








INFORMAnON TO USERS

This manusaipt has been reproduced from the rnicrtJNm master. UMI rims the

text directfy from the original Of copy submitled. Thus, some thesis and

dissertation copies are in typewriter face. while ethers may be from any type of

computer printer.

n- qulliity of thrs reproduction is dependent upon the q.....iity of the copy

submitted. Broken or i'1distinct print, colored or poor quality illustrations and

photographs, print bleedthrough, substandard margins, and improper alignment

can adYelUly affect reproduction.

In the Lrllikefy event that the author did not send UMI a complete manusaipt and

there are missing pages, these will be noted. AlsO, if unauthorized copyright

material had to be removed. a note will indM:ate the deletion.

Oversize maE:liaIs (e.g., maps, drawings, charts) are reproduced by sectioning

the original, begiming at the upper left-hand comer and oontinJing from left to

right in equal sections wilt'l small over1aps.

Photographs ilcIuded in the original l'I\8RJSQipt have been reproduC8d

xerographically in this copy. Higher quality 6" x 9" bIadt and ..tVte photographic

prints are 8vailab~ for any photographs or illustrations appearing in this copy for

an additional Charge. Contact UMI directly to order.

Bell & Howellinfonnation and L8Imlng
300 North Zeeb Road. Ann Arbor, MI 481~1346 USA

UM!"
800-521.Q600



••• NationalUbrary
01 Canada

Acquisi1ionsancl
Bibliographic Services

385W~Sll'aeI

OtIawaON 1(1Al)N4
e.-

Btlliotnequ& nationale

'"canada
Acquisitions et
services bibliographiQues

395,NeWellington
OllwMlON KIAONo4

"""'"

The author has granted a non­
exclusive licence allowing the
National Library of Canada to
reproduce. loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde one licence nOD
exclusive permettant a1a
Bibliotheque nationale du Canada de
reproduire. preter. distribuer ou
vendre des copies de cette these sous
la forme de microficbe/film, de
reproduction sur papier ou sur fonnat
electronique.

L'auteur conserve la propriete du
droit d'autem qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou autrement reproduits sans son
autorisation.

0-812-42464-2

Canada



FINITE ELEMENT ANALYSIS OF THE PLASTIC

BUCKLING OF A CANTILEVER BEAM

By Qizhong Yuan, B.E.

A thesis submitted to the School of Graduate Studies

in partial fulfillment of the requirements for

the degree of Master of Engineering

Faculty of Engineering and Applied Science

Memoria! University ofNewfoundland

August, 1998

St. John's Newfoundland Canada



To my dear wife ..



ABSTRACT

Finite clonent analysis Off'Cf5 a general plastic buckling solution of structures by

employing a nonlinear sutic plastic analysis with gradually increasing loads 10 seek the

load level at which the structure becomes unstable. Nonlinear plastic finite element

analysis requires inclusion of geometric nonlinearities and material nonlinearities in the

model. Geometric nonlineanlies refer to the nonlinearities in the structure due to

changing geometry as it deflects. There are two kinds of geometric nonlinearities

concerned in plastic buckling analysis. large strain and large deflection. On the present

work. Newton·Raphson procedure. a process to solve the nonlinear equations by

increasing load in several steps and iterative computation to reach the convergence

criteria. is applied for the plastic buckling analysis.

A general. model for rectangular cross section cantilever ~ams is presented. which

flexibly defines the material propc:ny and dimensions of a cantilever beam. Overall

bt:havior of the beam is studied by combining analytical methods for elastic buckling

analysis and finite element analysis for plastic buckling analysis. Two non-dimensional

parameter mtios of thickness by length til and mtio of height by thickness hit are used to

evaluate the overall behavior of a cantilever beam. The two boundaries of elastic

buckling and yielding, and plastic buckling and collapse are also investigated.
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Chapter I

INTRODUCTION

1.1 Finite Element Analysis of the Plastic Buckling of a

Cantilever Beam

Buckling analysis is one way to determine the critica1load at which a struetuJt: b«:omes

unstable. In plastic buckling, the sO'Ucture experiences clastic defannation. yielding.

panial plasticity, and collapse. If the stnJcture becomes unstable before yielding. it is

elastic buckling. which is well studied by previous researchers. When the unstablity lies

in the partial yielding range, the structure fails by plastic buckling.

Finite element analysis is a numerical method for analysis of structures or other continua

field. The method requires discretization ofa given structure into a set of finite elements.

A typical finite element analysis includes elemeDt type sel~on,geometric modeling,

application of boundary condition, load application, system solution and post-processing.



For the plastic buckling analysis ofstructure5, finite element analysis employs a

nonlinear static plastic analysis with gradually increasing loads 10 seek me load level al

which the structure becomes unstable. Nonlinear plastic finite element analysis requires

ueatment for balh geometric and material nonlinearities. There arc: twO kinds of

geometric nonlinearities concerned in plastic buckling analysis, large strain and large

deflection. large strain assumes that the strains are no longer infinitesimal when

strUCtW'e's shape changes. Large deflection assumes that the rotations are large. Material

nonlinearities are due to !he nonlinear relationship between stress and main. Elastic­

perfectly plastic material nonlinearity is used in this work.

A finite element model ofa rectangular cross section cantilever beam is presented. in

this model.Young's modulus, Passion ratio, and yielding stress are set as variables. All

dimensions of the cantilever beam are also set as variables. "The overall behavior is

studied by both analytical and finite element analyses. Two non..<fimensional parameters.

the ratio of thickness to length til, and the ratio ofdepth to thickness hit are used to

evaluate the overall behavior ofcantilever beam. The behavior oftbe beam can be

clauified into three types, elastic buckling, plastic buckling. and plastic collapse. These

three behavior areas arc: separaled by the boundary of elastic buckling and yielding, and

boundary of plastic buckling and collapse.



1.2 Objectives of the Thesis

There is a need to develop general design guidelines to prevent plastic buckling in

stiffened panels. This report addresses one aspect of this problem. Stiffened panels

consist of stiffener frames and a thin shell. The stability afthe stiffened panels is strongly

influenced by the behavior of the stiffeners. Stiffeners can be simplified as beams. A full

understanding of the stability propenies of beams will help understand the stability

properties of stiffened panels.

The approach used in this work is to develop a general finite element model for the

buckling analysis which can be adapted to different dimensions of rectangular cantilever

beams. The material of the beam is defined as elastic·perfectly plastic, which uses two

parameters: Young's modulus and yield stress. The objective of this work is to study the

overall behavior of rectangle cross section cantilever beams subjected 10 concentrated

loads on the free-end. The overall behavior is defined as a "failure map" with boundaries

for elastic buckling and yielding, plastic buckling and collapse.

1.3 Layout of the Thesis

Chapter one gives an introduction to the finite element method for plastic buckling

analysis. Chapter two provides a detailed literature review of the relevant topics to plastic



buckling analysis for cantilever beam analysis and defines the scope of the !rtUdy. The

plastic buckling analysis methods along with the fundamental theory of structures.

geometric and material nonlinearities. and the nonlinear solution method is given in

chapter three. The implementation of the plastic buckling analysis by ANSYS is

presented in chapter four. Chapter five shows a numerical study of the plastic buckling

and collapse boundary for the plastic buckling of cantilever beams. The conclusions of

the study and recommendations arc included in chapter six.



Chapter II

BACKGROUND

AND SCOPE OF WORK

2.1 Literature Review

Buckling analysis of structures was studied initially by Euler [I J in his famous work on

elastic analysis on the column. In it. he had provided an analytical solution to the stability

problem. After that. there were extensive research (2] on various types of structure

stability. These studies not only covered various structure types. but also have~ dealt

with different domain of material propenies. The plastic instability bas been studied by

researchers (4-10) and various methods have been applied to this issue.

Finite element analysis for struetw'a1 stability problems has been possible after

methods[2] have been developed for the material and geometry nonJinearities. The finite

element analysis method for buckling analysis has been treated as a nonlinear large

deflection analysis of strueture:s including geometric and material nonlinearity. Hence.



the nonlinear methods are aucial for the structural buckling and even postbudding

analysis.

First, different approaches to stnIctural stability, especially for the cantilever beams will

be reviewed; and then the various nonlinear finite element lechniques applied 10 the

plastic analysis will also be reviewed.

2.1.1 Buckling Analysis

Sritawat Kilipomchai and Nicholas S. Trahair [4) investigated the inelastic buckling of

simply supponed steel I-beams with cenuaJ concentrated loads. They did this by adapting

a basic theoretical model of the inelastic buckling of beams under uniform moment by

modifying the differential equations, which govern the elastic buckling of tapered mono·

symmetric I-beams. The resulting differential equations were solved for crilical loads by

using the method of finite integrals. A simple approximate model was also analyw:l.. in

I.l,'hich the shear centerline was idealized by a series of discontinuous straight lines.,

parallel to the longitudinal axis. It was found that this approximate method gave solutions

that were very close to the more accurate values. They also studied the effects of residual

stresses. and found that these caused significant variations in the inelastic buckling

strengths. The effects of the height of the point of application of the load and of the

distribution of the major axis bending moment were investigated by comparing the values

of the dimensionless critical moments for beams under unifonn moment. This



comparison was made on the basis of a modified slenderness ratio. defined by the sq~

root of yield moment divided by elastic buckling moment.

