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Abstract

In this thesis, research for improving sea surface wind parameter extraction from

shipborne X-band marine radar images is presented. First, the curve-fitting-based

wind algorithms are investigated. To exclude the rain cases and low-backscatter im-

ages, a data quality control process is designed. Then, a dual-curve-fitting technique

is proposed to enhance the wind retrieval performance under low sea states. This

modified curve-fitting-based wind algorithm is tested using radar images and ship-

borne anemometer data collected on the east coast of Canada. It is shown that the

dual-curve-fitting algorithm produces improvements in the mean differences between

the radar and the anemometer results for wind direction and speed of about 5.7◦ and

0.3 m/s, respectively, under sea states with significant wave height lower than 2.30 m.

Secondly, the intensity-level-selection- (ILS-) based wind algorithms are studied. An

additional process is implemented for the ILS-based method to improve the accuracy

of wind measurements, including the recognition of blockages and islands in the tem-

porally integrated radar images. Moreover, a harmonic function that is least-squares

fitted to the selected range distances vector as a function of antenna look direction

is applied. This modified ILS-based wind algorithm is applied to the same radar

data. Compared with the original ILS-based algorithm, the modified one reduces

the standard deviation (STD) of wind direction and speed by about 4◦ and 0.2 m/s,

respectively. Also, the above mentioned two modified methods (dual-curve-fitting-

based and modified ILS-based) are compared. Finally, X-band radar signatures of

rain cells are elaborately described both in time and frequency domains. It is seen

that the rain-contaminated image pixels are more uniformly bright than the wave

echoes and radar retrieved wind results are thus overestimated. This property of

“uniformly bright” is used to identify the portions that are more affected by rain.

To mitigate the effects of rain on wind retrieval from X-band radar images, a novel

texture-analysis-based data filtering process is presented and tested. By removing
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the data in the directions more affected by rain, significant improvements can be seen

from the radar-derived wind results using both of the two wind algorithms.
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Chapter 1

Introduction

This chapter explains why X-band radars are chosen to measure sea surface wind

vectors instead of other sensors. Then, the literature about the current applicable

wind algorithms is summarized. Also, the literature about the effects of rain on the

radar images is investigated. Finally, the scope of this thesis is outlined.

1.1 Research Rationale

Wind information is important for studying energy exchange processes between

the atmosphere and the ocean surface. Also, sea surface wind measurements play a

significant role in marine navigation and safety. Currently, shipborne anemometers

are the most common in-situ wind measurement tools and have been widely installed

for those purposes. However, anemometer measurements may be negatively impacted

by a ship’s motion and structure. Even for anemometers at a well-exposed location,

wind speed measurements may have an error of up to 10% [1]. This is one of the

main reasons why efforts are now being made to recover wind information from other

sensors. Compared to a traditional in-situ anemometer that provides point measure-

ments, remote sensing technology offers a possibility to measure wind over a relatively

large sea surface area using only one set of instruments.
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Currently, remote sensing equipment can be categorized in terms of platforms:

land-based, air-based and space-based sensors that use either an active or passive

source [2]. Each classification has its own expense, adaptability, and resolution as well

as spatial and temporal coverage. Space-based systems usually possess large spatial

coverage. For example, the widely used satellite-borne Synthetic Aperture Radar

(SAR) and airborne-scanning Light Detection and Ranging (LIDAR) systems are able

to achieve large-area coverage. In addition, LIDAR may be used to obtain 3-D wind

information. However, this type of sensor often costs more because of its relatively

complex instrumentation. More recently, some simpler space-based sensors came into

being, for instance the Global Navigation Satellite System Reflectometry (GNSS-

R) [3]. However, for space-based systems, the revisit time (elapsed time between

observations of the same point on earth) is on the order of days, and thus wind cannot

be measured at an arbitrarily specified moment. On the other hand, land-based

radars may have a larger temporal coverage; e.g., X-band marine radars are capable

of monitoring oceanic and atmospheric parameters over the course of seconds [4]. In

this way, X-band marine radars hold the potential to recover wind information in

real-time, and this advantage largely compensates for their relatively limited spatial

coverage. Meanwhile, high frequency (HF) land-based radars, which are mainly used

for large area currents, wind and wave measurements, provide a compromise between

spatial and temporal coverage. HF radars also require significant expenses and they

are generally too large to be installed on vessels. As a result, the shipborne X-band

marine radars, widely available in the market have become a good choice, given that

they provide an accurate, real-time, and cost-efficient shipborne sea surface wind

retrieval for navigation. X-band marine radars can illuminate a sea surface area

(with a radius up to 30 km) continuously in space and time with high resolution,

and may operate automatically from moving vessels and coastal sites [5]. Typical

remote sensing parameters obtained using this type of sensor include essential wave
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information such as wave height and period [6]–[7], sea surface current velocities [8]–

[11], wind vectors [12]–[17], and shallow water bathymetry [18]–[20].

This research concentrates on sea surface wind information on which many onshore

and offshore operations are critically dependent. For example, in order to finance wind

farm projects, collection of wind speed and direction data is crucial for determining

site potential [21]. Local winds monitored by shipborne X-band marine radars can

provide more detailed data with high efficiency for accurate siting. Also, routine

sea surface wind measurements surrounding a moving vessel are required to enhance

navigation security. In this context, compared to traditional anemometers, wind

measurements using X-band marine radar may have an advantage in that they are

independent of the sensor’s installation height and motion [4]. Such radars are also

useful for obtaining wind parameters used in determining the influence of ocean winds

on the ecosystem in upwelling regions [22]. In view of these possible advantages

and applications, this research focuses on the sea surface wind field retrieval using

shipborne X-band radar.

1.2 Literature Review

Marine X-band radar systems operating at grazing incidence are widely used on

ships for navigation. Since standard marine radars are non-coherent and operate

with horizontal polarization in transmitter and receiver modes (i.e., HH polarization),

coherent and vertical polarized radars will not be discussed in this research. To obtain

wind and wave information from the radar backscatter images, a better understanding

of the imaging mechanism is required.

At grazing incidence angles, specular reflection is the dominant process, but the

radar backscattering mechanism is not very well understood. In the 1970s, Bar-

rick [23]–[25] and Bass et al. [26] pioneered scattering theories for the sea surface.
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The concept was introduced that the temporally and spatially changing sea surface

can be considered as being made up of a large number of small facets oriented at

different angles. Calculating the scattered electromagnetic energy from all the facets

is a very intricate boundary value problem [27]. This has led to significant efforts

being expended on approximate scattering methods to yield both quantitative pre-

dictions and physical insight [28]. The quasi-specular approximation is one of the

notable scattering methods. This approximation method can be used to predict the

average scattering from sea surface in a specific direction and for a certain range [29].

Barrick [25] discussed the wind dependence of quasi-specular microwave sea scatter.

It was shown that a specular-point scattering model adequately describes the rela-

tion between the average quasi-specular microwave scattering cross-section of the sea

surface and the mean wind speed. In 1990, Brown summarized and developed the

quasi-specular approximation and a good overview was given in [28].

Scattering from the ocean surface at grazing angles is not only dependent on quasi-

specular scattering which relies on large scale ocean waves, but it is also subject to

effects produced by the small-scale surface waves. It is generally accepted that the

most important mechanism contributing to the interaction between radar and ocean

surface waves is Bragg scattering [27]. In the original theory, crystal lattices were

designed as an array of isolated scatterers, and Bragg [30] found in 1913 that if the

round trip distance between consecutive scatterers is equal to an exact number of the

electromagnetic wavelengths, the radio waves reinforce each other. This finding can

be referred to as Bragg diffraction, or resonance. In 1955, Bragg resonance resulting

from radar signals interacting with ocean waves was first discussed by Crombie [31].

He found that the strongest backscatter from the ocean waves occurred at grazing

incidence where the ocean wavelength was exactly one half of the incident radio

wavelength (see Fig. 1.1). The Bragg condition in general is given by [30]

2L sin θ

λ
= n n = 1, 2, ... (1.1)
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Figure 1.1: Illustration of Bragg scattering.

where L is the spacing between scatterers, θ represents the incidence angle, and λ is

the radio wavelength. In 1966, a laboratory experiment for X-band radar performed

by Wright [32] indicated that the backscatter from water waves agrees well with the

Bragg scattering theory. Therefore, the radar backscatter from the sea surface is

governed by Bragg-selected waves of the wavelength

λw =
nλ

2 sin θ
. (1.2)

In 1968, a composite surface theory was proposed by Bass et al. [26] and Wright

[33]. It was assumed that: i) the large scale ocean surface is approximated by an

array of facets. Each of the facets is tilted by the long waves; ii) the small-scale

ocean surface waves (capillary waves) are modulated by long waves. Bragg theory

is applied to each small facet, and the net radar backscatter can thus be obtained

by summing over the contribution from all facets [4]. In 1990, Plant [34] extended

discussion of Bragg and composite surface theories from the air/sea interface, and

Wetzel [35] provided a review of the physics of grazing incidence radar backscatter.

