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ABSTRACT

Finite element analysis offers a general plastic buckling solution of structures by
employing a nonlinear static plastic analysis with gradually increasing loads to seek the
load level at which the structure becomes unstable. Nonlinear plastic finite element

analysis requires inclusion of i inearities and material nonlinearities in the

model. Geometric nonlinearities refer to the nonlinearities in the structure due to
changing geometry as it deflects. There are two kinds of geometric nonlinearities
concerned in plastic buckling analysis, large strain and large deflection. On the present
work, Newton-Raphson procedure, a process to solve the nonlinear equations by

increasing load in several steps and iterative putation to reach the

criteria, is applied for the plastic buckling analysis.

A general model for rectangular cross section cantilever beams is presented. which
flexibly defines the material property and dimensions of a cantilever beam. Overall
behavior of the beam is studied by combining analytical methods for elastic buckling
analysis and finite element analysis for plastic buckling analysis. Two non-dimensional
parameter ratios of thickness by length v/l and ratio of height by thickness h/t are used to
evaluate the overall behavior of a cantilever beam. The two boundaries of elastic

buckling and yielding, and plastic buckling and collapse are also investigated.
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Chapter I

INTRODUCTION

1.1 Finite Element Analysis of the Plastic Buckling of a

Cantilever Beam

Buckling analysis is one way to determine the critical load at which a structure becomes
unstable. In plastic buckling, the structure experiences elastic deformation, yielding,
partial plasticity, and collapse. If the structure becomes unstable before yielding. it is
elastic buckling, which is well studied by previous researchers. When the unstablity lies

in the partial yielding range, the structure fails by plastic buckling.

Finite element analysis is a numerical method for analysis of structures or other continua
field. The method requires discretization of a given structure into a set of finite elements.

A typical finite element analysis includes element type selection, geometric modeling,

of boundary condition, load ication, system solution and post-processing.



For the plastic buckling analysis of structures, finite element analysis employs a
nonlinear static plastic analysis with gradually increasing loads to seek the load level at
which the structure becomes unstable. Nonlinear plastic finite element analysis requires

treatment for both ic and material inearities. There are two kinds of

geometric nonlinearities concerned in plastic buckling analysis, large strain and large
deflection. Large strain assumes that the strains are no longer infinitesimal when
structure's shape changes. Large deflection assumes that the rotations are large. Material
nonlinearities are due to the nonlinear relationship between stress and strain. Elastic-

perfectly plastic material nonlinearity is used in this work.

A finite element model of a lar cross section cantil beam is In

this model, Young’s modulus, Possion ratio, and yielding stress are set as variables. All
dimensions of the cantilever beam are also set as variables. The overall behavior is
studied by both analytical and finite element analyses. Two non-dimensional parameters,
the ratio of thickness to length /1, and the ratio of depth to thickness hit are used to
evaluate the overall behavior of cantilever beam. The behavior of the beam can be
classified into three types, elastic buckling, plastic buckling, and plastic collapse. These
three behavior areas are separated by the boundary of elastic buckling and yielding, and

boundary of plastic buckling and collapse.



1.2 Objectives of the Thesis

There is a need to develop general design guidelines to prevent plastic buckling in
stiffened panels. This report addresses one aspect of this problem. Stiffened panels
consist of stiffener frames and a thin shell. The stability of the stiffened panels is strongly
influenced by the behavior of the stiffeners. Stiffeners can be simplified as beams. A full

of the stability

perties of beams will help understand the stability

properties of stiffened panels.

The approach used in this work is to develop a general finite element model for the
buckling analysis which can be adapted to different dimensions of rectangular cantilever
beams. The material of the beam is defined as elastic-perfectly plastic, which uses two
parameters: Young’s modulus and yield stress. The objective of this work is to study the
overall behavior of rectangle cross section cantilever beams subjected to concentrated
loads on the free-end. The overall behavior is defined as a "failure map" with boundaries

for elastic buckling and yielding, plastic buckling and collapse.

1.3 Layout of the Thesis

Chapter one gives an introduction to the finite element method for plastic buckling
analysis. Chapter two provides a detailed literature review of the relevant topics to plastic

3



buckling analysis for cantilever beam analysis and defines the scope of the study. The
plastic buckling analysis methods along with the fundamental theory of structures.
geometric and material nonlinearities. and the nonlinear solution method is given in
chapter three. The implementation of the plastic buckling analysis by ANSYS is
presented in chapter four. Chapter five shows a numerical study of the plastic buckling
and collapse boundary for the plastic buckling of cantilever beams. The conclusions of

the study and recommendations are included in chapter six.



Chapter II
BACKGROUND

AND SCOPE OF WORK

2.1 Literature Review

Buckling analysis of structures was studied initially by Euler [1] in his famous work on
elastic analysis on the column. In it, he had provided an analytical solution to the stability
problem. After that. there were extensive research [2] on various types of structure
stability. These studies not only covered various structure types, but also have been dealt
with different domain of material properties. The plastic instability has been studied by

researchers [4-10] and various methods have been applied to this issue.

Finite element analysis for structural stability problems has been possible after
methods[2] have been developed for the material and geometry nonlinearities. The finite

element analysis method for buckling analysis has been treated as a nonlinear large

analysis of including ic and material nonlinearity. Hence,



the nonlinear methods are crucial for the structural buckling and even postbuckling

analysis.

First, different 1 | stability,

pecially for the i beams will
be reviewed; and then the various nonlinear finite element techniques applied to the

plastic analysis will also be reviewed.

2.1.1 Buckling Analysis

Sritawat Kitipornchai and Nicholas S. Trahair [4] investigated the inelastic buckling of
simply supported steel I-beams with central concentrated loads. They did this by adapting
a basic theoretical model of the inelastic buckling of beams under uniform moment by
modifying the differential equations, which govern the elastic buckling of tapered mono-
symmetric [-beams. The resulting differential equations were solved for critical loads by
using the method of finite integrals. A simple approximate model was also analyzed, in
which the shear centerline was idealized by a series of discontinuous straight lines,
parallel to the longitudinal axis. It was found that this approximate method gave solutions
that were very close to the more accurate values. They also studied the effects of residual
stresses, and found that these caused significant variations in the inelastic buckling
strengths. The effects of the height of the point of application of the load and of the
distribution of the major axis bending moment were investigated by comparing the values

of the dimensionless critical moments for beams under uniform moment. This



comparison was made on the basis of a modified slendemess ratio, defined by the square

root of yield moment divided by elastic buckling moment.

Mohamed H. El-Zanaty and David W. Murray [5] presented a general formulation for the
elastic and plastic nonlinear analyses of steel structures. The plastic analysis includes the
effects of residual stresses. strain hardening, gradual expansion of plasticity through the
cross section and the spread of plastic zones along the member length. The technique is
illustrated by solving a variety of problems for which alternative results are available. A
geometrically nonlinear formulation for the anzlysis of steel frames was presented. The
simple geometric approximation permits the virtual work equations to be derived in a

manner consistent with the full i strain di i without

ducing further imati When this ic nonlinear theory was combined
with Shanley’s tangent modulus concepts, and the incremental Newton-Raphson
equations formed by the finite element method. a numerical technique emerges which is

capable of solving plastic structural stability problems for arbitrary geometry.

Peter F. Dux and Sritawat Kitipornchai [6] introduced methods to obtain buckling loads

of beams with a plastic moment gradient. A plastic the stiffness

factor, is used to estimate equivalent uniform tangent modulus rigidities for partially
yielded beams. From this they developed a buckling moment equation. For laterally
continuous beams, a step-by-step procedure, which allows for interaction between
adjacent segments is proposed. The structure is reduced to a critical assemblage of beam

segments. The stiffness modification factor is used to quantify segment end interaction



and an effective length factor is found for the critical segment. The buckling moment
equation is used to estimate the beam capacity. The results are comparable with
theoretical and experimental results. The new method proposed in this paper extends the
refined elastic analysis to plastic continuous beams. It incorporates a new equation for
single span beams and includes several effective length charts. The method also

introduces a more rigorous appraisal of the effects of yielding on segment interaction.

Mark A. Bradford, et al., [7] introduced an accurate line model based on the finite
element method, for analyzing the plastic lateral buckling of I-section beams and beam-
columns. The pre-buckling in plane bending is analyzed using a geometrically nonlinear
finite element method that accounts for the effects of pre-buckling displacements and
residual stresses on yielding. The results of the pre-buckling analysis allow the
distributions of yielding and strain hardening throughout the beam to be determined. The
out of plane flexural-torsional buckling of the inelastic beam is analyzed by adapting an
elastic monosymmetric finite element. For this element, deflections and twists are
referred to an arbitrary axis along the mid-height of the web. instead of along the shear
center axis. The elastic element is adapted for plastic buckling and strain hardening. The

method achieved accurate results. albeit with simple assumptions.

