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Abstract

A finite-el t-based i lgorithm is ped to solve the two-
Navier-Stokes equations with Coriolis force, which can be
used to simulate the wind-dri ic ocean cil ion on a beta-plane. The spatial

discretization is performed via the standard Galerkin Finite Element Method, by using the

classical i ic Taylor-Hood ipi i finite element. A variant of

the Crank-Nicolson rule is employed for the temporal discretization, and the Picard
iteration method deals with the nonlinearity of the advective terms. In an effort to remain
faithful to the standard Galerkin Finite Element Method, the consistent mass matrix is

used instead of the lumped mass matrix, and least-square best fits are calculated for the

qr derived in the ing phase. The algorithm has been implemented into

a program and successfully tested on three benchmark problems, flow past a cylinder,

flow over a backward facing step, and mid-latitude wind-driven barotropic ocean

for an idealized flat-bottomed ocean.
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1. INTRODUCTION

The incompressible Navier-Stokes equations govern many incompressible flows.
The difficulty of generating analytical and numerical solutions to these equations, when
modelling ‘real life’ flows, is well known. This is partly due to the non-linearity of the
advection terms and to the fact that the incompressibility constraint between the velocity
components — the velocity field is divergence-free — does not involve the pressure field.
Several approaches to treating these issues within numerical algorithms have been
devised, however, without offering a definite conclusion as to what the best numerical
treatment would be.

Among the numerical methods employed for solving the incompressible Navier-
Stokes equations, the Finite Element Method (FEM) stands out, as it develops numerical
algorithms in a precise and consistent manner starting from the underlying partial
differential equations, without requiring external ‘help’ usually consisting of ad hoc and
developer-dependent strategies. Moreover, its sound mathematical foundation allows for

functional analysis to be used as a powerful tool for error analysis. This has led to the

P! of adaptive i (e.g. mesh refi ) based on error estimates,
which aim at improving the reliability and accuracy of numerical solutions.

‘When modelling oceanic flows in a reference frame fixed to the rotating Earth, an
additional (fictitious) force — the Coriolis force — must be included in the incompressible

Navier-Stokes equations. The Finite Difference Method (FDM) has been the numerical



method of choice for most ocean models for solving these equations. Its relative
simplicity as well as the ease of developing numerically efficient code has attracted many
ocean modellers. On the other hand, the success of the finite element method in the area
of solid mechanics, where it is almost exclusively used, has prompted intensive research
on its application in the area of Computational Fluid Dynamics (CFD). The FEM has
some clear advantages that recommend it as a powerful alternative numerical method for
ocean models. The most important advantage of FEM is that it allows the use of
unstructured grids with variable resolution. The grid resolution can be increased in the
areas characterized by large gradients in velocity and/or pressure. Thus, flow phenomena
concentrated in narrow regions (e.g. western boundary currents, flows through straits) can
be resolved by only refining the mesh locally, without changing the resolution for the
ocean interior. Moreover, complex coastlines and bottom topography are better

represented when using finite element meshes. Another big advantage of FEM is offered

by its ability to treat boundary itions naturally. F , multi
domains are dealt with easily. Compared to the FDM-based algorithms, FEM-based
algorithms are more complex and thus more computationally expensive when used to
solve the same problem with the same uniformly high resolution, for example. However,
the FEM-computation time can be reduced a great deal by decreasing the resolution in the
areas where it is unnecessary high.

Several researchers have proposed and studied FEM-based numerical algorithms
for ocean modelling (Fix, 1975; Haidvogel et al., 1980; Dumas et al., 1982; Le Provost,

1984 and 1986, Le Provost et al., 1993, Myers et al., 1995; Le Roux et al., 2000). Since



the application of the finite element method in this field has not reached maturity, most

FEM-based models have been limited to the si ion of t
flows.

Fix (1975) was the first to study the properties of FEM applied to a
quasigeostrophic formulation of the ocean dynamics. He pointed out some FEM-specific
advantages such as the natural treatment of boundary conditions and the very good
representation of complex domains offered by meshes based on triangular elements,
which would be useful for ocean modelling. Furthermore, he emphasized the accuracy of
the method and showed that vorticity, energy and enstrophy were conserved. The interest
in FEM for ocean modelling has increased after the comparison study performed by
Haidvogel et al. (1980) showed that finite element and spectral models were more
accurate and even more efficient than the finite difference models.

A FEM model for the wind-driven barotropic general ocean circulation in a closed
basin was proposed and investigated by Dumas et al. (1982). The precision of the results
was found advantageous compared to that offered by classical FDM models for the non-
linear cases. By using quadratic finite elements for the region characterized by large
gradients in velocity, i.e. the western boundary layer, the accuracy has been improved
without additional computation time. Le Provost (1984) extended the model of Dumas et

al. to a two-layer i ic version of a inic model. Local of the

triangular finite element mesh was performed in order to resolve baroclinic instabilities.
Subsequently, Le Provost et al. (1993) extended the model to a multi-layer stratified flat-

bottomed ocean. This model was estimated to be approximately two times more



computational expensive than a very efficient finite difference model, for real ocean

applications.

Myers et al. (1995) ped a di i ic finite-el it ocean
circulation model using spherical coordinates. The model was used to simulate the
barotropic circulation in the North Atlantic Ocean by taking into account realistic
coastline and topography. The results compared very well with previous diagnostic
calculations. One of the advantages offered by finite element models, i.e. their capability
of resolving very dynamic and localized flows, was proved by the prediction of the
separation of the Gulf Stream at the correct latitude in the presence of the JEBAR (Joint
Effect of Baroclinicity And Relief) term.

High spatial accuracy is required, among others, by the non-linear terms for
accurate simulations of slow Rossby modes. Since the Eulerian advection schemes based
on higher-order finite elements are computationally expensive, and introduce spurious

modes and numerical dispersion, combinations of FEM methods with other types have

been proposed. A ination of a finite-el t and a semi-1 jian method has
presented by Le Roux et al. (2000) for a shallow-water ocean model. This model has the
advantage of both the flexibility of the finite element mesh and the small numerical
dispersion of semi-Lagrangian scheme. Another relatively new numerical method being
used in ocean modelling is the Spectral Element Method (Iskandarani et al., 1995). It
aims at providing higher spatial accuracy by combining the accuracy of standard spectral
methods and the geometric flexibility of finite element methods. One of the salient effects

is an improved accuracy of the non-linear terms.



The purpose of the present work is to develop a finite element algorithm for

solving the two-di ional i ible Navier-Stokes equations with Coriolis force

that can be used for si wind-driven ic ocean cil ion on a beta-pl

The algorithm is intended to be used as a for ping a th

baroclinic finite-element ocean model. The finite element of choice is the classical
isoparametric Taylor-Hood serendipity quadrilateral finite element. This element is based
on the mixed interpolation of the velocity and pressure; more precisely it offers a
continuous piecewise-quadratic variation for velocity components and a continuous
piccewise-lincar pressure field. Since it is a quadratic isoparametric element, curved
boundaries are better represented by this element. Moreover, the quadrilateral elements
are superior to triangular elements when used to simulate advection-dominated flows, as
they do no exhibit mesh orientation effects.

The chosen approach is to use as much as possible from the field of finite element

for the si ion of industrial flows, and then add characteristic

features of oceanic flows (e.g. Coriolis force). This approach offers the advantage of an

easy transfer of many powerful techniques such as adaptive methods, which are already
being used for industrial applications, for further development of the ocean model.

The thesis is structured as follows. Chapter 2 presents the incompressible Navier-

Stokes equations with Coriolis terms as a set of equations that can be used to model the

wind-driven ocean ci ion on a beta-plane. These i along with the

initial and boundary conditions given in the last section of the same chapter, are the

underlying equations of the numerical algorithi ped in the chapters.



The spatial discretization realized by means of the finite element method, and the
resulting semi-discrete equations are described in Chapter 3. The discretization is
completed by the temporal discretization, which is presented in Chapter 4. Chapter 5 is
devoted to the implementation of the numerical algorithm. The results of testing the finite
element program on three benchmark problems are given in Chapter 6. The last chapter,
Chapter 7, presents the conclusions and some suggestions for future work needed for

improving the numerical algorithm,



2. CONTINUUM EQUATIONS

2.1 ible Navier-Stok i

p

Laminar flows of viscous and incompressible fluids can be described by the
incompressible Navier-Stokes equations, which will simply be referred to as the Navier-
Stokes equations hereafter. This is a complete system of partial differential equations
consisting of equations corresponding to the conservation of momentum and mass.

The t i i i ible Navier-Stok ions in the

form, in terms of primitive variables (1, v, P), are

momentum equations:

du  Ou du 2 0P

LB B L 1.
p[a[+uax+vay] u+ax E., (2.1.1)

v,  ov, v P
p[$+u;+v$J—uV2v+E=Fy; (2.12)

continuity equation:

u v

Frlr

2.13)

Here u and v represent the components of the velocity in the x and y directions,
respectively, P is the pressure, F;, F, are the forcing terms, p is the density, u is the

dynamic viscosity of the fluid, and 7 is the time. The presence of the friction terms in



Laplacian form in the momentum equations (2.1.1-2) indicates that the fluid is
Newtonian. By definition, these are fluids in which the shear stress is proportional to the
velocity gradient.

Assuming that the fluid flows within the region D C R?, during the time interval

[0.t 4], the velocity components and the pressure are sought in the domain
Dx[0,t 5,4 ]. In general, finding analytical solutions to the Navier-Stokes equations is

extremely difficult, mainly due to the nonlinearity in the advective terms and the velocity-

pressure coupling. For complex problems, numerical solutions are generated instead.

2.2 Wind-Driven Barotropic Ocean Circulation Equations

The momentum equations (2.1.1-2) hold true only if the frame of reference is
inertial. Additional terms appear in these equations when they are derived in a rotating
frame of reference. These terms correspond to the Coriolis and centrifugal forces, which
are two fictitious body forces (Salmon, 1998).

In oceanography, the fluid is normally considered in a frame of reference fixed to

the Earth. It is also assumed that the Earth rotates with a constant angular velocity Q. The

governing equations are the thi i i Navier-Stok quati including the
additional terms due to the rotation.

A iti imation used in y is to ignore most of the effects

induced by the curvature of the Earth’s surface when modelling flows at regional scale.
This is done by using a rectangular Cartesian coordinate system with the x-y horizontal

plane tangent to the Earth at a prescribed point. The x- and y-axes are oriented eastwards



and northwards, respectively (Figure 2.1). Some of the above mentioned effects are

retained in this plane, assuming that the vertical component Q. of the angular velocity

vector 5. varies linearly in the y (latitudinal) direction.

Figure 2.1 Rectangular Cartesian coordinate system used for regional scale flows

Neglecting both the centrifugal force and the horizontal component Q, =Qcos8
of the Earth’s angular velocity vector Q, where s the latitude, is another traditional
approximation used to simplify the governing equations (Kantha et al., 2000).

With these approximations, the additional terms occurring in the Navier-Stokes
equations are generated only by the angular velocity component Q, = Q sin . Expressed
as Coriolis accelerations, these terms are — /v in the x-momentum equation and fit in the

y-momentum equation, where f is the Coriolis parameter defined by f =2Qsin@. When
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Qis assumed to vary linearly with latitude, f has a linear variation as well. If this

variation is f = f, + . then the so-called beta-plane approximation is used, where

, where 8, is the latitude of the

2Qcos6,
’/3:%‘ Ttis noted that f,=29 sin@, and ﬂ=%
y

point where the x-y plane is tangent to the Earth surface, and R is the Earth’s radius.

