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Abstract

This research presents a generalized least square approach to estimate the pa-

rameters in a longitudinal linear mixed-effects model. In this model, we consider

measurement error and misclassification in the covariates. Moreover, a classical mea-

surement error for continuous covariates, and misclassification for discrete covariates

up to three categories, is considered. Through simulation studies, we observe the

impact of each parameter of the model on the bias of the naive estimation, when the

other parameters stay unchanged.
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Chapter 1

Introduction

In longitudinal studies, responses are determined by multiple factors (covariates) col-

lected over time. (e.g. Laird and Ware (1982), Pinheiro (2005), and Verbeke (2009)).

These models are widely applied in different areas of research such as biostatistics, epi-

demiology, and statistical genetics (Henderson, Kempthorne, Searle, and von Krosigk

(1959), McLean, Sanders, and Stroup (1991), Page and Magnus. (2012), Abarin,

Wu, Warrington, Pennell, and Briollais (2012), and many more). In this research, we

consider a longitudinal linear mixed-effects model. The model contains a repeatedly

measured response yit, continuous predictors Xit subject to measurement error, and

classified predictor Gi subject to misclassification. We consider the model error term

εit with an autoregressive model with lag one (AR(1)) to generate the correlation
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between the time points. Autoregressive models with lag one are widely applied in

science (e.g. Zhang, Zhang, Young, and Li (2014), Dakos, Carpenter, Brock, Ellison,

Guttal, Ives, ... & Scheffer (2012)). We also consider a time independent random

effect γi for a specific individual. As both X and G are random variables, in the

first chapter, we calculated the marginal moments of the response in order to ob-

tain a closed-form for the parameter estimates using Generalized Least Square (GLS)

estimation (Nelder and Wedderburn (1972)).

There are many studies using longitudinal data that assume that all covariates

are measured accurately (e.g. Parsons, et al (2001), Yarkiner, Hunter, O’Neil, and De

Lusignan (2013)). In practice, however, there are occurrences when some variables in

the model of interest cannot be observed exactly, usually due to instrument or sam-

pling error. It is well-known that measurement error (ME) and/or misclassification

have negative impacts on the parameter estimation (Fuller (1986), Carroll and Stefan-

ski (2006), Abarin, Li, Wang, and Briollais (2012), Abarin and Wang (2012)). Naive

estimators that ignore the errors in covariates are typically inconsistent. However, the

direction and the magnitude of the bias can be quite complex as the naive estimates

are functions of the unknown model parameters. Depending on its magnitude and na-

ture, in some cases the bias can be ignored (Wang et al (1998), Buzas, Stefanski, and

Tosteson. (2014)), reduced (Eisenhower, Mathiowetz, & Morganstein, (1991), Cheng,
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Branscum, & Stamey (2010)), or corrected (Batistatou, and McNamee, (2012), Wang,

et al (1999), Spiegelman, McDermott, and Rosner (1997)).

In our model, we consider ME with a random error satisfying a classical ME

model. The marginal moments of the response in terms of observed covariates are

calculated. It is, however, extremely difficult to assess the bias in the naive estimator

as a function of the response covariance matrix. In this research, it is assumed that

the covariance matrix of the response is known. However, actually, this matrix is

itself a function of the unknown model parameters. We therefore evaluate the bias

caused by the ME through simulation studies in Chapter 2. Simulation studies help

us to observe the change in the bias of the naive estimator when we change one model

parameter while keeping the others unchanged.

We also consider misclassification in the categorical predictor, where in Chapter

3, the true covariate G is subject to error. The binary case with two categories of

“success” and “failure” is very common in application, such as in gender classification

or smoking status. Sensitivity and specificity play a very important role in misclassifi-

cation studies. They are statistical measures of performance of a binary classification,

also known in statistics as classification function. Sensitivity, which is also called the

true positive rate, or the recall rate in some fields of research, measures the proportion

of actual positives which are correctly identified, such as the percentage of sick people
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who are correctly identified as having the condition. Specificity, which is sometimes

called the true negative rate, measures the proportion of negatives which are correctly

identified, such as the percentage of healthy people who are correctly identified as not

having the condition. These two measures are closely related to the concepts of type

I and type II errors. A perfect predictor would be described as 100 percent sensitive,

which is predicting all people from the sick group as sick, and 100 percent specific,

which is not predicting anyone from the healthy group as sick; however, theoretically

any predictor will possess a minimum error bound known as the Bayes error rate

(Fawcelt, Tom (2006)). Since in practice classification with more than two categories

are often applied, we extend our assessment to the case with three categories. Com-

paring to the binary case, in this case there are four more misclassification cases. We

assessed the bias in the naive estimates by modifying the misclassification rates in

the trinomial case.

In Chapter 4, where we combine ME and misclassification, we calculate the

marginal moments of the response in terms of the observed covariates. Through

extensive simulation studies, we assess the impact of ME on the bias in the naive

estimator in the presence of misclassification, and vice versa.

This dissertation is organized as follows. Chapter 1 describes the standard linear
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longitudinal mixed-effects model and the assumptions required for the model. Chap-

ter 2 presents the model with ME only. Simulation studies are conducted to evaluate

the bias in the naive estimators. Chapter 3 presents the model with misclassification

only, which includes two separate parts; the binary case and the case with three cat-

egories. Simulation studies in this chapter are also conducted for these two different

cases. Finally, we consider the model with both ME and misclassification in Chapter

4, where through simulation studies, we assess the performance of the naive estima-

tors, comparing with the other chapters. The last chapter draws a conclusion about

the bias in the naive estimators.



Chapter 2

Longitudinal Linear Mixed-effects

Model

In this chapter, we consider the following longitudinal linear mixed-effects model

yit = X ′itβ + γi +Giα + εit, i = 1, · · · , k, t = 1, · · · , T, (2.1)

where yit ∈ IR is the response at time point t for the ith individual, γ ∈ IR is the

individual random effect with mean zero and variance σ2
γ, and α ∈ IR is the coefficient

of the classification variable. Moreover, Xit ∈ IRp is the random continuous predictor

with coefficient β, independent of Gi ∈ IR, which is the random classified predictor.

In model (2.1), εit is an error term that follows an AR(1), such that εit = ρεi,t−1+ait

and |ρ| < 1. In this autoregressive model, ait is a random error term with mean zero
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and variance σ2
a, independent of γi. The model error term εit can, therefore, be

expressed as εit =
∑∞

t=0 ρ
tait. It is then straightforward to conclude that

E(εit|Xit, Gi) = 0, var(εit|Xit, Gi) =
σ2
a

1− ρ2
, cov(εit, εiu|Xit, Gi) =

σ2
aρ
|t−u|

1− ρ2
.

Now, using the above model specifications, we write the marginal mean, variance,

and covariance of the response as follows.

E(yit|Xit,Gi) = Eγ(E(yit|Xit, Gi, γi)) = X ′itβ +Giα (2.2)

var(yit|Xit, Gi)

= varγ(E(yit|Xit, Gi, γi)) + Eγ(var(yit|Xit, Gi, γi))

= varγ(X
′
itβ +Giα + γi|Xit, Gi) + Eγ(

σ2
a

1− ρ2
|Xit, Gi)

= σ2
γ +

σ2
a

1− ρ2
. (2.3)

When t 6= u,

cov(yit, yiu|Xit, Gi)

= covγ(E(yit|Xit, Gi, γi), E(yiu|Xiu, Gi, γi)) + Eγ(cov(yit, yiu|Xit, Xiu, Gi, γi))

= covγ((X
′
itβ +Giα + γi), (X

′
iuβ +Giα + γi)|Xit, Xiu, Gi) + Eγ(cov(yit, yiu|Xit, Xiu, Gi, γi))

= var(γi) + Eγ(
σ2
aρ
|t−u|

1− ρ2
)

= σ2
γ +

σ2
aρ
|t−u|

1− ρ2
(2.4)
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The Generalized Least Square (GLS) estimate of θ = (β′, α)′ has a closed-form as

follows (Sutradhar (2011)).

θ̂ =

β̂
α̂

 =

 n∑
i=1

 Xi

1TGi

Σ−1i (Xi : 1′TGi)


−1

n∑
i=1

 Xi

1TGi

Σ−1i yi, (2.5)

where Xi = (Xi1, . . . , Xip)
′, Xip = (Xi1p, · · · , XiTp)

′, 1T is a T dimensional column

vector of ones, yi is (yi1, · · · , yiT )′, and Σi is the covariate matrix of yi which satisfies:

1. var(yit|Xit, Gi) = σ2
γ + σ2

a

1−ρ2 ,

2. for t 6= u, cov(yit, yiu|Xit, Gi) = σ2
γ + σ2

aρ
|t−u|

1−ρ2 .

The covariace matrix of the estimated parameters, condition on X and G, as

follows.

var(θ̂) =

 n∑
i=1

 Xi

1TGi

Σ−1i (X ′i : 1TGi)


−1



Chapter 3

Longitudinal Linear Mixed-effects

Model with Measurement Error

We now consider model (2.1) with measurement error (ME). In this model, the true

predictor Xit is not observed; Instead Wit is observed with a random error term

satisfying a classical measurement error model

Wit = Xit + Uit, (3.1)

where Uit is the p-dimensional measurement error, independent of Xit, with mean

vector zero and variances σ2
u1
, · · · , σ2

up . We assume that measurement errors for any

two covariates are independent, irrespective of their occurrence times.

In this model with ME, we can write the marginal moments of the response, only
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in terms of the observed covariate W . Therefore, by model assumptions and the law

of iterative expectation (McClave, Sincich (2013)), we have

E(yit|Wit, Gi)

= EX|W (E(yit|Xit,Wit, Gi)|Wit, Gi))

= EX|W (E(yit|Xit, Gi)|Wit, Gi)) (3.2)

= EX|W (X ′itβ +Giα|Wit, Gi) (3.3)

= E(X ′it|Wit)β +Giα (3.4)

where equation (3.2) is true, since Wit is assumed to be surrogate, meaning that it

can not provide any more information about the distribution of the response, given

the information provided by X. Moreover, equation (3.3) follows from equation (2.2).

Similarly, we can calculate the marginal variance and covariance of the response

as follows.

var(yit|Wit, Gi)

= varX|W (E(yit|Xit,Wit, Gi)|Wit, Gi) + EX|W (var(yit|Xit,Wit, Gi)|Wit, Gi)

= varX|W (E(yit|Xit, Gi)|Wit, Gi) + EX|W (var(yit|Xit, Gi)|Wit, Gi)

= varX|W (X ′itβ +Giα|Wit, Gi) + EX|W (σ2
γ +

σ2
a

1− ρ2
|Wit, Gi) (3.5)

= β′var(Xit|Wit)β + σ2
γ +

σ2
a

1− ρ2
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Note that equation (3.5) is concluded from (2.2) and (2.3). Furthermore, when

t 6= u,

cov(yit, yiu|Wit,Wiu, Gi)

= covX|W (E((yit|Xit,Wit, Gi)|Wit, Gi), E((yiu|Xiu,Wiu, Gi)|Wiu, Gi))

+ EX|W (cov((yit|Xit,Wit, Gi)|Wit, Gi), ((yiu|Xiu,Wiu, Gi)|Wiu, Gi))

= covX|W (E((yit|Xit, Gi)|Wit, Gi), E((yiu|Xiu, Gi)|Wiu, Gi))

+ EX|W (cov((yit|Xit, Gi)|Wit, Gi), ((yiu|Xiu, Gi)|Wiu, Gi)) (3.6)

= cov((X ′itβ +Giα|Wit, Gi), (X
′
iuβ +Giα|Wiu, Gi))

+ EX|W (σ2
γ +

σ2
aρ
|t−u|

1− ρ2
|Wit,Wiu, Gi)) (3.7)

= β′cov(X ′it, X
′
iu|Wit,Wiu)β + σ2

γ +
σ2
aρ
|t−u|

1− ρ2
,

where equation (3.6) is true, since Wit is assumed to be surrogate, and equation (3.7)

comes from equations (2.2) and (2.4).

The naive GLS estimate of the model parameters based on the observed W rather

than X, is expressed as follows.

θ̂n =

β̂n
α̂n

 =

 n∑
i=1

 W ′
i

1TGi

Σ∗
−1

i (W ′
i : 1TGi)


−1

[
n∑
i=1

 W ′
i

1TGi

Σ∗
−1

i yi], (3.8)

where Σ∗i is the matrix of variance and covariance of yi based on Wi, which satisfying:
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1. var(yit|Wit, Gi) = β′var(Xit|Wit)β + σ2
γ + σ2

a

1−ρ2 ,

2. for t 6= u, cov(yit, yiu|Wit,Wiu, Gi) = β′cov(X ′it, X
′
iu|Wit,Wiu)β + σ2

γ + σ2
aρ
|t−u|

1−ρ2 .

The covariance matrix of θ̂n conditioned on Wi and Gi, can be expressed as

Cov(θ̂n) =

 n∑
i=1

W ′
i

Gi

Σ∗
−1

i (W ′
i : 1TGi)


−1

.

3.1 Simulation Studies

It is well-known that ME and/or misclassification have negative impacts on the esti-

mating parameters. (e.g. Fuller (1986), Carroll and Stefanski (2006)). Naive estima-

tors are typically inconsistent. However, the direction and the magnitude of the bias

can be quite complex. In the last chapter, we provided the closed-form of the GLS

estimator of the parameters. It should be noted that for the GLS estimator, it was as-

sumed that the covariance matrix of the response is known. Actually, this assumption

is unrealistic, as the covariance matrix is a function of unknown model parameters.

As a result, the bias in the naive estimators change according to any changes in the

model parameters. In this section, using simulation studies, we examine the direction

and magnitude of the bias in the naive estimators.

For each simulation scenario, we present the set ups and the results, separately.
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Here, we first present the common setups for all scenarios of this chapter. For T = 4

time points, we generated p = 2 independent continuous time-invariant predictors

from a uniform distribution U(0, 1). The random effect γ was generated from a normal

distribution with mean zero. Except in the scenario that σ2
γ changes, it was set to

be one. The categorical time-invariant G was generated from a binary distribution

with probability of success π = 0.4. The regression model parameters were set to

be α = 0.2 and β = (1, 0.5)′, except the cases that they changed. The model error

term, ε, follows a first order auto-regressive model, such that εit = ρ1εi,t−1 + ait and

|ρ1| < 1. We generated ait from a normal distribution with mean zero. Except when

they change, we set ρ1 and σ2
a to be 0.8 and 1, respectively.

For the classic measurement error models, each U1t and U2t follow a first order

auto-regressive model with standard normal error, and autocorrelation lag parameters

ρ2 and ρ3, respectively. ρ2 and ρ3 were both set for 0.8, unless they change.

We selected 500 as the sample size for all the scenarios, except when it changes.

For each of the sample sizes, 1000 Monte Carlo replicates were simulated and the

Monte-Carlo mean estimates and standard errors of the estimators were computed.

All computations were done in R version 3.0.1.

For the following scenarios, we modify one model parameter at a time, while

keeping other parameters unchanged. Table 3.1 shows the selected range, as well as
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the steps for every parameter.

Table 3.1: The range and increment steps for each model parameters
Parameter Range Step
ρ1 (−1, 1) 0.1
ρ2 (−1, 1) 0.1
ρ3 (−1, 1) 0.1
σ2
a (0, 2) 0.2
σ2
γ (0,2) 0.2
σ2
u1

(0,2) 0.2
σ2
u2

(0,2) 0.2
α (-3,3) 0.5
β1 (-3,3) 0.5
β2 (-3,3) 0.5
π (0,1) 0.1
n (100,1000) 100
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3.1.1 Scenario 1: Bias analysis for different values of ρ1

In this scenario, we intend to observe the behaviour of the bias in the naive estimates

of θ = (β′, α)′ when ρ1, the autocorrelation lag parameter for the model error term,

changes. As ρ1 changes from -1 to 1, the bias in the naive estimator of β1 looks like

a convex function with minimum value at ρ1 = 0.6. Its value is zero at ρ1 = 0.2.

The bias in the naive estimator of β2 is relatively unchanged. The bias in the naive

estimator of α looks like a concave function with its maximum point at approximately

ρ1 = 0.6. It, however, does not reach zero. It is interesting to observe that the

variabilities of the naive estimators of β decrease as ρ1 changes from -1 to 1, while

the variability of the estimator of α has the opposite behaviour. Figure 3.1 and Table

3.2, present these behaviours.
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Figure 3.1: Bias of the naive estimators for different values of ρ1
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

ρ1 = −0.9 -0.4016 0.0451 0.4505 0.0035 0.3380 0.0039

ρ1 = −0.8 -0.3774 0.0447 0.3798 0.0034 0.3537 0.0038

ρ1 = −0.7 -0.3531 0.0443 0.3119 0.0032 0.3670 0.0037

ρ1 = −0.6 -0.3288 0.0440 0.2456 0.0031 0.3789 0.0036

ρ1 = −0.5 -0.3045 0.0438 0.1809 0.0029 0.3896 0.0035

ρ1 = −0.4 -0.2805 0.0436 0.1182 0.0028 0.3992 0.0034

ρ1 = −0.3 -0.2571 0.0436 0.0582 0.0026 0.4076 0.0033

ρ1 = −0.2 -0.2344 0.0437 0.0015 0.0025 0.4146 0.0032

ρ1 = −0.1 -0.2128 0.0439 -0.0509 0.0024 0.4203 0.0031

ρ1 = 0 -0.1926 0.0442 -0.0984 0.0023 0.4245 0.0030

ρ1 = 0.1 -0.1742 0.0448 -0.1402 0.0022 0.4273 0.0029

ρ1 = 0.2 -0.1579 0.0456 -0.1756 0.0021 0.4287 0.0028

ρ1 = 0.3 -0.1440 0.0470 -0.2038 0.0020 0.4287 0.0027

ρ1 = 0.4 -0.1330 0.0493 -0.2241 0.0020 0.4277 0.0026

ρ1 = 0.5 -0.1255 0.0530 -0.2356 0.0019 0.4257 0.0025

ρ1 = 0.6 -0.1223 0.0591 -0.2369 0.0019 0.4232 0.0025

ρ1 = 0.7 -0.1247 0.0692 -0.2259 0.0018 0.4206 0.0024

ρ1 = 0.8 -0.1346 0.0873 -0.1990 0.0017 0.4184 0.0022

ρ1 = 0.9 -0.1565 0.1276 -0.1481 0.0013 0.4177 0.0018

Table 3.2: Bias and standard error of the naive estimators for the different values of
ρ1
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3.1.2 Scenario 2: Bias analysis for different values of ρ2 and

ρ3
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Figure 3.2: Bias of the naive estimators for different values of ρ2

Figure 3.2 and Table 3.3, show the downward bias of the naive estimator of β1 to

approximately ρ2 = 0.5, as the correlation parameter of the first measurement error

increases from -1 to 1. The bias in the naive estimator of β2 seems to stay unchanged.