N. S. Trahair and S. Kitipornchai [8] studied the inelastic flexual-torsional buckling of
simply supported [-beams under a uniform moment. Tangent medulus theory of buckling
was applied to the basic theoretical model, which is simpler than reduced modulus theory

and leads to conservative estimates of the critical moment. It was suggested that using the



strain-hardening modulus in the yielded regions of the beam is better than the reduced
modulus, but that the critical moments are not greatly affected by assuming that the
tangent modulus is zero, as had been done by previous investigators. They also studied
the influence of residual stresses on the critical moments. It was found that the effect of
this on the inelastic critical moment is quite significant. The effects of the magnitude and
pattern of residual stresses on the critical moments have also been investigated. It was
found that changes in the residual stress lead to variations in the yielded regions in the
cross section, and consequent variations in the section rigidities. These variations cause
very significant changes in the inelastic critical moments. As residual stresses can
significantly change the inelastic critical moments and as residual stresses exist in all

rolled steel sections, it was concluded that residual stresses should be accounted for.

James F. Doyle [9] presented a method to assemble an approximate stiffness matrix. and

after applying boundary it to ine the ej buckling loads) of the

structure. This method set up approximate load and displacement functions and then

generated approximate global stiffness matrix. and solved the eigenvalue problem.

N. S. Trahair [10] has applied tangent modulus theory to inelastic buckling of beams.
Compared to reduced modulus theory, the tangent modulus theory appeared to be invalid
for inelastic materials. Nevertheless, experiments showed that it leads to more accurate

predictions than the apparently rigorous reduced modulus theory. The reason is that when

buckling ions are jed by si increases in the applied load of

sufficient magnitude to prevent strain reversal, all the stress and strain increments are



related by the tangent modulus. the buckling load is equal to the tangent modulus load.
The application of the tangent modulus theory to the inelastic flexual-torsional buckling
of a steel member requires appropriate values of the tangent shear modulus to be used
when evaluating the contributions of the yielded and strain-hardened regions to the
effective torsional rigidity. Before an inelastic out-of-plane buckling analysis can be
made, the in-plane bending must be analyzed so that the distributions of the elastic.
yielded, and strain-hardened regions throughout the member can be determined. The
effective out-of-plane rigidity, which contributes to the inelastic buckling resistance, can
be evaluated using these distributions. The energy method is then applied to get the
equation for the buckling and generated the stiffness and stability matrices. In general.
the computation procedure was to iterate through a series of load levels towards a
solution. At each load level the in-plane analysis was performed. and the results were
then used to establish the matrix and the value of its determinant was calculated until a

zero value for the determinant is found, which defined a buckling load.

2.1.2 Finite Element Analysis on Plastic Behaviors

F. Brezzi [11] analyzed the behavior of a finite dimensional approximation of the

Galerkin type in a neighborhood of a simple critical point. Error bounds of optimal type

10



are derived and some computational aspects are also treated. He presented some methods
in the theory of approximation of nonlinear problems, with a particular attention to the
behavior of the approximate solutions in a neighborhood of singular points. such as
normal limit points and bifurcation points. Although some computational aspects are
briefly sketched, the main interest focused on the problem of error bounds. The well-

known definitions of the si ities were given, for simplicity, in finite di ion. It

also presented the continuous problem and the abstract hypotheses on the finite

dimensional approximation method on the error estimate.

C. S. Desai and H. V. Phan [12] developed a finite element procedure for stress

analysis of three-di ional solid bodies including geometric and material

The ion is appli to general three-di ional problems. It

allows for consistent definitions of stress. stress rate and constiwutive laws and uses the

original N Raph: i for i | iterative analysis. Six different

constitutive laws based on von Mises, Mohr-Coulomb, Drucker-Prager. critical state,

capped and vi: ic criteria are i in the ion and the computer
code. They can be used depending upon the material property involved in a given
problem. It provided a viable formulation and computational scheme for solution of

three-dimensional solid bodies including ic and material inearities, and it is

particularly useful for large plastic strains.

Y. Yamada, T. Hirakwa A. S. Wifi [13] established a rational unified approach to finite

strain problems ined with material inearities. The ic stiffness and load




correction matrices in large ion problems are di and hasis is placed

on the treatment of the boundary conditions where coupling exists in the stresses. The

is i to plastic i ility analysis. Proper choice of stress rate is
essential in the formulation of large strain analysis, as is the spin of principal stress axes
rather than that of the element. The method for the plastic work covered only the carlier
stages of deformation, far from the steady state. The authors extended the work to similar

types of steady state large deformation problems.

E. Riks [14] presented a numerical solution of systems of equations of discrete variables.

which represent the nonlinear behavior of elastic systems under conservative loading

In parti an i approach to the solution of buckling and snap-
through problems is explored. The numerical solution for covered several systems: the

computation of nonlinear equilibrium paths with continuation through limit points and

points; the ination of critical equilibrium states. Characteristic to the
procedures employed is the use of the length of the equilibrium path as a control
parameter. This feature, together with the second order iteration method of Newton.
offers a reliable basis for the procedures described.

S. L. Chan [15] presents a i for accurate ination of a limit or a

bifurcation point. The method minimizes simultaneously the first and the second

of an issi i or iterates to satisfy the equilibrium and the semi-

definite condition for the tangent stiffness matrix. Using the technique, the critical load

and its conj it can be explicitly and in an analysis,

leading to a more exact prediction of the critical load of a structure. It demands an



additional load cycle which normally requires more number of iterations than other
methods because of the need to satisfy not only the equilibrium condition to determine
the critical point, and requires the semi-definite tangent stiffness matrix. This
computation effort is however, minimal when compared to the approach of tracing the
load versus deflection path by using a small load step size to narrow the loading range
within which the critical load occurs. The numerical method can be easily incorporated
into a computer program for non-linear finite element analysis and enhanced the user-

friendliness and accuracy of the program.

Chen [16] also introduced the Mini Residual Displ Method, which is used

together with the concept of the effective tangent stiffness matrix for braced members. He

p da ic and material i analysis for using a

solution i of minimizing the residual displ; This new li
solution technique is optimized in the Newton-Raphson scheme since it follows the
shortest path to achieve convergence. It introduced the concept of the effective tangent
stiffness matrix. which is found to be efficient, simple and logical in handling the non-
linear analysis of frames with braced members and in separating multiple bifurcation
points. The technique is capable of handling geometric and /or material non-linear
problems exhibiting snap-through, softening and stiffening behavior.

2.2 Scope of the Study

Finite element plastic buckling analysis is a nonlinear static analysis extended to a point

where the structure reaches its limit load or maximum load. The basic approach in a

13



nonlinear plastic buckling analysis is to constantly increment the applied loads until the
solution begins to diverge. Nonlinearities such as material plasticity and geometric
nonlinearity are included in the analysis. Iterative incremental solution procedure for the

nonlinear equations is applied to solve the nonlinear problem.

2.2.1 Material Nonlinearity

Most common engineering materials exhibit a linear stress-strain relationship up to a
stress level known as the proportional limit. Beyond this limit, the stress-strain

will become nonli Material inearities are due to the nonlinear

relationship between stress and strain, that is, the stress is a nonlinear function of the
strain. Nonlinear stress-strain relationships are a common cause of nonlinear structural
behavior. The material non-linearity is implemented in the finite element method.
Material models for nonlinearities include multilinear plasticity and elastic-perfect

plasticity. For this work, the elastic-perfectly plastic material non-linearity is employed.

2.2.2 Geometric Nonlinearity

Geometric inerities refer to the inearities that are due to the changing geometry
as it deflects. There are two types of geometric nonlinearities concerned in this work:
large stain and large deflection. Large strain analysis accounts for strains in an element
when they are no longer small. This changes an element’s shape and orientation and

hence affect the stiffness of the element. Large deflection assumes that the rotations are



large while the strains may stili be small. If a structure experiences large deformations, its

changing geometric configuration can cause the structure to respond nonlinearly.

2.2.3 Solution Method

When the finite element model is set up for nonlinear analysis including material and

an iate nonlinear solution method should be applied.
The Newton-Raphson technique is an iterative incremental method to achieve
convergence. The load is divided into several substeps, applied by the Newton-Raphson

method to get convergence.

2.2.4 General Model for Buckling Analysis

The general models for plastic buckling analysis are developed in this thesis for the study
of variable dimension rectangle cross section cantilever beams subjected to a
concentrated load at the free-end. The model includes material nonlinearity, which in this
work is elastic perfectly plastic defined by the Young's modulus and yielding stress.
These two parameters are variable. The dimensions of the cross section are also

changeable for the different configurations.

