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Abstract

This thesis describes the development of a parallel version of the 2.5D airborne electro-

magnetic modelling and inversion program ArjunAir. The program uses a finite-element

scheme to model the response of an earth with a 2D conductivity structure to a 3D elec-

tromagnetic source. The program uses a Gauss-Newton like iterative inversion algorithm,

stabilized by singular value damping, to estimate the conductivity of a 2D depth section

of the earth beneath an airborne electromagnetic survey line. The forward modelling code

was parallelized and whenever possible, bottleneck routines were replaced by more effi-

cient versions. Shared and distributed memory parallel versions of the ArjunAir forward

solver were developed, with the shared memory version being incorporated into a modified

ArjunAir inversion program based on the Levenberg-Marquardt algorithm. The new shared

memory parallel ArjunAir inversion algorithm ran up to 8 times faster than the original al-

gorithm when running with 8 threads, with speedup due both to parallelization and the use

of more efficient sequential routines.

ii



Acknowledgements

First and foremost I would like to thank my supervisors Dr. Colin Farquharson and Dr.

Ronald Haynes for their continuous support and encouragement throughout my entire time

here at MUN. They guided my research and held me to a high academic standard. Without

our many stimulating discussions and their deep knowledge I would not have been able to

complete this work. As my senior supervisor, Dr. Farquharson’s door was always open and

he was always ready to help with a smile on his face, whether it be with some technical

issue, or advice on my academic future.

This project was orginally the idea of Marc Vallée. I am most grateful to him for

providing the idea to Dr. Farquharson and giving me such a stimulating research project. I

am also indebted to GlennWilson, Art Raiche and Fred Sugeng, the developers of ArjunAir.

Their efficient and well documented software gave me a strong foundation on which to

build my work. The software was initially developed as part of project p223, which was

funded by the AMIRA consortium and CSIRO, the Australian research organization. Their

decision to release the source code of all p223 software made my M.Sc. research possible.

Finally, I would never have developed into the person I am today or made it through

my M.Sc. without the deep love and support of my family and friends back home in New

Brunswick, far away in Vancouver, and here in St. John’s. Thank you everyone. I could

not have done it without you.

iii



Contents

Abstract ii

Acknowledgements iii

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Principles of Airborne EM . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Introduction to EM modelling and inversion . . . . . . . . . . . . . . . . . 6

1.3.1 Forward modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2.2 Computational issues . . . . . . . . . . . . . . . . . . . 11

1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Theory 15

iv



2.1 Forward modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Fundamentals of classical electromagnetism . . . . . . . . . . . . . 15

2.1.2 Primary-secondary field separation . . . . . . . . . . . . . . . . . . 19

2.1.3 The 2.5D problem . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.4 Solving Maxwell’s equations in the ky domain . . . . . . . . . . . 27

2.1.4.1 Galerkin’s method and the weak form of a BVP . . . . . 27

2.1.4.2 The finite element method in ArjunAir . . . . . . . . . . 32

2.1.5 Computing the primary field . . . . . . . . . . . . . . . . . . . . . 38

2.2 Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.2 The damped eigenparameter algorithm as implemented in ArjunAir 44

2.2.3 The Levenberg-Marquardt algorithm . . . . . . . . . . . . . . . . . 50

3 Computational Methods and Results I: Forward Modelling 53

3.1 Parallel architectures and programming paradigms . . . . . . . . . . . . . 54

3.2 Approaches to developing a parallel ArjunAir forward solver . . . . . . . . 57

3.3 Solving the finite element equations . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Sparse-direct methods for KU = F . . . . . . . . . . . . . . . . . 59

3.3.2 The frontal method of sparse matrix factorization . . . . . . . . . . 61

3.3.2.1 The original frontal method . . . . . . . . . . . . . . . . 61

3.3.2.2 Parallelizing the frontal method by domain decomposition 64

3.3.3 Implementing a parallel domain decomposition frontal method . . . 66

3.3.4 MuMPS: a professional distributed memory solver . . . . . . . . . 70

3.3.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . 70

v



3.3.4.2 Accuracy of solutions . . . . . . . . . . . . . . . . . . . 72

3.3.4.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3.5 MKL Pardiso: a professional shared memory solver . . . . . . . . . 82

3.4 Computing the primary electric field . . . . . . . . . . . . . . . . . . . . . 89

3.5 Parallelization over wavenumbers . . . . . . . . . . . . . . . . . . . . . . 95

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4 Computational Methods and Results II: Inversion 98

4.1 Implementation of the original inversion algorithm . . . . . . . . . . . . . 98

4.2 Implementing the Levenberg-Marquardt algorithm . . . . . . . . . . . . . 103

4.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2.2 Computing model updates with LSQR . . . . . . . . . . . . . . . . 106

4.3 Comparison of original and Levenberg-Marquardt inversion results . . . . . 108

4.3.1 Quality of results . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3.2 Overall performance . . . . . . . . . . . . . . . . . . . . . . . . . 112

5 Conclusions 113

Bibliography 115

vi



List of Tables

3.1 Flynn’s taxonomy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Sparse backward error bounds ω for two test problems. Both problems use

the same mesh of 7875 elements—23811 unknowns. . . . . . . . . . . . . 75

3.3 Secondary fields measured 30m above a 500Ωm homogeneous halfspace.

Transmitter to receiver separation was 6.3m at 56 kHz and 8.1m at all other

frequencies. Model cells were 10m deep by 30m wide. The units are parts

per million (normalized by strength of primary field). IP means in-phase

and Q means quadrature. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

vii



List of Figures

1.1 Unconformity style uranium deposit. Adapted from a figure by Long Har-

bour Exploration (2014). . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Conceptual illustration of EM induction in the earth. Adapted from Far-

quharson (personal communication). . . . . . . . . . . . . . . . . . . . . . 4

1.3 Airborne EM survey over a target of infinite strike length. Based on Figure

1.3 in Yu (2012). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 a) Example of meshing a rectangular domain with isoparametric quadrilat-

erals (Bono and Awruch, 2008). b) Eight node isoparametric quadrilateral

reference element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Damping factors plotted as functions of the ratio of the relative damping

parameter µ to the relative singular value magnitude ki. The curve for

N = 1 (Levenberg-Marquardt damping) is shown as the solid blue line and

N = 2 (Arjunair damping) as the dashed red line. . . . . . . . . . . . . . . 52

3.1 a) Small example finite element mesh and b) associated stiffness matrix

sparsity pattern. Each row and column of the matrix corresponds to a node

in the mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

viii



3.2 Example ArjunAir finite-element mesh divided column-wise into three sub-

domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Two subdomain frontal solver performance. a) Runtime with ideal times

being sequential times divided by two. b) speedup, with perfect speedup

shown on horizontal black line. . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Multifrontal factorization elimination tree. . . . . . . . . . . . . . . . . . . 71

3.5 ω vs. ky log-log plots for a transmitter in the middle of the mesh 30m above

a homogeneous halfspace of resistivity 500Ωm. ArjunAir original solver

values are represented by blue stars and MuMPS solutions with u = 0.01

by red circles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.6 a) Runtimes for MuMPS solver in sequential mode, along with times for

original solver and my two subdomain decomposition code. b) Speedups

for MuMPS and the two subdomain solver, relative to the original solver.

The dashed black line shows speedup for an ideal parallelization of the

original solver. Both data points for the two subdomain solver are for larger

problems than any of the runs in Figure 3.3. . . . . . . . . . . . . . . . . . 80

3.7 MuMPS speedup on Torngat cluster for matrix with a) 572872 unknowns

and b) 1.35×106 unknowns. . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.8 Global stiffness matrix assembly speedup: a) 27490 unknowns, 52 right

hand sides, b) 572872 unknowns, 93 right hand sides. . . . . . . . . . . . . 84

ix



3.9 Comparison of MuMPS and Pardiso performance. The scaling results in

b) are for a matrix with 572872 unknowns and 93 right hand sides. The

solid black line is the original ArjunAir solver. The dashed blue line in

a) shows the MuMPS runtimes, while the dot-dashed red line shows the

Pardiso runtimes. In b) MuMPS speedups are shown on the solid blue line,

with Pardiso speedups on the dot-dashed red line. Ideal speedup is shown

on the dashed black line. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.10 Total and individual phase speedup of Pardiso, for representative small and

large linear systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.11 Pardiso (dashed red line) and ArjunAir original solver (solid black line)

runtimes vs. number of right hand sides for a coefficient matrix with

142442 unknowns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.12 Pardiso speedup, 142442 unknowns, 362 right hand sides. . . . . . . . . . . 89

3.13 Primary field computation speedup on a mesh with 6.75×105 unknowns

and 92 transmitters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.14 a) g1 vs. ky. Solid black line is ky = 1 × 10−5. Dashed blue line is

ky = 0.0016. Red dash-dotted line is ky = 0.1. g2 vs. ky. Solid black line

is ky = 1× 10−5. Dashed blue line is ky = 0.0158. Red dash-dotted line is

ky = 0.1. Note that the vertical axes and ky values are different in each plot. 93

3.15 Primary field computation time, interpolation method shown on dashed

blue line and original code on solid black line: a) plotted vs. number of

transmitters for a fixed mesh size of 71221 nodes; b) plotted vs. mesh size

for 92 transmitters on three large meshes. . . . . . . . . . . . . . . . . . . 95

x



3.16 Primary field computation speedup. The small problem has a 92 trans-

mitter locations and a mesh with 71221 nodes. The large problem has 92

transmitter locations and 6.75×105 mesh nodes. . . . . . . . . . . . . . . . 96

4.1 True model shown with inversion results. The true model was a homoge-

neous halfspace with conductivity 1×10−3 S/m with two embedded con-

ductive blocks. The left one has conductivity 1 S/m and the right 0.1 S/m.

The final RMS was 42.48% for the original algorithm and 32.02% for the

modified algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.2 In-phase observed and predicted data. Synthetic data from the true model

shown in blue with circular data points. Predicted data is shown with trian-

gular points , in magenta for the original inversion and red for the modified

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3 Quadrature observed and predicted data. Synthetic data from the true model

shown in blue with circular data points. Predicted data is shown with trian-

gular points , in magenta for the original inversion and red for the modified

algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.4 Convergence curves. Solid blue line shows the original algorithm and the

dashed magenta line shows the modified algorithm. . . . . . . . . . . . . . 112

xi



Chapter 1

Introduction

1.1 Overview

Airborne electromagnetic (EM) surveying methods, which are used to map the electrical

conductivity of the subsurface using an aircraft-mounted detection system, form an impor-

tant class of geophysical techniques. They have been employed by the mineral exploration

industry since the mid 20th century to find metallic sulphide ores and other conductive min-

eral deposits (Palacky and West, 1991). More recently, airborne EM techniques have been

used to map groundwater resources (e.g. Kirkegaard et al., 2011).

Software capable of rigorously estimating the true three-dimensional (3D) conductivity

structure of the earth based on airborne EM survey data is beginning to be used commer-

cially but is extremely computationally intensive and can only be used by experts with

access to supercomputing resources (e.g. Cox et al., 2010; Oldenburg et al., 2013). Assum-

ing the earth’s structure to vary in only two dimensions and estimating the conductivity on

a 2D slice of the earth is more computationally tractable than the full 3D problem. The
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Sandstone

Figure 1.1: Unconformity style uranium deposit. Adapted from a figure by Long Harbour Exploration (2014).

2D approximation is valid in many real-life geological scenarios such as Athabasca style

unconformity hosted uranium deposits. These deposits often occur at the bottom of sedi-

mentary basins at the locations of conductive graphitic faults. These faults can be detected

by EM methods (Powell et al., 2007) and tend to have long strike length. EM surveys are

conducted using flight lines perpendicular to the strike direction. A highly simplified dia-

gram of an Athabasca style uranium deposit is shown in Figure 1.1. The geology will be

relatively constant along the direction perpendicular to the page.

The energy sources used in airborne EM produce electromagnetic fields that vary in

3D, even for a 2D earth. The process of modelling these 3D fields using a 2D discretization

of the earth is known as 2.5D modelling.

Airborne geophysics industry contacts of my supervisor Dr. Colin Farquharson had

been using a 2.5D software package called ArjunAir (Wilson et al., 2006) to estimate the

conductivity of 2D slices of the earth from airborne EM survey data. ArjunAir was origi-

nally developed by an industrially funded group at the Australian national research organi-
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zation CSIRO (Commonwealth Scientific and Industrial Research Organisation). Its source

code is now freely available. It is the only production quality software package capable of

inverting airborne EM data to estimate a general two-dimensional (2D) model of subsur-

face conductivity. Dr. Farquharson’s industry contacts found that ArjunAir produced useful

results but was too computationally intensive to be used routinely on large datasets. CPU

and memory costs limited the program to performing inversions over compact targets of

interest, rather than over large sections of survey lines.

The experience of these colleagues motivated this project. The goal was to improve

the performance of ArjunAir by replacing its core computational routines by more efficient

and, whenever possible, parallel versions, while maintaining its capabilities and user in-

terface. There are several obvious sources of parallelism in the computations performed

by ArjunAir, and opportunities to reduce its memory use. Making such improvements has

allowed more detailed inversions to be carried out on larger datasets in practical lengths of

time (e.g. a few hours or less). The project was able to reduce inversion runtimes by more

than a factor of 10 on a multicore workstation with the potential for speedups of over 100

on a cluster.

This thesis will describe the principles underlying ArjunAir’s main algorithms, the

modifications undertaken to improve its performance and the results achieved. The re-

mainder of this introductory chapter will give an overview of the principles of airborne EM

surveying methods and discuss the major approaches to modelling and inverting airborne

EM data, which will motivate the 2.5D approach. The following chapter will describe the

theoretical basis for ArjunAir’s main algorithms. The third and fourth chapters will discuss

the computational techniques used in the forward modelling and inversion components of

the program, respectively. Those discussions will be interwoven with the presentation of

3



Electromagnetic induction

Secondary H-field
Induced currents;
induced magnetization

Primary H-field

∇ ×H = J

Figure 1.2: Conceptual illustration of EM induction in the earth. Adapted from Farquharson (personal

communication).

results. The final chapter presents some brief concluding remarks.

1.2 Principles of Airborne EM

All airborne EM methods are based on Faraday’s principle of electromagnetic induction,

which states that a time varying magnetic field will induce the creation of an electric

field (Telford et al., 1990). An airborne EM system generally consists of two main compo-

nents, the transmitter and the receiver, which are both circular coils of wire. A schematic

of a generic system is shown in Figure 1.2. Magnetic fields are generated by electric cur-

rents, according to Ampere’s law. An EM transmitter generates a time varying magnetic

field, called the primary field, by running a time-varying current through a wire coil. By

the principle of induction, this will induce electric fields throughout space. These applied

electric fields will cause electric currents to flow in any subsurface bodies with sufficient

electrical conductivity. Conductivity is a material property that can often be diagnostic of
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subsurface geology (Telford et al., 1990). The exact relationship between applied electric

fields and the electric currents they produce can vary from material to material but for most

everyday substances it can be very well approximated by Ohm’s law, which states that an

applied electric field in a material will produce an electric current in the direction of—and

with magnitude proportional to—the applied field. The constant of proportionality is the

electrical conductivity.

The electric currents in the subsurface are called secondary currents. By Ampere’s law,

they will generate their own time varying magnetic fields, called secondary fields (Telford

et al., 1990). The secondary magnetic fields will induce their own electric fields, causing

electric currents to flow in the EM measurement system’s receiver coil. In an EM survey,

strong measured secondary fields will indicate areas of elevated subsurface conductivity.

There are two main categories of airborne EM surveying systems, frequency-domain

and time-domain (Palacky and West, 1991). Frequency domain systems contain up to six

pairs of transmitter and receiver coils. Each transmitter emits a continuous magnetic field

varying sinusoidally in time and its corresponding receiver is tuned to the frequency of that

sinusoid. In a time-domain system, a short pulse of current is run through the transmitter

coil, generating a short lived primary field. The secondary fields will rapidly decay after the

transmitter is turned off. The receiver measures that decay. High quality time-domain EM

datasets arguably contain more information than frequency-domain datasets but are more

difficult to acquire (Nabighian and Macnae, 1991). Due to the technical difficulty of ac-

quiring good time-domain data, frequency-domain surveying was the dominant technique

in the early days of geophysical EM surveying. Both types are widely used today. ArjunAir

can work with datasets from both survey types.
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1.3 Introduction to EM modelling and inversion

1.3.1 Forward modelling

In a typical time or frequency-domain survey, an aircraft will fly over the survey area along

a set of parallel lines, measuring the steady-state total fields at fixed time intervals along

each line. The secondary fields are then computed by removing the known primary field.

The behaviour of the electromagnetic fields generated in an EM survey are described math-

ematically by Maxwell’s equations, the fundamental laws of classical electromagnetism.

Maxwell’s equations may be formulated as a set of coupled linear partial differential equa-

tions (PDEs) for the electric and magnetic fields. Electrical conductivity enters these equa-

tions as a coefficient. Solving Maxwell’s equations for the fields that would be produced

by an EM surveying system, given a model of the earth’s conductivity, is known as forward

modelling. Given a mathematical description of the transmitter and appropriate boundary

conditions, solving for the electric and magnetic fields is a well-posed problem (Hohmann,

1987).

In their canonical form, Maxwell’s equations are hyperbolic PDEs in space and time

(Jackson, 1999). However, if one assumes a sinusoidal time dependence for the fields, as

in frequency-domain surveying, they may be formulated as complex-valued elliptic PDEs.

These are known as Maxwell’s equations in the frequency-domain. Even for time-domain

modelling, it is common to solve Maxwell’s equations in the frequency-domain at a range

of different frequencies and then recover the time-domain fields by inverse Fourier trans-

formation. This is the approach taken in ArjunAir for time-domain modelling.

The difficulty of solving the forward modelling problem depends on the complexity of

the transmitter and the assumed conductivity model. Airborne EM transmitters are mod-
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elled as ideal magnetic dipoles. An exact solution in terms of elementary functions exists

for a magnetic dipole source above a homogeneous earth with a flat surface. If the earth’s

conductivity is assumed to be laterally constant and to vary only with depth, then a so-

lution is known expressing the electromagnetic fields in terms of Hankel transform inte-

grals (Ward and Hohmann, 1987). Exact solutions also exist for some simple geometrical

shapes embedded in homogeneous halfspaces (Telford et al., 1990). Maxwell’s equations

have not been solved exactly for a general 3D conductivity distribution but reliable numer-

ical techniques are well established (e.g. Börner, 2010)

3D numerical solutions are generally robust and accurate but computing them requires

extensive CPU and memory resources. Two-dimensional modelling offers a compromise

between the computational difficulties of modelling in three dimensions and the oversim-

plification of the 1D layered earth approximation. The 2D approximation also makes

sense given that airborne survey data are normally collected along straight lines. A two-

dimensional inversion will seek to estimate the lateral and depth variations of conductivity

along a survey line, while assuming that conductivity does not vary in the direction perpen-

dicular to the line direction. The approximation will be valid when surveying conductors

of long strike length, with flight lines perpendicular to strike direction. A conceptual illus-

tration of a survey over a body of long strike length is shown in Figure 1.3. Such geological

targets occur frequently enough in the field to make 2D modelling a useful tool.

Unfortunately, the 3D nature of the primary fields emitted by airborne EM transmitters

makes pure 2D modelling impossible. The transmitters used in most if not all airborne EM

surveys can be modelled as magnetic dipoles (Telford et al., 1990). Such transmitters cre-

ate primary and secondary fields that vary in three dimensions, regardless of conductivity

structure. However, if a 2D conductivity model is assumed, the 3D forward problem may

7



Strike direction

Line direction

Figure 1.3: Airborne EM survey over a target of infinite strike length. Based on Figure 1.3 in Yu (2012).

be decomposed into a set of independent subproblems that may be solved numerically by

discretization (e.g. finite element, finite volume) over a 2D domain. This decomposition

is achieved by setting the geological strike direction to be one of the three Cartesian co-

ordinates and then Fourier transforming Maxwell’s equations with respect to that chosen

coordinate. Once these 2D subproblems have been solved in the Fourier domain, the re-

sults may be (inverse) transformed to give the secondary fields along a survey line. This

approach to modelling an EM system with a 3D source and 2D earth model is called 2.5D

modelling.

Stoyer and Greenfield (1976) published the first 2.5D forward modelling algorithm.

They presented a frequency-domain finite-difference solution for the electric and magnetic

fields due to a 2D earth excited by a 3D magnetic dipole source. Lee and Morrison (1985)

presented a finite-element solution to the same problem. Unsworth (1991) and Everett and

Edwards (1992) published finite-element solutions for electric dipole sources, which are

8



used in marine EM surveying. ArjunAir’s forward modelling routine is based on the finite

element approach taken by Sugeng et al. (1993). Fred Sugeng and Art Raiche, two of the

authors of that paper, were two of the three principle developers of ArjunAir. A finite-

volume solution for the 2.5D airborne EM problem was recently formulated by Yu (2012).

Aside from Yu, recent work on 2.5D EM has been focused on the marine problem. Mit-

suhata (2000) published a finite-element solution for electric dipole sources using a very

similar approach to the one taken by ArjunAir. Abubakar et al. (2008) presented a finite-

difference solution using the optimal grid technique of Ingerman et al. (2000) to reduce

the number of cells required to achieve an accurate solution. Key and Ovall (2011) for-

mulated an adaptive finite-element solution using hierarchical basis functions on triangular

unstructured meshes.

Progress on the marine EM problem has been impressive. However, ArjunAir remains

the only widely available 2.5D code for airborne EMmodelling. Improving its performance

will allow it to be used on a wider range of problems and fill an important niche in EM

modelling and inversion.