Mohamed H. EI·l.anaty and David W. Murray (5] presenled a general fonnulation for the

elastic and plastic nonlinear analyses of steel stlUCtures. The plastic analysis includes the

effects of residual stresses. strain hardening. gradual expansion of plasticity through the

cross section and the spread of plastic zones along the member length. The tC'(;hnique is

illustrated by solving a variety of problems for which alternative results are available. A

geometrically nonlinear fonnulation for the anz.Iysis of steel frames was presented. The

simple geometric approximation pennits the virtual work equations 10 be derived in a

manner consistent with the full nonlinear strain displacement equations witham

introducing further approximations. When this geometric nonlinear theory was combined

with Shanley's tangent modulw concepts. and the incremental Newton-Raphson

equations fonned by the finite element method. a numerical technique emerges which is

capable of solving plastic struetural stability problems for arbitrary geometry.

Peter F. Dux and Sritawat Kitipomchai [6] introduced methods to obtain buckling loads

of beams with a plastic moment gradient. A plastic parameter. the stiffness modification

factor. is used to estimate equivalent unifonn tangent modulus rigidities for partially

yielded beams. From this they developed a buckling moment equation. For laterally

continuous beams. a step-by-step procedure. wttich allows for interaction between

adjacent segments is proposed. 1be structure is reduced 10 a critical assemblage of beam

segments. The stiffness modificatioo factor is used 10 quantify segment end ioteraction



and an effective length factor is found for the critical segment. The buckling moment

equation is used to estimate the beam capacity. The results arc comparable with

theoretical and experimental results. The new method proposed in this paper extends the

refined elastic analysis to plastic continuous beams. II incorporates a new equation for

single $pan beams and includes several effective length charts. The method also

introduces a mo~ rigorous appraisal of the effects of yielding on segment interaction.

Mark A. Bradford. et al.. (7] introduced an accurate line model based on the finite

element method. for analyzing the plastic lateral buckling of I-section beams and beam­

colurnru;. The pre·buckling in plane bending is analyzed using a geometrically nonlinear

finite element method that accounts for the effects of pre-buckling displacements and

residual stresses on yielding. The results of the p~-buc:kling analysis allow the

distributions of yielding and strain hardening throughout the: beam to be determined. The

out of plane flexural·torsional buckling of the inelastic beam is analyzed by adapting an

elastic monosymmetric finite element. For this element. deflections and twists are

referred to an arbitrary axis along the mid-height of the web. instead of along the shear

~nter axis. The elastic element is adapted for plastic buckling and strain hardening. The

method achieved accurate results. albeit with simple assumptions.

N. S. Trahair and S. Kitipomchai [8] studied the inelastic Oexual-torsional buckling of

simply supported I-beams under a uniform moment. Tangent modulus theory of buckling

was applied to the basic theoretical model. which is simpler than ~uced modulus theory

and leads to conservative estimates of the critical moment. It was suggested that ming the



strain-hardening modulus in the yielded regions of the beam is better than the reduced

modulus. but that the critical moments are not greatly affected by assuming that the

tangent modulus is zero, as bad been done by previous investigators. They also studied

the influence of residual stresses on the critical moments. It was found that the effect of

this on the inelastic critical moment is quite significant. The effects of the magnitude and

panem of residual stresses on the critical moments have also been investigated. (t was

found that changes in the residual stress lead to variations in the yielded regions in the

cross section. and consequent variations in the section rigidities. These variations cause

very significant changes in the inelastic critical moments. As residual stresses can

significantly change the inelastic critical moments and as residual Stresses exist in all

rolled steel sections, it was concluded that residual stresses shouId be accounted for.

James F. Doyle {9j presented a method to assemble an approximate stiffness matrix. and

after applying boundary conditions. to detennine the eigenvalues (buckling loads) of the

structure. This method set up approximate load and displacement functions and then

generated approximate global stiffness matrix, and solved the eigenvalue problem.

N. S. Trahair (10] bas applied tangent moduIus theory to inelastic buckling of beams.

Compared to reduced moduIus theory, the tangent modulus theory appeared to be invalid

for inelastic materials. Nevertheless, experiments showed that it leads to more accurate

predictions than the apparently rigorous reduced modulus theory. The reason is that when

buckling deflections are llCa)mpanied by simultaneous increases in the applied load of

sufficient magnitude to prevent stnli.n reversal, all the stress and strain increments are



related by the tangent modulus. the buckling load is equal to the tangent modulus load.

The application of the tangent modulus theory to the inelastic: flexual-torsional buckling

of a steel member requires appropriate values of the tangent shear modulus to be used

when evaluating the conaibutions of the yielded and strain-hardened regions to the

effective torsional rigidity. Before an inelastic out-of-plane buck.l.ing anaJysis can be

made. the in-plane bending must be analyzed so that the distributions of the elastic.

yielded. and strain-hardened regions throughout the member can be detennined. The

effective out-of-planc rigidity. which conaibutes to the inelastic buckling resistance. can

be evaluated using these distributions. The energy method is then applied to gel the

equation for the buckling and generated the stiffness and stability matrices. In general.

the computation procedure was to iterate through a series of load levels towards a

solution. At each load level the in-plane analysis was perfonned. and the results wert

then used to establish the matrix and the value of its detenninant was calculated until a

zero value for the determinant is found. which defmed a buckling load.

2.1.2 Finite Element Analysis on Plastic Behaviors

F. BreW (11) analyzed the bdlavior of a finite dimensional approximation of the

Galerkin type in a neighborhood of a simple critical point. Error bounds ofoptimal type

10



art: derived and some computational aspects are also treated. He Presalted some methods

in the theory of approximation of nonlinear problems. with a panicular attention to the

~havior of the approximate solutions in a neighborhood of singular points. such as

normal limit points and bifurcation points. Although some computational aspects are

briefly sk.etched. the main interest focused on the problem of error bounds. "The well­

known definitions of the singularities wert given. for simplicity. in finite dimension. II

also presented the continuous problem. and the abstract hypotheses on the finite

dimensional approximation method on the mor estimate.

c. S. Desai and H. V. Phan [12] developed a finite clement procedure for stress

deformation analysis of three-dimensional solid bodies including geometric and material

nonlincarities. The fonnulation is applicable to general tttJ'«-dimcnsional problems. It

allows for consistent definitions of stress. stress rate and constitutive laws and uses the

original NeWIon.Raphson technique for incremental iterative analysis. Six differcm

constitutive laws based on von Miscs. Mohr-Coulomb, Drucker-Prager. critical state.

capped and viscoplastic criteria are incorporated in the fonnulation and the computer

code. They can be used dcpcnd.ing upon the material property involved in a given

problem. It provided a viable fomulation and computational scheme for solution of

tIutt-dimensional solid bodies including geometric and material nonlincaritics, and it is

particularly useful for large plastic strains.

Y. Yamada, T. Hirakwa A. S. WOO [13) established a rational unified approach to fmite

strain problems combined with material nonlincaritics. The geometric stiffness and load

II



correction matrices in large deformation problems arc discussed. and emphasis is placed

on the treaunent of the boundary conditions where coupling exists in the stttsscs. The

fonnulation is applicable to plastic instability analysis. Proper choice of stress rate is

essential in the fonnulation of large strain analysis. as is the spin of principal stress a.xcs

rather than that of the element The method for the plastic work covered only the earlier

stages of deformation, far from the steady state. The authors extended the work to similar

types of steady state large defonnation problems.

E. Riks [14] presented a numerical solution of systems of equations of discrete variables.

which represent the nonlinear behavior of elastic systems under conservative loading

conditions. In particular. an incremental approach to the solution of buckling and snap­

through problems is explored. The numerical solution Cor covered several systems: the

computation oC nonlinear equilibrium paths with continuation through limit points and

bifurtation points; the detmnination oC critical equilibrium states. Characteristic to the

procedures employed is the usc oC the length of the equilibrium path as a control

parameter. This feature. together with the second order iteration method of Newton.

offers a reliable basis Cor the procedlRS described.

S. L. Chan (15] presents a numerical procedure for accwate determination of a limit or a

bifurtation point. The method minimizes simultaneously the first and the second

variations of an admissible functional or iterates to satisfy the equilibrium and the semi·

definite condition for the tangent stiffness matrix. Using the technique, the critical load

and its conjugated displacement can be: computed explicitly and accurately in an analysis.

leading to a more exact prediction of the critical load of a stroeture. It demands an

12



additional load cycle which normally requires more number of iterations than other

methods because of the need to satisfy not only the equilibrium condition to detennine

the critical point, and requires the scmi-definitc tangent stiffiless matrix. This

computation effon is however. minimal when compared to the approach of tracing the

load ~rsus deflection path by using a small load step size to narrow the loading range

within which the critical load occurs. The numerical method can be easily incorporated

into a computer program for non-linear finite clement analysis and enhanced the user­

friendliness and accuracy of the program.

