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Abstract

Internal waves are present both in the atmosphere and the oceans. Internal waves

transport momentum across long distances and their breaking provides energy for

mixing. The mechanisms of internal wave dissipation and breaking is not completely

understood. We are interested in understanding how internal waves propagate and

reflect off sloping topography such as the continental shelf and dissipation. We con-

ducted a series of laboratory experiments to study the energy flux of propagating

and reflecting mode-1 vertically trapped internal waves in a linearly stratified salt

water fluid. The internal waves are generated by a wave generator that is capable

of producing monochromatic vertical mode-1 internal waves. In our experiments, we

record a video in a rectangular section of the tank where these waves propagate along

the length of the tank (5m) and reflect back. We repeated this for 3 different types

of end wall boundary conditions : no slope, supercritical slope and subcritical slope.

Their quantitative measurements of the structure and amplitude of the internal waves

are measured using an optical technique called synthetic schlieren from which we can

extract the energy flux of the wave. We use a complex demodulation function called

the Hilbert transform to filter out internal waves on the basis of the sign of their wave

vector. We employ this technique to filter out the generated waves that are travelling

left to right from their reflection that are travelling right to left. From the filtered

data we can understand how much energy from incoming waves is present in reflected
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internal waves and how internal waves dissipate across experiments from all the cases

and across different wave generator amplitudes. The analysis of energy flux of internal

waves during propagation and reflection using Hilbert transform is helpful as it brings

insight into phenomena that are difficult to observe during field studies. Comparison

between the reflected energy efficiency across the 3 types of experiments improves our

understanding of how waves reflect from different end boundaries, and also sheds light

on the how dissipation changes when we change wave generator amplitude.
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Chapter 1

Introduction

The study of internal gravity waves has gained a lot of importance in recent years due

to a renewed understanding of its importance in atmospheric and oceanic systems.

In this chapter, we give a brief introduction to internal gravity waves and the role

they play in our atmosphere and ocean in transporting energy and momentum. We

explain our motivation for studying internal waves through laboratory experiments.

We then discuss the current literature in the study of internal gravity waves both in

the open ocean and laboratory experiments.

We have commonly observed surface waves oscillating up and down when we go to a

beach or a lake. Surface waves occur at the interface of air and water, and when the

water surface is lifted from its equilibrium position due to a disturbance, it experiences

a restoring force that makes it come back but if it overshoots the equilibrium position

then again due to the restoring forced, it comes back up again thus oscillating about

the equilibrium position. This spring-like motion is mainly due to buoyancy which

is due to gravity and hence surface waves are sometimes called gravity waves. Now

imagine a two layer fluid where the heavier fluid lies below the lighter fluid. If the

interface between these two layers a disturbed, the interface will oscillate just like a
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surface wave. These waves are called internal gravity waves. Internal gravity waves

are waves that move within a fluid. For internal waves to exist the fluid medium must

be stratified. In stratified fluids, the fluid’s density changes with height. In the deep

ocean, internal waves can have amplitudes as large as 300 m.

1.1 Motivation

Internal waves are mysterious and interesting due to several reasons. Internal waves

are very difficult to observe. Unlike surface waves it is almost impossible to observe

internal waves propagating in the interior of the ocean. Oceanic internal waves are

sometimes spotted by the sea surface roughness. Atmospheric internal waves are

sometimes visualized by formation of wave clouds. Studying internal waves experi-

mentally are also hard for the same reason. Measuring and visualizing internal waves

is quite a challenge. Mathematically internal waves are interesting because unlike

surface waves, the phase velocity ~Cp and the group velocity ~Cg of internal waves

propagate at right angles to each other. Internal waves propagate in such a way that

they force the fluid to move along a line at an angle θ to the vertical and oscillate

with the frequency of the internal wave. Internal waves cannot be generated if the

frequency of generation is greater than the buoyancy frequency of the fluid medium.

Internal waves are geophysically significant because they play an important role in

the transfer of momentum and also provide mechanisms to help in mixing. We are

interested in the generation mechanisms and in studying the evolution of propagating

internal waves. Studying the evolution of propagating internal waves means we try to

measure the transport of energy of generated internal waves as they move across the

tank to see how much energy is lost in dissipation and what happens when they meet

an obstacle. We study internal waves using laboratory experiments. Generating and
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analyzing internal waves experimentally can be done with high confidence and help

us build and validate theories on internal wave dynamics. In this thesis, we mainly

study mode − 1 internal waves ( mode -1 internal waves are explained in detail in

section 2.2.1 ), their generation mechanism, propagation, and reflection with different

boundaries. This is a preliminary step towards understanding how internal waves

reflect off sloping topography such as the continental shelf. We performed a series

of laboratory experiments to study various parameters of propagating and reflecting

mode-1 internal waves in a continuously stratified salt water fluid. We then used

a technique called the Hilbert transform to separate out mode-1 waves traveling in

different directions. This is useful as it allows us to measure energetics of the reflected

waves and allows us to compare it to the energetics of the incoming waves. We also

compare theoretical predictions of various parameters of the mode-1 internal waves

and compare it to the experimentally measured values.

1.1.1 Internal gravity waves in ocean and atmosphere

Atmospheric internal waves occur when a stratified air blows over an obstacle (like

a mountain). When this stratified layer hits the obstacle, horizontal layers of air of

uniform density get disturbed and this disturbance can get launched into internal

waves which can sometimes create wave clouds.

In the ocean, cold and dense salt water is formed in the polar regions and as they

are heavier than the surrounding water they sink to the bottom of the ocean floor.

For it to sink as a separate water mass, it must not mix with the surrounding water

for a steady state to be achieved [10]. It has been speculated that internal waves

are the cause of this mixing. Internal waves are also responsible for the transfer of

momentum over large distances (1000−3000 km) in the ocean from the deep ocean

onto the continental slope [9].
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Another major example of internal waves in the oceans are the internal tides. Internal

tides are internal gravity waves that are generated in the ocean when surface tides

force ocean’s stratified water over varying bottom topography. Christopher Garrett

and Eric Kunze [2] noted that tidal internal waves generated by surface tides moving

over gigantic mid-ocean ridges radiate away as large-scale internal waves. These in-

ternal waves break sometimes on continental slopes and play an important role in the

mixing and transport of heat, salt, nutrients, and other suspended matter. This mix-

ing introduces nutrients into the water column and fertilizes the local region making it

biologically very productive [12]. Such sites are often the breeding grounds for com-

mercially important fishes and the knowledge of such sites are very relevant for fishing

industries. Thus while quantifying the role internal waves in energy, mass and mo-

mentum transport is a key research area in physical oceanography, their implications

are very important to responsibly harnessing earth’s resources.

In places with large structures in the ocean and large sea-level changes leads to gener-

ation of solitary internal tides which can be very large that they can be a safety and

environmental concern for off-shore drilling operations [4]. Solitary waves are a class

of non-linear, isolated waves of complex shape that occur frequently in the ocean.

These waves can be more than 100 m tall and these large amplitude waves create

strong currents that are proven to be a hazard for off-shore structures and drilling

operations [11]. The influence of internal solitons in regions where they are observed

should not be neglected while designing off-shore platforms.

1.1.2 Internal gravity waves in laboratory experiments

An advantage of studying internal waves experimentally is that we get to work on a

simplified experimental set-up and build it in complexity with growing understanding.

But like internal waves in atmosphere and oceans, internal waves generated in labo-
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ratory experiments can also be very hard to visualize and measure. Another problem

in studying internal waves in the laboratory is generation of internal waves. We shall

now see how these problems have been tackled in the past.

Over the last two centuries great progress has been made in the field of visualizing

internal waves starting with the Schlieren technique invented by the German physicist

August Toepler [15] . One of the first laboratory experiments conducted to test the

linear theory of internal waves in stratified fluids is the oscillating cylinder experiment

by Mowbray and Rarity in 1967 [8]. They used a visualization technique which is a

predecessor to a modern optical technique ( traditional Schlieren method) that is one

of the most effective and non-intrusive methods to visualize internal waves in strat-

ified fluid. The traditional schlieren techniques are fundamentally based on Snell’s

law which describes the bending of light rays when it passes through a medium of

varying density [16]. When light rays pass through a medium which has changing

refractive indices, the path of light is deflected from its original track and it undergoes

a phase change. Optical techniques ( such as Shadowgraph, Interferometry, Schlieren

methods) were used to detect this deflection. From the deflection, it was possible

to extract changes in refractive indices and thus density changes in the fluid could

be measured. We started our experimental study by repeating this experiment by

visualizing the internal waves generated by a vertically oscillating cylinder. The visu-

alization method of the internal waves generated in our laboratory is based on a digital

variant of the Schlieren methods [1] called the ‘synthetic schlieren′ and is explained in

detail in Chapter 3. Using synthetic schlieren we are able to quantitatively measure

the perturbation in the density field and from that we can measure the amplitude and

energy flux of the internal waves.

We needed to design an internal wave generator for experimental applications. It is

based on an existing internal wave generator designed by Gostiaux, Didelle, Mercier
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and Dauxois in 2010 [6]. The wave generator is capable of producing sinusoidal

vertically trapped mode-1 internal waves that travel along the length of the tank.

Mode-1 internal waves are found in the ocean in the form of internal tides and are

frequently observed. We study how these internal waves propagate and interact with

different end boundary conditions.

1.2 Theory of internal waves in linearly stratified

fluid

Let us now consider the dynamics of small-amplitude internal waves that are in a

linearly stratified fluid. In our laboratory experiments, the internal waves are consid-

ered two-dimensional occurring in the x−z plane, non-rotational, with no background

flow.

1.2.1 Buoyancy frequency

Consider a fluid parcel in a stratified fluid where the density of the fluid increases

linearly with depth. Now if we raise a fluid parcel from depth z of density ρ0 to

z + h where the ambient density ρ0 − δρ is less than the density of the fluid parcel.

If the fluid is incompressible then the fluid parcel will experience a net downward

force equal to the difference of the weight of the fluid parcel and that of the displaced

parcel. From Newton’s second law,

ρ0V
d2δz
dt2

= −δρV g (1.1)
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Where V is the volume of the fluid parcel, g is acceleration due to gravity. Since the

magnitude of density changes are very small,

δρ '
−dρ̄
dz

δz (1.2)

where δρ is the difference in density of the fluid parcels at z and z + h respectively

and δz is the displacement of the fluid parcel.

