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Abstract

There are many mathematical models to describe the dynamics of plankton com-

munity structure in literature, most of the models are based on the so-called prey-

predator model. The purpose of this thesis is to propose a general prey-predator

model with stage structure and a constant maturation time delay with and without

interaction between patches.

First, we begin with the purpose of using delay differential equations in biologi-

cal models, like those involving population dynamics, epidemiology, and physiology;

and present a brief history of the delayed prey-predator models. We provide ba-

sic properties of delay differential equations, the Method of Steps to solve them,

Chebotarev-Meimans Method and The D-Subdivision Method to determine the local

stability.

In Chapter (2), we propose a general model with n parallel food chains through the

stage structured maturation time delay, which can cover most of the prey-predator

models in the literature. We discuss some basic dynamical properties of the sys-

tem with single or multiple patches and with general or some particular functional

responses, including the existence of equilibrium points and their local and global

stabilities.

Then in Chapter (3), based on the model in (2.2), we include the consideration of
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migrations between all patches and present a more complex model for the multi-patch

predator-prey interactions. We discuss the existence of equilibrium points and their

local and global stabilities of the system with two patches and some properties of the

general model.

In Chapter (4), we give numerical simulations by choosing some different func-

tions, parameters and time delay in several examples to illustrate the validity of the

theoretical results given in Chapter (2) and (3).

At last, in Chapter (5), we summarize the results in this thesis, and indicate some

problems for future work.
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Chapter 1

Preliminaries and Intoduction

1.1 Delay Differential Equations in Mathematical

Biology

The use of ordinary and partial differential equations to model biological systems has

a long history, dating to Lotka and Volterra. As these models are used to understand

complicated phenomena, they cannot capture the rich variety of dynamics observed

in natural systems. Delay differential equations (DDEs) is one approach to deal with

these complexities.

DDEs recently become popular in biological models to represent maturation peri-

ods, the birth and death rates, gestation times, incubation periods, transport delays,
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feeding times and hunger coefficients in prey-predator interactions, reaction times,

food storage or ingestion delays, and resource regeneration times. In disease mod-

els, DDEs describe several aspects of infectious disease dynamics: primary infection,

drug therapy and immune response. DDEs have also appeared in the study of neural

networks, physiology, economics, epidemiology, tumor growth and chemostat models.

In general, DDEs exhibit much more complicated dynamics than ordinary differen-

tial equations since the phase space of delay systems is infinite dimensional and a time

delay could cause a stable equilibrium to become unstable and cause the populations

to fluctuate.

1.2 The Delayed Prey-Predator Models

In ecology, predation explains a biological interaction where a predator feeds on its

prey. The prey-predator relationship is essential in maintaining the balance between

different animal species. For instance, when there are no predators in an ecosys-

tem, certain species of prey would force other species to extinction as a result of

competition.

In the 1920’s A. Lotka (1925) and V. Volterra (1926) formulated the orginal model

to describe the prey-predator interactions. The LotkaVolterra equations, also known
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as the prey-predator equations, are a pair of first-order ordinary differential equations

(ODEs)

ẋ(t) = Ax− Bxy;

ẏ(t) = Cy +Dxy,

where x and y are the density of prey and predators, respectively, and A, B, C, D > 0.

Although there have been many improvements and generalizations on the model using

ODEs since then [AG89,Hol59a,Hol59b], the prey-predator interactions include more

details. For instance, one can consider a prey-predator model in which the predator

population is assumed to have an age structure and use partial differential equations

(PDEs) to describe it [CS82] or use DDEs with constant delays and age structure to

identify maturity classes [Nun85,DZ13,GK04].

The delayed prey-predator models were first proposed by Volterra in 1928 to study

fish population under harvesting. he proposed the equations

ẋ(t) = x(t)



a− bx(t)−
0∫

−r

F1(θ)y(t+ θ)dθ



 ;

ẏ(t) = y(t)



−δ + cx(t)−
0∫

−r

F2(θ)x(t+ θ)dθ



 ,
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where x and y are the density of prey and predators, respectively, and all constants

and functions are nonnegative [Kua93]. Since then, the prey-predator models with

time delay have been studied by several authors, [Kua93] treated both autonomous

and nonautonomous systems with various delays and covered the interplay of spatial

diffusion and time delays in some diffusive delay population models, [GK04] formu-

lated a general and robust prey-predator model with stage structure with constant

maturation time delay and perform a systematic mathematical and computational

study, [CN00] established a prey-predator model with stage structure for prey species

to obtain the necessary and sufficient condition for the permanence of preypredator

and the extinction of one species or two species.

1.3 Basic Properties of Delay Differential Equa-

tions

In mathematics, DDEs are differential equation in which the derivative of the un-

known functions at present time are dependent on the values of the functions at

previous times.

First, define C = C([s − τ, s],R) and C+ = C([s − τ, s],R+) with s ∈ R, τ > 0.
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Now, consider the nonlinear DDE

ẋ(t) = f(x(t), x(t− τ)) (1.1)

with a single delay τ > 0. For the initial value problem, we need to give an initial

function or initial history from C, i.e a solution x(t) of (1.1) satisfy

x(t) = φ(t), s− τ ≤ t ≤ s. (1.2)

Theorem 1.1. ( [Smi10] - Theorem 3.1 on page 26 ) Let f(t, x, y) and fx(t, x, y) be

continuous on R
3, s ∈ R, and φ : [s − τ, s] → R be continuous. Then there exists

δ > 0 and a unique solution of the initial-value problem (1.1)-(1.2) on [s− τ, s+ δ].

Theorem 1.2. ( [Smi95] - Theorem 5.2.1 on page 81 ) Let D ⊂ C is open. Assume

that whenever φ ∈ D satisfies φ ≥ 0, φi(0) = 0 for some i and t ∈ R, then fi(t, φ) ≥ 0.

If φ ∈ D satisfies φ ≥ 0 and t0 ∈ R, then x(t, t0, φ) ≥ 0 for all t > t0 in its maximal

interval of existence.

The Method of Steps is one of several methods used for solving DDE system,

this method allows to solve any DDE system by transforming it to an ODE system

over a particular interval, by using the known history function for that interval. Then,
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the process is repeated in the next interval with the newly found solution working as

the history function for the next interval.

For example, Consider the initial value problem







x′(t) = αx(t)− βx(t− τ), t ≥ 0

x(t) = φ0(t),−τ ≤ t ≤ 0,

where τ > 0 is fixed, and assume that φ0(t) is continuous on [−τ, 0]. Then we obtain

• When −τ ≤ t ≤ 0, x(t) = φ0(t).

• When 0 ≤ t ≤ τ , x′(t) = αx(t)− βφ0(t− τ), t ∈ [0, τ ] x(0) = φ0(0)

=⇒ x(t) = φ0(0) +
t∫

0

[αx(s)− βφ0(s− τ)]ds := φ1(t).

• When τ ≤ t ≤ 2τ , x′(t) = αx(t)− βφ1(t− τ), t ∈ [τ, 2τ ] x(0) = φ1(τ)

=⇒ x(t) = φ1(τ) +
t∫

τ

[αx(s)− βφ1(s− τ)]ds := φ2(t).

And so on, we can continue this process.

Local stability of DDE equilibrium point is determined by the location of roots of

of the characteristic equation which has a transcendental form

∆(λ) = P (λ) +Q(λ)e−λτ = 0
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where P (λ) andQ(λ) are polynomial in λ. Generally, this equation has infinitely many

solutions. There are many methods available to determine the local stability. For

instance, Chebotarev-Meiman’s Method which is a generalization of the Routh-

Hurwitz criteria [CM49]. To apply the method, First, we take an infinite series

expansion of the characteristic function

D1(z) =
∞∑

k=0

akz
k.

Then, we rewrite D1(iω) as u(ω) + iv(ω) with

u(ω) =
∞∑

k=0

(−1)ka2kz
2k, v(ω) =

∞∑

k=0

(−1)ka2k+1z
2k+1.

Next, we define determinants, as in the Routh-Hurwitz criteria,

Q1 = a1, Q2 =

∣
∣
∣
∣
∣
∣
∣
∣

a1 a3

a0 a2

∣
∣
∣
∣
∣
∣
∣
∣

, · · · , Qm =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a1 a3 a5 · · · a2m−1

a0 a2 a4 · · · a2m−2

...
...

...
. . .

...

0 0 0 · · · am

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Finally, we have the following theorem.
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Theorem 1.3. Assume that u(ω) and v(ω) have no common zeros. Then the quasi-

polynomial D1 is stable if and only if Qm > 0 for all m ∈ N0.

The D-Subdivision Method is another method to study the local stability,

this method consists of computing a particular decomposition of the parameter space

in regions such that the number of characteristic roots with positive real parts is

constant with respect to all the points of the parameter space inside the region, and

such that for each point of the boundaries the corresponding characteristic equation

has at least one root on the imaginary axis [MN07].



Chapter 2

Dynamics on a General Stage

Structured n Parallel Food Chains

2.1 Introduction

Plankton are the productive base of both marine and freshwater ecosystems, they di-

vided into functional groups: Phytoplankton, plant, the first link in the food chain and

known as primary producers because they produce the first forms of food; Zooplank-

ton, animal, the intermediate link that transfers energy captured by phytoplankton to

fish and other animals near the top of the food chain. Moreover, they produce oxygen

through phytoplankton which removes carbon dioxide from seawater and allows the
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water to absorb a lot of carbon dioxide produced in the atmosphere. The structure

of the ecosystem has their population, growth, mortality, distribution and diversity.

Simultaneously, a changing environment effects their dynamics [KB12].

There are many mathematical models to describe the dynamics of plankton com-

munity structure in literature, we refer [Col80,EB96,EY00,CZ11,OY09,LK08,ML02]

and the references cited there. Most of the models are based on the so-called prey-

predator model.

Armstrong [Arm99] studied a model structure with n parallel food chains, each

consisting of a phytoplankton species Pi and its dedicated zooplankton predator Zi,

proposed the following system

Pi
′ = Pi [µi(N)− Zihi(Pi)]

Zi
′ = Zi

[

γiPihi(Pi)− ǫi

(
n∑

j=1

Zj

)]

, (2.1)

for i = 1, . . . , n andN = T−∑n

i=1 Pi−
∑n

i=1 Zi, with the growth rate µi(N) of Pi which

is a function of nutrient concentration N , the per-phytoplankton-per-zooplankton

harvest rate hi(Pi) of Pi by Zi, predation on the zooplankton ǫi

(
n∑

j=1

Zj

)

by higher

trophic levels. The constant parameter T is the nutrient supply, γi is the growth

efficiency of Zi. The diagram Fig. (2.1) shows the structure of three parallel food
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Figure 2.1: Three parallel food chains.

chains.

2.2 The model

Gourley and Kuang pointed out in [GK04], in reality, the growth of species is a

combined result of birth and death processes, which is closely linked to the resource

supply. The authors in [GK04] formulated a general prey-predator model with stage

structure with constant maturation time delay. Adopting the idea of stage structure,

we modify the model (2.1) to the following:



2.2 The model 12

dPi

dt
= Pi[µi(N )− Zihi(Pi)],

dZi

dt
= bie

−diτiPi(t− τi)Zi(t− τi)hi(Pi(t− τi))− Ziǫi

(
n∑

k=1

Zk

)

, (2.2)

where N = T − ∑n

k=1 αkPk − ∑n

k=1 βkZk is the nutrient concentration with the

coefficients αk, βk, (k = 1, · · · , n) related to the efficiency of nutrient consuming for

each species. We assume that, only the adult predators are capable of preying on the

prey species, so Zi is the adult zooplankton taxon feeding on the phytoplankton Pi, bi

denotes the adult predator’s birth rate, di is the mortality death rate of the juvenile

(through-stage death rate), τi is the unit of time to mature. We omit the equation of

juvenile since it is decoupled. All the parameters are positive.

From the view points in biology and analysis, we assume that all the functions

µi(N ), hi(Pi) and ǫi(
∑n

k=1 Zk) are continuous and differentiable, and satisfy the fol-

lowing hypothesis for i = 1, . . . , n:

(C1) µi(0) = 0, dµi

dN
> 0 when N ∈ [0, T ];

(C2) hi(Pi) ≥ 0, d(Pihi(Pi))
dPi

> 0, 0 ≤ Pihi(Pi) ≤Mi, Mi is a constant;

(C3)
∂ǫi(Z)
∂Zj

≥ 0 for each Zj in Z =
∑n

k=1 Zk.
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The general model (2.2) can cover almost all the prey-predator models in the

literature, such as the well known Lotka-Volterra model and Rosenzweig-MacArthur

model. In addition, (2.2) includes several general, partial general and specific models

with some particular choices of the functions. For example, when n = 1, with µ(N ) =

g(P ), h(P ) = p(P )
P
, ǫ(Z) = d(constant) and τ = 0, (2.2) becomes the general model in

[KR08]; with µ(N ) = r(1−P (t)/K), h(P ) = p(P )
P
, τ 6= 0 and constant ǫ(Z) = dj, (2.2)

covers the partial general model in [GK04]; when we take µ(N ) = R(1−P (t)/K) and

the Holling type II and III functional responses h(P ) = A
C1+P (t)

, ǫ(Z) = d+ FZ(t)

C2
2+Z(t)2

,

τ is either zero or nonzero, the model (2.2) is the same as that in [Yua12]. When

n ≥ 2, the two-patch predator-prey models in [RH11] without migration or the n-

patch ecological model [HH08] without dispersal are involved in our model (2.2) as

well.

