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Abstract

This thesis proposes a novel approach for machine fault detection from vibration data

collected at variable load conditions of a system. Although load variation is a common

phenomena in real industry, most of the traditional fault detection techniques fails to

take this load variability into account while analyzing vibration data. Plant loads and ma-

chine rpm change have a significant influence on the vibration data and to address this

fact accurately, a multivariate technique combining Multiscale PCA (MSPCA) and Multi-

way PCA (MPCA) is presented here. The methodology takes the powerful data signature

extraction feature of Wavelet Transform (WT) and strong fault detection ability of PCA

and integrate them with the multiple conditions monitoring ability of MPCA. Another

significant feature of this proposed multiscale MPCA technique is that it combines the

process variables with the vibration analysis. An advanced simulation system of bear-

ing fault at variable loads is presented and the methodology is used on the acquired

simulated data. The results are presented along with a comparison with a conventional

technique. The efficacy of the proposed methodology is demonstrated on a DC motor

experimental setup.
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Chapter 1

Introduction

1.1 Overview

Rotating machineries (e.g., compressors, turbines) are important assets in process in-

dustries. Conditional monitoring and fault diagnosis can save maintenance costs of these

machines and significant benefits to most processing and manufacturing operations. Ma-

chine condition monitoring and fault diagnostics can be defined as the field of technical

activity in which selected physical parameters, associated with machinery operation,

are observed for the purpose of determining machinery integrity [1]. Reduced costs of

instrumentation, improved capability of instrumentation, improved data storage, and

faster and more effective data analysis has made condition monitoring system cost-

effective [2].

Vibration analysis is a powerful diagnostic tool in condition monitoring. Maintenance of

major rotating equipment is quite impossible without effective vibration analysis [3]. Vi-

bration monitoring means analysis of the signals acquired by data collectors from the

vibrations generated by virtually all dynamic systems e.g., rotating machinery. Individ-

ual rotating equipment produce unique vibration patterns, or signatures, which can in-
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dicate their condition or change in their normal condition.

Early fault detection using vibration monitoring is one of the most effective condition

monitoring based preventive maintenance strategy in process industry. Bearing fault di-

agnostic procedure consists of three main steps: data acquisition, data processing and

maintenance decision making [4]. Data acquisition is the primary step and vital for

vibration monitoring techniques. Among various type of transducers, Piezoelectric ac-

celerometers are the most popular to measure acceleration, velocity or displacement. Gen-

erally, single axis and tri-axial accelerometers are used to collect vibration signals from

rotating machinery, i.e., bearings. A data acquisition board (DAq) is used to collect and

transform these data into standard form to present in time domain, frequency domain

or time-frequency domain for diagnosis. The main purposes of data processing tech-

niques are to extract of significant vibration signature from extreme noisy vibration sig-

nals. Then, different fault detection techniques are applied to identify fault and to take

maintenance decision. In most of fault detection techniques, it is often assumed that

process conditions do not change, which is not true for most practical cases.

Plant loads and rotating machine conditions are not stationary. Plant operating con-

ditions changes for various reasons such as insufficient feed, lack of efficiency of the

machines, methods of operation, make the rotating machineries operate at different

loads and different rpm (rotation per minute). Therefore, these non-stationary condi-

tions of the system cause variation in vibration signals. While the plant runs at different

loads, it is quite impractical to apply fault detection algorithm developed for station-

ary system. This kind of application may cause misinterpretation of collected data and

results in either a false alarm or no alarm when there is a need for one. Addressing vari-

able conditions in vibration analysis and relating the changing variables effectively with

the vibration monitoring technique is not only a critical safety issue but also save a lot

of costs in condition based maintenance (CBM) by taking decision in complex situa-
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tions. Based on this important fact, the purpose of this research is developed. This re-

search makes a significant attempt to relate the changing process conditions with the

vibration signals with a aim to produce effective fault detection.

1.2 Objectives

The main goal of this thesis is to develop an effective vibration monitoring system for

fault detection of rolling element bearings of large rotating machines operating uder

variable process conditions. Based on this target, the following objectives are set.

• To study the effect of process conditions changes on vibration signals and fault

detection methods.

• To develop a fault detection method based upon multivariate statistical techniques

that is able to take into account process variation.

• To augment vibration data with process data and develop a methodology to ana-

lyze the combined data matrix for better fault detection ability under non-stationary

process conditions.

• To develop a test set-up for simulating bearing faults under load change scenerios

and use it for validating the proposed fault detection method.

1.3 Novelty and contribution

The main contributions of this thesis is stated below.

• A novel multivariate technique based on Multiscale PCA (MSPCA) and Multiway

PCA (MPCA) to detect fault in rolling element bearings in variable process condi-

tion has been developed. The methodology uses the MSPCA to filter out the noise
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of the system and extract the significant fault finger prints from vibration signals

and combines MPCA to analyze different sets of vibration data collected under

variable process conditions.

• A technique of fusing process variables with vibration signals is proposed. This

data augmentation technique has improved the effectiveness of the fault detection

method under non-stationary conditions significantly.

• An experimental setup has been developed that is able to simulate bearing faults

under variable process conditions. The developed methodologies have been tested

and validated on this setup.

1.4 Organization

The thesis consists of two journal manuscripts. Both manuscripts have been submitted

to journal for publication and currently under review.

Chapter 1 begins with an overview of condition monitoring of bearings of large rotary

machines in industry, and the importance of vibration based condition monitoring schemes.

After that, one of the major limitations of conventional monitoring approaches is dis-

cussed. The objective of the thesis is explained and the novelty and the contributions

are listed.

Chapter 2 presents the literature review. This section gives an overview of various meth-

ods used by the researchers over past years. This includes the significant breakthroughs

in earlier attempts in the frequency domain analysis, advanced artificial intelligence

methods and complex multivariate methods. This section also discusses recent works

on fault diagnosis of bearings under non-stationary operating conditions.

Chapter 3 introduces the application of MPCA for fault detection of bearings. An ad-

vanced model of bearing fault simulation at different loads is developed. The proposed
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technique is applied to simulated data and to demonstrate its effectiveness. Subsequently, these

results are also compared with an established method. This chapter is submitted for

publication in the Mechanical Systems and Signal Processing (MSSP) journal and cur-

rently under consideration.

Chapter 4 introduces a significant improvement of the method described in chapter

three. The vibration data is augmented with corresponding process variables and sub-

sequently a methodology is developed to analyze the augmented data matrix. Detailed

description of an experimental setup simulating bearing faults under variable load con-

ditions is stated in this chapter. The efficiency of the proposed multiscale MPCA has

been demonstrated on this experimental setup. The results acquired from this experi-

mental evaluation are explained and compared with previous results described in chap-

ter three and a conventional method. This chapter is submitted for publication in the

Mechanical Systems and Signal Processing (MSSP journal and currently under review.

Chapter 5 finishes the thesis with conclusions and discussions of future scope of work.
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Chapter 2

Literature review

A rolling element bearing is an integral part of many rotary machines and it directly in-

fluences the operation of the entire process. Unexpected failures of bearings cause fatal

breakdown of machines and could lead to significant economic losses. Therefore, fault

diagnosis of the rolling element bearing has been extensively studied in past years. The

literature on bearing fault diagnosis is diverse, primarily due to the wide variety of tech-

niques. Hundreds of papers in this area, including theories and practical applications, ap-

pear every year in academic journals, conference proceedings and technical reports. In

this literature review section, the most significant ones that have been done in past years,

are highlighted in three different sections. The first section is about basic techniques of

fault detection using vibration analysis. The second describes advanced artificial intel-

ligence methods. The third emphasizes on the latest and more complex techniques in

this area. Additionally, a separate section is added, with emphasis on the recent studies

on load variation fact influencing bearing vibration analysis.

Frequency domain analysis contains introductory discussion of the techniques used for

vibration analysis. Starting with Fourier transform, this sections describes the early de-

velopment in vibration analysis pointing out basic techniques such as Fast Fourier trans-
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form (FFT), Wavelet Transform (WT), Wigner-Ville Distribution (WVD), Hilbert Trans-

form (HT)etc.

Artificial intelligence methods represents various complex methods including Artificial

Neural Network (ANN), Support Vector Machine(SVM), Cluster analysis, Principal com-

ponent analysis (PCA)etc., which have been engaged for fault detection in vibration

analysis by researchers over the course of time.

Complex multivariate analysis consists of vivid illustration of composite techniques such

as combination of multiscale and multivariate Principal Component Analysis (MSPCA)

with Ensemble Empirical Mode Decomposition (EEMD), Kernel Principal Component

Analysis with EEMD , wavelet combined with different statistical procedure. This section

emphasizes on multivariate analysis while the prior sections define univariate methods.

Effect of load Variation expresses the idea of the change of vibration patterns in different

loads in the rotating machine. Few researchers have identified and taken the fact of load

change into account.

2.1 Frequency Domain analysis

Frequency domain analysis is the most widely used and perhaps the basic tool to extract

machine information from raw vibration signals. It is generally accepted that the vibra-

tion signal is noisy and bears lot of information for the users that cannot be extracted

until it has been transformed into some usable format. There are two components to a

vibration signal: i) how fast the machine moves known as frequency and ii) how much it

moves also known as amplitude[5]. Any time domain signal can be represented in form

of a series of sines and cosines with particular frequencies and amplitudes using Fourier

analysis. Typically with this reversible transformation users can monitor the amplitudes

in different frequencies in defined states of a machine. An alternative representation of
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Fourier transformation, Fast Fourier Transform(FFT), is the most widely used basic tool

for vibration analysis. This classical method gives signal strength at different frequen-

cies, which allows the observer to detect different faults in the rotating machine.

Figure 2.1: Vibration monitoring scheme based on FFT

McFadden and Smith [6], [7] developed the models for high frequency vibration pro-

duced by a single point defect on the inner race of the rolling element bearing under

redial load and proposed a fault detection method based on FFT analysis. Wu et al. [8] in-

vestigated bearing fault such as crack location and depth using FFT. In their research, they

used equation of motion, energy expression and lagrange’s equation to produce equa-

tion of rotor for vibration. They simulated the crack signal and transformed it to fre-

quency domain using FFT analysis. They showed that amplitude changes in different

frequencies for faulty vibration signals and this amplitude change is different depend-

ing upon the location and size of the crack. Based on this fact, they revealed the crack

location and depth by graphically plotting amplitude ratio with probe-crack location ra-

tio. The methodology did not take noise into account for vibration signals, which is very

common for a typical vibration signal. Moreover, this study failed to show any practi-

cal application for vibration analysis.Önel et al. [9] studied a new technique combining

vibration and motor stator current in frequency domain for fault detection in rolling el-

ement bearing. They illustrated that air flux density changes between the air gap among

the rolling element and inner or outer race of the bearing. This air flux variation affected

the stator current harmonics and can be a indication of bearing fault. The authors made
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an experiment where they took vibration measurement of bearing and at the same time

acquired the current measurement. After that, they had transformed using FFT both

vibration and current signal in frequency domain to identify the Characteristic Defect

Frequency (CDF) for inner, outer or cage fault frequency. They took healthy as well as

faulty bearing measurements and compared them graphically. However, they admitted

that the stator current analysis could not be a stand alone strong identifier of CDF detec-

tion but it could be an additional tool along with vibration spectra in frequency domain

to determine a fault in bearings.