Chen [16] also introduced the Minimum Residual Displacement Method. which is~

together with the concept of the effective tangent stiffness matrix for braced members. He

pttSCnted a geometric and material non-linear analysis procedure for sttucnucs. using a

solution algorithm of minimizing the residual displacements. This new non-linear

solution technique is optimized in the Newton-Raphson scheme since it follows the

shonest path to achieve convergence. It introduced the concept of the effective tangent

stiffness matrix. which is found to be efficient. simple and logical in handling the non­

linear analysis of frames with braced members and in separating multiple bifurcation

points. The technique is capable of handling geometric and lor material non-linear

problems exhibiting snap-through. softening and stiffening behavior.

2.2 Scope of the Study

Finite clement plastic buckling anal)'!is is a nonlinear static analysis extended to a point

where the structure reaches its limit load or maximum load. The basic approach in a

IJ



nonlinear plastic buckling analysis is to constantly increment the applied loads unlil the

solution begins 10 diverge. Nonlineanties such as material plasticity and geometric

nonlinearity are included in the analysis. Iterative incr:mental solution procedure for the

nonlinear equations is applied to solve the nonlinear problem.

2.2.\ Material Nonlinearity

Most common engineering materials exhibit a linear stress-strain relationship up 10 a

stress I~v~l known as th~ proportional limit. Beyond this limit. Ihe sltess-strain

relationship will become nonlinear. Material nonlinearities are due to the nonlinear

relationship betwm1 stress and strain. that is. the stress is a nonlinear function of the

strain. Nonlinear stress-strain relationships are a common cause of nonlinear structural

behavior. The material non-linearity is implemented in the finite element method.

Material models for nonlinearities include multilinear plasticity and elastic-perfect

plasticity. For this won:.. the elastic-perfectly plastic material non-linearity is employed.

2.2.2 Geometric Nonlinearity

Geometric nonlinerities refer to the nonlinearities that arc due 10 the changing geometry

as it deflects. There are two types of geometric nonlinearities concerned in this work:

large stain and large deflection. Large strain analysis acCOWlts for strains in an element

when they arc no longer small. lbis changes an element's shape and orientation and

hence affect the stiffness of the element. Large deflection asswnes that the rotations are

14



large while the strains may still be small. If a structure experiences large defonnations. its

changing geometric configuration can cause the structille to respond nonlinearly.

2.2.3 Solution Method

When the finite element model is set up for nonlinear analysis including malerial and

geometric nonlinearities. an appropriate nonlinear solution method should be applied.

The NeWlOn-Raphson technique is an iterative incremental method 10 achieve

convergence. The load is divided into several substeps. applied by the Newton-Raphson

method to get convergence.

2.2.4 General Model for Buckling Analysis

The general models for plastic buckling analysis are developed in this thesis for the study

of variable dimension rectangle cross section cantilever beams subjeeted to a

concentrated load at the free~. The model includes material nonlinearity, which in this

work. is elastic perfectly plastic defined by the Young's modulus and yielding sU'eSS.

These (wo parameters are variable. The dimensions of the cross section are also

changeable for the different configurations.

2.2.5 Numerical Study on Plastic Buckling Analysis

In this work a numerical study of cantilever beams along with the analytical solution of

the elastic buclding, yielding and collapse of cantilever beam are given. Uniform non­

dimensional parameters are set up as criteria for the overall behavior. The overall

15



behavior of the rectangle cross section cantilever beam is separated 10 three regions by

the boundary of elastic buckling and yielding. and plastic buckling and plastic hinge

collapse.
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Chapter III

FINITE ELEMENT FORMUATION

FOR PLASTIC ANALYSIS

The' finite clement analysis of plastic buckling is a plastic static solution process reaching

the unstable point. Formulation for plastic buckling includes structural fundamentals.

geometric nonlin~ty, material nonlinearity. and Newton-Raphson method.

3.1 Structural Fundamentals

3.1.1 Stress-Strain Relationships

The linear material stresses are Il:lated to strains {17][J2) by

lu} = [DJ(I£}- ~·l) 3.1

(Dje elasticity mattix
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~.. } - thennaJ. strain vector

The stress vector is shown in Figure].!. The sign convention for direct stresses and

strains used is that tension is positive and compressions negative. For the shears. positive

is when two applicable positive axes point toward each other. Shear strains are

engineering shear strains, not tensor shear strains.

0,

y

J-x
z

0,

Figare 3.1 Stress vector deflaitiOD

Equation ].1 may also be inverted to

te} = ~. }+lDr' lu}

For ]-0 case. the tbenn.aI stnli.n vectOr is

~·l = "T[o, 0, 0,0 0 Or

18
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when: a. - thermal coefficient ofexpansion in the x direction

I1T-T- Tu.F

T - current temperature at the point in question

TMF z reference (strain-free) temperature

Expanding Equation 3.1 with Equation 3.3and writing out the six equations explicitly,

3.4

3.5

3.6

3.7

3.8

3.9

When: typical terms are

e. '" dirett strain in the x direction

&.,. "'shear strain in the l(.y plane

t7. =d~stressinthexdirection

t7q =shear stress on the x-y plane
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].11

E, - Young's modulus in the ~ dirtttion

v I) - Poisson's ratio relating £. to a ,I E.

;;., -Poisson's ratio relating £, to cr,lE.

3.1.2 Derivation of Structural Matrices

The principle of virtUal work [28) states that a very small vinual cnange of the internal

strain energy must be offset by an identical change in external work. due to the applied

loads,

].10

where V = strain energy - VI +U~

V - external work = VI +VI

6 '" vinuaI operator

The virtual strain energy is

OU, • LI&I' {u)o'(",i)

where {e} = strain vector

to-} '" stress vector

vol - volume ofelement

Continuing the derivation assuming linear materials and geomeuy. Equation ].1 and ].11

an: combined to give

OU,' L< l&l'loRc}-I&}'[oY) )0'(",/)

20

3.12



The strains may be related to the nodal displacement by

I<}- [B~u} j.n

where [BI "" strain-displacement matrix. based on the clement shape functions

luI .. nodal displacement vector

II will be assumed that all effects arc in the global Canesian system. Combining Equation

3.13 with Equation 3.12. and noting that ~} docs not \'al)' over the '..olwne

3.14

Another form of vinual strain energy is when a surface moves against a distributed

resistance. as in a foundation stiffness. This may be wrinen as

3.15

where {w.} "" motion normal to the surface

{cr} .. stress carried by the surface

ar~a f = area of the distributed resistance

Both {w-J and {cr} will usually have only one non·zcro component. The point·wisc

normal displacement is related to the nodal displacements by

{w.}- [N,Hu}

Where [N.] = matrix. of shape function for normal motions at the surface

The stress {u} is

lu}'k{w,}

3.16

3.17

wbere k = the foundation stiffness in Wlits of force per length per Wlit area

Combining Equations 3.IS through 3.17, and assuming that k. is constant over the area
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Next the external virtual work. will be considered.

The displacement within the element arc related to the nodal displacements by

(w)-[N){,)

where [N) '"" matrix of shape functions.

Nodal forces applied 10 the element can be accounted for by

Where {F•.od} '"' nodal forces applied to the element

The pressure force vector Cannulation starts with

3.18

3.19

3.20

3.21

where {pi = the applied pressure vector (normally conlains only one non·zero

component)

area, '" area over which pressure acts

Combining Equations 3.19 and 3.21

3.30

All material properties for stress analysis elements are evaluated at the average

temperature of each clement Finally, Equations3.IO. 3.14. 3.18, 3.20 and 3.22 may be

combined 10 give

!&}' L1Sf[DISIt(",/Xu}-!&)' L1Sf[D]{t" }t(",/)

+!&}' k L,(N.f[N.It(ar<a,X,)
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3.23

Noting that the (CuY vector is a set of arbitrary virtual displacements common in all of

the above terms. the condition required satisfy Equation 3.31 reduces to

Whm [K.J - L!af(DIa}i(""/) - elemenlStiffuess matrix

[KII· k L,IN.T1N.}i(a"a, )=element fawulation stiffuess matrix

IF:}· L!af[Dj{..' \1(""/) =element thennalload veelO,

IF.'}' L. IN. f (P\d(area,) =elemeot p,",s",e V«IO'

Equation 3.24 represents the equilibrium equation on one element basis.

