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Abstract 

The objective of this study is to investigate ice-structure interaction and develop a 

numerical model to predict the changes of ice loads and pressure during ice-structure interaction 

on non-planar surfaces. 

It is important to understand the sequential ice pressure and load development during ice-

structure interaction. This is particularly true for non-planar surfaces as most ships and many 

offshore structures are composed of near-flat panels that may be dented as part of in-service 

loading leading to panels that are concave. An important question is whether these concave 

surfaces act as load-increasers for subsequent ice interaction. Most laboratory and field trial tests 

have been performed based on the assumption that the structural shape is flat. Therefore, little 

information is available for cases where the structure is concave due to plastic deformation, or 

specific areas with intentional structural concave shapes. 

In support of this objective, a series of laboratory-scale ice crushing tests were performed. 

Force, time and displacement data were measured. It was observed that ice crushing on concave 

shape indenters induced higher ice loads and pressure magnitudes compared to flat indenters. As 

part of the experimental program, techniques to use pressure measurement film were adopted to 

obtain ice-structure contact location, actual contact area, and changes of magnitude of pressure 

within the contact region. Following the experimental program a numerical model of ice 

crushing for concave surfaces was developed. In order to achieve valid numerical simulation 

results, a crushable foam model was modified by adding failure criteria. This followed the effect 

of indenter shape, level of confinement, test speed and cone angle to be evaluated in the 

numerical model and compared with the experimental results. 
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The numerical model is shown to be valid for the flat indenter cases and the wedge and 

conical-shaped indenter cases. The findings from this study show that the shape of the indenting 

surfaces does influence ice forces and pressure and that generally, concave indentation surfaces 

lead to increases in pressure and force arising from ice crushing. These effects can be qualified 

globally and locally using the pressure measurement film, and the effects can be modeled 

numerically. This work demonstrates that the assumption of ice loads associated with flat or 

convex shapes may lead to under design for concave shapes or may lead to structural overload in 

cases where structures previously that have benn indented. 
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Chapter 1 Introduction 

 

 

1.1. Motivation 

 

1.1.1. The Challenges in the Arctic Region 

 

Since the 19th century, people have had an interest in the Arctic as an unexplored territory, and 

there have been many efforts to explore the Arctic. From the 1960s onwards, the Arctic region 

has been recognized as a resource area for offshore oil and gas reserves. Also, there was a need 

for opening a northern sea route to achieving faster and more economical navigation between the 

east and west countries neighboring this Arctic route. All these activities require that ships and 

other steel structures operate in ice−covered waters. Designing these structures requires 

knowledge of how ice loads develop during ice-breaking processes. In general better knowledge 

of ice induced loads leads to safer and more efficient designs for operations in arctic regions. In 

order to accomplish this goal of safe and efficient design, development of proper theoretical 

methods and at the same time, gathering of necessary data through experiments, is required to 

properly understand the process and characteristics of ice-ship structure interaction. 

 

Ice class ships, equipped with data recording instrumentation, have been used to collect ice-ship 

collision data in the Arctic since there was a specific demand for full-scale data for practical 

design and research purposes. These types of field tests were started from 1970s by industries 
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and research institution from all around the world. Along with full and medium-scale tests in the 

field, laboratory ice experiments were also carried out by universities and research institutes. 

Based on the results of these series of experiments in full and model scale laboratory ice tests, 

the researchers were able to increase their understanding of ice mechanics. 

 

1.1.2. Ice Loads/Pressure on Non-Planar Surfaces 

 

Due to wide natural variations in sea ice, and the difficulty in determining exactly what kinds of 

ice conditions are ahead of a ship or offshore structure in the Arctic, some ice-going ships will 

periodically encounter ice loads above their design criteria. These overloads will commonly 

cause permanent deformations in plating and framing, which show up as permanent 

deformations (dents) in the surface. Besides the plastic structural behavior, the nature of the ice 

loads is also a factor. The plate deformation, which creates a dent into which the ice presses may 

well modify the ice pressures. There are little test data available concerning this situation. 

Almost all available test data from laboratory or field does not involve permanent structural 

deformation (unless not recorded). Thus, the scenario of ice impinging on a concave surface 

arising from previous minor damage is a common but virtually un-studied case. Therefore, there 

is a need for additional information and analysis for ice-ship collision scenarios, considering 

prior plastic deformation in the ship structure. 

 

In addition to the cases of an ice load-induced dent, there are cases where ice strikes 

convex/concave surface locations on the ship such as at the intersection of an appendage and the 

main hull.  Design ice loads for such locations are generally based on data derived from flat 
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surface tests and models. Current practice would be to use loads for the typical hull structure. 

Therefore, it is worth investigating the effect of surface shape (i.e. non-planar shapes) on ice-

structure interaction loads. 

 

In both cases mentioned above, the ice will be impacting a non-planar convex/concave shaped 

surface rather than a flat surface. The reason that a ‘concave’ shape might show much higher 

magnitude of ice load compared to a ‘flat’ surface is the influence of ice confinement. In the case 

of a flat surface, broken ice pieces (spalling) can be freely extruded during the ice crushing 

process. Therefore, flat surfaces will not contribute any additional extrusion resistance that might 

act to increase the ice pressure and thus the loads as part of the ice failure process. In contrast, 

broken ice pieces are expected to be trapped, or at least impeded, between the structure and 

deforming ice sample within a confined space, as would be in the case of a concave shape. It can 

be expected that trapped ice pieces here will increase the confinement and exhibit higher ice load. 

 

 

1.2. Research Objectives 

 

Most ice load measurements, whether in the lab or field have considered the structure to be a 

nearly rigid body, with only small elastic deformations. Therefore, ice pressure models and data 

have ignored the effects of surface structural deformations or local concavity. However, the 

nature of ice-structure interaction could be quite different when the permanent plastic 

deformation of the structure, or surface concavity is considered. During ice-structure interaction, 
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which involves ice spalling and fracture, the broken ice material must be extruded, and the ease 

of extrusion will depend partly on the shape of the surface. 

 

It is expected that concave shapes will tend to trap the extruding ice, leading to greater 

confinement and possibly higher ice loads. As well, compared to the case when the surface is flat, 

the total contact area will likely be quite different along with the distribution of ice contact 

pressures. A change in ice load and pressure magnitudes is to be expected. 

 

The objectives of this study are: 

 

1. Investigate the effect of surface concavity in influencing ice loads and pressures during ice 

crushing using a series of systematic experiments on simplified concave shapes. Determine 

from the experiments if the load/pressure increases and if it does is the increase significant 

with reference to flat surface cases. 

 

2. Adopt procedures, previously developed for using pressure measurement films on a flat 

surface, to shaped surfaces in order to determine variations in spatial ice crushing pressure 

as influenced by the shape of the crushing surface. 

 

3. Develop a numerical model of the ice crushing process against a concave surface that 

correctly captures both the global load variation and the local and spatial pressure variation 

as a crushing event proceeds. 
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4. Develop preliminary recommendations as to whether existing standards concerning ice 

loads on planar surfaces should be modified to account for the concave surfaces that 

commonly arise in ships subject to denting from ice loads. 

 

 

1.3. Approach and Methodology 

 

This study applies to two structural cases; overload resulting in plate denting, and cases where 

the ship’s surface geometry is intentionally concave, as would be the case adjacent to ship 

appendages and at specific locations on the hull. 

 

The experimental study considers two types of scenarios; 

 

(i) Study of ice-structure interaction on concave shapes representative of deformed plating on the 

main hull; in this case, the focus is on load and plastic response in an overload condition. 

 

(ii) Study of ice-structure interaction on concave shapes representative of locations other than the 

main hull; in this case, the focus is on load and response at the design condition. 

 

1.3.1. Experimental Program 

 

In both cases, the test data will be compared to available ice pressure test data on undeformed  

(flat) rigid surfaces. The study will be carried out using available test equipment in a cold room, 
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using universal testing machine (UTM). Force data from the UTM will be used to measure the 

‘global’ load and nominal contact area, to obtain the ‘process’ pressure-area relationship. 

Chemical pressure measurement film (PMF) is a potentially attractive option. The films used in 

this study have micron-scale resolution and leave pressure patterns that remain upon completion 

of an impact event. The pressure measurement film will be used to measure ‘local’ contact 

load/pressure and contact area, to obtain ‘spatial’ pressure-area relationship. Numerical analysis 

will be carried out in parallel with experimental studies to compare and as well to analyze the 

obtained test data, and ultimately to validate numerical simulations of such cases. 

 

The purpose of this study is to investigate ice impacts with such a concave-shaped surface to 

determine if the structural shape of the impacting surface has an effect on the apparent ice loads 

and pressures. A new test apparatus was designed to research the characteristics of ice-structure 

interaction on non-planar surface. 

 

1.3.2. Numerical Simulations 

 

Many researchers have performed a simulation of ice-structure interaction using finite element 

software. Since, most of the numerical simulation models developed by an individual study tend 

to satisfy a particular test condition which means that the capability of expansion into a particular 

scenario was not considered. In addition, most of the numerical simulation models were 

developed in the case of the impact situation where the strain rate is relatively high. In reality, 

actual ice loading conditions are distributed from low to high strain rate conditions. Therefore, 
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there is a high demand of developing a numerical simulation model which can be applied in 

diverse conditions. 

 

This study aims to develop a numerical simulation model and material properties of the ice that 

can be applied for cases experiencing low to high strain rates without any major modification, 

using LS-DYNA
®
. The crushable foam model with LS-DYNA

®
 has been found to be a 

reasonable model for ice. This model was used with updated failure criteria, and maximum 

principal stress, to simulate the widely observed ‘sawtooth’ ice crushing load pattern. The 

material property of the steel indenter was assumed as a rigid body. Two separated element 

layers were adopted to consider a high and low pressure zone within the contact region. 

Validation of the numerical ice model was based on compressive ice test results done in a cold 

room using a 10cm diameter cone-shaped ice samples. Furthermore, the verification process for 

scalability was performed by applying the numerical simulation model to larger-scale ice 

samples up to 25cm diameter against flat and concave shape indenters. 

 

1.3.3. Scope 

 

Chapter 2 is a literature review of ice-related research covering experiments at laboratory scales 

and up to field trials and including numerical simulations of ice-structure interaction. Work on 

ice loads on podded propulsors is reviewed as these devices which are becoming widely used in 

icebreaking vessels are most likely to present concave surfaces to impinging ice loads. Methods 

of global and local ice load measurement are introduced. A different method to simulate the ice-

structure interaction is reviewed (i.e SPH, CEMH). In Chapter 3, the technique for measurement 
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of localized pressure distribution and contact area using pressure measurement film is presented. 

Analysis of pixel size sensitivity of the pressure measurement film is conducted to decide the 

optimal pixel size for further study. In Chapter 4, the detailed procedure of ice crushing 

experiments using the 25cm diameter ice samples on a non-planar surface is introduced. 

Comparison of the force-displacement curves and pressure-area curves are made between flat 

and concave indenters. In Chapter 5, effects of shape and angle of concave shaped indenter, 

shape and angle of ice samples and test speeds are discussed. Furthermore, the theory and effect 

of the ice confinement effect in crushing events is discussed. In Chapter 6, a numerical model for 

ice-structure interaction is presented. The updated perspective of the model is addressed. 

Comparisons between numerical simulation results and experimental results are made. Finally, 

the conclusions of the present study are provided in Chapter 7. 
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Chapter 2 Literature Review 

 

 

The objective of this chapter is to review the current state of the art in the four areas of ice-

structure interaction science relevant to this study: 1) experimental studies investigating ice-

structure interaction, 2) ship denting damage arising from ice interaction, 3) measurements of ice 

pressures during ice-structure interactions and 4) numerical analysis of ice-structure interaction 

studies. 

 

Moreover, there is very little literature available related to ice-structure impact tests on the case 

of non-planar surfaces. What follows is a review of the relevant literature available on topics that 

will contribute to the experimental and numerical studies to be carried out in this study. Full-

scale measurements, model tests and numerical simulation methods for the ice-structure 

interaction loads are reviewed herein. 

 

 

2.1 Ice Mechanics 

 

2.1.1. Properties of Sea Ice 

 

The stage of knowledge and applications of the engineering properties of sea ice was reviewed 

by Timco and Weeks (2010). In this paper, the physical properties (includes microstructure, 
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thickness, salinity, etc.) and the mechanical properties (includes tensile, flexural, shear, uni- and 

multi-axial compression strength, etc.) are explored for both first-year sea ice, second- year and 

multi-year sea ice (expressed as “Old ice”). As author mentioned, many properties are still not 

fully understood, especially on old ice discussed by Timco and Weeks. Table 2-1 summarized 

the state-of-knowledge and application of the properties of sea ice. 

 

Table 2-1: Summary of the state-of-knowledge and application of the properties of sea ice (after 

Timco and Weeks, 2010) 

 

 

2.1.2. Ice-Structure Interaction 

 

The role of fracture and spalling in ice-structure interaction was discussed by Zou et al. (1996). 

This paper revealed that fracture and spalling, which initiated from flaws at shear zones with low 

confining pressure and tensile zones, contribute as key roles in the formation of critical zones 

during ice-structure interaction. 
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The mechanics of different types of fractures observed from small- and medium-scale 

indentation tests were analyzed by Li and Jordaan (2006). ‘Radial’ crack and ‘Hertz-like’ crack 

was considered as the main types of fracture, which is an important feature during ice-structure 

indentation at high displacement rates. Both types of fracture will affect to reduce the interaction 

load directly, which will reduces the effective loading area resulting in a global pressure decrease. 

Details of mechanics of ice-structure interaction were discussed by Jordaan (2001). The most of 

the force is transmitted through small areas, which is termed as high-pressure zones. The main 

processes in the contact layer regarding a recrystallization was discussed. Concept of process 

have been reproduced in tri-axial tests on polycrystalline ice in laboratory, and finite element 

model simulation was performed incorporates damage mechanics. 

 

Small-scale indentation tests were conducted with compliant structures using freshwater ice 

sheets by Sodhi (2001). Grid-based tactile pressure sensors at the ice-structure interfaces was 

installed to measure the pressure during an interaction. This study confirmed that the effective 

pressure measured during small-scale indentation tests to be close to those measured on full-

scale structures when the indentation rate is high in both situations. 

 

Extensive work done on interaction between sea ice/iceberg and sip structures was reviewed by 

Shunying and Shewen (2012), in respect of; (i) ice pressure and local load determination based 

on model and field tests, (ii) global ice loads on ships from full-scale field observations, model 

tests and numerical simulation models under diverse ice conditions (i.e. level ice, pack ice) and 

ship operation conditions, (iii) analytical solutions and numerical models of impact loads of 

icebergs on ships for the Arctic navigation. 
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2.2. Effect of Confinement 

 

It is a well-known fact that ice failure pressure in a confined ice sheet, for example; in a thick 

multi-year ice, is much higher than in a thin ice (first-year ice) (Timco and Weeks, 2010). Fully-

confined penetration can be defined as the stresses in the confined ice area cannot be released by 

edge spalling (flaking) or surface. Internal cracking is the only way of stress relief (Blanchet and 

Defranco, 2001). 

 

Effect of confinement was emphasized by Croasdale (2001). Croasdale analyzed the indentation 

tests on multi-year ice walls at Byam Martin Channel tests in 1985. During these tests, there 

were significant differences between the results of the 1.0m
2
 spherical and 1.0m

2
 flat indenter 

tests on spherical ice. Pressure at the center was higher in the case of the spherical indenter 

loading against a flat ice surface than for the flat indenter loading against a spherical ice surface. 

Test results revealed that the confinement from the surrounding ice may be the main factor, 

which governed the maximum interaction pressure. 

 

Jones (1982) performed ‘Triaxial’ tests on randomly oriented, laboratory grown, polycrystalline 

ice, between strain rates of 10
-7

 and 10
-1

 s
-1

. In addition, Jones adopted a superimposed 

hydrostatic pressure up to 85MN/m
2
 to investigate the effect of confinement. For comparison, 

additional tests were carried out at a pressure of 0.1 MN/m
2
, to simulate unconfined condition. 

More details about the test setup are given by Jones (1978). The significant result shown in this 

study is that (as shown in Figure 2-1), in higher strain-rates, the applied confining pressure 

prevents cracking, which leads the compressive strength to increase to a higher than the 
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unconfined compressive strength (more than twice) in general. The role of the confining pressure 

in this study is similar to confinement formed by crushed, but trapped ice in a certain location 

due to the geometrical shape of confinement provided by the surrounding ice. 

 

 

Figure 2-1: Yield stress plotted against confining pressure (after Jones, 1982) 

 

Spencer and Timco (2010) reviewed the test results, which were conducted near Resolute Bay 

off Cornwallis Island in the Canadian Arctic during May 1993 (first-year sea ice, around 1.8m in 

thickness). A range of confinements to the flatjacks were varied by the depth of the flatjacks in 

different slot shapes. An ‘S-shape’ slot is a single-straight-vertical slot cut into the ice sheet, and 

this represents highly-confined test conditions. An ‘H-shape’ slot consists of three vertical slots 

(as the letter H) and the flatjack mounted in the middle of the section. Test with the ‘H-shape’ 

slot represents less-confined conditions. 
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Figure 2-2 shows a comparison of the Resolute Bay data to the calculated compressive strength. 

These higher values (with S-shape slot) reflect the confined state of the ice in the flatjack test. 

 

 

Figure 2-2: Observed pressure and calculated uni-axial compressive strength in the Resolute 

Tests (after Spencer and Timco, 2010) 

 

Ulan-Kvitberg et al. (2011) examined the role of indenter (which represents a confinement) by 

adopting different indenter geometry shown in Figure 2-3. The level of confinement of the ice 

sample (size of exposed part) appears to determine the peak force as well as the expected process 

pressure-area trends at set speeds. Ulan-Kvitberg emphasized that the level of ice confinement is 

an important factor in considering design loads. Comparison of force-penetration history shows 

the effect of confinement (by steel indenter) clearly, as shown in Figure 2-4. 
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Figure 2-3: Constrained (a) vs. Unconstrained (b) Ice Indenter (after Ulan-Kvitberg et al., 2011) 

 

  

 

Figure 2-4: Force-Penetration History of Unconstrained Ice Cone (top) and  

Constrained Ice Cone (bottom) at 100mm/s (after Ulan-Kvitberg et al., 2011) 
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2.3. Ship Structure Damage 

 

Hänninen (2005) introduced the list of ice-related incidents and accidents in the Baltic Sea winter 

during 2002-2003 (Table 2-2). The main purpose of this work was not only to collect hull 

damage, but also other ice-related damages. In the severe winter during 2002-2003, of the 62% 

of ship hull damages, 30% of the damages were caused by ice-ship interaction and 15% of hull 

damages occurred in the ice region under compression. The number of ships considered in this 

study was 111. The data were gathered from several sources. Within in these incidents, 30 cases 

included dents or ruptures due to ice-ship contact, and 23 cases included ship collisions due to 

heavy ice. A comparison between ice classes and ship types of damaged and undamaged ships 

are presented in Figure 2-5. 

 

 

Figure 2-5: Comparison of ice classes and ship types of damaged and undamaged ships  

(after Hänninen, 2005) 
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Table 2-2: A summary of the hull damages (TRA means transverse framing system and LON 

means longitudinal framing system ) (after Hänninen, 2005) 
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Kujala (1991) introduced damage statistics of ice-strengthened ships in the Baltic Sea from 1984 

to 1987. This report includes 61 ships (31: 1A Super Class, 28: 1A Class, 2: 1C Class). All the 

longitudinally framed ships servicing in Bothnian Bay experienced sustained damages that was 

typically local, with minor denting of plating or frames. 26% of the 1A Super class and 54% of 

the 1A Class have experienced damage during the navigation. No damages resulting in leakages 

were found. Most of the reported damages appear to be at the mid-ship section while the ships 

have been stranded in compressive ice condition. Measurement of damages was made by visual 

observation as well as stereo photography. Figures 2-6 and 2-7 show the examples of ship 

damage (ship no. 35) and profile of the damaged area. 
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Figure 2-6: The damage occurred during the winter 1986 on area 1 of ship no. 35.  

(after Kujala, 1991) 
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Figure 2-7: The shape on the damage on area 1of ship no. 35 (after Kujala, 1991) 

 

Clearly, a damaged (deformed) shape of the structure is a concave shape (the main interest in this 

study). However, this report was not intended to investigate any ice load/pressure variance in 

deformed area. Therefore, any further information, especially related to the ice load/pressure, 

was not available. 

 

 

 

 

 

 



21 

 

2.4. Field/Medium/Laboratory Scale Experiments 

 

2.4.1. Field/Medium Scale Experiments 

 

Daley (1994) compiled and analyzed data on field and medium-scale tests. Features of various 

field/medium-scale tests were illustrated and described in this report. One of the medium-scale 

experiments was at the Hobson’s Choice ice tests, which were performed using the wedge-

shaped and flat indenters pressed into a flat and shaped ice surfaces in an ice trench wall. In these 

cases, the ice surface was either flat or concave shaped and the indenter shapes were either flat or 

convex. 

 

Field tests on the vessels Kigoriak, M.V. Arctic, and Polar Sea (Daley, 1994) aimed to measure 

direct ice loads acting on the ship structure. Frederking (2005) reported the local ice pressures on 

the Oden 1991 Polar Voyage. An area on the starboard of the ship was instrumented with strain 

gauges to measure local ice pressures, and the results show a significant relationship between 

ship speed and local ice pressures. He also examined local ice pressure data collected from the 

1994 Polar transit of the Louis S. St. Laurent, and this provides an excellent data set for 

determining local average ice pressures as a function of the area (Frederking, 1999). 

 

Strain-gauges were attached to selected parts of the structure and load data was acquired during 

ice impacts (Frederking, 1999). During the field tests, the ship structure may have experienced 

an extreme load condition leading to denting. However, as mentioned above, measuring the 

deformation of the structure was not the main focus of these tests since no record was made 
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regarding the deformation of the strain-gauged panel. Therefore, it is not clear whether any of 

these test data would have been for ice-structure interaction with the ship plating undergoing 

permanent structural deformations. 

 

D.M. Masterson and R.M.W. Frederking (1993) also analyzed various fields and medium-scale 

test data. They compiled the data on local ice pressures, and forces, which included a variety of 

indenter tests (Pond Inlet/APOA/Hobson’s Choice) and field trial (M.V.Arctic/Kigoriak 

trial/USCGC Polar Sea). In addition, the data also contained tests on Molikpaq walls to 

investigate the global ice loads (which affects the overall stability of structures, in particular, and 

are associated with the total forces causing the bow print during a ship ram) and local ice loads 

(which determine the design of steel plate thickness plus spacing and size of stiffeners or 

concrete wall thickness and the amount of reinforcements). Through the test data, it was 

confirmed that the process pressure-area curve tends to decrease as the area of contact increases 

and design curves were suggested. However, there was no discussion or mention about structural 

shape effects (denting). 

 

The main purpose of the previous tests was not to determine changes in ice loads and pressures 

associated with deformation of structural shapes. Therefore, it was not required to measure the 

effect of any permanent deformation in the structure itself; since the possibility of plastic 

deformation occurring in the structure was not expected. Furthermore, most of the location 

where strain gauges were attached had high rigidity (on the top side of the frame or close to the 

stiffened-frame). Ritch et al. (2008) reported a local ice pressure measurement on a strain gauge 

panel during the CCGS Terry Fox bergy bit impact test. A total of 178 impacts occurred between 
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the vessel and bergy bits, masses varying from 20-22,000 tones, and ship speeds varying from 

0.2-6.5m/s. Maximum pressure measured was 11.3MPa on an area of 0.12m
2
, and the maximum 

force of 5MN was measured. 

 

Figure 2-8 shows the strain gauge layout of CCGS Terry Fox bergy bit impact trial test, using a 

total number of 120 strain gauges (Ritch et al., 2008). As one can see, most of the strain gauges 

were located on the top of the mainframe or stiffener which has high rigidity compared to other 

locations in the structure and provided a rigid structural panel of flat or slightly convex shape. 

 

 

Figure 2-8: Strain gauge layout (after Ritch et al., 2008) 
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As part of a five-year program under the sponsorship of the Japan Ocean Industries Association 

(JOIA), medium-scale indentation test has been conducted on sea ice in the harbor of Lake 

Notoro, Hokkaido, by pushing a segmented indenter against the edge of floating ice sheets 

(Sodhi et al., 1988; Akagawa et al., 2001; Takeuchi et al., 2001; 2002; Frederking, 2004; Sodhi 

et al., 2006).  The indenter was segmented, and measurements on each 10cm-wide segment 

include forces in three directions. More details about this program will be discussed in the next 

section. 