Rai et al. [10] proposed a unique methodology combining Hilbert-Huang transform (HHT)

with FFT analysis. They suggested that only HHT is vulnerable to subjective error in cal-

culation, where as only FFT is unable to analyze amplitude variations and non linear

trends in vibration. In their proposed technique, vibration signals transformed to In-

trinsic Mode Functions (IMFs) by Empirical Mode Decomposition (EMD) and then FFT

analysis was employed to the IMFs to detect CDF from vibration spectra. They made

a practical application of their technique on a test rig and detected the CDFs. Never-

theless, because of the poor performance in analyzing the non-stationary signals, FFT

loses its interest among the researchers as a central appliance for fault detection of bear-

ings [11]. Briefly speaking, during machine fault, it is a common phenomena that sig-

nals having no constant frequency spectrum but change their frequency content over

time. Essentially, conventional Fourier transform is unable to detect the frequency change

associated with a particular instant of time of these so called non-stationary signals. Con-

clusively, FFT bears significant importance to the primary users of vibration analysis, de-

spite of its potential drawback.

To overcome the shortcomings of the Fast Fourier transform and at the same time, thirst

for more accurate approximate techniques, researcher sought to discover more sophisti-

cated time frequency domain analysis. Short time Fourier transform or small windowed
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Fourier transform made it possible for the users to explain a signal from two dimension-

time and frequency simultaneously. While the normal procedure was to observe the vi-

bration signal in time domain, it is very difficult to identify process characteristics or

process finger prints to scrutinize signals in one dimension without any prior knowl-

edge of the spectral content. Therefore, Short Time Fourier Transform (STFT) examines

the signal frequency in small constant width window that allows the users to look at the

non-stationary signal more closely. Although STFT may be regarded as the gateway to

time frequency domain analysis, it is unable to change small time window size when

examining a sharp transient shift in signal frequency.

On the other hand, Wavelet theory, which is comparatively new discovery for researchers,

includes the feature of zooming in short lived high frequency and zooming out long lived

low frequency to the existing STFT tool resulting in a powerful and sophisticated tech-

nique. Generally speaking, wavelet is multi-scale decomposition process that not only

analyzes the signal step by step in each scale instead of some pre-defined scales but also

reduces the bandwidth through reduction in mean frequency. Because of its adaptabil-

ity and flexibility, Wavelet has gained popularity among researchers who, in turn, made

it their fundamental estimation technique for fault detection.

Lin et al. [12] presented an advanced de-noising method based on the Morlet wavelet for

mechanical fault diagnosis. In their proposed methodology they overcame the prerequi-

site requirement of mother wavelet being orthogonal. They selected the β value from

the β vs. Wavelet entropy relationship and introduced a constant which influenced the

soft-thresholding and could able to extract features even in low SNR (signal to noise ra-

tio). Although it was a univariate method, they successfully identified the fault impulse

at designated frequency which was confirmed theoretically both in rolling bearings and

a gearbox. Prabhakar et al. [13] used the Discrete Wavelet Transform (DWT) for detecting

single and multiple faults in the ball bearings. Purushotham et al. [14], later, proposed
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Figure 2.2: Basic steps of decomposition and reconstruction in wavelet transform

an improved methodology of pattern recognition for bearing fault monitoring combin-

ing DWT with hidden Markov Models (HMMs). On the other hand, Bozchalooi and Liang

[15] suggested a Wavelet filter-based denoising method to detect outer race, inner race

and rolling element faults in bearings. The algorithm introduced scale and shape factor

selection method for wavelet feature extraction from signals preprocessed using spectral

subtraction.

Around the 90s, another important means of detecting fault in rolling element bear-

ing, HT was emerged in envelope analysis arena. Originating from Fourier transform, it

has few advantages compared to the former in frequency domain. Randall et al. [16] in-

vestigated bearing fault with the help of HT from simulated as well as actual bearing fault

signals. In this study, a hard threshold technique was applied to low frequency compo-

nents while the higher ones were processed with squared envelope analysis based on

HT. The method engaged HT as a noise demasking filter to extract the significant fre-
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quency portions.

Another popular time-frequency domain analysis is Wigner-Ville distribution (WVD). Bay-

der et al. [17] employed WVD in detecting faults in gearbox and argued that it was bet-

ter in handling acoustic data compared to vibration data. The research successfully de-

tected early fault condition using acoustic data, although the study admitted that WVD

is a linear representation of data, which means it has some disadvantages in handling

non-linear data.

Kim et al. [18] took a practical initiative to detect crack on rolling bearings. In their pro-

posed methodology, they came up with a diagnosis system that combined FFT, STFT,

WVD and WT for comparison and applied it in real time bearing fault in a experiment. They

induced cracks in the bearings during speed up and speed down of the process. Next, they

investigated the findings of the vibration signals following the above four techniques and

pointed out abnormal condition such as crack by making a contrast between the faulty

signals and the normal signals. However, their research lacked of uniqueness and was

unable to provide sufficient information on different fault vibration signals.

2.2 Artificial intelligence methods

Artificial neural network approach (ANN) has been increasingly applied to bearing fault

diagnosis for the past few years and has shown some improved performance over con-

ventional approaches [19]. Artificial neural networks (ANNs) implement algorithms that

attempt to achieve a neurological related performance, such as learning from experi-

ence, making generalizations from similar situations and judging states where poor re-

sults are achieved in the past [20]. An ANN is a computational model, consists of pro-

cessing elements connected in a complex layer structure that enables the model to ap-

proximate a complex non-linear function with multi-input and multi-output. A process-
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ing element comprises a node and a weight. The ANN learns the unknown function by

adjusting its weights and with observation of input and output. This process in usually

called training of an ANN. Among various models, Feed Forward Neural Network (FFNN)

structure is the most widely used neural network structure in machine fault diagnosis. A

special FFNN, multilayer perception with back propagation (BP) training algorithm, is

the most commonly used neural network model for pattern recognition and classifica-

tion and hence, machine fault diagnosis as well [4]. Samanta et al. [19] investigated bear-

ing fault using ANN training with BP algorithm. In this study, characteristics features of

time domain such as root mean square, skewness, variance, kurtosis, and normalized

sixth central moment from vibration signals of the rotary machine were used in nodes

for input layer. The output layer of the ANN consists of two binary nodes indicating

normal and faulty conditions, while there were two hidden layers with different num-

ber of nodes used in between input and output layers. The BP neural networks, how-

ever, have two main limitations such as (1) difficulty in determining the network struc-

ture and number of nodes and (2) slow convergence of the training process [4]. Sup-

port vector machine (SVM) is a relatively new computational learning technique based

on the statistical learning theory and can serve expertise system (ES) as an application

of artificial intelligence (AI) in maintenance. In machine condition and fault diagnosis

problems, SVM that based on the structural risk minimization (SRM) principal rooted

in the statistical learning theory, is employed for recognizing special patterns from ac-

quired signals. Those patterns are classified according to the fault occurrence in the ma-

chine. Generally, SVM takes large numbers of samples as an input to a hyperplane where

it classifies them as positive and negative parts. At the same time, it maximizes the mar-

gin between two sections by support vectors, which are simply the data points nearest

to the linear margins [21]. In this way, SVM can act as a perfect classifier and is applied

to bearing fault detection by numerous researchers. Jack and Nandi [22] performed fault
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detection of roller bearing using SVM and ANN. They used vibration data taken from

a small test rig and simulate four bearing fault condition: inner race fault, outer race

fault, cage fault, and rolling element fault. They defined and calculated statistical fea-

tures based on moments and cumulants and selected the optimal feature using genetic

algorithm (GA). In the classification process, they employed SVM using redial basis func-

tion (RBF) kernel with a constant kernel parameter.

The model based approach is another means of fault diagnosis procedure. This approach

utilizes an explicit mathematical model of the monitored machine. Wang et al. [23] used

the Kalman smoothing algorithm to develop a parametric model of non-stationary so

as to obtain high resolution time-frequency spectrum. The authors applied a singular

value decomposition (SVD) method for feature vector extraction and used an RBF neu-

ral network for the decision making of different fault cases. Model based approaches can

be more effective than other model-free approaches if a correct and accurate model is

built. However, this kind of approach may not be feasible for complex system, as it would

be difficult to build a mathematical model for such systems [4].

2.3 Complex multivariate analysis

Statistical process control (SPC), a conventional approach, was originated in quality con-

trol theory and well developed and widely used in fault detection and diagnostics. The

principal of SPC is to measure the deviation of the current signal from a reference signal

representing normal conditions to see whether the current signal is within the control

limit or not. Fugate et al. [24] used statistical parameters such as mean and variance

in autoregressive modelling to define control limit and statistical pattern recognition to

detect fault, based on vibration data.

Cluster analysis, a multivariate statistical analysis method, is a statistical classification
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approach that groups signals into different fault categories on the basis of the similarity

of the characteristics or features they possess. It seeks to minimize within-group vari-

ance and maximize between-group variance. The result of cluster analysis is a number

of heterogeneous groups with homogeneous contents: there are substantial differences

between the groups, but the signals within a single group are similar [4]. Lei et al. [25]

utilized cluster analysis, combined with Fuzzy c-means (FCM) algorithm, for fault diag-

nosis in bearings. In that study, two stages of feature selection and weighing technique

were introduced prior to improved FCM cluster algorithm to investigate damage in dif-

ferent cases of bearing faults, severity, and fault conditions.