It is interesting to find that the correlation parameter of the first measurement error

has no effect on the estimation of the coefficient parameter of the second continuous
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

ρ2 = −0.9 -0.7588 0.1252 0.7183 0.0006 0.8377 0.0032

ρ2 = −0.8 -0.7347 0.1236 0.6726 0.0007 0.8356 0.0032

ρ2 = −0.7 -0.7086 0.1219 0.6221 0.0008 0.8340 0.0031

ρ2 = −0.6 -0.6810 0.1201 0.5678 0.0009 0.8328 0.0030

ρ2 = −0.5 -0.6525 0.1182 0.5107 0.0010 0.8323 0.0030

ρ2 = −0.4 -0.6238 0.1164 0.4516 0.0012 0.8325 0.0029

ρ2 = −0.3 -0.5952 0.1145 0.3916 0.0013 0.8334 0.0028

ρ2 = −0.2 -0.5671 0.1127 0.3312 0.0014 0.8348 0.0027

ρ2 = −0.1 -0.5397 0.1109 0.2708 0.0014 0.8367 0.0027

ρ2 = 0 -0.5132 0.1090 0.2108 0.0015 0.8391 0.0026

ρ2 = 0.1 -0.4876 0.1070 0.1515 0.0016 0.8418 0.0025

ρ2 = 0.2 -0.4633 0.1047 0.0932 0.0017 0.8446 0.0025

ρ2 = 0.3 -0.4402 0.1020 0.0364 0.0017 0.8476 0.0024

ρ2 = 0.4 -0.4187 0.0988 -0.0184 0.0018 0.8506 0.0023

ρ2 = 0.5 -0.3992 0.0950 -0.0702 0.0018 0.8535 0.0022

ρ2 = 0.6 -0.3827 0.0905 -0.1169 0.0018 0.8561 0.0021

ρ2 = 0.7 -0.3706 0.0852 -0.1551 0.0018 0.8585 0.0020

ρ2 = 0.8 -0.3654 0.0794 -0.1791 0.0018 0.8605 0.0018

ρ2 = 0.9 -0.3708 0.0735 -0.1806 0.0017 0.8620 0.0017

Table 3.3: Bias and standard error of the naive estimators for the different values of
ρ2

predictor. However, it affects the bias in the naive estimator of the categorical vari-

able. As we can see, the naive estimator of α has a downward bias to a minimum at

around ρ2 = 0.8. More, interestingly, the variabilities of the estimators of α and β2
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decline, while the bias of the estimate of β1 increases, as ρ2 modifies over its range.
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Figure 3.3: Bias of the naive estimators for different values of ρ3

Figure 3.3 and Table 3.4 show a slight decrease in the bias of both naive estimators

of β2 and α, as the correlation parameter of the second measurement error changes

from -1 to 1. The bias in the naive estimator of β1 seems to stay unchanged. Since

ρ3 is the correlation parameter for the second measurement error, it has no effect on

the estimation of the coefficient parameter of the first continuous predictor. Similar

to the case of ρ2, the variabilities of the estimators of α and β2 decrease, with the

increase in ρ3, while the variability of the estimate of β1 increases.
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

ρ3 = −0.9 -0.1800 0.0863 -0.1986 0.0017 0.4964 0.0004

ρ3 = −0.8 -0.1778 0.0863 -0.1987 0.0017 0.4921 0.0005

ρ3 = −0.7 -0.1753 0.0864 -0.1988 0.0017 0.4875 0.0006

ρ3 = −0.6 -0.1727 0.0864 -0.1990 0.0017 0.4825 0.0007

ρ3 = −0.5 -0.1700 0.0865 -0.1991 0.0017 0.4773 0.0008

ρ3 = −0.4 -0.1672 0.0865 -0.1993 0.0017 0.4721 0.0009

ρ3 = −0.3 -0.1644 0.0866 -0.1994 0.0017 0.4667 0.0011

ρ3 = −0.2 -0.1616 0.0866 -0.1995 0.0017 0.4614 0.0012

ρ3 = −0.1 -0.1588 0.0867 -0.1996 0.0017 0.4562 0.0013

ρ3 = 0 -0.1560 0.0868 -0.1997 0.0017 0.4510 0.0014

ρ3 = 0.1 -0.1532 0.0868 -0.1997 0.0017 0.4460 0.0015

ρ3 = 0.2 -0.1504 0.0869 -0.1997 0.0017 0.4411 0.0016

ρ3 = 0.3 -0.1476 0.0869 -0.1997 0.0017 0.4364 0.0017

ρ3 = 0.4 -0.1448 0.0870 -0.1996 0.0017 0.4319 0.0018

ρ3 = 0.5 -0.1420 0.0871 -0.1995 0.0017 0.4276 0.0020

ρ3 = 0.6 -0.1393 0.0871 -0.1994 0.0017 0.4238 0.0021

ρ3 = 0.7 -0.1367 0.0872 -0.1992 0.0017 0.4206 0.0022

ρ3 = 0.8 -0.1346 0.0873 -0.1990 0.0017 0.4184 0.0022

ρ3 = 0.9 -0.1333 0.0873 -0.1988 0.0016 0.4180 0.0023

Table 3.4: Bias and standard error of the naive estimators for the different values of
ρ3
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3.1.3 Scenario 3: Bias analysis for different values of σ2a
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Figure 3.4: Bias of the naive estimators for different values of the variability of model
error term

From Figure 3.4 and Table 3.5 we can see that when the variance of ait increases

from 0.2 to 2 with 0.2 increments, the bias of the naive estimator of the coefficient of

the second continuous predictor, stays unchanged. The bias of the naive estimators

of β1 and α change in opposite directions, as σ2
a increases. The variabilities of the

three estimators increase with the increase in σ2
a.
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

σ2
a = 0.2 -0.6483 0.0514 0.4441 0.0008 0.8519 0.0008

σ2
a = 0.4 -0.5574 0.0582 0.2495 0.0012 0.8527 0.0012

σ2
a = 0.6 -0.4863 0.0665 0.0963 0.0014 0.8544 0.0015

σ2
a = 0.8 -0.4253 0.0756 -0.0360 0.0016 0.8564 0.0017

σ2
a = 1.0 -0.3706 0.0852 -0.1551 0.0018 0.8585 0.0020

σ2
a = 1.2 -0.3202 0.0951 -0.2649 0.0020 0.8606 0.0022

σ2
a = 1.4 -0.2730 0.1053 -0.3677 0.0021 0.8627 0.0025

σ2
a = 1.6 -0.2284 0.1157 -0.4651 0.0023 0.8647 0.0028

σ2
a = 1.8 -0.1859 0.1263 -0.5581 0.0025 0.8667 0.0031

σ2
a = 2.0 -0.1450 0.1370 -0.6474 0.0027 0.8686 0.0034

Table 3.5: Bias and standard error of the naive estimators for the different values of
the model error term
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3.1.4 Scenario 4: Bias analysis for different values of σ2γ
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Figure 3.5: Bias of the naive estimators for different values of σ2
γ

In this scenario, we observe the behaviour of the bias in the naive estimates of

θ = (β′, α)′ when σ2
γ, the variability of the random effect, increases. As it can be seen

in Figure 3.5 and Table 3.6, the increase in the variance of γ has a small effect on the

bias of the naive estimators of all the coefficient parameters. However, it is not the

case with their variabilities. The variabilities of the estimators of β1 and β2 show a
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

σ2
γ = 0.2 -0.3816 0.0430 -0.1323 0.0016 0.8592 0.0015

σ2
γ = 0.4 -0.3783 0.0534 -0.1393 0.0016 0.8590 0.0016

σ2
γ = 0.6 -0.3754 0.0639 -0.1452 0.0017 0.8588 0.0018

σ2
γ = 0.8 -0.3728 0.0745 -0.1505 0.0018 0.8586 0.0019

σ2
γ = 1.0 -0.3706 0.0852 -0.1551 0.0018 0.8585 0.0020

σ2
γ = 1.2 -0.3686 0.0959 -0.1591 0.0019 0.8584 0.0021

σ2
γ = 1.4 -0.3668 0.1066 -0.1628 0.0019 0.8582 0.0022

σ2
γ = 1.6 -0.3652 0.1174 -0.1661 0.0019 0.8581 0.0022

σ2
γ = 1.8 -0.3637 0.1281 -0.1690 0.0020 0.8580 0.0023

σ2
γ = 2.0 -0.3624 0.1389 -0.1717 0.0020 0.8579 0.0024

Table 3.6: Bias and standard error of the naive estimators for the different values of
σ2
γ

slight increase, while the variance of the estimator of the coefficient of the categorical

variable increases with the increase in σ2
γ.
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3.1.5 Scenario 5: Bias analysis for different values of σ2u1
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Figure 3.6: Bias of the naive estimators for different values of σ2
u1

As the measurement error on X1 increases, we expect to observe that the bias of

the naive estimator of β1 increases. Surprisingly, the bias has a downward shape to its

possible minimum value (zero), before it moves upward. With smaller magnitude, the

bias of the naive estimator of α shows similar behaviour. The difference in the two,

however, is the direction of the biases. (Figure 3.6) As we may expect, the change in
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

σ2
u1

= 0.2 0.1979 0.1130 -0.8668 0.0061 0.4300 0.0028

σ2
u1

= 0.4 0.0610 0.1027 -0.5938 0.0035 0.4244 0.0026

σ2
u1

= 0.6 -0.0360 0.0955 -0.3985 0.0024 0.4212 0.0024

σ2
u1

= 0.8 -0.1062 0.0898 -0.2566 0.0018 0.4192 0.0023

σ2
u1

= 1.0 -0.1597 0.0850 -0.1481 0.0015 0.4178 0.0022

σ2
u1

= 1.2 -0.2021 0.0808 -0.0619 0.0013 0.4168 0.0021

σ2
u1

= 1.4 -0.2369 0.0771 0.0087 0.0011 0.4160 0.0020

σ2
u1

= 1.6 -0.2660 0.0738 0.0681 0.0010 0.4154 0.0020

σ2
u1

= 1.8 -0.2909 0.0707 0.1188 0.0010 0.4149 0.0019

σ2
u1

= 2.0 -0.3125 0.0680 0.1630 0.0009 0.4145 0.0019

Table 3.7: Bias and standard error of the naive estimators for the different values of
σ2
u1

the ME on the first continuous covariate has no effect on the coefficient of the second

continuous predictor, β2. From Table 3.7, we observe that the increase in ME on X1

decreases the variabilities in the naive estimators of the three parameters.
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3.1.6 Scenario 6: Bias analysis for different values of σ2u2
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Figure 3.7: Bias of the naive estimators for different values of σ2
u2

As we expected, the increase in ME of X2 has no impact on the estimate of the

coefficient of X1, β1. As we see in Figure 3.7 and Table 3.8, the bias in the naive

estimator of β1 stays unchanged, as σ2
u2

increases from 0 to 2. However, the bias in

the naive estimators of β2 has a sharp increase first, and then continues to increase,

slowly. Similarly, when the variance increases from 0 to 0.5, the bias in the naive
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

σ2
u2

= 0.2 -0.0616 0.0888 -0.1974 0.0015 0.2698 0.0054

σ2
u2

= 0.4 -0.1017 0.0880 -0.1984 0.0016 0.3521 0.0037

σ2
u2

= 0.6 -0.1222 0.0875 -0.1988 0.0016 0.3935 0.0028

σ2
u2

= 0.8 -0.1346 0.0873 -0.1990 0.0017 0.4184 0.0022

σ2
u2

= 1.0 -0.1430 0.0871 -0.1991 0.0017 0.4351 0.0019

σ2
u2

= 1.2 -0.1490 0.0870 -0.1992 0.0017 0.4471 0.0016

σ2
u2

= 1.4 -0.1536 0.0869 -0.1992 0.0017 0.4561 0.0014

σ2
u2

= 1.6 -0.1572 0.0868 -0.1992 0.0017 0.4632 0.0013

σ2
u2

= 1.8 -0.1601 0.0867 -0.1993 0.0017 0.4688 0.0012

σ2
u2

= 2.0 -0.1625 0.0867 -0.1993 0.0017 0.4734 0.0011

Table 3.8: Bias and standard error of the naive estimators for the different values of
σ2
u2

estimators of α has faster rise and then slow increase later. The variabilities in the

estimators of α and β1 seem to stay unchanged. However, the increase in ME of X2

decreases the variability of the naive estimator of its coefficient, making it an even

worse estimator.
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3.1.7 Scenario 7: Bias analysis for different values of α
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Figure 3.8: Bias of the naive estimators for different values of α

From Figure 3.8 and Table 3.9, it is clear that the bias in the naive estimators

of all the coefficients stay unchanged as α increases from -3 to 3. Since this model

has only measurement errors, and G has no correlation with the covariates with

measurement error, the change of α does not affect the bias of the naive estimators

of the coefficients. The same happens to their variabilities.
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

α = −3.0 -0.1346 0.0873 -0.199 0.0017 0.4184 0.0022

α = −2.5 -0.1346 0.0873 -0.199 0.0017 0.4184 0.0022

α = −2.0 -0.1346 0.0873 -0.199 0.0017 0.4184 0.0022

α = −1.5 -0.1346 0.0873 -0.199 0.0017 0.4184 0.0022

α = −1.0 -0.1346 0.0873 -0.199 0.0017 0.4184 0.0022

α = −0.5 -0.1346 0.0873 -0.199 0.0017 0.4184 0.0022

α = 0 -0.1346 0.0873 -0.199 0.0017 0.4184 0.0022

α = 0.5 -0.1346 0.0873 -0.199 0.0017 0.4184 0.0022

α = 1.0 -0.1346 0.0873 -0.199 0.0017 0.4184 0.0022

α = 1.5 -0.1346 0.0873 -0.199 0.0017 0.4184 0.0022

α = 2.0 -0.1346 0.0873 -0.199 0.0017 0.4184 0.0022

α = 2.5 -0.1346 0.0873 -0.199 0.0017 0.4184 0.0022

α = 3.0 -0.1346 0.0873 -0.199 0.0017 0.4184 0.0022

Table 3.9: Bias and standard error of the naive estimators for the different values of
α



3.1 Simulation Studies 33

3.1.8 Scenario 8: Bias analysis for different values of β1
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Figure 3.9: Bias of the naive estimators for different values of β1

Figure 3.9 and Table 3.10 show that the biases of the naive estimators of β1 and

α have dramatic changes as β1 increases from -3 to 3. The bias of the naive estimator

of β1 increases from negative values to zero, as β1 changes from negative to around

one, then it becomes positive as β1 increses to 3. The bias of the naive estimator of α,

however, decreases from positive values to negative values, as β1 moves in the opposite

direction. The bias in the naive estimator of β2 seems to remain unchanged. Similar
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

β1 = −3.0 1.5764 0.1083 -3.6746 0.0025 0.4663 0.0048

β1 = −2.5 1.3625 0.1049 -3.2401 0.0022 0.4603 0.0043

β1 = −2.0 1.1487 0.1018 -2.8057 0.0019 0.4544 0.0038

β1 = −1.5 0.9348 0.0988 -2.3712 0.0016 0.4484 0.0034

β1 = −1.0 0.7209 0.0960 -1.9368 0.0014 0.4424 0.0030

β1 = −0.5 0.5070 0.0935 -1.5023 0.0013 0.4364 0.0027

β1 = 0 0.2932 0.0911 -1.0679 0.0013 0.4304 0.0024

β1 = 0.5 0.0793 0.0891 -0.6335 0.0014 0.4244 0.0023

β1 = 1.0 -0.1346 0.0873 -0.1990 0.0017 0.4184 0.0022

β1 = 1.5 -0.3485 0.0858 0.2354 0.0019 0.4125 0.0023

β1 = 2.0 -0.5623 0.0846 0.6699 0.0022 0.4065 0.0025

β1 = 2.5 -0.7762 0.0837 1.1043 0.0026 0.4005 0.0028

β1 = 3.0 -0.9901 0.0832 1.5388 0.0029 0.3945 0.0032

Table 3.10: Bias and standard error of the naive estimators for the different values of
β1

to the last scenario, changes in the coefficient parameters of one continuous predictor

has no effects on the estimate of the coefficient of the other continuous predictor. It

is interesting to observe the variabilities in the three estimators. The variability in

the estimator of α decreases with the increase in β1, making it more sensitive to the

coefficient’s sign. For the estimators of the two βs, however, variabilities are concave

function of β1, with minimum value near β1 = 0, for V ar(β1) and β1 = 1 for V ar(β2).
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3.1.9 Scenario 9: Bias analysis for different values of β2
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Figure 3.10: Bias of the naive estimators for different values of β2

From Figure 3.10 and Table 3.11 we can see that the impact of ME is quite

dramatic on the bias of the naive estimators of β2 and α, as β2 increases from -3 to

3. More specifically, the naive estimator of β2 underestimates β2 when it is negative,

and overestimates it when it becomes positive. On the contrary, the bias of the naive

estimator of α decreases from a positive value to a negative value. This is similar to

the behaviour of the bias in the naive estimator of α when we increase β1 from -3 to
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

β2 = −3.0 1.2213 0.0951 -0.1478 0.0020 -2.4325 0.0035

β2 = −2.5 1.0276 0.0930 -0.1551 0.0017 -2.0252 0.0032

β2 = −2.0 0.8339 0.0911 -0.1624 0.0015 -1.6180 0.0029

β2 = −1.5 0.6402 0.0896 -0.1697 0.0013 -1.2107 0.0026

β2 = −1.0 0.4465 0.0885 -0.1770 0.0012 -0.8034 0.0024

β2 = −0.5 0.2528 0.0877 -0.1844 0.0013 -0.3961 0.0023

β2 = 0 0.0591 0.0873 -0.1917 0.0014 0.0112 0.0022

β2 = 0.5 -0.1346 0.0873 -0.1990 0.0017 0.4184 0.0022

β2 = 1.0 -0.3283 0.0877 -0.2063 0.0019 0.8257 0.0023

β2 = 1.5 -0.5220 0.0884 -0.2136 0.0022 1.2330 0.0025

β2 = 2.0 -0.7157 0.0896 -0.2210 0.0025 1.6403 0.0027

β2 = 2.5 -0.9094 0.0911 -0.2283 0.0029 2.0476 0.0030

β2 = 3.0 -1.1031 0.0929 -0.2356 0.0032 2.4548 0.0033

Table 3.11: Bias and standard error of the naive estimators for the different values of
β2

3. The bias of the naive estimator of β1 seems to remain unchanged. Similarly, it is

implied that the change of the coefficient parameter of one continuous predictor has

no effect on the coefficient parameter of the other continuous predictor. Similar to the

last scenario, the variability of the estimator of α seems to be sensitive to the sign of

β2, decreases as β2 changes from negative values to positive ones. For the estimators

of the two βs, variabilities have roughly concave shapes, with minimum value around

β2 = 0.
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3.1.10 Scenario 10: Bias analysis for different values of π
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Figure 3.11: Bias of the naive estimators for different values of π

As it can be seen in Figure 3.11 and Table 3.12, the probability of classified

predictor G seems to have no effect on the bias of the naive estimators for all the

coefficient parameters. The variabilities, however, change as π changes from 0.1 to 0.9.

