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Abstract 

Piston core MAR02–45P and its trigger weight core (MAR02–45TWC) record 

sedimentation over the last 10.3 cal ka on the SW Black Sea shelf with only one hiatus 

(from 5.4–2.1 cal ka BP).  Geochemical and mineralogical studies were undertaken on 

the fine fraction of these sediments in an attempt to better define lithologic units, and to 

search for evidence of changing provenance.  Isopach maps were used to estimate the 

volume of sediments deposited on the shelf.  This estimate of sediment volume was 

compared to expected deliverable volumes from local rivers, as calculated using a robust 

empirical equation for sediment flux, available from the literature.   

Four geochemical units (Units A, B, C1, C2) were identified, in agreement with 

previous studies.  Correlation tables expose four groups of similarly behaving elements 

that govern the geochemical trends throughout MAR02–45.  There is carbonate group 

composed of Ca, Mg, and Sr, and a mainly detrital group believed to reside in 

aluminosilicate minerals composed of Sc, Fe, Co, Ce, La, Th and Y.  In contrast, As, Rb, 

Br, Mn and Sr are interpreted to have entered the sediment from the water column, or 

were mobile during early diagenesis and Cu, Pb, Ni, Zn, U and V are interpreted to 

indicate adsorption onto fine-grained phyllosilicates and/or organic matter during early 

diagenesis.  A ~45 cm upward adjustment in the placement of the previously recognized 

α1 key seismic marker in the core is suggested by the new geochemical data.  
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 Unit C1 (10.3–8.4 cal ka BP) contains some detritus from local sources, especially 

marked by spikes in Cr abundance associated with sandy horizons.  Unit C2 (8.4–7.5 cal 

ka BP) contains the familiar signatures of Unit C1 as well as a high TS concentration.  

This unit preserves the geochemical signature of a previously identified ‘first-pulse’ of 

Mediterranean water entering the Early Holocene Black Sea.  Unit B (7.5–5.4 cal ka BP) 

records a well-oxygenated environment with abundant mollusk communities and infaunal 

burrows.  Unit A (2.1–0 cal ka BP) chronicles the dysoxic conditions that continue to the 

present, and has higher than average abundances of the redox-sensitive elements Cu, Ni, 

Zn, Pb, U, and Th. 

Grain size analysis on nearby core MAR05–50 shows a bimodal texture similar to 

that of loess found within the Danube drainage basin.  Geochemical comparisons between 

two loess profiles and core MAR02–45 show similar abundances for only one element.   

Mineralogically, Units A, B, and C are similar to one another except for a 

downcore increase in the abundance of calcite, some of which is likely detrital.  Although 

specific sediment sources (provenance) could not be determined, it is concluded that the 

volume of sediment deposited in Unit C is too large to have been delivered from only 

local sources, indicating that the SW Black Sea shelf must have been in open 

communication with the larger Black Sea basin since ~10.3 cal ka BP.  The geochemical 

and mineralogical data are consistent with this conclusion, although they cannot be used 

to quantify the contribution from the various potential sources in the western Black Sea.  
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Chapter 1 Introduction 

1.1 Introduction 

Since the end of the Younger Dryas (~12.9 cal ka BP) the Black Sea shelves have 

been transgressed from a lowstand of ~ -100 m (Aksu et al., 2002; Ryan et al., 2003; 

Lericolais et al., 2007).   During and subsequent to the transgression, Holocene muds 

were deposited across the southwestern Black Sea shelf in variable thicknesses (rarely 

>15 m; mostly <10 m).  The fine grain size of most of the Holocene succession below 

modern water depths of ~60 m (Hiscott and Aksu, 2002; Hiscott et al., 2007b; Flood et 

al., 2009) is attributed to the fact that the transgression was relatively rapid, with the 

Black Sea reaching a level of ~ -40 m by ~10 cal ka BP (Hiscott et al., 2007b; Giosan et 

al., 2009).  Hence, water depths over much of the shelf have been below fair-weather 

wave base during most of the Holocene.   

1.1.1 Thesis Goals 

The primary aim of this research is to assess whether the provenance of the fine 

fractions (silt and clay) of the Holocene sediments on the southwestern Black Sea shelf 

might have changed since the earliest Holocene.  This is an important question because 

Hiscott et al. (2007b) have claimed that the middle part of the southwestern shelf was 

fully open and connected to the deep Black Sea basin, and hence regional sediment 

sources, since ~10.3 cal ka BP (calibration from Mertens et al., 2012); whereas, Ryan et 
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al. (2003) and Lericolais et al. (2007) maintain that the central Black Sea had a level 

below the modern shelf edge until ~9.15 cal ka BP (calibration from Mertens et al., 2012) 

so that Holocene mud deposits on the southwestern shelf older than ~9.15 cal ka BP 

would have had to accumulate in a perched pond or lagoon ('liman' in local terminology).  

In an isolated liman, sediment can only be derived from local drainage basins.  However 

local sediment supply is not incompatible with the scenario of an open and fully 

transgressed shelf.  Aksu et al. (2002) suggested that some of the detritus in the lowest 

Holocene unit (their seismic unit 1B) might have been supplied from local rivers near the 

Turkish-Bulgarian border that had formed a number of small shelf-edge deltas during the 

Late Pleistocene lowstand.  The aim of the thesis is to determine the composition of the 

entire Holocene transgressive succession from samples at core site MAR02–45 (Table 

1.1).  Possible sources of sediment are major rivers far from the southwestern shelf (e.g., 

the Danube River), local rivers draining northern Thrace, and the reworking of 

Pleistocene sediments during the Holocene transgression.  By studying the fine fractions, 

a more complete understanding of the locations of significant sediment input through the 

Holocene will be attained.  The fluxes from the different sources likely depended on 

changing climates, which affected runoff, weathering and vegetation.   

The provenance of the Holocene mud units on the southwestern Black Sea shelf 

might also provide insight into the initiation and changing temporal importance of 

advection of detritus, by currents, from along-shelf sources (e.g., Danube River).  Today, 
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the major counter-clockwise-flowing Rim Current accounts for transport of sediments 

from the mouth of the Danube River to the southwestern shelf of the Black Sea.  This and 

other marine currents must have followed different pathways in the past when sea level 

was lower, so that their ability to advect sediment likely changed through the Holocene.   

 

Table 1.1 Locations and water depths of Black Sea cores used or referenced in this thesis 

Core Number Location (Lat. & Long.) Depth (m) Length of 

composite core (m) 

MAR02–45 41o41’170N   28o19’080E -69 9.5 

MAR08–17 41o13’614N   29o07’819E -76 1.2 

MAR05–50 41o29’63  N   29o04’45  E -91 7.2 

 

1.1.2 Approach 

Characterization of the mineralogy and geochemistry of potential sediment 

sources will be based on a survey of the literature, five samples from the modern Danube 

Delta (Table 1.2), and two samples from modern rivers entering the Black Sea from 

Thrace (Table 1.3).  For a more general comparison with the composition of sediment 

from a wider part of the northern Turkish landmass, three samples have been included 

from coresite MAR08–17 which is located under Mediterranean inflow at the northern 

exit of the Bosphorus Strait (Table 1.1).  Because of the northerly directed flow in the 

deep part of the strait, this site is believed to receive its sediment from the margins of the 

strait, and several small rivers which enter the Bosphorus channel along its length.  Some 
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specific minerals are expected to have significance and might be valuable traces.  

Sediments delivered by the Danube River are expected to contain more clay-sized quartz 

and dolomite than sediments derived from Thrace because of contributions from glaciated 

mountain belts as far away as the Alps.  Volcanic rocks in Thrace might be expected to 

yield more smectite than other potential sources (Major, 2002; Bayhan et al., 2005). 

 

Table 1.2 Locations and elevations of Danube Delta samples taken in delta–top ponds 

Sample Area Sample Code Location (Lat. & Long.) Water 

depth (m) 

Sulina Distributary 

(Canal) 

Mile 1-2 45o09’535N    29o38’341E -10 

St. George Distributary St. George 1 44o56’949N    29o30’200E -5 

St. George 2 44o53’779N    29o34’902E -6 

Chilia Distributary Chilia 1 44o24’509N    29o32’658E -12 

Chilia 2 44o23’166N    29o35’411E -9 

 

Table 1.3 Locations and elevations of Thrace river samples taken downstream from 

dammed reservoirs. 

Sample Name Location (Lat. & Long.) Elevation (m) 

Çilingöz 41o31’31.59N  28o11’32.72E 9  

Kıyıköy  41o37’35.31N  28o02’15.42E 30 
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Three independent methods are used to assess provenance: 

(1) clay mineralogy of the <2 m fraction using oriented smear mounts; (2) silt 

mineralogy of unoriented powder mounts of the 2–63 m fraction; and (3) trace-element 

geochemistry of the bulk <63 m sediment. 

The considerable volume of Holocene sediments on the southwestern Black Sea 

shelf (~100 km3 from isopachs in Fig. 1.1 and an assumed acoustic velocity of  

1500 m s-1) must be considered when evaluating inputs from the various potential 

sources.  Over the Holocene time span of ~12,000 years, could each potential source, 

alone, have provided the observed volume?  If not, then either sediment yields have 

changed significantly through the Holocene (perhaps due to changing climate), more than 

one source might have been tapped, or if the sum of the fluxes from all reasonable 

sources is not enough, then a substantial amount of the shelf succession might consist of 

reworked muds that were originally delivered to what is now the shelf from surrounding 

lands earlier in the Pleistocene. 

If the reworking of unconsolidated Pleistocene sediments was a major contributor 

to the lower Holocene muds on the southwestern Black Sea shelf, then it might be 

possible to put some constraints on the pace of the most recent transgression.  For 

example, if there had been a rapid inundation (e.g., catastrophic flood scenario of Ryan et 

al., 2003, and Lericolais et al., 2007) then there likely would have been little or no  
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Figure 1.1 Isopach map from Aksu et al. (2002) showing locations and thickness (in milliseconds) of Holocene Muds; 20 ms ≈ 

15 m in thickness, approximate locations of core sites MAR02–45, MAR05–50 and MAR08–17 are marked as well as 15 cores 

(small, orange circle) from Bayhan et al. (2005); cores 380 and 390 from the Deep Sea Drill Program, DSDP (large, green 

circle), Stoffers and Müller (1978); core BC-3 (large, open cirlce) from Piper and Calvert (2011), and core CG01 (small, open 

cirlce), Dean and Arthur (2011). 
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transgressive erosion.  If a gradual and slow transgression had instead occurred, the older 

sediments would more likely have been beveled by a ravinement surface and erosion 

products would be widely redistributed across the shelf.  Hence, volume estimates of the 

amount of mud available from potential sources might lead to some general conclusions 

about the style of the transgression.  If very little reworked material is required to satisfy 

the volume requirements, this would support a rapid (but not necessarily catastrophic) 

transgression, but if it is concluded that the volume of reworked material must have been 

high then a gradual rise in sea level perhaps would be more likely. 

To summarize, the primary aims are to define the geochemical composition of the 

Holocene muds and to determine whether sedimentary provenance changed significantly 

through the Holocene.  If data allow, constraints will be put on the relative importance 

during the Holocene of sediment sources like the Danube River, local drainage from 

Thrace, and reworking of older shelf deposits.  The results might also provide fresh 

insight into the importance of climate change, rate of sea-level rise, and the establishment 

and history of marine currents (e.g., Rim Current) on the Black Sea shelf. 
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1.2 Regional Overview 

1.2.1 Oceanographic Setting 

 The Black Sea is a large inland sea located between Europe, Anatolia and the 

Caucasus Mountains.  It is connected to the Mediterranean Sea through the Bosphorus 

Strait, Marmara Sea, and the Dardanelles Strait.   This connection consists of a two-way 

flow with south-flowing brackish surface waters overlying north-flowing saline waters 

(Oğuz et al., 1993).   The surface layer is 25–100 m thick, has a salinity of 17–20 psu, a 

temperature of 5–15oC and in the straits flows with a velocity of 10–30 cm s-1 to the 

south (Oğuz et al., 1993).  The north-flowing Mediterranean water is warmer (15–20oC), 

more saline (38–39 psu) and travels in the straits at velocities of 5–25 cm s-1.   

The surface circulation of the Black Sea (upper 25–100 m) is dominated along 

basin margins by the counter-clockwise-flowing Rim Current (~20 cm s-1; Fig. 1.2).  

Farther basinward, there are two central gyres (western and eastern).  There are many 

coastal anti-cyclonic eddies (Fig. 1.2), the Bosphorus eddy being to the west of the 

Bosphorus Strait (Oğuz et al., 1993) and of greatest relevance to this study.   

Flood et al. (2009) described east-directed current tails behind mounds on the 

southwestern Black Sea shelf, and a seabed disconformity, and attributed these to erosion 

and sediment transport beneath the Rim Current.  They showed the predominant grain 

size of the Holocene succession to be silt.  



 

 

 

 

  9
 

Figure 1.2 Major currents, gyres and eddies of the Black Sea. Redrawn from Oğuz et al. (1993).
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Crant (2010) mapped the extent and volume of clinoform-like accretion deposits 

on the western bank of the saline underflow channel that leads to coresite MAR05–50 

(Figure 1.1); the Rim Current apparently transported the accreted sediment from farther 

west, potentially from the Danube Delta.   

The Black Sea is a wave-dominated environment, which prevents deposition of 

significant amounts of sediment in water depths less than ~70 m, the exception being 

regions off of river mouths. Storm wave base can rework sediments to a depth of 75 m 

(Aksu et al., 2002).  In shallow marine systems storm-induced shelf currents begin 

through frictional coupling of the wind and water surface (Walker and Plint, 1992).  

These surface currents move water in deeper layers to the right (in the Northern 

Hemisphere).  Sediment moving currents flow at 90º to the wind direction (Walker and 

Plint, 1992).  Water blown onshore by storms also creates a hydrostatic pressure 

difference offshore, this pressure difference drives bottom flow (affected by Coriolis 

forces) in obliquely off-shore to shore parrellel directions (Walker and Plint, 1992).  In 

the modern Black Sea the Coriolos effect turns currents from the North West 

South East, which would move sediments to the South and East  on the southwestern 

Black Sea shelf (Fig 1.2). 
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1.2.2 Geologic Setting 

Rifting during the Late Jurassic evolved into a back-arc basin during the Mid–

Cretaceous (~100 Ma) forming the Black Sea basin (Gealey, 1988).   In the western 

basin, sea floor spreading had ceased by the Late Cretaceous and basin subsidence 

occurred due to thermal contraction and post–rift sediment loading (Gealey, 1988).  

Spreading in the eastern Black Sea basin continued into the Miocene.  During the late 

Miocene, black siltstones and dolostone suggest a shallow water environment (Muratov 

et al., 1978).  Miocene sedimentary materials have also been linked with volcanic source 

rocks because the sediments contain highly-crystalline montmorillonite.   

Pleistocene sediments are mainly terrigenous muds, silts and fine sands in the 

Black Sea.  Palynological studies indicate three cold and three warm intervals, this 

sedimentation was closely linked with climate during this time (Muratov et al., 1978).  

The Black Sea basin became salinated due to Mediterranean inflow during interglacial 

periods.  Density stratification, sapropel, and sapropelic muds were formed during this 

time (Muratov et al., 1978).   

The Black Sea was alternately connected and isolated from the global ocean 

during Quaternary interglacial and glacial periods.  During the glacial periods sea level 

dropped and large quantities of terrigenous sediments were supplied into the deep basin 

as turbidites.  Meltwater pulses during deglacial times are believed to have reduced the 

salinity by flushing out more saline waters (e.g., Ryan et al., 2003).  During the last 
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glacial maximum the Black Sea was drawn down (10–50 m) to depths below the modern 

shelf edge and is called the Neoeuxinian Lake or Black Sea Lake. 

Sedimentation in the western Black Sea basin was mostly controlled by input 

from the Danube River (Muratov et al., 1978) as the sediment supply from the Danube 

dwarfs all over supplies to the south (Jaoshvili, 2002 his §6).  Many small rivers in 

Thrace delivered sediment to western the Black Sea as well (Aksu et al., 2002).  There is 

some controversy as to the timing and pace of the last, early Holocene reconnection; the 

three main hypotheses are examined below. 

1.2.3 The Flood Hypothesis 

Ryan et al. (1997) proposed that a catastrophic flood inundated the Black Sea at 

7.6 cal ka BP.  A major unconformity is found along the shelf edge of the northwestern 

Black Sea and was dated to 7.2 ka BP.  A gravel bed at that level overlies terrestrial 

flood-plain deposits, wave–cut beaches, and coastal deltas that had been developed 

during the preceding lowstand to approximately –110 m.  Lying atop this unconformity is 

a dark sapropel unit; this structureless layer is found over the majority of the 

northwestern shelf and is of uniform thickness.  There is no evidence of transgressive 

systems tract geometry (Ryan et al., 1997).  Using 14C dates from five cores, the base of 

the sapropel layer was dated to 7.2±0.1 14C yr BP. 

 Ryan et al. (1997) concluded that ~100,000 km2 of land surface was inundated as 

Mediterranean waters cascaded through the Bosphorus Strait, filling the Black Sea basin 
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as water levels rose at a rate of tens of centimetres per day.  According to Ryan (2007), 

this catastrophic flood displaced earlier settlers and gave rise to the flood myth of Noah 

found in the Bible and other ancient texts.   

Ryan et al. (2003) revised the initial hypothesis in response to criticism.  The first 

major revision proposed by Ryan et al. (2003) was the inclusion of a second, earlier sea-

level draw down and transgression.  This earlier transgression occurred during the 

Younger Dryas and raised the sea level from –105 to –30 m.  Subsequently, the level was 

again drawn down to –95 m.  The timing of catastrophic flooding was adjusted downward 

to 8.4 14C ka BP (9.1 cal ka BP as calibrated by Mertens et al., 2012), raising the sea level 

to –30 m (Ryan et al., 2003).  Ryan et al. (2003) argued that the evidence for the first 

fresh-water ‘flood’ comes from shell fragments in sediments no younger than 10.0 14C ka 

BP.  Sediment with high bulk density and low moisture content suggested that the 

Ukrainian shelf was exposed subaerially from 14.7 14C ka BP to 10.7 14C ka BP.  The 

date for the ‘catastrophic flood’ was pushed back based on strontium isotope analysis of 

dated mollusk shells (Major et al., 2006) that suggested the first arrival of marine waters 

from the global ocean at 8.4 14C ka BP (9.1 cal ka BP).  The species turnover of mollusks, 

which had suggested that the ‘flood’ occurred at 7.2 14C ka BP (7.6 cal ka BP), merely 

reflected a salinity threshold being reached, well after the time of the transgression (Ryan 

et al. 2003).   
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Lericolais et al. (2007) interpreted wave-cut terraces and aeolian sand dunes on 

the Romanian shelf and inferred that there had been a paleoshoreline at –90 m, between 

9.58 and 8.58 14C ka yr BP.  This interpretation and the Ryan et al. (2003) conclusions are 

incompatible with the presence of soft muds with Caspian-type brackish dinoflagellates, 

molluscan, and ostracod faunas on the southwestern Black Sea shelf over this same time 

interval, at core site MAR02–45 in modern water depths <75 m (Hiscott and Aksu, 2002; 

Hiscott et al., 2007b; Bradley et al., 2012).   

1.2.4 The Outflow Hypothesis 

 In contrast to the ‘Flood’ hypothesis, the outflow hypothesis argues that water 

levels in the Black Sea rose ‘gradually’ during the Holocene.  Aksu et al. (1999, 2002), 

Hiscott et al. (2002, 2007a,b), Yanko-Hombach et al. (2004) and others have argued that 

a catastrophic flood could not have occurred in the Black Sea during the Holocene.  

Görür et al. (2001) also provided evidence against a catastrophic flood at 7.2 14C ka (as 

originally proposed by Ryan et al., 1997), but the Ryan et al. (2003) revision of the age of 

the proposed flood to 8.4 14C ka removed the objection raised by Görür et al. (2001). 

 Aksu et al. (1999) argued that about 10.0 14C ka BP, increased fresh-water input 

raised the level of the Black Sea and its brackish waters entered the Marmara Sea through 

the Bosphorus valley.  At about 9.50 14C ka BP, the Marmara Sea reached the level of the 

Bosphorus Strait but could not penetrate into the Black Sea because of the strength of the 

outflow (Hiscott et al., 2007a).  Black Sea outflow weakened by ~8.40 14C ka BP (9.1 cal 
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ka BP) allowing Mediterranean water to enter the Black Sea as an initial short-duration 

pulse (Hiscott et al., 2007a) followed by a stronger sustained influx by ~7.50 14C ka BP 

that established the two-way flow seen today. 

 Aksu et al. (2002) mapped five seismic units on the southwestern Black Sea shelf 

and dated Unit 1 (glacial to post-glacial transgression) with radiocarbon dates from six 

short gravity cores.  The architecture of subunit 1A points to its development as low-

stand, shelf-edge delta lobes deposited ~115 m below modern sea level.  This suggests 

that the Black Sea was drawn down ~105 m during the Younger Dryas.   

 Hiscott et al. (2002) showed the existence of two progradational delta lobes at the 

southern exit of the Bosphorus Strait in the northeast Marmara Sea, and argued that they 

record two periods of outflow of water from the Black Sea into the Sea of Marmara.  For 

the uppermost delta, Hiscott et al. (2002; 2008) advocated that the outflow began at ~10 

14C ka BP, necessitating that the contemporary Black Sea level was then at or above the 

depth of the Bosphorus sill (~ -40 m).  Eriş et al. (2007) argued that the two deltas could 

have been formed by the Kurbağalıdere River.  Hiscott et al. (2008) calculated sediment 

flux for the Kurbağalıdere Rivulet and determined that there was an inadequate supply of 

material to build the delta lobes. 

 Hiscott et al. (2007b) analyzed core MAR02–45 (the primary core studied in this 

thesis – a detailed review is found in §1.4.1) and combined paleontological and 

sedimentological evidence supporting a gradual Holocene reconnection with the 
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Mediterranean Sea.  Core MAR02–45 recovered almost all of the Holocene succession 

above the α unconformity (see also Reynolds, 2012), which suggests that the shelf was 

inundated from at least 10.3 cal ka BP (Hiscott et al., 2007b; calibration from Mertens et 

al., 2012).  The evidence for short-lived saline inflow into the Black Sea comes from 

sulphur geochemistry and dinocyst and freshwater alga abundances.  Between ~9.4 cal ka 

BP and 8.6 cal ka BP these fresh/brackish water species were replaced by marine flora 

(calibrations from Marine 09 calibration curve with 0.4 ka reservoir age).   Between 8.4 

cal ka BP and ~7.9 cal ka BP the fresh/brackish water species returned until they were 

permanently replaced at 7.5 cal ka BP (Hiscott et al., 2007b).    

1.2.5 The Oscillating Sea-level Hypothesis  

 It has been proposed that during the Neoeuxinian the level of the Black Sea (a 

lake at the time) varied through time but was never more than ~100 m below its present 

level (Yanko–Hombach, 2007).  Based on benthic foraminferal assemblages, Yanko–

Hombach (2007) reconstructed water level in the Black Sea over the last 30 thousand 

years.    

From ~27 14C ka BP to 17 14C ka BP this lake was connected to the Marmara Sea 

and isolated from the Caspian Sea.  At 17 14C ka BP, the climate began to warm and 

water level rose to -20 m; this rise has been attributed to a deluge from the Caspian Sea 

(Yanko–Hombach, 2007) which would have caused a spillover into the Marmara and 

Mediterranean seas.   
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Yanko-Hombach (2007) suggested that at the start of the Younger Dryas the 

water levels dropped from -20 m to -50 m and then rose again to -20 m.  After 10 14C ka 

BP the level of the Black Sea never dropped below -40 m and no fluctuations over 20 m 

are evident (Yanko–Hombach, 2007).  It is proposed that sea level rose and fell at a rate 

of ~3 cm per 100 years in an oscillating manner.  Yanko–Hombach (2007) also argued 

that the lack of Mediterranean fauna older than 5.3 14C ka BP in the Bosphorus Strait 

implies that the Bosphorus valley cradled an isolated lake from 26 14C ka BP to 5.3 14C 

ka BP.  The reader will notice the obvious incompatibility of this conclusion with arrival 

of Mediterranean water in the Black Sea by ~8.4 14C ka BP (9.1 cal ka BP), unless it did 

not pass through the Bosphorus valley, but via an alternate route like the present-day 

Sakarya River valley to the east (Yanko–Hombach et al., 2004). 

The Izmit Plain (a possible pathway of reconnection) was studied by Gürbüz and 

Leroy (2009); they found no evidence of marine or fluvial sediments.  Gürbüz and Leroy 

(2009) also noted the presence of small sills higher than the modern level of Lake 

Sapanca, if a Marmara Sea–Black Sea connection flowed through this valley then water 

levels must have been higher than they are currently.  

Yaltırak et al. (2012) also examined the possible reconnection pathways of Lake 

Sapanca and Lake İznik.  5 m long cores from Lake İznik indicate that the lake contains 

no marine ostracods or formaninifera for at least the last 4.3 k yr.  Applying tectonic 

uplift rates  to the area around Lake İznik Yaltırak et al. (2012) concluded the vertical 
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movement needed for a Holocene reconnection was well above calculated values.  They 

also concluded that tectonic uplift in the Sapanca region would inhibit the formation of a 

waterway connecting the Black Sea to the Marmara Sea during the Holocene (Yaltırk et 

al., 2012). 

1.2.6 Rivers 

The modern Black Sea receives fresh water from five major rivers (Danube, 

Dniester, Dnieper, Southern Bug and Don) and many smaller local rivers.  The major 

rivers deliver great volumes of sediment and fresh water to the Black Sea each year.   For 

example the Danube River delivers 25–35x106 t yr-1 of sediment to the Black Sea, 4–

6x106 t of which are sand.  Before the building of the Iron Gates Dam (Romania), up to 

67.5x106 t of sediment were delivered annually (Panin and Jipa, 2002).   Many small 

rivers empty into the southwestern Black Sea: the Bulanık, Pabuç, Kazan, Çilingöz and 

Kuzulu rivers all drain to the west of core site MAR02–45 (Aksu et al., 2002).  These 

rivers deliver ~29,930 t of sediment annually (Table 1.4).  Small deltas, shore-parallel 

sand ridges, and dunes characterize the river mouths because most fine-grained sediment 

is now trapped in dammed reservoirs just landward of the coast.  Between these small 

rivers and the Danube Delta, the Kamchiya River reaches the Bulgarian coast.  Its pre-

dammed water and sediment discharges are 0.873 km3 yr-1 and 1.1x106 t yr-1 (Jaoshvili, 

2002), making it a sediment source intermediate in scale between the Danube River and 

the much smaller Turkish rivers. 
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The Danube River is a major potential sediment source for the southwestern 

Black Sea shelf.  This is because the sediment discharge from the Danube River dwarfs 

the detrital supply from all other sources along the southern margin of the Black Sea 

(Jaoshvili, 2002, his §6).  Large river systems like the Danube are well studied 

worldwide, and are known to provide muds to their receiving basins that are advected 

hundreds of kilometres along adjacent shelves to form shore-parallel, mid-shelf 

sedimentary deposits 20–40 m thick (Liu et al., 2009).  For this reason, a brief overview 

of the bedrock geology of the Danube drainage basin is provided in the next section 

(§1.3).  The Danube headwaters extend far to the west into the Alpine chain, and 

tributaries extend into the Carpathian Mountains, Dinaric Alps, and Balkan Chain, so 

section 1.3 is necessarily very generalized.  These are all Cenozoic fold-thrust belts 

created by the collision of the African and Eurasian plates as the Tethys Ocean was 

consumed.  They consist mainly of low-grade metasedimentary rocks, plutonic belts, 

ophiolite complexes and sedimentary cover. 

 

Table 1.4 Rivers in Thrace, extracted from Aksu et al. (2002) 

River Drainage area 

(km2) 

Average discharge 

(m3 s-1) 

Annual discharge 

(x106 m yr-1) 

Sediment yield 

(t yr -1) 

Bulanık 155 1.597 59.5 9 987 

Pabuç 95 0.907 27.5 5 395 

Kazan 125 1.262 45.2 7 619 

Çilingöz 91 0.887 39.9 5 111 

Kuzulu 40 0.368 12.3 1 817 
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1.3 Geology of Surrounding Lands 

1.3.1 Geology of Northern Thrace Drainage Basins Entering the Black Sea 

The geographic area encompassing Thrace is composed of southeastern Bulgaria, 

northeastern Greece, and the European section of Turkey.  The Thrace Basin is the largest 

Tertiary sedimentary basin in Turkey (Demir et al., 2012).  It is underlain by pre-Tertiary 

metamorphic (low grade schists and gneisses) and granitic suites (Turgut and Eseller, 

2000).  The Tertiary infill is primarily marine interbedded siliciclastic and carbonate 

rocks, with sporadic lava flows (Turgut and Eseller, 2000).  The primary direction of 

Quaternary drainage in this basin is toward the Aegean and Marmara seas (Fig. 1.3; Okay 

and Okay, 2002), as the coastal Strandja Mountains (Istranca in Turkish) form a drainage 

divide that limits runoff into the southwestern Black Sea to a narrow coastal zone.  

Hence, rocks of the Tertiary Thrace Basin provide limited detrial influx to the Black Sea. 

The geology of the eastern portion of the Thrace Basin (near Kıyıköy), where small rivers 

do drain into the southwestern Black Sea, is characterized by upper Eocene – lower 

Oligocene tidal deposits of bioturbated sandstone (5–10 m thick) and mudstones (Varol et 

al., 2009). Overlying these rocks are cross-bedded clastic limestones (5–10 m thick) with 

some meter-thick reef deposits.  Bioturbated sandy limestones (10–15 m thick) transition 

upwards into massive bioclastic sand and sandstones with coral fragments (~50 m thick; 

Varol et al., 2009).  These outcrops are proximal to the coast and disected by the Kozan 

River. 
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Figure 1.3 A simplified view of the coastal geology (from Okay & Okay, 2002; Okay, 

2008; Natal’in et al., 2012; Bedi et al., 2013, and nearshore geology (below the α 

unconformity; Aksu et al., 2002) of the southwestern Black Sea. 
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Elsewhere, the coastal geology of the southwestern Black Sea is dominated by the 

Strandja-Rhodope Massif (Fig. 1.3), a metamorphic complex (Yılmaz et al., 1997).  The 

northern termination of this Strandja Massif is the Sredna Gora zone (a package of deep-

sea sediments including flysch, and mafic to intermediate volcanics).  The Strandja 

Massif consists of a core of high grade metamorphic rocks disconformably overlain by 

slate, phyllite and recrystallised limestones (Yılmaz et al., 1997).  In northwestern Turkey 

the metamorphic rocks are composed of greenschist to epidote-amphibolite facies 

(Natal’in et al., 2012).  Paleozoic metasedimentary rocks include biotite schist, biotite-

muscovite schist and gneiss with preserved relict sedimentary structures (Natal’in et al., 

2012).  In places, hornblende, actinolite, minor plagioclase, and garnet comprise layers of 

amphibolite (Natal’in et al., 2012).  Samples of the biotite schist contain quartz (20–

25%), K-feldspar (20–25%), plagioclase (10–15%), biotite (10–15%), muscovite (5–

10%), epidote (2-5%), calcite (3-5%), minor zircon, and opaque minerals (Natal’in et al., 

2012).  Upper Carboniferous biotite-muscovite granitic gneiss contains plagioclase (35–

40%), epidote (20–25%), biotite (15–20%), K-feldspar (10–15%), quartz (5–10%), garnet 

(2–5%), titanite (1–3%), and minor zircon and opaque minerals (Natal’in et al., 2012).  

Next in succession are Triassic conglomerates and sandstones that pass upward into 

interbedded fine grained siliciclastic rocks and limestones.  These metasedimentary rocks 

contain a small tectonic lens of pillow lava and are capped by black shale  (Natal’in et al., 

2012).  The Strandja Massif is thoroughly intruded by multifarious dykes, sills, stocks 
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and plutons (Yılmaz et al., 1997) with the majority having the composition of 

granodiorite, quartz diorite or adamellite. 

The nearshore geology of the southwestern Black Sea shelf below the α 

unconformity is considered a possible sediment source in late Quaternary time as this 

subcrop would have been exposed during the late Pleistocene (and potentially early 

Holocene) when the Black Sea was drawn down (Fig 1.3).  The erosion and reworking of 

these sedimentary successions could have contributed to the early transgressive and 

highstand Holocene–Recent sediments deposited on the shelf. 

 Erginal et al. (2012) record Holocene coquina and coquinite beds ~40 km 

northwest of Istanbul in back-beach areas of the Thracian coast.  The beaches are 

composed mainly of shell debris and coquina, and are 20–60 m wide with ~2 m 

maximum thickness.  The compostition of the cement in the coquinite beachrock is low-

magnesium calcite (Erginal et al., 2012).  Near Şile (Istanbul), beaches are 10–30 m wide 

and are backed by a coastal dune field with a thickness no greater than 3 m (Ekinci et al., 

2013).  Upper Pleistocene aeolianites form the back-beach and encase foredune sands.  

The beach material is 9–10 m thick and overlies coquinite beds no greater than 5 m in 

thickness (Ekinci et al., 2013).  There have been no quantitative studies on the source(s) 

of the siliciclastic sand fraction in these beaches, but several processes are likely 

responsible: (1) redistribution of locally derived river sand by wave action and associated 

longshore currents; (2) erosion of coastal bluffs, pre-existing Pleistocene aeolianites (such 
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as those reported by Ekinci et al., 2013) and any headlands that might have existed as sea 

level reached its current level; (3) landward transport and winnowing of sand from the 

shelf during the Holocene and various late Pleistocene transgressions.  

1.3.2 Geology of Northwestern Anatolia 

 The geology of northeastern Anatolia is characterized by the Istanbul-Zonguldak 

zone, which represents the northern extent of the western Pontides (Yılmaz et al., 1997).  

The metamorphic basement consists of gneisses, gabbros, and amphibolites intruded by 

arc-type granitoids (Okay, 2008). This is overlain by a Devonian package of red arkosic 

conglomerate, sandstone and mudstone.  Silurian quartzites are found beneath dark 

siltstones, greywackes and shales (Okay, 2008; Yılmaz et al., 1997) that pass upward into 

quartzitic layers overlain by graptolitic limestones and mudstones.  The limestones 

change from sandy to alternating coralline and bituminous limestones and marls.  

Devonian carbonates near Istanbul are thinly bedded cherty limestones with phosphate 

nodules and are overlain by Carboniferous sandy turbidites and shales (Yılmaz et al., 

1997).  Mesozoic outcrops are patchy near Istanbul and consist of alkaline lava flows 

interleaved with a thick, red, fluvial clastic unit (Okay, 2008). 
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1.3.3 Geology of Mountain Belts in the Danube Drainage Basin 

 Major mountain belts drained by the Danube River include the Calcareous Alps, 

the Balkans Range, the Dinaric Alps, and the Carpathian Mountains.  These ranges are 

composed of predominantly Upper Paleozoic siliciclastic sedimentary rocks overlain by 

Mesozoic carbonate platforms (Channell et al., 1990; Doglioni et al., 1995; Vlahović et 

al., 2005; Stefanescu et al., 2006).  For example, Upper Paleozoic to Lower Mesozoic 

sedimentary rocks of the Calcareous Alps accumulated in three environments: siliciclastic 

shallow-water and continental settings in the Late Permian, shallow water carbonate 

environments in the Triassic, and deepwater carbonate environments in the Jurassic 

(Channell et al., 1990).   