Principal component analysis (PCA) based monitoring schemes are one of the most

widely used multivariate data-driven statistical techniques for process monitoring, since

they can handle high dimensional, noisy, and highly linearly correlated data by project-

ing them onto a lower dimensional subspace, which contains most of the variance of the

original data. Although this dimensionality reduction technique was first proposed by

Pearson [26] and later developed by Hotelling [27], researchers applied PCA as a multi-

variate process control (SPC) only in the past few decades. It is well known that conven-

tional PCA schemes are not capable for monitoring non-stationary wide dynamic range

systems, i.e., systems generating data which present a convolved picture of many events

occupying different regions in the time-frequency plane. The reason is that PCA schemes

operates on a single scale. However, by performing a PCA monitoring approach on differ-

ent time scales, a model with increased sensitivity that facilitates the extraction of impor-

tant system condition information from multiscale process data, can be obtained. This

is actually the core idea behind PCA-based multiscale monitoring approaches where the

roll of decomposing signals into various time scales is assigned to multiresolution anal-

ysis, while PCA is used to monitor them. Kosanovich et al. [28] was the first researcher

to develop the idea of combing PCA and one of the most popular multiresolution anal-
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yses WT for monitoring purposes. Later, Bakshi [29] presented the multiscale principal

component analysis (MSPCA) and demonstrated its great potential in monitoring mul-

tivariate processes. Figure 2.3 depicts this technique. The method became firmly estab-

Figure 2.3: Multiscale Principal Component Analysis (MSPCA)

lished and was, with several modifications and extensions, used as the basis structure

in various research tasks. Kano et al. [30], for example, borrowed the MSPCA concept

and replaced the conventional PCA monitoring scheme with the method called moving

PCA, which originates from the idea that a change of operation condition, i.e., the change

f correlation among process variables, can be detected by monitoring directions of prin-

cipal components. Lee et al. [31] used an adaptive multiway PCA model with recursive

updating of the covariance matrices instead of the conventional PCA, with the goal of

making the statistical model follow evolution of the process. They also proposed the fault

identification method to identify major sources of process disturbances. Going beyond

fault detection of the original MSPCA was also researched by Misra et al. [32], who pro-

posed a multiscale fault identification approach based on contribution plots with the

goal to perform early fault diagnosis. Žvokelj et al. [33] proposed a modified technique

EEMD-KPCA based on the MSPCA methodology for bearing fault diagnosis. The study

adopted the MSPCA and replaced WT with empirical mean decomposition (EMD) for

significant feature extraction for vibration signals and later used kernel PCA (KPCA) for
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monitoring purposes. Figure 2.4 presents the entire technique.

Figure 2.4: EEMD-KPCA methodology

2.4 Effect of load variation

With the advancement of technology in recent days, researchers tend to monitor com-

plex situations in process industry. Reasons such as insufficient feed supply, machine

incapability, environmental effects etc., could become vital for deviation in plant loads

in heavy industry. These factors cause a major variation in rotating machine’s speed and

load. Therefore, vibrations of bearings of these machines get affected and are required

careful observation. To address these situations, researchers are trying to develop ad-

vance monitoring technique for accurate fault diagnosis under variable conditions. Villa

et al. [34] developed a diagnosis algorithm based on a linear regression technique using

vibration data under non-stationary load and speed conditions of wind turbine bear-

ings. This algorithm presented a linear model that takes into account speed, load and

fault level. After building non-faulty situation, the model incorporated new data and

fault was detected based on the variance of the fault levels in the linear models of the cal-

culated variables.However, the model was based on a linear assumption, while vibration

data is generally non-linear by nature. In addition, Zimroz et al. [35] suggested an ad-
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vance technique of bearing fault detection at non stationary operating conditions based

on regression analysis. The authors took long term segments for the selected vibration

based feature and chosen reference data and built a linear model based on regression

analysis. The authors successfully showed the variance of vibration characteristics at

at variable operating condition, however the technique could develop ambiguity in the

detection of fault as there was an absence of any threshold value for the parameters in

case of fault condition identification. Yang et al. [36] proposed a fault diagnosis approach

based on a variable predictive model classifier discriminate (VPMCD)-a pattern recog-

nition technique, order tracking analysis and local mean decomposition analysis (LMD)

targeting the characteristics of rolling element bearing vibration signals in variable ro-

tation speed conditions. The proposed algorithm re-sampled the vibration signals using

order tracking technique to remove influence of speed variation. Later, spectral peak

values obtained using LMD and spectral analysis on the re-sampled signals. Finally, the

VPMCD technique is applied for fault diagnosis.Although this method classified the dif-

ferent faults of bearing successfully, It could not able to relate the operating variables in

the fault analysis.
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Abstract

A variety of frequency domain methods and multivariate statistical techniques are used

to analyze vibration data. However, it is still not understood how load variation affects

these monitoring schemes. This research takes into account the effect of load variation

on vibration pattern. We propose a new method based on wavelet analysis and multi-

way principal component analysis to detect abnormalities in the equipment. The pro-

posed method uses multivariate vibration data measured at different locations in the

equipment. It pools batches of vibration data collected at different times under differ-

ent load conditions. This results in a three-dimensional data matrix. The noisy vibration

data are filtered by applying PCA on wavelet coefficients at different frequency levels. A

novel unfolding technique is used to convert the three-dimensional data matrix to a two-

dimensional data matrix where each batch of data considered as an object. Subsequently

PCA is carried out to detect the fault. The advantage of the model is that it compares the

vibration data against a band of normal vibration data collected under different load

conditions. It is better able to distinguish between load changes and equipment fault by

analysing vibration data. The effectiveness of the proposed method is demonstrated on

bearing fault detection using numerical simulation case studies.

3.1 Introduction

Rotating machineries (e.g., compressors, turbines) are important assets in process in-

dustries. Most of this equipment contains bearings, gearboxes and other rotating com-

ponents are more prone to faults. These faults, which in turn, cause machine break-

downs and may cause casualties to personnel along with extensive economic loss. Early

fault detection of these rolling elements has been basis of research for several decades to

ensure safe and smooth operation in the process industry. Condition monitoring (i.e., vi-
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Figure 3.1: Vibration analysis in details

bration monitoring) is widely used; it is a powerful technique that extracts vibration "sig-

natures" for fault diagnosis in rotating machines. Vibration created by displacement is

measured using sensors (single-axis or tri-axial accelerometers) placed around the bear-

ings. Signals from the sensors are collected using data acquisition system and presented

in amplitude vs. time format. The signals are transformed into suitable frequency or

time-frequency domains to detect any anomaly or fault in the bearing [4]. Figure 3.1

shows the steps of vibration data acquisition and processing.

Multiple sensors are often placed at different axial locations to acquire a complete vibra-

tion pattern. These high-dimensional datasets acquired from the sensors require multi-

variate statistical data processing in order to fully capture the benefits of multiple sen-

sors. One effective analysis technique is to apply multivariate dimension reduction ap-

proaches. It is easy to interpret low-dimension featured space and identify characteristic

behaviour; it might also be possible to visualize which makes the monitoring system

simpler[28]. Since vibration data are noisy and multiscale in nature, multiscale anal-

ysis and denoising are required to extract the true process fingerprints. One method

now being widely used for analyzing vibration data is multiscale principal component

analysis (MSPCA). Bakshi [29] originally proposed MSPCA in which WT is integrated
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with PCA. MSPCA is capable of detecting process faults from extremely noisy data. Re-

searchers are now increasingly using multivariate statistical methods for analysing vi-

bration data.For example, Z̃vokelj et al. [33] investigated large size low speed bearing

faults using kernel PCA in conjunction with empirical decomposition method. Based

on MSPCA theory, the authors used empirical decomposition method to extract the sig-

nificant features from vibration signals and detected faulty bearing condition on T 2-

plot with help of kernel PCA. Apart from that, Jack and Nandi [22] used support vector

machine (SVM) combined with artificial neural network (ANN) for detecting different

kinds of faults in rolling element bearing. They used vibration data taken from small test

rig and simulated four bearing fault condition: inner race fault, outer race fault, cage

fault, and rolling element fault. They defined and calculated statistical features based

on moments and cumulants and selected the optimal feature using genetic algorithm

(GA). In the classification process, they employed SVM using redial basis function (RBF)

kernel with constant kernel parameter. Lei et al. [25] utilized cluster analysis combined

with Fuzzy c-means (FCM) algorithm for fault diagnosis in bearings. In that study, two

stage of feature selection and weighing technique were introduced prior to improved

FCM cluster algorithm to investigate damage in different cases of bearing fault, sever-

ity, and fault conditions. However, none of the above methods took into consideration

the effect of load change in vibration pattern. Unless the analytical method takes into

account effect of load change on vibration, faults may appear at different process condi-

tions that affect vibration of machine may mask the faults within the process change.

In this paper we specifically focus on the changes in the vibration data due to change in

machine loads and its impact on these diagnostic tools. In a real industrial scenario, for

various reasons(e.g., insufficient supply of raw material, process equipment deficiency), pro-

cess plants change their loads quite frequently. Because of load changes, the vibration

patterns of rotating machines vary quite drastically. Figure 3.2 shows radial vibration
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signals from sensors placed at different locations of a natural gas compressor. The data

shows that average plant load was around 90% from September, 2009 to December, 2009

when the vibration range was between 17 to 23 microns, whereas change of plant load

to an average 85% from April, 2010 to September, 2010 influenced vibration significantly

and reduced the average displacement to 15 micron. Even though there was no fault

in the compressor bearings, the vibration pattern changed drastically when the plant

load changed. Unless the load changes in the system are accounted for, the monitor-

ing tools may detect these load change events as fault [7], [35]. To address this load

change phenomenon, we propose a fault detection method based on wavelet filtering

of MSPCA and multiway PCA (MPCA). MPCA was originally proposed to monitor batch

processes [21]. The proposed method combines the denoising capability of wavelet fil-

tering of MSPCA and the ability of MPCA to detect fault under varying process condi-

tions.
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Figure 3.2: Vibration amplitude of a natural gas compressor change due to load change
in a fertilizer industry
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The paper is organized as follows: Section 2 highlights preprocessing techniques to ex-

tract process information. Section 3 summarizes key facts and describes the proposed

methodology in detail. Section 4 addresses the effectiveness of the proposed method for

the load effect of bearing and fault detection, with a brief comparison to the existing

approaches based on synthetic signals. Section 5 presents the conclusion of this paper.

3.2 Preprocessing of data

Preprocessing of data is extremely important when the data are acquired from a noisy

environment. In the proposed methodology, data preprocessing plays an important part.

First, all the data were converted to positive values. Then multiplicative signal correction

(MSC) was applied. MSC is a powerful preprocessing technique that removes additive

and multiplicative effects in data and performs higher order and complex baseline re-

moval in order to model the data easily [15]. For example, consider x as a column vec-

tor to be standardized and r as a column vector corresponding to reference data (often

this is the mean spectrum of the calibration data set). The vectors are most often mean-

centered according to Equations (3.1) and (3.2),

xc = x− x̄1 (3.1)

rc = r− r̄ 1 (3.2)

where xc and rc are the mean-centered vectors, x̄ and r̄ are the respective means, and 1

is a vector of ones. The unknown multiplicative factor b is defined using equations (3.3)

and (3.4).

rc b = xc (3.3)

b = (rT
c rc )−1rT

c xc (3.4)

24



therefore, the corrected form x̂ is given by Equation 3.5 [16].

x̂ = xc /b + r̄ 1 (3.5)

In all calculations, the median was used instead of mean in order to make the method

robust to outliers. Finally, data was autoscaled in order to have unit variance for each

signal.