Table 3.12 shows the impact of changes of π on the estimator of α. More specifically,

the decrease in the variance of α̂ makes it a very poor estimator. Interestingly, the

variabilities in both estimators of β1 and β2 have convex shapes, with maximum values
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

π = 0.1 -0.1255 0.2123 -0.2019 0.0010 0.4149 0.0014

π = 0.2 -0.1323 0.1424 -0.2007 0.0013 0.4162 0.0018

π = 0.3 -0.1344 0.1120 -0.1997 0.0016 0.4174 0.0021

π = 0.4 -0.1346 0.0873 -0.1990 0.0017 0.4184 0.0022

π = 0.5 -0.1359 0.0713 -0.1981 0.0017 0.4196 0.0023

π = 0.6 -0.1389 0.0586 -0.1966 0.0016 0.4213 0.0022

π = 0.7 -0.1394 0.0487 -0.1958 0.0016 0.4224 0.0022

π = 0.8 -0.1408 0.0363 -0.1946 0.0014 0.4238 0.0019

π = 0.9 -0.1428 0.0242 -0.1932 0.0010 0.4255 0.0014

Table 3.12: Bias and standard error of the naive estimators for the different values of
π

around π = 0.5.
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3.1.11 Scenario 11: Bias analysis for different values of n
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Figure 3.12: Bias of the naive estimators for different values of n

As it was expected, the bias in the naive estimators for all the coefficient pa-

rameters do not improve with the increase in the sample size. (Figure 3.12) The

variabilities of the estimators, however, decline with the larger sample size. (Ta-

ble 3.13) Therefore, with more observations, the naive estimators become very poor

estimators!



3.1 Simulation Studies 40

α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

n = 100 0.2559 0.1786 0.01691 0.0038 0.5533 0.0033

n = 300 0.2083 0.1105 0.1389 0.0022 0.5075 0.0022

n = 500 0.1345 0.0872 0.1990 0.0016 0.4184 0.0022

n = 700 0.1583 0.0742 0.0316 0.0014 0.3757 0.0016

n = 900 0.1061 0.0646 0.1543 0.0013 0.3870 0.0014

Table 3.13: Bias and standard error of the naive estimators for the different values of
n



Chapter 4

Longitudinal Linear Mixed-effects

Model with Misclassification

Now, we consider model (2.1) with misclassification, only. In this model, the true

predictor Gi is not observed. Instead, G∗i is observed with random misclassification.

We first consider both G and G∗ to be binary variables with values 0 and 1. The

conditional probability of G∗ given G is displayed below.

θij = P (G∗ = i|G = j); i = 0, 1; j = 0, 1

where,

1∑
i=0

θij = 1, j = 0, 1.
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In literature, θ11, or the probability of the correct classification of the success,

is called sensitivity, and θ00, or the probability of correctly classifying the failure,

is called specificity. In this model with misclassification, we can write the marginal

moments of the response in terms of the observed covariate G∗. Therefore, by model

assumptions and the law of iterative expectation (McClave & Sincich (2013)), we

have

E(yit|Xit, G
∗
i )

= EG|G∗(E(yit|Xit, G
∗
i , Gi))|Xit, G

∗
i )

= EG|G∗(E(yit|Xit, Gi))|Xit, G
∗
i ) (4.1)

= EG|G∗(X
′
itβ +Giα|Xit, G

∗
i )

= X ′itβ + E(Gi|G∗i )α (4.2)

= X ′itβ + P (Gi = 1|G∗i )α. (4.3)

where equation (4.1) is true, since G∗i is assumed to be surrogate. We can express

P (Gi = 1|G∗i ) based on the model parameters. In pratice, P (G), or the probability of

success for the true variable, is usually known. We define P (G = 1) to be π. Hence,
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by The Bayes’ Law,

P (Gi = 1|G∗i = 0)

=
P (G∗i = 0|Gi = 1)P (Gi = 1)

P (G∗i = 0|Gi = 0)P (Gi = 0) + P (G∗i = 0|Gi = 1)P (Gi = 1)

=
θ01π

θ00(1− π) + θ01π
. (4.4)

Similarly,

P (Gi = 1|G∗i = 1)

=
P (G∗i = 1|Gi = 1)P (Gi = 1)

P (G∗i = 1|Gi = 0)P (Gi = 0) + P (G∗i = 1|Gi = 1)P (Gi = 1)

=
θ11π

θ10(1− π) + θ11π
(4.5)

Next, we consider both G and G∗ with three categories, with status 0,1, and 2.

The conditional probabilities are then as follows,

θij = P (G∗ = i|G = j); i = 0, 1, 2; j = 0, 1, 2

where,

2∑
i=0

θij = 1, j = 0, 1, 2.

Similar to the binary case, we express P (Gi = 1|G∗i ) and P (Gi = 2|G∗i ), based on
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model parameters. Defining P (Gi = 1) = π1 and P (Gi = 2) = π2, we have

P (G∗i = 0) =
2∑
j=0

P (G∗i = 0|Gi = j)P (Gi = j) = θ00(1− π1 − π2) + θ01π1 + θ02π2,

P (G∗i = 1) =
2∑
j=0

P (G∗i = 1|Gi = j)P (Gi = j) = θ10(1− π1 − π2) + θ11π1 + θ12π2,

P (G∗i = 2) =
2∑
j=0

P (G∗i = 2|Gi = j)P (Gi = j) = θ20(1− π1 − π2) + θ21π1 + θ22π2.

Therefore, we can calculate the conditional probabilities of G given G∗ as follows.

P (Gi = 1|G∗i = 0)

=
P (G∗i = 0|Gi = 1)P (Gi = 1)

P (G∗i = 0)

=
θ01π1

θ00(1− π1 − π2) + θ01π1 + θ02π2
, (4.6)

P (Gi = 2|G∗i = 0) =
θ02π2

θ00(1− π1 − π2) + θ01π1 + θ02π2
, (4.7)

P (Gi = 1|G∗i = 1) =
θ11π1

θ10(1− π1 − π2) + θ11π1 + θ12π2
, (4.8)

P (Gi = 2|G∗i = 1) =
θ12π2

θ10(1− π1 − π2) + θ11π1 + θ12π2
, (4.9)

P (Gi = 1|G∗i = 2) =
θ21π1

θ20(1− π1 − π2) + θ21π1 + θ22π2
, (4.10)

P (Gi = 2|G∗i = 2) =
θ22π2

θ20(1− π1 − π2) + θ21π1 + θ22π2
. (4.11)

Similarly, by the model assumptions and the law of iterative variance, we can
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calculate the marginal variance and covariance of response as follows.

var(yit|Xit, G
∗
i )

= varG|G∗(E((yit|Xit, G
∗
i , Gi)|Xit, G

∗
i )) + EG|G∗(var((yit|Xit, G

∗
i , Gi)|Xit, G

∗
i ))

= varG|G∗(E((yit|Xit, Gi)|Xit, G
∗
i )) + EG|G∗(var((yit|Xit, Gi)|Xit, G

∗
i )) (4.12)

= varG|G∗(X
′
itβ +Giα|Xit, G

∗
i ) + EG|G∗(σ

2
γ +

σ2
a

1− ρ2
|Xit, G

∗
i ) (4.13)

= var(Gi|G∗i )α2 + σ2
γ +

σ2
a

1− ρ2
. (4.14)

When t 6= u,

cov(yit, yiu|Xit, G
∗
i )

= covG|G∗(E((yit|Xit, Gi, G
∗
i )|Xit, G

∗
i ), E((yiu|Xiu, Gi, G

∗
i )|Xiu, G

∗
i ))

+ EG|G∗(cov(((yit|Xit, Gi, G
∗
i )|Xit, G

∗
i ), ((yiu|Xiu, Gi, G

∗
i )|Xiu, G

∗
i )))

= covG|G∗(E((yit|Xit, Gi)|Xit, G
∗
i ), E((yiu|Xiu, Gi)|Xiu, G

∗
i ))

+ EG|G∗(cov(((yit|Xit, Gi)|Xit, G
∗
i ), ((yiu|Xiu, Gi)|Xiu, G

∗
i ))) (4.15)

= covG|G∗((X
′
itβ + αGi|Xit, G

∗
i ), (X

′
iuβ + αGi|Xiu, G

∗
i ))

+ EG|G∗(σ
2
γ +

σ2
aρ
|t−u|

1− ρ2
|Xit, Xiu, G

∗
i ) (4.16)

= var(Gi|G∗i )α2 + σ2
γ +

σ2
aρ
|t−u|

1− ρ2
(4.17)

Equations (4.12) and (4.15) are true, since G∗ is a surrogate (Hogg & Craig

(2004)). Moreover, equations (4.13) and (4.16) result from equations (2.2), (2.3),
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and (2.4).

Now, we further calculate var(Gi|G∗i ) as required for both var(yit|Xi, G
∗
i ) and

cov(yit, yiu|Xi, G
∗
i ). Similar to the marginal mean, we first consider the binary case.

var(Gi|G∗i = 0) = E(G2
i |G∗i = 0)− (E(Gi|G∗i = 0))2

= 12 ∗ P (Gi = 1|G∗i = 0)− (1 ∗ P (Gi = 1|G∗i = 0))2

=
θ01π

θ00(1− π) + θ01π
− (

θ01π

θ00(1− π) + θ01π
)2 (4.18)

var(Gi|G∗i = 1) = E(G2
i |G∗i = 1)− (E(Gi|G∗i = 1))2

= 12 ∗ P (Gi = 1|G∗i = 1)− (1 ∗ P (Gi = 1|G∗i = 1)2

=
θ11π

θ10(1− π) + θ11π
− (

θ11π

θ10(1− π) + θ11π
)2 (4.19)

where equations (4.18) and (4.19) come from (4.4) and (4.5).

Moving to three categories, we have,

var(Gi|G∗i = 0)

= E(G2
i |G∗i = 0)− (E(Gi|G∗i = 0))2

= 12 ∗ P (Gi = 1|G∗i = 0) + 22 ∗ P (Gi = 2|G∗i = 0)

− (1 ∗ P (Gi = 1|G∗i = 0) + 2 ∗ P (Gi = 2|G∗i = 0))2

=
θ01π1

θ00(1− π1 − π2) + θ01π1 + θ02π2
+ 4

θ02π2
θ00(1− π1 − π2) + θ01π1 + θ02π2

− (
θ01π1

θ00(1− π1 − π2) + θ01π1 + θ02π2
+ 2

θ02π2
θ00(1− π1 − π2) + θ01π1 + θ02π2

)2
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where, in the last equations, the two conditional probabilities come from (4.6) and

(4.7). Similarly, based on the conditional probabilities calculated in (4.8)–(4.11), we

have

var(Gi|G∗i = 1) =
θ11π1

θ10(1− π1 − π2) + θ11π1 + θ12π2
+ 4

θ12π2
θ10(1− π1 − π2) + θ11π1 + θ12π2

− (
θ11π1

θ10(1− π1 − π2) + θ11π1 + θ12π2
+ 2

θ12π2
θ10(1− π1 − π2) + θ11π1 + θ12π2

)2,

var(Gi|G∗i = 2) =
θ21π1

θ20(1− π1 − π2) + θ21π1 + θ22π2
+ 4

θ22π2
θ20(1− π1 − π2) + θ21π1 + θ22π2

− (
θ21π1

θ20(1− π1 − π2) + θ21π1 + θ22π2
+ 2

θ22π2
θ20(1− π1 − π2) + θ21π1 + θ22π2

)2.

The naive GLS estimator of the model coefficient parameters based on the ob-

served G∗, (rather than G), is expressed as follows.

θ̂n =

β̂n
α̂n

 = [
n∑
i=1

 X ′i

1TG
∗
i

Ω∗
−1

i (X ′i : 1TG
∗
i )]
−1[

n∑
i=1

 X ′i

1TG
∗
i

Ω∗
−1

i yi],

where Ω∗i is the matrix of variance and covariance of yi based on G∗i , with the following

elements.

1. var(yit|Xit, G
∗
i ) = σ2

γ + σ2
a

1−ρ2 ,

2. for t 6= u, cov(yit, yiu|Xit, Xiu, G
∗
i ) = σ2

γ + σ2
aρ
|t−u|

1−ρ2 .

Similar to the model with ME only, the covariance matrix of θ̂n can be expressed
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as

Cov(θ̂n) =

 n∑
i=1

 X ′i

1TG
∗
i

Ω∗
−1

i (X ′i : 1TG
∗
i )


−1

.

4.1 Simulation Studies

Misclassification can affect both bias and variabilities of the parameter estimates.

(Fuller (1996), Carrol and Stefanski (2006), Buonaccorsi (2010)). It is, however, very

difficult to assess the bias in the naive estimator as a function of the true response

covariance matrix. In this research, it is assumed that the covariance matrix of the

response is known. However, in reality, this matrix is itself a function of the unknown

model parameters. We therefore evaluate the bias caused by the misclassification

through simulation studies.

1. Categorical variable with two categories

We first consider the case where both G and G∗ are binary. For T = 4 time

points, we generated p = 2 independent continuous time-invariant predictors

from a uniform distribution U(0, 1). The random effect γ was generated from

a normal distribution with mean zero. Except in the scenario that σ2
γ changes,

it was set to one. The categorial time-invariant G was generated from a binary

distribution with probability of success π = 0.4, except in the scenario where
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it changed. The regression model parameters were set to be α = 1 and β =

(1, 0.5)′. The model error term, ε, follows a first order auto-regressive model,

such that εit = ρ1εi,t−1 + ait and |ρ1| < 1. We generated ait from a normal

distribution with mean zero. Except when they changed, we set ρ1 and σ2
a to

be 0.8 and 1, respectively.

For the misclassification models, the observed categorial time-invariant G∗ was

generated based on G. Specificity (θ00) and sensitivity (θ11) were set to be 0.9

and 0.8, respectively, unless changed in the relative scenarios.

Similar to the case with ME only, we selected 500 as the sample size for all

the scenarios, except the last scenario when it changes. For each of the sample

sizes, 1000 Monte Carlo replicates were simulated and the Monte-Carlo mean

estimates and standard errors of the estimators were computed.

For the following scenarios, we modify one model parameter at a time, while

keeping other parameters unchanged. Table 4.1 shows the selected range as well

as the steps for every parameter.
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Table 4.1: The range and step of the model parameters
Parameter Range Step
ρ1 (−1, 1) 0.1
σ2
a (0, 2) 0.2
σ2
γ (0,2) 0.2
α (-3,3) 0.5
β1 (-3,3) 0.5
β2 (-3,3) 0.5
θ00 (0,1) 0.1
θ11 (0,1) 0.1
π (0,1) 0.1
n (100,1000) 100
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4.1.1 Scenario 1: Bias analysis for different values of ρ1
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Figure 4.1: Bias of the naive estimators for different values of ρ1

As ρ1, the autocorrelation lag parameter for the model error term, changes from

-1 to 1, the absolute values of the bias of the three naive estimators slightly de-

crease. The variabilities of the naive estimators of β decrease as ρ1 changes from

-1 to 1, while the variability of the estimator of α has the opposite behaviour.

(Figure 4.1 and Table 4.2)
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

ρ1 = −0.9 0.3497 0.0751 -0.0723 0.0227 -0.0738 0.0236

ρ1 = −0.8 0.3505 0.0767 -0.0732 0.0233 -0.0742 0.0240

ρ1 = −0.7 0.3509 0.0781 -0.0738 0.0238 -0.0743 0.0243

ρ1 = −0.6 0.3510 0.0795 -0.0741 0.0242 -0.0740 0.0245

ρ1 = −0.5 0.3508 0.0808 -0.0739 0.0245 -0.0734 0.0245

ρ1 = −0.4 0.3502 0.0821 -0.0734 0.0247 -0.0725 0.0245

ρ1 = −0.3 0.3493 0.0835 -0.0724 0.0248 -0.0712 0.0244

ρ1 = −0.2 0.3480 0.0850 -0.0710 0.0248 -0.0695 0.0242

ρ1 = −0.1 0.3463 0.0866 -0.0692 0.0246 -0.0675 0.0239

ρ1 = 0 0.3442 0.0883 -0.0670 0.0244 -0.0652 0.0235

ρ1 = 0.1 0.3417 0.0903 -0.0642 0.0241 -0.0624 0.0231

ρ1 = 0.2 0.3388 0.0927 -0.0610 0.0236 -0.0592 0.0226

ρ1 = 0.3 0.3354 0.0955 -0.0572 0.0230 -0.0556 0.0220

ρ1 = 0.4 0.3314 0.0989 -0.0529 0.0223 -0.0514 0.0212

ρ1 = 0.5 0.3268 0.1033 -0.0478 0.0214 -0.0465 0.0203

ρ1 = 0.6 0.3213 0.1091 -0.0418 0.0201 -0.0408 0.0191

ρ1 = 0.7 0.3146 0.1175 -0.0346 0.0184 -0.0339 0.0175

ρ1 = 0.8 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.0150

ρ1 = 0.9 0.2950 0.1623 -0.0146 0.0116 -0.0143 0.0110

Table 4.2: Bias and Standard Error for the different values of ρ1
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4.1.2 Scenario 2: Bias analysis for different values of σ2a

0.0 0.5 1.0 1.5 2.0

-0
.4

-0
.2

0.
0

0.
2

0.
4

avar

B
ia
s

beta1
beta2
alpha

Figure 4.2: Bias of the naive estimators for different values of the variability of model
error term

From Figure 4.2, we can see that the bias of the naive estimators of all the

coefficient parameters seem to stay unchanged. However, from Table 4.3, we

see that the variabilities of all the estimators increase slightly. This means

that the change of the variability of model error term creates more conservative

estimators for α, β1 and β2.
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

σ2
a = 0.2 0.2896 0.0693 -0.0123 0.0043 -0.0120 0.0041

σ2
a = 0.4 0.2967 0.0854 -0.0182 0.0077 -0.0178 0.0073

σ2
a = 0.6 0.3010 0.1010 -0.0218 0.0106 -0.0213 0.0100

σ2
a = 0.8 0.3040 0.1163 -0.0241 0.0133 -0.0236 0.0126

σ2
a = 1.0 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.0150

σ2
a = 1.2 0.3079 0.1463 -0.0271 0.0183 -0.0265 0.0174

σ2
a = 1.4 0.3093 0.1610 -0.0281 0.0208 -0.0275 0.0197

σ2
a = 1.6 0.3105 0.1758 -0.0289 0.0232 -0.0283 0.0219

σ2
a = 1.8 0.3114 0.1904 -0.0296 0.0256 -0.0290 0.0242

σ2
a = 2.0 0.3123 0.2050 -0.0301 0.0279 -0.0295 0.0264

Table 4.3: Bias and Standard Error for the different values of the variability of model
error term
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4.1.3 Scenario 3: Bias analysis for different values of σ2γ
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Figure 4.3: Bias of the naive estimators for different values of the variability in the
random effect

As presented in Figure 4.3, interestingly, the bias of the naive estimators of all

the coefficient parameters seem to stay unchanged when σ2
γ changes from 0 to 2.