2.3 One Phytoplankton and One Zooplankton Model

We start with the simplest case when n = 1 which is rewritten as

dP

dt
= P [µ(N )− Zh(P )],

dZ

dt
= be−dτP (t− τ)Z(t− τ)h(P (t− τ))− Zǫ(Z), (2.3)
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with N = T − αP − βZ.

The purpose of this section is to analyze and demonstrate the population dynam-

ics of various species in model (2.3) by finding the ultimate upper bound for the

interacting populations and exploring the local stability of the all the equilibrium

solutions.

Let C = C([−τ, 0), R), C+ = C([−τ, 0), R+), first, we have the following positivity

and boundedness properties.

Theorem 2.1. Given the initial condition P (0), Z(0) ∈ C+, then under the hypoth-

esis (C1 - C3), the solutions of (2.3) are nonnegative in X = C × C. In addition, if

ǫ(0) > 0 then all the solutions are ultimately bounded in X.

Proof. The positivity for P (t) is just followed by standard arguments from the first

equation in (2.3) since it contains a factor of P (t).

For Z(t), on 0 ≤ t ≤ τ , Z ′(t) ≥ −Zǫ(Z), so Z(t) ≥ Z(0) e−
∫ t
0 ǫ(Z(s))ds > 0. By

using step-method, we have Z(t) > 0 for all t ∈ [0,∞). Therefore the solutions of

(2.3) are nonnegative in X.

Under the hypothesis (C1), µ(N ) is increasing function with respect to N , then

P ′ = P [µ(N )− Zh(P )] ≤ Pµ(N ) ≤ Pµ(T − αP ).
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Since µ(0) = 0 and µ(T−αP ) is decreasing with respect to P , we know lim
t→∞

supP (t) ≤

T/α := T , implying P (t) is ultimately bounded.

From the hypothesis (C3), ǫ(Z) ≥ 0 for all Z ≥ 0, multiplying the first equation

by be−dτ and adding it to the second equation in (2.3), we can obtain

(
be−dτP (t) + Z(t+ τ)

)′
= be−dτP (t)µ (N )− ǫ(Z(t+ τ))Z(t+ τ)

≤ be−dτµ(T )P (t)− ǫ(0)Z(t+ τ),

which is equivalent to

(

be−dτP (t) + Z(t+ τ)
)′

≤ be−dτµ(T )P (t) + be−dτ ǫ(0)P (t)− ǫ(0)
(

be−dτP (t) + Z(t+ τ)
)

≤ bT e−dτ (µ(T ) + ǫ(0))− ǫ(0)
(

be−dτP (t) + Z(t+ τ)
)

.

If ǫ(0) > 0 then lim
t→∞

sup
(
be−dτP (t) + Z(t+ τ)

)
≤ bT e−dτ (µ(T )+ǫ(0))

ǫ(0)
. Therefore, both

P (t) and Z(t) are ultimately bounded in X.

• Existence and Stability of Boundary Equilibrium Points

It is easy to see that in the system (2.3), there is a trivial equilibrium point (0, 0) and

one-species equilibrium point (T
α
, 0) := (T , 0). The stability of these two boundary

equilibrium points are given in the following result.

Theorem 2.2.
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(i) (0, 0) is always an unstable saddle point;

(ii) (T , 0) is locally asymptotically stable if ǫ(0) > bT h(T )e−τd and it is unstable if

ǫ(0) < bT h(T )e−τd.

Proof. (i) The linearization of (2.3) at (0, 0) is

x′(t) = µ(T )x(t)

y′(t) = −ǫ(0)y(t).

So it is easy to see that (0, 0) is a unstable saddle point since µ(T ) > 0 and ǫ(0) > 0.

(ii) The linearization of (2.3) at (T , 0) is

x′(t) = −T [αµ′(0)x(t) + (βµ′(0) + h(T )) y(t)],

y′(t) = −ǫ(0)y(t) + be−dτT h(T )y(t− τ). (2.4)

The characteristic equation of (2.4) is

Ξ(λ) = (λ+ αT µ′(0))
(
λ+ ǫ(0)− bT h(T )e−τ(λ+d)

)
= 0.

Let f(λ) = λ + ǫ(0) − bT h(T )e−τ(λ+d). Since f(0) = ǫ(0) − bT h(T )e−τd, if ǫ(0) <
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bT h(T )e−τd, then f(0) < 0 and lim
λ→+∞

f(λ) = +∞. Therefore there exist λ̄ > 0 such

that f(λ̄) = 0, thus (T , 0) is unstable.

When ǫ(0) > bT h(T )e−τd, assume there exists a zero of f(λ) with Re(λ) > 0,

then from

Reλ = Re(bT h(T )e−τ(λ+d) − ǫ(0)) ≤ bT h(T )e−τd − ǫ(0) < 0,

which leads to a contradiction. Therefore all the eigenvalues in (2.4) have negative

real parts, implying (T , 0) is locally asymptotically stable.

In order to study the persistence of system (2.3), assume that X is the closure of

open set X
◦
; that is, X = X

◦ ∪ ∂X
◦
, where ∂X

◦
, assumed to be nonempty, is the

boundary of X
◦
. Also, we assume that the C

◦ − semigroup T (t) on X satisfies

T (t) : X
◦ → X

◦

, T (t) : ∂X
◦ → ∂X

◦

(2.5)

Denote T∂(t) = T (t)|∂X◦ and A∂ be the global attractor for T∂(t).

Theorem 2.3 ( [Kua93], Page 277, Theorem 2.4). Suppose that T (t) satisfies (2.5)

and that

(i) there is a t0 > 0 such that T (t) is compact for t > t0; and
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(ii) T (t) is point dissipative in X ; and

(iii) Ã∂ = ∪
x∈A∂

ω(x) is isolated and has an acyclic covering M = {M1,M2, . . . ,Mn}.

Then T (t) is uniformly persistent if and only if, for each Mi, W
s(Mi) ∩X◦

= φ

where W s(Mi) = {x : x ∈ X,ω(x) 6= φ, ω(x) ⊂Mi}.

Theorem 2.4 ( [Kua93], Page 277, Theorem 2.3). Suppose that T (t) satisfies (2.5)

and that

(i) there is a t0 > 0 such that T (t) is compact for t > t0; and

(ii) T (t) is point dissipative in X ; and

(iii) T (t) is uniformly persistent.

Then there is a global attractor A◦ in X
◦
relative to strongly bounded sets.

Theorem 2.5. If ǫ(0) < bT h(T )e−τd , then system (2.3) exhibits uniform persistence.

Proof. First, we define

X1 =
{
(P,Z) ∈ R2 : P ≥ 0, Z = 0

}
;

X2 =
{
(P,Z) ∈ R2 : P = 0, Z > 0

}
;

∂X
◦

= X1 ∪X2;

X
◦

=
{
(P,Z) ∈ R2 : P > 0, Z > 0

}
.
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From Theorem 2.1, we can see that X = X
◦ ∪ ∂X◦

is positively invariant.

We denote (P (t), Z(t)) = (P (t, ϕ, ψ), Z(t, ϕ, ψ)) the solution of system (2.3) with

(P0, Z0) = (ϕ, ψ). Hence,

T (t)(ϕ, ψ)(θ) = (P (t+ θ, ϕ, ψ), Z(t+ θ, ϕ, ψ)) , θ ∈ [−τ, 0].

Then, according to ( [Kua93], Theorem 2.8, page 20), T (t) is completely continuous

for t > τ . Also, Theorem 2.1 implies that T (t) is point dissipative. Therefore,

conditions (i) and (ii) of Theorem 2.3 are satisfied.

There are two steady states in ∂X
◦
: E0 = (0, 0) and E1 = (T , 0). We know from

Theorem 2.2-(i) that E0 is unstable saddle point and the Jacobian matrix has two

eigenvalues λ1 = µ(T ) > 0 and λ2 = −c < 0. The positive eigenvalue λ1 corresponds

to an eigenvector of the form (1, 0)T . The negative eigenvalue λ2 corresponds to an

eigenvector of the form (0, 1)T , and hence corresponding to solutions that remain in

the part of ∂X
◦
. Thus, the stable manifold of E0 does not intersect the X

◦
, that is,

W s(E0)∩X◦
= φ. When ǫ(0) < bT h(T )e−τd, E1 is unstable, Theorem 2.2-(ii). There

is a unique positive eigenvalue λ̄ > 0, which corresponds to an eigenvector of the form

( λ̄+T αT µ′(0)
T (βµ′(0)+h(T )

, 1)T . The negative eigenvalue −αT µ′(0) corresponds to an eigenvector

of the form (1, 0)T and all roots with a negative part of λ+ ǫ(0)− bT h(T )e−τ(λ+d) = 0
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correspond to an eigenvector of the form (0, 0)T , hence corresponding to solutions that

remain in the part of ∂X
◦
. Thus, the stable set of E1 does not intersect the X

◦
, that

is, W s(E1) ∩X◦
= φ.

To verify the condition (iii) of Theorem 2.3, let Ã∂ be the union of the two steady

states E0 and E1. Taking Mi to be these steady states, there are no cycles in the

∂X
◦
. Also, these steady states are isolated invariant set by the linear theory ( [Kua93],

Section 2.8). Hence, by Theorem 2.3, system (2.3) is uniformly persistent.

To discuss the global attractivity of the equilibrium point (T , 0), we introduce the

result given in [GK04,Kua93]:

Lemma 2.1. Consider the following equation

u′(t) = au(t− τ)− bu(t)

where a, b, τ > 0, and u(t) > 0 for −τ ≤ t ≤ 0. We have

(i) lim
t→∞

u(t) = 0, when a < b;

(ii) lim
t→∞

u(t) = ∞, When a > b.

Then we have the following:
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Theorem 2.6. With the hypothesis (C1 - C3). When bMe−dτ < ǫ(0) then the solu-

tions of (2.3) satisfy P (t) −→ T , Z(t) −→ 0 as t −→ ∞.

Proof. In the proof of Theorem (2.1), we know that lim
t→∞

supP (t) ≤ T . Therefore

there exists tδ > 0 such that

P (t) < T + δ, for all t ≥ tδ.

Following the hypothesis (C2) and (C3), we have ǫ(Z) ≥ ǫ(0) and P (t− τ)h(P (t−

τ)) ≤M for any t > tδ + τ with positive constant M . Thus

Z ′ ≤ bMe−dτZ (t− τ)− ǫ (Z)Z (t)

≤ bMe−dτZ (t− τ)− ǫ (0)Z (t) .

The comparison theory implies that Z(t) is bounded above by the solution of

u′(t) = bMe−dτu (t− τ)− ǫ (0) u (t) , t > tδ + τ

such that u(t) = Z(t) for t ∈ [tδ, tδ + τ ]. The condition bMe−dτ < ǫ(0) and the result

in Lemma(2.1) guarantee lim
t→∞

Z(t) = 0.

Let η ∈ (0, 1) such that T − η(β +M) > 0. Then there exists tη > 0 such that for
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t ≥ tη, Z(t) < η < T
β+M

. By the boundedness of Ph(P ), we have PZh(P ) < Mη.

Therefore

P ′ = Pµ (N )− Ph(P )Z > Pµ (N )−Mη

= Pµ (T − αP − βZ)−Mη > Pµ (T − αP − βη)−Mη.

In general, T − αP (t) ≥ T − α lim
t→∞

supP (t) ≥ 0. Thus

P ′ ≥ Pµ (T − αP − βη)−Mη − (T − αP − η (β +M)) .

That the equation

v′(t) = v(t)µ (T − αv(t)− βη)−Mη − (T − αv(t)− η (β +M))

has a solution v(t) = T−βη

α
results lim

t→∞
inf P (t) > T−βη

α
. Since η ∈

(

0, T
β+M

)

is arbitrary, lim
t→∞

inf P (t) ≥ T
α

= T . Together with lim
t→∞

supP (t) ≤ T , we have

lim
t→∞

P (t) = T .

Since Ph(P ) is bounded by M , we can see the condition for the local stability at

(T , 0) in Theorem (2.2)-(ii) is included in the global stability condition in Theorem

(2.6).
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• Existence and Stability of Positive Equilibrium

When system (2.3) has a positive equilibrium point (P ∗, Z∗), then P ∗, Z∗ must

satisfy

µ(N ∗) = Z∗h(P ∗),

be−dτP ∗h(P ∗) = ǫ(Z∗), (2.6)

with N ∗ = T − αP ∗ − βZ∗. From the second equation in (2.6), we have

ǫ(Z∗)edτ

b
= P ∗h(P ∗) ≤M. (2.7)

Since ǫ(0) ≤ ǫ(Z∗), (2.7) implies that τ must be less than τmax = 1
d
ln
(

bM
ǫ(0)

)

. The

condition τ < τmax is necessary for the existence of such P ∗ and Z∗ in (2.6), but is

not a sufficient condition in general.

In addition, the existence of such P ∗, Z∗ and the number of solutions in (2.6) are

uncertain which depends on the choice of the functions µ(N ), h(P ) and ǫ(Z). For

instance, in Fig. (2.2), f(P ) = Ph(P ) and g(Z) = ǫ(Z)edτ

b
, the second equation of
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(2.6) may have infinite solutions (Fig. (2.2a)) or none solution (Fig. (2.2b)). Let

τ̃ = sup {τ ∈ (0, τmax) |the second equation of (2.6) has at least a solution} . (2.8)

When τ < τ̃ , mathematically, we can obtain

Z∗ = ǫ−1(be−dτP ∗h(P ∗)),

while P ∗ is determined by

µ(T − αP ∗ − βǫ−1(be−dτP ∗h(P ∗))) = h(P ∗)ǫ−1(be−dτP ∗h(P ∗)),

which is impossible to find an analytical solution in general. However, when the

total higher trophic predation ǫ(Z) is a constant, then the positive equilibrium point

(P ∗, Z∗) exists and is unique.