ρ0
d2δz
dt2

= gdρ̄

dz
δz (1.3)

d2δz
dt2
− g

ρ0

dρ̄

dz
δz = 0 (1.4)

which can be rewritten as
d2δz
dt2

+N2δz = 0 (1.5)

where,

N2 = − g

ρ0

dρ̄

dz
(1.6)

The equation 1.5 has the same form as the equation of motion of a simple harmonic

motion in which N refers to the frequency of oscillation. Equation 1.6 describes the

buoyancy frequency of a Boussinesq fluid. It is sometimes called the "Brunt-Väisälä

frequency". This means that a vertically displaced fluid parcel will oscillate at an

angular frequency N, whose corresponding buoyancy period would be 2π/N s.

Now let us consider another case of a fluid parcel being displaced from its position by

a small distance δl along a line at an angle θ to the vertical. We further assume that

the consequent parcel motion is constrained to move along this line. Even though it

may seem unrealistic, let us go with the thought for the moment. The new downward
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force will be given by,

ρ0
d2δl
dt2

= −δρg cos θ (1.7)

where g cos θ is the component of downward gravitational force that is exerted along

the line at angle θ. And following the same steps which helped us arrive at equation

1.5, we get,
d2δl
dt2

+ ω2δl = 0 (1.8)

where

ω = N cos θ (1.9)

where N cos θ is the frequency of oscillation of a fluid parcel that moves along a line

at an angle θ. Surprisingly enough, if the oscillations are vertical then, θ = 0 and

ω = N . This is the dispersion relation for internal waves in linearly stratified fluids.

1.2.2 Equations of motions of internal waves in a Boussinesq

fluid

The equations governing geophysical flows are greatly simplified when we apply the

Boussinesq approximation along with the assumption that the fluid is incompressible.

These equations are discussed in basic fluid dynamics textbooks [13] and consist of the

momentum conservation equations, the internal energy equation and the continuity

equation.

ρ0

(
Du

Dt
− f0v

)
= −∂p

∂x
(1.10)

ρ0

(
Dv

Dt
− f0u

)
= −∂p

∂y
(1.11)

ρ0

(
Dw

Dt

)
= −∂p

∂z
− gρ (1.12)
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Dρ

Dt
= −wdρ̄

dz
(1.13)

5.~u = 0 (1.14)

where (u, v, w) are components of the velocity vector ~u, p is the dynamic pressure, ρ̄

is the background density, ρ is the fluctuation density, ρ0 is the characteristic density

and D/Dt is called the material derivative,

D

Dt
= ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(1.15)

For internal waves in oceans and lakes as well as for internal waves that are generated

in laboratory experiments, we can rewrite the equations governing geophysical flows

for a non-rotating , two-dimensional reference frame in terms of velocity ~u ≡ (u,w),

dynamic pressure p, and the fluctuation density ρ as follows [13],

ρ0

(
Du

Dt

)
= −∂p

∂x
(1.16)

ρ0

(
Dw

Dt

)
= −∂p

∂z
− gρ (1.17)

Dρ

Dt
= −wdρ̄

dz
(1.18)

5.~u = 0 (1.19)

and the background pressure, p̄ is assumed to be in hydrostatic balance with the

background density ρ as
dp̄

dz
= −gρ̄ (1.20)

If we are looking at small-amplitude internal waves in a fluid with no mean background

flow we can ignore the advection terms in the material derivative. These non-linear

terms are ignored as they are a function of the squared amplitude of the internal
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waves which are small compared to the linear terms. We can replace D/Dt with ∂/∂t

in equations 1.16 - 1.18. Now in order to reduce these four equations containing

four unknowns to one equation with one unknown we take the curl of the momentum

equations 1.16 - 1.17,

∂

∂z

(
ρ0

(
Du

Dt

)
+ ∂p

∂x

)
− ∂

∂x

(
ρ0

(
Dw

Dt

)
+ ∂p

∂z
+ gρ

)
= 0 (1.21)

ρ0
∂ζ

∂t
= g

∂ρ

∂x
(1.22)

Where ζ = ∂zu− ∂xw is the relative vorticity.

Using streamfunction Ψ, we can describe ~u in terms of the gradient of the Ψ using

the continuity equation 1.19

u = −∂zΨ (1.23)

w = ∂xΨ (1.24)

and

ζ = −(∂xxΨ + ∂zzΨ) = −52 Ψ (1.25)

Internal energy of a fluid parcel refers to its heat energy. The equation of internal

energy used here ignores the thermodynamics of the deep ocean. The internal energy

equation 1.13 can also be written in terms of the streamfunction as,

∂2ρ

dt2
= −∂Ψ

∂x

dρ̄

dz
(1.26)

Eliminating ρ from 1.22 and 1.26 gives us the equation,

∂2

∂t2
52 Ψ +N2

0
∂2

∂x2 Ψ = 0 (1.27)
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where N2
0 is the squared buoyancy frequency whose definition is given in 1.6. In a lin-

early stratified fluid the buoyancy frequency term is a constant and hence represented

as N0.

1.2.3 Dispersion relation for internal waves

Two-dimensional waves can be represented by exponential solutions of the form,

Ψ = A0 exp[ı(kxx+ kzz − ωt)] (1.28)

where kx, kz are the horizontal and vertical wave numbers and ω is the angular

frequency of the internal wave. Substituting this in the internal wave equation 1.27.

ω2 = N2
0

k2
x

k2
x + k2

z

(1.29)

Equating the right hand side of the equation 1.29 to right hand side of the equation

1.9 we get,

cos2 θ = k2
x

k2
x + k2

z

(1.30)

If θ is the angle between sides kx and kz in a a right-angled triangle where k2
x + k2

z is

the hypotenuse then another representation of the dispersion relation is,

tan θ = (kz/kx) (1.31)

1.2.4 Polarization relations

For a linearly stratified fluid, the buoyancy frequency is a constant. Thus all the

coefficients in the set of differential equations 1.16 - 1.19 are constants. In the

previous section we saw how we can represent the various fields u,w, ρ, p in the form
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given by the equation 1.28. We define z from 0 to Hcm where 0 is the surface of the

water and H is the bottom of the tank. For real kx, kz and ω, we can write fields in

the form 1.28 as

u = Aue
ι(kxx+kzz−ωt) (1.32)

w = Awe
ι(kxx+kzz−ωt) (1.33)

ρ = Aρe
ι(kxx+kzz−ωt) (1.34)

p = Ape
ι(kxx+kzz−ωt) (1.35)

Substituting the above field in the equations 1.16 - 1.19 is equivalent to performing

a Fourier transform. These equations are:

−ιωAu − ι
kx
ρ0
Ap = 0 (1.36)

−ιωAw + ι
kz
ρ0
Ap + g

ρ0
Ap = 0 (1.37)

−ιωAp −
ρ0N

2
0

g
Aw = 0 (1.38)

ιkxAu + ιkzAw = 0 (1.39)

We can see that the continuity equation gives us the relationship between the com-

ponents of velocity.

Au = −kz
kx
Aw = − tan θAw (1.40)

It means that the horizontal and vertical velocity components are either in phase or

180° out of phase. The ratio of horizontal to vertical velocity fields is − tan θ. Fluid

parcels oscillate along a line that forms an angle θ with the vertical. This justifies

the assumption we made while deriving the dispersion relation 1.9 for internal waves.
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With internal waves, the vertical displacement field ξ is a useful measure of internal

wave amplitude. However, in our laboratory experiments, we use synthetic schlieren

to estimate the apparent displacement field from which we are able to construct the

horizontal displacement field ς. In theory, for small amplitude internal waves, it is

defined using the relation,

u = dς

dt
(1.41)

For mode-1 internal waves, the vertical displacement field and the horizontal displace-

ment fields are 90° out of phase and are defined as,

ξ = Aξ cos(kzz) cos(kxx− ωt) (1.42)

ς = Aς cos(kzz) sin(kxx− ωt) (1.43)

Using the equation 1.41, we can get the horizontal velocity field in terms of the

horizontal displacement field,

u = −ωAς cos(kzz) cos(kxx− ωt) (1.44)

Using the continuity equation 1.19,

∂u

∂x
= −∂w

∂z
(1.45)

Solving for the vertical velocity field w using the equation 1.44 above, we get

w = −ωkx
kz
Aς sin(kzz) sin(kxx− ωt) (1.46)

We can relate ς to the dynamic pressure field using the horizontal momentum conser-
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vation equation 1.16. Substituting,

∂p

∂x
= ρ0ω

2Aς cos(kzz) sin(kxx− ωt) (1.47)

which upon integrating with respect to x gives the dynamic pressure field in terms of

ς,

p = −ρ0
ω2

kx
Aς cos(kzz) cos(kxx− ωt) (1.48)

We would also like to obtain the vertical displacement field in terms of the horizontal

displacement field. For small amplitude waves w is related to ξ through the relation,

w = ∂ξ

∂t
(1.49)

substituting for w from the equation 1.46 in the above equation and integrating with

respect to time we get,

ξ = −kx
kz
Aς sin(kzz) cos(kxx− ωt) (1.50)

Now we can easily get the fluctuation density field in terms of ς by substituting the

vertical velocity field in terms of ς in the internal energy equation for internal waves

1.18 and integrating with respect to t,

∂ρ

∂t
= −wdρ̄

dz
= wN2

0ρ

g
(1.51)

ρ = −N
2
0ρ0

g

kx
kz
Aς sin(kzz) cos(kxx− ωt) (1.52)

In our laboratory experiments we use synthetic schlieren which gives us a measure of

the apparent displacement field4z from which we are able to obtain the perturbation
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to the squared buoyancy frequency4N2 [14]. In theory4N2 is given by the relation,

4N2 = − g

ρ0

∂ρ

∂z
(1.53)

Substituting ρ in terms of ς from the equation 1.52, we get the perturbation to the

squared buoyancy frequency in terms of the horizontal displacement field,

4N2 = N2
0kxAς cos(kzz) cos(kxx− ωt) (1.54)