The Balkans Range separates southeastern Europe (e.g., Greece, Bulgaria, 

Albania, Montenegro) from northeastern Europe (e.g., Romania, Hungary).  Basement 

rocks consist of Precambrian high grade metamorphic rocks (amphibolite and gneiss, 

Burchfiel et al., 2003), marbles (Kozhoukharov and Konzalova, 1990) and a well 

preserved Precambrian ophiolite complex (Savov et al., 2001).  These basement rocks are 

overlain by Mesozoic and Paleogene sedimentary rocks (Doglioni et al., 1995) and 

intruded by Cretaceous and Paleogene plutons.   

The Balkan-Carpathian ophiolite is comprised of a mafic/ultramafic suite of 

Upper Precambrian rocks (Savov et al., 2001).   It crops out in Bulgaria, Serbia and 

Romania and has been linked to a mid-ocean ridge source (Savov et al., 2001). 



 

 

 

 

  
26 

The Dinaric Alps (Dinarides) border the Adriatic Sea and their eastern slopes 

empty into the Danube drainage basin.  The composition of the Dinarides is dominated by 

the Adriatic Carbonate Platform (Vlahović et al., 2005).  Underlying this Mesozoic 

(Jurassic–Cretaceous) platform are Triassic sedimentary and volcanic rocks.  Triassic 

magmatism was mafic to felsic with pyroclastic deposits and pillow basalts (Trubelja et 

al., 2004) generated in a subduction setting.  The basaltic and gabbroic rocks show a 

characteristic enriched mid-ocean ridge basalt signature with an enrichment of light rare 

earth elements compared to heavy rare earth elements (Trubelja et al., 2004).   

The Carpathian Mountains dominate the geology of Romania and extend into 

surrounding countries.  Outcrops in Romania range in age from Precambrian to 

Quaternary.  The Moesian Platform is bounded by the Danube River to the south, by the 

Sub-Carpathian domain to the north, and the Black Sea to the east (Stefanescu et al., 

2006).  The basement of this platform is composed of metamorphosed rocks.  Lower 

Paleozoic rocks include black Cambrian shales and sandstones, overlain by carbonates, 

including limestones and dolostones with interlayered evaporite deposits (Stefanescu et 

al., 2006).  Upper Paleozoic deposits include mafic and felsic volcanics interbedded with 

continental evaporite deposits (Stefanescu et al., 2006).   

Jurassic ophiolite complexes can be found to the east of the Moesian Platform.  

Layered gabbroic units, sheeted dykes, pillow basalts and breccias define the ophiolite 

sequences (Bortolotti et al., 2002).  The gabbroic units are sourced from high-Ti magma 
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while basaltic rocks show N-MORB characteristics with flat to slightly enriched rare 

earth element (REE) patterns.  This suggests as mid-ocean ridge origin for these ophiolite 

complexes (Bortolotti et al., 2002).  Calc-alkaline volcanics range from basalt to rhyolite 

with some granotoid intrusions into the ophiolite complex.  These rocks are depleted in 

Nb, P, and Ti and enriched in Rb-Ba-Th and La-Ce.  There is also a well-defined 

enrichment in light rare earth elements in the calc-alkaline volcanics (Bortolotti et al., 

2002). 

1.3.4 Loess 

Surface sediment in eastern Europe is primarily wind-transported loess or 

reworked loess.  The interfleuves of the Danube basin are blanketed by many large and 

thick loess deposits.  Quaternary loess and paleosol deposits in eastern Europe span a 

number of glacial/interglacial cycles (Fitzsimmons et al., 2012).  The most prevalent 

loess deposits are found near large rivers (e.g., Danube, Dniestr).  Loess deposits 

modified by pedogenesis and diagenetic processes occur in the areas of transition from 

lowlands to mountains (Fitzsimmons et al., 2012).  Figure 1.4 shows the extent of loess 

deposits in the Danube drainage basin. 

Varga (2011) studied loess and red-clay deposits in the Carpathian Basin and 

determined there is a bimodal distribution of grain sizes: coarse (16–63 μm) and fine 

material (2–8 μm).  The coarse material indicates local sourcing whilst the fine material is 

derived either from a more distal environment or secondary weathering.  A 1:250,000 



 

 

 

 

  
28 

map of loess occurrences in Europe and central Asia can be accessed at 

http://www.ufz.de/index.php?en=15536 (Haase et al., 2007). 

Smalley and Leach (1978) studied loess deposits throughout the entire Danube 

basin.  They define loess as 20–60 μm unstratified, calcareous, porous material: sandy 

loess as a mixture of 20–60 μm and 200–500 μm grain sizes, and non-calcareous, and 

clay-loess as unstratified, low porosity material with peak particle size between 20–60 

μm with 25–30% of the particles < 2 μm.   

Primary loess deposits were formed through weathering of alpine units near the 

Danube headwaters and wind transport to the east. Austrian loess is derived from 

northern European glacial debris.  These two sources combine in the Danube Valley and 

form floodplain deposits further downstream.  The floodplain deposits have been 

reworked through aeolian transport into a third type of loess deposits, found around 

Budapest (Smalley and Leach, 1978).  These three loess deposits are then mixed with 

Carpathian derived loess when the River Tisza connects with the Danube River.  The 

final source of loess generation in the Danube basin is the lower Danube floodplain.  

Loess deposits in Bulgaria and Romania are created through aeolian transport of these 

lower floodplain deposits.  
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Figure 1.4 Map of loess and loess derivative deposits in the middle and lower Danube Basin, modified from Fitzsimmons et al. 

(2012), their figure 2.  These deposits can achieve thicknesses >5 m.
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It has also been noted that Bulgarian and Romanian loess deposits are more clay-

rich than loess deposits to the east.  This is thought to be due to the fact that they are a 

combination of loess and loess derived material from Alpine, Austrian, and Carpathian 

sources (Smalley and Leach, 1978).   Figure 1.5 from Smalley and Leach (1978, their 

figure 6), is a generalized diagram showing the interconnections of Danube basin loess 

deposits and their sources. 

Újvári et al. (2008) analyzed loess deposits in southwestern Hungary (Table 1.5)  

to determine provenance and determined that SiO2 varies from 61.8–67.2 wt.%; Al2O3 

from 12.8–14.2 wt.%.  They found that TiO2 values are high (0.9–1.0 wt.%) while Na2O 

and K2O values are low (1.3–1.6 wt.%; 2.2–2.6 wt.%).  They further determined that SiO2 

values coupled with the high Al2O3 values indicate an abundance of aluminosilicates 

(feldspars and/or micas).  They found a correlation of SiO2 and TiO2 and argued for the 

presence of a titanium-bearing silicate phase (e.g., rutile, biotite, chlorite; Újvári et al., 

2008).   

Trace element data show a strong relationship between light rare earth elements 

(LREE) and high field strength elements (HFSE).  Their behaviour is similar to TiO2 and 

P2O5, implying that LREE and HFSE concentrations are governed by the presence of 

heavy minerals (Újvári et al. 2008).  Table 1.5 from Újvári et al. (2008) shows 

concentrations of major and trace elements from a section of loess located in 

southwestern Hungary. 
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Figure 1.5 Generalized diagram showing the interconnections of Danube Basin loess 

deposits and theirs sources, modified from Smalley and Leach (1978, their figure 6, 

redrawn). 
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Table 1.5 Selected data from Újvári et al. (2008), Concentration of major (wt.%) and trace elements (ppm) from southwestern 

Hungarian loess deposits. CIA = Chemical index of alteration ; LOI = Loss on ignition 

Sample 21 22 23 24 25 26 27 28 29 30 31 32 33 34   

Depth 

(m) 

0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 Mean  St. 

Dev. 

SiO2 53.6 58.2 59.9 62.1 65.5 64.9 64.0 63.7 61.7 62.0 60.7 63.5 62.0 62.7 61.8 2.8 

TiO2 0.8 0.8 0.9 0.9 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.0 

Al2O3 10.6 11.3 12.1 13.8 14.8 14.1 13.6 13.3 12.7 12.4 12.6 13.1 12.8 12.7 12.8 1.0 

FeOtot 3.8 4.0 4.3 4.9 5.1 4.7 4.5 4.3 4.2 4.1 4.4 4.3 4.2 4.3 4.3 0.3 

MnO 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 

MgO 4.4 5.0 5.0 4.3 3.0 2.6 2.9 3.1 4.0 4.5 4.6 4.4 4.7 4.7 4.1 0.8 

CaO 23.5 17.0 14.0 9.7 6.1 8.5 10.1 10.6 12.5 12.0 12.8 9.5 11.4 10.5 12.0 3.9 

Na2O 1.1 1.4 1.4 1.6 1.7 1.5 1.5 1.5 1.4 1.5 1.5 1.5 1.5 1.6 1.5 0.1 

K2O 1.9 2.0 2.2 2.4 2.6 2.4 2.4 2.4 2.3 2.3 2.3 2.4 2.4 2.4 2.3 0.2 

P2O5 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 

Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0.0 

LOI 

(%) 

19.9 16.6 15.4 12.2 8.8 10.3 11.2 11.6 13.2 13.5 13.7 11.5 13.3 12.9 13.2 2.6 

CIA 65 63 63 64 64 65 65 64 64 63 63 63 63 61 64 1.3 

Rb 79 83 91 102 112 111 105 99 93 90 93 98 95 93 96 9.0 

Sr 200 204 202 168 156 146 161 168 201 210 221 195 231 241 194 31.2 

Ba 340 346 365 436 456 437 417 416 387 401 402 411 423 388 402 31.7 
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Table 1.5. Continued 

Sample 21 22 23 24 25 26 27 28 29 30 31 32 33 34   

Depth 

(m) 

0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 Mean  St. 

Dev. 

Pb 15 16 15 19 19 19 17 16 14 18 17 18 19 16 17 1.6 

Th 11 11 14 14 14 14 14 13 14 13 12 14 15 14 13 1.2 

Zr 315 351 359 356 365 368 366 368 363 368 348 366 352 371 359 13.5 

Nb 17 16 17 19 20 18 18 18 17 18 17 18 17 17 18 1.0 

La 35 46 52 46 54 50 60 55 40 39 43 43 42 46 46 6.6 

Ce 73 82 85 81 104 103 95 94 91 89 80 82 91 88 89 8.2 

Y 33 37 38 41 43 38 38 40 38 38 37 38 36 38 38 2.2 

V 68 81 76 96 102 82 90 84 92 77 88 89 78 85 85 8.3 

Cr 61 72 72 77 82 88 77 75 74 73 74 75 76 74 75 6.1 

Ni 19 27 30 38 42 38 37 35 33 33 33 34 33 32 33 5.2 

Cu 16 18 19 25 24 19 21 20 18 17 16 18 20 15 19 3.4 

Zn 60 61 66 71 79 73 72 71 65 61 64 70 66 68 68 5.2 

Ga 13 14 14 18 17 17 17 16 17 16 14 18 15 17 16 1.8 

Rb/Sr 0.4 0.4 0.5 0.6 0.7 0.8 0.7 0.6 0.5 0.4 0.4 0.5 0.4 0.4 0.5 0.1 

Ba/Sr 1.7 1.7 1.8 2.6 2.9 3.0 2.6 2.5 1.9 1.9 1.8 2.1 1.8 1.6 2.1 0.5 

La/Th 3.2 4.2 3.7 3.3 3.9 3.6 4.3 4.2 2.9 3.0 3.6 3.1 2.8 3.3 3.4 0.5 
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Mineralogically, the loess is composed of mainly silt-sized quartz (31.1–48.8%), 

feldspars (5.2–13.6%), carbonates (10.7–37.2%) of which 69.4% is dolomite and the 

calcite/dolomite ratio is 1:2, minor micas and heavy minerals.  The clay fraction consists 

mainly of illite and chlorite with minor smectite, kaolinite and mixed-layer clays (Újvári 

et al., 2008). 

The Hungarian loess deposits have undergone some fluvial transport and show 

important chemical differences from typical upper continental crust, suggesting mixed 

sources for the deposits (Újvári et al., 2008).  Because of the complex bedrock geology 

across the European continent and the possible long-distance aeolian transport of the 

loess, Újvári et al. (2008) concluded that ‘an accurate determination of provenance areas 

based on whole-rock geochemistry cannot be made’. 

Adamova et al. (2002) examined loess deposits located in the southern Czech 

Republic and found carbonate contents to range between 16–40% near the cities of 

Znojmo and Pavlov with the presence of dolomite characterizing the loess around 

Znojmo while dolomite is ‘practically absent’ near Pavlov.  The majority of their study 

locations provided, at a minimum, trace amounts of dolomite.  Calcite content is 

moderate, with some samples near Pavlov reaching high abundance (Adamova et al., 

2002).  “Higher proportions” of dolomite at some localities may be due to the presence of 

dolomite in nearby pre-Quaternary sediments (Adamova et al., 2002).  Average carbonate 
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content for their entire study area is 13.2%.  Quartz content varries from 24–60% and 

plagioclase content ranges from 7–17%. 

1.4 Relevant Previous Work in the Black Sea 

1.4.1 Previous Work on Core MAR02–45 and around the core site 

 In 2002, Aksu and Hiscott, working aboard the R/V Koca Piri Reis of the Institute 

of Marine Sciences and Technology, Dokuz Eylül University, collected piston core 

MAR02–45P with a Benthos piston corer (1000 kg head weight) and a companion 

trigger-weight core (MAR02–45TWC).   The location 41º41.170’N, 28º19.080’E on the 

southwestern Black Sea shelf is in a water depth of -69 m.  These cores were shipped 

upright to Memorial University of Newfoundland (MUN), where they were split, 

described, and photographed by R.N. Hiscott and A.E. Aksu.  Radiocarbon dates and 

geochemical trends suggest that the top of the piston core MAR02–45P corresponds to a 

depth of 110 cm in the trigger-weight core MAR02–45TWC (Hiscott et al., 2007b).   

 Based on seismic profiles (Huntec deep-tow system) from a grid comprising 

~2800 line-kilometers of survey tracks, Aksu et al. (2002)  mapped five seismic-

stratigraphic units ranging in age from Miocene to Recent.  Unit 1 represents the 

sediments deposited during the last glacial lowstand and the Holocene.  This unit is 

underlain by the shelf crossing unconformity α.  α extends to the shelf-slope break at 

100–120 m depth, and across the entire width of the shelf (Aksu et al., 2002).  Ryan et al. 
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(1997) identified an equivalent reflector on the northern Black Sea shelf.   Unit 1 was 

subdivided into four subunits based on internal relectors.  Subunit 1A is found only along 

the self edge, and its top is defined by the α unconformity.  Subunit 1B sits atop the α 

unconformity and the division of subunits 1B and 1C are defined by a moderately strong, 

regionally continous reflector surface known as α1.  The division between subunits 1C 

and 1D is defined by the presence of a weaker, locally continous reflector (Aksu et al. 

2002a) and is known as the α2 unconformity.  The relationship of these three 

unconformities to core MAR02–45 can be seen in Figure 1.6. 

A calibrated radiocarbon age model has been published by Mertens et al. (2012).  

At 920 cm composite depth, a shell of Dreissena rostriformis was dated at 10.3 cal ka 

BP.  Sedimentation is conformable upward to the 2 unconformity at 270 cm composite 

depth where there is an extrapolated age of 5.4 cal ka BP immediately below the 

unconformity and an extrapolated age of 2.1 cal ka BP just above the 2 unconformity, 

bracketing an hiatus of ~3.3 ka.  The transgressive unconformity  is ~80 cm below the 

base of MAR02–45 (Reynolds, 2012).  The composite core MAR02–45 samples various 

seismic subunits of Aksu et al. (2002): 1B (~10.5–8.1 cal ka BP), 1C (8.16–5.4 cal ka 

BP), and 1D (2.1–0 cal ka BP; Hiscott et al., 2007b; calibrations from Mertens et al., 

2012).   
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Figure 1.6 Huntec DTS boomer seismic section showing core site M02-45 and seismic units 1B, 1C and 1D.  Ages have been 

updated to calendar yr BP (Mertens et al., 2012).  F927 refers to the seismic station along the seismic line.  Original figure 

from Hiscott et al. (2007b).
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MAR02–45 was examined visually for texture, colour and sedimentary structures.  

At 10 cm intervals ~20 cm3 samples were taken for geochemical, textural and 

micropaleontological analysis (Hiscott et al., 2007b). The samples were wet sieved  

at 63 m to separate the sand fraction and to isolate foraminifera, ostracods and mollusk 

shells.  Total sedimentary sulphur, total organic carbon, and stable isotopes of sulphur 

and carbon were measured using isotope-ratio mass spectrometry (Hiscott et al., 2007b).  

Palynological studies were undertaken on core MAR02–45 to determine vegetation 

patterns in the surrounding study area and any salinity changes during deposition.   

Hiscott et al. (2007b) interpreted three lithologic units in core MAR02–45 (Fig. 

1.7).  The well-defined silt to very fine sand beds of unit C (= seismic subunit 1B) are 

either storm or shelf-turbidite deposits that lack features characteristic of wave 

reworking.  They accumulated below fairweather wave base, and probably close to storm 

wavebase, conservatively estimated by Hiscott et al. (2007b) to be greater than ~30 m 

water depth.  Unit C was divided into two subunits based on geochemical differences.  

Subunit C2 (beginning at 615 cm) shows a remarkable increase in total sulfur to a peak 

value of ~1.7%; sulphur declines to ~1% at the top of C2 (Fig. 1.7; Hiscott et al., 2007b).   

Lithologic Unit B (= seismic subunit 1C) contains alternating beds of mud and 

shelly mud; bioclasts and bioclastic sand exceed 20%.  The appearance of the mollusk 

Modiolula phaseolina suggests a salinity of ~18 psu, similar to today (Hiscott et al., 

2007b).
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Figure 1.7 Selected proxy data from core MAR02–45 courtesy of Hiscott et al. (2007b).  Age calibrations from Mertens et al. 

(2012).
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Although the measurement of the process lengths of the dinoflagellate cyst 

Lingulodinium machaerophorum suggests a lower salinity of ~14–15 psu (Mertens et al., 

2012).  The mollusks in unit B lived at the coresite, suggesting a well-oxygenated shelf 

environment. 

Lithologic Unit A (= seismic subunit 1D) is comprised of subtly colour-banded 

bioturbated mud with silt laminae and several mollusks of Mediterranean affinity.  The 

deficiency of macrofossils in this unit suggests a poorly oxygenated environment (Hiscott 

et al., 2007b). 

The age model and facies indicate that transgression occurred on the southwestern 

Black Sea shelf ~10.5 cal ka BP and that the outer and middle shelves have been  

inundated ever since.  The oldest facies of MAR02–45 was deposited at or below storm 

wave base.  By approximately 8.1 cal ka BP, continuous two-way flow was established 

with the Aegean Sea and by ~2.1 cal ka BP the middle shelf had become dysaerobic 

(Hiscott et al., 2007b; calibrations from Mertens et al., 2012). 

1.4.2 Previous Mineralogical and Geochemical Work in the Black Sea 

Many authors have undertaken mineralogical identification of the components of 

Black Sea sediments.  This section will focus on the southwestern Black Sea and adjacent 

areas of possible influence such as the Danube River, Bosphorus Strait, and the rivers 

draining Thrace.    



 

 

 

 

  
41 

Bayhan et al. (2005) studied an area extending west-northwest from the 

Bosphorus entrance on the southwestern Black Sea shelf and uppermost slope bounded 

by the Turkish coast to the south and by longitudes 28.1–29.2oE (Fig. 1.1).  Gravity 

cores, all <2.5 m, were taken at 15 locations: age control is poor.  The <2 m fraction 

was studied for its clay mineralogy; whereas, bulk samples were used for determination 

of non-clay minerals.  The areas of diagnostic peaks in XRD spectra are not good 

estimators of mineral proportions, so it is general practice to apply weighing factors to 

certain peak areas.  Weighting factors of Biscaye (1965), Mann and Müller (1980) and 

Gündoğdu (1982) were employed. 

The major non-clay minerals reported by Bayhan et al. (2005) from bulk samples 

are aragonite (5–70%), 1 nm-micas (5–64%), quartz (5–58%), feldspars (4–46%), calcite 

(4–37%) and dolomite (2–11%).  The 1 nm-mica shows an enriched zone from the inner 

shelf in the west to the outer shelf in the east.  Bayhan et al. (2005) suggest this mica is 

derived from metamorphic rocks in Thrace and delivered by local rivers.  The greatest 

abundance of aragonite was found in the northwestern part of the study area on the upper 

slope in sediment dated at 13.3 cal ka BP.  No discernable trends were seen in the other 

non-clay minerals.  The clay minerals measured were smectite (24–48%), illite (22–

51%), kaolinite (2–32%) and chlorite (2–40%; Fig. 1.8).  The short lengths of the gravity 

cores sampled by Bayhan et al. (2005) and their radiocarbon dates indicate that their shelf 

analyses do not extend into seismic subunit 1B (Unit C) of Aksu et al. (2002). 
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Figure 1.8 Clay mineral % in short cores from the southwestern Black Sea shelf (Bayhan et al.  2005, their figure 8).  

Smectite=S, Illite=I, Kaolinite=K, Chlorite=C, Mixed Layered Clay=IS.  Core numbers precede by CBK, correspond to 

numbered , orange filled circles in Fig. 1.1.
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Bayhan et al. (2005) suggest that the dolomite has a terrigenous source and that 

most of the aragonite and calcite was bio-precipitated by benthic organisms.  The 

feldspars and quartz are weathering products from magmatic sources (Bayhan et al., 

2005).   

The clay minerals were interpreted to have been primarily derived from coastal 

areas near the southwestern Black Sea shelf, but elevated illite concentrations are 

attributed to the Danube River.  Bayhan et al. (2005) state that it is reasonable to expect 

some sediment input from northwesterly sources (Danube River) but the size of this 

contribution could not be quantified.  These authors concluded that the clay minerals are 

homogeneously distributed by the prevailing current systems on the shelf. 

 Stoffers and Müller (1978) studied three deep-sea drill cores (Fig. 1.1) from the 

Black Sea basin.  DSDP Hole 379 is located far to the east of the study area so it is not 

considered here.  Hole 380 was drilled in 2115 m of water near the Bosphorus Strait and 

1073.5 m of sediment were recovered.  These sediments were divided into 5 units, 

numbered from the top downward.  Unit 1 is comprised of 332.5 m of terrigenous 

Pleistocene sediments including muds, silty sands and sandy silts (Stoffers and Müller, 

1978), and is the only unit relevant to this thesis.   

DSDP Hole 381 was drilled landward of Hole 380 at a water depth of 1750 m 

(Stoffers and Müller, 1978) and was divided into four units.  The uppermost unit consists 



 

 

 

 

  
44 

of 171 m of terrigenous silts, sandy clays, and clays with a basal sand interval (Stoffers 

and Müller, 1978).  The older units are not relevant to this thesis. 

 X-ray diffraction analysis was performed on DSDP samples from Holes 380 and 

381 by Stoffers and Müller (1978) and Trimonis and Ross (1978).  The <2 m seperates 

were analyzed.   The Pleistocene sediments at Site 380 contain abundant clay minerals, 

particularly illite.  The montmorillonite/illite ratio of these sediments ranges from 0.004 

to 0.02 (Trimonis and Ross, 1978).  Calcite is the predominant carbonate in these 

Pleistocene sediments and is often associated with minor dolomite (Trimonis and Ross, 

1978).  Chlorite content is approximately the same at Site 380 (14 wt.%) and kaolinite 

occurs in low abundances (<10 wt.%; Stoffers and Müller, 1978). 

Quartz and feldspar content vary throughout Hole 381, averaging ~25 wt.% each 

(Stoffers and Müller, 1978).  The highest quartz content is found in Pleistocene sediments 

where quartz is 1.5 to 2 times more abundant than feldspar (Trimonis and Ross, 1978).     

Major (2002) sampled two cores from the western Black Sea (off the Romanian 

shelf) and analyzed the carbonate and clay fractions.  The cores were divided into three 

lithologic units (Fig 1.9).  Upper Holocene Unit 1 is a light-grey, organic rich, finely 

laminated mud (Major, 2002).  Middle Holocene Unit 2 consists of a dark grey sapropel, 

and lower Holocene to Pleistocene Unit 3 begins at a downward change in colour from 

dark green, to grey, to brown (Major, 2002).  Elevated abundances of illite characterize 

the lower unit of both cores, then decrease at the top of the brown unit.   



 

 

 

 

  4
5
 

 
Figure 1.9 Core analyses from Major (2002; her figure 2-4, redrawn) showing mineral abundances for carbonate and the main clay 

minerals.  Only her units 1, 2 and the uppermost 3–4 sampling positions in unit 3 overlap in age with the sediments at core site 

MAR02–45.  All scales are in % except for δ13C and  δ18O which are in per mil (relative to PDB).  M indicates marine sediments, T 

a dark green mud at the base of a sapropel.  C1 and C2 are areas with carbonate peaks while B1 and B2 are brown, clay-rich 

horizons.
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Smectite is abundant in the Upper Pleistocene and during intervals when authigenic 

carbonate formation decreased (Major, 2002).  

Major (2002) measured carbonate values from 9–13% in the lower section of Unit 

3.  In the upper portion of Unit 3 there are two spikes in carbonate content: the first 

reaches 42% and then values return to ~20% followed by a second spike with carbonate 

values peaking over 60% (Fig, 1.9; Major, 2002).   

Major (2002) interpreted the high smectite values in the lower parts of the cores to 

indicate a southern source (i.e., Thrace) for clay minerals in older sediments.  The 

modern sediments contain higher values of illite and kaolinite, which she attributed to 

increased erosion in northern drainage areas during the collapse of Scandinavian and 

Alpine glaciers (Major, 2002).  Kaolinite and illite concentrations decreased once 

vegetation became established in deglaciated areas with resulting slower erosion (Major, 

2002). 

There has been considerable work on the geochemistry of Black Sea sediments 

below the chemocline, in the anoxic part of the basin (e.g., Kıratlı and Ergin, 1996; Dean 

and Arthur, 2011; Piper and Calvert, 2011; and references therein), but little work of a 

similar nature on the shelves where the bottom waters are oxygenated.  Generally, in the 

deeper anoxic parts of the Black Sea, the formation of sulphide minerals and adsorption 

of metals on to organic particles are important (Kıratlı and Ergin, 1996; Dean and Arthur, 

2011; Piper and Calvert, 2011), but other processes are expected to be important in shelf 

regions, like transport of a greater proportion of minor and trace elements in detrital 
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particles, and perhaps greater element mobility during early diagenesis as components 

pass from the oxygenated sediment-water interface into the subsurface with its poorly 

oxygenated pore waters. 

Dean and Arthur (2011), in their studies of Black Sea sediments beyond the shelf 

edge (in anoxic bottom waters; one core located in Fig. 1.1), report that Co, Ce, La, Th 

and Y are generally in detrital aluminosilicates.  In contrast, Dean and Arthur (2011) and 

Kıratlı and Ergin (1996) have determined that V, Ni, Zn and Cu tend to be concentrated 

in organic-rich Black Sea sediments, either because of biogenic fixation or adsorption 

under reducing conditions that persist from the water column into the sedimentary 

column.  However, Dean and Arthur (2011) find that in some circumstances V and Ni are 

bound in detrital phases rather than residing in complex ions in the water column.   

Piper and Calvert (2011; one core located in Fig. 1.1 but most in deeper water) 

found that Cd, Cu, Ni, and Zn are predominantly associated with the biogenic fraction of 

sediments, while Mo, Re, U, and V are primarily found in the hydrogenous fraction that 

accumulates through adsorption/precipitation reactions. 

 Hirst (1974) performed factor analysis on 25 elements from eleven slope and 

basin cores to determine the main controls on element distribution in the Black Sea.  He 

extracted seven factors that control 88.4% of the total variance in his data.  His first two 

factors account for 62.8% of the total variance.    Factor 1 has its highest loadings on 

MgO, Fe2O3, Al2O3, and K2O, with a minor contribution from Na2O.  This factor 

represents multiple clay minerals (chlorite and montmorillonite) contributed by a 
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southwesterly source (Hirst, 1974).  Factor 2 is controlled primarily by Al2O3, Na2O, and 

K2O with a small Zn contribution, suggesting a relationship to illite and feldspar.  Scores 

for this factor are high in the southern and southwestern Black Sea, with some high 

values in the central Black Sea (Hirst, 1974).   

Factor 3 controls almost all the variance of MnO, and is attributed to the 

precipitation of manganese micronodules that have been reported in the Black Sea with 

its particular Eh and pH conditions (Hirst, 1974).  Factor 4 is dominated by Ba;  Hirst 

(1974) concluded that there must be a distinct Ba mineral present (barite).   

The remaining four factors extracted from the geochemical data by (Hirst, 1974) 

are not discussed here because they contribute little to the overall variance and are not 

particularly relevant to the oxygenated environments of the western and southwestern 

shelves.  

1.4.3 Mineralogy and Geochemistry of the Danube System 

The Danube River is over 2800 km long and is a major water and sediment source 

for the Black Sea and possibly for the nearby southwestern Black Sea shelf.  The Danube 

River has been studied extensively.  The focus of this review is on the mineralogical and 

chemical composition of sediments, and on the evolution of the Danube Delta.   

Dinescu and Duliu (2001) studied heavy metal concentrations in lake sediments of 

the Danube Delta.  It was found that Zn, As, Sb and Br (148.8, 15.5, 2.7, and 9.7 ppm in 

modern sediments) concentrations were 1.2–2 times higher near the sediment surface 
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than in the lower portions of the cores.  This distribution shows an increase in pollutants 

until the end of the 1980’s, due to the industrialization of central and eastern Europe.  

After 1990 a slow decline in pollutant levels can be attributed to changing political ideals 

(the fall of the Soviet Union) in Europe (Dinescu and Duliu, 2001).  Oreščanin et al. 

(2005) found slightly elevated levels of Cu and Ni, but the total Pb, Cu, Zn, Cr, Mn, Fe 

and Ni concentrations were similar to those found in the shale and soils of Batina 

(Croatia) and Mohacs (Hungary). 

 Haslinger et al. (2006) studied the mineralogy of three Danube River floodplain 

horizons (DA1, DA9, and DA11) deposited at 0.1, 0.6 and <10.0 ka BP in Austria, thus 

closer to the headwaters of the river than to the Black Sea.  Minerals in the bulk sediment 

are dominated by calcite and dolomite (dolomite being the dominant carbonate phase).  

Quartz, K-feldspar, plagioclase, chlorite, kaolinite and mica are found in low to moderate 

amounts.  Micas and amphiboles are most abundant in younger deposits, as both are 

sensitive to weathering processes.  High levels of feldspar are also found in the youngest 

samples and that may be due to the flooding bringing fresh, unweathered material 

(Haslinger et al., 2006).   

Illite is the dominant clay mineral found is these deposits (52–64%), and increases 

slightly in older samples.  Chlorite values range from 18–30% making it the second most 

abundant mineral in the clay fraction.  Its highest values are in the youngest material as 

the chlorite is fresh and unweathered.  Smectite values are low (7–17%) and vary due to 

the change in smectite abundance of materials eroded during flooding events.  Kaolinite 
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values range from 4–7% while vermiculite and mixed layer clays are only present in trace 

amounts (Haslinger et al., 2006).  

1.5 Specific Thesis Objectives 

The six main goals of this thesis are: 

1)  to provide an estimate of the volume of sediment deposited in the area of core site 

MAR02–45 during the early Holocene (Unit C) using isopach diagrams from Hiscott et 

al. (2007b), and to compare these results with the amount of sediment potentially 

delivered (using the BQART equation) by local sources to the shelf; 

2)  to compare the texture (and any internal variations) of core MAR02–45 the texture of 

potential sources; 

3)  to determine the mineralogy of the silt fraction of sediments from core MAR02–45 

and to compare that mineralogy to potential source materials (e.g., the Danube Delta, 

rivers in Thrace); 

4)  to determine the mineralogy of the clay size fraction of sediment from core MAR02–

45 and to compare that mineralogy to potential source materials; 

5)  to interpret geochemical abundances and downcore trends in samples from MAR02–

45, and to compare these results to data from potential sources; and 

6)  to run statistical models on raw geochemical data to create Q- and R-mode factor 

analyses so that downcore variations can be simplified and interpreted. 

 



 

  

  
51 

Chapter 2 Methods 

The primary core studied for this project is MAR02–45; it was collected on the 

southwestern Black Sea shelf (Table 1.1) and has been previously studied by Hiscott et 

al. (2007b), Marrett et al. (2009), Mertens et al. (2012) and Bradley et al. (2012) using 

palynology and geochemistry as indicators of paleoenvironment through the Holocene.   

X-ray diffraction (XRD), instrumental neutron activation analysis (INAA), and 

inductively coupled plasma-optical emitted spectrometry (ICP-OES) are used to explore 

the mineralogy and chemical composition of core MAR02–45, and samples from 

potential sources (local rivers and the Danube Delta).  Sediment volume estimates are 

calculated using ImageJ freeware to obtain areas and volumes from the isopach diagrams 

of Aksu et al. (2002), supplemented by additional seismically imaged thicknesses from 

more recent cruises MAR–02 and MAR–05.  Sediment discharges from local rivers are 

estimated using the BQART equation of Syvitski and Milliman (2007).  The texture of 

MAR02–45 samples is based on sand/silt/clay ratios determined during sample 

preparation for mineralogical analysis. 

2.1 Sample Preparation 

2.1.1 Availibility of Samples and Restrictions on Sample Size 

Core MAR02–45 was collected in 2002 and the working half of the core was 

sampled in 2003 at 10 cm intervals for the analysis of texture, micropaleontology 

(foraminifera, ostracoda), and carbon and sulphur geochemistry.  Additional samples 
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were taken for further micropaleontogical studies prior to the start of this geochemcial 

analysis.  As a result, the amount of new material available for new work was limited and 

the collection of fresh samples was not an alternative.  Doing so would have depleted the 

working half of the core and would have yielded samples at different depths from the 

initial samples so that various data sets could not be integrated with one another.  