Theorem 2.7. When ǫ(Z) = c is a constant and bMe−dτ > c, there exists a unique

positive equilibrium point (P ∗, Z∗) in (2.3).

Proof. When ǫ(Z) = c, g(Z) = ǫ(Z)edτ

b
= cedτ

b
= ĉ is a constant with fixed parameters

b, c, d and τ . Since f(P ) = Ph(P ) is a increasing function on the interval (0, T ) with

0 < f(P ) ≤ M , when M > ĉ, that is, bMe−dτ > c, there exists a unique P ∗ ∈ (0, T )
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0

2

4

P

0

2

4

Z

0.0

0.5

f(P )

g(Z)

(a) ǫ(Z) = 0.15, h(P ) = P

P2+1
.

 !  !" #! #!" $!  !  !"#! #!"$!  #$% Z

P

f(P )

g(Z)

(b) ǫ(Z) = 0.5 + 0.1Z2, h(P ) = P

P2+0.5
.

Figure 2.2: The existence of solution in the second equation of (2.6). b = 0.25, d = 0.01,
τ = 0.2, and T = 9.

such that f(P ∗) = g(Z∗) = ĉ, i.e P ∗ = f−1(ĉ).

In Eq. (2.6), multiplying Z∗ in the second and combine with the first equation,

we have be−dτP ∗µ(N∗) = Z∗ǫ(Z∗) = cZ∗, that is

be−dτf−1(ĉ)µ(T − αf−1(ĉ)− βZ∗) = cZ∗. (2.9)

In Eq. (2.9), the left-hand side is decreasing, and the right-hand side is increasing

with respect to Z∗, thus there exists a unique Z∗ corresponding to P ∗ = f−1(ĉ),

implying the system (2.6) has a unique positive equilibrium point (P ∗, Z∗).

With fixed parameters, feasible values of delay τ and certain functions given in
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P

Z

First equation

Second equation

(a) One equilibrium point.

 ! " # $ %  %&'% '%&!% First equation

Second equation

Z

P

(b) Three equilibrium points.

Figure 2.3: Existence of (P ∗, Z∗) with b = 0.25, d = 0.01, α = β = 1 and functions in table
(2.1).

Table (2.1), Fig. (2.3) shows the existence of (P ∗, Z∗). When ǫ(Z) is a constant, there

is a unique positive equilibrium point shown in Fig.(2.3a), while when we change ǫ

from a constant to a linear function, we can observe three positive equilibrium points,

see Fig.(2.3b).

h(P ) µ(N) ǫ(Z) T

Fig. (2.3a) P
P 2+1

N
N+10 0.15 5

Fig. (2.3b) P
P 2+0.1

N
N+15 0.05 + 0.31Z 9

Table 2.1: Functions chosen in Fig. (2.3).

α = β = 1

When the positive equilibrium point (P ∗, Z∗) exists, to study its stability, we
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linearize (2.3) at (P ∗, Z∗), by setting x = P − P ∗, y = Z − Z∗, which is,

dx

dt
= −P ∗(αµ′

∗ + Z∗h′∗)x(t)− P ∗(βµ′
∗ + h∗)y(t), (2.10)

dy

dt
= −(ǫ∗ + Z∗ǫ′∗)y(t) + be−dτZ∗(h∗ + P ∗h′∗)x(t− τ) + be−dτP ∗h∗y(t− τ),

where h∗, ǫ∗ denotes the value of the function h, ǫ and µ′
∗, h

′
∗, ǫ

′
∗ denotes the value of

the derivative of the associated function at (P ∗, Z∗) respectively. The characteristic

equation of (2.10) is

∆(λ, τ) = λ2 + a1λ+ a2 + b1λe
−τλ + b2e

−τλ = 0, (2.11)

with

a1 = P ∗(αµ′
∗ + Z∗h′∗) + (ǫ∗ + Z∗ǫ′∗),

a2 = P ∗(βµ′
∗ + Z∗h′∗)(ǫ∗ + Z∗ǫ′∗),

b1 = −be−dτP ∗h∗ < 0,

b2 = −be−dτ (P ∗)2h∗(αµ
′
∗ + Z∗h′∗) + be−dτZ∗P ∗(βµ′

∗ + h∗)(h∗ + P ∗h′∗).

As we know that all the roots of ∆(λ, τ) with Re(λ) ≥ 0 lie in a bounded domain
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[DZ13]. When τ = 0. Eq. (2.11) becomes

∆(λ, 0) = λ2 + (a1 + b1)λ+ (a2 + b2) = 0,

where

a1 + b1 = P ∗(αµ′
∗ + Z∗h′∗) + Z∗ǫ′∗,

a2 + b2 = P ∗(αµ′
∗ + Z∗h′∗)Z

∗ǫ′∗ + be−dτP ∗Z∗(βµ′
∗ + h∗)(h∗ + P ∗h′∗)

= P ∗(αµ′
∗ + Z∗h′∗)Z

∗ǫ′∗ + be−dτP ∗Z∗(βµ′
∗ + h∗)

dPh

dP

∣
∣
∣
∣
P=P ∗

.

a1 + b1 > 0 if and only if h′∗ > −
(

αµ′
∗

Z∗ + ǫ′∗
P ∗

)

and since dPh
dP

> 0, we have a2 + b2 > 0

if and only if h′∗ >
−be−dτ

Z∗ǫ′∗
(βµ′

∗ + h∗)(
dPh
dP

∣
∣
P=P ∗) − αµ′

∗

Z∗ . Following the Routh-Hurwitz

stability criterion we have

Proposition 2.1. At τ = 0, the equilibrium point (P ∗, Z∗) is locally asymptotically

stable if and only if

h′∗ > −
(

R +
µ′
∗

Z∗

)

, (H0)

where R = min
{

ǫ′∗
P ∗ ,

be−dτ

Z∗ǫ′∗
(βµ′

∗ + h∗)(
dPh
dP

∣
∣
∣
P=P ∗

)}.

Let τ > 0 and suppose λ = iω (ω > 0) is a purely imaginary root of (2.11).
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Substituting it into (2.11) and separating the real and imaginary parts, we obtain:

−ω2 + a2 = −b1ω sinωτ − b2 cosωτ

a1ω = −b1ω cosωτ + b2 sinωτ. (2.12)

Squaring and adding both equations of (2.12) lead to

F (ω, τ) = ω4 + q(τ)ω2 + ℓ(τ) = 0,

where

q(τ) = a21 − 2a2 − b21,

ℓ(τ) = a22 − b22.

Let u = ω2. In seeking of the positive real roots in F (u, τ) = u2 + q(τ)u + ℓ(τ) = 0,

at first we need

Θ = q(τ)2 − 4ℓ(τ) =
(
a21 − b21

) (
a21 − b21 − 4a2

)
+ 4b22 ≥ 0. (H1)

Obviously, F (u, τ) = 0 has no positive roots when ℓ(τ) ≥ 0 and q(τ) ≥ 0 which is
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equivalent to

a22 − b22 ≥ 0 & a21 − 2a2 − b21 ≥ 0; (H2)

and has exactly one positive root if

ℓ(τ) = a22 − b22 < 0; (H3)

or when

ℓ(τ) = a22 − b22 = 0 & q(τ) = a21 − 2a2 − b21 < 0; (H4)

or two positive roots when ℓ(τ) > 0 and q(τ) < 0 which is equivalent to

a22 − b22 > 0 & a21 − 2a2 − b21 < 0. (H5)

Furthermore, from (2.12), we have

sinω(τ)τ =
a1b2ω(τ)− b1ω(τ)

(
a2 − ω(τ)2

)

b21ω(τ)
2 + b22

,

cosω(τ)τ =
b2
(
ω(τ)2 − a2

)
− a1b1ω(τ)

2

b21ω(τ)
2 + b22

. (2.13)

Define the function θ(τ) ∈ [0, 2π) such that sin θ(τ) and cos θ(τ) are given by (2.13).
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Following [BK02], [LS10], let

Sn(τ) = τ − θ(τ) + 2nπ

ω(τ)
, n ∈ N, τ ∈ (0, τmax) , (2.14)

then iω(τ ∗) is a root in (2.11) if and only if τ ∗ is a zero of a function Sn for some

n ∈ N.

Proposition 2.2. If τ ∗ ∈ (0, τmax) is a positive root of Sn given in (2.14) for some

n ∈ N, then a pair of purely imaginary roots ω(τ ∗) of (2.11) exist which crosses the

imaginary axis from left to right if S ′
n (τ

∗) > 0 and crosses the imaginary axis from

right to left if S ′
n (τ

∗) < 0, and

Sign

{

dRe (λ)

dτ

∣
∣
∣
∣
λ=iω(τ∗)

}

= Sign

{
dSn (τ)

dτ

∣
∣
∣
∣
τ=τ∗

}

.

Therefore, when the positive equilibrium point (P ∗, Z∗) exists, the stability of

(P ∗, Z∗) is given in the following:

Theorem 2.8. (i) When (H0), (H1) and (H2) hold, (P
∗, Z∗) is locally asymptot-

ically stable for any feasible time delay τ ;

(ii) When (H0), (H1) with either (H3), (H4) or (H5) hold, (P ∗, Z∗) is locally

asymptotically stable for small time delay τ , say τ < min {τ ∗n};
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(iii) When (H0) does not hold and (H1) with either (H3), (H4) or (H5) hold,

(P ∗, Z∗) is unstable for small time delay τ . If there exists a τ ∗n, such that

S ′
n(τ

∗
n) < 0, (P ∗, Z∗) can become stable with τ > τ ∗n.

From Theorem 2.4 and Theorem 2.5, we have

Proposition 2.3. If ǫ(Z) = c is a constant and bT h(T )e−τd > c, then the positive

equilibrium point (P ∗, Z∗) of system (2.3) is global attractive when (P ∗, Z∗) is locally

asymptotically stable.

2.4 n Parallel Phytoplankton Zooplankton Patches

In this section, we discuss the general model (2.2) with n parallel phytoplankton-

zooplankton patches. Rewrite the system (2.2) as

P1
′ = P1 [µ1(N )− Z1h1(P1)]

Z1
′ = b1e

−d1τ1P1(t− τ1)Z1(t− τ1)h1(P1(t− τ1))− Z1ǫ1(
n∑

k=1

Zk)

... (2.15)

Pn
′ = Pn[µn(N )− Znhn(Pn)]

Zn
′ = bne

−dnτnPn(t− τn)Zn(t− τn)hn(Pn(t− τn))− Znǫn(
n∑

k=1

Zk).
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Analogue to the positivity and boundedness property given in Theorem (2.1), we have

the following result.

Theorem 2.9. Given the initial condition Pi(0), Zi(0) ∈ C+, for all i = 1, . . . , n,

then under the hypothesis (C1 - C3), the solutions of (2.15) are nonnegative in X =

Cn × Cn. In addition, if each ǫi(0) > 0, then the solutions are ultimately bounded in

X .

The proof of Theorem (2.9) is similar to that in Theorem (2.1) , we omit here.

System (2.15) has a trivial equilibrium point E0 = (0, 0, . . . , 0, 0)
︸ ︷︷ ︸

2n

and infinite

number of predator-free equilibrium points, and it is also possible to have the co-

existed positive equilibrium point (P ∗
1 , Z

∗
1 , P

∗
2 , Z

∗
2 . . . , P

∗
n , Z

∗
n) under the hypothesis

(C1 - C3) and certain conditions.

Remark 2.1. System (2.15) has infinite number of predator-free equilibrium points

with the form Ẽ =
(

α1P̃1, 0, α2P̃2, 0, . . . , αnP̃n, 0
)

︸ ︷︷ ︸

2n

such that
n∑

k=1

αkP̃k = T .

To study the stability of any equilibrium point (x1,y1,x2,y2, . . . ,xn,yn), we need

to know the general form of the characteristic equation, which is,

∆ (λ) = det

(

λI − J0 −
n∑

k=1

Jke−λτk

)

= 0
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where J0 = (aij) and J
k =

(
ckij
)
are 2n× 2n matrices with

aij =







−x i+1
2

[

α i+1
2
µ′

i+1
2

(
N̄
)
+ y i+1

2
h′i+1

2

(

x i+1
2

)]

, i odd, j = i;

−x i+1
2

[

β i+1
2
µ′

i+1
2

(
N̄
)
+ h i+1

2

(

x i+1
2

)]

, i odd, j = i+ 1;

−α j+1
2
x i+1

2
µ′

i+1
2

(
N̄
)

, i, j odd, i 6= j;

−β j
2
x i+1

2
µ′

i+1
2

(
N̄
)

, i odd, j even j 6= i+ 1;

−ǫ i
2

(
n∑

k=1

yk

)

− y i
2
ǫ′i
2

(
n∑

k=1

yk

)

, i even, j = i;

−y i
2
ǫ′i
2

(
n∑

k=1

yk

)

, i, j even, i 6= j;

0 , i even, j odd,

where N̄ = T −
n∑

k=1

αkxk −
n∑

k=1

βkyk and

ckij =



























0 , i odd, any j; or i even, j 6= 2k, j 6= 2k − 1;

bke
−dkτkyk

(

hk(xk)+xkh
′
k(xk)

)

, i = 2k, j = 2k − 1;

bke
−dkτkxkhk(xk) , i = 2k, j = 2k;

Therefore, about the stability of the boundary equilibrium points E0 and Ẽ, we have

Theorem 2.10.

