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Abstract 

This PhD research project uses three-dimensional ichnology to address issues of shale-

hydrocarbon reservoir quality and provides new tools for ichnofabric analysis and 

ichnotaxonomic considerations.  The study presents deterministic (devoid of conceptual 

simplifications and interpretations) visualizations of the true spatial geometry of the aff. 

Chondrites, aff. Phycosiphon and Nereites trace fossils and models the three-dimensional 

arrangements of the burrow components. The volumetric reconstructions of the real 

geometry of the trace fossils allowed for their comparison with the previously established 

visualizations and for reconsideration of pre-existing palaeobiological models. To date 

three-dimensional understanding of the majority of trace fossils is presented as 

conceptual drawings available only on two-dimensional media. Such reconstructions are 

extrapolated mainly from observations of cross sections of burrows from core and 

outcrop and do not allow for realistic volumetric quantification and full elucidation of 

complex trace fossil geometries in the context of the host-sediment. The new 

methodology based on precise serial grinding and volume-visualization presented herein 

addresses this gap in ichnological knowledge, and is especially useful for examination of 

the ichnofabric contained in mudstones and muddy siltstones where the application or 

non-destructive methods of 3D reconstructions as CT scanning or MRI is impossible 

owing to the rock petrological characteristics (e.g., low burrow-matrix density 

difference). Volumetric calculations formulated in this study allowed for quantitative 

characterization of the fundamental attributes of the trace fossils and ichnofabric. The 
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quantitative analytical methods of three-dimensional ichnology presented herein 

considerably improve our understanding of the petrophysical characteristics of the 

bioturbated mudstone and therefore they significantly inform the quality of shale gas 

reservoirs. 

Five bioturbated samples of organic-rich mudstones collected from shale-gas reservoir 

type facies of different ages (from Yorkshire [UK], Northumberland [UK], Baja 

California [Mexico] and Muddy Creek Canyon [Utah]) were reconstructed in 3D at a 1:1 

scale. Visualization and volumetric analysis of the spatial distribution and architecture of 

burrows in reconstructed phycosiphoniform and aff. Chondrites ichnofabrics provides 

insights into the effects of these taxa on the rheological and petrophysical characteristics 

of mudstones. It has been demonstrated in the course of this thesis that, in addition to 

creating significant volumes of silty (clay-poor) zones of enhanced porosity and 

permeability, trace fossils propagate in all directions infiltrating substantial spatial 

volume of “tight” matrix and generate horizontally and vertically connected frameworks 

of densely packed quartzose strips, thereby improving permeability isotropy (kh≈kv) and 

increasing stress isotropy. It is illustrated herein that shale ichnofabrics can create 

extensive fracture-prone planes of weakness in sediments that are of importance to 

hydraulic fracturing methods. Burrows similar to Phycosiphon and Chondrites 

significantly increase the surface area of the interface between the organic-rich matrix 

and silty burrow fills, thereby increasing the potential for diffusive transport of 

hydrocarbon molecules from the “tight” matrix to wellbore-connected volumes. By 

creating dense, highly interconnected brittle boxworks, ichnofabrics also have the 
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potential to improve the fracturability of reservoir mudstones by affecting fracture-

spacing and fracture connectivity. The burrow spacing approach developed and employed 

in this study may form the basis for future modeling of fracture spacing and assessment 

of fracture complexity in stimulated hydrocarbon-charged shale intervals with 

bioturbation.  
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CHAPTER 1   

Shale-gas reservoirs and ichnofabric:  

introduction and overview 

 

1.1. Project overview and problem statement 

Shale gas reservoirs are unconventional reservoir systems of continuous gas 

accumulations found within very fine-grained sedimentary rocks characterized by ultra-

low matrix permeability. Hydrocarbon-bearing shale deposits can function as both 

hydrocarbon source and reservoir that can also simultaneously act as a seal, making 

exploitation technically challenging and dependent on the fracturability of mudstone 

(e.g., Wylie et al. 2007;  Jenkins and Boyer 2008; Ding et al. 2012; Bust et al. 2013). 

With improved understanding of mudstone petrophysics and the development of the 

production technologies, shale gas initially became an important source of hydrocarbons 

in the USA, and its production is now in prospect worldwide.  Currently the gas from 

shale formations is estimated to constitute 32 % (7.299 trillion cubic feet) of the total 

technically recoverable natural gas resources identified to date in 42 countries around the 

globe (U.S. Energy Information Administration [EIA] 2013). Shale gas reservoirs are 

technically challenging and commercially economic shale-gas production presently takes 
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place only in 3 countries: United States, Canada and China with 39%, 15% and 1% of 

their national natural gas production respectively (U.S. Energy Information 

Administration [EIA] 2013). The highly successful exploitation of American shale-gas 

reservoirs (particularly Barnett Shale) had a profound influence on the development of 

shale/tight oil reservoirs worldwide, especially when the shale reservoir is capable of 

producing both:  gas and oil (e.g., Woodford Shale and the Eagle Ford Shale, [U.S. 

Geological Survey, 2013]). Considering the uncertainty of long-term availability of gas 

and oil from currently known conventional reservoirs, shale-gas and shale-oil are at high 

demand at present, and will probably remain so in the short-medium term. This is 

especially true, since natural gas is, in addition, a clean-burning fossil fuel. 

The processes of gas release from mudstone followed by the transport of gas molecules 

through a mudstone matrix, and also the production mechanisms are still not well 

understood (e.g., Ballard et al. 1994; Javadpour et al. 2007; Fan et al. 2010; Monteiro et 

al. 2012; Swami 2012; Swami et al. 2012). This is a consequence of the fact that 

mudstones are some of the most heterogeneous sedimentary rocks and include relevant 

lithological variability even at the microscopic scale. Comprehensive understanding of a 

shale-gas reservoir is possible if it is analyzed not only at a macroscopic scale but also 

from the millimetre scale, and even down to the molecular level.  An appreciation of a 

mudstone’s mineralogy, macro- and micro-fabric, nano-porosity and characteristics of 

pore-throats is essential (e.g., Schieber 2003; Javadpour et al. 2007; Macquaker et al. 

2007; Ross and Bustin 2009, Bustin 2012; Chalmers et al. 2012a, b; Loucks et al. 2012; 

Spaw 2012; 2013a, b).  The heterogeneous nature of the mudstones that comprise shale-
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gas reservoirs makes each shale-gas reservoir unique, requiring a bespoke approach to the 

assessment of its economic value and the choice of development of production strategy 

(Jarvie et al. 2007; Deville et al. 2011; Bust et al. 2013).  

The presence of reservoir–quality enhancing trace fossils in various types of conventional 

hydrocarbon reservoirs has been widely studied and documented (e.g., Gingras et al. 

1999, 2004, 2012 and references therein; Pemberton and Gingras 2005; McIlroy 2004; 

Tonkin et al. 2010; Spila et al. 2007). Ichnological analysis in shale-hydrocarbon 

reservoirs has been primarily aimed at elucidation of palaeoenvironment of deposition, 

and for stratigraphic prediction through application of sequence stratigraphic principles 

(e.g., Cluff 1980; Wetzel and Uchman 1998a; Hovikoski et al. 2008; McIlroy 2008; 

Pervesler et al. 2008; Lemiski et al. 2011; Angulo and Buatois 2012a, b; Gingras et al. 

2012; Egenhoff and Fishman 2013). The impact of ichnofabric on shale-hydrocarbon 

reservoir quality (mainly on shale reservoir permeability) has been studied in some 

producing and prospective shale-hydrocarbon reservoirs (Hovikoski et al. 2008; Lemiski 

et al. 2011, Gingras et al. 2012; La Croix et al. 2013, Spaw 2012, 2013a). These studies 

provide important insights through measurements of burrow-matrix permeability 

differences, however they do not provide deterministic volumetric analyses of the 

ichnofabric.  Such a volumetric approach would allow quantitative assessment and 

prediction of the portion of the reservoir that is enhanced (in terms of porosity and 

permeability but also of fracturability) by trace fossils (Bednarz and McIlroy 2012; cf. La 

Croix et al. 2012). This study addresses this gap in knowledge by deterministic (devoid of 

conceptual simplifications and interpretations) volumetric analyses of ichnofabrics that 
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are typical of organic-rich shale-hydrocarbon reservoir deposits.  The results of the 

deterministic burrow modelling allow quantitative investigation of actual volumes and 

authentic spatial distributions of the permeable and brittle components of shale-gas facies 

trace fossils. This study of shale-hydrocarbon reservoir ichnofabrics is the first step 

towards development of a new understanding of reservoir properties in terms of porosity, 

permeability and fractureability. 

1.1.1. Shale gas reservoir lithofacies variability and mudstone fabric as a first 

control on reservoir petrophysical properties 

Shale-gas and shale-oil reservoirs are self-sourcing reservoirs composed of organic-rich 

very fine-grained sedimentary facies characterized by predominant content of clay 

minerals and other clay-size particles (< 0.063 mm; cf. Macquaker and Adams 2003). 

These facies are informally named “shales” and are complex heterogeneous mixtures of 

clay minerals, quartz, carbonates, feldspars and heavy minerals of detrital, biogenic or 

authigenic origin that may constitute a wide range of lithologies including e.g., 

mudstones, siltstones, claystones, marlstones or limestones (Bustin 2012; Bust et al. 

2013). The word “shale” is used in a broad sense in petroleum industry even though the 

classification of clay-rich and mud-rich rocks has received more attention by academics 

(e.g., Potter et al. 1980). Since practical application of this ichnological research pertains 

to gas extraction from rocks classified as shales by industrial colleagues, the author has 

decided to consider a wide variety of silt- and clay-rich rocks (mudrocks, both fissle and 

non-fissle) as shales in this thesis.  
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Gas-shales composed of organic-rich facies (including so called “black shales”) are still 

poorly understood (Schieber 2003; Javadpour et al. 2007; Josh et al. 2012). This lack of 

understanding results probably mainly from the fact that hand specimens of such fine 

grained rocks appear to be homogeneous and lacking in clearly visible heterogeneity of 

fabric and mineralogy at the hand sample scale.  In addition, for years they have been 

uncritically considered to have been deposited in prevailing anoxic bottom water 

conditions typical of stratified and stagnant water-masses (cf. Schieber 2003 and 

references therein). The necessity of anoxia for the formation of black shale deposition 

has however been challenged (e.g., Schieber 1994, 2003, 2011; Wetzel and Uchman 

1998b; Macquaker et al. 1999; Macquaker and Bohacs 2007; Schieber et al. 2007; 

Rodríguez-Tovar and Uchman 2010; Ghadeer and Macquaker 2012). Presence of 

bioturbation and bottom current activity in organic-rich deposits is, currently implied to 

be rather the norm than an exception. The homogeneity of mudstones is considered to be 

due to the effects of compaction, comparative lithological homogeneity in terms of grain 

size, and a lack of macroscopic sedimentary structures (Schieber 2003, Macquaker and 

Bohacs 2007; cf. Chamberlain 1978; Wetzel and Uchman 1998a, b; Jacobi et al. 2008; 

Callow and McIlroy 2011; Egenhoff and Fishman 2013).  

The distribution of mineral grains and organic matter particles in mudstones comprise the 

macroscopic- and microscopic-fabrics (including ichnofabric) that determine the 

petrophysical and geomechanical properties of mudstones (e.g., porosity, permeability 

and brittleness; Josh et al. 2012 and references therein). The brittleness of a mudstone 

depends on the brittle mineral content (mainly quartz, feldspars or carbonates) relative to 
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the clay mineral content (e.g., Jacobi et al. 2008; Rickman et al. 2008; Bust et al. 2013).  

In shale-hydrocarbon reservoirs the brittleness of the shale facies determines their 

fracturability, and therefore potential as productive reservoirs. Because of the ultra-low 

matrix permeability (measured in nano- to milli-Darcy) and complex gas release 

processes in shale-hydrocarbon reservoirs, successful production is dependent not only 

upon locating sufficient gas volume within a brittle horizon, but also on the complexity, 

spacing and conductivity of the induced fractures (e.g., Wylie et al. 2007; Jacobi et al. 

2008; Cipolla et al. 2009, 2010; Fan et al. 2010; Palmer and Moschovidis 2010; Bustin 

and Bustin 2012; Swami 2012; Bust et al. 2013). Ichnofabric is potentially the most 

influential and volumetrically significant contributor to the spatial distribution and 

architecture of the quartzose and/or silt-rich zones within bioturbated mudstones and 

consequently directly affects natural and/or induced fracture development. Associations 

of burrows with quartz-rich components can create tortuous planes of weakness within a 

clay-rich mudstone matrix, thereby considerably enhancing fracture spacing and 

consequently the surface area of mudstone connected to the well-bore. 

Endobenthic burrowing organisms re-distribute mineral grains within the host sediment 

and can directly influence the porosity and permeability of the resultant rock (e.g., 

Gingras et al. 1999, 2002, 2004, 2012; Pemberton and Gingras 2005; Tonkin et al. 2010; 

Bednarz and McIlroy 2012).  Burrow fills in mudstones are commonly more porous and 

permeable that the host sediment (e.g., Hovikoski et al. 2008, Leminski et al. 2011, 

Bednarz and McIlroy 2009, 2012; Gingras et al. 2012, 2013; Harazim 2013) in terms of 

bulk permeability relative to unbioturbated horizons. This is because of the permeability 
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isotropy resulting from closely spaced silt- and sand-rich burrow-fills that may be 

considerably more permeable than the host sediment (e.g., Gingras et al. 2013). Such 

burrow-enhanced permeability is considered to be capable of sustaining gas production 

even without well-stimulation providing that there is significant vertical permeability, kv 

(Gingras et al. 2013; cf. also Bednarz and McIlroy 2012; La Croix 2012). Recognition of  

mudstone ichnofabrics and other macro- and micro-fabrics is therefore a requisite for 

complete appreciation of shale gas reservoirs facies and is integral to assessment and 

prediction of shale porosity, permeability and stress-strain behavior (Jacobi et al. 2008; 

Bustin 2012; Bustin and Bustin 2012; Chalmers et al. 2012b; Josh et al. 2012; Spaw 

2013a, b).  

1.1.2. Most frequent ichnofabric-forming trace fossils in shale gas facies 

Bioturbation of muddy deposits may result in significant spatial reorganisation of 

sediment grains consequently causing substantial heterogeneity of lithified shales, and 

thereby influence their petrophysical properties. Porosity, permeability and brittleness of 

bioturbated shales can therefore be significantly influenced by the volume and/or spatial 

distribution of burrows present. For this reason, recognizing and understanding the 

presence of trace fossils in shale-gas facies may meaningfully inform quality of reservoir 

in shales, especially in cases where burrows contribute in formation of, or constitute, the 

sediment fabric. Ichnofabric-forming trace fossils are defined as burrows that occur 

within and/or process large volumes of sediment and have strong lithological contrast to 

the host rock matrix (Callow and McIlroy 2011). In contrast to weakly-penetrating 
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(interface) trace fossils, makers of ichnofabric-forming burrows process (mix, ingest, 

segregate or introduce) significantly larger volumes of sediment (McIlroy 2007; Callow 

and McIlroy 2011).  The net effect of this is that the burrowing organisms may influence 

reservoir quality through the generation and/or improvement of permeable and/or brittle 

zones and by increasing vertical connectivity. 

Ichnofabric is common in black and dark organic-rich shale facies that have in the past 

been uncritically associated with the anoxic and life-depleted environments (Schieber 

2003). The ability of benthic organisms to tolerate, and even prosper, in dysoxic, anoxic 

and euxinic environments has been proven through biological and ichnological studies 

(e.g., Bromley and Ekdale 1984; Ekdale and Mason 1988; Seilacher 1990; Fu 1991; 

Wetzel and Uchman 1998a; Schieber 2003; Dufour and Felbeck 2003; Stewart et al. 

2005; Arndt-Sullivan et al. 2008; Dando et al. 2008; Middelburg and Levin 2009). This 

capability of surviving in black-shale depositional environments and sediments is 

primarily associated with interrelated characteristics of feeding strategy (e.g., deposit 

feeding [makers of Phycosiphon and Nereites] or chemosymbiotic adaptations [makers of 

Chondrites, Trichichnus, Zoophycos]), respiration adaptations and burrow architecture 

(open stationary burrows [e.g., Chondrites, Trichichnus, Zoophycos] or burrows without 

connection to the water-sediment surface [e.g., Phycosiphon and Nereites]) or short-term 

re-oxidation events (e.g., Wetzel and Uchman 1998a). It was recently demonstrated that 

deposition of organic-rich sediments and even black shales is not limited to deep-water 

anoxic settings in low energy environments, and deposition of organic matter is driven 

mainly by large primary production, low rates of remineralization in the water column, 
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and rapid sedimentation in wide range of depths in marine and lacustrine settings (e.g., 

Wetzel and Uchman 1998b; Schieber 2003; Bohacs et al. 2005, Macquaker and Bohacs 

2007). Trace fossils have been recorded from almost all shale gas reservoirs in the USA 

and Canada, and in multiple organic-rich fine-grained successions worldwide.  The lack 

of recognition of  trace fossils in other shale-gas facies may yet be because of their small 

size, low density and low color contrast, and the necessity of focussed unconventional 

methods to determine their presence (e.g., microscopy and polishing; Callow and McIlroy 

2011; Bednarz and McIlroy 2012 and references therein; La Croix et al. 2013).  

The most abundant ichnofabric-forming trace fossils in shale-gas facies are: Chondrites, 

Planolites, Phycosiphon, Nereites, Zoophycos, Trichichnus (Fig. 1.1). All the above 

ichnotaxa are often suggested to indicate anoxic (i.e., Trichichnus and Chondrites; 

Bromley and Ekdale 1984) or dysoxic (oxygen-poor) conditions during bioturbation. 

These trace fossils are commonly assigned to Nereites and Zoophycos ichnofacies 

indicating event/turbiditic softgrounds and non-event dysoxic or anoxic and/or euxinic 

conditions respectively with Chondrites, Phycosiphon and Planolites being facies-

breaking trace fossils (Seilacher 1967, 2007; McIlroy 2008).  

This work addresses deterministic three-dimensional reconstruction of Phycosiphon, 

Nereites and Chondrites ichnofabrics from samples collected from organic-rich rocks that 

are analogous to the shale-gas facies in order to examine how their presence, volume and 

distribution may impact reservoir quality. 
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Fig. 1.1. Trace fossils that are typical for shale-hydrocarbon facies (graphic visualizations taken from 
Wetzel and Uchman 1998a).  
The plot represents most frequently occurring ichnofabric-forming ichnotaxa against percentage  
of turbidite-bearing formations containing the trace or similar (after Callow and McIlroy 2011). 
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Phycosiphon (including its junior synonym Anconichnus, see Wetzel and Bromley 1994), 

Nereites (including its several junior synonyms Helminthoida, Spirophycus, Scalarituba, 

etc. Uchman 1995) and other Phycosiphon-like trace fossils (i.e., phycosiphoniform 

burrows, Bednarz and McIlroy 2009, 2012) have in cross section a dark to black clayey 

fecal core surrounded by a light silt-grade quartzose halo (e.g., Wetzel and Bromley 

1994; Bromley 1996; Wetzel 2002) in various ratios and arrangement (Bednarz and 

McIlroy 2009, 2012). Phycosiphoniform burrows occur mostly in silt- or very fine sand-

bearing mudstones. The vermiform producers of these complex trace fossils employed a 

similar deposit-feeding strategy of selectively ingesting organic matter and clay particles 

from ambient silty sediment (e.g., Wetzel and Bromley 1994; Bromley 1996).  

The similarity of the palaeobiological models and ecological niche of the opportunistic 

Phycosiphon and Nereites ichnotaxa are additionally accentuated by the fact that 

Nereites, that was more frequent in Paleozoic formations, was supplanted by 

Phycosiphon in Mesozoic and Cenozoic turbidite-bearing successions (Fig. 1.1; Callow 

and McIlroy 2011). Although both frequently co-occur in sedimentary record, only 

Nereites is suggested to indicate the position of the redox boundary, and typically occurs 

just above it (Wetzel 2002, 2010) whereas Phycosiphon is suggested to represent 

opportunistic feeding within oxygenated food-rich deposits (e.g., Wetzel and Uchman 

1998b; 2001). Both ichnotaxa can, contrary to previous consensus, be inclined from the 

horizontal, a behaviour that may be controlled by the food distribution, and redox 

boundary fluctuations (Uchman 1995; Wetzel and Bromley 1994; Wetzel 2002, 2010; cf. 

Bednarz and McIlroy 2009, 2012). The considerable degree of verticality of the 
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Phycosipon-like and Nereites burrows is particularly influential as it generates and/or 

contributes to permeability isotropy that is vital for successful production from shale-gas 

reservoir (Bednarz and McIlroy 2012). 

Chondrites and Chondrites-like burrows are complex root-like systems of tunnels 

branching from more or less vertical master shaft that was open to the sediment-water 

interface (e.g., Osgood 1970; Wetzel 1983; Löwemark et al. 2006; Wetzel and Reisdorf 

2007; Pervesler et al. 2008; Pemberton et al. 2009). This trace fossil is common in black 

and organic-rich mudstones and is considered to be a result of the burrowing activity of a 

chemosymbiotic organism and is commonly inferred to be an indicator of anoxic and 

euxinic sediments or even anoxic bottom-water conditions (Bromley and Ekdale 1984; 

Fu 1991; c.f. Dufour and Felbeck 2003; Seilacher 1990; Savrda and Bottjer 1991). 

Tunnels of Chondrites burrows in mudstones are small in diameter (usually around 1 

mm) and passively in-filled with (usually) silty or sandy material. Chondrites has been 

recognized in number of source rocks and shale facies and it is usually present in dense 

occurrences penetrating the sediment to depths of tens of centimetres (e.g., McBride and 

Picard 1991; Seilacher 2007; Spaw 2012, 2013a). Chondrites is the most frequently 

documented ichnofabric-forming trace fossils of turbiditic/deep marine successions 

through the entire Phanerozoic (Fig. 1.1, Callow and McIlroy 2011).  

The abovementioned ichnotaxa can be subdivided  into 1) the traces that maintained an 

open connection to the sea floor (Chondrites, Trichichnus and Zoophycos) and 2) those 

that do not (Phycosiphon and Nereites) and whose trace-makers could either function in 
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anoxic muddy sediments or require oxygenated pore waters to respire (e.g., Wetzel and 

Uchman 1998a).  

The recently recognized ubiquity of these ichnotaxa within hydrocarbon-charged facies 

worldwide creates a need to investigate their volumetrics and determine the influence that 

these trace fossils might have on shale reservoir quality in terms of petrophysics and 

reserves estimates (c.f. Schieber 2003; Pemberton and Gingras 2005; Meyer and Krause 

2006; Tonkin et al. 2010; Bednarz and McIlroy 2012).  

1.1.3. Importance of deterministic three-dimensional reconstruction  

of ichnofabric in shale gas reservoir facies 

Three-dimensional ichnofabrics are necessary to understand the density of bioturbation, 

the spatial distribution of burrows and their connectivity.  To date this has largely been 

done only from two-dimensional illustrations. Three-dimensional (3D) deterministic 

reconstructions are devoid of the imperfections of extrapolations from two dimensional 

models, e.g., the presence of “dead ends”, and “eddies” extrapolated from planar 

illustrations and simulations (e.g., Spila et al. 2007 in reference to two dimensional 

analysis of the fluid transport through vertically connected burrows of Phycosiphon) 

which do not allow for connectivity in the third dimension. Relative to conceptual 3D 

models of ichnotaxa, deterministic 3D reconstructions allow for critical verification and 

reassessment of paleobiological models for the ichnotaxon as well as quantitative 

documentation of parameters such as bioturbation index, connectivity, burrow length, 
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depth etcetera (e.g., Naruse and Nifuku 2008; Bednarz and McIlroy 2009, 2012; Platt et 

al. 2010; cf. La Croix et al. 2012). Most importantly computer-modeled 3D 

reconstructions of ichnological specimens allows deterministic volumetric analysis and 

measurements of individual burrow and bulk ichnofabric volumes, along with surface 

area of the burrow-sediment interface, and calculations of burrow density in three-

dimensional space (Bednarz and McIlroy 2012; cf. La Croix et al. 2012). Deterministic 

3D models of ichnofabric such as those created in this study may become an easily 

accessible tool for realistic volumetric evaluation of the potential ichnological influence 

on reservoir quality. 

Trace fossils in mudstones are usually silt-rich tortuous tubes and strips of complex three-

dimensional morphology and are inherently more porous and permeable (if not 

cemented) than the surrounding clay-rich matrix (e.g., Wetzel and Uchman 1998a; 

Lemiski et al. 2011; Bednarz and McIlroy 2012; La Croix et al. 2012).  The complex 

three-dimensional architecture of ichnofabrics can provide spatially complex planes of 

weakness in a sediment, as determined by the mineralogical contrast between silt/sand 

filled trace fossils and the organic- and clay-rich host sediment (Bednarz and McIlroy 

2012). Such biogenic fracture-prone interfaces may increase fracture-spacing during 

reservoir stimulation. Detailed modeling and prediction of induced fracture orientation 

and distribution is required to maximize the reservoir area that is connected to the 

wellbore (e.g., Cipolla et al. 2009; Bust et al. 2013). Investigation and understanding of 

the three-dimensional distribution, architecture and spatial connectivity of the quartz-rich 

ichnofabric in gas-shales provides the basis for the prediction and subsequent generation 
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of high fracture complexity and dense fracture spacing if bioturbated horizons are 

targeted for stimulation. It is considered that bioturbated intervals may become 

significant targets for hydraulic fracturing because of the potential for intense fracturing 

around burrows that may maximize the well-reservoir contact. 

1.1.4. Three-dimensional reconstructions in ichnology 

Until comparatively recently ichnology has been a rather palaeontological endeavour, 

using a lot of the conventional tools of straightforward observation of fossils collected 

from outcrop specimens or interpreted from 2D slabs of core.  The ability to “see” the 

fossils in three dimensions, along with their relationship to the host sediment (e.g., 

sediment disturbance or geochemical changes in the near burrow environment) has 

resulted in significant leaps in understanding of the behaviour of the trace maker 

(Bednarz and McIlroy 2012; Šimo and Tomašových 2013).  This methodology has the 

power to better inform the ichnologists regarding trace-maker behaviour. Digital methods 

of 3D reconstruction allow for creation and population of interactive models i.e., models 

that can be manipulated by the reader in 3D. If embedded and shared in common digital 

formats (e.g.,  PDF files, PowerPoint presentations or media formats supported by 

Internet browsers) such 3D reconstructions can take communication of results in 

ichnology to a new level, enabling readers to not only understand the fossils from 2D 

screen grabs, but to also explore and investigate the models themselves. 



1-16 

 

 

To date 3D visualisation of majority of trace fossils are presented as conceptual drawings 

and are available only on 2D (printed) media. Such reconstructions illustrate a high 

degree of accuracy in reference to the general burrow system architecture and gave a 

starting point for all later ichnological research and analysis (e.g., Wetzel and Uchman 

1998a; Seilacher 2007). These reconstructions are extrapolated mainly from observations 

of cross sections of burrows in core or outcrop and also from manual serial polishing of 

small, hand-size samples, which technique allows for exposing consecutive cross 

sections’ shapes. Elucidation of the geometry of trace fossils in mudstones starts with the 

problems of their recognition owing to low colour contrast, small size, and sediment 

compaction and weathering of the host sediment (cf. Wetzel and Uchman 1998a). 

Conceptual reconstructions account for much of the current basis for ichnotaxonomy as 

well as paleoenvironmental and paleobiological analysis in ichnology. However they do 

not allow for full elucidation of complex trace fossil geometries in the context of the 

host-sediment.  

Deterministic 3D visualisations of trace fossils from core (mainly unlithified sediments) 

and hand-size samples were firstly undertaken through usage of X-ray imaging followed 

by CT-scanning (e.g., Wetzel and Werner 1980; Wetzel 1983, 1984, 2008, 2010; Fu and 

Werner 1994; Löwemark, 2003, 2007 and references therein). The low X-ray contrast of 

most mudstone components precludes recognition of some trace fossils in lithified 

mudstones using X-radiography. In other cases, even if the resolution of the CT-scanning 

technique is high enough (fraction of millimetre) the images do not provide sufficiently 

detailed illustration of these complex structures (e.g., Wetzel and Uchman 1998a). Trace 
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fossils preserved in pyrite are an exception to this rule (Löwemark 2003, 2007 and 

references therein).  Small to microscopic burrows as well as pore distribution can be 

visualized with microtomography technique (Micro-CT) with micron- to millimetre scale 

density (Gingras et al. 2007). Polishing of freshly excavated surface has proven to be the 

best practice for detailed examination of trace fossils in hand-size samples of mudstones 

(Uchman 1995, Wetzel and Uchman 1998a). If coupled with computer-controlled 

constantly maintained interval of serial sectioning it introduces a base for deterministic 

volumetric reconstructions (Bednarz and McIlroy 2012, based on Sutton et al. 2001). 