It was found that the frequency, incidence angle, and polarization dependence of the
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sea echo at microwave frequencies can be well explained by the Bragg theory. For

a HH-polarized X-band marine radar operating at 9.41 GHz (i.e., a wavelength of

3 cm) and grazing angles, cm-scale surface capillary waves which are modulated by

the ocean waves are responsible for the backscatter. This provides an explanation for

why sea surface waves can be imaged by a radar. Meanwhile, tilt modulation and

hydrodynamic modulation are well established imaging mechanisms at moderate in-

cidence angles [36]–[38]. Moreover, shadowing effects occur when the incidence angle

is greater than the slope angle of the ocean waves, and parts of the sea surface are

masked from the radar’s field of view [39]. While Bragg scattering remains important

at grazing incidence, shadowing is assumed to be one of the main modulation mech-

anisms as well [40]. A comprehensive overview of radar backscattering mechanisms

was given by Robinson [41]. In the 1980s, the displayed nautical radar images were

recorded on photographic film and then digitized using an image processor, which

is time-consuming and needs frequent maintenance. Also, most information about

the backscatter intensity may be lost with the conventional black and white image

display [42]. In order to realize real-time radar-based wind and wave measurements,

a combined hard- and software system called WaMoS (Wave Monitoring System) was

developed in 1995 at the GKSS research centre (Helmholtz-Zentrum Geesthacht, cur-

rently) [43]. This system consists of a standard marine radar, a radar display unit,

an analog-to-digital (A/D) converter and a personal computer (PC) for data stor-

age and analysis [5] (see Fig. 1.2). Given a high radiometric resolution, WaMoS can

provide efficient, accurate, and real-time sea surface images (see Fig. 1.3) [4]. This

research is based on radar data provided by WaMoS and focuses on real-time sea

surface real-time wind retrieval.

Having developed a knowledge of the imaging mechanism, further investigations

are necessary in order to clarify why nautical X-band radar can be used to measure

wind information. Nautical X-band radar backscatter from the ocean surface is mainly
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Figure 1.2: Block diagram of WaMoS.

due to its interaction with the small-scale roughness which is controlled by local

wind [44]–[48]. It has been shown that the normalized radar cross section (NRCS)

strongly depends on wind speed [45], [49]– [50], direction [47], [49], and range to

the radar. For HH-polarized radiation at grazing incidence, the NRCS has only

one peak in the upwind direction [47], [49]. The single peak in upwind direction

may result from the scattering due to small scale breaking waves [48]. Also, it was

found that the backscatter intensity can be related to the wind speed [51], and an

exponential function for wind speed retrieval was successfully utilized in [12]–[13].

These dependencies on wind direction and speed are the basis of the wind algorithms

investigated in this research. Moreover, radar backscatter intensity may be influenced

by the physical environments in the boundary layer between the ocean and lower

atmosphere—for example, stratification conditions induced by air-sea temperature

differences [15]. It is revealed in [52] that unstable stratification conditions may

result in higher radar backscatter intensity, thereby affecting wind retrieval. A simple

measure of the boundary layer stability is given by the bulk Richardson number

Rib [15]

Rib =
gz(Pv − P0)

Pv(u2 + v2)
, (1.3)
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Figure 1.3: An example of a real-time X-band marine radar image based on WaMoS.

where Pv is the virtual potential temperature, P0 is the potential surface temperature,

x− and y− represent the axis of the coordinates of the horizontal sea level plane. u

and v are the wind components in the x− and y−direction, respectively, g is the

acceleration due to gravity, and z is the height above sea level [53]. If Rib approaches

zero, the boundary layer tends to be neutral. Here, it is presumed that air-water

temperature differences Pv − P0 are small, and wind speeds u and v are relatively

high. Thus, Rib is close to zero and a stable boundary layer can be assumed. For

the analysis presented in this thesis, the influence of the stratification conditions will

be neglected. In summary, the dependence of the NRCS on wind direction and wind

speed, as well as the assumption of a stable boundary layer, lays the foundation of

wind parameter recovery using X-band marine radars.

Next, literature about how wind information is extracted from nautical X-band

marine radar images is reviewed. During the mid 1980s to the late 1990s, the strong

dependence of X-band radar return from the sea surface on both wind direction and

speed were continuously validated [44], [46]. Among the first to derive sea surface

wind parameters from nautical X-band radar images were Dankert et al. [12] - [14].

In 2003, they first determined wind direction from quasi-stationary wind streaks, and

extracted wind speed from the temporally integrated radar images and the retrieved
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wind direction. However, this approach requires an additional processing step in order

to be applied to shipborne radar data because, as a result of the platform’s horizontal

motion, wind streaks are difficult to extract [16]. Also, a 180◦ directional ambiguity

exists in the wind direction results but it can be removed by extracting the movement

of wind gusts visible in the radar image sequence [13].

Most recently, to overcome the previously existing limitations, both Lund et al. [15]

and Vicen-Bueno et al. [17] developed methods which are independent of platform

movement. In 2012, by utilizing the radar backscatter intensity dependence on the

upwind direction, Lund et al. [15] proposed a least-squares curve-fitting technique to

identify the upwind peak and an empirical third-order polynomial to calculate wind

speed. In 2013, Vicen-Bueno et al. [17] developed an effective backscatter intensity-

level-selection (ILS) algorithm based on temporal integration and spatial smoothing

as well as an empirical third-order polynomial geophysical model function (GMF)

to derive wind direction and speed. The latter two algorithms can be applied to

radar data collected from a moving ship, and thus are considered in this research.

However, modifications need to be made for these two algorithms. In the curve-fitting

process, although the data in the directions due to blockage were excluded, the low-

intensity data in many azimuthal directions due to low sea states rather than the

obstruction by ship structures may be retained, and the result becomes less accurate.

Under these circumstances, a second stage of curve-fitting is proposed to reduce the

wind estimation error. On the other hand, since the obstruction of the radar field

of view or appearance of islands was not considered in [17], an additional process

for recognizing the view of blockages and islands as well as a similar curve-fitting

technique are designed for the ILS-based algorithm.

A remaining complex challenge involves the negative impact which rain contami-

nation of the marine radar data may have on the extraction of wind and wave param-

eters [15], [54]. It has been observed that rain affects the radar backscatter through
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volume scattering and attenuation by raindrops in the intervening atmosphere and

by sea surface roughness changes caused by rain impinging on the ocean [55], [56].

Whether the NRCS is increased or decreased by rain depends on rain rate, raindrop

size, radar frequency and polarization [54]– [56]. Raindrops impinging on the sea

surface generate ring waves which enhance the sea surface roughness and generate

upper-water-layer turbulence which attenuates the short surface wave [57]. In areas

of heavy rain, the X- (8.2 to 12.4 GHz) and C-band (4 to 8 GHz) NRCS is usually

enhanced, while the L-band (1 to 2 GHz) NRCS is reduced [54].

From shipborne X-band marine radar images, it has been observed that sea surface

radar backscatter intensity in the presence of rain is significantly enhanced [15], [58].

Radar backscatter becomes more uniformly bright, particularly at medium ranges [15]

and downwind directions [59]. Lund et al. [15] proposed a technique to recognize the

rain-contaminated images as a novel data quality control procedure. However, those

images were then discarded from the wind retrieval analysis. In [15], [58], it turned out

that: i) the retrieved wind speed was overestimated in the presence of rain, compared

to the results obtained from rain-contamination-free data; ii) due to the impinging

effects of rain and rain-related wind effects, wind direction results were obtained

less robustly. These findings agree with the NRCS analysis in [54]. Thus, further

improvement in wind estimation from data containing rain signatures is desirable.

Although attempts, which might be applied at X-band, have been made to build

wind/rain backscatter models at C-band [60] and Ku-band (12 to 18 GHz) [56], the

effects of rain on wind parameter extraction from X-band marine radar images still

need to be addressed. For marine radars whose primary use is target detection, filters

have been designed and rain clutter control circuits have been installed to suppress

rain clutter [61]. In [62], a texture-analysis-based fuzzy logic filter for removing echoes

(e.g., ground clutter) from rainfall accumulation maps of polarimetric radars was

proposed to improve rain rate estimation. The texture here can be interpreted as a
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measure of the spatial variance. Inspired by this concept, spatial-variability analysis

was exploited in [58] to recognize the characteristics of being “more uniformly bright”

in the radar images. Based on the work in [58], [62], a similar texture analysis is

applied to the radar images in this research to recognize and remove the more-rain-

affected portions of images. This data filtering process can be implemented in the

aforementioned wind algorithms to mitigate the effects of rain on wind retrieval.