(i) E0 is always an unstable saddle point;

(ii) All Ẽ are locally asymptotically stable if bkP̃khk(P̃k)e
−dkτk < ǫk(0) for all k =

1, 2, . . . , n and they are unstable if bkP̃khk(P̃k)e
−dkτk > ǫk(0) for some k = 1, 2, . . . , n.
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Proof. (i) At the equilibrium point E0, J
k
∣
∣
E0

= [0] and

J0 =



























µ1(T ) 0

0 −ǫ1(0)

0 · · · 0

0
µ2(T ) 0

0 −ǫ2(0)

· · · 0

...
...

. . .
...

0 0 · · ·
µn(T ) 0

0 −ǫn(0)



























.

Obviously E0 is unstable saddle point since there are positive eigenvalues µi (T ) and
negative eigenvalues −ǫi(0), i = 1, 2, . . . , n.
(ii) Let ξi = bie

−diτi . The characteristic equation ∆ (λ) = 0 at the point Ẽ becomes

det

































λ + α1P̃1µ
′

1(0) β1P̃1µ
′

1(0) + h1

(

P̃1

)

α2P̃1µ
′

1(0) · · · βnP̃1µ
′

1(0)

0 λ + ǫ1(0) − ξ1P̃1h1

(

P̃1

)

e−λτ1 0 · · · 0

.

.

.

.

.

.

.

.

.
. .
.

.

.

.

α1P̃nµ′

n
(0) β1P̃nµ′

n
(0) α2P̃nµ′

n
(0) · · · βnP̃nµ′

n
(0) + hn

(

P̃n

)

0 0 0 · · · λ + ǫn(0) − ξnP̃nhn

(

P̃n

)

e−λτn

































= 0
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which is,

∆ (λ) =

(
n∏

k=1

(

λ+ ǫk(0)− ξkP̃khk

(

P̃k

)

e−λτk

)
)

×

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

λ+ α1P̃1µ
′
1(0) α2P̃1µ

′
1(0) · · · αnP̃ 1µ

′
1(0)

α1P̃2µ
′
2(0) λ+ α2P̃2µ

′
2(0) · · · αnP̃2µ

′
2(0)

...
...

. . .
...

α1P̃nµ
′
n(0) α2P̃nµ

′
n(0) · · · λ+ αnP̃nµ

′
n(0)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0.

Since

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ+ α1P̃1µ
′
1(0) α2P̃1µ

′
1(0) · · · αnP̃1µ

′
1(0)

α1P̃2µ
′
2(0) λ+ α2P̃2µ

′
2(0) · · · αnP̃2µ

′
2(0)

...
...

. . .
...

α1P̃nµ
′
n(0) α2P̃nµ

′
n(0) · · · λ+ αnP̃nµ

′
n(0)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= λn−1

(

λ+

n
∑

i=1

(

αiP̃iµ
′
i(0)

)

)

,

then the characteristic equation becomes

∆(λ) = λn−1

(

n
∏

k=1

(

λ+ ǫk(0)− ξkP̃khk

(

P̃k

)

e−λτk
)

)(

λ+
n
∑

i=1

(

αiP̃iµ
′
i(0)

)

)

= 0.

From the result in Theorem (2.2), it is easy to see that if ξkP̃khk(P̃k) < ǫk(0) for all

k = 1, 2, . . . , n, then Ẽ is locally asymptotically stable and unstable if bkP̃khk(P̃k)e
−dkτk >

ǫk(0) for some k = 1, 2, . . . , n.
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Although we cannot show the global attractivity of each equilibrium point Ẽ, with

parallel proof in Theorem (2.6), we have the following “group” property.

Theorem 2.11. When biMie
−diτi < ǫi(0) for all i = 1, . . . , n, the solutions of (2.15)

satisfy
n∑

i=1

αiPi(t) −→ T and Zi(t) −→ 0 for all i = 1, . . . , n as t −→ ∞.

As we know from the previous section that, even for the system with one patch

(n = 1), the existence and the number of positive equilibrium point are uncertain

which depend on the choices of the functions, parameters and time delay as well.

With general functions and n > 1, this becomes more complicated. Biologically,

it is almost impossible to know the environment for the coexistence of each species.

However, we know that, if each species can coexist, at least the maturation time delay

for each predator cannot be long. In fact, assume there exists a positive equilibrium

point E∗ = (P ∗
1 , Z

∗
1 , P

∗
2 , Z

∗
2 , . . . , P

∗
n , Z

∗
n), then from

ǫi

(
n∑

k=1

Z∗
k

)

ediτi

bi
= P ∗

i hi (P
∗
i ) ≤Mi,

and the hypothesis (C3), we know that τi must be less than

τmax = min

{
1

di
ln

(
biMi

ǫi(0)

)

: i = 1, 2, . . . , n

}

.
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The condition τ < τmax is necessary for the existence of such E∗ in (2.15).

With some particular choice of the functions, we maybe able to obtain some better

result.

Case I: When the total predation terms from higher trophic level from higher trophic

level ǫi

(
n∑

k=1

Zk

)

are constants for all i = 1, 2, . . . , n, then the positive equilibrium

point E∗ exists and is unique under certain condition, which is an extension of The-

orem (2.7).

Theorem 2.12. When ǫi

(
n∑

k=1

Zk

)

= ci are constants and biMie
−diτi > ci for i =

1, 2, . . . , n, there exist a unique positive equilibrium point E∗ in (2.15).

Case II: When the n parallel food chains are symmetric, that is, the growth functions

for all taxa at the same trophic level have the same functional forms and the same

parameter values, the maturation delay for each predator is the same, then the system

has at least a positive equilibrium point E∗ with P ∗
1 = P ∗

2 = . . . = P ∗
n := P ∗, and

Z∗
1 = Z∗

2 = . . . = Z∗
n := Z∗ and the characteristic equation ∆(λ) = 0 has the form,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ+l1+l2α l3 + l2β l2α l2β l2α l2β · · ·

m1e
−τλ λ+m2e

−τλ+m3+m4 0 m4 0 m4 · · ·

l2α l2β λ+l1+l2α l3 + l2β l2α l2β · · ·

0 m4 m1e
−τλ λ+m2e

−τλ+m3+m4 0 m4 · · ·

l2α l2β l2α l2β λ+l1+l2α l3 + l2β · · ·

0 m4 0 m4 m1e
−τλ λ+m2e

−τλ+m3+m4 · · ·

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0,



2.4 n Parallel Phytoplankton Zooplankton Patches 39

which is equal to

∆ (λ) = det
(
A1A

n−1
2

)
= 0,

where

A1 =







λ+ l1 + nαl2 l3 + nl2β

m1e
−τλ λ+m3 + nβm4 +m2e

−τλ







and

A2 =







λ+ l1 l3

m1e
−τλ λ+m3 +m2e

−τλ






,

with

l1 = P ∗Z∗h′∗, l2 = P ∗µ′
∗, l3 = P ∗h∗,

m1 = −be−dτZ∗(h∗ + P ∗h′∗), m2 = −be−dτ l3, m3 = ǫ∗, m4 = Z∗ǫ′∗.

Comparing with the result in [Arm99], without the maturation delay, the effect from

A2 does not affect the stability of the system if the predator functional response is

stabilizing. However, the introduction of the delay in the maturation time, the system

becomes much more involved, we can expect the system to exhibit rich dynamics,

especially when the system owns some symmetry. Certainly it is not trivial, we leave

the theoretical analysis for future research, and give some numerical simulations in
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the last chapter.

The main part of Chapter (2) is presented in the conference BIOMAT 2013 Inter-

national Symposium on Mathematical and Computational Biology and the paper is

accepted by the BIOMAT [ADY14].



Chapter 3

Dynamics on a General Stage

Structured n Parallel Food Chains

With Migration Between Patches

3.1 Introduction

In Chapter (2), we consider the model including n parallel food chains with matura-

tion delay and no interaction between patches is involved. However, phytoplankton

migration from deep sea to the surface is essential due to lack of nutrients or because

of light, the growth of phytoplankton depend on sunlight to photosynthesise [Oll99].
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And since there are plenty of phytoplankton in the surface ocean, many types of

zooplankton migrate deeper into the water during the day and come up at night to

avoid fish and other predators, this migration is based on factors like age, sex and

the season [BC09].

Many authors assumed different migration rates for both predator and prey species.

For instance, the authors constructed a two patches model with migration of both

the predator and the prey in [RH11], and assumed the migration of the predator

dependent on the population of the prey in each patch, while the prey migration in a

constant rate, [Jan94] provided a model with two patches and assumed that the prey

does not migrate and the predator in the patch with a higher density will migrate

to the patch with a lower density, [AP07] assumed that predators migrate with a

constant migration rates, while the prey migration depends on the predator density

and [PM07] considered a predator-prey model in a two-patches environment and as-

sumed that migration between patches is faster than prey growth and considered the

prey (predator) migration rates depend on the predator (prey) density.
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3.2 The Model

In this section, we assume there are interactions between patches and propose a

more complex model for the multi-patch predator-prey interactions, with migration

between all patches:

dPi

dt
= Pi[µi(N )− Zihi(Pi)] +

n∑

k=1
k 6=i

(m+
k Pk −m−

i Pi),

dZi

dt
= bie

−diτiPi(t− τi)Zi(t− τi)hi(Pi(t− τi))− Ziǫi

(
n∑

k=1

Zk

)

(3.1)

+
n∑

k=1
k 6=i

(s+k Zk − s−i Zi),

where m+
k and s+k denote the migration rates of the prey and predator species from

patch k to i and m−
i and s−i denote the emigration rates of the prey and predator

species from patch i to other patches, respectively. All functions µi(N ), hi(Pi) and

ǫi(Z) satisfy hypothesis (C1 - C3).

For simplicity, we assume that all the migration rate be the same constant m, and
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Figure 3.1: Three parallel food chains with migration between patches.

emigration rate be the constant s, then the system (3.1) becomes

dPi

dt
= Pi[µi(N )− Zihi(Pi)] +m






n∑

k=1
k 6=i

Pk − (n− 1)Pi




 ,

dZi

dt
= bie

−diτiPi(t− τi)Zi(t− τi)hi(Pi(t− τi))− Ziǫi

(
n∑

k=1

Zk

)

(3.2)

+s






n∑

k=1
k 6=i

Zk − (n− 1)Zi




 .

When n = 3, the connection among three patches is shown in Fig. (3.1). To

understand the general dynamical properties produced in Eq. (3.2), we start from
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the simplest case.

3.3 2 Parallel Phytoplankton Zooplankton Patches

With Migration of Both Species

We start with the case when n = 2 which is rewritten as

dP1

dt
= P1[µ1(N )− Z1h1(P1)] +m (P2 − P1) ,

dZ1

dt
= b1e

−d1τ1P1(t− τ1)Z1(t− τ1)h1(P1(t− τ1))− Z1ǫ1 (Z1 + Z2) + s (Z2 − Z1) ,

dP2

dt
= P2[µ2(N )− Z2h2(P2)] +m (P1 − P2) , (3.3)

dZ2

dt
= b2e

−d2τ2P2(t− τ2)Z2(t− τ2)h2(P2(t− τ2))− Z2ǫ2 (Z1 + Z2) + s (Z1 − Z2) .

With N = T − α1P1 − α2P2 − β1Z1 − β2Z2.

The purpose of this section is to analyze and demonstrate the population dy-

namics of various species in model (3.3) by finding the ultimate upper bound for the

interacting populations and exploring the local stability of all the possible equilibrium

solutions.

Theorem 3.1. Given the initial condition Pi(0), Zi(0) ∈ C+, i = 1, 2, then under

the hypothesis (C1 - C3), the solutions of (3.3) are nonnegative in X = C2 × C2. In
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addition, if ǫ1(0), ǫ2(0) > 0 then all the solutions are ultimately bounded in X.

Proof. Pi(t) ≥ 0 and Zi(t) ≥ 0, i = 1, 2 for all t > 0 through an initial value in C+;

this follows from [Smi95] (Theorem 5.2.1 on page 81).

Further, from

P ′
1 + P ′

2 = (P1 + P2)
′ = P1 [µ1 (N )− Z1h1 (P1)] + P2 [µ2 (N )− Z2h2 (P2)] (3.4)

Under the hypothesis (C1), µi(N ) is increasing function with respect to N , then

(P1 + P2)
′ ≤ P1µ1 (N ) + P2µ2 (N )

≤ P1µ1 (T − α1P1 − α2P2) + P2µ2 (T − α1P1 − α2P2)

≤ (P1 + P2) µ̂ (T − α1P1 − α2P2)

Where µ̂ (· · · ) = µ1 (· · · ) + µ2 (· · · ). Since µ̂(T − α1P1 − α2P2) is decreasing with

respect to α1P1 + α2P2, we have

(P1 + P2)
′ ≤ (P1 + P2) µ̂ (T − α̃ (P1 + P2)) .

Where α̃ = min{α1, α2}. Since µ̂(0) = 0, we know lim
t→∞

sup (P1 + P2) ≤ T/α̃, implying

P1(t) + P1(t) is ultimately bounded.
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Let P (t) = P1(t) + P2(t), Z(t) = Z1(t) + Z2(t) and

S(t) = b̃2e−2d̂τ̂ (P (t− τ1) + P (t− τ2)) + b̃e−d̂τ̂Z(t).