However, from Table 4.4, we see that the variabilities of all the three estimators

slightly decrease. We can conclude that increase in the variance of γ, in the

presence of misclassification, provides a very poor estimator for α with large
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

σ2
γ = 0.2 0.3142 0.0938 -0.0328 0.0140 -0.0322 0.0133

σ2
γ = 0.4 0.3119 0.1030 -0.0307 0.0145 -0.0301 0.0138

σ2
γ = 0.6 0.3098 0.1123 -0.0289 0.0150 -0.0283 0.0142

σ2
γ = 0.8 0.3079 0.1218 -0.0273 0.0154 -0.0267 0.0146

σ2
γ = 1.0 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.0150

σ2
γ = 1.2 0.3046 0.1410 -0.0245 0.0162 -0.0240 0.0154

σ2
γ = 1.4 0.3032 0.1506 -0.0233 0.0166 -0.0228 0.0157

σ2
γ = 1.6 0.3019 0.1603 -0.0222 0.0169 -0.0217 0.0160

σ2
γ = 1.8 0.3006 0.1700 -0.0212 0.0172 -0.0207 0.0163

σ2
γ = 2.0 0.2994 0.1798 -0.0203 0.0175 -0.0199 0.0166

Table 4.4: Bias and Standard Error for the different values of the variability in the
random effect

bias and small variability. However, it has almost no impact on estimating β1

and β2.
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4.1.4 Scenario 4: Bias analysis for different values of α
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Figure 4.4: Bias of the naive estimators for different values of α

From Figure 4.4 and Table 4.5, we are not surprised to see that the bias in the

naive estimators of all the continuous coefficient parameters stay unchanged

as α increases from -3 to 3. Since the covariates are generated independently,

the change in α has no effects on β1 and β2. However, the bias in the naive

estimator of α increases sharply, from -1 to 1. Clearly, when α = 0, the bias

in the naive estimator of α is almost zero. The changes in α seems to have no
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

α = −3.0 -0.8934 0.1381 0.0737 0.0173 0.0725 0.0161

α = −2.5 -0.7434 0.1355 0.0613 0.0168 0.0603 0.0157

α = −2.0 -0.5935 0.1334 0.0488 0.0164 0.0480 0.0153

α = −1.5 -0.4435 0.1318 0.0364 0.0161 0.0358 0.0150

α = −1.0 -0.2936 0.1306 0.0240 0.0158 0.0236 0.0148

α = −0.5 -0.1436 0.1300 0.0115 0.0157 0.0114 0.0147

α = 0 0.0063 0.1299 -0.0009 0.0156 -0.0008 0.0147

α = 0.5 0.1563 0.1304 -0.0134 0.0157 -0.0131 0.0148

α = 1.0 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.0150

α = 1.5 0.4561 0.1328 -0.0382 0.0161 -0.0375 0.0153

α = 2.0 0.6061 0.1348 -0.0507 0.0165 -0.0497 0.0157

α = 2.5 0.7560 0.1373 -0.0631 0.0169 -0.0619 0.0162

α = 3.0 0.9060 0.1402 -0.0755 0.0174 -0.0741 0.0168

Table 4.5: Bias and Standard Error for the different values of α

effect on the variability of the naive estimators.
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4.1.5 Scenario 5: Bias analysis for different values of β1

and β2
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Figure 4.5: Bias of the naive estimators for different values of β1

Figures 4.5 and 4.6, and Tables 4.7 and 4.6 show that the bias in the naive

estimators of β1, β2 and α stay unchanged as β1 and β2 increase from −3 to 3.

Since the model has misclassification only, and all the variables are independent,

the change of the coefficient parameter of continuous predictors has no impact
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

β1 = −3.0 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.015

β1 = −2.5 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.015

β1 = −2.0 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.015

β1 = −1.5 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.015

β1 = −1.0 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.015

β1 = −0.5 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.015

β1 = 0 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.015

β1 = 0.5 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.015

β1 = 1.0 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.015

β1 = 1.5 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.015

β1 = 2.0 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.015

β1 = 2.5 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.015

β1 = 3.0 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.015

Table 4.6: Bias and Standard Error for the different values of β1

on the bias of the naive estimators. The variabilities also remain unchanged.
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Figure 4.6: Bias of the naive estimators for different values of β2
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

β2 = −3.0 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.015

β2 = −2.5 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.015

β2 = −2.0 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.015

β2 = −1.5 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.015

β2 = −1.0 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.015

β2 = −0.5 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.015

β2 = 0 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.015

β2 = 0.5 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.015

β2 = 1.0 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.015

β2 = 1.5 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.015

β2 = 2.0 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.015

β2 = 2.5 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.015

β2 = 3.0 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.015

Table 4.7: Bias and Standard Error for the different values of β2
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4.1.6 Scenario 6: Bias analysis for different values of θ00
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Figure 4.7: Bias of the naive estimators for different values of specificity

From Figure 4.7 and Table 4.8, it is obvious to find that the bias in the naive

estimators of β1 and β2 stay almost unchanged, as the specificity increases from

0 to 1. However, the bias in the naive estimator of α decreases with the increase

in specificity. More specifically, when θ00 changes from 0.7 to 0.9, the decrease in

the bias speeds up. Hence, the higher the probability of correct classification of

the failure, the smaller the bias in the naive estimator of α. Since the probability
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

θ00 = 0.1 0.6293 0.0465 -0.0241 0.0107 -0.0218 0.0102

θ00 = 0.2 0.5885 0.0566 -0.0210 0.0122 -0.0193 0.0117

θ00 = 0.3 0.5437 0.0660 -0.0186 0.0133 -0.0172 0.0127

θ00 = 0.4 0.5057 0.0744 -0.0183 0.0138 -0.0174 0.0131

θ00 = 0.5 0.4895 0.0876 -0.0230 0.0148 -0.0227 0.0139

θ00 = 0.6 0.4607 0.1010 -0.0264 0.0155 -0.0266 0.0145

θ00 = 0.7 0.4227 0.1185 -0.0303 0.0162 -0.0291 0.0153

θ00 = 0.8 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.0150

θ00 = 0.9 0.1785 0.1440 -0.0232 0.0151 -0.0231 0.0141

Table 4.8: Bias and Standard Error for the different values of specificity

of success in the population is set to be 0.4 in this scenario, increase in specificity

increases the correct classification of the majority of the population. It should

also be mentioned that the increase in the specificity enlarges the variability of

the naive estimator of α, making it overall a more conservative estimator.
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4.1.7 Scenario 7: Bias analysis for different values of θ11
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Figure 4.8: Bias of the naive estimators for different values of sensitivity

Figure 4.8 and Table 4.9 show that as sensitivity increases from zero to 1, the

bias in the naive estimators of β1 and β2 has a small improvement from negative

values to almost zero, making them better estimators. In addition, the bias

of the naive estimator of α decreases from a positive value to smaller values,

while its variability decreases. Therefore, increasing the sensitivity improves

the overall estimation of all the coefficient parameters.
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

θ11 = 0.1 0.6293 0.0465 -0.0241 0.0107 -0.0218 0.0102

θ11 = 0.2 0.5885 0.0566 -0.0210 0.0122 -0.0193 0.0117

θ11 = 0.3 0.5437 0.0660 -0.0186 0.0133 -0.0172 0.0127

θ11 = 0.4 0.5057 0.0744 -0.0183 0.0138 -0.0174 0.0131

θ11 = 0.5 0.4895 0.0876 -0.0230 0.0148 -0.0227 0.0139

θ11 = 0.6 0.4607 0.1010 -0.0264 0.0155 -0.0266 0.0145

θ11 = 0.7 0.4227 0.1185 -0.0303 0.0162 -0.0291 0.0153

θ11 = 0.8 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.0150

θ11 = 0.9 0.1785 0.1440 -0.0232 0.0151 -0.0231 0.0141

Table 4.9: Bias and Standard Error for the different values of sensitivity
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4.1.8 Scenario 8: Bias analysis for different values of π
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Figure 4.9: Bias of the naive estimators for different values of π

From Figure 4.9 and Table 4.10, we find that the bias in the naive estimators

for the coefficient parameters of continuous predictors seems to remain almost

unchanged as the probability of success in the classified predictor G increases

from 0.1 to 0.9. However, it has impact on the bias in the naive estimator of

the coefficient of the classified predictor. The bias in the naive estimator of α

decreases from a positive value to almost zero. It means increasing the value
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

π = 0.1 0.7466 0.1305 -0.0090 0.0093 -0.0097 0.0084

π = 0.2 0.5355 0.1411 -0.0140 0.0125 -0.0149 0.0114

π = 0.3 0.4041 0.1402 -0.0200 0.0147 -0.0204 0.0137

π = 0.4 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.0150

π = 0.5 0.2351 0.1201 -0.0321 0.0164 -0.0304 0.0159

π = 0.6 0.1765 0.1068 -0.0378 0.0164 -0.0350 0.0158

π = 0.7 0.1326 0.0921 -0.0442 0.0158 -0.0400 0.0153

π = 0.8 0.1008 0.0733 -0.0514 0.0138 -0.0458 0.0135

π = 0.9 0.0717 0.0526 -0.0580 0.0107 -0.0508 0.0105

Table 4.10: Bias and Standard Error for the different values of π

of π helps to reduce the bias in the naive estimator of α. This is because both

sensitivity and specificity for this scenario are relatively high. It should also

be mentioned that the reduction in the variability of α̂, makes an overall more

precise estimator for α.
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4.1.9 Scenario 9: Bias analysis for different values of n
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Figure 4.10: Bias of the Naive Estimators for different values of n

As Figure 4.10 and Table 4.11 present, the bias in the naive estimators of all the

coefficient parameters seem to stay unchanged. More interestingly, it reduces

the variabilities, making even worse estimators. Hence, increasing the sample

size does not improve any of the naive estimators of the coefficient parameters.

2. Categorical variable with three categories
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

n = 100 0.3257 0.2857 -0.0308 0.0383 -0.0304 0.0367

n = 200 0.2786 0.2030 -0.0224 0.0250 -0.0204 0.0235

n = 300 0.2974 0.1729 -0.0246 0.0207 -0.0244 0.0195

n = 400 0.3058 0.1451 -0.0261 0.0172 -0.0238 0.0162

n = 500 0.3062 0.1314 -0.0258 0.0158 -0.0253 0.0150

n = 600 0.2956 0.1198 -0.0239 0.0142 -0.0242 0.0140

n = 700 0.3097 0.1149 -0.0256 0.0134 -0.0268 0.0138

n = 800 0.3014 0.1043 -0.0252 0.0126 -0.0264 0.0132

n = 900 0.3012 0.0978 -0.0237 0.0112 -0.0258 0.0118

n = 1000 0.3019 0.0949 -0.0238 0.0106 -0.0258 0.0117

Table 4.11: Bias and Standard Error for the different values of n

Next, we consider three categories for the classified predictor. The common set

ups for T , p, the continuous covariates, the regression parameters, the model error

term and its lag correlation, and the random effects are the same as the binary case.

The categorical time-invariant G was generated from a trinomial distribution with

probability P (G = 1) = π1 = 0.4 and P (G = 2) = π2 = 0.4, except in the scenarios

that they changed. For the misclassification models, the categorical time-invariant G∗

was generated from G, with conditional probabilities θ00 = 0.8, θ01 = 0.1, θ02 = 0.3,

and θ10 = 0.1. Moreover, θ11 was set to 0.1, and θ22 to 0.4, except they changed in their

scenarios, respectively. The other three conditional probabilities can be calculated by
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equation
∑2

i=0 θij = 1, for every j = 0, 1, 2.

Here again, we selected 500 samples for all scenarios. For each sample size, 1000

Monte Carlo replicates were simulated and the Monte-Carlo mean estimates and

standard errors of the estimators were computed. For the following scenarios, we

modify one model parameter at a time, while keeping other parameters unchanged.

Table 4.12 shows the selected range, as well as the steps for every parameter.

Table 4.12: The range and step of the model parameters
Parameter Range Step
ρ1 (−1, 1) 0.1
σ2
a (0, 2) 0.2
σ2
γ (0,2) 0.2
α (-3,3) 0.5
β1 (-3,3) 0.5
β2 (-3,3) 0.5
θ00 (0,1) 0.1
θ01 (0,1) 0.1
θ02 (0,0.6] 0.1
θ10 (0,0.2] 0.01
θ11 (0,1) 0.1
θ22 (0,0.7] 0.1
π1 (0,0.6] 0.1
π2 (0,0.6] 0.1
n (100,1000) 100
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4.1.10 Scenario 1: Bias analysis for different values of ρ1

As ρ1, the autocorrelation lag parameter for the model error term, changes from -1

to 1, the absolute values of the bias of the three naive estimators slightly decreases.

The variabilities of the naive estimators of β decrease as ρ1 changes from -1 to 1,

while the variability of the estimator of α has the opposite behaviour. (Figure 4.11

and Table 4.13)
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Figure 4.11: Bias of the naive estimators for different values of ρ1
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

ρ1 = −0.9 0.3053 0.0251 -0.0504 0.0050 -0.0463 0.0048

ρ1 = −0.8 0.3179 0.0302 -0.0754 0.0084 -0.0692 0.0081

ρ1 = −0.7 0.3254 0.0353 -0.0902 0.0113 -0.0829 0.0109

ρ1 = −0.6 0.3302 0.0404 -0.1000 0.0139 -0.0919 0.0134

ρ1 = −0.5 0.3335 0.0455 -0.1070 0.0163 -0.0983 0.0157

ρ1 = −0.4 0.3360 0.0506 -0.1122 0.0186 -0.1031 0.0180

ρ1 = −0.3 0.3378 0.0557 -0.1162 0.0209 -0.1068 0.0202

ρ1 = −0.2 0.3391 0.0607 -0.1193 0.0231 -0.1097 0.0224

ρ1 = −0.1 0.3402 0.0658 -0.1219 0.0253 -0.1120 0.0246

ρ1 = 0 0.3410 0.0708 -0.1240 0.0275 -0.1140 0.0267

ρ1 = 0.1 0.3417 0.0758 -0.1258 0.0297 -0.1156 0.0288

ρ1 = 0.2 0.3422 0.0808 -0.1272 0.0318 -0.1170 0.0309

ρ1 = 0.3 0.3426 0.0858 -0.1285 0.0340 -0.1182 0.0330

ρ1 = 0.4 0.3429 0.0908 -0.1296 0.0361 -0.1192 0.0351

ρ1 = 0.5 0.3431 0.0957 -0.1306 0.0383 -0.1201 0.0372

ρ1 = 0.6 0.3433 0.1007 -0.1314 0.0404 -0.1208 0.0393

ρ1 = 0.7 0.3434 0.1057 -0.1321 0.0426 -0.1215 0.0414

ρ1 = 0.8 0.3435 0.1107 -0.1328 0.0447 -0.1221 0.0435

ρ1 = 0.9 0.3435 0.1156 -0.1333 0.0468 -0.1226 0.0456

Table 4.13: Bias and standard error of the naive estimators for the different values of
ρ1
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Figure 4.12: Bias of the naive estimators for different values of the variability of model
error term

4.1.11 Scenario 2: Bias analysis for different values of σ2a

In this scenario, we observe a similar trend to the last scenario. More specifically,

when the variance of ait changes from 0 to 2, Figure 4.12 and Table 4.14 show that

the bias in the naive estimators of β1 and β2 decrease slightly. However, the bias in

the naive estimator of α increases slightly. It also seems to enlarge the variabilities

of the naive estimators of β1, β2, and α.



4.1 Simulation Studies 75

α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

σ2
a = 0.2 0.3053 0.0251 -0.0504 0.0050 -0.0463 0.0048

σ2
a = 0.4 0.3179 0.0302 -0.0754 0.0084 -0.0692 0.0081

σ2
a = 0.6 0.3254 0.0353 -0.0902 0.0113 -0.0829 0.0109

σ2
a = 0.8 0.3302 0.0404 -0.1000 0.0139 -0.0919 0.0134

σ2
a = 1.0 0.3335 0.0455 -0.1070 0.0163 -0.0983 0.0157

σ2
a = 1.2 0.3360 0.0506 -0.1122 0.0186 -0.1031 0.0180

σ2
a = 1.4 0.3378 0.0557 -0.1162 0.0209 -0.1068 0.0202

σ2
a = 1.6 0.3391 0.0607 -0.1193 0.0231 -0.1097 0.0224

σ2
a = 1.8 0.3402 0.0658 -0.1219 0.0253 -0.1120 0.0246

σ2
a = 2.0 0.3410 0.0708 -0.1240 0.0275 -0.1140 0.0267

Table 4.14: Bias and standard error of the naive estimators for the different values of
the variability of model error term
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4.1.12 Scenario 3: Bias analysis for different values of σ2γ
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Figure 4.13: Bias of the Naive Estimators for different value of the variability in the
random effect

Figure 4.13 and Table 4.15 show that the bias in all the naive estimators decrease,

as we increase the variance of γ from 0 to 2. More specifically, the estimators of

β1 and β2 with downward bias, and the naive estimator of α with an upward bias,

decline with the increase in σ2
γ. We can also observe that the change in the variance

of γ slightly increases the variabilities of the three estimators.
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

σ2
γ = 0.2 0.3506 0.0340 -0.1386 0.0160 -0.1274 0.0154

σ2
γ = 0.4 0.3454 0.0368 -0.1291 0.0160 -0.1186 0.0154

σ2
γ = 0.6 0.3410 0.0397 -0.1208 0.0161 -0.1110 0.0155

σ2
γ = 0.8 0.3370 0.0426 -0.1135 0.0162 -0.1043 0.0156

σ2
γ = 1.0 0.3335 0.0455 -0.1070 0.0163 -0.0983 0.0157

σ2
γ = 1.2 0.3304 0.0485 -0.1012 0.0164 -0.0930 0.0159

σ2
γ = 1.4 0.3276 0.0515 -0.0961 0.0165 -0.0882 0.0160

σ2
γ = 1.6 0.3250 0.0545 -0.0914 0.0167 -0.0839 0.0161

σ2
γ = 1.8 0.3227 0.0575 -0.0871 0.0168 -0.0800 0.0163

σ2
γ = 2.0 0.3206 0.0605 -0.0833 0.0169 -0.0764 0.0164

Table 4.15: Bias and standard error of the naive estimators for the different values of
the variability in the random effect
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4.1.13 Scenario 4: Bias analysis for different values of α
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Figure 4.14: Bias of the naive estimators for different values of α

Figure 4.14 and Table 4.16 present dramatic change in the bias of the naive esti-

mators. It is clear to see that the bias in the naive estimators of β1 and β2 decrease,

significantly, from positive values to negative values, as α increases from -3 to 3.