The t i i Navier-Stoks quati can be used to model
oceanographic flows on a beta-plane, if the following approximations and assumptions
are added to those previously presented:

i) the Boussinesq approximation, which allows the use of a constant value

P, for the fluid (seawater) density in all terms, except for the gravitational
force term;

ii) the hydrostatic approximation, which assumes that the vertical component

of the pressure gradient is balanced by the gravitational force;

iii)  vertical velocities are igi to horizontal

iv) the rigid lid approximation that assumes the sea surface is rigid;
v) the fluid is considered barotropic (0 = p( P ) only), therefore the velocity
field is uniform with depth.
The hydrostatic approximation reduces the vertical momentum equation in the three-
dimensional set of Navier-Stokes equations to a simple relation for calculating the

hydrostatic pressure

@21)




1

Eliminating this equation from the set of Navier-Stokes equation leads to the removal of
the hydrostatic pressure mode. Therefore, the pressure in the resulting two-dimensional
Navier-Stokes equations is the sum of the dynamic pressure and the geostrophic pressure,
and can be viewed as a deviation from the hydrostatic pressure.

For a flat-bottomed ocean, and with the above approximations, the governing
equations are the two-dimensional Navier-Stokes with Coriolis terms

momentum equations:

Ou_ Ou du 19P_ 1

Sty ay L N 222
oty MY s 0% po * @23
v v 2 19p_1
YA =—F,; 2.2.3
33 +va Vvt futr— o v @223)
continuity equation:

224)

Here Ay is the horizontal eddy diffusion coefficient that plays the role of the kinematic
viscosity of the fluid £ and [ = fo + Py in the beta-plane approximation.
Po

Equations (2.2.2-4) can be used to model the wind-driven barotropic ocean

circulation at regional scale. In this case, for a flat-bottomed ocean of constant depth Dy,

z
the forcing terms are L —*— and LFy =

Po PoDy Po

» where 7 and 7, are the
PoDy
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components of the surface wind stress. It is noted that the dissipation of momentum
through bottom friction is ignored in this case. Thus, momentum is dissipated only
through lateral friction, represented in the equations (2.2.2-3) by the terms containing the
Laplacians of velocity components.

The rigid-lid assumption filters out the fast surface gravity waves, which would

reduce the magnitude of allowable time steps if i However, this
affects the accuracy of the representation of the Rossby waves (Dukowicz and Smith,

1994).

2.3 Boundary and Initial Conditions

In order to solve the system of Navier-Stokes equations, boundary and initial
conditions are required. There are two types of boundary conditions (BC), essential
boundary conditions and natural boundary conditions. Selecting the appropriate boundary
conditions from the several formulations available for the Navier-Stokes equations is not
an easy task, and depends on the form of the advection and diffusion terms of these
equations.

It is well known that many of the problems that occur in numerical simulations are
caused by the boundary conditions used (Kreiss et al., 1989). Thus, the type of natural
boundary conditions used for the Navier-Stokes equations is crucial when finite element

type solutions are sought, as these ions are i from the beginning in the

weak form of the equations.
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The essential boundary conditions, also known as Dirichlet boundary conditions,
specify the velocity on a portion of the boundary, denoted by I'j,. In the two-dimensional

case this can be expressed as

u(x,y,t)=U(x,y,t), (x,yt)=V(x,yt), (x,y)eTp, te[0,tpy]), (23.1)

where U(x,y,t), and V(x,y,t) are known. If T, is a solid boundary (no penetration)

that is fixed and no slip is allowed, equation (2.3.1) becomes

wx,y,1)=0, x,y,t)=0, (x,y)eTp, t€[0,t 5] (23.2)

The pressure is usually specified at one point only. There is no need for
prescribing the pressure at more than one point in the computational domain because it
can be determined up to an arbitrary additional constant (the hydrostatic pressure mode)
(Gresho et al., 1999, Heinrich et al, 1999). Moreover, it has been proved that no explicit
boundary conditions for the pressure are necessary for incompressible flows
(Ladyshenskaya, 1969). This is another indicator of the fact that the (dynamic) pressure
is strongly coupled with the velocity field and its role is to ensure the flow is divergence-
free.

In some cases, the pressure is specified at more than one point. Although this adds
more constraints, it has been found to have a stabilizing effect on the solution obtained
using the proposed FEM algorithm in some applications where outflow open boundaries

were used. It has also a physical meaning as an outflow open boundary is usually used
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where the flow is considered fully developed and thus the pressure is constant along that
boundary.

Equation (2.3.1) can be applied at the inlet, where the fluid enters the
computational domain, as an open boundary condition (OBC). When a finite-clement-
based algorithm generates the solution, the use of the same type of condition at the outlet
could lead to numerical oscillations (Cuvelier et al., 1986), and is not recommended.
Natural boundary conditions are more appropriate for the outlet in this case.

There are different types of natural boundary conditions (traction, Neumann,
Robin, total momentum flux, etc.). The simplest natural boundary condition is to specify
the normal component of the velocity gradient on the boundary [y (Neumann BC)

=U,(xyt)

BL;'y-'Q =V (23t ) (5y)ETy, 1€101gql. (233)
n

o x,y,t)
on
Unlike other types of natural BC (e.g. stress-type natural BC), this condition does not
include the pressure values on the boundary. Some finite-element-based numerical
simulations (Heinrich et al., 1996) showed that this condition performs even better than

those containing the pressure, when used as outflow open boundary condition in the form

du(x,y,t)

MW x,y,1)
=0, S0, (5,y)E Ty 1€ 0 ] (234)

The initial conditions specify the velocity field at the initial time =0,
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u(x,y)=Up(x,y), W x,¥)=Vo(x,y), (x,y)€ DUT, UTy. (2.3.5)

The initial pressure field is not needed, as the initial velocity field generates it.
Furthermore, the initial velocity field must satisfy the incompressibility constraint given
by the continuity equation (2.2.4). A compatibility condition involving the initial velocity
on I';, and the velocity specified by the essential BC at time #=0 is also necessary to

exclude impulsive changes at start. This is given by

Up(%,y)=U(x,y0) Vo(x,y)=V(x,30), (x,y)€Tp. (2.3.6)



3. SPATIAL DISCRETIZATION
3.1 Introduction

The approach used to find numerical solutions to the problem defined by the
equations (2.2.2-4), with the boundary conditions (2.3.1) and (2.3.3), and the initial
condition (2.3.5), and described hereafter, is based on the Galerkin Finite Element
Method and the Finite Difference Method. The Galerkin Finite Element Method is used
for the spatial discretization of the problem over the flow region D R, and yields a

semi-discrete (the time variable remains continuous) set of equations (ordinary

tions). The time-i ion method for the semi-discrete set of equations
over the time interval [0,7,,] is the Finite Difference Method. Some authors call this
combined method, the method of lines.

The Finite Element Method does not aim at solving the original set of PDEs, but
integral forms of these, called weak or variational forms. They are obtained by
multiplying the PDEs by some carefully chosen functions, followed by integration over
the spatial domain. The natural boundary conditions are naturally incorporated into the

weak forms, and this is one of the advantages offered by FEM.

3.2 Weak Formulation
Different weak forms can be obtained for the given problem, depending on the
manipulations performed on the original PDEs (e.g. rewriting the advection and/or

diffusion terms in some other forms) and/or after integrating over the spatial domain.
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Each weak form is associated with the type of natural boundary condition that it can
incorporate. Thus, when deriving a weak form for the problem one has to decide on the
type of natural boundary condition that is to be used. This is a crucial point in developing
a FEM algorithm and a clear answer to what the best weak form is, might not be easy to
get.

In order to obtain a weak formulation for the problem defined by the equations
(2.2.2-4), with the boundary conditions (2.3.1) and (2.3.3), and the initial condition
(2.3.5), the momentum equations are multiplied first by an arbitrary function ¢ and

integrated over the domain D. the inuity equation is iplied by an

arbitrary function y and then integrated over D (Taylor, 1981). Thus, we get

j'az—dm j(w—+w—)dz> jw(A,,, Vu)dD

P

= Ifwdm—jaa dD-—— JoF.ap, 621
0 D
j’ +j(w—+wv—)db jq;V(A,,Vv)dD
b %’
[
+‘!fwdD+;Jwngfpa B[ngydD' (322

J‘(u/—-w—)du 0. (323)
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The functions ¢ and y, called test functions, are time-independent and must
satisfy a set of requirements that will be presented during the derivation of the semi-
discrete equations. First, because of the essential boundary conditions for velocity (2.3.1),

the test functions @ are chosen such that they vanish on the boundary I")y
A xy)=0, (xy)elp. (3.24)

Invoking Green’s theorem and taking into account (3.2.4), we get the following

expressions for the diffusion terms in the equations (3.2.1-2)

~ [o¥( Ay Vu )dD = [ A,V pVudD - jA,,qaa—”dr 3 (325
D D Ty a”'
v
- [o¥( A, Vv )dD = [4,V pVvaD ~ IA,,(pa—vdF, (3.2.6)
D D Ty on

where 7 is the outward pointing unit normal vector on the boundary I'y
(0D =T, UT'y). Substituting these terms by the expressions given by the equations
(3.2.5-6) into the momentum equations (3.2.1-2) gives

u

B rergdD+ [AnV@VuaD
D

o
J”’y“”*,{‘“x y

1 P 1 ou
= |fevdD+— |@p—dD =— |@F,dD+ |Ayp—dI’, (3.2.7)
5[ ,0,;; ox ﬂa,‘," r{ o



v d v
LD+ [(u Lt v LD+ [4,V VD
!wat +J(W3x+w3y) +5[ AL

% JdeD*’i j@a_PdD el for,ap+ IAHaz&d['. (328)
b Pop Oy Po o on

The natural boundary conditions given by (2.3.3) can be readily incorporated into the

equations (3.2.7-8). This is done by replacing the normal derivatives of the velocity

components « and v with the given functions U, and V, , on I'y, and this is the reason

the boundary integrals are placed along with the data on the right-hand side of the above
equations.

In order to formulate a weak form of the given problem, it is necessary to declare

the function spaces in which the unknown functions and the test functions lie. These

spaces are chosen to ensure the existence of the integrals in the equations (3.2.7-8) and

(3.2.3). Thus, it is required that
@eHY(D), wel*(D), ueH! (D), veH! (D) PeH! (D). (329

As the test function y will be related to the pressure P, it is further required that ¥ lie in
the more restrictive space H'(D).

Notice that the Hilbert space (D) is the space of functions f defined over D

that are square integrable over D, i.e. L2(D)={f| J'fde<w}. The Sobolev space
b
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H'!(D) is the space of functions f defined over D such that fand all its first-order partial
derivatives are in L?( D ). The space Hg( D) is the space of all functions in H'( D) that
vanish on the Dirichlet boundary I"j,. The spaces H, (D) and H, (D) are the spaces
of all functions in H'( D) that satisfy the essential (Dirichlet) boundary conditions given
by (2.2.1) for the u and v velocities, respectively.

It is now possible to give a weak form of the problem defined by the equations
(2.2.2-4), with the boundary conditions (2.3.1) and (2.3.3), and the initial condition
@235).

Find u€ H, (D), ve H!z(D),and P H'(D) such that
]'gz%m ]’(wa—"wua—“)dmjA VoVudD
5 O 5 ox dy 5 "
= jfwvdb+— Iw—dD—— [oF.dD+ [Ay0U,dr,  (32.10)
Pop Iy

j‘ —dD+ j'(wf+¢7v—v)dD+ JA,,V¢VvdD
5

+ ijwm—jw——db—— JoF,dD+ [Ayov,dr,  G2.11)
Po p I

j(u/,a—"w&mu:o, (3212)
5 Ox "y

forall e H)(D) andall ye H'(D).
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Thus, the solution to this weak form is sought, instead of that to the original equations.
This solution is called weak or generalized solution (Gresho et al., 1999). The weak

solution need not admit second-order spatial derivatives; the replacement involving the

diffusion terms the di ili i that 4 and v must satisfy,
because the second-order differential operator is no longer present in the final integral
equations.