With b̃ = max{b1, b2}, d̂ = min{d1, d2} and τ̂ = min{τ1, τ2}, we can obtain

S′(t) = b̃2e−2d̂τ̂P1(t− τ1)µ1(N1)− b̃2e−2d̂τ̂Z1(t− τ1)P1(t− τ1)h1(P1(t− τ1))

+b̃2e−2d̂τ̂P2(t− τ1)µ2(N1)− b̃2e−2d̂τ̂Z2(t− τ1)P2(t− τ1)h2(P2(t− τ1))

+b̃2e−2d̂τ̂P1(t− τ2)µ1(N2)− b̃2e−2d̂τ̂Z1(t− τ2)P1(t− τ2)h1(P1(t− τ2))

+b̃2e−2d̂τ̂P2(t− τ2)µ2(N2)− b̃2e−2d̂τ̂Z2(t− τ2)P2(t− τ2)h2(P2(t− τ2))

+b̃b1e
−d̂τ̂−d1τ1Z1(t− τ1)P1(t− τ1)h1(P1(t− τ1))− b̃e−d̂τ̂Z1(t)ǫ1 (Z1(t) + Z2(t))

+b̃b2e
−d̂τ̂−d2τ2Z2(t− τ2)P2(t− τ2)h2(P2(t− τ2))− b̃e−d̂τ̂Z2(t)ǫ2 (Z1(t) + Z2(t)) ,

where Ni = T − α1P1(t − τi) − α2P2(t − τi) − β1Z1(t − τi) − β2Z2(t − τi), i = 1, 2.
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From the hypothesis (C3), ǫi(Z) ≥ 0 for all Z ≥ 0, we obtain

S ′(t) ≤ b̃2e−2d̂τ̂P1(t− τ1)µ1(N1)− b̃2e−2d̂τ̂Z1(t− τ1)P1(t− τ1)h1(P1(t− τ1))

+b̃2e−2d̂τ̂P2(t− τ1)µ2(N1) + b̃2e−2d̂τ̂P1(t− τ2)µ1(N2)

+b̃2e−2d̂τ̂P2(t− τ2)µ2(N2)− b̃2e−2d̂τ̂Z2(t− τ2)P2(t− τ2)h2(P2(t− τ2))

+b̃2e−2d̂τ̂Z1(t− τ1)P1(t− τ1)h1(P1(t− τ1))− b̃e−d̂τ̂Z1(t)ǫ1 (Z1(t) + Z2(t))

+b̃2e−2d̂τ̂Z2(t− τ2)P2(t− τ2)h2(P2(t− τ2))− b̃e−d̂τ̂Z2(t)ǫ2 (Z1(t) + Z2(t))

= b̃2e−2d̂τ̂P1(t− τ1)µ1(N1) + b̃2e−2d̂τ̂P2(t− τ1)µ2(N1)

+b̃2e−2d̂τ̂P1(t− τ2)µ1(N2) + b̃2e−2d̂τ̂P2(t− τ2)µ2(N2)

−b̃e−d̂τ̂Z1(t)ǫ1 (Z1(t) + Z2(t))− b̃e−d̂τ̂Z2(t)ǫ2 (Z1(t) + Z2(t))

≤ b̃2e−2d̂τ̂µ1(T )P1(t− τ1) + b̃2e−2d̂τ̂µ2(T )P2(t− τ1)

+b̃2e−2d̂τ̂µ1(T )P1(t− τ2) + b̃2e−2d̂τ̂µ2(T )P2(t− τ2)

−b̃e−d̂τ̂Z1(t)ǫ1 (0)− b̃e−d̂τ̂Z2(t)ǫ2 (0)

≤ µ̃(T )b̃2e−2d̂τ̂ (P (t− τ1) + P (t− τ2))− ǫ̂(0)b̃e−d̂τ̂Z(t)

= b̃2e−2d̂τ̂ µ̃(T )(P (t− τ1) + P (t− τ2)) + b̃2e−2d̂τ̂ ǫ̂ (0) (P (t− τ1) + P (t− τ2))

−ǫ̂ (0)
(

b̃2e−2d̂τ̂ (P (t− τ1) + P (t− τ2)) + b̃e−d̂τ̂Z(t)
)

≤ 2T b̃2e−2d̂τ̂

α̃
(µ̃(T ) + ǫ̂ (0))− ǫ̂ (0)S(t),
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with µ̃(T ) = max{µ1(T ), µ2(T )} and ǫ̂(0) = min{ǫ1(0), ǫ2(0)}. If ǫ̂(0) > 0 then

lim
t→∞

supS(t) ≤ 2T b̃2e−2d̂τ̂

α̃ǫ̂(0)
(µ̃(T ) + ǫ̂ (0)). Therefore, P1(t), P2(t), Z1(t) and Z2(t) are

ultimately bounded in X.

Remark 3.1. • Since the right hand side of P ′
i , Z

′
i, i = 1, 2 are related tomPj, sZj,

i 6= j, in (3.3), respectively, we need [Smi95] (Theorem 5.2.1 on page 81) to

prove the positivity. While in Theorem (2.9), the positivity is proved by standard

arguments for Pi and comparison theory for Zi.

• Without migrations, in Theorem (2.9), we have upper bound for each patch

individually

Pi(t) ≤
T

αi

and bie
−diτiPi(t) + Zi(t) ≤

biTe
−diτi(µi(T ) + ǫi(0)

αiǫi(0)
,

i = 1, 2. With migrations, we can provide upper bound for a linear combination

of all solutions in Theorem (3.1).

• Existence and Stability of Boundary Equilibrium Points

We can see that system (3.3) has a trivial equilibrium point E0 = (0, 0, 0, 0).

Moreover, the stability of E0 is given in the following result.

Theorem 3.2. E0 is always an unstable saddle point.
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Proof. The linearization of (3.3) at E0 is

x′1(t) = (µ1(T )−m)x1(t) +mx2(t),

y′1(t) = −(ǫ1(0) + s)y1(t) + sy2(t),

x′2(t) = mx1(t) + (µ2(T )−m)x2(t),

y′2(t) = sy1(t)− (ǫ2(0) + s)y2(t). (3.5)

The characteristic equation of (3.5) is

∆(λ) =
[
λ2 + (2m− µ1(T )− µ2(T ))λ+ µ1(T )µ2(T )−m (µ1(T ) + µ2(T ))

]

×
[
λ2 + (ǫ1(0) + ǫ2(0) + 2s)λ+ ǫ1(0)ǫ2(0) + sǫ2(0) + sǫ1(0)

]
.

Let h(λ) = λ2 + (2m− µ1(T )− µ2(T ))λ+ µ1(T )µ2(T )−m (µ1(T ) + µ2(T )). h(λ) =

0 has real roots since the discriminant of h(λ), 4m2 + (µ1(T )− µ2(T ))
2 > 0 always

holds. Assume h(λ) = 0 has two negative real roots then

2m− µ1(T )− µ2(T ) > 0 and µ1(T )µ2(T )−m (µ1(T ) + µ2(T )) > 0.
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Which is equivalent to

m >
µ1(T ) + µ2(T )

2
and

µ1(T )µ2(T )

µ1(T ) + µ2(T )
> m.

Thus 2µ1(T )µ2(T )

(µ1(T )+µ2(T ))2
> 1 which leads to a contradiction. Therefore h(λ) = 0 has at

least one positive real root, implying E0 is unstable saddle point.

Next, we discuss the existence of a predator-free equilibrium point under the

hypotheses (C1 − C3).

Proposition 3.1. Givin the hypothesis (C1 − C3), then a unique predator-free equi-

librium point Ẽ = (T , 0, T , 0) exists for system (3.3) with T := T
α1+α2

.

Proof. A predator-free equilibrium point for two patches must satisfy

P1µ1 (T − α1P1 − α2P2) +mP2 −mP1 = 0,

P2µ2 (T − α1P1 − α2P2) +mP1 −mP2 = 0. (3.6)

It is easy to check that Ẽ satisfies (3.6).

To prove the uniqueness of such Ẽ, it’s easy to see that when one of Pi, (i = 1, 2) is

zero, another one must be zero as well, which excludes the case with one prey species

can survive and another cannot.
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Further, adding two equations in (3.6) yields

P̃1µ1

(

T − α1P̃1 − α2P̃2

)

+ P̃2µ2

(

T − α1P̃1 − α2P̃2

)

= 0.

When Pi > 0, due to µi ≥ 0, (i = 1, 2), we have α1P1 + α2P2 = T . Substituting into

(3.6), we obtain P1 = P2 =
T

α1+α2
.

Remark 3.2. (i) If either Z1 = 0 or Z2 = 0 then system (3.3) has a unique

predator-free equilibrium point Ẽ = (T , 0, T , 0).

(ii) The result in Proposition(3.1) implies the effect of migrations. With migrations

between both patches, only one positive predator-free equilibrium point exists for

system (3.3). But without migration, s = 0 and m = 0, in Remark (2.1) we

can see that system (3.3) has infinite number of predator-free equilibrium points

with the form Ẽ = (α̃1P̃1, 0, α̃2P̃2, 0) such that α̃1P̃1 + α̃2P̃2 = T .

After we have obtained the existence of the predator-free equilibrium point Ẽ,

we discuss its stability. At first, for the special case with τ1 = τ2 := τ , by denoting

minimum and maximum of the corresponding parameters by ·̂, ·̃, respectively, we

know Ẽ is globally attractive under certain condition, which is given in the following

theorem.
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Theorem 3.3. Assume τ1 = τ2 := τ > 0. When b̃M̃e−d̂τ < ǫ̂(0) then the solutions of

(3.3) satisfy Pi → T and Zi → 0, i = 1, 2.

Proof. Adding the second and the forth equations in (3.3), we have

Z ′
1 + Z ′

2 = b1e
−d1τP1(t− τ)h1(P1(t− τ))Z1(t− τ)− ǫ1(Z1 + Z2)

+b2e
−d2τP2(t− τ)h2(P2(t− τ))Z2(t− τ)− ǫ2(Z1 + Z2).

Let δ > 0. Following the hypotheses (C1) and (C3), we have ǫi(Z1 + Z2) ≥ ǫ̂(0) and

Pi(t− τ)hi(Pi(t− τ)) ≤ M̃ for any t > tδ + τ . Thus

Z ′
1 + Z ′

2 ≤ b̃M̃e−d̂τ (Z1(t− τ) + Z2(t− τ))− ǫ̂(0)(Z1(t) + Z2(t)).

The comparison theory implies that Z1(t)+Z2(t) is bounded above by the solution

of

u′(t) = b̃M̃e−d̂τu(t− τ)− ǫ̂(0)u(t), t > tδ + τ

such that u(t) = Z1(t) + Z2(t) for t ∈ [tδ, tδ + τ ]. Since b̃M̃e−d̂τ < ǫ̂(0), Lemma (2.1)

implies that lim
t→∞

(Z1(t) + Z2(t)) = 0. Since both Z1(t) and Z2(t) are nonnegative

from Theorem (3.1), we have lim
t→∞

Zi(t) = 0, i = 1, 2.

By the existences and uniqueness of the predator-free equilibrium point Ẽ in
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Proposition (3.1) and Remark (3.2), we obtain lim
t→∞

Pi(t) = T , i = 1, 2.

While in general, beyond the strong condition b̃M̃e−d̂τ < ǫ̂(0) and/or with two

different delays τ1, τ2, we can discuss the local stability of Ẽ by setting x1 = P1 − T ,

y1 = Z1,x2 = P2 − T and y2 = Z2. Then the linearization of (3.3) at Ẽ is

x′1(t) = a11x1(t) + a12y1(t) + a13x2(t) + a14y2(t),

y′1(t) = a22y1(t) + a24y2(t) + b22y1(t− τ1),

x′2(t) = a31x1(t) + a32y1(t) + a33x2(t) + a34y2(t),

y′2(t) = a42y1(t) + a44y2(t) + c44y2(t− τ2), (3.7)

where

a11 = −α1T µ1
′(0)−m < 0, a12 = −β1T µ1

′(0)− T h1(T ) < 0,

a13 = −α2T µ1
′(0) +m, a14 = −β2T µ1

′(0) < 0,

a22 = −ǫ1(0)− s < 0, a24 = s > 0, b22 = b1e
−τ1d1T h1(T ) > 0,

a31 = −α1T µ2
′(0) +m, a32 = −β1T µ2

′(0) < 0,

a33 = −α2T µ2
′(0)−m < 0, a34 = −β2T µ2

′(0)− T h2(T ) < 0,

a42 = s > 0, a44 = −ǫ2(0)− s < 0, c44 = b2e
−τ2d2T h2(T ) > 0.
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The characteristic equation of (3.7) is

∆(λ, τ1, τ2) = G(λ)K(λ, τ1, τ2) = 0, (3.8)

with

G(λ) = λ2 − (a11 + a33)λ+ a11a33 − a13a31,

K(λ, τ1, τ2) =
(
λ− a22 − b22e

−λτ1
) (
λ− a44 − c44e

−λτ2
)
− a24a42.

It is easy to check that G(λ) = 0 has two roots negative real part, since both −(a11+

a33), a11a33 − a13a31 = mT (α1 + α2)(µ
′
1 + µ′

2) > 0.

