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ABSTRACT 

A new multivariate risk-based fault detection and diagnosis technique targeting the 

safety issues of a process system is being proposed. In contrast to typical fault detection 

methods which only aim to detect operational faults that affect the control objectives of 

the process, this method targets the safety of the process. Typical fault detection and 

diagnosis methods are inadequate as none of the methods considers the consequences of 

the fault on process safety, integrity and the environment. However the proposed 

method provides a dynamic process risk indication based on the probability of 

occurrence of a fault and its consequences. In this method, the consequence is expressed 

in economic value that demonstrates the potential economic impact of the fault on the 

process, equipment, workers and the environment. Through this approach, warning 

system and risk management strategies may be activated when the risk of operation 

exceeds the acceptable threshold. This is an important concept because it can direct the 

attention and effort of operators to the faults which poses the most operational or safety 

risk. Both model based and history based fault detection and diagnosis techniques have 

been extended to a risk-based fault detection and diagnosis framework. Application of 

this new risk-based approach provides early warnings and early activation of safety 

systems prior to the fault impacting the system. This multivariate technique provides 

much early warning compared to the univariate methods. It has more power in 

discerning between operational changes and abnormal conditions which have potential 

to cause accidents. The main benefits of this approach are improved safety, minimum 

interruption of operation, better alarm management or early warning system and higher 

availability of process. The novelties and contributions of this work are development of 

multivariate dynamic risk assessment methodology using history based and model 
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based methods for linear and nonlinear models combined with a newly developed 

economic consequence analysis methodology. This methodology makes the severity of 

the faults more sensible by quantifying consequences in economic terms. This new 

economic consequence methodology helps to integrates real time process state to 

accident scenarios via loss functions. 

The proposed framework when implemented on a process could serve as a real-time 

process risk monitor. This would help to take preventive actions in order to minimize 

process risks.   
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Chapter 1: Introduction 

1.1 Overview 

The increasing complexity of process plants have made necessary the use of advanced 

automation and control techniques which aim to improve safety, productivity and 

quality during operation. However, even with such advanced techniques, process units 

are frequently subject to faults and disturbances caused by equipment failures, changes 

in process conditions or human errors. Therefore, there is a need for additional early 

detection and preventive measures.  

This has given rise to a plethora of monitoring and supervisory functions which are 

studied under abnormal event management (AEM). Other synonyms for AEM are 

abnormal condition management, fault management or the term abnormal situation 

management (ASM). AEM involves well-timed detection of an abnormal event, 

diagnosing its causal origins and then taking appropriate supervisory decisions and 

actions to bring the process back to a normal, safe operating state. In this respect, AEM 

has become crucial in safety related process operation. 

Fault detection and diagnosis is the central component of AEM. A detection and 

diagnosis tool aids the operations in the treatment of process malfunctions, improving 

process safety, reducing the number of shutdowns, downtime and thereby increased 

productivity. 
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1.2 Problem statement 

Fault detection techniques are typically aimed at detecting operational faults that affect 

the control objectives of the process. However, in the context of process safety these 

methods are inadequate as none of the methods take into account the potential impact of 

the fault on the process and the environment. In order to address this issue, risk-based 

fault detection method was proposed by Bao et al. (2011) [1]. They used univariate 

charting method to calculate the probability of fault. However, use of univariate method 

potentially limits the effectiveness of the method due to inherent limitations of 

univariate fault detection and diagnosis approach.  This research attempts to overcome 

the following limitations of the past work: 

 Lack of early warnings prior to the fault impacting the system 

 Lack of multivariate approach to take into account the probability of occurrence 

of the fault as well as potential impact of the fault on the process and the 

environment 

 Lack of practical approach to prioritize warnings and recovery options of a 

process 

 Lack of direct approach to link process deviations to economic loss 
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1.3 Objectives and scope of the proposed research 

1.3.1 Objectives 

The main objective of this research is to develop a risk-based fault detection and 

diagnosis technique targeting the safety issues of a process system. This main objective 

is achieved through the following sub-objectives:  

i) to detect a fault early and to reduce the number of the false alarms 

ii) to incorporate consequence information with multivariate fault detection and 

diagnosis techniques and improve its effectiveness in process monitoring 

iii) to develop economic risk models that are linked with process variables and can 

be  dynamically updated 

1.3.2 Scope 

To achieve the above objectives, this work covers integration of quantitative 

multivariate model based (Kalman filter and particle filter) and history based (principal 

component analysis) fault detection methods with dynamic risk assessment.  

In addition, a comprehensive economic consequence analysis is proposed for better 

understanding and quantification of the risk. 

Modeling and simulation of some industrial case studies to validate the developed 

integrated risk-based models are also studied. The scope of the fault detection is limited 

to qualitative fault detection and diagnosis methods. 

1.4 Organization of Proposal 

This thesis is written in manuscript format. Outline of each chapter is discussed below 
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Chapter 2 briefly presents the literature review pertaining to this work. The importance 

of the risk-based approach as well as the multivariate approach is discussed in this 

chapter.  

Chapter 3 reports the integration of a history based fault detection and diagnosis 

technique (Principal component analysis) to the risk-based fault detection and diagnosis 

framework. This chapter is an original research paper published in the Journal of 

Industrial & Engineering Chemistry Research, Volume 52, Issue 2, January 2013, 

Pages: 809-816 [2]. 

Chapter 4 reports the integration of a model based fault detection and diagnosis 

technique (Kalman filter) to the risk-based fault detection and diagnosis framework. 

This chapter is an original research paper published in the Journal of Process Safety 

Progress, Volume 32, Issue 4, December 2013, Pages 365–375 [3]. 

Chapter 5 introduces a new detailed economic consequence methodology. This chapter 

is an original research paper accepted for publication in the Journal of Risk Analysis, 

2013 [4]. 

Chapter 6 reports the integration of a nonlinear and non-Gaussian model based fault 

detection and diagnosis technique (Particle filter) to the risk-based fault detection and 

diagnosis framework enhanced with the detailed economic consequence analysis. This 

chapter is an original research paper submitted for publication to the Canadian Journal 

of Chemical Engineering, 2013 [5]. 

Finally, Chapter 7 presents the summary of this work and the main conclusions drawn 

through this work. Recommendations for future work are presented towards the end of 

this chapter. 
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Chapter 2: Fault Detection and Diagnosis 

 

2.1 Overview 

The term fault has many connotations in the literature. Typically, any departure of the 

process variables from an acceptable range is considered as a fault [1]. Simply, a fault is 

an unpermitted deviation of at least one characteristic property or variable of the process 

from acceptable/usual/standard behaviour. Fault detection is also defined as a 

determination of faults present in the system and the time of detection. 

Mehra and Peschon (1971) have suggested several approaches to fault detection based 

on innovations [2]. They presented the special case of linear dynamic systems with 

Gaussian random inputs and it was shown how the statistical properties of the 

innovation process can be used for fault detection and diagnosis. Jones (1973) has 

approached the fault detection problem by using a statistical reference model in 

invariant continuous systems [3]. Willsky and Jones (1974) have used the maximum 

likelihood principle to detect jumps in signals [4]. They presented an adaptive filtering 

system for state estimation and the detection of the jumps using Kalman-Bucy filtering 

and generalized likelihood ratio techniques. Alburquerque and Biegler (1996) have 

applied a method based on statistical analysis of data provided by sensors [5-7].  

Since the early application of multivariate statistical method based fault detection and 

diagnosis technique by Kresta et al. (1991), data based fault detection and diagnosis has 

been used extensively in process industries [8]. In such industries, multivariate data-

based approaches, for example, principal components analysis (PCA) and partial least 

squares (PLS), have had the most success in fault detection [6, 9]. Nonlinear versions, 
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for example, nonlinear PLS and kernel PCA, were also applied [10]. Typically, any 

breakdown in correlation between the process variables is flagged as a fault. In order to 

detect the change in correlation a test is performed on the residuals. The residuals are 

processed to generate a signal that indicates the presence of faults in the process. 

Statistical tests are commonly used to process the residuals [11]. Different statistical 

tests such as Chi-squared (Ψ2) test, sequential probability likelihood ratio test (SPRT) 

and generalized likelihood ratio test (GLR) to be performed on the filtered residual have 

been developed [12-14]. A literature review showed that these conventional methods 

like the ordinary Chi-squared (Ψ2) test and GLR test have limitations such as too many 

false alarm problems [15]. 

MacGregor and Kourti, (1996); Wise and Gallagher (1996); Raich and Çinar (1996); 

Negiz and Çinar, (1997) developed Several history based methods that manipulate the 

measured data to reduce their dimension and extract information from the data using 

principle component analysis (PCA) or partial leastsquares (PLS) techniques[8, 16-18]. 

Aradhye et al. (2003) grouped data based on process structure or process distinct 

timescales as in multi-block or multi-scale PCA [19]. Romagnoli and Palazoglu (2006), 

Yoon and MacGregor (2001) represented history based methods to extract information 

about the fault by comparing the location and/or direction of the system with past faulty 

behavior particularly trajectory in the state space for linear process systems [20-21]. 

Different model based fault detection methods have been developed in the last 30 years, 

[9, 14, 22-26]. An extensive comparison of the various methods can be found in [22, 27-

31].  
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Willsky (1976) devised an adaptive filtering system for state estimation and the 

detection of the jumps using Kalman-Bucy filtering and generalized likelihood ratio 

techniques [14]. Willsky (1974) described three methods for using parity relations to 

generate residuals for fault detection [14]. He characterized the notion of analytical 

redundancy in terms of a generalized parity space.  

Isermann (1984) proposed a nonlinear adaptive state observer and a special correlation 

technique was developed, for the early detection and localization of small leaks in 

pipelines, based on pressure and flow measurements at the pipeline inlet and outlet [24]. 

Isermann (1992) also used state space approaches for fault detection in control loops 

[25]. A new fault detection scheme consists of continuous time parity equations for fast 

detection has been deduced and described by Iserman (1996) [32]. 

Li et al. (2005) proposed an online and real time sensor and actuator fault detection 

scheme which takes care of the process disturbances for a multivariate dynamic system, 

by extending the well-known Chow–Willsky approach [33-34].  Li et al. (2008) 

proposed a Kalman filter-based methodology for unified detection and isolation of 

sensor, actuator, and process faults [35]. 

Fault detection methods can be classified based on different criteria depending on 

whether an explicit model is required or not. Fault detection and diagnosis methods can 

be classified into model based and history based. The model based methods require 

some a priori process knowledge. On the other hand, data based methods rely on data 

history solely. Both model based and history based methods can be classified as 

quantitative or qualitative [36]. The quantitative model based methods rely on the 

mathematical relations that exist between variables. However, the qualitative model 
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based methods are based on the cause-effect reasoning about system behavior. The 

fault-tree is the most popular among these methods. It uses backward chaining until a 

primary event is found that presents a possible root cause for observed process deviation 

[37]. Signed Digraphs [38] are another representation of the causal information in which 

the process variables are represented as graph nodes and causal relations by directed 

arcs. 

Quantitative history based methods are divided to statistical and non-statistical 

techniques. However, qualitative methods are either rule-based methods or require trend 

analysis. This classification is shown in figures 2.1 and 2.2. An extensive description of 

all methods shown in figure 2.1 can be found in [29-31]. 
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Figure 2.1. The classification of fault detection and diagnosis methods [29-31] 

Another way of classifying fault detection methods is based on the number of signals 

used to detect the fault [39]. Fault detection can done using single signal or multiple 

signals and models. The signal threshold based approaches for detecting faults consists 
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of checking the measurable variables of a system in regard to a threshold. The signal 

thresholds can be set into respectively fixed, adaptive, and trend change. 

The signal models, such as correlation analysis, Fourier analysis, time series analysis 

and wavelet analysis, are adopted to extract sample signal features, which including 

amplitude domain, time domain, frequency domain, power spectrum etc. [40]. A variety 

of quantitative model based methods as well as quantitative history based methods such 

as neural network, principal component analysis (PCA) can be classified into the 

multiple signal models. 

 

 

 

 

 

 

 

 

 

 

 

 



12 

 

 

Figure 2.2. The classification of univariate and multivariate fault detection methods [39] 
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Although all these methods have some advantages in fault detection none of them 

considers the consequence associated with the fault in detection and invoking warning. 

The main aim of this work is to develop a new fault detection method relevant to 

process safety that incorporates consequence information in fault detection to allow 

operators to prioritize their action. The proposed risk-based fault detection approach 

falls under the multivariate category. Methodologies have been developed to implement 

the strategy in combination with model based as well as history based fault detection 

methods.  

 

2.2 Why Risk-based Fault Detection 

In general fault detection techniques are aimed to detect operational faults that affect the 

control objectives of the process. However, in the context of process safety these 

methods are inadequate as none of the methods take into account the potential impact of 

the fault on the process and the environment. In order to address this issue, risk-based 

fault detection method was earlier proposed by Bao et al. (2011) [41]. Instead of 

generating an alarm based on residuals or signals crossing the threshold, the risk based 

fault detection method issues an alarm only when the risk of a process exceeds the 

acceptable threshold [41]. The risk of a process is defined as a combination of 

probability of the fault and severity of the fault. This is an important concept as it 

eliminates faults which are not operational and process safety concerns and also gives a 

dynamic indication of the operational risk. Bao et al. (2011) used a univariate charting 

method to calculate the probability of fault [41]. This potentially limits the effectiveness 

of the method due to inherent limitations of univariate fault detection and diagnosis 
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approach. A multivariate risk-based fault detection and diagnosis technique is proposed 

here. This technique can be implemented with both model-based and history-based 

approaches. 

 

2.3 Univariate vs Multivariate 

Historically, univariate methods, such as limit or trend checking of measurable output 

variables, are used for fault detection. However, the applicability of univariate method 

is limited as it is unable to distinguish between normal operational changes and real 

abnormal faulty conditions. Therefore univariate methods are prone to false alarms [40-

41]. More success in fault detection has been observed when multivariable fault 

detection techniques are applied, as these methods take advantage of the dependence 

among the process variables (i.e., between input and output), and flags a fault when any 

deviation from this correlation structure is detected [29-31]. These methods have more 

power in discerning between operational changes and abnormal conditions. 

Multivariable methods can be model based, where a priori process model is required or 

it can be purely data based where correlation between the variables are captured from 

the process data history [42]. 

 

2.4 Economic Consequence Analysis 

Over the years quantitative risk assessment (QRA) has emerged as an acceptable 

framework to numerically evaluate the overall risk of a process [43]. QRA was 

originally used in aerospace, electronics, and nuclear power industries; it is now being 
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employed in the process industries [43–45]. QRA involves four major steps: hazard 

identification, consequence analysis, frequency assessment, and risk quantification [46]. 

Consequence analysis is the heart of the risk assessment. Consequence analysis is 

generally defined as assessment of likely consequences if an accident is to occur. The 

complexity of a QRA depends on the scenario and the availability of the data and 

consequence information [45]. Consequence assessment involves a wide variety of 

mathematical models. For example, source models to predict the rate release of 

hazardous materials; fire and explosion models; impact intensity models; and toxic gas 

models [47].  

