Characterization and Transcript Expression Studies of Interferon Regulatory Factors in Atlantic cod (*Gadus morhua*)

by

©Sabrina M. Inkpen

A thesis submitted to the School of Graduate Studies in partial fulfilment of the requirements for the degree of

Master of Science

Department of Biology Faculty of Science

Memorial University of Newfoundland

September 2014

St. John's Newfoundland and Labrador

Abstract

The interferon regulatory factor (IRF) family of genes encode a group of transcription factors which have important roles not only in regulating the expression of Type I interferons (IFNs) and other genes in the interferon pathway, but also in growth, development and regulation of oncogenesis. In this study, several IRF family members in Atlantic cod (Gadus morhua) were characterized at the cDNA and putative amino acid level, allowing for phylogenetic analysis of these genes in teleost fish, and the development of paralogue specific PCR primers which were used in semi-quantitative RT-PCR and Quantitative PCR (QPCR) analyses. Two Atlantic cod Irf10 splice variants were identified and named Irf10-v1 and Irf10-v2, and their presence was confirmed by sequencing of the Irf10 genomic region. RT-PCR showed that Irf7, Irf8 and both Irf10 transcripts were detected in 15 cod tissues, while Irf4a and Irf4b appeared to be absent in some tissues. RT-PCR in embryo and larval samples showed unique transcript expression profiles of IRFs during development and indicated potential stage specific roles that will be investigated in future studies. QPCR analysis of spleen expression expanded upon previous studies, confirming that all transcripts were responsive to stimulation by the viral mimic poly(I:C) and showing that all except Irf4a were responsive to killed Aeromonas salmonicida (ASAL). Temperature was observed to affect the responsiveness of all except Irf4a to poly(I:C) and/or ASAL, supporting earlier studies. The effect of increased temperature on immune responsiveness to pathogens is of particular interest to Atlantic cod aquaculture in Newfoundland, where fish experience seasonal fluctuations in temperature.

Acknowledgements

I would first like to say a huge thank you to my supervisor Dr. Matthew Rise for the opportunity to carry out this research, and for his guidance and especially his patience while this thesis slowly came together.

Thank you as well to the members of my supervisory committee, Dr. Brian Staveley and Dr. Ross McGowan for all of their advice throughout this project.

Thanks to past and present members of the Rise lab and the OSC community for all of their help during the past two and a half years, especially to Jennifer Hall and Dr. Tiago Hori for training me in the techniques used throughout this research. Thanks as well to the staff of JBARB for their help with sample collection.

I would also like to thank the Memorial University of Newfoundland School of Graduate Studies for providing me with a Fellowship, to the Department of Biology for several Graduate Assistantships and the opportunity to gain experience as a Teaching Assistant, and to the National Sciences and Engineering Council of Canada for awarding a Discovery Grant to Dr. Matthew Rise, making this research possible.

Lastly, thank you to my friends and family, especially my parents for all of their support throughout my academic career and in everything.

Table of Contents

Abstract	ii
Acknowledgements	iii
List of Tables	vii
List of Figures	viii
List of Abbreviations	x
Co-Authorship Statement	xii

1. Introduction

1.1 Importance of immunological research in Atlantic cod 1			
1.2 The interferon pathway and interferon regulatory factors			3
1.3 Recent progress in understanding interferon regulatory factors			5
1.4 Interferon regulatory factor gene family sub-groups			6
	1.4.1	IRF1 sub-group	8
	1.4.2	IRF3 sub-group	12
	1.4.3	IRF4 sub-group	12
	1.4.4	IRF5 sub-group	13
1.5 Research objectives 14			

2. Methods

2.1 cDNA cha	aracterization of selected cod IRF paralogues	16
2.1.1	Database mining and RACE	16

iv

2.1.2 TA cloning and sequencing	18
2.1.3 Paralogue and splice variant discovery	20
2.1.4 <i>Irf10</i> genomic DNA sequencing	22
2.1.5 Phylogenetic analysis	23
2.2 RT-PCR expression analysis in juvenile cod tissues	24
2.2.1 Sampling and RNA extraction	24
2.2.2 RT-PCR	25
2.3 QPCR expression analysis: response to immune stimulation and	26
increased temperature in spleen	
2.3.1 Experimental setup and sampling	26
2.3.2 Primer quality testing	27
2.3.3 QPCR analysis	29
2.4 RT-PCR expression analysis: developmental expression	30
2.4.1 Experimental setup and sampling	30
2.4.2 RT-PCR	31
3. Results	
3.1 Characterization of IRF4a, IRF4b, IRF7, IRF8, IRF10-v1 and	32
IRF10-v2 cDNA sequences	

3.2 RT-PCR expression analysis in juvenile cod tissues	53
3.3 Spleen transcript expression response to viral and bacterial	62
antigens and increased temperature	

3.4 Developmental transcript expression analysis	75
4. Discussion	
4.1 Overview	85
4.2 mRNA characterization and phylogenetic analysis	85
4.3 Expression analysis in juvenile cod tissues	90
4.4 Spleen transcript response to immune stimulation	92
4.5 Developmental transcript expression analysis	99
4.6 Conclusions	101
4.7 Future research	102
Literature Cited	104
Appendix 1	113
Appendix 2	116
Appendix 3	120
Appendix 4	127
Appendix 5	134
Appendix 6	141
Appendix 7	147
Appendix 8	150
Appendix 9	152

vi

List of Tables

Table 1: Studies of Interferon Regulatory Factor protein expression and	9
function in mammalian species.	
Table 2: Studies of interferon regulatory factor transcript expression and	10
responses to immune stimulation in fish species.	
Table 3: Primers used for cDNA characterization of cod IRF genes.	19
Table 4. Primars used in and Infl() conomia ration sequencing	22
Table 4: Primers used in cod <i>Irj10</i> genomic region sequencing.	23
Table 5: Paralogue-specific primers used in semi-quantitative RT-PCR and	26
QPCR experiments.	
Table 6: Fish IRF amino acid sequences used in multiple sequence alignment	59
and phylogenetic analysis.	

List of Figures

Figure 1: Summary of Interferon Regulatory Factor gene family organization.	7
Figure 2: Steps taken to identify cod IRF paralogues and choose targets for cDNA characterization.	17
Figure 3: Overview of immune response and temperature increase experimental setup.	28
Figure 4: Agarose gel image of PCR amplified IRF open reading frames.	33
Figure 5: Nucleotide sequence of Atlantic cod <i>Irf4a</i> cDNA and inferred amino acid translation.	35
Figure 6: Nucleotide sequence of Atlantic cod <i>Irf4b</i> cDNA and inferred amino acid translation.	38
Figure 7: Nucleotide sequence of Atlantic cod Irf7 cDNA and inferred amino	40
acid translation.	
Figure 8: Nucleotide sequence of Atlantic cod <i>Irf8</i> cDNA and inferred amino acid translation	42
Figure 0. Nucleotide acqueres of Atlantic and <i>Infl()</i> when DNA and informed amine	4.4
acid translation.	44
Figure 10: Nucleotide sequence of Atlantic cod Irf10-v2 cDNA and inferred	47
amino acid translation.	
Figure 11: Schematic representation of predicted intron/exon organization of	49
Atlantic cod Irf10.	
Figure 12: Schematic representation of predicted intron/exon organization of Atlantic cod <i>Irf7</i> . <i>Irf8</i> . <i>Irf4a</i> . <i>Irf4b</i> .	51
1 Manue Cou 11/7, 1130, 11370.	

Figure 13: Multiple sequence alignment of Atlantic cod IRF1, IRF4, IRF7,	54
IRF8, and IRF10 amino acid sequences with homologous sequences from	
other teleost fish species.	
Figure 14: Phylogenetic analysis of Atlantic cod IRF family members.	60
Figure 15: Composite agarose gel image of IRF family member transcript	63
expression in 15 tissues of invenile Atlantic cod	00
expression in 15 ussues of juveline Atlantic cod.	
Figure 16: Spleen transcript expression responses of <i>Irf4a</i> to viral and bacterial	66
antigens measured by QPCR.	
	C 0
Figure 17: Spleen transcript expression responses of <i>Irf4b</i> to viral and bacterial	68
antigens measured by QPCR.	
Figure 18: Spleen transcript expression responses of <i>Irf7</i> to bacterial antigens	70
measured by OPCR.	
Figure 19: Spleen transcript expression responses of <i>Irf</i> 8 to viral and bacterial	73
antigens measured by QPCR.	
Figure 20: Spleen transcript expression responses of $Irf10$ - vI to bacterial	76
entigens massured by OPCP	70
antigens measured by QI CK.	
Figure 21: Spleen transcript expression responses of Irf10-v2 to viral and	78
bacterial antigens measured by QPCR.	
Element 22. Demonstrations in the formation of Addated in the second statement of Adda	00
Figure 22: Representative images of Atlantic cod embryos and larvae sampled	80
from 0 to 1 / days post fertilization.	
Figure 23: Composite agarose gel image of IRF family member transcript	83
expression throughout Atlantic cod embryonic and early larval development.	

List of Abbreviations

AA - Amino acid ANOVA - Analysis of variance arp – actin-related protein 2/3 complex subunit 4 ASAL – Formalin-killed Aeromonas salmonicida Bl -Blood BLAST – Basic local alignment search tool bp – Base pair Br - Brain °C – Degree centigrade C – Control CGP - Atlantic cod Genomics and Broodstock Development Project CT – Threshold cycle cDNA – Complimentary DNA DBD – DNA binding domain DNA - Deoxyribonucleic acid dpf – Days post-fertilization $EF1\alpha$ – Elongation Factor 1 alpha EST – Expressed sequence tag EtBr – Ethidium bromide Ey - Eye Fig – Figure GaP – Genomics and proteomics facility Gi - Gill GSP – Gene specific primer g – Grams HG - Hindgut HK – Head kidney HPI-Hours post-injection Hr - Heart H – Hour IFN - Interferon IRF – Interferon Regulatory Factor **IP** – Intraperitoneal ISG – Interferon stimulated gene Ig – Immunoglobulin LB – Luria-Bertani medium LPS – Lipopolysaccharide Li – Liver L – Litre MG - Midgut Mu – Skeletal muscle MH – Major histocompatibility gene MMLV - Moloney murine leukemia virus mg – Milligram

min – Minute mL – Millilitre mRNA – Messenger RNA NCBI - National Center for Biotechnology Information NTC – No template control ng – Nanogram nM – Nanomolar nr – Non-redundant **OSC** – Ocean Sciences Centre ORF – Open reading frame PBS – Phosphate buffered saline PC – Pyloric caecum PCR – Polymerase chain reaction PK – Posterior kidney Poly(I:C) – Polyriboinosinic polyribocytidylic acid p – p-value QC – Quality check QPCR – Quantitative reverse transcription PCR RACE - Rapid amplification of cDNA ends RNA – Ribonucleic acid RT – Reverse transcription RQ – Relative quantity SE – Standard error of the mean s – Seconds Sk - Skin SNP - Single nucleotide polymorphism Sp - Spleen SSH – Suppression subtractive hybridization St - Stomach TLR – Toll-like receptor TMS - Tricaine methane sulphonate U - Units UTR - Untranslated region

µg – Microgram

μL - Microlitre

µm – Micrometre

Co-Authorship Statement

For this thesis, experimental design was planned by myself and Dr. M.L. Rise, and I was primarily responsible for implementation of experiments, data analysis and manuscript preparation. Exceptions include: a) experimental design and sampling for the spleen transcript expression response experiment was carried out by Dr. Tiago Hori, Dr. A. Kurt Gamperl, Gordon Nash and Dr. Matthew L. Rise as part of a previous set of experiments; and b) sampling and RNA extraction for the juvenile cod tissue panel study was carried out in cooperation with Xi Xue (Ocean Sciences Centre). The contents of this thesis (excluding developmental series RT-PCR) will be submitted for publication in a manuscript with authors SM Inkpen, TS Hori, AK Gamperl, GW Nash, and ML Rise, in preparation for submission to Fish and Shellfish Immunology.

1. Introduction

1.1 Importance of immunological research in Atlantic cod

A thorough understanding of fish molecular immunology is of great importance to research in various areas, including comparative vertebrate immunology, fisheries and aquaculture. For example, the study of genes and pathways involved in innate and adaptive immune responses and stress responses of fishes should aid in the development of tools and methods (e.g. molecular tests, vaccines, therapeutics) to help reduce disease and stress in cultured fish (Booman and Rise, 2012). The identification of fish genes that are involved in defense responses could also lead to the development of molecular markers [e.g. single nucleotide polymorphisms (SNPs) in trait-relevant genes] for selection of aquaculture broodstock with desirable traits such as resistance to pathogens or environmental stress (Booman and Rise, 2012)]. With the depletion of some wild stocks of Atlantic cod (Gadus morhua), for example in Newfoundland (Marteinsdottir et al., 2005), such developments will be particularly valuable in creating a successful farming industry for the species. Although cod aquaculture has been of interest in several countries (e.g. Canada, Norway, and Iceland) for some time, the development of successful hatchery and culture methods has been slow (Brown et al., 2003; Rosenlund and Hallorsson, 2007), and many challenges still exist. For example, normal aquaculture methods induce stress for fish, from routine handling (Brown et al., 2003) to exposure to variable temperatures in sea cages (Gollock et al., 2006). Recent research showing that Atlantic cod stress and immune responses are affected by increasing temperature (Perez-Casanova et al., 2008; Hori et al., 2012) suggests that fluctuating temperatures in sea

cages can impact cod immune system function and responses to pathogens and other stressors. Further study of the structure, regulation, and function of immune-relevant genes involved in these responses is required to overcome such challenges.

Genomics resources such as DNA microarrays and sequence databases for Atlantic cod have increased dramatically in recent years. Currently, there are 57,041 sequences in the non-redundant nucleotide (nt) database, 257,453 in the expressed sequence tag database (dbEST) and 2,896 in the protein database of GenBank for this species (NCBI, 2014). The construction and sequencing of multiple normalized and suppression subtractive hybridization (SSH) cDNA libraries representing various life stages, tissues and treatments (Bowman *et al.*, 2011), the development of microarray platforms [e.g. a 20,000 gene (20 K) oligonucleotide microarray (Booman et al., 2011)] and the sequencing of the Atlantic cod genome (Star et al., 2011) have allowed for a wide range of functional genomics research in this species. This growing genomic knowledge base makes Atlantic cod an excellent species in which to study the developing fish immune system at the genetic level. Furthermore, while Atlantic cod develop more slowly than zebrafish (Danio rerio, a common research model for developmental biology and genetics), cod have transparent embryos/larvae and are highly fecund, making them particularly suitable for developmental studies (Hall et al., 2004). Several studies indicate the Atlantic cod immune system is unique among teleosts and among vertebrates in general, showing higher serum levels of immunoglobulin M than other teleosts, as well as a relatively low antibody response to pathogens (reviewed in Solem and Stenvik, 2006; Star et al., 2011). Sequencing and analysis of the Atlantic cod genome indicated the

2

species has approximately 100 major histocompatibility (MH) class I loci, a much higher number than other teleosts [e.g. an estimated 14 in stickleback (*Gasterosteus aculeatus*)]. That study also provided evidence for the loss of several important immune-relevant genes [e.g. MH class II, invariant chain (Ii), and the MH II-interacting protein CD4], suggesting a loss of function of the classical pathway for adaptive immunity in Atlantic cod (Star *et al.*, 2011). These unusual characteristics make further study of the genes and molecular pathways involved in cod immune responses, and the evolution of immunerelated gene families in cod of great interest to researchers in areas such as comparative immunology and evolutionary biology.

1.2 The interferon pathway and interferon regulatory factors

In fish, as well as in all other vertebrates, secreted proteins called interferons (IFNs) play important roles in the innate immune response to viral pathogens (Robertsen, 2006; Rise *et al.*, 2008). IFNs are divided into two families, Type I and Type II, based on structural properties and functions. As part of the cellular response to viral infection, Type I IFNs (IFN α and IFN β) are secreted and bind to specific receptors on other cells, activating the JAK-STAT (Janus kinase-signal transducer and activator of transcription) signal transduction pathway and leading to the transcription of many downstream genes (Barnes *et al.*, 2002; Robertsen, 2006; Rise *et al.*, 2008). Currently, the genes and mechanisms involved in this IFN pathway are better understood in humans and other mammals than in fish, although our knowledge of the molecular basis of fish antiviral responses has been increasing since the identification of the first fish IFN genes in 2003 (Altmann *et al.*, 2003; Lutfalla *et al.*, 2003; Robertsen *et al.*, 2003). As both wild and

cultured fish are susceptible to viruses such as infectious salmon anemia virus (ISAV) and nodavirus (Lang et al., 2009 and references therein), the study of fish antiviral responses, and in particular the genes involved in the IFN pathway, will be of value to both fisheries and aquaculture. While several groups have investigated fish gene and protein expression responses to viral infection, most of these studies have involved later life stage fish (Workenhe et al., 2010; Verrier et al., 2011), and less is known about how fish embryos/larvae defend themselves against viral infections. Recent work on early life stage Atlantic cod in the Rise lab has fully or partially characterized several virusresponsive transcripts and has shown that some of them [e.g. interferon regulatory factor (Irf)1, Irf7] have dynamic mRNA expression profiles during embryonic development (Rise et al., 2008; Rise et al., 2012). The study of other cod IRF genes, and the comparison of cod IRF gene structure and expression with orthologous genes in other teleost species, will be of interest to determine potential functions of these genes as well as to examine the expansion and diversification of the gene family through evolutionary history.

Genes in the IRF family encode transcription factors which either positively or negatively regulate the expression of IFN genes, and thus are vital to the cellular antiviral response. Nine IRF genes (*Irf1-Irf9*) have been described in most vertebrates, although a tenth (*Irf10*) is present in several avian and fish species, and another potential family member (*Irf11* or *Irf1b*) has been identified in zebrafish and other teleost fish (Stein *et al.*, 2007; Huang *et al.*, 2010). All IRF proteins share a conserved amino (N) terminus DNAbinding domain (DBD) of about 115 amino acids, containing five conserved tryptophan (Trp) residues and forming a helix-loop-helix motif (Taniguchi *et al.*, 2001). The DBD recognizes the interferon stimulated response element (ISRE) DNA sequence, which has the consensus sequence A/GNGAAANNGAAACT (Darnell *et al.*, 1994), and is found in the promoters of Type I IFNs and many genes induced by Type I IFNs [e.g. interferon stimulated genes (ISGs)]. The carboxyl (C) terminus of each IRF family member contains one of two types of association modules, called IRF associated domain 1 (IAD1; in all IRFs except *Irf1* and *Irf2*), and IAD2 (found in *Irf1* and *Irf2*; Savitsky *et al.*, 2010). Outside the IAD, the C-terminus is not well conserved, and thus is the region that gives each IRF specific functions.

1.3 Recent progress in understanding interferon regulatory factors

The roles of proteins encoded by IRF family genes have been quite well-studied in mammals, and found to include not only regulation of IFN expression, but also various aspects of immune system regulation, growth, development, and regulation of oncogenesis (for reviews see Honda and Taniguchi, 2006; Ozato *et al.*, 2007; and Savitsky *et al.*, 2010). For example, IRF1, IRF3 and IRF7 are known to induce transcription of type I IFN genes in mice and in mammalian cell lines, whereas IRF2 is a negative regulator of the IFN response in mammals (Taniguchi *et al.*, 2001 and references therein). IRF9 acts as part of a transcriptional activator complex stimulated by type I IFN which activates several IFN pathway genes (Taniguchi *et al.*, 2001). While the role of IRF6 in immune regulation has not been determined, this gene has been shown to be important to development in several vertebrate species, as discussed below. The majority of IRF research thus far has been focused on mammalian species, although investigation into this gene family in multiple teleost species has increased in recent years [e.g. in mandarin fish (*Siniperca chuasti*) (Sun *et al.*, 2007), rainbow trout (*Oncorhynchus mykiss*) (Holland *et al.*, 2008), Atlantic salmon (*Salmo salar*) (Bergan *et al.*, 2010) and rock bream (*Oplegnathus fasciatus*) (Bathige *et al.*, 2012]. Studies of IRF family genes involving zebrafish as a model fish species have so far included analysis of gene structure based on mining of public sequence databases (Nehyba *et al.*, 2009; Huang *et al.*, 2010), investigation of function in selected genes using morpholino-based targeted gene knockdown (Sabel *et al.*, 2009; Li *et al.*, 2011), and expression studies of selected paralogues (Ben *et al.*, 2005; Xiang *et al.*, 2010). Studies in various species show that, as expected, the IRF family members that are most closely related (based on sequence comparison) often share similar functions.

1.4 Interferon regulatory factor gene family sub-groups

Based on molecular phylogenetic analysis, the IRF gene family can be divided into four sub-groups: IRF1-G (*Irf1*, *Irf2*), IRF3-G (*Irf3*, *Irf7*), IRF4-G (*Irf4*, *Irf8*, *Irf9*, *Irf10*), and IRF5-G (*Irf5*, *Irf6*), reflecting expansion and diversification over evolutionary history (Nehyba *et al.*, 2002; 2009). As indicated in Figure 1, IRF1-G may also be referred to as IRF1 supergroup (SG) while all other IRFs are grouped as IRF4-SG, mainly based on the presence of the well-conserved IAD1 in the carboxyl terminus of the latter group.

Figure 1: Summary of Interferon Regulatory Factor gene family organization. Schematic based on phylogenetic analysis by Nehyba *et al.*, (2002), in which IRF protein sequences from human, chicken, clawed toad, Japanese flounder, mouse, quail, rat, sheep, and fugu were aligned and used to construct a neighbour-joining tree. (See Fig, 2; Table 2, Nehyba *et al.*, 2002).

1.4.1 IRF1 sub-group

IRF1 (named because it was the first of the family to be identified) is a transcriptional activator of IFN α/β expressed in most cell types and tissues, whose expression can be induced by IFNs and many other cytokines, or by viral infection (reviewed in Taniguchi *et al.*, 2001). In addition to its role in the innate immune response, IRF1 is required for DNA damage-induced apoptosis, and is thus known as a tumor suppressor (Tanaka *et al.*, 1996). IRF2 can be said to act opposite to IRF1, negatively regulating type I IFN responses (Honda and Taniguchi 2006) and has been shown to have pro-oncogenic activity (reviewed in Yanai *et al.*, 2012), indicating an opposing role to IRF1 in oncogenesis as well.

Irf1and Irf2 cDNA sequences have been partially or fully characterized in several fish species, including Atlantic salmon (Bergan *et al.*, 2010) and the paddlefish *Polyodon spathula* (Xiaoni *et al.*, 2011), and were upregulated in each of these species by stimulation with polyriboinosinic polyribocytidylic acid [poly(I:C)], a synthetic double-stranded RNA which mimics a viral infection. *Irf1* is the only IRF gene in Atlantic cod that was fully characterized at the cDNA level (Feng *et al.*, 2009) prior to the current study, and spleen transcript expression was previously found to be upregulated by both the viral mimic poly(I:C) and bacterial antigens (formalin-killed *Aeromonas salmonicida*) (Rise *et al.*, 2008; Feng *et al.*, 2009). Table 1 and Table 2 summarize current knowledge of expression of *Irf1* and *Irf 2* (and all other family members) expression in mammalian species and fish species, respectively.

Paralogue	Expression	Roles in innate immunity
IRF1	Human: constitutive in many cell types; upregulated by viral infection or IFN stimulation (Taniguchi <i>et al.</i> , 2001, Savitsky <i>et al.</i> , 2010).	Mouse: inhibits immunosuppressive features of dendritic cells (Gabriele and Ozato, 2007). Activates transcription of type I IFNs (Taniguchi <i>et al.</i> , 2001).
IRF2	Human: constitutive in many cell types; upregulated by IFN stimulation (Taniguchi <i>et</i> <i>al.</i> , Savitsky <i>et al.</i> , 2010).	Human: attenuates type I IFN responses by antagonizing IRF1and IRF9 (Savitsky <i>et</i> <i>al.</i> , 2010).
IRF3	Human: constitutively expressed in all tissues (Au <i>et al.</i> , 1995).	Human: activates transcription of type I IFNs and other cytokines (Savitsky <i>et al.</i> , 2010). Mouse: triggers necrotic cell death of macrophages in response to infection (Di Paolo <i>et al.</i> , 2013).
IRF4	Mouse: constitutive only in lymphoid cells (Matsuyama <i>et al.</i> , 1995). Human: constitutive in lymphocytes (Taniguchi <i>et al.</i> , 2001).	Mouse: regulates myeloid/lymphoid cell differentiation (Gabriele and Ozato, 2007); negatively regulates Toll-like receptor (TLR) signalling (Negishi <i>et al.</i> , 2005); required for B cell differentiation into plasma cells (Sciammas <i>et al.</i> , 2006).
IRF5	Human: constitutive in B-cells and dendritic cells; inducible in other lymphoid cells by IFN (Barnes <i>et al.</i> , 2002).	Human: activates transcription of type I IFNs and other cytokines (Takaoka <i>et al.</i>, 2005).Mouse: important to B-cell differentiation and maturation (Lien <i>et al.</i>, 2010).
IRF6	Human: constitutively expressed in skin (Savitsky <i>et al.</i> , 2010).	Human: important to development of the lip and palate; involved in development of skin and external genitalia (Kondo <i>et al.</i> , 2002).
IRF7	Human: ubiquitous but predominantly in lymphoid cells; dependant on IFN signaling (Taniguchi <i>et al.</i> , 2001, Barnes <i>et al.</i> , 2002).	 Human: activates transcription of type I IFNs and other cytokines (Taniguchi <i>et al.</i>, 2001). Mouse: main regulator of IFN production in plasmacytoid dendritic cells (Honda <i>et al.</i>, 2005); required for differentiation of medullary thymic epithelial cells (Otero <i>et al.</i>, 2013)
IRF8	Human: lymphoid and myeloid cell lineages (Taniguchi <i>et al.</i> , 2001). Mouse: constitutively expressed in B cells (Nelson <i>et al.</i> , 1996).	Mouse: regulates myeloid cell differentiation (Tamura and Ozato, 2002); contributes to high IFN induction in dendritic cells (Gabriele and Ozato, 2007); functions in microglia development in the CNS (Minten <i>et al.</i> , 2012).
IRF9	Human: constitutive in many cell types (Taniguchi <i>et al.</i> , 2001, Savitsky <i>et al.</i> , 2010).	Human: activated by type I IFN signaling; part of ISGF3 complex (Savitsky <i>et al.</i> , 2010).
IRF10	*not found in mammalian species	

<u>Table 1: Studies of Interferon Regulatory Factor protein expression and function in</u> <u>mammalian species</u>

Table 2: Studies of interferon regulatory factor transcript expression and response to immune stimulation in fish species

Paralogue	Constitutive Transcript Expression	Effect of Poly(I:C) / other treatments in fish
		on transcript expression
Irf1	 Paddlefish: constitutively expressed in various tissues (Xiaoni et al., 2012). Yellow croaker (<i>Pseudosciaena crocea</i>): constitutively expressed in various tissues; highly expressed in gill and spleen (Yao et al., 2010). Mandarin fish: constitutively expressed in various tissues (Sun et al., 2007). Atlantic cod: expressed throughout development with peak in early segmentation (Rise et al., 2012). 	Off transcript expressionPaddlefish: upregulated by poly(I:C) in gill, head kidney, trunk kidney, liver and spleen (Xiaoni et al., 2011).Yellow croaker: upregulated by poly(I:C) and lipopolysaccharide (LPS) in blood, spleen and liver (Yao et al., 2010).Atlantic cod: upregulated by poly(I:C) and killed A. salmonicida (ASAL) in spleen (Rise et al., 2008; Feng et al., 2009); response is affected by elevated temperature (Hori et al., 2012).Atlantic salmon: upregulated by poly(I:C) in head kidney cells (Bergan et al., 2010).
Irf2	Paddlefish: constitutively expressed in various tissues (Xiaoni <i>et</i> <i>al.</i> , 2012).	Paddlefish: upregulated by poly(I:C) in gill, head kidney, trunk kidney, liver and spleen (Xiaoni <i>et al.</i> , 2011). Atlantic salmon: upregulated by poly(I:C) in head kidney cells (Bergan <i>et al.</i> , 2010).
Irf3	Turbot (<i>Scophthalmus maximus</i>); Japanese flounder (<i>Paralichthys olivaceus</i>): constitutively expressed in various tissues; highly expressed in spleen and head kidney (Hu <i>et al.</i> , 2011a;b).	 Carp: upregulated by poly(I:C) and IFN inducersin cell lines (Sun <i>et al.</i>, 2010). Turbot: upregulated by poly(I:C) and turbot reddish body iridovirus (TRBIV) in spleen, head kidney and gills (Hu <i>et al.</i>, 2011a). Japanese flounder: upregulated by poly(I:C) in head kidney and gill (Hu <i>et al.</i>, 2011b). Trout: upregulated by poly(I:C) in cell lines (Holland <i>et al.</i>, 2008). Atlantic salmon: upregulated by poly(I:C) in head kidney cells (Bergan <i>et al.</i>, 2010).
Irf4	 Trout: highest expression in spleen, head kidney, gills (Holland <i>et</i> <i>al.</i>, 2010). Rock bream: constitutive expression in various tissues; highest in blood and spleen (Bathige <i>et al.</i>, 2012). 	Rock bream: upregulated by <i>Edwardsiella. tarda</i> (Gram negative bacterium) but downregulated by LPS in head kidney and spleen (Bathige <i>et al.</i> , 2012). Trout: downregulated by LPS; no response to poly(I:C) in splenocytes (Holland <i>et al.</i> , 2010).

Irf5	Grass carp (<i>Ctenopharyngodon</i> <i>idellus</i>); paddlefish: constitutively expressed in various tissues (Xu <i>et al.</i> , 2010; Xiaoni <i>et al.</i> , 2012).	 Turbot: not upregulated by poly(I:C); upregulated by turbot reddish body iridovirus in gill, head kidney, spleen and muscle (Xia <i>et al.</i>, 2012). Paddlefish: not upregulated by poly(I:C) in gill, head kidney, liver, or spleen (Xiaoni <i>et al.</i>, 2012). Grass carp: induced by grass carp reovirus in spleen and head kidney (Xu <i>et al.</i>, 2010).
Irf6	Zebrafish: maternal transcript in egg; epithelial cells of endoderm derived tissues in larvae (Ben <i>et al.</i> , 2005).	*no data available
Inf7	Orange spotted grouper (Epinephelus coioides); turbot: constitutively expressed in various tissues (highly in spleen and kidney) (Cui et al., 2011; Hu et al., 2011c).Japanese flounder: constitutively expressed in various tissues (Hu et al., 2010).Mandarin fish: constitutively expressed in various tissues (Sun et al., 2007).Atlantic cod: expressed in unfertilized eggs and throughout development with peak in early segmentation (Rise et al., 2012).	 Orange-spotted grouper: upregulated by <i>Vibrio.</i> <i>vulnificus</i> and Singapore grouper iridovirus (SGIV) in spleen (Cui <i>et al.</i>, 2011). Turbot: upregulated by TRBIV in head kidney (Hu <i>et al.</i>, 2011c). Japanese flounder: upregulated by poly(I:C) in head kidney and gill (Hu <i>et al.</i>, 2010). Trout: upregulated by poly(I:C) in cell lines (Holland <i>et al.</i>, 2008). Atlantic cod: upregulated by poly(I:C) in spleen (Rise <i>et al.</i>, 2008); response is affected by elevated temperature (Hori <i>et al.</i>, 2012); upregulated by nervous necrosis virus in brain (Krasnov <i>et al.</i>, 2013). Atlantic salmon: upregulated by poly(I:C) in head kidney cells (Bergan <i>et al.</i>, 2010).
Irf8	 Trout: highest expression in spleen, head kidney, and gills (Holland <i>et al.</i>, 2010). Rock bream: constitutively expressed in various tissues (Bathige <i>et al.</i>, 2012). Japanese flounder: constitutively expressed in various tissues (Hu <i>et al.</i>, 2013). 	 Trout: upregulated by poly(I:C) in splenocytes (Holland <i>et al.</i>, 2010). Rock bream: upregulated by poly(I:C) and bacterial infection in head kidney and spleen (Bathige <i>et al.</i>, 2012). Japanese flounder: upregulated by poly(I:C) and lymphocystis disease virus in spleen (Hu <i>et al.</i>, 2013).
Irf9	Crucian carp (<i>Carassius auratus</i>): expressed in blastulae embryonic cells (Shi <i>et al.</i> , 2012).	*no data available
Irf10	Japanese flounder: constitutively expressed in various tissues (Suzuki <i>et al.</i> , 2011).	 Japanese flounder: upregulated by LPS, poly (I:C), and several pathogens in peripheral blood lymphocytes (Suzuki <i>et al.</i>, 2011) Atlantic cod: upregulated by poly(I:C) in spleen (Rise <i>et al.</i>, 2008); response is affected by elevated temperature (Hori <i>et al.</i>, 2012).

1.4.2 IRF3 sub-group

IRF3 and IRF7 are both important regulators of type I IFN antiviral response, and can act individually or as part of a heterodimer or homodimer with each other, with differing effects (reviewed in Honda and Taniguchi, 2006). IRF7 is known as a master regulator of the IFN response, and is essential for the induction of IFN α/β genes (Honda *et al.*, 2005). It also plays a role in the regulation of oncogenesis, acting to prevent metastasis, while IRF3 is thought to have a role in mediating virus-induced apoptosis (Yanai *et al.*, 2012). *Irf3* and *Irf7* cDNA sequences have been characterized in several fish species, including rainbow trout (Holland *et al.*, 2008), Atlantic salmon (Bergan *et al.*, 2010), Japanese flounder (Hu *et al.*, 2010; 2011a), and turbot (Hu *et al.*, 2011b); and transcript expression was observed to be upregulated in response to poly(I:C) stimulation in several tissues in these species, as described in Table 2.

1.4.3 IRF4 sub-group

In mammals, IRF4 (also called multiple myeloma oncogene 1, MUM1) and IRF8 (also called interferon consensus sequence binding protein, ICSBP) have been shown to have important roles in the differentiation and development of dendritic cells (Gabriele and Ozato, 2007). While several mammalian IRFs are constitutively expressed in all cell types (see Table 1), the IRF4 protein in mammals only appears to be expressed in lymphocytes, playing an important role in development and function of those cells (reviewed in Taniguchi *et al.*, 2001), and the murine IRF8 protein is expressed only in myeloid and lymphoid cell lineages (Nelson *et al.*, 1996). The roles of these genes appear to be similar in fish; for example, *Irf8* has been shown to regulate myeloid lineage

differentiation during zebrafish development (Li *et al.*, 2011). *Irf4* and *Irf8* have been characterized at the cDNA level in several teleosts including rock bream (Bathige *et al.*, 2012) and rainbow trout (Holland *et al.*, 2010), and mRNA expression was seen to be upregulated in response to viral and bacterial stimulation in some species (as summarized in Table 2).

Irf10, also closely related to *Irf4/Irf8*, has not been found in mammals and is thus less well-studied than the other family members. This gene was first identified in chicken, where transcript expression was observed to be highest in cells of hematopoietic origin based on Northern blot analysis (Nehyba *et al.*, 2002). *Irf10* has been identified in several fish species, including zebrafish, stickleback, pufferfish and Atlantic cod (Stein *et al.*, 2007; Rise *et al.*, 2008; Huang *et al.*, 2010); but to our knowledge the complete cDNA has only been characterized in the Japanese flounder, *Paralichthys olivaceus* (Suzuki *et al.*, 2011), where *Irf10* mRNA expression was found to be upregulated in peripheral blood lymphocytes in response to both bacterial and viral stimulation.

1.4.4 IRF5 sub-group

In many species, the IRF6 protein is known to play a crucial role in the differentiation of epithelia. Mutations in human *Irf6* leads to Van der Woude syndrome, or cleft palate (Kondo *et al.*, 2002), and in zebrafish and the frog *Xenopus laevis Irf6* has been shown to be a maternal transcript necessary for epithelial differentiation (Ben *et al.*, 2005; Sabel *et al.*, 2009). This gene has been shown in humans to have a potential role in tumor suppression (Restivo *et al.*, 2011), but is the only IRF family member without a known role in innate immunity.

In mammals, IRF5 is known to function in Toll-like receptor (TLR) signalling, acting downstream of TLR stimulation as an inducer of pro-inflammatory cytokines (Takaoka *et al.*, 2005), and also plays an important role in B-cell differentiation (Lien *et al.*, 2010). Genetic variations (e.g. SNPs) in human *Irf5* have also been associated with the pathogenesis of systemic lupus erythematosus (SLE), a complex autoimmune disease (Cham *et al.*, 2012). The *Irf5* cDNA sequence has been characterized in several fish species, including turbot (Xia *et al.*, 2012) and Japanese flounder (Hu *et al.*, 2012), where its transcript expression was upregulated in response to viral stimulation, as described in Table 2.

1.5 Research Objectives

Knowledge of several IRF family genes in Atlantic cod has been increasing, particularly in terms of their response to immune stimulation (Rise *et al.*, 2008; Hori *et al.*, 2012), but these genes were still largely uncharacterized prior to the current research. cDNA libraries generated as part of the Atlantic Cod Genomics and Broodstock Development Project (CGP, *http://codgene.ca*; Bowman *et al.*, 2011) provided EST evidence for cod orthologues of *Irf1*, *Irf4*, *Irf7*, *Irf8* and *Irf10*, but as previously mentioned, only *Irf1* had been characterized at the cDNA and hypothetical amino acid level in this species prior to the current study (Feng *et al.*, 2009). *Irf1*, *Irf7*, and *Irf10* had been shown to respond to stimulation with viral mimic poly(I:C) with increased transcription (Rise *et al.*, 2008), and interestingly this response was seen to be modulated by temperature change (Hori *et al.*, 2012). *Irf1*, *Irf4* and *Irf7* have also been shown to respond to nervous necrosis virus infection in the brain, based on microarray analysis (Krasnov *et al.*, 2013). Investigation of developmental transcript expression of *Irf1* and *Irf7* has also indicated a possible stage-specific function for these genes during embryogenesis (Rise *et al.*, 2012).

To further our knowledge of the molecular immunology of teleost fish, the goals of this research have been to characterize several Atlantic cod IRF genes (specifically *Irf4, Irf7, Irf8, and Irf10*) at the cDNA and hypothetical amino acid levels, and investigate the mRNA expression of these genes throughout embryonic development, in adult tissues, and in response to viral and bacterial stimulation and temperature change. A better understanding of how these genes are expressed should help in the determination of possible novel roles of IRF family members, for example during early development. Bioinformatics analysis and molecular techniques such as rapid amplification of cDNA ends (RACE), reverse transcription - polymerase chain reaction (RT-PCR) and quantitative real-time PCR (QPCR) were used to carry out these objectives, while phylogenetic analyses were also used to compare the evolutionary history of this gene family in Atlantic cod and other teleost fish species.

2. Methods

2.1 cDNA characterization of selected cod IRF paralogues

2.1.1 Database mining and RACE

A simplified schematic outlining the steps taken for cDNA characterization is shown in Figure 2. Briefly, bioinformatics tools and genomics resources [BLASTn and tBLASTn searches of dbEST using *Danio rerio* IRF (protein and cDNA) sequences; collection of predicted Atlantic cod cDNA sequences from Ensembl database (www.ensembl.org); search of the CGP database (www.codgene.ca) for Atlantic cod IRFlike sequences] were used to compile partial nucleotide sequences for all cod IRF paralogues. EST evidence for Irf4, Irf7, Irf8 and Irf10 was used to design paraloguespecific RACE primers. Since cod Irf4, Irf7 and Irf10 had previously been subjected to transcript expression analyses (Rise et al., 2008; 2012; Hori et al., 2012; Krasnov et al., 2013), and Irf8 is part of the same sub-family as Irf4/10 (IRF4-G) and is known to have important roles in other species (see Table 1), these four paralogues were chosen for the main focus of this research. Partial predicted sequences were also available in the Ensembl database (www.ensembl.org) for cod Irf2, Irf3, Irf5, Irf6, and Irf9, although EST evidence for these genes was not found in dbEST. In continuation of the current research, these predicted sequences may be used to carry out RACE and TA cloning/sequencing of the remaining potential Atlantic cod IRF paralogues.

To obtain cDNA to be used in RACE, column-purified RNA was pooled using 5 µg from each of 10 spleen samples from fish injected with poly(I:C) [sampled at 24 hours

Figure 2: Steps taken to identify cod IRF paralogues and choose targets for cDNA characterization.

post injection (HPI), 5 at 10°C and 5 at 16°C]. Experimental setup and sampling procedure (Hori *et al.*, 2012), and RNA preparation are described in section 2.3.1. Five µg of pooled RNA was used to prepare RACE-ready cDNA using the GeneRacer Kit (Invitrogen, Burlington ON), according to the manufacturer's instructions. PCR amplification of cDNA ends was carried out in 50 μ L reactions containing 1 μ L (1 U/ μ L) Dynazyme polymerase (Thermo Scientific, Ottawa, ON), Dynazyme EXT buffer (1X final concentration, and either reverse gene specific primer (GSP) and GeneRacer 5' primer or forward GSP and GeneRacer 3' primer for 5' RACE and 3'RACE respectively. Primers used for RACE are listed in Table 3. Touchdown PCR was carried out using an initial denaturation at 94°C for 2 min followed by 40 cycles of [30s at 94°C; 30 s at 70°C \rightarrow 60°C, decreasing 0.3°C per cycle; 2 min at 72°C] and a final extension of 8 min at 72°C. Approximate size of PCR products was verified by electrophoresis on 1% agarose/tris acetate-EDTA (TAE) buffer gels stained with ethidium bromide, and DNA bands were excised under UV transillumination using a sterile scalpel blade and purified using QIAquick Gel Extraction Kit (QIAGEN, Mississauga, ON) according to manufacturer's instructions.

2.1.2 TA cloning and sequencing

RACE products were ligated into pGEM-T Easy vector (Promega, Madison, WI, USA) in 10 μ L reactions containing 5 μ L ligation buffer, 50 ng insert DNA, 1 μ L vector and 1 μ L ligase (3 U/ μ L), with incubation at 4°C overnight. Two μ L of the ligation reaction was added to 50 μ L Subcloning Efficiency DH5 α chemically competent cells (Invitrogen, Burlington, ON.) and transformations were carried out according to

Primer Name	Sequence (5'-3')	Application	Predicted amplicon size
IRF4-gsp-fwd*	GATGGGTCACGACGGCCTGTAT	3'RACE	N/A
IRF4-gsp-rev*	ACACATGCAGGCGAAGGTCAGAA	5'RACE	1
IRF7-gsp-fwd	CGGAATATGTCGTCAACATGTGCT	3'RACE	N/A
IRF7-gsp-rev	CGTGGCCTCGTTGCCGTAGTG	5'RACE	
IRF8-gsp-fwd	CATGACCTCGGCAACGCCAAGA	3'RACE	N/A
IRF8-gsp-rev	CTGCATGGTGTCGGAGCTGTAG	5'RACE	
IRF10-gsp-fwd	CCGCACACCGAGAAGCCCAATA	3'RACE	N/A
IRF10-gsp-rev	GCACGCAGCCCTGCAGGATGA	5'RACE	
IRF4a-gsp-fwd	TCCATCCTACCCTGCCCTTCAC	3'RACE	N/A
IRF4a-gsp-rev	AGGAAGGCCTGCTCCGGGTAG	5'RACE	1
IRF4b-gsp-fwd	GGCTTTCGTCATGAGAAGACACA	3'RACE	N/A
IRF4b-gsp-rev	GTATGTGTGCGTACGTGTGAGTG	5'RACE	
IRF10b-gsp-fwd	CGAGTCTGACCAGAGAGCAGGT	3'RACE	N/A
IRF10b-gsp-rev	CGTCTGATCAGACTCTGAGGAAG	5'RACE	
IRF4b-orf-fwd	TGACGGACAGATGAACCTCGAA	ORF-PCR	1441 bp
IRF4b-orf-rev	AGCTCAACCAATCGGGATTTCA	ORF-PCR	
IRF4a-orf-fwd	ACTTTGCCCAATCTCGTGGTGT	ORF-PCR	628 bp
IRF4a-orf-rev	GTGTGTGAACGCCTTGGAAAGA	ORF-PCR	
IRF7-orf-fwd	GGGACGACACAACGAGGTACAC	ORF-PCR	1577 bp
IRF7-orf-rev	AAAACCACGTCCCCACTACCAA	ORF-PCR	
IRF8-orf-rev	GAGCTTAAAGCCCGGAGCTCAT	ORF-PCR	1287 bp
IRF8-orf-fwd	AAGATGTCGAACACGGGAGGAC	ORF-PCR	
IRF10a-orf-fwd**	CATGAGGCGGCCTATTTGAAAG	ORF-PCR	1423 bp
IRF10a-orf-rev**	CACAGAACTGTCAACTGCCAAG	ORF-PCR	
IRF10b-orf-fwd**	TGCGCTGATGTTATGGACCTTG	ORF-PCR	651 bp
IRF10b-orf-rev**	GAGACTGTGGGAGACTGGCGTA	ORF-PCR	

|--|

*RACE products from this primer set were not used in final sequence assemblies, based on evidence of two paralogues; RACE was repeated using "*IRF4a*" and "*IRF4b*" primer sets.

***Irf10a* and *Irf10b* were renamed *Irf10-v1* (splice variant 1) and *Irf10-v2* (splice variant 2) respectively later in the study.

ORF = open reading frame; gsp = gene-specific primer.

manufacturer's instructions. Colonies containing inserts were obtained by blue/white selection on LB agar/carbenicillin (50 µg/mL) plates containing 40 µL of 40 mg/mL Xgal (Sigma, Oakville, ON), and then grown overnight at 37°C in liquid LB media containing 50 μ L/mL carbenicillin. The presence of inserts was confirmed by digestion with *Eco*RI (Invitrogen) followed by electrophoresis on a 1% agarose gel, and DNA was then isolated using the QIAprep Spin Miniprep Kit (QIAGEN), following the manufacturer's instructions. For each RACE product, DNA from four colonies was sequenced in both directions using M13F and M13R primers. Sequencing was carried out by staff at the GaP (Genomics and Proteomics) facility, CREAIT network, Memorial University. Briefly, insert DNA was amplified and purified using the BigDye Terminator v3.1 Cycle Sequencing Kit and BigDye XTerminator Purification Kit (Applied Biosystems), following the manufacturer's instructions. Sequencing reactions were processed by capillary electrophoresis using the Applied Biosystems 3730 DNA Analyzer. Sequence data was compiled and analyzed using Lasergene SeqMan Pro software V. 7.1.0 (DNASTAR, Inc., Madison, WI). Amino acid sequences for each paralogue were predicted based on cDNA sequence using the ExPASy Translate tool (see Web References).

2.1.3 Paralogue and splice variant discovery

Since assembly of *Irf4* RACE sequences indicated three different contiguous sequences (contigs), further analysis of all *Irf4*-like ESTs was carried out. Based on BLAST analysis, one set of ESTs (GenBank accession numbers ES784419 and ES785894) was found to be more similar to *Irf10*, and was named *Irf10b* (with *Irf10*

20

above renamed as *Irf10a*). The remaining *Irf4*-like ESTs were predicted, based on nucleotide sequence comparison, to represent two paralogues, which were named *Irf4a* and *Irf4b* (Appendix 1). New GSPs were designed based on the aligned ESTs, in regions of relatively low similarity between the two paralogues. New primers were also designed to isolate *Irf10b*, in a region with relatively low similarity to *Irf10a*, and RACE, TA-cloning, and sequencing were carried out as above. Although the sequences named *Irf10a* and *Irf10b* were initially thought to be paralogues, they were later determined to be splice variants and re-named (see below).

As the 5' and 3' RACE products for each IRF paralogue had very little overlap, PCR amplification, cloning and sequencing of the open reading frames (ORFs) of all 6 paralogues were carried out, with paralogue-specific PCR primers placed 20 to 50 bp before the start codon and after the stop codon. PCR was carried out using cDNA corresponding to 25 ng or 50 ng input RNA in 50 µL reactions containing primers at a final concentration of 2.5 µM. Cycling conditions were a 3 min denaturation step at 94°C followed by 30 cycles of [30s at 94°; 30s at 60°C; 2 min at 72°C] and 10 min at 72°C. All cloning and sequencing steps were carried out as above, except that insert DNA from only one colony was sequenced 6x for each gene. Sequences were assembled using Lasergene SeqMan Pro software (DNASTAR, Inc.), and consensus sequences were used to search the NCBI non redundant (nr) protein database (BLASTx search), to confirm similarity to putative orthologous IRF sequences in other species.

21

2.1.4 Irf10 genomic DNA sequencing

Based on sequence assembly and mapping to the predicted cod Irf10 genomic region (available online from the Ensembl database), the Irf10a and Irf10b sequences were predicted to be a short and long splice variant of the same gene. To confirm this, the complete Irf10 genomic region was cloned and sequenced. Genomic DNA was extracted from one spleen and one head kidney sample [fish injected with phosphate buffered saline (PBS) as part of the immune stimulation experiment described below (section 2.3.1)], using the DNeasy blood and tissue kit (QIAGEN) according to the manufacturer's instructions. Primers were designed in the 5' untranslated region (UTR) ("IRF10-genomic-fwd1") and 3' UTR ("IRF10-genomic-rev1") of IRF10a to cover most of the predicted genomic region, and PCR was carried out using the Advantage 2 Polymerase kit (Clontech) using approximately 100 ng genomic DNA per reaction, following the manufacturer's instructions. The PCR program consisted of an initial denaturation at 94°C for 1 min followed by 35 cycles of (30 s at 94°C; 4 min at 68°C) and a final extension of 4 min at 68°C. The product was electrophoretically separated on a 1% agarose/TAE gel, to confirm the presence of a product approximately 4 kb in size. Additional primers were designed to amplify and sequence the complete region in 5 parts of 800 to 1000 bp each (Table 4). PCR was carried out for each part as above, with an extension time of 1 min instead of 4 min. The PCR products were purified using QIAGEN MinElute PCR purification kit following the manufacturer's protocol, and sequenced using the same primers (carried out by staff at GaP facility, Memorial University, as above). Products were also electrophoretically separated on a 1%

Primer name	Sequence 5'-3'
IRF10-genomic-fwd1	ACCTGAACCAGCTGGACATC
IRF10-genomic-rev1	TCGCTGGCATGTAGAAAGTC
IRF10_p1_fwd	TGCGCTGATGTTATGGACCTTG
IRF10_p1_rev	CGAGATGTCCAGCTGGTTCAG
IRF10_p2_fwd	ACAAGGTGGGCAGCGACAAGGA
IRF10_p2_rev1	TTTGTGGTTCGGCCTCTGTGTAT
IRF10_p3_fwd	GCATCGAGATCCATTTCCTCTAC
IRF10_p3_rev	GTGTCACCTGATATGGCCAGAGT
IRF10_p4_fwd	GTGCTGCTTCAGGTGCTTTGTG
IRF10_p4_rev	CTCTCCAGTTTATTGGGCTTCTC
IRF10_p5_fwd	CAGCCCAGAAGGGTGCTTCATC
IRF10_p5_rev1	CGTACTTGATTATTGTTCCAGTGC

 Table 4: Primers used in cod Irf10 genomic region sequencing

agarose/TAE gel alongside 1 kb Plus DNA Ladder (Invitrogen) to confirm the correct approximate size.

2.1.5 Phylogenetic analysis

Homologous IRF protein sequences from other teleost species (zebrafish, Atlantic salmon, Japanese flounder, grass carp, rock bream) were collected from the NCBI non redundant (nr) protein database using the BLASTx alignment search tool and Atlantic cod *Irf* transcripts as queries. Predicted IRF amino acid sequences were aligned with the ClustalW function of MEGA5 software (Tamura *et al.*, 2011). Based on the multiple sequence alignment, a phylogenetic tree was constructed using the neighbour-joining method in MEGA5, where the bootstrap consensus tree was constructed from 5000 replicates. A second multiple sequence alignment and phylogenetic tree were constructed with all sequences trimmed to the length of the shortest orthologue [Atlantic cod IRF4a (144 AA)] to remove technical bias.

2.2 RT-PCR expression analysis in juvenile cod tissues

2.2.1 Sampling and RNA extraction

All procedures involving sampling of embryonic, larval or juvenile cod were conducted with approval of Memorial University's Institutional Animal Care Committee, following the guidelines of the Canadian Council on Animal Care (protocol no. 10-02-MR). In this experiment, two juvenile Atlantic cod were individually removed from a 10°C tank and quickly euthanized by a lethal dose of tricaine methanesulphonate (TMS; 400 mg/L; Syndel Laboratories, Qualicum Beach, BC). Tissues (blood, brain, eye, gill, head kidney, heart, hindgut, liver, midgut, posterior kidney, pyloric caecum, skeletal muscle, skin, spleen, stomach) were collected by team dissection, placed in 1.5 mL microcentrifuge tubes and immediately flash frozen in liquid nitrogen before storage at -80°C. Separate instruments were used to collect each tissue, and all instruments were cleaned with RNAse Away (Sigma) between dissections.

To extract total RNA, each frozen sample was transferred to a 2 mL tube containing a 5 mm stainless steel bead and 400 µL TRIzol (Invitrogen) and homogenized by high speed agitation (TissueLyser II, QIAGEN). Further homogenization using QIAshredder (QIAGEN) columns and TRIzol extraction of RNA were performed following manufacturers' methods. RNA was treated with DNaseI (RNase Free DNase Set, QIAGEN) and column-purified using the RNeasy MinElute Cleanup Kit (Invitrogen) following the manufacturer's instructions. RNA quality (A260/280 and A260/230) and concentration were assessed by Nanodrop (ThermoFisher, Mississauga, Ont.) spectrophotometry for both crude and purified RNA, and RNA integrity was assessed by
agarose gel electrophoresis. Samples with A260/280 or A260/230 ratios of less than 1.8 were re-cleaned or omitted. One μ g of each clean RNA sample was used for cDNA synthesis in 20 μ L reactions containing M-MLV (Moloney Murine Leukemia Virus) Reverse Transcriptase (200 U, Invitrogen), random primers (250 ng, Invitrogen) with the manufacturer's first strand buffer and DTT (10 mM final concentration), carried out at 37°C for 50 min. cDNA was diluted 10x to 200 μ L with nuclease free water (Life Technologies) and stored at -20°C.

2.2.2 RT-PCR

PCR was carried out using TopTaq DNA polymerase (QIAGEN) in 25 μ L reactions containing 2 μ L cDNA (corresponding to 10 ng input RNA). The same paralogue-specific primers designed for QPCR (see below) were used for RT-PCR, at a final concentration of 2.5 μ M. Table 5 lists primer sequences and amplicon sizes. For each primer set, a no-template control containing all reaction components except cDNA was also run. Cycling conditions were a 3 min denaturation step at 94°C followed by 30 cycles of [30 s at 94°C; 30 s at 60°C; 1 min at 72°C] and 10 min at 72°C. PCR products were electrophoretically separated on 1.7% agarose/TAE gels (stained with ethidium bromide) alongside 1 Kb Plus DNA Ladder (Invitrogen) for 75 min at 95 V, after testing several combinations of gel percentage, running time and voltage to produce optimal resolution. *EF1-a* (elongation factor 1 α) was used as a control, as it showed similar transcript expression in all tissues studied.

2.3 QPCR expression analysis: response to immune stimulation and increased temperature in spleen

2.3.1 Experimental setup and sampling

Atlantic cod spleen samples used in this experiment were collected as part of a previous study, as described in Hori *et al.*, (2012; 2013). Briefly, Atlantic cod from 10 different families belonging to the Atlantic Cod Genomics and Broodstock Development Project (CGP) year class 3 (~60 g) were kept in 500 L tanks, four of which were held at 10°C and four of which were gradually increased over 1 month to 16°C. After

Primer name	Sequence 5'-3'	Amplicon size ¹	% Efficiency ²
cod-ef1a-fwd	CCCTCCAGGACGTCTACAAG	150 bp	89.91
cod-ef1a-rev	GAGACTCGTGGTGCATCTCA		
arp-1-fwd	TCTGAAGCTAAGGCCCTCAA	141 bp	N/A (only used
arp-1-rev	ATCGTCGTGGAGGATCAGAG	-	in RT-PCR)
IRF4a-qpcr-fwd	TGTACCGTATCATCCCAGAGG	111 bp	100.58
IRF4a-qpcr-rev	AGTGGGGTATCTGGCTGTGA		
IRF4b-qpcr-fwd	TGGACATCACCGAACCCTAC	106 bp	92.25
IRF4b-qpcr-rev	CATGACGAAAGCCATCTGAA		
IRF10a-qpcr-fwd	CCGAGAAGCCCAATAAACTG	143 bp	97.74
IRF10a-qpcr-rev	ATACTCCTCGCCAAAGCAGA		
IRF10b-qpcr-fwd	GGTCCAACGCAGTAACGATT	134 bp	98.62
IRF10b-qpcr-rev	ACTGTGGGAGACTGGCGTAT		
IRF7-qpcr-fwd	CATGTGCTTTGGGGAGAAGT	152 bp	93.51
IRF7-qpcr-rev	TCTGTAGGCTGACGTTGGTG		
IRF8-qpcr-fwd	TCGGGGAGGAACTACATGAC	158 bp	91.83
IRF8-qpcr-rev	GGCCATCTCGTCTGACATCT		

 Table 5: Paralogue-specific primers used in RT-PCR and QPCR experiments

¹Forward and reverse primers were placed in adjacent predicted exons so that the amplicon would span an intron, allowing for detection of genomic DNA contamination.

² Percent amplification efficiency (as in Pfaffl, 2001) calculated as the average of two standard curves (see section 2.3.2 for detailed primer quality testing methods).

acclimation for 1 week, fish were intraperitoneally (IP) injected with one of the following: poly(I:C) (Sigma Co, St. Louis, MO) in sterile phosphate-buffered saline (PBS); formalin-killed, typical A. salmonicida (ASAL) in PBS; or PBS alone (see Hori et al., 2012; 2013 for further details). As stated in Hori et al., (2013), ASAL (Furogen dip vaccine, Novartis, PE) was pelleted by centrifugation (2000x g for 10 min at 4 °C) and washed with ice-cold, 0.2 µm filtered PBS three times; following the third wash, the pelleted cell debris was resuspended in ice-cold PBS to an optical density of 1.0 at 600 nm wavelength (OD600). Fish were injected with 4 μ L of ASAL solution per gram of wet mass solution. Poly(I:C) injections contained 2 µg of poly(I:C) g⁻¹ wet mass, 0.5 µg μ L⁻¹ in ice-cold 0.2 µm-filtered PBS (Hori *et al.*, 2012). Sampling was carried out at 6 and 24 hours post-injection (HPI), using aseptic techniques as described above, and samples were stored at -80°C. Figure 3 (modified from Hori et al., 2012) shows the experimental design used. For the current research, previously extracted total RNA was treated with DNaseI (RNase Free DNase Set, QIAGEN) and column-purified using the RNeasy MinElute Cleanup Kit (Invitrogen) following the manufacturer's instructions. RNA quality was determined by agarose gel electrophoresis and Nanodrop spectrophotometry, and cDNA was prepared using M-MLV reverse transcriptase as above.

2.3.2 Primer quality testing

Paralogue-specific primers (Table 4) were designed using Primer3 software (see Web References), with forward and reverse primers placed in adjacent predicted exons. The amplicon produced from each primer set would therefore include the position of an

Figure 3: Overview of immune response and temperature increase experimental setup. (Modified from Hori *et al.*, 2012.) Polyriboinosinic polyribocytidylic acid, elsewhere abbreviated as poly(I:C), is abbreviated as pIC for space in this figure.

intron, allowing for the detection of genomic DNA contamination. All primer pairs were quality tested using pooled cDNA from both the 10°C, 24 h post-injection poly(I:C) and PBS sampling groups. Where possible, a 5-point, 5-fold dilution standard curve (starting with cDNA corresponding to 10 ng input RNA) was used to calculate amplification efficiency as described in Pfaffl (2001) in both poly(I:C) and PBS pools, with final amplification efficiency reported as the average of the two. However, due to low expression of several transcripts, 4-fold (*Irf4a*, *Irf8*) or 3- fold (*Irf4b*, *Irf10-v2*) 5-point dilution series had to be used for those standard curves. Triplicate reactions were carried out for all standard curves, controls and experimental samples. Melt curve analysis was carried out to ensure that a single product was amplified and that no primer-dimers were present. *EF1a* was confirmed as a suitable normalizer by testing in approximately one third of the experimental samples, including all time points and treatments. The range of threshold cycle (C_T) values for *EF1a* was 1.7 cycles, indicating a similar level of expression in the included samples.

2.3.3 QPCR analysis

All QPCR analyses were performed using SYBR Green chemistry and the ViiA7 Real Time PCR System (Applied Biosystems, Foster City, CA, USA). PCR amplification was carried out in 13 μ L reactions containing 6.5 μ L Power SYBR Green master mix (Applied Biosystems), 0.52 μ L each of forward and reverse primers (50 nM final concentration), 3.46 μ L nuclease-free water and 2 μ L cDNA (corresponding to 10 ng input RNA). All samples were run as triplicate technical replicates, and no-template controls were included for each primer set in each plate. A linker sample of cDNA made from pooled PBS-injected (10°C, 24 HPI) samples was run on each plate; all linker C_T values were within 1 cycle. To confirm the absence of any genomic DNA, a no reverse transcription (no-RT) control was also included in which a cDNA synthesis reaction using the linker RNA pool was carried out with all components except reverse transcriptase. The reaction product was run in triplicate (2 μ L as with cDNA samples), and no amplification was observed in the no-RT control.