Now, K(λ, τ1, τ2) can be written as

K(λ, τ1, τ2) = λ2 + k1λ+ k2 + e−λτ1 (k3λ+ k4) + e−λτ2 (k5λ+ k6) + k7e
−λ(τ1+τ2),(3.9)

where

k1 = −(a22 + a44) > 0, k2 = a22a44 − a24a42 > 0, k3 = −b22 < 0,

k4 = b22a44 < 0, k5 = −c44 < 0, k6 = c44a22 < 0, k7 = b22c44 > 0. (3.10)
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When τ1 = τ2 = 0,

K(λ, 0, 0) = λ2 + (k1 + k3 + k5)λ+ (k2 + k4 + k6 + k7) = 0.

Following the Routh-Hurwitz stability criterion we have

Proposition 3.2. At τ1 = τ2 = 0, the predator-free equilibrium point Ẽ is locally

asymptotically stable if and only if

k1 + k3 + k5 > 0 & k2 + k7 + k4 + k6 > 0. (H̃0)

First, we consider a simple case τ1 = τ2 := τ > 0, Eq. (3.9) becomes

K(λ, τ) = λ2 + k1λ+ k2 + (k3 + k5)λe
−λτ + (k4 + k6) e

−λτ + k7e
−2λτ (3.11)

The eigenvalue λ = 0 is not a root of K(λ, τ) = 0, since

K(0, τ) = k2 + k4 + k6 + k7

= (ǫ1(0) + b1e
−τ1d1T h1(T ))(ǫ2(0) + b2e

−τ2d2T h2(T ))

+ s(ǫ1(0) + ǫ2(0) + b1e
−τ1d1T h1(T ) + b2e

−τ2d2T h2(T )) > 0.
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For a pure imaginary root of (3.11), let λ = iω, ω > 0, then separate the real and

imaginary parts to obtain

ω2 − k2 = (k3 + k5)ω sinωτ + (k4 + k6) cosωτ + k7 cos 2ωτ

k1ω = − (k3 + k5)ω cosωτ + (k4 + k6) sinωτ + k7 sin 2ωτ. (3.12)

Squaring and adding both equations of (3.12) lead to

ω4 −
[
2k2 + (k3 + k5)

2 − k21
]
ω2 +

[
k22 − (k4 + k6)

2 − k27
]

= 2 (k4 + k6) k7 cosωτ − 2ω (k3 + k5) k7 sinωτ.

Since k7 > 0, (k4 + k6) , (k3 + k5) < 0, ω > 0, then

ω4−
[

2k2 + (k3 + k5)
2 − k21

]

ω2+
[

k22 − (k4 + k6)
2 − k27

]

≤ −2 (k4 + k6) k7−2τ (k3 + k5) k7ω
2,

which is equivalent to

ω4 −
[
2k2 + (k3 + k5)

2 − k21 − 2τ (k3 + k5) k7
]
ω2 +

[
k22 − (k4 + k6 − k7)

2] ≤ 0.
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From the latter inequality we see that if

2k2 + (k3 + k5)
2 − k21 − 2τ (k3 + k5) k7 < 0 (3.13)

and

k22 − (k4 + k6 − k7)
2 > 0, (3.14)

then there is no such ω > 0, that is, (3.11) will has no roots with zero real part.

Theorem 3.4. Assume τ1 = τ2 := τ > 0 and

A =
b1T h1(T ) (ǫ2(0) + s) + b2T h2(T ) (ǫ1(0) + s) + b1b2T 2h1(T )h2(T )

ǫ1(0) + ǫ2(0) + s(ǫ1(0) + ǫ2(0))
.

Let

τ̄ =
(ǫ1(0) + ǫ2(0) + s)2 − 2(b1T h1(T ) + b2T h2(T ))2

4b2b2T 2(b1T h1(T ) + b2T h2(T ))h1(T )h2(T )
> 0,

¯̄τ =







1
d
lnA, A > 1;

0, 0 < A < 1,

and τ̄ > ¯̄τ , where d̂ = min{d1, d2}. If the predator-free equilibrium point Ẽ is locally

asymptotically stable at τ ∗ ∈ (¯̄τ, τ̄) then Ẽ is locally asymptotically stable for all
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τ ∈ (¯̄τ, τ̄).

Proof. Firstly, we consider the left side of (3.13). Substituting the expression k1, . . . , k7

from (3.10), we have

2 (ǫ1(0)ǫ2(0) + s(ǫ1(0) + ǫ2(0))) +
(

b1T h1(T )e−d1τ + b2T h2(T )e−d2τ
)2

−(ǫ1(0) + ǫ2(0) + 2s)2

+2τ
(

b1T h1(T )e−d1τ + b2T h2(T )e−d2τ
)

b1b2T 2h1(T )h2(T )e−(d2+d1)τ

< 2 (ǫ1(0)ǫ2(0) + s(ǫ1(0) + ǫ2(0))) + (b1T h1(T ) + b2T h2(T ))2

−(ǫ1(0) + ǫ2(0) + 2s)2 + 2τ (b1T h1(T ) + b2T h2(T )) b1b2T 2h1(T )h2(T )

< (b1T h1(T ) + b2T h2(T ))2 + 2τ (b1T h1(T ) + b2T h2(T )) b1b2T 2h1(T )h2(T )

−
(

ǫ1(0)
2 + ǫ2(0)

2 + 4s2
)

< (b1T h1(T ) + b2T h2(T ))2 + 2τ (b1T h1(T ) + b2T h2(T )) b1b2T 2h1(T )h2(T )

−1

2
(ǫ1(0) + ǫ2(0) + 2s)2.

So if

τ < τ̄ :=
(ǫ1(0) + ǫ2(0) + s)2 − 2(b1T h1(T ) + b2T h2(T ))2

4b2b2T 2(b1T h1(T ) + b2T h2(T ))h1(T )h2(T )

then (3.13) holds.

Secondly, since k2− k4− k6+ k7 is always positive, we can see (3.14) is true if and
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only if k2 + k4 + k6 − k7 > 0. From

k2 + k4 + k6 − k7

= ǫ1(0)ǫ2(0) + sǫ1(0) + sǫ2(0)− (ǫ2(0) + s) b1T h1(T )e−d1τ

− (ǫ1(0) + s) b2T h2(T )e−d2τ − b1b2T 2h1(T )h2(T )e−(d2+d1)τ

> ǫ1(0)ǫ2(0) + sǫ1(0) + sǫ2(0) (3.15)

−
(
(ǫ2(0) + s) b1T h1(T ) + (ǫ1(0) + s) b2T h2(T ) + b1b2T 2h1(T )h2(T )

)
e−d̂τ ,

where d̂ = min{d1, d2}. So if A > 1, then (3.15) holds for τ > ¯̄τ := 1

d̂
lnA and when

0 < A < 1, (3.15) holds for all τ > 0. Therefore, when τ ∈ (¯̄τ, τ̄), both (3.13) and

(3.14) hold. Thus, (3.11) has no pure imaginary roots.

At τ ∗, Ẽ is locally asymptotically stable. Since there are no sign changes in roots

of K(λ, τ) = 0 for τ ∈ (¯̄τ, τ̄), Ẽ is locally asymptotically stable on this interval.

With two different delays in Eq.(3.9), we start with τ1 = 0 and τ2 = τ ∗2 > 0,

where τ ∗2 satisfy that K(λ, 0, τ ∗2 ) have roots with negative real parts under certain

conditions (which can be found using similar argument as we discussed previously),

then by using Rouchs Theorem regarding τ1 as a parameter in Eq.(3.9) and following

[ [KC82], [WR99]] there exists τ ∗1 = τ1(τ
∗
2 ) > 0 such that Ẽ is stable for τ1 ∈ (0, τ ∗1 ).

Beyond this interval, it’s possible to have bifurcations similar in Chapter (2). We
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give a munerical Example (6) in Chapter (4).

We can see that K(λ, τ1, τ2) is independent of the prey migration rate m, that

is, m does not affect the stability of the predator-free equilibrium point Ẽ. On the

other hand, when the predator migration rate s = 0, Ẽ is locally asymptotically

stable if bkT hk(T )e−dkτk < ǫk(0)( k = 1, 2) in Theorem (2.10); but when s > 0, the

stability at Ẽ depends on the functions hk(Pk), ǫk(Z) and the values of T , bk, dk, τk

and becomes complicated since the coefficients Ki (i = 1, . . . , 7) all are related to s.

However, with particular choices, it is possible to find stability conditions involving

the value of s [KT94]. Since our model is more general and with delay, the analysis

becomes more complicated. We leave this as our future work.
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• Existence and Stability of Positive Equilibrium

When system (3.3) exists a positive equilibrium point, the values of P ∗
i , Z

∗
i , i = 1, 2

must satisfy

P ∗
1 [µ1(N ∗)− Z∗

1h1(P
∗
1 )]−m (P ∗

2 − P ∗
1 ) = 0,

b1e
−d1τ1P ∗

1Z
∗
1h1(P

∗
1 )− Z∗

1ǫ1 (Z
∗
1 + Z∗

2)− s (Z∗
2 − Z∗

1) = 0,

P ∗
2 [µ2(N ∗)− Z∗

2h2(P
∗
2 )]−m (P ∗

1 − P ∗
2 ) = 0,

b2e
−d2τ2P ∗

2Z
∗
2h2(P

∗
2 )− Z∗

2ǫ2 (Z
∗
1 + Z∗

2)− s (Z∗
1 − Z∗

2) = 0, (3.16)

with N ∗ = T −α1P
∗
1 −α2P

∗
2 −β1Z

∗
1 −β2Z

∗
2 . From the second and forth equations

of (3.16), we have

Z∗
1ǫ1 (Z

∗
1 + Z∗

2) + s (Z∗
2 − Z∗

1)

Z∗
1

= b1e
−d1τ1P ∗

1 h1(P
∗
1 ) ≤ b1e

−d1τ1M1,

Z∗
2ǫ2 (Z

∗
1 + Z∗

2) + s (Z∗
1 − Z∗

2)

Z∗
2

= b2e
−d2τ2P ∗

2 h2(P
∗
2 ) ≤ b2e

−d2τ2M2, (3.17)

respectively. Since ǫi(0) ≤ ǫi(Z
∗
1 + Z∗

2) for i = 1, 2, we have

Z∗
2

Z∗
1

≤ b1e
−d1τ1M1 + s− ǫ1(0)

s

Z∗
1

Z∗
2

≤ b2e
−d2τ2M2 + s− ǫ2(0)

s
.
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provided bie
−diτiMi + s > ǫi(0), i = 1, 2. Thus

s

b1e−d1τ1M1 + s− ǫ1(0)
≤ b2e

−d2τ2M2 + s− ǫ2(0)

s
,

which leads to

s ≤ (b1e
−d1τ1M1 − ǫ1(0))(b2e

−d2τ2M2 − ǫ2(0))

(ǫ1(0)− b1e−d1τ1M1) + (ǫ2(0)− b2e−d2τ2M2)
. (H∗)

Therefore,

Lemma 3.1. Let τ1 = τ2 := τ . When

(b1M1 − ǫ1(0)) (b2M2 − ǫ2(0)) + s(b1M1 + b1M1 − ǫ1(0)− ǫ2(0)) < 0,

E∗ does not exist for any feasible τ > 0.

The condition (H∗) is necessary for the existence of a positive equilibrium point

E∗ = (P ∗
1 , Z

∗
1 , P

∗
2 , Z

∗
2) in (3.3), but is not a sufficient condition in general.

To discuss the existence of E∗, define Hi(Pi) = Pihi(Pi) for i = 1, 2, With the
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hypothesis (C2), Hi(Pi) is positive and increasing on (0, T
α1+α2

), we can obtain

P ∗
1 = H−1

1

(
Z∗

1ǫ1 (Z
∗
1 + Z∗

2) + s (Z∗
1 − Z∗

2)

b1e−d1τ1Z∗
1

)

;

P ∗
2 = H−1

2

(
Z∗

2ǫ2 (Z
∗
1 + Z∗

2) + s (Z∗
2 − Z∗

1)

b2e−d2τ2Z∗
2

)

, (3.18)

from the second and forth equations of (3.16), respectively. While Z∗
1 and Z∗

2 are the
positive solutions of the following equations:

H
−1
1

(

Z∗

1 ǫ1
(

Z∗

1 + Z∗

2

)

+ s
(

Z∗

1 − Z∗

2

)

b1e
−d1τ1Z∗

1

)

µ1

(

N
∗
)

−
Z∗

1 ǫ1
(

Z∗

1 + Z∗

2

)

+ s
(

Z∗

1 − Z∗

2

)

b1e
−d1τ1

+m

(

H
−1
2

(

Z∗

2 ǫ2
(

Z∗

1 + Z∗

2

)

+ s
(

Z∗

2 − Z∗

1

)

b2e
−d2τ2Z∗

2

)

− H
−1
1

(

Z∗

1 ǫ1
(

Z∗

1 + Z∗

2

)

+ s
(

Z∗

1 − Z∗

2

)

b1e
−d1τ1Z∗

1

))

= 0; (3.19)

H
−1
2

(

Z∗

2 ǫ2
(

Z∗

1 + Z∗

2

)

+ s
(

Z∗

2 − Z∗

1

)

b2e
−d2τ2Z∗

2

)

µ2

(

N
∗
)

−
Z∗

2 ǫ2
(

Z∗

1 + Z∗

2

)

+ s
(

Z∗

2 − Z∗

1

)

b2e
−d2τ2

+m

(

H
−1
1

(

Z∗

1 ǫ1
(

Z∗

1 + Z∗

2

)

+ s
(

Z∗

1 − Z∗

2

)

b1e
−d1τ1Z∗

1

)

− H
−1
2

(

Z∗

2 ǫ2
(

Z∗

1 + Z∗

2

)

+ s
(

Z∗

2 − Z∗

1

)

b2e
−d2τ2Z∗

2

))

= 0, (3.20)

with

N
∗

= T − α1H
−1
1

(

Z∗

1 ǫ1
(

Z∗

1 + Z∗

2

)

+ s
(

Z∗

1 − Z∗

2

)

b1e
−d1τ1Z∗

1

)

− α2H
−1
2

(

Z∗

2 ǫ2
(

Z∗

1 + Z∗

2

)

+ s
(

Z∗

2 − Z∗

1

)

b2e
−d2τ2Z∗

2

)

− β1Z
∗

1 − β2Z
∗

2 ,

which is impossible to find an analytical solution in general.