However, the bias in the naive estimate of α increases significantly, from -1 to 1. We

can see that when α = 0, the bias in the naive estimators of β1, β2, and α approach

zero. The change in α, however, does not seem to affect the variabilities of the three
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

α = −3.0 -1.0132 0.0547 0.3251 0.0248 0.2987 0.0226

α = −2.5 -0.8449 0.0516 0.2711 0.0221 0.2491 0.0202

α = −2.0 -0.6765 0.0489 0.2171 0.0196 0.1994 0.0181

α = −1.5 -0.5082 0.0467 0.1631 0.0175 0.1498 0.0163

α = −1.0 -0.3398 0.0451 0.1090 0.0158 0.1002 0.0149

α = −0.5 -0.1715 0.0442 0.0550 0.0148 0.0506 0.0141

α = 0 -0.0031 0.0440 0.0010 0.0145 0.0009 0.0140

α = 0.5 0.1652 0.0444 -0.0530 0.0150 -0.0487 0.0146

α = 1.0 0.3335 0.0455 -0.1070 0.0163 -0.0983 0.0157

α = 1.5 0.5019 0.0473 -0.1610 0.0181 -0.1479 0.0174

α = 2.0 0.6702 0.0496 -0.2150 0.0204 -0.1976 0.0194

α = 2.5 0.8386 0.0524 -0.2691 0.0229 -0.2472 0.0217

α = 3.0 1.0069 0.0557 -0.3231 0.0257 -0.2968 0.0242

Table 4.16: Bias and standard error of the naive estimators for the different values of
α

estimators.



4.1 Simulation Studies 80

4.1.14 Scenario 5: Bias analysis for different values of β1 and

β2
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Figure 4.15: Bias of the naive estimators for different values of β1

Similar to the binary case, change in the coefficient parameter of the continuous

predictor has no impact on the bias in the naive estimators. (Figures 4.15 and 4.15,

and Tables 4.17 and 4.18)
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

β1 = −3.0 0.3335 0.0455 -0.107 0.0163 -0.0983 0.0157

β1 = −2.5 0.3335 0.0455 -0.107 0.0163 -0.0983 0.0157

β1 = −2.0 0.3335 0.0455 -0.107 0.0163 -0.0983 0.0157

β1 = −1.5 0.3335 0.0455 -0.107 0.0163 -0.0983 0.0157

β1 = −1.0 0.3335 0.0455 -0.107 0.0163 -0.0983 0.0157

β1 = −0.5 0.3335 0.0455 -0.107 0.0163 -0.0983 0.0157

β1 = 0 0.3335 0.0455 -0.107 0.0163 -0.0983 0.0157

β1 = 0.5 0.3335 0.0455 -0.107 0.0163 -0.0983 0.0157

β1 = 1.0 0.3335 0.0455 -0.107 0.0163 -0.0983 0.0157

β1 = 1.5 0.3335 0.0455 -0.107 0.0163 -0.0983 0.0157

β1 = 2.0 0.3335 0.0455 -0.107 0.0163 -0.0983 0.0157

β1 = 2.5 0.3335 0.0455 -0.107 0.0163 -0.0983 0.0157

β1 = 3.0 0.3335 0.0455 -0.107 0.0163 -0.0983 0.0157

Table 4.17: Bias and standard error of the naive estimators for the different values of
β1
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Figure 4.16: Bias of the naive estimators for different values of β2
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

β2 = −3.0 0.3335 0.0455 -0.107 0.0163 -0.0983 0.0157

β2 = −2.5 0.3335 0.0455 -0.107 0.0163 -0.0983 0.0157

β2 = −2.0 0.3335 0.0455 -0.107 0.0163 -0.0983 0.0157

β2 = −1.5 0.3335 0.0455 -0.107 0.0163 -0.0983 0.0157

β2 = −1.0 0.3335 0.0455 -0.107 0.0163 -0.0983 0.0157

β2 = −0.5 0.3335 0.0455 -0.107 0.0163 -0.0983 0.0157

β2 = 0 0.3335 0.0455 -0.107 0.0163 -0.0983 0.0157

β2 = 0.5 0.3335 0.0455 -0.107 0.0163 -0.0983 0.0157

β2 = 1.0 0.3335 0.0455 -0.107 0.0163 -0.0983 0.0157

β2 = 1.5 0.3335 0.0455 -0.107 0.0163 -0.0983 0.0157

β2 = 2.0 0.3335 0.0455 -0.107 0.0163 -0.0983 0.0157

β2 = 2.5 0.3335 0.0455 -0.107 0.0163 -0.0983 0.0157

β2 = 3.0 0.3335 0.0455 -0.107 0.0163 -0.0983 0.0157

Table 4.18: Bias and standard error of the naive estimators for the different values of
β2
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4.1.15 Scenario 6: Bias analysis for different values of θ00
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Figure 4.17: Bias of the Naive Estimators for different values of θ00

In this scenario, as Figure 4.17 and Table 4.19 show, we observe that the bias in

the naive estimators of β1 and β2 seem to stay unchanged, as θ00 increases from 0 to

1. However, the bias in the naive estimator of α decreases with the increase in θ00.

Since θ00 is the parameter associated with the classified predictor, its change seems

to only affect the estimation of the coefficient parameter of the classified predictor.

It does not, however, affect the variabilities.
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

θ00 = 0.1 0.4603 0.0333 -0.1149 0.0141 -0.1047 0.0135

θ00 = 0.2 0.4378 0.0363 -0.1121 0.0150 -0.1022 0.0143

θ00 = 0.3 0.4175 0.0388 -0.1106 0.0157 -0.1010 0.0151

θ00 = 0.4 0.3971 0.0411 -0.1091 0.0161 -0.0999 0.0154

θ00 = 0.5 0.3795 0.0430 -0.1088 0.0161 -0.1000 0.0155

θ00 = 0.6 0.3703 0.0446 -0.1089 0.0163 -0.1003 0.0156

θ00 = 0.7 0.3598 0.0447 -0.1088 0.0164 -0.1000 0.0158

θ00 = 0.8 0.3335 0.0455 -0.1070 0.0163 -0.0983 0.0157

θ00 = 0.9 0.3037 0.0466 -0.1045 0.0162 -0.0958 0.0157

Table 4.19: Bias and standard error of the naive estimators for the different values of
θ00
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4.1.16 Scenario 7: Bias analysis for different values of θ01
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Figure 4.18: Bias of the naive estimators for different values of θ01

Figure 4.18 and Table 4.20 show that the bias in the naive estimators of β1 and

β2 stay unchanged as θ01 increases from 0 to 1. Nevertheless, the bias in the naive

estimator of α decreases with the increase in θ01. This may sound surprising, as θ01

is a probability of misclassifying G = 1 when G∗ = 0. However, in our setup, as θ01

increases, θ21 decreases. For example, when θ01 = 0.9, (since θ11 = 0.1), θ21 would be

only 0.1. In our setup, P (G = 2) = 0.4 and P (G = 0) = 0.2. This means that for
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

θ01 = 0.1 0.3335 0.0455 -0.1070 0.0163 -0.0983 0.0157

θ01 = 0.2 0.3114 0.0468 -0.1069 0.0161 -0.0981 0.0156

θ01 = 0.3 0.2842 0.0473 -0.1062 0.0157 -0.0976 0.0151

θ01 = 0.4 0.2696 0.0497 -0.1145 0.0158 -0.1036 0.0152

θ01 = 0.5 0.2535 0.0505 -0.1214 0.0150 -0.1109 0.0146

θ01 = 0.6 0.2253 0.0524 -0.1217 0.0149 -0.1119 0.0145

θ01 = 0.7 0.1869 0.0561 -0.1197 0.0153 -0.1104 0.0149

θ01 = 0.8 0.1367 0.0594 -0.1164 0.0155 -0.1074 0.0151

θ01 = 0.9 0.0731 0.0649 -0.1109 0.0162 -0.1027 0.0157

Table 4.20: Bias and standard error of the naive estimators for the different values of
θ01

the majority of the population, the misclassification rate is low. That is why we have

lower bias in this case. This parameter slightly increases the variability in the naive

estimate of α. However, it does not seem to affect the variabilities in the estimates

of the β parameters.



4.1 Simulation Studies 88

4.1.17 Scenario 8: Bias analysis for different values of θ02
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Figure 4.19: Bias of the naive estimators for different values of θ02

It is interesting to find that when we change θ02 from 0.1 to 0.6, the absolute

value of the bias in the naive estimators of β1 and β2 increase. Meanwhile, (as it may

be expected), the bias in the naive estimator of α increases with the increase in θ02.

Figure 4.19 and Table 4.21 present these results. It does not, however, seem to affect

the variabilities.
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

θ02 = 0.1 0.2763 0.0430 -0.0725 0.0154 -0.0649 0.0149

θ02 = 0.2 0.3055 0.0443 -0.0900 0.0159 -0.0819 0.0154

θ02 = 0.3 0.3337 0.0456 -0.1071 0.0163 -0.0984 0.0158

θ02 = 0.4 0.3694 0.0467 -0.1260 0.0167 -0.1156 0.0161

θ02 = 0.5 0.4063 0.0480 -0.1439 0.0172 -0.1334 0.0164

θ02 = 0.6 0.4443 0.0495 -0.1614 0.0176 -0.1508 0.0168

Table 4.21: Bias and standard error of the naive estimators for the different values of
θ02
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4.1.18 Scenario 9: Bias analysis for different values of θ10
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Figure 4.20: Bias of the Naive Estimators for different values of θ10

Because of the setups for probability of misclassifications given G = 0, θ10 can

only change from 0 to 0.2. The change in the bias of the parameters may not be

clear, as the range of the values are small. We could still observe some of the patterns

from Figure 4.20 and Table 4.22. The bias in the naive estimators of β1 and β2 seem

to stay unchanged, as θ10 increases from 0 to 0.2. However, the bias in the naive

estimator of α decreases with the increase in θ10. This could be explained the same
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

θ10 = 0.01 0.3536 0.0453 -0.1104 0.0163 -0.1021 0.0158

θ10 = 0.02 0.3515 0.0454 -0.1101 0.0163 -0.1017 0.0158

θ10 = 0.03 0.3491 0.0454 -0.1096 0.0163 -0.1012 0.0158

θ10 = 0.04 0.3466 0.0454 -0.1092 0.0163 -0.1007 0.0158

θ10 = 0.05 0.3442 0.0455 -0.1087 0.0163 -0.1003 0.0158

θ10 = 0.06 0.3421 0.0455 -0.1084 0.0163 -0.0999 0.0158

θ10 = 0.07 0.3398 0.0456 -0.1080 0.0163 -0.0995 0.0158

θ10 = 0.08 0.3378 0.0457 -0.1077 0.0163 -0.0991 0.0158

θ10 = 0.09 0.3356 0.0456 -0.1073 0.0163 -0.0987 0.0158

θ10 = 0.10 0.3335 0.0455 -0.1070 0.0163 -0.0983 0.0157

θ10 = 0.11 0.3312 0.0455 -0.1066 0.0163 -0.0979 0.0157

θ10 = 0.12 0.3288 0.0457 -0.1062 0.0163 -0.0974 0.0157

θ10 = 0.13 0.3265 0.0457 -0.1058 0.0163 -0.0970 0.0157

θ10 = 0.14 0.3241 0.0457 -0.1053 0.0163 -0.0966 0.0157

θ10 = 0.15 0.3219 0.0457 -0.1049 0.0163 -0.0962 0.0157

θ10 = 0.16 0.3196 0.0458 -0.1045 0.0163 -0.0958 0.0157

θ10 = 0.17 0.3174 0.0459 -0.1042 0.0163 -0.0955 0.0157

θ10 = 0.18 0.3154 0.0460 -0.1039 0.0163 -0.0952 0.0157

θ10 = 0.19 0.3133 0.0460 -0.1036 0.0163 -0.0950 0.0157

θ10 = 0.20 0.3114 0.0461 -0.1033 0.0163 -0.0947 0.0157

Table 4.22: Bias and standard error of the naive estimators for the different values of
θ10

way as we did in Scenario 7 for θ01.
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4.1.19 Scenario 10: Bias analysis for different values of θ11
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Figure 4.21: Bias of the naive estimators for different values of θ11

In this scenario, we observe θ11 from 0.1 to 0.9. From Figure 4.21 and Table 4.23,

with the increase in θ11, the bias in the naive estimators of β1 and β2 seem to remain

unchanged. The bias in the naive estimator of α, however, decreases. This could

be expected, as it is the probability of correct classification of category one. This

parameter, as well as θ10, does not affect the variabilities of the three estimators.
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

θ11 = 0.1 0.3335 0.0455 -0.1070 0.0163 -0.0983 0.0157

θ11 = 0.2 0.3103 0.0482 -0.1067 0.0166 -0.0984 0.0160

θ11 = 0.3 0.2856 0.0503 -0.1066 0.0167 -0.0985 0.0161

θ11 = 0.4 0.2602 0.0530 -0.1062 0.0169 -0.0986 0.0164

θ11 = 0.5 0.2363 0.0553 -0.1070 0.0169 -0.1000 0.0164

θ11 = 0.6 0.2157 0.0582 -0.1133 0.0174 -0.1069 0.0167

θ11 = 0.7 0.1886 0.0609 -0.1202 0.0166 -0.1115 0.0162

θ11 = 0.8 0.1348 0.0617 -0.1162 0.0161 -0.1078 0.0157

θ11 = 0.9 0.0731 0.0649 -0.1109 0.0162 -0.1027 0.0157

Table 4.23: Bias and standard error of the naive estimators for the different values of
θ11
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4.1.20 Scenario 11: Bias analysis for different values of θ22
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Figure 4.22: Bias of the naive estimators for different values of θ22

It is surprising (as it is the probability of correct classification of G = 2), to find

that the absolute value of the bias in the naive estimators of the three parameters

remains (more or less) unchanged as θ22 increases from 0 to 0.7. (Figure 4.22 and

Table 4.24) This may be explained by the fact that even with the maximum value of

θ22, we still have 30% misclassification in G = 0, as in this case θ02 = 0.3 and θ12 = 0.

In a different setup, it could improve the naive estimate of α (similar to θ11).
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

θ22 = 0.1 0.3392 0.0532 -0.1299 0.0173 -0.1213 0.0166

θ22 = 0.2 0.3399 0.0505 -0.1229 0.0170 -0.1143 0.0164

θ22 = 0.3 0.3378 0.0480 -0.1151 0.0166 -0.1065 0.0161

θ22 = 0.4 0.3335 0.0455 -0.1070 0.0163 -0.0983 0.0157

θ22 = 0.5 0.3262 0.0442 -0.0978 0.0160 -0.0889 0.0155

θ22 = 0.6 0.3393 0.0450 -0.1021 0.0179 -0.0932 0.0170

θ22 = 0.7 0.3523 0.0447 -0.1071 0.0178 -0.0976 0.0171

Table 4.24: Bias and standard error of the naive estimators for the different values of
θ22
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4.1.21 Scenario 12: Bias analysis for different values of π1
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Figure 4.23: Bias of the naive estimators for different values of π1

From Figure 4.23 and Table 4.25, we find that the bias in the naive estimators for

the coefficient parameters of continuous predictors seems to stay unchanged, as the

probability of classified predictor G = 1 increases from 0.1 to 0.6. The change in the

probability of classified predictor G = 1 does not affect the bias in the naive estimators

of the coefficient parameters of continuous predictors. However, the probability of

success of classified predictor G = 1 has impact on the bias in the naive estimator of
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

π1 = 0.1 0.2146 0.0819 -0.0931 0.0164 -0.0853 0.0161

π1 = 0.2 0.2662 0.0720 -0.0979 0.0174 -0.0912 0.0168

π1 = 0.3 0.3188 0.0569 -0.1025 0.0176 -0.0948 0.0169

π1 = 0.4 0.3335 0.0455 -0.1070 0.0163 -0.0983 0.0157

π1 = 0.5 0.3452 0.0363 -0.1118 0.0148 -0.1021 0.0142

π1 = 0.6 0.3660 0.0304 -0.1275 0.0156 -0.1164 0.0148

Table 4.25: Bias and standard error of the naive estimators for the different values of
π1

the coefficient parameter of the classified predictor. The bias in the naive estimator of

α enlarges and the variability declines, as π1 increases. This makes the naive estimate

of α a very poor estimator for the parameter.
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4.1.22 Scenario 13: Bias analysis for different values of π2
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Figure 4.24: Bias of the naive estimators for different values of π2

We are surprised to find that the probability of classified predictor G = 2 not only

increases the bias in the naive estimate of α, but also affects the bias in the naive

estimators of the coefficient parameters of continuous predictors in the same way, as

it increases from 0.1 to 0.6. Similar to the case for π1, it also decreases the variability

of the naive estimate of α. (Figure 4.24 and Table 4.26)



4.1 Simulation Studies 99

α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

π2 = 0.1 0.5148 0.1001 -0.0229 0.0124 -0.0213 0.0120

π2 = 0.2 0.3976 0.0821 -0.0494 0.0157 -0.0472 0.0150

π2 = 0.3 0.3721 0.0614 -0.0769 0.0176 -0.0715 0.0168

π2 = 0.4 0.3335 0.0455 -0.1070 0.0163 -0.0983 0.0157

π2 = 0.5 0.2970 0.0389 -0.1343 0.0150 -0.1232 0.0142

π2 = 0.6 0.2654 0.0301 -0.1616 0.0126 -0.1481 0.0118

Table 4.26: Bias and standard error of the naive estimators for the different values of
π2
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4.1.23 Scenario 14: Bias analysis for different values of n
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Figure 4.25: Bias of the naive estimators for different values of n

Last but not the least, we observe the behaviour of the naive estimates of the

parameters for the case that the sample size changes from 100 to 1000. From Figure

4.25 and Table 4.27, as we could expect, the bias in the naive estimators of all the

coefficient parameters remain (more or less) unchanged. Therefore, unfortunately,

the increase in sample size does not help with the naive estimation of the coefficient

parameters. More interestingly, it decreases the variabilities, which makes very poor
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

n = 100 0.3695 0.1073 -0.1342 0.0400 -0.1283 0.0398

n = 200 0.3601 0.0715 -0.1169 0.0260 -0.1090 0.0235

n = 300 0.3210 0.0609 -0.1011 0.0208 -0.0987 0.0204

n = 400 0.3332 0.0515 -0.1067 0.0174 -0.0959 0.0168

n = 500 0.3335 0.0455 -0.1070 0.0163 -0.0983 0.0157

n = 600 0.3371 0.0427 -0.1042 0.0144 -0.1048 0.0146

n = 700 0.3457 0.0406 -0.1070 0.0138 -0.1106 0.0143

n = 800 0.3566 0.0372 -0.1142 0.0132 -0.1188 0.0140

n = 900 0.3432 0.0347 -0.1031 0.0119 -0.1113 0.0127

n = 1000 0.3317 0.0331 -0.0973 0.0111 -0.1067 0.0120

Table 4.27: Bias and standard error of the naive estimators for the different values of
n

estimates for the parameters.