In addition, we may also compute the finite difference approximation to the time

derivative of the squared buoyancy frequency, N2
t by calculating the apparent dis-

placement field, 4z at consecutive time intervals that are much smaller than the

period of the internal waves. In theory N2
t is given by the relation,

N2
t = ∂ 4N2

∂t
= N2

0ωkxAς cos(kzz) sin(kxx− ωt) (1.55)

From the definition of the horizontal displacement field 1.42, we can rewrite the above

expression as,

N2
t = AN2

t
cos(kzz) sin(kxx− ωt) (1.56)

where AN2
t

= kxωN
2Aς or we can write it in terms of ς as,

N2
t = ωN2

0kxς (1.57)

The field N2
t is what we quantitatively measure using synthetic schlieren. Now we

shall define certain cross-correlations to understand the transport properties of mode-

1 internal waves. We define the horizontal energy flux as the cross-correlation of

the product of the horizontal velocity term and the dynamic pressure term and the
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vertical energy flux as the cross-correlation of the product of the vertical velocity term

and the dynamic pressure term, and for both its considered over a time period of the

mode-1 internal wave. The relations are given by,

〈FEx〉 = 〈pu〉 (1.58)

〈FEz〉 = 〈pw〉 (1.59)

Where 〈〉 represents cross-correlation. Expanding the right hand side by express-

ing them in terms of the horizontal displacement field ς we get vertical energy flux

averaged over a time period,

〈FEz〉 = ρ0ω
3kx
kz

Aς cos(kxx− ωt) sin(kxx− ωt)〈cos(kzz) sin(kzz)〉 = 0 (1.60)

which is obvious as the internal waves generated are mode-1 vertically trapped internal

waves. We expand the horizontal energy flux averaged over a time period as,

〈FEx〉 = ρ0ω
3

kx
A2
ς cos2(kzz)〈cos2(kxx− ωt)〉 = 1

2
ρ0ω

3

kx
A2
ς cos2(kzz) (1.61)

We can introduce the horizontal energy flux in terms of the 〈(N2
t )2〉 which is defined

in 1.62 into the horizontal energy flux definition 1.61.

〈(N2
t )2〉 = 1

2k
2
xω

2N4A2
ς cos2(kzz) (1.62)

We exclude kx and simplify till we get the hozizontal energy flux in terms of the

squared time derivative of the squared buoyancy frequency as,

〈FEx〉 = ρ0

N3k3
z

√
(1− ( ω

N
)2

( ω
N

)2 〈(N2
t )2〉 (1.63)
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We can also compute the vertically averaged horizontal energy flux 〈FEx〉 as,

〈FEx〉 = ρ0

N3k3
z

√
(1− ( ω

N
)2

( ω
N

)2 〈(N2
t )2〉 (1.64)

1.3 Internal waves near slopes

Internal wave interaction with slopes is very important to study in order to understand

the role that internal waves play in transporting mass and momentum and their

role in mixing. It is an important part of understanding ocean circulation and is

of consequence for several industries. Internal waves have a unique property that is

waves of a fixed frequency can propagate at a fixed angle to the vertical and this

is independent of their wavelength and independent of the slope of the reflecting

boundary [13]. In our laboratory, we have conducted experiments where the internal

waves are incident upon a slope. The slope makes an angle α with the horizontal. If

the angle of the internal wave is θ with the vertical then we can use the ratio, α/(π2−|θ|)

to categorize if the slope is supercritical, subcritical and critical. In our experiments

the slope was either supercritical, α/(π2 − |θ|) > 1 or subcritical, α/(π2 − |θ|) < 1.

To understand how reflection will occur at a supercritical or subcritical slope we

now look at the figure 1.1. When internal waves are incident upon a subcritical

slope, the waves reflect alternatively between the sloping boundary and the horizontal

bottom surface and thus focusing the waves to the corner where the slope meets the

bottom surface where the internal waves eventually dissipate. When internal waves

are incident upon a supercritical slope, the waves reflect away from the point attractor

and propagate away.
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a) b)

Figure 1.1: a) propagation of an internal wave ray incident upon a subcritical slope re-
flects in towards a point attractor and b) propagation of an internal wave ray incident
upon a supercritical slope reflects away from the point attractor.



Chapter 2

Laboratory experiments and

experimental analysis

2.1 Experiments

This chapter contains a description of the different laboratory experiments that were

conducted on internal wave generation and propagation.

2.1.1 Internal waves generated using a vertically oscillating

cylinder

The experiment for generating internal waves using a vertically oscillating cylinder

is set-up as described. The experiments were performed separately in 2 transparent

acrylic tanks one measuring 50 cm long, 20cm wide and 50 cm tall and the other

measuring 488 cm long, 46cm wide and 52 cm tall . The tank is filled with linearly

stratified salt water such that the density of water increases linearly with depth. The

desired background linear stratification is achieved using the double bucket technique

which is explained in great detail in section 2.2.10. A camera is placed a certain

19
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distance away from the tank so as to minimize parallax error. A cylinder is placed

in the interior of the fluid and is aligned such that the cross section of the cylinder

faces the camera. The cylinder is held in place by a motorized bislide which is capable

of oscillating the cylinder up and down a precise given distance which controls the

amplitude of the internal waves generated and at a given frequency ω. The internal

waves generated appear to be cross-shaped patterns and they obey the dispersion

relation given by 1.6 and 1.29 and are valid for ω < N . The internal wave pattern

is schematically illustrated in figure . If the frequency of the oscillating cylinder is

greater than w then we don’t see any internal waves generated. They set up for the

oscillating cylinder experiment is shown in figure .

We fix the amplitude of oscillation and record the internal waves generated for several

times changing only the frequency of oscillation for every new experiment recorded

and keeping every other variable constant. We use synthetic schlieren technique to

visualize and get precise quantitative measurements of the internal waves generated

in the tank.

2.1.2 Internal waves generated using a mode-1 internal wave

generator

These experiments are performed in a transparent acrylic tank measuring 488 cm

long, 46 cm wide and 52 cm tall. The tank is filled with linearly stratified salt water

such that the density of water increases linearly with depth. The desired background

linear stratification is achieved using the double bucket technique. A camera is placed

a certain distance away from the tank so as to minimize parallax error. On one end

of the tank we fix a wave generator that is capable of generating monochromatic

mode-1 internal waves. The frequency of internal waves generated is controlled by

the frequency of camshaft rotation which goes through the wave generator which is
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controlled by a brushless DC motor attached at the top the camshaft. We set the

frequency of the motor using a programmed controller and generate monochromatic

internal waves that travel the length of the tank. Three types of experiments are pos-

sible based on the set-up on the other end of the tank, a simulated sloping topography

whose slope can be supercritical or subcritical or just a vertical flat wall. We use syn-

thetic schlieren techinque to visualize and get precise quantitative measurements of

the internal waves generated in the tank. The set up for the mode-1 internal waves

generated using a novel internal wave generator is given in the figure .

The frequency of the wavegenerator is fixed and we record the internal waves gen-

erated. The frequency of internal waves generated can be changed but for the 3

types of experimental set-up we have, we record internal waves generated at the same

frequency.

2.2 Experimental tools

Experiments conducted on internal waves were performed using several lab equipments

and experimental and analytical techniques. We also used a variety of equipments to

prepare the set-up prior to performing the experiments. In this section we describe

the experimental and analytical tools and their function.

2.2.1 Internal wave generator

Internal waves are often considered as monochromatic plane waves. But in labora-

tory conditions generating monochromatic waves has been very challenging. For the

purposes of our laboratory experiments we require a wave generator that is capable of

generating monochromatic mode-1 internal waves. L. Gostiaux, H. Didelle, S. Mercier

and T. Dauxois [3] built a new internal wave generator that did this. We built an
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Figure 2.1: fig a) Experimental set-up (above) for studying internal wave propagation
and reflection with a flat vertical end boundary condition and b) Experimental set-
up (below) for studying internal wave propagation and reflection with a sloping end
boundary condition. Based on the angle α, the slope of the end wall can be classified
as sub-critical or super-critical. Experiments are conducted to study all three types
of end wall conditions.
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Figure 2.2: A side profile of the wave generator for generating monochromatic mode-1
internal waves. A phase-shifted cam shaft inside the wave generator allows the plates
to move in a fashion that stays sinusoidally mode-1 in the vertical. The density profile
from the top plate to the bottom plate of the wave generator increases linearly.

internal wave generator in our laboratory that was based on the wave generator [3]

which has been designed for three purposes. Firstly, the oscillating boundary condi-

tions force the fluid particles to propagate in one direction, hence reducing the mixing

due to forcing. Second, only one ray tube is produced so that all of the energy is in

the beam of interest. Third, temporal and spatial monochromaticity of the emitted

beam is very high for the emitted beam. The strength of this technique is therefore

the ability to produce monochromatic mode-1 internal waves. We modified their de-

sign of the wave generators so that it generated monochromatic mode − 1 vertically

trapped internal waves.
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1. Description of the Wave generator:

The generator consists of a pile of 26 1"thick PVC rectangular sheets arranged

one over the other and enclosed in a transparent open box, free to slip over one

another. The material chosen has the advantage that it is denser than the dens-

est salt water we use to fill the tank and hence the wave generator automatically

stays at the bottom of the tank. Since the plates are only slightly denser than

the stratified fluid there is less friction between the plates. A rectangular hole

in each plate allows a camshaft to go through the pile, imposing the relative po-

sition of the plates. The breadth of rectangular hole is such that the camshaft

fits perfectly within it, i.e, the camshaft is as wide as the breadth of the rect-

angular hole. The plates are sinusoidally shifted due to helicoidal repartition of

the cams. The rotation of the camshaft applies a periodic motion to the plates

which propagates for a clockwise rotation. The amplitude of oscillation is 8cm

peak to peak. The eccentricity of the camshaft defines the amplitude of oscilla-

tion of the plates. The vertical profile of the wave generator is shown in figure

2.2 and is a half cosine wave. The vertical profile and the height of the wave

generator set the vertical wavelength, λz of the internal waves generated. Since

the profile of the wave generator consist of only one half of the cosine wave, the

vertical wavelength of the internal waves generated is twice the height of wave

generator.