With fixed parameters, feasible values of delays and certain functions, for instance,

choose the functions [RH11] given in Table (3.1), we have E∗ = (0.093, 0.57, 0.048, .56)

when τ1 = 0.4 and τ2 = 0.7.
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h(P ) µ(N) ǫ(Z)

Patch 1 1
P+1

N
T

0.02

Patch 2 2
P+2

N
T

0.03

Table 3.1: Existence of E∗
1 with αi = βi = 1, bi = 0.25, di = 0.01, s = 0.1, m = 0.6 and

T = 7 for i = 1, 2.

When the two parallel food chains are symmetric (the growth functions for all

taxa at the same trophic level have the same functional forms and the same parameter

values, the maturation delay for each predator is the same), system (3.3) becomes

dPi

dt
= Pi [µ (N )− Zih (Pi)] +m (Pj − Pi) , (3.21)

dZi

dt
= be−dτPi (t− τ)Zi (t− τ)h (Pi (t− τ))− Ziǫ (Zi + Zj) + s (Zj − Zi) ,

i, j ∈ {1, 2}, i 6= j and N = T − α(P1 + P2)− β(Z1 + Z2). And (H∗) becomes

0 ≤ (be−dτM + 2s− ǫ(0))(be−dτM − ǫ(0)). (H′
∗)

Proposition 3.3. (i) Assume h(P ) is an increasing function on the interval [0, T
2α
].

If the positive equilibrium point E∗ exists, then it must have the form of (P ∗, Z∗, P ∗, Z∗).

(ii) When h(P ) is not increasing on the interval [0, T
2α
], beside the positive equilib-
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rium point (P ∗, Z∗, P ∗, Z∗), it is possible to have other positive equilibrium point

with different P ∗
i and Z∗

i , i = 1, 2.

Proof. (i) Assume (P ∗
1 , Z

∗
1 , P

∗
2 , Z

∗
2) is a positive equilibrium point. Then, we can prove

P ∗
1 = P ∗

2 and Z∗
1 = Z∗

2 . Otherwise, from the first and third equations in (3.21), we

have

m(P ∗2

1 − P ∗2

2 ) = Z∗
2P

∗
1H(P ∗

2 )− Z∗
1P

∗
2H(P ∗

1 ). (3.22)

Similarly, from the second and forth equations in (3.21), we have

s(Z∗2

2 − Z∗2

1 ) = be−dτZ∗
1Z

∗
2(H(P ∗

2 )−H(P ∗
1 )). (3.23)

Suppose P ∗
1 > P ∗

2 , then by (3.23) and the hypothesis (C2), we obtain Z∗
1 > Z∗

2 .

For the right hand side of (3.22), we have

Z∗
2P

∗
1H(P ∗

2 )− Z∗
1P

∗
2H(P ∗

1 ) < Z∗
1P

∗
1H(P ∗

2 )− Z∗
1P

∗
2H(P ∗

1 )

= Z∗
1P

∗
1P

∗
2 (h(P

∗
2 )− h(P ∗

1 )) < 0

when h(p) is increasing, which leads to a contradiction, because the left hand side of

(3.22) is positive.

While similarly, if P ∗
1 < P ∗

2 , then Z∗
1 < Z∗

2 and the left hand side of (3.22) is
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negative while the right hand side is positive.

(ii) If the positive equilibrium exists, obviously, (P ∗, Z∗, P ∗, Z∗) satisfies (3.18),

(3.19) and (3.20). Without additional condition, we cannot exclude any other form

in E∗.

When the positive equilibrium point E∗ = (P ∗, Z∗, P ∗, Z∗) exists, the linearization

of (3.21) at E∗, by sitting x1 = P1−P ∗, y1 = Z1−Z∗, x2 = P2−P ∗ and y2 = Z2−Z∗,

is

dx1
dt

= a11x1(t) + a12y1(t) + a13x2(t) + a14y2(t),

dy1
dt

= a22y1(t) + a24y2(t) + b21x1(t− τ) + b22y1(t− τ), (3.24)

dx2
dt

= a13x1(t) + a14y1(t) + a11x2(t) + a12y2(t),

dy2
dt

= a24y1(t) + a22y2(t) + b21x2(t− τ) + b22y2(t− τ),

with

a11 = µ∗ − Z∗h∗ − αP ∗µ′
∗ − P ∗Z∗h′∗ −m, a12 = −βP ∗µ′

∗ − P ∗h∗ < 0,

a13 = −αP ∗µ′
∗ +m, a14 = −βP ∗µ′

∗ < 0, a22 = −Z∗ǫ′∗ − ǫ∗ − s < 0

a24 = −Z∗ǫ′∗ + s, b21 = be−dτZ∗ (P ∗h′∗ + h∗) > 0, b22 = be−dτP ∗h∗ > 0,
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where µ∗, h∗, ǫ∗ denotes the value of the function µ, h, ǫ and µ′
∗, h

′
∗, ǫ

′
∗ denotes the value

of the derivative of the associated function at (P ∗, Z∗, P ∗, Z∗) respectively.

Remark 3.3 ( [Sil00], [AM05]-page 117). When the block matrices are square ma-

trices of the same order, then the determinant of a matrix of the form







A B

B A







is det(A− B) det(A+B).

In our case, A =







λ− a11 −a12

−b21e−dτ λ− a22 − b22e
−dτ







and B =







−a13 −a14

0 −a24






.

Thus the characteristic equation of (3.24) is

∆(λ, τ) = Φ(λ, τ)Ψ(λ, τ) = 0, (3.25)

where

Φ(λ, τ) = λ2 + φ1λ+ φ2 + φ3e
−λτ + ζλe−λτ , (3.26)

Ψ(λ, τ) = λ2 + ψ1λ+ ψ2 + ψ3e
−λτ + ζλe−λτ , (3.27)

φ1 = a24 + a13 − a22 − a11, φ2 = (a24 − a22)(a13 − a11),

φ3 = b21(a14 − a12)− b22(a13 − a11), ψ1 = −(a24 + a13 + a22 + a11),

ψ2 = (a24 + a22)(a13 + a11), ψ3 = b21(a14 + a12) + b22(a13 − a11), ζ = −b22 < 0.
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As we discussed previously in Chapter (2), we can find parallel conditions for stability.

Since there conditions are not related to the original system, we omit the ”abstract”

conditions here, we will give numerical results Example (7) in Chapter (5).

3.4 n Parallel Phytoplankton Zooplankton Patches

with Migration

As we know from the previous section that, for the system (3.2) with two patches, the

local stability analysis of the equilibrium points are very harsh even when all patches

are symmetric. With n > 2, this becomes more complicated. In this section, we only

present some properties of the general model (3.2) with n parallel phytoplankton-
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zooplankton patches with migration. Rewrite the system (3.2) as

dP1

dt
= P1[µ1(N )− Z1h1(P1)] +m

(
n∑

k=2

Pk − (n− 1)P1

)

,

dZ1

dt
= b1e

−d1τ1P1(t− τ1)Z1(t− τ1)h1(P1(t− τ1))− Z1ǫi

(
n∑

k=1

Zk

)

+s

(
n∑

k=2

Zk − (n− 1)Z1

)

,

... (3.28)

dPn

dt
= Pn[µi(N )− Znhn(Pn)] +m

(
n−1∑

k=1

Pk − (n− 1)Pn

)

,

dZn

dt
= bne

−dnτnPn(t− τn)Zn(t− τn)hn(Pn(t− τn))− Znǫi

(
n∑

k=n

Zk

)

+s

(
n−1∑

k=1

Zk − (n− 1)Zn

)

.

Similarly, we have the following results:

Theorem 3.5. Given the hypothesis (C1 - C3)

(i) If the initial condition Pi(0), Zi(0) ∈ C+, i = 1, . . . , 2, then the solutions of

(3.28) are nonnegative in X = Cn × Cn. In addition, if ǫi(0) > 0 then all the

solutions are ultimately bounded in X.

(ii) In addition to the trivial equilibrium point E0 = (0, 0, . . . , 0, 0)
︸ ︷︷ ︸

2n

, there is a unique
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predator-free equilibrium point

Ẽ =







T
n∑

α=1

αi

, 0, . . . ,
T

n∑

α=1

αi

, 0







︸ ︷︷ ︸

2n

When all patches are similar, it is possible to have the unique co-existed positive

equilibrium point E∗ = (P ∗, Z∗, . . . , P ∗, Z∗)
︸ ︷︷ ︸

2n

under the hypothesis (C1 − C3) and

certain conditions.

To study the stability of each equilibrium point (x1,y1,x2,y2, . . . ,xn,yn), we need

to know the general form of the characteristic equation, which is,

∆ (λ) = det

(

λI − J0 −
n∑

k=1

Jke−λτk

)

= 0
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where J0 = (aij) and J
k =

(
ckij
)
are 2n× 2n matrices with

aij =







−x i+1
2

[

α i+1
2
µ′

i+1
2

(
N̄
)
+ y i+1

2
h′i+1

2

(

x i+1
2

)]

+
[

µ i+1
2

(
N̄
)
− y i+1

2
h i+1

2

(

x i+1
2

)]

− (n− 1)m , i odd, j = i;

−x i+1
2

[

β i+1
2
µ′

i+1
2

(
N̄
)
+ h i+1

2

(

x i+1
2

)]

, i odd, j = i+ 1;

−α j+1
2
x i+1

2
µ′

i+1
2

(
N̄
)
+m , i, j odd, i 6= j;

−β j
2
x i+1

2
µ′

i+1
2

(
N̄
)

, i odd, j even j 6= i+ 1;

−ǫ i
2

(
n∑

k=1

yk

)

− y i
2
ǫ′i
2

(
n∑

k=1

yk

)

+ (n− 1)s , i even, j = i;

−y i
2
ǫ′i
2

(
n∑

k=1

yk

)

+ s , i, j even, i 6= j;

0 , i even, j odd,

where N̄ = T −
n∑

k=1

αkxk −
n∑

k=1

βkyk and

ckij =



























0 , i odd, any j; or i even, j 6= 2k, j 6= 2k − 1;

bke
−dkτkyk

(

hk(xk)+xkh
′
k(xk)

)

, i = 2k, j = 2k − 1;

bke
−dkτkxkhk(xk) , i = 2k, j = 2k;

With general functions, different parameters and time delay it is not trivial to

analyze the local stability of equilibrium points. However, it might be easier with

a particular choice of functions with more hypotheses. We will show a numerical

simulation in Chapter (4).



Chapter 4

Numerical Simulations

In this chapter, we choose some different functions, parameters and time delay from

literature in several examples to compliment the theoretical results given previously.

For the model (2.2), we provide examples 1-4. One patch in Ex.(1) and (2), three

symmetric patches in Ex.(3) and three different patches in Ex.(4).

Example 1. n = 1. We take the functions and the parameters [RH11,KR08] in

system (2.3) as,

µ(N ) =
N

15 +N , h(P ) =
7

P + 1
, ǫ(Z) = 0.05 + 0.8Z

d = 0.13, b = 0.05, T = 7, α = 0.9, β = 0.4. (4.1)
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First, we can calculate τmax = 14.968. At τ = 0, the positive equilibrium is E1 =

(0.393, 0.061). By checking the condition (H0), we know E1 is unstable. With delay

τ > 0 and the choice in (4.1), we can obtain τ̃ ≈ 9.248 defined in (2.8), implying the

existence of the positive equilibrium point when τ ∈ (0, τ̃). Here τ̃ < τmax gives an

evidence for that τ < τmax is necessary, but not sufficient for the existence of positive

steady state. In Fig. (4.1), we plot the graphs of the functions S0(τ), S1(τ), S2(τ) and

S3(τ) defined in (2.14) for τ ∈ (0, τmax). The curve of S1(τ) = 0 has one root τ ∗ =

4.347 and is decreasing from positive to negative, indicating the positive equilibrium is

unstable for τ ∈ (0, τ ∗) and becomes stable at τ ∗ before it disappears at τ̃ . Fig. (4.2)

shows the phase portrait of the solutions with different values of τ . With small delay τ ,

there exists a stable limit cycle. As τ is increasing, the limit cycle is broken, the system

approaches to a stable steady state, until τ is sufficient large. Biologically, when the

maturation process is short, the concentration of phytoplankton and zooplankton

are oscillated regularly; when this process is a little long, all the species move to

a certain level with constant concentration; but if the maturation time is too long,

the zooplankton cannot survive without enough prey-phytoplankton. Therefore, the

maturation time control the dynamical behavior of the system.