Gene of interest expression was normalized to $EF1\alpha$ expression, and relative quantities (RQ) were calculated with the Applied Biosystems ViiA7 Software Relative Quantification Study Application using the Pfaffl method (Pfaffl, 2001) and automatic thresholds, incorporating calculated amplification efficiencies. The lowest expressing sample for each gene of interest was set as the calibrator (RQ set as 1.0) for analysis of that gene. RQ values were analyzed statistically and plotted using Prism v5.0 (GraphPad Software Inc., La Jolla, CA, USA). A two-way ANOVA with treatment and temperature as factors was carried out for each time point. If the effect of one factor was statistically significant (p<0.05), t-tests were performed to compare groups, as described in Hori *et al.*, (2012).

2.4 RT-PCR expression analysis: developmental expression

2.4.1 Experimental setup and sampling

Adult (broodstock) Atlantic cod involved in this study were handled by the staff of the Dr. Joe Brown Aquatic Research Building (JBARB) at the Ocean Sciences Centre of Memorial University. Broodstock were wild fish caught in Smith Sound, Newfoundland. After communal spawning, fertilized eggs were collected in 3 batches and ozonated at 1.5-2 ppm for 1.5 min and placed in three 250 L incubators with air stones. Temperature was recorded daily and maintained at 5-7 °C for the duration of sampling, and non-buoyant dead embryos and/or shells from hatched larvae were removed daily by draining from the bottom of each incubator before sampling.

Sampling was carried out from 0 to 17 days post-fertilization (dpf). Each day, the air stone was removed to allow embryos to float to the top of the incubator, and a mesh screen was used to collect a small number of embryos. For each incubator, ~250 μ L of embryos were placed in a 1.5 mL RNase-free microcentrifuge tube containing 1 mL RNA Later (Life Technologies) and stored at 4°C overnight. Samples were divided into groups of 30 embryos the following day using a sterile spatula (after removing liquid) and then stored at -80°C. Each day, additional samples of ~250 μ L embryos were collected from each incubator, flash frozen in liquid nitrogen and stored at -80°C for use in future work. Embryos were also observed under a light microscope to estimate developmental stage, and pictures were taken of representative samples for each day.

2.4.2 RT-PCR

RNA extraction of two complete sets of samples (0 dpf to 17 dpf, from two different incubators) was carried out by homogenization in ~600 µL TRIzol (Invitrogen) using a motorized Kontes RNase-Free Pellet Pestle Grinder (Kimble Chase, Vineland, NJ) and sterile plastic pestles. Samples were immediately transferred to QIAshredders and RNA extraction, cleaning, quality checking, and cDNA synthesis were carried out as described above for the tissue panel RT-PCR (section 2.2). For PCR, an acidic ribosomal protein (*arp*) transcript was used as a control / housekeeping gene instead of *ef1a* based on its evaluation in a previous study (Lanes *et al.*, 2012) and on preliminary QPCR data (not shown) which suggested it was more stable than *ef1a* in the included embryonic/larval samples. QPCR was not completed due to very low constitutive expression of IRF transcripts in the early life stage samples. Instead, RT-PCR only was carried out, using TopTaq DNA polymerase kit (QIAGEN) as in the tissue panel study above (using the same primers, cDNA quantity, etc.), and 12.5 μ L of each reaction was electrophoretically separated on a 1.7% agarose/TAE gel alongside 1 Kb Plus DNA Ladder (Invitrogen).

3. Results

3.1 Characterization of Irf4a, Irf4b, Irf7, Irf8, Irf10-v1 and Irf10-v2 cDNA sequences

Primers were designed based on RACE sequence assemblies to amplify the ORF of each paralogue (from 20 to 100 bp before the start codon to 20 to 100 bp after the stop codon) to confirm assemblies were correct and to ensure all assemblies contained 6x coverage of every base. Agarose gel electrophoresis (Figure 4) of the PCR products shows that bands of the approximate predicted sizes (listed in Table 3) were obtained for each of the six IRF transcripts.

Assembly of *Irf4a* sequencing reads (RACE sequences as well as additional ORF sequencing reads to confirm overlapping region; Appendix 2) produced a 796 bp cDNA sequence (excluding poly-A tail) (Figure 5). The sequence consists of a 435 bp (144 AA)

Figure 4: Agarose gel image of PCR amplified IRF open reading frames. Composite of two 1% agarose gels, each using 1 kb plus ladder (Invitrogen) to determine approximate band size. Two reactions were run for each gene, starting with 5 μ L and 10 μ L of cDNA (corresponding to 25 ng and 50 ng input RNA, respectively) in 50 μ L reactions (45 μ L of each reaction was run on the gel). Primer sequences and expected band sizes are indicated in Table 3. Note that amplicons are longer than the ORF for each gene (spanning from before the start codon to after the stop codon). Bands matching predicted approximate sizes for each amplicon are indicated in red, and were excised for TA-cloning and sequencing. The gel section showing 1 kb plus ladder is replicated for easier estimation of band sizes.

Figure 5: Nucleotide sequence of Atlantic cod *Irf4a* cDNA and inferred amino acid translation. Nucleotide sequence is numbered on the left, while the predicted amino acid sequence is numbered on the right. The open reading frame is shown in upper case letters while 5' and 3' untranslated regions are in lower case letters. Nucleotide sequence of the DNA binding domain is shaded in grey. Locations of predicted introns are indicated based on Ensembl predicted transcript ENSGMOT00000005509. The stop codon is marked with an asterisk (*). Arrows indicate position of gene-specific primers used in QPCR. A possible polyadenylation signal (GTTAAA; MacDonald and Redondo, 2002) is bolded.

71	atc	cgti	tcc	ata	laca	ittt	tet	gtt	aag	ctg	atg	taaa	aact	tct	gata	actt	tca	tcti	tact	ttg	ccc	aatc	
141	tcg	tgg	tgt	ttg	aac	aga	agA7	IGCA	TTT	CGA	GGA	GGA	CGTO	TAA	CTG	CAG	TCA	GTT	GCGG	CAA	CGG	GAAG	
	-		-	-		-	1	M H	E	' E	E	D	v	N	L	s	v	S (c (3 N	I G	К	17
211	CTT.	AGA	CAG	TGG	CTG	ATC	GAT	CAG	ATT	GAC	AGC	AAG	AGCI	ACC	TGG	GCTI	GGT	TTG	GGAG	GAAT	GTG	GAGA	
	L	R	Q	W	L	I	D	Q	I	D	s	к	S	Y	L (3 I	v	W	E	N	v	E	40
281	AAT	CCA!	TTT	TCA	IGGA	TAC	CGI	GGA	AGC	ATG	CGG	GCA	AACA	AGA	TTA	CAAC	AGA	GAT	GAGG	ATG	CTG	CGCT	
	к	S	I	F	R	I	P	W	к	H	Α	G 1	κç) D	Y	N	R	D	Е	D	A	A I	64
	p	redic	ted	int	ron 3	L																	
251	ጥጥጥ	CAA	Tac	CTG	GGC	ייזמי	րարարո	ממיחיו	GGA	CAA	מידמ	CAA		GGT	GTG	20.02	AAC	CGGI	ACCO		CAC	ATGG	
331	 F	CAA K		510	JZ	T	. T	r k		u k	v	unu K	E	G	v	D	k .	P I			олс. т	W 199	87
421	222	ACC	CGT.	CTZ	CCC	TG	rect	CTG	220	222	AGC	AAC	SACT	ששים	ACGI	AGCT	GGT	GGA	TAGZ	acc	CAG	CTGG	
1 10 1	v	TT TT	P	T.	P	C	Δ	T.	N	k	s s	N	D	F		1001 F. 1	. v	DOA	P	s on	0	T. (110
	A	-		-		0	~	-		R		-	2	-			• •	-			×	-	110
																pre	dicte	d in	tron	2			
491	ACA	TCA	CCG	AAC	CCT	ACA	AA	TCT	ACA	GAA	TCA	TCC	CCGA	GGG	GGT	pre CAAF	AGA	ed in GGCI	tron	2 CCCA	TCA	АТАА	
491	ACA D	TCA	CCG. T	AAC E	CCT P	ASA' Y	AAA0 K	STCT	ACA Y	GAA R	TCA I	TCC	CCGA P E	GGG	GGT(pre CAAF K	adicta AGA	ed in GCI	tron AAGC K	2 CCCA P	TCA I	ATAA N K	134
491 561	ACA D AGT	TCA I	CCG T TGC	AAC E AAT	P P		AAAO K SATO	STCT V SGCT	ACA Y TTC	GAA R GTC	TCA I ATG	TCC(I Agaa	CCGA P B agac	GGG Gaca	GGT(V ttta	pre CAAF K atto	AGA R Tac	ed in GGC2 G G agat	tron AAGO K	2 CCCA P JCag	TCA I act	ATAA N K	134
491 561	ACA D AGT V	TCAC I GTC: S	CCG T TGC A	AAC E AAT	P ATT		K K SATO	STCT V SGCT	ACA Y TTC	GAA R GTC S	TCA I ATG	TCC(I Agaa	CCGA P E agac	GGG Gaca	GGT(V ttta	pre CAAA K atto	AGA R ftac	ed in GGC2 G agat	AAGO K tgtg	2 CCCA P JCag	I act	ATAA N K tece	134
491 561 631	ACA D AGT V tga	TCAC I GTC S ttgc	CCG T IGC A	AAC E AAT I gca	P ATT Igtt	Y Y CAC	K SATO	STCT V SGCT I L Sata	ACA Y TTTC S	GAA R GTC S aca	TCA I ATG *	TCC(I Agaa tca(CCGA P E agac cacg	GGG G aca	GGT(V ttta gca(pre CAAF K atto	AGA R ntac	ed in GGCI G agat	tron AAGO K tgtg caca	2 CCCA P JCag	TCA I act cag	ATAA N K teee egtg	134 144
491 561 631 701	ACA D AGT tga aca	TCA I GTC S ttg aag	CCG T IGC A cgt	AAC E AAT gca ggc	P ATT Igtt	Y Y CAC	K SATO LCac	FTCT V FGCT V L tata	ACA Y TTC S ctc	GAA R GTC S aca	TCA I ATG cac	TCC(I Agaa tca(tct)	CCGA P E agac cacg	GGG Gaca taca	GGT(V ttta gca(gcgt	pre CAAF K atto caca	AGA AGA Itac Itac	ed in GGCZ G agat ccac acto	tron AAGO K tgtg caca gacg	2 CCCA P JCag Actg	TCA I act cag	ATAA N K tccc cgtg cacc	134 144

 ${\tt 1} {\tt atcctggttgcgaacttgattgagaataagttgaaaatgcttgagggtctttgattattttcgaggtcaa}$

ORF, a 159 bp 5' untranslated region (UTR), and a 202 bp 3'-UTR. The most common polyadenylation signal (AAUAAA, located 10 to 30 nt upstream of the polyadenylation site; see Colgan and Manley, 1997 for review) is not present in the 3'-UTR; instead the sequence GUUAAA may act as the polyadenylation signal for this transcript. This hexamer has previously been identified as a potential polyadenylation signal in mouse germ cells (MacDonald and Redondo, 2002). Assembly of sequencing reads for the longer *Irf4* paralogue (*Irf4b*) produced a 1,685 bp cDNA sequence (excluding poly-A tail) (Figure 6; Appendix 3). The cDNA consists of a 1,347 bp (448 AA) ORF, a 171 bp 5'-UTR, and a 167 bp 3'-UTR). A possible polyadenylation signal (ACUAAA) was identified 25 nt upstream of the poly-A tail.

Irf7 sequencing reads were assembled to produce a 2,037 bp cDNA sequence consisting of a 1,326 bp (441 AA) ORF, a 36 bp 5'-UTR and a 675 bp 3'-UTR containing an AUUAAA polyadenylation signal (Figure 7; Appendix 4). Assembly of *Irf8* sequencing reads produced a 1,827 bp cDNA sequence consisting of a 1,266 bp (421 AA) ORF, a 99 bp 5'-UTR, and a 461 bp 3'-UTR containing the polyadenylation signal AAUAAA (Figure 8; Appendix 5).

Irf10-v1 (splice variant 1) RACE and ORF PCR sequencing reads were assembled to produce a 1,721 bp cDNA sequence consisting of a 1,191 bp (396 AA) ORF, a 106 bp 5'-UTR and a 417 bp 3'-UTR containing a possible AGUAAA polyadenylation signal (Figure 9; Appendix 6). The *Irf10-v2* cDNA is much shorter (1,171 bp), with an ORF of only 381 bp (126 AA), a 128 bp 5'-UTR, and a 663 bp 3'-UTR containing a possible AAUAAA polyadenylation signal [although it should be noted that this hexamer is

Figure 6: Nucleotide sequence of Atlantic cod *Irf4b* cDNA and inferred amino acid translation. Nucleotide sequence is numbered on the left, while the predicted amino acid sequence is numbered on the right. The open reading frame is shown in upper case letters while 5' and 3' untranslated regions are in lower case letters. Nucleotide sequence of the DNA binding domain is shaded in grey. Locations of predicted introns are indicated based on Ensembl predicted transcript ENSGMOT00000018695. The stop codon is indicated by an asterisk (*). Arrows indicate position of gene-specific primers used in QPCR. A possible polyadenylation signal (ACTAAA; MacDonald and Redondo, 2002) is indicated in bold.

141	aggttcttctgggaactttactgacggacagATGAACCTCGAAGCGGATTACACAGCGACGGGGAGCAGC	
211	M N L E A D I T A T G S S GGGAACGGAAAACTACGTCAATGGCTCATAGATCAGGTGGACAGTGGGACGTATCCCGGTCTGATTTGGG	13
estetet	G N G K L R Q W L I D Q V D S G T Y P G L I W	36
281	AGAACGACGAGAAGAGCATCTTCAGGATACCATGGAAACACGCGGGGAAGCAGGACTATAACAGAGATGA ENDEKSIFRIPWKHAGKODYNRDE	60
351	GGACGCCGCGCTTTTCAAGGCATGGGCACTGTTTAAGGGCAAGTTTCGGGAGGGTATCGACAAAGCGGAC	
421		83
	P P T W K T R L R C A L N K S N D F E E L V D	106
	predicted intron 2	
491	GAAGCCAACTGGACATCTCGGACCCTTACAAAGTGTACCGTATCATCCCAGAGGGCGACAAGAGAAGACC	
	R S Q L D I S D P Y K V Y R I I P E G D K R R P	130
561	CAGACAGGAGGACAGTCCTTTGAGTCCATTGAGCTATCCATCC	
621	R Q E D S P L S P L S Y P S Y P A L H S Q I P	153
631		176
701	ACATCCCACAATGTTCCTACCCCCTCACCCATGGCAGGGCCCCCCCATAGAGAACGCATACCAGATCAA	170
	H I P Q C S Y P P H P W Q G P P I E N A Y Q I K	200
771	GGGCTCCTTTTACTCGTACACGCATGCTGACGTACAGCCCTCCGCCTTCACCCTTGACCCCGGCATGAGA	
	G S F Y S Y T H A D V Q P S A F T L D P G M R	223
	predicted intron 3	
841		
	PADPLSDLRLHVSVFSRDALVRE	246
911	TGACCATCTCCAACCCAAAGGGCTGTCATCTGATCCCCTGGGGCCCTGGAGGAAAAGGCCTACGTTTCCCC	
	V T I S N P K G C H L I P W A L E E K A Y V S P	270
981	AGGGGCCCCGGACCTGGTTCCCCTGCCCCCGGAGGGCCTGACGCTCCAGAGGATGGCGGGGGGGG	202
1051	G A P D L V P L P P E G L T L Q R M A G E E G L CCCCCAAGCTCTCTGGCCATGCAGGGCGTGAGGCTGTGGATGACCCCCAGAAGGCCTCTACGCCCGGCGGC	293
	P P S S L A M Q G V R L W M T P E G L Y A R R	316
1121	AGTGCCAGGAGAGTGTGTACTGGAAGGAGGGGGGTATCCCCTTACAAGGACAAACTCAACGAGATGGAGAG	
	Q C Q E S V Y W K E G V S P Y K D K L N E M E R	340
	predicted intron 4	
1191	AGAGGTCAACTGCAAAGTGCTTGACACCCAGGACTTCCTCACAGAAATCCAAAGTTATGGGCTCCATGGC	
	EVNCKVLDTQDFLTĒIQSYGLHG	363
1261	1 CGGCCCATACCTCCTTTCCAGGCCTTGCTGTGTTTTGGGGACGAGTGTGTCGACACAGAGAGACCAAGAA	206
	R P I P P F Q A L L C F G D E C V D T E R P R	380
	predicted intron 5	
1331	GGAGCCTCACCGTGCAGGTGGAACCCTTGTTTGCAAGGCAGCTGTTTTACTATGCCCAGCAAACCGGCGG	
1401		410
1401	H Y Y D C Y E H H C V D F H T C D F F D Y O D	433
1471		
	AISHHHHHHGSMMQE*	448
1541	ggatggataaaggagcagacacgtttggatgtcactaacatgaaatcccgattggttgagctgcaaaatc	
1611	1 ggtgaaactgttggtaacagcgaaatcaacaacatggaccaaacatcttgg actaaa aacagttatgtt	

Figure 7: Nucleotide sequence of Atlantic cod *Irf7* cDNA and inferred amino acid translation. Nucleotide sequence is numbered on the left, while the predicted amino acid sequence is numbered on the right. The open reading frame is shown in upper case letters while 5' and 3' untranslated regions are in lower case letters. Nucleotide sequence of the DNA binding domain is shaded in grey. Locations of predicted introns are indicated based on Ensembl predicted transcript ENSGMOT0000010511. The stop codon is indicated by an asterisk (*). Arrows indicate position of gene-specific primers used in QPCR. The polyadenylation signal is indicated in bold.

1021	TIC	GA	GAF	IGT.	LCC	TTA	AAG	*eres	CIG	AAA	IGAI	211	LAN	Hele	3AA	n c c	GAF	199	9.09	arc	ICC	GGAA	TAT	GIC	GICA	
	F	E	7	¢ 1	F	v	ĸ	E	L	ĸ	E	F	ĸ	E	N	1 1	R	R	G	S	P	E	Y	v	v	361
																						pre	dict	ed_i	ntron	6
1121	ACA	TG	TGC	TT	rgg	GGA	GAA	AGT	TCO	CTC	AT	GAI	AAA	CCG	CTG	GA	GAJ	AA	AG	CTC	ATT	GTTG	TTA	AGO	TGGT	
	N	М	С	F	G	E	7	<	F	P	D	G	ĸ	P	L	E	3	c	к	L	I	v	v	K T	v v	385
1191	TCC	TC	TGP	TA	rgc	CGG	TAC	CTT	CTI	ACG/	GA:	rgg(ccci	AGG	CGG	AG	GGG	GC	GT	CCT	CTC	TGGI	CAG	CAC	CAAC	
	P	. 6	L	I	C	R	Y	F		(1	2 1	4 1	A	5 1	v	E	G	A		5	S	LI) 5	1	N	408
1261	GTC	AG	CCI	AC	AGA	TCT	ccc	CAC	GAC	CAGO	CTC	CTA	CGA	CCT	CAT	CA	GCT	CG	GCC	CTT	CGG	TCTO	CCC	GGG	TCTC	2
	v	S	I		2	I	S	H	D	S	L	Y	D	L	I		S	S	A	F	G	L	P	G	S	431
1331	AAG	TG	GCI	CC	CCA	GCT	CGI	CAG	GAO	CACT	AC	rag:	acc	acad	gac	cto	gtç	gt	cca	aga	aca	caaa	cct	agt	ccag	
	8	v	A	P	8	L		1	G	н	Y	*														441
1401	aata	aa	ggg	aca	igt	tca	ccc	at	ctc	tca	tct	tca	atat	ccq	yta	tag	ggo	ac	ata	atg	ctt	cctc	act	ctc	ttta	
1471	tage	gc	cct	ctt	ca	aag	tta	ta	att	tat	ato	aca	aaq	jcta	att	gtt	taa	tt	gta	icga	atg	ctaa	tag	ggt	aagt	
1541	gtg	at	tta	agt	tg	tgg	ata	ta	gtt	ggt	agt	ggg	ggad	gtg	ggt	ttt	tca	ta	tat	at	tta	tgcc	aga	agg	ctto	
1611	tete	ga	ctg	tto	ta	agt	cac	tt	tca	gto	tta	tca	actt	cet	taa	gto	cac	tt	cto	tg	tgt	ttac	ata	cac	tgtt	
1681	gtte	gt	caa	ata	atg	cat	cta	tt	cto	acc	ato	aaa	acct	gtt	ct	att	tag	ict	ggt	at	tta	taac	tac	cat	tett	
1751	gage	gg	tat	gtt	at	atg	tga	cc	gtt	gct	ttt	tto	cat	gad	cgc	aad	cta	aa	ato	at	tcc	ttgg	ttg	atg	ctat	
1821	ttte	gt	agt	tta	aca	cat	gca	at	ttt	ttg	tca	tgt	aat	gta	aa	gca	aca	tt	tco	ct	gtt	tgat	gac	ccg	tttg	
1891	taa	ata	aaa	tco	tt	ttt	gtg	tt	aca	tat	ata	tco	etaa	acto	gtg	agt	taa	gg	aad	aa	agg	aatt	tac	tta	aaga	
1961	gcc	ct	tcg	aaa	ata	cag	tgg	ga	gtt	taa	tgg	ttt	taaq	gag	gct	tgg	gag	tg	ttt	tt	att	tata	att	aaa	aago	
2031	tac	ta	cta	(n)																						

- predicted intron 5 1051 TTCGAGAAGTTCGTTAAAGAACTCCAAAGAGTTTAAGGAGAACCGAAGGGGGATCTCCGGAATATGTCGTCA FEKFVKELKEFKENRGSPEYVV 361
- 911 TGCTGCTGGAGGTGCGGGAGAGGGGGCTGTACGCCTGCCGGCAGGACCGCTGCCACGTGTTCGCCAGGAC L L L E V R E S G L Y A C R Q D R C H V F A S T 315 981 GGCCGACCCCAGYCAGGCCTCCCCGGACCCCCAGAAGCTGCCCCAGAACACCCTGGTGGAGCTGCTCAGC A D P S Q A S P D P Q K L P Q N T L V E L L S 338
- predicted intron 4 841 ACCGACACCCTGCGGGGACCACAAACAGGTGGAGTTCACCAACCGCATCCTGAGCAGCATCCAGCGGGGCC TDTLRDHKQVEFTNRILSSIQRG 291
- 771 GCCCCGCGTCCAGCTGCACTACGGCAACGAGGCCACGGAGCTCCAGGCCCGGCCCATCTGCTTCCCCCCC PRVQLHYGNEATELQARPICFPP 268
- Q L Q P Q Q A Y Y P V N P P P V L D S G L Q 221 701 CCTCCCTCTTTGACCTGGAGATATCGGTGCACTACCGGAAGGTGGAGATGCTGAAGACCCAGGTGTCCTG P S L F D L E I S V H Y R K V E M L K T Q V S W 245
- 631 CAGCTCCAACCACAGCAGCAGCGTACTACCCCGTCAACCCGCCGGCGGGCTGCAGC Q L Q P Q Q Q A Y Y P V N P P V L D S G L Q 221
- GLGVYATNQQATGETMHAMQTQP 198
- L L D E P C Q Q T V G E Q W A E S Y G Q Q S A I 175 561 TGGGCTGGGGGGTGTACGCCACAAACCAGCAGGCGAGGGGGGAGACGATGCACGCCATGCAGACCCAACCA
- predicted intron 2 351 CGAGATCATCAATAGGGAGGGTGCCTACCAGCCTTCGCCCCGGAGGAGGACATGGTACCTGTGATCTAC E I I N R E A A Y Q P S P P E E D M V P V I Y 128
- 141
 CCCCTGGAAACACACCCCCGAAAGGACTGCAACGACGACGACGACTGTAAAATATTTCCG
 GCCATGGGCCGTC

 P
 W
 K
 H
 N
 S
 R
 K
 D
 C
 N
 D
 E
 D
 C
 K
 I
 F
 R
 A
 W
 A
 V
 58

 211
 GCCAGTGGTAAAATCCACGAGGTTTCCCAAACGACAAGGCCAAATGGAAGACCAACTTCCGCTGCGCTCTGA
 A
 S
 G
 K
 I
 H
 E
 F
 P
 N
 D
 K
 A
 K
 W
 K
 T
 N
 F
 R
 C
 A
 81
- predicted intron 1
- M O S S H K P L F A N 11 71 GGCTAATCGAGCAAGTGGAAACTGGGAACTATCCAGGTTTGTCCTACATCAGCACGAATCTATTCAGAGT W L I E Q V E T G N Y P G L S Y I S T N L F R V 35
- 1 ttcgtccgggacgacgacgacggtacactgcaaacATGCAAAGCAGTCACAAGCCGCTGTTCGCCAACT

Figure 8: Nucleotide sequence of Atlantic cod *Irf8* cDNA and inferred amino acid translation. Nucleotide sequence is numbered on the left, while the predicted amino acid sequence is numbered on the right. The open reading frame is shown in upper case letters while 5' and 3' untranslated regions are in lower case letters. Nucleotide sequence of the DNA binding domain is shaded in grey. Locations of predicted introns are indicated based on Ensembl predicted transcript ENSGMOT0000004315. The stop codon is indicated by an asterisk (*). Arrows indicate position of gene-specific primers used in QPCR. The polyadenylation signal is indicated in bold.

predicted intron 3 491 ACATCGCTGACTTAGACTGCAGCTCTGCAGAGCTAGAGGAGTTGATCAAAGTGCCTCCACTGATGACTA DIADLDCSSAELEELIKVASTDDY154 PSAIKRSYSPQEDGFNVQASPEY 177 predicted intron 4 631 TGGTCACATGGCAGCATACCQGTGTTCTCCCCAGATGATGATCTCCTTCTACTACGGGGGGCCAGCTGATGC W S H G S I P¹V F S Q M M I S F Y Y G G Q L M 200 701 ATAGCACGGTGACCTCCCACCCCGAGGGCTGCCGCATCTCCCCGGTGCTGCCCCAGCAGCGCGCCGTCGC H S T V T S H P E G C R I S P V L P Q Q R A V A 224 R G Y S S D T M Q S V H F P P A D L I D N E R 247 841 CAGCGGCAGGTCACCTGCAAGCTGCTGGGCCACCTGGAGAGGGGCGTTCTGGTGCGGGCCAACCGCGAGG Q R Q V T C K L L G H L E R G V L V R A N R E 270 911 GCGTCTTCATCAAGAGGCTCTGCCAGAGCCGGGTGTTCTGGAGCGGCCACGGGGAGCACGGCCAACACCA GVFIKRLCQSRVFWSGHGEHGQHH294 981 CGGCCCCGTGACCTGCAAGCTGGAGAGGGACGCCGTGGTGAAGATCTTCGACACGGGCCGCTTCCTGCAC G P V T C K L E R D A V V K I F D T G R F L H 317 predicted intron 5 1051 GCTCTTCAACTGCACCAAGAAGGCCAGATCCCCGCACCTGACCCCACGGTGACGCTCTGTTTCGGGGGAG A L Q L H Q E G Q I P A P D P T V T L C F G E 340 predicted intron 6 1121 AACTACATGACCTCAGCAACGCCAAGAACAAACTCATCCTGGTCCAGAACGCCATGAACTGTCAGCA E L H D L S N A K N K L I L V Q^LI T A M N C Q Q 1191 GCTTCTTGAGGCTGTGAACATGCGGGCTGTCCAGTCTTACAACCACAGCCCTTCTGTAGAGATGTCAGAC L L E A V N M R A V Q S Y N H S P S V E M S D 387 1261 GAGATGGCCAGTGACCAGATGGCACGCATCTACCAGGACCTGTGCAGCTACAGCGCCCCCAGAGGACAG E M A S D Q M A R I Y Q D L C S Y S A P Q R T 410 1331 ACTGTTACAGGGACAACATGACCATTACCGCATGAgeteegggetttaageteatgaacacactgtetea DCYRDNMTITA* 421 1401 acagageccggtacattattgctactacggtggttgtggatatacattgttcccatcgtagaaggtactg 1471 ctctttccccccaaactcattgtaattatgatttcatgaggaatttgttctctaagtctgaatgcgtttct 1541 ctcatctcatctttgttttgtactgtgttcgtgaaacgcatgtcaaattgacattttactgtaaagaggg 1611 agataattgactatggtcagaatcacatacactttatatttttatatgtttgagtgtagtagaaatgtttgt 1691 aaaagttgtttattaatctgcaatgaaaccactacagataggttttactatctgtattggctactggcga 1751 ttactttctccttattcctgttatgtagctttcatgaacttcagaacttcttaataaattctttacaaaa 1821 cttctta(n)

predicted intron 2 421 GTCTACCGCATTGTCCCTGAAGAGGAACAGAAGCTCGGTAAAACCACAGCGATGGTCACGACAGCTGGCG V Y R I V P E E E Q K L G K T T A M V T T A G 130

- 211 CCATGGAAGCATGCTGGGAAGCAGGATTATAACCAAGAGGTCGATGCTTCCATCTTCAAGGCCTGGGCTG P W K H A G K Q D Y N Q E V D A S I F K A W A 60 281 TGTTTAAGGGCAAGTTTAAAGAGGGGGGAGAAGGCTGAGCCTGCTACTTGGAAAACTAGGCTCCGCTGTGC V F K G K F K E G E K A E P A T W K T R L R C A 84 361 CCTGAACAAGAGCCCAGACTTTGAGGAGGTGACGGACAGGTCACAACTGGACATCTCAGAGCCCTACAAG L N K S P D F E E V T D R S Q L D I S E P Y K 107
- E Q I K S G Q Y S G L E W E D D S L T M F R I 37 predicted intron 1 211 CCATGGAAGCATGCTGGGAAGCAGGATTATAACCAAGAGGTCGATGCTTCCATCTTCAAGGCCTGGGCTG
- M S N T G G R R L K Q W L I 14 141 TGAGCAGATCAAGAGCGGACAGTACTCGGGGGCTTGAGTGGGGAGGATGACAGCCTCACCATGTTCCGCATC E Q I K S G Q Y S G L E W E D D S L T M F R I 37
- 71 tggaaataattcgtggatataaagtcaagATGTCGAACACGGGAGGACGAAGACTGAAGCAGTGGTTGAT

Figure 9: Nucleotide sequence of Atlantic cod *Irf10-v1* cDNA and inferred amino acid translation. Nucleotide sequence is numbered on the left, while the predicted amino acid sequence is numbered on the right. The open reading frame is shown in upper case letters while 5' and 3' untranslated regions are in lower case letters. Nucleotide sequence of the DNA binding domain is shaded in grey. The stop codon is indicated by an asterisk (*). Arrows indicate position of gene-specific primers used in QPCR. A possible polyadenylation signal (AGTAAA, MacDonald and Redondo, 2002) is indicated in bold. Position of introns is indicated based on mapping to genomic sequence.

								i	itro	7 no T	(1	75bj)												
1171	GA	TG	AAC	SCT	GA	TAA	CAG	TT	CAT	GTG	GTG	ccc	CTG	TT	TG	CCA	TGO	SAAC	TG	TTG	CAG	CGA	TTC	CAGC	
	1	М	к	L		I	т	V	H	v	v	P	L	F	• 1	A	м	E	L	L	2	R	F	2	376
1236	TA	GA	GCC	GGG	TC	GAG	GCA	GA	ACC	GGA	CGT	TCA	CAC	TC	cca	AAA	GAZ	AGCO	AA	GA	TGA	GAT	GTA	Aggg	
	L	E	F	2	v	E	A	E	P	D	V	H	Г	2	P	к	E	A	ĸ	D	E	M	*	8	396
1301	gc	ca	gtt	tat	cc	aac	tag	at	gta	age	ttc	aca	agt	to	gca	aac	tad	ctct	cca	aag	gaga	atc	ctt	gatg	
1366	ta	tt	cct	taa	ta	acc	caa	gta	ata	acg	tga	cag	tta	ata	cti	tgg	ICag	gtto	jaca	agt	tct	gtg	taa	aaga	
1431	ca	ga	ato	caa	at	aac	tga	ggt	tct	gtt	tga	tat	tag	jat	tta	ato	gtt	tget	tg	ctc	taat	tgt	aaa	gcag	
1496	ta	gt	gat	tto	ta	atg	tgt	gta	ata	att	tat	att	tag	jag	act	ttt	cta	acat	gco	cag	cgat	taca	aat	atta	
1561	ac	aa	cat	tto	tt	tto	atg	tta	ata	ttt	aat	ctt	cto	jag	ta	aag	itta	att	tga	agt	taa	gtg	tgt	ttaa	
1626	tg	tt	ctt	tag	tc	tac	tta	tga	aat	tgt	aat	aat	tta	atg	ca	gtt	caa	atgo	cact	tgg	aaca	aat	aat	caag	
1691	ta	cg	aaa	aaa	ta	aaa	tca	ca	cca	cca	(n)														

intron 6 (235bp)

C K L L D M P V F V N È L Q N Y M Q R K G P 333 1106 CAACCAAACTATGAGATTGATC<u>TCTGCTTTGGCGAGGAGTAT</u>CCCGACGCTAAAGTTTCCAAAAC Q P N Y E I D L C F G E E Y P D A K V S K T 355

1041 GCAAGCTGCTGGACATGCCCGTATTTGTAAATGAGCTCCAGAACTATATGCAGAGGAAAGGCCCCA

GAC E CGC ACCC N CCCC P int. AGC	GGG K CGGG A CCCC P CCA H CCA	GAC T CTC A CCT CCT L	CAT i TCT L ATG GAA N (10)	GTI ntr TTA F TGG W CCA	ACAC On LAG K SAAC K	GGA R 1 (4 GCT A GAC T	I I I I I I I I I I I I I I I I I I I	P P (GC) A (CC)	rga W rga V rga	GT	ACI ACI Y	ATG	A	A	AAG K ATA	K	GGA D AGG	CTA Y	GCZ	GGC R AGC	GAG	CAG Q CAA	GAC	G .C
E CGC J ACC N CCC P int. AGC J	CGG A CCC P CCA H ron	T ACC T CCT L	i TCT L ATG M GAA N	TTA TTA F TGG W CCA	AGC	R GCT GAC T	I 1221 TGG W GCG	P (GC) A (CC)	W FGT V FGC	K GT	ACI	AAA	A GG	GAA	K	K	D	TGG	GCI	R	GAG	Q	D GGA	.C
ACC N CCC P int. AGC	CGG A CCC P CCA H ron CAG	ACC ACC T CCT L	TCT L ATG M GAA N (10)	TTA F TGG W CCA	K K K K	GAC T	TGG W GCG	GC A GCC	rg1 V rgC	GT	ACI Y	AAA	GGG	GAA	ATA	CAJ	AGG	TGG	GCI	AGC	GAG	CAA	GGA	C
ACC N CCC P int AGC	A P CCA H ron	A ACC T CCT L	L ATG M GAA N	F TGG W CCA	K AAGC	GAC T	W GCG R	A	rgo	1	Y	K	-				and the second second	And in case of the local division of the loc	-					
ACC N CCC P int AGC	P CCA H ron	ACC T CCT L	ATG M GAA N	W CCA	K K	GAC	GCG	CC	rgc	100		••	G	K	: 3	()	K	v	G	S	D	K	: D)
N CCC P int. AGC	P CCA H ron	T CCT L	M GAA N	W CCA	K	T	P			GC	TG	rgc	AC	TTA	ACA	AG	AGC	ACA	GAG	CTT	CCI	AGG	AGG	T
P int AGC	ron CAG	CCT L	GAA N	CCA	GC	man	and the second second		L	R	С	A	1	L	N	к	s	т	D	F	\$	2	E	v
P int. AGC	H ron CAG	2 2	(10)	ç		r GG	ACA	TC	FCG	GA	GCO	CCT	ACI	AAG	GTO	TAC	CCG	CAT	CGI	AGT	CTO	GAC	CAG	A
int. AGC	ron	2	(10		5 1	L	D	I	S	E	1	P	Y	к	v	Y	R	I	. 1	6	s	D	Q	
AGO	CAG	-	,	(bp)																				
1		AGT	CTG	ATC	AG	ACG	TAC	AG	rcg	AG	TG	GTC	GT	GT	TCA	GAG	CTG	GAT	ACC	SCC	AG	FCT	ccc	A
	A	E	S	D	Q	T	Y	S	F	2	v	V	V	V	5	2 1	r	G	Y	A	S	L	F	1
i	ntz	on .	3 (91bj)														i	ntr	on	4	(970	bp)
AGT	TCT	CAG	CTT	GCT	GA	CCA	ATG	GGI	AAA	GA	TT	rga	AG	AAA	GGC	AA	SAA	GAA	AGT	FCA	TG	STG	CTT	T
0	S	0	L	A	D	0	F	1 1	E	R	F	E	1	E	R	0	E	E	S	H	1 1	G ^	A	L
TGG	SAG	GGA	GCA	CAC	GT	ACT	GTG	GT	FCA	GA	GGI	ATA	GC	CAG	GCT	CAO	CAG	TCA	CAT	rcc	CTO	CTG	GAC	C
W	R	E	H	I	: :	Y	С	G	s	E	I	D	S	Q	A	H	S	H	1]	E	P	L	D	
									1	int	ron	5	(46	53bj)									
CAG	SCC	TCC	TCA	GCC	ccz	ACT	CTG	GCO	CAT	TAT	CA	Ac	TT	CCG	GAT	GG	AGC	TGA	CG	CTG	TT	CTA	ccc	C
5	5	L	L	S	P	т	L	A	1	C	s	D	F	F		4	E	L	т	L	F	Y	F	2
GGG	AG	CCG	GTG	ATC	GA	GCT	GAC	CTO	CCA	GC	AG	ccc	AG	AAG	GGT	GC	TTC	ATC	CTC	GCA	GGG	GCT	GCC	T
G	E	P	v	M	E	L	Т		s	S	S	P	, 1	E	G	C	F	I	L	0		G	C	v
cco	GCT	GGG	GAA	CGP	GA	GGA	TCT	ACO	GGG	scc	CTO	GCA	GC	GCT	CAG	CA	GCT	CTC	ce	rgc	cc	TCC	ccc	G
P	L	G	N	F	: 1	R	I	Y	G	P		C	S	A	0	0	L	5	3 7	L	P	S	P	1
CTC	GC	TGG	GCC	ccc	TG	GAG	ccc	GGG	CGT	GG	cco	CGG	GC	CCT	GGG	STC	AGC	TCC	TG	rcc	CA	TCT	GGF	G
5	s	L	G	P	L	E	P	G	V	1	A	R	A	I	. (3 (0	L	L	S	H	I		2
GGG	GA	GTG	CTG	CTC	TG	GGT	GGC	cco	CGG	AC	GGG	GCT	GT	TCA	TCZ	AG	AGG	TTC	TGO	CCA	GG	GCC	GTO	T
R	G	v	L	L	W	v	A		P	D	G	I		F	I	K	R	F	C	0) (G	R	v
TAC	TG	GAG	TGG	GCC	cc	TGG	ccc	CG	CAC	AC	CGI	AGA	AG	ccc	AAT	CAA	ACT	GGA	GAG	GGG	ACI	AGG	ACC	T
a 251.		C	0	T	, ,	r.	A	P	H	T	1	F	V	D				>			-	-	m	1
		CAGCC S SGGAG S E CCGCT P L CTCGC S SGGGA R G TACTG Y W	CAGCCTCC S L SGGAGCCG S E P CCGCTGGG P L G CTCGCTGG S L SGGGAGTG R G V TACTGGAG Y W S	CAGCCTCCTCA S L L GGGAGCCGGTG G E P V CCGCTGGGGAA P L G N CTCGCTGGGCC S L G GGGGAGTGCTG R G V L TACTGGAGTGG Y W S G	CAGCCTCCTCAGCC S L L S SEGGAGCCGGTGATE S E P V M CCGCTGGGGAACGA P L G N E CTCGCTGGGCCCCC S L G P SEGGAGTGCTGCTCC R G V L L TACTGGAGTGGGCCC Y W S G E	W R E H T S CAGCCTCCTCAGCCCC S L L S P SGGAGCCGGTGATGGA G E P V M E CCGCTGGGGAACGAGA P L G N E S CTCGCTGGGCCCCCTG S L G P L SGGGAGTGCTGCTCTG R G V L L W TACTGGAGTGGGCCCCC Y W S G P S	CAGCCTCCTCAGCCCCACT SLLSPT GGGAGCCGGTGATGGAGCT GGGAGCCGGTGATGGAGGA PLGNER CTCGCTGGGGCACGAGAGAGA PLGNER CTCGCTGGGCCCCTGGAG SLGPLE GGGGAGTGCTGCTCTGGGT RGVLLWV CACTGGAGTGGGCCCCTGG YWSGPL	CAGCCTCCTCAGCCCCACTCTG S L L S P T L SGGAGCCGGTGATGGAGCTGAC S E P V M E L T CCGCTGGGGAACGAGAGGATCT P L G N E R I CTCGCTGGGCCCCTGGAGCCC S L G P L E P SGGGAGTGCTGCTCTGGGTGGC R G V L L W V A TACTGGAGTGGGCCCCTGGCCC Y W S G P L A	CAGCCTCCTCAGCCCCACTCTGGC S L L S P T L A SGGAGCCGGTGATGGAGCTGACCT G E P V M E L T S CCGCTGGGGAACGAGAGGATCTAC P L G N E R I Y CTCGCTGGGCCCCCTGGAGCCCGG S L G P L E P G SGGGAGTGCTGCTCTGGGTGGCCCCG R G V L L W V A S ACTGGAGTGGGCCCCTGGCCCCGG Y W S G P L A P	W R E H T Y C G S CAGCCTCCTCAGCCCCACTCTGGCCAT S L S P T L A SGGAGCCGGTGATGGAGCTGACCTCCF S L S P T L A SGGAGCCGGTGATGGAGCTGACCTCCF S L S P T A A SGGAGCCGGTGATGGAGCGAGAGCTGACCTCCF S L S Y G S C G C S P L G N E R I Y G CCGCTGGGGGACCCGGGGGACCCCGGGGGCCCCCGGAGCCCCCGGAGCGCCCCCGGAGCGCCCCGGAGCGCCCCGGAGCCCCGGGGCCCCGGGGGCCCCGGGGGCCCCGGGGGCCCC	INTERPETED AND A P B T L A P H T Y C G Y A P H T Y C G Y A P H T Y C G Y A P H T Y C G Y A P H T Y C G Y A P H T Y C G Y A P H T Y C G Y A P H T Y C G Y A P H T Y C G Y A P H T Y C G Y C G G G G G C C C C C C C C C C	INTERPOLATION CONTRACTOR CONTRACT	TGGAGGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG	INTERPOSE INTERPOSE	INTERPOSE INTEGRAGEGAGCACACGTACTGTEGGTTCAGAGGATAGCCAG INTERN 5 (463bp CAGCCTCCTCAGCCCCACTCTGGCCATATCAGACTTCCG S L L S P T L A I S D F F GGGAGCCGGTGATGGAGCGGACGCCCAGAAG F P V M E L T S S S P E CCGCTGGGGGAACGAGAGGAGGATCTACGGGCCCTGCAGCGCT P L G N E R I Y G P C S A CTCGCTGGGCCCCCTGGAGCCCGGCGTGGCCCGGGCCCT S L G P L E P G V A R A I GGGGAGTGCTGCTCTGGGTGGCCCCGGACGGGCTGTTCA R G V L L W V A P D G L F CAGCTGGAGTGGCCCCTGGCCCCGCACACCGAGAAGCCC	INTERPOSE W R E H T Y C G S E D S Q A INTERN 5 (463bp) CAGCCTCCTCAGCCCCACTCTGGCCATATCAGACTTCCGGAT S L L S P T L A I S D F R M SGGAGCCGGTGATGGAGCTGACCTCCAGCAGCCCAGAAGGGT G E P V M E L T S S S P E G CCGCTGGGGAACGAGAGGAGCTCTACGGGCCCTGCAGCGCCCAGC P L G N E R I Y G P C S A O CTCGCTGGGCCCCCTGGAGCCCGGGCCCTGGG S L G P L E P G V A R A L C GGGGAGTGCTGCTCTGGGTGGCCCCGGACGGCTGTCATCA R G V L L W V A P D C G L F C A	Intron 5 (463bp) CAGCCTCCTCAGCCCCACTCTGGCCATATCAGACTTCCGGATGGG S L L S P T L A I S D F R M D SGGAGCCGGTGATGGAGCTGACCTCCAGCAGCCCAGAAGGGTGCC GGAGCCGGTGATGGAGCTGACCTCCAGCAGCCCAGAAGGGTGCC S L L S P T L A I S D F R M D SGGAGCCGGTGATGGAGCTGACCTCCAGCAGCCCAGAAGGGTGCC G P V M E L T S S S P E G C CCCCCTGGGGCAACGAGAGGATCTACGGGCCCTGCAGCGCCTCAGCAC P L G N E R I Y G P C S A Q Q CTCGCTGGGCCCCCTGGAGCCCGGGCGTGGCCCGGGCCCTGGGTCC S L G P L E P G V A R A L G G SGGGAGTGCTGCTCTGGGTGGCCCCGGACGGGCTGTTCATCAAGG R G V L L W V A P D G L F I K	TGGAGGGAGGAGGAGGAGGATAGCGAGGGTGAGGGCTGAGAG W R E H T Y C G S E D S Q A H S <i>intron 5 (463bp)</i> CAGCCTCCTCAGCCCCACTCTGGCCATATCAGACTTCCGGATGGAGC S L L S P T L A I S D F R M E GGGAGCCGGTGATGGAGCTGACCTCCAGCAGCCCAGAAGGGTGCTTC G E P V M E L T S S S P E G C F CCGCTGGGGAACGAGAGGATCTACGGGCCCTGCAGCGCTCAGCAGCT P L G N E R I Y G P C S A Q Q L CTCGCTGGGGCCCCTGGAGCCCGGGCCCTGGGTCAGC S L G P L E P G V A R A L G Q GGGGAGTGCTGCTCTGGGTGGCCCCGGACGGCTGTTCATCAAGAGG R G V L L W V A P D G L F I K R TACTGGAGTGGGCCCCGGCCCCGCAGCGCCCAATAAACT	TGGAGGGAGGAGGAGGAGGAGGGGGGGGGGGGGGGGGG	TGGAGGGAGGAGGAGGAGGAGGGTAGGGGAGGGGGGGGG	TGGAGGGAGGAGGAGGAGGAGGGTACTGTGGTTCAGAGGATAGCCAGGCTCACAGTCACATCC W R E H T Y C G S E D S Q A H S H I Intron 5 (463bp) CAGCCTCCTCAGCCCCACTCTGGCCATATCAGACTTCCGGATGGAGCTGACGCTG S L L S P T L A I S D F R M E L T L GGGAGCCGGTGATGGAGCTGACCTCCAGGAGCCCAGAAGGGTGCTTCATCCTGCA G E P V M E L T S S S P E G C F I L Q CCGCTGGGGGAACGAGAGGATCTACGGGCCCTGCAGCGCTCAGCAGCTCTCCTGCC P L G N E R I Y G P C S A Q Q L S L CTCGCTGGGGCCCCTGGAGCCGGGCGTGGCCCGGGCCTGGGTCAGCTCTGTCC S L G P L E P G V A R A L G Q L L S GGGGAGTGCTGCTCTGGGTGGCCCGGACGGGCTGTTCATCAGAGGGTTCTGCCA R G V L L W V A P D G L F I K R F C G TACTGGAGGGGCCCTGGGCCCCGGACAGCGCCCAATAAACTGGAGGGG	TGGAGGGAGGACACGTACTGTGGTTCAGAGGATAGCCAGGCTCACAGTCACATCCCTC W R E H T Y C G S E D S Q A H S H I P intron 5 (463bp) CAGCCTCCTCAGCCCCACTCTGGCCATATCAGACTTCCGGATGGAGGCGACGACGCTGTTC S L L S P T L A I S D F R M E L T L F GGGAGCCGGTGATGGAGCTGACCTCCAGCAGCCCCAGAAGGGTGCTTCATCCTGCAGGG G E P V M E L T S S S P E G C F I L Q C CCGCTGGGGAACGAGAGGATCTACGGGCCCTGCAGCGCTCAGCAGCTCCCCTGCCC P L G N E R I Y G P C S A Q Q L S L P CTCGCTGGGGCCCCTGGAGCCGGGCCCTGGGTCAGCTCCTGTCCCAC S L G P L E P G V A R A L G Q L L S H GGGGAGTGCTGCTCTGGGTGGCCCGGACGGGCTGTTCATCAGAGGGTTCTGCCAGG R G V L L W V A P D G L F I K R F C Q T CTCGCTGGGGCCCCTGGCCCCGGACAGCAGCAATGGAAGGGAGGG	TGGAGGGAGCACACGTACTGTGGTTCAGAGGATAGCCAGGCTCACAGTCACATCCCTCTG W R E H T Y C G S E D S Q A H S H I P L <i>intron 5 (463bp)</i> CAGCCTCCTCAGCCCCACTCTGGCCATATCAGACTTCCGGATGGAGCTGACGCTGTTCTA S L L S P T L A I S D F R M E L T L F Y GGGAGCCGGTGATGGAGCTGACCTCCAGCAGCCCAGAAGGGTGCTTCATCCTGCAGGGCT G E P V M E L T S S S P E G C F I L Q G CCGCTGGGGAACGAGAGGATCTACGGGCCCTGCAGCGCTCAGCAGCTCTCCTGCCTCC P L G N E R I Y G P C S A Q Q L S L P S CTCGCTGGGCCCCTGGAGCCGGGCGTGGCCCGGGCCCTGGGTCAGCTCTCCTGCCATCT S L G P L E P G V A R A L G Q L L S H L GGGGAGTGCTGCTCTGGGTGGCCCGGACGGCCTGTCATCAAGAGGTTCTGCCAGGGCC R G V L L W V A P D G L F I K R F C Q G TACTGGAGTGGCCCCTGGCCCCGCACACCCAATAACTGGAGAGGAGAGAGA	TGGAGGGAGGAGGAGGAGGGGGGGGGGGGGGGGGGGGG

1 catgaggcggcctatttgaaagaaggctcgttaagtacgcttctaggtgttattgtgaatgagct 66 ttaccaagtcagagaacaggctactatgatgtatttaaaagATGGAAGGCGATGGTAAAATGCAC

131 CTTAAAGAATGGCTCATAGCCCAAGTCGACAGTGAAAGGTTCGACGGGTTGCGGTGGGAGAACGA

MEGDGKMH

8

45

further upstream (110 bp from the poly-A tail) than a usual polyadenylation signal] (Figure 10; Appendix 7). Alignment of both *Irf10* sequences and comparison with the predicted cod *Irf10* genomic region obtained from the Ensembl database indicated they were likely alternate splice variants rather than different paralogues.

Sequencing and assembly of the cod *Irf10* genomic region produced a 3,828 bp consensus sequence which was aligned with *Irf10-v1* and *Irf10-v2* transcripts to determine intron positions. The positions of 7 introns, ranging from 91 bp to 970 bp in length, are indicated for *Irf10-v1* (Figure 9), dividing the transcript into 8 exons. *Irf10-v2*, while identical to *Irf10-v1* up to the end of exon 2, appears to retain intron 2 producing a premature stop codon (Figure 10). The 3'-UTR of the *Irf10-v2* transcript appears to contain exon 3, intron 3, exon 4 and part of intron 4. The putative intron/exon structure of the cod *Irf10* gene (and the difference between splice variants) based on these sequences is shown in Figure 11.

For *Irf4a*, *Irf4b*, *Irf7* and *Irf8* the location and size on introns were estimated based on comparison to predicted sequences obtained from the Ensembl database (Figure 12). However, because these genomic sequences are not complete, some intron placements and sizes are still uncertain. It is therefore of interest to sequence the complete genomic region for each of these paralogues in the future. Interestingly, the structure of *Irf4a* appears to be similar to the shorter *Irf10* splice variant (*Irf10-v2*) and both are of similar length, encoding putative proteins of 144 and 126 AA respectively. While *Irf4a* and *Irf4b* are paralogues and not splice variants (having approximately 74% identiy at the amino acid level; see Appendix 8), it is possible that a longer splice variant

46

Figure 10: Nucleotide sequence of Atlantic cod *Irf10-v2* cDNA and inferred amino acid translation. Nucleotide sequence is numbered on the left, while the predicted amino acid sequence is numbered on the right. The open reading frame is shown in upper case letters while 5' and 3' untranslated regions are in lower case letters. Nucleotide sequence of the DNA binding domain is shaded in grey. The stop codon is indicated by an asterisk (*). Arrows indicate position of gene-specific primers used in QPCR. A possible polyadenylation signal is indicated in bold. Position of introns is indicated based on mapping to *Irf10-v1* transcript and genomic sequence.

1	tgcgctgatgttatggaccttgcatgaggcggcctatttgaaagaagtctcgttaagtacgctgctaggt
1	$\tt gttattgtgaatgagctttaccaagtcagagaacaggctactatgatgtatttaaaag \tt ATGGAAGGCGAT$
	MEGD
11	GGTAAAATGCACCTTAAAGAATGGCTCATAGCCCAAGTCGACAGTGAAAGGTTCGACGGGTTGCGGTGGG
	G K M H L K E W L I A Q V D S E K F D G L K W
*	ENEEKTMERTPWKHAAKKDYROOD
	intron 1 (422bp)
31	CGACGCGGCTCTCTTTAAGGCTTGGGCTGTGTACAAAGGGAAATACAAGGTGGGCAGCGACAAGGACAAC
	DAALFK ^L AWAVYKGKYKVGSDKDN
51	CCCACCATGTGGAAGACGCGCCTGCGCTGTGCACTTAACAAGAGCACAGACTTCCAGGAGGTCCCCCACC
	PTMWKTRLRCALNKSTDFQEVPH
	intron 2
21	
1	L N O L D T S E P Y K V Y B T E S D O B A G B H
91	CACTCAGATGACCTABASTANTANA AND A SATURATANTANTANTANTANTANTANTANTANTANTANTANTAN
~*	H F R W T *
2.5	intron 2 (102bp) (exon 3)
61	ctaccttaaaccttctcttcctcagagtctgatcagacgtacagtcgagtggtcgtggttcagactggat
	(exon 3) intron 3 (91bp)
31	acgccagtctcccacagtctcaggtacataattacagcacagcagcataatgaaactattttatagtcat
	<u> </u>
	intron 3 \iff (exon 4)
01	tatttgattttaatgcactgttattgttgttgttgttatgtaagcttgctgaccaatgggaaagatttga
	1000000000000 an USACON00 20
	(exon 4) intron 4
/1	agaaaggcaagaagaaagtcatggtagggtaaattttttaagcatatgtcactgttacttgttgttaat
41	ttttttttgttatacacaagaaaactatgatactgtattatcattgcaagaatttgctttactctgatcc
11	atactcttcaaatagacagacagatagagagacatttagcaaacacactcaaaaagtgatgaacaaaaag
11 81	atactcttcaaatagacagacagatagagagacatttagcaaacacactcaaaaagtgatgaacaaaaag gaaggtgacggaggaatgaaataatcacttcctgcagaaatcggcgtgaaaattctttatatgggttttt
11 81 051	atactetteaaatagacagacagatagagagacatttagcaaacacacteaaaagtgatgaacaaaaag gaaggtgacggaggaatgaaataateacteetgeagaaateggegtgaaaattetttatatgggttttt tgtgegte aataa tgeaaatteetgtgtattaattttggaaeeggtggaatteageeggttaegeage

Figure 11: Schematic representation of predicted intron/exon organization of Atlantic cod *Irf10*. Exons are shown as black boxes, with length above (in bp), while introns are shown as horizontal lines with lengths below (in bp). Noncoding regions of exons are shown as grey shaded boxes. Drawings are to scale, except where long introns are depicted as bent lines. The structure of the Irf10-v2 transcript is depicted below, where the portion of intron 2 which is included in the ORF shown as a white box.

Figure 12: Schematic representation of predicted intron/exon organization of Atlantic cod *Irf4a, Irf4b, Irf7, Irf8*. Exons are shown as black boxes, with length above (in bp), while introns are shown as horizontal lines with lengths below (in bp). Noncoding regions of exons (5' and 3' UTRs) are shown as grey boxes. Drawings are to scale, except where long introns are depicted as bent lines. Introns whose positions do not match Ensembl predicted genome sequences and whose length could therefore not be estimated are marked by "?". Exons that differ from Ensembl predicted sequences are marked by an asterisk. Note that Exons 1 and 2 of *Irf4a* and *Irf4b*, while identical in length, are not identical in sequence between the two paralogues (see alignment in Figure 13).

of *Irf4a* (i.e. more similar in length to *Irf4b*) is present in Atlantic cod but was not found in the current study.

Phylogenetic analysis of IRF proteins from several teleost species (including Atlantic cod IRF amino acid sequences shown in Figures 5-10 and the previously sequenced cod IRF1) indicates that the cod IRF paralogues sequenced in this study are orthologous to IRFs from other fish species, and also fit into the sub-groups depicted in Figure 1. Multiple sequence alignment shows that the DNA binding domain (first 110-120 AA) of all sequences included are quite similar, with several conserved amino acids including the multiple Trp residues found in all IRFs (Figure 13). A high degree of similarity can also be seen in IRF4, 7, 8, and 10 sequences in the IRF association domain (IAD), which is not shared by IRF1 sequences. In a phylogenetic tree based on the multiple sequence alignment (Figure 14), all IRF4, IRF8, and IRF10 sequences group together (IRF4-G sub-group), while the IRF1 and IRF7 proteins form separate branches (representing IRF1-G and IRF3-G sub-groups, respectively). The teleost fish species used for comparison belong to several different superorders; Atlantic cod (superorder Paracanthopterygii) IRF proteins appear to be more similar in sequence overall to those of flounder (superorder Acanthopterygii) than to zebrafish or carp (superorder Ostariophysi).

3.2 RT-PCR expression analysis in juvenile Atlantic cod tissues

RT-PCR and agarose gel electrophoresis analysis was used to investigate constitutive transcript expression of cod IRF paralogues in 15 different tissues of juvenile Atlantic cod. While *Irf7*, *Irf8*, and *Irf10-v1* all appeared to be expressed at a moderate

Figure 13: Multiple sequence alignment of Atlantic cod IRF1, IRF4, IRF7, IRF8, and IRF10 protein sequences with homologous sequences from other teleost fish species. Sequences were retrieved from the NCBI non-redundant protein database (see Table 6, below). Alignment was carried out using the ClustalW algorithm in MEGA5 software (Tamura *et al.*, 2011). Identical amino acids are indicated by asterisks (*); conservative substitutions are indicated by colons (:). DNA binding domain and IRF-associated domain are shaded in grey and marked "DBD" and "IAD1" respectively; conserved tryptophan residues are boxed. The translation of the shorter IRF10 splice variant (*Irf10-v2*) was not included in the alignment.