Destruction of the archive half of the core is a step of last resort, and is never undertaken 

except for the strongest scientific purposes, not for the type of reconnnaissance study that 

is addressed in this thesis.  The available samples consisted of (a) previously untreated, 

dried and bagged material left over from palynological preparations in the range of 3–10 

g, and (b) <63 μm splits of samples from wet seiving that was done to isolate microfossils 

(e.g., foraminifera) in the sand fractions of the sediments.  These fine fractions had been 

stored under distilled water and had dry weights in the range of 2–7 g.  Because of the 

greater sample size needed for mineralogical studies (in order to be able to prepare XRD 

mounts and to recover clays from silt-rich sediments), it was decided to use the untreated 

material for XRD work and the <63 μm splits for geochemical analysis.  This decision 

had repercussions for the type of geochemical analysis that could be completed, but was 

shown to be the best choice because of the small percentages of clay in almost all 

samples. 
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2.1.2 Preparation for XRD Analysis 

The dry, bagged samples were prepared for XRD analysis using the following 

method (a more detailed 13–step list of processing steps can be found in Appendix 1): 

In the laboratory with an ambient temperature of ~25ºC start with 3–10 g dry 

sediment, or 10–15 g wet mud, in a labeled plastic beaker.  Each sample was mixed with 

~ 100 ml of 5% hydrogen peroxide, and subjected to ultrasonic treatment until full 

disaggregation was evident.  Then each sample was wet sieved at 63 μm to separate the 

sand fraction, which was dried, weighed and stored. 

The <63 μm separate was flocculated with MgCl2 and allowed to settle until the 

water was clear.  Excess water was aspirated off and the remaining sediment was 

transferred to a small porcelain bowl, placed in an oven at ~55ºC to dry, and then 

weighed.   

The dried mud was transferred to a small beaker, combined with 40 ml 0.05% Na-

hexametaphosphate (calgon) and then disaggregated with an ultrasonic probe.  The 

dispersed sample was transferred to a 400 ml beaker filled to a mark 7 cm from the 

bottom with 0.05% Na-hexametaphosphate.  Each beaker was also marked 2 cm from the 

bottom.  After vigorous stirring, the suspension was allowed to settle under still 

conditions for 3 hours, 50 minutes (± 5 minutes).  By that time, Stoke's Law indicates that 

only <2 μm particles would be in the upper 5 cm of the initial suspension.  Next, the 

suspension between the two marks (~200 ml) was siphoned into a 600 ml beaker, using a 

siphon tube with a 90º curve at the suction end, to avoid drawing material from below the 

bottom line marked on the beaker.  Fresh 0.05% Na-hexametaphosphate was added to the 
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original beaker, stirred vigorously, then the separation procedure was repeated to ensure 

near-complete recovery of the <2 μm fraction.  The remaining suspension in the lower 2 

cm of the 400 ml beaker was retrieved, dried, weighed and stored as the 2–63 μm 

fraction. 

The two aliquots of <2 μm suspension were combined and allowed to settle 

overnight, and then the clear fluid was aspirated off.  Using a wash bottle with 0.05% Na-

hexametaphosphate, the <2 μm fraction was transferred to a bulb-bottomed, 20 mm-

diameter glass test-tube and filled to 5 cm above the ~5 mm-diameter neck (the neck is 

located just above the lower bulb, Fig. 2.1) with more 0.05% Na-hexametaphosphate.  

The tubes were placed in a rack and settling was allowed to proceed for 3 hours, 50 

minutes (± 5 minutes), after which time the neck of each tube was blocked with a tapered 

plastic rod and the upper suspension poured into a labeled plastic beaker.  This final step 

was designed to remove any remaining >2 μm particles.  The <2 μm separate was 

centrifuged three times, each time with fresh, distilled water, then transferred to an 

aluminum dish to air dry.  The dried material was weighed and stored in a vial until 

smear mounts were made.  Its weight was multiplied by a factor of 1.5 to account for the 

<2 μm material that was discarded from the lower bulb of the test tube, after determining 

that the volume of the lower bulb was 50% of the volume above the neck up to the 5 cm 

mark.  One sample was analyzed using an Horiba size analyzer to verify, as was the case, 

that samples prepared as explained above contain only <2 μm material. 
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Figure 2.1 Bulb-bottomed test tube and specially fabricated tappered stopper rod. This 

equipment was used in the final separation procedure of the <2 μm fraction
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To prepare the 2–63 μm (silt) fraction for XRD analysis, 1.5 g of sample was 

combined with 75 mg ±2 mg (~5 wt.%) of MoS2 (methodology of Quakernaat, 1970) and 

ground into a fine powder using an agate mortar and pestle.  The powder was packed in a 

random orientation using a side-packed method (Hanchar et al., 2000), or a front-loaded 

method in a recessed aluminum holder available in the Memorial University XRD 

laboratory, with careful attention to avoid forcing an orientation.  Careful packing using 

the front-loaded method allowed for faster analysis (more samples per day) and showed 

little to no loss of intensity of characteristic peaks (Fig. 2.2).  

For those samples with sufficient material (70 of 80 samples), 40 mg of the < 2 μm 

(clay) fraction was combined with ~2 mg ±1 mg (~5 wt.%) MoS2 (Quakernaat,1970) and 

mixed into a homogeneous paste with sparse amounts of a 0.2 M solution of MgCl2.  This 

paste was then applied to an acrylic slide using the thin edge a piece of photographic film 

as a "spatula" and the smear technique described by Gibbs (1965), and verified by him to 

give a dependable preferred mineral orientation.   

109 samples shipped to Activation Laboratories (ActLabs), Ancaster, Ontario, were 

taken from the stored <63 μm wet fractions from earlier work on core MAR02–45.  

These samples had no prior treatment, and had been stored in sealed containers under 

distilled water.  Samples from potential sources were prepared in a similar fashion after 

sand removal.  These samples were ground into a fine powder in an agate mortar and 

pestle and ~3 g of material (per sample) was sent for analysis. 
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Figure 2.2 Front-loaded-mount peak intensity (solid) vs. a spectrum from the same 

sample using the side-loaded method (dashed) of Hanchar et al. (2000).  The front-loaded 

method is more prone to create an orientation, so care must be taken when preparing the 

mounts.  Front-loaded mounts allowed more samples to be run per day, while returning 

peaks of comparable intensity.  The enlarged area shows just how little intensity was lost 

using the front-loaded mounts compared to the side-loaded method, and the degree of 

overall precision using the XRD powder mounts.
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2.2 Methods of Analyses 

2.2.1 Selection of Geochemical Method 

Before samples underwent geochemical analysis many methods were proposed 

and investigated.  The method(s) chosen for analysis had to take into account the limitted 

sample size (<3–5 g for the majority of samples) while trying to maximize the number of 

elements analysed all at a reasonable cost.  The XRD facilites at Memorial University 

require a minimum of 5 g per sample for analysis, and more if replicate analyses are to be 

undertaken.  As an alternative, a range of analytical packages from a commercial 

laboratory, Activation Laboratories (hereafter ActLabs) of Anacaster, Ontario was 

investigated.  Maximizing the number of trace element determinations was of utmost 

importance, as major elements are not considered strong indicators of provenance in fine-

grained sediments.  Again methods requiring 5 g or more of material could not be 

included.  This includes the 4B WRA-ICP package, which although it provides both 

major and several trace elements at high accuracy, omits certain elements (except as 

options with increased cost) that were anticipated to have discriminating power in 

pointing to particular source areas or environmental conditions (e.g., Co, Cr, Mo, U, and 

several rare-earth elements).  Other packages under the ActLabs heading 

“Lithogeochemistry for Exploration and Research” prove to be at least twice as expensive 

as the package that was selected, this being the ActLabs combined 4-acid digestion ICP-

OES and instrumental neutron activation (INNA) package (Code 1H).  This package 

provides data on 6 major elements, 4 minor elements, 29 trace elements and 10 rare-earth 
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elements.  Code 1H requires a maximum of 3 g per sample so that the <63 μm splits from 

previous studies could be used, permitting later integration of the results with existing 

TS, TOC, and isotopic data from the same depths.  

Two batches of samples were sent to ActLabs for geochemical analysis.  All 102 

samples from MAR02–45 were sent on April 7th, 2011, while the seven samples from 

potential source areas were sent on February 14th, 2012.  ActLabs analytical package 

Code 1H “Au+48” combines laboratory Code 1D (enhanced INAA) which provides data 

on 31 elements and Code 1F (4-acid digestion ICP technique) which determines the 

remaining 18 elements (ActLabs, 2010).  SiO2 is not analyzed due to volatilization by 

acids.  The acid extractions for Al, S and Y are partial, according to laboratory 

documentation.  Detection limits are shown in Table 2.1.  Ten samples that had already 

been replicated from the April 7th set were sent in duplicate on January 11th, 2014 

requesting full replication of each sample.  These samples were <1 g each but within an 

acceptable range determined through discussions with ActLabs staff.  This latter set was 

submitted to create a sufficent number of replicate analyses for statistical analysis.  

During data analysis presented in Chapter 3, it became clear that downcore trends 

could be clarified by recalculating elemental abundances to remove the effects of dilution 

by calcite.  Eventually this was done using the calcite abundances from XRD analysis of 

silt fractions after establishing a linear regression between ActLabs Ca abundances and 

XRD calcite percentages (needed because of no XRD results at approximately half of the 

10-cm depths).  A more accurate way to quantify the amount of calcite in each sample 

would have been to determine CO2 loss with acidification, as done in the Terra Facility at  
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Table 2.1 Detection limits of 49 elements using INAA and ICP–OES compared to 

elemental abundances of the average North American Shale (Gromet et al. 1984).  Values 

are in ppm unless indicated to be ppb or %. 

*Cold Vapour analysis by ActLabs is used to determine Hg-CV 

Symbol Detection Limit Avg. North 

American Shale 

Ag 0.3  

Al 0.01%  

As 0.5 28.4 

Au 2 ppb  

Ba 50 636 

Be 1  

Bi 2  

Br 0.5 0.69 

Ca 0.01% 3.3% CaO 

Cd 0.3  

Ce 3 66.7 

Co 1 25.7 

Cr 2 124.5 

Cs 1 5.16 

Cu 1  

Eu 0.2 1.18 

Fe 0.01% 5.09% FeO 

Hf 1 6.3 

Hg 1  

*Hg-CV (5 ppb)  

Ir 5 ppb  

K 0.01% 3.8% K2O 

La 0.5 31.1 

Lu 0.05 0.456 

Mg 0.01%  

Mn 1  

Mo 1  

Na 0.01% 1.008% NaO 

Nd 5 27.4 

Ni 1 58 
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Table 2.1. Continued. 

Symbol Detection Limit Avg. North 

American Shale 

P 0.00%  

Pb 3  

Rb 15 125 

S 0.01%  

Sb 0.1 2.09 

Sc 0.1 14.9 

Se 3  

Sm 0.1 5.59 

Sn 0.01%  

Sr 1 142 

Ta 0.5 1.12 

Tb 0.5 0.85 

Th 0.2 12.3 

Tl 0.1  

Ti 0.01%  

U 0.5 2.66 

V 2  

W 1 2.1 

Y 1  

Yb 0.2 3.06 

Zn 1  
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MUN (P. King, pers. comm. to R. Hiscott, 2014), followed by back-calculation of the 

amount of Ca needed to form calcite with this amount of CO2, permitting determination 

of the original percentage of calcite in each sample.  However, this procedure at MUN 

requires an additional 5 g of sample, so could not be considered. 

2.2.1 Factor Analysis 

Q- and R-mode factor analysis was run on geochemical data returned by ActLabs, 

augmented by TOC, TS and stable-isotopic data previously published by Hiscott et al. 

(2007b).  In order for these data to be analyzed, each variable was normalized.  Data 

normalization is important to avoid bias towards dominant elements (Davis, 1973).   

Normalization was achieved by first subtracting the minimum value recorded for a 

particular variable from all other determinations of that variable – this creates a value of 0 

for the sample with the lowest abundance of that component.  Then all adjusted 

measurements of that variable were divided by the largest value in the set of data, 

creating a maximum value of 1.  Once completed for all variables, this normalization 

creates a matrix with values ranging from 0 to 1 allowing the factor-analysis program 

QRmode, written by Klovan (1971), to extract relationships between variables and 

samples. 

2.3 X–Ray Diffraction 

X-Ray diffraction is a non-destructive technique for the analysis of small 

quantities of crystalline materials.  The X–Ray diffractometer at Memorial University is a 

Rigaku Ultima IV and uses a Cu-Kα radiation source.  Measurements were taken using a 
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current of 40 kV, 44 mA, with a divergent slit size of 10 mm, a receiving slit size of 0.3 

mm and a scan speed of 1º min-1 for most runs (see below).  Scanning ranges and step 

size varied with the material analyzed, as described in later sections.  A major drawback 

of X-Ray analysis is the difficulty in detecting minor phases (<5 wt.%) in a sample.  As a 

result, it is possible that some exotic minerals with potentially helpful provenance 

information may have been overlooked. 

2.3.1 Randomly Oriented Silt Mounts 

Randomly oriented mounts of powdered silt fractions were prepared and analyzed 

in Memorial University of Newfoundland’s Alexander Murray Building.  Front-loaded 

mounts were run in batches of ten.  Material was added to the holder by gently tapping on 

weighing paper containing powder, and the sample holder itself, until enough material 

filled the recess in the holder to its lip.  Most samples required no extra steps.  If the 

surface of a sample was uneven, a glass slide was used to gently level the surface, with 

care so as to not apply excessive force and induce an orientation.  Samples were scanned 

from 5–40º 2θ with a step size of 0.02º 2θ.  These analyses were sporadically checked 

against analyses of the same samples obtained using the side-loaded method.  Analysis 

and whole pattern fitting (WPF) refinement was done using the Jade© software package 

which computes wt.% abundance for detected minerals after using a cubic spline to 

resolve peaks from the background. 



 

 

  
64 

2.3.2 Oriented Clay Mounts 

Oriented clay mounts  were run three times: once ‘glycolated’ and twice ‘air 

dried’.  The glycolated analyses were performed after the samples had been exposed to 

ethylene glycol for at least 8 hours at ~60ºC; in this case, the diffractometer scanned 

between 5–17º 2θ.  The first ‘air-dried’ scan provided data from 5–40º 2θ using a speed 

of 1º 2θ min-1 and a step size of 0.02º 2θ.  The second run focussed on the 25–28º 2θ 

range and scanned using a step size of 0.005º 2θ.  This was done to differentiate partly 

overlapping chlorite and kaolinite peaks in this 2θ range (Biscaye, 1964). This permited 

determination of a kaolinite/(kaolinite+chlorite) ratio that could be used to partition the 

0.7 nm peak. Oriented clay mounts were analyzed using MacDiff freeware (Petschick, 

2002) to determine the areas of diagnostic mineral peaks in the <2 μm fraction after 

fitting a background trace; Jade was not used to determine mineral peaks as Memorial 

University of Newfoundland does not have the proper databases to analyze 

diffractograms from oriented mounts.  Spectra from the three separate runs were aligned 

and scaled to one another using the position and area of the 0.615 nm peak of MoS2.  The 

intensities and areas of peaks measured are listed in Tables 3.4 and 3.5.   

Mid-way through the thesis research, after the first air-dried runs had been 

completed, the X-ray tube on the Memorial University of Newfoundland diffractometer 

failed and was replaced, and it became apparent that X-ray emissions from the original 

tube that later failed were weak.  For this reason, intensities and peak areas for the same 

minerals are different between that first air-dried run and subsequent runs.  The presence 
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of the 0.615 nm peak of MoS2 in both air-dried and glycolated runs allowed all data sets 

to be scaled and merged regardless of different overall peak intensities. 

When the same smear mount was re-run after glycolation, there were often 

systematic shifts in the positions of peaks, including MoS2 peaks.  Either imperfections in 

the alignment of the sample holder(s) or expansion of the lattice of some clays must have 

raised the level of the top of the clay film enough to change the geometric configuration 

of the X-ray beam relative to the sample surface, leading to so-called displacement errors 

(Pérez and Tabares, 2002).  Adjustment of the position of the 0.615 nm peak of MoS2 

eliminated the effect of these shifts. 

During MacDiff analysis of the chlorite/kaolinite slow scan runs, some samples 

did not have large enough peaks to measure and deconvolve their areas accurately.  The 

presence of one or both of these minerals was confirmed using the 0.7 nm peak.  In order 

to estimate the amount of chlorite and kaolinite present in a sample with no slow scan 

run, the 0.7 nm peak in these samples was apportioned into chlorite and kaolinite areas 

based on the kaolinite/(kaolinite+chlorite) ratios of samples immediately above and 

below (eg. hypothetical sample 2 has an unknown kaolinite/(kaolinite+chlorite)  ratio 

while hypothetical samples 1 and 3 have  known kaolinite/chlorite ratios of 0.60 and 

0.70; therefore, sample 2 is assigned a kaolinite/(kaolinite+chlorite)  ratio of 0.65). 
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2.3.3 <2 μm Mineral Abundances 

The relative abundances of the minerals in clay-sized fractions of marine 

sediments have been quantified in the past using empirical scaling factors applied to the 

peak areas of the primary minerals, in particular smectite, illite, chlorite and kaolinite.  

Hence these are generally viewed as semi-quantitative estimates.  A widely used set of 

scaling factors is that of Biscaye (1965); these factors are multipliers of the following 

peak areas in X-ray diffractograms: smectite 1.7 nm (001) after glycolation  multiplier 

= 1; illite 1.0 nm (001)  multiplier = 4; chlorite 0.7 nm (002)  multiplier = 2; 

kaolinite 0.7 nm  multiplier = 2.  This method does not provide scaling factors for the 

peaks of other minerals (e.g., quartz, calcite, dolomite) which can be present in marine 

sediments, and which are known from the fine fractions of the Black Sea region (e.g., 

dolomite - Bayhan et al., 2005, Haslinger et al., 2006, quartz - Major, 2002, Trimonis and 

Ross., 1978, calcite - Major, 2002, Trimonis and Ross., 1978, Bayhan et al., 2005). 

Underwood et al. (2003) pointed out that in mixtures of clay minerals and other 

silicates, the peak areas for one mineral are dependent on the identity and abundances of 

the other minerals in the sample.  Hence, it is not a simple process to obtain quantitative 

mineral proportions based on fixed multipliers as proposed by Biscaye (1965).  

Underwood et al. (2003) used the method of "matrix singular value decomposition" to 

derive normalization factors for 12 artificial mixtures of pure smectite, illite, chlorite and 

quartz standards.  When applied to the peak areas from X-ray diffractograms of the 

artificial mixtures, these factors reproduced the correct weight percentages in the 

mixtures with errors of <5% of the amount present.  Both Biscaye (1965) and Underwood 
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et al. (2003) used the same characteristic peaks for clay minerals, along with the 0.4257 

nm peak for quartz in the case of the latter study.   

The peak areas for the samples analysed in this thesis were evaluated using both 

the Biscaye (1965) and Underwood et al. (2003) procedures.  Kaolinite was not included 

in the artificial mixtures of Underwood et al. (2003) so the peak used for evaluation of the 

thesis samples is the chlorite+kaolinite peak.  Because the Biscaye factor for these two 

minerals is the same, it is assumed that the Underwood et al. (2003) normalization factors 

for chlorite abundance might be reasonably applied to the composite chlorite+kaolinite 

peak.  As a cautionary note, the diffractometer setup used by Underwood et al. (2003) 

differs from the Memorial University setup in ways that affect the total number of counts 

contributing to each peak area (Table 2.3).  This accounts for the fact that mineral 

percentages calculated for this thesis research using the Underwood et al. (2003) 

normalization factors do not total 100%, so need to be adjusted by a constant multiplier in 

order to be compared with the Biscaye (1965) results, which themselves are normalized 

to 100% after applying the Biscaye (1965) multiplication factors. The results for a single 

representative sample are shown in Table 2.3 to explain the work flow. 

The Memorial University X-ray diffraction laboratory has a variety of software to 

quantify mineral abundances in mixtures (e.g., JADE), but all these packages are written 

for unoriented powdered samples so could not be used for the diffractograms using 

oriented mounts. 
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Table 2.2 Parameters used by Underwood et al. (2003) and in this thesis (MUN) and 

their effects on intensity measurements. 

 Underwood et al. 

(2003) 

This Thesis (MUN) Effects on Intensity 

Radiation CuKα CuKα  

mA 35 44 An increase in mA 

increases intensity 

Speed 1 deg/min 1 deg/min  

Step Size 0.01 Continuous  

Divergent Slit 0.5 mm 10 mm Increase in div. slit 

size increases 

intensity 

Receiving Slit 0.2 mm 0.3 mm Increase in rec. slit 

size increases 

intensity 

Range 2–23º 2θ 5–40º 2θ  
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 Table 2.3 Example of peak area manipulations on the clay-sized minerals found in MAR02–45 (510 cm depth) broken 

down into a 10-step method.  A detailed explanation of each numbered step is found in the text below the table. Mineral 

abbreviations with the subscript ‘ss’ underwent the slow scan procedure described in the preceeding text; the subscript ‘gly’ 

indicates that the mineral underwent glycolation before analysis, and the subscript ‘int’ means the intensities of the air-dried 

peaks were measured to create abundance ratios.  TC, total clays, represents the calculated abundance of clay minerals; TM, 

total minerals, represents the calculated abundance of non-clay minerals in the clay-sized fraction.  The units for entries 

associated with steps 1, 3 and 5 are total counts; for entries associated with steps 4, 6, 7, 8, 9, 10 the units are %. 

 a b c d e f g h i j k l m n o p q 

Step Sm Ill Chl Kao TC Qtz Mo Ca Do TM Q/C Caint Doint Chlss Kaoss Mogly Smgly 

1  3784 559   667 26652 4031 886   225 36 1150 835 517805 75499 

2  0.14 0.02   0.03 1 0.15 0.02       1 0.08 

3 13860 24154 3568   4257 170125 7729 1154       170125 13860 

4 28 44 3 4 79 21    21    0.58   

5 4142 28872 895 1237 35146             

6 12 82 3 4 100             

7 9 65 2 3 79 21    21        

8      21  102  123 0.16       

9      21  102 16 140  0.14     

10 4 30 1 1 36 10  47 8 64        
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Table 2.4 Step-by-step walk-through. 

1)  The raw peak area data from X-ray diffraction analysis is collected and organized. 

Illite (Ill) and chlorie (Chl) have been measured on air-dried runs.  Quartz (Qtz), 

molybdenite (Mo - column g), calcite (Ca) and dolomite (Do) peak areas are taken from 

air-dried analysis.  Chlorite and kaolinite (Kao) are analysed using the slow scan method 

in order to differentiate their overlapping peaks (columns n and o, with the total of these 

peak areas not yet equated to the peak area in column c).  Molybdenite and Smectite (Sm) 

are measured in glycolated runs as well (columns p and q). 

2)  The peak areas are normalized to the MoS2 peak within the same run; when this is 

done the MoS2 peak is equal to 1. 

3)  The normalized peak areas from step 2 are multiplied by a number, in the range 

17,000–210,000, needed to scale the total area for the characteristic peaks of illite, 

chlorite+kaolinite, montmorillonite and quartz to 45840, this being the average sum of 

these same peak areas in the runs of Underwood et al. (2003) on artificial mixtures.  The 

rationale for this step was to ensure that the application, in step 4, of the scaling factors of 

Underwood et al. (2003) used similar peak areas to those obtained by those authors with 

their different machine settings.  This step also compensates for the different peak 

intensities obtained before and after replacement of the X-ray tube following its failure 

part-way through the thesis work. 

4)  Apply the chlorite+kaolinite slow-scan ratio to the measured chlorite air-dried peak 

area (column c of step 3) and then apply scaling factors from table T4 of Underwood et 

al. (2003) to obtain mineral abundances for the clay minerals and quartz, followed by 

recalculation to 100% (i.e., columns a, b, c, d and f of step 4 total 100%) 
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5)  Apply the chlorite+kaolinite slow-scan ratio to peak areas from step 3 and then apply 

Biscaye (1965) multipliers.  Smectite = area*1, Illite = area*4, Chlorite = area*2 and 

Kaolinite = area*2 

6)  Normalize the Biscaye (1965) adjusted peak areas to 100 by dividing individual peak 

areas by the cumulative peak area of all the clay minerals (TC) times 100. 

7)  Using the ratio of quartz to total clays from step 4, adjust the Biscaye (1965) 

abundances to incorporate quartz. 

8)  Using Underwood et al. (2003, their table T3), peak areas from step 1, columns f and 

h, and Eqn 2.1 to transform the quartz/calcite peak-area ratio (0.16) to a quartz/calcite 

wt.% ratio of 0.203.  Before re-normalization, a quartz proportion of 21% (step 7) implies 

a calcite proportion of 21%/0.20 = 103% cal).  Of course the total for the sample now 

exceeds 100% and the sum for all minerals must eventually be re-normalized to 100%. 

9)  Dolomite abundance is determined using the measured intensities of calcite and 

dolomite and then applying the ratio to calcite abundance (Eqn 2.2).  At 510 cm depth, 

dolomite is 16% of the abundance of calcite, so a calcite un-normalized abundance of 103 

wt.% calcite corresponds to 16.5 wt.% dolomite. 

10)  The final step in determining mineral abundances in the clay-sized fraction is the 

normalization of all minerals to 100%.  After step 9, the non-clay minerals account for 

140 "units" of the sample (by weight), and the clays 79 "units", for a total of 219 "units".  

After normalization, the final values are a combination of Biscaye (1965) scaling for the 

clay minerals and non-clay mineral abundances calculated from both Underwood et al. 

(2003) and Royse et al. (1971).
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Because the Underwood et al. (2003) methodology is based on more refined 

procedures, it was hoped that these methods could be used to quantify the thesis mineral 

abundances.   However, the full table of calculated values for all samples (Appendix 2) 

includes several negative estimates of weight percentages, particularly for the minor 

minerals chlorite and kaolinite.  This could be caused by different behaviour of kaolinite 

relative to chlorite in the mineral mixtures, by differences between the Underwood et al. 

(2003) standard minerals and the minerals in the Black Sea sediments (e.g., the poorly 

crystalline smectite in thesis samples), interferences from carbonates in the thesis 

samples, and/or different instrument parameters (Table 2.3).  Nevertheless, the quartz 

percentages from the Underwood et al. (2003) calculations are used as best-estimates for 

the true abundances in the thesis samples, since no other technique was discovered to 

quantify quartz in mixtures with clay minerals. 

In samples with positive reported values for chlorite+kaolinite using Underwood 

et al. (2003) scaling, the most noticeable difference between the results using the Biscaye 

(1965) factors and the results using the Underwood et al. (2003) normalization technique 

is that the smectite abundances are nearly twice as large, and the illite abundances 

proportionally reduced using the latter technique (e.g., Table 2.4).  This may point to 

truly higher smectite abundances in the thesis samples than determined using the Biscaye 

(1965) factors, but other workers in the Black Sea region have also relied on the Biscaye  

(1965) scaling factors, so comparisons with published data are simplified by reporting the 

lower smectite values. 

To summarize the clay-mineral proportions for all thesis samples are based on 

application of the Biscaye (1965) multiplication factors to the appropriate peak areas for 
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smectite, illite, chlorite, and kaolinite, with the smectite area taken from the glycolated 

run (scaled to the areas in the air-dried run using the molybdenite peak area common to 

both runs) and the split of the chlorite+kaolinite 0.7 nm peak based on deconvolution of 

the doublet where secondary peaks for these minerals overlap (0.356 nm and 0.359 nm, 

respectively).  The quartz proportion is based on the calculations using the Underwood et 

al. (2003) normalization factors.  In order for the total mineral tally to equal 100%, the 

clay-mineral proportions are scaled downward to accommodate the quartz content.  The 

Black Sea samples also contain significant calcite and minor dolomite.  Their 

quantification requires some additional assumptions as to how their peak areas transpose 

into wt.% values.  Underwood et al. (2003) also performed a "matrix singular value 

decomposition" experiment with bulk unoriented mineral mixtures of powdered smectite, 

illite, chlorite, quartz, plagioclase and calcite.  Because quartz and calcite particles do not 

have a strong preferred orientation, it is assumed for the purposes of this thesis that the 

relationship of their peak areas would be similar in unoriented and oriented mounts, for 

mixtures with the same relative proportions.  The results of Underwood et al. (2003; their 

table T3) show a linear relationship between the ratio of peak areas for quartz and calcite, 

and the ratio of their weight percentages (Eqn 2.1), specifically 

(qtz wt. %)

(cal wt. %)
= 1.2723 ∗

qtz 0.4257 nm area

cal 0.3034 nm area
                        (Eqn 2.1) 

The additional percentage for calcite was accommodated by normalizing the total 

abundances for clay minerals, quartz and calcite to 100%. 
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Finally, the relative proportion of dolomite (dol) to calcite (calc) was quantified 

using the peak intensity relationship for carbonate weight percentages in Royse et al. 

(1971), specifically (Eqn 2.2) 

𝑑𝑜𝑙 0.288 𝑛𝑚 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

[(𝑑𝑜𝑙 0.288 𝑛𝑚 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦)+(𝑐𝑎𝑙 0.03034 𝑛𝑚 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦)]
= 0.010 ∗ (𝑑𝑜𝑙 𝑤𝑡. %) − 0.023  (Eqn 2.2) 

The final totals are normalized to 100%, which ignores any minerals present in 

very minor amounts, and the 5% molybdenite spike.  

2.4 Sediment Volumes and the BQART Equation 

An estimate of Holocene sediment volumes on the southwestern Black Sea shelf 

was completed to gauge the importance of local river supply to the shelf.  Isopach maps 

from Hiscott et al. (2007b), consistent with Aksu et al. (2002), were analysed using 

ImageJ freeware (available at http://rsbweb.nih.gov/ij/) to measure the areas enclosed by 

different thickness contours (presented in the original articles in milliseconds [ms] of 

two-way travel time, and converted to thickness using an acoustic velocity of 1500 m s-1).   

The area enclosed by a particular isopach contour (e.g., the surface area of a 2 ms-

thick slice between isopachs for 2 ms and 4 ms) was calculated by drawing a line 

equidistant from the 2 ms and 4 ms isopach lines (i.e. at 3 ms), then determining the 

enclosed area.  A mid-point position (e.g. at 3 ms rather than 4 ms) was used to account 

for an inferred linear thinning of deposits between any two contour lines.  Each area was 

then converted to a volume by multiplying area × contour interval (in ms) × 0.75 (to 

convert thickness in milliseconds to thickness in meters of unconsolidated sediment).  

The sum of the volumes for all contour intervals yields the total volume.  This can be 

thought of as summing the volumes of each horizontal slice (of thickness 2 ms in this 
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case) constituting a particular seismic unit.  The volume of mineral-density solids was 

obtained by multiplying the deposit volume by 1.0-(fractional porosity).  Appropriate 

fractional porosities for surficial marine muds are in the range 0.60–0.70. 

Sediment flux from local sources was calculated using the BQART Equation 

(Syvitski and Milliman, 2007). The BQART equation is an empirical relationship to 

calculate sediment yields from river drainage basins using parameters controlled by 

geography and regional geology.  The basic equation (Eqn 2.3) is 

Qs = ωBQ0.31A0.5RT, for T≥2ºC  (Eqn 2.3) 

Qs is the sediment discharge with dimensions of [mass/time].  ω = 0.0006 to give 

units of megatonnes/yr.  Q, water discharge, is measured in km3/yr.  Basin area, A, is in 

km2; R, maximum relief, is measured in km, and T, temperature in °C.  B represents 

basin characteristics and is calculated using the following formula (Eqn 2.4): 

 B = IL1 − TEEh    (Eqn 2.4) 

I  (I ≥1) is the glacial erosion factor (Eqn 2.5) which takes into account ice cover 

(Ag) in the basin 

 I = (1 + 0.09Ag)     (Eqn 2.5) 

L is the lithology factor, which varies according to the erosional resistance of the 

bedrock in the drainage basin; L= 0.5 for basins in shield rocks and can increase to a 

value of 3 for basins containing abundant loess or other weak materials.  TE compensates 

for sediment trapping due to dam construction and ranges from 0–0.9; a value of 0 

implies no damming in the basin.  The final parameter, Eh, is the anthropogenic factor; 
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this factor recognizes population density and land use practices as influences on sediment 

yield. 

For rivers in the Black Sea area, this thesis sets a number of parameters in the 

BQART equation to fixed values (Table 2.5).  Parameters not in Table 2.5 vary from one 

river basin to the next. 

 

Table 2.4 Values and meanings of variables found in the BQART equation and used for 

calculating sediment discharge of local rivers to the southwestern Black Sea shelf.  * = 

particular values for each river under consideration. 

Variable Value Meaning 

QS  Sediment discharge 

ω 0.0006 Conversion factor to generate final data in MTyr-1 

B IL(1–TE)Eh  

Q *0.1844 km3yr-1 Water discharge from local rivers, taken from Aksu et al. 

(2002) 

A *506 km2 Drainage-basin area of local rivers, from Aksu et al. (2002) 

R *0.4 km Maximum relief in the drainage basin, from Google Earth 

T 15 ºC Average annual temperature in the drainage basin 

I (1+0.09Ag)  

L 2 Lithology factor = 2 for basins with significant proportions of 

sedimentary rocks and alluvial deposits 

TE 1 Sediment trapping; a value of 1 assumes no dam construction 

in the basin 

Eh 1 Appropriate fo low anthropogenic impact on the drainage 

basin 

Ag 1 Appropriate for no ice cover in the drainage basin 
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Chapter 3 Results 

3.1 Sediment Volume Estimates 

 Estimates were made of: (i) the volume of Holocene sediments deposited on the 

southwestern Black Sea shelf, and (ii) the volumes of sediment delivered to the shelf 

during the Holocene by rivers.  The first estimate involved measuring isopach thicknesses 

from maps in Hiscott et al. (2007b) and converting the data into a volume.  The second 

set of estimates involved using the BQART equation of Syvitski and Milliman (2007), 

multiplying by a time interval and density to create a volume estimate.  Procedures are 

given in §2.4.  Comparison of these estimates allows an assessment of the likelihood that 

particular rivers provided enough sediment to account for the lower Holocene shelf 

succession. 

3.1.1 Isopach Measurement and Volume Estimate 

 Hiscott et al. (2007b) used a seismic grid to generate isopach maps (in 

milliseconds [ms] of two-way travel) for seismic units corresponding to the three 

lithologic units penetrated by core MAR02–45.  These maps were analysed using ImageJ 

freeware to systematically calculate areas enclosed by each isopach contour (§2.4).  The 

total calculated volume of Holocene sediment in the region around core site MAR02–45 

(bounded by the landward zero thickness, the shelf edge, and 42º20’N latitude) is 97.62 

km3.  Seismic unit 1B (lithologic Unit C) accounts for 17.51 km3 (Fig. 3.1), seismic unit 

1C (Unit B) for 24.92 km3 and seismic unit 1D (Unit A) for 55.19 km3.
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Figure 3.1 Isopachs (in milliseconds) for seismic unit 1B (Unit C) showing the thickness and extent of lower Holocene mud 

deposits on the shelf.  The dotted lines are inferred extensions to isopach contours which were not closed within the seismic 

grid available to Hiscott et al. (2007b).  The total volume of this unit is ~17 km3.  Seismic units 1C and 1D were analysed in 

the same way.  For comparison, the box has an area of 2500 km2  Figure modified from Hiscott et al. (2007b).
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3.1.2 BQART Equation and Volume Estimate 

The BQART equation (Eqn. 2.3) contains many variables; Table 2.4 is a summary 

of the fixed values used for all rivers entering the western and southwestern Black Sea.  

The output is in units of megatonnes per year (MT yr-1).  To convert this to mass (tonnes) 

and eventually to a volume for intervals in the Holocene, a timespan must be selected for 

each time slice.    