2.2.2 DMA 35 portable density meter

The DMA 35 protable density meter measures the density of liquids in g/cm3 or kg/m3

according to the oscillating U-tube principle. Apart from density you can select

various further measuring units (relative density, density at reference temperature,

concentrations). A temperature sensor measures the sample temperature right at the
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measuring cell and displays it.

2.2.3 Micro-scale conductivity-temperature instrument

The micro-scale conductivity-temperature instrument (MSCTI) is designed to mea-

sure the temperature and electrical conductivity of water solutions containing con-

ductive ions. The MSCTI provides two analog voltage outputs, one linearly propor-

tional to the solution conductivity, and one non-linearly proportional to the solution

temperature. The instrument is intended for use in moving solutions where spatial

resolution and time response are important. The purpose of the MSCTI is to measure

the conductivity of the stratified fluid in the transparent acrylic tank. These measure-

ments are necessary for measuring the salinity which in turn are used in calculating

the buoyancy frequency of the stratified fluid. Before using MSCTI for taking any

measurements we must calibrate it.

Calibrating the MSCTI: First we make four saltwater solutions of different densities.

Once they are at more or less the same temperature we measure their densities using

a DMA 35 Portable Density Meter. The lowest and highest densities of the prepared

salt solutions should match the lowest and highest densities of the stratified water

in the transparent acrylic tank. Now the conductivity of the salt water solutions are

measured by using a Mastercraft Deluxe Digital Volt Meter connected to the output

of the MSCTI. The output is in the range of +/-5V. While measuring the conductivity

of lowest salt solution we adjust the gain in MSCTI till the Voltmeter reads -5V. Once

adjusted we measure conductivity of the remaining solutions. Knowing density and

conductivity of the four solutions we use a least squares fit to fit a polynomial. This

enables us to measure stratification of the tank using conductivity probe.
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2.2.4 Masterflex 7592-82 benchtop controller with 7592-40

pump drive

The Modular Drive controls the speed of Masterflex I/P (Industrial/Process) pumps

to provide flow rates from 0.12 to 13 L/min. We use Masterflex precision tubing with

the pumps to ensure optimum performance. The pumps can be manually calibrated.

We use it for filling up the transparent acrylic tank using the double bucket setup and

for emptying the tank for cleaning etc.

2.2.5 Velmex motorized bislide and VXM stepping motor

controller

The Velmex BiSlide is a modular system of positioning stages and hardware that

allows you to quickly and easily create a complete single or multi-axis system by

simply bolting together modular components. These components can be configured

and assembled to form a work cell dedicated to a specific task. It is controlled and

configured using a Stepping Motor Controller which is a complete controller with AC

power supply package. It uses RS232 (serial port) communications for (Computer,

PLC, PDA) programming. The Bislide controlled by the Stepping Motor Controller

helps to traverse vertically at adjustable small speeds, any light weighted equipment

attached to the bislide. In our experiment, we attach the Conductivity Probe to the

Bislide and measure the conductivity of the stratified fluid of the transparent acrylic

tank at all depths. From conductivity we can deduce salinity of the stratified fluid to

measure the buoyancy frequency of the stratified fluid.
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2.2.6 Manta G-125B camera with KOWA megapixel lens

The Manta G-125B is a low cost GigE Vision camera with a Sony ICX445 sensor.

It runs at 6-7 frames per second,fps (full resolution- 30fps). Its a black and white

camera. It is connected to a Kowa Megapixel lens with 25mm focal length. The

camera is operated through a computer to start and stop capturing images. The

captured images are transferred and stored in the computer via an ethernet cable.

2.2.7 LabJack U3-HV - USB multifunction data acquisition

unit

It is a USB multifunction data acquisition and control device. It allows multiple

devices to be connected to a PC and also allows us to stream and record data to the

PC for data logging purposes. It has +/-10 Volt range on 4 input channels. For our

experiments we connect the motorized Bislide, MSCTI, camera to the PC and operate

it using Labjack.

2.2.8 Transparent acrylic tank

The experiments are conducted in a transparent, 1"thick acrylic tank. It has an

aluminum base and sides for reinforcements. The dimensions of the tank are 488 cm

long, 52 cm deep and 46 cm wide. The tank needs to be transparent for visualization

and measurement of the internal waves.

2.2.9 Tote mixer

The Tote cap mounted tote mixer is used while executing the Double Bucket Tech-

nique. Its purpose is to keep the density of the salt water tank uniform everywhere

inside it.



28

2.2.10 The double bucket technique

The traditional double bucket method consists of two buckets each filled with water

of equal volume. The two buckets sit at equal height joined by a u-shaped tube

running beneath the two tanks connecting them. There is also a hose joint to one

of the buckets with a pump system attached. This pump is able to draw water from

the bottom of this bucket. This bucket is referred to as the salt water bucket; the

other bucket is referred to as the fresh water bucket. To obtain stratified fluid the

two buckets are filled with fresh water to the appropriate height. Stoppers are placed

in the various hose/tubes to avoid mixing. In the salt water bucket, salt is added to

achieve a desired density of the experiment parameter. For every gram of salt that

was added to the salt water bucket, one gram of fresh water is added to the fresh

water bucket. This is done to avoid salt water rushing into the fresh water bucket

when the stoppers are removed. The salt is mixed in thoroughly and once the double

bucket system is in place near the tank, the stoppers are removed. A mixer in the salt

water bucket keeps the water in the saltwater of a constant density. With the tank in

place and stoppers removed, the pump is set in motion. The pump draws water from

the salt water bucket, through the hose and into the tank. The hose lies on a sponge

float like apparatus. The purpose of this is twofold; one, the hose always lies on the

top of the surface of the water in the tank and two, the flowing water passes through

the sponge in an effort to minimize disturbances of the stratified fluid.

The mechanics of the double bucket system are as follows. As the pump draws salt

water from the bottom of the salt water bucket and out the hose, fresh water from

the fresh water bucket will flow through the U-tube and into the salt water bucket.

This reduces the relative salt concentration of the salt water and in turn it’s density.

In fact, for every infinitesimally small volume of salt water which is removed from

the salt water bucket, half that amount in weight will be replaced with fresh water
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by the fresh water bucket. As this process continues the double bucket system will

fill the tank with the hose gently pouring water onto the surface of the water. The

water leaving the hose progressively grows less and less dense until the both buckets

are nearly empty and the density is approaching that of fresh water. When properly

executed, this procedure will create a perfectly linear density profile.

We implement the double bucket technique in our lab using two 1100L capacity tanks

and an industrial mixer to keep the salt water tank constantly mixed. The large tanks

are necessary since the capacity of the transparent acrylic tank is 1167L and we need

to add 20-40kg of salt into the salt water tank depending on the buoyancy frequency

needed to be achieved for the experiment. A pipe connects the salt water tank to the

fresh water tank and another pipe connects the salt water tank and the transparent

acrylic tank in which we perform our experiments. We use two adjustable motor

pumps to control the flow rate of water entering the salt water tank from the fresh

water tank and of water leaving the salt water tank into the transparent acrylic tank.

For achieving linear stratification the flow rate of the pipe connecting the salt water

tank and the fresh water tank should be half the flow rate of the pipe connecting the

salt water tank and the transparent acrylic tank.

2.3 Experimental analysis

2.3.1 Analytical tools

In this section we give a description of the software tools we use for Image processing,

and the technique to measure and visualize internal waves.
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2.3.1.1 Synthetic schlieren technique

For visualizing the internal waves we use an optical technique called the Synthetic

Schlieren [14]. It is a noninvasive optical image processing technique for measuring

the density perturbabtions in flows that can be assumed to be almost two-dimensional.

We ignore the width-wise variations of the generated internal waves. The technique

uses digital image processing to obtain precise measurements of the density gradient

whose input is a sequence of images (’.png’ format). Synthetic schlieren is motivated

by the classical schlieren technique which has been used to visualize internal waves

[7]. We have implemented the technique as published by [14] in Python programming

language (Version 2.7.2) with a novel algorithm.

1. Theoretical determination of the internal wave deflection :

When internal gravity waves evolve in a stratified fluid, isopycnal surfaces in the

fluid are disturbed resulting in surfaces where the local density gradient either

increases or decreases relative to the background density gradient. Background

density gradient is the depthwise variation in density present when the fluid is

completely at rest which we measure before beginning the experiment. When

there are internal waves present in the view of the recording camera, the path of

a nearly horizontal ray of light through stratified fluid is deflected due to changes

in the refractive index gradient. This is due to the fact that there is a direct

relationship between density ρ′ fluctuations and refractive index n′ fluctuations

within the fluid, and by measuring the deflection of light rays passing through

the solution we can measure the fluctuations in density gradient. This helps us

measure the vertical displacement amplitude of the internal waves.

The schematic used to synthetic schlieren in our laboratory is shown below in

figure 2.3. Light rays radiate from an image back-illuminated in a TV and
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enter a tank. The tank is divided lengthwise into 2 partitions and both are

filled with the same salt stratified water. The partition that is close to the TV

is always stationary and has no internal waves. The other partition is our test

section where the internal waves originate and propagate. The partition is made

of thin transparent PVC. The light rays that approach the camera from the TV

are assumed to be nearly horizontal and their path is as follows: light rays pass

through the first section of the tank which is stratified but has no internal waves

and then pass through the second section of the tank where internal waves are

expected to cause a deflection in the isopycnal surfaces of the fluid. Deflected

rays then enter a camera, and the resulting data is transferred instantly and

recorded into the computer through an ethernet cable. The raw data are a

sequence of black and white images. The raw data is then processed using

a software package that was developed by us for image processing in Python

language. In our experiments, the back-illuminated image is a grid of horizontal

black and white lines. The individual width of the black and white lines is

known and recorded. The camera is placed as far as practical (typically 300

cm), so as to minimize the angle with which the light ray enters.