Since 1970, several methodologies have been proposed for quantitative and qualitative 

risk assessment in process industries [43]. Most of these methodologies are focused on 

prediction or assessment of failure probability [43-47], and there was not much 

emphasis given to consequence analysis in evaluating the dynamic risk of a process 

integrating between process deviation and economic losses.  

Taguchi (1986) proposed a quadratic form of loss function to quantify losses associated 

with deviations of a product characteristic from the target value [48]. The Taguchi loss 

function has been widely used to determine engineering tolerance. However due to the 

unbounded and the symmetric characteristic of the Taguchi loss function, it is 

unrealistic to use this function in many manufacturing processes [49]. The 

boundlessness of the original Taguchi loss function has been improved by truncating the 

function at the points where it intersects the maximum loss [50]. On the other hand, 

asymmetric forms have been proposed [50-52]. Spiring (1993) proposed the reflected or 

the inverted normal loss function (INLF) in response to criticisms of the quadratic loss 

functions [49]. 
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A revised inverted normal loss function (RINLF) was also proposed to quantify losses 

only out of the acceptable region between upper and lower thresholds [53]. In addition 

to these two major loss functions, a general loss function based on the inversions of 

gamma loss function has been proposed [54]. Bartholomew et al (2004) presented a 

complimentary general class of inverted probability loss functions (IPLF) based on the 

inversion of common probability density functions including the inverted normal loss 

function (INLF), inverted gamma loss function (IGLF), inverted beta loss function 

(IBLF) and their associated properties for the uniform, normal, gamma and beta 

distributions [55]. Although they recommended the normal distribution for the INLF, 

the gamma distribution for the IGLF and the beta distribution for the IBLF, they also 

suggested some other distributions, such as uniform distribution, to use when the 

process measurements do not exactly follow the corresponding conjugate distributions 

[56]. These functions have widely been used in many other engineering areas, 

particularly in quality control to quantify the economic losses associated with deviations 

from the target value of a product characteristic [54]. However, these loss functions 

have not been used in process safety analysis. The present work aims to enhance 

existing knowledge of consequence analysis through developing a methodology that 

helps to quantify consequences in economic terms using loss functions. 
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Chapter 3: Dynamic Risk Assessment and Fault Detection  

Using Principal Component Analysis† 

 

Preface  

A version of this chapter has been published by the Journal of Industrial & Engineering 

Chemistry Research, in 2013. Zadakbar was the main lead on the work. The co-authors, 

Dr. Khan and Dr. Imtiaz supervised the work and helped to develop the methodology. 

  

Abstract 

A methodology to calculate process risk in combination with data based fault detection 

method is proposed in this chapter. The proposed approach aims to identify and screen 

the faults which are not safety concern and also to dynamically update process risk at 

each sampling instant. The approach is built upon principal components analysis (PCA) 

combined with a quantitative operational risk assessment model. Through this approach 

a warning system is activated only when the risk of operation exceeds the acceptable 

threshold. Combining PCA with the risk assessment model makes this approach more 

robust against false alarms. Application of this new risk-based approach provides early 

warnings and early activation of safety systems prior to the fault impacting the system. 

This method has more power in discerning between operational deviations and 
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    O. Zadakbar, F. Khan, S. Imtiaz, Industrial & Engineering Chemistry Research, 2013, 52 
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abnormal conditions which potentially may cause an unwanted situation (for example: 

an accident). 

KEYWORDS  

Dynamic Risk Assessment, Fault Detection, PCA 

 

3.1 Introduction 

The need for fault detection and diagnosis tools to monitor complex chemical processes 

is well established. Both model based fault detection and historical data based methods 

have been used for process fault detection and diagnosis. In chemical processes data 

based methods are often the only choice due to the unavailability of models of complex 

processes. Also, in many cases the cost associated with building a first principles model 

cannot be justified by the marginal gain in model based fault detection and diagnosis 

compared to using the multivariate statistical methods. Classification of fault detection 

methods and an extensive comparison of the various methods can be found in [1-4]. 

Since the early application of multivariate statistical method based fault detection and 

diagnosis technique by [5], data based fault detection and diagnosis has been used 

extensively in process industries. In such industries, multivariate data based approaches, 

for example, PCA and partial least squares (PLS), have had the most success in fault 

detection [6-8]. Nonlinear versions, for example, nonlinear PLS and kernel PCA, were 

also applied [4]. Typically, any breakdown in correlation between the process variables 

is flagged as a fault. In order to detect the change in correlation a test is performed on 

the residuals.  
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In general, fault detection techniques are aimed to detect operational faults that affect 

the control objectives of the process. The residuals are processed to generate a signal 

that indicates the presence of faults in the process. Different statistical tests such as Chi-

squared (  ) test [9], sequential probability likelihood ratio test (SPRT) [10], and 

generalized likelihood ratio test (GLR) [11, 12] have been developed to test the 

residuals. Although all these methods have some advantages in fault detection none of 

these methods take into account the potential impact of the fault on the safety of 

process, personnel and the environment, as such warnings can be generated for trivial 

changes in the process which do not have a big impact on process safety or operation. 

Thus these methods often generate spurious alarms which can lead to alarm flooding in 

the control room.  

To address this issue risk-based fault detection method was earlier proposed by Bao et 

al. (2011) [13]. Instead of generating warning based on residuals or signals crossing the 

threshold, the risk-based fault detection method issues warning when the risk of a 

process exceeds the acceptable threshold. The operational risk is defined as a 

combination of probability of a fault and severity of the fault. This is an important 

concept as it eliminates faults which are not safety concerns and also gives a real time 

indication of the operational risk. Bao et al. (2011) [13] combined a univariate charting 

method with risk calculation. The probability of fault was calculated based on the 

deviation of signal from threshold. Univariate methods do not take into account the 

changes in the input. Therefore they have less power in discerning between process fault 

and operational changes. This potentially limits the effectiveness of the risk-based 

method based on univariate fault detection and diagnosis approach.   
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Zadakbar et al. (2011) [14] extended the method to a multivariate framework. Residuals 

generated from a Kalman filter were used to calculate the probability of fault. However, 

as Kalman filter requires a model its application is limited due to lack of availability of 

a model for complex processes. Therefore, there is a need to develop a model-free risk-

based fault detection and diagnosis method. 

In this Chapter a multivariate risk-based fault detection and diagnosis technique using 

historical process data is proposed. We extended principal components analysis in risk-

based framework to detect process faults which are safety concern to the process. 

3.1.1 Organization of the Chapter 

The chapter is organized as follows: in Section 3.2, the risk-based fault detection and 

diagnosis methodology is introduced. This methodology is based on combining the 

PCA and risk assessments. In Section 3.3, the application of the proposed methodology 

is demonstrated on two process systems. The first case study, presented in Subsection 

3.3.1, is a simulated distillation column while the second case study, presented in 

Subsection 3.3.2, is a real life industrial case presenting a dissolution tank. Finally, 

conclusion is presented in Section 3.4. 

 

3.2 Risk-based Fault Detection using PCA 

The overall methodology for process risk calculation is shown in Figure 3.1. In the 

proposed methodology we calculate the process risk at any instant using the output from 

PCA. At any instant (starting time: θ=0) the measurements from sensors are first 

projected on the principal components (PC) subspace using the previously calculated 
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loadings. This gives scores in the PCs directions. Typically these calculated scores will 

contain some noise. In order to suppress the effect of noise the scores are filtered using 

an exponential filter. 

The next step is to calculate the probability of fault and the associated severity. 

Probability of fault is calculated using the filtered score. Severity of fault is calculated 

using the filtered scores and the loadings calculated from the offline PCA. Subsequently 

severity and probability of fault are combined together to get the risk at any sampling 

instant. The definition of risk and the relevant equations are given in Section 3.2.2.    
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Figure 3.1. Methodology of risk-based fault detection 

The risk profile is used for fault detection as well as for taking any supervisory 

decisions to activate appropriate safety systems in real time. If any fault is detected the 
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next step will be to take steps to mitigate the fault. If fault is not detected then proceed 

to the next time step.  

3.2.1 Principal Component Analysis In Fault Detection 

PCA was originally developed as an effective data compression tool for multivariate 

data analysis. In process industries PCA is widely used as a multivariate statistical 

process control (SPC) tool for monitoring large number of process variables [5, 15, 16]. 

In this section we give the relevant theory on PCA. An excellent tutorial on the theory 

and application of PCA can be found in [17].  

   

Figure 3.2. Orthogonal transformation and axis rotation by PCA 

Consider data matrix      where   denotes the number of samples and   denotes the 

number of process variables. Each column in the data matrix is a mean centered and 

scaled process variable. 

There are infinite numbers of linear transformations that can be applied on a data 

matrix. In PCA the data matrix is transformed to the maximum variability directions of 

the data matrix. This is depicted in Figure 3.2. The correlated data was originally lying 

in a three dimensional space (Figure 3.2a). However, most of the variability of the data 
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is only in two directions. Therefore the data is projected in a two dimensional subspace 

(Figure 3.2b). The coordinates of this new subspace are aligned with the two most 

variability directions of the data. These two directions are called PC directions. The 

values relative to this new coordinate system are called scores,  .   

To find the appropriate projection matrix singular value decomposition (SVD) is 

applied to the covariance matrix of      which decomposes the matrix to a diagonal 

matrix   and a set of orthonormal variables collected in matrix     . Mathematically, 

we can write the covariance matrix       .  

The columns of   are called the PC loading vectors. The diagonal elements of   are 

called eigenvalues of the covariance matrix. The scores,   is given by: 

              (3.1) 

Process data contains both systematic process variation and random process noise. 

Therefore data matrix,   can be written in the following form: 

   ̂             (3.2) 

Where  ̂ is the systematic process variation and    is the random process noise.  

Accordingly the scores and loadings matrix is partitioned in two parts:             and 

            explaining the systematic variation,  ̂       
  and random variation, 

       
  in the data, respectively. The number of retained PCs,   should be ideally 

chosen such that there is no significant process information left in the covariance 

matrix. In theory, the   matrix should contain only the random error. 
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Once the number of retained PCs has been decided, the data matrix   can be projected 

in the PC direction: 

                (3.3) 

Where   
                    contains the scores of PCs. Each PC or score vector,    

collected in the matrix    and captures as much variation as possible which has not been 

explained by the former PCs. 

Often PCs give an early indication of fault, therefore in process monitoring instead of 

monitoring individual variables, PCs are monitored. Statistical test is done on each 

score value and if the value exceeds the threshold it is considered as a fault. However, 

conventional PCA methodology does not take into account the consequence of the 

faults and therefore gives equal weightage to all faults. In the proposed methodology we 

calculate the associated risk for a PC’s score exceeding threshold. The scores and the 

loadings of the PCs are the main inputs for the dynamic risk calculation. In the 

following section we give the details of dynamic risk calculation methodology for each 

PC. 

3.2.2 Dynamic Risk Calculation for Principal Component 

Risk is defined as a measure of likely harm or loss caused by the fault if corrective 

action is not taken on time. Risk depends on two factors: the probability of occurrence 

of a fault leading to an unwanted event and severity of the loss caused by the event [18]. 

Bao et al. (2011) [13] proposed the following formula for a univariate deterministic 

system: 

                 (3.4) 
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Where   is the probability of occurrence of a fault, and   is the severity of the fault. The 

probability of the fault for each predicted score point is calculated using Equations (3.5) 

through (3.7). The probability of an event increases as the process moves away further 

from the normal operation. This behavior can be captured using a cumulative normal 

distribution. Therefore the probability of fault is defined as, 

   (
   

 
)         (3.5) 

This also allows us to define the threshold for the normal operating region.  We use 

     and      as the lower and upper threshold for the normal operation. All data 

points between these two thresholds are considered as normal which is approximately 

(99.73%) of all the values under normal operating conditions.  If any predicted point 

goes outside this region; it could lead to a fault leading to an unwanted event. For 

example, when a signal value is at the threshold (    ) the probability of fault is 0.5 

as it can either go back to normal or may keep growing and ultimately lead to an event. 

In the present study we used the same definition with modifications to use the scores 

instead of original signal. For fault signals when the scores approach the upper 

threshold, the probability of the fault is calculated by  (
            

  
). On the other 

hand, if the scores approach the lower threshold the probability of the fault is calculated 

by the complement,     (
            

  
), 

                 (
            

  
)  ∫
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Where: 

                              

                                  

Figure 3.3 shows a visual depiction of a fault probability.  Probability of the fault for a 

point on the centerline  , is 0 and for a given point on the thresholds is equal to 0.5. 

 

Figure 3.3. Change in probability of fault     with deviation of score from mean 

The severity of fault is calculated using Equations 8 through 10. It is a modified version 

of the equation proposed by Bao et al. (2011) [13]. The modifications were required 

because in this study we use scores of PCs to calculate the risk instead of residuals used 

in [14].   

Each PC is a weighted combination of the original process variables. Violation of 

threshold by these PCs therefore indicates a fault in the process.   The severity of the 

fault is assessed using Equations (3.7) through (3.9). In this case we calculate the 

severity based on the scores. Severity has two parts: exponential part and the pre-
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exponential term. The exponential part gives the magnitude of fault based on the 

exceedance of the threshold. The pre-exponential term called intensity coefficient gives 

a relative measure of hazard potential of each PC.   Intensity coefficient of a score,    is 

calculated as a weighted average of the intensity coefficient of individual variables (  ) 

as given in Equation 10. The weights,    are the absolute loadings in each PC. 

                        

    (      )

             (3.8) 

                        

    (      )

             (3.9) 

   ∑     
 
         ∑     

 
          (3.10) 

Where: 

                               

                                  

                                                     

Intensity coefficient,   indicates the intensity of the severity of the fault associated with 

each process variable. For instance, in a simple chemical reactor containing 

nonhazardous chemicals, the severity of hazard due to uncontrolled temperature 

(exothermic reaction) is much higher than an uncontrolled concentration of a given 

component. Thus,   associated with temperature is larger than   associated with 

concentration. Coefficient   is assigned based on process and operational considerations 

e.g. process nature, number of people at risk, chemical components, environment and 

costs. 



36 

 

In order to remove the noise a further moving average filter was applied to the 

calculated score signal. The filter coefficient of the moving average filter   is a tuning 

parameter which is further tuned to minimize the false alarms.  

                           (3.11) 

The next step in the methodology is prediction. Instead of using the scores directly 

predicted score values are used for risk calculation. This gives some lead time in fault 

detection. We used a four point backward difference formula for slope calculation. 

Based on the slope of the filtered scores we predict the scores for four forward points. 

    

  
|
    

 
                           

  
      (3.12) 

Where   is time. The risk of the fault is obtained by multiplying the severity of fault and 

the probability of fault. If the risk exceeds the threshold an alarm is issued. 

Subsequently based on assessed risk, supervisory decisions to activate appropriate 

safety systems are taken. 

Multivariate risk-based fault detection using PCA is capable of assessing the 

contribution of each original variable to the detected fault and finding the variable with 

the most risk potential using the loadings of a given PC under faulty conditions. 

Equations 8 and 9 can be expanded to the following expression to determine the 

contribution of each original variable.    is the severity of each original variable in total 

severity  . Consequently, to diagnose the fault, the associated risk of each original 

variable,   , is calculated using   .  
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                (3.15) 

 

3.3 Case Studies 

The application of the proposed methodology is demonstrated on two process systems. 