Deterministic volumetric 3D models of ichnofabric offer possibilities to proceed with all 

sorts of measurements and calculations that the researcher needs having certainty that the 

analyses reflect the true rock-sourced ichnological data. Quantitative and volumetric 

analyses of the deterministic 3D reconstruction of the ichnofabric will allow for realistic 

assessment of biogenic structures that enhance fluid flow and fracturability within 

bioturbated shale gas reservoir facies.   

This work presents the step-by-step methodology that was employed to reconstruct three-

dimensional geometry and analysis of individual burrows and ichnofabric from collected 

bioturbated shale samples.  
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1.2. Three-dimensional reconstruction of ichnofabric in shale gas 

reservoir facies: thesis aim and scope 

This PhD thesis aims to bridge the gap in knowledge of the three-dimensional ichnology 

and the importance of trace fossil in reservoir studies by investigating the impact of 

ichnofabric on shale-hydrocarbon reservoir quality.  This is approached through detailed 

analysis of the deterministic 3D reconstructions of typical mudstone trace fossils, and by 

formulating a methodology to examine the above. Three-dimensional reconstructions of 

Phycosiphon, Nereites and Chondrites are the basis for palaeobiological and taxonomic 

reconsideration of these taxa. 

1.2.1. Methodology formulation for the deterministic 3D reconstructions of 

ichnological specimens. (Chapter 2) 

The goals of the study presented in chapter 2 are: 

1) To find the procedure for precise three-dimensional reconstruction of individual 

burrows and ichnofabric hosted in mudstones and large samples of other lithologies. 

Chapter 2 investigates methodology of precision automated serial grinding method 

that is the most effective in gaining highly detailed analysis of the internal and 

external structure of trace fossils hosted within fine-grained sediments. This is 

particularly true of mudstones where conventional methods of three-dimensional 

studies, e.g., CT scanning, MRI (magnetic resonance imaging) or MLT (multi-stripe 

laser triangulation scanning) are ineffective. Further the study presents the approach 
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to convert the visualized volume to the 3D polygonal mesh that is the basis for 

quantitative volumetric analyses. 

2) To standardize procedures so that all the samples are treated the same way and the 

results are comparative. 

3) To create methodologies for calculation of volumetric analysis relevant to 3D 

ichnological data. 

4) To review, and provide useful terminology for, descriptive and volumetric analysis of 

3D ichnofabric and individual trace fossils. 

5) To develop techniques for sharing interactive 3D models that other ichnologists can 

manipulate and examine the reconstructions. 

6) To provide tools for geologists to examine and estimate the impact and volumetric 

content of ichnofabric within bioturbated reservoir rocks. 

 

Except for chapter 2, the methodology description is otherwise presented in general 

manner in all the three remaining manuscripts (chapter 3, 4, 5) for their completeness as 

stand-alone publications. In these chapters, additional means of volumetric calculations 

and analyses of the 3D models are presented that aim to clarify publication-specific 

considerations. 
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1.2.2. What do the common shale-gas reservoir trace fossils look like in 3D? 

 (Chapters 3, 4, 5) 

The work addresses deterministic three-dimensional reconstruction of Phycosiphon, 

Nereites and Chondrites ichnofabrics from samples collected from organic-rich 

successions that are analogous to the shale-gas facies. Volumetric and descriptive 

analyses are applied to the reconstructed models in order to visualise and understand 

ichnofabric spatial geometry. 

The creation of 3D reconstructions of the ichnofabrics presented in this study aims to: 

1) Elucidate the geometry of the internal structure of the burrows of studied trace fossils.  

The geometric and volumetric inter-relationships of the compositional elements 

(i.e., core and halo) of three examined phycosiphoniform burrow types are 

investigated in chapters 3 and 4. The structure of the material composing 

Chondrites burrows is presented in chapter 5. Improved knowledge of the 

variability with phycosiphoniform taxa with respect to their core-halo relation is 

aimed to improve their identification from cross sections in core or outcrop, and 

furthermore in studies of reservoir quality.  

2) Visualize the true spatial geometry of the trace fossils, and the entire ichnofabric, built 

with the natural association of multiple burrow specimens. 

Reconstruction and analysis of burrows’ general shapes and geometry and 

recognition of potential repetitive architectural patterns within the burrow natural 

associations were presented in chapters 3, 4 and 5 for phycosiphoniform traces 
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and in chapter 5 for Chondrites. Volumetric reconstructions of the real trace 

fossils allowed for their comparison with the established visualizations based on 

the core observations and for revision of the ichnotaxons’ palaeobiological 

models. This study aims to present the real distribution of burrows composing the 

ichnofabric in order to examine the importance of ichnofabric with respect to 

shale gas/oil reservoir quality. 

1.2.3. What effect do the common shale-gas reservoir trace fossils have on 

reservoir quality? Ichnofabric-associated porosity, permeability and 

fracturability. (Chapters 4, 5) 

Within bioturbated, low-matrix-permeability mudstones fluid flow is possible only 

through conduits formed by the natural or induced fractures or by the silty and sandy 

burrows before the fluid reaches the well. The work investigates the effects of 

phycosiphoniform and aff. Chondrites ichnofabrics on the petrophysical characteristics of 

mudstones such as transmissibility and distribution of fluid flow conduits. Mudstone 

(ichno)fabric can control petrophysical characteristics such as porosity, permeability and 

brittleness. To examine ichnofabric in the light of these interrelated characteristics this 

study deterministically models: 

1) The manner in which burrow components are arranged in three dimensions. 

The vertical connectivity of burrows in ichnofabrics is investigated in order to 

examine the degree to which silty burrow material is interconnected in relation to 

the estimated burrow density (chapters 4 and 5). Vertically connected burrows 
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built of silt-grained material may create primary porous and permeable flow paths 

that would result in effective flow of fluids through ambient ultra-low permeable 

matrix. Strong vertical components of the interconnected ichnofabrics may 

enhance, or even create isotropy and homogeneity relative to laminated strata by 

breaching horizontal permeability barriers and linking more permeable horizons 

(improving kv).    

2) The volume of the ichnofabric that is distributed within a given volume of the 

bioturbated mudstone. 

Calculations of the volume of the ichnofabric that is composed of silty material 

will shed a light on the real volumes that are available for enhanced fluid flow 

through an ichnofabric (chapters 4 and 5). Volumetric assessment of the 

ichnofabric is undertaken to show what portion of the bulk volume of brittle 

minerals (quartz, feldspars or carbonates) is present within the mudstone in 

concentrated form (i.e., in clay-cleaned zones of burrow tubes and strips). Such 

quartzose and/or feldspar-rich zones are inherently brittle and thus susceptible for 

natural or induced fracture development, what may be particularly important for 

facies of low bulk quartz (or other brittle mineral) content. 

3) The surface area and distribution of the ichnofabric within a given volume of the 

bioturbated mudstone. 

The calculations of the volume and reconstruction of the geometry of burrow 

shapes and ichnofabric spatial arrangement when analyzed together, allow for 

understanding of the relation of bioturbation density to the distribution of the 
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quartzose material. The tortuous and chaotic nature of the biologically-generated 

shapes creates a vast surface area of the ichnofabric in relation to the containing 

volume of the sediment. 

 The short distance between kerogen particles and permeable flow conduits 

(fracture or permeable burrow tube), or brittle porous material (e.g., the burrow) is 

critical for economic production from mudstones. The spatial architecture of 

ichnofabric tends to partition the ultra-low permeable matrix into small volumes, 

thereby shortening the communication distance between a released hydrocarbon 

molecule and fracture networks. Chapter 5 investigates distribution and density of 

the ichnofabric network in order to examine the potential of this network to 

enhance induced or natural fracture spacing.  

1.3. Objectives and analytical approaches 

In order to answer the abovementioned research questions stated in this study, this PhD 

project was designed with the following objectives: 

1) To deterministically reconstruct three-dimensional architecture of Phycosiphon and 

Chondrites ichnofabric contained in organic-rich shale facies from different locations 

and age. 

2) To analyze the modeled 3D reconstructions by application of volumetric analytical 

methods in order to understand and comprehensively describe the structure and 

spatial architecture of the ichnofabric.   
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3) To analyze and describe the impact of the examined ichnofabric on shale-hydrocarbon 

quality.  

 

The following approaches and methods were used to address the objectives: 

a) Collection of bioturbated hand-sized samples of organic-rich bioturbated mudstones 

from shale gas equivalent facies during field trips.  

The five collected samples of ichnofabric were assigned to two groups of trace 

fossils: 

I. Phycosiphon-like trace fossils group with Phycosiphon sensu stricto from the 

Jurassic Staithes Sandstone Formation, Phycosiphon-like trace fossil from the Upper 

Cretaceous Rosario Formation, Baja California, Mexico and Nereites from The 

Mississippian Yoredale Sandstone Formation, Craster, Northumberland, UK. The 

three trace fossils were assigned to the informal group of phycosiphoniform burrows 

(Phycosiphon-like burrows) because of the significant similarity of their vertical 

cross sections (Bednarz and McIlroy 2009; 2012). 

II. Chondrites-like trace fossils group with Chondrites sensu stricto from Jurassic 

Staithes Sandstone Formation and Chondrites-like trace fossil from the Upper 

Cretaceous Mancos Shale, Ferron Sandstone Formation, Muddy Creek, Utah. 

b) Petrographic analysis of the samples (thin sections and visual description) 
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c) Serial grinding, photography and digital processing (volume visualization and 3D 

model production) 

d) Quantitative volumetric analyses of the 3D models of the reconstructed ichnofabric. 
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CHAPTER 2 

Automated precision serial grinding and volumetric three-

dimensional reconstruction of large ichnological specimens 

 

Małgorzata Bednarz, Liam G. Herringshaw, Christopher Boyd, Mary Leaman,  

Elisabeth Kahlmeyer and Duncan McIlroy 

In press with Post-Ichnia 2012 Volume - Book of collected papers,  

Memorial University of Newfoundland and Geological Association of Canada 

2.1. Abstract 

To obtain deterministic three-dimensional reconstructions of large or complex trace 

fossils and to quantify the reconstructed models volumetrically, two stages are necessary: 

a laboratory stage, involving precision serial grinding and high-resolution digital 

photography, and a computer analysis stage, where burrow volumes are visualized and 

analysed. It is shown that the techniques can be used successfully for bioturbated rocks 

that have little or no density contrast between the matrix and the burrows, upon which 

non-destructive techniques, such as CT scanning, are ineffective.  To demonstrate the 

technique, several trace fossil samples (phycosiphoniform burrows, Nereites, Chondrites 

and Ophiomorpha) were reconstructed in 3 dimensions using the described method. The 
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serial grinding method employing automated, computer-controlled machinery followed 

by detailed computer analysis, enables volume calculations to be determined precisely for 

a single burrow, burrow networks and ichnofabrics. 

2.2. Introduction 

Serial grinding has been used to reconstruct the three-dimensional morphology of 

palaeontological specimens for over a century (e.g., Sollas 1903; Stensiø 1927; Ager 

1965, Tipper 1976; Herbert and Jones 2001; Watters and Grotzinger 2001). With the 

advent of low-cost digital photography and fast, high quality image-processing software, 

however, the approach has become increasingly accessible, and the techniques developed 

by Sutton et al. (2001a, 2001b, 2005, 2006) for studying the body fossils of the 

Herefordshire Lagerstätte have proved particularly influential.  With the high resolution, 

easily manipulable images produced, and the wealth of morphological data that can be 

garnered, this approach has now been applied to a variety of fossil material (e.g., Rahman 

and Zamora 2009; Maloof et al. 2010). 

 Despite its potential value in elucidating morphology and sedimentological 

impact, serial grinding and computer modeled 3D reconstruction has been little used in 

ichnology.  Exceptions are the trace fossil studies of Naruse and Nifuku (2008), Bednarz 

and McIlroy (2009, 2012), Michalík and Šimo (2010) and Boyd et al. (2012). Other 

studies have used serial polishing to examine ichnofabrics and ichnofossils, but without 

the creation of 3-D computer modeled volumetric reconstructions. 
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Serial grinding and 3D reconstruction of trace fossils and ichnofabrics in large rock 

samples has never been attempted, but such work is critical to full morphological 

characterization of many ichnotaxa (cf. McIlroy et al. 2009).  Since trace fossils can 

comprise volumetrically significant components of many sedimentary rocks—affecting 

sedimentological properties at a reservoir scale (Buatois et al. 2002; Gingras et al. 2004; 

Burns et al. 2005; Gordon et al. 2010; Tonkin et al. 2010; Bednarz and McIlroy 2012) it 

is vital to understand their three-dimensional morphology.  

Volumetric 3D reconstruction of such trace fossils has the potential to provide new 

insights into reservoir characterization. Several techniques have been used previously to 

obtain spatial models of the burrowing activity of living animals, or to measure the 

volumes of trace fossils and ichnofabrics. These include computed axial tomographic 

(CT) scanning (e.g., Dufour et al. 2005; Herringshaw et al. 2010), magnetic resonance 

imaging (MRI) (e.g., Gingras et al. 2002), multi-stripe laser triangulation scanning 

(MLT) (Platt et al. 2010) and serial grinding (Naruse and Nifuku 2008; Bednarz and 

McIlroy 2009, 2012; Michalík  and Šimo, 2010; Boyd et al. 2012). All these methods 

have their limitations, depending upon the examined rock or sediment properties.  The 

density contrast between matrix and burrow is commonly low, and it can be difficult to 

determine the true morphology of a trace fossil from two-dimensional cross-sections. As 

such, only destructive serial grinding can be employed satisfactorily to obtain a 

volumetric 3D reconstruction of a burrow (cf. Gingras et al. 2002; Naruse and Nifuku 

2008; Bednarz and McIlroy 2012). In most palaeontological and ichnological studies, the 

serial grinding has been carried out manually (e.g., Wetzel and Uchman 1998; Sutton et 
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al. 2001; Bednarz and McIlroy 2009).  While this is acceptable for small specimens, such 

an approach is not appropriate for larger ones, as it is too unwieldy and imprecise.   

By using serial grinding to produce high resolution reconstructions, new information can 

also be obtained on the ecology of the tracemaker and the sedimentological impact of 

bioturbation.  Furthermore, such studies can be used to resolve ichnotaxonomic issues by 

resolving trace fossil morphology within the host sediment.  This approach to 

ichnological and ichnotaxonomic research is particularly relevant if applied to specimens 

from the type locality (Boyd et al. 2012). 

The aim of this paper is to present methodology used to model trace fossils in three 

dimensions in order to apply a deterministic volumetric approach that is beneficial in 

ichnotaxonomy and also in bioturbated reservoir studies.  

2.3. Methodology 

2.3.1. Sample preparation 

Large blocks containing multiple or single trace fossils of various size can be trimmed in 

the field using a hand-held rock saw, if care is taken to leave sufficient matrix around the 

trace fossil.  In our study, to create a regular shape for precise image alignment, each 

block was placed in a box and plaster of Paris poured around it (cf. Bednarz and McIlroy 

2009, 2012; Boyd et al. 2012).  Once the plaster is set, the block can be removed from the 

box, and cut into a rectangular prism with a laboratory rock saw. The regular outline of 

the block is used as the basis for image registration (see below; Fig. 2.1A).  
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Fig. 2.1. Set-up and procedure for precise, computer-controlled, serial grinding of ichnological 
samples. A.  Freshly exposed surface of sample embedded in plaster of Paris, ready for 
photography. B. HAAS VF-3 CNC Vertical Machining Center, showing diamond-tipped rotating 
blade with sample clamped in place prior to grinding. 
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For further accuracy of image alignment, vertical holes can be drilled into the block (cf. 

Sutton et al. 2001a). Prior to photography (see below), visual contrast between the 

ichnofabric and the rock matrix can be enhanced considerably by wetting the ground 

surface of the specimen with water or a light oil (cf. Bromley 1981). To prevent 

disintegration of the plaster of Paris from frequent moistening, non fossil-bearing 

surfaces of the block can be coated with plain, transparent lacquer. 

2.3.2. Serial grinding set-up 

Serial grinding was carried out using a Haas VF3 VOP-C Vertical Machining Center 

(20hp vector dual drive, 1000 IPM), capable of grinding to a precision of 0.001 inches 

(0.025 mm).  Specimens were clamped in place (Fig. 2.1B), with the gantry raised by 

remote control to the start position, and then raised by the required increment after each 

grinding run.  The most effective grinding element was found to be a diamond disc 

(diameter = 70 mm). 

The increment of rock removed during each serial grinding run can be varied according 

to the dimensions and expected complexity of the material studied.  For example, 

phycosiphoniform burrows with a diameter of 2–3 mm were serially ground at 

increments of 0.2 mm; whereas a block containing Diplocraterion with a width of ~60 

mm and an estimated depth of over 100 mm, was serially ground at increments of 0.4 

mm. The choice of serial grinding interval resolution depends also on the purpose of the 

reconstruction, with coarser increments used for gross-scale reconstructions, and finer 
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increments used to provide highly detailed reconstructions and to enable volume 

measurements of small specimens. 

2.3.3. Photography 

Canon 30D and 50D digital SLR cameras were used to photograph the specimens after 

each grinding run.  For accuracy in the subsequent registration process (see below), it is 

crucial to maintain the distance between the freshly exposed sample surface being 

photographed, and the objective (lens) of the camera being used. Owing to the fact that 

the sample decreases in thickness after each run of the grinding tool, the camera–

specimen surface distance was adjusted each time to ensure consistency.  

The photographs should be taken under invariant lighting conditions that best illuminate 

the ichnofabrics. To test this, a series of photographs of the same sample surface should 

be taken under different conditions, after the first serial grinding run.  Lighting conditions 

to consider include photography under ambient lighting, under flash lighting, and under 

controlled directional lighting. It is essential to avoid shadows across the sample, which 

might obscure important features or be confused subsequently as being of lithological 

origin. 

If contrast is insufficient when the rock surface is dry, it may be necessary to wet the 

surface to enhance the contrast: this is particularly true of finer-grained rocks, or 

specimens where the trace fossil fill is of a similar colour to the matrix.  Successively 

ground surfaces should be consecutively numbered using a permanent marker or pencil, 

and photographed with a scale bar (Fig. 2.1A). 
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2.3.4. Digital image-processing and interpretation 

Images can be processed with a range of filters (e.g., brightness, contrast) in a 2D graphic 

software package such as Adobe Photoshop to enhance the contrast between the burrow 

and the matrix. Depending on the characteristics of the sample, the photographs may 

need to be changed to greyscale to do this effectively. 

In the worked examples considered here, each photograph of the serially ground sample 

was stacked consecutively as layers in a single Photoshop file (.PSD).  The first 

photograph in the series was used as a base layer, and all other layers were registered 

(aligned) with this base layer. Each successive layer was named using the number of the 

serial grinding run captured in the photograph. 

2.3.5. Burrow selection methods 

Once all images are aligned, the image stack was cropped to focus on the area of interest. 

The burrows can be selected, either by mouse or tablet pen, using one of the many tools 

in Photoshop (e.g., Magic Wand or Pen). The choice of tool depends upon the nature of 

the burrows (Fig. 2.2A and D). If the burrows are large and the contrast between them 

and the matrix is sufficient, the Magic Wand tool can be used.  If the burrows are small, 

however, and the contrast between the trace fossil and matrix minimal, the Magic Wand 

tool might select a range of pixels that do not belong to the burrow, introducing errors (cf. 

Fig. 2.2B and E) and overly complex 3D isosurfaces (see below). The most accurate – but 

time-consuming – method of burrow selection is to use the “Brush” and “Magnetic  
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Fig. 2.2. Selection of features in two samples of serially ground trace fossil: phycosiphoniform 
burrows (A, B, C; composed of two elements: core and halo) and Ophiomorpha burrows (D, E, 
F). Phycosiphoniform burrow core shown in white in images B and C; burrow halo in grey.A, D. 
Images showing polished surface of ichnological samples, prior to burrow selection. A, black 
shapes represent burrow cores surrounded by haloes of lighter-coloured material in low contrast 
to matrix material. D, dark grey areas represent muddy lining/fill of Ophiomorpha burrows. B, E. 
Shapes of burrows obtained using Magic Wand selection tool; pixelization of burrows visible, 
resulting from imprecise nature of the tool. C, F. Burrow shapes obtained using Magnetic Lasso 
and Brush tools. Smooth outlines representing burrow margins are most suitable for subsequent 
interpretation by 3D rendering software. 
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Lasso” tools with a tablet pen (Fig. 2.2C and F). These tools enable the most accurate 

selection of burrow shape and minimize production of spurious burrow margins. 

When the examined ichnotaxon is known to be composed of more than one element (e.g., 

Nereites, Fig. 2.2A-C; cf. Bednarz and McIlroy, 2009, 2012), all elements can be selected 

and saved separately. This makes it possible to reconstruct different elements of the same 

burrow separately in 3D.  In addition, modeling different components of the burrow 

separately in the same 3D volume enables artificial colouring of the different components 

of the trace fossil, and can be used for volume measurements of these separated elements 

and their comparisons. The burrow selection layers are then saved as grey-scaled images, 

with white silhouettes on a black background.   

2.3.6. 3D modeling 

In our study, stacks of the images to be reconstructed were imported into the commercial 

edition of one of two 3D volume visualization software packages: VG Studio Max 1.2, 

and VolView 2.0. Both programs can reconstruct spatial geometry from a sequence of 2D 

images representing the cross-sections of any object or structure, by the process of voxel 

(volume element) rendering. When importing raster image formats such as .JPG or .PNG 

into the programs sample spacing values (x, y and z) must be provided manually. 

2.3.6.1. Volume visualization and polygonal surface extraction 

The burrow volumes are visualized as 3D objects by the software on the basis of the 

greyscale iso-values of the voxels in merged 2D slices. Volume generation is calculated 
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by the connection of voxels with the same grey intensity in each consecutive image (iso-

grey-value surface; Fig. 2.3B). Thus obtained, the 3D volumes of the trace fossils can be 

artificially coloured to better visualize different elements of the trace fossil (e.g.,  

Fig. 2.3A and C). 

Volumetric studies of trace fossils and ichnofabrics require that the external morphology 

of the reconstructed burrows be “polygonized”. The polygonal models of reconstructed 

burrows are generated from the volumetric data sets through isosurface extraction (Fig. 

2.4A). Polygonal surface extraction is based on the grey-scale or opacity iso-value that is 

chosen to be the most accurate representation of the object being reconstructed (Fig. 

2.4B). The polygonal mesh created is exported at 1:1 scale into the .SLT file format 

(Stereo Lithography 3D object) that can be opened and edited by most 3D modeling 

programs (e.g., Autodesk 3ds Max). 

2.3.6.2. 3D modeling software and polygonal mesh optimization 

The mesh of the generated polygonized objects reflects the three-dimensional 

morphology of the modeled trace fossil. The mesh originally generated by the software is 

dense, composed of millions of triangle-shaped polygons, and usually contains duplicated 

vertices and faces as well as isolated fragments and open holes. As a result, the file 

containing the mesh is usually very large and needs considerable system and graphic card 

memory to be opened and edited. Therefore it must be optimized, simplified and/or re-

meshed to reduce the number of polygons (decimation) (Fig. 2.5). The surface of the 

polygonized trace fossil must also be smoothed to account for the unknown distribution  
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Fig. 2.3. Application of artificial colors for visual 
enhancement of burrow structures.  
A. Reconstruction of Phycosiphon-like burrow in 3D: core 
shown in orange; halo in grey;  
B. Series of 2D slices (planes: x-y, x-z and y-z) showing 
phycosiphoniform burrow elements (core and halo) in 
greys of dual intensity (iso-grey-values); screenshot of 
reconstructed specimens from Rosario Formation, Mexico, 
generated in VolView software.  
C. Reconstruction of Ophiomorpha from Blackhawk 
Formation, Utah; screenshot generated in VG Studio. 
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Fig. 2.4. Polygonal surface extraction of reconstructed Phycosiphon-like burrow from Rosario 
Formation, Mexico, based on iso-grey-values; screenshots generated in VolView software.  
A. Resultant polygonal surface showing core (red) and halo (green); B. Surface component lines 
applied to iso-grey-values of distinct burrow elements (core and halo) in each of 2D slices 
(planes: x-y and x-z). 
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Fig. 2.5. Mesh simplification of reconstructed trace fossils. A. Polygonized 3D model of 
Chondrites ichnofabric. Mesh was exported as .STL file from VolView software and was 314 
MB in non-simplified mesh format. B, B’. Zoomed-in selection of non-simplified polygonized 
mesh; C, C’. Zoomed-in selection of simplified polygonized mesh (decimated, optimized, 
smoothed). Resultant simplified mesh file size reduced to 68 MB. 
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of the trace fossil surface between the known two dimensional planes (the two images 

representing the two surfaces of the rock exposed during two consecutive serial grinding 

runs), which have been averaged in the process of creating voxels. 

In this study, the first stage of simplification was achieved in the volume-visualizing 

software prior to exporting the mesh. Further simplification and optimization can be 

accomplished using most 3D modeling programs (e.g., MeshLab v1.2.2 or Autodesk 3ds 

Max). The resultant 3D objects were further modified by: 1) the application of artificial 

colours to the specified volumes of distinct transparency (representing different density 

or porosity within the specimen); 2) the cropping of reconstructed volumes along 

specified planes; 3) the isolation of discrete burrows as detached objects; and 4) the 

rotation and animation of objects. 

Volumetric binary data obtained through digital reconstruction can be exported to many 

file types that maintain the 3D structure. This enables further examination using freeware, 

such as Right Hemisphere Deep View, GLC_Player, Cortona3D Viewer and Acrobat 

Reader. Exporting burrow reconstructions to widely used, interactive file formats allows 

for further investigation of 3D morphology by the creation of artificial cross-sections, 

animations, visualization of connected high porosity zones in three dimensions, and the 

measurement of volumes of the different burrow components (c.f. Bednarz and McIlroy 

2012).  
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2.3.6.3. Volumetrics in ichnology 

Once a polygonized surface is created, it is possible to apply a volumetric approach to the 

three-dimensional models characterizing the reconstructed burrow or ichnofabric. The 

volume or surface area of the polygonized ichnological model can be measured directly 

by VolView, or by using a third-party program such as Autodesk 3ds Max. 

Recent studies have reviewed volumetric approaches in ichnology (see Platt et al. 2010; 

Bednarz and McIlroy 2012). Distances and angles can be measured in any 3D modeling 

or volume-visualizing software. From a volumetric perspective, the most valuable 

measurements are those of surface area and volumes of the examined burrow or 

ichnofabric, which are either given in metric units or as relative magnitudes in 

percentages. 

Surface area (SA, after Platt et al. 2010) is a measurement of the polygonal surface area 

generated by the volume-visualizing software. It is crucial to measure the optimized 

polygonal mesh to avoid flawed results, such as those caused by overlapping polygons 

(Platt et al. 2010). 

There are two main volumes that describe any burrow or ichnofabric. These are: 1) the 

volume of a prism bounding the ichnofabric or the whole preserved burrow or partly 

preserved burrow, or volume available (VA, after Platt et al. 2010); and 2) the volume of 

the burrow or ichnofabric itself, or volume utilized (VU, after Platt et al. 2010).  
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Volume available (VA) is the volume of the smallest rectangular prism (width = a, height 

= b and length = c) that encloses the burrow, preserved part of the burrow or burrow 

association (Fig. 2.6): 

(1) 
 

cbaVA    

The volume of the entire burrow or burrow association is the VU, calculated using the 3D 

software, and it describes the amount of the sediment reworked by the trace maker. 

On the basis of these volumes, further measurements can be made. These describe and 

quantify the characteristics of the measured burrow or ichnofabric in relation to the main 

volumes (VA and VU), as follows: 

 

Volume exploited (VE) describes burrow density and the efficiency of space usage by the 

trace maker, reflecting the percentage of the volume of the sediment that was reworked 

by the trace maker. It is calculated using the following equation (after Platt et al. 2010): 

(2)  VA
VUVE 100  

Volume component percentage (%Vcomp) represents the volumetric contribution of a 

particular component (Vcomp) of the burrow or ichnofabric, when reconstructed 

separately (e.g., the core or halo of Phycosiphon). %Vcomp is calculated as a percentage 

of the VA: 

(3)  VA
VcompVcomp 100%   
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Fig. 2.6. 3D model of reconstructed ichnofabric composed of Nereites burrows (Lower 
Carboniferous Yoredale Sandstone Formation, Northumberland, UK). 
A. Reconstruction of burrow network;  B. Individual burrow (Ph7 b06) isolated from 
reconstructed burrow network, shown in top, lateral, and back views; C. Reconstruction of 
burrow Ph7 b06, showing tortuosity value (T) = 0.3;  D. Reconstruction of burrow Ph7 b02 from 
the same sample, showing tortuosity value (T) = 0.9. Symbols: VA – Volume Available; si – 
straight elements composing burrow length line;  L – burrow length; T – tortuosity index; a, b, c – 
prism dimensions; d – space diagonal within prism. 

