
For the best experience, open this PDF portfolio in

Acrobat X or Adobe Reader X, or later.

Get Adobe Reader Now!

http://www.adobe.com/go/reader

2-D Inversions of Gravity Data for Multi-Sided Polygons using Particle Swarm

Optimization.

by

© Scott Cranford

A Thesis submitted to the

School of Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science (Geophysics)

Department of Earth Science

Memorial University of Newfoundland

October 2014

St. Johns Newfoundland

ii

ABSTRACT

Since its introduction in 1995 particle swarm optimization (PSO) has been an area of

great interest for many optimization problems, including geophysical inversions, as it

does not use gradient information to find solutions. PSO is a global searching method,

which, in principle, should avoid local minima, and find the global minima. PSO operates

by moving a group of particles around the search space according to a simple

mathematical formula which is dependent on particle positions and velocities. The

particles movements are influenced by their own best known positions, pbest, and the

overall best known position, gbest, which is updated each iteration. This thesis presents a

method for inverting 2-D geophysical data using multisided polygons and PSO which has

never been investigated in the literature. The first implementation of the algorithm

presented below was designed to minimize several standard benchmark functions. The

second implementation augmented the existing algorithm by including a forward

modeling method, and model parameterization to invert 2-D gravity data. Investigations

were then carried out to discover more robust methods of parameterization and constraint

handling methods because unconstrained inversions tend to turn themselves inside-out,

i.e., become infeasible or geologically implausible. A penalty function was found to be

the best solution for constraint handling, with an appropriate penalty value. The algorithm

was tested with ten-sided models and noisy data, and returned excellent inversion results

for all obstacles presented to it.

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Dr. Colin G. Farquharson for all of his

immeasurable aid and guidance during the course of this thesis. Without him it would not

have been possible. Secondly, I would like to thank Dr. Charles Hurich for his

willingness to answer any questions that arose as my research progressed. Finally, I

would like to thank The Special Scholarships for Students to Pursue Graduate Studies

Related to Resource Development, Buchans Scholarship Fund of ASARCO Incorporated

and The School of Graduate Studies F. A. Aldrich Fellowship for the funding they

provided throughout the course of my graduate program.

iv

Table of Contents

ABSTRACT .. ii

ACKNOWLEDGEMENTS ... iii

Table of Contents ... iv

List of Tables ... viii

List of Figures .. ix

List of Appendices .. xvii

Chapter 1 : Introduction .. 1

Chapter 2 : Introduction to PSO .. 5

Chapter 3 : PSO for function minimization .. 17

3.1 Coding a minimization function .. 17

3.2 Testing PSO minimization performance on benchmark functions. 19

3.2.1 The First function of De Jong aka, the Sphere function 20

3.2.2 The Rosenbrock function .. 21

3.2.3 Rastrigins function .. 23

3.2.4 The Griewangk function ... 24

3.2.5 The Schaffer F6 Function ... 26

3.3 Minimization results and comparison .. 27

3.3.1 Minimization results for the sphere function. ... 28

v

3.3.2 Minimization results for the Rosenbrock function. .. 29

3.3.3 Minimization results for Rastrigins function. ... 30

3.3.4 Minimization results for the Griewangk function. .. 32

3.3.5 Minimization results for the Schaffer F6 function. ... 33

3.4 Conclusions. ... 34

Chapter 4 : Sides Inversion Method .. 36

4.1 Forward modeling theory ... 36

4.2 Converting function minimization code to an inversion algorithm 38

4.2.1 Inversion targets. ... 38

4.2.2 Model parameterization. ... 40

4.2.3 Synthetic data and data misfit function. .. 43

4.2.4 Constraint handling methods .. 45

4.3 Results .. 47

4.3.1 Unconstrained four-sided inversions .. 48

4.3.2 Unconstrained five-sided inversions ... 61

4.3.3 Constrained four-sided inversions .. 70

4.3.4 Constrained five-sided inversions ... 78

4.4 Conclusions .. 91

Chapter 5 : Constraint Handling and Points Methods .. 94

vi

5.1 Forward modeling methods and misfit function. ... 94

5.2 Model parameterization and inversion targets. .. 96

5.3 Constraint handling methods and required changes. ... 101

5.4 Results for five-side inversions with penalties, and six-sided points method. 103

5.4.1 Inversions of five-sided models with a penalty function value of 500 103

5.4.2 Inversions of five-sided models with a penalty function value of 50,000 114

5.4.3 Inversions of five-sided models with RIS method. ... 121

5.4.4 Inversion Results of six-sided model with points method of parameterization.

 .. 134

5.4.5 Advantages Parallel Python. ... 140

5.5 Conclusions. ... 148

Chapter 6 : Further Testing of Points Method .. 150

6.1 Introduction .. 150

6.2 Ten-sided inversion target, and noisy data creation. .. 151

6.3 Results .. 154

6.3.1 Results for ten-sided inversions of noise free data. .. 154

6.3.2 Results for ten-sided inversions using medium noise. 156

6.3.3 Inversion time differences ... 160

6.4 Conclusions .. 161

vii

Chapter 7 : Conclusions .. 163

Bibliography ... 165

Appendix ... 167

viii

List of Tables

Table 4.1: Inversion results of tests performed on four-sided models without constraints.

The columns are as follows: Test # is the number order in which the tests were

performed, misfit is the misfit achieved by the inversion, X1 is the left side coordinate,

X2 is the right side coordinate, Z1 is the coordinate of the top and Z2 is the coordinate of

the bottom. ... 56

Table 4.2: Inversion results of tests performed on five-sided models without constraints.

 .. 65

Table 4.3: Inversion results of tests performed on four-sided models with corner

switching constraints. ... 76

Table 4.4: Inversion results of tests performed on five-sided models with Corner

switching constraints. ... 79

Table 5.1: Inversion results for constrained five-sided example using a penalty function

value of 500. ... 106

Table 5.2: Results obtained from the five-sided constrained inversions with sides method

using a penalty value of 50,000. .. 117

Table 5.3: Results obtained from inversions with sides method using the RIS method and

10,000 iterations. .. 132

Table 5.4: Results obtained for inversions using the points method, with penalty value

50,000 on a six-sided model. ... 145

ix

List of Figures

Figure 1.1: Target and predicted models, with synthetic and predicted data....................... 1

Figure 2.1: Simplified model of PSO method for minimization or inversion (Yuan et al.,

2009). ... 7

Figure 2.2: Graph of median evaluations (cost) vs. population size (Carlisle and Dozier,

2001) .. 11

Figure 3.1: Python plot showing the sphere function between -5.12 and 5.12 with the

global minimum represented by the yellow dot. .. 21

Figure 3.2: Python plot showing the Rosenbrock function between -2.048 and 2.048 with

the global minimum represented by the yellow dot. .. 22

Figure 3.3: Python plot showing Rastrigins function between -5.12 and 5.12 with the

global minimum represented by the yellow dot. .. 23

Figure 3.4: Python plot showing the Griewangk function between -600 and 600 with the

global minimum represented by the yellow dot. .. 25

Figure 3.5: Python plot showing the Griewangk function between -5.12 and 5.12 with the

global minimum represented by the yellow dot. .. 25

Figure 3.6: Python plot showing the top view of the Schaffer F6 function between -20 and

20 with the global minimum represented by the yellow dot. ... 26

Figure 3.7: Python plot showing the Schaffer F6 function between -5.12 and 5.12 with the

global minimum represented by the yellow dot. .. 27

Figure 3.8: Plot of 2D sphere and an example convergence path. 28

Figure 3.9: Plot of the Rosenbrock function and an example convergence path. 30

x

Figure 3.10: Plot of the Rastrigins function and an example convergence path. 31

Figure 3.11: Plot of the Griewangk function and an example convergence path. 32

Figure 3.12: Plot of the Schaffer F6 function and an example convergence path. 34

Figure 4.4.1: Approximation of cross sectional shape using a polygon (Blakely, 1996). . 37

Figure 4.4.2: Initial inversion target (blue) as well as boundaries of the survey region

(black box), with the observation locations (red triangle). .. 39

Figure 4.4.3: Second inversion target considered in this chapter, five sides (blue)........... 40

Figure 4.4.4: Diagram showing how parameterization of four-sided objects, using the

sides method, is performed. ... 41

Figure 4.5: Diagram showing how parameterization of five-sided objects, using the sides

method, is performed. .. 42

Figure 4.6: Diagram of four-sided model with its synthetic data profile. 43

Figure 4.7: Diagram of five-sided model and its synthetic data. 44

Figure 4.8: Depiction of a four-sided model which has become infeasible by turning

inside out, and the predicted data it would generate plotted with the synthetic data. 47

Figure 4.9: Line plot of inversion results returned from tests on four-sided model without

constraints. ... 49

Figure 4.10: Diagram of predicted model from inversion result with misfit 226, with its

predicted data (red+), shown with the target model and the synthetic data (blue). 50

Figure 4.11: Diagram of predicted model from inversion result with misfit closest to

average value, with its predicted data (red+), shown with the target model and the

synthetic data (blue). .. 51

xi

Figure 4.12: Diagram of predicted model from inversion result with lowest misfit value of

this set, and its predicted data (red +), shown with the target model and the synthetic data

(blue). ... 52

Figure 4.13: Diagram of all model shapes returned for unconstrained four sided

inversions. .. 54

Figure 4.14: Diagram of target model (green corners and blue lines), with the eight

models with lowest misfit in this suite. .. 58

Figure 4.15: Diagram of target model (green corners and blue lines), with the eight

models with lowest misfit in this suite. .. 59

Figure 4.16: Diagram of target model (green corners and blue lines), with four highest

misfit models and four middle misfit models. ... 60

Figure 4.17: Line plot of inversion results returned from tests on five-sided model without

constraints. ... 62

Figure 4.18: Diagram of the predicted model and data (red +), for the highest inversion

result with misfit 189, shown with target model and synthetic data. 64

Figure 4.19: Model and predicted data result for test number 6 (red +), with synthetic

data. .. 67

Figure 4.20: Model and predicted data result for test number 12 (red +), with synthetic

data. .. 68

Figure 4.21: Model and predicted data result for test number 20 (red +), with synthetic

data. .. 69

xii

Figure 4.22: Line plot of inversion results returned from tests on four-sided model with

corner switching constraints. ... 70

Figure 4.23: Model and predicted data result for test with misfit value 86.0 (red +), with

synthetic data (blue). .. 71

Figure 4.24: Data difference plot for model 4, with misfit 86.0. 72

Figure 4.25: Data difference plot for model 12, with misfit 19.5. 73

Figure 4.26: Data difference plot for lowest misfit model returned, with misfit 0.1. 74

Figure 4.27: Plot of all model shapes returned from inversion of five-sided inversion with

corner switching constraints. ... 81

Figure 4.28: Line plot of inversion results returned from tests on five-sided model with

corner switching constraints. ... 82

Figure 4.29: Observed (blue) and predicted (red+) data for model 16, with misfit 607.55.

 .. 84

Figure 4.30: Data difference plot for models 16, 13, and 10 with misfit values 607.55,

492, and 432.31 respectively.. 85

Figure 4.31: Model shapes for test numbers 16, 13 and 10, with target model. 86

Figure 4.32: Observed (blue) and predicted (red+) data for model 6, with misfit 143.80. 88

Figure 4.33: Model shape for test number 6, with target model. 89

Figure 4.34: Data difference plot for model 6, misfit 143. .. 89

Figure 4.35: Model shapes for test numbers 11, 7 and 5, with target model. 90

Figure 4.36: Data difference plot for models 11, 7, and 5 with misfit values 1.12, 1.6, and

3.08 respectively. ... 90

xiii

Figure 5.1: Plot of two identical sets of synthetic data calculated using code for the sides

method and points method. .. 95

Figure 5.2: Plot of five possible shapes created by the new initialization procedure used

for the points method. .. 97

Figure 5.3: Depiction of simple and complex polygons: simple represents a feasible

model and complex a non-feasible model (Pierce 2013). .. 98

Figure 5.4: Demonstration of how the exterior angles of a polygon add to 360 degrees

(Pierce, 2013). .. 99

Figure 5.5: Example of a complex polygon with exterior angles adding to 360 degrees

(John, 2013). .. 99

Figure 5.6: Depiction of the six-sided model and synthetic data from the 4,5 and 6 sided

models, represented in light blue, red and dark blue respectively. 101

Figure 5.7: Plot of inversion results and average objective function value from

constrained five-sided tests using a penalty function with a value of 500. 105

Figure 5.8: Plot of the model returned in test inversion 10, with predicted and synthetic

data indicated by red crosses and the blue line respectively. ... 108

Figure 5.9: Plot of the models returned in test inversions 3 and 8 (green and red dots and

lines respectively), with predicted and synthetic data (green and red crosses, and blue line

respectively). .. 110

Figure 5.10: Predicted data (red+) and synthetic data (blue line) for run 7 of five-sided

example constrained with a penalty value of 500. ... 111

xiv

Figure 5.11: Predicted data (red+) with synthetic data (blue line) for run 9 of five-sided

example constrained with a penalty value of 500. ... 111

Figure 5.12: Plot of model shapes returned from test inversions 7 and 9 (and the true

model) for the five-sided examples constrained using a penalty function value of 500. . 112

Figure 5.13: Predicted data (red+) and synthetic data (blue line) for run 19 of five-sided

example constrained with a penalty value of 500. ... 113

Figure 5.14: Predicted data (red+) and synthetic data (blue line) for run 20 of five-sided

example constrained with a penalty value of 500. ... 114

Figure 5.15: Line plot of objective function values obtained from inversions using a

penalty value of 50,000. ... 116

Figure 5.16: Objective function value omitting the outlier of 28,013 116

Figure 5.17: Predicted data (red crosses) and model for run 20 using penalty value

50,000. .. 119

Figure 5.18: Predicted data (red crosses) and model for run 16 using a penalty of 50,000.

 .. 120

Figure 5.19: Set 1 of obtained misfit and average values from RIS method experiments

for five-sided objects with 5000 iterations. .. 122

Figure 5.20: Set 2 of obtained misfit and average values from RIS method experiments

for five-sided objects with 5000 iterations. .. 122

Figure 5.21: Set 3 of obtained misfit and average values from RIS method experiments

for five-sided objects with 5000 iterations. .. 123

xv

Figure 5.22: Plot of predicted data of model 7 (red) of the RIS constrained tests with

synthetic data (blue). The misfit value of model 7 is 591. ... 125

Figure 5.23: Plot of predicted data of model 14 (red) of the RIS constrained tests with

synthetic data (blue). The misfit value of model 14 is 986. ... 126

Figure 5.24: Plot of predicted data of model 8 (red) of the RIS constrained tests with

synthetic data (blue). The misfit value of model 8 is 13912. ... 127

Figure 5.25: Data difference plot for predicted data for models 7, 14, 19, and 12 from the

RIS, five-sided constrained inversions. ... 127

Figure 5.26: Plot of constrained models for each of the three subsets of results. 129

Figure 5.27: Inversion results and average misfit values of results from RIS method

experiments with 10,000 iterations, outliers included. .. 130

Figure 5.28: Inversion results and average misfit values of results from RIS method

experiments with 10,000 iterations, outliers removed. .. 131

Figure 5.29: Line plot of inversion results and average misfit values from six-sided points

method experiments. .. 136

Figure 5.30: Plot of predicted data (green line) for six-sided inversion model 11 (which

has a misfit 88.52); observed data are shown by the blue line. 137

Figure 5.31: Plot of model shapes returned from tests with points method and penalty

function for the six-sided examples. .. 139

Figure 5.32: Data difference plots for models 11, 16, and 18 from tests of points method

on six-sided targets. ... 139

xvi

Figure 6.1: Ten-sided inversion target (blue) inside the survey region, which is outlined in

black. .. 151

Figure 6.2: Diagram of the six- and ten-sided models, with their synthetic data plotted

above. Six-sided model is in red, with pink gravity curve. Ten-sided model is blue with

blue gravity curve. ... 152

Figure 6.3: Synthetic data plots for no noise (smooth blue), low noise (red), medium noise

(jagged blue) and high noise (yellow). .. 153

Figure 6.4: Line plot of noise-free 10 sided inversion results (blue) with average misfit

value (red). ... 154

Figure 6.5: Plot of predicted data(green) for run 2 (which has a misfit of 80.71) of the

noise-free ten-sided inversions. The blue curve shows the noise-free observed data...... 155

Figure 6.6: Plot of the noise-free synthetic data (blue) with the medium noise data

(yellow). ... 156

Figure 6.7: Plot of predicted data for model 11, (misfit 956.51) (green), with noise free

(blue) and medium noise (yellow) data sets... 157

Figure 6.8: Plot of predicted data for model 1, which has a misfit 1103.16 (green), with

noise free (blue) and medium noise (yellow) data sets. ... 159

Figure 6.9: Diagram of models 1 and 11, with base model for reference. 160

xvii

List of Appendices

Appendix A…………………………………………………………………………….165

Appendix B…………………………………………………………………………….Disc

1

Chapter 1 : Introduction

Solid earth geophysical studies generally aspire to learn something about the interior of

the earth from measurements of physical quantities taken at or above the earths surface

Blakely (1996). The type of measurement that will be considered during the course of this

research is the anomalous gravitation field caused by a buried object. There are several

methods in which objects or structures in the subsurface can be deduced using data

collected at the surface. Two methods in particular of interest in this case are the forward

modeling method and the inversion method. The forward method is essentially a three

step process which can be explained using Figure 1.1.

Figure 1.1: Target and predicted models, with synthetic and predicted data.

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

2

If the green rectangle is the true buried body, then the green curve is the anomalous field

associated with it. The three steps to the forward modeling method are as follows:

first create an initial model for the source body based on geologic and geophysical

information; this is represented by the buried red rectangle in Figure 1.1. Next calculate

the anomaly associated with the predicted model and compare it to the observed anomaly;

the calculated anomaly is the red curve, which when compared to the green observed

anomaly requires some improving. Lastly, the model parameters, such as the length,

height, position, and density, are adjusted in order to improve the fit between the two

anomalies. These three steps are repeated until the difference between the curves of the

two anomalies is deemed acceptable (Blakely, 1996).

Unlike the forward modeling method, where the source parameters are estimated

indirectly through trial and error calculations, the inverse method determines the source

parameters in a more direct way from the gravity measurements. There are two

approaches to the inverse method, the first is known as linear inversion and the second is

known as non-linear inversion. Since the gravitational field is linearly dependant on the

density of an object, linear inversion problems are those that involve discretizing the

survey region into small cells and changing the density value in each cell to fit a data set

(Li and Oldenburg, 1996). The non-linear inversion method on the other hand attempts to

estimate the parameters that define a source, such as its depth, its dimensions and its

density, which created an observed anomaly (Blakely, 1996). These are called non-linear

inversions because multiple parameter can be adjusted in every iteration. According to

Yaun et al. (2009) most practical geophysical inversion problems are non-linear, so

3

naturally we turn to non-linear inversion methods to solve these geophysical problems. In

general there are two types of non-linear inversion methods: (1) local search techniques

and (2) global search techniques. Global search techniques developed rapidly over the

past 20 years with notable methods such as the Monte Carlo method, simulated annealing

(SA), genetic algorithm (GA), and many more (Yuan et al., 2009). In these techniques,

searches are mainly applied to obtain satisfying solutions by iteration. The SA and GA,

algorithms and improved heuristics global search techniques based on SA and GA (those

which trade optimality, or precision for speed), are widely researched and applied.

However the downside to these methods may include slower convergence speed.

Currently, in the interdisciplinary optimization field, swarm intelligence is the new ‘IT’

topic. These mainly consist of the Ant Colony optimization (ACO) algorithm, and

Particle Swarm Optimization (PSO), which is simple and easy to implement and there is

no need to adjust many parameters. The PSO algorithm is the focus of this thesis. It was

first introduced by Kennedy and Eberhart in 1995 and was designed to mimic birds as

they search for food. To do this it consists of two memory components, one that drives

each particle to search near its best known location so far found, and one that drives it

towards the best overall location found by the entire swarm. In this way PSO has the

merits of a local search technique as well as those of a global search technique.

The purpose of this thesis is to create an inversion algorithm using PSO, and to

test its effectiveness inverting geophysical data for multi-sided polygonal shapes. Each

step in the process of creating the code will be presented from optimizing standard test

functions to inverting for multisided polygons. This work will demonstrate that using

4

PSO for geophysical inversions is a viable option for conducting non-linear inversions for

complex objects. Chapter 2 will give a thorough understanding of PSO, from its

conception to its current uses, as well as its evolution along the way. The following

chapter will detail the PSO algorithms use on function optimization during this research,

using several benchmark functions and comparison to other research in this area. Chapter

4 will then delve into augmenting the PSO algorithm, using the sides method of

parameterization, for use in geophysical inversion, as well as some examples of its

success and failure. The next chapter being related to the previous chapter will explain the

changes made to the algorithm, describing methods for constraining the inversions. It also

introduces a new parameterization technique, which was developed to deal with the

failures of the previous implementation. Chapter 6 will then increase the difficulty of the

inversions by adding additional sides, and adding noisy data sets. Finally Chapter 7 is an

overview of the research presented.

5

Chapter 2 : Introduction to PSO

In 1995 James Kennedy and Russell Eberhart published “Particle Swarm Optimization”

(Kennedy and Eberhart, 1995). Their paper describes a new method for optimizing

continuous nonlinear functions known as particle swam optimization (PSO) which was

discovered through simulations of a simplified social model, and which eventually

evolved into an optimizer. The concept of PSO has its roots in artificial life, and is also

related to evolutionary computation. Evolutionary computation techniques work on a

population of potential solutions in a search space, and are often based on things observed

in nature, such as birds flocking, fish schooling, and swarming theory.

Similar to a genetic algorithm (GA), PSO is initialized with a population of

random solutions; however it is much simpler since it dispenses with the need to mimic

complex gene transfers and mutation (Eberhart and Kennedy, 1995). In PSO the solutions

are known as “particles” which are given a randomized velocity and are “flown” through

hyperspace, which essentially means they move around in the search region. The particles

are continuously searching for better solutions. Unlike the gene transfers and analogs of

thermodynamic processes which are found in GA and simulated annealing (SA), PSO has

a memory component for each particle in the swarm so both the “cognitive knowledge”

(each particles individual knowledge) and “social behavior” (knowledge of the swarm as

a whole) of the particles is used to guide the movement of the particles through the search

space. In this way, PSO contains merits of both local and global search algorithms (Shaw

and Srivastasa, 2007). Each particle is treated as a point in a D-dimensional space where

6

the ith particle is represented as Xi = (xi1 ,.xi2,......,xiD). As the particles traverse the

search region, each individual keeps track of its current coordinates and its best known

solution (fitness or misfit) that has been achieved so far. This best solution is called pbest,

and is represented as Pi= (Pi1,Pi2, . . . , PiD). The particles also track the best overall

position and its associated value of fitness or misfit found, which is known as the global

best, or gbest represented as Pg= (Pg1,Pg2, . . . , PgD), where D is the number of

dimensions used. This can be found by any individual, and its information is shared with

every particle in the swarm.

In the early versions of PSO the concept consisted of the following: at each time

step change the velocity of each particle towards its pbest and the gbest, where the

velocity for particle i is represented as Vi = (Vil,V i2, . .. , ViD). To better understand the

way in which PSO works, a simplified example of how PSO would minimize a problem

or inversion is presented in Figure 2.1

7

Figure 2.1: Simplified model of PSO method for minimization or inversion (Yuan et al., 2009).

In this example, to be clearer, only three dimensional space is considered instead of D-

dimensional space. The cube represents the available search space, the blue circles are

particles, the arrows are the velocity vectors and hence the direction in which the particles

will move at this iteration, and let us assume that the red open circle is the known best

global result. Each particle will move a distance determined by its velocity each iteration.

A new velocity is calculated every iteration, and is based on 1) the previous velocity, 2)

the difference between a particles current position and its own best position, and 3) the

difference between a particles current position and the best known overall position. In this

way particles are continuously moving towards, or searching for, better solutions, until

they find the global best solution. The original equation for calculating velocity is defined

as (Carlisle and Dozier, 2001):

 Vi = Vi + φ1 * rand() *(Pi - Xi) + φ 2 * Rand() * (Pg – Xi) (1)

 Xi = Xi + Vi (a time step of one) (2)

where φ1 and φ2 are positive constants, and rand() and Rand() are two random functions

in the range [0,1] and * is standard multiplication. These random numbers make PSO less

predictable and therefore become more susceptible to becoming trapped in local minima.

The second set of terms in Equation 1 is known as the cognitive component which

represents the movement of each individual particle. The third part of the equation is

known as the social component, which represents the interaction between the particles

(Shi and Eberhart, 1999). Constants φ1 and φ2 determine the relative importance of the

8

cognitive and social components respectively. In Equation 2 the particle moves towards

its new position with the velocity calculated in Equation 1.

 There have since been several modifications of the algorithm, beginning with Shi

and Eberhart (1999). These authors introduce a variation of PSO by adding an inertia

weight factor (W). This value is considered crucial for PSOs convergence behavior. They

show that PSO searches wide areas effectively but it lacks local search precision. The

inertia factor was introduced to try and adjust the velocity over time to correct this

behavior. In the beginning of the search the inertia factor is large to facilitate global

exploration (searching new areas). It decreases throughout the search to facilitate fine

tuned local exploration. Adding this inertia factor changes Equation 1 to:

 Vi = W * Vi + φ1 * rand() * (Pi - Xi) + φ2 * Rand() * (Pg -Xi) (3)

while Equation 2 is unchanged. Selecting an inertia weight that is constant and is also

near the middle of the acceptable values described will give a balance between global and

local searching abilities.

In Clerc (1999) the inertia weight factor is removed in favor of a new term called

the constriction factor (K). K is simply a different way to control and constrain velocities.

K dynamically lowers the velocities as time progresses, which focuses on a local search

in later iterations, an idea introduced by Shi and Eberhart (1999). The constriction factor

is defined as:

| √ |
 (4)

where The constriction factor K changes Equation 1 to:

Vi = K (Vi + φ1 * rand() * (Pi - Xi) + φ2 * Rand() * (Pg -Xi)) . (5)

9

Again Equation 2 is unchanged. Lakari et al. (2002) investigated the convergence of PSO

using the inertia factor, Clercs constriction factor and a variant that uses both together.

They conducted experiments on seven widely used test problems and found that the

variant using both W and K converged fastest, but using only W or only K are better for

global convergence, especially in higher dimensional problems. In most of the

experiments, PSO using only Clercs constriction factor was significantly faster than using

only the inertia factor. It is for this reason, and the superior global searching, that this

thesis uses only Clercs constriction factor and not the inertial weight factor, or a

combination of both factors.

 Since the introduction of PSO each different researcher seems to have their own

preferred implementation, using different population sizes, different neighborhood sizes,

etc. Carlisle and Dozier (2001) investigated this by examining a variety of these choices

in an effort to determine a “canonical particle swarm optimization” which would act as a

good starting point for applying PSO in their paper “An off the shelf PSO”. To test the

various parameters they started off by using the same parameters used by Shi and

Eberhart (1999). The population size was set to 30, constants φ1 and φ2 were both set to

2.05, Vmax, which is the maximum velocity a particle can achieve at each iteration, was

set to Xmax, the maximum distance a particle can move at each iteration, and they

incorporated Clercs constriction factor. Since they also wished to test neighborhood size

and methods for updating the particles, which had never been tested before they made the

assumptions that the neighborhood would be global, and the particles would update

10

synchronously (i.e. gbest would be determined between iterations). To gain knowledge

about how these 6 parameters could be improved, or not, Carlisle and Dozier came up

with a systematic approach for evaluating how each change affected the convergence.

Firstly they would only change one parameter at a time to gauge the effect on the

convergence. Secondly they would test each change in parameter on five different

benchmark functions to determine if a change was an improvement in a general sense and

not just an improvement for that individual case. Thirdly they performed every

experiment on each function twenty times with an upper limit of 100,000 iterations. To

measure how the changes affected the outcome they recorded the success rate, the

average and median iterations for successful runs, and the average and median counts of

calls to the evaluation function. The latter is a measure of the actual work performed by

the algorithm within the set of runs (Carlisle and Dozier, 2001).

The first experiment Carlisle and Dozier carried out was designed to indentify the

effects of changing the population size. Shi and Eberhart (1999) reported that PSO was

not sensitive to population size and Carlisle and Dozier (2001) found that this was

generally true in terms of performance but not cost. They varied the population size from

5 to 200 particles with an interval of 5 evaluating with the above mentioned criteria. The

expected conclusion was that with more particles more search space is covered and the

solution would be found sooner since there are more guesses at the solution per iteration

and more shared knowledge throughout the swarm. This was true in terms of the number

of iterations it took to find the solution. However, as the population increases, each

iteration represents a greater cost, as more particles call upon the evaluation function.

11

Carlisle and Dozier (2001) report that the increase in cost more than offsets the reduction

in iterations seen in Figure 2.2, a graph of median evaluations (cost) vs. population size.

They therefore conclude that a population size of 30 particles is small enough to be

efficient while still producing reliable results.

Figure 2.2: Graph of median evaluations (cost) vs. population size (Carlisle and Dozier, 2001)

The neighborhood size for a swarm is the number of neighboring particles that

influence a particular particles movement (Carlisle and Dozier, 2001). According to

Eberhart and Kennedy (1995), small neighborhoods are better at avoiding local minima,

and global neighborhoods converge faster. For their experiment Carlisle and Dozier

(2001) varied the size of the neighborhood from 2 to 30 in steps of 2. They found that

increasing the size does no harm to the convergence in 4 of the 5 test functions and in

some cases significantly improved the convergence performance. Therefore they

12

concluded that the global neighborhood appears to be a better general choice, as it seems

to require less work for the same results.

The third set of experiments dealt with synchronous and asynchronous updating of

the particles. It seems natural that, in a local neighborhood situation, the local best (lbest)

is computed asynchronously, that is, as each particle is about to be moved the best

neighbor is determined and that influence is applied to the particles motion. On the other

hand, when the neighborhood is global, it also seems natural that the evaluation of the

global best (gbest) is done synchronously, between iterations, so that all particles are

moved in parallel, then the best particle in the population is selected as the gbest, and the

next iteration is run (Carlisle and Dozier, 2001). Apart from the obvious difference

between these two ways of updating the particles it must also be pointed out that in

synchronous updating all particles move before the best selection is made, and in

asynchronous updating the neighbors on one side of a given particle have been updated

but the ones on the other side have not. To investigate this difference Carlisle and Dozier

ran PSO with various neighborhood sizes and using both types of updating. They report

that synchronous updates where almost always more costly with any neighborhood size

and therefore asynchronous updating is the preferred choice.

The next area Carlisle and Dozier investigated was the ratio between the cognitive

and social factors, φ1 and φ2 respectively. They varied cognitive rate from 0.0 to 4.1 and

calculated the social value as φ2 = 4.1- φ1. The results of this showed that the usual values

of 2.05 and 2.05, which were proposed by Kennedy (1998), did not result in the best

performance for any of the test functions. The analysis revealed that with higher social

13

values the swarm was more likely to be trapped in local minima. Carlisle and Dozier

proposed that a good compromise between the cognitive and social ratios is 2.8 and 1.3

respectively.

Once Carlisle and Dozier nailed down a good value for the cognitive and social

ratios they then set about investigating the magnitude of φ. Since the previous value of

4.1 was established before the discovery of Clercs constriction factor this experiment was

designed to find out if this was still valid or if some new value would work better. They

ran tests with values varying from 1.0 to 6.0 while maintaining the ratio found previously.

They found that the previously established value of 4.1 was actually the best in all but one

scenario, which was later determined to be problem specific. Carlisle and Dozier

conclude therefore that leaving the magnitude of φ as 4.1 is the best for general cases.

 The last experiment Carlisle and Dozier carried out was designed around the Vmax

value. Since Clercs constriction factor should dampen escalating velocities Carlisle and

Dozier thought that this value may no longer be needed but decided to investigate because

Shi and Eberhart (1999) found that setting Vmax = Xmax helps to enforce the Xmax

boundary condition. The experiment used four different Vmax restrictions, 1) no Vmax, 2)

Vmax = Xmax, 3) Vmax = Xmax/2 and 4) Vmax = Xmax/4. In general they found that

performance increases when Vmax shrinks, but that there must be a lower limit to this

behavior since Vmax is the step size and decreasing it too much would affect the swarms

ability to search. They also explored an alternative to fine tuning the Vmax value where the

velocity of a particle is set to zero if it reaches Xmax. The results are not as good as fine

tuning but are quite acceptable since they allow the removal of another parameter, Vmax.

14

In light of this Carlisle and Dozier concluded that when Xmax must be enforced then set

the velocity to zero if a particle reaches Xmax, otherwise Vmax need not be enforced.

As a final test of the proposed parameters, Carlisle and Dozier tested four sets of

previously used parameters against the newly formulated ones. The results showed that

besides the large improvement from using Clercs constriction factor the other new

parameters had consistent but lesser improvement over other combinations of parameters.

Keeping these conclusions in mind the starting parameters used in this thesis are

generally the same, namely 30 particles with a global neighborhood. The particles are

updated synchronously here despite the above recommendations, since it is much easier

to implement. The cognitive-to-social ratio is kept as recommended as well as the

magnitude of φ. Clercs constriction factor, K, is used since this leads to the greatest

improvement in performance. There is no constraint put on Vmax.

Once the starting parameters are set the last thing to consider when using PSO for

nonlinear optimization is how to handle the constraints. The uses of constraints will

prevent the inversions from violating the boundary conditions of the inversions by leaving

the search space. They are also important in controlling the shapes of the models returned.

Constraints can be either hard or soft; they can represent physical limits to a search region

or simply preferred operating ranges. The rigidity with which these constraints are

enforced should reflect the nature of the constraints themselves (Coath and Halgamuge,

2003). Coath and Halgamuge compare two methods for handling constraints: 1) methods

based on penalty functions and 2) methods based on the rejection of infeasible solutions.

Penalty functions are the traditional means of solving constrained nonlinear optimization

15

problems. This approach basically allows the removal of all constraints, replacing them

with conditions. When one of the conditions is violated, a penalty value is added to the

objective function value (when dealing with minimization problems). This leads to

optimization of the penalty function and the objective function at the same time. The

problem with this method is that a balance needs to be maintained between obtaining

feasibility whilst finding optimality (Coath and Halgamuge, 2003). The rejection method

does not add penalties when constraints are violated, it simply discards those particle

positions. When using this method all particles must be forced into feasible space before

any searching can begin. This can be a drawback for this method if the feasible search

space is too small. In this method only particles in the feasible region can be considered

for pbest and gbest, the idea being that this will accelerate the iterative process of tracking

feasible solutions by forcing the search space to contain only solutions that do not violate

any constraints (Coath and Halgamuge, 2003). In order to test which of these methods

converges faster and with more accuracy, Coath and Halgamuge used four test functions

and recorded the average, best and worst solutions over 500 iterations for each. The tests

were carried out under identical swarm parameters, and they found that both of the

constraint handling methods had merits. The penalty function method was found to be

significantly faster in two of the test cases but the feasibility method found more accurate

results on average in 3 out of 4 cases. This means that the choice of method is problem

dependant. Coath and Halgamuge also explain that fine tuning the penalty function could

lead to increased accuracy. Judging from these results, this thesis will use the penalty

16

function method because of its faster convergence and comparable optimal solutions

found as well as the chance to increase the accuracy of the average solutions.

17

Chapter 3 : PSO for function minimization

3.1 Coding a minimization function

As mentioned in Chapter 1, the purpose of this thesis is to create an inversion algorithm

using PSO, and to test its effectiveness at inverting geophysical data for multi-sided

polygonal shapes. The first step taken towards this goal was writing software to

implement an algorithm that can minimize 2-Dimensional functions (The source code can

be found in Appendix B, along with all results not explicitly shown in this chapter). The

results of these minimizations were then compared to similar tests found in the literature,

in particular Carlisle and Dozier (2001), to determine if this PSO algorithm is working

well enough to move forward and if it is on par with similar PSO code written for the

same purpose. The natural thing to do as a beginner programmer, as I was at the start of

this venture, was to look for existing PSO code for Python to see if there was something

that I could simply adapt to my purpose instead of creating everything from scratch.

Unfortunately I didn’t find anything that could do the things that I needed, but I did find a

few Python scripts that were general PSO algorithms. These scripts showed me how to

initialize a swarm and how to move them around in one dimension as well as how to

replace previous pbest and gbest positions and values with newer, better ones found

during minimization.

One of the other points that I learned from the existing scripts was to use

additional Python packages such as NumPy. NumPy is an extension to the Python

programming language that adds support for large, multi-dimensional arrays and

18

matrices, along with a large library of high-level mathematical functions to operate on

these arrays. Using NumPy, it is easy to create “arrays” of numbers, which are ideal for

representing the swarm in PSO. These arrays can have different dimensions, which works

well for the situation here, since the swarm will have different dimensions for different

objectives. In the context of minimizing functions, initializing the swarm was done using

an NSwarm by NDim array where NSwarm is the number of particles used and NDim is

the number of dimensions in the search space. The number of particles can be changed as

needed, but the number of dimensions for the work presented in this chapter is two, which

are the x and y coordinates of each particle. An example of a starting swarm of five

particles is shown below:

Starting Swarm = [[28.6 28.2][8.8 58.1][13.3 12.6][71.1 18.2] [29.3 69.9]]

Once a swarm has been initialized, the function being minimized must be evaluated for

all particles, which is the definition of whichever functions is being minimized. This is

also the way in which the pbest and gbest values are initialized, since it is the first

iteration, there are no better areas found because you are evaluating before any movement

has occurred. Examples of pbest and gbest staring arrays can be seen below:

Starting pbest = [[17.6 25.6] [74.3 64.1] [39.1 59.9] [15.7 58.4][73.2 21.5]]

Starting gbest = [17.6 25.6]

19

The last piece of the code that needs to be initialized is the velocities of the particles. This

is done using a NumPy function called “zeros” which creates an array full of zeros and of

the desired shape. An example of starting velocities can be seen below:

Staring velocities = [[0. 0.] [0. 0.] [0. 0.] [0. 0.] [0. 0.]]

The above examples of the swarm, pbest and velocities should indicate that all arrays

have the same dimensions; the significance of this becomes evident when working with

NumPy array manipulation. Arrays of the same shape can be added or subtracted from

each other without having to take care of the indexing of every single number being

operated on. This makes moving particles a simple matter of adding the swarm and the

velocities together. Once all of the necessary pieces of the code are initialized, the swarm,

pbest and gbest, velocities and the objective function defined, the only thing left to start

minimizing functions is to iterate over the evaluation and updating of the pbest and gbests

and calculating new velocities using equations (2) and (5), until the global minimum is

found.

3.2 Testing PSO minimization performance on benchmark functions.

Once the details of the minimization algorithm had been worked out the next step was to

test its performance to make sure that it was operating in the proper manner.

Conveniently enough, similar testing of PSO performance on benchmark functions has

been done previously by Carlisle and Dozier (2001) as they investigated the best set of

starting parameters for an “off the shelf” PSO. Carlisle and Dozier use a set of 5

benchmark functions and minimize these functions 20 times while recording the average

number of iterations to find a solution and the success rate of finding a solution. The five

20

benchmark functions they use are: the first function of De Jong, the Rosenbrock function,

Rastirgins function, the Griewangk function and the Schaffer F6 function. The same

functions will be used here in order to create similar results for comparison.

3.2.1 The First function of De Jong aka, the Sphere function

The so called first function of De Jong, or the sphere as it is more commonly known as, is

one of the simplest test benchmark functions around. The function is continuous, convex

and unimodal. It has the following definition in two dimensions:

 () ∑

The test area for this function is generally restricted to a hypercube -5.12 ≤ x,y ≤ 5.12,

and has a global minimum of () located at (xi) = 0 see Figure 3.1 (Molga and

Smutnicki, 2005). The values of N used in this thesis are 2, and 30.

21

Figure 3.1: Python plot showing the sphere function between -5.12 and 5.12 with the global minimum

represented by the yellow dot.

3.2.2 The Rosenbrock function

Rosenbrocks valley is a classic optimization problem, which is also known as the banana

function or the second function of De Jong. It has a global optimum located inside a long,

flat, narrow, parabolic shaped valley. It is trivial to find the valley itself; however

convergence to the global optimum is difficult which is why this problem has been

frequently used to test the performance of optimization algorithms. It has the following

definition in two dimensions:

 () () () .

22

The test area for this function is generally restricted to the region -2.048 ≤ x,y ≤ 2.048,

and has a global minimum of () located at (x,y) = 1 see Figure 3.2 (Molga and

Smutnicki, 2005).

Figure 3.2: Python plot showing the Rosenbrock function between -2.048 and 2.048 with the global

minimum represented by the yellow dot.

23

3.2.3 Rastrigins function

Rastrigins function is based on the sphere function of De Jong with the addition of cosine

modulation in order to produce frequent local minima. This makes this test function

highly multimodal and the locations of the minima are regularly distributed. It has the

following definition in two dimensions:

 () [()] [()].

The test area for this function is generally restricted to the region -5.12 ≤ x,y ≤ 5.12, and

has a global minimum of () located at (x,y) = 0.0 see Figure 3.3 (Molga and

Smutnicki, 2005).

Figure 3.3: Python plot showing Rastrigins function between -5.12 and 5.12 with the global minimum

represented by the yellow dot.

24

3.2.4 The Griewangk function

The Griewangk function is similar to the function of Rastrigin since it is also based on the

sphere function with the addition of some cosine complexity. It has many widespread

local minima regularly distributed similar to Rastrigins function. It has the following

definition in two dimensions:

 ()
()

 () (

√
) .

The test area for this function is generally restricted to the region -600 ≤ x,y ≤ 600, and

has a global minimum of () located at (x,y) = 0.0. The function interpretation

changes with the scale; the general overview suggests a convex function similar to the

sphere function, a medium-scale view suggests the existence of local minima, and finally

zoom on the details indicates complex structure of numerous local minima. This change

from smooth convex function to complex structured function can be seen in Figures

3.4,and 3.5 as you change the scale from large, -600 ≤ x,y ≤ 600, to small -5.12 ≤ x,y ≤

5.12 (Molga and Smutnicki, 2005).

25

Figure 3.4: Python plot showing the Griewangk function between -600 and 600 with the global

minimum represented by the yellow dot.

Figure 3.5: Python plot showing the Griewangk function between -5.12 and 5.12 with the global

minimum represented by the yellow dot.

26

3.2.5 The Schaffer F6 Function

The Schaffer F6 function is designed to have a global minimum at the origin surrounded

by circular “valleys”, as seen in Figures 3.6 and 3.7, that trap local search based methods.

This function is considered as a challenging problem for optimization algorithms. It has

the following definition in two dimensions:

 ()
 (√)

(())
 .

The test area for this function is restricted to the region -600 ≤ x,y ≤ 600, and has a global

minimum of () located at (x,y) = 0.0 (Battiti et al., 2005).

Figure 3.6: Python plot showing the top view of the Schaffer F6 function between -20 and 20 with the

global minimum represented by the yellow dot.

27

Figure 3.7: Python plot showing the Schaffer F6 function between -5.12 and 5.12 with the global

minimum represented by the yellow dot.

3.3 Minimization results and comparison

The results obtained through minimization of these benchmark functions were very

promising. All the functions were minimized in two dimensions except for the sphere

function, which was minimized in both two and thirty dimensions. This was done in order

to create comparable results to those found in Carlisle and Dozier (2001), who used thirty

dimensions for all but the Schaffer F6 function.

28

3.3.1 Minimization results for the sphere function.

In two dimensions the results are quite good. The code converged twenty out of twenty

times, a 100% success rate. The average number of iterations it took to find a solution,

within 1e-3 error, was 33.0 and to find the absolute minimum (to within machine

accuracy) the average number of iterations was 9130.9. It is clear that finding a solution

within acceptable error was easy but finding the absolute minimum was quite a bit harder

for this function as can be seen in Figure 3.8, a plot showing an example of the 2D Sphere

and the path of the gbest particle location as it converges to the minimum.

Figure 3.8: Plot of 2D sphere and an example convergence path.

29

This figure shows a small amount of samples leading into the low region around the

minimum, and a dense search around it. For this particular case an acceptable solution

was found in 31 iterations, and the absolute minimum was found in 8557 iterations. This

fact is also apparent from the results in thirty dimensions, where it never converged to the

absolute minimum over the twenty test runs but did converge to acceptable solutions

100% of the time. Using an error of 1e-2, as was the case in Carlisle and Dozier (2001),

the minimum was found in 666.8 iterations on average. Comparing these results to those

of Carlisle and Dozier it is clear that this implementation works well. They record

solutions found between 2233.0 and 226.5 average iterations, depending on the set of

parameters that they use. The parameters that are most similar to those used here

produced results of 361.5 average iterations, which is about two times better, but still very

close.

3.3.2 Minimization results for the Rosenbrock function.

The tests done on this function were done in two dimensions with an acceptable error of

1e-3. Like the 2D sphere runs for this function also converged successfully 100% of the

time. The average number of iterations it took to find an acceptable solution was 60.2,

and 846.2 to find the absolute minimum. Similar to the 2D sphere PSO finds the area of

the minimum quite fast and then takes some time to find the absolute minimum. This is

expected since it is located in a long nearly flat parabolic valley. This can prove difficult

to navigate, as can be seen in Figure 3.9, where the convergence path starts towards the

minimum (identified as the red triangle) but passes it by, before returning to it several

iterations later.

30

Figure 3.9: Plot of the Rosenbrock function and an example convergence path, where the yellow path

is the path of Gbest.

3.3.3 Minimization results for Rastrigins function.

The acceptable error for this function was 1e-3. This function is similar to the sphere,

except it is littered with local minima. For this reason PSO did not manage to converge

for every trial, but did manage to achieve a 90% success rate. The average number of

iterations it took to find an acceptable solution was 116.5, and 446.6 to find the absolute

31

minimum. In this case PSO took slightly longer to find a solution than for the sphere, 33

up to 116 iterations, but there was significant improvement when finding the absolute

minimum, 446 down from 9130 iterations. This is most likely caused by the shape of the

functions, since it is jumping from one local minimum (i.e. the function is not monotonic)

to the next in the Rastrigins function (see Figure 3.10). Whereas in the case of the sphere,

PSO is refining one area, which could indicate that this PSO or this set of parameters is

better suited for global as opposed to local searching.

Figure 3.10: Plot of the Rastrigins function and an example convergence path.

32

3.3.4 Minimization results for the Griewangk function.

Following the Rastrigins function tests, the acceptable error for this function was also 1e-

3, and it also failed to converge during every trial. The success rate was 80% on this

function with an average of 31.1 iterations to find acceptable solutions and 239.2

iterations to find the global minimum. Similar convergence behavior to the Rastrigins

function is observed for this function, which is expected since the functions are of similar

design. Figure 3.11 shows a convergence path jumping from one local minimum to

another, before finally locating the global minimum.

Figure 3.11: Plot of the Griewangk function and an example convergence path. The blank area is un-

plotted area of the function but is still part of the function

33

3.3.5 Minimization results for the Schaffer F6 function.

For the Schaffer F6 function, which is considered to be a difficult test function, the

successful rate of convergence was 85 %. The acceptable error used for convergence of

this function was 1e-4 since that is the error used by Carlisle and Dozier (2001). The

results they recorded range between a success rate of 100% and an average of 1023

iterations down to a success rate of 85% and an average of 272 iterations. The set of

parameters that are most similar to those used here produce results of 85% success and an

average of 404 iterations. These are comparable to the results produced during these tests;

the success rate was also 85% and the average numbers of iterations were 2255.0 to find

acceptable solutions and 2722 to find the global minimum. Figure 3.12 shows the

particles jump from one ring to the next, sometimes staying in the same ring, but

eventually finding the global minimum in the center ring. This behavior is similar to the

previous two examples, both with numerous local minima which are excellent examples

of the strength of PSO to avoid being trapped.

34

Figure 3.12: Plot of the Schaffer F6 function and an example convergence path.

3.4 Conclusions.

In every case the PSO algorithm tested here performed well, converging 100% of the time

in half of the tests and was never lower than 85% convergence in the rest of the tests. The

tests in which the results couldn’t be compared to other results show that this PSO

algorithm performs quite well, it finds acceptable solutions with good success rates and in

relatively low number of iterations, but usually takes the most time narrowing down the

absolute minimum. This could indicate that it performs global searching well, but has

some difficulty with local searching. When compared to the results obtained by Carlisle

35

and Dozier (2001) these conclusions are further corroborated. In both cases the results

were accurate in success rate, achieving 100% for the sphere and 85% for the Schaffer F6

function. The average number of iterations was comparable in the case of the thirty

dimensional sphere, where it took about twice as long to find solutions but the Schaffer

F6 proved more difficult with around 5 times more iterations than the results of Carlisle

and Dozier. This difference in convergence rate is outweighed however by the behavior

shown in the three examples with multiple local minima. This avoidance of local minima

is exactly the sort of behavior that PSO is used for, and since it is evident in all cases with

numerous local minima it can be concluded that this PSO algorithm is working well.

36

Chapter 4 : Sides Inversion Method

This chapter discusses the conversion of the code from a function minimization algorithm

to a geophysical inversion algorithm. The chapter first discusses forward modeling

theory, as it will be applied in this thesis, then the differences that were addressed in the

conversion process. Model parameterization is a major area of interest in this thesis, thus

an introduction to the “sides” method of parameterization is presented in this chapter.

Using the sides method and forward modeling, synthetic data was created for the four and

five-sided inversion targets. Synthetic data is data that is created or computed, abd is not

real world data. Constraint handling methods are also an area investigated in this chapter,

and after this the results of the test carried out are detailed and discussed. The source code

can be found in Appendix B, along with all results not explicitly shown in this chapter.

4.1 Forward modeling theory

Chapter 1 introduced the forward modeling method, describing it as a three step process.

First, make an initial guess based on prior information, then calculate the anomalous

gravitational field of the body, and finally adjust the model to better fit the anomaly. A

useful way to approximate geologic situations is to replace the cross-sectional shape of

two dimensional bodies with simplified polygons. The gravitational attraction of the two

dimensional body then depends on the position of the corners of the polygon (Blakely,

1996). If one imagines N lines drawn from an observation point on the surface to each

corner of the polygon, the gravitational attraction depends on the length of the lines, rn,

and the angle they make with the horizontal, θn, as seen in Figure 4.1.

37

Figure 4.1: Approximation of cross sectional shape using a polygon (Blakely, 1996).

Using these assumptions the gravitational attraction at each observation location can then

be calculated using (Blakely, 1996):

g * γ*ρ ∑ (())[() ()] (4.1)

where γ is Newtons gravitational constant, 6.67x10
-
11(N),

ρ is the density contrast

between the body and its surroundings, and alpha and beta are:

 (
 ()

 ()
) and (4.2)

Using this equation will give the gravitational attraction of the body in question at one

observation location; this is repeated at each station in the survey to create an anomalous

gravity signature.

38

4.2 Converting function minimization code to an inversion algorithm

Modifying the code used for the special benchmark functions in Chapter 3 into an

inversion algorithm requires four key changes: 1) an increase in the number of parameters

used, 2) incorporation of a Forward method used to calculate predicted data, 3)

calculation of a misfit function, and 4) addition of a penalty function or constraint-

handling method.

4.2.1 Inversion targets.

The first step towards creating a PSO inversion algorithm was to increase the number of

parameters in the existing code. Previously it used two parameters, which were the x and

y coordinates of the particle, only for the sphere example. To evolve into an inversion

code, the number of parameters needed would depend on the target sought during an

inversion. The initial inversion target was a box-shaped object with a uniform density

value (Figure 4.2). This initial object and the region in which it is “buried” were created

with simplicity in mind rather than geologic significance. That said, the survey region

consisted of a 60m long survey line in the x direction between x = -30m and x = 30m, and

100m in the z direction from the “surface” z = 0m down to z = -100m. Synthetic data

were calculated at 0.5m intervals along the suface, giving a data set of 120 readings. The

initial target model, a rectangle with dimensions of 20m by 10m, was placed in this

region between x = -10 and 10 in the x direction and between z = -20 and -30 in the z

direction with a density value of 1000 kg/m
3
. Therefore the number of parameters sought

in the inversion would be five, one for every corner of the object and one for the density.

39

Figure 4.2: Initial inversion target (blue) as well as boundaries of the survey region (black box), with

the observation locations (red triangle).

The second inversion target considered in this chapter had an additional corner

(Figure 4.3), making it slightly more complex and adding some difficulty to the overall

inversion. It was created by adding a peak in the middle of the box to generate a house

shape which extends towards the surface. The house has the same density value as the

box shape (1000 kg/m
3
), and is located in the same area, with its peak extending to the

location x = 0.0m, z = -10m.

40

Figure 4.3: Second inversion target considered in this chapter, five sides (blue)

4.2.2 Model parameterization.

As mentioned previously, the inversions carried out during the course of this thesis are

non-linear. The parameters being sought during a non-linear inversion are those that

specify the shape and density of the polygon. The two methods investigated both define a

shape and a density for that shape, but they differ in the manner that they specify the

shape. The first method, henceforth called the “sides method”, was the first attempt at

defining shapes in a way that could be used for inversion. The sides method

parameterized the objects using the locations of sides and density, thus five parameters in

total, as seen in the sample layout below:

Swarm[i] =[x1,x2,z1,z2,rho]

The corners are found through a combination of an x and a z coordinate. The left and

right sides of the object are specified by their x coordinates, and the top and bottom sides

41

are specified by their z coordinates (seen in Figure 4.4). The corners are then defined by

the intersection of the x positions and the z positions in a clockwise rotation as follows:

Top left = [x1,z1], Top right = [x2,z1], Bottom right = [x2,z2], Bottom left = [x1,z2]

Figure 4.4: Diagram showing how parameterization of four-sided objects, using the sides method, is

performed.

Defining the indices of the five-sided objects is done in a similar manner to that

for the four-sided objects with two simple differences, there are 2 additional parameters:

Swarm[i] =[x1,x2,x3,z1,z2,z3,rho]

where x3 and z3 are the x and z coordinates of the additional vertex (see Figure 4.5).

Since the algorithm works in a clockwise order, the corners become: Top left = [x1,z1],

Top Middle = [x2,z2], Top right = [x3,z1], Bottom right = [x3,z3], Bottom left = [x1,z3]

Z1

Z2

X1 X1

42

Figure 4.5: Diagram showing how parameterization of five-sided objects, using the sides method, is

performed.

The parameterization was done in the way described above for two reasons: it was

the simplest transition from the previous function implementation, and it provides a

constraint on the possible shapes taken by the anomalous region during an inversion. The

anomalous region is constrained due to the shared coordinates of the sides. These shared

sides, and the inherent constraint they applied, was one of several reasons for the creation

of a new model parameterization technique, which will be covered in the next chapter.

The length of the swarm as well as the pbest and gbest best arrays simply needed to

increase in length from two to five parameters, which would allow the use of shapes in

the minimization process.

Z1

Z2

Z3

X1 X2 X3

43

4.2.3 Synthetic data and data misfit function.

Once the algorithm can operate with an increased number of parameters, forward

modeling and data misfit calculations replace the benchmark function. Using the forward

method discussed in Section 4.1, synthetic data for a particular model were computed.

The profiles of synthetic data for both the four and five-sided targets are bell shaped

curves, but are not quite the same shape see Figures 4.6 and 4.7 respectively. The data for

the four-sided object is a more broad, smooth feature since the object is a consistent depth

from the surface, whereas the five-sided object extends towards the surface in the middle

creating a more pronounced peak in the profile above that area.

Figure 4.6: Diagram of four-sided model with its synthetic data profile.

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

44

Figure 4.7: Diagram of five-sided model and its synthetic data.

To compare the predicted data to observed data, a misfit function is used. The type

of misfit used here is a least squares misfit, which takes the square of the difference

between the observed data and the calculated data at each observation location and then

sums them together to give one value of misfit. The misfit function is defined as:

 ∑(

)

where N is the total number of observations,
 is the ith observed datum, and

 is

the ith predicted datum.

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

45

4.2.4 Constraint handling methods

Constraints can be either hard or soft in nature, representing physical limits of systems or

preferred operating ranges (Coath and Hamalgamuge, 2003). Evolutionary algorithms

(EAs) are algorithms which use mechanisms inspired by biological evolution such as

reproduction, mutation, recombination, and selection (this includes PSO). When using

EAs problems can to be solved as an unconstrained optimization task by effectively

removing the constraints and adding things such as penalty functions. According to Coath

and Hamalgamuge (2003), these types of constraint handling methods used in EAs fall

into several distinct categories, some of which include: 1) penalty functions 2) rejection

of infeasible solutions 3) repair algorithms 4) specialized operators and 5) behaviour

memory. The categories that were focused on here, and are discussed further in Chapter

5, were the penalty function and rejection of infeasible solution methods, since these have

shown promise when implemented with PSO previously. In the early versions of the

algorithm implemented here, there was no method in place to constrain the shapes of the

models that the algorithm produced, besides boundary issues, which inevitably lead to

undesirable outcomes, which will be discussed subsequently. The boundary issues were

dealt with via a built in NumPy function called Clip which I incorporated into the

algorithms code and which would not allow the values of the swarm to go outside a set

range. If a particle were to venture out of the search region it would be stopped using the

Clip function and then its direction would be reversed by applying the calculated velocity

in the opposite direction, sending it back into the acceptable range for the examples

presented in this chapter. The swarm was confined to the search region described in

46

Section 4.2.1.The effectiveness of this lack of constraints method will be discussed in the

results section of this chapter; however there was a problem with the corners rearranging

in the four-sided tests and models being turned inside out in the five-sided models. This

led to the investigation of methods for preventing these unacceptable results.

 The result of this investigation was the “corner switch” method of constraining the

shape of the object during inversion. This method is a stationary type of constraint, that is,

its conditions never change, in which the X and Z values are monitored as the inversion is

running, and instances where the shape has turned itself inside out are caught, the

conditions do not evolve with each iteration (see Figure 4.8). An example of being turned

inside out would be if the left side value of X was greater than the right side value of X,

or if the top Z value is more negative than the bottom Z value. In the case of the X values,

it would still appear as a box shape, but the forward method would have to work in

reverse. In both cases, the irregular values would be interchanged, restoring an acceptable

shape to the object.

47

Figure 4.8: Depiction of a four-sided model which has become infeasible by turning inside out, and

the predicted data (red xs) it would generate plotted with the synthetic data (blue line).

4.3 Results

This section discusses the results obtained through the tests performed with the non-

constrained algorithm on the four and five-sided models, as well as the tests using the

corner switching method of constraints on the four and five-sided models. Each set of

tests was performed over five thousand iterations, and repeated twenty times. The

recorded values were the misfit, the time taken, the X and Z values and the density. The

data sets had no noise added, and had 120 data points in total. The success or failure of

the inversions will be based on 3 criteria; the shape of the model, the misfit, and the shape

of the gravity curve. Any model that is not turned inside out will be considered

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

48

acceptable, the lower the misfit values the better, and the shapes of the gravity curves will

be compared to the original synthetic curves. Therefore an acceptable inversion will be

one that is not turned inside out, has a low misfit value, and generally reproduces the

shape of the gravity curve.

4.3.1 Unconstrained four-sided inversions

The results obtained by the algorithm without constraints on the four-sided model were

mixed but promising. Because of the non-uniqueness of gravity inversion the number of

models that can reproduce a near perfect match to the synthetic data curve, i.e., a misfit

close to zero, is infinite. This perfect reproduction did not occur for any of the twenty test

inversions; however the results collected show that more than sufficient models can be

achieved with misfit values slightly greater than zero. Over the twenty test inversions the

average misfit achieved was 41.4. The highest misfit returned was 226, whereas the

lowest value returned was 0.1. The misfit value of 0.1 is actually a built in stop parameter

which indicates that the inversion has found a model that is unlikely to improve, and no

more iterations are needed. The average time taken for an inversion was 50.3 minutes;

however, in four out of the twenty inversions the stop parameter was triggered. In these

cases the average time taken was only 5.4 minutes and the number of iterations needed

averaged 501.

49

Figure 4.9: Line plot of inversion results returned from tests on four-sided model without constraints.

Figure 4.9 shows the misfit values represented by the red line of every test

inversion carried out. The overall average misfit value is indicated by the blue line. The

majority of the results lie below the average line; some are near but above the line and

there are a few higher outliers, which cause the average to increase. Even though these

outliers are higher than the majority of the results, as demonstrated by the following

discussion, they are still very acceptable results. Figure 4.10 shows the original model

with green corners and the synthetic data as the blue curve. The blue cornered shape is the

inversion result with misfit 226 (the “worst” misfit achieved), which creates the gravity

curve represented by the red “+” marks. The shape is much narrower in the x direction

than the true shape but larger in the z direction than the original. The density value is over

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
is

fi
t

va
lu

e
s

Inversion Test Number

Four sided inversion results

Inversion results

Average misfit

50

twice that of the original model to compensate for its smaller overall size. The main thing

to note is that even though the shapes are quite different there is a large agreement

between the gravity curves. The peaks have nearly identical maximum amplitudes, and

the shapes of the curves are very similar. The red curve is slightly off center: it can be

seen that it is shifted ever so slightly to the right when compared to the blue curve. The

cause of this shift is the object also being slightly off center: it extends from x = -1.42m to

x = 2.5m, meaning the center of the body is located at x = 0.54m. The predicted curve

isn’t as good as it could be, since the misfit is 226, but overall it is very close to the

synthetic curve in every aspect, implying that this is a good result, and a successful

inversion despite being the poorest result of the 20 inversions runs.

Figure 4.10: Diagram of predicted model from inversion result with misfit 226, with its predicted

data (red+), shown with the target model and the synthetic data (blue).

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

51

The inversion result that is closest to the average misfit value is shown in Figure

4.11. This model is similar to the model returned with a misfit of 226; although it is wider

in the x direction, extending from x = -2.29m to x = 2.19m but does not reach as deeply.

The top depth is nearly identical to the depth of the original model but it extends deeper

than the original model, reaching a depth of 35.5m. Once again the constructed model has

compensated size with an increased density value, which is 2999.9 kg/m
3
 for this

predicted model. The predicted data however are extremely close to the synthetic data, as

can be seen when comparing the red + and blue curve in Figure 4.11. The peak values are

identical, and the shapes of the profiles are nearly identical as well.

Figure 4.11: Diagram of predicted model from inversion result with misfit closest to average value,

with its predicted data (red+), shown with the target model and the synthetic data (blue).

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

52

The model which produced the best inversion result is seen in Figure 4.12. Unlike

the previous results which over estimated the extent in the Z direction, creating a narrow

deep-reaching shape, this result is more similar to the original model. The anomalous

region is located between x = -9.49m and x = 9.49m, which is perfectly symmetric about

the origin. It has a density of 1885.34 kg/m
3

which compensates for the difference in size

of the models and allows the predicted curve to be a near perfect match to the synthetic

data curve in every detail even though the misfit isn’t quite zero. There were actually four

results with a misfit of 0.1 as mentioned previously, all of which are very similar in shape

to the constructed shape in Figure 4.12. see comment

Figure 4.12: Diagram of predicted model from inversion result with lowest misfit value of this set,

and its predicted data (red +), shown with the target model and the synthetic data (blue).

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

53

Figure 4.13 is a plot of all twenty shapes returned from the inversion tests. The

original model is also seen in this figure with the green corners and blues lines as before.

The most notable thing about Figure 4.13 is that there are basically two general shapes.

The first shape is narrower than the original model but extends deeper, and the second

general shape is roughly the same size as the original model in the x direction but doesn’t

have the same thickness. One thing that all the resulting models have in common is that

they have higher densities than the original model, the lowest density being 1484.0 kg/m
3

with an average density of 2305.8 kg/m
3
. This increase in density is to compensate for the

smaller size of the constructed models.

54

Figure 4.13: Diagram of all model shapes returned for unconstrained four sided inversions.

55

Another noteworthy feature of Figure 4.13 is the relationship between the shape of

the model and the misfit value. Even though these would all be considered successful

inversions, some reproduce the original models better than others, and the best results are

obtained from models which are more similar to the original model. In Table 4.1 the

results highlighted in yellow represent the best results obtained, the ones in blue are very

close but have slightly higher misfit, and those in green are the four with the highest

misfit. When these results are plotted the relationship between the model shape and misfit

value becomes apparent. Figure 4.14 shows the original model, with the green corners

and the blue lines as before, and the four best inversion models. The inversion results

have a very similar shape to the original model, and are very closely grouped. Figure 4.15

shows the same models as Figure 4.14 with the four next best inversion models added. It

can be seen that these models are contracting towards the origin symmetrically, and are

generally reaching deeper as they contract. Further evidence of this trend is seen in Figure

4.16 where the best models are replaced by the highest misfit models. The high misfit

models generally reach the deepest and are the narrowest. So the trend for the four sided

models is being driven by the parameterization and it can therefore be inferred that, at

least for the four-sided model, the more narrow and deeply reaching the model, the higher

the misfit will be.

56

Table 4.1: Inversion results of tests performed on four-sided models without constraints. The columns are as follows: Test # is the number order

in which the tests were performed, misfit is the misfit achieved by the inversion, X1 is the left side coordinate, X2 is the right side coordinate, Z1 is

the coordinate of the top and Z2 is the coordinate of the bottom.

Test # Misfit Time

Taken(min)

X1 X2 Z1 Z2 Rho convergence

iteration

1 2.17 102.49 7.47 -7.46 27.9 23.17 2855.97

2 67.48 58.19 1.48 -1.64 40.89 17.39 2914.92

3 1.1 78.09 8.17 -8.17 28.23 22.5 2147.82

4 11.84 57.83 4.12 -4.12 30.73 22.44 2997.9

5 0.1 6.07 9.65 -9.65 26.66 22.81 2675.79 529

6 141 58.7 -1.21 1.18 15.12 48.23 2798

7 0.1 5.2 -9.65 9.66 22.5 27.05 2267.61 450

8 29.4 50.17 -2.68 2.46 20.61 34.08 3000

9 0.1 4.7 -9.49 9.49 22.09 27.67 1885.34 495

57

10 77.15 53.88 -1.84 1.87 16.77 42.49 2248.86

11 226.7 54.07 2.5 -1.42 42.1 16.63 2139.43

12 14.23 58.34 3.88 -3.86 31.66 21.87 2714.83

13 31.65 55.6 -2.29 2.19 19.97 35.51 2999.99

14 115.9 71.31 -2.01 1.45 16.83 42.43 2430.54

15 2.77 71.5 7.22 -7.21 28.39 22.92 2564

16 0.1 6 -9.66 9.66 22.61 26.92 2394.63 531

17 25.14 55.37 -2.55 2.69 20.65 33.88 2982.36

18 18.7 53.64 -4.2 4.08 20.91 32.95 2067.82

19 53.25 53.55 1.72 -1.7 39.37 17.98 2895.6

20 8.9 52.33 -6.32 6.37 20.86 31.69 1484.07

Average 41.389 50.3515 ------- --------- --------- --------- 2523.274

Table 4.1 continued.

58

Figure 4.14: Diagram of target model (green corners and blue lines), with the eight models with

lowest misfit in this suite.

59

Figure 4.15: Diagram of target model (green corners and blue lines), with the eight models with

lowest misfit in this suite.

60

Figure 4.16: Diagram of target model (green corners and blue lines), with four highest misfit models

and four middle misfit models.

61

For the reasons stated above, these results are quite promising. However they

needed to be viewed with mixed success. This is apparent in Table 4.1, where in nine out

of the twenty inversion results the values of x and z are rearranged, to have the first

corner, X1, Z1, located in the bottom right instead of the top left. This is caused by the fact

that there are no physical constraints during the inversion, besides the boundaries of the

inversion domain, which allows the positions of the corners to move around freely. For

the four-sided model this isn’t a problem because the way in which the corners move still

creates a box shape and the corners are still numbered in a clockwise fashion which is

critical for computing the predicted data by the method described in Section 4.1. However

this is most likely a consequence of the way in which the models are parameterized, with

the sharing of coordinates. It seems that this created an unintended constraint which

prevented the four-sided models from turning themselves inside out. This condition is

solely applicable to the four-sided model as will be seen subsequently in results for the

five-sided inversions.

4.3.2 Unconstrained five-sided inversions

The results for the five-sided model with no constraints had an average misfit value of

60.7 over the twenty inversions. Of the twenty, none achieved a misfit low enough to

trigger the stop parameter. The lowest misfit achieved was 5.5 and the highest misfit was

189.0. When compared to the results of the four sided object these values are fairly

similar. The majority of the constructed models have misfits that fall below the average

line; however there are less models with misfits near the average and there are more high

values in this set than the four-sided runs, seen in Figure 4.17.

62

Figure 4.17: Line plot of inversion results returned from tests on five-sided model without

constraints.

Figure 4.18 shows the original five-sided model with green corners and the

constructed inversion model with blue corners. The synthetic observed data is the blue

curve, and the predicted data are represented by the red +. The blue cornered shape is the

inversion result with the highest misfit returned from the 20 runs, with a misfit of 189.

Similar to the four-sided inversion results, the predicted data for this model are very

similar to the synthetic data; there is little difference in shape, placement and amplitudes.

However the model itself is turned inside out. Table 4.2 shows the values from which the

corners of this model are derived. It shows that a similar rearrangement of the order of the

corners has happened for this model, however since there are now five sides the object

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
is

fi
t

V
al

u
e

Inversion Test Number

Five sided Inversion Results

Inversion results

Averave misfit

63

doesn’t retain its intended shape. Even though this would be considered a successful

inversion in terms of misfit, it cannot be overlooked that the model is turned inside out.

Therefore this would be considered a failure. Of the twenty inversions done, only three

retained acceptable shapes. These were test numbers 6,12 and 20. The average misfit for

these inversions was 50.625, with the highest misfit 148, and the lowest 13.4. These three

results would all be considered successful inversions. Figures 4.17,18 and 19 show the

results of inversions 6,12, and 20 respectively. Examining these figures and Table 4.2, it

is clear that they managed to retain an agreeable shape, even with the corners turned

around, by placing the point which would be the “peak” of the house either inside or at

the bottom of the object instead of at the top. This allowed the points to be in a proper

order when evaluated in a clockwise fashion. Overall the five-sided inversions were

successful in finding models that predicted the data well in every case, but in the majority

of these cases the models were unacceptable due to their unacceptable shape. Therefore it

is clear that, without constraint-handling methods, further inversions using these

parameters or increasing the number of sides would inevitably end in failure.

64

Figure 4.18: Diagram of the predicted model (misshaped object with blue corners) and data (red +

curve), for the highest inversion result with misfit 189, shown with target model (house shape with

green corners) and synthetic data (blue curve).

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

65

Table 4.2: Inversion results of tests performed on five-sided models without constraints.

Test # Misfit Time

Taken(min)

X1 X2 X3 Z1 Z2 Z3 Rho

1 25.79 20.68 -15.7 1.6 8 45.8 9.3 34.4 1871.8

2 17.22 21.3 -13.5 -0.1 14.7 30.9 12.7 27.32 1930.2

3 2.2 21.1 7.95 0.54 -8.77 11.35 38.34 15.24 1714.5

4 189 19.2 5.9 -6.2 28.3 48.8 8.4 35.6 1856.2

5 5.5 20.1 4.9 7.7 -4 35.4 27.8 14.68 1989.1

6 13.4 17.1 5.63 -1.69 -5.99 36.14 21.77 15.06 1864.31

7 25.36 19.9 8.8 -2.6 -5.6 10.3 45.5 13.7 1506.2

8 146.2 19.4 -18 0.6 10.9 73.8 7.24 45.9 1688.7

9 19.3 19.5 -11.9 0.2 12.2 65.5 9.1 42.1 2324.7

10 39.14 19.5 -17.2 -17.1 2.88 8.5 47.6 35.4 2069.3

11 38.5 19.3 -23.2 2.05 12.5 49.9 8 36 1187.78

66

12 38.5 19.7 6.16 2.5 -6.8 18.45 37.7 15.4 1846.2

13 116.9 19.2 8.18 4.98 -13.8 13.1 34.5 15.7 1664.6

14 74.6 19.3 -22.2 -19.9 2.8 8.3 59.2 38.8 2172.23

15 5.8 21.2 6.24 -16.2 -5.6 31.8 34.1 13.5 1329.9

16 98.6 21.4 4.46 -7.8 -3.6 30.8 43.4 12.5 1588.6

17 18.2 21.5 7.4 -28.9 -7.3 34.7 33.7 12.5 956.9

18 35.45 21 -4.5 8 5.13 13.2 14.4 33.5 1609.8

19 153.9 20.6 3.2 -13.9 -3.7 42.87 30.2 13 1941.2

20 148.4 20.6 4.2 0.6 -3.8 18.4 53 12.7 1747.5

average 60.708 20.134 1722.746

Table 4.2 continued

67

Figure 4.19: Model and predicted data result for test number 6 (red +), with synthetic data (blue

curve).

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

68

Figure 4.20: Model and predicted data result for test number 12 (red +), with synthetic data.

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

69

Figure 4.21: Model and predicted data result for test number 20 (red +), with synthetic data.

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

70

4.3.3 Constrained four-sided inversions

The inability of the models to remain in a proper shape prompted an investigation of

constraint-handling methods, which led to the creation of the “Corner Switching” method

described in Section 4.2.4. The corner switching method operated as its name implies.

When unacceptable model orientations are detected the corners are swapped, restoring an

acceptable shape. With this method applied to the inversion algorithm the resulting

models have a large improvement in overall misfit value. The highest misfit recorded

during this set of twenty runs was 86.0 and the lowest was 0.1, leading to an average

misfit of 22.4. The average time to completion for these inversions was 54.3 minutes,

which is slightly longer than the previous average of 50.3 minutes. This increase in time

however is more likely due to the decrease in the number of stop functions achieved, only

2 in this set, rather than the constraints slowing down the algorithm.

Figure 4.22: Line plot of inversion results returned from tests on four-sided model with corner

switching constraints.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
is

fi
t

va
lu

e

Inversion test number

Constrainted 4 sided inversion results

Inversion results

Average misfit

71

Figure 4.22, a plot of the inversion misfit results and the average misfit, shows

that the majority of the values lie below or around the average line, and that there are

three higher outliers, which are very similar results to the unconstrained four-sided

models (Figure 4.9).

Figure 4.23, a plot of the predicted data and model of the inversion result with

misfit 86.0, demonstrates that the model with the highest misfit for this series of tests is

indeed a successful inversion.

Figure 4.23: Model and predicted data result for test with misfit value 86.0 (red +), with synthetic

data (blue).

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

72

Further evidence of this success is shown in Figure 4.24 which shows the

difference between the observed and predicted data for this model. It can be seen that the

difference between the observed and predicted data fluctuates along the observation

locations, fitting better in some areas and worse in others. However it must also be noted

that the maximum amplitude of these fluctuations never exceeds 2.0 microGal and is

generally confined to a difference of less than 1 microGal.

Figure 4.24: Data difference plot for model 4, with misfit 86.0.

-2.00E+00

-1.50E+00

-1.00E+00

-5.00E-01

0.00E+00

5.00E-01

1.00E+00

1.50E+00

-3
0

-2
7

-2
4

-2
1

-1
8

-1
5

-1
2 -9 -6 -3 0 3 6 9

1
2

1
5

1
8

2
1

2
4

2
7

 D
at

a
d

if
fe

re
n

ce
 (

m
ic

ro
G

al
)

Obsevation location (m)

(Dobs-Dcalc)

73

Figure 4.25: Data difference plot for model 12, with misfit 19.5.

Figure 4.25, a data difference plot for the model with a misfit closest to the average value

of 22 with 19.5, shows very similar characteristics to the previous example. This plot is

more symmetric, indicating that the positions of the observed and predicted data are more

in sync, and the model is more likely to be symmetric about the origin. Another detail of

this plot to note is the amplitudes of the difference. Here they are always less than 1.0

microGal, and the majority of the values fall between 0.5 and -0.5 microGal.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-3
0

-2
8

-2
6

-2
4

-2
2

-2
0

-1
8

-1
6

-1
4

-1
2

-1
0 -8 -6 -4 -2 0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

 D
at

a
d

if
fe

re
n

ce
 (

m
ic

ro
G

al
)

Obsevation location (m)

74

Figure 4.26: Data difference plot for lowest misfit model returned, with misfit 0.1.

Figure 4.26 shows the difference between the observed data and the predicted data

created from one of the models which achieved a misfit value of 0.1 microGal. The lack

of fluctuation in this plot compared to the previous examples indicates that the shape of

the predicted data curve is very close to the observed data: also the ordinate values show

that the amplitudes of both data sets are extremely close, the highest difference reaching

only 0.06 microGal. This above all shows the success of this inversion set. However one

thing remains to be verified, namely the success of the constraint handling methods

applied.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

-2
9

.5
-2

7
.5

-2
5

.5
-2

3
.5

-2
1

.5
-1

9
.5

-1
7

.5
-1

5
.5

-1
3

.5
-1

1
.5

-9
.5

-7
.5

-5
.5

-3
.5

-1
.5

0
.5

2
.5

4
.5

6
.5

8
.5

1
0

.5
1

2
.5

1
4

.5
1

6
.5

1
8

.5
2

0
.5

2
2

.5
2

4
.5

2
6

.5
2

8
.5

D
at

a
d

if
fe

re
n

ce
 (

m
ic

ro
G

al
)

Obsevation location (m)

75

 Table 4.3 shows the information for all twenty inversions with the corner

switching constraint for the four-sided object. It can be seen that the corners are no

longer rotating and all the models have the first position in the top left corner of the

model, as was intended. The corner switching method has fixed the previous problem,

and the outcome is an algorithm that performs extremely well on a four-sided object.

76

Table 4.3: Inversion results of tests performed on four-sided models with corner switching constraints.

Test # Misfit Time

Taken(min)

X1 X2 Z1 Z2 Rho convergence

iteration

1 13.4 57.5 -12.36 12.53 10.84 47.62 232.44

2 8.4 58.53 -5.83 5.82 21.7 30.94 1897.72

3 3.17 63.47 -7.08 7.09 22.91 28.58 2519.3

4 86 63.7 -5.08 5.13 15.07 45.42 700.29

5 0.1 14.4 -9.58 9.59 22.95 26.55 2885.2 1351

6 0.17 51.24 -10.04 10.06 19.16 31.24 826.23

7 26.95 53.29 -4.66 4.65 18.89 36.32 1284.12

8 47.7 57.9 -2.13 2.13 18.2 38.7 2418.7

9 0.1 5.3 -10.07 10.07 19.74 30.29 940.79 465

10 36.36 57.5 -2.77 2.84 19.01 36.99 2079.1

11 5.1 57.2 -7.56 7.59 20.28 31.84 1161.5

77

12 19.5 58 -3.48 3.47 21.09 33.17 2464.5

13 63.8 58.6 -5.99 6.23 15.53 43.1 634.85

14 17.6 56.2 -4 4 20.8 33.1 2092.77

15 42.7 70.7 -2 1.9 18.8 37.1 2882.65

16 32.7 60.9 -2.7 2.8 19.48 35.79 2295.4

17 17.9 62.7 -3.16 3.19 21.36 32.63 2886.76

18 12.5 56.8 -5.15 5.18 21.13 32.24 1791.26

19 5 67.1 -6.95 6.94 21.49 30.5 1623.98

20 9.22 54.5 -6.25 6.26 20.68 32.17 1423.56

average 22.41204 54.2765 -5.842 5.8735 19.4555 34.7145 1752.056

Table 4.3 continued

78

4.3.4 Constrained five-sided inversions

Applying the corner switching method to inversions of five-sided models wasn’t a simple

matter of just adding the criteria developed for four sides to the five side code. In the

four-sided algorithm, the corner switching method consisted of keeping track of only two

possible infractions; if the left and right sides are switched and if the top and bottom are

switched. This however is far too simplistic to tackle the complexities arising from the

addition of just one extra point. Adding another point means that for every time one

infraction is detected two other points need to be checked, for every point in the model,

leading to a far more complex process. After several failed attempts at implementing the

required changes, a working corner switching method was finally applied to the five-

sided model algorithm. The changes involved creating an elaborate and complex set of

criteria for checking and rearranging the corners when violations occured. The addition of

the corner switching method rectifies the problems experienced in the previous examples

as can be seen in Table 4.4 and Figure 4.27. Examining the table and figure shows that

each model is an acceptable shape and is oriented correctly. Unlike previous results

(shown in Figure 4.13) there is a large contrast in the majority of the models: some are

similar in shape but there is no grouping or trend present.

79

Table 4.4: Inversion results of tests performed on five-sided models with Corner switching constraints.

Test # Misfit Time

Taken(min)

X1 X2 X3 Z1 Z2 Z3 Rho

1 321.23 23.23 -10.83 -1.25 13.7 32.69 6.47 32.85 954.77

2 90.33 23.51 -8.43 5.61 7.74 17.47 15.27 26.22 1846.41

3 138.3 23.55 -9.99 -0.69 10.83 26.33 7.2 32.53 940.94

4 202.34 23.62 -11.32 -7.54 11.33 10.43 10.27 33.54 566.02

5 3.08 17.15 -6.34 1.92 6.2 15 13.23 31.81 1365.24

6 143.798 17.6 -11.49 -3.099 13.55 21.47 9.64 28.08 942.99

7 1.6 20 -10.98 -0.064 11.02 22.08 9.49 29.47 996.43

8 36.58 20.03 -9.56 -1.27 9.58 8.77 8.61 41.92 494.11

9 48.95 22.27 -11.18 2.95 10.55 14.37 8.85 33.45 633.52

10 432.31 22.19 -22.1 0.49 21.91 19.7 12.08 20.19 1460.99

11 1.12 22.33 -6.83 -0.177 6.867 16.88 12.088 31.308 1313.496

80

12 275.967 22.82 -4.415 1.533 3.455 22.537 7.545 36.554 1872.11

13 492.87 23.92 -7.19 4.49 6.89 9.66 7.07 49.47 575.397

14 3.66 24.166 -3.207 -0.677 3.18 15.78 15.469 30.65 3169.96

15 4.75 20.31 -9.11 0.37 9.07 12.86 9.77 35.69 689.42

16 607.55 20.25 -3.59 -3.177 5.21 20.06 6.37 40.55 1340.57

17 85.15 23.38 -9.76 -0.54 10.81 26.54 8.802 30.39 1164.31

18 47.73 23.42 -2.6 1.67 2.33 18.85 13.02 30.29 4267.17

19 55.17 24.16 -12.23 0.22 11.99 23.77 14.72 24.2 2440.67

20 46.93 24.08 -13.02 2.07 10.13 26.68 12.11 26.93 1754.51

average 151.9708 22.0993 -9.2086 0.14195 9.3171 19.09635 10.4037 32.3046 1439.452

Table 4.4 continued

81

Figure 4.27: Plot of all model shapes returned from inversion of five-sided inversion with corner

switching constraints.

82

The average misfit achieved for this set of inversions was 151.97, with a high misfit value

of 607.55 and a low value of 1.12 (see Figure 4.24). Similar to the previous inversion sets

the majority of the test runs have misfit values which lie below the average misfit, 11 out

of 20. Four lie near the average line and the rest are high above the average.

Figure 4.28: Line plot of inversion results returned from tests on five-sided model with corner

switching constraints.

The average time to completion in Tables 4.2 and 4.4 are 20.13, and 22.10

minutes respectively. These times are clearly much lower than those of Tables 4.1 and

4.3, which had averages of 50.35 and 54.28 minutes. This is because a different type of

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
is

fi
t

va
lu

e

Inversion test number

Constrainted 5 sided inversion results

Inversion results

Average misfit

83

file, a Cython file which allows Python to run faster, was used for these two cases. The

main thing to note about these times is that in the non-constrained five-sided inversions

the average time to completion was 20.134 minutes, and the average time to completion

for the constrained five-sided inversions was 22.09 minutes, a difference of just 2

minutes. The significance of this is that the corner switching method adds about two

minutes to every inversion of this type, not a significant amount when weighed against

the overall improvements it brings. The model with the highest misfit recorded during

the constrained runs was 607.55. It has been demonstrated previously that models with a

misfit as high as 226 are still considered successful inversions. Figure 4.29 shows the

observed and predicted data for this model. It can be seen that the peak of the predicted

data is not quite lined up with the observed data, and has a higher maximum amplitude.

The shapes of the curves are very similar despite this shortcoming.

84

Figure 4.29: Observed (blue) and predicted (red+) data for model 16, with misfit 607.55.

Overall this would be considered a successful inversion; even though it has a large

misfit value the similarities between the data curves and the fact that the model

reproduces the original shape well deems it an acceptable result. The data difference plot

for this model is shown in blue on Figure 4.30. The shape is similar to previous results

with the fluctuation with observation location. The left peak is larger than the right due to

the models middle point being located on the left (red in Figure 4.31). The maximum

difference recorded is along the last observation locations of the right side, also caused by

the models peak on the left side of center. Overall the majority of the difference is

confined to between 2 and -2 microGal, an acceptable amount of difference when values

are reaching upwards of 170 in the observed and predicted plots.

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

85

Also shown on Figure 4.30 are the difference plots for misfit 492 and 432 (red and

green respectively). The difference plot of the model with misfit 492 is basically the same

as model 607, except the middle point of the model is centered on the opposite side

(green in Figure 4.31), causing the difference plot peaks to be opposite. The shape of the

plot is generally the same for these two cases, but the placement and amplitudes are

different since the models are oppositely oriented. The data difference for test model 10,

which gave a misfit of 432, is seen in purple on Figure 4.30. Its shape is almost a mirror

image of the previous models, which means the predicted data is lower than the observed

data in all the places that the previous examples were higher. The main things to note

however is it is confined to the same range of differences as the previous two examples.

Figure 4.30: Data difference plot for models 16, 13, and 10 with misfit values 607.55, 492, and 432.31

respectively.

-5

-4

-3

-2

-1

0

1

2

3

4

5

-3
0

-2
7

.5

-2
5

-2
2

.5

-2
0

-1
7

.5

-1
5

-1
2

.5

-1
0

-7
.5 -5

-2
.5 0

2
.5 5

7
.5 1
0

1
2

.5 1
5

1
7

.5 2
0

2
2

.5 2
5

2
7

.5

D
at

a
d

if
fe

re
n

ce
 (

m
ic

ro
G

al
)

Observation location (m)

Misfit 607

Misfit 492

Misfit 432

86

Figure 4.31: Model shapes for test numbers 16, 13 and 10, with target model.

