a flag that distinguished classes 

from attributes. The "InstancesConceptsXref" held any attributes users provided for an 

instance containing concept identifier and instance identifier as foreign keys. The table 

"ConceptsXref" contained the primary key from the class or attribute and a primary key 

from a class or an attribute, thus making many-to-many relationships possible. For 

                                                 

 

28
 This thesis provides a simplified implementation. For example, in a real project 

like NLNature additional attributes may be included in each table, including a time stamp, 

system ID of the record creator, and any security, validation and monitoring keys. This 

information belongs to the design rather than the application domain and is outside the 

scope of this thesis.  
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example, boreal felt lichen could link to the following attributes: fuzzy white fringe 

around the edges, greyish-brown when dry, has red dots, leafy, and slate-blue when moist.  

 

Figure 6. Logical view (table schema) of the NLNature's instance-based implementation 

I then proceeded with the development of the user interface. As the proposed 

principles are mainly concerned with deep structure of IS, the database design was 

relatively unambiguously derived from the proposed modeling principles. In contrast 

there were challenges in developing a congruent user interface and other elements of the 

surface structure. Traditionally, surface elements of a system (such as a user interface, 

navigational structure, and menu choices) conform to structural assumptions at the deep 

(i.e., conceptual) level (Wand and Weber 2008). Since the proposed principles are 

founded on the assumption of representational uniqueness (discussed Chapter 5) by which 

different users may provide potentially unique attributes and classes, it followed that 

surface elements should support the variability of attributes and classes. At the same time, 
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no strategy for directly mapping the principles into surface-level design objects could be 

derived. As recommended in Newell and Card (1985), Arazy et al. (2010), and Kuechler 

and Vaishnavi (2012), I broadly surveyed relevant theories in psychology, human-

computer interaction, software engineering and IS to seek additional, design-specific 

guidance. 

As implied by Principle 2 in Chapter 5, the focus was on how to collect attributes 

and classes that describe instances. In traditional IS development, information collection 

is driven by the classification structure (and relevant constraints), in which case typical 

data entry may involve classifying the instance into one or more predefined classes (see, 

for example, the data collection interface from Phase 1 of the project in Figure 3). 

Modeling UGC involves managing information about instances in terms of potentially 

unique attributes and classes. Here, a practical question is how to choose interface 

elements compliant with the proposed principles. For example, a website could still 

present attributes and/or classes as a list, allowing users to select/check off applicable 

ones. One advantage of this approach is ease of interaction as users do not have to expend 

the effort in typing attributes and classes. This is consistent with the established menu-

driven paradigm of user interface design (Newell and Card 1985).  

At the same time, collecting instance information using menu-driven options 

appears incongruent with the proposed principles. In this implementation, all applicable 

classes and attributes would need to be modeled in advance - which violated the 

representational uniqueness assumption. Further, small screens on mobile devices make it 

difficult to present large amount of information (e.g., a long list of attributes) and could 
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impede user interaction (Ghose et al. 2012). There is also a concern regarding possible 

effects due to priming, ordering and cuing (Goldwater et al. 2011). For example, if the 

"correct class" is at the end of a very long list of classes, some users may fail to notice it 

and abandon data entry.  

The representational uniqueness assumption suggests that data collection 

interfaces be, to the extent possible, open and flexible. Following popular practice on 

social media websites (e.g., Facebook, Twitter), search (e.g., Google) and citizen science 

projects (e.g., www.iSpot.org.uk), I decided to use a prompt-assisted ("autocomplete") 

text field. This allows a participant to begin typing a class or an attribute and a prompt 

dynamically shows recommendations based on the string being typed (see, e.g., Figure 7). 

This approach has advantages over a traditional constrained-choice mode (such as in 

Figure 3). As a text field is always initially empty, it mitigates any adverse ordering and 

priming effects. It also enables users to seamlessly enter new classes and attributes - 

without having to move elsewhere for this task.
29

 Finally, as more people become 

engaged with social media, the dynamic text field is becoming a norm. Related to this, 

                                                 

 

29
 In developing NLNature, I was additionally interested in comparing the new 

version of NLNature with traditional one using field experimentation (Chapter 7). The 

dynamic text field was also compatible with traditional input HTML tag allowing for 

comparison between two systems. 

http://www.ispot.org.uk/
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Kluge et al. (2007) found higher user satisfaction with IS that implemented a dynamic 

text field experience.   

 

 

 

 

Figure 7. Example of data collection in Phase II 

To guide participants to instances from the domain relevant to the sponsoring 

organization (as discussed earlier), a decision was made to instruct NLNature participants 

to provide attributes and, if possible, classes (see Figure 8). Since data collection based on 

instances was novel, detailed instructions for participants were provided on how to report 

observed instances. Specifically, immediately underneath the dynamic text field 

NLNature defined attributes: 

Attributes (or features) are words that describe the organism you observed, 

including its properties, behavior and the environment. 

The new interface also invites categories or classes if users are confident in 

classifying. When reporting attributes or classes, users were instructed to begin typing in 

the textbox and click "Add" or press "Enter" when finished. As soon as more than two 

characters are entered, a suggestions box would appear with the classes or attributes that 

contain the string entered. Users could select an item from the list or provide novel 

attributes and classes via direct entry. Once a user finishes providing attributes and 
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classes, the observation becomes public (optionally users may upload photographs). The 

website also contains a dynamic map on the front page of the project showing the most 

recent sightings (see Figure 9). 

 

Figure 8. NLNature Phase 2 data entry interface. 

When using NLNature, users do not need to classify instances of interest (e.g., 

animals, lichens, geological forms) as would be required under traditional class-based 

designs. Instead, users provide attributes and classes of the observed instances. Different 

users can supply different attributes (or classes) for the same instance based on their 

knowledge. Failure to agree on classes or even attributes is no longer problematic as 

novel classes and attributes are accommodated.  
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Figure 9. Redesigned front page of NLNature (public view) 

By shifting the focus from a predefined classification to instances, modelers do 

not need to model a domain a priori in terms of the classes of interest. While NLNature 

based on the instance-based modeling principles may fail to deliver information in a 

predictable form to its sponsors, it opens novel opportunities for using this data in 

decision making. For example, scientists no longer need to create a complete specification 

of the kinds of instances assumed to exist in a domain. The openness of the IS itself 

should enable direct representation of novel classes - opening opportunities for discovery 

of new classes (Chapter 7 provides empirical evidence for this point).   
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The primary scientific object of an observation (the species observed) can be 

identified after the observation is recorded, provided the user reports enough attributes to 

produce a positive identification. When required, scientists can assemble a dynamic 

classification based on the collection of attributes that are of interest at a given moment. 

For example, if an attribute such as “behavior” is of interest, then at least two classes can 

be constructed based on values: nocturnal and diurnal animals. The same system can also 

use attributes that connect each species with a biological taxonomy to reproduce scientific 

biological classification. Thus, in principle, NLNature is capable of achieving the 

objectives of a traditional classification without the inherent limitations.  

6.4 Discussion 

The implementation of the proposed principles in NLNature has the potential to 

increase both the quality of citizen science data and participation rates. Unlike UGC 

projects that implement traditional approaches to modeling and assume a basic level of 

expertise from citizen scientists (e.g., eBird), NLNature allows for the full spectrum of 

contributors (Coleman et al. 2009) to participate. The value is that such data sets are 

generated by many “eyes on the ground;” thus, there is a higher likelihood of rare or 

unusual species being detected or for early detection of new trends. Hence, it is important 

to have a usable system that promotes a broad level of participation.  

Instance-based NLNature represents a realistic compromise in citizen science. 

Non-experts do not always know the phenomenon that was observed. It is more realistic 

to expect a volunteer to remember some features of unknown species than to expect a 

precise classification and identification. Based on the premises of instance-based 
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modeling proposed in Chapter 5, this thesis hypothesizes that an IS developed by 

following these principles should result in high quality of UGC and greater user 

participation.
30

  

At the same time, it is important to note the implementation trajectory presented 

here is not the only possible one and other decision choices may be more fitting to the 

characteristics of the modeled domains. For example, this chapter does not specifically 

discuss a mechanism for tracing the identity of instances. In a vast space of natural 

history, it is difficult to identify identical individuals. The current implementation makes 

no explicit provisions for identifying two observed instances as the same. However, this 

can potentially be done indirectly, by computing similarity over the attribute space of the 

stored instances. For guidance, practitioners are advised to consult research on record de-

duplication in data quality (Batini et al. 2009; for review see Christen 2012; Madnick et 

al. 2009; Stoller 2009), data integration work in the context of schema matching (Batini et 

al. 1986; Doan and Halevy 2005; Evermann 2008; Heath and Bizer 2011; Lukyanenko 

and Evermann 2011; Sherman 2007; Spaccapietra and Parent 1994) as well as similarity 

                                                 

 

30
 To provide empirical evidence of the impact of modeling on dataset 

completeness I created an alternative version of the project (I decided to create a new 

version to ensure that any idiosyncratic features of the old version would not confound 

the results) following traditional class-based conceptual modeling. I then randomly 

assigned users to the "instance-based" and "traditional class-based" versions and analyze 

their performance in each condition. The results of this experiment are provided in 

Chapter 7. 
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theories in cognitive psychology (Gentner and Markman 1997; Goldstone and Medin 

1994; Hahn et al. 2003; Holyoak and Koh 1987; Imai 1977; Mix 2008; Shepard 1962; 

Tversky 1977; Tversky and Gati 1982).   

Another issue of interest is whether more advanced semantics should be captured 

in the NLNature database. As in the instance-based database can store any idiosyncratic 

attributes, the opportunity exists to increase both the number of provided attributes and 

their relevance to the sponsoring organization and data consumers by guiding user input. 

Such implementation can exploit semantic links between attributes. Psychology and 

ontology suggests that many attributes naturally correlate (e.g., can fly is highly 

correlated with has feathers) (Rosch 1978), form groups (i.e., those describing behaviour, 

appearance) leading to formation of sub-schemas (Murphy 2004) as well as precede other 

attributes (e.g., knowing that something is blue implies an attribute has color) (Bunge 

1977; Parsons 2011). This information can be stored in a database, for example in the 

table "ConceptsXref" of NLNature, and be invoked for user input validation and 

guidance.  

Links between attributes make it possible to support powerful inferences that can 

be leveraged in processing user input (e.g., by validating data entry or suggesting 

additional attributes to a user), and interpreting instance-based data. For example, if a user 

provides the attribute has wings then the system could probabilistically (e.g., based on 

prior observations and links in the "ConceptsXref" table of NLNature) infer it was a bird. 

It could also take advantage of property precedence (Bunge 1977; Parsons 2011) and ask 

for specific manifestation of has wings, such as color of wings or size of wings. Similarly, 
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once has wings is provided, NLNature can flag user input such as lives in water as 

inconsistent (and, if required, exclude it from scientific analysis). These design options 

while not immediately derivable from the principles proposed in Chapter 5, appear to be 

congruent with the principles and can be valuable extensions to NLNature. 

6.5 Chapter Conclusion 

NLNature provides an opportunity to demonstrate an implementation of the 

principles for modeling UGC proposed in Chapter 5. This not only provides a "proof by 

construction", but shows what aspects of IS development change by introducing the 

proposed principles in the development process. NLNature attests to the feasibility of the 

proposed principles and also provides a blueprint that practitioners can follow when 

developing UGC projects. 

Modeling UGC following the instance-based principles promises to 

simultaneously leverage crowds to satisfy organizational information needs as well as 

harness creativity and unanticipated insights of the crowds. Indeed, both can be achieved 

as long as fundamental assumptions about information management change to better 

reflect the nature of UGC environments. By re-defining the fundamental unit to be 

instance (rather than class), crowd contributors with different levels of domain expertise 

and motivation can contribute relevant data.  

NLNature's implementation of the proposed principles explicitly supports 

unanticipated uses when information about instances might be used for purposes not 

considered when a system was designed. For example, while scientists prefer species as a 

focal domain abstraction, instances of oiled birds may also become valuable (as they 
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might signal a potential environmental crisis), even if the precise identification at the 

species level is not provided. As argued in Chapter 3 and demonstrated in Chapter 4, 

information loss is inherent in class-based modeling. This implies that even correct 

species identification may not capture all attributes an observer may report. In contrast, 

the instance-based NLNature permits seamless capture of individual attributes (e.g., 

appears sick, missing one antler) generating information that would be challenging to 

capture using traditional modeling and enabling potentially more insightful analysis.  

 Using NLNature, this chapter provided an example of realizing the proposed 

principles in a real IS. In the case of NLNature, the analysis phase of IS development 

appears to be substantially reduced compared with traditional model-driven IS. 