5000 years was chosen as the timespan for the river yield potentially captured in 

seismic unit 1B (lithologic Unit C), allowing ~2000 years for deposition after marine 

flooding, and ~3000 years for the prior deposition of subaerial floodplain deposits and 

deltaic deposits that might have been reworked into seismic unit 1B during the early 

Holocene transgression.  If the BQART sediment yield from local rivers (Bulanık, Pabuç, 

Kazan, Çilingöz and Kuzulu) remained constant at its present level for 5000 years, then a 

mass of 522.6 MT of material could be expected from local river input.   

Marine muds vary between 60–70% porosity.  Porosity studies where not part of 

this investigation, so mass was converted to volume using 60% and 70% porosity as 

reasonable upper and lower limits.  At 60% porosity, the 522.6 MT of mineral-density 

solids would occupy 40% of the sedimentary deposit.  Using a mineral density of 2.65 

T/m3, the equivalent volume of solids is 0.197 km3, so the volume of the sedimentary 

mass containing this amount of mineral matter and having 60% porosity is 

(100/40)(0.197) = 0.493 km3.  Using a similar calculation for the case of 70% porosity, it 

is concluded that local sources could have contributed sediments having a volume 

between 0.493 km3 (ϕ=60%) and 0.657 km3 (ϕ=70%) over a 5000 year period. 
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3.2 Texture 

 During sample preparation, the total weight of each sample and the weights of the 

various size fractions were recorded.  The average grain size distribution in the core (as 

weight percents) is 2.3% sand, 88.2% silt and 9.4% clay.  The average size distribution 

for each lithologic unit is as follows: Unit A, 2.4% sand, 90.0% silt and 7.6% clay; Unit 

B, 5.7% sand, 82.6% silt and 11.7% clay, and the lowest Unit C, 1.6% sand, 88.6% silt 

and 9.8% clay.  Sediment size distribution for core MAR02–45 is shown in Figure 3.2.  

The core is silt dominated with Unit B showing the greatest variation in grain size 

although silt still comprises >82% of its samples.  

Sediment samples from potential sources were not dried before initial wet-sieving, 

so accurate determination of their size distributions is not available.  Based on visual 

inspection of the samples, the Danube delta-top samples are silt-dominated, except for 

samples taken from the Chilia 1 delta and Sulina Canal, which are very sand rich.  

Samples from local rivers in Thrace are also sand rich, while MAR08–17 samples 

(characterizing detritus from the bedrock adjacent to the Bosphorus Strait) were taken 

just seaward of the Bosphorus exit and are silt dominated. 

3.3 Silt Mineralogy 

Studying the XRD mineralogy of silt-sized sediment permits a better understanding 

of the bedrock composition of potential sources and could potentially reveal the presence 

of important minor minerals.  In contrast, clay minerals can be mostly weathering 

products that differ in mineralogy from the bedrock.  In order of abundance in the silt 

fraction, the minerals present (as core averages, excluding the molybdenite spike) are: 
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Figure 3.2 Grain size distribution plotted against composite depth in core MAR02–45.  

There is limited resolution between α1 and α2, and just above the α2 unconformity due to 

a lack of sufficient material for grain size determination between 260 and 370 cm depth.
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quartz (53.2 wt.%), K-rich micas (23.9 wt.%), calcite (18.6 wt.%), and sodic plagioclase 

(4.3 wt.%).  The plagioclase abundance is close to the lower limit of detection in bulk 

XRD samples; minerals of lower abundance, if present, cannot be confidently discovered 

using this technique. Figure 3.3 and Table 3.1 show the variations in abundance of the 

silt-sized constituents identified through core MAR02–45.  A clear trend visible through 

the core is an upward decrease in calcite.  There is also an increase in K-mica from the 

top of Unit C into Units B and A.  Quartz abundance increases from bottom to top while 

sodic plagioclase increases in Unit A.  Data recalculated without calcite show that the 

relative proportions of silicate minerals vary little through the cored succession (Fig. 3.4). 

The silt fraction mineralogy of potential source areas is shown in Table 3.2.  The 

Danube Delta samples are the only ones for which Jade software reports dolomite, but the 

abundance is low as dolomite was only found in 3 of the 5 samples, (Sulina Canal at Mile 

10, Chilia 1 and Chilia 2).  

3.4 < 2 μm Fraction Mineralogy 

Analysis of XRD spectra acquired on oriented mounts of clay-sized fractions was 

performed using MacDiff software.  When using the MacDiff software, the background 

was fitted as a gentle curve constrained at every 100th point; some manual manipulations 

of the background curve were required in the vicinity of low intensity, broad peaks.  All 

base-line fitting and peak-area determinations were performed by a single operator (the 

author), so are expected to be consistent. 
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Figure 3.3 Abundance of minerals found in the silt fraction of core MAR02–45.  

Materials under ~5 wt.% do not show peaks sufficiently large to be quantified by Jade 

software.  Unit B has only a few reported analyses near the α2 unconformity due to a lack 

of available material at those depths.
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Table 3.1 Variations in abundance of minerals in the silt fraction through core MAR02–

45; values in italics are calculated on a calcite-free basis. 

Depth (cm) Mineral Abundance (wt.%) 

Unit Quartz K-mica Calcite Na-Plag 

A        

10 58.5 63.1 29.6 31.9 7.3 4.7 5.0 

30 58.2 62.9 29.4 31.8 7.4 5.0 5.4 

50 56.7 62.1 29.6 32.5 8.8 4.9 5.4 

70 58.6 64.2 28.0 30.7 8.8 4.6 5.0 

90 58.2 64.2 26.9 29.6 9.2 5.7 6.3 

110 52.6 59.9 31.1 35.4 12.2 4.2 4.7 

130 60.5 67.7 23.7 26.5 10.6 5.2 5.9 

150 54.5 61.1 30.3 33.9 10.7 4.5 5.0 

170 52.3 58.1 32.3 35.8 9.9 5.5 6.1 

Avgerage 56.7 62.6 29.0 32.0 9.4 4.9 5.4 

Std .Dev. 2.9 2.8 2.5 2.9 1.6 0.5 0.5 

B        

330 52.6 59.1 33.3 37.4 11.0 3.1 3.5 

350 56.2 63.4 27.5 31.0 11.3 5.0 5.7 

370 53.7 58.7 34.0 37.2 8.5 3.7 4.1 

420 53.2 61.2 29.5 33.9 13.0 4.2 4.9 

430 51.4 59.8 30.1 35.0 14.0 4.5 5.2 

470 46.6 54.5 35.3 41.3 14.4 3.6 4.3 

490 60.8 69.8 21.9 25.2 12.9 4.3 5.0 

510 59.4 72.0 18.1 22.0 17.4 5.0 6.1 

Average 54.3 62.3 28.7 32.9 12.8 4.2 4.8 

Std. Dev. 4.5 5.9 6.0 6.5 2.6 0.7 0.9 
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Table 3.1. Continued 

Depth (cm) Mineral Abundance (wt.%) 

Unit Quartz K-mica Calcite Na-Plag 

C        

530 66.8 74.9 17.1 19.2 10.8 5.3 5.9 

550 52.2 61.3 29.0 34.1 15.0 3.9 4.6 

570 58.5 70.1 20.1 24.1 16.5 4.8 5.8 

590 58.4 68.8 22.0 26.0 15.2 4.4 5.2 

610 57.5 69.3 20.7 25.0 17.1 4.7 5.7 

630 53.6 67.3 21.5 26.9 20.3 4.6 5.8 

650 57.7 72.1 17.8 22.2 19.9 4.6 5.7 

670 57.4 70.0 20.3 24.8 18.0 4.3 5.2 

690 53.4 68.6 20.5 26.3 22.2 3.9 5.1 

710 48.5 66.6 20.6 28.3 27.2 3.7 5.1 

730 55.6 73.1 16.3 21.5 23.9 4.1 5.4 

750 45.1 66.7 19.2 28.3 32.4 3.4 5.0 

770 51.2 72.2 15.5 21.9 29.2 4.2 5.9 

790 41.6 61.2 23.1 34.0 31.9 3.3 4.9 

810 44.5 65.0 20.2 29.5 31.5 3.7 5.5 

830 44.6 67.5 18.1 27.3 34.0 3.4 5.2 

850 39.5 60.4 22.6 34.5 34.6 3.3 5.0 

870 42.1 62.7 21.5 32.1 32.9 3.5 5.2 

890 49.9 71.2 16.1 23.0 29.9 4.1 5.8 

910 51.9 71.9 16.0 22.2 27.9 4.2 5.9 

930 46.4 66.5 19.7 28.2 30.2 3.7 5.3 

Average 51.3 68.0 19.9 26.6 24.8 4.1 5.4 

Std. Dev. 7.0 4.1 3.1 4.4 7.4 0.6 0.4 
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Figure 3.4 Silicate mineral proportions in the silt-sized fraction through core MAR02–

45.
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Table 3.2 Variations in abundance of silt-sized minerals from potential source areas.  

*Thrace river samples were taken from sandy channel banks, so the silt fraction is likely 

coarser than in samples from other areas.  

Potential Source Minerals (average wt.%) 

 Quartz Mica Calcite Na-Plag Dolomite 

Danube Delta 54.3 27.0 9.0 6.6 3.0 

Thrace Rivers* 68.3 20.8 6.7 4.2  

Bosphorus 61.7 31.8 3.9 2.7  

 

Due to minor variations in the elevation of samples in the automatic sample 

changer (i.e., displacement errors; Pérez and Tabares, 2002), it was necessary to use the 

major MoS2 peak (0.616 nm, 14.38º 2θ) to correct the peak positions of other minerals.  

This is easily achieved using pull-down menus in the MacDiff software.  A second use 

for the 0.616 nm MoS2 peak was to normalize peak areas between glycolated and 

unglycolated runs.   The peak intensities and peak areas of minerals identified in the clay-

sized fractions of core MAR02–45 can be found in Tables 3.3 and 3.4. The areas and 

intensities of particular peaks were used to quantify mineral abundances using the 

procedures outlined in §2.4.3.   

There are seven key minerals (three non-clay and four phyllosilicate) in the < 2 

μm fraction of MAR02–45: quartz, calcite, dolomite, smectite, illite, chlorite, and 

kaolinite.  The average abundances and standard deviations of these minerals in core 

MAR02–45, calculated using procedures in §2.4.3, are as follows: quartz 12.2 ±5.6 wt.%, 

calcite 26.4 ±16.7 wt.%, dolomite 6.3 ±3.0 wt.%, smectite 12.7 ±10.4 wt.%, illite 36.0 

±12.0 wt.%, chlorite 3.2 ±2.8 wt.%, kaolinite 3.2 ±3.7 wt.%. 
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Table 3.3 Peak areas of minerals in the clay-sized fractions of core MAR02–45, measured using MacDiff software.  Smectite 

values come from glycolated runs that were normalized to the air-dried runs using the area of the 0.616 nm MoS2 peak.  

Chlorite and kaolinite areas were apportioned based on deconvolution of overlapping peaks at 0.3576 and 0.3537 nm.  Values 

in italics are estimates based on a split of the chlorite 0.7 nm peak area using deconvolution of the overlapping 

kaolinite/chlorite peaks in adjacent samples, because the samples with italics entries had peaks in this region that were too 

small to be measured/deconvolved (see §2.4.2) 

Depth Illite Quartz Molybdenite Calcite Dolomite Smectite  Kaolinite Chlorite 

(cm)  0.10  0.342  0.616  0.303   0.2888 1.69 0.359 0.356 

  Area Area Area Area Area Area Area Area 

10 14238 1609 164576 1899 775 32301 1860 475 

30 9902 2133 84005 866 861 4440 7204 2608 

50 14834 1645 109343 1274 1326 24147 1221 884 

70 13775 1928 42570 849 1071 9863 2241 1906 

90 12938 1670 159727 1170 1744 25293 1681 884 

110 11072 2288 92051 5308 1630 13422 896 851 

150 14062 1775 133210 2864 1541 19198 1046 815 

170 11107 2421 64562 2227 1620 8044 919 259 

260 10737 2306 97273 10695 2270 18349 725 769 

330 9326 2677 343231 1769 2069 4455 2439 1040 

370 9606 2155 205881 961 2727 5344 6840 2609 

410 12613 2306 101831 3740 3338 6233 918 626 

430 10224 1068 162224 1216 1249 32321 11828 4162 
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Table 3.3. Continued 

Depth Illite Quartz Molybdenite Calcite Dolomite Smectite  Kaolinite Chlorite 

470 6578 1963 392710 3461 3749 6340 12858 4524 

490 14695 1809 150189 7755 1348 16127 1360 748 

510 12663 2232 89190 13560 2025 7266 1150 835 

530 5793 1487 346947 3744 1586 9093 16816 6942 

570 9525 2337 216800 9714 1166 12004 607 569 

590 24959 578 100067 18221 3971 12005 756 744 

600 10255 2213 53076 929 1090 13670 2748 2208 

610 10323 1745 175557 4740 1381 27468 1107 3143 

630 10613 2136 83818 9637 1671 11933 424 1188 

650 1210 3534 18040 1117 480 25408 294 235 

670 7396 2609 50362 7107 2424 11412 2901 2319 

690 10498 2331 83103 9490 3212 18915 1054 1027 

720 7241 3115 68775 16799 4013 2487 957 721 

730 7684 2843 92471 16781 3728 11886 849 2070 

750 14817 1589 266495 11223 2937 24928 632 435 

770 15915 1594 257171 11681 4163 11817 2770 3796 

810 7680 2923 51768 14539 3472 6636 772 2070 

830 15200 1203 379471 12200 2503 5162 5082 5560 

850 9387 2538 101558 11928 2634 15954 885 968 

870 11502 2246 223100 13505 3822 10950 503 911 

890 14644 941 509206 11694 3214 42356 3169 3015 

910 10252 2116 120784 11533 2665 9240 250 500 

930 7172 2897 198320 10450 3128 5046 399 676 
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Table 3.4 Peak intensities of minerals in the clay-sized fractions of core MAR02–45, measured using MacDiff software.  

Smectite values come from glycolated runs that were normalized to the air-dried runs using the area of the 0.616 nm MoS2 

peak.   Blank cells are located at depths where intensities were too small to be measured with confidence. 

 

 

Depth Illite Quartz Molybdenite Calcite Dolomite Smectite Kaolinite Chlorite 

(cm)  0.10  0.342  0.616  0.303   0.2888 1.69 0.359 0.356 

  Intensity Intensity Intensity Intensity Intensity Intensity Intensity Intensity 

10 254 68 6960 44 35 68 35 24 

30 271 94 2953 0 32 12   

50 209 65 5248 49 26 47 19 15 

70 384 71 1894 38 43 26 40 36 

90 240 75 7568 60 50 85 29 15 

110 203 106 3112 160 48 30 17 0 

150 251 67 5241 87 40 35 16 19 

170 160 55 2630 60 59 13 17 10 

260 135 63 3328 228 56  12 15 

330 99 33 7238 40 32 20   

370 113 34 3739 14 33    

410 153 48 2518 69 44 22 18 13 

430 203 49 5196 46 36 30   

470 83 36 8852 60 35 17   

490 280 59 5283 230 32 44   

510 132 70 3045 273 37 15 19 13 

530 57 35 7881 69 27 15 1 1 

570 132 60 6945 192 23 37 10 16 

590 538 338 3580 163 43 33 15 14 
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Table 3.4. Continued 

Depth Illite Quartz Molybdenite Calcite Dolomite Smectite Kaolinite Chlorite 

600 229 80 1969 122 60 24 21 1 

610 90 57 3258 48 23 38 30 9 

630 116 58 1739 200 37 22 9 15 

650 46 79 3366 167 34 31   

670 88 52 1708 201 55 10   

690 222 415 3474 270 69 92 20 20 

720 92 89 2538 429 73 32   

730 155 86 3225 439 69 15   

750 132 38 5755 154 18 46 12 9 

770 121 47 6279 141 55 12 53 73 

810 90 46 1120 375 46  15 31 

830 101 35 5811 79 35 5   

850 171 54 4152 351 51 42   

870 144 32 6219 279 34  8 28 

890 86 20 6048 90 21 12   

910 212 48 2893 199 65 43   

930 125 71 7545 232 73 29 9 13 
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Average clay-sized quartz abundance increases from the base of Unit C (10.9 

wt.%) through Unit B (13.7 wt.%) and into Unit A (14.1 wt.%).  Standard deviations are 

in Table 3.5.  As was the case for the silt-sized fraction, calcite abundance in the clay-

sized fraction decreases from the base to the top of the core (Unit C, 34.9 wt.%; Unit B, 

21.7 wt.%; Unit A, 10.0 wt.%) and the same is true for dolomite (Unit C, 7.5 wt.%; Unit 

B, 6.0 wt.%; Unit A, 3.7 wt.%).   Because the percentage data form a closed array, 

increases in the carbonate minerals automatically cause decreases in the total of 

phyllosilicate minerals (Fig. 3.5a).  Quartz shows a more scattered relationship with 

carbonate abundance (Fig. 3.5b) perhaps because it has low abundance so is not so 

strongly affected by closed-array considerations.  The distribution of all the minerals 

found in the clay-sized fraction can be found in Figure 3.6. 

 

Table 3.5 Averages and standard deviations of the clay-sized minerals by unit. 

  Minerals (wt.%) 

Unit Smectite Illite Chlorite Kaolinite Quartz Calcite Dolomite 

A        

  Average 16.1 50.5 2.3 3.4 14.1 10.0 3.6 

  St. Dev. 8.1 6.0 2.1 2.8 4.6 7.8 2.0 

B        

  Average 10.4 39.1 3.9 5.2 13.7 21.7 6.0 

  St. Dev. 8.4 10.1 3.6 5.0 5.9 16.3 3.4 

C        

  Average 12.2 29.0 3.2 2.3 10.9 34.9 7.5 

  St. Dev. 11.9 8.4 2.8 3.2 5.6 14.0 2.6 
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Figure 3.5 Cross-plots showing a) the inverse relationship between carbonates and clay 

minerals in the <2 μm size fraction, and b) The relationhip between quartz and carbonate 

abundances in the<2 μm size fraction.
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Figure 3.6 Wt.% abundance of minerals found in the <2 μm fraction of core MAR02–45 

after scaling using procedures in §2.4.3.  Unit B has a lower resolution due to a lack of 

sufficient clay-sized material at some sample depths. 
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 Smectite abundance in Unit C is 12.2 wt.%, declining to 10.4 wt.% in Unit B; 

Unit A reverses this trend with an increase to 16.1 wt.%.  Illite is the second most 

abundant < 2 μm mineral in Unit C (29.0 wt.%) and illite abundance increases through 

Unit B (39.1 wt.%) and into Unit A (50.5 wt.%) making it the most abundant < 2 μm 

mineral in the latter two units.   Chlorite and kaolinite abundances both increase from 

Unit C (3.2 wt.%, 2.3 wt.%) into Unit B (3.9 wt.%, 5.2 wt.%) and decrease in Unit A (2.3 

wt.%, 3.4 wt.%).  The major differences in the behaviour of these minerals are that 

kaolinite abundance more than doubles from Unit C to Unit B, and in Unit A chlorite has 

a lower abundance than in Unit C, whereas kaolinite maintains a higher abundance.  The 

interrelationship of the four phyllosilicates can be seen in Figure 3.7.  Illite is the 

dominant phyllosilicate mineral with a core average of 67.1 ±14.3 wt.%.  Smectite is the 

second most abundant mineral (21.7 ±13.7 wt.%) while chlorite and kaolinite account for 

5.8 ±4.7 wt.% and 5.4 ±5.7 wt.% of the phyllosilicates, respectively.  Readers should note 

that the within-unit variation in clay-mineral proportions is high, so although average 

values show particular trends, high standard deviations limit the potential to claim strong 

differences through the Holocene succession (Table 3.5).   

Clay-sized mineral distribution in the detritus from potential source regions was 

also studied (Figure 3.8).  The Danube delta-top is characterized by 25.0 wt.% smectite, 

45.8 wt.% illite, 1.3 wt.% chlorite, 1.8 wt.% kaolinite, 13.8 wt.% quartz, 8.9 wt.% calcite 

and 3.4 wt.% dolomite.  Clay fractions derived from the area around the Bosphorus Strait 

(MAR08–17) contain 43.0 wt.% smectite, 31.0 wt.% illite, 1.9 wt.% chlorite, 4.0 wt.%  

kaolinite, 19.2 wt.% quartz, 0.6 wt.% calcite and 0.34 wt.% dolomite.   
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Figure 3.7 Recalculated abundances of the four major phyllosilicate minerals scaled 

using Biscaye (1965) methods and normalized to 100%.
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Figure 3.8 <2 μm mineral abundances of potential source areas.  
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These samples are believed to represent mixtures of detritus from diverse bedrock 

which underlies western Anatolia, having reached the Bosphorus Strait from many small 

drainage basins along its length.  Of the Thracian river samples prepared at Memorial 

University of Newfoundland, only the Kuzan River sample contained enough clay to 

attempt an analysis.  It was found to contain 3.6 wt.% smectite, 43.3 wt.% illite, 2.9 wt.% 

chlorite, 5.1 wt.% kaolinite, 22.3 wt.% quartz, 18.5 wt.% calcite and 4.4 wt.% dolomite. 

3.5 Actlabs Geochemistry 

3.5.1 Precision and Accuracy of Geochemical Analysis 

Powdered samples from cores, MAR08-17, the Danube Delta and Thracian rivers 

were sent to Activation Laboratories (Ancaster, Ontario) for INAA and ICP–OES 

analysis.  The package of 49 elements selected for the thesis was chosen to accommodate 

the small sample size (~3 g) of available material and to permit access to a wide spectrum 

of elements (see §2.2.1 for a detailed justification of analytical methods).  The combined 

INAA and ICP-OES analysis generally used < 50% of the submitted powder, so that 

sufficient material remained for replication of a subset of the samples.  The raw data 

(Appendix 3) show 14 elements with multiple samples below detection limits.  These 14 

elements (Au, Ag, Cd, Mo, Be, Bi, Br, Hg, Ir, Se, Ta, W, Sn and Tb) are eliminated from 

further consideration.  During client runs in 2011, eight certified standards were analyzed 

to assess accuracy of the data (results in Appendix 4), and ICP-OES determinations were 

duplicated for six MAR02–45 samples to assess precision.  These replicates used a fresh 

aliquot of powder and an independent second acid digestion.  In January 2014, fresh 

aliquots of powder from  the same six MAR02–45 sample vials were analyzed again, in 
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duplicate and with replication for samples with sufficient remaining power (hence 22 = 

4 independent ICP-OES determinations and 2 independent INAA determinations for most 

samples in 2014).  The aim was to thoroughly assess the precision of the INAA (Table 

3.6) and ICP-OES (Table 3.7) analyses.  When combined with the primary and replicate 

analyses from 2011, four of the six re-analyzed samples have six independent ICP-OES 

determinations and three independent INAA determinations.  For elements with 5–6 

repeat analyses, the ratio of the standard deviation to the mean is used to quantify 

precision (Table 3.7).  For elements with 2–3 determinations (Table 3.6), it is not 

reasonable to calculate a standard deviation, so precision is estimated to be ± half the 

range between the maximum and minimum results, divided by the average for that 

element. 

Precision is best constrained for elements determined by ICP-OES because of 

more independent determinations.  For these elements, precision is only considered 

acceptable if the sample standard deviation divided by the sample mean, averaged across 

the six samples, is < 10%.  For several elements this statistic is < 5% (Table 3.7).  A less 

stringent requirement is placed on the consistency of the INAA replicates because of 

more limited data, and because small numerical values for some elements create higher 

percentage differences even when the offsets are small (e.g., 3 ppm and 2 ppm are very 

close results, but 50% different).  For the INAA set of elements, reproducibility of results 

within 15% of the average is deemed acceptable; results within 20% are provisionally 

accepted for Hf, U and Yb because the numerical values are generally < 5 ppm. 
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Table 3.6 INAA results for six samples from MAR02–45 with sufficient material for duplicate or triplicate analysis. The overall 

precision of analyses is calculated as the average of half the sample ranges divided by corresponding sample averages – hence ± 

a percentage of the amount present.  X denotes cases for which precision could not be calculated because of  one or more 

determination reported to be below the detection limit. U = Unit, R = Run.  The last line of the table (next page) indicates 

whether precision is acceptable (Y) or unacceptable (N) according to criteria in footnote b.  

   

As Ba Br Co Cr Cs Eu Fe Hf Na Rb Sb Sc Ta Th U La Ce Nd Sm Yb Lu 

Depth 
 (cm) U R ppm ppm ppm ppm ppm ppm ppm % ppm % ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm 

120 A 1 10.2 510 4.2 18 140 9 1.7 4.63 7 0.84 154 1.6 15.9 2.0 14.9 4.9 37.8 87 32 6.6 3.8 0.37 

  

2 10.5 450 <0.5 16 112 17 1.3 3.99 3 0.84 155 1.4 13.0 <0.5 14.4 4.2 31.5 77 41 5.3 2.7 0.14 

  

3 13.9 <50 <0.5 16 109 9 1.4 4.11 4 0.83 121 2.5 13.3 <0.5 16.0 3.1 30.4 72 59 5.2 2.5 0.15 

  

Avg 11.5 

  

17 120 12 1.5 4.24 5 0.84 143 1.8 14.1 

 

15.1 4.1 33.2 79 44 5.7 3.0 0.22 

0.5*range/ 

avg 12% X X 6% 13% 34% 14% 8% 43% 1% 12% 30% 10% X 5% 22% 11% 10% 31% 12% 22% 52% 

190 A 1 10.5 450 3.0 19 149 10 1.5 4.36 6 0.79 155 1.8 15.7 2.0 13.9 4.6 36.5 82 24 6.4 3.7 0.39 

  
2 9.9 610 <0.5 20 119 19 1.3 4.06 5 0.78 109 1.5 13.4 <0.5 15.9 3.8 31.0 65 43 5.3 2.3 0.17 

  
3 11.8 <50 <0.5 20 120 15 1.6 4.37 7 0.79 203 2.0 13.9 <0.5 15.5 4.1 31.2 77 47 5.4 2.9 0.16 

  
Avg 10.7 

  
20 129 15 1.5 4.26 6 0.79 156 1.8 14.3 

 
15.1 4.2 32.9 75 38 5.7 3.0 0.24 

0.5*range/ 

avg  5% X X 3% 12% 31% 10% 4% 17% 1% 30% 14% 8% X 7% 10% 8% 11% 30% 10% 24% 48% 

400 B 1 19.9 510 5.4 17 159 8 1.3 4.79 7 0.77 158 0.8 15.3 <0.5 13.2 2.0 37.8 90 30 5.5 3.1 0.51 

  

2 20.3 460 7.7 18 113 10 0.9 4.52 4 0.67 84 0.9 12.9 <0.5 14.9 3.5 30.5 63 60 5.4 2.9 0.18 

  

3 23.5 370 7.9 16 129 13 1.4 4.80 7 0.74 107 1.9 14.2 <0.5 17.3 3.1 32.5 100 23 5.7 2.2 0.20 
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Table 3.6 Continued 

   As Ba Br Co Cr Cs Eu Fe Hf Na Rb Sb Sc Ta Th U La Ce Nd Sm Yb Lu 

Depth  
(cm) U R ppm ppm ppm ppm ppm ppm ppm % ppm % ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm 

400 B Avg 21.2 447 7.0 17 134 10 1.2 4.70 6 0.73 116 1.2 14.1  15.1 2.9 33.6 84 38 5.5 2.7 0.30 
0.5*range/ 

avg 8% 16% 18% 6% 17% 24% 21% 3% 25% 7% 32% 46% 8% X 14% 26% 11% 22% 49% 3% 16% 52% 

540 C 1 6.2 350 1.8 13 108 4 1.7 3.18 10 0.91 102 0.7 13.0 3.6 9.2 3.5 37.8 74 32 6.2 3.6 0.32 

  

2 6.8 390 <0.5 13 88 5 1.2 2.89 9 0.85 125 0.9 9.8 <0.5 13.4 2.6 30.0 67 27 5.1 2.9 0.14 

  

Avg 6.5 370 

 

13 98 5 1.5 3.04 10 0.88 114 0.8 11.4 

 

11.3 3.1 33.9 71 30 5.7 3.3 0.23 

0.5*range/ 
avg 5% 5% X 0% 10% 11% 17% 5% 5% 3% 10% 13% 14% X 19% 15% 12% 5% 8% 10% 11% 39% 

750 C 1 8.2 370 <0.5 16 153 7 1.3 3.72 4 0.66 72 0.9 13.9 1.9 10.3 2.6 34.6 70 24 5.6 2.6 0.44 

  

2 6.9 700 <0.5 14 87 7 1.0 3.05 5 0.60 113 1.1 10.3 <0.5 12.1 2.3 26.1 59 27 4.2 1.9 0.14 

  

Avg 7.6 535 

 

15 120 7 1.2 3.4 5 0.6 93 1.0 12.1 

 

11.2 2.5 30.4 65 26 4.9 2.3 0.3 

0.5*range/ 

avg 9% 31% X 7% 28% 0% 13% 10% 11% 5% 22% 10% 15% X 8% 6% 14% 9% 6% 14% 16% 52% 

890 C 1 18.2 270 2.1 14 114 6 1.6 4.29 4 0.77 93 1.1 13.4 <0.5 9.2 2.7 34.2 70 37 5.3 2.9 0.39 

  
2 11.5 <50 <0.5 17 94 <1 0.9 3.91 3 0.73 211 1.3 10.4 <0.5 12.1 2.0 27.5 59 60 4.6 2.3 0.14 

  
3 16.7 <50 <0.5 14 108 9 1.7 3.78 4 0.78 107 1.0 10.7 <0.5 12.1 4.1 27.3 59 25 4.6 2.4 0.14 

  
Avg 15.5 

  
15 105 

 
1.4 3.99 4 0.76 137 1.1 11.5 

 
11.1 2.9 29.7 63 41 4.8 2.5 0.22 

 0.5*range/ 

avg 22% X X 10% 9% X 29% 7% 14% 3% 43% 13% 13% X 13% 36% 12% 9% 43% 7% 12% 56% 

Overall precisiona 10% X X 5% 15% 20% 17% 6% 19% 3% 25% 21% 11% X 11% 19% 11% 11% 28% 9% 17% 50% 

Considered 
acceptable 

(Y/N)b Y N N Y Y N N Y Y Y N N Y N Y Y Y Y N Y Y N 
a calculated as the average of half the sample ranges divided by corresponding sample averages – hence ± a percentage of the 

amount present.  b mostly < ±15% variation, but Hf, U, and Yb accepted at < ±20% because numerical values are so small only a 

few ppm difference results in larger percentage variation. 
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Table 3.7 ICP-OES results for six samples from MAR02–45 with sufficient material for four to six independent analyses. The 

overall precision of analyses is calculated as the average of the sample standard deviations divided by corresponding sample 

averages – hence ± a percentage of the amount present. For elements proposed to have acceptable precision (Y in last row of this 

table, 2 pages onward), there is < ±10% variation and mostly < ±5% variation.  Ni and Zn were not replicated in runs 3 and 4. 

   

Cu Pb Nia Zna S Al Ca K Mg Mn P Sr Ti V Y 

Depth  

(cm) Unit Run ppm ppm ppm ppm % % % % % ppm % ppm % ppm ppm 

120 A 1 44 23 65 90 0.05 5.05 5.27 2.20 1.80 533 0.253 181 0.44 112 17 

" 

 

2 45 27 64 89 0.03 5.23 5.14 2.12 1.74 518 0.169 172 0.25 89 17 

" 

 

3 47 26 61 100 0.07 7.60 4.92 1.88 1.79 550 0.228 185 0.38 103 18 

" 

 

4 49 25 62 113 0.07 7.75 4.95 2.28 1.80 555 0.245 189 0.41 107 18 

" 

 

5 44 24 

  

0.07 7.30 4.84 1.76 1.74 558 0.239 181 0.39 103 18 

" 

 

6 48 27 

  

0.07 7.76 4.97 2.30 1.81 564 0.255 188 0.43 106 18 

" 

 
Mean 46 25 63 98 0.06 6.78 5.02 2.09 1.78 546 0.232 183 0.38 103 18 

" 

 
SD/Mean 4.6% 6.4% 2.9% 11.4% 27.9% 18.9% 3.2% 10.6% 1.8% 3.2% 13.9% 3.4% 18.0% 7.5% 2.9% 

190 A 1 42 37 71 100 0.03 5.21 4.94 2.22 1.79 518 0.163 164 0.21 109 17 

" 

 

2 43 36 72 100 0.03 5.24 4.86 2.15 1.80 527 0.166 162 0.24 110 17 

" 

 

3 47 42 73 112 0.07 8.04 4.80 2.22 1.88 574 0.253 182 0.32 108 19 

" 

 

4 46 39 70 112 0.07 8.03 4.69 2.25 1.87 551 0.226 178 0.35 109 19 

" 

 

5 44 38 

  

0.07 7.78 4.58 1.84 1.81 552 0.231 173 0.36 107 18 

" 

 

6 46 41 

  

0.08 8.17 4.69 2.38 1.87 565 0.262 181 0.41 112 19 

" 

 
Mean 45 39 72 106 0.06 7.08 4.76 2.18 1.84 548 0.217 173 0.32 109 18 

" 

 
SD/Mean 4.4% 6.0% 1.8% 6.5% 38.2% 20.4% 2.8% 8.3% 2.2% 3.9% 19.7% 5.0% 24.2% 1.6% 5.4% 
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Table 3.7 Continued. 

   Cu Pb Nia Zna S Al Ca K Mg Mn P Sr Ti V Y 

Depth 

 (cm) Unit Run ppm ppm ppm ppm % % % % % ppm % ppm % ppm ppm 

400 B Run 1 45 17 65 89 0.35 5.50 4.41 2.24 1.83 520 0.156 135 0.39 110 17 

" 

 

Run 2 44 18 65 90 0.37 5.59 4.51 2.27 1.86 531 0.158 136 0.39 111 18 

" 

 

3 43 22 67 100 0.38 7.64 4.22 2.39 1.84 551 0.152 140 0.37 105 18 

" 

 

4 44 19 62 100 0.37 7.85 4.23 1.96 1.86 560 0.145 142 0.35 104 18 

" 

 

5 44 19 

  

0.33 7.74 4.20 2.26 1.82 556 0.131 141 0.31 105 18 

" 

 

6 44 19 

  

0.39 7.70 4.21 2.18 1.83 533 0.156 141 0.38 103 18 

" 

 
Mean 44 19 65 95 0.37 7.00 4.30 2.22 1.84 542 0.150 139 0.37 106 18 

" 

 
SD/Mean 1.4% 8.8% 3.2% 6.4% 5.9% 16.2% 3.0% 6.5% 0.9% 3.0% 6.8% 2.1% 8.4% 3.1% 2.3% 

540 C 1 28 14 46 66 0.13 4.43 5.75 1.99 1.59 508 0.214 176 0.41 88 18 

" 

 

2 28 14 45 66 0.08 4.63 5.61 1.97 1.57 505 0.146 173 0.26 82 18 

" 

 

3 28 13 43 69 0.14 6.43 5.22 2.05 1.54 515 0.192 179 0.38 80 19 

" 

 

4 29 14 

  

0.13 6.43 5.28 1.97 1.54 515 0.180 180 0.36 79 19 

" 

 
Mean 28 14 45 67 0.12 5.48 5.47 2.00 1.56 511 0.183 177 0.35 82 19 

" 

 
SD/Mean 1.8% 3.6% 3.4% 2.6% 22.6% 20.1% 4.7% 1.9% 1.6% 1.0% 15.5% 1.8% 18.4% 4.9% 3.1% 

750 C 1 39 14 52 67 0.03 4.15 10.70 1.77 1.75 676 0.175 251 0.28 88 16 

" 

 

2 39 14 53 68 0.02 4.27 10.90 1.84 1.80 684 0.156 255 0.25 88 16 

" 

 

3 41 16 51 76 0.08 6.35 10.70 1.92 1.81 707 0.210 269 0.33 86 17 

" 

 

4 49 15 

  

0.09 6.36 10.80 1.92 1.83 717 0.211 271 0.34 87 17 

" 

 
Mean 42 15 52 70 0.06 5.28 10.78 1.86 1.80 696 0.188 262 0.30 87 17 

" 

 
SD/Mean 11.3% 6.5% 1.9% 7.0% 63.9% 23.5% 0.9% 3.9% 1.9% 2.8% 14.4% 3.8% 14.1% 1.1% 3.5% 
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Table 3.7 Continued. 