1.3.2 Inversion

1.3.2.1 Overview

In an airborne EM survey, the main problem to be solved is the inverse of forward mod-

elling. The electromagnetic fields are measured and the goal is to recover the subsurface

conductivity as a function of position. Attempting to rigorously estimate physical prop-

erties of the subsurface, such as electrical conductivity, from geophysical survey data is

known as geophysical inversion (e.g. Hohmann and Raiche, 1987; Aster et al., 2013). In-
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version is a data fitting problem.

In the case of airborne EM, conductivity is a continuously varying function of position,

which the geophysicist must try to recover from a finite number of noisy data. This makes

the inverse problem inherently ill posed (Parker, 1994). There will be an infinite number

of conductivity models that may fit a given dataset equally well. Any practical inversion

procedure is therefore subjective since some assumptions about the subsurface conductivity

structure must be made in order to create a deterministic inversion algorithm. The prob-

lem is complicated by the fact that the relationship between the observed fields and the

conductivity of the earth is non-linear.

Compared to the number of published forward solutions, there has been little work on

the 2.5D inverse problem. Early inversion algorithms (for both EM and other types of

geophysical data) assumed very simple models of subsurface conductivity such as layered

earths with a small number of layers or simple geometrical shapes embedded in homoge-

neous halfspaces. Non-linear least squares methods were used to estimate the parameters of

these simple earth models (e.g. Glenn et al., 1973). Limiting possible earth models to those

with a smaller number of parameters than the number of observed data is a very restrictive

assumption that is unreasonable for most airborne EM applications. The next generation

of inversion algorithms divided the subsurface into a large number of thin horizontal layers

of fixed thickness, with the number of layers potentially much greater than the number of

observed data. The goal of the inversion is then to find the conductivity (or other physical

property) of each layer in the model. The geophysicist must make additional assumptions

about the desired characteristics of the recovered model in order to define a problem with

a unique solution that may be solved by non-linear optimization methods.

The simplest assumption is to choose the model that is as close as possible to an a priori
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reference model. Such a solution may be found by regularized least squares methods such

as the Levenburg-Marquardt algorithm or zeroeth order Tikhonov regularization (Aster

et al., 2013). The major downside of this approach is that it tends to fail if a reference

model reasonably close to the true model cannot be chosen a priori. This procedure may

be made more robust and even independent of any a priori model by imposing additional

constraints on the characteristics of the desired model through more complex forms of

Tikhonov regularization. The two most common examples of this approach are choosing

the most spatially smooth model that fits the data, known as Occam, or minimum struc-

ture, inversion (e.g. Constable et al., 1987; Haber et al., 2007; Key, 2012), and choosing

the model whose physical property variations are the most spatially compact (e.g. Last and

Kubik, 1983; Cox et al., 2010). Despite their ability to robustly find physical property mod-

els that fit observed data, these approaches bias inversions toward certain types of models

that may or may not reflect geology. For example, minimum structure inversions cannot

recover sharp physical property transitions, which occur commonly in the earth. One ra-

tionale for the minimum structure approach in EM is that conductive features will only be

included in the model if they are absolutely required by the data.

1.3.2.2 Computational issues

Theoretically, any of the approaches discussed in the last paragraph may be readily ex-

tended to 2D and 3D conductivity models. In the 2D EM case, conductivity is assumed

to be constant in one horizontal direction (the strike direction) and is allowed to vary with

depth and the other horizontal direction. A 2D section of the earth is divided into small

polygonal cells of constant conductivity. The goal of the inversion is to recover the con-

ductivity of each cell. In 3D the earth is divided into polyhedra of constant conductivity.
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The main difficulty in implementing 2D and 3D EM inversions is computational. Non-

linear Tikhonov regularized least-squares EM inversion algorithms are iterative in nature

and generally involve a linearization of the problem at each iteration. Solving the linearized

inverse problem requires computing its Jacobian, or sensitivity, matrix. Computing the

Jacobian is very expensive and the computational cost grows strongly with the number

of unknown parameters in the inversion. Storing the Jacobian in memory is generally

impossible for 3D problems. Fortunately, the inverse problem may normally be posed such

that the Jacobian need not be stored explicitly, as long as its action on a vector can be

computed (Haber et al., 2000). Computing the action of the Jacobian normally requires

one or more forward modellings to be performed. Additionally, forward modelling must

be performed at least once more per iteration to compute misfit between the observed data

and the theoretically predicted data computed by forward modelling with the current earth

model estimate.

The cost of computing the Jacobian (or its action on a vector) and estimating the data

misfit are significant constraints that limit the number of parameters that may be estimated

by a practical inversion code. The number of parameters grows quickly, of course, with

the dimensionality of the model. As mentioned above, for a 1D earth, the forward solution

is known in terms of a Hankel transform integral. These integrals may be numerically

evaluated very efficiently (e.g. Christensen, 1990). On a modern consumer grade PC a 1D

forward solution may be computed in much less than a second (e.g. Ray and Key, 2012)

and a full inversion will take no more than a few seconds. For 3D conductivity models,

where numerical techniques such as finite element or finite difference methods must be

used to solve Maxwell’s equations, inversions may take hours or days to run for practical

datasets. As alluded to in the first section of this chapter, 3D EM inversion is still in its
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infancy. A couple of software packages exist but they are too computationally intensive

for widespread use, likely requiring supercomputing resources to run inversions on large

datasets (Cox et al., 2010; Oldenburg et al., 2013).

ArjunAir takes the approach of finding a 2D conductivity model that is as close as

possible to a reference model, with no constraints on the smoothness or compactness of

conductivity variations. Since solving the forward problem with a 2D model requires the

2.5D method, controlled source electromagnetic inversion methods using 2D earth models

are known as 2.5D inversion methods. To my knowledge, the only 2.5D inversion program

aside from ArjunAir capable of handling airborne EM data is the one developed by Yu

(2012). It was coded in Matlab and to my knowledge was not released to the public. That

makes ArjunAir the only production quality 2.5D airborne EM modelling and inversion

code.

Three 2.5D marine EM inversion programs (to my knowledge) have recently been pub-

lished in the geophysical literature (e.g. Abubakar et al., 2008; Ramananjaona andMacGre-

gor, 2010; Key, 2012). The main difference in the implementation of airborne and marine

EM programs is in the type of transmitter used. Marine surveying systems normally use

electric dipole transmitters.

Given that several subproblems on the full 2D mesh must be solved in order to construct

a 2D conductivity model, one may wonder if 2.5D inversion is much more efficient than

full 3D inversion. It is, and the key reason is that the subproblems are completely inde-

pendent so the amount of work required scales linearly with the number of subproblems.

The number of subproblems required normally depends on the distance in the along-strike

direction the fields take to decay to a negligible level. That same factor controls the num-

ber of cells in the along-strike direction required for 3D modelling and inversion of long
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strike length conductors. However, amount of work required for a 3D inversion scales as

the cube of the number of cells in the along-strike direction. This reasoning was given in

the paper on 2.5D forward modelling by Sugeng et al. (1993). For conductors of limited

strike length, where boundary effects in the strike direction are important, 2.5D modelling

will be inaccurate, compared to full 3D modelling. This is more likely to be a problem at

lower frequencies, for which the fields decay more slowly as a function of distance from

the transmitter. Another limitation is that even if the geology is 2D the strike direction must

be known and the survey lines oriented perpendicular to strike if the 2.5D approach is to be

useful.

1.4 Summary

This project has taken a program that fills an important niche in EM data interpretation

software and made it practical to run on much larger datasets than was previously possible,

probably allowing full airborne surveys to be inverted line by line. Additionally, the project

proved that it is possible to take a piece of legacy geophysics software and modernize it

using parallel programming and high performance mathematical software libraries.
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Chapter 2

Theory

This chapter will review the theory behind the forward modelling and inversion capabilities

of ArjunAir. It will start by describing the fundamentals of classical electromagnetism

and the formulation of Maxwell’s equations solved in ArjunAir. The second main section

of the chapter describes ArjunAir’s original inversion algorithm and the modified version

developed for this thesis.

2.1 Forward modelling

2.1.1 Fundamentals of classical electromagnetism

Geophysical electromagnetic forward modelling involves mathematically modelling the

behaviour of macroscopic electromagnetic (EM) fields in the earth. Given a source of

electric charge or current and a model of the electromagnetic physical properties of the

earth, forward modelling seeks to calculate the resulting electric and magnetic fields. In

airborne EM, sources are usually small loops of current that can be modelled as magnetic
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dipoles (i.e. point sources) (Palacky and West, 1991).

Macroscopic EM fields are governed byMaxwell’s equations. Maxwell’s equations can

be written as a set of coupled, vector-valued, linear partial differential equations (PDEs)

for the fields in space and time. The electromagnetic physical properties of the earth enter

the equations as coefficients. The task of forward modelling consists, conceptually, of

constructing a physical property model, in order to define the coefficients, and then solving

Maxwell’s equations. In canonical differential form, Maxwell’s equations are (Jackson,

1999)

∇× e +
∂b

∂t
= 0 (Faraday’s law),

∇× h− ∂d

∂t
= j (Ampere’s law, corrected),

∇ · d =
ρfree
ǫ

(Gauss’s law),

∇ · h = 0 (un-named),

(2.1)

where e is the electric field and b is called the magnetic induction. The variable h is the

magnetic field intensity, d is the electric displacement, j is electric current, and ρfree is free

electric charge density.

The magnetic induction is related to the magnetic field intensity, and the electric field to

the electrical displacement, through constitutive relations. The electromagnetic constitutive

relations are a set of empirical relations that define the relationship between electromag-

netic fields in a given substance. They describe how bulk materials react to applied e and b

fields (Jackson, 1999). Thus, b can be thought of as an externally applied magnetic field,

and h as the total magnetic field that includes b as well as fields generated inside materials

by b. d describes an electric field stimulated in a material due to an applied electric field.

Maxwell’s equations are macroscopic approximations of the behaviour of EM fields which,
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fundamentally, originate from the behaviour of microscopic electric charges and are gov-

erned by the laws of quantum electrodynamics (Jackson, 1999). The constitutive relations

provide a way to model the bulk electromagnetic behaviour of materials without having to

consider the microscopic origins of the behaviour.

Additionally, e and j are related by a third constitutive law. Electrical current density,

j represents moving electric charge. In geophysical contexts, electrical currents are almost

always the result of applied electric fields (Ward and Hohmann, 1987). The third EM

constitutive relation describes how current will flow in response to a given electric field.

In general, constitutive relations might depend on the position, orientation, frequency,

and strength of the fields. In mineral exploration applications, the constitutive relations are

most often taken to be linear and isotropic (Ward and Hohmann, 1987):

d = ǫe (2.2)

b = µh (2.3)

j = σe, (2.4)

where the scalars ǫ, µ, and σ are known as the dielectric permittivity,magnetic permeability,

and electrical conductivity, respectively. In the linear isotropic case, they may still depend

on frequency, position, and other parameters. In most mineral exploration scenarios ǫ and

µ are set to their vacuum values ǫ0 and µ0 but σ is free to vary over several orders of

magnitude. ArjunAir allows all three parameters to vary fully but only vacuum values of µ

and ǫ were used in this work.

It is possible to remove the time dependence of Maxwell’s equations by Fourier trans-

forming them with respect to time. This is equivalent to assuming an eiωt time dependence

for the fields. Let the Fourier transform with respect to time be defined by the following
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pair of integrals (Osgood, 2007):

F (x, y, z, ω) =

∫ ∞

−∞

f(x, y, z, t)e−iωt dt,

f(x, y, z, t) =
1

2π

∫ ∞

−∞

F (x, y, z, ω)eiωt dω.

(2.5)

EM fields encountered in geophysics are often harmonic and even when they are not, work-

ing in the frequency-domain can often be more convenient, computationally, than solv-

ing Maxwell’s equations by direct time-stepping methods (Sugeng et al., 1993). Fourier

transforming and invoking the constitutive relations, Faraday’s and Ampere’s laws in the

frequency-domain can be written as

∇× E+ iωµH = 0

∇×H− (σ + iǫω)E = Jsource,

(2.6)

where Jsource is an applied current, often called the source current. They are now elliptic

rather than hyperbolic differential equations.

Frequency-domain EM systems generate harmonic fields and for such surveys, solu-

tions to Maxwell’s equations in the frequency-domain constitute the full solution of the

forward problem. Time domain surveys produce anharmonic fields. The evolution in time

of anharmonic EM fields may be approximated by solving equations (2.6) at several fixed

frequencies. Numerical inverse Fourier transformation of the frequency-domain fields will

yield the approximate time-domain behaviour (Sugeng et al., 1993). ArjunAir takes this

approach and does not solve Maxwell’s equations by direct time-stepping methods.

Another advantage of working in the frequency-domain is the ability to model induced

polarization (IP) effects (Wilson et al., 2006). In the Cole-Cole model, the most common

way IP effects are understood in geophysics (Telford et al., 1990), IP effects are modelled
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in terms of a frequency dependent conductivity. ArjunAir uses the Cole-Cole model, and

defines conductivity using the formula

σ(ω) = σ0
1 + (iωτ)c

1 + (1−m)(iωτ)c
+ iωǫ, (2.7)

where τ ,m, and c are user chosen empirical IP parameters and σ0 is the direct current (DC)

conductivity. ArjunAir allows forward modelling of full IP effects but can only invert for

DC conductivity. IP effects were not considered in this work. Using this expression for σ,

Ampere’s law can be written compactly as

∇×H− σ(ω)E = Jsource. (2.8)

It is important to note here that ArjunAir uses the full-wave version of Maxwell’s equations.

It does not employ the quasi-static approximation. The non-quasi-static permittivity term

is included as part of the conductivity expression in (2.7) and therefore does not appear

explicitly in (2.8).

2.1.2 Primary-secondary field separation

Airborne EM systems transmit EM fields into the ground by running a time varying electric

current through a loop that is small in comparison with its height above the ground. Such a

transmitter can be idealized as a perfect magnetic dipole (Palacky and West, 1991). Arju-

nAir models airborne EM transmitting antennas as magnetic dipoles, which are represented

mathematically by spatial delta functions:

Jsource = mδ(x) (2.9)

wherem is the dipole moment of the transmitter. In order to avoid modelling the delta func-

tion directly, and to separate fields generated in the earth from those propagating directly
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from the transmitter to the receiver, ArjunAir uses a primary-secondary field separation.

Following Hohmann (1987), I will go over the basics of primary-secondary field sepa-

ration. The total electric and magnetic fields in an EM survey measurement can be divided

into components due to fields generated in the ground by regions of anomalous conductiv-

ity (the secondary field) and those due to a source field in a background earth model (the

primary field). The background conductivity structure is normally a simple one such as a

layered earth, for which the fields can be computed directly by integration.

Consider background conductivity and permeability models σb and µb. Maxwell’s

equations for the primary fields with background physical properties and source Jsource

are

∇× Ep + iωµbH
p = 0

∇×Hp − σbE
p = Jsource.

(2.10)

The secondary fields are given by subtracting the primary fields, Ep andHp, from the total

fields:

Es = E− Ep

Hs = H−Hp.

(2.11)

A set of PDEs for the secondary fields can be easily derived by subtracting equations (2.10)

from the total field equations, (2.6), and invoking the linearity of the curl operator. The

secondary field equations are:

∇×Es + iω(µHs + µaH
p) = 0

∇×Hs − σEs = σaE
p,

(2.12)

where σa and µa are the anomalous conductivity and permeability, respectively. µa = 0 in

most mineral exploration EM applications and it will always be small. Although ArjunAir

allows the total permittivity µ to be set arbitrarily, it assumes µa will be small and ignores
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it in the secondary field equations. µa will be ignored in the remainder of this discussion.

Ignoring µa eliminates the need to computeHp and simplifies the secondary field equations

to

∇× Es + iωµHs = 0

∇×Hs − σEs = σaE
p.

(2.13)

In the secondary field equations, the source term Jsource = mδ(x) is replaced by the primary

field term σaE
p. If Ep is known, the Cartesian components of equations (2.13) form a set

of six coupled scalar PDEs for the components of Es and Hs. Only Cartesian coordinate

systems will be considered in this thesis. The difficulty of computing Ep depends on the

complexity of σb. It is normally chosen to be simple enough forEp to be computed directly

by, at worst, the numerical evaluation of an integral—see e.g. Sugeng et al. (1993).

ArjunAir defines the primary field to be that due to a magnetic dipole in free space.

Thus in equations (2.13) the anomalous conductivity, σa, is equal to the total conductivity

of the earth, σ. In the frequency and time domains, the primary field is known in terms of

a closed form elementary algebraic expression (Ward and Hohmann, 1987).

2.1.3 The 2.5D problem

The secondary field equations, as stated in (2.13), are valid for an arbitrary 3D conductivity

distribution. In this thesis I am interested in computing the response of a 2D earth to an

airborne EM system (i.e. computeHs andEs or hs and es) on a closed 2D domain in the x-

z Cartesian plane. Let y be the geoelectric strike direction and assume that conductivity and

magnetic permeability are constant in the y-direction. Even with 2D physical properties, it

is impossible to solve equations (2.13) purely on a 2D domain for magnetic dipole sources

using standard numerical methods for differential equations.
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In the secondary field equations, the 3D nature of the fields, imparted by the source, is

manifested by the primary field,Ep. In ArjunAir,Ep is the field due to a harmonic magnetic

dipole of frequency ω and unit magnetization, oriented in the x-z plane at an angle θ from

the z axis. It is given in Cartesian coordinates by

Ep(x, y, z) =
iωµ

4πr3
(y cos θx̂+ (z sin θ − x cos θ)ŷ + y sin θẑ) , (2.14)

where x̂, ŷ, and ẑ are unit vectors; x, y, and z are the distances from the dipole in the three

Cartesian directions, and r =
√

x2 + y2 + z2. The field obviously depends on y in a non-

negligible way. Solutions to equation (2.13) will depend on y and the y-derivative terms

cannot be eliminated from the equation. Therefore it is not possible to solve the equations

using a 2D discretization.

However, since conductivity and the rest of the geo-electric physical parameters are

constant with respect to (w.r.t.) the y coordinate, they remain unchanged under a Fourier

transform (FT) w.r.t. y. Performing that FT on the scalar components of equation (2.13)

allows a set of two coupled 2D PDEs to be derived for the along-strike components of

the secondary electric and magnetic fields in the spatial wavenumber domain, Ẽs
y , H̃

s
y =

Ẽs
y , H̃

s
y(x, z, ω, ky), where ky is the y-direction wavenumber. For a given frequency, the

wavenumber domain equations may be solved at a number of constant values of ky. Fre-

quency domain behaviour can then be recovered by numerical inverse Fourier transform of

the ky-domain solutions.

The coupled set of wavenumber domain PDEs will now be derived from equations

(2.13) following Hohmann (1987). The Fourier transform w.r.t. y is defined in the same
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manner as equation (2.5):

Fy{f(x, y, z, ω)} =

∫ ∞

−∞

f(x, y, z, ω)e−ikyy dy,

f(x, y, z, ω) =
1

2π

∫ ∞

−∞

Fy(x, ky, z, ω)e
ikyy dky.

(2.15)

Recall the formula for the Fourier transform of a derivative (Osgood, 2007)

Fy {∂yf(y)} = ikyf(ky).

The Fourier transforms of the components of (2.13) are

ikyẼ
s
z − ∂zẼ

s
y + iωµH̃s

x = 0, ikyH̃
s
z − ∂zH̃

s
y − σẼs

x = σaẼ
p
x, (2.16a)

∂zẼ
s
x − ∂xẼ

s
z + iωµH̃s

y = 0, ∂zH̃
s
x − ∂xH̃

s
z − σẼs

y = σaẼ
p
y , (2.16b)

∂xẼ
s
y − ikyẼ

s
x + iωµH̃s

z = 0, ∂xH̃
s
y − ikyH̃

s
x − σẼs

z = σaẼ
p
z . (2.16c)

where the tildes denote wavenumber domain quantities. Equations (2.16a) and (2.16c) can

be combined to form expressions for Ẽs
x, Ẽ

s
z , H̃

s
x, and H̃

s
z in terms of Ẽs

y , H̃
s
y , and the

primary fields. Substituting those expressions into equations (2.16b) and assuming Ẽp to

be known gives a system of two complex-valued linear inhomogeneous PDEs for Ẽs
y and

H̃s
y :

∇ · ( σ
k2e

∇Ẽs
y)− iky∇ · (A∇H̃s

y)− σẼs
y = σaẼ

p
y − iky∇ ·







σa
k2e







Ẽp
x

Ẽp
z












, (2.17)

∇ · ( 1
k2e

∇H̃s
y) +

ky
ωµ

∇ · (A∇Ẽs
y)− H̃s

y = ∂x

(

σa
k2e
Ẽp

z

)

− ∂z

(

σa
k2e
Ẽp

x

)

, (2.18)
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where the gradient is defined in 2D, k2e = k2y + iωµσ and

A =
1

k2e







0 −1

1 0






.

These are equations 107 and 108 in Hohmann (1987). Other components of Ẽs and H̃s may

be recovered by numerical differentiation. The primary reason for choosing to solve for the

y-components of the wavenumber domain secondary fields is that they are continuous in

x and z. Electromagnetic fields are always continuous inside homogeneous materials. All

magnetic field components and the tangential component of the electric field are continu-

ous at boundaries between media of differing conductivity. The normal component of the

electric field will be discontinuous across conductivity boundaries (Ward and Hohmann,

1987). Since Ẽs
y is tangential to all conductivity boundaries in a 2D model, Ẽs

y and H̃
s
y will

always be continuous in 2D.