In the first case study the methodology is applied to a simulated 40 stage distillation 

column. The second case study is an industrial application of a dissolution tank where 

solid crystals are dissolved with water. 

3.3.1 Distillation Column 

The system considered in this study is a binary distillation column with 40 stages that 

separates a binary mixture with relative volatility of 1.5 into products of 96% purity 

(Figure 3.4) [19]. The assumptions considered to model the distillation unit are: binary 

mixture, equilibrium on all stages, constant pressure and relative volatility, total 

condenser, no vapour holdup and linearized liquid dynamics.  
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Figure 3.4. Schematic diagram of binary distillation column 

The linearized dynamic model has 82 states, 6 inputs and 4 output variables. The first 

41 states are compositions of light component in reboiler, condenser and 39 trays in 

between. In the next 41 states are the holdups in the 39 trays, the reboiler and the 

condenser. Inputs are reflux flow rate ( ), boilup flow rate ( ), top or distillate product 

flow ( ), bottom product flow ( ), feed rate ( ), and feed composition (  ). There are 

four sensors to measure top composition (  ), bottom composition (  ), condenser 

holdup (  ) and reboiler holdup (  ).  

In this study a gradual decrease of reboiler heat flow is considered as a fault. This fault 

may cause increase in bottom flow rate with the time which would affect other process 

states, e.g. top and bottom concentrations. It is considered that the reboiler fault 

occurred at   =2000s which also shows up at the bottom flowrate at the same time 

(Figure 3.5). 
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Figure 3.5. Bottom flow rate ( ) of distillation unit in faulty conditions 

In this case we monitor the following process variables: feed composition (  ), feed 

flowrate ( ), distillate composition (  ), distillate flowrate ( ), bottom composition 

(  ), and bottom flowrate ( ). These variables are collected in data matrix,  . 

  

[
 
 
 
 
  
 
  
 
  
 ]
 
 
 
 

                    (3.16) 

PCA was applied on these variables. Based on the results of PCA in Table 3.1 the first 

three PCs are retained which capture about 90% of the total variation.   
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Table 3.1. Principal component analysis for the first case study 

PC Number % Variance captured this 
PC 

% Variance captured total 

1 48.99 48.99 
2 23.7 72.69 
3 16.7 89.39 
4 8.16 97.56 
5 2.05 99.6 
6 0.4 100 

 

Among the retained PCs, fault was detected in the scores of PC1 as can be seen in 

Figure 3.6. The scores of PC1 were filtered and based on slope the future scores were 

calculated. Subsequently these predicted values were used for risk calculation. Risk 

calculation has two parts: probability of fault and severity calculation. Probability of 

fault is calculated based on Equations 3.5 and 3.6.   

In order to calculate the severity of a score, we first assign the severity of each process 

variables considered in the analysis. We give a relative number to the severity 

coefficient for each variable based on process knowledge. Among these variables 

concentration is a quality variable and the consequence associated with concentration is 

poor product quality; thus it has the lowest potential to cause hazards. Therefore we 

assigned concentrations a severity value of 1 and relative to that the severity of other 

variables were assigned. Relative to the concentration, the feed flowrate has twice 

hazard potential and the top and the bottom flowrate have three times hazard potential. 

These values are somewhat subjective at this stage. A detailed cost analysis is necessary 

to assign more accurate values which will be outlined in a forthcoming article.  
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Loadings of each PC calculated by PCA are used as weights in Equation 3.10. For the 

first PC loadings are:  

  

[
 
 
 
 
 
      
     
      
     
      
     ]

 
 
 
 
 

 

[
 
 
 
 
 
    
    
    
    
    
    ]
 
 
 
 
 

                (3.18) 

Substituting these values we get the severity intensity coefficient for PC1. 

   ∑ |    |
 
                       (3.19) 

 

Figure 3.6. First PC’s score for the distillation unit data 
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The risk of the fault is obtained by combining the effect of severity with the probability 

of fault. Figure 3.7 shows the risk profile for the first PC.  

 

Figure 3.7. Risk profile of the first PC of the distillation unit data 

The threshold for the risk signal is based on the acceptable risk criteria of the specific 

process system. In Figure 3.7 few guiding principles of acceptable risk in process 

operation are shown. The first risk threshold is at 1. It is used for fault detection in 

parallel with the warning generation for the operators to take priority response if the 

automatic systems failed. If no corrective action is taken or the corrective action fails to 

bring down the risk, and risk exceeds the second threshold then the automatic safety 

system is activated (emergency shutdown system). Application of the intensity 

coefficient enhances the ability of the methodology by incorporating the impact of the 

fault on operational performance and potential accident. 

The application of the risk-based fault detection provides early warnings that can be 

used to correct process fault before it can lead to a catastrophic event. Based on the 
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analysis, an alarm is activated at  =2090s when the risk of operation exceeds the 

acceptable threshold (first level) instead of generating an alarm at  =2400s based on 

original signal, i.e. bottom flowrate (B), crossing its threshold.  

3.3.2 Dissolution Tank 

The risk-based methodology is applied to a data set collected from a pure terepthalic 

acid (PTA) crystal dissolution tank operation.  A simplified process diagram for the 

system is shown in Figure 3.8. Solid crystals are dissolved in a tank with water. Water is 

pumped into the tank under flow control. A rotary feeder is used to feed the dissolution 

tank from a hopper. The feed rate of solid crystals to the tank is controlled by the speed 

of the rotary feeder. The water level in tank and the density of the liquid going out of 

the tank are measured variables. 

 

 

Figure 3.8. Schematic diagram of PTA industrial dissolution tank  
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The process is known to be impacted by severe disturbances which if undetected can 

lead to catastrophic faults. Occasionally, because of the variation in moisture content the 

solid gets lumped in the rotary feeder and does not dispense from the feeder uniformly. 

After a while when the solid lump gets too big it falls into the tank creating a big 

disturbance in the density which causes problems in the downstream process. One 

specific example is shown in Figure 3.9. 

In this case because of the actuator problem in the rotary drum, excess solid crystals 

dropped into the tank at   =10365 min. Figure 3.10 shows the effect of the excess solid 

crystals on the density. It creates a large spike in the density at   =10519 min when 

operator is able to detect the fault and subsequently takes corrective action. 

 

Figure 3.9. Solid flowrate to dissolution tank 
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Figure 3.10. Density of liquid in dissolution tank 

We applied risk-based methodology to the system for early detection of the fault. In this 

case we monitor the following process variables: speed of solid rotary feeder (   ), 

inlet water flowrate (   , inlet solid flowrate (  ) and density of outlet ( ). These 

variables are collected in data matrix,  . 

  [

   
  
  
 

]                   (3.20)              

In order to take into account the dynamic nature of the data the variables were adjusted 

for the time delay. Therefore, the data matrix, X contains the time delay adjusted 

variables. PCA has been applied to the data matrix. Based on Table 3.2 the first three 

PCs which collectively capture 80% of the total variance are retained.  
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Table 3.2. Principal component analysis for the second case study 

PC Number % Variance captured this 
PC 

% Variance captured total 

1 31.35 31.35 
2 25.16 56.51 
3 23.73 80.23 
4 19.77 100 

 

Subsequently the loadings calculated from the training data set were used to project the 

data onto a PC subspace. It was observed that PC2 was able to detect the fault at the 

earliest. The scores of PC2 were used to calculate the probability of fault.  

Similar to the previous case study we assign severity to different variables using a 

relative scaling. Severity of water flowrate was taken as a reference point. It is 

considered that the severity of hazard associated with the speed of solid rotary feeder 

and solid flowrate are twice the severity of hazard associated with the water flowrate. 

Finally, any fault in density has a direct impact on the downstream process equipment. 

Therefore, the severity of hazard associated with the density is assigned three times the 

severity of hazard associated with the water flowrate. 

  [

    

   

   

  

]  [

 
 
 
 

]         (3.21) 
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]        (3.22) 
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Figure 3.11. Score of the second PC for the dissolution tank data 

 

Figure 3.12. Risk profile of the second PC of the dissolution tank data 
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Risk profile of the fault is obtained by combining the effect of severity with the 

probability of the fault. Figure 3.12 shows the risk profile of the second PC. The first 

risk threshold at 1 is used for fault detection in parallel with the warning to the operators 

for priority response. The second threshold placed at 10 will activate safety systems 

(emergency shutdown systems). 

Application of the multivariate risk-based fault detection provides early warnings and 

early activation of safety systems prior to the fault impacting the system in comparison 

with univariate methods. Table 3.3 shows time of fault detection using different signals. 

In this case, multivariate risk-based approach detects the fault 36 minute earlier than a 

univariate approach.  

Table 3.3. Time of fault detection using different signals 

 Monitored Variable Time (min.) Improvement 
Actual time of Fault Solid flowrate 10365 n/a 
Time of Operator 
Intervention 

Density 10519 Base line 

 Scores of 2nd PC 10486 33 min earlier 
 Risk of 2nd PC 10483 36 min earlier 

 
Figure 3.13 and 3.14 show the contribution and risk associated with each process 

variables. This can be used for root cause analysis. 
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Figure 3.13. Contribution of rotational speed of rotary feeder (variable #1); inlet 

water flowrate, (variable #2); inlet solid flowrate (variable #3); and density of outlet 

(variable #4) to the detected fault in the dissolution tank data 

 

Figure 3.14. The associated risk of each original variable,    in the dissolution tank 

data 
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In this case because of the actuator problem in the rotary drum excess solid crystals 

dropped into the tank. As expected, the contribution of the solid flowrate,   , as well as 

its risk is more than other variables. 

 

3.4 Conclusions 

PCA based fault detection and diagnosis technique has been extended to a risk-based 

fault detection and diagnosis framework targeting the safety issues of a process system. 

In this method a warning system is activated when the risk of operation exceeds the 

acceptable threshold. Combining PCA with the risk calculation procedure makes this 

method robust to false alarms. This method has more power in discerning between 

operational changes and abnormal conditions which can cause accidents. Severity of the 

fault associated with different process variable is considered to calculate the operational 

risk. The proposed technique is demonstrated on a simulated system and using real-life 

industrial data. This technique provides much early warning compared to the univariate 

methods. Further, due to risk-based approach, warning and recovery options are easy to 

prioritize. 
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Chapter 4: Dynamic Risk Assessment and Fault Detection 

Using a Multivariate Technique† 

 

Preface 

A version of this chapter has been published by the Journal of Process Safety Progress, 

in 2013. Zadakbar was the main lead on the work. The co-authors, Dr. Khan and Dr. 

Imtiaz supervised the work and helped to develop the methodology. 

 

Abstract 

In the context of process safety, significant improvements are needed in fault detection 

methods, especially in the areas of early detection and warning. In this Chapter, a 

multivariate risk-based fault detection and diagnosis technique is proposed. The key 

elements of this technique are to eliminate faults that are not serious and to provide a 

dynamic process risk indication at each sampling instant. A multivariable residual 

generation process based on the Kalman filter has been combined with a risk assessment 

procedure. The use of the Kalman filter makes the method more robust to false alarms, 

which is an important aspect of any fault detection algorithm that targets the safety of a 

process. In addition, we consider significant differences in the severity of the faults 

associated with different process variables. We also take into account the varying 

                                                             
† O. Zadakbar, S. Imtiaz, F. Khan, Dynamic risk assessment and fault detection using a 
multivariate technique, Process Safety Progress, Volume 32, Issue 4, pages 365–375, December 
2013, DOI: 10.1002/prs.11609, Article first published online: 17 JUN 2013, Copyright © 2013 
American Institute of Chemical Engineers 
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intensity of damage caused by the increasing and decreasing rates of fault and the need 

to treat those cases differently. 

 

Keywords: Dynamic risk assessment, multivariate fault diagnosis, risk assessment of 

process system, Kalman filter 

 

4.1 Introduction 

Abnormal Event Management (AEM) involves detecting an abnormal event at an 

appropriate time, diagnosing its cause, and then taking appropriate supervisory control 

decisions and actions to bring the process back to a normal, safe operating state [1]. 

Fault detection and diagnosis are key components of abnormal event management. 

Process fault detection, a critical part of process engineering, is essential to product 

quality and operational safety.  

The term fault has many connotations in the literature. Typically, any departure of 

process variables from an acceptable range is considered as a fault [2]. Historically, 

univariate methods, such as limit- or trend-checking of measurable output variables, 

have been used for fault detection [3-6]. However, the applicability of univariate 

methods is limited, as they are unable to distinguish between noise and abnormal, faulty 

conditions; thus, they can provoke false alarms. 

More success in fault detection has been observed when multivariable fault detection 

techniques are applied [4, 5, 7], as these methods take advantage of the dependence 

among the process variables (i.e., between input and output), and flag a fault when any 
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deviation from the correlation structure is detected. These methods are better able to 

distinguish between operational changes and abnormal conditions [8]. Multivariable 

methods are model-based methods, where models are used either explicitly or implicitly 

to generate residuals: the prediction is subtracted from the observed values. Both data-

based models and first- principles models have been used for prediction in connection 

with fault detection and diagnosis [9].   

To make the detection robust, Kalman predictors have been widely used to predict the 

fault-free variables. Process industries are complex systems, and there is always 

uncertainty in process models, but the Kalman filter makes the prediction robust as it 

also optimally updates the prediction with measurements [10]. In general, fault 

detection techniques seek to detect operational faults that affect the control objectives of 

the process. However, in the context of process safety, these methods are inadequate, as 

none of them take into account the potential impact of the fault on the process and the 

environment. Bao et al. (2011) proposed a risk-based fault detection method in order to 

address this issue. Instead of generating an alarm based on residuals or signals crossing 

the threshold, the risk-based fault detection method issues an alarm only when the risk 

of a process exceeds the acceptable threshold [6, 8]. The risk of a process is defined as a 

combination of probability of fault and severity of fault. This is a crucial concept, as it 

eliminates faults that are not operational or process safety concerns, and also gives a 

dynamic indication of the operational risk [8]. Bao et al. (2011) used a univariate 

charting method to calculate the probability of a fault, with limited effectiveness of the 

method because of inherent limitations of the univariate fault detection and diagnosis 

approach.   
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In this chapter, we propose a multivariate risk-based fault detection and diagnosis 

technique. A multivariable residual generation process based on the Kalman filter has 

been combined with the risk calculation procedure earlier proposed by Bao et al. 

(2011). The proposed method takes advantage of the correlation between process input 

and output and is therefore better equipped to detect faults and calculate risk precisely. 

Also, the use of the Kalman filter makes the method more robust to false alarms; this 

represents a significant advantage in any fault detection algorithm targeting the safety 

issues of an operation. The main benefits of this approach are improved safety, 

minimum interruption of operation, better alarm management or early warning system 

and higher availability of process. 

 

4.2 Problem Formulation 

Consider a linear time invariant system in discrete time, 

                                      (4.1) 

where      is the time index and        is noise-free input; and        is noisy 

output.        is the state;         is a stationary Gaussian white noise vector with 

covariance         , e.g.,          , to represent process disturbances;         

is a stationary Gaussian white noise vector with covariance         , e.g.,    

      . It represents measurement disturbances.                    are system 

matrices with compatible dimensions. The above set of equations can be modified to 

represent faults arising at different parts of the system. In the case of a process fault, 

system equations can be represented by 
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                     (4.2) 

   
    is the process fault magnitude vector with zero or non-zero elements.   