Based on this, a method for wind field estimation from rain-contaminated radar

images is proposed here.

1.3 The Organization and Scope of the Thesis

The thesis is organized as follows:

In Chapter 2, a detailed curve-fitting-based methodology and algorithms for wind

parameter extraction from shipborne nautical X-band radar data are presented. First,

to exclude the cases of rain and low-backscatter images, a data quality control process

is designed. Moreover, a dual-curve-fitting is proposed for low sea state conditions

and is tested using radar images and shipborne anemometer data.

Chapter 3 details an ILS-based method and the corresponding modifications. The

modified ILS-based method includes the recognition of blockages and islands, as well

as a harmonic function that is least-squares fitted to the selected range distances

vector, from which wind direction can be determined. The performance of the two

modified methods (dual-curve-fitting and the modified ILS-based) are compared.

Chapter 4 contains a discussion of the effects of rain on the X-band marine radar

images. A texture-analysis-incorporated method for wind parameter extraction from

rain-contaminated radar images is proposed and validated.

In Chapter 5, the main conclusions from the previous three chapters are summa-

rized. A few suggestions for future work are also provided.
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Chapter 2

Curve-fitting-based Wind

Algorithms

In this chapter, the original curve-fitting-based algorithm [15] for extracting wind

parameters from shipborne nautical X-band radar images is introduced. Next, to im-

prove the accuracy of wind retrieval under low sea states, a modified technique, which

involves a dual-curve-fitting approach, is proposed. Finally, the modified method is

applied to Decca and Furuno radar data collected by DRDC and the results are

compared with those obtained from the original curve-fitting-based algorithm and

ship-based anemometer data.
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2.1 Original Curve-fitting-based Algorithm

The original curve-fitting-based wind algorithm includes the following steps: i) the

radar images are required to go through a rain recognition process; ii) a cosine function

that is least-squares fitted to the radar backscatter intensity is used to determine the

wind direction (i.e., single-curve-fitting); and iii) an empirical third-order polynomial

model is constructed to obtain wind speed from the calculated average intensity value.

2.1.1 Rain recognition

Before using the radar data to retrieve the upwind direction, rain recognition was

undertaken for each image by analyzing the radar backscatter intensity histograms.

According to [15], due to the strong impact of rain on the number of pixels with

zero intensity, the zero-pixel percentage (ZPP, i.e., ratio of the number of image pix-

els with zero intensity to the overall number of pixels) was identified as a quality

control parameter to determine the presence of rain. For the data presented in this

thesis, pixels with grey scale intensity lower than 5 were considered as zero-intensity.

This value should be adjusted for data with a different grey scale depth. It is worth

mentioning that the blockage portion in the images should be excluded for the ZPP

calculation. Moreover, it should be noted that the thresholds (ZT ) of the ZPP for

recognizing rain cases for different radars are different. The difference may be ex-

plained by the possibly diverse shadowing effects due to different antenna heights.

For Decca radar images, when the ZPP of an image was below 10%, that image was

regarded as being contaminated by rain and was excluded from the process of estab-

lishing the third-order polynomial model functions of wind speed. For Furuno radar

images, which include more blockage portions, ZT is 20%. Examples of the corre-

sponding radar backscatter images and their histograms in the absence and presence

of rain are shown in Figs. 2.1(a) and (b), respectively. In Fig. 2.1(b), the radar image
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Figure 2.1: Example of images (left) and their histograms (right): (a) a normal case;
(b) a rain-contaminated case; (c)a low-backscatter case.
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looks uniformly bright and the wave signature is blurred, which indicates that rain is

probably present, and, for that image, the ZPP is far below 10% .

2.1.2 Wind Direction

For HH-polarized X-band radars operating at grazing incidence, it is known that

the radar backscatter intensity has only one peak in the upwind direction [47], [49], but

a second peak appears in the downwind direction at moderate incidence angles [63]–

[64]. To obtain the specific dependence on antenna look direction, radar data for the

Decca and Furuno systems used here are averaged over ranges of 450 m to 1500 m and

375 m to 975 m, respectively, for each azimuthal direction. The data are then curve

fitted using a cosine square function to give the range-averaged radar backscatter grey

scale intensity σϕ as [15]

σϕ = a0 + a1 cos
2(0.5(ϕ− a2)) (2.1)

where a0, a1, and a2 are the regression parameters. Here, σϕ is a function of antenna
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Figure 2.2: Range-averaged radar backscatter grey scale intensity as a function of
antenna look direction for an image collected at 03:03, Nov. 29, 2008.
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look direction ϕ. An example of curve-fitting is shown in Fig. 2.2. The best-fit

curve is shown in red. For each individual radar image, the wind direction can be

retrieved from the upwind backscatter peak by using the model-function, Eq. (2.1).

The upwind peak direction is given by the regression parameter a2. This corresponds

to the peak of the best-fit curve, as discussed in [15]. This method works well even

when some sections of the radar field of view are masked.

2.1.3 Wind Speed

Based on the radar backscatter intensity dependence on wind speed, an empirical

third-order polynomial can be derived using the average radar backscatter intensity

and the reference wind speed. Then, radar wind speed results can be retrieved from

the average intensity value. The overall averaged radar backscatter intensity is cal-

culated as [15]

σwSpd =
1

2π

∫ 2π

0

(a0 + a1 cos
2(0.5(ϕ− a2)))dϕ, (2.2)

Fig. 2.3 shows a scatter plot of the anemometer-measured wind speed and the corre-
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Figure 2.3: Scatter plot showing the wind speed from anemometer, corresponding
radar backscatter intensity, and the best-fit curve based on a third order polynomial
function for Decca data acquired during Nov. 28-29, 2008.
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sponding radar average backscatter intensities σwSpd. The red solid curve is derived

using a least-squares method based on a third-degree polynomial function as in [15].

2.2 Modified Curve-fitting-based Algorithm

In addition to rain recognition, a more comprehensive data control process is in-

corporated. The procedure includes the recognition of low-backscatter images. Then,

a dual-curve-fitting technique is proposed here to improve the accuracy of wind re-

trieval from images under low sea states.

2.2.1 Low-backscatter Image Recognition

As a result of too-low wind speed or unknown system errors, some images may

appear almost completely black with little or no wave signature. These images are

referred to as low-backscatter images. A parameter, referred to as the low-clutter

direction percentage (LCDP), is used for specifying low-backscatter images. If the

ZPP of an azimuthal direction, which is empirical and also varies with systems, is

higher than 40% for the Decca or 80% for the Furuno radar, the direction is considered

to be a low-clutter (including blockage) direction. Then, if the LCDP, i.e., the number

of low-clutter directions divided by the number of pulses, of an image is higher than

90%, the image is recognized as a low-backscatter image (see Fig. 2.1(c)) and is not

used for wind retrieval.

2.2.2 Dual-curve-fitting

To retrieve wind direction from an individual image, the radar backscatter in-

tensities from the non-obstructed antenna look directions are averaged over range to

perform the curve-fitting. The data in the directions due to blockage were excluded.

However, for some images, in many azimuthal directions a majority of the pixels may
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Figure 2.4: Example of the Decca radar data from Dataset 1 (collected at 02:22,
Nov. 29, 2008): (a) backscatter image; (b) range-averaged backscatter intensity as
a function of antenna look direction using single-curve-fitting; (c) range averaged
backscatter intensity as a function of antenna look direction using dual-curve-fitting.

have a very low intensity (see Fig. 2.4(a)). These regions with low intensities are not

due to the obstruction by ship structures but probably result from low sea states.

These low-intensity data are retained in the curve-fitting process. Unfortunately, as

shown in Fig. 2.4(b), in these low-intensity azimuthal directions, the single-curve-

fitting result is not ideal. In this case, a dual-curve-fitting may be implemented. The

technique involves repeating curve-fitting using the data at angles of 60◦ to the left

and right of the first-guess upwind direction. Since the data in the directions around

the direction with maximum backscatter (upwind) usually have higher signal-to-noise

ratio (SNR) than the data in other directions, using this portion of the data for curve

fitting leads to a more robust result. The direction range chosen for the second-
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curve-fitting should be wide enough to include the upwind direction. However, if this

range is too large, performance may be affected because data with low SNR may be

included. If the range is chosen to be too large, the upwind peak may be missed

and the fitting result may not be good due to a small number of data points. The

±60◦ range is chosen since it yields satisfactory results. In the example shown in

Fig. 2.4(c), the dual-curve-fitting results in an improvement of about 8◦, as compared

to that obtained using a single-curve-fitting. It should also be noted that, when the

dual-curve-fitting is applied, the non-positive fitted values are excluded for evaluating

the average radar backscatter intensity σwSpd.