2.2.5 Numerical Study on Plastic Buckling Analysis
In this work a numerical study of cantilever beams along with the analytical solution of
the elastic buckling, yielding and collapse of cantilever beam are given. Uniform non-

dimensional parameters are set up as criteria for the overall behavior. The overall



behavior of the rectangle cross section cantilever beam is separated to three regions by
the boundary of elastic buckling and yielding. and plastic buckling and plastic hinge

collapse.



Chapter III
FINITE ELEMENT FORMUATION

FOR PLASTIC ANALYSIS

The finite element analysis of plastic buckling is a plastic static solution process reaching

the unstable point. Formulation for plastic buckling includes structural fundamentals.

ity, material inearity, and Newton-Raphson method.

3.1Structural Fundamentals

3.1.1Stress-Strain Relationships

The linear material stresses are related to strains [17][32] by

o=(01er-£) 31
Where (o} =swress vector=o, @, o, o, o, o.f

[D)= elasticity matrix



(e)ssu'ainvecmr=[c: 8 & & € z:]’

{*} = thermal strain vector

The stress vector is shown in Figure3.l. The sign convention for direct stresses and
strains used is that tension is positive and compressions negative. For the shears, positive
is when two applicable positive axes point toward each other. Shear strains are

engineering shear strains, not tensor shear strains.

I
Oyz
Ox
Oy 7
el
i ot
| Oy
Y oyt Oxy_| Oxy
0l 9=
T4 ih —-(
X 7 :
z ¥
0z
Figure 3.1 Stress vector definition
Equation 3.1 may also be inverted to
e =o' (o 32
For 3-D case, the thermal strain vector is
k*}=arle, a, a0 0 of 33



where @, = thermal coefficient of expansion in the x direction
AT T =T
T = current temperature at the point in question

Tper = reference (strain-free) temperature

Expanding Equation 3.2 with Equation 3.3and writing out the six equations explicitly,

O, VyO, V. O,

=gar+Ze D% YO 34
&=, *E, E, E.
v, 0, o, v O,
=g AT -2 L4 _L__E 35
EAN T T
£=aar-Yele =% O 3.6
O
B mi= 37
N
=Z= 18
S
g,
:,_.=G—‘ 3.9

‘Where typical terms are

&, =direct strain in the x direction
£, =shear strain in the x-y plane
o, =direct stress in the x direction

o, =shear stress on the x-y plane



E, = Young's modulus in the x direction
v,, = Poisson's ratio relating ¢, to o,/E,

v =Poisson's ratio relating ¢, 0 o,/E,

3.1.2 Derivation of Structural Matrices

The principle of virtual work [28] states that a very small virtual change of the internal
strain energy must be offset by an identical change in external work due to the applied
loads,

8U =6V 3.10
where U = strain energy = U, +U,

V = external work = V,+7,

& = viral operator

The virtual strain energy is

&, = [ fee) old(vol) 3.1
where {¢} = strain vector

{o} = stress vector

vol = volume of element

Continuing the derivation assuming linear materials and geometry, Equation 3.1 and 3.11

are combined to give

U, = [ ( (s [ole}- eV (e} Ja(vot) 312
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The strains may be related to the nodal displacement by
e} = (Bl 313
where [B] = strain-displacement matrix, based on the element shape functions
{u} =nodal displacement vector
Tt will be assumed that all effects are in the global Cartesian system. Combining Equation

3.13 with Equation 3.12, and noting that ju} does not vary over the volume
oU, = fuf" [ (BT [DIBK (oY} - {aul" [ [8T [DYe* bi(vol) 314

Another form of virtual strain energy is when a surface moves against a distributed

resistance, as in a foundation stiffness. This may be written as

&, = [ tow.f lollarea)

w
3

where {w, } = motion normal to the surface

{o} = stress carried by the surface

area, = area of the distributed resistance

Both {w,} and {o} will usually have only one non-zero component. The point-wise
normal displacement is related to the nodal displacements by

A RUAIH 316
Where [N, ] = matrix of shape function for normal motions at the surface

The stress {o} is L

fo} =kw,} s
where k = the foundation stiffness in units of force per length per unit area
Combining Equations 3.15 through 3.17, and assuming that k is constant over the area
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&, = k[ [T V. Mlarea, Ju} 3.8
Next. the external virtual work will be considered.

The displacement within the element are related to the nodal displacements by

{w} = [V {u} 3.19
where [N] = matrix of shape functions.

Nodal forces applied to the element can be accounted for by

&, =y (e} 320
Where {F} = nodal forces applied to the element

The pressure force vector formulation starts with
T
= [ o] {PHlarea,) 321

where {P} = the applied pressure vector (normally contains only one non-zero
component)
area,, = area over which pressure acts

Combining Equations 3.19 and 3.21
av, = {auf [ V. {Pldlarea,) 330

All material properties for stress analysis elements are evaluated at the average
temperature of each element. Finally, Equations3.10, 3.14, 3.18, 3.20 and 3.22 may be

combined to give
(6" [ (BT [DIBK (vol fu} - {6’ [, [BF [DKe* Hi(vor)
el k[ T V. Wlarea, Y



=&l [ V. {Pllarea, )+ (&} {7} 323

Noting that the {du}” vector is a set of arbitrary virtual displacements common in all of

the above terms, the condition required satisfy Equation 3.31 reduces to

(AR R g R ol 324
Where [K,] = [ [ [DIBH(vol) = element stiffness matrix

&)=« LW I [V, Mi(area, )=element foundation stiffness matrix

{F=}= [ (BT [DYe* ki(vot) =element thermal load vector

{rr}= [ V. (P(area, ) =elemen pressure vector

Equation 3.24 represents the equilibrium equation on one element basis.

3.2 Geometric Nonlinearities

For our problem interests, there are two types of geometric nonlinearities [18][19] should
be considered: Large strain assumes that the strains are no longer infinitesimal (they are
finite). Shape changes (e.g. area, thickness, etc.) are also accounted for. Rotation may
also be large; Large deflection assumes that the rotations are large but the mechanical
strains (those that cause stresses) are small. The structure is assumed not to change shape

except for rigid body motions.



3.2.1 Large Strain

When the strains in a material exceed more than a few percent, the changing geometry
due to this deformation can no longer be neglected. Analyses including this effect are
called large strain, or finite strain, analyses. The theory of large strain computations can

be addressed by defining a few basic physical quantities (motion and deformation) and

the i ical i hip. The applied loads acting on 2 body make it

move from one position to another. This motion can be defined by studying a position

vector in the "d d " and "und; ion. Say the position vectors in the

and

state are by [ and [} respectively. then the
motion (displacement) vector{y is computed by Figure 3.2

=t 4 325

{u}

x}

<

X Undeformed Deformed

Figure 3.2 Position vectors and motion of a deforming body

The deformation gradient is defined as
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Bl 326
B-24
Which can be written in terms of the displacement of the point by Equation 3.25 as
o
327
A1+

where [l] = identity matrix

The i i ined in the d ion gradient [F| includes the volume change.
the rotation and the shape change of the deforming body. The volume change at a point is

L det[F] 328
v,

where ¥, = original volume

¥ = current volume

det[s] = determinant of the matrix

The deformation gradient can be separated into a rotational and a shape change using the
right polar decomposition theorem

[F]= [R]jv] 329
where [R] = rotation matrix ([R]" [R] = [1])

[U] = right stretch (shape change) matrix

3.2.2 Large Deflections

If the rotations are large but the mechanical strains are small, then a large deflection
procedure can be used. A large deflection analysis is performed in a static aralysis when
the appropriate element type is used. Large deflection theory follows a similar
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development of large strain, except that the logarithmic strain measure is replaced by
small strain measure

[e] =]~ 330
where [U] = stretch matrix

[7] = 3 x 3 identity matrix

3.3 Material Nonlinearities

Material nonlinearities [19] are due to the nonlinear relationship between stress and
strain, that is the stress in a nonlinear function of the strain. The thesis focuses on the

rate-independent plasticity, which is i by the i

straining that occurs in a material once a certain level of stress is reached. The plastic

strains are assumed to develop i ly. that is. independent of time. Plasticity

theory provides a i ionship that izes the el plastic response

of materials. There are three ingredi in the rate-i icity: the yield

P

criterion, flow rule and the hardening rule

3.3.1Yield Criterion

The yield criterion determines the stress level at which yielding in initiated. For multi-
component stresses, this is represented as a function of the individual components,

f({o}), which can be interpreted as an equivalent stress o, :
LAY 331

where {o} = stress vector
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When the equivalent stress is equal to a material yield parametero,

o, = flled 3.32

the material will develop plastic strains. If o is less than o, the material is elastic and
the stress will develop according to the elastic stress-strain relations. Note that the

equivalent stress can never exceed the material yield since in this case plastic strains

would develop. thereby reducing the stress to the material yield.