 

4.3 Fault Detection and Diagnosis 

The fault detection and diagnosis scheme is based on a test of the residuals. The residual 

of a particular measurement at any instant is given by 

    ̃        ̂ |           (4.3) 

where    is the measured vector at a particular instant, and  ̂ contains the corresponding 

predicted values. Among various methods for residual generation, the Kalman-filter-

based residual generation method was employed to calculate the residues [11]. The 

Kalman filter is an optimal state estimator for a linear system in the presence of 

Gaussian noise. Unlike model predictions such as those in equation (4.3), Kalman filter 

predictions were subtracted from the measurements to calculate the residues. The 

Kalman estimate is robust in the presence of disturbance and uncertainty in the process. 

Kalman estimations are optimally weighted between the model prediction and the 

observed value, and they account for measurement noise and disturbances in the process 

model. This is particularly important in the context of risk-based fault detection (RFDI), 

since it is aimed at predicting only those faults that constitute operational safety 

concerns.  

Given               and some knowledge about process noise variance   and 

disturbance noise variance  , the Kalman filter gives the least squares estimate  of    
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such that      ̂ |  has minimum variance.  ̂ |  is the estimation of    based on 

{                         }, where        or    . In fact, the Kalman filter is 

capable of predicting one step ahead if      , or filtering if     [12]. The 

following form is considered for the one-step predictor algorithm:  

  ̂   |       ̂ |             ̃    ̂    ̂ |        (4.4) 

Where     is the Kalman gain that is computed as below: 

      
       

            
      

   
      

        ̂  (4.5) 

In this work, additive process fault as given in equation (4.2) is considered. In the 

presence of process fault, the residuals will have the following form: 

                          
            

    (   ̂ |             ̃ )  

            
                     ̃        (4.6) 

As is shown in equation (4.6), since the Kalman-predicted values are used for residual 

calculation, there is an additional term        ̃   for residual equation. Subtracting a 

portion of the residuals makes the fault prediction conservative, which makes the 

method more robust to false alarms. This is an important component of the fault 

detection algorithm, particularly in this case, when the focus is on safety in the process 

operation. 

In order to give more flexibility to the prediction process, a further filter was applied to 

the calculated residual signal from Equation (4.6). The filter coefficient of the moving 

average filter   is a tuning parameter that is further tuned to minimize false alarms. 
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Finally, the slope of the predicted signal was used to predict the fault at any given 

instant:  

                        (4.7)  

 

4.4 Dynamic Risk Calculation 

Risk is defined as a measure of likely harm or economic loss caused by the fault if 

corrective action is not taken. Risk depends on two factors: the probability of 

occurrence of a fault leading to an unwanted event and the severity of loss caused by the 

event [13]. Bao et al. (2011) proposed the following formula for a univariate 

deterministic system: 

                                 (4.8) 

where   is probability and   is severity of a fault. The probability and severity of the 

fault for each predicted residual point are calculated using equations (4.9) and (4.10). 

The probability of an event increases as the process moves further away from the 

normal operation. In this methodology,      and      are used as the lower and 

upper thresholds for normal operation. All data points between these two thresholds are 

considered normal. If any predicted point goes outside this region, it could lead to a 

fault and, possibly, to an event. When the residuals are at the threshold (    ), the 

probability of fault is 0.5, as it can either go back to normal or keep growing and 

ultimately lead to an abnormal event. Based on this intuition, Bao et al. (2011) 

developed a cumulative normal distribution for fault probability, which we also use in 

the present study. For positive fault signals when the residuals approach the upper 
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threshold, the probability of the fault is calculated by  (
        

 
). On the other hand, 

for negative fault signals, the residuals approach the lower threshold and the probability 

of the fault is calculated by the complement,     (
        

 
), 
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) ∫

 

√   
 
            

     
 

  
      (4.9) 
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)   ∫

 

√   
 
            

     
 

  
    (4.10) 

Figure 4.1 shows a visual depiction of a fault probability. The probability of the fault for 

a point on the centerline   is 0 and for a given point on the thresholds is equal to 0.5. 

 

Figure 4.1. Probability of fault     

The severity of fault is calculated using equation (4.11-13). It is a modified version of 

the original equation proposed by Bao et al. (2011), which needed modification because 

it was developed for univariate methods and did not take into account the various 

degrees of severity of different types of fault. The modified equation takes into 

consideration the severity of the fault associated with different process variables. It also 
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accounts for the varying degrees of severity involved in the increasing and decreasing 

rate of fault. Therefore, these cases should be treated differently. The modified severity 

equation is given below: 

                    
          

         (4.11) 

               ́     
(        )

         (4.12) 

 ́               (4.13) 

Coefficient   [8] in the above equations is called the intensity coefficient; it indicates 

the intensity of the severity of the fault associated with each process variable. For 

instance, in a simple chemical reactor containing nonhazardous chemical compounds, 

the severity of damage caused by uncontrolled temperature is much greater than an 

uncontrolled concentration of a given component. Thus,   associated with temperature 

is larger than   associated with concentration, and this can be simply depicted 

                           . 

Coefficient   [8] in the above equations is called the moderation coefficient. Since the 

severity of the fault in the case of a decreasing rate may not be equal to the severity of 

the fault in an increasing rate, coefficient   is used to consider this effect and moderate 

the severity of the outcome. For example, an abnormally increasing temperature in a 

given process can have much more damaging effects than an unusually decreasing 

temperature. On the other hand, a decreasing cooling water flow in a reactor can cause 

severe damage and needs more immediate attention than an increasing cooling water 

flow. Coefficient   provides the flexibility to treat increasing and decreasing faults 

differently. Both coefficients   and   are selected based on process and operational 



63 

 

considerations in a given system, such as the nature of a process, number of people at 

risk, chemical and physical components, environment, and costs. 

4.4.1 Risk-based Fault Detection 

The methodology for risk-based fault detection is given in Figure 4.2. The first step of 

the methodology is to model the process. Then faulty conditions are generated in a 

given process model. Process states may not be measured. Therefore, in the next step 

the Kalman filter estimates all process states and is also used for residual generation of 

measured process states. After that, filtered residuals are used to predict the next 

residual points based on the slope of the three previous successive real-time data points 

in time series. In the next step, the risk of each predicted point is calculated using 

probability and the severity of the fault. Finally, the risk profile is used for fault 

detection, and necessary supervisory decisions are taken to implement the appropriate 

safety systems. 

 

Figure 4.2. Methodology of risk-based fault detection 

The criteria for selecting risk thresholds depend on the process system. The risk 

threshold is defined based on the acceptable risk of each process system. The risk 

profile is used not only for fault detection but also for making decisions about the 

activation of a series of safety systems corresponding to the level of the risk, in parallel 
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with a warning for the operators to initiate a priority response if the automatic systems 

should fail. 

 

4.5 Case Studies 

In this section, risk-based fault detection methodology is applied to two simulated case 

studies. The first case study is a Continuous Stirred Tank Reactor (CSTR) and the 

second is a 40-stage distillation column. In the CSTR, a fault is introduced in the 

temperature; in the distillation column, a fault is introduced in the reboiler. 

4.5.1 Continuous Stirred Tank Reactor (CSTR) 

A simple schematic of the Continuous Stirred Tank Reactor (CSTR) is shown in Figure 

4.3. In addition to complete mixing assumption; density of the reactant, the specific heat 

of the cooling and the heat of the reaction are considered independent of the temperature 

and there is assumed to be no phase change in the reaction mass.  

 

Figure 4.3. Continuous Stirred Tank Reactor 
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The reaction in the system is the oxidation of sodium thiosulfate by hydrogen peroxide, 

which is an irreversible exothermic oxido-reduction reaction. This reaction is expressed 

by the following equation [11]: 

                                     

               

                             
     

    
          (4.14) 

where    is the pre-exponential factor, and    and     are the concentrations of 

components A and B respectively.   is activation energy;    is the gas constant;     

and     represent uncertainty and     is the reactor temperature. 

The system equations describe the reactant concentration, CA, reactor temperature,    , 

and jacket temperature,    [11]: 
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To implement the Kalman filter, the nonlinear CSTR model is linearized around its 

nominal operating conditions. The discrete state space model coefficients are given as 

[11]: 
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The concentration of component A,   , the temperature in the reactor,   , and the 

temperature in the coolant jacket,   , are selected as the elements of process state 

matrix. It is assumed that there are two sensors to measure concentration of component 

A,   , and the temperature in the coolant jacket,   : 

     [
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]                    [
   

   
]      (4.19) 

The process control variables are feed to the reactor,  , and cooling water flow rate,   . 

Both variables could be manipulated. The feed concentration and cooling water inlet 

temperature      are uncontrolled inputs in the process; thus, they may be considered as 

disturbances. It is assumed that the cooling water inlet temperature changes as a pulse 

function. Figure 4.4(a) shows the residuals of jacket temperature    under normal 

conditions, generated by subtracting Kalman estimates from the measurements. The 

thresholds are placed at     , which cover 99.7% of the values. 

The noisy residual signal is subsequently filtered and then, based on the slope of three 

previous successive real-time data points in time series, the next five data points of the 

residual are predicted. Figure 4.4 shows the    residuals and the filtered and predicted 

residuals in normal conditions with     limits. 
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Figure 4.4.    residuals and the filtered/predicted residuals in normal conditions (a) 

unfiltered residuals (b) filtered residuals 

A process fault was simulated by adding a ramp-type fault to the reactor temperature   . 

Figure 4.5 shows    in normal and faulty conditions where an additive fault occurred at 

t=400s. 

 

Figure 4.5.     in normal (down) and faulty conditions (up) 
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The reactor temperature    is not directly measured, whereas    is directly measured. 

The    residuals are directly affected by the    fault. Figure 4.6 shows the    residuals in 

faulty conditions. 

 

Figure 4.6.    residuals in faulty conditions (a) unfiltered residuals (b) filtered residuals 

4.5.1 Dynamic Risk Calculation 

The probability of the fault for the    residuals is illustrated in Figure 4.7. In normal 

operating conditions, the probability of the fault fluctuates around zero. After t=400s, 

when the fault has occurred, the probability of the fault starts increasing. When 

predicted residuals cross the threshold, the probability of the fault is 0.5.  
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Figure 4.7. The probability of the fault for the predicted    residuals 

Figure 4.8 shows the severity of the fault - increasing jacket temperature and sodium 

thiosulfate concentration. In this case study, the reactor contains sodium thiosulfate 

(with health rating 1–slight; flammability rating 0–none; reactivity rating 1–slight; 

contact rating 1–slight) [15]. Thus, if personnel use protective equipment such as safety 

glasses, lab coats, and proper gloves, the severity of the increase in temperature is much 

higher than that of the increase in concentration of sodium thiosulfate. Therefore,   

associated with temperature is larger than   associated with concentration. In this case 

study,       and      . 



70 

 

 

Figure 4.8. Severity of increasing jacket temperature (up) and sodium thiosulfate 

concentration (down) 

The risk of the associated fault is obtained by combining the severity with the 

probability. Figure 4.9 shows the risk profile for the    residuals as well as the risk 

profile for the   .  

 

Figure 4.9. Risk profile for the predicted    (up) and    residuals (down) 
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The threshold for the risk signal is based on the acceptable risk criteria of the process 

system; for example, in a nuclear power plant the threshold will be very low, whereas in 

a water purification plant the acceptable risk may be relatively high. Figure 4.9 shows a 

few guiding principles of acceptable risk in process operation. The first risk threshold is 

at 1. It is used for fault detection in parallel with the warning for operators to initiate a 

priority response if the automatic systems failed [6, 8]. If no corrective action is taken, 

or if the corrective action fails to bring down the risk, and if the risk exceeds the second 

threshold, then the automatic safety system is activated (emergency shutdown). The 

application of the intensity coefficient improves the methodology by incorporating the 

impact of the fault on product quality, economics, and potential accidents.  

 

Figure 4.10. Risk of predicted    residuals in both increasing (up) and decreasing 

(down) cases 

The effect of moderation coefficient   is illustrated in Figure 4.10. In case of decreasing 

   residuals, moderation coefficient  =0.02 moderates the severity of the fault. The risk 
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associated with decreasing    is very low compared to the risk associated with 

increasing   . 

Figures 4.5, 4.6, and 4.9 show how the application of risk-based fault detection provides 

early warnings prior to the fault affecting the system. The activation of an alarm is 

based on a risk of operation that exceeds the acceptable threshold (t=420s), rather than 

on residuals (t=430s) or signals crossing the threshold (t=470s).   

4.5.2 Binary Distillation Unit 

The second case study is a binary distillation column with 40 stages that separates a 

binary mixture with relative volatility of 1.5 into products of 96% purity (Figure 4.11) 

[14]. The assumptions considered to model the distillation unit are: binary mixture, 

equilibrium at all stages, constant pressure and relative volatility, total condenser, no 

vapor holdup, and linearized liquid dynamics.  

 

Figure 4.11. Binary distillation column 
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A nonlinear Simulink model is used to replicate the distillation unit [16]. The dynamic 

nonlinear model is linearized and subsequently discretized to a linear system with 82 

states, 6 inputs, and 4 output variables. The first 41 states are compositions of light 

component with the reboiler as      and the condenser as      . State       is holdup 

in the reboiler and       is holdup in the condenser. Inputs are reflux flow rate  , 

boilup flow rate  , top or distillate product flow  , bottom product flow  , feed rate  , 

and feed composition   . There are four sensors to measure top composition   , bottom 

composition   , condenser holdup    and reboiler holdup   . Many different kinds of 

fault have been considered in the distillation column [17]:  

1. Process loads: feed flow rate, feed composition, top product flow rate, bottom 

product flow rate  

2. Changes in heating of the reboiler and cooling of the condenser 

3. Equipment fouling  

In this study, a sudden increase in reboiler heat flow is considered as a fault. This fault 

may cause increasing in vapor flow rate with the time which would affect other process 

states, e.g., top and bottom concentrations. It is assumed that the vapor flow of the 

reboiler starts to increase at T=2000 min. The control inputs are all set to zero except 

the reflux flow rate, which is a pulse function. Figure 4.12 shows the fluctuation of top 

concentration in normal and faulty conditions. 
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Figure 4.12. Bottom holdup fluctuation in (a) normal and (b) faulty conditions 

A fault in the reboiler would affect top product concentration, which is directly 

monitored. Figure 4.13 shows the top concentration residuals. 

 

Figure 13: Top concentration residuals in faulty conditions (a) unfiltered (b) filtered 
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4.5.2.1 Dynamic Risk Assessment and Fault Detection 

The risk of fault is obtained by applying the effect of severity on the probability of the 

fault. Figure 4.14 shows the risk profile of bottom liquid holdup as well as top 

concentration for the residuals shown in Figure 12. The first risk threshold is equal to 1 

and may be used for fault detection in parallel with a priority warning for the operators 

to respond. The second threshold, placed at 10, would activate safety systems 

(emergency shutdown systems) [5, 8]. 