3.2 Geometric Nonlinearities

3.24

For our problem interests. there are two types of geometric nonlinearities (18][ 19} should

be considered: Large strain assumes that the strains are no longer infinitesimal (they are

fmite). Shape changes (e.g. area. thickness. etc.) are also accounted for. Rotation may

also be large; Large deflection assumes that the: rotations are large but the mechanical

strains (those thai cause stresses) are small. The structuu is assumed not to change shape

except for rigid body motions.
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3.2.1 Large Strain

When the strains in a maleriaJ exceed mo~ than a few percenl. the changing geometry

due to this deformation can no longer be neglected. AnaJyses including this effect are

called large strain. or finite: strain. analyses. The theory of large strain computations can

be addressed by defining a few basic physical quantities (motion and deformation) and

the corresponding mathemalical rdations~ip. The applied loads acting on a body make it

move from one position to another. This motion can be defined by studying a position

vector in the "deformed" and "undefonned" configuration. Say the position vectors in the

"deformed" and "undefonned" state are represented by ~ and Wrespectively. then the

motion (displacement) veclor~ is computed by Figure 3.2

3.25

Figure 3.2 Position vtdors aad motion of. deforming body

The deformation gradient is defmed as
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3.26

Which can be wrinen in tenns of the displacement of the point by Equation 3.25 as

3.27

whm i~ '" identity matrix

The information contained in the deformation gradient [Fl includes the volume change.

the rotation and the shape change of the deforming body. The volume change at a point is

dV =det[F]
dV,

where Vo .. original volume

v '" currenl volume

det[-] .. detemUnanl of the matrix

3.28

The deformation gradient can be separated into a rotational and a shape change using the

right polar decomposition theorem.

[FJ-{R][UJ

wh= [RJ'rotationmatrix([RF[RJ-[/j)

{ul ::: right stretch (shape change) mattix

3.2.2 Large Deflections

3.29

If the rotations arc large but the mechanical strains arc small, then a large deflection

procedure can be used. A large deflection analysis is perfonned in a static aI!alysis when

the appropriate element type is used.. Large deflection theory follows a similar

25



development of large strain. except that the logarithmic strain mtasw-e is replaced by

small strain measure

[e]- lui-III

where {V] • stretch matrix

[/]:< 3 x 3 identity matrix

3.3 Material Nonlinearities

3.30

Material nonlinearities [19} are due 10 !he nonlinear relationship between stress and

strain., that is the stress iD a nonlinear function of the strain. The thesis focuses on the:

rate-independent plasticity, which is characterized by the irreversible instantaneous

straining that occurs in a material once a certain level of stress is reached. The plastic

strains are asswned to develop instantaneously. thai is. independent of lime. Plasticity

theory provides a mathematical relationship that characterizes the elaslO-plastic response

of materials. There are three ingredients in the rate-independent plasticilY: the yield

criterion. flow rule and the hardening rule

3.3.1Yield Criterion

The yield criterion determines the stress level at which yielding in initiated. For multi­

component stresses, this is represented as a function of the individual components.

I{{a}). which can be interpreted as an equivalent stress a.:

u. - /({uD

where {u}' stress v<eto,

26
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When the equivalent stress iscquaJ to a material yield parameterO'",

a. - [({all 3.32

the material will develop plastic strains. If 0'". is less than 0'"" the material is elastic and

the stress will develop according to the elastic stress-strain relations. Note thaI the

equivalent stress can never exceed the matcrial yield sioce in this case plastic strains

would develop, thereby reducing the streSS to the material yield.

3.3.2 Flow Rule

The flow rule determines that direction of plastic straining and is given as:

l.ll

wh=

.{ "" plastic multiplier (which determines the amount of plastic straining)

Q :; function of stress termed the plastic potential (which determines the direction of

plastic straining)

If Q is the yield function (as nonnally assumed), the flow rule is teoned associative and

the plastic strains occur in a direction nonnal to the yield surface.

3.3.3 Hardening Rule

The hardening rule describes the changing of the yield surface with progressive yielding,

so that stress states for subsequent yielding can be established. Two b.ardening rules are

available: isotropic work. hardening and kinematic hardening. In isotropic work
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hardening. the yield surface remains ~ntercd about its initial centerline and expands in

size as the plastic strains develop. For materials with isotropic plastic behavior this is

termed isotropic hardening. Kinematic hardening assumes that the yield surfa~ remains

constant in size and the surface translates in stress space with progressive yielding.

3.3.4 Plastic Strain Increment

If the equivalent stress computed using clastic properties exceeds the material yield. then

plastic straining must occur. Plastic strains reduce the stress states so that it satisfies the

yield criterion. Equation 3.32. Based on the theory presented in the previous. the plastic

strain increment is readily calculated. The hardening rule states that the yield criterion

changes with isotropic work hardening and/or with kinematic hardening. Incorporating

these dependencies into Equation 3.32 gives

F(lu}·K .Iall·o 3.34

where N • plastic work

fa} translation of yield surface

N and fa} are termed internal or state variables.

Specifically, the plastic worle is the swn of the plastic work done over the history of

loading:

3.JS

and translation of the yield surface is also history dependent and is given as:

3.36
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wheTt C is a malerial parameter. {a} represents the location of the center of the yield

surface and moves in the direction of plastic straining.

3.4 Newton-Raphson Procedure

3.4.1 Overview

The finite element discrctiution process yields a set of simulW1eOus equations

[K]{u}· (F"l 3.J7

wh=

[K] '" coefficient matrix

lu} '" vector of unknown DOF (degree of freedom) values

{r} • veClor of applied loads

If the coefficient matrix [K] is itself a function of the unknown DOF values or their

derivatives then Equation 3.37 is a nonlinear equation. The Newton-Raphson method

(21 ][22][32] is an iterative process of solving the nonlinear equations and can be wrinen

[K.'J {A..l- rl- lr.l
{u.•,} - {u.H""}

wh=

[K,T] - Jacobian matrix

{F;.... }.. vector of restoring loads corresponding to element intemaJ loads

29
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i ,. subscript representing the current equilibrium iteration

Both [K,' J and {F,-j .,. ovaluat<d b=d on tho vaI.os g;von by lu,}, The right-hand

sid~ of Equation 3.38 is th~ residual or out-of-balance load v«tor. i.~.. th~ amount the

syst~m is out of equilibrium. One singl~ solution iteration is d~picted graphically in

Figure 3.3 for a on~ DOF mod~l. In a structural analysis. [K,r] is the tangent stiffn~S5

matrix, {u,} is th~ temperature vector and {F,"'} is the restoring forc~ vector calculated

from th~ ~l~m~nt stresses. As seen in Figure 3.3. more than on~ N~wton-Raphson

iteration is need~d to obtain a cOQverged solution.

Figure 3.3 Newton-RapbsoD solution· one itenlion

Figure 3.4sbows the solutioo of the next. iteration (;+1) ofthc example from Figure3.3.

The subscqueot iterations 'WOuld proceed in a similar manner. The solution obtained at
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w end of the iteration proc:ess would correspood to load level {F-}. The final converged

solution would be in eqwlibriwn, such that the restoring load vector {F,"'} would equal

the applied the applied load vector {r} or at least to within some tolerance. None of the

intermediate solutions would be in equilibriwn.

Figure 3.4 Newtoll -Rapluoll solutioll - lleIt it~ntioD

If the analysis included path-dependent nonlinearities such as plasticity, lhen the solution

process mtuires that some intermediate steps be in equilibrium in order to correctly

follow the load path. This is accomplished effectively by a stqHly-step incremental

analysis; i.e.• the final load V«tor {F. }is reached by applying the load in increments and

perfonning the Newton-Raphson iterations at each step

31



who",

[K~J) "" tangent matrix for time step n. iteration I

{F.:} .. ~oring force vector for time step n, iteration I

{F:} .. total applied force vector at time step n

3.40

This process is the incremental Newton-Raphson procedure and is shown in Figure 3.5.

The Newton-Raphson procedure guarantees convergence if and only if the solution at any

iteration {u,} is ~near~ the exact solution.

Fl~--------""''''

Figure 3.5 [neRmeac.1 Nnvton.lbpbsoa procedure

3.4.2 Convergence
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1bt: iteration proc:ess described in the previous continues until convergen~ is achieved.

Convergence is assumed when

I{Rm < c. R,., (out-of-balance convergence)

and/or

1{1iu, I < c. u.., (OOF increment convergence)

where {R} is the residual vector

3.41

3.42

3.43

which is the: right-hand side of the Newton·Raphson Equation 3.38. {Au,} is the DOF

increment vector, cland c.are the tolerances and R..,and u.., are reference valuts. is

a vector nonn; that is • a scalar measure of the magnitude of the vector. Convergence.

therefore. is obtained when the size of the residual disequilibrium is less than a tolerance

times a reference value and lor when the size of the DOF increment is less than a

tolerance times a reference value.
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Chapter IV

IMPLEMENTING FINITE ELEMENT

PLASTIC BUCKLING ANALYSIS

4.1 Introduction to ANSYS

The ANSYS program was introduced by Dr. John Swaruon and Swanson Analysis

System. lncorporaled (SASO, in 1970. Since that time, the program has been developed

to provide the finite clement aoal)"is and design technology to engineers. ANSYS in one

of the most widely used and well established finite element analysis programs in the

world.