Specifically, this chapter shows that it is possible to create an IS without a priori 

conceptual structures. There is considerable growth in the market of NoSQL databases 

leading to development of several popular commercial packages (Cattell 2011). Much of 

development in this area, however, has been driven by technical considerations, such as 

scalability, latency, and redundancy (Cattell 2011; Pokorny 2013). Considerably less 

attention has been dedicated to issues of conceptual modeling - a deficit that has been 

addressed in this chapter.  

The next chapter evaluates the impact of conceptual modeling on dataset 

completeness by comparing the two versions of NLNature described in this chapter. 
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7 Impact of Conceptual Modeling on Dataset Completeness 

Motivated by the findings from the three laboratory experiments in Chapter 4, 

Chapter 5 proposed a set of principles to model UGC. Chapter 6 demonstrated how a real 

IS can be developed that followed these principles. The implementation of the proposed 

principles in a real IS opens an opportunity to compare the impact on IQ of traditional, 

class-based modeling with the proposed instance-based modeling. This chapter 

investigates the effect of the two conceptual modeling approaches on dataset 

completeness using field experimentation. 

7.1 Theoretical Predictions 

Following the proposed definition of crowd IQ, data collection in UGC settings 

should be to the extent possible sensitive to the view of information contributors. Chapter 

5 developed principles of modeling UGC that are congruent with the nature of UGC 

settings and abilities of information contributors. Traditional approaches requiring a 

priori classification (e.g., requiring users to select from a checklist of species) are usable 

only by more expert participants. As an alternative to class-based models, observations 

from citizen scientists can be collected and stored in terms of instances, their attributes 

and any classes that contributors deem relevant. This represents a more realistic approach 

to UGC. Non-experts online cannot always identify (or may not be willing to identify 

down to the level required by data consumers) the instance observed. It is more realistic 

to expect a volunteer to report some attributes of an instance then to expect a precise and 

accurate classification (which Chapter 4 showed to be highly unlikely).  
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The completeness of information stored in an instance-based IS can be compared 

with that stored in a traditional IS due to the fact that both systems represent instances. 

For example, records in traditional IS (e.g., such as those in popular citizen science 

projects), are about instances of interest reported in terms of the classes useful to project 

sponsors or data consumers (e.g., species). Instance-based IS can have records about the 

same instances, but their attributes and classes would naturally vary (reflecting different 

levels of domain expertise, motivation, and other contextual factors inherent in UGC 

settings). While in the latter case some classes and attributes relevant to data consumers 

maybe missing,
31

 information is still relevant insofar as it pertains to the instances of 

interest to data consumers, satisfying the definition of crowd IQ. Based on Proposition 3 

(in Chapter 4)
32

, I hypothesize:  

                                                 

 

31
 Collecting information without forcing it into a predefined class-based models 

poses a question of usefulness of the resulting instance and attribute data for the purposes 

that require species-level classification (which are common in biology). For example, can 

the attributes reported by non-experts be used by experts to reliably infer useful classes 

(e.g., species)? A positive answer would provide strong evidence of usefulness of data 

collected following the principles developed in this thesis. Investigating this question is 

beyond the scope of this thesis, but can be pursued in future research. 
32

 Proposition 3 (Dataset Completeness) states that class-based conceptual models 

undermine dataset completeness resulting in fewer instances stored when the classes 

defined in an information system do not match those familiar to the information 

contributor. 
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H-4.1 (Dataset Completeness). Contributors will report significantly more 

instances of biological organisms in the instance-based IS compared with an equivalent 

class-based IS.  

Hypothesis 4.1 is primarily motivated by the contention that class-based modeling 

approaches may have inherent barriers to describing instances of interest. This 

undermines dataset completeness due to mismatches between the conceptualizations of 

online contributors and the class-based models embedded in the IS. Similarly, in rich and 

complex domains (e.g., science, healthcare, consumer markets), it may be difficult to 

determine in advance all relevant classes of things (regardless of whether or not 

participants are previously familiar with them). For example, projects may be local in 

scope (Sheppard et al. 2014) and concerned with monitoring and conservation in a small 

geographic area. Since distributions of plants and animals are not static, it may be 

difficult, if not impossible, to develop a comprehensive classification that can account for 

everything that may be observed in a given locality. Indeed, finding anomalies and 

outliers might be the raison d'être for some UGC projects. Even a single valid data point 

would spell success for a project like SETI@Home that leverages distributed crowd 

computing in search of extraterrestrial intelligence (Korpela 2012).  

Organizations increasingly hope to harness UGC to learn something new about 

their target domains. One approach may be to encourage participants to contact the 

organizers when they encounter something unusual or not fitting into the predefined 

structure. Anecdotally, a discovery of an object previously unknown to astronomy, 

Hanny's Voorwerp, occurred when an online contributor, Hanny van Arkel discovered a 



 

119 

 

huge blob of green-glowing gas while performing a task of classifying galaxies in the 

project Galaxy Zoo (Lintott et al. 2009). The project schema could not accommodate this 

instance and van Arkel (sensibly) posted this information in a forum created to support 

the project. This post was eventually noticed by scientists. While online contributors may 

find workarounds to record information they believe is important, class-based IS lack 

inherent affordances to capture unanticipated attributes and classes. In contrast, instance-

based information management is naturally suited for capturing any unanticipated 

phenomena.  

This chapter compares the ability of two modeling approaches to capture 

unanticipated kinds of instances. To ensure equitable and conservative comparison, the 

focus is on new (i.e., previously absent from the project schema) species-level classes (as 

opposed to, for example, new attributes of instances). This comparison is conservative 

insofar as species-level identification is the explicit task in class-based IS and is arguably 

de-emphasized in the instance-based IS where the focus is on attributes and classes. 

Based on Proposition 3, I hypothesize:  

H-4.2 (Dataset Completeness). Contributors will report significantly more 

instances of new (i.e., previously absent from the project schema) biological species in an 

instance-based IS than in a comparable class-based IS. 

7.2 Method 

To evaluate the proposed hypotheses, the experiment uses NL Nature 

(www.nlnature.com) - described in detail in Chapter 6. A field experiment offers several 

advantages. Using a real project allows tracking real user behavior (as opposed to 

http://www.nlnature.com/
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behavioral intentions). It also allows for real research participants rather than surrogates 

(e.g., students). Studying behavior directly is a growing trend in a variety of disciplines 

from economics to psychology, where scholars argue that deeper understanding of actual 

behavior and its circumstances affords unique insights about unobservable states of 

human mind (Bargh and Chartrand 1999). Conducting research in a real setting also 

increases external validity compared to similar studies conducted in laboratory 

environments.  

Prior to the experiment, NLNature was in existence for four years. The project had 

285 users who collectively contributed 788 observations - these sightings were made 

using a traditional (species-driven) user interface that was designed in accordance with 

prevailing approaches to citizen science (e.g., eBird.org). The low number of users and 

sightings were of concern and the project sponsor was looking to find ways to increase 

the number of observations reported.  

The decision to conduct the experiment was made one year prior to its 

commencement in May 2013. The 12 months preceding the launch of the experiment 

were spent in planning and development. Importantly, all promotional activities were 

halted during this time to avoid attracting the attention of the public to the project and to 

ensure a fresh start for the new project. Preceding the launch of the redesigned NLNature, 

the activity on the website was low (see Figure 10). This allowed us to rebrand NLNature 

to the local community as a fresh start. 
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Figure 10. Traffic trend on NLNature before (prior to June 2013), during (June - 

December 2013) and after the experiment (December 2013 to March 2014). 

During 2012 I substantially redesigned NLNature, changing its appearance and 

behavior (see the front page in Figure 11). The data collection interfaces were completely 

changed (see Figure 12). I also timed the launch of the experiment to coincide with the 

end of spring - the time when wildlife becomes accessible and people spend more time 

outdoors.  

NLNature was promoted to the general public. I organized a series of community 

meetings in different parts of the province. In the week following the launch of the 

experiment I made a trip around the province covering over 3000 km, conducting 60 

informal and 5 formal meetings. The website was also advertised/featured on local radio, 

television, newspapers, online (e.g., through Google Adsense and Search network, 

Facebook, Twitter, through website partnerships). All demographic groups were targeted 

in the promotional activities to ensure a sample of users representative of the members of 

the general public (rather than only keen naturalists). The project was coined as a local 

citizen science initiative in biology (with no details of the IS component of the project 

given). The call for participation invited anyone to participate, emphasizing that no 

expertise in biology was required. The promotional activities produced substantial traffic 
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in the project - peaking at 30,000 visitors per quarter at the height of the experiment in 

mid-summer of 2013 (see Figure 10). 

 

Figure 11. Redesigned front page of NLNature (public view) 

To compare class-based and instance-based approaches to modeling, I used two 

different data collection interfaces, each corresponding to different conceptual modeling 

assumptions: class-based (species-level) interface and the instance-based interface 

(described in Chapter 6). The interfaces were designed to be visually similar and were 

dynamically generated from the same master template (differing only in the aspects 

relevant to the underlying conceptual modeling approaches). 

Potential information contributors (citizen scientists) were randomly assigned to 

one of two data collection interfaces upon registration and remained in the originally 
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assigned conditions for the duration of the experiment. The data entry form required 

authentication to ensure that users were not exposed to different conditions. Regardless of 

the assigned condition, all users received equal access to other areas of the project (e.g., 

internal messaging system, forum) and equal support from the project sponsors. This 

ensured equivalent facilitating conditions (Venkatesh et al. 2003) across the three groups. 

In the class-based condition, users were required to report sightings by selecting 

from a predefined list of species (see Figure 12). Since it is entirely possible that a 

contributor may not know or be confident in the species-level identification, the 

experiment provided an explicit option (with clear instructions) to bypass the species-

level classification by clicking on the "Unknown or uncertain species" checkbox below 

the data entry field (see Figure 12). Following the principles for modeling UGC proposed 

in Chapter 5, in the instance-based condition NLNature instructed participants to provide 

attributes and, if possible, classes (see Figure 13). This allowed users to report sightings 

even if they could not determine a class for the instance observed. 

 

Figure 12.  Class-based data entry interface 
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In both conditions, to see a list of options (classes or attributes) users were 

instructed to begin typing in the textbox and click "Add" or press "Enter" when finished. 

As soon as more than two characters are entered, a suggestions box appears with the 

classes or attributes that contain the string entered. In the class-based condition, 

participants were required to select an item from the list (or supply the new class in the 

comments, as per instructions). In the instance-based condition, participants could select 

an item from the list or provide novel attributes and classes via direct entry.  

 

Figure 13. Instance-based data entry interface 

As this chapter examines the context in which online contributors provide 

observations of natural history, the focus is on modeling phenomena in this domain. The 

conceptual model of the domain in the class-based condition, therefore, is a list of 
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species-level classes that reflects the intended uses of data by scientists (as discussed in 

Chapter 4). The choice of modeling only a single level in a classification hierarchy is 

driven by considerations of ecological validity as major projects (e.g., eBird.org) involve 

identification at a single, species-level.
33

  

The list of species was developed by an ecology professor - an expert in local 

natural history - when the project was first launched in 2009. It was deemed 

comprehensive as it represented most of the kinds of living things people are likely to 

encounter in the geographic area. NLNature became a live citizen science project in 

October 2009. During the four years preceding the current experiment, the list was 

updated periodically by the website members, who were encouraged to suggest new 

species (using the comments field available in the older version of NLNature). Biologists 

also reviewed the list periodically and updated it as needed. By the time the experiment 

began, the species list was stable with very infrequent updates and contained 343 species-

level classes.
34

 

                                                 

 

33
As this thesis is focused on the conceptual model of a domain, it ignores the 

database implementation details (i.e., how the conceptual model is translated into 

database tables). To ensure equivalence in query-write performance, entries in both 

conditions were written to the same database table "Concepts", as described in Chapter 6.  
34

 The list did not represent all species in the province, but deemed comprehensive 

for the kinds of things non-experts would be likely to experience (as decided by 

biologists). 
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As discussed earlier, the class-based version of NLNature implemented traditional 

approaches to conceptual modeling. When making specific design decisions (e.g., the 

design of data entry forms), it was important to have high ecological validity. Consistent 

with similar projects (e.g., www.eBird.org, www.iSpot.org.uk), NLNature instructed 

participants to provide a positive identification of species based on the predefined list. 