2.3 Results

The data used for testing were provided by DRDC. The marine radars utilized

in the experiment are standard ship-borne Decca (BridgeMaster II 340) and Furuno

(7041 R) nautical radars which operate at 9.41 GHz. The Decca and Furuno radars

cover 360◦ in azimuth with approximate beam width of 2◦ and 1.9◦, respectively.

The radar range extends to 2160 m (starting at 240 m in the near range) with a

range resolution of 7.5 m. The radar was connected to a WaMoS II [5]. The system

digitizes the radar backscatter intensities by azimuth-range bin and scales data into

8-bit unsigned integers ([0, 255]). Sets of 32 radar images are combined into one file,

and the file index reveals the start time of each file.

The information of the data used in this paper is listed in Table 2.1. The collection

times are shown in standard local time. All radar images are oriented to true North.

It should be noted that the first three datasets were collected during the same sea

trial but Dataset 4 was collected from another experiment. The shipborne anemome-

ter (Young Meteorological, Model 05106) and marine radar data were all collected on

the Canadian Navy research ship CFAV Quest [65] approximately 150 miles from the
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Table 2.1: Data Information

Dataset No. 1 2 3 4

Antenna Decca Furuno Decca Furuno

Rotation Rate
28 40 28 40

(RPM)

Collecting
Nov.26, 23:45-

Dec.01, 12:09- Nov.29, 01:12- Oct.29, 17:46-
Nov.28, 04:04;

Time
Nov.28, 11:16-

Dec.04, 12:02 Nov.29, 05:31 Oct.29, 18:46
Nov.29, 12:06

No. of Radar
49182 69088 3872 992

Images

No. of Rain
9924 992 0 0

Cases

No. of Low-back
1832 8837 224 0

-scatter Images

coast of Halifax (42◦ N, 62◦ W) in late October, late November and early December,

2008 [11]. Two anemometers were installed in the port and starboard side, respec-

tively. Only the data measured by the starboard side anemometer is used because

the wind results from these two anemometers are very similar. Since the heights

of the anemometers are not available, the wind data could not be converted to the

corresponding values at 10 meters above the water. The anemometer wind data were

affected by the ship’s motion. Thus, the reference wind speed and direction are cal-

culated by removing the ship’s motion, for which only the ship velocity over ground

is considered here. Dataset 3 is a 4-hour subset of dataset 1 which includes the data

under low sea states, and it is used to compare the performance of dual-curve-fitting

and single-curve-fitting under low sea states. Dataset 4 is a 1-hour dataset collected

in late October by a Furuno radar. This dataset is employed to test the modified ILS

based algorithms with respect to island recognition and removal (See Chapter 3).

The single-curve-fitting and dual-curve-fitting based algorithms described above

were applied to the quality-controlled Decca and Furuno radar data and the results

were compared to the reference data measured by a ship-based anemometer (with

the ship’s motion removed). Since it must take a finite amount of time for the ocean
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roughness to react to wind change, unlike the anemometer, the radar may not sense

short time scale wind variations. As is commonly done, 10-minute averaging was

applied to both the anemometer and radar wind results before computing the com-

parison statistics. The same data, excluding rain-contaminated and low-backscatter

cases, were used to determine the wind speed calibration functions for both single-

and dual-curve-fitting. Since the radars for Dataset 1 and 2 are different, wind speed

models were developed for each of the two radars. The data over the periods of 11:16

Nov. 28 - 11:58 Nov. 29 in Dataset 1 and 12:08 Dec. 1 - 21:20 Dec. 2 in Dataset 2

were used for training for the Decca and Furuno radars, respectively. The wind speed

standard deviations (STDs) of the Decca training and validation (non-training) data

are 1.2 m/s and 1.7 m/s, respectively, while for the Furuno radar, they are 1.6 m/s

and 2.0 m/s, respectively. Thus, the statistics do not differ significantly between

the training and validation subsets. The statistics of the wind results for the first 3

datasets utilizing the single- and dual-curve fitting are shown in Table 2.2.

Fig. 2.5 shows the comparison of the radar-derived wind velocities using single- and

dual-curve-fitting methods with the anemometer-measured results based on Dataset

3 collected during 01:12 to 05:31, Nov. 29, 2008. It can be seen that the radar results

from both methods agree well with the anemometer data. Taking the anemometer

results as the ground truth, the STDs of wind direction and speed using single-curve-

Table 2.2: Wind speed and direction error statistics: bias and STD

Dataset
Algorithm

Wind Direction Error Wind Speed Error
No. Bias [◦] STD [◦] Bias [m/s] STD [m/s]

1
Single Curve Fitting 1.5 15.3 0.4 1.4
Dual Curve Fitting 1.8 14.9 0.4 1.4

2
Single Curve Fitting 1.2 17.0 0.3 2.0
Dual Curve Fitting 1.1 16.6 0.2 1.9

3
Single Curve Fitting 1.7 8.3 0.8 0.9
Dual Curve Fitting 1.1 6.6 0.7 0.8

3 (Low Single Curve Fitting 9.1 3.4 1.7 0.2
Sea States) Dual Curve Fitting 3.4 3.5 1.4 0.2
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Figure 2.5: Comparison of wind results using Dataset 3 (Decca) from 01:12 to 05:31,
Nov. 29, 2008: (a) wind direction; (b) wind speed; (c) significant wave height and
percentage of directions with many low intensity pixels; (d) ship speed and ship
direction.

22



fitting are found to be 8.3◦ and 0.9 m/s, respectively, and those for dual-curve-fitting

are, respectively, 6.6◦ and 0.8 m/s (see Table 2.2). It is known that the sea surface

roughness increases with wind speed. The buoy-measured significant wave heights are

plotted in Fig. 2.5(c) for illustration. As shown in Fig. 2.5(a), improvement using dual-

curve-fitting is seen during 01:12 to 02:22 when the sea states were low (significant

wave height lower than 2.30 m). During this period, based on the low-clutter direction

percentage analysis, the percentage of directions with many low intensity pixels is

above 50% (see Fig. 2.5(c)). Within this 70-minute period, the STDs of wind direction

and speed using single-curve-fitting are 3.4◦ and 0.2 m/s, respectively, and those

for dual-curve-fitting are, respectively, 3.5◦ and 0.2 m/s. Although the STDs are

almost the same, the mean errors of wind direction and speed have been improved

by about 5.7◦ and 0.3 m/s, respectively, during low sea states. The performances

of the single- and dual-curve-fitting techniques are almost the same when the wind

speed is higher than 4 m/s, under which condition the clutter is strong in almost all

azimuthal directions (see Figs. 2.5(b) and (c)). Further comparisons for wind results

using different algorithms will be discussed in the following chapter (Section 3.3).

2.4 General Chapter Summary

In this chapter, the curve-fitting-based algorithms for wind retrieval from ship-

borne X-band nautical radar images were investigated. A more specific data quality

control process was performed for each image, including the recognition of rain and

low-backscatter images. Then, based on the single-curve-fitting method [15], a dual-

curve-fitting approach was proposed to improve the accuracy of wind direction. With

the dual-curve-fitting algorithm, the wind direction and speed mean difference be-

tween the radar and anemometer results can be reduced by about 5.7◦ and 0.3 m/s,

respectively, under low sea states. However, the results obtained from single- and

dual- curve-fitting are almost the same at higher sea states. In the next chapter, an
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intensity-level-selection based algorithm is implemented for wind field recovery.
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Chapter 3

ILS-based Wind Algorithms

In this chapter, the intensity-level-selection (ILS) based algorithm for sea surface

wind retrieval from shipborne X-band nautical radar images is first presented. Next,

the modified ILS-based method which consists of data quality control and range

distances vector curve-fitting is proposed. Finally, the wind results obtained from

the same radar data described in Chapter 2 using these two ILS-based algorithms

are compared with the shipborne anemometer data, and the performance of the two

improved methods (i.e., dual-curve-fitting and the modified ILS-based algorithms) is

evaluated.
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3.1 Original ILS-based Algorithm

This section introduces the original ILS-based method, which includes the tempo-

ral integration and spatial smoothing of a set of consecutive radar images, intensity-

level-selection, and wind direction and speed estimation [17]. The block diagram of

the original ILS-based wind algorithm is shown in Fig. 3.1.