We use the method proposed by [14] to predict the internal wave field as

follows. Consider the path followed by a light ray incident with an upward

inclination upon a spanwise cross section of a tank filled with salt stratified

water as shown in figure 2.3 . The curvature of ray through the tank in figure

2.3 is exaggerated for clarity. Because the index of refraction increases with

salinity, the ray is refracted so that the angle of the ray above the horizontal

decreases. Path taken by a ray of light satisfies the Snell’s law,

n cosφ = constant (2.1)
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Figure 2.3: Schematic for showing the set-up for synthetic schlieren. The small dashed
lines from the camera to the light source represent light rays which pass a tank of salt
stratified water. The solid lines represents the deflected ray path taken if the density
gradient (squared buoyancy frequency) changes due to the internal gravity waves. LS,
LD and LW are the distances between the TV screen and the back of the tank, the
back of the tank and the barrier, the barrier and the front of the tank. LP and LB
are the thicknesses of the wall of the tank and the barrier in the middle of the tank
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in which n is the index of refraction of the medium and φ is the angle the light ray

makes with surfaces of constant n, where z is the height, x is the distance along

the tank, and y is the spanwise distance along the tank. We introduce along

ray coordinate s and decompose this into co-ordinates s‖ and s⊥ to constant

n. Differentiating 2.1 with respect to s, and noting that ds‖/ds = cosφ and

ds⊥/ds = sinφ, we obtain,

∂n

∂s⊥
cosφ sinφ− n sinφdφ

ds
= 0 (2.2)

Eliminating dφ/ds using d2s⊥/ds
2
‖ = sec3 φdφ/ds gives,

d2s⊥
ds2
‖

= sec2 φ

n

∂n

∂s⊥
(2.3)

Ignoring variations along the ray in both φ and n provided ∂n/∂s⊥ remains

finite and mod ds⊥/ds‖ << 1 , and integrating 2.3 using their values at

the point of entry of the light ray into the tank. For two dimensional flows

considered in our experiments, spanwise variations are ignored n = n (x, z) and

s‖ coincides with the cross tank coordinate y. Furthermore, the condition

mod ds⊥/ds‖ << 1 linearizes 2.3 , thus allowing us to identify s⊥ with either

z to form 2 independent equations [14]:

d2z

dy2 = sec2 φiz

ni

∂n

∂z
(2.4)

where φiz is the angle that the incident light ray makes to the y axis in the

vertical direction, and ni is the index of refraction where the light ray is incident.

We only consider vertical deflection of the light ray as described by 2.4. The

experimental arrangement is such that mod φ < 5ř and sec2 φiz maybe taken
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as unity. Except where strong mixing or layering occurs, it is valid to assume

that the refractive index varies linearly over the small depth traversed by the

light ray (typically less than 1cm) allowing us to replace the vertical gradient in n

with the squared buoyancy frequencyN2 at the same level using the relationship,

∂n

∂z
= dn

dρ

∂ρ

∂z
= −

(
1
g

ρ0

n0

dn

dp

)
n0N

2 (2.5)

Here ρ0 and n0 are reference values of the density and index of refraction, re-

spectively. Because dn/dρ is approximately constant for salt water solutions

(Weast, 1981), we write,
∂n

∂z
= −n0γN

2 (2.6)

where

γ = 1
g

ρ0

n0

dn

dp
≈ 1.878× 10−4s2/cm (2.7)

Subsituting 2.6 in 2.4 gives,

z (y) = zi + y tanφiz −
1
2γN

2y2 (2.8)

where zi is the vertical position of the incident light ray. Repeated application

of the Snell’s Law together with 2.8 gives the total vertical deflection of a light

ray travelling from the image screen to the camera as,
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z
(
N2, φ0

)
= Lcφ0

+ Lp

(
na
np

)
φ0

+ Lw

(
na
nw

)
φ0 −

1
2γN

2L2
w

+ Lb

(
na
nb
φ0 −

nw
nb
γN2Lw

)
+ Ld

(
na
nw
φ0 − γN2Lw

)
− 1

2γN
2L2

d

+ Lp

(
na
np
ρ0 −

nw
np
γN2Lw

)
− γN@LdLp

+ Ls

(
φ0 −

nw
na
γN2Lw

)
− γN2LdLs

(2.9)

If the isopycnal surfaces are locally perturbed by the internal gravity waves, then

N2 is changed and a light ray passing through the wave field is deflected. In

particular, the light ray entering the camera at an angle φ0 from the horizontal

originates from a different location on the screen. The apparent displacement,

4z, of the image is given by

4z = −1
2γ 4N2L2

w

− nw
nb
γ 4N2LwLb

− γ 4N2LwLd

− nw
np
γ 4N2LwLp

− nw
na
γ 4N2Lwls

(2.10)

We can rearrange 2.10 to get change in buoyancy frequency squared 4N2 in

terms of the apparent displacement 4z
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4N2 = − 4z
Lwγ

(
1
2Lw + nw

nb
Lb + Ld + nw

np
Lp + nw

na
Ls

)−1

(2.11)

2. Laboratory measurement of apparent displacement:

When internal gravity waves pass through the camera’s field of view, the isopy-

cnal surfaces are disturbed and thus the light ray passing through the medium

is deflected. This is recorded by the digital camera as a sequence of images. We

are interested in the apparent deflection of the horizontal black and white lines.

When internal waves propagate in front of the black and white lines even the

naked eye can notice the upper and lower edges of the black and white lines

shifting up and down. In order to measure this apparent displacement field

we need to study the change in intensity of an image with respect to another

image recorded right after it in time. Let Lp and Dp be the length and depth

pixel number of the digital images. The images recorded in the laboratory have

pixel resolution of 964× 1292 and thus the length and depth pixel pair (Lp,Dp)

can range from (0, 0) to (963, 1291). Let the intensity of a perturbed image be

given by I(Lp, Dp) and the intensity of a perturbed image at a later time be

I ′(Lp, Dp), then from [14] we have ,

4z = (z−1 − z0) (I ′ − I0)(I ′ − I1)
(I−1 − I0)(I−1 − I1) + (z1 − z0) (I ′ − I0)(I ′ − I−1)

(I1 − I0)(I1 − I−1) (2.12)

This equation helps us make the transition from pixel coordinates to real space

coordinates. I−1, I0, and I1 represent I(Lp, Zp− 1), I(Lp, Zp), and I(Lp, Zp + 1).

z−1, z0, and z1 represent the depth of the pixels Zp − 1, Zp, and Zp + 1.
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2.4 Hilbert Transform

In this chapter we describe how to apply the Hilbert transform to internal waves in

two dimensional fluids. The purpose of our experiments is to study the energetics of

internal waves. In our lab we are trying to understand how mode-1 monochromatic

internal waves propagate and interact with a vertical / sloping topography. Using

synthetic schlieren technique we measure time rate of change of squared buoyancy

frequency of the internal waves N2
t . N2

t allowing us to quantify the energy flux.

These measurements help us bring into focus the different mechanisms of propagation

and reflection of internal gravity waves. It would be more useful if we could separate

waves that are travelling towards the vertical end wall / slope from waves that are

reflected from it. To separate out waves travelling in different directions but having

the same frequency we use a technique called the Hilbert transform [5].

2.4.1 Hilbert transform for 2-dimensional waves

1. Definition

We define Hilbert transform as a linear operator that takes a real function

f(t) and returns a complex function z(t) whose real part is the input function

such that z(t) = f(t) + iy(t). Mercier et al, 2008 [5] used this technique to

demodulate internal waves generated by an oscillating cylinder. The four beams

generated by the oscillating cylinder experiment have different wavenumber but

same frequency. They [5] demodulated these waves by their wave vector k̂

= (kx, kz) according to the sign of the components kx and kz. We tried the

same technique to demodulate mode-1 internal waves travelling right from their

reflections travelling left. This is a modified adaptation of the technique used

by [5]. Using Hilbert transform, Mercier et al (2008) were able to discriminate
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2-dimensional internal waves generated by the vertically oscillating a cylinder in

linearly stratified fluid that propagated in four different directions. We tried to

apply the technique for our experiment where we want to discriminate mode-1

internal waves that were travelling towards the sloping topography from the

ones that were reflected from it.

2. We do Hilbert transform on a wavefield that contains internal waves of a single

frequency travelling in different directions . To operate on real experimental

data involving 2 spatial dimensions, Hilbert transform can be computed in a

few steps.

(a) i. A Fourier transform in time of the field U (x, z, t)

ii. A. In Fourier space, set the negative frequencies to zero so as to only

keep the positive fundamental frequency ω = 2πf , where f is the

temporal frequency measured in hertz.

B. This removes half the energy of the signal, we also multiply the

resultant signal by a factor of two to preserve the amplitude of the

signal.

iii. The inverse Fourier transform generating the complex signal Ũ(x, z, t).

(b) Take the complex array Ũ(x, z, t) and take a Fourier transform of the com-

plex array in 3-dimensions (x, z, t).

(c) In Fourier space the waves travelling in different spatial directions can

be easily identified as they have unique signs of horizontal and vertical

wavenumbers ±kx,±kz. In our experiments, this complex resultant signal

has four different waves in it.

Ũ = Ã(x, z, t) + B̃(x, z, t) + C̃(x, z, t) + D̃(x, z, t) (2.13)
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with

Ã(x, z, t) = A(x, z, t)ei(kxx+kzz−ωt) (2.14)

B̃(x, z, t) = B(x, z, t)ei(kxx−kzz−ωt) (2.15)

C̃(x, z, t) = C(x, z, t)ei(−kxx+kzz−ωt) (2.16)

D̃(x, z, t) = D(x, z, t)ei(−kxx−kzz−ωt) (2.17)

Its important to notice that though the four waves oscillate in time at the

same frequency ω, they do not propagate in the same direction which we

can identify because of the different signs in front of the wave numbers kx

and kz. The amplitudes of 2.13−2.16 depend on space and time, but the

scales on which they vary must be much larger than the scales ω−1, k−1
x , k−1

z ,

around which the demodulation is performed.

(d) We can isolate the four waves 2.13−2.16 from each other. To do so we apply

a filter in Fourier space, in the wavenumber directions: kx and kz associated

with spatial directions x and z. The goal of this additional filtering is to

only select positive or negative wavenumbers. We could apply a more

selective filter to remove other wavenumbers.

(e) Do the inverse Fourier transform in all 3 dimensions to get back the original

data. The resultant is complex.