 

10 mm

L

LM

Prism 
(burrow association VA)

Prism 
(Ph7 b06 burrow VA)

si

Prism 
(Ph7 b02 burrow VA)

A

C

D

B

a
d

d

b c

a
b

c

Top view Left view

Back view

Core Halo

T = 0.3 

T = 0.9



2-19 

 

If the length of all components of the burrow (L) is known (by measurement using the 3D 

modeling software), the tortuosity index (T) can be calculated.  

The tortuosity index (T) is the ratio between the diagonal length (d) of a rectangular prism 

bounding the burrow, and the total length of the burrow (or the length of a specific 

burrow component) (L): 

(4)    L
dT   

When calculated for a burrow that does not branch or intersect itself at any point (i.e., a 

string, as observed in ichnotaxa such as Phycosiphon, Helminthoida, Nereites and 

Spirorhaphe), the T value can illustrate the degree of burrow sinuosity and how densely it 

is packed in three dimensions (through consideration of value of d within the equation; 

Equation 4). In cases when the burrow is branched or intersects itself, the T value 

indicates how densely the burrow is packed within the burrow-bounding 3D prism, but 

not necessarily its curvature (e.g., Chondrites, Thalassinoides, Ophiomorpha). T values 

vary between 0 and 1, with straight burrows having a T value equal one or close to one 

(e.g., T=0.9 for an individual Nereites burrow; Fig. 2.6D), and highly tortuous/densely 

packed burrows having a T value that approaches zero (e.g., T=0.3 for a highly tortuous 

burrow in Fig. 2.6C). 

Measurements of lengths and angles can be made in the 3D modeling software while 

examining the polygonal mesh of the models.  A variety of possible measurements can be 

applied to different trace fossils, such as examining the branching angles of Chondrites, 

or the inclination of a burrow relative to the bedding. 
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2.3.6.4. Popularization of 3D interactive models 

To enable the most comprehensive use and investigation of 3D ichnological models, it is 

beneficial to generate file formats that can display any polygonal mesh in an interactive 

3D environment, and which can be opened with a dedicated 3D viewer installed on the 

user’s computer system (see Table 2.1 for popular 3D software). The best formats for this 

are .PDF with 3D models embedded, .STL, .OBJ and .WRL files. WRL and PDF files 

also offer the possibility of publishing the interactive reconstructions on the internet, and 

are therefore the most desirable file formats in terms of rapid sharing and dissemination 

of 3D models and data (see example of interactive 3D model embedded in the PDF file in 

Appendix 1). All the file formats listed above can be generated in most forms of 3D 

modeling software, such as Autodesk 3ds Max. 

2.4. Applications and future work 

Three-dimensional reconstructions of trace fossils and ichnofabrics give ichnologists the 

possibility to review or determine the true morphology and geometry of any ichnological 

specimen. Deterministic calculations of the true volumes and surface areas of trace fossils 

also provide new insights of significance to reservoir studies (Bednarz and McIlroy 

2012). When evaluating ichnological impact on reservoir quality, the volumetric 

assessment of the trace fossils or ichnofabrics is probably the most significant factor. 

Depending on the characteristics of the reconstructed trace fossils, their volumetric 

description can help determine reservoir quality.  Phycosiphon-like burrows, for example, 

can significantly increase the reservoir quality of mudstones in unconventional shale-gas 
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Table 2.1. List of 3D software used for visualizing, modeling and viewing 3D models. 

 

Software Type Website License 

VGStudio Max 3D volume visualizing 
(reconstruction) www.volumegraphics.com commercial 

VolView 3D volume visualizing 
(reconstruction) www.kitware.com commercial 

Autodesk 3ds Max 3D modeling software www.autodesk.com  commercial 

MeshLab 3D modeling software meshlab.sourceforge.net freeware 

DeepView 3D viewer www.righthemisphere.com freeware 

GLC_Player 3D viewer www.glc-player.net  freeware 

Cortona3D Viewer 3D viewer www.cortona3d.com freeware 

Adobe Acrobat 
Reader 

PDF reader with  
3D viewer www.adobe.com freeware 

 

 

 

 

 

http://www.volumegraphics.com/
http://www.kitware.com/
http://www.autodesk.com/
http://meshlab.sourceforge.net/
http://www.righthemisphere.com/
http://www.glc-player.net/
http://www.cortona3d.com/
http://www.adobe.com/
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plays as their silt-rich burrow haloes can create porous and permeable zones within 

otherwise impermeable host rocks (Bednarz and McIlroy 2012).  Three-dimensional 

visualization of such biogenic pore networks is thus highly relevant to hydrocarbon 

reservoir characterization. Future work on 3D reconstructions is likely to enhance the 

availability/accessibility of 3D models and streamline their generation to make them a 

widely used tool for ichnologists and petroleum geologists.  

Three-dimensional reconstructions of trace fossils and other ichnologically generated 

sedimentary fabrics have the potential to greatly inform ichnotaxonomic studies, as well 

as palaeobiological and palaeoecological models accounting for the processes of burrow 

formation and modification. At present, with few exceptions (Macaronichnus: Gingras et 

al. 2002; phycosiphoniforms: Nifuku and Naruse 2008; Bednarz and McIlroy, 2009, 

2012; Zavitokichnus: Michalík and Šimo 2012; Ophiomorpha: Boyd et al. 2012), the true 

and deterministic morphology of many common, ichnofabric-forming trace fossils is not 

known. It has been shown recently that there are at least three trace fossils that produce 

similar “frogspawn” ichnofabrics in vertical cross–section, while having considerably 

different three-dimensional geometries (Bednarz and McIlroy 2009, 2012).  

The method described herein may have limitations when applied to totally bioturbated 

sediments, especially if employed for ichnotaxonomic studies. High bioturbation index 

and/or presence of burrows that intersect each other may considerably reduce the lucidity 

of the component single burrows and thus influence the resultant reconstruction of the 

burrows’ spatial morphology. 
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However in terms of resolution, the presented methodology employing high-res 

photography and a chosen computer controlled serial grinding machinery can be used to 

make extremely precise reconstructions because of the fact that the diamond-coated 

grinding tip can remove a rock layer as thin as 1 micron (c.f. Maloof et al. 2010). 

Although time consuming, manual selection of the ichnofossil’s shape components gives 

the confidence that the obtained spatial structure is not flawed by the elements that could 

be erroneously interpreted as a burrow’s elements by the automatic selection tools which 

usage may result in incorrect spatial structure and further volumetric measurements. 

2.5. Conclusion 

Automated, computer-controlled, serial grinding allows for highly precise abrasive 

removal of extremely thin, parallel portions of examined rock samples (up to 1 micron).  

This method creates the possibility of obtaining – through digital photography – a large 

number of high-resolution images showing the three-dimensional structure of 

ichnological specimens. The reconstruction process necessitates the careful, and time-

consuming, manual selection of burrows within these photographic images using 2D 

software. This precision, however, plays a vital role in the subsequent reconstruction of 

the trace fossils with volume-visualizing software. After the volume has been 

reconstructed, it is possible to produce a polygonal mesh of the trace fossil surface that 

can be the basis for volumetric analysis. Quantification of many burrow or ichnofabric 

parameters can then be done once the polygonal mesh is produced, including: 1) burrow 
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dimensions; 2) the volume of sediment that the trace-maker reworked; 3) the surface area 

of the burrow; and 4) burrow tortuosity. 

When the 3D models are exported to popular file formats, they can be made widely 

accessible to researchers, giving the opportunity for further analytical work. This 

volumetric approach to ichnology is likely to have a particularly significant impact in 

petroleum geology, where the characterization of trace fossils has already proven to have 

a major effect on the permeability and fracturability characteristics of reservoir intervals 

(Buatois et al. 2002; Gingras et al. 2004; Burns et al. 2005; Gordon et al. 2010; Tonkin et 

al. 2010; Bednarz and McIlroy 2012). 
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2.8. Appendices  

In order to control an interactive model (Appx 2.1): 

1) click on the chosen three-dimensional reconstruction to activate the interactive 

content; 2) Use tools that are listed on the bar at the top of the activated area; 3) choose 

between available views to explore spatial geometry of the three-dimensional object and 

their chosen components; 4) use Model Tree panel in order to display or hide chosen 

components. 
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Three-dimensional reconstruction of “phycosiphoniform” 

burrows: implications for identification of trace fossils in core 
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3.1. Abstract 

Phycosiphon-like trace fossils are some of the most common and important ichnofabric 

forming trace fossils in marine facies. This study aims to reconstruct the three-

dimensional morphology of a Phycosiphon-like trace fossil from Cretaceous turbidites in 

Mexico in order to test the validity of criteria used to recognize such fossils in vertical 

cross-sections such as are seen in cores through hydrocarbon reservoir intervals. The 

geometry of the trace fossil was computer-modeled using series of consecutive images 

obtained by serial grinding. The recognition of Phycosiphon in cross section is usually 

based on comparison with hypothetical cross sections of bedding-parallel specimens. 

This study critically reassesses Phycosiphon-like burrows in the light of existing 

conceptual and deterministic models, for comparison with three-dimensional 
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reconstruction of Phycosiphon-like trace fossils from the Cretaceous Rosario Formation 

of Baja California, Mexico.  

Observed morphological differences between our material and typical Phycosiphon 

suggest that the characteristic “frogspawn” ichnofabric that is usually attributed to 

Phycosiphon (sensu stricto) can be produced by other similar taxa. Our palaeobiological 

model for the formation of the studied Phycosiphon-like trace fossil is fundamentally 

different to that proposed for Phycosiphon, but produces remarkably similar vertical cross 

sections. We consider that identification of Phycosiphon incertum in core is not possible 

without detailed 3D examination of burrow geometry. We propose the term 

“phycosiphoniform” for this group of ichnofabric-forming trace fossils. 

3.2. Introduction 

Phycosiphon-like trace fossils are perhaps the most common group of trace fossils 

identified in vertically slabbed cores of mud-rich sedimentary rocks in petroleum fields 

worldwide (e.g., Bockelie 1991; Goldring et al.1991; Wetzel and Bromley 1994; 

Bromley 1996; Pemberton and Gingras 2005). We herein use the term 

“phycosiphoniform” to encompass all burrows that, when seen in cross sectional view, 

have a Phycosiphon-like core of clay-grade material surrounded by a bioturbated zone of 

clay-poor silt or very-fine-grained sand that is inferred to have been produced during 

deposit feeding. The ichnofabric generated is commonly termed frogspawn texture (Fig. 

3.1). Phycosiphoniform trace fossils are found in a range of marine depositional 

environments from marginal- to deep-marine settings in rocks ranging in age from the 
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Palaeozoic to the recent (e.g., Goldring et al. 1991; Fu 1991; Wetzel and Bromley 1994; 

McIlroy 2004b). The trace maker(s) of phycosiphoniform burrows are unknown small, 

probably vermiform, deposit feeding organisms, which are common in clay-rich 

siltstones (Kern 1978; Wetzel and Bromley 1994; Bromley 1996).  

While phycosiphoniform burrows are common in the rock record, there is little 

consistency in the literature regarding the ichnogeneric assignment of such burrows.  

A number of taxa with phycosiphoniform cross section have been recognised from core 

including: Phycosiphon incertum (Wetzel and Bromley 1994; McIlroy 2004b, 2007); 

Helminthopsis (Dafoe and Pemberton 2007; forms lacking a halo); Helminthoidichnites 

isp. (MacEachern et al. 2007); Anconichnus (Kern 1978; latterly synonymized with 

Phycosiphon by Wetzel and Bromley 1994); Nereites isp. (Wetzel 2002); Cosmorhaphe 

isp. (e.g., MacEachern et al. 2007). Most Palaeozoic occurrences of burrows in vertical 

cross section with a mudstone core and silty halo have been assigned to Nereites.  

Since the behaviour of all of these phycosiphoniform trace fossils is conventionally 

interpreted to be systematic, selective deposit feeding, precise ichnogeneric identification 

is perhaps not necessary for palaeoenvironmental analysis. In ichnofacies studies, which 

rely partly upon assessment of ichnogeneric diversity, a full appreciation of 

ichnodiversity can be integral (MacEachern et al. 2007; McIlroy 2008), and thus in need 

of careful consideration. The three-dimensional geometry and full range of potential 

vertical cross sections of most phycosiphoniform taxa are imperfectly known. This work 

focuses on reviewing existing data on the most commonly recognised phycosiphoniform 

burrow Phycosiphon incertum Fisher-Ooster 1858 for comparison with our 3D 
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Fig. 3.1. Siltstone from Cretaceous Rosario Formation, Mexico, containing phycosiphoniform burrows 
with “frogspawn texture” in vertical section. 
A. Outcrop photograph; B. Photograph of cut and ground surface of the sample examined during three-
dimensional reconstruction of burrows. The halo is accentuated by diagenetic pyrite precipitation. Note that 
the burrow halo is predominantly located below the black mudstone core. 
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reconstruction of well-preserved phycosiphoniform burrows from the late Cretaceous of 

Mexico. The phycosiphoniform trace fossil reconstructed herein was studied from a hand 

specimen containing many phycosiphoniform trace fossils from a succession of well 

exposed slide blocks in a slope channel complex from coastal exposures of the Upper 

Cretaceous Rosario Formation in the coastal outcrop at Cajiloa, close to the town of El 

Rosario, Mexico (Fig. 3.2). The ichnofabric is distinctive in containing anomalously 

large, slightly atypical, phycosiphoniform burrows. The host-sediment is a laminated 

turbidite siltstone. The burrow cores were subject to differential compaction relative to 

the host sediment, with the plane of flattening being parallel to bedding (Fig. 3.1). 

3.3. Phycosiphoniform burrows in marine ichnofabrics 

Phycosiphoniform trace fossils are an important component of most post-Palaeozoic 

shallow marine ichnological assemblages, particularly those with a mixture of clay and 

silt grade material (Goldring et al. 1991; Fu 1991). The recognition of Phycosiphon 

incertum has been greatly encouraged by publication of a series of representative 

hypothetical cross sections based on bedding-parallel specimens (Bromley 1996). We 

consider it likely that all phycosiphoniform burrows result from deposit feeding by 

organisms that selectively ingest clay grade material in order to process microbial 

biomass, particulate or dissolved organic matter, bio-films on sediment grains and the 

associated meiofaunal/interstitial biomass. The clay grade material ingested is 

concentrated into a faecal strand, surrounded by a zone of biologically processed 

sediment (silt to very fine grained sand) that has been cleaned of clay-grade material. 
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Fig. 3.2. Locality map showing the field locality (Cajiloa marked with a star) relative to the town of 
Rosario in Baja California (Mexico).  Redrafted with permission of Ben Kneller, University of Aberdeen 
unpublished field guide. 
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Published occurrences of Phycosiphon are commonly taken to include older literature 

mentioning the trace fossil Anconichnus horizontalis, which was described exclusively 

from vertical and horizontal cross sections in slabbed material (Kern 1978). The 

synonymization of A. horizontalis with Phycosiphon incertum (Wetzel and Bromley 

1994), based on revision of the type material of A. horizontalis, and emendation of the 

original diagnosis of P. incertum to include non-bedding-parallel specimens has been 

widely adopted. As a result, Anconichnus is seldom referred to in modern literature.  

In most cases, phycosiphoniform burrows are found as part of diverse ichnofabrics 

developed in shallow marine depositional environments (Goldring et al. 1991; Bockelie 

1991; MacEachern et al. 2007). In ichnotaxonomically diverse shallow marine 

ichnofabrics, Phycosiphon incertum is generally a late-stage component of the 

ichnofabric, cross-cutting and reworking earlier burrow fills (e.g. Goldring et al. 1991; 

McIlroy 2007). Modern Phycosiphon incertum are common in deep marine settings 

(Wetzel 2008), though the trace maker is not as yet identified. Where phycosiphoniform 

burrows are found in mono-taxic assemblages, the depositional environment is typically 

inferred to have been stressed. Examples of stressful depositional environments with 

mono-taxic assemblages of phycosiphoniform trace fossils include tide dominated deltaic 

deposits, in association with fluid mud deposits (McIlroy 2004b), and dysoxic mudstones 

(Bromley and Ekdale 1984, 1986; Ekdale and Mason 1988).   
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3.4. Interpreted three-dimensional morphology of Phycosiphon incertum 

The trace fossil Phycosiphon was first described by Fisher-Ooster (1858) from Gurnigel 

Flysch strata of Maastrichtian age (van Stuijvenberg 1979) in the western part of 

Switzerland (see Wetzel and Bromley 1994). The species was created by monotypy 

(Fisher-Ooster 1858). Study of topotype material facilitated the proposition of an 

emended diagnosis as follows: “Extensive small-scale spreite trace fossils comprising 

repeated narrow, U-shaped lobes enclosing a spreite in millimetre to centimetre scale, 

branching regularly or irregularly from an axial spreite of similar width. Lobes are 

protrusive, mainly parallel to bedding/seafloor. However, the plane enclosing their width 

may lie horizontally, obliquely or even vertically to bedding/seafloor.” (Wetzel and 

Bromley 1994, p. 1400).  

In emending the diagnosis, the authors allowed for a strong vertical component to the 

fecal string, which is not evident in the type material. A vertical or oblique looped fecal 

string is present in other similar material collected from modern depositional settings 

(Wetzel and Wijayananda 1990; Wetzel and Bromley 1994). The diagnostic spreite have 

not, however, been fully documented from such material. The re-description of the type 

material by Wetzel and Bromley (1994) included review of Anconichnus Kern 1978, 

recognizing the latter as junior synonym of their emended Phycosiphon (i.e. Anconichnus 

is interpreted to be a morphotype of Phycosiphon with oblique to vertically oriented 

spreiten-bearing limbs). Supplementary block diagram models for Phycosiphon are 

needed to encompass cross-sections of non-bedding-parallel burrows (Fig. 3.3). 
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3.4.1. The mud-filled “marginal burrow”  

The most visually striking part of Phycosiphon, and all phycosiphoniform burrows in 

cross section, is the marginal burrow, which is generally filled with dark clay-grade 

material, is usually less than 1mm in diameter and is surrounded by a silty halo. The 

marginal burrow has not been demonstrated to self-cross (Bromley 1996). The marginal 

burrow of any given lobe of Phycosiphon sensu lato may be in any orientation relative  

to bedding (Kern 1978; Wetzel and Wijayananda 1990; Wetzel and Bromley 1994; 

Bromley 1996; Fig. 3.3). Detailed three-dimensional imaging of the marginal burrow 

of a phycosiphoniform burrow has been undertaken recently (Naruse and Nifuku 2008), 

demonstrating that the sub-horizontal to oblique limbs may lie above one another. 

Neither a siltstone halo nor spreiten were reconstructed, perhaps because of a lack of 

lithological contrast. These burrows have been assigned to Phycosiphon incertum 

(Naruse and Nifuku 2008), though we consider that the lack of a full compliment of 

ichnotaxobases precludes confident ichnotaxonomic assignment of this material. 

Existing models for the orientation of lobes in Phycosiphon incertum (Wetzel and 

Bromley 1994) suggest that: 1) oblique lobes are most common in sandstone; 2) the same 

taxon in laminated siltstones and mudstones produces bedding-parallel lobes [comparable 

to the type material]; and 3) lobes in homogeneous silty mudstones are commonly 

randomly oriented. The marginal tube of Phycosiphon is looped, and defines the outer 

margin of spreiten-bearing regions that are discussed in detail below. A series of these 

curved probes are developed on one margin of the trace fossil in bedding-parallel 

material (Fig. 3.4). The tube, which is surrounded by very thin “mantle” of coarser  
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Fig. 3.3.Conceptual model showing the non-planar orientation of a single Phycosiphon burrow lobe with 
the mantle and spreite shown as being transparent to facilitate viewing of the central mudstone strand.  
A. Lobe parallel to the bedding plane; B – C. Possible variations of twisted Phycosiphon burrow lobes. 
This model is an expanded version of the bedding plane conceptual model (Bromley 1996), but 
incorporating the possible twisting allowed by the emended diagnosis of Wetzel and Bromley (1994). 
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Fig. 3.4. Reconstruction showing how multiple phases of foraging by an unknown vermiform organism 
creates phycosiphoniform looped burrows composed of marginal tube and spreiten (based upon Wetzel and 
Bromley 1994; Bromley 1996; Seilacher 2007). Different shades of grey represent distribution of silt-sized 
(light grey) and clay-sized (dark grey) material.  
A. Foraging organism creates feeding probes lateral to the marginal tube. B. Successive probes are made 
until the organism has produced a marginal tube the length of its body. C. Outer margin of the loop is 
produced by the organism moving along previously produced probes. D. Second loop is stared after the 
organism body is straight one again. E. Animation (embedded in the PDF and in appendix 3.1) presenting 
multiple phases of phycosiphoniform trace fossil formation. (Click to activate the animation). 



3-12 

 

grained sediment (from which the original clay-grade material has been removed by the 

activity of the trace maker), is generally considered to be composed of fecal material 

selectively collected by deposit feeding activity in the central spreiten-bearing region. 

3.4.2. Spreiten and haloes in Phycosiphon 

Spreiten are positioned inside of the marginal tube and are considered to consist of zones 

of sediment that have been processed during feeding. The outer curves of the spreite are 

orientated in the direction of progressive feeding (e.g., Wetzel 1983; Wetzel and Bromley 

1994; Bromley 1996; Seilacher 2007; Fig. 3.4A - E). It is anticipated that individual 

spreite would be meniscate if vertically sectioned through the axis of a lobe. Such a 

cross-section has never been figured, perhaps due to either a lack of lithological contrast 

between spreite or the small size of most Phycosiphon. 

In some cases the mud-filled tube and mantle are not associated with a spreiten bearing 

loop. This phenomenon was attributed to locomotory behaviour by the trace making 

organism in its search for a new region of rich organic detritus (Wetzel and Bromley 

1994). It is implied that when an organic-rich area is found by the trace maker, that the 

full spreiten-forming behaviour would resume.  

The preservation of spreiten and mantle is highly dependent upon sufficient grain size 

contrast in the bioturbated sediment. If there is no variability in grain size in the host 

sediment there is little potential for spreiten formation. It has also been considered that 

spreiten are best preserved at sand-mud interfaces (Fu 1991). The clay-rich marginal tube 

is commonly the most prominent feature seen in field material. Some degree of mantle  
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and spreiten preservation is generally seen in cross-section. The marginal tube is 

commonly filled with dark coloured clay-grade material and is surrounded by a thin, pale 

mantle of coarser grains, lithologically similar to the spreiten (Wetzel and Bromley 

1994). The combination of pale mantle and spreiten material around the dark mudstone 

core gives rise to the colloquial term “frogspawn texture” (Bromley 1996; Fig. 3.1). 

3.5. Palaeobiology of the Phycosiphon trace-maker 

3.5.1. Style of feeding 

The Phycosiphon-making organism was sensitive to grainsize variability of the host 

sediment, and is not found in sediments coarser than fine grained sandstone (Ekdale and 

Lewis 1991, in reference to Anconichnus). The trace maker is considered to selectively 

ingest the clay-grade material from the sediment, leaving clean, coarser grained spreite or 

halos, and depositing behind it a continuous clay-rich fecal string. This is perhaps 

analogous to the selective deposit feeding behaviour of Euzonus mucronata which is 

known to produce Macaronichnus-like burrows (cf. Gingras et al. 2002a, b). The depth to 

which Phycosiphon is thought to bioturbate is up to 15 cm below the sediment-water 

interface in a wide range of bathymetric conditions from shallow marine to bathyal and 

perhaps even abyssal depths (Wetzel and Bromley 1994). 

 

The presence of a meniscate backfill in the marginal tube, strongly supports its origin as a 

faecal string (Ekdale and Lewis 1991 in reference to Anconichnus [= Phycosiphon]). The 



3-14 

 

trace maker was probably a vermiform organism that produced a series of closely spaced 

feeding probes lateral to the marginal tube (in the centre of what is eventually a feeding 

loop; Fig. 3.4A). Each probing, feeding activity leaves a tubular zone of manipulated 

sediment that is cleaned of clay-grade material (upon which the trace maker feeds). 

Successive probes are made until the organism has produced a marginal tube the length 

of its body (Fig. 3.4B). The trace maker is then inferred to burrow along the outer margin 

of the earlier probes, to produce the outer margin of a loop (Fig. 3.4C). When the body of 

the trace maker is once again straight, either lateral probes are produced at the start of a 

second loop (Fig. 3.4D) or the organism abandons the region and moves in search of a 

new food-rich region (based upon Wetzel and Bromley 1994; Bromley 1996; Seilacher 

2007). When considered together these multiple phases of burrowing can be seen to leave 

behind a phycosiphoniform trace fossil (Fig. 3.4E - animation). 

3.6. Interpretation of three-dimensional morphology from cross sections 

of phycosiphoniform burrows 

Bridging the gap from the two dimensional cross-sections commonly seen in core and 

slabbed material to a three-dimensional interpretation of morphology is a significant 

challenge for applied ichnologists (McIlroy 2004a, 2008, Bromley and Pedersen 2008). 

The starting point for this process has to be reliable three-dimensional reconstructions 

of known taxa; preferably type material. To address the issue of identifying 

phycosiphoniform burrows from cross-sectional views we will review and update the 
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model for Phycosiphon incertum for comparison with our phycosiphoniform material 

from Mexico. 

3.6.1. Interpreting “frogspawn texture” as Phycosiphon-generated ichnofabrics 

 Phycosiphon is a morphologically complex trace fossil in three dimensions; 

consequently it has a diverse range of expressions in vertical cross section. These vertical 

cross sections can closely resemble other phycosiphoniform burrows (e.g., 

Helminthoidichnites cf. Chamberlain 1978; Nereites cf. Wetzel 2002). The characteristic 

frogspawn fabric (Bromley 1996) is produced by cross sections of the marginal tube 

(“embryo”) and the spreite or mantle (“jelly”). A number of vertical cross sections of 

bedding parallel Phycosiphon have been figured by Bromley (1996), and are 

supplemented by our digitally dissected deterministic model (Fig. 3.5A–3.5C). Since the 

emendation of the ichnogeneric diagnosis for Phycosiphon (Wetzel and Bromley 1994) 

includes the possibility of non bedding-parallel lobes, we have created a 3D digital model 

of Phycosiphon inclined 17o from the vertical, and created virtual vertical cross sections 

from it (Fig. 3.5E). The resultant cross-sections include the comma-shaped cross sections 

so common in outcrop material but not explained by pre-existing hypothetical models 

(Bromley 1996). The vertically stacked, bent paired marginal tubes not linked to a cross 

section by Bromley (1996), can also be explained by our model (Fig. 3.5E). 

 Comparison of our three-dimensional model, and cross sections obtained from it (Figs 

3.3 and 3.5), with published cross sections of Phycosiphon (Goldring et al.1991; Wetzel 

and Bromley 1994; Bromley 1996; Naruse and Nifuku 2008) allows us to confidently  
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Fig. 3.5. Idealized 3D conceptual model showing the antler-like morphology of Phycosiphon structure cut 
to show the expected vertical cross sections.  
Each of the boxes A-E show the 3D form of Phycosiphon in different orientations along with the location 
of labelled cut sections which are alphabetically linked to the vertical cross-sections which are analogous to 
the common sections seen in petroleum cores. A-C. Burrow loop parallel to bedding plane and intersected 
with perpendicular planes to show cross sectional views. D. Burrow inclined 17 degrees from the vertical 
and cut by vertical planes to show cross sectional views. E. Burrow vertical to bedding plane, with bent 
lobes, cut in the vertical plane to show cross sectional views. 
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state that the model of Bromley (1996) has the potential to produce the full range of 

Phycosiphon cross sections seen in vertical sections from core. It is thus entirely possible 

that the Phycosiphon trace maker deposit fed in vertical, oblique or bedding parallel 

orientations as well as the horizontal orientation seen in the type material.   

Not encompassed by our three-dimensional model, are twisted lobes, though it is inferred 

that those would produce broadly similar vertical cross-sections to those in Figs 3.5D-E. 

3.7. Methods 

Creation of three-dimensional conceptual models of trace fossils differs greatly from the 

process of direct reconstruction of the three-dimensional morphology of fossil material 

based on serial grinding and tomography. This paper aims to produce a three-dimensional 

deterministic model of some phycosiphoniform burrows from turbiditic siltstone of 

Cretaceous Rosario Formation and compare them to the Phycosiphon model of Bromley 

(1996). The approach used involves the use of serial grinding and computed tomography 

as outlined below. 

3.7.1. Serial grinding 

Three-dimensional geometry of the studied burrows was systematically exposed through 

serial grinding of the hand specimen. This approach has been successfully employed for 

three-dimensional imaging of body fossils (e.g., Baker 1978; Hammer 1999; Sutton et al. 

2001), ichnofabric (Wetzel and Uchman 1998, 2001), and trace fossils (Naruse and 

Nifuku 2008). Serial grinding allowed us to obtain a sequence of regularly spaced images 
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of the resultant vertical cross sections. The photographic dataset thus created is the basis 

for subsequent computer-based three-dimensional reconstructions.  