Results from test number 6 were closest to the average value; Figure 4.32 shows the

observed and predicted data for this inversion. The predicted data for this inversion are

much closer to the observed data than seen in the previous examples. The model shown in

Figure 33 has its peak off center to the left, which causes the slight misalignment. The

highest amplitude in the data difference plot, Figure 4.34, is recorded near station

locations -7.5 m and 5.0 m, which are associated with the misaligned peak. The amplitude

in those areas reaches to almost +/- 2.0 microGal. The majority of the difference in the

observed and predicted data is less than 1.0 microGal, which indicates a quality inversion

result.

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

-30 -20 -10 0 10 20 30

D
e

p
th

(m
)

observation location (m)

base model

Model 16, misfit 607

Model 13, misfit 492

Model 10, misfit 432

87

The three models with the best inversion results during this set were numbers 11,

7 and 5 followed closely by test numbers 14 and 15, with misfit values of 1.12, 1.6, 3.08,

3.66 and 4.75 respectively. Following the trend thus far, the best results come from

models which are the most similar to the original, as seen in Figure 4.35. Models 11 and 7

have the center point located almost exactly at the origin, which allows the data to fit

better since it isn’t shifted to one side. Model 5s approach to this same problem was to

suppress the shape down almost to a box shape with five points. Although this isn’t as

effective as aligning the peak with the origin, it is still much better than average and

creates a very low misfit value. Figure 4.36, a data difference plot of these three models,

shows just how close each set of predicted data lies to the observed. Model 5 has

deviations between -0.25 and 0.4 microGal. Model 7 fluctuates between -0.3 and 0.15

microGal, an improvement over model 5, however not quite as impressive as model 11

which is confined between -0.2 and 0.15 microGal. These models are extremely close to

the observed data, they are excellent inversion results.

88

Figure 4.32: Observed (blue) and predicted (red+) data for model 6, with misfit 143.80.

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

89

Figure 4.33: Model shape for test number 6, with target model.

Figure 4.34: Data difference plot for model 6, misfit 143.

-35

-30

-25

-20

-15

-10

-5

0

-15 -10 -5 0 5 10 15

D
e

p
th

(m
)

Observation location(m)

Model 6, Misfit 143

Base Model

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-3
0

-2
8

-2
6

-2
4

-2
2

-2
0

-1
8

-1
6

-1
4

-1
2

-1
0 -8 -6 -4 -2 0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

D
at

a
d

if
fe

re
n

ce
 (

m
ic

ro
G

al
)

Observation location (m)

90

Figure 4.35: Model shapes for test numbers 11, 7 and 5, with target model.

Figure 4.36: Data difference plot for models 11, 7, and 5 with misfit values 1.12, 1.6, and 3.08

respectively.

-35

-30

-25

-20

-15

-10

-5

0

-15 -10 -5 0 5 10 15

D
e

p
th

 (
m

)

Observation location(m)

Base Model

Mode 11, l Misfit 1.12

Model 7, Misfit 1.6

Model 5, Misfit 3.08

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-3
0

-2
7

-2
4

-2
1

-1
8

-1
5

-1
2 -9 -6 -3 0 3 6 9

1
2

1
5

1
8

2
1

2
4

2
7

D
at

a
D

if
fe

re
n

ce
 (

m
ic

ro
G

al
)

Observation location (m)

Model 11, Misfit 1.12

Model 7, Misfit 1.6

Model 5, Misfit 3.08

91

4.4 Conclusions

This chapter began by broaching the topic of forward modeling, and how it would be used

as the evaluating agent of this inversion algorithm. The two inversion targets used to

create the synthetic data for the test inversions where a 20m x 10m box shape and a house

shape with the same dimensions as the box shape but which extends towards the earths

surface in the middle. The chapter then touched on several topics required to convert the

PSO software from minimizing functions to inversions of gravity data. The first

requirement was to increase the number of parameters that could be used by the

algorithm. Then using the “sides method” of parameterization, forward modeling can be

used instead of function equations. These forward modeling calculations are then

evaluated using a least squares misfit function.

Once these additions were applied to the algorithm, tests were performed on the

four and five-sided objects with varied results. The results for unconstrained inversions of

the four-sided model appeared to be quite successful, obtaining an average misfit of 41.4

with a range of misfits between 0.1 and 226. The only negative detail about these results

was the tendency for the corners to rotate around, which isn’t an issue for his model but

was quite problematic for unconstrained inversions of five-sided objects. Without

constraints the inversions on the five-sided model failed to stay in an acceptable shape for

the majority of the results. Only 3 out of 20 models were acceptable after the inversion

was finished causing this to be a failed test set, and prompting the creation of the “corner

switching” constraint method. The corner switching method consists of testing the shape

of the model during an inversion by evaluating the position of the points that make up the

92

model. If for example, X1 is greater than X2 in an inversion of a four-sided model, this

would mean that what should be the left side of the model is actually the right side. This

would cause the corners to rotate, and thus the corner switching method would

interchange the values of X1 and X2, preserving the proper shape of the model.

When the corner switching method is applied to inversions of the four-sided

model, the results have a large improvement. The average misfit decreased by about half,

from 41.4 to just 22.4 with values ranging from 0.1 up to 86.0. The average time to

completion of this set increased by about 4 minutes, but this was considered more a factor

of fewer stop functions encountered rather than the amount of time added by the corner

switching method. The most notable improvement was that zero out of twenty models had

corners that were switched around after the inversions were complete, signifying the

success of the corner switching method.

The results of inversions of the five-sided models with the newly proven corner

switching method were a great improvement over the previous set. Once again no models

were left in unacceptable shapes after inversion, and over the twenty tests the average

misfit achieved was 151.97, with the highest value being 607 and the lowest being 1.12.

Then, even though the highest misfit was 607, it is still considered a successful inversion,

as was demonstrated mainly by data difference plots which show that the fluctuations

between the predicted and observed data for this test were less than 5 microGal for any

given observation location.

Even though these were mainly successful inversions, improvements need to be

made to the algorithm in order to move towards models with greater number of sides, and

93

to be more flexible overall. This was apparent when the transition from four-sided to five-

sided models was attempted with the sides method. The downfall of the sides method is

that it becomes problematic to parameterize objects with more than four sides; every

shape would have to be symmetric, and have shared x and y coordinates, which is

unacceptable when attempting to create complex objects. To counteract this deficiency a

new method for model parameterization was created, henceforth known as the “points

method”, to deal with the impending problems related to defining larger, more complex

targets.

94

Chapter 5 : Constraint Handling and Points Methods

This chapter will further investigate the creation of an inversion algorithm by first

highlighting the areas of the coding which remained unchanged. These areas include the

forward modeling and misfit function. The chapter then details the differences between

the sides method and points method of model parameterization. This leads into

descriptions of the inversion target models used in this chapter. The new methods for

constraint handling are then described, namely the penalty function and the rejection of

infeasible solutions (RIS) methods. The results section discusses the outcome of the tests

conducted with the penalty function and the RIS methods using the sides method. Later,

once the tests have determined which method is better suited for the algorithm

implemented here, the results of a six-sided inversion with the “points” method will be

detailed. (The relevant source code can be found in Appendix B, along with all results not

explicitly shown in this chapter)

5.1 Forward modeling methods and misfit function.

This chapter introduces the points method of model parameterization, along with several

changes to the inversion algorithm. Some things however did not change, and operate

nearly identically to the implementation used to generate results described in Chapter 4.

The things which remained unchanged include the misfit function, the target models and

the forward modeling technique. The misfit function remains as a least squares misfit, and

performs exactly the same in every example except those which use a penalty function

(Section 5.3). In these cases the penalty is added to the calculated value of misfit. The

95

target models also remain unchanged; this chapter will however introduce an additional

six-sided model. The forward modeling method performs exactly the same for the sides

method and the points method. The only difference is the manner in which the points are

generated. The outcome is identical, as can be seen in Figure 5.1, which shows two sets of

synthetic data, one calculated using the code for the sides method and the other using the

new code for the points method. Chapter 4 mentions the use of Cython files to speed up

the inversion process. This technique is also used in this chapter for testing of the penalty

function and RIS constraint handling methods. With the addition of the points method, a

new method for optimizing the time used during inversion, called Parallel Python, is

implemented. Parallel Python is a python module which provides a mechanism for

parallel execution of Python code on systems with multiple processors or cores, and on

clusters. The benefits of this method will be described in the results section of this

chapter.

Figure 5.1: Plot of two identical sets of synthetic data calculated using code for the sides method and

points method.

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

96

5.2 Model parameterization and inversion targets.

The points method was developed to overcome difficulties arising from creating models

with more than four sides. Unlike the sides method, which used the intersection of X and

Z values to determine the corners of each polygon, the points method uses a pair of X and

Z values together to define the location of each vertex. This method does not share

values. This difference is most easily seen in an example of a particle:

 Particle from sides method:

Swarm[i] =[x1,x2,x3,z1,z2,z3,rho]

Particle from points method:

Swarm[i] = [[x1,z1],[x2,z2],[x3,z3],[x4,z4],[x5,z5],[rho]]

Since there is no sharing of values, the points method is slightly more complex, but it is

much more robust as a result, allowing each point to move independently of the others,

thus generating more complex objects. Integrating the points method required vast

changes to the infrastructure of the software due to the difference in shape of the two

swarms. This revamping was constructive however, leading to a new manner of

initializing the swarm, and a new technique for detecting infeasible models. Previously,

initializing the swarm was a simple matter of randomly picking X,Z, and rho values from

a range of acceptable values. For the points method, however, this could lead to initial

models with unacceptable shapes. Instead, the new version first divides 360
o
by the

97

number of sides of the object to get an even increment. Then using a combination of

random depth to the center of the object, random radius to each point and the angle

increment, the points are oriented in a circular manner. This method allows the objects to

start in an acceptable shape 100% of the time. An example of what an initial swarm could

look like is shown in Figure 5.2.

Figure 5.2: Plot of five possible shapes created by the new initialization procedure used for the points

method.

In previous versions of the inversion algorithm the process of checking for

infeasible models was needlessly complex for models with more than four sides. The

process was basically a piece by piece check, which evaluated the location of every other

point with respect to the current test point. If for example the point being considered was

98

the bottom left corner, the position of every other point would need to be evaluated to

ascertain if it is indeed the bottom left corner. This process is also the reason that the

corner switching method was put aside. The new method however does not rely on this

tedious process, and is composed of a primary and a secondary check. A feasible model,

in this thesis, is actually a simple polygon, and an infeasible model is a complex polygon

(see Figure 5.3).

Figure 5.3: Depiction of simple and complex polygons: simple represents a feasible model and

complex a non-feasible model (Pierce 2013).

The primary checking procedure involves calculating the exterior angles of the polygon:

the sum of the exterior angles will always add to 360
o
in a simple polygon, no matter how

many sides it has (Pierce, 2013; Figure 5.4), but will not in complex polygons.

99

Figure 5.4: Demonstration of how the exterior angles of a polygon add to 360 degrees (Pierce, 2013).

There are however some relevant exceptions where the exterior angles of complex

polygons will also add to 360
o
. These polygons will always have at least two sides

crossing, as seen in Figure 5.5, and for this reason a secondary check is applied to models

which have exterior angles adding to 360
o
.

Figure 5.5: Example of a complex polygon with exterior angles adding to 360 degrees (John, 2013).

100

The secondary checking procedure is designed to detect crossing lines. It does this

by calculating vectors between each pair of points, and evaluating if those vectors cross.

The combination of these two methods is much more robust than those previously used

(Section 4.2.4), and is far simpler to implement. It also allows for the use of additional

sides without changing the penalty detection methods. Another advantage of this method,

when used in tandem with the points method, is that the points are no longer tethered to

specific corners, and are free to rotate during the inversion process without causing

penalties to occur.

The five-sided model remains unchanged from Chapter 4 as an inversion target,

and will be used for testing the newly developed constraint handling methods described in

Section 5.3. An additional six-sided inversion target is introduced here, which is now

possible due to the use of the points method of parameterization. The six-sided model has

several characteristics in common with previous inversion targets. Similar to the four and

five-sided models it extends from X = -10m to X = 10m. This model is a symmetric

polygon, which is located between the depths of 21.34 and 38.66m. The density value is

also the same, 1000.0 kg/m
3
. Figure 5.6 is a diagram showing the six-sided model, and

the synthetic data of the four, five and six-sided models. The gravity curve of the six-

sided model is represented in dark blue, and is extremely similar in shape to the gravity

curve of the four-sided model (light blue). Both the four and six-sided models are much

broader than the synthetic data of the five-sided model (red).

101

Figure 5.6: Depiction of the six-sided model and synthetic data from the 4,5 and 6 sided models,

represented in light blue, red and dark blue respectively.

5.3 Constraint handling methods and required changes.

As described in previous sections, the corner switching method was the first attempt at

constraining the algorithm to deal with infeasible solutions, i.e., shapes that are turned

inside out. This method was a quick and simple way to fix the problem, however there

were some issues with that method which were discovered early on. When the five-sided

model was introduced the corner switching method was found to be overly complex, and

the complexity would only increase with the number of sides. The next attempt at a

constraint handling method was to use penalty functions, which are the traditional means

for solving constrained non-linear optimization problems (CNOPs). When using this

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

102

approach the constraints are effectively removed and a penalty is added to the objective

function value (in a minimization problem) when a violation occurs.

 ∑(

)

Hence, the optimization problem becomes one of minimizing the objective function and

the penalty at once. Penalty functions can be stationary or non-stationary. Stationary

penalty functions add a fixed penalty when a violation occurs, whereas non-stationary

penalty functions add a penalty proportional to the amount the constraint is violated.

Another factor to consider with this method is optimizing the penalty values used. They

need to maintain a balance between obtaining feasibility while also finding optimality: a

value which is too small may cause the problem to never converge, while a value which is

too large may cause early convergence to a non-optimal solution.

 The third method of constraint handling experimented with here was the Rejection

of Infeasible solutions method (RIS method). The RIS method differs from the penalty

function method in that it discards any violations detected instead of adding a penalty.

The drawback of this method is that for some types of problems there may be some

infeasible solutions that are better than feasible ones. This however does not generally

apply when the method is used to invert geophysical data, since any infeasible solution

would be either turned inside out, or outside of the survey region or above the Earths

surface. When adapting this technique into the global version of PSO, the initialization

process involves forcing all of the particles into feasible space before any evolution of the

objective function can begin (Hu et al. 2003). During evolution only those particles that

103

remain in the feasible space can be considered for new values of pbest and gbest, while

the others are rejected. The idea here is to accelerate the iterative process of tracking

feasible solutions by forcing the search to contain only solutions that do not violate any

constraints. Another obvious drawback of this method is that for CNOPs with extremely

small feasible space the initialization process can become impractically long. Once again

this is not an issue in this case due to the manner in which the particles are initialized for

this algorithm.

5.4 Results for five-side inversions with penalties, and six-sided points method.

5.4.1 Inversions of five-sided models with a penalty function value of 500

This section will discuss the results obtained from the tests performed on five-sided

models, using the sides method of parameterization, with both the penalty function and

RIS methods of constraint handling. Results from tests performed on the six-sided model

using the points method of parameterization will also be discussed in this section. The

testing using penalty functions involved the use of two different penalty values. The first

was a small penalty of 500, and the second a much larger penalty of 50,000. This was

done to either find penalty values which performed well or determine which of these

would cause the algorithm to fail. Each set of tests using the sides method were

performed over five thousand iterations, and repeated twenty times. The recorded values

were the misfit, the time taken, the x and z values, and the density.

Section 5.3 stated that using a penalty function that is too small may cause the

inversion to never converge. The first value tested was a penalty value of 500, which was

104

added to the misfit function every time a violation occurred. Table 5.1 shows the results

of this test suite, and it is clear that this penalty value is far from optimal. The average

objective function achieved amongst this suite of 20 inversions was 598.25, with an

average time to completion of 21.1 minutes using Cython file type. During this set, zero

out of twenty achieved an objective function value small enough to trigger the stop

parameter. Also evident from Table 5.1 is the number of tests which were unable to find

feasible models in the allotted time; these are highlighted in yellow, and account for

nearly half of all the inversions done. Disregarding the infeasible solutions, the highest

objective function returned was 2951.25, followed by 2083.02. The lowest objective

function achieved was 0.65, leading to an average objective function of 608.0, which is

actually slightly higher than the overall average. Figure 5.7 is a plot of the feasible

solutions objective function values, and the average objective function of those solutions.

It can be seen that the majority of the values fall below the average line, with three values

lingering near it, and two are far above the line. Using the same criteria established in

Chapter 4, the values which fall below the average line would be considered quite good,

the values near the average may be acceptable and the ones far above the line are most

likely poor results.

105

Figure 5.7: Plot of inversion results and average objective function value from constrained five-sided

tests using a penalty function with a value of 500.

0

500

1000

1500

2000

2500

3000

3500

2 3 4 7 8 9 10 12 13 14 19 20

O
b

je
ct

iv
e

 f
u

n
ct

io
n

 v
al

u
e

 (
m

ic
ro

G
al

)

Inversion test number

Inversion results Penalty value 500

Inversion results

Average misfit

106

Table 5.1: Inversion results for constrained five-sided example using a penalty function value of 500.

Test # objective

function

Time

Taken(min)

X1 X2 X3 Z1 Z2 Z3 Rho

1 541.78 22.65 -23.66 1.18 14.07 57.6 7.87 39.12 1199.58

2 5.04 23.925 -15.07 0.33 15.13 26.92 10.29 26.92 1155.255

3 402.85 22.5 -3.67 -2.035 7.25 34.25 6.41 34.33 2058.52

4 104.15 23.565 -8.51 -8.33 8.55 15.3 15.3 27.37 1430.28

5 505.99 21.195 -14.99 0.39 12.12 46.3 10.75 34.05 1982.8

6 539.35 22.42 -25.6 0.022 25.07 81.64 6.42 48.83 979.97

7 798.81 20.67 -3.54 14.94 2.4 11.45 8.71 44.72 1582.06

8 235.66 21.815 -7.66 3.53 4.75 24.28 9.05 31 1706.42

9 509.3 20.92 -6.88 28.84 6.88 13.82 13.82 31.6 1232.488

10 0.659 20.48 -13.55 -0.057 13.65 26.59 10.49 27.32 1246.69

11 590.39 21.545 -28.48 3.21 16.03 37.11 10.24 29.7 1093.63

107

12 14.33 21.56 -10.81 1.05 10.19 21.95 10.01 29.08 1088.71

13 181.2 19.925 -6.93 -2.28 8.366 21.77 7.78 33.58 1069.2

14 9.99 19.945 -7.83 2.15 7.46 16.19 11.92 31.28 1144.68

15 574.21 20.26 -2.74 -19.81 4.21 12.51 9.53 39.31 1593.54

16 765.36 20.41 -17.46 0.51 6.57 98 4.58 55.88 1969.89

17 513.83 20.785 -20.78 2.47 9.2 41.65 10.18 32.32 1564.9

18 637.62 20.875 -5.966 -5.83 23.19 29.07 15 25.8 2680.4

19 2083.02 19.8995 -9.75 2.89 3.08 37.72 3 37.73 1424.07

20 2951.44 19.22 -1.78 1.882 1.884 7.43 7.43 68.46 1719.77

average 598.249 21.22823 -11.782 1.2526 10.0025 33.0775 9.439 36.42 1496.143

Feasible 608.0374 21.20

Table 5.1 continued

108

Test numbers 10, 2, and 14 were the best results returned from this suite of inversions,

with misfit values of 0.65, 5.04, and 9.99 respectively. These correspond to excellent

results as seen in Figure 5.8.

Figure 5.8: Plot of the model returned in test inversion 10, with predicted and synthetic data

indicated by red crosses and the blue line respectively.

Figure 5.8 shows that the predicted data (red +) fall on or near the synthetic data (blue)

over the whole extent of the curve. The model shape is basically a triangle, with the

center point located at the position X = -0.057m, Z = 10.49m which is extremely close to

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

109

the position of the center in the target model X = 0.0, Z = 10.0. The object extends from

X = -13.55m to X = 13.65m, which is also very close to the target model. It is

compensating the smaller size with increased density, 1246.69 kg/m
3
 up from 1000.0

kg/m
3
. The model appears to only have three vertices, however there are indeed five. The

left and right sides are contracted together making it appear as if there are three vertices.

Results closer to the average misfit value include those for runs 3, 8, 9 and 7 with

objective function values of 402.85, 235.66, 509.3 and 798.81 respectively. Figure 5.9

shows the models returned from test inversions 3 and 8 (green and red respectively) as

well as the predicted data from those models (matching colors), overlapping the synthetic

data from the target model (blue curve). Similar to previous examples the shape and the

placement of the predicted data curves are very similar to the synthetic data curve. Model

3 has its center point located to the left of the origin, causing a corresponding shift in the

predicted data curve. Opposing this is model 8, with a center point position on the right

on the origin, causing a rightward shift in the predicted data. Overall both models

produce very acceptable sets of predicted data.

 Test models 7 and 9 also lie close to the average objective function value in

Figure 5.7. Plots of the predicted data from these models are shown in Figures 5.10 and

11. It can be seen that these two sets of predicted data are actually not representative of

their misfit values, especially model 9. Figure 5.10 seems to be a very reasonable result,

matching the shape and amplitude of the synthetic data well. The objective function value

of this model is 798.81, but comparing the two curves it seems like it should have a much

lower misfit. This theory is strengthened by Figure 5.11, whose objective function value

110

is 509.3, but the predicted data is more akin to a misfit of less than 10. This uncertainty

can be easily explained by viewing the actual shapes of the models, as seen in Figure

5.12. The center point of both models is located far to the right of the main body, causing

them to be mistakenly assessed a penalty when they are both feasible shapes (model 9

appears to be pinched out due to scale, but the value of Z2 is actually slightly higher than

Z1). This was caused in part by an error in coding which adds penalties to models with

center values outside of the model shape, but also because the penalty was not strong

enough to guide the models towards better shapes, which will be confirmed in the results

of tests described below.

Figure 5.9: Plot of the models returned in test inversions 3 and 8 (green and red dots and lines

respectively), with predicted and synthetic data (green and red crosses, and blue line respectively).

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

111

Figure 5.10: Predicted data (red+) and synthetic data (blue line) for run 7 of five-sided example

constrained with a penalty value of 500.

Figure 5.11: Predicted data (red+) with synthetic data (blue line) for run 9 of five-sided example

constrained with a penalty value of 500.

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

G

ra
v
it

y
 (

M
ic

ro
G

a
l)

112

Figure 5.12: Plot of model shapes returned from test inversions 7 and 9 (and the true model) for the

five-sided examples constrained using a penalty function value of 500.

Test inversions 19 and 20 returned very poor results, having objective function values of

2083.02 and 2951.44 respectively. Figures 5.13 and 14 show the predicted data results for

these models, and it can be seen that they do not match up well. The shapes are too

narrow, and the maximum amplitudes are too high, nearly 10 microGal of difference in

both cases.

Overall the results from inversions using a penalty function with a stationary value

of 500 were unsuccessful. Although 12 of the 20 inversions were successful in obtaining

feasible models, two of these were very poor results, leaving the remaining 10 with

results ranging from excellent to merely acceptable. The fact remains however that nearly

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

-20 -10 0 10 20 30 40

D
e

p
th

 (
m

)

Observation locations (m)

Target model

Model 7

Model 9

113

half of the inversion results were infeasible solutions, which inevitably was the deciding

factor in deeming this penalty value a failure.

Figure 5.13: Predicted data (red+) and synthetic data (blue line) for run 19 of five-sided example

constrained with a penalty value of 500.

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

114

Figure 5.14: Predicted data (red+) and synthetic data (blue line) for run 20 of five-sided example

constrained with a penalty value of 500.

5.4.2 Inversions of five-sided models with a penalty function value of 50,000

Increasing the penalty value from 500 to 50,000 drastically improves the results returned,

as can be seen in Table 5.2. During this test suite an average objective function value of

1452 was achieved, however this is a misrepresentation of the results. A single extreme

outlier is present which clouds the true quality of the data, as seen in Figure 5.15.

Disregarding this value gives a more informative representation of this data set. The

average objective function value becomes 54.57, with a new high value of 141.65, and

two equal low values of 0.1. The average time to completion for these inversions was

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

115

19.07 minutes, using Cython scripts. Two of the twenty inversions had objective function

values low enough to trigger the stop parameter, both contributing to an average number

of iterations of 390. Increasing the penalty value to 50,000 has also eliminated all cases of

infeasible results in this set, which is a vast improvement over the previous suite, which

had eight such cases.

Since it has already been established that models with misfit values as high as 607

are deemed successful inversions, the majority of the results obtained from this set need

not be shown since they are all less than 141, as seen in Figure 5.16. Results from model

20 and the outlier run 16, with objective function values of 141 and 28013.1 respectively,

will be presented, since they had the highest objective function values. Figure 5.17 shows

the final model returned in inversion test number 20, as well as the gravity curve created

from that model. It is clear from this figure that this model produces more than an

adequate match for the synthetic data, and since this was the worst out of the 19

inversions, it verifies the quality of the other results.

116

Figure 5.15: Line plot of objective function values obtained from inversions using a penalty value of

50,000.

Figure 5.16: Objective function value omitting the outlier of 28,013

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 1011121314151617181920

o
b

je
ct

iv
e

 f
u

n
ct

io
n

 v
al

u
e

s
(m

ic
ro

G
al

)

Inversion test number

Average misfit

average misfit(appended)

Inversion results

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

o
b

je
ct

iv
e

 f
u

n
ct

io
n

 v
al

u
e

s
(m

ic
ro

G
al

)

Inversion test number

average misfit(appended)

Inversion results

117

Table 5.2: Results obtained from the five-sided constrained inversions with sides method using a penalty value of 50,000.

Test # objective

function

value

Time

Taken(min)

X1 X2 X3 Z1 Z2 Z3 Rho convergence

iteration

 1 73.28 17.505 -5.5 0.41 5.91 30.24 9.22 31.23 2352.9

2 52.84 17.53 -4.14 0.66 4.13 12.97 12.97 36 1631.21

3 4.7 18.195 -14.36 0.16 14.33 16.44 6.42 32.06 501.44

4 78.48 21.125 -6.69 -3.92 7.79 19.08 11.81 29.59 1462.78

5 135.17 21.555 -15.34 2.63 11.9 23.46 15.2 23.46 2598

6 21.07 21.97 -10.14 -1.35 11.89 26.65 12.02 26.92 1785.1

7 123.08 22 -13.82 -0.89 15.06 22.84 15.14 22.97 2523.32

8 60.12 21.87 -27.44 0.56 26.39 22.74 5.7 23.64 552.92

9 32.93 21.85 -7.11 7 7 11.85 11.19 36.5 872.74

10 66.9 22.075 -20.68 -0.49 21.17 18.92 5.59 25.76 500

118

11 81.18 22.07 -11.99 2.56 9.66 23.45 13.32 25.26 1976.47

12 0.1 1.9 -9.54 -0.008 9.55 25.97 11.55 27.75 1749.97 433

13 0.1 1.57 -12.5 0.007 12.5 25.81 10.38 27.69 1241.17 347

14 0.277 18.795 -9.99 -0.12 10.06 22.53 10.65 28.59 1244.16

15 52.73 21.82 -4.52 -2.69 5.66 21.17 11.31 30.86 2049.395

16 28013.1 21.89 -1.36 -1.36 4.36 40.75 30 75.21 1529.57

17 0.725 21.395 -14.88 0.00067 14.88 26.9 9.85 27.44 1100.98

18 14.66 21.325 -4.54 -0.0067 4.61 14.82 13.35 32.92 1774.66

19 96.83 23.955 -13.2 0.029 13.15 22.12 14.14 23.71 1978.86

20 141.65 23.94 -4.7 -2.22 4.63 11.48 11.48 39.55 1206.022

average 1452.496 19.21675 -10.622 0.048099 10.7315 22.0095 12.0645 31.3555 1531.583 390

average(no

16)

54.56958 19.07605 -11.109 0.122209 11.06684 21.02316 11.12053 29.04737 1531.689

Table 5.2 continued

119

Figure 5.17: Predicted data (red crosses) and model for run 20 using penalty value 50,000.

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

120

Figure 5.18: Predicted data (red crosses) and model for run 16 using a penalty of 50,000.

Figure 5.18 shows the resulting model from inversion number 16, as well as the predicted

and synthetic gravity curves. Unlike previous results, this set of data is an extremely poor

match in shape and maximum amplitude. At its peak value it is nearly half the amplitude

of the synthetic data. The cause of this failure is believed to be the same coding error

mentioned in Section 5.3.1 which affected models 7 and 9. The center point of the model

appears to be attempting to move farther to the left, but since the penalty value is now

greater than the current misfit value, the algorithm wouldn’t permit the point to travel in

that direction. If the point where to move further to the left, the misfit would increase by

50,000 due to the error in the penalty function. This must have caused the other particles

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

121

to gather at that same area, causing the velocities to drop to zero, halting any further

progress of the PSO procedure.

 The results obtained from inversions using a penalty value of 50,000 were

excellent overall. Excluding a single outlier, caused by an error in coding, the average

misfit value for this suite was 54.65, which was the lowest of any test suite obtained for

the five-sided model thus far. This, along with the complete lack of infeasible solutions

returned, confirms that this method performs extremely well with PSO when an

appropriate penalty value is used. The RIS method of constraint handling will be

discussed in the next section. Results from the RIS will then be compared with the results

obtained in this section in order to determine which of the two methods is the most

promising, and therefore which will be adopted in the points method inversion algorithm.

5.4.3 Inversions of five-sided models with RIS method.

The results of the tests performed with the rejection of infeasible solutions (RIS) method

of constraint handling were less than favorable. The average overall misfit achieved was

23460, with a high misfit value of 68782, and a low misfit value of 10.66. Similar to

previous test suites, several distinct divisions of quality are observed in this set. The

divisions fall into three subsets, the first subset had five models ranging in misfit from

10.66 to 594.22. From previous examples these will most likely be considered successful

inversions. The second subset also has five models, which are possible successes, with

misfit values ranging from 986.83 to 1792.53. The final subset contains the remaining ten

inversions which are definite failures, with misfit values ranging from 13912 to 68782.

122

Figure 5.19: Set 1 of obtained misfit and average values from RIS method experiments for five-sided

objects with 5000 iterations.

Figure 5.20: Set 2 of obtained misfit and average values from RIS method experiments for five-sided

objects with 5000 iterations.

0

100

200

300

400

500

600

700

3 7 11 15 20

M
is

fi
t

va
lu

e
 (

m
ic

ro
G

al
)

Inversion test number

Inversion results

Average misfiy

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 12 13 14 19

M
is

fi
t

va
lu

e
 (

m
ic

ro
G

al
)

Inversion test number

Inversion results

Average misfiy

123

Figure 5.21: Set 3 of obtained misfit and average values from RIS method experiments for five-sided

objects with 5000 iterations.

Figures 5.19,5.20 and 5.21 show the inversion results of each subset along with the

average of each subset. Figure 5.19 shows the misfit values do not exceed 600, and the

average misfit is just under 400, at 361.1. Figure 5.20 depicts the results of the second

subset, which has an average misfit of 1343.3. Figure 5.21 shows the result for the third

subset, which has an average misfit of 46069. Drawing on previous conclusions and

Figure 5.22, a misfit plot for model 7, it is clear that this model would be considered a

successful inversion. Since model 7 has a misfit which is extremely close to the highest

value in this set, and all other values in this set fall below it, it is safe to assume that the

other models in this set are also successful inversions. This fact is further corroborated by

Figure 5.25, which shows data difference plots for models 7, 14, 19 and 12. It can be seen

that the difference between the predicted data of model 7 and the synthetic data has a

maximum amplitude of approximately 4 microGal, while the majority of the difference

values are actually located between plus and minus 2 microGal, which is indeed an

0

10000

20000

30000

40000

50000

60000

70000

80000

2 4 5 6 8 9 10 16 17 18

M
is

fi
t

va
lu

e
 (

m
ic

ro
G

al
)

Inversion test number

Inversion results

Average misfiy

124

acceptable difference range. The additional models were selected to investigate possible

success or failure of subset 2 since subset 3 contains all failures. Model 14 has the lowest

misfit in subset 2, and model 12 has the highest misfit of subset 2; determining the

outcome of these inversions will help define the success or failure of this subset. Figure

5.23 shows the predicted data for model 14 from subset 2, with a misfit value of 986.

While considering Figure 5.23 it is necessary to point out that the shape of the predicted

data is very similar to previously examined results. The left and right end points are

higher than the synthetic data, similar to the peak value, which is also higher and to the

right of the synthetic curve, while other sections fall close to the curve. If this was the

sole avenue of exploration this model could be considered a success, however there are

other options to consider. Figure 5.25 also contains data difference information for model

14. It can be seen that the amplitude of the difference is constantly larger than that of

model 7. In this example, unlike for model 7, the majority of the differences lie in the

region of 2 microGal or greater with a maximum amplitude of nearly 6 microGal, which

leads to the decision that it is actually a failed inversion.

125

Figure 5.22: Plot of predicted data of model 7 (red) of the RIS constrained tests with synthetic data

(blue). The misfit value of model 7 is 591.

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

126

Figure 5.23: Plot of predicted data of model 14 (red) of the RIS constrained tests with synthetic data

(blue). The misfit value of model 14 is 986.

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

127

Figure 5.24: Plot of predicted data of model 8 (red) of the RIS constrained tests with synthetic data

(blue). The misfit value of model 8 is 13912.

Figure 5.25: Data difference plot for predicted data for models 7, 14, 19, and 12 from the RIS, five-

sided constrained inversions.

-8

-6

-4

-2

0

2

4

6

-3
0

-2
7

-2
4

-2
1

-1
8

-1
5

-1
2 -9 -6 -3 0 3 6 9

1
2

1
5

1
8

2
1

2
4

2
7

D
at

a
d

if
fe

re
n

ce
 (

m
ic

ro
G

al
)

Observation location (m)

Model7, Misfit 591

Model 14, misfit 986

Model 19, misfit 1037

model 12, misfit 1792

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

128

Since model 14 has the lowest misfit value of this set, it is only logical that the remaining

models of this set, including subset 3, are considered failed inversions. This is supported

by Figure 5.25, which also shows data difference information for models 19 and 12.

These examples are comparable to the information derived from model 14. This is

demonstrated further in Figure 5.24, which shows the misfit plot of model 8, the best

result returned in subset 3. The predicted data here is too narrow, and is centered to the

right of the synthetic data, leading to a mismatch in shape, and therefore a large misfit

value. Unlike previous results where failed inversions came from infeasible solutions, or

coding errors, it does not appear to be the case here. The results from this section were all

feasible solutions, which can be seen in Figure 5.26, a plot of the lowest models returned

in each subset as well as the base model. The figure shows that these are indeed feasible

solutions, and it does not appear that the center point of any model is probing the sides,

causing a failed inversion by coding error.

129

Figure 5.26: Plot of constrained models for each of the three subsets of results.

Given that the cause of these failures is not infeasibility or coding errors, it is

believed that a greater number of iterations could allow the inversions to find better

solutions. To this end, a small experiment of ten inversions was carried out using the

same parameters as previously applied with an increased number of iterations, namely,

10,000.

Figure 5.27 and Table 5.3 show the results obtained from the additional

experiments of the RIS method. It can be seen that there are two large outlier values in

this set, one with a misfit value of 89639, and the other with a misfit value of 9025. The

average overall misfit achieved in this set was 10208, however with the two outlier values

removed the data becomes much better, with an average misfit of 427.21. The remaining

eight inversion results appear to show great improvement over the previous suite. Using

previous conclusions, five of the inversions would be considered successful; one a failure

with a misfit value of 966.85; and the final result is unclear, with a misfit of 657.

-70

-60

-50

-40

-30

-20

-10

0

-15 -10 -5 0 5 10 15

Z
(m

)

observation location (m)

base model

Model 15, misfit value 10.66

Model 14, misfit value 986

Model 8, misift value 13912

130

Considering that the goal of this experiment is to determine whether increasing the

number of iterations would improve the success rate of the RIS method, evaluating the

unclear model is immaterial. The tests performed with 5000 iterations obtained successful

results in 5 out of 20 inversions, a 25% success rate. The new experiment using 10,000

iterations achieved successful results in 5 out of 10 inversions, a 50% success rate.

Ignoring the undecided inversion does not change the fact that a 200% improvement has

already been achieved. Given that increasing the number of iterations from 5000 to

10,000 has already shown a 200% improvement in success rate, it is probable that

increasing the number of iterations further would also improve the performance of this

constraint-handling method. The fact remains however that failures exist in this data set,

without any recognized cause. It is unclear if increasing the number of iterations would

eliminate these failures.

Figure 5.27: Inversion results and average misfit values of results from RIS method experiments with

10,000 iterations, outliers included.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2 3 4 5 6 7 8 9 10

M
is

fi
t

va
lu

e
 (

m
ic

ro
G

al
)

Inversion test number

Average misfit

Inversion results

131

Figure 5.28: Inversion results and average misfit values of results from RIS method experiments with

10,000 iterations, outliers removed.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8

M
is

fi
t

va
lu

e
 (

m
ic

ro
G

al
)

Inversion test number

Average misfit

Inversion results

132

Table 5.3: Results obtained from inversions with sides method using the RIS method and 10,000 iterations.

10,000

iterations

Misfit Time

Taken(min)

X1 X2 X3 Z1 Z2 Z3 Rho

1 657.69 42.49 -4.8 -3 5.14 11.42 7.43 48.71 857.42 10208.26

2 89639.49 42.5 -17.67 3.025 3.025 72.67 20.2 76.32 933.15 10208.26

3 518.18 41.9 -4.88 -0.26 5.31 36.421 5.36 36.426 2026.65 10208.26

4 245.7 41.85 -7.1 -1.64 8.6 25.07 6.89 34.42 1079.06 10208.26

5 317.5 43.72 -7.578 -2.4 9.41 24.18 6.64 34.68 952.4 10208.26

6 112.36 43.62 -3.94 -0.495 4.16 19.37 9.11 35.42 1820.51 10208.26

7 966.85 41.96 -14.11 13.93 14.01 9.85 9.847 29.23 522.2 10208.26

8 9025.45 41.75 -30 5.39 20.32 30.9 9.67 31 601.66 10208.26

9 24.11 39.55 -10.31 1.87 9.62 17.84 9.74 31.17 866.33 10208.26

10 575.25 39.65 -24.62 4.25 18.05 23.41 9.79 23.49 967.4 10208.26

average 10208.26

133

Avg no

outliers

427.205

134

Overall the RIS method for constraint handling was unable to compete with the

penalty function method described in the previous section. When used with 5000

iterations the RIS method achieved a 25% success rate, with an average misfit of 361.11

for those inversions. This method was able to prevent all models from becoming

infeasible; however the overall lack of success outweighs this fact. Increasing the number

of iterations doubled the success rate for this method; however the increase in

performance was not enough to compare with results obtained from inversions using the

penalty function.

 For these reasons it is clear that for this implementation of PSO, the penalty

function method is the superior method of constraint handling, and therefore it was

adopted for all further examples.

5.4.4 Inversion Results of six-sided model with points method of parameterization.

As described in previous sections, implementing the points method of model

parameterization into this inversion algorithm required vast changes to its coding. These

changes included: introducing new methods for implementing the swarm, and new

methods for detecting infeasible solutions, as well as the newly tested penalty function.

The goal of the points method was to overcome the deficiencies of the sides method. This

is precisely the reason for introducing a more complicated six-sided model as a test here.

Chronologically the points method, with all of its upgrades, was created prior to

the testing done to determine a suitable penalty value. Due to this oversight the original

points method used a smaller penalty value of 5000, which lead to failures similar to

135

those described in Section 5.3.1. The original approach to overcoming this obstacle was

to split the particles into two groups. The first group, which contained half of the

particles, was unchanged in any of its operations. The second group had a limitation

placed on the maximum velocity. This set of particles could not converge towards the

gbest value as quickly as the first group, which in theory would force the particles to act

as two distinct searching units, albeit with shared knowledge. This technique was

successful in overcoming the convergence issues experienced from an insufficient penalty

value, as can be seen in Appendix A. Once another solution was found through

increasing the penalty value to 50,000, it was decided that the new approach would be

used given that it was much easier to implement and that it produced excellent results.

The average overall misfit value achieved for this suite of twenty runs, on the six-

sided target shown in Figure 5.6, and constrained by a penalty function value of 50,000

was 11.39. A high value of 88.52 and a low value of 0.14 were achieved. Figure 5.29

shows a plot of these inversion results as well as the average misfit value. This plot shows

the exceptional results of these tests, the highest value returned was 88.52, followed by

46.71, and then the values drop to less than a misfit of 15 microGal.

136

Figure 5.29: Line plot of inversion results and average misfit values from six-sided points method

experiments.

Since the code was substantially modified from the previous implementations it is prudent

to verify whether these models were successful, even though by previous observations

they would clearly be considered excellent results.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
is

fi
t

va
lu

e
 (

m
ic

ro
G

al
)

Inversion test number

Average misfit

Inversion results

137

Figure 5.30: Plot of predicted data (green line) for six-sided inversion model 11 (which has a misfit

88.52); observed data are shown by the blue line.

Figure 5.30 shows that the shape and amplitude of the predicted data (green) is extremely

close to the synthetic data (blue). There is some misalignment along the left of the curves,

as well as the middle. The peak value of the predicted data is slightly higher and to the

right of the synthetic data. Along the right however, the two curves are almost perfectly

aligned. The cause of the misalignment is due to the models shape, which is seen in

Figure 5.31, a plot of models 11, 16 and 18. Model 11 is closer to the surface on the right

hand side than the left, causing the peak value to shift to the right. The quality of this

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

138

result is corroborated further in Figure 5.32, a data difference plot for these models. The

blue curve in Figure 5.32 represents the difference in data for model 11. The difference

fluctuates along the observation profile, and the fluctuations decrease from left to right.

This supports the conclusions drawn by observations of the predicted data. Figure 5.32

also shows that the difference in data for model 11 is only greater than 2 microGal

between x = -30m and -28m. The remaining differences are generally less than 1

microGal, which is an extremely satisfactory result.

139

Figure 5.31: Plot of model shapes returned from tests with points method and penalty function for

the six-sided examples.

Figure 5.32: Data difference plots for models 11, 16, and 18 from tests of points method on six-sided

targets.

-60

-50

-40

-30

-20

-10

0

-15 -10 -5 0 5 10 15

Z
(m

)

observation location (m)

base model

Mode 11,l misfit 88.52

Model 16, Misfit 0.14

Model 18, Misfit 46.71

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-30-26.5-23-19.5-16-12.5-9 -5.5 -2 1.5 5 8.5 1215.51922.52629.5

D
at

a
d

if
fe

re
n

ce
 (

m
ic

ro
G

al
)

Observation location (m)

Model 11, Misfit 88.52

Model 16, misfit 0.14

Model 18, misfit 46.71

140

Given that model 11 has the highest misfit value returned, and is an excellent

result, it is logical to assume that the remaining results are of higher quality. This fact is

reiterated in Figure 5.31, which shows model results for tests 16 and 18. Model 16 has

misfit value 0.14, the lowest value returned, and model 18 had a misfit value of 46.71, the

second highest in the suite. The shape of model 16 is very similar to that of the target

model; it even lies inside the target. The smaller size of the model is compensated by its

density value, ρ = 1729 kg/m
3
. Model 18 on the other hand is more akin to model 11 in

shape, but not positioning. The excellent quality of model 16 is seen in Figure 5.32. The

difference between the predicted and synthetic data for this model is nearly zero along the

length of the survey. The difference result for model 18 is also shown in this figure. Its

shape is very similar to that of model 11, however its amplitudes are less, reiterating the

fact that is has a lower misfit.

5.4.5 Advantages Parallel Python.

As alluded to in the preamble of this chapter, the new version of this algorithm that is

being tested in this section uses a different means of optimizing the computation time

used. Originally no method was used to shorten or optimize the time taken during

inversions, and running a 5000 iteration inversion would take roughly 40 minutes. Later,

Cython files were used to speed up the inversion. Using this method decreased the time

taken to around 20 minutes for the same inversions. Parallel Python is the new method for

optimizing the time used during an inversion. Table 5.4 shows that the average time taken

for this suite was 19.88 minutes, however this was for 500 iterations not 5000. The new

version took roughly the same time as an inversion using Cython, or half of the time it

141

takes to run an original inversion, or a 10,000 iteration Cython inversion. The significance

of this becomes apparent when considering the parameters and number of iterations used

throughout these tests. During all previous inversions the number of particles was 30, and

the number of iterations was 5000. Consider each particle to be one “guess” at a model

per iteration. During an original inversion there would be a total of 150,000 guesses in a

40 minute period. During a Cython inversion the time taken is cut in half, therefore the

number of guesses would be double, i.e., 300,000 in a 40 minute period. The new

technique uses parallel programming, which allows multiple instances of parts of the

algorithm, namely the forward modeling section, to be calculated at the same time. The

number of simultaneous calculations is dependent on the number of cores in the

computer. The computer used had 4 cores; therefore the number of effective particles can

be increased to 120, 30 for every core. Another change made to the parameters of these

inversions was the number of iterations, which was decreased from 5000 to 500, due to

the more complex nature of the new algorithm. The evidence of this is the average time

taken, shown in Table 5.4, which was 19.88 minutes, suggesting that the new algorithm is

actually slower, giving only 120,000 guesses in 40 minutes. The reason that this method

is used instead of Cython is because of its potential. With a greater number of cores, a

greater number of particles can be used simultaneously. For example, if 500 cores are

used, the number of particles, and hence the number of guesses per iteration, can be

increased to 15,000. In 40 minutes, this algorithm could perform roughly 1000 iterations,

giving a total number of guesses of 15,000,000. This is a staggering number compared to

142

the 300,000 potential guesses made during a 40 minute period using Cython, and is

precisely the reason for using this method with the new inversion algorithm.

 With greater experience, comes more refined techniques. Experimenting with

these inversion algorithms leads to many new ways to observe, and therefore evaluate, the

inversions as they progress. One such method is a simple readout of the gbest misfit data

at given iterations. This technique was added to the algorithm with the new additions

previously mentioned, and was the driving force behind decreasing the number of

iterations. The reason for this becomes clear when viewing an example readout:

Current time: 13:12:00.851000

Iteration number: 0

current gbest [[5.18765022e+00 4.50000000e+01], [7.09256413e+00

5.30952841e+01],[-6.48077994e+00 5.30569674e+01], [-6.16611076e+00

4.50000000e+01], [-7.20704283e+00 3.45603098e+01], [1.79474702e+00

4.18977651e+01], [2.15260000e+03 2.15260000e+03]]

current gbestv 11122.2509287

Current time: 13:18:05.151000

Iteration number: 100

current gbest [[4.62495810e+00 3.15383028e+01], [7.12548732e+00

3.59895095e+01],[-5.91372102e+00 3.88199711e+01],[-2.22613461e+00

3.15383028e+01],[-4.70417803e+00 2.04255299e+01],[2.01727285e+00

2.41026265e+01],[2.27406744e+03 2.27406744e+03]]

143

current gbestv 6.63909721567

Current time: 13:25:00.953000

Iteration number: 200

current gbest [[4.62503910e+00 3.15381913e+01],[7.12556611e+00

3.59894777e+01],[-5.91380451e+00 3.88197916e+01],[-2.22606503e+00

3.15381913e+01],[-4.70413089e+00 2.04253578e+01],[2.01736574e+00

2.41023579e+01],[2.27407196e+03 2.27407196e+03]]

current gbestv 6.63446066817

Current time: 13:31:53.423000

Iteration number: 300

current gbest [[4.62503911e+00 3.15381913e+01],[7.12556611e+00

3.59894777e+01],[-5.91380451e+00 3.88197917e+01],[-2.22606500e+00

3.15381913e+01],[-4.70413088e+00 2.04253578e+01],[2.01736576e+00

2.41023579e+01],[2.27407197e+03 2.27407197e+03]]

current gbestv 6.63445997581

Current time: 13:40:04.879000

Iteration number: 400

144

current gbest [[4.62503911e+00 3.15381913e+01],[7.12556611e+00

3.59894777e+01],[-5.91380451e+00 3.88197917e+01],[-2.22606500e+00

3.15381913e+01],[-4.70413088e+00 2.04253578e+01],[2.01736576e+00

2.41023579e+01],[2.27407197e+03 2.27407197e+03]]

current gbestv 6.63445997581

Current time: 13:45:28.807000

Iteration number: 500

current gbest [[4.62503911e+00 3.15381913e+01],[7.12556611e+00

3.59894777e+01],[-5.91380451e+00 3.88197917e+01],[-2.22606500e+00

3.15381913e+01],[-4.70413088e+00 2.04253578e+01],[2.01736576e+00

2.41023579e+01],[2.27407197e+03 2.27407197e+03]]

current gbestv 6.63445997581

The initial gbest model has a misfit of 11122.25 at iteration 0. After 100 iterations have

passed, the new gbest value is 6.64, a vast improvement. After 200 iterations the Gbest

value has barley decreased at all, to 6.63. Once 300 iterations are finished it is clear that

the Gbest value has reached its lowest possible point, since the misfit is still roughly 6.63.

After 500 iterations the misfit is exactly the same as for 300 iterations. This example

shows that a maximum of 5000 iterations is an excessive amount, and no more than 500

iterations are needed to achieve the desired outcome.

145

Table 5.4: Results obtained for inversions using the points method, with penalty value 50,000 on a six-sided model.

Test # Misfit Time

Taken(min)

X1,Z1 X2,Z2 X3,Z3 X4,Z4 X5,Z5 X6,Z6 Rho

1 1.799 19.07 6.96,31.019 2.529,38.431 -

5.339,32.649

-

5.826,31.018

-3.94,22.15 3.94,25.88 2105.422

2 5.069 19.23 3.702,30.08 6.66,39.74 -4.52,38.34 -7.11,30.08 -1.44,22.95 3.914,18.51 1592.49

3 1.158 19.78 4.33,35.35 4.83,37.31 -7.11,38.00 -3.83,35.35 -8.20,25.64 6.923,22.25 1656.79

4 9.08 19.785 3.97,35.45 -0.733,31.27 2.72,45.02 -8.86,35.46 -

0.977,20.09

7.55,23.72 1376.77

5 1.41 19.54 9.74,29.23 5.09,32.44 -4.04,34.78 -9.93,29.22 -1.12,24.04 5.64,25.24 2041.78

6 2.65 19.53 6.21,31.65 4.82,37.19 -2.06,37.91 -4.63,31.65 -5.33,22.04 4.15,25.19 1978.93

7 3.105 20.695 6.58,26.25 6.80,35.27 -3.75,35.195 -7.098,26.25 -2.46,22.07 -0.61,25.34 2047.7

8 12.83 20.69 2.59,25.21 5.86,42.53 -7.63,31.95 -6.66,25.21 -

0.685,25.36

9.13,14.29 1779

146

9 0.55 20.05 10.25,31.34 7.10,36.09 -6.31,40.196 -8.66,31.34 -4.78,21.74 2.20,19.91 1056.195

10 11.32 20.05 9.80,31.12 5.35,37.31 -1.00,37.64 -6.69,31.16 -2.41,18.14 1.85,27.14 1715.92

11 88.52 20.195 8.99,37.11 8.27,36.25 -

10.93,52.095

-10.65,37.11 0.225,15.87 4.09,13.47 692.88

12 4.25 20.195 9.62,29.62 3.78,34.39 -2.297,35.41 -5.64,29.62 -4.49,22.08 3.18,27.80 2543.51

13 5.45 20.19 5.05,30.75 4.54,40.77 -5.52,39.97 -5.97,30.75 -1.03,19.61 3.68,20.99 1433.64

14 8.33 20.195 13.22,28.72 4.09,38.33 -5.37,35.08 -10.65,28.72 -2.28,18.96 3.64,25.36 1109.54

15 4.33 19.765 4.34,29.86 1.83,36.94 -4.19,39.64 -5.17,29.98 -

0.52,23.095

3.93,21.86 2288.6

16 0.14 19.77 8.07,29.58 4.43,34.62 -3.73,38.22 -7.495,29.58 -2.12,22.54 3.74,23.80 1729.95

17 2.12 19.85 8.01,26.39 3.06,36.82 -3.67,39.94 -8.49,26.39 -1.88,23.49 5.44,22.18 1442.72

18 46.71 19.85 6.29,28.04 7.62,44.19 -5.13,43.44 -13.13,28.03 -9.77,24.57 10.00,14.69 659.02

19 14.29 19.62 3.52,38.62 7.499,44.85 -1.67,42.37 -4.07,38.62 -7.82,29.59 4.38,16.24 1315.35

20 4.76 19.62 14.49,19.31 -2.71,45.13 -11.27,24.21 2.75,19.31 1.09,21.52 6.21,23.45 896.295

147

average 11.39355 19.8835 1573.125

Table 5.4 continued

148

5.5 Conclusions.

This chapter began by introducing the points method for model parameterization, and in

doing so it indicated areas of the code which needed to be changed, and areas which did

not. Section 5.1 described the changes that were made to the algorithm to make the points

method possible. These changes include the swarms shape and size, methods for

initializing the swarm, and new techniques for detecting infeasible solutions. This section

also introduced the six-sided model, which was used to test the points method. Section

5.2 explained the two different constraint handling methods which were experimented

with in this chapter, namely, the penalty function method and the RIS method. Section 5.3

illustrated the results obtained from the experiments with these constraint handling

methods. The first experiment, in Section 5.3.1, used the sides method, with a penalty

function value of 500. Using the same model and parameterization method allows the

data to be compared directly, and thus to determine if the penalty function or the RIS

method would be superior. These tests showed that a penalty value of 500 was unable to

prevent infeasible models, and was ultimately deemed unsuccessful. Section 5.3.2

described the results obtained with an increased penalty value of 50,000. This increase in

penalty value greatly improved the results returned. The results contained one poor

model, however it was discovered that an error in coding was responsible for the large

misfit not ineffectiveness in the penalty method. Section 5.3.3 continued by describing

the tests done using the RIS method. These results were less than optimal, with three

distinct subsets of quality. The first set was considered successful inversions, and

contained 5 tests results. The second and third sets were all unsuccessful inversions. The

149

cause of the failures was not determined however further tests with an increased number

of iterations were performed. Upon increasing the number of iterations, the number of

successful results increased by 200%; however the cause of the failures was still not

isolated or eliminated. Overall this method was not able to compete with results obtained

from the penalty function; therefore no further tests were carried out with the RIS

method. Section 5.3.4 described the results of tests performed with the points method as

well as the upgrades to the algorithm. These were the best results obtained thus far. The

results all had misfit values less than 88. This section then considered the difference in

using Parallel Python and Cython. The explanation showed that using Parallel Python has

a much greater potential than using Cython, which is the reason for its adaptation in the

final version of the inversion algorithm. This section concluded by describing the

reasoning behind the decrease in the number of iterations used, from 500 to 5000. An

example read out of an inversion showed that using 5000 iterations was excessive, and no

information was gathered after roughly 300-400 iterations.

 Chapter 6 will experiment further with the points method, testing objects with

larger number of sides, as well as using noisy data. This will demonstrate the robustness

of this algorithm, and emphasize the fact that PSO can be used for non-linear inversions

of geophysical data.

150

Chapter 6 : Further Testing of Points Method

6.1 Introduction

This chapter will investigate objects with ten sides, with and without noise added to the

synthetic observed data. The inversion algorithm used is the culmination of all the

previously experimented versions, and is the best version found thus far. The code uses

the points method of model parameterization with the technique of initializing the swarm

described in Section 5.1. Finding infeasible models and boundary infractions is done

using the two part method also described in Section 5.1. The constraint handling method

used is the penalty function, since it had the best test results overall when used with a

penalty value of 50,000. This version will use Parallel Python as opposed to Cython, for

the reasons given in Section 5.3.4, and will have a maximum number of iterations of 500.

The stopping parameter, which was triggered for misfit values less than 0.1, was removed

for this version of the algorithm. Adding noise to the data changed the lowest misfit

values achievable for every data set, rendering the previous parameter obsolete. All other

areas of the code, that is, the misfit function and the forward method are unchanged from

the implementation used in the last chapter. The number of particles used is 120, as was

established in Section 5.4.4. The testing procedure will remain unchanged: performing 20

inversions and recording the coordinates of the points, the density in kg/m
3
, the final

misfit value, and the time taken. (The source code can be found in Appendix B, along

with all results not shown in this chapter)

151

6.2 Ten-sided inversion target, and noisy data creation.

Creating the ten-sided inversion target consisted of picking 10 points around a circle with

a radius of 10 m and centered at X = 0.0m, Z = -40.0m. The density value of this model

remains 1000 kg/m
3
. Figure 6.1 is a diagram of the ten-sided inversion target, displayed

inside the survey region.

Figure 6.1: Ten-sided inversion target (blue) inside the survey region, which is outlined in black.

Figure 6.2 is a diagram of the six-sided model (red), and the ten-sided model (blue), with

the synthetic data from both plotted in pink and blue respectively. The synthetic data

-120

-100

-80

-60

-40

-20

0

-40 -30 -20 -10 0 10 20 30 40

Z
(m

)

observation location (m)

152

calculated for the ten-sided model has a broader shape than that for the six-sided model.

This is because it is buried deeper.

Figure 6.2: Diagram of the six- and ten-sided models, with their synthetic data plotted above. Six-

sided model is in red, with pink gravity curve. Ten-sided model is blue with blue gravity curve.

Creating noisy data increases the difficulty of the inversion, thus further testing the limits

of the algorithm. The method for adding noise to the data used here is straightforward. It

consists of adding Gaussian noise to each data point using a built in Python Gaussian

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

153

random number generator called Random.Gauss. This application has two inputs: the

mean, mu, and the standard deviation, sigma. Three sets of noisy data were created, all

with a mean value of 0, but with increasing standard deviation values. The data with low

noise used a standard deviation of 1 microGal, medium noise had a standard deviation of

3 microGal and high noise had 10 microGal. Figure 6.3 is a plot of the noisy data sets and

the synthetic data without noise added. The low noise data seen in red is slightly

perturbed, with random peaks and valleys. The medium noise data in blue has higher

amplitude in its perturbations, but the general shape of the plot is still maintained. The

yellow curve is the high noise data; it has a very large variation with position, and the

shape of the curve is mostly masked.

Figure 6.3: Synthetic data plots for no noise (smooth blue), low noise (red), medium noise (jagged

blue) and high noise (yellow).

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

154

6.3 Results

6.3.1 Results for ten-sided inversions of noise free data.

The results of the ten-sided inversions of the noise free data were on par with those

produced from inversions on the six-sided model. The average misfit achieved was 6.77

with high and low values of 80.71 and 0.0043 respectively. Figure 6.4 is a graph of the

results (blue) obtained along with the average misfit value (red). It is clear from this plot

that these are exceptional results, with only one test above a misfit of 20 while the

majority of the values fall below the average value of 6.77.

Figure 6.4: Line plot of noise-free 10 sided inversion results (blue) with average misfit value (red).

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
is

fi
t

va
lu

e
 (

m
ic

ro
G

al
)

Inversion test number

10 Sided Noise Free Inversion Results

Average misfit

Inversion results

155

These results can be evaluated using the same criteria established in Section 5.4.4, since

the same algorithm is used and that set of inversions had a higher overall misfit and

average misfit. The results from that section were deemed extremely successful, and

hence these results are also exemplary. This is confirmed in Figure 6.5, a plot of the

predicted data from test 2, the highest misfit returned in this set. The fact that these results

had lower misfits overall is also noteworthy since a higher number of sides was used,

which increases the difficulty of the inversions.

Figure 6.5: Plot of predicted data(green) for run 2 (which has a misfit of 80.71) of the noise-free ten-

sided inversions. The blue curve shows the noise-free observed data.

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

156

6.3.2 Results for ten-sided inversions using medium noise.

The results in this section will be for medium noise only; the results of low and high noise

are recorded in Appendix A. The inversions using medium noise returned excellent

results. The average misfit for this set was 975.30, which when compared to previous

results would indicate one or more infeasible solutions. This is actually caused by the

jaggedness in the data and not some flaw in the inversion process, which is demonstrated

in Figure 6.6, a plot of the medium noise data and the original noise free data.

Figure 6.6: Plot of the noise-free synthetic data (blue) with the medium noise data (yellow).

Performing a misfit calculation between the medium noise data and the noise free data

gives a misfit value of 998.99, which is close to the average value returned. Once this

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

157

value is considered, the results can be viewed in a new light. The highest misfit value

returned in this set was 1103.16, from test 1, whereas the lowest misfit returned was

956.51, lower than the misfit value for the synthetic noisy data. This is not an error, and

can be explained when viewing Figure 6.7, a plot of the predicted data for this model,

along with the noise free and medium noise data sets, shown in green, blue and yellow

respectively.

Figure 6.7: Plot of predicted data for model 11, (misfit 956.51) (green), with noise free (blue) and

medium noise (yellow) data sets.

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

158

As described in Section 6.2, the noisy data sets were generated by adding random

Gaussian noise to the noise free synthetic data set. Since the “noise” mostly falls between

plus and minus the standard deviation, values can be randomly added or subtracted from

the synthetic data to produce the new sets. As a result, the medium noise data has an area

along the right side were more points fall above the synthetic data curve than below,

creating a higher trend in the data, seen in Figure 6.6. The inversions are therefore

attempting to fit this trend, which can be seen in Figure 6.7. The blue synthetic and green

predicted curves line up well along the left side, but towards the middle and right the

predicted curve has fit the new higher trend. This raises it above the synthetic data

slightly, producing a lower misfit as a result.

 The model with the highest misfit in this set was number 1. The predicted data

from this model are seen in Figure 6.8 along with the noise free and medium noise data

sets, green, blue and yellow respectively. This figure is nearly a mirror image of Figure

6.7. The predicted curve is slightly higher on the left side, near the middle the curves line

up, and along the right side there is little separation. Both curves pass though the yellow

data set near the middle of every peak and valley, and since one curve is the original data

set, and they are so closely matched it is only logical that this would be a successful

inversion. Consequently, the remaining results would also be considered successful, given

that they all have lower misfit values.

Figure 6.9 is a diagram of the models returned in tests 1 and 11 and the base

model. Both models have irregular shapes that do not resemble the circular base model.

159

This is not unexpected since the only restraint on the inversions is a misfit function which

does not guide the model shapes in any way, simply minimizes the misfit of the model.

Even though the models are irregular and jagged shapes, they are not flattened out in the

horizontal or vertical directions. In fact they are generally positioned in the same area as

the base model with centers that are very close to that of the base model.

Figure 6.8: Plot of predicted data for model 1, which has a misfit 1103.16 (green), with noise free

(blue) and medium noise (yellow) data sets.

G
ra

v
it

y
 (

M
ic

ro
G

a
l)

160

Figure 6.9: Diagram of models 1 and 11, with base model for reference.

6.3.3 Inversion time differences

One noteworthy difference between inversions of six and ten-sided models was the

average time to completion. Table 5.4 shows that for six-sided models the average time to

completion was 19.88 minutes, which was obtained without any tests having achieved

-60

-50

-40

-30

-20

-10

0

-15 -10 -5 0 5 10 15

Z
(m

)

observation location (m)

base model

Model 1, misfit 1103

Model 11, misfit 956

161

stop parameters. The average time to completion for inversions using data with medium

noise was 32.27 minutes, nearly a 13 minute increase. This increase in time is expected

since the number of sides is practically doubled, meaning each iteration would be more

computationally intensive, and thus take longer. It also cannot be ignored that given the

randomness of the noisy data a stop parameter was not used for the noisy data sets, and

given that the average misfit returned was lower than that of the misfit between the noise

free and medium noise data, this would have been triggered several times, decreasing the

overall average time.

6.4 Conclusions

This chapter began with an introduction of the latest algorithm being used, which was the

successful result of the experiments from the previous chapters. The ten-sided model used

in this chapter was created in order to increase the difficulty of the inversion but also to

verify that the algorithm operates with the increased amount of sides. The model itself

was circular in shape, with a radius of 10 m, centered at X = 0m, Z = 30m. The noisy data

was created by adding random Gaussian noise to the synthetic data, which was done with

a built in Python package. The package uses two inputs, the mean, which was set to zero,

and the standard deviation, which was set to 0, 3, and 10 for the low, medium and high

noise examples respectively. The inversion results for the noise free data were excellent,

with an average misfit value of 6.77, the best of all test sets. Adding the medium noise to

the data set didn’t affect the quality of the results. The average misfit returned was lower

than the misfit calculation of the synthetic data and medium noise, which was not an

error, but was caused by a new trend created by the noisy data. Overall the algorithm

162

performed remarkably well, with and without noisy data, retuning outstanding results for

every test, with the sole down side being increased computation time.

163

Chapter 7 : Conclusions

This thesis described the process of creating an inversion algorithm for performing non-

linear inversion of multifaceted polygons using particle swarm optimization (PSO). This

work demonstrated that using PSO for geophysical inversions is a viable option for

conducting non-linear inversions for complex objects. The algorithm created here

generally followed the recommended parameters of Carlisle and Dozier (2001), namely

30 particles with a global neighborhood. The particles are updated synchronously, with a

cognitive-to-social ratio of 2.8 to 1.3 for φ magnitude of 4.1. Clercs constriction factor, K,

was used since this leads to the greatest improvement in performance. There was no

constraint placed on Vmax.

Each chapter of this thesis described a new development in the process of creating

an inversion algorithm. The first tests in Chapter 3 were to minimize several benchmark

functions, namely the Sphere function, the Rosenbrock function, Rastrigins function, the

Griewangk function and the Schaffer F6 function. The results obtained showed good

convergence percentages, with 100% success in many cases, and no less that 85%

convergence overall. The algorithm also showed excellent behavior in the three examples

with multiple local minima. Avoiding the local minima successfully is exactly the sort of

behavior sought from PSO.

Chapter 4 expanded on the difficulty of the tests by incorporating the sides

method of model parameterization and forward modeling into the software. The tests

were first conducted on four- then five-sided models without constraints. The five-sided

unconstrained inversions failed to return models with acceptable shapes in many of the 20

164

test runs, leading to the creation of the corner switching method for constraint handling.

The corner switching method showed great improvement in the four- and five-sided

models, but it was ultimately deemed to be over-complex, which led to the investigation

of new constraint handling methods in Chapter 5.

Chapter 5 described the investigation of two new constraint-handling methods: the

penalty function method and the rejection of infeasible solution (RIS) method. The

penalty function method was found to be superior to the RIS method when an appropriate

penalty value (50,000) was used, returning better average results in fewer iterations. This

penalty function method was then applied to the new version of the software, which also

had a new method for model parameterization, namely the points method, among other

changes. The points method proved to be the best version of the algorithm tested up to

that point, returning excellent results.

Chapter 6 was designed to increase the difficulty of the inversion in order to

further test the viability of the software, by increasing the number of sides of the target

model, and by adding noise to the data. The inversion results for the noise free data were

excellent, with an average misfit value of 6.77. Adding medium noise, with a standard

deviation of 3 microGal, to the data set didn’t affect the quality of the results. The sole

down side found was increased computation time with increased number of sides.

The algorithm created during the course of this thesis showed that using PSO for

non-linear inversions of multisided polygons is an effective and viable approach to

inverting geophysical data, and could be adapted further with great potential.

165

Bibliography

Battiti, R., Brunato, M., & Pasupuleti, S. (2005). Do not be afraid of local minima: Affine

shaker and particle swarm.

Blakely, R. J. (1996). Potential theory in gravity and magnetic applications. Cambridge

University Press.

Carlisle, A.; Dozier, G. (2001). "An Off-The-Shelf PSO". Proceedings of the Particle

Swarm Optimization Workshop. pp. 1–6.

Coath, G., & Halgamuge, S. K. (2003, December). A comparison of constraint-handling

methods for the application of particle swarm optimization to constrained nonlinear

optimization problems. In Evolutionary Computation, 2003. CEC'03. The 2003 Congress

on (Vol. 4, pp. 2419-2425). IEEE.

Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm

theory. In Micro Machine and Human Science, 1995. MHS'95., Proceedings of the Sixth

International Symposium on (pp. 39-43). IEEE.

Hu, X., Eberhart, R. C., & Shi, Y. (2003, April). Engineering optimization with particle

swarm. In Swarm Intelligence Symposium, 2003. SIS'03. Proceedings of the 2003 IEEE

(pp. 53-57). IEEE.

John D "Parametric Equation of a Circle", Math Open Reference. Retrieved 7 May 2013

from http://www.mathopenref.com/coordparamcircle.html

Kennedy, J., & Eberhart, R. (1995). November.“Particle swarm optimization”. Neural

Networks, 1942-1948.

Laskari, E. C., Parsopoulos, K. E., & Vrahatis, M. N. (2002). Particle swarm optimization

for integer programming. In Evolutionary Computation, 2002. CEC'02. Proceedings of

the 2002 Congress on (Vol. 2, pp. 1582-1587). IEEE.

Li, Y. & Oldenburg, D.W., 1996. 3D inversion of magnetic data, Geophysics,61,394–408

Molga, M., & Smutnicki, C. (2005). Test functions for optimization needs. Test functions

for optimization needs.

Pierce, Rod. (21 Apr 2013). "Polygons". Math Is Fun. Retrieved 7 May 2013 from

http://www.mathsisfun.com/geometry/polygons.html

http://www.mathopenref.com/coordparamcircle.html

166

Shaw, R., & Srivastava, S. (2007). Particle swarm optimization: A new tool to invert

geophysical data. Geophysics, 72(2), F75-F83.

Shi, Y., & Eberhart, R. C. (1999). Empirical study of particle swarm optimization. In

Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on (Vol. 3).

IEEE.

Yuan, S., Wang, S., & Tian, N. (2009). Swarm intelligence optimization and its

application in geophysical data inversion. Applied Geophysics, 6(2), 166-174.

167

Appendix A

Test # Misfit Time
Taken(min)

X0,Z0 X1,Z1 X2,Z2 X3,Z3 X4,Z4 X5,Z5 RHO

1 1009.44 48.5 [5.95,33.65] [4.50,43.27] [-2.88,31.66] [-
10.09,33.65]

[-3.67,24.33] [2.66,31.01] 1780.34

2 1005.86 49.23 [5.29,26.72] [1.18,39.56] [-5.35,34.38] [-2.23,26.72] [-4.41,22.16] [5.98,26.56] 2619.58

3 989.49 52.03 [1.34,28.85] [6.23,45.40] [-5.60,35.14] [-4.75,28.85] [2.21,17.62] [3.74,27.22] 1931.91

4 980.23 47.56 [10.33,36.10] [-
0.68,41.10]

[7.35,50.94] [-
11.14,36.10]

[2.38,13.86] [4.59,25.58] 894.1

5 989.06 49.33 [4.82,32.22] [0.73,39.55] [-9.11,41.71] [-2.71,32.22] [-2.34,19.58] [4.89,24.44] 1867.22

6 980.72 50.03 [3.82,32.02] [-
0.32,40.05]

[-0.02,46.92] [-8.24,32.02] [-4.29,30.78] [4.07,16.07] 1826.57

7 1000.08 48.45 [2.09,31.56] [6.67,36.69] [-
11.07,32.89]

[-5.27,31.55] [-9.84,23.48] [6.75,25.47] 2634.74

8 996.03 47.41 [6.14,34.29] [6.07,34.70] [-1.36,36.08] [-
10.39,34.29]

[0.66,22.49] [4.76,22.25] 1890.73

9 985.81 47.13 [-3.82,38.85] [3.36,37.76] [-1.93,41.92] [-6.24,38.85] [2.15,21.33] [5.84,25.36] 2826.48

10 991.14 49.35 [[2.88,31.84] [1.48,38.42] [-2.80,43.33] [-3.50,31.84] [-1.42,22.55] [3.23,21.82] 2666.09

11 1004.59 49.06 [7.05,29.23] [0.58,30.08] [-1.66,40.85] [-8.64,29.23] [-8.55,28.37] [8.28,22.27] 2190.66

12 994.06 48.39 [8.48,29.46] [2.59,34.86] [-9.98,40.19] [-3.03,29.45] [-7.11,19.66] [6.31,29.24] 2089.27

13 1007.65 49.44 [10.25,28.54] [2.44,30.42] [0.99,39.66] [-8.79,28.54] [-2.73,26.68] [-
0.34,22.97]

2268.78

14 981.65 47.51 [4.15,29.31] [1.19,42.85] [-4.72,39.37] [-7.20,29.31] [-3.49,28.43] [4.16,16.82] 1723.56

15 990.23 48 [6.13,31.92] [2.83,36.35] [-7.04,36.17] [-
11.58,31.92]

[-1.24,27.45] [4.00,17.56] 1780.95

168

16 995.29 49.03 [7.36,30.70] [4.97,34.68] [-5.49,39.20] [-8.61,30.70] [-1.36,23.35] [4.31,20.94] 1515.1

17 984.95 48.4 [2.00,32.74] [3.22,44.72] [-3.72,47.54] [-0.53,32.74] [-6.21,27.77] [3.78,17.74] 2029.17

18 977.89 48.38 [-2.54,28.79] [5.33,35.06] [-1.91,48.79] [-3.53,28.79] [-7.13,26.52] [8.33,15.52] 2084.03

19 982.17 48.04 [5.84,30.27] [6.04,35.30] [-5.76,45.80] [-6.38,30.27] [-4.64,26.16] [2.93,17.01] 1251.16

20 994.35 47.01 [14.33,34.28] [-
0.08,40.30]

[-4.25,40.99] [-8.17,34.28] [0.86,16.35] [7.37,35.74] 1258.61

9-appendix B/Chapter 3 results and code/2D_PSO.py

import pylab as pl

import scipy as si

import random as rand

Rosenbrock

def func(X,Y):

 return (1-X)**2+100*(Y-X**2)**2

absolute_min=[]

solution_found=[]

sol_iter = []

error = 1e-3

Min = 0.0

K = 0.7968127490039841

lbound = [-100,-100]

ubound = [100,100]

vmax = 20

nswarm = 10

cp = 2.8

cg = 1.3

ndim = len(lbound)

maxiter = 1000

lbound = si.asarray(lbound)

ubound = si.asarray(ubound)

vmax = si.asarray(vmax)

log_pbest=[]

log_gbest=[]

partilce lists####

all_the_x_particles = [[] for i in range(int(nswarm))]

all_the_y_particles = [[] for i in range(int(nswarm))]

all_the_values = [[] for i in range(int(nswarm))]

gbestx_hist = []

gbesty_hist = []

gbestv_hist = []

initialize the swarm

swarm = si.rand(nswarm, ndim)*rand.randint(-100,100)

print swarm

initialize the "personal best" values

pbestv = si.zeros(nswarm)

for i in si.arange(nswarm):

 pbestv[i] = func(swarm[i,0],swarm[i,1])

pbest = si.array(swarm)

initialize the "global best" values

gbesti = si.argmin(pbestv)

gbestv = pbestv[gbesti]

gbest = pbest[gbesti]

print pbest

print gbest

velocities = si.zeros([nswarm,ndim]) #initiate velocity vectors.

print velocities

for i in si.arange(maxiter):

 values = si.zeros(nswarm)

 for j in si.arange(nswarm):

 values[j] = func(swarm[j,0],swarm[j,1])

 all_the_values[j].append(values[j])

 mask = values < pbestv

 mask2d = si.repeat(mask, ndim)

 mask2d.shape = (nswarm, ndim)

 pbestv = si.where(mask, values, pbestv)

 pbest = si.where(mask2d, swarm, pbest)

 if si.minimum.reduce(pbestv) < gbestv:

 gbesti = si.argmin(pbestv)

 gbestv = pbestv[gbesti]

 gbest = pbest[gbesti]

################# put the global best here! so you know when the minimum is found

 if gbestv ==0.0:

 absolute_min.append(i)

 if abs(Min-gbestv)<= error:

 solution_found.append(i)

 sol_iter.append(i)

 velocities = K*(velocities + (cp*si.rand()*(pbest - swarm)) +

 (cg*si.rand()*(gbest - swarm)))

 velocities = si.clip(velocities, -vmax, vmax)

 for h in si.arange(nswarm):

 all_the_x_particles[h].append(swarm[h,0])

 all_the_y_particles[h].append(swarm[h,1])

 swarm += velocities

 swarm = si.clip(swarm, lbound, ubound)

 gbestx_hist.append(gbest[0])

 gbesty_hist.append(gbest[1])

 gbestv_hist.append(gbestv)

 log_pbest.append(pbest)

 log_gbest.append(gbest)

###

###########PRINTING THE RESULTS#############

print gbest

print gbestv

if len(solution_found)>0:

 print 'solution found in ',solution_found[0],' Iterations'

if len(solution_found)== 0:

 print 'No solution found within error'

if len(absolute_min)>0:

 print 'abs min found in ',absolute_min[0],' Iterations'

###

###########PLOTTING THE RESULTS#############

from mpl_toolkits.mplot3d import Axes3D

from matplotlib import cm

from matplotlib.colors import LogNorm

import matplotlib.pyplot as plt

import numpy as np

fig1 = plt.figure()

ax = Axes3D(fig1, azim = -128, elev = 43)

s = .5

X = np.arange(-2, 2.+s, s)

Y = np.arange(-2, 2.+s, s)

minimum valus of rosenbrock####

X1 = [1]

Y1 = [1]

FXY1=[0.0]

X, Y = np.meshgrid(X, Y)

Z = (1-X)**2 + 100*(Y - X**2)**2

ax.plot_surface(X, Y, Z, rstride = 1, cstride = 1, norm = LogNorm(), cmap = cm.jet)

ax.plot(gbestx_hist,gbesty_hist,gbestv_hist,'y')

ax.plot(gbestx_hist,gbesty_hist,gbestv_hist,'o')

#position of particle 0, need to do the values!!!!!!!!!!!!!!!!!!!!!!!!!

