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ABSTRACT 

 Phenol and alkylphenols are priority water pollutants from oil extraction, pyrolysis, and 

industry. The adsorption of phenols is required for the separations in analytical chemistry and 

industry. Molecularly imprinted polymers (MIPs) are novel adsorbents with the template shaped 

binding sites. A MIP has to be prepared in film format to be combined with an analytical 

technique to accomplish rapid and direct detection of phenols and other water pollutants. Films 

from MIP particles and monolithic films, having 20 and 100 µm thicknesses and bound to a glass 

slide, were fabricated by UV-initiated radical polymerization between two inert surfaces. The 

morphology, thickness, and porosity of MIP films were studied by scanning electron microscopy 

and gravimetric analysis. Porosity was rendered using alcohol-water mixtures as a solvent and, in 

some instances, polyethyleneglycol and polyvinylacetate as solvent modifiers. Many MIPs for 

phenol were synthesized through non-covalent imprinting by hydrogen bonding and hydrophobic 

interactions. The MIP components included functional monomer (itaconic acid, 4-vinylpyridine, 

and styrene) and solvent, cross-linker (ethylene glycol dimethacrylate, triethylene glycol 

dimethacrylate, divinylbenzene, pentaerythritol triacrylate—PETA), and template (phenol, 

xylene). The binding and imprinting properties of the MIPs were assessed based on adsorption 

capacities and cross-binding towards other phenolics and polycyclic aromatic hydrocarbons 

(PAHs). A MIP with increased styrene content and xylene along with a copolymer of 

divinylbenzene and PETA, both acting by hydrophobic interactions, can be recommended for 

practical applications. The higher content of styrene and/or more hydrophobic monomers such as 

divinylbenzene increased the binding capacity. The hydrophilicity of PETA rendered water 

compatibility to the films. The modest imprinting effect is attributed to a tight polymer network 

formed with PETA as well as xylene as a hydrophobic template. Alcohol-water mixtures 

promoted the imprinting by hydrophobic interactions and, concurrently, lead to homogeneous, 

porous, and rigid morphology of the films. Surface enhanced Raman spectroscopy with silver 

nanoparticles, and fluorimetry, were unsuccessfully attempted for the direct detection of phenol 

on MIP films because of the low sensitivity and MIP background issues. The direct fluorimetric 

detection of light PAHs, as another group of pollutants from oil, was showen to be sensitive and 

selective, when front-face illumination geometry, 100 µm thick films, and synchronous scanning 

were used.  
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1.1 Introduction 

 Phenol and alkylphenols are water contaminants from oil and the waste products 

from oil treatment and extraction, particularly, produced water [1]. Phenol and 

alkylphenols (cresols, xylenols, and propylphenols) occur together with aromatic 

hydrocarbons, PAHs, and thiophenes. Produced water is the oil-contaminated water that 

is pumped into a well to allow for oil extraction. The discharge of produced water 

presents an environmental concern for Newfoundland, where offshore oil production is 

immense [2, 3]. In addition to oil extraction, other sources of phenol and alkylphenols are 

wood and coal pyrolysis, industrial organic synthesis, and the degradation of pesticides 

[4]. Phenol and 2,4-dimethylphenol are considered as priority water pollutants [5] 

because they are abundant and toxic. Phenol changes the smell and taste of water and 

fish; phenol is chronically toxic; and it is the precursor of chlorophenol that can be 

formed during the chlorination of water [6, 7]. The Canadian Council of Ministers of the 

Environment sets 4.0 µg L−1 of the total of mono- and dihydroxy phenols as the safe level 

for aquatic biota [8]. Thus, there is a need for monitoring the level of phenol and 

alkylphenols in environmental waters and produced water [3, 9, 10]. 

For the monitoring of water contaminants, including phenols, analytical systems 

and sensors have to be applied. An essential part of many devices is a layer of adsorbent 

required to separate and preconcentrate an analyte from water [11]. For this purpose, 

traditional adsorbents, such as octadecyl silica and divinylbenzene-styrene based resins, 

are used [12, 13]. Alternatively, a novel synthetic material that is designed for the 

adsorption of specific targets can be used to give the advantage of uptake selectivity and 
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high binding capacity. This binding medium can be a molecularly imprinted polymer [9]. 

The term “molecularly imprinted” means that the polymer bears binding sites of 

particular molecular size that can accommodate certain molecules. In addition to their 

application in analytical chemistry, MIPs can be used in industrial separations, e.g., for 

the cleanup of waters and in the food industry [14-17].  

A MIP, in the same way as any other polymeric material, can be prepared in a 

variety of physical forms such as monolith, particles, beads, films, and immobilized 

layers [18]. A MIP often has to be prepared in film format to be used in sensors, 

microfluidics, and some analytical testing systems [19-22]. Direct detection from a MIP 

film immobilized on a substrate provides the following benefits: the convenience of 

handling the film during the analysis; the preconcentration and separation of an analyte; 

the circumvention of extraction with a solvent and extract manipulation; the possibility to 

adapt this detection design for on-line sensing [20, 22].  

Many studies about MIPs for phenols have been published. However, the majority 

of the publications address MIPs for chlorophenols [16, 23], nitrophenols [24-26], 

dixydroxyphenols [20], and bisphenol A [27], and only a few papers are about MIPs for 

phenol [21, 28, 29], 2,4-dimethylphenol [30], and nonylphenol [31]. In a survey of the 

works MIPs for phenol- and alkylphenols, a number of limitations can be identified. Very 

often a MIP of only one composition was studied [29, 32]. When a group of MIPs of 

different composition was screened, all of them targeted the phenolic compound only by 

hydrogen bonding, e.g., with functionalities of itaconic acid [21]and 4-vinylpyridine [30], 

not considering other types of interactions, e.g., hydrophobic and metal-coordination. In 
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the majority of the publications about MIPs for phenol and alkylphenols [28, 30, 31], the 

selectivity and binding parameters were evaluated using chromatographic studies in an 

organic solvent, which is very different from static adsorption in water, which takes place 

in practice. The selectivity for phenol is likely be much better in organic solvents than in 

pure water, since recognition through hydrogen bonding is suppressed in water. 

Sergeyeva et al. [21] only presented the intensity of the MIP-bound dye as detected by 

densitometry for the evaluation of phenol binding. The detector output cannot be used for 

the comparison with phenol binding parameters in other works. Some binding 

experiments [21] were completed at the non-equilibrium condition, which gives different 

parameters of binding and selectivity than in the equilibrium condition. The fact that the 

selectivity and binding parameters have been estimated by different approaches makes it 

difficult to make head-to-head comparisons of the data [33] presented separately in their 

respective papers. Therefore, it is difficult to compile the whole picture about MIPs for 

phenols in terms of factors determining the imprinting and binding properties, and more 

comprehensive, systematic and unified research is required. In addition, in only one work, 

a MIP for phenol has been prepared as a membrane [21]. Most of the MIPs have been 

prepared as polymeric particles by grinding a monolith [28, 30, 31], which is now 

considered outdated and imperfect [18]. 

Sensors for the direct detection of phenol in water have been constructed based on 

electrochemical enzymatic facilitated detection [34, 35] and surface enhanced Raman 

spectroscopic detection with electrochemical preconcentration [36]. With the use of a 

MIP, only one analytical test system by colorimetric detection with the 4-aminoantipyrine 
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derivatization of phenol has been designed [21]. Thus, a niche in the analytical systems 

for phenol and alkylphenols with the use of MIPs in sensors is open for the development.  

 In this research project, procedures to fabricate MIP films were formulated and the 

factors influencing the fabrication processes were investigated and discussed (Chapter 2). 

The morphology of the films in terms of their structure and porosity was studied with 

scanning electron microscopy and gravimetric analysis (Chapter 4). A number of MIPs 

for phenol were synthesized through non-covalent imprinting [37] to accomplish binding 

of phenol through hydrogen bonding or hydrophobic interactions. The choice of the 

functional monomers and solvents, as the MIP components, was guided by the need to 

facilitate the interactions between functional monomers and templates (phenol or xylene). 

Some of the interactions were studied with UV absorbance and Raman spectroscopies 

(Chapter 3). Methodology was developed to determine MIP adsorption capacities towards 

phenol and other phenolics in aqueous solutions. The adsorption capacities can be 

considered as fundamental and reproducible parameters of phenol binding [33]. The 

binding and imprinting properties were assessed based on the analysis of a set of 

adsorption capacities, adsorption isotherms, and the MIP cross-binding studied towards 

other phenolics and PAHs. In the first round of tests of different MIP compositions 

(Chapter 4), the effect of functional monomers (itaconic acid, 4-vinylpyridine, and 

styrene) was studied. The properties of MIPs based on styrene, that act by hydrophobic 

interactions, were further modified by the variation of a cross-linker. In the second round 

of experiments (Chapter 5), other formulations of MIPs acting by hydrophobic 

interactions were tested in order to enhance MIP binding capacity, and efforts were made 
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to adapt the MIPs for the practical applications. Various analytical techniques were 

attempted for the direct detection of phenol on MIP films. Special attention was given to 

surface enhanced Raman spectroscopic (SERS) detection, where a suspension of silver 

nanoparticles was deposited on the MIP film after phenol adsorption (Chapter 6). 

Fluorimetric detection was tested for phenol with and without derivatization reaction 

(Chapter 7). Because the detection of phenol with SERS and fluorimetry was problematic, 

it was decided to detect light PAHs with fluorimetry. The study of the factors influencing 

the fluorimetric measurements on MIP films, described in Chapter 7, was applied to 

establish the conditions of the direct detection of light PAHs (Chapter 8). 

  

1.2 Literature review 

1.2.1 Phenol and alkylphenols as water pollutants 

1.2.1.1 Physico-chemical properties of phenol and alkylphenols 

Phenol is the simplest of phenols, where a hydroxyl group is directly attached to a 

benzene ring. Phenol and its simple alkyl derivatives such as cresols, xylenols, propyl and 

butyl-phenols are weakly acidic with a pKa over 10 (Table 1-1). Phenols are present in 

their unionized forms in the majority of natural waters, including sea water (pH ~8). 

Phenol, cresols, and xylenols can be considered moderately hydrophobic and noticeably 

soluble in water. According to Log Kow values, the hydrophobicity of phenols rises 

dramatically with the increase of carbon content. Phenols with higher carbon content, 

such as C6-C9 phenols, are barely soluble in water. This is important for the estimation of 

the occurrence of C6-C9 phenols in the natural water environment; they mostly partition 
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in oil drops, e.g., at oil spill, or organic sediments, which diminishes the content of these 

phenols in water. Phenols, especially those of a lower molecular weight, are volatile with 

a strong, unpleasant, and very specific smell that is usually described as “phenolic”. 

Phenols occur not only in water, but also in the atmosphere; therefore they are considered 

as air pollutants.  

Table 1-1. Physical, acidic, and hydrophobic properties of phenol and alkylphenols 

 
Mw,   

g 
moL−1 

Boiling 
T, °C pKa Log Kow 

Solubility in water 
at 20 – 25 °C,                  

g per 100 g 
phenol 94.1 182 9.99 1.48 8.3 

4-methylphenol 108.1 202 10.26 1.98 1.9 

2,4-dimethylphenol 122.2 212 10.45 2.35 0.8 

4-propylphenol 136.2 232  3.20 0.13 

butylphenols 150.2 ~237 ~10.6 ~3.7  

nonylphenols 220.4 ~295 ~10.7  ~5∙10-4 

 
Note: Kow – octanol-water partition coefficient. Sources of the data are on-line 
directories [38, 39] and the Material Safety Data Sheets. 
 
 
1.2.1.2 Common sources of water contamination with phenols 

 Benzene and phenolic moieties are some of the most widespread building blocks 

in organic matter of both natural and industrial origin, e.g., oil, coal, lignin, humic acids, 

pesticides, and dyes. It is possible to expect that processing and oxidation of these 

materials will yield compounds such as phenol and alkylphenols. Phenol is formed as a 

result of many natural processes: the decomposition of organic matter including the 

petrogenic formation of oil; chemical processes in the atmosphere, biosynthesis in plants; 
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and human metabolism [4]. However, it is not natural processes but human economic 

activities that are responsible for phenols classified as Priority Pollutants by United States 

Environmental Protection Agency [5]. The list includes phenol, chloro- and nitrophenols, 

and 2,4-dimethylphenol as a representative of alkylphenols.  

Phenols are released during industrial organic synthesis where they are reagents or 

products, for example: the production of phenol formaldehyde resins; p-nitrophenol as a 

pesticide; phenolic drugs and dyes; 2,4,6-trinitrophenol (picric acid) as an explosive; and 

aniline. However, anthropogenic sources are not limited to the chemical industry. Other 

industries, whose waste waters contain phenols, are oil extraction and processing, coal 

and wood pyrolysis, and paper milling. Phenols are discharged into the environment when 

organic matter is not completely burnt, e.g., within vehicle exhaust and tobacco smoke. 

Another source of phenols is household sewage because many household products 

contain phenols such as disinfectants, e.g., “lysol” (potassium soap with cresols), and 

bathing lotions. Phenols can be formed during the degradation of surfactants and 

pesticides, e.g., nonylphenols from alkylphenol ethoxylates, and  

2-methylphenol from 4-chloro-2-methylphenoxyacetic acid, respectively. Phenol has 

been detected in ground waters under landfill sites; phenol leaks from asphalt, which is 

based on coal tar, and wood, which is treated with creosote as a preservative; smoked 

meat can contain up to 70 mg kg-1 of phenol in its outer layer [4, 40].  

 In pristine surface and ground waters, the concentration of phenol is usually                   

1 µg L−1 or less while the phenol concentration is approximately 100 µg L−1 in many 

other environmental waters [40] exceeding the safe level of 4.0 µg L−1 for aquatic life. In 

8 



 

Quebec (Canada), where many textile and wood processing plants were located, drinking 

water contained on average 0.02 – 2.8, and up to 43 µg L−1, of alkylphenols [4].  

 Environmental issues connected with oil extraction are of special interest to  

Dr. Christina Bottaro group in Memorial University, which is located in Newfoundland 

(Canada). In Newfoundland, there are many off-shore oil rigs: Hibernia, Terra Nova, and 

White Rose. They produce 300,000 barrels of crude oil per day, or 12 percent of the total 

oil produced in Canada [2]. The content of phenols in crude oil can be up to  

7000 mg kg -1. The oil extraction process is based on pumping water into an oil well, 

which causes the discharge of oil-contaminated water, termed as “produced water”. The 

volume of produced water discharged into the ocean or inland waters is immense and is in 

excess of the volume of extracted oil in ratios of 2:1, 5:1, or even 50:1 for older wells. 

Produced water contains both dispersed oil drops and dissolved oil components. Thus, in 

places where oil extraction is extensive, it is possible to observe an increased level of 

phenols.  

The content of water-soluble phenols in produced water can reach up to 20 mg L−1, 

while monoaromatic hydrocarbons, e.g., benzene, toluene, ethylbenzene, and xylenes 

(BTEX) constitute 24 mg L−1; two and three ring polycyclic hydrocarbons (PAHs), 

especially “NPD” group (naphthalene, phenanthrene, and dibenzothiophene) can make up 

10 mg L−1. The concentration of other PAHs does not usually exceed 0.13 mg L−1 [1]. 

Hence, phenols constitute one of the important groups of contaminants that originate from 

oil. In the group of phenols, phenol and cresols constitute the most (each about 40% of all 

phenolics), xylenols make up 15%. Following this, the content of phenols continues to 
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decrease with the degree of alkylation, for example, 3% for C3-phenol, and C6−C9 

phenols are rarely detected because they mostly partition into oil drops present in 

produced water [6]. 

  

1.2.1.3 Toxicity-related properties of phenol and alkylphenols 

The class of phenols includes many phenol derivatives such as alkylated, 

halogenated, nitrated, and dihydroxy phenols. Among the variety of phenols, halogenated 

and nitrated phenols are probably the most toxic and persistent [4]. However, phenol and 

alkylphenols are the focus of this project because they are more common water pollutants 

from the oil extraction processes. Phenol and alkylphenols are not considered to be 

persistent on the long-term in the natural water environment; they readily deplete through 

oxidation, photo-sensitized oxidation, biodegradation, and slightly by evaporation [3, 8]. 

In environmental waters, photo-oxidation and biodegradation are mostly responsible for 

the elimination of phenols. It takes 28 days for phenol and alkylphenols to be completely 

degraded by bacteria in produced water [3]. The persistence of phenols to oxygen that is 

present in water increases with the degree of alkylation. For example, in slightly alkaline 

water (pH 9.0) at room temperature, the oxidation half-life for phenol is  

12 days and, for comparison, the half-life is 462 days for o-cresol [8].  

When the degree of alkylation rises, the extent of accumulation of phenols in 

lipophilic tissues grows and, therefore, the toxicity of phenols also increases. The levels 

of p-cresol, C2–C3, C4−C5, C6–C8 phenols that led to chronic disorders in fish in terms 

of reproduction, were 1000, 100, 18, and 1.6 µg L−1, respectively [8]. It should be noted 
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that each set of data was obtained under different experimental conditions, so that care 

must be taken when they are directly compared. Phenol and C1−C3 phenols do not 

accumulate in fish tissues to a significant extent. These phenols act as non-specific 

toxicants through hydrophobic partitioning and radical reactions [4, 6]. Phenols with a 

longer alkyl chain, e.g., C4–C5, accumulate to a much more significant degree in fish 

tissue and, in addition, they act as estrogen mimics, which can affect the sexual 

development of fish. The exposure of premature cod to 20 µg L−1 of phenol and 

alkylphenols for 5 weeks caused a delay in spawning and defects in testes of cod [3]. 

Because of the effect on amphibian reproduction, the Canadian Environmental Council 

established the limit of 4.0 µg L−1 total of monohydroxy phenols (phenol, cresols, and 

xylenols) and dihydroxy phenols (catechol, resorcinol, and hydroquinone) as the safe 

level for aquatic life [8]. Despite the fact that United States Environmental Protection 

Agency [41] states that 2 mg L−1 of phenol in drinking water can be considered safe, the 

control of phenol concentration in water becomes much more stringent when the water is 

to be chlorinated for domestic use. Formed chlorinated phenols are much more toxic and 

spoil water taste to an even greater extent than their precursor, phenol [7].  

 

1.2.2 Synthesis of molecularly imprinted polymers 

1.2.2.1 The general principle of molecular imprinting 

The first, or at least one of, the very earliest academic papers about molecularly 

imprinted polymers (MIPs) used to separate racemates was published by Wulff in 1973. 

MIPs were presented as new affinity materials based on organic polymer networks for 
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selective recognition, as alternatives to natural antibodies [42]. Starting from a single 

work in the 1970s, the field of molecular imprinting has rapidly developed into a broad 

discipline of MIP technologies, which are practically employed for separations in 

analytical chemistry, catalysis, medicine, and industry, including water purification [15, 

43]. It is interesting to note that to describe this separation phenomenon, a term “host-

guest polymerization” was used initially, and the term “molecularly imprinted polymer” 

was adopted only since 1993 [42, 44]. 

A MIP is a synthetic material with template-shaped vacant sites of molecular size, 

which can bind molecules similar to the template in terms of structure, shape and/or 

functional groups [42, 44]. The nature of MIPs can be understood from the general 

process of MIP synthesis [37, 43, 44] (Figure 1-1). The first step is the association of a 

template and functional monomers. It can be achieved through covalent bonding or weak 

and reversible interactions: ion pairing, metal coordination, hydrogen bonding, and van 

der Waals interactions, including π- π stacking. Following this, the polymerization of the 

monomers bound to the template with an excess of a cross-linker yields a solid polymer 

network with monomers grouped around the template. The cross-linker is a monomer 

with two to four polymerizable groups, whose purpose is to form a rigid polymer 

network, which hosts binding sites. The removal of the template is completed through the 

cleavage of covalent bonds or the disruption of weak interactions between monomers and 

template. The removal results in a template imprinted binding site, which can uptake the 

template or a structurally and functionally similar molecule with the same bonding and in 

the same steric configuration that existed in the monomer-template assembly [44].  
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Figure 1-1. The general scheme of MIP synthesis 

Not every polymer that is prepared with the intention to be a MIP will exhibit a so 

called “imprinting effect” [45]. The imprinting effect is the outcome of the formation of 

binding sites, which results in the enhanced binding properties and selectivity. In practice, 

the selectivity is observed as the ability to bind a template in the presence of other 

species, which is assessed using MIP cross-binding studies. For the assessment of the 

imprinting effect, MIP binding properties, e.g., a binding capacity and association 

constant, are compared against a control material. The control material is normally a non-

imprinted polymer (NIP), which is prepared as a MIP from the same components but 

without template. Another control material is a MIP imprinted with a compound 

structurally different to the primary template or a chiral isomer to template [46].  

1.2.2.2 Approaches to MIP synthesis  

An approach to MIP synthesis, where template and monomers are bound covalently 

both at the self-assembly and at rebinding experiments, is covalent imprinting. When the 

self-assembly leads to formation of a covalent bond, but the template is rebound via weak 

interactions, this is termed semi-covalent imprinting. The non-covalent approach implies 
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weak interactions are exploited both at the formation of the self-assembled complex and, 

then, at template rebinding [44]. The first paper about MIPs acting through non-covalent 

interactions was published by Mosbach et al. in 1981[47].  

Use of the non-covalent approach is most widespread, and this approach was 

applied in this research project. Compared to the covalent and semi-covalent approaches, 

the non-covalent approach does not require complex and tedious synthesis of a monomer-

template adduct before polymerization; simple mixing of MIP components is sufficient. 

After the polymerization a template can be simply removed by extraction with an organic 

solvent, which breaks the weak interactions and dissolves the template. Also, imprinting 

via weak interactions is highly universal; many molecules can be targeted by 

commercially available monomers through hydrogen bonding and other types of 

interactions such as ion pairing. The fact that both the template removal and rebinding are 

reversible allows reusing MIPs [48].  

However, the non-covalent approach has limitations. The complexation between 

monomers and a template is flexible but rarely strong. This explains the fact that after the 

polymerization a variety of differently organized binding sites are formed. The non-

uniform structure of binding sites is observed in rebinding studies as some range of 

association constants, or binding heterogeneity and as a wide cross-binding towards other 

species that are structurally or functionally similar to the template. Monomer-template 

complexes are disrupted during the polymerization, leaving a significant amount of a 

functional monomer spread in a polymer network outside binding sites, which contributes 

to non-specific binding with low affinity [37, 44]. A careful selection of MIP components 
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helps to prepare MIPs with stronger binding, having a reduction in previously described 

drawbacks. 

A MIP polymer network can be formed via a polycondensation reaction, as for 

MIPs based on polyurethane [49] and silicone xerogel [50], or via vinyl polymerization 

[43]. The latter kind of polymerization is the most universal, mainly because the wide 

variety of monomers is commercially available. Also, many methods have been 

developed to prepare vinyl-MIPs in different physical forms: microparticles, beads, and 

porous films. Vinyl polymerization was chosen for this research project and will be 

discussed further.  

1.2.2.3 Selection of MIP components 

In this section, the choice of components for MIP syntheses by the non-covalent 

approach is described in general terms. These components are template, functional 

monomer, solvent, cross-linker, and polymerization initiator (Figure 1-2).  
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Figure 1-2. Examples of functional monomers, cross-linkers, and initiators.1                       
Note:VP – 4-vinylpyridine; MAA – methacrylic acid; IA – itaconic acid; Sty – styrene; 
EGDMA – ethyleneglycol dimethacrylate; TEGDMA – triethylene glycol dimethacrylate; 
DVB – m- and p-divinylbenzenes; PETA – pentaerythritol triacrylate;  
TRIM – trimethylolpropane trimethacrylate; AIBN – azobisisobutyronitrile;  
DMPA – 2,2-dimethoxy-2-phenylacetophenone.   
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Template  

In most cases the removal of a template following polymerization is not complete; 

some remains incorporated into the MIP network. When this MIP is used for the 

preconcentration of analyte in trace chemical analysis, e.g., for solid phase extraction, the 

residual amount of the template can be responsible for the blank value not to be equal to 

zero; this is called template bleeding [15, 44]. Therefore, a template is very often chosen 

to be different from an analyte. This pseudo-template can be a similar compound with a 

slightly different structure and/or functionalities or be an isotopically labeled analogue. 

The pseudo-template must be selected so that the corresponding pseudo-MIP is still able 

to recognize the targeted analyte by recognition cross-binding inherent to the MIP [44]. 

Functional monomer 

A functional monomer is selected based on its ability to bind with a template 

through weak and reversible interactions. The most efficient and specific non-covalent 

imprinting is achieved through hydrogen bonding [44]. This kind of bonding is always 

exploited when a template molecule has a functional group, which can accept or donate 

protons: -COOH, -COO-, -CN, -NO2, -N=, -Cl, -NH2, -OH, -SH [37]. Methacrylic acid 

and 4-vinylpyridine (Figure 1-1) are probably the most universal monomers because they 

can form hydrogen bonds with many template molecules [37, 44]. The most common 

molar ratio of a functional monomer to template is 4:1 [22, 28, 30], which is usually 

enough to “wrap” a template in the polymer network. This ratio can be lower to shift the 

monomer-template equilibrium to achieve a higher yield of the prepolymerization 

complex [51]. 
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Solvent 

A solvent must be able to dissolve MIP components [44]. For example, 4-

vinylpyridine and EGDMA are not soluble in each other, but their mixture in 

methanol/water is homogeneous. Another reason to use a solvent is to render porosity to 

the final polymer network. Otherwise, without a solvent, the polymer network would be 

dense, having low permeability to water or other solvents. Because of its role in creating 

the porosity of the final polymer, the solvent is also called the “porogen” [48, 50]. A 

solvent constitutes about half volume, or even more, of a final MIP prepolymerization 

mixture, therefore it is always an environment for the monomer-template interactions. 

Thus, another point to consider at the selection of the solvent is that it has to facilitate or 

at least not to disrupt these interactions [37, 43, 44]. For example, in the case of hydrogen 

bonding, solvents of low polarity such as toluene and chloroform should be chosen [44, 

48]. To facilitate hydrophobic interactions, highly polar and protic solvents such as 

methanol, methanol/water, and water are preferred. Another factor to take into account in 

the selection of a solvent is that a stronger imprinting effect is often observed when a 

solvent used in MIP synthesis and in the template rebinding experiments are the same, or 

at least similar, in terms of their chemical nature and polarity. For example, when a MIP 

was prepared with acetonitrile, chromatographic studies showed a higher retention factor 

for the template when a mobile phase also contained acetonitrile [45]. Although this 

principle of similarity is a rule of thumb that is often considered in the choice of MIP 

components, the reasons for this phenomenon have not been clearly elucidated. Probably, 

in this case the imprinting effect is benefited by the similarity of solvent related 
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conditions for MIP synthesis and template rebinding in terms of developed monomer-

template interactions, solvation and microswelling of polymer network [44].  

Cross-linker 

A cross-linker constitutes the framework of a polymer network, which carries 

binding sites. This is the most abundant MIP component, making up over 80% of polymer 

mass. A cross-linker is a monomer with two, three, or four vinyl groups per molecule 

(Figure 1-2), so that the cross-liner is called two, three, or four-functional, respectively. 

Cross-linker moieties build a three-dimensional branched network, within which the 

incorporated functional monomers form binding sites [37]. The most common cross-

linkers are ethylene glycol dimethacrylate, divinylbenzene, and trimethylolpropane 

trimethacrylate (Figure 1-2). Together with a solvent, a cross-linker determines the 

morphology of a polymer network. The higher content of cross-linker in MIP 

prepolymerization mixture and the higher its functionality number, the more cross-linked 

and rigid polymer network will be formed. Although a cross-linker does not often bear 

any specific functional groups such as functional monomers, it can still cause non-

specific binding to a template by hydrophobic interactions [52]. When a cross-linker 

bears a functional group, e.g., the hydroxyl group in pentaerythritol triacrylate, a MIP can 

be prepared only from the cross-linker, and the latter will also serve as the functional 

monomer [17].  
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Initiator 

The choice of an initiator is dictated by the type of energy initiating a radical 

polymerization process. A common thermo-initiator is azobisisobutyronitrile, which 

breaks into radicals at 60 °C. For initiation with UV light, e.g., 254 nm light produced 

with a mercury lamp, 2,2-dimethoxy-2-phenylacetophenone is usually employed. The UV 

induced polymerization, which can be conducted at room and lower temperatures, has an 

advantage over the thermally induced polymerization that a higher imprinting effect can 

be achieved. The self-assembly process between a monomer and template becomes less 

efficient with rising temperatures [53]. MIP films and other in-situ prepared polymeric 

materials can be conveniently cured with UV light. Polymerization in solutions, to 

produce MIP particles, e.g., precipitate and suspension polymerization, is usually induced 

and maintained thermally.  

1.2.3 Effect of monomer-template interactions on imprinting effect  

Both MIP synthesis and template rebinding are very complex processes. Beside the 

formation of the self-assembly, the processes include many other steps greatly influencing 

the MIP imprinting effect. Some of them are the formation of polymer network, template 

removal, microswelling of binding sites in a solvent for rebinding, and template 

rebinding. However, if the self-assembly does not take place, it is not possible to expect 

effective imprinting in a MIP. A rule of thumb is stated “the stronger the binding 

interaction, the better” [45]. However, the presence of strong interactions in a 

prepolymerization mixture does not always guarantee a strong imprinting effect for the 
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final MIP. For example, when allylamine is used as a functional monomer, it forms 

dimers with itself rather than structured binding sites [51].  

 

Table 1-2. Imprinting factors achieved by MIPs for different phenols 
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O
H

 

O
H

C9H19  

O
H

O
H  

O
H

Cl

Cl  

O
H

NO2

NO2

 

Monomer/ 
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itaconic 
acid/ 

dimethyl 
formamide 

 

diethyl                 
amino- 
ethyl 

methacrylate/ 
dimethyl-
formamide 

methacrylic 
acid/ 

acetonitrile 
and toluene 

 

4-vinyl 
pyridine/ 

chloroform 
 

acrylamide/ 
acetonitrile 

 

 
Cross-linker 

 
EGDMA EGDMA TRIM EGDMA EGDMA 

IF at high 
template 

concentrations 
 

1.0 0.99 2.2 2.1 2.2 

Reference 
 

this project 
 

[31] 
 

[20] 
 

[54] 
 

[24] 
 

 

Another very important factor governing the imprinting effect, which is relevant to 

MIPs for phenols, is the number of possible interaction points developed between a 

template molecule and functional monomers [45]. When there is binding between 

monomers and two or more functional groups of a template, the separate interactions 

cooperate and build a stronger prepolymerization complex, which results in a better MIP 

selectivity. This phenomenon can be observed when MIPs for phenols, which contain 
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other functional groups beside the hydroxyl group, are compared to MIPs for phenol and 

alkylphenols in terms of an imprinting factor (Table 1-2). Almost no imprinting was 

observed for MIPs imprinted with phenol and 4-nonylphenol. This could be because 

phenol and 4-nonylphenol are molecules without much shape specificity and with only 

one slightly acidic hydroxyl group. For comparison, hydroquinone, dichlorophenol, and 

dinitrophenol have more specific shapes and at least two functional groups available for 

“chelation” by hydrogen bonding. Also, chloro- and nitrophenols have more acidic 

hydroxyl groups, therefore stronger hydrogen bonding can be achieved. All these factors 

make the prepolymerization complex more stable, which results in better shaped binding 

sites after the polymerization and, as a consequence, a higher imprinting factor. 

1.2.4 Study of MIP binding properties 

1.2.4.1 Determination of MIP binding capacity 

MIPs, as other adsorbents, can be characterized in terms of morphology (surface 

area, pore size distribution, pore volume), spectral (IR, NMR), and binding properties 

[48]. The latter group of properties is of key importance because the main purpose of a 

MIP is adsorption. MIP binding properties are characterized in binding experiments, 

where the adsorption of different compounds, or adsorbates, is studied [33, 48]. In these 

experiments, the MIP is placed in a solution of adsorbate, adsorption equilibrium is 

established, and the amount of adsorbate bound to the MIP is evaluated. There are two 

approaches to determine the amount of bound adsorbate. The first approach, which has 

been very often used in biosorption [55] and fundamental adsorption studies [56], is “by 
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difference”. The amount of a bound adsorbate is calculated based on a difference between 

the initial concentration of an adsorbate and its final concentration at the adsorption 

equilibrium. This approach, due to its simplicity, is one of the most widespread in the 

study of MIP binding behaviour [48]. Another approach applicable to MIPs is “by 

extraction” [22, 57], where the bound adsorbate is extracted from the MIP into an aliquot 

of a solvent, where its amount is quantified. In this case, it is possible to make 

measurements when the initial and final concentrations of an adsorbate are very close 

[56], for example, when a negligible fraction of the adsorbate is bound to a MIP or there 

is a large excess of an adsorbate solution over the adsorbent, which are common 

circumstances in adsorption studies.  

To estimate an adsorption uptake, or a binding capacity, the amount of a bound 

adsorbate, by mass or moles, can be normalized to the adsorbent mass (very common for 

practical reasons), volume (e.g., in bed-packed columns), surface area (e.g., for films and 

immobilized layers), or amount of functional groups (common for biosorption) [55]. A 

binding capacity (Q) is a fundamental characteristic [45, 55] expressed in conventional 

terms as the amount of adsorbent per mass of absorbent material. For example, for a MIP 

it can be presented as: 

)(
)(

MIPm
adsorbatemQ =                                                                                                                   (1-1) 

The ratio of the binding capacity (Q) to an adsorbate concentration in a solution (C) 

measured at equilibrium is a partition coefficient for the adsorbate (D):  
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)(
)(

adsorbateC
adsorbateQD =                                                                                                              (1-2) 

This value (D) can be used to approximately assess MIP binding performance in a wide 

range of applications: elution chromatography, solid-phase extraction, and separation 

[33]. The partition coefficient is directly connected  to the free energy of binding (ΔG) 

[45]: 

DRTG ln−=∆              (1-3) 

In the simplest evaluations, a MIP imprinting effect can be evaluated based on an 

imprinting factor [48]—a ratio of a MIP binding capacity over that of a non-imprinted 

polymer (NIP).  

)(
)(

NIPQ
MIPQIF =              (1-4) 

A NIP is prepared in the same way and from the same components as the 

corresponding MIP except no template is used [46]. Thus, the NIP and MIP have 

approximately similar morphology, chemical composition, and, what is most important, 

the level of non-specific binding. In this circumstance, when a difference between the 

MIP and NIP binding capacities is observed, the reason for the increase of the binding by 

the MIP is probably an imprinting effect.   
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1.2.4.2 Analysis of binding isotherms 

A plot of binding capacities over a wide range of adsorbate concentrations at the 

same temperature is called a binding isotherm. The binding isotherm itself and its analysis 

give a comprehensive characterization of the binding behavior of an adsorbent. 

Experimental isotherms can be modeled with various functions that describe certain 

binding models. The most common binding models are Langmuir, Freundlich, and their 

hybrid—Langmuir-Freundlich isotherms [55, 58] (Table 1-3). These isotherms 

correspond to different patterns of the heterogeneity of binding sites, which are 

characterized with an affinity distribution function—a graph of the population of binding 

sites with a certain affinity constant against the value of this affinity constant [59].   
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Table 1-3. Main attributes of Langmuir, Freundlich, and Langmuir-Freundlich isotherm 
binding models 

 Langmuir Freundlich Langmuir-
Freundlich 

 
Function 

 

KC
KCQQ t

+
=

1
 

 
maCQ =  

 

m

m
t

KC
KCQQ

)(1
)(

+
=  

 
Linearized 

form of  
function 

 

KQQK
C
Q

t+−=  

 
 

mLogCLogaLogQ +=
 

 
none, has to be 

processed by a three 
parameter curve fit, 

e.g., by Mathematica® 
 

Shape of 
affinity 

distribution 

 
peak of Gaussian 

distribution 

 
an asymptotically 

decaying tail 

 
a peak of a Gaussian 

distribution (Langmuir 
part) with 

asymptotically 
decaying tail towards 

higher affinities 
(Freundlich part) 

 
Binding 

parameters 

 
K–slope; 

 

K
Qt

intercept
=  

 
Formulas in the 

Appendix B 

 
Qt, K, m are the fitting 
parameters, where K 

relates to the 
maximum of the 

affinity distribution 
peak 

 
Special 
notes 

 
often observed at 

high adsorbate 
concentrations; 
corresponds to a 
homogeneous 
distribution of 
binding sites 

 
often observed at low 

adsorbate 
concentrations; 
corresponds to a 
heterogeneous 

distribution of binding 
sites 

 
often used for 

isotherms built over a 
wide range of 

absorbent 
concentrations; it is 
also applicable to 
model Langmuir-

Langmuir isotherms  
 

Examples 
 

[58] 
 

[60, 61] 
 

[58, 62] 
 
Note: Q – adsorption (binding) capacity; Qt – total adsorption capacity; C – equilibrium 
concentration; K – affinity constant; a – the Freundlich isotherm fitting constant;                   
m – the heterogeneity index.  
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It is important to note that the Langmuir and Langmuir-Freundlich isotherm binding 

models extrapolate the total number of binding sites (Qt) based on theoretical 

assumptions. The Freundlich isotherm model can be considered empirical: an apparent, or 

observed, number of binding sites and an average affinity constant over the affinity 

distribution are directly related to experimental data [60]. A more comprehensive way to 

characterize an imprinting effect is to compare the MIP and NIP fundamental binding 

parameters: affinity constants, total binding capacities, and the trends of an affinity 

distribution, which is also determined based on the isotherm analysis [53, 63].  