 

2.4.2. Laboratory Scale Experiments 

 

A series of laboratory scale experiments was done to observe ice-structure interaction more 

closely. Cole (1987) performed constant deformation-rate tests on laboratory-prepared 

polycrystalline ice to study strain-rate and grain-size effects in ice. Sayed and Frederking (1992) 

designed a series of experiments to understand the effects of extrusion of crushed ice during ice 

indentation. The experiments examined two-dimensional flow between two converging flat 

plates, and the entire process during the tests were observed through transparent side windows. 

As a result, local and average normal stresses and displacements were measured. 

 

The brittle failures of polycrystalline ice were reviewed by Schulson (2001). Tensile cracking in 

ice was discussed in terms of the nucleation and propagation of cracks. In addition, the brittle 

compressive failure was also addressed. Daley (1992) employed ‘Chaos theory’ to analyze the 

behavior of the iterative sequence of cracks in analytical mode. Sodhi (2001) conducted small-

scale indentation tests with compliant structures and freshwater ice sheet. The pressure generated 
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during the interaction was measured by tactile pressure sensors. It was revealed that the ductile 

ice behavior, present at low indentation speeds, and the continuous brittle crushing behavior 

observed at high indentation speeds were observed. The effective pressures measured during 

small-scale indentation tests were close to those measures on full-scale test structures. 

Tuhkuri (1995) described the results of laboratory experiments, where a block of freshwater ice 

was crushed in a continuous manner against a compliant structure. Figure 2-9 shows the 

experimental setup. 

 

 

Figure 2-9: The experimental set up (after Tuhkuri, 1995) 

 

The failure process, the ice-structure contact, and the ice loads were affected by the clearance 

between the test structure and the confinement box for ice that represented the role of 

confinement. In addition, test speed was not significant because the all tests were in brittle failure 

range. A wedge angle was not significant except the first peak loads. 
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2.5. Local Ice Pressure Measurement Method 

 

Many researchers have conducted a large number of field trials and laboratory-scale experiments 

using a variety of instrumentation for ice-structure interaction tests to identify ice load/pressure 

and the actual contact area relationship, in real-time. As mentioned in the previous section, 

understanding of the spatial pressure-area curve, which describes that how local peak pressures 

relate to the area within the contact zone, is important to determine design loads on a local 

structure such as plating and framing. This section reviews the literature on local ice load 

measurements using pressure panels and tactile sensors. 

 

2.5.1. Pressure Panel 

 

Gagnon (2008) analyzed data from bergy bit impacts using a novel hull-mounted external 

pressure panel. A schematic of the pressure panel operating principle is illustrated in Figure 2-10. 

During the bergy bit impact test, data were acquired from impacts on the bergy bits of various 

sizes (10 - 22,000 tons) and over a range of ship speed (5 - 12kt). Through the image analysis, 

Gagnon observed that, (i) the ice contact area was irregular, where the pressure was high (8 - 

20MPa) and roughly uniform; and (ii) is usually surrounded by a larger area of pulverized ice, 

where the pressure was relatively low (~2.5MPa). In addition, data showed that the trend of the 

pressure–area curve was somewhat increasing as discussed by Daley (2004; 2007). 
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Figure 2-10: Schematic illustrating the operating principle of the Pressure Panel  

(after Gagnon, 2008) 

 

The pressure panel was extended to laboratory-scale tests using lab-grown ice sample and useful 

data were obtained (Gagnon, 2009; Reddy Gudimetla, 2012). 

 

Figure 2-11 shows the 1.0m diameter ice cone test done by STePS
2
 project using the pressure 

panel, which records pressure distribution in a real-time (Reddy Gudimetla et al., 2010). 1.0m 

diameter cone-shaped ice samples were being crushed against the above-mentioned laboratory-

scale pressure panel. The aim of this test was to set the ice load conditions for the later quasi-

static and dynamic tests to be carried out on the real-scale steel grillage. Figure 2-11 shows the 

‘before’ and ‘after’ of the test. 
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Fig. 2-11: 1.0m diameter ice cone test using the pressure panel before and after  

(after Reddy Gudimetla et al., 2010) 

 

Figure 2-12 shows the progression of pressure (contact area) profiles during the test. Obtained 

image from the pressure panel was analyzed to plot a pressure distribution map. An example of 

the analyzed image is shown in Figure 2-13. 
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Fig. 2-12: Progression of pressure profile in double angle cone test  

(after Reddy Gudimetlaet al., 2010) 



30 

 

 

(a) Raw image obtained from pressure panel 

 

(b) Plot of the analyzed pressure distribution map 

Fig. 2-13: Raw image and analyzed pressure distribution map obtained from pressure panel tests  

(after Reddy Gudimetla et al., 2010) 



31 

 

The advantages of using a pressure panel are: 1) pressure and contact area data are in real-time; 

and 2) simplicity of the measurement process. However, the response surface of the pressure 

panel acted as a flat rigid body (not allowing any deformation in the panel); so there are 

limitations in applying these results to this study that planned to measure the ice load and 

pressure distribution for a deformed or concave-shaped structure. In addition, installation of data 

acquisition system is still complex (i.e. instrumentation set-up and data-storage devices such as 

cables) and handling a large amount of recorded real-time data is not an easy task. 

 

2.5.2. Tactile Sensor 

 

A series of ‘Medium Scale Field Indentation Tests (MSFIT)’ have been performed by the Japan 

Ocean Industries Association (JOIA) program during 1996-2000. Results of tests were analyzed 

and published by many researchers (Takeuchi et al., 2001, 2002; Sodhi et al., 2001; Frederking, 

2004; Sodhi et al., 2006). Takeuchi et al. (2001) examined the influence of a model structure 

width (W), ice thickness (h), indentation speed (V) and uni-axial compressive strength (σc) on ice 

loads. The global ice load (Ft) equation for level ice was derived from MSFIT data, and the 

equations were based on the main parameters V, h, W and σc. During tests; lots of local ice load 

data have been obtained using tactile sensors. 

 

Sodhi et al. (2001) and Takeuchi et al. (2002) utilized tactile sensors during small-scale and 

medium-scale indentation tests and produced data on interfacial pressure generated during the 

ice-structure interaction. Obtained data were calibrated and compared with the small-scale 

indentation test results and full-scale measurement of ice forces on the Molikpaq structure. 
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Figure 2-14: Segmented indenter (after Sodhi et al., 2001) 

 

 

Figure 2-15: Indentation test with four tactile sensors (after Sodhi et al., 2001) 
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Calibration of the tactile sensor was done by comparing the load with load cell measurement data 

by Sodhi et al. (2006). A significant difference was shown between two measurement systems as 

shown in Figure 2-16. 

 

 

Figure 2-16: Time-history plots of the ice force records at 0.3mm/s (after Sodhi et al., 2006) 

 

Frederking (2004) analyzed the indentation test data. He raised the issue that obtaining good 

measurement data on the pressure within the contact area is always a problem. If the sensor area 

was too large, the pressure was averaged over too large an area. On the other hand, if the sensor 

area was too small, there were usually insufficient sensors to determine the distribution of 

pressures. He observed that a load-time record between load cell and tactile sensor represented a 

good agreement for a particular period (see Figure 2-17). 
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Figure 2-17: Load – time record expanded for interval 40 to 70 seconds (after Frederking, 2004) 

 

Frederking realized that the contact between ice and structure represented ‘line-like’ load 

distribution with only about 10% of the ice edge experiencing any local pressure on all. In 

addition, a localized high pressure zone persisted up to 10 seconds (surprisingly long period). 
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Figure 2-18: Contour plot of pressure at time 86.1 s, a time of peak load (after Frederking, 2004) 

 

Tactile sensors were also used on a ship model test in the ice tank. A series of ship model test in 

level ice was performed with local ice load measurements (through tactile sensors) by 

Izumiyama et al. (2006; 2007) as shown in Figure 2-19. Spatial resolution of the tactile sensor 

was about 5.4mm, and data-acquisition rate were close to 100Hz. During the tests, data 

frequency was selected as 30Hz. The ice load distribution in the bow region was ‘broken-line-

like’ fashion in which short load patches were aligned in a horizontal line and verified with the 

data in the full-scale conditions (Figure 2-20). 
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Figure 2-19: Tactile sensor mounted on a model ship (after Izumiyama et al., 2007) 

 

 

Figure 2-20: Ice load distribution on a model ship bow (after Izumiyama et al., 2007) 
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However, ice spalling events occur on an extremely short time; therefore, recording a real-time 

based contact area and pressure distribution is highly sensitive to the data-acquisition system’s 

resolution and frequency of data recording. Even though tactile sensors represented a high 

capability for use in medium-scale and laboratory-scale tests, yet measuring all the phenomena 

occurring in an extremely short time is not practical, even with the tactile sensor equipment. 

 

 

2.6. Ice Loads on Podded Propulsor 

 

Most of the existing ice-ship structure collision test results have focused on primary ship’s hull 

structure. This means that prepared ice samples were crushed against a flat plate. From these 

kinds of tests, magnitude of loads and distribution of pressures was obtained. However, 

investigation of damage at other locations due to direct impact or by broken ice piece impact is 

also significant. 

 

A podded propulsor is chosen as the example of ‘concave’ shape structures in this study. A 

podded propulsor is likely to experience ice loads during service in the Arctic region. Therefore, 

each classification society is proposing their relevant rules to consider the ice load on the podded 

propulsor. 

 

As shown in Figure 2-21, DnV (Det Norske Veritas) has proposed eight different impact 

scenarios that a podded propulsor can experience. In addition, DnV suggested equations to 

calculate the applied ice loads as indicated in Figure 2-22. Following the proposed equation, ice 
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pressure has been significantly simplified to give realistic magnitudes of ice pressures/loads 

compared to previous ice load calculation methods. 

 

 

Figure 2-21: Illustration of actual load cases to be considered (after DnV, 2011) 
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Figure 2-22: Ice load definition (after DnV, 2011) 
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Alternately, BV (Bureau Veritas) has proposed 14 different scenarios to calculate the transverse 

and axial ice loads on a podded propulsor (BV, 2012). Twelve scenarios, except two blade 

failure scenarios by grounding, are possible ice loads as shown in Figure 2-23 and 2-24. BV rules 

are more detailed compared to DnV rules respect to determining various parameters such as 

adopting k1 and k2 (ice coefficient), hice (maximum ice sheet thickness), rf (rafting factor), σice 

(uniaxial compressive strength of ice). 

 

 

Figure 2-23: Critical scenarios for ahead working ships (after BV, 2012) 
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Figure 2-24: Critical scenarios for astern working ships (after BV, 2012) 

 

However, it was impossible to find any procedure from DnV’s and BV’s references regarding 

how the proposed equations were specifically derived. In addition, information about whether the 
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proposed equations have undergone a series of verification processes such as field or model test 

or finite element analysis (not mentioned in the notes). 

 

 

2.7. Numerical Simulation 

 

Ice can exhibit a variety of behaviors as a function of strain rate in compression (in addition; 

temperature, grain size, etc.) from ductile to brittle. Large number of laboratory-scale ice 

experiments, as well as field trial tests, has been conducted to investigate the ice characteristics 

and ice-structure interaction. However, developing a valid numerical simulation method to 

explore a more diverse parametric condition is common in engineering due to the limitations of 

time and cost. 

 

Diverse ice models have been developed to simulate the detailed behavior of ice during ice-

structure interaction. In this section, simulation methods that are currently being applied are 

reviewed. 

 

2.7.1. SPH Model 

 

Smoothed particle hydrodynamics (SPH) is a ‘mesh-free’ particle method based on Lagrangian 

formulation. It has been widely applied to different areas in engineering topics (Johnson et al., 

1996; 1998; Lavoie et al., 2008; Delsart et al., 2011). In SPH model, the behavior of the model is 
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represented by a series of particles, which possess material properties and interact with each 

other within the range controlled by a weight/smoothing function. 

 

Delsart et al. (2011) addresses the development and validation of a numerical methodology to 

model the impacts of ice (see Figure 2-25). A preliminary experimental analysis, including ice 

material dynamic characteristics and impact tests on rigid and deformable targets were 

performed. 

 

 

 

Figure 2-25: Experimental/numerical comparison of the impacts on rigid target – hemispherical 

projectiles at 15m/s (top) and 100m/s (bottom) (after Delsart et al., 2011) 
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Lavoie et al. (2008) demonstrated the accuracy of the method for ‘bird impact’ on rigid target. 

Validation test was performed using 1kg gelatin bird substitute material impacting against rigid 

thick steel plate at 95m/s velocity. Figure 2-26 shows the comparison results of snap shots and 

trend (a projectile of crushed section) of experimental and numerical simulation using SPH 

model. Both numerical and experimental are very similar. 

 

 

Figure 2-26: Impact at 0° at time intervals of 0.66 m/s, video and SPH (after Lavoie et al., 2008) 
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2.7.2. CEM Model 

 

Konuk et al. (2009) developed a cohesive finite element (CEM) model of a pile and level ice 

interaction. In this model, ice floe is assumed to be either of a rectangular infinite strip or an 

infinite half plane (see figure 2-27). In both cases, the ice floe is assumed to have sufficient 

momentum to continue its linear movement at its ambient speed throughout the simulated ice-

structure interaction process. This study emphasized the importance of fracture failures and 

rubble formations in simulating the ice-structure interaction processes. 

 

 

Figure 2-27: FE model of cylindrical structure and ice floe interaction (after Konuk et al. 2009) 
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Figure 2-28: Cohesive element model results for infinite (left) and finite (right) ice floe cases 

(after Konuk et al. 2009) 

 

Hilding et al. (2011) performed a numerical simulation where the ice piles up in front of a 

lighthouse beneath the ice sheet using a cohesive element method with homogenization (CEMH), 

as shown in figure 2-29. The simulation results were compared with Norstromsgrund (in the Gulf 

of Bothnia) field test data. Comparison between experimental data and numerical analysis was 

similar quantitatively and qualitatively. In addition, numerical simulation demonstrated the 

feasibility of full-scale simulations of continuous crushing fracture mode of ice sheets against 

offshore structures. 
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Figure 2-29: Typical situation in front of lighthouse in the simulation (after Hilding et al. 2011) 

 

2.7.3. Crushable Foam Model 

 

Ice material properties, which included a volumetric strain-stress relationship, of a crushable 

foam model (MAT 63) were calibrated by Gagnon (2006; 2007; 2012; 2011) through the bergy-

bit field experimental data. For the numerical simulation, LS-DYNA
®
 was chosen, and crushable 

foam was applied as an ice material. The deformation is mostly non-recoverable when the load is 

removed, hence the designation crushable foam. The behavior of the model using crushable foam 

is dominated by the volumetric strain-stress relationship. Dependency of the volumetric strain-

stress relationships means that defining a proper volumetric strain-stress relationship is the most 
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important aspect in numerical simulation using crushable foam. Figure 2-30 shows a suggested 

and calibrated ‘volumetric strain-stress’ relationship. 

 

 

Figure 2-30: Volumetric strain-stress relationship (after Gagnon, 2006) 

 

It is required to incorporate of a spalling behavior that leads to the frequently observed sawtooth 

load pattern in ice crushing and indentation test. Gagnon (2010; 2011) applied an updated 

methodology to simulate a sawtooth pattern, which is generally observed in the majority of the 

experimental performance, in respect of force-time history. The finite element model was 

composed layer by layer, and different material properties were assigned to each layer to create a 

‘forced’ sawtooth pattern during simulation, as shown in Figures 2-31 and 2-32. 
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Figure 2-31: View of the numerical model (after Gagnon, 2010) 

 

 

Figure 2-32: Volumetric strain stress curves for the M1 (high-stress) and M2 (low-stress) 

crushable foam (after Gagnon, 2010) 
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The updated model produces cyclic sawtooth load events and pressure distributions that are 

characteristic of observed ice behavior (see Figure 2-33). Due to the complexity of the problem 

and the variety of impact scenarios, it is desirable to have a more reliable numerical simulation 

model. The updated model introduced many stacked triangular facets to create a load pattern 

intentionally and demonstrated high and low pressure zone within the contact region, as shown 

in Figure 2-34. 

 

 

Figure 2-33: Load time series for the IceCrush simulation (after Gagnon, 2010) 
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Figure 2-34: Two sets of images, set No. 1 (left) and set No. 2 (right), depicting what happens 

during one of the spalling events in the IceCrush simulation (after Gagnon, 2010) 

 

Zong (2012) adopted different types of ice model by changing the material property using LS-

DYNA
®
. As a result, the most appropriate ice model was proposed, which represented the best 

fit for ‘process’ pressure-area curves suggested by IACS Unified Requirements. The crushable 

foam and elastic-plastic model was tested during the simulation, and a modified crushable foam 

model was chosen. Restriction of Zong’s model is that it was only targeted for the Polar Class 3 

as he described. Therefore, a general use of Zong’s model is highly restricted for various 

applications. 
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2.7.4. Others 

 

Carney et al. (2006) conducted a numerical simulation between the space shuttle and ice block in 

circumstances of high strain-rate impact. A numerical model with failure criteria was developed 

to match experimental ballistic tests for high-velocity impact of ice. They used a simple isotropic 

elastic-plastic material model with a failure criteria and showed good agreement between 

simulation and experiments on the deformed shape of the projectile as well as time histories of 

the calculated and measured impact force, as shown in Figures 2-35 and 2-36. 

 

 

Figure 2-35: Computed contact force at 500ft/sec, with high speed images of a ballastic test 

(after Carney et al., 2006) 
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Figure 2-36: Test analysis comparison at 500ft/s, normal orientation (after Carney et al., 2006) 

 

Dorival et al. (2008) examined a lattice model to simulate ice-structure interaction. The behavior 

of ice is modeled by a two-dimensional lattice model, in which inhomogeneity with the possible 

failure of ice incorporated. The simulation presented a lattice model for the investigation of 

interaction forces between an ice sheet and rigid structure. According to the numerical results 

shown in Figures 2-37 and 2-38, such a lattice model seems to be able to capture the main 

interaction scenarios involved in ice sheet cracking. Results are promising, but so far they are not 

sufficient for incorporating the complete ice-structure interaction process, due to the complexity 

of ice material. 
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Figure 2-37: Contact force during the crushing at speed vice=0.1 m/s (after Dorival et al., 2008) 

 

   

    

Figure 2-38: Ice sheet damaged after crushing against the structure at speed vice = 0.1 m/s at time 

t=3.4236s/6.1677s/6.8994s/25s (after Dorival et al., 2008) 
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Chapter 3 Development of Methods for 

Investigation of Local Ice Loads Using 

Pressure Measurement Film 

 

 

3.1. Overview 

 

The pressure-area curve is the most common method to represent ice pressure data. There are 

two distinct types of pressure-area curves, which are named as a ‘Process’ pressure-area and 

‘Spatial’ pressure-area curve (Frederking, 1999). 

 

The process pressure-area curve describes the changes of average pressure across a nominal 

contact area and is determined from externally measured loads. In a typical example of a 

laboratory-scale ice crushing test, an ice specimen with a specific geometry which means that a 

nominal contact area is known, interacts against a known-shape surface. The ice loads are 

measured using some form of sensor. Typically, only the nominal contact area can be determined. 

From this data, the process pressure-area curve can be plotted. The process pressure-area curve 

describes how average pressure relates to a nominal contact area and is used to calculate the total 

collision loads in structures. 
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In contrast, the spatial pressure-area curve describes the changes of randomly distributed 

pressures within the contact area at a specific instant. A crushing event therefore, contains one 

process pressure-area curve and an infinite number (limited by measurement equipment) of 

spatial pressure-area curves. Daley (2007) suggested a connection between the two, with the 

terminus points of each spatial curve lying along the process curve.  The spatial curve is useful 

for determining design loads on local structures, such as plating and framing. 

 

However, determining the actual contact area at a given instant in time is not a simple task given 

the limitations of existing equipment because ice spalling events occur during an extremely short 

time. Studies have been done with varying levels of success using electronic devices (Frederking, 

2004) or pressure panels (Gagnon, 2008). However, limited resolution, restricted rates of data 

acquisition and difficulty of calibration inhibit the usability of such techniques. Furthermore, a 

real time contact area and pressure distribution during an ice impact event change rapidly, thus it 

is requiring a high-resolution and high rate-of-data-acquisition system. 

 

Chemical pressure measurement film (PMF) is a potentially attractive option. The films have 

micron-scale resolution and leave pressure patterns that remain upon completion of an impact 

event. High-resolution makes it possible to investigate the activated contact area and pressure 

distributions within the contact area at any particular time step of a collision event. Pressure 

distribution maps and spatial pressure-area curves are created using the pressure measurement 

films. Nominal process pressure-area curves are also created by the UTM data-acquisition 

system. 
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Image processing method and calibration process using pressure measurement film are discussed 

and described by Kim et al. (2012; 2013; 2014) and Ulan-Kvitberg (2012). In this section, a brief 

introduction of usage of pressure measurement film and verification of pixel size sensitivity are 

discussed. 

 

 

3.2. Specification of Pressure Measurement Film 

 

3.2.1. Pressure Measurement Film Specification 

 

The Fujifilm Prescale
®

 film was adopted in this study. Specifications of the pressure 

measurement film are shown in Table 3-1. 

 

Table 3-1: Specification of the pressure measurement film 

Physical Specifications 

Operating 

Temperature 

5°C - 35°C 

(41°F - 95°F) 

Spatial 

Resolution 
5 to 15 microns 

Humidity 

Range 

20% to 90% 

RH 
Substrate 

Polyethylene Terephthalate 

(PET) 

Accuracy 
±10% visual, ±2% utilizing optional optical measurement 

systems 
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There are seven types of the pressure measurement films; from ‘Extreme Low’ to ‘Super High’ 

categorized by a detectable pressure range for each film type. Prior to conducting a further study, 

pre-tests were performed to identify the most captured pressure ranges during an ice crushing test 

in a cold room to decide the suitable film types that will be used during this study. Results of 

preliminary tests using pressure measurement films were discussed by Ulan-Kvitberg (2012) and 

Kim et al., (2012; 2013; 2014). Pressure ranges between 2.5MPa to 50MPa were the most 

commonly detecting pressure range. Only a small portion of high pressure was captured (up to 

80-100 MPa). Based on these results, three types of pressure measurement films (low, medium, 

and high) were adopted in this study. Table 3-2 represents the pressure ranges of each film type. 

 

During the analysis, pressure values lower than 2.5MPa were regarded as zero-pressure due to 

the restriction of usage of the pressure measurement film. Ignored pressure value represents a 

potential source of error during the analysis process. 

 

Table 3-2: Pressure range by film type 

Film Type Pressure Range 

Low 2.5 – 10 MPa 

Medium 10 – 50 MPa 

High 50 – 130 MPa 

 

There are two types of the pressure measurement films, which are the ‘Mono-sheet’ and ‘Two-

sheet’ type. Structures of the pressure measurement film are illustrated in Figures 3-1 and 3-2. 
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Figure 3-1: Structures of the pressure measurement film (Mono-sheet type) 

 

 

Figure 3-2: Structures of the pressure measurement film (Two-sheet type) 

 

Mono-sheet type is composed of polyester base on which the color-developing material is coated, 

and the micro-encapsulated color forming material is layered on top. Two-sheet type is 

composed of two polyester bases. One is with a layer of the color developing material (C-Film) 

and the other is coated with a layer of micro-encapsulated color forming material (A-Film). 

When pressure is applied on the surface of the pressure measurement film, microcapsules are 

broken and the color forming material reacts with the color developing material (color turns as 

red as per the pressure applied). The microcapsules are designed to break depending on the 

magnitude of pressure, which means that the color density represents the specified pressure 

magnitude. When the color density gets darker, it indicates that a higher pressure is applied on 

the surface. The reaction mechanism is identical in both types of film. 
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3.3. Methodology of Spatial Pressure-Area Curves Plotting 

 

There is no universal method of plotting spatial pressure-area curves. Daley (2004) plotted 

spatial pressure-area curves using data from the ‘Polar Sea’ field trials by starting at the highest 

pressure region and expanding it is the contiguous areas to include lower pressure regions, 

around the starting location. 