10 20 30 40 60 50 -----MPVSRMRMRFWLESRIDSNTIAGLVWVNKEEKMFSIFWKHAARHGWEVDKDACLFKQW -----mpvarmkmrewlermiesnkvpglswvdkdokmfaitwkhaarhdwovekdaslfkhw -----mpvsrmrmrewlekmiesntisgltwydkdqkmfsiewkhaarhqweldkdaslfkkw -----MPVSRMRMRPWLEQQIESNSISGLHWVDKDKTMFSIPWKHAARHGWELDKDACLFKQV -----MPVSRMRMRHWLEQQIESRISISLUWVDRDRTMFSIHWRHAARHGWELDRDACLFRGW -----MPVSRMRMRHWLEERIESRISISGLWVDRDNKIFSVFWRHAARHGWDLNRDACLFRGW -----MHQGRLRLRHWLEEQIQSGRVFGVGWLDQSARVFQIFWRHAARHGWLDRDATLFRN ------MPVSRMRMRHWLESRIDSNTINGLWWVNKEEKMFSIFWRHAARHGWEVDRDACLFRGW -MHFEEDVNLS-VSCGNGKLRQWLIDQIDSKSYLGLVWENVEKSIFRIFWKHAGKQDYNRDEDAALFKAM -MNLEADYTAT-GSSGNGKLRQWLIDQVDSGTYPGLIWENDEKSIFRIFWKHAGKQDYNRDEDAALFKAM -MNPELDYGGS-GSGGNGKLRQWLIEQVDCGKYPGLVWENDEKSIFRIFWKHAGKQDYNRDEDAALFKAW -MNLEEDSGLS-VSCGNGKLROWLIDQIDSRRYAGLVWENDEKSIFRIFWKHAGKQDYNREEDAALFKAW -MNPESDYGMSTVSCGNGKLRSWLIEQVDTGKYPGLVWENEEKSIFRIFWKHAGKQDYNRDEDAALFKAW -MNLDGDCIMS-VSCGNGKLRQWLIEQIDSGEYSGLVWENDEKTIFRIPWKHAGKQDYNRDEDAALFKAM ------SGNGKLRQWLIEQVDTGKYPGLVWENDEKSIFRIPWKHAGKQDYNRDEDAALFKAM -----MAAMQSTIGKPQFGPWLIEQVESGRYEGLRMIGNDI--FRIPWKHNSRRDLG-DEDIKIFKEW -----MQS-SHKPLFANWLIEQVETGNYPGLSYISTNL--FRVFWKHNSRKDCN-DEDCKIFRAW ------MQS-LPKPQFASWLIEQVETGQYTGLRYVAENK--FRVFWKHNSRKDCR-DEDSKIFRAW -----MQS--CKPQFADWLIEQVRTEQYTGLFFMDNNK--FRVFWKHNSRKDCS-EDDRKIFRAW MTEVRGSALTMOSRNPKPQFADWLIEQVWTGQYAGLYFVGNNK--FRVFWNHISRKDCC-EDDSKIFRAU ------MQSTNAKPQFGFWLIEQVESGQYEGLSMIGHDI--FRIFWKHNARRDLG-DADVKIFKEV -----MSNTGGRRLKQWLIEQIKSGQYSGLEWEDDSLTMFRIEWKHAGKQDYNQEVDASIFKAW -----MSNPGGRRLKQWLVEQIHSGQYAGLQWEDESRTMFRIFWKHAGKQDYNQEVDAFIFKAW -----MSNTGGRRLKÓWLVEÖIQSAÕYSGLÓWEDESRTLFRIFWKHAGKÕDYNÕEVDASIFKAM -----MNSGGRRLKÓWLIEQINSNIYNGLÓWEDEDRTMFRIFWKHAGKODYNÕEVDASIFKAM -ME-----DRSRHMRLREWLIAQIDSGKYAGLŚWENEEKTMFRIFWKHAAKODYRÕNODAALFKAM -ME-----GDG-KMHLKEWLIAQVDSERFDGLRWENEEKTMFRIFWKHAAKKDYRQQDDAALFKAW -ME-----EGA-KLHLKEWLISQIESGRYEGLSWEDEDRTMFRIFWKHAAKKDYKQTEDAALFKAW -ME-----DRSRHMRLREWLIAQIDSAEYPGLSWENAEKSMFRIPWKHAAKQDYRQNQDAALFKAW → : *: : : : DBD 80 90 100 110 120 130 140 AIHTGKFREGVTTPDPKTWKANFRCAMNSLPDIEEVKDKSINKGCGAVRVYRMLPAVSKKK-----AIHTGKFKEGVDESDPKKWKANFRCAMNSLPDVEQVKGKNVNKGQQAVRVYKMVEVTATK------AIHTGKYTEG-QTSDPKTWKANFRCAMNSLPDIEEVKDKSIHKGQQAVRVFKMLHVTPKS----AIHTGKYVEG-QACDPKTWKANFRCAMNSLPDIEEVKDKSVNKGHQAMRVFRMLPSLPKSR------AMHTGKFIQGETKTDPKTWKANFRCAMNSLPDIEEVKDKSINRGSGAVRVYKMKNIYSKPN------AIHTGRYKPGIDKPDPKTWKANFRCALNSLTDVKELQDRSIKKGHNAFRVYALLPHCKTIR-------AIHTGKYKEGVTOPDPKTWKANFRCAMNSLPDIEEVKDKSINKGCGAVRVYRMLPAVS-KK------ALFKDKYKEGVDKPDPPTWKTRLRCALNKSNDFDELVDRSQLDITEPYKVYRIIPEGVKRG--KPINKVS ALFKGKFREGIDKADPPTWKTRLRCALNKSNDFEELVDRSQLDISDPYKVYRIIPEGDKR----RPRQE ALFKGKFREGIDKPDPPTWKTRLRCALNKSNDFVELVERSQLDISDPYKVYRIIPEGAKK----RPRQE ALFKGKYKEGVDKPDPPTWKTRLRCALNKSNDFDELVERSQLDISEPYKVYRIIPEEAKKG--MKMSSME ALFKGKFREGIDKPDPPTWKTRLRCALNKSNDFEELVQRSQLDISDPYKVYRIIPECAKKHFLLSGSKQE ALFKGKYREGLDKPDPPTWKTRLRCALNKSNDFDELVERSQLDISDPYKVYRIVPEGAKRG--SKAISME ALFKGKFREGVDKPDPPTWKTRLRCALNKSNDFEEIVERSQLDISDPYKVYRIVPEGSKK----GSRSIE AVVSGKINEH--PNDKAKWKTNFRCALYSLKN-FEMLEDHSKDPDDQHKVYRIIRPQNHQEIQ---SAE AVASGKIHEF--PNDKAKWKTNFRCALKNLNKRFRMSKDNSKNSDDPHKIYEIINREAAYQ-PSPPEED-

avasgkinef--pndkarwktnfrcalnnlsvrfkmiednskhsddphkiyqimntehrqencsmpknds

AVVSGKITEH--PNDKAKWKTNFRSALNSLCRRFKMVEDHSKDSNDPHKVYLVIN-EYNYESPLIEEITL

AVVSGKINTH--PNDKAKWKTNFRCVLNNLTKRFMMVEDHSKDSDDPHKVYLIINNESNYGSPHIEEIAV AIVSGKINEY--PNDKAKWKTNFRCALHSLKN-FEMLEDHSKDPDDOHKIYRIIRPONHOEIOSAIOSAE

AVFKGKFKEG-DKAEPATWKTRLRCALNKSPDFEEVTERSQLDISEPYKVYRIVPEEEQK------

AVFKGKFKEG-DKAEPATWKTRLRCALNKSPDFEEVTERSQLDISEPYKVYRIVPEEEQK-------

AIFKGKFKEG-DKAEPATWKTRIRCALNKSPDFEEVTDRSQLDISEPYKVYRIVPEEEQK-----AMYKGKFQEGRDKADPSTWKTRIRCALNKSTDFQEVPERSQLDISEPYKVYRILDD---------

AVYKGKYKVGSDKDNPTMWKTRLRCALNKSTDFQEVPHLNQLDISEPYKVYRIESD----Q-------AVYKGKYIEGRDKADPTMWKTRLRCALNKSTDFQEVPERNQLDITEPYKVYRIQQDSGSVR-------

AMYKGKFQEGRDKADPSTWKTRLRCALNKSTDFQEVSERSQLDISEPYKVYRILED------

AIVSGKFKEG-EKAEPATWKTRLRCALNKSPDFEEVTDRSQLDISEPYKVYRIVPEEEQK----

:* ::

grass carp IRF1 Atlantic cod IRF1 Japanese flounder IRF1 rock bream IRF1 Atlantic salmon IRF1 zebrafish IRF1A zebrafish IRF1B Atlantic cod IRF4A Atlantic cod IRF4B Japanese flounder IRF4 rock bream IRF4 Atlantic salmon IRF4 zebrafish IRF4A zebrafish IRF4B grass carp IRF7 Atlantic cod IRF7 Japanese flounder IRF7 Atlantic salmon IRF7A Atlantic salmon IRF7B zebrafish IRF7 Atlantic cod IRF8 Japanese flounder IRF8 rock bream IRF8 zebrafish IRF8 grass carp IRF10 Atlantic cod IRF10-V1 Japanese flounder IRF10 zebrafish IRF10

grass carp IRF1 Atlantic cod IRF1 Japanese flounder IRF1 rock bream IRF1 Atlantic salmon IRF1 zebrafish IRF1A zebrafish IRF1B Atlantic cod IRF4A Atlantic cod IRF4B Japanese flounder IRF4 rock bream IRF4 Atlantic salmon IRF4 zebrafish IRF4a zebrafish IRF4B grass carp IRF7 Atlantic cod IRF7 Japanese flounder IRF7 Atlantic salmon IRF7A Atlantic salmon IRF7B zebrafish TRF7 Atlantic cod IRF8 Japanese flounder IRF8 rock bream IRF8 zebrafish IRF8 grass carp IRF10 Atlantic cod IRF10-V1 Japanese flounder IRF10 zebrafish IRF10

·: :

DBD

::: :

150	160	170	180	190	200	210
	DK	RPKGRDSRRR	VK		A	LSSHVKK
	DR	RTKTKDGKRRI	NKLTK		ARLEETD	FSDTQSC
	DK	RSKAKVTKQGI	KTVSLQNP-		IKIEEDTD	YSDTQSP
	DK	RSKAKETKPRI	KKSTM		VKTEEDMD	YSDTQSP
	NK	RSKANNVKKNI	KKGSQ		IKTGGMA	YSETNCP
	RR	KAALR				YSDTDSK
	IK	RSKSRDSRRRI	мк		S	LSQKVKL
AIFRWLSS						
DSPLSPLSY-	PSYPAL	HSQIPHCMPNI	PES-GWR	E	FYPEQAFLPE	LHIPQCS-Y
DSPVSPMSFQ	OVHP-YPAL	QTQMPQYMTTI	PDG-SWR	D	FCPEQAPLPE	LPYSQCP-C
ETASHVNAHGY-	-IAPYTSL	HNQVPGYMLS	QDRRDWRDY	TPPEQQPLP	PPHHHGPHAE	VQYGQCH-Y
DGGSPLSPLSYE	MLPSYPAL	QTQMSGYMPT	FER-GWMK-	D	YLPEQASLPE	LPYAQCP-Y
ENTTHVTPLSYE	MHSAYPAL	QPQMSGFMLP	QERRDWREF	GSD	PPHTQTPHAD	LPYGQCP-Y
DSQSNSGSPNYE	MHPTYAPA	PSQVCNYISP	AER-GWR		EYPTLSD	ISYSQSP-Y
PVQLPLPFISEV	YNNYMHEDM	EQELLSQVH	ETMHLNQQ-		SAEPQPWDCS	QQNIQTTSR
MVPVIYSS	SPTESYPPGH	EQNILE-QLM	FLDLLDEP-		CQQTVGEQWA	ESYGQQSAI
QEDLMTPEIYSS	SPTEFLPIGN	EYNLVN-NFT2	ALDLGN		-QATEEQLWV	ENYCQPDAA
ENYGIDHALT	TTENTPPGM	EHDILNFSNL	FLNHLD		-LNQHTENYI	PVHTHHP
EDYDIDIHSSLT	STGYTPPGM	EHDNLLKI	LVNTLD		-LNQHTEEWA	ENYIHTHHP
AVQRQLPFIAEV	YNASNHMSQDM	ELELLNLVH	ETMDLNLH-		AVSQSLKTYS	QPNIQTTSS
	LGK	TTAMVT	FAG	D	IADLDCSSAE	LEELIKV
	HGK	NSMMAMAAPTS	SSG	D	LTDCSPAE	IEELMKE
	HGK	SSVMAMAATTS	SSG	D	ITDMDCSPAD	LEELIKE
	LGK	GTVT	rvk	D	TTDMDCSP-D	LDEIIKESS
	SGR	VTEYAGNPVIS	SHD		SDCSKA	LRETRLP-M
	RAE	SDQTYSRVVV	VQT		GYAS	LPQSQLA-D
	PAE	SLQKDKVIIE	rkm		SPNSPD	ILDEKRP-F
	SAR	GTDSAVNPVI	SQD		SDCSKA	LRETHLS-M

grass carp irfl
Atlantic cod irfl
Japanese flounder irfl
rock bream irfl
Atlantic salmon irfl
zebrafish irfla
zebrafish irflb
Atlantic cod irf4a
Atlantic cod irf4b
Japanese flounder irf4
rock bream irf4
Atlantic salmon irf4
zebrafish irf4a
zebrafish irf4b
grass carp irf7
Atlantic cod irf7
Japanese flounder irf7
Atlantic salmon irf7A
Atlantic salmon irf7B
zebrafish irf7
Atlantic cod irf8
Japanese flounder irf8
rock bream irf8
zebrafish irf8
grass carp irf10
Atlantic cod irf10-v1
Japanese flounder irf10
zebrafish irf10

220	230	240	250	260	270) 280
	EEVI	HADEM	QEPTIDST:	ILTDSPSP-A	MDTSDII	PACEEVVGPD
	EDQI	HPPHYDDTCS	PQENTIDS	reqdmis-lp:	LSAS-EVPDI	FENVITIGND
	MDVS	SMAEES	STQENTVDS	TVQTEQQVCD	FELSTPD	VALSVEIEPE
	MDDS	SMPEDTLS	STQENTVDS	rvhtesqdfp1	FVAPSDVPD	NSSSVEIE
	ENL	NTNTHLÇ	EDSMTQES	IVDSTGNLGD	FTFAPEO	CSTNVEIGPD
	EAS1	P	AAQTQRNSI	LERFTEAFWK	FPDDI	RGASAGLMKD
	EDMS	5SED1	SAEMTQEN	FIDSTQST-P	HTSSPTV	JGYEVEIGPD
	TENA VOTVOR					
PPHPWQ-GPH	MENC-VOLDAS	ISIIHADV <u>(</u>		SMRPADPL	SDLRLHVSVI	SRDALVREV
PERSISWQ-GES	MENG-IQLEAS.	LISIGFADSÇ FUTV_FCFCC	DDVVT_	-MNUNNAT	DEST UVST	VVDEGIVKEV
PSRSLSWAOGP	MDNG-VOITCS	ΤΗΤΤ ΤΟΕΟΥ Γνηναδηρας		SMRSAFAI	SDMRT.HVSVI	FYRDSLWRFV
PPSRSLPWHTAI	PCDNG-YOISGSI	TTTSAIDAY	PVAMDP	SMRSAEAMAT	SDCRLHVSL	FYRESLVKEL
TSR	WDPG-YOFSGSI	TYSCNASDPC	PSPFTLDT	SMRSAFAMAL	SDYRLHVMVI	FYRDALVREV
SYFGTPY		-PEO-CMONN	IMPDPVOOP	YTTAOOWNVP	ALCOLETST	VYRKTEVIKT
GLGVYATNOOA	GETMHAMOTOP-	01.0P000	AYYPVNPPI	PVLDS-GLOP	SLEDLEISVI	HYRKVEMLKT
VLGSYPP	AENHP	OAFTDOF	TFYEANPTI	PVVSS-AOOP	STYDLEVST	HYRKKEMLKT
VP		PVLIOC	PYAOVNPD	ALLNLPATRS	SLWDLEITIS	SYRGSEMLKT
VVPEDCYPFQPI	TEPQPVSQNHSI	PPVPVPIQQ	PYDHVNQDA	ALLNLPAAQP	SLCDLEITIS	SYRREMLKT
NYFETTY		SDGPCMQNN	IIPASVQQSI	HTTVDQWN	-LCDLEISI	NYRRTEVLKT
	ASTDDYPS	AIKRSYSPQE	DGFNVQASI	PEYWSHGSIP	VFSQMMISF	YYGGQLMHST
	DEGCNIQAS	SPEYWSQGSI	SAFPQQLDI	PLPSGAVSS-	AFSQMMISF	YYGGKLMQNT
	EEGCSIQS	SPEYWSQGSI	NAFPLHQDI	PLPSGTLSS-	ALSQMMISF:	YYGGKLMHNT
NDEYMGILRSSH	ISPLDERSSMPSV	/QEWWQQGPI	NAAVVHQDI	PAGSLNS-	AFSQMLISF:	YYGGQMVDNM
QEDSPLGDSNKO	GAGWSVNGR-SHA	ACPSTDTKAC	CINSNLQSVI	PIYPSHVPIS	DCRLEVRL	FYHGNLVQSI
QWERFEERQEES	SHGALWREH	FYCGSEDSQA	HSHIPLDPS	SLLSPTLAIS	-dfrmeltli	FYRGEPVMEL
QNESFQANIEEB	EKTWHVDLMSEHN	AYCDINGEKI	QNPVPAPA	rfishgltvs [.]	-DFRMQVTLI	LYQGQRVMKV
QEDESDSC	GAGWTVNGT-ASV	VCSGTGPKPC	ANLQPA	ALYPPQVHLS	VDCRLELRVI	FYYGRVVESV
						\longrightarrow

grass carp irfl Atlantic cod irf1 Japanese flounder irfl rock bream irf1 Atlantic salmon irf1 zebrafish irfla zebrafish irf1b Atlantic cod irf4a Atlantic cod irf4b Japanese flounder irf4 rock bream irf4 Atlantic salmon irf4 zebrafish irf4a zebrafish irf4b grass carp irf7 Atlantic cod irf7 Japanese flounder irf7 Atlantic salmon irf7A Atlantic salmon irf7B zebrafish irf7 Atlantic cod irf8 Japanese flounder irf8 rock bream irf8 zebrafish irf8 grass carp irf10 Atlantic cod irf10-v1 Japanese flounder irf10 zebrafish irf10

IAD1

grass carp irfl
Atlantic cod irfl
Japanese flounder irf1
rock bream irf1
Atlantic salmon irfl
zebrafish irfla
zebrafish irf1b
Atlantic cod irf4a
Atlantic cod irf4b
Japanese flounder irf4
rock bream irf4
Atlantic salmon irf4
zebrafish irf4a
zebrafish irf4b
grass carp irf7
Atlantic cod irf7
Japanese flounder irf7
Atlantic salmon irf7A
Atlantic salmon irf7B
zebrafish irf7
Atlantic cod irf8
Japanese flounder irf8
rock bream irf8
zebrafish irf8
grass carp irf10
Atlantic cod irf10-v1
Japanese flounder irf10
zebrafish irf10

	290	300	310	320		330	340	350
SSSGL				YTSRFQ	VSPMHSTI	DLEDYEA	AIIEISR	QLERDT-
SNNADY-				FYRRFE	VSPEHPPE	EFEDAEI	ELLKLCQ	QLEPETN
SFPSN				FCPRFQ	VSPDHSPI	DYSYSDI	DIVEICK	QLERESH
SFQSN				FHHRFE	VSPERSSI	DYDYTDI	DIIQICQ	ELEKESH
STNNF				YAS-FQ	VSPDHSTI	OYEDGHQE?	FLIGMTH	HWEQGS-
SEEER				AQGLQ	INRTDE	EHEQTEA	AVLKIVDI	HLKTLDF
STCND				IYSRFQ	VSPVHSTI	DLEDSEA	AILELTR	QLERDSS
TISNPKG	GCHLI	PWALEEKAYV	SP	GAPDLVPL	PPEGLTL-	QRMAGEE	GPPSSI	LAMQGVF
TTSSPKG	GCHIT	PCSPEEKLSL	LP	GGPDVVPL	PVDHLSV-	QRRAEEC	SPNPP-S'	FLERGVI
TTTSPEG	CRITSSSSS	PSSSSSSSPC	PEDKFH	SGAEVILE	PFPYPES-	HRQGAEM	LPN	VLERGVI
TTSSPEG	GRIA	PCSPDDKLYS	PT	VGPDLVPL	PLDSLQA-	LGRGEECI	PPSPPGC	FLERGVI
TTSSPEC	GCRISSSAS	PGSPSSPSSP	SEERLY	GGAEPVLF	PFPYPQS-	-QRRGAEK	LPN	VLERGVI
TVSSPEG	CQLG	PSR-EGQAYA	SP	GAPELVEL	P		HADGVI	PLERGVI
RLCSSL-		-VQFYYQCDP	SE	LRGEPIRF	PTTEGLI	DHKQIQI	FTKRILDS	SIQRGLÇ
QVSWPR-		-VQLHYGNEA	TE	LQARPICE	PPTDTLR	-DHKQVEI	FTNRILS	SIQRGLI
TLATAR-		-LQLHYQHEA	PD	LNAHPLCF	PSTDGLL-	DHKQIE	YTNRILNS	SIQRGLI
QVSGPR-		-VQLHYQCNA	LE	PNTQPLCF	PSTDGLP-	DLKQIE	YTNCILRS	SVQRGLI
QVSGPL-		-VQLHYQCDI	PE	PNAQTLCF	PSTDGLL-	-DHKQIE	YTNRILG	SVQRGLI
RLCSSL-		-IHFFYQCDP	SE	LRGEQIRF	PTTECLI-	DVKQIQ	YTKRILD	SIQRGLÇ
VTSHPEG	GCRIS	-PVLPQQRAV	ARGYSS	DTMQSVHF	PPADLID-	NERQRQ	VTCKLLG	HLERGVI
LVTHPEG	GCRIS	-PQQHLGRSI	LYSS	DSMQNVHF	PPAELIE-	YDRQRH	VTCKLLG	HVERGVI
LVAHPEG	GCRIS	- PQQHLGRGA	LYSS	DSMQCVNF	PPAELIE-	YDRQRH	VTRKLLG	HLERGVI
VTTHPEG	GRIS	-PCLP-STAN	GFLYGS	DSLQNIYF	PSIDGIK-	NERQRH	VTRKLFSI	HLERGVI
TTASPDO	GCFILQG	CAPVGNERIY	GP	CEAEKVFF	PRPDTIR-	-LPPGIAE	AMSRLLPI	HLEKGVI
TSSSPEC	GCFILQG	CVPLGNERIY	GP	CSAQQLSL	PSPASLGE	PLEPGVAR	ALGQLLSI	HLERGVI
ITSSPEC	GCFILQG	HVPWGNERIY	GP	CTAQQLSF	PSPGSVS-	-LPSCMAE	AMNRLLCI	HLERGVI
LSCSPDO	GCFLLQG	CAPVGSERIY	GP	CAATQLFF	PPPNAAM-	-LPTGICE2	AMTRLLPH	HLEKGVI

LLLQNGA- WMQSSSDD FMPSSLD- WMTSSLD- VND WASSYDG- QWLQN	360 FPKGFLAN RLSSGLHS -VMGFLNN -GNGFLSN -KGFQSN -ERGWR FGKGFLAN	370 EVGTSESL DSNY EPCT EACT EVGTAESFDTA EVCTTESL	380 SPQSH SPGSF SPGSF ESYHSQESQ PNST SPESQ	390 WSVSS-G WSDTSSG WSDSSSA WSESS-S WSDNS-E WTGCL-G WSVSS-G	40 EELE-FR EDLD-MR DELDELP DELEDMP TEIE-LR EELE-LR	0 LYTELS LYTDLSTG YYTNLSSE QYTTLGSI LYTELSSG -FPAFSFQ LYTELT	410 PEE-SI STECYSPE TA-TDA DLTNPTDD GLPIIDDI 2TDCNLHT PDLRTDS	420 CTYTE TWNMF LWNGI LWNSF LSYTE ISPAQ YTYTE
LWMTPEGL	YARRQCQE	SVYWKEGVSP-	YKDKLNE	MEREVNC	KVLDTQD	FLTEIQSY	GLHGRPI	PPFQA
LWMGADGL	YACRLCQS	RVYWQGGPSP-	YGDKLNM	KLERDVTC	KLLHSQD	YLTELQSF	GLHGRPL	PRLQV
LWMMSDGL	YAKRLCQG	RVYWEGPLAP-	YMDKPNF	LEKEQPC	KLFDTQQ	FLIELQDF	AHNGRHL	PRLQV
LWMAPDGL	YARRLCQE	RVFWEGGLSS-	YADKPNF	KLEREHTC	KLLHTQD	YLTELQGY	ALHCRPP	PRLQV
LWLSPDGL	YAKRLCQG	RVYWEGPLAP-	YADKPNF	KLEKEQTC	KLMDTQQ	FLTELQGF	IHHGRPM	PRSQV
LWMAPDGL	YARRCCPC	RVYWTGAHAP-	PTDKPNF	LEREQNC	KLLDTHL	FITELQSY	TLHARPA	PCSQV
LEVNQYGI	YGFRQDKC	KVFVSTSDPS-	EIQNPEPRF	LHQNSRE	QLFSFDK	YIRDLMDF	KENRRGS	PDYTI
LEVRESGL	YACRQDRC	HVFASTADPS-	QAS-PDPQF	KLPQNTLV	ELLSFEK	FVKELKEF	KENRRGS	PEYVV
LEVCETGI	YAWRQDRC	HVFASTSDPS-	VAL-PDPRF	KLPQNTMV	QLLSFEK	YVNELKKF	KENNGGS	PDYTI
LEVQNTGI	YGYRQDKC	HVFSSTSNPR-	EAH-PEPRF	KMPQNEMV	QLLNFQQ	YENELIAF	KENRRGS	PDYTI
LEVRNTGI	YGYRQDKC	HVFSSTSDPR-	EAH-PEPRF	KMPQNEMV	QLLSFDK	YMTDLIAF	KENRGGS	PDYTI
LEVNQYGI	YGFRQDKC	KVFVSTSDPC-	EIQKPEPRÞ	KLQQNYKE	QLLSFDK	YIRDLLDF	KENRGGS	PDYTI
VRANREGV	FIKRLCQS	RVFWSGHGEHG	QHHGPVTCF	LERDAVV	KIFDTGR	FLHALQLH	IQEGQIPA	PDPTV
VRSNQEGI	FIKRLCQS	RVFWSGLGDVG	SPYSSVPCK	LERDAVV	KIFDTGR	FLQAVQLY	QEGQLPA	PDPTV
VRANQEGI	FIKRLCQS	RVFWSGLGEVG	SQYSPMPCF	LERDAVV	KIFDTER	FLQALQLY	QEGQFPA	PDPTV
LRANREGI	FIKRLCQS	RVFWIGQDAR-	YNPCF	KLERDAVV	KIFDTAR	FLQALQLY	QDGHYQA	PEPTV
VWVAPDGV	FIKRFCQG	RVYWDGPLAE-	HRQKPNF	LERERTC	KLLDMTI	FMQELQSH	IQQATGPE	PRYTV
LWVAPDGL	FIKRFCQC	RVYWSGPLAP-	HTEKPNF	LERDRTC	KLLDMPV	FVNELQNY	MQRKGPQ	PNYEI
LWVAPDGV	FIKRFCQG	RVYWSGPLAQ-	HTDAPNF	LEREKTF	KLLDIPR	FVSELQRS	LWGKGPA	PSYEI
LWVAPDGL	FIKRFCQG	RVYWDGPLAE-	HRHKPNF	LERERTC	KLLDMKI	FSQELLNY	RQGIGPE	PQYIV

grass carp irf1
Atlantic cod irfl
Japanese flounder irfl
rock bream irfl
Atlantic salmon irf1
zebrafish irfla
zebrafish irflb
Atlantic cod irf4a
Atlantic cod irf4b
Japanese flounder irf4
rock bream irf4
Atlantic salmon irf4
zebrafish irf4a
zebrafish irf4b
grass carp irf7
Atlantic cod irf7
Japanese flounder irf7
Atlantic salmon irf7A
Atlantic salmon irf7B
zebrafish irf7
Atlantic cod irf8
Japanese flounder irf8
rock bream irf8
zebrafish irf8
grass carp irf10
Atlantic cod irf10-v1
Japanese flounder irf10
zebrafish irf10

	430	440	450	460	470	480	490
LM	NSS	TITPTM-CPL					
PTPIY		QQINFHP					
YHQVN		SLL					
CQQIPPC	SESSRT	GKDSSLTLWTF					
YWTLN	NNTS	SYPQQITCPL					
YD							
LW	NSS	SMPQSI-C					
LLCFGDE	CVDTE-	-RPRRSLTVQVEP	LFARQLFY	YAQQTGGHY	YRGYEHH(GVPEHIS	SPFEDYQ
LLSFGDE	CLDPQ-	-RQRRTLSVQVEP	LFARQLLY	YAQQTGGHY	YRSYDLP0	GVTDHFN	JASEDFQ
VLCFGDE	YPDPQ-	-RPRKMITAQVEP	VFARKLVYY	YYQQNNGHY	LRGYDHIQE	QNTSP	AIDYP
LLSFGDE	CLDPQ-	-RQR-TLTVQVEP	MFARQLLY	YTQ <mark>HQQTSGHY</mark>	YRSYDIPLP	GVTEHSMTPS	SVTEDYQ
ILCFGDE	FPDPQ-	-RQSKMITAQVEP	MFARQLLYI	FASQTNGHY	LRSY-ELQTI	PGSLP	VEDY-
LLFFEDE	STEGQ-	-RPRRTYTVQVEP	LFARQLLII	LTHPGSMNY	IRSHELQH-1	LPPEHSLS	SPTQDYH
YLCFGEK	LPDGKP	-LEKKLITVKVVP	LICRELHE	RAQMEGASSLF	R-DNVSLQIS	-HNSLFDLIN	JS-LGLP
NMCFGEK	FPDGKP	-LEKKLIVVKVVP	LICRYFYEN	4AQVEGASSLI	STNVSLQIS	-HDSLYDLIS	SAFGLP
NMCFGEK	FPDGKP	-LEKKLITVKVVP	LICRHFHEN	4AQMEGASSLH	ISANVSLQMS	-HNSLYDLIN	JSVFGLP
HMCFGEK	FPDGKP	-PEKKLIVVKVVP	LICRYFHE	/AQEEGASSLQ	ND-ISLQIS	HHNSLMELIN	JATWPDG
HMCFGEK	FPDGKP	-LEKKLIIVKVVP	LICRHFHE	/AQ <mark>GEGASSLQ</mark>	QNDNISLQISH	HHNSLMELIS	SATWPDG
YLCFGEK	LHDGKP	-LEKKLITVKVVP	LICRELHE	RAQMEGASSLF	RNDNVSLQIS	-HNSLYDLIN	JS-LGLP
TLCFGEE	LHDLSN	-AKNKLILVQITA	MNCQQLLEA	AVNMRAVQSYN	IHSPSVEMSDI	EMASDQMARI	YQDLCS
TLCFGEE	LHNLNN	-AKSKLLIVQITV	VNCQHLLEA	AVNMRRSQPYC	CNNPNLDMSDA	AATNEQMAHI	YQDLCS
TLCFGEE	LHDVSN	-AKGKLIIVQITV	VNCQHLLDA	AVNMRRTQPFC	CNNPNLDMSD	VATDQMARI	YQDLCS
TLCFGEE	FNDFST	-VKSKLIIVEITA	WNCQQLLNA	AVTARRTQC	CSSGNMEISD	NLVSDQMACI	YQDLCS
DLCFGEE	FPDPSQ	PKNKKLITAQVIP	lfaveclre	RHNASNNVE	MKQSPPHRK	rnd	
DLCFGEE	YPDAKV	SKTMKLITVHVVP	LFAMELLQH	RFQLERVEA	EPDVHTPKE	AKDEM	
ELCFGEE	YPDPHV	VKTRKLIMAQVVP	LFAVELLQH	KFNPGASEE	KRSNLSSNS	/GEKL	
ELCFGEE	FPDPTQ	PKNKKLIRAQVTP	MFAVDALRI	KLKADNNVE	MKPPHPLAQI	ENQ	
		←					

IAD1

grass carp irfl	-
Atlantic cod irf1	-
Japanese flounder irf1	-
rock bream irfl	-
Atlantic salmon irf1	-
zebrafish irfla	-
zebrafish irflb	-
Atlantic cod irf4a	-
Atlantic cod irf4b	R
Japanese flounder irf4	R
rock bream irf4	S
Atlantic salmon irf4	R
zebrafish irf4a	-
zebrafish irf4b	R
grass carp irf7	S
Atlantic cod irf7	G
Japanese flounder irf7	I
Atlantic salmon irf7A	Ρ
Atlantic salmon irf7B	Ρ
zebrafish irf7	S
Atlantic cod irf8	Y
Japanese flounder irf8	Y
rock bream irf8	Y
zebrafish irf8	Y
grass carp irf10	-
Atlantic cod irf10-v1	-
Japanese flounder irf10	-
zebrafish irf10	-

500
RAISHHHHHHGSMMQE
RVVTHHHHHSSSSSSLQE
SQRPLQHIQE
RVITHHHSNTLQD
-QRSLQHLTE
RVITHHHNSGPQN
SMD
GSQVAPQLVGHY
IAEDPTFLH
PQHTMGQYF
PQHTMGQYF
SVE
YSAPQRTDCYRDNMTITA-
YSGPQRPACYRDNMPITA-
YSGPQRPACYRDNMPITA-
YPVPPRASCFRDNLQIPV-

Table 6: Fish IRF ami	no acid sequenc	es used in	multiple s	sequence	alignment
and phylogenetic analy	<u>/sis</u>		-	-	-

Protein name	Species name (common name)	GenBank accession no.		
IRF1	Ctenopharyngodon idella (grass carp)	ADF57571.1		
	Gadus morhua (Atlantic cod)	ADG85733.1		
	Paralichthys olivaceus (Japanese flounder)	BAA83468.1		
	Oplegnathus fasciatus (rock bream) ¹	ADJ21809.1		
	Salmo salar (Atlantic salmon)	NP_001117117.1		
IRF1a	Dania naria (zabrafich)	NP_001035442.1		
IRF1b ²	Danio rerio (zeofalisii)	AAH85555.1		
IRF4	Paralichthys olivaceus (Japanese flounder)	AEY55358		
	Oplegnathus fasciatus (rock bream)	AFU81289		
	Salmo salar (Atlantic salmon)	NP_001133454.1		
IRF4a	Danie annie (zehrofish)	NP_001116182.1		
IRF4b	Danio rerio (zeoralisn)	CAI11951.1		
IRF7	Ctenopharyngodon idella (grass carp)	ACS34986		
	Paralichthys olivaceus (Japanese flounder)	ACY69214.1		
	Danio rerio (zebrafish)	NP_956971.1		
IRF7A	Salmo salar (Atlentic selmon)	NP_001130020.1		
IRF7B	Salmo salar (Atlantic salmon)	NP_001165321.1		
IRF8	Paralichthys olivaceus (Japanese flounder)	AFE18694		
	Oplegnathus fasciatus (rock bream)	AFU81290		
	Danio rerio (zebrafish)	NP_001002622		
IRF10	Ctenopharyngodon idella (grass carp)	ACT83676.1		
	Paralichthys olivaceus (Japanese flounder)	BAI63219		
	Danio rerio (zebrafish)	NP_998044		

¹Oplegnathus fasciatus is more commonly called barred knifejaw or striped beakfish, but is called rock bream in publications describing IRF genes in that species.

²Zebrafish IRF1b is also called IRF11

Figure 14: Phylogenetic analysis of Atlantic cod IRF family members. Putative cod amino acid sequences were aligned with IRF proteins from selected other teleost fish species using MEGA5 software (Tamura *et al.*, 2011). Based on the multiple sequence alignment, the evolutionary history was inferred using the neighbour-joining method. The bootstrap consensus tree was constructed from 5000 replicates, where numbers at the branch points represent percentage of replicates in which the associated taxa grouped together. Branch lengths are proportional to calculated evolutionary distances. Sequences determined from this study are indicated with an asterisk (*). IRF family subgroups are indicated using colours matching Figure 1.

level in all tissues (using efla as a reference/housekeeping gene with relatively stable transcript expression in all tissues tested), *Irf4a*, *Irf4b* and *Irf10-v2* were absent or expressed at very low levels in some tissues (Figure 15). Interestingly, splice variants *Irf10-v1* and *Irf10-v2* appeared to have different patterns of expression: the shorter variant (v2) is apparently vastly reduced or absent in some digestive tissues (stomach, midgut, and hindgut) and in the eye, while the longer transcript is relatively evenly expressed in all 15 tissues. *Irf10-v2* was also unique among the transcripts studied in that the highest transcript expression appeared to be in the heart and skeletal muscle.

As a goal of this study was to better understand the roles of IRF-encoding transcripts in cod immune responses, expression in immune-relevant tissues (i.e. spleen, hematopoietic [head] kidney, blood) was of particular interest. All six transcripts were expressed in spleen and head kidney, and all except *Irf4a* were expressed in blood (*Irf4a* was faintly detected in only one replicate blood sample). All transcripts were also expressed in gill and heart tissues, although *Irf4a* expression in heart appeared to be much lower than that of the other transcripts (Figure 15B). The constitutive expression of all IRF transcripts in spleen supported the use of that organ for subsequent QPCR expression analyses.

3.3 Spleen transcript expression response to viral and bacterial antigens and increased temperature

Expression of cod IRF transcripts in response to injection with viral [poly(I:C)] and bacterial (ASAL) antigens at 10°C and 16°C was analyzed by QPCR. Interestingly, spleen transcript expression of *Irf4a*, the shorter *Irf4* paralogue, was observed to be

Figure 15: Composite agarose gel image of IRF family member transcript expression in 15 tissues of juvenile Atlantic cod. All gels are 1.7% agarose in TAE buffer, using 1 kb plus ladder (Invitrogen) as a size marker (100 bp and 200 bp bands are shown). PCR was carried out using samples from two fish; in each panel fish 1 is the top row and fish 2 is the bottom row. Br=brain, Ey=eye, Gi=gill, Hr=heart, HK=hematopoietic (head) kidney, PK=posterior (trunk) kidney, Sp=spleen, Li=liver, PC=pyloric caecum, St=stomach, MG=midgut, HG=hindgut, Sk=skin, Mu=skeletal muscle, Bl=blood, C=no-template control.

approximately 2-fold lower in poly(I:C) injected fish than PBS control fish at 10° C sampled 24 hours post injection (HPI) (Figure 16A). While there was no significant response to poly(I:C) for this paralogue at either temperature at the 6 HPI time-point, there was a significant increase in *Irf4a* transcript expression in the control (PBS) injected fish at 16° C compared with PBS fish at 10° C at that time point (Figure 16A). This temperature-dependant response of *Irf4a* (i.e. higher expressed at the elevated temperature at 6HPI) was also seen in ASAL-injected fish (Figure 16B), although ASAL injection itself did not have a significant effect (compared to time- and temperature-matched PBS controls) on *Irf4a* expression at the time points/temperatures studied.

Transcript expression of *Irf4b*, the longer IRF4 paralogue, was significantly upregulated in response to both poly(I:C) and ASAL injection at 6HPI compared with PBS controls (Figure 17). For poly(I:C) the change was seen only for fish held at 16°C (2.23-fold upregulated), while for ASAL it was observed at both 10°C and 16°C (1.98fold and 3.41-fold upregulated, respectively). For both treatments the response was no longer observed at the 24HPI time-point. Changes in *Irf4b* transcript expression were also seen in response to increased temperature at the later time point, as expression was lower at 16°C than 10°C at 24HPI for all three [PBS, ASAL, poly(I:C)] treatment groups (Figure 17).

As noted above, the responses of Atlantic cod *Irf7* transcript expression to poly(I:C) and/or elevated temperatures have previously been investigated (Rise *et al.*, 2008; Hori *et al.*, 2012); therefore only the response to ASAL at two different temperatures was investigated in the current study for this transcript (Figure 18). Spleen

Figure 16: Spleen transcript expression responses of *Irf4a* to viral and bacterial antigens measured by QPCR. Data are presented as mean \pm SEM, normalized to *ef1a* expression, with the lowest expressing sample set to RQ=1. Different letters represent significant differences between fish injected with PBS (lower case) or ASAL (upper case) at different temperatures within the same time-point. An asterisk (*) represents a significant difference between a poly(I:C) injected group and the time- and temperature-matched PBS injected group (p < 0.05). Fold change is calculated as [mean poly(I:C) RQ]/(mean PBS RQ). **A** = poly(I:C), **B** = ASAL. Note that poly(I:C) is abbreviated as pIC in the figure to conserve space.

Α

Figure 17: Spleen transcript expression responses of *Irf4b* to viral and bacterial antigens measured by QPCR. Data is presented as mean \pm SEM, normalized to *ef1a* expression, with the lowest expressing sample set to RQ=1. Different letters represent significant differences between fish injected with PBS (lower case), or poly(I:C) or ASAL (upper case) at different temperatures within the same time point. Asterisks (*) represent significant differences between a poly(I:C) or ASAL injected group and the time- and temperature-matched PBS injected group (*p <0.05, ** p < 0.01). Fold change is calculated as [mean poly(I:C) or ASAL RQ] /(mean PBS RQ). **A** = poly(I:C), **B** = ASAL. Note that poly(I:C) is abbreviated as pIC in the figure to conserve space.

Figure 18: Spleen transcript expression responses of *Irf7* to bacterial antigens measured by QPCR. Data is presented as mean \pm SEM, normalized to *ef1a* expression, with the lowest expressing sample set to RQ=1. Different letters represent significant differences between fish injected with ASAL at different temperatures within the same time point. Asterisks (*) represent significant differences between an ASAL injected group and the time- and temperature-matched PBS injected group (*p < 0.05, **p <0.01, ***p <0.001). Fold change is calculated as (mean ASAL RQ)/(mean PBS RQ).

Irf7 transcript expression was seen to increase in response to ASAL injection (compared with time- and temperature-matched PBS controls) in fish held at both temperatures, although the increase was only at 6HPI for 16°C fish (2.28-fold upregulated), and only at24HPI for 10°C fish (1.60-fold upregulated) (Figure 18). Differences were also seen in ASAL injected fish at the same time point held at different temperatures, with transcript expression being higher at 16°C than 10°C at 6HPI and lower at 16°C than 10°C at 24HPI. In summary, the *Irf7* transcript expression response to bacterial antigens appeared to occur earlier at the elevated temperature.

Irf8 transcript expression was observed to increase in response to poly(I:C) only at 24HPI (1.29-fold upregulated compared with time and temperature matched PBS controls), in fish held at 10°C (Figure 19A). Response to ASAL injection, however, was similar to that of *Irf7*, as an increase in *Irf8* expression was observed at 6HPI for fish held at 16°C (2.17-fold) and at 24HPI for fish held at 10°C (1.45-fold) (Figure 19B). Interestingly, there was a small (1.25-fold) but statistically significant decrease in *Irf8* transcript expression in ASAL compared to PBS fish at 6HPI and 10°C. A response to temperature change was also seen in both ASAL and PBS injected fish, as *Irf8* expression was higher at 16°C than 10°C (at 6HPI for ASAL and at both time-points for PBS) (Figure 19B).

As with *Irf7*, the spleen transcript expression responses of cod *Irf10-v1* (the longer *Irf10* splice variant) to poly(I:C) and/or elevated temperature have previously been investigated (Rise *et al.*, 2008; Hori *et al.*, 2012). Therefore, only ASAL responsiveness of this transcript at the two temperatures was investigated in the current study.

Figure 19: Spleen transcript expression responses of *Irf8* to viral and bacterial antigens measured by QPCR. Data is presented as mean \pm SEM, normalized to *ef1a* expression, with the lowest expressing sample set to RQ=1. Different letters represent significant differences between fish injected with PBS (lower case) or ASAL (upper case) at different temperatures within the same time point. Asterisks (*) represent significant differences between a poly(I:C) or ASAL injected group and the time- and temperature-matched PBS injected group (*p <0.05, ** p < 0.01). Fold change is calculated as [mean poly(I:C) or ASAL RQ] /(mean PBS RQ). **A** = poly(I:C), **B** = ASAL. Note that poly(I:C) is abbreviated as pIC in the figure to conserve space.

Upregulation (2.40-fold) of Irf10-v1 was observed only at 24HPI in fish held at $10^{\circ}C$ compared to time and temperature matched PBS controls; no significant response was observed at 6HPI at either temperature. ASAL injected fish at 24HPI also had higher expression of Irf10-v1 at 10°C than at 16°C (Figure 20), similar to the response observed for Irf7 (Figure 18). Notably, Irf10-v2 (the shorter Irf10 splice variant) showed a significant increase in transcript expression response to ASAL at 6HPI at both temperatures (Figure 21B), unlike the longer *Irf10* splice variant which was nonresponsive to ASAL at 6HPI. Significant upregulation of Irf10-v2 was also seen in response to poly(I:C) injection compared with time- and temperature-matched PBS controls, at 6HPI for fish held at both temperatures (7.80-fold at 10°C and 10.76-fold at 16°C), and at 24HPI for fish held at 10°C (4.08-fold) (Figure 21A). Notably, the fold change values observed for Irf10-v2 in response to poly(I:C) were the highest of any of the IRF family members included in this QPCR study. An effect of temperature on Irf10 v^2 transcript expression was observed in both ASAL and poly(I:C) injected fish, where expression at 6HPI was higher in 16°C fish and expression at 24HPI was higher in 10°C fish (Figure 21); this was similar to the effect of temperature on both Irf4b and Irf7 transcript expression (Figures 17 and 18).

3.4 Developmental transcript expression analysis

Expression of cod IRF paralogues in embryos and larvae from 0 days post fertilization (dpf) to 17 dpf was studied using RT-PCR. Samples from three replicate incubators were observed under compound microscope each day to confirm that development was synchronous, and representative images were compiled (Figure 22). For **Figure 20**: Spleen transcript expression response of *Irf10-v1* to bacterial antigens measured by QPCR. Data is presented as mean \pm SEM, normalized to *ef1a* expression, with the lowest expressing sample set to RQ=1. Different letters represent significant differences between fish injected with ASAL at different temperatures within the same time point. Asterisks (*) represent significant differences between an ASAL injected group and the time- and temperature-matched PBS injected group (***p <0.001). Fold change is calculated as (mean ASAL RQ)/(mean PBS RQ).

Figure 21: Spleen transcript expression responses of *Irf10-v2* to viral and bacterial antigens measured by QPCR. Data is presented as mean \pm SEM, normalized to *ef1a* expression, with the lowest expressing sample set to RQ=1. Different letters represent significant differences between fish injected with poly(I:C) or ASAL at different temperatures within the same time point. Asterisks (*) represent significant differences between a poly(I:C) or ASAL injected group and the time- and temperature-matched PBS injected group (*p <0.05, ** p < 0.01, ***p < 0.001). Fold change is calculated as [mean poly(I:C) or ASAL RQ]/(mean PBS RQ). **A** = poly(I:C), **B** = ASAL. Note that poly(I:C) is abbreviated as pIC in the figure to conserve space.

В

Figure 22: Representative images of Atlantic cod embryos and larvae sampled from 0 to 17 days post fertilization. Size bar = 1 mm. Embryos at 0 dpf (A) were observed to have some variation in stage, but most were at the 64 to 128 cell stage. Gastrulation was observed to be complete at 5 dpf (F). Hatching began at 13 dpf (N) and was complete at 15 dpf (P). Determination of developmental stages was based on descriptions by Hall *et al.*, (2004).

RT-PCR analysis, samples from 2 of the 3 replicate incubators were used, and expression profiles between replicates were observed to be quite similar overall (Figure 23). In some cases however (i.e. Irf7, Irf10-v1), transcript expression in one replicate group appeared to be greater than the other (Figure 23D,F). Acidic ribosomal protein (arp) was chosen as a normalizer as the most stable of several potential normalizers tested, although some variation was still observed. As seen in the gel images, several cod IRF paralogues appear to have quite low transcript expression throughout embryonic development; this prevented analysis by QPCR in this study since acceptable standard curves were not produced in primer testing with these samples. Transcript expression profiles appear to be quite different among IRF paralogues. Irf4a and Irf4b (Figure 23A,B) transcripts appear to be most highly expressed in early embryonic stages and decrease over time, whereas *Irf10-v1* appears to have very little transcript expression during the first two days of development but remains relatively stable from 2 dpf to 17 dpf (Figure 23F). Irf10-v2 appears to have little to no detectable transcript expression throughout most of the developmental stages included, with the exception of a visible band at 4 dpf (Figure 23G). Irf7 and Irf8 have interesting expression profiles based on this RT-PCR analysis, as *Irf7* expression (Figure 23D) appears to increase to a peak at 7 dpf and then decrease again (previously noted by Rise et al. (2012) based on QPCR analysis), and Irf8 (Figure 23E) appears to have relatively high transcript expression at 0-1 dpf which drops drastically at 2-3 dpf and then increases again.

Figure 23: Composite agarose gel image of IRF family member transcript expression throughout Atlantic cod embryonic and early larval development. All gels are 1.7% agarose in TAE buffer, using 1 kb plus ladder (Invitrogen) as a size marker (100 bp and 200 bp bands are shown). PCR was carried out using samples from two replicate incubators/tanks (for each panel, "tank 1" = top and "tank 2" = bottom). Samples in each row are 0 dpf – 17 dpf from left to right.

4. Discussion

4.1 Overview

A better understanding of fish immune responses in general, and of the specific genes and molecular pathways involved in those responses, is of great value in furthering our knowledge of comparative vertebrate immunology and in improving aquaculture practices. The IRF gene family, which encodes transcription factors that are known to be important regulators of the vertebrate immune response to viral infection, have been studied in several fish species in recent years [e.g. Irf3 and Irf7 in rainbow trout (Holland et al., 2008), Irf5 in grass carp (Xu et al., 2010), Irf1, Irf2, Irf3, and Irf7 in Atlantic salmon (Bergan et al., 2010), Irf1, Irf2, and Irf5 in paddlefish (Xiaoni et al., 2011), and Irf4 and Irf8 in rock bream (Bathidge et al., 2012); see Table 2 for summary], often with a focus on the transcript expression response to bacterial or viral stimulation. Since most Atlantic cod IRF family members had not previously been characterized or widely studied prior to the current study, the goal of this research was to fully characterize several cod IRFs at the cDNA level, to investigate how their transcript expression responds to immune stimulation, and to study expression in various tissues and developmental stages that may suggest potential roles of those genes and their encoded proteins.

4.2 mRNA characterization and phylogenetic analysis

In this study, complete cDNA sequences were obtained for Atlantic cod *Irf4a*, *Irf4b*, *Irf7*, *Irf8* and two *Irf10* splice variants, starting with partial cod IRF sequences from GenBank, and using RACE and other standard molecular techniques. The identification of complete cDNA and predicted amino acid sequences of several cod IRFs allowed for molecular phylogenetic analysis to be conducted to study evolutionary relationships between these sequences and IRFs from other vertebrate species.

Two paralogous cod *Irf4* cDNA sequences were identified. The presence of additional IRF paralogues in a teleost species was not unexpected, as phylogenetic analysis of this gene family shows it has undergone expansion and diversification several times throughout vertebrate evolution (Nehyba et al., 2002; 2009). Nehyba et al., (2009) traced all IRF genes in humans to 4 of the 17 ancestral chordate linkage groups described by Putnam et al., (2008), and noted that the 4 groups correspond to the 4 IRF subfamilies in vertebrates (see Figure 1). They concluded that the expansion from 4 to 10 IRF family members in most vertebrates likely resulted from the two rounds of whole genome duplication that are believed to have occurred in early vertebrate evolution. Interestingly, *Irf10*, present in chicken and teleost fish, appears to have been lost in humans and other mammals sometime after the second whole genome duplication event in the early vertebrate lineage (Nehyba et al., 2009). Evidence suggests a third whole genome duplication occurred in the teleost fish lineage shortly after their divergence from lobefinned fishes (Amores et al., 1998), which could explain why some fish species show further expansion within the IRF family. For example, zebrafish has two Irf1-like genes (named Irf1a and Irf1b or Irf1 and Irf11 by different sources; Stein et al., 2007; Huang et al., 2010), and also has two Irf4 paralogues, named Irf4a and Irf4b (Stein et al., 2007). Stickleback (Gasterosteus aculeatus) is also predicted to have 2 Irf1-like and 2 Irf4-like genes (Huang et al., 2010). Atlantic salmon has two Irf7 paralogues (Bergan et al., 2010), although these likely arose after another putative whole genome duplication in the salmonid lineage (Allendorf and Thorgaard, 1984) which led to further expansion of many gene familes. As seen in Figure 14, phylogenetic analysis indicates the salmon IRF7 paralogues are more closely related to each other than to IRF7 protein sequences from other teleosts; however, zebrafish IRF4a and IRF4b are more closely related to rock bream IRF4 and cod IRF4b, respectively, than to each other. Therefore it is likely that the salmon IRF7 paralogues arose from duplication in the salmon lineage while the zebrafish IRF4 paralogues arose before the species diverged from the other teleosts included in this analysis.

Based on alignment with putative zebrafish orthologues, the shorter cod *Irf4* sequence identified in this study was named *Irf4a*, and the longer paralogue named *Irf4b*, being most similar to zebrafish *Irf4a* and *Irf4b*, respectively. Cod IRF4b does appear more closely related to zebrafish IRF4b than IRF4a in the phylogenetic tree depicted in Figure 14 (based on amino acid sequences), but appears to be most closely related to the Atlantic salmon and flounder IRF4 sequences. Cod IRF4a is shorter than the other amino acid sequences included in the analysis, which likely affected its placement on the phylogenetic tree on a separate branch from all of the other IRF4-like sequences. An alternate tree based on alignment of the same teleost IRF sequences trimmed to the length of cod IRF4a (144 AA) does show some differences from Figure 14 (particularly showing cod IRF4a and rock bream IRF4 sharing a branch and grouping separately from all other IRF4 sequences; see Appendix 9). The length of cod *Irf4a*, along with its lower expression compared to the other transcripts studied (below), suggests that a longer splice

variant of the *Irf4a* transcript exists but was not identified in the current study. Ensembl predicts a 954 bp cod *Irf4a* transcript (ENSGMOT00000005509), which is quite similar to the sequence obtained in the current research up to the end of exon 2.

Further studies to determine if a longer Irf4a splice variant exists in Atlantic cod would be of interest, as two different cod Irf10 splice variants were identified in this study. It is therefore possible that alternate splicing may occur in other cod IRF family members as well. In humans, multiple splice variants of Irfl (Lee et al., 2006), Irf3 (Li et al., 2011), Irf5 (Graham et al., 2006) and Irf7 (Zhang and Pagano, 1998) have been identified, and several of these variants were found to have significant differences in function. For example, Lee et al. (2006) showed that alternative splicing of human Irf1 negatively regulated wild type *Irf1* in cervical cancer tissue. They suggested that the more stable variant protein competes with the wild type IRF1 and decreases its functionality. Interestingly, although there are currently no studies about IRF splice variants in Atlantic cod, recent study of piscidins (a group of antimicrobial peptides) suggested that a splice variant of cod piscidin2 is produced by intron retention (Ruangsri et al., 2012), similar to Irf10-v2 in the current study. The authors of that study suggested such a splice variant may regulate wild type expression through nonsense mediated decay. As IRFs and piscidins are both important to innate immune responses, future studies comparing expression and the roles of splice variants in the two groups in Atlantic cod would be interesting. Furthermore, as no evidence is present in the literature to indicate multiple splice variants of *Irf10* in any other species, the presence of differently expressed splice

variants in cod as indicated in the present study is of particular interest, as discussed below.

Phylogenetic analysis of predicted IRF amino acid sequences in cod along with those of other teleost species supported the division of IRFs into "IRF1-SG" and "IRF4-SG" supergroups, as described by Nehyba *et al.*, (2002), which can be distinguished by the presence of the IRF-association domain 1 (IAD1) in IRF4-SG (i.e., all IRFs except IRF1 and IRF2). The IAD, found in the middle to carboxyl region of the protein, is important for interaction with other IRF family members and other transcription factors (Meraro *et al.*, 1999). An IAD found in IRF1 and IRF2 (IAD2) was also identified by Meraro *et al.*, (1999); however, a consensus sequence for IAD2 was not found in the literature, and the domain is not listed in protein domain databases (e.g. NCBI, ExPASy).

All cod IRFs studied herein contain the amino terminal DNA binding domain (DBD) and associated conserved tryptophan residues found in all IRFs (Figure 13). While most mammalian IRFs contain five conserved Trp residues (Taniuchi *et al.*, 2001), there appears to be more variation in fish IRFs, with IRF1s having six and IRF7s having only four. As described above, the DBD binds specific enhancer-like elements in the promoters of type I IFNs or other target genes. The helix-loop-helix motif recognizes a sequence containing GAAA repeats and binds through three of the conserved tryptophan residues (Escalante *et al.*, 1998). The importance of this domain is highlighted by its high level of conservation among all IRFs in all species, even as evolution of the carboxyl terminal region has allowed this group of transcription factors to take on diverse roles in

biological processes such as development and oncogenesis (reviewed in Honda and Taniguchi, 2006; Ozato *et al.*, 2007; Savitsky *et al.*, 2010).

4.3 Expression analysis in juvenile cod tissues

To better understand the possible roles of IRFs in Atlantic cod, the constitutive expression of each transcript characterized above was investigated by RT-PCR in 15 different tissues of juvenile fish. As expected, the expression of all IRF transcripts was observed in spleen and hematopoietic (head or anterior) kidney, two important tissues in the teleost immune system. The spleen is a major site for the trapping and presentation of antigens for recognition by lymphocytes, and like the anterior kidney, is a site of hematopoiesis and the removal of aged or damaged blood cells (Zapata et al., 1996). Both tissues are therefore of particular interest in immunological studies in teleosts. In the current study, all transcripts except Irf4a and Irf4b appeared to be expressed at some level in all of the included tissues (Figure 15). Studies of selected IRFs in rainbow trout (Holland et al., 2010), yellow croaker (Yao et al., 2010), turbot, Japanese flounder (Hu et al., 2011a, b) and rock bream (Bathidge et al., 2012) using QPCR have shown similar patterns of constitutive expression in most tissues with higher expression in spleen, head kidney and often gill and/or blood. The ubiquitous expression of cod Irf7 and Irf8 transcripts agrees with studies of those genes in other fish species [e.g. mandarin fish (Sun et al., 2007), and Japanese flounder (Hu et al., 2010; 2013)], where constitutive expression was seen in various tissues.

Irf4a appeared to have the lowest expression of all the transcripts included in the juvenile tissue panel RT-PCR study, and was only observed to be expressed in gill, head

kidney and spleen, with low expression in posterior kidney and blood in one replicate each (Figure 15B). IRF4 is known to be important to blood cell differentiation in human and mouse, particularly for dendritic cell development (Tamura *et al.*, 2005); therefore, it is not surprising that *Irf4a* appears to have higher transcript expression in hematopoietic tissues (i.e. spleen and kidney) than in most other tissues. Cod *Irf4b* appeared to be more widely expressed, although expression was low in several tissues (e.g. eye, posterior kidney, and stomach). Some discrepancy was observed however between the two biological replicates, particularly the replicate blood samples, for this transcript (Figure 15C). Constitutive transcript expression of cod *Irf4*-like genes agreed in general with previous studies in rainbow trout (Holland *et al.*, 2010) and rock bream (Bathige *et al.*, 2012) in which *Irf4* expression was relatively high in spleen and head kidney.

Importantly, different transcript expression profiles were observed for the two *Irf10* transcript variants in each of the expression studies carried out. The longer splice variant (named *Irf10-v1*) was observed to be constitutively expressed in all 15 tissues at a similar level overall. The shorter splice variant (*Irf10-v2*), however, appeared to have very low expression in eye and in most digestive tissues (stomach, midgut, and hindgut) and highest expression in the heart and skeletal muscle. It is therefore possible that the two splice variants have different functions, and as suggested above, that *Irf10-v2* may regulate *Irf10-v1* in some way. *Irf10* transcript expression has been investigated in very few other species. In chicken (*Gallus gallus*), this gene was observed to be most highly expressed in white blood cells, with relatively high transcript expression in spleen and thymus but little expression in other investigated tissues based on Northern blot analysis

(Nehyba *et al.*, 2002). In contrast, while both cod *Irf10* splice variants were expressed in hematopoietic tissues (spleen, head kidney) and blood, that expression was not observably higher than in other tissues. In Japanese flounder, *Irf10* mRNA was more widely expressed: in gill, heart, head and posterior (trunk) kidney, intestine and stomach (Suzuki *et al.*, 2011), which is comparable to the ubiquitous expression of *Irf10-v1* observed in the current study. Further studies using techniques such as *in situ* hybridization and immunohistochemistry should be carried out in the future to confirm differential constitutive expression of these cod *Irf10* splice variants, and suggest where (i.e. which tissues) and when (i.e. during different stages of development) each variant could function.

4.4 Spleen transcript expression response to immune stimulation

Previous to this study, transcript expression of cod *Irf7* and *Irf10 (Irf10-v1)* had been observed to increase in spleen following intraperitoneal (IP) injection of the viral mimic poly(I:C) (Rise *et al.*, 2008; Hori *et al.*, 2012). Both transcripts, along with *Irf1*, had significantly higher transcript expression response to poly(I:C) at 16°C than 10°C at an earlier (6HPI) time point but a higher transcript expression response at 10°C than 16°C at a later (24HPI) time point (Hori *et al.*, 2012). However, neither the responsiveness of Atlantic cod *Irf4* or *Irf8* (or *Irf10-v2* which had not yet been identified) to poly(I:C), nor the transcript expression response to bacterial antigens of any transcript included in the current study had been previously investigated.

The response of IRF transcript expression to immune stimulation has been investigated in several other teleost species as described below, although to our

knowledge the effect of temperature on teleost IRF transcript expression response has only been investigated in our laboratory (Hori *et al.*, 2012, 2013) and in a zebrafish study which looked at the expression of Irf3 along with several other antiviral genes (Dios et al., 2010). An understanding of how changing temperatures may affect both the susceptibility of fish to infectious diseases and the function of immune responsive genes is of particular importance for Atlantic cod aquaculture, since cod that are confined to sea cages may be unable to move to an area of preferred temperature, and often experience seasonal temperature fluctuations (i.e. summer water temperatures of up to 20° C with short-term temperature fluctuations of up to 10°C; Gollock et al., 2006). A primary goal of Hori et al. (2012, 2013) was therefore to determine if a gradual temperature increase (from 10°C to 16°C, 1°C every 5 days), comparable to that experienced by cod in the spring/summer Newfoundland climate, would modulate the anti-viral and anti-bacterial immune responses of cod and thereby potentially influence their susceptibility to infectious diseases. The current study uses the same temperature regime and samples as Hori et al., (2012, 2013), but investigates the impact of elevated temperature and/or immune stimulation on the transcript expression of newly characterized IRF paralogues.

As in the constitutive tissue distribution study, differences were observed in the spleen transcript expression profiles of cod *Irf4a* and *Irf4b*, in response to both poly(I:C) and ASAL injection (Figures 16 and 17). For example, while *Irf4b* transcript expression increased in response to poly(I:C) (at 6HPI and 16°C; compared to time- and temperature-matched PBS control), *Irf4a* expression had no response at to poly(I:C) at 6HPI at either temperature or at 24HPI at 16°C, and was lower in poly(I:C) than PBS at

24HPI at 10°C. Interestingly, a similar transcript expression profile to cod Irf4a was observed for Irf4 in rock bream injected with poly(I:C) (Bathige et al., 2012). In that study, which included time points from 0HPI to 48HPI, the only significant response to poly(I:C) stimulation in spleen was a decrease at 12HPI. Based on the phylogenetic analysis (Figure 14), rock bream Irf4 did appear to be more closely related to zebrafish Irf4a than to zebrafish or cod Irf4b, supporting its similar expression profile to cod Irf4a in response to poly(I:C). However, while ASAL stimulation was not included for the rock bream study, the effects of two other bacterial pathogens, Edwardsiella tarda and Streptococcus iniae were investigated, and both caused an initial decrease in Irf4 expression at 3HPI, followed by an increase at 12HPI and then another decrease at the final (48HPI) time point, with similar expression profiles in spleen and head kidney (Bathige et al., 2012). In cod, Irf4b was responsive to stimulation with ASAL while Irf4a was not, indicating that cod *Irf4b* may also share some similarity in function with the rock bream orthologue. Since cod Irf4b showed increased spleen transcript expression in response to ASAL at 6HPI (at both temperatures, compared to time- and temperaturematched PBS controls), but no response to ASAL at 24HPI at either temperature, it would be of interest to repeat this experiment using additional sampling time points from 3HPI to 48HPI to determine whether a similar pattern to that seen in rock bream Irf4 following bacterial stimulation may occur.