"""for i in si.arange(nswarm):

 ax.plot(all_the_x_particles[i][0:sol_iter[1]],all_the_y_particles[i][0:sol_iter[1]],all_the_values[i][0:sol_iter[1]])

 """

ax.plot(X1,Y1,FXY1,'yo')

plt.xlabel("x")

plt.ylabel("y")

#plt.savefig("Rosenbrock function PSO.pdf")

#pl.plot(xbest_hist,ybest_hist,fbest_hist)

plt.show()

9-appendix B/Chapter 3 results and code/Griewank/griewank far.png

150

100

50

9-appendix B/Chapter 3 results and code/Griewank/griewank success.xlsx

Sheet1

			Success rate 			Median Iterations 						Run#			solution iter			abs solution iter

			100%			18.5 or 408.7						1			20			346

												2			33			340

												3			27			434

												4			23			684

												5			21			443

												6			18			355

												7			11			417

												8			13			276

												9			54			404

												10			25			330

												11			18			424

												12			10			430

												13			21			351

												14			5			294

												15			9			470

												16			0			261

												17			25			653

												18			11			573

												19			12			284

												20			7			405

															363			8174

															18.15			408.7

Sheet2

Sheet3

9-appendix B/Chapter 3 results and code/Griewank/Griewank_plot.py

from mpl_toolkits.mplot3d import Axes3D

from matplotlib import cm

from matplotlib.colors import LogNorm

import matplotlib.pyplot as plt

import numpy as np

fig = plt.figure()

ax = Axes3D(fig, azim = -128, elev = 43)

s = 0.25

X1 = [0.0]

Y1 = [0.0]

FXY1=[0.0]

X = np.arange(-5.12, 5.12+s, s)

Y = np.arange(-5.12, 5.12+s, s)

X, Y = np.meshgrid(X, Y)

Z = ((X**2 + Y**2))/4000.0 - np.cos((X)*np.cos(Y/np.sqrt(2))) + 1

ax.plot_surface(X, Y, Z, rstride = 1, cstride = 1, norm = LogNorm(), cmap = cm.jet)

ax.plot(X1,Y1,FXY1,'yo')

plt.xlabel("x")

plt.ylabel("y")

plt.savefig("Rastrigin's")

plt.show()

#######

9-appendix B/Chapter 3 results and code/rastrigans/rasrigins success.xlsx

Sheet1

			Success rate 			Median Iterations 			Run#			solution iter			abs solution iter

			90%			116.5 or 446.6			1			no			no

									2			no			no

									3			112			603

									4			49			355

									5			58			355

									6			63			416

									7			93			449

									8			77			472

									9			184			472

									10			100			276

									11			191			624

									12			122			389

									13			183			630

									14			95			283

									15			49			333

									16			101			275

									17			149			482

									18			117			307

									19			227			673

									20			128			637

												2098			8031

												116.5555555556			446.1666666667

Sheet2

Sheet3

9-appendix B/Chapter 3 results and code/rastrigans/rastrigans_plot.py

from mpl_toolkits.mplot3d import Axes3D

from matplotlib import cm

from matplotlib.colors import LogNorm

import matplotlib.pyplot as plt

import numpy as np

fig = plt.figure()

ax = Axes3D(fig, azim = -128, elev = 43)

s = 5

n=2

X1 = [0.0]

Y1 = [0.0]

FXY1=[0.0]

X = np.arange(-100, 100+s, s)

Y = np.arange(-100, 100+s, s)

X, Y = np.meshgrid(X, Y)

Z = 10*n + (X**2 -(10*np.cos(2*np.pi*X))) + (Y**2 -(10*np.cos(2*np.pi*Y)))

ax.plot_surface(X, Y, Z, rstride = 1, cstride = 1, norm = LogNorm(), cmap = cm.jet)

ax.plot(X1,Y1,FXY1,'yo')

plt.xlabel("x")

plt.ylabel("y")

plt.savefig("Rastrigin's")

plt.show()

#######

#Global mibn found at x = 0, y = (0 or 1 not sure)

9-appendix B/Chapter 3 results and code/rastrigans/rastrigins plot.png

9-appendix B/Chapter 3 results and code/rastrigans/rastrigins plot1.png

2000

1500

1000

500

=50

flO(),100

9-appendix B/Chapter 3 results and code/rosenbrock/rosenbrock plot.png

4000
3500
3000
2500
2000
1500
1000
500

9-appendix B/Chapter 3 results and code/rosenbrock/rosenbrock success.xlsx

Sheet1

			Success rate 			Median Iterations 						Run#			solution iter			abs solution iter

			100%			92.9 or 944.1						1			72			903						43			849

			100%			60.2 or 846.2						2			62			672						50			867

												3			123			1269						24			740

												4			37			705						61			983

												5			87			1184						44			799

												6			52			778						31			624

												7			214			945						60			712

												8			170			1380						118			1196

												9			67			651						27			581

												10			90			894						95			868

												11			73			534						182			854

												12			186			1409						46			1069

												13			92			872						18			828

												14			38			1041						53			502

												15			62			736						34			1111

												16			34			1194						28			722

												17			131			932						33			956

												18			51			725						149			795

												19			164			952						82			575

												20			53			1105						25			1292

															1858			18881						1203			16923

															92.9			944.05						60.15			846.15

Sheet2

Sheet3

9-appendix B/Chapter 3 results and code/rosenbrock/rosenbrock_plot.py

from mpl_toolkits.mplot3d import Axes3D

from matplotlib import cm

from matplotlib.colors import LogNorm

import matplotlib.pyplot as plt

import numpy as np

fig1 = plt.figure()

ax = Axes3D(fig1, azim = -128, elev = 43)

s = .15

X1 = [1.0]

Y1 = [1.0]

FXY1=[0.0]

X = np.arange(-2.048, 2.048+s, s)

Y = np.arange(-2.048, 2.048+s, s)

X, Y = np.meshgrid(X, Y)

Z = (1-X)**2+100*(Y-X**2)**2

ax.plot_surface(X, Y, Z, rstride = 1, cstride = 1, norm = LogNorm(), cmap = cm.jet)

ax.plot(X1,Y1,FXY1,'yo')

plt.xlabel("x")

plt.ylabel("y")

#plt.savefig("Rosenbrock function1")

#plt.clf()

plt.show()

#plt.clf()

9-appendix B/Chapter 3 results and code/Schaffer f6/schaffer plot close.png

9-appendix B/Chapter 3 results and code/Schaffer f6/schaffer plot far.png

—100_390

9-appendix B/Chapter 3 results and code/Schaffer f6/schaffer success.xlsx

Sheet1

			Success rate 			Median Iterations 						Run#			solution iter			abs solution iter

			80%			4486.9						1			123			488

												2			n			n

												3			217			566

												4			n			n

												5			718			1071

												6			447			804

												7			859			1343

												8			n			n

												9			22104			22347

												10			203			486

												11			n			n

												12			722			1171

												13			13972			14447

												14			6651			n

												15			168			461

												16			276			549

												17			1069			n

												18			363			744

												19			16802			17093

												20			11583			11984

															76277			73554

															4486.8823529412			5253.8571428571

Sheet2

Sheet3

9-appendix B/Chapter 3 results and code/Schaffer f6/schaffer_plot.py

from mpl_toolkits.mplot3d import Axes3D

from matplotlib import cm

from matplotlib.colors import LogNorm

import matplotlib.pyplot as plt

import numpy as np

fig1 = plt.figure()

ax = Axes3D(fig1, azim = -128, elev = 43)

s = .5

X1 = [0.0]

Y1 = [0.0]

FXY1=[0.0]

X = np.arange(-20, 20.0+s, s)

Y = np.arange(-20, 20.0+s, s)

X, Y = np.meshgrid(X, Y)

Z = 0.5+(((np.sin(np.sqrt(X**2 +Y**2)))**2 - 0.5)/ (1.0 + 0.001*(X**2+Y**2))**2)

ax.plot_surface(X, Y, Z, rstride = 1, cstride = 1, norm = LogNorm(), cmap = cm.jet)

ax.plot(X1,Y1,FXY1,'yo')

plt.xlabel("x")

plt.ylabel("y")

#plt.savefig("Rosenbrock function1")

#plt.clf()

plt.show()

#plt.clf()

9-appendix B/Chapter 3 results and code/Sphere/30-Dim sphere success.xlsx

Sheet1

			Success rate 			Median Iterations 						Run#			solution iter			abs solution iter

												1			832

												2			537

												3			969

												4			366

												5			858

												6			898

												7			263

												8			889

												9			599

												10			274

												11			722

												12			362

												13			426

												14			647

												15			1171

												16			697

												17			606

												18			521

												19			666

												20			1033

															13336			0						0			0

															666.8			0						0			0

Sheet2

Sheet3

9-appendix B/Chapter 3 results and code/Sphere/sphere success.xlsx

Sheet1

			Success rate 			Median Iterations 						Run#			solution iter			abs solution iter

			100%			80.7 or 9664.1						1			52			8918

												2			72			9415

												3			204			9445

												4			126			9669

												5			251			10097

												6			49			8531

												7			46			9616

												8			27			9866

												9			62			8940

												10			39			10067

												11			48			11128

												12			112			10628

												13			71			10835

												14			67			8490

												15			93			10671

												16			95			8631

												17			47			9481

												18			61			9044

												19			44			10406

												20			48			9404

															1614			193282

															80.7			9664.1

Sheet2

Sheet3

9-appendix B/Chapter 3 results and code/Sphere/sphere_plot.py

from mpl_toolkits.mplot3d import Axes3D

from matplotlib import cm

from matplotlib.colors import LogNorm

import matplotlib.pyplot as plt

import numpy as np

fig1 = plt.figure()

ax = Axes3D(fig1, azim = -128, elev = 43)

s = 0.25

X1 = [0.0]

Y1 = [0.0]

FXY1=[0.0]

X = np.arange(-5.12, 5.12+s, s)

Y = np.arange(-5.12, 5.12+s, s)

X, Y = np.meshgrid(X, Y)

Z = X**2 + Y**2

ax.plot_surface(X, Y, Z, rstride = 1, cstride = 1, norm = LogNorm(), cmap = cm.jet)

ax.plot(X1,Y1,FXY1,'yo')

plt.xlabel("x")

plt.ylabel("y")

#plt.savefig("Shpere function")

#plt.clf()

plt.show()

#plt.clf()

9-appendix B/Chapter 4 results and codes/4 sided corner switch results.xlsx

Sheet1

			Test #			Misfit 			Time Taken(min)			X0			X1			Z0			Z1			Rho			conversion iteration

			1			13.4			57.5			-12.36			12.53			10.84			47.62			232.44									22.4

			2			8.4			58.53			-5.83			5.82			21.7			30.94			1897.72									22.4

			3			3.17			63.47			-7.08			7.09			22.91			28.58			2519.3									22.4

			4			86			63.7			-5.08			5.13			15.07			45.42			700.29									22.4

			5			0.07			14.4			-9.58			9.59			22.95			26.55			2885.2			1351						22.4

			6			0.17			51.24			-10.04			10.06			19.16			31.24			826.23									22.4

			7			26.95			53.29			-4.66			4.65			18.89			36.32			1284.12									22.4

			8			47.7			57.9			-2.13			2.13			18.2			38.7			2418.7									22.4

			9			0.0008			5.3			-10.07			10.07			19.74			30.29			940.79			465						22.4

			10			36.36			57.5			-2.77			2.84			19.01			36.99			2079.1									22.4

			11			5.1			57.2			-7.56			7.59			20.28			31.84			1161.5									22.4

			12			19.5			58			-3.48			3.47			21.09			33.17			2464.5									22.4

			13			63.8			58.6			-5.99			6.23			15.53			43.1			634.85									22.4

			14			17.6			56.2			-4			4			20.8			33.1			2092.77									22.4

			15			42.7			70.7			-2			1.9			18.8			37.1			2882.65									22.4

			16			32.7			60.9			-2.7			2.8			19.48			35.79			2295.4									22.4

			17			17.9			62.7			-3.16			3.19			21.36			32.63			2886.76									22.4

			18			12.5			56.8			-5.15			5.18			21.13			32.24			1791.26									22.4

			19			5			67.1			-6.95			6.94			21.49			30.5			1623.98									22.4

			20			9.22			54.5			-6.25			6.26			20.68			32.17			1423.56									22.4

			average			22.41204			54.2765			-5.842			5.8735			19.4555			34.7145			1752.056

Constrainted 4 sided inversion results

Inversion results	13.4	8.4	3.17	86	7.0000000000000007E-2	0.17	26.95	47.7	8.0000000000000004E-4	36.36	5.0999999999999996	19.5	63.8	17.600000000000001	42.7	32.700000000000003	17.899999999999999	12.5	5	9.2200000000000006	Average misfit 	22.4	22.4	22.4	22.4	22.4	22.4	22.4	22.4	22.4	22.4	22.4	22.4	22.4	22.4	22.4	22.4	22.4	22.4	22.4	22.4	Inversion test number

Misfit value

Sheet2

Sheet3

9-appendix B/Chapter 4 results and codes/4 sided no constraint results.xlsx

Sheet1

			Test #			Misfit 			Time Taken(min)			X0			X1			Z0			Z1			Rho			conversion iteration

			1			2.17			102.49			7.47			-7.46			27.9			23.17			2855.97																		41.389

			2			67.48			58.19			1.48			-1.64			40.89			17.39			2914.92																		41.389

			3			1.1			78.09			8.17			-8.17			28.23			22.5			2147.82																		41.389

			4			11.84			57.83			4.12			-4.12			30.73			22.44			2997.9																		41.389

			5			0.1			6.07			9.65			-9.65			26.66			22.81			2675.79			529															41.389

			6			141			58.7			-1.21			1.18			15.12			48.23			2798																		41.389

			7			0.1			5.2			-9.65			9.66			22.5			27.05			2267.61			450															41.389

			8			29.4			50.17			-2.68			2.46			20.61			34.08			3000																		41.389

			9			0.1			4.7			-9.49			9.49			22.09			27.67			1885.34			495															41.389

			10			77.15			53.88			-1.84			1.87			16.77			42.49			2248.86																		41.389

			11			226.7			54.07			2.5			-1.42			42.1			16.63			2139.43																		41.389

			12			14.23			58.34			3.88			-3.86			31.66			21.87			2714.83																		41.389

			13			31.65			55.6			-2.29			2.19			19.97			35.51			2999.99																		41.389

			14			115.9			71.31			-2.01			1.45			16.83			42.43			2430.54																		41.389

			15			2.77			71.5			7.22			-7.21			28.39			22.92			2564																		41.389

			16			0.1			6			-9.66			9.66			22.61			26.92			2394.63			531															41.389

			17			25.14			55.37			-2.55			2.69			20.65			33.88			2982.36																		41.389

			18			18.7			53.64			-4.2			4.08			20.91			32.95			2067.82																		41.389

			19			53.25			53.55			1.72			-1.7			39.37			17.98			2895.6																		41.389

			20			8.9			52.33			-6.32			6.37			20.86			31.69			1484.07																		41.389

			average			41.389			50.3515			-0.2845			0.2935			25.7425			28.5305			2523.274

						31.6357894737			50.1557894737			-0.4310526316			0.3836842105			24.8815789474			29.1568421053			2543.4763157895

						0.1			5.4925			-4.7875			4.79			23.465			26.1125			2305.8425			501.25

Four sided inversion results

Inversion results	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	2.17	67.48	1.1000000000000001	11.84	0.1	141	0.1	29.4	0.1	77.150000000000006	226.7	14.23	31.65	115.9	2.77	0.1	25.14	18.7	53.25	8.9	Average misfit	41.389000000000003	41.389000000000003	41.389000000000003	41.389000000000003	41.389000000000003	41.389000000000003	41.389000000000003	41.389000000000003	41.389000000000003	41.389000000000003	41.389000000000003	41.389000000000003	41.389000000000003	41.389000000000003	41.389000000000003	41.389000000000003	41.389000000000003	41.389000000000003	41.389000000000003	41.389000000000003	Iteration number

Misfit values

Sheet2

Sheet3

9-appendix B/Chapter 4 results and codes/5 sided corner switching method.xlsx

Sheet1

			Test #			Misfit 			Time Taken(min)			x0			X1			X2			Z0			z1			Z2			Rho			conversion iteration

			1			321.23			23.23			-10.83			-1.25			13.7			32.69			6.47			32.85			954.77									151.9708

			2			90.33			23.51			-8.43			5.61			7.74			17.47			15.27			26.22			1846.41									151.9708

			3			138.3			23.55			-9.99			-0.69			10.83			26.33			7.2			32.53			940.94									151.9708

			4			202.34			23.62			-11.32			-7.54			11.33			10.43			10.27			33.54			566.02									151.9708

			5			3.08			17.15			-6.34			1.92			6.2			15			13.23			31.81			1365.24									151.9708

			6			143.798			17.6			-11.49			-3.099			13.55			21.47			9.64			28.08			942.99									151.9708

			7			1.6			20			-10.98			-0.064			11.02			22.08			9.49			29.47			996.43									151.9708

			8			36.58			20.03			-9.56			-1.27			9.58			8.77			8.61			41.92			494.11									151.9708

			9			48.95			22.27			-11.18			2.95			10.55			14.37			8.85			33.45			633.52									151.9708

			10			432.31			22.19			-22.1			0.49			21.91			19.7			12.08			20.19			1460.99									151.9708

			11			1.12			22.33			-6.83			-0.177			6.867			16.88			12.088			31.308			1313.496									151.9708

			12			275.967			22.82			-4.415			1.533			3.455			22.537			7.545			36.554			1872.11									151.9708

			13			492.87			23.92			-7.19			4.49			6.89			9.66			7.07			49.47			575.397									151.9708

			14			3.66			24.166			-3.207			-0.677			3.18			15.78			15.469			30.65			3169.96									151.9708

			15			4.75			20.31			-9.11			0.37			9.07			12.86			9.77			35.69			689.42									151.9708

			16			607.55			20.25			-3.59			-3.177			5.21			20.06			6.37			40.55			1340.57									151.9708

			17			85.15			23.38			-9.76			-0.54			10.81			26.54			8.802			30.39			1164.31									151.9708

			18			47.73			23.42			-2.6			1.67			2.33			18.85			13.02			30.29			4267.17									151.9708

			19			55.17			24.16			-12.23			0.22			11.99			23.77			14.72			24.2			2440.67									151.9708

			20			46.93			24.08			-13.02			2.07			10.13			26.68			12.11			26.93			1754.51									151.9708

			average			151.97075			22.0993			-9.2086			0.14195			9.3171			19.09635			10.4037			32.3046			1439.45165

Constrainted 5 sided inversion results

Inversion results	321.23	90.33	138.30000000000001	202.34	3.08	143.798	1.6	36.58	48.95	432.31	1.1200000000000001	275.96699999999998	492.87	3.66	4.75	607.54999999999995	85.15	47.73	55.17	46.93	Average misfit 	151.9708	151.9708	151.9708	151.9708	151.9708	151.9708	151.9708	151.9708	151.9708	151.9708	151.9708	151.9708	151.9708	151.9708	151.9708	151.9708	151.9708	151.9708	151.9708	151.9708	Inversion test number

Misfit value

Sheet2

			-10.83			-1.25			13.7			32.69			6.47			32.85

			1			-10.83			-1.25			13.7			13.7			-10.83			-10.83

			1			-32.69			-6.47			-32.69			-32.85			-32.855			-32.69

			2

			2

			3

			3

			4

			4

			5

			5

			6

			6

			7

			7

			8

			8

			9

			9

			10

			10

inversion1	-10.83	-1.25	13.7	13.7	-10.83	-10.83	-32.69	-6.47	-32.69	-32.85	-32.854999999999997	-32.69	

Sheet3

9-appendix B/Chapter 4 results and codes/5 sided no constraint results.xlsx

Sheet1

			Test #			Misfit 			Time Taken(min)			x0			X1			X2			Z0			z1			Z2			Rho			conversion iteration

			1			25.79			20.68			-15.7			1.6			8			45.8			9.3			34.4			1871.8												60.7

			2			17.22			21.3			-13.5			-0.1			14.7			30.9			12.7			27.32			1930.2												60.7

			3			8.2			19.8			5.4			0.8			-5			30.7			32			14.6			1714.5												60.7

			4			189			19.2			5.9			-6.2			28.3			48.8			8.4			35.6			1856.2												60.7

			5			5.5			20.1			4.9			7.7			-4			35.4			27.8			14.68			1989.1												60.7

			6			9.6			19.5			5.7			-3.8			-5.4			33.2			31.9			13.9			1459.5												60.7

			7			25.36			19.9			8.8			-2.6			-5.6			10.3			45.5			13.7			1506.2												60.7

			8			146.2			19.4			-18			0.6			10.9			73.8			7.24			45.9			1688.7												60.7

			9			19.3			19.5			-11.9			0.2			12.2			65.5			9.1			42.1			2324.7												60.7

			10			39.14			19.5			-17.2			-17.1			2.88			8.5			47.6			35.4			2069.3												60.7

			11			38.5			19.3			-23.2			2.05			12.5			49.9			8			36			1187.78												60.7

			12			38.5			19.7			6.16			2.5			-6.8			18.45			37.7			15.4			1846.2												60.7

			13			116.9			19.2			8.18			4.98			-13.8			13.1			34.5			15.7			1664.6												60.7

			14			74.6			19.3			-22.2			-19.9			2.8			8.3			59.2			38.8			2172.23												60.7

			15			5.8			21.2			6.24			-16.2			-5.6			31.8			34.1			13.5			1329.9												60.7

			16			98.6			21.4			4.46			-7.8			-3.6			30.8			43.4			12.5			1588.6												60.7

			17			18.2			21.5			7.4			-28.9			-7.3			34.7			33.7			12.5			956.9												60.7

			18			35.45			21			-4.5			8			5.13			13.2			14.4			33.5			1609.8												60.7

			19			153.9			20.6			3.2			-13.9			-3.7			42.87			30.2			13			1941.2												60.7

			20			148.4			20.6			4.2			0.6			-3.8			18.4			53			12.7			1747.5												60.7

			average			60.708			20.134			-2.783			-4.3735			1.6405			32.221			28.987			24.06			1722.7455

Five sided inversion results

Inversion results	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	25.79	17.22	8.1999999999999993	189	5.5	9.6	25.36	146.19999999999999	19.3	39.14	38.5	38.5	116.9	74.599999999999994	5.8	98.6	18.2	35.450000000000003	153.9	148.4	average misfit	60.7	60.7	60.7	60.7	60.7	60.7	60.7	60.7	60.7	60.7	60.7	60.7	60.7	60.7	60.7	60.7	60.7	60.7	60.7	60.7	Iteration number

Misfit value

Sheet2

Sheet3

9-appendix B/Chapter 4 results and codes/con5.pyx

import pylab as pl

import scipy as si

import numpy as np

import time as time

import random as rand

from datetime import datetime

#all_the_leftxcorn = [[] for i in range(int(30))]

#all_the_rightxcorn = [[] for i in range(int(30))]

#all_the_middlexcorn = [[] for i in range(int(30))]

#all_the_topzcorn = [[] for i in range(int(30))]

#all_the_botzcorn = [[] for i in range(int(30))]

#all_the_middlezcorn = [[] for i in range(int(30))]

#all_the_rho = [[] for i in range(int(30))]

gbestlist=[]

grav = []

Dobs = (63.942039428385804, 65.326851112413806, 66.747876993397696, 68.205909660873999, 69.701728698766772, 71.236096406193141, 72.809753060229497, 74.423411688264025, 76.07775231698669, 77.77341566476791, 79.510996244211341, 81.291034842108004, 83.114010344895505, 84.980330879125574, 86.890324238403736, 88.844227570850663, 90.842176304391927, 92.884192291165689, 94.970171157068052, 97.099868847981014, 99.272887370560483, 101.48865973261479, 103.74643409610913, 106.04525716468135, 108.38395683731355, 110.76112417051777, 113.17509470318684, 115.62392921133629, 118.10539397460943, 120.61694065310593, 123.15568589246367, 125.71839079805783, 128.30144044686313, 130.90082363945166, 133.51211313662625, 136.13044667755955, 138.75050914155707, 141.36651629650143, 143.97220067651571, 146.56080025202851, 149.12505069916708, 151.6571822428285, 154.14892223718422, 156.59150485365177, 158.97568945941956, 161.29178947280354, 163.52971365004728, 165.67902185694905, 167.72899736296168, 169.66873751111177, 171.48726420492801, 173.17365495659712, 174.7171942161703, 176.10754333776856, 177.33492587252616, 178.3903230126613, 179.26567212491992, 179.95405965187459, 180.44989851481353, 180.74907980253403, 180.84908918337524, 180.74908020276732, 180.4498993147601, 179.95406085049655, 179.26567372066498, 178.39032500346849, 177.33492825583349, 176.10754611052212, 174.71719737483508, 173.17365849716995, 171.48726812295141, 169.66874180169023, 167.72900202077867, 165.67902687628506, 163.52971902479962, 161.29179519650779, 158.97569552527031, 156.59151125452618, 154.14892896566442, 151.65718929122559, 149.12505805954643, 146.56080791623279, 143.97220863619097, 141.36652454312087, 138.75051766644688, 136.13045547192243, 133.51212219156611, 130.90083294599646, 128.30144999598915, 125.71840058071096, 123.15569589958206, 120.61695087563973, 118.10540440354171, 115.6239398377014, 113.17510551808802, 110.76113516514449, 108.38396800295692, 106.04526849274862, 103.74644557813687, 101.4886713602819, 99.272899135698296, 97.099880742584006, 94.970183173302075, 92.884204421376296, 90.842188541110644, 88.844239906801235, 86.890336666505533, 84.980343392499066, 83.114022936864203, 81.291047506200499, 79.511008974162465, 77.773428454519873, 76.077765160688585, 74.423424580270463, 72.80976599510096, 71.236109378691893, 69.701741703856229, 68.205922693715152, 66.747890049346324, 65.326864187017136)

cpdef int func2(double xcorn_1,double xcorn_2,double xcorn_3,double zcorn_1,double zcorn_2,double zcorn_3,double rho) except -1:

 x = np.arange(-30,30,0.5)

 l = len(x)

 xcorn = (float(xcorn_1),float(xcorn_2),float(xcorn_3),float(xcorn_3),float(xcorn_1),float(xcorn_1))

 zcorn = (float(zcorn_1),float(zcorn_2),float(zcorn_1),float(zcorn_3),float(zcorn_3),float(zcorn_1))

 o = len(xcorn)-1

 cdef double gamma,sum_lines,x1,x2,z1,z2,alpha,beta,factor,term1,term2,denom,constant

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 cdef int i,n

 for i from 0 <= i < l:

 sum_lines = 0.0

 for n from 0 <= n < o:

 x1 = xcorn[n]-x[i]

 x2 = xcorn[n+1]-x[i]

 z1 = zcorn[n]

 z2 = zcorn[n+1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = np.arctan2(z1,x1)

 O2 = np.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = np.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

cpdef int procedure():

 iter_time = []

 cdef double K,vmax,cp,cg,maxiter,moveup,movedown,moveleft,moveright

 K = 0.7968127490039841

 lbound = [-30.0,-30.0,-30.0,0.1,0.1,0.1,500]

 ubound = [30.0,30.0,30.0,100.0,100.0,100.0,3000]

 vmax =20

 nswarm = 30

 cp = 2.8

 cg = 1.3

 ndim = len(lbound)

 maxiter = 5000

 lbound = np.asarray(lbound)

 ubound = np.asarray(ubound)

 vmax = si.asarray(vmax)

 cdef int i,n,j

 #all_the_leftxcorn = [[] for i in range(int(nswarm))]

 #all_the_rightxcorn = [[] for i in range(int(nswarm))]

 #all_the_topzcorn = [[] for i in range(int(nswarm))]

 #all_the_botzcorn = [[] for i in range(int(nswarm))]

 #all_the_rho = [[] for i in range(int(nswarm))]

 log_pbest = []

 log_pbestv = []

 log_gbest = []

 #log_values =[]

 swarm = np.zeros((nswarm,ndim))

 # initialize the swarm

 Xrange = np.arange(-30,30,0.01)

 Zrange = np.arange(0.001,100,0.01)

 Rhorange = np.arange(500,3000,0.01)

 for i in si.arange(nswarm):

 swarm[i,0]=rand.choice(Xrange)

 swarm[i,1]=rand.choice(Xrange)

 swarm[i,2]=rand.choice(Xrange)

 swarm[i,3]=rand.choice(Zrange)

 swarm[i,4]=rand.choice(Zrange)

 swarm[i,5]=rand.choice(Zrange)

 swarm[i,6]=rand.choice(Rhorange)

 for n in np.arange(nswarm):

 if swarm[n,0]> swarm[n,2]:

 moveleft = swarm[n,0]

 moveright =swarm[n,2]

 swarm[n,0]= moveright

 swarm[n,2]= moveleft

 if swarm[n,0]> swarm[n,1]:

 moveright = swarm[n,0]

 moveleft =swarm[n,1]

 swarm[n,1]=moveright

 swarm[n,0]=moveleft

 if swarm[n,1]> swarm[n,2]:

 moveright = swarm[n,1]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,1]=moveleft

 if swarm[n,3]>swarm[n,5]:

 movedown = swarm[n,5]

 moveup =swarm[n,3]

 swarm[n,5]= moveup

 swarm[n,3]= movedown

 if swarm[n,3]< swarm[n,4]:

 movedown = swarm[n,3]

 moveup =swarm[n,4]

 swarm[n,3]= moveup

 swarm[n,4]= movedown

 if swarm[n,5]<swarm[n,4]:

 movedown = swarm[n,5]

 moveup =swarm[n,4]

 swarm[n,5]= moveup

 swarm[n,4]= movedown

 # initialize the "personal best" values

 v = 1000000000

 pbestv = np.zeros(nswarm)

 for i in np.arange(nswarm):

 pbestv[i] = v

 pbest = np.array(swarm)

 # initialize the "global best" values

 gbesti = 0

 gbestfi = 0

 gbestv = pbestv[gbesti]

 gbest = pbest[gbesti]

 velocities = np.zeros([nswarm,ndim]) #initiate velocity vectors

 print datetime.time(datetime.now())

 for i in np.arange(maxiter):

 t = time.clock()

 for n in np.arange(nswarm):

 if swarm[n,0]> swarm[n,2]:

 moveleft = swarm[n,0]

 moveright =swarm[n,2]

 swarm[n,0]= moveright

 swarm[n,2]= moveleft

 if swarm[n,0]> swarm[n,1]:

 moveleft = swarm[n,0]

 moveright =swarm[n,1]

 swarm[n,0]= moveright

 swarm[n,1]= moveleft

 if swarm[n,1]> swarm[n,2]:

 moveleft = swarm[n,2]

 moveright =swarm[n,1]

 swarm[n,2]= moveright

 swarm[n,1]= moveleft

 if swarm[n,0]> swarm[n,1]:

 moveright = swarm[n,0]

 moveleft =swarm[n,1]

 swarm[n,1]=moveright

 swarm[n,0]=moveleft

 if swarm[n,0]>swarm[n,2]:

 moveright = swarm[n,0]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,0]=moveleft

 if swarm[n,1]>swarm[n,2]:

 moveright = swarm[n,1]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,1]=moveleft

 if swarm[n,1]> swarm[n,2]:

 moveright = swarm[n,1]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,1]=moveleft

 if swarm[n,0]> swarm[n,2]:

 moveright = swarm[n,0]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,0]=moveleft

 if swarm[n,0]>swarm[n,1]:

 moveright = swarm[n,0]

 moveleft =swarm[n,1]

 swarm[n,1]=moveright

 swarm[n,0]=moveleft

 if swarm[n,3]>swarm[n,5]:

 movedown = swarm[n,5]

 moveup =swarm[n,3]

 swarm[n,5]= moveup

 swarm[n,3]= movedown

 if swarm[n,4]>swarm[n,5]:

 movedown = swarm[n,5]

 moveup =swarm[n,4]

 swarm[n,5]= moveup

 swarm[n,4]= movedown

 if swarm[n,4]>swarm[n,3]:

 movedown = swarm[n,3]

 moveup =swarm[n,4]

 swarm[n,3]= moveup

 swarm[n,4]= movedown

 if swarm[n,3]< swarm[n,4]:

 movedown = swarm[n,3]

 moveup =swarm[n,4]

 swarm[n,3]= moveup

 swarm[n,4]= movedown

 if swarm[n,4]>swarm[n,5]:

 movedown = swarm[n,5]

 moveup =swarm[n,4]

 swarm[n,5]= moveup

 swarm[n,4]= movedown

 if swarm[n,3]>swarm[n,5]:

 movedown = swarm[n,3]

 moveup =swarm[n,5]

 swarm[n,3]= moveup

 swarm[n,5]= movedown

 if swarm[n,5]<swarm[n,4]:

 movedown = swarm[n,5]

 moveup =swarm[n,4]

 swarm[n,5]= moveup

 swarm[n,4]= movedown

 if swarm[n,4]>swarm[n,3]:

 movedown = swarm[n,3]

 moveup =swarm[n,4]

 swarm[n,3]= moveup

 swarm[n,4]= movedown

 if swarm[n,3]>swarm[n,5]:

 movedown = swarm[n,3]

 moveup =swarm[n,5]

 swarm[n,3]= moveup

 swarm[n,5]= movedown

 values = np.zeros(nswarm)

 gravity = np.zeros([nswarm,len(Dobs)])

 for n in np.arange(nswarm):

 xcorn_1=swarm[n,0]

 xcorn_2=swarm[n,1]

 xcorn_3=swarm[n,2]

 zcorn_1=swarm[n,3]

 zcorn_2=swarm[n,4]

 zcorn_3=swarm[n,5]

 rho = swarm[n,6]

 func2(xcorn_1,xcorn_2,xcorn_3,zcorn_1,zcorn_2,zcorn_3,rho)

 gravity[n] = grav

 del grav[0:len(grav)]

 n+=1

 for j in np.arange(nswarm):# would values be dobs-dcalc?"

 #gravity = si.asarray(grav)

 values[j] = sum((Dobs - gravity[j])**2)

 mask = values < pbestv

 mask2d = np.repeat(mask, ndim)

 mask2d.shape = (nswarm, ndim)

 pbestv = np.where(mask, values, pbestv)

 pbest = np.where(mask2d, swarm, pbest)

 log_pbestv.append(pbestv)

 if np.minimum.reduce(pbestv) < gbestv:

 gbesti = si.argmin(pbestv)

 gbestv = pbestv[gbesti]

 gbest = pbest[gbesti]

 velocities = K*(velocities + (cp*si.rand()*(pbest - swarm)) +

 (cg*si.rand()*(gbest - swarm)))

 #velocities = np.clip(velocities, -vmax, vmax)

 #for h in si.arange(nswarm):

 #all_the_leftxcorn[h].append(swarm[h,0])

 #all_the_rightxcorn[h].append(swarm[h,2])

 #all_the_middlexcorn[h].append(swarm[h,1])

 #all_the_topzcorn[h].append(swarm[h,3])

 #all_the_botzcorn[h].append(swarm[h,5])

 #all_the_middlezcorn[h].append(swarm[h,4])

 #all_the_rho[h].append(swarm[h,6])

 swarm = np.clip(swarm, lbound, ubound)

 for n in np.arange(nswarm):

 if swarm[n,0]<= -30.0:

 velocities[n,0]= -1*velocities[n,0]

 if swarm[n,0]>= 30.0:

 velocities[n,0]= -1*velocities[n,0]

 if swarm[n,1]>= 30.0:

 velocities[n,1]= -1*velocities[n,1]

 if swarm[n,1]<= -30.0:

 velocities[n,1]= -1*velocities[n,1]

 if swarm[n,2]<= -30.0:

 velocities[n,2]= -1*velocities[n,2]

 if swarm[n,2]>= 30.0:

 velocities[n,2]= -1*velocities[n,2]

 if swarm[n,3]>= 100.0:

 velocities[n,3]= -1*velocities[n,3]

 if swarm[n,3]<= 0.0:

 velocities[n,3]= -1*velocities[n,3]

 if swarm[n,4]<= 0.0:

 velocities[n,4]= -1*velocities[n,4]

 if swarm[n,4]>= 100.0:

 velocities[n,4]= -1*velocities[n,4]

 if swarm[n,5]<= 0.0:

 velocities[n,5]= -1*velocities[n,5]

 if swarm[n,5]>= 100.0:

 velocities[n,5]= -1*velocities[n,5]

 if swarm[n,6]<= 500.0:

 velocities[n,6]= -1*velocities[n,6]

 if swarm[n,6]>= 3000.0:

 velocities[n,6]= -1*velocities[n,6]

 swarm += velocities

 t1 = time.clock()

 dt = t1-t

 iter_time.append(dt)

 gbestlist.append(gbestv)

 log_pbest.append(pbest)

 log_gbest.append(gbest)

 #log_values.append(values)

 if gbestv < 1e-1:

 print i,gbest,gbestv,'time for average iteration', (sum(iter_time)/float(maxiter)),'sum iteration time to complete = ', sum(iter_time),'seconds',(sum(iter_time)/60.0),'minutes'

 return 'f'

 print datetime.time(datetime.now())

 print gbest

 print gbestv

 print 'time for average iteration', (sum(iter_time)/float(maxiter))

 print 'sum iteration time to complete = ', sum(iter_time),'seconds',(sum(iter_time)/60.0),'minutes'

#######################################last 100 or sogbests############################

 #print 'first 50',gbestlist[0:50]

 #print 'middle 50', gbestlist[2550:2601]

 #print 'last 50',gbestlist[4950:]

##

 #print 'all_the_leftxcorn',all_the_leftxcorn[0]

 #print 'all_the_rightxcorn',all_the_rightxcorn[0]

 #print 'all_the_topzcorn',all_the_topzcorn[0]

 #print 'all_the_botzcorn',all_the_botzcorn[0]

 #print 'all_the_rho',all_the_rho[0]

 #lastfew = int(maxiter -20)

 #print 'log_gbest first few',log_gbest[0:10]

 #print 'log_gbest last 20',log_gbest[lastfew:]

 #print 'log_pbest last guess',log_pbest[4999]

 #print 'log_values',log_values

 X = np.arange(500)

 pl.plot(X,gbestlist)

 pl.show()

t0 = time.clock()

procedure()

9-appendix B/Chapter 4 results and codes/No constraint 5.pyx

import pylab as pl

import scipy as si

import numpy as np

import time as time

import random as rand

from datetime import datetime

#all_the_leftxcorn = [[] for i in range(int(30))]

#all_the_rightxcorn = [[] for i in range(int(30))]

##all_the_middlexcorn = [[] for i in range(int(30))]

#all_the_topzcorn = [[] for i in range(int(30))]

##all_the_botzcorn = [[] for i in range(int(30))]

##all_the_middlezcorn = [[] for i in range(int(30))]

#all_the_rho = [[] for i in range(int(30))]

gbestlist=[]

grav = []

Dobs = (63.628041646061284, 65.001195678263571, 66.410055075193284, 67.85539041533886, 69.337958743344572, 70.858499366904965, 72.417729215564691, 74.01633773229365, 75.654981268556128, 77.33427695375687, 79.054796010486157, 80.817056487977027, 82.62151538764131, 84.468560156573517, 86.3584995275138, 88.291553687005887, 90.267843757411185, 92.287380583067645, 94.350052816221577, 96.455614304422028, 98.603670787818913, 100.7936659222165, 103.02486665175928, 105.29634796369132, 107.60697706668279, 109.95539704369365, 112.34001004020885, 114.75896005895825, 117.21011544299182, 119.69105114042746, 122.19903085664693, 124.73098921370166, 127.28351405296712, 129.85282903665282, 132.4347767279892, 135.02480236043627, 137.61793854510898, 140.20879121515492, 142.79152716863433, 145.35986365029297, 147.90706051010579, 150.42591559481266, 152.90876416912238, 155.34748332548591, 157.73350252240249, 160.05782158451169, 162.31103769149317, 164.48338305860887, 166.56477514303819, 168.54488126117266, 170.41319942770144, 172.15915697505696, 173.77222802596825, 175.24207012203772, 176.55867922448522, 177.71256090014089, 178.69491383830652, 179.4978200301866, 180.11443417218749, 180.53916337931531, 180.76782739779196, 180.79778944812455, 180.62804878673845, 180.25928807518119, 179.69387153860939, 178.93579335297702, 177.99057927623653, 176.86514775617303, 175.56763919977382, 174.10722352011572, 172.49389641855296, 170.73827422147613, 168.85139570870084, 166.84453754119005, 164.72904791111318, 162.51620113732415, 160.21707427923661, 157.84244552932105, 155.40271319117912, 152.90783343190114, 150.36727466239861, 147.78998628486153, 145.1843795901118, 142.55831873443415, 139.91911993107362, 137.27355722263107, 134.62787343381004, 131.98779512446103, 129.35855056222522, 126.74488990846345, 124.15110696002087, 121.58106191400518, 119.0382047256621, 116.52559871349281, 114.04594413401176, 111.60160150379326, 109.19461449121401, 106.8267322367204, 104.49943099028398, 102.21393497938585, 99.971236441486184, 97.772114772351472, 95.61715475644948, 93.506763858364195, 91.441188565167138, 89.420529779156709, 87.444757268537558, 85.513723190596423, 83.627174707823229, 81.784765722379547, 79.986067758334059, 78.230580024313937, 76.517738691681245, 74.846925425148186, 73.217475203924835, 71.62868347214625, 70.079812657519412, 68.570098096891698, 67.098753406886857, 65.664975336890478)

cpdef int func2(double xcorn_1,double xcorn_2,double xcorn_3,double zcorn_1,double zcorn_2,double zcorn_3,double rho) except -1:

 x = np.arange(-30,30,0.5)

 l = len(x)

 xcorn = (float(xcorn_1),float(xcorn_2),float(xcorn_3),float(xcorn_3),float(xcorn_1),float(xcorn_1))

 zcorn = (float(zcorn_1),float(zcorn_2),float(zcorn_1),float(zcorn_3),float(zcorn_3),float(zcorn_1))

 o = len(xcorn)-1

 cdef double gamma,sum_lines,x1,x2,z1,z2,alpha,beta,factor,term1,term2,denom,constant

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 cdef int i,n

 for i from 0 <= i < l:

 sum_lines = 0.0

 for n from 0 <= n < o:

 x1 = xcorn[n]-x[i]

 x2 = xcorn[n+1]-x[i]

 z1 = zcorn[n]

 z2 = zcorn[n+1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = np.arctan2(z1,x1)

 O2 = np.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = np.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

cpdef int procedure():

 iter_time = []

 cdef double K,vmax,cp,cg,maxiter,moveup,movedown,moveleft,moveright

 K = 0.7968127490039841

 lbound = [-30.0,-29.0,-28.0,2.0,1.0,3.0,0.0]

 ubound = [28.0,29.0,30.0,499.0,498.0,500.0,5000.0]

 vmax =20

 nswarm = 30

 cp = 2.8

 cg = 1.3

 ndim = len(lbound)

 maxiter = 5000

 lbound = np.asarray(lbound)

 ubound = np.asarray(ubound)

 vmax = si.asarray(vmax)

 cdef int i,n,j

 #all_the_leftxcorn = [[] for i in range(int(nswarm))]

 #all_the_rightxcorn = [[] for i in range(int(nswarm))]

 #all_the_topzcorn = [[] for i in range(int(nswarm))]

 #all_the_botzcorn = [[] for i in range(int(nswarm))]

 #all_the_rho = [[] for i in range(int(nswarm))]

 log_pbest = []

 log_gbest = []

 #log_values =[]

 swarm = np.zeros((nswarm,ndim))

 # initialize the swarm

 Xrange = np.arange(-30,30,0.01)

 Zrange = np.arange(0.001,500,0.01)

 Rhorange = np.arange(0,5000,0.01)

 for i in si.arange(nswarm):

 swarm[i,0]=rand.choice(Xrange)

 swarm[i,1]=rand.choice(Xrange)

 swarm[i,2]=rand.choice(Xrange)

 swarm[i,3]=rand.choice(Zrange)

 swarm[i,4]=rand.choice(Zrange)

 swarm[i,5]=rand.choice(Zrange)

 swarm[i,6]=rand.choice(Rhorange)

 """for n in np.arange(nswarm):

 if swarm[n,0]> swarm[n,2]:

 moveleft = swarm[n,0]

 moveright =swarm[n,2]

 swarm[n,0]= moveright

 swarm[n,2]= moveleft

 if swarm[n,0]> swarm[n,1]:

 moveright = swarm[n,0]

 moveleft =swarm[n,1]

 swarm[n,1]=moveright

 swarm[n,0]=moveleft

 if swarm[n,1]> swarm[n,2]:

 moveright = swarm[n,1]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,1]=moveleft

 if swarm[n,3]>swarm[n,5]:

 movedown = swarm[n,5]

 moveup =swarm[n,3]

 swarm[n,5]= moveup

 swarm[n,3]= movedown

 if swarm[n,3]< swarm[n,4]:

 movedown = swarm[n,3]

 moveup =swarm[n,4]

 swarm[n,3]= moveup

 swarm[n,4]= movedown

 if swarm[n,5]<swarm[n,4]:

 movedown = swarm[n,5]

 moveup =swarm[n,4]

 swarm[n,5]= moveup

 swarm[n,4]= movedown"""

 swarm = np.clip(swarm, lbound, ubound)

 # initialize the "personal best" values

 v = 1000000000

 pbestv = np.zeros(nswarm)

 for i in np.arange(nswarm):

 pbestv[i] = v

 pbest = np.array(swarm)

 # initialize the "global best" values

 gbesti = 0

 gbestfi = 0

 gbestv = pbestv[gbesti]

 gbest = pbest[gbesti]

 velocities = 2*vmax*si.randn(nswarm, ndim) - vmax #initiate velocity vectors.

 print datetime.time(datetime.now())

 for i in np.arange(maxiter):

 t = time.clock()

 #try adding an if here to stop it from switching the corners.

###

######shake things up to try and keep it from trapping at the limits of the area#########

 """shakeup = np.arange(0,maxiter,500)

 if i in shakeup:

 for w in si.arange(nswarm):

 swarm[w,0]=rand.choice(Xrange)

 swarm[w,1]=rand.choice(Xrange)

 swarm[w,2]=rand.choice(Xrange)

 swarm[w,3]=rand.choice(Zrange)

 swarm[w,4]=rand.choice(Zrange)

 swarm[w,5]=rand.choice(Zrange)

 swarm[w,6]=rand.choice(Rhorange)"""

###

 """for n in np.arange(nswarm):

 if swarm[n,0]> swarm[n,2]:

 moveleft = swarm[n,0]

 moveright =swarm[n,2]

 swarm[n,0]= moveright

 swarm[n,2]= moveleft

 if swarm[n,0]> swarm[n,1]:

 moveleft = swarm[n,0]

 moveright =swarm[n,1]

 swarm[n,0]= moveright

 swarm[n,1]= moveleft

 if swarm[n,1]> swarm[n,2]:

 moveleft = swarm[n,2]

 moveright =swarm[n,1]

 swarm[n,2]= moveright

 swarm[n,1]= moveleft

 if swarm[n,0]> swarm[n,1]:

 moveright = swarm[n,0]

 moveleft =swarm[n,1]

 swarm[n,1]=moveright

 swarm[n,0]=moveleft

 if swarm[n,0]>swarm[n,2]:

 moveright = swarm[n,0]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,0]=moveleft

 if swarm[n,1]>swarm[n,2]:

 moveright = swarm[n,1]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,1]=moveleft

 if swarm[n,1]> swarm[n,2]:

 moveright = swarm[n,1]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,1]=moveleft

 if swarm[n,0]> swarm[n,2]:

 moveright = swarm[n,0]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,0]=moveleft

 if swarm[n,0]>swarm[n,1]:

 moveright = swarm[n,0]

 moveleft =swarm[n,1]

 swarm[n,1]=moveright

 swarm[n,0]=moveleft

 if swarm[n,3]>swarm[n,5]:

 movedown = swarm[n,5]

 moveup =swarm[n,3]

 swarm[n,5]= moveup

 swarm[n,3]= movedown

 if swarm[n,4]>swarm[n,5]:

 movedown = swarm[n,5]

 moveup =swarm[n,4]

 swarm[n,5]= moveup

 swarm[n,4]= movedown

 if swarm[n,4]>swarm[n,3]:

 movedown = swarm[n,3]

 moveup =swarm[n,4]

 swarm[n,3]= moveup

 swarm[n,4]= movedown

 if swarm[n,3]< swarm[n,4]:

 movedown = swarm[n,3]

 moveup =swarm[n,4]

 swarm[n,3]= moveup

 swarm[n,4]= movedown

 if swarm[n,4]>swarm[n,5]:

 movedown = swarm[n,5]

 moveup =swarm[n,4]

 swarm[n,5]= moveup

 swarm[n,4]= movedown

 if swarm[n,3]>swarm[n,5]:

 movedown = swarm[n,3]

 moveup =swarm[n,5]

 swarm[n,3]= moveup

 swarm[n,5]= movedown

 if swarm[n,5]<swarm[n,4]:

 movedown = swarm[n,5]

 moveup =swarm[n,4]

 swarm[n,5]= moveup

 swarm[n,4]= movedown

 if swarm[n,4]>swarm[n,3]:

 movedown = swarm[n,3]

 moveup =swarm[n,4]

 swarm[n,3]= moveup

 swarm[n,4]= movedown

 if swarm[n,3]>swarm[n,5]:

 movedown = swarm[n,3]

 moveup =swarm[n,5]

 swarm[n,3]= moveup

 swarm[n,5]= movedown"""

 values = np.zeros(nswarm)

 gravity = np.zeros([nswarm,len(Dobs)])

 for n in np.arange(nswarm):

 xcorn_1=swarm[n,0]

 xcorn_2=swarm[n,1]

 xcorn_3=swarm[n,2]

 zcorn_1=swarm[n,3]

 zcorn_2=swarm[n,4]

 zcorn_3=swarm[n,5]

 rho = swarm[n,6]

 func2(xcorn_1,xcorn_2,xcorn_3,zcorn_1,zcorn_2,zcorn_3,rho)

 gravity[n] = grav

 del grav[0:len(grav)]

 n+=1

 for j in np.arange(nswarm):# would values be dobs-dcalc?"

 #gravity = si.asarray(grav)

 values[j] = sum((Dobs - gravity[j])**2)

 mask = values < pbestv

 mask2d = np.repeat(mask, ndim)

 mask2d.shape = (nswarm, ndim)

 pbestv = np.where(mask, values, pbestv)

 pbest = np.where(mask2d, swarm, pbest)

 if np.minimum.reduce(pbestv) < gbestv:

 gbesti = si.argmin(pbestv)

 gbestv = pbestv[gbesti]

 gbest = pbest[gbesti]

 velocities = K*(velocities + (cp*si.rand()*(pbest - swarm)) +

 (cg*si.rand()*(gbest - swarm)))

 velocities = np.clip(velocities, -vmax, vmax)

 """for h in si.arange(nswarm):

 all_the_leftxcorn[h].append(swarm[h,0])

 all_the_rightxcorn[h].append(swarm[h,2])

 all_the_middlexcorn[h].append(swarm[h,1])

 all_the_topzcorn[h].append(swarm[h,3])

 all_the_botzcorn[h].append(swarm[h,5])

 all_the_middlezcorn[h].append(swarm[h,4])

 all_the_rho[h].append(swarm[h,6])"""

 swarm = np.clip(swarm, lbound, ubound)

 swarm += velocities

 t1 = time.clock()

 dt = t1-t

 iter_time.append(dt)

 gbestlist.append(gbestv)

 log_pbest.append(pbest)

 log_gbest.append(gbest)

 log_gbestv.append(gbestv)

 log_values.append(values)

 if gbestv < 1e-1:

 print i,gbest,gbestv,'time for average iteration', (sum(iter_time)/float(maxiter)),'sum iteration time to complete = ', sum(iter_time),'seconds',(sum(iter_time)/60.0),'minutes'

 return 'f'

 print datetime.time(datetime.now())

 print gbest

 print gbestv

 print 'time for average iteration', (sum(iter_time)/float(maxiter))

 print 'sum iteration time to complete = ', sum(iter_time),'seconds',(sum(iter_time)/60.0),'minutes'

#######################################last 100 or sogbests############################

 #print 'first 50',gbestlist[0:50]

 # print 'middle 50', gbestlist[2550:2601]

 #print 'last 50',gbestlist[4950:]

##

 #print 'all_the_leftxcorn',all_the_leftxcorn[0]

 #print 'all_the_rightxcorn',all_the_rightxcorn[0]

 #print 'all_the_topzcorn',all_the_topzcorn[0]

 #print 'all_the_botzcorn',all_the_botzcorn[0]

 #print 'all_the_rho',all_the_rho[0]

 #lastfew = int(maxiter -20)

 #print 'log_gbest first few',log_gbest[0:10]

 #print 'log_gbest last 20',log_gbest[lastfew:]

 #print 'log_pbest last guess',log_pbest[4999]

 #print 'log_values',log_values

t0 = time.clock()

procedure()

9-appendix B/Chapter 4 results and codes/PSO 4 side corner switch.py

import pylab as pl

import numpy as np

import scipy as si

import time as time

import random as rand

import profile

from datetime import datetime

grav = []

Dobs = (44.723206839705504, 45.607849369425736, 46.511389237288078, 47.433964554839967, 48.37568168273733, 49.336611670163215, 50.316786481335093, 51.316195012469386, 52.334778905732271, 53.372428170333897, 54.428976625060493, 55.504197181191124, 56.597796989907749, 57.709412483974276, 58.838604349586994, 59.984852470834426, 61.147550896058647, 62.326002882483344, 63.519416082594709, 64.72689794277747, 65.947451391384874, 67.17997089951335, 68.423239002987486, 69.675923378124011, 70.936574566423161, 72.203624444108613, 73.475385531089728, 74.750051230177931, 76.025697081018166, 77.300283104043103, 78.571657297759231, 79.837560337870485, 81.095631509326097, 82.343415882644678, 83.578372724275752, 84.79788510790118, 85.999270670134209, 87.179793430850012, 88.336676576190868, 89.467116081985267, 90.568295037693687, 91.637398516746856, 92.671628828836802, 93.668220983759923, 94.624458194952382, 95.537687253887938, 96.405333613762053, 97.224916031908023, 97.994060634558039, 98.710514284106821, 99.372157147125066, 99.977014380116117, 100.52326686857275, 101.00926097247026, 101.43351724725986, 101.79473812315022, 102.09181453662062, 102.32383151646263, 102.49007273219182, 102.59002401549296, 102.62337586577644, 102.59002494929055, 102.49007459809408, 102.32383431109095, 102.09181825492502, 101.79474275843029, 101.43352279119438, 101.00926741515181, 100.52327419855088, 99.977022584447255, 99.372166211428691, 98.710524192628739, 97.994071370240533, 97.224927576464623, 96.405345947758903, 95.537700356831479, 94.624472045379349, 93.668235559333183, 92.671644106443267, 91.637414472597953, 90.568311647428985, 89.467133320773982, 88.336694418835989, 87.179811851888886, 85.999289643939079, 84.797904608775383, 83.578392726547463, 82.343436360754851, 81.095652437912676, 79.837581691846339, 78.571679052384354, 77.30030523499039, 76.025719564432933, 74.750074042730731, 73.475408650022047, 72.203647847272819, 70.936598232315518, 69.675947285912557, 68.423263132532142, 67.179995231382989, 65.947475906867339, 64.726922623886338, 63.519440912070749, 62.326027843792211, 61.147575973386211, 59.984877649078307, 58.838629614344484, 57.709437821530663, 56.597822387219708, 55.504222625870703, 54.429002105356219, 53.372453675112993, 52.334804424459712, 51.31622053518732, 50.316811998643274, 49.336637173196635, 48.375707163145869, 47.433990004767416, 46.51141464935121, 45.607874736694313)

def func2(xcorn_1,xcorn_2,zcorn_1,zcorn_2,rho):

 x=np.arange(-30.0,30.0,0.5)

 n=0

 xcorn = (float(xcorn_1),float(xcorn_2),float(xcorn_2),float(xcorn_1),float(xcorn_1))

 zcorn = (float(zcorn_1),float(zcorn_1),float(zcorn_2),float(zcorn_2),float(zcorn_1))

 gamma = (6.672*(10**-11))#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 for i in np.arange(len(x)):# cycles position

 sum_lines = 0.0

 for n in np.arange(len(xcorn)-1):#cycles corners

 x1 = xcorn[n]-x[i]

 x2 = xcorn[n+1]-x[i]

 z1 = zcorn[n]-0.0 #just depth to corner since all observations are on the surface.

 z2 = zcorn[n+1]-0.0

 r1 = ((z1**2) + (x1**2))**0.5

 r2 = ((z2**2) + (x2**2))**0.5 # both at z1 since its a square.

 O1 = np.arctan2(z1,x1)

 O2 = np.arctan2(z2,x2)

 denom = z2-z1

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = np.log(r2/r1)#log base 10

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 n+=1

 sum_lines = sum_lines*2*gamma*rho*1e8# to get mgal!! from blakeley B7 code.

 grav.append(sum_lines)

 i+=1

iter_time = []

K = 0.7968127490039841

lbound = [-30,-30,0,0,500]

ubound = [30,30,100,100,3000]

vmax =30

nswarm = 30

cp = 2.8

cg = 1.3

ndim = len(lbound)

maxiter =5000

lbound = np.asarray(lbound)

ubound = np.asarray(ubound)

vmax = np.asarray(vmax)

#all_the_leftxcorn = [[] for i in range(int(nswarm))]

#all_the_rightxcorn = [[] for i in range(int(nswarm))]

#all_the_topzcorn = [[] for i in range(int(nswarm))]

#all_the_botzcorn = [[] for i in range(int(nswarm))]

#all_the_rho = [[] for i in range(int(nswarm))]

log_pbest = []

log_gbest = []

log_values =[]

swarm = np.zeros((nswarm,ndim))

initialize the swarm

Xrange = np.arange(-30,30,0.01)

Zrange = np.arange(0,100,0.01)

Rhorange = np.arange(500,3000,0.01)

for i in np.arange(nswarm):

 swarm[i,0]=rand.choice(Xrange)

 swarm[i,1]=rand.choice(Xrange)

 swarm[i,2]=rand.choice(Zrange)

 swarm[i,3]=rand.choice(Zrange)

 swarm[i,4]=rand.choice(Rhorange)

 # initialize the "personal best" values

v = 1000000000

pbestv = np.zeros(nswarm)

for i in np.arange(nswarm):

 pbestv[i] = v

pbest = np.array(swarm)

 # initialize the "global best" values

gbesti = 0

gbestfi = 0

gbestv = pbestv[gbesti]

gbest = pbest[gbesti]

velocities = np.zeros([nswarm,ndim]) #initiate velocity vectors

print datetime.time(datetime.now())

for i in np.arange(maxiter):

 #try adding an if here to stop it from switching the corners.

 for n in np.arange(nswarm):

 if swarm[n,0]> swarm[n,1]:

 moveleft = swarm[n,0]

 moveright = swarm[n,1]

 swarm[n,1]= moveleft

 swarm[n,0]= moveright

 if swarm[n,2]>swarm[n,3]:

 moveup = swarm[n,2]

 movedown = swarm[n,3]

 swarm[n,3]= moveup

 swarm[n,2]= movedown

 values = np.zeros(nswarm)

 t = time.clock()

 n=0

 gravity = np.zeros([nswarm,len(Dobs)])

 for n in np.arange(nswarm):

 xcorn_1=swarm[n,0]

 xcorn_2=swarm[n,1]

 zcorn_1=swarm[n,2]

 zcorn_2=swarm[n,3]

 rho = swarm[n,4]

 func2(xcorn_1,xcorn_2,zcorn_1,zcorn_2,rho)

 gravity[n] = grav

 del grav[0:len(grav)]

 n+=1

 for j in np.arange(nswarm):# would values be dobs-dcalc?"

 #gravity = np.asarray(grav)

 values[j] = sum((Dobs - gravity[j])**2)

 mask = values < pbestv

 mask2d = np.repeat(mask, ndim)

 mask2d.shape = (nswarm, ndim)

 pbestv = np.where(mask, values, pbestv)

 pbest = np.where(mask2d, swarm, pbest)

 if np.minimum.reduce(pbestv) < gbestv:

 gbesti = np.argmin(pbestv)

 gbestv = pbestv[gbesti]

 gbest = pbest[gbesti]

 velocities = K*(velocities + (cp*si.rand()*(pbest - swarm)) +(cg*si.rand()*(gbest - swarm)))

 #velocities = np.clip(velocities, -vmax, vmax)

 #for h in np.arange(nswarm):

 # all_the_leftxcorn[h].append(swarm[h,0])

 # all_the_rightxcorn[h].append(swarm[h,1])

 # all_the_topzcorn[h].append(swarm[h,2])

 #all_the_botzcorn[h].append(swarm[h,3])

 # all_the_rho[h].append(swarm[h,4])

 swarm = np.clip(swarm, lbound, ubound)

 for n in np.arange(nswarm):

 if swarm[n,0]<= -30.0:

 velocities[n,0]= -1*velocities[n,0]

 if swarm[n,0]>= 30.0:

 velocities[n,0]= -1*velocities[n,0]

 if swarm[n,1]>= 30.0:

 velocities[n,1]= -1*velocities[n,1]

 if swarm[n,1]<= -30.0:

 velocities[n,1]= -1*velocities[n,1]

 if swarm[n,2]<= 0.0:

 velocities[n,2]= -1*velocities[n,2]

 if swarm[n,2]>= 100.0:

 velocities[n,2]= -1*velocities[n,2]

 if swarm[n,3]>= 100.0:

 velocities[n,3]= -1*velocities[n,3]

 if swarm[n,3]<= 0.0:

 velocities[n,3]= -1*velocities[n,3]

 if swarm[n,4]<= 500.0:

 velocities[n,4]= -1*velocities[n,4]

 if swarm[n,4]>= 5000.0:

 velocities[n,4]= -1*velocities[n,4]

 swarm += velocities

 t1 = time.clock()

 dt = t1-t

 iter_time.append(dt)

 log_pbest.append(pbest)

 log_gbest.append(gbest)

 log_values.append(values)

 if gbestv < 1e-1:

 print i,gbest,gbestv,'time for average iteration', (sum(iter_time)/float(maxiter)),'sum iteration time to complete = ', sum(iter_time),'seconds',(sum(iter_time)/60.0),'minutes'

 print ['finished']

print datetime.time(datetime.now())

print gbest

print gbestv

print 'time for average iteration', (sum(iter_time)/float(maxiter))

print 'sum iteration time to complete = ', sum(iter_time),'seconds',(sum(iter_time)/60.0),'minutes'

 #print 'all_the_leftxcorn',all_the_leftxcorn[0]

 #print 'all_the_rightxcorn',all_the_rightxcorn[0]

 # print 'all_the_topzcorn',all_the_topzcorn[0]

 # print 'all_the_botzcorn',all_the_botzcorn[0]

 # print 'all_the_rho',all_the_rho[0]

t0 = time.clock()

9-appendix B/Chapter 4 results and codes/PSO_inversion_with new.py

import pylab as pl

import numpy as np

import scipy as si

import time as time

import random as rand

import profile

from datetime import datetime

grav = []

Dobs = (44.723206839705504, 45.607849369425736, 46.511389237288078, 47.433964554839967, 48.37568168273733, 49.336611670163215, 50.316786481335093, 51.316195012469386, 52.334778905732271, 53.372428170333897, 54.428976625060493, 55.504197181191124, 56.597796989907749, 57.709412483974276, 58.838604349586994, 59.984852470834426, 61.147550896058647, 62.326002882483344, 63.519416082594709, 64.72689794277747, 65.947451391384874, 67.17997089951335, 68.423239002987486, 69.675923378124011, 70.936574566423161, 72.203624444108613, 73.475385531089728, 74.750051230177931, 76.025697081018166, 77.300283104043103, 78.571657297759231, 79.837560337870485, 81.095631509326097, 82.343415882644678, 83.578372724275752, 84.79788510790118, 85.999270670134209, 87.179793430850012, 88.336676576190868, 89.467116081985267, 90.568295037693687, 91.637398516746856, 92.671628828836802, 93.668220983759923, 94.624458194952382, 95.537687253887938, 96.405333613762053, 97.224916031908023, 97.994060634558039, 98.710514284106821, 99.372157147125066, 99.977014380116117, 100.52326686857275, 101.00926097247026, 101.43351724725986, 101.79473812315022, 102.09181453662062, 102.32383151646263, 102.49007273219182, 102.59002401549296, 102.62337586577644, 102.59002494929055, 102.49007459809408, 102.32383431109095, 102.09181825492502, 101.79474275843029, 101.43352279119438, 101.00926741515181, 100.52327419855088, 99.977022584447255, 99.372166211428691, 98.710524192628739, 97.994071370240533, 97.224927576464623, 96.405345947758903, 95.537700356831479, 94.624472045379349, 93.668235559333183, 92.671644106443267, 91.637414472597953, 90.568311647428985, 89.467133320773982, 88.336694418835989, 87.179811851888886, 85.999289643939079, 84.797904608775383, 83.578392726547463, 82.343436360754851, 81.095652437912676, 79.837581691846339, 78.571679052384354, 77.30030523499039, 76.025719564432933, 74.750074042730731, 73.475408650022047, 72.203647847272819, 70.936598232315518, 69.675947285912557, 68.423263132532142, 67.179995231382989, 65.947475906867339, 64.726922623886338, 63.519440912070749, 62.326027843792211, 61.147575973386211, 59.984877649078307, 58.838629614344484, 57.709437821530663, 56.597822387219708, 55.504222625870703, 54.429002105356219, 53.372453675112993, 52.334804424459712, 51.31622053518732, 50.316811998643274, 49.336637173196635, 48.375707163145869, 47.433990004767416, 46.51141464935121, 45.607874736694313)

def func2(xcorn_1,xcorn_2,zcorn_1,zcorn_2,rho):

 x=np.arange(-30.0,30.0,0.5)

 n=0

 xcorn = (float(xcorn_1),float(xcorn_2),float(xcorn_2),float(xcorn_1),float(xcorn_1))

 zcorn = (float(zcorn_1),float(zcorn_1),float(zcorn_2),float(zcorn_2),float(zcorn_1))

 gamma = (6.672*(10**-11))#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 for i in np.arange(len(x)):# cycles position

 sum_lines = 0.0

 for n in np.arange(len(xcorn)-1):#cycles corners

 x1 = xcorn[n]-x[i]

 x2 = xcorn[n+1]-x[i]

 z1 = zcorn[n]-0.0 #just depth to corner since all observations are on the surface.

 z2 = zcorn[n+1]-0.0

 r1 = ((z1**2) + (x1**2))**0.5

 r2 = ((z2**2) + (x2**2))**0.5 # both at z1 since its a square.

 O1 = np.arctan2(z1,x1)

 O2 = np.arctan2(z2,x2)

 denom = z2-z1

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = np.log(r2/r1)#log base 10

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 n+=1

 sum_lines = sum_lines*2*gamma*rho*1e8# to get mgal!! from blakeley B7 code.

 grav.append(sum_lines)

 i+=1

iter_time = []

K = 0.7968127490039841

lbound = [-30,-30,0,0,500]

ubound = [30,30,100,100,3000]

vmax =30

nswarm = 30

cp = 2.8

cg = 1.3

ndim = len(lbound)

maxiter =5000

lbound = np.asarray(lbound)

ubound = np.asarray(ubound)

vmax = np.asarray(vmax)

all_the_leftxcorn = [[] for i in range(int(nswarm))]

all_the_rightxcorn = [[] for i in range(int(nswarm))]

all_the_topzcorn = [[] for i in range(int(nswarm))]

all_the_botzcorn = [[] for i in range(int(nswarm))]

all_the_rho = [[] for i in range(int(nswarm))]

log_pbestg = [[]for i in range(int(nswarm))]

log_pbestv = []

log_pbest = []

log_gbestv = []

log_gbest = []

log_values =[]

swarm = np.zeros((nswarm,ndim))

initialize the swarm

Xrange = np.arange(-30,30,0.01)

Zrange = np.arange(0,1000,0.01)

Rhorange = np.arange(0,10000,0.01)

for i in np.arange(nswarm):

 swarm[i,0]=rand.choice(Xrange)

 swarm[i,1]=rand.choice(Xrange)

 swarm[i,2]=rand.choice(Zrange)

 swarm[i,3]=rand.choice(Zrange)

 swarm[i,4]=rand.choice(Rhorange)

 # initialize the "personal best" values

v = 100000

pbestv = np.zeros(nswarm)

for i in np.arange(nswarm):

 pbestv[i] = v

pbest = np.array(swarm)

 # initialize the "global best" values

gbesti = 0

gbestfi = 0

gbestv = pbestv[gbesti]

gbest = pbest[gbesti]

velocities = np.zeros([nswarm,ndim]) #initiate velocity vectors

print datetime.time(datetime.now())

for i in np.arange(maxiter):

 #try adding an if here to stop it from switching the corners.

#"""for n in np.arange(nswarm):

 # if swarm[n,0]> swarm[n,1]:

 # swarm[n,0]=rand.choice(Xrange)

 # swarm[n,1]=rand.choice(Xrange)

 # if swarm[n,2]>swarm[n,3]:

 # swarm[n,2]=rand.choice(Zrange)

 # swarm[n,3]=rand.choice(Zrange)"""

 values = np.zeros(nswarm)

 t = time.clock()

 n=0

 gravity = np.zeros([nswarm,len(Dobs)])

 for n in np.arange(nswarm):

 xcorn_1=swarm[n,0]

 xcorn_2=swarm[n,1]

 zcorn_1=swarm[n,2]

 zcorn_2=swarm[n,3]

 rho = swarm[n,4]

 func2(xcorn_1,xcorn_2,zcorn_1,zcorn_2,rho)

 gravity[n] = grav

 del grav[0:len(grav)]

 n+=1

 for j in np.arange(nswarm):# would values be dobs-dcalc?"

 #gravity = np.asarray(grav)

 values[j] = sum((Dobs - gravity[j])**2)

 mask = values < pbestv

 mask2d = np.repeat(mask, ndim)

 mask2d.shape = (nswarm, ndim)

 pbestv = np.where(mask, values, pbestv)

 pbest = np.where(mask2d, swarm, pbest)

 log_pbestv.append(pbestv)

 if np.minimum.reduce(pbestv) < gbestv:

 gbesti = np.argmin(pbestv)

 gbestv = pbestv[gbesti]

 gbest = pbest[gbesti]

 velocities = K*(velocities + (cp*si.rand()*(pbest - swarm)) +(cg*si.rand()*(gbest - swarm)))

 velocities = np.clip(velocities, -vmax, vmax)

 for h in np.arange(nswarm):

 all_the_leftxcorn[h].append(swarm[h,0])

 all_the_rightxcorn[h].append(swarm[h,1])

 all_the_topzcorn[h].append(swarm[h,2])

 all_the_botzcorn[h].append(swarm[h,3])

 all_the_rho[h].append(swarm[h,4])

 swarm = np.clip(swarm, lbound, ubound)

 """for n in np.arange(nswarm):

 if swarm[n,0]> swarm[n,1]:

 velocities[n,0]= -1*velocities[n,0]

 if swarm[n,2]>swarm[n,3]:

 velocities[n,2]= -1*velocities[n,2]

 if swarm[n,0]<= -30.0:

 velocities[n,0]= -1*velocities[n,0]

 if swarm[n,0]>= 30.0:

 velocities[n,0]= -1*velocities[n,0]

 if swarm[n,1]>= 30.0:

 velocities[n,1]= -1*velocities[n,1]

 if swarm[n,1]<= -30.0:

 velocities[n,1]= -1*velocities[n,1]

 if swarm[n,2]<= 0.0:

 velocities[n,2]= -1*velocities[n,2]

 if swarm[n,2]>= 100.0:

 velocities[n,2]= -1*velocities[n,2]

 if swarm[n,3]>= 100.0:

 velocities[n,3]= -1*velocities[n,3]

 if swarm[n,3]<= 0.0:

 velocities[n,3]= -1*velocities[n,3]

 if swarm[n,4]<= 500.0:

 velocities[n,4]= -1*velocities[n,4]

 if swarm[n,4]>= 5000.0:

 velocities[n,4]= -1*velocities[n,4]"""

 swarm += velocities

 t1 = time.clock()

 dt = t1-t

 iter_time.append(dt)

 log_pbest.append(pbest)

 log_gbest.append(gbest)

 log_gbestv.append(gbestv)

 log_values.append(values)

 if gbestv < 1e-1:

 print i,gbest,gbestv,'time for average iteration', (sum(iter_time)/float(maxiter)),'sum iteration time to complete = ', sum(iter_time),'seconds',(sum(iter_time)/60.0),'minutes'

 print ['finished']

print datetime.time(datetime.now())

print gbest

print gbestv

print 'time for average iteration', (sum(iter_time)/float(maxiter))

print 'sum iteration time to complete = ', sum(iter_time),'seconds',(sum(iter_time)/60.0),'minutes'

 #print 'all_the_leftxcorn',all_the_leftxcorn[0]

 #print 'all_the_rightxcorn',all_the_rightxcorn[0]

 # print 'all_the_topzcorn',all_the_topzcorn[0]

 # print 'all_the_botzcorn',all_the_botzcorn[0]

 # print 'all_the_rho',all_the_rho[0]

t0 = time.clock()

9-appendix B/Chapter 5 results and codes/5sideRIS.xlsx

Sheet1

						is tunred inside out

			Test #			Misfit 			Time Taken(min)			x0			X1			X2			Z0			z1			Z2			Rho									10,000 iteratios			Misfit 			Time Taken(min)			x0			X1			X2			Z0			z1			Z2			Rho

			1			1551.32			19.97			-28.34			6.47			19			19.03			11.69			19.09			1551.24			23460.7625						1			657.69			42.49			-4.8			-3			5.14			11.42			7.43			48.71			857.42			10208.258			427.205

			2			68782.4			20.54			-6.23			4.01			9.75			32.59			32.56			54.69			1341.17			23460.7625						2			89639.49			42.5			-17.67			3.025			3.025			72.67			20.2			76.32			933.15			10208.258			427.205

			3			594.22			19.9			-15.12			-4.57			17.87			17.81			8.74			25.34			713.64			23460.7625						3			518.18			41.9			-4.88			-0.26			5.31			36.421			5.36			36.426			2026.65			10208.258			427.205

			4			36885.34			19.67			-4.83			0.45			9.2			45			1			91.25			544.94			23460.7625						4			245.7			41.85			-7.1			-1.64			8.6			25.07			6.89			34.42			1079.06			10208.258			427.205

			5			66044.82			20.55			-21.51			2.4			10.37			28.64			23.04			44.86			682.52			23460.7625						5			317.5			43.72			-7.578			-2.4			9.41			24.18			6.64			34.68			952.4			10208.258			427.205

			6			16242.22			20.23			-3.45			0.511			3.52			44.07			1			65.45			1434.36			23460.7625						6			112.36			43.62			-3.94			-0.495			4.16			19.37			9.11			35.42			1820.51			10208.258			427.205

			7			591.22			20.3			-9.27			-2.54			12.03			26.23			5.14			35.56			742.54			23460.7625						7			966.85			41.96			-14.11			13.93			14.01			9.85			9.847			29.23			522.2			10208.258			427.205

			8			13912.99			20.32			-10.69			3.5			8.49			35.77			1			61.4			500			23460.7625						8			9025.45			41.75			-30			5.39			20.32			30.9			9.67			31			601.66			10208.258			427.205

			9			63575.9			20.3			-9.6			-0.53			-0.53			43.13			11.89			73.27			1206.48			23460.7625						9			24.11			39.55			-10.31			1.87			9.62			17.84			9.74			31.17			866.33			10208.258

			10			59854.19			20.33			-8.57			-8.57			5.26			29.71			28			54.32			1292.31			23460.7625						10			575.25			39.65			-24.62			4.25			18.05			23.41			9.79			23.49			967.4			10208.258

			11			389.55			22.74			-16.68			0.77			14.41			29.43			9.177			29.43			969.84			23460.7625						average			10208.258

			12			1792.53			22.69			-2.16			-1.21			2.7			15.02			4.29			55.09			1598.45			23460.7625						average 2			427.205

			13			1347.83			22.98			-10.27			-7.67			22.61			26.98			8.57			26.98			970.67			23460.7625

			14			986.83			22.54			-5.27			2.47			4.11			24.94			4.94			39.84			1391.11			23460.7625

			15			10.66			23.42			-8.76			-0.48			9.34			25.44			13.67			26.1			2516.03			23460.7625

			16			32512.05			22.92			-1.98			-1.98			15.19			53.22			1			73.97			593.1			23460.7625

			17			39030			20.74			-10.466			8.43			13.33			28.28			23.11			39.33			1193.9			23460.7625

			18			63853.36			20.24			-10.53			6.79			7.55			37.6			27.81			52.06			1318.97			23460.7625

			19			1037.93			20.7			-13.69			-11.27			14.42			15.63			14.85			20.41			1896.96			23460.7625

			20			219.89			21.24			-9.38			8.24			8.24			15.33			12.46			30.94			1003.65			23460.7625

			average			23460.7625			21.116			-10.3398			0.26105			10.343			29.6925			12.19685			45.969			1173.094

			average1			361.108

			average2			1343.288

			average3			46069.327												23460.7625

			1			2			3

			361.108			1343.288			46069.327

			361.108			1343.288			46069.327

			361.108			1343.288			46069.327

			361.108			1343.288			46069.327

			361.108			1343.288			46069.327

									46069.327

									46069.327

									46069.327

									46069.327

									46069.327

Inversion results of RIS method 5000 iteration

Average misfit 	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	23460.762500000001	23460.762500000001	23460.762500000001	23460.762500000001	23460.762500000001	23460.762500000001	23460.762500000001	23460.762500000001	23460.762500000001	23460.762500000001	23460.762500000001	23460.762500000001	23460.762500000001	23460.762500000001	23460.762500000001	23460.762500000001	23460.762500000001	23460.762500000001	23460.762500000001	23460.762500000001	Inversion results	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	1551.32	68782.399999999994	594.22	36885.339999999997	66044.820000000007	16242.22	591.22	13912.99	63575.9	59854.19	389.55	1792.53	1347.83	986.83	10.66	32512.05	39030	63853.36	1037.93	219.89	Inversion test number

Misfit value

Inversion results of RIS method 10,000 iteration

Average misfit 	1	2	3	4	5	6	7	8	9	10	10208.258	10208.258	10208.258	10208.258	10208.258	10208.258	10208.258	10208.258	10208.258	10208.258	Inversion results	1	2	3	4	5	6	7	8	9	10	657.69	89639.49	518.17999999999995	245.7	317.5	112.36	966.85	9025.4500000000007	24.11	575.25	Inversion test number

Misfit value

Set 1 of inversion results for RIS method 5000 iteration

Inversion results	3	7	11	15	20	594.22	591.22	389.55	10.66	219.89	Average misfiy	3	7	11	15	20	361.108	361.108	361.108	361.108	361.108	Inversion test number

Misfit value

Set 2 of inversion results for RIS method 5000 iteration

Inversion results	1	12	13	14	19	1551.32	1792.53	1347.83	986.83	1037.93	Average misfiy	1	12	13	14	19	1343.288	1343.288	1343.288	1343.288	1343.288	Inversion test number

Misfit value

Set 3 of inversion results for RIS method 5000 iteration

Inversion results	2	4	5	6	8	9	10	16	17	18	68782.399999999994	36885.339999999997	66044.820000000007	16242.22	13912.99	63575.9	59854.19	32512.05	39030	63853.36	Average misfiy	2	4	5	6	8	9	10	16	17	18	46069.326999999997	46069.326999999997	46069.326999999997	46069.326999999997	46069.326999999997	46069.326999999997	46069.326999999997	46069.326999999997	46069.326999999997	46069.326999999997	Inversion test number

Misfit value

Inversion results of RIS method 10,000 iteration

Average misfit 	1	2	3	4	5	6	7	8	9	10	427.20499999999998	427.20499999999998	427.20499999999998	427.20499999999998	427.20499999999998	427.20499999999998	427.20499999999998	427.20499999999998	Inversion results	1	2	3	4	5	6	7	8	9	10	657.69	518.17999999999995	245.7	317.5	112.36	966.85	24.11	575.25	Inversion test number

Misfit value

Sheet2

Sheet3

9-appendix B/Chapter 5 results and codes/5sidesM_penalty500.xlsx

Sheet1

						is tunred inside out

			Test #			Misfit 			Time Taken(min)			x0			X1			X2			Z0			z1			Z2			Rho			conversion iteration												real times for 10,000									average misfit

			1			541.78			22.65			-23.66			1.18			14.07			57.6			7.87			39.12			1199.58						45.3			22.65									45.3						608.03

			2			5.04			23.925			-15.07			0.33			15.13			26.92			10.29			26.92			1155.255						47.85			23.925									47.85						608.03

			3			402.85			22.5			-3.67			-2.035			7.25			34.25			6.41			34.33			2058.52						45			22.5									45						608.03

			4			104.15			23.565			-8.51			-8.33			8.55			15.3			15.3			27.37			1430.28						47.13			23.565									47.13						608.03

			5			505.99			21.195			-14.99			0.39			12.12			46.3			10.75			34.05			1982.8						42.39			21.195									42.39						608.03

			6			539.35			22.42			-25.6			0.022			25.07			81.64			6.42			48.83			979.97						44.84			22.42									44.84						608.03

			7			798.81			20.67			-3.54			14.94			2.4			11.45			8.71			44.72			1582.06						41.34			20.67									41.34						608.03

			8			235.66			21.815			-7.66			3.53			4.75			24.28			9.05			31			1706.42						43.63			21.815									43.63						608.03

			9			509.3			20.92			-6.88			28.84			6.88			13.82			13.82			31.6			1232.488						41.84			20.92									41.84						608.03

			10			0.659			20.48			-13.55			-0.057			13.65			26.59			10.49			27.32			1246.69						40.96			20.48									40.96						608.03

			11			590.39			21.545			-28.48			3.21			16.03			37.11			10.24			29.7			1093.63						43.09			21.545									43.09						608.03

			12			14.33			21.56			-10.81			1.05			10.19			21.95			10.01			29.08			1088.71						43.12			21.56									43.12						608.03

			13			181.2			19.925			-6.93			-2.28			8.366			21.77			7.78			33.58			1069.2						39.85			19.925									39.85

			14			9.99			19.945			-7.83			2.15			7.46			16.19			11.92			31.28			1144.68						39.89			19.945									39.89

			15			574.21			20.26			-2.74			-19.81			4.21			12.51			9.53			39.31			1593.54						40.52			20.26									40.52

			16			765.36			20.41			-17.46			0.51			6.57			98			4.58			55.88			1969.89						40.82			20.41									40.82

			17			513.83			20.785			-20.78			2.47			9.2			41.65			10.18			32.32			1564.9						41.57			20.785									41.57

			18			637.62			20.875			-5.966			-5.83			23.19			29.07			15			25.8			2680.4						41.75			20.875									41.75

			19			2083.02			19.8995			-9.75			2.89			3.08			37.72			3			37.73			1424.07						39.799			19.8995									39.799

			20			2951.44			19.22			-1.78			1.882			1.884			7.43			7.43			68.46			1719.77						38.44			19.22									38.44

			average			598.24895			21.228225			-11.7828			1.2526			10.0025			33.0775			9.439			36.42			1496.14265

			good models			608.0374166667			21.2020416667			-7.9983333333			3.5758333333			7.4658333333			21.4725			9.5175			35.2825			1404.84525

Constrainted 4 sided inversion results

Inversion results	2	3	4	7	8	9	10	12	13	14	19	20	5.04	402.85	104.15	798.81	235.66	509.3	0.65900000000000003	14.33	181.2	9.99	2083.02	2951.44	Average misfit 	2	3	4	7	8	9	10	12	13	14	19	20	608.03	608.03	608.03	608.03	608.03	608.03	608.03	608.03	608.03	608.03	608.03	608.03	Inversion test number

Misfit value

Sheet2

			Sx = [-10			0			10			10			-10			-10

			Sz = [-20			-10			-20			-30			-30			-20

			s7x = [-3.54			14.94			2.4			2.4			-3.54			-3.54

			s7z =[-11.45			-8.71			-11.45			-44.72			-44.72			-11.45

			s9x = [-6.88			28.84			6.88			6.88			-6.88			-6.88

			s9z =[-13.82			-13.82			-13.82			-31.6			-31.6			-13.82

			s14x = [-3.207			-0.677			3.18			3.18			-3.207			-3.207

			s14z =[-15.78			-15.469			-15.78			-30.65			-30.65			-15.78

			s5x =[-6.34			1.92			6.2			6.2			-6.34			-6.34

			s5z = [-15			-13.23			-15			-31.81			-31.81			-15

			s15x = [-9.11			0.37			9.07			9.07			-9.11			-9.11

			s15z =[-12.86			-9.77			-12.86			-35.69			-35.69			-12.86

Target model vs Models 7 and 9

Target model	-10	0	10	10	-10	-10	-20	-10	-20	-30	-30	-20	Model 7	-3.54	14.94	2.4	2.4	-3.54	-3.54	-11.45	-8.7100000000000009	-11.45	-44.72	-44.72	-11.45	Model 9	-6.88	28.84	6.88	6.88	-6.88	-6.88	-13.82	-13.82	-13.82	-31.6	-31.6	-13.82	Observation locations (m)

Depth (m)

Sheet3

9-appendix B/Chapter 5 results and codes/5sidesM_penalty50000.xlsx

Sheet1

			Test #			Misfit 			Time Taken(min)			x0			X1			X2			Z0			z1			Z2			Rho			conversion iteration			average value 1			average value2						real times

			1			73.28			17.505			-5.5			0.41			5.91			30.24			9.22			31.23			2352.9						1452.496			54.569						35.01

			2			52.84			17.53			-4.14			0.66			4.13			12.97			12.97			36			1631.21						1452.496			54.569						35.06

			3			4.7			18.195			-14.36			0.16			14.33			16.44			6.42			32.06			501.44						1452.496			54.569						36.39

			4			78.48			21.125			-6.69			-3.92			7.79			19.08			11.81			29.59			1462.78						1452.496			54.569						42.25

			5			135.17			21.555			-15.34			2.63			11.9			23.46			15.2			23.46			2598						1452.496			54.569						43.11

			6			21.07			21.97			-10.14			-1.35			11.89			26.65			12.02			26.92			1785.1						1452.496			54.569						43.94

			7			123.08			22			-13.82			-0.89			15.06			22.84			15.14			22.97			2523.32						1452.496			54.569						44

			8			60.12			21.87			-27.44			0.56			26.39			22.74			5.7			23.64			552.92						1452.496			54.569						43.74

			9			32.93			21.85			-7.11			7			7			11.85			11.19			36.5			872.74						1452.496			54.569						43.7

			10			66.9			22.075			-20.68			-0.49			21.17			18.92			5.59			25.76			500						1452.496			54.569						44.15

			11			81.18			22.07			-11.99			2.56			9.66			23.45			13.32			25.26			1976.47						1452.496			54.569						44.14

			12			0.1			1.9			-9.54			-0.008			9.55			25.97			11.55			27.75			1749.97			433			1452.496			54.569						37.59

			13			0.1			1.57			-12.5			0.007			12.5			25.81			10.38			27.69			1241.17			347			1452.496			54.569						43.64

			14			0.277			18.795			-9.99			-0.12			10.06			22.53			10.65			28.59			1244.16						1452.496			54.569						43.78

			15			52.73			21.82			-4.52			-2.69			5.66			21.17			11.31			30.86			2049.395						1452.496			54.569						42.79

			16			28013.1			21.89			-1.36			-1.36			4.36			40.75			30			75.21			1529.57						1452.496			54.569						42.65

			17			0.725			21.395			-14.88			0.00067			14.88			26.9			9.85			27.44			1100.98						1452.496			54.569						47.91

			18			14.66			21.325			-4.54			-0.0067			4.61			14.82			13.35			32.92			1774.66						1452.496			54.569						47.88

			19			96.83			23.955			-13.2			0.029			13.15			22.12			14.14			23.71			1978.86						1452.496			54.569

			20			141.65			23.94			-4.7			-2.22			4.63			11.48			11.48			39.55			1206.022						1452.496			54.569

			average			1452.4961			19.21675			-10.622			0.0480985			10.7315			22.0095			12.0645			31.3555			1531.58335			390

			average(no 16)			54.5695789474			19.0760526316			-11.1094736842			0.1222089474			11.0668421053			21.0231578947			11.1205263158			29.0473684211			1531.6893157895

Inversion results Penalty value 50,000

Average misfit 	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	1452.4960000000001	1452.4960000000001	1452.4960000000001	1452.4960000000001	1452.4960000000001	1452.4960000000001	1452.4960000000001	1452.4960000000001	1452.4960000000001	1452.4960000000001	1452.4960000000001	1452.4960000000001	1452.4960000000001	1452.4960000000001	1452.4960000000001	1452.4960000000001	1452.4960000000001	1452.4960000000001	1452.4960000000001	1452.4960000000001	average misfit(appended)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	Inversion results	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	73.28	52.84	4.7	78.48	135.16999999999999	21.07	123.08	60.12	32.93	66.900000000000006	81.180000000000007	0.1	0.1	0.27700000000000002	52.73	28013.1	0.72499999999999998	14.66	96.83	141.65	Inversion test number

Misfit value

Inversion results Penalty value 50,000

average misfit(appended)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	54.569000000000003	Inversion results	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	73.28	52.84	4.7	78.48	135.16999999999999	21.07	123.08	60.12	32.93	66.900000000000006	81.180000000000007	0.1	0.1	0.27700000000000002	52.73	0.72499999999999998	14.66	96.83	141.65	Inversion test number

Misfit value

Sheet2

Sheet3

9-appendix B/Chapter 5 results and codes/6side_points_pen_50000.xlsx

Sheet1

			Test #			Misfit 			Time Taken(min)			X0,Z0			X1,Z1			X2,Z2			X3,Z3			X4,Z4			X5,Z5			Rho			conversion iteration

			1			1.799			19.07			6.96,31.019			2.529,38.431			-5.339,32.649			-5.826,31.018			-3.94,22.15			3.94,25.88			2105.422						11.39355

			2			5.069			19.23			3.702,30.08			6.66,39.74			-4.52,38.34			-7.11,30.08			-1.44,22.95			3.914,18.51			1592.49						11.39355

			3			1.158			19.78			4.33,35.35			4.83,37.31			-7.11,38.00			-3.83,35.35			-8.20,25.64			6.923,22.25			1656.79						11.39355

			4			9.08			19.785			3.97,35.45			-0.733,31.27			2.72,45.02			-8.86,35.46			-0.977,20.09			7.55,23.72			1376.77						11.39355

			5			1.41			19.54			9.74,29.23			5.09,32.44			-4.04,34.78			-9.93,29.22			-1.12,24.04			5.64,25.24			2041.78						11.39355

			6			2.65			19.53			6.21,31.65			4.82,37.19			-2.06,37.91			-4.63,31.65			-5.33,22.04			4.15,25.19			1978.93						11.39355

			7			3.105			20.695			6.58,26.25			6.80,35.27			-3.75,35.195			-7.098,26.25			-2.46,22.07			-0.61,25.34			2047.7						11.39355

			8			12.83			20.69			2.59,25.21			5.86,42.53			-7.63,31.95			-6.66,25.21			-0.685,25.36			9.13,14.29			1779						11.39355

			9			0.55			20.05			10.25,31.34			7.10,36.09			-6.31,40.196			-8.66,31.34			-4.78,21.74			2.20,19.91			1056.195						11.39355

			10			11.32			20.05			9.80,31.12			5.35,37.31			-1.00,37.64			-6.69,31.16			-2.41,18.14			1.85,27.14			1715.92						11.39355

			11			88.52			20.195			8.99,37.11			8.27,36.25			-10.93,52.095			-10.65,37.11			0.225,15.87			4.09,13.47			692.88						11.39355

			12			4.25			20.195			9.62,29.62			3.78,34.39			-2.297,35.41			-5.64,29.62			-4.49,22.08			3.18,27.80			2543.51						11.39355

			13			5.45			20.19			5.05,30.75			4.54,40.77			-5.52,39.97			-5.97,30.75			-1.03,19.61			3.68,20.99			1433.64						11.39355

			14			8.33			20.195			13.22,28.72			4.09,38.33			-5.37,35.08			-10.65,28.72			-2.28,18.96			3.64,25.36			1109.54						11.39355

			15			4.33			19.765			4.34,29.86			1.83,36.94			-4.19,39.64			-5.17,29.98			-0.52,23.095			3.93,21.86			2288.6						11.39355

			16			0.14			19.77			8.07,29.58			4.43,34.62			-3.73,38.22			-7.495,29.58			-2.12,22.54			3.74,23.80			1729.95						11.39355

			17			2.12			19.85			8.01,26.39			3.06,36.82			-3.67,39.94			-8.49,26.39			-1.88,23.49			5.44,22.18			1442.72						11.39355

			18			46.71			19.85			6.29,28.04			7.62,44.19			-5.13,43.44			-13.13,28.03			-9.77,24.57			10.00,14.69			659.02						11.39355

			19			14.29			19.62			3.52,38.62			7.499,44.85			-1.67,42.37			-4.07,38.62			-7.82,29.59			4.38,16.24			1315.35						11.39355

			20			4.76			19.62			14.49,19.31			-2.71,45.13			-11.27,24.21			2.75,19.31			1.09,21.52			6.21,23.45			896.295						11.39355

			average			11.39355			19.8835																					1573.1251

															38.14			19.07

															38.46			19.23

															39.56			19.78

															39.57			19.785

															39.08			19.54

															39.06			19.53

															41.39			20.695

															41.38			20.69

															40.1			20.05

															40.1			20.05

															40.39			20.195

															40.39			20.195

															40.38			20.19

															40.39			20.195

															39.53			19.765

															39.54			19.77

															39.7			19.85

															39.7			19.85

															39.24			19.62

															39.24			19.62

																		19.8835

Inversion results of Points method.