   Cu Pb Nia Zna S Al Ca K Mg Mn P Sr Ti V Y 

Depth (cm) Unit Run ppm ppm ppm ppm % % % % % ppm % ppm % ppm ppm 

890 C 1 31 14 50 64 0.07 4.09 9.90 1.79 1.79 687 0.256 225 0.32 89 16 

" 

 

2 32 13 51 64 0.08 4.10 9.98 1.81 1.81 706 0.273 225 0.34 91 16 

" 

 

3 35 10 53 72 0.12 6.28 9.50 1.92 1.81 732 0.269 235 0.32 85 17 

" 

 

4 32 13 46 71 0.12 7.75 9.05 1.75 1.66 729 0.268 224 0.34 82 13 

" 

 

5 48 14 

  

0.11 6.35 9.63 1.86 1.83 733 0.254 236 0.29 85 17 

" 

 

6 35 16 

  

0.10 6.17 9.43 1.73 1.78 738 0.224 231 0.25 83 17 

" 

 
Mean 36 13 50 68 0.10 5.79 9.58 1.81 1.78 721 0.257 229 0.31 86 16 

"   
SD/ 

Mean 17.9% 14.7% 5.9% 6.4% 21.0% 24.8% 3.5% 3.9% 3.4% 2.8% 7.0% 2.4% 11.2% 4.1% 9.7% 

Overall precisiona 

 

6.9% 7.7% 3.2% 6.7% 29.9% 20.6% 3.0% 5.8% 2.0% 2.8% 12.9% 3.1% 15.7% 3.7% 4.5% 

Considered acceptable (Y/N) Y Y Y Y N N Y Y Y Y N Y N Y Y 
a calculated as the average of the sample standard deviations divided by corresponding sample averages
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Because of an unacceptably low level of reproducibility, the results for 11 elements (S, 

Al, P, Ti, Cs, Eu, Ba, Rb, Sb, Nd, and Lu) are not discussed further in the thesis, and are 

not considered in making interpretations (Tables 3.6 and 3.7, columns with decision N 

rather than Y in the bottom row).  The high standard deviations for S and Al (and 

therefore poor precision) may be due to systematic differences between the completeness 

of the 2011 acid digestions (Runs 1 & 2) relative to the 2014 digestions (Runs 3 and 

higher), because the data show clear clustering of results around  two concentration 

levels.  ActLabs warns in their brochures of potential incomplete liberation of these 

elements during the 4-acid digestion procedure. 

 To summarize, the following 24 elements (in order of increasing atomic number) 

are judged to have been analyzed with acceptable precision and will contribute to the 

discussion of sediment sources: Na, Mg, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, 

Sr, Y, La, Ce, Sm, Yb, Hf, Pb, Th, U.  Of course, the degree of stratigraphic variation 

shown by each element must be compared with the precision for that element (as ± 

estimates of uncertainty) when deciding if downcore trends or differences are significant.    

 An assessment of the accuracy of the geochemical data depends on the degree to 

which the elemental abundances in certified standards were correctly determined by 

ActLabs during the 2011 and 2014 runs.  Together with two batches of thesis samples 

from core MAR02–45, 9 certified standards were analyzed by ICP-OES, and 2 internal 

laboratory standards were analyzed by INAA (DMMAs-112 and DMMAs-116).  The 

names, material types and collection sites of these standards are presented in Table 3.8.  

There are two requirements that must be met to support a claim that the results for a 

particular element are accurate in the thesis samples: (1) the measured concentrations in  
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certified standards should be close to the certified values, and (2) the certified standards 

should have concentrations  (Table 3.9) and mineralogy similar to those in the unknown 

samples.  Several of the ActLabs certified standards come from mining camps, 

contaminated sites or igneous rocks unlike the thesis materials (Table 3.10) so not 

surprisingly have concentrations for some elements that are outside the range of the thesis 

samples. 

 

 

Table 3.8 Sample codes and descriptions of eleven certified and prepared laboratory 

standards used by ActLabs for quality control purposes. 

Standard Environment Analysis 

Type 

GXR-1 Jasperiod ‘reef’ in Cambrian limestone ICP-OES 

GXR-4 Unoxidized porphyry copper ore, primarily quartz and 

feldspar 

ICP-OES 

GXR-6 Collected in North Carolina near gold and base-metal 

deposits. A combination of sericitized mudstone and 

rhyolitic and andesitic basalt 

ICP-OES 

SDC-1 Upper Precambrian muscovite-quartz schist collected near 

Washington D.C. 

ICP-OES 

SCO-1 Cody Shale, a typical Upper Cretaceous silty marine shale ICP-OES 

DNC-1a Triassic–Jurassic olivine-normative dolerite ICP-OES 

SAR-M Anthropogenically contaminated Animas River sediment, 

blended from a variety of sites in the western United 

States 

ICP-OES 

OREAS 13b Platinum group element-Cu-Ni reference material ICP-OES 

SBC-1 Brush Creek Shale.  Marine shale collected in 

Pennsylvania 

ICP-OES 

DMMAs 

112/116 

ActLabs internal standards made with tailings from the 

Giant Mascot Mine and the Parmour Porcupine Mine 

INAA 
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Table 3.9 Certified values for eleven standards used by ActLabs.  The table only includes 

the 24 elements having acceptable precision in MAR02–45 replicates.  No values are 

shown if the element was not determined by ActLabs in quality control runs.  Also shown 

for comparison is the average and standard deviation for the same elements in MAR02–

45 samples. 

 

D. 

Lim. 

GXR 

-1  

Cert 

GXR 

-4 

Cert 

GXR 

-6  

Cert 

SDC 

-1 

Cert 

SCO 

-1 

Cert 

DNC 

-1a 

Cert 

OREAS  

13b  

Cert 

SBC 

-1 

Cert 

SAR 

-M  

Cert 

DMMAs 

112 

 Cert 

DMMAs 

116 

 Cert 

MAR02 

–45  

Avg. 

St  

Dev 

Cu 1 ppm 1110 6520 66 30 29 100 2327 31 331 

 

  42 ±12 

Pb 3 ppm 730 52 101 25 31   

 

35 982 

 

  19 ±7 

Ni 1 ppm 41 42 27 38 27 247 2247 

 

42 

 

  57 ±10 

Zn 1 ppm 760 73 118 103 103 70 133 186 930 

 

  80 ±17 

As 0.5 ppm 

 

  

  

    

   

1862 1560 10.7 ±5.2 

Ca 0.01 % 0.96 1.01 0.18 1.00 1.87   

  

0.61 

 

  6.84 ±2.42 

Co 1 ppm 

 

  

  

    

   

43 41 16 ±3 

Cr 2 ppm 

 

  

  

    

   

80 77 135 ±25 

Fe 0.01 % 

 

  

  

    

   

3.34 3.12 4.06 ±0.76 

K 0.01 % 0.05 4.01 1.87 2.72 2.30   

  

2.94 

 

  2.04 ±0.24 

Mg 0.01% 0.22 1.66 0.61 1.02 1.64   

  

0.50 

 

  1.80 ±0.13 

Mn 1 ppm 852 155 1010 883 410   

  

5220 

 

  583 ±84 

Na 0.01 % 

 

  

  

    

   

2.05 1.98 0.83 ±0.09 

Sc 0.1 ppm 

 

  

  

    

   

7.17 6.30 14.6 ±1.8 

Sr 1 ppm  275 221 35 183 174 144 

 

178 151 

 

  198 ±78 

V 2 ppm  80 87 186 102 131 148 

 

220 67 

 

  97 ±15 

Y 1 ppm  32 14 14 40 26 18 

 

37 28 

 

  17 ±1 

La 0.5 ppm 

 

  

  

    

   

15.92 15.90 37 ±2 

Ce 3 ppm             26.56 30.00 81 ±10 

Sm 0.1 ppm             2.34 2.40 6.2 ±0.6 

Hf 1 ppm                7 ±1 

Th 0.2 ppm                12.1 ±2.4 

U 0.5 ppm             17.8 11.2 3.7 ±1.2 

Yb 0.2 ppm                3.4 ±0.5 
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Table 3.10 Measured and certified (italics) values for six elements determined by INAA, 

and a comparison to the mean and standard deviation of MAR02–45 samples.  The 

certified values come from standards DMMAs 112 and 116 (Table 3.9).  Visual 

inspection demonstrates the level of accuracy.  The limitation imposed by just two 

standards of very similar composition means that accuracy is not demonstrated across the 

range of values found in the MAR02–45 samples. Units are ppm unless otherwise noted. 

 

Co Co Cr Cr Fe% Fe% Na% Na% Sc Sc La La 

 

meas cert meas cert meas cert meas cert meas cert meas cert 

DMMAs 112 46 43 90 80 3.54 3.34 2.12 2.05 7.30 7.17 18.30 15.92 

DMMAs 112 45 43 86 80 3.45 3.34 2.04 2.05 7.00 7.17 18.20 15.92 

DMMAs 116 44 41 80 77 3.28 3.12 2.04 1.98 5.90 6.30 15.50 15.90 

MAR02–45 

Average 16 135 4.1 0.8 14.6 31.6 

Std. Dev. ±3 ±24 ±0.8 ±0.1 ±1.8 ±2.5 

 

For elements determined by INAA (Table 3.10), the number of pairs of measured and 

certified values is small, so there is not a strong test available for the accuracy of 

determinations within the range of the MAR02–45 concentrations.  La appears to have 

been determined with the lowest accuracy; for other elements in Table 3.10 the accuracy 

is consistent with the level of precision demonstrated in Table 3.6.   

The approach used to assess accuracy for elements determined by ICP-OES is to 

cross-plot measured versus certified values within a range extending from 1/2 the 

minimum MAR02–45 value to 2 the maximum MAR02–45 value (Fig. 3.9).  Outside 

this range, the reader is directed to Appendix 4 to see how well measured and certified 

values match.  However, the closeness of matches well outside the MAR02–45 range 

(with potentially different mineralogy) might not be a reliable predictor of accuracy for 

the thesis samples.  
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Figure 3.9 Plots of measured versus certified values for all 10 elements determined by 

ICP-OES using results for the standards GXR-1 (parts c, g, h, i, j), GXR-4 (parts b, c, d, 

e, f, h, i, j), GXR-6 (parts a, c, d, e, g, i, j), SDC-1 (all parts but d), SCO-1 (all parts), 

DNC-1a (parts d, h, i, j), SAR-M (parts c, e, h, i, j), SBC-1 (parts a, b, c, d, h, i, j) and 

OREAS-13b (part d).  The standard responsible for each point can be determined from 

Table 3.4.  Outliers distant from the measured=certified (red) line are coloured purple and 

are labelled with the code of the standard.  The full range of MAR02–45 samples is 

indicated for each element.  
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Figure 3.9 Continued
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This thesis takes the conservative view that accuracy can only be evaluated with 

confidence if certified standards and MAR02–45 samples have similar concentrations. 

To begin, none of the certified standards analyzed by ActLabs match (within a factor of 

0.5–2) the levels of  As, Ca, Ce, Sm or U in the MAR02–45 samples.  Hence, a definitive 

statement will not be made as to the accuracy of the determinations for these elements, 

although replicate analyses of the thesis samples show acceptable precision.  

For all the standards with certified values near MAR02–45, ActLabs measured 

values for Cu, Mg, Mn and Sr fall very close (or essentially on) the measured=certified 

line (Fig. 3.9 a, f, g, h).  For Pb, Ni and K (Fig. 3.9 b, c, e), ActLabs determinations for 

all of the standards fall along the 1:1 measured=certified line except for GXR-4.  As 

GXR-4 was taken from a porphory copper deposit dissimilar to the marine sediments of 

MAR02–45, its different mineralogy could explain mostly underestimation by ActLabs 

techniques (e.g., potential incomplete dissolution).  Y and Pb are consistently 

underestimated (Fig. 3.9 b, j) except in the case of SAR-M on the Y plot.  This 

underestimation might be due to difficulities during dissolution of the standard powders.  

Outliers in the cross-plots for Zn (OREAS 13-b, GXR-4) and V (SDC-1, GXR-6) come 

from non-sedimentary certified materials (Table 3.8).   

For the elements having no good test of accuracy (As, Ca, Ce, Sm, U), acceptable 

precision (Table 3.6) provides reasonable comfort that relative downcore variations are 

reliable and meaningful.  For Y and Pb, underestimation in the ActLabs certified 

materials might or might not suggest a similar level of underestimation in the MAR02–45 

sedimentary samples.  An examination of this issue is beyond the scope of this thesis, but 
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readers should be aware of possible underestimation if extracting quantitative elemental 

compositions from Appendix 4. 

Overall, the ActLabs quality control data indicate an acceptable level of accuracy and 

precision for 24 of 35 elements present above detection limits throughout the MAR02–45 

cored succession.  Only these elements will be considered in subsequent sections and 

chapters.  The exception will be a few elements with strong spikes in concentration at the 

two unconformities 1 and 2, which will receive comment only for those sample 

depths. 

3.5.2 Geochemical Data 

After removal from further consideration of imprecise elements and those mostly 

below detection limits, correlation coefficients were calculated for the remaining 24 

elements (Tables 3.11–3.14).  These matricies summarize the common behaviour and 

associations of elements.  Elements with an R value ≥ 0.8 share strong relationships.  The 

matricies of correlation coefficients are presented for each lithologic unit and for the 

entire MAR02–45 cored succession.  However, data for samples adjacent to the 1 

(correlative conformity) and 2 (unconformity) levels (470, 480 and 490; 250, 260, and 

270 cm depths) were not used in calculating coefficients because of spikes in several 

elements that compromise otherwise good correlations above and below in Units A, B 

and C. 
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Table 3.11 Matrix of correlation coefficients for core MAR02–45.  Elements with an R value ≥ 0.8 are considered to have a strong 

relationship and are indicated in bold. 

 Cu Pb Ni Zn As Ca Co Cr Fe Hf K Mg Mn Na Sc Sr Th U V Y La Ce Sm Yb 

Cu 1.00                        

Pb 0.70 1.00                       

Ni 0.82 0.81 1.00                      

Zn 0.86 0.86 0.93 1.00                     

As 0.42 0.19 0.44 0.46 1.00                    

Ca -0.57 -0.67 -0.69 -0.77 -0.49 1.00                   

Co 0.73 0.53 0.78 0.76 0.69 -0.62 1.00                  

Cr 0.58 0.34 0.63 0.57 0.65 -0.47 0.78 1.00                 

Fe 0.73 0.49 0.79 0.77 0.79 -0.65 0.89 0.81 1.00                

Hf -0.21 -0.12 -0.28 -0.17 -0.07 -0.28 -0.18 -0.14 -0.18 1.00               

K 0.77 0.72 0.90 0.89 0.39 -0.73 0.69 0.53 0.70 -0.15 1.00              

Mg 0.25 0.00 0.31 0.17 0.14 0.12 0.27 0.33 0.25 -0.24 0.30 1.00             

Mn -0.17 -0.48 -0.22 -0.35 -0.08 0.59 -0.10 0.03 -0.02 -0.31 -0.26 0.47 1.00            

Na -0.23 -0.03 -0.27 -0.15 -0.10 -0.25 -0.19 -0.21 -0.23 0.66 -0.21 -0.16 -0.36 1.00           

Sc 0.76 0.57 0.81 0.82 0.65 -0.66 0.89 0.77 0.93 -0.20 0.74 0.21 -0.09 -0.21 1.00          

Sr -0.32 -0.34 -0.42 -0.44 -0.21 0.57 -0.42 -0.36 -0.41 -0.07 -0.41 -0.15 0.12 -0.16 -0.42 1.00         

Th 0.72 0.69 0.83 0.83 0.58 -0.80 0.85 0.72 0.87 0.05 0.75 0.20 -0.25 0.05 0.89 -0.49 1.00        

U 0.61 0.58 0.60 0.65 0.45 -0.64 0.65 0.52 0.63 0.16 0.52 -0.02 -0.33 0.13 0.67 -0.18 0.77 1.00       

V 0.82 0.74 0.96 0.93 0.45 -0.71 0.78 0.60 0.78 -0.23 0.95 0.34 -0.22 -0.22 0.82 -0.44 0.82 0.58 1.00      

Y 0.28 0.29 0.37 0.40 0.01 -0.43 0.20 0.07 0.19 0.13 0.61 0.18 -0.24 -0.06 0.29 -0.24 0.32 0.13 0.50 1.00     

La 0.32 0.14 0.27 0.36 0.51 -0.59 0.55 0.55 0.59 0.45 0.34 0.00 -0.12 0.25 0.63 -0.39 0.65 0.49 0.34 0.29 1.00    

Ce 0.65 0.54 0.72 0.74 0.64 -0.81 0.79 0.73 0.81 0.18 0.70 0.20 -0.26 0.10 0.80 -0.53 0.88 0.66 0.74 0.35 0.76 1.00   

Sm 0.42 0.44 0.44 0.50 0.41 -0.59 0.59 0.47 0.60 0.25 0.40 -0.02 -0.23 0.29 0.71 -0.35 0.78 0.66 0.47 0.23 0.72 0.62 1.00  

Yb 0.49 0.59 0.58 0.62 0.40 -0.73 0.63 0.51 0.62 0.33 0.54 0.04 -0.34 0.34 0.68 -0.49 0.85 0.73 0.59 0.32 0.67 0.74 0.87 1.00 

 Cu Pb Ni Zn As Ca Co Cr Fe Hf K Mg Mn Na Sc Sr Th U V Y La Ce Sm Yb 
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Table 3.12 Matrix of correlation coefficients for Unit A in core MAR02–45.  Elements with an R value ≥ 0.8 are considered to have a 

strong relationship and are indicated in bold.  Depths 250–270 cm were omitted due to geochemical spikes; see §3.7. 

 Cu Pb Ni Zn As Ca Co Cr Fe Hf K Mg Mn Na Sc Sr Th U V Y La Ce Sm Yb 

Cu 1.00                        

Pb 0.34 1.00                       

Ni 0.28 0.17 1.00                      

Zn 0.62 0.69 0.21 1.00                     

As -0.25 0.19 0.04 -0.06 1.00                    

Ca -0.31 -0.35 -0.01 -0.69 0.04 1.00                   

Co 0.28 0.12 0.56 0.43 0.18 -0.55 1.00                  

Cr 0.42 0.39 0.32 0.50 0.25 -0.51 0.67 1.00                 

Fe 0.40 0.08 0.46 0.39 0.22 -0.53 0.72 0.62 1.00                

Hf -0.34 -0.44 -0.57 -0.33 -0.08 0.02 -0.31 -0.35 -0.33 1.00               

K 0.45 -0.03 0.41 0.33 -0.17 0.20 0.13 -0.03 0.18 -0.49 1.00              

Mg -0.17 -0.42 0.07 -0.55 -0.14 0.91 -0.41 -0.53 -0.52 -0.08 0.41 1.00             

Mn -0.30 -0.33 0.35 -0.54 0.22 0.76 -0.21 -0.27 -0.04 -0.06 0.29 0.65 1.00            

Na -0.13 -0.09 -0.76 0.05 0.09 -0.14 -0.27 0.01 -0.26 0.48 -0.19 -0.14 -0.34 1.00           

Sc 0.53 0.29 0.30 0.71 0.12 -0.77 0.80 0.66 0.83 -0.24 0.17 -0.66 -0.42 -0.06 1.00          

Sr 0.07 -0.13 0.06 -0.15 0.02 0.73 -0.34 -0.35 -0.42 -0.20 0.62 0.81 0.46 0.01 -0.43 1.00         

Th 0.30 0.00 0.18 0.38 0.10 -0.56 0.56 0.56 0.69 -0.03 0.12 -0.49 -0.25 0.09 0.70 -0.34 1.00        

U 0.36 -0.02 -0.09 0.21 0.04 -0.20 0.11 0.30 0.15 0.34 -0.02 -0.26 -0.16 0.08 0.31 -0.07 0.31 1.00       

V 0.41 -0.27 0.54 0.23 -0.18 0.04 0.49 0.22 0.36 -0.20 0.73 0.29 0.29 -0.21 0.37 0.30 0.32 0.12 1.00      

Y 0.11 -0.28 0.02 0.00 -0.01 0.29 0.02 -0.29 -0.21 0.05 0.52 0.53 0.10 0.18 -0.05 0.62 0.02 -0.04 0.47 1.00     

La 0.29 0.22 -0.02 0.51 0.25 -0.65 0.49 0.47 0.64 0.24 -0.13 -0.66 -0.30 0.28 0.75 -0.54 0.66 0.26 0.17 -0.08 1.00    

Ce 0.35 0.10 -0.07 0.39 0.25 -0.37 0.37 0.40 0.52 0.09 -0.01 -0.42 -0.22 0.21 0.60 -0.20 0.32 0.27 0.21 -0.01 0.71 1.00   

Sm 0.19 0.18 -0.04 0.41 0.40 -0.48 0.44 0.36 0.58 0.23 -0.05 -0.51 -0.13 0.32 0.66 -0.34 0.62 0.25 0.17 0.06 0.93 0.72 1.00  

Yb 0.09 -0.05 -0.22 0.14 0.36 -0.26 0.18 0.13 0.23 0.55 -0.13 -0.32 -0.16 0.37 0.35 -0.10 0.45 0.55 0.04 0.28 0.57 0.32 0.62 1.00 

 Cu Pb Ni Zn As Ca Co Cr Fe Hf K Mg Mn Na Sc Sr Th U V Y La Ce Sm Yb 
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Table 3.13 Matrix of correlation coefficients for Unit B in core MAR02–45.  Elements with an R value ≥ 0.8 are considered to have a 

strong relationship and are indicated in bold.  Depths 470–490 cm were omitted due to geochemical spikes; see §3.7 

 Cu Pb Ni Zn As Ca Co Cr Fe Hf K Mg Mn Na Sc Sr Th U V Y La Ce Sm Yb 

Cu 1.00                        

Pb 0.67 1.00                       

Ni 0.66 0.48 1.00                      

Zn 0.88 0.71 0.85 1.00                     

As -0.03 -0.20 -0.05 -0.04 1.00                    

Ca 0.04 0.26 -0.08 -0.03 -0.63 1.00                   

Co 0.38 0.25 0.38 0.33 0.37 0.05 1.00                  

Cr 0.24 0.19 0.41 0.32 0.24 0.05 0.78 1.00                 

Fe 0.36 0.15 0.37 0.33 0.60 -0.25 0.70 0.78 1.00                

Hf 0.12 0.08 0.11 0.09 0.00 0.19 0.29 0.47 0.29 1.00               

K 0.66 0.58 0.82 0.86 -0.09 0.11 0.19 0.19 0.10 0.01 1.00              

Mg 0.52 0.60 0.50 0.63 -0.24 0.43 0.45 0.36 -0.01 0.17 0.71 1.00             

Mn 0.37 0.38 0.44 0.42 -0.08 0.46 0.44 0.48 0.53 0.07 0.36 0.29 1.00            

Na -0.23 -0.29 -0.34 -0.39 -0.06 0.00 0.21 0.16 -0.08 0.41 -0.41 0.01 -0.29 1.00           

Sc 0.38 0.33 0.40 0.38 0.27 -0.14 0.73 0.81 0.80 0.08 0.12 0.20 0.50 0.09 1.00          

Sr 0.11 0.17 -0.01 0.00 -0.51 0.85 0.03 0.11 -0.04 0.34 0.06 0.19 0.46 -0.08 -0.10 1.00         

Th 0.25 0.20 0.38 0.26 0.30 -0.05 0.80 0.93 0.85 0.39 0.08 0.20 0.50 0.23 0.90 0.01 1.00        

U 0.24 0.21 0.04 0.08 -0.12 0.35 0.46 0.54 0.53 0.47 -0.15 -0.01 0.55 0.27 0.57 0.51 0.66 1.00       

V 0.72 0.60 0.95 0.91 -0.07 -0.05 0.35 0.39 0.29 0.11 0.88 0.66 0.39 -0.26 0.39 -0.04 0.33 -0.01 1.00      

Y 0.19 0.39 0.52 0.48 -0.02 0.05 0.20 0.31 -0.05 0.00 0.70 0.71 0.04 -0.13 0.14 -0.12 0.11 -0.36 0.64 1.00     

La 0.15 0.19 0.31 0.22 0.20 -0.02 0.73 0.93 0.74 0.41 0.08 0.24 0.45 0.33 0.85 0.01 0.95 0.63 0.29 0.22 1.00    

Ce 0.13 0.27 0.48 0.35 0.07 -0.06 0.51 0.68 0.47 0.43 0.30 0.32 0.35 0.13 0.46 -0.09 0.64 0.24 0.47 0.41 0.73 1.00   

Sm 0.19 0.09 0.14 0.09 0.31 -0.12 0.68 0.76 0.74 0.16 -0.11 0.05 0.35 0.36 0.92 -0.07 0.88 0.63 0.13 -0.02 0.84 0.31 1.00  

Yb 0.15 0.17 0.23 0.13 0.30 0.02 0.77 0.88 0.76 0.38 0.02 0.21 0.46 0.37 0.85 0.06 0.95 0.67 0.22 0.15 0.95 0.57 0.90 1.00 

 Cu Pb Ni Zn As Ca Co Cr Fe Hf K Mg Mn Na Sc Sr Th U V Y La Ce Sm Yb 
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Table 3.14 Matrix of correlation coefficients for Unit C in core MAR02–45.  Elements with an R value ≥ 0.8 are considered to have a 

strong relationship and are indicated in bold.  Samples considered are from depths 500–940 cm, all below the upwardly adjusted position 

of the 1 level (see §5.1.1), as compared with the 525 cm depth assigned to 1 by Hiscott et al. (2007b). 

 Cu Pb Ni Zn As Ca Co Cr Fe Hf K Mg Mn Na Sc Sr Th U V Y La Ce Sm Yb 

Cu 1.00                        

Pb 0.59 1.00                       

Ni 0.76 0.65 1.00                      

Zn 0.72 0.70 0.76 1.00                     

As 0.23 0.14 0.20 0.29 1.00                    

Ca 0.33 -0.23 0.34 -0.07 0.18 1.00                   

Co 0.60 0.36 0.62 0.50 0.20 0.27 1.00                  

Cr 0.18 0.03 0.32 0.02 0.07 0.41 0.29 1.00                 

Fe 0.67 0.54 0.79 0.68 0.52 0.27 0.63 0.30 1.00                

Hf -0.52 -0.29 -0.76 -0.47 -0.29 -0.60 -0.51 -0.35 -0.67 1.00               

K 0.47 0.79 0.72 0.78 0.01 -0.31 0.40 0.05 0.54 -0.29 1.00              

Mg 0.29 -0.25 0.34 0.04 0.10 0.77 0.18 0.25 0.23 -0.39 -0.09 1.00             

Mn 0.34 -0.12 0.42 0.05 0.16 0.80 0.26 0.20 0.36 -0.58 -0.12 0.73 1.00            

Na -0.72 -0.60 -0.81 -0.60 -0.24 -0.49 -0.62 -0.43 -0.72 0.74 -0.45 -0.18 -0.41 1.00           

Sc 0.68 0.73 0.88 0.83 0.17 0.10 0.62 0.25 0.81 -0.59 0.79 0.10 0.18 -0.77 1.00          

Sr 0.40 -0.12 0.43 0.03 0.20 0.90 0.33 0.50 0.30 -0.58 -0.13 0.72 0.65 -0.51 0.19 1.00         

Th 0.12 0.41 0.11 0.26 -0.21 -0.32 0.21 0.01 0.14 0.16 0.39 -0.15 -0.14 -0.08 0.37 -0.28 1.00        

U -0.01 0.10 -0.17 0.05 -0.06 -0.30 -0.02 -0.07 -0.27 0.28 -0.03 -0.28 -0.49 0.15 -0.12 -0.20 0.01 1.00       

V 0.67 0.70 0.91 0.85 0.21 0.07 0.58 0.16 0.75 -0.59 0.89 0.18 0.24 -0.67 0.89 0.21 0.27 -0.15 1.00      

Y 0.22 0.69 0.28 0.53 -0.12 -0.60 0.10 -0.19 0.14 0.18 0.79 -0.34 -0.43 -0.12 0.47 -0.40 0.58 0.21 0.56 1.00     

La -0.28 0.08 -0.40 -0.08 -0.26 -0.63 -0.21 -0.20 -0.28 0.70 0.10 -0.37 -0.58 0.41 -0.06 -0.54 0.61 0.24 -0.17 0.55 1.00    

Ce -0.11 0.17 -0.24 -0.04 -0.17 -0.49 -0.08 -0.14 -0.18 0.52 0.18 -0.27 -0.49 0.28 0.00 -0.33 0.55 0.26 -0.01 0.56 0.77 1.00   

Sm -0.27 0.01 -0.42 -0.06 -0.22 -0.64 -0.23 -0.17 -0.29 0.69 0.11 -0.33 -0.56 0.44 -0.10 -0.52 0.58 0.18 -0.15 0.54 0.92 0.77 1.00  

Yb -0.50 -0.14 -0.57 -0.32 -0.24 -0.62 -0.41 -0.21 -0.45 0.76 -0.09 -0.41 -0.63 0.55 -0.33 -0.57 0.28 0.21 -0.36 0.33 0.75 0.58 0.78 1.00 

 Cu Pb Ni Zn As Ca Co Cr Fe Hf K Mg Mn Na Sc Sr Th U V Y La Ce Sm Yb 
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Figure 3.10 Venn-style diagrams expressing the relationships between elements from 

correlation coefficient tables.  The diagrams represent relationships throughout MAR02–

45 and in the individual lithologic units.  All elements within each ring have correlations 

to one another with R ≥ 0.80.  Shaded areas show clusters of elements that share 

correlations with R ≥ ~0.90 (some values of 0.89 are included).  Within these shaded 

regions, the element(s) with the highest number of coefficients at the ≥ 0.80 level are in 

red text, and can be used as proxies for the behaviour of the other elements in the group.  

Hence, for the entire core, downcore plots of Ni, Zn, Th and Sc will give a good summary 

of the trends for a wider range of elements.  Considering all units, Sc, La and perhaps Zn 

are useful guiding elements to understand cross-correlations.  Ca variably correlates 

strongly with Mg, Sr and Mn, and tracks the abundance of calcite.
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Elements with significant covariation (R ≥ 0.8) are plotted on Venn-style 

diagrams to graphically express the relationships (Fig. 3.10).  Negative correlations are 

indicated by an appropriate sign.  The full core overview (Fig. 3.10) shows two main 

elemental associations with a high degree of cross-correlation at an R ≥ ~0.9 level: (a) V, 

Ni, Zn, K; (b) Sc, Th, Fe, Co.  Other elements correlate preferencially with some in these 

two groups; e.g., Cr with Fe, Yb and Sm with Th, Cu and Pb with Ni and Zn.  In Unit A, 

Sm and La are strongly correlated, as are elements typically found in carbonates (i.e., Ca, 

Mg, Sr).  Sc is correlated with Fe and Co at the R ≥ 0.8 level.  Compared with 

relationships for the entire core, the number of strongly correlated elements in Unit A is 

small.  Relationships in Unit B are somewhat more complex.  There are stand-alone 

elemental associations of (a) Ca with Sr, and (b) Zn with V, Ni, K and Cu.  There is then 

a larger cluster of cross-correlating elements centred around Th, La, Yb and Sc, with 

correlation of Cr, Co, Fe and Sm to different subsets of Th, La, Yb and Sc.  In Unit C, the 

carbonate-controlled elemental association involves Ca, Sr and Mn.  La and Sm are 

highly correlated to one another but to no other elements.  The main cluster of cross-

correlated elements hinges on a strong correlation of Sc, V, Ni and K, with additional 

correlation pairs (and one triplet): Sc and V with Zn; Fe with Sc; Ni with -Na (i.e., a 

negative correlation). 

Several elements have no noteworthy correlations with other elements at the R ≥ 

0.8 level or (in brackets below) only belong to a significant association in one 

stratigraphic unit: Pb, As, Hf, (Mn), (Na), U, Y, (Ce), (Yb).  These elements will be de-

emphasized in the subsequent interpretations and discussion unless they alone show 

strong and potentially meaningful stratigraphic trends. 
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3.5.3 X-ray Fluorescence 

To assess the consistency of ActLabs data with other methods, four samples from 

core MAR02–45P were analyzed using X-ray fluorescence (XRF) at Memorial 

University.  Operating conditions for the XRF can be found in ‘Analysis of Pressed 

Pellets of Geologial Samples Using Wavelength-Dispersive X-Ray Fluorescence 

Spectrometry’ (Longerich, 1995).  These samples were taken ~2 m apart in an effort to 

encapsulate the three lithologic units described by Hiscott et al. (2007b).  As the ActLabs 

procedures and XRF target different suites of elements, results could only be compared 

for a subset of elements with abundances above detection limits for the different 

techniques (Appendix 5).  ActLabs data were converted to oxide abundances, as needed, 

to allow comparison to conventional XRF laboratory reports.  Table 3.15 shows the ratios 

of ActLabs determinations to Memorial University XRF results.  Most of the 

geochemical species show similar concentrations although, relative to the XRF results, 

Cu and Zn are reported to be more abundant in the ActLabs data.  Note that these samples 

are not certified standards, so it is not justified on the basis of these comparisons alone to 

claim that one laboratory or the other has the more accurate results.  Determination of 

these four elements on international standards during the ActLabs runs show an 

underestimation of Zn, while ratios of measured to certified Cu values are nearly 1.0 (Fig. 

3.9a,d). 

Because of differences between the INAA and ICP–OES values and the XRF 

values, in spite of satisfactory levels of precisions in both laboratories, it is advised that 

inter-sample geochemical comparisons in this thesis be given much stronger weight than 
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comparisons to other data sets from the Black Sea area obtained using different analytical 

techniques.  At a minimum, firm conclusions regarding differences in absolute 

concentrations (unless quite large) should only be based on those geochemical species (9 

of 17) with inter-laboratory abundance ratios from 0.9–1.1 in Table 3.15.  