Following popular practice on social media websites (e.g., Facebook) and citizen science 

projects (e.g., www.iSpot.org.uk) I decided to provide options via a prompt-assisted text 

field. This allowed a participant to begin typing a class and a prompt would dynamically 

show recommendations based on the string being typed. As more people become engaged 

with social media, the dynamic text field is becoming a norm for data entry. It also 

appeared as a superior alternative to a dropdown list (such as in Figure 3; Chapter 6) as it 

mitigated potential adverse ordering and priming effects (see Chapter 6 for more 

discussion).  

When designing the instance-based condition, much of the previous experience 

with class-based conceptual modeling, database normalization, and user interface design, 

could no longer be leveraged. Traditionally, surface elements of a system (such as a user 

interface, navigational structure, menu choices, code objects) conform to structural 

assumptions at the deep (i.e., conceptual) level (Wand and Weber 2008). Since the 

underlying conceptual and data model is instance-based, surface elements need to follow 

the instance-based principles. At the same time, no strategy for mapping the instance-

based modeling into specific design objects is evident in the underlying theory (see 

Chapter 6 for more discussion). I used the implemented traditional condition as a template 

http://www.ebird.org/
http://www.ispot.org.uk/
http://www.ispot.org.uk/
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for the instance-based one, as it was more important to ensure equivalence across 

conditions than produce the most effective implementation of the instance-based IS.
35

 

Specifically, I reused every design element included in the traditional condition that was 

not pertinent to the principles of the instance-based modeling. As with the class-based 

data entry, the interface began with the instructions but asked users to describe instances 

and attributes rather than classes. The same dynamic text box was used for data entry. To 

ensure equivalence across conditions, NLNature also provided users in the instance-based 

condition with options to choose from once they began typing. The options were based on 

a list of common natural history attributes (e.g., can fly, yellow beak) compiled before the 

start of the study. Unlike the class-based condition these options served as a guide and an 

example: users in the instance-based condition were not constrained to the predefined 

choices and were free to provide their own attributes and classes.  

7.3 Results 

Hypothesis 4.1 predicts that users in the instance-based condition will report more 

instances than users in the class-based (species-only) condition. Hypothesis 4.2 predicts 

that a greater number of instances of new species will be reported in the instance-based 

                                                 

 

35
 As the instance-based IS was expected to outperform the class-based IS, it was 

not necessary to design the most effective instance-based IS (principles of design were 

discussed in Chapter 5). Instead, the goal was to make sure that a valid comparison could 

be made. 



 

128 

 

condition than in the class-based condition (due to the inherent challenge of predicting all 

relevant classes in a citizen science environment).  

The results are based on a six month period of usage, from June to December 

2013. This period spanned low and high tourism seasons in Newfoundland and Labrador 

(peaking in late summer). It also allowed participants to observe major changes in 

ecology due to seasonal changes. The period corresponded to late spring, summer, fall 

and early winter in Newfoundland and Labrador.  

In designing the project I followed established practices of engaging citizen 

science participants in scientific research including voluntary and anonymous 

participation (Robson et al. 2013; Snäll et al. 2011). In order to use NLNature, 

participants were required to accept a consent form that outlined the nature of their 

interaction with the website. Failure to accept the consent disallowed people from using 

any data-collecting features of the website. No incentives for participation were provided. 

Participation was voluntary. There was no requirement to stay on NLNature for any 

particular length of time or to submit sightings. Participants could provide as many 

sightings as they wanted and could quit using the website at any time without having to 

give the reasons. The instructions stressed that there was no requirement to provide some 

“minimal” amount of information even if the consent was accepted. Participation was 

anonymous and as a result no personally-identifying information was collected on NL 

Nature. The nature and presence of the manipulation was not disclosed to the participants.  

The results of the study are based on the information provided by the website 

members who accepted the consent form after June 1st 2013 when the two manipulations 
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became live. Since June 2013 158 members accepted the consent form and were assigned 

to the two manipulations. Upon accepting the consent form, each user was randomly 

assigned to one of the two the study conditions. Since users could not be uniquely 

identified, their identification was based on the IP addresses. To prevent people 

potentially living or working in the same place from appearing in different conditions 

(with could contaminate the sample by making some people aware of different 

manipulations), users that shared the same IP address were always placed in the same 

condition.  

In total, 79 participants were randomly assigned to the class-based condition and 

79 were assigned to the instance-based condition. Some participants registered, but never 

landed on the observation collection page and hence were not actually exposed to 

manipulation (this was determined by analyzing server logs). The final number of 

participants who at least once visited the observation collection interface was 42 in the 

species-only condition and 39 in the instance-based condition. The remainder of the 

analysis is based on the information that was provided by these users.  

While NLNature did not require users to provide demographic data, some 

volunteered this information by filling in an optional form. Fifteen participants indicated 

their age (50.9 avg., 15.54 st. dev). Seventeen participants indicated how many years they 

lived in Newfoundland and Labrador (18.9 avg., 17.30 st. dev). Fourteen participants 

provided number of hours per week they spend outdoors (19.1 avg., 15.54 st. dev.). Of the 

27 people who provided information about their sex, 13 were female. While the majority 
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of participants abstained from contributing demographic information, those who provided 

information appeared mature with considerable local experience.  

7.3.1 Hypothesis 4.1: Number of instances stored 

To evaluate H-4.1, I analyzed observations provided by 81 participants exposed to 

manipulation in the two conditions. Since in the class-based condition a contributor might 

not know or be confident in the species-level identification, the interface provided an 

explicit option (with clear instructions) to bypass the species-level classification by 

clicking on "Unknown or uncertain species" checkbox below the data entry field (see 

Figure 12). The class-based interface further instructed participants to indicate in the 

comments box any class to which they believed the instance belonged. Since in this case a 

user could provide classes at levels other than species, such non-species observations 

were removed from the count for users in the class-based condition. Finally, since this 

thesis defined crowd IQ (Chapter 2) as the extent to which stored information represents 

the phenomena of potential interest to data consumers, I counted an observation as valid 

if it described an instance in the domain of biology (i.e., a living thing).
36

 

                                                 

 

36
 This led to the removal of one observation of an island (although in-line with 

the use-agnostic IQ, even this observation may be useful at some point in time). 
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 Table 10 reports the number of contributions in each condition, consisting of 

sightings made in the instance-based condition and species-level classifications in the 

class-based condition. 

Table 10. Number of observations by condition  

Experimental 

Condition  

No of users in 

condition 

Observations 

Total Mean St. dev. Skewness Kurtosis 

Class-based 42 87 2.07 2.56 2.08 4.23 

Instance-based 39 390 10.00 37.83 5.47 29.66 

  

Before proceeding with hypothesis testing, the assumption of normality in the data 

was tested using Shapiro-Wilks test. In each condition, the distribution of observations by 

user significantly deviates from normal (with W=0.690 and p-value<0.000 for the class-

based and W= 0.244 and p<0.000 for the instance-based condition), due largely to the 

presence of outliers in each condition.
37

 As seen from Table 10, in both cases the 

distributions are skewed and leptokurtic. This was confirmed using Kolmogorov-Smirnov 

                                                 

 

37
 By convention data points as deemed outliers if they are 1.5*interquartile range 

above the third quartile or below the first quartile (Martinez et al. 2004). The following 

frequencies of observations per user are outliers in the instance-based condition: 236, 39, 

21 and 19 and 12 9, 7, 7, 6, 6, 5 and 4 in the species-only condition. I also verified that 

the most extreme value is a significant outlier using Grubbs' test, which confirmed that in 

each condition the extreme value (236 and 12) is a significant outlier (at 0.01 level). 
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and Anderson-Darling goodness-of-fit statistics where best fitting distributions were 

power-law, lognormal and exponential. Commonly, these are referred to as "long tail" 

distributions. Indeed, the top 4 contributors in the instance-based condition (or 10% of the 

user sample) produced 80.8% of the observations in that condition (in contrast, the top 4 

contributors in the class-based condition produced 37.9% of the observations in that 

condition). These results are not surprising: long-tail distributions have been observed 

consistently in other user-generated datasets, including citizen science projects 

(Lukyanenko and Parsons 2013). The instance-based condition has greater mean, 

variance, skewness and kurtosis than the class-based condition (see Table 10). Figure 14 

further illustrates this by showing that users in the instance-based condition tend to 

contribute a higher number of observations and few users in this condition contributed 

one or zero observations.  

 

Figure 14. Number of observations per user in the two conditions 
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To determine if the difference in the number of observations per user is 

significantly different across the conditions, an exact permutation test was performed 

(Gibbons and Chakraborti 1992; Good 2001; Hayes 1996). The test samples from all 

possible outcomes without replacement to determine the exact probability of obtaining 

the observed difference. The permutation test can be performed if values in the two 

samples can be exchanged - meaning that users in both conditions could theoretically 

provide the same number of observations (i.e., the samples are comparable in principle, 

which is fundamental to testing differences in samples). Unlike other methods (e.g., 

parametric statistics, bootstrapping), assumptions about data distribution or population 

parameters are significantly relaxed, making the permutation test very general (Gibbons 

and Chakraborti 1992; Good 2001; Hayes 1996). The exact permutation test is suitable 

when data is not normally distributed, sample sizes are low and medium, outliers and ties 

(i.e., same values in two samples, as in Figure 14) are present. This test is preferred over 

approximations, such as bootstrapping that relies on permutation with replacement (Good 

2001).
38

  

Based on the exact permutation test of observations per user between the two 

conditions, the p-value is 0.033, indicating that users in the instance-based condition 

                                                 

 

38
 The permutation test is becoming popular and is being increasingly 

recommended with the availability of the requisite computational power (Hayes 1996). 
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provided significantly more observations than those in the species-only condition. This 

supports Hypothesis 4.1 and accords with the contention that different conceptual 

modeling approaches may result in significantly different numbers of instances of interest 

captured in IS. 

To gain a deeper insight into the impact of modeling on information 

completeness, I further analyzed the categories and attributes provided to identify specific 

causes of lower performance by the users in the class-based group. Specifically, three 

(observable) behavioral patterns of users in the class-based condition led to lower 

information completeness. Below I elaborate on each pattern. 

This thesis argued that since the class-based models constrain user input to 

predefined classes and attributes, users may not be able to record instances unless they 

provide classes that are congruent with the predefined structure in an IS. Evidence for this 

comes from the analysis of classes users entered in the dynamic textbox. The use of a 

dynamic textbox for data entry allows comparing words and phrases users attempted to 

submit against the classes defined in the IS. Whereas in the instance-based condition 

entering directly new attributes and classes was allowed, in the class-based condition the 

entries were vetted against the active species list and only matching ones were allowed 

(unless a user explicitly bypassed this step to report an unknown or new species). 
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Table 11. Examples of user input in the class-based condition that did not fit the species 

level of classification  

Original user input Reason for exclusion 

Harvestman Non-species 

Slug Non-species 

Harbour Grace Island Not on list; not animate 

Otter Non-species 

Spider Non-species 

Hawk Non-species 

Black bear scat Non-species 

Toad Non-species 

Earwig Non-species 

Dolphin Non-species 

Caterpillar Non-species 

Soapberry Non-species 

 

The analysis of user input reveals instances of mismatch between the intended 

classification and the active class base (see Table 11). While NLNature specifically 

instructed users to provide species-level responses and identification at that level, as the 

prevailing practice in natural history citizen science, users still attempted to provide 

classes at other levels. These were generally at higher levels in the classification hierarchy 

(e.g., dolphin, toad, slug) potentially reflecting classification uncertainty (e.g., due to 

conditions of observation), and/or lower levels of domain expertise (non-experts are 

generally more comfortable with more general taxonomic levels).  

 Each case where the class provided in the comments box did not match the target 

(species) level was not included in the analysis above, contributing to the lower number 

of observations in the class-based condition. The existence of cases where users 

attempted to enter data at levels above the species-level provides evidence for the 

mismatch between the model of the contributor and the data consumer-oriented view 

embedded in the IS. This accords with the empirical findings in Chapter 4.  
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Figure 15. Feedback users received in the class-based condition when the word entered 

was incongruent with the classes defined in the model (notably, the message suggested 

bypassing classification as an option). 

The second pattern observed showed that, when facing a structure incongruent 

with their own, some users changed the original submission. In several cases this resulted 

in loss of instances. For example, in one case a user began with typing "otter" (non-

species level) - the entry was rejected by the system (listed in Table 11; see Figure 15 for 

a screenshot of the message the user received in this situation). The user then proceeded 

to record "Little Brown Bat (Myotis lucifugus)" instead (see Figure 16). In another case a 

user typed "grackle" (non-species level) 5 times before finally selecting "Common 

Grackle (Quiscalus quiscula)". A similar sequence occurred when a user first entered 

"toad" and then selected "American Toad (Bufo americanus)", "moose" and then "Moose 

(Alces alces)", "Canada loon" and then "Common Loon (Gavia immer)". Another user 

began with "black bear scat", and after two attempts to record it, typed "Black Bear 
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(Ursus americanus)". In all examples above the original input had to be changed by users 

to comply with the model. In the case of "otter" the instance of it was not stored. 