Average misfit 	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	11.393549999999999	11.393549999999999	11.393549999999999	11.393549999999999	11.393549999999999	11.393549999999999	11.393549999999999	11.393549999999999	11.393549999999999	11.393549999999999	11.393549999999999	11.393549999999999	11.393549999999999	11.393549999999999	11.393549999999999	11.393549999999999	11.393549999999999	11.393549999999999	11.393549999999999	11.393549999999999	Inversion results	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	1.7989999999999999	5.069	1.1579999999999999	9.08	1.41	2.65	3.105	12.83	0.55000000000000004	11.32	88.52	4.25	5.45	8.33	4.33	0.14000000000000001	2.12	46.71	14.29	4.76	Inversion test number

Misfit value

Sheet2

Sheet3

9-appendix B/Chapter 5 results and codes/codes/FesPSO.pyx

import pylab as pl

import scipy as si

import numpy as np

import time as time

import random as rand

from datetime import datetime

#all_the_leftxcorn = [[] for i in range(int(30))]

#all_the_rightxcorn = [[] for i in range(int(30))]

#all_the_middlexcorn = [[] for i in range(int(30))]

#all_the_topzcorn = [[] for i in range(int(30))]

#all_the_botzcorn = [[] for i in range(int(30))]

#all_the_middlezcorn = [[] for i in range(int(30))]

#all_the_rho = [[] for i in range(int(30))]

gbestlist=[]

grav = []

counter = []

gbestvlist=[]

gbestlist2 = []

Dobs = (63.942052517377995, 65.326864187017122, 66.747890049346537, 68.205922693715266, 69.701741703856271, 71.23610937869195, 72.809765995100904, 74.423424580270719, 76.077765160688472, 77.773428454519944, 79.511008974162493, 81.2910475062004, 83.114022936864203, 84.980343392499165, 86.890336666505632, 88.844239906801064, 90.842188541110744, 92.884204421376296, 94.970183173302061, 97.099880742583977, 99.272899135698339, 101.48867136028191, 103.746445578137, 106.04526849274862, 108.38396800295692, 110.76113516514452, 113.17510551808809, 115.6239398377014, 118.10540440354175, 120.61695087563976, 123.15569589958201, 125.71840058071096, 128.30144999598912, 130.9008329459966, 133.51212219156605, 136.13045547192266, 138.75051766644702, 141.36652454312102, 143.97220863619089, 146.56080791623276, 149.12505805954629, 151.65718929122565, 154.14892896566431, 156.5915112545261, 158.97569552527045, 161.29179519650776, 163.52971902479968, 165.67902687628498, 167.72900202077864, 169.6687418016904, 171.48726812295149, 173.1736584971699, 174.71719737483508, 176.10754611052209, 177.33492825583349, 178.39032500346849, 179.26567372066498, 179.95406085049655, 180.4498993147601, 180.74908020276732, 180.84908918337524, 180.74907980253403, 180.44989851481353, 179.95405965187459, 179.26567212491992, 178.3903230126613, 177.33492587252616, 176.10754333776859, 174.7171942161703, 173.17365495659718, 171.48726420492798, 169.66873751111169, 167.72899736296171, 165.67902185694911, 163.52971365004723, 161.2917894728036, 158.97568945941944, 156.59150485365183, 154.14892223718439, 151.65718224282844, 149.12505069916722, 146.56080025202857, 143.97220067651577, 141.36651629650126, 138.7505091415569, 136.13044667755935, 133.51211313662631, 130.90082363945157, 128.30144044686313, 125.71839079805775, 123.15568589246371, 120.61694065310589, 118.1053939746094, 115.62392921133632, 113.17509470318677, 110.76112417051768, 108.38395683731355, 106.04525716468137, 103.74643409610898, 101.48865973261476, 99.27288737056044, 97.099868847981057, 94.970171157068052, 92.884192291165661, 90.842176304391813, 88.844227570850848, 86.89032423840365, 84.980330879125461, 83.11401034489549, 81.291034842108104, 79.510996244211313, 77.773415664767867, 76.077752316986789, 74.423411688263769, 72.809753060229554, 71.236096406193056, 69.701728698766715, 68.205909660873871, 66.747876993397469, 65.326851112413792)

cpdef int func2(double xcorn_1,double xcorn_2,double xcorn_3,double zcorn_1,double zcorn_2,double zcorn_3,double rho) except -1:

 x = np.arange(-30,30,0.5)

 l = len(x)

 xcorn = (float(xcorn_1),float(xcorn_2),float(xcorn_3),float(xcorn_3),float(xcorn_1),float(xcorn_1))

 zcorn = (float(zcorn_1),float(zcorn_2),float(zcorn_1),float(zcorn_3),float(zcorn_3),float(zcorn_1))

 o = len(xcorn)-1

 cdef double gamma,sum_lines,x1,x2,z1,z2,alpha,beta,factor,term1,term2,denom,constant

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 cdef int i,n

 for i from 0 <= i < l:

 sum_lines = 0.0

 for n from 0 <= n < o:

 x1 = xcorn[n]-x[i]

 x2 = xcorn[n+1]-x[i]

 z1 = zcorn[n]

 z2 = zcorn[n+1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = np.arctan2(z1,x1)

 O2 = np.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = np.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

cpdef int procedure():

 iter_time = []

 cdef double K,vmax,cp,cg,maxiter,moveup,movedown,moveleft,moveright,gbestc,gbestv

 K = 0.7968127490039841

 lbound = [-30.0,-30.0,-30.0,0.0,0.0,0.0,500.0]

 ubound = [30.0,30.0,30.0,100.0,100.0,100.0,3000.0]

 vmax =30

 nswarm = 30

 cp = 2.8

 cg = 1.3

 ndim = len(lbound)

 maxiter = 5000

 lbound = np.asarray(lbound)

 ubound = np.asarray(ubound)

 vmax = si.asarray(vmax)

 cdef int i,n,j

 #all_the_leftxcorn = [[] for i in range(int(nswarm))]

 #all_the_rightxcorn = [[] for i in range(int(nswarm))]

 #all_the_topzcorn = [[] for i in range(int(nswarm))]

 #all_the_botzcorn = [[] for i in range(int(nswarm))]

 #all_the_rho = [[] for i in range(int(nswarm))]

 #log_pbest = []

 #log_gbest = []

 #log_values =[]

 swarm = np.zeros((nswarm,ndim))

 # initialize the swarm

 Xrange = np.arange(-30,30,0.01)

 Zrange = np.arange(0.001,100,0.01)

 Rhorange = np.arange(500.0,3000,0.01)

 for i in np.arange(nswarm):

 swarm[i,0]=rand.choice(Xrange)

 swarm[i,1]=rand.choice(Xrange)

 swarm[i,2]=rand.choice(Xrange)

 swarm[i,3]=rand.choice(Zrange)

 swarm[i,4]=rand.choice(Zrange)

 swarm[i,5]=rand.choice(Zrange)

 swarm[i,6]=rand.choice(Rhorange)

 for n in np.arange(nswarm):

 if swarm[n,0]> swarm[n,2]:

 moveleft = swarm[n,0]

 moveright =swarm[n,2]

 swarm[n,0]= moveright

 swarm[n,2]= moveleft

 if swarm[n,0]> swarm[n,1]:

 moveleft = swarm[n,0]

 moveright =swarm[n,1]

 swarm[n,0]= moveright

 swarm[n,1]= moveleft

 if swarm[n,1]> swarm[n,2]:

 moveleft = swarm[n,2]

 moveright =swarm[n,1]

 swarm[n,2]= moveright

 swarm[n,1]= moveleft

 if swarm[n,0]> swarm[n,1]:

 moveright = swarm[n,0]

 moveleft =swarm[n,1]

 swarm[n,1]=moveright

 swarm[n,0]=moveleft

 if swarm[n,0]>swarm[n,2]:

 moveright = swarm[n,0]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,0]=moveleft

 if swarm[n,1]>swarm[n,2]:

 moveright = swarm[n,1]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,1]=moveleft

 if swarm[n,1]> swarm[n,2]:

 moveright = swarm[n,1]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,1]=moveleft

 if swarm[n,0]> swarm[n,2]:

 moveright = swarm[n,0]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,0]=moveleft

 if swarm[n,0]>swarm[n,1]:

 moveright = swarm[n,0]

 moveleft =swarm[n,1]

 swarm[n,1]=moveright

 swarm[n,0]=moveleft

 if swarm[n,3]>swarm[n,5]:

 movedown = swarm[n,5]

 moveup =swarm[n,3]

 swarm[n,5]= moveup

 swarm[n,3]= movedown

 if swarm[n,4]>swarm[n,5]:

 movedown = swarm[n,5]

 moveup =swarm[n,4]

 swarm[n,5]= moveup

 swarm[n,4]= movedown

 if swarm[n,4]>swarm[n,3]:

 movedown = swarm[n,3]

 moveup =swarm[n,4]

 swarm[n,3]= moveup

 swarm[n,4]= movedown

 if swarm[n,3]< swarm[n,4]:

 movedown = swarm[n,3]

 moveup =swarm[n,4]

 swarm[n,3]= moveup

 swarm[n,4]= movedown

 if swarm[n,4]>swarm[n,5]:

 movedown = swarm[n,5]

 moveup =swarm[n,4]

 swarm[n,5]= moveup

 swarm[n,4]= movedown

 if swarm[n,3]>swarm[n,5]:

 movedown = swarm[n,3]

 moveup =swarm[n,5]

 swarm[n,3]= moveup

 swarm[n,5]= movedown

 if swarm[n,5]<swarm[n,4]:

 movedown = swarm[n,5]

 moveup =swarm[n,4]

 swarm[n,5]= moveup

 swarm[n,4]= movedown

 if swarm[n,4]>swarm[n,3]:

 movedown = swarm[n,3]

 moveup =swarm[n,4]

 swarm[n,3]= moveup

 swarm[n,4]= movedown

 if swarm[n,3]>swarm[n,5]:

 movedown = swarm[n,3]

 moveup =swarm[n,5]

 swarm[n,3]= moveup

 swarm[n,5]= movedown

 # initialize the "personal best" values

 values = np.zeros(nswarm)

 gravity = np.zeros([nswarm,len(Dobs)])

 for n in np.arange(nswarm):

 xcorn_1=swarm[n,0]

 xcorn_2=swarm[n,1]

 xcorn_3=swarm[n,2]

 zcorn_1=swarm[n,3]

 zcorn_2=swarm[n,4]

 zcorn_3=swarm[n,5]

 rho = swarm[n,6]

 func2(xcorn_1,xcorn_2,xcorn_3,zcorn_1,zcorn_2,zcorn_3,rho)

 gravity[n] = grav

 del grav[0:len(grav)]

 n+=1

 for j in np.arange(nswarm):

 values[j] = sum((Dobs - gravity[j])**2)

 pbestv = np.zeros(nswarm)

 for i in np.arange(nswarm):

 pbestv[i] = values[i]

 pbest = np.array(swarm)

 # initialize the "global best" values

 gbesti = np.argmin(pbestv)

 gbestv = np.minimum.reduce(pbestv)

 gbest = pbest[gbesti]

 gbestc = gbestv

 velocities = np.zeros([nswarm,ndim]) #initiate velocity vectors.

 print datetime.time(datetime.now())

 for i in np.arange(maxiter):

 t = time.clock()

###

 feasabilty = np.zeros(nswarm)

 for n in np.arange(nswarm):

 if swarm[n,0]< -30.0:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,0]> 30.0:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,1]< -30.0:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,1]> 30.0:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,2]< -30.0:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,2]> 30.0:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,3]< 1.0:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,3]>100.0:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,4]< 1.0:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,4]> 100.0:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,5]< 1.0:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,5]>100.0:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,6]<500.0:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,6]>3000.0:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,0]> swarm[n,2]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,0]>= swarm[n,1]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,1]>= swarm[n,2]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,0]>= swarm[n,1]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,0]> swarm[n,2]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,1]>= swarm[n,2]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,1]>= swarm[n,2]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,0]> swarm[n,2]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,0]>= swarm[n,1]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,3]>swarm[n,5]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,4]>=swarm[n,3]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,4]>=swarm[n,5]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,3]<= swarm[n,4]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,4]>=swarm[n,5]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,3]>swarm[n,5]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,5]<=swarm[n,4]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,4]>=swarm[n,3]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,3]>swarm[n,5]:

 feasabilty[n] = feasabilty[n]+1

 for n in np.arange(nswarm):

 xcorn_1=swarm[n,0]

 xcorn_2=swarm[n,1]

 xcorn_3=swarm[n,2]

 zcorn_1=swarm[n,3]

 zcorn_2=swarm[n,4]

 zcorn_3=swarm[n,5]

 rho = swarm[n,6]

 func2(xcorn_1,xcorn_2,xcorn_3,zcorn_1,zcorn_2,zcorn_3,rho)

 gravity[n] = grav

 del grav[0:len(grav)]

 n+=1

 for j in np.arange(nswarm):

 values[j] = (sum((Dobs - gravity[j])**2))

 for i in np.arange(nswarm):

 if feasabilty[i] < 1:

 mask = values[i] < pbestv[i]

 mask2d = np.repeat(mask, ndim)

 #mask2d.shape = (nswarm, ndim)

 pbestv[i] = np.where(mask, values[i], pbestv[i])

 pbest = np.where(mask2d, swarm, pbest)

 gbestc = gbestv

 if np.minimum.reduce(pbestv) < gbestv:

 gbesti = si.argmin(pbestv)

 gbestv = pbestv[gbesti]

 gbest = pbest[gbesti]

#################### added an inertial weight factor to the previous velocity jan 12/12###

 velocities = K*(velocities + (cp*si.rand()*(pbest - swarm)) +

 (cg*si.rand()*(gbest - swarm)))

 #velocities = np.clip(velocities, -vmax, vmax)

 # for h in si.arange(nswarm):

 #all_the_leftxcorn[h].append(swarm[h,0])

 #all_the_rightxcorn[h].append(swarm[h,2])

 #all_the_middlexcorn[h].append(swarm[h,1])

 #all_the_topzcorn[h].append(swarm[h,3])

 #all_the_botzcorn[h].append(swarm[h,5])

 #all_the_middlezcorn[h].append(swarm[h,4])

 #all_the_rho[h].append(swarm[h,6])

 swarm += velocities

 #swarm = np.clip(swarm, lbound, ubound)

 #pbest = np.clip(pbest, lbound, ubound)

 #gbest = np.clip(gbest, lbound, ubound)

 t1 = time.clock()

 dt = t1-t

 iter_time.append(dt)

 gbestlist.append(gbestv)

 #log_pbest.append(pbest)

 #log_gbest.append(gbest)

 #log_values.append(values)

 if gbestv < 1e-1:

 print i,gbest,gbestv,'time for average iteration', (sum(iter_time)/float(maxiter)),'sum iteration time to complete = ', sum(iter_time),'seconds',(sum(iter_time)/60.0),'minutes'

 return 'f'

 print datetime.time(datetime.now())

 print 'current gbest',gbest

 print 'current gbestv',gbestv

 print 'time for average iteration', (sum(iter_time)/float(maxiter))

 print 'sum iteration time to complete = ', sum(iter_time),'seconds',(sum(iter_time)/60.0),'minutes'

 former = np.minimum.reduce(gbestvlist)

 arg = np.argmin(gbestvlist)

 print 'former gbest',gbestlist2[arg]

 print 'former gbestv',former

################### Clip p and g bestr here ################

 #pbest = np.clip(pbest, lbound, ubound)

 #gbest = np.clip(gbest, lbound, ubound)

##

#######################################last 100 or sogbests############################

 #print 'first 50',gbestlist[0:50]

 #print 'middle 50', gbestlist[2550:2601]

 #print 'last 50',gbestlist[4950:]

##

 #print 'all_the_leftxcorn',all_the_leftxcorn[0]

 #print 'all_the_rightxcorn',all_the_rightxcorn[0]

 #print 'all_the_topzcorn',all_the_topzcorn[0]

 #print 'all_the_botzcorn',all_the_botzcorn[0]

 #print 'all_the_rho',all_the_rho[0]

 #lastfew = int(maxiter -20)

 #print 'log_gbest first few',log_gbest[0:10]

 # print 'log_gbest last 20',log_gbest[lastfew:]

 #print 'log_pbest last guess',log_pbest[4999]

 #print 'log_values',log_values

t0 = time.clock()

procedure()

9-appendix B/Chapter 5 results and codes/codes/f_Points.py

import numpy

import pylab as pl

p0 = [6.29,28.04]

p1 = [7.62,44.19]

p2 = [-5.13,43.44]

p3 = [-13.13,28.03]

p4 = [-9.77,24.57]

p5 = [10.00,14.69]

rho = 659.02

grav = []

def func1(p0,p1,p2,p3,p4,p5,rho):

 """N = (109.91921057, 112.39578681, 112.88728591, 114.36964029, 117.41962808, 116.59963764, 122.20748684, 122.6157619, 125.1361481, 126.95730783, 128.74944347, 129.40314113, 134.03858021, 131.85675219, 136.60140431, 138.90666935, 139.59752147, 143.35112715, 142.43716812, 149.87539158, 147.8291828, 150.81422823, 154.78055746, 156.53614168, 156.14983255, 159.13423982, 157.26669295, 164.39781061, 164.93979332, 167.25080831, 168.86763125, 171.35481238, 175.53283956, 175.29054461, 180.44220571, 185.79981776, 180.55717654, 185.16357033, 187.08283063, 184.64159257, 186.88930516, 191.35424312, 195.58351845, 197.56572955, 196.00059693, 195.10878934, 196.50262231, 200.17795198, 201.04006624, 198.1656162, 201.45246411, 201.32340674, 205.78196898, 206.53679443, 207.55762735, 208.96210844, 207.72706591, 204.81964079, 206.48873447, 213.62815628, 207.0157016, 206.8992808, 206.70553747, 205.05107034, 206.44739717, 210.05303829, 207.13069382, 205.24973928, 205.41131433, 205.16656879, 202.09184208, 202.04697206, 202.03779365, 196.53384097, 200.35071069, 195.18149818, 196.63690015, 189.19473644, 193.10620447, 192.52072723, 191.54618856, 189.20775196, 189.13900563, 186.93659269, 181.79405053, 180.39383179, 174.60768441, 172.89259837, 176.36320927, 173.51541412, 168.27985075, 168.27701062, 162.6121459, 163.91412579, 161.6516811, 156.00867281, 156.38947743, 157.11794662, 153.45291687, 150.34127402, 151.64064352, 145.64051283, 143.62612562, 144.20932123, 140.26505419, 141.00728236, 136.49063421, 132.48099608, 131.50638655, 131.23814172, 132.40071819, 128.61419216, 124.25376507, 121.13274777, 122.19576832, 114.47503558, 118.22905879, 114.9609955, 112.74150327, 114.44495947)

 Dobs1 = (109.88320762381966, 111.60783335993007, 113.35834221620421, 115.13456776894542, 116.93628701618091, 118.76321600909863, 120.61500530167685, 122.49123522863862, 124.39141102543726, 126.31495780798524, 128.26121543432961, 130.22943327544553, 132.21876492775044, 134.22826290581276, 136.25687336001329, 138.30343087051418, 140.3666533757434, 142.44513730056443, 144.53735295622516, 146.6416402908784, 148.75620507572009, 150.8791156173364, 153.00830009141563, 155.1415445962505, 157.27649202611175, 159.41064186430989, 161.54135099325043, 163.6658356137707, 165.78117435831163, 167.88431267185715, 169.97206852104071, 172.04113947543007, 174.08811118594659, 176.1094672640005, 178.10160054169609, 180.06082566898266, 181.98339297863205, 183.86550352521553, 185.70332518066701, 187.49300964745959, 189.23071023165656, 190.91260020287586, 192.53489155709977, 194.09385399166544, 195.58583389987621, 197.00727319546115, 198.3547277843054, 199.6248855120387, 200.81458343056991, 201.9208242437017, 202.94079181073874, 203.87186560658208, 204.71163405635909, 205.45790668133475, 206.10872501001742, 206.66237222344185, 207.11738151619693, 207.47254316463003, 207.72691030077706, 207.87980339501513, 207.93081345250727, 207.87980392857946, 207.72691136673271, 207.47254476063637, 207.11738363875639, 206.66237486791479, 206.10872817064458, 205.45791035126271, 204.71163822767238, 203.87187027034039, 202.9407969570189, 201.92082986164519, 200.81458950843549, 199.62489203725926, 198.35473474354987, 197.0072805747005, 195.58584168445236, 194.0938621663644, 192.53490010622605, 190.91260911032981, 189.2307194810125, 187.49301922204401, 185.70333506363693, 183.86551369963493, 181.98340342754719, 180.06083637549392, 178.10161148902813, 176.1094784355659, 174.0881225654071, 172.04115104675279, 169.9720802685475, 167.88432458027054, 165.78118641279409, 163.66584779995836, 161.54136329728163, 159.41065427284735, 157.27650452636081, 155.14155717597174, 153.00831273893249, 150.87912832153876, 148.75621782606476, 146.64165307738435, 144.53736576946721, 142.4451501316627, 140.36666621635226, 138.30344371280754, 136.25688619666894, 134.22827572999566, 132.21877773309359, 130.22944605603249, 128.26122818467428, 126.31497052301255, 124.39142370046301, 122.49124785934993, 120.61501788411363, 118.76322853963309, 116.93629949149988, 115.13458018603143, 113.35835457231856, 111.6078456525953)

#Noisey data

 Dobs =(111.56802561, 109.90352664, 112.52148439, 118.75377529, 117.86136749, 119.80164884, 121.91396166, 120.28311401, 123.87352161, 126.57619053, 128.41513447, 130.44492598, 131.49391913, 133.00006734, 136.53361312, 137.49840764, 138.33280029, 141.131328, 144.87316662, 146.50696519, 148.34607509, 151.62706042, 154.12794745, 156.53119364, 156.08253866, 158.98018481, 161.96593136, 164.18366212, 167.06688758, 167.06443621, 170.54728224, 172.80671658, 174.42632294, 175.23069316, 177.93356742, 181.05877302, 180.95219846, 184.30712363, 187.00735796, 189.03962383, 190.39610523, 188.31974099, 192.14635262, 192.21719384, 196.78223067, 198.22913311, 199.22635344, 200.96930761, 200.81804702, 202.67177149, 203.13842608, 203.23359106, 206.55048539, 205.32585129, 205.83268911, 207.64217985, 206.97524417, 207.11101819, 207.10845052, 207.17910455, 207.08198576, 208.0594213, 207.20203736, 206.07771031, 205.72057903, 206.08773439, 205.18125995, 205.410833, 205.85669928, 204.04096342, 202.5177061, 200.35205505, 198.68853649, 200.17061902, 198.54696079, 199.63226103, 195.7234987, 192.88507255, 192.6373797, 191.19562539, 189.41685291, 187.48549026, 184.48942771, 184.37055892, 181.12399878, 178.32705851, 177.36746256, 174.78659879, 174.442985, 172.40396364, 171.21007082, 168.16652382, 166.12338313, 163.70618609, 164.28234502, 159.77452431, 158.40264832, 154.42946432, 151.80384302, 150.0203212, 148.95383026, 146.47793227, 146.14912221, 140.91394092, 140.77590782, 137.99597797, 135.68297373, 134.00424374, 133.59750284, 130.88393378, 127.66222859, 127.16903429, 124.66185086, 123.00540507, 121.14549499, 119.16624463, 116.9653962, 115.69092923, 113.96477695, 110.75928684)"""

 x = numpy.arange(-30.0,30,0.5)

6 sided Dobs

 Dobs = (57.779192696040823, 58.75020990091253, 59.737263917760764, 60.740312210201068, 61.759280825782646, 62.794061889153184, 63.844510987502481, 64.910444452058641, 65.991636540868413, 67.087816529738717, 68.198665720046762, 69.323814374151766, 70.46283859136544, 71.615257139861811, 72.780528262534048, 73.958046477621977, 75.147139397932094, 76.347064595636951, 77.557006542941622, 78.77607366231517, 80.00329552345211, 81.237620227621193, 82.477912023476591, 83.722949201717626, 84.97142231906308, 86.221932804777353, 87.472992005322027, 88.72302072449655, 89.970349317536829, 91.213218397920514, 92.449780214942862, 93.678100758348052, 94.896162643258137, 96.101868824266717, 97.293047181703159, 98.467456015683567, 99.62279047459937, 100.75668993415439, 101.8667463309981, 102.9505134415364, 104.00551708179628, 105.0292661884947, 106.01926472503318, 106.97302433932467, 107.8880776835707, 108.76199228975676, 109.59238487918313, 110.37693597023926, 111.11340463630191, 111.79964325549201, 112.43361208642469, 113.01339349930359, 113.53720568997112, 114.00341570594313, 114.41055161807331, 114.75731367925624, 115.04258432235318, 115.26543686311433, 115.42514278999029, 115.52117754106655, 115.55322468855914, 115.52117847297289, 115.4251446517568, 115.26543965066536, 115.04258802961564, 114.75731829820771, 114.41055713880507, 114.00342211673667, 113.53721297738716, 113.01340164828282, 112.43362108039749, 111.79965307649665, 111.1134152651091, 110.37694738648156, 109.59239706148628, 108.76200521587396, 107.88809133051471, 106.97303868349989, 106.0192797423629, 105.02928185454498, 104.00553337189469, 102.950530330883, 101.86676379477119, 100.75670794760741, 99.622809013150246, 98.467475054996214, 97.293066697760366, 96.101888793435279, 94.89618304234537, 93.678121564650809, 92.449801406289808, 91.213239952706104, 89.97037121475023, 88.723042943743039, 87.473014526839719, 86.221955609448401, 84.971445388420548, 83.722972517948861, 82.477935569420509, 81.237643986766102, 80.003319479927697, 78.776097800883477, 77.557030848986614, 76.347089055149837, 75.147163997499263, 73.958071204408341, 72.780553104267199, 71.615282084815263, 70.462863628341893, 69.323839492464899, 68.19869090950391, 67.087841780623677, 65.99166184392422, 64.910469798468966, 63.844536368875552, 62.794087297505293, 61.759306253521125, 60.740337650108621, 59.737289362980817, 58.750235344932946)

 """z = numpy.zeros(120)

 xz = np.zeros([120,2])

 for i in numpy.arange(120):

	xz[i]= [x[i],z[i]]"""

 points = [p0,p1,p2,p3,p4,p5,p0]

 points = numpy.asarray(points)

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 for i in numpy.arange(len(x)):

 sum_lines = 0.0

 for n in numpy.arange(len(points)-1):

 x1 = points[n,0]-x[i]

 x2 = points[(n+1),0]-x[i]

 z1 = points[n,1]

 z2 = points[(n+1),1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = numpy.arctan2(z1,x1)

 O2 = numpy.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = numpy.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

 print len(grav)

 print grav

 X = numpy.arange(-30,30,0.5)

 pl.plot(X,Dobs,X,grav)

 pl.grid()

 pl.show()

9-appendix B/Chapter 5 results and codes/codes/f_Points4.py

import numpy

import pylab as pl

p0 = [-10.0 , 20.0]

p1 = [10.0 ,20.0]

p2 = [10.0, 30.0]

p3 = [-10.0 , 30.0]

rho = 1000.0

grav = []

def func1(p0,p1,p2,p3,rho):

 Dobs = (44.723206839705504, 45.607849369425736, 46.511389237288078, 47.433964554839967, 48.37568168273733, 49.336611670163215, 50.316786481335093, 51.316195012469386, 52.334778905732271, 53.372428170333897, 54.428976625060493, 55.504197181191124, 56.597796989907749, 57.709412483974276, 58.838604349586994, 59.984852470834426, 61.147550896058647, 62.326002882483344, 63.519416082594709, 64.72689794277747, 65.947451391384874, 67.17997089951335, 68.423239002987486, 69.675923378124011, 70.936574566423161, 72.203624444108613, 73.475385531089728, 74.750051230177931, 76.025697081018166, 77.300283104043103, 78.571657297759231, 79.837560337870485, 81.095631509326097, 82.343415882644678, 83.578372724275752, 84.79788510790118, 85.999270670134209, 87.179793430850012, 88.336676576190868, 89.467116081985267, 90.568295037693687, 91.637398516746856, 92.671628828836802, 93.668220983759923, 94.624458194952382, 95.537687253887938, 96.405333613762053, 97.224916031908023, 97.994060634558039, 98.710514284106821, 99.372157147125066, 99.977014380116117, 100.52326686857275, 101.00926097247026, 101.43351724725986, 101.79473812315022, 102.09181453662062, 102.32383151646263, 102.49007273219182, 102.59002401549296, 102.62337586577644, 102.59002494929055, 102.49007459809408, 102.32383431109095, 102.09181825492502, 101.79474275843029, 101.43352279119438, 101.00926741515181, 100.52327419855088, 99.977022584447255, 99.372166211428691, 98.710524192628739, 97.994071370240533, 97.224927576464623, 96.405345947758903, 95.537700356831479, 94.624472045379349, 93.668235559333183, 92.671644106443267, 91.637414472597953, 90.568311647428985, 89.467133320773982, 88.336694418835989, 87.179811851888886, 85.999289643939079, 84.797904608775383, 83.578392726547463, 82.343436360754851, 81.095652437912676, 79.837581691846339, 78.571679052384354, 77.30030523499039, 76.025719564432933, 74.750074042730731, 73.475408650022047, 72.203647847272819, 70.936598232315518, 69.675947285912557, 68.423263132532142, 67.179995231382989, 65.947475906867339, 64.726922623886338, 63.519440912070749, 62.326027843792211, 61.147575973386211, 59.984877649078307, 58.838629614344484, 57.709437821530663, 56.597822387219708, 55.504222625870703, 54.429002105356219, 53.372453675112993, 52.334804424459712, 51.31622053518732, 50.316811998643274, 49.336637173196635, 48.375707163145869, 47.433990004767416, 46.51141464935121, 45.607874736694313)

 x = numpy.arange(-30.0,30,0.5)

 """z = numpy.zeros(120)

 xz = np.zeros([120,2])

 for i in numpy.arange(120):

	xz[i]= [x[i],z[i]]"""

 points = [p0,p1,p2,p3,p0]

 points = numpy.asarray(points)

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 for i in numpy.arange(len(x)):

 sum_lines = 0.0

 for n in numpy.arange(len(points)-1):

 x1 = points[n,0]-x[i]

 x2 = points[(n+1),0]-x[i]

 z1 = points[n,1]

 z2 = points[(n+1),1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = numpy.arctan2(z1,x1)

 O2 = numpy.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = numpy.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

 print len(grav)

 print grav

 X = numpy.arange(-30,30,0.5)

 pl.plot(X,Dobs,'b-',X,grav,'r+')

 pl.grid()

 pl.show()

9-appendix B/Chapter 5 results and codes/codes/Misfit.py

import numpy as np

nswarm = 120

Dobs1 = (63.628041646061284, 65.001195678263571, 66.410055075193284, 67.85539041533886, 69.337958743344572, 70.858499366904965, 72.417729215564691, 74.01633773229365, 75.654981268556128, 77.33427695375687, 79.054796010486157, 80.817056487977027, 82.62151538764131, 84.468560156573517, 86.3584995275138, 88.291553687005887, 90.267843757411185, 92.287380583067645, 94.350052816221577, 96.455614304422028, 98.603670787818913, 100.7936659222165, 103.02486665175928, 105.29634796369132, 107.60697706668279, 109.95539704369365, 112.34001004020885, 114.75896005895825, 117.21011544299182, 119.69105114042746, 122.19903085664693, 124.73098921370166, 127.28351405296712, 129.85282903665282, 132.4347767279892, 135.02480236043627, 137.61793854510898, 140.20879121515492, 142.79152716863433, 145.35986365029297, 147.90706051010579, 150.42591559481266, 152.90876416912238, 155.34748332548591, 157.73350252240249, 160.05782158451169, 162.31103769149317, 164.48338305860887, 166.56477514303819, 168.54488126117266, 170.41319942770144, 172.15915697505696, 173.77222802596825, 175.24207012203772, 176.55867922448522, 177.71256090014089, 178.69491383830652, 179.4978200301866, 180.11443417218749, 180.53916337931531, 180.76782739779196, 180.79778944812455, 180.62804878673845, 180.25928807518119, 179.69387153860939, 178.93579335297702, 177.99057927623653, 176.86514775617303, 175.56763919977382, 174.10722352011572, 172.49389641855296, 170.73827422147613, 168.85139570870084, 166.84453754119005, 164.72904791111318, 162.51620113732415, 160.21707427923661, 157.84244552932105, 155.40271319117912, 152.90783343190114, 150.36727466239861, 147.78998628486153, 145.1843795901118, 142.55831873443415, 139.91911993107362, 137.27355722263107, 134.62787343381004, 131.98779512446103, 129.35855056222522, 126.74488990846345, 124.15110696002087, 121.58106191400518, 119.0382047256621, 116.52559871349281, 114.04594413401176, 111.60160150379326, 109.19461449121401, 106.8267322367204, 104.49943099028398, 102.21393497938585, 99.971236441486184, 97.772114772351472, 95.61715475644948, 93.506763858364195, 91.441188565167138, 89.420529779156709, 87.444757268537558, 85.513723190596423, 83.627174707823229, 81.784765722379547, 79.986067758334059, 78.230580024313937, 76.517738691681245, 74.846925425148186, 73.217475203924835, 71.62868347214625, 70.079812657519412, 68.570098096891698, 67.098753406886857, 65.664975336890478)

Dobs = (57.779192696040823, 58.75020990091253, 59.737263917760764, 60.740312210201068, 61.759280825782646, 62.794061889153205, 63.844510987502481, 64.910444452058641, 65.991636540868413, 67.087816529738717, 68.198665720046719, 69.323814374151823, 70.462838591365411, 71.615257139861811, 72.780528262533991, 73.95804647762192, 75.147139397932094, 76.347064595636951, 77.557006542941579, 78.776073662315056, 80.003295523452124, 81.237620227621193, 82.477912023476591, 83.722949201717626, 84.971422319063066, 86.221932804777452, 87.472992005322027, 88.723020724496521, 89.970349317536829, 91.213218397920514, 92.449780214942834, 93.678100758348052, 94.896162643258137, 96.101868824266717, 97.293047181703159, 98.467456015683567, 99.62279047459937, 100.75668993415439, 101.8667463309981, 102.95051344153651, 104.00551708179641, 105.0292661884947, 106.01926472503318, 106.97302433932467, 107.8880776835707, 108.76199228975669, 109.59238487918313, 110.37693597023926, 111.11340463630191, 111.79964325549201, 112.43361208642469, 113.01339349930359, 113.53720568997112, 114.00341570594313, 114.41055161807331, 114.75731367925621, 115.04258432235315, 115.26543686311433, 115.42514278999035, 115.52117754106651, 115.55322468855897, 115.52117847297286, 115.42514465175684, 115.26543965066536, 115.0425880296156, 114.75731829820768, 114.41055713880507, 114.00342211673667, 113.53721297738716, 113.01340164828282, 112.43362108039743, 111.79965307649665, 111.1134152651091, 110.37694738648156, 109.59239706148628, 108.76200521587387, 107.88809133051471, 106.97303868349989, 106.01927974236295, 105.02928185454498, 104.00553337189474, 102.95053033088308, 101.86676379477119, 100.75670794760741, 99.622809013150246, 98.467475054996214, 97.293066697760366, 96.101888793435279, 94.89618304234537, 93.678121564650809, 92.449801406289808, 91.213239952706104, 89.97037121475023, 88.723042943743039, 87.473014526839719, 86.221955609448514, 84.971445388420506, 83.722972517948861, 82.477935569420524, 81.237643986766102, 80.003319479927697, 78.776097800883377, 77.557030848986557, 76.347089055149837, 75.147163997499263, 73.958071204408299, 72.780553104267199, 71.615282084815263, 70.462863628341893, 69.323839492464899, 68.198690909503867, 67.087841780623677, 65.99166184392422, 64.910469798468966, 63.844536368875552, 62.794087297505314, 61.759306253521125, 60.740337650108621, 59.737289362980817, 58.750235344932946)

Dcalc = (58.815885956999672, 59.767473084127474, 60.733551517483264, 61.714026769076419, 62.708774568175109, 63.717638878735407, 64.740429867996625, 65.776921833097802, 66.826851093653914, 67.889913859370949, 68.965764082941504, 70.054011309655309, 71.154218536349717, 72.265900093515612, 73.388519565522998, 74.521487765037989, 75.664160778730533, 76.815838102310323, 77.975760883738275, 79.14311029413264, 80.31700604639164, 81.496505081866971, 82.680600445529066, 83.868220369953761, 85.058227588102213, 86.24941889428797, 87.440524971890056, 88.63021050532258, 89.817074592492702, 90.999651472518678, 92.176411581851752, 93.345762950191883, 94.506052945760075, 95.655570377624585, 96.792547960943267, 97.915165149232109, 99.021551336148491, 100.10978942786751, 101.17791978594661, 102.22394453970465, 103.24583226657727, 104.24152303871755, 105.20893383425653, 106.14596431214378, 107.05050295030634, 107.92043354794968, 108.75364209409275, 109.54802400579439, 110.30149174084089, 111.01198279077231, 111.67746806085258, 112.29596064368646, 112.86552499243605, 113.38428649769018, 113.85044146870408, 114.26226751461571, 114.61813431404937, 114.91651475187997, 115.15599638958147, 115.33529322023008, 115.45325764073779, 115.50889255217614, 115.50136347426653, 115.43001053259258, 115.29436014747766, 115.09413622275208, 114.82927060214118, 114.49991253252051, 114.10643684892479, 113.64945057844979, 113.12979765170971, 112.5485614140089, 111.9070646463193, 111.20686684046005, 110.44975852463664, 109.63775250461458, 108.77307197076415, 107.85813551892642, 106.89553923892835, 105.88803613268685, 104.83851322743924, 103.74996684168542, 102.62547653534047, 101.46817832596697, 100.28123777609528, 99.067823551118082, 97.831082013856985, 96.574113363747117, 95.299949750466652, 94.011535699843222, 92.711711090568812, 91.403196820134909, 90.08858320319645, 88.770321059930893, 87.450715379178547, 86.131921383093797, 84.815942777314547, 83.504631942745149, 82.199691810649469, 80.902679159939296, 79.615009082224461, 78.337960374089633, 77.072681635107813, 75.820197872373214, 74.581417436240315, 73.357139136191833, 72.148059409345208, 70.954779436314453, 69.777812119525464, 68.617588857361596, 67.474466063584558, 66.348731395344501, 65.24060966486212, 64.150268419677104, 63.077823184400025, 62.023342363382049, 60.98685180881175, 59.96833906268202, 58.967757283990878, 57.985028874647611)

Dcalc = np.asarray(Dcalc)

#Dobs = np.asarray(Dobs)

print sum((Dobs - Dcalc)**2)

print (Dobs-Dcalc)

9-appendix B/Chapter 5 results and codes/codes/NoiseyDataMaker.py

import numpy as n

import random as r

import pylab as pl

N = n.zeros(120)

D = (109.88320762381966, 111.60783335993007, 113.3583422162042, 115.13456776894542, 116.93628701618091, 118.76321600909863, 120.61500530167685, 122.49123522863862, 124.39141102543726, 126.31495780798524, 128.2612154343296, 130.22943327544553, 132.21876492775044, 134.22826290581276, 136.2568733600133, 138.30343087051418, 140.3666533757434, 142.44513730056443, 144.53735295622516, 146.6416402908784, 148.7562050757201, 150.8791156173364, 153.00830009141563, 155.1415445962505, 157.27649202611175, 159.4106418643099, 161.54135099325043, 163.6658356137707, 165.78117435831163, 167.88431267185715, 169.9720685210407, 172.04113947543007, 174.0881111859466, 176.1094672640005, 178.1016005416961, 180.06082566898266, 181.98339297863205, 183.86550352521553, 185.703325180667, 187.4930096474596, 189.23071023165656, 190.91260020287586, 192.53489155709977, 194.09385399166544, 195.5858338998762, 197.00727319546115, 198.3547277843054, 199.6248855120387, 200.8145834305699, 201.9208242437017, 202.94079181073874, 203.87186560658208, 204.7116340563591, 205.45790668133475, 206.10872501001742, 206.66237222344185, 207.11738151619693, 207.47254316463003, 207.72691030077706, 207.87980339501513, 207.93081345250727, 207.87980392857946, 207.7269113667327, 207.47254476063637, 207.1173836387564, 206.6623748679148, 206.10872817064458, 205.4579103512627, 204.71163822767238, 203.8718702703404, 202.9407969570189, 201.9208298616452, 200.8145895084355, 199.62489203725926, 198.35473474354987, 197.0072805747005, 195.58584168445236, 194.0938621663644, 192.53490010622605, 190.9126091103298, 189.2307194810125, 187.493019222044, 185.70333506363693, 183.86551369963493, 181.9834034275472, 180.06083637549392, 178.10161148902813, 176.1094784355659, 174.0881225654071, 172.0411510467528, 169.9720802685475, 167.88432458027054, 165.78118641279409, 163.66584779995836, 161.54136329728163, 159.41065427284735, 157.2765045263608, 155.14155717597174, 153.0083127389325, 150.87912832153876, 148.75621782606476, 146.64165307738435, 144.53736576946721, 142.4451501316627, 140.36666621635226, 138.30344371280754, 136.25688619666894, 134.22827572999566, 132.2187777330936, 130.2294460560325, 128.26122818467428, 126.31497052301255, 124.39142370046301, 122.49124785934993, 120.61501788411363, 118.76322853963309, 116.93629949149988, 115.13458018603143, 113.35835457231856, 111.6078456525953)

standardDev=10

for i in n.arange(120):

	N[i] = D[i] + r.gauss(0,standardDev)

X = n.arange(-30,30,0.5)

pl.plot(X,D,X,N)

pl.grid()

pl.show()

9-appendix B/Chapter 5 results and codes/codes/norev5.pyx

import pylab as pl

import scipy as si

import numpy as np

import time as time

import random as rand

from datetime import datetime

#all_the_leftxcorn = [[] for i in range(int(30))]

#all_the_rightxcorn = [[] for i in range(int(30))]

#all_the_middlexcorn = [[] for i in range(int(30))]

#all_the_topzcorn = [[] for i in range(int(30))]

#all_the_botzcorn = [[] for i in range(int(30))]

#all_the_middlezcorn = [[] for i in range(int(30))]

#all_the_rho = [[] for i in range(int(30))]

gbestlist=[]

grav = []

Dobs = (63.942039428385804, 65.326851112413806, 66.747876993397696, 68.205909660873999, 69.701728698766772, 71.236096406193141, 72.809753060229497, 74.423411688264025, 76.07775231698669, 77.77341566476791, 79.510996244211341, 81.291034842108004, 83.114010344895505, 84.980330879125574, 86.890324238403736, 88.844227570850663, 90.842176304391927, 92.884192291165689, 94.970171157068052, 97.099868847981014, 99.272887370560483, 101.48865973261479, 103.74643409610913, 106.04525716468135, 108.38395683731355, 110.76112417051777, 113.17509470318684, 115.62392921133629, 118.10539397460943, 120.61694065310593, 123.15568589246367, 125.71839079805783, 128.30144044686313, 130.90082363945166, 133.51211313662625, 136.13044667755955, 138.75050914155707, 141.36651629650143, 143.97220067651571, 146.56080025202851, 149.12505069916708, 151.6571822428285, 154.14892223718422, 156.59150485365177, 158.97568945941956, 161.29178947280354, 163.52971365004728, 165.67902185694905, 167.72899736296168, 169.66873751111177, 171.48726420492801, 173.17365495659712, 174.7171942161703, 176.10754333776856, 177.33492587252616, 178.3903230126613, 179.26567212491992, 179.95405965187459, 180.44989851481353, 180.74907980253403, 180.84908918337524, 180.74908020276732, 180.4498993147601, 179.95406085049655, 179.26567372066498, 178.39032500346849, 177.33492825583349, 176.10754611052212, 174.71719737483508, 173.17365849716995, 171.48726812295141, 169.66874180169023, 167.72900202077867, 165.67902687628506, 163.52971902479962, 161.29179519650779, 158.97569552527031, 156.59151125452618, 154.14892896566442, 151.65718929122559, 149.12505805954643, 146.56080791623279, 143.97220863619097, 141.36652454312087, 138.75051766644688, 136.13045547192243, 133.51212219156611, 130.90083294599646, 128.30144999598915, 125.71840058071096, 123.15569589958206, 120.61695087563973, 118.10540440354171, 115.6239398377014, 113.17510551808802, 110.76113516514449, 108.38396800295692, 106.04526849274862, 103.74644557813687, 101.4886713602819, 99.272899135698296, 97.099880742584006, 94.970183173302075, 92.884204421376296, 90.842188541110644, 88.844239906801235, 86.890336666505533, 84.980343392499066, 83.114022936864203, 81.291047506200499, 79.511008974162465, 77.773428454519873, 76.077765160688585, 74.423424580270463, 72.80976599510096, 71.236109378691893, 69.701741703856229, 68.205922693715152, 66.747890049346324, 65.326864187017136)

cpdef int func2(double xcorn_1,double xcorn_2,double xcorn_3,double zcorn_1,double zcorn_2,double zcorn_3,double rho) except -1:

 x = np.arange(-30,30,0.5)

 l = len(x)

 xcorn = (float(xcorn_1),float(xcorn_2),float(xcorn_3),float(xcorn_3),float(xcorn_1),float(xcorn_1))

 zcorn = (float(zcorn_1),float(zcorn_2),float(zcorn_1),float(zcorn_3),float(zcorn_3),float(zcorn_1))

 o = len(xcorn)-1

 cdef double gamma,sum_lines,x1,x2,z1,z2,alpha,beta,factor,term1,term2,denom,constant

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 cdef int i,n

 for i from 0 <= i < l:

 sum_lines = 0.0

 for n from 0 <= n < o:

 x1 = xcorn[n]-x[i]

 x2 = xcorn[n+1]-x[i]

 z1 = zcorn[n]

 z2 = zcorn[n+1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = np.arctan2(z1,x1)

 O2 = np.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = np.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

cpdef int procedure():

 iter_time = []

 cdef double K,vmax,cp,cg,maxiter,moveup,movedown,moveleft,moveright

 K = 0.7968127490039841

 lbound = [-30.0,-30.0,-30.0,0.1,0.1,0.1,500]

 ubound = [30.0,30.0,30.0,100.0,100.0,100.0,3000]

 vmax =20

 nswarm = 30

 cp = 2.8

 cg = 1.3

 ndim = len(lbound)

 maxiter = 5000

 lbound = np.asarray(lbound)

 ubound = np.asarray(ubound)

 vmax = si.asarray(vmax)

 cdef int i,n,j

 #all_the_leftxcorn = [[] for i in range(int(nswarm))]

 #all_the_rightxcorn = [[] for i in range(int(nswarm))]

 #all_the_topzcorn = [[] for i in range(int(nswarm))]

 #all_the_botzcorn = [[] for i in range(int(nswarm))]

 #all_the_rho = [[] for i in range(int(nswarm))]

 log_pbest = []

 log_pbestv = []

 log_gbest = []

 #log_values =[]

 swarm = np.zeros((nswarm,ndim))

 # initialize the swarm

 Xrange = np.arange(-30,30,0.01)

 Zrange = np.arange(0.001,100,0.01)

 Rhorange = np.arange(500,3000,0.01)

 for i in si.arange(nswarm):

 swarm[i,0]=rand.choice(Xrange)

 swarm[i,1]=rand.choice(Xrange)

 swarm[i,2]=rand.choice(Xrange)

 swarm[i,3]=rand.choice(Zrange)

 swarm[i,4]=rand.choice(Zrange)

 swarm[i,5]=rand.choice(Zrange)

 swarm[i,6]=rand.choice(Rhorange)

 for n in np.arange(nswarm):

 if swarm[n,0]> swarm[n,2]:

 moveleft = swarm[n,0]

 moveright =swarm[n,2]

 swarm[n,0]= moveright

 swarm[n,2]= moveleft

 if swarm[n,0]> swarm[n,1]:

 moveright = swarm[n,0]

 moveleft =swarm[n,1]

 swarm[n,1]=moveright

 swarm[n,0]=moveleft

 if swarm[n,1]> swarm[n,2]:

 moveright = swarm[n,1]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,1]=moveleft

 if swarm[n,3]>swarm[n,5]:

 movedown = swarm[n,5]

 moveup =swarm[n,3]

 swarm[n,5]= moveup

 swarm[n,3]= movedown

 if swarm[n,3]< swarm[n,4]:

 movedown = swarm[n,3]

 moveup =swarm[n,4]

 swarm[n,3]= moveup

 swarm[n,4]= movedown

 if swarm[n,5]<swarm[n,4]:

 movedown = swarm[n,5]

 moveup =swarm[n,4]

 swarm[n,5]= moveup

 swarm[n,4]= movedown

 # initialize the "personal best" values

 v = 1000000000

 pbestv = np.zeros(nswarm)

 for i in np.arange(nswarm):

 pbestv[i] = v

 pbest = np.array(swarm)

 # initialize the "global best" values

 gbesti = 0

 gbestfi = 0

 gbestv = pbestv[gbesti]

 gbest = pbest[gbesti]

 velocities = np.zeros([nswarm,ndim]) #initiate velocity vectors

 print datetime.time(datetime.now())

 for i in np.arange(maxiter):

 t = time.clock()

 for n in np.arange(nswarm):

 if swarm[n,0]> swarm[n,2]:

 moveleft = swarm[n,0]

 moveright =swarm[n,2]

 swarm[n,0]= moveright

 swarm[n,2]= moveleft

 if swarm[n,0]> swarm[n,1]:

 moveleft = swarm[n,0]

 moveright =swarm[n,1]

 swarm[n,0]= moveright

 swarm[n,1]= moveleft

 if swarm[n,1]> swarm[n,2]:

 moveleft = swarm[n,2]

 moveright =swarm[n,1]

 swarm[n,2]= moveright

 swarm[n,1]= moveleft

 if swarm[n,0]> swarm[n,1]:

 moveright = swarm[n,0]

 moveleft =swarm[n,1]

 swarm[n,1]=moveright

 swarm[n,0]=moveleft

 if swarm[n,0]>swarm[n,2]:

 moveright = swarm[n,0]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,0]=moveleft

 if swarm[n,1]>swarm[n,2]:

 moveright = swarm[n,1]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,1]=moveleft

 if swarm[n,1]> swarm[n,2]:

 moveright = swarm[n,1]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,1]=moveleft

 if swarm[n,0]> swarm[n,2]:

 moveright = swarm[n,0]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,0]=moveleft

 if swarm[n,0]>swarm[n,1]:

 moveright = swarm[n,0]

 moveleft =swarm[n,1]

 swarm[n,1]=moveright

 swarm[n,0]=moveleft

 if swarm[n,3]>swarm[n,5]:

 movedown = swarm[n,5]

 moveup =swarm[n,3]

 swarm[n,5]= moveup

 swarm[n,3]= movedown

 if swarm[n,4]>swarm[n,5]:

 movedown = swarm[n,5]

 moveup =swarm[n,4]

 swarm[n,5]= moveup

 swarm[n,4]= movedown

 if swarm[n,4]>swarm[n,3]:

 movedown = swarm[n,3]

 moveup =swarm[n,4]

 swarm[n,3]= moveup

 swarm[n,4]= movedown

 if swarm[n,3]< swarm[n,4]:

 movedown = swarm[n,3]

 moveup =swarm[n,4]

 swarm[n,3]= moveup

 swarm[n,4]= movedown

 if swarm[n,4]>swarm[n,5]:

 movedown = swarm[n,5]

 moveup =swarm[n,4]

 swarm[n,5]= moveup

 swarm[n,4]= movedown

 if swarm[n,3]>swarm[n,5]:

 movedown = swarm[n,3]

 moveup =swarm[n,5]

 swarm[n,3]= moveup

 swarm[n,5]= movedown

 if swarm[n,5]<swarm[n,4]:

 movedown = swarm[n,5]

 moveup =swarm[n,4]

 swarm[n,5]= moveup

 swarm[n,4]= movedown

 if swarm[n,4]>swarm[n,3]:

 movedown = swarm[n,3]

 moveup =swarm[n,4]

 swarm[n,3]= moveup

 swarm[n,4]= movedown

 if swarm[n,3]>swarm[n,5]:

 movedown = swarm[n,3]

 moveup =swarm[n,5]

 swarm[n,3]= moveup

 swarm[n,5]= movedown

 values = np.zeros(nswarm)

 gravity = np.zeros([nswarm,len(Dobs)])

 for n in np.arange(nswarm):

 xcorn_1=swarm[n,0]

 xcorn_2=swarm[n,1]

 xcorn_3=swarm[n,2]

 zcorn_1=swarm[n,3]

 zcorn_2=swarm[n,4]

 zcorn_3=swarm[n,5]

 rho = swarm[n,6]

 func2(xcorn_1,xcorn_2,xcorn_3,zcorn_1,zcorn_2,zcorn_3,rho)

 gravity[n] = grav

 del grav[0:len(grav)]

 n+=1

 for j in np.arange(nswarm):# would values be dobs-dcalc?"

 #gravity = si.asarray(grav)

 values[j] = sum((Dobs - gravity[j])**2)

 mask = values < pbestv

 mask2d = np.repeat(mask, ndim)

 mask2d.shape = (nswarm, ndim)

 pbestv = np.where(mask, values, pbestv)

 pbest = np.where(mask2d, swarm, pbest)

 log_pbestv.append(pbestv)

 if np.minimum.reduce(pbestv) < gbestv:

 gbesti = si.argmin(pbestv)

 gbestv = pbestv[gbesti]

 gbest = pbest[gbesti]

 velocities = K*(velocities + (cp*si.rand()*(pbest - swarm)) +

 (cg*si.rand()*(gbest - swarm)))

 #velocities = np.clip(velocities, -vmax, vmax)

 #for h in si.arange(nswarm):

 #all_the_leftxcorn[h].append(swarm[h,0])

 #all_the_rightxcorn[h].append(swarm[h,2])

 #all_the_middlexcorn[h].append(swarm[h,1])

 #all_the_topzcorn[h].append(swarm[h,3])

 #all_the_botzcorn[h].append(swarm[h,5])

 #all_the_middlezcorn[h].append(swarm[h,4])

 #all_the_rho[h].append(swarm[h,6])

 swarm = np.clip(swarm, lbound, ubound)

 """for n in np.arange(nswarm):

 if swarm[n,0]<= -30.0:

 velocities[n,0]= -1*velocities[n,0]

 if swarm[n,0]>= 30.0:

 velocities[n,0]= -1*velocities[n,0]

 if swarm[n,1]>= 30.0:

 velocities[n,1]= -1*velocities[n,1]

 if swarm[n,1]<= -30.0:

 velocities[n,1]= -1*velocities[n,1]

 if swarm[n,2]<= -30.0:

 velocities[n,2]= -1*velocities[n,2]

 if swarm[n,2]>= 30.0:

 velocities[n,2]= -1*velocities[n,2]

 if swarm[n,3]>= 100.0:

 velocities[n,3]= -1*velocities[n,3]

 if swarm[n,3]<= 0.0:

 velocities[n,3]= -1*velocities[n,3]

 if swarm[n,4]<= 0.0:

 velocities[n,4]= -1*velocities[n,4]

 if swarm[n,4]>= 100.0:

 velocities[n,4]= -1*velocities[n,4]

 if swarm[n,5]<= 0.0:

 velocities[n,5]= -1*velocities[n,5]

 if swarm[n,5]>= 100.0:

 velocities[n,5]= -1*velocities[n,5]

 if swarm[n,6]<= 500.0:

 velocities[n,6]= -1*velocities[n,6]

 if swarm[n,6]>= 3000.0:

 velocities[n,6]= -1*velocities[n,6]"""

 swarm += velocities

 t1 = time.clock()

 dt = t1-t

 iter_time.append(dt)

 gbestlist.append(gbestv)

 log_pbest.append(pbest)

 log_gbest.append(gbest)

 #log_values.append(values)

 if gbestv < 1e-1:

 print i,gbest,gbestv,'time for average iteration', (sum(iter_time)/float(maxiter)),'sum iteration time to complete = ', sum(iter_time),'seconds',(sum(iter_time)/60.0),'minutes'

 return 'f'

 print datetime.time(datetime.now())

 print gbest

 print gbestv

 print 'time for average iteration', (sum(iter_time)/float(maxiter))

 print 'sum iteration time to complete = ', sum(iter_time),'seconds',(sum(iter_time)/60.0),'minutes'

#######################################last 100 or sogbests############################

 #print 'first 50',gbestlist[0:50]

 #print 'middle 50', gbestlist[2550:2601]

 #print 'last 50',gbestlist[4950:]

##

 #print 'all_the_leftxcorn',all_the_leftxcorn[0]

 #print 'all_the_rightxcorn',all_the_rightxcorn[0]

 #print 'all_the_topzcorn',all_the_topzcorn[0]

 #print 'all_the_botzcorn',all_the_botzcorn[0]

 #print 'all_the_rho',all_the_rho[0]

 #lastfew = int(maxiter -20)

 #print 'log_gbest first few',log_gbest[0:10]

 #print 'log_gbest last 20',log_gbest[lastfew:]

 #print 'log_pbest last guess',log_pbest[4999]

 #print 'log_values',log_values

 X = np.arange(500)

 pl.plot(X,gbestlist)

 pl.show()

t0 = time.clock()

procedure()

9-appendix B/Chapter 5 results and codes/codes/penpso.pyx

import pylab as pl

import scipy as si

import numpy as np

import time as time

import random as rand

from datetime import datetime

#all_the_leftxcorn = [[] for i in range(int(30))]

#all_the_rightxcorn = [[] for i in range(int(30))]

#all_the_middlexcorn = [[] for i in range(int(30))]

#all_the_topzcorn = [[] for i in range(int(30))]

#all_the_botzcorn = [[] for i in range(int(30))]

#all_the_middlezcorn = [[] for i in range(int(30))]

#all_the_rho = [[] for i in range(int(30))]

gbestlist=[]

grav = []

counter = []

gbestvlist=[]

gbestlist2 = []

Dobs = (63.942052517377995, 65.326864187017122, 66.747890049346537, 68.205922693715266, 69.701741703856271, 71.23610937869195, 72.809765995100904, 74.423424580270719, 76.077765160688472, 77.773428454519944, 79.511008974162493, 81.2910475062004, 83.114022936864203, 84.980343392499165, 86.890336666505632, 88.844239906801064, 90.842188541110744, 92.884204421376296, 94.970183173302061, 97.099880742583977, 99.272899135698339, 101.48867136028191, 103.746445578137, 106.04526849274862, 108.38396800295692, 110.76113516514452, 113.17510551808809, 115.6239398377014, 118.10540440354175, 120.61695087563976, 123.15569589958201, 125.71840058071096, 128.30144999598912, 130.9008329459966, 133.51212219156605, 136.13045547192266, 138.75051766644702, 141.36652454312102, 143.97220863619089, 146.56080791623276, 149.12505805954629, 151.65718929122565, 154.14892896566431, 156.5915112545261, 158.97569552527045, 161.29179519650776, 163.52971902479968, 165.67902687628498, 167.72900202077864, 169.6687418016904, 171.48726812295149, 173.1736584971699, 174.71719737483508, 176.10754611052209, 177.33492825583349, 178.39032500346849, 179.26567372066498, 179.95406085049655, 180.4498993147601, 180.74908020276732, 180.84908918337524, 180.74907980253403, 180.44989851481353, 179.95405965187459, 179.26567212491992, 178.3903230126613, 177.33492587252616, 176.10754333776859, 174.7171942161703, 173.17365495659718, 171.48726420492798, 169.66873751111169, 167.72899736296171, 165.67902185694911, 163.52971365004723, 161.2917894728036, 158.97568945941944, 156.59150485365183, 154.14892223718439, 151.65718224282844, 149.12505069916722, 146.56080025202857, 143.97220067651577, 141.36651629650126, 138.7505091415569, 136.13044667755935, 133.51211313662631, 130.90082363945157, 128.30144044686313, 125.71839079805775, 123.15568589246371, 120.61694065310589, 118.1053939746094, 115.62392921133632, 113.17509470318677, 110.76112417051768, 108.38395683731355, 106.04525716468137, 103.74643409610898, 101.48865973261476, 99.27288737056044, 97.099868847981057, 94.970171157068052, 92.884192291165661, 90.842176304391813, 88.844227570850848, 86.89032423840365, 84.980330879125461, 83.11401034489549, 81.291034842108104, 79.510996244211313, 77.773415664767867, 76.077752316986789, 74.423411688263769, 72.809753060229554, 71.236096406193056, 69.701728698766715, 68.205909660873871, 66.747876993397469, 65.326851112413792)

cpdef int func2(double xcorn_1,double xcorn_2,double xcorn_3,double zcorn_1,double zcorn_2,double zcorn_3,double rho) except -1:

 x = np.arange(-30,30,0.5)

 l = len(x)

 xcorn = (float(xcorn_1),float(xcorn_2),float(xcorn_3),float(xcorn_3),float(xcorn_1),float(xcorn_1))

 zcorn = (float(zcorn_1),float(zcorn_2),float(zcorn_1),float(zcorn_3),float(zcorn_3),float(zcorn_1))

 o = len(xcorn)-1

 cdef double gamma,sum_lines,x1,x2,z1,z2,alpha,beta,factor,term1,term2,denom,constant

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 cdef int i,n

 for i from 0 <= i < l:

 sum_lines = 0.0

 for n from 0 <= n < o:

 x1 = xcorn[n]-x[i]

 x2 = xcorn[n+1]-x[i]

 z1 = zcorn[n]

 z2 = zcorn[n+1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = np.arctan2(z1,x1)

 O2 = np.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = np.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

cpdef int procedure():

 iter_time = []

 cdef double K,vmax,cp,cg,maxiter,moveup,movedown,moveleft,moveright,gbestc,gbestv

 K = 0.7968127490039841

 lbound = [-30.0,-30.0,-30.0,0.0,0.0,0.0,500.0]

 ubound = [30.0,30.0,30.0,100.0,100.0,100.0,3000.0]

 vmax =30

 nswarm = 30

 cp = 2.8

 cg = 1.3

 ndim = len(lbound)

 maxiter = 10000

 lbound = np.asarray(lbound)

 ubound = np.asarray(ubound)

 vmax = si.asarray(vmax)

 cdef int i,n,j

 #all_the_leftxcorn = [[] for i in range(int(nswarm))]

 #all_the_rightxcorn = [[] for i in range(int(nswarm))]

 #all_the_topzcorn = [[] for i in range(int(nswarm))]

 #all_the_botzcorn = [[] for i in range(int(nswarm))]

 #all_the_rho = [[] for i in range(int(nswarm))]

 #log_pbest = []

 #log_gbest = []

 #log_values =[]

 swarm = np.zeros((nswarm,ndim))

 # initialize the swarm

 Xrange = np.arange(-30,30,0.01)

 Zrange = np.arange(0.001,100,0.01)

 Rhorange = np.arange(500.0,3000,0.01)

 for i in si.arange(nswarm):

 swarm[i,0]=rand.choice(Xrange)

 swarm[i,1]=rand.choice(Xrange)

 swarm[i,2]=rand.choice(Xrange)

 swarm[i,3]=rand.choice(Zrange)

 swarm[i,4]=rand.choice(Zrange)

 swarm[i,5]=rand.choice(Zrange)

 swarm[i,6]=rand.choice(Rhorange)

 for n in np.arange(nswarm):

 if swarm[n,0]> swarm[n,2]:

 moveleft = swarm[n,0]

 moveright =swarm[n,2]

 swarm[n,0]= moveright

 swarm[n,2]= moveleft

 if swarm[n,0]> swarm[n,1]:

 moveleft = swarm[n,0]

 moveright =swarm[n,1]

 swarm[n,0]= moveright

 swarm[n,1]= moveleft

 if swarm[n,1]> swarm[n,2]:

 moveleft = swarm[n,2]

 moveright =swarm[n,1]

 swarm[n,2]= moveright

 swarm[n,1]= moveleft

 if swarm[n,0]> swarm[n,1]:

 moveright = swarm[n,0]

 moveleft =swarm[n,1]

 swarm[n,1]=moveright

 swarm[n,0]=moveleft

 if swarm[n,0]>swarm[n,2]:

 moveright = swarm[n,0]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,0]=moveleft

 if swarm[n,1]>swarm[n,2]:

 moveright = swarm[n,1]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,1]=moveleft

 if swarm[n,1]> swarm[n,2]:

 moveright = swarm[n,1]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,1]=moveleft

 if swarm[n,0]> swarm[n,2]:

 moveright = swarm[n,0]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,0]=moveleft

 if swarm[n,0]>swarm[n,1]:

 moveright = swarm[n,0]

 moveleft =swarm[n,1]

 swarm[n,1]=moveright

 swarm[n,0]=moveleft

 if swarm[n,3]>swarm[n,5]:

 movedown = swarm[n,5]

 moveup =swarm[n,3]

 swarm[n,5]= moveup

 swarm[n,3]= movedown

 if swarm[n,4]>swarm[n,5]:

 movedown = swarm[n,5]

 moveup =swarm[n,4]

 swarm[n,5]= moveup

 swarm[n,4]= movedown

 if swarm[n,4]>swarm[n,3]:

 movedown = swarm[n,3]

 moveup =swarm[n,4]

 swarm[n,3]= moveup

 swarm[n,4]= movedown

 if swarm[n,3]< swarm[n,4]:

 movedown = swarm[n,3]

 moveup =swarm[n,4]

 swarm[n,3]= moveup

 swarm[n,4]= movedown

 if swarm[n,4]>swarm[n,5]:

 movedown = swarm[n,5]

 moveup =swarm[n,4]

 swarm[n,5]= moveup

 swarm[n,4]= movedown

 if swarm[n,3]>swarm[n,5]:

 movedown = swarm[n,3]

 moveup =swarm[n,5]

 swarm[n,3]= moveup

 swarm[n,5]= movedown

 if swarm[n,5]<swarm[n,4]:

 movedown = swarm[n,5]

 moveup =swarm[n,4]

 swarm[n,5]= moveup

 swarm[n,4]= movedown

 if swarm[n,4]>swarm[n,3]:

 movedown = swarm[n,3]

 moveup =swarm[n,4]

 swarm[n,3]= moveup

 swarm[n,4]= movedown

 if swarm[n,3]>swarm[n,5]:

 movedown = swarm[n,3]

 moveup =swarm[n,5]

 swarm[n,3]= moveup

 swarm[n,5]= movedown

 # initialize the "personal best" values

 values = np.zeros(nswarm)

 gravity = np.zeros([nswarm,len(Dobs)])

 for n in np.arange(nswarm):

 xcorn_1=swarm[n,0]

 xcorn_2=swarm[n,1]

 xcorn_3=swarm[n,2]

 zcorn_1=swarm[n,3]

 zcorn_2=swarm[n,4]

 zcorn_3=swarm[n,5]

 rho = swarm[n,6]

 func2(xcorn_1,xcorn_2,xcorn_3,zcorn_1,zcorn_2,zcorn_3,rho)

 gravity[n] = grav

 del grav[0:len(grav)]

 n+=1

 for j in np.arange(nswarm):

 values[j] = sum((Dobs - gravity[j])**2)

 pbestv = np.zeros(nswarm)

 for i in np.arange(nswarm):

 pbestv[i] = values[i]

 pbest = np.array(swarm)

 # initialize the "global best" values

 gbesti = np.argmin(pbestv)

 gbestv = np.minimum.reduce(pbestv)

 gbest = pbest[gbesti]

 gbestc = gbestv

 velocities = np.zeros([nswarm,ndim]) #initiate velocity vectors.

 print datetime.time(datetime.now())

 for i in np.arange(maxiter):

 t = time.clock()

###

 penalty = np.zeros(nswarm)

 for n in np.arange(nswarm):

 if swarm[n,0]< -30.0:

 penalty[n] = penalty[n]+50000

 if swarm[n,0]> 30.0:

 penalty[n] = penalty[n]+50000

 if swarm[n,1]< -29.0:

 penalty[n] = penalty[n]+50000

 if swarm[n,1]> 29.0:

 penalty[n] = penalty[n]+50000

 if swarm[n,2]< -28.0:

 penalty[n] = penalty[n]+50000

 if swarm[n,2]> 28.0:

 penalty[n] = penalty[n]+50000

 if swarm[n,3]< 2.0:

 penalty[n] = penalty[n]+50000

 if swarm[n,3]>98.0:

 penalty[n] = penalty[n]+50000

 if swarm[n,4]< 3.0:

 penalty[n] = penalty[n]+50000

 if swarm[n,4]> 99.0:

 penalty[n] = penalty[n]+50000

 if swarm[n,5]< 4.0:

 penalty[n] = penalty[n]+50000

 if swarm[n,5]>100.0:

 penalty[n] = penalty[n]+50000

 if swarm[n,6]<500.0:

 penalty[n] = penalty[n]+50000

 if swarm[n,6]>3000.0:

 penalty[n] = penalty[n]+50000

 if swarm[n,0]> swarm[n,2]:

 penalty[n] = penalty[n]+50000

 if swarm[n,0]>= swarm[n,1]:

 penalty[n] = penalty[n]+50000

 if swarm[n,1]>= swarm[n,2]:

 penalty[n] = penalty[n]+50000

 if swarm[n,0]>= swarm[n,1]:

 penalty[n] = penalty[n]+50000

 if swarm[n,0]> swarm[n,2]:

 penalty[n] = penalty[n]+50000

 if swarm[n,1]>= swarm[n,2]:

 penalty[n] = penalty[n]+50000

 if swarm[n,1]>= swarm[n,2]:

 penalty[n] = penalty[n]+50000

 if swarm[n,0]> swarm[n,2]:

 penalty[n] = penalty[n]+50000

 if swarm[n,0]>= swarm[n,1]:

 penalty[n] = penalty[n]+50000

 if swarm[n,3]>swarm[n,5]:

 penalty[n] = penalty[n]+50000

 if swarm[n,4]>=swarm[n,3]:

 penalty[n] = penalty[n]+50000

 if swarm[n,4]>=swarm[n,5]:

 penalty[n] = penalty[n]+50000

 if swarm[n,3]<= swarm[n,4]:

 penalty[n] = penalty[n]+50000

 if swarm[n,4]>=swarm[n,5]:

 penalty[n] = penalty[n]+50000

 if swarm[n,3]>swarm[n,5]:

 penalty[n] = penalty[n]+50000

 if swarm[n,5]<=swarm[n,4]:

 penalty[n] = penalty[n]+50000

 if swarm[n,4]>=swarm[n,3]:

 penalty[n] = penalty[n]+50000

 if swarm[n,3]>swarm[n,5]:

 penalty[n] = penalty[n]+50000

 values = np.zeros(nswarm)

 gravity = np.zeros([nswarm,len(Dobs)])

 swarm = np.clip(swarm, lbound, ubound)

 for n in np.arange(nswarm):

 xcorn_1=swarm[n,0]

 xcorn_2=swarm[n,1]

 xcorn_3=swarm[n,2]

 zcorn_1=swarm[n,3]

 zcorn_2=swarm[n,4]

 zcorn_3=swarm[n,5]

 rho = swarm[n,6]

 func2(xcorn_1,xcorn_2,xcorn_3,zcorn_1,zcorn_2,zcorn_3,rho)

 gravity[n] = grav

 del grav[0:len(grav)]

 n+=1

 for j in np.arange(nswarm):# would values be dobs-dcalc?"

 #gravity = si.asarray(grav)

 values[j] = (sum((Dobs - gravity[j])**2)+penalty[j])

 mask = values < pbestv

 mask2d = np.repeat(mask, ndim)

 mask2d.shape = (nswarm, ndim)

 pbestv = np.where(mask, values, pbestv)

 pbest = np.where(mask2d, swarm, pbest)

 gbestc = gbestv

 if np.minimum.reduce(pbestv) < gbestv:

 gbesti = si.argmin(pbestv)

 gbestv = pbestv[gbesti]

 gbest = pbest[gbesti]

#################### added an inertial weight factor to the previous velocity jan 12/12###

 velocities = K*(velocities + (cp*si.rand()*(pbest - swarm)) +

 (cg*si.rand()*(gbest - swarm)))

 velocities = np.clip(velocities, -vmax, vmax)

 # for h in si.arange(nswarm):

 #all_the_leftxcorn[h].append(swarm[h,0])

 #all_the_rightxcorn[h].append(swarm[h,2])

 #all_the_middlexcorn[h].append(swarm[h,1])

 #all_the_topzcorn[h].append(swarm[h,3])

 #all_the_botzcorn[h].append(swarm[h,5])

 #all_the_middlezcorn[h].append(swarm[h,4])

 #all_the_rho[h].append(swarm[h,6])

 swarm += velocities

 swarm = np.clip(swarm, lbound, ubound)

 pbest = np.clip(pbest, lbound, ubound)

 gbest = np.clip(gbest, lbound, ubound)

 t1 = time.clock()

 dt = t1-t

 iter_time.append(dt)

 gbestlist.append(gbestv)

 #log_pbest.append(pbest)

 #log_gbest.append(gbest)

 #log_values.append(values)

 if gbestv < 1e-1:

 print i,gbest,gbestv,'time for average iteration', (sum(iter_time)/float(maxiter)),'sum iteration time to complete = ', sum(iter_time),'seconds',(sum(iter_time)/60.0),'minutes'

 return 'f'

 print 'current gbest',gbest

 print 'current gbestv',gbestv

 print 'time for average iteration', (sum(iter_time)/float(maxiter))

 print 'sum iteration time to complete = ', sum(iter_time),'seconds',(sum(iter_time)/60.0),'minutes'

 former = np.minimum.reduce(gbestvlist)

 arg = np.argmin(gbestvlist)

 print 'former gbest',gbestlist2[arg]

 print 'former gbestv',former

################### Clip p and g bestr here ################

 pbest = np.clip(pbest, lbound, ubound)

 gbest = np.clip(gbest, lbound, ubound)

##

#######################################last 100 or sogbests############################

 #print 'first 50',gbestlist[0:50]

 #print 'middle 50', gbestlist[2550:2601]

 #print 'last 50',gbestlist[4950:]

##

 #print 'all_the_leftxcorn',all_the_leftxcorn[0]

 #print 'all_the_rightxcorn',all_the_rightxcorn[0]

 #print 'all_the_topzcorn',all_the_topzcorn[0]

 #print 'all_the_botzcorn',all_the_botzcorn[0]

 #print 'all_the_rho',all_the_rho[0]

 #lastfew = int(maxiter -20)

 #print 'log_gbest first few',log_gbest[0:10]

 # print 'log_gbest last 20',log_gbest[lastfew:]

 #print 'log_pbest last guess',log_pbest[4999]

 #print 'log_values',log_values

t0 = time.clock()

procedure()

9-appendix B/Chapter 5 results and codes/codes/penpso1.pyx

import pylab as pl

import scipy as si

import numpy as np

import time as time

import random as rand

from datetime import datetime

#all_the_leftxcorn = [[] for i in range(int(30))]

#all_the_rightxcorn = [[] for i in range(int(30))]

#all_the_middlexcorn = [[] for i in range(int(30))]

#all_the_topzcorn = [[] for i in range(int(30))]

#all_the_botzcorn = [[] for i in range(int(30))]

#all_the_middlezcorn = [[] for i in range(int(30))]

#all_the_rho = [[] for i in range(int(30))]

gbestlist=[]

grav = []

counter = []

gbestvlist=[]

gbestlist2 = []

Dobs = (63.942052517377995, 65.326864187017122, 66.747890049346537, 68.205922693715266, 69.701741703856271, 71.23610937869195, 72.809765995100904, 74.423424580270719, 76.077765160688472, 77.773428454519944, 79.511008974162493, 81.2910475062004, 83.114022936864203, 84.980343392499165, 86.890336666505632, 88.844239906801064, 90.842188541110744, 92.884204421376296, 94.970183173302061, 97.099880742583977, 99.272899135698339, 101.48867136028191, 103.746445578137, 106.04526849274862, 108.38396800295692, 110.76113516514452, 113.17510551808809, 115.6239398377014, 118.10540440354175, 120.61695087563976, 123.15569589958201, 125.71840058071096, 128.30144999598912, 130.9008329459966, 133.51212219156605, 136.13045547192266, 138.75051766644702, 141.36652454312102, 143.97220863619089, 146.56080791623276, 149.12505805954629, 151.65718929122565, 154.14892896566431, 156.5915112545261, 158.97569552527045, 161.29179519650776, 163.52971902479968, 165.67902687628498, 167.72900202077864, 169.6687418016904, 171.48726812295149, 173.1736584971699, 174.71719737483508, 176.10754611052209, 177.33492825583349, 178.39032500346849, 179.26567372066498, 179.95406085049655, 180.4498993147601, 180.74908020276732, 180.84908918337524, 180.74907980253403, 180.44989851481353, 179.95405965187459, 179.26567212491992, 178.3903230126613, 177.33492587252616, 176.10754333776859, 174.7171942161703, 173.17365495659718, 171.48726420492798, 169.66873751111169, 167.72899736296171, 165.67902185694911, 163.52971365004723, 161.2917894728036, 158.97568945941944, 156.59150485365183, 154.14892223718439, 151.65718224282844, 149.12505069916722, 146.56080025202857, 143.97220067651577, 141.36651629650126, 138.7505091415569, 136.13044667755935, 133.51211313662631, 130.90082363945157, 128.30144044686313, 125.71839079805775, 123.15568589246371, 120.61694065310589, 118.1053939746094, 115.62392921133632, 113.17509470318677, 110.76112417051768, 108.38395683731355, 106.04525716468137, 103.74643409610898, 101.48865973261476, 99.27288737056044, 97.099868847981057, 94.970171157068052, 92.884192291165661, 90.842176304391813, 88.844227570850848, 86.89032423840365, 84.980330879125461, 83.11401034489549, 81.291034842108104, 79.510996244211313, 77.773415664767867, 76.077752316986789, 74.423411688263769, 72.809753060229554, 71.236096406193056, 69.701728698766715, 68.205909660873871, 66.747876993397469, 65.326851112413792)

cpdef int func2(double xcorn_1,double xcorn_2,double xcorn_3,double zcorn_1,double zcorn_2,double zcorn_3,double rho) except -1:

 x = np.arange(-30,30,0.5)

 l = len(x)

 xcorn = (float(xcorn_1),float(xcorn_2),float(xcorn_3),float(xcorn_3),float(xcorn_1),float(xcorn_1))

 zcorn = (float(zcorn_1),float(zcorn_2),float(zcorn_1),float(zcorn_3),float(zcorn_3),float(zcorn_1))

 o = len(xcorn)-1

 cdef double gamma,sum_lines,x1,x2,z1,z2,alpha,beta,factor,term1,term2,denom,constant

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 cdef int i,n

 for i from 0 <= i < l:

 sum_lines = 0.0

 for n from 0 <= n < o:

 x1 = xcorn[n]-x[i]

 x2 = xcorn[n+1]-x[i]

 z1 = zcorn[n]

 z2 = zcorn[n+1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = np.arctan2(z1,x1)

 O2 = np.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = np.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

cpdef int procedure():

 iter_time = []

 cdef double K,vmax,cp,cg,maxiter,moveup,movedown,moveleft,moveright,gbestc,gbestv

 K = 0.7968127490039841

 lbound = [-30.0,-30.0,-30.0,0.0,0.0,0.0,500.0]

 ubound = [30.0,30.0,30.0,100.0,100.0,100.0,3000.0]

 vmax =30

 nswarm = 30

 cp = 2.8

 cg = 1.3

 ndim = len(lbound)

 maxiter = 10000

 lbound = np.asarray(lbound)

 ubound = np.asarray(ubound)

 vmax = si.asarray(vmax)

 cdef int i,n,j

 #all_the_leftxcorn = [[] for i in range(int(nswarm))]

 #all_the_rightxcorn = [[] for i in range(int(nswarm))]

 #all_the_topzcorn = [[] for i in range(int(nswarm))]

 #all_the_botzcorn = [[] for i in range(int(nswarm))]

 #all_the_rho = [[] for i in range(int(nswarm))]

 #log_pbest = []

 #log_gbest = []

 #log_values =[]

 swarm = np.zeros((nswarm,ndim))

 # initialize the swarm

 Xrange = np.arange(-30,30,0.01)

 Zrange = np.arange(0.001,100,0.01)

 Rhorange = np.arange(500.0,3000,0.01)

 for i in si.arange(nswarm):

 swarm[i,0]=rand.choice(Xrange)

 swarm[i,1]=rand.choice(Xrange)

 swarm[i,2]=rand.choice(Xrange)

 swarm[i,3]=rand.choice(Zrange)

 swarm[i,4]=rand.choice(Zrange)

 swarm[i,5]=rand.choice(Zrange)

 swarm[i,6]=rand.choice(Rhorange)

 for n in np.arange(nswarm):

 if swarm[n,0]> swarm[n,2]:

 moveleft = swarm[n,0]

 moveright =swarm[n,2]

 swarm[n,0]= moveright

 swarm[n,2]= moveleft

 if swarm[n,0]> swarm[n,1]:

 moveleft = swarm[n,0]

 moveright =swarm[n,1]

 swarm[n,0]= moveright

 swarm[n,1]= moveleft

 if swarm[n,1]> swarm[n,2]:

 moveleft = swarm[n,2]

 moveright =swarm[n,1]

 swarm[n,2]= moveright

 swarm[n,1]= moveleft

 if swarm[n,0]> swarm[n,1]:

 moveright = swarm[n,0]

 moveleft =swarm[n,1]

 swarm[n,1]=moveright

 swarm[n,0]=moveleft

 if swarm[n,0]>swarm[n,2]:

 moveright = swarm[n,0]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,0]=moveleft

 if swarm[n,1]>swarm[n,2]:

 moveright = swarm[n,1]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,1]=moveleft

 if swarm[n,1]> swarm[n,2]:

 moveright = swarm[n,1]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,1]=moveleft

 if swarm[n,0]> swarm[n,2]:

 moveright = swarm[n,0]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,0]=moveleft

 if swarm[n,0]>swarm[n,1]:

 moveright = swarm[n,0]

 moveleft =swarm[n,1]

 swarm[n,1]=moveright

 swarm[n,0]=moveleft

 if swarm[n,3]>swarm[n,5]:

 movedown = swarm[n,5]

 moveup =swarm[n,3]

 swarm[n,5]= moveup

 swarm[n,3]= movedown

 if swarm[n,4]>swarm[n,5]:

 movedown = swarm[n,5]

 moveup =swarm[n,4]

 swarm[n,5]= moveup

 swarm[n,4]= movedown

 if swarm[n,4]>swarm[n,3]:

 movedown = swarm[n,3]

 moveup =swarm[n,4]

 swarm[n,3]= moveup

 swarm[n,4]= movedown

 if swarm[n,3]< swarm[n,4]:

 movedown = swarm[n,3]

 moveup =swarm[n,4]

 swarm[n,3]= moveup

 swarm[n,4]= movedown

 if swarm[n,4]>swarm[n,5]:

 movedown = swarm[n,5]

 moveup =swarm[n,4]

 swarm[n,5]= moveup

 swarm[n,4]= movedown

 if swarm[n,3]>swarm[n,5]:

 movedown = swarm[n,3]

 moveup =swarm[n,5]

 swarm[n,3]= moveup

 swarm[n,5]= movedown

 if swarm[n,5]<swarm[n,4]:

 movedown = swarm[n,5]

 moveup =swarm[n,4]

 swarm[n,5]= moveup

 swarm[n,4]= movedown

 if swarm[n,4]>swarm[n,3]:

 movedown = swarm[n,3]

 moveup =swarm[n,4]

 swarm[n,3]= moveup

 swarm[n,4]= movedown

 if swarm[n,3]>swarm[n,5]:

 movedown = swarm[n,3]

 moveup =swarm[n,5]

 swarm[n,3]= moveup

 swarm[n,5]= movedown

 # initialize the "personal best" values

 values = np.zeros(nswarm)

 gravity = np.zeros([nswarm,len(Dobs)])

 for n in np.arange(nswarm):

 xcorn_1=swarm[n,0]

 xcorn_2=swarm[n,1]

 xcorn_3=swarm[n,2]

 zcorn_1=swarm[n,3]

 zcorn_2=swarm[n,4]

 zcorn_3=swarm[n,5]

 rho = swarm[n,6]

 func2(xcorn_1,xcorn_2,xcorn_3,zcorn_1,zcorn_2,zcorn_3,rho)

 gravity[n] = grav

 del grav[0:len(grav)]

 n+=1

 for j in np.arange(nswarm):

 values[j] = sum((Dobs - gravity[j])**2)

 pbestv = np.zeros(nswarm)

 for i in np.arange(nswarm):

 pbestv[i] = values[i]

 pbest = np.array(swarm)

 # initialize the "global best" values

 gbesti = np.argmin(pbestv)

 gbestv = np.minimum.reduce(pbestv)

 gbest = pbest[gbesti]

 gbestc = gbestv

 velocities = np.zeros([nswarm,ndim]) #initiate velocity vectors.

 print datetime.time(datetime.now())

 for i in np.arange(maxiter):

 t = time.clock()

###

 penalty = np.zeros(nswarm)

 for n in np.arange(nswarm):

 if swarm[n,0]< -30.0:

 penalty[n] = penalty[n]+500

 if swarm[n,0]> 30.0:

 penalty[n] = penalty[n]+500

 if swarm[n,1]< -29.0:

 penalty[n] = penalty[n]+500

 if swarm[n,1]> 29.0:

 penalty[n] = penalty[n]+500

 if swarm[n,2]< -28.0:

 penalty[n] = penalty[n]+500

 if swarm[n,2]> 28.0:

 penalty[n] = penalty[n]+500

 if swarm[n,3]< 2.0:

 penalty[n] = penalty[n]+500

 if swarm[n,3]>98.0:

 penalty[n] = penalty[n]+500

 if swarm[n,4]< 3.0:

 penalty[n] = penalty[n]+500

 if swarm[n,4]> 99.0:

 penalty[n] = penalty[n]+500

 if swarm[n,5]< 4.0:

 penalty[n] = penalty[n]+500

 if swarm[n,5]>100.0:

 penalty[n] = penalty[n]+500

 if swarm[n,6]<500.0:

 penalty[n] = penalty[n]+500

 if swarm[n,6]>3000.0:

 penalty[n] = penalty[n]+500

 if swarm[n,0]> swarm[n,2]:

 penalty[n] = penalty[n]+500

 if swarm[n,0]>= swarm[n,1]:

 penalty[n] = penalty[n]+500

 if swarm[n,1]>= swarm[n,2]:

 penalty[n] = penalty[n]+500

 if swarm[n,0]>= swarm[n,1]:

 penalty[n] = penalty[n]+500

 if swarm[n,0]> swarm[n,2]:

 penalty[n] = penalty[n]+500

 if swarm[n,1]>= swarm[n,2]:

 penalty[n] = penalty[n]+500

 if swarm[n,1]>= swarm[n,2]:

 penalty[n] = penalty[n]+500

 if swarm[n,0]> swarm[n,2]:

 penalty[n] = penalty[n]+500

 if swarm[n,0]>= swarm[n,1]:

 penalty[n] = penalty[n]+500

 if swarm[n,3]>swarm[n,5]:

 penalty[n] = penalty[n]+500

 if swarm[n,4]>=swarm[n,3]:

 penalty[n] = penalty[n]+500

 if swarm[n,4]>=swarm[n,5]:

 penalty[n] = penalty[n]+500

 if swarm[n,3]<= swarm[n,4]:

 penalty[n] = penalty[n]+500

 if swarm[n,4]>=swarm[n,5]:

 penalty[n] = penalty[n]+500

 if swarm[n,3]>swarm[n,5]:

 penalty[n] = penalty[n]+500

 if swarm[n,5]<=swarm[n,4]:

 penalty[n] = penalty[n]+500

 if swarm[n,4]>=swarm[n,3]:

 penalty[n] = penalty[n]+500

 if swarm[n,3]>swarm[n,5]:

 penalty[n] = penalty[n]+500

 values = np.zeros(nswarm)

 gravity = np.zeros([nswarm,len(Dobs)])

 swarm = np.clip(swarm, lbound, ubound)

 for n in np.arange(nswarm):

 xcorn_1=swarm[n,0]

 xcorn_2=swarm[n,1]

 xcorn_3=swarm[n,2]

 zcorn_1=swarm[n,3]

 zcorn_2=swarm[n,4]

 zcorn_3=swarm[n,5]

 rho = swarm[n,6]

 func2(xcorn_1,xcorn_2,xcorn_3,zcorn_1,zcorn_2,zcorn_3,rho)

 gravity[n] = grav

 del grav[0:len(grav)]

 n+=1

 for j in np.arange(nswarm):# would values be dobs-dcalc?"