The ANSYS program bas capability to implement structural analysis. In addition to its

extremely strong ability to set up complicated three-dimensional solid models, it can

provide static and dynamic. elastic and plastic analysis on these three-dimensional
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structures. ANSYS also has excellent pre and post processor capabilities, providing a

friendly graphical user interface.

4.2 Buckling Analysis

Buckling analy!is is a technique used to determine buckling loads. critical loads at which

a StlUCtwt: become unslable, and buckling mOlk shapes, the charac~ristic shape

associated with a strUcture's buckling response [29]. Two tec.hniq~ are available in the

ANSYS program for predicting the buckling load and buckling mode shape of a

structure: nonlinear buckling analysis, and eigenvalue (or linear) buckling analysis.

4.2.1 Nonlinear Buckling Analysis

Nonlinear buckling analysis is simply a nonlinear static analysis extended to a point

where the sttucttue reaches its limit load or maximum load as depicted in Figure: 4.1(a).

Using the nonlinear technique, the model can include features such as initial

imperfections, plastic behavior, gaps, and large deflection response. In addition. using

deflection controlled loading. the model can even traCk the post b\ll,:k1ing pc:rfonnance of

the: structure. The basic approach in a nonlinear buckling analy!is is to constantly

increment the applied loads until the solution begins to diverge. Be sure: to use a

sufficiently fine load increment as your loads approach the expected critical buckling

load. It is important 10 recognize that an WlCOnverged solution need not necessarily mean

that the structure has reached its maximum load. It could also be caused by numerical

instability, which might be com:cted by refining the modeling technique. Tracking the

load deflection histOry of the SU'\ICtUre'S response can help you decide whether an
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unconverged load step represents acroal stl'\lCtUla.l buckling, or whether it reflects some

other problems. Nonlinear buckling analysis is usually the more accurate approach

compared to eigenvalue buckling analysis and is therefore recommended for design or

evaluation of actual structures.

SlIIp-dIroulhbllC:klinl

(lfloadCOn~I~)_-Ilt
, ,V

, I

\ /
\ /
'-~

(lfdisplacemenlcOIllrOlltd)

(.J (bJ

Figure: 4.1 BucldiDC a.alysis: (a) NODlinnr Ioad-deftertion curve. (b) Compariag

Liaen (Eipvalae) and Do.liaalf backling carn

4,2,2 Eigenvalue Buckling Analysis

Eigenvalue buckling analysis predicts the theoretical buckling strength (the bifurcation

point) ofan ideal linear elastic structure. (~Figwe4.1(b» This method corresponds to

classical approach to elastic buckling analysis such as eigenvalue buckling analysis of an

Euler column. However, imperfections and oonlinearities prevent most real wodd
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stJ'UCtW'e5 from achieving their theoretical elastic buckling strength. Thus. eigenvalue

buckling analysis often yields unconservative ~ts. It should be decided if eigenvalue

buckling analysis is appropriate for your application. 1be procedure consists of thee main

steps: constructing the model, obtaining the static solution to get structure stiffness

matrix. obtaining the eigenvalue buckling solution.

4.3 Implementation the Plastic Buckling Analysis of a

Cantilever Beam

4.3.1 Description of the Problem

When a cantilever beam is subjected to an external displacement or force on the free end,

the initial behavior is elastic. The beam may buckle elastically. As the load/displacement

increases. Ute fixed end of beam partially yields. After initial yield the beam will either

buckle plastically or continue to yield Wltil collapse. 1be behavior depending on the

dimensions of the cantilever beam and the material properties. The behavior in the plastic

regime is of interest because even if the .stJ'UCtUteS are designed in the material elastic

region, overloading can be happen for extraordinary load conditions. Further more, the

ptastic design may be much more economical for the industrial practice. Hence, dearly

understanding the strue:ture's overall behavior. especially in the plastic regime is essential

for design practice.
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In order to initiate buckling analysis. the: applied force or displacement will be: offset

slightly from the center point. This breaks the perfect symmetry and allows buckling to

occur. Otherwise the model would only exhibit plastic hinge collapse at the fixed end.

4.3.2 Element Type

The cantilever beam is set up as a three-dimensional model with plastic behavior. The

buckling behavior requires an element with nonlinear capabilities for large strain and

large displacement. while the material nonlinearity also is introduced in the element.

To fulfill the basic requirement. element SOliD 45 is chosen [32]. Solid 45 is used for

the thret-dimensional madeling of solid structure. The element is defined by eight nodes

having three degrees of freedom at each node translations in the nadal x. y and z

directions. The element has plasticity, creep. swelling, stress stiffening, large deflection.

and large strain capabilities.

4.3.3 Material Properties

Material propenies are required for the plastic analysis. In the model. the material is

isotropic and elastic·perfeetly plastic. Other types of plasticity also can be defined. Those

types of plasticity include multilinear kinematic hardening, bilinear kinematic hardening

etc. To properly define elastic perfectly plastic material behavior. the yield stress and

young modulus is set, and the temperature is set to zero thus excluding temperature

effects.
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S~vnal options are availabl~ in ANSYS to describe the plastic behavior. Th~ Multilinear

Isotropic Hardening (MISO) option was used to mod~1 th~ bilinear ~lastic·perf~ctly

plastic. The MISO option uses the Von Mises criteria coupled with an isotropic work

hardening assumption. Von Mises yield criterion and the Von Mises equivalent stress

plots have betn used because this type of plot provides the best way of assessing the

behavior of the structw'al elements against the plastic hinge development.

4.3.4 Solid Modeling and Boundary Conditions

The advantage of solid modeling is that it can set up a paramettic tllree-dimensional

model very quickly. It is also very easy to modify the model. The model is set up with

variables instead ofdirectly defining every node of every element.

There are two types of boundary conditions applied to the structure. The displacement

constraint is relatively simple. consisting of fi."(ing three translations and three rotational

freedom; while the force boundary condition includes the body force. surface pressure

and external force applied on the model.

4.3.5 Nonlinear Analysis

The solution techniques employed essentially consists of solving simultaneous linear

equilibrium equations which are successively updated to reflect changes in the material
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and geometric stiffness as the structure is strained and distorts under increasing load. The

incremental approach is driven by the load. which is incremented with each load step.

Equilibrium at each load Step is anained using a modified Newton·Raph.son teChnique.

ANSYS contains several features. which allow the user to control the solution process

and these were used to good effect..

Using the correct load step increment is essential in a nonlinear analysis to attain a stable

solution. This is especially trUe in regions where a rapid change in stiffness occurs. Such

regions in the analysis were anticipated 10 be at first yield. at complete or panial yielding

of the fixed end and then buckling or collapse for the whole cantilever beam. It is not

possible. of course. to estimate with any de~e of accuracy the load levels at which these

events will occur hence the need for this study. The automatic time stepping feature in

ANSYS was used. to determine the load step increment. Based on the user specified

initial. maximum. and minimum load step increments. the program determines the

appropriate load step increment based on the trend in convergence. If the rale of solution

convergence increases. the load steps are increased. and vice versa.

4.3.6 Deflection Results vs. Force Results

Two options are available when user applies the load to the cantilever beam. At the center

of free end, force or displacement may be applied. Consequently, the result will be

deflection versus force, or force versus deflection. For the nonlinear plastic analysis,

applying force may be suitable for the bifurcation instability process to predicate the
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critical buckling point: whereas applying displacement is a more genmtJ analysis

procedme. which can even reveal the post buckling behavior.

in stability experiments. the load is nonnally applied by a controlled displacement rather

than a specified force. Force venus deflection graphical results will be employed to

implement the plastic buckling analysis by ANSYS.

The Force versus deflection graphical results illustrate the overall beam behavior for

spttific dimensions of the beam at interesting critical points. The vertical and horizontal

deflection curve and the force versus vertical deflection on some point of free end are

used to determine the instability behavior of the structure. either plastic buckling or

collapse. Stress results illustrate the stress components (stresses in x. y. Z directions) or

equivalent stress distribution of the whole structure.

The above is typical procedure for nonlinear plastic analysis for cantilever beam. If the

solid model is adapted to other specific structures such as stiffened panel. frame and the

material properties would be redefined. The aforementioned method is a general

approach to determine the strUcture plastic behavior.
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Chapter V

NUMERICAL STUDIES

AND DISCUSSIONS

5.1 Numerical applications

Structures will ~xperience different structural bt:haviors. depending on the material

propcnies. the structural dimensions. the boundary conditions and the load panem.