 

If there is only one peak pressure location within a contact area, Daley’s method is very adequate 

and simple for plotting spatial pressure-area curves. However, if there are several peak points as 

shown in Figure 3-3, it is hard to choose any specific starting location in the given spatial 

pressure-area curve. In addition, since the starting high pressure area cannot be expanded 

continuously; therefore, this method cannot be applied. 

 

 

Figure 3-3: Scattering of peak pressure 
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In this study, two different methods for plotting spatial pressure-area curves, which are ‘Square-

Averaging Method (SAM)’ and ‘Contour-Averaging Method (CAM)’, are employed. A detailed 

description of each method is introduced by Kim et al. (2012; 2014). 

 

 

3.4. Verification of Resolution Sensitivity 

 

Prior to analysis of the tested pressure measurement film used in subsequent studies (using the 

25cm diameter ice sample), verification of the resolution (pixel size) sensitivity was performed 

to determine an optimal pixel size. Two main factors of plotting spatial pressure-area curves, the 

activated area and total force, were chosen for comparison purposes. In addition, the pressure 

distribution map was also chosen for further verification. For the analysis, test data of ice 

crushing test using the 10cm diameter ice cone were adopted. Test conditions and parameter 

were discussed earlier by Kim et al. (2012; 2013; 2014). 

 

3.4.1. Activated Area Comparison 

 

Figures 3-4 and 3-5 represent the activated area comparisons at each crushing step considering 

all five different resolutions (pixel size) available. The total activated area did not differ 

significantly according to varying resolution, except for step 3 of test 1, step 4 of test 4 in 

visualized figures.  A more in-depth comparison of the data is presented in Table 3-3 at test step 

3 of series of tests. 
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Figure 3-4: Comparison of activated area by pixel size (Test 1) 

 

 

Figure 3-5: Comparison of activated area by pixel size (Test 4) 
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0.25 mm is chosen as the optimal resolution from this calibration study. All other resolutions are 

compared to 0.25mm pixel size. '+' sign indicates that obtained results were over-estimated. In 

contrast, '-' sign indicates under-estimation compared to the optimized resolution. The designated 

range is set as ±5% through the analysis. Pressure specified by ‘bold-purple’ (in Table 3-3) 

represent that obtained value was out of range of the selected designated range. In addition, the 

designated range expanded as ±10% and marked in ‘bold-red’. 

 

In the results given in Table 3-3, 25% of the data fall outside of the ±5% designated range, while 

none of the data fall outside of the ±10% designated range in step 3. Tests 1 and 7 show three 

pixel sizes were outside the designated ±5% range while the rest shows acceptable range across 

most of the considered resolution. 

 

Table 3-3: Results of activated area: Step 3 

Resolution 

(mm) 
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 

5.0 
4275.0 

(-2.2) 

3550.0 

(+0.3) 

3225.0 

(+1.7) 

1675.0 

(-2.4) 

3675.0 

(-4.9) 

3550.0 

(-5.9) 

1900.0 

(-0.5) 

3025.0 

(-2.1) 

2.5 
4043.8 

(-7.5) 

3518.8 

(-0.6) 

3137.5 

(-1.1) 

1650.0 

(-3.8) 

3668.8 

(-5.1) 

3643.8 

(-3.4) 

1812.5 

(-5.1) 

3000.0 

(-2.9) 

1.0 
4113.0 

(-5.9) 

3482.0 

(-1.6) 

3157.0 

(-0.5) 

1699.0 

(-1.0) 

3686.0 

(-4.7) 

3619.0 

(-4.1) 

1802.0 

(-5.6) 

2979.0 

(-3.5) 

0.5 
4096.8 

(-6.3) 

3507.3 

(-0.9) 

3165.0 

(-0.2) 

1681.8 

(-2.0) 

3696.8 

(-4.4) 

3584.5 

(-5.0) 

1784.5 

(-6.6) 

2983.5 

(-3.4) 

0.25 4370.1 3539.4 3172.6 1715.9 3865.9 3773.3 1909.9 3088.6 

 

Overall, the percentage of 'out of designated range' for the ±5% range is decreased from 37.5% 

to 21.9% and 18.8% as a test step increased (see Figures 3-4 and 3-5). The sensitivity of 

resolution (pixel size) clearly decreased as the activated area increases. If the designated range is 



64 

 

expanded to ±10%, the effect of changing pixel size quickly diminishes to zero after the middle 

of the ice crushing test. 

 

3.4.2. Total Force Comparison 

 

Figures 3-6 and 3-7 shows a comparison of the total load at each step of tests 1 and 4, at the 

varying resolutions. In contrast to the comparison of the activated area, the calculated total force 

shows high sensitivity to resolution (pixel size). Again, comparative tables for each step offer a 

more detailed look at the data and are shown in Tables 3-4 to 3-5. 

 

   

Figure 3-6: Comparison of total force by pixel size (Test 1) 
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Figure 3-7: Comparison of total force by pixel size (Test 4) 

 

As shown in Table 3-4, all of the pixel sizes for tests 1, 2, 4, 7 and 8 fall outside the ±5% 

designated range. Expanding to ±10% designated range still leaves test 4 and 8 outside of the 

range. Only test 3 falls within the designed range of ±5% of all resolutions. Approximately, 78.1% 

of the results fall outside of the ±5% range and 43.8% fall outside of the ±10% range. Clearly, 

the calculated total load using the pressure measurement film is more sensitive to the pixel size 

than the activated area. 
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Table 3-4: Results of total force: Step 1 

Resolution 

(mm) 
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 

5.0 
18.62 

(+27.8) 

16.19 

(+8.8) 

7.66 

(+3.1) 

6.19 

(+12.3) 

4.81 

(+3.0) 

13.61 

(-0.1) 

6.21 

(+11.0) 

7.06 

(+20.7) 

2.5 
16.41 

(+12.6) 

16.00 

(+7.5) 

7.30 

(-1.8) 

6.78 

(+23.0) 

4.95 

(+5.9) 

13.91 

(+2.0) 

6.33 

(+13.0) 

7.02 

(+19.8) 

1.0 
15.94 

(+9.4) 

16.15 

(+8.5) 

7.49 

(+0.7) 

6.28 

(+13.9) 

5.11 

(+9.4) 

14.98 

(+9.9) 

5.99 

(+7.0) 

7.26 

(+24.0) 

0.5 
15.85 

(+8.8) 

16.07 

(+8.0) 

7.37 

(-0.8) 

6.35 

(+15.2) 

5.05 

(+8.0) 

15.01 

(+10.1) 

6.23 

(+11.4) 

7.24 

(+23.7) 

0.25 14.57 14.89 7.43 5.51 4.67 13.63 5.60 5.85 

 

No significant improvements of the resolution sensitivity in the case of the calculated total load 

were made in step 4 (shown in Table 3-5). 75.0% of the results fall outside the ±5% designed 

range, while 37.5% fall outside the ±10% range. Clearly, the calculated total load from the 

pressure measurement film was, in contrast to the activated area, highly sensitive to the chosen 

analyzed resolution. 

 

Table 3-5: Results of total force: Step 4 

Pixel size 

(mm) 
Test 3 Test 4 Test 5 Test 7 

5.0 
68.46 

(+4.2) 

26.75 

(+25.1) 

67.79 

(+6.3) 

57.33 

(+13.0) 

2.5 
66.15 

(+0.7) 

25.53 

(+19.3) 

67.37 

(+5.7) 

56.73 

(+11.8) 

1.0 
65.61 

(-0.1) 

24.82 

(+16.1) 

67.04 

(+5.1) 

54.27 

(+7.0) 

0.5 
65.58 

(-0.2) 

24.84 

(+16.1) 

67.06 

(+5.2) 

54.11 

(+6.7) 

0.25 65.70 21.39 63.76 50.73 
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3.4.3. Pressure Distribution Comparison 

 

Figure 3-8 shows the pressure distributions of test 1 from steps 1 to 3. Figure 3-8 (a) shows the 

original low-range pressure film scans for each step. Figure 3-8 (b) to (f) shows the pressure 

distribution for changing pixel size for each step. As it is expected, reducing pixel size increases 

fineness of the image and clarity of details. 5.0 mm pixel size does not give an adequate 

representation of the pressure pattern. 2.5 mm pixel size shows a significant improvement and 

the overall shape of the pressure pattern because distinguishable; however, the finer details are 

still not present. Clearly, improving the resolution improves the image, however, at a cost to 

computational efficiency. Figures 3-8 and 3-9 (and Figures in Appendix C.3) indicate that 1.0 

mm pixel size gives sufficient information of the detailed pressure patterns. 

 

 

Figure 3-8: Pressure distribution of Test 1-Step 1 
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Figure 3-9: Pressure distribution of Test 1-Step 2 

 

3.4.4. Result of Resolution Sensitivity 

 

According to pixel size analysis results, the activated area was not sensitive using coarse pixel 

size (as mentioned above). In contrast, it was confirmed that the total force and the plot of the 

pressure distribution map were highly sensitive to the resolution of the analysis to obtain a 

reasonable result. 

 

Therefore, analysis of further experiments using pressure measurement film will be applied to 

pixel size of 0.25mm, which is practically the smallest pixel size for the data analysis in this 

study. 
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3.5. Source of Error 

 

The greatest advantages of using pressure measurement film are that the pressure distribution 

and contact area at the interface between two objects can be measured without the help of 

complicated measuring equipment in laboratory-scale tests. 

 

However, using the pressure measurement film also has the following problems. 

 

1) In order to measure the range of all possible pressures during the experiment, a variety of film 

types should be used. It is evident that the calibration for each film type requires a significant 

amount of time and effort. In addition, the number of increased data size after experiments, that 

need to be processed, is also a matter of concern. 

 

2) Three different kinds of film type were applied in this study, and the lowest measurable 

pressure range was the value of 2.5MPa. In other words, even the pressure value below 2.5MPa 

can be captured during experiment; all the pressure values equal or less than 2.5MPa were 

considered as ‘zero’ due to the lack of the proper film type. Accordingly, such a loss of data can 

affect analysis results cannot be overlooked. Therefore, one needs to determine the effects of 

these practical data losses through the application of various film types in future studies. 

 

3) Due to the nature of the pressure measurement film, all the contacts, which occurred before 

the replacement of film will be remained (obtained data might include overlapped pressure 
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pattern/ice pressure) on the surface of the film. Accumulation of pattern is also one of the 

disadvantages that need to be considered. 

 

The advantage of using electronic equipment is the possibility of measuring of the contact area 

and pressure changes in a real time. On the other hand, the pressure measurement film should be 

replaced continuously in order to obtain a smooth pressure pattern or contact area. The concept 

of regarding this issue, accumulation of the contact area and load/pressure, was well described by 

Kim et al. (2012; 2014) as ‘Active vs. Activated’ area. 

 

However, there are obvious limitations of unlimited use of pressure measurement film, according 

to the time issues (replacement of pressure measurement film too occasionally will interrupt a 

continuous test process) and financial issues (pressure measurement film is a one-time use, so 

that requires ongoing purchase). 

 

4) Accumulation of the contact area and the load/pressure at a particular moment means that the 

analyzed results are likely to be exaggerated. 

 

According to the experimental results published earlier by Kim et al. (2012), the contact area was 

uniform in case of low strain-rate experiments. Therefore, the source of error by using pressure 

measurement film was not significant in these studies. However, in case of high strain-rate 

experiments, it had a great effect due to the frequent spalling events (or flaking) and these 

indicated contact area in pressure measurement film to be relatively larger compared to the actual 
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contact area observed by visual inspection. In this case, the measured load also tended to be 

higher than the actual load applied at a particular instant. 

 

5) Overall, it is difficult to state that using the pressure measurement film is completely novel 

and proved method to replace the earlier complex electronic measurement equipment because of 

the issues discussed above. However, it is an obvious advantage that gives the possibility of 

evaluating the contact area and load/pressure in a simple manner, instead of using complex 

instrumentation. Thus, there is a need to be aware of the facts that are mentioned above, while 

evaluating the experimental results obtained in this study by the pressure measurement film in 

this study. 
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Chapter 4 Ice Crushing Pressure on Non-

Planar Concave Surfaces: Experiments 

 

 

4.1. Overview 

 

Ice-strengthened ships can encounter 'overload' conditions (rather than design load conditions) 

while navigating the Arctic region during their regular operational period. In this case, ship 

structures may be subjected to ice loads that exceeds the initial design loads. As a result, ship 

structures can be stressed beyond an elastic state and experience plastic deformation that was not 

intended. Occurrence of plastic deformation due to unexpected overload conditions is not the 

part of the present design condition and the most of the existing research and test data are 

available only for elastic conditions. Therefore, existing test data set are not sufficient and 

suitable to investigate ice-structure interaction scenarios considering plastic deformation state. 

 

In addition, determination of ice loads and deformation that occur on locations other than the 

ship hull has become necessary for ships navigating the Arctic. For example, broken ice pieces 

may pass around the ship’s propulsion system and impact the structures around the podded 

propulsors in ice-strengthened ship.  Consequently, the structure can experience larger than 

expected ice impact loads. 
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In both cases mentioned above, ice will be impacting a convex or concave shape surfaces. There 

is some evidence that such structural shapes may increase ice loads (pressures) by increasing the 

confinement of the already extruded ice during impact. The purpose of this study is to investigate 

ice impact loads with such concave-shaped surfaces to determine whether the structural shape of 

the impacting surfaces has effects on the actual ice loads and pressures. A new test apparatus was 

designed to examine the characteristics of ice-structure interaction on non-planar surfaces. 

 

The actual contact areas and magnitudes of ice loads/pressures during ice-structure interaction 

tests on concave-shaped surfaces were examined, using the pressure measurement film. In 

addition, force and displacement data obtained from the universal testing machine (UTM) was 

also utilized to measure the ‘global’ behavior during ice-structure interaction. In addition, it was 

also intended to determine the effects of indenter shapes on the contact pressures and areas. The 

analyzed indenter shape effects will be used to estimate ice loads or pressure on the different 

indenter shapes in this study. 

 

 

4.2. Test Condition 

 

Table 4-1 shows test conditions used in this study. Shape/angle of test indenter, shape/angle of 

ice sample and test speed were considered as controlled parameter. Additionally, stepped 

crushing method was adopted to obtain spatial pressure-area curves, pressure distribution and 

activated contact area using the pressure measurement film suggested by Kim et al. (2012; 2014); 

Ulan-Kvitberg (2012); and  Kim and Daley (2013-a; 2013-b). 
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Table 4-1: Test conditions 

Test 

No. 

Shape/Angle of 

indenter (°) 

Shape/Angle of 

ice sample (°) 

Test speed 

(mm/sec) 

Crushing 

method 

No. of 

steps 

1 Wedge 10 Cone 35 1.0 Stepped 4 

2 Wedge 10 Cone 35 100 Stepped 4 

3 Wedge 10 Cone 25 1.0 Stepped 3 

4 Wedge 10 Cone 25 100 Stepped 3 

5 Wedge 30 Cylindrical 0 1.0 Stepped 5 

6 Wedge 30 Cylindrical 0 100 Stepped 5 

7 Wedge 30 Cylindrical 0 1.0 Straight - 

8 Wedge 30 Cylindrical 0 100 Straight - 

9 Wedge 10 Cylindrical 0 1.0 Stepped 5 

10 Wedge 10 Cylindrical 0 100 Stepped 5 

11 Wedge 10 Cylindrical 0 1.0 Straight - 

12 Wedge 10 Cylindrical 0 100 Straight - 

13 Wedge 10 Cone 35 1.0 Straight - 

14 Wedge 10 Cone 35 100 Straight - 

15 Wedge 10 Cone 25 1.0 Straight - 

16 Wedge 10 Cone 25 100 Straight - 

17 Wedge 20 Cone 35 1.0 Stepped 3 

18 Wedge 20 Cone 35 100 Stepped 3 

19 Wedge 20 Cone 35 1.0 Straight - 

20 Wedge 20 Cone 35 100 Straight - 

21 Wedge 20 Cylindrical 0 1.0 Stepped 5 

22 Wedge 20 Cylindrical 0 100 Stepped 5 

23 Wedge 20 Cylindrical 0 1.0 Straight - 

24 Wedge 20 Cylindrical 0 100 Straight - 

25 Conical 10 Cone 35 1.0 Straight - 

26 Conical 10 Cone 35 100 Straight - 

27 Conical 10 Cone 25 1.0 Straight - 

28 Conical 10 Cone 25 100 Straight - 

29 Conical 10 Cone 35 1.0 Straight - 

30 Flat Cone 25 1.0 Straight - 

31 Flat Cone 25 1.0 Straight - 

32 Flat Cone 25 100 Straight - 

33 Flat Cone 25 100 Straight - 

34 Flat Cone 25 100 Straight - 

35 Flat Cone 25 100 Straight - 

36 Flat Cone 35 1.0 Straight - 

37 Flat Cone 35 1.0 Straight - 

38 Flat Cone 35 1.0 Straight - 

39 Flat Cone 35 100 Straight - 

40 Flat Cone 35 100 Straight - 

41 Flat Cone 35 100 Straight - 
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4.3. Test Scenario 

 

In this study, a series of tests were conducted to evaluate the behavior of ice-structure interaction, 

on concave-shaped surfaces. The tests were carried out considering two types of scenarios; 1) ice 

indentation on rigid ‘wedge’ shaped indenters and 2) ice indentation on rigid ‘conical’ shaped 

indenters, which represented ice loads caused by permanent deformation. 

 

4.3.1. Wedge Shape Indenter 

 

In the first scenario, the study of ice-structure interaction on concave shapes, representative of 

locations other than the main hull, was represented by ‘wedge’ shaped indenter. In this case, the 

body of podded propulsor was chosen as the target structure for the wedge shape. Figure 4-1 

shows an actual picture of podded propulsor, which represents the assumed interaction surface 

used in this study. 

 

 

Figure 4-1: Picture of podded propulsor 
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Test apparatus was simplified as a wedge shape for the simplicity of the test. The wedge-shaped 

indenters, with two different angles (10° and 30°), shown in Figure 4-2 were designed and 

fabricated for this part of the study. 30° wedge-shaped indenter was modified into 20° wedge 

(after the tests) to extend the range of wedge angle variation. Figure 4-3 shows a detailed 

projection of the wedge-shaped indenters. 

 

   

Figure 4-2: Wedge shape indenters (left: 10° wedge, right: 30° wedge) 

 

 

Figure 4-3: Drawing of wedge shape indenters (left: 10° wedge, right: 30° wedge) 
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4.3.2. Conical Shape Indenter 

 

In the second scenarios, the study of ice-structure interaction on concave shapes, representative 

of deformed plating on the main hull, was modeled as ‘conical’ shaped indenter. The concave 

shape of the ship plating may be formed due to any unexpected overload applied on initially flat 

(or nearly flat) ship’s side structure, and remain as permanently deformed profile. Considering 

the plastic deformation in the ship structural side will possibly change the energy level during a 

collision, and this may cause extra ice loads on the structures (Daley and Kim, 2010). Figure 4-4 

shows an example of dented structure on the hull of a ship. 

 

 

Figure 4-4: Picture of dented structure 

 

Test apparatus was simplified as conical shape for the simplicity of the experiment. The conical-

shaped indenter with 10°, shown in Figure 4-5, was designed for this part of study. Figure 4-6 

shows a detailed profile of a 10° conical-shaped indenter. 
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Figure 4-5: Conical shape indenter (10° conical) 

 

 

Figure 4-6: Drawing of conical-shaped indenter (10° conical) 

 

 

4.4. Test Setup 

 

The overall preparation method (see Figure 4-7) of ice sample is similar to a 10cm diameter ice 

sample. To increase the size of the ice sample up to 25cm diameter, ice preparation procedures 

were followed by utilizing the method proposed by Bruneau and Dillenburg (2012). This 

manufacturing method is used in STePS
2
 project. The procedure to prepare ice sample is well 
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presented in this study. Normally, three days are required for the preparation of the test (two days 

for ice sample preparation and one day for ice shaving into a cone shape). 

 

  

(a) De-aeration system 

 

(b) Ice sample growing fridge 

Figure 4-7: System of ice sample preparation 

 

Test setup used in this study is illustrated in Figure 4-8. Wedge/conical shape indenter was 

attached to the top part (fixed side during the test), and ice sample (cone ice/cylindrical ice) was 

attached at the bottom (moving with a certain velocity control) of universal testing machine. In 
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addition, the pressure measurement film was attached to the face of the wedge indenter during 

the test. The pressure measurement films were utilized to obtain an activated contact area and 

pressure distribution at each step. Figure 4-9 represents a test setup used in a cold room with 10° 

wedge-shaped indenter. 

 

 

Figure 4-8: Illustration of test setup 

 

 

(a)  Photo of test setup (35° ice cone, 10° wedge-shaped indenter) 
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(b)  Photo of test setup (Cylindrical ice sample, 30° wedge-shaped indenter) 

Figure 4-10: Photo of test setup 

 

 

4.5. Test Results 

 

4.5.1. Definition of Contact Area 

 

Understanding the external load, contact area and the overlapped area between the two 

interacting bodies, are essential to plot process pressure-area curves. The external loads can be 

obtained by the data-acquisition system of universal testing machine during the experiments. In 

addition, the contact area is easily determined through the initial geometry of the ice sample. In 

the case of flat indenter tests, simply the area overlapped between the ice sample and the indenter 

in any position during crushing  is the contact area. 
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However, two different types of contact areas may be considered (exist) in the case of concave-

shaped indenters, which are used in this study. First, a direct (overlapped) contact area between 

the ice sample and the concave-shaped indenter (Anominal) can be considered as the contact area, 

which is similar to flat indenter case. Second, a projected contact surface area in normal direction 

(Aproject) also can be used as a representative contact area. Concept of both contact areas are 

illustrated in Figure 4-10. 

 

The contact area must be determined to plot process pressure-area curves using load data 

obtained through experiments. Daley (1999) defined the projected area (Aproject) as the contact 

area to derive the equations followed by the energy-based method. The projected area can be 

applied as the contact area if considered interactions between two bodies in respect of the global 

viewpoint. Therefore, the projected area was used as representative contact area as the same 

manner in this study to plot process pressure-area curves. 

 

 

Figure 4-10: Illustration of contact area (Anominal vs. Aproject) 
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A representative contact area was determined as projected area; however, there were practically 

no significant differences between the two defined contact areas. Comparison of nominal and 

projected contact areas between each test parameter (followed by the shape/angle of indenter and 

the shape/angle of the ice sample) were shown in Figure 4-11. As shown in Table 4-2, the only 

differences between two different defined contact areas were about 1-2% in total. In other words, 

the results will not be significantly affected whether selecting any contact area during an analysis. 

 

However, the case, where the test was done using a cylindrical ice sample against 30° wedge 

angle showed up to 15% difference between the nominal and projected area. Except for this case, 

the results did not show significant effect whatever contact area is used. 

 

 

(a) Comparison of Anom vs. Aproj (Cylindrical ice, 10° wedge indenter) 
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(b) Comparison of Anom vs. Aproj (Cylindrical ice, 20° wedge indenter) 

 

 

(c) Comparison of Anom vs. Aproj (Cylindrical ice, 30° wedge indenter) 

Figure 4-11: Comparison of nominal and projected contact area 
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Table 4-2: Comparison of nominal and projected contact area 

Cylindrical ice, 10° wedge  Cylindrical ice, 20° wedge 

Disp. 

(mm) 

Anom 

(mm
2
) 

Aproj 

(mm
2
) 

Ratio 

(Anon/Aproj) 
 

Disp. 

(mm) 

Anom 

(mm
2
) 

Aproj 

(mm
2
) 

Ratio 

(Anon/Aproj) 

5 6260 6160 1.02  5 2240 2120 1.06 

10 17020 16760 1.02  10 6240 5860 1.06 

15 30000 29540 1.02  15 1260 0580 1.06 

20 44080 43420 1.02  20 17020 6000 1.06 

22 49840 49080 1.02  25 23320 1900 1.06 

- - - -  30 30020 8220 1.06 

- - - -  35 37020 34800 1.06 

- - - -  40 44220 41560 1.06 

- - - -  45 50040 47020 1.06 

- - - -  45.5 52240 49080 1.06 

 

Cylindrical ice, 30° wedge  25° ice cone, 10° wedge 

Disp. 

(mm) 

Anom 

(mm
2
) 

Aproj 

(mm
2
) 

Ratio 

(Anon/Aproj) 
 

Disp. 