ArjunAir solves the system of PDEs (2.17) and (2.18) using an isoparametric finite-

element method. Continuity of Ẽs
y and H̃

s
y allows for the use of node based finite elements

in solving the equations, avoiding the complication of using vector elements (Jin, 2002).

Equations (2.17) and (2.18) may be written more compactly as a single vector PDE. The

compact vector form will be useful in deriving the finite element approximation to the

boundary value problem (BVP) defined by the PDEs (2.17) and (2.18) and appropriate
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boundary conditions. Note the following definitions:

u =







H̃s
y

Ẽs
y






∇u =







∂xH̃
s
y ∂zH̃

s
y

∂xẼ
s
y ∂zẼ

s
y






(2.19)

K1 =
1

k2e







1 0

0 σ






K2 =

1

k2e







0 ky
ωµ

−iky 0






(2.20)

P =







0 1

−1 0






K3 =







1 0

0 σ






(2.21)

f =







f1

f2






, (2.22)

where, f1 and f2 are the right hand sides of equations (2.18) and (2.17), respectively. Ad-

ditionally, for any matrix X ∈ C2×2, ∇ ·X is defined to be the vector who’s ith element is

the divergence of the ith row ofX. Using those definitions, equations (2.17) and (2.18) can

be written as the vector PDE

∇ · (K1∇u) +∇ · (K2∇uP)−K3u = f . (2.23)

For a set of frequencies, ω, and wavenumbers, ky, ArjunAir solves the boundary value

problem

∇ · (K1∇u) +∇ · (K2∇uP)−K3u = f in Ω, (2.24a)

u = 0 on ∂Ω, (2.24b)

Ω =
{

(x, z) ∈ R
2 : x1 < x < x2, z1 < z < z2

}

, (2.24c)

where ∂Ω is the boundary of Ω. x1 and x2 are the lateral limits of the domain, and z1 and z2

are the vertical limits. The field amplitudes decay asymptotically toward zero far from the

25



source location. Therefore, Ωmust be taken large enough for the fields to be approximately

zero on the boundary.

Having described how to compute the secondary EM fields in the ky wavenumber do-

main, the entire forward modelling process may now be summarized. The secondary fields

at all nodes in the finite element mesh in the wavenumber domain are required in comput-

ing the sensitivity matrix in the ArjunAir inverse problem. Frequency and (possibly) time-

domain fields only need to be known at so-called observation locations, the locations of

EM receivers in a survey. Consequently, transformation of the wavenumber domain fields

to the frequency and time domains only needs to be performed at the observation loca-

tions. The conceptual structure and workflow of the forward modelling process is outlined

in Algorithm 2.1. This conceptual algorithm corresponds to solving the forward problem

Algorithm 2.1 Conceptual ArjunAir forward solve procedure.

Specify an earth model σ(x, z, ω), µ(x, z)

Specify a source current J = m(t)δ(x − x0, z − z0)

Choose set of nf frequencies: {ωi}
Choose set of ny wavenumbers: {kyj }
for i = 1 to nf do

for j = 1 to ny do

Compute primary electric field Ẽp, given J

Solve equations (2.17) and (2.18) with ω = ωi, k
y = kyj

Find other field components by numerical differentiation

Find field values at observation locations and store them

end for

Spline and interpolate observation location fields as functions of ky

Use interpolated ky domain fields in numerical inverse FT to recover frequency-domain fields for ωi

end for

Spline and interpolate observation location fields as functions of ω

Use set of interpolated frequency-domain fields in numerical inverse FT to recover time-domain fields
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for a single source. In a typical airborne EM survey there are 1-3 observations per source

location, with an entire survey comprising observations taken at many locations. However,

the ArjunAir forward solver is implemented such that solving for many source locations

requires very little computation, relative to the cost of solving for one location.

In addition to ArjunAir, several other 2.5D EM software packages based on equations

(2.17) and (2.18) have been developed. Everett and Edwards (1992), Kong et al. (2008),

and Key and Ovall (2011) developed 2.5D marine controlled-source EM codes, using elec-

tric dipole sources. Mitsuhata (2000) solved a system of equations having the same left

hand side structure as (2.17) and (2.18) but modelled sources directly as pseudo delta func-

tions. He also did not consider magnetic dipole sources. However, adapting any of these

codes to use magnetic sources would be simple. Stoyer and Greenfield (1976) published

the first numerical solution of equations (2.17) and (2.18). They considered both electric

and magnetic sources.

2.1.4 Solving Maxwell’s equations in the ky domain

2.1.4.1 Galerkin’s method and the weak form of a BVP

As mentioned above, ArjunAir uses an isoparametric finite-element method to solve the

BVP (2.24). This section will provide an overview of the finite element method, as em-

ployed by ArjunAir. Derivation of the finite element equations is based on the approach

to the Galerkin finite element method taken by Gockenbach (2006), with reference to the

book by Brenner and Scott (2008).

Galerkin’s method approximates the solution u ∈ W—for some function spaceW to be

specified later—of an elliptic PDE or system of PDEs by finding the projection of u onto a
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finite-dimensional subspace ofW , which will be denoted L for now. This reduces the prob-

lem to solving a system of linear algebraic equations. The finite element method consists

of applying Galerkin’s method using a subspace L with a basis of piecewise polynomials.

The first step in deriving the system of finite element equations for the BVP (2.24) is to

write it in its weak form. Consider the general BVP

L{u} = f in Ωg, (2.25a)

u = 0 on ∂Ωg , (2.25b)

where L is an elliptic differential operator and Ωg is a bounded domain in R2. Follow-

ing Gockenbach (2006), next define

L2(Ω) =

{

v :

∫

Ω

vv∗ dΩ <∞
}

, (2.26)

where v∗ is the complex conjugate of v. This is the space of complex valued functions that

are square integrable over Ω. The Sobolev space, H1
0 can then be defined as

H1
0 =

{

u ∈ L2(Ω) : ∂xu, ∂yu ∈ L2(Ω), u = 0 on ∂Ω
}

(2.27)

with the partial derivatives defined in the weak sense (see Gockenbach (2006, pg. 24) for a

definition of the weak partial derivative). The weak form of the BVP (2.25) is

find u ∈ H1
0 (Ω) :

∫

Ω

L(u)v dΩ =

∫

Ω

fv dΩ ∀v ∈ H1
0 . (2.28)

Since (2.28) must hold for all v in H1
0 , any u that solves it must also solve (2.25)—this is

proven by Gockenbach (2006, pg. 20).

The weak form of the BVP (2.24) is to find u ∈ V such that

∫

Ω

[∇ · (K1∇u) +∇ · (K2∇uP)−K3u] · v =

∫

Ω

f · v ∀v ∈ V, (2.29)
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where dΩ has been omitted from the integrals to save space and

V =
{

v = (v1, v2) : v1, v2 ∈ H1
0 (Ω)

}

.

For use in the Galerkin method, the left hand side of (2.29) will be re-written as a

symmetric bilinear form, a(u,v). Using the identity

(∇ · σ) · v = ∇ · (σTv)− σ · ∇v, (2.30)

which holds for any σ ∈ C2×2 and v ∈ C2 (Gockenbach, 2006, pg. 18), the first term in

(2.29) can be written

∫

Ω

[∇ · (K1∇u)] · v =

∫

Ω

∇ · [(K1∇u)Tv]−
∫

Ω

(K1∇u) · ∇v.

The first term on the right hand side of this equation is the integral of the divergence of a

vector so by the divergence theorem

∫

Ω

∇ · [(K1∇u)Tv] =

∫

∂Ω

[(K1∇u)Tv] · n̂,

where n̂ is a unit vector normal to ∂Ω. Since u = 0 on ∂Ω, this term vanishes, leaving

∫

Ω

[∇ · (K1∇u)] · v = −
∫

Ω

(K1∇u) · ∇v.

Using the same reasoning on the second term, equation (2.29) can now be written in the

form

a(u,v) = ℓ(v) ∀v ∈ V, (2.31)

with

a(u,v) = −
∫

Ω

(K1∇u) · ∇v + (K2∇uP) · ∇v + (K3u) · v dΩ (2.32)

and

ℓ(v) =

∫

Ω

f · v dΩ. (2.33)
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Existence and uniqueness of the solution to (2.31) will not be shown here. Its derivation

from the strong BVP, (2.24), was not shown in any of the publications relating to ArjunAir

or in its documentation. The developers simply stated that they used a Galerkin finite

element method with isoparametric quadrilateral elements, gave the form of the quadratic

basis functions, and noted that the local element stiffness matrices are complex symmetric.

Thus, it is not known how the original developers derived the finite element system of

linear equations solved in ArjunAir. The derivation in this section leads to the same system

of algebraic equations solved by the program. This was determined by inspection of the

source code.

It is also not known whether or not the ArjunAir developers rigorously determined

the existence and uniqueness of exact solutions to (2.31), or if they attempted to derive a

bound on the error of the finite element solutions. They tested the accuracy of ArjunAir

modelling results by comparing them with those from 1D and 3D airborne EM modelling

software (Wilson et al., 2006). Their claims of accuracy were lightly tested for this study

by comparing ArjunAir modelling results to those of a 1D modelling package for homo-

geneous halfspaces of varying resistivity. Further tests comparing ArjunAir with 3D mod-

elling of long strike-length targets was carried out by Miensopust et al. (2013). Miensopust

(personal communication, 2013) also tested ArjunAir on several homogeneous halfspaces

and compared the results to a 1D code, getting results matching my tests.

As mentioned above, Key and Ovall (2011) developed a 2.5D marine CSEM modelling

program that solves (2.24) using a finite element method. They used a different source but

the left hand side of the PDE is the same. They were able to prove existence and uniqueness

of a solution to the weak form of the BVP. Their proof relied on setting relative dielectric

permittivity to 1 (i.e. they used the quasi-static approximation) so it is not technically valid
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for ArjunAir. However, relative permittivity will be set very close to, if not exactly equal

to 1 for most ArjunAir applications. Therefore, Key and Ovall’s results provide confidence

that the ArjunAir finite-element scheme is sound in principle.

For a rigorous discussion of existence/uniqueness issues and error estimation in finite

element solutions to Maxwell’s equations, see the book by Monk (2003, esp. chap. 2). It is

mainly concerned with high-frequency EM fields, which behave somewhat distinctly from

geophysical EM fields but many of the results apply generally to Maxwell’s equations,

geophysical fields included.

Now, the finite-dimensional Galerkin approximate solution of the weak BVP (2.31)

will be derived. Consider a finite dimensional subspace Vh ⊂ V . Using the terminology

of Brenner and Scott (2008), the Galerkin approximation corresponding to (2.31) is to find

uh ∈ Vh such that

a(uh,v) = ℓ(v) ∀v ∈ Vh. (2.34)

Since Vh is finite-dimensional, it has a basis {βi}, which allows uh to be written as a linear

combination of the basis functions,

uh =
∑

i

uiβi, (2.35)

ui ∈ C. Substituting this expression for uh into (2.34) and appealing to the linearity of a

in its first argument gives

∑

i

ui a(βi,v) = ℓ(v) ∀v ∈ Vh. (2.36)

Choosing v = βj the following holds:

∑

i

ui a(βi,βj) = ℓ(βj). (2.37)
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The coefficients {ui} can now be found by solving a square system of linear equations

KU = F where

Kij = a(βi,βj), Ui = ui, Fi = ℓ(βj). (2.38)

Since a is a symmetric bilinear form, the matrix K is complex symmetric. Its numerical

properties will be discussed further in Chapter 3.

2.1.4.2 The finite element method in ArjunAir

A Galerkin finite element method consists—to paraphrase Gockenbach (2006)—of using

Galerkin’s method with Vh being a space of piecewise polynomials. Before discussing the

details of the finite element method implemented in ArjunAir, recall that it is concerned

with a vector BVP. The finite element solution, uh, is a vector quantity, uh = (H̃sh
y , Ẽ

sh
y ).

Let P 0
h (Ω) ⊂ H1

0 (Ω) be the set of piecewise polynomials of degree h that are continuous

and weakly differentiable on Ω and zero on ∂Ω. Let the set of scalars {ψi} be a basis for

P 0
h (Ω). Vh may now be defined more specifically as

Vh =
{

vh = (v1h, v2h) : v1h, v2h ∈ P 0
h (Ω)

}

. (2.39)

In ArjunAir, Ω is divided into a set of isoparametric quadrilateral regions, or elements.

These elements have four sides and four vertices each, but their sides may be curved. Addi-

tionally, the mesh must be conforming, meaning that the elements must be non-overlapping

and that no vertex may lie on the edge of an adjacent element at a position that is not a ver-

tex of the adjacent element. An example of a mesh of isoparametric quadrilaterals on a

rectangular domain is shown in Figure 2.1a. Inside each element, each component of uh is

represented by a quadratic polynomial of the form

a0 + a1x+ a2x
2 + a3z + a4z

2 + a5xz + a6xz
2 + a7x

2z. (2.40)
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(a)

S

t

(-1,1) (1,1)

(-1,-1) (1,-1)

(b)

Figure 2.1: a) Example of meshing a rectangular domain with isoparametric quadrilaterals (Bono and

Awruch, 2008). b) Eight node isoparametric quadrilateral reference element.

This corresponds to taking h = 2 in equation (2.39). To insure each component of the finite

element solution, uh, is continuous over all of Ω, the polynomials on adjacent elements

must agree on the boundary joining the elements. Thus the ArjunAir finite element method

approximates the solution of the weak BVP (2.31) by a vector function, uh, with each

component in the space P 0
2—i.e. a function that is continuous and weakly differentiable on

Ω and representable by a function of the form (2.40) within each element.

To find the finite element solution using Galerkin’s method, a basis, {ψi}, for P 0
2 must

be constructed. The two components of uh will be represented by linear combinations of

scalar basis functions,

H̃sh
y =

nf
∑

i=1

Hiψi, Ẽsh
y =

nf
∑

i=1

Eiψi, (2.41)

where nf is the dimensionality of the basis set, equal to the total number of interior nodes

in the finite element mesh. The full solution uh ∈ Vh may then be formed by a linear
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combination of vector basis functions

uh =

2nf
∑

i=1

uiβi, (2.42)

where

{βi : βi = (ψi, 0) for 1 ≤ i ≤ nf ,βi = (0, ψi) for nf + 1 ≤ i ≤ 2nf} . (2.43)

ArjunAir uses a nodal basis for {ψi}. A node is placed at each vertex in the mesh and at

the midpoint of each element edge, as in Figure (2.1b). The homogeneous Dirichlet bound-

ary conditions mean that H̃sh
y and Ẽsh

y are zero on all nodes on ∂Ω. When homogeneous

Dirichlet boundary conditions are used, it can be shown (Gockenbach, 2006) that a function

in P 0
2 can be fully determined by its value at the interior nodes of the finite element mesh.

This suggests using a basis with the following property:

ψi =











1 : at node i

0 : at all other nodes.

(2.44)

The basis functions must also have the property that ψi 6= 0 only in elements that include

node i.

At this point, recall that Galerkin’s method leads to the linear system of equations

KU = F , with Kij = a(βi,βj), and F = ℓ(βj). a and ℓ are integrals over Ω. They

can be written as the sum of integrals over each element that makes up Ω:

a(βi,βj) = −
ne
∑

ei=1

∫

Ωei

(K1∇βi) · ∇βj + (K2∇βiP) · ∇βj + (K3βi) · βj dΩ.,

ℓ(βj) =
ne
∑

ei=1

∫

Ωei

F · βj dΩ.

(2.45)

It is clearly seen that the first integral will be zero over all elements except those that

include both node i and node j. Additionally, for nodes i and j that never occur in the same
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element, a(βi,βj) will be zero over all of Ω. Thus, for a given βi, a(βi,βj) will only be

non-zero for a small number of βj , leading to a sparse matrix,K.

In ArjunAir, as in most practical finite element codes, K and F are assembled element

by element, as the sum of submatrices and subvectors Kei and F ei , associated with each

element, ei. The entries of the submatrix for element ei are the integrals a(βi,βj) over ei,

for each pair of basis functions βi and βj that are non-zero in ei. There are eight nodes per

element and each node is associated with two basis functions, one of the form (ψi, 0) and

the other of the form (0, ψi). Thus, each element matrix is 16× 16.

The vector nature of the basis functions imparts further structure to the element matri-

ces. They can be written as 2× 2 block matrices

Kei =







K11 K12

K21 K22






. (2.46)

Entries of K11 have the form aei [(ψi, 0), (ψj, 0)]. The entries of K12, K21, and K22 have

the respective forms aei [(ψi, 0), (0, ψj)], a
ei [(0, ψi), (ψj, 0)], and a

ei[(0, ψi), (0, ψj)]. K11

and K22 are symmetric, while K12 = KT
21. General forms of the entries of each submatrix

may be found by substituting the corresponding forms of βi and βj into equation (2.45).

For example, entries ofK11 will have the form

aei(βi,βj) = aei[(ψi, 0), (ψj, 0)] =

∫

Ωei

1

k2e
∇ψi · ∇ψj + ψiψj dΩ. (2.47)

The core task of computing the entries of the global stiffness matrix K is to compute

integrals of the form (2.47) and the similar integrals for the entries ofK12 andK22.

The missing ingredients required to compute these integrals are expressions for the ψi

inside an arbitrary element. On a rectangular domain divided into rectangular elements

with sides aligned with those of the domain, bi-quadratic basis functions of the same form
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as the element polynomials (equation 2.40) may be chosen. Unfortunately, for elements

with edges not aligned with the domain axes, or edges that may be curved, a linear com-

bination of bi-quadratic functions will not necessarily determine a piecewise continuous

function on Ω. However, the basis functions within a given element may be taken to be

images of a bi-quadratic function on a rectangular reference element under a quadratic

mapping (Gockenbach, 2006). The reference element is shown in Figure 2.1b. The map-

ping of a point (s, t) in the reference element to a point (x, z) in the true domain, is given

by

x = a0 + a1s+ a2s
2 + a3t+ a4t

2 + a5st+ a6st
2 + a7s

2t

z = b0 + b1s+ b2s
2 + b3t + b4t

2 + b5st+ b6st
2 + b7s

2t.

(2.48)

This can be written as a vector function,

w = (x, z) = g(s, t). (2.49)

The bi-quadratic basis functions associated with each node of the reference element may

be constructed by inspection using the Kronecker delta requirement of the basis functions.

The reference element has vertices (-1,1), (0,1), (1,1), (1,0), (1,-1), (0,-1), (-1,-1), and (-1,0)

in the reference s-t coordinate system. The basis functions corresponding to the reference
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nodes, ordered as in the previous sentence, are

ζ1 = −1

4
(1− s)(1 + t)(1 + s− t)

ζ2 =
1

2
(1 + s)(1− t2)

ζ3 = −1

4
(1 + s)(1 + t)(1− s− t)

ζ4 =
1

2
(1 + s)(1− t2)

ζ5 = −1

4
(1 + s)(1− t)(1− s+ t)

ζ6 =
1

2
(1− s2)(1− t)

ζ7 = −1

4
(1− s)(1− t)(1 + s+ t)

ζ8 =
1

2
(1− s)(1− t2).

(2.50)

Rather than transforming these reference basis functions to each real element in order

to compute the integrals (2.47), the integrals may be performed over the reference element

by making an appropriate change of variables. According to the rules of multivariable

calculus, as cited in Gockenbach (2006), the formula for change of variables in a multiple

integral is
∫

Ωei

f(x, z) dxdz =

∫

er

f(g(s, t))|det[J(g)]| dsdt, (2.51)

where er denotes the reference element and J(g) is the Jacobian of the transformation from

the reference coordinates to the real coordinates:

J(g) =







∂sx(s, t) ∂tx(s, t)

∂sz(s, t) ∂tz(s, t)






. (2.52)
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Using the change of variable rule, equation (2.47) is transformed to

aei[(ψi, 0), (ψj, 0)] =

∫

er

[

1

k2e
(J−T∇ζi) · (J−T∇ζj) + ζiζj

]

|det(J)| dsdt, (2.53)

where J−T is the transpose of J−1. ke, which includes the electrical conductivity, is as-

sumed to be constant in each element. The integral formulas for the other entries of the

element matrices and the entries of the element load vectors, Fei , may be transformed by

the same rule. The integrands will not, in general, be polynomials and cannot normally

be integrated analytically. In ArjunAir, the integrals are computed approximately by a

9-point Gaussian quadrature rule. Once all these integrals have been computed and the

global system of equationsKU = F has been assembled, the system may be solved using

the techniques of sparse numerical linear algebra. The methods used to solve KU = F

in ArjunAir will be discussed in the next chapter. Computing the integrals (2.53) is very

efficient and takes less than 1% of the total forward solution time.

2.1.5 Computing the primary field

Recall that the inhomogeneous, or source, term of the ArjunAir wavenumber domain BVP

is a function of the primary electric field. The primary field is the electric field due to

a harmonic magnetic dipole transmitter in free-space. It is oriented in the x-z plane at an

angle θ from the z-axis. In the frequency-domain, the field is given by the simple expression

Ep(x, y, z) =
iωµ

4πr3
(y cos θx̂+ (z sin θ − x cos θ)ŷ + y sin θẑ) , (2.54)

where x̂, ŷ, and ẑ are unit vectors, x, y, and z are the distances from the dipole in the three

Cartesian directions, and r =
√

x2 + y2 + z2. ArjunAir needs to compute the value of the

Fourier transform with respect to y of all three components of Ep at each subsurface node
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in the finite element mesh. The values at nodes in the air are not required since every time a

component of Ep appears in the wavenumber domain BVP, it is multiplied by the model’s

total conductivity. For the purposes of the primary field calculation the total conductivity

in the air is taken to be zero, making the source term in the secondary field BVP zero in the

air. The wavenumber domain representation of Ep must still be computed at all subsurface

mesh nodes. Unfortunately, a closed form expression for Ep in the y-wavenumber domain

does not exist, so it must be computed by numerical Fourier transformation.