Since the severity of hazard associated with liquid holdup is generally higher than the 

severity of hazard associated with concentration, a higher-intensity coefficient is 

assigned for liquid holdup. In this case study, it is assumed that    
   and    

  .  

 

Figure 4.14. Risk profile of bottom liquid holdup (up) and top concentration (down) 

residuals 
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Increasing liquid holdup in each stage of the distillation column would be as hazardous 

as decreasing the liquid holdup. In this case study, the moderation coefficient is 

considered 1. As discussed in the first case study, the risk threshold may be defined 

based on the acceptable risk of each process system.   

Figures 4.12, 4.13, and 4.14 show how the application of the risk-based fault detection 

provides early warnings and early activation of safety systems prior to the fault 

affecting the system. Instead of an alarm based on residuals (t=2030min) or signals 

crossing the threshold (t=2062min), here an alarm is activated when the risk of 

operation exceeds the acceptable threshold (t=2009min). Safety systems are also 

activated at t=2221min, when the risk profile of bottom liquid holdup crosses the 

second threshold, but the risk profile of the top concentration crosses the second 

threshold 153min later, at t=2374min. 

 

4.4 Conclusions 

A multivariate risk-based fault detection and diagnosis technique targeting the safety 

issues of a process has been proposed here. In this method, an alarm is activated only 

when the risk of operation exceeds the acceptable threshold, instead of an alarm being 

generated based on residuals or signals crossing the threshold. Combining a 

multivariable residual generation process based on the Kalman filter with the risk-

calculation procedure makes this method more robust to false alarms. This method has 

an increased capacity to distinguish between operational changes and abnormal 

conditions that have the potential to cause accidents. Other elements considered include 

the severity of the fault associated with different process variables and the increasing 
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and decreasing rates of fault. The proposed technique is tested on two different process 

systems. The application of the technique provides early warnings prior to the fault 

impacting the system and furthermore, the risk-based approach may prioritize warning 

and recovery options. 
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Chapter 5: Development of Economic Consequence Methodology for  

Process Risk Analysis†  

 

Preface 

A version of this chapter has been accepted for publication by the Journal of Risk 

analysis, in 2013. Zadakbar was the main lead on the work. The co-authors, Dr. Khan 

and Dr. Imtiaz supervised the work and helped to develop the methodology. 

 

Abstract  

A comprehensive economic consequence methodology with appropriate models for risk 

analysis of process systems is proposed. This methodology uses loss functions to relate 

process deviations in a given scenario to economic losses. It consists of four steps: 

definition of a scenario, identification of losses, quantification of losses, and integration 

of losses. In this methodology, the process deviations that contribute to a given accident 

scenario are identified and mapped to assess potential consequences. Losses are 

assessed with an appropriate loss function (revised Taguchi, modified inverted normal) 

for each type of loss. The total loss is quantified by integrating different loss functions. 

The proposed methodology has been examined on two industrial case studies. 

Implementation of this new economic consequence methodology in quantitative risk 

assessment will provide better understanding and quantification of risk. This will 

improve design, decision-making, and risk management strategies.  

 

                                                             
†
 O. Zadakbar, F. Khan, S. Imtiaz, Development of Economic Consequence Methodology for 

Process Risk Analysis, Journal of Risk Analysis, 2013, In Press. 
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5.1 Introduction 

In recent years, process operations have become increasingly complex and thus more 

vulnerable to accidents [1]. As a result, significant amount of work is being undertaken 

to better monitor processes, evaluate risk, and develop safety systems. Over the years, 

quantitative risk assessment (QRA) has emerged as an acceptable framework for 

numeric evaluation of the overall risk of a process [2]. QRA was originally used in 

aerospace, electronics, and nuclear power industries; it is now being employed in the 

process industries [2-4]. QRA involves four major steps: hazard identification, 

consequence analysis, frequency assessment, and risk quantification [5]. Consequence 

analysis is an integral part of risk assessment. Consequence analysis is generally defined 

as an assessment of likely consequences if an accident is to occur. The complexity of a 

QRA depends on the scenario and the availability of data and consequence information 

[4]. Consequence assessment involves a wide variety of mathematical models, such as 

source models that predict the release rate of hazardous materials, fire and explosion 

models, impact intensity models, and toxic gas models [1].  

Since 1970, several methodologies have been proposed for quantitative and qualitative 

risk assessment in process industries [1]. Most of these methodologies focus on 

prediction or assessment of failure probability [1-4], and few emphasize on consequence 

analysis in evaluating dynamic risk of a process integrating between process deviation 

and economic losses.  

Greenberg et al. [5] listed the ten most important accomplishments in risk analysis in 

theory, methods and application. A comprehensive overview of methods to quantify risk 

was presented by Jonkman et al. [7] However, many researchers like M. Burgman et al. 

[8] stated the majority of applications of risk analysis consider the probability of events 
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in detail, and pay almost no attention to the severity of consequences. In terms of 

determining quantitative consequence analysis, Lijian et al. [9] calculated personal 

injury and property damage consequences of vapor cloud explosion disasters of gas 

pipeline, by TNT equivalent method and composite energy method. Junior et al. [10] 

proposed a systemic accident analysis methodology based on the socio-technical 

principle of understanding the real operating conditions in which accidents take place. 

To achieve better eco-toxicological management, the quantitative structure-activity 

relationships QSARs proposed by Kar et al. [11] for risk assessment of chemicals. Aven 

et al. [12] covered issues related to risk assessment and appraisal with respect to 

petroleum operations. Si et al. [13] established a fire-explosion-poisoning quantitative 

probability model (FEPQPM) to analyze derivative accidents caused by hazardous 

chemicals leakage.  

The present work aims to enhance current knowledge of consequence analysis by 

developing a means of quantifying consequences in economic terms. It also helps to 

integrate process information with loss functions for accident scenarios. This 

methodology, along with the proposed loss function model, will lead to a more accurate 

quantification of risk and, more importantly, to improved risk management decision-

making.  

5.1.1 Review of Loss Functions 

Quality loss functions are designed to quantify losses associated with deviations of a 

product characteristic from the target value. Estimation of the potential cost savings 

resulting from the process improvements is the primary application of quality loss 

function. Loss function can also serve as measure of performance regardless of the 

method of quality improvement. It can also be used to determine if an investment to 
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reduce variation is worth the cost. Roy (2010) stated loss functions can also be used to 

set the limit for the inspection of products [14]. 

Taguchi [15] proposed a quadratic form of loss function to quantify losses associated 

with deviations of a product characteristic from the target value. Taguchi’s loss function 

has been widely used to determine engineering tolerance. However, due to the 

unbounded and symmetric characteristic of the Taguchi loss function, it is unrealistic to 

use this function in many manufacturing processes. [16] The boundlessness of the 

original Taguchi loss function has been improved by truncating the function at the 

points where it intersects the maximum loss. [10] In addition, asymmetric forms have 

been proposed [17-19]. Spring [16] proposed the reflected or inverted normal loss 

function (INLF) in response to criticisms of the quadratic loss functions. It is more 

flexible and provides a more reasonable assessment of the loss associated with 

deviations from target [20]. F. Sun et al. [21] revised the equation to simplify its 

application and to better employ its flexibility.   

A revised inverted normal loss function (RINLF) was also proposed to quantify losses 

only out of the acceptable region between upper and lower thresholds. [22] In addition 

to these two major loss functions, a general loss function based on the inversions of 

gamma loss function has been proposed [20]. Bartholomew et al. [23] presented a 

complementary general class of inverted probability loss functions (IPLF) based on the 

inversion of common probability density functions, including the inverted normal loss 

function (INLF), inverted gamma loss function (IGLF), inverted beta loss function 

(IBLF), and their associated properties for the uniform, normal, gamma, and beta 

distributions. Although they recommended the normal distribution for the INLF, the 

gamma distribution for the IGLF and the beta distribution for the IBLF, they also 
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suggested some other distributions to use, such as uniform distribution, when the 

process measurements do not follow exactly the corresponding conjugate distributions. 

These functions have been widely used in many other engineering areas, particularly in 

quality control, to quantify the economic losses associated with deviations from the 

target value of a product characteristic [20]. These loss functions are yet to be applied in 

process safety analysis. 

5.1.2 Objectives of Current Work 

This chapter introduces the idea of loss functions to quantitative risk assessment of 

process systems. It attempts to overcome the lack of integration between process 

deviation and economic losses. Loss functions are developed to quantify losses 

associated with the abnormal behavior of process parameters that may cause an accident 

[24]. The developed methodology will be able to assess losses at any point in time, 

based on the status of process variables.  

5.1.3 Organization of the chapter 

The remainder of the chapter is organized as follows. Section 5.2 presents the economic 

consequence methodology for the risk analysis of process systems. This methodology is 

based on loss functions assigned to each type of loss. In Section 5.3, the proposed 

methodology is applied to two process systems. The first case study describes the 

consequence analysis for a knock out drum, while the second case study analyzes the 

explosion in the ISOM unit in the BP Texas City refinery. The Chapter ends with 

concluding remarks in Section 5.4. 
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5.2 Consequence Assessment Methodology 

Chemical processes are complex systems that may involve abnormal conditions, for 

various reasons. A process that deviates from normal operation may cause many direct 

and indirect consequences. The proposed methodology starts with defining the possible 

fault scenarios; it identifies different classes and subclasses of loss, quantifies each loss 

using an appropriate loss function, and finally integrates all losses to determine the 

overall loss.  The overall methodology for developing an economic consequence 

methodology for risk analysis of process systems is shown in Figure 5.1.  

 

Figure 5.1. The flowchart of economic consequence analysis using loss functions 

5.2.1 Defining a Scenario 

The first step in the methodology is defining a scenario. In this step, a process unit is 

selected and the process variables related to the unit, such as temperature, pressure, 

concentration and level, are identified. The next step is to consider the pathways of a 

system’s poor performance whereby the deviation of a process variable can cause 
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incidents or accidents. For instance, in a pressure vessel containing hydrocarbon, the 

relevant process variables are pressure, temperature, and flowrate. Blocked outlets or a 

utility failure could cause the vessel's internal pressure to rise and exceed the maximum 

allowable working pressure. If relief systems fail to act, the failure could lead to release, 

fire, or explosion.      

5.2.2 Identification of Losses 

In this step, all significant types of losses due to potential deviation are identified. These 

losses include but are not limited to material loss, equipment loss, environmental loss, 

injury, fatality, and fines. These losses are represented by appropriate functions in 

subsequent steps. Identification of losses depends on the accident scenario. For each 

given scenario (process interruption/release/fire/explosion) the system is modeled using 

appropriate methods e.g. gas dispersion modeling to find the accident area. The model 

output is used to determine the number of people and/or equipment inside of this area or 

the amount of release leading to environmental loss. 

5.2.3 Quantification of Losses 

The quantification of losses is an important aspect of the overall methodology. 

Appropriate functions are chosen to quantify different type of losses. These functions 

are used particularly to quantify losses due to process malfunctions, releases, fires, and 

explosions. In this study, loss functions are divided into instant (step) and non-instant 

(Taguchi, inverted normal, etc.) loss functions.  

5.2.3.1 Instant Losses     

If the consequences associated with a process variable lead to an instant loss such as 

civil claims, injuries, or fatalities, a step function could be assigned to these types of 

losses. For injuries and fatalities, this function is developed based on the number of 
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personnel present inside the accident area and their positions. For example, in case of a 

pressure vessel explosion near the control room with two operators and one field 

operator, the step function, as shown in Figure 5.2, can be assigned for fatality loss 

associated with the vessel’s pressure. In case of an explosion at a low operating 

pressure, only the operator working around the vessel might receive fatal overpressure. 

However, with an explosion at a high operating pressure, the damaged area could be 

larger and two operators inside the control room may even be exposed to fatal 

overpressure.  

 

Figure 5.2. A step function assigned to fatality loss associated with process variable 

changes, based on the number of personnel exposed and their position 

The step function assigned to the civil claims (Figure 5.3) consists of three steps: step 1 

includes claims for individual minor injuries; step 2 includes individual major non-

recoverable injuries, individual disabilities, and minor small group injuries (involving 

fewer than 10 people); and phase 3 includes significant losses, and large group injuries 

(involving more than 10 people). These three steps obviously depend on the number of 

people (workers and the public) involved and their positions. 
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Figure 5.3. A step function assigned to civil claims associated with process variable 

change and the number of people (workers and the public) exposed  

 

5.2.3.2 Non-Instant Losses 

The concept of loss functions originated in quality control research. These functions are 

used to quantify losses associated with deviation from a set point. In the present study, 

loss functions are used to calculate the economic loss associated with deviations of a 

variable or parameter from the set point or from an acceptable range. 

If the loss increases progressively (non-instantly) the inverted normal loss function 

(INLF) or Taguchi loss function can be assigned. In this step, an appropriate loss 

function for each type of loss is selected to quantify the economic losses. At any point, 

the loss function’s input is measurements from sensors or calculated value from models. 

5.2.3.2.1 Taguchi’s Loss Function 

Taguchi (1986) introduced the concept of quality loss functions. Taguchi’s loss function 

is a quadratic function modified to assess losses associated with deviations of a product 

characteristic from the target. Taguchi defined the quadratic loss function as [15]: 
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                     (5.1) 

where   is the quality characteristics or process variable,   is the coefficient of quality 

loss or the maximum loss, and   is the target value or the set point. However, this loss 

function is unbounded; the following revised Taguchi equation makes the function 

bounded: [17] 

     

{
 

                        √ 
 ⁄

                                √ 
 ⁄

      (5.2) 

where   is the maximum value of loss and   represents the coefficient of quality loss 

within the specified limits. 

5.2.3.2.2 Inverted Normal Loss Function 

Because of the limitations of Taguchi’s loss function, an alternative function was 

developed by Spiring, [15] called inverted normal loss function (INLF). The INLF is 

bounded and provides a more reasonable assessment of the loss associated with 

deviations from the target by using the shape parameter [16]. Inverted normal loss 

function is a mirror image of a normal density function (on the horizontal axis). It has 

the minimum value zero at the target, and this increases as the variable moves away 

from the target and levels off at a maximum loss. The general form of inverted normal 

loss function is [17]: 

      ,        
      

    -     
 

 
     (5.3) 

where   is the distance from the target to the point where the maximum loss   first 

occurs. The function has been modified to simplify its application and make it more 

flexible. The modified form of inverted normal loss function is [21]: 

     
  

            
 

 
   

,        
      

    -      (5.4) 
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where    represents the value of the loss at a specific distance   from the target. The 

modified inverted normal loss function presents a convenient form for fitting the loss 

function to the user's perception of loss [21]. 

5.2.3.3 Choice of Loss Function 

The loss functions described in the previous section represent different types of losses. 

For non-instant losses, if a small deviation from set point causes a high or medium 

value of loss, the inverted normal loss function must be selected. However, if a large 

deviation from a set point causes a small value of loss, then the revised Taguchi loss 

function is a better choice (Figure 5.4). 