1.2.4.3 Chromatographic studies of imprinting effect 

Besides adsorption studies, another widespread approach to study MIP binding, 

especially the imprinting effect and selectivity, is liquid chromatography. A HPLC 

column is packed with MIP (or NIP) particles and is used to separate the template and 

other structurally related compounds in reverse phase conditions. A capacity factor is 

related to an association constant as [45, 48]:   

φ
'kK =           (1-5) 

t

tt

D
DRk )(' −

=            (1-6) 

where k’ – a capacity factor, Rt – the retention time of adsorbate, Dt – a dead time,                      

and ϕ – the ratio of volumes of stationary and mobile phases.   
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An imprinting factor for the same compound can be expressed as a ratio of capacity 

factors for a MIP and NIP. 

)('
)('

NIPk
MIPkIF =               (1-7) 

The chromatographic studies are very convenient to assess MIP cross-binding, 

which can be done based on a pair of chromatograms for a MIP and NIP; the IFs for 

sequentially eluted template and other compounds are compared [28, 30]. The 

chromatographic method was applied to study the imprinting effect of MIPs for phenol 

[28]; 2,4-dimethylphenol [30]; 4-nonylphenol [31]; 4-nitrophenols [63], 2,4,6-

trichlorophenol [23]. Unfortunately, this is the only method that has been used 

comprehensively to study the imprinting properties for phenol and alkylphenols MIPs. 

The chromatographic evaluation has substantial drawbacks such as: the derived 

characteristics of the binding and imprinting behavior greatly depend on experimental 

conditions, e.g., packing pressure, particle size, the column length and diameter; the 

dynamic nature of the chromatographic separation differs from a static adsorption in the 

batch rebinding experiments; the evaluation of the MIP binding takes place in a very 

limited concentration range [33]. Also, the partition in a mobile phase, with an organic 

modifier, is significantly different from the adsorption in water, which is an environment 

for real binding of phenol and alkylphenols, for example, sensor work in sea water.  

In water, the recognition of an adsorbate by hydrogen bonding in a binding site is 

greatly suppressed, while this recognition is facilitated in the presence of an organic 

solvent in a mobile phase. Also, in water and in a mobile phase with an organic modifier 
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it is possible to expect a different degree of microswelling of the polymer network, 

including binding sites; therefore, the size and geometry of the binding sites can vary 

from water to the mobile phase. The same MIP formulation can exhibit a much higher 

imprinting effect in chromatographic studies than in adsorption experiments with aqueous 

solutions. For example, the HPLC method gave an imprinting factor of 3.02 for a MIP for 

4-nonylphenol based on diethylaminoethyl methacrylate as a functional monomer. 

Almost no difference in the performances of this MIP and its NIP was observed in solid 

phase extraction of 4-nonylphenol from its aqueous solution [31]. The difference in the 

results can be also explained by the well-known fact that higher imprinting is observed 

when the chemical natures of the solvent for rebinding (e.g., water-acetonitrile mobile 

phase) and solvent, e.g., dimethylformamide, used in the MIP prepolymerization mixture 

are close [45], which is always a common circumstance for the chromatographic 

evaluations. Probably, the similarity of conditions in terms of the nature of interactions 

and MIP micro-swelling during a course of MIP synthesis and template rebinding benefits 

the imprinting effect. Thus, it is not completely adequate to transfer the results of 

chromatographic evaluations to characterize binding of phenols from water. Therefore, 

the chromatographic methodology was not chosen to study MIP binding in this research 

project despite the fact that the chromatographic evaluations are prompt and much less 

labor consuming than the construction of binding isotherms. Nevertheless, a MIP porous 

monolith could be conveniently fabricated inside a chromatographic column, and this is 

an optional format for MIP characterization. 
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1.2.5 Chemical analysis of petrogenic contaminants in waters  

1.2.5.1 Common methods of chemical analysis of phenols 

The majority of methods for the analysis of phenol and alkylphenols in water, 

including produced water, employ gas chromatography with the detection by mass 

spectrometry (GC–MS) with or without derivatization of phenols. The main reason to use 

GC is that it is compatible with organic solvents such as hexane and chlorohydrocarbons, 

which are used for liquid-liquid and solid-phase extractions. Also, the combination of GC 

and MS with electron ionization provides high sensitivity and selectivity of the detection. 

In addition, the high resolution of GC and narrow peaks makes this method applicable for 

the analysis of samples with a complex composition. Many GC-MS procedures for the 

analysis of produced water have been developed for the regulatory purposes in the field of 

the safety of the disposal of produced water. These procedures can also be used for the 

analysis of phenol and alkylphenols in any kind of waters.  

The Norwegian Oil Industry Association sets gas chromatography coupled with 

mass-spectrometry as a standard method for the analysis of phenols in produced water 

[64]. The procedure uses liquid-liquid extraction of phenols with dichloromethane from 

water adjusted to pH 2 as a preconcentration step. The extract is purified with gel 

permeation chromatography to remove benzoic acids and other compounds, which can 

render host peaks and background noise during the GC–MS analysis. A non–polar or 

weakly polar capillary column can be used to separate phenols. The chromatograms are 

recorded in a selected ion monitoring mode (SIM). The quantitative analysis is based on 

internal standardization with deuterated phenols. The recovery of phenols determined by 
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the analysis of standard samples must be within 70 – 130%. A similar GC-MS procedure 

that targets phenols, hydrocarbons, and fatty acids (C>8) was used to study an 

environmental effect of produced water in the North Sea [65]. Phenols and other species 

were extracted with dichloromethane and the volume of the extract was reduced by rotary 

evaporation. The residue was reconstituted in methanol and loaded onto a SiO2-C18 

phase contained in a cartridge. Phenols were eluted with methanol and analyzed with GC-

MS in SIM mode. A derivatization procedure for the determination of alkylphenols in 

crude oils [66] can be adapted for the analysis of produced water. The extract of phenols 

in dichloromethane is evaporated, and phenols are derivatized with N,O–

bis(trimethylsilyl) trifluoroacetamide (BSTFA) (Figure 1-3) to the corresponding 

trimethylsilyl ethers for ease of GC separation and MS detection.  

OH O
Si(CH3)3

O

F3C

N Si(CH3)3

Si(CH3)3
(CH3)3SiCl

OH

F3C

N Si(CH3)3

+
+

 

Figure 1-3. The derivatization of phenol with N,O-bis(trimethylsilyl) trifluoroacetamide 
for GC-MS analysis 

 

The analysis of a large number of alkylphenols including para-substituted long-

chain alkylphenols and their different positional isomers, altogether 52 phenolics, was 

shown to be possible by Boitsov et al. [10]. Gel permeation and normal phase 
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chromatographies were used for the clean-up and fractionation of phenols. Phenols were 

separated in GC conditions and detected with the mass spectrometry detector equipped 

with electron ionization and negative chemical ionization sources. For identification, the 

retention indices of alkylphenols were calculated based on the retention times and 

chemical structures of phenols.  

A reversed phase LC has been coupled with the preconcentration of phenols by 

solid phase extraction on N-vinylpyrrolidane-divinylbenzene, divinylbenzene, graphitised 

carbons, polypyrrole, and octadecyl silica (C18-SiO2) sorbents using acetonitrile and 

methanol-based solvents for the elution of phenols [67]. The preconcentration step can be 

conveniently completed online in a column packed with the adsorbents, which is directly 

connected to a LC column [68, 69]. After chromatographic separation, detection by UV-

absorbance [68, 70], electrochemistry (amperometry) [68], or atmospheric-pressure 

chemical ionization-mass spectrometry (APCI-MS) [71-73] are often applied. APCI in 

negative mode exploits the property of phenols to be ionized through the deprotonation of 

phenolic hydroxyl group under the action of an ionized gas. A conflict was observed 

when acetic acid, which is needed to reduce the dissociation of acidic nitro- and 

chlorophenols in a mobile phase, suppressed the ionization process. When the ionization 

by an electrospray source (ESI-MS) was applied, phenol and 2,4-dimethylphenol 

exhibited poor signal [71] probably because of their low susceptibility to ionization under 

standard ESI-MS conditions.  

Derivatization of phenols to produce strongly fluorescing species imparts high 

selectivity and sensitivity to LC with fluorimetric detection, which makes it possible to 
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omit a preconcentration step by solid-phase or liquid-liquid extractions. Not only natural 

waters [74], but also other samples with complex matrixes such as urine [75] and serum 

[76], have been analyzed by this approach without a pre-separation step. Typical 

fluorescence labelling agents are 4-(4,5-diphenyL-1H-imidazol-2-yl)benzoyl chloride 

[75]; 2-(4-carboxyphenyl)-5,6-dimethylbenzimidazole [76]; and coumarin-6-sulfonyl 

chloride using ion-pairing of the product with cetyltrimethylammonium bromide, 

following a reversed phase chromatographic separation [74]. EPA US method 420.4 [77] 

for phenols analysis in waters is based on spectrophotometry and the derivatization 

reaction of phenols with 4-aminoantipyrine in the presence of potassium ferricyanide in 

moderately alkaline media (pH=7.5 – 10.5) (Emerson reaction, Figure 1-4). 
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Figure 1-4. The derivatization of phenol with 4-aminoantipyrine for colorimetric 
detection [78] 

 

This color reaction and the conditions of the quantification procedure, e.g., the dye 

spectral properties, reagent concentrations, and interferences are well studied factors [78-
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80]. The method does not require expensive equipment such as a chromatograph and is 

very specific and sensitive. The analytical procedure can detect several µg L−1 of phenol 

in water when a preconcentration step is applied such as the distillation of phenols [77] or 

their extraction with chloroform [79]. However, the colorimetric reaction is affected by 

the presence of oxidants (H2O2, ClO-) [80]; the reaction has cross-binding towards 

aromatic amines and cannot target para-substituted alkyl phenols [81]. Phenols give red 

coloration, so that intensity of red color is expressed as the absorbance at 505 – 520 nm 

[79]. Separate phenols cannot be distinguished in their mixture. The total concentration of 

the phenolics is enumerated in the concentration of phenol that would give the same 

analytical signal. 

1.2.5.2 Methods of direct detection of phenols 

Traditionally, chemical analysis includes the following steps: the concentration and 

separation of an analyte, e.g., with a solid-phase extraction; the analyte extraction with an 

organic solvent; the treatment of the extract, e.g., evaporation, purification, and filtration; 

and, finally, a chromatographic analysis and/or instrumental detection, e.g., fluorimetric; 

as described in the previous section. The simplest method would be to omit the extraction 

step and subsequent manipulations with the extract. The simplification of the analysis can 

be achieved when an analyte is bound on the layer of an adsorbent material, and the 

subsequent detection (e.g., fluorimetric, mass-spectrometric) of the analyte is made 

directly within the layer of the adsorbent or on its surface [11, 13, 22]. This direct 

approach has the following benefits: reduction of the uncertainty of final results because 
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of less sample handling; saving reagents, solvents, labor; and shortening the analysis 

time; this approach also could allow for continuous and on-site chemical sensing.  

It is reasonable to use a MIP as an adsorbent material due to the possible higher 

adsorption efficiency and binding selectivity, compared to traditional adsorbents, such as 

divinylbenzene, octadecyl silica stationary phase, and ion-exchange resins [31, 43, 82]. 

Also, many methods have been developed for the fabrication of MIPs in a variety of 

formats, e.g., membranes, particles, recognition layers, films, MIP coated walls [18, 21], 

for incorporation into analytical systems like sensors, microfluidics, and test systems.  

Direct detection on a MIP film can also be used as a fast technique to study MIP 

binding properties. Binding capacities for different MIPs can be compared based on the 

values of an analytical signal, which are often proportional to the amount of analyte 

loaded on the MIP. The colorimetric detection of phenol with the step of direct 

derivatization with 4-aminoantipyrine on a MIP membrane was used to compare phenol 

binding by MIPs of different formulations and to build MIP and NIP binding isotherms 

[21]. Cross-binding of a MIP for 2,4-dichlorophenoxyacetic acid towards structurally 

similar compounds was studied with desorption electrospray ionization mass 

spectrometry (DESI-MS) [22].  

A MIP used as a recognition layer with a bound analyte can participate in a 

detection process in the three following ways [83]. First, upon the binding event a MIP 

property, e.g. mass, electrical capacitance or conductivity, is changed causing a specific 

output of the transducer, e.g., a piezoelectric crystal or an electrode that contacts the MIP. 

35 



 

A very common example of this kind of detection is a MIP mass sensitive sensor, where 

the change of the resonance frequency of a quartz piezoelectric crystal is observed when a 

MIP mass is increased due to an adsorption event. The selectivity of this technique is 

limited by the specificity of MIP binding towards a target in the presence of other species 

[11]. The second way is when the MIP itself is a signal transducer; its property, very often 

spectral, is changed during the binding event. An example is the quenching of the 

fluorescence of quantum dots incorporated in binding sites within a MIP network when 

2,4-dinitrotoluene was taken up into the binding sites [84]. Third, an analyte generates a 

signal because of its spectral, e.g., spectral [85], electrochemical properties [35], or ability 

to be desorbed and ionized with mass-spectrometry [22]. In this case, the role of a MIP in 

the detection process is to trap an analyte from water media on the adsorbent surface and 

to make the analyte available for the production of an analytical signal. In this research 

project, detection techniques, working mostly by the third approach, were developed and 

studied, where phenols or PAHs were loaded on thin and porous MIP films, and detection 

directly on the film was attempted, for example, with fluorimetry, SERS, or mass-

spectrometry.  

The author believes that the knowledge of the  hyphenation of different analytical 

methods with thin-layer chromatography should be exploited for detection on MIP films. 

The main reason for this is that the detection takes place on planar and porous films in 

both cases; a silica stationary phase bound to a plastic or alumina sheet and the polymeric 

film immobilized on a glass slide. Many experimental procedures have been developed to 

perform derivatization reactions in the TLC format. Also the designs of detection by UV-
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Vis absorbance spectrometry (densitometry), fluorescence, infrared, Raman, and mass 

spectrometry were comprehensively described [86]. The principles of hyphenation with 

the analytical techniques and troubleshooting approaches can be transferred to the MIP 

films. For example, colorimetric detection [21] has a potential to suit the MIP films 

because they also can hold a dye within their porous structure and have white and opaque 

background for color measurements in the reflectance mode, as in the case of a TLC 

layer. When fluorescence is measured for MIP films, which are opaque, it is also possible 

to expect a high level of stray light in the measured spectra [19] because of prominent 

light scattering by MIP films, as also occur with TLC plates.  

A group of ionization techniques for mass spectrometric detection, that work by 

desorption principle, includes [87]: secondary ions mass spectrometry (SIMS), direct 

analysis in real time (DART), matrix and surface assisted laser desorption ionization 

(MALDI and SALDI), desorption electrospray and atmospheric pressure chemical 

ionization (DESI and APCI), electrospray-assisted laser desorption ionization (ELDI), 

and desorption atmospheric pressure photoionization (DAPPI). The techniques that 

operate at atmospheric pressure (atmospheric pressure-MALDI, DART, DESI, ELDI, 

DAPPI) are especially convenient for the detection from planar surfaces. Within this 

group, special attention should be given to those techniques that do not require the 

application of any reagents: DART, DESI, and DAPPI.  

In the context of analytical chemistry, phenol and alkylphenols can be targeted as 

monoaromatic species with a phenolic hydroxyl group. The aromatic nature allows for 

detection with UV absorbance [30], fluorescence, infrared, and Raman spectroscopies 
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[88]. The wide range of mass spectrometric techniques can also be applied because of the 

ionizable nature of the phenolic hydroxyl group [71-73]. A phenolate ion may be 

produced under the action of soft ionization agents, for example: excited metastable 

atoms (DART), charged droplets (DESI), or gas (APCI) [72]. Light absorbtive and 

fluorescent properties of phenolics can be greatly enhanced and modified by the 

derivatization reactions via the phenolic hydroxyl group [21, 54].  

So far, several test systems and chemical sensors have been developed for 

monitoring phenol in water. The majority of the systems work based on an 

electrochemical principle, for example: chronoamperometric enzyme-facilitated detection 

[34] and amperometric detection within tubules, which are filled with an enzyme and are 

made of a conductive polymer [35]. Highly sensitive and portable sensing of phenol and 

other phenolics was achieved with SERS on a silver electrode combined with an 

electrostatic preconcentration step [36]. The production of phenol SERS was 

demonstrated in a sandwich configuration, where phenol molecules were entrapped 

between a smooth gold surface and tips of gold nanostars [88]. A noticeable interference 

from phenol fluorescence was observed during fluorescence detection of monoaromatic 

hydrocarbons on MIP particles in the flow-injection analysis of waters [89]. Thus, similar 

fluorimetric detection of phenol on a MIP is probably possible. A test system based on the 

colorimetric detection of phenol with 4-aminoantipyrine derivatization on a MIP 

membrane was developed for analysis of phenol in natural waters [21]. 
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1.2.5.3 Methods of chemical analysis of polycyclic hydrocarbons 

Along with phenols and monoaromatic hydrocarbons, polycyclic hydrocarbons 

(PAHs) constitute another important group of petrogenic contaminants in water [3, 65]. 

PAHs are made of fused benzene rings with a ring number from two to six. The lighter 

PAHs, with two and three rings, are more soluble in water and thus found more 

commonly in produced water. The average concentrations of naphthalene and 

phenanthrene, including their alkylated forms, are 4900 and 560 µg L-1, respectively, in 

produced water from oil extraction in the North Sea. The higher molecular weight of 

PAHs, the lower their solubility in water; therefore, the concentration of four- and five-

ring PAHs rapidly drops to 4 µg L-1 for pyrene and 0.6 µg L-1 for benzo[a]pyrene in the 

produced water in the North Sea [1]. PAHs have narcotic, mutagenic, teratogenic, and 

carcinogenic action [6], which can be greatly enhanced under sunlight [90]. Acute and 

chronic toxicity of PAHs are observed in µg L-1 and sub µg L-1 range [91], For example, 

“no-observed-effect concentrations” for naphthalene and anthracene are 1.5 and  

0.095 µg L-1, respectively [6]. Toxicity of PAHs increases with their molecular weight 

due to higher bioaccumulation in lipophilic tissues. According to Ambient Water Quality 

Criteria by the Ministry of Environment (BC, Canada), marine and fresh waters can be 

considered safe for aquatic life at levels below 1.0, 0.30, and 4.0 µg L-1 for naphthalene, 

phenanthrene, and anthracene, respectively [91].    

To ensure water safety, PAHs have to be detected at trace levels. Similar to the 

analysis of phenols, the most common analytical methods are based on chromatography. 

Gas chromatography is hyphenated with mass spectrometry using electron ionization 
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source [92]. Approximate limits of quantitation for ground waters are 10 µg L-1 for both 

phenanthrene and anthracene. Liquid chromatography uses UV/fluorescence detection. 

UV detection is a choice for naphthalene and fluorene, while fluorescence detection is 

used for anthracene, phenanthrene, and larger PAHs, which are relatively strong 

fluorophores [93]. In the absence of interferences, the limits of quantitation are around  

7 µg L-1 for both phenanthrene and anthracene. Although these two analytical procedures 

have been comprehensively validated and used for the compliance with environmental 

regulations, these procedures are very lengthy and require large volume of solvents. Both 

GC and LC procedures include the liquid-liquid extraction of PAHs with methylene 

chloride from water samples, the purification of extract by silica gel, and extract 

evaporation [94]. 

 Analytical systems for solvent-free and fast monitoring of PAHs in water are based 

on the principle of direct detection of PAHs after they partition in a layer of adsorbent 

from a water sample. The detection has been completed with a quartz-crystal 

microbalance device [49] and surface-enhanced Raman spectroscopy on functionalized 

gold nanoparticles [13]. Another common detection technique is fluorimetry, which 

exploits the unique ability of PAHs to emit strong fluorescence. The fluorescence of 

PAHs was measured directly from an adsorbent, such as divinyl-based resin, packed in a 

flow-through cell of flow-injection device on resins [12]. Also, fluorescence was 

measured from molecularly imprinted polymeric films [11, 85]. Although many studies 

have been completed to develop the design of direct fluorimetric detection, they mostly 

target four- and five-ring polycyclic hydrocarbons, not considering two- and three-ring 
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polycyclic hydrocarbons that are also present in produced water. For example, a 30 ng L-1 

detection limit in water was achieved for pyrene [11].            

1.2.6 Research objectives  

Objectives for this research project can be summarized as the following: 

a. to develop uncomplicated methods to fabricate high quality MIP films suitable for 

applications in analytical chemistry;  

b. to synthesize MIPs effective towards phenol and alkylphenols in terms of binding 

and imprinting performances; 

c. to determine factors that influence the binding, imprinting, and morphological 

properties of  MIPs, and establish principles to prepare efficient MIPs for phenols; 

d. to apply various analytical techniques for direct chemical analysis of phenols or 

other oil related contaminants adsorbed on MIP films to achieve rapid, sensitive, 

and solvent free detection.  

 

1.3 Conclusions 

The preceding sections described the preparation of MIPs in general and 

specifically for phenol and alkylphenols, and application of the MIPs for direct detection. 

Phenol and alkylphenols were set as the target for adsorption and chemical analysis 

because they constitute a fraction of water contaminants, together with PAHs and BTEX, 

from oil and produced water. Phenols were characterized as water pollutants in terms of 

sources, physico-chemical, and toxicological properties. Non-covalent imprinting and 

vinyl polymerization were discussed on the basis of synthesis of MIPs, where monomer-
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template interactions have a key effect on the imprinting effect by the MIPs. Phenol 

binding from aqueous solutions and chromatographic separations, as approaches to study 

MIP binding properties, were characterized and compared. The former constitutes an 

important part of this research project methodology because binding studies allow for the 

calculation of the adsorption capacity and construction of adsorption isotherms, which are 

fundamental characteristics of the binding behavior. Traditional analytical methods for 

the analysis of phenols in waters based on preconcentration, chromatographic separation, 

derivatization reactions, and different kinds of instrumental detection were reviewed. 

Next, it was shown how the derivatization reactions and instrumental detection could be 

hyphenated with preconcentration on a MIP to achieve fast and direct detection. It can be 

seen that more development work in the area of the direct detection of phenol is of current 

importance.  
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Chapter 2. Development of Procedures to Fabricate MIP Films 
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2.1  Introduction 

Since the 1970s, MIP technologies have received extensive study and almost 

developed into a discipline in its own right. Aside from the synthesis of MIPs [1], this 

new field of knowledge includes: fabrication of MIPs in different physical forms, e.g. 

beads, nano-layers, monolithic micro-columns [2, 3]; methodologies for study of MIP 

properties, e.g., binding, swelling, light-scattering [4]; and application of MIPs in 

separation science and analytical chemistry [5]. MIPs in different physical formats have 

specific advantages, limitations, and applications. MIPs in the form of particles can be 

used as adsorbents for solid-phase extraction [6], stationary phases in liquid 

chromatography [7, 8], or for fabrication of films. A MIP fabricated in a film format can 

be exploited for microextraction in miniaturized analytical systems, sensors, and 

analytical test systems [2]. 

The simplest way to prepare a MIP is by polymerization in a vessel, which results 

in a bulk monolith. This monolith is rarely used without any further modifications; it is 

usually mechanically crushed into particles of an irregular shape [9]. The crushed 

particles, whose size falls in a certain range, are sieved out. These particles can be used 

further, as a sample of a MIP, to study its adsorption properties, as adsorbent for solid-

phase extraction, or the particles can be bound with glue to form a film. However, 

crushing and sieving steps make this method laborious, resulting in the low yield of 

particles for use. Also, the MIP network can partially lose its recognition properties due to 

the mechanical stress. Unfortunately, bulk polymerization is still a widespread format for 

the synthesis of MIPs, and this polymerization is chosen by many scientists due to its 
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simplicity. However, bulk polymerization is of low practical importance because of the 

drawbacks discussed above; and the format is mainly used only for research purposes [2]. 

More efficient and rational methods of MIP particles and films fabrication have been 

developed.  

One of the methods to prepare MIP particles is precipitation polymerization. 

Monomers and the initiator are dissolved in a solvent to form a dilute solution (<5%); 

upon growth of a polymer network, the polymer precipitates into spheres of a sub-micron 

size. This technique has an advantage that it is simple and one-step, has a high yield of 

particles (>80%), and does not require any polymerization stabilizers like emulsifiers [9]. 

Precipitation polymerization has found a wide application in MIP technologies to prepare 

MIP particles. These particles have been used to form a recognition layer for an 

electrochemical sensor [10], and in a microfluidic device coupled with fluorimetric 

detection [11], to fabricate micro SPE devices for a chromatographic analysis [12], and as 

an HPLC stationary phase for enantioselective separations [8]. 

Traditionally, MIP films are fabricated with spin-coating, sandwiching, affixing 

MIP particles, or by polymerization based on a network of another film [2]. In a spin-

coating method a prepolymerization mixture is spread on a planar substrate at high 

spinning velocities and UV cured into a thin film. The main advantage of this method is 

the fabrication of films with a controlled thickness ranging from ~0.1 to 10 µm [13]. 

However, this method requires the prepolymerization mixture to be of a certain viscosity 

and of significantly low volatility. The latter requirement is in conflict with the fact that 

the majority of solvents used for MIP synthesis, generally and in this research project, are 
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too volatile for this purpose, e.g., chloroform, methanol, acetonitrile, and 

dimethylformamide. Also, the spin-coating technique requires some specialized 

equipment such as a spin-coater equipped with a UV-light source and a chamber filled 

with an inert gas. Only one film at a time can be fabricated, which does not allow the 

production of many MIP samples to conveniently study various aspects of MIPs. Thus, 

this technique was not used in this research project, and a preference was given to 

different variations of sandwich technique.  

 The sandwich technique can be considered as a bulk polymerization completed in a 

thin layer [13]. A blend of MIP components in a solvent, a prepolymerization mixture, is 

polymerized between two planar surfaces. On the bottom surface, for example, a 

derivatized glass slide or metal surface, a polymer film is immobilized covalently. The 

upper surface is not treated and should be easily detached from the polymer film after 

polymerization. Also, the surface has to be able transmit the UV-light. Therefore, a thin 

microscope cover glass is mostly used as the top surface. In addition to the simple 

polymerization on a glass slide surface [14], the sandwich technique has been employed 

to form a MIP recognition layer directly on a transducer of a chemical sensor, for 

example, on a quartz crystal microbalance surface for mass-sensitive detection [15], and 

on the surface of a ZnSe crystal (total reflection wave guide) for infrared spectroscopic 

detection [16]. The thickness of the resulting films was several µm. The sandwich 

technique is also a format to fabricate sections of MIP membrane that are free of any 

substrate [17]. The sandwiching approach was used for imprinting with macromolecules; 
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protein was deposited on the contact surface of a cover glass to imprint the surface of a 

polymeric film [18]. 

MIP particles prepared by any method such as precipitation polymerization or by 

crushing a MIP monolith can be adapted for the fabrication of films by binding these 

particles with glue. For example, MIP particles prepared with precipitation 

polymerization were adhered onto a layer of polyethyleneimine immobilized on a glass 

slide surface to produce ~1 µm thick film of MIP particles [11]. However, such films 

appeared to be easily destroyed under a fluid flow and it is possible to expect that a 

fraction of MIP binding sites would be blocked with the polymeric binder.  

A MIP composite film can be produced when a porous material, e.g., a membrane, 

filter paper [19], or another filter material such as an alumina membrane filter [20, 21] is 

soaked with a prepolymerization mixture, which is polymerized directly within the porous 

network. These films are permeable to fluids and are used for different kinds of selective 

separations, or as MIP membranes. The carrying matrix dictates the porosity and network 

structure of the final film. At the same time, the mechanical strength of the films is 

increased due to the extra “gluing” of the matrix network with the formed polymer.  

In this project, attempts were made to develop procedures to produce high quality 

films based on the sandwiching principle. MIP particles were prepared by precipitation 

polymerization and incorporated into films. These particles were mixed with another MIP 

prepolymerization mixture, and the resulting suspension was UV cured to form a 

composite film. Such “gluing” by polymerization solved the problem of the mechanical 
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stability of films prepared from MIP particles. Thick films were produced by 

polymerization in a membrane frame, where the frame controlled the thickness of the 

final MIP film. These thick films can be useful for spectrometric detection, where it is 

important to have the high loading of adsorbate per area of the film.  

 

2.2 Materials and methods 

The following chemicals were purchased from Sigma-Aldrich (Oakville, ON, 

Canada). Phenol, 2,2-dimethoxy-2-phenylacetophenone (DMPA), itaconic acid, and 

styrene were 99% pure. 3-(Trimethoxysilyl)propyl methacrylate and ethylene glycol 

dimethacrylate were 98% pure. Triethylene glycol dimethacrylate and 4-vinylpyridine 

were 95% pure. Polyethyleneglycol and polyvinylacetate had average Mw of 20,000 and 

100,000, respectively. N, N-Dimethylformamide (DMF) was of ACS reagent grade with 

<0.005% water. Chloroform (stabilized with amylenes), methanol, dimethyl sulfoxide, 

acetic acid, hydrochloric acid (37% w/w) were of ACS reagent grade and were purchased 

from ACP Chemicals (Montreal, QC, Canada). Hydrophilic polypropylene membrane 

GHP-200, 0.2 µm pore size, 76.2–127.0 µm thickness, was from Pall Corporation 

(Mississauga, ON, Canada). Micro cover glasses 25 × 25 mm2 and plain glass microscope 

slides 75 × 25 mm2 were from Fisher Scientific (Ottawa, ON, Canada). 

2.2.1 Precipitation polymerization 

The MIP particles based on divinylbenzene were prepared according to a method 

adapted from previous work [22]. 2,4,6-Trimethylphenol was used as a template. The 

MIP components were mixed in a 100 mL-tube keeping the same ratio as in the original 
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work: 0.214 mmol of 2,4,6-trimethylphenol; 1.71 mmol of MAA; 8.56 mmol of DVB; 

0.145 mmol of AIBN; and 15.0 mL of acetonitrile/toluene (3:1). The reaction mixture 

was degased by purging with nitrogen gas, heated at 60 °C and shaken (60 rotations per 

minute) in an Innova 4230 Incubator Shaker (New Brunswick Scientific, Enfield, CT, 

USA) for 20 h. The prepared MIP particles were stirred in methanol/acetic acid (9:1) and, 

then, centrifuged. Altogether 3 cycles of stirring/centrifugation were completed to remove 

the template. The divinylbenzene is commercially available in technical grade; this 

reagent contained 80% (v/v) of m- and p-divinylbenzenes and 20% (v/v) of ethylstyrenes. 

Thus, ethylstyrenes also acted as functional monomers in the MIP synthesis. MIPs based 

on other cross-linkers (TRIM and EGDMA) and itaconic acid were prepared in a similar 

way. The washed particles were enclosed between two square sheets (15×15 mm2) of 

polypropylene membrane, which were sealed by gentle ironing to form a micro-envelope 

[22].  

2.2.2 Fabrication of MIP films  

2.2.2.1 The derivatization of glass slides 

To insure fabricated films adhered to glass substrates, prior to the application of the 

pre-polymerization mixture, the glass surface was derivatized with the moieties of 

methacrylic acid [14, 23]. This was achieved in the following procedure. The cut pieces 

of glass slides (25×25 mm2) were soaked in methanol/hydrochloric acid (1:1) for 2 h. 

Next, the slides were washed with tap and deionized water, and finally air-dried. The 

clean slides were soaked in a 3% (v/v) solution of 3-(trimethoxysilyl)propyl methacrylate 

in toluene overnight. Finally, the slides were washed with methanol, air-dried, and stored 
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in a fridge before use. No deterioration of the quality of the slides was observed over 

several months of storage. 

2.2.2.2 Sandwich technique  

First, a prepolymerization mixture is prepared in a vial by mixing 0.400 mmol of 

template (phenol), 0.800 mmol of functional monomer, e.g, itaconic acid, 0.060 mmol of 

2,2-dimethoxy-2-phenylacetophenone, 4.00 mmol of cross-linker, e.g, ethyleneglycol 

dimethacrylate, and 1000 µL of solvent, e.g, methanol:water (3/1). The mixture was 

sonicated for 5 min under nitrogen. Next, a 16-µL aliquot of prepolymerization mixture 

was delivered with a displacement pipette onto the glass slide and quickly covered with a 

cover glass before illumination with the UV light (UVG-54, 6W, 254 nm, VWR, 

Mississauga, ON, Canada) for 30 min. A scheme of the procedure is presented in Figure 

2-1. The cover glass was removed immediately following the polymerization. The 

template, labile linear polymers, and unreacted species were removed in methanol/acetic 

acid (9:1, v/v) with stirring. The total time of the washing was 19 h 30 min using three 

fresh portions of the methanol/acetic mixture. Polymerization at the slide edges  

(~2–3 mm in width) was affected by oxygen in air and solvent evaporation; these parts 

were trimmed with a razor to yield a film with completely homogeneous texture. Care 

was taken not to scratch the glass. Finally, the films were stirred in methanol for 30 min 

and air dried.  
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Figure 2-1. The general scheme of fabrication of MIP films by sandwich technique 

 

2.2.2.3 Sandwich technique in a “well”  

The square frame was cut with a fine razor from a polyethylene plastic film (a 

regular food wrap film). The frame had thickness ~10 µm, 25×25 mm2 and 15×15 mm2 

outside and inside sizes, respectively. The frame was placed on a glass slide                          

(25×25 mm2). A prepolymerization mixture (20 µL) was pipetted inside the well and 

covered with the cover glass (25×25 mm2). The subsequent treatment was completed 

according to the sandwich technique. 

2.2.2.4 Sandwich technique to bind MIP particles within a film 

Divinylbenzene based MIP particles (30 mg) prepared by precipitation 

polymerization (Section 2.2.1.) were mixed with 100 µL of a viscous MIP 

prepolymerization mixture to form a stable suspension. The mixture contained phenol 

(0.200 mmol); 2,2-dimethoxy-2-phenylacetophenone (0.060 mmol); itaconic acid (0.800 

mmol); ethylene glycol dimethacrylate (4.00 mmol); 1.00 mL of methanol/water (4:1) 

prepolymerization
mixture: template,
monomer, cross-
linker, solvent

16 µL

cover slide

derivatized
glass slide

“sandwich” MIP film on 
glass

hν, 354 nm
30 min 

template removal with stirring in
9:1, methanol:acetic acidprepared MIP film

25 mm
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and 0.200 g of polyethylene glycol. An aliquot of the suspension (15.4 µL) was pipetted 

onto the glass slide and after the polymerization the film was treated according to the 

sandwich technique (Section 2.2.2.2).  

2.2.2.5 Sandwich technique with the application of a membrane frame 

This procedure (Figure 2-2) is similar to the production of a film in a “well” with 

one important difference that the frame is cut from a porous and relatively thick 

polypropylene membrane. A square frame (25×25 mm2 outside and 15×15 mm2 inside 

sizes) was cut (Figure 2-2a) from the membrane and (b) placed onto the derivatized glass 

(25×25 mm2) to make a square hollow. This frame was soaked with a prepolymerization 

mixture (~40 µL), then, the mixture drop (~40 µL) was pipetted onto the center of the 

hollow (c). A cover glass (25×25 mm2) was put onto the mixture above (d) squeezing the 

excess of the liquid with air bubbles. The film was UV cured (e) and, next, treated 

according to the primary sandwich technique with one additional step; after 

polymerization, the membrane frame, which was filled with the polymer, was scratched 

away with a razor (f) leaving a thick free standing MIP polymer film.  
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Figure 2-2. Application of sandwich technique to produce ~100 µm thick MIP film by 
means of a membrane frame.  