To aid in creating parallel regularly-spaced cross sections, the irregularly-shaped sample 

of turbiditic siltstone was placed in a tight fitting box and set in plaster of Paris. When the 

plaster was set, and regular 0.5 mm increments inscribed on the outer surface of the 

rectangular block, it was then ready to be serially ground. The regular outline of the block 

was essential to create reference points, for alignment of the photographic images to be 

used in digital analysis. The 0.5 mm spacing of images was chosen to capture a 

sufficiently large number of data-points to allow gridding of surfaces, and reconstruction 

of the burrows. A total of 59 images were acquired through a 29.5 mm thick slab of the 

sample. The consecutive series of photographs were taken from parallel surfaces with a 

digital camera, which was stationed an identical distance above the sample surface, under 

the same lighting and zoom conditions for every surface. The camera was attached to a 

photographic stand with height controlling screw feed. 

Ichnofabrics have not generally been studied using a serial grinding approach. In contrast 

to body fossil material, trace fossil fabrics are commonly complex, tortuous, and without 

sharply defined limits (both morphologically and mineralogically). A particular problem 

is that burrows may branch and inter-penetrate, making closely spaced slicing essential, 

and poses particular challenges in image processing (discussed below). The size of the 

block studied is larger than has typically been studied by palaeontologists, but did not 

pose any particular methodological problems. 



3-19 

 

3.7.2. Image processing 

The set of sequential slice images acquired through serial grinding technique was 

processed to select the regions to be studied. The phycosiphoniform burrows studied 

include a dark mud core and a halo of coarser sediment, which in the present material is 

accentuated through the presence of pyrite (Figs 3.1, 3.6). To obtain adequate contrast, 

the images were made into gray scales (Fig. 3.6B). All images were put into a single 

Photoshop document in consecutive order. Discrete burrow cores were chosen as the 

objects for tracing the location of the chosen burrow. The burrow core was tracked 

through each consecutive image and manually selected using layer masking to hide all 

other burrow cores and halo that might confuse the reconstruction of the chosen burrow 

(Fig. 3.6C). A masking layer was used to allow retention of the original, gray scaled 

images, including location of adjacent burrows, should it become subsequently desirable 

to study adjacent burrows. The layered Photoshop document was then cropped to the 

smallest size that encompassed the isolated burrow core. Each layer, representing the 

equidistant ground surfaces, was saved as JPEG image in the same directory with a 

numeric name that indicates its position in the sequence. This set of image-processed 

two-dimensional binary images was used for the subsequent three-dimensional 

reconstruction. 

3.7.3. Three-dimensional rendering 

The set of the binary images was imported to the commercial edition of VolView 2.0 

software. Consecutive, gray scaled intersections of burrow core were converted by the  
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Fig. 3.6. Image processing stages during three-dimensional reconstruction of phycosiphoniform burrow 
from Rosario Formation.  
A. Investigated material from Rosario Formation containing phycosiphoniform forms. Each photograph 
obtained during serial grinding was aligned and cropped. The continuous burrow cores were selected 
manually as the object of study (indicated by white arrows). B. To improve contrast, images were 
converted to gray scale. C. Distinct burrow cores were manually selected using layer masks in Photoshop 
and hiding all other burrow cores in the investigated area of the original images. Selected cores were 
tracked on all processed images. Images were then cropped to size that encompassed isolated burrow cores 
on all processed images. D. For additional reconstruction of burrow with its surrounding halos, areas of the 
halos were manually marked on all sequential images uncovering it from the masked layer. E. Three-
dimensional visualization of phycosiphoniform burrow obtained through volume rendering of sequential 
images imported to VolView software. 
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software to the volume shape that represents the three-dimensional geometry of the 

examined phycosiphoniform burrow. Artificial colors were attributed to the reconstructed 

burrow core and to the halo in order to aid illustration (Figs 3.6E, 3.7, 3.8 and 3.9). 

Three-dimensional reconstruction of the phycosiphoniform burrow from examined rock 

was additionally saved as movie file that shows the burrow rotating around the axis that 

is perpendicular to the bedding plane (see attached animation files, Figure 3.7D and 

3.9.4). 

3.8. Three-dimensional morphology of the Rosario Formation 

phycosiphoniform burrows 

By choosing a sparsely bioturbated portion of the ichnofabric, it was possible to identify 

a single isolated burrow. The burrow consists of a single loop shaped clay-filled tube that 

that is identifiable in the series of ground vertical cross sections. This isolated burrow 

was subjected to detailed 3-dimensional reconstruction of both the mud-filled burrow 

core (Fig. 3.7B-C) and the burrow halo (Fig. 3.7A). The volume of rock subjected to 

three-dimensional reconstruction, and containing the fossil burrow was 40.9 mm in 

length (X axis), 21.9 mm in height (Y axis) and 29.5 mm thick (Z axis) (Figs 3.7-3.9). 

The two limbs mud-filled burrow core that describe the shape of the lobe are parallel to 

each other in vertical section and vary in diameter between 3 and 4 mm. Slight thickening 

in tube width is noted in the distal portion of the loop that cannot be attributed to 

compaction. Thickening of this part of the tube was described as one of the diagnostic 

characteristics of Phycosiphon (Wetzel and Bromley 1994). The paired limbs of the  
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Fig. 3.7. Three-dimensional reconstruction of phycosiphoniform burrow from Rosario Formation, Mexico.  
A. Burrow core with surrounding halo. B-C. Burrow core without the halo. D. Animation of rendered 
reconstruction of the phycosiphoniform burrow core (embedded in the PDF and in appendix 3.2 A; click to 
activate the animation).  
Scale bars = 10 mm. 
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Fig. 3.8. Three-dimensional reconstruction of the lobe of the phycosiphoniform burrow from Rosario 
Formation, Mexico.  
A. The longer arm of the lobe descends gently downward for about 30% of the lobe length and is inclined 
in about 11° to the bedding plane. Then in about next 30% of lobe length both arms continue more or less 
parallel to the stratification in order to incline in 24 -25° downward to the sediment. B. In about last 15% of 
lobe length the arms incline for further 15 – 19% each in opposite directions (upward and downward) and 
then direct back to create the apex of the lobe(so in the last part of formed loop the arms are the most 
distant from each other before they connect in the apex ). C. Whole lobe is bent in the horizontal direction 
along a half-ellipse of an aspect ratio of 2.4. D. The halo can be several times thicker than the burrow core. 
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Fig. 3.9. Reconstructed phycosiphoniform burrow with associated halo from Rosario Formation, Baja 
California, Mexico.  
Coarser grained material of the halo propagates downward from the line of each lobe arm (in direction to 
bedding plane) and fills the space between the lobe arms. A-C. Different views of reconstructed burrow 
with surrounding halo in relation to the bedding plane. D. Animation of rendered reconstruction of burrow 
with the associated halo (embedded in the PDF and in appendix 3.2 B; click to activate the animation) 
Scale bar = 10 mm. 
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examined form are not in the same horizontal plane, and the terminal portion of the loop 

is at a steep angle to the limbs. 

3.8.1. Nature of the halo in the Rosario phycosiphoniform burrows 

Our 3-D reconstruction of phycosiphoniform burrows from the Rosario Formation, Baja 

California, Mexico, demonstrates that the reworked silt-rich, clay-poor material that 

forms the halo around the clay-filled burrow core is dominantly present below the level 

of the clay-filled burrow (Fig. 3.9). This is also a feature of most natural vertical cross 

sections studied in the field (Fig. 3.1A). The halo is demonstrably meniscate, as 

determined from cross sectional views, but especially through three-dimensional 

reconstruction (Fig. 3.9). It is also noted that the burrow halos of adjacent burrow limbs 

are closely juxtaposed with little if any undisturbed host sediment between them (Fig. 

3.9). The halo around phycosiphoniform burrow cores has been described from other 

occurrences (Wetzel and Wijayananda 1990; Ekdale and Lewis 1991), but has not 

previously been reconstructed in three dimensions.  

A similar halo associated with a phycosiphoniform burrow (attributed to Anconichnus) 

was interpreted as an early diagenetic oxidation halo (Ekdale and Lewis 1991). This 

feature was subsequently reinterpreted as being due to bioturbation, specifically the 

formation of spreiten in accord with newer conceptual models (Wetzel and Bromley 

1994; Bromley 1996). Three-dimensional reconstruction of the Rosario Formation 

phycosiphoniform fossil, with its associated coarser-grained structure, demonstrates that 

the coarser-grained material is indeed asymmetric and lies below the level of each of the 
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two lobe arms (Fig. 3.9). This asymmetry is also visible from vertical surfaces prepared 

in the laboratory and in natural outcrop (Fig. 3.1). The burrow halo is characteristically 

pyrite rich (Fig. 3.1B). Pyritization is interpreted to have been caused by sulphate-

reducing bacteria during early diagenesis. The marked color contrast between the 

pyritized halo and clay-rich burrow cores relative to the surrounding rock matrix allowed 

us to distinguish the three components of the fabric for the purpose of image analysis. 

The presence of the coarser-grained (silt-sized) material, not only between lobe arms, but 

also external to the marginal tube (Fig. 3.9) precludes the presence of spreite, and allows 

rejection of the possibility that the phycosiphoniform trace fossil reconstructed herein is 

Phycosiphon. In the accepted conceptual model of Bromley (1996; Figs 3.3-3.5), spreiten 

are predicted only between arms of a single lobe and between marginal burrows. The 

behavioural model proposed for Phycosiphon (Bromley 1996) precludes the possibility of 

formation of the halo/spreiten below the level of a marginal tube that borders the 

Phycosiphon structure. Spreiten are demonstrably not present in our material from 

Rosario Formation. Instead, the phycosiphoniform cross sections are inferred to have 

been formed by bulk sediment processing at the anterior of the burrow during continuous 

burrowing rather than successive probing as is proposed for Phycosiphon s.s. 

3.9. Conclusion 

Mud-rich siltstones from Rosario Formation are characterized by dense monospecific 

assemblages of phycosiphoniform burrows, and are analogous to many shale-gas 

reservoir facies. Local concentrations of burrowing may reflect patches of labile organic 
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matter. The phycosiphoniform burrow-makers are thought to be selective deposit feeders 

that ingested clay-grade material and left a clean mud-poor feeding halo of processed 

sediment.  

Our image analysis of two dimensional slices allows reconstructing the three-dimensional 

geometry of the phycosiphoniform trace fossil. The reconstructed burrow is unlike 

Phycosiphon (sensu lato), but produces very similar “frogspawn texture” ichnofabrics. 

The cross-sections of our burrow system are distinguished from those of Phycosiphon s.l. 

in that the halo is generally present only beneath the level of clay-rich burrow cores.  

The examined phycosiphoniform burrow geometry presents the following characteristics 

that allow differentiation from Phycosiphon incertum: 1) Arms of the single lobe are 

parallel in the vertical plane (Fig. 3.8A, B) and the lobe is seen to bend into a half ellipse 

when viewed in the plane of the lobe (Fig. 3.8C); 2) In side view, the lobe arms extend 

parallel to bedding and are steeply bent downward at the termination of the loop (Fig. 

3.8A); 3) in axial view, the lobe is steeply inclined relative to the bedding plane (Fig. 

3.8B); 4) The halo of the burrow is present only below the level of the burrow core and 

completely fills the space between the lobe arms (Figs 3.1 and 3.9); 5) The halo can be 

several times thicker than the burrow core (Fig. 3.8D); 6) No spreiten have been 

observed.  

Our palaeobiological model for the formation of the studied phycosiphoniform trace 

fossil is fundamentally different to that proposed for Phycosiphon, but produces 

remarkably similar vertical cross sections. We consider that identification of Phycosiphon 

incertum in core is not possible without detailed three-dimensional examination of 
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burrow geometry. We propose the term “phycosiphoniform” to describe this group of 

ichnofabric-forming trace fossils. We consider that, at present, our material should be left 

in open nomenclature pending thorough three-dimensional analysis of the type material 

of other phycosiphoniform burrows including Anconichus horizontalis. We note that 

there are many possible burrow geometries that can produce phycosiphoniform cross 

sections, but that much work needs to be done before many taxa can be convincingly 

recognized in vertical cross section. 
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Appendix 3.1. 
Animation showing how multiple phases of foraging by an unknown vermiform organism create 
phycosiphoniform looped burrows composed of marginal tube and spreiten (based upon Wetzel and 
Bromley 1994; Bromley 1996; Seilacher 2007). Different shades of grey represent distribution of silt-sized 
(light grey) and clay-sized (dark grey) material.  
Click to activate the animation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3-33 

 

Appendix 3.2. 
Three-dimensional reconstruction of phycosiphoniform burrow from Rosario Formation, Mexico.  
Scale bars = 10 mm. 
 
A. Animation of rendered reconstruction of the phycosiphoniform burrow core. Click to activate the 
animation. 

 

 

 

 

 

 

 

 

B. Animation of rendered reconstruction of the burrow core with the associated halo. Click to activate the 
animation. 
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CHAPTER 4   

Effect of phycosiphoniform burrows on shale hydrocarbon 

reservoir quality 

 

Małgorzata Bednarz and Duncan McIlroy 

Published in AAPG Bulletin (2012) Volume 96 (10) 

 

4.1. Abstract 

Unconventional gas (tight-gas, coal-bed methane and shale-gas) has become an 

increasingly significant source of energy. Economic production from such low 

permeability reservoirs relies upon identifying regions of the reservoir that will yield the 

highest gas production rates.  Currently available gas recovery technologies are highly 

dependent on the fracturability of the reservoir.  Zones of enhanced brittleness and 

permeability within shale-gas reservoir horizons are a pre-requisite for successful shale-

gas recovery.  Such brittle zones are directly linked with increased quartz and/or 

carbonate content within the mudstone. In mudstones with high clay mineral content, 

quartz may be concentrated and redistributed as a result of burrowing activities of 

infaunal organisms. High quality porosity and permeability zones in shale-petroleum 
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reservoirs may be present in the form of silty and sandy tortuous strips of selectively 

concentrated grains of quartz that constitute burrow halos. Grain-selective burrows 

therefore can improve reservoir capacity, permeability and fracturability and thus control 

the storativity of the shale-petroleum reservoir. This study presents three-dimensional 

reconstructions of three different types of Phycosiphon-like burrows and investigates the 

possible fluid flow paths caused by the ichnofabric.  The volumetric approach to the 

bioturbation generated by phycosiphoniform burrows makers used herein shows that the 

volume of sediment that becomes more porous and more permeable media within such 

bioturbated interval can range from 13-26% of the total volume. The quartzose strips of 

sediment caused by bioturbation are highly tortuous and interconnected vertically and 

horizontally, thereby increasing both horizontal and vertical permeability.  Additionally, 

the quartz-frameworks created by the burrows may locally increase fracturability within 

otherwise non-brittle mudstones. 

4.2. Introduction 

Shale-gas and other shale–hosted hydrocarbon -reservoirs are unconventional 

hydrocarbon resources that rely upon the connectivity of porosity and fractures—both 

natural and induced—in organic-rich mudstones and very fine-grained strata over very 

large geographic areas. The host sediment is typically an ultra-low permeability organic-

rich mudstone and/or siltstone with poor vertical permeability, and rich in biogenic 

and/or thermogenic gas that is tightly bound within the host sediment (Curtis 2002). 

Shale gas and other shale petroleum facies are commonly composed of inter-bedded 
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successions of dominantly fine-grained rocks (siltstones and mudstones) of variable but 

generally low permeablility (e.g. Lemiski et al. 2011). Economic production from such 

heterogeneous, low-permeability but volumetrically large reservoirs relies not only upon 

locating the organic-rich mudstone, but also upon identification of stratigraphic intervals 

within the reservoir that are sufficiently fracturable and permeable to allow exploitation 

(Jenkins and Boyer 2008).  The highest rate of gas or liquid petroleum production is 

required to create maximally effective fields. Currently available shale gas and oil-shale 

recovery technologies are largely dependent on the fracturability of the reservoir to 

connect zones with the potential to have a high gas yield. Such high-yield zones include 

permeable siltstone laminae and beds that allow production of fluids from the otherwise 

largely impermeable mudstone (Jenkins and Boyer 2008).   Zones of enhanced brittleness 

and permeability within shale petroleum reservoir horizons are a prerequisite for effective 

development of shale-gas reservoirs, and are directly linked to the quartz content of the 

mudstone (Narr and Currie 1982). In mudstones and siltstones with high clay mineral 

content, silt-grade quartz grains may be preferentially sorted from the clay-rich host 

sediment and concentrated in burrow fills and burrow linings during the grain-selective 

deposit feeding activities of infaunal organisms (Bednarz and McIlroy 2009). We 

therefore predict that zones of intense bioturbation in shale-gas reservoir facies have the 

potential to significantly influence the rheological and petrophysical properties of the 

reservoir, by enhancing fracturability and primary porosity. Burrow-related zones of 

enhanced porosity and permeability in shale-gas reservoirs are typically in the form of 
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tortuous burrows that have hitherto received little attention in terms of their three-

dimensional geometries (Bednarz and McIlroy 2009). 

A number of recent studies have considered the influence that burrows have on the 

reservoir properties of the host sediment in carbonate facies (e.g., Gingras et al. 1999, 

2004; Keswani and Pemberton 2007) and in sandstones (e.g., Pemberton and Gingras 

2005; Gordon et al. 2010, Tonkin et al. 2010). In carbonate facies, burrows can remain 

completely open during burial and diagenesis, forming entirely open pipeworks. Similar 

large burrows in sandstones filled with coarse grained poorly sorted sandstone have also 

been considered to be reservoir enhancing (Pemberton 1992; Gingras et al. 1999, 2004, 

2007; Pemberton and Gingras 2005; Tonkin et al. 2010).  Not all burrows are reservoir 

enhancing, and many types of trace fossils are expected to reduce the connectivity of 

primary sedimentological porosity (e.g., Pemberton and Gingras 2005; Tonkin et al. 

2010). There has been little consideration of how burrows orientated oblique-to-bedding 

in shale petroleum reservoirs might influence the efficiency of gas or liquid recovery. 

There are few focused studies of the ichnology of shale-gas reservoirs (Pemberton and 

Gingras 2005; Hovikoski et al. 2008; Lemiski et al. 2011).  Within some mudstones, 

siltstones and sandstones with low net-permeability, fluid flow is considered to be 

possible through conduits, formed by induced fracturing, that connect isolated high 

porosity trace fossils such as Phycosiphon, Zoophycos and Chondrites (Pemberton and 

Gingras 2005, Spila et al. 2007; Lemiski et al. 2011). Such burrows, when present in 

shale-gas reservoirs, can constitute a significant volume of the reservoir, enough to 

sustain an economically significant flow (Pemberton and Gingras 2005).  Zoophycos, 
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Chondrites and Phycosiphon are extremely efficient sediment processors.  Large 

Zoophycos can reach length of 1 m in vertical extension and maximal horizontal extent 

being 1m2 (Wetzel and Werner 1980).  The sediment-processing capacity of 

Phycosiphon-like burrows is assessed herein for the first time.  

In this paper we present results from the volumetric consideration of three Phycosiphon-

like burrows (termed phycosiphoniform because of unresolved taxonomic issues; see 

Bednarz and McIlroy 2009).  Several phycosiphoniform burrows were collected to 

encapsulate the same sort of deposit feeding/sediment cleaning behavior in rocks of 

different ages, but from facies similar to shale-gas reservoir facies. Our study is built 

around deterministic, three-dimensional, volumetric reconstructions of the investigated 

phycosiphoniform burrows.  The three-dimensional volume rendered computer models, 

when linked to a petrological and petrophysical understanding of burrow geometry, is the 

only realistic basis for consideration of probable fluid flow paths within very fine-grained 

siliciclastic facies. For this reason understanding of the structure and distribution of 

phycosiphoniform burrows is essential for estimations of primary porosity in bioturbated 

shale-petroleum reservoirs. 

Earlier two dimensional models of petroleum flow through the sand-rich burrow haloes 

of Phycosiphon incertum illustrate the possible pathways of fluid flow through 

bioturbated low matrix permeability facies (Spila et. al. 2007). The two dimensional 

representation of hydrocarbon migration was based on capillary threshold pressure 

assessed by a computer program on a base of Invasion Percolation Techniques 

(Carruthers 2003, MPath software). This method is based on the assignment of capillary 



4-6 

 

threshold pressure values to the pixels visible on an examined image dependently on their 

color intensity. It is considered that such two-dimensional model of migration trajectories 

creates an erroneous impression of the flow paths and their connectivity and gives flawed 

reservoir characterization. This is due to the limitation of the non-volumetric nature of the 

flow paths illustrated on planar surfaces.  In three dimensions most phycosiphoniform 

burrows are highly interconnected with very few if any blind-ends.  This work 

reconstructs in three dimensions three phycosiphoniform burrows to enable realistic 

consideration of gas and liquid migration within shale-petroleum reservoir.   

The three-dimensional reconstructions generated using volumetric computational tools, 

along with an interactive three-dimensional viewer, allow critical reappraisal of the pre-

existing understanding of the important trace fossils in gas shale-petroleum facies. Once 

produced, the deterministic three-dimensional models can be artificially sliced to provide 

a range of templates for identification of all possible cross sections of the burrow.  Our 

novel approach to three-dimensional ichnology and ichnofabric analysis has created the 

possibility to undertake precise realistic three-dimensional ichnology, and apply it to the 

recognition of trace fossils in a core or outcrop. 

4.3. Phycosiphoniform trace fossils in shale-gas reservoir facies  

4.3.1. Typical settings of Phycosiphon-like trace fossils occurrence 

Phycosiphoniform trace fossils are found in many marine mudstones, siltstones and very 

fine sandstones (Ekdale and Lewis 1991; Bednarz and McIlroy 2009). 
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Phycosiphoniform-bearing fine-grained rocks (especially from distal turbiditic and 

pelagic settings) are usually considered from the greenish grey color, and total organic 

carbon (TOC) content, to have been oxygenated during, and shortly after their deposition 

(e.g. Wetzel and Uchman 2001; Taylor et al. 2003).  We note however that the dark color 

of a mudstone does not necessarily reflect the degree of pore water anoxia.  Elevated 

rates of deposition can cause dilution of organic matter preventing its burn-down and 

simultaneous preservation of oxygenated interstitial pore waters (Wetzel and Uchman 

2001; Bohacs et al. 2005). Availability of oxygen at least at the water-sediment interface 

or in pore waters of organic matter-rich deposits provides incentives for colonization of 

the sediment by small burrowing organisms such as the phycosiphoniform trace makers. 

The makers of phycosiphoniform burrows are generally considered to be opportunistic, 

grain-selective deposit-feeders that rapidly process sediment, both as early colonizers, but 

especially as late-stage mid-tier deposit feeders that rework previously created burrow 

fills (e.g. Goldring et al. 1991; Wetzel and Bromley 1994; Bromley 1996; Savrda et al. 

2001; Wetzel and Uchman 2001; Taylor et al. 2003; McIlroy 2004; Bednarz and McIlroy 

2009). 

The small size of the trace fossils that commonly typify mudstones makes detailed 

morphological study difficult, and is probably the reason that such subtle bioturbation is 

not usually considered in detail during evaluation of shale-gas reservoir quality. Trace 

fossils in mudstones are only easily studied on cut and polished surfaces that may not be 

available in conventional preparation of cores from shale gas reservoirs.  The impact of 

bioturbation on reservoir facies is especially important in shale-gas reservoir evaluation, 
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as increased heterogeneity can have significant influence on gas flow, deliverability and 

reservoir capacity (Lemiski et al. 2011). 

4.3.2. Gas shale facies with recognized occurrence of Phycosiphon-like 

 trace fossils  

Phycosiphon-like trace fossils are probably the most frequent ichnofabric-forming trace 

fossils in clay-rich sedimentary rocks including shale-gas reservoirs (e.g., Bockelie 1991; 

Caplan and Bustin 2001; Goldring et al.,1991; Wetzel and Bromley 1994; Bromley 1996; 

Pemberton and Gingras 2005). The characteristic two-dimensional (2D) geometry of 

phycosiphoniform burrows in vertical cross section (a central, clay-grade core surrounded 

by clean quartzose halo of silt to very fine sand) has typically, perhaps uncritically, been 

identified as Phycosiphon isp. in several shale-gas and oil-shale reservoir intervals 

including the Alderston member of the Lea Park Formation (Western Canada 

Sedimentary Basin, SK, Canada), the Bakken Formation (Williston Basin, SK, Canada, 

MT, ND, USA), Barnett Shale (Fort Worth Basin, TX, USA), Mancos Shale (Unita 

Basin, UT, USA) and others (e.g. Hovikoski et al. 2008; Kohlruss and Nickel 2009; 

Lemiski et al. 2011; Macquaker et al. 2007; Sonnenberg and Pramudito 2009; Ottmann 

and Bohacs 2010).  

4.3.3. Effects of phycosiphoniform burrows on permeability and fracturability  

Phycosiphoniform trace fossils are unified by their small size, usually less than 5mm in 

diameter, with a quartzose halo of silt-grade material around a clay-rich core (Bednarz 
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and McIlroy 2009).  Three-dimensional reconstruction of field samples of such burrows 

has revealed that there is considerable variability within this group of trace fossils.  

Recent work has shown that the distinctive “frogspawn ichnofabric” usually attributed to 

Phycosiphon (sensu stricto) can be produced by other similar taxa (Bednarz and McIlroy 

2009).  Changes in rheology and petrophysical properties associated with these burrows 

are of fundamental importance to shale-gas reservoirs.  The impact of the burrows on 

reservoir quality can only be meaningfully assessed in the light of three-dimensional 

morphological understanding.  We consider that all phycosiphoniform burrows are likely 

to significantly increase the heterogeneity of otherwise ultra-low permeability mudstones, 

increasing fracturability (by creating quartz frameworks) and porosity (where there is no 

quartz cementation during diagenesis).  In sandstones the same trace fossils have been 

found to reduce porosity and permeability by about 33% (Tonkin et al. 2010). 

Shale petroleum facies are typically subject to compaction, which is variable in intensity 

depending on the burial history. Compaction affects the geometric relationships within 

ichnofabrics of shale gas facies, with the smallest compaction being observed in 

reservoirs that produce biogenic gas. In this study we do not analyze the degree of the 

compaction of the bioturbation and its impact on the burrows’ geometry. The influence of 

compaction and thus progressive change in burrow morphology was not considered 

herein. If our data on volumetric relationships were to be applied to reservoir units, the 

calculated percentage relationships of volumes would have to account for compaction.  

The degree of compaction could perhaps be estimated from the aspect ratio of the burrow 

core, which is typically found to be circular in cross section.  The quartzose portions of 



4-10 

 

phycosiphoniform burrows (the halos) are likely to have less potential for burial 

compaction than the clay-rich matrix.  Experimentation on differential compaction of this 

nature has not yet been applied to trace fossil studies.  

4.4. Methods 

4.4.1. Three-dimensional methods in ichnology 

Three-dimensional visualization of trace fossils has formerly been a challenge to 

ichnologists owing to the lack of the availability of computational tools required for 

compilation of a series of two dimensional cross sections of burrows into a three-

dimensional volumetric environment. Previously published 3D reconstructions, in the 

form of sketches, have typically been a reflection of the author’s extrapolation from 

common 2D burrow cross sections (commonly with a fair degree of skill; e.g. Wetzel and 

Bromley 1994; Bromley 1996). With computerization, and the availability of tools 

primarily used in medical science, new technologies for reliable three-dimensional 

visualizations have become available. Three-dimensional, volumetric reconstruction of 

trace fossils is new and has not yet been widely used.  Non destructive techniques used 

include Magnetic Resonance Imaging of Macaronichnus (Gingras et al. 2002); X-Ray 

analysis of Zoophycos (Wetzel and Werner 1980; Löwemark and Schäfer 2003) and 

Monesichnus (Genise and Laza 1998); vertebrate trackways, footprints and terrestrial 

trace fossils have also been studied using Multi-stripe Laser Triangulation Scanning 

(MLT) (Platt et al. 2010).  At present, all available non-destructive techniques used to 
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acquire three-dimensional representation of the fossils based on variations in density that 

characterize the scanned medium (X-Ray CT scanning) or require full exposure of the 

examined surface of the fossil  and do not provide data on the burrow fill (Multistripe 

Laser Triangulation Scanning, Platt et al. 2010).  The effectiveness of CT scanning for 

imaging trace fossil fabrics in mudstones is limited by the minimal density contrast 

between the burrow fill and the rock matrix (cf. Gingras et al. 2002; Naruse and Nifuku 

2008). Because of our focus on linking detailed geometries to lithology, the examined 

phycosiphoniform burrows were serially ground and then photographed at closely-spaced 

intervals and the resultant data were incorporated into the 3D models presented below. 

Our ongoing work will extend this approach to other common trace fossils from the same 

fine-grained unconventional reservoir facies. 