Chapter 5

Longitudinal Linear Mixed-effects

Model with Measurement Error

and Misclassification

In this chapter, we consider the most challenging case, where model (2.1) has both

measurement error (ME) and misclassification. In this model, the true covariates, Xit

and Gi are not observed, and instead, Wit and G∗i are observed with error, respectively.

By the model assumptions and the law of iterative expectation, we can write the

marginal moments of the response as follows.
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E(yit|Wit, G
∗
i )

= EX|W (E(yit|Xit,Wit, G
∗
i )|Wit, G

∗
i )

= EG|G∗(EX|W (E(yit|Xit,Wit, Gi, G
∗
i )|Xit,Wit, G

∗
i )|Wit, G

∗
i )

= EG|G∗(EX|W (E(yit|Xit, Gi)|Xit,Wit, G
∗
i )|Wit, G

∗
i ) (5.1)

= EG|G∗(EX|W (X ′itβ + αGi|Xit,Wit, G
∗
i )|Wit, G

∗
i )

= EG|G∗((EX|W (X ′itβ|Wit) + αGi)|Wit, G
∗
i )

= E(X ′it|Wit)β + αE(Gi|G∗i )

Equation (5.1) comes from the assumption that both G∗i and Wi are surrogates.

We continue with similar techniques to calculate the marginal variance and covariance

of the response.



Longitudinal Linear Mixed-effects Model with Measurement Error
and Misclassification 104

var(yit|Wit, G
∗
i )

= varX|W (E(yit|Xit,Wit, G
∗
i )|Wit, G

∗
i ) + EX|W (var(yit|Xit,Wit, G

∗
i )|Wit, G

∗
i )

= varX|W (E(yit|Xit, G
∗
i )|Wit, G

∗
i ) + EX|W (var(yit|Xit, G

∗
i )|Wit, G

∗
i ) (5.2)

= varX|W ((X ′itβ + αE(Gi|G∗i ))|Wit, G
∗
i )

+ EX|W (var(Gi|G∗i )α2 + σ2
γ +

σ2
a

1− ρ2
|Wit, G

∗
i ) (5.3)

= β′var(X ′it|Wit)β + α2var(Gi|G∗i ) + σ2
γ +

σ2
a

1− ρ2

Equation (5.2) is true, since Wi is assumed to be surrogate. Moreover, equation

(5.3) is true because of equations (4.2) and (4.14).

When t 6= u, we have
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cov(yit, yiu|Wit, G
∗
i )

= covX|W (E((yit|Xit,Wit, G
∗
i )|Wit, G

∗
i ), E((yiu|Xiu,Wiu, G

∗
i )|Wiu, G

∗
i )

+ EX|W (cov(((yit|Xit,Wit, G
∗
i )|Wit, G

∗
i ), ((yiu|Xiu,Wiu, G

∗
i )|Wiu, G

∗
i ))) (5.4)

= covX|W (E((yit|Xit, G
∗
i )|Wit, G

∗
i ), E((yiu|Xiu, G

∗
i )|Wiu, G

∗
i )

+ EX|W (cov(((yit|Xit, G
∗
i )|Wit, G

∗
i ), ((yiu|Xiu, G

∗
i )|Wiu, G

∗
i ))) (5.5)

= covX|W ((X ′itβ + αE(Gi|G∗i )|Wit, G
∗
i ), (X

′
iuβ + αE(Gi|G∗i )|Wiu, G

∗
i ))

+ EX|W (α2var(Gi|G∗i ) + σ2
γ +

σ2
aρ
|t−u|

1− ρ2
|Wit,Wiu, G

∗
i ) (5.6)

= β′cov((X ′it, X
′
iu)|Wit,Wiu)β + var(Gi|G∗i )α2 + σ2

γ +
σ2
aρ
|t−u|

1− ρ2

Equation (5.5) is true, since Wi is assumed to be surrogate, and equation (5.6) is

true because of equations (4.2) and (4.17).

The naive GLS estimate of the model parameters based on the observed W and

G∗ rather than X and G, is expressed as follows.

θ̂n =

β̂n
α̂n

 =

 n∑
i=1

 W ′
i

1TG
∗
i

Φ∗
−1

i (W ′
i : 1TG

∗
i )


−1

[
n∑
i=1

 W ′
i

1TG
∗
i

Φ∗
−1

i yi], (5.7)

where Φ∗i is the matrix of variance and covariance of yi based on Wi and G∗, which

satisfying:
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1. var(yit|Wit, G
∗
i ) = β′var(X ′it|Wit)β + α2var(Gi|G∗i ) + σ2

γ + σ2
a

1−ρ2 ,

2. for t 6= u, cov(yit, yiu|Wit,Wiu, G
∗
i ) = β′cov((X ′it, X

′
iu)|Wit,Wiu)β+var(Gi|G∗i )α2+

σ2
γ + σ2

aρ
|t−u|

1−ρ2 .

The covariance matrix of θ̂n conditioned on Wi and G∗i , can be expressed as

Cov(θ̂n) =

 n∑
i=1

W ′
i

G∗i

Φ∗
−1

i (W ′
i : 1TG

∗
i )


−1

.

5.1 Simulation Studies

In the last two chapters, we observed that either measurement error or misclassifica-

tion could affect the bias and variabilities of the parameter estimates. In this chapter,

we consider both measurement errors and misclassification in the model.

We now present the common set ups for all the scenarios. For T = 4 time points,

we generated p = 2 independent continuous time-invariant predictors from a uniform

distribution U(0, 1). The random effect γ was generated from a normal distribution

with mean zero. Except in the scenario that σ2
γ changes, it was set to be one. The

categorical time-invariant G was generated from a trinomial distribution with proba-

bilities P (G = 1) = π1 = P (G = 2) = π2 = 0.4, except in the scenarios they changed.

The regression model parameters were set to be α = 0.7 and β = (1, 0.5)′. The model
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error term, ε, follows a first order auto-regressive model, such that εit = ρ1εi,t−1 + ait

and |ρ1| < 1. We generated ait from a normal distribution with mean zero. Except

when they changed, we set ρ1 and σ2
a to be 0.8 and 1, respectively.

For the classical measurement error, each U1t and U2t follow a first order auto-

regressive model with standard normal error, and autocorrelation lag parameters ρ2

and ρ3, respectively. ρ2 and ρ3 were both set for 0.8, unless they changed.

For the misclassification, the categorical time-invariant G∗ was generated from

G. Similar to the last chapters, 500 was selected as the sample size for all the

scenarios, except when it changed. For each of the sample sizes, 1000 Monte Carlo

replicates were simulated and the Monte-Carlo mean estimates and standard errors

of the estimators were computed.

For the following scenarios, we change one model parameter at a time and keep

the others constant. Table 5.1 shows the selected range as well as the steps for every

parameter.
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Table 5.1: The range and step of the model parameters
Parameter Range Step
ρ1 (−1, 1) 0.1
ρ2 (−1, 1) 0.1
ρ3 (−1, 1) 0.1
σ2
a (0, 2) 0.2
σ2
γ (0,2) 0.2
σ2
u1

(0,2) 0.2
σ2
u2

(0,2) 0.2
α (-3,3) 0.5
β1 (-3,3) 0.5
β2 (-3,3) 0.5
θ00 (0,1) 0.1
θ01 (0,1) 0.1
θ02 (0,0.6] 0.1
θ10 (0,0.2] 0.01
θ11 (0,1) 0.1
θ22 (0,0.7] 0.1
π1 (0,0.6] 0.1
π2 (0,0.6] 0.1
n (100,1000) 100
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5.1.1 Scenario 1: Bias analysis for different values of ρ1
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Figure 5.1: Bias of the naive estimators for different values of ρ1

As ρ1 increases from -1 to 1, Figure 5.1 and Table 5.2 display that the bias in

the naive estimator of β1 declines from positive values to negative values, and then

increases to roughly ρ1 = 0.7. However, the bias in the naive estimator of β2 increases

from positive values to even larger value, while the bias in the naive estimator of α

increases slowly from negative to small positive values. The variability of the naive

estimator of α increases with the change in ρ1, while the variabilities of the other two
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

ρ1 = −0.9 -0.0317 0.0158 0.5012 0.0076 0.3253 0.0083

ρ1 = −0.8 -0.0221 0.0156 0.4422 0.0076 0.3415 0.0083

ρ1 = −0.7 -0.0118 0.0154 0.3840 0.0076 0.3548 0.0084

ρ1 = −0.6 -0.0010 0.0152 0.3259 0.0075 0.3666 0.0084

ρ1 = −0.5 0.0102 0.0150 0.2681 0.0075 0.3772 0.0083

ρ1 = −0.4 0.0216 0.0149 0.2108 0.0074 0.3866 0.0082

ρ1 = −0.3 0.0330 0.0148 0.1547 0.0072 0.3950 0.0081

ρ1 = −0.2 0.0444 0.0147 0.1002 0.0071 0.4022 0.0080

ρ1 = −0.1 0.0556 0.0147 0.0481 0.0069 0.4083 0.0078

ρ1 = 0 0.0664 0.0147 -0.0009 0.0066 0.4133 0.0075

ρ1 = 0.1 0.0767 0.0148 -0.0462 0.0064 0.4172 0.0072

ρ1 = 0.2 0.0862 0.0149 -0.0872 0.0061 0.4202 0.0069

ρ1 = 0.3 0.0947 0.0151 -0.1229 0.0057 0.4223 0.0064

ρ1 = 0.4 0.1020 0.0156 -0.1525 0.0053 0.4237 0.0059

ρ1 = 0.5 0.1076 0.0163 -0.1750 0.0049 0.4246 0.0054

ρ1 = 0.6 0.1111 0.0176 -0.1887 0.0043 0.4255 0.0047

ρ1 = 0.7 0.1117 0.0199 -0.1912 0.0037 0.4266 0.0040

ρ1 = 0.8 0.1082 0.0244 -0.1781 0.0029 0.4285 0.0031

ρ1 = 0.9 0.0978 0.0351 -0.1402 0.0019 0.4320 0.0020

Table 5.2: Bias and standard error for the different values of ρ1

estimators decrease.
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5.1.2 Scenario 2: Bias analysis for different values of ρ2
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Figure 5.2: Bias of the naive estimators for different values of ρ2

From Figure 5.2 and Table 5.3, we see that the bias of the naive estimator of β1

decreases from positive values to negative values as the value of ρ2 increases from -1

to 1. On the contrary, the bias in the naive estimator of α increases from negative

values to positive values. In addition, the bias in the naive estimator of β2 seems

to remain unchanged, as changing the correlation parameter of one covariate with

measurement error has no effect on the estimation of the coefficient parameter of
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

ρ2 = −0.9 -0.1108 0.0379 0.7215 0.0006 0.4119 0.0041

ρ2 = −0.8 -0.0975 0.0375 0.6760 0.0008 0.4095 0.0040

ρ2 = −0.7 -0.0831 0.0370 0.6259 0.0009 0.4074 0.0040

ρ2 = −0.6 -0.0679 0.0365 0.5718 0.0010 0.4059 0.0039

ρ2 = −0.5 -0.0521 0.0360 0.5149 0.0012 0.4049 0.0039

ρ2 = −0.4 -0.0362 0.0354 0.4560 0.0013 0.4047 0.0038

ρ2 = −0.3 -0.0203 0.0349 0.3960 0.0014 0.4051 0.0038

ρ2 = −0.2 -0.0047 0.0343 0.3356 0.0016 0.4060 0.0037

ρ2 = −0.1 0.0105 0.0337 0.2750 0.0017 0.4075 0.0037

ρ2 = 0 0.0253 0.0332 0.2148 0.0018 0.4095 0.0036

ρ2 = 0.1 0.0396 0.0325 0.1552 0.0019 0.4117 0.0036

ρ2 = 0.2 0.0532 0.0318 0.0965 0.0020 0.4142 0.0035

ρ2 = 0.3 0.0662 0.0310 0.0392 0.0022 0.4168 0.0034

ρ2 = 0.4 0.0782 0.0300 -0.0161 0.0023 0.4195 0.0034

ρ2 = 0.5 0.0892 0.0289 -0.0683 0.0024 0.4220 0.0033

ρ2 = 0.6 0.0985 0.0275 -0.1154 0.0026 0.4244 0.0032

ρ2 = 0.7 0.1053 0.0260 -0.1539 0.0027 0.4266 0.0032

ρ2 = 0.8 0.1082 0.0244 -0.1781 0.0029 0.4285 0.0031

ρ2 = 0.9 0.1052 0.0228 -0.1796 0.0031 0.4301 0.0030

Table 5.3: Bias and standard error for the different values of ρ2

the other continuous predictor with ME. Interestingly, modifying ρ2 increases the

variability of the naive estimator of β1, while it decreases the variability of the two

others.
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5.1.3 Scenario 3: Bias analysis for different values of ρ3
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Figure 5.3: Bias of the naive estimators for different values of ρ3

Figure 5.3 and Table 5.4 show that changing the correlation parameter of the

second measurement has no effect on the estimation of the coefficient of the first con-

tinuous predictor. Therefore, the bias in the naive estimator of β1 remains unchanged.

However, the bias in the naive estimator of β2 decreases slightly as the correlation

parameter increases from -1 to 1. In addition, the positive bias in the naive estimator

of α increases slightly. This change seems to have no impact on the variabilities of β1



5.1 Simulation Studies 114

α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

ρ3 = −0.9 0.0840 0.0241 -0.1772 0.0029 0.5016 0.0004

ρ3 = −0.8 0.0850 0.0242 -0.1773 0.0029 0.4979 0.0005

ρ3 = −0.7 0.0863 0.0242 -0.1775 0.0029 0.4939 0.0006

ρ3 = −0.6 0.0876 0.0242 -0.1776 0.0029 0.4895 0.0007

ρ3 = −0.5 0.0889 0.0242 -0.1778 0.0029 0.4849 0.0008

ρ3 = −0.4 0.0904 0.0242 -0.1780 0.0029 0.4801 0.0009

ρ3 = −0.3 0.0918 0.0242 -0.1782 0.0029 0.4752 0.0011

ρ3 = −0.2 0.0933 0.0242 -0.1783 0.0029 0.4703 0.0012

ρ3 = −0.1 0.0948 0.0242 -0.1785 0.0029 0.4654 0.0013

ρ3 = 0 0.0963 0.0243 -0.1786 0.0029 0.4605 0.0014

ρ3 = 0.1 0.0978 0.0243 -0.1787 0.0029 0.4557 0.0016

ρ3 = 0.2 0.0993 0.0243 -0.1787 0.0029 0.4509 0.0017

ρ3 = 0.3 0.1009 0.0243 -0.1787 0.0029 0.4463 0.0019

ρ3 = 0.4 0.1024 0.0243 -0.1787 0.0029 0.4419 0.0021

ρ3 = 0.5 0.1040 0.0243 -0.1786 0.0029 0.4376 0.0023

ρ3 = 0.6 0.1055 0.0243 -0.1785 0.0029 0.4338 0.0025

ρ3 = 0.7 0.1070 0.0244 -0.1783 0.0029 0.4306 0.0028

ρ3 = 0.8 0.1082 0.0244 -0.1781 0.0029 0.4285 0.0031

ρ3 = 0.9 0.1089 0.0244 -0.1779 0.0029 0.4284 0.0034

Table 5.4: Bias and standard error for the different values of ρ3

and α. However, it increases the variability of β2.
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5.1.4 Scenario 4: Bias analysis for different values of σ2a
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Figure 5.4: Bias of the naive estimators for different values of the variability of model
error term

By changing the variance of ait from 0 to 2, we found that the bias in the naive

estimators of β2 seems to stay unchanged. The bias in the naive estimator of β1

decreases sharply, from positive values to negative ones, and the bias in the naive

estimator of α increases from around 0, as the the variance of ait increases from 0 to

2. Figure 5.4 and Table 5.5 present these results.
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

σ2
a = 0.2 -0.0455 0.0167 0.4302 0.0014 0.4263 0.0015

σ2
a = 0.4 0.0050 0.0181 0.2324 0.0021 0.4257 0.0021

σ2
a = 0.6 0.0443 0.0199 0.0768 0.0024 0.4263 0.0026

σ2
a = 0.8 0.0780 0.0220 -0.0574 0.0027 0.4273 0.0029

σ2
a = 1.0 0.1082 0.0244 -0.1781 0.0029 0.4285 0.0031

σ2
a = 1.2 0.1360 0.0269 -0.2894 0.0031 0.4299 0.0033

σ2
a = 1.4 0.1620 0.0294 -0.3937 0.0032 0.4313 0.0035

σ2
a = 1.6 0.1865 0.0321 -0.4925 0.0033 0.4327 0.0037

σ2
a = 1.8 0.2099 0.0349 -0.5868 0.0034 0.4341 0.0039

σ2
a = 2.0 0.2324 0.0377 -0.6774 0.0036 0.4355 0.0041

Table 5.5: Bias and standard error for the different values of the variability of model
error term
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5.1.5 Scenario 5: Bias analysis for different values of σ2γ
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Figure 5.5: Bias of the naive estimators for different value of the variability in the
random effect

From Figure 5.5 and Table 5.6, it is interesting to find that the bias of the naive

estimators of the three parameters stay almost unchanged when we increase the vari-

ance of γi from 0 to 2. It, however, increases the variabilities of the naive estimators

of α, while it decreases the variance of the naive estimates of the two βs.
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

σ2
γ = 0.2 0.1011 0.0141 -0.1473 0.0034 0.4271 0.0036

σ2
γ = 0.4 0.1033 0.0164 -0.1566 0.0032 0.4275 0.0034

σ2
γ = 0.6 0.1051 0.0190 -0.1647 0.0031 0.4279 0.0033

σ2
γ = 0.8 0.1068 0.0216 -0.1718 0.0030 0.4283 0.0032

σ2
γ = 1.0 0.1082 0.0244 -0.1781 0.0029 0.4285 0.0031

σ2
γ = 1.2 0.1095 0.0272 -0.1837 0.0028 0.4288 0.0030

σ2
γ = 1.4 0.1106 0.0300 -0.1887 0.0028 0.4290 0.0030

σ2
γ = 1.6 0.1116 0.0329 -0.1932 0.0027 0.4292 0.0029

σ2
γ = 1.8 0.1126 0.0358 -0.1973 0.0027 0.4293 0.0029

σ2
γ = 2.0 0.1134 0.0388 -0.2010 0.0026 0.4295 0.0029

Table 5.6: Bias and Standard Error for the different values of the variability in the
random effect
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5.1.6 Scenario 6: Bias analysis for different values of σ2u1
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Figure 5.6: Bias of the naive estimators for different value of σ2
u1

From Figure 5.6 and Table 5.7, it is clear to see that the bias in the naive estimator

of β1 increases as the variance of its own measurement error increases from 0 to 2.