Note: Steps (a – f) are described in the text: (a, b) the membrane frame was placed on the 
derivatized glass slide; (c) the membrane frame was soaked with the prepolymerization 
mixture; (d) the hollow in the membrane frame was filled with the prepolymerization 
mixture, and the cover glass was placed; (e) UV curing; (f) the cover glass is detached, 
and the membrane frame is removed with a razor.  
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2.3 Results and discussion 

2.3.1 MIP particles by precipitation polymerization 

The same procedure used for MIP synthesis with 2,4,6-trichlorophenol as a 

template by precipitation polymerization [22] was used for the preparation of MIP 

particles for phenol and alkylphenols with an alternative template—2,4,6-

trimethylphenol. The MIP particles were treated and packed in membrane micro-

envelopes for solid-phase extraction, according to the primary work [22]. Originally 

toluene/acetonitrile (1:3), methacrylic acid, and divinylbenzene were used as a solvent, 

monomer, and a cross-linker, respectively. When acetonitrile, itaconic acid, and other 

cross-linkers, such as EGDMA and TRIM, were tested in the synthesis of MIP particles 

by this procedure, a low yield of particles was observed. Very small particles were 

formed, almost colloidal in nature; they could easily pass through a 0.2 µm nylon syringe 

filter. Thus, it was concluded that precipitation polymerization was found to be unsuitable 

to test a variety of MIP compositions in this project. The content of monomers and 

thermal initiator have to be optimized for each MIP composition to yield MIP particles, 

which can be practically used [24]. It would be reasonable to complete such time-

consuming experiments for only one most promising MIP formulation in order to apply 

the MIP for micro solid-phase extraction.   
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2.3.2 MIP film fabrication 

2.3.2.1 The characterization of sandwich technique 

According to the sandwich principle, a procedure to fabricate MIP films was 

compiled. The fabrication process (Section 2.2.2.2) can be broken into three main steps. 

Photographs of some stages of the fabrication process are presented in Figure 2-3. The 

steps are the following: deposition of a fixed volume of a prepolymerization mixture on a 

glass slide, and the placement of a cover glass above the mixture; polymer UV curing and 

detachment of the cover glass; the removal of the template and unreacted species from 

MIP films with methanol:acetic acid (9/1), and cutting the film edges with a razor. 

 

 

Figure 2-3. Photo pictures for the main steps to prepare MIP films by sandwich 
technique: (A) deposition of prepolymerization mixture; (B) UV-curing;                
(C) slide/film after washing step and trimming film edges. 

 

It has been stated previously by Schmidt that the main disadvantages of the 

sandwich approach are the production of films lacking homogeneity and a narrow range 

of thicknesses [25]. In the procedure of film preparation in this project, these issues are 

addressed by controlling the volume of prepolymerization mixture and its viscosity, by 

using polymeric porogens and removal of the film edges.  
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Following the sandwich approach, it was decided to control the thickness of the 

final films by the application of a controlled volume of prepolymerization mixture, which 

would evenly spread between the glass slide and cover glass without significant leakage 

over the glass slide borders. In this case, the thickness of the film is the height of a 

rectangular parallelepiped, whose bases are the glass slide and cover glass. Therefore, the 

specific volumes of prepolymerization mixture were precisely and quickly delivered with 

a positive displacement pipette, which is especially suitable for the viscous liquids. As the 

sandwich assembly is a system with unconstrained sides, large volumes of the liquid 

mixture cannot be applied because they can leak out the border of the glass slide. It was 

found that prepolymerization mixture volumes of 13–17 µL could be entrapped without a 

significant leakage. When the volume of the prepolymerization mixture was less  

(5 – 10 µL), the produced films had visible non-uniformity in terms of the thickness, with 

voids. Such uneven spreading of the polymer on the glass slide can be due to the erratic 

shrinkage of the polymer network of the small volume during the course of 

polymerization. Also, the variance of film thickness can be caused by the limited 

planarity of the glass slide/cover glass affects the uniformity of coating of the glass slide 

with the prepolymerization mixture when small volumes are used. When volumes larger 

than 18 µL were applied, the prepolymerization mixture leaked significantly, and the 

thickness of the final film could not be increased, as estimated visually. The films had a 

smooth and uniform surface, as estimated by the human eye. The thickness of the film 

may not be a crucial factor when these films are coupled with a detection technique where 

the analytical signal is formed mostly on a film surface, for example, desorption mass 
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spectrometry (DESI, MALDI) and surface enhanced Raman spectrometry (SERS). The 

fact that the thickness of the fabricated films was only tens of microns (discussed in 

Chapter 41) can ensure a relatively fast absorption rate within the whole depth of polymer 

networks of the films.  

A liquid has to be of a sufficient viscosity [16] not to be squeezed under the weight 

of a cover glass and to be retained in the sandwich even when a moderate volume of 

liquid is applied. For this reason, too thin films with surface defects were produced when 

a significantly fluidic prepolymerization mixture was used. Components that decreased 

the viscosity of a prepolymerization mixture were styrene, divinylbenzene, chloroform, 

and other low polarity liquids. Conversely, the mixture could be made more viscous with 

the addition of high molecular weight linear polymers [13, 17, 25] such as polyvinyl 

acetate (PVA) and polyethylene glycol (PEG). In this project, these polymers were 

preferred because they contain the same functional groups and moieties as most of cross-

linkers: a glycol chain, alkyl chain, and ester linkage. Therefore, they should mostly 

change rheological properties of the prepolymerization mixture, but not its chemical 

composition to a significant extent. Another very crucial effect of the linear polymers is 

to influence the porosity of films, which is discussed below (Section 2.3.3).  

When volatile solvents such as acetonitrile, methanol/water, and chloroform were 

used; they evaporated from the reaction mixture situated close to the edges of a glass slide 

during the course of the polymerization process. It was very important to pipet the 

prepolymerization mixture and apply the cover glass quickly and accurately to reduce the 

1 the thickness and morphology of the films will be studied in Chapter 4 
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exposure of the mixture to air. Also, close to the edges of a glass slide, polymerization is 

quenched by oxygen in air. These factors yielded a film with glassy and/or flaky edges. In 

order to eliminate these problematic spots around the film, it was decided to use as large 

as possible cover glass (25×25 mm2), which completely covers the glass slide. Afterward, 

film edges of poor quality, which were close to the edges of the slide, were scraped off 

with a razor, leaving a large area of uniform film. Thus, when in-situ fabrication was of 

interest, initially a larger cover glass was applied, taking into account that after 

polymerization the area of the film would be reduced by trimming.  

To avoid solvent evaporation, quenching by oxygen, and to produce films of 

controlled thickness, attempts were made to fabricate a polymer film by sandwiching in a 

“well”, where the reaction mixture was better isolated from air and the film thickness 

would be determined by the thickness of the frame placed in between the glass slide and 

cover glass. However, it was difficult to avoid air bubbles being trapped in the “well”. 

Therefore, larger volumes of a prepolymerization mixture were deposited into the “well” 

to squeeze the bubbles out with the excess of prepolymerization mixture when the cover 

glass was applied. However, the produced films showed visible voids on the surface. 

Probably, the fixed volume of the well prevented the polymer contracting without voids 

when the polymer volume was naturally decreasing during the polymerization [25].  

2.3.2.2 Sandwich technique to bind MIP particles within a film 

When MIP particles are glued to a surface to form a film, the durability of such 

films is poor [11]. In this work this problem was solved when the particles were “glued” 

by polymerization. MIP particles were initially prepared by the precipitation 
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polymerization; then, were mixed with a MIP prepolymerization mixture, which was 

highly viscous, to form a stable suspension. Polymerization through sandwiching on the 

glass slide yielded a porous composite material, which was similar to concrete, where 

sand particles are bound within the cement. This film was stable under stirring in aqueous 

solutions, having the same mechanical stability as other films made by the sandwich 

technique. Later (Chapter 5), it will be shown that the use of divinylbenzene and other 

aromatic functional monomers for the MIP synthesis benefits the binding capacity of the 

MIP films towards phenol. However, it was observed (Section 2.3.2.1) that it was hard to 

produce films from prepolymerization mixtures that contained a high content of 

divynylbenzene or styrene. Alternatively, the films were easily fabricated to incorporate 

divinylbenzene-MIP particles; thus, the fabrication of films with a significant content of 

divinylbenzene can be possible.  

2.3.2.3 Sandwich technique with the application of a membrane frame 

The sandwich technique, with a free standing or unsupported layer of a 

prepolymerization mixture, could produce relatively thin films. As was mentioned earlier, 

thicker films can be required to achieve higher sensitivity of detection by the increase of 

the amount of loaded analyte per area, as needed for solid-surface fluorimetry (Chapters 7 

and 8). Thicker films can be produced by polymerization within a host porous film, for 

example, membrane or filter paper [2, 20, 21]. The final film would render not only the 

thickness from the host film, but also the final adsorbent material of the film will contain 

the host matrix of the substrate film. The procedure to make a composite film [20, 21] 

was modified in order to produce a homogenous thicker MIP film using a membrane 
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frame with a square hollow (Figure 2-2). The membrane substrate determined the 

thickness of the film, here ~100 µm; at the end of the fabrication process the frame was 

removed, leaving a MIP film of a defined thickness. An important finding was that the 

material of the frame needed to be porous and soaked with the prepolymerization mixture. 

This lets the polymer network shrinks at the edges of the frame, which avoids the non-

uniformity of the film thickness in the hollow. Also, the soaked membrane provided a 

very tight seal between the junctions of glass slide/the membrane frame/the cover glass. 

This isolates a polymerization mixture in the hollow from the air and inhibits solvent 

evaporation. Such sealing cannot be achieved between smooth and hard surfaces, e.g., of 

photoresist or glass. A monolithic frame, made in a photoresist film, or a well, etched in 

the glass slide, are probably less suitable for the production of thick and uniform films. 

2.3.3 The morphology of  fabricated films 

When common organic solvents (such as dimethylformamide, chloroform, 

dimethylsulfoxide, acetonitrile, toluene, and chloroform) were used as solvents in MIP 

prepolymerization mixtures, non-porous or low porosity films were obtained. Photos and 

electron microscope images for such films are shown in Appendix B. The polymer 

network of these films shrinks upon the evaporation of the solvents [26] and, as a result, 

the films flake from a glass slide. These films also had many surface defects such as 

cracks and variable coloration. Adsorption by these non-porous films probably takes 

place on the surface and in pores close to the surface, while the deeper MIP layers do not 

participate in the adsorption, which limits the adsorption capacity. Therefore, one goal of 

this work was set to fabricate highly porous films.  
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The porosity of the fabricated films was assessed on the basis of the permeability 

with solvent, and opaqueness. The porous films appeared to be mechanically stable and 

uniform. Protic solvents and the linear polymers used as co-porogens have an important 

role in the formation of porous networks. The processes occurring in the formation of the 

polymer network are very complex, and they can be only approximated. In brief [26, 27], 

as a polymer network grows in a solvent, the growing oligomers reach a solubility limit 

and precipitate into nuclei. When the solvent solvates the polymer network efficiently, the 

nuclei are swollen better with the solvent rather than with a monomer. Such solvent is 

called “good”. Consequently, a large number of small polymeric globules form a network 

with small pores. All aforementioned solvents, like dimethylformamide, 

dimethylsulfoxide, and toluene, can be classified as “good” solvents. The films prepared 

with these solvents are visually dense and glassy or slightly opaque, or non-porous. When 

the solvent is “poor” having low solvation ability, e.g. methanol/water, the nuclei are 

swollen preferably with a monomer. As a result, a limited number of the nuclei grow into 

large globules, which precipitate out of the reaction mixture, forming a polymer network 

with a granular and porous structure. Another way to produce a porous network is the use 

of an additional polymer. If another polymer is added into a solvent, e.g., 

dimethylformamide, the solubility of growing polymer chains can be reduced. As a result, 

the chains precipitate into nuclei at an early stage of the polymerization [13, 25]. In order 

to reduce the surface energy of the formed nuclei, they will grow into large globules [27], 

which will also form the granular and porous morphology of the films.  
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A large number and variety of MIP compositions were tested for their ability to 

produce porous films. It was observed that the porosity of the films depended mostly on 

macro components such as solvent and cross-linker. At the same time, the porous 

morphology was very sensitive to the content of the linear polymers (PVA and PEG). A 

content of PVA and PEG that can produce a sufficiently porous network was determined 

for various MIP formulations, for examples see Table 2-1. The nature and proportion of 

functional monomer, e.g., itaconic acid and styrene, altogether with template, e.g, phenol 

and dihydroquinone, did not appear to have a dramatic effect on the morphology. 

However, the functionality of a monomer affected the wettability of the film with water. 

For example, styrene and 4-vinylpyridine made films of low wettability; while itaconic 

acid had the opposite effect because of the highly polar and protic nature of itaconic acid 

(Table 2-1).  
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Table 2-1. Visual characterization of selected films prepared by sandwich technique 

 
Compositions of 

the 
prepolymerization 

mixtures 

phenol  
DMPA  

Sty  
EGDMA  

6% (w/w) PVA 
in DMSO  

 

phenol 
 DMPA  

Sty 
TEGDMA 

methanol:water 
(3/1) 

 phenol  
DMPA 

 IA 
EGDMA 

15% (w/w) PEG               
in DMF  

 

phenol  
DMPA  

IA  
EGDMA  

10% (w/w) PVA 
in DMF  

phenol  
DMPA 4-VP  

EGDMA       
10% (w/w) PVA                

in CHCl3  

 
Visual 

appearance of 
film surface 

 
smooth and   
fine-grained 

 
smooth and 

slightly glossy 

 
smooth and fine-

grained 

 
smooth and 

medium-grained 

smooth and 
large-grained, 

slightly 
opalescent 

Wettability with  
water slow good good good 

very poor unless 
prewetted with 

acetonitrile 

Special notes 

pre-
polymerization 
mixture is of 

very low 
volatility and 

can be used for 
spin-coating 

the highest 
observed 

resistance to 
scratching; 

further 
characterization 

in Chapter 4 

further 
characterization 

in Chapter 4 

further 
characterization 

in Chapter 4 

further 
characterization 

in Chapter 4 

 

Note: DMPA – 2,2-dimethoxy-2-phenylacetophenone; EGDMA – ethyleneglycol dimethacrylate; TEGDMA – triethyleneglycol 
dimethacrylate; Sty – styrene, IA – itaconic acid, 4-VP – 4-vinylpyridine, DMF – dimethylformamide, DMSO – dimethyl 
sulfoxide, PEG – polyethylene glycol, PVA – polyvinyl acetate
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Although the majority of fabricated films were porous and white, they were 

different in their texture and, what is practically important, in their mechanical durability, 

e.g., resistance to scratching. It is not exactly clear how the components of a 

prepolymerization mixture determine the specific features and properties of film 

morphology. The formation of the morphology is very complex and influenced by many 

factors. Some films were porous but they still had a slightly glossy texture and brittle, 

while other films were of a spongy texture and were prone to crumble. Among the variety 

of prepared films, some of them (Table 2-1) can be highlighted for their high mechanical 

durability, optimal porosity, and perfect uniform texture, in other words, a superior 

quality of film morphology. The high mechanical durability for the film made from 

TEGDMA (Table 2-1) can be explained by the fact that TEGDMA molecule is long and 

highly flexible, forming an elastic structure. Though, the MIP films of these compositions 

appeared to have weak or no imprinting towards phenol, which will be shown in Chapter 

4, their NIP films still could be used as adsorbent layers for phenols and other 

hydrophobic species. These compositions (Table 2-1) can be varied in terms of a template 

and monomer to fabricate other MIP films with a high quality of morphology. 

2.4 Conclusions 

Based on the sandwich principle, polymerization between two planar surfaces, 

procedures were developed to fabricate various MIP films: ~20 µm thin films, films from 

MIP particles, and ~100 µm thick films with the help of a membrane frame. Care was 

taken to fabricate uniform, durable, and porous films. In the fabrication process, it was 

crucial to have a free standing layer of the prepolymerization mixture, which reduced the 
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detrimental effect of polymer network shrinkage on the evenness of film surface. The use 

of a large cover glass and trimming film edges, eliminated the effect of solvent 

evaporation and quenching of polymerization with oxygen from air. An important 

requirement for the prepolymerization mixture was to be viscous, so that it was not 

squeezed under the weight of the cover glass. In the simplest case, films of limited 

thickness in the range of tens microns were produced, and the thickness of the films was 

mostly determined by the volume of prepolymerization mixture that could be freely 

entrapped between the two surfaces. In order to produce thicker films, the sandwich 

technique was modified with the use of a porous membrane frame, whose thickness 

determined the thickness of the final film. Although low-polar and low viscous monomers 

did not work well for the production of films, films were also able to be fabricated from 

divinylbenzene-based particles by their incorporation into a composite MIP film. The 

porous morphology of fabricated films was necessary not only for the high surface area 

available for mass transfer, but also for the uniformity and mechanical stability of these 

films. The morphology of the films was influenced by many factors in a complex way 

and, therefore, the MIP compositions that produced good quality films were investigated 

mostly empirically; in particular, varying solvent system. A porous morphology was 

formed by the use of protic solvent, or appolar and low-polar solvents with the addition of 

polymeric additives (PEG and PVA).   
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Chapter 3. Study of Functional Monomer-Template Interactions 
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3.1 Introduction 

To develop a MIP with a pronounced imprinting effect, MIP components need to be 

carefully selected in terms of a functional monomer, solvent, and cross-linker. This 

screening task can be completed by computer simulations of the functional monomer-

template interactions [1]. Another common approach is combinatorial screening [2], 

where a large number of MIPs of different compositions are synthesized in micro-scale 

and studied at template rebinding studies with a semi-automated system [3]. The results 

are treated with chemometrics to assess the effect of each experimental factor, e.g., the 

nature of a component and its content. The initial choice of functional monomers can be 

guided by the chemistry of the monomer-template interactions. These interactions should 

be studied with a spectroscopic technique, e.g, fluorimetry and UV spectrophotometry [4, 

5]. This method does not require complex equipment, such as the combinatorial approach, 

and promises to give realistic results because they are based on experimental 

measurements, and not computer simulations. Thus, spectroscopic studies were applied in 

this research project.   

The key step in the MIP synthesis by a non-covalent approach is the formation of 

the prepolymerization complex between a template and monomer, and the strength of this 

complexation determines the MIP imprinting effect [1, 4]. A wide variety of vinyl 

monomers are available to be selected for complexation with almost any template [1, 6]. 

A solvent in the polymerization mixture plays an important role in facilitating the 

complexation with template. The solvent has to be matched according to the monomer 

used and the type of interaction to be developed. Thus, there is a need to screen a wide 
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range of monomers and solvents to invent an efficient MIP. It is obvious that the best way 

for such screening is template rebinding studies. However, these experiments are multi-

step, complex, and laborious. It would be reasonable to select several functional 

monomers if they can interact strongly with a template in a certain solvent. This limited 

number of monomers should be used to prepare MIPs, which can be tested in more 

elaborate rebinding experiments. This selection can be accomplished based on the 

monomer-template interactions. These experiments can reveal not only the presence of 

the interactions, but also their relative strength, for example, for monomers bound to the 

same template [4-6]. The stoichiometry also can be studied for better understanding the 

imprinting process [4]. 

Methods to study monomer-template interactions can be divided into two groups: 

computational and spectroscopic [7]. A computational method estimates the free energy 

of binding between a template and a monomer in simulated annealing experiments, e.g., 

with the LeapfrogTM algorithm [6, 8]. As a result, a limited number of monomers with a 

high energy of binding can be selected from a wide library of monomers. However, the 

effect of a solvent, as the environment for these interactions, is not estimated because the 

addition of the solvent to the computational model will make this model too complex.  

The following spectroscopic techniques have been applied to study monomer-

template interactions. Nuclear magnetic resonance (NMR) spectroscopy is often used to 

study hydrogen bonding based on a change of a chemical shift for proton participating in 

the bond formation [9, 10]. It is a very common technique used in MIP studies, but this 

technique requires expensive equipment and deuterated solvents. A NMR titration is used 
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for the determination of association constants [11]. Absorbance spectrometry can be 

applied not only to study hydrogen bonding, but also other kinds of interactions, e.g., 

metal coordination, electrostatic interactions, π-π stacking [1, 12, 13], and others that 

influence molecular electron density. Thus, this technique can play an important role in 

the study of a wide range of interactions employed for MIP synthesis. Only solvents that 

are sufficiently transparent in the UV region can be used; aromatic solvents, such as 

toluene, and acetone are not normally used in the UV range. The interaction can result in 

a change of peak shape, shift of the peak maximum, and/or in a rise or drop of the 

maximum absorbance value [13]. Absorbance spectrometry is a classical method used to 

determine the complexation stoichiometry and association constants. The straightforward 

calculation of association constant can be performed for systems where spectral changes 

are observed in a large excess of a monomer [11]. Absorbance spectrometry has been 

used in the selection of monomers [4, 11, 13] and solvents [5]. The association constant 

of a prepolymerization complex was successfully correlated with the MIP binding and 

imprinting properties [4, 14]. Infrared spectroscopy is used to observe the alteration of the 

vibrational frequency of a specific bond upon a binding event due to the change of bond 

length. The most convenient way to observe hydrogen bonding is to probe the vibrational 

frequency of a carbonyl group at 1600 – 1700 cm-1 [5, 7], but not the frequency of amino 

and hydroxyl groups. The bands from amino and hydroxyl groups, which are around 3000 

cm-1 and over, are too broad because they exist in a variety of solvation and binding 

conditions [15]. IR spectra are usually highly populated, and they can be easily analyzed 

only for simple mixtures in terms of a variety of functional groups and moieties. Also, 
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protic and highly polar solvents make IR spectra difficult to interpret with respect to 

monomer-template interactions. IR spectroscopy has been used for the following systems: 

monomer-template mixtures based on chloroform [9] and hexane [16] with a simple IR 

background; mixtures of template with a monomer without solvent [17]; and the dry MIP 

networks with a loaded adsorbate [7]. The last two approaches have the drawback that the 

crucial role of the solvent is not accounted for and the interaction is too simplified.  

To synthesize a MIP that targets phenol and alkylphenols, initially phenol was 

chosen as a template. In this work, characterization of interactions between phenol and 

various functional monomers in a series of solvents was attempted with Raman 

spectroscopy and UV-absorbance spectrometry. Raman spectroscopy was applied as an 

alternative to IR absorbance spectroscopy to probe complexation with phenol. The main 

advantage to using Raman spectroscopy is that it has the potential to be applicable to 

complex mixtures based on polar and protic solvents, where the IR technique is not 

suitable. To the best of my knowledge, Raman spectroscopy has not been applied to study 

monomer-template interactions before. UV-absorbance spectroscopy was selected as a 

second technique to exploit the fact that phenol is an aromatic compound with strong 

absorbance peaks in the UV region, which may be sensitive to the presence of the 

interactions with monomers. Also, this technique is attractive due to its simplicity, 

universality, and equipment availability. 

3.2 Materials and methods 

Phenol (98%), itaconic acid (99%), styrene (99%), and 4-vinylpyridine (95%), N,N-

dimethylformamide (DMF) (ACS reagent, <0.005% water), 1-octanol (≥99%), ethylamine 
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(70% in water), allylamine (98%) were purchased from Sigma-Aldrich (Oakville, ON, 

Canada). Chloroform (stabilized with amylenes), acetic acid, diglyme, acetonitrile, and                        

dimethylsulfoxide (DMSO) that are all of the ACS reagent grade were purchased from 

ACP Chemicals (Montreal, QC, Canada). 

3.2.1 Raman spectroscopic measurements for liquid samples 

Raman spectra were measured for relatively highly concentrated solutions of phenol           

(1.20 mmol g-1), monomer (1.20 mmol g-1), and phenol and monomer mixture                   

(1.20 mmol g-1 of each solute) to assure intense Raman bands from the solutes. These 

solutions were prepared by weighing the solutes and solvents (DMSO, DMF, 

methanol/water (4:1)), and the molal concentration is shown. The solutions were filled in 

2 mL-glass vials made of ordinary glass. A Raman microscope (LabRAM, Jobin Yvon 

Horiba, 532 nm 70 mW laser, the confocal geometry) was adapted to measure Raman 

scattering from solutions through the vial walls. The laser beam was tightly focused with 

10×objective at the surface of the vial wall. Measurement parameters were the following: 

no beam attenuation; hole and slits were 300 and 150 µm, respectively; scanning from 

200 – 3500 cm-1 at 60 s acquisition; two scans for each measurement were run at the same 

focusing, and each spectrum is an average of the two measurements.  

3.2.2 UV-absorbance measurements 

Absorbance spectra of phenol solutions with various monomers were measured 

with a Thermo Scientific Evolution 600 UV-Vis Spectrophotometer (Thermo Scientific, 

Ottawa, ON, Canada) against a reference solution with the same concentrations of the 

monomer. The concentration of phenol was set at 0.3 mM when the B-band (~270 nm) 
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was investigated and 0.1 mM in the case of the E2-band (~220 nm). Various ratios of 

phenol to a monomer were probed with the highest ratio at 1:4. A phenol absorbance 

spectrum can be seriously affected by the imbalance of monomer concentrations in the 

sample and reference solutions, especially, when this monomer significantly absorbs in 

UV region, as does styrene. In order to have the equality of the monomer concentrations, 

a stock phenol solution or a solvent (if to prepare the reference solution) were 

reconstituted with the same solution of the monomer in calibrated volumetric flasks. The 

absolute absorbance (not relative) of the solutions was over 1.5 mainly due to the high 

absorbance of the solvent itself in the UV region (e.g. for DMSO, DMF, and diglyme). 

Therefore, a wide bandwidth (4 nm) and slow scan rate (10 nm min-1) were set to 

diminish the level of the noise in the measurements.  

3.3 Results and discussions  

3.3.1 Study of monomer-template interactions 

3.3.1.1 Raman spectroscopy 

The interaction between a monomer and template can be inferred from shifts of 

vibrational bands associated with Raman scattering. To assign bands to a monomer, 

template, and solvent, individual Raman spectra for solvent, monomer solution, and 

template solution were recorded (Figure 3-1). Phenol-styrene solution in methanol/water 

(4:1) is a complex system from a spectroscopic point of view; its spectrum is populated 

with bands from the two aromatic species and the binary solvent. However, it is possible 

to distinguish bands from phenol and styrene, which do not overlap with each other and 

the solvent. These bands are mainly attributed to aromatic ring breathing modes: 812 cm-1 

83 

 



 

for phenol and 773, 1182, 1204, 1416; and CH stretching at 3013 cm-1 for styrene. No 

significant shifts of these bands were observed when spectra for the solution of phenol 

and the phenol-styrene solution were compared (Figure 3-1). A similar situation was 

observed for phenol-styrene solution in DMSO. The fact that no band shifts were 

observed can be explained by either limited susceptibility of ring-breathing vibrations to 

the hydrophobic interactions and/or such highly concentrated solutions were not suitable 

for the study of these interactions.  

The presence of hydrogen bonding was evaluated in phenol and itaconic acid 

solutions in two solvents: DMF and DMSO. These solvents, as proton acceptors, can 

promote the dissociation of itaconic acid with the production of the anion, which can 

readily bind with the phenolic hydroxyl group. A phenol vibration at 1167 cm-1 involves  

hydroxyl moiety, therefore –OH band may be affected by hydrogen bonding. This band 

can be assigned to “CH and OH bending coupled to CC stretching” [18]. Although many 

phenol bands can be distinguishable for the studied solutions, this phenol band at  

1167 cm-1, which was relevant to the study, was hidden by other bands from the solvents 

(DMF and DMSO) and itaconic acid. 
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Figure 3-1. Raman spectra (532 nm) measured for (A) methanol/water (4:1) as solvent, 
and solutions of (B) styrene, (C) phenol, and (D) phenol and styrene (1:1).  
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3.3.1.2 UV-absorbance spectrometry 

The UV-absorbance spectrum of monoaromatics, including phenol, consists of wide 

and featured E2 and B bands (Figure 3-2), which are attributed to π- π* transitions in 

benzene rings and can be shifted upon a change of the solvation environment [19]. Thus, 

UV-absorbance spectrometry was used to probe possible interactions between phenol and 

itaconic acid, 4-vinylpyridine, and styrene based on spectral changes of the phenol 

spectrum. A wide variety of solvents were tested as a medium to promote the 

complexation between phenol and a certain monomer: acetonitrile, DMSO, DMF, and 

methanol/water (4:1) with itaconic acid; DMF, diglyme, DMSO, methanol/water (4:1) 

with styrene; DMSO, chloroform, and methanol/water (4:1) with 4-vinylpyridine. The 

majority of solvents, such as DMSO, chloroform, DMF, diglyme have limited 

transparency in the UV region, which makes it possible to probe only the part of the 

phenol spectrum, which is over 260 nm, i.e., B-band. In the solvents tested, all three 

selected monomers caused no, or very little, spectral change in the B-band of phenol 

centered at ~270 nm.  
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Figure 3-2. UV-absorbance spectrum of phenol (0.5 mM) in MeOH:H2O (4:1). 

 

Methanol/water has UV a cutoff at 200 nm, therefore, the phenol E2 band can be 

monitored in this solvent system. It was found that styrene had a dramatic effect on this 

band in terms of band narrowing (Figure 3-3), but no changes of the B-band were 

observed. Spectral changes in the E2 band were tracked in a much dilute phenol solution 

(0.1 mM), where solute molecules do not interact significantly with each other because of 

the low concentration. Thus, an association between styrene and phenol was shown.  
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Figure 3-3. Effect of styrene on E2-band of phenol in MeOH:H2O (4:1);  
phenol concentration – 0.100 mM; styrene concentrations: (a) 0; (b) 0.100; (c) 0.200;  
(d) 0.400 mM. 

 

An interesting observation was that the E2 band of phenol displayed a 

hyperchromic effect with band narrowing upon the addition of itaconic acid  

(Figure 3-4). Although methanol/water is not the best media to assess hydrogen bonding, 

it is possible that this solvent facilitates the dissociation of itaconic acid by the effective 

solvation of its anion, which can interact with the phenolic hydroxyl group through the 

two carboxyl groups.  
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Figure 3-4. Effect of itaconic acid on E2-band of phenol in MeOH/H2O (4:1); 
phenol concentration – 0.100 mM; itaconic acid concentrations: (a) 0; (b) 0.400;  
(c) 0.800 mM. 

 

The effect of 1-octanol, acetic acid (or acetate anion after the dissociation), 

ethylamine, and allylamine on the E2-band of phenol was also studied. These agents did 

not cause any spectral changes for phenol. The comparison of the effects of styrene and 1-

octanol suggested that the complexation between phenol and styrene can be attributed to 

the aromatic nature of styrene. The comparison of the effects of itaconic acid and other 

proton acceptors (acetic acid, ethylamine, and allylamine) suggested that itaconic acid 

(pKa=3.85, 5.45) induced the phenol spectral changes, and they are not only because it is 

a carboxylic acid and it has a vinyl group. The fact that itaconic acid has two carboxyl 
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groups and/or itaconic acid is highly polar plays an important role in the complexation 

with phenol.   

It might be concluded that there was no complexation between a monomer and 

template based on the lack of spectral changes according to one method, for example, 

monitoring the B band of phenol. However, it can be assumed that the  

B-band is not very sensitive to the interactions. The same interactions described in this 

section that did not undergo spectral changes of the B-band of phenol, were confirmed by 

other scientists: phenol and 4-vinylpyridine in chloroform with NMR [9]; phenol and the 

anion from itaconic acid computationally with the LeapfrogTM algorithm [6]. The fact that 

changes in the phenol B-band are negligible may serve as an evidence that the 

interactions developed between phenol and the monomers are not strong. For comparison, 

dramatic spectral changes were observed by Feng et al. for 2,4-dichlorophenol at 295 nm 

upon the addition of 4-vinylpyridine in the low-polar environment of chloroform [20]. 

The same spectral changes could not be observed in the case of phenol. It is possible to 

expect that much stronger hydrogen bonding is formed between the pyridinium nitrogen 

and the more acidic phenolic hydroxyl group in 2,4-dichlorophenol. The subtle nature of 

the interactions between phenol and the studied monomers probably can be one of 

reasons why phenol imprinted polymers showed little or no imprinting effect towards 

phenol in the binding studies, described in the next chapter (Chapter 4).   
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3.4 Conclusions 

The presence of interactions between phenol and itaconic acid and styrene in a 

variety of solvents were studied with Raman and UV-absorbance spectroscopies. 

Although in the case of the phenol systems, Raman spectroscopy is not applicable, the 

technique has a potential to be applied for other templates whose key bands do not 

overlap and/or are satisfactorily intense. It was demonstrated that Raman spectroscopy 

can resolve a few vibrational bands in complex mixtures based on highly polar and water 

containing solvents; the cases where IR spectroscopy is not suitable. The application of 

UV-absorbance spectrometry is limited by solvent transparency, which makes it possible 

to observe only the phenol B-band for the majority of organic solvents. The fact that the 

phenol B-band was not sensitive to the presence of the monomers can indicate that the 

complexation between phenol and these monomers is either absent or weak. However, the 

E2 phenol band was sensitive to styrene and itaconic acid in methanol/water (4:1), which 

proves that some interactions occur in these systems. If the spectral changes cannot be 

observed with one technique, it does not necessarily mean that the interaction is absent. 

Two or even more techniques should be employed and their results compared to make the 

final conclusion. The fact that it is generally hard to observe the complexation of phenol 

with the Raman and UV spectroscopic techniques could be because the bonding between 

phenol and studied monomers is not strong or distinctive.   
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4.1 Introduction 

Phenol and other phenolics are water pollutants that originate from various sources, 

such as oil extraction and treatment, wood and coal pyrolysis, and industrial organic 

synthesis [1]. Due to its toxicity and abundance, the United States Environmental 

Protection Agency (US EPA) has placed phenol on their list of Priority Pollutants, which 

specifies a safe level of 2 mg L−1 in drinking water [2] and 0.001 mg L−1 in water to be 

chlorinated [3], for example, in drinking water treatment. Materials for adsorption of 

phenol and other phenolics are widely used in wastewater clean-up, solid-phase extraction 

for chromatographic analysis, and sensors. In all these cases, adsorption can be 

effectively completed with molecularly imprinted polymers (MIPs) [4–6]. A MIP is a 

synthetic material with template-shaped vacant sites, which can bind molecules of 

specific structure and/or functionality. MIPs can be synthesized by different types of 

imprinting approaches (covalent, semi and non-covalent, with sacrificial spacer, and 

metal ion-mediation) in a variety of formats (monolith, film, powder, beads, a layer 

grafted onto surfaces) [7].  

Many MIPs have been synthesized for a range of phenols: chlorophenols [4,8,9], 

nitrophenols [5, 10, 11], dixydroxyphenols [6, 12], nonylphenol [13], and bisphenol A 

[14], though only a few of them target phenol and simple alkylphenols. MIPs for phenol 

have been prepared by the non-covalent imprinting approach in the form of crushed 

monolith [15], a recognition layer immobilized on silica particles [16], and as a 

membrane [17].  

To employ MIPs in miniaturized analysis systems [18], sensors [6], and analytical 

test systems [17, 19], they should be fabricated in a film format. This can be done by 
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spin-coating, sandwiching, mixing of MIP particles with a polymer binder, and 

polymerization within a porous structure of another film [20].  

In this work, a non-covalent approach was applied to MIP synthesis because of its 

simplicity and versatility. The core of this approach is formation of a prepolymerization 

complex between a template and functional monomer (in solvent) through relatively weak 

interactions: van der Waals, ionic, and hydrogen bonding. After polymerization and 

template removal, an imprinted site is formed, which can rebind a template with similar 

non-covalent interactions and in the same configuration that existed in the 

prepolymerization complex [7]. Here, the polymerization step was completed by 

sandwiching the prepolymerization solution between two glass surfaces to form a thin 

continuous polymer film.  

The goal of this project has been to fabricate and study MIP porous films for phenol 

using different compositions of monomer, solvent and cross-linker. The morphology of 

the films was studied with scanning electron microscopy (SEM) and gravimetrical 

analysis. MIP binding properties were characterized using adsorption isotherms of phenol 

rebinding from aqueous phenol solutions. The imprinting effects of these MIPs were 

evaluated based on analysis of the phenol binding isotherms, and cross-binding towards 

other compounds.  
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4.2  Materials and methods  

All chemicals were purchased from Sigma-Aldrich (Oakville, ON, Canada) unless 

otherwise indicated. Phenol (ph-l), resorcinol (res-l), 4-methylphenol (4-MP),  

4-propylphenol (4-PP), 2,2-dimethoxy-2-phenylacetophenone (DMPA), itaconic acid 

(IA) and styrene (Sty) were 99% pure. 2,4-Dimethylphenol (2,4-DM), 

 3-(trimethoxysilyl)propyl methacrylate, ethylene glycol dimethacrylate (EGDMA), 

 3-octanone (3-oct), 1-decanol were 98% pure. Triethylene glycol dimethacrylate 

(TEGDMA) and 4-vinylpyridine (4-VP) were at 95%; pentaerythritol triacrylate (PETA) 

was technical grade. Polyethyleneglycol (PEG) and polyvinylacetate (PVA) had average 

Mw 20,000 and 100,000, respectively. N,N-Dimethylformamide (DMF) was of ACS 

reagent (Sigma-Aldrich, Oakville, ON, Canada) grade with <0.005% water, phenol-

2,3,4,5,6-d5, was 98% deuterated. Chloroform (stabilized with amylenes), methanol, 

acetic acid, hydrochloric acid (37% w/w) were of ACS reagent grade and were purchased 

from ACP Chemicals (Montreal, QC, Canada). Hydrophilic polypropylene membrane 

GHP-200, 0.2 µm were from Pall Corporation (Mississauga, ON, Canada); micro cover 

glasses 25 × 25 mm2 and plain glass microscope slides 75 × 25 mm2 were from Fisher 

Scientific (Ottawa, ON, Canada). All solutions were prepared with 18.2 MΩ∙cm water 

from a Barnstead NanoPure Diamond (18 MΩ) water purification system (Barnstead 

Nanopure Water Systems, Lake Balboa, CA, USA). 