4.4.2. Serial grinding 

Systematic serial grinding has been effectively used in past to obtain three-dimensional 

models of body fossils (e.g., Baker 1978; Hammer 1999; Sutton et al. 2001, Watter and 

Grotzinger 2001, Maloof et al. 2010, Schmidtling and Marshall 2010) as well as 

endogenic trace fossils (e.g., Genise and Laza 1998; Wetzel and Uchman 1998, 2001; 

Naruse and Nifuku 2008; Bednarz and McIlroy 2009). The technique of serial grinding 

involves sequential abrasive removal of a thin layer of a material from a planar surface of 

the rock with maintaining constant displacement (Sutton et al. 2001). It results in 

exposure of parallel regularly spaced surfaces in order to obtain a sequence of 

photographs of the resultant vertical cross sections of examined objects. The set of 
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consecutive digital images thus created is the basis for the computer-based 3D 

reconstructions (Sutton et al. 2001; Naruse and Nifuku 2008; Bednarz and McIlroy 

2009).  

Serial grinding was conducted manually (Ph1 sample) and with the usage of HAAS VF-3 

CNC Vertical Machining Center (samples: Ph3, Ph7). The machine provides precision 

computer-controlled surface grinding through use of diamond tip. The serial grinding 

increment was set to 0.2 mm for samples Ph3 and Ph7. Sample Ph1 was ground manually 

with the increment of 0.5 mm. 

4.4.3. Image processing  

Each set of digital images that represents the ground sample was processed in the 2D 

image processing software Adobe Photoshop (cf. Sutton et al. 2001; Naruse and Nifuku 

2008; Bednarz and McIlroy 2009).  

Phycosiphoniform burrows are typically composed of dark grey mud cores surrounded by 

halos of lighter and coarser-grained sediment. Both of these burrow components have 

color contrast relative to the host sediment and are clearly visible in the photographic 

datasets collected. The burrow cores and the halos were tracked separately through each 

consecutive image and manually selected with tablet pen. The stacks of images with thus 

created shapes of either cores or halos were saved in gray scale that is the most suitable 

color scheme for their interpretation in contemporary 3D volumetric software such as 

VGStudio Max or VolView. 
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4.4.4. Three-dimensional modeling and volume measurements 

The processed two dimensional photographic images were the basis for three-

dimensional modeling.  After providing information about spatial slices’ displacement 

and units of measurement, the image stack was imported into volume-visualizing 

software VolView 2.0 and/or VGStudio MAX 1.2.1. The gray scaled representations of 

burrow cross sections were converted by the software to a volume that reflects the real 

size and proportions of the examined volume of the rock. For the purpose of volume 

measurements, both burrow cores and burrow halos of phycosiphoniform ichnofabric 

were reconstructed separately (e.g. cores were reconstructed based on the set of images of 

manually selected cores with halos deliberately omitted).  This approach allowed for 

detailed 3D reconstruction of the volume and geometry of each of the two main parts of 

phycosiphoniform burrows (core and halo).  

The three-dimensional volumes of core and burrow halo were measured in mm3 using 

VolView 2.0 and/or Autodesk 3ds MAX 2009. This study presents deterministic three-

dimensional reconstruction not only of the clay-rich burrow core (cf. Naruse and Nifuku 

2008) but in addition also reconstructs the burrow halo composed of the coarser-grained 

material.  It is the burrow halo that provides potential fluid flow paths within the 

bioturbated mudstones, enhancing the sediment’s potential as a shale gas reservoir.  

4.4.5. Quantitative ichnological methods  

Quantitative methods in ichnology and their application in regards to the newly explored 

3D reconstructions of trace fossils have been recently reviewed (Platt et al. 2010).  
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Quantitative ichnology has previously been limited to two dimensions due to the lack 3D 

reconstructions (cf. Taylor and Goldring 1993; Droser and Bottjer 1986).  Three-

dimensional reconstructions such as presented herein allow deterministic measurement of 

several parameters of trace fossils and ichnofabrics, including burrow size and geometry 

and the volumes of various components of ichnofabrics (Appx 4.1).  Application of 3D 

volumetric methods for any trace fossil investigation brings new insight into the 

ichnological interpretation and understanding of the examined sedimentary fabric.  

4.4.5.1. Burrow lengths and orientations 

Maximum burrow depth (Dmax) is the vertical distance from the burrow opening to the 

bottommost termination of the burrow measured perpendicular to the original bedding 

plane (Hembree and Hasiotis 2006; Platt et al. 2010). 

Tortuosity index (T) is an important variable allowing for estimation of a degree of 

curvature of a burrow. It may be measured as the ratio of the length of the space diagonal 

(d) of a box bounding the spatial line representing the burrow core in 3D and the total 

length of the burrow core (LC; Equation 1, Fig 4.1B, C). From this data length of the 

burrow core segments is considered in relation to the volume of the sediment that the 

core is enclosed within (i.e. the volume of the box is represented by its space diagonal).  

(1)  Tortuosity index:  CL
dT       

(2)  Space diagonal:  
222 cbad     
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(3)  Burrow core length   

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321 ...   

The length of the burrow core (LC) represents the actual burrow length and it is a sum of 

all segments consisting central line of the burrow core (Equation 3, Fig. 4.1C, after Platt 

et al. 2010). The equation 1 shows that the burrow is straight when its tortuosity index is 

equal 1 (the length of the burrow core and the space diagonal are equal), and (highly) 

tortuous when the tortuosity index approaches 0 (burrow core is more than two times 

longer than the space diagonal).  Tortuosity of the burrow, along with the tortuosity 

index, can also be illustrated by the burrow length index (Li, Equation 4), which is the 

ratio between the burrow marginal length (LM) and the total burrow length (LC). 

(4)  Burrow length index:  C
M

L
L

iL 
              

 Burrow marginal length (LM, Fig. 1 B) is the shortest distance from the center of the 

opening ellipse (cross section representing the beginning of the burrow core in the rock) 

to the center of the closing ellipse of the burrow. Similarly to the tortuosity index, the 

burrow length index indicates the straight burrow when the burrow length index (Li) is 

approaching 1, and the most tortuous (or looped) when approaching 0 (however this 

cannot be assumed without considering the tortuosity index simultaneously because the 

burrow length index (Li) is independent of the position of the burrow within the bounding 

box).  
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Fig. 4.1. Three-dimensional reconstruction of a phycosiphoniform burrow from Mexico (Ph1 b01) as an 
example showing the approach used to measure the dimensions of the trace fossils and/or ichnofabrics in 
three dimensions. 
A. Entire reconstructed burrow (core with halo) enclosed in a box (a smallest rectangular cuboid bounding 
the entire examined burrow) inscribed in the x, y, and z Cartesian coordinate system.  
B, C. Visualization showing the central axis of the fecal core of a phycosiphoniform burrow within a box 
of the dimensions: length (a), height (b), and depth (c) that are parallel with the X, Y, and Z axes. The a, b, 
and c lines start from the origin of the Cartesian coordinate system (0.0) and their lengths determine the 
position of point P (a, b, c). The shortest distance from the origin of the coordinate system (0.0) to point P 
is equal to the space diagonal length of the box (d). The horizontal plane x, z is parallel with bedding; si = 
segments (straight lines) of the central line of the burrow core that are used to approximate the actual 
burrow length; LM  = marginal length, which is the distance between the burrow opening and burrow 
closing. 
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4.4.5.2. Volumetric considerations 

Volumetric assessment of the bioturbation within a rock is probably the most significant 

factor with respect to reservoir quality evaluation and further production from the 

reservoir. The ability to give reliable 3D volume estimations creates both a new tool for 

the realistic calculation of likely reservoir volumes, and also the basis for determination 

of the most permeable and/or fracturable volumes within a reservoir zone. 

Volume Available (VA, after Platt et al. 2010) is the volume of the smallest box enclosing 

the burrow or burrows association (the box in Fig. 4.1A). In reservoir studies the volume 

available could be simply determined by multiplying the bioturbated core interval’s 

height, width and depth. 

Volume Utilized (VU, after Platt et al. 2010) is the volume of the entire examined burrow 

or burrows association. In other words it is the volume of the sediment reworked by the 

trace maker. In case of phycosiphoniform trace makers VU is the volume of summarized 

volumes of the core (Vc) and the halo (Vh).  

Volume Exploited (VE) describes efficiency of space usage by the trace maker(s) and also 

burrow(s) density according to the equation 5 (after Platt et al. 2010; Equation 5). It 

reflects the percentage of the sediment that was reworked by the trace maker in relation 

to the volume available: 

(5)  Volume exploited:  VA
VUVE 100      

In shale gas reservoir studies the most important volume within bioturbated intervals is 

volume of the halo (Vh) produced by the Phycosiphon-like burrow makers. It can be 



4-18 

 

presented as percentage of halo contribution (%Vh) within the volume available 

(Equation 6): 

(6)  Volume halo percentage   VA
VhVh 100%   

The %Vh corresponds with the variable of Core Multiplicand for halo estimation (CM) 

described as (Equation 7): 

(7)  Core multiplicand    VcVhCM /  

Core multiplicand illustrates how many times the volume of fracture-able and permeable 

halo material is larger than the volume of impermeable core. CM variable is found to be 

independent from tortuosity and volume available and is more or less constant for each 

type of phycosiphoniform burrow examined in this study. Thus, if the type of 

Phycosiphon-like burrows is correctly identified in the core, the CM variable will allow 

for estimation of what percent of permeable and brittle material is present within the 

sample even during a naked eye observation when bioturbation index is simultaneously 

assessed. 

4.5. Examined phycosiphoniform burrow types 

Three examples of Phycosiphon-like trace fossils were subjected to three-dimensional 

examination (Fig. 4.2, Appx 4.2). The rock samples containing trace fossils in question 

were collected from the following localities: 
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1) The Upper Cretaceous Rosario Formation, Baja California, Mexico  

(sample Ph1); 

2) The Lower Jurassic Staithes Sandstone Formation, the Yorkshire coast, UK  

(sample Ph3);  

3) The Mississippian Yoredale Sandstone Formation, Craster, Northumberland UK 

(sample Ph7). 

Each of the studied rock samples was subject to serial grinding and 3D reconstruction of 

the ichnofabric they contained. The 3D reconstructions presented in this paper include:  

1) reconstruction of bioturbated box enclosing all burrows present in selected volume; 

2) several individual burrows reconstructed separately (Appx 4.3). Reconstructed 3D 

ichnofabrics and burrows were subjected to quantitative analysis (Tab. 4.1). The 

examined samples were collected from deep marine sedimentary facies that are 

comparable in grainsize to many shale hydrocarbon reservoirs (e.g. Hovikoski et al. 

2008; Kohlruss and Nickel 2009; Lemiski et al. 2011; Macquaker et al. 2007; 

Sonnenberg and Pramudito 2009; Ottmann and Bohacs 2010). 

4.5.1. Phycosiphoniform burrows from the Upper Cretaceous Rosario 

Formation, Baja California, Mexico (Ph1) 

A sample containing many phycosiphoniform burrows (Ph1) was collected from coastal 

exposures of the Upper Cretaceous Rosario Formation. The Phycosiphon-like burrows 

from the Rosario Formation are hosted in laminated turbidite siltstone (see Bednarz and  
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McIlroy 2009). Bioturbation is intense at the bottom of the sample (BI6 or 95%) and in 

the upper part it shows well preserved burrows of lower burrow density (BI3 or 35%). A 

single burrow of Planolites was found in the sample (Fig. 4.2A). In vertical cross section 

the ichnofabric presents the characteristic “frogspawn texture” of phycosiphoniform 

burrows, that is composed here of anomalously large trace fossils. The average major 

axis of the burrow cores is 5.3 mm, with the longest exceeding 1 cm (>0.4 in.).  

The burrow halo is principally located below each black muddy core and also entirely 

fills the area between the lobe arms (see also Bednarz and McIlroy 2009). All burrow 

lobes are essentially perpendicular to the paleo-horizontal (vertical loops), usually around 

2 cm (~0.8 in.) in vertical extent (burrow depth) and bent in horizontal plane. Five 

separate burrows were examined separately, all except one (Ph1 b04) form vertical loops 

(Fig. 4.3). No dominantly horizontal loops were observed in the examined sample 

volume. 

Volumetric assessment of bioturbation in a selected part of the rock sample (with BI3 or 

35%) indicates, that the proportion of halo and core volumes in the sample stays around 

the same value as for a single burrow: core multiplicand equals 6.5, but the percent of the 

volume of the halo material in relation to the matrix material is considerably larger (Tab. 

4.1). The measurements show that the volume of the reworked material (VU) ranges 

around 20% on average and the volume of the halo (%Vh) around 17% on average (Tab. 

4.1). The percent contribution of halo volume of a single burrow of this type of 

phycosiphoniform depends on the burrow tortuosity. Percent contribution of halo volume 

(%Vh) of a looped burrow with T ~ 0.5 (e.g., burrows: Ph1 b03 and Ph1 b05, Tab. 4.1) is  
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Table 4.1. Measurements of examined three-dimensional reconstructions of studied phycosiphoniform burrows. 
Vc = volume of the burrow core(s); Vh = volume of the burrow halo(s); VU = volume utilized (equivalent of merged Vh and Vc);  
VA = volume available; VE = volume exploited; Bibioturbation index; T = tortuosity index; Li = burrow length index; LC = core length;  
LM = marginal length; CM = core multiplicand; d = space diagonal; N/A = not applicable.  
 

x y z

Burrow mm
3

%Vc

(% of 

VA) CM mm
3

%Vh

(% of 

VA)

% of 

VU mm
3

VE

(% of 

VA) mm
3

mm mm mm mm mm

Ph1 b01 288.1 1.3 6.2 1785.2 8.4 86.1 2073.3 9.7 21343.7 36.6 19.8 29.5 n/a 0.46 0.13 97.7 44.9 12.3

Ph1 b02 153.9 5.4 5.0 773.8 26.9 83.4 927.8 32.3 2873.5 25.3 13.3 8.6 n/a 0.49 0.12 43.1 21.3 5.2

Ph1 b03 183.1 1.9 8.0 1463.4 14.9 88.9 1646.4 16.8 9807.6 31.8 11.7 26.3 n/a 0.53 0.31 60.5 32.0 19.0

Ph1 b04 184.4 0.9 9.3 1709.3 8.0 90.3 1893.7 8.8 21450.7 44.1 17.8 27.4 n/a 0.90 0.88 50.8 45.7 44.7

Ph1 b05 225.0 3.6 5.0 1127.1 18.3 83.4 1352.1 21.9 6164.7 34.3 10.1 17.8 n/a 0.52 0.11 60.0 31.1 6.7

2.6 6.7 15.3 86.4 17.9

Ph1 

Bioturbated 

prism 3910.1 2.6 6.5 25257.7 16.7 86.6 29167.8 19.3 151078.8 152.0 33.7 29.5 III n/a n/a n/a n/a 5.3 33.7

Ph3 b01 3.9 1.7 5.4 20.7 8.9 84.3 24.6 10.6 231.7 11.8 3.4 5.8 n/a 0.33 0.26 35.6 11.9 9.2

Ph3 b02 1.9 4.2 3.8 8.3 15.6 81.0 10.2 22.2 46.0 10.7 2.2 1.9 n/a 0.56 0.24 16.8 9.4 4.1

Ph3 b03 5.8 1.5 4.4 25.2 6.7 81.4 31.0 8.3 374.7 17.7 2.9 7.3 n/a 0.50 n/a 35.3 17.6 n/a

Ph3 b04 5.5 1.3 5.8 32.0 7.8 85.3 37.5 9.2 408.2 15.8 4.4 5.9 n/a 0.31 n/a 46.4 14.3 9.7

Ph3 b05 1.6 9.2 2.7 4.5 25.1 73.1 6.1 34.4 17.8 3.7 4.3 1.1 n/a 0.51 0.19 9.1 4.6 1.7

Ph3 b06 1.7 3.6 3.4 6.0 12.6 77.5 7.8 16.2 47.9 5.5 5.9 1.5 n/a 0.48 n/a 14.8 7.1 n/a

Ph3 b07 2.2 2.4 6.1 13.6 14.5 85.9 15.8 16.9 93.8 6.8 7.0 2.0 n/a 0.56 0.32 13.8 7.8 4.5

3.4 4.5 13.0 81.2 16.8

Ph3 

Bioturbated 

prism 151.2 5.4 4.8 720.3 25.9 82.7 871.5 31.3 2785.9 39.5 6.0 11.8 IV n/a n/a n/a n/a 1.38 6.0

Ph7 b01 45.7 2.6 5.5 253.1 14.4 84.7 298.7 17.0 1759.7 26.1 5.7 11.9 n/a 0.64 0.43 32.4 20.9 14.0

Ph7 b02 71.8 1.0 7.3 522.5 7.1 87.9 594.3 8.1 7339.7 n/a 0.98 0.98 44.5 43.9 43.6

Ph7 b03 98.9 0.8 8.1 799.6 6.2 89.0 898.5 6.9 12955.5 63.9 7.3 27.6 n/a 0.91 0.87 69.9 63.5 60.5

Ph7 b04 42.6 0.6 14.1 602.2 8.8 93.4 644.8 9.5 6821.6 29.8 7.0 32.6 n/a 0.41 0.36 99.2 40.4 35.4

Ph7 b05 111.9 0.5 8.5 948.3 4.3 89.4 1060.3 4.8 21968.4 54.6 11.5 35.1 n/a 0.58 0.44 96.9 55.9 42.7

Ph7 b06 75.7 1.0 8.3 627.6 8.4 89.2 703.2 9.4 7506.1 34.2 9.1 24.0 n/a 0.30 0.24 119.0 35.5 28.8

Ph7 b07 61.9 0.9 7.5 461.8 6.7 88.2 523.7 7.6 6932.5 23.3 6.0 49.5 n/a 0.89 0.86 58.7 52.2 50.5

Ph7 b08 55.0 0.8 11.2 617.1 9.0 91.8 672.1 9.8 6860.4 41.5 8.6 19.3 n/a 0.76 0.69 52.0 39.4 36.1

1.0 8.8 8.1 89.2 9.1

Ph7 

Bioturbated 

prism 1938.8 1.4 7.8 18136.1 13.3 90.3 20074.9 14.7 136416.4 98.6 27.9 49.6 III n/a n/a n/a n/a 2.37 27.9

Average  

major axis 

of cross 

section 

ellipse of 

the burrow 

core

Vertical halo 

connectivity 

(height, y)

mm

Ph1 Mexico

BI T Li           Lc           
d                

of prism 

Lc

Lm            Phycosiphoniforms Vc Vh VU VA

Prism dimensions 
(VA)

Average

Average

Average

Ph3 Staithes

Ph7 Craster
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Fig. 4.3. Three-dimensional reconstruction of phycosiphoniform burrows from Rosario Formation, Mexico 
(Ph1). At the top: Bioturbated box with 3D reconstruction of all burrows present in the chosen part of the 
rock volume. Below: 3D reconstructions of five separate burrows reconstructed individually. Dark-gray 
color represents burrow cores. Yellow color with transparency represents halos of the burrows. 
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about two times larger than the halo volume of a straight burrow with T approaching 1 

(burrow Ph1 b04, Tab. 4.1, Fig. 4.4).  

Almost 17% of the total volume of the reconstructed bioturbated box is composed of 

coarser-grained halo material, which is additionally connected throughout the sample in 

the horizontal plane, but—perhaps more importantly—vertical communication is greatly 

increased (Fig. 4.3, left and front views of bioturbated box). The volumetric ratios of core 

and halo to matrix material are dependent on the density of bioturbation (BI). As a rule of 

thumb, the higher the intensity of bioturbation, the higher is the volume of halo material 

that contributes to the total connected volume. Even with moderate density of 

bioturbation (35 % bioturbation) the ichnofabric creates a highly interconnected 

framework of fracture-prone zones and fluid flow conduits, and the volume of permeable 

material can reach as much as 17%. 

4.5.2. Phycosiphon sensu stricto from the Lower Jurassic Staithes Sandstone 

Formation, Yorkshire coast, UK 

A second sample with phycosiphoniform burrows (Ph3) was collected from the lower 

part of the Jurassic Staithes Sandstone Formation, North Yorkshire, UK. The 

Phycosiphon-like trace fossils are hosted in a fine grained siltstone which is underlain by 

a bioclastic sandstone (Fig. 4.2D). Rare Chondrites burrows were observed in the darker 

mudstone immediately above the shelly layer (Fig. 4.2D). The sample was found to 

contain a second type of Phycosiphon-like burrows. The characteristic phycosiphoniform  
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Fig. 4.4. Relationship between tortuosity of single burrows and the volume of halo material (Vh) as a 
component of volume available (VA) of a single burrow.  
The volume of quartzose halo material of Ph1 and Ph3 burrows is largest when the tortuosity index 
approaches 0.5 (commonly horseshoe-like burrow loops). The volume of halo material from the single 
burrows of Ph7 is independent of tortuosity as this type of burrow consists of loops that are not infilled by 
the halo material and the ratio halo-core material stays the same. 
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frogspawn texture was identified, but the individual burrows were found to have light-

grey halos located mostly below elongated cores of dark clay-grade sediment (Fig. 4.2D, 

E). The average dimension of major axis of the elliptical transverse cross section of the 

dark mudstone core ellipses was 1.38 mm; much smaller than the other 

phycosiphoniform trace fossils considered herein. In the cross sections studied, the core 

ellipses are usually paired as a result of the geometry of this type of phycosiphoniform 

burrow being based on lobes (Fig. 4.2E, F). 

Three-dimensional reconstruction shows that the burrows are looped in either the 

horizontal plane (Fig. 4.5: Ph3 b03, Ph3 b05, Ph3 b07), vertical direction (Fig. 4.5: Ph3 

b02), or sometimes in both directions within a single burrow (Fig. 4.5: Ph3 b01, Ph3 

b04). The halo of the phycosiphoniform in this material is generally enclosed in the area 

between the paired cores - loops are principally entirely in-filled with halo material (Fig. 

4.5).  Where the burrow is composed of a single string, the halo is usually located below 

the muddy core. Because of this, the geometry of this type of Phycosiphon-like burrows 

may be explained by pre-existing paleobiological models for Phycosiphon incertum 

(Bromley 1996; Wetzel and Bromley 1994).  This material may be attributed to 

Phycosiphon incertum (sensu stricto). 

Volumetric examination of the reconstructed Phycosiphon incertum shows that the 

volume of the halo material is on average 4.5 times greater than the volume of the burrow 

core (core multiplicand for halo estimation, Tab. 4.1). The halo of a single burrow 

occupies an average of 13% of the volume available within the burrow’s box, and 

represents the most permeable zone produced by the burrow maker.  
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Fig. 4.5. Three-dimensional reconstruction of Phycosiphon s.s. burrows from Staithes Sandstone 
Formation, Yorkshire, UK (Ph3).  
At the top: Bioturbated box with 3D reconstruction of all burrows that were present in the chosen part of 
the rock volume. Below: 3D reconstructions of seven separated burrows reconstructed individually. Dark-
gray color represents burrow cores. Yellow color with transparency represents halos of the burrows. 

stefanie
Rectangle
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The burrow halo material measured for the entire volume of bioturbated rock sample 

(BI4 or 65%) constitutes almost 26% of this volume. This high percentage of halo 

material contribution is a result of overlapping of the volumes available of adjacent single 

burrows. The halo material is vertically and horizontally connected throughout the 

reconstructed volume (Fig. 4.5, left and front views of bioturbated box).  The net effect 

from a reservoir perspective is that up to 26% of the reservoir facies has been enhanced in 

terms of both porosity and permeability (kv and kh).  From shale gas reservoir 

exploitation perspective, an interval bioturbated with this type of phycosiphoniform 

burrow has good connectivity of quartzose haloes, which may confer improved 

fracturability and/or greater permeability 

4.5.3. Nereites isp. from the Mississippian Yoredale Sandstone Formation, 

Northumberland, UK 

Third sample containing Phycosiphon-like burrows (Ph7) was collected from the coastal 

exposure of Mississippian Yoredale Sandstone Formation, close to the village of Craster 

in Northumberland, UK. The intensity of the bioturbation is low (BI between 2 and 3) 

and cross-cuts a grey parallel laminated siltstone. The ichnofabric ostensibly resembles 

the phycosiphoniform “frog-spawn” ichnofabric.  Close examination of the cross sections 

shows that the elliptical, dark grey burrow cores are predominantly isolated (not paired as 

in Phycosiphon s.s.) and are completely surrounded by a light grey halo material. The 

upper half of the surrounding halo ring is commonly concave to bi-lobed (Fig. 4.2G, H, 

I).  The bi-lobed upper surface of the burrow invites comparison with Nereites isp.  The 
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burrows are relatively large, average length of a major axis of the core ellipse in cross 

section is 2.37 mm, the largest exceed 5 mm in width.  

3D reconstructions of single burrows show that this phycosiphoniform burrow type is 

characterized by the least tortuous burrows considered in this study. Sinuous strings or 

broadly open loops are the most frequent morphologies (with few exceptions, tortuosity 

index [T] usually varies between 0.5 - 1, Tab. 4.1). Loops are commonly widely open 

(Fig. 4.6, e.g., Ph7 b05, Ph7 b06, Ph7 b08, top view) and the inter-burrow portion is not 

infilled with halo material. 

Volumetric data indicate that the volume of a burrow halo is about 8 times larger than the 

volume of core material (Tab. 4.1, core multiplicand for halo estimation), this is also true 

for volumes containing multiple burrows (Tab. 4.1, Ph7 bioturbated box). The proportion 

of halo material in a box of sediment that is between 20 and 40% bioturbated, is 13.3%. 

That figure is found to be significantly larger than the volume of halo from a single 

isolated burrow (8.1% on average; Tab. 4.1, Fig. 4.6).  

In the reconstructed box, the halo material is connected horizontally and vertically (Fig. 

4.6, front and left view of bioturbated box). It is interesting to note that the sample has 

fractures which run sub-parallel to bedding, but where fractures intersect burrow haloes, 

the fracture plane is changed (Fig. 4.2G, H). Such burrow-controlled fracturing, if it 

occurred in the subsurface in a shale gas reservoir would be of significance to improving 

reservoir connectivity through localization of induced fractures adjacent to the porous 

burrow haloes. From the perspective of shale gas reservoir exploitation, this type of 

phycosiphoniform burrow maker has the most significant effect on reservoir properties.   
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Fig. 4.6. Three-dimensional reconstruction of phycosiphoniform burrows (Nereites) from Yoredale 
Sandstone Formation, Northumberland, UK (Ph7).  
At the top: bioturbated box with 3D reconstruction of all burrows that were present in the chosen part of the 
rock volume. Below: 3D reconstructions of eight separated burrows reconstructed individually. Dark-gray 
color represents burrow cores. Yellow color with transparency represents halo of the burrows. 
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The halo material of Nereites isp. has a core multiplicand of around 8, significantly 

improving porosity and permeability relative to unbioturbated sediment. The tortuosity of 

this type of burrows is not high and the burrows are present mostly as more or less 

horizontal sinuous strings. Thus the large core multiplicand and relatively large burrow 

size compensates for the low tortuosity and as a result the volume of halo material, in 

relation to the rock matrix, is high and the halos of adjacent burrows are connected 

vertically even within a sparsely bioturbated interval. This fact implies that burrow (more 

specifically halo) size is of principal importance to porosity and permeability 

enhancement in shale gas reservoir facies. 

4.6. Impact of phycosiophoniform ichnofabric on shale-gas reservoir 

quality 

A complete understanding of mud accumulation mechanisms and generation of biogenic 

sedimentary fabrics in mudstones is still in its infancy. Recent research on the transport 

of clay particles, the origin of silt-grade quartz and mineral composition of mudstones has 

shed new light on the organic-rich mud depositional systems and origin of petroleum 

source rocks (Schieber et al. 2000, 2007; Macquaker and Bohacs 2007). The burrowing 

activities and the resulting ichnofabrics in shale-gas facies are commonly un-recognized 

by petroleum geologists, and are not even completely understood by ichnologists (see 

Bednarz and McIlroy 2009). Organism-sediment interactions and their effect on sediment 

fabrics are directly related to hydrodynamic processes and biogeochemical conditions at 

the seafloor during deposition and through burial until the sediment is buried to a greater 
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depth than that of endobenthic tiering. The incomplete knowledge of the physical and 

biological processes acting to produce organic-rich mudstones (or “black shales”) is a 

major shortcoming in generating models aimed at understanding the distribution and 

properties of shale-gas facies. 

We demonstrate herein that biogenic structures within the sediment can significantly 

change the final petrophysical properties of shale gas reservoir facies. The biological 

processes and their impact on sediment properties are outlined below.   

4.6.1. Porosity and permeability of reservoir mudstone 

Pore sizes in mudstones range typically from 0.3 to 60nm and are the smallest known 

values for rocks (Best and Katsube 1995). The pores form fluid flow paths with 

extremely low permeabilities. The permeability of shale gas reservoir mudstones must be 

enhanced to allow economic production. Permeability can be improved by drilling 

strategies that access natural fractures (if they exist) or by hydraulically-induced 

fracturing technology (Curtis 2002). Additional flow conduits within mudstones may be 

created by burrowing (Gingras et al. 2004a and herein). The tortuous flow-paths, created 

by grain-selective deposit-feeding organisms, can strongly influence the efficiency of 

petroleum recovery. It is considered that all the Phycosiphon-like trace fossils considered 

herein have the potential to improve vertical communication in shale gas reservoirs by 

connecting silt-rich laminae in otherwise impermeable mudstones via their clean silty 

halos.  In addition, the biological concentration of silt grains from muddy host sediment 

can create additional reservoir volume by bringing the coarsest grains together to form 
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the burrow halo (Fig. 4.7). Mudstone matrix and burrow cores, due to the significant 

clay-grade and clay mineral content, have very low porosities and ultra-low 

permeabilities. Burrow halos can have significantly higher permeability than the core and 

host sediment. Mudstone bioturbated by Phycosiphon-like burrow makers therefore has 

additional heterogeneity relative to the unbioturbated host-sediment.  