ArjunAir uses the digital filtering technique to compute the transforms. Digital filtering

converts a Fourier or Hankel transform of a function f to a weighted sum of the values of

f at a discrete set of sample points. The fast Fourier transform (FFT) is the most common

technique for computing numerical approximate FTs. It also converts an FT to a weighted

sum, however, it requires equally spaced sample points. The y
r3

and 1
r3
y-dependence of

the components of Ep make the FFT technique inefficient for the 2.5D geophysical EM

problem. Sample spacing must be very tight to capture the rapid decay of the field at small

y, leading to a very large number of samples being required to capture the behaviour at

large y. Therefore, a technique that allows for logarithmic sample spacing is preferred.

Digital filtering meets the requirement of logarithmic sample spacing. It has been ap-

plied more often in EM geophysics to the computation of Hankel transforms, which are

required in 1D geophysical EM modelling (e.g. Christensen, 1990; Farquharson and Old-

enburg, 2000), but is equally applicable to the computation of Fourier transforms (e.g.

Johansen and Sørensen, 1979; Anderson, 1983). The ArjunAir developers wrote their own

digital filtering routines, with the help of routines developed by Christensen (1990) and

based on his work. This section of the thesis will give some brief theoretical background

information on the digital filtering technique, while technical implementation details and
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modifications to the original routines performed by me will be described in the next chapter.

The Fourier transform can be written as the sum of sine and cosine transforms

Fy {f(y)} =

∫ ∞

−∞

f(y)e−ikyy dy =

∫ ∞

−∞

f(y) cos(kyy) dy − i

∫ ∞

−∞

f(y) sin(kyy) dy.

(2.55)

The x and z components of Ep are anti-symmetric with respect to y and the y component

is symmetric. Therefore, the cosine term of the FT is zero for the x and z components and

the sine term is zero for the y component. Letting, ρ2 = x2 + z2, this gives

F {Epx} = Ẽpx =
ωµ cos θ

2π

∫ ∞

0

y

(ρ2 + y2)3/2
sin(kyy) dy,

F {Epy} = Ẽpy = (z sin θ − x cos θ)
iωµ

2π

∫ ∞

0

cos(kyy)

(ρ2 + y2)3/2
dy,

(2.56)

and

F {Epz} = Ẽpz =
ωµ sin θ

2π

∫ ∞

0

y

(ρ2 + y2)3/2
sin(kyy) dy.

Digital filtering is used to compute the two integrals

∫ ∞

0

y

(ρ2 + y2)3/2
sin(kyy) dy and

∫ ∞

0

cos(kyy)

(ρ2 + y2)3/2
dy (2.57)

that occur in Ẽpx, Ẽpy, and Ẽpz.

The routines used for digital filtering in ArjunAir were developed for the computation

of Hankel transforms. A Hankel transform is an integral transformation whose kernel Jν

is a Bessel function of the first kind with order ν > −1. The Hankel transformation of a

function, f(y) is

g(ky) =

∫ ∞

0

f(y) yJν(kyy) dy. (2.58)

The cosine and sine transforms in equations (2.57) may be converted to Hankel transforms
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by using the identities

cos(kyy) =

√

πkyy

2
J−1/2, sin(kyy) =

√

πkyy

2
J1/2.

Using those identities, equations (2.57) become the Hankel transforms

√

πky
2

∫ ∞

0

√
y

(ρ2 + y2)3/2
yJ1/2 dy,

√

πky
2

∫ ∞

0

y−1/2

(ρ2 + y2)3/2
yJ−1/2 dy. (2.59)

These integrals may now be evaluated approximately using the Hankel transform technique

of Christensen (1990). His work is an improvement of the method developed by Johansen

and Sørensen (1979). They were able to show that a Hankel integral of the form (2.58) may

be approximated by a weighted sum

g(ky) =
b
∑

j=a

f(ρ, eyj )Hj, (2.60)

where the function evaluation points yj and the coefficients Hj are computed in advance

and should be valid for any reasonably well behaved function f(y) that decays asymptot-

ically toward zero quickly enough as y → ∞. The evaluation points yj must be equally

spaced but the fact that f(eyj) rather than f(yj) is evaluated gives the desired logarithmic

sample spacing. ArjunAir uses filter coefficients computed using the software of Chris-

tensen (1990). The coefficients and evaluation points are hard coded into the software.

The digital filtering technique computes the integrals (2.59) for a fixed value of ρ.

Therefore, in order to compute Ẽp as accurately as possible at each subsurface node in

the mesh, the transform integrals must be computed separately at each node and for each

transmitter position. This was done in the original ArjunAir software. However, since the

integrals depend only on the distance from the transmitter, ρ, and not on x and z separately,

the task of computing Ẽp may be simplified considerably by computing the integrals at a

range of values of ρ, computing ρ at each mesh node, then interpolating over ρ to find the
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approximate values of the integrals at the nodes. Such an interpolation scheme was imple-

mented as part of the work for this thesis. Implementation details will be described in the

next chapter.

2.2 Inversion

2.2.1 Overview

The goal of ArjunAir is to compute an estimated earth model that matches a set of observed

data. The observations are values of the secondary magnetic field along a straight flight

line above the earth. The observations may be taken at different heights above the surface

of the earth but their lateral positions must lie along a straight line in the x-y plane. In

practice, flight lines will not be perfectly straight. To account for this, ArjunAir requires

the user to input a starting point and direction for each flight line and all observations

are assumed to fall on that line. An error message is generated and the program stops if

the true observation points are too far from the idealized flight line. At each observation

location, the secondary magnetic field may be measured in steady state as a function of

frequency (for frequency-domain EM systems) or as a time decay after a pulse of source

current through the transmitter for time-domain systems. From the point of view of the

inverse problem, the fields at each frequency or time at a given location are independent

observations.

An earth model is defined here as the electrical conductivity as a function of position

on a 2D section of the earth below the flight line. Conductivity is assumed to be constant

in each element of a user defined region of the 2D finite element mesh. The goal of the
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computational inverse problem in ArjunAir is to recover the conductivity of each element.

Recall that ArjunAir uses a multi-parameter frequency dependent complex conductivity for

forward modelling. Only one component of the complex conductivity, the DC conductiv-

ity, may be inverted for. The other components may be set arbitrarily by the user but will

remain fixed during inversion. DC conductivity may vary over several orders of magni-

tude. It is strictly positive and typically less than 1. Because of the positivity and large

variation, ArjunAir’s inversion algorithm uses the natural logarithms of the inverses of the

cell conductivities, rather than the actual conductivities, as model parameters.

The inverse problem is posed as a non-linear least squares optimization problem,

minimize
m

Φ(d,m) = ‖d− f(m)‖2W . (2.61)

Here d is the vector of observed data, m is the vector of model parameters. d has dimen-

sion nd and m has dimension nm. ArjunAir is capable of handling both overdetermined

(nd > nm) and underdetermined (nd < nm) problems. Only underdetermined problems

are discussed here. f is the forward modelling operator. f(m) represents the predicted

secondary fields computed by forward modelling for an earth with conductivity structure

corresponding to m. The W norm is a close cousin of the standard L2 norm. For an

arbitrary vector a ∈ Rnd ,

‖a‖2W = aTWa, (2.62)

for some real, symmetric positive-definite matrix W . In ArjunAir W will be a diagonal

data-weighting matrix, with entries

Wii =
1

n2

d

2
(d2i + f 2

i )
, (2.63)

where di and fi are components of the observed and predicted data vectors. Stated in
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words, the inverse problem is to find the model that minimizes the discrepancy between the

observed data and the predicted secondary fields calculated by forward modelling.

2.2.2 The damped eigenparameter algorithm as implemented in Ar-

junAir

The forward modelling operator is non-linear in the model parameters so the inverse prob-

lem may not be solved directly by linear least-squares methods. The algorithm employed

by ArjunAir to solve the non-linear minimization problem (2.61) is iterative and is based on

the damped eigenparameter method of Jupp and Vozoff (1975). An overview of the method

will now be given, following Jupp and Vozoff’s original paper. To start, the forward mod-

elling operator is linearized about a user supplied initial model m0. A multi-dimensional

Taylor expansion of f aboutm0 gives

f(m0 + δm) = f(m0) + Jδm +R, (2.64)

where δm is a small model perturbation and J is the Jacobian matrix of f at m0. The

Jacobian is normally defined to be the nd × nm matrix with entries

Jij =
∂fi(m)

∂mj
(2.65)

where fi(m) is the predicted value of the ith datum and mj is the j th model parameter.

The data and model parameters may vary over widely different scales. To account for this

ArjunAir computes a scaled version of the Jacobian, which measures the size of changes in

the EM response due to fractional changes in model parameters (Wilson et al., 2006):

Jij =
mj

fi(m)

∂fi(m)

∂mj

. (2.66)
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Using this definition of the Jacobian will not otherwise affect the analysis presented here.

R in equation (2.64) is a remainder term, whose magnitude is assumed to beO
(

‖δm‖2
)

.

For small model perturbations, δm, R may be ignored, giving

f(m0 + δm) ≈ f(m0) + Jδm. (2.67)

Replacing f by its linearization in the non-linear problem (2.61) gives the linear least

squares problem

minimize
δm

‖d− f(m0)− Jδm‖2W = ‖ε− Jδm‖2W , (2.68)

where ε = d − f(m0). This may be converted to a least-squares problem in the L2 norm

by a change of variables in ε and J (Jackson, 1972). LetW = ZTZ, whereW is the same

as in equation (2.62). Then write

ZJ = J′, and Zε = ε′. (2.69)

The minimization problem (2.68) can then be written

minimize
δm

‖ε′ − J′δm‖22. (2.70)

The value of δm is unaffected by the change of variables. The Jacobian and residual error

are scaled in ArjunAir and computations proceed as if solving the L2 norm minimization

problem. Primes and specific norm designations are suppressed for the remainder of this

chapter, on the understanding that doing so causes no loss of generality (Jackson, 1972;

Jupp and Vozoff, 1975).

The full non-linear problem (2.61) is solved by an iterative process. At each iteration,

let the current model be mi, the linear problem (2.68) is solved at mi to find a model per-

turbation δm. The model is then updated by the rulemi+1 = mi+δm. The problem is then
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linearized about mi+1 and the process is repeated until the discrepancy between observed

and predicted data is sufficiently small, a maximum number of iterations is reached, or until

no further improvement may be made due to the algorithm reaching a local minimum in

the model-space. The inversion procedure is laid out in Algorithm (2.2).

Algorithm 2.2 ArjunAir inversion algorithm

Specify an initial modelm0

Solve forward problem to compute ε

if ‖ε‖ ≤ ( a user specified tolerance) then

End

end if

while ‖ε‖ > ( a user specified tolerance) do

Linearize f aboutm0

Solve (2.68) with modelm0, to find model update δm

m0 = m0 + δm

Solve forward problem with newm0 to compute ε

end while

One can see from the algorithm that there are three main computational tasks involved

in solving the ArjunAir non-linear inverse problem. First, one must be able to solve the

forward problem in order to compute the data misfit, ε. Secondly, one must be able to

compute the Jacobian of the forward modelling operator about an arbitrary model, m.

Finally, one must be able to solve the linear least squares problem (2.68) in order to compute

the model update δm.

The algorithm used to solve the forward problem was described in the first section of

this chapter. The Jacobian was calculated using the adjoint-operator method, as described

in McGillivray et al. (1994). The algorithm was not altered for this study and will not be

described here except to say that it requires the computation of adjoint electric fields. The
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adjoint electric field for a given transmitter-receiver pair is the field due to a hypothetical

transmitter at the receiver location. This means, that during inversion, the forward problem

must be solved for the adjoint transmitters, in addition to the actual transmitters.

The final main inversion task, the solution of the linear least-squares problem (2.70) for

the model perturbation δm, will now be described. Solving the linear problem presents two

main challenges. First, there are normally more unknown model parameters than there are

data, making the problem underdetermined. Additionally, the data have a very weak but

non-zero dependence on some parameters, which makes the linear problem ill-conditioned

and can lead to instability in the non-linear minimization.

To deal with the underdeterminedness that comes from having more model parameters

than data points, ArjunAir finds the solution to (2.70) with minimumL2 norm. In principle,

that solution may be found by the matrix vector multiplication

δm = J†ε, (2.71)

where J† is the Moore-Penrose pseudoinverse of J (Jupp and Vozoff, 1975). The Moore-

Penrose pseudoinverse of an arbitrary matrix, A, is a matrix A† that meets the following

four conditions

1. AA†A = A

2. A†AA† = A†

3. (A†A)T = A†A

4. (AA†)T = AA†.

If one can compute the singular value decomposition (SVD) of A, A† may be trivially
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computed. Returning to the inverse problem, recall that J ∈ R
nd×nm (nd < nm) and let

J = UΣVT (2.72)

be its singular value decomposition, where U ∈ Rnd×nd and V ∈ Rnm×nm are orthogonal

matrices. Σ is a diagonal matrix in Rnd×nm , whose diagonal entries, σi, come in non-

increasing order and are called the singular values of J. Σ has a maximum rank of nd but

may have a lower rank. The number of non-zero singular values of a matrix is equal to its

rank. For a matrix with rank p, the singular values obey

σ1 ≥ σ2 ≥ · · · ≥ σp > σp+1 = σp+2 = · · · = σnd
= 0. (2.73)

Using the SVD, J† is given by

J† = VΣ†UT , (2.74)

whereΣ† ∈ Rnm×nd is a diagonal matrix whose diagonal entries, si, are defined by the rule

si =











1
σi

: σi > 0

0 : σi = 0.

(2.75)

One may verify by direct substitution that J† meets the criteria for being a Moore-Penrose

pseudoinverse. ArjunAir calculates the SVD of J using a routine based on the Golub-

Reinsch algorithm (Golub and Reinsch, 1970).

Unfortunately, computing δm directly from equation (2.71) causes instability in the it-

erative non-linear minimization algorithm, of which computing δm is a part. Roundoff

error in very small but non-zero singular values will be greatly magnified when their recip-

rocals are computed in Σ†. Even in exact arithmetic, small singular values pose a serious

problem since observed data are never exact. To see why this is the case, consider the

vector of what Jupp and Vozoff (1975) call the eigenparameters of the inverse problem,
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δp = σ1V
Tδm. Also, let ki = σi/σ1 for all non-zero σi and zero otherwise. Jupp and

Vozoff showed that if the data are perturbed by an amount∆d, satisfying ‖∆d‖ < q, then

|δpi| ≤
q

ki
for i = 1, p (2.76)

where p is the number of non-zero singular values. That expression shows that a small

change in the observed data can lead to a large change in a model eigenparameter if its

corresponding singular value is small, relative to σ1. To show that such changes are mani-

fested in the actual model parameters, note that sinceV is an orthogonal matrix, taking the

norm of the definition of δp gives

‖δp‖ = σ1‖δm‖, (2.77)

showing that small changes in the data can lead to large changes in the model when J has

small enough non-zero singular values. Put another way, small singular values correspond

to what Jupp and Vozoff call unimportant model parameters. The observed data are not

very sensitive to changes in unimportant parameters but the small singular values they

create may create large entries in the model update vector. This may lead to model update

vectors that violate the linear approximation of the forward modelling operator about the

current model and lead to wild and unstable changes in the model from iteration to iteration.

A stable inversion may be achieved by damping the effect of small singular values,

thus avoiding wild changes in model parameters from iteration to iteration. The simplest

method of damping is singular value truncation, in which singular values with magnitudes

below some threshold, relative to σ1, are set to zero. In the approach taken by ArjunAir,

small singular values are damped. The model update is computed as

δm = VTΣ†UTε (2.78)
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where T is the diagonal damping matrix with diagonal entries

ti =











k2Ni
k2Ni +( ν

σ1
)2N

: σi > 0

0 : σi = 0.

(2.79)

for some natural number N . As before, ki = σi/σ1. ν is known as the damping parameter.

In practice it is not set explicitly, only the relative threshold ν/σ1 = µ is adjusted. ArjunAir

uses N = 2. µ is set heuristically. It is set to 0.1 at the start of the inversion. At any

iteration, if the decrease in data misfit from the current model,m, to the new modelm+δm

is large enough, then the model update is accepted and µ is divided by two. If the misfit

decrease is inadequate, the model update is rejected, µ is multiplied by two and the update

is re-calculated with the new damping parameter. If no adequate decrease in misfit can be

achieved after a set number of iterations, the inversion is abandoned. The overall strategy

here, as described by Jupp and Vozoff (1975) and the ArjunAir developers (Wilson et al.,

2006) is to start the inversion with heavy damping, so that only the more important model

parameters are updated—and in a smooth gradual fashion. Then, as the fit is improved,

damping is reduced to allow a finer fit to the data and an approach to the true minimum of

the non-linear problem (2.61).

2.2.3 The Levenberg-Marquardt algorithm

As alluded to in the introduction, a major drawback of the damped least squares inversion

procedure described above is that the results are highly dependent on the choice of initial

model. Another limitation is that J and its SVD are expensive to compute and store. Ad-

dressing the dependence on the initial model would require implementing a completely new

inversion algorithm, such as a minimum structure method. Such a modification is beyond
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the scope of this thesis. Additionally, it would require adjusting the user interface of Arju-

nAir, which would make it more difficult for existing users to use—especially those who

access ArjunAir through a plugin in the commercial graphical EM processing and analysis

software package Maxwell (EMIT, 2014).

However, it was possible to eliminate the need to compute the SVD while maintain-

ing a roughly equivalent inversion algorithm and ArjunAir’s current interface. ArjunAir’s

original inversion algorithm is a slightly modified version of the Levenberg Marquardt al-

gorithm (Wilson et al., 2006). The modified algorithm produced for this thesis implemented

the actual Levenberg-Marquardt algorithm and did it in such a way as to avoid computing

the SVD of J and allow for the possibility of using a sparse J. The Levenberg-Marquardt

algorithm solves the non-linear least squares problem (2.61) iteratively by linearizing about

an initial model and computing model updates by solving a damped linear least squares

problem. The linear problem for the model update is

minimize
δm

‖ε− Jδm‖2 + ν2‖δm‖2, (2.80)

where ν is the same as in equation (2.79). This is equivalent to computing the model update

by equation (2.78) but taking N = 1 in the damping parameter definition, (2.79)—(rather

than N = 2 as in the original algorithm).

The difference in eigenparameter damping between N = 1 and N = 2 is illustrated

in Figure 2.2. Large singular values remain essentially undamped and very small singular

values are almost entirely damped. The difference lies in the length of the transition from

undamped to damped singular values. The damping threshold is higher in the original

ArjunAir algorithm and the transition to essentially full damping is faster than in the new

algorithm. In practice, both damping schemes produced very similar non-linear inversion
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Figure 2.2: Damping factors plotted as functions of the ratio of the relative damping parameter µ to the

relative singular value magnitude ki. The curve for N = 1 (Levenberg-Marquardt damping) is shown as the

solid blue line and N = 2 (Arjunair damping) as the dashed red line.

results, which will be discussed in Chapter 4.

The solution to the new linear least squares problem (2.80) is the δm that satisfies the

system of linear equations

(JTJ+ ν2I)δm = JTε, (2.81)

where I is the identity matrix. The system may now be solved by standard methods of

numerical linear algebra. J is a dense matrix. Recall that its entries are Jij =
mj

fi(m)
∂fi(m)
∂mj

.

Whether J is dense or sparse, it may be solved by an iterative Krylov subspace method,

eliminating the need to factor (JTJ+ ν2I). The updated inversion algorithm implemented

in ArjunAir for this project finds the model update vector, δm, by solving (2.81) using the

Krylov solver LSQR, due to Paige and Saunders (1982). LSQR is specifically designed

to stably and efficiently solve systems of equations of the form (2.81). Multiple heuristic

techniques for adjusting the damping parameter were tested. They will be described in

Chapter 4.
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Chapter 3

Computational Methods and Results I:

Forward Modelling

This chapter will describe the numerical methods used and the results achieved in decreas-

ing ArjunAir forward solve runtimes without sacrificing solution accuracy. The main ap-

proach taken was to replace the most time consuming computations with efficient parallel

routines. A brief overview of parallel computer architectures and programming models will

be given. A goal of this project was to develop a version of ArjunAir suitable for multi-

core desktop computers and another version suitable for large scale computer clusters. The

general approaches taken to develop both versions will be discussed.

The remainder of the chapter will describe the specific methods used to achieve paral-

lelism and to increase the efficiency of each bottleneck computation in the forward solver.

Computing multiple 2D wavenumber domain subproblems concurrently is the most obvi-

ous and coarsest grained source of parallelism in the forward solver. Parallelizing over 2D

subproblems was trivial to implement and produced excellent parallel speedup. However,
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for inversions on large domains with small cells, memory constraints limited the number

of 2D solves that could be performed simultaneously. It was therefore important to look

for inefficiencies and parallelizable computations within each subproblem. The two main

bottlenecks were the solution of the wavenumber domain linear systems of finite-element

equations and the computation of the wavenumber domain primary electric fields.