 #gravity = si.asarray(grav)

 values[j] = (sum((Dobs - gravity[j])**2)+penalty[j])

 mask = values < pbestv

 mask2d = np.repeat(mask, ndim)

 mask2d.shape = (nswarm, ndim)

 pbestv = np.where(mask, values, pbestv)

 pbest = np.where(mask2d, swarm, pbest)

 gbestc = gbestv

 if np.minimum.reduce(pbestv) < gbestv:

 gbesti = si.argmin(pbestv)

 gbestv = pbestv[gbesti]

 gbest = pbest[gbesti]

#################### added an inertial weight factor to the previous velocity jan 12/12###

 velocities = K*(velocities + (cp*si.rand()*(pbest - swarm)) +

 (cg*si.rand()*(gbest - swarm)))

 velocities = np.clip(velocities, -vmax, vmax)

 # for h in si.arange(nswarm):

 #all_the_leftxcorn[h].append(swarm[h,0])

 #all_the_rightxcorn[h].append(swarm[h,2])

 #all_the_middlexcorn[h].append(swarm[h,1])

 #all_the_topzcorn[h].append(swarm[h,3])

 #all_the_botzcorn[h].append(swarm[h,5])

 #all_the_middlezcorn[h].append(swarm[h,4])

 #all_the_rho[h].append(swarm[h,6])

 swarm += velocities

 swarm = np.clip(swarm, lbound, ubound)

 pbest = np.clip(pbest, lbound, ubound)

 gbest = np.clip(gbest, lbound, ubound)

 t1 = time.clock()

 dt = t1-t

 iter_time.append(dt)

 gbestlist.append(gbestv)

 #log_pbest.append(pbest)

 #log_gbest.append(gbest)

 #log_values.append(values)

 if gbestv < 1e-1:

 print i,gbest,gbestv,'time for average iteration', (sum(iter_time)/float(maxiter)),'sum iteration time to complete = ', sum(iter_time),'seconds',(sum(iter_time)/60.0),'minutes'

 return 'f'

 print 'current gbest',gbest

 print 'current gbestv',gbestv

 print 'time for average iteration', (sum(iter_time)/float(maxiter))

 print 'sum iteration time to complete = ', sum(iter_time),'seconds',(sum(iter_time)/60.0),'minutes'

 former = np.minimum.reduce(gbestvlist)

 arg = np.argmin(gbestvlist)

 print 'former gbest',gbestlist2[arg]

 print 'former gbestv',former

################### Clip p and g bestr here ################

 pbest = np.clip(pbest, lbound, ubound)

 gbest = np.clip(gbest, lbound, ubound)

##

#######################################last 100 or sogbests############################

 #print 'first 50',gbestlist[0:50]

 #print 'middle 50', gbestlist[2550:2601]

 #print 'last 50',gbestlist[4950:]

##

 #print 'all_the_leftxcorn',all_the_leftxcorn[0]

 #print 'all_the_rightxcorn',all_the_rightxcorn[0]

 #print 'all_the_topzcorn',all_the_topzcorn[0]

 #print 'all_the_botzcorn',all_the_botzcorn[0]

 #print 'all_the_rho',all_the_rho[0]

 #lastfew = int(maxiter -20)

 #print 'log_gbest first few',log_gbest[0:10]

 # print 'log_gbest last 20',log_gbest[lastfew:]

 #print 'log_pbest last guess',log_pbest[4999]

 #print 'log_values',log_values

t0 = time.clock()

procedure()

9-appendix B/Chapter 5 results and codes/codes/PP6sides.py

import numpy as numpy

import scipy as si

import random as rand

import time

import sys,pp

import pylab as pl

from datetime import datetime

class Point:

	def __init__(self,x,y):

		self.x = x

		self.y = y

change here###### change here

def func1(p0,p1,p2,p3,p4,p5,rho):

 x = numpy.arange(-30.0,30,0.5)

 """z = numpy.zeros(120)

 xz = np.zeros([120,2])

 for i in numpy.arange(120):

	xz[i]= [x[i],z[i]]"""

 points = [p0,p1,p2,p3,p4,p5,p0]

 points = numpy.asarray(points)

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 for i in numpy.arange(len(x)):

 sum_lines = 0.0

 for n in numpy.arange(len(points)-1):

 x1 = points[n,0]-x[i]

 x2 = points[(n+1),0]-x[i]

 z1 = points[n,1]

 z2 = points[(n+1),1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = numpy.arctan2(z1,x1)

 O2 = numpy.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = numpy.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

 #print grav

def func2(raw_input,grav):

 p0=raw_input[0]

 p1=raw_input[1]

 p2=raw_input[2]

 p3=raw_input[3]

 p4=raw_input[4]

 p5=raw_input[5]

 rho=raw_input[6,0]

 rho=rho

 x = numpy.arange(-30.0,30,0.5)

 points = [p0,p1,p2,p3,p4,p5,p0]

 points = numpy.asarray(points)

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 for i in numpy.arange(len(x)):

 sum_lines = 0.0

 for n in numpy.arange(len(points)-1):

 x1 = points[n,0]-x[i]

 x2 = points[(n+1),0]-x[i]

 z1 = points[n,1]

 z2 = points[(n+1),1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = numpy.arctan2(z1,x1)

 O2 = numpy.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = numpy.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

 #print len(grav),grav[0]

 return grav

def ccw(A,B,C):

	return (C.y-A.y)*(B.x-A.x) > (B.y-A.y)*(C.x-A.x)

def intersect(A,B,C,D):

	return ccw(A,C,D) != ccw(B,C,D) and ccw(A,B,C) != ccw(A,B,D)

#medium noise

#Dobs = (64.636163123444277, 60.660928845419946, 56.562819868019112, 64.192610527867927, 59.125458696542054, 64.364902522989325, 65.42551047068045, 66.935061009494291, 65.400900800589312, 69.110537091664568, 65.848224371591769, 69.483179043196117, 76.559307055249135, 72.317878850051017, 75.127721356153472, 76.157720768143875, 72.133403263236985, 75.591162401033444, 82.152374468165547, 74.494837283847943, 80.968735991854274, 84.412113372868731, 83.797705715755384, 84.763023244922493, 85.101205425433449, 86.74911905844337, 84.453060627088902, 90.935864868410277, 96.581134829801641, 87.73889503390366, 92.056638837384909, 90.180631549231961, 93.588087637195045, 96.637326341667176, 96.970664960706301, 99.395922664308088, 94.457005164310843, 102.37631485133389, 99.509514239204151, 104.80684486871641, 105.13029598641083, 105.34225216093056, 105.01872146159724, 103.63141623803749, 106.11624279570988, 108.92298645527967, 113.78025956830332, 111.34665233214065, 111.00402361829991, 113.81783442672227, 113.77627571716337, 114.60416382832055, 112.87708151296977, 115.78599755858235, 114.23997365539893, 109.78972711528006, 120.68483750528785, 111.16907358169533, 110.68060371372042, 117.47390361285692, 115.52134607592403, 116.81729663254121, 118.26904668024912, 114.20085242664854, 117.84285503132315, 109.08640119660636, 117.55980151212843, 116.14352289543544, 112.79277568166067, 122.80463191370467, 112.482181346879, 113.55808944240131, 111.49931297833612, 115.35811802649792, 111.17951034223218, 110.43660879687459, 113.00371689489459, 105.64215034402923, 107.00881250810789, 101.3121225366344, 102.76593657651993, 102.72642026478795, 102.8525366796204, 100.47970479721937, 102.21974695197881, 97.613840022351241, 99.89840437444218, 92.455853937956846, 93.875588879794506, 95.638045620741735, 95.199385771274578, 95.170202232476896, 92.523491043347732, 83.342257587594673, 83.039567801726818, 87.707692718968147, 86.258933522857987, 81.431571868866925, 76.322028652394394, 83.90495776896428, 85.206064932194124, 80.786139368820017, 75.89865499376684, 78.351986235197401, 70.906620983353079, 74.870023239175296, 72.410053987340959, 73.120181214927328, 70.138072925203943, 69.3883739751126, 73.997907632230508, 66.381479363957226, 69.636563761079799, 61.294841454552476, 61.833622150229957, 67.169137212477665, 60.637136939504785, 63.476001272279056, 60.596167240065149, 57.946338801202899)

#old Dobs noise free

#Dobs = (57.780848374175129, 58.751894097150547, 59.738977173795398, 60.742055072374406, 61.761053844437164, 62.795865617898876, 63.846345982401367, 64.912311270713445, 65.993535741411847, 67.089748669715831, 68.20063135518015, 69.325814056986346, 70.464872869781118, 71.617326555447434, 72.782633348815722, 73.960187758137891, 75.149317384144624, 76.349279784678629, 77.559259415185949, 78.778364678768824, 80.005625122964062, 81.239988823906359, 82.480320001951981, 83.725396916153528, 84.973910088052222, 86.224460908028732, 87.475560679786824, 88.725630160341979, 89.972999653981049, 91.215909718951053, 92.452512544944256, 93.680874057665363, 94.898976803733845, 96.104723664788722, 97.295942443806922, 98.470391359259267, 99.625765473754825, 100.7597040732923, 101.8697990011653, 102.95360393711096, 104.0086445975724, 105.03242981723263, 106.02246345553591, 106.9762570551031, 107.89134316215461, 108.76528920270256, 109.59571179282644, 110.38029134722791, 111.11678683793809, 111.80305054490319, 112.43704263256694, 113.01684538179539, 113.54067690473765, 114.00690417164176, 114.41405518325779, 114.76083013022334, 115.04611139160919, 115.26897223838158, 115.42868412367056, 115.52472246006776, 115.5567708043862, 115.5247233919782, 115.42868598544538, 115.2689750259448, 115.04611509888773, 114.76083474919456, 114.4140607040129, 114.00691058246178, 113.54068419218315, 113.01685353080657, 112.43705162657392, 111.80306036594381, 111.11679746678288, 110.38030276350868, 109.59572397516894, 108.76530212885937, 107.89135680913805, 106.97627139931728, 106.02247847290367, 105.03244548331976, 104.00866088770597, 102.95362082649103, 101.8698164649696, 100.75972208677402, 99.625784012331806, 98.470410398595035, 97.295961959884366, 96.104743633974167, 94.898997202834565, 93.680894863978153, 92.45253373629761, 91.215931273739599, 89.973021551193398, 88.725652379584034, 87.47558320129626, 86.224483712688055, 84.973933157394598, 83.725420232365693, 82.480343547873673, 81.240012583025532, 80.005649079410702, 78.778388817304929, 77.559283721195513, 76.349304244153288, 75.149341983670837, 73.960212484880685, 72.78265819050263, 71.6173515003521, 70.464897906706724, 69.325839175246415, 68.200656544581989, 67.089773920543664, 65.993561044409049, 64.912336617062962, 63.846371363712365, 62.795891026187412, 61.761079272110422, 60.742080512216297, 59.739002618948575, 58.751919541103234)

6 sides no noise##

Dobs = (57.779192696040823, 58.75020990091253, 59.737263917760764, 60.740312210201068, 61.759280825782646, 62.794061889153184, 63.844510987502481, 64.910444452058641, 65.991636540868413, 67.087816529738717, 68.198665720046762, 69.323814374151766, 70.46283859136544, 71.615257139861811, 72.780528262534048, 73.958046477621977, 75.147139397932094, 76.347064595636951, 77.557006542941622, 78.77607366231517, 80.00329552345211, 81.237620227621193, 82.477912023476591, 83.722949201717626, 84.97142231906308, 86.221932804777353, 87.472992005322027, 88.72302072449655, 89.970349317536829, 91.213218397920514, 92.449780214942862, 93.678100758348052, 94.896162643258137, 96.101868824266717, 97.293047181703159, 98.467456015683567, 99.62279047459937, 100.75668993415439, 101.8667463309981, 102.9505134415364, 104.00551708179628, 105.0292661884947, 106.01926472503318, 106.97302433932467, 107.8880776835707, 108.76199228975676, 109.59238487918313, 110.37693597023926, 111.11340463630191, 111.79964325549201, 112.43361208642469, 113.01339349930359, 113.53720568997112, 114.00341570594313, 114.41055161807331, 114.75731367925624, 115.04258432235318, 115.26543686311433, 115.42514278999029, 115.52117754106655, 115.55322468855914, 115.52117847297289, 115.4251446517568, 115.26543965066536, 115.04258802961564, 114.75731829820771, 114.41055713880507, 114.00342211673667, 113.53721297738716, 113.01340164828282, 112.43362108039749, 111.79965307649665, 111.1134152651091, 110.37694738648156, 109.59239706148628, 108.76200521587396, 107.88809133051471, 106.97303868349989, 106.0192797423629, 105.02928185454498, 104.00553337189469, 102.950530330883, 101.86676379477119, 100.75670794760741, 99.622809013150246, 98.467475054996214, 97.293066697760366, 96.101888793435279, 94.89618304234537, 93.678121564650809, 92.449801406289808, 91.213239952706104, 89.97037121475023, 88.723042943743039, 87.473014526839719, 86.221955609448401, 84.971445388420548, 83.722972517948861, 82.477935569420509, 81.237643986766102, 80.003319479927697, 78.776097800883477, 77.557030848986614, 76.347089055149837, 75.147163997499263, 73.958071204408341, 72.780553104267199, 71.615282084815263, 70.462863628341893, 69.323839492464899, 68.19869090950391, 67.087841780623677, 65.99166184392422, 64.910469798468966, 63.844536368875552, 62.794087297505293, 61.759306253521125, 60.740337650108621, 59.737289362980817, 58.750235344932946)

grav = []

iter_time = []

jobsList = []

gbestlist=[]

gbestvlist=[]

cg = 1.3

cp = 2.8

phi = cp+cg

K = 2/abs(2-phi-(phi**2-4*phi)**0.5)

StandardDev= 1

vmax =30

nswarm = 120

nsides = 6.0

ndim = int(nsides+1)

maxiter = 500

vmax = numpy.asarray(vmax)

 #all_the_leftxcorn = [[] for i in range(int(nswarm))]

 #all_the_rightxcorn = [[] for i in range(int(nswarm))]

 #all_the_topzcorn = [[] for i in range(int(nswarm))]

 #all_the_botzcorn = [[] for i in range(int(nswarm))]

 #all_the_rho = [[] for i in range(int(nswarm))]

log_pbestg = [[]for i in range(int(nswarm))]

log_pbestv = []

loggbest = []

logGbest=numpy.zeros([maxiter,ndim,2])

mid1 = []

mid2 = []

 #log_values =[]

swarm = numpy.zeros((nswarm,ndim,2))

 # initialize the swarm

change here###### change here

increment = 360/nsides

radius = numpy.arange(1.0,40)

yincr = numpy.arange(1,80)

Rhorange = numpy.arange(500.0,3001,0.01)

angles = numpy.zeros(ndim)

X = numpy.zeros([nswarm, ndim])

Y = numpy.zeros([nswarm,ndim])

for m in numpy.arange(ndim):

	angles[m]+=(increment*m)*(numpy.pi/180.0)

#at the end of x and y

for i in numpy.arange(nswarm):

 rr = rand.choice(radius)

 ry = rand.choice(yincr)

 x = numpy.zeros((nsides+1))

 y = numpy.zeros((nsides+1))

 for b in numpy.arange(nsides):

 x[b] = numpy.cos(angles[b])*(rr*si.rand())

 y[b] = (numpy.sin(angles[b])*(rr*si.rand()))+ry

 swarm[i,b,0]=x[b]

 swarm[i,b,1]=y[b]

 swarm[i,6,0]= rand.choice(Rhorange)

 swarm[i,6,1]= swarm[i,6,0]

vectors = numpy.zeros([nswarm,(ndim),2])

thetas = numpy.zeros([nswarm,(ndim-1),1])

values= numpy.zeros(nswarm)

gravity = numpy.zeros([nswarm,len(Dobs)])

change here###### change here

for n in numpy.arange(nswarm):

 p0 = swarm[n,0]

 p1 = swarm[n,1]

 p2 = swarm[n,2]

 p3 = swarm[n,3]

 p4 = swarm[n,4]

 p5 = swarm[n,5]

 rho = swarm[n,6,0]

 a = Point(p0[0],p0[1])

 b = Point(p1[0],p1[1])

 c = Point(p2[0],p2[1])

 d = Point(p3[0],p3[1])

 e = Point(p4[0],p4[1])

 f = Point(p5[0],p5[1])

put in code to make each particle a feasable solution.

 sides = [a,b,c,d,e,f,a,b,c,d,e,f]

 points = [p0,p1,p2,p3,p4,p5,p0]

 points = numpy.asarray(points)

 i=0

 for i in numpy.arange(ndim):

 if points[i,0]< -30.0:

 points[i,0]=-30.0

 if points[i,0]> 30.0:

 points[i,0]= 30.0

 if points[i,1]< 5.0:

 points[i,1]=5.0

 if points[i,1]> 100:

 points[i,1]= 100

 if rho<500:

 rho=500.0

 if rho>3000:

 rho = 3000.0

 i = 0

 for i in numpy.arange(ndim-1):

 vectors[n,i] = (points[i+1]-points[i])

 vectors[n,(ndim-1)] = vectors[n,0]

 i=0

 for i in numpy.arange(ndim-1):

 cross = numpy.cross(vectors[n,i],vectors[n,(i+1)])

 if cross<0:

 vxy = vectors[n,i,0]*vectors[n,(i+1),0] + vectors[n,i,1]*vectors[n,(i+1),1]

 vx = (vectors[n,i,0]**2+vectors[n,i,1]**2)**0.5

 vy = (vectors[n,(i+1),0]**2+vectors[n,(i+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,i] = -1*(rad*(180.0/numpy.pi))

 else:

 vxy = vectors[n,i,0]*vectors[n,(i+1),0] + vectors[n,i,1]*vectors[n,(i+1),1]

 vx = (vectors[n,i,0]**2+vectors[n,i,1]**2)**0.5

 vy = (vectors[n,(i+1),0]**2+vectors[n,(i+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,i] = rad*(180.0/numpy.pi)

 ###

 func1(p0,p1,p2,p3,p4,p5,rho)

 gravity[n]=grav

 del grav[0:len(grav)]

 n+=1

j=0

for j in numpy.arange(nswarm):

 values[j] = (sum((Dobs - gravity[j])**2))/StandardDev

pbestv = numpy.zeros(nswarm)

i=0

for i in numpy.arange(nswarm):

 pbestv[i] = values[i]

pbest = numpy.array(swarm)

initialize the "global best" values

gbesti = numpy.argmin(pbestv)

gbestv = numpy.minimum.reduce(pbestv)

gbest = pbest[gbesti]

initialize velocity function

velocities = numpy.zeros((nswarm,ndim,2))

#velocities2 = numpy.zeros(((nswarm/2.0),ndim,2))

#velocities1 = numpy.zeros(((nswarm/2.0),ndim,2))

i=0

print datetime.time(datetime.now())

for i in numpy.arange(maxiter):

 t = time.clock()

 logGbest[i] = gbest

 if i%100==0:

 print datetime.time(datetime.now())

 print i

 print "current gbest",gbest

 print "current gbestv",gbestv

 values= numpy.zeros(nswarm)

 vectors = numpy.zeros([nswarm,(ndim),2])

 thetas = numpy.zeros([nswarm,(ndim-1),1])

 feasabilty = numpy.zeros(nswarm)

 ###### change here###### change here

 for n in numpy.arange(nswarm):

 p0 = swarm[n,0]

 p1= swarm[n,1]

 p2 = swarm[n,2]

 p3 = swarm[n,3]

 p4 = swarm[n,4]

 p5 = swarm[n,5]

 rho = swarm[n,6,0]

 a = Point(p0[0],p0[1])

 b = Point(p1[0],p1[1])

 c = Point(p2[0],p2[1])

 d = Point(p3[0],p3[1])

 e = Point(p4[0],p4[1])

 f = Point(p5[0],p5[1])

 sides = [a,b,c,d,e,f,a,b,c,d,e,f]

 points = [p0,p1,p2,p3,p4,p5,p0]

 points = numpy.asarray(points)

 for q in numpy.arange(ndim-1):

 vectors[n,q] = (points[q+1]-points[q])

 vectors[n,(ndim-1)] = vectors[n,0]

 for w in numpy.arange(ndim-1):

 cross = numpy.cross(vectors[n,w],vectors[n,(w+1)])

 if cross<0:

 vxy = vectors[n,w,0]*vectors[n,(w+1),0] + vectors[n,w,1]*vectors[n,(w+1),1]

 vx = (vectors[n,w,0]**2+vectors[n,w,1]**2)**0.5

 vy = (vectors[n,(w+1),0]**2+vectors[n,(w+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,w] = -1*(rad*(180.0/numpy.pi))

 else:

 vxy = vectors[n,w,0]*vectors[n,(w+1),0] + vectors[n,w,1]*vectors[n,(w+1),1]

 vx = (vectors[n,w,0]**2+vectors[n,w,1]**2)**0.5

 vy = (vectors[n,(w+1),0]**2+vectors[n,(w+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,w] = rad*(180.0/numpy.pi)

 #print thetas

 for e in numpy.arange(nswarm):

 for l in numpy.arange(ndim-1):

 if swarm[e,l,0]<-30.0:

 feasabilty[e]+=50000

 #print 'e',e,'l',l,'1'

 if swarm[e,l,0]> 30.0:

 feasabilty[e]+=50000

 #print 'e',e,'l',l, '2'

 if swarm[e,l,1]<5:

 feasabilty[e]+=50000

 #print 'e',e,'l',l, '3'

 if swarm[e,l,1]>100.0:

 feasabilty[e]+=50000

 #print 'e',e,'l',l, '4'

 if swarm[e,(nsides),0]<500:

 feasabilty[e]+=50000

 #print 'e',e, '5'

 if swarm[e,(nsides),0]>3000:

 feasabilty[e]+=50000

 #print 'e',e, '6'

 for k in numpy.arange(len(thetas[0])):

 if abs(thetas[e,k]) < 0.1:

 thetas[e,k]=0.1

 S = int(sum(thetas[e]))

 for r in numpy.arange(len(thetas[0])):

 if abs(thetas[e,r]) < 10.0:

 feasabilty[e]+=50000

 if abs(thetas[e,r]) > 170.0:

 feasabilty[e]+=50000

 #print 'e',e,'r',r, '7'

 #print 'S',S,'intS',int(sum(thetas[n]))

 if int(sum(thetas[e]))==359:

 S = int(360.0)

 if S!=int(360.0):

 feasabilty[e]+=50000

 # print 'e',e, '8'

 if S == int(360.0):

 for t in numpy.arange((ndim-1)):

 #print 'j',j

 #print intersect(sides[j],sides[j+1],sides[j+2],sides[j+3]),'1','j',j

 #print intersect(sides[j],sides[j+1],sides[j+3],sides[j+4]),'2','j',j

 if intersect(sides[t],sides[t+1],sides[t+2],sides[t+3]):

 feasabilty[e]+=50000

 #print 'e',e,'9'

 if intersect(sides[t],sides[t+1],sides[t+3],sides[t+4]):

 feasabilty[e]+=50000

 #print 'e',e,'10'

 # print swarm

 #print feasabilty

 ppservers = ()

 #ppservers = ("10.0.0.1",)

 if len(sys.argv) > 1:

 ncpus = int(sys.argv[1])

 # Creates jobserver with ncpus workers

 job_server = pp.Server(ncpus, ppservers=ppservers)

 else:

 # Creates jobserver with automatically detected number of workers

 job_server = pp.Server(ppservers=ppservers)

 #print "Starting pp with", job_server.get_ncpus(), "workers"

#works to here

 inputs = tuple(swarm)

 start_time = time.time()

 jobs = [(raw_input, job_server.submit(func2,(raw_input,grav), (), ("numpy",))) for raw_input in inputs]

 for raw_input, job in jobs:

 r = job()

 jobsList.append(r)

 #print "swarm", raw_input, "is",r[0],'nsawrm',nswarm

 #print "Time elapsed: ", time.time() - start_time, "s"

 #job_server.print_stats()

 for y in numpy.arange(nswarm):

 gravity[y] = jobsList[y]

 #print gravity[n,0]

 del grav[0:len(grav)]

 del jobsList[0:len(jobsList)]

 ##########destroys severs and open files############

 job_server.destroy()

 for u in numpy.arange(nswarm):

 values[u] = (sum((Dobs - gravity[u])**2) + feasabilty[u])/StandardDev

 for p in numpy.arange(nswarm):

 #if feasabilty[p]<1.0:

 mask = values[p] < pbestv[p]

 mask2d = numpy.repeat(mask, (ndim*2))

 mask2d = mask2d.reshape([ndim,2])

 pbestv[p] = numpy.where(mask, values[p], pbestv[p])

 pbest = numpy.where(mask2d, swarm, pbest)

 log_pbestg[p].append(pbestv[p])

 log_pbestv.append(pbestv)

 if numpy.minimum.reduce(pbestv) < gbestv:

 gbesti = numpy.argmin(pbestv)

 gbestv = pbestv[gbesti]

 gbest = pbest[gbesti]

 loggbest.append(gbestv)

 logGbest[i] = gbest

##

#2 velocities code

##

 #if K1<0.4:

 #K1 = 0.4

 #S = swarm[0:(nswarm/2.0)]

 #S1 = swarm[(nswarm/2.0):nswarm]

 #P = pbest[0:(nswarm/2.0)]

 #P1= pbest[(nswarm/2.0):nswarm]

 #velocities1 = K*(velocities1 + (cp*si.rand()*(P - S)) +

 #(cg*si.rand()*(gbest - S)))

 #velocities2 = (velocities2 + (cp*si.rand()*(P1 - S1)) +

 #(cg*si.rand()*(gbest - S1)))

 #K1 = K1-(K1/maxiter)

 #velocities2 = numpy.clip(velocities2,-5.0,5.0)

 #velocities1[numpy.logical_and(velocities1>=0.0,velocities1<0.025)]=0.025

 #velocities1[numpy.logical_and(velocities1<0.0,velocities1>-0.025)]=-0.025

 #print 'velocities',i,velocities

 #velocities[0:(nswarm/2.0)]=velocities1

 #velocities[(nswarm/2.0):nswarm]=velocities2

##

 velocities = K*(velocities + (cp*si.rand()*(pbest - swarm)) +

 (cg*si.rand()*(gbest - swarm)))

 swarm+=velocities

 t1 = time.clock()

 dt = t1-t

 iter_time.append(dt)

 gbestlist.append(gbestv)

 if gbestv < 1e-1:

 print i,gbest,gbestv,'time for average iteration', (sum(iter_time)/float

(maxiter)),'sum iteration time to complete = ', sum(iter_time),'seconds',(sum

(iter_time)/60.0),'minutes'

 #return 'f'

print datetime.time(datetime.now())

print 'current gbest',gbest

print 'current gbestv',gbestv,'feasabilty',feasabilty

print 'time for average iteration', (sum(iter_time)/float(maxiter))

print 'sum iteration time to complete = ', sum(iter_time),'seconds',(sum

(iter_time)/60.0),'minutes'

"""former = numpy.minimum.reduce(gbestvlist)

arg = numpy.argmin(gbestvlist)

print 'former gbest',gbestlist2[arg]

print 'former gbestv',former

x = numpy.arange(1000)

import pylab as pl

for i in numpy.arange(400):

	pl.plot(x,log_pbestg[i])

pl.xlabel('iteration')

pl.ylabel('misfit')

pl.axis([0,100,0,200000])

pl.show()

x = numpy.zeros([nswarm,ndim])

y = numpy.zeros([nswarm,ndim])

for i in numpy.arange(nswarm):

	for j in numpy.arange(ndim):

		x[i,j]=swarm[i,j,0]

		y[i,j]=swarm[i,j,1]

	x[i,5]=swarm[i,0,0]

	y[i,5]=swarm[i,0,1]"""

####plots the shapes of all the Gbests ##########

x = numpy.zeros([maxiter,ndim])

y = numpy.zeros([maxiter,ndim])

for i in numpy.arange(maxiter):

	for j in numpy.arange(ndim):

		x[i,j]=logGbest[i,j,0]

		y[i,j]=logGbest[i,j,1]

	x[i,6]=logGbest[i,0,0]

	y[i,6]=logGbest[i,0,1]

"""for i in numpy.arange(maxiter):

	pl.plot(x[i],y[i],x[i],y[i],'o')"""

i = 999

pl.plot(x[i],y[i],x[i],y[i],'o')

pl.show()

9-appendix B/Chapter 5 results and codes/codes/PP6sides_update.py

import numpy as numpy

import scipy as si

import random as rand

import time

import sys,pp

import pylab as pl

from datetime import datetime

class Point:

	def __init__(self,x,y):

		self.x = x

		self.y = y

change here###### change here

def func1(p0,p1,p2,p3,p4,p5,rho):

 x = numpy.arange(-30.0,30,0.5)

 """z = numpy.zeros(120)

 xz = np.zeros([120,2])

 for i in numpy.arange(120):

	xz[i]= [x[i],z[i]]"""

 points = [p0,p1,p2,p3,p4,p5,p0]

 points = numpy.asarray(points)

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 for i in numpy.arange(len(x)):

 sum_lines = 0.0

 for n in numpy.arange(len(points)-1):

 x1 = points[n,0]-x[i]

 x2 = points[(n+1),0]-x[i]

 z1 = points[n,1]

 z2 = points[(n+1),1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = numpy.arctan2(z1,x1)

 O2 = numpy.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = numpy.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

 #print grav

def func2(raw_input,grav):

 p0=raw_input[0]

 p1=raw_input[1]

 p2=raw_input[2]

 p3=raw_input[3]

 p4=raw_input[4]

 p5=raw_input[5]

 rho=raw_input[6,0]

 rho=rho

 x = numpy.arange(-30.0,30,0.5)

 points = [p0,p1,p2,p3,p4,p5,p0]

 points = numpy.asarray(points)

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 for i in numpy.arange(len(x)):

 sum_lines = 0.0

 for n in numpy.arange(len(points)-1):

 x1 = points[n,0]-x[i]

 x2 = points[(n+1),0]-x[i]

 z1 = points[n,1]

 z2 = points[(n+1),1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = numpy.arctan2(z1,x1)

 O2 = numpy.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = numpy.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

 #print len(grav),grav[0]

 return grav

def ccw(A,B,C):

	return (C.y-A.y)*(B.x-A.x) > (B.y-A.y)*(C.x-A.x)

def intersect(A,B,C,D):

	return ccw(A,C,D) != ccw(B,C,D) and ccw(A,B,C) != ccw(A,B,D)

#medium noise

#Dobs = (64.636163123444277, 60.660928845419946, 56.562819868019112, 64.192610527867927, 59.125458696542054, 64.364902522989325, 65.42551047068045, 66.935061009494291, 65.400900800589312, 69.110537091664568, 65.848224371591769, 69.483179043196117, 76.559307055249135, 72.317878850051017, 75.127721356153472, 76.157720768143875, 72.133403263236985, 75.591162401033444, 82.152374468165547, 74.494837283847943, 80.968735991854274, 84.412113372868731, 83.797705715755384, 84.763023244922493, 85.101205425433449, 86.74911905844337, 84.453060627088902, 90.935864868410277, 96.581134829801641, 87.73889503390366, 92.056638837384909, 90.180631549231961, 93.588087637195045, 96.637326341667176, 96.970664960706301, 99.395922664308088, 94.457005164310843, 102.37631485133389, 99.509514239204151, 104.80684486871641, 105.13029598641083, 105.34225216093056, 105.01872146159724, 103.63141623803749, 106.11624279570988, 108.92298645527967, 113.78025956830332, 111.34665233214065, 111.00402361829991, 113.81783442672227, 113.77627571716337, 114.60416382832055, 112.87708151296977, 115.78599755858235, 114.23997365539893, 109.78972711528006, 120.68483750528785, 111.16907358169533, 110.68060371372042, 117.47390361285692, 115.52134607592403, 116.81729663254121, 118.26904668024912, 114.20085242664854, 117.84285503132315, 109.08640119660636, 117.55980151212843, 116.14352289543544, 112.79277568166067, 122.80463191370467, 112.482181346879, 113.55808944240131, 111.49931297833612, 115.35811802649792, 111.17951034223218, 110.43660879687459, 113.00371689489459, 105.64215034402923, 107.00881250810789, 101.3121225366344, 102.76593657651993, 102.72642026478795, 102.8525366796204, 100.47970479721937, 102.21974695197881, 97.613840022351241, 99.89840437444218, 92.455853937956846, 93.875588879794506, 95.638045620741735, 95.199385771274578, 95.170202232476896, 92.523491043347732, 83.342257587594673, 83.039567801726818, 87.707692718968147, 86.258933522857987, 81.431571868866925, 76.322028652394394, 83.90495776896428, 85.206064932194124, 80.786139368820017, 75.89865499376684, 78.351986235197401, 70.906620983353079, 74.870023239175296, 72.410053987340959, 73.120181214927328, 70.138072925203943, 69.3883739751126, 73.997907632230508, 66.381479363957226, 69.636563761079799, 61.294841454552476, 61.833622150229957, 67.169137212477665, 60.637136939504785, 63.476001272279056, 60.596167240065149, 57.946338801202899)

#old Dobs noise free

#Dobs = (57.780848374175129, 58.751894097150547, 59.738977173795398, 60.742055072374406, 61.761053844437164, 62.795865617898876, 63.846345982401367, 64.912311270713445, 65.993535741411847, 67.089748669715831, 68.20063135518015, 69.325814056986346, 70.464872869781118, 71.617326555447434, 72.782633348815722, 73.960187758137891, 75.149317384144624, 76.349279784678629, 77.559259415185949, 78.778364678768824, 80.005625122964062, 81.239988823906359, 82.480320001951981, 83.725396916153528, 84.973910088052222, 86.224460908028732, 87.475560679786824, 88.725630160341979, 89.972999653981049, 91.215909718951053, 92.452512544944256, 93.680874057665363, 94.898976803733845, 96.104723664788722, 97.295942443806922, 98.470391359259267, 99.625765473754825, 100.7597040732923, 101.8697990011653, 102.95360393711096, 104.0086445975724, 105.03242981723263, 106.02246345553591, 106.9762570551031, 107.89134316215461, 108.76528920270256, 109.59571179282644, 110.38029134722791, 111.11678683793809, 111.80305054490319, 112.43704263256694, 113.01684538179539, 113.54067690473765, 114.00690417164176, 114.41405518325779, 114.76083013022334, 115.04611139160919, 115.26897223838158, 115.42868412367056, 115.52472246006776, 115.5567708043862, 115.5247233919782, 115.42868598544538, 115.2689750259448, 115.04611509888773, 114.76083474919456, 114.4140607040129, 114.00691058246178, 113.54068419218315, 113.01685353080657, 112.43705162657392, 111.80306036594381, 111.11679746678288, 110.38030276350868, 109.59572397516894, 108.76530212885937, 107.89135680913805, 106.97627139931728, 106.02247847290367, 105.03244548331976, 104.00866088770597, 102.95362082649103, 101.8698164649696, 100.75972208677402, 99.625784012331806, 98.470410398595035, 97.295961959884366, 96.104743633974167, 94.898997202834565, 93.680894863978153, 92.45253373629761, 91.215931273739599, 89.973021551193398, 88.725652379584034, 87.47558320129626, 86.224483712688055, 84.973933157394598, 83.725420232365693, 82.480343547873673, 81.240012583025532, 80.005649079410702, 78.778388817304929, 77.559283721195513, 76.349304244153288, 75.149341983670837, 73.960212484880685, 72.78265819050263, 71.6173515003521, 70.464897906706724, 69.325839175246415, 68.200656544581989, 67.089773920543664, 65.993561044409049, 64.912336617062962, 63.846371363712365, 62.795891026187412, 61.761079272110422, 60.742080512216297, 59.739002618948575, 58.751919541103234)

6 sides no noise##

Dobs = (57.779192696040823, 58.75020990091253, 59.737263917760764, 60.740312210201068, 61.759280825782646, 62.794061889153184, 63.844510987502481, 64.910444452058641, 65.991636540868413, 67.087816529738717, 68.198665720046762, 69.323814374151766, 70.46283859136544, 71.615257139861811, 72.780528262534048, 73.958046477621977, 75.147139397932094, 76.347064595636951, 77.557006542941622, 78.77607366231517, 80.00329552345211, 81.237620227621193, 82.477912023476591, 83.722949201717626, 84.97142231906308, 86.221932804777353, 87.472992005322027, 88.72302072449655, 89.970349317536829, 91.213218397920514, 92.449780214942862, 93.678100758348052, 94.896162643258137, 96.101868824266717, 97.293047181703159, 98.467456015683567, 99.62279047459937, 100.75668993415439, 101.8667463309981, 102.9505134415364, 104.00551708179628, 105.0292661884947, 106.01926472503318, 106.97302433932467, 107.8880776835707, 108.76199228975676, 109.59238487918313, 110.37693597023926, 111.11340463630191, 111.79964325549201, 112.43361208642469, 113.01339349930359, 113.53720568997112, 114.00341570594313, 114.41055161807331, 114.75731367925624, 115.04258432235318, 115.26543686311433, 115.42514278999029, 115.52117754106655, 115.55322468855914, 115.52117847297289, 115.4251446517568, 115.26543965066536, 115.04258802961564, 114.75731829820771, 114.41055713880507, 114.00342211673667, 113.53721297738716, 113.01340164828282, 112.43362108039749, 111.79965307649665, 111.1134152651091, 110.37694738648156, 109.59239706148628, 108.76200521587396, 107.88809133051471, 106.97303868349989, 106.0192797423629, 105.02928185454498, 104.00553337189469, 102.950530330883, 101.86676379477119, 100.75670794760741, 99.622809013150246, 98.467475054996214, 97.293066697760366, 96.101888793435279, 94.89618304234537, 93.678121564650809, 92.449801406289808, 91.213239952706104, 89.97037121475023, 88.723042943743039, 87.473014526839719, 86.221955609448401, 84.971445388420548, 83.722972517948861, 82.477935569420509, 81.237643986766102, 80.003319479927697, 78.776097800883477, 77.557030848986614, 76.347089055149837, 75.147163997499263, 73.958071204408341, 72.780553104267199, 71.615282084815263, 70.462863628341893, 69.323839492464899, 68.19869090950391, 67.087841780623677, 65.99166184392422, 64.910469798468966, 63.844536368875552, 62.794087297505293, 61.759306253521125, 60.740337650108621, 59.737289362980817, 58.750235344932946)

grav = []

iter_time = []

jobsList = []

gbestlist=[]

gbestvlist=[]

cg = 1.3

cp = 2.8

phi = cp+cg

K = 2/abs(2-phi-(phi**2-4*phi)**0.5)

StandardDev= 1

vmax =30

nswarm = 120

nsides = 6.0

ndim = int(nsides+1)

Pen = 50000

maxiter = 500

vmax = numpy.asarray(vmax)

 #all_the_leftxcorn = [[] for i in range(int(nswarm))]

 #all_the_rightxcorn = [[] for i in range(int(nswarm))]

 #all_the_topzcorn = [[] for i in range(int(nswarm))]

 #all_the_botzcorn = [[] for i in range(int(nswarm))]

 #all_the_rho = [[] for i in range(int(nswarm))]

log_pbestg = [[]for i in range(int(nswarm))]

log_pbestv = []

loggbest = []

logGbest=numpy.zeros([maxiter,ndim,2])

mid1 = []

mid2 = []

 #log_values =[]

swarm = numpy.zeros((nswarm,ndim,2))

 # initialize the swarm

change here###### change here

increment = 360/nsides

radius = numpy.arange(1.0,40)

yincr = numpy.arange(1,80)

Rhorange = numpy.arange(500.0,3001,0.01)

angles = numpy.zeros(ndim)

X = numpy.zeros([nswarm, ndim])

Y = numpy.zeros([nswarm,ndim])

for m in numpy.arange(ndim):

	angles[m]+=(increment*m)*(numpy.pi/180.0)

#at the end of x and y

for i in numpy.arange(nswarm):

 rr = rand.choice(radius)

 ry = rand.choice(yincr)

 x = numpy.zeros((nsides+1))

 y = numpy.zeros((nsides+1))

 for b in numpy.arange(nsides):

 x[b] = numpy.cos(angles[b])*(rr*si.rand())

 y[b] = (numpy.sin(angles[b])*(rr*si.rand()))+ry

 swarm[i,b,0]=x[b]

 swarm[i,b,1]=y[b]

 swarm[i,6,0]= rand.choice(Rhorange)

 swarm[i,6,1]= swarm[i,6,0]

vectors = numpy.zeros([nswarm,(ndim),2])

thetas = numpy.zeros([nswarm,(ndim-1),1])

values= numpy.zeros(nswarm)

gravity = numpy.zeros([nswarm,len(Dobs)])

change here###### change here

for n in numpy.arange(nswarm):

 p0 = swarm[n,0]

 p1 = swarm[n,1]

 p2 = swarm[n,2]

 p3 = swarm[n,3]

 p4 = swarm[n,4]

 p5 = swarm[n,5]

 rho = swarm[n,6,0]

 a = Point(p0[0],p0[1])

 b = Point(p1[0],p1[1])

 c = Point(p2[0],p2[1])

 d = Point(p3[0],p3[1])

 e = Point(p4[0],p4[1])

 f = Point(p5[0],p5[1])

put in code to make each particle a feasable solution.

 sides = [a,b,c,d,e,f,a,b,c,d,e,f]

 points = [p0,p1,p2,p3,p4,p5,p0]

 points = numpy.asarray(points)

 i=0

 for i in numpy.arange(ndim):

 if points[i,0]< -30.0:

 points[i,0]=-30.0

 if points[i,0]> 30.0:

 points[i,0]= 30.0

 if points[i,1]< 5.0:

 points[i,1]=5.0

 if points[i,1]> 100:

 points[i,1]= 100

 if rho<500:

 rho=500.0

 if rho>3000:

 rho = 3000.0

 i = 0

 for i in numpy.arange(ndim-1):

 vectors[n,i] = (points[i+1]-points[i])

 vectors[n,(ndim-1)] = vectors[n,0]

 i=0

 for i in numpy.arange(ndim-1):

 cross = numpy.cross(vectors[n,i],vectors[n,(i+1)])

 if cross<0:

 vxy = vectors[n,i,0]*vectors[n,(i+1),0] + vectors[n,i,1]*vectors[n,(i+1),1]

 vx = (vectors[n,i,0]**2+vectors[n,i,1]**2)**0.5

 vy = (vectors[n,(i+1),0]**2+vectors[n,(i+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,i] = -1*(rad*(180.0/numpy.pi))

 else:

 vxy = vectors[n,i,0]*vectors[n,(i+1),0] + vectors[n,i,1]*vectors[n,(i+1),1]

 vx = (vectors[n,i,0]**2+vectors[n,i,1]**2)**0.5

 vy = (vectors[n,(i+1),0]**2+vectors[n,(i+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,i] = rad*(180.0/numpy.pi)

 ###

 func1(p0,p1,p2,p3,p4,p5,rho)

 gravity[n]=grav

 del grav[0:len(grav)]

 n+=1

j=0

for j in numpy.arange(nswarm):

 values[j] = (sum((Dobs - gravity[j])**2))/StandardDev

pbestv = numpy.zeros(nswarm)

i=0

for i in numpy.arange(nswarm):

 pbestv[i] = values[i]

pbest = numpy.array(swarm)

initialize the "global best" values

gbesti = numpy.argmin(pbestv)

gbestv = numpy.minimum.reduce(pbestv)

gbest = pbest[gbesti]

initialize velocity function

velocities = numpy.zeros((nswarm,ndim,2))

#velocities2 = numpy.zeros(((nswarm/2.0),ndim,2))

#velocities1 = numpy.zeros(((nswarm/2.0),ndim,2))

i=0

print datetime.time(datetime.now())

for i in numpy.arange(maxiter):

 t = time.clock()

 logGbest[i] = gbest

 if i%100==0:

 print datetime.time(datetime.now())

 print i

 print "current gbest",gbest

 print "current gbestv",gbestv

 values= numpy.zeros(nswarm)

 vectors = numpy.zeros([nswarm,(ndim),2])

 thetas = numpy.zeros([nswarm,(ndim-1),1])

 feasabilty = numpy.zeros(nswarm)

 ###### change here###### change here

 for n in numpy.arange(nswarm):

 p0 = swarm[n,0]

 p1= swarm[n,1]

 p2 = swarm[n,2]

 p3 = swarm[n,3]

 p4 = swarm[n,4]

 p5 = swarm[n,5]

 rho = swarm[n,6,0]

 a = Point(p0[0],p0[1])

 b = Point(p1[0],p1[1])

 c = Point(p2[0],p2[1])

 d = Point(p3[0],p3[1])

 e = Point(p4[0],p4[1])

 f = Point(p5[0],p5[1])

 sides = [a,b,c,d,e,f,a,b,c,d,e,f]

 points = [p0,p1,p2,p3,p4,p5,p0]

 points = numpy.asarray(points)

 for q in numpy.arange(ndim-1):

 vectors[n,q] = (points[q+1]-points[q])

 vectors[n,(ndim-1)] = vectors[n,0]

 for w in numpy.arange(ndim-1):

 cross = numpy.cross(vectors[n,w],vectors[n,(w+1)])

 if cross<0:

 vxy = vectors[n,w,0]*vectors[n,(w+1),0] + vectors[n,w,1]*vectors[n,(w+1),1]

 vx = (vectors[n,w,0]**2+vectors[n,w,1]**2)**0.5

 vy = (vectors[n,(w+1),0]**2+vectors[n,(w+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,w] = -1*(rad*(180.0/numpy.pi))

 else:

 vxy = vectors[n,w,0]*vectors[n,(w+1),0] + vectors[n,w,1]*vectors[n,(w+1),1]

 vx = (vectors[n,w,0]**2+vectors[n,w,1]**2)**0.5

 vy = (vectors[n,(w+1),0]**2+vectors[n,(w+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,w] = rad*(180.0/numpy.pi)

 #print thetas

 for e in numpy.arange(nswarm):

 for l in numpy.arange(ndim-1):

 if swarm[e,l,0]<-30.0:

 feasabilty[e]+=Pen

 #print 'e',e,'l',l,'1'

 if swarm[e,l,0]> 30.0:

 feasabilty[e]+=Pen

 #print 'e',e,'l',l, '2'

 if swarm[e,l,1]<5:

 feasabilty[e]+=Pen

 #print 'e',e,'l',l, '3'

 if swarm[e,l,1]>100.0:

 feasabilty[e]+=Pen

 #print 'e',e,'l',l, '4'

 if swarm[e,(nsides),0]<500:

 feasabilty[e]+=Pen

 #print 'e',e, '5'

 if swarm[e,(nsides),0]>3000:

 feasabilty[e]+=Pen

 #print 'e',e, '6'

 for k in numpy.arange(len(thetas[0])):

 if abs(thetas[e,k]) < 0.1:

 thetas[e,k]=0.1

 S = int(sum(thetas[e]))

 for r in numpy.arange(len(thetas[0])):

 if abs(thetas[e,r]) < 10.0:

 feasabilty[e]+=Pen

 if abs(thetas[e,r]) > 170.0:

 feasabilty[e]+=Pen

 #print 'e',e,'r',r, '7'

 #print 'S',S,'intS',int(sum(thetas[n]))

 if int(sum(thetas[e]))==359:

 S = int(360.0)

 if S!=int(360.0):

 feasabilty[e]+=Pen

 # print 'e',e, '8'

 if S == int(360.0):

 for t in numpy.arange((ndim-1)):

 #print 'j',j

 #print intersect(sides[j],sides[j+1],sides[j+2],sides[j+3]),'1','j',j

 #print intersect(sides[j],sides[j+1],sides[j+3],sides[j+4]),'2','j',j

 if intersect(sides[t],sides[t+1],sides[t+2],sides[t+3]):

 feasabilty[e]+=Pen

 #print 'e',e,'9'

 if intersect(sides[t],sides[t+1],sides[t+3],sides[t+4]):

 feasabilty[e]+=Pen

 #print 'e',e,'10'

 # print swarm

 #print feasabilty

 ppservers = ()

 #ppservers = ("10.0.0.1",)

 if len(sys.argv) > 1:

 ncpus = int(sys.argv[1])

 # Creates jobserver with ncpus workers

 job_server = pp.Server(ncpus, ppservers=ppservers)

 else:

 # Creates jobserver with automatically detected number of workers

 job_server = pp.Server(ppservers=ppservers)

 #print "Starting pp with", job_server.get_ncpus(), "workers"

#works to here

 inputs = tuple(swarm)

 start_time = time.time()

 jobs = [(raw_input, job_server.submit(func2,(raw_input,grav), (), ("numpy",))) for raw_input in inputs]

 for raw_input, job in jobs:

 r = job()

 jobsList.append(r)

 #print "swarm", raw_input, "is",r[0],'nsawrm',nswarm

 #print "Time elapsed: ", time.time() - start_time, "s"

 #job_server.print_stats()

 for y in numpy.arange(nswarm):

 gravity[y] = jobsList[y]

 #print gravity[n,0]

 del grav[0:len(grav)]

 del jobsList[0:len(jobsList)]

 ##########destroys severs and open files############

 job_server.destroy()

 for u in numpy.arange(nswarm):

 values[u] = (sum((Dobs - gravity[u])**2) + feasabilty[u])/StandardDev

 for p in numpy.arange(nswarm):

 #if feasabilty[p]<1.0:

 mask = values[p] < pbestv[p]

 mask2d = numpy.repeat(mask, (ndim*2))

 mask2d = mask2d.reshape([ndim,2])

 pbestv[p] = numpy.where(mask, values[p], pbestv[p])

 pbest = numpy.where(mask2d, swarm, pbest)

 log_pbestg[p].append(pbestv[p])

 log_pbestv.append(pbestv)

 if numpy.minimum.reduce(pbestv) < gbestv:

 gbesti = numpy.argmin(pbestv)

 gbestv = pbestv[gbesti]

 gbest = pbest[gbesti]

 loggbest.append(gbestv)

 #logGbest[i] = gbest

##

#2 velocities code

##

 #if K1<0.4:

 #K1 = 0.4

 #S = swarm[0:(nswarm/2.0)]

 #S1 = swarm[(nswarm/2.0):nswarm]

 #P = pbest[0:(nswarm/2.0)]

 #P1= pbest[(nswarm/2.0):nswarm]

 #velocities1 = K*(velocities1 + (cp*si.rand()*(P - S)) +

 #(cg*si.rand()*(gbest - S)))

 #velocities2 = (velocities2 + (cp*si.rand()*(P1 - S1)) +

 #(cg*si.rand()*(gbest - S1)))

 #K1 = K1-(K1/maxiter)

 #velocities2 = numpy.clip(velocities2,-5.0,5.0)

 #velocities1[numpy.logical_and(velocities1>=0.0,velocities1<0.025)]=0.025

 #velocities1[numpy.logical_and(velocities1<0.0,velocities1>-0.025)]=-0.025

 #print 'velocities',i,velocities

 #velocities[0:(nswarm/2.0)]=velocities1

 #velocities[(nswarm/2.0):nswarm]=velocities2

##

 velocities = K*(velocities + (cp*si.rand()*(pbest - swarm)) +

 (cg*si.rand()*(gbest - swarm)))

 swarm+=velocities

 t1 = time.clock()

 dt = t1-t

 iter_time.append(dt)

 gbestlist.append(gbestv)

 if gbestv < 1e-1:

 print i,gbest,gbestv,'time for average iteration', (sum(iter_time)/float

(maxiter)),'sum iteration time to complete = ', sum(iter_time),'seconds',(sum

(iter_time)/60.0),'minutes'

 #return 'f'

print datetime.time(datetime.now())

print 'current gbest',gbest

print 'current gbestv',gbestv,'feasabilty',feasabilty

print 'time for average iteration', (sum(iter_time)/float(maxiter))

print 'sum iteration time to complete = ', sum(iter_time),'seconds',(sum

(iter_time)/60.0),'minutes'

"""former = numpy.minimum.reduce(gbestvlist)

arg = numpy.argmin(gbestvlist)

print 'former gbest',gbestlist2[arg]

print 'former gbestv',former

x = numpy.arange(1000)

import pylab as pl

for i in numpy.arange(400):

	pl.plot(x,log_pbestg[i])

pl.xlabel('iteration')

pl.ylabel('misfit')

pl.axis([0,100,0,200000])

pl.show()

x = numpy.zeros([nswarm,ndim])

y = numpy.zeros([nswarm,ndim])

for i in numpy.arange(nswarm):

	for j in numpy.arange(ndim):

		x[i,j]=swarm[i,j,0]

		y[i,j]=swarm[i,j,1]

	x[i,5]=swarm[i,0,0]

	y[i,5]=swarm[i,0,1]"""

####plots the shapes of all the Gbests ##########

"""x = numpy.zeros([maxiter,ndim])

y = numpy.zeros([maxiter,ndim])

for i in numpy.arange(maxiter):

	for j in numpy.arange(ndim):

		x[i,j]=logGbest[i,j,0]

		y[i,j]=logGbest[i,j,1]

	x[i,6]=logGbest[i,0,0]

	y[i,6]=logGbest[i,0,1]

for i in numpy.arange(maxiter):

	pl.plot(x[i],y[i],x[i],y[i],'o')

i = 499

pl.plot(x[i],y[i],x[i],y[i],'o')

pl.show()"""

9-appendix B/Chapter 5 results and codes/codes/start_up.py

import numpy

import scipy as si

import random as rand

import time

import sys,pp

import pylab as pl

class Point:

	def __init__(self,x,y):

		self.x = x

		self.y = y

def func1(p0,p1,p2,p3,p4,rho):

 x = numpy.arange(-30.0,30,0.5)

 """z = numpy.zeros(120)

 xz = np.zeros([120,2])

 for i in numpy.arange(120):

	xz[i]= [x[i],z[i]]"""

 points = [p0,p1,p2,p3,p4,p0]

 points = numpy.asarray(points)

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 for i in numpy.arange(len(x)):

 sum_lines = 0.0

 for n in numpy.arange(len(points)-1):

 x1 = points[n,0]-x[i]

 x2 = points[(n+1),0]-x[i]

 z1 = points[n,1]

 z2 = points[(n+1),1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = numpy.arctan2(z1,x1)

 O2 = numpy.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = numpy.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

 #print grav

def func2(raw_input,grav):

 p0=raw_input[0]

 p1=raw_input[1]

 p2=raw_input[2]

 p3=raw_input[3]

 p4=raw_input[4]

 rho=raw_input[5,0]

 rho=rho

 x = numpy.arange(-30.0,30,0.5)

 points = [p0,p1,p2,p3,p4,p0]

 points = numpy.asarray(points)

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 for i in numpy.arange(len(x)):

 sum_lines = 0.0

 for n in numpy.arange(len(points)-1):

 x1 = points[n,0]-x[i]

 x2 = points[(n+1),0]-x[i]

 z1 = points[n,1]

 z2 = points[(n+1),1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = numpy.arctan2(z1,x1)

 O2 = numpy.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = numpy.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

 #print len(grav),grav[0]

 return grav

def ccw(A,B,C):

	return (C.y-A.y)*(B.x-A.x) > (B.y-A.y)*(C.x-A.x)

def intersect(A,B,C,D):

	return ccw(A,C,D) != ccw(B,C,D) and ccw(A,B,C) != ccw(A,B,D)

#medium noise

Dobs = (109.91921057, 112.39578681, 112.88728591, 114.36964029, 117.41962808, 116.59963764, 122.20748684, 122.6157619, 125.1361481, 126.95730783, 128.74944347, 129.40314113, 134.03858021, 131.85675219, 136.60140431, 138.90666935, 139.59752147, 143.35112715, 142.43716812, 149.87539158, 147.8291828, 150.81422823, 154.78055746, 156.53614168, 156.14983255, 159.13423982, 157.26669295, 164.39781061, 164.93979332, 167.25080831, 168.86763125, 171.35481238, 175.53283956, 175.29054461, 180.44220571, 185.79981776, 180.55717654, 185.16357033, 187.08283063, 184.64159257, 186.88930516, 191.35424312, 195.58351845, 197.56572955, 196.00059693, 195.10878934, 196.50262231, 200.17795198, 201.04006624, 198.1656162, 201.45246411, 201.32340674, 205.78196898, 206.53679443, 207.55762735, 208.96210844, 207.72706591, 204.81964079, 206.48873447, 213.62815628, 207.0157016, 206.8992808, 206.70553747, 205.05107034, 206.44739717, 210.05303829, 207.13069382, 205.24973928, 205.41131433, 205.16656879, 202.09184208, 202.04697206, 202.03779365, 196.53384097, 200.35071069, 195.18149818, 196.63690015, 189.19473644, 193.10620447, 192.52072723, 191.54618856, 189.20775196, 189.13900563, 186.93659269, 181.79405053, 180.39383179, 174.60768441, 172.89259837, 176.36320927, 173.51541412, 168.27985075, 168.27701062, 162.6121459, 163.91412579, 161.6516811, 156.00867281, 156.38947743, 157.11794662, 153.45291687, 150.34127402, 151.64064352, 145.64051283, 143.62612562, 144.20932123, 140.26505419, 141.00728236, 136.49063421, 132.48099608, 131.50638655, 131.23814172, 132.40071819, 128.61419216, 124.25376507, 121.13274777, 122.19576832, 114.47503558, 118.22905879, 114.9609955, 112.74150327, 114.44495947)

#Low noise included in this Dobs

#Dobs = (111.56802561, 109.90352664, 112.52148439, 118.75377529, 117.86136749, 119.80164884, 121.91396166, 120.28311401, 123.87352161, 126.57619053, 128.41513447, 130.44492598, 131.49391913, 133.00006734, 136.53361312, 137.49840764, 138.33280029, 141.131328, 144.87316662, 146.50696519, 148.34607509, 151.62706042, 154.12794745, 156.53119364, 156.08253866, 158.98018481, 161.96593136, 164.18366212, 167.06688758, 167.06443621, 170.54728224, 172.80671658, 174.42632294, 175.23069316, 177.93356742, 181.05877302, 180.95219846, 184.30712363, 187.00735796, 189.03962383, 190.39610523, 188.31974099, 192.14635262, 192.21719384, 196.78223067, 198.22913311, 199.22635344, 200.96930761, 200.81804702, 202.67177149, 203.13842608, 203.23359106, 206.55048539, 205.32585129, 205.83268911, 207.64217985, 206.97524417, 207.11101819, 207.10845052, 207.17910455, 207.08198576, 208.0594213, 207.20203736, 206.07771031, 205.72057903, 206.08773439, 205.18125995, 205.410833, 205.85669928, 204.04096342, 202.5177061, 200.35205505, 198.68853649, 200.17061902, 198.54696079, 199.63226103, 195.7234987, 192.88507255, 192.6373797, 191.19562539, 189.41685291, 187.48549026, 184.48942771, 184.37055892, 181.12399878, 178.32705851, 177.36746256, 174.78659879, 174.442985, 172.40396364, 171.21007082, 168.16652382, 166.12338313, 163.70618609, 164.28234502, 159.77452431, 158.40264832, 154.42946432, 151.80384302, 150.0203212, 148.95383026, 146.47793227, 146.14912221, 140.91394092, 140.77590782, 137.99597797, 135.68297373, 134.00424374, 133.59750284, 130.88393378, 127.66222859, 127.16903429, 124.66185086, 123.00540507, 121.14549499, 119.16624463, 116.9653962, 115.69092923, 113.96477695, 110.75928684)

#old Dobs noise free

#Dobs = (109.88320762381966, 111.60783335993007, 113.35834221620421, 115.13456776894542, 116.93628701618091, 118.76321600909863, 120.61500530167685, 122.49123522863862, 124.39141102543726, 126.31495780798524, 128.26121543432961, 130.22943327544553, 132.21876492775044, 134.22826290581276, 136.25687336001329, 138.30343087051418, 140.3666533757434, 142.44513730056443, 144.53735295622516, 146.6416402908784, 148.75620507572009, 150.8791156173364, 153.00830009141563, 155.1415445962505, 157.27649202611175, 159.41064186430989, 161.54135099325043, 163.6658356137707, 165.78117435831163, 167.88431267185715, 169.97206852104071, 172.04113947543007, 174.08811118594659, 176.1094672640005, 178.10160054169609, 180.06082566898266, 181.98339297863205, 183.86550352521553, 185.70332518066701, 187.49300964745959, 189.23071023165656, 190.91260020287586, 192.53489155709977, 194.09385399166544, 195.58583389987621, 197.00727319546115, 198.3547277843054, 199.6248855120387, 200.81458343056991, 201.9208242437017, 202.94079181073874, 203.87186560658208, 204.71163405635909, 205.45790668133475, 206.10872501001742, 206.66237222344185, 207.11738151619693, 207.47254316463003, 207.72691030077706, 207.87980339501513, 207.93081345250727, 207.87980392857946, 207.72691136673271, 207.47254476063637, 207.11738363875639, 206.66237486791479, 206.10872817064458, 205.45791035126271, 204.71163822767238, 203.87187027034039, 202.9407969570189, 201.92082986164519, 200.81458950843549, 199.62489203725926, 198.35473474354987, 197.0072805747005, 195.58584168445236, 194.0938621663644, 192.53490010622605, 190.91260911032981, 189.2307194810125, 187.49301922204401, 185.70333506363693, 183.86551369963493, 181.98340342754719, 180.06083637549392, 178.10161148902813, 176.1094784355659, 174.0881225654071, 172.04115104675279, 169.9720802685475, 167.88432458027054, 165.78118641279409, 163.66584779995836, 161.54136329728163, 159.41065427284735, 157.27650452636081, 155.14155717597174, 153.00831273893249, 150.87912832153876, 148.75621782606476, 146.64165307738435, 144.53736576946721, 142.4451501316627, 140.36666621635226, 138.30344371280754, 136.25688619666894, 134.22827572999566, 132.21877773309359, 130.22944605603249, 128.26122818467428, 126.31497052301255, 124.39142370046301, 122.49124785934993, 120.61501788411363, 118.76322853963309, 116.93629949149988, 115.13458018603143, 113.35835457231856, 111.6078456525953)

grav = []

iter_time = []

jobsList = []

gbestlist=[]

gbestvlist=[]

cg = 1.3

cp = 2.8

phi = cp+cg

K = 2/abs(2-phi-(phi**2-4*phi)**0.5)

StandardDev = 1

vmax =30

nswarm = 400

ndim = 6

maxiter = 1000

vmax = numpy.asarray(vmax)

 #all_the_leftxcorn = [[] for i in range(int(nswarm))]

 #all_the_rightxcorn = [[] for i in range(int(nswarm))]

 #all_the_topzcorn = [[] for i in range(int(nswarm))]

 #all_the_botzcorn = [[] for i in range(int(nswarm))]

 #all_the_rho = [[] for i in range(int(nswarm))]

log_pbestg = [[]for i in range(int(nswarm))]

log_pbestv = []

loggbest = []

logGbest=numpy.zeros([maxiter,ndim,2])

mid1 = []

mid2 = []

 #log_values =[]

swarm = numpy.zeros((nswarm,ndim,2))

 # initialize the swarm

Xrange0 = numpy.arange(-30,-9.99,0.01)

Xrange1 = numpy.arange(-9.99,10.01,0.01)

Xrange2 = numpy.arange(10.01,30.01,0.01)

Xrange3= numpy.arange(-30.0,0.01,0.01)

Xrange4 = numpy.arange(0.01,30.01,0.01)

Zrange0 = numpy.arange(5.001,50.01,0.01)

Zrange1 = numpy.arange(50.01,100.01,0.01)

Rhorange = numpy.arange(500.0,3001,0.01)

for i in numpy.arange(nswarm):

 swarm[i,0,0]=rand.choice(Xrange3)

 swarm[i,0,1]=rand.choice(Zrange0)

 swarm[i,1,0]=rand.choice(Xrange4)

 swarm[i,1,1]=rand.choice(Zrange0)

 swarm[i,2,0]=rand.choice(Xrange2)

 swarm[i,2,1]=rand.choice(Zrange1)

 swarm[i,3,0]=rand.choice(Xrange1)

 swarm[i,3,1]=rand.choice(Zrange1)

 swarm[i,4,0]=rand.choice(Xrange0)

 swarm[i,4,1]=rand.choice(Zrange1)

 swarm[i,5,0]= rand.choice(Rhorange)

 swarm[i,5,1]= swarm[i,5,0]

vectors = numpy.zeros([nswarm,(ndim),2])

thetas = numpy.zeros([nswarm,(ndim-1),1])

values= numpy.zeros(nswarm)

gravity = numpy.zeros([nswarm,len(Dobs)])

for n in numpy.arange(nswarm):

 p0 = swarm[n,0]

 p1 = swarm[n,1]

 p2 = swarm[n,2]

 p3 = swarm[n,3]

 p4 = swarm[n,4]

 rho = swarm[n,5,0]

 a = Point(p0[0],p0[1])

 b = Point(p1[0],p1[1])

 c = Point(p2[0],p2[1])

 d = Point(p3[0],p3[1])

 e = Point(p4[0],p4[1])

put in code to make each particle a feasable solution.

 sides = [a,b,c,d,e,a,b,c,d,e]

 points = [p0,p1,p2,p3,p4,p0]

 points = numpy.asarray(points)

 i=0

 for i in numpy.arange(ndim):

 if points[i,0]< -30.0:

 points[i,0]=-30.0

 if points[i,0]> 30.0:

 points[i,0]= 30.0

 if points[i,1]< 5.0:

 points[i,1]=5.0

 if points[i,1]> 100:

 points[i,1]= 100

 if rho<500:

 rho=500.0

 if rho>3000:

 rho = 3000.0

 i = 0

 for i in numpy.arange(ndim-1):

 vectors[n,i] = (points[i+1]-points[i])

 vectors[n,(ndim-1)] = vectors[n,0]

 i=0

 for i in numpy.arange(ndim-1):

 cross = numpy.cross(vectors[n,i],vectors[n,(i+1)])

 if cross<0:

 vxy = vectors[n,i,0]*vectors[n,(i+1),0] + vectors[n,i,1]*vectors[n,(i+1),1]

 vx = (vectors[n,i,0]**2+vectors[n,i,1]**2)**0.5

 vy = (vectors[n,(i+1),0]**2+vectors[n,(i+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,i] = -1*(rad*(180.0/numpy.pi))

 else:

 vxy = vectors[n,i,0]*vectors[n,(i+1),0] + vectors[n,i,1]*vectors[n,(i+1),1]

 vx = (vectors[n,i,0]**2+vectors[n,i,1]**2)**0.5

 vy = (vectors[n,(i+1),0]**2+vectors[n,(i+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,i] = rad*(180.0/numpy.pi)

 ###

 func1(p0,p1,p2,p3,p4,rho)

 gravity[n]=grav

 del grav[0:len(grav)]

 n+=1

j=0

for j in numpy.arange(nswarm):

 values[j] = (sum((Dobs - gravity[j])**2))/StandardDev

pbestv = numpy.zeros(nswarm)

i=0

for i in numpy.arange(nswarm):

 pbestv[i] = values[i]

pbest = numpy.array(swarm)

initialize the "global best" values

gbesti = numpy.argmin(pbestv)

gbestv = numpy.minimum.reduce(pbestv)

gbest = pbest[gbesti]

initialize velocity function

velocities = numpy.zeros((nswarm,ndim,2))

velocities2 = numpy.zeros(((nswarm/2.0),ndim,2))

velocities1 = numpy.zeros(((nswarm/2.0),ndim,2))

i=0

for i in numpy.arange(maxiter):

 t = time.clock()

 logGbest[i] = gbest

 if i%100==0:

 print i

 print "current gbest",gbest

 print "current gbestv",gbestv

 values= numpy.zeros(nswarm)

 vectors = numpy.zeros([nswarm,(ndim),2])

 thetas = numpy.zeros([nswarm,(ndim-1),1])

 feasabilty = numpy.zeros(nswarm)

 for n in numpy.arange(nswarm):

 p0 = swarm[n,0]

 p1= swarm[n,1]

 p2 = swarm[n,2]

 p3 = swarm[n,3]

 p4 = swarm[n,4]

 rho = swarm[n,5,0]

 a = Point(p0[0],p0[1])

 b = Point(p1[0],p1[1])

 c = Point(p2[0],p2[1])

 d = Point(p3[0],p3[1])

 e = Point(p4[0],p4[1])

 sides = [a,b,c,d,e,a,b,c,d,e]

 points = [p0,p1,p2,p3,p4,p0]

 points = numpy.asarray(points)

 for q in numpy.arange(ndim-1):

 vectors[n,q] = (points[q+1]-points[q])

 vectors[n,(ndim-1)] = vectors[n,0]

 for w in numpy.arange(ndim-1):

 cross = numpy.cross(vectors[n,w],vectors[n,(w+1)])

 if cross<0:

 vxy = vectors[n,w,0]*vectors[n,(w+1),0] + vectors[n,w,1]*vectors[n,(w+1),1]

 vx = (vectors[n,w,0]**2+vectors[n,w,1]**2)**0.5

 vy = (vectors[n,(w+1),0]**2+vectors[n,(w+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,w] = -1*(rad*(180.0/numpy.pi))

 else:

 vxy = vectors[n,w,0]*vectors[n,(w+1),0] + vectors[n,w,1]*vectors[n,(w+1),1]

 vx = (vectors[n,w,0]**2+vectors[n,w,1]**2)**0.5

 vy = (vectors[n,(w+1),0]**2+vectors[n,(w+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,w] = rad*(180.0/numpy.pi)

 #print thetas

 for e in numpy.arange(nswarm):

 for l in numpy.arange(ndim-1):

 if swarm[e,l,0]<-30.0:

 feasabilty[e]+=5000

 #print 'e',e,'l',l,'1'

 if swarm[e,l,0]> 30.0:

 feasabilty[e]+=5000

 #print 'e',e,'l',l, '2'

 if swarm[e,l,1]<5:

 feasabilty[e]+=5000

 #print 'e',e,'l',l, '3'

 if swarm[e,l,1]>100.0:

 feasabilty[e]+=5000

 #print 'e',e,'l',l, '4'

 if swarm[e,5,0]<500:

 feasabilty[e]+=5000

 #print 'e',e, '5'

 if swarm[e,5,0]>3000:

 feasabilty[e]+=5000

 #print 'e',e, '6'

 """for k in numpy.arange(len(thetas[0])):

 if abs(thetas[e,k]) < 0.1:

 thetas[e,k]=0.1"""

 S = int(sum(thetas[e]))

 for r in numpy.arange(len(thetas[0])):

 if abs(thetas[e,r]) < 10.0:

 feasabilty[e]+=5000

 if abs(thetas[e,r]) > 170.0:

 feasabilty[e]+=5000

 #print 'e',e,'r',r, '7'

 #print 'S',S,'intS',int(sum(thetas[n]))

 if int(sum(thetas[e]))==359:

 S = int(360.0)

 if S!=int(360.0):

 feasabilty[e]+=5000

 # print 'e',e, '8'

 if S == int(360.0):

 for t in numpy.arange((ndim-1)):

 #print 'j',j

 #print intersect(sides[j],sides[j+1],sides[j+2],sides[j+3]),'1','j',j

 #print intersect(sides[j],sides[j+1],sides[j+3],sides[j+4]),'2','j',j

 if intersect(sides[t],sides[t+1],sides[t+2],sides[t+3]):

 feasabilty[e]+=5000

 #print 'e',e,'9'

 if intersect(sides[t],sides[t+1],sides[t+3],sides[t+4]):

 feasabilty[e]+=5000

 #print 'e',e,'10'

 # print feasabilty

 ppservers = ()

 #ppservers = ("10.0.0.1",)

 if len(sys.argv) > 1:

 ncpus = int(sys.argv[1])

 # Creates jobserver with ncpus workers

 job_server = pp.Server(ncpus, ppservers=ppservers)

 else:

 # Creates jobserver with automatically detected number of workers

 job_server = pp.Server(ppservers=ppservers)

 #print "Starting pp with", job_server.get_ncpus(), "workers"

#works to here

 inputs = tuple(swarm)

 start_time = time.time()

 jobs = [(raw_input, job_server.submit(func2,(raw_input,grav), (), ("numpy",))) for raw_input in inputs]

 for raw_input, job in jobs:

 r = job()

 jobsList.append(r)

 #print "swarm", raw_input, "is",r[0],'nsawrm',nswarm

 #print "Time elapsed: ", time.time() - start_time, "s"

 #job_server.print_stats()

 for y in numpy.arange(nswarm):

 gravity[y] = jobsList[y]

 #print gravity[n,0]

 del grav[0:len(grav)]

 del jobsList[0:len(jobsList)]

 ##########destroys severs and open files############

 job_server.destroy()

 for u in numpy.arange(nswarm):

 values[u] = (sum((Dobs - gravity[u])**2) + feasabilty[u])

 for p in numpy.arange(nswarm):

 #if feasabilty[p]<1.0:

 mask = values[p] < pbestv[p]

 mask2d = numpy.repeat(mask, (ndim*2))

 mask2d = mask2d.reshape([6,2])

 pbestv[p] = numpy.where(mask, values[p], pbestv[p])

 pbest = numpy.where(mask2d, swarm, pbest)

 log_pbestg[p].append(pbestv[p])

 log_pbestv.append(pbestv)

 if numpy.minimum.reduce(pbestv) < gbestv:

 gbesti = numpy.argmin(pbestv)

 gbestv = pbestv[gbesti]

 gbest = pbest[gbesti]

 loggbest.append(gbestv)

 logGbest[i] = gbest

 #if K1<0.4:

 #K1 = 0.4

 S = swarm[0:(nswarm/2.0)]

 S1 = swarm[(nswarm/2.0):nswarm]

 P = pbest[0:(nswarm/2.0)]

 P1= pbest[(nswarm/2.0):nswarm]

 velocities1 = K*(velocities1 + (cp*si.rand()*(P - S)) +

 (cg*si.rand()*(gbest - S)))

 velocities2 = (velocities2 + (cp*si.rand()*(P1 - S1)) +

 (cg*si.rand()*(gbest - S1)))

 #K1 = K1-(K1/maxiter)

 velocities2 = numpy.clip(velocities2,-5.0,5.0)

 velocities1[numpy.logical_and(velocities1>=0.0,velocities1<0.025)]=0.025

 velocities1[numpy.logical_and(velocities1<0.0,velocities1>-0.025)]=-0.025

 #print 'velocities',i,velocities

 velocities[0:(nswarm/2.0)]=velocities1

 velocities[(nswarm/2.0):nswarm]=velocities2

 swarm+=velocities

 t1 = time.clock()

 dt = t1-t

 iter_time.append(dt)

 gbestlist.append(gbestv)

 if gbestv < 1e-1:

 print i,gbest,gbestv,'time for average iteration', (sum(iter_time)/float

(maxiter)),'sum iteration time to complete = ', sum(iter_time),'seconds',(sum

(iter_time)/60.0),'minutes'

 #return 'f'

print 'current gbest',gbest

print 'current gbestv',gbestv,'feasabilty',feasabilty

print 'time for average iteration', (sum(iter_time)/float(maxiter))

print 'sum iteration time to complete = ', sum(iter_time),'seconds',(sum

(iter_time)/60.0),'minutes'

"""former = numpy.minimum.reduce(gbestvlist)

arg = numpy.argmin(gbestvlist)

print 'former gbest',gbestlist2[arg]

print 'former gbestv',former"""

"""x = numpy.arange(1000)

import pylab as pl

for i in numpy.arange(400):

	pl.plot(x,log_pbestg[i])

pl.xlabel('iteration')

pl.ylabel('misfit')

pl.axis([0,100,0,200000])

pl.show()

"""

"""x = numpy.zeros([nswarm,ndim])

y = numpy.zeros([nswarm,ndim])

for i in numpy.arange(nswarm):

	for j in numpy.arange(ndim):

		x[i,j]=swarm[i,j,0]

		y[i,j]=swarm[i,j,1]

	x[i,5]=swarm[i,0,0]

	y[i,5]=swarm[i,0,1]"""

####plots the shapes of all the Gbests ##########

x = numpy.zeros([maxiter,ndim])

y = numpy.zeros([maxiter,ndim])

for i in numpy.arange(maxiter):

	for j in numpy.arange(ndim):

		x[i,j]=logGbest[i,j,0]

		y[i,j]=logGbest[i,j,1]

	x[i,5]=logGbest[i,0,0]

	y[i,5]=logGbest[i,0,1]

"""for i in numpy.arange(maxiter):

	pl.plot(x[i],y[i],x[i],y[i],'o')"""

i = 999

pl.plot(x[i],y[i],x[i],y[i],'o')

pl.show()

9-appendix B/Chapter 5 results and codes/codes/start_up4.py

import numpy as numpy

import scipy as si

import random as rand

import time

import sys,pp

import pylab as pl

from datetime import datetime

class Point:

	def __init__(self,x,y):

		self.x = x

		self.y = y

change here###### change here

def func1(p0,p1,p2,p3,rho):

 x = numpy.arange(-30.0,30,0.5)

 """z = numpy.zeros(120)

 xz = np.zeros([120,2])

 for i in numpy.arange(120):

	xz[i]= [x[i],z[i]]"""

 points = [p0,p1,p2,p3,p0]

 points = numpy.asarray(points)

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 for i in numpy.arange(len(x)):

 sum_lines = 0.0

 for n in numpy.arange(len(points)-1):

 x1 = points[n,0]-x[i]

 x2 = points[(n+1),0]-x[i]

 z1 = points[n,1]

 z2 = points[(n+1),1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = numpy.arctan2(z1,x1)

 O2 = numpy.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = numpy.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

 #print grav

def func2(raw_input,grav):

 p0=raw_input[0]

 p1=raw_input[1]

 p2=raw_input[2]

 p3=raw_input[3]

 rho=raw_input[4,0]

 rho=rho

 x = numpy.arange(-30.0,30,0.5)

 points = [p0,p1,p2,p3,p0]

 points = numpy.asarray(points)

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 for i in numpy.arange(len(x)):

 sum_lines = 0.0

 for n in numpy.arange(len(points)-1):

 x1 = points[n,0]-x[i]

 x2 = points[(n+1),0]-x[i]

 z1 = points[n,1]

 z2 = points[(n+1),1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = numpy.arctan2(z1,x1)

 O2 = numpy.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = numpy.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

 #print len(grav),grav[0]

 return grav

def ccw(A,B,C):

	return (C.y-A.y)*(B.x-A.x) > (B.y-A.y)*(C.x-A.x)

def intersect(A,B,C,D):

	return ccw(A,C,D) != ccw(B,C,D) and ccw(A,B,C) != ccw(A,B,D)

#medium noise

Dobs = (44.723206839705504, 45.607849369425736, 46.511389237288078, 47.433964554839967, 48.37568168273733, 49.336611670163215, 50.316786481335093, 51.316195012469386, 52.334778905732271, 53.372428170333897, 54.428976625060493, 55.504197181191124, 56.597796989907749, 57.709412483974276, 58.838604349586994, 59.984852470834426, 61.147550896058647, 62.326002882483344, 63.519416082594709, 64.72689794277747, 65.947451391384874, 67.17997089951335, 68.423239002987486, 69.675923378124011, 70.936574566423161, 72.203624444108613, 73.475385531089728, 74.750051230177931, 76.025697081018166, 77.300283104043103, 78.571657297759231, 79.837560337870485, 81.095631509326097, 82.343415882644678, 83.578372724275752, 84.79788510790118, 85.999270670134209, 87.179793430850012, 88.336676576190868, 89.467116081985267, 90.568295037693687, 91.637398516746856, 92.671628828836802, 93.668220983759923, 94.624458194952382, 95.537687253887938, 96.405333613762053, 97.224916031908023, 97.994060634558039, 98.710514284106821, 99.372157147125066, 99.977014380116117, 100.52326686857275, 101.00926097247026, 101.43351724725986, 101.79473812315022, 102.09181453662062, 102.32383151646263, 102.49007273219182, 102.59002401549296, 102.62337586577644, 102.59002494929055, 102.49007459809408, 102.32383431109095, 102.09181825492502, 101.79474275843029, 101.43352279119438, 101.00926741515181, 100.52327419855088, 99.977022584447255, 99.372166211428691, 98.710524192628739, 97.994071370240533, 97.224927576464623, 96.405345947758903, 95.537700356831479, 94.624472045379349, 93.668235559333183, 92.671644106443267, 91.637414472597953, 90.568311647428985, 89.467133320773982, 88.336694418835989, 87.179811851888886, 85.999289643939079, 84.797904608775383, 83.578392726547463, 82.343436360754851, 81.095652437912676, 79.837581691846339, 78.571679052384354, 77.30030523499039, 76.025719564432933, 74.750074042730731, 73.475408650022047, 72.203647847272819, 70.936598232315518, 69.675947285912557, 68.423263132532142, 67.179995231382989, 65.947475906867339, 64.726922623886338, 63.519440912070749, 62.326027843792211, 61.147575973386211, 59.984877649078307, 58.838629614344484, 57.709437821530663, 56.597822387219708, 55.504222625870703, 54.429002105356219, 53.372453675112993, 52.334804424459712, 51.31622053518732, 50.316811998643274, 49.336637173196635, 48.375707163145869, 47.433990004767416, 46.51141464935121, 45.607874736694313)

grav = []

iter_time = []

jobsList = []

gbestlist=[]

gbestvlist=[]

cg = 1.3

cp = 2.8

phi = cp+cg

K = 2/abs(2-phi-(phi**2-4*phi)**0.5)

StandardDev= 1.0

vmax =30

nswarm = 120

nsides = 4.0

ndim = int(nsides+1)

maxiter = 500

vmax = numpy.asarray(vmax)

 #all_the_leftxcorn = [[] for i in range(int(nswarm))]

 #all_the_rightxcorn = [[] for i in range(int(nswarm))]

 #all_the_topzcorn = [[] for i in range(int(nswarm))]

 #all_the_botzcorn = [[] for i in range(int(nswarm))]

 #all_the_rho = [[] for i in range(int(nswarm))]

log_pbestg = [[]for i in range(int(nswarm))]

log_pbestv = []

loggbest = []

logGbest=numpy.zeros([maxiter,ndim,2])

mid1 = []

mid2 = []

 #log_values =[]

swarm = numpy.zeros((nswarm,ndim,2))

 # initialize the swarm

change here###### change here

increment = 360/nsides

radius = numpy.arange(5,26)

yincr = numpy.arange(30,61)

Rhorange = numpy.arange(500.0,3001,0.01)

angles = numpy.zeros(ndim)

X = numpy.zeros([nswarm, ndim])

Y = numpy.zeros([nswarm,ndim])

for m in numpy.arange(ndim):

	angles[m]+=(increment*m)*(numpy.pi/180.0)

#at the end of x and y

for i in numpy.arange(nswarm):

 rr = rand.choice(radius)

 ry = rand.choice(yincr)

 x = numpy.zeros((nsides+1))

 y = numpy.zeros((nsides+1))

 for b in numpy.arange(nsides):

 x[b] = numpy.cos(angles[b])*(rr*si.rand())

 y[b] = (numpy.sin(angles[b])*(rr*si.rand()))+ry

 swarm[i,b,0]=x[b]

 swarm[i,b,1]=y[b]

 swarm[i,4,0]= rand.choice(Rhorange)

 swarm[i,4,1]= swarm[i,4,0]

vectors = numpy.zeros([nswarm,(ndim),2])

thetas = numpy.zeros([nswarm,(ndim-1),1])

values= numpy.zeros(nswarm)

gravity = numpy.zeros([nswarm,len(Dobs)])

change here###### change here

for n in numpy.arange(nswarm):

 p0 = swarm[n,0]

 p1 = swarm[n,1]

 p2 = swarm[n,2]

 p3 = swarm[n,3]

 rho = swarm[n,4,0]

 a = Point(p0[0],p0[1])

 b = Point(p1[0],p1[1])

 c = Point(p2[0],p2[1])

 d = Point(p3[0],p3[1])

put in code to make each particle a feasable solution.