Immune responsiveness of *Irf4* has also been studied in rainbow trout, where no response to poly(I:C) stimulation was observed in cultured splenocytes (Holland *et al.*, 2010). ASAL was again not used in that study, although stimulation with

lipopolysaccharide (LPS) produced a decrease in *Irf4* transcript expression. No data on *Irf4* transcript expression response to immune stimuli could be found for zebrafish or any other species with multiple *Irf4* paralogues, and therefore it is unknown whether the differing profiles observed in this study are unique to Atlantic cod. The very different transcript expression profiles of cod *Irf4a* and *Irf4b* (i.e. up-regulation of *Irf4b*, but not *Irf4a*, in response to both viral and bacterial antigens) provides evidence of regulatory divergence of these paralogues (i.e. gene duplication and divergence), even though they are quite similar over the length of the shorter *Irf4a* (74% identical overall and 81% identical over the DBD at the amino acid level, see Appendix 8). It also suggests the two genes may have different roles in immune responses to pathogens and/or pathogenassociated molecular patterns (PAMPs) such as poly(I:C).

Both the rainbow trout and rock bream studies discussed above investigated *Irf8* expression along with *Irf4*, as these two genes belong to the same sub-family (IRF4-G) and are more closely related to each other than to other IRFs, as indicated by phylogenetic analysis. In each species, up-regulation of *Irf8* transcript expression after poly(I:C) stimulation was observed, although in the current study the response was at 24HPI (at 10°C; compared to time- and temperature-matched PBS control) while in rock bream (Bathige *et al.*, 2012) the increase occurred at 3HPI, 12HPI and 24HPI time points (the trout study only included one sampling point at 4 hours post-stimulation). It should also be noted that in both the current study and the rock bream study, the increased *Irf8* transcript expression was quite subtle, indicated as fold changes of 2 or less compared to time matched PBS controls (Figure 19A; Bathige *et al.*, 2012). A 5-fold increase in *Irf8*

expression was observed in response to poly(I:C) in trout, although this study included cultured splenocytes rather than whole spleen tissue (Holland *et al.*, 2010). Responsiveness of *Irf8* to poly(I:C) has also been observed in the spleen of turbot (Chen *et al.*, 2012) and Japanese flounder (Hu *et al.*, 2013). In turbot, *Irf8* transcript expression was increased at 12HPI but not at 24HPI or 48HPI, while in flounder *Irf8* transcript expression peaked at 3HPI. Thus, the timing of the immune response may be different in each species, although differences in poly(I:C) dosage, fish age and/or size, and other factors must be considered.

The cod *Irf8* response to ASAL (at 10° C) appears to follow a similar pattern to the rock bream *Irf8* (and *Irf4*) response to bacterial pathogens: in both cases there is an initial decrease in transcript expression and then an increase compared to PBS controls. However, the transcript expression profile at 16° C for cod *Irf8* was quite different, showing an increase at 6HPI and no significant difference at 24HPI in response to ASAL compared to PBS controls (Figure 19B); unfortunately no other studies of *Irf8* transcript expression include multiple temperatures for comparison. As noted above, our study did not include a 48HPI time point, and therefore it is unknown whether a later decrease in expression may occur in Atlantic cod *Irf8* at either temperature. Bathige *et al.*, (2012) suggested the initial decrease observed in their study may have been caused by the immune suppressive capability of live pathogens; however, this explanation would not apply to killed pathogens (i.e. ASAL) as used in the current study. Interestingly, while Hori *et al.*, (2013) found the effect of temperature increase on overall immune-relevant transcript expression to be much greater in poly(I:C) vs. ASAL stimulated cod, the
greatest response of *Irf*8 to ASAL stimulation (a 2.17 fold increase; Figure 19B) was observed at 6HPI at the elevated temperature in the current study, while no significant response was observed at the elevated temperature in poly(I:C) injected fish.

Atlantic cod *Irf7* transcript expression has been shown to increase in response to poly(I:C) exposure at 6HPI and 24HPI time points (Rise *et al*, 2008), with a greater response at 16° C at the earlier time-point and a greater response at 10° C at the later timepoint (Hori et al., 2012). Irf7 has also been observed to be poly(I:C) responsive in head kidney and gill in Japanese flounder (Hu et al., 2010), in rainbow trout cell lines (Holland et al., 2008), and in liver and head kidney of Atlantic salmon (Kileng et al., 2009), although spleen expression was not studied in these species. In the mandarin fish, spleen transcript expression of *Irf7* was studied and found to increase with poly(I:C) stimulation, peaking at 12HPI, with similar responses in gill and liver (Sun et al., 2007). Response to ASAL was not investigated in any of these species, although a different study in the orange-spotted grouper showed that *Irf7* expression in spleen increased in response to injection with the bacterium Vibrio vulnificus (Cui et al., 2011). In Atlantic cod, increased *Irf7* transcript expression in the brain (based on microarray data) has been observed in response to injection with nervous necrosis virus, and QPCR analysis showed a response to poly(I:C) in cod cell lines (Krasnov et al., 2012). In the current study, an increase in *Irf7* transcript expression in response to ASAL injection (at 16°C for the 6HPI time-point and at 10°C for the 24HPI time-point) was observed, indicating that this gene (along with all other genes in this study except Irf4b) likely plays a role in the immune response to both viral and bacterial infection in this species. The temperature-dependant

expression profile of *Irf7* observed in response to ASAL injection is similar to that observed in response to poly(I:C) by Hori et al (2012) for *Irf7* and several other immune-relevant cod transcripts (i.e. earlier response at elevated temperature). The results of the current study build on those of Hori *et al.*, (2012, 2013) by showing that a moderate temperature increase also modulates the cod spleen transcript expression response of multiple IRF genes (*Irf7*, *Irf8* and both *Irf10* splice variants) to bacterial antigens.

The response of *Irf10-v1* to poly(I:C) was also investigated by Hori *et al.*, (2012), where (as with Irf7) the increase in transcript expression was greater at 16°C for the 6HPI time point and at 10°C for the 24HPI time point. This transcript was shown to be responsive to ASAL injection as well in the current study, although expression only increased (compared to the time- and temperature-matched PBS control) at 10°C, and only at the 24HPI time-point (Figure 20). Interestingly, the second Irf10 splice variant (Irf10-v2) showed different expression profiles from Irf10-v1 in response to both poly(I:C) and ASAL. While the greatest response to poly(I:C) was observed at 24HPI and 10°C for Irf10-v1 (9-fold increase; Hori et al., 2012), the responses of Irf10-v2 at 6HPI were both greater (~8-fold increase at 10°C and ~11-fold at 16°C) than the response at 24HPI (4-fold at 10°C, with no response at 16°C; Figure 21A). Increases in *Irf10-v2* expression were observed in ASAL injected fish at both 6HPI and 24HPI at 10°C, although the increase was greater in the later time point (Figure 21B), consistent with the common profile (i.e. later responses at the lower temperature) observed by Hori *et al.*, (2012, 2013). The study of *Irf10* expression response to immune stimulation in this experiment indicated that while the two splice variants of this gene in Atlantic cod are

responsive to both poly(I:C) and ASAL stimulation, there are observable differences in the timing and intensity of those responses. Along with the tissue distribution data above, this suggests that the two splice variants may have distinct roles in the immune response, which will be an area of particular interest for further study. Very little study of *Irf10* in other species has been carried out to date, and therefore it is unknown whether the presence of such splice variants is unique to Atlantic cod.

4.5 Developmental transcript expression analysis

Since IRF family members are known in several species to function in the development of innate and adaptive immunity (reviewed in Ozato et al., 2007), and because cod *Irf1* and *Irf7* have previously been shown to be maternal transcripts with dynamic expression profiles during embryonic development (Rise et al., 2012), the expression of all IRF transcripts included in the current study throughout early development was also investigated. Although QPCR studies were not completed using these samples, RT-PCR did indicate several expression profiles that will be of interest for further study; notably, Irf7 expression was similar to that seen by Rise et al., (2012) using QPCR, with an apparent peak in early segmentation [6 dpf in the previous study; 7 dpf in the current study (Figure 23D)]. This indicates a possible important role for IRF7 [and IRF1, as hypothesized by Rise *et al.*, (2012)] in this stage of development, which could be investigated further in the future (e.g. using morpholino injection for gene knockdown). Very little information is found in the literature about the role of the IRF7 transcription factor in development, although one study indicates it is required for the development of medullary thymic epithelial cells in mice (Otero et al., 2013).

Investigation of the role of IRF7 in early embryonic development in cod and other teleosts (e.g. Atlantic salmon or zebrafish) as well as in other vertebrate species will therefore be of particular interest in ongoing research.

Atlantic cod *Irf4a* and *Irf4b* transcript expression levels appear to decrease throughout embryonic development (Figure 23B,C), suggesting both may be maternal transcripts (present in the unfertilized egg), and possibly have an important role in the early embryo. Future QPCR studies could include unfertilized egg in addition to embryonic/larval stages to further investigate this possibility. *Irf*8 appears to have its highest transcript expression at 0 dpf as well, although this transcript has a unique expression profile; it is expressed throughout the developmental stages included in the current study, from 0 dpf to 17 dpf, but appears to drop suddenly at 2-3 dpf before increasing again at 4 dpf. As noted above (Table 1), both IRF4 and IRF8 are known to be important to the differentiation of different cell types in mammals. For example, mice deficient in IRF4, which in mammals is only expressed in lymphoid and myeloid cells, show impaired activation and differentiation of B and T cells (Mittrucker *et al.*, 1997); and the transcription factor is required for B cells to undergo isotype switching and differentiation into plasma cells (Sciammas et al., 2006). IRF8 has been shown to be required for the differentiation of myeloid progenitor cells into macrophages as opposed to granulocytes, with IRF8 knockout mice developing immunodeficiency (Tamura and Ozato, 2002). In another study, IRF8-deficient mice were shown to have increased numbers of microglia with altered morphology compared to wild type mice, indicating the transcription factor has an important role in the development of those cells in the

brain (Minten *et al.*, 2012). The role of these genes in immune system development in fish is less well studied, although IRF8 has been shown to regulate the differentiation of myeloid cells during zebrafish development, as knockdown of its expression produced embryos with depleted macrophage but expanded neutrophil populations (Li *et al.*, 2011). Investigation into the role of each of these genes during Atlantic cod development using knockdown studies will be of interest for further research.

As seen with the immune stimulation QPCR studies above, the two cod *Irf10* splice variants again appear to have different transcript expression profiles in the developmental series RT-PCR study. *Irf10-v2* showed only very faint expression throughout development, with a peak at 4 dpf, possibly indicating a role in late gastrulation, while *Irf10-v1* expression appeared to increase with time (Figure 23F,G). However, because some discrepancy is visible between replicates (particularly in *Irf10-v1*), further studies (i.e. using QPCR) will be necessary to confirm all developmental expression profiles.

4.6 Conclusions

The main objectives of this research were to characterize multiple Atlantic cod IRF family members at the cDNA and putative amino acid levels; to investigate the constitutive expression of those transcripts; and to expand on the findings of earlier studies in our laboratory (Hori *et al.*, 2012, 2013) about the effect of temperature on the immune response to viral and bacterial antigens. Six Atlantic cod IRF transcripts were characterized, including a novel *Irf10* splice variant, and the *Irf10* genomic region was sequenced. RT-PCR analysis showed that all of these transcripts were expressed in spleen, head kidney and gill, and most were ubiquitously expressed in the tissues studied. The second RT-PCR study indicated that different IRF transcripts have unique developmental expression profiles and that some IRFs (e.g. *Irf7*, *Irf10-v2*) may have an important function at specific stages of development.

QPCR analysis of spleen expression confirmed that all transcripts were responsive to poly(I:C) and all except *Irf4a* were responsive to ASAL stimulation; and the effect of increased temperature previously observed (leading to an earlier transcriptional response to immune stimulation; Hori *et al.*, 2012, 2013) was seen in several cases. As noted by Hori *et al.*, (2012), these findings indicate that while increased summer temperatures in themselves may not be lethal for Atlantic cod, the effect of such temperatures on immune responses will be of particular importance to future Atlantic cod aquaculture.

4.7 Future Research

This study adds to our knowledge of molecular immunology in fish and of the IRF gene family, and provides many avenues for further investigation. For example, further sequencing at the genomic DNA level is of interest for each of these genes, both to confirm the placement of introns and to further characterize the 5' upstream regions as the 5'UTR obtained using RACE techniques were as short as 36 bp. Analysis of the upstream regions would aid in our understanding of how IRF expression is regulated, and how IRF family members interact with each other, with other transcription factors, and with IFN. In particular, it would be interesting to sequence and analyze the proximal promoters of cod *Irf4a* and *Irf4b* to determine if there are differences in regulatory sequences (e.g. putative transcription factor binding sites) that may explain the

differences in regulation of these paralogues observed above. It would also be valuable to use QPCR to study the transcript expression of both *Irf4* paralogues and *Irf8* in blood cells and hematopoietic kidney, since these genes are known to be important to hematopoiesis in other species. It will be important to investigate transcript expression in different classes of cod leukocytes [e.g. using Fluorescence Activated Cell Sorting (FACS)] to determine if similar functions are carried out during hematopoiesis in cod. As QPCR studies of cod IRF family members during embryonic and larval development were not successful in this study due to low levels of transcript expression, future research will utilize modified QPCR methods (e.g. use of amplified RNA) which may allow this experiment to be completed. Furthermore, techniques such as *in situ* hybridization, immunohistochemistry and gene knockdown by morpholino injection will be used in ongoing research following from this study to better understand the roles of IRF genes, particularly in development.

Literature Cited

- Allendorf FW and Thorgaard GH. 1984. Tetraploidy and the evolution of salmonid fishes. Pp. 1-53 *In: Evolutionary genetics of fishes* (ed. B.J. Turner). Plenum Press, New York, USA.
- Altmann SM, Mellon MT, Distel DL, Kim CH. 2003. Molecular and functional analysis of an interferon gene from the zebrafish, *Danio rerio*. J Virol 77:1992-2002.
- Amores A, Force A, Yan Y, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang Y, Westerfield M, Ekker M, Postlethwait JH. 1998. Zebrafish *hox* clusters and vertebrate genome evolution. Science 282:1711-14.
- Au WC, Moore PA, Lowther W, Juang YT, Pitha PM. 1995. Identification of a member of the interferon regulatory factor family that binds to the interferon-stimulated response element and activates expression of interferon-induced genes. Proc Natl Acad Sci USA 92:11657-61.
- Barnes B, Lubyova B, Pitha PM. 2002. On the role of IRF in host defense. J Interferon Cytokine Res 22:59-71.
- Bathige SDNK, Whang I, Umasuthan N, Lim BS, Park MA, Kim E, Park HC, Lee J. 2012. Interferon regulatory factors 4 and 8 in rock bream, *Oplegnathus fasciatus*: Structural and expressional evidence for their antimicrobial role in teleosts. Fish Shellfish Immunol 33:857-871.
- Ben J, Wang Jabs E, and Chong SS. 2005. Genomic, cDNA and embryonic expression analysis of zebrafish IRF6, the gene mutated in the human oral clefting disorders Van der Woude and popliteal pterygium syndromes. Gene Expression Patterns 5:629-638.
- Bergan V, Kileng Ø, Sun B, Robertsen B. 2010. Regulation and function of interferon regulatory factors of Atlantic salmon. Mol Immunol 47:2005-14.
- Booman M, Borza T, Feng CY, Hori TS, Higgins B, Culf A, Léger D, Chute IC, Belkaid A, Rise M, Gamperl AK, Hubert S, Kimball J, Ouellette RJ, Johnson SC, Bowman S, Rise ML. 2011. Development and experimental validation of a 20K Atlantic cod (*Gadus morhua*) oligonucleotide microarray based on a collection of over 150,000 ESTs. Mar Biotechnol 13:733-50.
- Booman M and Rise ML. 2012. Genomic tools for understanding the molecular basis of production-relevant traits in finfish. In: *Aquaculture Biotechnology* (eds. G.L. Fletcher and M.L. Rise), Wiley-Blackwell, Ames, IA. pp. 3-20.

- Bowman S, Hubert S, Higgins B, Stone C, Kimball J., Borza T, Bussey J, Simpson G, Kozera C, Curtis BA, Hall JR, Hori TS, Feng CY, Rise M, Booman M, Gamperl AK, Trippel E, Symonds J, Johnson SC, and Rise ML. 2011. An integrated approach to gene discovery and marker development in Atlantic cod (*Gadus morhua*). Mar Biotechnol 13:242-255.
- Brown JA, Minkoff G, Puvanendran V. 2003. Larviculture of Atlantic cod (*Gadus morhua*): progress, protocols and problems. Aquaculture 227:357-372.
- Cham CM, Ko K, Niewold TB. 2012. Interferon regulatory factor 5 in the pathogenesis of systemic lupus erythematosus. Clinical Dev Immunol 2012:780436.
- Chen X, Hu G, Dong X, Liu Q, Zhang S. 2012. Molecular cloning and expression analysis of interferon regulatory factor 8 (IRF8) in turbot, Scophthalmus maximus. Vet Immunol Immunopathol 149:143-50.
- Colgan DF and Manley JL. 1997. Mechanism and regulation of mRNA polyadenylation. Genes Dev 11:2755-66.
- Cui H, Yan Y, Wei J, Huang X, Huang Y, Ouyang Z, Qin Q. 2011. Identification and functional characterization of an interferon regulatory factor 7-like (IRF7-like) gene from orange-spotted grouper, *Epinephelus coioides*. Dev Comp Immunol 35:672-84.
- Darnell JE, Kerr IM, Stark GR. 1994. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415-21.
- Dios S, Romero A, Chamorro R, Figueras A, Novoa B. 2010. Effect of the temperature during antiviral immune response ontogeny in teleosts. Fish Shellfish Immunol 29:1019-27.
- Di Paolo NC, Doronin K, Baldwin LK, Papayannopoulou T, Shayakhmetov DM. 2013. The transcription factor IRF3 triggers "defensive suicide" necrosis in response to viral and bacterial pathogens. Cell Reports 3:1840-46.
- Escalante CR, Yie J, Thanos D, Aggarwal AK. 1998. Structure of IRF-1 with bound DNA reveals determinants of interferon regulation. Nature 391:103-6.
- Feng CY, Johnson SC, Hori TS, Rise M, Hall JR, Gamperl AK. 2009. Identification and analysis of differentially expressed genes in immune tissues of Atlantic cod stimulated with formalin-killed, atypical *Aeromonas salmonicida*. Physiol Genomics 37:149-63.
- Gabriele L and Ozato K. 2007. The role of the interferon regulatory (IRF) family in dendritic cell development and function. Cytokine Growth Factor Rev 18:503-10.

- Gollock MJ, Currie S, Petersen LH, Gamperl AK. 2006. Cardiovascular and haematological responses of Atlantic cod (*Gadus morhua*) to acute temperature increase. J Exp Biol 209:2961-70.
- Graham RR, Kyogoku C, Sigurdsson S, Vlasova IA, Davies LRL, Baechler EC, Plenge RM, Koeuth T, Ortmann WA, Hom G, *et al.*, 2007. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc Natl Acad Sci USA 104:6758-63.
- Hall TE, Smith P, and Johnson IA. 2004. Stages of embryonic development in the Atlantic cod *Gadus morhua*. J Morphol 259:255-0.
- Holland JW, Bird S, Williamson B, Woudstra C, Mustafa A, Wang T, Zou J, Blaney SC, Collet B, Secombes CJ. 2008. Molecular characterization of IRF3 and IRF7 in rainbow trout, *Oncorhynchus mykiss*: Functional analysis and transcriptional modulation. Mol Immunol 46:269-85.
- Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, Shimada N, OhbaY, Takaoka A, Yoshida N, Taniguchi T. 2005. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434:772-77.
- Honda K and Taniguchi T. 2006. IRFs: Master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 6:644-58.
- Hori TS, Gamperl AK, Booman M, Nash GW, Rise ML. 2012. A moderate increase in ambient temperature modulates the Atlantic cod (*Gadus morhua*) spleen transcriptome response to intraperitoneal viral mimic injection. BMC Genomics 13:431.
- Hori TS, Gamperl AK, Nash G, Booman M, Barat A, Rise ML. 2013. The impact of a moderate chronic temperature increase on spleen immune-relevant gene transcription depends on whether Atlantic cod (*Gadus morhua*) are stimulated with bacterial versus viral antigens. Genome 56:567-76.
- Hu G, Yin X, Xia J, Dong X, Zhang J, Liu Q. 2010. Molecular cloning and characterization of interferon regulatory factor 7 (IRF-7) in Japanese flounder, *Paralichthys olivaceus*. Fish Shellfish Immunol 29:963-71.
- Hu G, Xia J, Lou H, Chen X, Li J, Liu Q. 2011a. An IRF-3 homolog that is up-regulated by DNA virus and poly I:C in turbot, *Scophthalmus maximus*. Fish Shellfish Immunol 31:1224-31.
- Hu G, Yin X, Lou H, Xia J, Dong X, Zhang J, Liu Q. 2011b. Interferon regulatory factor

3 (IRF-3) in Japanese flounder, *Paralichthys olivaceus*: Sequencing, limited tissue distribution, inducible expression and induction of fish type I interferon promoter. Dev Comp Immunol 35:164-73.

- Hu G, Xia J, Lou Q, Lin J, Yin X, Dong X. 2011c. Cloning and expression analysis of interferon regulatory factor 7 (IRF-7) in turbot, *Scophthalamus maximus*. Dev Comp Immunol 35:416-20.
- Hu G, Chen X, Gong Q, Liu Q, Zhang S, Dong X. 2013. Structural and expression studies of interferon regulatory factor 8 in Japanese flounder, *Paralichthys olivaceus*. Fish Shellfish Immunol 35:1016-24.
- Huang B, Qi Z, Xu Z, Nie P. 2010. Global characterization of interferon regulatory factor (IRF) genes in vertebrates: Glimpse of the diversification in evolution. BMC Immunol 11:22.
- Kileng O, Bergan V, Workenhe ST, Robertsen B. 2009. Structural and functional studies of an IRF-7-like gene from Atlantic salmon. Dev Comp Immunol 33:18-27.
- Kondo S, Schutte BC, Richardson RJ, Bjork BC, Knight AS, Watanabe Y, Howard E, Ferreira de Lima RL, Daack-Hirsch S, *et al.*, 2002. Mutations in IRF6 cause Van der Woude and popliteal pterygium syndromes. Nat Genet 32:285-89.
- Krasnov A, Kileng O, Skugor S, Jorgensen SM, Afanasyev S, Timmerhaus G, Sommer AI, Jensen I. 2013. Genomic analysis of the host response to nervous necrosis virus in Atlantic cod (*Gadus morhua*) brain. Mol Immunol 54:443-52.
- Lanes CFC, Fernandes JMO, Kiron V, Babiak I. 2012. Profiling key apoptotic, stress, and immune-related transcripts during embryonic and postembryonic development of Atlantic cod (*Gadus morhua* L.). Theriogenology 78:1583-96.
- Lang AS, Rise ML, Culley AI, Steward GF. 2009. RNA viruses in the sea. FEMS Microbiol Rev 33:295-323.
- Lee E, Jo M, Park J, Zhang W, Lee J. 2006. Alternative splicing variants of IRF-1 lacking exons 7, 8, and 9 in cervical cancer. Biochem Biophys Res Comm 347:882-88.
- Li L, Jin H, Xu J, Shi Y, Wen Z. 2011. Irf8 regulates macrophage versus neutrophil fate during zebrafish primitive myelopoiesis. Blood 117:1359-69.
- Li Y, Hu X, Song Y, Lu Z, Ning T, Cai H, Ke Y. 2011. Identification of novel alternative splicing variants of interferon regulatory factor 3. Biochem Biophys Acta 1809:166-75.

- Lien C, Fang CM, Huso D, Livak F, Lu R, Pitha PM. 2010. Critical role of IRF-5 in regulation of B-cell differentiation. Proc Natl Acad Sci USA 107:4664-68.
- Lutfalla G, Hugues RC, Stange-Thomann N, Jaillon O, Mogensen K, Monneron D. 2003. Comparative genomic analysis reveals independent expansion of a lineage-specific gene family in vertebrates: The class II cytokine receptors and their ligands in mammals and fish. BMC Genomics 4:29.
- MacDonald CC, and Redondo JL. 2002. Reexamining the polyadenylation signal: were we wrong about AAUAAA? Mol Cell Endocrinol 190:1-8.
- Marteinsdottir G, Ruzzante D, Nielsen EE. 2005. History of the North Atlantic cod stocks. ICES CM AA:19.
- Matsuyama T, Grossman A, Mittrucker HW, Siderovski DP, Kiefer F, Kawakami T, Richardson CD, Taniguchi T, Yoshinaga SK, Mak TW. 1995. Molecular cloning of LSIRF, a lymphoid-specific member of the interferon regulatory factor family that binds the interferon-stimulated response element (ISRE). Nucleic Acids Res 23:2127-36.
- Meraro D, Hashmueli S, Koren B, Azriel A, Oumard A, Kirchhoff S, Hauser H, Nagulapalli S, Atchison ML, Levi B. 1999. Protein-protein and DNA-protein interactions affect the activity of lymphoid-specific IFN regulatory factors. J Immunol 163:6468-78.
- Minten C, Terry R, Deffrasnes C, King NJC, Campbell IL. 2012. IFN regulatory factor 8 is a key constitutive determinant of the morphological and molecular properties of microglia in the CNS. PLoS One 7:e49851.
- Mittrucker HW, Matsuyama T, Grossman A, Kundig TM, Potter J, Shahinian A, Wakeham A, Patterson B, Ohashi PS, Mak TW. 1997. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science 275:540-43.
- Negishi H, Ohba Y, Yanai H, Takaoka A, Honma K, Yui K, Matsuyama T, Taniguchi T, Honda K. 2005. Negative regulation of toll-like-receptor signaling by IRF-4. Proc Natl Acad Sci USA 102:15989-94.
- Nehyba J, Hrdlickova R, Burnside J, Bose HR. 2002. A novel interferon regulatory factor (IRF), IRF-10, has a unique role in immune defense and is induced by the v-Rel oncoprotein. Mol Cell Biol 22:3942-57.
- Nehyba J, Hrdlickova R, Bose HR. 2009. Dynamic evolution of immune system regulators: The history of the interferon regulatory factor family. Mol Biol Evol 26:2539-50.

- Nelson N, Kanno Y, Hong C, Contursi C, Fujita T, Fowlkes BJ, O'Connell E, Hu-Li J, Paul WE, Jankovic D, Sher AF, Coligan JE, Thornton A, Appella E, Yang Y, Ozato K. 1996. Expression of IFN regulatory factor family proteins in lymphocytes. Induction of Stat-1 and IFN consensus sequence binding protein expression by T cell activation. J Immunol 156:3711-20.
- Otero DC, Baker DP, David M. 2013. IRF7-dependent IFN-B production in response to RANKL promotes medullary thymic epithelial cell development. J Immunol 190:3289-98.
- Ozato K, Tailor P, Kubota T. 2007. The interferon regulatory factor family in host defense: mechanism of action. J Biol Chem 282:20065-69.
- Perez-Casanova JC, Rise ML, Dixon B, Alfonso LOB, Hall JR, Johnson SC, Gamperl AK. 2008. The immune and stress response of Atlantic cod to long-term increases in water temperature. Fish Shellfish Immunol 24:600-09.
- Putnam NH, Butts T, Ferrier DEK, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu J, *et al.*, 2008. The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064-71.
- Restivo G, Nguyen B, Dziunycz P, Ristorcelli E, Ryan RJH, Ozuysal OY, Di Piazza M, Radtke F, *et al.*, 2011. IRF6 is a mediator of Notch pro-differentiation and tumor suppressive function in keratinocytes. EMBO Journal 30:4571-85.
- Rise ML, Hall J, Rise M, Hori T, Gamperl AK, Kimball J, Hubert S, Bowman S, and Johnson SC. 2008. Functional genomic analysis of the response of Atlantic cod (*Gadus morhua*) spleen to the viral mimic polyriboinosinic polyribocytidylic acid (pIC). Dev Comp Immunol 32:916-31.
- Rise ML, Hall JR, Alcock BP, Hori TS. 2012. Dynamic expression profiles of virusresponsive and putative antimicrobial peptide-encoding transcripts during Atlantic cod (*Gadus morhua*) embryonic and early larval development. Gene 509:232-246.
- Robertsen B. 2006. The interferon system of teleost fish. Fish Shellfish Immunol 20:172-91.
- Rosenlund G, and Hallorsson O. 2007. Cod juvenile production: Research and commercial developments. Aquaculture 268:188-194.
- Ruangsri J, Salger SA, Caipang CMA, Kiron V, Fernandes JMO. 2012. Differential expression and biological activity of two piscidin paralogues and a novel splice variant in Atlantic cod (*Gadus morhua* L.). Fish Shellfish Immunol 32:396-406.

- Sabel JL, d'Alençon C, O'Brien EK, Otterloo EV, Lutz K, Cuykendall TN, Schutte BC, Houston DW, Cornell RA. 2009. Maternal interferon regulatory factor 6 is required for the differentiation of primary superficial epithelia in Danio and Xenopus embryos. Dev Biol 325:249-62.
- Savitsky D, Yanai H, Taniguchi T. 2010. Regulation of immunity and oncogenesis by the IRF transcription factor family. Cancer Immunol Immunother 59:489-510.
- Sciammas R, Shaffer AL, Schatz JH, Zhao H, Staudt LM, Singh H. 2006. Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation. Immunity 25:225-36.
- Shi J, Zhang Y, Liu T, Sun F, Gui J. 2012. Subcellular localization and functional characterization of a fish IRF9 from crucian carp *Carassius auratus*. Fish Shellfish Immunol 33:258-66.
- Solem ST, and Stenvik J. 2006. Antibody repertoire development in teleosts a review with emphasis on salmonids and *Gadus morhua L*. Dev Comp Immunol 30:57-76.
- Star B, Nederbragt AJ, Jentoft S, Grimholt U, Malmstrom M, Gregers TF, Rounge TB, Paulsen J, *et al.*, The genome sequence of Atlantic cod reveals a unique immune system. Nature 477:207-10.
- Stein C, Caccamo M, Laird G, Leptin M. 2007. Conservation and divergence of gene families encoding components of innate immune response systems in zebrafish. Genome Biol 8:R251.
- Sun BJ, Chang MX, Song Y, Yao WJ, Nie P. 2007. Gene structure and transcription of IRF-1 and IRF-7 in the mandarin fish *Siniperca chuatsi*. Vet Immunol Immunopathol 116:26-36.
- Sun F, Zhang Y, Liu T, Gan L, Yu F, Liu Y, Gui J. 2010. Characterization of fish IRF3 as an IFN-inducible protein reveals evolving regulation of IFN response in vertebrates. J Immunol 185:7573-82.
- Suzuki Y, Yasuike M, Kondo H, Aoki T, Hirono I. 2011. Molecular cloning and expression analysis of interferon regulatory 10 (IRF10) in Japanese flounder, *Paralichthys olivaceus*. Fish Shellfish Immunol 30:67-76.
- Takaoka A, Yanai H, Kondo S, Duncan G, Negishi H, Mizutani T, Kano S, Honda K, Ohba Y, Mak TW, Taniguchi T. 2005. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 434:243-49.

- Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731-39.
- Tamura T, and Ozato K. 2002. ICSBP/IRF-8: its regulatory roles in the development of myeloid cells. J Interferon Cytokine Res 22:145-52.
- Tamura T, Tailor P, Yamaoka K, Kong HJ, Tsujimura H, O'Shea JJ, Singh H, Ozato K. 2005. IFN regulatory factor-4 and -8 govern dendritic cell subset development and their functional diversity. J Immunol 174:2573-81.
- Tanaka N, Ishihara M, Lamphier MS, Nozawa H, Matsuyama T, Mak TW, Aizawa S, Tokino T, Oren M, Taniguchi T. 1996. Cooperation of the tumor suppressors IRF-1 and p53 in response to DNA damage. Nature 382:816-18.
- Taniguchi T, Ogasawara K, Takaoka A, Tanaka N. 2001. IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 19:623-55.
- Verrier ER, Langevin C, Benmansour A, Boudinot P. 2011. Early antiviral response and virus-induced genes in fish. Dev Comp Immunol 35:1204-14.
- Workenhe ST, Rise ML, Kibenge MJT, Kibenge FSB. 2010. The fight between the teleost fish immune response and aquatic viruses. Mol Immunol 47:2525-36.
- Xia J, Hu G, Dong X, Liu Q, Zhang S. 2012. Molecular characterization and expression analysis of interferon regulatory factor 5 (IRF-5) in turbot, *Scophthalamus maximus*. Fish Shellfish Immunol 32:211-18.
- Xiang Z, Dong C, Qi L, Chen W, Huang L, Li Z, Xia Q, Liu D, Huang M, Weng S, et al., 2010. Characteristics of the interferon regulatory factor pairs zfIRF5/7 and their stimulation expression by ISKNV infection in zebrafish (*Danio rerio*). Dev Comp Immunol 34:1263-73.
- Xiaoni G, Zhuo C, Xuzhen W, Dengqiang W, Xinwen C. 2011. Molecular cloning and characterization of interferon regulatory factor 1 (IRF-1), IRF-2 and IRF-5 in the chondrostean paddlefish *Polyodon spathula* and their phylogenetic importance in the Osteichthyes. Dev Comp Immunol 36:74-84.
- Xu Q, Chang MX, Xiao FS, Huang B, Nie P. 2010. The gene and virus-induced expression of IRF-5 in grass carp *Ctenopharyngodon idella*. Vet Immunol Immunopathol 134:269-78.
- Yanai H, Negishi H, Taniguchi T. 2012. The IRF family of transcription factors: inception, impact and implications in oncogenesis. OncoImmunology 1:1376-86.

- Yao CL, Kong P, Huang XN, Wang ZY. 2010. Molecular cloning and expression of IRF1 in large yellow croaker, *Pseudosciaena crocea*. Fish Shellfish Immunol 28:654-60.
- Zapata AG, Chiba A, Varas A. 1996. Cells and tissues of the immune system of fish. pp. 1-40 *In: The Fish Immune System: Organism, Pathogen, and Environment.* (eds. G. Iwama and T. Nakanishi). Academic Press, Inc. San Diego, CA, USA.
- Zhang L and Pagano JS. 1997. IRF-7, a new interferon regulatory factor associated with Epstein-Barr virus latency. Mol Cell Biol 17:5748-57.

Web References

http://codgene.ca/; the Atlantic Cod Genomics and Broodstock Development Project (CGP).

https://www.ebi.ac.uk/Tools/msa/clustalo/; Web interface for Clustal Omega.

http://frodo.wi.mit.edu/; Web interface for Primer3.

http://www.ncbi.nlm.nih.gov/; National Center for Biotechnology Information web interface.

http://web.expasy.org/translate/; Web interface for ExPASy Translate tool.

Appendix 1: *Irf4*-like Atlantic cod ESTs used to design paralogue specific RACE primers for characterization of cod *Irf4a*, *Irf4b* and *Irf10-v2*. A) Table summarizing cod *Irf4*-like ESTs found in dbEST. B) Partial alignment of Irf4-like ESTs. Conserved nucleotides are marked by an asterisk (*). The locations of RACE primers are indicated in blue for *Irf4a*, green for *Irf4b*, and purple for *Irf10-v2*. Alignment was constructed using Clustal Omega software (see Web References).

Genbank	Library name	Tissue	Treatment	Best BLASTx hit
Accession Number				
FF408830	gmapte	testis	none	IRF4 [Paralichthys
				olivaceus] (E= 2e-78).
				AEY55358
EX733395	ZNKAA	kidney	none	IRF4-like [Oreochromis
				niloticus] predicted (E= 8e-
				33). XP_003437930
ES773165	gmnbhkas	head kidney	ASAL	IRF4-like [Oreochromis
				niloticus] predicted (E= 3e-
				31). XP_003437930
*ES784419	gmnlsfic	spleen	Poly(I:C)	IRF4-like [Oreochromis
	-	_	-	niloticus] predicted (E=8e-
				22). XP_005448898
*ES785894	gmnlsfic	spleen	Poly(I:C)	IRF4-like [Oreochromis
				niloticus] predicted (E= 6e-
				22). XP_005448898

Appendix 1 A: Gadus morhua ESTs representing Irf4

*BLASTx search returned many hits for Irf10, but Irf4-like sequence had the lowest E-value.

Appendix 1 B:

FF408830	Irf4a	TGCCGGGGGAT	11
ES773165	Inf Ab	AATAATTCCATAGTTGAGACATTAAGAGTATATCAAAAGAAGATAATCCCAAGCCATGTG	360
EX733395	11]40	TTCGTACTATATCAAAAGAAGATAATCCCAAGCCATGTG	39
ES784419	Irf10		
ES785894			
FF408830	Irf4a	AACAGAGATGAGGACGCCGCGCTT-TTCAAGGCATGGGCACTGTTTAAGGGCAAGTTTCG	71
ES773165		AATTGATGATGTGATGCCTATGTGGTTGCAGGCCTGGGCACTTTTCAAGGGCAAATACAA	420
EX733395	Irf4b	AATTGATGATGTGATGCCTATGTGGGTGCAGGCCTGGGCACTTTTCAAGGGCAAATACAA	99
ES784419	1-610	TGGCCGCGGGATTTCGAGCGGCCGCCGGGCAGGTACAAAGGGAAATACAA	50
ES785894	11/10	GGGCAGGTACAAAGGGAAATACAA	24
		** *: **.** **.*:	
FF408830	Inf Act	GENEGETNTCENCNNNGCEENCCCERCCENCETERNNGNCECECTTNCETTECECECTERN	131
ES773165	<i></i>	AGAAGGTGTGGACAAACCGGACCCCCCCACATGGAAAACCCGTCTACGGTGTGCTCTGAA	480
EX733395	Irf4b	AGAAGGTGTGGACAAACCGGACCCCCCCCCCCCCCCCCC	159
ES784419	1.64.0	GGTGGGCAGCGACAAGGACAACCCCACCATGTGGAAGACGCGCCTGCGCTGTGCACTTAA	110
ES785894	lrf10	GGTGGGCAGCGACAAGGACAACCCCACCATGTGGAAGACGCGCCTGCGCTGTGCACTTAA	84
		.*:.** . ********* .* * *****.** ** *.** **	
FF408830	Irf4a	TAAAAGTAATGATTTCGAAGAGCTGGTGGACCGAAGCCAACTGGACATCTCGGACCCTTA	191
ES773165		CAAAAGCAACGACTTTGACGAGCTGGTGGACAGAAGCCAGCTGGACATCACCGAACCCTA	540
EX733395	1rj4b	CAAAAGCAACGACTTTGACGAGCTGGTGGACAGAAGCCAGCTGGACATCTCCGAACCCTA	219
ES784419	Irf10	CAAGAGCACAGACTTCCAGGAGGTCCCCCACCTGAACCAGCTGGACATCTCGGAGCCCTA	170
ES785894	",10	CAAGAGCACAGACTTCCAGGAGGTCCCCCACCTGAACCAGCTGGACATCTCGGAGCCCTA	144
		. *. ** ** * *** * **. **. ********	
FF408830	Irf4a	CAAAGTGTACCGTATCATCCCAGAGGGGGGCGACAAGAGAAGACCCAGACAGGAGGACAGT	249
ES773165		CAAAGTCTACAGAATCATCCCCCGAGGGGGTCAAAAGAGGCAAGCCCATCAATAAAGTGTC	600
EX733395	Irf4b	CAAAGTCTACAGAATCATCCCCCGAGGGGGTCAAAAGAGGCAAGCCCATCAATAAAGTGTC	279
ES784419	1-610	CAAGGTCTACCGCAT <mark>CGAGTCTGACCAGAGAGCAGGT</mark> AGGCACCACTTCAGATGGACCTA	230
ES785894	11/10	CAAGGTCTACCGCCT <mark>CGAGTCTGACCAGAGAGCAGGT</mark> AGGCACCACTTCAGATGGACCTA	204
		***.** ***.* .**.: * ***:.* . * :**. :	
FF408830	Inf.A.a.	CCTTTGAGTCCATTGAG-CTATCCATCCTACCCCTTCACACCCACATACCCCACTC	308
ES773165	nj4u	TGCAATATTCAGAT GCTTTCGTCATGAGAAGACGACATTTATTGTACAGATGTG	654
EX733395	Irf4b	TGCNATATTCAGAT	333
ES784419	1	ACATCAGGTCCAACGCA-GTAACGATTGGTCAGTAGGTTGGTCGTCCTTCTCTCTCCCTT	289
ES785894	lrf10	ACATCAGGTCCAACGCA-GTAACGATTGGTCAGTAGGTTGGTCGTCCTTCTCTCTACCTT	259
		. ** <mark>: * *. ** :</mark> * :*: .* *	
FEADCOCC		03 _ TOOTS 3 TOOS 03 03 07000000 03 03 377073 000001 003 0000000	200
F6772165	Irf4a	CA-ISCUIAR ICCAGAGAGIGGCCGGAGAGAATTCTACCCGGAGCAGGCCTTCCTT	303
E37733305	Irf4b	CAGACITCCCTGATIGCGIGCAGITACACACATACICACACACICACACGIACGC	200
ES784419		ABACITETETTETTETTA-GAGTETGATEAGACACATACICACACACACACACACACACACACACACACAC	322
ES785894	Irf10	AAACCTTCTCTCTCTCAGAGTCTGATCAGACGTACATCGGCCGCGACCACGCTAATCCC	319
		*: *. :* ** *.	
FF408830	Irf4a	CCAGAGCTCCACATCCCACAATGTTCCTACCCCCCTCACCCATGGCAGGGGCCCCCCATA	423
ES773165	Irf4h	ACACATACCCACACACTGCAGCGTGACAAAGCGGGGGGG	745
EX733395	11/40	AUAUATAUCCACACACTGCANCGTGACAAAGCGGGGGGG	424
E5/84419	Irf10		300
23/03094		6666	525

Appendix 2: Assembly of Atlantic cod *Irf4a* RACE and ORF PCR sequencing reads. Sequencing methods are described in section 2.1.2. Sequence data was assembled using Lasergene SeqMan Pro software (DNASTAR). Consensus sequence is indicated between horizontal lines. Note that naming appears incorrect as *Irf4a* and *Irf4b* names were switched after phylogenetic analysis based on similarity to zebrafish *Irf4* paralogues.

		10	20	30	40	50	60
		ATTGAGAATAAGTT	GAAAATGCTI	IGAGGGTCTT	GATTATTTC	GAGGTCAAAT	CCGTTC
IRF4b-5.2F_H01_2012-12-12_Multi(47>688) IRF4b-5.3F_A03_2012-12-12_Multi(52>693) IRF4b-5.2R_H07_2012-12-12_Multi(79>720) IRF4b-5.1R_G07_2012-12-12_Multi(75>734) IRF4b-5.1F_G01_2012-12-12_Multi(59>719) IRF4b-5.3R_A09_2012-12-12_Multi(87>728) IRF4b-5.2F_H01_2012-12-11_Multiu(1>566)	111111	ATTGAGAATAAGTT ATTGAGAATAAGTT ATTGAGAATAAGTT ATTGAGAATAAGTT ATTGAGAATAAGTT ATTGAGAATAAGTT ATTGAGAATAAGTT	GAAAATGCTI GAAAATGCTI GAAAATGCTI GAAAATGCTI GAAAATGCTI GAAAATGCTI	IGAGGGTCTTT IGAGGGTCTTT IGAGGGTCTTT IGAGGGTCTTT IGAGGGTCTTT IGAGGGTCTTT	IGATTATTTTO IGATTATTTTO IGATTATTTTO IGATTATTTTO IGATTATTTTO IGATTATTTTO	CGAGGTCAAAT CGAGGTCAAAT CGAGGTCAAAT CGAGGTCAAAT CGAGGTCAAAT CGAGGTCAAAT TGTCAAAT	CCGTTC CCGTTC CCGTTC CCGTTC CCGTTC CCGTTC
		70	80	90	100	110	120
		CATAACATTTTCTG	TTAAGCTGAI	IGTAAAACTTO	TGATACTITO	CATCTTACTTT	GCCTAA
IRF4b-5.2F_H01_2012-12-12_Multi(47>688) IRF4b-5.3F_A05_2012-12-12_Multi(52>693) IRF4b-5.1R_G07_2012-12-12_Multi(79>720) IRF4b-5.1R_G07_2012-12-12_Multi(79>734) IRF4b-5.1F_G01_2012-12-12_Multi(59>719) IRF4b-5.2F_H01_2012-12-12_Multi(87>728) IRF4b-5.2F_H01_2012-12-11_Multiu(1>566) IRF4b-ORF2_F_B07_2013-07-22_Mul(4>672) IRF4b-ORF1_F_A07_2013-07-22_Mul(4>674) IRF4b-ORF1_R_A08_2013-07-22_Mul(74>701)	111111111	CATAACAITITCIG CATAACAITITCIG CATAACAITITCIG CATAACAITITCIG CATAACAITITCIG CATAACAITITCIG CATAACAITITCIG CATAACAITITCIG	TTAAGCTGAI TTAAGCTGAI TTAAGCTGAI TTAAGCTGAI TTAAGCTGAI TTAAGCTGAI TTAAGCTGAI	IGTAAAACTTO IGTAAAACTTO IGTAAAACTTO IGTAAAACTTO IGTAAAACTTO IGTAAAACTTO IGTAAAACTTO	TGATACTITIC TGATACTITIC TGATACTITIC TGATACITIC TGATACITIC TGATACITIC TGATACITIC	CATCTTACTIT CATCTTACTIT CATCTTACTIT CATCTTACTIT CATCTTACTIT CATCTTACTIT CATCTTACTIT CATCTTACTIT	GOCTAA GOCTAA GOCTAA GOCCAA GOCCAA GOCTAA GOCTAA A A A A A
		130	140	150	160	170	180
		TCTCGTGGTGTTTG	AACAGAGAT	GCATTICGAGO	GAGGACGTCAP	ATCTGTCAGTC	AGTTGC
IRF4b-5.2F H01 2012-12-12 Multi(47>688) IRF4b-5.3F_A03_2012-12-12 Multi(52>693) IRF4b-5.2R H07_2012-12-12 Multi(52>693) IRF4b-5.1R_G07_2012-12-12 Multi(79>720) IRF4b-5.1F_G01_2012-12-12 Multi(59>719) IRF4b-5.3R_A09_2012-12-12 Multi(52>728) IRF4b-5.2F H01_2012-12-11 Multiu(1>566) IRF4b-ORF2_F_B07_2013-07-22 Mul(45>672) IRF4b-ORF1_F_A07_2013-07-22 Mul(47>674) IRF4b-ORF1_R_A08_2013-07-22 Mul(7>701)	111111111	ICTCGTGGTGTTTG ICTCGTGGTGTTTG ICTCGTGGTGTTTG ICTCGTGGTGTTTG ICTCGTGGTGTTTG ICTCGTGGTGTTTG ICTCGTGGTGTTTG ICTCGTGGTGTTTG ICTCGTGGTGTTTG	AACAGAGATO AACAGAGATO AACAGAGATO AACAGAGATO AACAGAGATO AACAGAGATO AACAGAGATO AACAGAGATO AACAGAGATO	GCATTTCGAGG GCATTTCGAGG GCATTTCGAGG GCATTTCGAGG GCATTTCGAGG GCATTTCGAGG GCATTTCGAGG GCATTTCGAGG GCATTTCGAGG GCATTTCGAGG	BAGGACGTCAA BAGGACGTCAA BAGGACGTCAA BAGGACGTCAA BAGGACGTCAA BAGGACGTCAA BAGGACGTCAA BAGGACGTCAA BAGGACGTCAA	ATCTGTCAGTC ATCTGTCAGTC ATCTGTCAGTC ATCTGTCAGTC ATCTGTCAGTC ATCTGTCAGTC ATCTGTCAGTC ATCTGTCAGTC ATCTGTCAGTC ATCTGTCAGTC	AGTTGC AGTTGC AGTTGC AGTTGC AGTTGC AGTTGC AGTTGC AGTTGC AGTTGC AGTTGC
		190	200	210	220	230	240
		GGCAACGGGAAGCT	TAGACAGTG	GCTGATCGAT	AGATTGACAG	CAAGAGCTAC	CIGGGC
IRF4b-5.2F_H01_2012-12-12_Multi(47>688) IRF4b-5.3F_A03_2012-12-12_Multi(52>693) IRF4b-5.1R_G07_2012-12-12_Multi(79>720) IRF4b-5.1R_G07_2012-12-12_Multi(75>734) IRF4b-5.3R_A09_2012-12-12_Multi(55>719) IRF4b-5.3F_H01_2012-12-12_Multi(87>728) IRF4b-0RF2_F_B07_2013-07-22_Multi(566) IRF4b-ORF1_F_A07_2013-07-22_Mul(45>672) IRF4b-ORF1_F_A07_2013-07-22_Mul(47>674) IRF4b-ORF1_R_A08_2013-07-22_Mul(7>701)	1111111111	GGCAACGGAAGCT GGCAACGGAAGCT GGCAACGGAAGCT GGCAACGGAAGCT GGCAACGGAAGCT GGCAACGGAAGCT GGCAACGGAAGCT GGCAACGGAAGCT GGCAACGGAAGCT GGCAACGGAAGCT	TAGACAGTGO TAGACAGTGO TAGACAGTGO TAGACAGTGO TAGACAGTGO TAGACAGTGO TAGACAGTGO TAGACAGTGO TAGACAGTGO TAGACAGTGO	SCTGATCGATC SCTGATCGATC SCTGATCGATC SCTGATCGATC SCTGATCGATC SCTGATCGATC SCTGATCGATC SCTGATCGATC SCTGATCGATC SCTGATCGATC	CAGATTGACAG CAGATTGACAG CAGATTGACAG CAGATTGACAG CAGATTGACAG CAGATTGACAG CAGATTGACAG CAGATTGACAG CAGATTGACAG	CAAGAGCTAC CAAGAGCTAC CAAGAGCTAC CAAGAGCTAC CCAAGAGCTAC CCAAGAGCTAC CCAAGAGCTAC CCAAGAGCTAC CCAAGAGCTAC CCAAGAGCTAC	CTGGGC CTGGGC CTGGGC CTGGGC CTGGGC CTGGGC CTGGGC CTGGGC CTGGGC
		250	260	270	280	290	300
		TTGGTTTGGGAGAA	TGTGGAGAAA	ATCCATTTTCA	AGGATACCGTO	GAAGCATGCG	GGCAAA
IRF4b-5.2F H01 2012-12-12 Multi (47>688) IRF4b-5.3F_A03_2012-12-12_Multi (52>693) IRF4b-5.2R_H07_2012-12-12_Multi (79>720) IRF4b-5.1R_G07_2012-12-12_Multi (79>734) IRF4b-5.1F_G01_2012-12-12_Multi (59>719) IRF4b-5.3R_A09_2012-12-12_Multi (59>728) IRF4b-5.2F_H01_2012-12-11_Multi (1>>66) IRF4b-0RF1F_B07_2013-07-22_Mul (4>672) IRF4b-0RF1F_A08_2013-07-22_Mul (4>674) IRF4b-0RF1F_A08_2013-07-22_Mul (74>701)	111111111	TTGGTTTGGGAGAA TTGGTTTGGGAGAA TTGGTTTGGGAGAA TTGGTTTGGGAGAA TTGGTTTGGGAGAA TTGGTTTGGGAGAA TTGGTTTGGGAGAA TTGGTTTGGGAGAA TTGGTTTGGGAGAA	TGTGGAGAAA TGTGGAGAAA TGTGGAGAAA TGTGGAGAAA TGTGGAGAAA TGTGGAGAAAA TGTGGAGAAAA TGTGGAGAAAA TGTGGAGAAAA	ATCCATTTICE ATCCATTTICE ATCCATTTICE ATCCATTTICE ATCCATTTICE ATCCATTTICE ATCCATTTICE ATCCATTTICE ATCCATTTICE ATCCATTTICE ATCCATTTICE	AGGATACOGTO AGGATACOGTO AGGATACOGTO AGGATACOGTO AGGATACOGTO AGGATACOGTO AGGATACOGTO AGGATACOGTO AGGATACOGTO	BGAAGCATGOG BGAAGCATGOG BGAAGCATGOG BGAAGCATGOG BGAAGCATGOG BGAAGCATGOG BGAAGCATGOG BGAAGCATGOG BGAAGCATGOG	GGCAAA GGCAAA GGCAAA GGCAAA GGCAAA GGCAAA GGCAAA GGCAAA GGCAAA

		310 320 330 340 350 360
		CAAGATTACAACAGAGATGAGGATGCTGCGCTTTTCAAGGCCTGGGCACTTTTCAAGGGC
IRF4b-5.2F_H01_2012-12-12_Multi(47>688) IRF4b-5.3F_A03_2012-12-12_Multi(52>693) IRF4b-5.2R_H07_2012-12-12_Multi(75>734) IRF4b-5.1R_G07_2012-12-12_Multi(75>734) IRF4b-5.3R_A09_2012-12-12_Multi(59>719) IRF4b-5.3F_H01_2012-12-11_Multi(87>728) IRF4b-0RF2F_B07_2013-07-22_Mul(45>672) IRF4b-0RF1F_A07_2013-07-22_Mul(47>674) IRF4b-0RF1_R_A08_2013-07-22_Mul(74>701)	111111111	CAAGATTACAACAGAGATGAGGATGCTGCGCTTTTCAAGGCCTGGGCACTTTTCAAGGGC CAAGATTACAACAGAGAATGAGGATGCTGCGCTTTTCAAGGCCTGGGCACTTTTCAAGGGC CAAGATTACAACAGAGATGAGGATGCTGCGCTTTTCAAGGCCTGGGCACTTTTCAAGGGC CAAGATTACAACAGAGATGAGGATGCTGCGCTTTTCAAGGCCTGGGCACTTTTCAAGGGC CAAGATTACAACAGAGATGAGGATGCTGCGCTTTTCAAGGCCTGGGCACTTTTCAAGGGC CAAGATTACAACAGAGATGAGGATGCTGCGCTTTTCAAGGCCTGGGCACTTTTCAAGGGC CAAGATTACAACAGAGAATGAGGATGCTGCGCTTTTCAAGGCCTGGCCACTTTTCAAGGGC CAAGATTACAACAGAGAATGAGGATGCTGCGCTTTTCAAGGCCTGGCCACTTTTCAAGGGC CAAGATTACAACAGAGAATGAGGATGCTGCGCTTTTCAAGGCCTGGCCACTTTTCAAGGGC CAAGATTACAACAGAGAATGAGGATGCTGCGCTTTTCAAGGCCTGGCCACTTTTCAAGGGC CAAGATTACAACAGAGAATGAGGATGCTGCGCTTTTCAAGGCCTGGCCACTTTTCAAGGGC CAAGATTACAACAGAGAATGAGGATGCTGCGCTTTTCAAGGCCTGGCCACTTTTCAAGGGC CAAGATTACAACAGAGAATGAGGATGCTGCGCTTTTCAAGGCCTGGGCACTTTTCAAGGGC
		370 380 390 400 410 420
		AAATACAAAGAAGGTGTGGACAAACCGGACCCCCCACATGGAAAACCCGTCTACGGTGT
IRF4b-5.2F H01_2012-12-12_Multi(47>688) IRF4b-5.3F_A03_2012-12-12_Multi(52>693) IRF4b-5.1R_G07_2012-12-12_Multi(75>734) IRF4b-5.1R_G07_2012-12-12_Multi(75>734) IRF4b-5.3R_A09_2012-12-12_Multi(55>719) IRF4b-5.2F_H01_2012-12-12_Multi(87>728) IRF4b-0.2F_B07_2013-07-22_Multi(45>672) IRF4b-0RF1_F_A07_2013-07-22_Mul(45>672) IRF4b-0RF1_F_A08_2013-07-22_Mul(47>674) IRF4b-0RF1_R_A08_2013-07-22_Mul(74>701)	111111111	AAATACAAAGAAGGTGTGGACAAACOGGACCCCCCCACATGGAAAACCCGTCTACGGTGT AAATACAAAGAAGGTGTGGACAAACOGGACCCCCCCACATGGAAAACCCGTCTACGGTGT AAATACAAAGAAGGTGTGGACAAACOGGACCCCCCCACATGGAAAACCCGTCTACGGTGT AAATACAAAGAAGGTGTGGACAAACOGGACCCCCCCACATGGAAAACCCGTCTACGGTGT AAATACAAAGAAGGTGTGGACAAACOGGACCCCCCCACATGGAAAACCCGTCTACGGTGT AAATACAAAGAAGGTGTGGACAAACOGGACCCCCCCACATGGAAAACCCGTCTACGGTGT AAATACAAAGAAGGTGTGGACAAACOGGACCCCCCCACATGGAAAACCCGTCTACGGTGT AAATACAAAGAAGGTGTGGACAAACOGGACCCCCCCACATGGAAAACCCGTCTACGGTGT AAATACAAAGAAGGTGTGGACAAACOGGACCCCCCCACATGGAAAACCCGTCTACGGTGT AAATACAAAGAAGGTGTGGACAAACOGGACCCCCCCACATGGAAAACCCGTCTACGGTGT AAATACAAAGAAGGTGTGGACAAACOGGACCCCCCCACATGGAAAACCCGTCTACGGTGT AAATACAAAGAAGGTGTGGACAAACOGGACCCCCCCACATGGAAAACCCGTCTACGGTGT AAATACAAAGAAGGTGTGGACAAACOGGACCCCCCCACATGGAAAACCCGTCTACGGTGT
		430 440 450 460 470 480
		GCTCTGAACAAAAGCAACGACTTTGACGAGCTGGTGGACAGAAGCCAGCTGGACATCACC
IRF4b-5.2F_H01_2012-12-12_Multi(47>688) IRF4b-5.3F_A03_2012-12-12_Multi(52>693) IRF4b-5.1R_G07_2012-12-12_Multi(79>720) IRF4b-5.1R_G07_2012-12-12_Multi(75>734) IRF4b-5.3R_A09_2012-12-12_Multi(59>719) IRF4b-5.3R_A09_2012-12-12_Multi(87>728) IRF4b-0.3F_H01_2012-12-11_Multiu(1>566) IRF4b-0RF1F_B07_2013-07-22_Mul(45>672) IRF4b-0RF1F_A07_2013-07-22_Mul(47>674) IRF4b-0RF1_R_A08_2013-07-22_Mul(74>701)	1111111111	GCTCTGAACAAAAGCAACGACTTTGACGAGCTGGTGGACAGAAGCCAGCTGGACATCACC GCTCTGAACAAAAGCAACGACTTTGACGAGCTGGTGGACAGAAGCCAGCTGGACATCACC GCTCTGAACAAAAGCAACGACTTTGACGAGCTGGTGGACAGAAGCCAGCTGGACATCACC GCTCTGAACAAAAGCAACGACTTTGACGAGCTGGTGGACAGAAGCCAGCTGGACATCACC GCTCTGAACAAAAGCAACGACTTTGACGAGCTGGTGGACAGAAGCCAGCTGGACATCACC GCTCTGAACAAAAGCAACGACTTTGACGAGCTGGTGGACAGAAGCCAGCTGGACATCACC GCTCTGAACAAAAGCAACGACTTTGACGAGCTGGTGGACAGAAGCCAGCTGGACATCACC GCTCTGAACAAAAGCAACGACTTTGACGAGCTGGTGGACAGAAGCCAGCTGGACATCACC GCTCTGAACAAAAGCAACGACTTTGACGAGCTGGTGGACAGAAGCCAGCTGGACATCACC GCTCTGAACAAAAGCAACGACTTTGACGAGCTGGTGGACAGAAGCCAGCTGGACATCACC GCTCTGAACAAAAGCAACGACTTTGACGAGCTGGTGGACAGAAGCCAGCTGGACATCACC GCTCTGAACAAAAGCAACGACTTTGACGAGCTGGTGGACAGAAGCCAGCTGGACATCACC
		490 500 510 520 530 540
		GAACCCTACAAAGTCTACAGAATCATCCCCCGAGGGGGTCAAAAGAGGCAAGCCCATCAAT
IRF4b-5.2F_H01_2012-12-12_Multi(47>688) IRF4b-5.3F_A03_2012-12-12_Multi(52>693) IRF4b-5.2R_H07_2012-12-12_Multi(79>720) IRF4b-5.1R_G07_2012-12-12_Multi(75>734) IRF4b-5.3R_A09_2012-12-12_Multi(59>719) IRF4b-5.3R_A09_2012-12-12_Multi(59>728) IRF4b-0RF2_F_B07_2013-07-22_Mul(45>672) IRF4b-0RF1_F_A07_2013-07-22_Mul(47>674) IRF4b-0RF1_R_A08_2013-07-22_Mul(7>701)	111111111	GAACCCTACAAAGTCTACAGAATCATCCCCCGAGGGGGTCAAAAGAGGCAAGCCCATCAAT GAACCCTACAAAGTCTACAGAATCATCCCCCGAGGGGGTCAAAAGAGGCAAGCCCATCAAT GAACCCTACAAAGTCTACAGAATCATCCCCCGAGGGGGTCAAAAGAGGCAAGCCCATCAAT GAACCCTACAAAGTCTACAGAATCATCCCCCGAGGGGGTCAAAAGAGGCAAGCCCATCAAT GAACCCTACAAAGTCTACAGAATCATCCCCCGAGGGGGTCAAAAGAGGCAAGCCCATCAAT GAACCCTACAAAGTCTACAGAATCATCCCCCGAGGGGGTCAAAAGAGGCAAGCCCATCAAT GAACCCTACAAAGTCTACAGAATCATCCCCGAGGGGGTCAAAAGAGGCAAGCCCATCAAT GAACCCTACAAAGTCTACAGAATCATCCCCGAGGGGGTCAAAAGAGGCAAGCCCATCAAT GAACCCTACAAAGTCTACAGAATCATCCCCGAGGGGGTCAAAAGAGGCAAGCCCATCAAT GAACCCTACAAAGTCTACAGAATCATCCCCGAGGGGGTCAAAAGAGGCAAGCCCATCAAT GAACCCTACAAAGTCTACAGAATCATCCCCGAGGGGGTCAAAAGAGGCAAGCCCATCAAT GAACCCTACAAAGTCTACAGAATCATCCCCCGAGGGGGTCAAAAGAGGCAAGCCCATCAAT GAACCCTACAAAGTCTACAGAATCATCCCCCGAGGGGGTCAAAAGAGGCAAGCCCATCAAT
		550 560 570 580 590 600
		AAAGTGTCTGCAATATTCAGATGGCTTTCGTCATGAGAAGACACATTTATTGTACAGATG
IRF4b-5.2F_H01_2012-12-12_Multi(47>688) IRF4b-5.3F_A03_2012-12-12_Multi(52>693) IRF4b-5.2R_H07_2012-12-12_Multi(59>720) IRF4b-5.1R_G07_2012-12-12_Multi(75>734) IRF4b-5.1F_G01_2012-12-12_Multi(59>719) IRF4b-5.3R_A09_2012-12-12_Multi(87>728) IRF4b-5.2F_H01_2012-12-11_Multi(1>566) IRF4b-0RF1_F_B07_2013-07-22_Mul(45>674) IRF4b-0RF1_R_A08_2013-07-22_Mul(74>701)	111111111	AAAGTGTCTGCAATATTCAGATGGCTTTCGTCATGAGAAGACACATTTATTGTACAGATG AAAGTGTCTGCAATATTCAGATGGCTTTCGTCATGAGAAGACACATTTATTGTACAGATG AAAGTGTCTGCAATATTCAGATGGCTTTCGTCATGAGAAGACACATTTATTGTACAGATG AAAGTGTCTGCAATATTCAGATGGCTTTCGTCATGAGAAGACACATTTATTGTACAGATG AAAGTGTCTGCAATATTCAGATGGCTTTCGTCATGAGAAGACACATTTATTGTACAGATG AAAGTGTCTGCAATATTCAGATGGCTTTCGTCATGAGAAGACACATTTATTGTACAGATG AAAGTGTCTGCAATATTCAGATGGCTTTCGTCATGAGAAGACACATTTATTGTACAGATG AAAGTGTCTGCAATATTCAGATGGCTTTCGTCATGAGAAGACACATTTATTGTACAGATG AAAGTGTCTGCAATATTCAGATGGCTTTCGTCATGAGAAGACACATTTATTGTACAGATG AAAGTGTCTGCAATATTCAGATGGCTTTCGTCATGAGAAGACACATTTATTGTACAGATG AAAGTGTCTGCAATATTCAGATGGCTTTCGTCATGAGAAGACACATTTATTGTACAGATG AAAGTGTCTGCAATATTCAGATGGCTTTCGTCATGAGAAGACACATTTATTGTACAGATG AAAGTGTCTGCAATATTCAGATGGCTTTCGTCATGAGAAGACACATTTATTGTACAGATG AAAGTGTCTGCAATATTCAGATGGCTTTCGTCATGAGAAGACACATTTATTGTACAGATG