Three main approaches were taken to solving the finite-element equations. First, the

existing solver, coded by the ArjunAir developers, was modified to run as a distributed

memory parallel code. That solver was then replaced with the distributed memory parallel

sparse direct solver MuMPS (Amestoy et al., 2001). Finally, the shared memory parallel

solver Pardiso (Schenk and Gartner, 2004) was tested. Both MuMPS and Pardiso per-

formed significantly better than the original ArjunAir solver and had slightly disappointing

but acceptable parallel scaling. A simple modification of the primary field computations

was able to yield dramatic speedups without parallelization. This came at the cost of a

small loss in the accuracy of the computed primary fields but that did not seem to affect the

accuracy of the final solutions.

3.1 Parallel architectures and programming paradigms

Flynn’s taxonomy provides a useful method for classifying parallel computers (Pacheco,

2011). It is shown in tabular form in Table 3.1. It divides computers into four categories

based on two criteria: whether a computer can execute multiple instructions simultane-

ously, and whether it can operate on multiple data simultaneously. Sequential, or serial

computers fall into the single instruction, single data (SISD) category. They can only

execute one instruction on one datum at a time. Graphical processing units and vector
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Single instruction Multiple instruction

Single data SISD MISD

Multiple data SIMD MIMD

Table 3.1: Flynn’s taxonomy.

processors fall into the single instruction, multiple data (SIMD) category. They can have

many processing units processing different data simultaneously but all the units must exe-

cute identical instructions. Multiple instruction, single data computers have almost never

been built in practice. Today, most general purpose parallel computers may be classified

as multiple input, multiple data (MIMD) machines (Pacheco, 2011). The processing units

of an MIMD machine may operate asynchronously on separate streams of instructions and

data. Writing parallel programs for such machines is most often achieved using the single

program, multiple data (SPMD) approach. In SPMD, a single program is written and con-

ditional branching is be used to assign different instructions or data to different processing

elements.

Another way to classify parallel computers is by memory architecture. The two main

classes are shared and distributed memory. MIMD machines and SPMD programming

approaches exist for both architectures. In a shared memory system, all the processors

share a common global memory address space. Each processor may still have its own

local cache memory. When a processor on a shared memory system writes a set of data

to the global memory, those data may be accessed by all the other processors immediately.

OpenMP (OpenMP Architecture Review Board, 2008) is the most common application

programming interface (API) for shared memory computing. Generally, a shared memory

program is launched as a single process. At any time that process may launch multiple
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threads that run in parallel. Creating and destroying threads can be done much more quickly

than creating and destroying processes. It is common for a shared memory program to start

out in serial, spawn a set of threads for some parallel task and then destroy the threads and

continue running sequentially, to perform tasks that cannot be done in parallel.

Most desktop computers produced in recent years have come equipped with multicore

processors and high end desktop machines with 16 or more cores are commonly avail-

able (e.g. HP, 2014). Shared memory programming techniques can improve the perfor-

mance of programs run on such machines. By contrast, computer clusters and most mod-

ern supercomputers use either what is known as distributed memory architecture, or some

hybrid of distributed and shared memory. In a distributed memory system, each proces-

sor has its own memory address space and processors may only communicate with one

another by passing messages to one another. On distributed memory systems using the

SPMD paradigm, each processor core launches a separate instance of the same program.

All these instances are separate processes with their own memory address space. They

may only interact by passing messages to one another. Although each process launches the

same program, through conditional branching they may operate on different data and/or

execute different instructions. MPI (Gabriel et al., 2004), which stands for message pass-

ing interface, is the most common API for distributed memory programming. MPI defines

a standard interface and functionality for a set of libraries that facilitate passing messages

between the different processes of a distributed memory program.

The near ubiquity of multicore processors in recent years has led to a decrease in purely

distributed memory systems and an increase in hybrid systems (Chow and Hysom, 2001).

A common hybrid architecture is a cluster of shared memory computers. In hybrid pro-

gramming, the large tasks of a program are often divided between the nodes of a cluster and
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each node performs its task using shared memory parallelism. I was interested in explor-

ing the shared memory, distributed memory, and hybrid parallel programming approaches

in ArjunAir. I had access to a 504 core (42 nodes, 12 cores per node) Linux cluster at

Memorial University, called Torngat, which provided a platform for testing the scaling of

a distributed memory code. The ability to run ArjunAir over multiple nodes of the cluster

also provided access to a large amount of memory, with each node having 24GB of RAM.

However, many potential industrial users of a parallel version of ArjunAir would not neces-

sarily have access to a cluster computing platform. Message passing programs may still be

run on a shared memory multicore workstation but programs written specifically for shared

memory will likely provide better performance on such a machine.

3.2 Approaches to developing a parallel ArjunAir forward

solver

My supervisors and I were interested in developing a version of ArjunAir that would scale

well enough to take advantage of the substantial computing resources of the Torngat clus-

ter, motivating the development of a distributed memory version of ArjunAir. Potential

industrial users would be more likely to want to run ArjunAir on high end shared memory

workstations. That practical consideration, as well as the desire to compare the parallel

scaling of the distributed and shared memory approaches, motivated the desire to write a

shared memory code.

The cluster and workstation architectures allow for different approaches to develop-

ing a parallel forward solver. On a workstation, memory constraints limit the ability to
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perform multiple wavenumber domain 2D BVP solves concurrently for large problems.

Thus, for the workstation version of ArjunAir, the main focus was on achieving parallelism

(and higher performance generally) within each 2D wavenumber domain boundary value

problem (BVP) solve.

On a cluster, memory constraints are less severe, meaning that multiple wavenumber

domain BVPs may be solved concurrently. In the simplest implementation, that would

be the only parallelism, solving as many 2D problems concurrently as memory and CPU

resources allow. In a more sophisticated implementation, a solver with nested levels of

parallelism could be constructed. Nested parallelism makes sense on a hybrid distributed

memory/shared memory cluster like Torngat. Recall that the cluster is composed of a series

of nodes that communicate by distributed memory message passing. Each node is a shared

memory multicore computer. In a nested forward solver, the 2D BVP solves are divided

among a set of nodes on the cluster, with one MPI process per node. Within each node, the

individual BVPs may be solved in parallel using shared memory techniques, implemented

with OpenMP. From a software engineering perspective, this type of hybrid code has the

advantage that the code for solving the individual 2D BVPs is the same in the workstation

and cluster versions. The only modification for the distributed memory version is the code

used to assign BVPs to nodes and collect the final results on the master MPI process.

Such nested parallelism can also be achieved purely using MPI distributed memory

programming. In such a scheme, one top-level MPI process would be assigned to each

cluster node. Each top level process would in turn spawn a set of second level processes on

all the cores of its node. Insuring that each process is mapped to the correct physical core

would be a non-trivial difficulty in implementing a two-level MPI forward solver.

Developing a two-level MPI code was not attempted. Pure MPI and pure OpenMP
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versions of ArjunAir were completed and an MPI/OpenMP hybrid code was partially de-

veloped. The hybrid code produces correct results but no shared memory parallel speedup

on top of the speedup due to solving multiple BVPs concurrently. That unacceptable per-

formance was likely caused by a cluster configuration issue that, unfortunately, could not

be resolved in time for meaningful hybrid results to be included in this thesis.

Initial testing of ArjunAir was performed on two consumer grade workstations with

4 and 8 processor cores, respectively. However, all performance results quoted in the re-

mainder of this thesis are for runs on the Torngat cluster. The purely distributed memory

code was tested for correctness using the Intel R© ifort compiler and GNU’s gfortran com-

piler. The shared memory version of the code relied on the Intel R© Math Kernel Library

(MKL) (Intel, 2014). It is possible to link MKL to a program compiled with gfortran but

this was not attempted. The shared memory version of ArjunAir was only tested with the

ifort compiler.

3.3 Solving the finite element equations

3.3.1 Sparse-direct methods forKU = F

For each frequency the 2D wavenumber domain boundary value problem (2.24) is solved

at a set of 21 logarithmically spaced wavenumbers ranging from 1×10−5 to 0.1. The

wavenumbers were chosen empirically by the ArjunAir developers. They are hardwired

into the code and cannot be modified by the user.

As described in Chapter 2, the finite-element method converts the boundary value prob-

lem (2.24) for a given transmitter location into a system of linear algebraic equations

59



KU = F, where the vector F depends on the location and character of the transmitter.

In a typical ArjunAir inversion, data from several hundred transmitter locations may be in-

cluded. The coefficient matrixK, which is large and sparse, does not depend on the source

location. This creates a situation where the same coefficient matrix must be solved against

a great many right hand sides. That consideration led the developers of ArjunAir to use a

direct method to factor K rather than solving KU = F by an iterative Krylov subspace

method.

For most sparse matrices encountered in common applications, solving a linear system

against a single right hand side with an iterative solver is normally much more efficient

(in terms of both CPU cycles and memory use) than solving it with even the best sparse

direct methods (Gould et al., 2007). Unfortunately, an iterative solver must start from

scratch with each right hand side. A direct solver on the other hand, will factor K to the

form PKPT = LDLT (for the complex symmetric matrices in ArjunAir), where L is a

lower triangular matrix, D is a diagonal matrix, and P is a permutation matrix. Once the

factorization is known, the solution for any right hand side F may be found by solving

the two triangular systems Ly = b and DLTU = y in succession. Solving the first

system is called forward-substitution and solving the second is called back-substitution.

The substitution process is extremely fast relative to factorization, taking approximately 1%

of the factorization time in the case of ArjunAir’s original solver. Sparse direct methods

may also beat iterative methods for ill-conditioned systems, for which iterative methods

may converge very slowly (Gould et al., 2007). Due to the large number of right hand sides

that must be solved for each coefficient matrix, sparse direct methods are ideal for airborne

EM modelling when there is enough memory available to store the factorization.
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3.3.2 The frontal method of sparse matrix factorization

3.3.2.1 The original frontal method

ArjunAir solves KU = F using an implementation of the frontal method of sparse ma-

trix factorization written by the developers themselves. The frontal method was developed

by Irons (1970) for use in finite-element modelling of structural problems in engineering.

Modern implementations of the frontal method and its extension, the multifrontal method,

may be applied to general sparse matrices (Duff, 1996). However, the original method,

which ArjunAir implements, relies on the specific structure of finite-element stiffness ma-

trices and the method in which they are assembled from submatrices corresponding to

individual elements in the finite-element mesh.

Before describing the frontal method it is important to note that it was originally devel-

oped for use on real symmetric positive-definite matrices, for which LDLT factorization

is stable without partial pivoting. For complex symmetric matrices, such as the ArjunAir

stiffness matrices, LDLT factorization without partial pivoting is not guaranteed to be

stable in general but will be if the real and imaginary parts of the matrix are symmetric

positive-definite (Higham, 1998). Partial pivoting for stability is not performed by Arju-

nAir. The real and imaginary parts of the stiffness matrix were not proven to be symmet-

ric positive definite but the diagonal entries will never be zero and they did tend to have

higher magnitudes than the off diagonal entries. The effect of pivoting on solution accu-

racy will be discussed in Section 3.3.4. It was studied by comparing the ArjunAir solver

solutions with those from the professionally developed sparse direct multifrontal solver

MuMPS (Amestoy et al., 2001). For the remainder of this discussion of the original frontal

method, as implemented in ArjunAir, pivoting for stability will be ignored.
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Figure 3.1: a) Small example finite element mesh and b) associated stiffness matrix sparsity pattern. Each

row and column of the matrix corresponds to a node in the mesh.

In LDLT factorization row operations on K are used to compute the factorization ma-

trices L and D. The elements of L and D are given by the formulas (Burden and Faires,

2000)

Dii = Kii −
i−1
∑

j=1

L2
ijDjj, Lij = Kij −

i−1
∑

k=1

LjkLikDkk

Dii

. (3.1)

The frontal method makes use of the key fact that the terms in the sums in the last two

equations may be subtracted from the relevant entries of K in any order. Also, recall that

K is the sum of entries from small dense matrices associated with each element in the

finite-element mesh. Adding contributions to a Kij from new submatrices may be done

concurrently with subtracting terms for the factorization. The ordering of assembly and

factorization is determined by the ordering of the elements in the mesh. Each row and

column ofK is associated with one node in the mesh. Consider a row, aT , ofK, associated

with node i. Let {e} be the set of elements that node i is part of. The non-zero entries

of aT are the entries in columns associated with nodes in {e}. Consider the toy mesh

and associated matrix sparsity pattern in Figure 3.1. Node 1 is only a part of element I,
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meaning it is only connected to nodes in element I. Therefore the first row of the stiffness

matrix only has non-zero elements in columns associated with those nodes. Node 11, on

the other hand, is part of all four elements so it is connected to all nodes and the stiffness

matrix is completely dense in its row. Recall that ArjunAir uses isoparametric quadrilateral

elements like the ones in Figure 3.1. If the elements are ordered column-wise, as in the

figure, then a node that is part of an element of column i may only be connected to nodes

in elements from, at most, columns i− 1, i, and i+ 1.

The pieces are now in place to describe the frontal method. Start by assembling the

element matrix for the first element in the mesh. This is the first frontal matrix. Determine

which nodes in that first element appear in no further nodes in the mesh. Say there are n

such nodes. The rows and columns of the frontal matrix associated with those nodes are

called fully summed. Next, perform row and column interchanges on the frontal matrix

so that the fully summed rows and columns are its first n rows and columns. Perform

factorization steps to compute the entries of L and D associated with the fully summed

rows. Use those entries to perform the subtractions in equation (3.1) from the required

entries in the frontal matrix. At this point, the fully summed rows and columns will no

longer be used so they may be removed from the frontal matrix and set aside for later use

in forward and back-substitution.

Now move on to the next element and assemble its matrix. Entries of this matrix that

are part of aKij already in the frontal matrix will be added to the appropriate entry. Entries

of the element 2 matrix corresponding to nodes in element 2 that were not nodes of element

1 will not yet have positions in the frontal matrix. The rows and columns of the element 2

matrix associated with those nodes will form new rows and columns of the frontal matrix.

Now find all the nodes in element 2 that appear in no further elements. The rows and
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columns of the new frontal matrix associated with those nodes are now fully summed.

Permute the new fully summed rows and columns so that they are now the first rows and

columns of the frontal matrix. Perform factorization taking pivots from the fully summed

rows and then remove the fully summed rows and columns from the frontal matrix.

After that, move on to element 3 and repeat the process. Continue repeating until all the

elements have been covered, alternating assembly and elimination. Forward-substitution is

carried out in parallel with the factorization so D is not stored. The right hand sides are

overwritten with the solution to the forward substitution problem Ly = F. The amount of

arithmetic involved in factorization depends on the size of the frontal matrix at each step.

For ArjunAir meshes, that is determined by the number of elements in each column of the

mesh.

3.3.2.2 Parallelizing the frontal method by domain decomposition

There are two main approaches to modifying the frontal method to a parallelizable form.

The first method is a form of domain decomposition. Within each subdomain frontal elim-

ination occurs as described above. The subdomain partial solutions are stitched together

using the Schur complement method. The second approach, known as the multifrontal

method (Duff and Reid, 1983), moves the frontal method beyond finite element problems

to general matrices and involves using graph partitioning tools to reorder the coefficient

matrix into quasi-independent blocks. I took the first approach in writing my own parallel

version of the original ArjunAir solver. The second approach is the one taken by modern

professional multifrontal software packages such as MuMPS and the Harwell sparse direct

factorization codes (Gould et al., 2007).

In the domain decomposition approach the finite-element mesh is broken into subdo-
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Figure 3.2: Example ArjunAir finite-element mesh divided column-wise into three subdomains

mains and frontal elimination is carried out on each subdomain. In ArjunAir, the domain

is divided column-wise, as in Figure 3.2. The first column (elements 1, 2, and 3) makes

up the first subdomain. The next three elements make up the second, and the last column

(elements 7, 8, and 9) makes up the last subdomain. The boundary nodes are shown in

red. To use the Schur complement method (Soria Guerrero, 2000, chap. 6), the full finite

element system of equationsKU = F is written in the block matrix form:
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. (3.2)

The matrices Ki,i on the diagonal represent the interior of each subdomain. The Ks,i and

Ki,s matrices represent the boundaries. Frontal elimination is used to factor the Ki,i to

triangular form and zero the Ks,i. These factorizations are all completely independent and

may be performed in parallel. However, each factorization will cause a new matrix to be

subtracted fromKs,s. When all the interior factorizations have been performed,Kwill have

been transformed to a triangular form except in the Ks,s block, which will be transformed
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to the Schur complement matrix:

Γ = Ks,s −
n
∑

i=1

Ks,iK
−1
i,i Ki,s. (3.3)

This matrix may also be factored in parallel using the frontal technique. Considering

the subdomain factorizations from the frontal perspective, rows and columns of the frontal

matrices associated with interior nodes of the subdomains will be eliminated but those cor-

responding to the boundary nodes will never become fully summed. When all the rows and

columns corresponding to interior nodes have been eliminated in the subdomain factor-

izations, rather than forming the full Schur complement matrix, the frontal matrices from

adjacent subdomains may be combined. Consider again the example mesh in Figure 3.2.

When the final frontal matrices from subdomains 1 and 2 are combined, all the rows and

columns corresponding to the nodes on the first boundary become fully summed and may

be eliminated from the factorization. Then the frontal matrix that remains after that process

can be combined with the final subdomain 3 frontal matrix and the last rows and columns,

corresponding to the nodes on the second boundary, may be eliminated. For the three sub-

domain example, eliminating the boundary node rows and columns is done sequentially; in

the case of a greater number of subdomains, multiple boundary node factorizations may be

carried out simultaneously.

3.3.3 Implementing a parallel domain decomposition frontal method

A Schur complement parallel frontal solver based on the original ArjunAir solver was im-

plemented for this project. ArjunAir was written entirely in Fortran 90. The frontal solver

implemented in the program used no external libraries. It was written entirely by the Ar-

junAir developers. My supervisors and I decided to parallelize using a distributed memory
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approach in order to make the code fully scalable. MPI was used to implement message

passing. All computations were performed in single precision complex arithmetic, with

machine precision ǫ = 1.19209290× 10−7. For simplicity, the first parallel version of the

code was limited to two subdomains. This version achieved good parallel speedup. After

testing the two subdomain code, a general version able to handle an arbitrary number of

subdomains was written. This version scaled very poorly and may have produced incorrect

results. However, work on the code was abandoned in favour of using the professional

multifrontal solver MuMPS, which will be discussed in Section 3.3.4. Implementation of

the two subdomain solver will now be described.

There are three main housekeeping tasks required in the ArjunAir frontal method.

First, when each element matrix is added to the frontal matrix, the program must know

which rows and columns have become fully summed and thus ready for elimination from

the frontal matrix. Secondly, the eliminated rows must be stored for later use in back-

substitution. Thirdly, the row interchanges in the frontal matrix are obviously not truly

performed by rearranging how its entries are stored in computer memory. The program

must keep track of the correspondence between the mathematical ordering of the rows and

columns of the frontal matrix and where the entries are actually stored in memory.

That last task remains unchanged in the Schur complement version of the code. The

first two must be adapted for the Schur complement approach. First the boundary nodes are

determined and a subdomain is assigned to each MPI process. Then each process finds the

element in which each of the nodes in its subdomain will appear for the last time. For each

of its interior nodes, each process will loop through all its elements, noting the elements

in which that node appears. The number of the last element it appears in is stored. The

final result is an array that lists the rows that may be eliminated from the frontal matrix at
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each element. Each process stores its own array of eliminated rows. When all interior node

rows and columns have been eliminated in both subdomains, the final frontal matrices are

combined to form the Schur complement matrix, written using the notation of equations

(3.3) as

Γ2 = Ks,s −Ks,1K
−1
1,1K1,s −Ks,1K

−1
1,1K1,s. (3.4)

Γ2 is factored on the host process and back-substitution is performed to solve for the values

of the boundary node variables. Those values are then passed back to the other process and

both processes perform back-substitution in parallel to solve for the interior node variables.

The final results from the second process are then passed back to the host. Forward substi-

tution is performed on each right hand side over the course of the factorization so D is not

stored explicitly.

Performance of the two subdomain code on a range of matrix sizes is shown in Fig-

ure 3.3. All test matrices were actual ArjunAir finite-element matrices from forward mod-

elling runs. All times used in assessing performance of the ArjunAir sparse direct solver

(and the other sparse linear solvers that were tested) were averaged over all wavenumbers

and all frequencies of at least two full forward modelling runs. Figure 3.3b shows parallel

performance using the speedup metric, which is defined as the runtime for the sequential

version of an algorithm, divided by the parallel runtime:

S =
Tserial
Tparallel

. (3.5)

For a parallel program running on n processors, the maximum theoretical speedup is n.

If the work is divided among n processors, the runtime should ideally be divided by n.

This is called linear speedup (Pacheco, 2011). Super-linear speedups may be observed on

some problems when splitting the problem up into chunks happens to speedup the rate at
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Figure 3.3: Two subdomain frontal solver performance. a) Runtime with ideal times being sequential times

divided by two. b) speedup, with perfect speedup shown on horizontal black line.

which computations are performed, e.g. by lowering cache miss rates. For two processes,

the ideal speedup is 2. In reality, the need for processes to send data to one another and

the fact that most computations cannot be completely parallelized means that close to ideal

speedups are not often achieved.

Obviously a code limited to two processes cannot be tested for parallel speedup as a

function of the number of processes. It can be tested as a function of problem size. The

MPI two subdomain ArjunAir frontal solver does seem to scale well with problem size.

The effect of parallel overheads is reduced as problem size grows. The main reason for

this is that the parallelizable section of the computation (subdomain interior factorization

and back-substitution) grows at a much faster rate with problem size than the Schur com-

plement problem. Speedup seems to be asymptoting toward approximately 1.9 for large

problems. Unfortunately, this code uses more memory than the original sequential solver.

For very large problems (more than 2×105 unknowns), speedup deteriorates due to memory

bottlenecks.