 sides = [a,b,c,d,a,b,c,d]

 points = [p0,p1,p2,p3,p0]

 points = numpy.asarray(points)

 i=0

 for i in numpy.arange(ndim):

 if points[i,0]< -30.0:

 points[i,0]=-30.0

 if points[i,0]> 30.0:

 points[i,0]= 30.0

 if points[i,1]< 5.0:

 points[i,1]=5.0

 if points[i,1]> 100:

 points[i,1]= 100

 if rho<500:

 rho=500.0

 if rho>3000:

 rho = 3000.0

 i = 0

 for i in numpy.arange(ndim-1):

 vectors[n,i] = (points[i+1]-points[i])

 vectors[n,(ndim-1)] = vectors[n,0]

 i=0

 for i in numpy.arange(ndim-1):

 cross = numpy.cross(vectors[n,i],vectors[n,(i+1)])

 if cross<0:

 vxy = vectors[n,i,0]*vectors[n,(i+1),0] + vectors[n,i,1]*vectors[n,(i+1),1]

 vx = (vectors[n,i,0]**2+vectors[n,i,1]**2)**0.5

 vy = (vectors[n,(i+1),0]**2+vectors[n,(i+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,i] = -1*(rad*(180.0/numpy.pi))

 else:

 vxy = vectors[n,i,0]*vectors[n,(i+1),0] + vectors[n,i,1]*vectors[n,(i+1),1]

 vx = (vectors[n,i,0]**2+vectors[n,i,1]**2)**0.5

 vy = (vectors[n,(i+1),0]**2+vectors[n,(i+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,i] = rad*(180.0/numpy.pi)

 ###

 func1(p0,p1,p2,p3,rho)

 gravity[n]=grav

 del grav[0:len(grav)]

 n+=1

j=0

for j in numpy.arange(nswarm):

 values[j] = (sum((Dobs - gravity[j])**2))/StandardDev

pbestv = numpy.zeros(nswarm)

i=0

for i in numpy.arange(nswarm):

 pbestv[i] = values[i]

pbest = numpy.array(swarm)

initialize the "global best" values

gbesti = numpy.argmin(pbestv)

gbestv = numpy.minimum.reduce(pbestv)

gbest = pbest[gbesti]

initialize velocity function

velocities = numpy.zeros((nswarm,ndim,2))

velocities2 = numpy.zeros(((nswarm/2.0),ndim,2))

velocities1 = numpy.zeros(((nswarm/2.0),ndim,2))

i=0

print datetime.time(datetime.now())

for i in numpy.arange(maxiter):

 t = time.clock()

 logGbest[i] = gbest

 if i%100==0:

 print i

 print "current gbest",gbest

 print "current gbestv",gbestv

 values= numpy.zeros(nswarm)

 vectors = numpy.zeros([nswarm,(ndim),2])

 thetas = numpy.zeros([nswarm,(ndim-1),1])

 feasabilty = numpy.zeros(nswarm)

 ###### change here###### change here

 for n in numpy.arange(nswarm):

 p0 = swarm[n,0]

 p1= swarm[n,1]

 p2 = swarm[n,2]

 p3 = swarm[n,3]

 rho = swarm[n,4,0]

 a = Point(p0[0],p0[1])

 b = Point(p1[0],p1[1])

 c = Point(p2[0],p2[1])

 d = Point(p3[0],p3[1])

 sides = [a,b,c,d,a,b,c,d]

 points = [p0,p1,p2,p3,p0]

 points = numpy.asarray(points)

 for q in numpy.arange(ndim-1):

 vectors[n,q] = (points[q+1]-points[q])

 vectors[n,(ndim-1)] = vectors[n,0]

 for w in numpy.arange(ndim-1):

 cross = numpy.cross(vectors[n,w],vectors[n,(w+1)])

 if cross<0:

 vxy = vectors[n,w,0]*vectors[n,(w+1),0] + vectors[n,w,1]*vectors[n,(w+1),1]

 vx = (vectors[n,w,0]**2+vectors[n,w,1]**2)**0.5

 vy = (vectors[n,(w+1),0]**2+vectors[n,(w+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,w] = -1*(rad*(180.0/numpy.pi))

 else:

 vxy = vectors[n,w,0]*vectors[n,(w+1),0] + vectors[n,w,1]*vectors[n,(w+1),1]

 vx = (vectors[n,w,0]**2+vectors[n,w,1]**2)**0.5

 vy = (vectors[n,(w+1),0]**2+vectors[n,(w+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,w] = rad*(180.0/numpy.pi)

 #print thetas

 for e in numpy.arange(nswarm):

 for l in numpy.arange(ndim-1):

 if swarm[e,l,0]<-30.0:

 feasabilty[e]+=5000

 #print 'e',e,'l',l,'1'

 if swarm[e,l,0]> 30.0:

 feasabilty[e]+=5000

 #print 'e',e,'l',l, '2'

 if swarm[e,l,1]<5:

 feasabilty[e]+=5000

 #print 'e',e,'l',l, '3'

 if swarm[e,l,1]>100.0:

 feasabilty[e]+=5000

 #print 'e',e,'l',l, '4'

 if swarm[e,(nsides),0]<500:

 feasabilty[e]+=5000

 #print 'e',e, '5'

 if swarm[e,nsides,0]>3000:

 feasabilty[e]+=5000

 #print 'e',e, '6'

 for k in numpy.arange(len(thetas[0])):

 if abs(thetas[e,k]) < 0.1:

 thetas[e,k]=0.1

 S = int(sum(thetas[e]))

 for r in numpy.arange(len(thetas[0])):

 if abs(thetas[e,r]) < 10.0:

 feasabilty[e]+=5000

 if abs(thetas[e,r]) > 170.0:

 feasabilty[e]+=5000

 #print 'e',e,'r',r, '7'

 #print 'S',S,'intS',int(sum(thetas[n]))

 if int(sum(thetas[e]))==359:

 S = int(360.0)

 if S!=int(360.0):

 feasabilty[e]+=5000

 # print 'e',e, '8'

 if S == int(360.0):

 for t in numpy.arange((ndim-1)):

 #print 'j',j

 #print intersect(sides[j],sides[j+1],sides[j+2],sides[j+3]),'1','j',j

 #print intersect(sides[j],sides[j+1],sides[j+3],sides[j+4]),'2','j',j

 if intersect(sides[t],sides[t+1],sides[t+2],sides[t+3]):

 feasabilty[e]+=5000

 #print 'e',e,'9'

 if intersect(sides[t],sides[t+1],sides[t+3],sides[t+4]):

 feasabilty[e]+=5000

 #print 'e',e,'10'

 # print swarm

 #print feasabilty

 ppservers = ()

 #ppservers = ("10.0.0.1",)

 if len(sys.argv) > 1:

 ncpus = int(sys.argv[1])

 # Creates jobserver with ncpus workers

 job_server = pp.Server(ncpus, ppservers=ppservers)

 else:

 # Creates jobserver with automatically detected number of workers

 job_server = pp.Server(ppservers=ppservers)

 #print "Starting pp with", job_server.get_ncpus(), "workers"

#works to here

 inputs = tuple(swarm)

 start_time = time.time()

 jobs = [(raw_input, job_server.submit(func2,(raw_input,grav), (), ("numpy",))) for raw_input in inputs]

 for raw_input, job in jobs:

 r = job()

 jobsList.append(r)

 #print "swarm", raw_input, "is",r[0],'nsawrm',nswarm

 #print "Time elapsed: ", time.time() - start_time, "s"

 #job_server.print_stats()

 for y in numpy.arange(nswarm):

 gravity[y] = jobsList[y]

 #print gravity[n,0]

 del grav[0:len(grav)]

 del jobsList[0:len(jobsList)]

 ##########destroys severs and open files############

 job_server.destroy()

 for u in numpy.arange(nswarm):

 values[u] = (sum((Dobs - gravity[u])**2) + feasabilty[u])/StandardDev

 for p in numpy.arange(nswarm):

 #if feasabilty[p]<1.0:

 mask = values[p] < pbestv[p]

 mask2d = numpy.repeat(mask, (ndim*2))

 mask2d = mask2d.reshape([ndim,2])

 pbestv[p] = numpy.where(mask, values[p], pbestv[p])

 pbest = numpy.where(mask2d, swarm, pbest)

 log_pbestg[p].append(pbestv[p])

 log_pbestv.append(pbestv)

 if numpy.minimum.reduce(pbestv) < gbestv:

 gbesti = numpy.argmin(pbestv)

 gbestv = pbestv[gbesti]

 gbest = pbest[gbesti]

 loggbest.append(gbestv)

 logGbest[i] = gbest

 #if K1<0.4:

 #K1 = 0.4

 S = swarm[0:(nswarm/2.0)]

 S1 = swarm[(nswarm/2.0):nswarm]

 P = pbest[0:(nswarm/2.0)]

 P1= pbest[(nswarm/2.0):nswarm]

 velocities1 = K*(velocities1 + (cp*si.rand()*(P - S)) +

 (cg*si.rand()*(gbest - S)))

 velocities2 = (velocities2 + (cp*si.rand()*(P1 - S1)) +

 (cg*si.rand()*(gbest - S1)))

 #K1 = K1-(K1/maxiter)

 velocities2 = numpy.clip(velocities2,-5.0,5.0)

 velocities1[numpy.logical_and(velocities1>=0.0,velocities1<0.025)]=0.025

 velocities1[numpy.logical_and(velocities1<0.0,velocities1>-0.025)]=-0.025

 #print 'velocities',i,velocities

 velocities[0:(nswarm/2.0)]=velocities1

 velocities[(nswarm/2.0):nswarm]=velocities2

 swarm+=velocities

 t1 = time.clock()

 dt = t1-t

 iter_time.append(dt)

 gbestlist.append(gbestv)

 if gbestv < 1e-1:

 print i,gbest,gbestv,'time for average iteration', (sum(iter_time)/float

(maxiter)),'sum iteration time to complete = ', sum(iter_time),'seconds',(sum

(iter_time)/60.0),'minutes'

 #return 'f'

print datetime.time(datetime.now())

print 'current gbest',gbest

print 'current gbestv',gbestv,'feasabilty',feasabilty

print 'time for average iteration', (sum(iter_time)/float(maxiter))

print 'sum iteration time to complete = ', sum(iter_time),'seconds',(sum

(iter_time)/60.0),'minutes'

"""former = numpy.minimum.reduce(gbestvlist)

arg = numpy.argmin(gbestvlist)

print 'former gbest',gbestlist2[arg]

print 'former gbestv',former

x = numpy.arange(1000)

import pylab as pl

for i in numpy.arange(400):

	pl.plot(x,log_pbestg[i])

pl.xlabel('iteration')

pl.ylabel('misfit')

pl.axis([0,100,0,200000])

pl.show()

x = numpy.zeros([nswarm,ndim])

y = numpy.zeros([nswarm,ndim])

for i in numpy.arange(nswarm):

	for j in numpy.arange(ndim):

		x[i,j]=swarm[i,j,0]

		y[i,j]=swarm[i,j,1]

	x[i,5]=swarm[i,0,0]

	y[i,5]=swarm[i,0,1]"""

####plots the shapes of all the Gbests ##########

"""x = numpy.zeros([maxiter,ndim])

y = numpy.zeros([maxiter,ndim])

for i in numpy.arange(maxiter):

	for j in numpy.arange(ndim):

		x[i,j]=logGbest[i,j,0]

		y[i,j]=logGbest[i,j,1]

	x[i,6]=logGbest[i,0,0]

	y[i,6]=logGbest[i,0,1]

'''for i in numpy.arange(maxiter):

	pl.plot(x[i],y[i],x[i],y[i],'o')'''

i = 999

pl.plot(x[i],y[i],x[i],y[i],'o')

pl.show()"""

9-appendix B/Chapter 5 results and codes/codes/start_up5

import numpy

import scipy as si

import random as rand

import time

import sys,pp

import pylab as pl

class Point:

	def __init__(self,x,y):

		self.x = x

		self.y = y

def func1(p0,p1,p2,p3,p4,rho):

 x = numpy.arange(-30.0,30,0.5)

 """z = numpy.zeros(120)

 xz = np.zeros([120,2])

 for i in numpy.arange(120):

	xz[i]= [x[i],z[i]]"""

 points = [p0,p1,p2,p3,p4,p0]

 points = numpy.asarray(points)

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 for i in numpy.arange(len(x)):

 sum_lines = 0.0

 for n in numpy.arange(len(points)-1):

 x1 = points[n,0]-x[i]

 x2 = points[(n+1),0]-x[i]

 z1 = points[n,1]

 z2 = points[(n+1),1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = numpy.arctan2(z1,x1)

 O2 = numpy.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = numpy.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

 #print grav

def func2(raw_input,grav):

 p0=raw_input[0]

 p1=raw_input[1]

 p2=raw_input[2]

 p3=raw_input[3]

 p4=raw_input[4]

 rho=raw_input[5,0]

 rho=rho

 x = numpy.arange(-30.0,30,0.5)

 points = [p0,p1,p2,p3,p4,p0]

 points = numpy.asarray(points)

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 for i in numpy.arange(len(x)):

 sum_lines = 0.0

 for n in numpy.arange(len(points)-1):

 x1 = points[n,0]-x[i]

 x2 = points[(n+1),0]-x[i]

 z1 = points[n,1]

 z2 = points[(n+1),1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = numpy.arctan2(z1,x1)

 O2 = numpy.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = numpy.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

 #print len(grav),grav[0]

 return grav

def ccw(A,B,C):

	return (C.y-A.y)*(B.x-A.x) > (B.y-A.y)*(C.x-A.x)

def intersect(A,B,C,D):

	return ccw(A,C,D) != ccw(B,C,D) and ccw(A,B,C) != ccw(A,B,D)

#high noise

#Dobs = (111.76051283822333, 113.16316660403891, 112.97276292515473, 121.04190188229698, 118.44569159731867, 123.35670635618146, 124.08835673555811, 125.6754751561985, 99.687855646112084, 126.88441957472278, 121.47787518001245, 131.5468544857022, 134.13321580596892, 141.8750292583091, 129.06809959422927, 155.04870836533777, 136.57028156703169, 119.70834237137397, 143.29711052337751, 152.44554843583165, 151.94390079876717, 136.71864184139784, 146.33256320183943, 153.06827705980794, 144.46050339357376, 147.81643850629095, 165.89827734711037, 157.83948088693231, 160.48898089007449, 163.00251166773296, 183.79051584285139, 174.13898697426967, 165.00619316102117, 176.8975193951986, 193.0886326274123, 189.84995083918633, 189.51507132111908, 185.48190842476475, 191.84934869400141, 185.99679021854797, 201.83196664011419, 191.81450766760804, 206.07228058613947, 202.89119819234051, 184.47910909782223, 202.82997489566503, 199.99042651791524, 188.11058062332842, 217.42647502238211, 214.32938197684302, 186.38643574135006, 182.01494083654677, 190.26298692283044, 199.34170050615646, 198.07705455590406, 190.24714690574888, 203.54624776849559, 206.18653067532571, 218.55577986317243, 200.53896360021383, 217.21562497974054, 211.33075972136558, 224.22944662369378, 206.10501982564418, 205.76841101504172, 192.90998605445571, 194.44258094506176, 209.88828304858637, 210.80435461449204, 214.7981872060293, 206.41537142232849, 200.46180940028424, 191.97810350479511, 206.31423205528668, 211.76985820690334, 202.26242440257801, 189.78935202659807, 193.81091719214234, 206.96909525741944, 196.1571193852113, 183.37653046980861, 182.8847381743463, 179.33776367357117, 193.62786957023178, 187.17444881471079, 192.3093471410136, 188.42822092469407, 166.99018490320236, 183.70236801307234, 172.46067429753722, 154.06071749596728, 184.19553562027528, 154.50686131418809, 172.43668122372827, 154.94193847131376, 166.41784318376199, 172.46676756456023, 146.44548588536665, 140.77532433728481, 153.86256621076512, 140.23382806510554, 122.27083707398108, 141.17789830120557, 146.29118806941449, 124.6825540709971, 137.08029746024681, 122.73311372346112, 127.2678891122959, 126.79322274247549, 139.24197482049851, 138.54861764711313, 117.13839376609965, 130.21260671458234, 135.53319580250755, 126.34476203507498, 123.31048615212868, 116.78494487920425, 110.5472898850162, 113.28018140406894, 129.700154945446)

#medium noise

#Dobs = (109.91921057, 112.39578681, 112.88728591, 114.36964029, 117.41962808, 116.59963764, 122.20748684, 122.6157619, 125.1361481, 126.95730783, 128.74944347, 129.40314113, 134.03858021, 131.85675219, 136.60140431, 138.90666935, 139.59752147, 143.35112715, 142.43716812, 149.87539158, 147.8291828, 150.81422823, 154.78055746, 156.53614168, 156.14983255, 159.13423982, 157.26669295, 164.39781061, 164.93979332, 167.25080831, 168.86763125, 171.35481238, 175.53283956, 175.29054461, 180.44220571, 185.79981776, 180.55717654, 185.16357033, 187.08283063, 184.64159257, 186.88930516, 191.35424312, 195.58351845, 197.56572955, 196.00059693, 195.10878934, 196.50262231, 200.17795198, 201.04006624, 198.1656162, 201.45246411, 201.32340674, 205.78196898, 206.53679443, 207.55762735, 208.96210844, 207.72706591, 204.81964079, 206.48873447, 213.62815628, 207.0157016, 206.8992808, 206.70553747, 205.05107034, 206.44739717, 210.05303829, 207.13069382, 205.24973928, 205.41131433, 205.16656879, 202.09184208, 202.04697206, 202.03779365, 196.53384097, 200.35071069, 195.18149818, 196.63690015, 189.19473644, 193.10620447, 192.52072723, 191.54618856, 189.20775196, 189.13900563, 186.93659269, 181.79405053, 180.39383179, 174.60768441, 172.89259837, 176.36320927, 173.51541412, 168.27985075, 168.27701062, 162.6121459, 163.91412579, 161.6516811, 156.00867281, 156.38947743, 157.11794662, 153.45291687, 150.34127402, 151.64064352, 145.64051283, 143.62612562, 144.20932123, 140.26505419, 141.00728236, 136.49063421, 132.48099608, 131.50638655, 131.23814172, 132.40071819, 128.61419216, 124.25376507, 121.13274777, 122.19576832, 114.47503558, 118.22905879, 114.9609955, 112.74150327, 114.44495947)

#Low noise included in this Dobs

Dobs = (111.56802561, 109.90352664, 112.52148439, 118.75377529, 117.86136749, 119.80164884, 121.91396166, 120.28311401, 123.87352161, 126.57619053, 128.41513447, 130.44492598, 131.49391913, 133.00006734, 136.53361312, 137.49840764, 138.33280029, 141.131328, 144.87316662, 146.50696519, 148.34607509, 151.62706042, 154.12794745, 156.53119364, 156.08253866, 158.98018481, 161.96593136, 164.18366212, 167.06688758, 167.06443621, 170.54728224, 172.80671658, 174.42632294, 175.23069316, 177.93356742, 181.05877302, 180.95219846, 184.30712363, 187.00735796, 189.03962383, 190.39610523, 188.31974099, 192.14635262, 192.21719384, 196.78223067, 198.22913311, 199.22635344, 200.96930761, 200.81804702, 202.67177149, 203.13842608, 203.23359106, 206.55048539, 205.32585129, 205.83268911, 207.64217985, 206.97524417, 207.11101819, 207.10845052, 207.17910455, 207.08198576, 208.0594213, 207.20203736, 206.07771031, 205.72057903, 206.08773439, 205.18125995, 205.410833, 205.85669928, 204.04096342, 202.5177061, 200.35205505, 198.68853649, 200.17061902, 198.54696079, 199.63226103, 195.7234987, 192.88507255, 192.6373797, 191.19562539, 189.41685291, 187.48549026, 184.48942771, 184.37055892, 181.12399878, 178.32705851, 177.36746256, 174.78659879, 174.442985, 172.40396364, 171.21007082, 168.16652382, 166.12338313, 163.70618609, 164.28234502, 159.77452431, 158.40264832, 154.42946432, 151.80384302, 150.0203212, 148.95383026, 146.47793227, 146.14912221, 140.91394092, 140.77590782, 137.99597797, 135.68297373, 134.00424374, 133.59750284, 130.88393378, 127.66222859, 127.16903429, 124.66185086, 123.00540507, 121.14549499, 119.16624463, 116.9653962, 115.69092923, 113.96477695, 110.75928684)

#old Dobs noise free

#Dobs = (109.88320762381966, 111.60783335993007, 113.35834221620421, 115.13456776894542, 116.93628701618091, 118.76321600909863, 120.61500530167685, 122.49123522863862, 124.39141102543726, 126.31495780798524, 128.26121543432961, 130.22943327544553, 132.21876492775044, 134.22826290581276, 136.25687336001329, 138.30343087051418, 140.3666533757434, 142.44513730056443, 144.53735295622516, 146.6416402908784, 148.75620507572009, 150.8791156173364, 153.00830009141563, 155.1415445962505, 157.27649202611175, 159.41064186430989, 161.54135099325043, 163.6658356137707, 165.78117435831163, 167.88431267185715, 169.97206852104071, 172.04113947543007, 174.08811118594659, 176.1094672640005, 178.10160054169609, 180.06082566898266, 181.98339297863205, 183.86550352521553, 185.70332518066701, 187.49300964745959, 189.23071023165656, 190.91260020287586, 192.53489155709977, 194.09385399166544, 195.58583389987621, 197.00727319546115, 198.3547277843054, 199.6248855120387, 200.81458343056991, 201.9208242437017, 202.94079181073874, 203.87186560658208, 204.71163405635909, 205.45790668133475, 206.10872501001742, 206.66237222344185, 207.11738151619693, 207.47254316463003, 207.72691030077706, 207.87980339501513, 207.93081345250727, 207.87980392857946, 207.72691136673271, 207.47254476063637, 207.11738363875639, 206.66237486791479, 206.10872817064458, 205.45791035126271, 204.71163822767238, 203.87187027034039, 202.9407969570189, 201.92082986164519, 200.81458950843549, 199.62489203725926, 198.35473474354987, 197.0072805747005, 195.58584168445236, 194.0938621663644, 192.53490010622605, 190.91260911032981, 189.2307194810125, 187.49301922204401, 185.70333506363693, 183.86551369963493, 181.98340342754719, 180.06083637549392, 178.10161148902813, 176.1094784355659, 174.0881225654071, 172.04115104675279, 169.9720802685475, 167.88432458027054, 165.78118641279409, 163.66584779995836, 161.54136329728163, 159.41065427284735, 157.27650452636081, 155.14155717597174, 153.00831273893249, 150.87912832153876, 148.75621782606476, 146.64165307738435, 144.53736576946721, 142.4451501316627, 140.36666621635226, 138.30344371280754, 136.25688619666894, 134.22827572999566, 132.21877773309359, 130.22944605603249, 128.26122818467428, 126.31497052301255, 124.39142370046301, 122.49124785934993, 120.61501788411363, 118.76322853963309, 116.93629949149988, 115.13458018603143, 113.35835457231856, 111.6078456525953)

grav = []

iter_time = []

jobsList = []

gbestlist=[]

gbestvlist=[]

cg = 1.3

cp = 2.8

phi = cp+cg

K = 2/abs(2-phi-(phi**2-4*phi)**0.5)

StandardDev= 1

vmax =30

nswarm = 400

ndim = 6

maxiter = 1000

vmax = numpy.asarray(vmax)

 #all_the_leftxcorn = [[] for i in range(int(nswarm))]

 #all_the_rightxcorn = [[] for i in range(int(nswarm))]

 #all_the_topzcorn = [[] for i in range(int(nswarm))]

 #all_the_botzcorn = [[] for i in range(int(nswarm))]

 #all_the_rho = [[] for i in range(int(nswarm))]

log_pbestg = [[]for i in range(int(nswarm))]

log_pbestv = []

loggbest = []

logGbest=numpy.zeros([maxiter,ndim,2])

mid1 = []

mid2 = []

 #log_values =[]

swarm = numpy.zeros((nswarm,ndim,2))

 # initialize the swarm

Xrange0 = numpy.arange(-30,-9.99,0.01)

Xrange1 = numpy.arange(-9.99,10.01,0.01)

Xrange2 = numpy.arange(10.01,30.01,0.01)

Xrange3= numpy.arange(-30.0,0.01,0.01)

Xrange4 = numpy.arange(0.01,30.01,0.01)

Zrange0 = numpy.arange(5.001,50.01,0.01)

Zrange1 = numpy.arange(50.01,100.01,0.01)

Rhorange = numpy.arange(500.0,3001,0.01)

for i in numpy.arange(nswarm):

 swarm[i,0,0]=rand.choice(Xrange3)

 swarm[i,0,1]=rand.choice(Zrange0)

 swarm[i,1,0]=rand.choice(Xrange4)

 swarm[i,1,1]=rand.choice(Zrange0)

 swarm[i,2,0]=rand.choice(Xrange2)

 swarm[i,2,1]=rand.choice(Zrange1)

 swarm[i,3,0]=rand.choice(Xrange1)

 swarm[i,3,1]=rand.choice(Zrange1)

 swarm[i,4,0]=rand.choice(Xrange0)

 swarm[i,4,1]=rand.choice(Zrange1)

 swarm[i,5,0]= rand.choice(Rhorange)

 swarm[i,5,1]= swarm[i,5,0]

vectors = numpy.zeros([nswarm,(ndim),2])

thetas = numpy.zeros([nswarm,(ndim-1),1])

values= numpy.zeros(nswarm)

gravity = numpy.zeros([nswarm,len(Dobs)])

for n in numpy.arange(nswarm):

 p0 = swarm[n,0]

 p1 = swarm[n,1]

 p2 = swarm[n,2]

 p3 = swarm[n,3]

 p4 = swarm[n,4]

 rho = swarm[n,5,0]

 a = Point(p0[0],p0[1])

 b = Point(p1[0],p1[1])

 c = Point(p2[0],p2[1])

 d = Point(p3[0],p3[1])

 e = Point(p4[0],p4[1])

put in code to make each particle a feasable solution.

 sides = [a,b,c,d,e,a,b,c,d,e]

 points = [p0,p1,p2,p3,p4,p0]

 points = numpy.asarray(points)

 i=0

 for i in numpy.arange(ndim):

 if points[i,0]< -30.0:

 points[i,0]=-30.0

 if points[i,0]> 30.0:

 points[i,0]= 30.0

 if points[i,1]< 5.0:

 points[i,1]=5.0

 if points[i,1]> 100:

 points[i,1]= 100

 if rho<500:

 rho=500.0

 if rho>3000:

 rho = 3000.0

 i = 0

 for i in numpy.arange(ndim-1):

 vectors[n,i] = (points[i+1]-points[i])

 vectors[n,(ndim-1)] = vectors[n,0]

 i=0

 for i in numpy.arange(ndim-1):

 cross = numpy.cross(vectors[n,i],vectors[n,(i+1)])

 if cross<0:

 vxy = vectors[n,i,0]*vectors[n,(i+1),0] + vectors[n,i,1]*vectors[n,(i+1),1]

 vx = (vectors[n,i,0]**2+vectors[n,i,1]**2)**0.5

 vy = (vectors[n,(i+1),0]**2+vectors[n,(i+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,i] = -1*(rad*(180.0/numpy.pi))

 else:

 vxy = vectors[n,i,0]*vectors[n,(i+1),0] + vectors[n,i,1]*vectors[n,(i+1),1]

 vx = (vectors[n,i,0]**2+vectors[n,i,1]**2)**0.5

 vy = (vectors[n,(i+1),0]**2+vectors[n,(i+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,i] = rad*(180.0/numpy.pi)

 ###

 func1(p0,p1,p2,p3,p4,rho)

 gravity[n]=grav

 del grav[0:len(grav)]

 n+=1

j=0

for j in numpy.arange(nswarm):

 values[j] = (sum((Dobs - gravity[j])**2))/StandardDev

pbestv = numpy.zeros(nswarm)

i=0

for i in numpy.arange(nswarm):

 pbestv[i] = values[i]

pbest = numpy.array(swarm)

initialize the "global best" values

gbesti = numpy.argmin(pbestv)

gbestv = numpy.minimum.reduce(pbestv)

gbest = pbest[gbesti]

initialize velocity function

velocities = numpy.zeros((nswarm,ndim,2))

velocities2 = numpy.zeros(((nswarm/2.0),ndim,2))

velocities1 = numpy.zeros(((nswarm/2.0),ndim,2))

i=0

for i in numpy.arange(maxiter):

 t = time.clock()

 logGbest[i] = gbest

 if i%100==0:

 print i

 print "current gbest",gbest

 print "current gbestv",gbestv

 values= numpy.zeros(nswarm)

 vectors = numpy.zeros([nswarm,(ndim),2])

 thetas = numpy.zeros([nswarm,(ndim-1),1])

 feasabilty = numpy.zeros(nswarm)

 for n in numpy.arange(nswarm):

 p0 = swarm[n,0]

 p1= swarm[n,1]

 p2 = swarm[n,2]

 p3 = swarm[n,3]

 p4 = swarm[n,4]

 rho = swarm[n,5,0]

 a = Point(p0[0],p0[1])

 b = Point(p1[0],p1[1])

 c = Point(p2[0],p2[1])

 d = Point(p3[0],p3[1])

 e = Point(p4[0],p4[1])

 sides = [a,b,c,d,e,a,b,c,d,e]

 points = [p0,p1,p2,p3,p4,p0]

 points = numpy.asarray(points)

 for q in numpy.arange(ndim-1):

 vectors[n,q] = (points[q+1]-points[q])

 vectors[n,(ndim-1)] = vectors[n,0]

 for w in numpy.arange(ndim-1):

 cross = numpy.cross(vectors[n,w],vectors[n,(w+1)])

 if cross<0:

 vxy = vectors[n,w,0]*vectors[n,(w+1),0] + vectors[n,w,1]*vectors[n,(w+1),1]

 vx = (vectors[n,w,0]**2+vectors[n,w,1]**2)**0.5

 vy = (vectors[n,(w+1),0]**2+vectors[n,(w+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,w] = -1*(rad*(180.0/numpy.pi))

 else:

 vxy = vectors[n,w,0]*vectors[n,(w+1),0] + vectors[n,w,1]*vectors[n,(w+1),1]

 vx = (vectors[n,w,0]**2+vectors[n,w,1]**2)**0.5

 vy = (vectors[n,(w+1),0]**2+vectors[n,(w+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,w] = rad*(180.0/numpy.pi)

 #print thetas

 for e in numpy.arange(nswarm):

 for l in numpy.arange(ndim-1):

 if swarm[e,l,0]<-30.0:

 feasabilty[e]+=5000

 #print 'e',e,'l',l,'1'

 if swarm[e,l,0]> 30.0:

 feasabilty[e]+=5000

 #print 'e',e,'l',l, '2'

 if swarm[e,l,1]<5:

 feasabilty[e]+=5000

 #print 'e',e,'l',l, '3'

 if swarm[e,l,1]>100.0:

 feasabilty[e]+=5000

 #print 'e',e,'l',l, '4'

 if swarm[e,5,0]<500:

 feasabilty[e]+=5000

 #print 'e',e, '5'

 if swarm[e,5,0]>3000:

 feasabilty[e]+=5000

 #print 'e',e, '6'

 """for k in numpy.arange(len(thetas[0])):

 if abs(thetas[e,k]) < 0.1:

 thetas[e,k]=0.1"""

 S = int(sum(thetas[e]))

 for r in numpy.arange(len(thetas[0])):

 if abs(thetas[e,r]) < 10.0:

 feasabilty[e]+=5000

 if abs(thetas[e,r]) > 170.0:

 feasabilty[e]+=5000

 #print 'e',e,'r',r, '7'

 #print 'S',S,'intS',int(sum(thetas[n]))

 if int(sum(thetas[e]))==359:

 S = int(360.0)

 if S!=int(360.0):

 feasabilty[e]+=5000

 # print 'e',e, '8'

 if S == int(360.0):

 for t in numpy.arange((ndim-1)):

 #print 'j',j

 #print intersect(sides[j],sides[j+1],sides[j+2],sides[j+3]),'1','j',j

 #print intersect(sides[j],sides[j+1],sides[j+3],sides[j+4]),'2','j',j

 if intersect(sides[t],sides[t+1],sides[t+2],sides[t+3]):

 feasabilty[e]+=5000

 #print 'e',e,'9'

 if intersect(sides[t],sides[t+1],sides[t+3],sides[t+4]):

 feasabilty[e]+=5000

 #print 'e',e,'10'

 # print feasabilty

 ppservers = ()

 #ppservers = ("10.0.0.1",)

 if len(sys.argv) > 1:

 ncpus = int(sys.argv[1])

 # Creates jobserver with ncpus workers

 job_server = pp.Server(ncpus, ppservers=ppservers)

 else:

 # Creates jobserver with automatically detected number of workers

 job_server = pp.Server(ppservers=ppservers)

 #print "Starting pp with", job_server.get_ncpus(), "workers"

#works to here

 inputs = tuple(swarm)

 start_time = time.time()

 jobs = [(raw_input, job_server.submit(func2,(raw_input,grav), (), ("numpy",))) for raw_input in inputs]

 for raw_input, job in jobs:

 r = job()

 jobsList.append(r)

 #print "swarm", raw_input, "is",r[0],'nsawrm',nswarm

 #print "Time elapsed: ", time.time() - start_time, "s"

 #job_server.print_stats()

 for y in numpy.arange(nswarm):

 gravity[y] = jobsList[y]

 #print gravity[n,0]

 del grav[0:len(grav)]

 del jobsList[0:len(jobsList)]

 ##########destroys severs and open files############

 job_server.destroy()

 for u in numpy.arange(nswarm):

 values[u] = (sum((Dobs - gravity[u])**2) + feasabilty[u])/StandardDev

 for p in numpy.arange(nswarm):

 #if feasabilty[p]<1.0:

 mask = values[p] < pbestv[p]

 mask2d = numpy.repeat(mask, (ndim*2))

 mask2d = mask2d.reshape([6,2])

 pbestv[p] = numpy.where(mask, values[p], pbestv[p])

 pbest = numpy.where(mask2d, swarm, pbest)

 log_pbestg[p].append(pbestv[p])

 log_pbestv.append(pbestv)

 if numpy.minimum.reduce(pbestv) < gbestv:

 gbesti = numpy.argmin(pbestv)

 gbestv = pbestv[gbesti]

 gbest = pbest[gbesti]

 loggbest.append(gbestv)

 logGbest[i] = gbest

 #if K1<0.4:

 #K1 = 0.4

 S = swarm[0:(nswarm/2.0)]

 S1 = swarm[(nswarm/2.0):nswarm]

 P = pbest[0:(nswarm/2.0)]

 P1= pbest[(nswarm/2.0):nswarm]

 velocities1 = K*(velocities1 + (cp*si.rand()*(P - S)) +

 (cg*si.rand()*(gbest - S)))

 velocities2 = (velocities2 + (cp*si.rand()*(P1 - S1)) +

 (cg*si.rand()*(gbest - S1)))

 #K1 = K1-(K1/maxiter)

 velocities2 = numpy.clip(velocities2,-5.0,5.0)

 velocities1[numpy.logical_and(velocities1>=0.0,velocities1<0.025)]=0.025

 velocities1[numpy.logical_and(velocities1<0.0,velocities1>-0.025)]=-0.025

 #print 'velocities',i,velocities

 velocities[0:(nswarm/2.0)]=velocities1

 velocities[(nswarm/2.0):nswarm]=velocities2

 swarm+=velocities

 t1 = time.clock()

 dt = t1-t

 iter_time.append(dt)

 gbestlist.append(gbestv)

 if gbestv < 1e-1:

 print i,gbest,gbestv,'time for average iteration', (sum(iter_time)/float

(maxiter)),'sum iteration time to complete = ', sum(iter_time),'seconds',(sum

(iter_time)/60.0),'minutes'

 #return 'f'

print 'current gbest',gbest

print 'current gbestv',gbestv,'feasabilty',feasabilty

print 'time for average iteration', (sum(iter_time)/float(maxiter))

print 'sum iteration time to complete = ', sum(iter_time),'seconds',(sum

(iter_time)/60.0),'minutes'

"""former = numpy.minimum.reduce(gbestvlist)

arg = numpy.argmin(gbestvlist)

print 'former gbest',gbestlist2[arg]

print 'former gbestv',former"""

"""x = numpy.arange(1000)

import pylab as pl

for i in numpy.arange(400):

	pl.plot(x,log_pbestg[i])

pl.xlabel('iteration')

pl.ylabel('misfit')

pl.axis([0,100,0,200000])

pl.show()

"""

"""x = numpy.zeros([nswarm,ndim])

y = numpy.zeros([nswarm,ndim])

for i in numpy.arange(nswarm):

	for j in numpy.arange(ndim):

		x[i,j]=swarm[i,j,0]

		y[i,j]=swarm[i,j,1]

	x[i,5]=swarm[i,0,0]

	y[i,5]=swarm[i,0,1]"""

####plots the shapes of all the Gbests ##########

x = numpy.zeros([maxiter,ndim])

y = numpy.zeros([maxiter,ndim])

for i in numpy.arange(maxiter):

	for j in numpy.arange(ndim):

		x[i,j]=logGbest[i,j,0]

		y[i,j]=logGbest[i,j,1]

	x[i,5]=logGbest[i,0,0]

	y[i,5]=logGbest[i,0,1]

"""for i in numpy.arange(maxiter):

	pl.plot(x[i],y[i],x[i],y[i],'o')"""

i = 999

pl.plot(x[i],y[i],x[i],y[i],'o')

pl.show()

9-appendix B/Chapter 5 results and codes/codes/start_up5.py

import numpy

import scipy as si

import random as rand

import time

import sys,pp

import pylab as pl

class Point:

	def __init__(self,x,y):

		self.x = x

		self.y = y

def func1(p0,p1,p2,p3,p4,rho):

 x = numpy.arange(-30.0,30,0.5)

 """z = numpy.zeros(120)

 xz = np.zeros([120,2])

 for i in numpy.arange(120):

	xz[i]= [x[i],z[i]]"""

 points = [p0,p1,p2,p3,p4,p0]

 points = numpy.asarray(points)

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 for i in numpy.arange(len(x)):

 sum_lines = 0.0

 for n in numpy.arange(len(points)-1):

 x1 = points[n,0]-x[i]

 x2 = points[(n+1),0]-x[i]

 z1 = points[n,1]

 z2 = points[(n+1),1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = numpy.arctan2(z1,x1)

 O2 = numpy.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = numpy.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

 #print grav

def func2(raw_input,grav):

 p0=raw_input[0]

 p1=raw_input[1]

 p2=raw_input[2]

 p3=raw_input[3]

 p4=raw_input[4]

 rho=raw_input[5,0]

 rho=rho

 x = numpy.arange(-30.0,30,0.5)

 points = [p0,p1,p2,p3,p4,p0]

 points = numpy.asarray(points)

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 for i in numpy.arange(len(x)):

 sum_lines = 0.0

 for n in numpy.arange(len(points)-1):

 x1 = points[n,0]-x[i]

 x2 = points[(n+1),0]-x[i]

 z1 = points[n,1]

 z2 = points[(n+1),1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = numpy.arctan2(z1,x1)

 O2 = numpy.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = numpy.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

 #print len(grav),grav[0]

 return grav

def ccw(A,B,C):

	return (C.y-A.y)*(B.x-A.x) > (B.y-A.y)*(C.x-A.x)

def intersect(A,B,C,D):

	return ccw(A,C,D) != ccw(B,C,D) and ccw(A,B,C) != ccw(A,B,D)

#high noise

#Dobs = (111.76051283822333, 113.16316660403891, 112.97276292515473, 121.04190188229698, 118.44569159731867, 123.35670635618146, 124.08835673555811, 125.6754751561985, 99.687855646112084, 126.88441957472278, 121.47787518001245, 131.5468544857022, 134.13321580596892, 141.8750292583091, 129.06809959422927, 155.04870836533777, 136.57028156703169, 119.70834237137397, 143.29711052337751, 152.44554843583165, 151.94390079876717, 136.71864184139784, 146.33256320183943, 153.06827705980794, 144.46050339357376, 147.81643850629095, 165.89827734711037, 157.83948088693231, 160.48898089007449, 163.00251166773296, 183.79051584285139, 174.13898697426967, 165.00619316102117, 176.8975193951986, 193.0886326274123, 189.84995083918633, 189.51507132111908, 185.48190842476475, 191.84934869400141, 185.99679021854797, 201.83196664011419, 191.81450766760804, 206.07228058613947, 202.89119819234051, 184.47910909782223, 202.82997489566503, 199.99042651791524, 188.11058062332842, 217.42647502238211, 214.32938197684302, 186.38643574135006, 182.01494083654677, 190.26298692283044, 199.34170050615646, 198.07705455590406, 190.24714690574888, 203.54624776849559, 206.18653067532571, 218.55577986317243, 200.53896360021383, 217.21562497974054, 211.33075972136558, 224.22944662369378, 206.10501982564418, 205.76841101504172, 192.90998605445571, 194.44258094506176, 209.88828304858637, 210.80435461449204, 214.7981872060293, 206.41537142232849, 200.46180940028424, 191.97810350479511, 206.31423205528668, 211.76985820690334, 202.26242440257801, 189.78935202659807, 193.81091719214234, 206.96909525741944, 196.1571193852113, 183.37653046980861, 182.8847381743463, 179.33776367357117, 193.62786957023178, 187.17444881471079, 192.3093471410136, 188.42822092469407, 166.99018490320236, 183.70236801307234, 172.46067429753722, 154.06071749596728, 184.19553562027528, 154.50686131418809, 172.43668122372827, 154.94193847131376, 166.41784318376199, 172.46676756456023, 146.44548588536665, 140.77532433728481, 153.86256621076512, 140.23382806510554, 122.27083707398108, 141.17789830120557, 146.29118806941449, 124.6825540709971, 137.08029746024681, 122.73311372346112, 127.2678891122959, 126.79322274247549, 139.24197482049851, 138.54861764711313, 117.13839376609965, 130.21260671458234, 135.53319580250755, 126.34476203507498, 123.31048615212868, 116.78494487920425, 110.5472898850162, 113.28018140406894, 129.700154945446)

#medium noise

#Dobs = (109.91921057, 112.39578681, 112.88728591, 114.36964029, 117.41962808, 116.59963764, 122.20748684, 122.6157619, 125.1361481, 126.95730783, 128.74944347, 129.40314113, 134.03858021, 131.85675219, 136.60140431, 138.90666935, 139.59752147, 143.35112715, 142.43716812, 149.87539158, 147.8291828, 150.81422823, 154.78055746, 156.53614168, 156.14983255, 159.13423982, 157.26669295, 164.39781061, 164.93979332, 167.25080831, 168.86763125, 171.35481238, 175.53283956, 175.29054461, 180.44220571, 185.79981776, 180.55717654, 185.16357033, 187.08283063, 184.64159257, 186.88930516, 191.35424312, 195.58351845, 197.56572955, 196.00059693, 195.10878934, 196.50262231, 200.17795198, 201.04006624, 198.1656162, 201.45246411, 201.32340674, 205.78196898, 206.53679443, 207.55762735, 208.96210844, 207.72706591, 204.81964079, 206.48873447, 213.62815628, 207.0157016, 206.8992808, 206.70553747, 205.05107034, 206.44739717, 210.05303829, 207.13069382, 205.24973928, 205.41131433, 205.16656879, 202.09184208, 202.04697206, 202.03779365, 196.53384097, 200.35071069, 195.18149818, 196.63690015, 189.19473644, 193.10620447, 192.52072723, 191.54618856, 189.20775196, 189.13900563, 186.93659269, 181.79405053, 180.39383179, 174.60768441, 172.89259837, 176.36320927, 173.51541412, 168.27985075, 168.27701062, 162.6121459, 163.91412579, 161.6516811, 156.00867281, 156.38947743, 157.11794662, 153.45291687, 150.34127402, 151.64064352, 145.64051283, 143.62612562, 144.20932123, 140.26505419, 141.00728236, 136.49063421, 132.48099608, 131.50638655, 131.23814172, 132.40071819, 128.61419216, 124.25376507, 121.13274777, 122.19576832, 114.47503558, 118.22905879, 114.9609955, 112.74150327, 114.44495947)

#Low noise included in this Dobs

Dobs = (111.56802561, 109.90352664, 112.52148439, 118.75377529, 117.86136749, 119.80164884, 121.91396166, 120.28311401, 123.87352161, 126.57619053, 128.41513447, 130.44492598, 131.49391913, 133.00006734, 136.53361312, 137.49840764, 138.33280029, 141.131328, 144.87316662, 146.50696519, 148.34607509, 151.62706042, 154.12794745, 156.53119364, 156.08253866, 158.98018481, 161.96593136, 164.18366212, 167.06688758, 167.06443621, 170.54728224, 172.80671658, 174.42632294, 175.23069316, 177.93356742, 181.05877302, 180.95219846, 184.30712363, 187.00735796, 189.03962383, 190.39610523, 188.31974099, 192.14635262, 192.21719384, 196.78223067, 198.22913311, 199.22635344, 200.96930761, 200.81804702, 202.67177149, 203.13842608, 203.23359106, 206.55048539, 205.32585129, 205.83268911, 207.64217985, 206.97524417, 207.11101819, 207.10845052, 207.17910455, 207.08198576, 208.0594213, 207.20203736, 206.07771031, 205.72057903, 206.08773439, 205.18125995, 205.410833, 205.85669928, 204.04096342, 202.5177061, 200.35205505, 198.68853649, 200.17061902, 198.54696079, 199.63226103, 195.7234987, 192.88507255, 192.6373797, 191.19562539, 189.41685291, 187.48549026, 184.48942771, 184.37055892, 181.12399878, 178.32705851, 177.36746256, 174.78659879, 174.442985, 172.40396364, 171.21007082, 168.16652382, 166.12338313, 163.70618609, 164.28234502, 159.77452431, 158.40264832, 154.42946432, 151.80384302, 150.0203212, 148.95383026, 146.47793227, 146.14912221, 140.91394092, 140.77590782, 137.99597797, 135.68297373, 134.00424374, 133.59750284, 130.88393378, 127.66222859, 127.16903429, 124.66185086, 123.00540507, 121.14549499, 119.16624463, 116.9653962, 115.69092923, 113.96477695, 110.75928684)

#old Dobs noise free

#Dobs = (109.88320762381966, 111.60783335993007, 113.35834221620421, 115.13456776894542, 116.93628701618091, 118.76321600909863, 120.61500530167685, 122.49123522863862, 124.39141102543726, 126.31495780798524, 128.26121543432961, 130.22943327544553, 132.21876492775044, 134.22826290581276, 136.25687336001329, 138.30343087051418, 140.3666533757434, 142.44513730056443, 144.53735295622516, 146.6416402908784, 148.75620507572009, 150.8791156173364, 153.00830009141563, 155.1415445962505, 157.27649202611175, 159.41064186430989, 161.54135099325043, 163.6658356137707, 165.78117435831163, 167.88431267185715, 169.97206852104071, 172.04113947543007, 174.08811118594659, 176.1094672640005, 178.10160054169609, 180.06082566898266, 181.98339297863205, 183.86550352521553, 185.70332518066701, 187.49300964745959, 189.23071023165656, 190.91260020287586, 192.53489155709977, 194.09385399166544, 195.58583389987621, 197.00727319546115, 198.3547277843054, 199.6248855120387, 200.81458343056991, 201.9208242437017, 202.94079181073874, 203.87186560658208, 204.71163405635909, 205.45790668133475, 206.10872501001742, 206.66237222344185, 207.11738151619693, 207.47254316463003, 207.72691030077706, 207.87980339501513, 207.93081345250727, 207.87980392857946, 207.72691136673271, 207.47254476063637, 207.11738363875639, 206.66237486791479, 206.10872817064458, 205.45791035126271, 204.71163822767238, 203.87187027034039, 202.9407969570189, 201.92082986164519, 200.81458950843549, 199.62489203725926, 198.35473474354987, 197.0072805747005, 195.58584168445236, 194.0938621663644, 192.53490010622605, 190.91260911032981, 189.2307194810125, 187.49301922204401, 185.70333506363693, 183.86551369963493, 181.98340342754719, 180.06083637549392, 178.10161148902813, 176.1094784355659, 174.0881225654071, 172.04115104675279, 169.9720802685475, 167.88432458027054, 165.78118641279409, 163.66584779995836, 161.54136329728163, 159.41065427284735, 157.27650452636081, 155.14155717597174, 153.00831273893249, 150.87912832153876, 148.75621782606476, 146.64165307738435, 144.53736576946721, 142.4451501316627, 140.36666621635226, 138.30344371280754, 136.25688619666894, 134.22827572999566, 132.21877773309359, 130.22944605603249, 128.26122818467428, 126.31497052301255, 124.39142370046301, 122.49124785934993, 120.61501788411363, 118.76322853963309, 116.93629949149988, 115.13458018603143, 113.35835457231856, 111.6078456525953)

grav = []

iter_time = []

jobsList = []

gbestlist=[]

gbestvlist=[]

cg = 1.3

cp = 2.8

phi = cp+cg

K = 2/abs(2-phi-(phi**2-4*phi)**0.5)

StandardDev= 1

vmax =30

nswarm = 400

ndim = 6

maxiter = 1000

vmax = numpy.asarray(vmax)

 #all_the_leftxcorn = [[] for i in range(int(nswarm))]

 #all_the_rightxcorn = [[] for i in range(int(nswarm))]

 #all_the_topzcorn = [[] for i in range(int(nswarm))]

 #all_the_botzcorn = [[] for i in range(int(nswarm))]

 #all_the_rho = [[] for i in range(int(nswarm))]

log_pbestg = [[]for i in range(int(nswarm))]

log_pbestv = []

loggbest = []

logGbest=numpy.zeros([maxiter,ndim,2])

mid1 = []

mid2 = []

 #log_values =[]

swarm = numpy.zeros((nswarm,ndim,2))

 # initialize the swarm

Xrange0 = numpy.arange(-30,-9.99,0.01)

Xrange1 = numpy.arange(-9.99,10.01,0.01)

Xrange2 = numpy.arange(10.01,30.01,0.01)

Xrange3= numpy.arange(-30.0,0.01,0.01)

Xrange4 = numpy.arange(0.01,30.01,0.01)

Zrange0 = numpy.arange(5.001,50.01,0.01)

Zrange1 = numpy.arange(50.01,100.01,0.01)

Rhorange = numpy.arange(500.0,3001,0.01)

for i in numpy.arange(nswarm):

 swarm[i,0,0]=rand.choice(Xrange3)

 swarm[i,0,1]=rand.choice(Zrange0)

 swarm[i,1,0]=rand.choice(Xrange4)

 swarm[i,1,1]=rand.choice(Zrange0)

 swarm[i,2,0]=rand.choice(Xrange2)

 swarm[i,2,1]=rand.choice(Zrange1)

 swarm[i,3,0]=rand.choice(Xrange1)

 swarm[i,3,1]=rand.choice(Zrange1)

 swarm[i,4,0]=rand.choice(Xrange0)

 swarm[i,4,1]=rand.choice(Zrange1)

 swarm[i,5,0]= rand.choice(Rhorange)

 swarm[i,5,1]= swarm[i,5,0]

vectors = numpy.zeros([nswarm,(ndim),2])

thetas = numpy.zeros([nswarm,(ndim-1),1])

values= numpy.zeros(nswarm)

gravity = numpy.zeros([nswarm,len(Dobs)])

for n in numpy.arange(nswarm):

 p0 = swarm[n,0]

 p1 = swarm[n,1]

 p2 = swarm[n,2]

 p3 = swarm[n,3]

 p4 = swarm[n,4]

 rho = swarm[n,5,0]

 a = Point(p0[0],p0[1])

 b = Point(p1[0],p1[1])

 c = Point(p2[0],p2[1])

 d = Point(p3[0],p3[1])

 e = Point(p4[0],p4[1])

put in code to make each particle a feasable solution.

 sides = [a,b,c,d,e,a,b,c,d,e]

 points = [p0,p1,p2,p3,p4,p0]

 points = numpy.asarray(points)

 i=0

 for i in numpy.arange(ndim):

 if points[i,0]< -30.0:

 points[i,0]=-30.0

 if points[i,0]> 30.0:

 points[i,0]= 30.0

 if points[i,1]< 5.0:

 points[i,1]=5.0

 if points[i,1]> 100:

 points[i,1]= 100

 if rho<500:

 rho=500.0

 if rho>3000:

 rho = 3000.0

 i = 0

 for i in numpy.arange(ndim-1):

 vectors[n,i] = (points[i+1]-points[i])

 vectors[n,(ndim-1)] = vectors[n,0]

 i=0

 for i in numpy.arange(ndim-1):

 cross = numpy.cross(vectors[n,i],vectors[n,(i+1)])

 if cross<0:

 vxy = vectors[n,i,0]*vectors[n,(i+1),0] + vectors[n,i,1]*vectors[n,(i+1),1]

 vx = (vectors[n,i,0]**2+vectors[n,i,1]**2)**0.5

 vy = (vectors[n,(i+1),0]**2+vectors[n,(i+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,i] = -1*(rad*(180.0/numpy.pi))

 else:

 vxy = vectors[n,i,0]*vectors[n,(i+1),0] + vectors[n,i,1]*vectors[n,(i+1),1]

 vx = (vectors[n,i,0]**2+vectors[n,i,1]**2)**0.5

 vy = (vectors[n,(i+1),0]**2+vectors[n,(i+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,i] = rad*(180.0/numpy.pi)

 ###

 func1(p0,p1,p2,p3,p4,rho)

 gravity[n]=grav

 del grav[0:len(grav)]

 n+=1

j=0

for j in numpy.arange(nswarm):

 values[j] = (sum((Dobs - gravity[j])**2))/StandardDev

pbestv = numpy.zeros(nswarm)

i=0

for i in numpy.arange(nswarm):

 pbestv[i] = values[i]

pbest = numpy.array(swarm)

initialize the "global best" values

gbesti = numpy.argmin(pbestv)

gbestv = numpy.minimum.reduce(pbestv)

gbest = pbest[gbesti]

initialize velocity function

velocities = numpy.zeros((nswarm,ndim,2))

velocities2 = numpy.zeros(((nswarm/2.0),ndim,2))

velocities1 = numpy.zeros(((nswarm/2.0),ndim,2))

i=0

for i in numpy.arange(maxiter):

 t = time.clock()

 logGbest[i] = gbest

 if i%100==0:

 print i

 print "current gbest",gbest

 print "current gbestv",gbestv

 values= numpy.zeros(nswarm)

 vectors = numpy.zeros([nswarm,(ndim),2])

 thetas = numpy.zeros([nswarm,(ndim-1),1])

 feasabilty = numpy.zeros(nswarm)

 for n in numpy.arange(nswarm):

 p0 = swarm[n,0]

 p1= swarm[n,1]

 p2 = swarm[n,2]

 p3 = swarm[n,3]

 p4 = swarm[n,4]

 rho = swarm[n,5,0]

 a = Point(p0[0],p0[1])

 b = Point(p1[0],p1[1])

 c = Point(p2[0],p2[1])

 d = Point(p3[0],p3[1])

 e = Point(p4[0],p4[1])

 sides = [a,b,c,d,e,a,b,c,d,e]

 points = [p0,p1,p2,p3,p4,p0]

 points = numpy.asarray(points)

 for q in numpy.arange(ndim-1):

 vectors[n,q] = (points[q+1]-points[q])

 vectors[n,(ndim-1)] = vectors[n,0]

 for w in numpy.arange(ndim-1):

 cross = numpy.cross(vectors[n,w],vectors[n,(w+1)])

 if cross<0:

 vxy = vectors[n,w,0]*vectors[n,(w+1),0] + vectors[n,w,1]*vectors[n,(w+1),1]

 vx = (vectors[n,w,0]**2+vectors[n,w,1]**2)**0.5

 vy = (vectors[n,(w+1),0]**2+vectors[n,(w+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,w] = -1*(rad*(180.0/numpy.pi))

 else:

 vxy = vectors[n,w,0]*vectors[n,(w+1),0] + vectors[n,w,1]*vectors[n,(w+1),1]

 vx = (vectors[n,w,0]**2+vectors[n,w,1]**2)**0.5

 vy = (vectors[n,(w+1),0]**2+vectors[n,(w+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,w] = rad*(180.0/numpy.pi)

 #print thetas

 for e in numpy.arange(nswarm):

 for l in numpy.arange(ndim-1):

 if swarm[e,l,0]<-30.0:

 feasabilty[e]+=5000

 #print 'e',e,'l',l,'1'

 if swarm[e,l,0]> 30.0:

 feasabilty[e]+=5000

 #print 'e',e,'l',l, '2'

 if swarm[e,l,1]<5:

 feasabilty[e]+=5000

 #print 'e',e,'l',l, '3'

 if swarm[e,l,1]>100.0:

 feasabilty[e]+=5000

 #print 'e',e,'l',l, '4'

 if swarm[e,5,0]<500:

 feasabilty[e]+=5000

 #print 'e',e, '5'

 if swarm[e,5,0]>3000:

 feasabilty[e]+=5000

 #print 'e',e, '6'

 """for k in numpy.arange(len(thetas[0])):

 if abs(thetas[e,k]) < 0.1:

 thetas[e,k]=0.1"""

 S = int(sum(thetas[e]))

 for r in numpy.arange(len(thetas[0])):

 if abs(thetas[e,r]) < 10.0:

 feasabilty[e]+=5000

 if abs(thetas[e,r]) > 170.0:

 feasabilty[e]+=5000

 #print 'e',e,'r',r, '7'

 #print 'S',S,'intS',int(sum(thetas[n]))

 if int(sum(thetas[e]))==359:

 S = int(360.0)

 if S!=int(360.0):

 feasabilty[e]+=5000

 # print 'e',e, '8'

 if S == int(360.0):

 for t in numpy.arange((ndim-1)):

 #print 'j',j

 #print intersect(sides[j],sides[j+1],sides[j+2],sides[j+3]),'1','j',j

 #print intersect(sides[j],sides[j+1],sides[j+3],sides[j+4]),'2','j',j

 if intersect(sides[t],sides[t+1],sides[t+2],sides[t+3]):

 feasabilty[e]+=5000

 #print 'e',e,'9'

 if intersect(sides[t],sides[t+1],sides[t+3],sides[t+4]):

 feasabilty[e]+=5000

 #print 'e',e,'10'

 # print feasabilty

 ppservers = ()

 #ppservers = ("10.0.0.1",)

 if len(sys.argv) > 1:

 ncpus = int(sys.argv[1])

 # Creates jobserver with ncpus workers

 job_server = pp.Server(ncpus, ppservers=ppservers)

 else:

 # Creates jobserver with automatically detected number of workers

 job_server = pp.Server(ppservers=ppservers)

 #print "Starting pp with", job_server.get_ncpus(), "workers"

#works to here

 inputs = tuple(swarm)

 start_time = time.time()

 jobs = [(raw_input, job_server.submit(func2,(raw_input,grav), (), ("numpy",))) for raw_input in inputs]

 for raw_input, job in jobs:

 r = job()

 jobsList.append(r)

 #print "swarm", raw_input, "is",r[0],'nsawrm',nswarm

 #print "Time elapsed: ", time.time() - start_time, "s"

 #job_server.print_stats()

 for y in numpy.arange(nswarm):

 gravity[y] = jobsList[y]

 #print gravity[n,0]

 del grav[0:len(grav)]

 del jobsList[0:len(jobsList)]

 ##########destroys severs and open files############

 job_server.destroy()

 for u in numpy.arange(nswarm):

 values[u] = (sum((Dobs - gravity[u])**2) + feasabilty[u])/StandardDev

 for p in numpy.arange(nswarm):

 #if feasabilty[p]<1.0:

 mask = values[p] < pbestv[p]

 mask2d = numpy.repeat(mask, (ndim*2))

 mask2d = mask2d.reshape([6,2])

 pbestv[p] = numpy.where(mask, values[p], pbestv[p])

 pbest = numpy.where(mask2d, swarm, pbest)

 log_pbestg[p].append(pbestv[p])

 log_pbestv.append(pbestv)

 if numpy.minimum.reduce(pbestv) < gbestv:

 gbesti = numpy.argmin(pbestv)

 gbestv = pbestv[gbesti]

 gbest = pbest[gbesti]

 loggbest.append(gbestv)

 logGbest[i] = gbest

 #if K1<0.4:

 #K1 = 0.4

 S = swarm[0:(nswarm/2.0)]

 S1 = swarm[(nswarm/2.0):nswarm]

 P = pbest[0:(nswarm/2.0)]

 P1= pbest[(nswarm/2.0):nswarm]

 velocities1 = K*(velocities1 + (cp*si.rand()*(P - S)) +

 (cg*si.rand()*(gbest - S)))

 velocities2 = (velocities2 + (cp*si.rand()*(P1 - S1)) +

 (cg*si.rand()*(gbest - S1)))

 #K1 = K1-(K1/maxiter)

 velocities2 = numpy.clip(velocities2,-5.0,5.0)

 velocities1[numpy.logical_and(velocities1>=0.0,velocities1<0.025)]=0.025

 velocities1[numpy.logical_and(velocities1<0.0,velocities1>-0.025)]=-0.025

 #print 'velocities',i,velocities

 velocities[0:(nswarm/2.0)]=velocities1

 velocities[(nswarm/2.0):nswarm]=velocities2

 swarm+=velocities

 t1 = time.clock()

 dt = t1-t

 iter_time.append(dt)

 gbestlist.append(gbestv)

 if gbestv < 1e-1:

 print i,gbest,gbestv,'time for average iteration', (sum(iter_time)/float

(maxiter)),'sum iteration time to complete = ', sum(iter_time),'seconds',(sum

(iter_time)/60.0),'minutes'

 #return 'f'

print 'current gbest',gbest

print 'current gbestv',gbestv,'feasabilty',feasabilty

print 'time for average iteration', (sum(iter_time)/float(maxiter))

print 'sum iteration time to complete = ', sum(iter_time),'seconds',(sum

(iter_time)/60.0),'minutes'

"""former = numpy.minimum.reduce(gbestvlist)

arg = numpy.argmin(gbestvlist)

print 'former gbest',gbestlist2[arg]

print 'former gbestv',former"""

"""x = numpy.arange(1000)

import pylab as pl

for i in numpy.arange(400):

	pl.plot(x,log_pbestg[i])

pl.xlabel('iteration')

pl.ylabel('misfit')

pl.axis([0,100,0,200000])

pl.show()

"""

"""x = numpy.zeros([nswarm,ndim])

y = numpy.zeros([nswarm,ndim])

for i in numpy.arange(nswarm):

	for j in numpy.arange(ndim):

		x[i,j]=swarm[i,j,0]

		y[i,j]=swarm[i,j,1]

	x[i,5]=swarm[i,0,0]

	y[i,5]=swarm[i,0,1]"""

####plots the shapes of all the Gbests ##########

x = numpy.zeros([maxiter,ndim])

y = numpy.zeros([maxiter,ndim])

for i in numpy.arange(maxiter):

	for j in numpy.arange(ndim):

		x[i,j]=logGbest[i,j,0]

		y[i,j]=logGbest[i,j,1]

	x[i,5]=logGbest[i,0,0]

	y[i,5]=logGbest[i,0,1]

"""for i in numpy.arange(maxiter):

	pl.plot(x[i],y[i],x[i],y[i],'o')"""

i = 999

pl.plot(x[i],y[i],x[i],y[i],'o')

pl.show()

9-appendix B/Chapter 5 results and codes/codes/starup6.py

import numpy as numpy

import scipy as si

import random as rand

import time

import sys,pp

import pylab as pl

class Point:

	def __init__(self,x,y):

		self.x = x

		self.y = y

change here###### change here

def func1(p0,p1,p2,p3,p4,p5,rho):

 x = numpy.arange(-30.0,30,0.5)

 """z = numpy.zeros(120)

 xz = np.zeros([120,2])

 for i in numpy.arange(120):

	xz[i]= [x[i],z[i]]"""

 points = [p0,p1,p2,p3,p4,p5,p0]

 points = numpy.asarray(points)

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 for i in numpy.arange(len(x)):

 sum_lines = 0.0

 for n in numpy.arange(len(points)-1):

 x1 = points[n,0]-x[i]

 x2 = points[(n+1),0]-x[i]

 z1 = points[n,1]

 z2 = points[(n+1),1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = numpy.arctan2(z1,x1)

 O2 = numpy.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = numpy.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

 #print grav

def func2(raw_input,grav):

 p0=raw_input[0]

 p1=raw_input[1]

 p2=raw_input[2]

 p3=raw_input[3]

 p4=raw_input[4]

 p5=raw_input[5]

 rho=raw_input[6,0]

 rho=rho

 x = numpy.arange(-30.0,30,0.5)

 points = [p0,p1,p2,p3,p4,p5,p0]

 points = numpy.asarray(points)

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 for i in numpy.arange(len(x)):

 sum_lines = 0.0

 for n in numpy.arange(len(points)-1):

 x1 = points[n,0]-x[i]

 x2 = points[(n+1),0]-x[i]

 z1 = points[n,1]

 z2 = points[(n+1),1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = numpy.arctan2(z1,x1)

 O2 = numpy.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = numpy.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

 #print len(grav),grav[0]

 return grav

def ccw(A,B,C):

	return (C.y-A.y)*(B.x-A.x) > (B.y-A.y)*(C.x-A.x)

def intersect(A,B,C,D):

	return ccw(A,C,D) != ccw(B,C,D) and ccw(A,B,C) != ccw(A,B,D)

#medium noise

Dobs = (64.636163123444277, 60.660928845419946, 56.562819868019112, 64.192610527867927, 59.125458696542054, 64.364902522989325, 65.42551047068045, 66.935061009494291, 65.400900800589312, 69.110537091664568, 65.848224371591769, 69.483179043196117, 76.559307055249135, 72.317878850051017, 75.127721356153472, 76.157720768143875, 72.133403263236985, 75.591162401033444, 82.152374468165547, 74.494837283847943, 80.968735991854274, 84.412113372868731, 83.797705715755384, 84.763023244922493, 85.101205425433449, 86.74911905844337, 84.453060627088902, 90.935864868410277, 96.581134829801641, 87.73889503390366, 92.056638837384909, 90.180631549231961, 93.588087637195045, 96.637326341667176, 96.970664960706301, 99.395922664308088, 94.457005164310843, 102.37631485133389, 99.509514239204151, 104.80684486871641, 105.13029598641083, 105.34225216093056, 105.01872146159724, 103.63141623803749, 106.11624279570988, 108.92298645527967, 113.78025956830332, 111.34665233214065, 111.00402361829991, 113.81783442672227, 113.77627571716337, 114.60416382832055, 112.87708151296977, 115.78599755858235, 114.23997365539893, 109.78972711528006, 120.68483750528785, 111.16907358169533, 110.68060371372042, 117.47390361285692, 115.52134607592403, 116.81729663254121, 118.26904668024912, 114.20085242664854, 117.84285503132315, 109.08640119660636, 117.55980151212843, 116.14352289543544, 112.79277568166067, 122.80463191370467, 112.482181346879, 113.55808944240131, 111.49931297833612, 115.35811802649792, 111.17951034223218, 110.43660879687459, 113.00371689489459, 105.64215034402923, 107.00881250810789, 101.3121225366344, 102.76593657651993, 102.72642026478795, 102.8525366796204, 100.47970479721937, 102.21974695197881, 97.613840022351241, 99.89840437444218, 92.455853937956846, 93.875588879794506, 95.638045620741735, 95.199385771274578, 95.170202232476896, 92.523491043347732, 83.342257587594673, 83.039567801726818, 87.707692718968147, 86.258933522857987, 81.431571868866925, 76.322028652394394, 83.90495776896428, 85.206064932194124, 80.786139368820017, 75.89865499376684, 78.351986235197401, 70.906620983353079, 74.870023239175296, 72.410053987340959, 73.120181214927328, 70.138072925203943, 69.3883739751126, 73.997907632230508, 66.381479363957226, 69.636563761079799, 61.294841454552476, 61.833622150229957, 67.169137212477665, 60.637136939504785, 63.476001272279056, 60.596167240065149, 57.946338801202899)

#old Dobs noise free

#Dobs = (57.780848374175129, 58.751894097150547, 59.738977173795398, 60.742055072374406, 61.761053844437164, 62.795865617898876, 63.846345982401367, 64.912311270713445, 65.993535741411847, 67.089748669715831, 68.20063135518015, 69.325814056986346, 70.464872869781118, 71.617326555447434, 72.782633348815722, 73.960187758137891, 75.149317384144624, 76.349279784678629, 77.559259415185949, 78.778364678768824, 80.005625122964062, 81.239988823906359, 82.480320001951981, 83.725396916153528, 84.973910088052222, 86.224460908028732, 87.475560679786824, 88.725630160341979, 89.972999653981049, 91.215909718951053, 92.452512544944256, 93.680874057665363, 94.898976803733845, 96.104723664788722, 97.295942443806922, 98.470391359259267, 99.625765473754825, 100.7597040732923, 101.8697990011653, 102.95360393711096, 104.0086445975724, 105.03242981723263, 106.02246345553591, 106.9762570551031, 107.89134316215461, 108.76528920270256, 109.59571179282644, 110.38029134722791, 111.11678683793809, 111.80305054490319, 112.43704263256694, 113.01684538179539, 113.54067690473765, 114.00690417164176, 114.41405518325779, 114.76083013022334, 115.04611139160919, 115.26897223838158, 115.42868412367056, 115.52472246006776, 115.5567708043862, 115.5247233919782, 115.42868598544538, 115.2689750259448, 115.04611509888773, 114.76083474919456, 114.4140607040129, 114.00691058246178, 113.54068419218315, 113.01685353080657, 112.43705162657392, 111.80306036594381, 111.11679746678288, 110.38030276350868, 109.59572397516894, 108.76530212885937, 107.89135680913805, 106.97627139931728, 106.02247847290367, 105.03244548331976, 104.00866088770597, 102.95362082649103, 101.8698164649696, 100.75972208677402, 99.625784012331806, 98.470410398595035, 97.295961959884366, 96.104743633974167, 94.898997202834565, 93.680894863978153, 92.45253373629761, 91.215931273739599, 89.973021551193398, 88.725652379584034, 87.47558320129626, 86.224483712688055, 84.973933157394598, 83.725420232365693, 82.480343547873673, 81.240012583025532, 80.005649079410702, 78.778388817304929, 77.559283721195513, 76.349304244153288, 75.149341983670837, 73.960212484880685, 72.78265819050263, 71.6173515003521, 70.464897906706724, 69.325839175246415, 68.200656544581989, 67.089773920543664, 65.993561044409049, 64.912336617062962, 63.846371363712365, 62.795891026187412, 61.761079272110422, 60.742080512216297, 59.739002618948575, 58.751919541103234)

grav = []

iter_time = []

jobsList = []

gbestlist=[]

gbestvlist=[]

cg = 1.3

cp = 2.8

phi = cp+cg

K = 2/abs(2-phi-(phi**2-4*phi)**0.5)

StandardDev= 1

vmax =30

nswarm = 400

nsides = 6.0

ndim = int(nsides+1)

maxiter = 10

vmax = numpy.asarray(vmax)

 #all_the_leftxcorn = [[] for i in range(int(nswarm))]

 #all_the_rightxcorn = [[] for i in range(int(nswarm))]

 #all_the_topzcorn = [[] for i in range(int(nswarm))]

 #all_the_botzcorn = [[] for i in range(int(nswarm))]

 #all_the_rho = [[] for i in range(int(nswarm))]

log_pbestg = [[]for i in range(int(nswarm))]

log_pbestv = []

loggbest = []

logGbest=numpy.zeros([maxiter,ndim,2])

mid1 = []

mid2 = []

 #log_values =[]

swarm = numpy.zeros((nswarm,ndim,2))

 # initialize the swarm

change here###### change here

increment = 360/nsides

radius = numpy.arange(5,26)

yincr = numpy.arange(30,61)

Rhorange = numpy.arange(500.0,3001,0.01)

angles = numpy.zeros(ndim)

X = numpy.zeros([nswarm, ndim])

Y = numpy.zeros([nswarm,ndim])

for m in numpy.arange(ndim):

	angles[m]+=(increment*m)*(numpy.pi/180.0)

#at the end of x and y

for i in numpy.arange(nswarm):

 rr = rand.choice(radius)

 ry = rand.choice(yincr)

 x = numpy.zeros((nsides+1))

 y = numpy.zeros((nsides+1))

 for b in numpy.arange(nsides):

 x[b] = numpy.cos(angles[b])*(rr*si.rand())

 y[b] = (numpy.sin(angles[b])*(rr*si.rand()))+ry

 swarm[i,b,0]=x[b]

 swarm[i,b,1]=y[b]

 swarm[i,6,0]= rand.choice(Rhorange)

 swarm[i,6,1]= swarm[i,6,0]

vectors = numpy.zeros([nswarm,(ndim),2])

thetas = numpy.zeros([nswarm,(ndim-1),1])

values= numpy.zeros(nswarm)

gravity = numpy.zeros([nswarm,len(Dobs)])

change here###### change here

for n in numpy.arange(nswarm):

 p0 = swarm[n,0]

 p1 = swarm[n,1]

 p2 = swarm[n,2]

 p3 = swarm[n,3]

 p4 = swarm[n,4]

 p5 = swarm[n,5]

 rho = swarm[n,6,0]

 a = Point(p0[0],p0[1])

 b = Point(p1[0],p1[1])

 c = Point(p2[0],p2[1])

 d = Point(p3[0],p3[1])

 e = Point(p4[0],p4[1])

 f = Point(p5[0],p5[1])

put in code to make each particle a feasable solution.

 sides = [a,b,c,d,e,f,a,b,c,d,e,f]

 points = [p0,p1,p2,p3,p4,p5,p0]

 points = numpy.asarray(points)

 i=0

 for i in numpy.arange(ndim):

 if points[i,0]< -30.0:

 points[i,0]=-30.0

 if points[i,0]> 30.0:

 points[i,0]= 30.0

 if points[i,1]< 5.0:

 points[i,1]=5.0

 if points[i,1]> 100:

 points[i,1]= 100

 if rho<500:

 rho=500.0

 if rho>3000:

 rho = 3000.0

 i = 0

 for i in numpy.arange(ndim-1):

 vectors[n,i] = (points[i+1]-points[i])

 vectors[n,(ndim-1)] = vectors[n,0]

 i=0

 for i in numpy.arange(ndim-1):

 cross = numpy.cross(vectors[n,i],vectors[n,(i+1)])

 if cross<0:

 vxy = vectors[n,i,0]*vectors[n,(i+1),0] + vectors[n,i,1]*vectors[n,(i+1),1]

 vx = (vectors[n,i,0]**2+vectors[n,i,1]**2)**0.5

 vy = (vectors[n,(i+1),0]**2+vectors[n,(i+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,i] = -1*(rad*(180.0/numpy.pi))

 else:

 vxy = vectors[n,i,0]*vectors[n,(i+1),0] + vectors[n,i,1]*vectors[n,(i+1),1]

 vx = (vectors[n,i,0]**2+vectors[n,i,1]**2)**0.5

 vy = (vectors[n,(i+1),0]**2+vectors[n,(i+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,i] = rad*(180.0/numpy.pi)

 ###

 func1(p0,p1,p2,p3,p4,p5,rho)

 gravity[n]=grav

 del grav[0:len(grav)]

 n+=1

j=0

for j in numpy.arange(nswarm):

 values[j] = (sum((Dobs - gravity[j])**2))/StandardDev

pbestv = numpy.zeros(nswarm)

i=0

for i in numpy.arange(nswarm):

 pbestv[i] = values[i]

pbest = numpy.array(swarm)

initialize the "global best" values

gbesti = numpy.argmin(pbestv)

gbestv = numpy.minimum.reduce(pbestv)

gbest = pbest[gbesti]

initialize velocity function

velocities = numpy.zeros((nswarm,ndim,2))

velocities2 = numpy.zeros(((nswarm/2.0),ndim,2))

velocities1 = numpy.zeros(((nswarm/2.0),ndim,2))

i=0

for i in numpy.arange(maxiter):

 t = time.clock()

 logGbest[i] = gbest

 if i%100==0:

 print i

 print "current gbest",gbest

 print "current gbestv",gbestv

 values= numpy.zeros(nswarm)

 vectors = numpy.zeros([nswarm,(ndim),2])

 thetas = numpy.zeros([nswarm,(ndim-1),1])

 feasabilty = numpy.zeros(nswarm)

 ###### change here###### change here

 for n in numpy.arange(nswarm):

 p0 = swarm[n,0]

 p1= swarm[n,1]

 p2 = swarm[n,2]

 p3 = swarm[n,3]

 p4 = swarm[n,4]

 p5 = swarm[n,5]

 rho = swarm[n,6,0]

 a = Point(p0[0],p0[1])

 b = Point(p1[0],p1[1])

 c = Point(p2[0],p2[1])

 d = Point(p3[0],p3[1])

 e = Point(p4[0],p4[1])

 f = Point(p5[0],p5[1])

 sides = [a,b,c,d,e,f,a,b,c,d,e,f]

 points = [p0,p1,p2,p3,p4,p5,p0]

 points = numpy.asarray(points)

 for q in numpy.arange(ndim-1):

 vectors[n,q] = (points[q+1]-points[q])

 vectors[n,(ndim-1)] = vectors[n,0]

 for w in numpy.arange(ndim-1):

 cross = numpy.cross(vectors[n,w],vectors[n,(w+1)])

 if cross<0:

 vxy = vectors[n,w,0]*vectors[n,(w+1),0] + vectors[n,w,1]*vectors[n,(w+1),1]

 vx = (vectors[n,w,0]**2+vectors[n,w,1]**2)**0.5

 vy = (vectors[n,(w+1),0]**2+vectors[n,(w+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,w] = -1*(rad*(180.0/numpy.pi))

 else:

 vxy = vectors[n,w,0]*vectors[n,(w+1),0] + vectors[n,w,1]*vectors[n,(w+1),1]

 vx = (vectors[n,w,0]**2+vectors[n,w,1]**2)**0.5

 vy = (vectors[n,(w+1),0]**2+vectors[n,(w+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,w] = rad*(180.0/numpy.pi)

 #print thetas

 for e in numpy.arange(nswarm):

 for l in numpy.arange(ndim-1):

 if swarm[e,l,0]<-30.0:

 feasabilty[e]+=5000

 #print 'e',e,'l',l,'1'

 if swarm[e,l,0]> 30.0:

 feasabilty[e]+=5000

 #print 'e',e,'l',l, '2'

 if swarm[e,l,1]<5:

 feasabilty[e]+=5000

 #print 'e',e,'l',l, '3'

 if swarm[e,l,1]>100.0:

 feasabilty[e]+=5000

 #print 'e',e,'l',l, '4'

 if swarm[e,(nsides),0]<500:

 feasabilty[e]+=5000

 #print 'e',e, '5'

 if swarm[e,nsides,0]>3000:

 feasabilty[e]+=5000

 #print 'e',e, '6'

 for k in numpy.arange(len(thetas[0])):

 if abs(thetas[e,k]) < 0.1:

 thetas[e,k]=0.1

 S = int(sum(thetas[e]))

 for r in numpy.arange(len(thetas[0])):

 if abs(thetas[e,r]) < 10.0:

 feasabilty[e]+=5000

 if abs(thetas[e,r]) > 170.0:

 feasabilty[e]+=5000

 #print 'e',e,'r',r, '7'

 #print 'S',S,'intS',int(sum(thetas[n]))

 if int(sum(thetas[e]))==359:

 S = int(360.0)

 if S!=int(360.0):

 feasabilty[e]+=5000

 # print 'e',e, '8'

 if S == int(360.0):

 for t in numpy.arange((ndim-1)):

 #print 'j',j

 #print intersect(sides[j],sides[j+1],sides[j+2],sides[j+3]),'1','j',j

 #print intersect(sides[j],sides[j+1],sides[j+3],sides[j+4]),'2','j',j

 if intersect(sides[t],sides[t+1],sides[t+2],sides[t+3]):

 feasabilty[e]+=5000

 #print 'e',e,'9'

 if intersect(sides[t],sides[t+1],sides[t+3],sides[t+4]):

 feasabilty[e]+=5000

 #print 'e',e,'10'

 # print swarm

 #print feasabilty

 ppservers = ()

 #ppservers = ("10.0.0.1",)

 if len(sys.argv) > 1:

 ncpus = int(sys.argv[1])

 # Creates jobserver with ncpus workers

 job_server = pp.Server(ncpus, ppservers=ppservers)

 else:

 # Creates jobserver with automatically detected number of workers

 job_server = pp.Server(ppservers=ppservers)

 #print "Starting pp with", job_server.get_ncpus(), "workers"

#works to here

 inputs = tuple(swarm)

 start_time = time.time()

 jobs = [(raw_input, job_server.submit(func2,(raw_input,grav), (), ("numpy",))) for raw_input in inputs]

 for raw_input, job in jobs:

 r = job()

 jobsList.append(r)

 #print "swarm", raw_input, "is",r[0],'nsawrm',nswarm

 #print "Time elapsed: ", time.time() - start_time, "s"

 #job_server.print_stats()

 for y in numpy.arange(nswarm):

 gravity[y] = jobsList[y]

 #print gravity[n,0]

 del grav[0:len(grav)]

 del jobsList[0:len(jobsList)]

 ##########destroys severs and open files############

 job_server.destroy()

 for u in numpy.arange(nswarm):

 values[u] = (sum((Dobs - gravity[u])**2) + feasabilty[u])/StandardDev

 for p in numpy.arange(nswarm):

 #if feasabilty[p]<1.0:

 mask = values[p] < pbestv[p]

 mask2d = numpy.repeat(mask, (ndim*2))

 mask2d = mask2d.reshape([ndim,2])

 pbestv[p] = numpy.where(mask, values[p], pbestv[p])

 pbest = numpy.where(mask2d, swarm, pbest)

 log_pbestg[p].append(pbestv[p])

 log_pbestv.append(pbestv)

 if numpy.minimum.reduce(pbestv) < gbestv:

 gbesti = numpy.argmin(pbestv)

 gbestv = pbestv[gbesti]

 gbest = pbest[gbesti]

 loggbest.append(gbestv)

 logGbest[i] = gbest

 #if K1<0.4:

 #K1 = 0.4

 S = swarm[0:(nswarm/2.0)]

 S1 = swarm[(nswarm/2.0):nswarm]

 P = pbest[0:(nswarm/2.0)]

 P1= pbest[(nswarm/2.0):nswarm]

 velocities1 = K*(velocities1 + (cp*si.rand()*(P - S)) +

 (cg*si.rand()*(gbest - S)))

 velocities2 = (velocities2 + (cp*si.rand()*(P1 - S1)) +

 (cg*si.rand()*(gbest - S1)))

 #K1 = K1-(K1/maxiter)

 velocities2 = numpy.clip(velocities2,-5.0,5.0)

 velocities1[numpy.logical_and(velocities1>=0.0,velocities1<0.025)]=0.025

 velocities1[numpy.logical_and(velocities1<0.0,velocities1>-0.025)]=-0.025

 #print 'velocities',i,velocities

 velocities[0:(nswarm/2.0)]=velocities1

 velocities[(nswarm/2.0):nswarm]=velocities2

 swarm+=velocities

 t1 = time.clock()

 dt = t1-t

 iter_time.append(dt)

 gbestlist.append(gbestv)

 if gbestv < 1e-1:

 print i,gbest,gbestv,'time for average iteration', (sum(iter_time)/float

(maxiter)),'sum iteration time to complete = ', sum(iter_time),'seconds',(sum

(iter_time)/60.0),'minutes'

 #return 'f'

print 'current gbest',gbest

print 'current gbestv',gbestv,'feasabilty',feasabilty

print 'time for average iteration', (sum(iter_time)/float(maxiter))

print 'sum iteration time to complete = ', sum(iter_time),'seconds',(sum

(iter_time)/60.0),'minutes'

"""former = numpy.minimum.reduce(gbestvlist)

arg = numpy.argmin(gbestvlist)

print 'former gbest',gbestlist2[arg]

print 'former gbestv',former

x = numpy.arange(1000)

import pylab as pl

for i in numpy.arange(400):

	pl.plot(x,log_pbestg[i])

pl.xlabel('iteration')

pl.ylabel('misfit')

pl.axis([0,100,0,200000])

pl.show()

x = numpy.zeros([nswarm,ndim])

y = numpy.zeros([nswarm,ndim])

for i in numpy.arange(nswarm):

	for j in numpy.arange(ndim):

		x[i,j]=swarm[i,j,0]

		y[i,j]=swarm[i,j,1]

	x[i,5]=swarm[i,0,0]

	y[i,5]=swarm[i,0,1]"""

####plots the shapes of all the Gbests ##########

x = numpy.zeros([maxiter,ndim])

y = numpy.zeros([maxiter,ndim])

for i in numpy.arange(maxiter):

	for j in numpy.arange(ndim):

		x[i,j]=logGbest[i,j,0]

		y[i,j]=logGbest[i,j,1]

	x[i,6]=logGbest[i,0,0]

	y[i,6]=logGbest[i,0,1]

"""for i in numpy.arange(maxiter):

	pl.plot(x[i],y[i],x[i],y[i],'o')"""

i = 999

pl.plot(x[i],y[i],x[i],y[i],'o')

pl.show()

9-appendix B/Chapter 5 results and codes/codes/starup7.py

import numpy as numpy

import scipy as si

import random as rand

import time

import sys,pp

import pylab as pl

from datetime import datetime

class Point:

	def __init__(self,x,y):

		self.x = x

		self.y = y

change here###### change here

def func1(p0,p1,p2,p3,p4,p5,p6,rho):

 x = numpy.arange(-30.0,30,0.5)

 """z = numpy.zeros(120)

 xz = np.zeros([120,2])

 for i in numpy.arange(120):

	xz[i]= [x[i],z[i]]"""

 points = [p0,p1,p2,p3,p4,p5,p6,p0]

 points = numpy.asarray(points)

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 for i in numpy.arange(len(x)):

 sum_lines = 0.0

 for n in numpy.arange(len(points)-1):

 x1 = points[n,0]-x[i]

 x2 = points[(n+1),0]-x[i]

 z1 = points[n,1]

 z2 = points[(n+1),1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = numpy.arctan2(z1,x1)

 O2 = numpy.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = numpy.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

 #print grav

def func2(raw_input,grav):

 p0=raw_input[0]

 p1=raw_input[1]

 p2=raw_input[2]

 p3=raw_input[3]

 p4=raw_input[4]

 p5=raw_input[5]

 p6=raw_input[6]

 rho=raw_input[7,0]

 rho=rho

 x = numpy.arange(-30.0,30,0.5)

 points = [p0,p1,p2,p3,p4,p5,p6,p0]

 points = numpy.asarray(points)