From this example we can see that, although we have proved the uniqueness of

the positive equilibrium point when ǫ(Z) is constant, the result may hold for other
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Figure 4.1: Functions S0(τ), S1(τ), S2(τ) and S3(τ) for τ ∈ (0, 14.968) corresponding to
the choice in (4.1).

functions such as linear function.

Example 2. n = 1. Let

µ(N ) =
N

15 +N , h(P ) =
P

P 2 + 0.1
, ǫ(Z) = 0.05 + 0.31Z

α = β = 1, d = 0.01, b = 0.25, T = 9 (4.2)

in system (2.3), then τmax = 160.944.

With Hollong-type III functional responses, there are three positive equilibrium

points E1 = (P ∗
1 , Z

∗
1), E2 = (P ∗

2 , Z
∗
2) and E3 = (P ∗

3 , Z
∗
3) with P ∗

1 < P ∗
2 < P ∗

3 for

τ ∈ (0, τ̂) with τ̂ = 38.836, two (P ∗
1 , Z

∗
1), (P

∗
2 , Z

∗
2) at τ = τ̂ and one (P ∗, Z∗) for

τ ∈ (τ̂ , τ̃), where τ̃ = 160.819, see Fig. (4.3). In Fig. (4.3), the curves f1(P
∗) and

f2(P
∗) are obtained from (2.6) since ǫ is linear. When τ is small, E1 is stable and E3

is unstable which can be seen in Figs. (4.4a) and (4.4b), while E2 is a saddle point.
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(d) τ = 8.6.

Figure 4.2: Phase portrait of (2.3) with different values of time delay τ and the functions
and parameters given in (4.1).
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Figure 4.3: Existence of different number of positive equilibrium points with different τ .

(a) at P∗

1 . (b) at P∗

3 .

Figure 4.4: Graphs of the functions S0(τ) and S1(τ) for τ ∈ (0, τ̂) with the functions and
parameters chosen in (4.2).
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With the increasing of τ , E1 loses the stability at τ ∗ = 1.826 and a stable limit cycle

is bifurcated, E3 gains the stability at τ ∗.

From Fig. (4.5), we can see that the stability properties of E1 and E3 are “local”.

Since E2 is a saddle point, there exists a “basin boundary” which divides the phase

plane into two parts with different dynamics in each part.

Example 3. When n = 3 in the system (2.2). If we choose all the functional

responses and the parameters in each species are the same as, implying the patches

are symmetrical,

µ1(N ) = µ2(N ) = µ3(N ) =
N

10 +N , h1(P ) = h2(P ) = h3(P ) =
P

P 2 + 1
,

ǫ1(Z) = ǫ2(Z) = ǫ3(Z) = 0.15, d1 = d2 = d3 = 0.01, b1 = b2 = b3 = 0.25,

T = 7, α1 = α2 = α3 = 0.8, β1 = β2 = β3 = 0.5. (4.3)

then τmax = 51.083 and τ̃ = 28.122. We can check that the condition given in

Theorem (2.12) is satisfied for small value of delay τ1 = τ2 = τ3 := τ , thus there

exists a unique positive equilibrium point. Since all the functional responses are

the same, it is expected that all the species will be synchronized, i.e., with different

initial condition, after a transaction period, each phytoplankton and each zooplankton

approach to the same level by group which is confirmed in Fig. (4.6a,4.6b). With the
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Figure 4.5: Phase portrait of the system (2.3) with functions and parameters given in (4.2).
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(a) Time series Pi(t), (i = 1, 2, 3).
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(b) Time series Zi(t), (i = 1, 2, 3).

τ = 0.8, P1(0) = 0.1, Z1(0) = 0.2, P2(0) = 0.3, Z2(0) = 0.4, P3(0) = 0.5 and Z3(0) = 0.6.
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(c) Time series Pi(t), (i = 1, 2, 3).
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(d) Time series Zi(t), (i = 1, 2, 3).

τ = 20, P1(0) = P2(0) = P3(0) = Z1(0) = Z2(0) = Z3(0) = 0.1.

Figure 4.6: Time series Pi(t) and Zi(t)(i = 1, 2, 3) of system (2.2) with functions and
parameters given in (4.3).

increasing of the maturation time, the steady state loses the stability and the system

becomes oscillatory. See Fig. (4.6c,4.6d).

Example 4. When n = 3 in the system (2.2). Based on the choice in (4.3), we



Numerical Simulations 81

take different functional responses and some parameters, such as,

µ1(N ) =
N

15 +N , µ2(N ) = µ3(N ) =
4N

10 +N , h1(P ) =
P

P 2 + 0.1
,

h2(P ) = h3(P ) =
1

P + 1
, ǫ1(Z) = 0.05 + 0.31Z, ǫ2(Z) = ǫ3(Z) = 0.15,

T = 9, d1 = d2 = d3 = 0.01, b1 = b2 = b3 = 0.25,

α1 = α2 = α3 = 1, β1 = β2 = β3 = 1. (4.4)

We can observe interesting dynamical behavior, see Fig. (4.7). With the same initial

condition, when the maturation time is very small, a doubly periodic solution exists,

implying a parallel condition given in (H5) may be satisfied for the feasible value of

τ and the choice in (4.4). While when we just change the initial condition a little

bit, say, keeping all are the same as that in Fig. (4.7) except changing Z2(0) from

0.1 to 0.2, then the doubly periodic orbit is disappeared, although a periodic solution

still exists and the second and the third patches have almost the same behavior, see

Fig. (4.8). Therefore the dynamical behavior is sensitive to the initial condition. Is

it possible to have chaotic motion and/or does this due to the partial symmetry of

the system since we choose two of the three patches have same response? We leave

these as our future pursuit. As the maturation time is relative large, even with the

same initial condition, the double periods coincide, see Fig. (4.9).
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(d) Pi(t) ,Zi(t), i = 2, 3.

τ = 0.1, P1(0) = P2(0) = P3(0) = Z1(0) = Z2(0) = Z3(0) = 0.1.

Figure 4.7: (a),(b): Time series Pi(t), Zi(t), (i = 1, 2, 3); (c), (d): Phase portrait of the
system (2.2) with functions and parameters given in (4.4).
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Figure 4.8: (a),(b): Time series Pi(t), Zi(t), (i = 1, 2, 3); (c), (d): Phase portrait of (2.2)
with functions and parameters given in (4.4).
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(b) Time series Zi(t), (i = 1, 2, 3).
τ = 2.6, P1(0) = P2(0) = P3(0) = Z1(0) = Z2(0) = Z3(0) = 0.1.

Figure 4.9: Time series Pi(t) and Zi(t)(i = 1, 2, 3) of system (2.2) with functions and
parameters given in (4.4).

For the model (3.2) with migration among patches, we provide examples (5-8).

Example 5. When τ1 = τ2 = τ . We take the functions and the parameters in

system (3.3) as,

µ1(N ) = µ2(N ) =
N
T
, h1(P ) =

1

2P + 1
, h2(P ) =

1

P + 1
, ǫ1(Z) = 0.25, ǫ2(Z) = 0.3,

s = 0.9, m = 0.1, T = 10, d1 = d2 = 0.01, b1 = b2 = 0.25, α1 = α2 = 1, β1 = β2 = 1.(4.5)

By Theorem (3.3), we have Ẽ = (5, 0, 5, 0) is globally attractive for τ > 22.31.

Furthermore, we can check that the condition (H̃0), thus Ẽ is locally stable at τ = 0.

Since τ̄ = 45.89 and 0 < A < 1, ¯̄τ = 0, by Theorem (3.4) Ẽ is locally stable for

τ ∈ (0, 45.89), see Fig. (4.10). System (3.3) has two equilibrium points, E0, Ẽ, there

is no positive point by Lemma (3.1).
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Figure 4.10: Time series Pi(t) and Zi(t) (i = 1, 2) of system (3.3) with functions and
parameters given in (4.5) at τ = 0.2.

Example 6. We take the functions and the parameters in system (3.3) as,

µ1(N ) =
N

1 +N , µ2(N ) =
N
T
, h1(P ) =

2

P + 3
, h2(P ) =

1

P + 1
, ǫ1(Z) = 0.01, ǫ2(Z) = 0.02,

s = 0.8, m = 0.5, T = 9, d1 = d2 = 0.01, b1 = b2 = 0.25, α1 = α2 = 1, β1 = β2 = 1. (4.6)

First, assume τ1 = 0. When τ2 = 0, by checking (H̃0), we know Ẽ = (4.5, 0, 4.5, 0)

is unstable. Fig. (4.11) shows that K(λ, τ1, τ2) = 0 has a positive eigenvalue for any
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Figure 4.11: Existence of a positive eigenvalue corresponding to the choice in (4.6).

feasible time delayτ1, τ2 > 0.

Example 7. We consider a symmetric system with n = 2. We take the functions

and the parameters in system (3.21) as,

µ(N ) =
N

1 +N , h(P ) =
P

P 2 + 1
, ǫ(Z) = 0.15,

s = 0.1, m = 0.6, T = 8, d = 0.01, b = 0.25, α = 1, β = 1. (4.7)

System (3.21) has a coexistence equilibrium point E∗ = (P ∗, Z∗, P ∗, Z∗) with

P ∗ =

√

3

5e−0.01τ − 3
;

Z∗ =
9P ∗ + 2−

√
16P ∗4 − 64P ∗3 + 97P ∗2 − 28P ∗ + 4

4P ∗
,

which is positive If and only if τ < 45.02.

We can check, in this example, h(P ) is not a increasing function, from Proposition
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(3.3), it’s possible to have other positive equilibrium point. However, we have tried

different choices of the functions and parameters, we cannot find others except E∗.

At τ = 0, system (3.21) has a stable positive equilibrium is E∗ = (1.225,1.474,1.225,1.474).

Similarly as in Chapter (2), we can define functions Sn(τ) n ∈ N to find a pure imag-

inary root for Eq. (3.25). In Fig. (4.12), we plot S0(τ), S1(τ) and S2(τ). We can

see that the curve of S1(τ) = 0 has two roots at τ ∗1 = 0.41 and τ ∗2 = 24.11. For

small delay τ < τ ∗1 , the positive equilibrium point is stable. However, an increase in

the delay leads to oscillations and again to a stable positive equilibrium at τ ∗2 before

it disappears at τ = 45.02. Which implies the occurrence of stability switch. Fig.

(4.13) shows time series Pi(t) and Zi(t), i = 1, 2 with different values of τ . Biologi-

cally, when the maturation process is too short, the concentration of phytoplankton

and zooplankton move to a certain level with constant concentration; while the mat-

uration time increases, all the species oscillate regularly. Nevertheless, a very large

maturation age implies that zooplankton stay long in the juvenile phase and take a

long time to become active predators. During this time phytoplankton can increase

and reach a certain concentration. Which leads to a stable coexistence of zooplankton

and phytoplankton again, rather than the oscillation.

Example 8. With n = 2. We take different functional responses and parameters
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Figure 4.12: Functions S0(τ), S1(τ) and S2(τ) for τ ∈ (0, 45.02) corresponding to the
choice in (4.7).

in (3.2), such as,

µ1(N ) =
T

N , µ2(N ) =
N

5 +N , h1(P ) =
2

P + 3
,

h2(P ) =
1

2P + 1
, ǫ1(Z) = 0.1, ǫ2(Z) = 0.05,

T = 7, d1 = d2 = 0.01, b1 = b2 = 0.25,

α1 = α2 = 1, β1 = β2 = 1, s = 0.2, τ1 = τ2 = 0.2. (4.8)

In this example, we present how the stability of the positive equilibrium point

affected by the prey migration rate m. In Fig. (4.14), we can see that a very small

prey migration rate does not affect the system stability. But while the migration rate

increase, the system loses its stability.
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Figure 4.13: Time series Pi(t) and Zi(t) (i = 1, 2) of system (3.21) with functions and
parameters given in (4.7).
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Figure 4.14: The affection of the prey migration rate in the stability.



Chapter 5

Summary and Future Work

5.1 Research summary

In this thesis, we propose a general model with n parallel food chains through the

stage structured maturation time delay. Without migration in Chapter (2), we have

carried out mathematical analysis to discuss the existence of the steady states and

their stabilities. When n = 1, we provide the explicit conditions for the local stability

of the one-species or the co-existed species equilibrium points and the global stability

of the predator-free equilibrium point. Further, we show that the time delay can, not

only destroy the existence, but also destabilize the positive equilibrium even it exists.

Later, we extend some of the results for the single patch to the model with n > 1
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multiple parallel patches.

Then in Chapter (3), we consider interactions between patches and present a more

complex model. When n = 2, we determine conditions that lead to the predator-free

equilibrium point being local stable and global stable when the delays are the same in

both patches. For the interior equilibrium points, we are able to provide the explicit

conditions for the local stability when all patches are symmetric. Also, we provide

some results to the model with n > 2.

Finally, to complement the analytical results, we illustrate some numerical simu-

lation to show the rich dynamics in the both systems.

5.2 Future work

Further research of this thesis, one would like to study the influence of the partial

symmetry of the system and the possibility to have chaotic motion due to this partial

symmetry.

Another direction of future work is in considering the grazing predators which

can effect the dynamics of plant populations and communities in marine [KB12], and

freshwater [Els92] habitats, one can introduce maturation time delay or a delay in the

redistribution of grazing process, Fig. (5.1). Also, one would like to study to study
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the effect of adding a stage structure for the prey.

Figure 5.1: Three phytoplankton with a single zooplankton grazers.
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