Cantilever beams. when subjected to a toncenttaled force or displacement at the free end,

defonn until they reach an unstable point. The unstable point either will be plastic

collapse caused by plastic hinge formation. or will be collapse because the structure

reaches a point of instability. There are two cases of instability. First is the clastic

buckling, in which all structure bttomes unstable while still in the elastic region. The

stresses in the structure: are still less than the yield suess. Another tase is plastic buckling,
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in wh.ich some part of the structW'e experienced plastic stress while the rest of the

structure is still in the elastic region.

The plastic buckling behavior of the cantilever beam is numerically studied in this thesis

by nonlinear plastic buckling nnite element analysis. In addition to the material

propenies. the dimensions of the cantilever beam will determine the structural behaviors.

Dimensions vary from one beam to anther, and different unstable behaviors will be

presented. Through the detailed stUdy of the different unstable cases, the thesis seeks the

non-dimensional criteria to detennme the structural plastic buckling behavior.

5.2 Investigation of Plastic Buckling Regime

5.2.1 Boundary ofelastic buckling and yield

A cantilever beam will experience different structure behaviors due to the configuration

of the cantilever's dimensions and the material properties. Dimensions of the cantilever

beam are shown in the Figure 5.1. The load is a central force applied on the free end of

the cantilever beam. It is presumed that the cantilever beam stays stable when the load is

increased. There two critical loads, which we are interested in, the load P
y

the load when

the top and bonom of beam's fixed. end yield and P~ the load when the beam's fixed end

section becomes fully plastic.
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Figure 5.1 CaDrilever beam subjected to c:oDc:eDtnled load

From basic solid mechanics [23}. we have

M '" Yield moment for die rectangular cross-section

U, Yield stress of the material

We also have

M,"'P,'

from Equation 5.1 and 5.2 we have

th'
P-a ­, '6/

When the fiXed end of cantilever beam becomes fully plastic we have

5.1

5.2

5.3



,h'
M =a­

, '4

M p moment when the fixed end is fully plastic(plastic hinge moment)

M,=P.J

From Equation 5.4 and S.~ we have

P~and Pc provide lower and upper load boundaries plastic buckling.

5.4

5.5

5.6

In order to set up schematically plastic buckling fmite element analysis results that are

comparable to elastic buckling analysis results. non-dimcnsional parameters should be

used to evaluate the structural behavior.

In order to find the critical non-dimensional parameters. let us first compare analytical

results for the elastic buckling of rectangular cantilever beam subjea to load at the free

end.

The analytical elastic Iateral.-torsional buckling load for a single transverse load applied at

the free end of a cantilever beam [26] is:

p a O.669rh) (1- O.63-
h
')EG

.b 11

G~_E_

2(1")
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p... clastic buckling load applied at the center of free end of rectangular cross-section

cantilever beam

G'" shear modulus

£. clastic modulus

v· Poisson ratio

Recognize that the ratio of : and the ratio of ~ art two imponant non-dimensionaJ
/ I

parameters lhat describe the slenderness and aspect ratio of the rectangular cantilever

beam. We simplify the clastic buckling equation including: and !!.., which gives
I I

, (1- O.6J/(~)J
P.=O.66'f')-(lh)E __1_'-

\/ 2(I+v)
5.8

In order 10 capture the nature of the structure behaviors, we adapt the load for yield and

collapse formulate 00 include: and !!.. ratios. This gives
/ I

P, 1('Xh)
a.A 6 I r

P, - 1('Xh)
a,A 4 I I

The elastic buckling load also can be re·statcd as

..

5.9

5.10

5.11



h"!!.
I

substitute Equation 5.12. 5.13 into Equation 5.9. 5.\0, and 5.11. we have

5.12

5.13

5.14

:5.15

5.16

The yield stress a. can be: treated as a constant If we set the rectangular seetion area as

A. then

P, '" a,A

P, load to cause axial yield (axial collapse. max possible afany case)

, p.
P'-p.

P'.!.., P,

p'.~
• P,

p'- ~(h'
, 6

47

5.17

5.18

5.19

5.20

521

5.22



P>0.669,"'£ 1-0.63ih'
a.~

5.23

In order 10 understand the overall behavior of the cantilever beam. we should find the

boundary of clastic buckling and initial yielding. and the boundary of plastic buckling

and plastic hinge collapse, which arc defined by non-dimcnsional parameters [' and h'

From Equation 5.21 and 5.23, we can deflne the boundary of elastic buckling and initial

yielding ofcantilever beam by

..!."h' -0 669,')~ l-O.63th'
6 . cry 2(I+v)

(_ 0.2491 h'
E I-O.63tH

",. 2(I+v)

5.24

5.25

From Equation 5.22 and 5.23, we can define the virtual boundary of clastic buckling and

plastic collapse ofcantilever beam by

(-0.3737 h'
E 1-0.63/h'

CT, 2(1+ ...)

5.26

5.27

Equation 527 defines a virtual boWldary ofclastic buckling because in real practice.

when the load exceeds the yield load. the stability equation established for the clastic

48



buckling is invalid. Nevertheless it. to some extent. provides us with useful hints for the

boWldary ofplastic buckling and the collapse.
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5.2.2 Boundary of Plastic Buckling and Plastic Hinge Collapse

To determine boundary of plastic buckling and collapse. fmite element analysis is

applied. The behavior of the cantilever beam is related 10 til and hit. If we set the length

of a cantilever beam to 1 m. me lhickness t and height h can be detennincd by two non·

dimensional parameter til and hit. Table 5.1 shows the cases studied by the finite element

plastic buckling analysis.

Table 5.2 Grid of cases examned by nonlinear F.E. ~sis

If..,. setl=olm, then wand hVoilbedetelTni'\ed by ratios 01 M and til
Values in the table in thethic:Mess l height h

tn M
5 5.5 • '.5 7 7.5 8 8.5 9, h

0.020 0.100 0.110 0.120 0.130 0.140 0.150 0.160 0.110 0.180
0.018 0.090 0.099 0.108 0.117 0.125 0.135 0.'44 0.153 0.162
0.01e 0.080 0.088 0.096 0.104 0.112 0.120 0.128 0.136 0.144
0.01. 0.070 0.077 0.084 0.091 0.098 0.105 0.112 0.119 0.126
0.012 0.060 0.... 0.072 0.078 0.0&4 0.090 0.096 0.102 0.108
0.010 0.050 0.055 0.060 0.065 0.070 0.075 0.080 0.065 0.090
0.008 0.040 0.044 0.048 0.052 0.056 0.060 0.064 0.068 0.072

tn M
9.5 '0 12 ,. ,. 18 20 22 2<, h

0.020 0.190 0.200 0.2<0 0.280 0.320 0.360 0.<00 0.""" 0.480
0.018 0.171 0.180 0.216 0252 0.288 0.324 0.360 0.396 0.432
0.016 0.152 0.160 0.192 0.22. 0.256 0.288 0.320 0.352 0.384
0.014 0.133 0.140 0.168 0.196 0.22. 0252 0.280 0.308 0.336
0.012 0.114 0.120 0.144 0.168 0.192 0.216 0.240 0.264 0.288
0.010 0.095 0.100 0.120 0.140 0.160 0.180 0.200 0.220 0240
0.008 0.076 0.080 0.096 0.112 0.128 0.144 0.160 0.176 0.192

In order to find the boundary of plastic buckling and the collapse of cantilever beam.

nonlinear plastic buckling analysis was executed in each grid point in Table 5.2. After



running the ANSYS program at each grid point we obtain the following plots: force ­

vertical deflection on the center of the frce~nd of cantilever beam: lateral deflection ­

vertical deflection of the center of the free~nd of cantilever beam: the undefonned shape

and defonned shape of the buckling load; and the von Mises stress contour of the buckled

shape.

The force vs. vertical deflection of the center of the free-end of the cantilever bam will

give us infonnation to determine the plastic buckling force. Von Mises mess contour

shows the stress distribution on the whole beam.

5.2.3 Procedure for Analysis ofa Specific Case

In order to describe the typical procedure. we take the grid point on Table 52 tII=O.018.

hlt=18 to show whole analysis procedure.

First we usc: the ANSYS solution program (Appendix A). for parameters t. h and I for the

case. The ANSYS program is run in batch mode. In this S'.ep. the main task is 10 set up

the geometric model. apply boundary conditions. and get the results for the all load

substeps.

Second. we run the ANSYS program postprocessor (Appendix e). plot out graphical

results: the Force vs. displacement on the center point of free end (window I in Figure

5.2), in which the x axis is displacement (m) and the y axis is the applied force (N). The:

lateral displacement V5. vertical displacement on the center point of free: end (window 2

"



in Figure S.2l. in which the x axis is the venical displacement (m) and the: y a.'(is is the

lateral displacemenl (m). The Von Mises stress of top center point of the fixed end

(window 3 in Figure 5.2). in which the x axis is the displacemenl and y axis is the stress

(Pa). The pwpose hert is to determine the instability point location and propeny of the

W1Stable point (i.e. ifit is plastic or DOt).