As mentioned above, efforts to generalize the two subdomain code to an arbitrary num-

ber of subdomains was not completed. It was decided that time would be better spent
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integrating a professional quality solver into ArjunAir. Sparse direct solvers have seen

great advances in the last fifteen years (Gould et al., 2007) and their performance depends

heavily on complicated implementation details. It is extremely unlikely that I would be

able match the performance of such a solver.

3.3.4 MuMPS: a professional distributed memory solver

3.3.4.1 Overview

The multifrontal method, first presented by Duff and Reid (1983), provides a way to extend

and parallelize the frontal method that is much more general than domain decomposition.

It (along with other sparse direct matrix factorization techniques) uses graph partitioning to

analyze the sparsity pattern of the coefficient matrix. This allows its rows and columns to

be reordered in such a way as to divide the matrix into a set of almost independent regions.

Connections between the regions may be represented by a tree structure.

Consider the tree in Figure 3.4. Frontal elimination may be performed concurrently on

regions of the matrix represented by the vertices on the bottom row of the tree. Rows that

can be fully summed without input from other parts of the tree may be eliminated in the

same manner as the standard frontal method. Once all such variables have been eliminated,

the matrices from adjacent vertices on the bottom row of the tree are combined, forming a

new set of frontal matrices, represented by the second layer from the bottom of the elimina-

tion tree. Frontal elimination continues and variables that can be fully summed inside these

new frontal matrices are eliminated. The process continues until only one frontal matrix

remains. This final matrix is then factored using standard dense linear algebra methods.

Graph partitioning is also used to choose an optimal pivot sequence for the frontal elim-
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Figure 3.4: Multifrontal factorization elimination tree.

ination steps. The main goal in choosing a pivot sequence is to minimize fill-in. Fill-in

refers to the destruction of sparsity during the factorization. Elimination steps will cause

zero entries in the initial matrix to become non-zero, increasing the storage requirements

of the factorization and the number of floating point operations required. Some fill-in is

unavoidable but the quality of the fill-reducing pivot ordering used by a sparse direct solver

can have a dramatic impact on performance (Amestoy et al., 2001). Determining the pivot

sequence that is guaranteed to minimize fill-in is an NP-hard problem (Ng and Peyton,

1993) and all the widely used fill reducing pivot ordering techniques are heuristic.

The multifrontal method is used by the solver MuMPS. MuMPS (Amestoy et al., 2001)

is an open source, MPI based code written in Fortran 90. It has access to multiple external

packages for matrix reordering. In my version of ArjunAir, the METIS nested dissection

reordering routine was used (Karypis and Kumar, 1999). MuMPS also relies heavily on

the basic linear algebra subprograms (BLAS) to achieve high performance. The BLAS

present a standard API for basic linear algebra computations such as dot products and
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matrix multiplication. Very high performance on these tasks can be achieved by using

BLAS implementations optimized for a particular computer architecture. For example,

matrix multiplication can be performed by a block partitioning algorithm with the block

size optimized to minimize cache misses on a certain type of CPU. Since the BLAS have a

standardized interface, an application program that calls BLAS routines can achieve excel-

lent linear algebra performance on any machine that has an efficient implementation of the

libraries installed. Initial testing of MuMPS was performed on a desktop computer using

the ATLAS BLAS (Whaley et al., 2001). Later tests on the Torngat computing cluster at

MUN used the BLAS in the Intel R© Math Kernel Library (Intel, 2014).

MuMPS was chosen because it is a distributed memory code, because it offers high

performance matched by only a few other solvers (Gould et al., 2007), and, uniquely to my

knowledge among widely distributed sparse direct solvers, it does not require the user to

fully assemble the coefficient matrix. The element submatrices and how their entries map

to the global matrix may be input directly to the program, which considerably simplified

the task of using MuMPS within ArjunAir.

3.3.4.2 Accuracy of solutions

The accuracy of MuMPS solutions to KU = F was compared to the accuracy of the orig-

inal ArjunAir frontal solver. The single precision complex arithmetic version of MuMPS

was used. Additionally, the effect of numerical pivoting was examined by comparing the

accuracy of solutions with and without pivoting. Accuracy was studied using the concept

of sparse backward error, developed by Arioli et al. (1989). Their paper will now be fol-

lowed in briefly describing sparse backward error. Consider the problem of solving the

general system of linear equations Ax = b in floating point arithmetic using Gaussian
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elimination or LDLT factorization with partial pivoting. The computed solution x̄ will be

the exact solution of the perturbed problem (A+ δA)x̄ = b+ δb, where the norms of the

perturbations are bounded:

‖δA‖ ≤ γ‖A‖, ‖δb‖ = γ‖b‖. (3.6)

This model is not ideal for sparse matrices since the perturbations may be dense, even for

sparse matrices. The zero entries of a sparse matrix are known exactly. Sparse backward

error recognizes that fact. It seeks to find a bound on perturbations to entries of A and b,

i.e. it seeks the bound ω such that x̄ is the exact solution to (A+ δA)x̄ = b+ δb with

|δaij | ≤ ω|aij|, |δbi| ≤ ω|bi| (3.7)

for all aij in A and bi in b. This bounds perturbations of structural zeroes at zero. ω may

be easily computed by evaluating the formula

ω = max
i

|Ax̄− b|i
(|A||x̄|+ |b|)i

, (3.8)

where |A| is the entry-wise absolute value of A. ω is related to the relative error in the

computed solution x̄ through the inequality

‖x̄− x‖∞
‖x‖∞

≤ ω κ(A,b)

1− ω κA(A)
, (3.9)

where κ(A,b) and κA(A) are both conditions numbers and the ∞ symbol refers to the

maximum norm. The condition numbers are defined as

κ(A,b) =
‖|A−1||A||x|+ |A−1||b|‖∞

‖x‖∞
(3.10)

and

κA(A) = ‖|A−1||A|‖∞. (3.11)
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For sufficiently small ω the relative error in x̄ is approximately

‖x̄− x‖∞
‖x‖∞

≤ ω κ(A,b). (3.12)

Arioli et al. (1989) describe a method of estimating κ(A,b).

κ(A,b) measures the conditioning of the problem for given A and b. ω is a measure

of the stability of an algorithm that computes approximate solutions of Ax = b. Clearly

both quantities are needed in order to estimate the relative error in the solution. MuMPS

has the ability to compute both quantities. I wrote code to compute ω for the ArjunAir

original frontal solver. Comparing ω for the two solvers will provide a way to compare

their stability.

Using different MuMPS pivot thresholds was also tested. Consider a fully summed row

of a frontal matrix aT
k with akk ready to be used as a pivot. In threshold pivoting, it will

only be used as a pivot if it satisfies what Duff and Reid (1983) call a threshold criterion.

The criterion is

|akk| > u ·max
j

|akj| (3.13)

for all columns j in the frontal matrix. 0 ≤ u ≤ 1 is called the pivot threshold. If the

threshold criterion is not met, either another pivot is chosen from the diagonal of a fully

summed row or 2×2 block pivoting is used (Amestoy et al., 2001) to select an off diagonal

pivot while affecting sparsity as little as possible. The default value of u in MuMPS is 0.01.

Values of 0, 0.01, and the maximum value, 0.5 were tested.

Table 3.2 shows the average value of ω for the ArjunAir solver and MuMPS on two test

problems using the same mesh of 30m wide by 10m deep rectangular elements. The ω val-

ues were averaged over all wavenumbers and three frequencies (380Hz, 5500Hz, 56 kHz)

for a transmitter located at the centre of the mesh. The first test problem was a homoge-
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ArjunAir solver MuMPS, u = 0 MuMPS, u = 0.01 MuMPS, u = 0.5

Halfspace 0.0089 1.09×10−4 1.38×10−5 1.38×10−5

Block 0.0096 1.04×10−4 1.11×10−5 1.17×10−5

Table 3.2: Sparse backward error bounds ω for two test problems. Both problems use the same mesh of 7875

elements—23811 unknowns.

neous halfspace of resistivity 500Ωm and the second one was a 1200m wide and 190m

thick block of resistivity 0.1Ωm buried 30m below the surface in a homogeneous halfspace

of resistivity 800Ωm. Tests on smaller problems and different transmitter locations gave

similar results. The results in the table show that the MuMPS solutions are much more

accurate overall than those from the ArjunAir solver, even without numerical pivoting. The

difference is likely due to the different pivot sequence used by MuMPS, which likely led

to less fill in than with the ArjunAir frontal solver, and possibly due to less careful coding

of the elimination steps. However, the differences between the MuMPS solutions with and

without pivoting clearly show that pivoting is important. The default pivoting level seems

to be adequate, with ω being roughly equal for u = 0.01 and u = 0.5. u = 0.01 was cho-

sen as the final value since choosing larger values led to longer runtimes and significantly

higher memory usage.

Table 3.2 paints a somewhat damning portrait of the ArjunAir solver’s accuracy but

it does not tell the whole story. Figure 3.5 shows plots of log10(ω) versus log10(ky) for

two frequencies, for both of the models represented in Table 3.2. The plots show a strong

dependence of the ArjunAir solver ω values on ky. Although the ArjunAir backward error

bounds were almost always much higher than the MuMPS bounds they were generally

much lower for small ky. There was also a strong frequency dependence. High frequency
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solutions tended to have much smaller backward error than low frequency solutions. The

MuMPS ω values showed a much weaker dependence on ky than the ArjunAir solutions.

At this point it is important to remember that these solutions of the finite element equations
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Figure 3.5: ω vs. ky log-log plots for a transmitter in the middle of the mesh 30m above a homogeneous

halfspace of resistivity 500Ωm. ArjunAir original solver values are represented by blue stars and MuMPS

solutions with u = 0.01 by red circles.

represent the along strike electric and magnetic fields in the wavenumber domain at each

node in the finite element mesh. The main output of the forward solver will be one or

more components of the magnetic field at the transmitter locations in the frequency or

time domain. Thus to go from finite element solutions to the final forward modelling
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output, cross-strike and vertical components of the field must be computed by numerical

differentiation and then inverse Fourier transformed to the frequency and then possibly time

domain. It is important to assess the accuracy of the solution of the finite element equations

but doing so does not amount to assessing the accuracy of the forward solver. As Table 3.2

and Figure 3.5 clearly show, there were discrepancies between the overall results from the

MuMPS and original ArjunAir sparse linear solvers. However, the relative discrepancies

between the MuMPS and ArjunAir computed solutions were generally much smaller (on

the order of machine precision) than the maximum discrepancy

‖x̄aa − x̄mps‖∞
‖x̄mps‖∞

. (3.14)

To test the accuracy of the final forward modelling results, frequency domain secondary

magnetic fields were computed using the original and MuMPS solvers on several homo-

geneous halfspace models and compared with results from the 1D airborne EM modelling

software package EM1DFMFWD (Farquharson et al., 2003). For a one-dimensional earth

model, the airborne EM forward modelling problemmay be reduced to computing a Hankel

transform integral. EM1DFMFWD computes such integrals using the digital filtering rou-

tines of Anderson (1982). Its forward modelling results can be considered correct, relative

to the finite element/Fourier transform derived results of ArjunAir. Differences between

the ArjunAir results using MuMPS and using the original solver were always negligible

compared to discrepancies with the EM1DFMFWD solutions. Table 3.3 shows the com-

ponent of the secondary field in the direction of the receiver dipole moment at the receiver

locations (as computed by the 1D solver, MuMPS, and the original solver) for the homo-

geneous halfspace model used in the Table 3.2 and Figure 3.5 computations. The MuMPS

and original ArjunAir solutions always agreed to at least 4 significant figures. Similar
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380Hz IP 5500Hz IP 56 kHz IP 380Hz Q 5500Hz Q 56 kHz Q

Orig. solver 1.0900 9.0186 197.1389 11.8097 32.9397 294.3021

MuMPS 1.0900 9.0184 197.1401 11.8100 32.9396 294.3000

1D sol. 1.0880 8.9759 200.2500 11.8000 31.7860 295.4700

Table 3.3: Secondary fields measured 30m above a 500Ωm homogeneous halfspace. Transmitter to receiver

separation was 6.3m at 56 kHz and 8.1m at all other frequencies. Model cells were 10m deep by 30m wide.

The units are parts per million (normalized by strength of primary field). IP means in-phase and Q means

quadrature.

agreement was seen between the original ArjunAir solver and MuMPS solutions for block

in a halfspace models of varying conductivity contrasts. Agreement with the 1D solutions

is acceptable. The main points here are that inaccuracy in the ArjunAir frontal solver due

to instability does not seem to be the cause of the discrepancies with the 1D solutions and

that replacing the original solver with MuMPS did not significantly affect the final forward

modelling results. Comparison with 1D results still does not quite tell the whole story.

The secondary electric fields at all subsurface mesh nodes are required in computing the

Jacobian matrix for inversion. Using MuMPS had a negligible effect on inversion results.

ArjunAir is already an established code so I did not extensively test its accuracy. Im-

proving performance while maintaining the capabilities of the code was the focus. Thus,

the key test of correctness was that any modifications should produce results matching the

original code. Miensopust et al. (2013) recently compared the accuracy of the ArjunAir

forward solver with several 3D modelling codes on models of conductive prisms of long

strike length embedded in resistive halfspaces. ArjunAir agreed well with the 3D codes at

frequencies of 8 kHz or greater but diverged from 3D solutions at low frequencies. This
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is likely an artifact of the 2.5D approximation itself rather than a deficiency in ArjunAir’s

implementation of it. Low frequency fields attenuate over longer distances than higher fre-

quency fields. It is possible that for the blocks used by Miensopust et al. (2013), effects at

the ends of the conductive prism were important at low frequencies.

3.3.4.3 Performance

Even without the benefit of parallel speedup, MuMPS provided a large performance in-

crease over the original ArjunAir frontal solver. Figure 3.6 shows average forward solve

runtimes for the original ArjunAir solver, my parallel domain decomposition version, and

the sequential version of MuMPS on a range of problem sizes. When running ArjunAir

for standalone forward modelling the range of problem sizes shown in the figure is repre-

sentative of the range of size that might be encountered in practice. In inverse modelling,

linear systems with as many as 106 unkowns may still be encountered but the memory re-

quired to store the Jacobian matrix often limits the size of problems that can be effectively

inverted to those containing smaller finite-element linear systems—e.g. with 5 × 105 or

fewer unknowns.

The finite-element shape functions and their derivatives are computed in a separate

routine and are the same for all frequencies and wavenumbers. Reordering the stiffness

matrix to choose a pivot ordering depends only on the sparsity pattern of the matrix and

not its numerical values. It therefore is the same for all stiffness matrices. Computing

the reordering is done only once in a forward modelling run and is not included in the

listed MuMPS runtimes. Computing the actual entries of the stiffness matrix element sub-

matrices requires adding together products of shape function derivatives and electromag-

netic constants. Those calculations must obviously be performed for each frequency and
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Figure 3.6: a) Runtimes for MuMPS solver in sequential mode, along with times for original solver and my

two subdomain decomposition code. b) Speedups for MuMPS and the two subdomain solver, relative to the

original solver. The dashed black line shows speedup for an ideal parallelization of the original solver. Both

data points for the two subdomain solver are for larger problems than any of the runs in Figure 3.3.

wavenumber. They are included in the listed linear solve runtimes. The two subdomain

frontal solver crashed due to insufficient memory on the larger problems shown Figure 3.6.

MuMPS showed superior performance on all problems tested. The improvements were

small for small problems but the inefficiencies in the original algorithm become more costly

as problem size increases, with the original solver taking, on average, 3.4 times longer than

MuMPS to solve the finite element equations on the largest problem tested.

The parallel scaling of MuMPS was less impressive. It scaled acceptably up to 8 pro-

cessors but using more than that yielded rapidly diminishing returns, with a speedup higher

than 6 never being observed. Figure 3.7 shows speedup relative to a sequential MuMPS

solve as a function of the number of MPI processes for two different problem sizes. As

mentioned above the Torngat nodes all have 12 processors. When launching an MPI pro-

gram, a full node is used up before assigning processes to cores on the second node. Arju-

nAir with MuMPS was tested on up to two full nodes, or 24 cores. Messages were passed

within a node using shared memory and by infiniband interconnect between nodes. For all
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Figure 3.7: MuMPS speedup on Torngat cluster for matrix with a) 572872 unknowns and b) 1.35×106

unknowns.

problem sizes, the speedup curved flattened before reaching a full node, so slow message

passing between nodes cannot explain the poor scaling. The scaling was likely limited by

the structure of the coefficient matrices generated by the ArjunAir finite-element problem.

When choosing an appropriate parallel elimination tree structure (i.e. a way to distribute

chunks of the stiffness matrix to be factored to each processor), there is often a tradeoff

between load balancing and fill-in (Schenk, 2000), which limits parallel speedup. Another

possible factor limiting speedup is that the problem size is too small, meaning that the

overhead of communication and the non-parallelizable parts of the calculation are limiting

speedup. These overheads should become less significant with problem size. I did not,

however, observe a meaningful increase in speedup with increasing problem size.

Assembly of the element stiffness matrices was not parallelized, occurring only on the

host processor. However, time to compute the matrix entries was almost negligible com-

pared to time spent in MuMPS routines, taking from 2-4.5% of the combined sequential

factorization and triangular substitution time, depending on the problem size. Speedup

of the MuMPS computations were measured separately from the assembly process and

showed slightly better speedup. Since MuMPS, the original ArjunAir solver and Pardiso,
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the shared memory solver that will be described in the next section, all handle matrix as-

sembly differently it was judged that assembly time should be included in any measure of

solver performance.

3.3.5 MKL Pardiso: a professional shared memory solver

In the shared memory version of ArjunAir, The sparse direct solver Pardiso (Schenk and

Gartner, 2004) was used to solve the finite-element equations. As well as offering shared

memory parallelism, using Pardiso offered a chance to compare the performance ofMuMPS

against another very well regarded professional sparse direct code. Pardiso was chosen

from among other shared memory solvers because it is very highly regarded and per-

formed best in a comparison study of sequential sparse direct solvers—or parallel solvers

run sequentially—(Gould et al., 2007). The version of Pardiso used in ArjunAir was the

one included in version 10.3 of the Intel R© Math Kernel Library (Intel, 2014). Having the

code readily available as part of MKL was another reason for choosing Pardiso. The MKL

version is not the most recent version but it was the only one available at MUN. The lat-

est version may be acquired from the Institute of Computational Science at USI Lugano,

Switzerland.

Pardiso uses supernodal factorization to factor the ArjunAir finite-element stiffness ma-

trices. An overview of supernodal factorization can be found in Ng and Peyton (1993). As

in any sparse direct factorization method, the rows and columns of the coefficient matrix are

reordered to eliminate fill-in during the factorization and so that LDLT factorization can be

carried out independently in subregions of the coefficient matrix. Like MuMPS, MKL Par-

diso uses the METIS graph partitioning package for reordering. After reordering, numeri-
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cal factorization is carried out inside regions of the coefficient matrix called supernodes. A

supernode is a group of contiguous columns in the reordered matrix in which factorization

may be performed independently. Pardiso performs a hybrid of left and right looking block

LDLT factorization within each supernode. Parallelization is achieved by reordering the

coefficient matrix in such a way that the supernodes may be evenly distributed among pro-

cessor cores. As with MuMPS, reordering in Pardiso requires compromise between fill-in

minimization and parallel load balancing.

Supernodal factorization is closely related to the multifrontal method. In fact, the mul-

tifrontal method can be thought of as a supernodal technique that uses right-looking block

LDLT factorization within each supernode. MKL Pardiso requires the fully assembled

stiffness matrix and its sparsity pattern as input. Like MuMPS, Pardiso has the capability

to perform the matrix analysis and choose a column reordering only once at the beginning

of the forward solve process, using the same ordering for each subsequent solve. However,

a bug in MKL 10.3 caused very large memory leaks over successive numerical factoriza-

tion and solve steps, large enough to make the code completely unusable. The problem

was fixed in a subsequent version of the library but I only had access to version 10.3. In

ArjunAir, a fresh instance of the Pardiso solver was called for each stiffness matrix, with

the reordering being performed each and every time. Reordering was fast enough, and

Pardiso’s performance strong enough that Pardiso outperformed MuMPS, even with all the

extra reordering computations.

Assembly of the global stiffness matrix from the element submatrices was parallelized

using OpenMP. When running sequentially, the assembly proceeds as a loop over elements

in the mesh. The elements are numbered column-wise. Each element matrix is assembled

and its entries are added to the appropriate entries of the global matrix. The loop over
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Figure 3.8: Global stiffness matrix assembly speedup: a) 27490 unknowns, 52 right hand sides, b) 572872

unknowns, 93 right hand sides.

elements was parallelized. A set number of columns of elements was assigned to each

OpenMP thread. The computations of each thread are independent except for assembly

of global matrix entries corresponding to nodes in the mesh on the boundaries between

columns of elements assigned to each thread. Contributions to these entries are stored

in temporary arrays. Once all element matrices have been assembled and summed, the

boundary node temporary array entries are added to the global matrix in an OpenMP critical

section, insuring that when each thread adds a boundary entry contribution to the global

matrix, it adds it to an up-to-date global matrix value.