 

Figure 16. A timeline of the observation showing the loss of an otter instance ("otter" and 

"river otter" classes were rejected - shown in dashed lines - leading the user to modify the 

location of the sighting and report "Little Brown Bat" instead). 

This chapter predicted that, when faced with unfamiliar classification structures, 

users may devise a workaround to record information. As the opportunity for direct entry 

is not provided, loss of instances may result. The data offer some evidence for this. In 12 

cases, users in the class-based condition selected to by-pass species identification, but 

then failed to provide any species-level labels. These cases were also excluded from the 

final count of observations in the class-based condition. 

Table 12. Examples of the basic-level categories provided in the instance-based 

condition. 

Basic-level category Reported 

frequency 

Fly 29 

Spider 18 

Mushroom 17 

Mosquito 8 

Butterfly 7 

Beetle 6 

Bird 6 
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Another source of difference between the conditions is the prevalence of non-

species-level classification in the instance-based sample. Many classes provided in the 

instance-based condition were at levels higher-than the species. Of 390 observations in 

the instance-based condition, 179 (45.9%) were not classified at the species level. For 

these observations, participants provided 583 classes and 69 attributes (222 distinct 

classes and 43 unique attributes). Among the classes provided, 110 were basic-level 

categories (see Table 12). As discussed in Chapter 4, basic-level categories are widely 

accepted in cognitive psychology as the generally preferred classification level for non-

experts (Corter and Gluck 1992; Eimas and Quinn 1994; Markman and Wisniewski 1997; 

Rosch et al. 1976; Tanaka and Taylor 1991). The results from Chapter 4 further suggest 

basic level as a marker of low domain expertise. The reporting of basic-level categories 

can stem from at least three (possibly overlapping) sources: 

(a) low level of domain expertise of some users, as argued in psychology literature 

and as demonstrated in Chapter 4; 

(b) conditions of an observation (e.g., too dark, fleeting, at a distance) when 

positive identification at more specific levels could not be made; 

(c) attempts to provide additional evidence in cases when confidence in species 

identification is low.  

The obtained results demonstrate that the mismatch between the conceptualization 

by users (situational or expertise-related) and those embedded in the IS contributed to the 

lower number of observations in the class-based condition. This supports Hypotheses 1. 
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7.3.2 Hypothesis 4.2: Number of novel species reported.  

Hypothesis 4.2 posits that a greater number of new species would be reported in 

the instance-based condition than in the class-based condition. Users in both conditions 

provided 997 attributes and classes including 87 in the class-based and 910 in the 

instance-based condition (see Table 13). Of these 701 attributes and classes were new - 

they did not exist in the system prior to the experiment and were suggested by users as 

additions. This was done directly by users in the instance-based condition and indirectly 

(via comments to an observation) by users in the class-based condition.   

Table 13. Number of observations and categories and attributes by condition  

Experimental 

Condition  

No of users in 

condition 

Classes and attributes 

Total Mean St. dev. Skewness Kurtosis 

Class-based 42 87 2.49 2.62 1.97 3.49 

Instance-based 39 910 26.00 117.14 5.36 19.8 

 

During the experiment, 126 new species-level classes were suggested by the 

participants - 119 in the instance-based and 7 in the class-based condition (see Table 14). 

In each condition, the distribution of new species by user significantly deviates from 

normal (W= 0.430 and p-value < 0.000 for the class-based and W = 0.232 and p<0.000 

for the instance-based condition). The distribution is long-tailed in the instance-based 

condition (fitted using Kolmogorov-Smirnov and Anderson-Darling goodness-of-fit) and 

uniform (Chi-squared = 47, Monte Carlo p=0.424) in the class-based condition. Based on 

the exact permutation test, the number of new species is significantly greater in the 
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instance-based condition (p=0.007), providing support for Hypothesis 4.2. This suggests 

that instance-based approach to modeling may be more effective for capturing data about 

unanticipated phenomena of interest.  

Table 14. Number of new species reported by condition (repeated sightings excluded) 

Experimental 

Condition  

No of users in 

condition 

New Species 

Total Mean St. dev. Skewness Kurtosis 

Class-based 42 7 0.17 0.44 2.53 5.96 

Instance-based 39 119 3.05 13.17 5.35 28.51 

 

Users also provided interesting attributes for some sightings. As implied in 

Proposition 2 (Chapter 3), these attributes offered additional information not inferable 

from the classification labels attached to instance: 

 attributes describing situational behavior of the instances observed (e.g., 

mating, hopping, fluttering together); 

 attributes describing something unusual about an instance (e.g., tagged, only 

has one antler); 

 attributes describing the environment / location of the instance (e.g., near 

highway, 10 feet away from highway, near bike trail). 

As these attributes cannot be predicted from simply knowing the species (e.g., while 

moose are known to appear near highways, one cannot conclude that the observed moose 

was near a highway if this information is not explicitly provided), they constitute 

information beyond what would be normally collected in a traditional class-based model. 
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Thus, unless appropriate designs are provided to seamlessly capture these attributes, they 

can be potentially lost. The field evidence of potential information loss provides 

additional support for the findings obtained in the laboratory setting (reported in Chapter 

4).  

Interestingly, several sightings of biological significance were reported during the 

experiment. These included unanticipated distribution of species (e.g., vagrant birds, fish 

and insects), a mosquito alien to the geographic area of the study
39

, and a discovery of a 

possibly new species of wasp (presently pending scientific verification). All these 

occurred in the instance-based condition. It is also notable that some of the new 

organisms suggested by the instance-based users belonged to classes that were poorly 

represented in the project schema of the original class-based condition, including 

microorganisms and insects (e.g., 29 sightings of flies, 10 sightings of moth, 8 sightings 

of mosquitoes). 

                                                 

 

39
 MUN Science News [Oct 4th, 2013]: Citizen scientist detects sighting of mosquito 

thought to be carrier of West Nile http://www.mun.ca/science/news.php?id=2579 

http://www.mun.ca/science/news.php?id=2579
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7.4 Discussion 

The results of the field experiment demonstrate that modeling approaches affect 

dataset completeness and add to the evidence of the impact of conceptual modeling on IQ 

provided in Chapter 4.  

Using a real IS project - an online natural history citizen science website, 

www.nlnature.com - this field experiment found that participants provided on average 

more observations when assigned to the version that implements instance-based, rather 

than the traditional, class-based modeling. Similarly, participants in the instance-based 

condition provided a greater number of novel classes of organisms. The results indicate 

that traditional modeling presents a barrier to providing information that appears to be 

mitigated by the instance-based modeling.  

It is also notable that of the top 5 contributors, 4 belonged to the instance-based 

condition - collectively producing 315 sightings - 80.8% of the observations in the 

instance-based condition and 66.0% of all the observations collected during the study 

period. In contrast, the top 4 contributors in the class-based condition created 33 

observations - or 37.9% of the observations in their condition and 6.9% of all 

observations. Although too small for statistical significance testing, this suggests that 

instance-based modeling might encourage the rise of "superstars" - people who contribute 

a disproportionately large share of the projects' content. Given that the typical distribution 

of user activity in UGC projects is long-tailed, superstars constitute a stable core of the 

project - a group of regular and potentially most loyal users. Nurturing the growth of 

superstar users may be central to a project's success, as they play a key role in content 

http://www.nlnature.com/
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production, dissemination of ideas and influencing other people (Chau and Xu 2012; 

Zhang et al. 2013).  

Instance-based conceptual modeling appears to be more effective at capturing 

unanticipated phenomena. Users in the instance-based condition reported 17 times more 

observations of new species than in the class-based condition. One concern about the 

definition of information completeness from the perspective of data creators is that this 

may result in information that is irrelevant and of no value to the sponsoring organization. 

The findings appear to point to the contrary. Instance-based users outperformed the users 

in the class-based condition in the task with the predefined focus on species. A potential 

explanation for this paradox has to do with the increased flexibility and freedom afforded 

by the instance-based model. While the class-based users were given mechanisms to 

report new species, it was not direct and seamless. In several instances, users in this 

condition appeared on the path to provide new classes (by clicking on the bypass 

identification button), but contrary to the instructions, provided no valid descriptions in 

the comments. Another reason for the lower number of new species in the class-based 

condition might be related to the fact that users in this condition were directly exposed to 

the schema of the project - and thus could have formed a preconceived notion of the kinds 

of things that were of interest to the project sponsors. Indeed, users in that condition were 

required to select from predefined options. In contrast, users in the instance-based 

condition were not required to comply with any predefined options. Notably, some of the 

new instances logged by the instance-based users belonged to groups that were originally 

poorly represented in the project schema, including spiders, flies, and mosquitoes. These 
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organisms are readily observable by all users, but were nevertheless reported extremely 

rarely in the four years preceding the experiment even though the project explicitly 

embraced "all natural history". A widely-held assumption in citizen science holds that 

non-experts mostly report "charismatic" organisms, fueling concerns that citizen science 

produces a distorted view of biodiversity (Boakes et al. 2010; Galloway et al. 2006). The 

results of this study indicate that the imposition of a schema may bias participants toward 

predefined options and the bias may be mitigated using instance-based modeling.  

Despite finding significant differences between the two conditions, it is notable 

that, among the information provided by participants in the instance-based condition, 

many classes were at the species-level of granularity. Such level of granularity is natural 

for domain experts, whereas novices are more comfortable with the more generic classes 

(as demonstrated in Chapter 4). This indicates that, despite efforts to attract members of 

the general public, many participants on NLNature might have had higher-than average 

levels of domain expertise. This may be explained by the fact that, being unaware of the 

novel experimental condition, prospective novice participants might have assumed that 

getting engaged in the project required some level of domain expertise. This could have 

dissuaded non-expert participants from joining and discovering the instance-based 

condition.  

While participants in the instance-based condition provided more observations 

than participants in the class-based condition, a natural question arises as to the extent to 

which the instances in the instance-based condition belonged to classes (species) provided 

on NLNature before the start of the experiment. This question is important as these 
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classes typically support intended uses of citizen science information by the scientists. In 

the instance-based condition, participants provided 51 of the 343 (14.9%) species that 

were in the schema of the NLNature before the start of the experiment. By comparison, in 

the class-based condition participants provided only 36 (10.5%) of the original species. 

While this may be in part due to the overall larger number of observations in the instance-

based condition (there were 390 observations in that condition and only 87 observations 

in the class-based condition), it illustrates that the use-agnostic instance-based approach 

does not necessarily result in failure to capture information known to be of immediate 

relevance and usefulness to data consumers. 

There are several limitations of the presented field experiment. One general 

concern relates to the nature of empirical evidence obtained as a result of field 

experimentation. While using field experimentation offers advantages (discussed earlier) 

the results should be interpreted with caution. Working in a field setting raises common 

concerns about experimental control. One issue is ensuring that users in one condition 

were not experiencing treatments in different conditions. I tried to address this by using 

password authentication before any manipulation could be experienced. Having to enter 

(and remember) user name and password, however, potentially deterred some (e.g., less 

determined) users from engaging.  

Another issue is whether the users of NLNature were representative of the broader 

population. In conducting the experiment, considerable effort was made to reach as many 

different segments of population as possible (as expounded above). At the same time, the 

analysis of observations revealed an unexpectedly large proportion of species-level 
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identifications - indicative of domain experts (Tanaka and Taylor 1991). This can be 

potentially explained by the volitional nature of the project where users with domain 

knowledge or interest in biology would be more inclined to participate. As this thesis 

assumes a context where information contributors are non-experts with respect to the 

intended information uses by project sponsors (in this case, biologists), the impact of 

modeling on completeness should be even greater in purely novice populations. 

7.5 Chapter Conclusion  

This chapter investigates the impact of conceptual modeling on the data 

completeness dimension of IQ in UGC using a field experiment in the context of citizen 

science in biology. The empirical evidence demonstrates that users assigned to an 

implementation derived from class-based conceptual modeling report fewer observations 

than users assigned to the alternative instance-based condition that follows modeling 

principles proposed in Chapter 5. Users in the instance-based condition also reported a 

greater number of new classes of interest. This demonstrates the advantages of modeling 

UGC using the principles proposed in this thesis over traditional approaches in capturing 

unanticipated phenomena. Appendix 4 summarizes the findings of the field experiment. 