(mm) 

Anom 

(mm
2
) 

Aproj 

(mm
2
) 

Ratio 

(Anon/Aproj) 

5 1240 1060 1.17  5 680 660 1.03 

10 3440 2980 1.15  10 2720 2660 1.02 

15 6260 5420 1.15  15 6100 6000 1.02 

20 9520 8240 1.16  20 10840 10680 1.01 

25 13140 11380 1.15  25 16960 16680 1.02 

30 17060 14780 1.15  30 24400 24040 1.01 

35 21240 18400 1.15  35 33220 32720 1.02 

45 30180 26140 1.15  36.3 35740 35200 1.02 

55 39700 34380 1.15  - - - - 

65 49540 42900 1.15  - - - - 

69 53540 46360 1.15  - - - - 

72.15 56680 49100 1.15  - - - - 
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35° ice cone, 10° wedge  35° ice cone, 20° wedge 

Disp. 

(mm) 

Anom 

(mm
2
) 

Aproj 

(mm
2
) 

Ratio 

(Anon/Aproj) 
 

Disp. 

(mm) 

Anom 

(mm
2
) 

Aproj 

(mm
2
) 

Ratio 

(Anon/Aproj) 

5 240 240 1.00  5 440 420 1.05 

10 940 940 1.00  10 1780 1680 1.06 

15 2120 2100 1.01  15 4020 3780 1.06 

20 3780 3720 1.02  20 7140 6700 1.07 

30 8500 8380 1.01  25 11160 10480 1.06 

40 15120 14900 1.01  30 16060 15100 1.06 

50 23640 23280 1.02  35 21880 20540 1.07 

60 34040 33520 1.02  40 28560 26840 1.06 

65.5 40560 39940 1.02  41.5 30760 28880 1.07 

 

25° ice cone, 10° conical  35° ice cone, 10° conical 

Disp. 

(mm) 

Anom 

(mm
2
) 

Aproj 

(mm
2
) 

Ratio 

(Anon/Aproj

) 

 
Disp. 

(mm) 

Anom 

(mm
2
) 

Aproj 

(mm
2
) 

Ratio 

(Anon/Aproj) 

5 949 940 1.01  5 292 290 1.01 

10 3790 3730 1.02  10 1164 1140 1.02 

15 8522 8380 1.02  15 2617 2570 1.02 

20 15145 14900 1.02  20 4652 4580 1.02 

25 23660 23280 1.02  30 10463 10300 1.02 

30 34066 33530 1.02  40 18595 18310 1.02 

35 46363 45630 1.02  50 29056 2800 1.02 

36 49049 48280 1.02  55 35157 34610 1.02 

- - - -  60 41838 41190 1.02 

- - - -  65 49101 48340 1.02 
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4.5.2. Crushed Ice Sample 

 

Figure 4-12 shows the crushed section (top view) of the ice samples after the last step of tests. 

 

 

Test 1 (35° ice cone,  

10° wedge, 1mm/s) 

 

Test 2 (35° ice cone,  

10° wedge, 100mm/s) 

 

Test 3 (25° ice cone,  

10° wedge, 1mm/s) 

 

Test 4 (25° ice cone,  

10° wedge, 100mm/s) 

 

Test 7 (Cylindrical ice,  

30° wedge, 1mm/s) 

 

Test 8 (Cylindrical ice,  

30° wedge, 100mm/s) 

 

Test 11 (Cylindrical ice,  

10° wedge, 1mm/s) 

 

Test 12 (Cylindrical ice,  

10° wedge, 100mm/s) 

 

Test 13 (35° ice cone,  

10° wedge, 1mm/s) 
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Test 14 (35° ice cone,  

10° wedge, 100mm/s) 

 

Test 15 (25° ice cone,  

10° wedge, 1mm/s) 

 

Test 16 (25° ice cone, 

10° wedge, 100mm/s) 

 

Test 24 (25° ice cone,  

10° conical, 1mm/s) 

 

Test 25 (25° ice cone,  

10° conical, 100mm/s) 

 

Test 26 (35° ice cone,  

10° conical, 1mm/s) 

 

Test 27 (35° ice cone,  

10° conical, 100mm/s) 

Figure 4-12: Crushed ice sample after tests 
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4.5.3. Section of ice sample 

 

Figure 4-13 shows a section of the ice sample after the tests. As shown in Figure 4-13, high 

pressure zone (HPZ) which is marked as a red zone appeared clearly even at the low test speeds 

(Test 1 & 3). Blue zone represents the realistic contact area, including pulverized ice during the 

tests. It is different when compared with previous test results done by Kim and Daley (2013-a; 

2013-b). They reported that the ice test results performed by the low test speed (1mm/s) did not 

show (or merely zero percent) HPZ after the tests. Appearance of HPZ is due to the effects of 

indenter shape (structural shape). 

 

 

 

 

Figure 4-13: Section of ice sample appearing a HPZ (Test 1 & 3) 
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4.5.4. Force-Displacement History/Process Pressure-Area Curve/Compressive 

Ice Strength Comparison 

 

Force-displacement history, process pressure-area curve and compressive ice strength depending 

on the test speed and the cone angle/cylindrical ice were compared after each test condition. 

 

4.5.4.1. 25° Ice cone, 1mm/s Test Speed 

 

Figure 4-14 shows the force-displacement history of 25° ice cone with 1mm/s test speed. As 

shown in Figure 4-14, 10° conical indenter test showed the highest ice loads compared to the flat 

and 10° wedge indenter tests. On the other hand, 10° wedge and flat indenter showed a similar 

ice load level. 

 

 

Figure 4-14: Force-displacement history (25° ice cone, 1mm/s test speed) 
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Figure 4-15 shows process pressure-area curves of 25° ice cone at 1mm/s test speed. Shown in 

earlier results of force-displacement history, 10° conical indenter showed the highest pressure in 

overall contact area. Comparison between the flat and 10° wedge indenter tests showed that 

pressure range of flat indenter was higher even the force-displacement history was similar 

because of the differences in indenter shape. As discussed, the contact area at the same 

displacement is larger in the case of conical and wedge indenter compared to flat indenter. 

 

 

Figure 4-15: Process pressure-area curve (25° ice cone, 1mm/s test speed) 

 

Contact areas of the indenter are shown in Figures 4-16 and 4-17.  As mentioned earlier, the 

contact area is relatively larger in the case of the wedge or conical indenter compared to flat 

indenter as displacement increases. This increment in contact area will result to lowering the 

nominal pressure (Kim and Daley, 2013-b). 
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Figure 4-16: Contact area comparison (25° ice cone) 

 

 

Figure 4-17: Contact area comparison (35° ice cone) 
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Additionally, compressive ice strength was compared for each test. Dillenberg (2012) suggested 

that 1) sum up total energy up to a certain displacement and 2) dividing by crushed volume to 

calculate the compressive ice strength of ice sample. Identical methodology was applied in this 

study. 

 

Higher compressive ice strength values in y-axis means that more energy requires to crush the 

same volume of ice. It can be considered that the larger ice loads were applied against indenter. 

Therefore, the tendency of compressive ice strength is expected to show somewhat similar trend 

of the force-displacement history. Figure 4-18 shows the compressive ice strength comparison of 

25° ice cone with 1mm/s test speed. As mentioned, 10° conical indenter case showed a 

significantly higher compressive strength level compared to two other cases. 

 

 

Figure 4-18: Compressive ice strength (25° ice cone, 1mm/s test speed) 
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4.5.4.2. 25° Ice Cone, 100mm/s Test Speed 

 

Figure 4-19 shows the force-displacement history of 25° ice cone with 100mm/s test speed. 10° 

conical indenter test showed significantly higher ice loads compared to the flat and 10° wedge 

indenter test as shown in the previous 1mm/s test speed case. On the other hand, measured ice 

loads against 10° wedge represented relatively higher value than that for the flat indenter. 

 

 

Figure 4-19: Force-displacement history (25° ice cone, 100mm/s test speed) 

 

A similar tendency was observed in process pressure-area curves. 10° conical indenter 

represented the highest pressure level through the contact area. In addition, 10° wedge indenter 

test showed a relatively high pressure level at the first period of the area compared to flat 
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indenter.  However, both curves are observed to be similar after a specific point as shown in 

Figure 4-20. 

 

Figure 4-20: Process pressure-area curve (25° ice cone, 100mm/s test speed) 

 

Figure 4-21 shows the results of compressive ice strength tests with 25° ice cone at 100mm/s test 

speed. As can be expected from the force-displacement history, 10° conical indenter test shows a 

large value of compressive ice strength and 10° wedge indenter also shown to higher than a flat 

indenter. 
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Figure 4-21: Compressive ice strength (25° ice cone, 100mm/s test speed) 

 

4.5.4.3. Cylindrical Ice, 1mm/s Test Speed 

 

Figure 4-22 shows the force-displacement history of cylindrical ice sample at 1mm/s test speed. 

As shown in the results, magnitude of ice loads was similar regardless of indenter angle. Note 

that the peak load occurred when the cylindrical ice reached the maximum penetration depth of 

each indenter, as represented in Figure 4-22 (as a dotted line). 
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Figure 4-22: Force-displacement history (cylindrical ice, 1mm/s test speed) 

 

Figure 4-23 indicates the maximum penetration depth of the indenter at different wedge angles. 

In the case of 10° & 20° wedge indenters, the maximum penetration depth and the timing of the 

peak ice load was almost identical. Otherwise, in the case of 30° wedge indenter, the peak ice 

load occurred in the early (~93%) position, but still very close to the maximum penetration depth. 

 

 

(a) 10° wedge indenter 
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(b) 20° wedge indenter 

 

 

(c) 30° wedge indenter 

Figure 4-23: Comparison of max. penetration depth at each wedge indenter angle  

(10°, 20° and 30° wedge indenter) 

 

Figure 4-24 shows the process pressure-area curve of cylindrical ice at 1mm/s test speed. As 

shown in force-displacement history, appreciable ice load dependency on the indenter angle was 

not observed. However, the overall contact area of 30° wedge indenter showed the relatively 

lower value according to the shape effects. As a result, larger ice pressure values were observed 

using 30° wedge indenter. Otherwise, the differences between the 10° and 20° wedge indenter 

were not significant. 
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Figure 4-24: Process pressure-area curve (cylindrical ice, 1mm/s test speed) 

 

Figure 4-25 represents a comparison of the contact area at a different indenter angle. As 

discussed, 30° wedge indenter showed the smallest contact area compared to 10° and 20° wedge 

indenters. 
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Figure 4-25: Comparison of contact area at different wedge indenter angle 

 

Figure 4-26 shows the results of the compressive ice strength in case of cylindrical ice with 

100mm/s test speed. Similar to pressure-area curve results, 30° wedge indenter test displayed a 

relatively larger compressive ice strength because of smaller contact areas (smaller crushed 

volume of ice) at the same displacement. 

 

However, more important are the result of the magnitudes of compressive ice strengths using 

cylindrical ice. In a previous study, the average range of compressive ice strength was 5 - 25MPa 

using cone-shaped ice (Kim et al, 2012; Kim and Daley, 2013a; 2013b).  In contrast, the results 

of cylindrical ice varied between 0.1 - 0.5MPa ranges, which is about 1/50 size of the results 

compared to the cone-shaped ice case. 
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Figure 4-26: Compressive ice strength (cylindrical ice, 1mm/s test speed) 

 

 

4.6. Pressure Measurement Film 

 

4.6.1. Pressure Distribution Map: Cone-Shaped Ice Sample 

 

Figure 4-27 shows the obtained pressure distribution at each test using the pressure measurement 

film. A total of 10 tests (6 tests: cone ice, 4 tests: cylindrical ice) was chosen to measure the 

activated contact area and pressure distribution (pattern) at designated step. Two characteristics 

of ice behavior were observed through the measured pressure pattern. 
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First, formation of pressure pattern against wedge-shaped indenter appeared in the normal 

direction of the indenter’s centerline. In addition, shape of obtained pressure patterns were 

almost identical compared to the overlapped pattern between the cone-shaped ice and wedge 

indenter. However, more uniform pressure patterns were observed at low test speed (1mm/s) and 

randomized (and wide) pressure patterns were formed at high test speed (100mm/s). 

  

Second, high pressure zones appeared even when the test speed was low, which was contrary to 

the conventional flat indenter test results. As observed by Kim and Daley (2013-a; 2013-b), 

nearly 10 - 20MPa average pressure was uniformly distributed within a circular contact area 

using cone-shaped ice sample against flat indenter. However, pressure range over the 40 - 

80MPa was appeared clearly as ‘line-like’ shape against wedge-shaped indenter as shown in 

Figures 4-27 and 4-28 (Daley, 1992; Tuhkuri, 1995). 

 

 

Figure 4-27: Pressure distribution map of Test 1  

(10° wedge indenter, 35° ice cone, 1mm/s test speed) 
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Figure 4-28: Pressure distribution map of Test 4  

(10° wedge indenter, 25° ice cone, 100mm/s test speed) 

 

4.6.2. Pressure Distribution Map: Cylindrical Ice Sample 

 

In the case of cylindrical ice tests, the first contact location began not at the center of the wedge 

indenter, but at the side, unlike the case of cone-shaped tests. Figures 4-29 and 4-30 indicated 

that pressure patterns developed from the outer to inner as ice progressed. Speed of test did not 

have significant effects to form the pressure pattern during the tests using the cylindrical ice. 

 

 

Figure 4-29: Pressure distribution map of test 5  

(30° wedge, cylindrical ice, 1mm/s test speed) 



104 

 

Tests 9 and 10 shows the measured results against the 10° wedge indenter, and the cylindrical ice; 

it reached at the maximum depth of the indenter at step 2 (designed displacement of step 2 was 

30mm). In this case, obtained pressure patterns on both indenter sides were opposite to the 

wedge-centerline as shown in Figures 4-29 and 4-30. More randomized pressure patterns were 

observed after step 2 by spalling events. 

 

 

Figure 4-30: Pressure distribution map of test 9  

(10° wedge, cylindrical ice, 1mm/s test speed) 

 

 

4.7. Pressure Pattern Examination 

 

Width and height of each test step were evaluated based on obtained pressure patterns by 

pressure measurement films. It may become applicable as an useful data to develop an ice load 

model to be used for the finite element analysis. Figure 4-31 represents the criteria of the width 

and height of each pressure pattern. 
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Figure 4-31: Criteria of the width and height of pressure pattern 

 

Table 4-3 summarized the results of the width and height measurement after each test. It is 

remarkable that the width of each test case showed almost identical value, regardless of cone 

angles and test speeds. On the other hand, height of pressure pattern showed differences 

according to the test speed. Wider height (up to 70 - 80%) was observed in the case of high test 

speeds compared to low test speed due to more randomized pressure patterns occurring at high 

test speed; as discussed in the comparison of pressure pattern, in the previous section. 
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Table 4-3: Comparison of width and height of pressure pattern 

Test 1  

(10° wedge, 35° ice cone, 1mm/s) 
 

Test 2  

(10° wedge, 35° ice cone, 100mm/s) 

Step No. Width (mm) Height (mm)  Step No. Width (mm) Height (mm) 

1 54.5 30.0  1 59.5 35.0 

2 101.0 52.5  2 105.5 83.0 

3 157.5 50.5  3 130.0 85.5 

4 203.0 69.0  4 213.0 123.0 

 

Test 3  

(20° wedge, 35° ice cone, 1mm/s) 
 

Test 4  

(20° wedge, 35° ice cone, 100mm/s) 

Step No. Width (mm) Height (mm)  Step No. Width (mm) Height (mm) 

1 55.0 39.0  1 55.0 35.5 

2 108.0 51.5  2 120.0 61.5 

3 173.5 63.0  3 180.5 104.0 

 

Test 17  

(20° wedge, 35° ice cone, 1mm/s) 
 

Test 18  

(20° wedge, 35° ice cone, 100mm/s) 

Step No. Width (mm) Height (mm)  Step No. Width (mm) Height (mm) 

1 52.5 26.0  1 43.0 23.5 

2 111.5 45.5  2 98.5 48.0 

3 197.5 70.5  3 157.0 85.5 
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4.8. Spatial Pressure-Area Curve 

 

Figures 4-32 to 4-35 show the spatial pressure-area curves for each test. Process pressure-area 

curves were plotted as ‘black-dotted’ line and spatial pressure-area curves for each step were 

plotted as ‘colored-dotted’ line. The curve labeled as ‘PPA (Process Pressure-Area) trend’ on the 

figures are the connection of the end points of spatial pressure-area curves at each step.  Plotting 

the ‘PPA trend’ can be useful to understand the tendency of process pressure-area curve, when 

the information of an external load data or the contact geometry (nominal contact area) of two 

objects is not available. Daley (2004; 2007) examined the ‘Polar Sea’ trial data in this manner. 

 

Kim and Daley (2012) suggested two different methods to plot the spatial pressure-area curves. 

In this study, the ‘Contour-averaging method’ was adopted for convenience. 

 

As shown in Figures 4-32 and 4-33, overall trend of ‘PPA’ curves tended to decrease in the case 

of the cone-shaped ice tests. In a similar manner, PPA trend was analyzed using cone-shaped ice 

tests against flat indenter, both increasing and decreasing PPA were observed. However, 

decreasing trends were dominated in the case of the wedge indenter test. 



108 

 

 

Figure 4-32: Spatial pressure-area curve of Test 1  

(10° wedge, 35° ice cone, 1mm/s test speed) 

 

 

Figure 4-33: Spatial pressure-area curve of Test 17  

(20° wedge, 35° ice cone, 1mm/s test speed) 
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The result of PPA trend using cylindrical ice tends to show more complexity as indicated in 

Figures 4-34 and 4-35. As confirmed by the pressure pattern in previous, the contact area was 

reduced extremely as test steps progressed in the case of cylindrical ice. These effects tended to 

decrease the contact area as test step progressed, and end points of each step showed a more 

complex pattern. These direction of arrows of PPA trend goes in a backward in most cases. 

However, the overall average pressures kept on decreasing. 

 

 

Figure 4-34: Spatial pressure-area curve of Test 5  

(30° wedge, cylindrical ice, 1mm/s test speed) 
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Figure 4-35: Spatial pressure-area curve of Test 9  

(10° wedge, cylindrical ice, 1mm/s test speed) 
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Chapter 5 Experimental Data Analysis 

 

 

5.1 Contact Area/Pressure Comparison: Flat vs. Concave 

Shape Indenter 

 

For the evaluation of the effect of indenter shapes, the behavior of: 1) nominal vs. activated 

contact area and 2) nominal vs. activated pressure were compared at each test. The nominal 

contact area can be directly calculated by the shape of the prepared ice sample. In addition, 

obtained force data divided by nominal contact area is simply the nominal pressure. Activated 

contact area and activated pressure can be obtained using the pressure measurement film. 

 

Table 5-1 shows the results of an earlier study using the flat indenter (Kim and Daley, 2012). 

The ratio between the activated and nominal contact area was about 60%. The value, 60% means 

that the measured value of activated area was less about 60% of the nominal contact area. The 

nominal contact area was larger than the activated contact area. 

 

In contrast, comparison of the pressure showed the opposite trend. The percentage of activated 

pressure and the nominal pressure was about 500-600%, which means that the measured 

activated pressure was about 5-6 times higher (in average) compared to the nominal pressures. 

Less than 10MPa was the most approximate value in nominal pressures. However, the 10 - 
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30MPa pressure values were appeared in the activated pressure results. The difference was 

clearly shown when the test speed was high (100mm/s). 

 

Table 5-1: Results of using 10cm diameter ice cone test against flat indenter 

(a) Test 1 (30° ice cone, 100mm/s test speed) 

Step no. 

(Disp.) 

Nominal 

contact area 

(mm
2
) 

Nominal 

pressure 

(MPa) 

Activated 

contact area 

(mm
2
) 

Activated 

pressure 

(MPa) 

Aact./Anom. 

(%) 

Pact./Pnom. 

(%) 

1 (9mm) 763.41 3.82 467.25 31.18 61.21 816.76 

2 (18mm) 3053.63 8.82 1924.50 16.90 63.02 191.65 

3 (27mm) 6870.67 2.06 4370.06 9.59 63.60 465.01 

    Avg. 62.61 491.14 

 

(b) Test 3 (50° ice cone, 1mm/s test speed) 

Step no. 

(Disp.) 

Nominal 

contact area 

(mm
2
) 

Nominal 

pressure 

(MPa) 

Activated 

contact area 

(mm
2
) 

Activated 

pressure 

(MPa) 

Aact./Anom. 

(%) 

Pact./Pnom. 

(%) 

1 (15mm) 497.69 4.27 284.56 26.12 57.18 611.87 

2 (30mm) 1990.76 4.49 1230.44 15.00 61.81 334.55 

3 (45mm) 4479.21 6.10 3172.56 11.30 70.83 185.43 

4 (55mm) 6691.17 11.65 5663.44 11.60 84.64 99.51 

    Avg. 68.61 307.84 

 

The differences of the contact area and pressure were even more increased using concave-shaped 

indenter as shown in Table 5-2. Overall, 1) average ratio of the contact area represented a value 

of 42.5% (less than half) and 2) pressure differences were about 40-70 times. The results of the 

contact area were smaller than the flat indenter tests. However, a significant difference relate to 

the pressures can be observed using concave-shaped indenter. Differences of pressure were 

decreased about 15 times lower than the cone-shaped ice tests (Test 1-4, 17, and 18). However, 

the results of the contact area were similar (about 42.5%). 
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Table 5-2: Results of using 25cm diameter ice cone test against concave shape indenter 

(a) Test 1 (10° wedge, 35° ice cone, 1mm/s) 

Step No. 

(Disp.) 

Nominal 

contact 

area (mm
2
) 

Nominal 

pressure 

(MPa) 

Activated 

contact 

area (mm
2
) 

Activated 

pressure 

(MPa) 

Aact./Anom. 

(%) 

Pact./Pnom. 

(%) 

1 (15mm) 2097.61 4.82 1050.50 27.84 50.08 577.24 

2 (30mm) 8383.06 4.30 3318.13 26.24 39.58 610.42 

3 (45mm) 18856.35 3.35 5024.69 19.43 26.65 579.76 

4 (55mm) 28165.11 2.38 8908.94 18.51 31.63 778.26 

    Avg. 36.99 636.42 

 

 (b) Test 18 (20° wedge, 35° ice cone, 100mm/s) 

Step No. 

(Disp.) 

Nominal 

contact 

area (mm
2
) 

Nominal 

pressure 

(MPa) 

Activated 

contact 

area (mm
2
) 

Activated 

pressure 

(MPa) 

Aact./Anom. 

(%) 

Pact./Pnom. 

(%) 

1 (10mm) 1677.39 3.17 647.06 39.39 38.58 1242.08 

2 (20mm) 6708.78 4.13 3088.19 35.58 46.03 860.72 

3 (35mm) 20544.62 0.24 5203.13 22.53 25.33 9270.22 

    Avg. 36.64 3791.01 

 

The difference became larger in the case of the cylindrical ice tests as shown in Table 5-3. There 

were no significant differences about the contact area. However, more than 100 times (as an 

average) and up to 300 times pressure differences were obtained. Measured activated pressure 

remained as similar magnitude compared to cone-shaped ice tests. In contrast, the nominal 

pressure values were lower than 1.0MPa at the most of the test steps, and this result produced a 

significant relative pressure difference (up to 300 times higher). 
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Table 5-3: Results of using cylindrical ice test against concave shape indenter 

 (a) Test 6 (30° wedge, cylindrical ice, 100mm/s) 

Step No 

(Disp.) 

Nominal 

contact 

area (mm
2
) 

Nominal 

pressure 

(MPa) 

Activated 

contact 

area (mm
2
) 

Activated 

pressure 

(MPa) 

Aact./Anom. 

(%) 

Pact./Pnom. 

(%) 

1 (15mm) 7251.11 11.23 6140.38 28.27 84.68 251.86 

2 (30mm) 16976.55 2.86 10721.38 28.42 63.15 995.20 

3 (45mm) 29176.31 2.41 15439.44 25.75 52.92 1068.11 

4 (60mm) 43850.40 1.25 15140.69 22.97 34.53 1835.78 

5 (75mm) 57630.00 0.02 3561.13 15.33 6.18 62781.92 

    Avg. 48.29 13386.57 

 

(b) Test 9 (10° wedge, cylindrical ice, 1mm/s) 

Step No 

(Disp.) 