3.3 Multiscale PCA combined with Multiway PCA

The proposed methodology consists of two parts: first, multiscale PCA is applied to de-

noise the signals and extract the fault signature from extremely noisy vibration data. Sec-

ond, multiway PCA is used to detect fault under varying process conditions (e.g., loads,

RPM). Below we describe these two key steps. The overall methodology is shown in Fig-

ure 3.7.

3.3.1 Denoising using multiscale PCA

Bakshi [29] first introduced the idea of multiscale principal component analysis that in-

tegrated the power of wavelet filtering with PCA. Wavelet analysis is a time-frequency

domain method that has special advantages in analyzing non stationary signals and ex-

tracts signal fingerprints which are the hidden time-frequency structure in noisy signals

[17]. Discrete wavelet transform (DWT) is considered efficient to analyze vibration sig-

nals for computational advantage.

The DWT for a given function f(t) is given by [18]

f (t ) =∑
i , j

ai , jψi , j (t ) (3.6)
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Figure 3.3: Multiscale Principal Component Analysis (MSPCA) method

where the two-dimensional set of coefficients ai , j is called the discrete wavelet trans-

form (DWT) coefficients of f (t ) defined by

ai , j =
∫

f (t )ψi , j d t (3.7)

and ψi , j (t ) is called generating wavelet or mother wavelet defined by Equation 3.8

ψi , j (t ) = 2
j
2ψ(2 j t −k) j ,k ∈ Z (3.8)

In discrete case, filters of different cut-off frequencies analyse the signal at different

scales. In MSPCA, as shown in Figure 3.3, each variable x j (t ) of signal data X is decom-

posed into a given number of frequency bands K using WT. According to the multires-

olution theory proposed by Mallet [19], any signal x j (t ) ∈ L2(R) can be approximated

by successively projecting it down onto a set of orthonormal scaling functions to obtain

"Approximation" and onto the wavelet (mother) functions to obtain "Details" from a sig-

nal [19]. The original signal passes through low-pass filter H and high-pass filter G and

is decomposed into different frequency bands. The signal output in each filtering oper-

ation is decimated by two[29].The operation[17] is shown in the Figure 3.4.
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Figure 3.4: Wavelet decomposition

The coefficients at different scales can be obtained as

ak = Hak−1, dk = Gak−1 (3.9)

where ak is the vector scaling function coefficients and dk the vector wavelet coefficients

at scale k. Bakshi (1998)[29] represented the equation in terms of the original measured

digital signal x j as

ak = Hk x j , dk = Gk x j (3.10)

where Hk denotes application of H filter k times and Gk signifies the application of H

filter (k −1) times and the G filter once. After decomposing the signal in k different fre-

quency scale, PCA is applied on coefficients at each scale. T 2 and Q statistics are used

to determine whether a certain scale holds fingerprints or significant information. In

each scale, only coefficients that exceeds the T 2 and Q statistics are retained. Thus the

filtering is carried out in the decomposed coefficient space. Subsequently the retained

coefficients from all the scales are combined and the signal is reconstructed by applying
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inverse wavelet transform.

3.3.2 Multiway PCA

Figure 3.5: Unfolding of 3-way data matrix to 2 dimensional data matrix

Multiway PCA is an extension PCA to handle data in three-dimensional arrays[20]. Con-

dition monitoring data are collected in batches at points in time when the process may

be operating under different load conditions. With MPCA, one studies the difference be-

tween different batches of data. A band of fault-free operations is defined based on vi-

bration data collected for different load conditions and no equipment fault. It allows one

to compare each set of data against a group of good sets of data to classify it as good or

bad as shown in Figure 3.6 [21]. Vibration data collected for different load conditions

gives a three-dimensional data matrix containing I vibration measurements at J points

in time for N different load conditions. In MPCA , the three-way matrix X(N×I×J ) can

be unfolded in six different ways. This results in the following two-dimensional matri-

ces: A(N I×J ), B(J I×N ), C(I J×N ), D(N×I J ), E(I×J N )and F(J×I N ). Generally, for monitoring and

analysis, matrix D is the most meaningful way of unfolding. It appends data collected

from different sensors in the row directions and creates one vector. Thus each set of data

for a specific load is considered as an object. MPCA decomposes X into a summation of

the product of t score vectors (t ) and p-loading matrices (P ), plus a residual matrix (E)
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Figure 3.6: Multiway PCA methodology

that is minimized through a least square method.

X =
R∑

r=1
tr ⊗Pr +E (3.11)

where r is the number of principal components used in the analysis. This decomposi-

tion represents the data with respect to both variables and time in low-dimensional score

spaces. These spaces account for variability over the conditions at all points in time. Each

p-loading matrix summarizes major time variation of the variables about their average

trajectories over all the conditions. As a result, MPCA can actually utilize the magnitude

of the deviation of the each variable from its mean trajectory and at the same time cor-

relate among them [21].

3.3.3 Fault detection using T 2 statistics

Statistical test such as Hotelling’s T 2 on the principal plane, is carried out for fault detec-

tion. The Hotelling’s T 2 and the corresponding limit T 2
l i m are given in Equations (3.12)
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and (3.13) respectively[22].

T 2
i = (xi −m)T S−1(xi −m) (3.12)

T 2
l i m = a · (I −1) · (I +1)

I · (I −a)
·Fa,I−a,α (3.13)

where xi is the row of the matrix XI×J , m is the mean value of column x j in the matrix

X , S is the covariance matrix of data matrix X, a is the number of selected principal

components, I is the number of samples or measurements and Fa,I−a,α represents F -

distribution with a and (I −a) degrees of freedom and level of significance. T 2-statistics

is the sum of normalized squared scores; it can represent the normal behaviour of the

process as it remains unaffected by inaccuracies of smaller eigenvalues.

3.3.4 Methodology of Multiscale-MPCA analysis of vibration data

Figure 3.7: Proposed Multiscale MPCA model construction
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Consider data matrix Xi [i = 1,2,3, ...,n] represents batches of vibration data. Each data

matrix Xi contains measured vibration signals from sensors x j (t ) at an axial location

around the bearing. These different batches of data are not necessarily collected under

identical conditions. A realistic scenario for a rotating machine would be that load and

RPM of the machine may be different for these different batches of data. Wavelet trans-

formation (WT) is applied to decompose each variable x j (t ) into different frequency

scales. Following this, uniscale PCA models are applied to coefficients of each of the

scales. The purpose of uniscale PCA is to denoise the signals. A signal x j { j = 1,2,3, ..., J },

i.e., a column in the matrix XI×J is reconstructed by multiplying individual scales c j k (t )

with the relevance factor κk and adding them together as in the following equation:

x̂ j (t ) =
K∑

K=1
κk (t ).c j k (t ) (3.14)

where the relevance factor κk (t ) is defined by

κk (t ) =


1 if SFK ,nor m(t ) ≥ 1,

[SFK ,nor m(t )]µ other wi se

(3.15)

SFK ,nor m(t ) is defined as

SFK ,nor m(t ) = T 2
k

T 2
k,l i m

or
Qk

Qk,l i m
(3.16)

It can be seen that only those decomposed wavelet coefficients on each scale k have

been used whose T 2
k or Qk value exceeds the corresponding confidence limits T 2

k,l i m or

Qk,l i m . The value below confidence limit is assumed to be mostly contribution of noise

has been revised accordingly by the reduction factor µ. The reduction factor µ is the key

element of the noise "thresholding." As the the value of the reduction factor increases or
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tends to go towards ∞, any value that crosses the confidence limit is kept, whereas all

values below the limit become zero; this is called "hard-thresholding." The reconstruc-

tion process acts as a perfect multivariate multiscale filtering technique for removing

noise. The other datasets X̂2, X̂3, ..., X̂N can be built in a similar way. Once the sufficient

data matrices have been collected, they are arranged in a three-way matrix X̃ (N×I×J ). The

three-way data matrix X̃ (N×I×J ) is unfolded to X̂D (N×I J ), where each row represents a

batch of vibration data. Before applying PCA on the unfolded matrix X̂D , data are prepro-

cessed as described in Section 3.2. Then PCA is carried out on the preprocessed matrix

and T 2-statistics or Q-statistics are monitored. Each batch of data is represented as a

point on the T 2 and SPE plot. Any non-faulty data should remain below the limits. Any

data set that has correlation significantly different from other data sets will exceed the

threshold and be regarded as a faulty data set. As new data sets become available, those

are incorporated with existing data sets. if the relevant T 2 or Q value exceeds the thresh-

old, the data set is regarded as abnormal, indicating a fault in that particular machine.

3.3.5 Steps for the proposed Multiscale-MPCA methodology

The proposed Multiscale PCA combined with multiway PCA (Multiscale-MPCA) method-

ology consists of two parts : (1) reference model building, and (2) testing of new data

sets. These two steps of the methodology are described below.

3.3.5.1 Reference Model building

1. No-fault vibration data set X R
I is collected at any particular load condition.

2. After mean centering and scaling to unit variance, each column xR
j (t ) of the matrix

X R
I is decomposed using wavelet transformation to K different frequency scales.

3. Coefficients of all variables for each scale are arranged in a matrix C R
k = [c1k ,c2k , ...,c j k , ...,c Jk ].
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PCA is applied on the coefficient matrix.

4. Using the equations (3.14), (3.15), and (3.16), the reconstruction of the signals is

done and is kept in matrix X̂ R
1 .

5. Several datasets are collected for different load conditions and the reconstructed

matrices X̂ R
1 , ..., X̂ R

N are collected in a three-way matrix X̂ R (N×I×J ).

6. The three-way matrix X̂ R (N×I×J ) is unfolded into a two-way matrix

X̂ R (N×I J ) using the unfolding technique described in Figure 3.5.

7. The data in the matrix are preprocessed. Data are first transformed to their abso-

lute values, then normalized by MSC (median), and finally autoscaled.

8. A PCA model is built using the unfolded and denoised two-way matrix using a few

dominant principal components and T 2 and Q- statistics of datasets (1,2, .., N ), and

the confidence limits of T 2
α-statistics or Qα-statistics for normal operation are cal-

culated.

3.3.5.2 Monitoring system operation

The monitoring operation is similar to reference model building as graphically shown in

Figure 3.7. The steps are as follows:

1. Vibration signals, X M
I×J , are collected from the monitoring system.

2. Using steps (2), (3), and (4) described in previous section, new dataset is con-

structed and stored in the matrix X̂ M .