3.3.2 Flow Rule

The flow rule determines that direction of plastic straining and is given as:

faer}=2 {Q} 333

do
where
A = plastic multiplier (which determines the amount of plastic straining)
QO = function of stress termed the plastic potential (which determines the direction of
plastic straining)
If Q is the yield function (as normally assumed), the flow rule is termed associative and

the plastic strains occur in a direction normal to the yield surface.

3.3.3 Hardening Rule

The hardening rule describes the changing of the yield surface with progressive yielding,
so that stress states for subsequent yielding can be established. Two hardening rules are
available: isotropic work ing and ki ic b ing. In isotropic work
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hardening. the yield surface remains centered about its initial centerline and expands in
size as the plastic strains develop. For materials with isotropic plastic behavior this is
termed isotropic hardening. Kinematic hardening assumes that the yield surface remains

constant in size and the surface translates in stress space with progressive yielding.

3.3.4 Plastic Strain Increment

If the equivalent stress computed using elastic properties exceeds the material yield, then
plastic straining must occur. Plastic strains reduce the stress states so that it satisfies the
yield criterion, Equation 3.32. Based on the theory presented in the previous, the plastic

strain i is readily The hardening rule states that the yield criterion

changes with isotropic work ing and/or with kil i d

these dependencies into Equation 3.32 gives

F({o}.N {ah=0 334
where N = plastic work

(a} translation of yield surface

Nand (a}mmmdinlcmalorsmevariabls.

Specifically, the plastic work is the sum of the plastic work done over the history of
loading:

N= [ {of e} 335
and translation of the yield surface is also history dependent and is given as:

fa}= [ c e} 336
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where Cis a material parameter. {a} represents the location of the center of the yield

surface and moves in the direction of plastic straining.

3.4 Newton-Raphson Procedure
3.4.1 Overview

The finite element discretization process yields a set of simultaneous equations

(K16} = {7} 337
where

[K] = coefficient matrix

{u} = vector of unknown DOF (degree of freedom) values

{F "} = vector of applied loads

If the coefficient matrix [K] is itself a function of the unknown DOF values o their
derivatives then Equation 3.37 is a nonlinear equation. The Newton-Raphson method

[21][22][32] is an iterative process of solving the nonlinear equations and can be written

(k] {au} = {7}~ e} 338
f} =+ {0} 339
where

[k7] = Jacobian matrix
{F,"} = vector of restoring loads corresponding to element internal loads
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i = subscript representing the current equilibrium iteration
Both [K7] and {F} are evaluated based on the values given by {u,}. The right-hand
side of Equation 3.38 is the residual or out-of-balance load vector. i.e.. the amount the
system is out of equilibrium. One single solution iteration is depicted graphically in
Figure 3.3 for a one DOF model. In a structural analysis, [K7 ] is the tangent stiffness
matrix, {u,} is the temperature vector md{l-',"’} is the restoring force vector calculated

from the element stresses. As seen in Figure 3.3. more than one Newton-Raphson

iteration is needed to obtain a converged solution.

F
F —
Ki
Fl
Au —
u
L] Uisq

Figure 3.3 Newton-Raphson solution - one iteration

Figure 3.4 shows the solution of the next iteration (i +1) of the example from Figure3.3.
The subsequent iterations would proceed in a similar manner. The solution obtained at
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the end of the iteration process would correspond to load level {F* . The final converged
solution would be in equilibrium, such that the restoring load vector {F™} would equal
the applied the applied load vector {F* } or at least to within some tolerance. None of the

intermediate solutions would be in equilibrium.

Y Yissy Uis2

Figure 3.4 Newton -Raphson solution - next iteration

If the analysis included path-dependent nonlinearities such as plasticity, then the solution
process requires that some intermediate steps be in equilibrium in order to correctly
follow the load path. This is accomplished effectively by a step-by-step incremental
analysis; i.e., the final load vector {F* } is reached by applying the load in increments and
performing the Newton-Raphson iterations at each step
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[xrlow} = {e=}- {e)

where

340

[KL} = tangent matrix for time step n. iteration |
{F,‘;} = restoring force vector for time step n, iteration |
(F_'} = total applied force vector at time step n

This process is the incremental Newton-Raphson procedure and is shown in Figure 3.5.

N Raph
The pl

g if and only if the solution at any

iteration {u,} is "near" the exact solution.

Figure 3.5 I Newton-Raph:

3.4.2 Convergence

32



The iteration process described in the previous continues until convergence is achieved.

Convergence is assumed when

[{RY < - R,, (out-of-balance convergence) 341
and/or
l{au <&, u,, (DOF increment convergence) 342

where {R}is the residual vector

&)= {7} 343
which is the right-hand side of the Newton-Raphson Equation 3.38. {Au,} is the DOF
increment vector, £,and &, are the tolerances and R, and u,, are reference values. fof is

a vector norm; that is , a scalar measure of the magnitude of the vector. Convergence,
therefore, is obtained when the size of the residual disequilibrium is less than a tolerance
times a reference value and /or when the size of the DOF increment is less than a

tolerance times a reference value.
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Chapter IV
IMPLEMENTING FINITE ELEMENT

PLASTIC BUCKLING ANALYSIS

4.1 Introduction to ANSYS

The ANSYS program was introduced by Dr. John Swanson and Swanson Analysis
System, Incorporated (SASI), in 1970. Since that time, the program has been developed
to provide the finite element analysis and design technology to engineers. ANSYS in one
of the most widely used and well established finite element analysis programs in the

world.

The ANSYS program has capability to implement structural analysis. In addition to its
extremely strong ability to set up complicated three-dimensional solid models, it can

provide static and dynamic, elastic and plastic analysis on these three-dimensional



structures. ANSYS also has excellent pre and post processor capabilities, providing a
friendly graphical user interface.

4.2 Buckling Analysis

Buckling analysis is a technique used to determine buckling loads, critical loads at which
a structure become unstable, and buckling mode shapes. the characteristic shape
associated with a structure’s buckling response [29]. Two techniques are available in the
ANSYS program for predicting the buckling load and buckling mode shape of a

structure: nonlinear buckling analysis, and eigenvalue (or linear) buckling analysis.

4.2.1 Nonlinear Buckling Analysis

Nonlinear buckling analysis is simply a nonlinear static analysis extended to a point
where the structure reaches its limit load or maximum load as depicted in Figure 4.1(a).
Using the nonlinear technique, the model can include features such as initial
imperfections, plastic behavior, gaps, and large deflection response. In addition, using
deflection controlled loading, the model can even track the post buckling performance of
the structure. The basic approach in a nonlinear buckling analysis is to constantly
increment the applied loads until the solution begins to diverge. Be sure to use a

sufficiently fine load increment as your loads approach the expected critical buckling

load. It is i to ize that an ged solution need not necessarily mean
that the structure has reached its maximum load. It could also be caused by numerical
instability, which might be corrected by refining the modeling technique. Tracking the

load deflection history of the structure’s response can help you decide whether an



unconverged load step represents actual structural buckling, or whether it reflects some
other problems. Nonlinear buckling analysis is usually the more accurate approach
compared to eigenvalue buckling analysis and is therefore recommended for design or

evaluation of actual structures.

Bifurcation point
F Snap-through buckling |
Limit load (from
(If load controlled) , ol buckling)
< ——— [as
\ /
\ 7
S’
(If displacement controlled)
T " T u
@ ®
Figure 4.1 Buckling analysis: (a) Nonli load- ion curve, (b) Ce

Linear (Eignvalue) and nonlinear buckling curve

4.2.2 Eigenvalue Buckling Analysis

Eigenvalue buckling analysis predicts the theoretical buckling strength (the bifurcation
point) of an ideal linear elastic structure. (See Figure 4.1(b) ) This method corresponds to
classical approach to elastic buckling analysis such as eigenvalue buckling analysis of an

Euler column. However, imperfections and nonlinearities prevent most real world



from achieving their ical elastic buckling strength. Thus, eigenvalue
buckling analysis often yields unconservative results. It should be decided if eigenvalue

buckling analysis is ate for your ication. The dure consists of thee main

steps: constructing the model, obtaining the static solution to get structure stiffness

matrix, obtaining the eigenvalue buckling solution.