 

4.2.1 Fabrication of MIP films by sandwich technique  

In a vial, phenol (the template), monomer, and cross-linker were mixed in 1:2:10 

molar ratio except MIP 5 where PETA (a trifunctional cross-linker) was used in a lower 
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molar ratio (1:2:6.67) to maintain the same ratio of vinyl groups in the reaction mixture. 

Then, the UV-initiator (DMPA) and solvent (1 mL for all mixtures) were added according 

to Table 4-1. 

 

Table 4-1. Composition of MIP prepolymerization mixtures. 

 
MIP 1 MIP 2 MIP 3 MIP 4 MIP 5 

template phenol 0.4 mmol (37.6 mg) 

monomer 

IA                                

0.8 mmol  

(104 mg) 

VP                         

0.8 mmol 

(85.4 µL) 

Sty                                                                                          

0.8 mmol  

(92.0 µL) 

cross-linker 

EGDMA  

4 mmol  

755 µL 

TEGDMA  

4 mmol  

1049 µL 

PETA  

2.67 mmol  

674 µL 

photoinitiator DMPA 0.06 mmol (15.4 mg) 

solvent  

(1000 µL) 

15% (w/w) 

PEG in DMF 

10% (w/w) 

PVA  

in CHCl3 

20% (w/w) PEG 

in MeOH:H2O 

4:1 

MeOH:H2O 

3:1 

MeOH:H2O 

5:1 

 
Note: MIP 1 (no PEG) and MIP 2 (no PVAc) were prepared using pure 
dimethylformamide and chloroform (1000 µL), respectively. 

 

The mixture was sonicated for 5 min under nitrogen. Glass slides were cut in 3 

pieces 25 × 25 mm2, soaked in MeOH:HCl37% (1:1) and silanized with 3-(trimethoxysilyl) 

propylmethacrylate [19] (Chapter 2). The same procedure, by sandwich technique, as in 

Chapter 2, was used for the fabrication of films. The non-imprinted polymer (NIP) was 

prepared simultaneously without phenol, using the same procedure.  
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4.2.2 Gravimetrical analysis of porosity  

The volume of liquid absorbed into the porous structure of a MIP film bound to 

glass was determined using the mass difference between the MIP film soaked with 1-

decanol (ml) at room temperature and the initial dry MIP film, and accounting for the 

density of 1-decanol (ρl, e.g., 0.829 g mL−1 at 25 °C). Normalization of this volume to 

film mass (m) gives specific pore volume (υ): 

𝑣 = 𝑚𝑙
𝜌𝑙 𝑚 

                                                                                                                        (4-1)  

The MIP film mass (m) was obtained by subtraction of the glass slide mass before 

polymerization from mass of the slide with bound MIP (as in Section 4.2.4). Mettler 

Toledo XS 105 (Mettler Toledo, Mississauga, ON, Canada) analytical balances, with 

accuracy to 0.01 mg , were used for mass measurements. 1-Decanol was chosen because of 

its low volatility and non-hydroscopic properties to ensure minimal uncontrolled mass 

change for the soaked films. A MIP film/slide was placed film-down on several layers of 

GHP-200 membrane (with smooth surface), which were moistened with 1-decanol, and 

the slide was slightly pressed onto the membrane to completely soak the porous film; this 

was assessed visually. Excess of 1-decanol was removed by gentle contact with a section 

of membrane. Porosity values for four films of the same kind were averaged. No 

statistically significant difference between the specific pore volumes of MIPs and their 

NIPs was observed. 
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4.2.3 SEM imaging and thickness measurements 

An edge of the MIP films on glass was removed using a razor and the film was 

coated with sputtered gold. An FEI Quanta 650F field emission scanning electron 

microscope (FEI, Hillsboro, OR, USA) was used for imaging of the MIP film section 

with secondary electrons at a 70° tilt and 10 kV acceleration potential. A thickness of film 

(H) was estimated based on average height of seeming 90° section measured on SEM 

image (H′) and the tilt angle:  

𝐻 = 𝐻′

sin 700
                                                                                                                                  (4-2) 

Thickness values for three films of the same kind were averaged.  

 

4.2.4 Adsorbate binding studies 

Procedures to determine MIP adsorption capacities of phenol are discussed in 

details in Appendix A. In this chapter, the “by difference” method is employed. 

Adsorption by the MIP was completed until binding equilibrium was reached. For 

calculation of binding capacity for adsorbate (Q), the amount of bound adsorbate (mg) 

was found based on a difference between an initial adsorbate concentration (Ci) and a 

concentration at equilibrium (Cf). The mass of MIP film (mfilm, ~4 mg) was measured as 

was described in Section 4.2.2, and Q was calculated as follows: 

𝑄 = 𝑉(𝐶𝑖−𝐶𝑓)
𝑚film

                                                                                                          (4-3) 

MIPs 2 and 3 together with corresponding NIPs were firstly pre-wetted with 

acetonitrile:water (1:1) while other films were used directly. A 50-mL beaker with a MIP 
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film on a glass slide and aqueous adsorbate solution was sealed with paraffin film and 

was shaken at 150 rpm (rotations per minute) at 20.0 °C for 4 h 30 min in an Innova 4230 

Incubator Shaker (New Brunswick Scientific, Enfield, CT, USA). The volume of the 

adsorbate solution (V) was proportional to the mass of MIP film. This ratio was chosen to 

be 0.44 mL mg−1 for resorcinol and 3-octanone and 0.714 mL mg−1 for other compounds 

to have an optimal difference Ci − Cf for determination of Q.  

Quantitation of the free adsorbate concentrations was completed with an Agilent 

1100 Series LC-MS equipped with a diode array detector (Agilent Technologies Canada 

Inc., Mississauga, ON, Canada). Chromatographic parameters were the following: 

Phenomenex Synergi Fusion-RP column (150 × 4.6 mm; particle size 4 µm, Phenomenex, 

Torrance, CA, USA); isocratic elution with acetonitrile/water mobile phase (Table 4-2); 

injection volume varied from 100 to 10 µL depending on analyte concentration. Calibration 

solutions were the same as used for rebinding experiments and were prepared by their 

dilution to bracket measured concentrations.  

More sensitive quantification of solutions with phenol concentration around                     

0.1 mg L−1 was achieved with mass spectrometry using APCI (atmospheric pressure 

chemical ionization), and internal standardization with phenol-d5. A small correction for 

phenol template bleeding from the MIP was applied in determination of the adsorption 

capacities and the imprinting effect using the concentration of phenol extracted with pure 

water. The detector was operated in standard settings, fragmentation voltage was 50 V, 

negative mode with intensities acquired for ions at m/z 93 and 98 (C6H5O− and C6D5O−), 

isocratic mobile phase was MeOH/pure H2O (70/30 v/v) at 1.2 mL min−1, injection 

volume was 100 µL.   
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Table 4-2. Elution and UV-detection conditions for chromatographic analysis of phenols.  

Analyzed species Mobile phase (v/v) Detection wavelength, 

nm CH3CN H2O with 5% CH3CN 

(v/v) 

phenol 55 45 195 *; 216 *; 272 

4-methylphenol 55 45 279 

resorcinol 35 65 276 

2,4-dimethylphenol 65 35 280 

4-propylphenol 65 35 278 

3-octanone 85 15 279 

 
*: detection at 195 and 216 nm was used for solution with low phenol concentration                       
(≤5 mg L−1). 

 

4.3 Results and discussion 

4.3.1 MIP films prepared by sandwich technique  

Different methods for fabrication of MIP films have been discussed elsewhere [7, 

21, 22]. Among them, a spin-coating method has been identified as having the advantage 

to produce films of controlled and uniform thickness, but it usually requires a low 

volatility prepolymerization mixture [21]. When more volatile solvents or monomers are 

used, MIP films can be prepared by sandwich technique, which was applied in this work. 

MIP films were prepared based on the following components. The monomers selected 

were: itaconic acid (IA), 4-vinylpyridine (VP), and styrene (Sty); cross-linkers: ethylene 

glycol dimethacrylate (EGDMA), triethylene glycol dimethacrylate (TEGDMA), and 

pentaerythritol triacrylate (PETA). The solvents used were: N,N-dimethylformamide 

(DMF), chloroform (CHCl3), methanol/water (MeOH:H2O). Polyvinylacetate (PVA) and 
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polyethyleneglycol (PEG) were also added to these solvent. All fabricated films (MIP 1–

5, Figure 4-1) have been characterized and the morphological details are discussed below. 

Binding properties will be discussed in the subsequent sections.  

 

 

Figure 4-1. Top-down SEM images of MIP cross-sections 

The films, covalently bound to the chemically modified surface of the glass slide, 

were white and opaque with a visually uniform and even surface. SEM imaging of film 

cross-sections (Figure 4-1) showed that the films had a flat surface, which was shaped by 

the cover glass and the film body had a porous and granular structure. In order to obtain 

films of this structure, a so called “poor” solvent that causes “reaction-induced phase 

separation” during polymerization [21] was applied. Also, linear polymers (PVA and 
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PEG) were added into solvents to aid in the formation of a stable porous/granular MIP                        

(Figure 4-1); PEG was added to DMF to produce MIP 1 and PVA to CHCl3 to give MIP 2 

(Table 4-1). PEG and PVA have been used previously as solvent modifiers to render a 

high porosity to the MIP network, where PEG has been used for membranes [17] and 

PVA for spin-coated films [21]. For comparison, MIP 1 and 2 formulations were also 

prepared without these polymeric additives; this resulted in only slightly opaque films of 

low porosity (Figure B1). These films also shrank with air-drying and became very 

brittle, flaking from the glass slide. This suggests that the porous structure is a significant 

factor in the mechanical stability of the film. MeOH:H2O is a “poor” solvent system itself 

without any polymeric additives and it was used for production of porous MIP networks 

previously [19, 23]. MeOH:H2O was used in preparation of MIPs 3, 4, 5 producing highly 

porous films. Though the use of PEG to render porosity to MIP 3 films is not necessary, it 

was added to increase viscosity of the prepolymerization mixture in order to reduce its 

leakage beyond the cover glass boundary, making fabrication of films more facile and 

reproducible. 

The thickness of fabricated films depends mostly on the volume of 

prepolymerization mixture deposited onto the glass slide and the area the liquid mixture 

spreads on under the cover glass (25 × 25 mm2). The average thickness for all films was 

estimated to be about 20 µm (Table 4-3) using SEM. This value is less than the initial 

thickness calculated (a height, or thickness, of 16 µL liquid enclosed between two                     

25 × 25 mm2 surfaces of glass slide and cover glass should be approximately 26 µm) for 

the applied volume of the prepolymerization mixture, but the difference is not 

problematic and can be attributed to the leakage of fluid beyond the cover glass, as well 
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as shrinkage of the polymer network during polymerization. For comparison, mechanical 

pressure with spring clamps has been applied onto the cover glass to control film 

thickness during similar fabrication by sandwiching [23].  

 

Table 4-3. Thickness (by SEM) and porosity (gravimetrical method) of films fabricated 
by sandwich technique (SD – standard deviation). 

Characteristic 
determined MIP  

 1 2 3 4 5 
H (SD, n = 3), µm 

 24.1            
(2.5) 

23.4                 
(3.5) 

18.5               
(3.1) 

21.5               
(5.2) 

20.6 
(2.5) 

ν (SD, n = 4), mL·g−1 1.22 
(0.04) 

1.08              
(0.08) 

1.46             
(0.05) 

0.76            
(0.07) 

0.91 
(0.04) 

 

Degree of porosity is an important morphological feature, however, a conventional 

nitrogen BET analyzer cannot be used to study porosity of these MIP films because each 

film only weighs a few mg and they are bound to a glass slide. Therefore, quantitative 

analysis of bulk porosity has been suggested to measure porosity gravimetrically, where 

specific pore volume (ν) is calculated from the volume of absorbed liquid in the film 

pores normalized to polymer mass. Although it is acknowledged that this method cannot 

give an indication of pore size distribution, it is easy and does not require any special 

equipment. 

From the data given in Table 4-3, it can be seen that films have a significant 

porosity—about 1 mL of pores per gram of polymer network. A comparison of 

morphologies for MIPs 3, 4 and 5, which use different cross-linkers (Section 4.3.4), 
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shows that the lowest porosity was observed for MIP 4 with TEGDMA. This reflects 

what is observed in the SEM images (Figure 4-1) that shows a dense packing of small 

granules for the TEGDMA MIP. There are at least two potential explanations for this 

effect. One is that because the composition of the MIPs was based on mole ratios and a 

fixed volume of solvent (the compositions are described in the experimental section), the 

MIPs based on TEGDMA had a higher mass concentration in the prepolymerization 

solution and resulted in a more dense material. The other is related to the length of the 

spacer in the cross-linker, which in principle allows for formation of a more complexly 

cross-linked polymeric structure. The higher porosity for MIP 3 (EGDMA) than that for 

MIP 5 (PETA) is likely due to the trifunctionality of PETA, which should render a higher 

degree of cross-linking, forming a denser polymer network (Section 4.3.4). The high 

porosity and the granular film structure suggest that it is possible for the adsorbate (e.g., 

phenol) to be adsorbed not only at the surface of MIP film but also within film bulk. For 

this reason, the amount of bound adsorbate (madsorbate) was normalized against film mass 

(mfilm) rather than the film surface to get binding capacity (Q): 

                                                                                        (4-4) 

4.3.2 Choice of monomer and solvent 

In development of these MIPs towards phenol , it was decided to use phenol as the 

template rather than a pseudo-template for simplicity. In future work, the use of an 

alkylated phenol or other monoaromatic species as the template would be useful. IA, VP, 

and Sty were chosen as monomers based on their ability to interact with phenol in 

1, −⋅= gmg
m

mQ
film

adsorbate
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different ways, such as hydrogen bonding and π-π interactions. In the choice of solvent, 

along with to be a relatively “poor” solvent for the polymer components, a condition of 

not significantly disrupt the monomer-template interactions in prepolymerization mixture 

were also considered [24].  

Computational studies carried out during the development of MIP membranes 

selective to phenol have shown that anion of itaconic acid (IA) binds phenolic hydroxyl 

group via hydrogen bonding [17]. In that work, DMF was used as the solvent, probably 

due to its ability to act as a proton acceptor and, thereby, facilitate itaconic acid 

dissociation. Thus, the IA/DMF pair was also used in this work. The other pairing of VP 

and CHCl3 was based on the capacity for hydrogen bonding between the basic nitrogen of 

VP and the phenolic hydroxyl group, which has been observed in low-polar solvent 

systems such as CHCl3 by various techniques (NMR, IR) [15]. Between styrene and 

phenol, hydrophobic interactions including π–π stacking can be developed. A solvent to 

promote interactions of this kind should be highly polar and protic like the MeOH:H2O 

mixture. UV absorbance spectrometry is a common technique to study monomer-template 

interactions by hydrogen bonding [25]. It can be applied to study the hydrophobic 

interactions in protic solvents, where NMR and IR spectroscopy are not applicable. The 

complexation of phenol and styrene was concluded from changes in the phenol spectrum 

(E2-band) upon addition of styrene, which were observed for very dilute phenol solutions 

(0.100 mM) (Chapter 3).   
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4.3.3 Phenol binding studies in water for MIPs prepared on selected monomers and 
solvents 

MIP films based on IA, VP, and Sty (MIP 1, 2, 3 in Table 4-1) were prepared and 

tested in phenol rebinding from aqueous solutions. For this study, the concentrations used 

are described as moderate phenol concentrations (10 and 15 mg L−1) and high phenol 

concentrations (100 and 300 mg L−1). At each concentration range, the average imprinting 

factor (IF) was calculated (Table 4-4).  

𝐼𝐹 = 𝑄MIP
𝑄NIP

   (4-5) 

IF characterizes MIP binding capacity (QMIP) over that for non-imprinted polymer (QNIP), 

and it is the simplest estimation of imprinting effect.  

Table 4-4. Imprinting factors for MIP formulations prepared on different monomers. 

MIP (composition) 

Ci (phenol), mg L−1 

10 15 100 300 

IF (SD, n = 4) 

MIP 1 (IA/DMF) 1.04 (0.008) 1.00 (0.019) 

MIP 2 (VP/CHCl3) 0.99 (0.038) 1.00 (0.017) 

MIP 3 

[Sty/(MeOH:H2O)] 
1.00 (0.015) 1.04 (0.018) 

Note: Ci  – phenol concentration before the binding studies; SD – standard deviation. 

For MIP 1 (IA/DMF), IFs at moderate concentrations (10 – 15 mg L−1) are slightly 

higher than those at high concentrations (100 – 300 mg L−1). This suggests the presence 

of higher energy MIP binding sites, which are occupied at low phenol concentrations. 

However, efficiency of the MIP over the NIP is very modest; and maybe because 
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recognition of phenol through hydrogen bonding is suppressed in the aqueous 

environment. For similar reasons, in case of MIP 2 (VP/CHCl3) and the corresponding 

NIP, the binding capacities are about the same for all phenol concentration range taking 

the variability into account (IF ≈ 1.0). A further factor at play in this system is the 

mismatch between the highly hydrophobic solvent in prepolymerization mixture (CHCl3) 

and the highly polar and protic water as environment for binding. It has been noted 

previously that the imprinting effect is more pronounced when the solvent used during the 

formation of prepolymerization complex has similar properties to the solvent for 

rebinding [26]. The MeOH/H2O solvent system, used for MIP 3 based on styrene, is 

probably the closest solvent to the water from which phenol rebinding takes place. 

Although the hydrophobic interactions between styrene and phenol should be strong in 

this solvent, it seems that the non-selective hydrophobic interactions dominate over 

selective interactions associated with imprinted cavities. It was observed that only the IF 

for the higher phenol concentrations is higher than unity, and only marginally so.  

Generally, it is a challenging task to prepare effective MIPs for phenol because it is 

a small molecule without many special features in terms of shape and functionality. Thus  

far, MIPs for binding phenol from water have been prepared with only modest imprinting 

effect, for example, ca 1.25 [17], or even less than unity in the case of MIP towards 

nonylphenol [13] 2 . Phenol has only one hydroxyl group, therefore, it can be retained in a 

binding site only by one hydrogen bond. In contrast to phenol, MIPs with higher 

imprinting factors have been prepared for 2,4-dichlorophenol (2.1) [9], 2,4-dinitrophenol 

2 in both cases the imprinting factors were estimated based on MIP and NIP binding behavior at high 
adsorbate concentrations. 
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(2.2) [10], bisphenol A [14], hydroquinone (2.2) [12]. These species used as templates 

have more specific shape and at least two functional groups available for bonding (e.g., 

two –NO2 and one –OH in dinitrophenol). Furthermore, the hydroxyl protons for chloro- 

and nitrophenol are more acidic than the proton in phenol, which can yield stronger 

hydrogen bonding with proton accepting monomers. All these factors make the 

prepolymerization complex more stable, which results in more selective binding sites in 

the final MIP network, and, consequently, a stronger imprinting effect.  

Although these MIPs did not give satisfactory imprinting effects, other factors with 

a potential to influence the selectivity of the MIPs, such as the effect of cross-linker are of 

interest and are useful to study. Based on the somewhat promising results for the 

imprinting factors, the styrene/MeOH:H2O system was chosen for the study of cross-

linkers to improve imprinting effect towards phenol; this system also should maximize 

the hydrophobic interactions that dominate in aqueous environments and these systems 

have not been studied for phenol imprinting previously.   
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4.3.4 Choice of cross-linker 

The cross-linker constitutes most of the MIP by mass (in this work 88–93% w/w); 

therefore, it dictates the structure and tightness of the polymer network [24], and 

potentially contributes to a significant amount of the non-specific binding [27]. In 

addition to the styrene MIPs with EDGMA, styrene based MIPs were prepared with two 

other cross-linkers, TEGDMA and PETA (Figure 4-2). TEGDMA has been used for 

synthesis of a variety of resins and MIP membranes [17], and has a long flexible glycol 

chain. Due to its hydroxyl group, PETA has been used for preparation of hydrophilic 

MIPs [27]. Also, as a trifunctional cross-linker it is expected to produce a greater degree 

of cross-linking and a tighter polymer network. These cross-linkers were dissolved in 

MeOH/H2O with the highest possible water content that can still produce homogeneous 

prepolymerization mixtures. It is believed that higher water content in the solvent allows 

for stronger phenol-styrene interaction in a prepolymerization complex. PETA is soluble 

in 5:1 MeOH:H2O in contrast to the widely used trifunctional cross-linker 

trimethylolpropane trimethacrylate (TRIM), which cannot be dissolved in such polar 

solvent systems, even acetonitrile. TEGDMA tolerates the highest amount of water, and 

is soluble in 3:1 MeOH:H2O (the composition for EGDMA is 4:1); better TEGDMA 

solubility is due to a higher number of ethereal oxygen in TEGDMA than EGDMA.  
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EGDMA TEGDMA PETA 

Figure 4-2. Structures of cross-linkers used in Chapter 4. 

 

For MIP 3 (EGDMA), the IF rises from 1.00 at 15 mg L−1 to 1.04 at 300 mg L−1 

(Figure 4-3 with data in Table B1). In case of MIP 4 (TEGDMA), IF increases from 1.04 

to 1.06, within the studied concentration range. For MIP 5 (PETA) IF improves from 1.04 

at 40 mg L−1 to 1.12 at 300 mg L−1; below 40 mg L−1 there is a slight increase in IFs as 

the phenol concentration diminishes (see next Section 4.3.5). Comparison of IFs in the 

region 150 – 300 mg L−1, where the IFs for each MIP exhibit little variation over the 

range of phenol concentrations, shows that the highest IFs are observed for MIP 5 

(PETA). It can be explained by the tighter and more rigid structure of binding sites, which 

better fit phenol as a small molecule. An average IF for TEGDMA-MIP is slightly higher 

than that for EGDMA-MIP, probably due to higher water content (Section 4.3.1) in the 

solvent combined with tighter structure of the TEGDMA-MIP. Generally, the extent of 

non-specific binding by an MIP can be assessed based on binding capacity for its NIP. 

Comparison of the NIP binding capacities (Figure 4-3 and Table B1) for all studied 

phenol concentrations demonstrates that non-specific hydrophobic binding towards 

phenol is lower for MIPs on TEGDMA and especially on PETA.   

112 

 



 

 

Figure 4-3. Binding isotherms for Sty-based MIP/NIP on different cross-linkers: 
EGDMA, TEGDMA, and PETA from 15 to 300 mg L−1 phenol in water. 
Note:  – MIP,  —NIP, Cf  – phenol concentration at binding equilibrium.  
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Another feature of the MIP films based on PETA and TEGDMA is that they were 

easily wetted with water; whereas the Sty-MIP film with EGDMA had to be conditioned 

in acetonitrile:water (1:1). This dependence of wetting and non-specific binding on the 

cross-linker type can be explained by the higher hydrophilicities of TEGDMA and PETA 

when compared to EGDMA; TEGDMA has long hydrophilic glycol chain, and PETA 

possesses a hydroxyl group and lower carbon content due to acrylic moieties instead of 

methacrylate. Thus, TEGDMA and PETA can be recommended as cross-linkers for 

water-compatible MIPs with less non-specific binding in water towards hydrophobic 

species. In light of the highest imprinting factor and water compatibility, the PETA-MIP 

was chosen for more detailed study of binding characteristics, which is presented in the 

next section.  

 

4.3.5 Characterization of styrene/PETA MIP (MIP 5) 

4.3.5.1  Binding properties study 

It was mentioned previously (Section 4.3.4) that there is a breakpoint in the 

isotherm for MIP 5 around 40 mg L−1, where the MIP 5 isotherm begins to diverge from 

the NIP isotherm with rising IFs towards both high and low phenol concentrations 

(Tables 4-5 and B1). It is known that lack of uniformity in MIP binding behavior can 

occur because the MIP shows different binding site distributions depending on adsorbate 

concentration range [25, 28, 29].  
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Table 4-5. Data for binding isotherms for MIP/NIP 5 (PETA) at low phenol 
concentrations (0.1 – 40 mg L−1) 

Ci(phenol), mg·L−1 0.1 0.5 1 5 15 25 40 

Q(NIP), mg·g−1 
0.0168  

(0.0043) 
0.0865 

(0.0008) 
0.192  

(0.009) 
0.882  

(0.007) 
2.31  

(0.011) 
3.45  

(0.13) 
5.20  

(0.28) 

Q(MIP), mg·g−1 
0.0202  

(0.0051) 
0.1004 

(0.0011) 
0.212  

(0.0001) 
0.957  

(0.025) 
2.52  

(0.020) 
3.70  

(0.11) 
5.41  

(0.32) 

IF 1.20  
(0.023) 

1.16  
(0.016) 

1.11  
(0.0044) 

1.09  
(0.0200) 

1.09  
(0.0037) 

1.07  
(0.0060) 

1.04  
(0.0080) 

 
Note: SD (standard deviation) in parenthesis: n = 2 for 1, 5, 15 mg L−1; n = 3 for 25, 40 
and n = 4 for 0.1, 0.5 mg L−1. 

 

 

In practice, the concentration of phenol in natural and sewage waters is in the                     

µg L−1 to mg L−1 range, therefore, it is appropriate to study MIP binding behavior, 

including binding sites distribution, in a low phenol concentration region. Thus, NIP and 

MIP 5 isotherms were built from to 0.1 to 40 mg L−1 (Table 4-5 and Figure 4-4). The 

imprinting factors, reflecting the efficiency of the MIP over its NIP, showed a steady 

increase with decreasing phenol concentration (Table 4-5): IF = 1.04 at 40 mg L−1, 1.07 at 

25 mg L−1, 1.16 at 0.5 mg L−1 and 1.20 at 0.1 mg L−1. In this concentration window, the 

MIP and NIP isotherms can be linearized on a logarithmic scale (Figure 4-4), which 

means that they are described well by the Freundlich isotherm (FI) binding model. For 

comparison, linearization with the Langmuir binding model [25,30], which corresponds 

to the unimodal affinity distribution, gives a worse fit with R2 values of 0.9474 (MIP) and 

0.8608 (NIP) (Figure B2).  
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According to the FI, the amount of bound adsorbate, expressed as binding capacity 

(Q), depends on free adsorbate concentration (C) in a power of m as: 

𝑄 = 𝑎 𝐶𝑚                                                                                                                      (4-6) 

or in a linearized form 

Log 𝑄 = 𝑚 Log 𝐶 + Log 𝑎 (4-7) 

where m and a are fitting parameters connected with adsorbent binding properties. 

The FI pattern corresponds to the asymptotic decay region of the affinity 

distribution (Figure B3), which usually takes place within a limited interval of adsorbate 

concentrations at low levels [30, 31]. 

Figure 4-4. Phenol adsorption isotherms for MIP 5 and NIP in Log-Log format and 
fitting to Freundlich isotherm binding model:   MIP,  NIP.  
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The heterogeneity index, m, is a value between 0 and 1 that characterizes the “ratio 

of high-to-low affinity sites”. The lower the m value, the higher heterogeneity, meaning 

there is a greater proportion of high affinity binding sites in the affinity distribution [31], 

which is the case for MIP 5 compared to its NIP (Table 4-6). Based on fitting parameters 

m and a, the apparent number of binding sites, NK1−K2, and apparent weighted average 

affinity, KK1−K2, were calculated (formulas in Appendix B) for the range of affinity 

constants, K1−K2, set by the concentration limits of these experimental isotherms (Table 

4-5). Relative to the NIP, the MIP has higher NK1−K2, and greater degree of heterogeneity 

(m) resulting in slightly higher average affinity KK1−K2, which all prove a modest 

imprinting effect [31]. 

 
Table 4-6. Parameters for fitting to Freundlich isotherm model and calculated binding 
parameters. 

Adsorbent R2 
a, mg g−1                  

(mg L−1)−m 
m 

NK1−K2,                

mmol g−1 

KK1−K2,                         

L mg−1 

MIP 5 0.9977 
0.260                            

(0.012) 

0.908 

(0.020) 

0.0112                    

(0.0018) 

0.237                          

(0.011) 

NIP 5 0.9973 
0.221                            

(0.012) 

0.938 

(0.022) 

0.0073                     

(0.0022) 

0.221                         

(0.010) 

 
Notes: K1 = 0.0313; K2 = 14.9 (L mg−1); SD for log a and m values were calculated 
in Excel with LINEST function and on their base SD for a, NK1-K2, KK1-K2 were 
calculated by the uncertainty propagation and presented in parenthesis. 
 
 
4.3.5.2 Cross-binding study 

Cross-binding of the PETA MIP was evaluated based on a comparison between 

binding for phenol (ph-l) and structurally-related phenols: resorcinol (res-l);  
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4-methylphenol (4-MP); 2,4-dimethylphenol (2,4-DM), 4-propylphenol (4-PP), and 3-

octanone (3-oct). Figure 4-5 shows that this MIP has comparable cross-binding in terms 

of IFs towards other phenols, which are different from phenol by one or two substituents 

on the aromatic ring. This is consistent with the low specificity associated with binding 

by hydrophobic interactions, which has been discussed previously [32]. Both MIP and 

NIP binding capacities rise with adsorbate hydrophobicity. For example, the octanol-

water partition coefficients (log Kow), e.g., 1.48, 1.97, 2.35 for phenol, 4-methylphenol, 

and 2,4-dimethylphenol, respectively [33], increase with alkyl substitution which parallels 

the trend in binding capacities. Virtually no difference is observed for MIP and NIP 

binding capacities of 3-octanone, which is non-aromatic in nature and significantly 

different from phenol structurally. Thus, the modestly higher uptake of phenols is likely 

due to some molecular recognition capability of MIP 5 and the aromatic nature of 

phenols. Such wide cross-adsorption, characteristic to this MIP acting by hydrophobic 

interactions, can be advantageous for separation of a whole class of phenols including 

alkylphenols, which are all of environmental importance.  
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Figure 4-5. Cross-binding of MIP 5 and NIP towards other phenols and 3-octanone, 
Ci(adsorbate) = 1.594 mM.  
Note: IF is an average of ratios of QMIP to QNIP (n = 4, SD in parenthesis); QMIP(NIP) is an 
average of values corresponding to different batches (n = 4, SD error bars). 
 
4.4 Conclusions and future work  

The sandwich technique can be used for simple fabrication of ~20 μm thick MIP 

films with a smooth surface from a wide variety of prepolymerization mixtures. These 

films can be rendered porous by use of “poor” solvents such as methanol-water mixtures 

or dimethylformamide and chloroform with addition of linear polymers (PEG and PVA). 

The fabricated MIP films are suitable for use as adsorptive layers in sensors and as a 

phase for microextraction, e.g. in microfluidics, given their reproducible and consistent 

porous morphology. Also, the described sandwich technique is recommended as a format 

for screening of MIP formulations in MIP synthesis because of convenience of handling 
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MIPs bound to glass slides, labor and material savings, and applicability to a wide variety 

of MIP formulations.  

MIP films were prepared based on various monomers to bind phenol through 

hydrogen bonding (itaconic acid and 4-vinylpyridine) and hydrophobic effect (styrene). 

The binding properties and selectivity of the MIPs were characterized based on phenol 

adsorption capacities from aqueous solutions studied at equilibrium. It is challenging to 

develop high affinity MIPs with high selectivity for phenol due to phenol’s small size, 

simple shape and the fact it has only one weakly acidic hydroxyl group. In aqueous 

environments, selective binding of phenol via hydrogen bonding is suppressed, while 

binding with a MIP made with styrene is not significantly specific because binding is 

mainly through hydrophobic and π–π interactions associated with the aromatic structures 

of the monomer and phenols. The denser more rigid structure of styrene-based MIPs 

achieved with trifunctional PETA is beneficial for phenol recognition. Also, the high 

hydrophilicity of this cross-linker makes MIP films water-compatible and reduces the 

non-specific binding. Binding isotherms for phenol uptake at low concentrations by 

styrene and PETA based MIPs showed that the imprinting factors are higher for lower 

phenol concentrations. The MIP and NIP isotherms follow the Freundlich binding model. 

The analysis of the isotherms conveys moderately better binding parameters for the MIP 

over its NIP, and a limited number of selective imprinted sites that are mostly occupied at 

low phenol concentrations. Although the selectivity is not exceptional, MIPs with this 

composition can be used for binding other structurally similar phenols.  

The authors believe that this work is a beginning step in the development of more 

efficient systems for binding of phenol and alkylphenols in water, and the basic 
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components for these MIPs or non-imprinted simple adsorbent phases can be styrene, 

PETA, and methanol/water as monomer, cross-linker and solvent, respectively. A number 

of approaches can be used in efforts to improve the imprinting effect, for example, use of 

higher monomer and template content, polymerization at lower temperatures [31], and the 

addition of a proton accepting monomer with styrene to develop extra hydrogen bonding 

[7]. Studies of phenol rebinding over shorter intervals, i.e., before adsorption equilibrium 

is reached, may also yield better imprinting factors.  
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Chapter 5. Development of MIPs Acting by Hydrophobic Interactions 

to Bind Phenol  
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5.1 Introduction 

The majority of MIPs are synthesized through non-covalent imprinting based on the 

formation of hydrogen bonding between a template and functional monomers [1]. 

However, there are many adsorbates that cannot form strong hydrogen bonds and some 

adsorbates do not have the necessary functional groups to participate in hydrogen bonding 

or electrostatic interactions. Many of those adsorbates are of environmental importance, 

e.g., phenol and PAHs are water contaminants from oil extraction. The adsorption of 

phenol on MIPs via hydrogen bonding is suppressed in an aqueous environment [2, 3], 

and PAHs can participate only in non-polar interactions, including π- π stacking. Thus, 

the development of MIPs acting by the hydrophobic interactions to bind non-polar or 

low-polarity analytes in water is a task of current importance. Few papers have been 

published about the imprinting by hydrophobic interactions; these report MIPs based on 

aromatic polyurethane to bind PAHs [4], styrene and EGDMA for                              1-

hydroxypyrene [5], and amylose for bisphenol A [6].  

 In the previous chapter, a MIP was developed to bind phenol and alkylphenols by 

hydrophobic interactions and some selectivity was reported. The main components used 

to synthesize this MIP were styrene as a functional monomer to bind phenols, 

MeOH/H2O as a solvent to promote interactions between a template and styrene in the 

prepolymerization mixture, and a trifunctional cross-linker, PETA, to form a tight 

polymer network of binding sites. This work builds on the results of the previous chapter; 

in particular, ways to prepare more effective binding media in the film format are 

addressed here. The effect of a pseudotemplate as the fourth main component in the MIP 

synthesis was studied. The content of styrene in MIPs was increased, and how this 
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influenced the binding capacity and imprinting for MIPs was investigated. MIP cross-

binding towards two and three ring PAHs was assessed. A copolymer of divinylbenzene, 

ethylvinylbenzene, and PETA was synthesized as an alternative material for the 

adsorption of phenol according to the future work discussed in Chapter 4. The binding 

and imprinting performances of the MIP films towards phenol, prepared in the current 

and previous chapters, were compared and some principles to prepare modern and 

effective MIPs were derived.  

 

5.2 Materials and methods 

Technical grade divinylbenzene was purchased from Sigma-Aldrich (Oakville, ON, 

Canada). The divinylbenzene reagent consisted of m- and p-divinylbenzenes                               

(DVB, 80%), along with a large fraction of ethylvinylbenzenes (EVB, 20 %). 1-Propanol 

(>99%, PrOH) was supplied by Eastman Chemical Company (Kingsport, TN, USA). 

Xylene (xyl) as a mixture of ortho-, meta-, and para-isomers, was ACS grade solvent 

supplied by Fisher Chemical (Ottawa, ON, Canada). Ethylene glycol (99.5%, EG), 

naphthalene (99%, Naph), phenanthrene (99.5%, Phe), fluorene (99%, Flu), and 

anthracene (99.0%, Ant) were produced by Fluka Analytical and purchased from Sigma-

Aldrich (Oakville, ON, Canada). Acetone and hexane of ACS reagent grade were 

purchased from ACP Chemicals (Montreal, QC, Canada). All other used reagents and 

materials were the same as in Chapter 4.  
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5.2.1 Synthesis of MIPs 

Two MIP films imprinted with phenol (MIP 7) and xylene (MIP 8), their 

corresponding NIP 6 (common for MIP 7 and 8), and an adsorbent film made of a 

copolymer of PETA and divinylbenzene were prepared according to the sandwich 

technique (Chapters 2 and 4). The composition of the prepolymerization mixtures for 

these MIPs is described in Table 5-1. The only difference from the fabrication procedure 

described earlier (Chapter 2) is that after the polymerization, to remove the template the 

films were washed with acetone:hexane (1:1, v/v) at stirring for 3 hours, using three fresh 

portions of the solvent. The acetone and hexane mixture was chosen because it has been 

used before to remove toluene, as template, for a MIP towards toluene, ethylbenzene, and 

xylene [7].   
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Table 5-1. Composition of prepolymerization mixtures for phenol and xylene imprinted 
polymers, and novel adsorbent based on divinylbenzene and PETA. 