The tortuous nature of phycosiphoniform burrows and the strong vertical component to 

the ichnofabrics they create has the propensity to make ultra-tight mudstones permeable 

directly through creation of pathways of porous material.  

4.6.2. Brittleness of reservoir mudstone  

Most shale gas reservoirs rely upon natural and induced fractures to connect zones of 

porosity in the reservoir facies. Development of fractures depends on the brittleness of a 

mudstone. The response of brittle rock to stress is manifested by permeability-enhancing 

brittle deformation due to high shear strength (Nygard et al. 2006).  Many mudstones, 

however, do not behave in a brittle manner but are rather ductile.  Propagation of 

fractures in non-brittle mudstones is ineffective and risky. The mechanical properties of 

mudstones are strongly related to the presence of quartz, either diagenetic quartz from 

recrystallization of biogenic opaline silica (e.g. radiolarians or sponges), or as 

frameworks of quartz grains within the mudstone. Interconnected quartz-rich haloes of 

phycosiphoniform burrows form a framework of material that have the potential to 

locally increase brittleness, making the bioturbated, otherwise ductile, mudstone fracture-

prone, especially if the burrow halos are diagenetically cemented.  
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Fig. 4.7. Types of material in bioturbated mudstone distinguished in terms of animal activity alteration.  
Bc = burrow core composed of clay minerals that have been mineralogically altered; Bh = burrow halo 
composed of silt- and sand-grade minerals (mainly quartz and feldspars), which have been texturally 
altered (concentrated); Mm = mudstone matrix, not altered by animal’s activity. The image presents 
phycosiphoniform burrows from Rosario Formation, Mexico (Ph1). 
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Fracturability of bioturbated shale-gas reservoir intervals may be linked to ichnofabric in 

some reservoirs.  

4.6.3. Shale-gas reservoir capacity  

Shale gas reservoirs are considered to be tripartite porosity systems, where gas is stored 

as: 1) free gas in pore or in natural fracture spaces; 2) adsorbed on kerogen and clays; and 

3) absorbed in kerogen or bitumen (e.g., Schettler et al. 1991).  Phycosiphoniform burrow 

halos create natural pore-spaces and can enhance reservoir capacity.  If the quartz grain 

frameworks created by the burrow halo are also loci for fracturing (natural or induced), 

the burrows may also be responsible for the distribution of fracture porosity in the 

reservoir.  In both cases, pore spaces caused by phycosiphoniform bioturbation could be 

filled by free gas or organic matter maturation products containing gas. The tortuous 

geometry of the interconnected phycosiphoniform halos creates a large surface area for 

release of gas into the porous burrow halos.  It is clear that, relative to a laminated shale 

gas reservoir, a bioturbated shale gas reservoir with phycosiphoniform burrows will have 

increased reservoir capacity. 

4.6.4. Gas storativity and deliverability 

Production of gas from ultra-low permeability rocks such as mudstones needs careful 

reservoir evaluation and engineering. A shale-gas reservoir devoid of natural fractures is 

dependent upon gas flow through thin, often isolated, silty laminae and beds.  Improved 

connectivity within such reservoirs is integral to their success.  Diffusive transport of gas 
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from the rock matrix to the more porous and permeable burrow halos is increased by the 

tortuosity of the burrow structures and thus the large surface area of porous zones in the 

reservoir.  

Gas deliverability depends upon the response of the shale-gas reservoir to the applied 

technology, including injecting of chemical substances, and thus is inseparably related to 

the wettability of the reservoir rock. Prediction of reservoir wettability is one of the major 

challenges for petroleum engineers and can be achieved through detailed determination 

of the petrophysical properties of the reservoir including shale and tight-gas (Al-Garni 

and Al-Anazi 2008; Rickman and Jaripatke 2010). A comprehensive evaluation of a gas 

reservoir in mudstone requires thoughtful consideration of its wettability; including 

appreciation of bioturbated intervals, if present. Burrowing organisms can change mineral 

grain distributions within the sediment influencing the subsequent distribution of fluids 

within the reservoir. Biogenic activity of grain-selective burrowers in muds can 

physically re-organize grain distributions by the separation of clay and silt fractions 

(Bednarz and McIlroy 2009), and may also affect the clay mineralogy (McIlroy et al. 

2003, Needham et al. 2004). Concentration of fine-grained components on the basis of 

mineralogy and grainsize during bioturbation may impact wettability, permeability and 

porosity distributions.  Differences in the wettability of bioturbated mudstone reservoirs 

may be affected by mineralogical composition of the rock matrix and its composition 

(Sayyouh et al. 1990). Knowledge of the detailed mineralogy of bioturbated intervals 

relative to the host sediment will allow the most efficient surfactants (surface-active 

agents) to be applied to the reservoir. In order to enhance permeability a properly 
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matched surfactant is required to change water-wet sedimentary facies to become 

intermediate-wet (Adibhatla et al. 2006).  

Consideration of the geometry and mineralogical composition of ichnofabrics dominated 

by phycosiphoniform burrows in shale-gas reservoir facies allows: 1) better prediction of 

shale-gas reservoir wettability; and 2) realistic evaluation of the volume of sediment that 

is available for surfactant-enhanced gas flow through the most permeable regions of 

shale-gas reservoirs.   

4.7. Conclusion 

The three-dimensional reconstructions of three examined ichnofabric types generated 

within muddy sediment by Phycosiphon-like burrow makers allow us to make a number 

of predictions relating to the impact of bioturbation on shale-gas reservoir quality.  

1. The three phycosiphoniform burrow types studied all increase the porosity and 

permeability of the reservoir relative to the unbioturbated portion of the sediment. 

Increased bioturbation intensity is correlated with improved reservoir quality. 

2. Of the burrow parameters studied, burrow (specifically burrow halo) diameter and 

burrow tortuosity are considered to be the most important in controlling reservoir 

quality.  Large burrow diameters increase reservoir volume, and tortuosity increases 

also connectivity (particularly important in enhancing kv). 

3. The trace fossil Nereites was found to have the greatest burrow diameter—halo volume 

per unit length. The undetermined phycosiphoniform trace fossil and Phycosiphon 
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sensu stricto were well connected in three dimensions owing to the tortuosity of the 

burrows (see Tab. 4.2). 

4. Ichnofabrics dominated by phycosiphoniform burrows typically show good 

connectivity of biologically enhanced zones of increased porosity.  These parameters 

are directly related to enhanced permeability, increased reservoir capacity, greater 

storativity and have the potential to increase fracturability.   

Together these observations suggest that phycosiphoniform-dominated ichnofabrics 

would promote fluid flow in otherwise ultra-tight shale-gas reservoir facies.   
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Table 4.2. Phycosiphon-like bioturbation types.  
CM = core multiplicand; kv = vertical permeability; BI = bioturbation index; Ph1 = phycosiphoniform 
ichnofabric from Rosario Formation, Mexico; Ph3 = Phycosiphon s.s. from Staithes Sandstone Formation, 
UK; Ph7 = Nereites from Yoredale Sandstone Formation, Craster, UK 
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4.10. Appendices  

In order to control an interactive model (Appx 4.3): 

1) click on the chosen three-dimensional reconstruction to activate the interactive 

content; 2) Use tools that are listed on the bar at the top of the activated area; 3) choose 

between available views to explore spatial geometry of the three-dimensional object and 

their chosen components; 4) use Model Tree panel in order to display or hide chosen 

components. 
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Appendix 4.1. Symbols and equations of the variables describing trace fossils and ichnofabric geometry 
and structure. 

 

Symbol Variable name Equation 

   VA Volume available 
(the box bounding the burrow/s) 

cbaVA   

   d Space diagonal (of the box) 
222 cbad   

   VU Volume utilized VcVhVU   

   VE Volume exploited VA
VUVE 100  

   %Vh Halo volume (%) VA
VhVh 100%   

   %Vc Core volume (%) VA
VcVc 100%   

   CM Core multiplicand 
(for halo estimation) 

VcVhCM /  

   Lc Core length 



n

i
niC sssssL

0
321 ...  

   T Tortuosity index CL
dT 

 

   Li Burrow length index C
M

L
L

iL 
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Appendix 4.2. General description of examined samples containing phycosiphoniform burrows. 
Ph1 = sample containing phycosiphoniform burrows from Rosario formation; Ph3 = sample containing Phycosiphon s.s.; Ph7 = sample containing Nereites 
burrows 
 

 
 

Ph
yc
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ni
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Age Formation 

L
ith

ol
og

y 

 
Sedimentary 
structures, 

remaining primary 
fabric 

BI Methods Accompanying 
trace fossils 

Ph1 Upper 
Cretaceous 

Rosario 
Formation, 
Mexico 

Siltstone Subtle lamination 3-6 -  Serial grinding 
(displacement 0.5 mm, 59 
slices, 2.95 cm-thick slab )  
- 3D reconstruction 

Rare Planolitess 

Ph3 Lower Jurassic Staithes 
Sandstone 
Formation, 
Yorkshire, UK 

Siltstone Solid, no lamination; 
underlain by 
sandstone packed  
by bivalves 

3-4 - Serial grinding 
(displacement 0.2 mm, 59 
slices, 1.18 cm-thick slab ) 
- 3D reconstruction 

Rare Chondrites 

Ph7 Mississippian Yoredale 
Sandstone 
Formation, 
Northumberland, 
UK 

Siltstone Subtle lamination 2-3 - Serial grinding 
(displacement 0.2 mm, 249 
slices, 4.96 cm-thick slab ) 
- 3D reconstruction 

_ 
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Appendix 4.3. Three-dimensional interactive models of reconstructed phycosiphoniform burrows.

Phycosiphoniform burrows from the Upper Cretaceous Rosario Formation, Mexico (Ph1)

Phycosiphon sens u  stricto  from  the Lower Jurassic Staithes Sandstone Formation, Yorkshire, UK (Ph3)  

Scale: 15 mm Scale: 15 mm

Scale: 5 mm Scale: 2 mm

Scale: 20 mm Scale: 20 mm
Nereites isp. from the Lower Carboniferous Yoredale Sandstone Formation, Northumberland, UK (Ph7)
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CHAPTER 5   

Organism-sediment interactions in shale-hydrocarbon 

reservoir facies - three-dimensional reconstruction  

of complex ichnofabric geometries and pore-networks 

 

Małgorzata Bednarz and Duncan McIlroy 

This paper will be submitted to International Journal of Coal Geology 

5.1. Abstract 

The lithological and mineralogical characteristics of mudstones and siltstones -and their 

stress-strain behaviour at the meter to nanometer scale – can play a critical role in the 

exploitation of unconventional shale reservoirs. Shale fabrics that result from 

bioturbation can produce extensive interconnected networks of biologically redistributed 

sediment grains within reservoir mudstone facies. The presence of biologically-generated 

heterogeneities may substantially affect reservoir stimulation and thus production from 

shale facies. This study presents volumetric evaluation of phycosiphoniform and aff. 

Chondrites ichnofabrics, and provides insights into the impact of trace fossils on the 

rheological and petrophysical characteristics of mudstones. It is calculated that in 

addition to creating significant volumes of silty (clay-poor) zones of enhanced porosity 
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and permeability, trace fossils create interpenetrating frameworks of brittle material that 

reduce communication distances from the low-permeability matrix to the higher 

permeability silt-rich burrows. Reducing communication distances to less than 1cm 

increases the potential for diffusive transport of hydrocarbon molecules from the “tight” 

matrix to the wellbore-connected volumes. This is because shale ichnofabrics create 

abundant fracture-prone planes of weakness, and increase the surface area of the interface 

between the hydrocarbon-rich matrix and porous burrow fills, thereby promoting fluid 

exchange. Understanding of the three-dimensional characteristics of ichnofabrics may 

form the basis of future modeling of fracture spacing and complexity that is critical to 

shale gas reservoir characterization. 

5.2. Introduction 

Gas- and oil-bearing shales are lithologically diverse, including inter-bedded very fine 

grained sediments e.g., mudstones, siltstones and limestones. Because of the lack of a 

universal classification system for these lithologically heterogeneous deposits the word 

‘shale’ is used in this study in its broader meaning (e.g., Bustin 2012).  The lithological 

and mineralogical characteristics of shales and their stress-strain behaviour at the meter to 

nanometer scale play a critical role in the exploitation of unconventional shale reservoirs 

(e.g., Bustin et al. 2008a, 2008b; Ross and Bustin 2008; Bustin and Bustin 2012; 

Chalmers et al. 2012b; Ding et al. 2012; Josh et al., 2012, Spaw 2013a, b).  

The distribution of mineral grains and organic matter particles in mudstones comprise the 

macroscopic- and microscopic-fabrics (including ichnofabric) that determine the 
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petrophysical and geomechanical properties of mudstones (e.g., porosity, permeability 

and brittleness; Josh et al. 2012 and references therein). Individual burrows within an 

ichnofabric can redistribute sediment grains, thereby influencing both the bulk and small-

scale petrophysical properties of the host sediment (e.g., Pemberton and Gingras 2005; 

Spila et al. 2007; Tonkin et al. 2010; Lemiski et al., 2011; Bednarz and McIlroy 2012; 

Gingras et al. 2012, 2013). Ichnofabric present in mudstones or siltstones has the 

potential to create permeability isotropy, e.g., by local destruction of sediment laminae 

(e.g., Schrieber 2003; Pemberton and Gingras 2005; Lemiski et al. 2011; Bednarz and 

McIlroy 2012; Gingras et al. 2012). 

The spatial geometry of ichnofabrics reflects the cumulative effects of organism-sediment 

interactions after deposition (McIlroy 2004). In addition to the influence of bioturbation 

on the spatial distribution of fine-grained minerals, ichnofabric development in a 

sediment can also affect its mineralogy (McIlroy et al. 2003; Harazim 2013). The 

tortuosity, connectivity, surface area, volume and spatial distribution of the burrows in an 

ichnofabric are among the most significant factors determining response of the 

bioturbated mudstone or siltstone to reservoir stimulation techniques (e.g., Pemberton 

and Gingras 2005; Gingras et al. 2007, 2012; Bednarz and McIlroy 2012).  

In this study, the potential influence of trace fossils on the petrophysical and rheological 

properties of hydrocarbon-bearing shale facies is presented. In contrast to our earlier 

work, we here consider the complete ichnofabric present in each studied sample rather 

than focussing on the reconstruction and quantification of isolated burrows (Bednarz and 

McIlroy 2009, 2012). The term aff. Chondrites is used herein with reference to all 
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Chondrites s.s. and other trace fossils closely resembling Chondrites isp. (cf. Bromley 

and Ekdale 1984; Wetzel and Wijayananda 1990; Fu and Werner 1994). The 

interchangeable terms “aff. Phycosiphon”, and “phycosiphoniform” burrows relate to an 

informal grouping of ichnofossils similar to Phycosiphon isp. (including Nereites), the 

trace fossils are commonly not identified at the generic level due to unresolved 

taxonomic issues.  All phycosiphoniform burrows are considered to have similar effects 

on sediment fabric and reservoir quality in shale-hydrocarbon facies (cf. Bednarz and 

McIlroy 2012).  

Ichnofabrics rich in aff. Phycosiphon ispp. and aff. Chondrites ispp. are here 

reconstructed in three dimensions in order to understand the spatial geometry and 

distribution of biologically redistributed mineral grains and properties in shale-

hydrocarbon facies. In this study, we do not attempt to remove compaction of the 

sediment and its impact on the geometry of the burrows. Compaction affects the 

geometric relationships within ichnofabrics of gas-shales in a heterogeneous manner, but 

is beyond the scope of this thesis. 

The computer modeled deterministic three-dimensional reconstructions allow volumetric 

consideration of the biogenic pore networks in the studied ichnofabric. The potential 

impact of aff. Chondrites ichnofabrics is addressed herein for the first time, and involves 

the same principles as used in our recent consideration of phycosiphoniform burrow 

volumetrics and morphometrics (see Bednarz and McIlroy 2012). The surface area, 

density and distribution of three-dimensional architecture of aff. Phycosiphon and aff. 

Chondrites ichnofabrics is also assessed herein through the generation of three-
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dimensional deterministic models of aff. Chondrites and aff. Phycosiphon burrows in 

highly bioturbated sediments.  

5.3. Main ichnofabric-forming trace fossils in hydrocarbon shale facies 

The productive lithologies within shale-gas reservoirs commonly have inter-bedded 

layers of dark organic-rich very fine-grained sediments typically marine mudstones, 

inter-bedded with siltstones. It has been often considered that the black organic rich 

mudstones that form the basis of shale hydrocarbon plays were deposited in association 

with anoxia or severe dysoxia (e.g., Tyson 1995; Bohacs 1998; Katz 2005). The necessity 

for anoxia for black shale deposition has however been challenged (e.g., Schrieber 1994b, 

2003, 2011; Wetzel and Uchman 1998b; Macquaker et al., 1999; Macquaker and Bohacs, 

2007; Schrieber et al. 2007; Rodríguez-Tovar and Uchman 2010; Ghadeer and 

Macquaker 2012).  A number of recent petrographic studies have demonstrated 

bioturbation in shale-hydrocarbon reservoir facies that previously seemed to be devoid of 

ichnofabric (e.g., Schieber 2003; Ghadeer and Macquaker 2012; Egenhoff and Fishman 

2013). It may commonly be the case that bioturbation is present at a microscopic scale, 

and that both core and outcrop studies lack the resolution to determine such small 

structures, that commonly have subtle color contrast (cf. Wetzel and Uchman 1998a; 

Schrieber 2003; Egenhoff and Fishman 2013).  

While dysoxic basins are generally considered to be hostile to macrobenthic organisms, 

the organic-rich sediments that are deposited host abundant small endobenthic organisms 

that are tolerant of dysoxic to anoxic pore waters (e.g., Bromley and Ekdale 1984; Savrda 
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and Bottjer 1991; Middelburg and Levin 2009). Such organisms with extreme tolerance 

to low-oxygen content (e.g., foraminifera) and/or small benthic organisms tolerant even 

to episodic total anoxia (e.g nematodes, polychaetes, pogonophores, sipunculoid worms 

and bivalves) are responsible for bioturbation of organic-rich muds (e.g., Seilacher 1990; 

Savrda and Bottjer 1991; Dufour and Felbeck 2003; Stewart et al. 2005; Arndt-Sullivan 

et al. 2008; Dando et al., 2008; Dubilieret al. 2008; Middelburg and Levin 2009). The 

resulting trace fossil assemblages are typical of stressed ecosystems, in having low 

diversity, but commonly high abundance (e.g., Goldring et al., 1991; Bottjer 1993; 

Angulo and Buatois 2012a, b). The chemosymbiotic organisms (i.e. organisms having 

microbial symbionts capable of anaerobic respiration) from among the abovementioned 

phyla are the most likely to be candidate producers of Chondrites and Trichichnus (e.g., 

Swinbanks and Shirayama 1984; Seilacher 1990, 2007; Fu 1991; Zuschin et al. 2001). 

Both Chondrites and Trichichnus are deep tier trace fossils, most commonly recorded 

from anoxic mudstones, where they are often present in monospecific assemblages (e.g., 

Romero-Wetzel 1987; McBride and Picard 1991; Fu and Werner 1994; Rodríguez-Tovar 

and Uchman 2010). Of these two only Chondrites is a common ichnofabric-forming trace 

fossil (Callow and McIlroy 2011). The producer of Chondrites is usually inferred to be a 

chemosymbiotic organism and is used as an indicator of anoxic or dysoxic settings (e.g., 

Bromley and Ekdale 1984; Seilacher 1990, 2007; Fu 1991). 

Phycosiphoniform trace fossils and Chondrites-like burrows that are the focus of this 

study, are amongst the most frequent ichnofabric-forming trace fossils observed in 

organic- and clay-rich siliciclastic marine deposits including both conventional and  
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Table 5.1. Examples of black/gray, organic-rich shale intervals, currently producing and potential shale-gas 
reservoirs with recognized presence of trace fossils. WCSB = Western Canadian Sedimentary Basin. 
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New Albany Shales, Illinois Basin, USA 
(Cluff, 1980; Schieber, 2003; Lazar and Schieber 2004) 

X X   X     X 

Fayetteville Shale, (AR, OK) Arkoma Basin, USA 
(Ceron and Slatt 2012) 

    X  X    

Woodford Shale, (OK), Anadarko Basin 
(Spaw 2013) 

X          

Marcellus Shale, Appalachian Basin, USA 
(Spaw 2012) 

X          

Ohio Shales, Appalachian Basin, USA 
(Lazar and Schieber 2004) 

X    X X X   X 

Chattanooga Shale, (TN) Black Warrior Basin, USA 
(Schieber 1994a, b) 

X    X  X    

Bakken Formation, Williston basin, USA, Camada 
(Kasper 1992;  Pemberton et al. 1992; Sonnenberg and 
Pramudito 2009; Angulo and Buatois 2011; Egenhoff and 
Fishman 2013; Gingras et al. 2013) 

X X X  X  X    

Exshaw Formation, WCSB, Canada 
(Caplan and Bustin, 2001, Angulo and Buatois 20011) 

  X X X X X   X 

Barnett Shale, Fort Worth Basin, USA 
(Loucks and Ruppel 2007; Ottmann and Bohacs, 2010) 

X X X X X  X   X 

Mancos Shale, Uinta Basin, USA 
(Macquaker et al., 2007; Bhattacharya and MacEachern 
2009, Bednarz and McIlroy 2012)  

X X  X X X X  X  

Mowry Shale, (WY) USA 
(Bohacs, 1998;  Bohacs et al., 2005) 

X X X X X X X  X  

Niobrara Shale, (KS) Denver-Julesburg Basin, USA 
(Jackson and Hasiotis 2013) 

X    X  X   X 

Kimmeridge Clay Formation, UK  
(Macquaker  and  Gawthorpe 1993; Morgans-Bell et al. 
2001) 

X    X  X    

Cleveland Ironstone and Whitby Mudstone 
Formations, UK 
(Ghadeer  2011; Ghadeer and Macquacker 2012) 

X X   X X     

Alderson Member, (SK) WCSB Canada,  
(Hovikoski  2008; Lemiski et al. 2011) 

X X X  X     X 

Medicine Hat Member, (AB) WCSB, Canada 
(La Croix et al. 2013) 

X X X X X X X   X 

Montney Formation, (BC) Dawson Creek Region,  
Canada (Proverb et al. 2010) 

X X  X X  X X  X 

Posidonia Shale, Germany 
(Savrda and Bottjer 1989; Seilacher 2007) 

X          

Silurian shales of the East European Platform,  
Lublin Basin, Poland, (Porebski et al. 2013) 

X X   X  X    

Rosario Formation, Baja California, Mexico 
(Bednarz and McIlroy 2009, 2012, Callow et al. 2013a, b) 

X X X  X     X 
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unconventional reservoir facies (Tab. 5.1; e.g., Cluff 1980; Wetzel and Bromley 1994; 

Pemberton and Gingras, 2005; Callow and McIlroy 2011; Leminski et al. 2011; Bednarz 

and McIlroy, 2012; La Croix et al. 2013). Other prominent trace fossils in organic-rich 

shale intervals are Planolites, Zoophycos, Trichichnus, Helminthopsis, Paleophycus and 

Teichichnus (e.g., Cluff 1980; Wetzel and Werner 1980; Callow and McIlroy 2011). 

5.3.1. Chondrites ichnofabrics 

Chondrites burrows are complex root-like systems of branching tunnels penetrating down 

with more or less vertical tunnel(s) from an opening at the sediment-water interface (e.g., 

Osgood 1970; Wetzel 1983, 2011; Löwemark et al. 2006; Wetzel and Reisdorf 2007; 

Pemberton et al. 2009). Chondrites and aff. Chondrites ispp. are common in very fine-

grained sediments, such as organic-rich dark mudstones. In vertical cross section, the 

tunnels of Chondrites range from a fraction of a millimeter up to several millimetres in 

diameter, forming abundant circular spots. In organic-matter rich shale-hydrocarbon 

facies Chondrites burrows are generally filled by coarser-grained silty or very fine sandy 

material, depending on the lithology of the sediment overlaying the burrowed deposit. 

Where the infill is clay-rich, there is usually some colour contrast (e.g., Schieber 2003).  

Since the Chondrites producer was probably chemosymbiotic (thiotrophic and/or 

methanotrophic), it would likely have been able to survive and prosper in sediment with 

sulfidic pore waters, but would have had to have been connected to the sediment-water 

interface where at least some oxygen was available (cf. Bromley and Ekdale 1984; 

Seilacher 1990; Fu 1991; Stewart et al. 2005; Dando et al. 2008). Chondrites is 
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commonly the only macroscopic trace fossil found in black mudstones (e.g., Bromley and 

Ekdale 1984; Bottjer, 1993; cf. Schieber, 2003). 

5.3.2. Phycosiphoniform ichnofabric 

Phycosiphoniform burrows are produced by grain-selective deposit feeders and are most 

common in comparatively less organic-rich siltstones and silty mudstones (e.g., Goldring 

et al. 1991; Wetzel and Bromley 1994, Bromley 1996; Wetzel 2002, 2011; Bednarz and 

McIlroy 2009, 2012; cf. Egenhoff and Fishman 2013) than those with monotypic 

assemblages of Chondrites. These trace fossils have a mudstone-rich fecal core 

surrounded by a silt-grade light-colored quartzose halo (e.g., Bromley 1996; Wetzel and 

Bromley 1994; Wetzel 2002; Bednarz and McIlroy 2009, 2012; Callow et al. 2013a, b). 

The host sediment most probably had oxygenated or at least dysoxic interstitial waters to 

allow continuous burrowing without maintenance of a connection to the sediment-water 

interface (e.g., Wetzel and Uchman 1998 b, 2001; Wetzel 2002; Bednarz and McIlroy 

2009, 2012). Phycosiphoniform-dominated ichnofabrics are common in silty 

hydrocarbon-bearing facies (e.g., Spila et al. 2007; Lemiski et al. 2011; Bednarz and 

McIlroy 2012 and reference therein; Egenhoff and Fishman 2013). In organic-rich shale 

settings phycosiphoniform burrows may commonly form monospecific ichnofabric, 

although Phycosiphon-Nereites or Phycosiphon-Chondrites or Phycosiphon-Nereites-

Chondrites ichnofabrics are frequently observed (e.g., Goldring et al. 1991; Bottjer 1993, 

Wetzel and Uchman 2001; Angulo and Buatois 2012a, b; Callow et al. 2013a, b). 
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5.4. Methods 

Samples of rocks containing Chondrites-like and phycosiphoniform burrows were serial 

ground with computer-controlled milling machine HAAS VF-3 CNC Vertical Machining 

Center. Serial grinding creates regularly spaced parallel surfaces that are photographed. 

The photographs were graphically processed in order to obtain consecutive digital images 

from which the burrows can be selected. The set of prepared images form the data from 

which a computer-based 3D reconstruction can be created (cf. Sutton et al.2001; Naruse 

and Nifuku 2008; Bednarz and McIlroy 2009, 2012, Bednarz et al. in press). Five spatial 

reconstructions of ichnofabrics were prepared and measured. All measurements were 

done on deterministic models of the ichnofabrics with no compensation for compaction. 

Selected discrete burrows as well as specifically distinctive parts of spatial models 

enclosed in digital interactive 3D files were artificially colored for clarity and to examine 

burrow interrelations (Appx 5.1). 

5.4.1. Volumetrics 

The volumetric calculations provided herein are deterministic as they were made on the 

basis of the three-dimensional burrows at their natural scale. It should be noted that, 

because of algorithms used to optimize the mesh of the objects, the calculations include a 

small degree of error. These errors mostly give volume underestimates due to shrinking 

the mesh in the “mesh decimation” process (cf. Bednarz and McIlroy 2012; in press).  
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Quantitative analysis of the reconstructed burrow associations involves investigation of 

the three-dimensional models. The following variables are used herein to characterize the 

ichnofabrics considered herein (following Plat et al. 2010; Bednarz and McIlroy 2012; 

Bednarz et al. in press): 

Volume available (VA) is the volume of the smallest rectangular prism (width = x, height 

= y and length = z) that encloses the burrow or burrow association. It represents the total 

volume of the sample that the examined burrows are enclosed within (Fig. 5.1A). 

Volume utilized (VU) is the volume of the sediment reworked by the trace maker(s) and it 

is expressed in cubic units.  

Volume exploited (VE) is the volume utilized presented as a percentage of the volume 

available to be bioturbated. It describes the efficiency of volume usage by the trace 

maker(s). 