It is possible to weaken the differentiability for the pressure as well, by integrating
by parts the term containing the derivative of the pressure. Thus, the pressure function
need not possess first-order spatial derivatives and may be even discontinuous over D.
The only requirement for the pressure would be that the pressure function be square
integrable over D, i.e. Pe I?(D). The resulting weak form requires that the natural
boundary conditions be prescribed in the form of stresses applied on the boundary,
involving the pressure (Reddy et al., 1994, Gresho et al., 1999).

The solution to the original problem, called classical solution, is always a weak
solution, whereas a weak solution is a classical solution only when it is sufficiently

smooth (Gresho et al., 1999).

3.3 Finite Element Discretization of the Weak Form

The Finite Element Method is a i hnique used to generate
solutions of weak forms associated with ordinary/partial differential equations.
The first step in applying the FEM to the weak form given by the equations

(3.2.10-12) is to discretize the domain D= DU into a finite number of subdomains. In
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the 2D case, these subdomains are triangles or i Any two such

e, e, (k#1), must fall into one of the following situations

@) e ne =2,

(ii) e, and ¢, have a common edge,

(iii) ¢, and e, have a common vertex.

Following the discretization of the domain, a number of points, called nodes, are chosen
within each subdomain. Usually, nodes are chosen on the boundary of the subdomain
(e.g. vertices, mid-side points) and are shared by adjacent subdomains.

Next, a finite set of piecewise polynomials, called shape or basis functions,
defined on the domain D, is introduced. Each shape function is associated with a certain
node. Its value at that node is /, whereas at the rest of the nodes the value is 0.
Furthermore, the shape function has a prescribed variation on each subdomain (e.g. linear,
quadratic, cubic, etc.), depending on the number of nodes it contains. The nonzero

restriction of the shape function to a in is called local shap is function. The

idea is to seek solutions to the weak form in function spaces that are spanned by the shape
functions. These are finitc-dimensional subspaces of the underlying function spaces for
the unknown functions u, v, and P. By replacing the infinite-dimensional spaces in the
weak form with the finite-dimensional spaces, it is assumed a priori that the velocity and
pressure functions have prescribed variations over the domain. Thus, approximate
solutions in the form of linear combinations of shape functions are sought for a semi-

discrete weak form derived from the original weak form. Note that the approximate



solutions are strongly on the i ion (i.e.

nodes) of the domain D.

A finite element consists of a subdomain e, , the nodes on e, , and the local shape
functions associated with these nodes (Cuvelier et al., 1986). The partition of the domain
into finite elements is called finite element mesh. The finite-dimensional approximation
spaces spanned by the shape functions are called finite element spaces. In the case in
which both the velocity components and the pressure are linear combinations of the same

shape functions, i.e. they lie in the same finite element space, it is said that an equal-order

interpolation is used. The use of equal-order i ion leads to the of
spurious pressure solutions, called spurious pressure modes, and eventually to instability.
However, there are various stabilization techniques that can be used to avoid these

problems (Hughes et al., 1986).

Since the friction terms in the Navier-Stokes equati involves a d-ord
operator applied to the velocity components, namely the Laplacian, whereas only a first-
order operator (the gradient) is applied to the pressure, one would consider appropriate
the use of a higher-order piecewise polynomial for the velocity than for the pressure. In
this case a mixed interpolation is used. The mixed interpolation using one-order-lower
shape function for pressure than for velocity is the most widely used (Gresho et al., 1999),
and is the type of interpolation used hereafter. In this case, the finite element spaces for
velocity and pressure satisfy a compatibility condition, called the Babuska-Brezzi

condition (Girault et al., 1986), which is a necessary condition for stability.
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Let us assume that the domain D has been discretized into a number N, of finite
— N
elements, such that D= Y Assume that N =N +M total nodes are chosen for the

velocity, where N is the number of nodes in DU Iy and M the number of nodes on I'j,.
Assume that the nodes on the Dirichlet boundary I'j, are numbered from N+/ to Nr. If
the

the set of shape functions associated with the velocity nodes is (q;,-(x,y))lgmy

approximate velocity components are:

ut(x,y,0)=uhor, (X0 )+ufy (x.y,1)

N LS s
Suy(tp 530+ (g (x,). (x,9:)€ DX Ot gyl (B31)
= JeNH

=N+

VI3, ) = Vhon (%98 )+ Vi (£,7,1)

N Ny =
Svithp(xy)+ Pvi(t)p(xy), (%,.1)€ DXt ], (33.2)
f=2]

where u; is the nodal value of the velocity u at the node j, and v; is the nodal value of
the velocity v at the same node. The second sum in the above equations interpolates the
prescribed velocities U( x,y,7) and V(x,y,t) on I'p, given by the essential BC. Thus,
only the nodal values of the prescribed velocities are used via
uy(1)=U;(1)=U(x;,y;.t) and vﬂt}:V}(t)EV(Il-,y/,t). for j=N+1,..,Ny, the

rest of the nodal values ; and v;, for j=1,..., N, remaining to be determined. Note that
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the superscript & denotes some measure (e.g. typical, maximum) of element size in the
finite element mesh.
Assume that N, nodes are chosen for the pressure and the set of shape functions

associated with them is {y/;(x, y )}/=W . Then, the approximate pressure is

P(x,y,t)=Ph(x,y.0)+Pl(x 1)

Np-1 o
= P (x )+ Py, (1 Wy, (%7), (%31 )€ DX[0t gy ], (333)
=

where P; is the nodal value of the pressure P at the node j, and Py, is the additive
constant with respect to the spatial variables, which is a prescribed value for the pressure
at a certain pressure node, say Np.

The unknowns are now the nodal values of the velocity components at the
velocity nodes in DIy and the nodal values of the pressure at all pressure nodes
except for one, where it is prescribed. Hence the total number of unknowns is
2N+Np-1.

In the equations (3.3.1-3), the unknown parts of the approximate velocities and
pressure belong to the following finite clement spaces

h h o
Upory Voo, €Vy =spanf{ @y, @n

P € Sl =0V .
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These are the solutions to the approximate weak form obtained from the weak form
(3.2.10-12) by restricting the original function spaces to the finite element spaces above
mentioned. The approximate weak form reads as follows,

Find ufyr, Vpury € Vi, and Bl e Spy,_ such that

3
Iw Whor, +ur,,>dD+jw(uDurN ety Yo Whory +ut, )dD
a
+ [oWhory +vE, )g(u,",u,w +uf, )dD+ [Ay VgV b, +ut,)dD
D D

= jfw(va +vE, )dm— jaz—(P,.i +P!)dD

ol JoF.aD+ [AyU,ar, (33.4)
Poj e

F) ]
[o5, Whory +98, 24D+ fptuury +uty) 3= Chory +vh, D
b D
i)
+ [oWhor, +v1, )5 Obory +¥8, D+ JAuVoV@hor, +vi,)dD
D D
+ jf«p(uuurw +uf, )dD+— jwf(P” +P!)dD

= JoF,dD+ [A,qV,dr, (33.5)
Po Ty

9 9
j[y/g(u,’;w b, )+y/§(vguw +vhr, NdD =0, (3.3.6)
D
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forall pe Vy andall ye Sy, _,. Note that Vy c Hj(D) and S}, , cH'(D).

Since Vji =span{@;,...¢y } and S;’,P,, =span{ Y ;,..¥y,-; }, the equations
(3.3.4-6) hold true for all gV, and all ye Sy, _; if and only if they hold true for the
basis functions of these finite element spaces, i.e. for any @€ (g@,,...,@y } and any
VE(Y Wy, }- In this case, the test functions are the same as the shape functions,
and the method is called the Galerkin Finite Element Method. The approximate problem

can be reformulated as follows,

Find u;(1),v;(t) forj=1,...,N, and P;(t) for j=1,...,Np-1, such that

N du N Nr, dp, M o9
DL oD+ Yu; [| S pu 0, L+ 2%)@—’]@
a =1 ol k=t ox g 9y

=

Y, &b

jA,,v,p,Vw,dD Zv jfaa,a,dm 2 P, —fw,

_—jw,p,du+ j'A,,q;,U ar
v

MU W, N 39, M a9
-3 S oot 3 U f{(iwm,?’Hiwk)w.‘#’}db
P e pLied = a

N N
{§ 1 oernmmso- § v o]

J=N+



N dv N N o, M 20
—~ (p;0,dD + )P, —+( Y, —-
g = g’ 2 ?,J{(Emuk iy gmn 75
N N Np-1 7 v,
+2°v, [A4Vo V0, dD+ Y u, [fp.0,aD+ Y, P,— [p,—LaD
b b = TPy Oy

!
=— [p.F,dD+ [Ay@V,al
Po p Ty

—{ gl - fowir ﬁ i I[(Zmu,)w. 2 +(Zwk 5 }w}

= 5

¥
{ ﬁ v, jAva,w,dm i jﬁp,,p,db}

JENHL

Wnp gy

1
-Py, — [o,
Npp‘”!‘

N 99, N EY)
——dD+ —Lap
IZ:;"/[!W, ox iZ;VIb[w‘ a

U, v de w,—dD,l—l Np-1.(339)

,% . f ax 2 J a £
These equations form a system of non-linear differential equations - the set of

equations (3.3.7-8) - with algebraic constraints, given by the set of equations (3.3.9); they

are called differential-algebraic equations (Gresho et al., 1999). Notice that the algebraic

constraints originate from the i ibili i by the

equation (2.2.4).
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Since only the spatial domain has been discretized, while the time variable
remained continuous, the equations (3.3.7-9) represent a set of semi-discrete equations.

Note that the right-hand side of the equations (3.3.7-8) contains not only given
values (data) but also the unknowns u,v;. This is caused by the non-linearity of the
advection term. There is a multitude of methods that can be used in finite element
algorithms to deal with this non-linearity. The most widely used are the Picard iteration

and the Newton-Raphson method.

3.4 Picard Iteration

In order to linearize the non-linear advective terms in the semi-discrete Navier-
Stokes equations, the Picard iteration method can be applied. Assuming that the time
derivatives are zero (steady-state case) in the equations (3.3.7-8), we get a non-linear
system of algebraic equations. The Picard iteration consists of a series of successive
iterations, in which the original non-linear system is linearized by using the velocity

components obtained in the previous iteration for the transport-velocity components in
¥ ¥

the advective terms - expressed by the sums i(oku,‘ and Y. @, v, i the equations (3.3.7-
k=l k=1

8) - at the current iteration. The resulting linear system of algebraic equations is then
solved using an appropriate numerical method.

The same method can be applied for the general case, in which the time
derivatives are non-zero. Assuming that the time domain is discretized via a finite

difference technique, the Picard iteration can be applied at each time step.
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There are many variations of the Picard iteration method. The variation used in the
following is that presented in Taylor et al. (1981). The transport velocity to be used in the
next iteration is obtained by relaxing the velocity solution obtained for the current
iteration with the (relaxed) velocity passed from the previous iteration. The resulting
linearized semi-discrete equations derived from the equations (3.3.7-9), and written for

the m™" iteration, are:

N ou™ N
Y=L fopyn+ 3uy
t D

= =

E)
J{(ﬁ [ ’W, L (i:ﬁ e, %}ﬂ’

+i )‘Aﬁva,vw,dn Zv Ifw,wldD+ i P'"—jau, ¥ap
=]

:ﬂ_lﬂ;)[q;,rxdn»rr{/a,,w,.u,dr
{il jzp,(o,dm i J{(im [‘")w,a—’f(i%?")%% D}
{/i U IAHqu‘V@JdD i _[f?’yW/ }

1 oy
-Py, — [¢,—"2dD, i=1..N (41
Nppngw, o G4.1)

N o™
Z%f foe dD*Zv"' j{ oo, —+(ﬁw;" e, —}40
1o,
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+Zv J’AHVW‘ledD+Zu”‘ j‘fw,w,dD+ Z P"‘— j’w‘MdD

=L (p.F a0+ [Ayo,ar
20 5 =

"
*{ §ou = I!ﬂ.w/dD* Z v, I{(Zw a0, o +(i¢k\7k” ’m—a ]d }
) F

N+

{ v [aivovems i 0, e i0 }

JENH

-Py, - fo, W gy, (3.42)

Po p

Zu"' Iw, dD+Zv"‘ Iv, a’ dD
i U jy/, = —Lap- i jw,—w, i=l.,Np-1, (343)

whete ! (j=,....N), V2 (G=1,...N), and PJ' (j=1,....Np-I) are the nodal velocities and

pressure values at the m" iteration, whereas i)' (j=1,...,Ny) and ¥;""(i=1,...,Nr) are the
relaxed velocities passed from the previous iteration, with u'j"" =U; and u}"" =U, for
Jj=N+1,...Nr.