4.3 Implementation the Plastic Buckling Analysis of a

Cantilever Beam

4.3.1 Description of the Problem

‘When a cantilever beam is subjected to an external displacement or force on the free end,
the initial behavior is elastic. The beam may buckle elastically. As the load/displacement
increases, the fixed end of beam partially yields. After initial yield the beam will either
buckle plastically or continue to yield until collapse. The behavior depending on the
dimensions of the cantilever beam and the material properties. The behavior in the plastic
regime is of interest because even if the structures are designed in the material elastic
region, overloading can be happen for extraordinary load conditions. Further more, the
plastic design may be much more economical for the industrial practice. Hence, clearly
understanding the structure’s overall behavior, especially in the plastic regime is essential

for design practice.



In order to initiate buckling analysis. the applied force or displacement will be offset
slightly from the center point. This breaks the perfect symmetry and allows buckling to

occur. Otherwise the model would only exhibit plastic hinge collapse at the fixed end.

4.3.2 Element Type

The cantilever beam is set up as a three-dimensional model with plastic behavior. The
buckling behavior requires an element with nonlinear capabilities for large strain and

large displacement, while the material nonlinearity also is introduced in the element.

To fulfill the basic requirement, element SOLID 45 is chosen [32]. Solid 45 is used for
the three-dimensional modeling of solid structure. The element is defined by eight nodes
having three degrees of freedom at each node translations in the nodal x. y and z
directions. The element has plasticity, creep, swelling, stress stiffening, large deflection.

and large strain capabilities.

4.3.3 Material Properties

Material properties are required for the plastic analysis. In the model, the material is
isotropic and elastic-perfectly plastic. Other types of plasticity also can be defined. Those

types of plasticity include ili i i ing, bilinear ki

etc. To properly define elastic perfectly plastic material behavior, the yield stress and

young modulus is set, and the temperature is set to zero thus excluding temperature
effects.



Several options are available in ANSYS to describe the plastic behavior. The Multilinear
Isotropic Hardening (MISO) option was used to model the bilinear elastic-perfectly
plastic. The MISO option uses the Von Mises criteria coupled with an isotropic work
hardening assumption. Von Mises yield criterion and the Von Mises equivalent stress
plots have been used because this type of plot provides the best way of assessing the

behavior of the structural elements against the plastic hinge development.

4.3.4 Solid Modeling and Boundary Conditions
The advantage of solid modeling is that it can set up a parametric three-dimensional
model very quickly. It is also very easy to modify the model. The model is set up with

variables instead of directly defining every node of every element.

There are two types of boundary conditions applied to the structure. The displacement
constraint is relatively simple, consisting of fixing three translations and three rotational
freedom; while the force boundary condition includes the body force, surface pressure
and external force applied on the model.

4.3.5 Nonlinear Analysis

The solution techniques employed essentially consists of solving simultaneous linear

equilibrium equations which are successively updated to reflect changes in the material



and geometric stiffness as the structure is strained and distorts under increasing load. The
incremental approach is driven by the load. which is incremented with each load step.
Equilibrium at each load step is attained using a modified Newton-Raphson technique.
ANSYS contains several features, which allow the user to control the solution process

and these were used to good effect.

Using the correct load step increment is essential in a nonlinear analysis to attain a stable
solution. This is especially true in regions where a rapid change in stiffness occurs. Such
regions in the analysis were anticipated to be at first yield. at complete or partial yielding
of the fixed end and then buckling or collapse for the whole cantilever beam. It is not
possible, of course, to estimate with any degree of accuracy the load levels at which these
events will occur hence the need for this study. The automatic time stepping feature in

ANSYS was used to determine the load step increment. Based on the user specified

initial, i and mini load step i the program determines the
appropriate load step increment based on the trend in convergence. If the rate of solution

convergence increases, the load steps are increased, and vice versa.

4.3.6 Deflection Results vs. Force Results

Two options are available when user applies the load to the cantilever beam. At the center
of free end, force or displacement may be applied. Consequently, the result will be
deflection versus force, or force versus deflection. For the nonlinear plastic analysis,

applying force may be suitable for the bifurcation instability process to predicate the



critical buckling point: whereas applying displacement is a more general analysis

procedure, which can even reveal the post buckling behavior.

In stability experiments, the load is normally applied by a controlled displacement rather
than a specified force. Force versus deflection graphical results will be employed to

implement the plastic buckling analysis by ANSYS.

The Force versus deflection graphical results illustrate the overall beam behavior for
specific dimensions of the beam at interesting critical points. The vertical and horizontal
deflection curve and the force versus vertical deflection on some point of free end are
used to determine the instability behavior of the structure, either plastic buckling or
collapse. Stress results illustrate the stress components (stresses in X, y, z directions) or

equivalent stress distribution of the whole structure.

The above is typical procedure for nonlinear plastic analysis for cantilever beam. If the
solid model is adapted to other specific structures such as stiffened panel, frame and the

‘material ies would be The joned method is a general

approach to determine the structure plastic behavior.
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Chapter V
NUMERICAL STUDIES

AND DISCUSSIONS

5.1 Numerical applications

Structures will experience different structural behaviors. depending on the material

properties, the structural dis i the boundary diti and the load pattern.

Cantilever beams, when subj; toa force or di at the free end,

deform until they reach an unstable point. The unstable point either will be plastic
collapse caused by plastic hinge formation, or will be collapse because the structure
reaches a point of instability. There are two cases of instability. First is the elastic
buckling, in which all structure becomes unstable while still in the elastic region. The

stresses in the structure are still less than the yield stress. Another case is plastic buckling,
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in which some part of the structure experienced plastic stress while the rest of the

structure is still in the elastic region.

The plastic buckling behavior of the cantilever beam is numerically studied in this thesis
by nonlinear plastic buckling finite element analysis. In addition to the material

properties, the di ions of the i beam will d ine the structural b

Dimensions vary from one beam to anther, and different unstable behaviors will be

presented. Through the detailed study of the different unstable cases, the thesis seeks the

| criteria to ine the structural plastic buckling behavior.

5.2 Investigation of Plastic Buckling Regime

5.2.1 Boundary of elastic buckling and yield

A cantilever beam will experience different structure behaviors due to the configuration

of the cantilever's dimensions and the material ies. Di ions of the il

beam are shown in the Figure 5.1. The load is a central force applied on the free end of

the i beam. It is d that the i beam stays stable when the load is
increased. There two critical loads, which we are interested in, the load P, the load when
the top and bottom of beam's fixed end yield and P, the load when the beam's fixed end

section becomes fully plastic.



Figure 5.1 C: beam subj; to

d load

From basic solid mechanics [23], we have

M  Yield moment for the rectangular cross-section
o, Yield stress of the material

We also have

M,=PJ

from Equation 5.1 and 5.2 we have

th
P=pg, o

When the fixed end of cantilever beam becomes fully plastic we have

5.1

52
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M,=c,— 54
M, moment when the fixed end is fully plastic(plastic hinge moment)

M, =Pl 55
From Equation 5.4 and 5.5 we have

P=o; h 5.6
il

P,and P, provide lower and upper load boundaries plastic buckling.

In order to set up schematically plastic buckling finite element analysis results that are
comparable to elastic buckling analysis resuits, non-dimensional parameters should be
used to evaluate the structural behavior.

In order to find the critical non-dimensional parameters. let us first compare analytical
results for the elastic buckling of rectangular cantilever beam subject to load at the free
end.

The analytical elastic lateral-torsional buckling load for a single transverse load applied at

the free end of a cantilever beam [26] is:
0.669th’ t
poastl B
s 7 ( h)EG 59

E

)
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P, elastic buckling load applied at the center of free end of rectangular cross-section
cantilever beam

G = shear modulus

E = elastic modulus

v= Poisson ratio

Recognize that the ratio of % and the ratio of % are two important non-dimensional

parameters that describe the sienderness and aspect ratio of the rectangular cantilever

beam. We simplify the elastic buckling equation including % and h which gives
1

5.8

In order to capture the nature of the structure behaviors, we adapt the load for yield and

collapse fcrmuhl:toincludc%lndﬁ ratios. This gives
t
P
_‘.=l(£IﬁJ 59
oA 6\Ar
P, 1(tYh
< =_{_]= 5.10
g, 4(111) !
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512
w=h 513
t
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vre 515
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The yield stress &, can be treated as a constant. If we set the rectangular section area as

A, then
P=0,4 517
£, load to cause axial yield (axial collapse, max possible of any case)
E=L 518
1
5.19
._P
Py=- 5.20
“ P
o1
Pl=—rK 521
6
P O
P =—tH 522
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. 2 E 3
P,=0.669" 5.2
- ' o, ‘J 21+v) =

In order to understand the overall behavior of the cantilever beam, we should find the
boundary of elastic buckling and initial yielding, and the boundary of plastic buckling

and plastic hinge collapse, which are defined by non-dimensional parameters ¢’ and h'.