3. The newly reconstructed matrix is added as an additional dataset with the previ-

ously built three-way matrix X̂ R in reference model building step to construct a

combined three-way matrix X̂ C .
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4. The three-way combined data matrix X̂ C is unfolded to two-way data matrix and

pre-processing is done. PCA is applied on the combined preprocessed two-way

matrix. T 2 and Q values are calculated. Then in similar way, the T 2 and Q values

are plotted with limits calculated from reference model. The last value in the T 2-

plot represents newly collected dataset X M ; if it exceeds the limit of either T 2 or

Q, that is an indication of fault.

3.4 Application of wavelet analysis combined with Multi-

way PCA for fault detection in bearings

3.4.1 Simulation of bearing fault signal

Various models of rolling element vibration with fault are described in literature [17]. In

our simulation we used the technique proposed by Cong et al.(2013) [29] to simulate

bearing faults. A rotor bearing system consists of the rotor, supporting bearings, and

motor. The model is based on rotor dynamic forces. The bearing load is the main con-

troller of rotor dynamic forces that can be analyzed and combined with an impulse sig-

nal model for fault signal generation. The bearing load can be divided into two compo-

nents: the constant load (system gravity) and the alternate load (inertia force). Also the

total forces working on bearing are divided into forces acting on two directions, Fx and

Fy , given by following equations:

Fx = Fm si nθ (3.17)

Fy =G +Fmcosθ (3.18)

Fm = meω2 (3.19)

34



where Fm is rotating inertia force, G = mg acts as a constant load working in a down-

ward direction, m is the mass of the load, e is the distance from its geometric centre to

the mass centre of the loading disk, ω is rotational acceleration, g represents the gravi-

tational acceleration θ = 2π fr t where fr is rotational frequency. Combining equations

(3.17) to (3.19), we find expressions that describe vibration behaviour under fluctuating

load conditions.

Fx = meω2si nθ (3.20)

Fy = mg +meω2cosθ (3.21)

Following the technique proposed by Cong et al. (2013), we present the following equa-

tion for vibration signal where fault is at the outer race of the bearing,

x(t ) =
N∑

i=1
[AM + AT cos(2π fr t +Ψ+φ j )] · s(t − i T0 −τi )+n(t ) (3.22)

where N is the number of simulated impulses, and i is the sequence number of the

impulses, and n(t ) is additive white noise which accommodates the effect of other vi-

brations in the systems. AM and AT represent amplitudes caused by the constant (or

determinant) load and variable (or alternate) load respectively. fr is the rotational fre-

quency. φ j is used to simulate the effect of sensor locations. Four vibration sensors are

placed at an angle of 90o relative to each other around the fixed outer bearing ring,

φ j = ( j −1)π

2
for j = 1,2,3,4 (3.23)

where s(t ) is the decaying oscillating component. T0 is the time period of repeated im-

pulses and τi accounts for the uncertainties in the time period. The decaying oscillating
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waveform can be expressed as

s(t ) = e−B t cos(2π fn t ) (3.24)

where fn is system natural frequency and B is the decay parameter. In the case of a faulty

signal, the oscillation component is delayed and t is the naturally changed to (t−i T −τi ).

Ψ accounts for fault amplitude around fault location. McFadden et al. (1983) concluded

that the amplitude of the faulty impulses is a direct effect of the instantaneous bearing

load and according to Stribeck equation the load distribution can be determined [6]:

L(Ψ) =


Lmax[1− (1/2ε)(1− cosΨ]p for |Ψ| < π

2 ,

0 elsewhere

(3.25)

where Lmax is the maximum load intensity, ε is the load distribution factor (ε< 0.5), |Ψ|
is the extent of the load zone, and p is the bearing type factor, such as p = 3

2 for ball

bearing and p = 10
9 for roller bearing.

3.4.1.1 Simulation details with parameters

The numerical values assigned for simulation are given in Table 3.1. The signal was sim-

ulated for a period of 0.4s with sampling frequency 0.0001s to simulate an appropriate

number of discrete signals for calculation. Figure 3.8a shows normal vibration without

any fault containing mostly white Gaussian noise, while Figure 3.8b represents simu-

lated vibration generated with fault combined with Gaussian noise magnitude of -15 db

(SNR) after scaling signals to mean centering and unit variance. As can be seen from Fig-

ure 3.8, to the naked eye, there is hardly any difference between the normal vibration

signal and the faulty signal.
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Parameters Value
Constant load, AM 2.5-8.5
Alternate load, AT 0.5
Rotational frequency, fr 12.57
Fault amplitude, ψ 2.5-4.5
Decay parameter, B 600
Time period, T 1e−5

Natural frequency, fn (2×π×T )
Jitters, τi 0.00005
SNR for Gaussian white noise -15 dB

Table 3.1: Values of the parameters used for simulating normal and faulty vibration sig-
nals

Figure 3.8: (a) normal simulated scaled vibration signals and (b) fault-induced simulated
scaled vibration signals
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3.4.2 Monitoring performance

Figure 3.9: (a) Raw and filtered vibration signal with constant load 2.5 of amplitude and
(b) raw and filtered vibration signal with constant load 7.5 of amplitude

First we show the effect of load variation on MS-PCA. Figure 3.10a represents T 2 statis-

tics for a constant load. The values remain within the control limit as there was no fault

induced. On the other hand, in Figure 3.10b, which represents the T 2 statistics values for

a different load condition, the magnitude of T 2 values clearly exceeds the control limit

and identifies the data as faulty. In reality, no fault was introduced in data except that

the magnitude of load was changed. This clearly demonstrates that the existing MSPCA

methodology fails to identify a load variation effect, and the methodology for analyzing

vibration data with a variable load needs further improvement.

As discussed in the previous section, we generated vibration signals for different loads

with fault and without fault. We applied the proposed methodology to these synthetic

signals. We used a reverse biorthogonal (rbio 5.5) wavelet packet for signal decompo-

sition [28]. The decomposition level of 11 was found to be appropriate to extract a vi-

bration signature. At each level, we used one PC because the signals are different real-

izations of the same vibration measurement. The reshape parameter, µ, is set to 10,000

because the larger factor will convert the values below the limit, close to zero and make

the extraction of significant data more efficient. In Figure 3.9, two different load con-
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Figure 3.10: MS-PCA results for load change effect (a) T 2 statistics of normal vibration
and (b) T 2 statistics of normal vibration with variation in loads

ditions are presented. Figure 3.9a shows the vibration signals generated at a constant

load 2.5 whereas in Figure 3.9b the constant load was changed to 7.5. Similarly, we have

simulated vibration signals for seven different load conditions and put them in a three-

way matrix. In next step, the three-way matrix was unfolded to a two-way matrix as dis-

cussed in Section 4.3.2. At this point, the dimensions of the 2-way matrix were 16384×
7. The data in the matrix were converted to their absolute values and normalized by

MSC and autoscaled. Preprocessing plays an important part in this methodology. Pre-

processing helps to remove the non-linear trends in data and puts all variables in the

same scale. Figure 3.11a shows results without preprocessing where the 8th data set was

collected from a faulty bearing, but the T 2-plot was not able to detect it. Figure 3.11b

shows results from the preprocessed datasets which clearly show that the 8th data set is

faulty, as it exceeds the threshold in the T 2-plot. PCA is performed on the preprocessed

two-way data matrix and T 2 statistics were calculated for each batch of data. While

performing the Multiway-PCA, one PC was used because these four accelerometers are

somewhat redundant sensors measuring the same vibration signal. Therefore, these four

variables are highly correlated and a single PC should be sufficient to explain the vari-

ability. Figure 3.12 shows the fault detection results for the proposed Multiscale-MPCA
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Figure 3.11: Importance of preprocessing on the MSPCA-MPCA methodology (a) T 2

statistics of faulty vibration with variation in loads without preprocessing and (b) T 2

statistics of faulty vibration with variation in loads with preprocessing

methodology. Each sample along the x-axis represents a load condition. Figure 3.12a

shows normal conditions change, although the T 2 statistics values are fluctuating due to

the change in load, they remain within the threshold (i.e., below 2.5 of T 2 plot). As soon

as we introduced a faulty dataset in the analysis, the T 2 value (Figure 3.12b) exceeded

the control limit by large margin, clearly showing the presence of fault in that particular

data set.

The proposed method is applied to seven faulty data sets of varying magnitude and it is

able to detect faults for each of the cases, resulting in 100% success for detecting fault in

the bearings under different load conditions.

3.5 Conclusion

A multivariate statistical technique based on MSPCA and MPCA is proposed to detect

fault in rolling element bearings operating under variable load conditions. Multiscale

PCA is integrated in the methodology to extract important vibration finger prints from
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Figure 3.12: Fault identification by the proposed Multiscale-MPCA methodology (a) T 2

statistics of normal vibration with variation in loads and (b) T 2 statistics of faulty vibra-
tion with variation in loads (fault at load 3.5)

extremely noisy data. On the other hand, multiway PCA converts each set of multivariate

data collected at a particular load to an object. The method compares any new vibration

data set against several sets of data collected at different load conditions. An updated

bearing fault signal method is used to simulate different load conditions alternating con-

stant load on the rotor. The proposed method showed good fault detection ability in a

simulation study when other methods, such as MSPCA, gave false detection.
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Abstract

A monitoring scheme is developed to detect faults in machines operating under variable

loads using vibration pattern. The new method is based on wavelet and Multiway Prin-

cipal Component Analysis (MPCA) to detect abnormalities in the equipment. The main

features of this method are that it augment vibration data with process data and use a

characteristics unfolding to convert a three dimensional data (time × multiple sensors

× variable load) into a two dimensional data matrix. Subsequently, PCA is carried out

and T 2-statistics is used to detect equipment fault. The method compares any new set

of vibration data against a band of normal vibration data collected under different load

conditions. As such, it has more power to discern between load changes and equip-

ment fault compared to other methods (e.g., Multiscale Principal Component Analysis

(MSPCA)). The effectiveness of the proposed method is demonstrated on an experimen-

tal DC motor system. The proposed method shows superior fault detection performance

compared with multivariate technique like MSPCA.

4.1 Introduction

Condition monitoring is an important maintenance strategy adopted in process indus-

try to prevent economic loss and other consequences for the machine operators. Re-

view shows that 65.9% failure cases occur due to maintenance deficiencies [1]. Vibration

based condition monitoring is a very popular technique for rotating equipemnts.