550 560 570 580 590 600 AAAGTGTCTGCAATATTCAGATGGCTTTCGTCATGAGAAGACACATTTATTGTACAGATG IRF4b-3.4R_G09_2012-12-12_Multi(76>303) IRF4b-3.2F_E03_2012-12-12_Multi(57>293) IRF4b-3.3F_F03_2012-12-12_Multi(55>284) TTATTGTACAGATG TTATTGTACAGATG ---TTA TTOTA CA CA TO

IRF4b-3.4F_G03_2012-12-12_Multi(55>282)	-	TATIGIACAGAIG
IRF4b-3.2R_E09_2012-12-12_Multi(75>311)	-	TATTGTACAGATG
IRF46-3.3R_F09_2012-12-12_Mult1(82>311)	-	TATTGTACAGATG
		610 620 630 640 650 660
		TGCAGACTTCCCTGATTGCGTGCAGTTACACACATACTCACACACTCACACGTACGCACA
IRF4b-5.2F_H01_2012-12-12_Mult1(47>688)	_	TGCAGACTTCC
IRF4D-5.3F_AU3_2012-12-12_Mult1(52>693)		TGCAGACTTCC
TPF4b=5.2K_n07_2012=12=12_Multi(75>720)	-	TECREACTICC
IRF4b-5.1F G01 2012-12-12 Multi(59>719)		TGCAGACITICC
IRF4b-5.38 A09 2012-12-12 Multi(87>728)	-	TGCAGACTTCC
IRF4b-5.2F H01 2012-12-11 Multiu(1>566)		TGCAGACTTCC
IRF4b-ORF2 F B07 2013-07-22 Mul(45>672)		TGCAGACTTCCCTGATTGCGTGCAGTTACACACATACTCACACACTCACCACGTACGCACA
IRF4b-ORF1 F A07 2013-07-22 Mul(47>674)		TGCAGACTTCCCTGATTGCGTGCAGTTACACACATACTCACACACTCACACGTACGCACA
IRF4b-ORF1_R_A08_2013-07-22_Mul(74>701)	-	TGCAGACTTCCCTGATTGCGTGCAGTTACACACATACTCACACACTCACACGTACGCACA
IRF4b-3.4R_G09_2012-12-12_Multi(76>303)		TGCAGACTTCCCTGATTGCGTGCAGTTACACACATACTCACACACTCACACGTACGCACA
IRF4b-3.2F_E03_2012-12-12_Multi(57>293)	-	TGCAGACTTCCCTGATTGCGTGCAGTTACACACATACTCACACACTCACACGTACGCACA
IRF4b-3.3F_F03_2012-12-12_Multi(55>284)	-	TGCAGACTTCCCTGACTGCGTGCAGTTACACACATACTCACACACTCACACGTACGCACA
IRF4b-3.4F_G03_2012-12-12_Mult1(55>282)	-	TGCAGACTTCCCTGATTGCGTGCAGTTACACACATACTCACACACTCACACGTACGCACA
IRF4b-3.2R_E09_2012-12-12_Mult1(75>311)	_	TGCAGACTTCCCTGATTGCGTGCAGTTACACACATACTCACACACTCACACGTACGCACA
1RF4D-3.3R_F09_2012-12-12_Mult1(82>311)	-	TGCAGACTTCCCTGACTGCGTGCAGTTACACACATACTCACACACTCACACGTACGCACA
		670 680 690 700 710 720
		CATACCCACACTGCAGCGTGACAAACCCCGCCAACTCTGTGCTCATGGTTAAATCTTT
		CATACCACACACIOCADCOIGACAAADCOGOGCAACICIOIGOICAIGOITAAAICITI
IRF4b-ORF2_F_B07_2013-07-22_Mul(45>672)		CATACCCACACTGCAGCGTGACAAAGCGGGGGCAACTCTGTGGTCATGGTTAAATCTTT
IRF4b-ORF1_F_A07_2013-07-22_Mul(47>674)		CATACCCACACACTGCAGCGTGACAAAGCGGGGGCAACTCTGTGGTCATGGTTAAATCTTT
IRF4b-ORF1_R_A08_2013-07-22_Mul(74>701)	-	CATACCCACACACTGCAGCGTGACAAAGCGGGGGCAACTCTGTGGTCATGGTTAAATCTTT
IRF4b-3.4R_G09_2012-12-12_Mult1(76>303)	-	CATACCCACACACTGCAGCGTGACAAAGCGGGGGCAACTCTGTGGTCATGGTTAAATCTTT
IRF4D-3.2F_EU3_2012-12-12_Mult1(5/>293)	_	CATACCCACACCIGCAGCATGACAAAGCGGGGGCAACICIGIGGICATGGITAAAICITI
TRE45 2 4F CO2 2012 12 12 Multi (55/204)	_	
IRF4b-3 2R F09 2012-12-12 Multi(35/202)	-	CATACCCACACCIGLAGCGIGACAAAGCGGGGGCAACICIGIGGICAIGGIIAAAICIII CATACCCACACACTGCACCATGACAAAGCGGGGGCAACICIGIGGICAIGGIIAAAICIII
IRF4b-3.3R F09 2012-12-12 Multi(82>311)		CATACCCACACACIGCASCATGACAAAGCCGGGGCAACICIGIGGICAIGGIIAAAICIII CATACTCACACACIGCGGGGGCAAGCGGGGGCAACICIGIGGICAIGGIIAAAICIII
` ` ` `		
		730 740 750 760 770 780
		CCAAGGCGTTCACACACTGACGTGAAAACACCCCATAGAGACACCGCGAACACTTTACAA
IRF4b-ORF2 F B07 2013-07-22 Mul(45>672)		CCAAGGCGTTCACACACA
IRF4b-ORF1 F A07 2013-07-22 Mul(47>674)		CCAAGGCGTTCACACACA
IRF4b-ORF1_R_A08_2013-07-22_Mul(74>701)	-	CCAAGGCGTTCACACAC
IRF4b-3.4R_G09_2012-12-12_Multi(76>303)		CCAAGGCGTTCACACACTGACGTGAAAACACCCCATAGAGACACCGCGAACACTTTACAA
IRF4b-3.2F_E03_2012-12-12_Multi(57>293)	-	CCAAGGCGTTCACACACTGACGTGAAAACACCCCATAGAGACACACGCGAACACTTTACAA
IRF4b-3.3F_F03_2012-12-12_Multi(55>284)	-	CCAAGGCGTTCACACACTGACGTGAAAACACCCCATAGAGACACACGCGAACACTTTACAA
IRF4b-3.4F_G03_2012-12-12_Multi(55>282)		CCAAGGCGTTCACACACTGACGTGAAAACACCCCATAGAGACACCGCGAACACTTTACAA
IRF4b-3.2R_E09_2012-12-12_Multi(75>311)	-	CCAAGGCGTTCACACACTGACGTGAAAACACCCCATAGAGACACCGCGAACACTTTACAA
IRF4b-3.3R_F09_2012-12-12_Multi(82>311)	-	CCAAGGCGTTCACACACTGACGTGAAAACACCCCATAGAGACACACGCGAACACTTTACAA
		790 800
IRF4b-3.4R_G09_2012-12-12_Multi(76>303)	-	AAAAAAAAAA
IRF4b-3.2F_E03_2012-12-12_Multi(57>293)	-	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
IRF4b-3.3F_F03_2012-12-12_Multi(55>284)	-	AAAAAAAAAA
IKF4b-3.4F_G03_2012-12-12_Multi(55>282)	-	дараарара
IRF4D-3.2R_E09_2012-12-12_Multi(75>311)	_	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
1RF4D-3.3R_F09_2012-12-12_Mult1(82>311)	-	ΑΑΑΑΑΑΑΑΑΑ

Appendix 3: Assembly of Atlantic cod *Irf4b* RACE and ORF PCR sequencing reads. Sequencing methods are described in section 2.1.2. Sequence data was assembled using Lasergene SeqMan Pro software (DNASTAR). Consensus sequence is indicated between horizontal lines. Note that naming appears incorrect as *Irf4a* and *Irf4b* names were switched after phylogenetic analysis based on similarity to zebrafish *Irf4* paralogues.

		10 20	30	40	50	60
		ATCTGATCTGGTGTCGAATTTCGGA	AGTTTTTTG	GTAACTTATTI	TTGTTGAAAG	TAAAA
IRF4a-5.3R_C07_2012-12-12_Multi(89>794) IRF4a-5.3F_C01_2012-12-12_Multi(51>756) IRF4a-5.2F_B01_2012-12-12_Multi(53>729) IRF4a-5.2R_B07_2012-12-12_Multi(84>760) IRF4a-5.1F_A01_2012-12-12_Multi(82>727) IRF4a-5.1R_A07_2012-12-12_Multi(86>760)	11111	ATCTGATCTGGTGTGGAATTTCGGA TGATCTGGTGTGGAATTTCGGA ATCTGGTGTGGAATTTCGGA ATCTGGTGTGGAATTTCGGA CTGGTGTGGAATTTCGGA CTGGTGTCGAATTTCGGA	AGTTTTTTG AGTTTTTTG AGTTTTTTG AGTTTTTTG AGTTTTTTG AGTTTTTTG AGTTTTTTG	СТААСТТАТТІ СТААСТТАТТІ СТААСТТАТТІ СТААСТТАТТІ СТААСТТАТТІ СТААСТТАТТІ СТААСТТАТТІ	TTGTTGAAAG TTGTTGAAAG TTGTTGAAAG TTGTTGAAAG TTGTTGAAAG TTGTTGAAAG	STAAAA STAAAA STAAAA STAAAA STAAAA STAAAA
		70 80 TCATTTATTGTGTTTGACAGTGTAG	90 l AGCATTAAC	100 LL.ATTGGAATTG2	110 ATTGCTCGATI	120 TAAGAA
IRF4a-5.3R_C07_2012-12-12_Multi(89>794) IRF4a-5.3F_C01_2012-12-12_Multi(51>756) IRF4a-5.2F_B01_2012-12-12_Multi(53>729) IRF4a-5.2R_B07_2012-12-12_Multi(84>760) IRF4a-5.1F_A01_2012-12-12_Multi(52>727) IRF4a-5.1R_A07_2012-12-12_Multi(86>760)	11111	TCATTTATTGTGTTTGACAGTGTAG TCATTTATTGTGTTTGACAGTGTAG TCATTTATTGTGTTTGACAGTGTAG TCATTTATTGTGTTTGACAGTGTAG TCATTTATTGTGTTTGACAGTGTAG TCATTTATTGTGTTTGACAGTGTAG	AGCATTAAC: AGCATTAAC: AGCATTAAC: AGCATTAAC: AGCATTAAC: AGCATTAAC:	ATTGGAATTG7 ATTGGAATTG7 ATTGGAATTG7 ATTGGAATTG7 ATTGGAATTG7 ATTGGAATTG7	ATTGCTCGATI ATTGCTCGATI ATTGCTCGATI ATTGCTCGATI ATTGCTCGATI ATTGCTCGATI	TAAGAA TAAGAA TAAGAA TAAGAA TAAGAA TAAGAA
		130 140	150	160 LL	170	180
IRF4a-5.3R_C07_2012-12-12_Multi(89>794) IRF4a-5.3F_C01_2012-12-12_Multi(51>756) IRF4a-5.2F_B01_2012-12-12_Multi(53>729) IRF4a-5.2R_B07_2012-12-12_Multi(84>760) IRF4a-5.1F_A01_2012-12-12_Multi(82>727) IRF4a-5.1F_A07_2012-12-12_Multi(86>760) IRF4a-ORF6F_B05_2013-07-22_Mult(1>942) IRF4a-ORF2_F_F03_2013-07-22_Mult(1>942) IRF4a-ORF3F_G03_2013-07-22_Mult(1>904) IRF4a-ORF4F_H03_2013-07-22_Mult(1>904) IRF4a-ORF5_F_A05_2013-07-22_Mult(5>901)	11111111111	ATTARACARARTARATATARCARCAG ATARACARARTARATATARCARCAG ATARACARARTARATATARCARCAG ATARACARARTARATATARCARCAG ATARACARARTARATATARCARCAG ATARACARARTARATATARCARCAG ATARACARARTARATATARCARCAG	AAAGGTTCT: AAAGGTTCT: AAAGGTTCT: AAAGGTTCT: AAAGGTTCT: AAAGGTTCT:	TCTGGGAACTI TCTGGGAACTI TCTGGGAACTI TCTGGGAACTI TCTGGGAACTI TCTGGGAACTI	TTACTGACGGI TTACTGACGGI TTACTGACGGI TTACTGACGGI TTACTGACGGI TTACTGACGGI TTACTGACGGI TTGACGGI TGACGGI TGACGGI TGACGGI	ICAGAT ICAGAT ICAGAT ICAGAT ICAGAT ICAGAT ICAGAT ICAGAT ICAGAT ICAGAT
		190 200 GAACCTCGAAGCGGATTACACAGCG	210 ACGGGGAGC	220 Ll	230 AAAACTACGI	240 L ICAATG
IRF4a-5.3R_C07_2012-12-12_Multi(89>794) IRF4a-5.3F_C01_2012-12-12_Multi(51>756) IRF4a-5.2F_B01_2012-12-12_Multi(53>729) IRF4a-5.2R_B07_2012-12-12_Multi(84>760) IRF4a-5.1R_A07_2012-12-12_Multi(82>727) IRF4a-0RF6_F_B05_2013-07-22_Mult(1>905) IRF4a-0RF2_F_F03_2013-07-22_Mult(1>905) IRF4a-0RF5_F_G03_2013-07-22_Mult(1>904) IRF4a-0RF4_F_H03_2013-07-22_Mult(1>904) IRF4a-0RF5_F_A05_2013-07-22_Mult(1>904)	11111111111	GAACCTCGAAGCGGATTACACAGOG GAACCTCGAAGCGGATTACACAGOG GAACCTCGAAGCGGATTACACAGOG GAACCTCGAAGCGGATTACACAGOG GAACCTCGAAGCGGATTACACAGOG GAACCTCGAAGCGGATTACACAGOG GAACCTCGAAGCGGATTACACAGOG GAACCTCGAAGCGGATTACACAGOG GAACCTCGAAGCGGATTACACAGOG GAACCTCGAAGCGGATTACACAGOG GAACCTCGAAGCGGATTACACAGOG GAACCTCGAAGCGGATTACACAGOG	ACGGGAGCI ACGGGGAGCI ACGGGGAGCI ACGGGGAGCI ACGGGGAGCI ACGGGGAGCI ACGGGGAGCI ACGGGGAGCI ACGGGGAGCI ACGGGGAGCI ACGGGGAGCI	AGCGGGAACCO AGCGGGAACCO AGCGGGAACCO AGCGGGAACCO AGCGGGAACCO AGCGGGAACCO AGCGGGAACCO AGCGGGAACCO AGCGGGAACCO AGCGGGAACCO	SAAACTACGI SAAACTACGI SAAACTACGI SAAAACTACGI SAAAACTACGI SAAAACTACGI SAAAACTACGI SAAAACTACGI SAAAACTACGI SAAAACTACGI SAAAACTACGI	ICAATG ICAATG ICAATG ICAATG ICAATG ICAATG ICAATG ICAATG ICAATG ICAATG
		250 260	270	280	290	300
		GUTUATAGATUAGGTGGACAGTGGG	ACGTATCCC	GGTCTGATTTG	GAGAACGAC	GAGAA
IRF4a-5.3R_C07_2012-12-12_Multi(89>794) IRF4a-5.3F_C01_2012-12-12_Multi(51>756) IRF4a-5.2F_B01_2012-12-12_Multi(53>729) IRF4a-5.2R_B07_2012-12-12_Multi(84>760) IRF4a-5.1F_A01_2012-12-12_Multi(84>760) IRF4a-0RF6_F_B05_2013-07-22_Mult(1>905) IRF4a-0RF6_F_G03_2013-07-22_Mult(1>904) IRF4a-0RF3_F_G03_2013-07-22_Mult(1>904) IRF4a-0RF4_F_H03_2013-07-22_Mult(1>904) IRF4a-0RF4_F_H03_2013-07-22_Mult(1>904) IRF4a-0RF5_F_B05_2013-07-22_Mult(1>904)	1111111111	GCTCATAGATCAGGTGGACAGTGGG GCTCATAGATCAGGTGGACAGTGGG GCTCATAGATCAGGTGGACAGTGGG GCTCATAGATCAGGTGGACAGTGGG GCTCATAGATCAGGTGGACAGTGGG GCTCATAGATCAGGTGGACAGTGGG GCTCATAGATCAGGTGGACAGTGGG GCTCATAGATCAGGTGGACAGTGGG GCTCATAGATCAGGTGGACAGTGGG GCTCATAGATCAGGTGGACAGTGGG GCTCATAGATCAGGTGGACAGTGGG	ACGTATCCCI ACGTATCCCI ACGTATCCCI ACGTATCCCI ACGTATCCCI ACGTATCCCI ACGTATCCCI ACGTATCCCI ACGTATCCCI ACGTATCCCI ACGTATCCCI	GGTCTGATTTO GGTCTGATTTO GGTCTGATTTO GGTCTGATTTO GGTCTGATTTO GGTCTGATTTO GGTCTGATTTO GGTCTGATTTO GGTCTGATTTO GGTCTGATTTO	GGAGAACGAC GGAGAACGAC GGAGAACGAC GGGAGAACGAC GGGAGAACGAC GGGAGAACGAC GGGAGAACGAC GGGAGAACGAC GGGAGAACGAC GGGAGAACGAC	CGAGAA CGAGAA CGAGAA CGAGAA CGAGAA CGAGAA CGAGAA CGAGAA

		310 320 330 340 350 360
		GAGCATCTTCAGGATACCATGGAAACACGCGGGGAAGCAGGACTATAACAGAGATGAGGA
TREAL 5 OF GOD ONDO AD AD 10-1-4 (00- 504)		
IRF4a-5.3F_C01_2012-12-12_Multi(51>756) IRF4a-5.2F_B01_2012-12-12_Multi(51>756) IRF4a-5.2R_B07_2012-12-12_Multi(53>729) IRF4a-5.1F_A01_2012-12-12_Multi(84>760) IRF4a-0RF6_F_B05_2013-07-22_Mult(1>902) IRF4a-0RF2_F_F03_2013-07-22_Mult(1>902) IRF4a-0RF3_F_G03_2013-07-22_Mult(1>902) IRF4a-0RF4_F_H03_2013-07-22_Mult(1>904) IRF4a-0RF5_F_A05_2013-07-22_Mult(1>904) IRF4a-0RF5_F_A05_2013-07-22_Mult(1>904) IRF4a-0RF5_F_A05_2013-07-22_Mult(1>904) IRF4a-0RF5_F_A05_2013-07-22_Mult(1>904) IRF4a-0RF5_F_A05_2013-07-22_Mult(1>904) IRF4a-0RF5_F_A05_2013-07-22_Mult(1>904) IRF4a-5.3F_C01_2012-12-12_Multi(89>794) IRF4a-5.3F_C01_2012-12-12_Multi(1>756) IRF4a-5.2F_B01_2012-12-12_Multi(1>729) IRF4a-5.2F_B07_2012-12-12_Multi(1>729)		GAGCATCTTCAGGATACCATGGAAACACGCGGGAAGCAGGACTATAACAGAGATGAGGA GAGCATCTTCAGGATACCATGGAAACACGCGGGGAAGCAGGACTATAACAGAGATGAGGA GAGCATCTTCAGGATACCATGGAAACACGCGGGGAAGCAGGACTATAACAGAGATGAGGA GAGCATCTTCAGGATACCATGGAAACACGCGGGGAAGCAGGACTATAACAGAGATGAGGA GAGCATCTTCAGGATACCATGGAAACACGCGGGGAAGCAGGACTATAACAGAGATGAGGA GAGCATCTTCAGGATACCATGGAAACACGCGGGGAAGCAGGACTATAACAGAGATGAGGA GAGCATCTTCAGGATACCATGGAAACACGCGGGGAAGCAGGACTATAACAGAGATGAGGA GAGCATCTTCAGGATACCATGGAAACACGCGGGGAAGCAGGACTATAACAGAGATGAGGA GAGCATCTTCAGGATACCATGGAAACACGCGGGGAAGCAGGACTATAACAGAGATGAGGA GAGCATCTTCAGGATACCATGGAAACACGCGGGGAAGCAGGACTATAACAGAGATGAGGA GAGCATCTTCAGGATACCATGGAAACACGCGGGGAAGCAGGACTATAACAGAGATGAGGA GAGCATCTTCAGGATACCATGGAAACACGCGGGGAAGCAGGACTATAACAGAGATGAGGA GAGCATCTTCAGGATACCATGGAAACACGCGGGGAAGCAGGACTATAACAGAGATGAGGA GAGCATCTTCAGGATACCATGGAAACACGCGGGGAAGCAGGACTATAACAGAGATGAGGA GAGCATCTTCAGGATACCATGGAAACACGCGGGGAAGCAGGACTATAACAGAGATGAGGA GAGCATCTTCCAGGATACCATGGAAACACGCGGGGAAGCAGGACTATAACAGAGATGAGGA GAGCATCTTCCAGGATACCATGGAAACCACGCGGGGAAGCAGGACTATAACAGAGATGAGGA CACCGCGCGCTTTCCAAGGCATGGGCACTGTTTAAGGGCAAGTTCGGGGAGGGTATCGACAA CGCCGCGCCTTTTCCAAGGCATGGGCACTGTTTAAGGGCAAGTTTCGGGAGGGTATCGACAA CGCCGCGCCTTTTCCAAGGCATGGGCACTGTTTAAGGGCAAGTTTCGGGAGGGTATCGACAA CGCCGCGCCTTTTCCAAGGCATGGGCACTGTTTAAGGGCAAGTTTCGGGAGGGTATCGACAA CGCCGCGCCTTTTCCAAGGCATGGGCACTGTTTAAGGGCAAGTTTCGGGAGGGTATCGACAA
IRF4a-5.1R A07 2012-12-12 Multi(86>760)	-	COUCCCCTTTTCAACCCATCCCCACTCTTTAACCCCAACTTTCCCCCACCCCACCA
IRF4a-ORF6 F B05 2013-07-22 Mult(1>905)		CGCCGCGCTTTTCAAGGCATGGGCACTGTTTAAGGGCAAGTTTCGGGGGGGG
IRF4a-ORF2_F_F03_2013-07-22_Mult(1>942)		CGCCGCGCTTTTCAAGGCATGGGCACTGTTTAAGGGCAAGTTTCGGGAGGGTATCGACAA
IRF4a-ORF3_F_G03_2013-07-22_Mult(1>904) IRF4a-ORF4_F_H03_2013-07-22_Mul(475949)	_	CGCCGCGCTTTTCAAGGCATGGGCACTGTTTAAGGGCAAGTTTCGGGAGGGTATCGACAA
IRF4a-ORF5 F A05 2013-07-22 Mul((475)45)		CGCCGCGCTTTTCAAGGCATGGGCACTGTTTAAGGGCAAGTTTCGGGAGGGTATCGACAA
		430 440 450 460 470 480 AGCGGACCCGCCGACCTGGAAGACGCGCTTACGTTGCGCGCCGAATAAAAAGTAATGATT
IRF4a-5.3R_C07_2012-12-12_Multi(89>794)	-	AGCGGACCCGCCGACCTGGAAGACGCGCTTACGTTGCGCGCTGAATAAAAGTAATGATTT
IRF4a-5.3F_C01_2012-12-12_Multi(51>756)	_	AGCGGACCCGCCGACCTGGAAGACGCGCTTACGTTGCGCGCTGAATAAAAGTAATGATTT
IRF4a-5.2R B07 2012-12-12 Multi(84>760)	-	AGCGGACCCGCCGACCTGGAAGACGCGCTTACGTTGCGCGCGC
IRF4a-5.1F_A01_2012-12-12_Multi(52>727)		AGCGGACCCGCCGACCTGGAAGACGCGCTTACGTTGCGCGCTGAATAAAAGTAATGATTT
IRF4a-5.1R_A07_2012-12-12_Multi(86>760)	<u> </u>	AGCGGACCCGCCGACCTGGAAGACGCGCTTACGTTGCGCGCCTGAATAAAAGTAATGATTT
IRF4a-ORF2 F F03 2013-07-22 Mult(1>942)		AGCGGACCCGCCGACCTGGAAGACGCGCTTACGTGCGCGCGC
IRF4a-ORF3_F_G03_2013-07-22_Mult(1>904)		AGCGGACCCGCCGACCTGGAAGACGCGCGTTACGTTGCGCGCGC
IRF4a-ORF4_F_H03_2013-07-22_Mul(47>949)	_	AGCGGACCCGCCCGACCTGGAAGACGCGCTTACGTTGCGCGCTGAATAAAAGTAATGATTT
IRF4a-ORF5_F_A05_2013-07-22_Mul(50>901)	_	AGCGGACCCGCCGACCTGGAAGACGCGCTTACGTTGCGCGCTGAATAAAAGTAATGATTT
		490 500 510 520 530 540
		UGAAGAGUIGGIGGAUUGAAGUUAAUIGGACATUICGGACUUTIACAAAGIGTACOGTAT
IRF4a-5.3R_C07_2012-12-12_Multi(89>794) IRF4a-5.3F_C01_2012-12-12_Multi(51>756) IRF4a-5.2F_B01_2012-12-12_Multi(53>729) IRF4a-5.1F_A01_2012-12-12_Multi(84>760) IRF4a-5.1R_A07_2012-12-12_Multi(86>760) IRF4a-ORF6_F_B05_2013-07-22_Mult(1>905) IRF4a-ORF6_F_B05_2013-07-22_Mult(1>904) IRF4a-ORF3_F_G03_2013-07-22_Mult(1>942) IRF4a-ORF4_F_H03_2013-07-22_Mult(1>949) IRF4a-ORF4_F_H03_2013-07-22_Mult(1>949) IRF4a-ORF5_F_A05_2013-07-22_Mult(50>901)	11111111111	CGAAGAGCTGGTGGACOGAAGCCAACTGGACATCTGGGACOCTTACAAAGTGTACCGTAT CGAAGAGCTGGTGGACGGAGCCAACTGGACATCTGGGACOCTTACAAAGTGTACCGTAT CGAAGAGCTGGTGGACOGAAGCCAACTGGACATCTCGGACOCTTACAAAGTGTACCGTAT CGAAGAGCTGGTGGACOGAAGCCAACTGGACATCTCGGACOCTTACAAAGTGTACCGTAT CGAAGAGCTGGTGGACOGAAGCCAACTGGACATCTCGGACOCTTACAAAGTGTACCGTAT CGAAGAGCTGGTGGACOGAAGCCAACTGGACATCTCGGACOCTTACAAAGTGTACCGTAT CGAAGAGCTGGTGGACOGAAGCCAACTGGACATCTCGGACOCTTACAAAGTGTACCGTAT CGAAGAGCTGGTGGACOGAAGCCAACTGGACATCTCGGACOCTTACAAAGTGTACCGTAT CGAAGAGCTGGTGGACOGAAGCCAACTGGACATCTCGGACOCTTACAAAGTGTACCGTAT CGAAGAGCTGGTGGACOGAAGCCAACTGGACATCTCGGACOCTTACAAAGTGTACCGTAT CGAAGAGCTGGTGGACOGAAGCCAACTGGACATCTCGGACOCTTACAAAGTGTACCGTAT CGAAGAGCTGGTGGGCCGAAGCCAACTGGACATCTCGGACOCTTACAAAGTGTACCGTAT CGAAGAGCTGGTGGGACOGAAGCCAACTGGACATCTCGGACOCTTACAAAGTGTACCGTAT
		550 560 570 580 590 600 CATCCCAGAGGGCGACAAGAAGAAGACCCAGACAGGAGGACAGTCCTTTGAGTCCATTGAG
IRF4a-5.3R_C07_2012-12-12_Multi(89>794) IRF4a-5.3F_C01_2012-12-12_Multi(51>756) IRF4a-5.2F_B01_2012-12-12_Multi(53>729) IRF4a-5.2R_B07_2012-12-12_Multi(84>760) IRF4a-5.1F_A01_2012-12-12_Multi(52>727) IRF4a-5.1R_A07_2012-12-12_Multi(86>760)	11111	CATCOCAGAGGGGGACAAGAGAAGACCCAGACAGGAGGACAGTCCTTTGAGTCCATTGAG CATCOCAGAGGGGGACAAGAGAAGACCCAGACAGGAGGACAGTCCTTTGAGTCCATTGAG CATCOCAGAGGGGGACAAGAGAAGACCCAGACAGGAGGACAGTCCTTTGAGTCCATTGAG CATCOCAGAGGGGGACAAGAGAAGACCCAGACAGGAGGACAGTCCTTTGAGTCCATTGAG CATCOCAGAGGGCGACAAGAGAAGACCCAGACAGGAGGACAGTCCTTTGAGTCCATTGAG CATCOCAGAGGGCGACAAGAGAAGACCCAGACAGGAGGACAGTCCTTTGAGTCCATTGAG

		550 560 570	580	590	600
		CATCCCAGAGGGGGGACAAGAGAAGACCCAG	ACAGGAGGACAG	TCCTTTGAGTCC	ATTGAG
IRF4a-ORF6_F_B05_2013-07-22_Mult(1>905) IRF4a-ORF2_F_F03_2013-07-22_Mult(1>942) IRF4a-ORF3_F_G03_2013-07-22_Mult(1>904) IRF4a-ORF4_F_H03_2013-07-22_Mul(47>949) IRF4a-ORF5_F_A05_2013-07-22_Mul(50>901)	1111	TATCOCAGAGGGCGACAAGAGAAGACCCAG CATCOCAGAGGGCGACAAGAGAAGACCCAG CATCOCAGAGGGGGACAAGAGAAGACCCAG TATCOCAGAGGGGGACAAGAGAAGACCCAG CATCOCAGAGGGCGACAAGAGAAGACCCAG	ACAGGAGGACAG ACAGGAGGACAG ACAGGAGGACAG ACAGGAGGACAG ACAGGAGGACAG	ICCTITGAGTOCI ICCTITGAGTOCI ICCTITGAGTOCI ICCTITGAGTOCI ICCTITGAGTOCI	ATTGAG ATTGAG ATTGAG ATTGAG ATTGAG
		610 620 630	640	650	660
		CTATCCATCCTACCCTGCCC-TTCACAGCC	AGATACCCCACT	GCATGCCTAATC	CAGAGA
IRF4a-5.3R_C07_2012-12-12_Multi(89>794) IRF4a-5.3F_C01_2012-12-12_Multi(51>756) IRF4a-5.2F_B01_2012-12-12_Multi(53>729) IRF4a-5.2R_B07_2012-12-12_Multi(84>760) IRF4a-5.1F_A01_2012-12-12_Multi(84>760) IRF4a-0RF6_F_B05_2013-07-22_Multi(86>760) IRF4a-0RF2_F_F03_2013-07-22_Mult(1>904) IRF4a-0RF3_F_G03_2013-07-22_Mult(1>904) IRF4a-0RF4_F_H03_2013-07-22_Mult(1>904) IRF4a-0RF5_F_A05_2013-07-22_Mult(1>904) IRF4a-0RF5_F_A05_2013-07-22_Mult(50>901) IRF4a-3.3F_C01_2013-03-28_Multi(25>879)	111111111111	CTATOCATOCTACCCTGCCC-TTCACAGCC CTATOCATOCTACCCTGCCC-TTCACAGCC CTATOCATOCTACCCTGCCC-TTCACAGCC CTATOCATOCTACCCTGCCC-TTCACAGCC CTATOCATOCTACCCTGCCC-TTCACAGCC CTATOCATOCTACCCTGCCC-TTCACAGCC CTATOCATOCTACCCTGCCC-TTCACAGCC CTATOCATOCTACCCTGCCC-TTCACAGCC CTATOCATOCTACCCTGCCC-TTCACAGCC CTATOCATOCTACCCTGCCC-TTCACAGCC CTATOCATOCTACCCTGCCC-TTCACAGCC CTATOCATOCTACCCTGCCC-TTCACAGCC CTATOCATOCTACCCTGCCC-TTCACAGCC CTATOCATOCTACCCTGCCC-TTCACAGCC	AGATACCCCACT AGATACCCCACT AGATACCCCACT AGATACCCCACT AGATACCCCACT AGATACCCCACT AGATACCCCACT AGATACCCCACT AGATACCCCACT AGATACCCCACT	SCATGCCTAA GCATGCCTAAA GCATGCCTAAA GCATGCCTAAA GCATGCCTAAA GCATGCCTAAAC GCATGCCTAATCO GCATGCCTAATCO GCATGCCTAATCO GCATGCCTAATCO GCATGCCTAATCO	CAGAGA CAGAGA CAGAGA CAGAGA CAGAGA CAGAGA
		670 680 690	0 700	710	720
		STGGCTGGAGAGAATTCTACCCGGAGCAGG	CCTTCCTTCCAG	AGCTCCACATCC	CACAAT
IRF4a-ORF6_F_B05_2013-07-22_Mult(1>905) IRF4a-ORF2_F_F03_2013-07-22_Mult(1>942) IRF4a-ORF3_F_G03_2013-07-22_Mult(1>904) IRF4a-ORF4_F_H03_2013-07-22_Mult(1>904) IRF4a-ORF5_F_R05_2013-07-22_Mul(47>949) IRF4a-3.3F_C01_2013-03-28_Multi(25>879)	11111	TIGGCTGGAGAGAATTCTACCCGGAGCAGG STGGCTGGAGAGAATTCTACCCGGAGCAGG STGGCTGGAGAGAATTCTACCCGGAGCAGG STGGCTGGAGAGAATTCTACCCGGAGCAGG STGGCTGGAGAGAATTCTACCCGGAGCAGG	CCTTCCTTCCAG CCTTCCTTCCAG CCTTCCTTCCAG CCTTCCTTCCAG CCTTCCTTCCAG CCTTCCTTCCAG	AGCTCCACATOC AGCTOCACATOC AGCTOCACATOC AGCTOCACATOC AGCTOCACATOC AGCTOCACATOC	CACAAT CACAAT CACAAT CACAAT CACAAT CACAAT
		730 740 750	0 760	770	780
		730 740 750 STTCCTACCCCCTCACCCATGGCAGGCCC	0 760	770	780 LL ICAAGG
IRF4a-ORF6_F_B05_2013-07-22_Mult(1>905) IRF4a-ORF2_F_F03_2013-07-22_Mult(1>942) IRF4a-ORF3_F_G03_2013-07-22_Mult(1>904) IRF4a-ORF4_F_H03_2013-07-22_Mul(47>949) IRF4a-ORF5_F_R05_2013-07-22_Mul(50>901) IRF4a-3.3F_C01_2013-03-28_Multi(25>879) IRF4a-ORF5_R_R06_2013-07-22_Mul(76>950)	111111	730 740 75 STTCCTACCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCCCACGCAGGCAGGGCC STTCCTACCCCCCCCCCATGGCAGGGCC ACCCATGGCAGGGCC ACCCATGGCAGGGCC	0 760 CCCCCATAGAGA CCCCCATAGAGA CCCCCATAGAGA CCCCCATAGAGA CCCCCATAGAGA CCCCCATAGAGA CCCCCATAGAGA	770 ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA	780 ICAAGG ICAAGG ICAAGG ICAAGG ICAAGG ICAAGG ICAAGG
IRF4a-ORF6_F_B05_2013-07-22_Mult(1>905) IRF4a-ORF2_F_F03_2013-07-22_Mult(1>942) IRF4a-ORF3_F_G03_2013-07-22_Mult(1>904) IRF4a-ORF4_F_H03_2013-07-22_Mult(7>949) IRF4a-ORF5_F_A05_2013-07-22_Mult(50>901) IRF4a-3.3F_C01_2013-03-28_Multi(25>879) IRF4a-ORF5_R_A06_2013-07-22_Mul(76>950)	111111	730 740 75 STTCCTACCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCCCCACGCAGGCAGGGCC ACCCATGGCAGGCC 790 800 81(0 760 CCCCCATAGAGA CCCCCATAGAGA CCCCCATAGAGA CCCCCATAGAGA CCCCCATAGAGA CCCCCATAGAGA CCCCCATAGAGA CCCCCATAGAGA CCCCCATAGAGA	770 ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA 830	780 ICAAGG ICAAGG ICAAGG ICAAGG ICAAGG ICAAGG ICAAGG ICAAGG ICAAGG
IRF4a-ORF6_F_B05_2013-07-22_Mult(1>905) IRF4a-ORF2_F_F03_2013-07-22_Mult(1>942) IRF4a-ORF3_F_G03_2013-07-22_Mult(1>904) IRF4a-ORF4_F_H03_2013-07-22_Mul(47>949) IRF4a-ORF5_F_A05_2013-07-22_Mul(50>901) IRF4a-3.3F_C01_2013-03-28_Multi(25>879) IRF4a-ORF5_R_A06_2013-07-22_Mul(76>950)	111111	730 740 751 STTCCTACCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC ACCCATGGCAGGCC 790 800 810 -GCTCCTTTACCGCCTGGCAGGCCATGCCATGCCACGCCCTCACCCCCCCC	0 760 CCCCCATAGAGA CCCCCATAGAGA CCCCCATAGAGA CCCCCATAGAGA CCCCCATAGAGA CCCCCATAGAGA CCCCCATAGAGA CCCCCATAGAGA CCCCCATAGAGA CCCCCATAGAGA CCCCCATAGAGA CCCCCATAGAGA	770 ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA B 30 	780 ICAAGG ICAAGG ICAAGG ICAAGG ICAAGG ICAAGG ICAAGG ICAAGG ICAAGG ICAAGG ICAAGG ICAAGG ICAAGG ICAAGG
IRF4a-ORF6_F_B05_2013-07-22_Mult(1>905) IRF4a-ORF2_F_F03_2013-07-22_Mult(1>942) IRF4a-ORF3_F_G03_2013-07-22_Mult(1>949) IRF4a-ORF4_F_H03_2013-07-22_Mult(1>949) IRF4a-ORF5_F_A05_2013-07-22_Mult(50>901) IRF4a-3.3F_C01_2013-03-28_Mult1(25>879) IRF4a-ORF5_R_A06_2013-07-22_Mult(1>905) IRF4a-ORF5_F_F03_2013-07-22_Mult(1>942) IRF4a-ORF5_F_G03_2013-07-22_Mult(1>942) IRF4a-ORF4_F_H03_2013-07-22_Mult(1>942) IRF4a-ORF4_F_H03_2013-07-22_Mult(1>942) IRF4a-ORF5_R_A06_2013-07-22_Mult(1>942) IRF4a-ORF5_F_A06_2013-07-22_Mult(1>942) IRF4a-ORF5_F_A06_2013-07-22_Mult(5>950) IRF4a-ORF5_R_A06_2013-07-22_Mult(5>879) IRF4a-ORF5_R_A06_2013-07-22_Mult(7>949) IRF4a-ORF5_R_A06_2013-07-22_Mul(76>950) IRF4a-ORF5_R_A06_2013-07-22_Mul(76>951) IRF4a-ORF4_R_H04_2013-07-22_Mul(76>926) IRF4a-ORF6_R_B06_2013-07-22_Mul(70>933) IRF4a-ORF5_R_F04_2013-07-22_Mul(67>882)		730 740 751 STTCCTACCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC ACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC ACCCATGGCAGGGCC GCTCCTTTACCCGTACACGCATGCTGAC GCTCCTTTACTCGTACACGCATGCTGAC -GCTCCTTTTACTCGTACACGCATGCTGAC -GCTCCTTTACTCGTACACGCATGCTGAC -GCTCCTTTACTCGTACACGCATGCTGAC GCTCCTTTACTCGTACACGCATGCTGAC -GCTCCT	0 760 CCCCCATAGAGA CCCCCATAGAGA CCCCCATAGAGA CCCCCATAGAGA CCCCCATAGAGA CCCCCATAGAGA CCCCCATAGAGA CCCCCATAGAGAGA CCCCCATAGAGAGA CCCCCATAGAGAGA CCCCCATAGAGAGA CCCCCATAGAGAGA CCCCCATAGAGAGA CCCCCATAGAGAGA CCCCCATAGAGAGA CCCCCATAGAGAGA CCCCCATAGAGAGA CCCCCATAGAGAGA CCCCCATAGAGAGA CCCCCATAGAGAGA CCCCCATAGAGAGA CCCCCATAGAGAGA CCCCCATAGAGAGA CCCCCATAGAGAGA CCCCCATAGAGAGAGA CCCCCATAGAGAGAGA CCCCCATAGAGAGA CCCCCATAGAGAGAGAGA CCCCCATAGAGAGAGAGAGAGA CCCCCCCCATAGAGAGA CCCCCATAGAGAGAGAGAGAGAGA CCCCCATAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA	770 ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA GCC-TTCACCCT GCC-TTCACCCT GCC-TTCACCCT GCC-TTCACCCT GCC-TTCACCCT GCC-TTCACCCT GCC-TTCACCCT GCC-TTCACCCT GCC-TTCACCCT GCC-TTCACCCT GCC-TTCACCCT GCC-TTCACCCT GCC-TTCACCCT	780 1 1CAAGG 1-GACC 1-GAC
IRF4a-ORF6_F_B05_2013-07-22_Mult(1>905) IRF4a-ORF2_F_F03_2013-07-22_Mult(1>942) IRF4a-ORF3_F_G03_2013-07-22_Mult(1>949) IRF4a-ORF5_F_A05_2013-07-22_Mult(1>949) IRF4a-ORF5_F_A05_2013-07-22_Mult(1>949) IRF4a-ORF5_R_A06_2013-07-22_Mult(1>950) IRF4a-ORF5_R_A06_2013-07-22_Mult(1>950) IRF4a-ORF5_R_A06_2013-07-22_Mult(1>950) IRF4a-ORF5_F_G03_2013-07-22_Mult(1>942) IRF4a-ORF5_F_G03_2013-07-22_Mult(1>942) IRF4a-ORF5_F_G03_2013-07-22_Mult(1>942) IRF4a-ORF5_F_G03_2013-07-22_Mult(1>942) IRF4a-ORF5_F_G03_2013-07-22_Mult(1>942) IRF4a-ORF5_F_G03_2013-07-22_Mult(1>942) IRF4a-ORF5_F_A05_2013-07-22_Mult(1>942) IRF4a-ORF5_R_A06_2013-07-22_Mult(1>942) IRF4a-ORF5_R_A06_2013-07-22_Mult(1>942) IRF4a-ORF5_R_A06_2013-07-22_Mult(1>9590) IRF4a-ORF5_R_A06_2013-07-22_Mul(1 IRF4a-ORF5_R_B04_2013-07-22_Mul(1 IRF4a-ORF4_R_H04_2013-07-22_Mul(1 IRF4a-ORF4_R_H04_2013-07-22_Mul(1 IRF4a-ORF4_R_F04_2013-07-22_Mul(1 IRF4a-ORF4_R_F04_2013-07-22_Mul(67>882)		730 740 751 STTCCTACCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC ACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC ACCCATGGCAGGGCC STTCCTACCCCCCTCACCCATGGCAGGGCC ACCCATGGCAGGCCC STTCCTACCCCCCTCACCCATGGCAGGCCC CCCCATTTACTCGTACACGCATGCTGAC	0 760 CCCCCCATAGAGAI CCCCCATAGAGAI CCCCCCATAGAGAI CCCCCATAGAGAI CCCCCATAGAGAI CCCCCATAGAGAI CCCCCATAGAGAI CCCCCATAGAGAI CCCCCATAGAGAI CCCCCATAGAGAI CCCCCATAGAGAI CCCCCATAGAGAI CCCCCATAGAGAI CCCCCATAGAGAI CCCCCATAGAGCCTCCC GTACAGCCCTCCC GTACAGCCCTCCC S80	770 ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA ACGCATACCAGA COC-TTCACCCT GCC-TTCACCCT GCC-TTCACCCT GCC-TTCACCCT GCC-TTCACCCT GCC-TTCACCCT GCC-TTCACCCT GCC-TTCACCCT GCC-TTCACCCT GCC-TTCACCCT GCC-TTCACCCT GCC-TTCACCCT GCC-TTCACCCT GCC-TTCACCCT GCC-TTCACCCT GCC-TTCACCCT GCC-TTCACCCT GCC-TTCACCCT GCC-TTCACCCT GCC-TTCACCCT	780 1 ICAAGG I-GACC I-GAC I-GAC I-GAC I-GAC I-GACC I-GAC

		850	860	870	880	890	900
		CCGGCATGAGACCA	GCAGACCCTC	TTTCTGACC-	TTCGCCTGCA	TGTGTCCGTG	TTCTCC
IRF4a-3.3F_C01_2013-03-28_Multi(25>879) IRF4a-ORF5_R_A06_2013-07-22_Mul(76>950) IRF4a-ORF3_R_G04_2013-07-22_Mul(76>951) IRF4a-ORF4_R_H04_2013-07-22_Mul(76>926) IRF4a-ORF6_R_B06_2013-07-22_Mul(70>933) IRF4a-ORF6_R_F04_2013-07-22_Mul(67>882)	11111	CCGGCATGAGACCA CCGGCATGAGACCA CCGGCATGAGACCA CCGGCATGAGACCA CCGGCATGAGACCA CCGGCATGAGACCA	SCAGACCCTC SCAGACCCTC SCAGACCCTC SCAGACCCTC SCAGACCCTC SCAGACCCTC	TTTCTGACC- TTTCTGACC- TTTCTGACC- TTTCTGACCT TTTCTGACC- TTTCTGACC-	TTCGCCTGCA TTCGCCTGCA TTCGCCTGCA TTCGCCTGCA TTCGCCTGCA	ATGTGTCCGTG ATGTGTCCGTG ATGTGTCCGTG ATGTGTCCGTG ATGTGTCCGTG ATGTGTCCGTG	TTCTCC TTCTCC TTCTCC TTCTCC TTCTCC TTCTCC
		910	920	930	940	950	960 11111
		CGGGACGCTCTCGT	GAGGGAGGTG	ACCATCTCCA	ACCCAAA-GG	GCTGTCATCT	GATCCC
IRF4a-ORF6_F_B05_2013-07-22_Mult(1>905) IRF4a-ORF2_F_F03_2013-07-22_Mult(1>942) IRF4a-ORF3_F_G03_2013-07-22_Mult(1>944) IRF4a-ORF5_F_A05_2013-07-22_Mult(47>949) IRF4a-ORF5_F_A05_2013-07-22_Mul(50>901) IRF4a-ORF5_R_A06_2013-07-22_Mul(76>950) IRF4a-ORF3_R_G04_2013-07-22_Mul(76>950) IRF4a-ORF4_R_H04_2013-07-22_Mul(76>952) IRF4a-ORF4_R_B06_2013-07-22_Mul(76>926) IRF4a-ORF6_R_B06_2013-07-22_Mul(70>933) IRF4a-ORF2_R_F04_2013-07-22_Mul(67>882)	1111111111	CGGGACGCTCTCGT CGGGACGCTCTCGT CGGGACGCTCTCGT CGGGACGCTCTCGT CGGGACGCTCTCGT CGGGACGCTCTCGT CGGGACGCTCTCGT CGGGACGCTCTCGT CGGGACGCTCTCGT	SACGCAGGTG SACGCAGGTG SACGCAGGTG SACGCAGGTG SACGCAGGTG SACGCAGGTG SACGCAGGTG SACGCAGGTG SACGCAGGTG SACGCAGGTG SACGCAGGTG	ACCATCTOCA ACCATCTOCA ACCATCTOCA ACCATCTOCA ACCATCTOCA ACCATCTOCA ACCATCTOCA ACCATCTOCA ACCATCTOCA	ACCCAAA-GG ACCCAAA-GG ACCCAAA-GG ACCCAAA-GG ACCCAAA-GG ACCCAAA-GG ACCCAAA-GG ACCCAAA-GG ACCCAAA-GG ACCCAAA-GG ACCCAAA-GG	SECTETCATCT SECTETCATCT SECTETCATCT SECTETCATCT SECTETCATCT SECTETCATCT SECTETCATCT SECTETCATCT SECTETCATCT SECTETCATCT SECTETCATCT	GATCCC GATCCC GATCCC GATCCC GATCCC GATCCC GATCCC GATCCC GATCCC GATCCC GATCCC GATCCC
		970	980	990	1000	1010	1020
		CIGGGCCCIGGAGG	AAAAGGCCTA	CGTTTCCCCA	GGGGCCCCGG	GCCTGGTTCC	CCTGCC
IRF4a-ORF6_F_B05_2013-07-22_Mult(1>905) IRF4a-ORF2_F_F03_2013-07-22_Mult(1>942) IRF4a-ORF3_F_G03_2013-07-22_Mult(1>904) IRF4a-ORF5_F_A05_2013-07-22_Mul(47>949) IRF4a-ORF5_F_A05_2013-07-22_Mul(50>901) IRF4a-ORF5_R_A06_2013-07-22_Mul(50>950) IRF4a-ORF5_R_G04_2013-07-22_Mul(65>951) IRF4a-ORF3_R_G04_2013-07-22_Mul(65>951) IRF4a-ORF4_R_H04_2013-07-22_Mul(65>951) IRF4a-ORF5_R_B05_2013-07-22_Mul(65>822) IRF4a-ORF5_R_F04_2013-07-22_Mul(65>822) IRF4a-3_2R_B03_2013-03-28_Multiu(1>817) IRF4a-3_1R_A03_2013-03-28_Multiu(1>812)	111111111111	CTGGGCCTGGAGG CTGGGCCTGGAGG CTGGGCCTGGAGG CTGGGCCTGGAGG CTGGGCCTGGAGG CTGGGCCTGGAGG CTGGGCCTGGAGG CTGGGCCTGGAGG CTGGGCCTGGAGG CTGGGCCCTGGAGG	ARAAGGCCTA ARAAGGCCTA ARAAGGCCTA ARAAGGCCTA ARAAGGCCTA ARAAGGCCTA ARAAGGCCTA ARAAGGCCTA ARAAGGCCTA ARAAGGCCTA	CETTICCCCA CETTICCCCA CETTICCCCA CETTICCCCA CETTICCCCA CETTICCCCA CETTICCCCA CETTICCCCA CETTICCCCA	LGEGECCCCE LGEGECCCCE LGEGECCCCE LGEGECCCCE LGEGECCCCE LGEGECCCCE LGEGECCCCE LGEGECCCCE LGEGECCCCE LGEGECCCCE	3900TREAT 3900TREATION 3900TREATION 3900TREATION 3900TREATION 3900TREATION 3900TREATION 3900TREATION 3900TREATION 3900TREATION CC CC	CCTGCC CCTGCC CCTGCC CCTGCC CCTGCC CCTGCC CCTGCC CCTGCC CCTGCC CCTGCC
		1030	1040	1050	1060	1070	1080
		CCCGGAGGGCCTGA	CGCTCCAGAG	GATGGCGGGG	GAGGAGGGTC	CCCCAAGCTC	TCTGGC
IRF4a-ORF3_F_G03_2013-07-22_Mult(1>904) IRF4a-ORF4_F_H03_2013-07-22_Mul(47>949) IRF4a-ORF5_F_A05_2013-07-22_Mul(50>901) IRF4a-3.3F_C01_2013-03-28_Multi(25>879) IRF4a-ORF5_R_A06_2013-07-22_Mul(76>950) IRF4a-ORF3_R_G04_2013-07-22_Mul(76>951) IRF4a-ORF4_R_H04_2013-07-22_Mul(76>926) IRF4a-ORF4_R_H04_2013-07-22_Mul(70>933) IRF4a-ORF6_R_B05_2013-07-22_Mul(67>882) IRF4a-3.2R_B03_2013-03-28_Multiu(1>817) IRF4a-3.1R_A03_2013-03-28_Multiu(1>812)	1111111111	CCCGGAGGGCCTGA CCCGGA CCCGGAGGGCCTGA CCCGGAGGGCCTGA CCCGGAGGGCCTGA CCCGGAGGGCCTGA CCCGGAGGGCCTGA CCCGGAGGGCCTGA CCCGGAGGGCCTGA	DECTCC DECTCCAGAG DECTCCAGAG DECTCCAGAG DECTCCAGAG DECTCCAGAG DECTCCAGAG DECTCCAGAG DECTCCAGAG DECTCCAGAG	GATGGCGGGG GATGGCGGGG GATGGCGGGG GATGGCGGGG GATGGCGGGG GATGGCGGGG GATGGCGGGG GATGGCGGGG GATGGCGGGG	GAGGAGGGTC GAGGAGGGTC GAGGAGGGTC GAGGAGGGTC GAGGAGGGTC GAGGAGGGTC GAGGAGGGTC	CCCCCAAGCTC CCCCCAAGCTC CCCCCAAGCTC CCCCCAAGCTC CCCCCAAGCTC CCCCCAAGCTC CCCCCAAGCTC CCCCCAAGCTC	TC TCTGGC TCTGGC TCTGGC TCTGGC TCTGGC TCTGGC TCTGGC TCTGGC
		1090 CATGCAGGGCGTGA	1100 GGCTGTGGAT	1110 GACCCCAGAA	1120 GGCCTCTACG	1130 HILLION	1140 LLLLLL GTGCCA
IRF4a-3.3F_C01_2013-03-28_Multi(25>879) IRF4a-ORF5 R_A06_2013-07-22_Mul(76>950) IRF4a-ORF3_R_G04_2013-07-22_Mul(76>950) IRF4a-ORF4_R_H04_2013-07-22_Mul(76>926) IRF4a-ORF6_R_B06_2013-07-22_Mul(70>933) IRF4a-ORF6_R_B04_2013-07-22_Mult(70>933) IRF4a-3.2R_B03_2013-03-28_Multiu(1>817) IRF4a-3.1R_A03_2013-03-28_Multiu(1>812) IRF4a-3.3R_C03_2013-03-28_Multiu(1>703)	11111111	CATECAGEGCETEA CATECAGEGCETEA CATECAGEGCETEA CATECAGEGCETEA CATECAGEGCETEA CATECAGEGCETEA CATECAGEGCETEA CATECAGEGCETEA	GCTGTGGGAT GCTGTGGGAT GCTGTGGGAT GCTGTGGGAT GCTGTGGGAT GCTGTGGGAT GCTGTGGGAT GCTGTGGGAT	GACCCCAGAA GACCCCAGAA GACCCCAGAA GACCCCAGAA GACCCCAGAA GACCCCAGAA GACCCCAGAA GACCCCAGAA	EGCCTCTACC EGCCTCTACC EGCCTCTACC EGCCTCTACC EGCCTCTACC EGCCTCTACC EGCCTCTACC EGCCTCTACC EGCCTCTACC	CCCGGCGGCGGCA CCCGGCGGCGCA CCCGGCGGCGCA CCCGGCGGCGGCA CCCGGCGGCGGCA CCCGGCGGCGGCA CCCGGCGGCGGCA	GTGCCA GTGCCA GTGCCA GTGCCA GTGCCA GTGCCA GTGCCA GTGCCA GTGCCA