Nominal 

area 

(mm
2
) 

Nominal 

pressure 

(MPa) 

Activated 

contact 

area (mm
2
) 

Activated 

pressure 

(MPa) 

Aact./Anom. 

(%) 

Pact./Pnom. 

(%) 

1 (15mm) 28774.43 1.20 22971.31 23.10 79.83 1920.03 

2 (30mm) 49828.00 0.20 29172.06 22.74 58.55 11647.98 

3 (45mm) 49828.00 0.13 4851.25 27.38 9.74 21348.23 

4 (60mm) 49828.00 0.22 5057.13 24.09 10.15 10938.61 

5 (75mm) 49828.00 1.74 8910.81 20.70 17.88 1187.03 

    Avg. 35.23 9408.37 

 

 

5.2. Effect of Concave Shape Indenter 

 

5.2.1. Definition of Representative Load 

 

Three types of data are available; time (sec), displacement (mm), and load (kN) after the 

laboratory ice tests. Based on the obtained load and displacement (or time), the ‘force-
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displacement’ history curve can be plotted. Prior to analyzing the test data, the first step is 

defining the ‘representative’ load at each force-displacement history curves. A suitable 

representative load allows the results from the different cases to be compared based on a single 

parameter which reasonably defines the magnitude of the load and thus simplifies the 

comparison. In this study, two different load defining methods were evaluated. 

 

The simplest way to determine the ‘representative’ load in the force-displacement history curve 

is using the mean (average) value. In this case, the mean value can be calculated easily, simply 

by averaging the measured load from a zero to the maximum displacement of the force-

displacement history curve. 

 

When the force-displacement curve is gradually increased, applying the mean value as the 

representative load is reasonable. However, it is insufficient to apply the mean value as a 

representative load for any force-displacement curves when the curve tends to increase 

dramatically. For this reason, applying the mean load as the representative load is a case 

sensitive. Therefore, a different approach needs to be considered. 

 

5.2.1.1. Linear Regression Equation as Representative Load 

 

Using a regression equation to determine a representative load was considered as an alternative 

method. Test data (applied in the previous section) were adopted for direct comparison in Figure 

5-1. The slope of each test was expressed as ‘Ice crushing resistance index (ICRI)’ as the 

representative expression (unit: kN/mm). A term ‘Resistance’ defined as “the capacity of a 
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structure or component to resist the effects of loads” in the field of ‘Load and resistance factor 

design (LRFD)’ for structural steel design specifications and code (Arora and Wang, 2006). 

When the ICRI of the linear relationship is known, the load can be obtained by multiplying the 

desired displacement with the ICRI, if a direct comparison is to be made for any specific 

condition. 

 

The value of the maximum load on the curve (see Figure 5-1) was measured as 63.3kN and the 

calculated value, followed by a linear regression equation, was 39.9kN (about 63.1%). The 

percentage, 63.1%, is still not an ideal result; however, the value obtained using a linear 

regression equation is more convincing compared to the simple average value. 

 

 

Figure 5-1: Determination of representative load using the linear regression equation (Case 1) 
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Force-displacement history curves where the load tends to increase rapidly, was also evaluated 

using the linear regression equation as shown in Figure 5-2. Similarly, the maximum load was 

compared. 396.9kN was measured as the maximum load in the force-displacement history curve, 

whereas the linear regression equation showed that it was 189.6kN (about 47.8%, which is close 

to 50%). The percentage difference between the linear regression computed equation and 

manually computed mean load was about double (increase in positive). 

 

 

Figure 5-2: Determination of representative load using the linear regression equation (Case 2) 

 

The purpose of not using power or exponential relationship to derive the regression equations 

was intended to reduce the number of variables required for the computation. There is only one 

variable, the ICRI, in the linear regression equation. However, there will be two variables, if the 

power or exponential regression equation was considered. 
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Adopting more variables will increase the complexity of regression equations and as well 

increase the source of error. Accordingly, the linear regression equation was applied in order to 

analyze the experimental data in the simplest way. The result of applying the power and 

exponential relationships will be also considered for the verification purpose of the feasibility of 

adopting the linear relationship, in subsequent section. 

 

5.2.2. Derivation of Regression Equation 

 

5.2.2.1. Regression curve comparison 

 

Figures 5-3 to 5-5 show the comparison of regression curves followed by respective relationships, 

which are linear, power, exponential and modified exponential relationships (3 tests were 

selected, for each indenter shape). Primary evaluations of the results through Figures 5-3 to 5-5, 

the linear relationship regression equation was evaluated on the basis of this study. In addition to 

regression curve trends, comparison of the resulting values was obtained by regression equation, 

and the experimental results were performed to verify the feasibility of applying the linear 

relationship as a representative regression relationship. 
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Figure 5-3: Comparison of regression curve (Flat Test 3: Flat, 35° ice cone, 100mm/s) 

 

         

 

         

Figure 5-4: Comparison of regression curve (Test 24: 10° Conical, 25° ice cone, 1mm/s) 
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Figure 5-5: Comparison of regression curve (Test 19_Rep: 20° Wedge, 35° ice cone, 1mm/s) 

 

Comparison of regression curves showed that the linear and power relationships were the most 

similar regression curves compared to experimental results. However, the difference between the 

two relationships was less than 10%, respectively. Therefore, a further evaluation was conducted 

through each regression parameter from derived regression equations. 

 

In this section, comparison of the load at particular displacement (δ=40mm, which is randomly 

chosen) was carried out to verify the validity of applying the linear relationship (Figures 5-6 and 

5-7). 
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Figure 5-6: Test result vs. regression equation result of force (linear relationship) 

 

 

Figure 5-7: Test result vs. regression equation result of force (power relationship) 
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According to the comparison of force values (see Figures 5-6 and 5-7), the result of linear 

relationship, rather than the power relationship, confirmed that the force can be predicted 

relatively accurately compared to the experimental results. Therefore, analysis was performed 

applying the linear relationship in this study. 

 

5.2.2.2. Determination of ICRI: Test Result 

 

Table 5-4 shows the results of determined ICRI using the linear regression equation. 

 

Table 5-4: Results of ICRI (Test result) 

Test No. 
Indenter 

shape 

Indenter angle 

(°) 

Cone angle 

(°) 

Test speed 

(mm/s) 

ICRI 

(Test result) 

- Flat 0 25 1 3.13 

- Flat 0 25 1 2.07 

- Flat 0 25 100 1.04 

- Flat 0 25 100 0.84 

- Flat 0 25 100 1.28 

- Flat 0 35 1 1.59 

- Flat 0 35 1 1.80 

- Flat 0 35 1 2.34 

- Flat 0 35 100 0.67 

- Flat 0 35 100 0.86 

- Flat 0 35 100 1.10 

Test 24 Conical 10 25 1 10.28 

Test 28 Conical 10 25 1 6.21 

Test 25 Conical 10 25 100 6.08 
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Test No. 
Indenter 

shape 

Indenter angle 

(°) 

Cone angle 

(°) 

Test speed 

(mm/s) 

ICRI 

(Test result) 

Test 25_Rep Conical 10 25 100 6.19 

Test 29 Conical 10 25 100 6.78 

Test 26_Rep Conical 10 35 100 3.91 

Test 27 Conical 10 35 1 0.87 

Test 27_Rep Conical 10 35 100 0.89 

Test 3 Wedge 10 25 1 1.40 

Test 4 Wedge 10 25 100 1.73 

Test 16 Wedge 10 25 100 2.31 

Test 1 Wedge 10 35 1 0.92 

Test 13 Wedge 10 35 1 1.44 

Test 17 Wedge 20 35 1 1.40 

Test 19 Wedge 20 35 1 0.76 

Test 2 Wedge 10 35 100 0.85 

Test 14 Wedge 10 35 100 1.05 

Test 14_Rep Wedge 10 35 100 1.20 

Test 19_Rep Wedge 20 35 1 2.63 

Test 18 Wedge 20 35 100 0.65 

Test 20 Wedge 20 35 100 1.15 

 

Prior to deriving a regression equation, six randomly chosen test results were excluded to be 

utilized for verification purposes at later on. The excluded six test results are shown in Table 5-5. 
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Table 5-5: Result of ICRI for the verification purpose (Test result) 

Test No. 
Indenter 

shape 

Indenter angle 

(°) 

Cone angle 

(°) 

Test speed 

(mm/s) 

ICRI 

(Test result) 

- Flat 0 25 100 1.60 

- Flat 0 35 100 0.83 

Test 15 Wedge 10 25 100 1.62 

Test 20_Rep Wedge 20 35 100 0.85 

Test 28_Rep Conical 10 25 1 7.24 

Test 26 Conical 10 35 1 2.78 

 

The Design - Expert
®
 program was adopted to derive the regression equations considering each 

of the variables. Originally, test plans were not set up for ‘Design of Experiment (DOE)’ in this 

study. Therefore, evaluation of the interaction between individual factors cannot be performed 

for further analysis. However, it is possible to use the Design-Expert
®

 software only for the 

purpose of the derivation of regression equations. 

 

5.2.2.3. Derivation of Regression Equation: Linear Relationship 

 

The regression equation was derived based on the test data as shown in Table 5-4. Figure 5-8 

shows the 1:1 plot of ‘Test result vs. Regression equation result’. Points marked as black-color 

represents the test results that were used to derive the regression equations. Points marked as red-

color represents the selected data for verification purposes as mentioned. 
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Figure 5-8: Test result vs. regression equation result (ICRI) 

 

Results of obtained regression equations well predicted the ICRI, except the data points marked 

with a red circle. In addition, excluded test data points for the verification purpose also showed a 

good prediction by derived regression equations. 

 

Equations (5-1) to (5-3) represents regression equations for each indenter shapes derived by 

using the Design-Expert
®
. In order to exclude the two-factor interactions, regression equations 

were solely composed by a single-factor term. The optimal results were acquired by the inverse 

square root transform. 
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                                                                                                                                       (5-1) 

      (         )  

                                                                           

                                                                                                                                                         (5-2) 

                                                                      

                                                                                                                         (5-3) 

 

Table 5-6 shows a comparison of ICRI between the test results and the derived regression 

equations. 

 

Table 5-6: Comparison of ICRI (Test result vs. Derived by regression equation) 

Indenter 

shape 

Indenter 

angle 

(°) 

Cone angle 

(°) 

Test speed 

(mm/s) 

ICRI (A) 

(Test result) 

ICRI (B) 

(Reg. equation) 

Ratio 

(A/B) 

Flat 0 25 1 3.13 2.26 1.38 

Flat 0 25 1 2.07 2.26 0.91 

Flat 0 25 100 1.04 1.47 0.71 

Flat 0 25 100 0.84 1.47 0.57 

Flat 0 25 100 1.28 1.47 0.87 

Flat 0 25 100 1.60 1.47 1.09 

Flat 0 35 1 1.59 1.24 1.28 

Flat 0 35 1 1.80 1.24 1.45 

Flat 0 35 1 2.34 1.24 1.89 

Flat 0 35 100 0.67 0.89 0.75 

Flat 0 35 100 0.86 0.89 0.96 

Flat 0 35 100 1.10 0.89 1.23 

Flat 0 35 100 0.83 0.89 0.93 
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Indenter 

shape 

Indenter 

angle 

(°) 

Cone angle 

(°) 

Test speed 

(mm/s) 

ICRI (A) 

(Test result) 

ICRI (B) 

(Reg. equation) 

Ratio 

(A/B) 

Conical 10 25 1 10.28 8.26 1.24 

Conical 10 25 1 6.21 8.26 0.75 

Conical 10 25 1 7.24 8.26 0.88 

Conical 10 25 100 6.08 3.87 1.57 

Conical 10 25 100 6.19 3.87 1.60 

Conical 10 25 100 6.78 3.87 1.75 

Conical 10 35 1 2.78 2.95 0.94 

Conical 10 35 1 3.91 2.95 1.32 

Conical 10 35 1 0.87 2.95 0.29 

Conical 10 35 100 0.89 1.82 0.49 

Conical 10 35 100 2.63 1.82 1.45 

Wedge 10 25 100 1.40 1.49 0.94 

Wedge 10 25 100 1.62 1.49 1.09 

Wedge 10 25 1 1.73 2.30 0.75 

Wedge 10 25 1 2.31 2.30 1.00 

Wedge 10 35 1 0.92 1.26 0.73 

Wedge 10 35 1 1.44 1.26 1.14 

Wedge 20 35 1 1.40 1.10 1.27 

Wedge 20 35 1 0.76 1.10 0.69 

Wedge 10 35 100 0.85 0.90 0.94 

Wedge 10 35 100 1.05 0.90 1.16 

Wedge 10 35 100 1.20 0.90 1.33 

Wedge 20 35 100 0.65 0.81 0.81 

Wedge 20 35 100 1.15 0.81 1.42 

Wedge 20 35 100 0.85 0.81 1.06 



128 

 

5.2.2.4. Assessment of Regression Equation: Power and Exponential Relationship 

 

As mentioned earlier, result values using the power and the exponential relationships were also 

compared for the further validation purpose. 

 

5.2.2.4.1. Evaluation of Power Relationship 

 

Power relationship can be defined as following Equation (5-4); 

 

                                                                                    
                                                                        (5-4) 

Where, 

                    

                    

              

 

There are two variables,    and    , which needs to be determined using power relationship. 

Figures 5-9 and 5-10 show the 1:1 plot of ‘Test result vs. Regression equation result’ of each 

variable (   and      
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Figure 5-9: Test result vs. regression equation result using the power relationship (  ) 

 

 

Figure 5-10: Test result vs. regression equation result using the power relationship (  ) 
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In the case of the term ‘  ’, comparison between test results and values derived by the regression 

equations showed a good agreement except at some points (marked within red boundaries), as 

shown in Figure 5-10. However, the difference of the term ‘  ’ showed a large variation as 

shown in Figure 5-9. As mentioned above, load value is determined by two variables,    and    

using the power relation. Therefore, influence on one variable will tend to affect the other 

variable also. For this reason, the results obtained through the power relationship did not show a 

good comparison. 

 

5.2.2.4.2. Evaluation of Exponential Relationship 

 

The exponential relationship was also evaluated in the same manner. The exponential relation 

can be defined by following Equation (5-5); 

 

                                                                                       
                                                                 (5-5) 

Where, 

                    

                    

                    

 

   and    need to be determined in a manner similar as the power relationship. Figures 5-11 and 

5-12 show the 1:1 plot of ‘Test result vs. Regression equation result’ of each variable,    and     
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Figure 5-11: Test result vs. regression equation result using the exponential relationship (  ) 

 

 

Figure 5-12: Test result vs. regression equation result using the exponential relationship (  ) 
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Similar to the power relationship,    showed a significant difference using the exponential 

relationship. In addition, the total load (  ) was not properly evaluated by the exponential 

relationship, since the scatter is large. 

 

5.2.2.4.3. Evaluation of Modified Exponential Relationship 

 

In addition, the modified exponential relationship was evaluated, where the term ‘  ’ was fixed 

as ‘1.0’. In this case, a variable, which need to determine, was reduced as one (only ex) 

compared to the traditional exponential relationship (where the variables are two). The 

relationship equation is identical except that   , which was fixed. 

 

                                                                                   
                                                                     (5-6) 

 

 

Where, 

                                      

                    

                    

 

As shown in Figure 5-13, comparison between test results and regression equation results has 

given a good agreement using the modified exponential relationship, unlike power and 

exponential relationships. In addition, the variable to be determined was also reduced as a single 

variable. Therefore, a further comparison between the linear and modified exponential 
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relationships is required to determine on the best method to obtain more effective and accurate 

result. For the comparison purpose, calculated total loads followed by the ICRI (linear 

relationship), and the exponential term (modified exponential relationship) at specific 

displacements were compared (in Table 5-7). 

 

 

Figure 5-13: Test result vs. regression equation result using modified exponential relationship (  ) 

 

Table 5-7 represents a direct comparison of derived total loads using the linear and modified 

exponential relationships at specific displacements. 
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Table 5-7: Comparison of calculated force (linear vs. modified exponential relationship) 

Test condition 

Load from linear 

relationship  

(kN) 

 

Load from modified 

exponential relationship 

(kN) 

 at x=20mm at x=40mm  at x=20mm at x=40mm 

Flat, 25° cone, 1mm/s 45.29 90.58  22.88 523.33 

Flat, 25° cone, 100mm/s 29.41 58.82  15.70 246.55 

Flat, 35° cone, 1mm/s 24.49 49.58  6.17 38.02 

Flat, 35° cone, 100mm/s 17.86 35.71  5.20 27.04 

Conical 10°, 25° cone, 1mm/s 165.10 330.21  125.17 15667.90 

Conical 10°, 25° cone, 100mm/s 77.46 154.92  61.82 3821.34 

Conical 10°, 35° cone, 1mm/s 59.10 118.20  12.30 151.29 

Conical 10°, 35° cone, 100mm/s 36.34 72.69  9.36 87.67 

Wedge 10°, 25° cone, 1mm/s 29.82 59.65  24.89 619.29 

Wedge 10°, 35° cone, 100mm/s 46.08 92.15  16.83 283.25 

Wedge 10°, 35° cone, 1mm/s 25.11 50.21  6.40 40.95 

Wedge 10°, 35° cone, 100mm/s 18.05 36.10  5.37 28.83 

Wedge 20°, 35° cone, 1mm/s 22.00 43.99  17.05 290.61 

Wedge 20°, 35° cone, 100mm/s 16.13 32.25  12.30 151.41 

 

As mentioned, any of methods cannot give relevant results for the evaluation of total loads. 

However, it is necessary to decide on the most suitable method to be used for subsequent 

analyses. As shown in Table 5-7, calculated total load magnitudes between two methods used 

represented a significant difference in most of the test, at chosen displacements. Modified 

exponential relationship demonstrated a good agreement in respect of the exponential term as 

shown in Figure 5-13. However, the results of total load shown in that column revealed the 

following issues (see Table 5-7); 
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1) Total load results using the 35° ice cone showed excessive low results at 20mm displacement. 

 

2) Excessively large loads were derived, which was not measured during the actual tests, for 

some cases, For example, the maximum 15MN (using 25° cone ice with 1mm/s test speed) and 

3MN (using 25° cone ice with 100mm/s test speed) was obtained for a conical-shaped indenter. 

However, it was observed that no test results which reached such high load values. 

 

In addition, the results of the wedge-shaped indenter shows a high load value of 600kN, which 

was not measured in the actual test. In contrast, the derived results obtained from the linear 

relationship were closer to the measured test values. As a result, applying a regression equation 

using linear regression was judged to be the more appropriate method for further analysis. 

 

5.2.3. Effect of Structural Shape 

 

The regression equation (based on the linear relationship, as discussed in the previous section) 

was derived by including test parameters (indenter angle, test speed and ice cone angle). The 

effects of structural shape were evaluated using the regression equation. 

 

Table 5-8 shows comparison results of ‘Flat vs. Wedge shape’ indenter. The resulting values of 

the ICRI were calculated using the Equation (5-1) and (5-2). The values in ‘red-bold color’ 

indicate the ratio obtained between flat and the 10° wedge indenters.  The average ratio between 

flat and the 10° wedge indenters gave a value of 1.01. This states that the difference between two 
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indenter shapes is only about 1%. The 1% difference indicates that there were no significant 

effects between the two indenter shapes. 

 

The values in ‘blue-bold color’ indicate the ratio obtained between the shapes of flat and the 20° 

wedge indenter. The average ratio between the flat and the 20° wedge indenter shows a value of 

0.88, and this indicates that a greater ice load occurred for flat indenters compared to the 20° 

wedge indenter. In other words, the flat indenter showed a 12% larger load than wedge-shaped 

indenters. 

 

Table 5-8: Comparison result: Flat vs. Wedge shape indenter 

 
Indenter angle 

(°) 

Cone angle 

(°) 

Test speed 

(mm/s) 
ICRI 

Ratio 

(B/A) 

Ratio 

(C/A) 

 Ratio 

(C/B) 

Flat (A) 0 25 1 2.26     

Wedge (B) 10 25 1 2.30 1.02    

Wedge (C) 20 25 1 1.93  0.85  0.84 

         

Flat (A) 0 25 100 1.47     

Wedge (B) 10 25 100 1.49 1.01    

Wedge (C) 20 25 100 1.29  0.88  0.87 

         

Flat (A) 0 35 1 1.24     

Wedge (B) 10 35 1 1.26 1.01    

Wedge (C) 20 35 1 1.10  0.89  0.87 

         

Flat (A) 0 35 100 0.89     

Wedge (B) 10 35 100 0.90 1.01    

Wedge (C) 20 35 100 0.81  0.91  0.90 

         

    Avg. 1.01 0.88  0.87 
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Table 5-9 shows comparison results of ‘Flat vs. Conical shape’ indenter. Unlike the previous 

(wedge-shaped indenter case), significant effects of indenter shapes were observed using conical-

shaped indenter. The measured average ratio between the two indenter shapes recognized as 2.68 

on average. This means that measured loads against conical indenter tends to show about 268% 

larger loads compared to the flat indenter. 

 

Table 5-9: Comparison result: Flat vs. Conical shape indenter 

 
Indenter angle 

(°) 

Cone angle 

(°) 

Test speed 

(mm/s) 
ICRI 

Ratio 

(B/A) 

Flat (A) 0 25 1 2.26  

Conical (B) 10 25 1 8.26 3.65 

      

Flat (A) 0 25 100 1.47  

Conical (B) 10 25 100 3.87 2.63 

      

Flat (A) 0 35 1 1.24  

Conical (B) 10 35 1 2.95 2.38 

      

Flat (A) 0 35 100 0.89  

Conical (B) 10 35 100 1.82 2.04 

      

    Avg. 2.68 

 

Overall, significant effects between two indenter shapes can be found in Table 5-9 at a smaller 

cone angle and apparently low test speed. Again, it was confirmed that the effects of conical-

shaped indenter was significant. 
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5.2.4. Effect of Cone Angle 

 

Tables 5-10 and 5-11 show the comparison results of the effects of cone angle. As discussed, 

relatively larger loads occurred when the cone angle was smaller as shown in Tables 5-10 and 5-

11. When the test speed was 1mm/s, the average ratio difference between the cone angles was 

0.56, about the half. In addition, the difference between the two cone angles were 0.61 when the 

test speed was 100mm/s. Overall, higher ice loads are expected as the angle of cone decrease due 

to the behavior of ice-structure interaction (specifically, the magnitude of the loads), which is 

highly sensitive to the cone angle (which can be referred as the shape/size of ice sample). 

 

Table 5-10: Comparison result at test speed 1mm/s 

 
Indenter angle 

(°) 

Cone angle 

(°) 

Test speed 

(mm/s) 
ICRI 

Ratio 

(B/A) 

Flat (A) 0 25 1 2.26  

Flat (B) 0 35 1 1.24 0.55 

      

Wedge (A) 10 25 1 2.30  

Wedge (B) 10 35 1 1.26 0.55 

      

Wedge (A) 20 25 1 1.93  

Wedge (B) 20 35 1 1.10 0.57 

      

    Avg. 0.56 
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Table 5-11: Comparison result at test speed 100mm/s 

 
Indenter angle 

(°) 

Cone angle 

(°) 

Test speed 

(mm/s) 
ICRI 

Ratio 

(B/A) 

Flat (A) 0 25 100 1.47  

Flat (B) 0 35 100 0.89 0.61 

      

Wedge (A) 10 25 100 1.49  

Wedge (B) 10 35 100 0.90 0.60 

      

Wedge (A) 20 25 100 1.29  

Wedge (B) 20 35 100 0.81 0.63 

      

    Avg. 0.61 

 

5.2.5. Effect of Test Speed 

 

Tables 5-12 and 5-13 show the comparison results of the effects of test speeds. As discussed, 

relatively large ice load was measured when the test speed was low, as shown in Tables 5-12 and 

5-13, using the same cone angle. 

 

When the cone angle was 25°, the average difference (ratio) between cone angles were about 

0.66. In addition, the difference was about 0.72 when the cone angle was 35° with the same test 

speed, respectively. This result confirmed that the well-known understanding of ice mechanics, 

which is the low test speed (strain rate) induces a higher ice load compared to the high test speed. 