The relaxed nodal velocity values to be used in the next iteration (iteration m+1)

are given by
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ar=nl+d-0a",  j=1..N, (34.4)

T = (- i

1..N, (3.4.5)

where r is the relaxation coefficient, re (0,1).

The velocity values i} and ¥/ for j=1,.,N, needed in the first iteration, must
be specified. The iterative process stops when a specified tolerance is satisfied by a
relative error involving the nodal velocity values obtained at the current iteration and the
nodal values of the relaxed velocity passed from the previous iteration, in case it is

convergent. The conditions of convergence within a specified tolerance toler are

el smel
uj i V=¥

<toler, <toler, j=1..N. (34.6)

m
u! vl

Notice that, in the steady-state case, the equations (3.4.1-3) form a set of linear

system of algebraic equations with the right-hand side containing known values only.

3.5 Matrix Formulation

The linear: i-discrete Navier-Stokes equations (3.4.1-3) can be expressed

in the matrix-vector form as follows

M%—+[N("”‘")+K+C]u’" +GP™" =F@"™"), (3.5.1)

Du” =H. (3.52)
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The matrices in the equations (3.5.1-2) are

M' 0

- the mass matrix M:{ o M'jl' of dimension 2N x2N ; the sub-matrices M" and

M" have the entries

M* =M, = [p@,dD for ij=1..N: (3.53)
5

~,.,.,)=[1‘:"(r-"”> 0

- the advection matrix N(i — met, |» Of dimension 2N X2N ; the
0 N'@""y

submatrices N"(@"') and N"(@"') have the entries

= § s S aming 095 R sty 92
NU@"™ ), =N"(@@ ‘)r[{(%(muk ’)w,?’ﬂgwk ‘)w‘—ay—’}dﬂ
Hi= =

fori,j=1..,N; (3.54)

- the diffusion matrix K

u
0 l?"] , of dimension 2N X 2N ; the sub-matrices K" and

K" have the entries

K" =K'y = [AyVo,Vp,dD for i,j=1u,N; (3.5.5)
b
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0 c*

- the Coriolis matrix C:[ 0 ] of dimension 2NX2N ; the sub-matrices C* and

c

C" have the entries

C'y==[fo,p,dD, for i,j=1.. (3.5.6)
D

C'y = [fp,0,dD, for ij= (3.5.7)
b

u
- the gradient matrix G = [ﬁv ], of dimension 2N X( N —1); the sub-matrices G" and

G" have the entries

jaz‘ W’ dD, for i=1...N and j=1..Np—1, (358)

J’w'—dD for i=1..,Nand j=1..,Np~1; (359)

- the divergence matrix D=[D" D"], of dimension ( Np—1)x2N ; the sub-matrices

D" and D" have the entries

DYy = Iw,A—dD for i=1,.,Np—Iand j=1..,N, (35.10)

Ll
D' = [y, T:’Ado, for i=1,..,Np—1and j=1...N. @35.11)
y
b
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The vectors that contain the unknowns in the equations (3.5.1-2) are

the vector of the nodal values of the velocity components at iteration m,

u” =[] .. oupy v val” (35.12)

and its derivative with respect to time,
- the vector of the nodal values of the pressure at iteration m:

Pr=p" .. P (3.5.13)

The right-hand side vectors in the equations (3.5.1) and (3.5.2) are

FU@"") : i
of length 2N, and H of length Np-1 with the entries

Fam
(“ ) FY (ﬁm-l )

P @), =L [ F,dp+ [a00,dr
Pop v
N N
{ZT'. aifw,w,dm Su /[[(im""" w.—+(2w{" ’)qv.—]d }
N+1 D J=N+I1
N; N
—{ S U, [A,VoVpd0- Y v, jfa:,w,du}
i Jo

1 Y ;
—PNPP—’)J@.—&X” dD, i=1.,N, (35.14)



Fra@"™,

1
=— |@;F,dD+ |Ay@,V,dl
Polj; d 1‘{ "
NV Nz N e 09;
f{ 3 a—’J’a);w,dm v, f[(i(akuk ’Jw,a—+(i% o, —’}10}
=N+ 9 N+ pl kel dy

{2’: v, jA,,w,V:p,dD»r Z 7 j'i(o,(a,dD}

JEN+L

)
-Py, L I V;;P db, (3.5.15)

Pop

i U ]w. dD Z v, ]’w,—dn i=1..Np—1. (35.16)
SN oy

The vector F(ii"™) incorporates the forcing terms as well as the natural and
essential boundary conditions. Furthermore, it is updated each iteration, and so is the

advection matrix.

3.6 Taylor-Hood Serendipity Quadrilateral Finite Element

Although the finite element meshes based on triangles have the advantage of a
more accurate representation of very complex boundaries, they induce mesh orientation
effects (Figure 3.1), which are more noticeable for rectangular grids (Cuvelier et al.,
1986). These effects become important as the Reynolds number of the flow increases (i.e.
the flow enters the regime of convection-dominated flows). The use of a quadrilateral

finite element mesh leads to more accurate results (Gresho et al., 1999) and a decreased
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number of elements, when compared to a triangular finite element mesh obtained from it

by diving the quadrilaterals as in Figure 3.1.

Q(%

Figure 3.1 Mesh orientation effects are caused by different diagonal directions

when a quadrilateral finite element is divided into two triangular finite elements

There are two types of quadrilateral finite elements used in computational fluid
dynamics: Taylor-Hood finite elements and Crouzeix-Raviart finite elements. The first
type encompasses all the finite clements with continuous pressure on the element
boundary, whereas the second includes all those with discontinuous pressure, and requires
smoothing of the resulting pressure solution.

The finite element used hereafter is the Taylor-Hood serendipity quadrilateral
finite element, and is of Taylor-Hood type. This element offers mixed interpolation for

velocity and pressure, and satisfies the Babuska-Brezzi stability condition (Gresho et al.

1999). At the element level, the velocity are il by (i
quadratic polynomials, considered to be sufficient for most simulations, while the
pressure is approximated by a linear polynomial. There are eight nodes for velocity and

four nodes for pressure. The velocity nodes are located at the corners and at the mid-side
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points of the element (Figure 3.2). The pressure nodes coincide with the comer velocity
nodes. Thus, the corner nodes have 3 degrees of freedom cach corresponding to the nodal
values of u, v, and P, while the mid-side nodes have 2 degrees of freedom that correspond
to the nodal values of u and v. The position of the velocity and pressure nodes in this

element assures continuity on the element boundary.

® @ ©)

® velocity node
® orposmants
©) ® ®

Figure 3.2 Taylor-Hood serendipity quadrilateral finite element

The local shape function @j corresponding to the velocity node i (i=1,..

finite element e, covering the subdomain D, C D, is

O (x,y)=cp+cyx+csyte aytesx’ +egxly+e,xy? +egy?, (x,y)€ D,, (3.6.1)

with the constants c;,...,c to be determined such that

9i(x;,y;)=6;, (3.6.2)
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where x; and y; are the coordinates of the node j (j=

...,8). Once these functions are

known, the variation of the velocity components # and v over the element e is expressed
as a linear combination of the local shape functions @; , whose coefficients are the nodal

values of u and v, respectively
8 8
w(ny ) =Y (0 (xy),  vi(xy)=Yva(thf(xy)  (363)
i=l i=l

where (x,y,1)€ D, X[0, g1 the subscript i included in round brackets indicates that
the local numbering of nodes is used.
The local shape function y/ corresponding to the pressure node i (i=1,...,4) of the

finite element e is
Yi(x,y)=d; +d,x+d;y+dyxy, (x,y)€D,, (3.6.4)
with the constants d,,...,d, to be determined such that
Wilx;.y;)=0;, (3.6.5)

where x; and y; are the coordinates of the pressure node j (j=1,...,4). Once these functions
are determined, the variation of the pressure over the element e is expressed as a linear
combination of the local pressure shape functions, whose coefficients are the nodal values

of the pressure



4
Py )=Y Byt wi(xy),  (5.0)€DX[0tgq].  (3.66)
i=1

Assuming that the spatial domain D has been discretized into a number N, of
- N

quadrilateral finite elements e (k=1,...,N,), such that D =D, , the approximate
=]

velocity components and pressure over the whole domain can be expressed as:

N, 8

u"(x,y.l)=§:[Zu4,,(t)q),f“(x.y)] @61
=Lz
N, 8

Vi ye)=Y Zv,.,(x)qu*u.y)], (368
sz
Ne[ 4

P"(X,y,t)=z|:zl’,,v,(t)wf‘(x,y)} (3.69)
k=1Li=1

Although the summation in the equations (3.6.7-9) is over the elements of the
finite element mesh, these equations are equivalent to the equations (3.3.1-3),

respectively, where the summation is over the nodes of the mesh. The following set of

i-di tions, which is equi to the equations (3.4.1-3), can be obtained if

the sum in the expressions of approximate solutions is over the elements

s ou™
i {¢.wf’do
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a0
+(z o0, —:y’—]av}

55 [i I[(wa‘u,.,’w.

n,k

qa,F dD+ JA,,w,U dr, i=1.., Ny, (3.6.10)

v

i: () I@W;"m}

N, 3 8
*2[2"5: I[(Zﬂ "m')(l’.
it (7= |

3o
+<2¢:'v,1,"w, :y’ ]ﬂo}

N| s N
+X| 3, [Anvoveyrdd |+ Y| Yur, [foofdD
=1 =

N, 4 1 awjl
+2 2 Pr?r‘_ﬂ I'P: o
Dy

v T
N,

=¥L [ouFydD+ J'A,mv ar, I T 3.6.11)
k=1 Po p;

e Iy
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N | 8 g% Ne| 8 g .
S|un, [wian|+ 3| i, [vitdD|=0,i=1...N,. (36.12)
k=1 j=1 Dy, ox k=1| =1 Dy dy
The matrix-vector form of the set of equations (3.6.10-12) is
& NG C,lu," +G,P," =F, 3613
M, P +[Ng@," ) +K, +Colu," +G P," =F,, (3.6.13)
D,u,” =0. (3.6.14)

The matrices in the above equations are similar to those in the matrix-vector form

m
3

a

(3.5.1-2), the only di isting in their di i The vectors u"“ and

contain all nodal values for the velocity components and their derivatives with respect to
time, respectively; therefore their size is 2N Similarly, the size of the Pg" vector is
Np, as it contains all the nodal pressure values. Consequently, the dimensions of the
matrices in (3.6.13-14) are greater than those of their correspondents in (3.5.1-2). The
subscript g indicates matrices and vectors that are global, i.e. they are generated taking
into account all nodes in the finite element mesh (including those on the Dirichlet
boundary Tj,).