		1150 1160 1170 1180 1190 1200
		GGAGAGTGTGTACTGGAAGGAGGGGGTATCCCCTTACAAGGACAAACTCAACGAGATGGA
IRF4a-3.3F_C01_2013-03-28_Multi(25>879) IRF4a-ORF5_R_A06_2013-07-22_Mul(76>950) IRF4a-ORF3_R_G04_2013-07-22_Mul(76>926) IRF4a-ORF4_R_H04_2013-07-22_Mul(76>926) IRF4a-ORF6_R_B06_2013-07-22_Mul(70>933) IRF4a-ORF2_R_F04_2013-07-22_Mul(70>933) IRF4a-3.2R_B03_2013-03-28_Multiu(1>812) IRF4a-3.1R_A03_2013-03-28_Multiu(1>812) IRF4a-3.3R_C03_2013-03-28_Multiu(1>703)	11111111	GGAGAGTGTGTACTGGAAGGAGGGGGTATCCCCTTACAAGGACAAACTCAACGAGATGGA GGAGAGTGTGTACTGGAAGGAGGGGGTATCCCCTTACAAGGACAAACTCAACGAGATGGA GGAGAGTGTGTACTGGAAGGAGGGGGGTATCCCCTTACAAGGACAAACTCAACGAGATGGA GGAGAGTGTGTACTGGAAGGAGGGGGTATCCCCTTACAAGGACAAACTCAACGAGATGGA GGAGAGTGTGTACTGGAAGGAGGGGGTATCCCCTTACAAGGACAAACTCAACGAGATGGA GGAGAGTGTGTACTGGAAGGAGGGGTATCCCCTTACAAGGACAAACTCAACGAGATGGA GGAGAGTGTGTACTGGAAGGAGGGGGTATCCCCTTACAAGGACAAACTCAACGAGATGGA GGAGAGTGTGTACTGGAAGGAGGGGGTATCCCCTTACAAGGACAAACTCAACGAGATGGA GGAGAGTGTGTACTGGAAGGAGGGGGTATCCCCTTACAAGGACAAACTCAACGAGATGGA GGAGAGTGTGTACTGGAAGGAGGGGGTATCCCCTTACAAGGACAAACTCAACGAGATGGA GGAGAGTGTGTACTGGAAGGAGGGGGTATCCCCTTACAAGGACAAACTCAACGAGATGGA
		1210 1220 1230 1240 1250 1260
		GAGAGAGGTCAACTGCAAAGTGCTTGACACCCAGGACTTCCTCACAGAAATCCAAAGTTA
IRF4a-3.3F_C01_2013-03-28_Multi(25>879) IRF4a-ORF5_R_A06_2013-07-22_Mul(76>950) IRF4a-ORF3_R_G04_2013-07-22_Mul(86>951) IRF4a-ORF4_R_H04_2013-07-22_Mul(76>926) IRF4a-ORF6_R_B06_2013-07-22_Mul(70>933) IRF4a-ORF2_R_F04_2013-07-22_Mult(70>933) IRF4a-3.2R_B03_2013-03-28_Multiu(1>817) IRF4a-3.1R_A03_2013-03-28_Multiu(1>812) IRF4a-3.3R_C03_2013-03-28_Multiu(1>703)	11111111	GAGAGAGGTCAACTGCAAAGTGCTTGACACCCAGGACTTCCTCACAGAAATCCAAAGTTA GAGAGAGGTCAACTGCAAAGTGCTTGACACCCAGGACTTCCTCACAGAAATCCAAAGTTA GAGAGAGGTCAACTGCAAAGTGCTTGACACCCAGGACTTCCTCACAGAAATCCAAAGTTA GAGAGAGGTCAACTGCAAAGTGCTTGACACCCAGGACTTCCTCACAGAAATCCAAAGTTA GAGAGAGGTCAACTGCAAAGTGCTTGACACCCAGGACTTCCTCACAGAAATCCAAAGTTA GAGAGAGGTCAACTGCAAAGTGCTTGACACCCAGGACTTCCTCACAGAAATCCAAAGTTA GAGAGAGGTCAACTGCAAAGTGCTTGACACCCAGGACTTCCTCACAGAAATCCAAAGTTA GAGAGAGGTCAACTGCAAAGTGCTTGACACCCAGGACTTCCTCACAGAAATCCAAAGTTA GAGAGAGGTCAACTGCAAAGTGCTTGACACCCAGGACTTCCTCACAGAAATCCAAAGTTA GAGAGAGGTCAACTGCAAAGTGCTTGACACCCAGGACTTCCTCACAGAAATCCAAAGTTA GAGAGAGGTCAACTGCAAAGTGCTTGACACCCAGGACTTCCTCACAGAAATCCAAAGTTA GAGAGAGGTCAACTGCAAAGTGCTTGACACCCAGGACTTCCTCACAGAAATCCAAAGTTA
		1270 1280 1290 1300 1310 1320
		TGGGCTCCATGGCCGGCCCATACCTCCTTTCCAGGCCTTGCTGTTTTGGGGACGAGTG
IRF4a-3.3F_C01_2013-03-28_Multi(25>879) IRF4a-ORF5_R_A06_2013-07-22_Mul(76>950) IRF4a-ORF3_R_G04_2013-07-22_Mul(76>950) IRF4a-ORF4_R_H04_2013-07-22_Mul(76>926) IRF4a-ORF6_R_B06_2013-07-22_Mul(70>933) IRF4a-ORF6_R_B03_2013-03-22_Multiu(1>82) IRF4a-3.1R_A03_2013-03-28_Multiu(1>812) IRF4a-3.3R_C03_2013-03-28_Multiu(1>703)	11111111	TGGCCTCCATGGCCGGCCCATACCTCCTTTCCAGGCCTTGCTGTTTTGGGGACGAGTG TGGCCTCCATGGCCGGCCCATACCTCCTTTCCAGGCCTTGCTGTTTTGGGGACGAGTG TGGCCTCCATGGCCGGCCCATACCTCCTTTCCAGGCCTTGCTGTGTTTTGGGGACGAGTG TGGCCTCCATGGCCGGCCCATACCTCCTTTCCAGGCCTTGCTGTGTTTTGGGGACGAGTG TGGCCTCCATGGCCGGCCCATACCTCCTTTCCAGGCCTTGCTGTGTTTTGGGGACGAGTG TGGCCTCCATGGCCGGCCCATACCTCCTTTCCAGGCCTTGCTGTGTTTTGGGGACGAGTG TGGCCTCCATGGCCGGCCCATACCTCCTTTCCAGGCCTTGCTGTGTTTTGGGGACGAGTG TGGCCTCCATGGCCGGCCCATACCTCCTTTCCAGGCCTTGCTGTGTTTTGGGGACGAGTG TGGCCTCCATGGCCGGCCCATACCTCCTTTCCAGGCCTTGCTGTGTTTTGGGGACGAGTG TGGCCTCCATGGCCGGCCCATACCTCCTTTCCAGGCCTTGCTGTGTTTTGGGGACGAGTG TGGCCTCCATGGCCGGCCCATACCTCCTTTCCAGGCCTTGCTGTGTTTTGGGGACGAGTG
		1330 1340 1350 1360 1370 1380
		CGTCGACACAGAGAGACCAAGAAGGAGCCTCACCGTGCAGGTGGAACCCTTGTTTGCAAG
IRF4a-3.3F_C01_2013-03-28_Multi(25>879) IRF4a-ORF5_R_A06_2013-07-22_Mul(76>950) IRF4a-ORF3_R_G04_2013-07-22_Mul(76>926) IRF4a-ORF4_R_H04_2013-07-22_Mul(76>926) IRF4a-ORF6_R_B06_2013-07-22_Mul(70>933) IRF4a-0RF2_R_F04_2013-07-22_Mult(70>933) IRF4a-3.2R_B03_2013-03-28_Multiu(1>817) IRF4a-3.1R_A03_2013-03-28_Multiu(1>812) IRF4a-3.3R_C03_2013-03-28_Multiu(1>703)	11111111	CGTCGACACAGAGAGACCAAGAAGGAGCCTCACCGTGCAGGTGGAACCCTTGTTTGCAAG CGTCGACACAGAGAGACCAAGAAGGAGCCTCACCGTGCAGGTGGAACCCTTGTTTGCAAG CGTCGACACAGAGAGACCAAGAAGGAGCCTCACCGTGCAGGTGGAACCCTTGTTTGCAAG CGTCGACACAGAGAGACCAAGAAGGAGCCTCACCGTGCAGGTGGAACCCTTGTTTGCAAG CGTCGACACAGAGAGACCAAGAAGGAGCCTCACCGTGCAGGTGGAACCCTTGTTTGCAAG CGTCGACACAGAGAGACCAAGAAGGAGCCTCACCGTGCAGGTGGAACCCTTGTTTGCAAG TGTCGACACAGAGAGACCAAGAAGGAGCCTCACCGTGCAGGTGGAACCCTTGTTTGCAAG TGTCGACACAGAGAGACCAAGAAGGAGCCTCACCGTGCAGGTGGAACCCTTGTTTGCAAG TGTCGACACAGAGAGACCAAGAAGGAGCCTCACCGTGCAGGTGGAACCCTTGTTTGCAAG TGTCGACACAGAGAGACCAAGAAGGAGCCTCACCGTGCAGGTGGAACCCTTGTTTGCAAG
		1390 1400 1410 1420 1430 1440
		GCAGCTGTTTTACTATGCCCAGCAAACCGGCGGACACTATTACCGTGGCTACGAGCACCA
IRF4a-3.3F_C01_2013-03-28_Multi(25>879) IRF4a-ORF5_R_A06_2013-07-22_Mul(76>950) IRF4a-ORF3_R_G04_2013-07-22_Mul(76>951) IRF4a-ORF4_R_H04_2013-07-22_Mul(76>926) IRF4a-ORF6_R_B06_2013-07-22_Mul(76>933) IRF4a-ORF2_R_F04_2013-07-22_Mul(67>882) IRF4a-3.2R_B03_2013-03-28_Multiu(1>817) IRF4a-3.1R_A03_2013-03-28_Multiu(1>812) IRF4a-3.3R_C03_2013-03-28_Multiu(1>703)	1111111	GCAGCTGTTTTACTATGCCCAGCAAACCGGCGGACACTATTACCGTGGCTACGAGCACCA GCAGCTGTTTTACTATGCCCAGCAAACCGGCGGACACTATTACCGTGGCTACGAGCACCA GCAGCTGTTTTACTATGCCCAGCAAACCGGCGGACACTATTACCGTGGCTACGAGCACCA GCAGCTGTTTTACTATGCCCAGCAAACCGGCGGACACTATTACCGTGGCTACGAGCACCA GCAGCTGTTTTACTATGCCCAGCAAACCGGCGGACACTATTACCGTGGCTACGAGCACCA GCAGCTGTTTTACTATGCCCAGCAAACCGGCGGACACTATTACCGTGGTTACGAGCACCA GCAGCTGTTTTATTATGCCCAGCAAACCGGCGGACACTATTACCGTGGTTACGAGCACCA GCAGCTGTTTTATTATGCCCAGCAAACCGGCGGACACTATTACCGTGGTTACGAGCACCA GCAGCTGTTTTATTATGCCCAGCAAACCGGCGGACACTATTACCGTGGTTACGAGCACCA GCAGCTGTTTTATTATGCCCAGCAAACCGGCGGACACTATTACCGTGGTACGAGCACCA GCAGCTGTTTTTTTTTT

		1450 1460 1470 1480 1490 1500
		CGGTGTCCCAGAACACATAAGCCCTTCTGAGGACTATCAGCGGGCAATCTCACACCACCA
IRF4a-3.3F_C01_2013-03-28_Multi(25>879) IRF4a-ORF5_R_A06_2013-07-22_Mul(76>950) IRF4a-ORF3_R_G04_2013-07-22_Mul(86>951) IRF4a-ORF4_R_H04_2013-07-22_Mul(76>926) IRF4a-ORF6_R_B06_2013-07-22_Mul(70>933) IRF4a-ORF2_R_F04_2013-07-22_Multi(1>882) IRF4a-3.2R_B03_2013-03-28_Multiu(1>817) IRF4a-3.1R_A03_2013-03-28_Multiu(1>812) IRF4a-3.3R_C03_2013-03-28_Multiu(1>703)	11111111	CGGTGTCCCAGA-CACATAAGCCCTTCTGAGGACTATCAGCGGGCA-TCT CGGTGTCCCAGAACACATAAGCCCTTCTGAGGACTATCAGCGGGCAATCTCACACCACCA CGGTGTCCCAGAACACATAAGCCCTTCTGAGGACTATCAGCGGGCAATCTCACACCACCA CGGTGTCCCAGAACACATAAGCCCTTCTGAGGACTATCAGCGGGCAATCTCACACCACCA CGGTGTCCCAGAACACATAAGCCCTTCTGAGGACTATCAGCGGGCAATCTCACACCACCA CGGTGTCCCAGAACACATAAGCCCTTTGAGGACTATCAGCGGGCAATCTCACACCACCA CGGTGTCCCAGAACACATAAGCCCTTTGAGGACTATCAGCGGGCAATCTCACACCACCA CGGTGTCCCAGAACACATAAGCCCTTTGAGGACTATCAGCGGGCAATCTCACACCACCA CGGTGTCCCAGAACACATAAGCCCTTTGAGGACTATCAGCGGGCAATTTCACACCACCA CGGTGTCCCAGAACACATAAGCCCTTTGAGGACTATCAGCGGGCAATTTCACACCACCA CGGTGTCCCAGAACACATAAGCCCTTTGAGGACTATCAGCGGGCAATTTCACACCACCA
		1510 1520 1530 1540 1550 1560
		TCACCACCACGGCAGTATGATGCAGGAGTGATCGCGACCGATGTTGGATACTTGGATGGA
IRF4a-ORF5_R_A06_2013-07-22_Mul(76>950) IRF4a-ORF3_R_G04_2013-07-22_Mul(86>951) IRF4a-ORF4_R_H04_2013-07-22_Mul(76>926) IRF4a-ORF6_R_B06_2013-07-22_Mul(70>933) IRF4a-ORF2_R_F04_2013-07-22_Mul(70>933) IRF4a-3.2R_B03_2013-03-28_Multiu(1>812) IRF4a-3.1R_A03_2013-03-28_Multiu(1>812) IRF4a-3.3R_C03_2013-03-28_Multiu(1>812) IRF4a-3.4R_D03_2013-03-28_Multiu(1>245)	11111111	TCACCACCACGGCAGTATGATGCAGGAGTGATCGCGACCGATGTTGGATACTTGGATGGA
		1570 1580 1590 1600 1610 1620
		TAAAGGAGCAGACACGTTTGGATGTCACTAACATGAAATCCCGATTGGTTGAGCTGCAAA
IRF4a-ORF5_R_A06_2013-07-22_Mul(76>950) IRF4a-ORF3_R_G04_2013-07-22_Mul(86>951) IRF4a-ORF4_R_H04_2013-07-22_Mul(76>926) IRF4a-ORF6_R_B06_2013-07-22_Mul(70>933) IRF4a-ORF2_R_F04_2013-07-22_Mul(67>882) IRF4a-3.2R_B03_2013-03-28_Multiu(1>817) IRF4a-3.1R_A03_2013-03-28_Multiu(1>812) IRF4a-3.3R_C03_2013-03-28_Multiu(1>703) IRF4a-3.4R_D03_2013-03-28_Multiu(1>245)	11111111	TAAAGGAGCAGACACGTTTGGATGTCACTAACATGAAATCCCCGATTGGTTGAGC TAAAGGAGCAGACACGTTTGGATGTCACTAACATGAAATCCCCGATTGGTTGAGC TAAAGGAGCAGACACGTTTGGATGTCACTAACATGAAATCCCCGATTGGTTGAGC TAAAGGAGCAGACACGTTTGGATGTCACTAACATGAAATCCCCGATTGGTTGAGC TAAAGGAGCAGACACGTTTGGATGTCACTAACATGAAATCCCCGATTGGTTGAGCC TAAAGGAGCAGACACGTTTGGATGTCACTAACATGAAATCCCCGATTGGTTGAGCTGCAAA TAAAGGAGCAGACACGTTTGGATGTCACTAACATGAAATCCCCGATTGGTTGAGCTGCAAA TAAAGGAGCAGACACGTTTGGATGTCACTAACATGAAATCCCCGATTGGTTGAGCTGCAAA TAAAGGAGCAGACACGTTTGGATGTCACTAACATGAAATCCCCGATTGGTTGAGATGCAAA TAAAGGAGCAGACACGTTTGGATGTCACTAACAAGAAATCCCCGATTGGTTGAGATGCAAA TAAAGGAGCAGACACGTTTGGATGTCACTAACAAGAAATCCCCGATTGGTTGAGATGCAAA
		1630 1640 1650 1660 1670 1680
		ATCGGTGAAACTGTTGGTAACAGCGAAATCAACAAACATGGACCAAACATCTTGGACTAA
IRF4a-3.2R_B03_2013-03-28_Multiu(1>817) IRF4a-3.1R_A03_2013-03-28_Multiu(1>812) IRF4a-3.3R_C03_2013-03-28_Multiu(1>703) IRF4a-3.4R_D03_2013-03-28_Multiu(1>245)	1111	ATCGGTGAAACTGTTGGTAACAGGGAAATCAACAAACATGGACCAAACATCTTGGACTAA ATCGGTGAAACTGTTGGTAACAGGGAAATCAACAAACATGGACCAAACATCTTGGACTAA ATCGGTGAAACTGTTGGTAACAGGGAAATCAACAAACATGGACCAAACATCTTGGAATAA ATCGGTGAAACTGTTGGTAACAGGGAAATCAACAAACATGGACCAAACATCTTGGAATAA
		1690 1700 1710 1720
		7701.7141.101141.1007.01141.000000000000

Appendix 4: Assembly of Atlantic cod *Irf7* RACE and ORF PCR sequencing reads. Sequencing methods are described in section 2.1.2. Sequence data was assembled using Lasergene SeqMan Pro software (DNASTAR). Consensus sequence is indicated between horizontal lines.

		10 20 30 40 50 60
		GAAAACTTCGTCCGGGACGACACAACGAGGTACACTGCAAACATGCAAAGCAGTCACAAG
IRF7_5.2F_601_2012-09-13_Multiu(46>810) IRF7_5.3F_H01_2012-09-13_Multius(1>656) IRF7_5.1R_F07_2012-09-13_Multiu(89>905) IRF7_5.2R_607_2012-09-13_Multiu(74>815) IRF7_5.2F_607_2012-09-13_Multiu(81>845) IRF7_5.1F_F01_2012-09-13_Multius(1>725) IRF7-0RF5_F_E01_2013-07-22_Multi(1>879) IRF7-0RF4_F_D01_2013-07-22_Multi(1>878)	1111111	GAAAACTTCGTCCGGGACGACAACAACGAGGTACACTGCAAACATGCAAAGCAGTCACAAG AAACTTCGTCCGGGACGACAACGAGGTACACTGCAAACATGCAAAGCAGTCACAAG AACTTCGTCCGGGACGACAACGAGGTACACTGCAAACATGCAAAGCAGTCACAAG CTTCGTCCGGGACGACACAACGAGGTACACTGCAAACATGCAAAGCAGTCACAAG TTCGTCCGGGACGACAAACGAGGTACACTGCAAACATGCAAAGCAGTCACAAG TTCGTCCGGGACGACAAACGAGGTACACTGCAAACATGCAAAGCAGTCACAAG GGGACGACACAACGAGGTACACTGCAAAAATGCAAAGCAGTCCCGAG GGACGACACAACGAGGTACACTGCAAAAATGCAAAGCAGTCCCGAG GGACGACAAACGAGGTACACTGCAAAAATGCAAAGCAGTCCCGAG
		70 80 90 100 110 120 CCGCTGTTCGCCAACTGGCTAATCGAGCAAGTGGAAACTGGGAACTATCCAGGTTTGTCC
IRF7_5.2F_601_2012-09-13_Multiu(46>810) IRF7_5.3F_H01_2012-09-13_Multius(1>656) IRF7_5.1R_F07_2012-09-13_Multiu(89>905) IRF7_5.3R_H07_2012-09-13_Multiu(74>815) IRF7_5.2R_607_2012-09-13_Multiu(81>845) IRF7_5.1F_F01_2012-09-13_Multius(1>725) IRF7-0RF5_F_E01_2013-07-22_Multi(1>879) IRF7-0RF4_F_D01_2013-07-22_Multi(1>878)	1111111	CCGCTGTTCGCCAACTGGCTAATCGAGCAAGTGGAAACTGGGAACTATCCAGGTTTGTCC CCGCTGTTCGCCAACTGGCTAATCGAGCAAGTGGAAACTGGGAACTATCCAGGTTTGTCC CCGCTGTTCGCCAACTGGCTAATCGAGCAAGTGGAAACTGGGAACTATCCAGGTTTGTCC CCGCTGTTCGCCAACTGGCTAATCGAGCAAGTGGAAACTGGGAACTATCCAGGTTTGTCC CCGCTGTTCGCCAACTGGCTAATCGAGCAAGTGGAAACTGGGAACTATCCAGGTTTGTCC CCGCTGTTCGCCAACTGGCTAATCGAGCAAGTGGAAACTGGGAACTATCCAGGTTTGTCC CCGCTGTTCGCCAACTGGCTAATCGAGCAAGTGGAAACTGGGAACTATCCAGGTTGTCC CCGCTGTTCGCCAACTGGCTAATCGAGCAAGTGGAAACTGGGAACTATCCAGGTTGTCC CCGCTGTTCGCCAACTGGCTAATCGAGCAAGTGGAAACTGGGAACTATCCAGGCTTGTCC
		130 140 150 160 170 180 TACATCAGCACGAATCTATTCAGAGTCCCCTGGAAACACAACTCCCCGAAAGGACTGCAAC
IRF7_5.2F_G01_2012-09-13_Multiu(46>810) IRF7_5.3F_H01_2012-09-13_Multius(1>656) IRF7_5.1R_F07_2012-09-13_Multiu(89>905) IRF7_5.3R_H07_2012-09-13_Multiu(74>815) IRF7_5.2R_G07_2012-09-13_Multiu(81>845) IRF7_5.1F_F01_2012-09-13_Multius(1>725) IRF7-0RF5_F_E01_2013-07-22_Multi(1>879) IRF7-0RF4_F_D01_2013-07-22_Multi(1>878) IRF7-5.2_R_F06_2012-06-14_Multi(86>701)	111111111	TACATCAGCACGAATCTATTCAGAGTCCCCTGGAACACAACTCCCGAAAGGACTGCAAC TACATCAGCACGAATCTATTCAGAGTCCCCTGGAAACACAACTCCCGAAAGGACTGCAAC TACATCAGCACGAATCTATTCAGAGTCCCCTGGAAACACAACTCCCGGAAAGGACTGCAAC TACATCAGCACGAATCTATTCAGAGTCCCCTGGAAACACAACTCCCGAAAGGACTGCAAC TACATCAGCACGAATCTATTCAGAGTCCCCTGGAAACACAACTCCCGAAAGGACTGCAAC TACATCAGCACGAATCTATTCAGAGTCCCCTGGAAACACAACTCCCGAAAGGACTGCAAC TACATCAGCACGAATCTATTCAGAGTCCCCTGGAAACACAACTCCCGAAAGGACTGCAAC TACATCAGCACGAATCTATTCAGAGTCCCCTGGAAACACAACTCCCGAAAGGACTGCAAC TACATCAGCACGAATCTATTCAGAGTCCCCTGGAAACACAACTCCCGAAAGGACTGCAAC TACATCAGCACGAATCTATTCAGAGTCCCCTGGAAACACAACTCCCGAAAGGACTGCAAC
		190 200 210 220 230 240 GACGAGGACTGTAAAATATTTCGGGCCATGGGCCAGTGGTAAAATCCACGAGTTT
IRF7_5.2F_601_2012-09-13_Multiu(46>810) IRF7_5.3F_H01_2012-09-13_Multius(1>656) IRF7_5.1R_F07_2012-09-13_Multiu(89>905) IRF7_5.2R_607_2012-09-13_Multiu(74>815) IRF7_5.2F_607_2012-09-13_Multiu(81>845) IRF7_5.1F_F01_2012-09-13_Multius(1>725) IRF7-0RF5_F_E01_2013-07-22_Multi(1>879) IRF7-0RF4_F_D01_2013-07-22_Multi(1>878) IRF7-5.2_R_F06_2012-06-14_Multi(86>701)	11111111	GACGAGGACTGTAAAATATTTCGGGCATGGGCCGTCGCCAGTGGTAAAATCCACGAGTTT GACGAGGACTGTAAAATATTTCGGGCATGGGCCGTCGCCAGTGGTAAAATCCACGAGTTT GACGAGGACTGTAAAATATTTCGGGCATGGGCCGTCGCCAGTGGTAAAATCCACGAGTTT GACGAGGACTGTAAAATATTTCGGGCATGGGCCGTCGCCAGTGGTAAAATCCACGAGTTT GACGAGGACTGTAAAATATTTCGGGCATGGGCCGTCGCCAGTGGTAAAATCCACGAGTTT GACGAGGACTGTAAAATATTTCGGGCATGGGCCGTCGCCAGTGGTAAAATCCACGAGTTT GACGAGGACTGTAAAATATTTCGGGCATGGGCCGTCGCCAGTGGTAAAATCCACCAGTTT GACGAGGACTGTAAAATATTTCGGGCATGGGCCGTCGCCAGTGGTAAAATCCACCAGTTT GACGAGGACTGTAAAATATTTCGGGCATGGGCCGTCGCCAGTGGTAAAATCCACCAGTTT GACGAGGACTGTAAAATATTTCGGGCATGGGCCGTCGCCAGTGGTAAAATCCACGAGTTT GACGAGGACTGTAAAATATTTCGGGCATGGGCCGTCGCCAGTGGTAAAATCCACGAGTTT GACGAGGACTGTAAAATATTTCGGGCATGGGCCGTCGCCAGTGGTAAAATCCACGAGTTT
		250 260 270 280 290 300
		CCAAACGACAAGGCCAAATGGAAGACCAACTTCCGCTGCGCTCTGAAGAACCTCAACAAA
IRF7_5.2F_G01_2012-09-13_Multiu(46>810) IRF7_5.3F_H01_2012-09-13_Multius(1>656) IRF7_5.1R_F07_2012-09-13_Multiu(99>905) IRF7_5.3R_H07_2012-09-13_Multiu(74>815) IRF7_5.2R_G07_2012-09-13_Multiu(81>845) IRF7_5.1F_F01_2012-09-13_Multius(1>725) IRF7-ORF5_F_E01_2013-07-22_Multi(1>879) IRF7-ORF4_F_D01_2013-07-22_Multi(1>878) IRF7-5.2_R_F06_2012-06-14_Multi(86>701)	11111111	CCAAACGACAAGGCCAAATGGAAGACCAACTTCCGCTGCGCTCTGAAGAACCTCAACAA CCAAACGACAAGGCCAAATGGAAGACCAACTTCCGCTGCGCTCTGAAGAACCTCAACAA CCAAACGACAAGGCCAAATGGAAGACCAACTTCCGCTCGGCTCTGAAGAACCTCAACAA CCAAACGACAAGGCCAAATGGAAGACCAACTTCCGCTCGGCCTCGAAGAACCTCAACAA CCAAACGACAAGGCCAAATGGAAGACCAACTTCCGCTCGGCCTCGAAGAACCTCAACAA CCAAACGACAAGGCCAAATGGAAGACCAACTTCCGCTCGCGCTCTGAAGAACCTCAACAA CCAAACGACAAGGCCAAATGGAAGACCAACTTCCGCTCGCGCTCTGAAGAACCTCAACAA CCAAACGACAAGGCCAAATGGAAGACCAACTTCCGCTCGCGCTCTGAAGAACCTCAACAA CCAAACGACAAGGCCAAGTGGAAGACCAACTTCCGCTGCGCTCTGAAGAACCTCAACAAA CCAAACGACAAGGCCAAGTGGAAGACCAACTTCCGCTGCGCTCTGAAGAACCTCAACAAA CCAAACGACAAGGCCAAGTGGAAGACCAACTTCCGCTGCGCTCTGAAGAACCTCAACAAA CCAAACGACAAGGCCAAGTGGAAGACCAACTTCCGCTGCGCTCTGAAGAACCTCAACAAA
		310 320 330 340 350 360
IRF7 5.2F G01 2012-09-13 Multiu(46>810)		CONTINUES CONTRACTOR SCHEME CONTRACTOR CONTR
IRF7_5.3F_H01_2012-09-13_Multius(1>656)	-	CGCTTCAGGATGTCCCAAGGACAACTCCAAGAACTCCGACGACCACGAGAAGATCTACGAG CGCTTCAGGATGTCCCAAGGACAACTCCAAGAACTCCGACGACCGCCACAAGATCTACGAG

		310	320	330	340	350	360
		CGCTTCAGGATGT	CCAAGGACAAC	TCCAAGAACI	CCGACGACCO	CGCACAAGATO	TACGAG
IRF7_5.1R_F07_2012-09-13_Multiu(89>905) IRF7_5.3R_H07_2012-09-13_Multiu(74>815) IRF7_5.2R_G07_2012-09-13_Multiu(81>845) IRF7_5.1F_F01_2012-09-13_Multius(1>725) IRF7-ORF5_F_E01_2013-07-22_Multi(1>879) IRF7-ORF4_F_D01_2013-07-22_Multi(1>878) IRF7-5.2_R_F06_2012-06-14_Multi(86>701)	111111	CGCTTCAGGATGT CGCTTCAGGATGT CGCTTCAGGATGT CGCTTCAGGATGT CGCTTCAGGATGT CGCTTCAGGATGT CGCTTCAGGATGT	CCAAGGACAAC CCAAGGACAAC CCAAGGACAAC CCAAGGACAAC CCAAGGACAAC CCAAGGACAAC CCAAGGACAAC	TCCAAGAACI TCCAAGAACI TCCAAGAACI TCCAAGAACI TCCAAGAACI TCCAAGAACI TCCAAGAACI	TOCEACEACE TOCEACEACE TOCECEACEACE TOCEACEACE TOCEACEACE TOCEACEACE TOCEACEACE	CGCACAAGATO CGCACAAGATO CGCACAAGATO CGCACAAGATO CGCACAAGATO CGCACAAGATO CGCACAAGATO	TACGAG TACGAG TACGAG TACGAG TACGAG TACGAG TACGAG
		370	380 AGGCTGCCTAC	390 LL.CAGCCTTCGC		410 AGGACATGGTA	420 LLLLL LCCTGTG
IRF7_5.2F_G01_2012-09-13_Multiu(46>810) IRF7_5.3F_H01_2012-09-13_Multius(1>656) IRF7_5.1R_F07_2012-09-13_Multiu(89>905) IRF7_5.3R_H07_2012-09-13_Multiu(74>815) IRF7_5.2R_G07_2012-09-13_Multiu(81>845) IRF7_5.1F_F01_2012-09-13_Multius(1>725) IRF7-0RF5_F_E01_2013-07-72_Multi(1>879) IRF7-0RF4_F_D01_2013-07-22_Multi(1>878) IRF7-5.2_R_F06_Z012-06-14_Multi(86>701)	11111111	ATCATCAATAGGG ATCATCAATAGGG ATCATCAATAGGG ATCATCAATAGGG ATCATCAATAGGG ATCATCAATAGGG ATCATCAATAGGG ATCATCAATAGGG ATCATCAATAGGG	AGGCTGCCTAC AGGCTGCCTAC AGGCTGCCTAC AGGCTGCCTAC AGGCTGCCTAC AGGCTGCCTAC AGGCTGCCTAC AGGCTGCCTAC	CAGCCTTCGC CAGCCTTCGC CAGCCTTCGC CAGCCTTCGC CAGCCTTCGC CAGCCTTCGC CAGCCTTCGC CAGCCTTCGC	CCCCCGGAGG CCCCCGGAGG CCCCCGGAGG CCCCCGGAGG CCCCCGGAGG CCCCCGGAGG CCCCCGGAGG CCCCCGGAGG	AGGACATGGTA AGGACATGGTA AGGACATGGTA AGGACATGGTA AGGACATGGTA AGGACATGGTA AGGACATGGTA AGGACATGGTA	ACCTGTG ACCTGTG ACCTGTG ACCTGTG ACCTGTG ACCTGTG ACCTGTG ACCTGTG ACCTGTG ACCTGTG
		430 ATCTACAGTTCCC	440 CGACGGAGAGC	450 LL.L.L.L	460 L.L.L.L.L.	470	480 L.L.L GAACAA
IRF7_5.2F_G01_2012-09-13_Multiu(46>810) IRF7_5.3F_H01_2012-09-13_Multius(1>656) IRF7_5.1R_F07_2012-09-13_Multius(1>656) IRF7_5.2R_G07_2012-09-13_Multiu(74>815) IRF7_5.2R_G07_2012-09-13_Multiu(81>845) IRF7-5.1F_F01_2012-09-13_Multius(1>725) IRF7-ORF5_F_E01_2013-07-22_Multi(1>879) IRF7-ORF4_F_D01_2013-07-22_Multi(1>878) IRF7-5.2_R_F06_2012-06-14_Multi(86>701)	11111111	ATCTACAGTTCCCC ATCTACAGTTCCCC ATCTACAGTTCCCC ATCTACAGTTCCCC ATCTACAGTTCCCC ATCTACAGTTCCCC ATCTACAGTTCCCC ATCTACAGTTCCCC ATCTACAGTTCCCC	CGACGGAGAGAGC CGACGGAGAGAGC CGACGGAGAGC CGACGGAGAGC CGACGGAGAGAGC CGACGGAGAGAGC CGACGGAGAGC CGACGGAGAGC CGACGGAGAGC	TACCCACCTG TACCCACCTG TACCCACCTG TACCCACCTG TACCCACCTG TACCCACCTG TACCCACCTG TACCCACCTG	GGCATGAGCI GGCATGAGCI GGCATGAGCI GGCATGAGCI GGCATGAGCI GGCATGAGCI GGCATGAGCI GGCATGAGCI	AGAATATCCTC AGAATATCCTC AGAATATCCTC AGAATATCCTC AGAATATCCTC AGAATATCCTC AGAATATCCTC AGAATATCCTC AGAATATCCTC AGAATATCCTC	GAACAA GAACAA GAACAA GAACAA GAACAA GAACAA GAACAA GAACAA GAACAA
		490 CTCATGACCTTGG	500	510 LL.C.C.C.G.C.C.C.G.C.C.C.C.C.C.C.C.C	520	530	540
IRF7_5.2F_G01_2012-09-13_Multiu(46>810) IRF7_5.3F_H01_2012-09-13_Multius(1>656) IRF7_5.1R_F07_2012-09-13_Multius(1>656) IRF7_5.3R_H07_2012-09-13_Multiu(74>815) IRF7_5.2R_G07_2012-09-13_Multiu(81>845) IRF7_5.1F_F01_2012-09-13_Multius(1>725) IRF7-0RF5_F_E01_2013-07-22_Multi(1>879) IRF7-0RF4_F_D01_2013-07-22_Multi(1>878) IRF7-5.2_R_F06_2012-06-14_Multi(86>701)	11111111	CTCATGACCTTGG CTCATGACCTTGG CTCATGACCTTGG CTCATGACCTTGG CTCATGACCTTGG CTCATGACCTTGG CTCATGACCTTGG CTCATGACCTTGG CTCATGACCTTGG	ATTTACTGGAT ATTTACTGGAT ATTTACTGGAT ATTTACTGGAT ATTTACTGGAT ATTTACTGGAT ATTTACTGGAT ATTTACTGGAT	GAACCCTGTC GAACCCTGTC GAACCCTGTC GAACCCTGTC GAACCCTGTC GAACCCTGTC GAACCCTGTC GAACCCTGTC	TACAAACAGI TACAAACAGI TACAAACAGI TACAAACAGI TACAAACAGI TACAAACAGI TACAAACAGI TACAAACAGI TACAAACAGI	TAGGCGAGCAG TAGGCGAGCAG TAGGCGAGCAG TAGGCGAGCAG TAGGCGAGCAG TAGGCGAGCAG TAGGCGAGCAG TAGGCGAGCAG TAGGCGAGCAG	TGGGCG TGGGCG TGGGCG TGGGCG TGGGCG TGGGCG TGGGCG TGGGCG
		550 GAAAGCTACGGCC	560	570	580 	590 JJ.	600 LL
IRF7_5.2F_G01_2012-09-13_Multiu(46>810) IRF7_5.3F_H01_2012-09-13_Multius(1>656) IRF7_5.1R_F07_2012-09-13_Multiu(89>905) IRF7_5.3R_H07_2012-09-13_Multiu(74>815) IRF7_5.2R_G07_2012-09-13_Multiu(81>845) IRF7_5.1F_F01_2012-09-13_Multius(1>725) IRF7-0RF5_F_E01_2013-07-22_Multi(1>879) IRF7-0RF4_F_D01_2013-07-22_Multi(1>878) IRF7-5.2_R_F06_2012-06-14_Multi(86>701)	111111111	GAAAGCTACGGCC GAAAGCTACGGCC GAAAGCTACGGCC GAAAGCTACGGCC GAAAGCTACGGCC GAAAGCTACGGCC GAAAGCTACAGCC GAAAGCTACAGCC GAAAGCTACAGCC GAAAGCTACGGCC	AGCAGAGCGCC AGCAGAGCGCC AGCAGAGCGCC AGCAGAGCGCC AGCAGAGCGCC AGCAGAGCGCC AGCAGAGCGCC AGCAGAGCGCC	ATTGGGCTGG ATTGGGCTGG ATTGGGCTGG ATTGGGCTGG ATTGGGCTGG ATTGGGCTGG ATTGGGCTGG ATTGGGCTGG	GGG-TGTACC GGG-TGTACC GGG-TGTACC GGG-TGTACC GGGG-TGTACC GGGG-TGTACC GGGG-TGTACC GGGG-TGTACC	BCCACAAACCA BCCACAAACCA BCCACAAACCA BCCACAAACCA BCCACAAACCA BCCACAAACCA BCCACAAACCA BCCACAAACCA	LGCAGGC LGCAGGC LGCAGGC LGCAGGC LGCAGGC LGCAGGC LGCAGGC
		610 GACGGGGGAGACG	620 LL.ATGCACGCCAT	630 LGCAGACCCAR	640	650 LL.CAACCACAGCA	660 LL
IRF7_5.2F_G01_2012-09-13_Multiu(46>810) IRF7_5.1R_F07_2012-09-13_Multiu(89>905) IRF7_5.3R_H07_2012-09-13_Multiu(74>815)	Ξ	GACGGGGGAGACG GACGGGGGGAGACG GACGGGGGGAGACG	ATGCACGCCAT ATGCACGCCAT ATGCACGCCAT	GCAGACCCAP GCAGACCCAP GCAGACCCAP	ACCACAGCTC(ACCACAGCTC(ACCACAGCTC(CAACCACAGCA CAACCACAGCA CAACCACAGCA	LGCAGGC LGCAGGC LGCAGGC

		610 620 630 640 650 660
		GACGGGGGAGACGATGCACGCCATGCAGACCCAACCACAGCTCCAACCACAGCAGCAGGC
IRF7_5.2R_G07_2012-09-13_Multiu(81>845) IRF7_5.1F_F01_2012-09-13_Multius(1>725) IRF7-ORF5_F_E01_2013-07-22_Multi(1>879) IRF7-ORF4_F_D01_2013-07-22_Multi(1>878) IRF7-5.2_R_F06_2012-06-14_Multi(86>701)	1111	GACGGGGGAGACGATGCACGCCATGCAGACCCACCCACCACCACACCACGCAGCA GACGGGGGAGACGATGCACGCCATGCAGACCCACCACGACCACCACGCAGCA GACGGGGGAGACGATGCACGCCATGCAGACCCAACCACGCCCCAACCACGAGCAGGC GACGGGGGAGACGATGCACGCCATGCAGACCCACCACCACCACCACCACCACGCAGCAGGC GACGGGGGAGACGATGCACGCCATGCAGACCCAACCACAGCTCCAACCACGAGCAGGC GACGGGGGAGACGATGCACGCCATGCAGACCCAACCACAGCTCCAACCACGAGCAGGC
		670 680 690 700 710 720
		GTACTACCCCGTCAACCCGCCGCCGGTGCTGGACTCCGGCCTGCAGCCCTCCTCTTGA
IRF7_5.2F_G01_2012-09-13_Multiu(46>810) IRF7_5.1R_F07_2012-09-13_Multiu(89>905) IRF7_5.3R_H07_2012-09-13_Multiu(74>815) IRF7_5.2R_G07_2012-09-13_Multiu(81>845) IRF7_5.1F_F01_2012-09-13_Multius(1>725) IRF7-0RF5_E01_2013-07-22_Multi(1>878) IRF7-0RF4_F_D01_2013-07-22_Multi(1>878) IRF7mid2R_B07_2012-09-13_Multiu(82>703) IRF7mid1F_A01_2012-09-13_Multius(1>623) IRF7mid2F_B01_2012-09-13_Multius(1>662)	11111111111	GTACTACCCCGTCAACCCGCCGCCGGTGCTGGACTCCGGCCTGCAGCCTCCTCTTTGA GTACTACCCCGTCAACCCGCCGCGGTGCTGGACTCCGGCCTGCAGCCTCCCTC
		730 740 750 760 770 780
		CCTGGAGATATCGGTGCACTACCGGAAGGTGGAGATGCTGAAGACCCAGGTGTCCTGGCC
IRF7_5.2F_G01_2012-09-13_Multiu(46>810) IRF7_5.1R_F07_2012-09-13_Multiu(89>905) IRF7_5.3R_H07_2012-09-13_Multiu(82>905) IRF7_5.2R_G07_2012-09-13_Multiu(81>845) IRF7-0RF5_F_E01_2013-07-22_Multi(1>878) IRF7-0RF4_F_D01_2013-07-22_Multi(1>878) IRF7-5.2_R_F06_2012-06-14_Multi(85>701) IRF7mid2R_B07_2012-09-13_Multiu(82>703) IRF7mid1F_A01_2012-09-13_Multius(1>623) IRF7mid2F_B01_2012-09-13_Multius(1>662)	1111111111	CCTGGAGATATCGGTGCAC-A CCTGGAGATATCGGTGCAC-A CCTGGAGATATCGGTGCAC CCTGGAGATATCGGTGCAC CCTGGAGATATCGGTGCAC CCTGGAGATATCGGTGCACTACCGGAAGGTGGAGATGCTGAAGACCCAGGTGTCCTGGCC CCTGGAGATATCGGTGCACTACCGGAAGGTGGAGATGCTGAAGACCCAGGTGTCCTGGCC CCTGGAGATATCGGTGCACTACCGGAAGGTGGAGATGCTGAAGACCCAGGTGTCCTGGCC CCTGGAGATATCGGTGCACTACCGGAAGGTGGAGATGCTGAAGACCCAGGTGTCCTGGCC CCTGGAGATATCGGTGCACTACCGGAAGGTGGAGATGCTGAAGACCCAGGTGTCCTGGCC CCTGGAGATATCGGTGCACTACCGGAAGGTGGAGATGCTGAAGACCCAGGTGTCCTGGCC CCTGGAGATATCGGTGCACTACCGGAAGGTGGAGATGCTGAAGACCCAGGTGTCCTGGCC
		790 800 810 820 830 840
IRF7-ORF5_F_E01_2013-07-22_Multi(1>879) IRF7-ORF4_F_D01_2013-07-22_Multi(1>878) IRF7mid2R_B07_2012-09-13_Multi(82>703) IRF7mid1F_A01_2012-09-13_Multius(1>623) IRF7mid2F_B01_2012-09-13_Multius(1>662) IRF7-ORF4_R_D02_2013-07-22_Multi(1>784) IRF7-ORF5_R_E02_2013-07-22_Multi(1>782)	111111	CCGCGTCCAGCTGCACTACGGCAACGAGGCCACGGAGCTCCAGGCCCGGCCCATCTGCTT CCGCGT-CAGCTGCACTACGGCAACGAGGCCACGGAGCTCCAGGCCCGGCCCATCTGCTT CCGCGTCCAGCTGCACTACGGCAACGAGGCCACGGAGCTCCAGGCCCGGCCCATCTGCTT CCGCGTCCAGCTGCACTACGGCAACGAGGCCACGGAGCTCCAGGCCCGGCCCATCTGCTT CCGCGTCCAGCTGCACTACGGCAACGAGGCCACGGAGCTCCAGGCCCGGCCCATCTGCTT CCGCGTCCAGCTGCACTACGGCAACGAGGCCACGGAGCTCCAGGCCCGGCCCATCTGCTT CCGCGTCCAGCTGCACTACGGCAACGAGGCCACGGAGCTCCAGGCCCGGCCCATCTGCTT CCGCGTCCAGCTGCACTACGGCAACGAGGCCACGGAGCTCCAGGCCGGCC
		850 860 870 880 890 900
IRF7-ORF5_F_E01_2013-07-22_Multi(1>879) IRF7-ORF4_F_D01_2013-07-22_Multi(1>878) IRF7mid2R_B07_2012-09-13_Multiu(82>703) IRF7mid1F_A01_2012-09-13_Multius(1>623) IRF7mid2F_B01_2012-09-13_Multius(1>662) IRF7-ORF4_R_D02_2013-07-22_Multi(1>784) IRF7-ORF5_R_E02_2013-07-22_Multi(1>782) IRF7-ORF6_R_F02_2013-07-22_Multi(5>753)	1111111	CCCCCCCACCGAC CCCCCC-ACCGACACCTGCGGGACCACA CCCCCCCACCGACACCTGCGGGACCACAAACAGGTGGAGTTCACCAACCGCATCCTGAG CCCCCCCACCGACACCCTGCGGGACCACAAACAGGTGGAGTTCACCAACCGCATCCTGAG CCCCCCCACCGACACCCTGCGGGACCACAAACAGGTGGAGTTCACCAACCGCATCCTGAG CCCCCCCACCGACACCCTGCGGGACCACAAACAGGTGGAGTTCACCAACCGCATCCTGAG CCCCCCCCACCGACACCGTGCGGGACCACAAACAGGTGGAGTTCACCAACCGCATCCTGAG CCCCCCCCACCGACACCGTGCGGGACCACAAACAGGTGGAGTTCACCAACCGCATCCTGAG CCCCCCCCCC
		910 920 930 940 950 960
		CAGCATCCAGCGCGGcCTGCTGCTGGAGGGGGGGGGGGGG
IRF7mid2R_B07_2012-09-13_Multiu(82>703) IRF7mid1F_A01_2012-09-13_Multius(1>623) IRF7mid2F_B01_2012-09-13_Multius(1>662) IRF7-0RF4_R_D02_2013-07-22_Multi(1>784) IRF7-0RF5_R_E02_2013-07-22_Multi(1>782)	1111	CAGCATCCAGCGCGCGCCTCCTCGCAGGGGGGGGGGGGG

		910 920 930 940 950 960
		CAGCATCCAGCGCGGcCTGCTGCTGCGGGGGGGGGGGGGG
IRF7-ORF6_R_F02_2013-07-22_Mult(59>753)	-	CASCATCCAGCGCGG-CTGCTGCTGGAGGTGCGGGAGAGCGGGCTGTACGCCTGCCGGCA
		970 980 990 1000 1010 1020
TEF7mid2E E07 2012 00 12 Multin (825702)	-	
IRF7mid1F A01 2012-09-13 Multius(1>623)	—	GGACCGCTGCCACGTGTTCGCCAGCACGGCCGACCCCAGCCCGGGCCCCCGGACCCCCA GGACCGCTGCCACGTGTTCGCCAGCACGGCCGACCCCAGCCCAGCCCCCCGGACCCCCC
IRF7mid2F_B01_2012-09-13_Multius(1>662)		GGACCGCTGCCACGTGTTCGCCAGCACGGCCGACCCCAGCCAG
IRF7-ORF4_R_D02_2013-07-22_Multi(1>784)	=	GGACCGCTGCCACGTGTTCGCCAGCACGGCCGACCCCAGCCCAGGCCTCCCCGGACCCCCA
IRF7-ORF6_R_F02_2013-07-22_Mult(19782) IRF7-ORF6_R_F02_2013-07-22_Mult(59>753)	-	GGACCGCTGCCACGTGTTCACCAGGACGGACCCCAGGCCTCCCCGGACCCCCA GGACCGCTGCCACGTGTTCACCAGGACGGCCGACCCCCAGTCAGGCCTCCCCGGACCCCCA
		1030 1040 1050 1060 1070 1080
		GAAGCTGCCCCAGAACACCCTGGTGGAGCTGCTCAGCTTCGAGAAGTTCGTTAAAGAACT
IRF7mid2R B07 2012-09-13 Multiu(82>703)	-	CARCELCOCCA CARCELCOCCECCECCECCECCECCECCECCECCECCECCECECECEC
IRF7mid1F_A01_2012-09-13_Multius(1>623)		GAAGCTGCCCCAGAACACCCTGGTGGAGCTGCTCAGCTTCGAGAAGTTCGTTAAAGAACT
IRF7mid2F_B01_2012-09-13_Multius(1>662)	_	GAAGCTGCCCCAGAACACCCTGGTGGAGCTGCTCAGCTTCGAGAAGTTCGTTAAAGAACT
IRF7-ORF5 R E02 2013-07-22 Multi(1>784)	-	GAAGCTGCCCCAGAACACCCTGGTGGAGCTGCTCAGCTTCGAGAAGTTCGTTAAAGAACT
IRF7-ORF6_R_F02_2013-07-22_Mult(\$9>753)	-	GAAGCTGCCCCAGAACACCCCTGGTGGAGCTGCTCAGCTTCGAGAAGTTCGTTAAAGAACT
		1090 1100 1110 1120 1130 1140
TDE7mid2D_B07_2012_08_12_Multin(825702)	-	
IRF7mid1F A01 2012-09-13 Multius(1>623)		CAAAGAGTTTAAGGAGAACCAAAGGGGATCTCCCGGAATATGTCGTCAACATGTGCTTTGG
IRF7mid2F_B01_2012-09-13_Multius(1>662)		CAAAGAGTTTAAGGAGAACCAAAGGGGATCTCCGGAATATGTCGTCAACATGTGCTTT
IRF7-ORF4_R_D02_2013-07-22_Multi(1>784)	-	CAAAGAGTTTAAGGAGAACCGAAGGGGATCTCCGGAATATGTCGTCAACATGTGCTTT
IRF7-ORF6_R_F02_2013-07-22_Mult(19782) IRF7-ORF6_R_F02_2013-07-22_Mult(59>753)	Ξ	CAAAGAGTTTAAGGAGAACCGAAGGGGATCTCCCGGAATATGTCGTCAACATGTGCTTT CAAAGAGTTTAAGGAGAACCGAAGGGGATCTCCCGGAATATGTCGTCAACATGTGCTTT
		1150 1160 1170 1180 1100 1200
		GGGGAGAAGTTCCCTGATGGAAAAACCGCTGGAGAAAAAGCTCATTGTTGTTAAGGTGGTT
IRF7mid2R_B07_2012-09-13_Multiu(82>703)	-	GGGGAGAAGTTCCCTGATGGAAAACCGCTGGAGAAAAAGCTCATTGTTGTTAAGGTGGTT
IRF/mid1F_A01_2012-09-13_Multius(1>623) IRF7mid2F_B01_2012-09-13_Multius(1>662)	_	GGGGAGAAGTTCCCTGATGGAAAACCGCTGGAGAAAAAGCTCATTGTTGTTAAGGTGGTT GGGGAGAAGTTCCCTGATGGAAAACCGCTGGAGAAAAAGCTCATTGTTGTTAAGGTGGTT
IRF7-ORF4_R_D02_2013-07-22_Multi(1>784)	-	GGGGAGAAGTTCCCTGATGGAAAACCGCTGGAGAAAAAGCTCATTGTTGTTAAGGTGGTT
IRF7-ORF5_R_E02_2013-07-22_Multi(1>782)	-	GGGGAGAAGTTCCCTGATGGAAAACCGCTGGAGAAAAAGCTCATTGTTGTTAAGGTGGTT
IRF7-ORF6_R_F02_2013-07-22_Mult(59>753)	-	GGGGAGAAGTTCCCTGATGGAAAACOGCTGGAGAAAAAGCTCATTGTTGTTAAGGTGGTT
		1210 1220 1230 1240 1250 1260
		CCTCTGATATGCCGGTACTTCTACGAGATGGCCCAGGC-GGAGGGGGGCGTCCTCTCGGA
IRF7mid2R_B07_2012-09-13 Multiu(82>703)	-	CCTCTGATATGCCGGTACTTCTACGAGATGGCCCAGGC-GGAGGGGGGGCGTCCTCTCGGA
IRF7mid1F_A01_2012-09-13_Multius(1>623)		CCTCTGATATGCCGGTACTTCTACGAGATGGCCCAGATGGGAGGGGGGGCGTCCTCTCTGGA
IRF/mid2F_B01_2012-09-13_Multius(1>662)	-	CCTCTGATATGCCGGTACTTCTACGAGATGGCCCAGGC-GGAGGGGGGCGTCCTCTCGGA
IRF7-ORF5 R E02 2013-07-22 Multi(1>782)	-	CCTCTGATATGCCGGTACTTCTACGAGATGGCCCAGGC-GGAGGGGGGCGTCTCTCTGGA
IRF7-ORF6_R_F02_2013-07-22_Mult(59>753)	-	CCTCTGATATGCCGGTACTTCTACGAGATGGCCCAGGC-GGAGGGGGGGCGTCCTCTCGGA
		1270 1280 1290 1300 1310 1320
IRF7mid2R B07 2012-09-13 Multin(82>703)	-	CAGCACCAACGTCAGCCTACAGATCTCCCCACGACCACCTCTACGACCTCTATC
IRF7mid1F_A01_2012-09-13_Multius(1>623)		CAGCACCAACGTCAGCCTACAGATCTCCCCACGACAGCCTCTACGACCTCA
IRF7mid2F_B01_2012-09-13_Multius(1>662)		CAGCACCAACGTCAGCCTACAGATCTCCCACGACAGCCTCTACGACCTCATCA
IRF7-ORF4_R_D02_2013-07-22_Multi(1>784)	-	CAGCACCAACATCAGCCTACAGATCTCCCCACGACAGCCTCTACGACCTCATCAGCTCGGC
IRF7-ORF6 R F02 2013-07-22 Mult1(15/82)	Ξ	CAGCACCAACCATCAGOCTACAGATCTCCCCACGACCCCCTACGACCTCATCAGCTCGGC
IRF7_3.2R_E07_2012-09-13 Multiu(65>912)	-	CASCACCAACGTCAGCGTACAGATCTCCCCACGACAGCCTCTACGACCTCATCAGCTCGGC CAGCACCAACGTCAGCGTACAGATCTCCCCACGACAGCCTCTACGACCTCATCAGCTCGGC
IRF7_3.1F_D01_2012-09-13_Multiu(49>795)		CAGCACCAACGTCAGCCTACAGATCTCCCACGACAGCCTCTACGACCTCATCAGCTCGGC
IRF7-3.1 F A02_2012-06-14 Multi (55>652)	_	CAGCACCAACGTCAGCCTACAGATCTCCCCACGACAGCCTCTACGACCTCATCAGCTCGGC
IVE. [2.56] FOI TOIN-03-12 WHIFTH (235832)	-	CASCACCAROSICASCCIACAGAICICCCACGACASCCICIACGACCICATCAGCICGGC