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 for i in numpy.arange(len(x)):

 sum_lines = 0.0

 for n in numpy.arange(len(points)-1):

 x1 = points[n,0]-x[i]

 x2 = points[(n+1),0]-x[i]

 z1 = points[n,1]

 z2 = points[(n+1),1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = numpy.arctan2(z1,x1)

 O2 = numpy.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = numpy.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

 #print len(grav),grav[0]

 return grav

def ccw(A,B,C):

	return (C.y-A.y)*(B.x-A.x) > (B.y-A.y)*(C.x-A.x)

def intersect(A,B,C,D):

	return ccw(A,C,D) != ccw(B,C,D) and ccw(A,B,C) != ccw(A,B,D)

#medium noise standard dev =3

Dobs = (127.35304903059458, 127.88186828555794, 127.33788862241668, 127.77541311066878, 128.40204122781981, 133.6202666867741, 139.2352021730452, 131.21928025351221, 136.70425059435235, 136.95689102096696, 138.1366538734473, 140.9630258220113, 143.91131815401405, 150.46199733512384, 147.20075768955775, 145.69285267233042, 148.17508122556541, 149.90692625454594, 149.73676029868676, 151.85204093401518, 152.93869622767707, 158.26153224475848, 158.21378484865201, 155.16913516801492, 160.66522315225586, 165.90511431918196, 161.32929923902785, 159.53230889780596, 164.32598223640937, 170.67520779051736, 167.21939552045706, 172.91212796973602, 169.35949603526015, 172.17719516023811, 174.1958942474304, 180.06546140155589, 180.97243302585605, 179.55308000501086, 172.77182737194602, 177.11610495372148, 178.85823841722032, 182.2464537077029, 183.5028422314559, 178.65955210402302, 184.90859237712471, 177.58394270213202, 181.079249519793, 188.9381071786157, 186.29407401257657, 185.39982650974594, 187.88212222717476, 186.98510891764693, 186.44469606157026, 181.27920432429892, 187.56594993540867, 185.21609614902371, 188.31095199289689, 184.78860034398394, 186.06786425442633, 189.69606469423923, 189.83505847892553, 182.87455797981934, 192.42882389707884, 183.45171542528615, 190.30784545827737, 191.31521490327623, 184.74560094534635, 192.01271682522429, 186.92346449909991, 189.42755863000139, 188.63157245496268, 184.02446469674896, 187.08216276003108, 179.85299514453064, 181.66035318203515, 186.12333540620108, 181.50202867498604, 187.04244869031751, 179.50720275067155, 179.17007231584469, 183.78671777030942, 179.62753740969802, 171.92236798093802, 165.87200434752822, 168.94915280649599, 170.90981454701537, 175.1660101153895, 174.065028098319, 170.94072364863572, 172.88253163452694, 168.65000153880973, 166.48020341008413, 167.5862810278937, 165.35907310317108, 159.78150793602663, 160.91258955348206, 162.70217807943934, 160.27725086402504, 155.02747710227408, 156.34121047412404, 157.05974685779455, 151.79808385456786, 154.87373593802644, 157.98222496014964, 154.28706892300352, 143.6952747083925, 146.6519764310728, 144.23164659762088, 137.08758413179737, 137.88497062605219, 143.5950965708453, 139.02499402968655, 141.3077195166193, 137.27211839183872, 135.8812509139641, 132.99766105651489, 127.02984268877009, 134.61741163700441, 132.48731466125585, 131.09800195288511)

#Dobs noise free 7 sides

#Dobs = (126.22359089415158, 127.63868405953203, 129.06090686390871, 130.48966204000226, 131.92431793661342, 133.36420791130482, 134.80862979326554, 136.25684542415902, 137.70808028492448, 139.1615232166665, 140.61632624382082, 142.0716045078168, 143.52643631939389, 144.97986333760409, 146.43089088331038, 147.87848839469245, 149.32159003186342, 150.75909543721357, 152.18987065748692, 153.61274923290065, 155.02653345780729, 156.42999581649147, 157.821880596688, 159.20090568230736, 160.5657645256648, 161.91512829825331, 163.24764821777032, 164.56195804772403, 165.85667676453986, 167.13041138564228, 168.38175995055352, 169.60931464563473, 170.81166506170126, 171.98740157243085, 173.13511882022203, 174.25341929500561, 175.34091699047619, 176.39624112128271, 177.41803988395026, 178.40498424367479, 179.35577172867656, 180.26913021348815, 181.14382167243019, 181.97864588455388, 182.77244407152051, 183.52410245024038, 184.23255568257346, 184.89679020501555, 185.51584742203167, 186.08882674752505, 186.61488847986405, 187.09325649686636, 187.52322075818782, 187.90413960365126, 188.23544183714179, 188.51662858683147, 188.74727493360629, 188.92703130069518, 189.05562459860391, 189.13285912056307, 189.1586171847714, 189.13285952079642, 189.05562539855043, 188.92703249931705, 188.74727652935132, 188.51663057763855, 188.23544422044915, 187.90414237640485, 187.52322391685254, 187.09326003743908, 186.61489239788762, 186.08883103810365, 185.51585207984863, 184.89679522435145, 184.23256105732597, 183.52410817394468, 182.77245013737152, 181.97865228542824, 181.14382840091005, 180.26913726188533, 179.355779089056, 178.40499190787889, 177.41804784362517, 176.39624936790241, 175.34092551536614, 174.2534280893689, 173.13512787516191, 171.98741087897588, 170.81167461082717, 169.60932442828772, 168.38176995767165, 167.13042160817599, 165.85668719347223, 164.56196867408894, 163.24765903267155, 161.91513929288004, 160.56577569130809, 159.20091701037464, 157.82189207871585, 156.43000744415824, 155.02654522294515, 153.61276112750366, 152.18988267372094, 150.75910756742419, 149.32160226858227, 147.8785007306426, 146.43090331141249, 144.97987585097763, 143.52644891136256, 142.07161717190905, 140.61633897377209, 139.16153600641854, 137.70809312862622, 136.25685831616588, 134.80864272813682, 133.36422088380345, 131.92433094170289, 130.48967507284374, 129.06091991985738, 127.63869713413546)

grav = []

iter_time = []

jobsList = []

gbestlist=[]

gbestvlist=[]

cg = 1.3

cp = 2.8

phi = cp+cg

K = 2/abs(2-phi-(phi**2-4*phi)**0.5)

StandardDev= 1

vmax =30

nswarm = 126

nsides = 7.0

ndim = int(nsides+1)

maxiter = 5000

vmax = numpy.asarray(vmax)

 #all_the_leftxcorn = [[] for i in range(int(nswarm))]

 #all_the_rightxcorn = [[] for i in range(int(nswarm))]

 #all_the_topzcorn = [[] for i in range(int(nswarm))]

 #all_the_botzcorn = [[] for i in range(int(nswarm))]

 #all_the_rho = [[] for i in range(int(nswarm))]

log_pbestg = [[]for i in range(int(nswarm))]

log_pbestv = []

loggbest = []

logGbest=numpy.zeros([maxiter,ndim,2])

mid1 = []

mid2 = []

 #log_values =[]

swarm = numpy.zeros((nswarm,ndim,2))

 # initialize the swarm

change here###### change here

increment = 360/nsides

radius = numpy.arange(5,26)

yincr = numpy.arange(30,61)

Rhorange = numpy.arange(500.0,3001,0.01)

angles = numpy.zeros(ndim)

X = numpy.zeros([nswarm, ndim])

Y = numpy.zeros([nswarm,ndim])

for m in numpy.arange(ndim):

	angles[m]+=(increment*m)*(numpy.pi/180.0)

#at the end of x and y

for i in numpy.arange(nswarm):

 rr = rand.choice(radius)

 ry = rand.choice(yincr)

 x = numpy.zeros((nsides+1))

 y = numpy.zeros((nsides+1))

 for b in numpy.arange(nsides):

 x[b] = numpy.cos(angles[b])*(rr*si.rand())

 y[b] = (numpy.sin(angles[b])*(rr*si.rand()))+ry

 swarm[i,b,0]=x[b]

 swarm[i,b,1]=y[b]

 swarm[i,7,0]= rand.choice(Rhorange)

 swarm[i,7,1]= swarm[i,6,0]

vectors = numpy.zeros([nswarm,(ndim),2])

thetas = numpy.zeros([nswarm,(ndim-1),1])

values= numpy.zeros(nswarm)

gravity = numpy.zeros([nswarm,len(Dobs)])

change here###### change here

for n in numpy.arange(nswarm):

 p0 = swarm[n,0]

 p1 = swarm[n,1]

 p2 = swarm[n,2]

 p3 = swarm[n,3]

 p4 = swarm[n,4]

 p5 = swarm[n,5]

 p6 = swarm[n,6]

 rho = swarm[n,7,0]

 a = Point(p0[0],p0[1])

 b = Point(p1[0],p1[1])

 c = Point(p2[0],p2[1])

 d = Point(p3[0],p3[1])

 e = Point(p4[0],p4[1])

 f = Point(p5[0],p5[1])

 g = Point(p6[0],p6[1])

put in code to make each particle a feasable solution.

 sides = [a,b,c,d,e,f,g,a,b,c,d,e,f,g]

 points = [p0,p1,p2,p3,p4,p5,p6,p0]

 points = numpy.asarray(points)

 i=0

 for i in numpy.arange(ndim):

 if points[i,0]< -30.0:

 points[i,0]=-30.0

 if points[i,0]> 30.0:

 points[i,0]= 30.0

 if points[i,1]< 5.0:

 points[i,1]=5.0

 if points[i,1]> 100:

 points[i,1]= 100

 if rho<500:

 rho=500.0

 if rho>3000:

 rho = 3000.0

 i = 0

 for i in numpy.arange(ndim-1):

 vectors[n,i] = (points[i+1]-points[i])

 vectors[n,(ndim-1)] = vectors[n,0]

 i=0

 for i in numpy.arange(ndim-1):

 cross = numpy.cross(vectors[n,i],vectors[n,(i+1)])

 if cross<0:

 vxy = vectors[n,i,0]*vectors[n,(i+1),0] + vectors[n,i,1]*vectors[n,(i+1),1]

 vx = (vectors[n,i,0]**2+vectors[n,i,1]**2)**0.5

 vy = (vectors[n,(i+1),0]**2+vectors[n,(i+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,i] = -1*(rad*(180.0/numpy.pi))

 else:

 vxy = vectors[n,i,0]*vectors[n,(i+1),0] + vectors[n,i,1]*vectors[n,(i+1),1]

 vx = (vectors[n,i,0]**2+vectors[n,i,1]**2)**0.5

 vy = (vectors[n,(i+1),0]**2+vectors[n,(i+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,i] = rad*(180.0/numpy.pi)

 ###

 func1(p0,p1,p2,p3,p4,p5,p6,rho)

 gravity[n]=grav

 del grav[0:len(grav)]

 n+=1

j=0

for j in numpy.arange(nswarm):

 values[j] = (sum((Dobs - gravity[j])**2))/StandardDev

pbestv = numpy.zeros(nswarm)

i=0

for i in numpy.arange(nswarm):

 pbestv[i] = values[i]

pbest = numpy.array(swarm)

initialize the "global best" values

gbesti = numpy.argmin(pbestv)

gbestv = numpy.minimum.reduce(pbestv)

gbest = pbest[gbesti]

initialize velocity function

velocities = numpy.zeros((nswarm,ndim,2))

velocities2 = numpy.zeros(((nswarm/2.0),ndim,2))

velocities1 = numpy.zeros(((nswarm/2.0),ndim,2))

i=0

print datetime.time(datetime.now())

for i in numpy.arange(maxiter):

 t = time.clock()

 logGbest[i] = gbest

 if i%500==0:

 print i

 print "current gbest",gbest

 print "current gbestv",gbestv

 values= numpy.zeros(nswarm)

 vectors = numpy.zeros([nswarm,(ndim),2])

 thetas = numpy.zeros([nswarm,(ndim-1),1])

 feasabilty = numpy.zeros(nswarm)

 ###### change here###### change here

 for n in numpy.arange(nswarm):

 p0 = swarm[n,0]

 p1= swarm[n,1]

 p2 = swarm[n,2]

 p3 = swarm[n,3]

 p4 = swarm[n,4]

 p5 = swarm[n,5]

 p56 = swarm[n,6]

 rho = swarm[n,7,0]

 a = Point(p0[0],p0[1])

 b = Point(p1[0],p1[1])

 c = Point(p2[0],p2[1])

 d = Point(p3[0],p3[1])

 e = Point(p4[0],p4[1])

 f = Point(p5[0],p5[1])

 g = Point(p6[0],p6[1])

 sides = [a,b,c,d,e,f,g,a,b,c,d,e,f,g]

 points = [p0,p1,p2,p3,p4,p5,p6,p0]

 points = numpy.asarray(points)

 for q in numpy.arange(ndim-1):

 vectors[n,q] = (points[q+1]-points[q])

 vectors[n,(ndim-1)] = vectors[n,0]

 for w in numpy.arange(ndim-1):

 cross = numpy.cross(vectors[n,w],vectors[n,(w+1)])

 if cross<0:

 vxy = vectors[n,w,0]*vectors[n,(w+1),0] + vectors[n,w,1]*vectors[n,(w+1),1]

 vx = (vectors[n,w,0]**2+vectors[n,w,1]**2)**0.5

 vy = (vectors[n,(w+1),0]**2+vectors[n,(w+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,w] = -1*(rad*(180.0/numpy.pi))

 else:

 vxy = vectors[n,w,0]*vectors[n,(w+1),0] + vectors[n,w,1]*vectors[n,(w+1),1]

 vx = (vectors[n,w,0]**2+vectors[n,w,1]**2)**0.5

 vy = (vectors[n,(w+1),0]**2+vectors[n,(w+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,w] = rad*(180.0/numpy.pi)

 #print thetas

 for e in numpy.arange(nswarm):

 for l in numpy.arange(ndim-1):

 if swarm[e,l,0]<-30.0:

 feasabilty[e]+=5000

 #print 'e',e,'l',l,'1'

 if swarm[e,l,0]> 30.0:

 feasabilty[e]+=5000

 #print 'e',e,'l',l, '2'

 if swarm[e,l,1]<5:

 feasabilty[e]+=5000

 #print 'e',e,'l',l, '3'

 if swarm[e,l,1]>100.0:

 feasabilty[e]+=5000

 #print 'e',e,'l',l, '4'

 if swarm[e,nsides,0]<500:

 feasabilty[e]+=5000

 #print 'e',e, '5'

 if swarm[e,nsides,0]>3000:

 feasabilty[e]+=5000

 #print 'e',e, '6'

 for k in numpy.arange(len(thetas[0])):

 if abs(thetas[e,k]) < 0.1:

 thetas[e,k]=0.1

 S = int(sum(thetas[e]))

 for r in numpy.arange(len(thetas[0])):

 if abs(thetas[e,r]) < 10.0:

 feasabilty[e]+=5000

 if abs(thetas[e,r]) > 170.0:

 feasabilty[e]+=5000

 #print 'e',e,'r',r, '7'

 #print 'S',S,'intS',int(sum(thetas[n]))

 if int(sum(thetas[e]))==359:

 S = int(360.0)

 if S!=int(360.0):

 feasabilty[e]+=5000

 # print 'e',e, '8'

 if S == int(360.0):

 for t in numpy.arange((ndim-1)):

 #print 'j',j

 #print intersect(sides[j],sides[j+1],sides[j+2],sides[j+3]),'1','j',j

 #print intersect(sides[j],sides[j+1],sides[j+3],sides[j+4]),'2','j',j

 if intersect(sides[t],sides[t+1],sides[t+2],sides[t+3]):

 feasabilty[e]+=5000

 #print 'e',e,'9'

 if intersect(sides[t],sides[t+1],sides[t+3],sides[t+4]):

 feasabilty[e]+=5000

 #print 'e',e,'10'

 # print swarm

 #print feasabilty

 ppservers = ()

 #ppservers = ("10.0.0.1",)

 if len(sys.argv) > 1:

 ncpus = int(sys.argv[1])

 # Creates jobserver with ncpus workers

 job_server = pp.Server(ncpus, ppservers=ppservers)

 else:

 # Creates jobserver with automatically detected number of workers

 job_server = pp.Server(ppservers=ppservers)

 #print "Starting pp with", job_server.get_ncpus(), "workers"

#works to here

 inputs = tuple(swarm)

 start_time = time.time()

 jobs = [(raw_input, job_server.submit(func2,(raw_input,grav), (), ("numpy",))) for raw_input in inputs]

 for raw_input, job in jobs:

 r = job()

 jobsList.append(r)

 #print "swarm", raw_input, "is",r[0],'nsawrm',nswarm

 #print "Time elapsed: ", time.time() - start_time, "s"

 #job_server.print_stats()

 for y in numpy.arange(nswarm):

 gravity[y] = jobsList[y]

 #print gravity[n,0]

 del grav[0:len(grav)]

 del jobsList[0:len(jobsList)]

 ##########destroys severs and open files############

 job_server.destroy()

 for u in numpy.arange(nswarm):

 values[u] = (sum((Dobs - gravity[u])**2) + feasabilty[u])/StandardDev

 for p in numpy.arange(nswarm):

 #if feasabilty[p]<1.0:

 mask = values[p] < pbestv[p]

 mask2d = numpy.repeat(mask, (ndim*2))

 mask2d = mask2d.reshape([ndim,2])

 pbestv[p] = numpy.where(mask, values[p], pbestv[p])

 pbest = numpy.where(mask2d, swarm, pbest)

 log_pbestg[p].append(pbestv[p])

 log_pbestv.append(pbestv)

 if numpy.minimum.reduce(pbestv) < gbestv:

 gbesti = numpy.argmin(pbestv)

 gbestv = pbestv[gbesti]

 gbest = pbest[gbesti]

 loggbest.append(gbestv)

 logGbest[i] = gbest

 #if K1<0.4:

 #K1 = 0.4

 S = swarm[0:(nswarm/2.0)]

 S1 = swarm[(nswarm/2.0):nswarm]

 P = pbest[0:(nswarm/2.0)]

 P1= pbest[(nswarm/2.0):nswarm]

 velocities1 = K*(velocities1 + (cp*si.rand()*(P - S)) +

 (cg*si.rand()*(gbest - S)))

 velocities2 = (velocities2 + (cp*si.rand()*(P1 - S1)) +

 (cg*si.rand()*(gbest - S1)))

 #K1 = K1-(K1/maxiter)

 velocities2 = numpy.clip(velocities2,-5.0,5.0)

 velocities1[numpy.logical_and(velocities1>=0.0,velocities1<0.025)]=0.025

 velocities1[numpy.logical_and(velocities1<0.0,velocities1>-0.025)]=-0.025

 #print 'velocities',i,velocities

 velocities[0:(nswarm/2.0)]=velocities1

 velocities[(nswarm/2.0):nswarm]=velocities2

 swarm+=velocities

 t1 = time.clock()

 dt = t1-t

 iter_time.append(dt)

 gbestlist.append(gbestv)

 if gbestv < 1e-1:

 print i,gbest,gbestv,'time for average iteration', (sum(iter_time)/float

(maxiter)),'sum iteration time to complete = ', sum(iter_time),'seconds',(sum

(iter_time)/60.0),'minutes'

 #return 'f'

print datetime.time(datetime.now())

print 'current gbest',gbest

print 'current gbestv',gbestv,'feasabilty',feasabilty

print 'time for average iteration', (sum(iter_time)/float(maxiter))

print 'sum iteration time to complete = ', sum(iter_time),'seconds',(sum

(iter_time)/60.0),'minutes'

"""former = numpy.minimum.reduce(gbestvlist)

arg = numpy.argmin(gbestvlist)

print 'former gbest',gbestlist2[arg]

print 'former gbestv',former

plots convergence curve #

x = numpy.arange(1000)

import pylab as pl

for i in numpy.arange(nswarm):

	pl.plot(x,log_pbestg[i])

pl.xlabel('iteration')

pl.ylabel('misfit')

pl.axis([0,1000,0,200000])

pl.show()

####plots the final shapes of all the swarm ##########

x = numpy.zeros([nswarm,ndim])

y = numpy.zeros([nswarm,ndim])

for i in numpy.arange(nswarm):

	for j in numpy.arange(ndim):

		x[i,j]=swarm[i,j,0]

		y[i,j]=swarm[i,j,1]

	x[i,7]=swarm[i,0,0]

	y[i,7]=swarm[i,0,1]"""

####plots the shapes of all the Gbests ##########

x = numpy.zeros([maxiter,ndim])

y = numpy.zeros([maxiter,ndim])

for i in numpy.arange(maxiter):

	for j in numpy.arange(ndim):

		x[i,j]=logGbest[i,j,0]

		y[i,j]=logGbest[i,j,1]

	x[i,7]=logGbest[i,0,0]

	y[i,7]=logGbest[i,0,1]

"""for i in numpy.arange(maxiter):

	pl.plot(x[i],y[i],x[i],y[i],'o')"""

i = 4999

pl.plot(x[i],y[i],x[i],y[i],'o')

pl.show()

9-appendix B/Chapter 5 results and codes/codes/survey region5.py

import numpy as np

import pylab as pl

#house1 = (63.628041646061284, 65.001195678263571, 66.410055075193284, 67.85539041533886, 69.337958743344572, 70.858499366904965, 72.417729215564691, 74.01633773229365, 75.654981268556128, 77.33427695375687, 79.054796010486157, 80.817056487977027, 82.62151538764131, 84.468560156573517, 86.3584995275138, 88.291553687005887, 90.267843757411185, 92.287380583067645, 94.350052816221577, 96.455614304422028, 98.603670787818913, 100.7936659222165, 103.02486665175928, 105.29634796369132, 107.60697706668279, 109.95539704369365, 112.34001004020885, 114.75896005895825, 117.21011544299182, 119.69105114042746, 122.19903085664693, 124.73098921370166, 127.28351405296712, 129.85282903665282, 132.4347767279892, 135.02480236043627, 137.61793854510898, 140.20879121515492, 142.79152716863433, 145.35986365029297, 147.90706051010579, 150.42591559481266, 152.90876416912238, 155.34748332548591, 157.73350252240249, 160.05782158451169, 162.31103769149317, 164.48338305860887, 166.56477514303819, 168.54488126117266, 170.41319942770144, 172.15915697505696, 173.77222802596825, 175.24207012203772, 176.55867922448522, 177.71256090014089, 178.69491383830652, 179.4978200301866, 180.11443417218749, 180.53916337931531, 180.76782739779196, 180.79778944812455, 180.62804878673845, 180.25928807518119, 179.69387153860939, 178.93579335297702, 177.99057927623653, 176.86514775617303, 175.56763919977382, 174.10722352011572, 172.49389641855296, 170.73827422147613, 168.85139570870084, 166.84453754119005, 164.72904791111318, 162.51620113732415, 160.21707427923661, 157.84244552932105, 155.40271319117912, 152.90783343190114, 150.36727466239861, 147.78998628486153, 145.1843795901118, 142.55831873443415, 139.91911993107362, 137.27355722263107, 134.62787343381004, 131.98779512446103, 129.35855056222522, 126.74488990846345, 124.15110696002087, 121.58106191400518, 119.0382047256621, 116.52559871349281, 114.04594413401176, 111.60160150379326, 109.19461449121401, 106.8267322367204, 104.49943099028398, 102.21393497938585, 99.971236441486184, 97.772114772351472, 95.61715475644948, 93.506763858364195, 91.441188565167138, 89.420529779156709, 87.444757268537558, 85.513723190596423, 83.627174707823229, 81.784765722379547, 79.986067758334059, 78.230580024313937, 76.517738691681245, 74.846925425148186, 73.217475203924835, 71.62868347214625, 70.079812657519412, 68.570098096891698, 67.098753406886857, 65.664975336890478)

house = (63.942052517377995, 65.326864187017122, 66.747890049346537, 68.205922693715266, 69.701741703856271, 71.23610937869195, 72.809765995100904, 74.423424580270719, 76.077765160688472, 77.773428454519944, 79.511008974162493, 81.2910475062004, 83.114022936864203, 84.980343392499165, 86.890336666505632, 88.844239906801064, 90.842188541110744, 92.884204421376296, 94.970183173302061, 97.099880742583977, 99.272899135698339, 101.48867136028191, 103.746445578137, 106.04526849274862, 108.38396800295692, 110.76113516514452, 113.17510551808809, 115.6239398377014, 118.10540440354175, 120.61695087563976, 123.15569589958201, 125.71840058071096, 128.30144999598912, 130.9008329459966, 133.51212219156605, 136.13045547192266, 138.75051766644702, 141.36652454312102, 143.97220863619089, 146.56080791623276, 149.12505805954629, 151.65718929122565, 154.14892896566431, 156.5915112545261, 158.97569552527045, 161.29179519650776, 163.52971902479968, 165.67902687628498, 167.72900202077864, 169.6687418016904, 171.48726812295149, 173.1736584971699, 174.71719737483508, 176.10754611052209, 177.33492825583349, 178.39032500346849, 179.26567372066498, 179.95406085049655, 180.4498993147601, 180.74908020276732, 180.84908918337524, 180.74907980253403, 180.44989851481353, 179.95405965187459, 179.26567212491992, 178.3903230126613, 177.33492587252616, 176.10754333776859, 174.7171942161703, 173.17365495659718, 171.48726420492798, 169.66873751111169, 167.72899736296171, 165.67902185694911, 163.52971365004723, 161.2917894728036, 158.97568945941944, 156.59150485365183, 154.14892223718439, 151.65718224282844, 149.12505069916722, 146.56080025202857, 143.97220067651577, 141.36651629650126, 138.7505091415569, 136.13044667755935, 133.51211313662631, 130.90082363945157, 128.30144044686313, 125.71839079805775, 123.15568589246371, 120.61694065310589, 118.1053939746094, 115.62392921133632, 113.17509470318677, 110.76112417051768, 108.38395683731355, 106.04525716468137, 103.74643409610898, 101.48865973261476, 99.27288737056044, 97.099868847981057, 94.970171157068052, 92.884192291165661, 90.842176304391813, 88.844227570850848, 86.89032423840365, 84.980330879125461, 83.11401034489549, 81.291034842108104, 79.510996244211313, 77.773415664767867, 76.077752316986789, 74.423411688263769, 72.809753060229554, 71.236096406193056, 69.701728698766715, 68.205909660873871, 66.747876993397469, 65.326851112413792)

model16 = (67.853636259746651, 68.441068535192542, 69.030139707333149, 69.62064691881065, 70.212377375696605, 70.80510812566294, 71.398605846380235, 71.992626645880279, 72.58691587673259, 73.181207966014568, 73.775226263161983, 74.368682907909644, 74.961278720650427, 75.55270311764022, 76.142634053589589, 76.730737994267955, 77.316669921840329, 77.90007337571133, 78.480580531724286, 79.057812322582024, 79.631378602374141, 80.200878358092311, 80.765899970961968, 81.326021530362098, 81.880811202982883, 82.429827659749222, 82.972620562834038, 83.508731114871125, 84.037692672204585, 84.559031423683265, 85.072267136150003, 85.576913967351075, 86.072481346519965, 86.558474922379958, 87.034397577742439, 87.499750509258959, 87.954034370258839, 88.396750473897612, 88.827402053148063, 89.245495573425245, 89.650542092898689, 90.042058664804571, 90.41956977533394, 90.782608809965126, 91.130719540442399, 91.463457623964572, 91.780392105602161, 92.08110691445286, 92.365202343674113, 92.632296504202586, 92.882026741808062, 93.114051007046086, 93.328049167731479, 93.523724253757308, 93.700803624388897, 93.859040048632693, 93.998212689861958, 94.11812798659048, 94.218620422122697, 94.299553176725382, 94.360818657006718, 94.402338898276923, 94.424065836824482, 94.425981450245885, 94.408097765179335, 94.370456733009718, 94.313129975327115, 94.23621840206431, 94.139851706363686, 94.024187741258331, 93.889411784192404, 93.735735696281736, 93.563396983935931, 93.372657771126072, 93.163803691060409, 92.93714270645647, 92.693003867837632, 92.431736019450398, 92.153706462429113, 91.859299584750815, 91.548915467369014, 91.222968475626359, 90.881885844710666, 90.526106267493248, 90.156078492611172, 89.772259940115902, 89.375115341454148, 88.965115409933787, 88.542735547226286, 88.108454590822063, 87.662753606734597, 87.206114731138385, 86.739020064001792, 86.261950617225565, 85.775385319212063, 85.279800077274899, 84.775666898809234, 84.263453071672089, 83.743620403801302, 83.21662452172707, 82.68291422726594, 82.142930911384894, 81.597108023959763, 81.045870597897675, 80.489634825903494, 79.928807687991522, 79.363786627722178, 78.794959275005994, 78.222703213265291, 77.647385788659392, 77.069363959064717, 76.488984180465707, 75.906582328431583, 75.322483652365818, 74.737002760240358, 74.150443631591813, 73.563099656582082, 72.975253699022517, 72.387178181304179, 71.799135189270714)

fiveresults = (65.900960487360578, 67.199464358967063, 68.530200879507575, 69.893975660061272, 71.291602603612844, 72.72390215605536, 74.191699256179248, 75.695820944371832, 77.237093584601624, 78.816339648511146, 80.43437400399759, 82.091999643511258, 83.790002779364329, 85.529147224593302, 87.310167968327931, 89.133763844191151, 91.000589179011811, 92.911244297176808, 94.866264743407442, 96.866109073886904, 98.911145052837426, 101.00163407938976, 103.13771365861653, 105.31937772194574, 107.54645459710449, 109.81858242803887, 112.13518185305307, 114.4954257674994, 116.89820602905156, 119.34209701293545, 121.82531599610601, 124.34568044845783, 126.90056244124035, 129.48684055343031, 132.10084987064104, 134.73833093153826, 137.39437878408927, 140.06339366452292, 142.73903519572582, 145.41418240119944, 148.08090221848724, 150.73042953476116, 153.3531620099472, 155.93867304523798, 158.47574614093031, 160.95243351697684, 163.35614120803561, 165.67374188440675, 167.89171541930617, 169.99631579055617, 171.97376137894227, 173.8104442422509, 175.4931526489037, 177.00930017960926, 178.34715414366079, 179.49605594816549, 180.44662638286712, 181.19094946615357, 181.72272942979993, 182.03741648116596, 182.13229806667806, 182.00655339818036, 181.66126996590228, 181.0994216610375, 180.32580900839088, 179.34696291559709, 178.17101431823735, 176.8075331472688, 175.26734113216318, 173.56230400312813, 171.70510956014729, 169.70903871533102, 167.58773688227035, 165.35499291413691, 163.02453216881651, 160.60982925238181, 158.12394466228537, 155.57938805367132, 152.9880093317461, 150.36091736329905, 147.70842490417635, 145.0400174201597, 142.36434285901785, 139.68921909943163, 137.02165572073179, 134.36788685429082, 131.73341213668974, 129.12304313305393, 126.54095299037485, 123.9907274792636, 121.47541596263494, 118.99758117476971, 116.55934699509247, 114.16244365476528, 111.80825002173368, 109.49783277474035, 107.2319824039467, 105.01124607073007, 102.83595742742064, 100.70626354434275, 98.622149121099184, 96.58345817549511, 94.589913410098887, 92.641133455847054, 90.736648186465871, 88.875912288394829, 87.058317259727218, 85.283201999287982, 83.549862134112729, 81.857558220766165, 80.205522943452408, 78.59296742002509, 77.019086715855465, 75.483064655218698, 73.984078010371718, 72.52130013988004, 71.093904139909796, 69.701065565163432, 68.341964769793762, 67.015788912961739)

x = np.arange(-30,30.5,0.5)

y= np.arange(-30,30,0.5)

zero = np.zeros(121)

Sx = [-10,0,10,10,-10,-10]

Sz = [-20,-10,-20,-30,-30,-20]

resultx = [-4.7,-2.22,4.63,4.63,-4.7,-4.7]

resultz = [-11.48,-11.48,-11.48,-39.55,-39.55,-11.48]

resultx16 = [-1.36,-1.36,4.75,4.75,-1.36,-1.36]

resultz16 = [-40.75,-30.0,-40.75,-75.21,-75.21,-40.75]

rho = 1246

Sbx = [-30,30,30,-30,-30]

Sbz = [0,0,-100,-100,0]

pl.xlabel('observation locations')

pl.ylabel('depth (M)')

#pl.plot(x,zero,'r^',Sx,Sz,'-',Sx,Sz,'o',Sbx,Sbz,'k-',s3x,s3z,'-',s3x,s3z,'o')

pl.plot(x,zero,'r^',resultx16,resultz16,'g-',resultx16,resultz16,'go')#,resultx8,resultz8,'r-',resultx8,resultz8,'ro',Sbx,Sbz,'k-')

pl.plot(y,house,'b',y,model16,'g+')#,y,model8,'r+',)

pl.show()

9-appendix B/Chapter 5 results and codes/codes/survey region6.py

import numpy as np

import pylab as pl

p0 = [-10.0,30]

p1 = [-5.0,21.34]

p2 = [5.0,21.34]

p3 = [10.0,30.0]

p4 = [5.0,38.66]

p5 = [-5.0,38.66]

points = [p0,p1,p2,p3,p4,p5,p0]

points = np.asarray(points)

#sixsides

Dobs6 = (57.780848374175129, 58.751894097150547, 59.738977173795398, 60.742055072374406, 61.761053844437164, 62.795865617898876, 63.846345982401367, 64.912311270713445, 65.993535741411847, 67.089748669715831, 68.20063135518015, 69.325814056986346, 70.464872869781118, 71.617326555447434, 72.782633348815722, 73.960187758137891, 75.149317384144624, 76.349279784678629, 77.559259415185949, 78.778364678768824, 80.005625122964062, 81.239988823906359, 82.480320001951981, 83.725396916153528, 84.973910088052222, 86.224460908028732, 87.475560679786824, 88.725630160341979, 89.972999653981049, 91.215909718951053, 92.452512544944256, 93.680874057665363, 94.898976803733845, 96.104723664788722, 97.295942443806922, 98.470391359259267, 99.625765473754825, 100.7597040732923, 101.8697990011653, 102.95360393711096, 104.0086445975724, 105.03242981723263, 106.02246345553591, 106.9762570551031, 107.89134316215461, 108.76528920270256, 109.59571179282644, 110.38029134722791, 111.11678683793809, 111.80305054490319, 112.43704263256694, 113.01684538179539, 113.54067690473765, 114.00690417164176, 114.41405518325779, 114.76083013022334, 115.04611139160919, 115.26897223838158, 115.42868412367056, 115.52472246006776, 115.5567708043862, 115.5247233919782, 115.42868598544538, 115.2689750259448, 115.04611509888773, 114.76083474919456, 114.4140607040129, 114.00691058246178, 113.54068419218315, 113.01685353080657, 112.43705162657392, 111.80306036594381, 111.11679746678288, 110.38030276350868, 109.59572397516894, 108.76530212885937, 107.89135680913805, 106.97627139931728, 106.02247847290367, 105.03244548331976, 104.00866088770597, 102.95362082649103, 101.8698164649696, 100.75972208677402, 99.625784012331806, 98.470410398595035, 97.295961959884366, 96.104743633974167, 94.898997202834565, 93.680894863978153, 92.45253373629761, 91.215931273739599, 89.973021551193398, 88.725652379584034, 87.47558320129626, 86.224483712688055, 84.973933157394598, 83.725420232365693, 82.480343547873673, 81.240012583025532, 80.005649079410702, 78.778388817304929, 77.559283721195513, 76.349304244153288, 75.149341983670837, 73.960212484880685, 72.78265819050263, 71.6173515003521, 70.464897906706724, 69.325839175246415, 68.200656544581989, 67.089773920543664, 65.993561044409049, 64.912336617062962, 63.846371363712365, 62.795891026187412, 61.761079272110422, 60.742080512216297, 59.739002618948575, 58.751919541103234)

Dobs5 = (63.942052517377995, 65.326864187017122, 66.747890049346537, 68.205922693715266, 69.701741703856271, 71.23610937869195, 72.809765995100904, 74.423424580270719, 76.077765160688472, 77.773428454519944, 79.511008974162493, 81.2910475062004, 83.114022936864203, 84.980343392499165, 86.890336666505632, 88.844239906801064, 90.842188541110744, 92.884204421376296, 94.970183173302061, 97.099880742583977, 99.272899135698339, 101.48867136028191, 103.746445578137, 106.04526849274862, 108.38396800295692, 110.76113516514452, 113.17510551808809, 115.6239398377014, 118.10540440354175, 120.61695087563976, 123.15569589958201, 125.71840058071096, 128.30144999598912, 130.9008329459966, 133.51212219156605, 136.13045547192266, 138.75051766644702, 141.36652454312102, 143.97220863619089, 146.56080791623276, 149.12505805954629, 151.65718929122565, 154.14892896566431, 156.5915112545261, 158.97569552527045, 161.29179519650776, 163.52971902479968, 165.67902687628498, 167.72900202077864, 169.6687418016904, 171.48726812295149, 173.1736584971699, 174.71719737483508, 176.10754611052209, 177.33492825583349, 178.39032500346849, 179.26567372066498, 179.95406085049655, 180.4498993147601, 180.74908020276732, 180.84908918337524, 180.74907980253403, 180.44989851481353, 179.95405965187459, 179.26567212491992, 178.3903230126613, 177.33492587252616, 176.10754333776859, 174.7171942161703, 173.17365495659718, 171.48726420492798, 169.66873751111169, 167.72899736296171, 165.67902185694911, 163.52971365004723, 161.2917894728036, 158.97568945941944, 156.59150485365183, 154.14892223718439, 151.65718224282844, 149.12505069916722, 146.56080025202857, 143.97220067651577, 141.36651629650126, 138.7505091415569, 136.13044667755935, 133.51211313662631, 130.90082363945157, 128.30144044686313, 125.71839079805775, 123.15568589246371, 120.61694065310589, 118.1053939746094, 115.62392921133632, 113.17509470318677, 110.76112417051768, 108.38395683731355, 106.04525716468137, 103.74643409610898, 101.48865973261476, 99.27288737056044, 97.099868847981057, 94.970171157068052, 92.884192291165661, 90.842176304391813, 88.844227570850848, 86.89032423840365, 84.980330879125461, 83.11401034489549, 81.291034842108104, 79.510996244211313, 77.773415664767867, 76.077752316986789, 74.423411688263769, 72.809753060229554, 71.236096406193056, 69.701728698766715, 68.205909660873871, 66.747876993397469, 65.326851112413792)

Dobs4 = (44.723206839705504, 45.607849369425736, 46.511389237288078, 47.433964554839967, 48.37568168273733, 49.336611670163215, 50.316786481335093, 51.316195012469386, 52.334778905732271, 53.372428170333897, 54.428976625060493, 55.504197181191124, 56.597796989907749, 57.709412483974276, 58.838604349586994, 59.984852470834426, 61.147550896058647, 62.326002882483344, 63.519416082594709, 64.72689794277747, 65.947451391384874, 67.17997089951335, 68.423239002987486, 69.675923378124011, 70.936574566423161, 72.203624444108613, 73.475385531089728, 74.750051230177931, 76.025697081018166, 77.300283104043103, 78.571657297759231, 79.837560337870485, 81.095631509326097, 82.343415882644678, 83.578372724275752, 84.79788510790118, 85.999270670134209, 87.179793430850012, 88.336676576190868, 89.467116081985267, 90.568295037693687, 91.637398516746856, 92.671628828836802, 93.668220983759923, 94.624458194952382, 95.537687253887938, 96.405333613762053, 97.224916031908023, 97.994060634558039, 98.710514284106821, 99.372157147125066, 99.977014380116117, 100.52326686857275, 101.00926097247026, 101.43351724725986, 101.79473812315022, 102.09181453662062, 102.32383151646263, 102.49007273219182, 102.59002401549296, 102.62337586577644, 102.59002494929055, 102.49007459809408, 102.32383431109095, 102.09181825492502, 101.79474275843029, 101.43352279119438, 101.00926741515181, 100.52327419855088, 99.977022584447255, 99.372166211428691, 98.710524192628739, 97.994071370240533, 97.224927576464623, 96.405345947758903, 95.537700356831479, 94.624472045379349, 93.668235559333183, 92.671644106443267, 91.637414472597953, 90.568311647428985, 89.467133320773982, 88.336694418835989, 87.179811851888886, 85.999289643939079, 84.797904608775383, 83.578392726547463, 82.343436360754851, 81.095652437912676, 79.837581691846339, 78.571679052384354, 77.30030523499039, 76.025719564432933, 74.750074042730731, 73.475408650022047, 72.203647847272819, 70.936598232315518, 69.675947285912557, 68.423263132532142, 67.179995231382989, 65.947475906867339, 64.726922623886338, 63.519440912070749, 62.326027843792211, 61.147575973386211, 59.984877649078307, 58.838629614344484, 57.709437821530663, 56.597822387219708, 55.504222625870703, 54.429002105356219, 53.372453675112993, 52.334804424459712, 51.31622053518732, 50.316811998643274, 49.336637173196635, 48.375707163145869, 47.433990004767416, 46.51141464935121, 45.607874736694313)

resultssix = (65.906538068338151, 67.189481109166692, 68.504508191940872, 69.85244835837193, 71.234140369255812, 72.650430879752278, 74.102172288526234, 75.590220217999715, 77.115430577950505, 78.678656159175361, 80.280742697909488, 81.922524345109181, 83.604818467610158, 85.328419700520328, 87.094093162076248, 88.902566733627381, 90.754522298525643, 92.650585824639833, 94.59131616622652, 96.577192452251168, 98.608599920431672, 100.68581404976871, 102.80898283989433, 104.97810708408886, 107.19301848545378, 109.45335547386505, 111.7585365967055, 114.10773138100085, 116.49982860085538, 118.93340193471101, 121.40667306493837, 123.91747236081831, 126.46319739828965, 129.04076970895591, 131.64659031909468, 134.27649483812212, 136.92570908460877, 139.58880649348953, 142.25966882409091, 144.93145197420722, 147.59655898475975, 150.24662257105288, 152.87249971318332, 155.46428094800856, 158.01131699365604, 160.50226517068745, 162.92515773219512, 165.26749365866985, 167.51635470806929, 169.65854555276971, 171.6807567213967, 173.56974785597575, 175.31254757334565, 176.8966650756297, 178.3103076802276, 179.54259771753132, 180.583781836231, 181.42542569608742, 182.06058732104441, 182.48396300877502, 182.69200060251578, 182.68297607085356, 182.45703064967034, 182.01616721703249, 181.36420603874052, 180.50670148398328, 179.45082271125165, 178.20520260599343, 176.77976035224557, 175.18550387968358, 173.43431899045501, 171.53875219655762, 169.51179417057128, 167.36667024067523, 165.1166435852316, 162.77483576931078, 160.35406810049344, 157.86672605718545, 155.32464784926009, 152.73903708475507, 150.12039859431576, 147.47849574088218, 144.82232702715649, 142.16011949985622, 139.49933631570087, 136.84669584868078, 134.20819984694174, 131.5891683563903, 128.99427938600758, 126.42761157083937, 123.89268837237434, 121.39252262766531, 118.92966050827478, 116.50622417219313, 114.12395258384882, 111.78424013911427, 109.48817286533405, 107.23656207342752, 105.02997542305798, 102.86876542599524, 100.75309546022399, 98.682963401072058, 96.658222998231281, 94.678603141371653, 92.743725164028191, 90.853118337249114, 89.006233702431373, 87.202456387976241, 85.441116547691166, 83.721499050949362, 82.042852046001386, 80.404394508915303, 78.80532288169023, 77.244816894355154, 75.722044657466753, 74.236167103468105, 72.786341847916702, 71.371726534642619, 69.991481722516724, 68.644773365626122)

x = np.arange(-30,30.5,0.5)

y= np.arange(-30,30,0.5)

zero = np.zeros(121)

Sx = [-10.0,-5.0,5.0,10.0,5.0,-5.0,-10.0]

Sz = [-30.0,-21.34,-21.34,-30.0,-38.66,-38.66,-30.0]

resultx = [4.2,0.6,-3.8,-3.8,4.2,4.2]

resultz = [-18.4,-53,-18.4,-12.7,-12.7,-18.4]

Sbx = [-30,30,30,-30,-30]

Sbz = [0,0,-100,-100,0]

pl.xlabel('observation locations')

pl.ylabel('depth (M)')

#for i in np.arange(6):

 #pl.plot(points[i,0],points[i,1],'go')

pl.plot(x,zero,'r^',Sx,Sz,'-',Sx,Sz,'o',Sbx,Sbz,'k-')

#pl.plot(x,zero,'r^',resultx,resultz,'-',resultx,resultz,'bo',Sbx,Sbz,'k-')

pl.plot(y,Dobs6,'b',y,Dobs5,y,Dobs4)#,fiveresults,'r+')"""

pl.show()

9-appendix B/Chapter 5 results and codes/codes/tourney.pyx

import pylab as pl

import scipy as si

import numpy as np

import time as time

import random as rand

from datetime import datetime

#all_the_leftxcorn = [[] for i in range(int(30))]

#all_the_rightxcorn = [[] for i in range(int(30))]

#all_the_middlexcorn = [[] for i in range(int(30))]

#all_the_topzcorn = [[] for i in range(int(30))]

#all_the_botzcorn = [[] for i in range(int(30))]

#all_the_middlezcorn = [[] for i in range(int(30))]

#all_the_rho = [[] for i in range(int(30))]

gbestlist=[]

grav = []

counter = []

gbestvlist=[]

gbestlist2 = []

Dobs = (63.942052517377995, 65.326864187017122, 66.747890049346537, 68.205922693715266, 69.701741703856271, 71.23610937869195, 72.809765995100904, 74.423424580270719, 76.077765160688472, 77.773428454519944, 79.511008974162493, 81.2910475062004, 83.114022936864203, 84.980343392499165, 86.890336666505632, 88.844239906801064, 90.842188541110744, 92.884204421376296, 94.970183173302061, 97.099880742583977, 99.272899135698339, 101.48867136028191, 103.746445578137, 106.04526849274862, 108.38396800295692, 110.76113516514452, 113.17510551808809, 115.6239398377014, 118.10540440354175, 120.61695087563976, 123.15569589958201, 125.71840058071096, 128.30144999598912, 130.9008329459966, 133.51212219156605, 136.13045547192266, 138.75051766644702, 141.36652454312102, 143.97220863619089, 146.56080791623276, 149.12505805954629, 151.65718929122565, 154.14892896566431, 156.5915112545261, 158.97569552527045, 161.29179519650776, 163.52971902479968, 165.67902687628498, 167.72900202077864, 169.6687418016904, 171.48726812295149, 173.1736584971699, 174.71719737483508, 176.10754611052209, 177.33492825583349, 178.39032500346849, 179.26567372066498, 179.95406085049655, 180.4498993147601, 180.74908020276732, 180.84908918337524, 180.74907980253403, 180.44989851481353, 179.95405965187459, 179.26567212491992, 178.3903230126613, 177.33492587252616, 176.10754333776859, 174.7171942161703, 173.17365495659718, 171.48726420492798, 169.66873751111169, 167.72899736296171, 165.67902185694911, 163.52971365004723, 161.2917894728036, 158.97568945941944, 156.59150485365183, 154.14892223718439, 151.65718224282844, 149.12505069916722, 146.56080025202857, 143.97220067651577, 141.36651629650126, 138.7505091415569, 136.13044667755935, 133.51211313662631, 130.90082363945157, 128.30144044686313, 125.71839079805775, 123.15568589246371, 120.61694065310589, 118.1053939746094, 115.62392921133632, 113.17509470318677, 110.76112417051768, 108.38395683731355, 106.04525716468137, 103.74643409610898, 101.48865973261476, 99.27288737056044, 97.099868847981057, 94.970171157068052, 92.884192291165661, 90.842176304391813, 88.844227570850848, 86.89032423840365, 84.980330879125461, 83.11401034489549, 81.291034842108104, 79.510996244211313, 77.773415664767867, 76.077752316986789, 74.423411688263769, 72.809753060229554, 71.236096406193056, 69.701728698766715, 68.205909660873871, 66.747876993397469, 65.326851112413792)

cpdef int func2(double xcorn_1,double xcorn_2,double xcorn_3,double zcorn_1,double zcorn_2,double zcorn_3,double rho) except -1:

 x = np.arange(-30,30,0.5)

 l = len(x)

 xcorn = (float(xcorn_1),float(xcorn_2),float(xcorn_3),float(xcorn_3),float(xcorn_1),float(xcorn_1))

 zcorn = (float(zcorn_1),float(zcorn_2),float(zcorn_1),float(zcorn_3),float(zcorn_3),float(zcorn_1))

 o = len(xcorn)-1

 cdef double gamma,sum_lines,x1,x2,z1,z2,alpha,beta,factor,term1,term2,denom,constant

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 cdef int i,n

 for i from 0 <= i < l:

 sum_lines = 0.0

 for n from 0 <= n < o:

 x1 = xcorn[n]-x[i]

 x2 = xcorn[n+1]-x[i]

 z1 = zcorn[n]

 z2 = zcorn[n+1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = np.arctan2(z1,x1)

 O2 = np.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = np.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

cpdef int procedure():

 iter_time = []

 cdef double K,vmax,cp,cg,maxiter,moveup,movedown,moveleft,moveright,gbestc,gbestv

 K = 0.7968127490039841

 lbound = [-30.0,-30.0,-30.0,0.0,0.0,0.0,500.0]

 ubound = [30.0,30.0,30.0,100.0,100.0,100.0,3000.0]

 vmax =30

 nswarm = 30

 cp = 2.8

 cg = 1.3

 ndim = len(lbound)

 maxiter = 5000

 lbound = np.asarray(lbound)

 ubound = np.asarray(ubound)

 vmax = si.asarray(vmax)

 cdef int i,n,j

 #all_the_leftxcorn = [[] for i in range(int(nswarm))]

 #all_the_rightxcorn = [[] for i in range(int(nswarm))]

 #all_the_topzcorn = [[] for i in range(int(nswarm))]

 #all_the_botzcorn = [[] for i in range(int(nswarm))]

 #all_the_rho = [[] for i in range(int(nswarm))]

 #log_pbest = []

 #log_gbest = []

 #log_values =[]

 swarm = np.zeros((nswarm,ndim))

 # initialize the swarm

 Xrange = np.arange(-30,30,0.01)

 Zrange = np.arange(0.001,100,0.01)

 Rhorange = np.arange(500.0,3000,0.01)

 for i in np.arange(nswarm):

 swarm[i,0]=rand.choice(Xrange)

 swarm[i,1]=rand.choice(Xrange)

 swarm[i,2]=rand.choice(Xrange)

 swarm[i,3]=rand.choice(Zrange)

 swarm[i,4]=rand.choice(Zrange)

 swarm[i,5]=rand.choice(Zrange)

 swarm[i,6]=rand.choice(Rhorange)

 for n in np.arange(nswarm):

 if swarm[n,0]> swarm[n,2]:

 moveleft = swarm[n,0]

 moveright =swarm[n,2]

 swarm[n,0]= moveright

 swarm[n,2]= moveleft

 if swarm[n,0]> swarm[n,1]:

 moveleft = swarm[n,0]

 moveright =swarm[n,1]

 swarm[n,0]= moveright

 swarm[n,1]= moveleft

 if swarm[n,1]> swarm[n,2]:

 moveleft = swarm[n,2]

 moveright =swarm[n,1]

 swarm[n,2]= moveright

 swarm[n,1]= moveleft

 if swarm[n,0]> swarm[n,1]:

 moveright = swarm[n,0]

 moveleft =swarm[n,1]

 swarm[n,1]=moveright

 swarm[n,0]=moveleft

 if swarm[n,0]>swarm[n,2]:

 moveright = swarm[n,0]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,0]=moveleft

 if swarm[n,1]>swarm[n,2]:

 moveright = swarm[n,1]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,1]=moveleft

 if swarm[n,1]> swarm[n,2]:

 moveright = swarm[n,1]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,1]=moveleft

 if swarm[n,0]> swarm[n,2]:

 moveright = swarm[n,0]

 moveleft =swarm[n,2]

 swarm[n,2]=moveright

 swarm[n,0]=moveleft

 if swarm[n,0]>swarm[n,1]:

 moveright = swarm[n,0]

 moveleft =swarm[n,1]

 swarm[n,1]=moveright

 swarm[n,0]=moveleft

 if swarm[n,3]>swarm[n,5]:

 movedown = swarm[n,5]

 moveup =swarm[n,3]

 swarm[n,5]= moveup

 swarm[n,3]= movedown

 if swarm[n,4]>swarm[n,5]:

 movedown = swarm[n,5]

 moveup =swarm[n,4]

 swarm[n,5]= moveup

 swarm[n,4]= movedown

 if swarm[n,4]>swarm[n,3]:

 movedown = swarm[n,3]

 moveup =swarm[n,4]

 swarm[n,3]= moveup

 swarm[n,4]= movedown

 if swarm[n,3]< swarm[n,4]:

 movedown = swarm[n,3]

 moveup =swarm[n,4]

 swarm[n,3]= moveup

 swarm[n,4]= movedown

 if swarm[n,4]>swarm[n,5]:

 movedown = swarm[n,5]

 moveup =swarm[n,4]

 swarm[n,5]= moveup

 swarm[n,4]= movedown

 if swarm[n,3]>swarm[n,5]:

 movedown = swarm[n,3]

 moveup =swarm[n,5]

 swarm[n,3]= moveup

 swarm[n,5]= movedown

 if swarm[n,5]<swarm[n,4]:

 movedown = swarm[n,5]

 moveup =swarm[n,4]

 swarm[n,5]= moveup

 swarm[n,4]= movedown

 if swarm[n,4]>swarm[n,3]:

 movedown = swarm[n,3]

 moveup =swarm[n,4]

 swarm[n,3]= moveup

 swarm[n,4]= movedown

 if swarm[n,3]>swarm[n,5]:

 movedown = swarm[n,3]

 moveup =swarm[n,5]

 swarm[n,3]= moveup

 swarm[n,5]= movedown

 # initialize the "personal best" values

 values = np.zeros(nswarm)

 gravity = np.zeros([nswarm,len(Dobs)])

 for n in np.arange(nswarm):

 xcorn_1=swarm[n,0]

 xcorn_2=swarm[n,1]

 xcorn_3=swarm[n,2]

 zcorn_1=swarm[n,3]

 zcorn_2=swarm[n,4]

 zcorn_3=swarm[n,5]

 rho = swarm[n,6]

 func2(xcorn_1,xcorn_2,xcorn_3,zcorn_1,zcorn_2,zcorn_3,rho)

 gravity[n] = grav

 del grav[0:len(grav)]

 n+=1

 for j in np.arange(nswarm):

 values[j] = sum((Dobs - gravity[j])**2)

 pbestv = np.zeros(nswarm)

 for i in np.arange(nswarm):

 pbestv[i] = values[i]

 pbest = np.array(swarm)

 # initialize the "global best" values

 gbesti = np.argmin(pbestv)

 gbestv = np.minimum.reduce(pbestv)

 gbest = pbest[gbesti]

 gbestc = gbestv

 velocities = np.zeros([nswarm,ndim]) #initiate velocity vectors.

 print datetime.time(datetime.now())

 for i in np.arange(maxiter):

 t = time.clock()

###

 feasabilty = np.zeros(nswarm)

 for n in np.arange(nswarm):

 if swarm[n,0]< -30.0:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,0]> 30.0:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,1]< -30.0:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,1]> 30.0:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,2]< -30.0:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,2]> 30.0:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,3]< 1.0:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,3]>100.0:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,4]< 1.0:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,4]> 100.0:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,5]< 1.0:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,5]>100.0:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,6]<500.0:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,6]>3000.0:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,0]> swarm[n,2]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,0]>= swarm[n,1]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,1]>= swarm[n,2]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,0]>= swarm[n,1]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,0]> swarm[n,2]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,1]>= swarm[n,2]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,1]>= swarm[n,2]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,0]> swarm[n,2]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,0]>= swarm[n,1]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,3]>swarm[n,5]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,4]>=swarm[n,3]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,4]>=swarm[n,5]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,3]<= swarm[n,4]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,4]>=swarm[n,5]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,3]>swarm[n,5]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,5]<=swarm[n,4]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,4]>=swarm[n,3]:

 feasabilty[n] = feasabilty[n]+1

 if swarm[n,3]>swarm[n,5]:

 feasabilty[n] = feasabilty[n]+1

 for n in np.arange(nswarm):

 xcorn_1=swarm[n,0]

 xcorn_2=swarm[n,1]

 xcorn_3=swarm[n,2]

 zcorn_1=swarm[n,3]

 zcorn_2=swarm[n,4]

 zcorn_3=swarm[n,5]

 rho = swarm[n,6]

 func2(xcorn_1,xcorn_2,xcorn_3,zcorn_1,zcorn_2,zcorn_3,rho)

 gravity[n] = grav

 del grav[0:len(grav)]

 n+=1

 for j in np.arange(nswarm):

 values[j] = (sum((Dobs - gravity[j])**2))

 for i in np.arange(nswarm):

 if feasabilty[i] < 1:

 mask = values[i] < pbestv[i]

 mask2d = np.repeat(mask, ndim)

 #mask2d.shape = (nswarm, ndim)

 pbestv[i] = np.where(mask, values[i], pbestv[i])

 pbest = np.where(mask2d, swarm, pbest)

 gbestc = gbestv

 if np.minimum.reduce(pbestv) < gbestv:

 gbesti = si.argmin(pbestv)

 gbestv = pbestv[gbesti]

 gbest = pbest[gbesti]

#################### added an inertial weight factor to the previous velocity jan 12/12###

 velocities = K*(velocities + (cp*si.rand()*(pbest - swarm)) +

 (cg*si.rand()*(gbest - swarm)))

 #velocities = np.clip(velocities, -vmax, vmax)

 # for h in si.arange(nswarm):

 #all_the_leftxcorn[h].append(swarm[h,0])

 #all_the_rightxcorn[h].append(swarm[h,2])

 #all_the_middlexcorn[h].append(swarm[h,1])

 #all_the_topzcorn[h].append(swarm[h,3])

 #all_the_botzcorn[h].append(swarm[h,5])

 #all_the_middlezcorn[h].append(swarm[h,4])

 #all_the_rho[h].append(swarm[h,6])

 swarm += velocities

 #swarm = np.clip(swarm, lbound, ubound)

 #pbest = np.clip(pbest, lbound, ubound)

 #gbest = np.clip(gbest, lbound, ubound)

 t1 = time.clock()

 dt = t1-t

 iter_time.append(dt)

 gbestlist.append(gbestv)

 #log_pbest.append(pbest)

 #log_gbest.append(gbest)

 #log_values.append(values)

 if gbestv < 1e-1:

 print i,gbest,gbestv,'time for average iteration', (sum(iter_time)/float(maxiter)),'sum iteration time to complete = ', sum(iter_time),'seconds',(sum(iter_time)/60.0),'minutes'

 return 'f'

 print datetime.time(datetime.now())

 print 'current gbest',gbest

 print 'current gbestv',gbestv

 print 'time for average iteration', (sum(iter_time)/float(maxiter))

 print 'sum iteration time to complete = ', sum(iter_time),'seconds',(sum(iter_time)/60.0),'minutes'

 former = np.minimum.reduce(gbestvlist)

 arg = np.argmin(gbestvlist)

 print 'former gbest',gbestlist2[arg]

 print 'former gbestv',former

################### Clip p and g bestr here ################

 #pbest = np.clip(pbest, lbound, ubound)

 #gbest = np.clip(gbest, lbound, ubound)

##

#######################################last 100 or sogbests############################

 #print 'first 50',gbestlist[0:50]

 #print 'middle 50', gbestlist[2550:2601]

 #print 'last 50',gbestlist[4950:]

##

 #print 'all_the_leftxcorn',all_the_leftxcorn[0]

 #print 'all_the_rightxcorn',all_the_rightxcorn[0]

 #print 'all_the_topzcorn',all_the_topzcorn[0]

 #print 'all_the_botzcorn',all_the_botzcorn[0]

 #print 'all_the_rho',all_the_rho[0]

 #lastfew = int(maxiter -20)

 #print 'log_gbest first few',log_gbest[0:10]

 # print 'log_gbest last 20',log_gbest[lastfew:]

 #print 'log_pbest last guess',log_pbest[4999]

 #print 'log_values',log_values

t0 = time.clock()

procedure()

9-appendix B/Chapter 6 results and codes/f_Points.py

import numpy

import pylab as pl

p0 = [8.99,36.59]

p1 = [12.22,44.75]

p2 = [0.76,41.55]

p3 = [-2.98,51.12]

p4 = [-12.40,43.57]

p5 = [-6.21,36.59]

p6 = [-2.42,29.45]

p7 = [-3.06,32.75]

p8 = [4.86,33.00]

p9 = [12.95,31.40]

rho = 1183.02

grav = []

def func1(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,rho):

 """N = (109.91921057, 112.39578681, 112.88728591, 114.36964029, 117.41962808, 116.59963764, 122.20748684, 122.6157619, 125.1361481, 126.95730783, 128.74944347, 129.40314113, 134.03858021, 131.85675219, 136.60140431, 138.90666935, 139.59752147, 143.35112715, 142.43716812, 149.87539158, 147.8291828, 150.81422823, 154.78055746, 156.53614168, 156.14983255, 159.13423982, 157.26669295, 164.39781061, 164.93979332, 167.25080831, 168.86763125, 171.35481238, 175.53283956, 175.29054461, 180.44220571, 185.79981776, 180.55717654, 185.16357033, 187.08283063, 184.64159257, 186.88930516, 191.35424312, 195.58351845, 197.56572955, 196.00059693, 195.10878934, 196.50262231, 200.17795198, 201.04006624, 198.1656162, 201.45246411, 201.32340674, 205.78196898, 206.53679443, 207.55762735, 208.96210844, 207.72706591, 204.81964079, 206.48873447, 213.62815628, 207.0157016, 206.8992808, 206.70553747, 205.05107034, 206.44739717, 210.05303829, 207.13069382, 205.24973928, 205.41131433, 205.16656879, 202.09184208, 202.04697206, 202.03779365, 196.53384097, 200.35071069, 195.18149818, 196.63690015, 189.19473644, 193.10620447, 192.52072723, 191.54618856, 189.20775196, 189.13900563, 186.93659269, 181.79405053, 180.39383179, 174.60768441, 172.89259837, 176.36320927, 173.51541412, 168.27985075, 168.27701062, 162.6121459, 163.91412579, 161.6516811, 156.00867281, 156.38947743, 157.11794662, 153.45291687, 150.34127402, 151.64064352, 145.64051283, 143.62612562, 144.20932123, 140.26505419, 141.00728236, 136.49063421, 132.48099608, 131.50638655, 131.23814172, 132.40071819, 128.61419216, 124.25376507, 121.13274777, 122.19576832, 114.47503558, 118.22905879, 114.9609955, 112.74150327, 114.44495947)

 Dobs1 = (109.88320762381966, 111.60783335993007, 113.35834221620421, 115.13456776894542, 116.93628701618091, 118.76321600909863, 120.61500530167685, 122.49123522863862, 124.39141102543726, 126.31495780798524, 128.26121543432961, 130.22943327544553, 132.21876492775044, 134.22826290581276, 136.25687336001329, 138.30343087051418, 140.3666533757434, 142.44513730056443, 144.53735295622516, 146.6416402908784, 148.75620507572009, 150.8791156173364, 153.00830009141563, 155.1415445962505, 157.27649202611175, 159.41064186430989, 161.54135099325043, 163.6658356137707, 165.78117435831163, 167.88431267185715, 169.97206852104071, 172.04113947543007, 174.08811118594659, 176.1094672640005, 178.10160054169609, 180.06082566898266, 181.98339297863205, 183.86550352521553, 185.70332518066701, 187.49300964745959, 189.23071023165656, 190.91260020287586, 192.53489155709977, 194.09385399166544, 195.58583389987621, 197.00727319546115, 198.3547277843054, 199.6248855120387, 200.81458343056991, 201.9208242437017, 202.94079181073874, 203.87186560658208, 204.71163405635909, 205.45790668133475, 206.10872501001742, 206.66237222344185, 207.11738151619693, 207.47254316463003, 207.72691030077706, 207.87980339501513, 207.93081345250727, 207.87980392857946, 207.72691136673271, 207.47254476063637, 207.11738363875639, 206.66237486791479, 206.10872817064458, 205.45791035126271, 204.71163822767238, 203.87187027034039, 202.9407969570189, 201.92082986164519, 200.81458950843549, 199.62489203725926, 198.35473474354987, 197.0072805747005, 195.58584168445236, 194.0938621663644, 192.53490010622605, 190.91260911032981, 189.2307194810125, 187.49301922204401, 185.70333506363693, 183.86551369963493, 181.98340342754719, 180.06083637549392, 178.10161148902813, 176.1094784355659, 174.0881225654071, 172.04115104675279, 169.9720802685475, 167.88432458027054, 165.78118641279409, 163.66584779995836, 161.54136329728163, 159.41065427284735, 157.27650452636081, 155.14155717597174, 153.00831273893249, 150.87912832153876, 148.75621782606476, 146.64165307738435, 144.53736576946721, 142.4451501316627, 140.36666621635226, 138.30344371280754, 136.25688619666894, 134.22827572999566, 132.21877773309359, 130.22944605603249, 128.26122818467428, 126.31497052301255, 124.39142370046301, 122.49124785934993, 120.61501788411363, 118.76322853963309, 116.93629949149988, 115.13458018603143, 113.35835457231856, 111.6078456525953)

#Noisey data

 Dobs =(111.56802561, 109.90352664, 112.52148439, 118.75377529, 117.86136749, 119.80164884, 121.91396166, 120.28311401, 123.87352161, 126.57619053, 128.41513447, 130.44492598, 131.49391913, 133.00006734, 136.53361312, 137.49840764, 138.33280029, 141.131328, 144.87316662, 146.50696519, 148.34607509, 151.62706042, 154.12794745, 156.53119364, 156.08253866, 158.98018481, 161.96593136, 164.18366212, 167.06688758, 167.06443621, 170.54728224, 172.80671658, 174.42632294, 175.23069316, 177.93356742, 181.05877302, 180.95219846, 184.30712363, 187.00735796, 189.03962383, 190.39610523, 188.31974099, 192.14635262, 192.21719384, 196.78223067, 198.22913311, 199.22635344, 200.96930761, 200.81804702, 202.67177149, 203.13842608, 203.23359106, 206.55048539, 205.32585129, 205.83268911, 207.64217985, 206.97524417, 207.11101819, 207.10845052, 207.17910455, 207.08198576, 208.0594213, 207.20203736, 206.07771031, 205.72057903, 206.08773439, 205.18125995, 205.410833, 205.85669928, 204.04096342, 202.5177061, 200.35205505, 198.68853649, 200.17061902, 198.54696079, 199.63226103, 195.7234987, 192.88507255, 192.6373797, 191.19562539, 189.41685291, 187.48549026, 184.48942771, 184.37055892, 181.12399878, 178.32705851, 177.36746256, 174.78659879, 174.442985, 172.40396364, 171.21007082, 168.16652382, 166.12338313, 163.70618609, 164.28234502, 159.77452431, 158.40264832, 154.42946432, 151.80384302, 150.0203212, 148.95383026, 146.47793227, 146.14912221, 140.91394092, 140.77590782, 137.99597797, 135.68297373, 134.00424374, 133.59750284, 130.88393378, 127.66222859, 127.16903429, 124.66185086, 123.00540507, 121.14549499, 119.16624463, 116.9653962, 115.69092923, 113.96477695, 110.75928684)"""

 x = numpy.arange(-30.0,30,0.5)

10 sided, no noise

 Dobs = (61.533218321191292, 62.275301140467256, 63.022539861284585, 63.774656058739083, 64.531351633133795, 65.292308248132869, 66.057186793217824, 66.825626874963334, 67.597246341928837, 68.371640848202247, 69.148383460884872, 69.927024317017981, 70.707090335663892, 71.488084991015654, 72.26948815256884, 73.050755998483481, 73.831321008333632, 74.610592041464429, 75.387954507137238, 76.162770632551812, 76.934379834681167, 77.702099201631313, 78.46522408893432, 79.223028835818113, 79.974767606036451, 80.719675357295969, 81.456968942708642, 82.18584834696513, 82.905498059143596, 83.615088583165814, 84.313778085960209, 85.000714182334136, 85.67503585443923, 86.335875502535472, 86.982361122508792, 87.613618604317935, 88.228774144222442, 88.826956762308825, 89.407300915484569, 89.96894919478919, 90.511055094568889, 91.032785839819283, 91.533325256822565, 92.011876671124668, 92.467665815916121, 92.899943733039322, 93.307989648148208, 93.691113801003752, 94.048660211555855, 94.380009362280177, 94.684580777315929, 94.961835479184032, 95.211278304374886, 95.432460059773661, 95.62497950282993, 95.788485129502646, 95.922676755350182, 96.027306876668689, 96.102181800272717, 96.14716253237242, 96.162165418980635, 96.147162532372406, 96.102181800272774, 96.027306876668618, 95.922676755350196, 95.788485129502604, 95.624979502829959, 95.432460059773618, 95.211278304374829, 94.961835479184089, 94.684580777315873, 94.380009362280134, 94.048660211555756, 93.691113801003681, 93.307989648148052, 92.899943733039407, 92.467665815916106, 92.011876671124796, 91.533325256822422, 91.032785839819269, 90.511055094568846, 89.968949194789175, 89.407300915484583, 88.826956762308996, 88.228774144222569, 87.613618604317921, 86.982361122508891, 86.335875502535529, 85.675035854439173, 85.000714182333937, 84.313778085960436, 83.615088583165686, 82.905498059143483, 82.18584834696513, 81.456968942708514, 80.719675357296083, 79.974767606036323, 79.223028835818084, 78.46522408893415, 77.702099201631356, 76.93437983468101, 76.162770632551684, 75.387954507137266, 74.610592041464486, 73.831321008333532, 73.050755998483595, 72.269488152569011, 71.488084991015697, 70.707090335663736, 69.927024317017995, 69.148383460884943, 68.371640848202262, 67.597246341928965, 66.825626874963305, 66.057186793217696, 65.29230824813277, 64.531351633133752, 63.774656058738934, 63.022539861284613, 62.275301140467455)

medium noise

 DobsMN =(57.7831318, 63.36863951, 56.33847906, 70.0679032, 64.38953126, 64.08639227, 64.86892649, 67.3799799, 67.98506323, 65.19820764, 67.62089939, 70.69489837, 69.21891609, 72.97504882, 75.55263938, 71.93282722, 72.22819654, 71.17640305, 72.7747103, 74.49029706, 80.18236379, 82.45644401, 75.76307175, 80.48104043, 82.57969552, 78.62777452, 76.60798658, 79.78315391, 81.1177341, 83.05955097, 86.14359697, 88.30783673, 80.26053866, 87.70887026, 87.34648667, 88.78278762, 89.41658766, 91.86281576, 92.87819383, 85.71228538, 88.67092412, 95.60844686, 87.68475653, 92.93358014, 94.60413536, 89.46829565, 92.56555254, 94.52481282, 91.42624227, 91.45923179, 102.04773999, 89.99870726, 96.46170253, 90.51519468, 99.83587445, 97.97225514, 95.15126924, 93.80855444, 97.5793702, 93.56598814, 97.86267511, 92.36934955, 98.17279942, 96.08576861, 94.3851904, 95.7872989, 90.80419416, 91.14613158, 94.29673883, 94.80781607, 97.27901133, 97.5142806, 99.78841945, 97.68053749, 98.99322817, 89.39284524, 96.13585349, 95.47603868, 92.54068516, 90.21503083, 89.32189154, 94.95107029, 87.9743031, 90.90622502, 87.63134891, 89.19546383, 91.02012637, 89.08083815, 88.64825731, 86.0542191, 87.04747682, 84.29948881, 83.02467694, 80.88837225, 80.67380481, 81.30189658, 80.5974547, 81.77041639, 80.33184352, 77.01083421, 73.5870354, 80.94198755, 74.52382205, 71.29468915, 73.93216356, 71.53861587, 71.70474244, 70.47540422, 72.12709764, 72.70279374, 67.68463782, 69.27184024, 66.56380423, 66.26687482, 65.74917179, 70.00364523, 62.92630052, 71.32106387, 66.67250611, 60.97344622)

high Noise

 DobsHN = (65.31998591, 61.93453198, 58.25362322, 55.60792501, 76.58342781, 86.08830873, 66.50787433, 63.28889153, 64.61709971, 71.5435495, 61.33976821, 50.71277157, 75.63573644, 71.75200624, 83.8524466, 75.97362513, 71.55421595, 82.04614787, 67.40297985, 76.29874968, 75.97375983, 59.64008327, 81.02165537, 66.24423309, 86.59112911, 83.75084489, 75.59455362, 80.57185607, 78.09319441, 84.27338382, 78.33552291, 74.70775122, 84.22447922, 80.81963869, 98.08646736, 89.01153496, 72.02166177, 96.26833786, 84.10628753, 84.95799886, 98.95084089, 103.50778255, 91.43557318, 76.94457859, 105.31038024, 93.77354452, 94.11923053, 78.64324731, 75.19312434, 108.12458979, 95.85906356, 94.74847215, 95.7492061, 89.2172423, 104.91168673, 97.06035546, 76.51664283, 108.09257688, 100.64308189, 86.60915429, 97.40758608, 88.09447037, 102.40756414, 95.12441756, 92.31871838, 92.04675338, 98.13076265, 96.79006632, 114.11174661, 95.93399753, 105.94443034, 93.88502368, 68.41931716, 96.4367678, 70.89958621, 83.99468251, 97.47077115, 96.03052878, 83.3465171, 78.02158205, 97.01127972, 100.43763118, 85.3080125, 86.6776668, 83.69188121, 69.05582328, 96.57942691, 94.40001459, 93.08924132, 93.13498134, 83.33226514, 82.38439937, 93.37058184, 98.32778912, 83.67429671, 80.63547949, 92.47537914, 90.81517659, 68.48681039, 72.92531593, 83.63639301, 70.61782277, 90.55569341, 68.87872671, 88.35665488, 77.49311073, 65.1565043, 65.70668513, 76.83139907, 79.43017012, 71.60518384, 63.20629447, 68.67580336, 70.62064681, 70.66976371, 74.19428037, 53.27508894, 36.11366226, 64.96214263, 53.40567332)

 """z = numpy.zeros(120)

 xz = np.zeros([120,2])

 for i in numpy.arange(120):

	xz[i]= [x[i],z[i]]"""

 points = [p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p0]

 points = numpy.asarray(points)

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 for i in numpy.arange(len(x)):

 sum_lines = 0.0

 for n in numpy.arange(len(points)-1):

 x1 = points[n,0]-x[i]

 x2 = points[(n+1),0]-x[i]

 z1 = points[n,1]

 z2 = points[(n+1),1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = numpy.arctan2(z1,x1)

 O2 = numpy.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = numpy.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

 print len(grav)

 print grav

 X = numpy.arange(-30,30,0.5)

 pl.plot(X,Dobs,X,grav,X,DobsHN,'y')

 pl.grid()

 pl.show()

9-appendix B/Chapter 6 results and codes/Misfit.py

import numpy as np

nswarm = 120

Dobs10 = (61.533218321191292, 62.275301140467256, 63.022539861284585, 63.774656058739083, 64.531351633133795, 65.292308248132869, 66.057186793217824, 66.825626874963334, 67.597246341928837, 68.371640848202247, 69.148383460884872, 69.927024317017981, 70.707090335663892, 71.488084991015654, 72.26948815256884, 73.050755998483481, 73.831321008333632, 74.610592041464429, 75.387954507137238, 76.162770632551812, 76.934379834681167, 77.702099201631313, 78.46522408893432, 79.223028835818113, 79.974767606036451, 80.719675357295969, 81.456968942708642, 82.18584834696513, 82.905498059143596, 83.615088583165814, 84.313778085960209, 85.000714182334136, 85.67503585443923, 86.335875502535472, 86.982361122508792, 87.613618604317935, 88.228774144222442, 88.826956762308825, 89.407300915484569, 89.96894919478919, 90.511055094568889, 91.032785839819283, 91.533325256822565, 92.011876671124668, 92.467665815916121, 92.899943733039322, 93.307989648148208, 93.691113801003752, 94.048660211555855, 94.380009362280177, 94.684580777315929, 94.961835479184032, 95.211278304374886, 95.432460059773661, 95.62497950282993, 95.788485129502646, 95.922676755350182, 96.027306876668689, 96.102181800272717, 96.14716253237242, 96.162165418980635, 96.147162532372406, 96.102181800272774, 96.027306876668618, 95.922676755350196, 95.788485129502604, 95.624979502829959, 95.432460059773618, 95.211278304374829, 94.961835479184089, 94.684580777315873, 94.380009362280134, 94.048660211555756, 93.691113801003681, 93.307989648148052, 92.899943733039407, 92.467665815916106, 92.011876671124796, 91.533325256822422, 91.032785839819269, 90.511055094568846, 89.968949194789175, 89.407300915484583, 88.826956762308996, 88.228774144222569, 87.613618604317921, 86.982361122508891, 86.335875502535529, 85.675035854439173, 85.000714182333937, 84.313778085960436, 83.615088583165686, 82.905498059143483, 82.18584834696513, 81.456968942708514, 80.719675357296083, 79.974767606036323, 79.223028835818084, 78.46522408893415, 77.702099201631356, 76.93437983468101, 76.162770632551684, 75.387954507137266, 74.610592041464486, 73.831321008333532, 73.050755998483595, 72.269488152569011, 71.488084991015697, 70.707090335663736, 69.927024317017995, 69.148383460884943, 68.371640848202262, 67.597246341928965, 66.825626874963305, 66.057186793217696, 65.29230824813277, 64.531351633133752, 63.774656058738934, 63.022539861284613, 62.275301140467455)

Dobs10MN = (57.7831318, 63.36863951, 56.33847906, 70.0679032, 64.38953126, 64.08639227, 64.86892649, 67.3799799, 67.98506323, 65.19820764, 67.62089939, 70.69489837, 69.21891609, 72.97504882, 75.55263938, 71.93282722, 72.22819654, 71.17640305, 72.7747103, 74.49029706, 80.18236379, 82.45644401, 75.76307175, 80.48104043, 82.57969552, 78.62777452, 76.60798658, 79.78315391, 81.1177341, 83.05955097, 86.14359697, 88.30783673, 80.26053866, 87.70887026, 87.34648667, 88.78278762, 89.41658766, 91.86281576, 92.87819383, 85.71228538, 88.67092412, 95.60844686, 87.68475653, 92.93358014, 94.60413536, 89.46829565, 92.56555254, 94.52481282, 91.42624227, 91.45923179, 102.04773999, 89.99870726, 96.46170253, 90.51519468, 99.83587445, 97.97225514, 95.15126924, 93.80855444, 97.5793702, 93.56598814, 97.86267511, 92.36934955, 98.17279942, 96.08576861, 94.3851904, 95.7872989, 90.80419416, 91.14613158, 94.29673883, 94.80781607, 97.27901133, 97.5142806, 99.78841945, 97.68053749, 98.99322817, 89.39284524, 96.13585349, 95.47603868, 92.54068516, 90.21503083, 89.32189154, 94.95107029, 87.9743031, 90.90622502, 87.63134891, 89.19546383, 91.02012637, 89.08083815, 88.64825731, 86.0542191, 87.04747682, 84.29948881, 83.02467694, 80.88837225, 80.67380481, 81.30189658, 80.5974547, 81.77041639, 80.33184352, 77.01083421, 73.5870354, 80.94198755, 74.52382205, 71.29468915, 73.93216356, 71.53861587, 71.70474244, 70.47540422, 72.12709764, 72.70279374, 67.68463782, 69.27184024, 66.56380423, 66.26687482, 65.74917179, 70.00364523, 62.92630052, 71.32106387, 66.67250611, 60.97344622)

Dcalc = (62.303904758565849, 63.05452234053238, 63.810131877410711, 64.570435175518099, 65.335113480401034, 66.103826918783895, 66.876213969913493, 67.651890971335803, 68.430451664415969, 69.211466785172718, 69.99448370624161, 70.779026135995053, 71.564593881035464, 72.35066267843419, 73.136684104195751, 73.922085564495433, 74.706270376247915, 75.488617943514186, 76.268484036155911, 77.045201176929211, 77.818079142983848, 78.586405587365292, 79.349446785685927, 80.106448512621142, 80.856637052255522, 81.599220345594802, 82.333389277760901, 83.058319106464978, 83.773171032381711, 84.477093910947048, 85.169226103957314, 85.848697468092411, 86.514631476218938, 87.166147465953756, 87.802363008617576, 88.422396390290828, 89.0253691952922, 89.610408981024847, 90.176652031786872, 90.723246177860929, 91.249353665002189, 91.754154058337775, 92.236847163716305, 92.69665594871563, 93.132829444837867, 93.544645611923386, 93.931414145525437, 94.292479207852239, 94.627222063025499, 94.935063597700022, 95.21546670863404, 95.467938539551227, 95.692032550588607, 95.887350404772164, 96.053543657307429, 96.190315234965084, 96.29742069448983, 96.374669250737441, 96.42192456711777, 96.439105302870459, 96.426185413698619, 96.383194204310215, 96.31021613344015, 96.207390373907515, 96.074910132213418, 95.913021734033009, 95.722023483737601, 95.502264307708899, 95.254142192744098, 94.978102432212751, 94.674635693834603, 94.344275923996776, 93.987598104406487, 93.605215877566849, 93.197779058089992, 92.765971047204872, 92.310506167995086, 91.832126938911813, 91.33160130295677, 90.809719829627866, 90.267292906289669, 89.705147935056161, 89.124126550593644, 88.525081873456926, 87.908875812708828, 87.276376430602326, 86.628455381097169, 85.965985432905697, 85.289838086671537, 84.60088129474579, 83.899977290891201, 83.187980536112903, 82.465735785683506, 81.734076281335319, 80.993822071519432, 80.245778461606491, 79.490734594926437, 78.729462164618127, 77.962714255397614, 77.191224313559957, 76.415705242788661, 75.636848622704576, 74.855324046476653, 74.071778573326867, 73.286836291290783, 72.501097985250411, 71.715140904923715, 70.929518627276835, 70.144761007638735, 69.361374213682637, 68.579840836372313, 67.800620071975672, 67.02414796925099, 66.250837736027236, 65.481080099482, 64.715243714584247, 63.953675615325295, 63.196701703601875, 62.444627270769054, 61.697737547174967)

Dcalc = np.asarray(Dcalc)

#Dobs10MN = np.asarray(Dobs10MN)

print sum((Dobs10MN - Dcalc)**2)

print (Dobs10MN-Dcalc)

9-appendix B/Chapter 6 results and codes/NoiseyDataMaker.py

import numpy as n

import random as r

import pylab as pl

N = n.zeros(120)

D = (61.533218321191292, 62.275301140467256, 63.022539861284585, 63.774656058739083, 64.531351633133795, 65.292308248132869, 66.057186793217824, 66.825626874963334, 67.597246341928837, 68.371640848202247, 69.148383460884872, 69.927024317017981, 70.707090335663892, 71.488084991015654, 72.26948815256884, 73.050755998483481, 73.831321008333632, 74.610592041464429, 75.387954507137238, 76.162770632551812, 76.934379834681167, 77.702099201631313, 78.46522408893432, 79.223028835818113, 79.974767606036451, 80.719675357295969, 81.456968942708642, 82.18584834696513, 82.905498059143596, 83.615088583165814, 84.313778085960209, 85.000714182334136, 85.67503585443923, 86.335875502535472, 86.982361122508792, 87.613618604317935, 88.228774144222442, 88.826956762308825, 89.407300915484569, 89.96894919478919, 90.511055094568889, 91.032785839819283, 91.533325256822565, 92.011876671124668, 92.467665815916121, 92.899943733039322, 93.307989648148208, 93.691113801003752, 94.048660211555855, 94.380009362280177, 94.684580777315929, 94.961835479184032, 95.211278304374886, 95.432460059773661, 95.62497950282993, 95.788485129502646, 95.922676755350182, 96.027306876668689, 96.102181800272717, 96.14716253237242, 96.162165418980635, 96.147162532372406, 96.102181800272774, 96.027306876668618, 95.922676755350196, 95.788485129502604, 95.624979502829959, 95.432460059773618, 95.211278304374829, 94.961835479184089, 94.684580777315873, 94.380009362280134, 94.048660211555756, 93.691113801003681, 93.307989648148052, 92.899943733039407, 92.467665815916106, 92.011876671124796, 91.533325256822422, 91.032785839819269, 90.511055094568846, 89.968949194789175, 89.407300915484583, 88.826956762308996, 88.228774144222569, 87.613618604317921, 86.982361122508891, 86.335875502535529, 85.675035854439173, 85.000714182333937, 84.313778085960436, 83.615088583165686, 82.905498059143483, 82.18584834696513, 81.456968942708514, 80.719675357296083, 79.974767606036323, 79.223028835818084, 78.46522408893415, 77.702099201631356, 76.93437983468101, 76.162770632551684, 75.387954507137266, 74.610592041464486, 73.831321008333532, 73.050755998483595, 72.269488152569011, 71.488084991015697, 70.707090335663736, 69.927024317017995, 69.148383460884943, 68.371640848202262, 67.597246341928965, 66.825626874963305, 66.057186793217696, 65.29230824813277, 64.531351633133752, 63.774656058738934, 63.022539861284613, 62.275301140467455)