 

 

 



140 

 

Table 5-12: Comparison result using 25° ice cone 

 
Indenter angle 

(°) 

Cone angle 

(°) 

Test speed 

(mm/s) 
ICRI 

Ratio 

(B/A) 

Flat (A) 0 25 1 2.26  

Flat (B) 0 25 100 1.47 0.65 

      

Wedge (A) 10 25 1 2.30  

Wedge (B) 10 25 100 1.49 0.65 

      

Wedge (A) 20 25 1 1.93  

Wedge (B) 20 25 100 1.29 0.67 

      

    Avg. 0.66 

 

Table 5-13: Comparison result using 35° ice cone 

 
Indenter angle 

(°) 

Cone angle 

(°) 

Test speed 

(mm/s) 
ICRI 

Ratio 

(B/A) 

Flat (A) 0 35 1 1.24  

Flat (B) 0 35 100 0.89 0.72 

      

Wedge (A) 10 35 1 1.26  

Wedge (B) 10 35 100 0.90 0.71 

      

Wedge (A) 20 35 1 1.10  

Wedge (B) 20 35 100 0.81 0.74 

      

    Avg. 0.72 
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5.2.6. Evaluation of the Effect of Ice Sample Shape 

 

In this study, two different shapes of the ice samples were adopted to evaluate the effects of ice 

sample shapes (cone and cylindrical). Tests were conducted with identical conditions, and the 

effects were evaluated. 

 

The regression equation based on the linear relation was derived in the same manner, and the 

ICRI of two different shapes of the ice sample was compared. Figure 5-14 shows the 1:1 plot of 

‘Test result vs. Regression equation result’ of cylindrical ice. Overall, ICRI results were well 

predicted by the derived regression equation except for few points. 

 

 

Figure 5-14: Test result vs. regression equation result of cylindrical ice (ICRI) 
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Table 5-14 shows the comparison of the ICRI between the ice sample shapes for each test 

condition. As shown in Table 5-14, cone-shaped ice sample showed a relatively large load 

compared to cylindrical ice. The values in ‘red-bold color’ indicate the ratio between 25° ice 

cone and cylindrical ice samples. The average ratio between the two ice sample shapes was 

obtained around 2.86. This indicates that the cone-shaped ice sample with a 25° cone angle 

produced nearly about 3 times larger loads compared to the cylindrical ice. 

 

In addition, values in ‘blue-bold color’ indicate the ratio of the ICRI obtained for 35° ice cone 

and cylindrical ice samples. Results of load using cone-shaped ice sample represented larger 

loads (average ratio was 1.67) compared to the cylindrical ice sample at same test speeds. Values 

in ‘purple-bold color’ indicate the ratio between 25° and 35° ice cone. The average value was 

obtained about 0.59, and it can be seen that this is similar to that which was evaluated in the 

previous section. 
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Table 5-14: Comparison of results by ice sample shape 

 

 

 

Indenter 

angle 

(°) 

Cone 

angle 

(°) 

Test speed 

(mm/s) 
ICRI 

Ratio 

(B/A) 

Ratio 

(C/A) 

 
Ratio 

(C/B) 

Cylindrical (A) 10 0 1 0.70     

Cone (B) 10 25 1 1.77 2.53    

Cone (C) 10 35 1 1.09  1.56  0.62 

         

Cylindrical (A) 20 0 1 0.60     

Cone (B) 20 25 1 1.68 2.80    

Cone (C) 20 35 1 0.99  1.65  0.59 

         

Cylindrical (A) 30 0 1 0.50     

Cone (B) 30 25 1 1.58 3.16    

Cone (C) 30 35 1 0.89  1.78  0.56 

         

Cylindrical (A) 10 0 100 0.68     

Cone (B) 10 25 100 1.76 2.59    

Cone (C) 10 35 100 1.07  1.57  0.61 

         

Cylindrical (A) 20 0 100 0.58     

Cone (B) 20 25 100 1.66 2.86    

Cone (C) 20 35 100 0.97  1.67  0.58 

         

Cylindrical (A) 30 0 100 0.48     

Cone (B) 30 25 100 1.56 3.25    

Cone (C) 30 35 100 0.87  1.81  0.56 

         

    Avg. 2.86 1.67  0.59 
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5.3. Discussion 

 

5.3.1. Confinement Effect 

 

The magnitude of ice loads and pressure developments are significantly influenced by the 

properties of ice (as a material) and as well by the confinement effect during the compressive ice 

crushing test. The term ‘Confinement’ mentioned here can be classified into two cases where, 1) 

confinement formed naturally by crushed (or broken piece of ice) ice during tests and 2) 

confinement artificially formed by a test apparatus. Ulan-Kvitberg et al. (2011) analyzed the 

effect of an ice holder as confinement during compressive ice tests, and compared the force-

displacement curves. Figure 5-15 illustrates the formation of confinement in the case of flat 

indenters. 

 

Using a ‘small cone angle’ ice sample represented higher ice loads (since larger amount of 

crushed ice has to be pushed transversely) compared to ‘large cone angle’ ice sample, as 

discussed in the previous section. The effects of the cone angle can be explained by the amount 

of available space between the ice sample and indenter (can be referred as confinement-formable 

space) as illustrated in Figure 5-15 (marked with the red color).  

 

Crushed (or broken) ice during the collision may be removes immediately after ice-structure 

interaction. However, crushed ice can also remain in space between the indenter and the ice 

(marked in red color) due to re-freezing process or be confined by the remaining ice sample. This 

formation will keep contributing to the transverse load required to withstand additional ice loads. 
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In this respect, a wider-space between the two bodies means that the crushed ice can escape more 

freely compared to a narrow-space. For this reason, more crushed ice tends to get trapped 

between the space as illustrated in Figure 5-15 when the cone angles are relatively small, and this 

will result higher ice loads consequently. 

 

The effect of confinement (by crushed ice) does not significantly affect, in the case of high speed 

(high strain rates) tests due to the frequent spalling events. A term spalling means that crushed 

ice did not tend to remain during the contact processes and removes quickly from ice-structure 

interaction location. In contrast, the effect of confinement of crushed ice was significantly higher 

at low test speeds (low strain rates). 

 

  

Figure 5-15: Comparison of confinement-formable space between ice and indenter (flat indenter) 

 

The difference becomes more significant in the case of concave-shaped indenter. Figure 5-16 

illustrates the space formed between the ice and the wedge-shaped indenter due to the different 

cone angles. As illustrated in Figure 5-16, the difference in the area of confinement formed by 

crushed ice obviously varied between the 10° and 20° wedge-shaped indenter. For this reason, 
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larger ice loads were measured using the 20° wedge indenter, as shown in previous force-

displacement history comparison (since it needs to be pushed out against more restrictive shapes). 

 

Unlike the case of the flat indenter, the effect of confinement provided by the shape of indenter 

cannot be ignored. There are no restraints provided along the wedge length; therefore, the 

crushed ice can be removed without any restriction. However, in the case of the conical indenter, 

crushed ice will be trapped in all directions because of the indenter shape. Consequently, the 

largest loads were measured against the conical indenter, regardless of cone angles or test speeds. 

 

 

Figure 5-16: Comparison of confinement-formable space between ice and indenter  

(wedge indenter) 
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5.3.2. Verification of suitability of applying a linear relationship: Pressure-

Area relationship perspective 

 

As discussed earlier, a linear relationship was adopted to derive the regression equation for the 

convenience of analysis, utilizing the force-displacement curve obtained through experiments. 

The derived force comparison convinced the validity of applying the linear relationship. In this 

discussion, a further verification of using the linear relationship is discussed, followed by 

considering pressure-area relationship 

 

5.3.2.1. Definition of Cone-Shaped Ice Parameter 

 

A fundamental parameters which applied in this study are as follows (see Figure 5-17). Through 

each defined parameter, the nominal contact area regarding a crushing distance (δ) can be 

derived as Equation (5-4). 

 

 

Figure 5-17: Definition of cone-shaped ice parameter 
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                                                                        √                                                  (5-4) 

 

5.3.2.2. Comparison of Regression Relationship: Linear vs. Exponential 

 

Figure 5-18 shows a general trend of the force-displacement curve (obtained through 

experiments), and the linear or exponential relationships can be commonly applied to obtain a 

regression curve (equation).  

 

 

Figure 5-18: Regression fit of force-displacement curve (linear vs. exponential relationship) 
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Equation (5-4) is applied to derive the definition of each pressure-area relationship, according to 

each regression relationship (linear and exponential). The following Table 5-15 represents each 

defined term. 

 

Table 5-15: Definition of force, pressure and exponential term 

 Linearly-fitted regression Exponentially-fitted regression 

Force 

definition 
      

     
   

 

where,        

Pressure 

definition   
 

 
 

   

 
 

  √ 

 
    

     
  

 

 
 

   
   

 
 

  (√ )
   

 
 

 
   

      

 
    

         

Exponential 

term 

(    

-0.5 (fixed) Varies depends on defined     

 

As shown in Table 5-15, eventually the exponential term, ex, in the pressure-area curve will be a 

fixed value as ‘-0.5’ if the force-displacement curve is assumed as the linear relationship. In this 

case, the variation of pressure-area curve depends on    value, but the overall trend (slope) of the 

curve is already determined by pre-defined regression relationship of the force-displacement 

curve as linear relationship.   

 

In contrast, behavior of the pressure-area curve will tend to vary according to the defined ‘ex’ 

value when the force-displacement curve is assumed as exponential relationship. Variation of the 

pressure-area curves are illustrated in Figure 5-19. 
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Figure 5-19: Variety behavior of the pressure-area curve depends on ‘ex’ 

 

As mentioned earlier, applying the linear relationship means that the exponential term (ex) is 

fixed as ‘-0.5’. In this case, the exponential term is defined regardless of the experimental results 

and as a result, the behavior of pressure-area curve may influence. Therefore, an additional 

validity of the assessment of applying linear relationship is mandatory with respect to the 

pressure-area relationship. 

 

For this reason, ‘  ’  and ‘  ’ parameters from a series of pressure-area curves were extracted for 

diverse test conditions, as presented in Table 5-16. The values of each parameter for each 

experimental results (‘  ’  and ‘  ’) are shown in Figure 5-20. 
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Table 5-16: Test conditions (to extract ‘  ’  and ‘  ’ from pressure-area curve) 

 Indenter Shape 
Indenter Angle 

(°) 

Cone angle 

(°) 

Test speed 

(mm/) 

Test 1 Flat - 35 100 

Test 2 Flat - 35 100 

Test 3 Flat - 25 1 

Test 4 Flat - 35 1 

Test 5 Wedge 10 35 100 

Test 6 Conical 10 35 100 

Test 7 Wedge 10 25 100 

 

 

Figure 5-20: Pressure-area curve (including    and   ) 

 

As shown in Figure 5-20, most of the experimental results represented the exponential term, 

which is ‘ex’, close to ‘-0.5’. The values varied between ‘-0.409’ to ‘-0.541’ and the average 

value was ‘-0.473’ as marked with a bold-red line (which represent the average of test results). 
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The linear relationship was applied and experimental results were analyzed through this study for 

the purpose of the simplicity of the regression relationship. However, an assumed value of 

exponential term, ex, as '-0.5' (applying the linear relationship) showed a close comparison, 

followed by the experimental results (see Figure 5-20). 

 

Thus, through the analysis of the pressure-area curve with respect to regression relationship 

confirmed that applying the linear relationship, which gives the exponential term value as ‘-0.5’, 

may be referred as a reasonable assumption.  
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Chapter 6 Numerical Analysis 

 

 

6.1. Overview 

 

This section is aimed to develop a numerical simulation model and determining the material 

properties of ice that can be applied equally from low to high strain rate testing using LS-

DYNA
®
. Validation of the proposed numerical simulation model was verified based on the 

compressive ice crushing test results performed in a cold room using the 10cm diameter cone-

shaped ice specimen, as described earlier by Kim et al. (2012; 2013; 2014). Furthermore, the 

verification processes for scalability were performed by applying the developed numerical 

simulation model to larger-scale ice samples, which are 25cm diameter cone-shaped ice 

specimen against concave (wedge and conical shape) indenter as described in Chapter 4. 

 

 

6.2. Proposed Ice Model 

 

In this study, the force-displacement history was implemented by applying the modified 

volumetric strain-stress relationship. To simulate a ‘sawtooth’ pattern during numerical 

simulations, the ‘maximum principal stress’ failure criterion was added additionally along with 

the ice model properties as represented in Table 6-1 (Bjerkås, 2002). The tensile cutoff stress, 

which is the highest tensile stress allowed in the material also considered as material criterion. 
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Table 6-1: Ice material properties and failure criteria 

 
Density 

(kg/m3) 

Young’s 

modulus 

(GPa) 

Poisson 

ratio 

Tensile Cutoff 

Stress 

(MPa) 

Max. Principal 

Stress Criteria 

(MPa) 

Ice material 1 900.0 9.0 0.003 35.0 35.0 

Ice material 2 900.0 9.0 0.003 15.0 15.0 

 

In the case of two-body contacts, an element eroding option in the *CONTACT_ERODING_ 

NODES_TO_SURFACE was set up to eliminate any element automatically that reached the 

failure criteria. This add-on option was adopted to reflect the phenomenon of ice spalling events 

during experiments. Diverse trend of volumetric stress-strain relationships were analyzed to 

obtain the optimal force-displacement curve. As a result, ‘stepped’ trend was chosen and applied 

in this study, which showed the most similar results (see Figure 6-1). 

 

The ice model was separated into two different parts (assigned two different Part ID/Material ID 

during a simulation) to reflect a high pressure zone at the center, which was commonly observed 

through the physical experiments. Ice model properties for each parts were assigned differently 

to simulate the high pressure zone (contained in the center of ice model), and the low pressure 

zone consisting of pulverized ice (the outer parts consisting of lower material property). 

 

Figure 6-3 shows the concept of the numerical simulation model. Ice model’s bottom was fixed 

(6-DOF) to implement the conditions attached to the test equipment. In addition, outer nodes of 

the ice model had an additional boundary condition to simulate the ice specimen in ice holder. 

Translational degrees of x and y directions and rotational degrees of x, y and z were fixed. Only 

z-direction translation was set as free.  
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The steel plate on top of the universal testing machine (UTM) was moving downward at specific 

velocity. Two-body contact simulations were performed. The material property of the steel plate 

was applied as a rigid body because there was no visual deformation of the plate during the tests 

as well as the steel plate was thick enough to be considered as rigid (see Figure 6-3). A solid 

element was applied for both steel indenter and ice model during simulations. 

 

 

Figure 6-1: Volumetric strain-stress relation of crushable foam (by Kim) 

 

 

Figure 6-2: Layer of ice model (Blue: Ice material 1, Green: Ice material 2) 
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Figure 6-3: Numerical simulation model consists of ice specimen and the steel plate 

 

 

6.3. Simulation Results 

 

The numerical simulation model developed in this study was verified through the evaluation and 

comparison with experimental results performed in the laboratory. A 10cm diameter cone-shaped 

ice samples were chosen for the comparison. Table 6-2 represents the specific experimental 

conditions. The temperature in a cold room and the grain size of the ice sample were not 

considered in the numerical simulation model. Figure 6-4 shows test set-up of 30° cone-shaped 

ice specimen mounted on the universal test machine in a cold room. 
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Figure 6-4: Test set-up (30° ice cone) 

 

Table 6-2: Test condition (10cm diameter ice cone) 

 
Cone angle 

(°) 

Test speed 

(mm/s) 

Grain size 

(mm) 

Cold room 

temp. 

(°C) 

Test 1 30 1 5-10 -5 

Test 2 30 100 5-10 -5 

 

 

6.4. Parametric Study 

 

Sensitivity analysis was performed to determine the values of the principal parameter (i.e. mesh 

size, material properties of ice, etc.), which may affect the numerical simulation results during 

the numerical analysis. The parameters that were considered in this study were, 1) mesh size, 2) 

value of max. principal stress and 3) ratio of high/low pressure region. In the case of Young’s 

modulus and Poisson’s ratio, both were verified as not significant parameters in the analysis 

carried out by Zong (2012). 
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6.4.1. Mesh Size Sensitivity 

 

Figure 6-5 illustrates the structure of the element composition in steel indenter for the numerical 

analysis. Height and breadth of each element were identical for ease of interpretation. Unit size 

of the element was denoted by XP as shown in Figure 6-5. The width and height of the indenter 

are denoted by ‘b’ and ‘h’, respectively. Then the total number of elements in width and height 

directions can be calculated by dividing ‘b’ and ‘h’ with the unit element size ‘XP’. Number of 

total elements for width and height were denoted by ‘M’ and ‘N’. In the case of the ice model, an 

identical unit mesh size was applied during the numerical analysis. 

 

 

Figure 6-5: Structure of the element composition in indenter part 
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Different mesh sizes (10.0mm, 8.0mm, 5.0mm, 4.0mm. 2.5mm. 2.0mm) were applied to the 

identical FE model to explore the mesh size sensitivity in this study. The results of numerical 

analysis were compared with the experimental results (for Test 2). Figure 6-6 shows the 

comparison result of the force-displacement curve according to each mesh sizes adopted in this 

study. 

 

Table 6-3: Mesh size/No. of element comparison (indenter and ice) 

 In case of b=200mm, h=200mm 

Element size 

(mm, unit) 
10.0 8.0 5.0 4.0 2.5 2.0 

No. of 

element 

(M by N) 

20 by 20 25 by 25 40 by 40 50 by 50 80 by 80 100 y 100 

 

 

Figure 6-6: Comparison of force-displacement curve by diverse mesh size 
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Figure 6-6 shows that the results obtained by applying 5.0mm mesh size showed results finest to 

the experimental results obtained in test 2. If the mesh size was 2.5mm or less, the force 

magnitude was observed much less (difference was even more clearly shown using 2.0mm mesh 

size). 

 

6.4.2. Value of Max. Principal Stress (failure criteria) Sensitivity 

 

Figures 6-7 and 6-8 show the comparison results of force-displacement curves according to the 

difference of failure criteria used in this study. Based on the suggested failure criteria in this 

study (max. principle stress of ‘ice material 1’ = 35MPa, ‘ice material 2’ = 15MPa), four 

different percentages of failure criteria were selected for comparison. The force-displacement 

curve is plotted by each failure criteria to check the sensitivity of failure criteria during the 

numerical simulation. 

 

As shown in Figures 6-7 and 6-8, the failure criteria which was applied in this study indicated a 

similar trend compared to the experimental result. In the case of 80% and 90%, the magnitude of 

forces was reduced, but the overall trend followed very similarly. When the percentage drops as 

50%, the magnitude also reduced as 50% level. 
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Figure 6-7: Comparison of the force-displacement curve by percentage of failure criteria (F.C)  

(100mm/s test speed) 

 

A similar trend was also observed with 1mm/s test speed as shown in Figure 6-8 (overall trend of 

the curves shown are almost identical to one another, regardless of the percentage of failure 

criteria used). Only the magnitude seems to decrease linearly as failure criteria varies. Based on 

the sensitivity analysis of failure criteria, applying the suggested failure criteria in this study is 

verified as the optimal condition to obtain the best fit. 
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Figure 6-8: Comparison of force-displacement curve by percentage of failure criteria (F.C) 

(1mm/s test speed) 

 

6.4.3. Size of HPZ Sensitivity 

 

Gagnon (2010) introduced the concept of applying different ‘layer’ of elements in FE model to 

simulate the forced-sawtooth pattern, observed in real-ice experiments. As mentioned earlier, a 

similar methodology was applied in this study that; applying two different layers to simulate the 

high and low pressure regions. Each layer had different ice material properties to simulate the 

similar force-displacement curves, which were obtained during the experiments. The definition 

of each parameter (Hice mat_1, Hice mat_2 or rice mat_1, rice mat_2) for comparison is given in Figures 6-9 

and Figure 6-10. 
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Figure 6-9: Definition of layered ice model (front view) 

 

 

Figure 6-10: Definition of layered of ice model (top view) 

 

Four different ratios were chosen (Hice mat_1 : Hice mat_2 = 0.1 : 0.9, 0.2 : 0.8, 0.3 : 0.7, 0.4 : 0.6 or 

rice mat_1 : rice mat_2 = 0.1 : 0.9, 0.2 : 0.8, 0.3 : 0.7, 0.4 : 0.6) to determine the sensitivity of ratios. In 

general, high pressures were measured from the center of contact between the structure and the 

ice. Based on this concept, boundary of two separate layers (ice material properties) was set up 
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from the tip of the ice cone to a particular position (downward direction). ‘Hice mat_1 or rice mat_1’ 

representing the height/radius of relatively high pressure regions (layer 1, ice material 1). ‘Hice 

mat_2 or rice mat_2’ representing the portion of the height of relatively low pressure regions (layer 2, 

ice material 2). Htotal represents the total height of any ice cone (having different angles), which 

represents the exposed part of ice sample. 

 

In this study, analyses were performed where the ratios of ‘Hice mat_1: Hice mat_2 or rice mat_1: rice 

mat_2’’ were 0.1 : 0.9, 0.2 : 0.8, 0.3 : 0.7, and 0.4 : 0.6 (as represented in Figures 6-11 and 6-12) 

and the obtained results of force-displacement curves are shown in Figure 6-13. 

 

  

(a) Hice mat_1 : Hice mat_2 = 0.1 : 0.9                                      (b) Hice mat_1 : Hice mat_2 = 0.2 : 0.8 

 

  

(c) Hice mat_1: Hice mat_2 = 0.3 : 0.7                                      (d) Hice mat_1: Hice mat_2 = 0.4 : 0.6 

Figure 6-11: Height and Ratio of layered ice model 
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(a) rice mat_1 :  rice mat_2 = 0.1 : 0.9                                      (b) rice mat_1 :  rice mat_2 = 0.2 : 0.8 

 

           

(c) rice mat_1 :  rice mat_2 = 0.3 : 0.7                                      (d) rice mat_1 :  rice mat_2 = 0.4 : 0.6 

Figure 6-12: Radius and Ratio of layered ice model 
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Figure 6-13: Comparison of the force-displacement curve by Hice mat_1 : Hice mat_2  

(rice mat_1 : rice mat_2) ratio (100mm/s test speed) 

 

As shown in Figure 6-13, obtained trends were similar compared to the experimental results 

when the Hice mat_1: Hice mat_2 (rice mat_1 : rice mat_2) ratios were around 0.2 : 0.8 and 0.3 : 0.7. When 

the high pressure region was relatively small (ratio 0.1 : 0.9), comparison results showed a 

significant difference (magnitude was about 20-30% lower). On the other hand, obtained results 

compared to the experimental results was about the twice higher when the high pressure region 

was over-estimated (ratio 0.4 : 0.6).   

 

Ratios of 0.2 : 0.8 and 0.3 : 0.7 give results closer to the experiments (among the four different 

conditions). However, there was a sudden load drop for a ratio 0.2 : 0.8, in between 20 - 25mm 

displacement locations. This phenomenon did not occur for the experimental results. In addition, 



167 

 

magnitude of loads matched even better for the ratio 0.3 : 0.7; in addition, none of the abnormal 

trends were observe during numerical simulation. Therefore, the optimum ratio of Hice mat_1 : Hice 

mat_2 (rice mat_1 : rice mat_2) was determined to be 0.3 : 0.7 based on the comparison results. The 

determined ratio in this section was also applied to the numerical model extended to the 25cm 

diameter ice sample. 

 

 

6.5. Results of Numerical Analysis: 10cm Diameter Ice 

Sample 

 

The main focus of developing a numerical simulation model was to create a model that can be 

directly applied for different experimental conditions, such as different strain-rates or the size of 

the ice samples as discussed. In other words, the aim was to create a numerical simulation model 

that could be used in multiple conditions without any significant modification of ice material 

properties or simulation conditions. Figures 6-14 and 6-15 shows the comparison results of 

force-displacement curves between the proposed numerical simulations and experimental results. 
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Figure 6-14: Comparison of the force - displacement curve (1mm/s test speed) 

 

 

Figure 6-15: Comparison of the force-displacement curve (100mm/s test speed) 
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As shown in Figures 6-14 and 6-15, similarities between numerical simulations and experimental 

results can be identified in terms of qualitative and quantitative perspectives. 

 

The low speed test (Figure 6-14) showed a good agreement compared to the high speed test 

(Figure 6-15) because the typical spalling event occurs more often in the high speed tests than 

the low speed tests. Therefore, magnitude of ice load variations is relatively small in the low 

speed tests. The numerical simulations had not represented every spalling event that occurred in 

experimental results, as shown in the case of the high speed tests in Figure 6-14; however, the 

overall results of the numerical simulation model have shown similar trends. 