The findings from the field experiment are consistent with those from the 

laboratory experiments provided in Chapter 4. As in Chapter 4, the field experiment also 

provides evidence of potential information loss as well as of the prevalence of  classes at 

levels higher-than species (including basic-level categories). Thus, the field experiment 

provides additional support for Hypothesis H-1.2 (information loss) and also 

demonstrates the importance of allowing users to report instances at different levels of a 
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classification hierarchy (which, as demonstrated in Chapter 4 results in higher 

classification accuracy).  

The findings from the field experiment provide empirical evidence for the 

advantages of the proposed principles of modeling UGC and the proposed definition of 

crowd IQ. The next chapter considers the contributions of the thesis to the theory and 

practice of conceptual modeling, IQ and UGC. 
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8 Contributions, Future Work and Conclusions 

User-generated content enables organizations to call upon the collective 

intelligence of people to support analysis and decision making. Among other uses, 

contributions of ordinary people expand an organization‟s “sensor” network, making it 

possible to collect large amounts of data from highly diverse audiences. Despite the on-

going effort to harness the “wisdom of crowds”, unresolved issues of information quality 

and modeling may significantly curtail adoption of UGC. This thesis provides a 

theoretical understanding of the nature of information quality and offers theory-based 

principles to improve crowd IQ. The thesis makes a number of contributions to theory 

and practice.  

8.1 Contributions to Research and Practice 

8.1.1 Reconceptualizing IQ  

This thesis attempts to open the black box of crowd IQ and argues that important 

differences exist between traditional organizational settings and crowdsourcing 

applications. This requires extending the prevailing data consumer focus of IQ 

definitions, as they ignore the characteristics of crowd (volitional) information creation 

and do not reflect information contributors' perspectives. A new definition of crowd IQ is 

proposed: the extent to which stored information represents the phenomena of interest to 

data consumers (and project sponsors), as perceived by information contributors. This 

definition explicitly excludes the traditional “fitness for use” conceptualization of IQ. 
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Rather, it is use-agnostic, recognizing that “the phenomena…as perceived by information 

contributors” accommodates both known uses and future, unanticipated uses.  

This thesis provided theoretical arguments and empirical evidence of the 

advantages of approaching IQ from the contributors' perspectives. These include findings 

of:  

a) higher accuracy when modeling using classes more natural to data contributors 

(in UGC settings these are typically basic-level categories) (Chapter 4); 

b) higher accuracy when allowing data contributors to report information freely, 

without predefined structures (Chapter 4); 

c) higher dataset completeness in an IS that implements instance-based principles of 

modeling UGC compared with an IS that implements class-based approaches to 

modeling and focuses on the information needs of the data consumers (i.e., 

scientists). 

These results are novel and provide strong empirical evidence of the advantages of 

the novel IQ perspective. The contribution of reconceptualizing crowd IQ is in 

recognizing the pivotal role of information contributors in UGC settings. This recognition 

leads naturally to a search for more effectives designs sensitive to information 

contributors, while remaining cognizant of the information needs of data consumers. 

8.1.2 Exposing Class-based Approaches to Conceptual Modeling as a Factor 

Contributing to Poor Crowd IQ 

This thesis increases our understanding of the nature of IQ challenges in UGC. 

Issues of quality in UGC have been receiving increased attention (Alabri and Hunter 
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2010; Arazy et al. 2011; Liu and Ram 2011; Prestopnik and Crowston 2011; Wiggins et 

al. 2011). One common assumption is that low quality of UGC is caused by low domain 

expertise and low levels of motivation of online contributors (see Chapter 2). This thesis 

contributes to this body of research by demonstrating that in addition to these factors, low 

crowd IQ may be caused by the approaches to conceptual modeling in the UGC 

applications. Specifically, the empirical evidence presented in this thesis suggests that 

traditional approaches to conceptual modeling may have negative impact on accuracy, 

information loss and dataset completeness dimensions of IQ. 

Using three laboratory experiments (Chapter 4) this thesis provides empirical 

evidence of the negative impact of class-based conceptual models on information 

accuracy. The results of the experiments demonstrate that accuracy is contingent on the 

classes used to model a domain. The results show that accuracy in UGC settings 

decreases when data collection is guided by classes at levels that correspond with 

predefined uses of data by project sponsors (i.e., biological species). At the same time, 

accuracy increases when data collection is guided by classes at generic levels. This 

finding suggests the potential benefit in identifying and modeling UGC applications using 

generic-level classes. This thesis further suggests cognitive psychology as a theoretical 

reference for identification of such classes (i.e., basic-level categories).   

At the same time, using these generic classes, however, undermines information 

completeness (causing information loss). This thesis proposed a novel dimension of IQ, 

information loss (Chapter 3). Following theories of ontology and cognition, I argue that 

using classes to store information about instances will always result in a failure to fully 
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capture reality, no matter how “good” the chosen classes are. As (ontologically) classes 

are unable to capture all instance attributes that might be observed, class-based 

conceptual models will result in information loss as long as contributors are able to 

observe attributes of an instance not implied by the class(es) they can provide.  

The empirical evidence for the potential prevalence of information loss in UGC 

was provided in Chapter 4. In Experiment 1, non-expert participants provided 

significantly more low-level, specific, attributes than more generic attributes. Additional 

evidence for information loss was obtained in the field experiment (Chapter 7), where 

users of the instance-based version of NLNature provided attributes that offered 

additional information not inferable from the classification labels attached to instances. 

The proposition that class-based models engender information loss (i.e., Proposition 2 in 

Chapter 3) implies that potentially valuable information may be routinely lost in existing 

class-based UGC applications. 

Another limitation of classification structures is demonstrated in Experiment 3 

(Chapter 4) that compared unconstrained (free-form) and schema-mediated data 

collection. This comparison shows that accuracy does not necessarily improve when 

intuitive and accurate options are provided for users. The results of Experiment 3 

demonstrated that the overall classification accuracy in the free-form data collection 

condition was significantly greater than in either single or multi-level conditions. This 

further indicates the potential consequences of using a class-based conceptual modeling: 

while predefined classes provide cues that may guide users to correct choices, they may 

also bias users to wrong classification decisions.  
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Finally, class-based conceptual modeling may have negative impact on dataset 

completeness. In the field experiment (Chapter 7), users assigned to an instantiation based 

on the traditional class-based conceptual modeling reported fewer species observations 

compared with the alternative instance-based condition. Users in the instance-based 

condition also reported a greater number of new classes of interest as well as more 

instances of new classes. This demonstrates that, by focusing on classes that are useful to 

organizations, UGC projects may be not capturing all relevant phenomena when classes 

used to represent these phenomena are incongruent with the views of data contributors. 

This thesis demonstrates a connection between conceptual modeling approaches 

and IQ. Traditionally conceptual modeling and IQ have been considered quite different 

domains. Conceptual modeling research explored effective domain representations 

(Mylopoulos 1998, Olivé 2007, Parsons and Wand 2008, Wand and Weber 2002), while 

IQ research examined data accuracy, completeness, and fitness for use in already 

designed systems (Lee et al. 2006, Pipino et al. 2002, Tayi and Ballou 1998, Wang and 

Strong 1996). Novel IQ challenges in user-generated datasets illustrate a critical role for 

conceptual modeling in information quality, which is likely to be applicable in internal 

corporate settings as well as in the environment of UGC. 

This thesis is one of the first attempts to establish theoretical antecedents of 

information quality dimensions (Wand and Wang 1996; Wang and Strong 1996) and 

discover mechanisms for improving quality. Despite extensive research on, and the 

centrality of IQ to organizational decision making, relatively little is known about what 
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causes low quality data - resulting in what has been called "a significant gap in the IS 

research" (Petter et al. 2013, p. 30). 

By showing specific ways conceptual modeling affect IQ, this thesis demonstrates 

the importance of conducting conceptual modeling and IQ research in tandem and calls 

for greater consideration of IQ in future conceptual modeling research and practice. The 

novel connections between conceptual modeling and IQ should make it easier to more 

effectively leverage conceptual modeling in improving IQ. Likewise, a better 

understanding of IQ implications promises to inform conceptual modeling theory and 

practice and suggest directions for improving modeling methods and grammars. 

8.1.3 Novel Approaches to Improving IQ 

This research points to the potential of an alternative data structure, based on 

attributes and instances, to improve crowd IQ. By allowing instances to exist independent 

of any classification, an application does not a priori constrain the potential information 

that can be stored. Thus, contributors can supply attributes based on their levels of 

domain expertise without having to pass a (potentially incorrect) classification judgement. 

Such an approach assumes neither a particular use of the data nor a minimal level of 

domain expertise and is, in that sense, use- and expertise-agnostic. 

This thesis further contributes by providing a "proof by construction" and 

demonstrates the application of the proposed principles of modeling UGC by re-designing 

a real IS, NLNature (www.nlnature.com). The NLNature design attests to the feasibility 

of the proposed principles and also provides a blueprint that practitioners can follow 

when developing UGC projects. 
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This research demonstrates a context in which instance-and-attribute based data 

collection and storage can lead to higher quality information for those who benefit from 

UGC. The approach is clearly useful when contributors lack domain knowledge or do not 

share the conceptual models (class structures) of information consumers. Additionally, 

where there is the opportunity to capture a diverse range of instance information 

(attributes that would not be expressed in a shared conceptual model), an instance-and-

attribute approach offers flexibility that cannot be achieved using a predetermined class 

structure. Such flexibility is likely to be valuable when there is a reasonable prospect of 

using information for purposes other than those envisioned when a system was designed. 

It can be combined with a traditional class-based approach (which might also include 

basic level classes) when there is a range from novice to expert contributors, who can be 

identified when contributions are reported. In addition, experts who classify at a fine level 

can also be given opportunities to report additional attribute information. 

8.2 Future Research 

This thesis provides a basis for a significant future research program that builds on 

the theoretical arguments and empirical findings presented here. Key directions for future 

research are provided below. 

8.2.1 Impact of Conceptual Modeling on Other IQ Dimensions 

This thesis provides a theoretical argument and empirical evidence for the impact 

of conceptual modeling on central the IQ dimension of accuracy and completeness. One 

avenue for future research is extending the theoretical understanding of the relationship 
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between modeling and crowd IQ by investigating other IQ dimensions. IQ research 

recognizes several dozen dimensions including consistency, timeliness, believability, 

accessibility, security, value-added, ease of manipulation, and freedom from error (Lee et 

al. 2002; Wang and Strong 1996). For example, data believability (i.e., whether a 

decision maker believes this data is correct, complete or current) becomes particularly 

important when dealing with UGC as the context of data creation and even the identity of 

data contributors maybe unknown. Employing an instance-based approach to modeling 

UGC should promote confidence in the crowd data once decision makers become aware 

that the contributors were not constrained and biased by potentially incongruent 

conceptual structures. Future work may provide additional guidance for employing UGC 

in organizational decision making by increasing understanding of other dimensions of 

crowd IQ. 

8.2.2 Impact of Contributor-oriented IQ on Data Consumers 

The prevailing conceptualization of IQ as 'fitness for use' explicitly guided IS 

towards ways to serve the needs of the organization. This thesis demonstrated a number 

of advantages of an alternative perspective in IQ that focuses on information contributors. 

An important question that remains open is the impact of the contributor-oriented IQ on 

data consumers. Here, one issue is whether organizations can take advantage of the novel 

affordances of contributor-oriented IQ. For example, data that is more faithful to the 

crowd's perspective can be leveraged in designing better customer-facing products or 

services or redesigning internal processes to make them more agile and flexible (see 

Kharabe and Lyytinen 2013). Future research can also examine challenges that data 
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consumers (e.g., scientists) may face when interpreting and analyzing instance-based data 

as well as opportunity this data presents. 

8.2.3 From UGC to Other Domains 

Another area for future research is applying the proposed perspective on IQ in 

other domains. Although this work is framed in terms of UGC, it can also be applied to 

traditional corporate systems when information about entities might be used for purposes 

not anticipated when a system was designed. For example, if the sole purpose of an asset 

management system is to keep track of accounting information about assets, a traditional 

class-based structure might be adequate. If, however, it is discovered that the performance 

of assets depends on the conditions under which they are used, but this relationship was 

not anticipated when the (class-based) asset management system was designed, the 

system would need to be redesigned to capture additional attributes of assets reflecting 

the conditions of use (entailing a detailed analysis of the kinds of conditions that matter 

and the specific impact on attributes of assets). In contrast, an instance-based system 

would be able to accommodate additional attributes of specific assets independent of any 

classification. Such an approach can help in generating new ways of conceptualizing 

phenomena in a seemingly familiar and well-understood domain. 