Polymer 
components 

NIP 6 MIP 7 MIP 8 Ads 

The abbreviation 
of the 

composition  

8(Sty):13.3(PETA)/ 
PrOH:EG:H2O 4/1/1 

4(ph-l):8(Sty): 
13.3(PETA)/ 

PrOH:EG:H2O 
4/1/1 

4(xyl):8(Sty): 
13.3(PETA)/ 

PrOH:EG:H2O 
4/1/1 

2.4(EVB):9.6(DVB): 
13.3(PETA)/ 
PrOH:EG 5/1 

template NA phenol 1.6 
mmol 

(151 mg) 

xylene 1.6 mmol 
(198 µL) 

NA 

functional 
monomer 

Sty 3.2 mmol 
(368 µL) 

DVB-EVB 
4.8 mmol  

(684 µL) and 
PETA 5.33 mmol 

(1590 mg) 

cross-linker PETA, 5.33 mmol (1590 mg) 

photoinitiator 
(DMPA) 

0.131 mmol 
(34.0 mg) 

0.1747 mmol 
(45.0 mg) 

solvent 
(2000 µL) 

1-propanol:ethylene glycol:water (4:1:1 v/v) 1-propanol:ethylene 
glycol (5:1 v/v) 

5.2.2 Study of the binding properties of MIP films 

Binding towards phenol was studied in the same way as phenol binding in the 

previous chapter (Chapter 4), which allows the phenol adsorption capacity (Q, mg g-1) to 

be determined. QMIP(NIP) is an average of at least three values corresponding to separate 

batches (Figure 5-1). Presented IFs are averages of at least three ratios of QMIP to QNIP 

from the same batch, as films fabricated and studied together. In Figure 5-3, at least two 

values of QMIP(NIP) are averaged, and IFs are averages of at least two ratios of QMIP to QNIP. 

In the cross-binding studies (Figure 5-2), the imprinting effect towards PAHs was studied 

using the measurement procedure for the direct fluorimetric detection on a MIP film, 
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described in details in Chapter 8. In brief, MIP 8/NIP 6 films were prepared as 100 µm 

thick films and exposed to an aqueous solution (750 mL) of PAHs: naphthalene (60.0 µg 

L−1), fluorene (8.00 µg L−1), phenanthrene (4.00 µg L−1), and anthracene (4.00 µg L−1). 

For each PAH, its fluorescence intensity was measured in the synchronous scanning 

mode at the optimal spacing for each PAH. The intensities for the MIP and NIP, were 

compared as peak intensities (I) to calculate the IF:  

)(
)()(

PAHI
PAHIPAHIF

NIP

MIP= (5-1) 

In Figure 5-2, presented IFs are averages of four ratios of IMIP to INIP; each ratio was 

measured for a pair of MIP 8 and NIP 6 from the same batch. 

5.3 Results and discussion 

5.3.1 Rationale for the choice of components for  MIPs and novel adsorbent 

Template 

It was mentioned before that a polymer imprinted with phenol may release phenol 

into the sample solution at the phenol rebinding (Chapter 4). Phenol bleed means that the 

template removal is not 100% complete. The false positive may be detected when this 

type of MIP is applied for the analysis of phenol. Therefore, the use of a pseudotemplate, 

a template that is different from the targets for the binding and detection [8], can 

surmount the problem of leakage. Xylene, a mixture of o, m, p-dimethylbenzene isomers, 

was chosen as the template (MIP 8) because it is a monoaromatic compound, similar to 

130 



 

phenol. An important property of dimethylbenzenes is that they are highly hydrophobic 

compounds, and relatively strong complexation with styrene can be expected. The Log 

Kow values of dimethylbenzenes and styrene are very close (3.1 – 3.2) [9]. This proximity 

suggests that, along with the formation of the dimethylbenzene dimers, dimethylbenzenes 

can actively associate with styrene, participating in the imprinting. The MIP imprinted 

with phenol (MIP 7) was also synthesized for the comparison with MIP 8, so that the 

effect of the change in template could be evaluated.  

 

Functional monomer  

As suggested in Chapter 4, styrene was used because of its ability to bind phenol 

through hydrophobic interactions. Compared to MIP 5 (Chapter 4), the content of styrene 

in the final polymer network (w/w) on dry weight basis was nearly doubled from 9% 

(MIP 5) to 16% (MIP 7 and 8). The amount of the template, phenol or xylene, was also 

scaled accordingly to keep the ratio of 1:2, the same as for MIP 5. The reason for the 

increase of the content of styrene, relative to the amount of cross-linker, is to form more 

binding sites, both selective and non-selective, in order to increase the overall binding 

capacity towards phenol.  

 

Solvent 

There are a number of factors that influence the choice of a solvent system. First, 

styrene and xylene are components of low viscosity, and an increase of their content in 

the prepolymerization mixture requires the use of a viscous solvent. Second, methanol 

and water mixtures, previously used in Chapter 4, are volatile, which requires the delivery 
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of the prepolymerization mixture to make the sandwich to be very fast (Chapter 2). Third, 

to produce the porous network, the solvent must be “poor” in terms of swellability of the 

polymer network (Chapter 4). Lastly, the solvent still must solubilize all MIP 

components. By the trial and error method, PrOH:EG:H2O (4/1/1) was found to meet all 

these solvent requirements for fabrication of  films by the sandwich approach. In addition, 

this solvent is highly protic and polar due to the high content of the hydroxyl 

functionality; a solvent of this nature can promote the hydrophobic interactions between 

xylene and styrene.  

Cross-linker 

PETA was used as a cross-linker because it was found (Chapter 4) that the highly 

cross-linked polymeric network is beneficial for the imprinting effect. Сompared to 

EGDMA and TEGDMA, PETA is highly viscous and greatly contributes to the overall 

viscosity of the prepolymerization mixtures. PETA contains a hydroxyl group, which 

enhances the wettability of the films with water.  

Composition of a novel adsorbent based on divinylbenzene and PETA 

So far MIPs/NIPs acting by hydrophobic interactions had been synthesized using 

styrene as a functional monomer. It seemed interesting and useful to test other non-polar 

functional monomers, for example, divinylbenzene, which is a widely available industrial 

reagent. As a starting point in this direction, a copolymer (Ads in Table 5-1) of technical 

divinylbenzene and PETA was synthesized. For the simplicity of these preliminary 

experiments, the polymer was synthesized without any template, therefore Ads can be 
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called non-imprinted polymer. Similar to MIP 8, Ads does not contain phenol, therefore, 

it can be freely used for the chemical analysis. The binding is expected to be only due to 

the non-specific interactions and this polymer should be considered as a simple adsorbent 

medium, or an adsorbent. The main reasons for the selection of the components were the 

same as for the MIP 8: ethylvinylbenzenes (EVB) and divinylbenzenes (DVB) as 

aromatic functional monomers, PETA cross-linker, along with 1-propanol and ethylene 

glycol mixture—a protic and relatively low volatile solvent (Table 5-1). EVBs act as 

functional monomers while DVBs can serve both as functional monomers and cross-

linkers, therefore, Ads contains more aromatic moieties than MIP 8. In order to 

homogenize highly hydrophobic EVB and DVB together with PETA in the 

prepolymerization mixture, water was excluded from the solvent mixture.  
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5.3.2 The physical quality of fabricated films 

All fabricated films (NIP 6, MIP 7, MIP 8, Ads) were opaque white and had a fine 

granular morphology. The quality of the films was good in terms of mechanical stability 

and homogeneity, which is comparable to the quality of other films (Table 2-1). All films 

were easily wetted with water. Especially mechanically durable were “Ads” films. This 

resistance to scratching and mechanical stress can be explained by the use of only cross-

linkers as the building blocks for the polymer, which increase the overall degree of 

crosslinking in the polymer network.  

5.3.3 Study of binding and imprinting properties for MIPs imprinted with phenol and 
xylene  

The binding capacities and imprinting factors for MIP 7 and 8 were determined at 

three phenol concentrations, 0.500, 15.00, 300.0 mg L−1 (Figure 5-1), representing 

relatively low, average, and high concentration ranges for the phenol binding isotherms. 

These data are also compared with those for MIP 5/NIP 5 (Chapter 4) in order to study 

the effect of the increase of styrene content in a MIP. 
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Figure 5-1. Comparison of binding capacities and imprinting factors for MIPs 5, 7 and 8 
at three phenol concentrations: A (0.500 mg L−1), B (15.00 mg L−1), and                                            
C (300.0 mg L−1).  
Note: Standard deviations for IFs (n=3) are in parenthesis; QMIP(NIP) is an average of 
values corresponding to different batches (n = 3, SDs are error bars).  
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The general picture is that the increase of styrene content results in the higher 

binding capacity towards phenol for MIP 7, 8/NIP 6 compared to MIP 5/NIP. For 

example, the binding capacities for NIP 6 are higher than that for NIP 5 by about 8 % at 

15.00 and 300.0 mg L−1. The increase of the binding capacity becomes much more 

dramatic (27 %) at 0.500 mg L−1. The better performance of MIP 8 to bind phenol at 

lower concentrations is very relevant for the adsorption of phenol in environmental 

waters. The fact that the higher styrene content causes the rise of MIP binding capacity at 

lower phenol concentrations can be explained as not only the number of binding sites is 

increased, but also the energy of the binding, when  MIP 8 and 5 are compared. It is likely 

that the higher content of styrene results in the formation of more structured and higher 

affinity binding sites in the polymer network, which are preferably filled at lower phenol 

concentrations [10].  

It was observed that MIP 5 had higher imprinting factors than either new MIPs 

(MIP 7 and 8); the difference is notable, especially at 0.500 mg L−1 (1.16, 0.99, and 1.06, 

respectively). It is possible that the increase of styrene content results in the reduction of 

tightness or rigidity of the polymer network and, consequently, stability of binding sites, 

which leads to the reduction of imprinting effect. A similar trend was observed for MIPs 

based on MAA/EGDMA for L-phenylalanine anilide [11].  

The imprinting factors for xylene imprinted polymer (MIP 8) are higher than that of 

phenol imprinted polymer (MIP 7) in the low and moderate concentration ranges by about 

6% at 0.500 and 15.00 mg L−1. At the high concentration range, 300 mg L−1, both 

imprinting factors become about equal (~1.07). With the increase of phenol 

concentration, the rise in IF from unity to 1.07 is observed for MIP 7, similar to MIP 3 
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and 4 (Chapter 4), while the IF for MIP 8 decreases, suggesting the heterogeneity of 

binding sites as with for MIP 5. Thus, at lower concentration ranges, 0.500 and

15.00 mg L−1, the binding capacity of MIP 8 is higher than that for MIP 7. This increase 

of binding capacity is probably because xylene template associates more strongly with 

styrene than less hydrophobic phenol, forming more structured binding sites. When a 

template was different from a target, a significant reduction of recognition is usually 

observed, such as in the case of binding of 4-chlorophenoxyacetic acid with 2,4-

dichlorophenoxyacetic acid imprinted polymer [12]. However, it is likely that when the 

interactions between a template and functional monomer are hydrophobic and targets are 

simply shaped molecules, such as phenol, the strength of less sterically defined 

interactions plays more important role in the imprinting effect than the similarity of 

template and target.  

MIP 8 imprinted with xylene recognizes phenol by cross-binding. Cross-binding in 

terms of an imprinting factor for MIP 8 was also studied towards other aromatic 

compounds such as two and three ring PAHs (Figure 5-2). It was found that IFs are 

higher for the PAHs than for phenol and the IFs for the PAHs gradually decrease with the 

size of PAHs: 1.30, 1.19, 1.15, 1.12 for naphthalene, fluorene, phenanthrene, and 

anthracene, respectively. The fact that the IF of phenol is less than that of naphthalene can 

be explained in terms of the size of binding sites formed by xylene. These sites can be 

larger relative to the small and not alkylated molecule of phenol, which reduces phenol 

fitting into the binding site. One reason why IFs of PAHs are higher than that of phenol 

can be the fact that PAHs are much more hydrophobic and, therefore, interact with 

styrene moieties more strongly in the binding sites. A clear effect of the size of PAHs on 
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their IFs was observed. The highest IF was observed for the smallest PAH, naphthalene, 

and the lowest for the largest PAHs, phenanthrene and anthracene. This trend can be 

related to how well the PAHs fit the binding sites formed by xylene, which is smaller 

sized than any of the PAHs. Another possible contribution to this trend is that the 

conformational flexibility increases as the PAHs rises in size [13]. The flexibility of 

adsorbate molecule may reduce its tight fitting to the binding sites.  

Figure 5-2. Cross-binding of polymer imprinted with xylene (MIP 8) towards phenol, 
naphthalene, fluorene, phenanthrene, and anthracene. Error bars are SD, n=4. 

5.3.4 Comparison of  binding and imprinting properties 

The binding capacities and imprinting factors for MIPs/NIPs, which have been 

studied in this сhapter (Figure 5-1) and Chapter 4 (Table 4-4, Figure 4-3, Table B1), 

together with a novel DVB based adsorbent (Ads), were compared at one phenol 

concentration in the middle range, 15.00 mg L−1 to demonstrate typical binding behavior 
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observed for these MIPs/NIPs. This concentration is of a practical importance and 

corresponds to the average concentration of phenol and alkylphenols in produced water 

[14]. All main polymer components, such as the monomer/solvent, cross-linker along 

with template, were varied (Figure 5-3) to deduce the effect of the polymer composition 

on the binding capacity, imprinting effect, and water compatibility. As can be concluded 

from the data presented in Figure 5-3, higher imprinting factors were observed for MIPs 

based on styrene and PETA (MIP 5, 7, 8) than for other MIPs, for example, based on 

EGDMA and IA (MIP 1), VP (MIP 2), and Sty (MIP 3). It shows that hydrophobic 

interactions with styrene in the combination with the more cross-linked network by PETA 

polymer are beneficial for the imprinting effect.  

 

Figure 5-3. Comparison of phenol binding capacities and imprinting effects at 
Ci(phenol)=15.00 mg L−1 for MIPs/NIPs studied in Chapters 4 and 5.  
Note:, Sr (Q) ̴ 3%, n=2; SD for IFs are in parenthesis, n=2. WC – water compatibility. 
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The trade-off between water-compatibility and binding capacity can also be 

observed. Polymers based on VP with EGDMA (MIP 2) and Sty with EGDMA (MIP 3) 

have some of the highest binding capacities because of the strong hydrophobic effect of 

VP and Sty. However, they must be prewetted with acetonitrile to facilitate a complete 

contact with water as necessary in the adsorption process (Chapter 4); therefore, MIPs 2 

and 3 can be classified as only conditionally water compatible. Sty-PETA polymers 

(MIPs 5−8) and “Ads” still have a comparatively high binding capacity and are fully 

water-compatible. The binding capacities for other water-compatible polymers (MIPs 1 

and 4) are significantly lower because they contain carboxyls from itaconic acid and 

etheric oxygens from TEGDMA that reduce the hydrophobic effect needed for the 

adsorption in water. In the Sty-PETA polymers and the novel adsorbent (Ads), the 

hydroxyl groups in PETA moieties offset the water repelling effect of hydrophobic 

functional monomers, which makes it possible to combine the water compatibility and the 

high binding capacity towards phenol.  

In addition to the increase of the styrene content (MIPs 5, 7, 8), an even more 

effective tool to increase the binding capacity was to use more hydrophobic functional 

monomers, such as EVB and DVB. The moieties of DVB and EVB are more hydrophobic 

than less alkylated styrene moieties, therefore, co-PETA-EVB-DVB adsorbent (Ads) had 

the highest binding capacity. Because, co-PETA-EVB-DVB was prepared based on protic 

solvent, it also had a potential to be imprinted, e.g., with xylene, in order to increase the 

binding capacity even more.                                                          
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5.4 Conclusions and future work 

In this work, the concept of molecular imprinting and binding of phenol by 

hydrophobic interactions, initially studied in Chapter 4, is further developed and studied. 

The solvent, cross-linker, and functional monomers proved to have a crucial role. A 

unique solvent system was based on 1-propanol, ethylene glycol, and water. This solvent 

system gave the high quality and porous films because it is protic and highly polar, 

relatively viscous, and not very volatile. In addition, it also promotes hydrophobic 

interactions between a template and styrene. The PETA cross-linker has an advantage that 

its hydrophilic nature can compensate for the hydrophobic effect from aromatic 

monomers, making MIPs with a high adsorption capacity that are still water-compatible. 

The increase of functional monomer content and the use of more hydrophobic monomers 

than styrene, such as DVB and EVB, are reliable tools to increase binding of phenol. The 

change of the template from phenol to xylene brings some improvement of the imprinting 

effect towards phenol probably because the strength of the complexation between the 

template and styrene plays a more important role than the similarity between the template 

and target.  

Xylene-Sty-PETA-MIP and co-PETA-EVB-DVB films can be recommended for 

the practical applications because of their high binding capacities. The xylene-MIP shows 

selectivity not only towards phenol but also towards other aromatic compounds such as 

PAHs, for which the imprinting effect is diminished with the increase of their molecular 

size. With more resources and time, principles derived in this chapter can be employed to 

develop even more advanced MIPs by hydrophobic interactions, for example, based on 

co-PETA-EVB-DVB platform.  

141 



 

 
5.5 References 

1. Mayes, A. G.; Whitcombe, M. J., Synthetic strategies for the generation of molecularly 
imprinted organic polymers. Advanced Drug Delivery Reviews 2005, 57 (12), 1742-78. 

2. Lv, Y.Q.; Lin, Z.; Feng, W.; Tan, T., Evaluation of the polymerization and recognition 
mechanism for phenol imprinting SPE. Chromatographia 2007, 66 (5-6), 339-347. 

3. Gryshchenko, A.; Bottaro, C., Development of molecularly imprinted polymer in 
porous film format for binding of phenol and alkylphenols from water. International 
Journal of Molecular Sciences 2014, 15 (1), 1338-1357. 

4. Dickert, F. L.; Tortschanoff, M.; Bulst, W. E.; Fischerauer, G., Molecularly imprinted 
sensor layers for the detection of polycyclic aromatic hydrocarbons in water. Analytical 
Chemistry 1999, 71 (20), 4559-4563. 

5. Kirsch, N.; Hart, J. P.; Bird, D. J.; Luxton, R. W.; McCalley, D. V., Towards the 
development of molecularly imprinted polymer based screen-printed sensors for 
metabolites of PAHs. The Analyst 2001, 126 (11), 1936-1941. 

6. Kanekiyo, Y.; Naganawa, R.; Tao, H., Molecular imprinting of bisphenol A and 
alkylphenols using amylose as a host matrix. Chemical communications 2002,  (22), 
2698-2699. 

7. Sainz-Gonzalo, F. J.; Medina-Castillo, A. L.; Fernandez-Sanchez, J. F.; Fernandez-
Gutierrez, A., Synthesis and characterization of a molecularly imprinted polymer 
optosensor for TEXs-screening in drinking water. Biosensors & Bioelectronics 2011, 26 
(7), 3331-8. 

8. Wang, X.; Fang, Q.; Liu, S.; Chen, L., The application of pseudo template molecularly 
imprinted polymer to the solid-phase extraction of cyromazine and its metabolic 
melamine from egg and milk. Journal of Separation Science 2012, 35 (12), 1432-1438. 

9. Handbook of Chemistry & Physics Online, 94th edition. http://www.hbcpnetbase.com 
(accessed 18.12.2013). 

 

 

142 

 



 

10. Rampey, A. M.; Umpleby, R. J.; Rushton, G. T.; Iseman, J. C.; Shah, R. N.; Shimizu, 
K. D., Characterization of the imprint effect and the influence of imprinting conditions on 
affinity, capacity, and heterogeneity in molecularly imprinted polymers using the 
freundlich isotherm-affinity distribution analysis. Analytical Chemistry 2004, 76 (4), 
1123-1133. 

11. Spivak, D. A., Optimization, evaluation, and characterization of molecularly 
imprinted polymers. Advanced Drug Delivery Reviews 2005, 57 (12), 1779-94. 

12. Van Biesen, G.; Wiseman, J. M.; Li, J.; Bottaro, C. S., Desorption electrospray 
ionization-mass spectrometry for the detection of analytes extracted by thin-film 
molecularly imprinted polymers. The Analyst 2010, 135 (9), 2237-40. 

13. Zhigalko, M. V.; Shishkin, O. V.; Gorb, L.; Leszczynski, J., Out-of-plane 
deformability of aromatic systems in naphthalene, anthracene and phenanthrene. Journal 
of Molecular Structure 2004, 693 (1-3), 153-159. 

14. Report 364. Fate and effects of naturally occurring substances in produced water on 
the marine environment; International Oil and Gas Producers Association: London, UK, 
2005; p 42. 

143 

 



 

 

Chapter 6. Application of Surface Enhanced Raman Spectroscopy for 

Detection of Water Contaminants on Molecularly Imprinted Polymeric 

Films 
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6.1  Introduction 

Surface enhanced Raman spectroscopy (SERS) is a powerful analytical method that 

can provide highly sensitive and selective chemical analysis. Raman scattering is inelastic 

in its nature, where an incident photon loses a part of its energy to a molecule through 

vibrational or rotational excitation. This scattering is a very weak process where only 

10-6 – 10-8 of incident photons constitute Raman scattering [1]. Raman scattering can be 

greatly enhanced, up to 104 – 106 times, when a molecule is located in the electrical field 

of surface-plasmon resonance (SPR). SPR is induced on a metal surface in contact with 

incident light. For SPR to occur, the metal surface has to be rough at the nano-level; this 

can be accomplished with metal nanoparticles or in planar format as the nano-patterned 

metal surface. When Raman scattering is enhanced due to SPR on the metal surface, it is 

called surface enhanced Raman scattering3. SERS is one of the most sensitive techniques, 

with detection limits comparable to those achieved with fluorimetry. At the same time, 

the narrow bandwidth of Raman peaks gives a measure of selectivity [2, 3]. For the SERS 

phenomenum to occur, the contact between an analyte and the roughened metal surface, 

or a SERS substrate, is essential, though, SPR can influence molecules at a distance of 

several nanometers from the surface [3]. Initially, the analyte moves freely in the aqueous 

environment. In order to hold the analyte close to the metal surface, a polymeric film of 

adsorbent can be used. In this case, the detection will also benefit from the analyte 

preconcentration and separation. Such film can be made of a MIP as an effective and 

selective adsorbent that targets a certain analyte. 

3 also abbreviate as SERS,  the same as  surface enhanced Raman spectroscopy (SERS) 
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MIPs can be combined with a metal substrate for the SERS detection in a variety of 

ways. A MIP film can be immobilized directly on the surface of a planar SERS substrate, 

so that the MIP will become the mediator between the metal surface and the adsorbed 

analyte. This approach has been used for the development of an on-line SERS sensor [4, 

5].  Initially, a vinyl based MIP was spin coated on a silver surface [4]. The drawback of 

this work was the detachment of the polymer film after the immobilization. Later this 

problem was solved by using molecularly imprinted xerogels coated on a commercial 

gold substrate, and a detection system for explosives such as nitro-aromatics was 

developed [5]. Another away to combine MIP and a SERS substrate is to apply metal 

nanoparticles on a MIP film with a loaded analyte. A similar detection approach has been 

applied in thin-layer chromatography (TLC) not only for identification but also for 

quantitation, where a metal colloid is pipetted onto an analyte spot on a TLC plate [6, 7]. 

Thus, it would be reasonable to do the same on a MIP film in the development of 

analytical test-systems. The development and characterization of this approach constitute 

a main subject of this research project, where special attention is given to the metal 

nanoparticles.  

Nanoparticles have the advantage that they can be easily prepared in bulk with 

“wet” chemistry methods and divided into aliquots, where differences between individual 

particles are averaged. Such dispersions of nanoparticles can be easily applied on any 

sample, including biological materials for chemical characterization. Also, nanoparticles 

can be immobilized to a flat surface to form a planar SERS substrate, which can be used 

for the SERS detection [8].  
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Metal nanoparticles are usually prepared through the reduction of silver nitrate or 

gold chloride, forming dispersions of these metals in a liquid phase, either as a colloid or 

suspension [6, 8]. Sodium citrate, sodium borohydride, and hydroxylamine hydrochloride 

are common reduction agents. SERS nanoparticles are mostly prepared from silver and 

gold due to their unique light absorption properties [9]. In this work, silver nanoparticles 

were applied mainly because they constitute the most widespread and studied group of 

SERS substrates. The most common method to prepare silver nanoparticles is from Lee 

and Meisel [6, 10], where silver nitrate is reduced with sodium citrate forming a colloidal 

solution. Nanoparticles can be prepared as spheres, rods, cubes, prisms, or stars in 

different sizes typically ranging in 1 – 100 nm [11]. The size and shape depends on the 

reduction conditions and the use of capping agents, e.g., sodium dodecyl sulphate, 

polyvinylpyrrolidone, which regulate and direct the growth of nanoparticles. The size and 

shape of metal nanoparticles determines SERS enhancement efficiency and the region of 

light wavelengths at which SPR occurs. For example, for gold and larger sized silver 

nanoparticles including clusters of single nanoparticles, SPR is observed at a broad range 

of wavelengths that also covers visible red and near IR regions [12]. Thus, there is a 

variety of different metal nanoparticles and some of them should be chosen as SERS 

substrates in this work.  

Another important SERS measurement parameter is the wavelength of laser used. 

Commercially available lasers emit green (514.5, 532 nm), red (633 nm), and infrared 

radiation (785, 833, and 1064 nm).  Usually, SPR for different nanoparticles is observed 

in a wide wavelength interval including visible and near-IR range making many lasers 
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applicable in terms of inducing SPR [12]. However, there are also other factors that 

determine what lasers should be used. The laser wavelength greatly determines the 

intensity of Raman scattering. The lower the wavelength, the higher the fraction of the 

Raman scattered light, but there is a higher probability of sample photo-degradation. 

Also, fluorescence, a well-known interference in Raman measurements, can be increased 

or avoided depending on the laser wavelength used [7, 13].  

Not all analytes can give intense SERS. In many publications, SERS is often 

measured for dyes. These dyes have functionalities to interact strongly with a negatively 

charged silver surface, e.g., through positively charged nitrogen.  Also, they absorb light 

in the visible region. Therefore, when lasers with wavelengths within this absorption 

region are used, SERS takes place at resonance, or surface-enhanced resonance Raman 

scattering (SERRS) is observed. This leads to additional enhancement of Raman 

scattering, 105–106 higher than SERS [14], with very intense and distinctive peaks from 

these dye. However, the detection of the dyes is hardly important in chemical analysis, 

particularly, in environmental monitoring, due to their limited occurrence. Dyes are 

mainly used as model compounds to study properties of nanoparticles and their treatment 

[15]. However, the SERS detection of the dyes in ancient artefacts has been applied in 

archaeology [16]. Other compounds that can be successfully detected with SERS on 

nanoparticles are those that can chemisorb on the nanoparticle surface. Compounds that 

contain quaternary nitrogens, hydrosulfide groups, and carboxyl groups can participate in 

the chemisorption, e.g., aminoacids and some pharmaceuticals [7, 17, 18]. However, the 

majority of water pollutants from oil extraction, e.g., phenols and PAHs, whose analysis 
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is the object of this thesis, cannot adsorb strongly on the metal surface. The most 

important challenge associated with the SERS detection of such compounds is that they 

do not strongly interact with a surface of a SERS substrate. Despite this challenge, the 

successful detection of phenols with a semi-aggregated colloid on a TLC plate has been 

demonstrated by Li et al. [6].   

There silver nanospheres and nansostars were made and treated by different 

methods to induce SERS of phenols, dibenzothiophene, and other species. SERS 

measurements with a 532 nm laser were compared to those with a 830 nm laser in terms 

of how sample photodegradation and fluorescence excitation can be minimized or 

eliminated. Initially, these measurements were completed on silica (TLC plates) for 

simplicity because this matrix has a relatively low Raman/SERS background. Problems 

associated with the use of MIP as the matrix for the detection were revealed, and 

solutions were proposed. 

6.2 Materials and methods 

Silver nitrate (99.9999%), sodium citrate tribasic dihydrate (≥99%), 

polyvinylpyrrolidone (average Mw 10 000), polyvinylpyrrolidone with average  

Mw 10 000 and polyvinylpyrrolidone with average Mw 40 000, sodium L-ascorbate 

(≥99.0%), sodium dodecylsulphate (≥98.5%), Rhodamine 6G (95 %), L-phenylalanine 

(≥98%), dibenzothiophene (≥98.0%) were purchased from Sigma-Aldrich (Oakville, ON, 

Canada). Tetraethylammonium chloride was supplied with Eastman Chemical Company 

(Kingsport, TN, USA) and sodium chloride (ACS reagent) with A&C American 

149 

 



 

Chemicals (Saint-Laurent, QC, Canada). 2,4,6-Trimethylphenol (98%) was from Alfa 

Aesar (Ward Hill, MA, USA). 

Two Raman spectrometers were used to acquire data: a confocal LabRam (Horiba 

Jobin Yvon, Edison, NJ, USA) equipped with Olympus BX41 microscope, 532 nm  

70 mW solid diode laser, CCD detector with a 1024 pixel chip, and 1800 lines/mm 

grating; and a Renishaw in Via Raman system (Mississauga, ON, Canada) equipped with 

Leica DM2500M microscope, 830 nm 500 mW diode laser, CCD detector, and 1200 

lines/mm grating. Absorbance spectra of silver nanoparticles were measured with Thermo 

Scientific Evolution 600 UV-Vis Spectrophotometer (Thermo Scientific, Ottawa, ON, 

Canada) against pure water in the reference cuvette.  Spectra were acquired from 300 to 

800 nm at a 240 nm min-1 scanning rate with the monochromator slit set 4 nm. Prior to 

the measurements, freshly prepared silver dispersions were diluted with water so that the 

absorbance was below 1.5; the dilution was 1:10 for the nanospheres and 3:50 for the 

nanostars.  

6.2.1 Preparation of silver nanoparticles 

A colloidal solution of silver nanospheres was prepared according to the modified 

Lee-Meisel procedure [6]. Silver nitrate (19.0 mg), 2.00 mL of the aqueous solution 

containing trisodium citrate (1.00% w/w) and polyvinylpyrrolidone (Mw 10 000, 0.02% 

w/w) were added into 100 mL of deionized water. The resulting solution was mixed and 

reacted during the course of boiling for 30 min. The resulting nanoparticles were isolated 

from the prepared colloid by centrifugation (8000 rpm). Finally, the nanoparticles were 

redispersed with water to make the 1.0 mM silver colloid.  
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The suspension of silver nanostars was prepared according to the previous 

procedure by Shen et al. [15]. Briefly, in 5.00 mL of deionized water, 0.0490 g of 

polyvinylpyrrolidone (Mw 40 000), 100 µL of 12.5 mM sodium dodecyl sulphate 

aqueous solution, 3.0 mL of aqueous solution containing 0.0239 g of silver nitrate,                

3.0 mL of aqueous solution containing 0.0099 g of sodium ascorbate were reacted at               

30 °C for 5 min. The nanoparticles were centrifuged (2000 rpm) and resuspended in water 

three times to make the final volume of the suspension up to 1.10 mL.    

6.2.2 Treatment of silver nanoparticles 

Before the use in SERS enhancement experiments, silver nanoparticles were treated 

in the following ways. Nanostars were washed with 10 mM solution of NaCl or 10 mM 

solution of [(C2H5)4N]Cl. In a micro-centrifugation vial (1.2 mL), 50 µL of the initial 

silver nanostar suspension was redispersed at sonication in 1 mL of NaCl (10 mM) 

solution in  ethanol:water (1:1) (or the same concentration of [(C2H5)4N]Cl in 

ethanol/water). The resulting suspension was left standing for 5 min. Next, particles were 

completely precipitated with centrifugation (6400 rpm, 2 min) and again redispersed with  

ethanol:water (1:1) at sonication to about 50 µL volume. In the case of [(C2H5)4N]Cl, one 

extra cycle of redispersion with ethanol:water (1:1) and the subsequent centrifugation was 

completed to remove [(C2H5)4N]Cl. The final suspensions were prepared immediately 

before use. Silver nanospheres (1.0 mM) were semi-aggregated in the recommended 

conditions:  NaCl (20 mM) and 1 – 2 min duration [6]. Therefore, for the semi-

aggregation, 20 µL of NaCl (0.5 M) aqueous solution was pipetted into 0.500 mL of the 
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silver colloid, mixed, and let standing for 1 min before pipetting this semi-aggregated 

colloid on silica spots or a MIP film. 

6.2.3 Preparation of samples for SERS/Raman measurements  

For experiments with Rhodamine 6G, the nanostars were deposited on a silicon 

wafer and treated with aqueous solution of  Rhodamine 6G (1 µM) exactly as in the 

original work [15]. Other analytes were deposited on the silica plates (Polygram Sil 

G/UV254 from Macherey-Nagel, Germany) according to the following procedure. On the 

plates, excess silica was removed to leave 4-5 mm diameter silica spots. A 5-µL aliquot 

of an analyte (18.75 g L−1) solution in acetonitrile or acetonitrile:water (1:1) was pipetted 

onto the spot and let dry. In this way, ~100 µg of L-phenylalanine, 2,4,6-trimethylphenol, 

and dibenzothiophene were deposited per spot. To deliver lower masses of these analytes, 

~1.3 µg per spot, solutions at 0.250 g L−1 was pipetted onto the silica spots. Finally, 6 µL 

of the silver nanoparticle dispersion was pipetted onto the analyte spot and let dry before 

SERS measurements. MIP films bound to glass slides synthesized from EGDMA as 

cross-linker, itaconic acid, 4-vinylpyridine, and styrene as monomers were prepared in the 

same way as in Chapter 4, and treated with the nanoparticles in the same way as the TLC 

plate. Some specific details of spectroscopic measurements are described in Table 6-1.  
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Table 6-1. Measurement and experimental parameters to obtain data for Chapter 6.  

 
Micro- 
scope 

objective 

Beam 
power, mW 

Integration 
time, sec 

Base                                         
for nanoparticles 

Figure 6-1 50× 35 4 Silicon wafer 

Figure 6-2 50× 0.7 5 Silica TLC plate 

 Figures 6-3 and 
6-4 20× 250 15 Silica TLC plate 

Figure 6-5            
(830 nm) 20× 250 15 1 – 4(IA):20(EGDMA)                

2 – 4(Sty):20(EGDMA)                
3 – 4(VP):20(EGDMA)   

films prepared as in                    
Chapter 4  Figure 6-5                  

(532 nm) 50× 7 40 

 

6.3 Results and discussion 

6.3.1 The rationale for choice of methods for synthesis and post-treatment of silver 
nanoparticles 

To perform SERS measurements, it is always necessary to select an effective SERS 

substrate. The two kinds of nanoparticles chosen for this purpose were smaller sized 

silver nanospheres (~60 nm) and much bigger sized nanostars (~500 nm). The 

nanospheres were prepared via the reduction of silver nitrate with sodium citrate in the 

presence of polyvinylpyrrolidone.  The role of polyvinylpyrrolidone in the preparation of 

the nanospheres was to regulate the size and uniformity [6]. Semi-aggregation of these 

nanoparticles into their clusters is required to achieve higher SERS enhancement and to 

shift SPR into the visible and IR regions. One way to achieve the increase in SERS 
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enhancement is a so called gap-plasmon effect, which is observed when an analyte 

molecule is located between two or several metal surfaces. The gap-plasmon effect can be 

achieved with silver colloid applied and dried on any surface, e.g., MIP films or TLC 

plates. In this case, the nanoparticles become closely spaced entrapping analyte molecules 

[12]. The achievement of the gap-plasmon effect as a result of simple drying of the 

dispersion is another advantage of using metal nanoparticles as a SERS substrate.  The 

semi-aggregation of nanoparticles is induced with the addition of electrolytes into the 

colloid. For example, sodium chloride, nitric acid, or even an analyte itself, such as 

pyridine and alkaloids, can induce the aggregation.  However, semi-aggregated colloids 

are highly unstable after being aggregated and, as a result, their ability to enhance SERS 

rapidly diminishes with time; this greatly affects the robustness of SERS measurements 

especially for quantitative analysis [19]. Therefore, beside semi-aggregated nanospheres, 

other nanoparticles were also investigated, which could be used without the semi-

aggregation step.  