The equations (3.6.10-12) show that the global matrices can be written as sums of

local matrices whose entries are calculated at the finite element level as follows:



43

- the global mass matrix My, of dimension 2N;X2N;, can be expressed as

u
M, =| * 9 , with My =M “ . The matrix M (k=1,...,N,) is the local
e 0 M 2 3
e

k=1

mass matrix corresponding to the finite element e and has the entries

My = [gftgitdD, ij=1..8: (3.6.15)
Dy,

- the global advection matrix Ng(ﬁ"'" ), of dimension 2Ny X2N, can be expressed as

@y

N @"")= [ o Nv(:m,,)}.wizh Ne@")=Ny@"”’)= ZN’k("’"“').The
L

matrix N% @"™') (k=1,...,N,) is the local advection matrix corresponding to the finite

element e and has the entries

Jep— AL/
N @@ j (ZW": T‘f(;?’x"'«u

=1...8; (3.6.16)
- the global diffusion matrix, of dimension 2N X 2Ny, can be expressed as
Ky 0 &
K, = 0' K | Wit K; =K; =§K" . The matrix K*% (k=1,....Ne) is the
4 =

local diffusion matrix corresponding to the finite element ¢, and has the entries

K% = [4,Vg['VojdD, ij

(3.6.17)



- the global Coriolis matrix, of dimension 2NpX2N;, can be expressed as

u Ne
C, =‘: 9 C‘:|, with Cy =§C“ and Cy =—C,. The matrix C* (k=1,...,N) is the

c o

local Coriolis matrix corresponding to the finite element e, and has the entries

Cy= [fpfoprdD,  ij=1..8; (3.6.18)
D,

G
- the global gradient matrix, of dimension 2Ny XN », can be expressed as G = [G:],
t

N
with Gy =3 G"* and G Gt ; the local gradient matrices G*** and G"*

=l

have the entries

o OV

! dD, i=1.8, j=l..4, (3.6.19)
ox

Gy =L g
20 5

(3.6.20)

1 st
G j=— [t —LdD, i=
" h o dy

Dy

- the divergence matrix, of dimension N, x2N , can be expressed as Dy =[Dy D;1,

N A,
with DY =3 D" and D = S D" ; the local divergence matrices D% and D**
Pt s

have the entries



ver, = [ e 205 - -
Dty = [y Zlap, i=1..4 and j=1..8, @s621)
(=

X

D,

g
R ;’; D, (3.6.22)

Dy

It should be noted that, there is a general numbering scheme that assigns to every
node of the mesh a certain number from I to Nr, as well as a local numbering scheme that
assigns to the same node a number between / and 8 that depends on the finite element it
belongs to.

The previous equations show how the global matrices of semi-discrete equations
can be obtained by summing the local matrices generated at the finite element level. This
procedure is called assembly of local/element matrices and is the common approach used
in the implementation of finite element algorithms. The implementation based on

element-level calculations followed by assembly consists of the following general steps:

Step 1. Generate the local/element matrices for each finite element in the mesh,
Step 2. Assemble the local matrices to obtain the global matrices,

Step 3. Solve the resulting system of equations.

Any of the equations (3.6.13-14) corresponds to a degree of freedom that is a
nodal value of u, v or P, via the test function used in that equation. In order to solve the

system given by (3.6.13-14), the known values of the velocity and pressure are substituted

into the vectors ug' and P;", then the equations corresponding to those degrees of
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freedom are eliminated from the system. The resulting system of equations is exactly the

same as the system given by the equations (3.5.1-2).

3.7 Isoparametric Finite Elements and Numerical Integration

All finite elements of the same type, for example the Taylor-Hood serendipity
quadrilaterals, can be derived from a particular element of the same type called reference
element, for example a square of prescribed side length. If the reference element is given
in a rectangular system of coordinates (£,7 ), then the elements of the same type, in the

(x,y) plane, can be obtained via appropriate mappings (Figure 3.3).

Figure 3.3 i ipi i finite element

mapped from the square reference element

One way to derive the finite element e; from the reference element e is to use the

following mapping
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8 8
(%y)=(X 0 (Endxi, Y 0f(E1)y: ), [CEAV)
i=l i=l

where the function @f (i=1,...8) is the shape function associated with the i node of
the reference element e, and ( x;,y; ) are the coordinates of the corresponding node of the

element e;.
The velocity components # and v on the element ¢;, can now be interpolated over

the reference element e using the same shape functions
8 s
ut(Emt)= Y u (O (HENWEN) = L uy (i (£m), (3.7.2)
i=t i1
s ]
VEEL)= Y v (OO (HEMHEN) =Y v (1ol (Em), 373)
=] =

while the pressure can be interpolated using the linear shape functions corresponding to

the corner nodes of the reference element
4 4
PUEML)=Y Bt Wi (KHEmLWENN =Y Byt Wi (Em).  (B14)
i=1 i=l

The shape functions defined on the square reference element in Figure 3.3 have the

following expressions (Taylor et al., 1981)

OHEN) =L+ EEN I+ nn ) EE+nin=1), i=1..4, (3.1.5)
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Oi(En)=4(1-E X 1+nin), i=57, (3.7.6)

e =HI+EENT-T" ), i=68, 3.7.7)

ViEm) =41+ EENT+nm), i=1..4. (378

The finite elements mapped from the reference element by using the same shape
functions that are used to interpolate the unknown function (in this case the velocity) over
that element, are called isoparametric finite elements.

‘The main advantage of using the reference element is that any finite element in the
mesh can be mapped back into it. Thus, all functions defined on an arbitrary element e;
can be defined on the reference element e. Moreover, all integrals on ¢; can be calculated
on the reference element using the transformation of coordinates (3.7.1). For example, if

f(x,y) is a function defined on e, then by using the change of variables formula we get
)

[ #txy)ap= [ [f(xtEm)x&n)N|agan, (379
Dy <11

where |J| is the Jacobian inant of the ion of

The integrals over the domain of the reference element can be calculated
numerically by means of quadrature formulae. The most widely used quadrature formula
in the field of the Finite Element Method is the Gauss quadrature formula. In two
dimensions, the Gauss quadrature formula of order m — also called the mxm Gauss

scheme/rule — is,
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1 m m
[ [a(&nngan="y wwa&.n, ). (3.1.10)
S i1 =1
This rule has the degree of precision 2m-1, which means that the evaluation of the integral
in (3.7.10) is exact if g is a polynomial of degree up to 2m-1. For the integrals that appear
in the semi-discrete (3.6.10-12), the 3x3 Gauss rule is considered to be sufficient
(Heinrich et al., 1999). The integration points (£;,7; ) and the weights w; of this scheme

are given in table 3.1.

Table 3.1 The coordinates of the integration points and the weights

of the 3x 3 Gauss rule

i & ; wi

1 | 0.7745966692414833 | 0.7745966692414833 | 0.5555555555555556
2 00 00 0.8388888888888889
3 | -0.7745966692414833 | -0.7745966692414833 | 0.5555555555555556

Another advantage of the reference element is that it can be mapped into finite
elements with curved sides if the shape functions are polynomials of second-order or
higher. Thus, the mapping defined by (3.7.1) enables the generation of finite elements
with parabolic-shaped sides, which are very useful when discretizing domains with

complex geometry.
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4. TIME INTEGRATION

4.1 Introduction

In order to complete the di: ization of the system of equations (3.5.1-2), a time

integration rule is required. There are two types of such rules, explicit and implicit. The

explicit integration rules can be easily i and are i inexp
However, they impose severe restrictions on the time step size (i.c. constant and small) in
order to ensure stability, and are not appropriate given the implicit character of the

pressure (Reddy et al., 1994). The implicit integration rules do not display these

but are i pensive because a li algebraic
system must be solved at each time step. The main advantage of the implicit rules is their

unconditional stability that allows for the use of larger and even variable time steps.

These rules are often used for the time i ion of the Navier-Stok it

The numerical integration rule used and described hereafter is the Crank-
Nicolson/trapezoidal rule. This is an implicit rule that is second-order accurate,
unconditionally stable, and does not introduce extraneous solutions or spurious damping

(Gresho et al., 1999).

4.2 Crank-Nicolson Rule

The Crank-Nicolson rule applied to the system of ordinary differential equations,

% =F(ur) @2.1)



with the initial condition u(0) =u, yiclds

Upys =

_Fu,.pt.) +F@,0)
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@22)

where #, stands for the n™ time level, u,, is the numerical solution of (4.2.1) at time ¢,,,

and At is the time step size.

The linearized i-discrete Navier-Stokes equations in the matri: form
(3.5.1-2) are
du sk i
Mz+[N(u)+K+C]u+GP=F(II). 4.2.3)
Du=H, (4.2.4)
in which the superscript indicating the iteration number has been omitted.
When applied to (4.2.3-4) the Crank-Nicolson rule reads
Uy U, 1 2 o
M —A‘—-—+3{[N(nn)+l( +Clu, +[N(@,,)+K+Clu,,, }
1 v -
+5(GP, +GP,.)=—{F(@,) + F(@,,,)], 4.2.5)
1 1
E(D“,. +D“M/)=5(H,‘+Hm)~ (4.2.6)

These equations can be reformulated as,
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L Mu o+ NG ) 4K+ Cliyy + GP,y,

=F(ii,,,)+ %Mn" +F(i,)-[N@@,)+K +Cu, -GP,, 4.2.7)

Du,+Du,,, =H, +H,,,. (428

At the time level 7,, (4.2.3) becomes

M % (1,)=F(ii(,) - [N@(,) +K + Clut,) - GP(t,) . @.29)

Let (EJ be such that
dt),

M%) -F@,)-(NG,)+ K+ Clu, ~GP,, @210
then (4.2.7) becomes
2 - - 2 du
[EM +N(,,,)+K+Cl,,, +GP,,, = F(u,,,,)+M[Eu" +[ % }n]. 4.2.11)

If Du, =H, (i.c. the initial velocity field is divergence free) then (4.2.8) reduces to

Du,,, =H,,. 4.2.12)
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‘The matrix-vector form of the linear system of discrete equations (4.2.11-12) is,

2 _ . 2 du
SMN@E,)+KHC G uw)= F(um,)+M[Eun+[;]n1. BT
D o \P, H

ntl
n+l

and is called the ‘shortened’ version of the Crank-Nicolson rule (Gresho et al., 1999).
Equation (4.2.9) applied for 7, =0 yields

M(%) +GP, =F(u,)~[N(u,)+K+Clu,, (42.14)
0

taking into account that @i, =u,.
After taking the time derivative with respect to time at 7, =0 of both sides, the

equation (4.2.4) becomes

@)

‘The matrix-vector form of the previous two equations is

( & )”. (4.2.15)

M [ F(uy)-[N(u,)+K+Clu,
[D 0] ar ), |= dH . (42.16)
Pﬂ dt 0
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and the initial pressure field P, can be

Since the initial acceleration vector | —
o

dt

obtained from (4.2.16), the rule given by (4.2.13) is self-starting.

The rule presented above uses the original mass matrix, called the consistent mass
matrix. In order to reduce the computational cost of the algorithm the so-called lumped
mass matrix could be used instead. This matrix is a diagonal matrix whose diagonal
element m; is the sum of the elements on the row i in the consistent mass matrix. The
ODEs in (3.5.1) become decoupled when the lumped mass matrix is used, and this has a
negative impact on the accuracy of the numerical solution. Due to this disadvantage, the

lumped mass matrix is not used hereafter.

4.3 Pressure Oscillation
Many numerical solutions to the Navier-Stok quati exhibit physical
iggles. Some i i try to eliminate the wiggles by using an

increased diffusion/damping or some other techniques. It is considered that these wiggle-
free methods hide their deficiencies (Gropp et al., 1992), and actually not the original
problem is solved but a modified one. On the contrary, wiggles may indicate, for
example, that a flow region is poorly resolved and mesh refinement is needed in order to

capture the physical phenomenon accurately, or that the initial conditions are ill-posed.