Third. we run the program to get the final graphical results (Appendix B). The reference

line on Figure 5.2 shows the instability time (normal to vmical displacement applied al

free end). We set time for the instability point to plot out the: defonned shape and stress

contours. The Force vs. displacemenl and lateral displacemenl 'Is. verocal displacement

are also included (See Figure 5.14).
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5.3 Finite element analysis results

5.3.1 ANSYS Results for Plastic Buckling and Plastic Hinge

Collapse Boundary

The figures following Table5.J show the grapnical results 10 find the boundary of plastic

buckling and collapse.

As to determine boundary of plastic buclding and collapse. there is no analytical result.

Cases study is essential 10 find boundary points. Figure 5.3 to Figw-e 5.25 arc small

portion of results of all cases has been studied, these figures are grouped by the ratio hit

from 8 10 24. And for each hit value. less than 4 cases arc presented to define the point on

the boundary of plastic buckling and collapse.
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Figure 5.9 Finite element result for tJI=O.020, hlt=14
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Figure 5.18 Finite element result for tII=O.018, hlt=18
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5.3.2 Overall Behavior of Cantilever Beam

In order to apply these finite element analysis results to convenient ~fert:ncc. The

boundary of plastic buckling and yield and boundary of plastic buckling and collapse

should be: defined by non-dimensional ratios hit and til.

Table 5.4 summaries all related information preseIlkd in the graphical results. It includes

the non-dimensional ratios hit and til. and cantilever beam's bebaviors for different ratios.

The unstable loads for plastic buckling lay between the initial yield load and load of

plastic hinge collapse. Also notice that. when hit increase unstable loadlPy. unstable

loadIPc~ decreased. These infer that the cross section of a cantilever beam more slim.

the structure more easier to have plastic buckling.
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The overall behavior of cantilever beam is summarized in Table 5.5. Boundary of elastic

buckling and yield is derived from analytical method. while the boWldary of plastic

buckling and plastic hinge collapse is gotten from ftnite element analysis results.

Table 5.5 Overall Behavior of Cantilever Beam

plastic buckling & collapse boundary elastic bUckling & yielding boundary

M til M til
10
12
141.
18
20
22
24

0.012
0.016
0.018
0.018
0.018
0.016
0.016
0.016

10
12
141.
18
20
22
24

0.0060
0.0071
0.0083
0.0094
0.0106
0.0117
0.0129
0.0140

0.02 -------------------

2218

0.00' -------.-------------

0.002 -----------------­

0----------------
10 14

-+-plaaticbuck~ngboUndaty ...... eIastiebuckJingbounclary

.1



5.3 Discussions

1. The plastic buckling and collapse boWldary of cantilever beam is an irregular curve in

the plane defined by two non-dimensional parameters hit and til. The curve is above the

boundary of elastic buckling and yielding. which is eJ(pec~ .

2. As shoYm in ~ diagram in Table5.}. the overall behavior of the cantilever beam is

defined by three regions. First the region below the boundary of clastic buckling and

yielding is the elastic buckling region. The region between the boundary of plastic

buckling and collapse and the boundary of elastic buckling and yielding is the plastic

buckling region. The region above the boundary of plastic buckling and collapse is the

collapse region.

3. Cantilever beams under vertical concentrated load at the I'ttt-cnd experience plastic

buckling when ratio of h' is below 10 for any value of t'. Cantilever beam with ratio hit

(h') less than 10 will not experience plastic buckling for ratio til (t') range from 0.008 to

0.020. Ratio defines the slenderness of the rectangular cross section of cantilever beam.

The plastic buckling will not happens if ratio ofM is less than 10.

4. The slenderness of cantilever beam is the ratio til (t'). In the range of numerical study.

plastic buckling usually happen when the ratio is less than 0.018. which means that if the

cantilever beam is relatively sbon (ratio 1I1 bigger than the critical ratio), the cantilever

beam will collapse by plastic hinge formation instead of buckling.



Chapter VI

CONCLUSIONS AND

RECOMMENDATIONS

6.1 Conclusions

The finite element method can stKcessfully be used for the plastic buckling analysis. The:

finite element method can include material oonlinearties and geometric nonlinearies.

large deflection and large strain. In the solution procedure. in order to achieve a

convergent solution for the nonlinear material and geometric noIL"lealties. the Newton­

Raphson method. an incremental method for the nonlinear system is applied. The finite

element plastic buckling solution method provides a method for not only cantilever beam.

but also for other structures with other types of material nonlinearity.

The thesis bas set up two non-dimensional parameters as criteria for plastic buckling

evaluation for the cantilever beam subjected to concentrated force at the center of the

~-end. The two criteria parameters are ratio of thickness by length til and ratio of

height by thickness bit. The ratio of til defines the slenderness. Plastic buckling happens



when the ratio is less than about om 8. The ratio hlw relates to the aspect ratio of the

rectangular cross section. Plastic buckling happens when the ratio is bigger than 10 in

studied range.

The overall ~havior of cantilever beam under a concentrated load at the fJtt~nd is

sho'Ntl in the thesis. The diagram(in Table 5.3)is from the nwnerical results of finite

element plastic buckling analysis and the analytical results of elastic buckling and

yielding. There are three regions in the diagram. The elastic buckJing region is under the

boundary of elastic buckling and yielding. The plastic buckling region is between the

boundary of plastic buckling and collapse and the boundary of elastic buckJing and

yielding; the region above the plastic buckling and collapse is collapse region.

The thesis also developed a general ANSYS model for plastic buckling analysis of

cantilever beams subjected to concentrated force at the center of free-ald. Any user can

easily use the model to analyse a cantilever beam of different dimensions by changing the

dimensions defmed at the very ~ginning of the code.

6.2 Recommendations

Cross-section variations

This work is focused on plastic buckling behavior of cantilever ~ams. with rectangular

cross sections. Cross-sections of the cantilever beam could be ..t" section. "r section or

..



another type of section. Th~ sections are more complex than the rectangl~. Fini~

~lement mod~1 should be set up for these sections to analyze plastic buck.ling load.

Different ~nd condition

In this thesis. th~ beam is fixed at one ~nd and free at the other. Other end conditions are

expected to discuss such as fixed at two ends. pinned at two ends and continuous etc.

Different load conditions

Concenuated loads applied at th~ free-end of cantilever beam are studied in this work. In

practice. the beam may be subjected to distributed loads along the length the beam. or

have other types of lead. It is worthwhile to study different load types.

Geometric imperfection

In the work. the model of cantilever beam is in perfect condition. There are no geom~tric

imperfections in th~ model. Beams may have geometric imperfections or even gap in the

structure:. The effects of these imperfections may also be provided by finite element

analysis.

Different material propcnies

Material property other than elastic-perfect plastic may be more realistic. Obviously, a

multi-linear material curve will generate different load det1~ction response, henc~

providing different plastic buck.ling analysis solutions.

"
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APPENDIX A

ANSYSS2 General model and solution codes

Ibatch
""""""" .. ",.", .... ",'>'"""...................... , ...

! !ANSYS CODE FOR PLASTIC aUCKLING ANALYSiS ON CANTILEVER B::AM!!

""""""""""""""""""""""""""""""'"............................................. _-- .
!when the ANSYS proqr.m requires ~re help space, the user can increase
the allocated space for
!ANSYS by. . \ansys52 -M 64 when start the ANSYS 64 indicates 6~

mega by-ces workspace

!this configuration command i, not available in ANSYSS2. user mu,n
change the confiq file to do memo configuration
!/contiq,nvpage.51Z ! set aaxilllUlll nUlllkler o~ database pages in lI.elllory to
m

fcom. the code is try to model the cantilever beam in qeneral purpose,
! i.e. it will be flexible to do 'lanous dimension analySts by only
mo<:h.fy
: dimension parameters <:le!~ne at the beqHminq of the coce;
furthermore the

materhl prope:-ty lS also chanqeable by modify adequate lIIatenal
property
~ parameter:s in the code.

this section of code is uinly set. up :solld IIlOdel
which includes the applied

boundary condition, both displacement and force applied on
expected lIodel.

teaM, ANSYS REVISION 5.2
tview,l,l. 1,1

lanq, 1

19: 58: 56 0112711998

:!ilnoiJll,appdisp !job name
Jl:itle,pllstic bucklinq analysis on cantilever bealll

Junits,si !SI!!I: the unit systelll 1:0 metric system

"



tbdata,l.ys,O
tbplot,biso,l

!preprocessor
Iprep1
!deline elel:lent types for setting up :IlOCel
et,l.plilne42
et.2,sohd45

!def:.r.e pilrilllleterS ~or future \,lse

!-----material pro~rties

"set,ys,3.00e8 !yield strenqth (N/m.sqrl

"::et.YlIl,2.01ell !younq's modulus I N/IIl.sqr J

•set, poisson, 0.3 ! Poisson's ratio

! -----cantilever beam dimensions
"set, 1, 1 !the length of c",ntilever beam
·set,h,O.2BS !the heiqht of cantllever beall:
"set,t,O.OlB!the thickness of cantilever beam