The structured nature of the ArjunAir meshes allowed very efficient assembly of the

global matrix, with no searching required. In sequential mode, stiffness matrix assembly

took 2.3-3.2% of the combined time spent in Pardiso reordering, factorization, and tri-

angular substitution, depending on problem size. Synchronization of the boundary node

entries limited the parallel speedup in matrix assembly. Assembly speedup on two matri-

ces, representative of small and large ArjunAir forward problems, respectively, is shown in

Figure 3.8. Because assembly took little time relative to the rest of the finite-element linear

system solution time, the poor scaling had a very small limiting effect on the overall paral-
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Figure 3.9: Comparison of MuMPS and Pardiso performance. The scaling results in b) are for a matrix with

572872 unknowns and 93 right hand sides. The solid black line is the original ArjunAir solver. The dashed

blue line in a) shows the MuMPS runtimes, while the dot-dashed red line shows the Pardiso runtimes. In b)

MuMPS speedups are shown on the solid blue line, with Pardiso speedups on the dot-dashed red line. Ideal

speedup is shown on the dashed black line.

lel scaling of the total solution time. The total solution time includes assembly, reordering,

factorization and triangular substitution.

Pardiso’s absolute performance was better than MuMPS and its scaling was similar.

Figure 3.9a shows total sequential solution time for a number of matrix sizes, all solved

against 92 right hand sides. All Pardiso runtimes are lower than the MuMPS times, even

when considering matrix assembly. Pardiso also scales slightly better, as shown in Fig-

ure 3.9b. As with MuMPS, the speedup curved flattened after 4-5 threads. Scaling was

tested using up to twelve threads—a full node on Torngat. It should be noted that although

the representative large problem is indeed large in terms of ArjunAir inverse problems, it

is not very large for a sparse linear system that might be solved by a program like Pardiso.

The largest matrix tested (1.35×106 unknowns) yielded almost identical speedup results as

the representative problem with 572872 unknowns.

Pardiso allows for more detailed performance analysis than MuMPS. It measures run-
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times for the individual phases of the solution procedure. Figure 3.10 shows speedup for

the three main phases of the solution process and the total runtime, for the same repre-

sentative large and small problems as discussed above. The small problem is likely small

enough that parallel overheads simply overwhelm the amount of work that can be done

in parallel. The average sequential full solve runtime for the small problem is only 0.62

seconds. Speedup is still observed up to 8 processors but beyond that scaling deteriorates

significantly, likely because of synchronization overheads. For both problems, it is clear

that reordering limits scaling, while factorization scales best of the three phases of Pardiso.

However, poor scaling of the reordering phase cannot fully account for the poor full solu-

tion scaling, relative to the factorization and substitution scaling. The sum of the runtimes

of all three phases has a maximum speedup of 5.6 on 12 threads, compared to 4.55 for the

full solution. Other auxiliary calculations at the beginning and end of each call to Pardiso

are not parallelizable and account for the rest of the drop in speedup. These are timed by

Pardiso and included in a general category called “additional calculations.”
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Figure 3.10: Total and individual phase speedup of Pardiso, for representative small and large linear systems.
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For a fixed matrix size, Pardiso performance was also tested as a function of the number

of right hand sides and compared to the ArjunAir original solver. Results for a matrix with

142442 unknowns are shown in Figure 3.11. Pardiso was run sequentially for these tests.

Aside from demonstrating the superior absolute performance of Pardiso, the plot once again

shows how the inefficiencies in the original ArjunAir code become more pronounced for

large problems. The improved performance in Pardiso is likely the result of its performing

fewer floating point operations due to reduced fill-in during factorization, as well as having

better memory access patterns than ArjunAir.

Increasing the number of right hand sides, relative to the size of the coefficient matrix,

also tended to increase speedup. This makes sense. The runtimes of the non-parallelizable

parts of Pardiso and the poorly scaling reordering phase grow with increasing coefficient

matrix size but not with increasing number of right hand sides. The best observed Pardiso

speedup was on a problem with 142442 unknowns and 362 right hand sides. Speedup is

shown in Figure 3.12. The problem comes from a mesh of 10m×10m cells along a 8 km

line with 20m spacing between observation locations. The representative large problem

discussed above corresponded to a fine mesh (2m×5m cells) over a 16 km long survey
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Figure 3.11: Pardiso (dashed red line) and ArjunAir original solver (solid black line) runtimes vs. number of

right hand sides for a coefficient matrix with 142442 unknowns.
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Figure 3.12: Pardiso speedup, 142442 unknowns, 362 right hand sides.

line with observation locations spaced at 175m intervals. Users interested in detailed for-

ward modelling would likely encounter models with scaling characteristics like the repre-

sentative large problem. Those interested in preliminary inversion of large sections of an

airborne EM survey would be more likely to encounter models like the one used to generate

Figure 3.12. Since that second user group is likely to be significantly larger than the first, it

is a satisfactory outcome that they are likely to encounter better parallel scaling than users

in the first group.

3.4 Computing the primary electric field

To solve the 2D wavenumber domain BVPs that arise in ArjunAir forward modelling, the

primary electric field must be computed at each subsurface node of the mesh, for each trans-

mitter position. Recall that the primary field is the field of a dipole in free space, making

anomalous conductivity equal to total conductivity. In the wavenumber domain secondary

field equations that form the 2D BVPs, the primary field always appears multiplied by the

anomalous conductivity. In the 2D finite-element modelling, the conductivity of the air is

set to 1×10−10 S/m. For the purposes of the primary field computation, conductivity is set
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to zero in the air, meaning the primary field is always multiplied by zero at nodes in the air

and must therefore only be computed in the subsurface.

Recall that the primary fields are computed by digital filtering. Refer to Section 2.1.5

for a full mathematical description of the calculation. I note here that the primary fields in

the wavenumber domain are given by the expressions

Ẽpx =
ωµ cos θ

2π

∫ ∞

0

y

(ρ2 + y2)3/2
sin(kyy) dy

Ẽpy = (z sin θ − x cos θ)
iωµ

2π

∫ ∞

0

cos(kyy)

(ρ2 + y2)3/2
dy

Ẽpz =
ωµ sin θ

2π

∫ ∞

0

y

(ρ2 + y2)3/2
sin(kyy) dy,

where ρ2 = x2 + y2 + z2. Digital filtering approximates the two integrals

g1 =

∫ ∞

0

y

(ρ2 + y2)3/2
sin(kyy) dy, g2 =

∫ ∞

0

cos(kyy)

(ρ2 + y2)3/2
dy (3.15)

by sums of the form

g(ky) =

b
∑

j=a

f(ρ, eyj )Hj. (3.16)

At each mesh node, ArjunAir finds ρ and then computes the integrals by digital filtering.

Note that the integrals do not depend on the frequency of the fields, ω. Therefore, if trans-

mitters of different frequencies are located in the same position, the above integrals need

only be computed once for each wavenumber and transmitter position. The primary fields
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Figure 3.13: Primary field computation speedup on a mesh with 6.75×105 unknowns and 92 transmitters

for each frequency are computed by multiplying the values of the integrals by the constant

terms in equation (3.15).

The computations at each node are completely independent, making the computation of

the primary fields embarrassingly parallel. That computation was parallelized using MPI,

as part of the distributed memory version of ArjunAir. The mesh nodes were evenly di-

vided among MPI processes in a column-wise fashion and the primary fields computed in

parallel. At the end of the computation, the results are passed back to the master process to

be used in assembling the right hand sides of the finite element equations. Speedup results

on up to two full nodes of the Torngat cluster on a mesh with 6.75×105 unknowns and 92

transmitters is shown in Figure 3.13. The mesh corresponds to a system of finite element

equations with 1.35×106 unknowns—two unknowns per node, one electric field compo-

nent and one magnetic field component. Speedup is almost perfect up to ten processes, as

would be expected for an embarrassingly parallel calculation. Speedup deteriorates a bit

after 10 processes but is still quite good up to a full 24. Recall that there are 12 processor

cores, and therefore MPI processes, per node. The slight flattening of the speedup curve

after 10 processes is due to the cost of having to collect results from each process on the
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master at the end of the computation.

That parallel overhead from gathering intermediate results on the host process demon-

strates one of the difficulties of incrementally parallelizing a sequential code using a dis-

tributed memory approach. MuMPS required that the right hand sides of the finite-element

equations be assembled on the master process. Even if that were not the case, extensive

modification of the code outside of the computations benefiting from parallelization would

have to have been completed to avoid having to gather the primary field values at all mesh

nodes on the master process. By contrast, in a shared memory approach, the primary fields

may be stored in a single array that all threads can read from and write to. The downside of

that approach is that conflicts between the threads in accessing that single array can slow

down memory access and destroy parallel speedup in some cases.

A brute force shared memory parallelization of the primary field digital filtering in-

tegral computations was not attempted. Instead, a very efficient approximate method of

computing the integrals that required a very small number of digital filtering calls was

implemented. The integrals in equation (3.15) are well behaved as functions of ρ. That

observation led to the idea that they could be computed once at a range of values of ρ

and then interpolated to the exact node locations. Figure 3.14 shows the the value of the

primary field integrals, g1 and g2, plotted against distance from the transmitter ρ for three

representative ky values. The figure shows that ρ dependence varies significantly as a func-

tion of ky and between the two integrals but it is always smooth. To generate the curves,

the two integrals were computed at 0.5m ρ intervals, from ρ = 1m to ρ = 4000m.

ArjunAir makes use of cubic spline routines to, for example, perform the inverse Fourier

transformation of the wavenumber domain modelling results to the frequency domain. The

existing cubic spline routines were used to implement an interpolation scheme for comput-
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Figure 3.14: a) g1 vs. ky . Solid black line is ky = 1 × 10−5. Dashed blue line is ky = 0.0016. Red

dash-dotted line is ky = 0.1. g2 vs. ky . Solid black line is ky = 1× 10−5. Dashed blue line is ky = 0.0158.

Red dash-dotted line is ky = 0.1. Note that the vertical axes and ky values are different in each plot.

ing the primary field integrals.

For each wavenumber, g1 and g2 were computed at a range of values of ρ from the

minimum transmitter to ground separation distance to 2 km. The computed values of g1

and g2 were then input to a cubic spline routine which solves a tridiagonal system of linear

equations to compute the spline coefficients, which are stored in memory. Then, for each

transmitter location, the values of g1 and g2 at each node were computed as follows. First,

the distance ρ separating the transmitter and node is computed. The value of ρ and the

spline coefficients are then input to a cubic spline evaluation routine. The routine finds

the interval of the spline in which the input value of ρ lies and then evaluates the spline to

interpolate g1 and g2 at the requested value of ρ. The mesh nodes are traversed in a nested

loop, moving from top to bottom and then left to right across the mesh. This means that

the code moves gradually between intervals of the spline, limiting the cost of searching for
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the correct interval. The spline evaluation routine starts the search at each node from the

interval of the previous node. The ArjunAir spline routines were developed from examples

in the book A Practical Guide to Splines by De Boor (1978).

The ρ spacing of spline knots (and thus the length of intervals) was found empirically.

A spacing of 0.5m was used from the minimum ρ to 1 km. From 1-1.5 km a spacing of 2m

was used, and from 1.5-2 km a spacing of 10m was used. For all ky values, the integrals

decayed to negligible levels by ρ = 2 km. The spline representation of g1 and g2 with that

knot spacing was sufficient to guarantee a maximum relative error in the computed primary

field of less than 1×10−4. That precision was in turn enough to guarantee that negligible

error was introduced in the final forward modelling and inversion results.

Evaluating the integrals by digital filtering to compute the spline representation requires

approximately 4600 calls to the digital filtering routine, with the exact number depending

on the minimum transmitter to ground separation distance. By contrast, the representative

large problem from section 3.3.5 required approximately 2×108 digital filtering calls to

compute the primary field at all nodes, for all transmitters, for a single value of ky when

using the original code. Evaluating a cubic spline is much cheaper than digital filtering.

Even without parallelization, the interpolation method provided a huge performance im-

provement over using digital filtering at all nodes, with the interpolation technique taking

5-10% of the runtime of the original code primary field computation routine on all test

problems. Figure 3.15 illustrates the interpolation method’s performance.
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Figure 3.15: Primary field computation time, interpolation method shown on dashed blue line and original

code on solid black line: a) plotted vs. number of transmitters for a fixed mesh size of 71221 nodes; b) plotted

vs. mesh size for 92 transmitters on three large meshes.

3.5 Parallelization over wavenumbers

The final modification of the ArjunAir forward solver was to parallelize the loop over full

wavenumber BVP solves. The initial goal was to combine this coarse grained parallelism,

achieved using MPI, with the shared memory parallel implementation of the wavenumber

domain BVP solver, yielding a hybrid distributed/shared memory version of ArjunAir. Ex-

cellent speedup was achieved on the Torngat cluster by running one sequential BVP solve

per node on Torngat but for some unknown reason, when running over MPI, no parallel

speedup was observed within each 2D BVP solve. Future work should address that prob-

lem.

Figure 3.16 shows speedup for parallelization over full 2D solves, using one MPI pro-

cess per Torngat node on representative small and large problems. The timings used to

compute speedup are for full forward modelling runs. Speedup is impressive but not quite

as close to linear as expected. Two main factors limited the speedup. First, initial data

needed for all 2D solves is computed on the master process and must be broadcast to all
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Figure 3.16: Primary field computation speedup. The small problem has a 92 transmitter locations and a

mesh with 71221 nodes. The large problem has 92 transmitter locations and 6.75×105 mesh nodes.

the other processes before they can begin to work in parallel. The other, larger factor, is

load balancing. Recall that 21 2D wavenumber domain BVPs must be solved in a forward

modelling run. Thus, some processors will always have more BVPs to solve than others

if the number of processes is not a divisor of 21. Each BVP requires the same amount of

work to solve. Collection of final results on the master process should not be a significant

limiting factor since only the fields at the observation locations need to be gathered on the

master.

Parallelization over frequencies is equivalent to parallelizing over wavenumbers, up to

loop ordering However, since primary fields computed for a given wavenumber may be

used for all frequencies, it makes sense to group all frequencies by wavenumber. Thus only

parallelization over wavenumbers was considered in this thesis and not direct paralleliza-

tion over frequencies.
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3.6 Summary

Overall, although parallel scaling of the solution of the linear system of finite-element equa-

tions was lower than expected, the modifications to the ArjunAir forward solver described

in this chapter were able to significantly improve its performance, especially in the shared

memory version using Pardiso and computing the primary field by interpolation. Speedup

on a full forward solve for the shared memory solver running sequentially, relative to the

original code, ranged from 2.5 on small problems where ArjunAir is efficient, to as much

as 5.2 on one large problem. When running the shared memory solver on 12 cores—the

most available to me for shared memory runs—speedup over the original ArjunAir ranged

between 6.8 and 22.2 depending on the problem. Since one of the main reasons for im-

proving ArjunAir’s performance is to make it practical to run on larger problems than was

previously possible, the results are encouraging.

Given the unique structure of the ArjunAir forward problem, a hybrid distributed/shared

memory code would seem to have the potential for very large speedups, relative to the

original code. The MPI solver parallelizing over full 2D problems achieved a speedup of

up to 6.8 on eight nodes. If that performance could be maintained while also getting full

performance from the shared memory code that solves each 2D problem, a speedup of 130

over the original ArjunAir could be achieved. Hopefully future work will be able to reach

that level of performance.
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Chapter 4

Computational Methods and Results II:

Inversion

This chapter will describe efforts to modify the ArjunAir inversion algorithm to use the

Levenberg-Marquardt method, solving iteratively for the model update. The algorithm

was similar but not equivalent to ArjunAir’s original damped-eigenparameter algorithm.

Inversion results were comparable. The new algorithm was faster and used less memory

than the original code.

4.1 Implementation of the original inversion algorithm

Section 2.2.2 of this thesis explained the ArjunAir inversion algorithm at a mathematical

level. However, it omitted a detailed discussion of convergence criteria and criteria for

setting the singular-value damping parameter. The algorithm may terminate in one of three

ways. First, a maximum number of iterations set by the user may be reached without
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convergence. Secondly, the algorithm will terminate if the misfit between observed and

predicted data is less than a user specified level. Finally, the algorithm will also terminate

if it judges that it has reached a local minimum in model space. If a local minimum is

reached while misfit is still too large, the only recourse is to run another inversion with a

different starting model.

ArjunAir’s methods of adjusting the singular-value damping parameter and determin-

ing that a local minimum has been reached rely on access to the right singular-vectors of

the Jacobian matrix. Therefore, new methods had to be used in the updated inversion algo-

rithm since it does not compute the singular-value decomposition (SVD) of the Jacobian.

The original convergence and damping adjustment criteria will now be discussed before

describing the criteria in the modified algorithm.

Misfit between the observed and predicted data was measured using symmetric root

mean squared error (RMS). Symmetric RMS was computed using the formula (Wilson

et al., 2006)

ξ =
1

nd







nd
∑

i=1

(

di − fi
[

1
2
(d2i + f 2

i )
]1/2

)2






1/2

, (4.1)

where nd is the number of data points. The di and fi are the individual observed and

predicted data points. Symmetric RMS can be seen as the norm of the residual error

ξ = ‖ε‖W =
√
εTWε, (4.2)

whereW is a diagonal matrix with entries

Wii =
1

n2

d

2
(d2i + f 2

i )
. (4.3)

The residual error is of course ε = d − f(m), where d is the vector of observed data

and f(m) is the vector of synthetic data computed by forward modelling with conductivity
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modelm. ArjunAir inversion will terminate when the symmetric RMS drops below a user

set value. The user should set the stopping value based on his or her interpretation of the

dataset’s noise level (Wilson et al., 2006).

Before describing the singular-value damping adjustment, some key points from Sec-

tion 2.2.2 will be restated. Recall that at each main iteration of the inversion algorithm

ArjunAir finds a regularized solution of the linear least squares problem

minimize
δm

‖ε− Jδm‖2W , (4.4)

where J is the Jacobian matrix, which has the singular value decomposition J = UΣVT .

As discussed in section 2.2.1, the problem can be solved by exactly the same method in the

L2 norm, given a proper change of variables. The model perturbation δm, the solution to

the linear least-squares problem, is computed by the formula

δm = VTΣ†UTε (4.5)

where T is the diagonal damping matrix with diagonal entries

ti =











k2Ni
k2Ni +( ν

σ1
)2N

: σi > 0

0 : σi = 0

(4.6)

and ν is the positive, real-valued, damping parameter.

ArjunAir does not manipulate ν directly. Rather, it adjusts the so-called relative damp-

ing parameter µ = ν/σ1. All inversions start with µ = 0.1 (this is hard-wired into the

source code) and subsequently adjust µ heuristically based on a comparison of the actual

misfit decrease achieved by a model update δm and an estimate of the predicted decrease

in misfit that would be achieved if the forward modelling operator was actually linear.
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Let r = UTε and let ri be the i
th element of r. Jupp and Vozoff (1975) (on whom’s work

the ArjunAir inversion algorithm is based) define a measure of predicted residual decrease:

δL2 =

p
∑

i=1

tir
2
i , (4.7)

where p is the number of non-zero singular values. This measure is used to control the

value of µ. Also, when δL2 becomes small relative to the current misfit, it indicates that

the algorithm is near a local minimum, implying that significant decrease in the misfit is no

longer possible. ArjunAir inversion will terminate if δL2 < 0.01‖ε‖.

Adjustment of µ is based on the ratio of δL2 to the actual decrease in misfit achieved by

a given model perturbation. Let the current model and residual be mi and εi, respectively.

Based on those values and a given value of µ, ArjunAir computes a model update δm using

equation (4.5). The model is then updated as mj = mi + δm. A new misfit εj is then

calculated by forward modelling withmj . The misfit decrease g may then be computed as

g = ‖εi‖2W − ‖εj‖2W . (4.8)

Knowing g and δL2, adjustment of µ is very simple. If g > (
√
1× 10−7)δL2 then the

updated model mj is accepted, µ is divided by 2 and the inversion proceeds to its next

iteration, recomputing the Jacobian at the new model. However, if g is below the required

threshold, the updated model is rejected, µ is increased (multiplied by 2) and δm is recom-

puted using equation (4.5) with the new, larger value of µ. Larger values of µ cause small

singular values to be more heavily damped, leading to smaller adjustments in less impor-

tant eigenparameters. As the misfit is reduced, damping may generally be reduced also,

allowing for fine tuning of more model parameters.

All the pieces are now in place to describe the full ArjunAir inversion algorithm. It is

shown in Algorithm 4.1.
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Algorithm 4.1 ArjunAir inversion algorithm

Specify an initial modelm0

Set mi = m0

for (i = 1 to max # of iterations) do

Solve forward problem to compute the misfit εi

Compute Jacobian J

Compute SVD of J

for (j = 1 to 6) do

Compute δL2

if (δL2 < 0.01‖ε‖) then
Terminate inversion (At local minimum, inversion cannot be improved)

end if

Compute model update δm using equation 4.5

Set mj = mi + δm

Solve forward problem with modelmj to compute εj

if (‖εj‖ ≤ [ a user specified tolerance]) then

Terminate inversion (Misfit reduced to acceptable level)

end if

Set g = ‖εi‖W − ‖εj‖W
if (g > (

√
1× 10−7)δL2) then

Set µ = µ/2

Set µ =Max(µ,minimum value)

Setmi = mj

Break out of j loop (Accept model update and move on to next main loop iteration)

else

µ = 2µ

end if

if (j is equal to 6) then

Terminate inversion (Could not find a δm that lowered misfit)

end if

end for

end for
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4.2 Implementing the Levenberg-Marquardt algorithm

4.2.1 Overview

The main iterative approach to the ArjunAir inverse problem was not changed for the work

described in this thesis. The solution of the linearized inverse problem was modified. This

new algorithm gives similar results to the original algorithm but uses quite different compu-

tational techniques. Additionally, the computation of the Jacobian matrix was parallelized

using OpenMP. The Jacobian is computed in the wavenumber domain at each wavenumber,

then the frequency-domain Jacobian is formed by (inverse) Fourier transformation of the

wavenumber-domain results. Computation of each entry of the wavenumber domain Ja-

cobians is independent, meaning the computation of each one can be trivially parallelized.