3. Apply a uniform smoothing filter along the time axis to smooth the Hilbert

transform.
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2.4.2 Hilbert transform example: Oscillating cylinder exper-

iment

We applied our Hilbert transform algorithm on the classical oscillating cylinder ex-

periment [8] to see if we could filter out the four beams of the St.Andrew’s cross

based on their wavenumbers. We compared our results to the example given in [5]

to know if our algorithm worked well. The oscillating cylinder experiment was real-

ized in the laboratory in a Plexiglas tank of dimensions 488cm× 56cm× 46cm filled

with linearly stratified salt water with buoyancy frequency N = 0.95s−1. Quantita-

tive internal wave measurements of density perturbations were made using synthetic

schlieren technique. We apply the Hilbert transform on the N2
t field and try to sep-

arate out the four beams generated by the oscillating cylinder based on the sign of

their wavenumber vector and the results are shown in figure 2.4 - 2.5.
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Figure 2.4: Figure a) shows the horizontal time series of N2
t field. Applying Hilbert

transform on the horiontal time series, we filter out the internal waves generated by
the oscillating cylinder into waves travelling b) rightward and c) leftward.
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Figure 2.5: Figure a) shows the vertical time series of N2
t field. Applying Hilbert

transform on the vertical time series, we filter out the internal waves generated by the
oscillating cylinder into waves travelling b) upward and c) downward.



Chapter 3

Results

Our objective is to study the energetics of internal waves in linearly stratified fluid to

be able to understand how internal waves propagate and reflect off a vertical end wall /

sloping topography. Internal waves are capable of transporting momentum over large

distances and hence its important to understand their mechanisms but its very hard

to observe them in the ocean and that is one of the challenges involved in studying

internal waves. The laboratory experiments and the experimental considerations are

described in great detail in the previous chapters and in this chapter we present the

results of those experiments.

3.1 Experimental results: mode-1 Internal wave

generator

The experimental results are presented for the experiments that we have conducted.

Every experiment that we consider has a stratification profile that is measured at the

beginning of an experiment. The buoyancy frequency N , for experiments conducted

are in the range 0.6 - 1 s−1. The frequency ω, of the wave generator is usually in the

43
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Figure 3.1: A single raw image in the sequence of images recorded for an experiment.
This is the window in which a video of an experiment is recorded.

range 0.21 - 0.628 s−1. We also consider the dimensionless ratio, ω/N , which for our

experiments lie in the range 0.2 - 0.9. A frame in the video recorded for an experiment

is shown in figure 3.1. The illuminated screen consisting of the black and white lines

is a flat screen TV which is right behind the tank. The surface of the water is just

below the black and white lines but the bottom of the tank cannot be seen in the

window.

3.1.1 Case 1: No slope

Experimental specifics about experiments of type case-1 are given in table 3.1. Mode-

1 internal waves are generated and are rightward propagating waves which propagate

along the length of the tank and on the other end of the tank we have a vertical wall

upon which internal waves reflect off and begin to propagate leftward.

Let us discuss the results of an experiment where the wave generator is set to a fre-
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Table 3.1: Experimental parameters for no-slope.

Experiment ID Period (s) N (s−1) ω (s−1) Case

579 17 0.895 0.370 1
583 13 0.899 0.483 1
584 17 0.931 0.370 1
586 15 0.927 0.419 1
587 14 0.896 0.449 1
589 17 0.958 0.370 1
751 20 0.660 0.314 1
752 15 0.656 0.418 1
753 30 0.792 0.210 1
754 30 0.794 0.210 1
755 20 0.798 0.314 1
756 15 0.799 0.418 1
757 12 0.837 0.523 1
758 12 0.826 0.523 1
759 11 0.836 0.571 1
760 10 0.829 0.628 1

quency, ω=0.523 s−1 and the tank has a measured buoyancy frequency, N=0.837 s−1.

Figure 3.2 shows the stratification profile of the tank with depth. The temperature-

conductivity probe detects a sharp jump in density at the surface of the water while

descending to the bottom of the tank making it easy to track the position of the probe

once it is inside the stratified fluid.

Figure 3.3 shows a vertical time series of N2
t of the experiment whose stratification

profile is shown in figure 3.2.

The theoretical predictions for the experiment are given in the table 3.2 and sorted

by the ratio ω/N .

Figure 3.4 is the N2
t field at a given instant of time. The figure clearly illustrates the

vertical structure of the mode-1 internal waves. The surface of the water is clearly

visible and we can observe there is about 2cm of mixed layer which can also be inferred
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Figure 3.2: The vertical stratification profile of the tank before an experiment.

Table 3.2: Case 1: Theoretical predictions

Experiment ID ω
N

λx (cm) Cgx (m s−1)

579 0.413 225 11.1
583 0.537 165 9.2
584 0.397 233 11.7
586 0.452 200 10.7
587 0.501 172 9.3
589 0.386 242 12.2
753 0.265 368 11.5
754 0.264 369 11.5
755 0.393 247 10.6
751 0.476 184 7.1
756 0.523 169 8.5
757 0.625 124 6.3
758 0.633 121 6
752 0.637 117 4.6
759 0.691 104 5
760 0.757 85 3.7
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Figure 3.3: A vertical timeseries of N2
t of an experiment which has a forcing frequency

of ω = 0.523 s−1 and buoyancy frequency, N = 0.837 s−1. The vertical timeseries is
taken along a column in the middle of the camera window.
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Figure 3.4: A snap shot in time where the internal waves propagate past the camera
window but before it reflects back, of the N2

t field of an experiment which has a forcing
frequency of ω = 0.523s−1 and buoyancy frequency, N = 0.837s−1.

from the vertical stratification profile.

We can measure the horizontal displacement amplitude from the N2
t field. The hor-

izontal displacement field is denoted by ς and is a way to measure the internal wave

amplitude. A vertical time series of the horizontal displacement amplitude for an

experiment is given in the figure 3.3. The camera starts recording ∼ 5− 10 s before

the wave generator is switched on. In the figure 3.3 we can approximately see when

the wave generator is switched on which is denoted by the surface disturbance in the

time series. The vertical time series is taken at a column which in the middle of

the rectangular window that is seen by the camera. In the time series we can see
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that the wave generator gets switched on at about 8 seconds (seen from the surface

disturbance) and the first internal wave appears at 22 s which is 14 s after the wave

generator is switched on. The distance between the column where we take the time

series is about 132.25 cm from the wave generator and thus the group speed of the

internal wave is 9.45 cm s−1 as measured experimentally. We can compare it to the

theoretically group speed, Cgx of 6.3 cm s−1. From the time series we can verify the

time period of the wave generator which from the figure appears to be 12 s.

Figure 3.5 is the horizontal time series of the horizontal displacement field taken along

a row in the window at some depth below the surface of the fluid. The horizontal time

series helps us estimate the experimental value of the wavelength in the x-direction, λx

the phase speed, Cpx of the internal waves. The blue and red region represent the crest

and the trough of the wave. The experimentally measured phase speed of the wave,

CPx(measured) = 8.96 cm s−1 and the theoretically measured CPx(theory) = 10.96

cm s−1. From the relation CPx = ω/kx we can estimate the horizontal wavenumber

and hence the horizontal wavelength, λx(measured) = Cgx × 2π/ω = 107.5 cm. The

theoretically predicted value of the horizontal wavelength, λx(theory) is 124 cm.

Hilbert transform is most efficient in processing data when the input is in steady

state in the dimensions along which we apply the hilbert transform. Input data for

the hilbert transform algorithm is the raw N2
t field. To increase the efficiency of

the hilbert transform algorithm, we split the input data (time, row, column) in time

into several chunks where each chunk is of length = 2 time periods in time time

period = 2π/(frequency of the wavegenerator). Though the complete input field

changes a lot with time, when we split the data into smaller chunks we can assume

the data within each chunk can be fairly consistent while its only 2 time periods long

in time. We repeatedly split the data in time every 16 seconds in the time axis. We

also select a depth range which we do based on the stratification profile of the tank
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Figure 3.5: A horizontal time series of N2
t of an experiment which has a forcing

frequency of ω = 0.523s−1 and buoyancy frequency, N = 0.837s−1. The horizontal
time series is taken along a row in the camera window where we observe the internal
waves clearly.
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Figure 3.6: Figure a) and c) refer to experiments in case-1 : no-slope in a time window
before reflected internal waves are observed. a) and c) are the vertical time series of
(top) raw N2

t (middle) rightward propagating N2
t and (bottom) leftward propagating

N2
t .The plots b) and d) are the vertically averaged values of N2

t observed in the 3
subplots in a) and c) .
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Figure 3.7: Figure a) and c) refer to experiments in case-1 : no-slope in a time window
after reflected internal waves are observed. a) and c) are the vertical time series of
(top) raw N2

t (middle) rightward propagating N2
t and (bottom) leftward propagating

N2
t .The plots b) and d) are the vertically averaged values of N2

t observed in the 3
subplots in a) and c)
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for the experiment considered.

Figures 3.6 - 3.7c shown are the vertical time series of the horizontal energy flux

〈FEx〉 term derived from N2
t field where we take the vertical column in the center

of the camera window. The three subplots in each figure refer to the 〈FEx〉 field :

i) before applying the hilbert transform, ii) rightward propagating mode-1 internal

wave retrieved from the hilbert transform and, iii) the reflected leftward propagating

mode-1 internal wave retrieved from the hilbert transform. In the figure 3.6 we see the

waves beginning to appear and we see only the rightward propagating wave. Although

there is a small leftward propagating N2
t field in these figures, we can see that they

are leaking from the rightward propagating wave when we apply hilbert transform.

From the time series plots 3.7a - 3.7d we can see what appears to be the N2
t of

mode-1 internal waves traveling leftward. Also we are able to measure N2
t field of the

reflected waves appearing at approximately 115 s which is approximately equal to the

estimated experimental reflection time of 106 s. The figures adjacent to the vertical

time series plots are their respective vertically averaged N2
t of the raw, rightward and

leftward propagating waves. It is worth noting that the N2
t of the reflected internal

waves seem to be out of phase with the N2
t of the rightward propagating mode-1

internal wave.

The figure 3.6 is a plot of the vertically averaged horizontal energy flux 〈FEx〉 of the

raw, rightward and leftward propagating N2
t . We can see that the hilbert transform

applied to the input N2
t field has separated out the N2

t of rightward and leftward

propagating internal waves.

We now look at the timeseries plot of vertically averaged energy flux 〈FEx〉 field.