They may also flag some limitations of the i Igorithm. That is the reason some
experts in the field recommend that the wiggles should not be a priori suppressed (Gresho

etal., 1979).
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‘When the nonlinear, diffusion and Coriolis terms are dropped in (4.2.5), the latter

becomes equivalent to the equation
~ —_ 2
GP,., -F(,,) =GP, -F(@, )+EM(“nil -u,)l. @3.1)

Multiplying the above equation by DM ™, where D is the divergence matrix and M is

the inverse of the mass matrix, it is obtained
(DM'G)P,,, ~(DM)F(@,,,)

=-{(DM™'G)P, - (DM ")F(ii, ) + é(Du,,,, -Du,)]. (43.2)

By writing the above equation for all previous time levels, followed by successive

substitution of the first two terms on the right hand side of the equation, we get

(DMG)P,,, ~(DMF(,,;) = ()" (DM 'G)P,

DM@+ (D" 2 (Du,,, ~Du, )+t 2 Du, Dug)l. @433

Taking into account (4.2.12) we get
Du,,, -Du, =H,, -H, 434

for all values of n. We also have Du, = H, +(Du, —H,). Hence (4.3.3) is equivalent to
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(OMIG)P,., = DMFG,, ) +( —1)“"[{%‘—]
‘0

n2 2 w2
D T M =Mk (H =Ho 1) 2 (Duy =H).  (43.5)

1t should be noticed that, in case the initial velocity field is not divergence free,
ie. Duy—H, #0, then the pressure given by the “shortened” Crank-Nicolson rule
exhibits non-physical oscillations due to the presence of the last term in (4.3.5). If the
“long” Crank-Nicolson rule that involves (4.2.8) rather than (4.2.12) is used, then the
oscillations of the pressure are amplified in time (Gresho et al., 1999). In both cases the
wiggles are due to ill-posed initial conditions. Therefore, in order to remove this noise,
the pressure that is written out should be the average of the pressure values calculated at
two consecutive time levels

(43.6)

P, +P,
Poir2 =T"”»
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5. IMPLEMENTATION

The numerical techniques presented in the previous chapters have been
implemented into a finite element program written in FORTRAN 90. The input file for
this program is generated by the GID preprocessor (GID, 2001), whereas the output file is

processed by means of a set of MATLAB scripts.

5.1 Preprocessor

The preprocessor provided by the GID software has been used to generate the
finite element mesh and input file for the finite element program. It employs the
advancing-front technique to generate unstructured meshes based on the domain
geometry and mesh parameters (for example, element size, size transition) provided by
the user. Moreover, the GID preprocessor allows for the specification of general problem
data, fluid properties, initial and boundary conditions, and forcing. All these must be
consistent with the type of problem to be solved as well as with the finite element
algorithm that is to be used, and can be st by means of a group of configuration files.
The concept of problem type employed by GID refers to such a group of configuration

files.

In order to further ize the another ion  file

containing the format of the input file to be used by the finite element program can be set
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up. As well, a batch file can be written to define domain geometry, set values for

parameters and conditions, and control the preprocessing phase.

5.2 Finite Element Program

The finite element program has been written in FORTRAN 90 and consists of a
‘main program and a set of external subroutines. The main program (Figure 5.1.a) starts by
calling three subroutines for reading problem parameters (InputParam), mesh data

(InputMeshData) as well as initial and boundary conditions (Input IBV).

a) NS2Dtrans_Coriolis b) NS_steady solver
InputParam {— Assemb_ini
InputMeshbData l— Matrix
InputIBV — NaturalBCs
Drives L cazonsc

GenShp8 I— CalcFace
GenShpd Genshpg
Jacobian Jacobian
NS_steady_solver [— Packer
NS_trans_solver [— EssentialBCs
— SolverSymmStruct
[— WriteIter
[— ConvCheck

l— Assemb_aavec
Matrix advec

Figure 5.1 a) Main program structure; b) Structure

of the solver for steady-state solutions.
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Subsequently, it calls the Drives subroutine to generate the shape functions, their

values at Gauss integration points for each finite

, and Jacobian
element. Next, it calls either the subroutine NS_steady_solver (Figure 5.1.b) or the
subroutine NS_trans_solver (Figure 5.2). The former contains the Navier-Stokes
solver for steady-state solutions. The latter contains the Navier-Stokes solver for transient
solutions and is much more important as most flows are transient. This solver is briefly

described in the following.

NS_trans_solver
|— Assemb_zero
Matrix_zero
[— NaturalBCs
l— CalcNBC
L CalcFace
Genshps
Jacobian
(— Packer
(— EssentialBCs_zero
f— SolverSymmStruct
[— PicardIterat_time
Assemb_time
I— Matrix_time
EssentialBCs
SolverSymmStruct
ConvCheck
Assemb_advec_Coriolis
L matrix_advec_coriolis
L— WriteTimeStep

Figure 5.2  Structure of the solver for transient solutions



The solver for transient solutions starts by calling Assemb_zero, which
assembles the local matrices and right-hand side (RHS) vectors calculated for each finite
element by Matrix_zero. The goal is to obtain the global system matrix and RHS
vector of the linear system in equation (4.2.16). The solution of this system provides the
initial acceleration and pressure vectors needed for start-up. All elements of the global
system matrix and RHS vector are stored in external files, as their number is very large -
of order N? for N unknown nodal values of velocity and pressure. Next, the contributions
of the natural boundary conditions are calculated and added to the global RHS vector by
the subroutine NaturalBCs. To enable the use of a solver for sparse linear systems of
algebraic equations, the subroutine Packer is invoked. It reads the above-mentioned
files and compresses both the system matrix and the RHS vector by only storing the non-
zero values in linear arrays; additional linear arrays are created to hold the positions of the
non-zero entries in the global matrix and vector. Before solving the linear system, the
subroutine EssentialBCs_zero is called to replace the entries in the RHS vector
corresponding the known nodal values of the initial acceleration and pressure with these
values. Furthermore, all non-zero entries on a row of the system matrix associated with a
known nodal value are replaced with zero, except for the entry on the main diagonal that
is replaced by one.

The direct sparse solver from the Compaq Extended Math Library (Compag,
2001) is used as solver for linear systems. The SolverSymmStruct subroutine sets the

options and calls the direct sparse solver subroutines. An interesting fact is that the
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system matrices provided by the finite element algorithm, although non-symmetric, have
a symmetric structure (i.e. the locations of the non-zero entries are symmetric about the
main diagonal), which allows for the use of an option provided for such cases to optimize
the solution process. The direct sparse solver is based on the factorization of the system
matrix into triangular matrices (LU factorization). In order to increase the sparsity of the
resulting triangular matrices and thus reduce the storage and computation time, the rows
and columns of the system matrix need to be permuted before factorization. The

vector is ically by the dss_reorder subroutine of the

sparse solver when the CXML_DSS_AUTO_ORDER option is used. When Coriolis
matrices are added to the global system matrix, as a result of considering Coriolis forces,
the factorization fails due to causes unexplained by now. Noticing that the factorization of
the permuted matrix fails, not that of the original matrix, the sparse solver has been
instructed not to permute the latter. Thus, replacing the option
CXML_DSS_AUTO_ORDER with CXML_DSS_MY_ORDER, followed by providing the
identical permutation vector so that the rows and columns of the original matrix are not
interchanged, has solved the problem. However, this affects considerably the efficiency of
the sparse solver and has been accepted as a temporary solution only.

After the initial acceleration and pressure vectors have been calculated, the
subroutine PicardIterat_time is called at every time step. This subroutine starts by
calling Assemb_time to assemble the local matrices and RHS vectors provided for
each finite element by Matrix_time. The resulting global system matrix and RHS

vector are those given in equation (4.2.13). The global system matrix calculated during
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start-up can be used in its compressed form hereafter. Thus, Assemb_time first
multiplies the existent entries corresponding to the mass matrix by —‘%, then adds the

contributions of the advection, diffusion and Coriolis matrix (if the value of the
Coriolis boolean variable is .TRUE.). At the beginning of every time step, the
velocity vector used in the calculation of the advection matrix is that obtained at the end
of the previous time step. After obtaining the first solution in a time step, by using
SolverSymmStruct preceded by EssentialBCs, the Picard iteration proceeds by
using it in the next iteration. The advection matrix is recalculated with the newly
calculated velocity vector by calling Assemb_advec_Coriolis, which invokes

Matrix_advec_Coriolis. The iterative process continues until the relative error

defined in equation (3.4.6) is within a ibed tolerance. The g is checked
by ConvCheck subroutine. At the end of the time step the velocity and pressure vectors

are written out by WriteTimeStep subroutine.

5.3 Postprocessor

The postprocessor consists of a set of MATLAB scripts. One of them is used to
read the mesh data from the input file used by the finite element program. Another script
is employed to read the nodal results for velocity components and pressure at a specified
iteration (for steady-state case) or time step (for transient casc) from the output file
generated by the finite element program. Two scripts that calculate the derived quantities,

vorticity and streamfunction, further exploit these results. The last script plots the finite
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element mesh, velocity vectors at velocity nodes, as well as velocity, pressure, vorticity
and streamfunction fields.

The derived quantities, vorticity and streamfunction, are calculated by
determining their least-squares best fit in spaces spanned by pressure basis functions and

velocity basis functions, respectively.

5.3.1 Vorticity calculation

The finite element program yields the vectors of nodal values of velocity
components and pressure. Thus, the approximate velocity components «"and v" become
completely determined by virtue of equations (3.3.1-2). A vorticity field corresponding to

this approximate velocity field can be obtained by using the equation

o dy

(53.1)

In order to obtain the vorticity field, rather than using (5.3.1), a least-square best
fit, @", to this field is sought in the linear space spanned by the pressure basis functions,
S

» =Span{y,....¥ y, }. Hence the approximate vorticity field is a linear combination

of these functions

(53.2)
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where @; values are vorticity values at pressure nodes. Notice that the use of one-order-
lower basis functions than those used for velocity is suggested by the equation (5.3.1)
(Gresho, 1999).

The function @" is the least-square best fit to the vorticity function, in S5, , if

and only if

(5.33)

Therefore, the nodal vorticity values form the solution to the linear system
Zw jw,w dD= Z J’w, w00y i, (534)
/ B oy

Notice that @" in equation (5.3.3) is an approximate solution to a weak form of the

equation (5.3.1), which makes this approach consistent with the FEM theory.

5.3.2 Streamfunction calculation

The streamfunction, ¥, is a function such that %_\ll =uand - %{' =v. It satisfies
y

the equation V¥ =-w, which is equivalent to

viy

v du
(§—g) (5.3.5)



The approach used to determine the streamfunction field is similar to that

for vorticity. A least-sq best fit, ¥, to this field is sought in the linear

space spanned by the velocity basis functions, Vy/, = spanf @,,... @y, } (Gresho, 1999).

Hence the approximate streamfunction field is a linear combination of these functions
w
v -Ywo, (536)
=

where ¥'; values are streamfunction values at velocity nodes.
The function ¥* is the least-square best fit to the streamfunction function, in

Vi, » if and only if

ou"

—]dD o b=l Ny, (5.3.7)
oy

h
J’Wivhi’h‘m _ j“p{a"__
D b o\
Invoking the Green’s theorem, we get

W (v et vt -
6[V¢,V‘P D 75[40,[?—? (11J+rj¢, Sdrs =LV (538)
where 7 is the outward pointing unit normal vector on the boundary I"=9D .

Notice that the equation (5.3.8) is actually a weak form of the Poisson-type

equation obtained from (5.3.5) by replacing u and v with " and V', respectively.
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6. RESULTS

The program based on the algorithm presented in the previous chapters has been
tested on three problems. The first two, flow past a cylinder and flow over a backward-
facing step are classical benchmark problems for flow simulation programs based on a
variety of numerical methods. The third problem, mid-latitude wind-driven barotropic

ocean circulation in a closed basin, is classical in the field of ocean modelling.