Silver nanostars with sharp tips were synthesized through the reduction of silver 

nitrate with sodium ascorbate [15]. In this process, sodium dodecylsulfate and 

polyvinylpyrrolidone directed the growth of the nanoparticles into the nanostars. The 

nanostars were used directly without semi-aggregation and exhibited a strong 

enhancement effect for Rhodamine 6G. Therefore, they were also tried in this project as 

an alternative to the clusters of nanospheres. The procedure of the nanostars synthesis is 

especially attractive because it only requires mixing of the reagents, and the synthesis 

takes only 5 min.  
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When nanoparticles are synthesized with “wet” chemistry methods, SERS spectra 

can be populated with so called “anomalous” peaks.  These originate from reducing 

agents, e.g. citrate anion, products of their oxidation, and surfactants, which are 

chemisorbed on the metal surface [17, 20]. These chemisorbed species carry the charge of 

the dispersed nanoparticles, preventing their coagulation. When silver colloid is semi-

aggregated with chloride, it is suggested that the SERS signal is enhanced not only 

because of the semi-aggregation but also due to “chloride activation” [21].  Treatment of 

colloids with Cl- has numerous effects. First, the substitution of polyvalent anions with Cl-  

removes the charge from the surface of nanoparticles, which leads to the formation of the 

clusters of nanoparticles, i.e., semi-aggregation. Second, due to the small size of Cl-, 

closer contact between analyte and the metal surface becomes possible, which facilitates 

the SERS enhancement by the metal surface, or in other words “chloride activation” takes 

place. In addition to “chloride activation”, the substitution of polyatomic anions, e.g., 

ascorbate, with Cl- leads to the suppression of anomalous bands because no Raman bands 

originate from Cl- [12]. Washing of prepared silver nanostars with chloride solutions was 

also carried out to cause “chloride” activation without the semi-aggregation.   

6.3.2 SERS measurements with a 532 nm laser 

SERS experiments were completed with a Raman system equipped with a 532 nm 

laser. The first step was to ensure that both silver nanostars and nanospheres were 

working SERS substrates. The nanoparticles were tested as SERS substrates using a 

model dye, Rhodamine 6G, in a same procedure reported along with the synthesis of the 

nanostars [15]. The UV-Vis absorbance spectra of the synthesized nanoparticles were 
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measured to confirm that the nanoparticles prepared in this work resembled the 

nanoparticles prepared by others [6, 15]. It was found that both nanostars and 

nanospheres induced strong SERS of Rhodamine 6G with characteristic and intense 

bands: 1129, 1183, 1312, 1363, 1509, 1574, and 1651 cm-1 [15] (Figure 6-1). This proved 

that the nanoparticles prepared in this work were functional SERS substrates. It is 

interesting to note that Rhodamine 6G is a strong fluorescent dye, but its fluorescence 

was quenched at SPR and no fluorescence background was detected (Figure 6-1). A 

similar phenomenon was observed for graphene deposited on gold nanoparticles [22].  

 

Figure 6-1. SERS spectra (532 nm laser) of Rhodamine 6G  adsorbed on (A) silver 
nanostars and (B) nanospheres. 
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After the quality check, these nanoparticles were applied for SERS detection of 

neutral compounds: phenol, 2,4-dimethylphenol, catechol, and caffeine. Nanostars were 

washed with different solutions: HCl (1.0 mM), NaCl (10 mM), tetraethyl ammonium 

chloride (10 mM). Nanospheres were semi-aggregated in NaCl solution (20 mM). 

However, in all these experiments, no meaningful spectra for these compounds were 

observed. The measured spectra were varied with no consistent or characteristic features 

from spot to spot and scan to scan (Figure 6-2). This instability of the measured spectra 

can be a sign of photodegradation with graphitization of an analyte. Treatment of the 

nanostars with the NaCl solution simplified spectra of blanks because the organic species 

chemisorbed on the silver surface were removed at this washing step. However, this was 

not enough to give reproducible and meaningful SERS spectra for the analytes. All 

analytes, as organic matter, underwent intense photodegradation on the surface of silver 

nanoparticles.    
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Figure 6-2. SERS spectra (532 nm laser) of phenol on nanostars (A), and (B) bare 
nanostars; A 1, 2, 3 – parallel scans.    

 

Similar uncharacteristic SERS spectra have been observed by others and with other 

analytes such as aminoacids [7], sulfonamides, amino-, and nitropyrenes [23], when green 

lasers (532 and 514.5 nm) were used. These spectra showed broad peaks from the 

amorphous carbon. The “burning” problem can be related to the use of green lasers.  The 

relatively high energy photons from the green lasers induce very strong local electrical 

field on the surface of nanoparticles. This causes the graphitization of analytes and other 

adsorbed species leading to the appearance of wide and tall “cathedral” peaks centered at 
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1360 and 1560 cm-1. The shape and intensity of these peaks fluctuated from scan to scan 

[24]. The fact that amorphous carbon absorbs light over a wide range of wavelengths, 

including visible and IR regions, SERRS for amorphous carbon was observed when the 

green laser was employed. This explains why observed peaks were so intense.  

Compared to phenol and other neutral analytes, very characteristic and reproducible 

SERS spectra were measured for Rhodamine 6G with 532 nm laser (Figure 6-1). 

Rhodamine 6G, with positively charged nitrogen, strongly interacts with the negatively 

charged silver surface replacing other adsorbed organic species that would produce 

anomalous and graphite peaks. Also, Rhodamine 6G absorbs light in the green region; 

therefore, SERS is enhanced even further because of this additional resonance 

component. Perhaps, because of a higher yield of SERRS, more laser energy is consumed 

by the Raman process rather than in graphitization.   

The problem of photodegradation is a common problem for Raman microscopy and 

a number of approaches have been developed to diminish it: laser beam attenuation or 

defocusing, the use of objectives with lower numerical aperture values, the decrease of 

illumination time, and spinning or wetting a sample [23-26]. To solve the problem, all of 

these approaches were attempted, except spinning the sample; however, the “burning” 

effect could not be completely eliminated for phenols, or caffeine. The only positive 

result achieved was the reduction in the intensity of the graphite peaks. These methods 

only serve to reduce photon flux or heating per an exposed area or time. Another more 

fundamental solution is to use longer wavelength lasers, which emit less energetic 

photons, for example, near infra-red (NIR) lasers (785; 830; 1064 nm). Using a 830 nm 

laser Raman system, the similar set of experiments was completed. 
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6.3.3 SERS measurements with a 830 nm laser 

In the second round of experiments, the same types of nanoparticles as in the 

previous section were used for SERS measurements with a 830 nm laser Raman 

microscope. Targeted analytes included an alkylphenol representative,                                 

2,4,6-trimethylphenol, and dibenzothiophene as another important water pollutant from 

oil extraction. L-phenylalanine was used as a reference compound. SERS spectra of              

L-phenylalanine were already recorded with the use of the Lee-Meisel silver colloid [7]. 

In this work L-phenylalanine was used to check if tested nanoparticles could yield SERS 

in the new measurement conditions. L-phenylalanine had the same role as Rhodamine 6G 

in the experiments with 532 nm laser.  

Compared to the SERS measurements with 532 nm laser, 830 nm laser made it 

possible to measure reproducible SERS spectra without many fluctuating features (Figure 

6-3). No signs of photodecomposition were observed even at relatively high laser beam 

power (250 mW). Focusing with 20 × objectives was preferred because it provided less 

light power per illuminated area, which reduces the risk of sample heating and 

photodegradation. Another advantage to using this objective with the low numerical 

aperture value is an ease of focusing the laser beam. SERS spectra for both types of 

nanoparticles showed a presence of some anomalous bands (Figure 6-3) but they rarely 

overlapped with bands from the analytes (Figure 6-3, Spectrum 4). Raman spectra were 

measured exactly under the same conditions as SERS spectra for the same amount of an 

analyte but without any silver nanoparticles (Figure 6-3, Spectrum 2).  
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Figure 6-3. Raman and SERS spectra of (A) L-phenylalanine;                                          
(B) 2,4,6-trimethylphenol; (C) dibenzothiophene (~100 µg each)  
loaded on silica (cont. on the next page). 

161 

 



 

 

Figure 6-3 (cont). Raman and SERS spectra of (A) L-phenylalanine;                                          
(B) 2,4,6-trimethylphenol; (C) dibenzothiophene (~100 µg each) loaded on silica.                  
 
Note: 1 – Raman spectrum of bare silica; 2 – Raman spectrum of analyte on silica; 3 – 
SERS spectrum of semi-aggregated silver colloid; 4 – SERS spectrum of analyte on semi-
aggregated silver colloid.   

 

Initially, both Raman and SERS spectra were recorded for a high amount of analyte 

(~100 µg per spot) to make it easier to acquire interpretable and distinctive Raman spectra 

and to identify the most intense vibrational modes (Figure 6-3). In both Raman and SERS 

spectra, an intense band at 1002 cm-1 was observed for L-phenylalanine as in previous 

work [7]. The most intense peaks for 2,4,6-trimethylphenol appeared at 575 and                          

1311 cm-1. Several strong peaks were observed for dibenzothiophene at 408, 702, 1026, 

1600 cm-1.   
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Silver nanospheres and nanostars were compared in terms of the SERS 

enhancement. Although there was variation in peak heights from sample to sample, 

comparison of average heights for the same band in Raman and SERS spectra gave an 

approximation of the extent of SERS enhancement. In this study, semi-aggregated silver 

nanospheres showed the highest enhancement for all analytes; the SERS spectra obtained 

with this substrate are shown in Figure 6-3. The nanostars without washing treatment and 

those washed with solutions of NaCl and tetraethyl ammonium chloride gave weaker 

SERS enhancement. Thus, the nanospheres treated by semi-aggregation show to be a 

more efficient SERS substrate than the nanostars. Semi-aggregation is a more crucial 

factor for the enhancement than the highly rough surface of nanostars.       

A comparison of SERS enhancement for the analytes shows that the SERS 

enhancement for dibenzothiophene and L-phenylalanine was higher than for 2,4,6-

trimethylphenol (Figure 6-3). This can be explained by the fact that these compounds can 

bind to colloidal silver, dibenzothiophene via the sulfur moiety and L-phenylalanine 

through a positive charge of its zwitter ion.  

SERS spectra that were discussed so far were recorded for analytes present in large 

quantity on silica (Figure 6-3). In this case, these spectra probably also contain a 

significant portion of non-enhanced Raman scattering. SERS measurements were also 

completed for lower amounts of analytes (~1.33 µg per spot), which produced a 

negligible intensity of Raman scattering (Spectra 1 and 2 in Figure 6-4). The low analyte 

loading made it possible to estimate the SERS enhancement when the silver surface was 

not saturated with an analyte, which is appropriate for the estimation of sensitivity of 
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detection. Experiments at low analyte loading showed that only dibenzothiophene (Figure 

6-4), but not L-phenylalanine or 2,4,6-trimethylphenol, produced SERS spectra 

discernible from the background. Thus, dibenzothiophene is promising for the detection 

with high sensitivity.   

 

 

Figure 6-4. Raman and SERS spectra of dibenzothiophene (~1.33 µg) loaded on silica;               
1 – Raman spectrum of bare silica; 2 – Raman spectrum of dibenzothiophene  on silica;                 
3 – SERS spectrum of semi-aggregated silver colloid; 4 – SERS spectrum of 
dibenzothiophene  on semi-aggregated silver colloid.   
 

Raman and SERS peaks of dibenzothiophene and 2,4,6-trimethylphenol mainly 

originate from ring breathing modes. According to previous work [27], some of the 
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observed bands for dibenzothiophene can be assigned (within the measurement error            

±4 cm-1) to the following vibrational transitions: 703 cm-1 – one of “the CCC in-plane 

bending modes”; 1025 cm-1 – one of “the ring C–H in-plane bending modes of the 

aromatic systems combined with the C–C stretching modes4”; bands between

1300–1700 cm-1  – “the C–C stretching modes in the aromatic system combined with the 

β(HCC)”.  It is not possible to see the 496 cm-1 band in the Raman spectrum of 

dibenzothiophene (Figure 6-4). This band is relatively much less intense than other 

assigned peaks in the Raman spectrum, e.g., 703 and 1025 cm-1, according to Figure 6-3C 

and dibenzothiophene Raman spectrum measured by Frank et al. [27]. The situation 

becomes dramatically different with SERS where the peak at 496 cm-1 is one of the most 

intense. Thus, among all vibrational modes, the highest enhancement was observed for 

the 496 cm-1 peak, which corresponds to “the in-plane deformation mode of the thiophene 

ring, α(CSC)” [27]. The fact that the highest SERS enhancement was achieved for the 

moiety containing sulfur is indicative of strong interaction between the sulfur moiety and 

the silver surface. This interaction with the silver surface together with the high 

polarizabilty of dibenzothiophene can explain the high sensitivity of SERS for 

dibenzothiophene as compared to trimethylphenol and L-phenylalanine. The fact that 

dibenzothiophene can produce a SERS signal under conditions when other aromatics do 

not, demonstrates a distinct selectivity of SERS detection for thiophenes as water 

contaminants and components of oil.  

4 this combined vibration is further indicated in the text as β(HCC) 
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6.3.4 MIP as a matrix for SERS detection 

A MIP has a complex composition consisting of cross-linked carbon chains, 

residual vinyl groups, and various monomer functionalities, which sometimes include 

aromatic moieties. All these moieties can result in vibrational bands in a SERS spectrum 

when MIP is used as a matrix to carry an analyte. Therefore, when SERS measurements 

are completed on a MIP film with an adsorbed analyte, the MIP can yield its own 

characteristic SERS spectrum, which will constitute the detection background. Although 

such a complex background is always undesirable, it can be used for an internal 

standardization in quantitative analysis. It is known that the heights of Raman and SERS 

peaks fluctuate from scan to scan because of variations in illumination and enhancement 

conditions. Analytical peaks could be normalized against a peak originating from the MIP 

matrix to achieve a more consistent quantitative analysis. 

When a 830 nm laser was used to produce Raman scattering of the MIPs based on 

different functional monomers, the Raman spectra showed to be seriously distorted by 

fluorescence from the MIP matrices (Figure 6-5). This makes it impossible to further 

measure any Raman and SERS spectra on the MIPs with 830 nm laser wavelength, 

despite the fact that the “burning” problem is eliminated with this laser wavelength.  

Similar measurements of Raman spectra of the MIPs were completed with 532 nm laser 

(Figure 6-5). In this circumstance, vibrational bands of the MIPs were observed without a 

fluorescence background.  The spectra of MIPs obtained at 830 nm have the same Raman 

peaks as in 532 nm spectra, but those peaks are superimposed on the broad fluorescence 

band. It is unusual to observe the excitation of fluorescence with 830 nm laser because 

traditionally near-IR lasers are specially designed not only to avoid photodegradation but 
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also fluorescence, e.g., for silica TLC plates [7]. Undesirable fluorescence is often 

observed for many samples when a green laser is employed [7, 23], which is not the case 

with the MIPs.  

 

Figure 6-5. Raman spectra for MIP matrices based on EGDMA and different monomers: 
(1) itaconic acid; (2) styrene; (3) 4-vinylpyridine; scans with (A) 830 nm and (B) 532 nm 
lasers.  
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The interference by fluorescence can be eliminated with a time-resolved Raman 

spectrometer, though this equipment is very expensive, complex, and not widely-

available.  Another way to solve this problem may be to use a red laser (633 nm), which 

is another common laser source in Raman spectrometry. This wavelength maybe a 

compromise as it is between the near-IR region, where no photon induced damage occurs, 

but the fluorescence is observed, and the green region, where a sample is photo degraded 

but the fluorescence is not apparent. An even more dramatic and reliable way to solve the 

problem would be to use an MIP of completely different composition, for example, silica 

xerogels did not yield a background fluorescence when it was immobilized on a gold 

planar SERS substrate and  a 785 nm laser was used [5].  

6.4 Conclusions and future work 

The idea of this research project was to develop an analytical test system based on 

SERS detection where silver nanoparticles are applied on a MIP film with an adsorbed 

analyte.  An important feature of this detection approach is the direct contact between the 

nanoparticle surface and analyte, the preconcentration and separation of analyte, and the 

possibility to use a SERS peak originating from the MIP for internal standardization. The 

effect of different experimental parameters on the SERS detection, such as the type of 

nanoparticles, a laser wavelength, and the nature of an analyte were studied. Silver semi-

aggregated nanospheres and nanostars were prepared and treated with “wet” chemistry 

methods to be used as SERS substrates. The semi-aggregated nanospheres induced more 

intense SERS than did the “chloride” activated nanostars, which points to a direction to 

improve the sensitivity of SERS detection, i.e., looking at different silver nanosphere 
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preparation and semi-aggregation procedures. Laser wavelength has been shown to have a 

dramatic effect on the quality of SERS measurements in terms of sample graphitization 

and excitation of fluorescence from MIPs. The green laser (532 nm) caused 

graphitization, while 830 nm-laser resulted in the abundant fluorescence background, 

seriously impeding the SERS detection on the MIPs. This project is not finished, and 

there is much work left to do to solve the problems encountered. The fluorescence from a 

MIP matrix should be eliminated; it is proposed that a red laser to be tested to avoid both 

the graphitization and fluorescence issues, or it may be necessary to use a MIP matrix of 

completely different composition. It is also reasonable to switch the targets of detection 

from phenol and alkylphenols to thiophenes, as another group of water contaminants from 

oil extraction and indicators of oil pollution. The reason for the change is that thiophenes 

are better suited for SERS detection due to the sulfur moiety, which can interact with the 

silver surface of nanoparticles.  
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Chapter 7. Application of Fluorimetry for Detection of         

Water Contaminants on Molecularly Imprinted Polymeric Films 
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7.1 Introduction 

Fluorescence spectrometry, or fluorimetry, is one of the most sensitive methods of 

chemical analysis. It is based on the phenomenon of fluorescence. Fluorescence is a two 

photon process, which includes the following steps; first, a molecule absorbing a photon 

is excited from the ground singlet electronic state to an excited singlet electronic state, 

whose vibrational energy level can vary. Next, non-radiative vibrational relaxation brings 

the molecule into the lowest vibrational level within the same excited singlet electronic 

state.  Following this, the energy transition to any vibrational level of the ground singlet 

electronic state yields a photon. Such photons constitute fluorescence, which has a longer 

wavelength than the exciting, or absorbed, radiation [1]. 

Fluorescence intensity (F, photon counts sec-1) can be approximated at low analyte 

concentrations (C) when εbc≤0.02 as: 

cbPkF F ⋅⋅⋅⋅⋅= εφ 0     (7-1) 

where k is the collection efficiency of fluorescence with fluorimeter optics; ϕF is the 

quantum yield of fluorescence; P0 is the power of an excitation beam; ε is an absorption 

coefficient; b is the path length. Fluorescence can be a relatively efficient process where 

typical ϕF values for an average fluorophore are between 0.1 and up to unity. 

Fluorescence intensity can be raised by the increase of k and P0, which are related to 

fluorimeter optics, light source, and measurement settings. In favorable experimental 

conditions, the limit of the detection is mostly blank limited [2]. Compared to absorption 

spectrometry, fluorimetry has much lower detection limits and the linear range is wider 

[3]. The selectivity of fluorimetry is partially determined by the fact that not all species 
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can fluoresce. In addition, different fluorophores have different excitation spectra; 

therefore, the fluorophores can be excited in different wavelength regions. The same is 

true for the emission from different fluorophores, which can be detected at different 

wavelength regions. Thus, the excitation and emission collection can be performed with 

some measure of selectivity. However, the overlap of excitation and emission bands in a 

mixture of fluorophores, is common [3, 4].  

Many water contaminants associated with oil extraction are aromatic, for example, 

alkylphenols, PAHs, and alkylbenzenes, and these can fluoresce. Fluorimetric detection 

of these analytes can be achieved directly in water [4], or the targets can be separated and 

preconcentrated on an adsorbent [5], which can be a MIP [6]. Fluorescence is susceptible 

to various matrix effects that usually quench but can also enhance the fluorescence signal, 

which can have negative consequences for quantitative fluorimetry [7]. To minimize 

these effects, the separation of an analyte from matrix interferences is very desirable. The 

separation results in the partition of analyte from water into a stationary phase with 

consistent composition. Once sequestered, the analyte can be detected directly on the 

MIP, which makes it possible to avoid the additional sources of error associated with 

sample handling such as the solvent extraction and reduction of extract volume. In 

addition, this simplification saves time and reagents. Coupling of MIPs or other adsorbent 

materials with fluorimetry has been completed before. In several examples, a polymeric 

adsorbent in the form of particles was packed in a flow-through cell with the light path of 

~1 mm to accomplish the flow injection analysis [8] of aromatic hydrocarbons [9], 

naphthylamines [10], and PAHs [5] in water. A MIP film was incorporated into a 

microfluidic device for the detection of the dansyl derivatives of amino acids [11].  The 
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MIP film prepared by polyurethane polymerization [6, 12] and MIP particles by vinyl 

polymerization [13] were exploited for sensing PAHs. A fluorescence sensor for 

nitroaromatic explosives was developed based on a MIP with incorporated quantum dots. 

The inherent fluorescence of the quantum dots was quenched as a result of the binding 

event [14].  

Because this work deals actively with the measurement of fluorescence from a 

solid, a MIP film, some background information about the nature of this type of 

measurement is given below. The measurement of fluorescence from solid materials is 

very common. In addition to the measurements in flow-injection analysis and chemical 

sensing exemplified above, fluorescence detection is also applied for thin layer 

chromatography and for in situ analysis of solid objects, e.g, tree leaves contaminated 

with PAHs [15]. Fluorimetry, applied to solid samples, is called “solid phase (or state) 

fluorimetry” due to some specificities of this kind of measurements. To observe 

fluorescence, an analyte can be spread on silica, paper, nylon, or salts, e.g., sodium 

acetate [15].  Compared to liquid samples, the movement of molecules is restricted in a 

solid matrix. This restriction can quench or, in reverse, enhance the fluorescence.  

Since many solid samples, including polymers, are opaque or semi-opaque, 

fluorescence is measured as diffusely reflected emission.  The excitation radiation is also 

diffusely reflected from samples and makes its way into the detector, leading to an intense 

Rayleigh scattering peak in a fluorescence spectrum. The tail of this peak cannot be 

removed with the emission monochromator and constitutes stray light in the measured 

fluorescence signal [16]. In opaque samples fluorescence is mostly induced and emitted at 

or near the surface. Thus, only a tiny volume of a solid sample is required for the 
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measurements.  The excitation beam can be easily focused on a small spot of this sample. 

Therefore, solid-phase fluorimetry is very applicable in miniaturized analytical systems 

[11].  

Solid phase fluorimetry suffers from the same problems as fluorescence 

spectrometry in general. These problems include different types of self-absorption, also 

called inner-filter effects. A primary inner-filter effect is observed when part of the 

incident or excitation radiation is absorbed by an analyte, diminishing the intensity of 

excitation radiation. A secondary inner-filter effect takes place when fluorescence is 

reabsorbed by an analyte due to the natural overlap of an analyte’s absorption and 

emission bands. The inner-filter effects cause calibration lines to curve and the shapes of 

emission spectra to be distorted [17, 18]. The light path is shorter in opaque solids than in 

transparent liquids; therefore, the inner-filter effects are less pronounced for the opaque 

samples [17]. Another problem is background fluorescence [19] and Raman scattering 

[4], which both originate from a sample material. This is a factor that often limits the 

sensitivity of detection.  

There are several types of spectral experiments where excitation and emission 

wavelengths are scanned or set. An emission spectrum is obtained when the emission 

output is scanned at a constant excitation wavelength. An emission spectrum is the most 

common and is used both for quantitative and qualitative analysis. An excitation spectrum 

is obtained when the intensity of emission at a single wavelength is measured, while an 

excitation monochromator scans a range of excitation wavelengths. An excitation 

spectrum is proportional to an absorption spectrum [17], and in this work, fluorescence 

was recorded in this measurement mode to find the optimal excitation wavelength. 
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Another mode of fluorescence measurement is the synchronous scan, or dual wavelength 

spectroscopy, which deserves special attention. Excitation (λex) and emission (λem) 

wavelengths are scanned synchronously at a constant difference between them (Δλ).   

exem λλλ −=∆     (7-2) 

The synchronous scan makes it possible to extend the capabilities of fluorimetry 

and to correct its weaknesses in a number of ways. First, the amount of stray light, which 

passes two monochromators, is reduced because excitation and emission monochromators 

scan at a fixed offset (Δλ) [7]. Second, in a synchronous scan spectrum a band for the 

particular transition is often narrower than the corresponding band in an emission 

spectrum [7, 20]. The effect of peak narrowing makes it possible to resolve and identify 

peaks from different analytes in a mixture.  This deconvolution task is hardly possible in 

the emission scan mode even when excitation wavelengths are varied in an attempt to 

selectively excite certain analytes [7, 21, 20]. Third, synchronous scanning is widely used 

to record very characteristic “fingerprint” spectra, which can be used for identification of 

samples, e.g., of petroleum products [22].  

In this work, an approach for direct fluorimetric detection of analytes adsorbed on a 

MIP film was developed to be used independently or as part of a sensor for on-line 

monitoring of water contaminants. Factors influencing the quality of fluorescence 

measurements were studied and the optimal conditions for such measurements were 

determined. Particular effort was given to the synchronous scan mode. Spectra of phenol, 

caffeine, and PAHs on MIP films were recorded and the possibility of direct detection of 

these analytes was assessed.   
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7.2 Materials and methods 

Chlorosulfonic acid (99%), naphthalene (99%), phenanthrene (≥99.5%), caffeine 

(Reagent Plus grade), and phenol (99%) were purchased from Sigma-Aldrich (Oakville, 

ON, Canada). Coumarin (98 %) was supplied by Alfa Aesar (Ward Hill, MA, USA). 

Potassium hydroxide of ACS reagent grade was purchased from ACP Chemicals 

(Montreal, QC, Canada). 

7.2.1 Fluorimetric measurements 

Measurements were made with a Photon Technology International Quanta Master 

6000 spectrofluorimeter (Canada, ON, London) equipped as follows: 75W Usio Xenon 

arc lamp excitation source; Czerny-Turner f/3.4 grating excitation and emission 

monochromators; Hamamatsu R-928 five-stage photomultiplier tube. Excitation and 

emission spectra were corrected for the emission spectrum of the xenon lamp, the detector 

response, and light losses in optics with the correction curves supplied with Felix 32 

(Photon Technology International, Version 1.42b). Slit widths of excitation and emission 

monochromators were set at 4 mm each. A metal holder5 was constructed to mount a 

quartz slide with a bound MIP film in a stable illumination position. The holder was 

mounted with double-sided adhesive tape on the rotating stage as a fluorimeter accessory 

to complete the illumination of the film at different angles. The holder was placed on the 

stage in the position where the excitation beam was focused on a ~1×5 mm2 rectangular 

spot on the film surface.   

5 A picture of a slide holder working by the same principle, but made from plastic is shown in Chapter 8. 
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7.2.2 Fabrication of MIP films and analyte adsorption to these films 

Fabrication of 100 µm and 20 µm thick films is described in Chapter 2. In this 

work, a MIP was immobilized on a quartz slide instead of the glass slide because glass is 

fluorescent in UV light. Quartz slides  76×25×2 mm3 (Chemglass Life Sciences, 

Vineland, NJ, USA) were cut into 3 pieces 25×25 mm2 and used as the substrates for MIP 

films. To load MIP films with an analyte, 250 mL of aqueous solution of the analyte 

(phenol, caffeine, naphthalene, or phenanthrene) was stirred in a beaker with a slide/MIP 

film for 4.5 hours. For Figure 7-10, the volume of the phenanthrene solutions was set at 

750 mL to achieve the higher sensitivity of the detection. After analyte adsorption, the 

slide was removed, washed with water, and air dried. The composition of MIP films, the 

concentrations of analytes in the solutions for loading the MIP films, and measurement 

conditions used to obtain spectral data are given in Table 7-1.  
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Table 7-1. Measurement and experimental parameters to obtain data for Chapter 7.  

 
Composition of MIP 
with molar ratio of 

components 

Film 
thickness,               

µm 

Analyte, and its 
concentration in 

the aqueous 
solution 

Illuminatio
n geometry 
and angle 
(α) as in 

Figure 7-2 

Others 

Figure 
7-3 

1(toluene):4(VP): 
20(EGDMA) 

100 

phenanthrene,  
500 µg L−1 

 
front face          

at 30°; back 
surface at 

60° 

 

Figure 
7-4 

1 –4(Sty):20(EGDMA)                    
2 – EGDMA                                     

3 –4(MAA):20(EGDMA)                
4 – 4(VP):20(EGDMA)               

(non-imprinted) 

N.A. back surface 
at 60° 

spectra were 
normalized at 

370 nm 

Figure 
7-5 

1(toluene):4(VP): 
20(EGDMA) 

phenanthrene,                  
400 µg L−1 

front face         
at 20°  

Figure 
7-6 

1(ph-l): 
4(IA):20(EGDMA) 

phenol, 6.00  
mg L−1 

front face         
at 30°  

Figure 
7-7 

1(ph-l): 
4(IA):20(EGDMA 20 

a drop of 1mM 
dye solution was 
deposited on the 
film and air dried 

front face            
at  30° 

excitation beam 
was focused on 

the visibly 
fluorescent spot 

Figure 
7-8 

1(caffeine): 
4(MAA):20(EGDMA) 

100 

caffeine,                  
5.00 mg L−1 

front face               
at 20°  

Figure 
7-9 

1(ph-l):    
4(IA):20(EGDMA) 

naphthalene,   
1.00 mg L−1 

back surface  
at 60°  

Figure 
7-10 

1(toluene):4(VP): 
20(EGDMA) 

phenenanthrene,  
500 µg L−1 

front face        
at 20°  

Figure 
7-11 

1(toluene):4(VP): 
20(EGDMA) 

phenenanthrene: 
2.0, 5.0, 10, 20, 

40, 60, 100, 200, 
400 µg L−1 

front face           
at 20° 

peak was 
integrated from 
325 to 450 nm 

Note: The data in figures 7-3, 7-5, 7-10, and 7-11 were obtained with the use of MIP for 
PAHs based on 4-vinylpyridine and EGDMA. The MIP prepolymerization mixture was 
donated by Stefana Egli, who developed this MIP in her research project [23]. 
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7.2.3 Synthesis of coumarin-6-sulfonyl chloride and the derivatization of phenol  

Coumarin-6-sulfonyl chloride was synthesized according to a published procedure 

(Figure 7-1A) [24]. Coumarin (1) was mixed with in a three-fold molar excess of 

chlorosulfonic acid, and the mixture was stirred at 100 °C for 2 h. The reaction product 

(2) was recrystallized three times from toluene, but not benzene as in the original work 

because benzene is highly carcinogenic according to the material safety data sheet. The 

procedure for derivatization of phenol (Figure 7-1B) on a MIP film was developed based 

on conditions recommended for derivatization in solution as the sample preparation for 

chromatographic analysis [24, 25].  Coumarin-6-sulfonyl chloride (2) (1.2 mg) was 

dissolved in 0.3 mL of acetonitrile and 2.5 mL of NaHCO3/Na2CO3 aqueous buffer 

(pH=9.0). This solution was immediately sprayed on a 20 µm thick MIP film previously 

loaded with phenol to yield the dye precursor (3). The film was air dried, and 5% KOH 

aqueous was sprayed over the film to produce the fluorescing phenol-derivative (4); the 

film was air dried before fluorescence measurements.  
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Figure 7-1. Reactions for synthesis of coumarin-6-sulfonyl chloride and derivatization of 
phenol. 

 

7.3  Results and discussion 

7.3.1  Illumination geometries to excite fluorescence 

The immobilized MIP film can be illuminated by excitation from the front or back. 

Using back-surface excitation [26] (Figure 7-2), the rear side of the film was illuminated 

through the quartz slide and the emitted fluorescence was collected from the opposite 

side, or the front of the film. For front-face excitation, the incident beam illuminated the 

front side of the polymeric film and the emitted fluorescence was also collected from the 
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front side. The front-face is a basic illumination geometry in solid-phase fluorimetry [15, 

17] and this approach was used when a MIP film was coated on a face of a waveguide to 

form a fluorimetric sensor [6]. 

 

 

Figure 7-2. (A) Back-surface and (B) front-face illumination geometries to excite 
fluorescence from a polymeric film bound to the quartz slide. 
Note: 1 – incident, or excitation, beam; 2 – the reflected and scattered light; 3 – quartz 
slide with (4) the bound MIP film; 5 – omni-directional fluorescence; 6 – collecting lense 
of an emission monochromator. 

 

It was observed that the illumination geometries had a dramatic effect on the level 

of stray light, as well as the intensity of detected fluorescence, and the inner-filter effects. 

The main source of the stray light was the non-monochromatic light, which passed 

through the excitation monochromator.  In the case of opaque samples such as the MIP 

film, the level of stray light was significant because a large fraction of the incident 
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radiation was not transmitted through the sample but reflected from the MIP film and, 

therefore, reached the detector. The stray light was observed in the emission spectrum as 

a broad tail at wavelengths longer than the excitation wavelength (Figure 7-3).  The level 

of the stray light was much lower for the back-surface geometry: the tail ended at about 

350 nm compared to 425 nm for the front-face geometry. This observation can be 

explained. The incident beam was mostly scattered and reflected from the rear surface of 

the slide, and much less collected by the lens of the emission monochromator. This 

rejection of the stray-light is an important advantage of the back-surface geometry [26]. 

However, the comparison of the intensities of fluorescence peaks for both geometries 

shows that the detected fluorescence was much weaker with the nosier spectrum for the 

back-surface geometry. When the rear side of the MIP film was illuminated, the emitted 

fluorescence had to pass through the full thickness of the MIP film to be detected. As a 

result, the fluorescence was also significantly scattered, which diminished the intensity of 

detected fluorescence. Self-absorption appeared in the phenanthrene spectrum (Spectrum 

3 in Figure 7-3) as the lowering of the baseline below the zero line in the beginning of the 

spectrum. This depression of the baseline can be the result of absorbance of the stray light 

by phenanthrene, causing a background for the sample (Spectrum 1)  to be lower than for 

the blank (Spectrum 2). The self-absorption effect was more pronounced for the back-

surface geometry than for the front-face one because of the longer light path length [27].   
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Figure 7-3. Effect of (A) back-surface and (B) front-face illumination geometries on 
emission spectrum (λex=298 nm) of phenanthrene adsorbed on the MIP film. 

Note: 1 – the spectrum of phenanthrene on MIP film (sample); 2 – the spectrum of MIP 
film (blank); 3 – the difference between 1 and 2: the spectrum from phenanthrene itself. 

 

The level of stray light was reduced by varying the angle between the incident beam 

and the film surface (α in Figure 7-2). Different angles of illumination were tried for both 

geometries. In the case of the spectrofluorimeter used here, significant reduction of stray 

light was achieved at glazing angles of 20° and 60° for the front-face and back-surface 

geometries, respectively. At these angles, a significantly larger fraction of the reflected 
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and scattered light passed outside the collecting lens of the emission monochromator, 

which resulted in the much lower level of the stray light. The decrease in stray light level 

makes it possible to increase the intensity of the incident beam, e.g., by opening the lamp 

slit, in order to gain the detection sensitivity while still not overloading the detector. 

When changing the illumination geometries and angles, care must be taken to keep the 

incident beam sharply focused on the surface of the film by adjusting the distance 

between the slide and the focusing lens of the excitation monochromator.   

An obvious way to reduce the level of stray-light is to introduce a short-pass filter 

after the excitation monochromator. The transfer function of the excitation beam will 

become much narrower, which will result in the depletion of the stray light. This method 

to reduce stray light, promises to be effective for the emission scan mode, though it 

requires an expensive set of filters to fit different excitation wavelengths. 

  

7.3.2 Effect of MIP composition on the background of fluorescence spectra 

The background of the fluorescence spectra originates not only from stray-light,  

but also from MIP network emission. This emission can be autofluorescence and/or 

Raman scattering. The emission spectra of pure MIPs, or blanks, based on EGDMA and 

different monomers (no monomer, MAA, Sty, and VP) were measured (Figure 7-4). 

Almost no difference was observed in the shape of the background spectra for MIPs 

based on EGDMA and EGDMA/MAA; they both had a peak at 310 nm with a rising 

baseline at longer wavelengths. The presence of styrene in the MIP greatly increased the 

intensity of the MIP background with the peak at 310 nm, probably because styrene is 
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naturally somewhat fluorescent. However, the addition of         4-vinylpyridine caused the 

suppression of the MIP emission, and a dip around 310 nm was observed.  

 

Figure 7-4. Background of fluorescence spectra (λex=270 nm) originated from MIP 
matrices based on EGDMA and (1) styrene; (2) no monomer; (3) methacrylic acid; and                                      
(4) 4-vinylpyridine.  