 

As shown in Figure 6-15, the experimental ice loads at certain displacements, at 9.0mm and 

18.0mm, vary dramatically from the numerical values. This is due to the fact that experiment was 

done as ‘stepped’ crushing method instead of ‘straight’ crushing method; hence, the variations in 

this range (at 9.0mm and 18.0mm in this case) were caused by the discontinuity of the obtained 

data rather than by the experiment itself (Kim et al., 2012). Therefore, a comparison between 

numerical simulations and experimental results will become similar qualitatively, if the curve is 

assumed to be continuous during the tests (as the result of the ‘straight crushing’ method). 

 

Figures 6-16 and 6-17 show the comparison of process pressure-area curves at each test 

condition. The experimental and numerical simulation results indicated similar trends in both 

cases. 
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Figure 6-16: Comparison of process pressure-area curves (100mm/s test speed) 

 

 

Figure 6-17: Comparison of process pressure-area curves (1mm/s test speed) 
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As mentioned earlier, numerical simulation results indicated a good agreement with respect of 

global loads.  

 

In addition, a comparative assessment of local load was also performed by comparing the spatial 

pressure distributions in each case. The following Figure 6-18 represents the results of spatial 

pressure distributions at each designed displacement. The spatial pressure distribution from 

experiment, plotted in Figure 6-16, was obtained from the results of the pressure measurement 

film. 

 

A separate segment set was defined in the numerical simulation on the contact surface (in 

structure side) to obtain the ‘interface pressure’, and the results are utilized to compare the spatial 

pressure distributions between the numerical simulations and experimental results. 

 

 

(a) Spatial pressure distribution at test step 1 (at displacement = 9mm) 
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(b) Spatial pressure distribution at test step 2 (at displacement = 18mm) 

 

 

(c) Spatial pressure distribution at test step 3 (at displacement = 27mm) 

Figure 6-18: Spatial pressure distribution plots (100mm/s test speed) 

 

As shown in Figure 6-18 (a), a spatial pressure distribution in the first step represented a similar 

trend. However, differences of spatial pressure distribution between numerical simulation and 

experimental results became significant as test step progresses. Variation of pressure patterns can 

be explained in terms of two ways; 
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1) Behavior of ice such as (a) the timing of spalling events of ice did not coincide between 

numerical simulations and experimental results and (b) the size of spall was not identical, even 

though the failure criteria option was applied to simulate spalling events as close as possible. 

This induced the difference in the shape of the pressure distribution between the numerical 

simulation and experimental test results. 

 

2) Characteristics of the pressure measurement film itself encouraged the difference as discussed 

by Kim et al. (2012; 2014), which means that spatial pressure distributions obtained through 

experiments may have been overestimated by the pressure measurement film. Figures 6-19 and 

6-20 represent spatial pressure-area curves at a given data set. 

 

 

Figure 6-19: Spatial pressure-area curves (1mm/s test speed) 
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Figure 6-20: Spatial pressure-area curves (100mm/s test speed) 

 

Obtained results from numerical simulations indicated a somewhat lower magnitude as expected. 

However, results can be similar if the appropriate correction factor is applied. In this specific 

case, modified spatial pressure-area curves are plotted and showed a good agreement if a 

correction factor was applied as αc = 2.0 (see Figures 6-21 and 6-22). A further study may 

require to obtain more specific results. 
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Figure 6-21: Spatial pressure-area curves: Applying correction factor α = 2.0 (1mm/s test) 

 

 

Figure 6-22: Spatial pressure-area curves: Applying correction factor α = 2.0 (100mm/s test) 
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The proposed numerical simulation model was evaluated by comparing the obtained results with 

those from the experiment and the comparison showed a very good match for global load. In 

addition, spatial pressure distributions also investigated in terms of the local load and this topic 

requires in further study. 

 

 

6.6. Application to Larger Model 

 

As mentioned earlier, verification of the applicability of the developed numerical simulation 

model to a larger model, was carried out without any modification. Experimental results obtained 

from a study, which conducted in the laboratory using a 25cm diameter cone-shaped ice 

specimen, were selected for the comparison purpose (details of test procedure were described in 

Chapter 4). The results of three types of indenter shape were chosen for verification purposes in 

this section (see Table 6-4). 

 

Table 6-4: Test condition (25cm diameter ice cone) 

 
Indenter 

shape 

Indenter angle 

(°) 

Cone angle 

(°) 

Test speed 

(mm/s) 

Test 1 Flat - 25 1 

Test 2 Flat - 25 100 

Test 3 Wedge 10 25 1 

Test 4 Conical 10 25 1 

Test 5 Wedge 10 25 100 

Test 6 Conical 10 25 100 
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Identical numerical simulation model was applied to evaluate the scalability of results, and the 

results compared. Force-displacement curves for each experimental and numerical simulation 

results are shown in Figures 6-23 and 6-24. 

 

 

Figure 6-23: Comparison of force-displacement curve on the flat indenter  

(Test 1: 25cm ice cone, 1mm/s test speed) 
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Figure 6-24: Comparison of force-displacement curve on a 10° conical indenter  

(Test 6: 25cm ice cone, 100mm/s test speed) 

 

All the detailed spalling events were not captured by the numerical simulation model (compared 

to small-scale ice cone), unlike experimental result. However, as shown in Figures 6-23 and 6-24, 

comparison results of the larger ice specimen showed a good agreement in terms of quantitative 

and qualitative aspects. These results confirmed that the proposed numerical simulation model 

can be expanded without any specific modification; even the indenter shape was not a simple flat 

surface. 

 

The behavior of ice as ‘material’ is distinctly different during different strain rate testing. Ductile 

behavior at low-strain rates and brittle behavior at high strain rates are observed (Schulson, 1990; 

1997). In addition, there is somewhat of a ‘transition’ region between these two distinctive 
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behaviors (Batto and Schulson, 1993). Therefore, the term ‘ice strength’ has to be used carefully 

in ice mechanics area (Sanderson, 1988). Dillenburg (2012) applied the procedure in which ‘Ice 

crushing energy (E)’ divided by the ‘Nominal crushed volume (V)’ when used to calculate the 

compressive ice strength, and gave a valid result. The identical methodology was also adopted in 

this study to calculate the compressive ice strength between experimental and numerical 

simulations in this study. The trapezoidal rule of integration was applied to determine the ice 

crushing energy (E) as represented by Equation (6-1). 

 

  ∫       
    

 
 

 

 
∑    

 
                                         (6-1) 

 

Ice crushing energy (E) was obtained on each targeted displacement, and the results were 

compared. Nominal crushed volume (V) was determined using Equation (6-2). 

 

        
 

 

     
 

     
                                                          (6-2) 

 

Compressive ice strength ( ), at each targeted displacement, can be obtained by dividing the two 

terms (E and V) calculated by Equation (6-1) and (6-2), as represented by Equation (6-3). 

 

  
 

       
                                                               (6-3) 

 

Figure 6-25 represent a comparison of compressive ice strengths using a flat indenter, and the 

results of experimental and numerical simulation matched well in this case. 
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Figure 6-25: Comparison of compressive ice strength on a flat indenter  

(Test 1: 25cm ice cone, 1mm/s test speed) 

 

Figures 6-26 and 6-27 represent comparisons of compressive ice strength using the 10° conical 

and wedge indenter at 1mm/s and 100mm/s test speeds, respectively. 

 

In the case of the 10° conical indenter as shown in Figure 6-26, the overall trend of both curves 

follows a similar trend through each displacement. However, difference between experimental 

and numerical simulations was about 24.9% on an average. 
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Figure 6-26: Comparison of compressive ice strength on a 10° conical indenter  

(Test 4: 25cm ice cone, 1mm/s test speed) 

 

Figure 6-27 shows the result of a 10° wedge indenter case with 100mm/s test speed. As shown in 

Figure 6-27, overall trend of both curves follows a similar trend at each displacement. The 

difference between experimental and numerical simulations was less than 5% on an average. 
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Figure 6-27: Comparison of compressive ice strength on a 10° wedge indenter  

(Test 5: 25cm ice cone, 100mm/s test speed) 

 

Comparison of numerical simulation and experimental results (through Figures 6-24 to 6-27) 

confirmed that the proposed numerical simulation model is fully applicable from the flat as well 

as to concave-shaped indenters (more results can be found in Appendix I). 

 

First, the size of 10cm-diameter cone-shaped ice sample was adopted to verify the numerical 

model, and the model was extended to 25cm-diameter size. In this section, the various shapes of 

contact surface (flat, wedge and conical) were analyzed for the verification purpose and 

reasonable results could be confirmed. This represents that the scalability of the proposed model 

was proved without changing the simulation conditions or material properties. 
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Therefore, the numerical simulation model which meets the primary goal of this study, 

“numerical model which will be available for the general purpose along with various 

sizes/shapes of experimental condition without changing the simulation condition”,  is developed 

and verified through comparison of the experimental results. 
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Chapter 7 Conclusions 

 

This thesis provides the results of investigation on ice-structure interaction studies on non-planar 

surface through laboratory experiments in a cold room with two different shapes of indenter 

(wedge and conical) with different angles. A numerical simulation model was developed to 

predict ice loads acting on the flat and non-planar surface during ice-structure interaction, and 

the developed simulation model has been validated by experimental results. For the numerical 

model, the indenter was considered as rigid body and the ice modelled as a crushable foam 

material with added failure criteria. In this chapter, major findings from the above studies and 

recommendations for future research are summarized. 

 

With reference to the originally stated research objectives the following outcomes have been 

achieved: 

 

1. Investigate the effect of surface concavity in influencing ice loads and pressures during ice 

crushing using a series of systematic experiments on simplified concave shapes. 

Determine from the experiments if the load/pressure increases and if it does is the increase 

significant with reference to flat surface cases. 

 

The ice load and pressure has been shown to increase substantially for 3-d (conical) concave 

shapes and insignificantly for 2D (wedge) concave shapes. This difference is thought to be due to 

the different levels of ice confinement that can be achieved with the 3D shape over the 2D shape. 
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2. Adopt procedures, previously developed for using pressure measurement films on a flat 

surface, to shaped surfaces in order to determine variations in spatial ice crushing pressure 

as influenced by the shape of the crushing surface. 

 

The pressure film measurement technique has been adapted to non-planar surfaces and the 

previous procedures used to demonstrate the differences in pressures generated on the concave 

shapes. It is likely that the techniques developed for this study would work equally well for 

convex shapes. 

 

3. Develop a numerical model of the ice crushing process against a concave surface that 

correctly captures both the global load variation and the local and spatial pressure 

variation as a crushing event proceeds. 

 

The numerical model developed for LS-DYNA
®
, using the crushable foam model with modified 

material properties and a two-layer material showed good agreement with the measured loads 

and pressures for both flat and concave surfaces. This model is believed to be suitably general to 

allow extrapolation to other shapes of ice and/or indenting surface. 

 

4. Develop preliminary recommendations as to whether existing standards concerning ice 

loads on planar surfaces should be modified to account for the concave surfaces that 

commonly arise in ships subject to denting from ice loads. 
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The evidence from this study is that 3D concave shapes where ice confinement is increased 

substantially from flat surface cases can lead to significantly increased ice loads. This indicates 

that ice loads should be assessed considering the shape of the structure they are bearing on and 

that flat surface crushing tests do not adequately capture the load characteristics for concave 

structural shapes. 

 

These conclusions along with some recommendations for follow-on work are discussed in more 

detail in the following sections.  

 

 

7.1. Conclusions 

 

7.1.1. Ice Crushing Pressure/Load on Non-Planar Surface 

 

Two different shapes of concave indenter were considered in order to determine the 

characteristics of ice behavior against on non-planar surface. Wedge and conical-shaped 

indenters were designed to represent a simplified ‘concave’ shape in ship structure due to 

accidental dent or existing structural shape. Obtained test results were compared with existing 

test data against rigid flat indenters. Different shapes/angles of the indenter and ice samples, test 

speed, and crushing method have been adopted as test conditions. The contact area was defined 

to plot the process pressure-area curve. Pressure distributions and patterns of each of the test 

were evaluated using the pressure measurement film. Previously developed procedures were 

applied successfully to the concave surface indenters without any major modification. 
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Development of ice loads/pressures influenced by the confinement effect were evaluated. 

Important conclusions derived from the above study are as follows; 

 

1) Overall, a higher ice load was measured against concave-shaped indenter. This was most 

evident in the conical indenter as this shape always presented higher ice loads due to the 

confinement effect provided by crushed ice trapped in the shape. In the case of conical-shaped 

indenter, the measured ice load was about 2.7 times (on average) greater compared to the flat 

indenter. Higher ice loads against the conical-shaped intentors imply that there are certain load 

scenarios that concave-shaped structure will experience higher ice loads compared to the flat 

structure. 

 

In the case of the wedge-shaped indenter, measured ice loads showed only about 1.01 times (on 

average) higher load than flat indenters. The wedge-shaped indenter presented a slightly larger 

ice load for particular cases (generally when the wedge angle was less than 10°), but the results 

measured in this study were not significant when compared with a conical intentor. 

 

The fact that the wedge−shaped indenter yields almost the same result in terms of global load as 

a flat indenter indicates that confinement effects can be relatively easily relieved and that shapes 

that provide an outlet for extruded ice in one or more directions do not suffer from the same 

degree of load amplification that a shape that fully confines the contact area. This conclusion 

applies to the load but the pressure distribution for the wedge shape was shown to be different 

and resulted in areas of higher local pressure than the flat surface case. 
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Table 7-1: Effect of indenter shape (25° ice cone, 1mm/s test speed) 

Indenter shape Indenter angle (°) Test Speed (mm/s) Force (ratio) 

Flat 0 1 1.00 

Conical 10 1 3.65 

Wedge 10 1 1.02 

 

Table 7-2: Effect of indenter shape (25° ice cone, 100mm/s test speed) 

Indenter shape Indenter angle (°) Test Speed (mm/s) Force (ratio) 

Flat 0 100 1.00 

Conical 10 100 2.63 

Wedge 10 100 1.01 

 

2) The width and height of the ice crushing pressure pattern were evaluated. Overall, there was 

no significant difference in pressure width regardless of test conditions. However, height of 

pressure patterns was affected by test speed (high test speed introduced a wider pressure pattern) 

due to frequent spalling events during processes. 

 

3) Effect of cone angle, test speed and ice sample shape was evaluated through the analysis. 

Small cone angles and slow test speeds showed relatively higher ice loads. In addition, cone-

shaped ice showed greater ice loads than cylindrical ice samples. It can be seen that the effects of 

cone angle and ice sample shape were related to the development of confinement. 
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7.1.2. Numerical Simulation 

 

A valid numerical simulation model has been developed, based on results of small-scale 

laboratory compressive ice crushing tests in this study. Primarily, a numerical simulation model 

has been developed to model ice crushing against a flat surface. In addition, evaluations of 

scalability and compatibility were performed by considering 2.5 times larger-sized ice samples 

and various indenter shapes for the proposed numerical model. Consequently, the proposed 

model was determined to be valid through the verification analysis. The conclusions obtained in 

this study can be summarized as follows; 

 

1) The numerical simulation model of the compressive cone-shaped and cylindrical ice tests 

were developed using LS-DYNA
®
. An improved crushable foam material property and failure 

criteria (max. principal stress) were applied to simulate a realistic behavior of the ice crushing 

processes. Diverse simulation parameters, for example, mesh size, failure criteria, was analyzed 

to obtain an optimal numerical simulation condition. The applicability of the proposed numerical 

simulation model was verified from the viewpoint of global load variation. In addition, the global 

and spatial pressure variations (local  load) were also reviewed. 

 

2) The evaluation of the scalability of the proposed numerical simulation model was conducted 

and validated (expanded to the 25cm diameter cone-shaped ice sample tests). Based on this 

applicability of the proposed numerical simulation model, a series of numerical simulations can 

be conducted considering various parameters and variables to investigate the influence of each 

selected parameter. Comparison of numerical simulation and experimental results confirmed that 
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the proposed numerical simulation model is fully applicable from the flat as well as to concave-

shaped indenters without changing the simulation conditions or material properties. 

 

 

7.2. Recommendations 

 

7.2.1. Consideration of Structural Shape Effect 

 

The concave-shaped indenter was intended to explore the ice load development during ice-

structure interaction when the structure gets deformed to produce a dent prior to experiencing the 

ice loads. Results of the experimental studies, the numerical simulation and the regression 

equation developed confirm the fact that, the structure may experience nearly three times higher 

ice loads with dented structural surface. The occurrence of unexpected dents in structure due to 

excessive ice load is not a desirable situation in respect of the quality of ship hull. 

 

However, as identified from the results obtained in this study, a structure may experience up to 

three times higher ice load acting on the structure when the ice load is applied repeatedly against 

the deformed hull such as in the conical shape (most common deformed shape of the structure 

generated by external loads). This means that a ship structure may experience a further damage, 

where already damaged by excessive overload due to the shape effect. 

 

The phenomenon of load increment, caused by structural shape, has not previously been studied. 

In addition, existing ice class rules do not consider structural shape effect. In this study, the 
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results obtained through the experiments clearly confirmed that consideration of the structural 

shape effects should be undertaken. 

 

Therefore, the necessity for taking account of additional ice loads may be induced by structural 

deformation (shape effect) becomes very important. Consideration is required at the design stage 

(or update in ice class rules) for ice-going ships that are expected to encounter ice-ship collisions 

during a service period in terms of risk management. 

 

7.2.2. Ice Crushing Pressure/Load Experiments on Non-Planar Surface 

 

In this study, preliminary results on the effect of formation of ice loads/pressures against a 

concave surface were examined. However, realistic Arctic regions, associated with ice-structure 

interaction scenarios, are more extensive and diverse. 

 

In addition, only limited results of test condition were analyzed due to limitations in the 

experimental environment during this study. Therefore, the following suggestions will enhance 

the quality of further study and more significant results will be able to  reveal on this topic. 

 

1) For more precise assessment regarding the effect of wedge shape indenter, additional tests 

need to be conducted where the angle of indenter and the ice cone matched. Tightness of the gap 

between the two bodies will exclude the effect of void space interference between two objects 

and will maximize the confinement effect. 
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2) Tests using different indenter shapes and ice sample shapes will be valuable to understand the 

effect of shapes more precisely. In addition, a large-scale test and numerical simulation (close to 

a real-scale ice in the Arctic region) will give a better understanding of the size effects. 

 

7.2.3. Numerical Simulation 

 

The following comments will be useful to be considered in future research investigation: 

 

1) Additional consideration of ice model and material properties, such as, different failure 

criteria, simulation options, would be required in order to obtain more precise results in terms of 

global and local ice loads. Furthermore, applying and comparison of results by different analysis 

methods as discussed in the literature review (SPH, CEM) will also be valuable. 

 

2) An ice specimen 2.5 times larger was chosen to conduct verification analysis of scalability in 

this study, and a good results were obtained. In addition, ice sizes 10 or 20 times larger will also 

be required (a real scale that can be encountered in the arctic condition) for the verification 

purposes. 
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Appendix A Verification of Stepped 

Crushing Method 

 

In order to create spatial pressure-area curves using the pressure measurement film, the pressure 

pattern at a specific instant of a collision needs to be measured. A conventional crushing method 

(defined as a straight crushing method) cannot sample the pressure pattern during the test 

therefore; a new approach needs to be adopted. In this study, a ‘stepped’ crushing method was 

employed. Details regarding the ‘stepped’ crushing method is well described by Kim et al. (2012; 

2013; 2014) and Ulan-Kvitberg (2012). 

 

 

Figure A-1: Comparison of ‘straight’ and ‘stepped’ crushing method (reproduced by Kim) 
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Appendix B Active vs. Activated Area 

 

It is important to categorize a clear concept of the obtained pressure patterns (contact area) 

appearing after experiment using the pressure measurement film. The comparison of the ‘Active’ 

and ‘Activated’ area is described by Kim et al. (2012; 2014). 

 

 

(a) Step 1-1 

 

              

                        (b) Step 1-2                                                                  (c) Step 1-3 

Figure B-1: Concept of ‘Active’ and ‘Activated’ area (reproduced by Kim) 
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Appendix C Verification of Resolution 

Sensitivity 

 

 

C.1. Activated Area Comparison 

 

Figures C-1 to C-6 represent the activated area comparison at each crushing steps considering all 

five different resolutions (pixel size). The total activated area did not differ significantly with 

varying resolution. 

 

 

Figure C-1: Comparison of activated area by pixel size (Test 2) 
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Figure C-1: Comparison of activated area by pixel size (Test 3) 

 

   

Figure C-3: Comparison of activated area by pixel size (Test 5) 
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Figure C-4: Comparison of activated area by pixel size (Test 6) 

 

 

Figure C-5: Comparison of activated area by pixel size (Test 7) 
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Figure C-6: Comparison of activated area by pixel size (Test 8) 

 

Tables C-1 to C-3 represent the activated area comparison at each crushing step considering all 

five different resolutions (pixel size). As mentioned, the activated area was not significantly 

affected by resolution. 

 

Step 1: Test 3 and 4 both satisfied the ±5% analysis criteria. Approximately 37.5% of the 

obtained results fell outside the ±5% designed range. Only 9.4% fell outside the ±10% designed 

range. 

 

 

 

 

 



216 

 

Table C-1: Results of activated area: Step 1 

Pixel size 

(mm) 
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 

5.0 
500.00 

(+7.0) 

475.00 

(-8.2) 

275.00 

(-3.4) 

225.00 

(+1.8) 

225.00 

(+4.0) 

675.00 

(+8.0) 

250.00 

(+17.9) 

250.00 

(+13.6) 

2.5 
462.50 

(-1.0) 

500.00 

(-3.4) 

275.00 

(-3.4) 

218.75 

(-1.1) 

231.25 

(+6.9) 

687.50 

(+10.0) 

231.25 

(+9.0) 

225.00 

(+2.2) 

1.0 
472.00 

(+1.0) 

513.00 

(-0.9) 

275.00 

(-3.4) 

221.00 

(-0.1) 

230.00 

(+6.3) 

663.00 

(+6.1) 

219.00 

(+3.2) 

229.00 

(+4.1) 

0.5 
475.00 

(+1.7) 

514.50 

(-0.6) 

279.75 

(-1.7) 

225.00 

(+1.8) 

226.50 

(+4.7) 

664.25 

(+6.3) 

218.00 

(+2.8) 

233.50 

(+6.1) 

0.25 467.25 517.44 284.56 221.13 216.31 624.94 212.13 220.06 

 

Step 2: Tests 1, 2, 4, and 8 satisfied the ±5% analysis criteria. Approximately 21.9% of the 

obtained results fell outside the ±5% designed range. Only 3.1% fell outside the ±10% designed 

range. Except the test 4, the majority of the results were within the designed range of ±5% 

regardless of the resolution. 

 

Table C-2: Results of activated area: Step 2 

Pixel size 

(mm) 
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 

5.0 
1900.0 

(-1.3) 

2375.0 

(+2.7) 

1200.0 

(-2.5) 

1000.0 

(+9.3) 

1525.0 

(+5.9) 

2150.0 

(+9.8) 

1000.0 

(-10.6) 

1200.0 

(+4.0) 

2.5 
1900.0 

(-1.3) 

2243.8 

(-3.0) 

1225.0 

(-0.4) 

968.75 

(+5.9) 

1418.8 

(-1.4) 

1987.5 

(+1.5) 

1081.3 

(-3.3) 

1106.3 

(-4.1) 

1.0 
1917.0 

(-0.4) 

2284.0 

(-1.2) 

1224.0 

(-0.5) 

970.00 

(+6.0) 

1407.0 

(-2.2) 

1994.0 

(+1.8) 

1093.0 

(-2.3) 

1118.0 

(-3.1) 

0.5 
1920.8 

(-0.2) 

2263.0 

(-2.1) 

1231.8 

(+0.1) 

968.25 

(+5.8) 

1409.5 

(-2.1) 

1999.8 

(+2.1) 

1103.0 

(-1.4) 

1126.0 

(-2.4) 

0.25 1924.5 2312.4 1230.4 914.94 1439.4 1958.3 1118.6 1153.7 
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Step 4: Tests 3, 5, and 7 satisfied the ±5% analysis criteria. Approximately 18.8% of the obtained 

results fell outside the ±5% designed range. None of the results fell outside the ±10% designed 

range. This indicates that the sensitivity of resolution decreases when the activated area (as test 

step progress) is increased. 