In the case of phycosiphoniform burrows, volume utilized can be subdivided into the 

mineralogically-different component parts of the trace fossil (silty halo and clayey fecal 

core; Fig. 5.2C, D). These are expressed as volume of halo (%Vh) and volume of core 

(%Vc). These measurements allowed for calculation of core multiplicand (CM) – a 

variable that captures the relative volumes of the silty burrow halo relative to that of the 

clay-rich fecal burrow core. 

Surface area (SA) is a measurement of the total surface area of examined 3D models of 

ichnofabric. It is calculated by the visualizing software, and is given in square units. 



5-12 

 

 
 
Fig. 5.1. Explanation of variables used to assess volumetric characteristics of the examined ichnofabrics.  
A. Surface area index explained. Surface area index illustrates how many times the surface area of 
ichnofabric is larger than the area that is shadowed by the ichnofabric (the horizontal section of the block). 
Surface area index additionally considers the volume of the bioturbated block through the value of the 
space diagonal of the block that is incorporated in the block section calculation. Example built on 3D 
model of a single aff. Chondrites burrow from Staithes. B. Burrow spacing explained. Distribution cluster 
is a box bounded by the edges of the modelled regular square-shape grid composed of idealized cylinders 
which summarized length corresponds to the total length of the ichnofabric tubes within the given size of 
volume available. BS – burrow spacing (spacing between burrow tubes) - describes the path length of 
hydrocarbon molecule transport through the matrix. VDc – volume of distribution cluster. Top 3D models 
illustrate representative individual burrows of Nereites from Craster and aff. Chondrites from Staithes. 
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Fig. 5.2. Examined Phycosiphon-like and Chondrites-like ichnofabric. 
A. Aff. Chondrites from Upper Cretaceous Mancos Shale, Muddy Creek, Utah; B. Aff. Chondrites from 
the Lower Jurassic Staithes Sandstone Formation, Yorkshire coast, UK; C. Phycosiphoniform burrows 
from the Upper Cretaceous Rosario Formation, Baja California, Mexico; D. Microscopy image showing 
clay-composed burrow core (c) and silty quartz-enriched halo (h); E. Phycosiphon s.s. from the Lower 
Jurassic Staithes Sandstone Formation, Yorkshire coast, UK; F. Nereites from the Mississippian Yoredale 
Sandstone Formation, Northumberland, UK; G. Cross-cutting relation of two burrows of Nereites form 
Craster.c – core; h – halo; Ch – Chondrites; Ph – Phycosiphon. 
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Surface area index (SAi) is a unitless variable illustrating the ratio of burrow or 

ichnofabric surface area to the surface area of the rectangle that is diagonal to the box 

enclosing the ichnofabric (SAdr). SAdr reflects the rectangle surface area that is 

shadowed by the ichnofabric or burrow model (surface area of horizontal section of the 

sample block) and additionally it takes into consideration the vertical dimension of the 

block through its diagonal (Fig. 5.1A). Surface area index (SAi) illustrates how many 

times the surface area of the ichnofabric or burrow is larger than the surface area of a 

shadowed horizontal interface such as mudstone bed or lamina. 

Distribution cluster (Dc) is an individual segment of the unbioturbated rock matrix within 

a sample block which was cut by a square grid created with idealized cylinders 

representing extricated ichnofabric built by tubular burrows (Fig.5.1B).  

Distribution cluster is presented as a volume (VDc) in cubic units and/or as a box of a 

calculated edge length (a-2r; Fig. 5.1B). Except for the most external clusters, each 

distribution cluster is bounded by the tubes composing the distribution grid (Dg). The 

total length of the distribution grid (Lg) approximately equals the total length of the 

extricated tubular burrows (Lt) constituting the ichnofabric volume (Appx 5.2).  

Distribution grid and distribution clusters illustrate burrow spacing. 

Burrow spacing (BS) i.e. spacing between burrows (Fig. 5.1B). It is the length of the 

distribution cluster edge. Burrow spacing illustrates the approximate distance between the 

closest permeable fluid flow paths (burrow tunnels) to be reached by the hydrocarbon 

molecule travelling through the unbioturbated matrix (distribution cluster). The 

quantitative values of regular burrow spacing calculated in this study are intended for 



5-15 

 

comparison in order to grade the significance of burrow network present in gas- or oil-

bearing shale, and do not reflect irregularity of the ichnofabric that is presented herein 

graphically as three-dimensional interactive models (Appx 5.1). Because of the 

irregularity of the ichnofabric, calculations of values of burrow spacing are intended to be 

considered as approximations. 

5.5. Results 

Samples containing aff. Chondrites and phycosiphoniform ichnofabrics were collected 

from deep-marine sedimentary facies that are comparable in grain size to many shale 

hydrocarbon reservoirs including the Mancos Shale studied from field-samples herein 

(see Bednarz and McIlroy 2012 and references therein). 

The material was collected from the following localities: 

1. Upper Cretaceous (Turonian) Ferron Sandstone Member of the Mancos Shale 

Formation, Muddy Creek, Utah (aff. Chondrites ichnofabric); 

2. The Upper Cretaceous Rosario Formation, Baja California, Mexico (aff. Phycosiphon 

ichnofabric); 

3. The Lower Jurassic Staithes Sandstone Formation, the Yorkshire coast, UK 

(ichnofabrics dominated by aff. Chondrites and Phycosiphon s.s. in two separate 

samples); 

4. The Mississippian Yoredale Sandstone Formation, Craster, Northumberland UK 

(Nereites ichnofabric). 
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5.5.1. Examined aff. Chondrites ichnofabric 

5.5.1.1. Chondrites-like ichnofabric from Upper Cretaceous Mancos Shale, Muddy 

Creek, Utah 

One sample with dense aff. Chondrites ichnofabric was collected from the Ferron 

Sandstone Member of the Mancos Shale Formation in the canyon of Muddy Creek, East-

Central Utah. The sample is composed of dark gray mudstone and is characterized by the 

presence of irregular bodies of light-colored sandy siltstone inferred to result from soft-

sediment deformations that are typical of several Ferron Sandstone Member facies (e.g., 

loading structures and convolute bedding, see Bhattacharya and MacEachern 2009). This 

heterogeneous mudstone also contains aff. Chondrites burrows composed of the same 

silt-grade material as the irregular bodies (Fig. 5.2A). The mudstone was poorly lithified 

and had to be tightly taped to hold its consistency for the duration of transport and was 

encased in plaster for serial grinding. During serial grinding, plucking of the mudstone 

enhanced the contrast between the silty burrows and host sediment. The Chondrites-like 

form from Muddy Creek is relatively large. The average diameter of the tunnels is 

between 1 and 2 mm. The sample was serially sectioned with constant increment of 0.2 

mm. The slab of the rock containing reconstructed ichnofabric can be bound in a box of 

12.28 x 9.26 x 1.85 cm and is 210 cm3 (VA).  

The high surface area index (SAi = 25.3) illustrates significant degree of mudstone 

penetration by the Chondrites-like form from Muddy Creek. The volume of the total 

ichnofabric material (VE) present in the examined sample was only 7.5%, but it 
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interpenetrated the sample volume (VA) to a substantial degree (Fig. 5.3A; Appx 5.1A). 

The summarized length of all the tubes of the Chondrites-like trace present in this sample 

is approximately 8900 mm (almost 9 m), which accounts for an extremely long silt-filled 

tube considering the hand-sized sample volume. If such extremely long tube were to be 

used to create an idealized three-dimensional regular grid within the size of the sample 

from Muddy Creek it would cut the remaining 92.5% of unbioturbated matrix to 

distribution clusters (Dc) of volumes of about 122 mm3. Burrow spacing (BS) in this 

sample is approximately 5 mm (Tab. 5.2). 

The outlines of the burrows in vertical cross section range from circular to elongated 

ellipses, strings, and also upward and downward branching structures that give the initial 

impression of burrow geometries and direction of burrow propagation (Fig. 5.2A). The 

frequent obliquely, upwardly directed or even vertically orientated burrows with dense 

branching suggest deposit feeding behaviour, rather than exclusively sulfide-mining by a 

chemosymbiotic organism as previously suggested (cf. Bromley and Ekdale 1984; Fu 

1991, Kotake 1991; Callow and McIlroy 2011). The sample is densely bioturbated (BI IV 

≈ 70%), with almost all burrows being interconnected. The character of the burrow-

burrow contact is therefore difficult to be precisely recognized but it is considered to be 

mostly the result of frequently adjoining walls of adjacent burrows. No obvious cross-

cutting relationships between Chondrites-like burrows were observed on the image slices 

even where the bioturbation intensity was very high.   
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Fig. 5.3. Three-dimensional models of examined 
ichnofabric. 
A. Aff. Chondrites from the Mancos Shale, Muddy 
Creek, Utah. 3D scale: 10 mm.  
B. Aff. Chondrites from the Staithes Sandstone 
Formation, UK. 3D scale: 10 mm.  
C. Phycosiphoniform burrows from Rosario 
Formation, Mexico. 3D scale: 20 mm. 
D. Phycosiphon s.s. from the Staithes Sandstone 
Formation, UK. 3D scale: 5 mm.  
E. Nereites from the Mississippian Yoredale 
Sandstone Formation, Northumberland, UK. 3D 
scale: 20 mm. 
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Table 5.2. Measurements of examined three-dimensional ichnofabric.  
BI = bioturbation index; VA = volume available; VU = volume utilized; VE = volume exploited; %Vh = volume of the burrow halo(s); %Vc = volume of 
the burrow core(s); CM = core multiplicand; SAi = surface area index; BS = burrow spacing; VDc = volume of distribution cluster; 2r = average  
diameter of burrows' cross sections; Lg = length of distribution grid. 
 
 

BI VA VU SAi BS VDc 2r  Lg

x y z
cm3 cm3 mm mm3 mm cm

Aff. Chondrites ichnofabric
Upper Cretaceous Mancos Shale, 
Muddy Creek, Utah 

Aff. Chondrites  ichnofabric
Lower Jurassic Staithes 
Sandstone Formation, Yorkshire, 
UK 

%Vh %Vc CM

Phycosiphoniform ichnofabric 
Upper Cretaceous Rosario 
Formation, Baja California, Mexico 16.7 2.6

Phycosiphon s.s.  ichnofabric
Lower Jurassic Staithes 
Sandstone Formation, Yorkshire, 
UK

25.9 5.4

Nereites isp. ichnofabric
Mississippian Yoredale Sandstone 
Formation, Craster, UK 13.3 1.4

9.5 843.9 6 717.8 4.8

31.3
4.8 17.9

98.6 27.9 49.6 II – III 
(30%) 136.41 20.07

14.7

5.3 1.6 4.1 2.539.5 6.0 11.8 IV 
(65%) 2.78 0.87

6.5 9.5 8.6 636.1 8 58.0

90.5 1 333.8

152.0 33.7 29.5 III 
(35%) 151.08 29.17

19.3

891.3

83.9 23.2 39.6 IV 
(65%) 77.04 2.62 3.4 20.5 4.5

15.74 7.5 25.3 5.0 122.8 1.5

Ichnofabric
Prism dimension VE

mm

122.8 92.6 18.5 IV 
(70%) 210.45
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5.5.1.2. Chondrites-like ichnofabric from the Lower Jurassic Staithes Sandstone 

Formation, Yorkshire coast, UK 

A sample containing dense aff. Chondrites burrows was collected from the lower part of 

the Jurassic Staithes Sandstone Formation, North Yorkshire, UK. The burrows are in a 

dark gray to black silty mudstone containing some very light gray siltstone layers.  

The sample is densely bioturbated (BI IV ≈ 65%). In vertical cross section Chondrites-

like burrows are seen mainly as rounded and ellipsoidal shapes of 1 mm in diameter on 

average. The burrows are filled with light gray silt and visually contrast with the dark 

gray host sediment. The sample contains a fracture that runs sub-parallel to bedding, but 

its geometry is modified by shape of Chondrites-like tubes (Fig. 5.2B). Aff. Chondrites 

systematically postdates and cross-cuts the Phycosiphon s.s. in the examined sample, 

mostly where silty material is in elevated concentrations (Fig. 5.2B; cf. Bednarz and 

McIlroy 2012). Phycosiphon s.s. from the same formation, but from a different sample, 

was also reconstructed. 

The sample was serially sectioned with constant increment of 0.2 mm. The slab of the 

rock containing reconstructed ichnofabric can be inscribed in the box of size of 8.39 x 

2.32 x 3.96 cm (i.e. 77 cm3; VA). The high surface area index (SAi = 20.5) illustrates the 

significant degree of mudstone penetration by the ichnofabric built of burrows of aff. 

Chondrites from Staithes. The volume of the ichnofabric in this sample constitutes only 

3.4% (VE, Tab. 5.2) of the total volume of the sample. The summarized length of all the 

tubes of the Chondrites-like trace present in this sample was calculated and it is 
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approximately 3335 mm (3.3 m), which accounts for an extremely long silt-filled tube 

considering the small size of the sample. The idealized three-dimensional regular grid 

created with this tube would cut the remaining 96.6% of unbioturbated matrix to 

distribution clusters (Dc) of volumes of about 90 mm3. Burrow spacing (BS) is 

approximately 4.5 mm (Tab. 5.2). 

The branched systems constituting this type of Chondrites-like burrows diverge 

essentially horizontally, with a variable angle of downward, and also upward, inclination 

relative to bedding. The presence of obliquely- and vertically-directed branches, coupled 

with the intense bioturbation of this sample has significant influence on the vertical 

connectivity of the burrows enclosed within it (Appx 5.1B, view: vertical branching). The 

resultant ichnofabric is a network of vertically and horizontally interconnected silt-filled 

tunnels that densely penetrate the hosting mudstone from the top to the bottom of the 

examined sample (Fig. 5.3B; Appx 5.1 B). Burrow tunnels principally neither cross-cut 

themselves, nor any other burrow. The burrow-burrow contact has mainly the character 

of locally adjoining walls of adjacent burrows and is most probably the effect of the 

sediment compaction. Additionally, connectivity of the burrows is enhanced through the 

presence of composite master shafts of the aff. Chondrites. Such mostly horizontal master 

shafts were identified as having multiple bundled and adherent tubes coalescing often 

into one thicker tubular, branching, structure (Fig. 5.4; Appx 5.1B, view: bundled master 

shafts). 
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Fig. 5.4. Composite master shafts of burrows of aff. Chondrites from Staithes.  
The numbers on the left side of the photos stand for the slice numbers. The master shafts are positioned 
horizontally. A. Master shaft composed of multiple bundled tunnels of diameters the same as the average 
diameter of branches (~ 1 mm); B. Master shaft composed of several tunnels of the average diameter  
(~ 1 mm) merging into one of a significantly larger diameter (up to 400% larger). 
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5.5.2. Examined Phycosiphon-like ichnofabrics 

The detailed volumetric three-dimensional reconstructions of the phycosiphoniform 

burrows were recently presented and analyzed (Bednarz and McIlroy 2009, 2012). The 

results of this analysis are incorporated in this study and along with the new data and 

calculations are subject of further interpretation. 

5.5.2.1. Phycosiphoniform burrows from the Upper Cretaceous Rosario Formation, 

Baja California, Mexico 

A sample containing dense Phycosiphon-like ichnofabric was collected from coastal 

exposures of the Upper Cretaceous (Maastrichtian) Rosario Formation. The rock hosting 

the ichnofabric is a laminated, organic-rich turbiditic siltstone (see Bednarz and McIlroy 

2009, 2012; Callow et al. 2013a, b). An isolated fragment of a tube of Bathysiphon was 

observed in the examined sample. This agglutinated foraminifer has been found to 

abundantly occur in muddy deposits of Rosario Formation (Callow et al. 2013a). The 

Phycosiphon-like ichnofabric from Rosario Formation is composed of anomalously large 

burrows, with the average major axis of the burrow cross section being 8 mm (Fig. 5.2C). 

Bioturbation is moderately intense (BI III or 35%).  

The silty quartz- and feldspar-dominated burrow halo is essentially lacking clay-sized 

components (<10%) and structured organic matter what results in the higher porosity 

compared to the host sediment (0-5% and about 30% respectively; Harazim, 2013). The 

core material is found to contain elevated amounts of organic carbon compared to matrix 

(average TOC values equal 1.8 wt% and 0.6 wt% respectively; Harazim, 2013).  
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The volume of burrow halo material can reach as much as about 17% of the total sample 

volume (Tab. 5.2). The volume of the halo material is on average 6.5 times greater than 

the volume of the burrow core (CM), which constitutes 2.6% of the total volume of the 

sample. Un-branched black clay-rich cores of individual burrows never cross-cut 

themselves or any other burrow core constructing continuous and tortuous isolated 

cylindrical strings often arranged in vertical loops. Contrary, silty haloes of adjacent 

burrows are widely connected in vertical and/or horizontal direction dependently on the 

burrows’ spatial arrangement and locally elevated or decreased burrow density (Fig. 

5.3C; Appx 5.1C).  

The volumetric assessment of the sample with phycosiphoniform ichnofabric from 

Rosario Formation shows that, even with moderate density of bioturbation, the 

ichnofabric creates highly interconnected framework of silt-rich and porous zones (Fig. 

5.3C; Appx 1 C). Distinct difference in mineralogy and grain size of burrow and matrix 

material generates moderately large surface area of the ichnofabric-matrix interface - the 

surface area index is calculated as being 9.5. The idealized three-dimensional regular grid 

created with the idealized burrow tube would cut the remaining 80.7% of unbioturbated 

hosting sediment into distribution clusters (Dc) of volumes of about 636 mm3. Burrow 

spacing (BS) is approximately 8.6 mm. 
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5.5.2.2. Phycosiphon sensu stricto from the Lower Jurassic Staithes Sandstone 

Formation, Yorkshire coast, UK 

A sample with Phycosiphon s.s. burrows was collected from the lower part of the Jurassic 

Staithes Sandstone Formation, North Yorkshire, UK - the same locality as the sample of 

dark mudstone containing Chondrites ichnofabric described above. The Phycosiphon 

traces are hosted in a light gray fine-grained muddy siltstone (Fig. 5.2E). 

The volume of rock containing the reconstructed ichnofabric is small 2.78 cm3 (VA). The 

average major axis of cross sections from the elliptical burrows was 2.5 mm. Volumetric 

examination of the reconstructed Phycosiphon from Staithes shows that the volume of the 

halo material is on average 4.5 times greater than the volume of the burrow core (CM). 

The quartzose burrow halo material (%Vh) measured for the entire volume of the 

bioturbated rock sample (with BI 4 or 65%) constitutes almost 26% of this volume. 

Despite the very high burrow density the unbranched burrow cores never crosscut 

themselves or any other burrow. Silty haloes of adjacent burrows are widely connected in 

vertical and/or horizontal direction (Fig. 5.3D; Appx 5.1D). The surface area of the 

burrow-matrix interface created by the Phycosiphon ichnofabric from Staithes is 

moderately large - the surface area index is calculated as being 5.3. The idealized three-

dimensional regular grid created with Phycosiphon tube would cut the unbioturbated 

sediment to distribution clusters (Dc) of volumes of about 4.1 mm3. Burrow spacing (BS) 

is approximately 1.6 mm. 
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5.5.2.3. Nereites isp. from the Mississippian Yoredale Sandstone Formation, 

Northumberland, UK 

A sample containing Nereites ichnofabric was collected from the coastal exposure of 

Mississippian Yoredale Sandstone Formation, Northumberland, UK. The intensity of the 

bioturbation in the sample is low (BI II-III or 30%). The bioturbation cross-cuts a gray 

parallel laminated siltstone (Fig. 5.2F). The burrows are relatively large, average length 

of a major axis of the cross section is 6 mm.  

The clay-rich cores of Nereites from Craster never crosscut themselves. However there 

has been found one case when the burrow core of larger diameter cross cuts the one of 

smaller size (Fig. 5.2G; Appx 5.1E, view: cross cut). The crosscutting relationships are 

clearly visible in vertical cross section, and cannot be explained by the effect of the 

compaction. Silty haloes of adjacent burrows are widely connected in vertical and/or 

horizontal direction (Fig. 5.3E; Appx 5.1E).  

Volumetric data indicate that the volume of a burrow halo is about 8 times larger than the 

volume of core material (CM). The volume of quartzose halo material in this sample is 

13.3% (%Vh). The surface area index is moderately large and is calculated as being 

4.8.The idealized three-dimensional regular grid created with the observed Nereites tubes 

would cut the remaining 85.3% of unbioturbated matrix to distribution clusters (Dc) of 

volumes of about 844 mm3. Burrow spacing (BS) is approximately 9.5 mm. 

The sample has natural fractures that run sub-parallel to bedding, but where fractures 

intersect burrow haloes, the fracture plane is changed (Fig. 5.2F).  
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5.6. Discussion - The effect of ichnofabric on mudstone properties and 

shale reservoir potential 

5.6.1. Porosity and permeability of the bioturbated reservoir facies 

The tortuous and interconnected geometries of Phycosiphon- and Chondrites-like 

ichnofabric that occur in hydrocarbon-bearing shales are frequently composed of coarser-

grained, quartzose brittle material. Cemented or not, these burrows may provide 

additional pore volumes either through development of natural (micro)fractures (fracture 

porosity) and/or from inter-granular porosity inherited by the porous nature of silt-grade 

material respectively. In either case, the ichnofabric would make the facies dual-porosity 

or dual-permeability flow media (sensu Gingras et al. 2007, 2012).  Porosity of silty and 

sandy ichnofabric material in bioturbated intervals may also constitute an additional 

space for hydrocarbon molecules concentration thereby improving capacity and 

storativity of the reservoir (Pemberton and Gingras 2005; Gingras et al. 2007, 2012; 

Bednarz and McIlroy 2012; La Croix et al. 2013). 

Phycosiphon-like ichnofabric has been proven in the laboratory to show orders of 

magnitude greater permeabilities than the surrounding muddy matrix (Spila et al. 2007; 

Lemiski et al. 2011; Gingras et al. 2012, 2013; La Croix et al. 2013). The vertical 

connectivity of Phycosiphon-like and Chondrites-like ichnofabrics breaches impermeable 

horizontal barriers of originally layered hosting shale reservoir intervals that are typically 

composed of interbedded mudstones and siltstones. This results in homogenisation of the 

bulk volume of sediment at the macro-scale causing porosity and permeability isotropy 



5-28 

 

due to obliteration of otherwise impermeable horizontal lithological barriers (equalizing 

vertical permeability [kv] with horizontal permeability [kh]; Pemberton and Gingras 2005; 

Spila et al. 2007; Lemiski 2011; Bednarz and McIlroy 2012; Gingras et al. 2012; La 

Croix et al. 2013).  

The biogenic pore-networks representing primary or additional fluid flow paths may 

constitute a significant volume of the shale interval - up to 26% of the total rock volume 

in case of phycosiphoniform ichnofabric. If burrows do not significantly contribute to the 

volume of silty material within the host sediment (3.5 – 7.5% in case of Chondrites), they 

may provide vast and tortuous planes of weakness promoting development of fracture 

porosity additionally enhancing burrow-to-matrix interactions through their deeply 

penetrative nature (Fig. 5.5).  

At the millimetric scale, ichnofabrics can increase heterogeneity in the form of localized 

concentrations of - for example: 1) silt- and sand-grade grains of brittle minerals; and/or 

2) clay-grade particles (Fig. 5.2D) that are present in an immediate vicinity to the 

organic-rich mudstone matrix thereby improving the efficiency of complex fluid flow 

mechanisms typical for low-permeability mudstones (Fig. 5.6). It may be particularly 

important within organic rich and hydrocarbon prone black mudstones that are the richest 

sources of gas or oil within the reservoir and that are typified with very low porosities 

and ultra-low permeabilities. The majority of the porosity within such organic rich 

mudstones is considered to be located within particles of organic matter e.g., kerogen 

(e.g., Passey et.al. 2010; Swami 2012; Bust 2013). If bioturbated, such mudstones may 

have additional porosity within silty-rich burrow tubes or natural micro-fractures and  
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Fig. 5.5. Chart illustrating relation of volume exploited (VE) to surface area (SAi) of Phycosiphon- and 
Chondrites-like ichnofabric.  
Phycosiphon-like ichnofabric constitutes significant volume of the bioturbated samples but has smaller 
surface area relative to Chondrites-like ichnofabric that has extensive surface area (potential planes of 
weakness) associated even with a small volume of the ichnofabric. 
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Fig. 5.6. Schematic illustration presenting stages of the fluid flow within bioturbated, gas-charged tight 
mudstone. 
A. Micro-scale. With pressure drop hydrocarbon molecules enter the organo-porosity through desorption 
from pore walls and kerogen material. If the pore is connected to the (micro)fracture or microchannel, 
molecules travel through the conductive flow paths to the well bore. If there is no fracture or microchannel 
connected to the organoporosity, the molecules travel to the fracture network or permeable flow path 
through diffusion.  
B. Millimetre-scale (modified from Bustin et al. 2008a). Efficiency of the flux of the diffusively migrating 
molecules into the fracture network is dependent on the distance from oil- or gas-charged pore to the 
closest fracture or permeable flow path. Dense ichnofabric network minimize the distance of the diffusive 
flow through partitioning the hosting rock with permeable and brittle silty tubes and may also improve 
fracture spacing and/or complexity. 
Inspired by reservoir studies by Bustin et al. 2008a. 
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“micro-channels” developed along and/or within the brittle burrow fill (cf. Schrieber 

2003; Slatt and O’Brien 2011). Therefore fossils of quasi-anaerobic biofacies (sensu 

Savrda and Bottjer 1991) can substantially contribute to the improvement of the porosity 

and vertical permeability of source rock even if present in a microscale. 

5.6.2. Brittleness of bioturbated shale. 

The mineralogically-based brittleness of any shale depends on ratio of a sum of quartz 

and all other brittle minerals content (e.g., feldspars or carbonates) and clay-mineral 

content (e.g., Jarvier et al. 2007; Bust et al. 2013). This proportion has to be favourable in 

its brittle mineral content (mainly quartz) in order to consider a rock brittle and thus 

fracturable. If clay minerals are predominant in relation to brittle minerals the mudrock is 

ductile and will not respond efficiently to fracturing. The fracturability is a determining 

factor for effective petroleum producibility from the well (e.g., Narr and Currie 1982; 

Jacobi et al. 2008; Jenkins and Boyer 2008; Ross and Bustin 2009; Bust et al. 2013). The 

quartz-dependent brittleness of the rock combines rock ability to fail under stress and to 

maintain the fracture once the rock fractures (Rickman et al. 2008). Even as small amount 

as 3.4% of biogenically concentrated silty and quartz-rich material within the total 

volume of a clay-dominated mudstone thereby may create a dense irregular boxwork of 

fracture-prone material (see aff. Chondrites ichnofabric from Staithes, Tab. 5.2). Thus, 

mudstones that are generally considered as ductile, if bioturbated, may have potential to 

be fractured and possibly also to maintain the micro-fractures created within quartzose 

burrow microenvironment which is devoid of clay particles that could cause fracture 
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“healing”. Networks of the narrow quartzose tubular burrows distributed within a clay-

rich matrix may be fractured on a microscopic scale during initial phases of deformation 

if such conditions occur during mudstone burial history. Consequently, micro-fractures 

have the potential to coalesce into a single through-going macroscopic fracture and may 

therefore enhance the brittle failure characteristics of the bulk volume (Petley 1999).  

The stress-strain behaviour of bioturbated mudstones has not yet been studied in either 

the laboratory or the field. It is considered herein to be the next frontier for ichnological 

studies of shale-hydrocarbon reservoirs. The anisotropic horizontal stresses that result 

from laminated structure of shales may also have severe consequences for drilling if not 

addressed (Khan et al. 2011). Since ichnofabric obliterates the primarily laminated 

structure of most shales and thus improves both permeability and stress isotropy (e.g., 

Pemberton and Gingras 2005; Gingras et al. 2012), it is realistic to imply that the 

presence of dense and interconnected network of thin brittle tubes embedded within a 

clay-rich matrix will alter the response of mudstone to applied stress regimes. The 

predominant volume of the clay-rich matrix of bioturbated mudstone or siltstone (~ 75% 

- 96%), with its inherited susceptibility to compaction, may respond to applied stress 

through extensive shattering of regions with thin, brittle silty tubes that commonly 

constitute mudstone ichnofabrics. 

Millimetre scale ichnofabric-induced fracturability, when upscaled to the reservoir scale, 

can be considered to be a potential major influence on shale hydrocarbon reservoirs.  This 

assumes that the lateral distribution of the bioturbated facies is large and continuous; such 

information is not yet known, but seems likely from qualitative field observations (e.g., 
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Cluff 1980; McIlroy 2007; Angulo et al., 2008; Hovikoski et al., 2008; Lemiski et al., 

2011; Angulo and Buatois, 2012a, 2012b; Gingras et al. 2012; Callow et al., 2013a; 

Egenhoff and Fishman 2013).  