3.1.1 Temporal Integration and Smoothing

For the data presented in this research, since each radar image has 288 range bins

(including 32 bins associated with the dead range) but a different number of pulses,

the radar images cannot be directly summed. Interpolation to a standardized grid

is implemented to generate radar images with a uniform size of 1024 (pulses) × 288

(ranges). The temporal integration is performed on the entire sequence of files (many

hours of data) by utilizing a moving average of every 32 radar images with a shift of

four images. As in [17], each time average result is further smoothed over five range

cells (two leading and two lagging with the result being assigned to the central cell)

and an azimuthal extent of 5◦. As addressed below, each integrated image is assigned

a certain intensity level and associated range distances vector, from which the wind

information can be extracted.

3.1.2 Intensity-level-selection

The general technique is given in [17] and the particulars of its present application

follow. By analyzing the histograms of the integrated radar images Ii, the predefined

levels set for both radars in our study were chosen as L1 = 5, L2 = 10, ..., L25 = 125,

on a scale of 0 to 255. For each integrated image, an optimal intensity level is selected

adaptively (see Fig. 3.1). The algorithm for selecting the intensity level Li operates

as follows:
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Figure 3.1: Block diagram of the original ILS-based wind algorithm.

1. Startup. In each of the first 8 integrated images, for each predefined intensity

level Li(i = 1, 2, ..., 25), the first range distance where the backscatter intensity

is smaller than Li is sought in each azimuthal direction. All the smoothed range

distances associated with each Li are then stored as elements of the smoothed

range distances vector rsi . From these vectors, the one with the lowest Li, for

which all elements are greater than the inner distance boundary (the near-range

distance boundary plus a guard range (i.e., dead range of the radar display,

7.5×32 m + 75 m = 315 m)), is selected.

2. After the first 8 integrated images, only the last selected level Li and its two

adjacent intensity levels Li+1 and Li−1 need to be used to obtain three corre-

sponding range distances vectors. Among these three vectors, the one satisfying

the inner distance boundary and having the lowest intensity level is used for

wind direction retrieval and is referred to as the smoothed retrieval range dis-

tances vector rsi .
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Figure 3.2: An integrated radar image without blockage.

3. Adaptive adjustment. When an anemometer-measured wind speed decrease is

observed, a slight decrease of the selected level is applied, and vice versa.

In the case of Fig. 3.2, the selected intensity level from all the predefined levels is Li

= 60. Its smoothed range distances vector for Li = 60 is plotted as a pink ring.

3.1.3 Wind Direction

The algorithm for wind direction retrieval is based on the radar backscatter inten-

sity dependence on antenna look direction. The wind direction ϕ0 is determined to

be along the azimuth in which the maximum of the smoothed range distances vector

is located in the integrated image. In Fig. 3.2, the wind direction determined from

the smoothed range distances vector maximum is 139◦ (with respect to true North),

while the reference wind direction (see the black bar) is 150◦.
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3.1.4 Wind Speed

It is assumed that wind speed u0 is related to the maximum of the retrieval range

distances vector corresponding to the selected intensity level Li as

u0 = αi ×max{rsi } (3.1)

where max{rsi } is the maximum of the smoothed retrieval range distances vector

and αi represents the conversion rate corresponding to the selected intensity level Li.

However, the relationship between αi and Li is nonlinear and can be fitted by the

third-order polynomial function [17]

αi = β3L
3
i + β2L

2
i + β1Li + β0 (3.2)

in which the parameters βj(j = 0, 1, 2, 3) can be determined by least-squares fitting.

The fitting is implemented based on the obtained Li and αi that is calculated from

Eq. (3.1) using in-situ wind speed and max{rsi }. Fig. 3.3 shows the conversion rate

function obtained from Dataset 2. Red dots and blue stars, respectively, represent the

fitted and the calculated αi. After the polynomial function is obtained, wind speed

is calculated from the maximum range distance associated with Li and the selected

αi.
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Figure 3.3: Conversion function model obtained using Dataset 2 (Furuno).
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3.2 Modified ILS-based Method

In this section, the modifications have been made to improve the robustness of

the ILS algorithm. These include an additional constraint setting for intensity level

selection, the recognition of blockages and islands for data quality control, and a

curve-fitting technique applied to the range distances vector.

3.2.1 Blockage Recognition

For the data considered in this section (Datasets 2 and 4), shadowing of the radar

field of view exists in many images (see the example in Fig. 3.4(a)). The broken

part of the selected range vector (marked as an open pink ring) indicates the blocked

area. It should suffice to determine the blockage once for each radar station if the

blockage is due to a stable ship structure. However, the real-time monitoring of

blockage will allow the algorithm to be applied to a broader class of conditions which

accounts for the fact that there may be blockage induced by severe weather or when

operators deliberately or otherwise block data from a particular sector, but in no

particular pattern. In such cases, each integrated image should be subjected to real-

time blockage recognition. If the percentage of zero pixels is higher than 20% in a

particular direction, this direction is considered to be blocked and the data located

in this part of the integrated image are discarded. Otherwise, the ILS algorithm may

fail to produce a qualified predefined level.

3.2.2 Curve-fitting

After discarding the obstructed data, problems may still exist, as shown in Fig. 3.4(a).

If the wind direction is aligned with the blocked angles, the above mentioned algo-

rithm will not produce the correct direction. Inspired by the work in [15], a harmonic
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Figure 3.4: A blockage case: (a) an integrated image with blockage; (b) the selected
range distances vector referred to (a) before curve-fitting; (c) the selected range dis-
tances vector referred to (a) after curve-fitting.

function, similar to Eq. (2.1),

rsi (ϕ) = b0 + b1 cos
2(0.5(ϕ− b2)) (3.3)

was introduced to fit the selected range vector rsi (see Figs. 3.4(a)-(c)). In Eq. (3.3),

b0, b1, b2 are coefficients to be determined by curve-fitting. Usually, the locus of

the tip of the range vector forms a cardioid. This property can be utilized to avoid

multiple maxima situations and improve the accuracy of wind direction determina-

tion. In Fig. 3.4(b), the range distances vector maximum is 218.0◦ and is corrected

by curve-fitting to 254.9◦ (with respect to true North) as shown in Fig. 3.4(c), while

the corresponding anemometer measured wind direction is 275.2◦ (see Fig. 3.4(a)).

Therefore, the gap in the original range vector plot can be filled.

3.2.3 Island Recognition

In Fig. 3.5(a), a large object (green area in the top left corner) appears in the inte-

grated image. By observing the ship’s track, indicated by the blue dots in Fig. 3.5(c),

it was found that at the time of Fig. 3.5(a) (18:00 Oct. 29, 2008), the ship’s position

to which the red arrow points in Fig. 3.5(c)) is very close to the coastline (black line
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pointed by a black arrow). Thus, the object is probably a small island. In the wind

direction algorithm, the first range index where the intensity is smaller than the pre-

selected intensity level Li is chosen. It can be inferred that if the island is located in

the far range, the island’s influence can be automatically neglected. However, when

the island is close to the ship, estimation of the maximum range for Li and the wind

direction may be incorrect (see Fig. 3.5(a)). In this case, by utilizing the attenua-

tion property of the radar backscatter intensity along range, if an intensity bump is

detected in an azimuthal direction, it is assumed that the island is located in that

direction and the corresponding radar data will be excluded from curve-fitting (see

Fig. 3.5(b)). The built-in function, findpeaks, in Matlab is used here to detect peaks

or extrema of the intensity sequence for each azimuthal direction. Geographic data

may be used to replace the island recognition scheme if such data are available.

3.3 Results

The original ILS and modified ILS-based algorithms were applied to the same

radar data as described in Table 2.1, and the results were compared to the anemome-
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Figure 3.5: Illustration of island recognition using Dataset 4 (Furuno): (a) range
distances vector (pink line) without island recognition; (b) range distances vector
with island recognition; (c) map with ship’s track.
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ter data. Additionally, the performance of the modified curve-fitting and ILS-based

algorithms are also evaluated here. The statistics of the wind results for each entire

dataset utilizing the original and modified ILS based algorithms are shown in Table

3.1.

3.3.1 Original ILS vs. Modified ILS

Fig. 3.6 shows the results with and without island recognition from Dataset 4,

during 17:46 to 18:46, Oct. 29, 2008, which involves the period when ship approached

and then left the island from 17:56 to 18:16. The island was located in the near range

from 18:00 to 18:10 when the results using island recognition show some improvement

(the STDs of retrieved wind direction and speed are reduced by about 7◦ and 0.3 m/s,

respectively, from those measured by the anemometer, as shown in Table 3.1). It may

be observed that from 17:46 to 17:58 and 18:12 to 18:46, the wind results with island

recognition are exactly the same as those without island recognition. This is because

the island was located far from the ship during these periods, and the ILS algorithm

itself can withstand the island interference automatically. Also, it can be seen that the

results using the curve-fitted ILS-based method are more stable than those obtained

using the original method (see Fig. 3.6).