3.5.4 Conversion to Calcite-free Abundances 

In general, metal concentrations in shales and muds increase with the quantity of 

phyllosilicates, diagenetic sulphur (which scavenges metals) and organic matter (which 

promotes adsorption of metals onto particles (Loring, 1991).   

  Figure 3.11 plots ActLabs Ca against calcite abundances (from JADE output from 

silt-fraction XRD) after omitting three outliers.  The regression equation based on all but 

the outliers can be used to estimate % calcite in each ActLabs sample, and hence the % 

non-calcite sediment (mainly silicate minerals).  It was decided to examine the downcore 

geochemical trends on a non-calcite basis to compensate for dilution effects (because of a 

closed array) that would lead to reciprocal relationships between Ca abundance and the 

abundance of other elements (except, of course, elements like Sr, Mg and locally Mn that 

covary with Ca in parts of the succession).  Such trends might mask variations in the 

abundances of elements residing in silicate minerals and the organic fraction.  Figure 3.12 

is a plot of downcore concentrations for a selection of elements, while Figure 3.13  shows 

recalculated (calcite-free) concentrations of the same elements.  Below 600 cm depth, 

dilution by calcite seriously affects other geochemcial trends.  A full set of calcite-free 

downcore plots can be found in Appendix 6.  Corresponding downcore variations in the 

raw data, without recalculation, can be extracted from the tables in Appendix 3.   
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Table 3.15 Ratios of (a) oxide and elemental abundances in four samples run using 

INAA and ICP–OES at Actlabs to (b) the abundances for the same samples analyzed 

using XRF at Memorial University.  Ratios outside the range 0.9–1.1 are in italics.  Only 

elements that passed quality control standards within INAA and ICP-OES results are 

compared to XRF data. 

  Ratio ActLabs/MUN 

Element Atomic Number 170 cm 480 cm 640 cm 840 cm Average Ratio 

Na2O 11 1.22 1.42 2.10 1.24 1.49 

MgO 12 0.66 0.89 0.75 0.73 0.76 

K2O 19 1.10 1.29 0.97 1.04 1.10 

CaO 20 0.88 0.95 0.95 0.96 0.94 

Sc 21 0.99 1.21 0.75 0.76 0.93 

V 23 1.04 1.40 0.87 1.01 1.08 

Cr 24 1.07 1.46 0.90 0.96 1.10 

MnO 25 0.97 1.38 1.04 1.00 1.10 

Fe2O3T 26 1.15 1.29 0.88 1.04 1.09 

Ni 28 1.33 1.60 1.03 1.20 1.29 

Cu 29 1.91 2.30 1.20 1.56 1.74 

Zn 30 2.35 2.82 1.98 2.34 2.37 

Sr 38 0.88 0.58 0.92 1.01 0.85 

Y 39 0.54 0.75 0.69 0.67 0.66 

Ce 58 1.66 0.82 0.70 0.78 0.99 

Pb 82 1.11 1.41 0.77 0.84 1.03 

Th 90 1.18 1.22 1.02 1.16 1.15 
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Figure 3.11 % Ca in ActLabs data vs % calcite abundance determined by XRD analysis 

of the silt fraction of MAR02–45.  The three outliers that were exluded from the 

regression calculation are indicated by circles.  The regression was used to calculate % 

calcite in each ActLabs sample.
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Figure 3.12  Caption can be found on the following page.
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Figure 3.12 Caption. Downcore plots of selected elements in MAR02–45, it becomes 

clear below ~600 cm that dilution by calcite (tied to high Ca abundance) affects other 

downcore trends.  These elements were selected to incorporate most of the elements 

having strong cross-correlations throughout the cored succession (Fig. 3.10).  Cr is an 

exception; it is included because it shows large shifts in abundance in Unit C. Uncertainty 

in the minimum and maximum value in each plot is shown as an error bar that is ± a 

percentage of the amount present, using the values for uncertainty obtained in the 

assessment of precision (Tables 3.6 and 3.7).  For intermediate values, the uncertainty is 

between that shown for the minimum and maximum values.
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Figure 3.13 Caption can be found on the following page.
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Figure 3.13 Caption. Downcore trends of recalculated calcite-free concentrations for the 

elements shown in Fig. 3.12, excluding Ca.  It is believed that these plots better indicate 

stratigraphic trends in the silicate (+ organic) fraction. Uncertainty in the minimum and 

maximum value in each plot is shown as an error bar that is ± a percentage of the amount 

present, using the values for uncertainty obtained in the assessment of precision (Tables 

3.6 and 3.7).  For intermediate values, the uncertainty is between that shown for the 

minimum and maximum values.
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 In Fig. 3.11 there is one minor issue that requires comment – a sample with 30% 

stoichiometric calcite should require a minimum of 12% Ca, whereas the XRD and 

ActLabs results predict 30% calcite in samples with only 11% Ca.  This is not possible 

and provides no allowance for non-calcite Ca, so there must be a few percent error in the 

recalculated calcite abundances that will slightly affect the recalculation of other 

elemental abundances in calcite-rich samples.  The second caveat is that only the XRD 

results from the silt fraction have been used to estimate bulk calcite abundance, not the 

entire < 62 μm sample that was powdered and submitted to ActLabs.  However the < 2 

μm clay percentage is so low (Fig 3.2) that calcite abundance in the silt fraction is 

considered to be a robust indicator of % calcite in the entire sample.  The % error 

inherent in XRD measurements may also account for the discrepancy in non-calcite Ca. 

Table 3.16 shows the average concentrations and associated standard deviations 

for Cu, Pb, Ni, Zn, As, Co, Cr, Fe, Hf, K, Mg, Mn, Na, Sc, Sr, Th, U, V, Y, La, Ce, Sm, 

and Yb in Units A, B, and C in core MAR02–45.  Table 3.17 shows the geochemical 

composition of potential source areas from samples available to the author.  Only Cr, Fe, 

and Mg are found in concentrations that are potentially unique indicators for each source 

area.  However concentrations of  Fe, and Mg show little variation throughout core 

MAR02–45. 
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Table 3.16 Average calcite-free concentration of Units A, B, and C of MAR02–45 in 

ppm unless otherwise noted.  Elements in bold had, in a test involving four samples, 

concentrations within 0.90–1.10 the concentrations determined by XRF at Memorial 

University.  These unit averages exclude samples which exhibit geochemical spikes near 

the 1 and 2 levels  (470, 480 and 490; 250, 260, and 270 cm depths) 

 Unit A Unit B Unit C 

 

Average St. Dev. Average St. Dev. Average St. Dev 

Cu 57 ±11 55 ±10 45 ±10 

Pb 32 ±5 20 ±2 18 ±2 

Ni 74 ±4 70 ±6 64 ±9 

Zn 109 ±8 101 ±8 87 ±11 

As 11.1 ±1.7 19.5 ±4.1 9.9 ±4.0 

Co 19 ±1 21 ±2 19 ±3 

Cr 153 ±7 183 ±15 158 ±33 

Fe (%) 4.81 ±0.21 5.58 ±0.64 4.61 ±0.63 

Hf 7 ±1 8 ±1 9 ±2 

K (%) 2.49 ±0.12 2.46 ±0.20 2.47 ±0.19 

Mg (%) 1.98 ±0.16 2.09 ±0.15 2.39 ±0.34 

Mn 568 ±45 677 ±114 837 ±157 

Na (%) 0.94 ±0.06 0.91 ±0.07 1.11 ±0.17 

Sc 17.2 ±0.7 18.4 ±1.8 13.3 1±.0 

Sr 183 ±14 165 ±21 223 ±27 

Th 15.7 ±0.6 15.8 ±2.1 13.4 ±1.3 

U 5 ±1 5 ±1 3.6 ±0.9 

V 124 ±7 119 ±10 113 ±13 

Y 20 ±2 19 ±1 22 ±1 

La 41.0 ±1.1 44.8 ±2.4 48.4 ±4.3 

Ce 95 ±4 104 ±7 96 ±8 

Sm 6.5 ±0.2 6.4 ±1.0 5.8 ±0.3 

Yb 3.8 ±0.2 3.6 ±0.5 3.0 ±0.3 
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Table 3.17 Average calcite-free concentration (ppm, unless otherwise noted) of potential 

source areas.  Elements in bold had, in a test involving four samples, concentrations 

within 0.90–1.10 the concentrations determined by XRF at Memorial University. 

 Thrace Bosphorus Danube 

 Average St Dev Average St Dev Average St Dev 

Cu 88 ±30 67 ±6 93 ±27 

Pb 19 ±3 30 ±2 46 ±24 

Ni 25 ±1 92 ±11 78 ±17 

Zn 88 ±5 111 ±9 152 ±46 

As 9.0 ±2.8 13.2 ±0.6 14.5 ±4.2 

Co 12 ±1 19 ±1 21 ±3 

Cr 76 ±13 221 ±9 157 ±19 

Fe (%) 3.22 ±0.01 3.93 ±0.05 4.87 ±0.77 

Hf 16 ±8 7 ±1 10 ±9 

K (%) 2.00 ±0.38 1.93 ±0.18 2.94 ±1.02 

Mg (%) 0.50 ±0.23 1.11 ±0.13 1.87 ±0.24 

Mn 555 ±135 653 ±50 981 ±160 

Na (%) 1.49 ±0.67 0.95 ±0.11 0.94 ±0.33 

Sc 12.3 ±0.9 17.9 ±1.7 17.8 ±3.3 

Sr 182 ±159 145 ±20 166 ±15 

Th 13.0 ±1.6 13.6 ±1.3 15.7 ±3.2 

U 5 ±0.2 4 ±0.2 4 ±1.3 

V 58 ±15 103 ±22 124 ±33 

Y 20 ±4 22 ±1 27 ±7 

La 47.0 ±4.0 42.6 ±0.9 51.3 ±11.9 

Ce 88 ±4 76 ±2 95 ±24 

Sm 6.5 ±1.0 5.7 ±0.2 7 ±2 

Yb 5.0 ±1.0 3.6 ±0.2 5 ±1 
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3.6 Factor Analysis 

Raw data was run through Q- and R-mode factor analysis, using varimax rotation.  

In addition to elemental abundances, several additional variables from earlier studies 

were added to the data matrix: total sulphur (TS), total organic carbon (TOC) and 

terrigenous TOC as reported by Hiscott et al. (2007b) and determined using a  

Carlo-Erba NA 1500 Elemental Analyzer.  Normalization was achieved by first 

subtracting the minimum value recorded for a particular variable from all other 

determinations of that variable – this creates a value of 0 for the sample with the lowest 

abundance of that component. Then all thusly adjusted measurements of that variable 

were divided by the largest value seen in the set of data, creating a maximum value of 1.  

R-mode identifies sets of variables which consistently covary, so must have similar 

sources or chemical behaviour during transport or diagenesis.  Q-mode quantifies the 

similarities between samples, with each Q-factor representing a distinct end-member 

composition (i.e., a virtual sample with a particular composition distinct from other sets 

of samples).    

3.6.1 R-mode Factor Analysis 

Results of the R-mode factor analysis can be seen be in Figure 3.14.  The Four R-

factors account for 95.1% of the total variance in the samples.  R-factor 1 accounts for  

32.5% of the total variance, and has strong loadings on Pb, Ni, and Zn with minor 

contributions from Cu, Th, U, V, and (negative loading on) Ca.  R-factor 2 accounts for 

34.9% of the total variance with Mg, Mn, Ca, and terrigenous TOC as the largest  
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Figure 3.14 Plot of loadings of variables on R-factors 1–4.  Loadings exceeding ±0.3 

(solid red) identify major controlling variables while loadings exceeding ±0.2 (solid blue) 

are minor contributors to the factor.  Blue outlines show the contributions of other 

variables.   The final graph shows the variance accounted for by each factor (dashed, red 

line) and the cumulative variance of all the factors combined (solid, green line).
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contributing variables, with smaller contributions from Sc, and K.  R-factor 3 accounts 

for 13.4% of the total variance and its major component variables are terrigenous TOC, 

TS, and Hf.  Minor contributions come from Na, Y, and U.  R-factor 4 accounts for 

14.3% of the total variance; major contributions to this factor are TS, As, Cr, and TOC.  

The minor contributing variables include terrigenous TOC (negative loading).   

3.6.2  Q-mode Factor Analysis 

The sample-by-sample values for the R-factors can be plotted against core depth, 

and where they define stratigraphic intervals with one dominant R-factor, a 

geochemically important Q-factor can be recognized.  A Q-factor is dominant (Fig. 3.15) 

where stratigraphically contiguous samples show similar behaviour of their component 

variables (mostly elemental abundances).  The end-member for each Q-factor can be 

thought of as a virtual sample having distinctive composition different to that shown by 

other Q-factors.   

          Q-factor 2 is dominant throughout Unit C1, from 940–610 cm depth, and identifies 

a region where the variables contributing to R-factor 2 (i.e., carbonate building blocks 

and terrigenous TOC) have their strongest convariation (Fig. 3.15).  At 700 cm depth, Q-

factor 2 begins a slow upward decline while Q-factors 1 and 3 increase.  Q-factor 3 

increases substantially at 590 cm and maintains its highest levels between 590–480 cm 

with a small decline from 530–510 cm that coincides with a small increase in Q-factor 2.  

Throughout Unit C, Q-factors 1 and 4 maintain relatively consistent values around 0.25 

and 0.1, respectively.  The upward decline of Q-factor 3 at 480 cm is consistent with the 

trends seen in the geochemistry and coincides with an upward increase of Q-factor 4.  
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Figure 3.15 Q-factor plots (1–4) corresponding to R-factors (1–4) against depth.  Note the new proposed location of the 1 correlative 

conformity (at 480 cm), justified in §4.3.1 
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The lower portion of Unit B is dominated by Q-factor 4 which is controlled by 

TS, As, Cr, and TOC.  Unit B acts as a transitional unit for Q-factors 1 and 2.  An upward 

increase in Q-factor 4 becomes the dominant feature at 470 cm depth, and it reaches its 

peak at 400 cm, followed by a gradual decline to its Unit C levels by 240 cm (now into 

Unit A).  However the dominance of Q-factor 4 is short-lived; by 340 cm Q-factor 1 has 

become the dominant factor (Fig. 3.15).  Q-factor 2 has a sharp upward decline at the  1 

correlative conformity (480 cm) and is no longer the dominant factor by 470 cm.  By 400 

cm it has become the third-most influential factor due to the rapid rise of Q-factor 4 and a 

gradual increase in the value of Q-factor 1. 

Unit A is marked by an upward decline of Q-factor 4 at the 2 unconformity and 

the establishment of Q-factors 1 and 2 as the dominant factors.  Q-factor 1 is the more 

dominant factor but shows a slight decline from 190–50 cm depth as Q-factor 2 increases.  

Q-factor 4 returns to its Unit C levels in Unit A, while the influence of Q-factor 3 is 

greatly reduced. 

3.7 Geochemical Spikes at Unit Boundaries 

Thus far, the results have focused on results from samples deemed typical of the 

three lithologic units, gauged by the fact that within each unit they have consistent 

relationships to other variables and generally do not vary strongly from one sample depth 

to the next.  Spikes in elemental abundances at odds with this behaviour have been 

identified close to the levels of the 1 and 2 seismic markers, as correlated to core 

MAR02–45 by Hiscott et al. (2007b).  Examples of the inconsistent behaviour of some 

elements at this level can be seen in cross-plots of strongly correlated elements in the 



 

  135 

central parts of Units A (0–240 cm depths) and B (280–460 cm depths); the correlations 

would be more poor if results from sample depths of 250–270 cm and 470–490 cm were 

to be included.  In many cases, samples from these restricted depths show dramatically 

different behaviour and plot well away from the regression line for other samples; i.e., 

they are outliers.  The offending elements have prominent spikes in their abundance in 

these few samples.  

 Near the level of the 2 unconformity, this anomalous behaviour was first seen in 

the downcore plots of Sc and Cr (Fig. 3.13).  Figure 3.16 shows the calcite-free cross 

plots of some elements in Unit A which spike near the 2 unconformity.  Geochemcial 

spikes in Cr and Sr slighter higher than the 1 level were also noted in downcore plots 

(Fig. 3.13, Appendex 4).  Figure 3.17 shows calcite-free cross plots of elements in Unit B 

that spike near the 1 seismic marker.  Because of these spikes, the analytical results 

from depths 250–270 cm and 470–490 cm were excluded from the correlation tables 

(Tables 3.12–3.14) to prevent correlations being skewed by a few inconsistent data points 

at sample depths found near unit boundaries.  The occurrence of the geochemical spikes 

between 470–490 cm also prompted an upward adjustment of the correlation of the 1 

seismic marker from a depth of 525 cm in core MAR02–45 (Hiscott et al., 2007b) to a 

depth of 480 cm (see §4.3.1 for details). 
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Figure 3.16 Calcite-free cross plots of some Unit A elements.  Data for samples from 

depths of 0–240 cm are plotted as blue squares.  Outliers (red circles), if they occur, are 

marked with their appropriate sample depth (250–270 cm).  Data from this latter range of 

depths, if not anomalous, is plotted with blue squares like data from higher levels.  

Samples deeper than 240 cm behave differently than other samples higher in Unit A so 

have been excluded from the correlation table (Table 3.12) and the Venn-like diagrams 

(Figure 3.10) for Unit A.
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Figure 3.17 Calcite-free cross plots of some Unit B elements.  Data for depths from 280–

460 cm are plotted as blue squares.  Outliers (red circles), if they occur, are marked with 

their appropriate sample depth (470–490 cm). Data from this latter range of depths, if not 

anomalous, is plotted with blue squares like data from higher levels.  Samples deeper 

than 460 cm behave differently than other samples higher in Unit B, so are excluded from 

the correlation table (Table 3.13) and the Venn-like diagrams (Figure 3.10) for Unit B. 
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Chapter 4 Interpretation 

4.1 Sediment Volume Estimate 

 There is a discrepancy between the amount of lower Holocene sediment (Unit C) 

located on the southwestern Black Sea shelf (~17 km3) and the volume of sediment 

supplied by local sources as predicted by the BQART equation (~0.66 km3, based on 

riverine supply for 5000 years).  The volume of sand in the coastal beaches of Thrace 

does not contradict the low BQART prediction, as this sand need not have been derived 

mainly from Holocene river input; other reasonable sources for the sand include the 

erosion of coastal bluffs and the reworking and redeposition of shelf sediments during the 

Holocene transgression.  

 There are multiple ways to attempt to reconcile the discrepancy between the Unit 

C volume (seismic unit 1B) and local river supply.  The simplest approach would be to 

increase the timespan for the input from local sources; however, with all BQART 

parameters fixed, it would take ~250,000 years for local sources to supply 17 km3 of 

sediment.  Obviously this scenario is unrealistic, as basin parameters would have changed 

over that time (e.g., glacial-interglacial cycles), promoting removal to deeper water areas 

of most of the sediment as a consequence of erosion during lowstands and transgressive 

phases.   

 A more plausible scenario involves contribution to Unit C from more distant 

sources. The Kamchiya River (Bulgaria) and the Danube River (Romania) are both 

significant sources of sediment that enter the Black Sea to the west and north of core site 

MAR02–45, in the upcurrent direction relative to the modern Black Sea circulation.  
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Distances from their deltas to the core site are ~130 and ~380 km, respectively.  During 

the early Holocene, flooding of the shelf caused the Danube River to cease direct supply 

to its deep-sea fan (Lericolais et al., 2012), instead building delta lobes from which 

sediments could be transported along the shelf by currents like the modern Rim Current, 

contributing to accumulation on the southwestern Black Sea shelf.  Sediment discharge 

rates for the Kamchiya River indicate a possible contribution to the shelf setting of ~7.1 

km3 over a period of 5000 years, a portion of which might have moved farther 

southeastward along the shelf.  There are other smaller rivers along the Bulgarian and 

Romanian coastline that might have added some of their sediment load to the 

counterclockwise-flowing Rim Current system leading to the SW shelf (e.g., drainage 

into the Varna and Veleka estuaries and their adjacent shelf areas).  In the vicinity of 

Cape Emine just downdrift of the Kamchiya Delta, the Holocene shelf succession reaches 

thicknesses of ~50 m (Dimitrov et al., 1998, as reported in Filipova-Marinova et al., 

2004).  A significant contribution from river systems in general is supported by the 

considerable amount of coarse plant debris, pollen and fern spores in palynology samples 

from Unit C in core MAR02–45 (P. Mudie, pers. comm., 2012).   

Along-shelf advection of sediment from major river deltas like the Danube is able 

to provide significant material over distances comparable to those noted above.  For 

example, the Chenier plain of southwestern Lousiana is a ~5000 km2 Holocene mud 

deposit, punctuated by sandy beach ridges, located up to 200 km west of the Mississippi 

Delta (McBride et al., 2007).  This coastal succession receives the bulk of its sediment by 

westward advection in along-shelf currents from the mouth of the Mississippi River. 

Times of increased deposition on the Chenier plain occur when the Mississippi Delta has 
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undergone avulsion to the west (McBride et al., 2007).  Liu et al. (2009) document even 

greater distances of along-shelf transport of significant quantities of mud from Asian 

deltas, up to 600–800 km from the river mouths.  By similar processes, large amounts of 

Danube, and Kamchiya sediments might have been transported to the southwestern Black 

Sea shelf.  The modern Rim Current facilitates the transport of sediments from more 

northern sources.  If this current (or a similar earlier current) was established during the 

early Holocene it would provide a mechanism for transporting sediment from the Danube 

Delta to the southwestern Black Sea shelf. 

A third possible source for some portion of the 17 km3 in Unit C is reworking of 

Pleistocene shelf deposits that were subaerially exposed on the coastal plain (now the 

modern shelf)  during the early Holocene transgression.  There are sparse, long spined 

(indicative of relatively high salinity) specimens of the dinoflagellate Lingulodinium 

machaerophorum toward the base of core MAR02–45 in Subunit C1 (P. Mudie, pers. 

comm. 2013).  The last time the Black Sea had a salinity similar to today, in order to 

account for this long spine length, was in the period 126.5–121 cal ka BP (Shumilovskikh 

et al., 2013).  There are also tentatively identified and rare specimens of the dinoflagellate 

genera Multiplicisphaeridium and Romanodinium in Subunit C1, the former being 

common in local Miocene successions, and the latter in Pliocene deposits of Romania (P. 

Mudie, pers. comm. 2013).  These occurrences might indicate derivation of a small 

portion of the lowest Holocene succession by erosion of local unconsolidated or weakly 

consolidated deposits during the Holocene transgression, but P. Mudie (pers. comm. 

2013) cautions that some of these cysts might instead have been introduced by meltwater 
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pulses from the Caspian Sea, where long-spined L. machaerophorum and other exotic 

genera are known from Pleistocene deposits.   

 Upper Pliocene – Quaternary strata below the Holocene transgressive 

unconformity, α, are restricted to the modern outermost shelf (Aksu et al., 2002).  If there 

were more landward correlative deposits before the latest transgression, then they must 

have been stripped from the shelf by shoreface erosion (at a developing ravinement 

surface) to account for the apparent absence of deposits of this age beneath the middle 

and inner shelf.  For such effective erosion to have occurred, the wave climate would 

need to have been energetic (like today), implying considerable fetch and therefore an 

open coastline rather than a restricted, enclosed embayment or isolated shelf lagoon (i.e., 

liman).  With conditions similar to those in existence today, the finer size fractions 

eroded from the inner shelf in water depths (at that time) of only a few tens of metres 

likely would have been advected offshore, perhaps beyond the shelf edge.   

 To summarize, pre-Holocene dinoflagellate cysts are present in Subunit C1 but in 

very small numbers, suggesting  some contribution from erosion of pre-existing shelf 

deposits during the early Holocene transgression.  Holocene cysts are far more abundant 

and provide the basis for an internally consistent interpretation of paleo-salinity variations 

(Mertens et al., 2012).  The interpretation favoured here is that the mud fractions present 

in seismic units 1B–1D (core units C–A) entered the Black Sea from terrestrial sources 

either during the time of the earliest Holocene transgression, or somewhat earlier 

following the Last Glacial Maximum.  This influx could not have been supplied by local 

small rivers, so must have come from elsewhere along the Black Sea coast where large 

rivers enter the basin. 
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4.2 Texture and Mineralogy 

 The sediments deposited at MAR02–45 are fine grained (averaging more than 

95% <63 μm particles in Units C and A).  The dearth of sand might be explained by the 

relatively rapid transgression during the early Holocene, so that the MAR02–45 site has 

been in >50 m of water for almost all of the Holocene.  Paradoxically, there is very little 

clay-sized material.  This is consistent with the grain-size reported from core MAR05–50 

which penetrated these same units 40 km to the east (Hiscott et al., 2007b).  Full grain-

size analysis of samples from core MAR02–45 was not undertaken for this thesis, so 

unpublished representative full analyses provided by R. Hiscott for core MAR05–50 

(methods in Flood et al., 2009) are used to support this part of the interpretation (Fig. 

4.1).  The essential observation is that the <63 μm fraction of Unit C at site MAR05–50 is 

dominated by silt with mean size of ~15 μm.  This is unlike typical marine muds which 

contain moderate amounts of clay (Weaver, 1990),  The texture is similar, however, to 

that of loess deposits (e.g., Varga, 2011, Fig. 4.1), which are widespread in the Danube 

drainage basin (Fitzsimmons et al., 2012).   

The sediments in core MAR05–50 are finer grained than the Hungarian loess.  

Below the α1 unconformity in core MAR05–50 (below 645 cm) there is a pronounced 

asymmetry of the particle size distribution indicating the presence of a secondary mode 

centred on ~50 μm, so ~20 μm coarser than the mean particle size of the Hungarian loess.   

Loess deposits have a wide range of mean grain size (Fitzsimmons et al., 2012), but their 

essential characteristic is a predominance of silt that reflects an aeolian origin.  The loess 

deposits in the Danube drainage basin can have thicknesses >5 m, and are deeply 
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Figure 4.1 Comparison of grain size distribution of Hungarian loess (Varga, 2011) to particle size distribution found in Unit C 

correlative deposits of core MAR05–50, located to the southeast of MAR02–45.  Dashed lines with short segments under 

curves represent log-normal components which overlap to form the final distributions.  Vertical dashed lines indicate the mean 

particle size of the dominant sub-population.
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dissected by tributaries to the Danube, and by northern tributaries to the Kamchiya River 

(Fitzsimmons et al., 2012).  The loess has an age <1,000 ka with substantial loess 

accumulation occuring during the Last Glacial Maximum (LGM) and Younger Dryas 

(Fitzsimmons et al., 2012).  Dissection has occurred since the LGM, feeding large 

quantities of sediment with the textural characteristics of loess into the Danube system, 

and onward to its delta on the Black Sea coast.  The close textural similarity of the 

MAR05–50 muds to loess, the position of the MAR05–50 site downcurrent from the 

MAR02–45 site, and the presence of the same stratigraphic units at the two sites, are 

consistent with the hypothesis offered here that the primary source for significant 

amounts of the Unit C sediment might be reworked loess.  The secondary mode found in 

MAR05–50 samples could be from coarser loess deposits, or from offshore transport by 

storm events, consistent with the origin proposed by Hiscott et al. (2007b) for the 

sand/silt beds of Unit C1 in core MAR02–45.  

The streambed samples from local rivers in Thrace are considerably coarser than 

the offshore muds, so it is not possible to assess the potential for these rivers to have 

delivered a silt-dominant, clay-poor mud fraction.  The presence of mollusk shells at site 

MAR02–45 (Hiscott et al., 2007b) and mollusks and ostracods in equivalent units at site 

MAR08–50 (Williams, 2012) proves that even the oldest muds recovered in core 

MAR02–45 (10.3 cal ka BP, Unit C) are marine to lacustrine in nature.  Any loess-like 

material must, therefore, have experienced some transport by marine currents.  
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4.2.1 Silt Mineralogy 

 Silt (2–63 μm) is the dominant size fraction in core MAR02–45.  XRD analysis 

shows a clear decrease in calcite through Unit C upward to Unit A (Figure 3.3).  When 

mineral abundance is recalculated to exclude calcite (Figure 3.4), there is a clear upwards 

increase in K-mica coupled with a small increase in Na-plagioclase and a decrease in 

quartz beginning at the contact between Units A and B.  Bayhan et al. (2005) interpreted 

that quartz and feldspar in their cores from the SW Black Sea shelf are primarily related 

to metamorphic sources and that 1-nm micas are magmatic in origin.  If this is true then 

data from this thesis may suggest a shift in the source of detritus around the α1 correlative 

conformity (8.1 cal ka BP).  The ~6% decrease in quartz and the increase in K-mica 

content (~5%) upwards through the core is a clear trend (Table 3.1).  However the 

standard deviations for these components overlap throughout the cored succession, 

making a conclusive statement about changing provenance all but impossible using K-

micas and quartz as indicators. 

Comparison of the silt mineralogy of MAR02–45 to that of potential source areas 

is inconclusive.  Thracian river samples were taken at sandy locations, downstream from 

dammed reservoirs, explaining the elevated quartz contents (64.7%) when compared to 

samples from core MAR02–45.  The presence of dolomite differentiates the Danube 

Delta from northern Turkish sources (as recorded in detritus from the Bosphorus outflow; 

Table 3.2); however, the absence of detectable silt-sized dolomite in core MAR02–45 

does not rule out the Danube River as a source because amounts <5% have peak  
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intensities too low for quantification.  With all other major silt-sized minerals existing in 

relatively equal amounts from one potential source to the next, it is not possible to 

advocate that one source is more strongly represented than the others in the MAR02–45 

samples. 

4.2.2 Clay Mineralogy 

 The more clay-rich samples (>20% clay) in Units B and C (430, 620, 700, 770 

and 890 cm depth) are coupled with a decrease in the abundance of non-clay minerals in 

the <2 μm size fractions.  At 430 cm depth (Unit B) there is an upward increase in 

smectite, chlorite and kaolinite relative to its unit average and a decrease in quartz, calcite 

and dolomite abundance (Fig. 3.6).  Of the two more clay-rich horizons analyzed from 

Unit C (770 and 890 cm depth) only the 890 cm sample shows significant variations in 

mineral abundances relative to the unit average.  Smectite is 2.5x more abundant at 890 

cm and this increase comes at the expense of the non-clay minerals (quartz, calcite and 

dolomite; Fig. 3.6).  The increase in smectite and chlorite content implicates igneous and 

metamorphic sources for these muds; Thracian rivers have been identified by other 

workers as likely sources for smectite based on the composition of the bedrock (Major, 

2002; Bayhan et al., 2005) so the more smectite-rich samples (430 and 890 cm depth) 

might indicate periods of increased contribution from the Thracian hinterland. 

 A pronounced trend in the clay-sized fraction is the increase in abundance of illite 

upwards through the core.  Each unit shows an ~10% increase in illite abundance 

compared to the underlying unit (Table 3.5).  As a caution, this pattern is not evident 

when clay minerals are recalcuated to 100% using the Biscaye (1965) scaling factors.  
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The increase in illite abundance might indicate an increase in the importance of the 

Danube River as a sediment source throughout the Holocene (see below).  As modern 

current pathways were established (e.g., the Rim Current), the Danube River would be 

expected to exert more influence on the mineralogy of clay-sized materials in the study 

area. 

 A comparison of potential source areas shows a dominance of smectite near the 

Bosphorus exit (Figure 3.8).  This is expected, as outcrops near the northern mouth of the 

Bosphorus include mafic volcanics.  Danube source material contains ~45% illite (~10% 

higher than the core average) and contains detrital calcite and dolomite.  The Kuzan River 

sample (Thrace) was at first surprising due to its low smectite content and high carbonate 

content.  However, this sample was taken in an area near Miocence sedimentary rocks, 

and might reflect their composition, as opposed to the Paleozoic igneous formations 

found along the Thracian coast (Fig. 1.5).  The damming of the small rivers in this area 

makes it very difficult to obtain representative samples of fine-grained detritus, which 

now does not reach the coast. 

 Before undertaking the mineralogical studies, it was hypothesized that more 

extensive alpine glaciation in the headwaters of the Danube River might supply greater 

amounts of clay-sized quartz (as "rock flour") than sources that were not glaciated.  The 

Danube samples indeed contain ~14% clay-sized quartz, but the single sample from the 

Kuzan River (Thrace) contains 22% clay-sized quartz.  Without considerably more study 

of the clay fractions produced by weathering in northern Thrace, the significance of this 

quartz cannot be determined. 

 There are no clear distinguishing variations between the clay mineralogy of 
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material from potential source areas and samples from core MAR02–45.  Even within the 

cored succession, the only case for which unit averages and their standard deviations do 

not overlap is the upcore increase in illite abundance previously discussed.  Hay (1987) 

used illite/smectite ratios to distinguish sources areas.  He noted a Danube ratio of ~5 and 

that Anatolian ratios are ~1 or less.  Figure 3.8 shows an illite/smectite ratio of 0.73 for 

the Bosphorus samples.  The illite/smectite ratio for Danube samples analyzed for this 

thesis is 1.83 and is 12.15 for the one Thracian sample.  The average ratio for MAR02–45 

is 2.85, and for Unit C is 2.46.  These ratios are interpreted to rule out Anatolia as a 

source, however they cannot distinguish between Thrace and the Danube Delta.  

Although a single source cannot be identified with the data available, neither is there 

evidence for a change in provenance from ~10.3 cal ka BP to the present. 

 There is one caveat regarding all aspects of the clay mineral work.  At site 

MAR05–50, Flood et al. (2009) found that a small, isolated mode forms the clay fraction 

(Fig. 4.1).  They could not explain the absence of material in the range 0.9–2 μm, and 

speculated that the clay mode might actually be a bio-diagenetic product created by 

mineral transformations in the guts of burrowing organisms (cf., Needham et al., 2005).  

Without biological experiments in the thesis area or laboratory investigations using Black 

Sea sediment, it is not possible to comment further.  However, it should be clear that an 

origin of the clay minerals by this type of biological activity would compromise all 

interpretations regarding source areas for what are considered to be primary detrital clay-

sized components. 
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4.3 Geochemistry  

Much of the geochemical interpretation of the Holocence succession is provisional 

because the effects of early diagenetic sulphate reduction/oxidation can not be 

systematically evaluated with available data.  The mobility and fixation of metals can be 

influenced by these early diagenetic reactions, so that some of the assessments made in 

the thesis about primary compositional trends might require additional confirmation by 

pore-water studies to ensure that there is not a diagenetic overprint. 

The matrix of correlation coefficients for the entire core (Table 3.11), and the 

associated Venn-style diagram showing relationships between variables (Fig. 3.10) 

portray a very complicated set of elemental associations.  However, the relationships on a 

unit-by-unit basis (Fig. 3.10, Units A, B, C) are considerably simpler, and it is at this 

level that basic interpretations can be made.  In reality, there are four distinct regions of 

the core with somewhat different associations between chemical elements: the central 

parts of Unit A (0-240 cm), Unit B (280-450 cm), Unit C (500-940 cm), and the cross-

overs between the lithologic units just above the 1 and 2 levels where spikes occur in 

the abundances of several elements (460–490 cm and 250–270 cm, respectively, and 

highlighted in Appendix 3).  Factor analysis has picked out the unit-by-unit variability as 

seen in the Q-mode downcore plot of factor scores (Fig. 3.15). 