 

Figure 5.4. Comparing the sensitivity of modified INLF and revised Taguchi loss 

function 

When      , the INLF weights small departures from the target more heavily than 

Taguchi’s loss function. Therefore, the value of   has important implications for the 

choice of loss function. If the value of   is very high, the difference between the INLF 

and Taguchi’s loss function reduces to near zero. The choice of       is appropriate 

only if a small deviation from target results in a substantial loss. 
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5.2.4 Integration of Losses 

Once the losses for each individual consequence have been modeled, an additive rule is 

applied to calculate the overall loss function. For example, in a given scenario, if two 

types of losses — material loss and equipment loss — are expected, the overall loss is 

calculated by adding the individual loss functions assigned to the material loss and to 

the equipment loss. 

 

5.3 Case Studies 

The proposed methodology is applied to two process systems. The first case study is a 

safety critical knock out drum near the flare system and the second one is the well-

known BP Texas explosion. 

5.3.1 Case Study 1 – Knock Out Drum 

Flare systems in oil, gas, and petrochemical plants play critical roles in the safe 

operation of plants. Flare systems are designed to dispose waste gases and discharged 

liquids from process units safely. A flare system ensures maximum combustion of 

hydrocarbons while minimizing hazardous emissions into the atmosphere. Liquids and 

gases are separated and gases are burned off at the flare stack. Knock out drums are 

vessels that collect condensed liquids from the gas stream. These vessels are sized for 

containment of liquid carryover [25]. Condensed liquids are collected at the bottom of 

the drum and pumped off. Most flare knockout drums operate at relatively low 

pressures [26]. During flaring at high gas and liquid loads, the flare knock out drums 

must be able to prevent the development of waves or entrainment of disengaged liquid 

[27]. 
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Based on API standard 521 [28], the risk of overfilling the flare knockout drum is 

assessed. Most flares are not designed to effectively combust liquid. Discharging liquid 

from the flare may cause flame-out, excessive smoke, unburnt hydrocarbon emission 

release, burning rain or pool fires around the flare stack. On the other hand, 

accumulation of excessive liquid in the knock out drum may cause overpressure inside 

the drum, which can lead to leakage, hydrocarbon release, and vapor cloud explosion.  

5.3.1.1 Scenario Description 

In this case study, the flare knock out drum in phase 19 of the South Pars gas field 

development, Tombak, Iran is considered. This knock out drum is designed and 

integrated into the system to remove entrained droplets from the vapor stream. In this 

drum, the liquid level is the most important process variable. If it crosses the high level, 

a duty pump is started to discharge the excess liquid. However, if the level crosses the 

high high level (HHL), a second duty pump is started to increase the discharge rate. In 

the meantime, crossing the HHL will initiate the emergency shutdown1 (ESD) level 12. 

This ESD level can be activated from the main control room [29].  

Other process variables in this drum are the temperature, pressure, and feed flowrate. 

This drum is capable of handling the total plant flowrate, so the flowrate as a process 

variable could not lead to a hazardous condition. Thus, no control and monitoring 

instrument is needed for this process variable. If the temperature decreases, the built-in 

heater will be started to warm up the drum. This heater’s power is low and will not 

generate enough heat to lead to a hazardous condition.  

                                                             
1 ESD is a system designed to respond to a condition in the plant which may itself be hazardous or may lead to 
hazardous conditions if no action is taken.(30) 

2 ESD Level 1 typically shuts down the entire process facility.(30) 
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For this case study, a scenario is considered in which the liquid level in the knock out 

drum is rising. It could cause overpressure and leakage from flanges. This could lead to 

hydrocarbon release and vapor cloud formation. Ultimately, it may result into an 

explosion. Figure 5.5 graphically illustrates the rising level scenario which leads to an 

explosion. 

    

Figure 5.5. Illustration of the explosion scenario in case study 1 

5.3.1.2 Consequence Analysis Using Loss Functions 

Table 5.1 provides actions and consequences associated with a rising liquid level in the 

knock out drum that may potentially lead to explosion. The BP Texas City refinery 

accident is an example of a similar sequence of events that is studied in a subsequent 

section [25]. 
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Table 5.1. Actions and consequences associated with rising levels in the knock out 
drum [29] 

THRESHOLD LEVEL Actions and consequences  

HL 1220 mm • Pump #1 is ON  
HHL 1320 mm • Pump #2 is ON  

Emergency shutdown level 0   
Control room permission  
Plant shutdown  

• No production, lots of waste 
gas 

>HHL >1320 
mm 

Flange leakage release  
Vapor cloud  
Explosion  

• Equipment loss (6 drums, 12 
pumps) 

• Fatality/Injury (2 persons) 
• Production loss (1 month) 

 
The explosion scenario has been modeled using PHAST [31]. DNV PHAST is a 

comprehensive hazard analysis tool for gas dispersion modeling. PHAST uses a 

proprietary dispersion model called a unified dispersion model (UDM) [31].  PHAST 

simulation results are shown in Figure 5.6. 

 

Figure 5.6. Explosion overpressure vs. distance from the drum(29) 
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Based on the results of the overpressure modeling, all equipment inside the area of 70 m 

from the explosion source, where the overpressure is more than 150 mbar, will be 

severely damaged [32]. 

Due to the high sensitivity of equipment losses to level fluctuation, inverted normal loss 

function is used to model equipment losses associated with a rise in liquid levels. In this 

case, the maximum loss is $4,000,000 and the shape factor is Δ/4=50: 

               
  

            
 

 
   

,        
      

    -   
          

            
   

  
   

,  

      
                

      
 -        (5.5) 

Figure 5.7 shows the level profile in the knock out drum, and Figure 5.8 shows 

equipment loss associated with rising levels in the knock out drum. 

 

Figure 5.7. Level profile in the knock out drum 
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Figure 5.8. Equipment loss associated with rising liquid level in the knock out drum  

The knock out drum is a part of the flare unit, which is the most safety critical part of 

the plant. In case of an explosion in this unit, the whole plant will be shut down, and it 

is assumed that one month’s production will be lost. If we include hidden costs with 

material and production costs, the material loss can be modeled non-linearly using 

inverted normal loss function, with a maximum loss of $720,000,000 (given a total 

production rate of 1000 million ft3/hr).  Figure 5.9 shows material losses associated with 

the explosion. 

 

Figure 5.9. Material loss due to explosion originating in the knock out drum  
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In this unit, two field operators are available and an explosion may cause two fatalities. 

Figure 5.10 shows the fatality loss in case of explosion of the flare system’s knock out 

drum.  

 

Figure 5.10. Fatality loss due to explosion originating in the knock out drum  

Total loss is determined by combining fatality, equipment loss and material loss. Figure 

5.11 illustrates the profile of total loss due to an explosion of the knock out drum in the 

flare unit. In this case study, material loss is the greatest contributor to total loss. 

Equipment loss is initiated by crossing the high level (HL); it reaches its maximum 

when the explosion occurs. The fatality loss is zero before the explosion; it suddenly 

(step function) reaches its maximum when the explosion takes place. On the other hand, 

material loss due to explosion and total plant shutdown is initiated after the high high 

level (HHL) is crossed. 
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Figure 5.11. Total loss in case of explosion originating in the knock out drum  

In conclusion, the scenario and potential sequences and consequences for this case study 

are as follows: liquid levels rising in the knock out drum, overpressure, leakage from 

flanges, hydrocarbon release, and ultimately vapor cloud explosion.  The significant 

types of losses due to explosion are material loss, equipment loss, and fatality loss. The 

overall loss is determined by combining all loss functions, which provides a 

comprehensive economic consequence model for deviations of process variables. This 

economic consequence model can be used in conducting a dynamic risk assessment. 

5.3.2 Case Study 2 – BP Texas City Accident 

A retrospective economic consequence analysis is performed for the distillation tower 

flooding that led to the catastrophic explosion on March 23, 2005, at the British 

Petroleum (BP) refinery in Texas City, USA. In that accident, 15 people died, 180 were 

injured, the community was alarmed, and financial losses exceeded $1.5 billion [33-34].  

5.3.2.1 Scenario Description  

The isomerization (ISOM) unit of the Texas refinery converts low octane feed into 

higher octane components. The raffinate splitter tower of this unit is a distillation tower 

that takes non-aromatics feed from the aromatics recovery unit (ARU) and fractionates 
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it into light and heavy components. The raffinate section of the ISOM unit is illustrated 

in Figure 5.12.  

 

Figure 5.12. Raffinate section of the ISOM unit [35] 

The sequence of events that led to the accident is as follows.  The liquid level started 

rising in the raffinate splitter tower during the startup of the ISOM unit. As a result, the 

raffinate splitter tower was overfilled; pressure relief devices opened, and flammable 

liquid was released from a blowdown stack that was not equipped with a flare. The 

release of flammable liquid led to an explosion. The timeline and detailed descriptions 

of the events are given in Table 5.2 [36]. Information was combined from different 

sources to create a profile, shown in Figure 5.13, for levels in the raffinate splitter 

tower.  
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Table 5.2. Timeline of events from recommencing the ISOM unit startup to the vapor 
cloud explosion [36] 

Time Events 
09:51 a.m. Startup recommences  
09:51 a.m. Tower level is 2.7 m 
11:16 a.m. Four burners in the furnace are lit. 

The level transmitter reads 2.6 m but the level is actually 20 m. 
11:50 a.m. Fuel to the furnace is increased;  

the actual tower level is 30 m but the transmitter reads 2.6 m. 
12:41 p.m. The tower's pressure rises to 33 psig (228 kPa);  

operators open the 8-inch NPS chain valve to reduce pressure. 
12:42 p.m. Fuel gas to the furnace is reduced;  

the actual tower level is 43 m, but the transmitter reads 2.4 m. 
12:59 p.m. Heavy raffinate flows out of the tower and matches the feed flow. 
 The actual level in the tower is 48 m but the transmitter reading is 2.4 m. 
01:14 p.m. Tower pressure spikes to 63 psig (434 kPa);  

all three relief valves open. 
01:15 p.m. Fuel gas to the furnace is reduced. 
01:16 p.m. The blowdown drum and stack are overfilled and the alarm fails to 

sound. 
01:19 p.m. Flammable hydrocarbon is released from the 34 m stack. 
01:20 p.m. Vapor cloud ignites and explodes. 
 
 

 

Figure 5.13. Level profile in the raffinate splitter tower 

Based on the reports [27-29], major losses associated with that explosion include 

material loss, equipment loss, fines, and civil claims. 
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5.3.2.2 Consequence Analysis Using Loss Functions 

The explosion caused $30 million in equipment and plant property damage at the BP 

refinery in Texas City [36]. Due to the high sensitivity of equipment losses to 

fluctuation in liquid levels, inverted normal loss function is used to model equipment 

losses associated with rising liquid levels. In this case, the maximum loss is 

$30,000,000 and the shape factor is Δ/4=12.32:  

               
  

            
 

 
   

,        
      

    -   
           

            
  

     
   

,  

      
            

         
 -         (5.6) 

Figure 5.14 shows equipment loss associated with rising liquid levels in the distillation 

tower. 

 

Figure 5.14. Equipment loss associated with rising level in the tower and explosion 

 

Considering hidden costs along with material and production costs, the material loss can 

be modeled non-linearly using an inverted normal loss function. The maximum loss of 

$500,000,000 has been obtained by considering the refinery total capacity rate of 

460,000 barrels per day. Figure 5.15 shows material losses associated with the 

explosion. 
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Figure 5.15. Material loss associated with rising level in the tower and explosion  

 

The explosion caused more than $21 million in fines and $1 billion in civil claims [36-

37]. BP agreed to pay $21,361,500 in penalties and to abate all hazards for which they 

were cited by the Occupational Safety and Health Administration (OSHA). A summary 

of citations and proposed penalties can be found in OSHA national news release (USDL 

05-1740, September 22, 2005) [38]. The Taguchi loss function is used to model fines 

associated with an explosion due to a rise in liquid levels. Figure 5.16 and 5.17 show 

fines and civil claim profiles respectively. 

In this case study, the maximum fine is $21 million and the coefficient          . 

Fines due to an explosion can be modeled using the following Taguchi loss function: 

                                      (5.7) 

 

Figure 5.16. Fines associated with rising level in the tower and the explosion 
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Maximum civil claims of $1 billion can be modeled using the suggested step function 

(Figure 5.17).  

 

Figure 5.17. Civil claims associated with in the tower and the explosion 

 

As discussed in the methodology, although fatalities and injuries are parts of civil 

claims, they can be modeled separately with a step function. Figure 5.18 shows fatality 

losses associated with the explosion. To precisely initiate each step in a fatality or injury 

loss profile, the operator’s position around the explosion source is needed. In this case 

study, it is assumed 2 workers were in the control room and 13 workers were at the 

trailer near the ISOM unit [36].  

 

Figure 5.18. Fatality loss associated with rising level in the tower and the explosion 
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Total loss is determined by combining fines, civil claims, equipment loss, and material 

loss. Figure 5.19 illustrates the profile of total loss due to explosion in the ISOM unit.  

 

Figure 5.19. Total loss associated with rising level in the tower and explosion 

 

A good agreement is observed between calculated losses and reported losses. Figure 

5.19 shows that fines, civil claims, and equipment losses contribute 70% of the total 

economic losses in a short time. The main reasons these factors cause the majority of 

losses are lack of safety measures, failure of automated controls in the splitter tower, 

inadequate warning systems to warn overfilling of the distillation tower, lack of flare 

systems to safely burn flammable hydrocarbons entering the blowdown system, and the 

location of a temporary work area close to the process facility.    

5.3.2.3 Evaluation of Safety Measures 

Several possible modifications of the process and control system could have lowered 

potential loss. The proposed consequence methodology can be used to select the most 

feasible option. In this case study, a bypass line at the bottom of the distillation tower is 

added, as an additional safety measure, to simultaneously increase the discharge rate 

and decrease the rate of pre-heating. Figure 5.20 shows how the bypass line affects the 

rate of level increases inside the splitter tower.  
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Figure 5.20. Effect of bypass line on rising liquid level inside the tower 

 

Adding a bypass line at the bottom of the distillation tower may reduce the rate of level 

increase, which provides more time to detect, isolate, diagnose, and resolve the fault. 

Following this new level profile and performing the proposed economic consequence 

analysis may result in a new total loss profile, illustrated in Figure 5.21a. 
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Figure 5.21. (a) Total losses associated with rising liquid level in the tower and the 

explosion in ISOM unit with and without bypass line; (b) Effect of bypass line on total 

loss associated  with rising level in the tower and explosion in ISOM unit 

 

The proposed methodology for consequence analysis using loss functions is capable of 

modeling the system after adding suggested safety measures. In this case study, the 

results of modeling the system with the proposed methodology show that the suggested 
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bypass line could have offered operators an extra 12-hour window of time in which to 

detect faults and prevent the catastrophic explosion (Figure 5.21b).  

Using the proposed methodology, losses resulting from this accident can also be 

modeled based on the temperature profile of the distillation tower, as indicated in Figure 

5.22. Using the same methodology, the total loss associated with temperature 

fluctuations has been estimated and compared with the total loss associated with liquid 

level fluctuations with and without the bypass line (Figure 5.23). 