!-----define parameters tor meshing

·set,nelell'l t,6 !nUllber of elements across thiCkness of beam
"set,nelem-h,B !nUllber ot elements across the height of beil!ll
"set. nelem=l. 20!ncmber ot elements acros' lenqth of beil!ll

! -----the value at applied force on the free end
"ut,f.5t4 !the central torce applied on the free end IN}
"set.dx,O.05 !applied displ.acement on the center of top free ella

!otfset the center pointer with perturb.tion of an element thlckness
!o::alcuJ..te the It value of .pplied force with one element thiCkness
perturNtioll
·set,vv, ((llelem_t+2j"w/2/nelem_w)

!define aaterial property .s perfect plilstic .and with large-strain
ability
mp.ex,l.ym !define young's modulus for IUteri.l 1
mp,nuxy,l.poisson !define Poisson's ratio tor material 1
tb.biso,l,l.,O !detine the material property as bilinear isotropic
hardeninqlBISOJ

perfect phstic with larqe-stnin ilbllity
! yield stress ys; tangent ~ulus 0
!plot the lIoaterhl property

!save database

! solid lIIOdeling
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! -----define keypoints
k,l,O,O,O keypoint 1
k,2,O,h,0 keypoint 2
k,3,t,t',,0 keypoint 3
k,4,t,O,0 keYFoH'.~ 4
k,5,vv,h,0 keypoint 5
k,6,vv,h,l keypoint 6 the force iIIpplied on

!-----create straiqht lines
lstr, L 2 !create straight line from keypoint 1,2
Istr, 2, 3 !create straight line from keypoint 2,3
1str,3,4 !create straight line frolll keypoint 3,4
lstr.4,l 'croeal:~ sl:ra:.o;h~ l:.::oe fr~::: ~ei;::;:;':".: ~,:

ISI::-,5,6 !create straight b.ne f:-cm keypoint !:,"

·-----Erst create a 2-D meshed area for dragging to form the )-D bealll
41,1,2,3.4 !creillte areill 1 f:-oll hne 1.2,3,4

1estze, 1. •• ne1em_h, L
1esize,3" ,ne1em_h,l,
1esi:e,2" ,ne1elll_t, 1.
1esi:e,4" ,ne1elll_t,1.
lesi:e,5, "nel""'_Ll,

!nUlWer of division along line 1
!nUlWer of division along line)
!nWllber of division along line 2
!numbe:- of division along line 4
!number of division along line 5

~ype,l !elelllent type 1 for lIIesh en area 1
allesh,l !lllesh on iIIrea 1
ep10t !p1ot elements

!-----drag to form 3-D beam
type,2 ! switch to element type 2
mat,l !lIIi11teriilll 1
esys,G !e1ellent coordinillte systell ref. number
vdrag,l"",,5 !dr.g area 1 along line 5 to create 3-Dmesh
ac1e.r,1 !delete no ItIOre useful p1.ne element on ar"!a 1
eplot !p10t element

!save databa:le

! apply loads
! -----first .pply displ.celllent boundary condition
asel,s",l !se1ect area 1 to form area component
em, tixend,are. !detine selected area 1 illS area component ~fixed-end"

4se1,5",6
01, freeend,area !define selected .rea 6 .IS area component "free-end"

'1



! save cUtabase

ClIl.sel,. fixend !select component "fixed-end"
lsel •• ext !select external lines on selected component areoJ "~1.xed-

end"
nsl1..1 !selec:. all node un selected lines
d.all,all ~constra1.n all cor on selected nodes
al1sel • restores tull sets ot all enti::.l.es

!save database

FINISH

Isolu !beGiin solution Ses$1.on

antype,O !analysis type, !ltolltic

nlq&om, on ! large deformation turned on

! -----second apply :.he torce on ::he top of tree end

::I,nodelvv,h.ll.uy,-dx ~apply the force on tl".e $pec:~i.;: keypoin::

nrop.auto !newton-rahpson method p::oqr~ choose
tUlle,dx !time lJet not1ll to torce
auto$.on !al:to $tep turned on
nlJubn.40.100,20 !substep 40, maxiftlUIII 100,lIl1.niWII 20
kbc,O ~ramped load
ncnv,2 !ter:ninates analY$is but not proqram execution if the
lJolut10n fails

to converge

outres,al!,al1 !output all resl:lt for each $ubstep to databalJe file

! save the databalJe

solve
save

fini.sh
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APPENDIXB

ANSYS52 Postprocessor codes I

fCOM, ANSYS REVISION 5.2 21:49:05 04l091l996

/show,test,grph !redirect graphic resu;'ts ':0 test.grph

'set,bUoad, .0018 !define the t:uck1:l.ng d.is~lac:em.nt (nonul to ti:lleJ

RESUME, oIIppdisp. db ••

Iplopts. info,on

Jplcpts, title. oft

IPLOPTS. LEG!. 0
Iplopts,leq2.0
Ip!opts.leg3.0

Iwindow,l,ltop !define window 1 left top
Iwindow.2.1bot !define window 1 left bottom

fwineQ"", 3, rtap 'define window ~ right tOp
"'nndow, 4. root !deflne "':,ndow : :"lqht bet:om

Iview,l.-1.1.1
111ll!!W,2. -1.1.1
/view,3,O
/view,4.0

IPOSTl

SET, • ,I, ,bkload. !read in the result of time of buckling load

ledge,all,l
Iplots. frame,on
Iwi.ndow. all, off

Iplopts,legl.O
Iplopts.leq2.0
Iplopt.s,legJ,O

{window, I, on
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Iview,l,l, 1, 1
PLiHSP,2 !plot deformed .!!hape with undeformed edge
Iwindow, 10 of!
Inoerase

'plopt.!!, leg:;:,:
Iplopts,legJ,l

Iwindow,::,on
Iview,2,L:, :

PL£SOL,S,EQV !plot von Mises stt"ess contou:: o! the buckling S1:<tpe
Iwindow,2,"f!
Inoerase

Iplopts,legl,off
Iplopts,leg2,O!!
Iplopts, legJ, of!
I<'OS126

RFORCii:, 6, node CVV, h,ll , r. Y,

NSOL, ", nodelvv, h,ll ,U, X, U)l

ABS,~,6, , ,P, ,,1, !def1.ne react1.or. torce on the node di~pl4cement

applied
.;as, J, 1, , ,UX, ,,1, ~def;ne later.. l displacement ot the node
duplaclltment .pplied

Iwindow,3,on
Iview,J,O

I.xlab,x,vertic.l disp!. top free endlm}

laxlab,y,P force(N)
PLVAR,2, , , ,
Iwindow,3,of!
Inoerase

Iwindow,.,on
Iview,.,O
I.x!ab,x,vertic.l displ. top free end(lIl}
l.x!ab,y,latera1 disp!. top free endlm)
PLVAR,3, , , ,
Iwindow,., off
Inoerase

linish

..



APPENDIXC

ANSYS52 Postprocessor codes II

ICOH. ;UISYS REVISION 5.2.

Ishow, newpre. q:pn

RESlr.o1E. appdisp. db••

Ipl0p(5. info,off

Iplopts,title, off

21:49:05 OV09/199S

Iwindow.i.-O.3325,l.0025.-1,l ~detine w:l.ndow 1
l ...indow,2.-1.-0.J32~.-1.1 !deUne window 2
/ ..1noo.. , 3,1.002.5,1.67,-1, 1 !detine window ==

ledq8,al1.1
Iplots, frame,on
Iwindow,a.ll,off

Iview,l.0
1"'1ew,2,O

RfORCE, 6 0 node I'SV, h. 11 • r. y,

NSOL. ". node tv"" h,i) ,C.X. ux

ABS.2.6. ,p., ,1, !define reaction force on the node displaceent
applied
ASS,3,', • ,UK•• ,I. !define lliteral displacement of the node
di,phc~ent oIpplied

Iwindow,l,on
Ivlew, 1. a

laxhb,x,Time {NOt1llal to displ.j
luhb,y.PINJ
lANG. 1 .-90.000000.ZS,l

!'LVAA,2••••

Iwindow, 1, of!
Inoerase

.,



Iwindow,2,on
Iview,l,O

laxlab,x,Time (Normal to displ.)
laxlab, y,L.D':'s,:. \rn)
lANG, : .-90.'::00':;00, !S.:

E'LVAR,J, • , ,

IW':'l1dow,2,off
Inoerase

Iwindow,3,on
Ivi"!w, 3,0
esol,4, 949, 13,s,E:QV,stress

laxlab,x,rime (Normal to displ.l
laxlab,y,Stress (P<!Il
lANG, 3 ,-90.000000, ZS, 1

plvar,4

Iwtndow,3,of:
Inoerase

t'i111sh
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