 Elements which spike just above the 2 level are K (a negative spike), As and Rb; 

the latter not considered except in this overview of elemental spikes because of a low 

level of overall precision (Table 3.6).  Mn has higher than normal values just below the 

2 level (280 and 290 cm samples).  Elements that display spikes above the 1 level are 
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Br, Mn, Sr.  These anomalous values are ascribed to enhanced absorption at the seafloor 

during a time of non-deposition (2 unconformity) and likely reduced accumulation (1 

surface, here conformable but equivalent to the 1 unconformity that is widespread on 

the shelf; Aksu et al., 2002).  A key conclusion is that some fraction of these elements 

must have entered the sediment from the water column, or have been mobile during early 

diagenesis, rather than being entirely detrital in origin (i.e., bound in the lattices of 

detrital minerals).  This might explain why Mn has no strong correlations with other 

elements above Unit 3. 

 Within each unit, strongly cross-correlated elements can serve as proxies for one 

another.  There are two central issues to consider and explain when evaluating the unit-

by-unit geochemistry: which elements are particularly abundant and why; how can the 

elemental associations inform us as to the detrital versus diagenetic origin of the observed 

trends in abundance?  Sc and Fe are correlated at the R  0.80 level in all units.  

According to Das et al. (1971), Sc and Fe in fine grained sediments correlate with one 

another (and with Al) because they are present in clay minerals and other phyllosilicates. 

Co, Ce, La, Th and Y are generally found in detrital aluminosilicates (Dean and Arthur, 

2011).  In the MAR02–45 samples, Unit B in particular shows a strong association of 

four of these five elements with Sc and Fe (Fig. 3.10).  R-factor 2 has a moderate loading 

on Sc and a strong loading on terrestrial TOC, all consistent with a detrital origin.  R-

factor 2 also carries the signature of carbonate minerals, and is particularly important in 

lithologic Unit C (Fig. 3.15).  The following initial conclusions result: 
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1.  Sc, Fe, Co, Ce, La, Th and Y are considered to have a detrital origin.  Ce is included in 

this list because for the entire core it is closely correlated with Sc, Th and Fe.  Sm is 

closely tied to La in Units A and C, so is believed to have a detrital origin. 

2.  Through a strong linkage to the terrestrial component of the TOC, carbonate minerals 

in Unit C also might have a predominantly detrital origin, leading to high scores for 

factor 2 in that unit.  Caution is required, however, because it might be coincidence that 

carbonate abundance and a predominance of terrestrial TOC are characteristic of Unit 

C. 

 V, Ni, Zn and Cu tend to be concentrated in organic-rich Black Sea sediments, 

either because of biogenic fixation or adsorption under reducing conditions in the 

sediment (i.e., earliest diagenesis, Dean and Arthur, 2011).  However, Dean and Arthur 

(2011) find that in some circumstances V and Ni can be tied to the detrital supply.  Unit B 

in particular shows a strong cross-correlation of these elements, and K.  In Unit C, V, Ni 

and Zn are correlated with one another, but also with Sc, Fe and K.  R-factor 1 has strong 

to moderate loadings on Cu, Pb, Ni, Zn, Th, U, V.  U is well know to accumulate under 

reducing conditions.  The partial mingling of elements which are commonly found in 

detrital components (i.e., Sc, Fe, K, Th) with those known to accumulate from pore water 

and on organic components is interpreted to indicate adsorption onto fine-grained 

phyllosilicates during early diagenesis.  Factor 1 (as Q-factor 1 in Fig. 3.10) is most 

important in Unit 1, presumably because sulphate reduction was particularly active 

during the deposition of that unit (Hiscott et al., 2007b), promoting the incorporation of 

several metals.  Several of these elements (Cu, Pb, Ni, Zn, V) are in higher abundance in 

Unit 1 than at deeper stratigraphic levels (Fig. 3.13 and Appendix 6 plots).  The most 
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important conclusion from this paragraph is that V, Ni, Zn, Cu and probably Pb cannot be 

used to track changes in the nature of detrital supply (i.e., provenance).  Instead, they are 

viewed as elements incorporated from seawater and pore water during early diagenesis. 

 A prominent trend in subunit C1 is elevated Cr concentrations between 800 and 

700 cm depth (~9.4 cal ka BP) that act independently of other elements. Cr has been 

previously attributed to the weathering of mafic or ultramafic source rocks (Kıratlı and 

Ergin, 1996).  In the primary core descriptions of MAR02–45, these depths are associated 

with sandy horizons.  The samples were taken to avoid the sandy layers, but it is possible 

that bioturbation has introduced Cr into the muds above and below sand horizons (Fig. 

4.2).  These sandy horizons have been previously interpreted as turbidites or tempestites 

sourced from Thracian rivers.  Such event-beds may have a muddy top that was also 

emplaced by the energetic flow that carried the sand onto the shelf, although core 

descriptions did not identify two types of mud that might have different origins.  

When comparing geochemical trends in MAR02–45 to potential source areas 

some major issues must be addressed.  Samples from the Danube Delta and Thracian 

rivers are grab samples.  This type of sample is prone to contamination from industrial 

pollution and agricultural runoff.  Cu, Ni, Zn, and As values have been shown to be 

influenced by anthropogenic input (Dinescu and Duliu, 2001; Oreščanin et al. 2005). 

Hence, only Fe, Co, Mg, Mn and Cr are considered to be reliable source indicators.
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Figure 4.2 Elevated chromium values seen in geochemical data compared to lithologic 

description of MAR02–45 between 700 and 800 cm depth.  162 and 27 refer to the core 

average and standard deviation of Cr concentration in ppm.  The shaded area represents 

±one standard deviation from the core average.
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Even when comparing potential source areas (Table 3.17) to averages for each 

unit in core MAR02–45 (Table 3.16), finding diagnositic criteria for sediment provenance 

is a challenge. Cu, Pb, As, Hf, K, Na, Co, Mn, Sr, Th, U, Y, La, Ce, Sm, and Yb  are 

found in similar concentrations in all potential source areas and overlap with unit 

averages in core MAR02–45.  Fe concentrations in Unit B and C are similar to 

concentrations in the Bosphorus and Danube Delta samples.  Mg and Cr values in Unit A 

and B are similar to those found in the Danube Delta samples. 

The upwards increase in metal content through MAR02–45 could be related to 

pollutants for the uppermost tens of centimeters, and/or to an increasingly reducing 

environment.  Based on these trends it would seem that both the Danube River and local 

Thracian rivers have been supplying detritus to the southwestern Black Sea shelf since 

the start of deposition of Unit C (~10.3 cal ka BP).  However, due to the potential for 

contamination, and the lack of easily interpretable trends, this hypothesis is 

unconvincing.  It does not seem possible, with the chemical data, to conclusively track 

the source of Fe, Co, Cu, Sr, Ni, Mg, and Pb.  The exception is perhaps Cr, because of its 

expected derivation from mafic and ultramafic rocks.  Samples characterizing 

northwestern Anatolia (taken at the northern exit of Bosphorus Strait) contain the highest 

levels of Ni and Cr, but the modern (and likely Holocene) shelf currents travel from west 

to east, so would not be able to move detritus westward toward the MAR02–45 site.  

Instead, the information from core MAR08–17 is helpful only as an indicator of the 

possible composition of detritus derived from similar mafic bedrock in Thrace.   

A calcite-free comparison of elements analysed from Hungarian (Újvári et al., 

2008), and Moravian (Czech Republic) loess (Adamova et al., 2002) to thesis results for 
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Unit C1 in core MAR02–45 is presented in Table 4.1.  Of the 34 total elements compared  

(15 by Újvári et al., 2008; 19 by Adamova et al., 2002), only one (Y) has calcite-free 

concentrations that statistically overlap with that MAR02–45 concentrations, using a 

significance level (P-value) of 0.05, after student t-test analysis (95% confidence interval, 

2-tailed test, assuming unequal variances). The sediments in MAR02–45 may share some 

textural characteristics with loess but there are distinct and statistically significant 

chemical differences with both the Hungarian and Czech loess.  Of course loess in the 

Danube drainage basin is not expected to be homogeneous because it is derived from a 

wide range of source rocks and regions of northwestern Eurasia.  Further study of those 

deposits would be required to rule out a compositional link between the shelf muds in the 

southwestern Black Sea and portions of the loess blanket of eastern Europe. 

4.3.1 Refinement in the Placement of the α1 Correlative Conformity 

Based on geochemical signatures, and Q-factor analysis presented in this thesis, the 

conformable surface equivalent to the α1 unconformity is likely ~45 cm higher in core 

MAR02–45 than proposed by Hiscott et al. (2007b).  Q-factors 1, 2, and 3 exhibit erratic 

behaviour starting in subunit C2 (Fig. 3.15).  This behaviour continues from ~600 cm 

depth upward until 480 cm.  At this depth, Q-factor 4 becomes the factor with the highest 

scores (now into Unit B).  Supporting the adjustment of the α1 position are the behaviour 

of Cr, Hf, Mn, and Sr (Fig 3.16, Appendex 4).  These elements all have a spike in 

concentration between 480–500 cm depth. These geochemical anomalies likely 

developed during times of decreased deposition when sediment at the seabed would have 



 

 
156 

experienced an extended time of interaction with bottom waters.  Although the α1 level is 

conformable at the core site, elsewhere on the shelf a depositional hiatus is recorded.   

 

Table 4.1 P-values for the student t-test (TTest function in Microsoft Excel) using 

calcite-free normalized data from Unit C1 of core MAR02–45, compared with calcite-

free Hungarian loess chemistry from Újvári et al. (2008) and Moravian (Czech) loess 

chemistry from Adamova et al. (2002). The null hypothesis is that the means of randomly 

selected sets of samples from each population are equal, and when this is false the P-

value will be less than a pre-determined significance level of, say, 0.05 (95% level) or 

0.01 (99% level).  P-values less than 0.01 indicate that the mean values are probably not 

from the same population; p-values >0.05 (bold) indicate that the concentrations are 

indistinguishable using a 95% confidence interval.  

 

P-Values 

 Hungarian Czech 

Fe 3.16 x10-28 4.77 x10-19 

Mn 6.54 x10-17 8.33 x10-11 

Mg 1.51 x10-34 3.17 x10-31 

Na 3.98 x10-9 1.13 x10-16 

K 8.58 x10-14 6.79 x10-15 

Pb 4.13 x10-15 2.43 x10-07 

La 1.78 x10-12 3.81 x10-11 

Ce 2.44 x10-13 2.46 x10-09 

Y 2.53 x10-5 0.10 

V 1.06 x10-18 1.80 x10-16 

Cr 1.10 x10-32 3.85 x10-19 

Ni 1.17 x10-27 5.14 x10-26 

Cu 4.37 x10-32 4.50 x10-19 

Zn 4.49 x10-19 2.05 x10-13 

Sr 5.47 x10-17 5.70 x10-18 

Sm 

 

1.26 x10-10 

Yb 

 

1.06 x10-09 

Y 

 

3.74 x10-04 

Co 

 

2.87 x10-13 
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The placement of the α1 unconformity in MAR02–45 by Hiscott et al. (2007b) was 

not based on an obvious facies break or discontinuity in radiocarbon dates, so has to be 

considered approximate and no more precise than the vertical resolution of the seismic 

profile over the site, which is ~30 cm (Huntec DTS technology).  With a suspicion that 

the α1 level might be higher than reported by Hiscott et al. (2007b), the seismic profile 

was re-evaluated.  The re-measured depths to the α2 uncomformity and the α1 level are 

270 cm and 490 cm, respectively.  The latter measurement is consistent with  figure 6 of 

Hiscott et al. (2007b). The position of the α1 uncomformity in Hiscott et al. (2007b) was 

lowered ~45 cm by those authors based on changes in δ34S and δ13C trends. 

Lithologic subunit C2 was defined by Hiscott et al. (2007b), so its upper limit is not 

moved in this thesis, but consideration should be given to moving the boundary between 

Unit C and Unit B upward to the new inferred α1 level.  The closest 14C dates to this level 

(~8.1 cal ka BP, 6.3 cal ka BP) are ~35 cm below and ~70 cm above the 480 cm depth in 

the composite core.  Assuming a constant rate of sedimentation through this period, the 

upwardly adjusted correlative surface to the α1 unconformity has an age of ~7.5 cal ka 

BP. 
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Chapter 5 Discussion 

The primary aim of this research is to assess whether the provenance of the fine 

fractions (silt and clay) of the Holocene sediments on the southwestern Black Sea shelf 

might have changed since the earliest Holocene.  Hiscott et al. (2007b) have claimed that 

the middle part of the southwestern shelf was fully open and connected to the deep Black 

Sea basin, and hence regional sediment sources, since ~10.3 cal ka BP (calibration from 

Mertens et al., 2012), whereas Ryan et al. (2003) and Lericolais et al. (2007) maintain 

that the central Black Sea had a level below the modern shelf edge until ~9.15 cal ka BP 

(calibration from Mertens et al., 2012) so that Holocene mud deposits on the 

southwestern shelf older than ~9.15 cal ka BP would have had to accumulate in perched 

ponds or lagoons ('liman' in local terminology).  In an isolated liman, sediment can only 

be derived from local sources, including rivers entering the liman and coastal erosion 

along its shores (although wave fetch and height would be small).  If the lower Holocene 

sediment (seismic unit 1B, corresponding to lithologic subunit C1) at MAR02–45 was 

deposited in an isolated liman, do the geochemical, mineralogical, and sediment volume 

estimates support this hypothesis? 

Geochemical analysis was performed on samples of sediment from core MAR02–

45, and on samples from potential source areas.  Published articles were examined to 

augment the data for potential source areas.  If geochemical signatures of specific source 

areas could be distinguished in the MAR02–45 samples, it would be possible to establish 

changes in provenance.  For example, if the geochemical signature and/or mineralogy of 

Thracian river deposits happened to be similar to that of Unit C, and if other potential 
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sources were not, this would support the Ryan et al. (2003) and Lericolais et al. (2007) 

argument that the lower Holocene succession penetrated by core MAR02–45 was 

deposited in an isolated liman.  Also if the estimated volume of sediment in Unit C were 

to be similar to the calculated volume of sediment delivered by local rivers over a 

reasonable interval of time, this would be consistent with deposition in an isolated 

lagoon, or liman. 

In subsequent sections, the evidence from sediment geochemistry, mineralogy and 

discharge estimates is used to evaluate the likelihood that lithologic Unit C was deposited 

in a perched, isolated liman, disconnected from the open Black Sea basin.  Where 

possible, specific sources are proposed for particular sedimentary components. 

5.1 Unit C (10.3–7.5 cal ka BP) 

 The geochemical data presented in Chapters 3 and 4 defines four distinct 

geochemical units within MAR02–45, consistent with the findings of Hiscott et al. 

(2007b).  The four geochemical units are revealed by Q-mode factors 1–4.  Excursions in 

the vertical trends of several metals (Br, Mn, Sr; Fig. 3.13, Appendex 4) have led to a 

refinement in the placement of the seismically-defined α1 correlative conformity from 

525 cm depth (Hiscott et al., 2007b) to 480 cm depth.  This revised placement is not only 

a better fit to the geochemical trends, but conforms better to the seismic profile at the core 

site (Hiscott et al., 2007b, their figure 6). 

 Subunit C1 corresponds to the earliest recovered portion of Holocene shelf 

sediments.  There is abundant calcite and evidence from sandy event beds and Cr content 

for some contribution from local sources.  The calcite might be attributed to bio-
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precipitation, as suggested by Bayhan et al. (2005), some amount might be authigenic 

(Major et al., 2002) or it could be detrital (consistent with the abundance of terrigenous 

TOC deep in the core).  If the latter, then the fine particle size might indicate a pedogenic 

source in the soil profiles of river drainage basins.  The very low salinity in the early 

Holocene Black Sea (Mertens et al., 2012) precludes derivation of the calcite from the 

accumulation of foraminifera or nannofossils, but ostracods are abundant in Unit C 

(Williams, 2012).  It should also be noted that the latest Pleistocene to earliest Holocene 

climate around the Black Sea was cooler and drier than today, so physical weathering of 

carbonate rocks would have been enhanced, leading to a greater supply of calcitic detritus 

than under conditions favouring chemical weathering and carbonate dissolution.  As a 

comparison, through much of the Neogene there has been significant karst and cave 

development in the Eocene carbonates of northern Thrace because of preferential 

chemical weathering of the bedrock in a warm, humid climate (Ekmekçi, 2005). 

Chromium spikes (Fig. 4.2) are attributed to detritus from mafic igneous rocks, which are 

known to occur in Thrace (Kıratlı and Ergin, 1996).  There is a spatial correlation 

between high chromium levels and sandy, normally-graded beds found within subunit 

C1.  These are either tempesites or distal prodelta turbidites (Hiscott et al., 2007b), so 

must have come from the coastal zone of Thrace or nearby southern Bulgaria.  Factor 

analysis shows that most of the geochemical variation in subunit C1 is controlled by Q-

factor 2 (Fig. 3.11), a factor related to R-factor 2, which has its highest loadings on 

terrigenous TOC, Mg, Ca, and Mn.  The terrigenous TOC values are consistent with the  

presence of abundant fragments of vegetation in palynology residues (P.J. Mudie, pers. 

comm. 2013), and point to terrigenous input.  Surprisingly, chromium is not a contributor 
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to R-factor 2 and Q-factor 2, apparently because variations in its abundance are poorly 

correlated with variations in terrigenous TOC, Mg and Mn.  This suggests that the bulk of 

the subunit C1 sediment did not come directly from the nearby coastal zone during 

periods of river floods (as proposed for Cr), but instead was delivered by other processes 

that sampled a wider and more homogeneous source area. 

 The geochemical correlation of Sc, Fe, K (likely in mica and illite), Ni and V (Fig 

3.10) also suggests a detrital component for the sediments in Unit C.  Recall that Dean 

and Arthur (2011, p. 24) find correlation of Ni and V with detrital aluminosilicates in 

some cases.  Geochemically, sediments on the southwestern Black Sea shelf are distinct 

from two loess profiles for which there are sufficient data for comparison (Újvári et al. 

2008; Adamova et al. 2002); student t-tests show similar calcite-free abundances for only 

one of 33 elements (Table 4.1).  In terms of their texture, however, the MAR02–45 silty 

muds and loess are quite similar, so perhaps the two available geochemical data sets do 

not encapsulate all types of loess in the drainage basin of the Danube and Kamchiya 

rivers. 

 Given the indicators for some local input to subunit C1, can a case be made that 

Unit C was deposited in an isolated liman?  The most convincing answer to this question 

comes from a consideration of the sediment volume in seismic unit 1B (equivalent to 

Unit C1), and the expected input from local Thracian rivers that might have contributed 

to this observed volume.  Based on sediment volume estimates, local Thracian rivers 

could have delivered a maximum of ~0.66 km3 of material to the southwestern shelf 

during the time of deposition of Unit C.  Because Unit C has a total volume of ~17.5 km3, 

the disparity between river sediment yield and accumulated sediment demands a 
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contribution from distal sources and/or the reworking of sediment during the 

transgression.  The presence of low numbers of long-spined L. machaerophorum in 

subunit C1 implies the reworking of some sediments deposited during periods of higher 

salinity (P. Mudie, pers. comm. to R Hiscott, 2013), but the extent of this reworking is 

believed to be minor.  

 Detailed textural analyses of nearby core MAR05–50 (Flood et al., 2009) shows a 

textural change between lithostratigraphic Units B and C (Fig. 4.1).  All sediment in these 

two units has a major peak between 10 and 15 μm, but sediments sampled below the α1 

unconformity show a second peak (shoulder) around 50 μm.  This coarser grained 

component appears too coarse to be derived from reworking of loess (e.g., Varga, 2011) 

but this does not rule out a provenance from loess of coarser grain size.  It is also possible 

that the coarser mode noted by Flood et al. (2009) is linked to more sandy/silty horizons 

in MAR05–50, horizons that are interpreted as tempestites, or turbidites sourced from 

local rivers as in core MAR02–45.  A third possibility is that this shoulder represents a 

size fraction created in situ through either authigenic growth or bio-precipitation of 

calcite.  Calcite is abundant at depth in core MAR02–45, in both the clay and silt size 

fractions of Unit C; it is possible the same is true for core MAR05–50, which has not 

been analyzed mineralogically.  

 Except for its carbonate components, lithologic Unit C has similar mineralogy to 

both Units B and A.  If Unit C was deposited in an isolated liman, elevated smectite 

content might be expected from the weathering of volcanic rocks in the Thracian 

hinterland (Major, 2002; Bayhan et al., 2005).  Thracian river samples in this thesis 

contained very little smectite (<5%, Fig. 3.8), although this discrepency may be due to 
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these samples being taken from sandy channel banks (Table 3.2) which might not 

accurately represent the mineralogical signatures of the fine fraction of Thracian 

sediments.  Elevated illite concentrations characterize the lower units off the Romanian 

shelf (Major, 2002).  When compared to the Holocene sediments of the Romanian shelf, 

smectite abundance on the southwestern Black Sea shelf is ~5% higher than reported by 

Major (2002), and illite abundances are nearly the same at site MAR02–45 and on the 

Romanian shelf.  The Romanian shelf has much higher chlorite and kaolinite abundances 

(~15% more chlorite, ~10% more kaolinite).  Abundant illite characterizes Pleistocence 

terrigenous sediments at DSDP sites 380 and 381 (Stoffers and Müller, 1978), east of site 

MAR02–45 and well off the shelf.  Although MAR02–45 has higher smectite 

concentrations than cores located to the north and east, it must be stressed that there is a 

weak upward increase of smectite into Units B and A (Table. 3.5; based on unit 

averages), so the somewhat higher smectite percentages presented in this thesis cannot be 

attributed to a stronger input from Thrace unless it is argued that Units B and A also have 

only a local provenance even though the Black Sea shelves were entirely flooded during 

their accumulation.  An upwardly increasing trend in smectite content was also described 

in the upper Holocene sediments (Unit A) by Bayhan et al. (2005).  Their cores 11 and 12 

(closest cores to the MAR02–45 site) contained ~12% more smectite than seen in Unit A 

of core MAR02–45 although this may be due to different methods used to calculate 

mineral abundance; based on Biscaye (1965) scaling factors the difference is ~7%.   

 Hiscott et al. (2007b) differentiated subunit C2 from subunit C1 based on carbon 

and sulphur geochemistry.  The chemistry of subunit C2 suggests a transitional 

environment, with its chemical variability tracking terrigenous TOC (as for subunit C1) 
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but also a new source or process delivering increased levels of sulphur to the sediment.  

This coincides with Q-factor 3 (Fig. 3.15), for which the corresponding R-factor is 

controlled primarily by TS and terrigenous TOC.  Hiscott et al. (2007b) attribute the 

sulphur increase to a ‘first-pulse’ of sulphate-rich Mediterranean water entering the Black 

Sea, providing a larger sulphur resource for sulphate-reducing bacteria in the sediment, 

where the sulphur was fixed as sulphide minerals.   

 The disparity between the volume of seismic unit 1B (lithologic Unit C) and the 

calculated volume of solids that could have been delivered by local rivers implies that site 

MAR02–45 had an open connection to the Black Sea and regional sediment sources from 

the early Holocene onward (since 10.3 cal ka BP).  Moderate smectite abundances (Fig. 

3.7) suggest that terrigenous material was delivered to the southwestern shelf mostly from 

distal sources, with a minor contribution from Thracian rivers.   

5.2 Unit B (7.5–5.4 cal ka BP) 

 Unit B is bounded by the α1 unconformity (or the correlative conformity which 

can be traced into the α1 unconformity; 480 cm depth, ~7.5 cal ka BP) and the α2 

unconformity (270 cm, ~5.4 cal ka BP just below the unconformity). Unit B exhibits very 

distinct geochemical correlations (Fig. 3.10); a Sc, Fe, Co, Cr, Sm, La, Th and Yb 

‘detrital signature’ and a Cu, V, Ni and Zn, ‘organic signature’ (i.e., adsorbed on organic 

matter).  TOC and the marine fraction of TOC are highest in Unit B (Hiscott et al., 

2007b).  Cu, Ni, and Zn are biogenous trace nutrients (Piper and Calvert, 2011).  They are 

preferentially taken up by algae in the photic zone and settle to the sea floor as particulate 

detritus (Piper and Calvert, 2011).  This ‘organic signature’ indicates a period of 
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increased organic accumulation and associated sediment dysoxia.  The terrigenous 

signature that characterizes Unit C became overprinted with a new organic signature 

across the transition into Unit B. 

 High TOC indicates elevated organic accumulation at the sediment-seawater 

interface.  By the middle of Unit B, TOC is ~50% marine (Hiscott et al., 2007b).  

Elevated levels of TS, (Fig 1.7) increasing towards the top of Unit B support the strong 

influence of sulphate-reducing bacteria in the sediment, creating hydrogen sulphide 

which then reacted with metals to produce sulphide minerals.  Decaying organic matter 

consumed dissolved oxygen in the sediment, stabilizing sulphide minerals.  

 The dominance of Q-factor 4 (interpreted to indicate enhanced organic 

productivity) begins to wane at 370 cm depth (~5.9 cal ka BP), slowly being replaced by 

the reducing (dysoxic) environment represented by Q-factor 1 (Fig 3.15).  This change in 

environmental conditions might have been synchronous with the expansion of euxinic 

conditions in the deep basin, with the chemocline rising to the edge of the shelf ~5.65 cal 

ka BP (~5.3 14C ka BP; Eckert et al., 2013). 

 Mineralogically, the sediments of Unit B are similar to those of Unit C.  The only 

appreciable difference is an increase of K-mica at the expense of calcite (Fig 3.3).  

Calcite abundance is known to increase with depth (Bayhan et al., 2005), so the thesis 

data support earlier observations.  The upwardly decreasing abundance of calcite is also 

seen in the clay-sized fraction, paralleled by increases in illite (Fig 3.6).  
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5.3 Unit A (2.1–0 cal ka BP) 

 The α2 unconformity in core MAR02–45 represents ~3.3 ka of non-deposition at 

the site. Found directly atop this unconformity are sharp, geochemical spikes in K, As, 

and Rb.  Mn levels just below α2 are elevated.  These anomalies (Fig 3.13, Appendex 4) 

may represent accumulation of elements at a surface of long-term exposure, perhaps by 

adsorption onto sedimentary particles.  The adsorbed metals might have been drawn 

downward from overlying seawater, or upward by diffusion processes or 

compaction/explusion in the sedimentary pore space.  Elevated levels of elements such as 

Cu, Ni, Zn, Pb, U, and Th which load highly on Q-factor 1 and drive its ascendancy (Fig. 

3.15) imply a reducing environment.  Interestingly there are no strong cross-correlations 

of these elements within Unit A (Table 3.12).  Q-factor 1 has the highest scores here only 

because the other three factors are even less important, and because when one element in 

the above list has a low concentration, another compensates to give a consistently high 

factor score.   

The higher than average abundances of Cu, Ni, Zn, Pb, U, and Th is a possible 

indication that Unit A accumulated with reducing conditions just below the sediment-

water interface (due to strong sulphate reduction) so metals were adsorbed onto mineral 

surfaces rather than being tied up in detrital phases.  Piper and Calvert (2011) assert that 

these hydrogenous metals accumulate on the sea floor through adsorption/precipitation 

reactions under reducing coditions.  Even though the metal concentrations are at the high 

end in this unit (Table 3.16), the uptake of metals likely varied according to changing 

pore-water chemistry and there would have been some element mobility in the 
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subsurface, so the distribution of each metal is believed to be patchy, resulting in low 

correlation coefficients (Table 3.12).  Studies by Hiscott et al. (2007b) show reduced 

macrofaunal activity throughout Unit A and Linegar (2012) demonstrated the concurrent 

onset of dysoxic conditions at core site MAR05–50 ~40 km east of site MAR02–45 on 

the southwestern Black Sea shelf.  During the deposition of Unit A, the terrigenous 

signature that defines Unit C1 (i.e., as represented by Q-factor 2, Fig 3.15) returns, albeit 

greatly reduced and now of secondary importance. 

 The mineralogy of Unit A shows an increase in illite in the clay fraction (Table 

3.4) and a continuing decrease in calcite abundance (silt- and clay-sized fractions), 

possibly implicating the Danube River as a more significant contributor. The clay size-

fraction of the Danube system is dominated by illite (52–64%, Haslinger et al., 2006).  

Danube Delta samples analysed for this thesis also show high illite content (~45%) and it 

has been speculated by Bayhan et al. (2005) and Hay (1987) that illite on the 

southwestern Black Sea shelf may have been delivered by the Danube River.  Smectite 

values (possibly indicative of Thracian rivers) are also highest in Unit A, but differences 

are slight, so that statistical overlap with the older units makes definitive conclusions 

impossible.  

5.4 Changing Provenance 

 In an effort to determine provenance, potential source area geochemistry and 

mineralogy were compared to the mineralogy and geochemistry of samples from core 

MAR02–45.  The silt mineralogy of all the source areas is too similar to allow 
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differentiation.  The one exception is the presence of detrital dolomite in samples from 

the Danube Delta, consistent with Haslinger et al. (2006).  

 The clay fractions of potential source areas show more mineralogical variation 

than the silt fractions.  Samples characterizing northern Anatolia (core MAR08–17) 

contain the highest smectite values and Danube samples contain abundant illite.  The clay 

mineralogy of MAR02–45 shows little downcore variation and no definitive relationship 

with any source area(s). 

 Geochemically, there is no consistent variation through core MAR02–45 in the 

abundances of elements believed to reside in detrital aluminosilicates.  Furthermore, there 

is no compelling match to one source area over the others.  As such, it is not possible to 

demonstrate changing provenance through the Holocene.  Student t-tests performed on 

normalized geochemical data for two loess deposits show no marked relationship with the 

elemental abundances in Unit C1.  To rule out central European loess as a potential 

source, more on-land studies would be required, because the wind-blown nature of loess 

supply makes it unlikely that the loess is itself geochemically homogeneous. 

5.5 Evolution of sediment composition on the southwestern Black Sea shelf 

 The geochemical evolution of Holocene sediment on the southwestern Black Sea 

shelf has been characterized by the evaluation of samples from core MAR02–45.  Results 

are consistent with the following time line (Fig 5.1).  Starting ~10.3 cal ka BP, the Black 

Sea was ~40–50 m lower than today (Hiscott et al. 2007b).  
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Figure 5.1 Dominant Q-factors and dominant elements through MAR02–45. The 

dominant factors from Fig 3.15 are combined into one Q-factor column with the 

dominant constituents of each Q-factor listed below.  The section of MAR02–45 with 

elevated Cr values is indicated to show its independent behaviour from Q-factor 2. The 

environments that these factors and element concentrations imply are found in bold to the 

right.  The far right of the figure expresses mineralogical trends seen through the core.
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The MAR02–45 site was connected to the open Black Sea so received significant 

quantities of sediment from upcurrent sources that today are located to the west and 

northwest of the core site, where rivers larger than the local Thracian rivers enter the 

Black Sea.  The currents that carried this sediment might have been geostrophically 

turned prodelta turbidity currents generated at the mouths of Bulgarian rivers (e.g., 

Kamchiya River), along-shelf wind-driven currents, or either of these assisted by wave 

stirring to keep sediment in suspension.  The extent of reworking of older shelf deposits 

is believed to have been minor, based on scarce older dinocysts in the subunit C1 

sediments.  Pulses of increased local input created high Cr levels adjacent to sandy event-

beds.  Deposition under these conditions continued until ~9.2 cal ka BP. 

 The onset of accumulation of subunit C2 (~9.2 cal ka BP) coincides with the first 

pulse of Mediterranean water into the Black Sea; the newly arrived seawater sulphate was 

reduced and is recorded in the sediment profile as a peak in TS (Hiscott et al., 2007b).  

By 7.5 cal ka BP, a permanent two-way flow was established between the Black Sea and 

the Aegean Sea, leading to geochemical changes in the sediment that are mostly 

diagenetic (because of sulphate reduction in the sedimentary succession) or related to 

adsorption on organic matter. 

 Between 7.5–5.4 cal ka BP, sediments on the southwestern Black Sea shelf 

indicate a thriving, oxygenated, marine environment (Hiscott et al., 2007b; Major et al., 

2002, 2006).  Numerous shells have been found in life position and are interpreted as a 

biocoenose, or life assemblage (Hiscott et al., 2007b).  Below the uppermost active layer, 

high TOC values and access to seawater sulphate promoted dysoxia in the pore waters.  

Elevated TS and As values imply reducing conditions in the sediments.  Increased illite 
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abundance suggests a greater contribution from the Danube system (Haslinger et al. 

2006), perhaps facilitated by strengthening of the Rim Current.   

After a ~3.3 cal ka hiatus (α2 unconformity) Unit A records the establishment of stable 

dysoxic conditions across the southwestern shelf.  Metals expected in sedimentary 

sulphides or adsorbed on organic fractions are higher than in older units (i.e., Cu, Ni, Zn, 

Pb, U). The dysoxic environment associated with Unit A continues to the modern day on 

the southwestern Black Sea shelf.  Several CTD (conductivity, temperature, depth) 

profiles gathered by supervisors Hiscott and Aksu in 2011 indicate that oxygen levels in 

bottom waters are similar to those at the sea surface, so reducing conditions must be 

limited to pore waters.   

While the geochemistry expresses a changing environment, the mineralogy shows 

little variation, implying no major changes in provenance.  Slight increases in illite from 

the base of MAR02–45 to the top of the core might indicate a strengthening or shift in the 

track of the Rim Current; however, the changes in illite abundance are minor and cannot 

be shown to have statistical significance.  

There are four strong arguments for an umipeded connection of the southwestern 

shelf to the open Black Sea since ~10.3 cal ka BP, they are:  

1)  The discrepancy between the volume (or mass) of sediment available from local 

sources when compared to the actual amount of sediment deposited in seismic unit 1B (= 

lithologic Unit C).  If the MAR02–45 site was located in an isolated liman, it would be all 

but impossible to explain the accumulation of so much sediment so quickly.  Processes 

capable of reworking older strata to generate a new sedimentary succession in situ are 
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incompatible with the conditions in an isolated liman, because a restricted fetch would 

prevent the build up of large enough waves to significantly erode the seabed. 

2)  A lack of mineralogical variation from the early Holocene to the present day, which 

implies that multiple sources have been contributing material to the core site since the 

early Holocene.   

3)  The consistent behaviour of Sc, Fe, Co, Ce, La, Th and Y, interpreted to represent the 

contribution of aluminosilicates from a terrestrial source.  One would expect some 

changes in the concentrations and ratios of these correlated elements between Units C and 

B if Unit C was solely supplied by Thracian rivers.  The lack of variation throughout the 

entirety of the MAR02–45 succession suggests a wider, more homogenous source for 

these detrital elements. 