 

Figure 5.22. Temperature profile inside the tower of ISOM unit 

 

Figure 5.23. Comparison of total losses calculated based on liquid level and 

temperature profile of distillation unit for the period of 0-900 min  
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5.3.2.4 Summary of the Case Study 

The scenario for this case study consists of following steps: rising level in the 

distillation tower leading to overpressure, release from the blowdown stack, and 

ultimately vapor cloud explosion. The significant types of losses due to explosion were 

identified as material loss, equipment loss, injuries and fatalities, fines, and claims. The 

inverted normal loss function was determined to quantify material and equipment 

losses, and Taguchi’s loss function was used to quantify fines. Finally, the overall loss 

was determined through a combination of all loss functions, which provides a 

comprehensive economic consequence model based on process deviations. Meanwhile, 

the process system in the scenario was updated by adding a bypass line as a safety 

measure. The total loss associated with level (with and without the bypass line) has been 

compared. The second scenario was also defined based on rising temperature, 

overpressure, release from the blowdown stack, and ultimately vapor cloud explosion.  

 

5.4 Conclusions  

A new methodology for conducting consequence analysis in process industries is 

proposed in this Chapter. This methodology fills the gap in existing economic 

consequence models by relating economic losses to process variables. It quantifies 

economic losses associated with the deviation of operational variables from a target 

value/range. A series of loss functions are proposed as part of the methodology to 

quantify major losses such as material loss, equipment loss, environmental loss, 

fatalities and injuries, fines, and claims faced in the process industry. 

The proposed method devised a technique to partition total losses to different 

categories; it illustrates the potential impacts of an accident. The method also shows the 
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dynamic changes of loss under different abnormal conditions. The method is also useful 

for calculating the risk while the alternative safety measures are added. The proposed 

methodology is applied on two industrial case studies: the knock out drum of the flare 

unit in the South Pars gas processing plant, Iran, and the distillation tower of the ISOM 

unit in BP’s Texas City refinery, USA. The losses were quantified and compared with 

the reported losses. A good agreement was observed between calculated losses and 

reported losses. Subsequently, additional safety measures were suggested and the 

overall consequences were also assessed. The results demonstrate the innovative ability 

of the methodology to use loss functions as a unique way of developing an economic 

consequence model in order to estimate major losses.  

This economic model will be useful in dynamic risk assessment and in comparing 

alternative safety measures. Considering both the immediate and longer-term 

consequences, the results of analysis using this economic methodology improve risk 

assessment and enhance decision-making for process design and risk management. 
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Chapter 6: Dynamic Risk Assessment using Nonlinear Non-Gaussian Fault 

Detection and Detailed Consequence Analysis† 

 

Preface 

A version of this chapter has been submitted to the Canadian Journal of Chemical 

Engineering, in 2014. Zadakbar was the main lead on the work. The co-authors, Dr. 

Khan and Dr. Imtiaz supervised the work and helped to develop the methodology. 

 

Abstract 

This chapter presents a dynamic risk assessment using a comprehensive economic 

consequence methodology in combination with a multivariate model based fault 

detection method. The proposed approach aims to calculate process risk dynamically at 

each sampling instant and also to identify and screen the faults that are not hazardous. 

The approach relies on a particle filter combined with a comprehensive economic 

consequence methodology. The fault detection module uses a state space model of the 

process plant and a particle filter algorithm that calculates the probability of the fault. 

The output of this module is then combined with the consequence module, which uses 

loss functions to relate process deviations to economic losses. The consequence module 

identifies, quantifies, and integrates losses for a given scenario. Combining the two 

modules for risk assessment makes this approach more reliable in the analysis of 

                                                             
†
 O. Zadakbar, F. khan, S. Imtiaz, Dynamic risk assessment using non-linear non-Gaussian 

fault detection and detailed consequence analysis, Canadian Journal of Chemical Engineering, 

Submitted, 2014. 
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realistic nonlinear process systems and improves decision-making for process design 

and risk management. 

KEYWORDS  

Dynamic Risk Assessment, Safety System, Fault Detection, Particle Filtering, Loss 

Functions 

 

6.1 INTRODUCTION 

The complexity of modern plants leaves processes more susceptible to unexpected 

failures that significantly affect safety, economics, and the environment [1], and faults 

must be detected and isolated as quickly as possible in order to maintain safety and 

reliability standards in process plants [2].  

Over the last two decades, an impressive body of work has been devoted to fault 

detection, and various techniques have been proposed [3-12]. 

Fault detection methods based on models and on historical data have been used in 

chemical process plants. Although more success has been observed with multivariable 

fault detection techniques [11-16], none of the new approaches considers the 

consequences of fault on the process, equipment, or environment.  

A risk-based fault detection method was earlier proposed by Bao et al. [17] to address 

safety concerns that were overlooked by other fault detection methods. The risk-based 

fault detection method issues a warning not when residuals or signals cross the 

threshold, but when the risk of a process exceeds the acceptable threshold. This is an 
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important concept, because it eliminates non-hazardous faults and also gives a real time 

indication of the operational risk. Bao et al. [17] combined a univariate charting method 

with risk calculation. They calculated the probability of fault based on the deviation of a 

signal from the threshold. Univariate methods do not take into account changes in the 

input. Therefore, they are less able to distinguish between process faults and operational 

changes. This potentially limits the effectiveness of risk-based methods involving a 

univariate fault detection and diagnosis approach.  

Zadakbar et al. [15] extended the method to a multivariate risk-based fault detection and 

diagnosis technique by combining a principal component analysis (PCA) with the risk 

assessment procedure. A principal component score was used as the main indicator for 

fault. The probability of fault was calculated based on the filtered score, and the severity 

of the fault was a weighted average of the consequences of each variable in the score, 

with the weights coming from the loadings of the principal component. Subsequently, 

the severity and probability of the fault were combined to permit the identification of 

risk at any sampling instant. 

Zadakbar et al. [15-16] also developed another multivariable risk-based fault detection 

technique using a process model: a residual generation process based on the Kalman 

filter was combined with a risk assessment procedure. Residuals generated from a 

Kalman filter were used to calculate the probability of fault. The method proposed took 

advantage of the correlation between process input and output and was therefore better 

equipped to detect faults and calculate risk precisely. These methods, though successful 

in detecting and diagnosing faults, have limited use in real industrial processes, as they 

relied on linear models and assumed Gaussian noise, which is a common assumption in 
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many fault detection and diagnosis methods [1,18].  Also, the consequence analysis of 

the fault was based on a relative scale, so the full impact of the method was not realized. 

State estimations of nonlinear systems have been considered in the literature using 

extended Kalman filters (EKF) and unscented Kalman filters (UKF). These filters, 

however, assume Gaussian noise. The state estimations are often not satisfactory and 

lead to a high rate of false alarms [1, 19]. On the other hand, the particle filter (PF) is 

more general and can estimate states of nonlinear non-Gaussian systems [20].  

In this Chapter, fault detection using particle filtering is combined with a newly 

developed economic consequence analysis methodology. This methodology makes the 

severity of the faults more meaningful by quantifying consequences in economic terms. 

This new economic consequence methodology helps to integrate real time process states 

to accident scenarios through loss functions. This methodology, along with the proposed 

loss function model, can quantify risk more accurately and, more importantly, improve 

decision-making about risk management.  

6.1.1 Organization of the chapter 

The remainder of the chapter is organized as follows. Section 6.2 introduces the risk-

based fault detection method. This method combines particle filtering and risk 

assessment based on economic consequence methodology. The consequence analysis 

assigns loss functions to each type of loss. In Section 6.3, the proposed method is 

applied to two process systems. The first case study describes a dynamic risk 

assessment of a CSTR, while the second case study analyzes the explosion in a fluid 

catalytic cracker (FCC) unit. The Chapter ends with concluding remarks in Section 6.4. 
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6.2 Methodology 

The algorithm of risk-based fault detection using particle filtering and economic 

consequence methodology is given in Figure 6.1 (Start time: k=0). The first step is to 

model the process to determine all measured and unmeasured variables. In the next step, 

the particle filter estimates all process states. After that, estimated state data is used for 

prediction of states for   steps ahead. In the next step, the probability of fault at each 

predicted point is calculated using equations proposed by Zadakbar et al. [15-17, 21]. In 

parallel, the economic consequence analysis was conducted in real time. It starts by 

defining the possible fault scenarios; it identifies different classes and subclasses of loss, 

quantifies each loss using an appropriate loss function, and finally integrates all losses 

to determine the overall loss. In the next step, the risk of each predicted point is 

calculated using probability and the severity of the fault. Finally, the risk profile is used 

to detect the fault and take necessary supervisory decisions to implement the appropriate 

safety measures.  
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Figure 6.1. The algorithm of risk-based fault detection using particle filtering and 

economic consequence methodology 
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6.2.1 Fault Detection using Particle Filtering 

Monte Carlo techniques for non-linear non-Gaussian state estimation have been 

proposed by Handschin [22]. Recently, the particle filter [23-24], an extension of the 

ideas in Handschin’s paper [22], has attracted much attention [25-26]. 

The particle filter is a sequential Monte Carlo method based on point mass 

representations of probability densities. Several variants of the particle filters, such as 

Sequential Importance Re-Sampling (SIR), Auxiliary Sampling Importance Resampling 

(ASIR), and the Regularized Particle Filter (RPF), are the basis for most particle filters 

that have been developed [26-27].  

We consider the following evolution of the state sequence of (         : 

                             (6.1) 

                         (6.2) 

where   is the time index;    is the state vector;    is the measurement vector;   is the 

noise-free input;    is process noise representing disturbances, all un-modeled 

dynamics, and any mismatch between the process and states; and    is measurement 

noise representing inaccuracy in measuring.  

From a Bayesian perspective, to estimate the states of nonlinear systems using a particle 

filter, one needs to recursively calculate some degree of belief in the state    at time  , 

given the data       up to time  . Thus, the probability density function (PDF), 

    |      , needs to be constructed. It can be recursively obtained in two steps of 

prediction and update, assuming the initial condition     |           is known. In 

the first step, the prediction step, the Chapman–Kolmogorov equation [19] is used to 
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calculate the prior PDF     |        , assuming the system model, p(xk|xk-1),  and PDF 

      |         are known at time      

    |         ∫    |            |                 (6.3) 

Equation 1 represents a first order Markov process and there is only one past outcome 

for each transition; thus,     |                 |        . 

In the second step, the update step, the measurement    obtained at the time   is used to 

update the prior PDF using Bayes rule: 

    |       
    |       |        

    |        
       (6.4) 

    |          ∫     |        |                (6.5) 

Equations 6.1 and 6.2 are used to define the PDF     |       and the pdf     |    

respectively.  

To obtain the optimal Bayesian solution for the non-linear non-Gaussian systems, 

particle filters represent the required posterior density function through a set of random 

samples and their associated weights. An equivalent representation of the posterior PDF 

      |       can be obtained if the number of samples becomes large enough; thus, the 

particle filter approaches the optimal Bayesian solution [20]. 

Consider that {    
    

 }
   

  represents a random set characterizing the posterior PDF 

      |      , where     
  represents a set of support points with associated weights of 

  
 , and             

   represents the states up to time  . The following equation 

provides a discrete weighted approximation of the posterior PDF       |      , 
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      |       ∑   
  

  
             

        (6.6) 

where    is the Dirac measure. The weights can be obtained based on the principle of 

importance sampling,  

  
         

      
          (6.7) 

Thus, this SIS algorithm propagates the weights and particles recursively as each 

measurement is received sequentially.  

A re-sampling step, involving generating a new set {    
  }

   

   by resampling and 

replacement    times, is added to the algorithm. In this case, the sample is independent 

and distributed identically from the discrete density     |      . After re-sampling, the 

weights of the particles are reset to    
⁄ . This is an optional step to avoid collapsing of 

particles to one point [20, 27-28].  

At any given time  , the weights   
  are calculated using the likelihood function 

    |      and this information is transferred to the samples by re-sampling and 

progressed to the next time,    . Systematic re-sampling is easy to implement and 

minimizes the Monte Carlo variation [24]. Figure 6.2 shows the schematic diagram 

explaining the implementation of the SIR algorithm. 
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Figure 6.2. Schematic diagram explaining the implementation of the SIR algorithm [28] 

The estimated states from particle filtering are used for fault detection. Finally, the 

particle filter is used to make a four step ahead prediction at any given time  . The 

filtered predicted signal is used for fault detection and dynamic risk assessment.  

 

6.2.2 Dynamic Risk Assessment 

Risk is defined as a measure of likely harm or economic loss caused by the fault if a 

corrective action is not taken. Risk,    depends on the probability of occurrence of a 

fault leading to an unwanted event,  , and the severity of losses associated with that 

event,   [16]: 

                         (6.8) 

6.2.2.1 Probability of Fault  

The probability of a fault is calculated using the following equations by Zadakbar et al. 

[16]: 

                 (
            

  
) ∫

 

√    
 
              

 

   
   

   
  

   (6.9)  
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                   (
            

  
)    ∫

 

√    
 

               

   
   

   

  
 (6.10) 

where         and   is the number of process states, and   and   represent mean 

and variance respectively.  

6.2.2.2 Consequence Analysis 

The severity of fault is calculated with the economic consequence methodology for 

process risk analysis proposed by Zadakbar et al. [16-17]. In this methodology, the 

process deviations that contribute to a given accident scenario are identified and mapped 

to assess potential consequences. Losses are assessed with an appropriate loss function 

(revised Taguchi, modified inverted normal) for each type of loss. The total loss is 

quantified by integrating different loss functions. 

The first step of this methodology is the selection of a process unit. For each process 

variable in this unit, all potential deviations, impacts, and consequences, such as process 

interruption, release, fire, and explosion are identified. The next step is to identify all 

potential losses, such as material and equipment losses, injury, and fines. To quantify 

these losses, an appropriate loss function (Taguchi, inverted normal) or a step function 

is assigned based on the sensitivity of losses to the deviation of the selected process 

variable. Assigned functions for each type of loss are integrated to quantify the total loss 

[21].  

 

6.3 Case Studies 

The application of the proposed methodology is demonstrated on two process systems. 
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6.3.1 CSTR 

For this case study, a non-linear model of the CSTR presented by Zadakbar et al. [16-

17] was developed. The reaction in the system is the oxidation of sodium thiosulfate by 

hydrogen peroxide, which is an irreversible exothermic oxido-reduction reaction [29]. 

The concentration of sodium thiosulfate,   , the temperature in the reactor,   , and the 

temperature in the coolant jacket,   , are selected as the elements of process state 

matrix. It is assumed that there are two sensors to measure the concentration and the 

jacket temperature. The control variables of the process are feed to the reactor,  , and 

cooling water flow rate,   . Both variables could be manipulated. The feed 

concentration and cooling water inlet temperature      are uncontrolled inputs in the 

process; thus, they may be considered as disturbances. 

The reactor temperature is modeled as an unmeasured process state using a particle 

filter algorithm.  Figure 6.3 shows the predicted estimation of reactor temperature. 

 

Figure 6.3. The filtered predicted estimation of reactor temperature. 