From Equation 5.21 and 5.23, we can define the boundary of elastic buckling and initial

yielding of cantilever beam by

, E [(1-0.63/A =
=0.669r = 5.24
0.66%1 a‘,‘J 21+v)
'=02491 h 525
E [1-083/K
o\ 201+v)

From Equation 5.22 and 5.23, we can define the virtual boundary of elastic buckling and

plastic collapse of cantilever beam by

Ly —o69r £ [U=083/K) 526
4 o\ 2+v)
1=03737 L 527
E 1063/
a,\ 20+v)

Equation 5.27 defines a virtual boundary of elastic buckling because in real practice.

when the load exceeds the yield load, the stability equation established for the elastic



buckling is invalid. Nevertheless it, to some extent, provides us with useful hints for the
boundary of plastic buckling and the collapse.

Table 5.1 Analytical Bourdaries
Yield siress 3006408
YYoung's modulus 207E+11
Poissn rtio 03
" ™
2 | 4 | 6 8 0] =] W] ] ®]2] 2]
I for elastic:
lbudking & 0083 00085
lyied, En 525
[t or elastc
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5.2.2 Boundary of Plastic Buckling and Plastic Hinge Collapse

To determine boundary of plastic buckling and collapse. finite element analysis is
applied. The behavior of the cantilever beam is related to ¥1 and vt. If we set the length
of a cantilever beam to 1 m, the thickness t and height h can be determined by two non-
dimensional parameter v/l and h/t. Table 5.1 shows the cases studied by the finite element
plastic buckling analysis.

Table 5.2 Grid of cases examined by nonlinear F E. analysis

If we set i=1m, then wand h will be determined by ratios of ht and t/.
Values in the table are the thickness t, height h

[ hit
5 55 6 65 1 75 8 85 9
t h

0.020 | 0.100 0.110 0.120 0.130 0.140 0.150 0.160 0.170 0.180
0.018 | 0.090 0.099 0.108 0.117 0126 0135 0.144 0.153 0.162
0.016 | 0080 0088 0.09 0.104 0112 0120 0.128 0.136 0.144
0014 [ 0070 0077 0.084 0091 0098 0105 0112 0119 0.126
0.012 | 0060 0.066 0072 0078 0084 0090 009 0.102 0.108
0010 | 0.050 0055 0.060 0.065 0070 0075 0080 0.085 0.090

0008 | 0.040 0044 0.048 0052 0056 0060 0064 0.068 0072

95 10 12 14 16 18 20 22 24

h

0020 | 0180 0200 0240 0280 0320 0360 0400 0440 0480
0018 | 0171 0.180 0216 0252 0288 0324 0360 039 0432
0016 | 0.152 0160 0.182 0224 0256 0288 0320 0352 0.384
0014 | 0133 0.140 0.168 0.196 0224 0252 0280 0.308 0336
0012 | 0114 0120 0.144 0168 0192 0216 0240 0264 0288
0010 | 0095 0.100 0.120 0.140 0160 0.180 0200 0220 0.240
0.008 | 0.076 0080 0096 0.112 0128 0.144 0.160 0176 0.192

In order to find the boundary of plastic buckling and the collapse of cantilever beam.

nonlinear plastic buckling analysis was executed in each grid point in Table 5.2. Afier




running the ANSYS program at each grid point. we obtain the following plots: force —
vertical deflection on the center of the free-end of cantilever beam: lateral deflection —
vertical deflection of the center of the free-end of cantilever beam: the undeformed shape
and deformed shape of the buckling load; and the von Mises stress contour of the buckled

shape.

The force vs. vertical deflection of the center of the free-end of the cantilever beam will
give us information to determine the plastic buckling force. Von Mises stress contour

shows the stress distribution on the whole beam.

5.2.3 Procedure for Analysis of a Specific Case

In order to describe the typical procedure, we take the grid point on Table 5.2 v1=0.018.

h/t=18 to show whole analysis procedure.

First, we use the ANSYS solution program (Appendix A), for parameters t. h and | for the
case. The ANSYS program is run in batch mode. Ir this step, the main task is to set up
the geometric model, apply boundary conditions, and get the results for the all load
substeps.

Second, we run the ANSYS program postprocessor (Appendix C), plot out graphical
results: the Force vs. displacement on the center point of free end (window 1 in Figure

5.2), in which the x axis is displacement (m) and the y axis is the applied force (N). The

lateral di: vs. vertical di on the center point of free end (window 2



in Figure 5.2), in which the x axis is the vertical displacement (m) and the y axis is the
lateral displacement (m). The Von Mises stress of top center point of the fixed end
(window 3 in Figure 5.2), in which the x axis is the displacement and y axis is the stress
(Pa). The purpose here is to determine the instability point location and property of the

unstable point (i.e. if it is plastic or not).

Third. we run the program to get the final graphical results (Appendix B). The reference
line on Figure 5.2 shows the instability time (normal to vertical displacement applied at
free end). We set time for the instability point to plot out the deformed shape and stress

contours. The Force vs. displ and lateral displ: vs. vertical di:

are also included (See Figure 5.14).
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5.3 Finite element analysis results

5.3.1 ANSYS Results for Plastic Buckling and Plastic Hinge
Collapse Boundary

The figures following Table5.3 show the graphical results to find the boundary of plastic

buckling and collapse.

As to determine boundary of plastic buckling and collapse, there is no analytical result.
Cases study is essential to find boundary points. Figure 5.3 to Figure 5.25 are small
portion of results of all cases has been studied. these figures are grouped by the ratio h/t
from 8 to 24. And for each hv/t value, less than 4 cases are presented to define the point on

the boundary of plastic buckling and collapse.



Table 5.3 Carrparing Pc, Py, unstable load

Ifwe set I=1m, then wand h will be determined by ratios of ht and t1
Yield stress 3E+08 Pa

h
[ 8 10 12 14 16 18 2 2 24

e P ]
0020 21600 38400 60000 88400 117600 153600 194400 240000 290400 345600
0018 15746 27994 43740 62986 85730 111974 141718 174960 211702 251942
0016 11059 19661 30720 44237 60211 78643 90533 122880 148685 176947
0014 7409 13171 20580 29635 40337 52685 66679 82320 99607 118541
0012 4666 8294 12960 18662 25402 33178 41990 51840 62726 74650
0010 2700 4800 7500 10800 14700 19200 24300 30000 36300 43200
0008 1382 2458 3840 5530 7526 9830 12442 15360 18586 22118

0020 14400 25600 40000 57600 78400 102400 129600 160000 193600 230400
0018 10498 18662 29160 41990 57154 74650 94478 116640 141134 167962
0016 7373 13107 20480 29491 40141 52429 66355 81920 99123 117965
0014 4938 8781 13720 19757 26891 35123 44453 54880 66405 79027
0012 3110 5530 8640 12442 16934 22118 27994 34560 41818 49768
0010 1800 3200 5000 7200 9800 12800 16200 20000 24200 28800
0008 922 1638 2560 3686 S018 6554 8204 10240 12390 14746

Behavior

0.020 callapse collapse callapse collapse
0018 callapse plas.buckplas.buckplas.buck collapse collapse coliapse
0018 plas. buckpias. buck pias. buck plas. buck pias. buck pias. buck plas. buck
0014 collapse plas. buck plas. buckplas. buck elas.buck
0012 plasbuck
0010 collapse plas buck
0.008 cal

Unstable
0.020 115000 150000 160000 165000
0018 62500 82500 108000 125000 138000 140000
0.016 43000 58000 74500 85000 100000 130000 120000
0014 20500 38500 48000 75000
0012 12500

0010 4800 7300
0008 1300 2400
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Figure 5.7 Finite element result for t/1=0.016, h/t=12



0.014, h/t=12

(uypue eeng vy “jdsip geeiases
RO S S SR )
92ZLs0d m..:
921504 H
80+8€78" -
80+805L°
80+3959 " :
B80+d€9S” i
80+30LY "
80+H9LE" (uypue sesy doy
B80+HEBT " . . .
80+306T" = o 1 L S )
L0+3996° =
cogsce =
aoad =3
¥IIINE-Z
GTI0€0S™ = dZ
€2V650°= dA - b
9€2800°= d4X -
TL886E =1SIA H
1= Az e boe £
T= MK z
1= AX /‘
Z=AaNIM e
T ON 1O1d
ST:0T:0T
8661 0T 0L
€S SASNY 2

61

Figure 5.8 Finite element result for t/1
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Figure 5.9 Finite element result for t/1=0.020, h/t=14

62



9zLs0d
9zLsod

60+IEVT”
60+3LTT"
60+3TTT"
B80+3VS6"
BO+A96L"
BO+ILES"
B80+36LY "
B0+30ZE"
80+3Z9T1"