The aim of this research is to propose a novel approach to detect faults in rolling el-

ement bearings under varying operating conditions, such as load and speed. Gener-

ally, extremely noisy vibration signals are transformed from time domain into the fre-
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quency domain using Fast Fourier Transformation (FFT) to detect faults. McFadden and

Smith made an earlier attempt to detect single point defect on the inner race of the

rolling element bearing in vibration based fault detection history. Later, researchers like

Lin et al. [12] and Purushotham et al. [14] developed fault detection techniques based

on Wavelet Transformation (WT) because of its strong denoising characteristics. These

techniques are not able to accommodate multiple variables, however they are consid-

ered as the primary steps for the detection of faults in bearings based on vibration data.

To improve data fidelity, multiple sensors are often placed at different locations of rotary

machines, which results in high dimensional data space and makes detection and diag-

nosing of faults challenging. The PCA based monitoring scheme has become a perfect

solution to address this problem. Conventional PCA has the ability to handle linearly

correlated noisy data by projecting them onto a lower dimensional subspace contain-

ing most of the variance of original data. However, it can be inadequate for non linear

data because of its underlying linear assumption. Researcher have been using variations

of PCA for fault detection purposes. For example, Fugate et al. [24] proposed a method

to detect vibration damage using PCA for feature extraction from Auto Regressive(AR)

model. W. Sun et al. [5] used PCA with a decision tree for fault diagnosis in rotary ma-

chine, where PCA is used for feature reduction after preprocessing and feature extraction

from time and frequency domain separately. Trendafilova et al. [6] suggested a modified

PCA approach combined with a pattern recognition procedure for detection and iden-

tification of ball bearing faults. These researchers, however, do not address any relation

between the variable process conditions information in their diagnosis techniques.

Generally, in the case of monitoring a complex non stationary dynamic system, a mul-

tiresolution decomposition technique is required to supply refined data towards a PCA-

based monitoring scheme. I.e., a system generates data where process fingerprints hid-

den in different regions of the time-frequency plane. Wavelet transform (WT) has these
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particular abilities and is widely used for the waveform data analysis in the fault diagnos-

tics of bearings by researchers such as Nikolaou et al. [7] and Prabhakar et al. [13]. Bak-

shi [29] presented the Multi-scale PCA (MSPCA) method combining PCA and WT and

demonstrates its great potential for monitoring multivariate processes. Based on this

approach, Zvokelj et al. [33] developed a technique where the kernel PCA and empirical

mode decomposition method (EMD) are applied for the fault diagnosis of large bear-

ings operating at low speed. The actual conditions in industry can be more complex as

bearing vibration data depends on the varied load and speed of the system [10]. For ex-

ample, Figure 4.1 presents radial vibration signals from sensors placed at different loca-

tions of a natural gas compressor. The data shows that the average plant load was around

90% from September 2009 to December 2009 when the vibration range was between 17

to 23 microns. Subsequently, a change of plant load to an 85% average from April 2010

to September 2010 influenced vibration significantly and reduced the average displace-

ment to 15 microns. To monitor bearing, the load variation should be taken into consid-

eration. Otherwise, there may be a false indication of bearing fault occurring, which costs

money for unnecessary maintenance. In general, an appropriate multivariate monitor-

ing technique that can relate the process deviation to vibration analysis is needed for

greater accuracy in bearing fault diagnosis in heavy industry.

Considering process complexity and with the help of the advancement of technology, re-

searchers have started to investigate fault detection of bearings under different process

conditions. Villa et al. [34] proposed a method based on linear regression analysis to de-

tect fault under non-stationary conditions of speed and load. They used a linear model

consisting of speed, load and a qualitative variable chosen as the fault level and pre-

dicted fault based on the analysis of variance of the last parameter. However, the model

was based on a linear assumption, while vibration data is generally non-linear by na-

ture. In addition, Zimroz et al. [35] suggested an advance technique of bearing fault de-
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Figure 4.1: Vibration amplitude of a natural gas compressor change due to load change
in a fertilizer industry

tection at non stationary operating conditions based on regression analysis. The authors

took long term segments for the selected vibration based feature and chosen reference

data and built a linear model based on regression analysis. The authors successfully

showed the variance of vibration characteristics at variable operating condition. How-

ever, the technique could be ambiguous in detecting fault as there was an absence of

any threshold value for the parameters in case of fault condition identification. Yang et

al. [36] used a model based pattern recognition technique for fault diagnosis of roller

bearings under variable speed conditions. Although this method classified the different

faults of bearing successfully, It could not be able to relate the operating variables in the

fault analysis. In this paper, a novel non-linear data driven approach based on MSPCA

and Multiway PCA (MPCA) is proposed to detect fault in the rolling element bearing un-

der different process conditions. Essentially, MPCA is widely used for monitoring batch

processing systems and it is strongly capable of addressing different process conditions
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and reducing the data dimensionality for fault diagnosis [14]. The uniqueness of this

study is that it has fused the process information with the vibration data analysis and

the approach is tested on an experimental DC-motor system.

The paper is organized in six sections. Section 2 highlights preprocessing techniques

to extract process information. Section 3 summarizes important facts and descriptions

regarding proposed methodology in detail. In Section 4, details of an experiment con-

ducted to show the efficiency of the proposed methodology is presented. Section 5 dis-

cusses the effectiveness of the proposed method for load effect of bearing and fault de-

tection with a brief comparison with the existing approaches based on experimental

study signals. Finally, conclusions are presented in Section 6.

4.2 Preprocessing of data

Preprocessing of data is extremely important when the data are acquired from a noisy

environment. First, all the data were converted to positive values. Then multiplicative

signal correction (MSC) was applied. MSC is a powerful preprocessing technique that re-

moves additive and multiplicative effects in data and performs higher order and complex

baseline removal to model the data easily. It actually generates classical least squares

(CLS) and inverse least squares (ILS) formulations [15]. For example, consider x as a col-

umn vector to be standardized and r as a column vector corresponding to reference data

(often this is the mean spectrum of the calibration data set). The vectors are most often

mean-centered according to Equations (4.1) and (4.2),

xc = x− x̄1 (4.1)

rc = r− r̄ 1 (4.2)
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where xc and rc are the mean-centered vectors, x̄ and r̄ are the respective means, and 1

is a vector of ones. The unknown multiplicative factor b is defined using equations (4.3)

and (4.4).

rc b = xc (4.3)

b = (rT
c rc )−1rT

c xc (4.4)

therefore, the corrected form x̂ is given by Equation 4.5 [16].

x̂ = xc /b + r̄ 1 (4.5)

In all calculations, the median was used instead of mean in order to make the method

robust to outliers. Finally, the data was autoscaled in order to have unit variance for each

signal.

4.3 Multiscale PCA combined with Multiway PCA

The proposed methodology consists of two parts: first, multiscale PCA is applied to de-

noise the signals and extract the fault signature from extremely noisy vibration data. Sec-

ond, multiway PCA is used to detect fault under varying process conditions (e.g., loads,

rpm). The overall methodology is shown in Figure 4.6. Below we describe the individual

steps.

4.3.1 Denoising using multiscale PCA

Bakshi [29] first introduced the idea of multiscale principal component analysis that in-

tegrated the power of Wavelet filtering with PCA. Wavelet theory is a time-frequency do-

main method that has special advantages in analyzing non stationary signals and ex-
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tracts signal fingerprints which are the hidden time-frequency structure in noisy signals[17].

Discrete wavelet transform (DWT) is considered efficient to analyze vibration signals for

computational advantage.

Figure 4.2: Multiscale Principal Component Analysis (MSPCA) method

The DWT for a given function f(t) is given by [18]

f (t ) =∑
i , j

ai , jψi , j (t ) (4.6)

where the two-dimensional set of coefficients ai , j is called the discrete wavelet trans-

form (DWT) coefficients of f (t ) defined by

ai , j =
∫

f (t )ψi , j d t (4.7)

and ψi , j (t ) is called generating wavelet or mother wavelet defined by Equation 4.8

ψi , j (t ) = 2
j
2ψ(2 j t −k) j ,k ∈ Z (4.8)

In discrete case, filters of different cut-off frequencies analyse the signal at different

scales. In MSPCA, as shown in Figure 4.2, each variable x j (t ) of signal data X is decom-

posed into a given number of frequency bands K using WT. According to the multires-
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olution theory proposed by Mallet [19], any signal x j (t ) ∈ L2(R) can be approximated

by successively projecting it down onto a set of orthonormal scaling functions to obtain

"Approximation" and onto the wavelet (mother) functions to obtain "Details" from a sig-

nal [19]. The original signal passes through low-pass filter H and high-pass filter G and

is decomposed into different frequency bands. The signal output in each filtering oper-

ation is decimated by two[29].The operation[17] is shown in the Figure 4.3.

Figure 4.3: Wavelet decomposition

The coefficients at different scales can be obtained as

ak = Hak−1, dk = Gak−1 (4.9)

where ak is the vector scaling function coefficients and dk the vector wavelet coefficients

at scale k. Bakshi (1998)[29] represented the equation in terms of the original measured

digital signal x j as

ak = Hk x j , dk = Gk x j (4.10)
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where Hk denotes application of H filter k times and Gk signifies the application of H

filter (k −1) times and the G filter once. After decomposing the signal in k different fre-

quency scale, PCA is applied on coefficients at each scale. T 2 and Q statistics are used

to determine whether a certain scale holds fingerprints or significant information. In

each scale, only coefficients that exceeds the T 2 and Q statistics are retained. Thus the

filtering is carried out in the decomposed coefficient space. Subsequently the retained

coefficients from all the scales are combined and the signal is reconstructed by applying

inverse wavelet transform.

4.3.2 Multiway PCA

Figure 4.4: Unfolding of 3-way data matrix to 2 dimensional data matrix

Multiway PCA is an extension PCA to handle data in three-dimensional arrays[20]. Con-

dition monitoring data are collected in batches at points in time when the process may

be operating under different load conditions. With MPCA, one could study the differ-

ence between different batches of data. A band of fault-free operations is defined based

on vibration data collected for different load conditions and no equipment fault. It al-

lows one to compare each set of data against a group of good sets of data to classify it:

good or bad, shown in Figure 4.5 [21]. Vibration data collected for different load condi-

tions gives a three-dimensional data matrix containing I vibration measurements at J
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Figure 4.5: Multiway PCA methodology

points in time for N different load conditions. In MPCA, the three-way matrix X(N×I×J )

can be unfolded in six different ways. This results in the following two-dimensional ma-

trices: A(N I×J ), B(J I×N ), C(I J×N ), D(N×I J ), E(I×J N )and F(J×I N ). Generally, for monitoring

and analysis, matrix D is the most meaningful way of unfolding. It appends data col-

lected from different sensors in the row directions and creates one vector. Thus, each set

of data for a specific load is considered as an object. MPCA decomposes X into a sum-

mation of the product of t score vectors (t ) and p-loading matrices (P ), plus a residual

matrix (E) that is minimized through a least square method.