This filtered signal is used to calculate the probability of the fault using Equations 6.9 

and 6.10 proposed by Zadakbar et al. [21]. Figure 6.4 shows the probability of the fault 

based on the unmeasured reactor temperature signal.  
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Figure 6.4. The probability of fault based on an unmeasured reactor temperature signal 

The next step is consequence analysis. The scenario for this case study is increasing 

reactor temperature leading to overpressure and explosion. Significant types of losses 

due to explosion are identified as equipment loss and injuries. The overall loss is 

determined through a combination of all losses. The losses are calculated using 

economic consequence models that are functions of process deviations. 

Because of the high sensitivity of equipment to temperature, an inverted normal loss 

function is used to model equipment losses, assuming the maximum loss is $30,000. 

Figure 6.5 shows equipment losses. 

 

Figure 6.5. Equipment losses based on reactor temperature 
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In this case, assuming one operator works with the reactor, the step function assigned to 

the injury consists of one step for individual major non-recoverable injuries. Figure 6.6 

shows injury losses resulting from uncontrolled reactor temperature. 

 

Figure 6.6. Injury loss based on reactor temperature 

All losses can be integrated to calculate the total losses. Figure 6.7 shows the total 

losses due to an explosion in the CSTR. 

 

Figure 6.7. Total loss based on reactor temperature for the explosion scenario 

A risk profile is generated by multiplying the probability of occurrence of the fault at 

any particular instant by its economic consequences. Figure 6.8 shows the risk profile 

for increasing reactor temperature leading to overpressure and explosion. 
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Figure 6.8.  Risk profile based on increasing the reactor temperature 

Fault detection using this risk profile can prioritize safety measures and recovery actions 

and therefore improve decision making for risk management. The criteria for acceptable 

economic risk in each scenario could determine the risk thresholds. Fault can be 

detected at t=410 min with a threshold of $1,000. In this case, if the risk profile crosses 

the $10,000 threshold, the system can be shut down to prevent the accident. 

6.3.2 Fluid Catalytic Cracking Unit (FCCU) 

This case study considers the fluid catalytic cracking unit (FCCU) shown with its PI 

regulatory controllers in Figure 6.9. The inlet stream is a mixture of preheated fresh feed 

and hot slurry recycle from the bottom of the fractionator.  This mixture enters the 

reactor riser, where the cracking reactions take place, to mix with the hot regenerated 
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catalyst.  As a result of the reactions, coke is deposited on the surface of the catalyst. 

Spent catalyst is transported to the regenerator through the spent catalyst U-bend. 

Gaseous product from the reactor is passed to the fractionator to separate into various 

product streams [30]. Two typical faults in the FCCU are low quality and yield (related 

to low conversion, high dry gas production, low production of gasoline, and low octane 

in gasoline) and high temperature in the riser and the regenerator [31-32]. 

 

Figure 6.9. The schematic of the FCCU [30] 

6.3.2.1 Particle filtering 

A non-linear state space model developed by McFarlane et al. [30] dynamically 

simulates this unit. A particle filtering algorithm based on sequential importance re-

sampling (SIR) is used for state estimation and fault detection. Table 6.1 shows process 

states and measurements. 
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Table 6.1. Process states and measured variables 

Variables States Measurements 
y(1)=Reactor Pressure (P4, psi)     
y(2)=Differential Pressure (DP, psi)    
y(3)=Air Flow Rate (Fair, mole/s)     
y(4)=Regenerator Pressure (P6, psi)     
y(5)=Furnace Temperature (T3, F)     
y(6)=Fresh Feed Temperature (T2, F)     
y(7)=Riser Temperature (Tr, F)     
y(8)=Regenerator Temperature (Treg, F)     
y(9)=Spent Catalyst level (splev, ft)    
y(10)=Cyclone Temperature (Tcyc, F)     
y(11)=Differential Cyclone temperature (DT, F)    
y(12)=Carbon monoxide concentration (XCo, ppm)    
y(13)=Oxygen concentration (XO, ppm)    
y(14)=Coke wt fraction in spent catalyst (Csc)    
y(15)=Coke wt fraction in regenerated cat.(Crgc)    
y(16)=Air blower flow inlet-surge     
y(17)=Wet compressor inlet suction flow     
y(18)=Combustion air suction flow     
y(19)=Combustion air suction pressure (P1, psi)     
y(20)=Combustion air discharge pressure (P2, psi)     

 

A gradual increase in the composition of heavy components in the feed to the FCCU is 

introduced as a fault at t=50min. This fault affects several process states, but it is more 

rapidly detected by monitoring the unmeasured state of coke weight fraction in the spent 

catalyst [31]. Figure 6.10 shows the estimated state using particle filtering. 

 

Figure 6.10. Filtered prediction of the unmeasured state of coke weight fraction in spent 

catalyst 
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6.3.2.2 Risk Assessment 

An increase in the composition of heavy components in the feed rapidly increases coke 

deposition in the riser and the concentration of coke on spent catalyst, causing a higher 

combustion rate in the regenerator and an increase in regenerator temperature. Since this 

increased combustion rate is not enough to burn off all coke on the catalyst, the amount 

of carbon on regenerated catalysts increases as well. Because of the constant air flow, 

the concentration of oxygen decreases and the stack carbon monoxide concentration 

increases. The combustion of additional carbon monoxide raises temperatures in the 

reactor, the regenerator, and the riser; thus, wet gas production increases. The reactor 

pressure controller opens the wet gas suction valve. However, when the valve saturates, 

pressure in the reactor starts to increase. If the amount of coke on spent catalyst 

continues to grow, the temperature in the riser can reach its maximum metallurgical 

limit of     .  Over-pressurization could lead to leaks, release, and a vapor cloud 

explosion. Figure 6.11 shows the probability of the fault, calculated using Equations 6.9 

and 6.10.  

 

Figure 6.11. Probability of the fault based on coke weight fraction in spent catalyst 



132 

 

The scenario for this case study consists of following steps: an increasing coke weight 

fraction in spent catalyst leading to overpressure, release, and ultimately a vapor cloud 

explosion. The significant types of losses due to explosion are material loss, equipment 

loss, injuries and fatalities, fines, and claims. Each loss is modeled by a loss function. 

The overall loss is determined through a combination of all loss functions, which 

provides a comprehensive economic consequence model based on process deviations. 

Some data from the report of explosion in FCC Unit, La Mède, France, Total, 1992 [33] 

is used for the implementation of the economic consequence analysis. Based on the 

results of the overpressure modeling, all equipment within about two hectares of this 

refinery, where the overpressure is more than 150 mbar, could be severely damaged. 

Due to the high sensitivity of equipment losses, an inverted normal loss function is used 

to model equipment losses. In this case, the maximum loss is $30,000,000. Figure 6.12 

shows equipment losses due to the explosion. 

 

Figure 6.12. Equipment losses due to explosion in the FCCU 

The number of reported injuries was 38. Damage to property was reported in the town 

of Martigues, 4.5 km away. In this case study, the maximum fine was $2,000,000. Fines 
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due to the explosion are modeled using the Taguchi loss function. The step function 

assigned to the civil claims and juries consists of three steps: step 1 includes claims for 

individual minor injuries; step 2 includes individual major non-recoverable injuries, 

individual disabilities, and minor small group injuries (involving fewer than 10 people); 

and phase 3 includes significant losses and large group injuries (involving more than 10 

people). Figures 6.13, 6.14, and 6.15 show losses due to fatalities, injuries and civil 

claims, and fines. 

 

Figure 6.13. Economic losses due to injuries and civil claims 

 

Figure 6.14. Economic losses due to fatalities 
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Figure 6.15. Economic losses due to fines 

The FCCU and surrounding process units are severely damaged by the explosion, 

resulting in the whole refinery being shut down for six months. Material losses can be 

modeled using an inverted normal loss function, with a maximum loss of $180,000,000 

(Figure 6.16). 

 

Figure 6.16. Economic losses due to material losses 

Thus, all losses could be integrated to calculate the total loss. Figure 6.17 shows the 

total loss due to the explosion in the FCCU. 
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Figure 6.17. Total loss due to the explosion in the FCCU 

The risk profile is now generated by combining the probability of occurrence of the 

fault and its economic consequences. Figure 6.18 shows the risk profile for increased 

weight fraction of coke on spent catalyst leading to overpressure, release, and explosion.  
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Figure 6.18. Risk profile based on increasing the weight fraction of coke on spent 

catalyst leading to explosion 

When risk profiles are based on an economic model that considers both the immediate 

and longer-term consequences (such as material losses), fault detection can aid decision-

making for risk management by enhancing the prioritization of safety measures and 

recovery actions based on the risk of each process state. The risk thresholds could be 

selected based on the criteria for the accepted economic risk in each scenario. In this 

case, fault is detected at t=53 min if the risk profile crosses the threshold of $1 M; if risk 

exceeds the threshold of $10 M, a safety instrumented system might be activated to 
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reduce total fresh feed flowrate. This would help bring the riser temperature back to its 

constraint limit. 

 

6.4 Conclusions 

A Particle filter based fault detection has been extended to a risk-based fault detection 

framework targeting the safety issues of a process system. Combining a particle filter 

with a risk calculation procedure that uses loss functions to quantify major losses (such 

as material loss, equipment loss, fatalities and injuries, fines, and claims faced in a 

process industry) makes this method more realistic for real-industrial implementation. 

Risk-based fault detection based on a combination of PF with a detailed consequence 

analysis offers significant advantages: 

 It allows monitoring in non-linear non-Gaussian systems. 

 It uses different economic consequence models that are properly assigned to 

represent different types of loss. 

 It gives real-time estimation of the loss. 

 It is more reliable in analyzing realistic nonlinear process systems. 

 It enhances clarifies decision-making for risk management by enhancing 

prioritization of safety measures and recovery actions. 

 It has been demonstrated on the CSTR and FCCU case studies. 
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Chapter 7: Summary, Contributions, and Recommendations 

7.1 Summary 

This work extended the univariate risk-based fault detection method to a multivariate 

approach by combining both multivariate history based and model based fault detection 

methods with dynamic risk assessment. 

A multivariate history based method, principal components analysis (PCA), was 

combined with the risk assessment procedure. Principal components score was used as 

the main indicator for fault. The probability of fault was calculated based on the filtered 

score; and severity of the fault was a weighted average of severities based on the score 

and loading of the principal components. Subsequently severity and probability of the 

fault were combined together to get the risk at any point in time. 

In addition, another multivariable risk-based fault detection technique was developed 

using a process model. Residual generation process based on the Kalman filter has been 

combined with a risk assessment procedure. Residuals generated from a Kalman filter 

were used to calculate probability and severity of the fault. Subsequently, the model 

based approach was extended to a nonlinear and non-Gaussian model for analysis of 

realistic industrial problems. The estimated states from particle filtering were used for 

fault detection.  

A comprehensive economic consequence methodology was also proposed to fill the gap 

in existing economic consequence models by relating economic losses to process 

variables. To calculate the severity of the fault, one could use this methodology for 

quantifying economic losses associated with the deviation of operational variables from 

a set-point. The proposed method devised a technique to partition total losses to 
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different categories such as material loss, equipment loss, environmental loss, fatalities 

and injuries, fines, and claims faced in a process industry. Loss functions were used as a 

unique way of developing an economic consequence model in order to estimate major 

losses. 

Finally, fault detection using particle filtering was combined with a newly developed 

economic consequence analysis methodology. For fault detection and probability 

calculation, process states were estimated by a sequential Monte Carlo method based on 

point mass representations of probability densities. For severity calculation the new 

economic consequence analysis was used. This approach allows real-time monitoring in 

non-linear non-Gaussian systems while making the severity of the faults more 

meaningful by quantifying consequences in economic terms. 

 

7.2 Contributions  

The main conclusions of this study are as follow: 

Dynamic risk assessment and fault detection: This work proposed a dynamic risk 

assessment and fault detection framework targeting the safety issues of a process. In this 

framework a warning system is activated when the risk of operation exceeds the 

acceptable threshold. 

Early fault detection: Case studies showed how the application of multivariate risk-

based fault detection provides early warnings and early activation of safety systems 

prior to the fault affecting the system. Instead of an alarm activation based on residuals 
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or signals crossing the threshold, an alarm is activated when the risk of operation 

exceeds the acceptable threshold. 

Reducing False Alarms: The proposed approaches have an increased capacity to 

distinguish between operational changes and abnormal conditions. Combining a 

multivariable residual generation process based on the Kalman filter, and reliable estate 

estimation based on particle filtering, and also score based calculations in PCA 

approach, the risk-calculation procedure makes this method more robust to false alarms. 

Distinguish between different faults: Other elements considered include the severity of 

the fault associated with different process variables and the increasing and decreasing 

rates of fault. To distinguish between different types of faults two new coefficients 

(intensity coefficient and moderation coefficient) were introduced in the severity 

equations. Intensity coefficient indicated the intensity of the severity of the fault 

associated with each different process variable. Since the severity of the fault in the case 

of a decreasing rate may not be equal to the severity of the fault in an increasing rate, a 

new coefficient was introduced to consider this effect and moderate the severity of the 

outcome. 

Risk management and prioritization of safety measures: Using the approaches along 

with the proposed economic consequence analysis based on loss functions, leads to a 

more accurate quantification of risk and, more importantly, improved risk management 

decision-making. In other words, multivariate dynamic risk assessment and fault 

detection enhanced decision-making for risk management by enhancing prioritization of 

safety measures and recovery actions. 
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Multivariate Approach: The proposed methods (based on PCA and Kalman filter) took 

advantage of the correlation between process input and output and were therefore better 

equipped to detect faults and calculate risk precisely. These methods though successful 

in detecting and diagnosing faults have limited use in real industrial process, as they 

relied on linear models and assumed Gaussian noise  which is a common assumption in 

many fault detection and diagnosis method.   

A More realistic approach: A model based approach using a particle filter was 

developed to deal with nonlinear and non-Gaussian process models. This approach is 

more reliable in analysis of realistic nonlinear process systems.  

Comprehensive economic consequence analysis: A new methodology for conducting 

consequence analysis in process industries was proposed in this research. This 

methodology fills the gap in existing economic consequence models by relating 

economic losses to process variables. It quantifies economic losses associated with the 

deviation of operational variables from a target value/range. A series of loss functions 

are proposed as part of the methodology to quantify major losses such as material loss, 

equipment loss, environmental loss, fatalities and injuries, fines, and claims faced in the 

process industry. 

In this research, fault detection using particle filtering was combined with a newly 

developed economic consequence analysis methodology. This methodology makes the 

severity of the faults more sensible by quantifying consequences in economic terms. 

This new economic consequence methodology helps to integrates real time process state 

to accident scenarios via loss functions. 
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7.3 Recommendations 

This study can be further extended as follow: 

Development of a qualitative approach: In this work a quantitative approach has been 

taken for dynamic risk assessment and fault detection. One may consider development 

of a qualitative approach. 

More work on history based fault detection methods: This work proposed combination 

of both model based and history based methods with dynamic risk assessment. Model 

based methods were considered for both linear and nonlinear problems. However, one 

may develop some history based methods to deal with nonlinear problems. 

Development of a universal univariate model for economic consequence analysis: This 

work presented a new univariate methodology for economic consequence analysis by 

assigning an appropriate loss function to each type of loss. However, one may develop a 

universal model/equation applicable to all types of loss caused by a fault. 

 