08zZTLE

aoad
¥ALINE-Z
EPEPOS'= 4z
98€Z0T°= 4&
LLSTTO'= ax
ZVSyov’ =1sIa
1= Az

1= AX

1= AX

€97° BE=VISA

T "ON 1074

(wypue sy doy

1as1p

ti)esaes o

Figure 5.10 Finite element result for ¢/1=0.018, h/t=14
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Figure 5.13 Finite element result for t/1=0.020, h/t=16
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Figure 5.14 Finite element result for t/1=0.018, h/t=16
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Figure 5.15 Finite element result for t/I:
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Figure 5.16 Finite element result for t/1=0.014, h/t=16
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Figure 5.17 Finite element result for t/1=0.020, h/t=18
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Figure 5.18 Finite element result for t/1=0.018, h/t=18

71



9z1Ls0d
921s0d

60+dZ8T"
60+dZ9T"
60+AZYT"
60+ATZT"
60+ETOT"
BO+ATIB"
80+30T19"
80+@80V "
80+d90Z°

ESVLEY

(wypus sasy doy ¢

T

peeip psaesy

weuy dey

1

tyvsaes ¢

Figure 5.19 Finite element result for /1=0.016, h/t=18
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Figure 5.20 Finite element result for ¢/1=0.018, h/t=20
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Figure 5.21 Finite element result for t/1=0.016, h/t=20
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Figure 5.23 Finite element result for /1=0.016, h/t=22
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Figure 5.24 Finite element result for t/1=0.016, h/t=24
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Figure 5.25 Finite element result for /1=0.014, h/t=24
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5.3.2 Overall Behavior of Cantilever Beam

In order to apply these finite element analysis results to convenient reference. The
boundary of plastic buckling and yield and boundary of plastic buckling and collapse
should be defined by non-dimensional ratios b/t and v1.

Table 5.4 summaries all related information presented in the graphical results. It includes
the non-dimensional ratios h/t and V1. and cantilever beam’s behaviors for different ratios.
The unstable loads for plastic buckling lay between the initial yield load and load of
plastic hinge collapse. Also notice that. when h/t increase unstable load/Py. unstable
load/Pc are decreased. These infer that the cross section of a cantilever beam more slim,

the structure more easier to have plastic buckling.



Table 5.4 Ratios of Unstable load/Pc, Unstableload/Py

Ifwe set I=1m, then wand h will be determined by ratics of hvt and 1
3E+08 Pa

Yield stress
[ ht
[ 8 10 12 14 16 18 20 2 24
Behavior
0.020 cdllapse collapse collapse collapse
0018 collapse plas.buckplas. buckplas.buck collapse collapse callapse|
0016 plas.buck plas. buck plas. buck plas. buck plas. buck plas. buckplas. buck
0014 collapse plas.buckplas. buckplas.buck elas|
0012 plas.buck
0010 callapse plas.buck

0.020 115000 150000 160000 165000
0018 62500 82500 108000 125000 138000 145000
0016 43000 58000 74500 85000 100000 110000 120000
0.014 20500 28000 38500 46000 75000
0.012 12500 -
0010 4800 7300
0008 1300 2400

Unstable load/Pc
0.020 09779 09766 08230 06875
0.018 09923 09623 09645 08820 07888 0.6849
0016 09720 09633 08473 08540 08138 073%8 06782
0014 09961 09448 09545 08731 06327
0012 0.9645
0010 10000 08733
0008 09404 09766

Unstable load/Py
0.020 14668 14648 12346 1.0313
0018 14884 14435 14468 13231 1.1831 1.0274
0016 14581 14449 14210 1.2810 12207 1.1097 1.0173
0.014 14942 14172 14317 1.3097 0.8490
0012 14468
0.010 0.9600 1.4600
0008 14106 14648




The overall behavior of cantilever beam is summarized in Table 5.5. Boundary of elastic
buckling and yield is derived from analytical method. while the boundary of plastic

buckling and plastic hinge collapse is gotten from finite element analysis results.

Table 5.5 Overall Behavior of Cantilever Beam

plastic buckling & collapse boundary elastic buckling & yielding boundary

h#t ul hit L]

10 0.012 10 0.0060
12 0.016 12 0.0071
14 0.018 14 0.0083
16 0.018 16 0.0094
18 0.018 18 0.0106
20 0.016 20 0.0117
22 0.016 22 0.0129
24 0.016 24 0.0140

W

—e— plastic buckling boundary —&— elastic buckling boundary
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5.3 Discussions

1. The plastic buckling and collapse boundary of cantilever beam is an irregular curve in
the plane defined by two non-dimensional parameters v/t and V1. The curve is above the

boundary of elastic buckling and yielding, which is expected .

2. As shown in the diagram in Table3.3, the overall behavior of the cantilever beam is
defined by three regions. First the region below the boundary of elastic buckling and
yielding is the elastic buckling region. The region between the boundary of plastic
buckling and collapse and the boundary of elastic buckling and yielding is the plastic
buckling region. The region above the boundary of plastic buckling and collapse is the

collapse region.

3. Cantilever beams under vertical concentrated load at the free-end experience plastic
buckling when ratio of h' is below 10 for any value of t'. Cantilever beam with ratio h/t
(i) less than 10 will not experience plastic buckling for ratio vl (t') range from 0.008 to
0.020. Ratio defines the slendemess of the rectangular cross section of cantilever beam.

The plastic buckling will not happens if ratio of Wt is less than 10.

4. The slenderness of cantilever beam is the ratio /I (t'). In the range of numerical study,
plastic buckling usually happen when the ratio is less than 0.018, which means that if the
cantilever beam is relatively short (ratio ¥/l bigger than the critical ratio), the cantilever

beam will collapse by plastic hinge formation instead of buckling.



Chapter VI
CONCLUSIONS AND

RECOMMENDATIONS

6.1 Conclusions

The finite element method can successfully be used for the plastic buckling analysis. The

finite element method can include material i ies and

large deflection and large strain. In the solution procedure, in order to achieve a
convergent solution for the nonlinear material and geometric nolinearties, the Newton-
Raphson method, an incremental method for the nonlinear system is applied. The finite
element plastic buckling solution method provides a method for not only cantilever beam,

but also for other structures with other types of material nonlinearity.

The thesis has set up two non-dimensional parameters as criteria for plastic buckling
evaluation for the cantilever beam subjected to concentrated force at the center of the
free-end. The two criteria parameters are ratio of thickness by length ¥1 and ratio of
height by thickness h/t. The ratio of ¥1 defines the slenderness. Plastic buckling happens
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when the ratio is less than about 0.018. The ratio h/w relates to the aspect ratio of the
rectangular cross section. Plastic buckling happens when the ratio is bigger than 10 in
studied range.

The overall behavior of cantilever beam under a concentrated load at the free-end is
shown in the thesis. The diagram(in Table 5.3)is from the numerical results of finite
element plastic buckling analysis and the analytical results of elastic buckling and
yielding. There are three regions in the diagram. The elastic buckling region is under the
boundary of elastic buckling and yielding. The plastic buckling region is between the
boundary of plastic buckling and collapse and the boundary of elastic buckling and

yielding; the region above the plastic buckling and collapse is collapse region.

The thesis also developed a general ANSYS model for plastic buckling analysis of

beams subjected to d force at the center of free-end. Any user can
easily use the model to analyse a cantilever beam of different dimensions by changing the

dimensions defined at the very beginning of the code.

6.2 Recommendations

Cross-section variations

This work is focused on plastic buckling behavior of cantilever beams. with rectangular

cross sections. Cross-sections of the cantilever beam could be “I” section, “T™ section or



another type of section. These sections are more complex than the rectangle. Finite

element model should be set up for these sections to analyze plastic buckling load.

Different end condition
In this thesis, the beam is fixed at one end and free at the other. Other end conditions are

expected to discuss such as fixed at two ends, pinned at two ends and continuous etc.

Different load conditions
Concentrated loads applied at the free-end of cantilever beam are studied in this work. In
practice, the beam may be subjected to distributed loads along the length the beam. or

have other types of load. It is worthwhile to study different load types.

Geometric imperfection

In the work, the model of cantilever beam is in perfect condition. There are no geometric
imperfections in the model. Beams may have geometric imperfections or even gap in the
structure. The effects of these imperfections may also be provided by finite element

analysis.