X =
R∑

r=1
tr ⊗Pr +E (4.11)

where r is the number of principal components used in the analysis. This decomposi-

tion represents the data with respect to both variables and time in low-dimensional score

spaces. These spaces account for variability over the conditions at all points in time. Each

p-loading matrix summarizes major time variation of the variables about their average
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trajectories over all the conditions. As a result, MPCA can actually utilize the magnitude

of the deviation of the each variable from its mean trajectory and at the same time cor-

relate among them [21].

4.3.3 Fault detection using T 2 statistics

A statistical test such as Hotelling’s T 2 on the principal plane, is carried out for fault

detection. The Hotelling’s T 2 and the corresponding limit T 2
l i m are given in Equations

(4.12) and (4.13) respectively[22].

T 2
i = (xi −m)T S−1(xi −m) (4.12)

T 2
l i m = a · (I −1) · (I +1)

I · (I −a)
·Fa,I−a,α (4.13)

where xi is the row of the matrix XI×J , m is the mean value of column x j in the matrix

X , S is the covariance matrix of data matrix X, a is the number of selected principal

components, I is the number of samples or measurements and Fa,I−a,α represents F -

distribution with a and (I −a) degrees of freedom and level of significance. T 2-statistics

is the sum of normalized squared scores; it can represent the normal behaviour of the

process as it remains unaffected by inaccuracies of smaller eigenvalues.

4.3.4 Methodology for analysis of vibration and process data

Application of multiscale PCA and multiway PCA for vibration data analysis was de-

scribed [10]. In this present paper, we further advanced the methodology to analyze vi-

bration signals augmented with process variables. The proposed methodology is shown

in Figure 4.6.

Consider data matrix Xi [i = 1,2,3, ...,n] are batches of vibration data. Each data matrix
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Figure 4.6: Proposed multiscale MPCA augmented with process variables model

Xi contains measured vibration signal from sensors x j (t ) at an axial location around

the bearing. These different batches of data are not necessarily collected under identical

conditions. A realistic scenario for a rotating machine would be that load and rpm of the

machine may be different for these different batches of data. Wavelet transformation

(WT) is applied to decompose each variable x j (t ) into different frequency scales. Fol-

lowing this, uniscale PCA models are applied to coefficients of each of the scales. The

purpose of uniscale PCA is to denoise the signals. A signal x j { j = 1,2,3, ..., J }, i.e. a col-

umn in the matrix XI×J , is reconstructed by multiplying individual scales c j k (t ) with the

relevance factor κk and adding together as in the following equation

x̂ j (t ) =
K∑

K=1
κk (t ).c j k (t ) (4.14)
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where the relevance factor κk (t ) is defined by

κk (t ) =


1 if SFK ,nor m(t ) ≥ 1,

[SFK ,nor m(t )]µ other wi se

(4.15)

SFK ,nor m(t ) is defined as

SFK ,nor m(t ) = T 2
k

T 2
k,l i m

or
Qk

Qk,l i m
(4.16)

It can be seen that only those decomposed wavelet coefficients on each scale k have

been used whose T 2
k or Qk value exceeds the corresponding confidence limits T 2

k,l i m

or Qk,l i m . The value below confidence limits is assumed to be contribution of noise has

been revised accordingly by the reduction factor µ. The reduction factor µ is the key

element of the noise "thresholding". As the value of reduction factor increases or tends

to ∞, any value that crosses the confidence limit is kept, whereas all values below the

limit become zero and this is called "hard-thresholding." The reconstruction process

acts as a perfect multivariate multiscale filtering technique for removing noise.

At this point, augmentation of process variables technique is applied. Process variables,

such as loads of the process, rpm of the rotary machines, and flow towards the rotary

machines, is regarded significant process variables as they have direct influence on the

vibration signals of the rolling element bearings. The proposed study put forward the

idea of relating the process variable with vibration analysis technique for accurate fault

detection purpose. In this study, load and rpm are used as process variable. After hav-

ing filtered signals, the significant process information corresponding particular process

condition i.e., load or rpm or both of them, xP is added to corresponding data matrix as

an additional variable in an form, X̂
A
1 = [x̂ xP ]. The other datasets X̂

A
2 , X̂

A
3 , ..., X̂

A
N can be

built in a similar way.
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Once the sufficient data matrices have been collected, they are arranged in a 3-way ma-

trix X̃ A(N×I×J ). The three way data matrix X̃ A(N×I×J ) is unfolded to X̂D (N×I J ) where

each row represents a batch of vibration data. Before applying PCA on the unfolded ma-

trix X̂D , data are preprocessed as described in Section 4.2. Then PCA is carried out on

the preprocessed matrix and T 2-statistics or Q-statistics are monitored. Each batch of

data is represented as a point on the T 2 and SPE plot. Any non-faulty data should re-

main below the limits. Any data set that has correlation significantly different than other

data sets will exceed the threshold and regarded as a faulty data set. As new data sets

become available, those are incorporated with existing data sets. If the relevant T 2 or Q

value exceeds the threshold, the data set is regarded as abnormal indicating fault in that

particular machine.

4.3.5 Steps for the proposed MSPCA-MPCA methodology

The proposed multiscale PCA combined with multiway PCA (MSPCA-MPCA) methodol-

ogy consists of two parts : (1) reference model building, (2) testing of new data sets. These

two steps of the methodology are described below.

4.3.5.1 Reference Model building

1. No fault vibration data set X R
I at any particular load condition is collected.

2. After mean centering and scaling to unit variance, each column xR
j (t ) of the matrix

X R
I is decomposed using wavelet transformation to K different frequency scales.

3. Coefficients of all variables for each scale are arranged in a matrix C R
k = [c1k ,c2k , ...,c j k , ...,c Jk ].

PCA is applied on the coefficient matrix.

4. Using the equations (4.14) , (4.15) and (4.16), the reconstruction of the signals is

done and is kept in matrix X̂ R
1 .
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5. Particular process information, xP which acts as additional variable is added to the

corresponding matrix X̂ A
1 = [x̂R

1 xP ].

6. Several datasets are collected for different load conditions and the reconstructed

matrices X̂ A
1 , ..., X̂ A

N are collected in a three-way matrix X̂ A(N×I×J ).

7. The three way matrix X̂ A(N×I×J ) is unfolded into a two way matrix

X̂ A(N×I J ) using unfolding technique described in Figure 4.4.

8. The data in the matrix are preprocessed. First, data are transformed to their abso-

lute values and then normalized by MSC (median) and finally auto scaled.

9. A PCA model is built using the unfolded and denoised two-way matrix using few

dominant principal components and T 2 and Q- statistics of datasets (1,2, .., N ) and

the confidence limits of T 2
α-statistics or Qα-statistics for normal operation are cal-

culated.

4.3.5.2 Monitoring system operation

The monitoring operation is similar to reference model building as graphically shown in

Figure 4.6. The steps are as follows:

1. Collect the vibration signals, X C
I×J from the monitoring system.

2. Using steps (2), (3), (4), (5) described in previous section, new dataset is constructed

and stored in the matrix X̂ C .

3. The new reconstructed matrix is added as an additional dataset with the previ-

ously built three-way matrix in reference model building (step 6), it is combined to

develop a new three-way augmented matrix.
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4. PCA is applied on the new preprocessed and unfolded two-way matrix. T 2 and Q

values are calculated. Then in similar way, the T 2 and Q values are plotted with

limits calculated from reference model. The last value is newly collected dataset, if

it exceeds the average limit of either T 2 or Q, that is an indication of fault.

4.4 Experimental details

A DC-motor with four discrete loads and variable rpm was designed for experimental

testing and validation of the method. Faults were introduced to the bearings. The pro-

posed condition monitoring technique was applied to data acquired from faulty and

non-faulty bearings. Experimental set-up and the fault detection results are discussed

in the following sections.

4.4.1 Experimental procedure

A DC motor was used to turn a flywheel which is considered as the load in the experi-

ment. The flywheel is connected to the motor using a rotor which rests on two rolling

bearings. Figure 4.7b shows the experimental set-up. A power converter is used to sup-

ply DC current from AC current source. The converter has the ability to supply differ-

ent voltage which is specifically used for controlling of motor rpm. The motor rpm was

measured using an external tachometer. Three different flywheels weighing 3 kg, 5 kg, 12

kg were used in different combination to create different load conditions for the sys-

tem. Four single axis accelerometers with special noise free coaxial cables were vertically

mounted on the bearing house of the two bearings. Their locations were chosen such

that the sensors were orthonormal to each other. The signals acquired by these piezo-

electric accelerometers were collected in portable computer via 16-bit data acquisition

63



board. Vibration data are measured in displacement with G unit1.The data collection

sample rate was 398 Hz, each sample interval 0.002513 seconds. The main focus of the

experiment was to simulate several different process conditions and study their effect on

vibration data. Three different flywheels were used in different combinations and motor

rpm was set to different levels in order to simulate different process conditions. These

Table 4.1: Specification of different components of the experimental set-up
Item Specification
Motor 3 HP, 3 phase DC motor. Model:M-253AS-

DBZ, type: M-1607
Converter 0-150V-25A converter (type: 103-52). Input:120-208

V, 25 A DC. Output:0-150 V, 35 A
Tachometer General purpose tachometer from Tenma, model-

72-6633
Loads 3 flywheel used as load. Large (diameter-0.762

m, width-0.0127 m)-12 kg, medium (diameter-
0.254 m, width-0.0127 m)-5 kg, small (diameter-
0.2032 m, width-0.0127 m)-3 kg

Bearing Model SKF YAR 205-100-2F, ID-25 mm, center
height 28.3 mm, Basic load limit 10800 N (dy-
namic), 7800 N (static), fatigue limit 232 N, Bearing
mass 0.17 kg

Accelerometers 4 single axis ICP industrial accelerometers, model:
603C01

Data acquisition system USB powered module for vibration analysis with 4
simultaneous 16 bit IEPE input channels, model-
DT9839E

sets of experiments constitute the normal dataset i.e., no bearing fault. Subsequently we

repeated these experiments with faulty bearings.

Bearing fault is defined as any force opposing the particular equipment from free rota-

tion. There are mainly four types of bearing faults are evident: ball damage, inner race

defect, outer race defect, cage damage [23]. In this study, we simulated cage fault which

can lead to catastrophic consequences [24]. Cage failure can be caused by various rea-

11 G = 9.80665 m/sec2 used for vibration measurement
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Figure 4.7: Experimental setup for verifying proposed methodology

sons: vibration, wear, excessive speed, blockage [25], [26]. In our experimental study, the

cages of the rolling bearings were hammered severely to produce significant cage dam-

age [27]. Figure 4.8 shows the damaged bearing with cage fault. Detailed experimental

Figure 4.8: Faulty bearing with cage fault

design is given in Table 4.2.