Many enterprise-wide and inter-organizational IS integrate large and often 

heterogeneous views of data (Vitale and Johnson 1988, Zhu and Wu 2011). Much like the 

UGC setting explored in this thesis, such integration creates the possibility of under-

representing the perspectives of many individual data contributors. As Kent (1978) noted: 

"we can share a common enough view of [reality] for most of our working purposes, so 
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that reality does appear to be objective and stable... But the chances of achieving such a 

shared view become poorer when we try to encompass broader purposes, and to involve 

more people" (p.  203).  

Future work can investigate the applicability and advantages of use-agnostic IQ 

and instance-based modeling in more traditional, corporate settings. 

8.2.4 Development of an Instance-based Conceptual Modeling Grammar 

An interesting question for future research is whether development following the 

proposed modeling principles can be further enhanced with the help of conceptual 

modeling scripts. The case of NLNature provided an example of converting the proposed 

principles into a real IS. In the scenario provided, the analysis phase essentially proceeds 

without relying on modeling scripts, such as Entity-Relationship diagrams. The principles 

proposed in Chapter 5 may guide development of conceptual modeling grammars - or 

rules and constructs (Burton-Jones et al. 2009; Gemino and Wand 2004) that analysts can 

use to create "instance-based" conceptual modeling scripts. The principles can both 

suggest ways to extent existing grammars as well as guide the development of new ones.  

While prevailing conceptual modeling grammars are driven by abstraction-based 

representations, they already contain the constructs proposed in Chapter 5. Specifically 

instances (things) have been used in conceptual modeling under similar terms of object, 

entity or instance (Chen 1976; Evermann and Wand 2005; Parsons and Wand 1997). 

Similarly, many modeling grammars contain the notion of classes, attributes and 

relationship types (for review, see Hull and King 1987; Peckham and Maryanski 1988). 

This means that the proposed principles can be used to extend the existing grammars to 
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take advantage of the familiarity of analysts with the notations for representing these 

constructs, as well as the capabilities of the existing visual modeling software. At the 

same time, popular grammars such as ER and UML are founded on the principles of 

representation by abstraction, which fundamentally differs from the instance-based 

representation advanced here. Another option may involve extending grammars that lack 

graphical components, but share some properties with the proposed principles in this 

thesis such as those based on the Entity–attribute–value model or prolog / datalog (Patel-

Schneider and Horrocks 2007). Future work can investigate whether and how existing 

modeling grammars can be modified to be more congruent with the principles proposed 

here. 

An alternative to re-using existing grammars is to develop a new conceptual 

modeling grammar. This permits creating a grammar that is more faithful to the proposed 

principles. For example, analysts may survey a sample of users and create models of a 

sample of instances and attributes. Such conceptual models would represent concrete 

instances rather than abstractions. While this means that these models are fundamentally 

incomplete, analyzing these attributes provides an early glimpse into what the actual data 

would look like, supports communication during development and guide design choices 

(e.g., whether or not to limit attributes to a predefined list).  

8.2.5  Addressing Challenges to Instance-and-attribute Approaches 

Notwithstanding the advantages of the instance-based approach to crowd IQ 

demonstrated in this thesis, it has a number of challenges that can be addressed in future 

studies. One is managing a large number of attributes. As with classes, attributes of 
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interest may not all be known at the time a system is designed. With potentially a very 

large set of attributes, it is necessary to devise mechanisms to guide contributors to select 

from available attributes. This may necessitate grouping attributes in some way, thus 

negating some of the potential benefits of an instance-based model.  

Another issue when allowing contributors to report attributes in a relatively 

unconstrained manner is standardizing data to make it amenable to analysis. In particular, 

when users are free to specify attributes, heterogeneity in reporting is likely to result in 

observations with (slightly) different names for semantically equivalent attributes 

(synonymy). This limitation can be addressed at both the input and post-processing levels. 

On input, it is possible to guide contributors to attributes by displaying potential matches 

for partially specified attributes and allowing contributors to select from them (without 

constraining users to these options). One area for future research is to examine the 

effectiveness of techniques for standardizing instance-based data. 

There is also a concern about the effort expended in providing a large number of 

attributes. Free-form attribute collection may become difficult to use as it would 

excessive entail typing - this may be especially concerning for small mobile keypads. 

There seems to be a need for a novel approaches in data collection interfaces that could be 

more faithful to the proposed modeling principles. A promising future direction involves 

developing hybrid conversational data entry interfaces that allow users to type or speak 

the attributes and classes. Some advantages to such IS include lessening of the typing 

burden and greater accessibility (especially on wearable and miniaturized devices) (see 

also Shneiderman 2000). Another strategy in support of instance-based user input is 
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automatic attribute extraction. In this case attributes are generated without direct human 

effort. Some attributes can originate in sensor data provided by the browsing agents. A 

common practice on the internet is to fetch browser-supplied data (e.g., IP address, screen 

size, resolution); cookies are also widely used to store and exchange information. Future 

extensions of NLNature may exploit these technologies to gain a better understanding 

about a user and the operating environment (this information can then assist in 

interpreting the attribute-data provided by the user). A system can also leverage any 

additional information that the user-operating agent provides. Thus when NLNature is 

accessed via a location-aware device (e.g., smart phone or smart wearable), the geo-

coordinates of the instance can be extracted automatically. This can also include date and 

time of the sighting, temperature, humidity, wind speed and other environmental 

indicators, without asking users directly for this data. Similarly, if users provide photos or 

videos of an instance, automatic feature detection and extraction algorithms (Hsu et al. 

2002; e.g., Nixon and Aguado 2012) may be employed (and, optionally, the features they 

generate could be provided to users for validation). The approaches suggested above open 

a wide avenue for future research. 

8.2.6 Combining Instance-based Modeling with Traditional Modeling 

An important area for future investigation is modeling under a hybrid abstraction-

based/instance-based approach. In practice most IS are likely to be on different points on 

the development continuum, as some aspects of a system could remain relatively fixed 

and amenable to abstraction-driven modeling. For example legal, security and reporting 

considerations could be embedded in software consistent with some fixed convention 
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rather than left open to judgment of individual users. Similarly, a requirement to 

exchange data with legacy systems may suggest pre-specifying some structures in 

advance (Atzeni et al. 2013). This raises questions about how to integrate the proposed 

modeling principles with traditional abstraction-driven modeling. Currently little is 

known about these issues and much scope exists in learning how to strike a balance 

between different modeling approaches. 

8.3 Thesis Conclusions 

As organizations invite diverse and unpredictable user-generated content into the 

world of internal decision making, they face the challenge of managing the quality of 

such datasets. Applications like citizen science create opportunities to collect and analyze 

data in ways that are not otherwise possible. Despite the potential for online engagement 

with citizen science and online users in general, the prevailing assumptions and practices 

underlying data collection in these projects may limit the amount of relevant information 

that organizations are able to harness.  

The online environment in which user contributions are being made is different 

from the traditional internal corporate environment of data management in three 

important ways that affect information quality. First, within a controlled environment it is 

possible to ensure a high level of data input quality (via training, input controls and other 

measures). In contrast, in projects harnessing user input the organization often has little 

control over the domain expertise and motivation of potential contributors. Second, in a 

corporate environment, databases are generally initially designed with specific 

applications and uses in mind, making it possible to tailor the design of the database using 
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a set of domain classes that are well-understood within the organization. In contrast, the 

potential uses of UGC may not be fully known when the system is designed and 

deployed. Finally, traditional design assumes the success of information systems is 

contingent on how well such systems capture and implement user requirements (Appan 

and Browne 2010). Users‟ views of reality are central to seminal IQ conceptualizations 

(Wand and Wang 1996, Wang and Strong 1996). In many UGC projects (such as those in 

citizen science) with a distributed, diverse, and potentially uncommitted user base, the 

traditional process of information requirements determination is practically unachievable.  

This research focuses attention on the black box of crowd IQ. By evaluating 

existing practices against theories of philosophy and human cognition, this thesis draws 

attention to a number of critical questions and provides insights on how crowd 

information quality can be conceptualized and improved.  
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Appendix 1: Images Used in Laboratory Experiments in 

Chapter 4 

Images source: Wikimedia Commons; The order as appeared in one of the experimental 

sessions. 

  
Killer whale (Orcinus orca) Old man's beard (Usnia spp.) 

  
Mallard duck (Anas platyrhynchos) Eastern Coyte (Canis latrena)  
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Calypso orchid (Calypso bulbosa) Caspian tern (Hydroprogne caspia) 

 
 

Red squirrel (Tamiasciurus hudsonicus) Moose (Alces alces) 

  
Blue winged teal (Anas discors) Labrador tea (Ledum groenlandicum) 
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Indian pipe (Monotropa uniflora) Common tern (Sterna hirundo) 

 
 

Fireweed (Epilobium angustifolium) Eastern chipmunk (Tamias striatus) 

  
American robin Turdus migratorius  Sheep laurel (Kalmia angustifolia) 
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False morel (Gyromitra esculenta) Greater yellowlegs (Tringa melanoleuca) 

  

Caribou (Rangifer tarandus) Red Fox (Vulpes vulpes)  

 
 

Blue jay (Cyanocitta cristata) Atlantic Salmon (Salmo salar) 
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Lung lichen (Lobaria pulmonaria) Spotted sandpiper (Actitis macularius)  

 

 

 



 

187 

 

Appendix 2: Summary of Options Provided in Experiments 2 

and 3 of Chapter 4 

Table A2.1. Options provided in Experiment 2, single-level condition (* indicates correct 

option) 

Species Species-level 

Atlantic Salmon 

Arctic char, Atlantic cod, Atlantic mackerel, Atlantic salmon*, Brook trout, 

Conner, Pike, Rainbow trout, Shad 

Blue Winged Teal 

Blue-winged Teal*, Bufflehead, Common Eider, Common Merganser, 

Common Teal, Harlequin Duck, Mallard, Northern Pintail, Wood Duck 

Calypso Orchid 

Calypso Orchid*, Green-fringed Orchid, Indian pipe, Ladyslipper Orchid, 

Lesser Stitchwort, Northern Bracted Frog Orchid, Pitcher plant, True Forget-

me-not, Tuberous Grasspink 

Caspian Tern 

Arctic Tern, Bonaparte's Gull, Caspian Tern*, Common Tern, Herring Gull, 

Iceland Gull, Killdeer, Parasitic jaeger, Pomarine jaeger 

Common Tern 

Arctic Tern, Bonaparte's Gull, Caspian Tern, Common Tern*, Herring Gull, 

Iceland Gull, Killdeer, Parasitic jaeger, Pomarine jaeger 

False morel 

Chanterelle, Common morel, False Morel*, Fly agaric, Horse mushroom, Jelly 

leaf fungus, Larch Bolete, Ornate-stalked Bolete, True Morel 

Fireweed 

Alpine Campion, Fireweed*, Labrador Tea, Northern Twayblade, Rhodora, 

Sheep Laurel, Swamp Laurel, Sweet Gale, wild bergamot 

Indian Pipe 

Calypso Orchid, Indian pipe*, Ladyslipper Orchid, Lesser Stitchwort, Northern 

Bracted Frog Orchid, Northern Twayblade, Pitcher plant, Rattlesnake Plantain, 

True Forget-me-not 

Mallard duck 

American Wigeon, Bufflehead, Common Eider, Common Merganser, Common 

Teal, Harlequin Duck, Mallard*, Northern Pintail, Wood Duck 

Sheep Laurel 

Alpine Campion, Fireweed, Labrador Tea, Lesser Stitchwort, Rhodora, Sheep 

Laurel*, Swamp Laurel, Sweet Gale, True Forget-me-not 
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Table A2.2. Options provided in Experiment 2, multi-level condition (* indicates correct 

option) 