Table 3.1: Wind speed and direction error statistics: bias and STD

Dataset No. Algorithm
Wind Direction Error Wind Speed Error
Bias [◦] STD [◦] Bias [m/s] STD [m/s]

1
ILS 3.0 20.8 1.2 1.5

Modified ILS 1.7 15.9 0.6 1.4

2
ILS 3.8 21.2 1.1 1.5

Modified ILS 0.8 16.3 0.6 1.3

3
ILS 4.4 10.3 0.3 0.8

Modified ILS 1.9 9.3 0.3 0.5

4

Without Island
14.1 18.8 0.2 1.3

Recognition
With Island

1.3 11.8 0.1 1.0
Recognition
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Figure 3.6: Comparison results obtained from Dataset 4 (Furuno) with appearance
of island: (a) wind direction; (b) wind speed.
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Figure 3.7: Comparison of wind results using ILS and modified ILS-based algorithms
for Dataset 2: (a) wind direction; (b) wind speed; (c) low-clutter direction percentage;
(d) ship speed and ship direction.
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Next, the modified ILS method above was applied to a longer dataset of quality-

controlled Furuno radar data and the results were compared with the reference data

measured by a shipborne anemometer (with the ship’s motion removed). Fig. 3.7

shows the comparison of the radar-retrieved wind velocities obtained from the original

and modified ILS-based methods with the anemometer-measured results based on

Dataset 2 collected during the period from 12:09, Dec. 1 to 12:02, Dec. 4, in 2008.

It may be observed that the radar results from both methods agree well with the

anemometer data. However, the results using the modified method are clearly more

stable with respect to the wind direction results even when more than half of the image

data are discarded due to blockage and low wind speed from 06:30 to 07:30, Dec. 2 (see

Figs. 3.7(a)-(c)). From 00:30 to 06:00, Dec. 3, the low-clutter direction percentage

is higher than 90%, so those images are considered as low-backscatter cases and

are discarded. Moreover, the influence of frequent ship motion on the anemometer-

measured results is observed around 05:00 and 15:00, Dec. 3 in Fig. 3.7(a). The

anemometer winds appear more spiky than the radar results. From Fig. 3.7(d), it

can be seen that the ship motion changed significantly and frequently. For all the

Furuno data collected in December, it is shown that the modified ILS-based method

reduces the mean differences and STDs between the radar and anemometer results for

wind direction and speed by about 3◦ and 4.9◦ and 0.5 m/s and 0.2 m/s, respectively

(see Table 3.1).

3.3.2 Dual-curve-fitting vs. Modified ILS

By comparing the wind parameter results obtained from Dataset 1 using the

modified ILS-based and dual-curve-fitting algorithms with the anemometer data, it

may be observed from Fig. 3.8 that both algorithms can provide satisfactory results

in most cases. When the zero pixel percentage is lower than 10% (see Fig. 3.8(d)) in

this dataset, the data are classified as rain cases. Rain was recognized during 02:10
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Figure 3.8: Comparison results using dual-curve-fitting and modified ILS-based al-
gorithms for Dataset 1: (a) wind speed; (b) wind direction; (c) low-clutter direction
percentage; (d) zero pixel percentage; (e) ship information.
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to 05:40 and 08:10 to 13:30 on Nov. 27, 18:00 to 19:30 on Nov. 28, and 06:40 to 09:10

on Nov. 29, when the STDs and mean errors of wind speed and direction between

the reference data and the retrieved wind results using both methods are larger than

under the rain-free condition. It was also found that when rain interference exists, the

modified ILS method seems more robust than the dual-curve-fitting method for the

data considered here. For example, during 11:40 to 12:06, Nov. 29, the wind speed

by dual-curve-fitting is significantly overestimated due to rain, while the result from

the modified ILS-based method is satisfactory. Similar conclusions can be made for

the period of 08:00 to 10:00, Nov. 27. This may be because, based on our calibration

model (see Fig. 2.3) for the curve-fitting method, a small increase in intensity will

cause a relative large increase in wind speed when the speeds are within 13-20 m/s.

However, the ILS-based model seems less sensitive to intensity change over that speed

range. A better model with more training data at high wind speeds may improve

the wind results obtained from the curve-fitting-based method. On the other hand,

dual-curve-fitting shows superiority over the modified ILS method for wind direction

when the low-clutter direction percentage is high due to low sea states (see the peak

during 22:16, Nov. 28 to 01:13, Nov. 29 in Fig. 3.8(c). The average execution times

for processing a set of 32 radar images using dual-curve-fitting and the modified ILS

algorithm are 6.001 s and 21.919 s, respectively, running in Matlab on an i5-3450 CPU

of 3.10 GHz. On the other hand, the least time for collecting a set of 32 radar images

is 48 s (for Dataset 2 or 4). Thus, it can be concluded that the modified approaches

may be executed in near real time. The ILS-based algorithms take more time due

to the dual-scan-conversion which, for our datasets, is implemented to standardize

the image size before temporal integration. This procedure is not required in the

curve-fitting based algorithms.
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3.4 General Chapter Summary

In this chapter, the original and modified ILS-based algorithms for wind parame-

ters extraction from shipborne X-band nautical radar images were investigated using

radar and anemometer data collected on the Canadian East Coast. It is shown

that the original ILS-based algorithm performs satisfactorily, and the modified ILS

method is more robust than the original ILS-based method (reference algorithm),

since the former can work well even when blockages or islands exist in the radar field

of view. Although wind speed results extracted from the modified ILS method are

not improved distinctly, maybe due to the quality of training, the modified ILS-based

method reduces the mean differences and STD of wind direction between the radar

and the anemometer results significantly by about 3◦ and 4.9◦ in Dataset 2. Moreover,

it was found that the radar measurements from dual-curve-fitting and the modified

ILS agree with each other for most of the data used here, and the mean difference

and STD between the anemometer data and the radar results observed using the two

improved algorithms for wind direction and speed are close.

One common limitation for the two improved algorithms is that the retrieved

wind results from rain-contaminated data are worse than those under the rain-free

condition. Thus, images in the presence of rain were discarded before wind speed and

direction were extracted here. Further efforts were undertaken to design a method

that may be used to recover wind parameters by exploiting the differences between

images collected with and without rain. In the next chapter, an algorithm incorporat-

ing texture analysis is proposed for wind parameter recovery from rain-contaminated

images.
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Chapter 4

Wind Parameter Extraction from

Rain-contaminated Radar Data

In the previous chapter, it has been observed that the results in the X-band

radar-retrieved wind speeds are overestimated during rain. In this chapter, the effects

of rain on X-band nautical radar images are investigated from both analytical and

heuristic perspectives first. Next, a texture-analysis-based rain mitigation technique is

proposed and incorporated into both the modified curve-fitting-based and ILS-based

wind algorithms discussed previously.
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4.1 The Effects of Rain

The effects of rain on X-band radar image intensity and the corresponding image

spectrum are analyzed from an analytical perspective. Moreover, the effects of rain

on wind parameter extraction using X-band radar images are summarized. The data

analyzed here were extracted from Dataset 1 (see Table 2.1), since it contains more

rain cases than the other datasets.

4.1.1 On Radar Intensity Images

Utilizing the integration and smoothing techniques in [17] to temporally integrate

32 consecutive radar images intensifies wind signatures. Fig. 4.1 shows the examples

of individual radar images and the integrated images. Fig. 4.1(a) is a single radar

(a) (b)

(c) (d)

Figure 4.1: Examples of marine radar images: (a) single image without rain; (b)
single image with rain; (c) integrated image without rain; (d) integrated image with
rain.
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image collected at 05:31, Nov. 29, when it was not raining. Compared to Fig. 4.1(b),

which is a single image collected at 08:31, Nov. 29, when rain was present, it can

be clearly seen that the radar backscatter intensity is enhanced by rain. The rain

contaminated image was also scaled to 0–255, but it looks more uniformly bright,

which was similarly pointed out in [15]. Figs. 4.1(c) and (d) are temporally integrated

images based on the corresponding single images including Figs. 4.1(a) and (b),

respectively. It seems that wave signatures have been eliminated, while wind and

rain signatures are intensified by integration.

4.1.2 On Radar Image Spectra

In [66], it was reported that two maxima, which are caused by radar backscat-

tering from rain-generated ring waves propagating towards and away from the radar,

are seen in the Doppler spectrum of an X-band coherent radar. A test is also imple-

mented here to observe the rain signatures in the spatial frequency domain. After

temporally integrating 32 consecutive Cartesian images, a 128×128 rectangular win-

dow is selected to perform a 2-D FFT and generate an image spectrum (see the right

most columns of Figs. 4.2(a) and (b). It was found that energy falls in the area close

to the zero-wavenumber point in the presence of rain. Again, this phenomenon may

be explained by the elimination of wave signatures due to the contamination of rain.