 

Table C-3: Results of activated area: Step 4 

Pixel size 

(mm) 
Test 3 Test 4 Test 5 Test 7 

5.0 
5625.0 

(-0.7) 

2675.0 

(-2.9) 

5575.0 

(-4.6) 

3675.0 

(+1.1) 

2.5 
5606.3 

(-1.0) 

2550.0 

(-7.5) 

5618.8 

(-3.9) 

3712.5 

(+2.2) 

1.0 
5671.0 

(+0.1) 

2505.0 

(-9.1) 

5573.0 

(-4.6) 

3679.0 

(+1.2) 

0.5 
5673.3 

(+0.2) 

2529.3 

(-8.2) 

5583.8 

(-4.5) 

3675.8 

(+1.2) 

0.25 5663.4 2756.1 5844.6 3633.0 

 

 

C.2. Total Force Comparison 

 

Figures C-7 to C-12 show a comparison of the total load at each step of the tests at the varying 

resolutions. In contrast to the comparison of the activated area, the calculated total load 

represents a higher sensitivity to resolution. 
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Figure C-7: Comparison of total force by pixel size (Test 2) 

 

   

Figure C-8: Comparison of total force by pixel size (Test 3) 
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Figure C-9: Comparison of total force by pixel size (Test 5) 

 

 

Figure C-10: Comparison of total force by pixel size (Test 6) 
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Figure C-11: Comparison of total force by pixel size (Test 7) 

 

 

Figure C-12: Comparison of total force by pixel size (Test 8) 
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Tables C-4 and C-5 show a comparison of the total load at each step of the tests at varying 

resolutions. Again, the calculated total load shows that it is highly sensitive to resolution, 

compared to the activated area. Comparative tables for each step offer a more detailed look at the 

data and are shown in Tables C-4 and C-5. 

 

Step 2: 71.9% of the results fell outside of the ±5% designed range. 40.6% fell outside of the ±10% 

designed range. Tests 1, 4, 5, 6 and 7 fell outside the ±5% range regardless of the pixel size, 

while Tests 1 and 7 fell outside of the specified ±10% range. A little improvement was observed 

in resolution sensitivity for expanding contact area, but it was not significant. 

 

Table C-4: Results of total force: Step 2 

Pixel size 

(mm) 
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 

5.0 
36.01 

(+10.7) 

44.70 

(+1.1) 

17.68 

(-4.2) 

24.51 

(-15.3) 

12.82 

(+5.1) 

16.18 

(+8.3) 

22.85 

(+34.6) 

15.90 

(+0.3) 

2.5 
36.12 

(+11.1) 

45.86 

(+3.8) 

17.77 

(-3.7) 

30.48 

(+5.3) 

13.26 

(+8.7) 

16.79 

(+12.4) 

21.54 

(+26.9) 

17.04 

(+7.4) 

1.0 
35.98 

(+10.6) 

46.25 

(+4.7) 

18.45 

(-0.1) 

31.84 

(+10.0) 

13.22 

(+8.4) 

16.57 

(+10.9) 

21.45 

(+26.3) 

17.16 

(+8.2) 

0.5 
36.15 

(+11.1) 

46.26 

(+4.7) 

18.41 

(-0.2) 

31.51 

(+8.9) 

13.33 

(+9.3) 

16.74 

(+12.0) 

21.41 

(+26.1) 

17.25 

(+8.8) 

0.25 32.52 44.19 18.46 28.94 12.20 14.94 16.98 15.86 

 

Step 3: 75.0% of the results fell outside of the ±5% designed range while 25.0% fell outside of 

the ±10% designed range. This indicates an improvement from step 1 to step 4, although the 

improvement was not significant compared to the activated area case. 
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Table C-5: Results of total force: Step 3 

Pixel size 

(mm) 
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 

5.0 
45.70 

(+9.0) 

49.84 

(+17.0) 

36.86 

(+2.8) 

27.50 

(+0.9) 

41.71 

(+10.3) 

53.36 

(+9.4) 

30.36 

(-2.6) 

36.63 

(+0.5) 

2.5 
44.36 

(+5.8) 

47.40 

(+11.2) 

35.58 

(-0.8) 

29.34 

(+7.7) 

41.35 

(+9.4) 

55.46 

(+13.7) 

32.14 

(+3.1) 

38.85 

(+6.6) 

1.0 
44.75 

(+6.8) 

47.22 

(+10.8) 

35.58 

(0.0) 

29.29 

(+7.5) 

41.25 

(+9.1) 

53.85 

(+10.4) 

32.80 

(+5.2) 

39.92 

(+9.5) 

0.5 
44.45 

(+6.1) 

46.96 

(+10.2) 

35.70 

(-0.4) 

29.65 

(+8.8) 

41.29 

(+9.2) 

53.77 

(+10.2) 

33.30 

(+6.8) 

39.47 

(+8.3) 

0.25 41.91 42.61 35.85 27.25 37.81 48.79 31.17 36.45 

 

C.3. Pressure Distribution Comparison 

 

Figures C-13 to C-38 show the pressure distributions for each step of the test. As shown in the 

main text, 5.0 mm and 2.5mm pixel size does not give an adequate representation of the pressure 

pattern. According to the list of Figures C-13 to C-38, it is confirmed that 1.0 mm pixel size give 

a better representation of detailed pressure distribution. 
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Figure C-13: Pressure distribution of Test 1-Step 3 

 

 

Figure C-14: Pressure distribution of Test 2-Step 1 
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Figure C-15: Pressure distribution of Test 2-Step 2 

 

 

Figure C-16: Pressure distribution of Test 2-Step 3 



225 

 

 

Figure C-17: Pressure distribution of Test 3-Step 1 

 

 

Figure C-18: Pressure distribution of Test 3-Step 2 
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Figure C-19: Pressure distribution of Test 3-Step 3 

 

 

Figure C-20: Pressure distribution of Test 3-Step 4 
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Figure C-21: Pressure distribution of Test 4-Step 1 

 

 

Figure C-22: Pressure distribution of Test 4-Step 2 
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Figure C-23: Pressure distribution of Test 4-Step 3 

 

 

Figure C-24: Pressure distribution of Test 4-Step 4 
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Figure C-25: Pressure distribution of Test 5-Step 1 

 

 

Figure C-26: Pressure distribution of Test 5-Step 2 
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Figure C-27: Pressure distribution of Test 5-Step 3 

 

 

Figure C-28: Pressure distribution of Test 5-Step 4 
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Figure C-29: Pressure distribution of Test 6-Step 1 

 

 

Figure C-30: Pressure distribution of Test 6-Step 2 
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Figure C-31: Pressure distribution of Test 6-Step 3 

 

 

Figure C-32: Pressure distribution of Test 7-Step 1 
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Figure C-33: Pressure distribution of Test 7-Step 2 

 

 

Figure C-34: Pressure distribution of Test 7-Step 3 
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Figure C-35: Pressure distribution of Test 7-Step 4 

 

 

Figure C-36: Pressure distribution of Test 8-Step 1 
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Figure C-37: Pressure distribution of Test 8-Step 2 

 

 

Figure C-38: Pressure distribution of Test 8-Step 3 
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Appendix D Comparison of Defined Contact 

Area 

 

Comparison of ‘Nominal’ and ‘Projected’ contact areas between each test parameters 

(shape/angle of indenter, shape/angle of the ice sample) are shown in Figures D-1 to D-5. 

 

 

Figure D-1: Comparison of Anom. vs. Aproj. (25° ice cone, 20° wedge indenter) 
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Figure D-2: Comparison of Anom. vs. Aproj. (35° ice cone, 10° wedge indenter) 

 

 

Figure D-3: Comparison of Anom. vs. Aproj. (35° ice cone, 20° wedge indenter) 
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Figure D-4: Comparison of Anom. vs. Aproj. (25° ice cone, 10° conical indenter) 

 

 

Figure D-5: Comparison of Anom. vs. Aproj. (35° ice cone, 10° conical indenter) 
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Appendix E Force-Displacement History/ 

Process Pressure-Area Curve/Compressive 

Ice Strength Comparison 

 

 

Force-displacement history, process pressure-area curve and compressive ice strength depending 

on the test speed and the cone angle/cylindrical ice were compared, followed by each test 

condition. 

 

E.1. 35° Ice Cone, 1mm/s Test Speed 

 

Force-displacement curve: 10° conical indenter test showed a higher load compared to the flat 

and 10°/20° wedge indenter test. 20° wedge indenter gave a higher load at first (displacement up 

to 25mm); however, a load against flat indenter showed relatively higher loads than a 10° wedge 

indenter, after this displacement. 

 

Process pressure-area curve: 10° conical indenter showed a higher pressure level compared to the 

other indenter. 10°/20° wedge indenter showed a much lower pressure level than a flat indenter 

case. 
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Compressive ice strength: 10° conical indenter showed the largest values in overall contact area. 

The compressive ice strength of 10° wedge indenter was lower than flat indenter. 

 

 

Figure E-1: Force-displacement history (35° ice cone, 1mm/s test speed) 
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Figure E-2: Process pressure-area curve (35° ice cone, 1mm/s test speed) 

 

 

Figure E-3: Compressive ice strength (35° ice cone, 1mm/s test speed) 
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E.2. 35° Ice Cone, 100mm/s Test Speed 

 

Force-displacement curve: Unlike the previous results, the level of force showed almost identical 

trends regardless of indenter shape and angle. 

 

Process pressure-area curve: An overall trend of process pressure-area curve was also similar for 

all indenter shapes and angles. 

 

Compressive ice strength: Similar to the previous results, slightly higher loads were measured 

using 20° wedge indenter, during the first stage. The results were almost identically for other 

indenter cases. 

 

 

Figure E-4: Force-displacement history (35° ice cone, 100mm/s test speed) 



243 

 

 

Figure E-5: Process pressure-area curve (35° ice cone, 100mm/s test speed) 

 

 

Figure E-6: Compressive ice strength (35° ice cone, 100mm/s test speed) 



244 

 

E.3. Cylindrical Ice, 100mm/s Test Speed 

 

Force-displacement curves: Magnitude of load was similar regardless of the indenter angle, and 

the location of peak force occurrence was at the maximum depth of the indenter as discussed in 

the test. In the case of 10° & 20° wedge indenters, the maximum depth and the time of the peak 

force was nearly identical to the 1mm/s test case. In addition, the position of the peak force in 

case of 30° wedge indenter was around ~88% of the maximum depth. 

 

Process pressure-area curve: No significant effect of indenter angle was observed similar to 

1mm/s tests. However, the pressure against 30° wedge indenter was higher than 10° and 20° 

wedge indenter. 

 

Compressive ice strength: Magnitude and the overall trends of compressive ice strengths were 

also identical when compared with 1mm/s test case (1/50 magnitude scale). 
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Figure E-7: Force-displacement history (cylindrical ice, 100mm/s test speed) 

 

 

Figure E-8: Process pressure-area curve (cylindrical ice, 100mm/s test speed) 
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Figure E-9: Compressive ice strength (cylindrical ice, 100mm/s test speed) 
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Appendix F Pressure Distribution Map 

 

F.1. Pressure Distribution Map: Cone-Shaped Ice Sample 

 

Figures F-1 to F-4 show an obtained pressure distribution for each test using pressure 

measurement film against wedge-shaped intentor. Cone-shaped ice samples were used. 

 

 

Figure F-1: Pressure distribution map of Test 2  

(10° wedge indenter, 35° ice cone, 100mm/s test speed) 

 

 

Figure F-2: Pressure distribution map of Test 3  

(10° wedge indenter, 25° ice cone, 1mm/s test speed) 
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Figure F-3: Pressure distribution map of test 17  

(20° wedge indenter, 35° ice cone, 1mm/s test speed) 

 

 

Figure F-4: Pressure distribution map of test 18  

(20° wedge indenter, 35° ice cone, 100mm/s test speed) 

 

F.2. Pressure Distribution Map: Cylindrical Ice Sample 

 

Figures F-5 and F-6 indicate that the pressure pattern developed from the outer to inner location 

as ice penetrated into the wedge-shaped indenter. The effect of test speed was not significant 

using the cylindrical ice samples. 
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Figure F-5: Pressure distribution map of test 6  

(30° wedge, cylindrical ice, 100mm/s test speed) 

 

 

Figure F-6: Pressure distribution map of test 10  

(10° wedge, cylindrical ice, 100mm/s test speed) 
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Appendix G Spatial Pressure-Area Curve 

(25cm Diameter Ice Sample) 

 

Figures G-1 to G-6 show the spatial pressure-area curve for each test. Process pressure-area 

curves were plotted as black-bold line. Spatial pressure-area curves for each step were plotted as 

colored-dotted line. The curve labeled as ‘PPA (Process Pressure-Area) trend’ on the graph was 

the connection of the end points of spatial pressure-area curve at each step. 

 

 

Figure G-1: Spatial pressure-area curve of Test 2  

(10° wedge, 35° ice cone, 100mm/s test speed) 
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Figure G-2: Spatial pressure-area curve of Test 3  

(10° wedge, 25° ice cone, 1mm/s test speed) 

 

 

Figure G-3: Spatial pressure-area curve of Test 4  

(10° wedge, 25° ice cone, 100mm/s test speed) 
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Figure G-4: Spatial pressure-area curve of Test 18  

(20° wedge, 35° ice cone, 100mm/s test speed) 

 

The results of ‘PPA trend’ using cylindrical ice samples tend to have more complexity as shown 

in Figures G-5 and G-6, because of the reduction of the contact area as the test step progresses in 

the case of cylindrical ice samples. 
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Figure G-5: Spatial pressure-area curve of Test 6 

(30° wedge, cylindrical ice, 100mm/s test speed) 

 

 

Figure G-6: Spatial pressure-area curve of Test 10  

(10° wedge, cylindrical ice, 100mm/s test speed) 
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Appendix H Contact Area/Pressure 

comparison: Flat vs. Concave Shape 

Indenter 

 

H.1. Results of Test against a Flat Indenter 

 

Table H-1 shows the results of an earlier study using a flat indenter. 

 

Table H-1: Results of using 10cm diameter ice cone test against flat indenter 

(a) Test 2 (30° ice cone, 1mm/s test speed) 

Step no. 

(Disp.) 

Nominal 

contact area 

(mm
2
) 

Nominal 

pressure 

(MPa) 

Activated 

contact area 

(mm
2
) 

Activated 

pressure 

(MPa) 

Aact./Anom. 

(%) 

Pact./Pnom. 

(%) 

1 (9mm) 763.41 4.48 517.44 28.77 67.78 641.47 

2 (18mm) 3053.63 7.25 2312.38 19.11 75.73 263.69 

3 (27mm) 6870.67 2.06 3539.38 12.04 51.51 583.66 

    Avg. 65.01 496.27 

 

(b) Test 4 (50° ice cone, 1mm/s test speed) 

Step no. 

(Disp.) 

Nominal 

contact area 

(mm
2
) 

Nominal 

pressure 

(MPa) 

Activated 

contact area 

(mm
2
) 

Activated 

pressure 

(MPa) 

Aact./Anom. 

(%) 

Pact./Pnom. 

(%) 

1 (15mm) 497.69 5.08 221.13 24.91 44.43 490.23 

2 (30mm) 1990.76 6.95 914.94 31.63 45.96 455.29 

3 (45mm) 4479.21 7.94 1715.94 15.88 38.31 200.07 

4 (55mm) 6691.17 11.23 2756.13 7.76 41.19 69.09 

    Avg. 42.47 303.67 



255 

 

(c) Test 5 (50° ice cone, 100mm/s test speed) 

Step no. 

(Disp.) 

Nominal 

contact area 

(mm
2
) 

Nominal 

pressure 

(MPa) 

Activated 

contact area 

(mm
2
) 

Activated 

pressure 

(MPa) 

Aact./Anom. 

(%) 

Pact./Pnom. 

(%) 

1 (15mm) 497.69 1.63 216.31 21.60 43.46 1324.81 

2 (30mm) 1990.76 3.15 1439.38 12.20 72.30 387.02 

3 (45mm) 4479.21 2.01 3865.94 9.78 86.31 487.52 

4 (55mm) 6691.17 1.72 5844.63 10.91 87.35 635.54 

    Avg. 72.36 708.72 

 

(d) Test 6 (30° ice cone, 100mm/s test speed) 

Step no. 

(Disp.) 

Nominal 

contact area 

(mm
2
) 

Nominal 

pressure 

(MPa) 

Activated 

contact area 

(mm
2
) 

Activated 

pressure 

(MPa) 

Aact./Anom. 

(%) 

Pact./Pnom. 

(%) 

1 (9mm) 763.41 1.26 624.94 21.91 81.86 1732.75 

2 (18mm) 3053.63 0.47 1958.31 14.94 64.13 3157.82 

3 (27mm) 6870.67 7.93 3773.31 12.93 54.92 163.01 

    Avg. 66.97 1684.53 

 

(e) Test 7 (50° ice cone, 100mm/s test speed) 

Step no. 

(Disp.) 

Nominal 

contact area 

(mm
2
) 

Nominal 

pressure 

(MPa) 

Activated 

contact area 

(mm
2
) 

Activated 

pressure 

(MPa) 

Aact./Anom. 

(%) 

Pact./Pnom. 

(%) 

1 (15mm) 497.69 3.01 212.13 26.39 42.62 877.19 

2 (30mm) 1990.76 2.62 1118.56 19.98 56.19 763.14 

3 (45mm) 4479.21 1.19 1909.88 16.32 42.64 1376.51 

4 (55mm) 6691.17 3.86 3633.88 13.96 54.31 361.84 

    Avg. 48.94 844.67 

 

(f) Test 8 (30° ice cone, 1mm/s test speed) 

Step no. 

(Disp.) 

Nominal 

contact area 

(mm
2
) 

Nominal 

pressure 

(MPa) 

Activated 

contact area 

(mm
2
) 

Activated 

pressure 

(MPa) 

Aact./Anom. 

(%) 

Pact./Pnom. 

(%) 

1 (9mm) 763.41 6.37 220.06 29.60 28.83 464.99 

2 (18mm) 3053.63 5.53 1153.69 15.86 37.78 287.02 

3 (27mm) 6870.67 5.80 3088.56 11.80 44.95 203.57 

    Avg. 37.19 318.53 
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H.2. 25cm Diameter Ice Sample Test against a concave shape 

indenter 

 

The difference of the contact area and pressure were even more increased using concave-shaped 

indenter as shown in Table H-2. The average ratio of the contact area showed a value of 42.5% 

(on average) and the pressure difference was about 5-40 times higher. 

 

Table H-2: Results of using 25cm diameter ice cone test against concave shape indenter 

(b) Test 2 (10° wedge, 35° ice cone, 100mm/s) 

Step No. 

(Disp.) 

Nominal 

contact 

area (mm
2
) 

Nominal 

pressure 

(MPa) 

Activated 

contact 

area (mm
2
) 

Activated 

pressure 

(MPa) 

Aact./Anom. 

(%) 

Pact./Pnom. 

(%) 

1 (15mm) 2097.61 6.43 1265.44 34.32 60.33 938.60 

2 (30mm) 8383.06 3.08 4430.56 23.83 52.85 1716.03 

3 (45mm) 18856.35 1.45 4392.63 25.52 23.30 1604.80 

4 (55mm) 28165.11 3.40 11164.56 18.63 39.64 1165.36 

    Avg. 44.03 1356.20 

 

(c) Test 3 (10° wedge, 25° ice cone, 1mm/s) 

Step No. 

(Disp.) 

Nominal 

contact 

area (mm
2
) 

Nominal 

pressure 

(MPa) 

Activated 

contact 

area (mm
2
) 

Activated 

pressure 

(MPa) 

Aact./Anom. 

(%) 

Pact./Pnom. 

(%) 

1 (9mm) 2177.61 3.77 1226.13 27.82 56.31 738.37 

2 (18mm) 8688.23 3.10 3110.44 22.24 35.80 717.6 

3 (27mm) 19531.86 3.73 7035.38 19.06 36.02 511.56 

    Avg. 42.71 655.76 
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(d) Test 4 (10° wedge, 25° ice cone, 100mm/s) 

Step No. 

(Disp.) 

Nominal 

contact 

area (mm
2
) 

Nominal 

pressure 

(MPa) 

Activated 

contact 

area (mm
2
) 

Activated 

pressure 

(MPa) 

Aact./Anom. 

(%) 

Pact./Pnom. 

(%) 

1 (9mm) 2177.61 5.44 1195.13 29.86 54.88 549.38 

2 (18mm) 8688.23 3.38 3756.38 25.05 43.24 741.23 

3 (27mm) 19531.86 2.33 6821.75 16.49 34.93 708.25 

    Avg. 44.35 666.29 

 

(e) Test 17 (20° wedge, 35° ice cone, 1mm/s) 

Step No. 

(Disp.) 

Nominal 

contact 

area (mm
2
) 

Nominal 

pressure 

(MPa) 

Activated 

contact 

area (mm
2
) 

Activated 

pressure 

(MPa) 

Aact./Anom. 

(%) 

Pact./Pnom. 

(%) 

1 (10mm) 1677.39 4.10 787.25 34.23 46.93 835.52 

2 (20mm) 6708.78 0.81 3391.25 27.90 50.55 3462.13 

3 (35mm) 20544.62 3.08 9226.94 24.60 44.91 799.28 

    Avg. 47.46 1698.97 

 

The difference became larger in case of the cylindrical ice test as shown in Table H-3. There was 

no big difference about the contact area. Otherwise, the pressure difference up to 300 times (a 

specific cases only) was observed (Test 10). 

 

Table H-3: Results of using cylindrical ice test against concave shape indenter 

(a) Test 5 (30° wedge, cylindrical ice, 1mm/s) 

Step No 

(Disp.) 

Nominal 

contact 

area (mm
2
) 

Nominal 

pressure 

(MPa) 

Activated 

contact 

area (mm
2
) 

Activated 

pressure 

(MPa) 

Aact./Anom. 

(%) 

Pact./Pnom. 

(%) 

1 (15mm) 7251.11 10.31 6652.19 36.31 91.74 352.02 

2 (30mm) 16976.55 2.31 12911.69 26.18 76.06 1134.24 

3 (45mm) 29176.31 3.97 12567.63 24.97 43.07 628.37 

4 (60mm) 43850.40 0.76 17417.94 18.99 39.72 2504.73 

5 (75mm) 57630.00 0.53 13030.63 17.03 22.61 3198.46 

    Avg. 54.64 1563.56 
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(d) Test 10 (10° wedge, cylindrical ice, 100mm/s) 

Step No 

(Disp.) 

Nominal 

area 

(mm
2
) 

Nominal 

pressure 

(MPa) 

Activated 

contact 

area (mm
2
) 

Activated 

pressure 

(MPa) 

Aact./Anom. 

(%) 

Pact./Pnom. 

(%) 

1 (15mm) 28774.43 0.93 27416.25 24.52 95.28 2638.88 

2 (30mm) 49828.00 0.02 21260.31 29.82 42.67 149113.44 

3 (45mm) 49828.00 0.50 5025.44 24.11 10.09 4829.51 

4 (60mm) 49828.00 0.23 6452.25 25.08 12.95 10947.52 

5 (75mm) 49828.00 0.67 7599.31 28.76 15.25 4290.33 

    Avg. 35.25 34363.94 
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Appendix I Results of Numerical Analysis: 

25cm Diameter Ice Sample 

 

I.1. Force-Displacement Curve 

 

Figures I-1 to I-3 shows the comparison results of force-displacement curve between the 

proposed numerical simulation model and experimental results for different test conditions. 

 

 

Figure I-1: Comparison of force-displacement curve (25cm ice cone, 100mm/s test speed) 
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Figure I-2: Comparison of force-displacement curve on a 10° wedge indenter  

(25cm ice cone, 1mm/s test speed) 

 

 

Figure I-3: Comparison of force-displacement curve on a 10° conical indenter  

(25cm ice cone, 1mm/s test speed) 
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Figure I-4: Comparison of force-displacement curve on a 10° wedge indenter  

(25cm ice cone, 100mm/s test speed) 
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I.2. Compressive Ice Strength 

 

Figures I-4 to I-6 represents a comparison of compressive ice strengths using a flat indenter and 

concave shape indenter. 

 

 

Figure I-5: Comparison of compressive ice strength on a flat indenter  

(25cm ice cone, 100mm/s test speed) 
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Figure I-6: Comparison of compressive ice strength on a 10° wedge indenter  

(25cm ice cone, 1mm/s test speed) 

 

 

Figure I-7: Comparison of compressive ice strength on a 10° conical indenter  

(25cm ice cone, 100mm/s test speed) 