Species Basic-level Species Subordinate Superordinate 

Atlantic Salmon Fish* Atlantic salmon*, 

Brook trout, Smelt 

Diadromous 

fish*, Ray-

finned fish*, 

Salmon*, 

Tropical fish 

Animal* 

Blue Winged 

Teal 

Bird*, Duck*, 

Goose 

Blue-winged Teal*, 

Wood Duck 

Dabbling 

duck* 

Animal*, Warm-

blooded 

organism*, 

Waterfowl* 

Calypso Orchid Flower* Calypso Orchid*, 

Ladyslipper Orchid 

Iris, Orchid* Annual plant, 

Parasitic plant, 

Perennial plant*, 

Plant* 

Caspian Tern Bird* Caspian Tern*, 

Herring Gull 

Loon, 

Shorebird, 

Tern*, 

Waterfowl 

Animal*, Warm-

blooded organism*  

Common Tern Bird* Common Tern*, 

Iceland Gull 

Loon, 

Shorebird, 

Tern*, 

Waterfowl 

Animal*, Warm-

blooded 

organism*,  

False morel Mushroom* Common morel, 

False Morel* 

 Ectomycorhizzal 

fungus, Fungus*, 

Mycorhizzal 

fungus*, Plant, Sac 

fungus*, Saprobe* 

Fireweed Flower*, 

Shrub 

Fireweed*, Sweet 

Gale 

Orchid, 

Willow-herb* 

Annual, 

Perennial*, Plant* 

Indian Pipe Flower* Indian pipe*, 

Ladyslipper Orchid, 

Pitcher plant 

 Annual, Fungus, 

Parasitic plant*, 

Perennial*, Plant* 

Mallard duck Bird*, Duck*, 

Goose 

Harlequin Duck, 

Mallard duck* 

Dabbling 

duck* 

Animal*, Warm-

blooded 

organism*, 

Waterfowl* 

Sheep Laurel Flower*, 

Shrub* 

Lesser Stitchwort, 

Rhodora, Sheep 

Laurel* 

Orchid Annual, Conifer, 

Plant* 
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Table A2.3. Options provided in Experiment 3, single-level condition (* indicates correct 

option) 

Species Species-level 

American Robin Barn Swallow, Common Grackle, Baltimore Oriole, American Robin*, 

Evening Grosbeak, House Sparrow, Blue Jay, House Finch, Northern Flicker 

Atlantic Salmon Atlantic salmon*, Rainbow trout, Atlantic mackerel, Brook trout, Pike, Shad, 

Atlantic cod, Arctic char, Conner 

Blue jay Barn Swallow, Common Grackle, Baltimore Oriole, American Robin, Evening 

Grosbeak, House Sparrow, Blue Jay*, House Finch, Northern Flicker 

Blue Winged Teal Mallard, Blue-winged Teal*, Common Merganser, King Eider, Bufflehead, 

Harlequin, Common Eider, Common Teal, Northern Pintail 

Calypso Orchid Calypso Orchid*, Tuberous Grasspink, Pitcher plant, Indian pipe, Lesser 

Stitchwort, True Forget-me-not, Green-fringed Orchid, Northern Bracted Frog 

Orchid, Labrador Tea 

Caspian Tern Caspian Tern*, Common Tern, Arctic Tern, Herring Gull, Pomarine jaeger, 

Killdeer, Parasitic jaeger, Iceland Gull, Bonaparte's Gull 

Common Tern Caspian Tern, Common Tern*, Arctic Tern, Herring Gull, Pomarine jaeger, 

Killdeer, Parasitic jaeger, Iceland Gull, Bonaparte's Gull 

False morel False Morel*, Larch Bolete, Chanterelle, Common morel, True Morel, King 

bolete, Ornate-stalked Bolete, Fly agaric, American matsutake 

Fireweed Fireweed*, Sheep Laurel, Alpine Campion, Swamp Laurel, Labrador Tea, 

Sweet Gale, Northern Twayblade, Wild bergamot, Rhodora 

Indian Pipe Indian pipe*, Northern Twayblade, Pitcher plant, Rattlesnake Plantain, Lesser 

Stitchwort, True Forget-me-not, Calypso Orchid, Northern Bracted Frog 

Orchid, Labrador Tea 

Killer Whale Minke Whale, Sperm Whale, Killer whale*, Fin Whale, Harbour Porpoise, 

Right whale, Spinner dolphin, Sei whale, Sowerby's beaked whale 

Mallard duck Mallard*, Common Eider, Common Merganser, King Eider, Bufflehead, 

Harlequin, American Wigeon, Common Teal, Northern Pintail 

Sheep Laurel Fireweed, Sheep Laurel*, Alpine Campion, Swamp Laurel, Labrador Tea, 

Sweet Gale, True Forget-me-not, Lesser Stitchwort, Rhodora 
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Table A2.4. Options provided in Experiment 3, multi-level condition (* indicates correct 

option) 

Species Basic-level Species-level Subordinate Superordinate 

American Robin Bird* Common Grackle, 

American Robin*, 

Baltimore Oriole 

Shorebird, Non-

migratory bird 

Animal*, Cold-

blooded organism, 

Warm-blooded 

organism* 

Atlantic Salmon Fish* Smelt, Atlantic cod, 

Atlantic salmon*, 

Brook trout 

Trout, Tropical 

fish, Ray-finned 

fish* 

Animal* 

Blue jay Bird* Evening Grosbeak, 

Common Grackle, 

Blue Jay* 

Shorebird, Non-

migratory bird 

Animal*, Cold-

blooded organism, 

Warm-blooded 

organism* 

Blue Winged 

Teal 

Bird*, 

Goose 

Harlequin, Northern 

Pintail, Blue-

winged Teal* 

Loon, Grebe Waterfowl*, 

Animal* 

Calypso Orchid Flower* Pitcher plant, 

Calypso Orchid*, 

Ladyslipper Orchid 

Orchid*, Iris Perennial plant*, 

Annual, Parasitic 

plant 

Caspian Tern Bird* Pomarine jaeger, 

Caspian Tern*, 

Herring Gull 

Tern*, Seagull, 

Shorebird, Loon 

Animal* 

Common Tern Bird* Killdeer, Iceland 

Gull, Common 

Tern* 

Tern*, 

Shorebird, 

Seagull, 

Waterfowl 

Animal*  

False morel Mushroom*

, Flower 

Larch Bolete, False 

Morel*, Common 

morel 

 Fungus*, Plant, 

Puffball, 

Decomposer* 

Fireweed Flower*, 

Shrub 

Labrador Tea, 

Fireweed*, Sweet 

Gale 

Orchid, Willow-

herb* 

Perennial*, Annual 

Indian Pipe Flower* Ladyslipper Orchid, 

Indian pipe*, 

Pitcher plant 

Tulip Fungus, Perennial*, 

Annual, Parasitic 

plant* 

Killer Whale Whale*, 

Fish, 

Dolphin 

Killer whale*, 

Harbour Porpoise, 

Spinner dolphin 

Diadromous fish Animal*, Mammal* 

Mallard duck Bird*, 

Goose 

Bufflehead, 

Mallard*, Harlequin 

Loon, Teal Waterfowl*, 

Animal* 

Sheep Laurel Flowering 

shrub*, 

Flower*, 

Shrub* 

Lesser Stitchwort, 

Rhodora, Sheep 

Laurel* 

Orchid Conifer, Annual 
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Appendix 3. Additional Analysis of the Experiments 2 and 3  

 

In the comparison of single-level vs. multi-level models in Experiments 2 and 3 

(Chapter 4), a reasonable question is whether the fact that the single-level treatment has 

only one correct option while the multi-level treatment has multiple correct options could 

favor the multi-level condition if participants chose options at random. Here, I show that 

such a potential confound was not present in the data.  

Experiment 2 

Table A3.1 compares expected responses by chance with actual responses in 

Experiment 2, Multi-level condition. In all but one case (False morel), people provided 

significantly more basic level responses (flower, fish, duck, bird and mushroom) than 

would be expected by chance. This shows that, despite the presence of other options, 

including plausible options at the level deemed basic, participants consistently choose 

options consistent with theoretical predictions and the free-form responses of Experiment 

1. The paucity of responses for False morel can be explained by the fact that this 

mushroom was atypical of its kind and when other options were available, participants 

preferred to select those rather than the basic level. Consistent with results from 

Experiment 3 (below), mushroom is not the most common response for False morel - the 

most common is the superordinate fungus provided by 24 participants (which is 

significantly higher than would be expected by chance). 
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Table A3.1. Comparing expected responses by chance vs. actual responses in Experiment 

2: Multi-level condition 

Species Theoretically 

predicted 

basic 

response  

Obtained 

basic 

responses  

All 

categorical   

responses* 

Predicted 

responses 

expected by 

chance** 

p-value 

Chi-Square 

(Yates’ 

correction) 

Atlantic 

Salmon Fish 12 39 4.33 0.001 

Blue Winged 

Teal Duck 26 39 4.33 0.000 

Calypso 

Orchid Flower 14 37 4.11 0.000 

Caspian Tern Bird 21 38 4.22 0.000 

Common 

Tern Bird 13 39 4.33 0.000 

False morel Mushroom 1 34 3.78 0.241 

Fireweed Flower 16 39 4.33 0.000 

Indian Pipe Flower 10 36 4.00 0.006 

Mallard duck Duck 11 39 4.33 0.003 

Sheep Laurel Flower 23 35 3.89 0.000 

Total 10 147 375 41.67 0.000 

* Responses of “I don't know” not included. ** Determined by multiplying all categorical 

responses by the chance of obtaining a theoretically predicted response (e.g., for Common tern the 

expected response is bird, which has 1/9 chance of being selected if guessing at random; of 39 

responses provided this means 4.33 responses “bird” would be expected). 

Notably, for Blue Winged Teal, no responses bird were given; For Mallard duck 

only one response was goose; no responses bird were given; for Fireweed all basic-level 

responses were flower  (no responses were shrub); for Sheep Laurel all basic-level 

responses were flower  (no responses were shrub). Indeed, of 148 responses at the basic-

level given, 147 (the exception was goose by one participant) were the correct basic-level 

categories predicted based on psychological theory. This yields almost 100% response 

accuracy at the basic-level and significantly contributes to the increase in accuracy over 

the single level condition. The responses are further consistent with the obtained results in 

the free-form Experiment 1 (and, later, Experiment 3).  
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To provide further evidence that responses in the multi-level condition were 

consistent with theoretical predictions and accuracy in this condition was not merely due 

to the greater number of correct responses, I further analyzed the distribution of responses 

by levels.  

Table A3.2 shows the distribution of options by classification levels in 

Experiment 2, Multi-level condition (with the specific options for each species detailed in 

Appendix 2). Based on this table I calculate the expected matrix of results if participants 

were to guess at random. To be conservative I ignored the fact that of several basic-level 

options, I predicted that only particular one is going to be selected (e.g., when evaluating 

the expected value for Mallard duck for basic-level classes I included all three options as 

having equal chance of being selected, even though I do not expect this).  

Table A3.2. Distribution of options by classification levels in Experiment 2, Multi-level 

condition 

Species Basic-level Species-level  

(one correct) 

Subordinate Super-

ordinate 

Grand 

Total 

Atlantic Salmon 1 3 4 1 9 

Blue Winged 

Teal 

3 2 1 3 9 

Calypso Orchid 1  2 2 4 9 

Caspian Tern 1  2 4 2 9 

Common Tern 1  2 4 2 9 

False morel 1  2 0 6 9 

Fireweed 2  2 2 3 9 

Indian Pipe 1  3 0 5 9 

Mallard duck 3  2 1 3 9 

Sheep Laurel 2  3 1 3 9 

Total 16 23 19 32 90 
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I then compare this matrix with the actual distribution of results by classification 

levels (Table A3.3). Since the main issue is whether participants were selecting 

predefined options at random, I exclude any responses given in the "other" field (where 

participants were free to provide responses at any taxonomic level irrespective of the 

options already provided). 

Table A3.3. Distribution of responses by classification levels in Experiment 2, Multi-level 

condition 

Species Basic-

level 

Species-

level 

Subordinate  Superordinate Total p-value 

Chi-

Square 

Atlantic 

Salmon 

12 19 8 0 39 0.000 

Blue Winged 

Teal 

26 11 1 0 38 0.000 

Calypso 

Orchid 

14 6 8 9 37 0.000 

Caspian Tern 21 3 13 1 38 0.000 

Common Tern 13 9 17 0 39 0.000 

False morel 1 0 0 32 33 0.003 

Fireweed 16 5 7 9 37 0.021 

Indian Pipe 10 19 0 7 36 0.000 

Mallard duck 12 27 0 0 39 0.000 

Sheep Laurel 23 4 4 4 35 0.000 

Total 148 103 58 62 371 0.000 

 

In all cases, the results differ from what is expected by random guessing. In most 

cases (as illustrated in detail above), the responses favor the basic level (and more 

specifically, when more than one basic is provided, the most salient is chosen). It is also 

clear that despite the large number of options at subordinate and superordinate levels, 

these levels are chosen sparingly (with the exception of False morel). After basic, 

participants prefer to provide responses at the species-level (103 responses total). This 
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shows that, although there were more correct options provided (e.g., including options at 

sub- and superordinate levels), participants in the multi-level condition generally did not 

use these levels.  