When the rain is absent, the energy spread is circular.

4.1.3 On Wind Parameters Extraction

Figs. 4.3(a) and (b) show wind parameter results incorporating the original and

modified ILS-based methods. When the ZPP is lower than 10% (see the red line in

Fig. 4.3(c)), the data are classified as rain cases. Rain was recognized during 02:10

to 05:40 and 08:10 to 11:30 on Nov. 27, 18:00 to 19:30 on Nov. 28, and 06:40 to

09:10 on Nov. 29 in 2008. Among these four periods with rain, it is observed from
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(a)

(b)

Figure 4.2: 2-D image spectrum: (a) in the absence of rain; (b) in the presence of
rain.

Fig. 4.3(a) that the radar-retrieved wind speed was significantly overestimated during

08:10 to 11:30 on Nov. 27. For the data analyzed here, the STD of wind speed between

radar retrieved results and the anemometer data is increased by about 1.6 m/s in the

presence of rain from that in the absence of rain.

With respect to wind direction, it was deduced in [56] that rain may diminish the

azimuthal variations. In [17], wind direction obtained from the ILS based method

is assumed to be along the azimuth in which the maximum of the range distances
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Figure 4.3: Wind field extraction comparison results using ILS based algorithms with
and without rain: (a) wind speed; (b) wind direction; (c) zero pixel percentage.
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vector is located. It was found that rain may negatively affect the recognition of the

range vector maximum (see Fig. 4.1(d)). Usually, the locus of the tip of the range

vector forms a cardioid which can be fitted to a harmonic function. This property

can be utilized to avoid multiple maxima situations and improve the accuracy of wind

direction determination as shown in [67], [68]. Nevertheless, even for the modified

ILS-based method which employs curve fitting, the STD of wind direction in the

presence of rain is increased by about 10.7◦, taking the anemometer data as ground

truth.

4.2 Detailed Methodology for Wind Algorithms

Incorporating Rain Mitigation

In this section, the texture maps of X-band nautical radar images in the presence

and absence of rain are analyzed. The wind algorithm incorporating the texture-

analysis-based rain mitigation is then described.

4.2.1 Texture Analysis

From Section 4.1.1, it was illustrated that the rain-contaminated image pixels are

more uniformly bright than the wave echoes, which implies that the characteristics

of being “more uniformly bright” in the radar images may be used to identify the

portions more affected by rain based on intensity spatial variability analysis. Referring

to [62], the spatial variability is expressed as a root-mean-square (RMS) difference or

texture, T , given as

T (Ip,q) =

√√√√√ i=1∑
i=−1

j=1∑
j=−1

(Ip,q − Ip+i,q+j)2

9
(4.1)
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where Ip,q represents the radar backscatter intensity of the pixel (p, q), in range (p)

and in azimuth (q). The texture of the original radar backscatter intensity T (Ip,q) is

computed in a box consisting of three pixels in azimuth and three in range centred

on the gate. The corresponding texture maps of Figs. 4.4(a) and (b) are calculated

as Figs. 4.4(c) and (d).

To ensure consistency with the original radar images, the texture intensities are

scaled from 0 to 255 as well. It can be observed that, for the rain-free radar images,

most of the wave signatures are retained in the texture map (see Fig. 4.4(c)). For

the radar images contaminated by rain, radar signatures of waves are still visible on

the portion between 191◦ and 315◦ (see the open pink arc in Figs. 4.4(b) and (d)),

indicating that this portion may be less affected by rain. Actually, it is also revealed

(a) (b)

(c) (d)

Figure 4.4: Examples of marine radar images and the their texture maps: (a) rain-free
radar backscatter intensity image; (b) rain-contaminated radar backscatter intensity
image; (c) rain-free texture map of (a); (d) rain-contaminated texture map (b).
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from Figs. 4.4(b) and (d) that the image portion around the upwind direction is

relatively less affected by rain than that around the downwind direction. This is

because the upwind clutter is usually stronger than that from downwind [59]. Also,

from the texture map in Fig. 4.4(d), it may be observed that the blurred or uniformly

bright area in the original image of Fig. 4.4(b) has been removed (i.e. this portion

becomes dark). This means that the rain-contaminated portion can be recognized

from the texture map. This property will be utilized in the following sections to

improve the accuracy of wind parameters estimation.

4.2.2 Data Filtering

Due to the strong impact of rain on the number of pixels with zero intensity,

the ZPP was identified as a quality control parameter in determining the presence

of rain [15]. In [15], when ZPPs are less than ZT (10% for Dataset 1), these radar

images were considered as contaminated by rain and discarded from the wind retrieval

process. However, it was indicated in Section 4.2.1 that the less-rain-affected portions

of the radar images may still be useful for sea surface parameter extraction (see

Fig. 4.4(d)). A simple scheme is proposed here to recognize these portions of the rain-

contaminated images. To mitigate the effects of rain on wind information extraction,

those more-rain-affected portions in the identified rain-contaminated radar images

will be removed from the wind retrieval process. Hence, this technique is referred to

as Rain Mitigation.

Fig. 4.5 shows the block diagram of rain mitigation. For each azimuthal direction,

in the original image, the number of pixels with intensity higher than a threshold IT

is recorded as Nϕ. If Nϕ is less than a specified value NT , the data in such a direction

will be identified as rain-contaminated. Figs. 4.6(a) and (b) show the number of data

points Nϕ of the original images without and with rain, respectively. The thresholds

IT are empirically set to be 80 and 40 initially for the original image and texture
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map, respectively, in this work. The rain threshold NT is then adjusted adaptively

according to the range of Nϕ since the threshold may differ under different wind

speeds. Details of the threshold setting for NT can be found in Fig. 4.5. For the

data considered in Fig. 4.6, the threshold NT is found to be 23. Figs. 4.6(c) and (d)

depict the Nϕ of the texture maps of Figs. 4.6(a) and (b), respectively. It can be

observed that Nϕ is greater than NT in almost all directions in Fig. 4.6(c). This means

that the associated radar image in Fig. 4.4(a) may be free of rain-contamination. In

Fig. 4.6(d), the directions in which Nϕ is less than NT are recognized as more affected

by rain and data located in these portions are rejected. From Fig. 4.6(d), it may

be inferred that the filtered more-rain-affected portions are in the directions of 0◦–

191◦ and 315◦–360◦. Moreover, to quantify the extent of rain contamination for each

image, a new rain recognition parameter, the rain rejection percentage (RRP, i.e., the

percentage of directions rejected due to rain contamination) is proposed.

Figure 4.5: Block diagram of rain mitigation.
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Figure 4.6: Number of data points Nϕ of: (a) rain-free original image; (b) rain
contaminated original image; (c) rain-free texture map; (d) rain-contaminated texture
map.

4.2.3 Wind Direction

Once the more-rain-affected portions of the radar images are rejected, wind pa-

rameters are extracted using both the modified curve-fitting based and ILS-based

algorithms. Fig. 4.7 shows the comparison of the results obtained using the curve-

fitting-based algorithm with and without rain mitigation. Fig. 4.8 similarly illustrates

the results of the ILS-based algorithms. The uniformly bright radar signatures of rain

cells can be clearly seen in both the single image and the integrated image, as shown

in Figs. 4.7 (a) and 4.8(a). By utilizing the data filtering technique (as described
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in Section 4.3.2), the portion less affected by rain can be easily recognized from the

texture map (marked by the pink arc in Fig. 4.7(b)). Fig. 4.7(c) shows the corre-

sponding range averaged intensity of the original image (Fig. 4.7(a)). Its harmonic

characteristics (as described in Eq. (2.1)) were essentially lost due to the presence of

rain and the wind direction error is large. However, after removing the data more-

affected by rain, the fitted curve using only the less-affected portions can provide a

better result (see Fig. 4.7(d)). The anemometer measured wind direction (see the

black bar in Figs. 4.7(a) and (b), 4.8(a) and (b), and the vertical lines in Figs. 4.7

(d) and 4.8(d)) is about 125◦. The radar retrieved wind direction using curve-fitting

based method with rain mitigation was corrected from 54◦ to 110◦. Similarly, for the

(a) (b)
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Figure 4.7: Illustration of rain mitigation incorporated curve-fitting based algorithms:
(a) the original radar image; (b) the texture map; (c) curve-fitting based method
without rain mitigation; (d) curve-fitting based method with rain mitigation.
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Figure 4.8: Illustration of rain mitigation incorporated ILS based algorithms: (a) ILS
without rain mitigation; (b) ILS with rain mitigation; (c) modified ILS-based method
without rain mitigation; (d) modified ILS-based method with rain mitigation.