6.1 Flow Past a Cylinder
6.1.1 Introduction

Experimental studies have shown that the flow past a circular cylinder immersed
in a channel exhibits a sequence of different structures as the Reynolds number increases.
When Re << 1, the upstream pattern of the flow is symmetric to the downstream pattern.
As Re increases, two steady symmetric eddies, called attached eddies, develop behind
the cylinder. These eddies grow with Re, while the wake of the cylinder remains steady.
When Re =40, this structure undergoes a spontaneous change to an unsteady and non-
symmetric wake characterized by a periodic shedding of eddies from the upper and lower
parts of the cylinder. The resulting flow structure is called the Karman vortex street
(Tritton, 1988).

The program has been run to simulate flows past a cylinder for two different

values of the Reynolds number, Re =40 and 100 . The results, in terms of flow pattern,
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reattachment length of eddies (for Re=40), and periodicity of vortex shedding (for
Re=100) are compared with results of numerical simulations provided by FLUENT
software (based on the Finite Volume Method) and published by FLUENT Inc. (1999), as
well as with experimental results obtained by Braza, M. et al. (1986) and included in the

same publication.

6.1.2 Spatial Discretization

A circular cylinder of diameter d =2.0m is immersed in a uniform flow of speed
.. =1.0ms™ . The geometry and unstructured finite element mesh of the computational
domain around the cylinder are depicted in Figure 6.1. The mesh contains 578
isoparametric Taylor-Hood serendipity quadrilateral finite elements and /794 nodes.
Finer mesh is required in the vicinity of the cylinder and behind it, along the centreline
(where the wake occurs). Since the mesh is rather coarse overall, it should be as close to a

symmetric mesh as possible in order that the influence on the flow be insignificant.

6.1.3 Boundary and Initial Conditions
The essential boundary condition « =1.0ms™, v=0.0ms™ is applied at the inlet

(the left-hand side vertical boundary in Figure 6.1) as well as on the lateral boundaries.

No-slip boundary condition u =0.0ms™, v=0.0ms™ is applied to the cylinder wall. The

o ﬂ:0 is applied at the outlet. A reference

ox

outflow open boundary condition it
x

value for the pressure of /00Pa (this value is arbitrary and has no physical meaning) is



68

assigned to the nodal pressure at the node located at the upper right-hand side corner of

the domain.
y
mesh
15
10
5
0
x
-5
-10
-15
0 5 10 5 20 25m

Figure 6.1 Flow past a cylinder - Geometry and

unstructured finite element mesh of the computational domain

The initial conditions specify a velocity field given by u,=0.0ms™,
v, =0.0ms™ at all nodes except for those on the inflow and lateral boundaries where it

should match the boundary condition u, = 1.0ms™, v, =0.0ms™ . A mismatch would
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lead to an ill-posed problem. Even if this requirement is satisfied, it is very likely to
obtain an interpolated initial velocity field that is not divergence-free, as the type of finite
element used does not ensure the generation of a divergence-free velocity field. Thus,
unless a divergence-free initial velocity field that matches the boundary conditions is
specified, the initial condition is ill-posed. In practice, this situation occurs frequently and

different methods to deal with it have been devised (see pressure oscillation, Sec. 4.3)

6.1.4 Results for Re=40

In order to get the Reynolds number Re=40 for the given diameter of the
cylinder, the fluid properties have been set as follows:

- fluid density: p=1.0kgm™,

- dynamic viscosity: f=0.05Nsm™.

The program has been run for a steady-state solution. Results of the simulation are

illustrated in Figures 6.2-7.

9 10 1" I R VR TR Y
Figure 6.2 Flow past a cylinder - Velocity vectors behind the cylinder

(Re=40, partial computational domain)



u-velocity - Re=40
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v-velocity - Re=40

Figure 6.3 Flow past a cylinder - Velocity components « and v plots (in ms ™)

(Re=40, partial computational domain)
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Figure 6.4 Flow past a cylinder — Pressure plot (in Pa)

(Re=40, partial computational domain)
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Figure 6.5 Flow past a cylinder - Vorticity plot (in s™')

(Re=40, partial computational domain)
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stream function ~ Re=40
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Figure 6.6 Flow past a cylinder — Streamfunction plot (in m?s™)

(Re=40, partial computational domain, partial streamfunction range)

u-velocity (Re=40)

Figure 6.7 Flow past a cylinder — u-velocity along the x-axis (in ms™)

vs. distance from the inlet (Re=40)
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Figures 6.2-6 show a symmetric flow about the centreline (x-axis) with a pattern
very similar to that simulated by FLUENT. The attached eddies can be clearly seen in
Figures 6.2 and 6.6.

Figure 6.7 depicts the variation of the u-velocity along the centreline behind the
cylinder. The u-velocity, which starts from zero on the cylinder wall, first takes negative
values where the flow is reversed, then takes positive values after the reattachment has
occurred. The reattachment length is the distance along the centreline from the backside
of the cylinder to the point where u-velocity changes its sign. Its value extracted from
Figure 6.7 is L=4.7m. The dimensionless reattachment length (L, ) is obtained after

dividing this by the cylinder radius (/m), L, =4.7. The FLUENT result is L, =4.27,

which is very close to the values obtained il ly. The result is i fairly
good given the coarse mesh of the domain compared to the mesh used by FLUENT that

had 2601 quadrilateral elements.

6.1.5 Results for Re=100

By reducing the dynamic viscosity to u=0.02Nsm™?, the Reynolds number is
increased to Re =100, assuming the cylinder diameter and fluid density remain
unchanged. In this case, the flow is unsteady and can be simulated only if the transient
Navier-Stokes equations are considered. This brings the time integration scheme into
play.

The time integration has been performed with a time step of 0.2s. A period of

approximately I2s was determined for vortex shedding. Velocity vector fields and



74

streamfunction plots corresponding to five instants during one cycle are presented in
Figures 6.8 and 6.9, respectively.
The non-dimensional parameter used to characterize the periodicity of vortex

shedding is the Strouhal number, S, given by:

s== (6.1.1)

where d is the cylinder diameter, 7 is the period of vortex shedding, and U is the

characteristic value of velocity. For 7=12s, d=2m, and U =1Ims™, the Strouhal

number is § = 0.166 . The Strouhal numbers obtained from physical experiments

are about 0.16, for Re =100 (Braza et al., 1986). Hence a very good agreement exists
between the Strouhal number calculated by the program and those from experiments. As
for the FLUENT result, it is § =0.165. It should be mentioned here that part of the

between the and i values origi from

th i i flows using t i i models.
Plots of velocity components, pressure and vorticity at time ¢ = 50s are presented

in Figures 6.10-12.

6.1.6 Conclusions
The simulation of the flow past a circular cylinder by means of the finite element

program has provided good results (given the coarse mesh used) for Re =40, in terms of
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Figure 6.8 Flow past a cylinder - Velocity vectors behind the cylinder at

different instants (Re=100, partial computational domain)
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Figure 6.9 Flow past a cylinder — Streamfunction plots (in m?s
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(Re=40, partial computational domain, partial streamfunction range)
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Figure 6.10  Flow past a cylinder - Velocity components « and v plots (in ms ™)

at t = 50s (Re=100, partial computational domain)
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Figure 6.11 Flow past a cylinder — Pressure plot (in Pa)

at 1 = 50s (Re=100, partial computational domain)
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Figure 612 Flow past a cylinder — Vorticity plot (in s™')

at 1 = 50s (Re=100, partial computational domain)
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flow pattern and reattachment length. Very good results have been obtained for
Re =100, the calculated Strouhal number being very close to that obtained from
experiments.

The pressure field obtained for the two cases is not very accurate, especially in front
of the cylinder. It can be seen (Figures 6.4 and 6.11) that the variation of the pressure
depends on the finite element mesh. As mentioned before, pressure is the most sensitive
variable in finite element simulations of incompressible flows. The same finite element
program may provide an accurate pressure field for one problem and a poor
representation of the pressure when the problem is slightly changed. Here it is worth
citing Gresho's remark on the pressure (Gresho et al., 1999, p.845):

"It is by far the most 'sensitive’ variable to any change in any 'parameter’; e.g. 4, h,
A, IC,BC, D, 0D, .."

Another important aspect that is worth mentioning is that the boundary of the

circular cylinder has been exactly represented by the curved edges of the finite elements

p As well, the multi: domain did not create any difficulties in the

generation of the solution or in the computation of the streamfunction, despite the absence

of any special treatment.

6.2 Flow Over a Backward-Facing Step
6.2.1 Introduction

The flow in a channel with a backward-facing step is another flow that has been

studied both i y and ically. The sudden increase of width
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on one side of the channel separates the flow from the lower boundary. The flow widens
and an eddy is formed immediately behind the step where fluid gets recirculated. Studies
involving this type of flow are usually done in the regime of turbulent flows. Thus, for
Re 2 250, the flow separates from the upper boundary downstream the step, and another
eddy is formed (Armaly et al., 1983). The objective is to determine the lengths of the
recirculation regions corresponding to the eddies.

The finite element program has been used to simulate the flow over a backward-

facing step for Re =73, which is a steady and laminar flow. The length of the

recirculation zone immediately after the step is to the length ing to
Re =73 in Figure 3 from Atkins et al. (1980); this figure presents measured recirculation
length against Re number. It should be mentioned that in order to eliminate the
hydrostatic pressure mode, the gravitational acceleration is not taken into account during
the calculations. The hydrostatic pressure can be added to the calculated pressure at the

end.

6.2.2 Spatial Discretization

The computational domain is that of a 22m-long channel whose initial width of
Im increases suddenly to 1.5m at 3m from the inlet. Hence the height of the step is
h=0.5m . The unstructured finite element mesh of the computational domain is depicted

in Figure 6.13. The mesh contains 775 i ic Taylor-Hood

quadrilateral finite elements and 2548 nodes. The mesh is finer in the vicinity of the step

to allow for a better representation of flow in this region.
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.

Figure 6.13  Flow over a backward-facing step — Unstructured finite

element mesh of the computational domain

6.2.3 Boundary and Initial Conditions

7 is applied to the

The no-slip boundary condition u=0.0ms™, v=0.0ms
channel lateral walls. The u-velocity prescribed at the inlet (the left-hand side vertical

boundary in Figure 6.13) has a parabolic variation with a maximum value u,,,, =1.0ms™

at the centre, and matches the no-slip condition at the walls. The v-velocity at the inlet is

Y ﬂ:o is applied at the
x

v=0.0ms™". The outflow open boundary condition %"-
x

outlet. The reference value chosen for the pressure is 0.0Pa and is assigned to the nodal
pressure at the node located at the upper end of the outlet.

! and

The initial conditions specify a velocity field given by u, =0.0ms™
Vo =0.0ms™ atall nodes, except for those on the inflow boundary where it should match

the prescribed boundary condition.