〈FEx〉 of the raw, rightward and leftward propagating wave are shown in figure 3.8.

From the figure we can see that initially there is no energy flux as we begin recording

the experiment and after about 20 s the 〈FEx〉 of raw and rightward internal waves
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Figure 3.8: figure shows the timeseries of vertically averaged energy flux in x-direction
〈FEx〉 of the raw, rightward and leftward propagating internal waves of an experiment
in case-1: no slope.

rise together slowly till about 100 s till we encounter reflected internal waves. Once

the 〈FEx〉 of reflected internal waves starts increasing we can see a deviation in the

〈FEx〉 of raw and rightward internal waves. This is because when the internal waves

are generated, initially there are no reflections. The internal waves travel along the

length of the tank and reflect back which takes about 100 s in this experiment. But

it is possible for the 〈FEx〉 of raw internal waves to either increase or decrease after

encountering reflected internal waves depending on whether the waves are in phase

or out of phase. So we need to keep that in mind while analyzing the experimental

data.
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Table 3.3: Experimental parameters for super-critical slope

Experiment ID Period (s) N (s−1) ω (s−1) Case α θ α
π/2−θ

819 10 0.892 0.698 2 50 45 1.11
823 16 0.85 0.785 2 32 62 1.14
824 16 0.847 0.628 2 32 62 1.14
825 15 0.843 0.628 2 32 60 1.10

Table 3.4: Case 2: Theoretical predictions

Experiment ID ω
N

λx (cm) Cgx (m s−1)

819 0.704 100 5
823 0.462 188 9.1
824 0.464 172 8.6
825 0.497 187 9.1

3.1.2 Case 2: Supercritial slope

Let us consider experiments in which the internal waves propagate towards a sloping

topography. Let the angle α be the angle between the sloping topography and the

horizontal. The ratio α/(π2 − θ) > 1 if the slope is supercritical. If the slope is too

large then the waves reflect upwards and away from the point attractor [13]. The

rightward propagating waves encounter the supercritcal topography and reflect off.

The experimental details of the experiments conducted with a subcritical slope are

given in 3.3.

The theoretical predictions for the case 2 experiments are given in the table 3.4.

Figure 3.9 is the N2
t field at a given instant of time. The vertical structure of the N2

t

field can be clearly identified as a mode-1 internal wave.

A vertical timeseries of the horizontal displacement N2
t field for this experiment is

shown in figure 3.10. We can see reflected waves in the plot towards the end of the
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Figure 3.9: Snapshot of N2
t in time where the internal waves propagate past the

camera window but before it reflects back, of the N2
t field of an experiment which has

a forcing frequency of ω = 0.628s−1 and buoyancy frequency, N = 0.892s−1.
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Figure 3.10: A vertical time series of N2
t of an experiment which has a forcing fre-

quency of ω = 0.628s−1 and buoyancy frequency, N = 0.892s−1. The vertical time-
series is taken along a column in the middle of the camera window.

timeseries.

Figure 3.11 is the horizontal time series of the horizontal displacement field taken

along a row in the window at some depth below the surface of the fluid. The exper-

imentally measured phase speed of the wave, CPx(measured) = 10.0 cm s−1 and the

theoretically measured CPx(theory) = 10.03 cm s−1. From the relation CPx = ω/kx

we can estimate the horizontal wavenumber and hence the horizontal wavelength,

λx(measured) = Cgx × 2π/ω = 100 cm. The theoretically predicted value of the hor-

izontal wavelength, λx(theory) is 100 cm. Theory and observation match very well

for this experiment.
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Figure 3.11: A horizontal time series of N2
t of an experiment which has a forcing

frequency of ω = 0.628s−1 and buoyancy frequency, N = 0.892s−1. The horizontal
time series is taken along a row in the camera window where we observe the internal
waves clearly.
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The figure 3.12a - 3.12c shown are the vertical time series of the N2
t field for super-

critical internal waves where we take the vertical column in the center of the camera

window. The three subplots in each figure refer to the horizontal energy flux 〈FEx〉

: i) before applying the hilbert transform, ii) rightward propagating mode-1 internal

wave retrieved from the hilbert transform and, iii) the reflected leftward propagating

mode-1 internal wave retrieved from the hilbert transform. The figures 3.17b- 3.17d

refer to the vertically averaged horizontal energy flux 〈FEx〉 of the raw, rightward and

leftward propagating N2
t supercritical internal waves. The theoretical group speed for

this experiment is cgx = 5 cm s−1 and the experiment is run for a long time period

so that reflections can be observed if present. From the vertical time series and the

vertically averaged energy flux plot we can clearly see that there are reflected waves

present. The reflected waves are out of phase with the rightward and the raw N2
t

field.

We now look at the timeseries plot of vertically averaged energy flux 〈FEx〉 field. 〈FEx〉

of the raw, rightward and leftward propagating wave are shown in figure 3.13. From

the figure we can see that the 〈FEx〉 of raw and rightward propagating internal waves

rise together after the waves have passed the vertical column where the measurements

are taken. We start seeing reflected internal waves at about 100 s when we see the

〈FEx〉 of the leftward internal waves rising. An interesting point to note regarding

internal waves being in phase or out of phase with their reflection can be seen at

about 230 s where we can see that the rightward and leftward propagating internal

waves are out of phase with each other which is corroborated by the drop in 〈FEx〉 of

the raw internal waves.
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Figure 3.12: Figure a) and c) are the vertical time series of (top) raw N2
t (middle)

rightward propagating N2
t and (bottom) leftward propagating N2

t internal waves of
experiments in case 2: super-critical slope .Figure a) is in a time window before we
observe reflected internal waves and c) is in a time window after we predict to see
reflected internal waves. The plots b) and d) are the vertically averaged values of N2

t

observed in the 3 subplots in a) and c) .
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Figure 3.13: figure shows the timeseries of vertically averaged energy flux in x-
direction 〈FEx〉 of the raw, rightward and leftward propagating internal waves of an
experiment in case-2: super-critical slope.
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Table 3.5: Experimental parameters for sub-critical slope

Experiment ID Period (s) N (s−1) ω (s−1) Case α θ α
π/2−θ

817 9 0.877 0.698 3 50 37 0.94
818 8 0.877 0.785 3 50 28 0.81
821 10 0.825 0.628 3 32 40 0.64
822 10 0.825 0.628 3 32 40 0.64

Table 3.6: Case 3: Theoretical predictions

Experiment ID ω
N

λx (cm) Cgx (m s−1)

817 0.795 75 3.1
818 0.895 49 1.2
821 0.761 84 3.5
822 0.761 84 3.5

3.1.3 Case 3: Subcritical slope

Let us consider the experiments in which the internal waves propagate towards a

sloping topography. Let the angle α be the angle between the sloping topography and

the horizontal. The ratio α/(π2 − θ) < 1 if the slope is subcritical. The details of the

experimental set up are described in detail in Chapter 2. In theory, internal waves tend

to wedge towards a point attractor when they reflect off a subcritical slope because

they reflect alternatively from the sloping topography and the horizontal surface on

the bottom. At the end of this path they dissipate [13]. The experimental details of

the experiments conducted with a subcritical slope are given in 3.5

The theoretical predictions for case 3 experiments are given in the table 3.6.

Figure 3.14 is the N2
t field at a given instant of time. The vertical structure of the

N2
t field can be clearly identified as a mode-1 internal wave.

A vertical timeseries of the horizontal displacement field N2
t for this experiment is
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Figure 3.14: Snapshot of N2
t in time where the internal waves propagate past the

camera window but before it reflects back, of the N2
t field of an experiment which has

a forcing frequency of ω = 0.628s−1 and buoyancy frequency, N = 0.825s−1.
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Figure 3.15: A vertical time series of N2
t of an experiment which has a forcing fre-

quency of ω = 0.628s−1 and buoyancy frequency, N = 0.825s−1. The vertical time-
series is taken along a column in the middle of the camera window.

shown in figure 3.15

Figure 3.16 is the horizontal time series of the horizontal displacement field taken

along a row in the window at some depth below the surface of the fluid. The exper-

imentally measured phase speed of the wave, CPx(measured) = 10.0 cm s−1 and the

theoretically measured CPx(theory) = 10.03 cm s−1. From the relation CPx = ω/kx

we can estimate the horizontal wavenumber and hence the horizontal wavelength,

λx(measured) = Cgx × 2π/ω = 100 cm. The theoretically predicted value of the hor-

izontal wavelength, λx(theory) is 100 cm. Theory and observation match very well

for this experiment.
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Figure 3.16: A horizontal time series of N2
t of an experiment which has a forcing

frequency of ω = 0.628s−1 and buoyancy frequency, N = 0.825s−1. The horizontal
time series is taken along a row in the camera window where we observe the internal
waves clearly.
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The figure 3.17a - 3.17c shown are the vertical time series of the N2
t field for sub-

critical internal waves where we take the vertical column in the center of the camera

window. The three subplots in each figure refer to the horizontal energy flux 〈FEx〉

: i) before applying the hilbert transform, ii) rightward propagating mode-1 internal

wave retrieved from the hilbert transform and, iii) the reflected leftward propagating

mode-1 internal wave retrieved from the hilbert transform. The figures 3.17b- 3.17d

refer to the vertically averaged horizontal energy flux 〈FEx〉 of the raw, rightward

and leftward propagating N2
t sub-critical internal waves. The theoretical group speed

for this experiment is cgx = 3.5 cm s−1 and the experiment is run for a long time

period so that reflections can be observed if present. From the vertical time series

and the vertically averaged energy flux plot we can see that there are not reflected

waves present.

We now look at the timeseries plot of vertically averaged energy flux 〈FEx〉 field. 〈FEx〉

of the raw, rightward and leftward propagating wave are shown in figure 3.18. As

theory suggests when the slope is supercritical there should be no reflection and the

figure also seems to suggest that there is no reflected internal waves.
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Figure 3.17: Figure a) and c) are the vertical time series of (top) raw N2
t (middle)

rightward propagating N2
t and (bottom) leftward propagating internal waves N2

t of
experiments in case 3: sub-critical slope .Figure a) is in a time window before we
observe reflected internal waves and c) is in a time window after we predict to see
reflected internal waves. The plots b) and d) are the vertically averaged values of N2

t

observed in the 3 subplots in a) and c) .
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Figure 3.18: figure shows the timeseries of vertically averaged energy flux in x-
direction 〈FEx〉 of the raw, rightward and leftward propagating internal waves of an
experiment in case-3: sub-critical slope.