This was performed using OpenMP. Memory access conflicts limited speedup to an ex-

tent but a speedup of 8-8.5 on 12 threads was observed over a range of different sized

test problems. Static loop scheduling was used in the OpenMP parallelization in order to

limit false-sharing and other memory access conflicts but all parallel overheads could not

be completely eliminated. In the context of ArjunAir, false-sharing refers to a situation in

shared memory computing where different threads are working on independent elements in

the same block of an array that is being stored in the local memory of multiple cores. When

one core updates its element of the array, the entire block of the array must be re-written

and the memory management system pauses all threads using that block of the array until

it has been updated.

As discussed in Section 2.2.3, if N = 1, rather than N = 2 is taken in equation (4.6)

then computing the model update with equation (4.5) is equivalent (in exact arithmetic) to
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solving the system of equations

(JTJ+ νI)δm = JTε, (4.9)

where I is the identity matrix.

This brings up two new challenges. First and foremost, the system (4.9) needs to be

solved. Secondly, methods for computing the damping parameter ν and detecting local

minima are needed since performing both those tasks in the original algorithm required

having access to the SVD of the Jacobian. In order to keep the results of the new algorithm

similar to those of the original ArjunAir, the damping parameter was adjusted using a sim-

ilar heuristic scheme. The relative damping parameter µ was set to 0.1 at the start of each

inversion. At each iteration, the largest singular-value of the Jacobian, σ1, is computed.

Since no singular-vectors and no other singular-values are required, σ1 can be computed

cheaply using a very fast and memory efficient sparse technique.

Once σ1 was computed, ν was computed as ν = µσ1. As in the original algorithm, the

adjustment of µ was based on the ratio of actual to predicted misfit decrease. It was not

possible to compute predicted misfit decrease in same way as the original algorithm, since

singular vectors were no longer being computed. The ratio of actual to predicted misfit

decrease can be written as (Moré, 1978)

ρ =
‖d− f(m)‖2W − ‖d− f(m+ δm)‖2W
‖d− f(m)‖2W − ‖d− f(m) + Jδm‖2W

, (4.10)

where theW -norm is defined as in chapter 2. Due to superior numerical properties, ρ was

actually computed by the equivalent expression:

ρ =
1− ‖d−f(m+δm)‖2

W

‖d−f(m)‖2
W

‖Jδm‖2
W

‖d−f(m)‖2
W

+ 2ν
‖δm‖2

2

‖d−f(m)‖2
W

, (4.11)
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as recommended by Moré (1978). The quantity ρ is analogous to the quantity g in the

original algorithm. When ρ is greater than some upper threshold value ρhigh, the current

model update is accepted, µ is divided by two and the inversion moves on to the next

iteration. If ρ is less than some lower threshold value ρlow, the current update is rejected, µ

is multiplied by two and the model update is recomputed. The main qualitative difference

between this approach and that of the original algorithm occurs when ρlow ≤ ρ ≤ ρhigh.

When ρ is in that interval, the model update is accepted and the inversion moves on to the

next iteration but µ remains unchanged. This approach to adjusting the damping parameter

was taken by Wright and Holt (1985), from whose work my modified ArjunAir algorithm

was adapted. Multiple threshold values were tested for this study. The choices ρlow = 0.001

and ρhigh = 0.5 gave the lowest RMS error in the final model, for all test problems.

As with the original algorithm, the approach of local minima was detected by compar-

ing the predicted misfit decrease with the current misfit. An inversion would be abandoned

if the predicted decrease became less than 1% of the misfit. Predicted decrease was com-

puted explicitly by adding Jδm to the current predicted data and computing

δL2 = ‖d− f(m)− Jδm‖2W . (4.12)

Jδm was computed using the MKL BLAS matrix multiplication routine.

The software package PROPACK (Larsen, 2000) was used to compute σ1. PROPACK

uses Lanczos bidiagonalization with partial reorthogonalization to compute the singular

values (and optionally the singular vectors) of sparse matrices. It has the advantage over

dense techniques such as the Golub Reinsch algorithm (Golub and Reinsch, 1970)—used

by the original ArjunAir algorithm—that its memory and CPU costs depend on the number

of singular values required. That makes it quite cheap to solve for only σ1. For example,
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on a sample inverse problem on a large mesh where computing the full SVD of J took

132 seconds, computing σ1 using PROPACK took 0.76 seconds. On one small problem

PROPACK took 4×10−3 s, while the full SVD took 3.3 s. PROPACK requires user defined

routines to multiply J and JT by vectors. Those computations are carried out using the

highly optimized Intel R© MKL BLAS matrix multiplication routine, which is awful fast.

Additionally, the threaded MKL BLAS libraries are used, offering some parallel speedup.

I tested that PROPACK was working correctly inside ArjunAir by comparing its singular

values with the ones computed by ArjunAir using the Golub-Reinsch algorithm. They

agreed to machine precision.

4.2.2 Computing model updates with LSQR

The LSQR algorithm (Paige and Saunders, 1982) was used to solve the model update sys-

tem of equations (4.9). LSQR is an iterative algorithm for solving systems of equations

Ax = b as well as damped least-squares problems of the form

minimize
x

‖Ax− b‖22 + ν‖x‖22. (4.13)

It is specifically designed to have strong numerical performance on least-squares problems.

The algorithm, to quote Paige and Saunders’ original paper, “is based on the bidiagonaliza-

tion procedure of Golub and Kahan” (Golub and Kahan, 1965). For least-squares problems

in exact arithmetic LSQR is equivalent to performing the conjugate gradient method on the

normal equations but has better numerical properties. It does not use the coefficient matrix

directly. It requires two user defined functions that will output the matrix vector products

Aw and ATv, respectively, for vectors w and v. Since J is a dense matrix, the MKL

BLAS general dense matrix multiplication routine was used to compute the matrix vector
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products. Stopping tolerance is set by LSQR based on user input values for the relative

error in the entries ofA and b.

The reference Fortran implementation of LSQR was used. It is maintained by Saunders

and is freely available from the Stanford Systems Optimization Laboratory webpage. Dot

product and norm computations performed by LSQR are computed using BLAS routines.

Solution time varies depending on the conditioning of J and the magnitude of ν. Larger

damping parameters and better conditioned matrices will both tend to decrease solution

time. Even for the slowest LSQR run measured (relative to SVD computation time), solv-

ing for δm using LSQR took 0.8% of the time needed to compute the SVD of the Jacobian.

In the original algorithm the SVD only needed to be computed once per main iteration of

the inversion. After computing it, testing different values of the damping parameter was

extremely efficient, costing only one dense matrix-vector multiplication and one vector

scaling. However, computing the SVD is so expensive that it is still more efficient to use

LSQR. LSQR may be called a maximum of six times per main inversion iteration. Since

LSQR is clearly much more than six times faster than computing the SVD and inversions

using the LSQR based Levenberg-Marquardt algorithm usually took about the same num-

ber of main iterations as the original algorithm, the new algorithm is much faster than the

original.
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4.3 Comparison of original and Levenberg-Marquardt in-

version results

4.3.1 Quality of results

As mentioned above, the Levenberg-Marquardt algorithm is very closely related but not

identical to the original ArjunAir inversion algorithm. It produced similar inversion re-

sults, as shown in Figure 4.1, which plots results from inversion of a synthetic dataset gen-

erated by ArjunAir forward modelling with a model consisting of two conductive blocks

in a resistive halfspace. Synthetic data were generated from the true model for a typical

frequency-domain surveying system with five frequencies. The transmitters and receivers

were vertically directed dipoles at 380Hz, 7200Hz and 56 kHz, and dipoles directed along

the survey line direction at 900Hz and 5500Hz. All transmitters and receivers were 30m

above the earth’s surface.

Quality of the results was heavily dependent on the starting model but that was true

for the original and modified algorithms. The figure shows inversion results for both al-

gorithms, starting from a homogeneous halfspace model. Both algorithms terminated due

to a small predicted misfit decrease (i.e. they hit local minima), rather than reaching a de-

sired RMS value. The observed and predicted values of the in-phase (real) and quadrature

(imaginary) parts of the components of the secondary magnetic field in the direction of

the receiver dipole moment are included in Figures 4.2 and 4.3. The modified inversion

algorithm clearly results in a model that fits the data better than the one generated by the

original algorithm. Qualitatively, both algorithms recovered the shapes of the tops of the

conductive blocks well but left their conductivities far too low, spreading conductivity out
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(c) Modified algorithm

Figure 4.1: True model shown with inversion results. The true model was a homogeneous halfspace with

conductivity 1×10−3 S/m with two embedded conductive blocks. The left one has conductivity 1 S/m and the

right 0.1 S/m. The final RMS was 42.48% for the original algorithm and 32.02% for the modified algorithm.

to greater depth. Models generated by the modified algorithm generally tended to produce

broader conductive regions than the original algorithm.
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Figure 4.2: In-phase observed and predicted data. Synthetic data from the true model shown in blue with

circular data points. Predicted data is shown with triangular points , in magenta for the original inversion

and red for the modified algorithm
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(e) 56 kHz original
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Figure 4.3: Quadrature observed and predicted data. Synthetic data from the true model shown in blue with

circular data points. Predicted data is shown with triangular points , in magenta for the original inversion

and red for the modified algorithm.
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4.3.2 Overall performance

The inversions using the modified algorithm were incorporated into the shared memory

version of ArjunAir, using the Pardiso based forward solver. I did not produce a code that

used the new inversion algorithm with the original forward solver so, strictly speaking, I

did not measure the speedup due solely to changing the inversion algorithm. However,

comparing the combined runtimes for computing σ1 and the model update with the cost of

computing the SVD of the Jacobian indicates that even without the benefit of faster forward

solves, the new inversion algorithm is faster than the old one.

For the inversion example given above, the original algorithm completed in 1926 sec-

onds, after 8 iterations. The modified algorithm used 9 iterations and took 779 seconds to

complete when running single-threaded. Convergence curves for the two algorithms, start-

ing with the RMS from the initial model, are shown in Figure 4.4. The modified algorithm

with the fast forward solver gave a speedup of 2.5 without parallelization. When running

on 8 cores, the modified algorithm took 282 seconds to complete—a speedup of 2.8 relative

to the single-threaded modified inversion and 6.8 relative to the original code. The parallel

scaling of the modified algorithm was not particularly impressive but the speedup over the

original algorithm was substantial.
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Figure 4.4: Convergence curves. Solid blue line shows the original algorithm and the dashed magenta line

shows the modified algorithm.
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Chapter 5

Conclusions

The forward modelling portion of this project was successful in significantly improving Ar-

junAir’s performance without sacrificing accuracy. A robust and efficient OpenMP based

shared memory solver was developed and is currently ready for production use. Prospects

for a cluster oriented shared/distributed memory hybrid solver are bright. Improving the

forward solver and parallelizing computation of the Jacobian gave significant speedup for

ArjunAir inversions, relative to the original code. The largest forward solve speedup ob-

served relative to the original code (22.2) was on a problem too large to be inverted, due to

memory limitations.

Although the shared memory forward modelling code using MKL Pardiso to solve the

finite-element equations proved to be the best option for production use, experimentation

with MuMPS and with developing my own parallel sparse-direct solver yielded valuable

information on how the accuracy with which the finite-element equations are solved affects

the accuracy of the full forward modelling process.

Memory constraints limited the sizes of inversions that could be run to much smaller
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meshes than those for the largest forward problems that were tested. Factors that affected

inversion speedup included forward solver speedup, parallelization of the computation of

the wavenumber domain Jacobian matrix, not having to compute the SVD of the Jacobian,

as well as potential variability in the number of iterations performed by the new inversion

algorithm. Speedup as high as 8 was observed for a full inversion using the new algorithm

with the fast shared memory forward solver, relative to the original version of ArjunAir.

The quality of ArjunAir inversion results is highly dependent on the starting model—

for both the original and modified algorithms. ArjunAir was not successful in recovering

conductive anomalies starting from a homogeneous halfspace model. An improved inver-

sion algorithm could use the ArjunAir forward solver in a more robust inversion approach

such as minimum structure. For those interested in using the ArjunAir inversion algorithm

as is, the modified version, using the OpenMP forward solver, offers much improved per-

formance over the original code while providing results of equivalent quality. For those

who desire results that are exactly equivalent to the original ArjunAir, the speedup in the

forward solver and parallelization of the computation of the Jacobian provide much faster

inversion than the original code was capable of. All of these modifications serve the overall

goal of making it practical to run 2.5D inversions of airborne EM data on larger datasets

than was possible before.

114



Bibliography

Abubakar, A., T. Habashy, V. Druskin, L. Knizhnerman, and D. Alumbaugh, 2008, 2.5D

forward and inverse modeling for interpreting low-frequency electromagnetic measure-

ments : Geophysics, 73, F165–F177.

Amestoy, P., I. Duff, J. Koster, and J.-Y. L’Excellent, 2001, A fully asynchronous multi-

frontal solver using distributed dynamic scheduling: SIAM Journal of Matrix Analysis

and Applications, 23, 15–41.

Anderson, W., 1982, Fast Hankel transforms using related and lagged convolutions: ACM

Transactions on Mathematical Software, 8, 344–368.

——–, 1983, Fourier cosine and sine transforms using lagged convolutions in double-

precision, Open-File Report 83-320: Technical report, U.S. Department of the Interior,

Geological Survey.

Arioli, M., J. Demmel, and I. Duff, 1989, Solving sparse linear systems with sparse back-

ward error: SIAM Journal of Matrix Analysis and Applications, 10, 165–190.

Aster, R. C., B. Borchers, and C. H. Thurber, 2013, Parameter Estimation and Inverse

Problems: Elsevier.

Bono, G., and A. M. Awruch, 2008, An adaptive mesh strategy for high compressible flows

based on nodal re-allocation: Journal of the Brazilian Society of Mechanical Sciences

115



and Engineering, 30.

Börner, R.-U., 2010, Numerical modelling in Geo-Electromagnetics: Advances and Chal-

lenges: Surveys in Geophysics, 31, 225–245.

Brenner, S. C., and L. R. Scott, 2008, TheMathematical Theory of Finite ElementMethods,

3rd ed.: Springer.

Burden, R. L., and J. D. Faires, 2000, Numerical Analysis, 7th ed.: Brooks/Cole.

Chow, E., and D. Hysom, 2001, Assessing Performance of Hybrid MPI/OpenMP Programs

on SMP Clusters: Technical report, Lawrence Livermore National Laboratory Technical

Report UCRL-JC-143957.

Christensen, N. B., 1990, Optimized fast Hankel transform filters: Geophysical Prospect-

ing, 38, 545–568.

Constable, S., R. L. Parker, and C. Constable, 1987, Occam’s inversion: A practical algo-

rithm for generating smooth models from electromagnetic sounding data: Geophysics,

52, 289–300.

Cox, L., G. Wilson, and M. Zhdanov, 2010, 3D inversion of airborne electromagnetic data

using a moving footprint: Exploration Geophysics, 41, 250–259.

De Boor, C., 1978, A Practical Guide to Splines: Springer.

Duff, I. S., 1996, A review of frontal methods for solving linear systems: Computer Physics

Communications, 97, 45–52.

Duff, I. S., and J. Reid, 1983, The multifrontal solution of indefinite sparse symmetric

linear equations: ACM Transactions on Mathematical Software, 9, 302–325.

EMIT, 2014, Maxwell webpage. (http://www.electromag.com.au/maxwell.php, accessed

June 2, 2014).

Everett, M., and R. Edwards, 1992, Transient marine electromagnetics: the 2.5-D forward

116



problem: Geophysical Journal International, 113, 545–561.

Farquharson, C., and D. Oldenburg, 2000, Simultaneous one-dimensional inversion of elec-

tromagnetic loop-loop data for both magnetic susceptibility and electrical conductivity.

(GeoCanada2000).

Farquharson, C., D. Oldenburg, and P. Routh, 2003, Simultaneous one-dimensional inver-

sion of loop-loop electromagnetic data for magnetic susceptibility and electrical conduc-

tivity: Geophysics, 68, 1857–1869.

Gabriel, E., et al., 2004, Open MPI: Goals, Concept, and Design of a Next Generation MPI

Implementation: Presented at the Proceedings, 11th European PVM/MPI Users’ Group

Meeting.

Glenn, W., J. Ryu, W. S.H., W. Peeples, and R. Phillips, 1973, The inversion of vertical

magnetic dipole sounding data: Geophysics, 38, 1109–1129.

Gockenbach, M. S., 2006, Understanding and Implementing the Finite Element Method:

SIAM.

Golub, G., and W. Kahan, 1965, Calculating the singular values and pseudoinverse of a

matrix: SIAM Journal of Numerical Analysis, 2, 205–224.

Golub, G., and C. Reinsch, 1970, Singular value decomposition and least squares solutions:

Numerical Mathematics, 14, 403–420.

Gould, N. I., J. A. Scott, and Y. Hu, 2007, A numerical evaluation of sparse direct solvers

for the solution of large sparse symmetric linear systems of equations: ACM Transac-

tions on Mathematical Software, 33.

Haber, E., D. Oldenburg, and U. Ascher, 2000, On optimization techniques for solving

nonlinear inverse problems: Inverse Problems, 16, 1263–1280.

Haber, E., D. W. Oldenburg, and R. Shekhtman, 2007, Inversion of time domain three-

117



dimensional electromagnetic data: Geophysical Journal International, 171, 550–564.

Higham, N. J., 1998, Factorizing complex symmetric matrices with positive definite real

and imaginary parts: Mathematics of Computation, 67, 1591–1599.

Hohmann, G. W., 1987, Numerical Modeling for Electromagnetic Methods of Geophysics,

in Electromagnetic Methods in Applied Geophysics, Volume 1, Theory: Society of Ex-

ploration Geophysicists, 313–364.

Hohmann, G. W., and A. P. Raiche, 1987, Inversion of controlled-source electromagnetic

data, in Electromagnetic Methods in Applied Geophysics, Volume 1, Theory: Society of

Exploration Geophysicists, 469–503.

HP, 2014, HP workstationwebpage. (http://www8.hp.com/ca/en/campaigns/workstations/benefits.html,

accessed June 15th, 2014).

Ingerman, D., V. Druskin, and L. Knizhnerman, 2000, Optimal finite difference grids and

rational approximations of the square root, I: Elliptic problems: Communications on

Pure and Applied Mathematics, 53, 1039–1066.

Intel, 2014, Intel Math Kernel Library. (http://software.intel.com/en-us/intel-mkl, accessed

June 9th, 2014).

Irons, B. M., 1970, A frontal solution program for finite element analysis: International

Journal for Numerical Methods in Engineering, 2, 5–32.

Jackson, D. D., 1972, Interpretation of inaccurate, insufficient, and inconsistent data: Geo-

physical Journal of the Royal astronomical Society, 28, 97–109.

Jackson, J. D., 1999, Classical Electrodynamics, 3rd ed.: Wiley.

Jin, J., 2002, The Finite Element Method in Electromagnetics: Wiley-Interscience.

Johansen, H., and K. Sørensen, 1979, Fast hankel transforms : Geophysical Prospecting,

27, 876–901.

118



Jupp, D., and K. Vozoff, 1975, Stable iterative methods for the inversion of geophysical

data: Geophysical Journal of the Royal astronomical Society, 42, 957–976.

Karypis, G., and V. Kumar, 1999, A Fast and Highly Quality Multilevel Scheme for Parti-

tioning Irregular Graphs: SIAM Journal on Scientific Computing, 20, 359–392.

Key, K., 2012, 116, inMarine EM inversion using unstructured grids: a 2D parallel adaptive

finite element algorithm: 1–5.

Key, K., and J. Ovall, 2011, A parallel goal-oriented adaptive finite element method for

2.5-D electromagnetic modelling: Geophysical Journal International, 186, 137–154.

Kirkegaard, C., T. O. Sonnenberg, E. Auken, and F. Jørgensen, 2011, Salinity Distribution

in Heterogeneous Coastal Aquifers Mapped by Airborne Electromagnetics: Vadose Zone

Journal, 10, 125–135.

Kong, F., S. Johnstad, T. Røsten, Westerdahl, and H., 2008, A 2.5D finite-element-

modeling difference method for marine CSEM modeling in stratified anisotropic media

: Geophysics, 73, F9–F19.

Larsen, R., 2000, Computing the SVD for Large and Sparse Matrices: Technical report,

SCCM, Stanford University. (A presentation given on June 16th, 2000. Available at

http://sun.stanford.edu/ rmunk/PROPACK/index.html).

Last, B., and K. Kubik, 1983, Compact gravity inversion: Geophysics, 48, 713–721.

Lee, K., and H. Morrison, 1985, N, A numerical solution for the electromagnetic scattering

by a two-dimensional inhomogeneity: Geophysics, 50, 466–472.

Long Harbour Exploration, 2014, About Uranium.

(http://www.longharbourexploration.com/about uranium/ accessed June24th, 2014).

McGillivray, P., D. Oldenburg, R. Ellis, and T. Habashy, 1994, Calculation of sensititivities

for the frequency-domain electromagnetic problem: Geophysical Journal International,

119



116, 1–4.

Miensopust, M., B. Siemon, R. Börner, and S. Ansari, 2013, Multi-dimensional forward

modeling of frequency-domain helicopter-borne electromagnetic data: AGU Fall Meet-

ing Abstracts, A1584.

Mitsuhata, Y., 2000, 2-D electromagnetic modeling by finite-element method with a dipole

source and topography : Geophysics, 65, 465–475.

Monk, P., 2003, Finite Element Methods for Maxwell’s Equations: Oxford University

Press.
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