 

5.6.3. Impact of ichnofabric on fracture spacing and complexity 

The presence of planes of weakness, pre-existing natural fractures or sediment fabrics 

within shales generates geometrically complex induced hydraulic fractures (e.g., Cipolla 

et al. 2009; Fan et al., 2010; Palmer and Moschovidis 2010; Bustin and Bustin 2012). 

Inducing the largest possible complexity of man-made fracture network that maximizes 

the surface area of the reservoir that is connected to the well-bore is the key factor for 

improved drainage and well productivity (e.g., Cipolla et al. 2009, 2010; Wang et al. 

2009; Fan et al. 2010; Khan et al. 2011, 2012; Bust et al. 2013). In order to achieve this, 

recognition and activation of pre-existing natural fractures and/or planes of weakness 

and/or rock fabric within the stimulated interval is crucial (e.g., Bowker et al. 2007; 

Cipolla et al. 2009, 2010; Bustin and Bustin 2012). The complex geometry of the 

ichnofabric, and its inherently large surface area, functions as a cylindrical, tortuous 

three-dimensional surface of weakness that separates brittle silty burrow infill from 

relatively ductile muddy matrix. Quartz-rich ichnofabrics may therefore propagate natural 

and/or induced fractures in dense, complex geometries, and improves fracture spacing 

(Fig. 1B; Fig. 5.6; burrow spacing may be a framework for modeling of effective fracture 

spacing). Chondrites-like ichnofabrics may create such dense ichnofabrics even though 
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this type of ichnofabric usually constitutes low sediment volume (Fig. 5.5; e.g., aff. 

Chondrites from Staithes with its summarized tube length of 3.3 m constitutes only 3.4% 

of the total sample volume of 77 cm3 and it partitions the host rock with burrow spacing 

of 4.5 mm; Tab. 5.2).  

However, even the most complex fracture network may be uneconomical without 

sufficient conductivity (the ability to transport fluid through e.g., “un-propped” porous 

material) (Cipolla et al. 2009). It is possible that the silty tubes of Chondrites-like and 

Phycosiphon-like networks, being exceptionally interconnected both horizontally and 

vertically, would play a considerable role in providing conductive fluid flow pathways in 

addition to fractures. This additional connected pore-volume would increase gas 

production, which is known to increase with permeability enhancement and is inherently 

linked with fracture spacing and conductivity within the stimulated reservoir volume (cf. 

Palmer et al. 2010).   

5.6.4. Impact on fluid flow within bioturbated shale 

The advective flow of free gas from matrix porosity and natural fractures is possible 

because of permeability and conductivity generated through hydraulic fracturing that 

increases the surface area in contact with hydrocarbon-charged porosity (cf. Ballard et al. 

1994). This type of flow from source rock to the well bore is responsible for the enhanced 

production rates from the well in the first months after reservoir stimulation (e.g., Cipolla 

et al. 2009; Fan et al. 2010). After this time it is usually the case that well performance 

will still be economically producing and surprisingly long term production is observed in 
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some wells (e.g., Swami 2012; Swami et al. 2012). This phenomenon is explained by 

desorption of hydrocarbon molecules from organic matter or clay minerals triggered by 

pressure drop during production (e.g., Javadpour et al. 2007; Cipolla et al. 2009; Fan et 

al. 2010; Swami 2012; Swami and Settari 2012). It is considered that the hydrocarbons 

released from their dissolved and/or sorbed state can constitute the majority of the total 

hydrocarbons in place, and may be more than 50% of gas produced, especially in shallow 

to moderate reservoir depths (e.g., Cipolla et al. 2009; Fan et al. 2010; Swami 2012; 

Swami and Settari 2012). It is thus crucial that organo-porosity is connected to the 

fracture network, and/or that fracture spacing is improved such that the distance of 

diffusive hydrocarbon flow through the sediment is minimized (Bustin and Bustin 2012). 

The tight mudstone matrix is the main attenuator for diffusive gas molecule flow as this 

sluggish process is dependent not on pressure, but on available pore space and pore 

volume, pore-throat size and pore distribution within the mudstone (Ballard et al. 1994; 

Swami 2012; Swami et al. 2012). Decreasing communication distances to a few 

millimetres between kerogen particles and silt–rich ichnofabrics may considerably 

improve the bulk diffusive potential of the mudstone (Fig. 5.6). Chondrites ichnofabric, 

though not sizable in volume, has a disproportionately large surface area and 

connectivity, creating closely-packed three-dimensional conduits composed of very thin 

silt-composed tubes surrounding small volumes of petroliferous mudstone (with burrow 

spacing of 4.5 - 5 mm; Fig. 5.5). Accordingly a shortcut is created for sluggish 

diffusional flow from matrix into the porous trace fossils and associated loci of potential 

micro-fractures (Fig. 5.6B; cf. Bustin et al. 2008a; Bustin and Bustin 2012).  
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Small burrows may not be a well-recognized conduit for transport of desorbed gas and 

thus elevated producibility but it is possible that burrows provide improved dispersivity 

(i.e. rock property related to hydrodynamic spreading of a solute or phase that is 

intensified by the heterogeneity of the porous medium; see Gingras et al. 2012) of 

otherwise ultra-tight and ductile mudstones (cf. Schrieber 2003). 

5.7. Conclusion 

The burrow architecture of Chondrites-like forms shows an adaptation that maximizes 

the surface area of the burrow system for enhanced solute exchange. Feeding strategy of 

producers of Chondrites-like burrows is usually considered to rely on substrate exchange 

(sulphide mining sensu Seilacher 1990; Fu 1991) in order to gather as much substrates for 

chemoauthotrophic symbionts as possible. The most effective burrow architecture for 

such purpose is one that offers extensive surface area penetrating large volumes of 

ambient sulfide-rich pore waters. 

The architecture of Phycosiphon-like burrows shows an adaptation that maximizes the 

volume of the host-sediment exploited. Phycosiphon-like ichnofabric may provide the 

bioturbated interval with up to 25% of brittle, quartz-rich material that may be up to 30 

times more porous than the surrounding matrix. The small volumes of phycosiphoniform 

burrow cores (∽ 1-5%) may contain high concentrations of low reactivity organic carbon 

and should therefore be considered during interpretation of TOC values from shale-

hydrocarbon reservoir facies with such burrows. 
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From the well stimulation point of view it is crucial to understand volumetric relation 

between brittle silty ichnofabric and ductile clay-rich matrix. The interrelated structural 

and mineralogical heterogeneities typical for aff. Phycosiphon, Nereites and aff. 

Chondrites influence shale gas reservoir quality in a number of ways: 

1) By introducing or concentration of various volumes (3.5% - 26%) of silty material in 

form of homogenous quartz-rich and clay-depleted burrow fills, thereby creating 

preferential fluid flow paths and improving bulk-volume brittleness; 

2) By creation of brittle and/or porous burrow fills throughout the vertical extent of the 

tight muddy—often laminated—host rock, thereby improving permeability isotropy 

(kh≈kv) and increasing stress isotropy; 

3) By creating tortuously distributed, disproportionally large, burrow-sediment interfaces 

that act as fracture-prone planes of weakness and form the basis for improved matrix-

solute exchange, thereby improving bulk shale fracturability and dispersivity 

respectively; 

4) By creating dense, highly interconnected brittle boxworks that improve fracture-

spacing and fracture connectivity. Burrow spacing (millimeters long) should form the 

basis for future modeling of fracture spacing and assessment of fracture complexity in 

stimulated gas- or oil-shale intervals with bioturbation; 

5) By partitioning the petroliferous shale matrix to small volumes (around 1 cm3), thereby 

enhancing bulk diffusive efficiency of hydrocarbon flow to the well-bore, consequently 

improving productivity. 
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5.9. Appendices 

 

In order to control the interactive model embedded in PDF file (Appx 5.1): 

1) Click on the chosen three-dimensional reconstruction to activate the interactive 

content; 2) Use tools that are listed on the bar at the top of the activated area; 3) choose 

between available views to explore spatial geometry of the three-dimensional object and 

their chosen components; 4) use Model Tree panel in order to display or hide chosen 

components. 

 

 

 

 



Appendix 5.1. Interactive, simplified three-
dimensional models of examined ichnofabric. 
Artificially colored. 
 
A. Chondrites-like from Mancos Shale, Utah.  
3D scale: 10 mm. 
B. Chondrites s.s. from Staithes, Yorkshire, UK. 
3D scale: 10 mm. 
C. Phycosiphoniform burrows from Rosario 
Formation, Mexico. 3D scale: 20 mm. 
D. Phycosiphon s.s from Staithes, Yorkshire, UK. 
3D scale: 5 mm. 
E. Nereites s.s. from Craster, UK. 
3D scale: 20 mm. 
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Appendix 5.2. Calculation of burrow spacing (BS). 
 
1. Known variables (see Fig. 5.1):   
 
VU = volume of ichnofabric (volume utilized); 
r = averaged radius of burrow cross sections; 
x, y, z = lengths of the edges of the prism containing the ichnofabric (corresponds to dimensions of volume 
available [VA]). 
 
 
2. The length of distribution grid  is calculated from the equation: 

 

 
  
3. The length of the distribution grid  is composed of a number of cylinders of the length of  (see Fig. 
5.1B). The length of  is calculated from the equation: 

 
 

 
 

 
 

 
 

 
 

  
It is a quadratic equation because of . 
 

 
 

 
 

 
 

 
 
 
4. Burrow spacing is approximately equal to  with subtracted averaged diameter of the burrow cross 
sections: 
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CHAPTER 6   

Three-dimensional reconstruction of ichnofabrics  

in shale gas reservoirs: discussion and conclusions 

To generate a more complete understanding of the role that organisms have in controlling 

the porosity, permeability and fracture-susceptibility of shale-gas reservoir intervals a 

three-dimensional volumetric study of the most common ichnofabrics in these facies has 

been performed. In order to investigate the complex three-dimensional burrow fabrics, 

precise serial grinding and volumetric ichnofabric analysis of the reconstructed burrows 

was undertaken. Formulation and standardization of volumetric calculations and 

description of a burrow or ichnofabric presented in this study aims to contribute to the 

emerging field of quantitative three-dimensional ichnology.  There is an emerging need 

to be able to predict the distribution of ichnofabric-associated trends, and thus reservoir 

quality, in bioturbated hydrocarbon reservoirs especially the shale-hydrocarbon reservoirs 

that are hosted in ultra-low permeability mudstones. This study helps to delineate these 

trends through the investigation of the deterministic three-dimensional reconstructions of 

some ichnotaxa typical of shale-gas reservoir facies. Five samples of organic rich 

bioturbated mudstones and siltstones have been investigated in the course of this thesis in 

order to create three-dimensional reconstructions of some typical trace fossils and the 

ichnofabrics that they produce.  These studies demonstrate the potential for trace fossils 

to affect shale-hydrocarbon reservoir quality and producibility, and to provide insights 
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into some of the underlying precepts that might influence reservoir quality and its 

regional prediction.  

6.1. Achievements of the thesis and summary of conclusions 

6.1.1. Formulation of methodology for the deterministic volumetric 3D 

reconstructions and analysis of ichnological specimens. 

This study presents a new methodology that was developed for obtaining precise, 

deterministic three-dimensional reconstructions of large or complex trace fossils and 

ichnofabrics and further analytical approach to the spatial reconstructions in order to 

provide detailed, morphological and volumetric characterization of the studied 

ichnological specimens (Chapter 2).  

The novelty of the methodology of 3D reconstruction and analysis of ichnofossils based 

on serial sectioning is founded on a combination of:  

1) High resolution of serial sectioning and employment of precise, automated computer-

controlled grinding machinery capable of grinding to a precision of fractions of 

millimetre; 

2) Digital image-processing for optimal interpretation of lithology of different 

components of trace fossils, and also in some cases the near-burrow environment, in 

volume-visualizing software; 

3) Generation and optimization of the polygonal surface(s) of visualized trace fossils (and 

their different morphological components present) at a 1:1 scale; 



6-3 

 

4) Volumetric and descriptive analysis of the acquired 3D reconstructions that represent 

the ichnological specimens at their real-scale; 

5) Formulation of case-specific proxies and calculations for volumetric characterization; 

6) Presentation of the resultant reconstructions as interactive objects in popular file 

formats or software (e.g., PDF, Internet browsers). 

 

This PhD thesis presents application of the above methodology to the five ichnofabrics in 

order to characterize the true geometry, spatial distribution, and volumetric assessment of 

Nereites, aff. Phycosiphon, and aff. Chondrites ichnofabrics. Consideration of multiple 

ichnological samples allowed for formulation and standardization of procedures, such 

that all the samples were processed the same way and the results are directly comparable 

(Tab. 5.2). 

The wide variety of possible measurements and calculations that can be applied to the 

deterministic three-dimensional reconstructions of ichnological data provides the means 

to characterize burrows and complex ichnofabrics. The methodology presented is based 

on serial grinding and is especially useful for 3D examination of the ichnofabric 

contained in mudstones and muddy siltstones where the application of non-destructive 

methods such as CT scanning or MRI is impossible owing to the petrological 

characteristics of the rock (e.g., low burrow-matrix density difference). Although 

destructive, the methodology presented herein results in the generation of the 

reconstructed ichnofabric in the form of three-dimensional polygonal mesh that once 

created, may be presented as interactive object (e.g., Appx 2.1 and Appx 4.3).  The 
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availability of the interactive 3D models enables their manipulation and/or modification 

in order to explore the three-dimensional arrangement of burrows and allows for their 

artificial slicing in order to provide a set of search templates for the identification of trace 

fossils in core and thin section (Appx 2.1: section views; cf. Fig. 2.5). 

Realistic quantification of burrow volumes, together with the improved understanding of 

their spatial arrangement and distribution may help to elucidate possible trace maker 

behaviours, especially when the impact on the near-burrow environment and distribution 

relative to host sediment heterogeneities is considered. This is considered to be especially 

true for complex burrows when volumetric and morphological arrangements of the 

compartment burrow elements may reflect their classification as demonstrated in this 

study (Fig. 4.2).  Quantification of burrow parameters such as those that reflect sediment-

exploitation efficiency allows consideration of the differences between burrows of the 

same taxon in different sediments, and comparison between similar taxa in the same 

sediment (Tab. 4.2). Such parameters as the proximity of a burrow to a sediment 

heterogeneity (e.g., sediment layer or patch of a concentrated food resource) or a 

biogeochemical stimulus may significantly affect both behaviour and burrow 

volumetrics. 

This study is focussed on linking the detailed 3D geometries of ichnofabrics and burrows 

with lithology, volumetric evaluation of the burrows, and in some cases their 

petrologically/petrophysically disparate components and, as such, has its application to 

reservoir characterization. It is considered that the measurements and calculations based 

on the volume of the sediment processed by the trace maker (volume exploited), 
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burrow(s) surface area, and the quantitative assessment of the approximate density of the 

distribution of the ichnofabric-forming burrows within a sample (burrow spacing,  

Fig. 5.1) are among the most valuable and informative ichnologically-based 

quantifications of relevance to the hydrocarbon-reservoir characterization.   

6.1.2. Understanding morphological diversity of common shale-gas reservoir 

trace fossils in the light of their 3D reconstructions  

Aff. Phycosiphon trace fossils  

The three types of phycosiphoniform burrows examined in this study significantly differ 

from each other despite having the characteristic “frogspawn” texture in vertical cross 

section (Fig. 4.2; cf. Bromley 1996). The deterministic three-dimensional reconstructions 

of the three examined trace fossils allow for detailed examination of the spatial geometry 

and volumetrics of these complex trace fossils (Tabs 4.1, 5.2; Appx 4.3).  This is 

important because they are composed of mineralogically and petrographically different 

elements (dark clay-rich fecal burrow cores and light silty burrow halos) whose spatial 

and volumetric inter-relations allow for taxonomic and palaeobiological considerations as 

well as may have significant influence on the reservoir quality.  

It is demonstrated herein that the geometry of Phycosiphon s.s. burrows from Staithes 

Sandstone Formation, may be explained by the pre-existing palaeobiological model for 

Phycosiphon incertum (Wetzel and Bromley 1994; Bromley 1996; Fig. 3.4).  This 

material may therefore be attributed to Phycosiphon incertum s.s. Burrows of aff. 
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Phycosiphon from the Upper Cretaceous Rosario Formation, Mexico, are found to be 

morphologically distinct from Phycosiphon s.s. Similarly to the Phycosiphon s.s. the 

geometry of phycosiphoniform burrows from the Rosario Formation is principally based 

on loops that commonly results in paired core ellipses in vertical cross section. Similar 

amount of halo material is present below both of the core ellipses of the single burrow 

loops from Rosario Formation. This makes the form from Rosario Formation 

distinguishable from Phycosiphon s.s., which is characterized by halo material being 

present only between the two core ellipses (Figs 4.2A-E, 4.4 and 4.5). Nereites 

ichnofabrics also ostensibly resemble the phycosiphoniform “frog-spawn” pattern, 

especially where vertical cross sections of individual burrows are connected by their 

haloes (Figs 4.2G, H and 5.2F). This juxtaposition may lead to erroneous impression of 

the presence of looped tubes that may be thus interpreted as composing a halo-sealed 

loop similar to that of Phycosiphon. Three-dimensional reconstruction of Nereites shows 

that the elliptical, dark grey burrow cores are seldom looped, and are completely 

surrounded by light grey silty halo material. It is illustrated that Nereites is characterized 

by the least tortuous burrows considered in this study, however it is illustrated that many 

species of this type of phycosiphoniform burrows do have closely guided—bedding 

parallel—meanders.  

It is documented herein that without exception, every fecal burrow of aff. Phycosiphon 

from Rosario Formation creates a lobe that is bent vertically (Fig. 4.3). No horizontal 

loops have been observed in the sample from Rosario Formation; whereas such geometry 

is frequent for lobes of Phycosiphon s.s. and prevalent in the meanders of Nereites from 
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Craster. In contrast to the core strings, the silty haloes of adjacent phycosiphoniform 

burrows are widely connected in the vertical and/or horizontal places, significantly 

influencing the vertical connectivity of these permeable and/or brittle volumes within 

tight matrix. 

Detailed analysis of the spatial geometry of the three phycosiphoniform burrows 

examined in this study allows for consideration of the trace makers burrowing behavior. 

The producers of aff. Phycosiphon and Nereites burrows are considered to be worm-like, 

subsurface grain-selective deposit feeders, ingesting organic-rich sediment, using oxygen 

from interstitial pore waters for respiration (e.g., Wetzel and Bromley 1994; Bromley 

1996; Wetzel 2002). Phycosiphon-like burrows commonly occur as monotaxic 

assemblages that are taken to imply stressed seafloor environments (e.g., dysoxia; e.g., 

Wetzel 2002) or the early, opportunistic colonization of food-rich sediments (e.g., 

turbiditic deposits; e.g., Stow and Wetzel 1990; Wetzel and Uchman 2001). All of the 

three ichnotaxa considered herein (aff. Phycosiphon, Phycosiphon s.s., and Nereites) 

have been found to occur together in the same sediment interval (Callow et al., 2013a, b). 

The illustrated morphologic/geometric differences between the three ichntaxa are most 

likely  the result of biomechanical and/or behavioral adaptations, which may result from 

the trace making organism(s) morphological, digestive, respirational and sensory 

adaptations (cf. Wetzel and Uchman 2001; Wetzel 2002). In the light of the three-

dimensional reconstructions it is suggested that the producers of all the three trace fossil 

types processed the largest possible volume of sediment possible within the limits of their 

biomechanics and food availability.  The volumetric studies of these trace fossils 
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presented herein indicate that the producers of Nereites (from Craster) and 

phycosiphoniform burrows (from the Rosario Formation) were more efficient at 

processing large volumes of sediment compared to the Phycosiphon s.s. trace maker. This 

is illustrated by the core multiplicand for halo estimation (CM), a variable that describes 

volumetric relation of halo to core material (Tab. 4.1 and 4.2). Average core multiplicand 

of Phycosiphon s.s was calculated to be 4.5 whereas the phycosiphoniform burrows from 

the Rosario Formation was 6.5 and Nereites (from Craster) was up to 8 (Bednarz and 

McIlroy 2012). The persistent presence of the silty clay-poor material of halo around 

each fecal string or externally from lobes suggests that Nereites and phycosiphoniform 

burrows from Rosario were formed by grain-selective sediment feeding, at the anterior of 

the burrow, during periods of continuous burrowing. In contrast, burrows of Phycosiphon 

s.s. with their diagnostic clay-rich marginal tube are most likely to result from successive 

probing (Wetzel and Bromley 1994; Bromley 1996; Bednarz and McIlroy 2009).  The 

looping architecture of phycosiphoniform burrows from the Rosario Formation and 

Phycosiphon s.s. from Staithes may indicate positive thigmotaxis detecting the proximity 

of clean (bioturbated) sediment (see Wetzel and Bromley 1994). The suggestion of 

phobotaxis as a sensory adaptation of the producers of phycosiphoniform burrows 

(Callow et al. 2013a) can be supported by the observation herein that almost none of the 

reconstructed burrows self-cross-cut even when tracked in the most tortuous of three 

dimensional ichnofabrics burrow cores densely distributed in three dimensions (Appx 

5.1C–D, views: burrow cores). Only one instance was observed where the burrow core of 

large diameter Nereites demonstrably cross-cuts that of a Nereites of smaller size (Fig. 
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5.2G, Appx 5.1E, view: cross cut). If any of the three types of phycosiphoniform burrows 

co-occur within the same sediment volume they have been found to (probably 

phobotactically) avoid the previously produced fecal cores (Callow et al., 2013a) with 

few exceptions. In contrast, the cleaned sediment halos of phycosiphoniform burrows are 

found to be highly connected (Appx 4.3, chapter 4). Such spatial relations may support 

geochemical study of the Rosario Formation phycosiphoniform burrows that were found 

to have only trace amounts of organic matter preserved in the burrow halo (Harazim 

2013). The organic matter contained within the fecal cores was likely refractory (Harazim 

2013).  Phobotactic avoidance of burrow crossing is considered to contribute to 

optimization of space usage, especially in the areas of high burrow density. 

Aff. Chondrites trace fossils  

This study also presents three-dimensional reconstructions of two Chondrites-like 

ichnofabrics (Appx 5.1A, B). Chondrites-like burrows have been found to produce 

burrow geometries of small volume but with a disproportionally large surface area  

(Fig. 5.5). Volumetric examination of the Chondrites-like ichnofabrics presented in this 

study indicates the significant potential of this type of ichnofabric to thoroughly penetrate 

the bioturbated sediment even when the total ichnofabric volume is small (calculated to 

be 3.5 – 7.5% of the total sample volume, Tab. 5.2). Thin (1-2 mm in diameter) tubes 

constituting root-like burrow systems of Chondrites were likely designed to maximize the 

area of solute exchange between burrow microenvironment and pore waters of the 

surrounding sediment. This strategy was probably employed by the Chondrites trace 

maker in order to collect the dispersed hydrogen sulfide needed for chemosynthetic 
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activity of its symbionts (i.e. sulfide mining; Seilacher 1990; Fu, 1991; Bromley and 

Ekdale 1994; Bromley 1996; Uchman 1999). The function of Chondrites burrows and the 

ethology, and biology of the Chondrites trace maker have remained unresolved but 

highly debated for more than a century (e.g., Salter 1866; Nathorst 1881; Fush 1895; 

Simpson 1956; Osgood 1970; Seilacher 1990; Fu 1991; Kotake 1991; Ekdale 1992; 

Seilacher 2007).  Full palaeobiological exploration of Chondrites palaeobiology is 

beyond the scope of this study.  

The two examined aff. Chondrites burrows show significant differences in architecture. 

The burrows from Staithes and from Muddy Creek show anomalous burrow architecture 

that precludes confident assignment to Chondrites (Appx 5.1A, B). However, both of 

these trace fossils produce Chondrites-like ichnofabrics (Fig. 5.2A, B). The most striking 

feature of the aff. Chondrites burrows from Muddy Creek is the abundant vertical 

branching seen in the distal branches (Appx 5.1A, e.g., view: vertical branching). This is, 

however, not part of the ichnogeneric diagnosis of Chondrites, nor is it widely 

documented in the literature (cf. Osgood, 1970). 

6.1.3. Understanding the impact of trace fossils on shale–hydrocarbon reservoir 

This research project aims to generate a more complete understanding of the role that 

organisms have in controlling the rheology and petrophysical properties of shale-gas and 

shale-oil reservoir intervals. The study is built around deterministic 3D reconstructions of 

aff. Phycosiphon, Nereites and aff Chondrites ichnofabrics that allowed for 1) 

quantitative assessment of the ichnological contribution to the examined volume of the 
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organic-rich mudstone; and 2) recognition of spatial distribution of petrophysical trends 

associated with burrows lithology.  

Through the creation of porous and permeable volumes within sediments, silty burrows 

may provide effective fluid flow conduits and increase primary and fracture-related 

porosity and permeability in shale-hydrocarbon reservoirs. It has been observed that 

burrows of Chondrites-like forms and the halo of the neighboring phycosiphoniform 

burrows are highly connected in three-dimensions (Fig. 5.3, Appx 5.1). The strong 

vertical connectivity of the trace fossils studies may improve producibility at the macro-

scale (kh≈kv) (Tab. 4.2). It is the burrow halo of phycosiphoniform burrows that most 

significantly participates in the volumetric enhancement of porosity and permeability in 

bioturbated mudstones (from 17% up to 25%; Tab. 4.1; Fig. 5.5).  This type of 

ichnofabric creates porosity enhancement that is up to 30 times that of the host sediment 

(cf. Gingras et al., 2013; Harazim 2013).  

It has been demonstrated in this study that the tortuous geometries of the interconnected 

silty burrows create a large surface area for release of gas into the porous ichnofabric 

network. Since the porous burrow fills are directly associated with source rocks, the 

communication distances from sediment to pore-networks is greatly decreased (Fig. 5.6) 

and producibility/deliverability is increased.  Additionally, the interconnected quartz-rich 

burrow fills of aff. Chondrites and the burrow halos of phycosiphoniform burrows form a 

framework of brittle material in otherwise non-brittle mudstones (Fig. 5.2B, F).  The 

burrow fills may themselves undergo diagenetic cementation (e.g., by carbonate or quartz 

cements), further increasing brittleness but decreasing primary porosity. The 
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interconnected burrow surfaces are likely to be planes of weakness for both natural and 

induced fractures, thereby improving fracturability, particularly vertical 

connectivity/permeability. It is the aff. Chondrites ichnofabric that contribute most 

significantly to the generation of the fracture-prone interfaces as the surface area of the 

burrows may be more than 25 times larger than the surface area of the horizontal plane of 

the bioturbated volume (Tab. 5.2).   

The millimetric burrow spacing that characterizes some mudstone ichnofabrics (between 

1.6 – 9.5 mm in the examined samples) should be investigated for its impact on fracture 

spacing and complexity in hydraulically-stimulated reservoir facies (Fig. 5.6, Tab. 5.2). 

Millimetre scale fracture spacing is, however, considered the most effective fracture 

density that allows for efficient contact with the reservoir rock (cf. Bustin and Bustin 

2012).  Ichnofabric development would intuitively constitute the most likely means to 

meet these criteria. 

6.2. Avenues for future research 

Three-dimensional volumetric analysis of ichnofabric as a tool for assessing the impact of 

bioturbation on reservoir quality has been formulated and used herein for the first time. It 

can be further linked with detail petrography, geochemistry (cf. Harazim 2013) and mini-

permeability measurements (cf. Leaman 2013), and may shed more light on the mudstone 

depositional processes that are still not well understood. While this study is focused on 

centimeter-scale analysis of the ichnofabric, the results may be up-scaled when linked 
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with stratigraphic understanding of reservoir shale-hydrocarbon play (cf. Macquaker et 

al. 2007; McIlroy 2007; Slatt and Abousleiman 2011; Spaw 2012, 2013). 

Because of the fact that the currently available technology of production from shale-

hydrocarbon reservoirs depends on the effectiveness of the hydraulic fracturing, the 

significant impact that the ichnofabric has on the distribution and alternation of the 

rheological properties of shales should not be ignored.  This study illustrated cases of 

burrow-controlled fracturing along ichnofabric-generated planes of weakness and shows 

the need of experimentation focused on the fracture propagation and possible fracture 

coalescence to be applied to trace fossil studies.  If the results of such geo-mechanical 

experiments are linked with ichnofabric analysis, then modeling of fracture propagation 

and fracture spacing has the potential to improve shale-hydrocarbon reservoir 

characterization. Incorporating ichnology into shale-hydrocarbon reservoir 

characterization may be especially helpful for reservoir optimization since the commonly 

used surfactants will be significantly affected by trace-fossil mediated reservoir 

wettability characteristics.   

It is considered herein that bioturbated reservoir facies may be preferential targets for 

application of various production optimization technologies (e.g., acidization; use of 

surfactants etc.).  The inter-relationship between ichnology and shale-hydrocarbon 

reservoirs is still little explored.  This thesis provides one of the first attempts at realistic 

3D reservoir ichnology in shale-hydrocarbon plays, and should be the basis for further 

detailed studies incorporating mineralogy, petrophysics, experimental fracturing and 

flow-modeling. 
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