However, the bias in the naive estimator of α decreases to almost 0. In addition, the

bias and variability of the naive estimates of β2 stay unchanged. However, it decreases

the variabilities of the estimates of β1 and α, making even poorer estimators for these
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

σ2
u1

= 0.2 0.3137 0.0334 -0.9215 0.0065 0.4324 0.0032

σ2
u1

= 0.4 0.2337 0.0300 -0.6344 0.0044 0.4301 0.0031

σ2
u1

= 0.6 0.1782 0.0277 -0.4333 0.0036 0.4292 0.0031

σ2
u1

= 0.8 0.1384 0.0259 -0.2883 0.0032 0.4287 0.0031

σ2
u1

= 1.0 0.1082 0.0244 -0.1781 0.0029 0.4285 0.0031

σ2
u1

= 1.2 0.0843 0.0231 -0.0908 0.0027 0.4285 0.0031

σ2
u1

= 1.4 0.0648 0.0220 -0.0194 0.0026 0.4285 0.0031

σ2
u1

= 1.6 0.0485 0.0210 0.0405 0.0025 0.4285 0.0031

σ2
u1

= 1.8 0.0346 0.0201 0.0917 0.0024 0.4286 0.0031

σ2
u1

= 2.0 0.0225 0.0193 0.1362 0.0023 0.4287 0.0031

Table 5.7: Bias and standard error for the different values of σ2
u1

two parameters.
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5.1.7 Scenario 7: Bias analysis for different values of σ2u2
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Figure 5.7: Bias of the naive estimators for different value of σ2
u2

Surprisingly, from Figure 5.7 and Table 5.8, the bias of the naive estimates of β1

and α stay relatively unchanged as the variance of measurement error of the other

continuous covariate increases from 0 to 2. However, as it was expected, the bias

in the naive estimator of β2 increases, with the increase of its own measurement

error. Except for the decrease in the variance of β̂2, this change has no impact on the
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

σ2
u2

= 0.2 0.1598 0.0249 -0.1773 0.0028 0.2399 0.0056

σ2
u2

= 0.4 0.1341 0.0246 -0.1778 0.0028 0.3347 0.0043

σ2
u2

= 0.6 0.1212 0.0245 -0.1780 0.0029 0.3817 0.0037

σ2
u2

= 0.8 0.1134 0.0244 -0.1781 0.0029 0.4098 0.0033

σ2
u2

= 1.0 0.1082 0.0244 -0.1781 0.0029 0.4285 0.0031

σ2
u2

= 1.2 0.1044 0.0243 -0.1781 0.0029 0.4419 0.0029

σ2
u2

= 1.4 0.1016 0.0243 -0.1781 0.0029 0.4520 0.0028

σ2
u2

= 1.6 0.0994 0.0243 -0.1781 0.0029 0.4598 0.0027

σ2
u2

= 1.8 0.0976 0.0243 -0.1781 0.0029 0.4660 0.0026

σ2
u2

= 2.0 0.0961 0.0243 -0.1780 0.0029 0.4711 0.0025

Table 5.8: Bias and standard error for the different values of σ2
u2

variabilities of the other two estimators.
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5.1.8 Scenario 8: Bias analysis for different values of α
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Figure 5.8: Bias of the naive estimators for different values of α

The results of changing α from -3 to 3 are summarized in Figure 5.8 and Table 5.9.

Since the model has misclassification as well, the change of α effects the estimation

of α. The bias in the naive estimate of α increases sharply from -1 to 1. We can see

that when α = 0, the bias in the naive estimator of α is approximately zero. There

is a slight incline in the bias of the estimators of β1 and β2. Interestingly, the three

variabilities have U shapes. The three variances decline slowly to around α = 0,
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

α = −3.0 -0.9599 0.0454 -0.1299 0.0094 0.4918 0.0110

α = −2.5 -0.8156 0.0397 -0.1364 0.0078 0.4832 0.0092

α = −2.0 -0.6712 0.0345 -0.1429 0.0062 0.4747 0.0074

α = −1.5 -0.5269 0.0297 -0.1494 0.0046 0.4661 0.0056

α = −1.0 -0.3826 0.0259 -0.1560 0.0031 0.4576 0.0038

α = −0.5 -0.2382 0.0233 -0.1625 0.0017 0.4491 0.0023

α = 0 -0.0939 0.0224 -0.1690 0.0013 0.4405 0.0015

α = 0.5 0.0505 0.0235 -0.1755 0.0023 0.4320 0.0025

α = 1.0 0.1948 0.0262 -0.1820 0.0038 0.4234 0.0041

α = 1.5 0.3391 0.0302 -0.1885 0.0054 0.4149 0.0058

α = 2.0 0.4835 0.0349 -0.1950 0.0069 0.4063 0.0076

α = 2.5 0.6278 0.0402 -0.2016 0.0085 0.3978 0.0094

α = 3.0 0.7722 0.0459 -0.2081 0.0102 0.3892 0.0112

Table 5.9: Bias and standard error for the different values of α

before they increase again.
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5.1.9 Scenario 9: Bias analysis for different values of β1
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Figure 5.9: Bias of the naive estimators for different values of β1

In this scenario, we observe the behaviours of the three naive estimates as β1

increases from -3 to 3. Figure 5.9 and Table 5.10 show that the bias in the naive

estimator of β2 stays unchanged, as β1 increases from -3 to 3. We could expect that

when we change β2, the bias in the naive estimator of β1 remains unchanged. In

addition, the bias in the naive estimator of β1 increases sharply, from negative values

to positive values. In the contrary, the bias in the naive estimator of α decreases from
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

β1 = −3.0 1.0725 0.0302 -3.7138 0.0025 0.4401 0.0035

β1 = −2.5 0.9520 0.0292 -3.2719 0.0023 0.4387 0.0033

β1 = −2.0 0.8314 0.0283 -2.8299 0.0022 0.4372 0.0031

β1 = −1.5 0.7109 0.0275 -2.3879 0.0022 0.4358 0.0030

β1 = −1.0 0.5904 0.0267 -1.9460 0.0022 0.4343 0.0029

β1 = −0.5 0.4698 0.0260 -1.5040 0.0023 0.4329 0.0028

β1 = 0 0.3493 0.0254 -1.0620 0.0025 0.4314 0.0029

β1 = 0.5 0.2287 0.0248 -0.6201 0.0027 0.4300 0.0029

β1 = 1.0 0.1082 0.0244 -0.1781 0.0029 0.4285 0.0031

β1 = 1.5 -0.0123 0.0240 0.2639 0.0032 0.4271 0.0033

β1 = 2.0 -0.1329 0.0238 0.7058 0.0034 0.4256 0.0035

β1 = 2.5 -0.2534 0.0236 1.1478 0.0037 0.4242 0.0038

β1 = 3.0 -0.3740 0.0236 1.5898 0.0040 0.4227 0.0041

Table 5.10: Bias and standard error for the different values of β1

positive values to negative values. Modifying β1 increases the variabilities of the β̂s,

and has almost no impact on the variability of the naive estimate of α.
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5.1.10 Scenario 10: Bias analysis for different values of β2
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Figure 5.10: Bias of the naive estimators for different values of β2

It was expected that the bias of the naive estimator of β1 would remain unchanged

as β2 increased from -3 to 3. (Figure 5.10 and Table 5.11) Nevertheless, the bias of

the naive estimator of β2 increases sharply, from negative to positive values. On the

contrary, the bias in the naive estimator of α decreases slightly from positive values

to negative values. Similar to the last scenario, the variability of the estimate of α

remains unchanged, while the variances of the other two estimates increase slightly.
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

β2 = −3.0 0.9043 0.0260 -0.1464 0.0023 -2.5604 0.0030

β2 = −2.5 0.7906 0.0254 -0.1509 0.0022 -2.1334 0.0029

β2 = −2.0 0.6769 0.0249 -0.1555 0.0022 -1.7064 0.0028

β2 = −1.5 0.5631 0.0246 -0.1600 0.0022 -1.2794 0.0028

β2 = −1.0 0.4494 0.0243 -0.1645 0.0023 -0.8525 0.0028

β2 = −0.5 0.3357 0.0242 -0.1691 0.0025 -0.4255 0.0029

β2 = 0 0.2219 0.0242 -0.1736 0.0027 0.0015 0.0030

β2 = 0.5 0.1082 0.0244 -0.1781 0.0029 0.4285 0.0031

β2 = 1.0 -0.0055 0.0246 -0.1826 0.0032 0.8555 0.0033

β2 = 1.5 -0.1193 0.0250 -0.1872 0.0035 1.2825 0.0035

β2 = 2.0 -0.2330 0.0255 -0.1917 0.0038 1.7095 0.0037

β2 = 2.5 -0.3467 0.0261 -0.1962 0.0041 2.1365 0.0039

β2 = 3.0 -0.4605 0.0268 -0.2007 0.0044 2.5635 0.0042

Table 5.11: Bias and standard error for the different values of β2
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5.1.11 Scenario 11: Bias analysis for different values of θ00
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Figure 5.11: Bias of the naive estimators for different values of θ00

We are surprised to find that the bias in the naive estimators of β1 and β2 remains

unchanged when we change θ00 from 0 to 1. However, Figure 5.11 and Table 5.12

show that the bias in the naive estimator of α decreases with the increase in θ00. Since

the change in θ00 affects the classified predictor, the bias and variability in the naive

estimators of coefficient parameters of continuous predictors do not change. On the

other hand, the variability of the naive estimate of α increases as the probability of



5.1 Simulation Studies 130

α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

θ00 = 0.1 0.1974 0.0192 -0.1774 0.0032 0.4286 0.0032

θ00 = 0.2 0.1835 0.0205 -0.1773 0.0031 0.4287 0.0032

θ00 = 0.3 0.1702 0.0216 -0.1773 0.0032 0.4286 0.0032

θ00 = 0.4 0.1560 0.0227 -0.1774 0.0032 0.4284 0.0032

θ00 = 0.5 0.1425 0.0236 -0.1777 0.0031 0.4283 0.0032

θ00 = 0.6 0.1351 0.0244 -0.1779 0.0030 0.4283 0.0032

θ00 = 0.7 0.1264 0.0240 -0.1781 0.0030 0.4284 0.0032

θ00 = 0.8 0.1082 0.0244 -0.1781 0.0029 0.4285 0.0031

θ00 = 0.9 0.0884 0.0251 -0.1780 0.0028 0.4285 0.0030

Table 5.12: Bias and standard error for the different values of θ00

the correct classification increases, making it a more conservative estimator.
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5.1.12 Scenario 12: Bias analysis for different values of θ01
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Figure 5.12: Bias of the naive estimators for different values of θ01

Figure 5.12 and Table 5.13 show that the bias in the naive estimators of β1 and

β2 seem to stay unchanged as θ01 increases. However, the absolute bias in the naive

estimator of α increases with the increase in θ01. As we change θ01 from 0.1 to 0.9,

there is a slight decline in the variances of the naive estimates of β1 and β2. The

variability in α̂ seems to increase.
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

θ01 = 0.1 0.1082 0.0244 -0.1781 0.0029 0.4285 0.0031

θ01 = 0.2 0.0906 0.0249 -0.1781 0.0029 0.4284 0.0031

θ01 = 0.3 0.0685 0.0253 -0.1780 0.0028 0.4287 0.0030

θ01 = 0.4 0.0506 0.0264 -0.1791 0.0028 0.4270 0.0030

θ01 = 0.5 0.0312 0.0266 -0.1803 0.0026 0.4259 0.0028

θ01 = 0.6 0.0039 0.0274 -0.1806 0.0025 0.4259 0.0028

θ01 = 0.7 -0.0286 0.0290 -0.1805 0.0026 0.4260 0.0028

θ01 = 0.8 -0.0684 0.0307 -0.1802 0.0026 0.4263 0.0028

θ01 = 0.9 -0.1172 0.0332 -0.1796 0.0026 0.4270 0.0028

Table 5.13: Bias and standard error for the different values of θ01
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5.1.13 Scenario 13: Bias analysis for different values of θ02
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Figure 5.13: Bias of the naive estimators for different values of θ02

In this scenario, θ02 is changed from 0.1 to 0.6. Figure 5.13 and Table 5.14 show

that the bias in the naive estimators of β1 and β2 remains unchanged as θ02 increases

from 0 to 0.6. However, the bias in the naive estimator of α increases with the increase

in θ02. Hence, decreasing the probability of misclassification, θ02, can improve the

naive estimator of α. Interestingly, unlike the case for θ00 and θ01, the change in

θ00 has almost no impact on the variability of the naive estimate of α. It, however,
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

θ02 = 0.1 0.0753 0.0231 -0.1747 0.0026 0.4331 0.0028

θ02 = 0.2 0.0922 0.0238 -0.1764 0.0027 0.4307 0.0030

θ02 = 0.3 0.1083 0.0244 -0.1781 0.0029 0.4285 0.0031

θ02 = 0.4 0.1276 0.0250 -0.1802 0.0030 0.4258 0.0032

θ02 = 0.5 0.1489 0.0258 -0.1822 0.0031 0.4234 0.0033

θ02 = 0.6 0.1706 0.0267 -0.1842 0.0032 0.4208 0.0034

Table 5.14: Bias and standard error for the different values of θ02

slightly increases the variances of the estimates of β1 and β2.
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5.1.14 Scenario 14: Bias analysis for different values of θ10
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Figure 5.14: Bias of the naive estimators for different values of θ10

It is clear from Figure 5.14 and Table 5.15 that the bias in the naive estimators

of β1 and β2 remains unchanged as θ10 increases from 0 to 0.2. The bias in the naive

estimator of α decreases slightly with the increase in θ10. Increasing the value of θ10

does not seem to have any impact on the variabilities of the three estimates.
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

θ10 = 0.01 0.1214 0.0242 -0.1785 0.0030 0.4281 0.0032

θ10 = 0.02 0.1199 0.0242 -0.1784 0.0029 0.4282 0.0032

θ10 = 0.03 0.1185 0.0242 -0.1784 0.0029 0.4282 0.0031

θ10 = 0.04 0.1170 0.0243 -0.1783 0.0029 0.4283 0.0031

θ10 = 0.05 0.1155 0.0243 -0.1783 0.0029 0.4283 0.0031

θ10 = 0.06 0.1141 0.0244 -0.1782 0.0029 0.4283 0.0031

θ10 = 0.07 0.1126 0.0244 -0.1782 0.0029 0.4284 0.0031

θ10 = 0.08 0.1112 0.0244 -0.1782 0.0029 0.4285 0.0031

θ10 = 0.09 0.1097 0.0244 -0.1781 0.0029 0.4285 0.0031

θ10 = 0.10 0.1082 0.0244 -0.1781 0.0029 0.4285 0.0031

θ10 = 0.11 0.1065 0.0244 -0.1781 0.0029 0.4286 0.0031

θ10 = 0.12 0.1049 0.0245 -0.1780 0.0029 0.4286 0.0031

θ10 = 0.13 0.1033 0.0245 -0.1780 0.0029 0.4287 0.0031

θ10 = 0.14 0.1017 0.0245 -0.1779 0.0029 0.4287 0.0031

θ10 = 0.15 0.1001 0.0245 -0.1779 0.0029 0.4288 0.0031

θ10 = 0.16 0.0985 0.0245 -0.1779 0.0029 0.4288 0.0031

θ10 = 0.17 0.0970 0.0246 -0.1778 0.0029 0.4288 0.0030

θ10 = 0.18 0.0956 0.0246 -0.1778 0.0029 0.4288 0.0030

θ10 = 0.19 0.0942 0.0246 -0.1778 0.0029 0.4289 0.0030

θ10 = 0.20 0.0928 0.0247 -0.1778 0.0029 0.4289 0.0030

Table 5.15: Bias and standard error for the different values of θ10
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5.1.15 Scenario 15: Bias analysis for different values of θ11
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Figure 5.15: Bias of the naive estimators for different values of θ11

In this scenario, we observe the behaviour of the naive estimates as θ11 increases

from 0.1 to 0.9. From Figure 5.15 and Table 5.16, we can see that the bias in the

naive estimators of β1 and β2 remains unchanged. On the other hand, the bias in the

naive estimator of α decreases from a positive value to almost zero near θ11 = 0.5,

before it continues to change on the negative side. It also increases the variability of

α̂, but decreases the variances of the other two estimates.
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

θ11 = 0.1 0.1082 0.0244 -0.1781 0.0029 0.4285 0.0031

θ11 = 0.2 0.0904 0.0257 -0.1781 0.0029 0.4286 0.0031

θ11 = 0.3 0.0710 0.0267 -0.1780 0.0029 0.4284 0.0031

θ11 = 0.4 0.0498 0.0280 -0.1781 0.0029 0.4283 0.0031

θ11 = 0.5 0.0269 0.0290 -0.1784 0.0029 0.4282 0.0031

θ11 = 0.6 0.0040 0.0300 -0.1795 0.0029 0.4272 0.0031

θ11 = 0.7 -0.0253 0.0315 -0.1805 0.0028 0.4257 0.0029

θ11 = 0.8 -0.0687 0.0319 -0.1802 0.0026 0.4265 0.0029

θ11 = 0.9 -0.1172 0.0332 -0.1796 0.0026 0.4270 0.0028

Table 5.16: Bias and standard error for the different values of θ11
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5.1.16 Scenario 16: Bias analysis for different values of θ22
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Figure 5.16: Bias of the naive estimators for different values of θ22

With changing θ22 from 0.1 to 0.7, it is not surprising to find that the bias in

the naive estimators of β1 and β2 does not change. However, the bias in the naive

estimator of α increases slightly. This is the case only in our setup, as increasing the

probability of correct classification generally improves the naive estimate of α. Figure

5.16 and Table 5.17 display these results. It does not seem to affect any variabilities.
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

θ22 = 0.1 0.0970 0.0291 -0.1802 0.0033 0.4255 0.0033

θ22 = 0.2 0.1020 0.0272 -0.1796 0.0031 0.4263 0.0033

θ22 = 0.3 0.1057 0.0258 -0.1789 0.0030 0.4274 0.0032

θ22 = 0.4 0.1082 0.0244 -0.1781 0.0029 0.4285 0.0031

θ22 = 0.5 0.1102 0.0234 -0.1770 0.0028 0.4297 0.0030

θ22 = 0.6 0.1198 0.0236 -0.1775 0.0029 0.4287 0.0032

θ22 = 0.7 0.1301 0.0233 -0.1779 0.0030 0.4276 0.0032

Table 5.17: Bias and standard error for the different values of θ22
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5.1.17 Scenario 17: Bias analysis for different values of π1
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Figure 5.17: Bias of the naive estimators for different values of π1

From Figure 5.17 and Table 5.18, we find that the bias in the naive estimators

for the coefficient parameters of continuous predictors seems to stay unchanged as

the probability of G = 1 increases from 0.1 to 0.6. The change in the probability

of classified predictor G = 1 does not affect the bias in the naive estimators of

the coefficient parameters of continuous predictors. However, this probability has

impact on the bias in the naive estimator of the coefficient parameter of the classified
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

π1 = 0.1 0.0218 0.0461 -0.1809 0.0028 0.4267 0.0031

π1 = 0.2 0.0621 0.0400 -0.1801 0.0029 0.4265 0.0032

π1 = 0.3 0.0977 0.0305 -0.1790 0.0030 0.4277 0.0032

π1 = 0.4 0.1082 0.0244 -0.1781 0.0029 0.4285 0.0031

π1 = 0.5 0.1157 0.0200 -0.1771 0.0029 0.4295 0.0030

π1 = 0.6 0.1278 0.0164 -0.1772 0.0031 0.4286 0.0031

Table 5.18: Bias and standard error for the different values of π1

predictor. The bias in the naive estimator of α increases with the increase in π1. It

also decreases the variability of the same estimator, leaving it to be an even poorer

estimate. It has, however, little to no impact on the variabilities of the other two

estimates.