 

Since some components used to make the MIP are of an aromatic nature and may 

fluoresce, experiments were done to assess the contribution of the components to the 
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observed background. The functional monomers and EGDMA were purified from the 

stabilizer, monomethyl ether hydroquinone, and aromatic initiator, DMPA, was 

substituted on aliphatic azobisisobutyronitrile. However, the background was not reduced 

or changed.  The emission background may be caused by unreacted vinyl groups left in 

the polymer networks. Furthermore, when the excitation wavelength was varied, the 

dominant background peak was not eliminated and the main background spectral features 

were preserved.  This may be evidence of the Raman scattering in the background. 

Although the intense background was not beneficial for fluorimetric detection, the 

background appeared to be highly constant and reproducible in its spectral features and 

intensities. Thus, the emission background can be subtracted to obtain the spectrum of an 

analyte for a qualitative and quantitative analysis, for example, as was done for Spectrum 

3 in Figure 7-3.  

 

7.3.3 Effect of film thickness  

MIP films were prepared with two average thicknesses: ~20 µm by the free 

standing polymerization and ~100 µm by polymerization in the membrane frame 

(Сhapter 2). The terms “front-face” and “back surface” fluorimetry can imply that 

fluorescence is excited mostly from the sample surface. Therefore, it may seem that the 

film thickness should not have a dramatic effect on the intensity of excited fluorescence. 

However, significantly more intense fluorescence for caffeine and phenol was observed 

with front-face irradiation of the 100 µm MIP films than with the 20 µm films. This 

suggests that the incident beam penetrates relatively deeply into the opaque MIP network 

and the excited fluorescence can propagate within the film. In the case of the thicker 
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films, the light path length was much longer and a higher amount of an analyte can yield 

fluorescence. Thicker films, such as the 100 µm films, can be recommended for a gain in 

sensitivity.  

 

7.3.4 Comparison of emission and synchronous scan measurement modes 

Emission and synchronous scan spectra were acquired for phenanthrene loaded on a 

MIP film. Initially, the excitation spectrum of phenanthrene (Figure 7-10) was measured 

to find the excitation wavelength that yields the most intense fluorescent emission.  In the 

excitation and emission spectra, maxima were located at 298 nm as excitation (Figure 

7-10) and 361 nm as emission (Figures 7-5 and 7-10). The difference between these 

wavelengths was used as the spacing for the synchronous scan (Δλ=63 nm).  
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Figure 7-5. (A) Emission (λex=298 nm) and (B) synchronous scan (Δλ=63 nm) spectra of 
phenenanthrene adsorbed from 400 µg L−1 solution on the MIP film. 

Note: 1 – the spectrum of phenanthrene on MIP film (sample); 2 – the spectrum of MIP 
film (blank); 3 – the difference between 1 and 2, as the spectrum from phenanthrene itself.  

 

Both emission and synchronous spectra can be used for quantitative and qualitative 

analysis; however, these spectra have different features and quality. The comparison of 

the two spectra (Figure 7-5, Spectrum 3A and B) shows that they have different contours, 

though with similar features. The intensities of the highest peaks are the same (1.2×106); 

while the total transition band is almost two times narrower in the synchronous scan 

spectrum. The fact that peaks are often narrower when they are recorded at synchronous 
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scanning has been explained computationally [7, 20]. A very simplified explanation is the 

following. A synchronous scan spectrum can be presented as a sloping intersection of the 

emission-excitation matrix [3]. The peaks lying on the sloping intersection often appear to 

be narrower than on a horizontal intersection, or an emission spectrum for a single 

excitation wavelength. In practice, such Δλ spacing is selected, so that the synchronous 

scan spectrum is the most intense for the analyte of interest or to makes it possible to 

resolve peaks from different analytes in a mixture.                        

Because excitation and emission monochromators were scanned at a constant 

difference (Δλ), there was no tail in the beginning of the synchronous scan spectrum 

(Figure 7-5) such as in the emission spectrum. The ascending background in the 

synchronous scan spectrum at longer wavelengths was probably related to the rise of 

intensity of the xenon lamp with the increase of excitation wavelength. The absorption of 

stray light was observed in the emission scan mode as the depression of the baseline close 

to the excitation wavelength. This baseline depression can obscure a band close to the 

excitation wavelength and hinder the integration of peaks. For comparison, this 

depression was absent for the synchronous scan spectrum (Figure 7-5). The self-

absorption did not greatly affect the synchronous scan spectrum because the constant 

difference between the excitation and emission wavelengths (Δλ) eliminates the part of 

the spectrum where emission and excitation wavelengths are close. The fact that the 

spectral baseline was much flatter is another advantage of the synchronous scan mode 

over the emission scan.  
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7.3.5 Fluorescence measurements for different analytes loaded on a MIP film 

7.3.5.1 Phenol 

Quantitation of phenol and alkylphenols has been performed by fluorimetry directly 

in water with detection limits in the low and sub mg L−1 range [4]. Considering that such 

quantitation was successful, it was decided to attempt detection of phenol loaded on a 

MIP film.  The extraction of phenols from water with the MIP film would separate phenol 

from possible interferences. At the same time, the preconcentration of phenols would add 

detection sensitivity. However, it was found that the phenol fluoresces only weakly when 

it is bound in the solid state, specifically when adsorbed on MIP (Figure 7-6), silica, and 

octadecyl-silica stationary phases. 

 

                                     

Figure 7-6. Emission spectrum of phenol (λex=269 nm) adsorbed on the MIP film.                      
Note: presented spectrum is the difference between the spectra for MIP with adsorbed 
phenol (sample) and bare MIP film (blank).  
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Another detection problem is a significant overlap between phenol absorption and 

emission bands, 270 and 295 nm, respectively. This caused a dramatic self-absorption 

effect with the observed cut-off of the emission band. The emission spectrum scanned 

close to the excitation wavelength was impacted by the presence of the stray-light from 

the excitation source. In addition, the weak and broad fluorescence from phenol was 

superimposed on the broad peak at 310 nm of the background originating from the MIP 

matrix (Figure 7-4), which made it difficult to reliably measure the fluorescence of 

phenol. Thus, to overcome all these issues, it seems to be reasonable to derivatize phenol 

with a strongly fluorescent moiety. 

  

7.3.5.2 The derivatization of phenol by coumarin-6-sulfonyl chloride 

The addition of a fluorescent tag to phenol is needed not only to enhance 

fluorescence, but to gain the selectivity over other aromatics such as PAHs that can occur 

in water along with phenols. Also, an increase of the difference between the excitation 

and emission peaks can be achieved. Similar to the derivatization of an analyte directly on 

a TLC plate for fluorimetric  detection [28], the derivatization reaction can be completed 

on a MIP film with adsorbed phenol. Many reagents (Section 1.2.5.1) have been used for 

the derivatization of phenol. Among these, the esterification of phenol with coumarin-6-

sulfonyl chloride has an advantage in that it can be completed quickly at room 

temperature. After derivatization, the treatment with potassium hydroxide cleaves the 

lactone ring, yielding the strongly fluorescent compound (Figure 7-1). This derivatization 

approach has been used to prepare aqueous samples for the analysis of phenolics by 

HPLC coupled with fluorescence detection [25, 29]. The derivatization reactions of 
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phenol bound to the MIP film yielded strong and characteristic fluorescence. However, 

the emission band was very broad and the self-absorption was pronounced (Figure 7-7). 

Some narrowing of the band was observed in the synchronous scan mode, though it was 

still broad.  

                     
Figure 7-7. (A) Emission (λex=360 nm) and (B) synchronous scan (Δλ=100 nm) spectra 
of phenol tagged with coumarin-6-sulfonyl chloride.  
Note: presented spectrum is the difference between the sample and blank.  
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A significant drawback of this approach relates to issues associated with the 

homogeneity of the dye distribution. After spraying the potassium hydroxide solution on 

the MIP film, the dye diffused towards the edges of the polymeric film, which may have 

been worsened by the interactions of the ionic dye with the somewhat hydrophobic MIP 

matrix. The non-uniform distribution of the dye within the polymeric film makes difficult 

a precise quantitative detection. Another serious problem was the superimposition of the 

derivative dye fluorescence with the fluorescence from the reagent, which was present in 

the excess compared to the phenol derivative. Thus, the detection without derivatization 

on MIP films is preferred. This can be done with naturally strong fluorophores; among 

these are caffeine and PAHs, which also have been in the scope of the research interests 

of the Bottaro group.   

 

7.3.5.3 Caffeine 

Caffeine is an indicator of water contamination from domestic sewage. It is a 

stimulant drug that is consumed in large quantities in drinks and is eliminated in urine 

[30]. MIPs for caffeine have been developed and studied in our research group. Caffeine 

is a natural fluorophore due to the aromaticity of the xanthine substructure. Caffeine has 

been successfully quantified with fluorimetry in solid pharmaceutical formulations. To 

perform this detection, both synchronous scan [21] and the multivariate calibration [31] 

were applied to resolve the analytical signal of caffeine when in the mixture with other 

fluorophores. Although the multivariate analysis is more informative, the synchronous 

scan is a much simpler experimental approach. The fluorimetric detection of caffeine can 

be a better alternative to the MALDI detection on a MIP film as has been attempted 
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previously [30]. Direct fluorimetric detection on MIP films can be exploited to study 

MIPs for caffeine because the detection is a simpler and faster alternative to the extraction 

with HPLC-UV analysis that was applied in earlier work [30].  Furthermore, this 

detection approach could be adapted for an on-line fluorimetric sensor for environmental 

waters and beverages. Thus, it would be reasonable to apply the fluorimetric detection of 

caffeine on a MIP film and to measure the synchronous scan spectra of caffeine. 

Excitation and emission spectra of caffeine loaded on the MIP (Figure 7-8) show 

that the most intense excitation and emission bands are centered around 338 and 391 nm, 

respectively, which gives the spacing of 53 nm for the synchronous scan mode. The 

synchronous scan spectrum had narrow and intense bands with a flat baseline, which can 

be suitable for the quantitative analysis (Figure 7-8C). 
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Figure 7-8. (A) Excitation (λem=391 nm), (B) emission (λex=275 nm), 
 and (C) synchronous scan (Δλ=53 nm) spectra of caffeine adsorbed on the MIP film.                   
Note: each spectrum is the difference between the sample and blank. 
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7.3.5.4 Polycyclic aromatic hydrocarbons 

Along with phenol and alkylphenols, polycyclic aromatic hydrocarbons (PAHs) 

form another group of water contaminants from petrogenic sources. PAHs are strongly 

fluorescent and their emission spectra are structured and complex. Fluorimetry has been 

used historically as the main analytical technique for their detection, including the 

detection in the solid phase [5]. PAHs with two and three aromatic rings, e.g., 

naphthalene and phenanthrene, constitute the largest fraction among naturally occurring 

PAHs, particularly in produced water [32]. Therefore, these low molecular weight PAHs 

were chosen as analytes for the fluorimetric detection on MIP films.    

Both naphthalene and phenanthrene exhibited intense fluorescence when they were 

loaded in the MIP film from 0.50 – 1.0 mg L−1 aqueous solution (Figures 7-9 and 7-10). 

Compared to the emission spectra, the synchronous scan spectra of naphthalene and 

phenanthrene had much narrower peaks and extra bands at 371 and 386 nm appeared for 

naphthalene in its synchronous scan spectrum. For comparison with naphthalene, the 

simplification of phenanthrene synchronous scan spectrum was observed; the broad “tail” 

spread over 370 nm was greatly diminished compared to the emission spectrum.   
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Figure 7-9. (A) Emission (λex=270 nm) and (B) synchronous scan (Δλ=50 nm) spectra of 
naphthalene adsorbed on the MIP film.  
Note: each spectrum is the difference between the sample and blank. 
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Figure 7-10. (A) Excitation (λem=361 nm), (B) emission (λex=298 nm), and (C) synchronous scan (Δλ=63 nm) spectra of 
phenenanthrene adsorbed on the MIP film.   
Note: each spectrum is the difference between the sample and blank. 
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The relationship between fluorescence of MIP bound phenanthrene and the 

concentration of phenanthrene in the solutions used for loading the MIP films was studied 

(Figure 7-11). The observed graph is the result of two functions: the MIP adsorption 

isotherm towards phenanthrene and the relation of the fluorescence intensity to the 

amount of bound phenanthrene in the MIP.  The function is curved with the fluorescence 

flattening at high phenanthrene concentrations. This flattening can be caused by either the 

saturation of the MIP binding capacity or by the inner-filter effects [33]. In any case, 

better linearity of the response should be expected at low concentration of the analyte, 

which is most environmentally relevant. The fluorescence could be easily quantified for 

low µg L−1 phenanthrene, which suggests very low detection limits in the measurement 

conditions described here (more study in Chapter 8).  

 
 
Figure 7-11. Function of fluorescence intensity from phenantherene concentration in 
solutions for loading MIP films. The fluorescence was detected in synchronous scanning 
mode (Δλ=63 nm).  
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7.4 Conclusions 

Direct fluorimetric detection for a solid phase and particularly for MIP films has 

many useful features and can be performed in a variety of ways. The quality of the 

spectra measured from MIP films is affected by the following factors: the high level of 

stray-light; the emission background from a MIP matrix; and inner-filter effects, which 

include the specific case where the stray-light is absorbed by an analyte. The effect of 

these factors depends on the measurement conditions. In the case of the front-face 

illumination geometry as compared to the back-surface geometry, the level of stray light 

is higher, but the inner-filter effects are less pronounced, and the detected fluorescence is 

more intense. Illumination with the excitation beam at glazing angles helps to reduce the 

stray-light. A thicker film gives more analyte to participate in the fluorescence process, 

which increases the signal intensity. MIPs synthesized by vinyl polymerization have their 

own emission background with characteristic bands. Although this background is intense, 

it is stable and can be subtracted for background correction.   

Fluorescence can be measured in different types of spectral experiments, which 

were widely exploited in this project. The excitation spectrum was used to find the 

optimal excitation wavelengths to measure emission and synchronous scan spectra. 

Emission and synchronous scan spectra were moderately different in the shape and the 

number of bands. Both spectra can serve for qualitative and quantitative analysis.  The 

comparison between emission and synchronous scan spectra showed that in the latter 

peaks were narrower, the background was less affected by the stray light, and the self-

absorption affected the measured spectra to a smaller extent.  
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Initially, the fluorimetric detection on a MIP film was designed for phenol, but 

phenol bound to the MIP fluoresces only weakly. The derivatization of phenol with 

coumarin-6-sulfonyl chloride was limited by poor homogeneity of the dye on the MIP 

film and the fluorescence from the reagent. Naturally strong fluorophores, such as 

caffeine and PAHs, that were loaded on MIP films showed the intense and characteristic 

fluorescence.  The quantitation of PAHs, e.g., phenanthrene, is suitable for the low 

concentrations (low µg L−1), where the binding capacity is not saturated and the inner-

filter effects are negligible.  
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Chapter 8. Fluorimetric Detection of PAHs on Molecularly Imprinted 
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8.1 Introduction 

In the previous chapter, the methodology of the direct fluorimetric detection on a 

MIP film was described, and different experimental conditions, which determine the 

quality of the fluorimetric measurements, were studied. The effect of the illumination 

geometry, the chemical composition of MIP films along with the types of spectral 

experiments and analytes were studied, and the optimal measurement conditions were 

derived. This chapter can be considered as the continuation of the previous work in 

Chapter 7. The focus of the current chapter is the application of the methodology of the 

fluorimetric measurements to estimate the basic performances of the quantitation of 

PAHs and achieve the selectivity of the detection of PAHs in a mixture. This work 

supports efforts to develop simple and fast techniques for the analysis of natural waters, 

which can be applied for the on-line and remote sensing of PAHs. The targets were two 

and three ring PAHs exemplified with naphthalene, fluorene, phenanthrene, and 

anthracene, as common water pollutants from crude oil. They also constitute the largest 

fraction of PAHs found in produced water and oil [1]. 

In early work to develop a fluorescence sensor towards PAHs based on MIP films, 

Dickert et al. [2, 3] coated polyurethane imprinted films on a waveguide. This device was 

used to study the selectivity of the MIPs, and some basic characteristics of detection, such 

as linear range along with the limit of the detection, were determined. The targets for the 

detection were mostly large PAHs with 4-5 rings. As far as light PAHs are concerned, in 

work by Prahl et al. [4], a polyurethane based MIP layer was coated on the bottom of a 

glass vial to be used to study the fluorimetric detection of anthracene. The effect of the 
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nature of the MIP layer on the fluorimetric detection was studied both experimentally and 

theoretically. It was found that the limit of detection of anthracene was not better than  

15 mg L−1. This relatively poor sensitivity of the detection was explained by the 

significant absorption of the excitation light by the polyurethane MIP and background 

fluorescence from the MIP. Analysis of “heavy” PAHs with MIPs and fluorimetric 

detection promises to be more sensitive than for the 2-3 ring PAHs because the 

preconcentration factors of the “heavy” PAHs are higher [3] and they fluoresce much 

more intensely. However, the light PAHs were chosen as targets because they present 

special environmental concern. 

In this work, the fluorimetric detection was used with MIP films based on 

pentaerythritol triacrylate (PETA), styrene, and xylene, which served as cross-linker, 

functional monomer, and template, respectively. These MIP films have the advantage of 

water compatibility along with the high binding capacity towards hydrophobic species, 

and some imprinting effect towards PAHs (Chapter 5). Results presented in the previous 

chapter (Chapter 7) showed that the most intense fluorescence could be measured at the 

front-face illumination geometry, which also gave the least pronounced inner-filter 

effects. The synchronous scanning mode was especially suitable for fluorimetric detection 

on the polymeric films because the level of the stray light could be significantly reduced. 

This measurement mode is also one of the most effective and simplest means to improve 

the selectivity of the fluorimetric detection [5, 6], particularly, since this principle works 

without complex instrumental systems. Synchronous scanning and emission measurement 

modes were compared for the identification of the PAHs in a mixture adsorbed on a MIP 
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film. The quantitative detection of PAHs was assessed in terms of the limits of 

detection/quantitation and the precision of the measurements.  

8.2 Materials and methods 

Naphthalene (99%), phenanthrene (99.5%), fluorene (99%), and anthracene (99.0%, 

Fluka Analytical), a slide mailer for 5 microscope slides (75×25 mm2) were purchased 

from Sigma-Aldrich (Oakville, ON, Canada). The MIP films were prepared using a  

prepolymerization mixture containing PETA, styrene, and xylene (MIP 8 in Chapter 5); 

the fabrication technique for 100 µm-thick films was used on quartz slides (Chapter 7).  

8.2.1  Loading of MIP films with PAHs 

The slide/MIP films were placed in 1100 mL beaker containing 750.0 mL of 

aqueous solution of individual PAH or a mixture of PAHs, and the beaker was sealed 

with Parafilm ®. The solutions had the following concentrations of PAHs:                       

naphthalene – 60.0 µg L−1, fluorene – 8.00 µg L−1, phenanthrene – 4.00 µg L−1, and 

anthracene – 4.00 µg L−1, unless otherwise indicated. The content of the beaker was 

stirred for 4 h 30 min at 150 rpm and 20.0 °C in an Innova 4230 Incubator Shaker (New 

Brunswick Scientific, Enfield, CT, USA). The slide/MIP film was then removed, washed 

with water, and air dried. A MIP/slide was exposed to pure water in the same loading 

conditions and used as a blank.  
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8.2.2 Fluorescence measurement from a MIP film 

A PTI Quanta Master 6000 spectrofluorimeter was used in this work, as in Chapter 

7. Slit widths of the excitation and emission monochromators were set at 4 nm each, 

except 8 nm each for experiments illustrated in Figure 8-5 to achieve a higher sensitivity 

of detection. To accomplish the front-face illumination, a slide holder (Figure 8-1, 4) was 

constructed from a plastic box for microscope slides. The box was cut in half, and the 

bottom section was cut again in half, leaving a section that served as the socket for the 

slides/MIP films. The socket was mounted with a double-sided adhesive tape on the 

rotating stage (Figure 8-1, 3). Microtweezers with pulled apart ends (Figure 8-1, 6) served 

as a plate spring to press the MIP film/slide in the socket to fix the slide in a stable and 

reproducible position. 
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Figure 8-1. Experimental set-up for front-face illumination of MIP films  to excite 
fluorescence. 

Note: 1 – the collecting lens of the emission monochromator; 2 – the focussing lens of the 
excitation monochromator; 3 – the rotating stage; 4 – the socket for (5) the MIP 
film/slide; 6 – the plate spring; 7 – the focused spot of the excitation beam.  

 

To improve the precision of the measurement of the fluorescence intensity, small 

variations in the spectral baseline were corrected by normalization of spectra. Recorded 

spectra were normalized against a wavelength beyond the band of interest: 370 nm for 

naphthalene, 466 nm for phenanthrene, and 418 nm for both fluorene and anthracene. The 
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spectra of the blank, or the MIP films, were subtracted from the spectra of the MIP films 

with PAHs to obtain the pure PAH spectra. The intensity of the PAH emissions were 

measured at 335 nm for naphthalene, 319 nm for fluorene, 363 nm for phenanthrene, and 

379 nm for anthracene. For each slide, the fluorescence was measured at least for two 

different locations on the film, and their average was taken. 

8.2.3 Estimation of performances of quantitative detection 

 The limit of detection was estimated by the visual comparison [7] of the 

difference between the spectra of the MIP film with phenanthrene and the blank, taking 

into account the repeatability of the spectral scans and instrumental noise. The limit of 

quantitation (LoQ) was calculated using the standard deviation of y-intercepts (Sa) and 

slope (b) for regression line [7]:  

b
SLoQ a10=          (8-1) 

The precision of detection, in terms of standard deviation (S), was estimated based 

on the differences between duplicates (xi1, xi2), which were fluorescence intensities for 

the two MIP/slides loaded with the same amount of PAHs and measured in the same 

conditions. A set of pairs of the duplicates (n=5) measured at different days was adapted 

to calculate the coefficient of variance (Sr, %), using the method of estimation of standard 

deviation (SD) from paired results [8]. The average relative percentage difference (RPD) 

between match pairs was also calculated as an alternative figure of merit to Sr, which is 

convenient for the prompt control of the precision.   
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8.3 Results and discussion 

8.3.1 Comparison of fluorescence measurement modes to identify PAHs in their 
mixture  

8.3.1.1 Emission measurement mode 

Compared to measurements by synchronous scanning, the measurement of emission 

spectra is simpler in terms of the principle and required equipment. Therefore, the 

measurement of emission spectra should be tried first. To begin, the excitation and 

emission spectra of the PAHs, individually loaded on the MIP, were measured                         

(Figure 8-2). The excitation spectra of the PAHs overlap to a significant extent while 

some parts of the emission spectra do not overlap. For example, the excitation spectrum 

of fluorene is superimposed on its emission spectrum around 300 nm. Thus, it is not 

possible to excite a PAH individually and not excite other PAHs in the mixture. As a 

compromise, excitation at 290 nm can be used for naphthalene, fluorene, and 
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phenanthrene and at 358 nm for anthracene (Figure 8-2). The emission spectra of the 

mixture of the PAHs were compared with the spectra of the individual PAHs (Figure 8-3, 

1 and 3) to identify peaks for the mixture of PAHs (Figure 8-3, 2 and 4). It can be seen 

that only phenanthrene at the excitation wavelength of 290 nm and anthracene at 358 nm 

can be clearly distinguished in the mixture.  
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Figure 8-2. (A) Excitation and (B) emission spectra of naphthalene, phenanthrene, 
fluorene, and anthracene individually loaded on the MIP film. 
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Figure 8-3. Emission spectra for the mixture of naphthalene, phenanthrene, fluorene, and 
anthracene loaded on the MIP film at (A) λex = 290 nm and (B) λex = 358 nm.  

Note: 2, 4 – the spectra for the mixture of PAHs and 1, 3 – the spectra for phenanthrene 
and anthracene, respectively, loaded individually on the MIP.  
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8.3.1.2 Synchronous scanning measurement mode 

To find the spacing (Δλ) at which each PAH can be identified in the mixture with 

other PAHs, the following approach was applied [9]. Synchronous scanning spectra of 

naphthalene, fluorene, phenanthrene, anthracene, and their mixture were recorded at a 

number of the spacings from 10 – 70 nm at 10 nm increment. Chosen spacing (Δλ) 

allowed the differentiation of the peaks of each PAH among the peaks of other PAHs 

(Figure 8-4). To prove the identification, the spectra of PAHs loaded individually on the 

MIP films were also acquired. The PAHs can be identified at three Δλ: 60 nm for 

naphthalene, 20 nm for fluorene and anthracene, and 70 nm for phenanthrene. Although 

anthracene can be distinguished based on its characteristic triplet emission band almost at 

any Δλ, a significant simplification and narrowing of anthracene peaks can be observed                         

at 20 nm.  
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Figure 8-4. Synchronous scan spectra at different Δλ for individual PAHs (Spectra 1, 3, 5, 7) and their mixture (Spectra 2, 4, 6, 8) loaded 
on the MIP films: (A) naphthalene (Δλ=60 nm), (B) fluorene (Δλ=20 nm), (C) phenanthrene (Δλ=60 nm), and (D) anthracene (Δλ=20 nm). 
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8.3.2 Preliminary characterization of quantitative fluorimetric detection 

Fluorescence was measured for MIP films loaded with phenanthrene from 0.200, 

0.500, 1.00, 2.00, 4.00, 6.00, 10.0 µg L−1 aqueous solutions (Figure 8-5) to estimate the 

limit of detection (LoD) and the limit of quantitation (LoQ) (Table 8-1). The response 

relative to phenanthrene concentration can be considered linear over the narrow range of 

concentrations (0.200 – 10.0 µg L−1). The value of LoQ is mostly determined and limited 

by the scatter of points along the regression line (Figure 8-5 A). The linearity of response 

is greatly improved when the fluorescence intensity and phenanthrene concentration are 

plotted on a logarithmic scale (Figure 8-5 B). It is probable that the logarithmic function 

compensates non-linear dependence of MIP binding capacity from phenanthrene 

concentration.   
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Figure 8-5. Function of fluorescence intensity (A) from phenantherene concentration in 
solutions for loading MIP films and Log-Log plot of this function (B). Fluorescence was 
detected in synchronous scanning mode (Δλ=69 nm). 
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The spectral features of phenanthrene, based upon which phenanthrene can be 

unambiguously identified, can be clearly observed at 0.200 µg L−1. Therefore, the LoD of 

phenanthrene for the current experimental conditions can be considered to be better than 

0.200 µg L−1. The LoD achieved by this measurement scheme can be compared to the 

LoD by complex analytical procedures, for example, 0.64 µg L−1 of phenanthrene can be 

determined by solvent extraction with HPLC/fluorescence detection [10].  

The precision of the measurement of fluorescence is presented as the coefficient of 

variance (Sr, %) and the average relative percentage difference (RPD) between duplicates. 

The latter is a quick and convenient estimate of the repeatability of the measurements 

(Table 8-1); the observed RPD is mostly less than 5%. The merit of this repeatability can 

be considered as relatively good, taking into account that trace concentrations of the 

PAHs were detected. The high precision of the measurements can be explained by the 

overall simplicity of the procedure, which includes only two steps: the adsorption and 

measurement.  
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Table 8-1. Estimation of fluorimetric quantitative detection of PAHs on MIP films in the 
synchronous scanning mode. 

Parameter Merit 

R2 for the function of 
fluorescence intensity vs 
concentration 
 

0.9888 

R2 for log-log plot of                    
the function 
 

 0.9979 

Limit of Detection (LoD) 
(visual comparison) 
 

<0.2 µg L−1 

Limit of Quantitation (LoQ) 
(Equation 8.1) 
 

2.3 µg L−1 

Precision (Sr, %, f=10; RPD, %, n=5,                            
Equations 8.2 – 8.4) for: 
 naphthalene  2.9, 3.4 
 fluorene  2.8, 3.6 
 phenanthrene  4.8, 4.2 
 anthracene 4.3, 3.6 

Note: the precision of the measurements was assessed for the MIP films loaded with the 
mixture of PAHs as for Figure 8-4: naphthalene – 60.0 µg L−1, fluorene – 8.00 µg L−1, 
phenanthrene – 4.00 µg L−1, and anthracene – 4.00 µg L−1. 

 

It can be seen that peak heights for PAHs in the mixture are only slightly lower than 

the heights for same peaks when PAHs were loaded individually, except naphthalene 

(Figure 8-4 A). In the case of naphthalene, its peak (335 nm) is slightly higher because it 

overlaps with the peak of fluorene that was also present in the mixture. The fact that the 

presence of other PAHs did not dramatically affect the individual fluorescence of each 

PAH shows that the adsorption of the PAHs on the MIP film may not be competitive at 
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these concentrations. This observation holds promise for the simplification of the methods 

for quantitative analysis of the mixtures of light PAHs. Under any circumstances, the 

moderate effect of PAHs on each other’s analytical signal can be compensated for with 

the method of standard addition or multivariate calibration.  

8.4 Conclusions 

The developed approach of the direct fluorimetric detection of light PAHs on MIP 

films has a potential to be applied for the rapid analysis of natural waters and 

development of systems for on-line and remote sensing of PAHs. The detection scheme is 

simple, consisting of only two steps: loading of PAHs on MIP films and the direct 

measurement of fluorescence, using widely available and inexpensive equipment. The 

detection is characterized with low LoD in the sub µg L−1 range as estimated for 

phenanthrene and with satisfactory precision of the fluorescence measurements (Sr < 5%). 

The fluorescence of different PAHs was superimposed when the measurements were 

completed in the emission measurement mode, whereas the identification of the PAHs in 

their mixture was completed in the synchronous scanning mode by the selection of 

specific spacings for each PAH. The exploitation of the resolving power of the 

synchronous scanning measurement mode gives good grounds for the effective analysis 

of the mixtures of PAHs.  
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The research achievements of this research project can be grouped in three main 

categories. The first one unites the procedures to fabricate MIP films along with the 

characterization of the fabrication process (Chapter 2) and morphology of the MIP films 

(Chapters 4). The synthesis of various MIPs and study of their binding properties 

constitute the second category (Chapters 4 and 5). The third group of results relates to the 

development of direct detection of phenol and PAHs using various analytical techniques 

(Chapters 6 − 8). In order to develop an effective MIP film and to use it for direct 

detection, it was crucial to have optimized all stages of the development process: the 

choice of MIP components, the fabrication of MIP films, methodology to study MIP 

properties, and the application of an analytical technique for direct detection. This 

complex concurrence was challenging to achieve, and the various kinds of 

incompatibilities were encountered. For example, not all components that benefit binding 

of phenol could be easily used for the fabrication of MIP films, e.g., styrene and 

divinylbenzene (Chapter 2). Films had to be fabricated to be uniform, porous, and 

mechanically stable; otherwise, the repeatability of the binding studies would be seriously 

affected. Despite the fact that a MIP film had good binding and morphological properties, 

the MIP chemical composition could cause an intense background when a spectral 

analytical technique was hyphenated with the MIP film (Chapter 6). Thus, in order to find 

a compromise between the steps of the development process and to achieve these project 

goals, a large diversity of MIP compositions and experimental methods were used. 

To be incorporated into analytical test systems, MIP films have to be fabricated as 

porous films. The principle of the polymerization between two glass surfaces, or 
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sandwiching, was put into the development of procedures to fabricate various MIP films 

to suit different applications (Chapters 4 and 8). The UV-curing of a free-standing layer 

of prepolymerization mixture produced ~20 μm thick MIP films. A MIP prepared in this 

format was studied for phenol binding and morphology. Thicker films (100 μm) were 

fabricated with a porous membrane frame, and used to achieve a higher sensitivity of 

fluorimetric detection. MIP-divinylbenzene particles were adapted for the fabrication of 

films by their “gluing” in a polymer network.   

The factors influencing the fabrication process were derived (Chapter 2). The 

morphology, thickness, and porosity of MIP films were studied with scanning electron 

microscopy and gravimetric analysis (Chapter 4). To fabricate a polymeric film without 

physical defects, a prepolymerization mixture must be sufficiently viscous and its layer 

between two planar surfaces must not be restricted at glass sides with solid spacers. The 

mechanical stability of the films and the extensive surface of MIPs available for the 

adsorption of phenol are linked to the granular morphology of the films. Such 

morphology was rendered with the use of “poor” solvents and linear polymers. Alcohol-

water mixtures (MeOH/H2O, PrOH/EG/H2O, PrOH/EG) were used as these “poor” 

solvents. Apolar (DMF) and low-polar (CHCl3) solvents were adapted to form the 

granular structure by the addition of linear polymers (PEG, PVA), which also helped to 

adjust the viscosity of the prepolymerization mixtures. The procedures and principles of 

the fabrication of films described in this project can be employed to prepare MIP films 

from a wide variety of prepolymerization mixtures and MIP particles. Films can be 

229 



 

fabricated in situ or on any other planar surfaces, e.g., on the substrates of microfluidic 

and sensing devices.  

A large variety of MIP films were systematically studied in order to develop 

efficient MIPs towards phenol and to formulate principles of their synthesis. MIPs were 

synthesized through non-covalent imprinting, varying all main MIP components: 

template, functional monomer, solvent, and cross-linker. Precise procedures to determine 

the adsorption capacities of MIP films towards phenol were developed (Chapter 4 and 

Appendix A). The efficacy of MIP binding and imprinting performances were determined 

based on analysis of a set of adsorption capacities along and adsorption isotherms, and 

cross-binding of other phenolics and PAHs. 

Initially, phenol, as a template, was used for synthesis of MIPs based on functional 

monomers acting by hydrogen bonding (itaconic acid and 4-vinylpyridine) or 

hydrophobic interactions (styrene) (Chapter 4). For each functional monomer, a solvent 

was matched to promote the interaction between phenol and monomers: 

dimethylformamide for the formation of itaconic acid anion that can bind phenol, CHCl3 

for hydrogen bonding with 4-vinylpyridine, alcohol-water mixtures for hydrophobic 

interactions with styrene. Based on spectroscopic studies of monomer-phenol interactions 

(UV absorbance and Raman spectroscopies, Chapter 3) and the fact that low imprinting 

factors were observed (Chapter 4), the following barriers to achieve a high imprinting 

effect towards phenol can be concluded. Phenol as the template probably does not imprint 

highly selective binding sites because it has only single and low acidic hydroxyl group 

that cannot form a strong prepolymerization complex with the functional monomers 
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acting by hydrogen bonding. In addition, the selective recognition of phenol by hydrogen 

bonding is supressed in water. Binding of phenol by hydrophobic interactions also did not 

show selectivity, possibly, because phenol is a small molecule with no remarkable shape 

to form structurally specific binding sites. Nevertheless, both selective and non-selective 

binding by hydrophobic interactions was compatible with the practically important 

condition for the adsorption of phenol from water.  

Since MIPs for phenols based on hydrophobic interactions had not been studied 

previously in detail, further work in this area was done in efforts to increase imprinting 

effects and binding capacities. The first work in this direction was to test cross-linkers in 

addition to ethylene glycol dimethacrylate, such as triethylene glycol dimethacrylate and 

pentaerythritol triacrylate (PETA) (Chapter 4). A significant improvement of the 

imprinting effect was achieved for the MIP based on PETA, whose binding was described 

by a Freundlich isotherm model, with an imprinting factor that was higher for lower 

phenol concentrations, 1.16 at 0.5 mg L−1 phenol. The better imprinting effect for the 

PETA-MIP probably can be attributed to the formation of a tighter polymer network with 

smaller sized binding sites, which can better fit small sized phenol. The second phase of 

experiments was completed to improve the phenol binding capacity (Chapter 5). The MIP 

with increased styrene content and xylene, as a template, was synthesized. A film made of 

a copolymer of divinylbenzene and PETA, as non-imprinted polymer, acting as a simple 

adsorbent, was also prepared. These two polymeric adsorbents can be recommended for 

the practical application because they exhibited the highest binding capacities towards 

phenol. These films had a homogeneous and porous morphology combined with water 
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compatibility. The fact that these two binding media do not contain a residual phenol, 

which will eliminate the false positive response of a detector, meets the condition for the 

application in chemical analysis.   

The characteristic feature of any MIP is the imprinting effect, which is determined 

by the presence of selective binding sites over non-selective ones. A high imprinting 

effect towards phenol was a MIP property that was being targeted throughout this project. 

However, the observed imprinting effect for the MIPs appeared to be modest. The limited 

number of selective binding sites probably will not produce selectivity for phenol binding 

by these MIPs when phenol is in a mixture with other hydrophobic and aromatic species. 

Therefore, the overall selectivity of direct detection of phenol will be solely determined 

by the selectivity of an analytical technique itself, e.g., mass spectrometry. The fact that 

both selective and non-selective binding was observed not only for phenol, but also for 

alkylphenols, resorcinol and PAHs, suggests that the MIPs can be used as universal 

adsorbents towards simple aromatics, e.g, alkylated benzenes. Instead of providing the 

outstanding binding selectivity, the modest imprinting effect that was achieved can be 

considered as another tool to increase the binding capacity. For example, addition of 

xylene into a prepolymerization mixture, similar to the increase in the content of styrene 

in the polymer network, led to an increase in the phenol binding capacity (Chapter 5). 