Chapter 4

Conclusions and future work

As a preliminary step towards understanding how internal waves reflect off sloping

topography such as the continental shelf, we performed a series of laboratory ex-

periments to study the energy flux of propagating and reflecting internal waves in a

continuously stratified salt water fluid. The internal waves are generated propagate

along the length of the tank and reflect. The structure and amplitude of the internal

waves are measured for different end boundary conditions. Using Hilbert transform

we have separated the internal waves generated by the wavegenerator (traveling right)

from the internal waves that are reflected from the end boundary (traveling left) en-

abling us to understand how much energy from the incoming waves is present in the

reflected internal waves. The analysis of the energy flux of the internal waves during

propagation and reflection using the Hilbert transform is helpful as it brings insight

into phenomena that are difficult to observe during field studies. We have also tried

to see how the internal waves generated dissipate and how much energy goes into

mixing in our laboratory experiments. Our conclusions are presented in this section.

69
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4.1 Conclusions

To measure internal waves we used a method called synthetic schlieren [14] to quanti-

tatively measure internal waves generated in laboratory set up. But the formulations

specified for the internal waves in the experiments were not applicable for our lab-

oratory set-up. We modified it so that it was appropriate for our laboratory set-up

so as to be able to accurately measure the change in squared buoyancy frequency of

mode-1 internal waves for our laboratory settings.

Polarization relations for small amplitude vertically trapped mode-1 internal waves

in linearly stratified fluid were derived for measuring the various parameters of the

internal waves. Theory was associated to the quantitative measurements made using

synthetic schlieren.

Based on [5] where Hilbert transform was used to separate internal waves with differ-

ent wave vectors generated by an oscillating cylinder in stratified fluid, we developed

a Hilbert trasform algorithm to separate mode-1 internal waves with different wave

vectors. We applied Hilbert transform on mode-1 internal waves and are able to

discriminate generated (rightward) propagating waves from their reflection.

Laboratory experiments were conducted to realize mode-1 internal waves and record

their generation,propagation and reflection for 3 types of experiments that are distinct

in their end wall boundary conditoin: No slope, subcritical slope and supercritical

slope. We are able to measure and compare their properties such as time rate of

change of squared buoyancy frequency of the internal waves N2
t defined by 1.55 from

which we measure the vertically averaged horizontal energy flux 〈FEx〉 defined by 1.64

of generated waves and reflected waves for all 3 types of experiments.

The polarization relations for mode-1 vertically trapped internal waves are given in

table 4.1. Synthetic schlieren gives us quantitative measurements of the change in

squared buoyancy frequency 4N2 from which we can use the polarization relation to
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get the horizontal displacement amplitude Aς . Once we have Aς field we can determine

the basic fields where each of the fields have a magnitude and phase.

Table 4.1: Polarization relations and correlations between fields for small amplitude
vertically trapped mode-1 internal waves in linearly stratified fluid.

Defining formula Relationship to horizontal displacement

ς Aς ς = Aς cos(kzz) sin(kxx− ωt)

u = ∂ς
∂t

Au = −ιω cos(kzz)Aς u = −ωAς cos(kzz) cos(kxx− ωt)

∂w
∂x

= −∂u
∂x

Aw = −ωkx sin(kzz)
kz

Aς w = −ωkx

kz
Aς sin(kzz) sin(kxx− ωt)

ρ0
∂u
∂t

= − ∂p
∂x

Ap = −ιρ0ω2 cos(kzz)
kx

Aς p = −ρ0ω2

kx
Aς cos(kzz) cos(kxx− ωt)

w = ∂ξ
∂t

Aξ = −ιkx sin(kzz)
kz

Aς ξ = −kx

kz
Aς sin(kzz) cos(kxx− ωt)

ρ′ = −∂ρ
∂z
ξ Aρ′ = −ιkxρ0N2 sin(kzz)

gkz
Aς ρ′ = −kxρ0N2

gkz
Aς sin(kzz) cos(kxx− ωt)

4N2 = − g
ρ0

∂ρ
∂z

A4N2 = −ιkxN2 cos(kzz)Aς 4N2 = kxN
2Aς cos(kzz) cos(kxx− ωt)

N2
t = ∂4N2

∂t
AN2

t
= kxωN

2 cos(kzz)Aς N2
t = kxωN

2Aς cos(kzz) sin(kxx− ωt)

Correlations

〈FEx〉 = 〈pu〉 = 1
2
ρ0ω3

kx
A2
ς cos2(kzz)

〈FEx〉 = 〈〈pu〉t〉z = 1
4
ρ0ω3

kx
A2
ς

In Chapter 2, we showed that the components of phase speed ~cp = (cpx, cpz) are not

the same as the measured components of phase speed from a vertical time series

~cP = (cPx, cPz). For all the experiments conducted, we measured the horizontal

observed phase speed cPx.
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We are thus able to compare the observed cPx and the theoretical values of cPx and

is shown in figure 4.1 as a scatterplot where we see how cPx changes as ω/N goes

from 0 to 1. In theory, cPx has an exponential decay as ω/N goes from 0 to 1. The

experimental observations also follow the same trend.
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Measured cP x from HTS

$c_Px$ = \omega / k_{x}$

Figure 4.1: Figure shows a comparison of the theoretical cPx and the observed cPx.
Each green circle refers to a single experiment in Case-1: no slope. The measurements
are taken before we observe reflections. The red star is the theoretically predicted
value of cPx for the given ratio of ω/N .

Theoretically horizontal wavenumber 4.1 of mode-1 internal waves is derived from the

dispersion relation 1.29. We can experimentally measure the horizontal wavenumber

from the relation by measuring cPx where cPx = ω/kx. We then can look at how

the theoretical kx given by 4.1 compares with the observed kx. A figure showing

the comparison between the experimental and theoretical values of the horizontal



73

wavenumber is given in 4.2.

kx = ωkz√
(N2 − ω2)

(4.1)
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Measured kx =ω/cPx 

kx  from dispersion relation

Figure 4.2: Fig shows a comparison of the theoretical kx and the experimental kx.Each
green circle refers to a single experiment in Case-1: no slope. The measurements are
taken before we observe reflections. The red star is the theoretically predicted value
of kx for the given ratio of ω/N

We measure the vertically averaged energy flux of the internal waves 〈FEx〉 from the

finite difference approximation to the time derivative of the squared buoyancy fre-

quency, N2
t which we measure from synthetic schlieren for every experiment. We can

look at how 〈FEx〉 field changes before any reflections occur over several experiments as

a function of ω/N . These experiments have the same wave generator amplitude. We
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Figure 4.3: Figure shows the vertically averaged energyflux in x-direction, 〈FEx〉 field
of the raw mode-1 internal waves measured before reflected waves appear. Every blue
dot refers to an experiment in case-1: no slope.

are only looking at the 〈FEx〉 field averaged over the time period before the reflected

internal waves begin to appear and is shown in figure 4.3.

Implementing Hilbert transform we are able to filter out propagating internal waves

from reflected internal waves. We can look at 〈FEx〉 field for raw internal waves and

reflected internal waves. Let us consider experiments from Case 1: No slope shown

in figure 4.4, Case 2: Supercritical slope shown in figure 4.4 and Case 3: Subcritical

slope shown in figure 4.5. The last subplot in 4.6 gives information regarding the

portion of energy that is reflected as a function of ω/N and maximum reflection occurs

at ω/N = 0.5. For case 1 experiments on average the reflected energy efficiency seems



75

to be around 20%. A trend across the range of ω/N is very hard to observe clearly

and we need to do more experiments. In the figure for case 2 4.5 we see a very high

reflected energy efficiency. But its harder to compare this to experiments from Case 1

as in the case of 4.4 the experiments has a wave generator amplitude of 4cm while the

wave generator amplitude for experiments in 4.5 had a wave generator amplitude is

1 cm. Dissipation is directly proportional to wave amplitude. Theoretically we would

expect maximum reflection efficiency in case 1 experiments than in case 2 experiments

but since dissipation is higher in case 1 experiments we are seeing larger reflection

efficiencies in experiments of type case 2 rather than case 1.

4.2 Future work

One of the important observations we have made are on the trends in horizontal

phase velocity cPx and the horizontal wavenumber kx. It would be very useful to have

additional experiments in the range ω/N as we don’t have too many experimental

points in the beginning and in the end of the range ω/N in figure 4.1.

We have succesfully separated out propagating mode-1 internal waves from its reflec-

tion to help quantify dissipation, i.e, to look at how 〈FEx〉 field of the internal waves

changes as we move along the camera window length. To make a more justified esti-

mation of the reflected energy efficiency we need to realize additional experiments in

case 2 and case 3.

We find that case 2 experiments have a higher reflection efficiency than case 1 experi-

ments and we attribute this to the fact that the wave generator amplitude is larger for

case 1 experiments thus it has a larger dissipation. This needs to be studied furthur

by realizing additional experiments over the whole range of the ratio ω/N and the

wave generator amplitude.
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Figure 4.4: fig shows for case 1: no slope, a) 〈FEx〉 field of raw internal waves, b)
〈FEx〉 field of reflected internal waves and c) the ratio 〈FEx〉 field of reflected internal
waves/ 〈FEx〉 field of raw internal waves
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Figure 4.5: fig shows for case 2: super-critical slope, a) 〈FEx〉 field of raw internal
waves, b) 〈FEx〉 field of reflected internal waves and c) the ratio 〈FEx〉 field of reflected
internal waves/ 〈FEx〉 field of raw internal waves
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Figure 4.6: Figure shows for case 3: sub-critical slope a) 〈FEx〉 field of raw internal
waves, b) 〈FEx〉 field of reflected internal waves and c) The ratio 〈FEx〉 field of reflected
internal waves/ 〈FEx〉 field of raw internal waves
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In the vertical time series of case 2 experiments we saw what appeared to be reflecting

mode-2 internal waves. We need to realize additional experiments and do fourier

analysis on the vertical time series of the reflected waves in case 2 experiments to

know more.
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