Different material properties
Material property other than elastic-perfect plastic may be more realistic. Obviously, a
multi-linear material curve will generate different load deflection response, hence

providing different plastic buckling analysis solutions.
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APPENDIX A

ANSYS52 General model and solution codes

iwhen the ANSYS program requires more heap space, the user can increase
the allocated space for

{ANSYS by ....lansys52 -M 64 when start the ANSYS 64 indicates 64
mega bytes workspace

!this configuration command is not available in ANSYSS2, user must
change the config file to do mem. configuration

!/config,nvpage,512 ! set maximum number of database pages in memory to
512

/com, the code is try to model the cantilever beam in general purpose,
! i.e. it will be flexible to do various dimension analysis by only
modify

dimension parameters define at the beginning of the code;
furthermore thi
f material property is also changeable by modify adequate material
property
parameters in the code.
this section of code is mainly set up solid model
' which includes the applied

boundary condition, both displacement and force applied on
expected model.

/COM, ANSYS REVISION 5.2 19:58:56  01/27/1998
/view,1,1,1,1
/ang, 1

/filnam,appdisp !job name
/title,plastic buckling analysis on cantilever beam

/units,si !set the unit system to metric system



!preprocessor

/prep?

!define element types for setting up model
et,1,planed2

et,2,s0lidds

!define parameters for future use

t-----material properties
*set,ys,3.00e8 !yield strength (N/m.sqr
“set,ym,2.07ell !young's modulus ( N/m.sqr

*set,poisson,0.3 !Poisson’s ratio

---cantilever beam dimensions

set,l,l !the length of cantilever beam
*set,h,0.288 !the height of cantilever beam
*set,t,0.018!the thickness of cantilever beam

temeee define parameters for meshing

“set,nelem_t,6 !number of elements across thickness of beam
“set,nelem h,8 !number of elements across the height of beam
“set,nelem_l,20!number of elements across length of beam

t==---the value of applied force on the free end
+set,f,5E4 'the central force applied on the free end (N)
*set,dx,0.05 'applied displacement on the center of top free end

loffset the center pointer with perturbation of an element thickness
tcalculate the x value of applied force with one element thickness
perturbation

*set,vv, ((nelem_t+2) *w/2/nelem_w

'define material property as perfect plastic and with large-strain
ability

mp,ex,1,ym 'define young's modulus for material 1
mp, nuxy, 1,poisson !'define Poisson’s ratio for material 1
tb,biso,1,1,,0 !define the material property as bilinear isotropic
hardening (BISO)
' perfect plastic with large-strain ability
tbdata,l,ys,0 !yield stress ys; tangent modulus 0
tbplot,biso,1  !plot the material property

save !save database

!solid modeling



x,1,0,0,0 !keypoint 1
k,2,0,h,0 !keypoint 2
k,3,t,b,0 !keypoint 3
k,4,t,0,0 'keypoint 4
k,5,vv,h,0 'keypoint 5
k,6,vv,h,1 'keypoint 6 the force applied on

-create straight lines

lstr,1,2  lcreate straight line from keypoint 1,2
1str,2,3  !create straight line from keypoint 2,3
istr,3,4  !create ::raxghl line from keypoint 3,4
1str.4,1  ‘crea ceyE Loz
1str,5,6  'create keypoint 5,6

save  !save database

rst create a 2-D meshed area for dragging to form the 3-D beam
2,3,4 !create area 1 from line 1,2,3,4

lesize,1,,,nelem h,1, !number of division along line 1
lesize,3,,,nelem_h,1, ‘number of division along line 3
lesize, ,,,nelem ' !number of division along line 2
lesize,4,,,nelem_t, 1, !number of division along line 4
lesxze,s.,,nellm_ o1, !number of division along line 5

type,1 ‘'element type 1 for mesh on area 1
amesh,1 !mesh on area 1
eplot  !plot elements

save !save database

I drag to form 3-D beam

type,2 !switch to element type 2

mat,1 !material 1

esys,0 !element coordinate system ref. number
vdrag,1,,,,,,5 !drag area 1 along line 5 to create 3-Dmesh

aclear,1 ‘delete no more useful plane element on area 1
eplot !plot element

save !save database

tapply loads

---first apply displacement boundary condition
asel,s..,l !select area 1 tc form area component
cm, fixend,area !define selected area 1 as area component "fixed-end"

asel,s,,,6
cm, freeend,area !define selected area 6 as area component "free-end”
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save !save database

cmsel,, fixend !select component "fixed-end"

lsel, , ext !select external lines on selected component area "fixed-
end”

nsll,,1 !select all node on selected lines

d,all,all !constrain all DOF on selected nodes

allsel !restores full sets of all entities

save !save database

FINISH

/solu ‘begin solution session

antype, 0 ‘analysis type, static

nlgeom,on  !large deformation turned on

e second apply the force on the top of free end

d,node(vv,h,1),uy,~dx 'apply the force on the specific keypoint

nrop,auto  !newton-rahpson method program choose

time,dx !time set norm to force

autos,on lauto step turned on

nsubst, 40,100,20 !substep 40, maximum 100,minium 20

kbe, 0 ‘ramped load

ncnv, 2 !terminates analysis but not program execution if the

solution fails
to converge

outres,all,all !output all result for each substep to database file
save !save the database

solve
save

finish
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APPENDIX B

ANSYS52 Postprocessor codes I

/COM, ANSYS REVISION 5.2 21:49:05 04/09/1998

/show,test,grph  !'redirect graphic results to test.grph

*set,bkload, .0078 !define the buckling displacement (normal to time
RESUME, appdisp, db, ,

/plopts, info,on

/plopts, title,of

/PLOPTS, LEGL, 0

/plopts, leg2,0
/plopts, leg3, 0

/window,1,ltop  !define window 1 left top
/window,2,1lbot  !'define window 1 left bottom
/window, 3,rtop  !define window

/window, 4, rbot ‘define window
/view,1,-1,1,1

rview,2,-1,1,1

/view, 3,0

/view, 4,0

/POST1

SET, , ,1, ,bkload ,

ead in the result of time of buckling load

/edge,all, 1
/plots, frame, on
/window, all, of

/plopts, legl, 0

/plopts, leg2,0
/plopts, leg3, 0

/window, 1, on



/view,1,1,1,1

PLDISP, 2 !plot shape with edge
/window, 1,0ff

/noerase

/plopts, legz,t
/plopts, legl, 1

iplot von Mises stress contour of the buckling skape

/window, 2, off
/noerase

TSI
/plopts, legl,off
/plopts, leg2,o0ff
/plopts, leg3, off
/P0ST26

RFORCE, 6, node (vv, h, 1}, F, ¥,

NSOL, 7, node(vv,h,11,0,X,ux

ABS,2,6, , ., , ,1, !define reaction force on the node displacement
applied
ABS, 3.7, 7 & tdefine lateral displacement of the node

displacement applied

/window, 3,0n
Jview,3,0

/axlab, x, vertical displ. top free end(m)

/axlab,y,P force(N)
PLVAR,2, , , .
/window, 3, of £
/noerase

/window, 4, 0on

/view, 4,0

/axlab, x,vertical displ. top free end(m
/axlab,y, lateral displ. top free end(m)
PLVAR, 3, , ., ,
/window, 4, of
/noerase

finish



APPENDIX C

ANSYSS52 Postprocessor codes II

/COM, ANSYS REVISION 5.2 21:49:05 04/09/139%8
/show, newpre, grpn

RESUME, appdisp, db, ,

/plopts, info,of £

/plopts, title, off

/window, 1,-0.3325,1.0025,-1,1 !'define window 1
/window, 2,-1,-0.3325,-1,1 !define window 2
/window, 3,1.0025,1.67,-1,1 ‘define window 2

/edge,all, 1
/plots, frame, on
/window,all,of

/view,1,0
/view,2,0

/POST26
RFORCE, 6, node (vv,h,1i,F, Y,

NSOL, 7, node (vv, h, 1), U, X, ux

ABS,2,6, , /P, , 1, 'define reaction force on the node displaceent
applied
ABS,3,7, , ,UX, , ,1, 'define lateral displacement of the node

displaceent applied

/window, 1, 0n
/view,1,0

/axlab,x,Time (Normal to displ.)
/axlab,y, P(N)

/ANG, 1 ,-90.000000,2S,1
PLVAR,2, 4 v v v v u r 0 e
/window, 1,0ff

/noerase



/window,2,0on
/view,2,0

/axlab, x,Time (Normal to displ.

/axlab,y,L.Disg. tm}
/ANG, Z ,-9C.20030C,

PLVAR,3, v v v v v 4 0 s

/window,2,0ff
/noerase

/window, 3, 0n
/viaw, 1,0

esol,4,949,13,s.

V,stress

/axlab, x,Time (Normal to displ.

/axlab,y,Stress (Pa)
/ANG, 3 ,-90.000000, 28,1

plvar, i
/window, 3, 0ff

/noerase

finish
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