6.2.4 Results and Conclusions

3

The fluid density and its dynamic viscosity have been set to Ikgm™ and

0.00457Nsm™, respectively. The Reynolds number based on the height of the step is
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.
Re=PY% The average velocityat the fnlet, U= Judy = /ims™, has been considered
H“ 0

as the characteristic velocity of the flow. Thus, the corresponding Reynolds number is

approximately 73.

u-velocity
T
N ————
T e enrin,
O 01 02 03 04 05 06 07 08 09 1
v-velocity

-

-007 -006 -005 -004 -003 -002 -001 0 001 002 003

Figure 6.14 Flow over a backward-facing step — Velocity

components u and v plots (in ms ™) (Re=73)

The program was run tok a steady-state solution. Results of the simulation are
illustrated in Figures 6.14-18. From Figure 6.15, which shows the reverse flow behind the
step, it has been estimated the length of the recirculation region, x, =2.5m, which gives

a ratio "’—L = 5. Figure 3 in Atkins ct al. (1980) provides a value of approximately 4.8. It
i

can be concluded that a fairly good agreement exists between the calculated and the

experimental value.
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Figure 6.15 Flow over a backward-facing step — u-velocity plot (in ms™)

(Re=73, zoom in behind the step, negative values of velocity)

Pressure, vorticity and streamfunction plots are presented in Figures 6.16-18.
Pressure

Figure 6.16 Flow over a backward-facing step— Pressure plot (in Pa) (Re=73)

Vorticity
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Figure 6.17 Flow over a backward-facing step — Vorticity plot (in s (Re=73)
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Figure 6.18 Flow over a backward-facing step —

Streamfunction plot (in m*s™) (Re=73)
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Figure 6.19 Flow over a backward-facing step— Pressure plot (in Pa)

(Re=73, short computational domain)
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Figure 6.20 Flow over a backward-facing step— Streamfunction plot (in m?s™)

(Re=73, short computational domain, values of the

inside the reci ion region )
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It can be noticed that a smooth pressure field (Figure 6.16 and 6.19) has been
obtained for this application, without using any ‘smoothing’ techniques in the post-
processing phase. This shows that fairly accurate pressure distributions can be obtained

using the same program. Figure 6.20 illustrates the recirculation region behind the step.

6.3 Mid-Latitude Wind-Driven Barotropic Ocean Circulation

6.3.1 Introduction

Models of wind-dri ic ocean ci ion based on the Navier-Stok
equation must take into account the effect of the rotation of the Earth by including the
Coriolis force/acceleration. In section 2.2, a set of approximations and assumptions are

given, which allow for the t; i i i ible Navier-Stokes equations

(2.2.2-4) to be used for i id-latitude wind-dri ic ocean ci
on a beta-plane, at regional scale. For a flat-bottomed ocean of depth k, driven by a wind-

stress field (7, »Ty ), these equations become

momentum equations:

o du. 1P_7,

—tu—tv——A~A,V? 5 3.
o uaj‘wa Ly Viu—- ﬁ:+ o o 63.1)
W ow v 10P_7,
LW ==y 6.3.2
alw.a +vay " V+fu 203 poh ( )
continuity equation:
B, W, 633)

ox dy
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The dissipation of momentum through bottom friction is neglected in the above

equations; momentum is dissipated through lateral friction only.

Bryan (1963) has ical si i for wind-dri ocean

circulation using a numerical model based on a finite-difference discretization of the

Navier-Stokes eq in functi ion. This model was used to study
the influence of the non-linear terms on the flow patterns, especially in the area of the
western boundary current.

The application presented in this section is concerned with the simulation of a
mid-latitude wind-driven barotropic ocean circulation using the spatial domain, wind-
stress field and parameter values from Bryan (1963). Although the numerical model

based on the equations (6.3.1-3) is given in primitive variables and the finite element

method is used for spatial discretization, it is expected to obtain similar results.

6.3.2 Spatial Discretization

The two-dimensional computational domain is a rectangle that corresponds to an
idealized ocean gyre bounded by continents on the eastern and western sides, and by
other two gyres on the northern and southern sides. The length of the rectangle in the
east-west direction is L=2.5x10%m, and the length in the north-south direction is
2L=5x10°m. It is considered that most of the mass transport takes place above the
main thermocline for large-scale and time-averaged flow (Bryan, 1963). Therefore, the
depth of the idealized ocean is taken as the depth of the main thermocline, in this case

h=200m.



The unstructured finite element mesh of the computational domain is illustrated in
Figure 6.21. The mesh contains 580 isoparametric Taylor-Hood serendipity quadrilateral
finite elements and /833 nodes. Since the circulation is most dynamic near the western
boundary — where the western boundary current occurs, and all quantities (i.e. velocity,

pressure, vorticity, streamfunction) have high gradients — the mesh is finer in this region.

Node #678
e

Node #1441
Pl

Figure 6.21 Wind-driven ocean circulation — Finite

element mesh of the computational domain



6.3.3 Boundary and Initial Conditions

The no-slip boundary condition u =0.0ms™, v=0.0ms™

is applied to the west
and east boundaries, where the domain is bounded by continents. Since the ocean gyre is
contained in the computational domain, there is no outflow/inflow through the north and

south boundaries. Hence v-velocity is v=0.0ms™ here. Furthermore, slip boundary
o ’ N ot v du .
conditions are applied at these boundaries, i.e. the vorticity m=§~7§- is set equal to
. 0y

zero. This leads to %:0, as ﬂ =0 is brought about by the constant value assigned to

the v-velocity.
The reference value chosen for the pressure is 0.0Pa and is assigned to the nodal
pressure at the node located at the upper corner of the eastern boundary.
The initial velocity field is given by specifying u, =0.0ms™ and Vo =0.0ms™ at
all nodes, which means that the initial velocity field is divergence free. Thus, the ocean is

considered initially at rest.

6.3.4 Wind Stress and Physical Parameters

The applied wind stress is taken to be constant in time, with the x- and y-direction
components given by 7, =-w, cus% and 7, =0, respectively. The value assigned to

the amplitude of the wind stress is w, =0.2Nm ™.
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The value of A at midlatitude, i.c. for =45, is B=172x10"" m™'s™, and
the value used for the density of the seawater is p, = 1.025% 10" kgm™.

In order to calculate the Reynolds number (Re) and the Rossby number ( £ ) of the
flow, a scale velocity is needed. This velocity is obtained assuming that an approximate
geostrophic balance exists over most of the interior of the basin. Over this area, the
nonlinear effects are negligible and the expression obtained for the scale velocity from
Sverdrup’s formula is (Bryan, 1963)

W

Vsine = 350 (63.4)

For the values used in this application the scale velocity is Vg, =3.6X107ms™

This velocity is characteristic for the interior flow and not for the western boundary

current where the velocity can exceed Ims™'. The value of the Rossby number is
V,
=_S:$"” =0.33x107.

The Re=100 case has been analysed in this application. This value is obtained

L
, for a larg ! i eddy diffusion

V,
by applying the formula Re 5";4’"’

coefficient A, =0.895x10°m?s™’. Runs have been performed for lower degrees of

nonlinearity, namely for Re = 5, 30 and 60, but the results are not presented here.



6.3.5 Results and Conclusions

The time step used in all four cases is Ar=0.2328x10%s, which is equal to
(2208

The primitive variables («, v, P) have been monitored at three nodes with the

numbers 58, 678, and 1441, whose locations can be seen in Figure 6.21. The velocity

components and pressure exhibit oscillati aracteristic to the

phenomenon (Salmon, 1998) that occurs due to impulsive application of wind forcing to

the ocean initially at rest (Figure 6.22).
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Figure 6.22 Wind-driven ocean circulation ( Re = 100 ) — Variation in time of u-velocity

at node #58 (the units are ms ™ on the y-axis and (AL)™' son the x-axis)
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with the ion of westward

The geostrophi is
propagating Rossby waves. A basic period of about 45 units of (B)'s has been

obtained from the variations in time of the velocity components and pressure. For

example, the basic period extracted from the pressure variation at the three nodes (Figures
6.23-24) is approximately equal to 44.75 units (i.e. 12.06 days), which is very close to
that of a free wave for an equivalent barotropic model in the same rectangular domain
(Bryan, 1963), namely 44.85 units. It can also be seen that there is a higher mode of

oscillation with a period almost twice longer, which agrees very well with the results
presented by Bryan.

pressure history (node 58)
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Figure 6.23 Wind-driven ocean circulation ( Re = 100 ) — Variation in time of pressure

at node #58 (the units are Pa on the y-axis and (4L)~ s on the x-axis)
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Figure 6.24 Wind-driven ocean circulation ( Re = 100) - Variation in time
of pressure: a) at node #678; b) at node #1441;

(the units are Pa on the y-axis and (AL) " s on the x-axis)
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The plot of the normalized stream function, averaged over the interval 458-637
units (i.c. over 4 periods) is presented in Figure 6.25.a. The pattern of the stream function
is very similar to that in Figure 8.b from Bryan’s article. The averaging has been done in

order to eliminate the effects of the transient Rossby waves. At Re =100, the boundary

current is unstable and a gyre of develops in the corner of the
domain (Figure 6.25.a-26). Another interesting feature is the counter-current that appears
in upper-half of the domain, next to the boundary layer. Figure 6.25.b shows, for
comparison purposes, the symmetric pattern of the normalized streamfunction when the

nonlinear terms are dropped and a steady-state solution is obtained.

x10°  stream function x10°  stream function
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Figure 6.25 Wind-driven ocean circulation — Normalized streamfunction plot:
a) (averaged) unsteady and nonlinear ( Re = 100 ); b) steady and linear;

(the units are Pa on the y-axis and (BL) ' son the x-axis)
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Figure 6.26 Wind-driven ocean circulation ( Re = 100 ) — Velocity

vectors in the northwest corner of the domain

Figure 6.27 depicts the plot of the pressure averaged over the same 4 periods. The
patterns of the streamfunction and pressure show that an approximate geostrophic balance
is achieved over most of the ocean basin.

The very good match of the predicted basic period of the Rossby waves and
pattern of streamfunction with those presented by Bryan (1963), shows that the program
is able to simulate with very good accuracy (given the coarse mesh used) geophysical
flows, at least for ranges of Rossby and Reynolds numbers close to the values used in this

application.



pressure

Figure 6.27 Wind-driven ocean circulation — Pressure plot (in Pa) (Re = 100)
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7. CONCLUSIONS AND FUTURE WORK

The main objective of the present work was to develop a finite-element algorithm for

solving the t i i i ible Navier-Stokes equations with Coriolis force,
based on standard finite element techniques that have been used in the field of industrial

flows simulation. The classical i ic Taylor-Hood ipif i finite

element has been chosen for spatial discretization, as it performs better than the triangular
elements for advection-dominated flows and can represent with a better accuracy curved
boundaries. A version of the Crank-Nicolson scheme, which is unconditionally stable, has
been used for time integration in order to circumvent the time step restrictions imposed by
the explicit schemes. The use of the GID preprocessor for the generation of the finite
element meshes and the preparation of the input files has proven to be successful and

showed the robustness of the software. The i Igorithm has been i

into a program written in FORTRAN 90, and the sparse solver from the Compag
Extended Math Library has been used for solving linear systems. The presence of the

entries corresponding to the Coriolis terms in the system matrix has led to the failure of

the i imization of the izati by the sparse solver, which
affected considerably the efficiency of this solver. The MATLAB environment has been
chosen for postprocessing. The vorticity and streamfunction are calculated by
determining their least-square best fit in spaces spanned by pressure basis functions and

velocity basis functions, respectively, in a manner i with the FEM
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The numerical algorithm has performed fairly well when tested on three benchmark
problems, given the relative coarse meshes used. Since the quality of the results depends
not only on the algorithm utilised but also on the skills of the finite element analyst, one
could obtain better results by applying some practical finite element analysis techniques.
These include the extension of the computational domain where open boundaries are
present, mesh refinement of the regions of interest and avoidance of excessively distorted
elements.

There is definitely much to be done for improving the algorithm before ding it to

the three-dimensional case. Here are some suggestions:

1) Some other types of finite elements should be implemented to study their
behaviour when the Coriolis force is present, in the search of the ‘best’ finite
element for this case;

2) Newton-like methods should be used to deal with non-linearity, as they
provide higher rates of convergence than the Picard iteration method;

3) Iterative solvers for the linear systems should be also implemented, as they are
more efficient than direct solvers for large numbers of unknowns;

4) Implementation of a variable-step time integrator as a first step in the

application of adaptive methods.
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