		1270 1280 1290 1300 1310 1320
		CAGCACCAACGTCAGCCTACAGATCTCCCACGACAGCCTCTACGACCTCATCAGCTCGGC
IRF7-3.2_F_B02_2012-06-14_Multi(45>640)		CAGCACCAACGTCAGCCTACAGATCTCCCACGACAGCCTCTACGACCTCATCAGCTCGGC
		1330 1340 1350 1360 1370 1380
		CTTCGGTCTGCCCGGGTCTCAAGTGGCTCCCCAGCTCGTAGGACACTACTAGACCACAGA
IRF7-ORF4 B D02 2013-07-22 Multi(1>784)	-	CTTCCCTCTCCCCCCCTCTCA ACTCCCCCACCTCCTACCACACTACTACACCACACA
TRF7-ORF5 R E02 2013-07-22 Multi(1>782)	-	CTTCGGTCTGCCCGGGTCTCALGTGGCTCCCCCGGCGGCGGCACACTACTAGACCACAGA
IRF7-ORF6 R F02 2013-07-22 Mult(59>753)	-	CTTCGGTCTGCCCGGGTCTCLLGTGGCTCCCCLGCTCGTLGGLCACTACTAGLCCLCLGA
IRF7 3.2R E07 2012-09-13 Multiu(65>912)	-	CTTCGGTCTGCCCGGGTCTC22GTGGCTCCCC2GCTCGT2GG2C2CT2CT2G2CC2G2
IRF7 3.1F D01 2012-09-13 Multiu (49>795)		CTTCGGTCTGCCCGGGTCTCAAGTGGCTCCCCAGCTCGTAGGACACTACTAGACCACAGA
IRF7-3.1 F A02 2012-06-14 Multi(55>652)		CTTCGGTCTGCCCGGGTCTCAAGTGGCTCCCCAGCTCGTAGGACACTACTAGACCACAGA
IRF7_3.2F_E01_2012-09-13_Multiu(59>893)		CTTCGGTCTGCCCGGGTCTCAAGTGGCTCCCCAGCTCGTAGGACACTACTAGACCACAGA
IRF7-3.2_F_B02_2012-06-14_Multi(45>640)		CTTCGGTCTGCCCGGGTCTCAAGTGGCTCCCCAGCTCGTAGGACACTACTAGACCACAGA
IRF7_3.1R_D07_2012-09-13_Multiu(87>834)	-	CCCCAGCTCGTAGGACACTACTAGACCACAGA
		1390 1400 1410 1420 1430 1440
		CCTGTGGTCCAGAACACAAACCTAGTCCAGAATAAGGGACAGTTCACCCATCTCTCATCT
TRF7-ORF4 B D02 2013-07-22 Multi(1>784)	-	COTCTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
IRF7-ORF5 R E02 2013-07-22 Multi(1>782)	-	CCTGTGGTCCAGAACACAAACCTAGTCCAGAATAAGGGACAGTTCACCCATCTCTCATCT
IRF7-ORF6 R F02 2013-07-22 Mult (59>753)	-	CCTGTGGTCCAGAACACAAACCTAGTCCAGAATAAGGGACAGTTCACCCATCTCTCATCT
IRF7 3.2R E07 2012-09-13 Multiu(65>912)	-	CCTGTGGTCCAGAACACAAACCTAGTCCAGAATAAGGGACAGTTCACCCATCTCTCATCT
IRF7_3.1F_D01_2012-09-13_Multiu(49>795)		CCTGTGGTCCAGAACACAAACCTAGTCCAGAATAAGGGACAGTTCACCCATCTCTCATCT
IRF7-3.1_F_A02_2012-06-14_Multi(55>652)		CCTGTGGTCCAGAACACAAACCTAGTCCAGAATAAGGGACAGTTCACCCATCTCTCATCT
IRF7_3.2F_E01_2012-09-13_Multiu(59>893)		CCTGTGGTCCAGAACACAAACCTAGTCCAGAATAAGGGACAGTTCACCCATCTCTCATCT
IRF7-3.2_F_B02_2012-06-14_Multi(45>640)	-	CCTGTGGTCCAGAACACAAACCTAGTCCAGAATAAGGGACAGTTCACCCATCTCTCATCT
IRF7_3.1R_D07_2012-09-13_Multiu(87>834)	-	CCTGTGGGTCCAGAACACAAACCTAGTCCAGAATAAGGGACAGTTCACCCATCTCTCATCT
		1450 1460 1470 1480 1490 1500
		ICATATCOGTATAGGCACATATGCTTCCTCACTCTCTTTATAGGCCCTCTTCAAAGTTAT
IRF7-ORF4_R_D02_2013-07-22_Multi(1>784)	-	TCATATCCGTATAGGCACATATGCTTCCTCACTCTCTTTATAGGCCCTCTTCAAAGTTAT
IRF7-ORF5_R_E02_2013-07-22_Multi(1>782)		TCATATCCGTATAGGCACATATGCTTCCTCACTCTCTTTATAGGCCCTCTTCAAAGTTAT
IRF7-ORF6_R_F02_2013-07-22_Mult(59>753)	-	TCATATCCGTATAGGCACATATGCTTCCTCACTCTCTTTATAGGCCCTCTTCAAAGTTAT
IRF7_3.2R_E07_2012-09-13_Multiu(65>912)	-	TCATATCCGTATAGGCACATATGCTTCCTCACTCTCTTTATAGGCCCCTCTTCAAAGTTAT
IRF7_3.1F_D01_2012-09-13_Multiu(49>795)	-	TCATATCCGTATAGGCACATATGCTTCCTCACTCTCTTTATAGGCCCCTCTTCAAAGTTAT
IRF7-3.1_F_A02_2012-06-14_Mult1(55>652)	_	TCATATCCGTATAGGCACATATGCTTCCTCACTCTCTTTATAGGCCCTCTTCAAAGTTAT
IRE7_3.2F_E01_2012-09-13_Multiu(59>893)		TCATATCOGTATAGGCACATATGCTTCCTCACTCTCTTTATAGGCCCTCTTCAAAGTTAT
IRF/-3.2_F_BU2_2012-06-14_Mult1(43>640)		TCATATCCGTATAGGCACATATGCTTCCTCACTCTCTTTATAGGCCCTCTTCAAAGTTAT
IRF/_3.IR_DU/_2012-09-13_Multiu(8/>834)	-	TCATATCCGTATAGGCACATATGCTTCCTCACTCTCTTATAGGCCCCTCTTCAAAGTTAT
		1540 1500 1500 1540 1550 1550
		AATTTATATGACAAAGCTATTGTTAATTGTACGATGCTAATAGGGTAAGTGTGATTTAAG
TPE7_OPE4 P D02 2013_07_22 Multi(15784)	-	a a menta da menuna a como mecana a presenta con mecana a ma escura a enverso a rema a c
TEF7_OEF5 R F02 2013-07-22 Multi(12/04)	-	ART TATALGACAARSCIALIGITAALIGIACGATGCIAATAGGSIAASIGTGATTTAAG AATTTATATGACAAASCIATTGTTAATTGTACGATGCTAATAGGSIAASIGTGATTTAAG
IRF7-ORF6 R F02 2013-07-22 Mult (595753)	-	ARTITATATCACARAGUTATIGTIARTIGTAGATGCTARTAGGGTARGTGTGATTTAAG
IBE7 3.28 E07 2012-09-13 Multiu(65>912)	-	AATTATATATATAACAAAGCTATTCTTAATTCTACCATCCTAATAGGGTAAGTGTGATTTAAG
IRF7 3.1F D01 2012-09-13 Multiu(49>795)		AATTTATATGACAAASCTATTGTTATTGTACGATGCTAATASSSTAASTSTGATTTAAS
IRF7-3.1 F A02 2012-06-14 Multi(55>652)		AATTTATATGACAAAGCTATTGTTAATTGTACGATGCTAATAGGGTAAGTGTGATTTAAG
IRF7 3.2F E01 2012-09-13 Multiu (59>893)		AATTTATATGACAAAGCTATTGTTAATTGTACGATGCTAATAGGGTAAGTGTGATTTAAG
IRF7-3.2 F B02 2012-06-14 Multi(45>640)		AATTTATATGACAAAGCTATTGTTAATTGTACGATGCTAATAGGGTAAGTGTGATTTAAG
IRF7 3.1R D07 2012-09-13 Multiu (87>834)	-	AATTTATATGACAAAGCTATTGTTAATTGTACGATGCTAATAGGGTAAGTGTGATTTAAG
		1570 1580 1590 1600 1610 1620
		TTGTGGATATAGTTGGTAGTGGGGACGTGGTTTTCATATATAT
IRF7-ORF4 R D02 2013-07-22 Multi(1>784)	-	TTGTGGATATAGTTGGTAGTGGGGACGTGGTTTT
IRF7-ORF5 R E02 2013-07-22 Multi(1>782)	-	TTGTGGATATAGTTGGTAGTGGGGACGTGGTTTT
IRF7-ORF6_R_F02_2013-07-22_Mult(59>753)	-	TTGTGGATATAGTTGGTAGTGGGGACGTGGTTT
IRF7_3.2R_E07_2012-09-13_Multiu(65>912)	-	TTGTGGATATAGTTGGTAGTGGGGACGTGGTTTTCATATATAT
IRF7_3.1F_D01_2012-09-13_Multiu(49>795)		TTGTGGATATAGTTGGTAGTGGGGACGTGGTTTTCATATATAT
IRF7-3.1_F_A02_2012-06-14_Multi(55>652)		TTGTGGATATAGTTGGTAGTGGGGACGTGGTTTTCATATATAT
IRF7_3.2F_E01_2012-09-13_Multiu(59>893)		TTGTGGATATAGTTGGTAGTGGGGACGTGGTTTTCATATATAT
IRF7-3.2_F_B02_2012-06-14_Multi(45>640)		TTGTGGATATAGTTGGTAGTGGGGACGTGGTTTTCATATATAT
IRF7_3.1R_D07_2012-09-13_Multiu(87>834)	-	TTGTGGATATAGTTGGTAGTGGGGACGTGGTTTTCATATATAT
		1630 1640 1650 1660 1670 1680
---	-------	--
		TCTGACTGTTCTAAGTCACTTTCAGTCTTATCACTTCCTAAGTCACTTCTCTGTGTTTAC
IRF7_3.2R_E07_2012-09-13_Multiu(65>912) IRF7_3.1F_D01_2012-09-13_Multiu(49>795) IRF7-3.1 F_A02_2012-06-14_Multi(55>652) IRF7_3.2F_E01_2012-09-13_Multiu(59>893) IRF7-3.2 F_B02_2012-06-14_Multiu(45>640) IRF7_3.1R_D07_2012-09-13_Multiu(87>834)	11111	TCTGACTGTTCTAAGTCACTTTCAGTCTTATCACTTCCTAAGTCACTTCTCTGTGTTTAC TCTGACTGTTCTAAGTCACTTTCAGTCTTATCACTTCCTAAGTCACTTCTCTGTGTTTAC TCTGACTGTTCTAAGTCACTTTCAGTCTTATCACTTCCTAAGTCACTTCTCTGTGTTTAC TCTGACTGTTCTAAGTCACTTCAGTCTTATCACTTCCTAAGTCACTTCTCTGTGTTTAC TCTGACTGTTCTAAGTCACTTCAGTCTTATCACTTCCTAAGTCACTTCTCTGTGTTTAC TCTGACTGTTTTAAGTCACTTCCAGTCTTATCACTTCCTAAGTCACTTCTCTGTGTTTAC
		1690 1700 1710 1720 1730 1740 ATACACTGTTGTCAAATATGCATCTATTCTCACCATCAAACCTGTTCTATTAGCTGG
IRF7_3.2R_E07_2012-09-13_Multiu(65>912) IRF7_3.1F_D01_2012-09-13_Multiu(49>795) IRF7-3.1_F_A02_2012-06-14_Multi(55>652) IRF7_3.2F_E01_2012-09-13_Multiu(59>893) IRF7-3.2 F_B02_2012-06-14_Multi(45>640) IRF7_3.1R_D07_2012-09-13_Multiu(87>834)	11111	ATACACTGTTGTTGTCAAATATGCATCTATTCTCACCATCAAACCTGTTCTATTAGCTGG ATACACTGTTGTTGTCAAATATGCATCTATTCTCACCATCAAACCTGTTCTATTAGCTGG ATACACTGTTGTTGTCAAATATGCATCTATTCTCACCATCAAACCTGTTCTATTAGCTGG ATACACTGTTGTTGTCAAATATGCATCTATTCTCACCATCAAACCTGTTCTATTAGCTGG ATACACTGTTGTTGTCAAATATGCATCTATTCTCACCATCAAACCTGTTCTATTAGCTGG ATACACTGTTGTTGTCAAATATGCATCTATTCTCACCATCAAACCTGTTCTATTAGCTGG ATACACTGTTGTTGTCAAATATGCATCTATTCTCACCATCAAACCTGTTCTATTAGCTGG
		1750 1760 1770 1780 1790 1800
		TATTTATAACTACCATTCTTGAGGGTATGTTATATGTGACCGTTGCTTTTTTCCATGACG
IRF7_3.2R_E07_2012-09-13_Multiu(65>912) IRF7_3.1F_D01_2012-09-13_Multiu(49>795) IRF7_3.1F_B02_2012-06-14_Multiu(55>652) IRF7_3.2F_E01_2012-09-13_Multiu(59>833) IRF7_3.2F_B02_2012-06-14_Multi(45>640) IRF7_3.1R_D07_2012-09-13_Multiu(87>834)	11111	 TATTTATAACTACCATTCTTGAGGGTATGTTATATGTGACCGTTGCTTTTTTCCATGACG TATTTATAACTACCATTCTTGAGGGTATGTTATATGTGACCGTTGCTTTTTTCCATGACG TATTTATAACTACCATTCTTGAGGGTATGTTATATGTGACCGTTGCTTTTTTCCATGACG TATTTATAACTACCATTCTTGAGGGTATGTTATATGTGACCGTTGCTTTTTTCCATGACG TATTTATAACTACCATTCTTGAGGGTATGTTATATGTGACCGTTGCTTTTTTCCATGACG TATTTATAACTACCATTCTTGAGGGTATGTTATATGTGACCGTTGCTTTTTTCCATGACG TATTTATAACTACCATTCTTGAGGGTATGTTATATGTGACCGTTGCTTTTTTCCATGACG TATTTATAACTACCATTCTTGAGGGTATGTTATATGTGACCGTTGCTTTTTTCCATGACG
		1810 1820 1830 1840 1850 1860
		CAACTAAAATCATTCCTTGGTT-GATGCTATTTTGTAGTTTACACATGCAATTTTTTGTC
IRF7_3.2R_E07_2012-09-13_Multiu(65>912) IRF7_3.1F_D01_2012-09-13_Multiu(49>795) IRF7_3.1F_FA02_2012-06-14_Multi(55>652) IRF7_3.2F_E01_2012-09-13_Multiu(59>893) IRF7_3.2F_B02_2012-06-14_Multi(45>640) IRF7_3.1R_D07_2012-09-13_Multiu(87>834)	11111	CAACTAAAATCATTCCTTGGTT-GATGCTATTTTGTAGTTTACACATGCAATTTTTGTC CAACTAAAATCATTCCTTGGTT-GATGCTATTTTGTAGTTTACACATGCAATTTTTTGTC CAACTAAAATCATTCCTTGGTT-GATGCTATTTGTAGTTTACACATGCAATTTTTTG CAACTAAAATCATTCCTTGGTT-GATGCTATTTTGTAGTTTACACATGCAATTTTTGTC CAACTAAAATCATTCCTTGGTT-GATGCTATTTTGTAGTTTACACATGCAATTTTT CAACTAAAATCATTCCTTGGTT-GATGCTATTTTGTAGTTTACACATGCAATTTTTTGTC
IRF7_3.2R_E07_2012-09-13_Multiu(65>912) IRF7_3.1F_D01_2012-09-13_Multiu(49>795) IRF7_3.2F_E01_2012-09-13_Multiu(59>893) IRF7_3.1R_D07_2012-09-13_Multiu(87>834)	111	AIGTAATGTAAAGCACATTICCCTGTTTGATGACCCGTTTGTAAATAAATCCTTTTTGTG AIGTAATGTAAAGCACATTICCCTGTTTGATGACCCGTTTGTAAATAAATCCTTTTTGTG AIGTAATGTAAAGCACATTICCCTGTTTGATGACCCGTTTGTAAATAAATCCTTTTTGTG AIGTAATGTAAAGCACATTICCCTGTTTGATGACCCGTTTGTAAATAAATCCTTTTTGTG AIGTAATGTAAAGCACATTICCCTGTTTGATGACCCGTTTGTAAATAAATCCTTTTTGTG
		1930 1940 1950 1960 1970 1980 TTACATATATATCCTAACTGTGAGTAAGGAACAAAGGAATTTACTTAAAGAGCCCTTCGA
IRF7_3.2R_E07_2012-09-13_Multiu(65>912) IRF7_3.1F_D01_2012-09-13_Multiu(49>795) IRF7_3.2F_E01_2012-09-13_Multiu(59>893) IRF7_3.1R_D07_2012-09-13_Multiu(87>834)	1111	TTACATATATATCCTAACTGTGAGTAAGGAACAAAGGAATTTACTTAARGAGCOCTTCGA TTACATATATATCCTAACTGTGAGTAAGGAACAAAGGAATTTACTTAAAGAGCOCTTCGA TTACATATATATCCTAACTGTGAGTAAAGAACAAAGGAATTTACTTAAAGAGCCCTTCGA TTACATATATATCCTAACTGTGAGTAAGGAACAAAGGAATTTACTTAAAGAGCCCTTCGA
		1990 2000 2010 2020 2030 2040
IRF7_3.2R_E07_2012-09-13_Multiu(65>912) IRF7_3.1F_D01_2012-09-13_Multiu(49>795) IRF7_3.2F_E01_2012-09-13_Multiu(59>893) IRF7_3.1R_D07_2012-09-13_Multiu(87>834)	1111	AATACAGTGGGAGTTTAATGGTTTAAGGAGCTTGGAGTGTTTTATTATAAATAA
		2050 2060 СТАСТАСТАРАВАВАВАВАВАВАВАВА
IRF7_3.2R_E07_2012-09-13_Multiu(65>912) IRF7_3.2F_E01_2012-09-13_Multiu(59>893) IRF7_3.1R_D07_2012-09-13_Multiu(87>834)	11	СТАСТАСТАРААРААРААРААРАРАР СТАСТАСТ СТАСТАСТАРАРАРАРАРАРАРАРАРА

Appendix 5: Assembly of Atlantic cod *Irf*8 RACE and ORF PCR sequencing reads. Sequencing methods are described in section 2.1.2. Sequence data was assembled using Lasergene SeqMan Pro software (DNASTAR). Consensus sequence is indicated between horizontal lines.

		10 20 30 40 50 60
		TGGACACTGACATGGACTGAAGGAGTAGAAAATTCCATTAAATGA-GGTTAAAGGTGTCA
IRF8_5.4R_F09_2012-07-05_Multiu(86>737) IRF8_5.7R_H09_2012-07-05_Multiu(86>736) IRF8_5.1R_E09_2012-07-05_Multiu(83>733) IRF8_5.5F_603_2012-07-05_Multiu(82>729) IRF8_5.1F_E03_2012-07-05_Multiu(47>697) IRF8_5.4F_F03_2012-07-05_Multiu(44>694)	11111	TGGACACTGACATGGACTGAAGGAGTAGAAAATTCCATTAAATGAAGGTTAAAGGTGTCA TGGACACTGACATGGACTGAAGGAGTAGAAAATTCCATTAAATGA-GGTTAAAGGTGTCA TGGACACTGACATGGACTGAAGGAGTAGAAAATTCCATTAAATGA-GGTTAAAGGTGTCA GGACACTGACATGGACTGAAGGAGTAG-AAATTCCATTAAATGA-GGTTAAAGGTGTCA GGACACTGACATGGACTGAAGGAGTAGAAAATTCCATTAAATGA-GGTTAAAGGTGTCA GGACACTGACATGGACTGAAGGAGTAGAAAATTCCATTAAATGA-GGTTAAAGGTGTCA
		70 80 90 100 110 120
IRF8_5.4R_F09_2012-07-05_Multiu(86>737) IRF8_5.7R_H09_2012-07-05_Multiu(86>736) IRF8_5.1R_E09_2012-07-05_Multiu(83>733) IRF8_5.5F_G03_2012-07-05_Multiu(52>729) IRF8_5.1F_E03_2012-07-05_Multiu(47>697) IRF8_5.4F_F03_2012-07-05_Multiu(44>694) IRF8_0RF1_F_G01_2013-07-22_Mult(48>937)	111111	TCTGTCTGGAGCTGGAAATAATTCGTGGATATAAAGTCAAGATGTCGAACACGGAGGAC TCTGTCTGGAGCTGGAAATAATTTGTGGATATAAAGTCAAGATGTCGAACACGGGAGGAC TCTGTCTGGAGCTGGAAATAATTCGTGGATATAAAGTCAAGATGTCGAACACGGAGGAC TCTGTCTGGAGCTGGAAATAATTCGTGGATATAAAGTCAAGATGTCGAACACGGAGGAC TCTGTCTGGAGCTGGAAATAATTCGTGGATATAAAGTCAAGATGTCGAACACGGGAGGAC TCTGTCTGGAGCTGGAAATAATTCGTGGATATAAAGTCAAGATGTCGAACACGGGAGGAC TCTGTCTGGAGCTGGAAATAATTCGTGGATATAAAGTCAAGATGTCGAACACGGGAGGAC AGATGTCGAACACGGGAGAATAATTCGTGGATATAAAGTCAAGATGTCGAACACGGGAGGAC
		130 140 150 160 170 180 GAAGACTGAAGCAGTGGTTGATTGAGCAGATCAAGAGCGGACAGTACTCGGGGCTTGAGT
IRF8_5.4R_F09_2012-07-05_Multiu(86>737) IRF8_5.7R_H09_2012-07-05_Multiu(86>736) IRF8_5.1R_E09_2012-07-05_Multiu(88>733) IRF8_5.5F_G03_2012-07-05_Multiu(52>729) IRF8_5.1F_E03_2012-07-05_Multiu(47>697) IRF8_5.4F_F03_2012-07-05_Multiu(44>694) IRF8_ORF1_F_G01_2013-07-22_Mult(48>937)	111111	GAAGACTGAAGCAGTGGTTGATTGACCAGATCAAGAGCGGACAGTACTCGGGGCTTGAGT GAAGACTGAAGCAGTGGTTGATTGACCAGATCAAGAGCGGACAGTACTCGGGGCTTGAGT GAAGACTGAAGCAGTGGTTGATTGACCAGATCAAGAGCGGACAGTACTCGGGGCTTGAGT GAAGACTGAAGCAGTGGTTGATTGACCAGATCAAGAGCGGACAGTACTCGGGGCTTGAGT GAAGACTGAAGCAGTGGTTGATTGACCAGATCAAGAGCGGACAGTACTCGGGGCTTGAGT GAAGACTGAAGCAGTGGTTGATTGACCAGATCAAGAGCGGACAGTACTCGGGGCTTGAGT GAAGACTGAAGCAGTGGTTGATTGACCAGATCAAGAGCGGACAGTACTCGGGGCTTGAGT GAAGACTGAAGCAGTGGTTGATTGACCAGATCAAGAGCGGACAGTACTCGGGGCTTGAGT
		190 200 210 220 230 240
		GGGAGGATGACAGCCTCACCATGTTCCGCATCCCATGGAAGCATGCTGGGAAGCAGGATT
IRF8_5.4R_F09_2012-07-05_Multiu(86>737) IRF8_5.7R_H09_2012-07-05_Multiu(86>736) IRF8_5.1R_E09_2012-07-05_Multiu(86>733) IRF8_5.5F_G03_2012-07-05_Multiu(52>729) IRF8_5.4F_F03_2012-07-05_Multiu(47>697) IRF8_5.4F_F03_2012-07-05_Multiu(44>694) IRF8_ORF1_F_G01_2013-07-22_Mult(48>937)	111111	GGGAGGATGACAGCCTCACCATGTTCCGCATCCCATGGAAGCATGCTGGGAAGCAGGATT GGGAGGATGACAGCCTCACCATGTTCCGCATCCCATGGAAGCATGCTGGGAAGCAGGAT GGGAGGATGACAGCCTCACCATGTTCCGCATCCCATGGAAGCATGCTGGGAAGCAGGAT GGGAGGATGACAGCCTCACCATGTTCCGCATCCCATGGAAGCATGCTGGGAAGCAGGATT GGGAGGATGACAGCCTCACCATGTTCCGCATCCCATGGAAGCATGCTGGGAAGCAGGATT GGGAGGATGACAGCCTCACCATGTTCCGCATCCCATGGAAGCATGCTGGGAAGCAGGATT GGGAGGATGACAGCCTCACCATGTTCCGCATCCCATGGAAGCATGCTGGGAAGCAGGATT
		250 260 270 280 290 300
		ATAACCAAGAGGTCGATGCTTCCATCTTCAAGGCCTGGGCTGTTTTAAGGGCAAGTTTA
IRF8_5.4R_F09_2012-07-05_Multiu(86>737) IRF8_5.7R_H09_2012-07-05_Multiu(86>736) IRF8_5.1R_E09_2012-07-05_Multiu(83>733) IRF8_5.5F_603_2012-07-05_Multiu(52>729) IRF8_5.1F_E03_2012-07-05_Multiu(47>697) IRF8_5.4F_F03_2012-07-05_Multiu(44>694) IRF8-0RF1_F_G01_2013-07-22_Mult(48>937)	111111	ATAACCAAGAGGTOGATGCTTCCATCTTCAAGGCCTGGGCTGTGTTTAAGGGCAAGTTTA ATAACCAAGAGGTOGATGCTTCCATCTTCAAGGCCTGGGCTGTGTTTAAGGGCAAGTTTA ATAACCAAGAGGTOGATGCTTCCATCTCCAAGGCCTGGGCTGTGTTTAAGGGCAAGTTTA ATAACCAAGAGGTOGATGCTTCCATCTTCAAGGCCTGGGCTGTGTTTAAGGGCAAGTTTA ATAACCAAGAGGTOGATGCTTCCATCTTCAAGGCCTGGGCTGTGTTTAAGGGCAAGTTTA ATAACCAAGAGGTOGATGCTTCCATCTTCAAGGCCTGGGCTGTGTTTAAGGGCAAGTTTA ATAACCAAGAGGTOGATGCTTCCATCTTCAAGGCCTGGGCTGTGTTTAAGGGCAAGTTTA
		310 320 330 340 350 360
IRF8_5.4R_F09_2012-07-05_Multiu(86>737) IRF8_5.7R_H09_2012-07-05_Multiu(86>736) IRF8_5.1R_E09_2012-07-05_Multiu(83>733) IRF8_5.5F_G03_2012-07-05_Multiu(82>729) IRF8_5.4F_E03_2012-07-05_Multiu(47>697) IRF8_5.4F_F03_2012-07-05_Multiu(44>694) IRF8=0RF1_F_G01_2013-07-22_Mult(48>937)	111111	AAGAGGGGGAAAAGGCTGAGCCTGCTACTTGGAAAACTAGGCTCCGCTGTGCCCTGAACA AAGAGGGGGGAGAAGGCTGAGCCTGCTACTTGGAAAACTAGGCTCCGCTGTGCCCTGAACA AAGAGGGGGGAGAAGGCTGAGCCTGCTACTTGGAAAACTAGGCTCCGCTGTGCCCTGAACA AAGAGGGGGAGAAGGCTGAGCCTGCTACTTGGAAAACTAGGCTCCGCTGTGCCCTGAACA AAGAGGGGGAGAAGGCTGAGCCTGCTACTTGGAAAACTAGGCTCCGCTGTGCCCTGAACA AAGAGGGGGAGAAGGCTGAGCCTGCTACTTGGAAAACTAGGCTCCGCTGTGCCCTGAACA AAGAGGGGGAGAAGGCTGAGCCTGCTACTTGGAAAACTAGGCTCCGCTGTGCCCTGAACA

		370	380	390	400	410	420
		AGAGCCCAGACTTTG	AGGAGGTGAC	GGACAGGTCA	CAACTGGAC	ATCTCAGAGC	CCTACA
IRF8_5.4R_F09_2012-07-05_Multiu(86>737) IRF8_5.7R_H09_2012-07-05_Multiu(86>736) IRF8_5.1R_E09_2012-07-05_Multiu(83>733) IRF8_5.5F_G03_2012-07-05_Multiu(52>729) IRF8_5.1F_E03_2012-07-05_Multiu(47>697) IRF8_5.4F_F03_2012-07-05_Multiu(44>694) IRF8-ORF1_F_G01_2013-07-22_Mult(48>937)	111111	AGAGCCCAGACTITE AGAGCCCAGACTITE AGAGCCCAGACTITE AGAGCCCAGACTITE AGAGCCCAGACTITE AGAGCCCAGACTITE AGAGCCCAGACTITE	ACGACGTGAC ACGACGTGAC ACGACGTGAC ACGACGTGAC ACGACGTGAC ACGACGTGAC ACGACGTGAC	:0GACAGGTCJ :0GACAGGTCJ :0GACAGGTCJ :0GACAGGTCJ :0GACAGGTCJ :0GACAGGTCJ :0GACAGGTCJ	ACAACTGGAC ACAACTGGAC ACAACTGGAC ACAACTGGAC ACAACTGGAC ACAACTGGAC ACAAC G GGAC	ATCTCAGAGO ATCTCAGAGO ATCTCAGAGO ATCTCAGAGO ATCTCAGAGO ATCTCAGAGO ATCTCAGAGO	CCTACA CCTACA CCTACA CCTACA CCTACA CCTACA CCTACA
		430	440	450	460		
IRF8_5.4R_F09_2012-07-05_Multiu(86>737) IRF8_5.7R_H09_2012-07-05_Multiu(86>736) IRF8_5.1R_E09_2012-07-05_Multiu(83>733) IRF8_5.5F_603_2012-07-05_Multiu(82>729) IRF8_5.1F_E03_2012-07-05_Multiu(47>697) IRF8_5.4F_F03_2012-07-05_Multiu(44>694) IRF8-0RF1_F_G01_2013-07-22_Mult(48>937)	111111	AGGICTACCCCATIG AGGICTACCCCATIG AGGICTACCCCATIG AGGICTACCCCATIG AGGICTACCCCATIG AGGICTACCCCATIG AGGICTACCCCATIG	TCCCTGAAG2 TCCCTGAAG2 TCCCTGAAG2 TCCCTGAAG2 TCCCTGAAG2 TCCCTGAAG2 TCCCTGAAG2	logaacagaa logaacagaa logaacagaa logaacagaa logaacagaa logaacagaa logaacagaa	CTCGGTAAA CTCGGTAAA CTCGGTAAA CTCGGTAAA CTCGGTAAA CTCGGTAAA CTCGGTAAA	ACCACAGOGA ACCACAGOGA ACCACAGOGA ACCACAGOGA ACCACAGOGA ACCACAGOGA ACCACAGOGA	IGGTCA IGGTCA IGGTCA IGGTCA IGGTCA IGGTCA IGGTCA
		490 CGACAGCTGGCGACA	500 TCGCTGACTI	510 AGACTGCAGO	520 TCTGCAGAG	530 LL.CTAGAGGAGT	540 LL IGATCA
IRF8_5.4R_F09_2012-07-05_Multiu(86>737) IRF8_5.7R_H09_2012-07-05_Multiu(86>736) IRF8_5.1R_E09_2012-07-05_Multiu(83>733) IRF8_5.5F_G03_2012-07-05_Multiu(52>729) IRF8_5.4F_F03_2012-07-05_Multiu(47>697) IRF8_5.4F_F03_2012-07-05_Multiu(44>694) IRF8_0RF1_F_G01_2013-07-22_Multi(48>937) IRF8-0RF1_R_G02_2013-07-22_Multi(1>879)	1111111	CGACAGCTGCGACZ CGACAGCTGCGACZ CGACAGCTGCGACZ CGACAGCTGCGGACZ CGACAGCTGCGGACZ CGACAGCTGCGGACZ CGACAGCTGCGGACZ	ITOGCTGACTT ITOGCTGACTI ITOGCTGACTI ITOGCTGACTI ITOGCTGACTI ITOGCTGACTI ITOGCTGACTI	AGACTGCAGO IAGACTGCAGO IAGACTGCAGO IAGACTGCAGO IAGACTGCAGO IAGACTGCAGO IAGACTGCAGO	TCTGCAGAG TCTGCAGAG TCTGCAGAG TCTGCAGAG TCTGCAGAG TCTGCAGAG TCTGCAGAG	CTAGAGGAGT CTAGAGGAGT CTAGAGGGGT CTAGAGGGGGT CTAGAGGGGGT CTAGAGGGGGT CTAGAGGGGGT	IGATCA IGATCA IGATCA IGATCA IGATCA IGATCA TGATCA ATCA
		550	560	570	580	590	600 Luuul AGGAGG
IRF8_5.4R_F09_2012-07-05_Multiu(86>737) IRF8_5.7R_H09_2012-07-05_Multiu(86>736) IRF8_5.1R_E09_2012-07-05_Multiu(82>733) IRF8_5.1F_E03_2012-07-05_Multiu(82>729) IRF8_5.1F_E03_2012-07-05_Multiu(42>697) IRF8_5.4F_F03_2012-07-05_Multiu(42>694) IRF8-0RF1_F_G01_2013-07-22_Multi(12>894) IRF8-0RF1_R_G02_2013-07-22_Multi(12>864) IRF8-0RF2_R_H02_2013-07-22_Multi(12>864) IRF8mid2R_B09_2012-09-13_Multiu(75>748) IRF8mid1R_A09_2012-09-13_Multiu(52>731) IRF8mid1F_A03_2012-09-13_Multiu(49>722)	11111111111111	AAGTGGCCTCCACTG AAGTGGCCTCCACTG AAGTGGCCTCCACTG AAGTGGCCTCCACTG AAGTGGCCTCCACTG AAGTGGCCTCCACTG AAGTGGCCTCCACTG AAGTGGCCTCCACTG AAGTGGCCTCCACTG	ATGACTACCO ATGACTACCO ATGACTACCO ATGACTACCO ATGACTACCO ATGACTACCO ATGACTACCO ATGACTACCO	CTCAGCCATC CTCAGCCATC CTCAGCCATC CTCAGCCATC CTCAGCCATC CTCAGCCATC CTCAGCCATC CTCAGCCATC CTCAGCCATC TCAGCCATC CAGCCATC CAGCCATC	IAAGAGAAGC IAAGAGAAGC IAAGAGAAGC IAAGAGAAGC IAAGAGAAGC IAAGAGAAGC IAAGAGAAGC IAAGAGAAGC IAAGAGAAGC IAAGAGAAGC IAAGAGAAGC	TACTCTCCCC TACTCTCCCC TACTCTCCCC TACTCTCCCC TACTCTCCCC TACTCTCCCC TACTCTCCCC TACTCTCCCC TACTCTCCCC TACTCTCCCC TACTCTCCCCC TACTCTCCCCC TACTCTCCCCC	AGGAGG AGGAGG AGGAGG AGGAGG AGGAGG AGGAGG
		610 ATGGCTTTAACGTCC	620 ll	630 ll	640 TCACATGGC	650 LL.AGCATACCCG	660 Luuul IGTTCT
IRF8_5.4R_F09_2012-07-05_Multiu(86>737) IRF8_5.7R_H09_2012-07-05_Multiu(86>736) IRF8_5.1R_E09_2012-07-05_Multiu(82>733) IRF8_5.5F_G03_2012-07-05_Multiu(52>729) IRF8_5.4F_F03_2012-07-05_Multiu(47>697) IRF8_5.4F_F03_2012-07-05_Multiu(44>694) IRF8-0RF1_F_G01_2013-07-22_Multi(42>937) IRF8-0RF1_R_G02_2013-07-22_Multi(1>879) IRF8-0RF2_R_H02_2013-07-22_Multi(1>864) IRF8mid2R_B09_2012-09-13_Multiu(77>750)	111111111	ATGGCTTTAACGTCC ATGGCTTTAACGTCC ATGGCTTTAACGTCC ATGGCTTTAACGTCC ATGGCTTTAACGTCC ATGGCTTTAACGTCC ATGGCTTTAACGTCC ATGGCTTTAACGTCC ATGGCTTTAACGTCC	AAGCCAGCCC AAGCCAGCCC AAGCCAGCCC AAGCCAGCC	TGAGTACTGG TGAGTACTGG TGAGTACTGG TGAGTACTGG TGAGTACTGG TGAGTACTGG TGAGTACTGG TGAGTACTGG TGAGTACTGG	TCACATGGC TCACATGGC TCACATGGC TCACATGGC TCACATGGC TCACATGGC TCACATGGC TCACATGGC TCACATGGC	AGCATACC AGCATACC AGCATACC AGCATACC AGCATACCA AGCATACCA AGCATACCOG AGCATACCOG AGCATACCOG	IGTTCT IGTTCT IGTTCT IGTTCT

		670 680 690 700 710 720
		CCCAGATGATGATCTCCTTCTACTACGGGGGGCCAGCTGATGCATAGCACGGTGACCTCCC
IRF8-ORF1_F_G01_2013-07-22_Mult(48>937) IRF8-ORF1_R_G02_2013-07-22_Multi(1>879) IRF8-ORF2_R_H02_2013-07-22_Multi(1>864) IRF8mid2R_B09_2012-09-13_Multiu(77>750) IRF8mid1R_A09_2012-09-13_Multiu(75>748) IRF8mid1F_B03_2012-09-13_Multiu(58>731) IRF8mid1F_A03_2012-09-13_Multiu(49>722)	111111	CCCAGATGATGATCTCCTTCTACTACGGGGGCCAGCTGATGCATAGCACGGTGACCTCCC CCCAGATGATGATCTCCTTCTACTACGGGGGCCAGCTGATGCATAGCACGGTGACCTCCC CCCAGATGATGATCTCCTTCTACTACGGGGGCCAGCTGATGCATAGCACGGTGACCTCCC CCCAGATGATGATCTCCTTCTACTACGGGGGCCAGCTGATGCATAGCACGGTGACCTCCC CCCAGATGATGATCTCCTTCTACTACGGGGGCCAGCTGATGCATAGCACGGTGACCTCCC CCCAGATGATGATCTCCTTCTACTACGGGGGCCAGCTGATGCATAGCACGGTGACCTCCC CCCAGATGATGATCTCCTTCTACTACGGGGGCCAGCTGATGCATAGCACGGTGACCTCCC CCCAGATGATGATCTCCTTCTACTACGGGGGCCAGCTGATGCATAGCACGGTGACCTCCC
		730 740 750 760 770 780
		ACCCCGAGGGCTGCCGCATCTCCCCGGTGCTGCCCCAGCAGCGCGCCGTCGCCCGCGGCT
IRF8-ORF1_F_G01_2013-07-22_Mult(48>937) IRF8-ORF1_R_G02_2013-07-22_Multi(1>879) IRF8-ORF2_R_H02_2013-07-22_Multi(1>864) IRF8mid2R_B09_2012-09-13_Multiu(77>750) IRF8mid1R_A09_2012-09-13_Multiu(75>748) IRF8mid2F_B03_2012-09-13_Multiu(58>731) IRF8mid1F_A03_2012-09-13_Multiu(49>722)	111111	ACCCCGAGGCTGCCGCATCTCCCCCGTGCTGCCCCAGCAGCGCCGTCGCCCGCGGCT ACCCCGAGGCTGCCGCATCTCCCCGTGCTGCCCCAGCAGCGCCGTCGCCGCGGCT ACCCCGAGGGCTGCCGCATCTCCCCGTGCTGCCCCAGCAGCGCGCGTCGCCGCGGCG ACCCCGAGGCTGCCGCATCTCCCCGTGCTGCCCCAGCAGCGCGCCGTCGCCGCGGCT ACCCCGAGGCTGCCGCATCTCCCCGTGCTGCCCCAGCAGCGCGCCGTCGCCCGCGGCT ACCCCGAGGCTGCCGCATCTCCCCGTGCTGCCCCAGCAGCGCGCCGTCGCCCGCGCT ACCCCGAGGCTGCCGCATCTCCCCCGTGCTGCCCCAGCAGCGCGCCGTCGCCCGCGCT ACCCCGAGGCTGCCGCATCTCCCCCGTGCTGCCCCAGCAGCGCCGCCGTCGCCGCGCT
		790 800 810 820 830 840
		ACAGCTCCGACACCATGCAGAGCGTGCACTTCCCCGCCGGCCG
IRF8-ORF1_F_G01_2013-07-22_Mult(48>937) IRF8-ORF1_R_G02_2013-07-22_Multi(1>879) IRF8-ORF2_R_H02_2013-07-22_Multi(1>864) IRF8mid2R_B09_2012-09-13_Multiu(77>750) IRF8mid1R_A09_2012-09-13_Multiu(75>748) IRF8mid2F_B03_2012-09-13_Multiu(58>731) IRF8mid1F_A03_2012-09-13_Multiu(49>722)	111111	ACABCTCOGACACCATECAGAGOGTECACTTCCCCCCGCCGACCCCATCGACAACGAGC ACAGCTCCGACACCATECAGAGOGTECACTTCCCCCCGCCGGCCGACCTCATCGACAACGAGC ACAGCTCCGACACCATECAGAGGCGTECACTTCCCCCCCGGCCGACCTCATCGACAACGAGC ACAGCTCCGACACCATECAGAGCGTECACTTCCCCCCCGCCGGCCGACCTCATCGACAACGAGC ACAGCTCCGACACCATECAGAGCGTECACTTCCCCCCCGCCGGCCGACCTCATCGACAACGAGC ACAGCTCCGACACCATECAGAGCGTECACTTCCCCCCCGGCCGACCTCATCGACAACGAGC ACAGCTCCGACACCATECAGAGCGTECACTTCCCCCCCGGCCGACCTCATCGACAACGAGC ACAGCTCCGACACCATECAGAGCGTECACTTCCCCCCCGGCCGACCTCATCGACAACGAGC
		850 860 870 880 890 900
IRF8-ORF1_F_G01_2013-07-22_Mult(48>937) IRF8-ORF1_R_G02_2013-07-22_Multi(1>879) IRF8-ORF2_R_H02_2013-07-22_Multi(1>864) IRF8mid2R_B09_2012-09-13_Multiu(77>750) IRF8mid1R_A09_2012-09-13_Multiu(75>748) IRF8mid2F_B03_2012-09-13_Multiu(58>731) IRF8mid1F_A03_2012-09-13_Multiu(49>722)	111111	CCACCGCGCAGGTCACCTCCAAGCTCTCGGCCACCTGAGAGGGGGCGTTCTGGTGCGGG GCCAGCGCAGGTCACCTGCAAGCTGCTGGGCCACCTGGAGAGGGGCGTTCTGGTGCGGG GCCAGCGCAGGTCACCTGCAAGCTGCTGGGCCACCTGGAGAGGGGCGTTCTGGTGCGGG GCCAGCGCCAGGTCACCTGCAAGCTGCTGGGCCACCTGGAGAGGGGCGTTCTGGTGCGGG GCCAGCGCCAGGTCACCTGCAAGCTGCTGGGCCACCTGGAGAGGGGCGTTCTGGTGCGGG GCCAGCGCCAGGTCACCTGCAAGCTGCTGGGCCACCTGGAGAGGGGCGTTCTGGTGCGGG GCCAGCGCCAGGTCACCTGCAAGCTGCTGGGCCACCTGGAGAGGGGCGTTCTGGTGCGGG GCCAGCGGCAGGTCACCTGCAAGCTGCTGGGCCACCTGGAGAGGGGCGTTCTGGTGCGGG GCCAGCGGCAGGTCACCTGCAAGCTGCTGGGCCACCTGGAGAGGGGCGTTCTGGTGCGGG
		910 920 930 940 950 960
		CCAACCGCGAGGGCGTCTTCATCAAGAGGCTCTGCCAGAGCCGGGTGTTCTGGAGCGGCC
IRF8-ORF1_F_G01_2013-07-22_Mult(48>937) IRF8-ORF1_R_G02_2013-07-22_Multi(1>879) IRF8-ORF2_R_H02_2013-07-22_Multi(1>864) IRF8mid2R_B09_2012-09-13_Multiu(77>750) IRF8mid1R_A09_2012-09-13_Multiu(75>748) IRF8mid2F_B03_2012-09-13_Multiu(58>731) IRF8mid1F_A03_2012-09-13_Multiu(49>722)	111111	CCAACCGCGAGGGGGTCTTCATCAAGAGGCTCTGCCAGAGCCGGGTGTTCTGGAGCGGCC CCAACCGCGAGGGGGTCTTCATCAAGAGGCTCTGCCAGAGCCGGGTGTTCTGGAGCGGCC CCAACCGCGAGGGGGTCTTCATCAAGAGGCTCTGCCAGAGCCGGGTGTTCTGGAGCGGCC CCAACCGCGAGGGGGTCTTCATCAAGAGGCTCTGCCAGAGCCGGGTGTTCTGGAGCGGCC CCAACCGCGAGGGGGTCTTCATCAAGAGGCTCTGCCAGAGCCGGGTGTTCTGGAGCGGCC CCAACCGCGAGGGCGTCTTCATCAAGAGGCTCTGCCAGAGCCGGGTGTTCTGGAGCGGCC CCAACCGCGGAGGGGGTCTTCATCAAGAGGCTCTGCCAGAGCCGGGTGTTCTGGAGCGGCC CCAACCGCGGAGGGGGTCTTCATCAAGAGGCTCTGCCAGAGCCGGGTGTTCTGGAGCGGCC CCAACCGCGGAGGGGGTCTTCATCAAGAGGCTCTGCCAGAGCCGGGTGTTCTGGAGCGGCC
IRF8-ORF1_F_G01_2013-07-22_Mult(48>937) IRF8-ORF1_R_G02_2013-07-22_Multi(1>879) IRF8-ORF2_R_H02_2013-07-22_Multi(1>864) IRF8mid2R_B09_2012-09-13_Multiu(77>750) IRF8mid1R_A09_2012-09-13_Multiu(75>748) IRF8mid2F_B03_2012-09-13_Multiu(58>731)	11111	ACGEGGACACGECCAACACCACGECCCCGTGACCTGCAAGCTGGAGAGGGACGCCGTGG ACGEGGACCACGECCAACACCACGECCCCGTGACCTGCAAGCTGGAGAGGGACGCCGTGG ACGEGGACCACGECCAACACCACGECCCCGTGACCTGCAAGCTGGAGAGGGACGCCGTGG ACGEGGACCACGECCAACACCACGECCCCGTGACCTGCAAGCTGGAGAGGGACGCCGTGG ACGEGGACCACGECCAACACCACGECCCCGTGACCTGCAAGCTGGAGAGGGACGCCGTGG ACGEGGACCACGECCAACACCACGECCCCGTGACCTGCAAGCTGGAGAGGGACGCCGTGG ACGEGGACCACGECCAACACCACGECCCCGTGACCTGCAAGCTGGAGAGGGACGCCGTGG

		1030 1040 1050 1060 1070 1080
		TGAAGATCTTCGACACGGGCCGCTTCCTGCACGCTCTTCAACTGCACCAAGAAGGCCAGA
IRF8-ORF1_R_G02_2013-07-22_Multi(1>879) IRF8-ORF2_R_H02_2013-07-22_Multi(1>864) IRF8mid2R_B09_2012-09-13_Multiu(77>750) IRF8mid1R_A09_2012-09-13_Multiu(75>748) IRF8mid1F_B03_2012-09-13_Multiu(58>731) IRF8mid1F_A03_2012-09-13_Multiu(49>722)	11111	TGAAGATCTTCGACACGGGCCGCTTCCTGCACGCTCTTCAACTGCACCAAGAAGGCCAGA TGAAGATCTTCGACACGGGCCGCTTCCTGCACGCTCTTCAACTGCACCAAGAAGGCCAGA TGAAGATCTTCGACACGGGCCGCTTCCTGCACGCTCTTCAACTGCACCAAGAAGGCCAGA TGAAGATCTTCGACACGGGCCGCTTCCTGCACGCTCTTCAACTGCACCAAGAAGGCCAGA TGAAGATCTTCGACACGGGCCGCTTCCTGCACGCTCTTCAACTGCACCAAGAAGGCCAGA TGAAGATCTTCGACACGGGCCGCTTCCTGCACGCTCTTCAACTGCACCAAGAAGGCCAGA
		1090 1100 1110 1120 1130 1140 TCCCCGGCACCTGACCCCACGGTGACGCTCTGTTCGGGGAGGACTACATGACCTCAGCA
IRF8-ORF1_R_G02_2013-07-22_Multi(1>879) IRF8-ORF2_R_H02_2013-07-22_Multi(1>864) IRF8mid2R_B09_2012-09-13_Multi(17>776) IRF8mid1R_A09_2012-09-13_Multiu(75>748) IRF8mid1F_B03_2012-09-13_Multiu(58>731) IRF8mid1F_A03_2012-09-13_Multiu(49>722)	11111	TCCCCGCACCTGACCCACGGTGACGCTCTGTTTCGGGGAGGAACTACATGACCTCAGCA TCCCCGGCACCTGACCCCACGGTGACGCTCTGTTTCGGGGAGGAACTACATGACCTCAGCA TCCCCGCACCTGACCCCACGGTGACGCTCTGTTTCGGGGAGGAACTACATGACCTCAGCA TCCCCGCACCTGACCCCACGGTGACGCTCTGTTTCGGGGAGGAACTACATGACCTCAGCA TCCCCGCACCTGACCCCACGGTGACGCTCTGTTTCGGGGAGGAACTACATGACCTCAGCA
		1150 1160 1170 1180 1190 1200 ACGCCAAGAACAAACTCATCGTGGTCCAGATCACCGCCATGAACTGTCAGCAGCTTCTTG
IRF8-ORF1_R_G02_2013-07-22_Multi(1>879) IRF8-ORF2_R_H02_2013-07-22_Multi(1>864) IRF8mid2R_B09_2012-09-13_Multi(17>776) IRF8mid1R_A09_2012-09-13_Multi(17>748) IRF8mid1F_B03_2012-09-13_Multi(4>722) IRF8mid1F_A03_2012-09-13_Multi(4>722) IRF8_3.14F_D03_2012-07-05_Multi(1>585) IRF8_3.14F_D03_2012-07-05_Multi(1>585) IRF8_3.11F_C03_2012-07-05_Multi(5>751) IRF8_3.14R_D09_2012-07-05_Multi(6>751) IRF8_3.11R_C09_2012-07-05_Multi(8>763)	111111111111	ACGCCAAGAACAAACTCATCCTGGTCCAGATCACCGCCATGAACTGTCAGCAGCTTCTTG ACGCCAAGAACAAACTCATCCTGGTCCAGATCACCGCCATGAACTGTCAGCAGCTTCTTG ACGCCAAGAACAAACTCATCCTGGTCCAGATCACCGCCATGAACTGTCAGCAGCTTCTTG ACGCCAAGAACAAACTCATCCTGGTCCAGATCACCGCCATGAACTGTCAGCAGCTTCTTG ACGCCAAGAACAAACTCATCCTGGTCCAGATCACCGCCATGAACTGTCAGCAGCTTCTTG ACGCCAAGAACAAACTCATCCTGGTCCAGATCACCGCCATGAACTGTCAGCAGCTTCTTG ACGCCAAGAACAAACTCATCCTGGTCCAGATCACCGCCATGAACTGTCAGCAGCTTCTTG GCGCCATGAACAAACTCATCCTGGTCCAGATCACCGCCATGAACTGTCAGCAGCTTCTTG GCAGCTTCTTG GCAGCTTCTTG GCAGCTTCTTG GCAGCTTCTTG GCAGCTTCTTG
		1210 1220 1230 1240 1250 1260
		AGGCTGTGAACATGCGGGCTGTCCAGTCTTACAACCACAGCCCTTCTGTAGAGATGTCAG
IRF8-ORF1_R_G02_2013-07-22_Multi(1>879) IRF8-ORF2_R_H02_2013-07-22_Multi(1>864) IRF8mid2R_B09_2012-09-13_Multiu(77>750) IRF8mid1R_A09_2012-09-13_Multiu(75>748) IRF8mid1F_B03_2012-09-13_Multiu(58>731) IRF8mid1F_A03_2012-09-13_Multiu(49>722) IRF8_3.14F_D03_2012-07-05_Multiu(1>715) IRF8_3.8R_B09_2012-07-05_Multiu(50>753) IRF8_3.4R_A09_2012-07-05_Multi(50>753) IRF8_3.4R_A09_2012-07-05_Multi(66>751) IRF8_3.14R_D09_2012-07-05_Multi(80>763)	1111111111111	AGGCTGTGAACATGCGGGCTGTCCAGTCTTACAACCACAGCCCTTCTGTAGAGATGTCAG AGGCTGTGAACATGCGGGCTGTCCAGTCTTACAACCACAG AGGCTGTGAACATGCGGGCTGTCCAGTCTTACAACCACAG AGGCTGTGAACATGCGGGCTGTCCAGTCTTACAACCACAG AGGCTGTGAACATGCGGGCTGTCCAGTCTTACAACCACAGA AGGCTGTGAACATGCGGGCTGTCCAGTCTTACAACCACAGA AGGCTGTGAACATGCGGGCTGTCCAGTCTTACAACCACAGA AGGCTGTGAACATGCGGGCTGTCCAGTCTTACAACCACAGCCTTCTGTAGAGATGTCAG AGGCTGTGAACATGCGGGCTGTCCAGTCTTACAACCACAGCCCTTCTGTAGAGATGTCAG AGGCTGTGAACATGCGGGCTGTCCAGTCTTACAACCACAGCCCTTCTGTAGAGATGTCAG AGGCTGTGAACATGCGGGCTGTCCAGTCTTACAACCACAGCCCTTCTGTAGAGATGTCAG AGGCTGTGAACATGCGGGCTGTCCAGTCTTACAACCACAGCCCTTCTGTAGAGATGTCAG AGGCTGTGAACATGCGGGCTGTCCAGTCTTACAACCACAGCCCTTCTGTAGAGATGTCAG AGGCTGTGAACATGCGGGCTGTCCAGTCTTACAACCACAGCCCTTCTGTAGAGATGTCAG AGGCTGTGAACATGCGGGCTGTCCAGTCTTACAACCACAGCCCTTCTGTAGAGATGTCAG AGGCTGTGAACATGCGGGCTGTCCAGTCTTACAACCACAGCCCTTCTGTAGAGATGTCAG AGGCTGTGAACATGCGGGCTGTCCAGTCTTACAACCACAGCCCTTCTGTAGAGATGTCAG AGGCTGTGAACATGCGGGCTGTCCAGTCTTACAACCACAGCCCTTCTGTAGAGATGTCAG
		1270 1280 1290 1300 1310 1320
IRF8-ORF1_R_G02_2013-07-22_Multi(1>879) IRF8-ORF2_R_H02_2013-07-22_Multi(1>864) IRF8_3.14F_D03_2012-07-05_Multiu(1>715) IRF8_3.8R_B09_2012-07-05_Multius(1>585) IRF8_3.11F_C03_2012-07-05_Multi(50>753) IRF8_3.4R_A09_2012-07-05_Multi(66>751) IRF8_3.14R_D09_2012-07-05_Multi(75>759) IRF8_3.11R_C09_2012-07-05_Multi(80>763)	1111111	ACGAGAT GGCCAGTGACCAGATGGCACGCATCTACCAGGACCTGTGCAGCTACAGGGCCC ACGAGATGGCCAGTGACCAGATGGCACGCATCTACCAGGACCTGTGCAGCTACAGCGCCC ACGAGATGGCCAGTGACCAGATGGCACGCATCTACCAGGACCTGTGCAGCTACAGCGGCC ACGAGATGGCCAGTGACCAGATGGCACGCATCTACCAGGACCTGTGCAGCTACAGCGCCC ACGAGATGGCCAGTGACCAGATGGCACGCATCTACCAGGACCTGTGCAGCTACAGCGCCC ACGAGATGGCCAGTGACCAGATGGCACGCATCTACCAGGACCTGTGCAGCTACAGCGCCC ACGAGATGGCCAGTGACCAGATGGCACGCATCTACCAGGACCTGTGCAGCTACAGCGCCC ACGAGATGGCCAGTGACCAGATGGCACGCATCTACCAGGACCTGTGCAGCTACAGCGCCC ACGAGATGGCCAGTGACCAGATGGCACGCATCTACCAGGACCTGTGCAGCTACAGCGCCC ACGAGATGGCCAGTGACCAGATGGCACGCATCTACCAGGACCTGTGCAGCTACAGCGCCC ACGAGATGGCCAGTGACCAGATGGCACGCATCTACCAGGACCTGTGCAGCTACAGCGCCC

		1330 1340 1350 1360 1370 1380
		CCCAGAGGGACAGACTGTTACAGGGACAACATGACCATTACCGCATGAGCTCCGGGCTTTA
IRF8-ORF1_R_G02_2013-07-22_Multi(1>879) IRF8-ORF2_R_H02_2013-07-22_Multi(1>864) IRF8_3.14F_D03_2012-07-05_Multiu(1>715) IRF8_3.8R_B09_2012-07-05_Multiu(1>755) IRF8_3.11F_C03_2012-07-05_Multi(50>753) IRF8_3.4R_A09_2012-07-05_Multi(66>751) IRF8_3.14R_D09_2012-07-05_Multi(75>759) IRF8_3.11R_C09_2012-07-05_Multi(80>763)	1111111	CCCAGAGGACAGACTGTTACAGGGACAACATGACCATTACCGCATGAGCTCCCGGGCTTTA CCCAGAGGACAGACTGTTACAGGGACAACATGACCATTACCGCATGAGCTCCCGGGCTTTA CCCAGAGGACAGACTGTTACAGGGACAACATGACCATTACCGCATGAGCTCCCGGGCTTTA CCCAGAGGACAGACTGTTACAGGGACAACATGACCATTACCGCATGAGCTCCGGGCTTTA CCCAGAGGACAGACTGTTACAGGGACAACATGACCATTACCGCATGAGCTCCCGGGCTTTA CCCAGAGGACAGACTGTTACAGGGACAACATGACCATTACCGCATGAGCTCCGGGCTTTA CCCAGAGGACAGACTGTTACAGGGACAACATGACCATTACCGCATGAGCTCCGGGCTTTA CCCAGAGGACAGACTGTTACAGGGACAACATGACCATTACCGCATGAGCTCCGGGCTTTA
		1390 1400 1410 1420 1430 1440 AGCTCATGAACACACTGTCTCAACAGAGCCCCGGTACATTATTGCTACTACGGTGGTTGTG
IRF8-ORF1_R_G02_2013-07-22_Multi(1>879) IRF8-ORF2_R_H02_2013-07-22_Multi(1>864) IRF8_3.14F_D03_2012-07-05_Multiu(1>715) IRF8_3.8R_B09_2012-07-05_Multiu(1>715) IRF8_3.11F_C03_2012-07-05_Multi(50>753) IRF8_3.4R_A09_2012-07-05_Multi(66>751) IRF8_3.14R_D09_2012-07-05_Multi(75>759) IRF8_3.11R_C09_2012-07-05_Multi(80>763)	1111111	AGCTCA AGCTCA AGCTCA AGCTCATGAACACACTGTCTCAACAGAGCCCCGGTACATTATTGCTACTACGGTGGTTGTG AGCTCATGAACACACTGTCTCAACAGAGCCCCGGTACATTATTGCTACTACGGTGGTTGTG AGCTCATGAACACACTGTCTCAACAGAGCCCCGGTACATTATTGCTACTACGGTGGTTGTG AGCTCATGAACACACTGTCTCAACAGAGCCCCGGTACATTATTGCTACTACGGTGGTTGTG AGCTCATGAACACACTGTCTCAACAGAGCCCCGGTACATTATTGCTACTACGGTGGTTGTG AGCTCATGAACACACTGTCTCAACAGAGCCCCGGTACATTATTGCTACTACGGTGGTTGTG
		1450 1460 1470 1480 1490 1500
		GATATACATTGTTCCCATCGTAGAAGGTACTGCTCTTTCCCCCCAAACTCATTGTAATTAT
IRF8_3.14F_D03_2012-07-05_Multiu(1>715) IRF8_3.8R_B09_2012-07-05_Multius(1>585) IRF8_3.11F_C03_2012-07-05_Multi(50>753) IRF8_3.4R_A09_2012-07-05_Multi(65>751) IRF8_3.14R_D09_2012-07-05_Multi(75>759) IRF8_3.11R_C09_2012-07-05_Multi(80>763)	11111	GATATACATTGTTCCCATCGTAGAAGGTACTGCTCTTTCCCCCAAACTCATTGTAATTAT GATATACATTGTTCCCATCGTAGAAGGTACTGCTCTTTCCCCCCAAACTCATTGTAATTAT GATATACATTGTTCCCATCGTAGAAGGTACTGCTCTTTCCCCCCAAACTCATTGTAATTAT GATATACATTGTTCCCATCGTAGAAGGTACTGCTCTTTCCCCCCAAACTCATTGTAATTAT GATATACATTGTTCCCATCGTAGAAGGTACTGCTCTTTCCCCCCAAACTCATTGTAATTAT GATATACATTGTTCCCATCGTAGAAGGTACTGCTCTTTCCCCCCAAACTCATTGTAATTAT
		1510 1520 1530 1540 1550 1560 GATTICATGAGGAATTIGTICTCTAAGICTGAATGCGTTICTCTCATCTCA
IRF8_3.14F_D03_2012-07-05_Multiu(1>715) IRF8_3.8R_B09_2012-07-05_Multius(1>585) IRF8_3.11F_C03_2012-07-05_Multi(50>753) IRF8_3.4R_A09_2012-07-05_Multiu(66>751) IRF8_3.14R_D09_2012-07-05_Multi(75>759) IRF8_3.11R_C09_2012-07-05_Multi(80>763)	11111	GATITCAIGAGGAATITGTTCTTTAAGTCTGAAIGCGTTTCTCCATTTCAICTITGTT GATITCAIGAGGAATITGTTCTCTAAGTCTGAAIGCGTTTCCTCAICTTAGTTGTT GATITCAIGAGGAATITGTTCTTTAAGTCTGAAIGCGTTTCCTCCAITTCAICTITGTTT GATITCAIGAGGAATITGTTCTCTAAGTCTGAAIGCGGTTTCCTCCACTCTACTTIGTTT GATITCAIGAGGAATITGTTCTCTAAGTCTGAAIGCGTTTCCTCCAICTACTTIGTTT GATITCAIGAGGAATITGTTCTCTAAGTCTGAAIGCGTTTCCTCCAICTACTTIGTTT GATITCAIGAGGAATITGTTCTCTAAGTCTGAAIGCGTTTCCTCCAICTACTTIGTTT
		1570 1580 1590 1600 1610 1620
IRF8_3.14F_D03_2012-07-05_Multiu(1>715) IRF8_3.8R_B09_2012-07-05_Multius(1>585) IRF8_3.11F_C03_2012-07-05_Multi(50>753) IRF8_3.4R_A09_2012-07-05_Multi(66>751) IRF8_3.14R_D09_2012-07-05_Multi(75>759) IRF8_3.11R_C09_2012-07-05_Multi(80>763)	11111	TGTACTGTGTTCGTGAAACGCATGTCAAATTGACATTTACTGTAAAGAGGGAGATAATT TGTACTGTGTTCGTGAAACGCATGTCAAATTGACATTTACTGTAAAGAGGGAGATAATT TGTACTGTGTTCGTGAAACGCATGTCAAATTGACATTTACTGTAAAGAGGGAGATAATT TGTACTGTGTTCGTGAAACGCATGTCAAATTGACATTTTACTGTAAAGAGGGAGATAATT TGTACTGTGTTCGTGAAACGCATGTCAAATTGACATTTTACTGTAAAGAGGGAGATAATT TGTACTGTGTTCGTGAAACGCATGTCAAATTGACATTTTACTGTAAAGAGGGAGATAATT TGTACTGTGTTCGTGAAACGCATGTCAAATTGACATTTTACTGTAAAGAGGGAGATAATT
		1630 1640 1650 1660 1670 1680
		GACTATGGTCAGAATCACATACACTTTATATTTTTATATGTTTGAGTGTAGTAAATGTTT
IRF8_3.14F_D03_2012-07-05_Multiu(1>715) IRF8_3.8R_B09_2012-07-05_Multius(1>585) IRF8_3.11F_C03_2012-07-05_Multi(50>753) IRF8_3.4R_A09_2012-07-05_Multi(66>751) IRF8_3.14R_D09_2012-07-05_Multi(75>759) IRF8_3.11R_C09_2012-07-05_Multi(80>763)	11111	GACTATGGTCAGAATCACATACACTTTATATTTTATATGTTTGAGTGTAGTAAATGTTT GACTATGGTCAGAATCACATACACTTTATATTTTTATATGTTTGAGTGTAGTAAATGTTT GACTATGGTCAGAATCACATACACTTTATATTTTTATATGTTTGAGTGTAGTAAATGTTT GACTATGGTCAGAATCACATACACTTTATATTTTTATATGTTTGAGTGTAGTAAATGTTT GACTATGGTCAGAATCACATACACTTTATATTTTTATATGTTTGAGTGTAGTAAATGTTT GACTATGGTCAGAATCACATACACTTTATATTTTTATATGTTTGAGTGTAGTAAATGTTT

		1690 1700 1710 1720 1730 1740
		GTAAAAGTTGTTTATTAATCTGCAATGAAACCACTACAGATAGGTTTTACTATCTGTATT
IRF8_3.14F_D03_2012-07-05_Multiu(1>715) IRF8_3.8R_B09_2012-07-05_Multius(1>585) IRF8_3.11F_C03_2012-07-05_Multi(50>753) IRF8_3.4R_A09_2012-07-05_Multiu(66>751) IRF8_3.14R_D09_2012-07-05_Multi(75>759) IRF8_3.11R_C09_2012-07-05_Multi(80>763)	11111	GTARAAGTTGTTTATTAATCTGCAATGRAACCACTACAGATAGGTTTTACTATCTGTATT GTARAAGTTGTTTATTAATCTGCAATGRAACCACTACAGATAGGTTTTACTATCTGTATT GTARAAGTTGTTTATTAATCTGCAATGRAACCACTACAGATAGGTTTTACTATCTGTATT GTARAAGTTGTTTATTAATCTGCAATGRAACCACTACAGATAGGTTTTACTATCTGTATT GTARAAGTTGTTTATTAATCTGCAATGRAACCACTACAGATAGGTTTTACTATCTGTATT GTARAAGTTGTTTATTAATCTGCAATGRAACCACTACAGATAGGTTTTACTATCTGTATT GTARAAGTTGTTTATTAATCTGCAATGRAACCACTACAGATAGGTTTTACTATCTGTATT
		1750 1760 1770 1780 1790 1800
		GGCTACTGGCGATTACTTTCTCCTTATTCCTGTTATGTAGCTTTCATGAACTTCAGAACT
IRF8_3.14F_D03_2012-07-05_Multiu(1>715) IRF8_3.8R_B09_2012-07-05_Multius(1>585) IRF8_3.11F_C03_2012-07-05_Multi(50>753) IRF8_3.4R_A09_2012-07-05_Multiu(66>751) IRF8_3.14R_D09_2012-07-05_Multi(75>759) IRF8_3.11R_C09_2012-07-05_Multi(80>763)	11111	GGCTACTGGCGATTACTTCCCCTTATTCCTGTTATGTAGCTTTCATGAACTTCAGAACT GGCTACTGGCGAT GGCTACTGGCGATTACTTCCCCTTATTCCTGTTATGTAGCTTTCATGAACTTCAGAACT GGCTACTGGCGATTACTTTCCCCTTATTCCTGTTATGTAGCTTTCATGAACTTCAGAACT GGCTACTGGCGATTACTTTCCCCTTATTCCTGTTATGTAGCTTTCATGAACTTCAGAACT GGCTACTGGCGATTACTTTCCCCTTATTCCTGTTATGTAGCTTTCATGAACTTCAGAACT
		1810 1820 1830 1840 1850 TCTTAATAAATTCTTTACAAAACTTCTLAAAAAAAAAAA
IRF8_3.14F_D03_2012-07-05_Multiu(1>715) IRF8_3.11F_C03_2012-07-05_Multi(50>753) IRF8_3.4R_A09_2012-07-05_Multi(66>751) IRF8_3.14R_D09_2012-07-05_Multi(75>759) IRF8_3.11R_C09_2012-07-05_Multi(80>763)	1111	ТСТТААТАААТТСТТТАСААААСТТ-ТТААЛААЛААЛААЛААЛААЛААЛА ТСТТААТАААТТСТТТАСААЛАСТТСТТААЛААЛААЛААЛААЛААЛА ТСТТААТАЛАТТСТТТАСАЛААСТТСТ-АЛАЛАЛАЛАЛАЛАЛАЛАЛАЛА ТСТТААТАЛАТТСТТТАСАЛААСТТСТ-АЛАЛАЛАЛАЛАЛАЛАЛАЛАЛА ТСТТААТАЛАТТСТТТАСАЛААСТТСТТААЛАЛАЛАЛАЛА

Appendix 6: Assembly of Atlantic cod *Irf10-v1* RACE and ORF PCR sequencing reads. Sequencing methods are described in section 2.1.2. Sequence data was assembled using Lasergene SeqMan Pro software (DNASTAR). Consensus sequence is indicated between horizontal lines. Note that sequences named "*Irf10*" or "*Irf10a*" were renamed as *Irf10-v1* after the second *Irf10* splice variant (*Irf10-v2*) was discovered.