The analysis of the responses given in Experiment 2 shows that, both overall and 

individually by species, the distribution of responses deviates from what would be 

expected by chance. This demonstrates that the greater accuracy in the multi-level 

condition of Experiment 2 was not merely due to the provision of a greater number of 

correct options. There were clear patterns in the responses that were consistent with 

theoretical expectations. Participants were drawn to options they naturally prefer in spite 

of the presence of other correct options. The presence of choices that were congruent with 

the participants' view of the world resulted in the higher classification accuracy compared 

with the single-level condition where such congruent options were not given. 

Experiment 3 

Experiment 3 included three species that were expected to be familiar to the 

participants that were omitted from Experiment 2. To test the saliency of the basic-level 

category I provided 3 plausible options at the basic level for Killer whale - whale, dolphin 

and fish, with whale being the only correct option. I expected that most basic-level 

responses would be whale, but that the majority of responses across levels would be 

Killer whale. 

For Fireweed and Sheep laurel, I included two options deemed basic - flower and 

shrub - where shrub was incorrect for Fireweed, but correct for Sheep laurel. In this case, 
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I also expected flower to be chosen (the correct basic for Fireweed and more salient basic 

for Sheep laurel). 

For False morel, I included a new option at the basic level, flower (in addition to 

mushroom). While flower is a salient basic level (as demonstrated by previous 

Experiments 1 and 2), I did not expect participants to use this option, as it would be 

incorrect. 

For Mallard duck and Blue-winged teal, in Experiment 2 participants had two 

correct options at the basic level - bird and duck. In both cases all participants chose duck 

(see Table A3.1). In Experiment 3 I included only one correct basic-level option and 

made a conservative choice of removing duck and including bird. Since Experiments 1 

and 2 suggested a strong preference for duck, it was difficult to predict whether option 

bird would be the preferred one in Experiment 3. Moreover, as evidenced from 

Experiments 1 and 2, Mallard duck appeared to be a relatively familiar kind of organism. 

So, it was entirely possible that without the (preferred) option duck, participants select 

more specific options.  

Table A3.4 compares expected responses by chance with actual responses in 

Experiment 3, Multi-level condition, for the schema-congruent group of organisms. Here 

I expect a higher-than random number of responses at the species level. The results 

strongly confirm the predictions made in this thesis. In all cases, participants selected 

significantly more options American robin, Killer whale and Blue jay than would be 

expected by chance alone. These results demonstrate that despite the presence of other 
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options, including correct options at the basic level (whale, bird), participants choose 

specific options agreed with their conceptualizations.  

Table A3.4. Expected by chance vs. actual responses in Experiment 3: Multi-level 

condition for the schema-congruent group 

Species 

Theoretically 

predicted 

response 

(species level) 

Obtained 

species 

level 

responses 

All 

categorical   

responses*  

Predicted 

responses 

expected by 

chance 

p-value 

Chi-Square 

(Yates’ 

correction) 

American Robin 

American 

robin 12 21 2.33 0.000 

Blue jay Blue jay 16 20 2.22 0.000 

Killer Whale Killer whale 19 21 2.33 0.000 

Total 3 total 47 62 6.89 0.000 

* Responses "I don't know" not included. 

Table A3.5 compares expected responses by chance with actual responses in 

Experiment 3, Multi-level condition, for the schema-incongruent group of organisms. 

Here I expect a higher-than random number of responses at the basic level. The results 

confirm the predictions. In all but two cases (False morel and Indian pipe), participants 

selected significantly more options bird, fish, flower then would be expected by random 

guessing. Consistent with results from Experiment 2, mushroom is not the most common 

response for False morel - the most common is the superordinate fungus provided by 12 

participants (which is significantly greater than chance). Indian pipe is also insignificant, 

which can be explained by the typicality effects as well – Indian pipe (which looks more 

like fungus) does not look like a typical flower or even a flower at all. No clearly 

preferred response for Indian pipe emerged. 
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Table A3.5. Expected by chance vs. actual responses in Experiment 3: Multi-level 

condition for the schema-incongruent group (excluding Mallard Duck and Blue-winged 

teal) 

Species 

Theoreticall

y predicted 

responses 

(basic level) 

Obtained 

basic 

responses  

All 

categorical   

responses 

Predicted 

responses 

expected by 

chance 

p-value  

Chi-Square 

(Yates’ 

correction) 

Atlantic Salmon Fish 6 21 2.33 0.038 

Calypso Orchid Flower 10 19 2.11 0.000 

Caspian Tern Bird 9 20 2.22 0.000 

Common Tern Bird 7 20 2.22 0.004 

False morel Mushroom 2 14 1.56 0.964 

Fireweed Flower 7 18 2.00 0.001 

Indian Pipe Flower 3 19 2.11 0.789 

Sheep Laurel Flower 12 19 2.11 0.000 

Total  8 total 56 150 28.22 0.000 

 

While it was difficult to make predictions for Mallard duck and Blue-winged teal 

due to the removal of the clearly preferred duck option, the results obtained were also not 

surprising. Specifically, for Mallard 7 people responded with duck (provided in the 

“other” field), 1 person selected bird and 11 people selected Mallard duck. This 

demonstrates that, despite the removal of the duck option, this seems to be the preferred 

(basic level) option for those unfamiliar with its specific level - Mallard duck. A similar 

pattern was obtained for Blue-winged teal, where 7 responses were duck (provided in the 

"other" field), 4 responses were bird, 2 responses were goose (incorrect basic) and 5 

responses were Blue-winged teal. Interestingly, of the 16 responses provided in the 

"other" field in Experiment 3: Multi-level condition, 14 were duck. Duck was the sole 

"other" response the provided in the Single-level condition. While these numbers are not 

statistically significant, they suggest two things: 1) duck is the salient option for the two 

organisms used; and 2) when this option is not explicitly provided, participants still 
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volunteer it as a response. This, however, seems to occur mostly in the multi-level 

condition, while the exposure to the species-level classes in the single-level condition 

appears to "break" this natural tendency (it is important to note, participants in all 

conditions were in the same study session and received the same instructions in which I 

encouraged them to provide responses not necessarily given in the forms, or select "I 

don't know" if they did not know the answer).   

Table A3.6 provides the distribution of options by classification levels in 

Experiment 3, Multi-level condition (Appendix 2 shows the actual options for each 

organism). Based on this data, I calculate the expected matrix of results if participants 

were to guess at random. To be conservative, I ignored the fact that of several basic-level 

options I predict that only particular one is going to be selected (e.g., below, when 

evaluating the expected value for Mallard duck for basic-level classes, I included both 

options as having equal chance of being selected). 

I then compare the expected matrix with the actual distribution of the results by 

classification levels (Table A3.7 and Table A3.8). Since the main issue is whether 

participants were selecting predefined options at random, I exclude any responses given 

in the "other" field (where participants were free to provide responses at any taxonomic 

level irrespective of the options already provided).  
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Table A3.6. Distribution of options by classification levels in Experiment 3, Multi-level 

condition 

Species Basic-level Species-level 

(one correct) 

Subordinate Super-

ordinate 

Total 

American 

Robin 

1 3 2 3 9 

Atlantic 

Salmon 

1 4 3 1 9 

Blue jay 1 3 2 3 9 

Blue Winged 

Teal 

2 3 2 2 9 

Calypso 

Orchid 

1 3 2 3 9 

Caspian Tern 1 3 4 1 9 

Common 

Tern 

1 3 4 1 9 

False morel 2  3 0 4 9 

Fireweed 2  3 2 2 9 

Indian Pipe 1 3 1 4 9 

Killer Whale 3  3 1 2 9 

Mallard duck 2 3 2 2 9 

Sheep Laurel 3 3 1 2 9 

Total 21 40 26 30 117 

 

In all cases of the schema-congruent group (see Table A3.7) the results are 

dominated by the species-level responses. Notably, basic is the second largest (selected 9 

times), with almost no choices at other levels. This shows that while there were more 

correct options provided (e.g., including options at sub- and superordinate levels), 

participants in the multi-level condition were generally not using these levels for schema-

congruent species.  
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Table A3.7. Distribution of responses by classification levels in Experiment 3, Multi-level 

condition for the schema-congruent group 

Species Basic-level Species-level Subordinate  Superordinate Grand 

Total 

American Robin 4 17 0 0 21 

Blue jay 4 16 0 0 20 

Killer Whale 1 18 0 1 20 

Total 9 51 0 1 61 

 

In most cases for the schema-incongruent group (and overall), the results deviate 

from what is expected from random choices (Table A3.8). As illustrated in detail above, 

most responses are at the basic level. More specifically, when more than one basic is 

provided, the correct one is chosen. It is also clear that, despite the large number of 

options at subordinate and superordinate levels, these levels are chosen sparingly (with 

the exception of False morel). As in Experiment 2, after basic participants preferred to 

provide responses at the species-level (61 responses total). I note a few insignificant 

cases. There are two explanations for this: one is the typicality effect, which explains the 

result for Indian Pipe; this result is generally consistent with Experiments 1 and 2. The 

second reason is the fact that I “exaggerated” the expected frequency for basic-level 

categories by assuming that each had equal chance of being selected (e.g., goose and bird, 

flower and shrub), inflating the expected frequencies for this class. This can explain the 

result for Fireweed, where 7 of 8 basic-level responses were flower (and 1 shrub).  If one 

assumes that flower is the expected basic, the result for Fireweed becomes significant as 

well.  
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Table A3.8.Distribution of responses by classification levels in Experiment 3, Multi-level 

condition 

Species Basic-

level 

Species-

level 

Subordinate  Superordinate Total p-value 

 

Atlantic Salmon 6 11 4 0 21 0.022 

Blue Winged 

Teal 

6 6 2 0 14 0.087 

Calypso Orchid 10 5 2 1 18 0.000 

Caspian Tern 9 5 6 0 20 0.000 

Common Tern 7 7 6 0 20 0.004 

False morel 2 0 0 12 14 0.015 

Fireweed 8  5 1 18 0.067 

Indian Pipe 3 11 1 4 19 0.081 

Mallard duck 1 11 2 0 14 0.004 

Sheep Laurel 16 1 2 0 19 0.000 

Total 68 61 30 18 177 0.000 

 

As with Experiment 2, in Experiment 3 one can observe few responses at levels 

other than basic and species. Indeed, of 18 superordinate results, 12 involved False morel. 

Despite having a large number of options available at subordinate and superordinate 

level, participants were generally avoiding these levels.  

The analysis of responses given in Experiment 3 demonstrates that, both overall 

and individually by species (when considering typicality effects where applicable), the 

distribution of responses significantly deviates from what would be expected by chance. 

Thus, the greater accuracy in the multi-level condition of Experiment 3 was not 

merely due to the provision of a greater number of correct options. Participants were 

clearly drawn to options with which they were comfortable (which can be predicted based 

on theory) and discounted other options. The presence of choices that were congruent 

with the participants' view of the world resulted in higher classification accuracy 
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compared with the single-level condition, where such congruent options were not 

provided.
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Appendix 4. Summary of the Theoretical Propositions and 

Empirical Evidence Obtained 
 

 Experiment (Task) Independent variable(s) Dependent 

variable 

Hypothesis 

Supported? 

Proposition 1: Classification Accuracy. Class-based conceptual models result in lower 

information accuracy (more classification errors) when the classes defined in an information 

system do not match those familiar to the information contributor. 

 Laboratory 

Experiment 1 (free-

form) 

Level of classification 

(species-genus versus 

basic) 

Classification 

accuracy 

Supported 

Laboratory 

Experiment 2 (fixed-

choice) 

Level of classification 

(single versus multilevel 

class-based model) 

Classification 

accuracy 

Supported 

Laboratory 

Experiment 3 (fixed-

choice) 

Level of classification 

(single versus multilevel 

class-based model) 

Classification 

accuracy 

Supported 

Laboratory 

Experiment 3 (fixed-

choice and free-form) 

Free-form versus 

schema-constrained 

classification 

Classification 

accuracy 

Supported 

Proposition 2: Information Loss. Class-based conceptual models result in information loss 

when the class that a contributor uses to record an instance does not imply some attributes of 

the instance observed by the contributor.      

  Laboratory 

Experiment 1 (free-

form) 

Level of attributes (basic 

versus sub-basic) 

Information loss Supported 

Proposition 3: Dataset Completeness. Class-based conceptual models undermine dataset 

completeness (resulting in fewer instances stored) when the classes defined in an information 

system do not match those familiar to the information contributor. 

 Field experiment Class-based versus 

instance-based models 

Data set 

completeness 

(number of 

observations 

stored) 

Supported 

Data set 

completeness 

(number of 

instances of novel 

species stored) 

Supported 

 

 

 