ILS based method, the range distances vector can be improved significantly with rain

mitigation (see the Figs. 4.8(c) and (d)). Using the modified ILS based method with

rain mitigation, wind direction result has been improved from 52◦ to 122◦.

4.2.4 Wind Speed Model Correction

It was found in Figs. 3.8(b) and 4.3(a) that large wind speed errors occurred

for the rain period of 08:00 to 10:00, Nov. 27, due to the inapplicability of the rain-

free wind speed models for rain-contaminated data (see Fig. 2.1). Thus, wind speed

models for rain-contaminated data should be obtained [59]. Fig. 4.9 shows the com-

parison of the third-order polynomial models trained using only rain-free data and

rain-contaminated data. The corrected models (see Figs. 4.9 (b) and (d)) will be used
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Figure 4.9: Training models: (a) curve-fitting-based wind speed model from rain-
free data; (b) curve-fitting-based wind speed model from rain-contaminated data; (c)
ILS-based conversion function from rain-free data; (d) ILS-based conversion function
from rain-contaminated data.

for the recognized rain-contaminated data to improve the accuracy of wind speed de-

termination.

4.3 Results

By utilizing the rain recognition technique proposed in [15] in Dataset 1 (see

Table 2.1), 9924 out of 49182 images (i.e. 312 out of 1540 files) were identified as

rain cases from the 4-day experiment data. Here, only the wind results from these

rain-contaminated images are displayed. The comparison of wind results using the
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Table 4.1: Wind speed and direction error statistics from rain-contaminated data

Algorithm
Wind Direction Error Wind Speed Error
Bias [◦] STD [◦] Bias [m/s] STD [m/s]

Modified ILS
5.3 19.9 0.3 2.0

With Rain Mitigation

Modified ILS
14.7 34.4 2.1 3.3

Without Rain Mitigation

Single-curve-fitting
4.0 21.5 0.2 2.4

With Rain Mitigation

Single-curve-fitting
10.1 28.9 6.3 5.0

Without Rain Mitigation

modified curve-fitting and ILS based algorithms incorporating rain mitigation are

shown in Figs. 4.10 and 4.11, respectively, in which the anemometer data is plotted

as ground truth. In practice, a similar 10-minute averaging was applied (if the data

is continuous) to both the anemometer and radar wind results before computing the

statistical errors shown in Table 4.1. In Figs. 4.10(a) and 4.11(a), wind speeds

obtained by utilizing the proposed methods described in Section 4.2 show remarkable

improvement over the period from 07:48 to 10:32 on Nov. 27 (i.e., File No. 80 to No.

157), during which continuous rain was identified. With rain mitigation, the mean

errors of wind direction and speed obtained for this period using the two improved

methods are reduced by 5.4◦ and 10.3 m/s, and 11.6◦ and 4.9 m/s, respectively. Under

the low wind speed period from 01:45 to 03:30, Nov. 27 (i.e., File No. 1 to 50), it

was found in Fig. 4.10(c) that the RRP is relatively higher (around or above 50%),

which reveals that images during this period were more affected by rain. This also

agrees with the findings in [57] that the lower the ambient wind speed, the higher is

the contrast between the bright pattern and the surroundings. In other words, radar

signatures of rain cells may be more distinct when the ambient wind speed is lower.

Thus, the rain mitigation technique works effectively during this period. A significant

improvement on the wind direction mean error and STD by about 16.1◦ and 21.5◦ can

be seen during this period (see Fig. 4.11(b)). However, it should be noted that when
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the RRP is too high (i.e., more than 60% of the directions in an image are rejected),

reliability of wind direction retrieval using the two algorithms may be reduced (see

No.39 to No.43 in Figs. 4.10(b) and 4.11(b)). It was discussed in Section 4.2 that the

portions around the downwind direction are relatively more affected by rain. This

reveals why the portions around the upwind direction are usually retained after data

filtering. Therefore, after rain mitigation, when the curve-fitted ILS is not credible

due to over rejection, the maximum of the smoothed range distances vector without

curve-fitting (original ILS) may be used for wind direction estimation. It can be also

observed from Figs. 4.10(c) and (d) that a high RRP is usually accompanied by an

extremely low ZPP. If the ZPP is too low (less than 1%), the wind direction and wind

speed results are always worse, especially when ZPP is almost zero.

4.4 General Chapter Summary

In this chapter, effects of rain on the X-band nautical radar images are elaborated

upon and a technique for wind parameter extraction from rain-contaminated images

has been proposed. It was illustrated that the rain-contaminated image pixels are

more uniformly bright than the wave echoes, and these characteristics can be used

to recognize the portions more affected by rain. By removing the data in the direc-

tions that are more affected by rain, a texture-analysis-based data filtering process

is designed to enhance the performance of two wind algorithms discussed in Chapter

2 and 3. Significant improvements can be seen from the radar-derived wind results

using both of these algorithms when rain mitigation is incorporated.
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Figure 4.10: Wind results from rain-contaminated data using the curve-fitting based
algorithms: (a) wind speed; (b) wind direction; (c) rain rejection percentage; (d) ZPP
and precipitation.
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Figure 4.11: Wind results from rain-contaminated data using the ILS based algo-
rithms: (a) wind speed; (b) wind direction; (c) rain rejection percentage; (d) ZPP
and precipitation.

56



Chapter 5

Conclusions

5.1 General Synopsis and Significant Results

In this thesis, two modified algorithms for wind retrieval from shipborne X-

band nautical radar images and a novel technique for wind estimation from rain-

contaminated images are presented and tested using radar and anemometer data

collected on the Canadian East Coast.

It was found that reference curve-fitting-based and intensity-level-selection (ILS)

based algorithms can perform satisfactorily in normal cases. With the improved dual-

curve-fitting algorithm, the wind direction and speed mean difference between the

radar and anemometer results can be reduced by about 5.7◦ and 0.3 m/s, respectively,

under low sea states. However, the results obtained from single- and dual-curve-fitting

are almost the same at higher sea states. It is also shown that the modified ILS

method, which involves blockage, island recognition, and curve-fitting, is more robust

than the original ILS based method (reference algorithm), since the former can work

well even when blockages or islands exist in the radar field of view. Although wind

speed results extracted from the modified ILS method are not improved distinctly, the

modified ILS method reduces the mean differences and STD of wind direction between

the radar and the anemometer results by about 3◦ and 4.9◦, respectively, in Dataset 2.
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Moreover, the radar measurements from dual-curve-fitting and the modified ILS agree

with each other for most of the data used here, and the mean difference and STD

between the anemometer data and the radar results observed using the two methods

for wind direction and speed are close. For the data considered in this work, the overall

STDs for wind direction and speed are 6.6◦-21.2◦ and 0.5-2.0 m/s, respectively, which

are a little higher than the results (less than 17.4◦ for direction and less than 1.1

m/s for speed) in the open literature (e.g., [12]– [14], [15] and [17]). It should be

noted that the temporally-averaged radar-derived wind results also represent spatial

average values within the radar coverage, while the temporally-averaged anemometer

data represent point measurements at the ship location. This may account for some

of the difference between the radar and anemometer results. In addition, correcting

the wind speed measurements for the atmospheric stability condition may improve

the results [14].

Furthermore, X-band radar signatures of rain cells are analyzed and a technique

for mitigation the effects of rain on wind parameter extraction has been proposed.

A texture-analysis-based rain mitigation process is incorporated into the above two

modified wind algorithms. It was found that radar image intensity is uniformly bright

in the presence of rain. By utilizing this property, the portions more affected by rain

in an image can be recognized. After removing the data in the directions that are

more affected by rain, significant improvements can be achieved in the radar-derived

wind results using both algorithms when rain mitigation is incorporated.

5.2 Suggestions for Future Work

Several limitations of the methods should be noted. Firstly, modelling of the curve-

fitting based approach is not yet sufficiently robust. Building proper models for wind

speed retrieval depends on several factors, such as the accuracy of anemometer data.

Second, rain recognition was not successful for some datasets. A more intelligent way
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to identify and eliminate the effects of rain is required. A threshold in terms of signal-

to-noise ratio instead of the grey scale intensity may be used for rain recognition.

Third, if the RRP is too high, the rain mitigation technique proposed in Chapter 4

may be unreliable. More data analysis is required to validate whether the more rain-

affected portions of radar signatures always occur around the downwind direction.

In the future, investigation of the possibility of retrieving wind direction from the

texture map alone could be conducted. Further efforts are ongoing to compare the

performance of wind extraction from the horizontally- and vertically-polarized radar

data as discussed in [69]. In addition, it may be meaningful to extend the research

on the effects of rain in the frequency domain.
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