		10	20	30	40	50	60
		TTGCATGAGGCGGG	CTATTTGAA	AGAAGGCTCGI	TAAGTACGC	ITCTAGGTGTTA	TTGTG
IRF10_5.1F_C05_2012-09-13_Multi(54>887) IRF10_5.4F_B05_2012-09-13_Multi(57>809) IRF10-5.3 F_G04_2012-06-14_Mult(43>505) IRF10_5.3F_A05_2012-09-13_Multiu(1>662) IRF10_5.1R_C11_2012-09-13_Multi(80>742) IRF10_5.3R_A11_2012-09-13_Multi(86>732)	11111	TTGCATGAGGCGGG GCATGAGGCGGG CATGAGGCGGG CATGAGGCGGG	CTATTIGAA CTATTIGAA CTATTIGAA CTATTIGAA	AGAAGGCTCGI AGAAGGCTCGI AGAAGGCTCGI AGAAGGCTCGI TCGI	ITAAGTACGC: ITAAGTACGCI ITAAGTACGCI ITAAGTACGCI ITAAGTACGCI	ITCTAGGTGTTA IGCTAGGTGTTA ITCTAGGTGTTA ITCTAGGTGTTA ITCTAGGTGTTA TAGGTGTTA	TTGTG ATGTG ATGTG ATGTG ATGTG ATGTG ATGTG
		70	80 	90 	100	110	120
		AATGAGCTTTACC	AGTCAGAGA	ACAGGCTACT	ATGATGTATT	TAAAAGATGGAA	.GGCGA
IRF10_5.1F_C05_2012-09-13_Multi(54>887) IRF10_5.4F_B05_2012-09-13_Multi(57>809) IRF10-5.3F_G04_2012-06-14_Mult(43>505) IRF10_5.3F_A05_2012-09-13_Multiu(1>662) IRF10_5.1R_C11_2012-09-13_Multi(80>742) IRF10_5.3R_A11_2012-09-13_Multi(86>732)	11111	AATGAGCTTTACC AATGAGCTTTACC AATGAGCTTTACC AATGAGCTTTACC AATGAGCTTTACC AATGAGCTTTACC AATGAGCTTTACC	AGTCAGAGA AGTCAGAGA AGTCAGAGA AGTCAGAGA AGTCAGAGA AGTCAGAGA	ACAGGCTACTI ACAGGCTACTI ACAGGCTACTI ACAGGCTACTI ACAGGCTACTI ACAGGCTACTI	ATGATGTATT ATGATGTATT ATGATGTATT ATGATGTATT ATGATGTATT ATGATGTATT	IAAAAGATGGAA IAAAAGATGGAA IAAAAGATGGAA IAAAAGATGGAA IAAAAGATGGAA IAAAAGATGGAA	.GGCGA .GGCGA .GGCGA .GGCGA .GGCGA .GGCGA
		130 TGGTAAAATGCACC	140 	150 GCTCATAGCO	160 L.L.L.L.L.L.C.C.A.GTCGAC2	170 LL	180 للسبب GACGG
IRF10_5.1F_C05_2012-09-13_Multi(54>887) IRF10_5.4F_B05_2012-09-13_Multi(57>809) IRF10-5.3 F_G04_2012-06-14_Mult(43>505) IRF10_5.3F_A05_2012-09-13_Multi(1>662) IRF10_5.1R_C11_2012-09-13_Multi(80>742) IRF10_5.3R_A11_2012-09-13_Multi(86>732) IRF10-5.3_R_G08_2012-06-14_Mult(81>625)	111111	TGGTAAAATGCACC TGGTAAAATGCACC TGGTAAAATGCACC TGGTAAAATGCACC TGGTAAAATGCACC TGGTAAAATGCACC	TTAAAGAAT TTAAAGAAT TTAAAGAAT TTAAAGAAT TTAAAGAAT TTAAAGAAT	GGCTCATAGO GGCTCATAGO GGCTCATAGO GGCTCATAGO GGCTCATAGO GGCTCATAGO ATAGO	CCAAGTOGACI CCAAGTOGACI CCAAGTOGACI CCAAGTOGACI CCAAGTOGACI CCAAGTOGACI CCAAGTOGACI	AGTGAAAGGTTC AGTGAAAGGTTC AGTGAAAGGTTC AGTGAAAGGTTC AGTGAAAGGTTC AGTGAAAGGTTC AGTGAAAGGTTC	GACGG (GACGG (GACGG (GACGG (GACGG (GACGG
		190	200	210	220	230	240
		GTTGCGGTGGGAG2	ACGAAGAGA	AGACCATGTT	CAGGATCCCC-	-TGGAAACATGC	AGCTA
IRF10 5.1F C05 2012-09-13 Multi(54>887) IRF10-5.4F_B05_2012-09-13_Multi(57>809) IRF10-5.3 F_G04_2012-06-14_Mult(43>505) IRF10_5.3F_A05_2012-09-13_Multiu(1>662) IRF10_5.1R_C11_2012-09-13_Multi(80>742) IRF10_5.3R_A11_2012-09-13_Multi(80>732) IRF10-5.3_R_G08_2012-06-14_Mult(81>625)	111111	GTTECGGTGGGAG GTTECGGTGGGAG GTTECGGTGGGAG GTTECGGTGGGAG GTTECGGTGGGAG GTTECGGTGGGAG GTTECGGTGGGAG	lacgaagaga lacgaagaga lacgaagaga lacgaagaga lacgaagaga lacgaagaga lacgaagaga	AGACCATGTT(AGACCATGTT(AGACCATGTT(AGACCATGTT(AGACCATGTT(AGACCATGTT(AGACCATGTT(CAGGATCCCC- CAGGATCCCC- CAGGATCCCC- CAGGATCCCCC- CAGGATCCCC- CAGGATCCCC-	-TGGAAACATGO -TGGAAACATGO -TGGAAACATGO -TGGAAACATGO -TGGAAACATGO -TGGAAACATGO -TGGAAACATGO	AGCTA AGCTA AGCTA AGCTA AGCTA AGCTA AGCTA
		250 AG-AAGGACTACAG	260 LLLLLG GCAGCAGG-J	270	280	290 Ll.	300 TACAA
IRF10_5.1F_C05_2012-09-13_Multi(54>887) IRF10_5.4F_B05_2012-09-13_Multi(57>809) IRF10-5.3 F_G04_2012-06-14_Mult(43>505) IRF10_5.3F_A05_2012-09-13_Multi(10662) IRF10_5.1R_C11_2012-09-13_Multi(80>742) IRF10_5.3R_A11_2012-09-13_Multi(86>732) IRF10-5.3_R_G08_2012-06-14_Mult(81>625)	111111	AG-AAGGACTACA(AG-AAGGACTACA(AG-AAGGACTACA(AG-AAGGACTACA(AG-AAGGACTACA(AG-AAGGACTACA(AG-AAGGACTACA(GCAGCAGG-i GCAGCAGG-i GCAGCAGGG-i GCAGCAGG-i GCAGCAGG-i GCAGCAGG-i GCAGCAGG-i	ACGACGCCGCT ACGACGCCGGCT ACGACGCCGGCT ACGACGCCGGCT ACGACGCCGGCC ACGACGCCGCCG	ICTCTTTAAG(ICTCTTTAAGC ICTCTTTAAGC ICTCTTTAAGC ICTCTTTAAGC ICTCTTTAAGC	CTTGGGCTGTG CTTGGGCTGTG CTTGGGCTGTG CTTGGGCTGTG CTTGGGCTGTG CTTGGGCTGTG CTTGGGCTGTG	TACAA TACAA TACAA TACAA TACAA TACAA
		310	320	330	340	350	360
		AGGGAAATACAAG	TGGGCAGCG	ACAAGGACAAO	CCCACCATG	IGGAAGACGCGC	C-TGC
IRF10_5.1F_C05_2012-09-13_Multi(54>887) IRF10_5.4F_B05_2012-09-13_Multi(57>809) IRF10_5.3F_A05_2012-09-13_Multi(57>809) IRF10_5.1R_C11_2012-09-13_Multi(80>742) IRF10_5.3R_A11_2012-09-13_Multi(86>732) IRF10-5.3 R_G08_2012-06-14_Mult(81>625)	11111	AGGGAAATACAAG AGGGAAATACAAG AGGGAAATACAAG AGGGAAATACAAG AGGGAAATACAAG AGGGAAATACAAG	TGGGCAGCG TGGGCAGCG TGGGCAGCG TGGGCAGCG TGGGCAGCG TGGGCAGCG	ACAAGGACAA(ACAAGGACAA(ACAAGGACAA(ACAAGGACAA(ACAAGGACAA(ACAAGGACAA(COCCACCATG COCCACCATG COCCACCATG COCCACCATG COCCACCATG COCCACCATG	IGGAAGACGCGC IGGAAGACGCGC IGGAAGACGCGC IGGAAGACGCGC IGGAAGACGCGC	C-TGC C-TGC CCTGC C-TGC C-TGC C-TGC

		370	380	390	400	410	420
		GCTGTGCACTTAACAAG	AGCACAGAG	TTCCAGGAG	GTCCCCC-AC	CTGAACCAGC	TGGAC
IRF10_5.1F_C05_2012-09-13_Multi(54>887) IRF10_5.4F_B05_2012-09-13_Multi(57>809) IRF10_5.3F_A05_2012-09-13_Multiu(1>662) IRF10_5.1R_C11_2012-09-13_Multi(80>742) IRF10_5.3R_A11_2012-09-13_Multi(86>732) IRF10_5.3_R_G08_2012-06-14_Mult(81>625)	11111	GCTGTGCACTTAACAAG GCTGTGCACTTAACAAG GCTGTGCACTTAACAAG GCTGTGCACTTAACAAG GCTGTGCACTTAACAAG GCTGTGCACTTAACAAG	AGCACAGAG AGCACAGAG AGCACAGAG AGCACAGAG AGCACAGAG AGCACAGAG	TTCCAGGAG TTCCAGGAG TTCCAGGAG TTCCAGGAG TTCCAGGAG TTCCAGGAG	GTCCCCC-AC GTCCCCCCAC GTCCCCCC-AC GTCCCCCC-AC GTCCCCCC-AC GTCCCCCC-AC	CTGAACCAGC CTGAACCAGC CTGAACCAGC CTGAACCAGC CTGAACCAGC CTGAACCAGC	TGGAC TGGAC TGGAC TGGAC TGGAC TGGAC
		430 ATCTCGGAGCCCTACAA	440 GGTCTACCO	450 CATCGAGTC	460	470	480 ATCAG
IRF10_5.1F_C05_2012-09-13_Multi(54>887) IRF10_5.4F_B05_2012-09-13_Multi(57>809) IRF10_5.3F_A05_2012-09-13_Multi(57>809) IRF10_5.1R_C11_2012-09-13_Multi(80>742) IRF10_5.3R_A11_2012-09-13_Multi(80>742) IRF10-5.3_R_G05_2012-06-14_Mult(81>625) IRF10-5.2_F_F04_2012-06-14_Mult(1>309) IRF10-5.2_R_F08_2012-06-14_Mult(81>381)	1111111	ATCTCGGAGCCCTACAA ATCCCCGAGCCCTACAA ATCTCGGAGCCCTACAA ATCTCGGAGCCCTACAA ATCTCGGAGCCCTACAA ATCTCGGAGCCCTACAA	GGTCTACCO GGTCTACCO GGTCTACCO GGTCTACCO GGTCTACCO GGTCTACCO	CATCGAGTC CATCGAGTC CATCGAGTC CATCGAGTC CATCGAGTC CATCGAGTC CATCGAGTC	TGACCAGAGA TGACCAGAGA TGACCAGAGA TGACCAGAGA TGACCAGAGA TGACCAGAGA TGACCAGAGA	GCAGAGTCTG GCAGAGTCTG GCAGAGTCTG GCAGAGTCTG GCAGAGTCTG GCAGAGTCTG GCAGAGTCTG	ATCAG ATCAG ATCAG ATCAG ATCAG ATCAG ATCAG
		490 ACGTACAGTCGAGTGGT	500 CGTGGTTC	510 AGACTGGATA	520 CGCCAGTCTC	530 CCACAGTCTC	540 AGCTT
IRF10_5.1F_C05_2012-09-13_Multi(54>887) IRF10_5.4F_B05_2012-09-13_Multi(57>809) IRF10_5.1R_C11_2012-09-13_Multi(50>742) IRF10_5.3R_A11_2012-09-13_Multi(86>732) IRF10-5.3 R_G05_2012-06-14_Mult(81>625) IRF10-5.2_F_F04_2012-06-14_Mult(1>309) IRF10-5.2_R_F08_2012-06-14_Mult(81>381)	111111	ACGTACAGTCGAGTGGT ACGTACAGTCGAGTGGT ACGTACAGTCGAGTGGT ACGTACAGTCGAGTGGT ACGTACAGTCGAGTGGT ACGTACAGTCGAGTGGT ACGTACAGTCGAGTGGT	CGTGGTTC CGTGGTTC CGTGGTTC CGTGGTTC CGTGGTTC CGTGGTTC CGTGGTTC	GACTGGATA GACTGGATA GACTGGATA GACTGGATA GACTGGATA GACTGGATA	CGCCAGTCTC CGCCAGTCTC CGCCAGTCTC CGCCAGTCTC CGCCAGTCTC CGCCAGTCTC CGCCAGTCTC	CCACAGTCTC CCACAGTCTC CCACAGTCTC CCACAGTCTC CCACAGTCTC CCACAGTCTC CCACAGTCTC	AGCTT AGCTT AGCTT AGCTT AGCTT AGCTT AGCTT
		550 GCTGACCAATGGGAAAG	560 ATTTGAAGA	570	580 AGAAAGTCAI	590	600 LLLL
IRF10_5.1F_C05_2012-09-13_Multi(54>887) IRF10_5.4F_B05_2012-09-13_Multi(57>809) IRF10_5.1R_C11_2012-09-13_Multi(80>742) IRF10_5.3R_A11_2012-09-13_Multi(80>732) IRF10-5.3_R_G08_2012-06-14_Mult(81>625) IRF10-5.2_F_F04_2012-06-14_Multi(1>309) IRF10-5.2_R_F08_2012-06-14_Mult(81>381)	111111	GCTGACCAATGGGAAAG GCTGAC-AATGGGAAAG GCTGACCAATGGGAAAG GCTGACCAATGGGAAAG GCTGACCAATGGGAAAG GCTGACCAATGGGAAAG GCTGACCAATGGGAAAG	ATTTGAAGA ATTTGAAGA ATTTGAAGA ATTTGAAGA ATTTGAAGA ATTTGAAGA	NAAGGCAAGA NAA NAAGGCAAGA NAAGGCAAGA NAAGGCAAGA NAAGGCAAGA NAAGGCAAGA	AGAAAGTCAT AGAAAGTCAT AGAAAGTCAT AGAAAGTCAT AGAAAGTCAT AGAAAGTCAT	GGCGCTTTGT GGCGCTTTGT GGTGCTTTGT GGTGCTTTGT GGTGCTTTGT	GGAGG GGAGG GGAGG GGAGG GGAGG GGAGG
		610	620	630	640	650	660 LL
		GAGCACACGTACTGTGG	TTCAGAGGA	TAGCCAGGC	TCACAGTCAC	ATCCCTCTGG	ACCCC
IRF10_5.1F_C05_2012-09-13_Multi(54>887) IRF10_5.1R_C11_2012-09-13_Multi(80>742) IRF10_5.3R_A11_2012-09-13_Multi(80>732) IRF10-5.3_R_G08_2012-06-14_Mult(81>625) IRF10-5.2_F_F04_2012-06-14_Multi(1>309) IRF10_5.2_R_F08_2012-09-13_Multi(1>5569) IRF10mid3R_G09_2012-09-13_Multi(82>576) IRF10mid1F_E03_2012-09-13_Multi(5>549) IRF10mid2F_F03_2012-09-13_Multi(5>551) IRF10mid3F_G03_2012-09-13_Multi(5>555)	11111111111	GAGCACACGTACTGTGG GAGCACACGTACTGTGG GAGCACACGTACTGTGG GAGCACACGTACTGTGG GAGCACACGTACTGTGG ACGTACTGTGG ACGTACTGTGG CGTACTGTGG CGTACTGTGG CGTACTGTGG	TTCAGAGGI TTCAGAGGI TTCAGAGGI TTCAGAGGI TTCAGAGGI TTCAGAGGI TTCAGAGGI TTCAGAGGI TTCAGAGGI TTCAGAGGI TTCAGAGGI	ITAGCCAGGC ITAGCCAGGC ITAGCCAGGC ITAGCCAGGC ITAGCCAGGC ITAGCCAGGC ITAGCCAGGC ITAGCCAGGC ITAGCCAGGC ITAGCCAGGC ITAGCCAGGC	TCACAGTCAC TCACAGTCAC TCACAGTCAC TCACAGTCAC TCACAGTCAC TCACAGTCAC TCACAGTCAC TCACAGTCAC TCACAGTCAC TCACAGTCAC TCACAGTCAC	ATCCCTCTGG ATCCCTCTGG ATCCCTCTGG ATCCCTCTGG ATCCCTCTGG ATCCCTCTGG ATCCCTCTGG ATCCCTCTGG ATCCCTCTGG ATCCCTCTGG	ACCCC ACCCC ACCCC ACCCC ACCCC ACCCC ACCCC ACCCC ACCCC ACCCC
		670		690		710	720
IRF10_5.1F_C05_2012-09-13_Multi(54>887) IRF10_5.1R_C11_2012-09-13_Multi(80>742) IRF10_5.3R_A11_2012-09-13_Multi(80>732) IRF10-5.3_R_G08_2012-06-14_Mult(81>625) IRF10-5.2_F_F04_2012-06-14_Multi(1>309) IRF10-5.2_R_F08_2012-06-14_Mult(81>381)	11111	AGCTCCTCAGCCCAC AGCCTCCTCAGCCCCAC AGCCTCCTCAGCCCCAC AGCCTCCTCAGCCCCAC AGCCTCCTCAGCCCCAC AGCCTCCTCAGCCCCAC	TCTGGCCAI TCTGGCCAI TCTGGCCAI TCTGGCCAI TCTGGCCAI TCTGGCCAI	TATCAG TATCAG TATCAGACTTI TATCAGACTTI TATCAGACTTI TATCAGACTTI	CC CC CCA		10180

		670 680 690 700 710 720
		AGCCTCCTCAGCCCCACTCTGGCCATATCAGACTTCCGGATGGAGCTGACGCTGTTCTAC
IRF10mid2R F09 2012-09-13 Multi(75>569) IRF10mid3R_G09_2012-09-13_Multi(82>576) IRF10mid1F_E03_2012-09-13_Multi(55>549) IRF10mid2F_F03_2012-09-13_Multi(57>551) IRF10mid3F_G03_2012-09-13_Multi(62>556)	1111	AGCCTCCTCAGCCCCACTCTGGCCATATCTGACTTCCGGATGGAGCTGACGCTGTTCTAC AGCCTCCTCAGCCCCACTCTGGCCATATCAGACTTCCGGATGGAGCTGACGCTGTTCTAC AGCCTCCTCAGCCCCACTCTGGCCATATCAGACTTCCGGATGGAGCTGACGCTGTTCTAC AGCCTCCTCAGCCCCACTCTGGCCATATCAGACTTCCGGATGGAGCTGACGCTGTTCTAC AGCCTCCTCAGCCCCACTCTGGCCATATCAGACTTCCGGATGGAGCTGACGCTGTTCTAC
		730 740 750 760 770 780
		CGCGGGGAGCCGGTGATGGAGCTGACCTCCAGCAGCCCAGAAGGGTGCTTCATCCTGCAG
IRF10mid2R_F09_2012-09-13_Multi(75>569) IRF10mid3R_G09_2012-09-13_Multi(82>576) IRF10mid1F_E03_2012-09-13_Multi(55>549) IRF10mid2F_F03_2012-09-13_Multi(57>551) IRF10mid3F_G03_2012-09-13_Multi(62>556)	1111	CCCCGGGAGCCGGTGATGGAGCTGACCTCCAGCAGCCCAGAAGGGTGCTTCATCCTGCAG CCCGGGGAGCCGGTGATGGAGCTGACCTCCAGCAGCCCAGAAGGGTGCTTCATCCTGCAG CCCGGGGAGCCGGTGATGGAGCTGACCTCCAGCAGCCCAGAAGGTGCTTCATCCTGCAG CCCGGGGAGCCGGTGATGGAGCTGACCTCCAGCAGCCCAGAAGGTGCTTCATCCTGCAG CCCGGGGAGCCGGTGATGGAGCTGACCTCCAGCAGCCCAGAAGGTGCTTCATCCTGCAG
		790 800 810 820 830 840
		Gectecgtgccgctggggaacgagaggatctacgggccctgcagcgctcagcagcttcc
IRF10mid2R_F09_2012-09-13_Multi(75>569) IRF10mid3R_G09_2012-09-13_Multi(82>576) IRF10mid1F_E03_2012-09-13_Multi(55>549) IRF10mid2F_F03_2012-09-13_Multi(57>551) IRF10mid3F_G03_2012-09-13_Multi(62>556)	1111	GECTECCTGCGCCGCGGGAACGAGAGGATCTACGGGCCCTGCACCCCCAGCAGCTCTCC GECTECCGCGCCGCGGGGAACGAGAGGAGCTCTACGGGCCCTGCAGCGCCCAGCAGCTCTCC GGCTGCGTGCCGCTGGGGAACGAGAGGAGCTCTACGGGCCCTGCAGCGCCCAGCAGCTCTCC GGCTGCGTGCCGCTGGGGAACGAGAGGATCTACGGGCCCTGCAGCGCCCAGCAGCTCTCC GGCTGCGTGCCGCTGGGGAACGAGAGGATCTACGGGCCCTGCAGCGCTCAGCAGCTCTCC
		850 860 870 880 890 900
		CIGCCICCCGGCCICGCIGGGCCCCGGGGCGIGGCCCGGGCCCIGGGICAG
IRF10mid2R_F09_2012-09-13_Multi(75>569) IRF10mid3R_G09_2012-09-13_Multi(82>576) IRF10mid1F_E03_2012-09-13_Multi(55>549) IRF10mid2F_F03_2012-09-13_Multi(57>551) IRF10mid3F_G03_2012-09-13_Multi(62>556)	1111	CTGCCCTCCCCGGCCTCGCTGGGCCCCCTGGAGCCCGGCCCTGGGCCCGGGCCTGGGTCAG CTGCCCCCCCGGCCTCGCTGGGCCCCCTGGAGCCCGGCCGTGGCCCGGGCCCTGGGTCAG CTGCCCTCCCCGGCCTCGCTGGGCCCCCTGGAGCCCGGCCGTGGCCCGGGCCCTGGGTCAG CTGCCCTCCCCGGCCTCGCTGGGCCCCCTGGAGCCCGGCCCTGGGCCCTGGGTCAG
		910 920 930 940 950 960
		CTCCTGTCCCATCTGGAGAGGGGGGGGGGGGCGCTGCTCCGGGTGGCCCCGGGACGGGCTGTTCATC
IRF10mid2R_F09_2012-09-13_Multi(75>569) IRF10mid3R_G09_2012-09-13_Multi(82>576) IRF10mid1F_E03_2012-09-13_Multi(55>549) IRF10mid2F_F03_2012-09-13_Multi(57>551) IRF10mid3F_G03_2012-09-13_Multi(62>556)	1111	CTCCTGTCCCATCTGGAGAGGGGAGTGCTGCTCTGGGTGGCCCCGGACGGGCTGTTCATC CTCCTGTCCCATCTGGAGAGGGGGAGTGCTGCTCTGGGTGGCCCCGGACGGGCTGTTCATC CTCCTGTCCCATCTGGAGAGGGGGAGTGCTGCTCTGGGTGGCCCCGGACGGGCTGTTCATC CTCCTGTCCCATCTGGAGAGGGGAGTGCTGCTCTGGGTGGCCCCGGACGGGCTGTTCATC CTCCTGTCCCATCTGGAGAGGGGAGTGCTGCTCTGGGTGGCCCCGGACGGGCTGTTCATC
		970 980 990 1000 1010 1020
		AAGAGGTTCTGCCAGGGCCGTGTGTACTGGAGTGGGCCCCTGGCCCCGCACACCGAGAAG
IRF10mid2R_F09_2012-09-13_Multi(75>569) IRF10mid3R_G09_2012-09-13_Multi(82>576) IRF10mid1F_E03_2012-09-13_Multi(55>549) IRF10mid2F_F03_2012-09-13_Multi(57>551) IRF10mid3F_G03_2012-09-13_Multi(62>556)	1111	AAGAGGTTCTGCCAGGGCCGTGTGTACTGGAGTGGGCCCCTGGCCCCGCACACCGAGAAG AAGAGGTTCTGCCAGGGCCGTGTGTACTGGAGTGGGCCCCTGGCCCGGCACACCGAGAAG AAGAGGTTCTGCCAGGGCCGTGTGTACTGGAGTGGGCCCCTGGCCCCGCACACCGAGAAG AAGAGGTTCTGCCAGGGCCGTGTGTACTGGAGTGGGCCCCTGGCCCCGCACACCGAGAAG AAGAGGTTCTGCCAGGGCCGTGTGTACTGGAGTGGGCCCCTGGCCCCGCACACCGAGAAG
		1030 1040 1050 1060 1070 1080
		$\tt CCCAATAAACTGGAGAGGGGACAGGACCTGCAAGCTGCTGGACATGCCCGTATTTGTAAAT$
IRF10mid2R_F09_2012-09-13_Multi(75>569) IRF10mid3R_G09_2012-09-13_Multi(82>576) IRF10mid1F_E03_2012-09-13_Multi(55>549) IRF10mid3F_G03_2012-09-13_Multi(57>551) IRF10mid3F_G03_2012-09-13_Multi(57>556) IRF10_3.2R_C11_2012-07-05_Multi(1>860) IRF10_3.1F_B05_2012-07-05_Multi(1>86781) IRF10_3.1F_B05_2012-07-05_Multi(1>984) IRF10_3.2R_D11_2012-07-05_Multiu(1>856) IRF10_3.2R_D11_2012-09-13_Multi(88>696) IRF10_3.2R_D11_2012-09-13_Multiu(1>935)	11111111111	CCCAATAAACTGGAGAGGGACAGGACCTGCAAGCTGCTGGACATGCCCGTATTTGTAAAT CCCAATAAACTGGAGAGGGACAGGACCTGCAAGCTGCTGGACATGCCCGTATTTGTAAAT CCCAATAAACTGGAGAGGGACAGGACCTGCAAGCTGCTGGACATGCCCGTATTTGTAAAT CCCAATAAACTGGAGAGGGACAGGACCTGCAAGCTGCTGGACATGCCCGTATTTGTAAAT CCCAATAAACTGGAGAGGGACAGGACCTGCAAGCTGCTGGACATGCCCGTATTTGTAAAT CCCAATAAACTGGAGAGGGACAGGACCTGCAAGCTGCTGGACATGCCCGTATTTGTAAAT TGGACCTGCAAGCTGCTGGACATGCCCGTATTTGTAAAT GGACCTGCAAGCTGCTGGACATGCCCGTATTTGTAAAT GGACCTGCAAGCTGCTGGACATGCCCGTATTTGTAAAT GGACCTGCAAGCTGCTGGACATGCCCGTATTTGTAAAT GGACCTGCAAGCTGCTGGACATGCCCGTATTTGTAAAT TGGACCTGCAAGCTGCTGGACATGCCCGTATTTGTAAAT GGACCTGCAAGCTGCTGGACATGCCCGTATTTGTAAAT

		GAGCTCCAGAACTATATGCAGAGGAAAGGCCCACAACCAAACTATGAGATTGATCTCTGC
TDF10mid2D_F00_2012_00_13_Multi(755560)	-	
IRF10mid3R G09 2012-09-13 Multi(82>576)	-	GAGCICCAGAACIAIAIGCAG
IRF10mid1F E03 2012-09-13 Multi(55>549)		GAGCTCCAGAACTATATGCAGA
IRF10mid2F F03 2012-09-13 Multi (57>551)		GAGCTCCAGAACTATATGCAGA
IRF10mid3F_G03_2012-09-13_Multi(62>556)		GAGCTCCAGAACTATATGCAGA
IRF10_3.2R_C11_2012-07-05_Multiu(1>860)		GAGCTCCAGAACTATATGCAGAGGAAAGGCCCACAACCAAACTATGAGATTGATCTCTGC
IRF10_3.1F_B05_2012-07-05_Multi(56>781)	-	GAGCTCCAGAACTATATGCAGAGGAAAGGCCCACAACCAAACTATGAGATTGATCTCTGC
IRF10_3.1F_B05_2012-07-05_Multiu(1>984)	-	GAGCTCCAGAACTATATGCAGAGGAAAGGCCCACAACCAAACTATGAGATTGATCTCTGC
IRF10_3.1R_B11_2012-07-05_Multiu(1>856)	-	GAGCTCCAGAACTATATGCAGAGGAAAGGCCCACAACCAAACTATGAGATTGATCTCTGC
IRF10_3.2R_D11_2012-09-13_Mult1(88>696)	-	GAGCTCCAGAACTATATGCAGAGGGAAAGGCCCACAACCAAACTATGAGATTGATCTCTGC
IRF10_3.2R_D11_2012-09-13_Multiu(1>935)	-	GAGCTCCAGAACTATATGCAGAGGAAAGGCCCACAACCAAACTATGAGATTGATCTCTGC
IRFI0_3.2F_D05_2012-09-13_Mult1(56>664)	_	GAGCTCCAGAACTATATGCAGAGGAAAGGCCCACAACCAAACTATGAGATTGATCTCTGC
		1150 1160 1170 1180 1190 1200
		levellevellevellevellevellevellevellevellevellevellevellevellevellevel
		TTTGGCGAGGAGTATCCCGACGCTAAAGTTTCCAAAACGATGAAGCTGATAACAGTTCAT
IRF10 3.2R C11 2012-07-05 Multiu(1>860)		TTTGGCGAGGAGTATCCCGACGCTAAAGTTTCCAAAACGATGAAGCTGATAACAGTTCAT
IRF10 3.1F B05 2012-07-05 Multi(56>781)	-	TTTGGCGAGGAGTATCCCCGACGCTAAAGTTTCCAAAACGATGAAGCTGATAACAGTTCAT
IRF10_3.1F_B05_2012-07-05_Multiu(1>984)	-	TTTGGCGAGGAGTATCCCCGACGCTAAAGTTTCCAAAACGATGAAGCTGATAACAGTTCAT
IRF10_3.1R_B11_2012-07-05_Multiu(1>856)		TTTGGCGAGGAGTATCCCGACGCTAAAGTTTCCAAAACGATGAAGCTGATAACAGTTCAT
IRF10_3.2R_D11_2012-09-13_Multi(88>696)	-	TTTGGCGAGGAGTATCCCGACGCTAAAGTTTCCAAAACGATGAAGCTGATAACAGTTCAT
IRF10_3.2R_D11_2012-09-13_Multiu(1>935)	-	TTTGGCGAGGAGTATCCCGACGCTAAAGTTTCCAAAACGATGAAGCTGATAACAGTTCAT
IRF10_3.2F_D05_2012-09-13_Multi(56>664)	-	TTTGGCGAGGAGTATCCCGACGCTAAAGTTTCCAAAACGATGAAGCTGATAACAGTTCAT
		1010 1000 1000 1010 1050 1050
		GTGGTGCCCCTGTTTGCCATGGAACTGTTGCAGCGATTCCAGCTAGAGCGGGTCGAGGCA
IRF10_3.2R_C11_2012-07-05_Multiu(1>860)	-	GTGGTGCCCCTGTTTGCCATGGAACTGTTGCAGCGATTCCAGCTAGAGCGGGTCGAGGCA
IRF10_3.1F_B05_2012-07-05_Multi(56>781)	-	GTGGTGCCCCTGTTTGCCATGGAACTGTTGCAGCGATTCCAGCTAGAGCGGGTCGAGGCA
IRF10_3.1F_B05_2012-07-05_Multiu(1>984)	<u> </u>	GTGGTGCCCCTGTTTGCCATGGAACTGTTGCAGCGATTCCAGCTAGAGCGGGTCGAGGCA
IRFI0_3.IR_DI1_2012-07-03_MULLIU(12030)		GIGGIGCCCCIGITIGCCAIGGAACIGIIGCAGCGAITCCAGCIAGAGCGGGICGAGGCA
TEF10_3_2E_D11_2012-09-13_Multin(1507090)	-	GIGGIGUUUUIGIIIGULAIGGAAUIGIIGULAGUGAIIUULAGUIAGAGUGAGIUGAGGUA GIGGIGUCUUIGIIIGULAIGGAAUIGIIGULAGUGAIIUULAGUIAGAGUGAGIUGAGGUA
IRF10_3.2F_D05_2012-09-13_Multi(565664)	-	
		1270 1280 1290 1300 1310 1320
		GAACCGGACGTTCACACTCCCAAAGAAGCCAAGGATGAGATGTAAGGGGCCAGTTATCCA
IRF10 3.2R C11 2012-07-05 Multiu(1>860)	-	GAACCGGACGTTCACACTCCCAAAGAAGCCAAGGATGAGATGTAAGGGGCCAGTTATCCA
IRF10 3.1F B05 2012-07-05 Multi(56>781)		GAACCGGACGTTCACACTCCCAAAGAAGCCAAGGATGAGATGTAAGGGGCCAGTTATCCA
IRF10 3.1F B05 2012-07-05 Multiu(1>984)	-	GAACCGGACGTTCACACTCCCAAAGAAGCCAAGGATGAGATGTAAGGGGCCAGTTATCCA
IRF10_3.1R_B11_2012-07-05_Multiu(1>856)		GAACCGGACGTTCACACTCCCAAAGAAGCCAAGGATGAGATGTAAGGGGCCAGTTATCCA
IRF10_3.2R_D11_2012-09-13_Multi(88>696)	-	GAACCGGACGTTCACACTCCCAAAGAAGCCAAGGATGAGATGTAAGGGGCCAGTTATCCA
IRF10_3.2R_D11_2012-09-13_Multiu(1>935)	-	GAACCGGACGTTCACACTCCCAAAGAAGCCAAGGATGAGATGTAAGGGGCCAGTTATCCA
IRF10_3.2F_D05_2012-09-13_Multi(56>664)	-	GAACCGGACGTTCACACTCCCAAAGAAGCCAAGGATGAGATGTAAGGGGCCAGTTATCCA
		1000 1040 1050 1050 1050
		ACTAGATGTAAGCTTCACAAGTTCACAACTACTCTCCAAGGAAATCCTTGATGTATTCCT
TRF10 3 2R C11 2012-07-05 Multin/15960)		ACTACATCERA ACCETECACA ACETECACA ACEA OTOCOA ACCA A ARCOTECA TOTA TROOT
IRF10 3.1F B05 2012-07-05 Multi (56>781)	-	ACTAGATGTAGGTTCACAAGTTCACAAGTACTCTCCCAAGGAAATCCTTGATGTATTCCT
IRF10 3.1F B05 2012-07-05 Multiu(1>984)	-	ACTAGATGTAGGCTTCACAAGTTCACAACTACTTCCAAGGAAAGCCTTCATGTATCCT
IRF10 3.1R B11 2012-07-05 Multin(1>856)		ACTAGATGTAAGCTTCACAAGTTCACAACTACTCTCCCAAGGAAATCCTTGATGTATTCCT
IRF10 3.2R D11 2012-09-13 Multi(88>696)	-	ACTAGATGTAAGCTTCACAAGTTCACAACTACTCTCCCAAGGAAATCCTTGATGTATTCCT
IRF10_3.2R_D11_2012-09-13 Multiu(1>935)	-	ACTAGATGTAAGCTTCACAAGTTCACAACTACTCTCCAAGGAAATCCTTGATGTATTCCT
IRF10_3.2F_D05_2012-09-13_Multi(56>664)		ACTAGATGTAAGCTTCACAAGTTCACAACTACTCTCCAAGGAAATCCTTGATGTATTCCT
		1390 1400 1410 1420 1430 1440
		AATAACCCAAGTATAACGTGACAGTTATACTTGGCAGTTGACAGTTCTGTGTAAAAGACA
TREA & OR 044 0040 OF 05 M 1.1 14 1.1	_	
IRF10_3.2R_C11_2012-07-05_Multiu(1>860)	-	AATAACCCAAGTATAACGTGACAGTTATACTTGGCAGTTGACAGTTCTGTGTAAAAAAACA
IRF10_3.1F_B05_2012-07-05_Multi(56>781)	-	AATAACCCAAGTATAACGTGACAGTTATACTTGGCAGTTGACAGTTCTGTGTAAAAGACA
IRFIG 3.1F_B05_2012-07-05_MULT10(1>984)		AALAAUULAAGTATAAUGTGACAGTTATAUTTGGCAGTTGACAGTTCTGTGTAAAAGACA
TEF10 3 2D D11 2012-07-03_MULLIU(12856)	-	AALAAUULAAGTATAAOGTGACAGTTATACITIGGCAGTTGACAGTTCTGTGTAAAAGACA
TULIO 0.5U DII 2012-02-13 MUTCI(005030)	-	ATTACCCARDIATAACDIGACADITATACIIGGCADIIGACADIICIGIGIAAAABACA

		1390 1400 1410 1420 1430 1440
		AATAACCCAAGTATAACGTGACAGTTATACTTGGCAGTTGACAGTTCTGTGTAAAAGACA
IRF10_3.2R_D11_2012-09-13_Multiu(1>935) IRF10_3.2F_D05_2012-09-13_Multi(56>664)	5	AATAACCCAAGTATAACGTGACAGTTATACTTGGCAGTTGACAGTTCTGTGTAAAAGACA AATAACCCAAGTATAACGTGACAGTTATACTTGGCAGTTGACAGTTCTGTGTAAAGACA
` ` `		1450 1460 1470 1480 1490 1500
		GAAICAAAIAACIGAGGICIGIIIGAIAIIAGAIIIAIGGIIGCIIGC
IRF10 3.2R C11 2012-07-05 Multiu(1>860) IRF10 3.1F B05 2012-07-05 Multi(56>781) IRF10 3.1F B05 2012-07-05 Multiu(1>856) IRF10 3.1R B11_2012-07-05 Multiu(1>856) IRF10 3.2R D11_2012-09-13 Multi(88>696) IRF10 3.2R D11_2012-09-13 Multi(56>664)	111111	GAATCAAATAACTGAGGTCTGTTTGATATTAGATTTATGGTTGCTTGC
		1510 1520 1520 1540 1550 1550
		CAGTAGTGATTCTAATGTGTGTATAATTTATATTTAGAGACTTTCTACATGCCAGCGATA
IRF10_3.2R_C11_2012-07-05_Multiu(1>860) IRF10_3.1F_B05_2012-07-05_Multi(56>781) IRF10_3.1F_B05_2012-07-05_Multiu(1>984) IRF10_3.1R_B11_2012-07-05_Multiu(1>8694) IRF10_3.2R_D11_2012-09-13_Multi(88>696) IRF10_3.2R_D11_2012-09-13_Multi(56>664) IRF10_3.2F_D05_2012-09-13_Multi(56>664)	111111	CAGTAGTGATTCTAATGTGTGTATAATTTATATTTGGAGACCTTCTACATGCCAGCGATA CAGTAGTGATTTTAATGTGTGTATAATTTATATTTAGAGACTTTTTACATGCCAGCGATA CAGTAGTGATTTTAATGTGTGTGTATAATTTATATTTAGAGACTTTCTACATGCCAGCGATA CAGTAGTGATTCTAATGTGTGTATAATTTATATTTAGAGACTTTCTACATGCCAGCGATA CAGTAGTGATTCTAATGTGTGTATAATTTATATTTAGAGACTTTCTACATGCCAGCGATA CAGTAGTGATTCTAATGTGTGTATAATTTATATTTAGAGACTTTCTACATGCCAGCGATA CAGTAGTGATTCTAATGTGTGTATAATTTATATTTAGAGACTTTCTACATGCCAGCGATA CAGTAGTGATTCTAATGTGTGTATAATTTATATTTAGAGACTTTCTACATGCCAGCGATA
		1570 1580 1590 1600 1610 1620
		CAATATTAACAACATTCTTTTCATGTTATATTTTAATCTTCTGAGTAAAGTTATTTTGAGT
IRF10_3.2R_C11_2012-07-05_Multiu(1>860) IRF10_3.1F_B05_2012-07-05_Multi(5\$781) IRF10_3.1F_B05_2012-07-05_Multiu(1>984) IRF10_3.1R_B11_2012-07-05_Multiu(1>856) IRF10_3.2R_D11_2012-09-13_Multi(88>696) IRF10_3.2R_D11_2012-09-13_Multiu(1>935) IRF10_3.2F_D05_2012-09-13_Multi(56>664)	111111	CAATATTAACAACATTCTTTTCATGTTATATTTAATCTTCTGAGTAAAGTTATTTTGAGT CAATATTAACAACATTCTTTTCATGTTATATTTTAATCTTCTGAGTAAAGTTATTTTGAGT CAATATTAACAACATTCTTTTCATGTTATATTTTAATCTTCTGAGTAAAGTTATTTGAGT CAATATTAACAACATTCTTTTCATGTTATATTTTAATCTTCTGAGTAAAGTTATTTGAGT CAATATTAACAACATTCTTTTCATGTTATATTTAATCTTCTGAGTAAAGTTATTTTGAGT CAATATTAACAACATTCTTTTCATGTTATATTTAATCTTCTGAGTAAAGTTATTTTGAGT CAATATTAACAACATTCTTTTCATGTTATATTTAATCTTCTGAGTAAAGTTATTTTGAGT CAATATTAACAACATTCTTTTCATGTTATATTTAATCTTCTGAGTAAAGTTATTTTGAGT
		1630 1640 1650 1660 1670 1680
		TAAGTGTGTTTAATGTTCTTAGTCTACTTATGAATTGTAATAATTTATGCAGTTCAATGC
IRF10 3.2R C11 2012-07-05 Multiu(1>860) IRF10_3.1F_B05_2012-07-05_Multi(56>781) IRF10_3.1F_B05_2012-07-05_Multi(1>984) IRF10_3.1F_B11_2012-07-05_Multiu(1>856) IRF10_3.2R_D11_2012-09-13_Multi(88>696) IRF10_3.2R_D11_2012-09-13_Multi(1>935) IRF10_3.2F_D05_2012-09-13_Multi(56>664)	111111	TAAGTGTGTTTAATGTTCTTAGTCTACTATGAATTGTAATAATTTATGCAGTTCAATGC TAAGTGTGTTTAATGTTCTTAGTCTACTATGAATTGTAATAATTTATGCAGTTCAATGC TAAGTGTGTTTAATGTTCTTAGTCTACTTATGAATTGTAATAATTTATGCAGTTCAATGC TAAGTGTGTTTAATGTTCTTAGTCTACTTATGAATTGTAATAATTTATGCAGTTCAATGC TAAGTGTGTTTAATGTTCTTAGTCTACTTATGAATTGTAATAATTTATGCAGTTCAATGC TAAGTGTGTTTAATGTTCTTAGTCTACTTATGAATTGTAATAATTTATGCAGTTCAATGC TAAGTGTGTTTAATGTTCTTAGTCTACTTATGAATTGTAATAATTTATGCAGTTCAATGC TAAGTGTGTTTAATGTTCTTAGTCTACTTATGAATTGTAATAATTTATGCAGTTCAATGC
		1690 1700 1710 1720 1730 1740
IRF10_3.2R_C11_2012-07-05_Multiu(1>860) IRF10_3.1F_B05_2012-07-05_Multi(55>781) IRF10_3.1F_B05_2012-07-05_Multiu(1>984) IRF10_3.1R_B11_2012-07-05_Multiu(1>856) IRF10_3.2R_D11_2012-09-13_Multi(88>696) IRF10_3.2R_D11_2012-09-13_Multi(1>935) IRF10_3.2F_D05_2012-09-13_Multi(56>664)	111111	ACTGGAACAATAATCAAGTACGAAAAATAAAATCACACCACCAAAAAAAA
		1750
TEF10 3 20 C11 2012_07_05 Multin/150601		777
IRF10_3.1F_B05_2012-07-05_Multiu(1>80) IRF10_3.1R_B11_2012-07-05_Multiu(1>84)	-	ARA AAAA

Appendix 7: Assembly of Atlantic cod *Irf10-2* RACE and ORF PCR sequencing reads. Sequencing methods are described in section 2.1.2. Sequence data was assembled using Lasergene SeqMan Pro software (DNASTAR). Consensus sequence is indicated between horizontal lines. Note that sequences named "*Irf10b*" were renamed as *Irf10-v2* when it was determined the sequence was an *Irf10* splice variant.

		10 20 30 40 50 60
		CGATTCATGAGGCGGCCTATTTGAAAGAAGGCTCGTTAAGTACGCTTCTAGGTGTTATTG
IRF10b-ORF2_R_F08_2013-07-22_Mu(83>636) IRF10b-ORF3_R_G08_2013-07-22_Mu(71>624) IRF10b-ORF4_R_H08_2013-07-22_Mu(74>627) IRF10b-ORF1_R_E08_2013-07-22_Mu(62>616) IRF10b-ORF1_F_E07_2013-07-22_Mu(45>601) IRF10b-ORF3_F_G07_2013-07-22_Mu(45>598) IRF10b-ORF4_F_H07_2013-07-22_Mu(51>604)	1111111	CGATTCATGAGCCGCCTATTTGAAAGAAGGCTCGTTAAGTACGCTTCTAGGTGTTATTG CGATTCATGAGGCGGCCTATTTGAAAGAAGGCTCGTTAAGTACGCTTCTAGGTGTTATTG CGATTCATGAGGCGGCCTATTTGAAAGAAGGCTCGTTAAGTACGCTTCTAGGTGTTATTG CGATTCATGAGGCGGCCTATTTGAAAGAAGGCTCGTTAAGTACGCTTCTAGGTGTTATTG TCATGAGGCGGCCTATTTGAAAGAAGGCTCGTTAAGTACGCTTCTAGGTGTTATTG ATGAGGCGGCCTATTTGAAAGAAGGCTCGTTAAGTACGCTTCTAGGTGTTATTG ATGAGGCGGCCTATTTGAAAGAAGGCTCGTTAAGTACGCTTCTAGGTGTTATTG ATGAGGCGGCCTATTTGAAAGAAGGCTCGTTAAGTACGCTTCTAGGTGTTATTG ATGAGGCGGCCTATTTGAAAGAAGGCTCGTTAAGTACGCTTCTAGGTGTTATTG
		70 80 90 100 110 120
		TGAATGAGCTTTACCAAGTCAGAGAACAGGCTACTATGATGTATTTAAAAGATGGAAGGC
IRF10b-ORF2_R_F08_2013-07-22_Mu(83>636) IRF10b-ORF3_R_608_2013-07-22_Mu(71>624) IRF10b-ORF4_R_H08_2013-07-22_Mu(74>627) IRF10b-ORF1_R_E08_2013-07-22_Mu(62>616) IRF10b-ORF1_F_E07_2013-07-22_Mu(45>601) IRF10b-ORF3_F_G07_2013-07-22_Mu(45>598) IRF10b-ORF4_F_H07_2013-07-22_Mu(51>604)	1111111	TGAATGAGCTTTACCAAGTCAGAGRACAGGCTACTATGATGTATTTAAAAGATGGAAGGC TGAATGAGCTTTACCAAGTCAGAGAACAGGCTACTATGATGTATTTAAAAGATGGAAGGC TGAATGAGCTTTACCAAGTCAGAGAACAGGCTACTATGATGTATTTAAAAGATGGAAGGC TGAATGAGCTTTACCAAGTCAGAGAACAGGCTACTATGATGTATTTAAAAGATGGAAGGC TGAATGAGCTTTACCAAGTCAGAGAACAGGCTACTATGATGTATTTAAAAGATGGAAGGC TGAATGAGCTTTACCAAGTCAGAGAACAGGCTACTATGATGTATTTAAAAGATGGAAGGC TGAATGAGCTTTACCAAGTCAGAGAACAGGCTACTATGATGTATTTAAAAGATGGAAGGC TGAATGAGCTTTACCAAGTCAGAGAACAGGCTACTATGATGTATTTAAAAGATGGAAGGC TGAATGAGCTTTACCAAGTCAGAGAACAGGCTACTATGATGTATTTAAAAGATGGAAGGC TGAATGAGCTTTACCAAGTCAGAGAACAGGCTACTATGATGTATTTAAAAGATGGAAGGC
		130 140 150 160 170 180 GATGGTAAAATGCACCTTAAAGAATGGCTCATAGCCCAAGTCGACAGTGAAAGGTTCGAC
IRF10b-ORF2_R_F08_2013-07-22_Mu(83>636) IRF10b-ORF3_R_G08_2013-07-22_Mu(71>624) IRF10b-ORF4_R_H08_2013-07-22_Mu(74>627) IRF10b-ORF1_R_E08_2013-07-22_Mu(62>616) IRF10b-ORF1_F07_2013-07-22_Mu(12>594) IRF10b-ORF3_F_G07_2013-07-22_Mu(48>601) IRF10b-ORF4_F_H07_2013-07-22_Mu(45>598) IRF10b-ORF4_F_F07_2013-07-22_Mu(51>604)	1111111	GATGGTAAAATGCACCTTAAAGAATGGCTCATAGCCCAAGTCGACAGTGAAAGGTTCGAC GATGGTAAAATGCACCTTAAAGAATGGCTCATAGCCCAAGTCGACAGTGAAAGGTTCGAC GATGGTAAAATGCACCTTAAAGAATGGCTCATAGCCCAAGTCGACAGTGAAAGGTTCGAC GATGGTAAAATGCACCTTAAAGAATGGCTCATAGCCCAAGTCGACAGTGAAAGGTTCGAC GATGGTAAAATGCACCTTAAAGAATGGCTCATAGCCCAAGTCGACAGTGAAAGGTTCGAC GATGGTAAAATGCACCTTAAAGAATGGCTCATAGCCCAAGTCGACAGTGAAAGGTTCGAC GATGGTAAAATGCACCTTAAAGAATGGCTCATAGCCCAAGTCGACAGTGAAAGGTTCGAC GATGGTAAAATGCACCTTAAAGAATGGCTCATAGCCCAAGTCGACAGTGAAAGGTTCGAC GATGGTAAAATGCACCTTAAAGAATGGCTCATAGCCCAAGTCGACAGTGAAAGGTTCGAC GATGGTAAAATGCACCTTAAAGAATGGCTCATAGCCCAAGTCGACAGTGAAAGGTTCGAC GATGGTAAAATGCACCTTAAAGAATGGCTCATAGCCCAAGTCGACAGTGAAAGGTTCGAC
		190 200 210 220 230 240
IRF10b-ORF2_R_F08_2013-07-22_Mu(83>636) IRF10b-ORF3_R_G08_2013-07-22_Mu(71>624) IRF10b-ORF4_R_H08_2013-07-22_Mu(74>627) IRF10b-ORF1_R_E08_2013-07-22_Mu(62>616) IRF10b-ORF1_F_E07_2013-07-22_Mu(12>594) IRF10b-ORF3_F_607_2013-07-22_Mu(42>598) IRF10b-ORF4_F_H07_2013-07-22_Mu(45>598) IRF10b-ORF2_F_F07_2013-07-22_Mu(51>604)	1111111	GGGTTGCGGTGGGAGAACGAAGAGAAGACCATGTTCAGGATCCCCTGGAAACATGCAGCT GGGTTGCGGTGGGAGAACGAAGAGAAGA
		250 260 270 280 290 300
IRF10b-ORF2_R_F08_2013-07-22_Mu(83>636) IRF10b-ORF3_R_G08_2013-07-22_Mu(71>624) IRF10b-ORF4_R_H08_2013-07-22_Mu(74>627) IRF10b-ORF1_R_E08_2013-07-22_Mu(62>616) IRF10b-ORF1_F07_2013-07-22_Mu(12>594) IRF10b-ORF3_F_G07_2013-07-22_Mu(42>601) IRF10b-ORF4_F_H07_2013-07-22_Mu(42>598) IRF10b-ORF4_F_F07_2013-07-22_Mu(51>604)	11111111	AAGAAGGACTACAGGCAGCAGGACGACGACGGCCTCTTTTAAGGCTTGGGCTGTGTACAAA AAGAAGGACTACAGGCAGCAGGACGACGGCGCTCTCTTTAAGGCTTGGGCTGTGTACAAA AAGAAGGACTACAGGCAGCAGGACGACGCCGGCTCTCTTTAAGGCTTGGGCTGTGTACAAA AAGAAGGACTACAGGCAGCAGGACGACGCCGGCTCTCTTTAAGGCTTGGGCTGTGTACAAA AAGAAGGACTACAGGCAGCAGGACGACGCGGCTCTCTTTAAGGCTTGGGCTGTGTACAAA AAGAAGGACTACAGGCAGCAGGACGACGCCGGCTCTCTTTAAGGCTTGGGCTGTGTACAAA AAGAAGGACTACAGGCAGCAGGACGACGCCGGCTCTCTTTAAGGCTTGGGCTGTGTACAAA AAGAAGGACTACAGGCAGCAGGACGACGCCGCGCTCTCTTTAAGGCTTGGGCTGTGTACAAA AAGAAGGACTACAGGCAGCAGGACGACGCCGGCTCTCTTTAAGGCTTGGGCTGTGTACAAA
		310 320 330 340 350 360 GGGAAATACAAGGTGGGCAGCGACAAGGACAACCCCCACCATGTGGAAGACGCGCCCTGCGC
IRF10b-ORF2_R_F08_2013-07-22_Mu(83>636) IRF10b-ORF3_R_G08_2013-07-22_Mu(71>624) IRF10b-ORF4_R_H08_2013-07-22_Mu(74>627) IRF10b-ORF1_R_E08_2013-07-22_Mu(62>616) IRF10b-ORF1_F_E07_2013-07-22_Mu(1>594)	1111	GGGAAATACAAGGTGGGCAGCGACRAGGACAACCCCACCATGTGGRAGACGCCCCTGCGC GGGAAATACAAGGTGGGCACCGACRAGGACAACCCCACATGTGGRAGACGCCCCTGCGC GGGAAATACAAGGTGGGCACCGACCAAGGACAACCCCCACCATGTGGRAGACGCCCCTGCGC GGGAAATACAAGGTGGGCAGCGACAAGGACAACCCCCACCATGTGGRAGACGCCCCTGCGC GGGRAATACAAGGTGGGCAGCGACRAGGACAACCCCCACCATGTGGRAGACGCCCCTGCGC

		310	320	330	340	350	360
		GGGAAATACAAGGT	GGGCAGCGAC	AAGGACAACC	CCACCATGTO	GAAGACGCGC	CTGCGC
IRF10b-ORF3_F_G07_2013-07-22_Mu(48>601) IRF10b-ORF4_F_H07_2013-07-22_Mu(45>598) IRF10b-ORF2_F_F07_2013-07-22_Mu(51>604)	:	GGGAAATACAAGGT GGGAAATACAAGGT GGGAAATACAAGGT	GGGCAGCGAC GGGCAGCGAC GGGCAGCGAC	AAGGACAACC AAGGACAACC AAGGACAACC	CCACCATGTO CCACCATGTO CCACCATGTO	GAAGACGCGC GAAGACGCGC GAAGACGCGC	CTGCGC CTGCGC CTGCGC
		370	380	390	400	410	420 LLLLL GACATC
IRF10b-ORF2_R_F08_2013-07-22_Mu(83>636) IRF10b-ORF3_R_G08_2013-07-22_Mu(71>624) IRF10b-ORF4_R_H08_2013-07-22_Mu(74>627) IRF10b-ORF1_R_E08_2013-07-22_Mu(62>616) IRF10b-ORF1_F_E07_2013-07-22_Mu(1>594) IRF10b-ORF3_F_G07_2013-07-22_Mu(48>601) IRF10b-ORF4_F_H07_2013-07-22_Mu(45>598) IRF10b-ORF2_F_F07_2013-07-22_Mu(51>604)	11111111	TGTGCACTTAACAA TGTGCACTTAACAA TGTGCACTTAACAA TGTGCACTTAACAA TGTGCACTTAACAA TGTGCACTTAACAA TGTGCACTTAACAA	GAGCACAGAC GAGCACAGAC GAGCACAGAC GAGCACAGAC GAGCACAGAC GAGCACAGAC GAGCACAGAC GAGCACAGAC	TTCCAGGAGG TTCCAGGAGG TTCCAGGAGG TTCCAGGAGG TTCCAGGAGG TTCCAGGAGG TTCCAGGAGG TTCCAGGAGG	TCCCCCACCI TCCCCCACCI TCCCCCACCI TCCCCCACCI TCCCCCACCI TCCCCCACCI TCCCCCACCI	IGAACCAGCTG IGAACCAGCTG IGAACCAGCTG IGAACCAGCTG IGAACCAGCTG IGAACCAGCTG IGAACCAGCTG IGAACCAGCTG	GACATC GACATC GACATC GACATC GACATC GACATC GACATC GACATC
		430	440	450	460	470	480
IRF10b-ORF2_R_F08_2013-07-22_Mu(83>636) IRF10b-ORF3_R_G08_2013-07-22_Mu(71>624) IRF10b-ORF4_R_H08_2013-07-22_Mu(74>627) IRF10b-ORF1_R_E08_2013-07-22_Mu(62>616) IRF10b-ORF1_F_E07_2013-07-22_Mu(14>594) IRF10b-ORF3_F_G07_2013-07-22_Mu(48>601) IRF10b-ORF4_F_H07_2013-07-22_Mu(45>598) IRF10b-ORF2_F_F07_2013-07-22_Mu(51>604)	1111111	TCGGAGCCCTACAA TCGGAGCCCTACAA TCGGAGCCCTACAA TCGGAGCCCTACAA TCGGAGCCCTACAA TCGGAGCCCTACAA TCGGAGCCCTACAA	GGTCTACCGC GGTCTACCGC GGTCTACCGC GGTCTACCGC GGTCTACCGC GGTCTACCGC GGTCTACCGC	ATCGAGTCTG ATCGAGTCTG ATCGAGTCTG ATCGAGTCTG ATCGAGTCTG ATCGAGTCTG ATCGAGTCTG ATCGAGTCTG	ACCAGAGAGAGC ACCAGAGAGAGC ACCAGAGAGAGC ACCAGAGAGAG	AGAGICIGAT AGAGICIGAT 'AGAGICIGAT 'AGAGICIGAT 'AGAGICIGAT 'AGAGICIGAT 'AGAGICIGAT 'AGAGICIGAT	CAGACG CAGACG CAGACG CAGACG CAGACG CAGACG CAGACG CAGACG
		490 TACAGTCGAGTGGT	500 LL	510 LL.	520 L	530 LL.L.L	540 L.L.L CTTGCT
IRF10b-ORF2 R_F08_2013-07-22 Mu(83>636) IRF10b-ORF3_R_G08_2013-07-22 Mu(71>624) IRF10b-ORF4 R_H08_2013-07-22 Mu(71>624) IRF10b-ORF1 R_E08_2013-07-22 Mu(62>616) IRF10b-ORF1 F_E07_2013-07-22 Mu(12>594) IRF10b-ORF3_F_G07_2013-07-22 Mu(42>601) IRF10b-ORF4 F_H07_2013-07-22 Mu(45>598) IRF10b-ORF4_F_F07_2013-07-22 Mu(51>604)	1111111	TACAGTCGAGTGGT TACAGTCGAGTGGT TACAGTCGAGTGGT TACAGTCGAGTGGT TACAGTCGAGTGGT TACAGTCGAGTGGT TACAGTCGAGTGGT	CGTGGTTCAG CGTGGTTCAG CGTGGTTCAG CGTGGTTCAG CGTGGTTCAG CGTGGTTCAG CGTGGTTCAG	ACTGGATACG ACTGGATACG ACTGGATACG ACTGGATACG ACTGGATACG ACTGGATACG ACTGGATACG ACTGGATACG	CCAGTCTCCC CCAGTCTCCC CCAGTCTCCC CCAGTCTCCC CCAGTCTCCC CCAGTCTCCC CCAGTCTCCC	ACAGTCTCAG ACAGTCTCAG ACAGTCTCAG ACAGTCTCAG ACAGTCTCAG ACAGTCTCAG ACAGTCTCAG ACAGTCTCAG	CTTGCT CTTGCT CTTGCT CTTGCT CTTGCT CTTGCT CTTGCT CTTGCT
		550 GACCAATGGGAAAG	560 LL AAATCA				
IRF10b-ORF2_R_F08_2013-07-22_Mu(83>636) IRF10b-ORF3_R_G08_2013-07-22_Mu(71>624) IRF10b-ORF4_R_H08_2013-07-22_Mu(74>627) IRF10b-ORF1_R_E08_2013-07-22_Mu(62>616) IRF10b-ORF1_F_E07_2013-07-22_Mu(1>594) IRF10b-ORF3_F_G07_2013-07-22_Mu(48>601) IRF10b-ORF4_F_H07_2013-07-22_Mu(45>598) IRF10b-ORF2_F_F07_2013-07-22_Mu(51>604)	1111111	GACCAATGGGAAAG GACCAATGGGAAAG GACCAATGGGAAAG GACCAATGGGAAAG GACCAATGGGAAAG GACCAATGGGAAAG GACCAATGGGAAAG	A AAATCA AAATCA AAATCA AAATCA				

Appendix 8: Percent identity tables indicating similarity between Atlantic cod putative amino acid sequences. Percentages are based on alignment of sequences using Clustal Omega software (see Web References). A) Based on alignment of complete amino acid sequences. B) Based on alignment of sequences trimmed to the length of the shortest sequence (IRF10-v2; 126 AA).

Irf4a	Irf4b	Irf7	Irf8	Irf10-v1	Irf10-v2	
-	73.6	32.3	58.7	54.1	56.0	Irf4a
	-	24.8	33.3	38.3	56.8	Irf4b
		-	26.4	28.2	31.4	Irf7
			-	39.7	56.8	Irf8
				-	93.7	Irf10-v1
					-	Irf10-v2

Irf4a	Irf4b	Irf7	Irf8	Irf10-v1	Irf10-v2	
-	81.0	34.8	65.5	59.8	59.8	Irf4a
	-	40.1	69.0	59.8	59.8	Irf4b
		-	36.1	31.4	31.4	Irf7
			-	57.6	56.8	Irf8
			-	-	93.7	Irf10-v1
					-	lrf10-v2

Appendix 9: Alternative phylogenetic analysis of teleost IRF family members. Putative cod amino acid sequences were aligned with IRF proteins from selected other teleost fish species using MEGA5 software (Tamura *et al.*, 2011) as in Figure 14, with sequences trimmed to the length of cod IRF4a (144 AA). Based on the multiple sequence alignment, the evolutionary history was inferred using the neighbour-joining method. The bootstrap consensus tree was constructed from 5000 replicates, where numbers at the branch points represent percentage of replicates in which the associated taxa grouped together. Branch lengths are proportional to calculated evolutionary distances.

0.1