Another important property of MIPs that was targeted for improvement, the same as 

imprinting effect, was the overall binding capacity towards phenol. This binding capacity 

consists of both selective and non-selective components, and it determines the efficiency 

of MIPs as adsorbents and the sensitivity of direct detection. Unfortunately, because of 
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the dramatic difference in experimental conditions, it was difficult to compare the binding 

performances of the MIPs studied in this project (Chapters 4 and 5) with similar 

characteristics of other adsorbents and MIPs for phenol studied by other scientists. 

However, some comparison can be done. Testing different MIP/NIP compositions 

showed that an improvement of adsorption capacity towards phenol was achieved, as 

compared to the MIP acting by hydrogen bonding. For example, the adsorption capacity 

of DVB-PETA copolymer (Ads) is higher than that for MIP 1 based on itaconic acid by 

1.75 times. Also, the assessed adsorption capacities for MIPs/NIPs in this project can be 

used for comparison with other binding materials for phenol, which will be developed in 

the future. 

Together with imprinting effect, selectivity, and binding capacity, other practically 

important aspects of MIPs and their synthesis were taken into consideration during the 

development process. The MIP/NIP films were prepared to be water-compatible; the 

quality of fabricated films was good; widely-available and inexpensive reagents were 

used; and the film fabrication process was economical. The author believes that because 

of all these useful characteristics, the MIP/NIP films have a considerable potential to be 

used as adsorbent layers for a wide variety of applications in analytical chemistry. In 

addition to the film format required for analytical applications, the MIP formulations 

could be prepared in other physical forms, e.g. beads [1, 2], to be used for industrial 

separations.  

Having time and resources, even more advanced MIPs or adsorbents [3] for phenol 

could be developed using the methodology and principles derived from this project. 
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Particularly, it was found that the use of a higher content of styrene and/or more 

hydrophobic monomers such as divinylbenzene and ethylvinylbenzene enriches the 

binding capacity. The imprinting effect benefited from a tighter polymer network formed 

by PETA and the use of a more hydrophobic template, such as xylene, compared to 

phenol. In addition, PETA made another significant contribution to the quality of films; 

the hydrophilic nature of PETA compensated the water repelling effect from styrene or 

divinylbenzene moieties, keeping the polymer water compatible. The use of mixtures of 

highly polar alcohols as solvents, e.g., 1-propanol and ethylene glycol, has a positive dual 

role. Protic nature of these solvents promotes the formation of a prepolymerization 

complex by hydrophobic interactions. At the same time, such solvents render the porosity 

to the films. One possible effort to develop a more effective MIP for phenol is to imprint 

the divinylbenzene-PETA co-polymer (Chapter 5) with xylene, varying the ratio of 

components for this new MIP to optimize binding and imprinting properties. The 

experimental methodology developed in this thesis can be employed for development of 

MIPs towards other simply shaped aromatic compounds without distinctive 

functionalities, which are also of environmental concern as phenol, for example, light 

PAHs, alkylated benzenes (BTEX), and chlorobenzenes [4]. 

Many analytical techniques using a variety of measurement conditions (Chapters 6-

8 and Appendix D) were attempted for application in the direct detection of phenol 

adsorbed on a MIP film, aiming to benefit from preconcentration of phenol and to avoid 

the extraction with solvent. However, the direct detection appeared to be problematic 

because of the low intensity of the analytical signal or its absence (fluorimetry, MALDI-
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MS, RRS), complications associated with the derivatization reactions, and the obstructive 

effect from the MIP matrix (SERS and fluorimetry).  

For SERS detection, the suspension of silver nanoparticles was deposited on the 

MIP film after phenol adsorption (Chapter 6). Nanoparticles of different types and post-

treatments along with various measurement conditions, including the laser wavelength, 

were tested for their ability to produce SERS. However, the severe interference from the 

MIP matrix made the detection impossible. To overcome the interference, another laser 

wavelength or even a polymer of different composition should be applied. The studies 

about the applicability of SERS detection to different analytes showed that, compared to 

phenol, much more intense SERS was produced from dibenzothiophene, which can bind 

to the silver surface. Therefore, if SERS detection on MIP films is to be developed 

further, a change of targets to thiophenes would be reasonable. More intensive SERS was 

measured for dibenzothiophene compared to phenol. Similar to phenols, thiophenes are 

also of the interest of Bottaro group because they constitute a fraction of water pollutants 

from produced water and oil extraction.   

 Taking into account that little success was achieved with optical spectroscopic 

techniques for the detection of phenol, probably, the only analytical techniques applicable 

for this purpose are atmospheric pressure ionization-mass spectrometry. Particularly, 

DESI-MS and DAPCI-MS should be able to ionize phenol, and these techniques are well 

compatible with film format [5]. The preliminary experiments with ESI of phenol 

(Appendix C) demonstrated that phenol gave the intense phenolate ion peak under the 
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action of alkaline reagents such as ammonia and TMAH. ESI of phenol suggests the 

possibility of DESI detection with a basic spray solvent.  

The approach to measure fluorescence directly from MIP films, initially employed 

for phenol, was applied and developed for the detection of light PAHs. Two and three 

ring PAHs, altogether with thiophenes, phenol and alkylphenols are major water 

pollutants from produced water and oil extraction, and they are all targeted by Bottaro 

group. Fluorimetric detection suffered from problems intrinsic both to general fluorimetry 

and solid-phase fluorimetry: inner-filter effects, the emission background from a MIP 

matrix, and the high level of stray-light due to light scattering with opaque films. The 

effect of these problems was reduced by selection of measurement conditions connected 

with film format altogether with the type and parameters of fluorescence measurements. 

The combination of the front-face illumination geometry, 100 µm thick films as samples, 

and synchronous scanning made it possible to achieve a compromise between a high 

detection sensitivity, the reduction of self-absorption, and the stray-light background. The 

suggested design for fluorimetric detection of light PAHs demonstrated linear response 

and good repeatability of the measurements along with the ability to differentiate PAHs in 

a mixture, exemplified with naphthalene, fluorene, phenanthrene, and anthracene. The 

author believes that this design can be used as a platform for the development of 

quantitative procedures for analysis of light PAHs in real water samples and for 

construction of sensors for on-line monitoring of light PAHs in natural waters  

[6, 7]. 
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In this project, MIP binding properties were estimated as part of the study of 

adsorption of phenol from water by a MIP, which yields the simplest and independent 

characteristic of the MIP binding—adsorption or binding capacity. The set of adsorption 

capacities at different concentrations can be used to construct MIP binding isotherms [1]. 

In this project, procedures to determine MIP binding capacities were adapted based on the 

“extraction” and “by difference” approaches [2, 3]. Procedures take into account the 

specificity related to the film format of the MIP and the volatility of phenol and simple 

alkylphenols. High precision of the measurements is needed to study a weak imprinting 

effect, which is generally attributed to the MIPs for phenols. The applicability and 

limitations of the procedures are discussed.  

 

A.1 Procedures to determine MIP adsorption capacities 

Phenol (99%), 4-methylphenol (99%), 2,4-dimethylphenol (98%) were purchased 

from Sigma-Aldrich (Oakville, ON, Canada). Methanol, acetonitrile, acetic acid, aqueous 

ammonium hydroxide (28-30%) were of ACS reagent grade and were purchased from 

ACP Chemicals (Montreal, QC, Canada). 

 

Appendix A  

Procedures to Determine Adsorption Capacities of MIPs to bind Phenol 
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A.1.1. Extraction of phenols with methanol:ammonia for HPLC-UV analysis 

First, phenol was loaded on a MIP film by stirring 100 mL of their aqueous solution 

with a magnetic stirring bar over the MIP film/slide in a 250 mL beaker. Next, the 

slide/MIP film with the loaded phenol was placed in a 50 mL beaker filled with 10.0 mL 

of methanol:ammonium hydroxide solution (25:1, v/v) and sealed with Parafilm wrap. 

The solvent was stirred with a magnetic microbar (5 mm) for 3 h. The extract of the 

phenol was evaporated under a nitrogen stream in a 100 mL-tube with a narrow sprout at 

the bottom until 0.5 mL of the extract remained. Next, the sample for HPLC analysis was 

made by reconstitution of the extract with water in a 2.00 mL volumetric flask and the 

solution was filtrated with nylon syringe filters (0.2 µm, 25 mm) from Canadian Life 

Science (Montreal, QC, Canada) before HPLC analysis. The quantitation of phenol in the 

extract was completed with HPLC-UV (Chapter 4) 

A.1.2 Extraction of phenols with methanol:ammonia:water for HPLC-UV analysis 

Phenol and alkylphenols were loaded on a MIP/film using the same procedure as in 

the previous section. The extraction solvent was prepared in the following way: 1.00 mL 

of ammonium hydroxide solution and 20.00 mL of methanol were diluted with water in a 

50.00 mL-volumetric flask. A slide/MIP film with loaded phenol was covered with  

2.50 mL of the prepared solvent in a 50 mL-beaker. The beaker was sealed with Parafilm 

wrap, and the solvent was stirred with a magnetic microbar (5 mm) for 3 h to extract 

phenols. After the extraction step, 36.0 µL of acetic acid was pipetted into the extract to 

neutralize the solution. The neutralization was controlled with pH universal indicator 

paper (Hydrion® Brilliant) for a small portion of the solution. The neutral solutions were 
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filtrated with nylon syringe filters (0.2 µm, 25 mm) from Canadian Life Science 

(Montreal, QC, Canada) for the HPLC-UV analysis (Chapter 4).  

A.1.3 Extraction of phenols with acetonitrile:acetic acid for UV-absorbance 
spectrometry 

To complete the adsorption of phenol on a MIP film, a slide/MIP film was placed in 

a 250 mL-beaker filled with 100 mL of a phenol solution. The beaker was sealed with 

Parafilm wrap and placed in an Innova 4230 Incubator Shaker (New Brunswick 

Scientific, Enfield, USA) and shaken at 150 rpm (rotations per minute) at 20.0 °C for 4 h 

30 min. The incubator-shaker can provide more reproducible adsorption conditions, e.g., 

the temperature and stirring rate, rather than a hot plate with magnetic stirring as in the 

previous section. After the adsorption step, drops of the phenol solution were gently 

wiped from the film surface and the MIP film/glass slide was immersed in 10.00 mL of 

acetonitrile/acetic acid mixture (99:1, v/v) [4] in a beaker. The beaker was sealed with 

Parafilm wrap and the extraction solvent was magnetically stirred for 3 h. The absorbance 

of phenol in the final extract was measured at 272 nm with a Thermo Scientific Evolution 

600 UV-Vis Spectrophotometer (Thermo Scientific, Ottawa, ON, Canada) against the 

extraction solvent in the reference cuvette to calculate a concentration of phenol in the 

extract (C, mg L−1). Taking into account the volume of the extract (V, 0.01000 L), the 

binding capacity (Q, mg g-1) was calculated as: 

𝑄 = 𝑉∙𝐶
𝑚(𝑀𝐼𝑃)

               (A-1) 
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A.2 Discussion of procedures to determine MIP adsorption capacities 

A.2.1 The determination of adsorption capacities based on extraction step coupled with 
HPLC-UV 

 Initially, some serious incompatibilities were encountered when phenols were 

extracted from MIP films for chromatographic analysis (LC or GC). The phenol and 

simple alkylphenols (cresols, xylenols, and 2,4,6-trimethylphenol) can be extracted from 

the MIP network only into an organic solvent of a high elution strength, e.g., acetonitrile 

or methanol with the addition of ammonia or acetic acid [4-6]. The purpose of the 

additives, acetic acid and ammonia, is to disrupt hydrogen bonding between phenols and 

a MIP matrix. These solvent systems, as matrices of samples for HPLC, have an elution 

strength higher than the mobile phases, e.g., acetonitrile/water (1:1), which seriously 

affected the separation. Also, these protic solvents interfere with the derivatization with 

N,O-bis(trimethylsilyl) trifluoroacetamide for GC-MS analysis [7]. The presence of acetic 

acid and ammonia in the final extract greatly distorted the baseline of HPLC 

chromatograms with C18/SiO2 packed columns.  

A common way to eliminate a solvent effect is the following: evaporation of the 

solvent and dissolution of the dry substrate in another suitable solvent [3]. In relation to 

phenol and simple alkylphenols, this method cannot be applied because a significant loss 

of phenols was observed due to their volatility. Therefore, it was decided to extract 

phenols from MIPs with a methanol:ammonia solution. Then, a large portion of methanol 

together with ammonia were evaporated by purging the extract with nitrogen, leaving an 

aliquot of phenols solution in methanol that was free of ammonia (neutral by indicator 

paper). Next, the aliquot was diluted with water to make a sample for HPLC. 
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An extraction procedure without the evaporation step was also tested. Phenols were 

extracted from MIP films with an ammonia solution in methanol:water. A volume of this 

solvent (2.50 mL) was set to cover the slide/film in the beaker. After the extraction, the 

solvent was simply neutralized with an aliquot of acetic acid and directly used for HPLC 

analysis; thus, the evaporation step could be avoided.  

These two extraction procedures work well and can be used for the analysis of 

phenols based on solid-phase extraction. However, the uncertainty by these procedures 

was still too high (10 – 30% as Sr) to be used to probe the differences in MIP (NIP) 

adsorption capacities of ~5%, which were common in this research project. The accuracy 

and precision of the extraction procedures are limited by the following factors: 

incomplete extraction of phenols; losses of phenols at the evaporation step; and baseline 

fluctuations in HPLC chromatograms when a sample contains organic solvents and 

ammonia/ammonium and/or acetic acid/acetate.  

These two extraction procedures were applied to estimate an imprinting factor for 

many other MIP films of different composition listed in Table A1, but not studied in 

details as has been given in Chapter 4. Although the uncertainty of these measurements 

was relatively high for the accurate measurements of the imprinting effect, it was possible 

to conclude that the imprinting effect of the MIP formulations studied was either very 

modest or absent. This conclusion conforms to discussions on the effect of monomer-

phenol interactions on the MIPs imprinting effect towards phenol (Chapter 4). 

Table A-1. Compositions of prepolymerization mixtures for MIP films studied for 
imprinting effect 
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1(TMP):4(4-VP):20(EGDMA)/acetonitrile 

1(TMP):4(4-VP):20(EGDMA)/CHCl3 

1(TMP):4(4-VP):30(EGDMA)/acetonitrile 

1(TMP):4(4-VP):20(EGDMA)/MeOH:H2O (4:1) 

1(TMP):6(4-VP):6(EGDMA)/MeOH:H2O (4:1) 

1(phenol):4(4-VP):20(EGDMA)/6% PVA in DMSO  

1(TMP):4(MAA):20(EGDMA)/MeOH:H2O (4:1) 

1(phenol):2(IA):20(EGDMA)/MeOH:H2O (4:1) 

1(phenol):4(IA):20(EGDMA)/MeOH:H2O (4:1) 

2(phenol):4(IA):20(EGDMA)/20% (w/w) PEG in MeOH:H2O (4:1) 

2(phenol):4(IA):20(EGDMA)/10% (w/w) PVA in diglyme  

2(phenol):4(IA):20(EGDMA)/10% (w/w) PVA in DMF 

2(resorcinol):4(IA):20(EGDMA)/15% (w/w) PEG in DMF 

2(phenol):4(Sty):20(EGDMA)/6% PVA (w/w) in DMSO 

1(phenol):2(IA):2(Sty):20(EGDMA)/MeOH:H2O (4:1) 

 
Note 1: The MIP (NIP) films were prepared by the sandwich technique (Chapter 4) and 
were studied in terms of an imprinting factor at rebinding phenol, cresol, and xylenol. 
The ratio of a template to monomer and cross-linker is presented in moles. The ratio of 
DMPA (initiator):EGDMA (cross-linker): a solvent was 15.0mg:740µL:1000µL, 
respectively.  
 
Note 2: TMP – 2,4,6-trimethylphenol; DMPA – 2,2-dimethoxy-2-phenylacetophenone;                       
EGDMA – ethyleneglycol dimethacrylate; Sty – styrene; IA – itaconic acid;                                                   
4-VP – 4-vinylpyridine; MAA – methacrylic acid; DMF – dimethylformamide;                                    
DMSO – dimethyl sulfoxide; PEG – polyethylene glycol; PVA – polyvinyl acetate.  

 

A.2.2 The determination of adsorption capacities based on extraction step coupled with 
UV-absorbance spectrometry 

To avoid some of the aforementioned experimental drawbacks of the common 

extraction procedures, the extraction of phenol from MIPs/NIPs with acetonitrile:acetic 

acid (1%, v/v) was carried out, and UV-absorbance spectrometry was used for the 
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quantification of phenol in the extract were applied. Acetonitrile:acetic acid (1%, v/v) 

exhibited high extraction efficiency for phenols when they were desorbed from a MIP [4]. 

The advantage of UV-absorbance spectrometry is that it is robust and is not affected by 

the solvent composition of a sample such as the LC and GC methods. Thus, it was 

possible to achieve the quantitative extraction of phenol from a MIP matrix and to skip 

the extract evaporation step. However, this procedure suits only MIP films with a high 

loading of phenol. Binding capacities obtained for phenol solutions over 300 mg L−1 were 

high enough to make a phenol absorbance value for the extract lying in the optimal range 

(0.4 – 1.5). Much lower concentrations can be targeted screening the E2 band at 220 nm, 

which is about 3 times more intense than B band at 270 nm. The disadvantage of UV-

absorbance spectrometry is that only a single phenolic can be probed because the UV 

absorbance spectra of phenol and the alkylphenols are not significantly different.  

This procedure was applied to study the binding behavior of MIPs (NIPs) 1–5         

(Chapter 4) in the flattening region of the phenol binding isotherms, which was observed 

at high phenol concentrations, over 200 mg L−1 (Table A-2). These experiments were 

used to build the MIP (NIP) adsorption isotherms over the wide range of phenol 

concentrations up to 2000 mg L−1. Also, the imprinting factors in this concentration 

region, over 1000 mg L−1, were compared with the imprinting factors between 100 and 

300 mg L−1 for the same MIPs (Figure 4-3 and Table 4-4). It can be seen that for all five 

MIPs the imprinting factors towards phenol are about the same. Therefore, it is possible 

to expect that over 100 mg L−1 up to the saturation of the binding capacities at 1000 – 

2000 mg L−1 the imprinting behavior follows the same pattern.  
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Table A-2. The determination of binding capacities of MIPs (NIPs) 1−5 (Chapter 4) at the 
high phenol concentrations with procedure based on extraction and UV-absorbance 
spectrometry  

C(phenol), mg L−1 1000 1500 2000 
MIP 1 – ph-l:IA:EGDMA 

Q(NIP), mg g-1 N.A.    N.A.  74.5 
Q(MIP), mg g-1 N.A.     N.A.   73.5 

IF  N.A.     N.A.   0.99 
MIP 2 – ph-l:VP:EGDMA 

Q(NIP), mg g-1   N.A.   102.4  N.A.   
Q(MIP), mg g-1       N.A.  103.3  N.A.   

IF  N.A.  1.01  N.A.   
MIP 3 – ph-l:Sty:EGDMA 

Q(NIP), mg g-1        51.1 N.A.  76.4 
Q(MIP), mg g-1  52.8   N.A.   79.3 

IF 1.03   N.A.   1.04 
MIP 4 – ph-l:Sty:TEGDMA 

Q(NIP), mg g-1   N.A.   76.6  N.A.   
Q(MIP), mg g-1   N.A.  81.2  N.A.   

IF  N.A.  1.06 N.A.  
MIP 5 – ph-l:Sty:PETA 

Q(NIP), mg g-1  48.1 54.8 61.6 
Q(MIP), mg g-1  52.3 62.4 68.2 

IF 1.09 1.14 1.11 
 
Note: the average difference between two parallel measurements of  
binding capacities is 2.0%. 
 

A.2.3 The determination of adsorption capacities based on “by difference” approach  

The main reason for determining the amount of MIP bound phenol indirectly by 

measuring the phenol concentration before and after adsorption is to avoid the extraction 

step and the associated steps such as evaporation, neutralization, and dilution. By doing 

so, the analysis is less laborious and more accurate because many common sources of 
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error are eliminated: incomplete extraction of phenols and loss of phenols during the 

treatment of extract. Also, this method is highly compatible with reversed phase HPLC 

because phenol concentration is quantified in pure aqueous solutions, which is a favorable 

circumstance for peak shape, baseline, and repeatability of retention times and peak areas. 

Therefore, this method was considered to be the main in the study of MIP adsorption in 

this project, particularly, in Chapters 4 and 5. The precision of the indirect procedure 

appears to be very satisfactory. The difference between two parallel measurements was 

often less than 3.0 %. To achieve this precision it is important to have sufficient 

difference between the initial and final phenol concentrations (20 – 80%), which can be 

adjusted using the ratio of the volume of a phenolic solution to the mass of MIP film, e.g., 

0.714 mL mg-1. The difference drops, e.g. to 10 %, when working with relatively 

hydrophilic species such as resorcinol, or at the high adsorbate concentrations such as 200 

– 300 mg L−1 of phenol. In the latter, it is more appropriate to use the extraction 

procedure. There are two other important factors that appeared to be crucial for the 

quality of the measurements when working with polymer films. One is that it is necessary 

is to have a completely uniform MIP film, which can be achieved by careful trimming of 

the damaged spots; the second is to adjust the volume of adsorbate solution according to 

the mass of the film keeping the ratio strictly constant. 
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A.3 Summary 

MIP adsorption and imprinting properties were studied on the basis of MIP (NIP) 

binding capacities determined at the rebinding of phenol and simple alkylphenols from 

their aqueous solutions. In order to determine these binding capacities, procedures were 

developed based on the “extraction” and “by difference” approaches with the HPLC and 

UV-absorbance quantification methods. The extraction was attempted with an organic 

solvent (methanol, acetonitrile, methanol:water) with the additives of ammonia or acetic 

acid. The extraction steps have the following specific features: incomplete drying of the 

extract due to the volatility of phenols and the elimination of the presence of free 

ammonia in the final sample by either blowing off ammonia out with the stream of  

nitrogen or by neutralization. However, the extraction procedures suffered from 

incomplete extraction of phenols, losses at the evaporation step, and fluctuations of the 

baseline during HPLC runs. Although these drawbacks limit the applicability of the 

extraction procedures for the precise and reliable assessment of the phenol binding 

capacities, the extraction procedures, coupled with HPLC, can be used for the analytical 

solid-phase extraction with the MIP films.  

Based on the “by difference” approach, a more specialized procedure was 

developed to study the binding properties of the MIP films. It has the advantage that it 

contains only two steps: phenol loading on a MIP film from aqueous solution and 

quantification of phenol with reversed phase HPLC, which is well compatible with pure 

aqueous solutions. To ensure the precision of the measurements, it is important to have a 

homogeneous high quality film, to normalize the bound amount of adsorbate to the mass 
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of the polymer, and to precisely adjust the volume of the solution for the uptake according 

to the film mass. This “by difference” procedure works well for relatively low and 

moderate concentrations of adsorbate, e.g., phenol, when the drop of the concentration is 

enough significant. To extend the range of the studied concentrations up to the saturation 

region of the binding isotherms, which is observed at high adsorbate concentrations, 

extraction with acetonitrile:acetic acid coupled with UV-absorbance spectrometry can be 

used. Compared to HPLC separations, UV-absorbance spectrometry is able to be coupled 

with solvents of high elution strength. However, UV-absorbance spectrometry cannot be 

used for the simultaneous quantification of a group of phenolics.  
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In this appendix, more information is presented on MIP film morphology                          

(Figure B1), the data for isotherm figures (Tables B1 and B2), fitting experimental 

isotherms to Langmuir binding model (Figure B2), Freundlich isotherm affinity 

distribution (Figure B3), and formulas to calculate binding parameters according to 

Freundlich isotherm binding model. 

 

Figure B1. Morphology of MIP films prepared without polyethylene glycol (PEG) 
and polyvinylacetate (PVA). MIP 1 (no PEG): (A) SEM image, (a) photo; 
composition of prepolymerization mixture: 2(ph-l):4(IA):20(EGDMA)/pure DMF; 
MIP 2 (no PVA): (B) SEM image, (b) photo; composition of prepolymerization 
mixture: 2(ph-l):4(VP):20(EGDMA)/pure CHCl3. 

Chapter B  
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Table B1. Data for binding isotherms for Sty-based MIP/NIP on different 
cross-linkers for Figure 4-3.   

Ci(phenol), 
mg·L−1 

15 40 100 150 200 250 300 

MIP 3 (EGDMA) 
Q(MIP), mg·g−1 2.60 6.30 13.0 17.0 21.7 23.7 26.2 
Q(NIP), mg·g−1 2.60 6.51 13.7 17.3 22.4 24.6 27.2 

IF 1.00 1.03 1.05 1.02 1.03 1.04 1.04 
MIP 4 (TEGDMA) 

Q(MIP), mg·g−1 1.79 4.91 10.1 14.9 18.4 22.3 27.1 
Q(NIP), mg·g−1 1.72 4.76 9.7 14.2 17.4 21.2 25.6 

IF 1.04 1.03 1.04 1.05 1.06 1.05 1.06 
MIP 5 (PETA) 

Q(MIP), mg·g−1 2.52 5.41 11.5 15.4 18.2 21.9 24.6 
Q(NIP), mg·g−1 2.31 5.20 10.7 14.2 16.9 19.8 22.1 

IF 1.09 1.04 1.07 1.09 1.08 1.11 1.12 
 
 
 
 

 

Figure B2. Phenol binding isotherms for MIP 5 and corresponding NIP (PETA) in  
Q/Cf  – Q format and Langmuir binding model fits [1] to them: (    MIP,    NIP).                       
Note: Q – binding capacity, Cf   – phenol concentration at adsorption equilibrium. 
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Figure B3. Affinity distributions corresponding to Freundlich Isotherm binding model  
for MIP 5 on PETA (top curve) and corresponding NIP (bottom curve) calculated based on 
binding parameters (Formula B3). 

 

Calculation of binding parameters and affinity distribution based on Freundlich 

isotherm fitting parameters [2]. 

                                             (B1) 

                                                       (B2) 

                                      (B3) 

m and a – Freundlich Isotherm fitting parameters; K – affinity constant at phenol                               

concentration (C): K=1/C, L·mg−1; M – phenol molar mass; NK1−K2 – apparent number of 

binding sites; KK1−K2 – apparent weighted average affinity, N(K) – affinity distribution 

function: a relation between the number of binding sites (N) with a certain affinity 

constant and this constant value (K). 
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Though PAHs and dibenzothione are within the scope of the research interests of 

the Bottaro group to detect various contaminants from oil, there is a demand to develop 

the detection technique for phenol and alkylphenols despite the fact that such detection 

appeared problematic (Chapters 6 and 7). DESI-MS can be a promising tool for phenol 

detection because phenols can be extracted from a MIP film with solvents based on 

methanol. In adition, phenols can be ionized in ESI (-) [1-4] and APCI (-) [5-7] 

conditions. In this appendix, it will be shown which spray solvent in ESI conditions, or 

possible DESI, can be used to efficiently ionize phenol.  

C.1 Experimental 

Phenol (99%), 4-methylphenol (99%), 2,4-dimethylphenol (98%), pyrrolidine 

(Fluka, ≥99.5%), triethylamine (≥99.5%), tetramethylammonia hydroxide (25% by 

weight in water) were purchased from Sigma-Aldrich (Oakville, ON, Canada). Acetic 

acid, aqueous ammonium hydroxide (28-30%), methanol were of ACS reagent grade and 

were purchased from ACP Chemicals (Montreal, QC, Canada). 

Solutions tested were 1.00 µM phenol or a mix of phenol, m-cresol, and 2,4-

dimethylphenol (1.00 µM each) in methanol with the addition of various agents: acetic 

acid, pyrrolidine, triethylamine at 5.0 mM level except ammonia hydroxide at 5.0 and  

100 mM and tetramethylammonia hydroxide at 0.10, 0.50, 1.0, 5.0 mM. An Agilent 1100 

Appendix C  

Electrospray Ionization of Phenol facilitated with Basic Reagents 
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Series LC (Agilent Technologies Canada Inc., Mississauga, ON, Canada) equipped with 

an electrospray ionization mass detector (ESI-MSD) (1100 series MSD, quadrupole) was 

operated in the flow injection analysis mode. A 100 µL-plug of the samples was injected 

into a mobile phase, water:methanol (3:2, v/v), flowing at 0.60 mL min-1. The ESI-MSD 

was operated with the following parameters: negative mode; capillary current (13 nA) 

was set in “smart” mode; nebulizer gas (N2) at 60.0 psi, drying gas (N2) at 11 L min-1; 

drying temperature 350 °C, the ions scanned from 85 to 130 m/z. The ions of interest 

were observed with the ion extraction tool at 93.11, 107.14, 121.16 Da for phenolate, 

methylphenolate, dimethylphenolate ions, respectively. 

 C.2 The choice of solvent for ESI-MS of phenol  

The DESI process uses an electrospray emitter to form the jet of charged droplets, 

gas phase ions and their clusters. These ionized species impact an analyte deposited on a 

surface, causing the ionization and desorption of the analyte [8]. Thus, ESI-MS 

experiments can be used, at first approximation, to study the ionization process in DESI 

conditions. Phenol and alkylphenols are still very weak electrolytes to be ionized 

independently in ESI conditions when a neutral or acidic solvent is applied (Figure C-1). 

This explains why phenols did not produce an intense signal under the ESI conditions [5]. 

Thus, it is possible to assume that bases should be used to facilitate the deprotonation of 

phenols. ESI-MS was used to study the effect of the solvent composition on the yield of 

phenolate ions in order to suggest a spray composition for the DESI analysis. A range of 

reagents with the potential to ionize phenol was studied (Figure 6). These included typical 

amines (pirrolydine, triethylamine), ammonium hydroxide, as a common basic additive 

255 



 

for DESI [3, 9] spray solvents, and the very strong base, tetramethylammonia hydroxide 

(TMAH). 

 

Figure C-1. The effect of different reagents on ionization efficiency of phenol                
(1.00 µM) in methanol solution in ESI (-) mode. 

Note: TMAH − tetramethylammonium hydroxide; TEA – triethylamine.  

TMAH was used to enhance ESI of weakly acidic compounds in a crude oil [2]. It 

is well known that ions from strong electrolytes can compete for sites on the surface of 

the charged microdrops and can form a too high abundance of gas phase ions, suppressing 

the analytical signal from an analyte [2]. Thus, in addition to the nature of the reagents, 

the effect of their concentrations in the spray solvent was also studied. The comparison of 

phenolate abundances, produced by different reagents, shows that 1.0 mM TMAH 

OH

B
-

O
-
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concentration is the most optimal. Thus, this medium should be considered as a starting 

spray solvent for DESI-MS of phenol and alkylphenols.  
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Appendix D  

Attempts for Direct Detection of Phenol on MIP Films using Colorimetry, 

Resonance Raman Spectroscopy, and Matrix-Assisted Laser 

Desorption/Ionization-Mass Spectrometry 

A technique for the direct detection on a MIP film can be a convenient 

alternative to traditional procedures involving the extraction step of phenols from a 

water sample and chromatographic analysis of the extract [1, 2]. In addition, the direct 

detection can be used to study binding properties of different MIP formulations [3]. 

Many analytical techniques, using equipment available on the campus, were attempted 

to be adapted for the direct detection of phenols loaded on a MIP film. The facilities of 

the MUN Chemistry department made possible the exploitation of colorimetry, Raman 

and fluorescence spectrometries, and MALDI. Fluorimetry was attempted for the 

direct detection of phenol (Chapter 7). Fluorimetry is probably the most convenient for 

on-line detection and the solid-phase version of fluorimetry can be easly adapted for 

the detection on a MIP film. Phenols appeared to produce a weak fluorescence and the 

labelling of phenols with a fluorescent tag broke the uniform distribution of the dye on 

MIP film. Therefore, polycyclic hydrocarbons, which are naturally very strong 

fluorofores, were attempted to be detected instead of phenols. Another technique 

which was unsuccessfully applied for the direct detection of phenol was surface-
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enhanced Raman spectroscopy (SERS) (Chapter 6). It was attempted to do the SERS 

detection by the application of silver nanoparticles onto phenol prior loaded on a MIP 

film. Although it was possible to find the conditions for SERS measurements to avoid 

the graphitization process and a working SERS substrate, it appeared that an 

insignificant SERS enhancement was observed for phenol. A much higher 

enhancement was observed for another contaminant from the oil extraction—

dibenzothiophene, which has a sulfur moiety to interact with the silver surface, which 

suggests that the SERS detection should be designed for the detection of thiophenes.  

Colorimetry along with Resonance Raman Spectroscopy (RRS) with phenol 

derivatization, Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry 

(MALDI-MS) were also attempted for the phenol detection in this research project but 

they were not described in the main body of this thesis. In this appendix, these 

experimental approaches will be described briefly altogether with the problems that 

made the detection impossible.  

D.1 Colorimetry 

In this work, phenol loaded on a MIP film was derivatized via the Emerson 

reaction [3]. The MIP film was sprayed with 2% 4-aminoantipyrine solution in 10% 

(v/v) aqueous ammonia and 2% K3[Fe(CN)6] aqueous solution to form the red dye [3]. 

It was observed that the dye formed did not spread uniformly on the film, partitioning 

close to the edges of the MIP film. The non-uniform distribution of the dye hindered 

the quantitative analysis. This effect was especially pronounced when thin ~20 µm 
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films were sprayed. The droplets of the reagent solutions could not be absorbed 

completely by that thin film. The droplets dried from the edges with the diffusion of 

the liquid from the droplet to its edges. As a result, the dye naturally partitions to the 

edges.  

D.2 Resonance Raman Spectroscopy 

The red dye formed by the Emerson reaction [3] absorbs around 500 nm, or the 

green light. Thus, it is possible to complete measurements of Raman scattering when 

the absorbtion of incident radiation takes place, for example, with the application of a 

532 nm-Raman system (Chapter 6). It is a well-known phenomenon that when the 

Raman scattering occurs at an electronic transition, or at the resonance, the Raman 

scattering is enhanced by 103 − 104 times [4]. As a result, a much higher sensitivity of 

detection can be achieved. Outstanding selectivity is promised by the high resolution 

of the Raman spectra, together with the specificity of this derivatization reaction. 

However, the dye appeared to degrade under the illumination with the green laser even 

when it was defocused and attenuated. To succeed in this kind of detection it would be 

useful to test other dyes as phenol derivatives, for example, that one obtained via a 

diazotization reaction with 4-nitroaniline. In a study of RRS of phenol derivatives [5], 

the diazo-derivative of phenol appeared to be stable and not to fluoresce under the 

action of 488 and 514.5 nm lasers when resonance Raman scattering was measured for 

the aqueous solutions. 
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D.3 Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry                           

For the ionization of phenols loaded on a MIP film, a MALDI marix solution in 

acetonitrile was pipetted and dried to form spots on the film of the following reagents: 

2,5-dihydroxybenzoic acid, anthracene, 2-aminofluorene, tetramethylammonium 

hydroxide. However, the phenol ions, particularly from 2,4,6-trimethylphenol, were 

hidden in an intense ion current from the matrix in both positive and negative modes.  

No phenolic ions were observed when 4-vinylpyridine and styrene based MIPs 

acted as the matrix for the laser desorption in the absence of any reagents. Thus, 

phenols have to be labelled with a high molar mass and easily ionized tag to follow the 

reactive MALDI approach [6]. For example, 4-(4,5-diphenyL−1H-imidazol-2-

yl)benzoyl chloride [7] can be used, which absorbs the wavelength of the nitrogen 

MALDI laser (337 nm). However, in this case, the MALDI detection will become very 

complex and cumbersome due the derivatization reaction, the effect of a matrix, the 

very limited applicability for quantitative analysis, and the use of an expensive and not 

widely available MALDI-MS system. Thus, this approach is not suitable for affordable 

and rapid chemical analysis of phenols and preference should be given to other 

techniques. 
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D.4 Concluding remarks 

Taking into account that the detection of phenol with colorimetry, fluorimetry, 

SERS, resonance Raman spectrometry, MALDI-MS appeared to be problematic, it 

would be reasonable to use these technique for the detection of other analytes, such as 

PAHs and thiophenes, which also in the scope of Bottaro group. Fluorimetry should be 

used for PAHs, and  SERS for thiophenes. As far as phenol and alkylphenols are in 

concern, it would be prospective to use desorption electrospray ionization-mass 

spectrometry (DESI-MS) because it has been used for the detection on MIP film before 

[8] and phenol has a potential to be ionized in ESI conditions                      (Appendix 

C).  
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