5.1 Simulation Studies 143

5.1.18 Scenario 18: Bias analysis for different values of π2
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Figure 5.18: Bias of the naive estimators for different values of π2

Figure 5.18 and Table 5.19 show that the bias in the naive estimators of the

coefficient parameters of continuous predictors stays unchanged as the probability of

G = 2 increase from 0.1 to 0.6. The change in the probability of classified predictor

G = 2 does not affect the bias in the naive estimators of the coefficient parameters

of continuous predictors. However, this probability decreases the bias in the naive

estimate of α. It is also observed that the increase in π2 increases the variabilities in
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

π2 = 0.1 0.2510 0.0591 -0.1767 0.0017 0.4323 0.0020

π2 = 0.2 0.1712 0.0462 -0.1773 0.0023 0.4302 0.0025

π2 = 0.3 0.1434 0.0334 -0.1774 0.0028 0.4299 0.0030

π2 = 0.4 0.1082 0.0244 -0.1781 0.0029 0.4285 0.0031

π2 = 0.5 0.0730 0.0217 -0.1794 0.0030 0.4268 0.0031

π2 = 0.6 0.0418 0.0174 -0.1806 0.0030 0.4251 0.0029

Table 5.19: Bias and standard error for the different values of π2

the estimates of β1 and β2, but decreases the variance of α̂.
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5.1.19 Scenario 19: Bias analysis for different values of n
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Figure 5.19: Bias of the naive estimators for different values of n

Last but not the least, we observe behaviour of the naive estimates, as sample size

changes from 100 to 1000. From Figure 5.19 and Table 5.20, it is interesting to see that

the bias in the naive estimators of all the coefficient parameters fluctuates randomly.

However, increasing the sample size does not generally improve the naive estimators

of the coefficient parameters. More interestingly, as the sample size increases, the

variabilities of all the estimates decline, leaving the naive estimates to perform very
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α̂ β̂1 β̂2
Bias SE Bias SE Bias SE

n = 100 0.0555 0.0522 0.0114 0.0078 0.5623 0.0069

n = 200 0.1532 0.0359 -0.0999 0.0053 0.2577 0.0040

n = 300 0.0629 0.0321 -0.1152 0.0041 0.5202 0.0034

n = 400 0.0727 0.0279 -0.1782 0.0034 0.5304 0.0033

n = 500 0.1082 0.0244 -0.1781 0.0029 0.4285 0.0031

n = 600 0.1078 0.0227 -0.1288 0.0028 0.4073 0.0026

n = 700 0.1022 0.0215 -0.0117 0.0026 0.3847 0.0023

n = 800 0.1209 0.0201 -0.0442 0.0026 0.3641 0.0023

n = 900 0.1338 0.0188 -0.1367 0.0024 0.3964 0.0022

n = 1000 0.1100 0.0178 -0.1001 0.0023 0.4310 0.0020

Table 5.20: Bias and standard error for the different values of n

poorly.



Chapter 6

Discussion

We use the Generalized Least Square method to estimate the parameters in a longi-

tudinal linear mixed-effects model with measurement error and misclassification. It

is well-known that ME and/or misclassification have negative impacts on the estima-

tion of parameters. It is, however, very challenging to assess the bias through the

closed-form naive estimates. As a result, we observe the bias as a function of all the

model parameters. We should also mention in here that although the primary focus

of this research is to evaluate the “bias” of the naive estimates, as a by-product, how-

ever, in each scenario we look at the variability of the estimates as well. This allows

us to asses the overall performance of the naive estimates, especially for statistical

inference. In here, we review and summarize the results of the simulation studies.
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In the scenario where we change ρ1, the correlation parameter for the model error

term, the bias in the model with ME only has a behaviour similar to the case with

both ME and misclassification. This means that misclassification has no impact on the

naive estimates of this parameter. We also observe that the bias in all the parameters

in the model with misclassification, whether two or three categories, behaves similarly

when we change ρ1. On the opposite side, the behavior of the bias in the model with

misclassification are very similar, for both the binary case and three categories.

When the model has only ME, we observe that the bias in all the parameters

is affected by ρ2 and ρ3, which are the correlation parameters for the measurement

error term. Comparing the model with ME only versus the model with ME and

misclassification, we again found very similar patterns.

In the case that we change the variance of ait, we find that the biases of all the

naive estimators in the models with ME (both with and without misclassification)

have similar patterns. We found that the biases of all the naive estimates in the

binary case are very similar to the case with three categories. These results could be

expected, as the continuous and discrete variables were generated independently.

From our simulation studies, it seems that changing the variance of γ, which is

the random effect term, has little to no impact on the bias of the naive estimates. In

most cases, the biases in the naive estimators of α and β2 stay unchanged. The bias
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in the naive estimator of β1, however, decreases as the variance of γ increases from 0

to 2.

When α changes, it is clear to see that the biases in the naive estimators stay

unchanged in the model with no misclassification. However, in the model with mis-

classification, the biases have similar patterns with or without ME. More specifically,

the biases of the naive estimators of β1 and β2 decrease, while the bias in the naive

estimator of α increases.

When β1 changes from -3 to 3, in the model with misclassification only, it has no

impact on the bias of the estimate of β2. However, the bias of the naive estimator of

β1 increases, and the one for α decreases with the changes in β1. These patterns are

similar in the models with ME. It is expected that the bias in the naive estimator of

β2 stays almost unchanged, however, the impact on the estimate of α is surprising.

We observe similar behaviours in the biases of β1 and α, when β2 modifies.

In the models with ME, we observe the effect of variabilities of the two measure-

ment errors on the bias of the naive estimators. In both models with ME (with and

without misclassification), when the variance of one measurement error increases, the

bias of the naive estimator of the coefficient parameter of the other variable with ME

does not change. However, the bias of the naive estimator of α decreases. As the two
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covariates with ME are independent, we could expect to see no impact on β parame-

ters when the variability in the ME on one of the covariates increases. This result is

consistent with literature (Carroll and Stefanski (2006)). However, the impact on the

bias of α̂ is surprising, as G is also generated independently from the two continuous

variables.

When misclassification is considered in the model, in the binary case, we find

that both sensitivity and specificity have little to no impact on the bias of the naive

estimates of β1 and β2. However, the increase of these conditional probabilities helps

to reduce the bias in the naive estimator of α. When we consider the classified

predictor with three categories, we observe the impact of six conditional probabilities,

θ00, θ01, θ02, θ10, θ11, and θ22 on the bias. Similar to the binary case, these probabilities

have almost no impact on the bias of the naive estimates of β1 and β2. However, aside

from θ02, increases in these conditional probabilities reduces the bias in the naive

estimator of α. In literature (e.g. Buonaccorsi. (2010)), increasing the probability of

correct classification generally improves the naive estimate. However, improvement

of the naive estimate of α when the four misclassification rates θ00, θ01, θ02, and θ10

increase may sound surprising. This is as a result of our setting. Since increasing any

of these probabilities decreases another misclassification with higher impact on the

population, our results make sense.
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In the model with ME only, probability of success for the classified predictor

seems to have no impact on the naive estimates. However, in both models with

misclassification, when π increases from 0 to 1, the biases in the naive estimators

of β1 and β2 decrease slightly, while the bias in the naive estimator of α decreases

quite significantly. Again, these results make sense for our set up with relatively high

sensitivity and specificity. The bias would have different behaviour if we had low

rates of correct classifications. In addition, when we consider the classified predictor

with three categories (again in the model with no ME), as π1 or π2 increase from 0

to 1, the biases in the naive estimator of β1 and β2 decrease. However, the bias in

the naive estimator of α increases as π1 increases, and it decreases as π2 increases.

Interestingly, when the model has both ME and misclassification, the change in π1

and π2 has no effect on the bias in the naive estimators of β1 and β2. The bias in the

naive estimator of α, however, has the same pattern as the case without ME.

Finally, we consider the effect of the sample size on the bias. When we increase

the sample size from 100 to 1000, the performance of the naive estimators becomes

poorer. More specifically, increasing the sample size does not reduce the bias, but

reduces the variability. Therefore, the overall performance is worse! These results

are also consistent with some literature in ME and misclassification. (Carroll and

Stefanski (2006) and Buonaccorsi. (2010))



Chapter 7

Computer programs

7.1 R codes for Study of Bias in the Naive Es-

timator in Longitudinal Linear Mixed-effects

Models

7.1.1 Model with Measurement Error and Misclassification

K<-1000 # Simulation ittiration number

T<-4

p<-2

n<-500 # Sample Size
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r<-19

rho1<-0.8

rho2<-0.8

rho3<-0.8

avar<- 1

gavar<- 1

npar<-p+1

beta1<-1

beta2<-0.5

alpha<- 0.7

usigma1<-1

usigma2<-1

theta00<-0.8

theta01<-0.1

theta02<-0.3

theta10<-0.1

theta11<-0.1

theta22<-0.4

pi1<-0.4
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pi2<-0.4

sigma<-as.matrix(array(0,dim=c(T,T)))

bias<-array(0,dim=c(npar,r))

se<-array(0,dim=c(npar,r))

for (m in 1:r)

{

rho1<-(m-10)*0.1

# rho2<-(m-10)*0.1

# rho3<-(m-10)*0.1

# avar<-0.2*m

# gavar<-0.2*m

# usigma1<-0.2*m

# usigma2<-0.2*m

# alpha<-(m-7)*0.5

# beta1<-(m-7)*0.5

# beta2<-(m-7)*0.5

# theta00<-m*0.1

# theta01<-m*0.1

# theta02<-m*0.1
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# theta10<-m*0.01

# theta11<-m*0.1

#theta22<-m*0.1

# pi1<-m*0.1

# pi2<-m*0.1

beta<-c(beta1,beta2)

theta<-c(beta1,beta2,alpha)

theta12<-1-theta02-theta22

theta20<-1-theta00-theta10

theta21<-1-theta01-theta11

# n<-m*100

for (i in 1:T)

for (l in 1:T){

sigma[i,l]<-gavar+avar*rho1^(abs(i-l))/(1-rho1^2)

}

Isig<-solve(sigma)

ThetaQL<-array(0,dim=c(npar,K))
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ThetaQLn<-array(0,dim=c(npar,K))

X<-array(0,dim=c(p,T,n,K))

set.seed(X)

X[1,1:T,,]<-runif(array(dim=c(T,n)))

X[2,1:T,,]<-runif(array(dim=c(T,n)))

# print(X)

U<-array(0,dim=c(p,T,n,K))

b<-array(0,dim=c(p,T,n,K))

set.seed(b)

b[1,,,]<-sqrt(usigma1)*matrix(rnorm(T*n),T,n,K) # Add set.seed

b[2,,,]<-sqrt(usigma2)*matrix(rnorm(T*n),T,n,K)

U[1,1,,]<-b[1,1,,]*sqrt(usigma1)

U[2,1,,]<-b[2,1,,]*sqrt(usigma2)

U[1,2,,]<-rho2*U[1,1,,]+b[1,2,,]

U[1,3,,]<-rho2*U[1,2,,]+b[1,3,,]

U[1,4,,]<-rho2*U[1,3,,]+b[1,4,,]

U[2,2,,]<-rho3*U[2,1,,]+b[2,2,,]

U[2,3,,]<-rho3*U[2,2,,]+b[2,3,,]
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U[2,4,,]<-rho3*U[2,3,,]+b[2,4,,]

#print(U)

W<-X+U

# print(W)

GG<-array(0,dim=c(n,K))

GG[,]<-runif(array(dim=c(n,K)))

G <-array(0,dim=c(T,n,K))

set.seed(G)

for (j in 1:K)

{

for(i in 1:n)

{

if(GG[i,j]>=0 &&GG[i,j]<(1-pi1-pi2))G[1,i,j]<-0

if(GG[i,j]>=(1-pi1-pi2) &&GG[i,j]<.6)G[1,i,j]<-1

if(GG[i,j]>=(1-pi2) &&GG[i,j]<=1)G[1,i,j]<-2

}

}



7.1 R codes for Study of Bias in the Naive Estimator in Longitudinal
Linear Mixed-effects Models 158

G[2,,]<-G[1,,]

G[3,,]<-G[1,,]

G[4,,]<-G[1,,]

Gstar<- array(0,dim=c(T,n,K))

Gstar<-G

n0<-array(0,dim=c(K))

n1<-array(0,dim=c(K))

n2<-array(0,dim=c(K))

for (s in 1:K)

{

for (i in 1:n)

{

if(G[1,i,s]==0) {n0[s]<-n0[s]+1}

if(G[1,i,s]==1) {n1[s]<-n1[s]+1}

if(G[1,i,s]==2) {n2[s]<-n2[s]+1}

}

k<-0
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n00<-1

while(k<theta10*n0[s]&&n00<n)

{

if(G[1,n00,s]==0)

{

Gstar[1,n00,s]<-1

k<-k+1

}

n00<-n00+1

}

while(k<theta10*n0[s]+theta20*n0[s]&&n00<n)

{

if(G[1,n00,s]==0)

{

Gstar[1,n00,s]<-2

k<-k+1

}
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n00<-n00+1

}

k<-0

n11<-1

while(k<theta01*n1[s]&&n11<n)

{

if(G[1,n11,s]==1) {Gstar[1,n1,s]<-0

k<-k+1}

n11<-n11+1

}

while(k<theta01*n1[s]+theta21*n1[s]&&n11<n)

{

if(G[1,n11,s]==1) {Gstar[1,n11,s]<-2

k<-k+1}

n11<-n11+1
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}

k<-0

n22<-1

while(k<theta02*n2[s]&&n22<n)

{

if(G[1,n22,s]==2)

{

Gstar[1,n22,s]<-0

k<-k+1

}

n22<-n22+1

}

while(k<theta02*n2[s]+theta12*n2[s]&&n22<n)

{

if(G[1,n22,s]==2)

{

Gstar[1,n22,s]<-1
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k<-k+1

}

n22<-n22+1

}

}

Gstar[2,,]<-Gstar[1,,]

Gstar[3,,]<-Gstar[1,,]

Gstar[4,,]<-Gstar[1,,]

eps<-array(0,dim=c(T,n,K))

a<-array(0,dim=c(T,n,K))

set.seed(a)

a[,,]<-sqrt(avar)*matrix(rnorm(T*n),T,n,K) #set.seed

eps[1,,]<-a[1,,]*sqrt(avar/(1-rho1^2))

eps[2,,]<-rho1*eps[1,,]+a[2,,]
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eps[3,,]<-rho1*eps[2,,]+a[3,,]

eps[4,,]<-rho1*eps[3,,]+a[4,,]

#print(eps)

ga<-array(0,dim=c(1,n,K))

set.seed(ga)

ga[,,]<-matrix(rnorm(n,0,gavar),n,K)

for (j in 1:K){

Y<-array(0,dim=c(T,n))

dermu<-array(0,dim=c(npar,T,n))

dermun<-array(0,dim=c(npar,T,n))

Left<-array(0,dim=c(npar,npar))

Right<-array(0,dim=c(npar,1))

Leftn<-array(0,dim=c(npar,npar))

Rightn<-array(0,dim=c(npar,1))

for (i in 1:n){

Y[,i]<-t(as.matrix(X[,,i,j]))%*%as.vector(beta)+ga[1,i,j]+eps[,i,j]+G[,i,j]*alpha

dermu<-rbind(X[,,i,j],t(G[,i,j]))
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Left<-Left+dermu%*%Isig%*%cbind(t(X[,,i,j]),G[,i,j])

Right<-Right+dermu%*%Isig%*%as.vector(Y[,i])

dermun<-rbind(W[,,i,j],t(Gstar[,i,j]))

Leftn<-Leftn+dermun%*%Isig%*%cbind(t(W[,,i,j]),Gstar[,i,j])

Rightn<-Rightn+dermun%*%Isig%*%as.vector(Y[,i])

}

ThetaQL[,j]<- solve(Left,Right)

ThetaQLn[,j]<- solve(Leftn,Rightn)

}

se[1,m]<-sqrt(var(ThetaQLn[1,]))

se[2,m]<-sqrt(var(ThetaQLn[2,]))

se[3,m]<-sqrt(var(ThetaQLn[3,]))

bias[1,m]<-mean(ThetaQL[1,])-mean(ThetaQLn[1,])

bias[2,m]<-mean(ThetaQL[2,])-mean(ThetaQLn[2,])

bias[3,m]<-mean(ThetaQL[3,])-mean(ThetaQLn[3,])

}
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bias1<-t(bias)

se1<-t(se)

result<-cbind(bias1[,3], se1[,3],bias1[,1],se1[,1],bias1[,2],se1[,2])

round(result,4)

seq<-seq(-0.9,0.9,0.1)

#seq<-seq(0.2,2,0.2)

# seq<-seq(-3,3,0.5)

# seq<-seq(0.1,0.6,0.1)

# seq<-seq(100,1000,100)

Rbn1<-bias[1,]

Rbn2<-bias[2,]

Rbn3<-bias[3,]

ptilda<-seq

#opar <- par(mfrow=c(3,2))

plot(ptilda,Rbn1,lwd=2, lty=3, type="l", ylim=c(-0.5,0.5),col=2,

col.axis="darkred",col.main="darkred",col.sub="darkred",

col.lab="darkred", xlim=c(-1,1), xlab="rho1", ylab="Bias",
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main="Bias of the Naive Estimator for different value of rho1")

lines(ptilda,Rbn2,lwd=2, lty=1, type="l",col=3)

lines(ptilda,Rbn3,lwd=3, lty=2, col=7,type="l")

legend(0.2, 0.2, c("beta1","beta2","alpha"), lwd = c(2,2,3),

col=c(2,3,7), lty = c(3,1,2))
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