Dl = (62.3376536, 62.06943742, 63.37826916, 64.66700375, 64.96182901, 67.04954116, 66.15704781, 66.20824813, 66.47691621, 69.05879997, 69.33449033, 70.34053363, 71.78489382, 70.3828814, 73.75384488, 73.38859815, 71.98608408, 73.95619118, 76.64286621, 74.8903055, 76.74553236, 77.65053409, 79.20154876, 78.56476701, 81.64667673, 79.33695733, 82.11195701, 81.30094668, 82.51553326, 83.76363674, 84.30627493, 84.89190457, 85.43792832, 85.50562179, 87.20397029, 89.19325669, 87.74021479, 88.6605406, 88.58313151, 90.2456288, 91.36779309, 90.84944216, 90.79810353, 92.98914081, 93.50116299, 94.35222045, 93.54470886, 93.65278671, 94.28402749, 95.78525706, 94.1652087, 95.3364069, 97.4243833, 94.79335922, 96.65244118, 93.41634733, 96.87748914, 95.03155507, 96.99347427, 95.95549226, 97.91278765, 95.42677274, 95.46763429, 95.74023425, 95.14530207, 95.79377109, 95.27423728, 96.09247105, 94.92274768, 94.7848162, 94.14705206, 93.46219432, 95.56947293, 93.73081081, 94.60726638, 93.70010596, 92.3235192, 92.39613758, 91.91176445, 90.79720897, 90.21267595, 89.12510331, 89.86428136, 87.85302641, 89.56873716, 86.63949442, 88.14280447, 87.65962957, 85.04503995, 85.9223295, 84.86692563, 82.40476715, 82.90280063, 79.72333346, 81.32093294, 79.89225581, 80.94826569, 80.54687159, 77.89748257, 76.60568268, 78.06765115, 76.10374097, 76.40746643, 74.44702236, 75.23463867, 72.74044433, 72.91388223, 73.20666333, 69.42912127, 72.44336831, 68.81248099, 68.17046285, 67.34812389, 67.85371115, 65.93912354, 64.85162453, 63.01605577, 62.87687661, 63.19013977, 62.77276704)

Dm = (57.7831318, 63.36863951, 56.33847906, 70.0679032, 64.38953126, 64.08639227, 64.86892649, 67.3799799, 67.98506323, 65.19820764, 67.62089939, 70.69489837, 69.21891609, 72.97504882, 75.55263938, 71.93282722, 72.22819654, 71.17640305, 72.7747103, 74.49029706, 80.18236379, 82.45644401, 75.76307175, 80.48104043, 82.57969552, 78.62777452, 76.60798658, 79.78315391, 81.1177341, 83.05955097, 86.14359697, 88.30783673, 80.26053866, 87.70887026, 87.34648667, 88.78278762, 89.41658766, 91.86281576, 92.87819383, 85.71228538, 88.67092412, 95.60844686, 87.68475653, 92.93358014, 94.60413536, 89.46829565, 92.56555254, 94.52481282, 91.42624227, 91.45923179, 102.04773999, 89.99870726, 96.46170253, 90.51519468, 99.83587445, 97.97225514, 95.15126924, 93.80855444, 97.5793702, 93.56598814, 97.86267511, 92.36934955, 98.17279942, 96.08576861, 94.3851904, 95.7872989, 90.80419416, 91.14613158, 94.29673883, 94.80781607, 97.27901133, 97.5142806, 99.78841945, 97.68053749, 98.99322817, 89.39284524, 96.13585349, 95.47603868, 92.54068516, 90.21503083, 89.32189154, 94.95107029, 87.9743031, 90.90622502, 87.63134891, 89.19546383, 91.02012637, 89.08083815, 88.64825731, 86.0542191, 87.04747682, 84.29948881, 83.02467694, 80.88837225, 80.67380481, 81.30189658, 80.5974547, 81.77041639, 80.33184352, 77.01083421, 73.5870354, 80.94198755, 74.52382205, 71.29468915, 73.93216356, 71.53861587, 71.70474244, 70.47540422, 72.12709764, 72.70279374, 67.68463782, 69.27184024, 66.56380423, 66.26687482, 65.74917179, 70.00364523, 62.92630052, 71.32106387, 66.67250611, 60.97344622)

Dh = (65.31998591, 61.93453198, 58.25362322, 55.60792501, 76.58342781, 86.08830873, 66.50787433, 63.28889153, 64.61709971, 71.5435495, 61.33976821, 50.71277157, 75.63573644, 71.75200624, 83.8524466, 75.97362513, 71.55421595, 82.04614787, 67.40297985, 76.29874968, 75.97375983, 59.64008327, 81.02165537, 66.24423309, 86.59112911, 83.75084489, 75.59455362, 80.57185607, 78.09319441, 84.27338382, 78.33552291, 74.70775122, 84.22447922, 80.81963869, 98.08646736, 89.01153496, 72.02166177, 96.26833786, 84.10628753, 84.95799886, 98.95084089, 103.50778255, 91.43557318, 76.94457859, 105.31038024, 93.77354452, 94.11923053, 78.64324731, 75.19312434, 108.12458979, 95.85906356, 94.74847215, 95.7492061, 89.2172423, 104.91168673, 97.06035546, 76.51664283, 108.09257688, 100.64308189, 86.60915429, 97.40758608, 88.09447037, 102.40756414, 95.12441756, 92.31871838, 92.04675338, 98.13076265, 96.79006632, 114.11174661, 95.93399753, 105.94443034, 93.88502368, 68.41931716, 96.4367678, 70.89958621, 83.99468251, 97.47077115, 96.03052878, 83.3465171, 78.02158205, 97.01127972, 100.43763118, 85.3080125, 86.6776668, 83.69188121, 69.05582328, 96.57942691, 94.40001459, 93.08924132, 93.13498134, 83.33226514, 82.38439937, 93.37058184, 98.32778912, 83.67429671, 80.63547949, 92.47537914, 90.81517659, 68.48681039, 72.92531593, 83.63639301, 70.61782277, 90.55569341, 68.87872671, 88.35665488, 77.49311073, 65.1565043, 65.70668513, 76.83139907, 79.43017012, 71.60518384, 63.20629447, 68.67580336, 70.62064681, 70.66976371, 74.19428037, 53.27508894, 36.11366226, 64.96214263, 53.40567332)

#low

standardDev=10

#med = 3

#high = 10

for i in n.arange(120):

	N[i] = D[i] + r.gauss(0,standardDev)

print N

X = n.arange(-30,30,0.5)

pl.plot(X,D,X,Dl,'r',X,Dm,'b',X,Dh,'y')

pl.grid()

pl.show()

9-appendix B/Chapter 6 results and codes/Points_10HighN.xlsx

Sheet1

			Test #			Misfit 			Time Taken(min)			X0,Z0			X1,Z1			X2,Z2			X3,Z3			X4,Z4			X5,Z5			X6,Z6			X7,Z7			X8,Z8			X9,Z9			RHO

			1			10421.54			32.23			[8.99,36.59]			[12.24,44.75]			[0.76,41.55]			[-2.98,51.12]			[-12.40,43.57]			[-6.21,36.59]			[-2.42,29.45]			[-3.06,32.75]			[4.86,33.00]			[12.95,31.40]			1183.02

			2			10429.21			31.54			[10.98,39.49]			[7.69,48.45]			[3.52,50.50]			[-4.35,51.08]			[-12.68,46.24]			[-11.71,39.49]			[-3.2036.05]			[-2.49,27.93]			[4.73,29.58]			[9.23,32.48]			809.41

			3			10457.57			32.16			[8.39,43.74]			[2.38,48.38]			[4.15,49.81]			[-4.45,50.53]			[-5.44,47.31]			[-2.76,43.47]			[-7.91,39.38]			[-3.96,33.89]			[4.04,31.32]			[5.38,36.87]			1544.81

			4			10457.12			31.25			[6.36,40.12]			[10.18,46.74]			[0.56,41.17]			[-2.56,52.90]			[-2.12,46.45]			[-6.02,40.12]			[-4.23,35.47]			[-3.10,35.95]			[1.63,33.49]			[2.46,35.86]			2852.57

			5			10459			32.05			[6.53,39.85]			[7.78,48.81]			[0.69,51.06]			[-4.83],50.02]			[-7.01,47.34]			[-3.35,39.85]			[-6.53,32.85]			[-3.77,28.91]			[3.41,35.17]			[12.85,36.44]			1288.15

			6			10450.37			30.24			[9.05,40.14]			[7.75,46.96]			[2.98,49.71]			[-2.23,50.36]			[-6.20,42.27]			[-6.64,40.14]			[-9.32,35.05]			[-1.13,34.88]			[2.24,28.47]			[5.49,36.52]			1354.45

			7			10457.2			31.37			[8.94,41.94]			[4.02,44.75]			[2.74,47.44]			[-2.10,48.91]			[-2.51,46.22]			[-4.68,41.94]			[-3.96,36.03]			[-2.96,33.027]			[2.09,33.66]			[2.25,36.95]			2446.48

			8			10455.1			31.51			[4.25,42.09]			[7.90,50.74]			[3.51,54.62]			[-3.34,46.64]			[-11.14,44.00]			[-2.95,42.09]			[-8.98,37.81]			[-2.27,30.40]			[1.03,30.95]			[12.32,39.35]			1161.18

			9			10463.67			32			[10.31,42.28]			[5.92,47.45]			[3.42,45.97]			[-2.08,49.68]			[-4.33,46.59]			[-2.33,42.28]			[-5.04,36.72]			[-1.86,31.38]			[2.14,32.72]			[1.58,38.89]			2211.1

			10			10452.21			32.05			[7.02,39.57]			[6.45,44.65]			[3.59,48.60]			[-2.80,45.34]			[-3.17,42.15]			[-5.61,39.57]			[-7.61,34.84]			[-2.03,34.68]			[2.71,36.48]			[6.73,34.81]			2213.94

			11			10436.64			31.27			[11.14,38.88]			[6.03,40.55]			[2.63,48.85]			[-0.94,44.85]			[-8.75,40.36]			[-9.38,38.88]			[-8.87,34.25]			[-2.62,38.04]			[2.60,34.76]			[6.27,33.67]			2009.84

			12			10433.57			30.4			[15.94,38.89]			[0.23,39.94]			[3.70,47.15]			[-3.82,50.34]			[-7.74,39.85]			[-8.30,38.89]			[-6.63,35.44]			[-1.44,33.66]			[2.26,37.83]			[9.22,31.60]			1642.469

			13			10467.78			32.31			[13.22,42.68]			[8.35,51.12]			[5.24,48.46]			[-4.49,48.48]			[-12.39,45.79]			[-10.07,42.68]			[-4.81,40.94]			[-2.12,24.29]			[5.48,38.83]			[7.09,38.87]			1110.64

			14			10446.36			31.51			[12.46,41.03]			[4.97,45.19]			[2.12,54.45]			[-5.27,47.92]			[-13.04,44.32]			[-4.86,41.03]			[-2.05,32.54]			[-4.42,28.61]			[2.16,29.14]			[3.22,33.22]			1149.36

			15			10449.85			33.02			[6.15,45.15]			[7.73,48.26]			[5.16,57.60]			[-5.17,53.33]			[-3.36,49.81]			[-11.76,45.15]			[-8.24,39.82]			[-5.85,28.44]			[2.23,29.09]			[13.35,35.69]			720.57

			16			10445.25			34.23			[6.75,42.77]			[4.48,47.90]			[-2.37,49.08]			[-3.39,48.41]			[-4.74,48.51]			[-6.94,42.77]			[-3.19,40.06]			[-2.33,31.62]			[3.53,33.21]			[5.31,34.50]			1831.48

			17			10440.07			29.31			[7.80,41.45]			[6.13,47.35]			[2.25,48.88]			[-2.94,53.47]			[-6.19,49.35]			[-5.63,41.45]			[-10.14,34.61]			[-3.29,37.00]			[2.09,28.17]			[9.44,39.62]			1238.58

			18			10469.61			30.53			[7.02,39.22]			[12.39,39.50]			[6.65,55.14]			[-2.40,50.67]			[9.32,44.09]			[-1.62,39.22]			[-4.02,33.76]			[-0.40,21.36]			[-1.50,34.39]			[9.27,33.56]			1169.66

			19			10437.61			31.32			[7.22,39.76]			[12.23,45.28]			[2.19,43.28]			[-3.64,52.38]			[-9.15,43.14]			[-4.88,39.76]			[-6.59,37.67]			[-2.73,34.00]			[2.18,30.76]			[9.28,37.20]			1398.63

			20			10446.93			30.44			[7.60,42.89]			[10.63,47.55]			[3.03,47.52]			[-1.94,49.18]			[-2.99,46.39]			[-11.77,42.889]			[-3.46,37.66]			[-2.89,30.94]			[2.91,31.94]			[8.27,37.94]			1389.11

			average			10448.833			31.537

Sheet2

Sheet3

9-appendix B/Chapter 6 results and codes/Points_10LowN.xlsx

Sheet1

			Test #			Misfit 			Time Taken(min)			X0,Z0			X1,Z1			X2,Z2			X3,Z3			X4,Z4			X5,Z5			X6,Z6			X7,Z7			X8,Z8			X9,Z9			RHO

			1			105.91			32.41			[10.29,39.12]			[4.54,45.49]			[2.52,43.17]			[-1.30,46.24]			[-6.53,45.91]			[-9.52,39.12]			[-3.46,32.07]			[-2.84,33.54			[2.36,34.04]			[5.46,33.11]			1581.84

			2			105.55			31.26			[7.67,38.24]			[6.12,44.19]			[2.21,47.98]			[-3.25,49.74]			[-5.15,42.14]			[-8.24,38.24]			[-8.33,34.96]			[-3.32,35.98]			[2.21,29.39]			[3.05,33.16]			1668.17

			3			110.53			32.33			[7.77,40.29]			[12.48,44.68]			[4.99,47.78]			[-2.20,54.19]			[0.59,47.80]			[-13.27,40.29]			[-19.32,28.07]			[-5.82,35.84]			[4.15,25.92]			[15.22,35.83]			721.78

			4			111.27			31.01			[11.48,44.84]			[15.57,57.89]			[4.99,47.00]			[-3.06,57.53]			[-13.47,57.07]			[-6.66,44.84]			[-4.73,42.76]			[-1.36,19.66]			[2.70,23.97]			[1.81,40.09]			860.1

			5			107.17			31.27			[10.15,39.97]			[9.85,47.93]			[3.68,44.46]			[-3.09,48.47]			[-5.99,44.30]			[-10.43,39.97]			[-11.21,35.40]			[-2.36,32.22]			[2.64,31.54]			[6.32,32.33]			1150.64

			6			106.67			30.42			[8.35,40.22]			[8.35,42.77]			[1.00,47.03]			[-2.52,46.79]			[-3.83,47.17]			[-4.92,40.22]			[-8.35,34.01]			[-2.18,34.01]			[1.20,31.24]			[3.93,37.47]			1901.2

			7			109.96			30.42			[17.78,38.22]			[5.31,49.70]			[3.92,42.88]			[-6.68,47.77]			[-12.50,46.36]			[-19.84,38.22]			[-1.72,32.10]			[-2.78,31.67]			[6.44,18.28]			[2.46,29.53]			677.88

			8			105.6			31.36			[6.23,40.09]			[5.06,44.41]			[2.04,45.63]			[-2.38,49.68]			[-5.58,46.09]			[0.36,40.09]			[-7.78,35.31]			[-0.46,32.51]			[2.36,35.65]			[2.21,33.37]			2559.81

			9			236.36			31.06			[23.14,44.08]			[2.27,54.30]			[2.25,53.86]			[-4.30,49.09]			[1.21,55.55]			[-14.35,44.08]			[-11.51,30.19]			[-5.77,29.18]			[2.20,25.63]			[6.79,39.42]			564.63

			10			105.19			30.51			[2.66,43.67]			[8.34,48.39]			[5.89,50.11]			[-1.96,45.65]			[-8.00,51.23]			[-7.40,43.67]			[-5.15,37.54]			[-3.45,25.75]			[1.77,37.44]			[13.58,31.98]			1509.19

			11			105.58			31.33			[15.22,39.20]			[6.26,47.33]			[1.42,43.58]			[-5.96,47.63]			[-11.85,43.18]			[-13.08,39.20]			[-1.58,34.56]			[-2.86,27.91]			[3.18,29.91]			[8.08,39.42]			1135.83

			12			106.51			31.37			[7.27,39.46]			[6.58,45.91]			[3.98,47.53]			[-2.31,42.24]			[-7.85,42.11]			[-8.35,39.46]			[-3.15,31.14]			[-0.60,34.64]			[1.13,36.12]			[9.51,37.23]			2095.97

			13			105.59			31.05			[8.24,40.98]			[4.49,42.93]			[2.91,44.92]			[-0.53,45.82]			[-3.36,45.83]			[-5.84,40.98]			[-5.90,38.08]			[-2.36,35.42]			[5.67,31.89]			[3.37,37.53]			2741.38

			14			106.05			31.14			[11.18,39.12]			[1.79,40.42]			[2.23,46.82]			[-0.52,49.90]			[-3.70,42.66]			[-2.54,39.12]			[-9.84,35.60]			[-1.74,33.78]			[3.33,36.90]			[5.98,36.07]			2682.62

			15			105.67			30.41			[-0.62,37.66]			[8.03,44.96]			[3.20,48.92]			[-3.16,46.68]			[-4.38,44.29]			[-5.86,37.66]			[0.27,32.81]			[-2.68,28.95]			[2.21,30.55]			[3.48,32.29]			2380.33

			16			105.67			31.22			[12.45,37.46]			[1.48,37.57]			[3.16,58.14]			[-2.59,44.90]			[-2.41,52.43]			[-9.94,37.46]			[-2.63,34.38]			[-1.32,25.81]			[1.76,36.76]			[8.41,30.98]			1482.41

			17			106.16			30.43			[9.50,38.06]			[6.73,44.66]			[2.37,47.38]			[-1.83,49.02]			[-5.88,41.90]			[-10.18,38.06]			[-8.88,32.85]			[-1.77,34.37]			[2.50,33.34]			[4.13,30.83]			1388.03

			18			107.97			32.59			[17.97,37.04]			[2.67,43.23]			[1.04,39.10]			[-4.51,44.70]			[-10.71,43.33]			[-8.13,37.04]			[-8.18,32.09]			[-3.37,31.97]			[3.82,36.68]			[6.91,35.66]			1664.51

			19			105.87			31.23			[4.42,39.88]			[10.37,45.25]			[3.78,45.71]			[-2.30,49.79]			[-3.97,48.13]			[-8.88,39.88]			[-8.05,36.57]			[-3.22,36.42]			[2.94,29.82]			[7.38,36.93]			1648.04

			20			134.97			32.28			[11.08,39.78]			[0.92,44.10]			[1.11,47.11]			[-0.66,48.46]			[5.32,44.52]			[-3.99,39.78]			[-7.25,36.27]			[-3.45,35.22]			[1.89,32.68]			[3.79,37.13]			2355.17

			average			114.7125			31.255			0			0			0			0			0			0			0			0			0			0			1638.4765

Sheet2

Sheet3

9-appendix B/Chapter 6 results and codes/Points_10MedN.xlsx

Sheet1

			Test #			Misfit 			Time Taken(min)			X0,Z0			X1,Z1			X2,Z2			X3,Z3			X4,Z4			X5,Z5			X6,Z6			X7,Z7			X8,Z8			X9,Z9			RHO

			1			1103.16			32.59			[7.11,37.94]			[3.87,44.03]			[3.53,49.00]			[-2.51,48.61]			[-7.34,42.75]			[-8.66,37.94]			[-5.15,31.88]			[-3.62,31.93]			[2.76,33.95]			[11.25,35.07]			1486.24

			2			957.79			33.42			[8.07,40.76]			[0.87,46.51]			[-0.19,56.09]			[-3.96,58.40]			[-2.54,50.41]			[-6.16,40.76]			[-10.82,33.33]			[-4.33,37.45]			[6.06,25.76]			[4.69,32.58]			1441.07

			3			960.86			33.29			[16.43,37.91]			[7.10,42.86]			[4.38,50.25]			[-4.59,54.75]			[-3.92,44.41]			[-11.22,37.91]			[-11.75,33.33]			[-4.08,27.34]			[3.76,33.60]			[9.79,31.28]			786.8

			4			957.18			31.05			[15.80,38.46]			[9.32,42.06]			[4.86,48.17]			[-4.60,40.73]			[-9.51,44.71]			[-15.32,38.46]			[-2.56,31.38]			[-0.57,27.41]			[2.74,34.72]			[6.00,31.44]			1024.23

			5			957.52			32.06			[8.15,40.70]			[4.02,44.69]			[1.78,46.17]			[-0.15,42.59]			[-2.84,44.73]			[-8.31,40.70]			[-4.07,36.02]			[-1.22,36.53]			[-0.077,32.53]			[3.35,33.96]			2480.86

			6			986.41			32			[13.90,38.73]			[7.43,42.64]			[3.14,51.21]			[-1.40,53.50]			[-5.65,46.22]			[-4.66,38.73]			[-12.26,30.01]			[-2.75,31.72]			[4.63,28.82]			[5.47,32.51]			989.41

			7			960.67			31.58			[11.79,41.33]			[8.22,45.45]			[0.91,43.76]			[-2.64,46.23]			[-4.36,44.90]			[-4.93,41.33]			[-6.60,42.69]			[-4.21,30.84]			[3.16,35.54]			[5.91,39.69]			2071.04

			8			968.21			32.1			[5.70,40.12]			[7.52,44.61]			[2.03,44.63]			[-1.16,42.71]			[-4.28,47.98]			[-4.89,40.12]			[-10.34,37.66]			[-3.26,36.52]			[4.15,32.21]			[1.09,32.54]			2532.29

			9			964.82			30.53			[17.63,41.85]			[8.33,44.10]			[2.44,44.13]			[-1.92,51.96]			[-16.97,37.55]			[-6.14,41.85]			[-7.87,34.46]			[-2.50,22.48]			[2.03,42.32]			[7.94,30.62]			917.79

			10			972.29			32.49			[6.09,39.62]			[4.57,45.95]			2.11,46.58]			[-1.83,49.01]			[-4.84,40.39]			[-10.19,39.62]			[-5.14,37.42]			[-3.39,31.13]			[1.37,34.36]			[9.40,36.71]			1968.35

			11			956.51			32.37			[12.38,39.11]			[8.85,45.60]			[2.83,44.33]			[-3.24,46.91]			[-5.61,44.20]			[-12.90,39.11]			[-5.94,32.28]			[-2.53,34.99]			[4.51,29.31]			[7.72,35.19]			1175.32

			12			961.7			32.29			[12.63,40.01]			[7.91,39.64]			[1.72,44.29]			[-2.97,42.14]			[-14.06,43.71]			[-11.33,40.01]			[-3.09,35.76]			[-0.21,31.34]			[1.71,33.95]			[7.06,3.38]			1855.44

			13			984.43			32.45			[4.81,41.79]			[4.94,45.95]			[2.86,45.65]			[-2.94,47.64]			[-8.45,47.38]			[-2.32,41.79]			[-7.08,38.15]			[-1.75,32.05]			[1.60,33.46]			[7.14,34.61			2023.47

			14			970.78			32.27			[8.46,38.19]			[9.75,41.73]			[2.24,48.63]			[-3.20,51.24]			[-5.51,43.09]			[-7.99,38.19]			[-3.57,36.00]			[-4.15,30.68]			[2.06,31.16]			[6.41,35.20]			1363.29

			15			962.81			33.08			[13.47,40.72]			[2.85,47.14]			[5.79,55.96]			[-5.57,46.35]			[-11.91,44.98]			[-7.91,40.72]			[-5.25,34.53]			[-2.09,36.38]			[1.67,17.84]			[1.59,34.90]			1160.63

			16			962.44			32.58			[5.07,41.85]			[9.03,44.69]			[2.72,46.08]			[-3.58,49.64]			[-7.44,45.67]			[-3.80,41.85			[-3.89,38.00]			[-1.94,31.20]			[2.71,31.44]			[6.62,37.47]			1836.13

			17			960.8			32.3			[8.26,39.08]			[8.24,42.87]			[3.91,53.01]			[-0.08,49.73]			[-1.41,44.33]			[-10.49,39.08]			[-1.98,32.73]			[-3.95,25.50]			[1.49,33.05]			[5.02,33.93]			1379.05

			18			1024.79			32.33			[3.53,38.88]			[8.50,40.55]			[3.66,50.97]			[-0.17,46.65]			[-6.05,42.50]			[-8.30,38.88]			[-1.56,31.41]			[-0.72,28.88]			[3.40,36.24]			[2.56,38.97]			1791.5

			19			958.02			32.26			[3.69,36.95]			[10.95,39.81]			[4.79,46.29]			[-3.41,48.11]			[-10.27,44.93][3.77,36.95]			[-3.77,36.95]			[-8.38,33.11]			[-2.33,33.81]			[1.32,30.65]			[6.74,30.09]			1405.31

			20			974.78			32.36			[9.90,38.55]			[2.57,39.44]			[2.54,48.66]			[-1.59,46.51]			[-9.28,44.54]			[-5.11,38.55]			[-5.74,32.44]			[-1.87,34.47]			[3.47,33.86]			[12.46,34.42]			1824.98

			average			975.2985			32.27																																	1575.66

Sheet2

Sheet3

9-appendix B/Chapter 6 results and codes/Points_10side.xlsx

Sheet1

			Test #			Misfit 			Time Taken(min)			X0,Z0			X1,Z1			X2,Z2			X3,Z3			X4,Z4			X5,Z5			X6,Z6			X7,Z7			X8,Z8			X9,Z9			RHO			con iter

			1			5.46			32.23			(6.38,40.13)			(8.38,43.56)			[2.61,45.80]			[-1.17,46.22]			[-8.05,43.24]			[-1.05,40.13]			[-7.10,35.42]			[-3.36,35.70]			[2.14,31.69]			[8.00,35.31]			1634.8

			2			80.71			32.49			[13.84,41.11]			[14.79,51.29]			[4.59,53.29]			[-2.52,50.26]			[-9.31,49.00]			[-4.78,41.11]			[-12.61,32.26]			[-2.69,25.59]			[3.43,29.15]			[7.57,35.33]			646.36

			3			10.73			32.39			[8.76,41.33]			[3.51,45.75]			[2.01,45.67]			[-3.07,44.39]			[-2.03,45.17]			[-13.30,41.33]			[-8.07,39.21]			[-2.80,38.14]			[3.10,28.94]			[4.98,35.70]			1942.43

			4			0.978			33.11			[13.51,42.15]			[8.32,49.08]			[1.21,51.58]			[-1.02,45.51]			[-5.25,48.35]			[-9.58,42.15]			[-11.77,36.06]			[-4.33,29.16]			[4.66,29.87]			[5.43,33.84]			838.31

			5			0.1			31.33			[8.85,39.42]			[4.46,46.29]			[2.00,48.65]			[-4.05,46.63]			[-6.93,40.79]			[-8.27,39.43]			[-8.38,35.38]			[-2.94,31.07]			[2.33,36.35]			[7.18,31.92]			1485.68

			6			1.54			33.13			[7.26,40.61]			[5.69,4.53]			[2.16,48.27]			[-1.60,46.25]			[-1.45,45.96]			[-7.50,40.61]			[-7.04,36.19]			[-2.10,33.26]			[3.71,33.41]			[5.06,35.29]			1888.84

			7			0.3			33.27			[4.41,40.34]			[6.29,47.23]			[4.32,43.83]			[-2.07,49.10]			[-8.33,44.74]			[-1.65,40.34]			[-10.77,32.66]			[-1.01,36.32]			[5.24,30.68]			[8.41,37.62]			1987.47

			8			0.39			33.26			[8.14,48.00]			[8.57,49.13]			[5.53,59.19]			[-3.60,53.38]			[-10.93,48.30]			[-8.93,48.00]			[-1.36,39.96]			[-1.76,36.70]			[2.38,42.40]			[4.50,40.33]			1599.3

			9			0.014			4.54			[8.46,39.56]			[7.49,43.50]			[4.07,45.99]			[-2.68,45.22]			[-9.76,40.75]			[-10.93,39.56]			[-1.86,33.73]			[-2.52,29.32]			[1.72,35.79]			[5.02,32.72]			1733.32			71

			10			0.1005			34.01			[6.41,39.94]			[10.39,43.92]			[3.64,45.74]			[-3.64,43.60]			[-4.19,47.87]			[-8.67,39.94]			[-10.02,34.05]			[-1.09,36.64]			[2.91,30.39]			[6.49,33.99]			1676.92

			11			3.12			34.53			[14.85,35.01]			[12.46,47.51]			[2.46,37.50]			[-1.50,43.98]			[-11.11,46.12]			[-15.23,35.01]			[-5.44,30.80]			[-5.60,26.51]			[6.69,38.21]			[14.69,26.85]			861.53

			12			2.37			33.59			[3.67,40.29]			[3.65,44.65]			[1.72,49.82]			[-2.89,41.49]			[-4.36,48.28]			[-8.15,40.29]			[-6.09,35.89]			[-0.34,33.57]			[3.31,34.97]			[10.92,32.77]			2050.84

			13			5.39			33.48			[3.72,39.71]			[5.76,44.93]			[2.48,50.54]			[-3.25,44.29]			[-1.32,42.93]			[-12.57,39.71]			[-4.74,40.22]			[-2.03,29.57]			[2.17,36.11]			[3.06,32.15]			2403.2

			14			0.299			32.45			[11.08,39.01]			[7.75,44.23]			[2.93,48.69]			[-3.41,41.00]			[-5.83,47.26]			[-10.96,39.01]			[-6.28,30.98]			[2.48,34.14]			[0.91,32.44]			[9.11,34.56]			1243.03

			15			0.19			31.57			[6.72,38.71]			[9.58,41.34]			[4.32,46.16]			[-1.58,46.87]			[-11.57,43.68]			[-3.86,38.71]			[-11.07,35.96]			[-2.36,36.93]			[0.70,26.20]			[1.38,31.14]			1661.58

			16			15.73			33.57			[2.33,39.96]			[9.99,40.23]			[2.72,43.72]			[-0.77,48.11]			[-0.39,45.75]			[-7.36,39.96]			[-6.14,35.27]			[-9.25,35.41]			[2.04,34.72]			[6.01,36.84]			2840.05

			17			0.85			32.34			[14.78,40.20]			[2.51,40.87]			[1.17,59.84]			[-6.60,63.81]			[-5.99,53.34]			[-2.89,40.20]			[-11.23,35.18]			[-2.47,26.64]			[2.32,29.78]			5.76,31.20]

			18			2.62			31.58			[3.20,39.33]			[7.74,43.60]			[3.12,47.14]			[-1.15,45.89]			[-5.13,42.03]			[-3.72,39.33]			[-6.38,3.32]			[-2.10,33.45]			[2.04,34.45]			[3.16,35.10]			2617.74

			19			0.0043			2.45			[5.79,40.74]			[6.62,45.61]			[1.99,45.86]			[-1.21,43.45]			[-5.45,46.34]			[-6.64,40.74]			[-5.84,34.11]			[-1.71,35.20]			[1.61,33.44]			[5.85,35.45]			2235.47

			20			4.6			32.19			[9.31,36.77]			[6.61,44.87]			[-0.04,54.84]			[-1.80,41.50]			[-9.99,46.56]			[-15.21,36.77]			[-10.17,34.70]			[-2.21,36.42]			[1.40,28.95]			[8.82,28.32]			969.43

			average			6.77479			19.8835																																	1573.1251

						6.77479

						6.77479

						6.77479

						6.77479

						6.77479

						6.77479

						6.77479

						6.77479

						6.77479

						6.77479

						6.77479

						6.77479

						6.77479

						6.77479

						6.77479

						6.77479

						6.77479

						6.77479

						6.77479

						6.77479

10 Sided Noise Free Inversion Results

Average misfit 	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	6.7747900000000003	6.7747900000000003	6.7747900000000003	6.7747900000000003	6.7747900000000003	6.7747900000000003	6.7747900000000003	6.7747900000000003	6.7747900000000003	6.7747900000000003	6.7747900000000003	6.7747900000000003	6.7747900000000003	6.7747900000000003	6.7747900000000003	6.7747900000000003	6.7747900000000003	6.7747900000000003	6.7747900000000003	6.7747900000000003	Inversion results	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	5.46	80.709999999999994	10.73	0.97799999999999998	0.1	1.54	0.3	0.39	1.4E-2	0.10050000000000001	3.12	2.37	5.39	0.29899999999999999	0.19	15.73	0.85	2.62	4.3E-3	4.5999999999999996	Inversion test number

Misfit value

Sheet2

Sheet3

9-appendix B/Chapter 6 results and codes/PP10sides.py

import numpy as numpy

import scipy as si

import random as rand

import time

import sys,pp

import pylab as pl

from datetime import datetime

class Point:

	def __init__(self,x,y):

		self.x = x

		self.y = y

change here###### change here

def func1(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,rho):

 x = numpy.arange(-30.0,30,0.5)

 """z = numpy.zeros(120)

 xz = np.zeros([120,2])

 for i in numpy.arange(120):

	xz[i]= [x[i],z[i]]"""

 points = [p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p0]

 points = numpy.asarray(points)

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 for i in numpy.arange(len(x)):

 sum_lines = 0.0

 for n in numpy.arange(len(points)-1):

 x1 = points[n,0]-x[i]

 x2 = points[(n+1),0]-x[i]

 z1 = points[n,1]

 z2 = points[(n+1),1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = numpy.arctan2(z1,x1)

 O2 = numpy.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = numpy.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

 #print grav

def func2(raw_input,grav):

 p0=raw_input[0]

 p1=raw_input[1]

 p2=raw_input[2]

 p3=raw_input[3]

 p4=raw_input[4]

 p5=raw_input[5]

 p6=raw_input[6]

 p7=raw_input[7]

 p8=raw_input[8]

 p9=raw_input[9]

 rho=raw_input[10,0]

 rho=rho

 x = numpy.arange(-30.0,30,0.5)

 points = [p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p0]

 points = numpy.asarray(points)

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 for i in numpy.arange(len(x)):

 sum_lines = 0.0

 for n in numpy.arange(len(points)-1):

 x1 = points[n,0]-x[i]

 x2 = points[(n+1),0]-x[i]

 z1 = points[n,1]

 z2 = points[(n+1),1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = numpy.arctan2(z1,x1)

 O2 = numpy.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = numpy.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

 #print len(grav),grav[0]

 return grav

def ccw(A,B,C):

	return (C.y-A.y)*(B.x-A.x) > (B.y-A.y)*(C.x-A.x)

def intersect(A,B,C,D):

	return ccw(A,C,D) != ccw(B,C,D) and ccw(A,B,C) != ccw(A,B,D)

smaller

#Dobs = (15.758710677138012, 16.024615005694173, 16.294938451298659, 16.569670219271714, 16.848790876416022, 17.132271658503047, 17.420073748114131, 17.712147523929215, 18.008431782963115, 18.308852937717027, 18.613324190710543, 18.921744689432423, 19.233998665351841, 19.549954561307267, 19.869464152300385, 20.192361665494083, 20.518462906022584, 20.847564396073302, 21.179442535583004, 21.51385279379689, 21.850528941853671, 22.189182337472261, 22.529501273711119, 22.871150404616177, 23.213770261366992, 23.556976873230568, 23.900361508215695, 24.243490548764957, 24.585905518081052, 24.927123272742943, 25.266636377072157, 25.603913674248886, 25.938401068406076, 26.269522530812246, 26.596681341788155, 26.919261578149975, 27.236629853718032, 27.548137317789156, 27.853121913434961, 28.150910894070211, 28.440823592985343, 28.722174436476863, 28.994276186912142, 29.256443397593809, 29.507996056732672, 29.748263393298181, 29.976587813086297, 30.192328929164361, 30.394867647022714, 30.583610261407479, 30.757992519070154, 30.917483599620983, 31.061589965448629, 31.189859031328229, 31.301882604961353, 31.39730005129211, 31.475801136054145, 31.537128507586804, 31.581079780469427, 31.607509189878201, 31.616328791669396, 31.607509189878261, 31.581079780469391, 31.537128507586804, 31.475801136054145, 31.39730005129212, 31.301882604961413, 31.189859031328197, 31.061589965448675, 30.917483599620954, 30.757992519070168, 30.583610261407429, 30.394867647022693, 30.192328929164326, 29.976587813086333, 29.748263393298149, 29.507996056732665, 29.256443397593788, 28.994276186912106, 28.722174436476905, 28.440823592985275, 28.15091089407024, 27.853121913434965, 27.548137317789241, 27.236629853718004, 26.919261578150028, 26.596681341788109, 26.269522530812257, 25.938401068406176, 25.603913674248965, 25.266636377072309, 24.927123272742911, 24.585905518081073, 24.243490548764882, 23.900361508215731, 23.556976873230465, 23.213770261367131, 22.871150404616358, 22.529501273711233, 22.189182337472321, 21.850528941853469, 21.513852793796723, 21.179442535582929, 20.847564396073253, 20.518462906022606, 20.192361665494019, 19.869464152300473, 19.54995456130737, 19.233998665351869, 18.921744689431964, 18.613324190710792, 18.308852937717067, 18.008431782963278, 17.712147523929136, 17.420073748114017, 17.132271658503093, 16.84879087641605, 16.569670219271714, 16.294938451298609, 16.024615005694308)

10 sides no noise##

#Dobs = (61.533218321191292, 62.275301140467256, 63.022539861284585, 63.774656058739083, 64.531351633133795, 65.292308248132869, 66.057186793217824, 66.825626874963334, 67.597246341928837, 68.371640848202247, 69.148383460884872, 69.927024317017981, 70.707090335663892, 71.488084991015654, 72.26948815256884, 73.050755998483481, 73.831321008333632, 74.610592041464429, 75.387954507137238, 76.162770632551812, 76.934379834681167, 77.702099201631313, 78.46522408893432, 79.223028835818113, 79.974767606036451, 80.719675357295969, 81.456968942708642, 82.18584834696513, 82.905498059143596, 83.615088583165814, 84.313778085960209, 85.000714182334136, 85.67503585443923, 86.335875502535472, 86.982361122508792, 87.613618604317935, 88.228774144222442, 88.826956762308825, 89.407300915484569, 89.96894919478919, 90.511055094568889, 91.032785839819283, 91.533325256822565, 92.011876671124668, 92.467665815916121, 92.899943733039322, 93.307989648148208, 93.691113801003752, 94.048660211555855, 94.380009362280177, 94.684580777315929, 94.961835479184032, 95.211278304374886, 95.432460059773661, 95.62497950282993, 95.788485129502646, 95.922676755350182, 96.027306876668689, 96.102181800272717, 96.14716253237242, 96.162165418980635, 96.147162532372406, 96.102181800272774, 96.027306876668618, 95.922676755350196, 95.788485129502604, 95.624979502829959, 95.432460059773618, 95.211278304374829, 94.961835479184089, 94.684580777315873, 94.380009362280134, 94.048660211555756, 93.691113801003681, 93.307989648148052, 92.899943733039407, 92.467665815916106, 92.011876671124796, 91.533325256822422, 91.032785839819269, 90.511055094568846, 89.968949194789175, 89.407300915484583, 88.826956762308996, 88.228774144222569, 87.613618604317921, 86.982361122508891, 86.335875502535529, 85.675035854439173, 85.000714182333937, 84.313778085960436, 83.615088583165686, 82.905498059143483, 82.18584834696513, 81.456968942708514, 80.719675357296083, 79.974767606036323, 79.223028835818084, 78.46522408893415, 77.702099201631356, 76.93437983468101, 76.162770632551684, 75.387954507137266, 74.610592041464486, 73.831321008333532, 73.050755998483595, 72.269488152569011, 71.488084991015697, 70.707090335663736, 69.927024317017995, 69.148383460884943, 68.371640848202262, 67.597246341928965, 66.825626874963305, 66.057186793217696, 65.29230824813277, 64.531351633133752, 63.774656058738934, 63.022539861284613, 62.275301140467455)

LOW NOISE#######

#Dobs = (62.3376536, 62.06943742, 63.37826916, 64.66700375, 64.96182901, 67.04954116, 66.15704781, 66.20824813, 66.47691621, 69.05879997, 69.33449033, 70.34053363, 71.78489382, 70.3828814, 73.75384488, 73.38859815, 71.98608408, 73.95619118, 76.64286621, 74.8903055, 76.74553236, 77.65053409, 79.20154876, 78.56476701, 81.64667673, 79.33695733, 82.11195701, 81.30094668, 82.51553326, 83.76363674, 84.30627493, 84.89190457, 85.43792832, 85.50562179, 87.20397029, 89.19325669, 87.74021479, 88.6605406, 88.58313151, 90.2456288, 91.36779309, 90.84944216, 90.79810353, 92.98914081, 93.50116299, 94.35222045, 93.54470886, 93.65278671, 94.28402749, 95.78525706, 94.1652087, 95.3364069, 97.4243833, 94.79335922, 96.65244118, 93.41634733, 96.87748914, 95.03155507, 96.99347427, 95.95549226, 97.91278765, 95.42677274, 95.46763429, 95.74023425, 95.14530207, 95.79377109, 95.27423728, 96.09247105, 94.92274768, 94.7848162, 94.14705206, 93.46219432, 95.56947293, 93.73081081, 94.60726638, 93.70010596, 92.3235192, 92.39613758, 91.91176445, 90.79720897, 90.21267595, 89.12510331, 89.86428136, 87.85302641, 89.56873716, 86.63949442, 88.14280447, 87.65962957, 85.04503995, 85.9223295, 84.86692563, 82.40476715, 82.90280063, 79.72333346, 81.32093294, 79.89225581, 80.94826569, 80.54687159, 77.89748257, 76.60568268, 78.06765115, 76.10374097, 76.40746643, 74.44702236, 75.23463867, 72.74044433, 72.91388223, 73.20666333, 69.42912127, 72.44336831, 68.81248099, 68.17046285, 67.34812389, 67.85371115, 65.93912354, 64.85162453, 63.01605577, 62.87687661, 63.19013977, 62.77276704)

MED NOISE#######

#Dobs = (57.7831318, 63.36863951, 56.33847906, 70.0679032, 64.38953126, 64.08639227, 64.86892649, 67.3799799, 67.98506323, 65.19820764, 67.62089939, 70.69489837, 69.21891609, 72.97504882, 75.55263938, 71.93282722, 72.22819654, 71.17640305, 72.7747103, 74.49029706, 80.18236379, 82.45644401, 75.76307175, 80.48104043, 82.57969552, 78.62777452, 76.60798658, 79.78315391, 81.1177341, 83.05955097, 86.14359697, 88.30783673, 80.26053866, 87.70887026, 87.34648667, 88.78278762, 89.41658766, 91.86281576, 92.87819383, 85.71228538, 88.67092412, 95.60844686, 87.68475653, 92.93358014, 94.60413536, 89.46829565, 92.56555254, 94.52481282, 91.42624227, 91.45923179, 102.04773999, 89.99870726, 96.46170253, 90.51519468, 99.83587445, 97.97225514, 95.15126924, 93.80855444, 97.5793702, 93.56598814, 97.86267511, 92.36934955, 98.17279942, 96.08576861, 94.3851904, 95.7872989, 90.80419416, 91.14613158, 94.29673883, 94.80781607, 97.27901133, 97.5142806, 99.78841945, 97.68053749, 98.99322817, 89.39284524, 96.13585349, 95.47603868, 92.54068516, 90.21503083, 89.32189154, 94.95107029, 87.9743031, 90.90622502, 87.63134891, 89.19546383, 91.02012637, 89.08083815, 88.64825731, 86.0542191, 87.04747682, 84.29948881, 83.02467694, 80.88837225, 80.67380481, 81.30189658, 80.5974547, 81.77041639, 80.33184352, 77.01083421, 73.5870354, 80.94198755, 74.52382205, 71.29468915, 73.93216356, 71.53861587, 71.70474244, 70.47540422, 72.12709764, 72.70279374, 67.68463782, 69.27184024, 66.56380423, 66.26687482, 65.74917179, 70.00364523, 62.92630052, 71.32106387, 66.67250611, 60.97344622)

######HIGH NOISE ######

Dobs = (65.31998591, 61.93453198, 58.25362322, 55.60792501, 76.58342781, 86.08830873, 66.50787433, 63.28889153, 64.61709971, 71.5435495, 61.33976821, 50.71277157, 75.63573644, 71.75200624, 83.8524466, 75.97362513, 71.55421595, 82.04614787, 67.40297985, 76.29874968, 75.97375983, 59.64008327, 81.02165537, 66.24423309, 86.59112911, 83.75084489, 75.59455362, 80.57185607, 78.09319441, 84.27338382, 78.33552291, 74.70775122, 84.22447922, 80.81963869, 98.08646736, 89.01153496, 72.02166177, 96.26833786, 84.10628753, 84.95799886, 98.95084089, 103.50778255, 91.43557318, 76.94457859, 105.31038024, 93.77354452, 94.11923053, 78.64324731, 75.19312434, 108.12458979, 95.85906356, 94.74847215, 95.7492061, 89.2172423, 104.91168673, 97.06035546, 76.51664283, 108.09257688, 100.64308189, 86.60915429, 97.40758608, 88.09447037, 102.40756414, 95.12441756, 92.31871838, 92.04675338, 98.13076265, 96.79006632, 114.11174661, 95.93399753, 105.94443034, 93.88502368, 68.41931716, 96.4367678, 70.89958621, 83.99468251, 97.47077115, 96.03052878, 83.3465171, 78.02158205, 97.01127972, 100.43763118, 85.3080125, 86.6776668, 83.69188121, 69.05582328, 96.57942691, 94.40001459, 93.08924132, 93.13498134, 83.33226514, 82.38439937, 93.37058184, 98.32778912, 83.67429671, 80.63547949, 92.47537914, 90.81517659, 68.48681039, 72.92531593, 83.63639301, 70.61782277, 90.55569341, 68.87872671, 88.35665488, 77.49311073, 65.1565043, 65.70668513, 76.83139907, 79.43017012, 71.60518384, 63.20629447, 68.67580336, 70.62064681, 70.66976371, 74.19428037, 53.27508894, 36.11366226, 64.96214263, 53.40567332)

grav = []

iter_time = []

jobsList = []

gbestlist=[]

gbestvlist=[]

cg = 1.3

cp = 2.8

phi = cp+cg

K = 2/abs(2-phi-(phi**2-4*phi)**0.5)

StandardDev= 1

vmax =30

nswarm = 120

nsides = 10.0

ndim = int(nsides+1)

Pen = 50000

maxiter = 500

vmax = numpy.asarray(vmax)

 #all_the_leftxcorn = [[] for i in range(int(nswarm))]

 #all_the_rightxcorn = [[] for i in range(int(nswarm))]

 #all_the_topzcorn = [[] for i in range(int(nswarm))]

 #all_the_botzcorn = [[] for i in range(int(nswarm))]

 #all_the_rho = [[] for i in range(int(nswarm))]

log_pbestg = [[]for i in range(int(nswarm))]

log_pbestv = []

loggbestv = []

logGbest=numpy.zeros([maxiter,ndim,2])

mid1 = []

mid2 = []

 #log_values =[]

swarm = numpy.zeros((nswarm,ndim,2))

 # initialize the swarm

change here###### change here

increment = 360/nsides

radius = numpy.arange(1.0,40)

yincr = numpy.arange(1,80)

Rhorange = numpy.arange(500.0,3001,0.01)

angles = numpy.zeros(ndim)

X = numpy.zeros([nswarm, ndim])

Y = numpy.zeros([nswarm,ndim])

for m in numpy.arange(ndim):

	angles[m]+=(increment*m)*(numpy.pi/180.0)

#at the end of x and y

for i in numpy.arange(nswarm):

 rr = rand.choice(radius)

 ry = rand.choice(yincr)

 x = numpy.zeros((nsides+1))

 y = numpy.zeros((nsides+1))

 for b in numpy.arange(nsides):

 x[b] = numpy.cos(angles[b])*(rr*si.rand())

 y[b] = (numpy.sin(angles[b])*(rr*si.rand()))+ry

 swarm[i,b,0]=x[b]

 swarm[i,b,1]=y[b]

 swarm[i,10,0]= rand.choice(Rhorange)

 swarm[i,10,1]= swarm[i,10,0]

vectors = numpy.zeros([nswarm,(ndim),2])

thetas = numpy.zeros([nswarm,(ndim-1),1])

values= numpy.zeros(nswarm)

gravity = numpy.zeros([nswarm,len(Dobs)])

change here###### change here

for n in numpy.arange(nswarm):

 p0 = swarm[n,0]

 p1 = swarm[n,1]

 p2 = swarm[n,2]

 p3 = swarm[n,3]

 p4 = swarm[n,4]

 p5 = swarm[n,5]

 p6 = swarm[n,6]

 p7 = swarm[n,7]

 p8 = swarm[n,8]

 p9 = swarm[n,9]

 rho = swarm[n,10,0]

 a = Point(p0[0],p0[1])

 b = Point(p1[0],p1[1])

 c = Point(p2[0],p2[1])

 d = Point(p3[0],p3[1])

 e = Point(p4[0],p4[1])

 f = Point(p5[0],p5[1])

 g = Point(p6[0],p6[1])

 h = Point(p7[0],p7[1])

 i = Point(p8[0],p8[1])

 j = Point(p9[0],p9[1])

put in code to make each particle a feasable solution.

 sides = [a,b,c,d,e,f,g,h,i,j,a,b,c,d,e,f,g,h,i,j]

 points = [p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p0]

 points = numpy.asarray(points)

 i=0

 for i in numpy.arange(ndim):

 if points[i,0]< -30.0:

 points[i,0]=-30.0

 if points[i,0]> 30.0:

 points[i,0]= 30.0

 if points[i,1]< 5.0:

 points[i,1]=5.0

 if points[i,1]> 100:

 points[i,1]= 100

 if rho<500:

 rho=500.0

 if rho>3000:

 rho = 3000.0

 i = 0

 for i in numpy.arange(ndim-1):

 vectors[n,i] = (points[i+1]-points[i])

 vectors[n,(ndim-1)] = vectors[n,0]

 i=0

 for i in numpy.arange(ndim-1):

 cross = numpy.cross(vectors[n,i],vectors[n,(i+1)])

 if cross<0:

 vxy = vectors[n,i,0]*vectors[n,(i+1),0] + vectors[n,i,1]*vectors[n,(i+1),1]

 vx = (vectors[n,i,0]**2+vectors[n,i,1]**2)**0.5

 vy = (vectors[n,(i+1),0]**2+vectors[n,(i+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,i] = -1*(rad*(180.0/numpy.pi))

 else:

 vxy = vectors[n,i,0]*vectors[n,(i+1),0] + vectors[n,i,1]*vectors[n,(i+1),1]

 vx = (vectors[n,i,0]**2+vectors[n,i,1]**2)**0.5

 vy = (vectors[n,(i+1),0]**2+vectors[n,(i+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,i] = rad*(180.0/numpy.pi)

 ###

 func1(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,rho)

 gravity[n]=grav

 del grav[0:len(grav)]

 n+=1

j=0

for j in numpy.arange(nswarm):

 values[j] = (sum((Dobs - gravity[j])**2))/StandardDev

pbestv = numpy.zeros(nswarm)

i=0

for i in numpy.arange(nswarm):

 pbestv[i] = values[i]

pbest = numpy.array(swarm)

initialize the "global best" values

gbesti = numpy.argmin(pbestv)

gbestv = numpy.minimum.reduce(pbestv)

gbest = pbest[gbesti]

initialize velocity function

velocities = numpy.zeros((nswarm,ndim,2))

#velocities2 = numpy.zeros(((nswarm/2.0),ndim,2))

#velocities1 = numpy.zeros(((nswarm/2.0),ndim,2))

i=0

print datetime.time(datetime.now())

for i in numpy.arange(maxiter):

 ITER = i

 t = time.clock()

 logGbest[i] = gbest

 if i%100==0:

 print datetime.time(datetime.now())

 print i

 print "current gbest",gbest

 print "current gbestv",gbestv

 values= numpy.zeros(nswarm)

 vectors = numpy.zeros([nswarm,(ndim),2])

 thetas = numpy.zeros([nswarm,(ndim-1),1])

 feasabilty = numpy.zeros(nswarm)

 ###### change here###### change here

 for n in numpy.arange(nswarm):

 p0 = swarm[n,0]

 p1= swarm[n,1]

 p2 = swarm[n,2]

 p3 = swarm[n,3]

 p4 = swarm[n,4]

 p5 = swarm[n,5]

 p6 = swarm[n,6]

 p7 = swarm[n,7]

 p8 = swarm[n,8]

 p9 = swarm[n,9]

 rho = swarm[n,10,0]

 a = Point(p0[0],p0[1])

 b = Point(p1[0],p1[1])

 c = Point(p2[0],p2[1])

 d = Point(p3[0],p3[1])

 e = Point(p4[0],p4[1])

 f = Point(p5[0],p5[1])

 g = Point(p6[0],p6[1])

 h = Point(p7[0],p7[1])

 i = Point(p8[0],p8[1])

 j = Point(p9[0],p9[1])

 sides = [a,b,c,d,e,f,g,h,i,j,a,b,c,d,e,f,g,h,i,j]

 points = [p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p0]

 points = numpy.asarray(points)

 for q in numpy.arange(ndim-1):

 vectors[n,q] = (points[q+1]-points[q])

 vectors[n,(ndim-1)] = vectors[n,0]

 for w in numpy.arange(ndim-1):

 cross = numpy.cross(vectors[n,w],vectors[n,(w+1)])

 if cross<0:

 vxy = vectors[n,w,0]*vectors[n,(w+1),0] + vectors[n,w,1]*vectors[n,(w+1),1]

 vx = (vectors[n,w,0]**2+vectors[n,w,1]**2)**0.5

 vy = (vectors[n,(w+1),0]**2+vectors[n,(w+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,w] = -1*(rad*(180.0/numpy.pi))

 else:

 vxy = vectors[n,w,0]*vectors[n,(w+1),0] + vectors[n,w,1]*vectors[n,(w+1),1]

 vx = (vectors[n,w,0]**2+vectors[n,w,1]**2)**0.5

 vy = (vectors[n,(w+1),0]**2+vectors[n,(w+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,w] = rad*(180.0/numpy.pi)

 #print thetas

 for e in numpy.arange(nswarm):

 for l in numpy.arange(ndim-1):

 if swarm[e,l,0]<-30.0:

 feasabilty[e]+=Pen

 #print 'e',e,'l',l,'1'

 if swarm[e,l,0]> 30.0:

 feasabilty[e]+=Pen

 #print 'e',e,'l',l, '2'

 if swarm[e,l,1]<5:

 feasabilty[e]+=Pen

 #print 'e',e,'l',l, '3'

 if swarm[e,l,1]>100.0:

 feasabilty[e]+=Pen

 #print 'e',e,'l',l, '4'

 if swarm[e,(nsides),0]<500:

 feasabilty[e]+=Pen

 #print 'e',e, '5'

 if swarm[e,(nsides),0]>3000:

 feasabilty[e]+=Pen

 #print 'e',e, '6'

 for k in numpy.arange(len(thetas[0])):

 if abs(thetas[e,k]) < 0.1:

 thetas[e,k]=0.1

 S = int(sum(thetas[e]))

 for r in numpy.arange(len(thetas[0])):

 if abs(thetas[e,r]) < 10.0:

 feasabilty[e]+=Pen

 if abs(thetas[e,r]) > 170.0:

 feasabilty[e]+=Pen

 #print 'e',e,'r',r, '7'

 #print 'S',S,'intS',int(sum(thetas[n]))

 if int(sum(thetas[e]))==359:

 S = int(360.0)

 if S!=int(360.0):

 feasabilty[e]+=Pen

 # print 'e',e, '8'

 if S == int(360.0):

 for t in numpy.arange((ndim-1)):

 #print 'j',j

 #print intersect(sides[j],sides[j+1],sides[j+2],sides[j+3]),'1','j',j

 #print intersect(sides[j],sides[j+1],sides[j+3],sides[j+4]),'2','j',j

 if intersect(sides[t],sides[t+1],sides[t+2],sides[t+3]):

 feasabilty[e]+=Pen

 #print 'e',e,'9'

 if intersect(sides[t],sides[t+1],sides[t+3],sides[t+4]):

 feasabilty[e]+=Pen

 #print 'e',e,'10'

 # print swarm

 #print feasabilty

 ppservers = ()

 #ppservers = ("10.0.0.1",)

 if len(sys.argv) > 1:

 ncpus = int(sys.argv[1])

 # Creates jobserver with ncpus workers

 job_server = pp.Server(ncpus, ppservers=ppservers)

 else:

 # Creates jobserver with automatically detected number of workers

 job_server = pp.Server(ppservers=ppservers)

 #print "Starting pp with", job_server.get_ncpus(), "workers"

#works to here

 inputs = tuple(swarm)

 start_time = time.time()

 jobs = [(raw_input, job_server.submit(func2,(raw_input,grav), (), ("numpy",))) for raw_input in inputs]

 for raw_input, job in jobs:

 r = job()

 jobsList.append(r)

 #print "swarm", raw_input, "is",r[0],'nsawrm',nswarm

 #print "Time elapsed: ", time.time() - start_time, "s"

 #job_server.print_stats()

 for y in numpy.arange(nswarm):

 gravity[y] = jobsList[y]

 #print gravity[n,0]

 del grav[0:len(grav)]

 del jobsList[0:len(jobsList)]

 ##########destroys severs and open files############

 job_server.destroy()

 for u in numpy.arange(nswarm):

 values[u] = (sum((Dobs - gravity[u])**2) + feasabilty[u])/StandardDev

 for p in numpy.arange(nswarm):

 #if feasabilty[p]<1.0:

 mask = values[p] < pbestv[p]

 mask2d = numpy.repeat(mask, (ndim*2))

 mask2d = mask2d.reshape([ndim,2])

 pbestv[p] = numpy.where(mask, values[p], pbestv[p])

 pbest = numpy.where(mask2d, swarm, pbest)

 log_pbestg[p].append(pbestv[p])

 log_pbestv.append(pbestv)

 if numpy.minimum.reduce(pbestv) < gbestv:

 gbesti = numpy.argmin(pbestv)

 gbestv = pbestv[gbesti]

 gbest = pbest[gbesti]

 loggbestv.append(gbestv)

 #logGbest[i] = gbest

##

#2 velocities code

##

 #if K1<0.4:

 #K1 = 0.4

 #S = swarm[0:(nswarm/2.0)]

 #S1 = swarm[(nswarm/2.0):nswarm]

 #P = pbest[0:(nswarm/2.0)]

 #P1= pbest[(nswarm/2.0):nswarm]

 #velocities1 = K*(velocities1 + (cp*si.rand()*(P - S)) +

 #(cg*si.rand()*(gbest - S)))

 #velocities2 = (velocities2 + (cp*si.rand()*(P1 - S1)) +

 #(cg*si.rand()*(gbest - S1)))

 #K1 = K1-(K1/maxiter)

 #velocities2 = numpy.clip(velocities2,-5.0,5.0)

 #velocities1[numpy.logical_and(velocities1>=0.0,velocities1<0.025)]=0.025

 #velocities1[numpy.logical_and(velocities1<0.0,velocities1>-0.025)]=-0.025

 #print 'velocities',i,velocities

 #velocities[0:(nswarm/2.0)]=velocities1

 #velocities[(nswarm/2.0):nswarm]=velocities2

##

 velocities = K*(velocities + (cp*si.rand()*(pbest - swarm)) +

 (cg*si.rand()*(gbest - swarm)))

 swarm+=velocities

 t1 = time.clock()

 dt = t1-t

 iter_time.append(dt)

 gbestlist.append(gbestv)

 if gbestv < 1e-1:

 print ITER,gbest,gbestv

 #return 'f'

print datetime.time(datetime.now())

print 'current gbest',gbest

print 'current gbestv',gbestv,'feasabilty',feasabilty

print 'time for average iteration', (sum(iter_time)/float(maxiter))

print 'sum iteration time to complete = ', sum(iter_time),'seconds',(sum

(iter_time)/60.0),'minutes'

"""former = numpy.minimum.reduce(gbestvlist)

arg = numpy.argmin(gbestvlist)

print 'former gbest',gbestlist2[arg]

print 'former gbestv',former

x = numpy.arange(1000)

import pylab as pl

for i in numpy.arange(400):

	pl.plot(x,log_pbestg[i])

pl.xlabel('iteration')

pl.ylabel('misfit')

pl.axis([0,100,0,200000])

pl.show()

x = numpy.zeros([nswarm,ndim])

y = numpy.zeros([nswarm,ndim])

for i in numpy.arange(nswarm):

	for j in numpy.arange(ndim):

		x[i,j]=swarm[i,j,0]

		y[i,j]=swarm[i,j,1]

	x[i,5]=swarm[i,0,0]

	y[i,5]=swarm[i,0,1]"""

####plots the shapes of all the Gbests ##########

"""x = numpy.zeros([maxiter,ndim])

y = numpy.zeros([maxiter,ndim])

for i in numpy.arange(maxiter):

	for j in numpy.arange(ndim):

		x[i,j]=[i,j,0]

		y[i,j]=logGbest[i,j,1]

	x[i,6]=logGbest[i,0,0]

	y[i,6]=logGbest[i,0,1]

for i in numpy.arange(maxiter):

	pl.plot(x[i],y[i],x[i],y[i],'o')

i = 499

pl.plot(x[i],y[i],x[i],y[i],'o')

pl.show()"""

9-appendix B/Chapter 6 results and codes/PP6sides_update.py

import numpy as numpy

import scipy as si

import random as rand

import time

import sys,pp

import pylab as pl

from datetime import datetime

class Point:

	def __init__(self,x,y):

		self.x = x

		self.y = y

change here###### change here

def func1(p0,p1,p2,p3,p4,p5,rho):

 x = numpy.arange(-30.0,30,0.5)

 """z = numpy.zeros(120)

 xz = np.zeros([120,2])

 for i in numpy.arange(120):

	xz[i]= [x[i],z[i]]"""

 points = [p0,p1,p2,p3,p4,p5,p0]

 points = numpy.asarray(points)

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 for i in numpy.arange(len(x)):

 sum_lines = 0.0

 for n in numpy.arange(len(points)-1):

 x1 = points[n,0]-x[i]

 x2 = points[(n+1),0]-x[i]

 z1 = points[n,1]

 z2 = points[(n+1),1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = numpy.arctan2(z1,x1)

 O2 = numpy.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = numpy.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

 #print grav

def func2(raw_input,grav):

 p0=raw_input[0]

 p1=raw_input[1]

 p2=raw_input[2]

 p3=raw_input[3]

 p4=raw_input[4]

 p5=raw_input[5]

 rho=raw_input[6,0]

 rho=rho

 x = numpy.arange(-30.0,30,0.5)

 points = [p0,p1,p2,p3,p4,p5,p0]

 points = numpy.asarray(points)

 constant = 1e8

 gamma = (6.672e-11)#'N m^2 / Kg^2'

 rho = rho #'Kg / m^3'

 for i in numpy.arange(len(x)):

 sum_lines = 0.0

 for n in numpy.arange(len(points)-1):

 x1 = points[n,0]-x[i]

 x2 = points[(n+1),0]-x[i]

 z1 = points[n,1]

 z2 = points[(n+1),1]

 r1 = ((z1**2) + (x1**2))**0.5

 if r1 == 0.0:

 r1=1.0e-6

 r2 = ((z2**2) + (x2**2))**0.5

 O1 = numpy.arctan2(z1,x1)

 O2 = numpy.arctan2(z2,x2)

 denom = (z2-z1)

 if denom == 0.0:

 denom = 1.0e-6

 alpha = (x2-x1)/denom

 beta = ((x1*z2)-(x2*z1))/denom

 factor = (beta/(1.0+(alpha**2)))

 term1 = numpy.log(r2/r1)

 term2 = alpha*(O2-O1)

 sum_lines = sum_lines + (factor*(term1-term2))

 sum_lines = sum_lines*2*gamma*rho*constant

 grav.append(sum_lines)

 #print len(grav),grav[0]

 return grav

def ccw(A,B,C):

	return (C.y-A.y)*(B.x-A.x) > (B.y-A.y)*(C.x-A.x)

def intersect(A,B,C,D):

	return ccw(A,C,D) != ccw(B,C,D) and ccw(A,B,C) != ccw(A,B,D)

#medium noise

#Dobs = (64.636163123444277, 60.660928845419946, 56.562819868019112, 64.192610527867927, 59.125458696542054, 64.364902522989325, 65.42551047068045, 66.935061009494291, 65.400900800589312, 69.110537091664568, 65.848224371591769, 69.483179043196117, 76.559307055249135, 72.317878850051017, 75.127721356153472, 76.157720768143875, 72.133403263236985, 75.591162401033444, 82.152374468165547, 74.494837283847943, 80.968735991854274, 84.412113372868731, 83.797705715755384, 84.763023244922493, 85.101205425433449, 86.74911905844337, 84.453060627088902, 90.935864868410277, 96.581134829801641, 87.73889503390366, 92.056638837384909, 90.180631549231961, 93.588087637195045, 96.637326341667176, 96.970664960706301, 99.395922664308088, 94.457005164310843, 102.37631485133389, 99.509514239204151, 104.80684486871641, 105.13029598641083, 105.34225216093056, 105.01872146159724, 103.63141623803749, 106.11624279570988, 108.92298645527967, 113.78025956830332, 111.34665233214065, 111.00402361829991, 113.81783442672227, 113.77627571716337, 114.60416382832055, 112.87708151296977, 115.78599755858235, 114.23997365539893, 109.78972711528006, 120.68483750528785, 111.16907358169533, 110.68060371372042, 117.47390361285692, 115.52134607592403, 116.81729663254121, 118.26904668024912, 114.20085242664854, 117.84285503132315, 109.08640119660636, 117.55980151212843, 116.14352289543544, 112.79277568166067, 122.80463191370467, 112.482181346879, 113.55808944240131, 111.49931297833612, 115.35811802649792, 111.17951034223218, 110.43660879687459, 113.00371689489459, 105.64215034402923, 107.00881250810789, 101.3121225366344, 102.76593657651993, 102.72642026478795, 102.8525366796204, 100.47970479721937, 102.21974695197881, 97.613840022351241, 99.89840437444218, 92.455853937956846, 93.875588879794506, 95.638045620741735, 95.199385771274578, 95.170202232476896, 92.523491043347732, 83.342257587594673, 83.039567801726818, 87.707692718968147, 86.258933522857987, 81.431571868866925, 76.322028652394394, 83.90495776896428, 85.206064932194124, 80.786139368820017, 75.89865499376684, 78.351986235197401, 70.906620983353079, 74.870023239175296, 72.410053987340959, 73.120181214927328, 70.138072925203943, 69.3883739751126, 73.997907632230508, 66.381479363957226, 69.636563761079799, 61.294841454552476, 61.833622150229957, 67.169137212477665, 60.637136939504785, 63.476001272279056, 60.596167240065149, 57.946338801202899)

#old Dobs noise free

#Dobs = (57.780848374175129, 58.751894097150547, 59.738977173795398, 60.742055072374406, 61.761053844437164, 62.795865617898876, 63.846345982401367, 64.912311270713445, 65.993535741411847, 67.089748669715831, 68.20063135518015, 69.325814056986346, 70.464872869781118, 71.617326555447434, 72.782633348815722, 73.960187758137891, 75.149317384144624, 76.349279784678629, 77.559259415185949, 78.778364678768824, 80.005625122964062, 81.239988823906359, 82.480320001951981, 83.725396916153528, 84.973910088052222, 86.224460908028732, 87.475560679786824, 88.725630160341979, 89.972999653981049, 91.215909718951053, 92.452512544944256, 93.680874057665363, 94.898976803733845, 96.104723664788722, 97.295942443806922, 98.470391359259267, 99.625765473754825, 100.7597040732923, 101.8697990011653, 102.95360393711096, 104.0086445975724, 105.03242981723263, 106.02246345553591, 106.9762570551031, 107.89134316215461, 108.76528920270256, 109.59571179282644, 110.38029134722791, 111.11678683793809, 111.80305054490319, 112.43704263256694, 113.01684538179539, 113.54067690473765, 114.00690417164176, 114.41405518325779, 114.76083013022334, 115.04611139160919, 115.26897223838158, 115.42868412367056, 115.52472246006776, 115.5567708043862, 115.5247233919782, 115.42868598544538, 115.2689750259448, 115.04611509888773, 114.76083474919456, 114.4140607040129, 114.00691058246178, 113.54068419218315, 113.01685353080657, 112.43705162657392, 111.80306036594381, 111.11679746678288, 110.38030276350868, 109.59572397516894, 108.76530212885937, 107.89135680913805, 106.97627139931728, 106.02247847290367, 105.03244548331976, 104.00866088770597, 102.95362082649103, 101.8698164649696, 100.75972208677402, 99.625784012331806, 98.470410398595035, 97.295961959884366, 96.104743633974167, 94.898997202834565, 93.680894863978153, 92.45253373629761, 91.215931273739599, 89.973021551193398, 88.725652379584034, 87.47558320129626, 86.224483712688055, 84.973933157394598, 83.725420232365693, 82.480343547873673, 81.240012583025532, 80.005649079410702, 78.778388817304929, 77.559283721195513, 76.349304244153288, 75.149341983670837, 73.960212484880685, 72.78265819050263, 71.6173515003521, 70.464897906706724, 69.325839175246415, 68.200656544581989, 67.089773920543664, 65.993561044409049, 64.912336617062962, 63.846371363712365, 62.795891026187412, 61.761079272110422, 60.742080512216297, 59.739002618948575, 58.751919541103234)

6 sides no noise##

Dobs = (57.779192696040823, 58.75020990091253, 59.737263917760764, 60.740312210201068, 61.759280825782646, 62.794061889153184, 63.844510987502481, 64.910444452058641, 65.991636540868413, 67.087816529738717, 68.198665720046762, 69.323814374151766, 70.46283859136544, 71.615257139861811, 72.780528262534048, 73.958046477621977, 75.147139397932094, 76.347064595636951, 77.557006542941622, 78.77607366231517, 80.00329552345211, 81.237620227621193, 82.477912023476591, 83.722949201717626, 84.97142231906308, 86.221932804777353, 87.472992005322027, 88.72302072449655, 89.970349317536829, 91.213218397920514, 92.449780214942862, 93.678100758348052, 94.896162643258137, 96.101868824266717, 97.293047181703159, 98.467456015683567, 99.62279047459937, 100.75668993415439, 101.8667463309981, 102.9505134415364, 104.00551708179628, 105.0292661884947, 106.01926472503318, 106.97302433932467, 107.8880776835707, 108.76199228975676, 109.59238487918313, 110.37693597023926, 111.11340463630191, 111.79964325549201, 112.43361208642469, 113.01339349930359, 113.53720568997112, 114.00341570594313, 114.41055161807331, 114.75731367925624, 115.04258432235318, 115.26543686311433, 115.42514278999029, 115.52117754106655, 115.55322468855914, 115.52117847297289, 115.4251446517568, 115.26543965066536, 115.04258802961564, 114.75731829820771, 114.41055713880507, 114.00342211673667, 113.53721297738716, 113.01340164828282, 112.43362108039749, 111.79965307649665, 111.1134152651091, 110.37694738648156, 109.59239706148628, 108.76200521587396, 107.88809133051471, 106.97303868349989, 106.0192797423629, 105.02928185454498, 104.00553337189469, 102.950530330883, 101.86676379477119, 100.75670794760741, 99.622809013150246, 98.467475054996214, 97.293066697760366, 96.101888793435279, 94.89618304234537, 93.678121564650809, 92.449801406289808, 91.213239952706104, 89.97037121475023, 88.723042943743039, 87.473014526839719, 86.221955609448401, 84.971445388420548, 83.722972517948861, 82.477935569420509, 81.237643986766102, 80.003319479927697, 78.776097800883477, 77.557030848986614, 76.347089055149837, 75.147163997499263, 73.958071204408341, 72.780553104267199, 71.615282084815263, 70.462863628341893, 69.323839492464899, 68.19869090950391, 67.087841780623677, 65.99166184392422, 64.910469798468966, 63.844536368875552, 62.794087297505293, 61.759306253521125, 60.740337650108621, 59.737289362980817, 58.750235344932946)

grav = []

iter_time = []

jobsList = []

gbestlist=[]

gbestvlist=[]

cg = 1.3

cp = 2.8

phi = cp+cg

K = 2/abs(2-phi-(phi**2-4*phi)**0.5)

StandardDev= 1

vmax =30

nswarm = 120

nsides = 6.0

ndim = int(nsides+1)

Pen = 50000

maxiter = 500

vmax = numpy.asarray(vmax)

 #all_the_leftxcorn = [[] for i in range(int(nswarm))]

 #all_the_rightxcorn = [[] for i in range(int(nswarm))]

 #all_the_topzcorn = [[] for i in range(int(nswarm))]

 #all_the_botzcorn = [[] for i in range(int(nswarm))]

 #all_the_rho = [[] for i in range(int(nswarm))]

log_pbestg = [[]for i in range(int(nswarm))]

log_pbestv = []

loggbest = []

logGbest=numpy.zeros([maxiter,ndim,2])

mid1 = []

mid2 = []

 #log_values =[]

swarm = numpy.zeros((nswarm,ndim,2))

 # initialize the swarm

change here###### change here

increment = 360/nsides

radius = numpy.arange(1.0,40)

yincr = numpy.arange(1,80)

Rhorange = numpy.arange(500.0,3001,0.01)

angles = numpy.zeros(ndim)

X = numpy.zeros([nswarm, ndim])

Y = numpy.zeros([nswarm,ndim])

for m in numpy.arange(ndim):

	angles[m]+=(increment*m)*(numpy.pi/180.0)

#at the end of x and y

for i in numpy.arange(nswarm):

 rr = rand.choice(radius)

 ry = rand.choice(yincr)

 x = numpy.zeros((nsides+1))

 y = numpy.zeros((nsides+1))

 for b in numpy.arange(nsides):

 x[b] = numpy.cos(angles[b])*(rr*si.rand())

 y[b] = (numpy.sin(angles[b])*(rr*si.rand()))+ry

 swarm[i,b,0]=x[b]

 swarm[i,b,1]=y[b]

 swarm[i,6,0]= rand.choice(Rhorange)

 swarm[i,6,1]= swarm[i,6,0]

vectors = numpy.zeros([nswarm,(ndim),2])

thetas = numpy.zeros([nswarm,(ndim-1),1])

values= numpy.zeros(nswarm)

gravity = numpy.zeros([nswarm,len(Dobs)])

change here###### change here

for n in numpy.arange(nswarm):

 p0 = swarm[n,0]

 p1 = swarm[n,1]

 p2 = swarm[n,2]

 p3 = swarm[n,3]

 p4 = swarm[n,4]

 p5 = swarm[n,5]

 rho = swarm[n,6,0]

 a = Point(p0[0],p0[1])

 b = Point(p1[0],p1[1])

 c = Point(p2[0],p2[1])

 d = Point(p3[0],p3[1])

 e = Point(p4[0],p4[1])

 f = Point(p5[0],p5[1])

put in code to make each particle a feasable solution.

 sides = [a,b,c,d,e,f,a,b,c,d,e,f]

 points = [p0,p1,p2,p3,p4,p5,p0]

 points = numpy.asarray(points)

 i=0

 for i in numpy.arange(ndim):

 if points[i,0]< -30.0:

 points[i,0]=-30.0

 if points[i,0]> 30.0:

 points[i,0]= 30.0

 if points[i,1]< 5.0:

 points[i,1]=5.0

 if points[i,1]> 100:

 points[i,1]= 100

 if rho<500:

 rho=500.0

 if rho>3000:

 rho = 3000.0

 i = 0

 for i in numpy.arange(ndim-1):

 vectors[n,i] = (points[i+1]-points[i])

 vectors[n,(ndim-1)] = vectors[n,0]

 i=0

 for i in numpy.arange(ndim-1):

 cross = numpy.cross(vectors[n,i],vectors[n,(i+1)])

 if cross<0:

 vxy = vectors[n,i,0]*vectors[n,(i+1),0] + vectors[n,i,1]*vectors[n,(i+1),1]

 vx = (vectors[n,i,0]**2+vectors[n,i,1]**2)**0.5

 vy = (vectors[n,(i+1),0]**2+vectors[n,(i+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,i] = -1*(rad*(180.0/numpy.pi))

 else:

 vxy = vectors[n,i,0]*vectors[n,(i+1),0] + vectors[n,i,1]*vectors[n,(i+1),1]

 vx = (vectors[n,i,0]**2+vectors[n,i,1]**2)**0.5

 vy = (vectors[n,(i+1),0]**2+vectors[n,(i+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,i] = rad*(180.0/numpy.pi)

 ###

 func1(p0,p1,p2,p3,p4,p5,rho)

 gravity[n]=grav

 del grav[0:len(grav)]

 n+=1

j=0

for j in numpy.arange(nswarm):

 values[j] = (sum((Dobs - gravity[j])**2))/StandardDev

pbestv = numpy.zeros(nswarm)

i=0

for i in numpy.arange(nswarm):

 pbestv[i] = values[i]

pbest = numpy.array(swarm)

initialize the "global best" values

gbesti = numpy.argmin(pbestv)

gbestv = numpy.minimum.reduce(pbestv)

gbest = pbest[gbesti]

initialize velocity function

velocities = numpy.zeros((nswarm,ndim,2))

#velocities2 = numpy.zeros(((nswarm/2.0),ndim,2))

#velocities1 = numpy.zeros(((nswarm/2.0),ndim,2))

i=0

print datetime.time(datetime.now())

for i in numpy.arange(maxiter):

 t = time.clock()

 logGbest[i] = gbest

 if i%100==0:

 print datetime.time(datetime.now())

 print i

 print "current gbest",gbest

 print "current gbestv",gbestv

 values= numpy.zeros(nswarm)

 vectors = numpy.zeros([nswarm,(ndim),2])

 thetas = numpy.zeros([nswarm,(ndim-1),1])

 feasabilty = numpy.zeros(nswarm)

 ###### change here###### change here

 for n in numpy.arange(nswarm):

 p0 = swarm[n,0]

 p1= swarm[n,1]

 p2 = swarm[n,2]

 p3 = swarm[n,3]

 p4 = swarm[n,4]

 p5 = swarm[n,5]

 rho = swarm[n,6,0]

 a = Point(p0[0],p0[1])

 b = Point(p1[0],p1[1])

 c = Point(p2[0],p2[1])

 d = Point(p3[0],p3[1])

 e = Point(p4[0],p4[1])

 f = Point(p5[0],p5[1])

 sides = [a,b,c,d,e,f,a,b,c,d,e,f]

 points = [p0,p1,p2,p3,p4,p5,p0]

 points = numpy.asarray(points)

 for q in numpy.arange(ndim-1):

 vectors[n,q] = (points[q+1]-points[q])

 vectors[n,(ndim-1)] = vectors[n,0]

 for w in numpy.arange(ndim-1):

 cross = numpy.cross(vectors[n,w],vectors[n,(w+1)])

 if cross<0:

 vxy = vectors[n,w,0]*vectors[n,(w+1),0] + vectors[n,w,1]*vectors[n,(w+1),1]

 vx = (vectors[n,w,0]**2+vectors[n,w,1]**2)**0.5

 vy = (vectors[n,(w+1),0]**2+vectors[n,(w+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,w] = -1*(rad*(180.0/numpy.pi))

 else:

 vxy = vectors[n,w,0]*vectors[n,(w+1),0] + vectors[n,w,1]*vectors[n,(w+1),1]

 vx = (vectors[n,w,0]**2+vectors[n,w,1]**2)**0.5

 vy = (vectors[n,(w+1),0]**2+vectors[n,(w+1),1]**2)**0.5

 cost = vxy/(vx*vy)

 rad = numpy.arccos(cost)

 thetas[n,w] = rad*(180.0/numpy.pi)

 #print thetas

 for e in numpy.arange(nswarm):

 for l in numpy.arange(ndim-1):

 if swarm[e,l,0]<-30.0:

 feasabilty[e]+=Pen

 #print 'e',e,'l',l,'1'

 if swarm[e,l,0]> 30.0:

 feasabilty[e]+=Pen

 #print 'e',e,'l',l, '2'

 if swarm[e,l,1]<5:

 feasabilty[e]+=Pen

 #print 'e',e,'l',l, '3'

 if swarm[e,l,1]>100.0:

 feasabilty[e]+=Pen

 #print 'e',e,'l',l, '4'

 if swarm[e,(nsides),0]<500:

 feasabilty[e]+=Pen

 #print 'e',e, '5'

 if swarm[e,(nsides),0]>3000:

 feasabilty[e]+=Pen

 #print 'e',e, '6'

 for k in numpy.arange(len(thetas[0])):

 if abs(thetas[e,k]) < 0.1:

 thetas[e,k]=0.1

 S = int(sum(thetas[e]))

 for r in numpy.arange(len(thetas[0])):

 if abs(thetas[e,r]) < 10.0:

 feasabilty[e]+=Pen

 if abs(thetas[e,r]) > 170.0:

 feasabilty[e]+=Pen

 #print 'e',e,'r',r, '7'

 #print 'S',S,'intS',int(sum(thetas[n]))

 if int(sum(thetas[e]))==359:

 S = int(360.0)

 if S!=int(360.0):

 feasabilty[e]+=Pen

 # print 'e',e, '8'

 if S == int(360.0):

 for t in numpy.arange((ndim-1)):

 #print 'j',j

 #print intersect(sides[j],sides[j+1],sides[j+2],sides[j+3]),'1','j',j

 #print intersect(sides[j],sides[j+1],sides[j+3],sides[j+4]),'2','j',j

 if intersect(sides[t],sides[t+1],sides[t+2],sides[t+3]):

 feasabilty[e]+=Pen

 #print 'e',e,'9'

 if intersect(sides[t],sides[t+1],sides[t+3],sides[t+4]):

 feasabilty[e]+=Pen

 #print 'e',e,'10'

 # print swarm

 #print feasabilty

 ppservers = ()

 #ppservers = ("10.0.0.1",)

 if len(sys.argv) > 1:

 ncpus = int(sys.argv[1])

 # Creates jobserver with ncpus workers

 job_server = pp.Server(ncpus, ppservers=ppservers)

 else:

 # Creates jobserver with automatically detected number of workers

 job_server = pp.Server(ppservers=ppservers)

 #print "Starting pp with", job_server.get_ncpus(), "workers"

#works to here

 inputs = tuple(swarm)

 start_time = time.time()

 jobs = [(raw_input, job_server.submit(func2,(raw_input,grav), (), ("numpy",))) for raw_input in inputs]

 for raw_input, job in jobs:

 r = job()

 jobsList.append(r)

 #print "swarm", raw_input, "is",r[0],'nsawrm',nswarm

 #print "Time elapsed: ", time.time() - start_time, "s"

 #job_server.print_stats()

 for y in numpy.arange(nswarm):

 gravity[y] = jobsList[y]

 #print gravity[n,0]

 del grav[0:len(grav)]

 del jobsList[0:len(jobsList)]

 ##########destroys severs and open files############

 job_server.destroy()

 for u in numpy.arange(nswarm):

 values[u] = (sum((Dobs - gravity[u])**2) + feasabilty[u])/StandardDev

 for p in numpy.arange(nswarm):

 #if feasabilty[p]<1.0:

 mask = values[p] < pbestv[p]

 mask2d = numpy.repeat(mask, (ndim*2))

 mask2d = mask2d.reshape([ndim,2])

 pbestv[p] = numpy.where(mask, values[p], pbestv[p])

 pbest = numpy.where(mask2d, swarm, pbest)

 log_pbestg[p].append(pbestv[p])

 log_pbestv.append(pbestv)

 if numpy.minimum.reduce(pbestv) < gbestv:

 gbesti = numpy.argmin(pbestv)

 gbestv = pbestv[gbesti]

 gbest = pbest[gbesti]

 loggbest.append(gbestv)

 logGbest[i] = gbest

##

#2 velocities code

##

 #if K1<0.4:

 #K1 = 0.4

 #S = swarm[0:(nswarm/2.0)]

 #S1 = swarm[(nswarm/2.0):nswarm]

 #P = pbest[0:(nswarm/2.0)]

 #P1= pbest[(nswarm/2.0):nswarm]

 #velocities1 = K*(velocities1 + (cp*si.rand()*(P - S)) +

 #(cg*si.rand()*(gbest - S)))

 #velocities2 = (velocities2 + (cp*si.rand()*(P1 - S1)) +

 #(cg*si.rand()*(gbest - S1)))

 #K1 = K1-(K1/maxiter)

 #velocities2 = numpy.clip(velocities2,-5.0,5.0)

 #velocities1[numpy.logical_and(velocities1>=0.0,velocities1<0.025)]=0.025

 #velocities1[numpy.logical_and(velocities1<0.0,velocities1>-0.025)]=-0.025

 #print 'velocities',i,velocities

 #velocities[0:(nswarm/2.0)]=velocities1

 #velocities[(nswarm/2.0):nswarm]=velocities2

##

 velocities = K*(velocities + (cp*si.rand()*(pbest - swarm)) +

 (cg*si.rand()*(gbest - swarm)))

 swarm+=velocities

 t1 = time.clock()

 dt = t1-t

 iter_time.append(dt)

 gbestlist.append(gbestv)

 if gbestv < 1e-1:

 print i,gbest,gbestv,'time for average iteration', (sum(iter_time)/float

(maxiter)),'sum iteration time to complete = ', sum(iter_time),'seconds',(sum

(iter_time)/60.0),'minutes'

 #return 'f'

print datetime.time(datetime.now())

print 'current gbest',gbest

print 'current gbestv',gbestv,'feasabilty',feasabilty

print 'time for average iteration', (sum(iter_time)/float(maxiter))

print 'sum iteration time to complete = ', sum(iter_time),'seconds',(sum

(iter_time)/60.0),'minutes'

"""former = numpy.minimum.reduce(gbestvlist)

arg = numpy.argmin(gbestvlist)

print 'former gbest',gbestlist2[arg]

print 'former gbestv',former

x = numpy.arange(1000)

import pylab as pl

for i in numpy.arange(400):

	pl.plot(x,log_pbestg[i])

pl.xlabel('iteration')

pl.ylabel('misfit')

pl.axis([0,100,0,200000])

pl.show()

x = numpy.zeros([nswarm,ndim])

y = numpy.zeros([nswarm,ndim])

for i in numpy.arange(nswarm):

	for j in numpy.arange(ndim):

		x[i,j]=swarm[i,j,0]

		y[i,j]=swarm[i,j,1]

	x[i,5]=swarm[i,0,0]

	y[i,5]=swarm[i,0,1]"""

####plots the shapes of all the Gbests ##########

"""x = numpy.zeros([maxiter,ndim])

y = numpy.zeros([maxiter,ndim])

for i in numpy.arange(maxiter):

	for j in numpy.arange(ndim):

		x[i,j]=logGbest[i,j,0]

		y[i,j]=logGbest[i,j,1]

	x[i,6]=logGbest[i,0,0]

	y[i,6]=logGbest[i,0,1]

for i in numpy.arange(maxiter):

	pl.plot(x[i],y[i],x[i],y[i],'o')

i = 499

pl.plot(x[i],y[i],x[i],y[i],'o')

pl.show()"""