65



Experiment No. 1 2 3 4 5 6 7 8 9 10 11 12
Load (kg) 3 8 12 17
rpm 1200 1600 2100 1200 1600 2100 1200 1600 2100 1200 1600 2100
No fault bearing X X X X X X X X X X X X
Faulty bearing X X X X X X

Table 4.2: Design of experiments with rolling bearings

4.5 Results

By varying flywheel weight and rpm several real life load change scenarios were sim-

ulated that a process plant might experience. The proposed methodology was applied

to investigate whether it can detect the fault. The detection results of multiscale MPCA

methodology are compared with multiscale MPCA methodology without augmenting

process information and MSPCA method.

4.5.1 Constant rpm and variable load

The first set of experiments were conducted to evaluate the effect of load variation on

fault diagnosis method at constant rpm. First MSPCA technique was applied to a con-

dition where rpm was constant at 1200 rpm but load was varied. Figure 4.9a shows

T 2-statistics where load was at 8 kg. The flywheel weight was changed to 12 kg simu-

lating a process load change scenario. Figure 4.9b shows T 2-statistics for the changed

load. Clearly the method is sensitive to load change and T 2-values exceeded the thresh-

old. The proposed multiscale MPCA method was applied to similar datasets where rpm

was kept constant at 1200 and loads were varied to 3, 8, 12, 17 kg. Figure 4.10a repre-

sents T 2-statistics of all normal load conditions (3, 8, 12, 17 kg) at 1200 rpm and the

corresponding control limit. A bearing fault was introduced to 17 kg load and 1200 rpm

case. The T 2-statistics for this case is shown in Figure 4.10b where the fault is clearly

identified successfully by following multiscale-MPCA technique as the T 2-statistics for

the faulty dataset exceeded the normal limit to a great extent.
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Figure 4.9: Effect of variation in load using MSPCA

In order to generalize, a total of twelve experiments were conducted by varying load and

rpm and the proposed multiscale MPCA methodology was able to detect fault in 8 cases

out of 12 which means it was 66.67% successful for fault detection under variable load

with constant rpm condition. Also, there was no false detection.

Figure 4.10: Effect of variation in load (constant rpm) using multiscale MPCA

Next, we augmented process variables namely load and rpm with vibration data and re-

sults were analyzed using multiscale MPCA. In Figure 4.11a, the normal values of T 2-plot

is shown for all four load conditions (3, 8, 12, 17 kg) at constant rpm 2100, which gives
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Figure 4.11: Effect of variation in loads with constant rpm using multiscale MPCA

the normal control limit . Figure 4.11b shows the T 2-plot with 5th dataset coming from

a faulty bearing. The multiscale MPCA method rightly detected as faulty dataset. In a

similar way, 12 sets of faulty data at various rpm were tested using proposed methodol-

ogy. Therefore, it detected fault in 11 cases out of total 12 cases resulting in 91 % success

rate. Thus the success rate is increased from 66 % to 91 % because of augmenting process

data.

4.5.2 Constant load and variable rpm

Next, we observe the effect of change of rpm on bearing fault detection. For this pur-

pose, the DC motor was run at several rpms i.e., 800, 1000, 1300, 1600, 1900, 2200, 2400 at

a constant load of 12 kg. The datasets are collected at these conditions and analyzed. Fig-

ure 4.12 presents outcome of MSPCA technique on T 2-plot, where Figure 4.12a rpm was

at at 1300, whereas 4.12b represents rpm 1900 at a load of 12 kg. In the latter, however, it

is quite clear that MSPCA considers rpm change a faulty condition because T 2-values

exceeds the control limit value. Next, we tested multiscale MPCA without incorporating

process information. Figure 4.13a shows T 2statistics plot of datasets collected at rpm
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Figure 4.12: Effect of variation in rpm at constant load using MSPCA

Figure 4.13: Effect of variation in rpm at constant load using multiscale MPCA
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800, 1000, 1300, 1600, 1900, 2200, 2400 and at a constant load of 12 kg. In Figure 4.13b, it

is seen that proposed multiscale MPCA technique detects the 7th dataset faulty and con-

siders the 8th dataset normal, whereas the 8th dataset was actually faulty taken at rpm

2100. As discussed earlier, the proposed methodology fails to detect faults under variable

rpm conditions along with two other cases resulting in zero success for this particular

scenario.

The methodology including the process information showed significant improvement

resulting in 66.67% success in case of fault detection. The reference model is built from

vibration datasets acquired from the test setup with constant load of 12 kg and rpms

were at 800, 1000, 1300, 1900, 2100, 2400. In addition to the vibration signals, the corre-

sponding rpm signals were also included with the datasets.

Figure 4.14: Effect of variation in rpm with constant load using multiscale MPCA with
process information

Figure 4.14a shows the T 2-plot for normal datasets when motor rpm was changing but

load was at a constant value. We wanted to investigate if including of process variables

helps to detect the fault successfully and robust to false alarm. In order to do that, we

included a normal dataset acquired from 12 kg load and 1600 rpm with our reference

datasets. Figure 4.14b shows the proposed methodology successfully detected the new
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dataset as normal as new T 2-value did not exceed the control limit set by normal ref-

erence model. Next, the proposed approach with process information is tested with

Figure 4.15: Fault detection in variable rpms with constant load using multiscale MPCA
with process information

faulty dataset. Figure 4.15a presents the T 2-plot along with normal control limit for nor-

mal datasets of rpm’s-800, 1000, 1300, 1600, 1900, 2200, 2400 at constant load of to-

tal 12 kg. Next, we included a faulty dataset along with the seven datasets. Proposed

multiscale MPCA detects the 8th dataset as faulty as it exceeds the limit in T 2-plot in

Figure 4.15b. The 8th dataset is extracted from bearing with damage cage at rpm 1600

and load of 12 kg. Three faulty datasets were tested with the normal model and subse-

quently, the algorithm detected fault successfully 2 times out of 3.

4.5.3 Variable load and rpm

Variable load and rpm is a more common scenario in process industries. The proposed

methodology is applied for data analysis along with MSPCA technique for comparison.

First, MSPCA was applied to vibrational datasets changing load and rpm. T 2-plot of

dataset representing rpm 1600 and load of total 8 kg following MS-PCA approach is

shown in Figure 4.16a. Then using the control limit and model determined from nor-
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Figure 4.16: Effect of variation in both rpm and load using MS-PCA

mal dataset, another dataset collected at a different load and rpm i.e., 1200 rpm and 12

kg load, was projected using MSPCA. The applied method refers to rpm 1200 and 12 kg

of load condition as faulty on T 2-plot as most of the T 2 values exceed the normal limit

in Figure 4.16b. Thus it can be concluded that MS-PCA approach may not be appropri-

ate to detect equipment fault under variable process conditions. By setting load at four

levels: 3, 8, 12, 17 kg and rpm at three levels: 1200, 1600, 2100, a total of eleven datasets

were collected for normal conditions. After combining these, the reference model is built

and control limit is determined. Then the model was tested for thirteen different fault

conditions for fault detection purpose. Our proposed multiscale MPCA methodology

successfully detected the bearing fault in spite of load and rpm variation. Figure 4.17a

presents T 2-plot of 12 normal datasets as mentioned earlier. When, the dataset from a

faulty bearing is included in the data analysis process, it is detected as faulty as T 2 value

exceeds the normal limit in Figure 4.17b. Similarly, eleven other faulty cases were taken

tested, the proposed method was able to detect faults in all cases except one resulting

91.67% success in detection and no false detection.

Next, we included the rpm and load with vibration data and used multiscale MPCA to

detect bearing fault.The normal model is built of these datasets and the T 2-plot along
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Figure 4.17: Effect of variation in both rpm and load using multiscale MPCA

Figure 4.18: Effect of variation in both rpm and load using multiscale MPCA with process
information

73



with the normal control limit is shown in Figure 4.18a. In Figure 4.18b, a faulty dataset

at rpm 1600 and load of 8 kg is introduced with the normal datasets. The T 2-value of the

faulty dataset exceeds the threshold by big margin leading to the successful detection

of the bearing fault. A total of thirteen faulty datasets were tested and the methodology

detected faults successfully for all thirteen cases with no false detection resulting in 100

% success rate.

4.6 Conclusion

The present work investigated the characteristics of vibration signals in rolling element

bearings under variable load and speed conditions and its impact on fault detection

techniques. A novel approach based on MSPCA and MPCA is proposed for fault detec-

tion under the varying load and speed of rotary machine. The fundamental idea of this

proposed methodology is that it combines the vibration data with process data and si-

multaneously transforms the data for monitoring purpose using unique unfolding tech-

nique. This approach was demonstrated on a DC motor system with varying load and

speed conditions. The proposed method showed good fault detection ability compared

to other conventional methods such as MSPCA, under variable systems of load and rpm

mentioning potential use of such technique in industrial environment and unique char-

acteristics such as success rate, no false detection etc.
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Chapter 5

Conclusion and recommendation

5.1 Conclusions

This thesis investigates the effect of process variation on vibration data. It was experi-

mentally observed that change of machine load or rpm has significant effect on vibration

signal. Most of the traditional signal processing methods including multivariate statis-

tical method such as MSPCA gives false alarm when process conditions (i.e.,load, rpm)

varies. Putting focus on this problem, this research develops a multivariate technique

combining powerful filtering feature of MSPCA with MPCA. MPCA is a powerful multi-

variate technique that allows to analyze batches of vibration data collected under differ-

ent operating conditions collectively. The method was tested using simulated data. It

successfully delineated between load change and bearing fault. However, the method

was sensitive to rpm changes and wrongly identified any rpm change as bearing fault.

The method was further advanced by augmenting process variables (e.g., load, rpm)

with vibration data. The augmented data was analyzed using proposed multiscale MPCA

method. The efficiency of the methodology was demonstrated on a DC motor-flywheel

system with variable rpm and variable loads. The proposed method showed superior
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performance in bearing fault detection under variable loads and rpm. The methodology

showed strong fault detection capability by combining the process variables with vibra-

tion data when the conventional technique fails. At the end, it becomes a strong tool for

vibration based condition monitoring by proven applicability both in simulated cases as

well as in experimental study.

5.2 Recommendations

We have the following recommendations for future work.

• The proposed method was validated using simulated and experimental trial. How-

ever, it remains to see how the methodology will perform in industrial scenario.

Field data collected from the industry should be used for validating the method.

• While this research focus on the detection of the bearing fault under non-stationary

process conditions, it did not deal with estimating fault magnitude. Multivariate

statistical techniques, such as SPC (Li et al. [37]) could be used for estimating fault

magnitude and subsequently it can be used for estimating remaining useful life for

equipment.
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