4)  The behaviour of Cr within Unit C suggests multiple sources contributing sediment at 

the same time.  Most likely a large flux of mud was supplied to the shelf from local and 

distant sources, and carried trace and rare earth elements like Sc, Fe, Th, La, Yb, Sm and 

Cr.  Superimposed upon this input was the episodic delivery of local sand and mud from 

coastal areas of Thrace during storms or river floods, bringing Cr-rich detritus with 

different mixtures of other elements, distinct from the regional supply so that correlations 

between other variables and Cr are not evident.   

5.6 Future Work 

 Textural studies of MAR05–50 samples exposed a coarse grained shoulder in 

sediments correlated to Unit C.  Similar textural work on samples from core MAR02–45 

is predicted to expose a shoulder in lower Holocene sediments at that coresite as well.  It 
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would be interesting to isolate the coarse mode through sieving, so that the minerals 

contributing to this mode can be determined, and perhaps ascribed to a particular source.  

 Detailed geochemical analysis of samples from core MAR05–50 and other cores 

located on the southwestern Black Sea shelf would allow the correlation and mapping of 

geochemical units across the entire shelf.  If MAR05–50 contains enough material (>5 g 

per sample) XRF analysis or the 4B WRA-ICP analytical package offered by ActLabs, 

should be considered for analysis as they both offer superior precison for some major 

elements (i.e. Al, P).  Mineralogical studies of other cores would also increase the 

understanding of the distribution of material across the shelf and might lead to a more 

successful provenance evaluation.  Pore-water studies on nearby cores would help 

constrain the diagenetic processes of metal fixation but would require specialized and 

dedicated sampling. 

 Based on the limited number of samples and the type of material available to the 

author, it is recommend that potential source areas be resampled to provide mud samples 

with textural similarity to the shelf successions.  Coring in the Danube and Kamchiya 

deltas might provide samples with more pristine geochemical signatures and would 

permit tracking of any mineralogical changes over time. It would also be interesting to 

analyze some samples from these deltas with an Horiba (or similar) size analyzer to see if 

they contain the shoulder recorded in samples from core MAR05–50.  The sampling of 

Thracian river load would need to be improved for a proper comparison to the offshore 

muds.  Samples made available to the author were taken in sandy deposits, masking the 

geochemical and mineralogical signatures which are better developed in muds.  It is 
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recommended that more samples be taken across Thrace to better characterize the 

hinterland and possibly shed more light on the Thracian contribution to shelf sediments. 

 A more detailed geochemical comparison of loess deposits across Europe might 

expose unexpected relationships to guide future provenance studies.  Of special 

importance to the determination of the provenance of Black Sea Holocene muds would be 

the documentation of geochemically distinct loess occurrences, to seek matches with the 

composition of the offshore muds. 
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Chapter 6 Conclusions 

The primary objectives of this thesis are to determine the geochemistry of Holocene 

muds and to assess whether the provenance of the fine fractions of the Holocene 

sediments on the southwestern Black Sea shelf might have changed since the earliest 

Holocene.  It was anticipated that the assembled data could be used to determine whether 

coresite MAR02–45 was in an isolated lagoon, often locally referred to as a “liman”.  

This is of importance because Hiscott et al. (2007b) have argued that deposition occurred 

at MAR02–45 with an open connection to the Black Sea and represents accumulation on 

a submerged shelf since 10.3 cal ka BP.  If this were true, then the shelf would not have 

been subaerially exposed at the time of the catastrophic flood proposed by Ryan et al. 

(2003) at 9.15 cal ka BP.  In some respects, the results of this thesis are negative, in that 

no significant evidence for changes in provenance have been demonstrated.  This result 

could not be predicted without the range of analytical results presented in the thesis.  The 

following major conclusions are derived from this thesis: 

1)  Over the course of the Holocene, there were only minor changes in mineralogical 

composition of sediments deposited on the southwestern Black Sea shelf.  Quartz  and 

calcite dominate the composition of silt-sized material from 10.3–7.5 cal ka BP; after 7.5 

cal ka BP calcite abundance begins to decrease and is replaced by K-micas.  The clay-

sized fraction of sediments is predominantly illite, with smectite and some minor chlorite 

and kaolinite.  Non-clay minerals in the clay fraction include quartz, calcite and dolomite, 

with calcite abundances increasing lower in the core.  
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2)  The Holocene succession on the southwestern Black Sea shelf is silt dominated.  

MAR05–50 (~40 km east of MAR02–45) has a mean grain size of ~15 μm. Below the α1 

unconformity a second peak (shoulder at ~50 μm) is seen in the sediments.   Loess 

deposits have a wide range of mean grain size (Fitzsimmons et al., 2012) but are 

primarily silt dominated.  Although the grain size of Hungarian loess (Varga, 2011) 

differs from the grain size of sediments measured at MAR05–50 the close textural 

similarity of the sediments at MAR05–50, to loess deposits means that they are a viable 

source for the shelf sediment. 

3)  Geochemical analysis of sediments from MAR02–45 shows four distinct geochemical 

units. This is in agreement with the four lithologic units proposed by Hiscott et al. 

(2007b).  This thesis has proposed a refinement in the placement of the α1 correlative 

conformity based on geochemical trends.  The position of the correlative conformity to 

the α1 unconformity has been raised by 45 cm, from 525 cm to 480 cm depth.  This is 

consistent with the seismic interpretations of profiles recorded near the coresite by 

Hiscott et al. (2007b).  As Huntec DTS profiles have an ~30 cm vertical resolution, 

Hiscott et al. (2007b) chose the location of the α1 correlative conformity in the core 

MAR02–45 based on trends seen in δ34S and δ13C. Based on the expanded geochemical 

analysis in this thesis, it seems prudent to shift the core depth of α1 upwards, towards its 

seismically measured depth. 

4)  Correlation tables expose four groups of similarly behaving elements that govern the 

geochemical trends throughout MAR02–45.  A carbonate group is composed of Ca, Mg, 

and Sr, and corresponds to elements found in calcite.  Sc, Fe, Co, Ce, La, Th and Y are 

considered to have mainly a detrital origin.  As, Rb, Br, Mn and Sr entered the sediment 
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from the water column, or were mobile during early diagenesis and Cu, Pb, Ni, Zn, Th, U 

and V are interpreted to indicate adsorption onto fine-grained phyllosilicates and/or 

organic matter during early diagenesis.   

5)  High levels of chromium are associated with sandy horizons in Unit C of core 

MAR02–45.  Although samples were taken to avoid these sandy layers, it is possible that 

bioturbation has moved chromium-bearing detritus into the surrounding muds.  These 

sandy horizons were interpreted by Hiscott et al. (2007b) to be either tempestites or 

turbidites (sourced from local rivers).  As Cr is an expected tracer for Thracian source 

rocks, the elevated Cr levels may imply an episodic increased sediment contribution from 

the local hinterland. 

6)  Comparison of geochemical and mineralogical data to potential source areas is 

inconclusive.  Potential source areas possess distinct makers (e.g., dolomite in Danube 

Delta silts, high smectite content near the mouth of the Bosphorus Strait) but these 

markers are not present or are too weak to guide interpretation in samples from core 

MAR02–45.  Methods used to collect samples from potential source areas could be 

improved.  Specifically, grab samples are prone to collecting contaminated surficial 

sediments, whereas coring deeply into fluvial or near-shore successions adjacent to 

potential sources would yield more pristine samples.  A resampling of detritus 

contributed by Thracian rivers is also required as the samples for this thesis were 

particularly sandy, obscuring any geochemical trends that might be present in the silt-

sized fraction. 

7)  Student t-tests to look for geochemical differences between the MAR02–45 samples 

of  Unit C and the loess deposits in Hungary and Czech Republic showed similar calcite-
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free abundances for only one element (Y, 1 of 33 total elements).  Although there appears 

to be no significant geochemical relationship between these loess deposits (in the Danube 

drainage basin) and samples from core MAR02–45, there surely must have been a large 

volume of aeolian material eroded in the Danube drainage basin, and delivered to the 

Black Sea by the Danube River.  It is entirely possible that other loess deposits in central 

and eastern Europe possess geochemical signatures more comparable to the sediments 

found on the southwestern Black Sea shelf.  This is retained as a viable option to explain 

the loess-like texture (bimodal; little clay) of the Holocene muds on the SW Black Sea 

shelf. 

8)  Early Holocene sediment delivery by local rivers, ~0.66 km3 (using the BQART 

equation and a duration of 5000 years), was inadequate to supply the total volume 

material deposited on the shelf  (based on sediment volume estimates from isopach 

thicknesses, ~17 km3).  The most likely explanation for this serious mismatch is to invoke 

the contribution from a combination of sources.  The presence of sparse, long-spined 

dinoflagellates suggests some minor reworking of sediment along the shelf (P. Mudie 

pers. comm. 2013).  It is also probable that sediments were delivered from both the 

Danube and Kamchiya rivers, based on a comparison with the long distance along-shelf 

transportation of fine sediments from the Mississippi Delta and a number of Asian deltas.  

9)  Based on the consistent mineralogy over the course of the Holocene and the 

inadequacy of Thracian rivers to deliver large volumes of sediment to the shelf, it is 

concluded that the MAR02–45 core site was connected to the open Black Sea since at 

least 10.3 cal ka BP, in a way that allowed sediment delivery to the site by major marine 

wind-driven currents.  For this to be true would mean that the southwestern Black Sea 
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shelf had been inundated by 10.3 cal ka BP, supporting the conclusions of Hiscott et al. 

(2007b), and contradicting the claims of Ryan et al. (2003) and Lericolais et al. (2007) 

that the southwestern Black Sea shelf was subaerially exposed until 9.15 cal ka BP. 

10)  Future studies that would assist a more thorough analysis of the thesis data include 

(a) a full textural analysis of sediments at the MAR02–45 site, (b) geochemical analysis 

and mineralogical studies of other long piston cores from the SW Black Sea shelf using 

larger samples compatible with XRF and similar methods, (c) collection and analysis of a 

broader range of representative mud samples from a number of potential source areas, 

avoiding anthropogenic contamination, (d) a more complete characterization of the 

chemistry of loess in the major drainage basins surrounding the western Black Sea, (e) a 

targeted study to determine the origin of the silt- and clay-sized carbonate component of 

the Holocene succession, and (f) pore-water and diagenesis studies to clarify which trace 

and rare-earth elements are adsorbed from the bottom waters and pore waters, to 

distinguish these from elements carried by detrital aluminosilicate minerals.
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Appendix 1 XRD Sample Preparation 

Samples were prepared for XRD using the following 13-step method: 

 

1.  Start with 5–10 g dry sediment, or 10–15 g wet mud.  For dry samples, weigh in a 

tared vessel then enter in the laboratory log book and assign a lab number.  For wet muds, 

simply enter in the log book and assign a lab number. 

 

2.  In a labeled plastic beaker, mix each sample with ~ 100 ml of 5% hydrogen peroxide.  

After adding the peroxide, subject the sample to ultrasonic treatment for ~ 2 minutes or 

until full disaggregation is evident.  React each sample for 24 hours on a shaker at low 

speed.  Renew peroxide if necessary to ensure complete reaction by adding 10 ml of 30% 

hydrogen peroxide from a graduated cylinder in the fume hood, followed by additional 

agitation as required.  This treatment should remove organic matter and oxidize/solubilize 

microcrystalline to amorphous FeS. 

 

3.  Wet sieve at 63 μm using a large sieve, porcelain bowl and normal tap water.  Keep all 

washings and transfer these to a labeled brown plastic container.  Wash the sand fraction 

into a small labeled aluminum dish, then decant off water and dry in a warm oven (or air 

dry if space allows).  Weigh the sand on a piece of glossy or wax paper, then store the 

sand in a labeled vial with the original sample number.  A paint brush will assist transfer 

of the sand from the aluminum dish. 

 

4.  Allow the washings to settle until water is clear [if settling does not occur overnight, 

then add ~10 ml of saturated (~6 M; 0.56 g/l) MgCl2 to flocculate the clays].  Suck off the 

"clear" water (might have Fe stain) using an aspirator attachment to a water faucet and 

transfer the sediment, with a minimum of water, to a labeled small heat-resistant beaker 

to dry.  Place in an oven at 60°C for ~24 hours or more if required to achieve dryness.  

Carefully remove the dried cake and residue on the side of the beaker, weigh and store in 

a suitable labeled plastic vial. 

 

5.  Transfer the dried mud from step 4 to a labeled small beaker, add 40 ml 0.05% Na-

hexametaphosphate (50 mg powder per 100 ml distilled water), then use the ultrasonic 

probe to disaggregate (2 minutes might be sufficient -- trial and error).   

 

6.  After disaggregation, transfer the suspension to a 400 ml labeled beaker, washing it in 

with 0.05% Na-hexametaphosphate.  This beaker should have a mark 2 cm from the 

bottom and a second mark 5 cm higher, on the side of the beaker.  Fill to the upper mark 

with 0.05% Na-hexametaphosphate. 

 

7.  Stand the beaker on the divider between lab benches, stir vigorously, then allow 

settling to proceed under still conditions for 3 hours & 50 minutes  5 minutes (if you 



 

 II 

miss the schedule, then start again after shaking the contents).  Then siphon off the 

suspension between the two marks (~200 ml) using a thin-diameter piece of tubing, first 

filled with distilled water by lowering it into a tall graduated cylinder, blocking the end of 

the tubing with a finger tip in order to retain the water in the tube so that it is able to 

activate the siphon action.  A 90 degree bend at the lower end of the tubing will prevent 

suction of sediment from below the lower mark.  The suspension between the two marks 

should be siphoned into a 600 ml labeled beaker.  Set this aside.  Then add fresh 0.05% 

Na-hexametaphosphate to the upper mark of the 400 ml beaker, stir vigorously, then 

repeat the separation procedure (i.e., 3 hours & 50 minutes ...) once more.  As before, 

siphon the upper suspension into the same 600 ml beaker.  This is a mostly <2 μm 

separate that needs a bit more cleaning (see step 9 -- experience with one sample showed 

that this step 7 separate still contains ~20% >2 μm silt, measured with the Horiba size 

analyzer).  Retrieve, dry, weigh and store the 2–63 μm fraction that remains in the bottom 

of the 400 ml beaker (experience with one sample showed that this separate is free of <2 

μm clay).  Use a glass vial labeled with the original sample number and "2–63 μm ".  

NOTE:  This might be the largest volume separate of the entire procedure, and larger 

vials might be needed to hold the full amount.  This is the final 2–63 μm separate. 

 

8.  Allow the 400 ml of suspension in the 600 ml beaker to settle overnight (otherwise 

centrifuge), then aspirate the clear fluid down the drain. 

 

9.  Using a minimum of 0.05% Na-hexametaphosphate, transfer the <2 μm fraction from 

step 8 to a  labeled bulb-bottomed glass tube (Fig. 2.1) and fill to 5 cm above the neck 

with more 0.05% Na-hexametaphosphate.  NOTE: make sure the sample suspension itself 

does not exceed the 5 cm mark on the tube.  Stand the tube in a rack and allow settling to 

proceed under still conditions for 3 hours & 50 minutes ± 5 minutes (if you miss the 

schedule, then start again after shaking the contents).  Then block the neck of each tube 

with a special-purpose plastic rod and pour off the upper suspension into a labeled plastic 

beaker.  This is the final <2 μm separate.  Discard the small amount of silt below the neck 

of the tube, as it is contaminated by a little <2 μm material. 

 

10.  Wash the <2 μm separate into a standard labeled centrifuge tube with distilled water.  

Centrifuge once, pour off water, then resuspend in fresh distilled water and centrifuge 

again.  Do this a third time then save the mud by transfering to a labeled aluminum dish 

for air drying.  Weigh, then transfer the dried material to a labeled and sealed vial 

(including the words "<2 μm") until XRD mounts are made.  The weight needs to be 

multiplied by a factor of 1.5 to account for the <2 μm material that was discarded from 

the lower bulb of the test tube. 

 

11.  Grind an appropriate (~1.5 g), weighed amount of the 2-63 μm fraction in an agate 

mortar, along with MoS2 powder that is ~5% of the sample weight used (~.08 g).  The 

powder that results can then be used to make one XRD mount (silt mineralogy).   Prepare 

this random mount using the side-packing procedure of John Hanchar.  Special holders 

are available in the XRD lab and require ~1 cm3 of packed material.  As much as 
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possible, the same mass of powder and the same packing density should be maintained 

for each mount. 

 

12. Using 40 mg of the < 2 μm fraction from step 10 mix with 2 mg of MoS2 and apply 

sparse amounts (~2 ml) of 0.2 M MgCl2 in a small beaker. Create a ‘paste’ and  apply to a 

small piece of film.  With gentle pressure smear across a marked acrylic disk. Once this is 

complete place the slide in the oven for ~5 minutes at ~50oC to dry. After 5 minutes 

remove from the oven, this is the final smear slide. 

 

13. To prepare the < 2 μm smear slides for glycolation fill a poreclain bowl with ethylene 

glycol and place in it the bottom of a desiccator. Place a number of smear slides on the 

elevated platform in the desiccator and put the apparatus into the oven at ~60oC . Leave 

the slides in the oven for at least 8 hours to ensure saturation.
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Appendix 2 Underwood et al. (2003) Clay Proportions 

Table A2.1 Clay proportions calculated using the methods of Underwood et al. (2003), 

after applying the kaolinite/chlorite split. Values in bold are negative abundances that 

prompted a decision to use Biscaye (1965) methods with only the quartz proportions 

retained from Underwood et al. (2003) calculations. 

Depth (cm) Smectite Illite Chlorite Kaolinite Quartz Total 

10 52 43 -2 -3 9 100 

30 24 37 7 10 22 100 

50 44 46 -1 -1 12 100 

70 30 46 3 3 18 100 

90 45 41 1 2 12 100 

110 35 39 3 3 21 100 

150 39 45 1 1 14 100 

170 30 40 2 5 23 100 

260 40 37 2 2 20 100 

330 27 36 5 6 26 100 

370 25 37 7 9 22 100 

410 28 44 2 3 22 100 

430 47 32 6 9 6 100 

470 23 28 11 16 21 100 

490 36 47 1 1 15 100 

510 28 44 3 4 21 100 

530 23 25 16 19 17 100 

570 33 35 5 5 22 100 

590 28 74 -3 -3 4 100 

600 34 37 6 3 20 100 

610 46 34 5 3 13 100 

630 32 38 8 3 20 100 

650 52 12 4 3 30 100 

670 33 30 8 5 25 100 

690 41 36 2 2 20 100 

720 27 32 6 4 31 100 

730 35 31 5 2 26 100 

750 44 46 0 -1 11 100 

770 31 51 2 2 14 100 

810 30 32 7 3 28 100 

830 21 50 11 5 13 100 

850 38 34 3 2 22 100 

870 32 40 4 2 21 100 

890 59 41 -1 -1 1 100 

910 29 37 9 4 21 100 

930 28 31 8 5 29 100 
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Appendix 3 Raw Geochemical Data 

Raw geochemical data for MAR02–45, MAR08–17G, Danube Delta samples, and 

Thracian river samples.  The headings for each column are explained as follows:  

 

Lab #: the number given to each sample analysed in the laboratory at Memorial 

University.  These samples were used for mineralogical analysis. 

MAR02–45:  The true depth of each sample, as indicated by TWC (trigger weight core) 

or P (piston core). 

Act #: The number given to samples sent to ActLabs for geochemcial analysis.  These 

samples were  stored separately from the Lab # samples under distilled water, and on 

average contained < 5 g of material per sample depth. 

CC (cm):  This column is the adjusted depth used for downcore plots and comparisons.  

The cross over between the trigger weight core and piston core is described in Hiscott et 

al. (2007). 

Elements analysed and their dection limits (ppb, ppm, %) and their methods of analysis 

compose the next group of columns.  IN–INAA analysis, M–Multiple methods (both 

INAA and ICP), IC–ICP-OES analysis, CE–Carlo-Erba analysis from Hiscott et al. 

(2007b). 

The Silicate Total column was used to calculate calcite-free abundances as described in 

Chapter 3.
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Table A3.1 Raw geochemical data for Au, Ag, Cu, Cd, Mo, Pb, and Ni. 

   

 Au Ag Cu Cd Mo Pb Ni 

   

 ppb ppm ppm ppm ppm ppm ppm 

   

 2 0.3 1 0.3 1 3 1 

Lab# 

MAR 

02–45 Act# 

CC 

(cm) IN M ICP ICP ICP ICP M 

  TWC-00 A1 0 7 < 0.3 58 0.4 5 41 62 

450 TWC-10 A2 10 < 2 < 0.3 72 0.6 < 1 37 70 

451 TWC-20 A3 20 < 2 < 0.3 53 0.4 < 1 32 65 

452 TWC-30 A4 30 3 < 0.3 73 < 0.3 < 1 31 67 

453 TWC-40 A5 40 < 2 < 0.3 45 0.4 < 1 26 68 

454 TWC-50 A6 50 < 2 < 0.3 56 < 0.3 < 1 27 69 

455 TWC-60 A7 60 7 < 0.3 51 0.3 < 1 27 71 

456 TWC-70 A8 70 5 < 0.3 45 0.4 1 23 62 

457 TWC-80 A9 80 8 < 0.3 53 0.5 < 1 25 67 

458 TWC-90 A10 90 < 2 0.3 42 < 0.3 < 1 24 65 

546 TWC-100 A11 100 < 2 < 0.3 50 < 0.3 < 1 21 64 

547 TWC-110 A12  < 2 < 0.3 49 0.4 < 1 24 65 

548 TWC-120 A13  < 2 < 0.3 44 < 0.3 < 1 25 65 

549 TWC-130 A14  < 2 < 0.3 42 0.4 < 1 22 60 

550 TWC-140 A15  < 2 < 0.3 41 0.3 < 1 25 60 

551 TWC-150 A16  8 < 0.3 52 < 0.3 < 1 31 71 

552 TWC-160 A17  9 < 0.3 50 < 0.3 < 1 32 69 

553 TWC-170 A18  < 2 < 0.3 44 < 0.3 < 1 30 64 

  P-0 B1 110 < 2 < 0.3 50 0.3 < 1 30 70 

  P-10 B2 120 < 2 < 0.3 77 0.4 < 1 30 70 

  P-20 B3 130 < 2 0.3 48 0.3 < 1 29 67 

  P-30 B4 140 < 2 < 0.3 55 0.3 < 1 26 68 

  P-40 B5 150 < 2 < 0.3 44 0.3 < 1 26 68 

  P-50 B6 160 < 2 < 0.3 54 0.3 < 1 30 68 

  P-60 B7 170 7 < 0.3 48 < 0.3 < 1 35 70 

  P-70 B8 180 < 2 < 0.3 37 < 0.3 < 1 32 64 

  P-80 B9 190 < 2 < 0.3 43 < 0.3 < 1 37 72 

  P-90 B10 200 < 2 < 0.3 49 0.4 < 1 30 63 

  P-100 B11 210 < 2 < 0.3 61 0.3 < 1 29 71 

  P-110 B12 220 < 2 < 0.3 42 < 0.3 < 1 25 69 

  P-120 B13 230 < 2 < 0.3 42 < 0.3 < 1 25 64 

  P-130 B14 240 7 < 0.3 42 < 0.3 < 1 26 67 

  P-140 B15 250 < 2 < 0.3 40 0.4 < 1 22 65 

665 P-150 B16 260 < 2 < 0.3 63 < 0.3 < 1 23 64 

  P-160 B17 270 < 2 < 0.3 45 < 0.3 < 1 18 62 

  P-170 B18 280 < 2 < 0.3 49 0.5 2 17 58 

  P-180 B19 290 7 < 0.3 64 < 0.3 < 1 21 68 

  P-190 B20 300 < 2 < 0.3 55 < 0.3 < 1 22 69 
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Table A3.1 Continued. 

    Au Ag Cu Cd Mo Pb Ni 

    ppb ppm ppm ppm ppm ppm ppm 

    2 0.3 1 0.3 1 3 1 

Lab# 

MAR 

02–45 Act# 

CC 

(cm) IN M ICP ICP ICP ICP M 

  P-200 B21 310 < 2 < 0.3 59 0.4 < 1 18 70 

  P-210 B22 320 < 2 < 0.3 57 < 0.3 < 1 20 65 

391 P-220 B23 330 5 < 0.3 45 0.4 < 1 18 68 

  P-230 B24 340 < 2 < 0.3 53 < 0.3 < 1 18 64 

53 P-240 B25 350 < 2 < 0.3 48 < 0.3 < 1 17 59 

  P-250 B26 360 < 2 < 0.3 37 0.4 < 1 17 50 

390 P-260 B27 370 < 2 < 0.3 46 < 0.3 < 1 16 61 

  P-270 B28 380 < 2 < 0.3 63 0.4 < 1 19 70 

  P-280 B29 390 < 2 < 0.3 50 < 0.3 < 1 20 61 

  P-290 B30 400 < 2 < 0.3 45 < 0.3 < 1 17 65 

392 P-300 B31 410 < 2 < 0.3 63 < 0.3 < 1 21 60 

  P-310 B32 420 < 2 < 0.3 36 0.3 < 1 16 57 

60 P-320 B33 430 < 2 < 0.3 37 0.4 < 1 18 57 

  P-330 B34 440 < 2 < 0.3 44 0.4 < 1 20 64 

  P-340 B35 450 < 2 < 0.3 41 < 0.3 < 1 17 63 

  P-350 B36 460 < 2 < 0.3 41 0.4 < 1 17 59 

393 P-360 B37 470 4 < 0.3 59 < 0.3 < 1 20 64 

  P-370 B38 480 < 2 < 0.3 30 0.4 < 1 13 44 

394 P-380 B39 490 < 2 < 0.3 35 < 0.3 < 1 15 47 

52 P-390 B40 500 < 2 < 0.3 30 0.4 < 1 12 39 

395 P-400 B41 510 < 2 < 0.3 37 0.4 < 1 16 54 

396 P-410 B42 520 6 < 0.3 36 < 0.3 < 1 17 49 

397 P-420 B43 530 < 2 < 0.3 43 < 0.3 < 1 17 56 

398 P-430 B44 540 6 < 0.3 28 < 0.3 < 1 14 46 

51 P-440 B45 550 < 2 < 0.3 27 0.4 < 1 14 43 

399 P-450 B46 560 7 < 0.3 29 < 0.3 < 1 16 48 

400 P-460 B47 570 < 2 < 0.3 26 < 0.3 < 1 16 46 

55 P-470 B48 580 < 2 < 0.3 38 0.4 < 1 16 50 

589 P-480 B49 590 < 2 < 0.3 26 0.4 < 1 14 41 

590 P-490 B50 600 < 2 < 0.3 35 0.3 < 1 15 48 

591 P-500 B51 610 < 2 < 0.3 38 0.4 < 1 16 52 

57 P-510 B52 620 < 2 < 0.3 30 0.3 < 1 14 50 

592 P-520 B53 630 < 2 < 0.3 32 0.3 < 1 12 46 

593 P-530 B54 640 < 2 < 0.3 33 < 0.3 < 1 13 45 

594 P-540 B55 650 < 2 < 0.3 37 0.5 < 1 14 51 

595 P-550 B56 660 6 < 0.3 35 < 0.3 < 1 15 51 

596 P-560 B57 670 < 2 < 0.3 41 0.4 < 1 14 44 

597 P-570 B58 680 < 2 < 0.3 41 < 0.3 < 1 14 52 
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Table A3.1 Continued. 

    Au Ag Cu Cd Mo Pb Ni 

    ppb ppm ppm ppm ppm ppm ppm 

    2 0.3 1 0.3 1 3 1 

Lab# 

MAR 

02–45 Act# 

CC 

(cm) IN M ICP ICP ICP ICP M 

598 P-580 B59 690 < 2 < 0.3 29 < 0.3 < 1 12 46 

54 P-590 B60 700 < 2 < 0.3 35 < 0.3 < 1 13 51 

599 P-600 B61 710 < 2 < 0.3 36 0.4 < 1 14 51 

600 P-610 B62 720 < 2 < 0.3 33 0.5 < 1 12 48 

601 P-620 B63 730 < 2 < 0.3 31 0.4 < 1 13 45 

602 P-630 B64 740 < 2 < 0.3 31 < 0.3 < 1 12 46 

603 P-640 B65 750 < 2 < 0.3 39 0.4 < 1 14 52 

604 P-650 B66 760 < 2 < 0.3 40 0.4 < 1 15 52 

50 P-660 B67 770 < 2 < 0.3 26 < 0.3 < 1 12 47 

604 P-670 B68 780 4 < 0.3 32 0.4 < 1 14 51 

606 P-680 B69 790 < 2 < 0.3 32 0.4 < 1 13 50 

607 P-690 B70 800 < 2 < 0.3 36 0.3 < 1 14 52 

608 P-700 B71 810 < 2 < 0.3 38 0.5 < 1 13 53 

655 P-710 B72 820 < 2 < 0.3 40 < 0.3 < 1 15 49 

58 P-720 B73 830 < 2 < 0.3 33 0.4 < 1 13 47 

656 P-730 B74 840 3 < 0.3 43 0.3 < 1 13 47 

657 P-740 B75 850 < 2 < 0.3 33 0.4 < 1 13 51 

658 P-750 B76 860 < 2 < 0.3 16 < 0.3 < 1 9 30 

659 P-760 B77 870 < 2 < 0.3 32 < 0.3 < 1 12 44 

660 P-770 B78 880 6 < 0.3 40 < 0.3 < 1 16 52 

59 P-780 B79 890 < 2 < 0.3 31 < 0.3 < 1 14 50 

661 P-790 B80 900 < 2 < 0.3 29 < 0.3 < 1 11 41 

662 P-800 B81 910 < 2 < 0.3 33 < 0.3 < 1 12 53 

663 P-810 B82 920 < 2 < 0.3 28 0.4 < 1 11 46 

664 P-820 B83 930 < 2 < 0.3 45 0.4 < 1 14 54 

56 P-830 B84 940 < 2 < 0.3 19 < 0.3 < 1 9 37 

MAR08–17G (cm)          

589B 34–36 C1  < 2 < 0.3 70 0.5 2 32 101 

590B 64–66 C2  < 2 < 0.3 64 0.4 2 28 86 

591B 94–96 C3  136 0.4 58 < 0.3 < 1 28 78 

Danube Delta          

61 

St. 

Georges 1 D1 

 

< 2 0.4 81 0.8 < 1 63 91 

63 

St. 

Georges 2 D2 

 

< 2 < 0.3 59 0.4 < 1 27 58 

64 Sulina  D3  < 2 < 0.3 85 0.7 < 1 27 48 

65 Chilia 1 D4  < 2 < 0.3 113 0.8 < 1 64 70 

62 Chilia 2 D5  < 2 < 0.3 65 0.5 < 1 22 74 
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Table A3.1 Continued 

   Au Ag Cu Cd Mo Pb Ni 

   ppb ppm ppm ppm ppm ppm ppm 

   2 0.3 1 0.3 1 3 1 

Thracian rivers Act# 

CC 

(cm) IN M ICP ICP ICP ICP M 

1 Kiyikoy E1  < 2 < 0.3 58 < 0.3 < 1 15 22 

3 Cilingoz E2  14 < 0.3 110 < 0.3 3 21 24 

 

 

Table A3.2  Raw data for Zn, S, Al, As, Ba, Be, Bi, Br, Ca, and Co. 

 

 Zn S Al As Ba Be Bi Br Ca Co 

 

 ppm % % ppm ppm ppm ppm ppm % ppm 

 

 1 0.01 0.01 0.5 50 1 2 0.5 0.01 1 

Act# 

CC 

(cm) M ICP ICP IN IN ICP ICP IN ICP IN 

A1 0 119 0.02 5.08 9.3 490 2 < 2 5.7 4.13 17 

A2 10 115 0.02 5.66 12.3 440 2 < 2 < 0.5 4.26 18 

A3 20 109 0.01 5.13 10.7 510 2 < 2 2.8 4.29 18 

A4 30 106 0.01 4.38 7.3 430 2 < 2 < 0.5 3.97 18 

A5 40 99 0.02 4.89 11.6 550 2 < 2 3.1 4.15 19 

A6 50 101 0.01 5.60 10.4 500 2 < 2 3.0 4.14 20 

A7 60 101 0.01 5.46 9.4 440 2 < 2 < 0.5 4.38 18 

A8 70 91 0.02 5.25 11.0 430 2 < 2 3.1 4.43 18 

A9 80 101 0.02 5.45 7.6 400 2 < 2 < 0.5 4.76 17 

A10 90 92 0.03 4.99 11.1 430 2 < 2 3.4 4.93 17 

A11 100 92 0.03 5.10 7.6 470 2 < 2 3.2 5.17 16 

A12  91 0.03 5.39 10.6 420 2 < 2 3.3 5.12 17 

A13  90 0.04 5.14 10.2 510 2 < 2 4.2 5.21 18 

A14  85 0.02 4.69 9.6 400 2 < 2 2.8 5.00 16 

A15  84 0.04 4.98 11.0 300 2 < 2 2.9 4.91 17 

A16  96 0.01 5.42 9.4 460 2 < 2 2.2 4.90 19 

A17  96 0.02 5.33 11.0 400 2 < 2 3.4 5.13 18 

A18  90 0.05 5.39 9.5 430 2 < 2 3.3 5.06 17 

B1 110 106 0.02 5.57 9.0 490 2 < 2 2.2 4.51 18 

B2 120 103 0.03 5.60 9.6 560 2 < 2 3.3 5.27 18 

B3 130 92 0.06 5.24 12.9 460 2 < 2 3.5 5.42 17 

B4 140 91 0.03 5.11 10.5 460 2 < 2 3.5 5.08 17 

B5 150 91 0.05 5.17 11.0 400 2 < 2 3.2 5.17 17 

B6 160 95 0.03 5.29 8.2 420 2 < 2 2.7 4.64 17 

B7 170 100 0.02 4.02 10.7 480 2 < 2 3.8 4.65 17 

B8 180 91 0.03 4.89 12.5 490 2 < 2 3.3 4.92 16 

B9 190 100 0.03 5.23 10.5 450 2 < 2 3.0 4.90 19 
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Table A3.2 Continued. 

  Zn S Al As Ba Be Bi Br Ca Co 

  ppm % % ppm ppm ppm ppm ppm % ppm 

  1 0.01 0.01 0.5 50 1 2 0.5 0.01 1 

Act# 

CC 

(cm) M ICP ICP IN IN ICP ICP IN ICP IN 

B10 200 87 0.07 5.36 8.7 410 2 < 2 3.9 5.30 15 

B11 210 100 0.05 5.53 10.0 500 2 < 2 3.2 5.17 18 

B12 220 92 0.09 5.50 8.5 410 2 < 2 3.9 5.22 17 

B13 230 93 0.05 5.34 9.9 430 2 < 2 2.9 5.19 16 

B14 240 90 0.08 5.19 9.9 550 2 < 2 2.6 5.12 18 

B15 250 88 0.12 5.27 18.8 450 2 < 2 5.1 5.00 19 

B16 260 95 0.11 4.06 28.9 510 2 < 2 6.4 4.85 24 

B17 270 84 0.19 5.02 12.4 630 2 < 2 4.2 4.98 21 

B18 280 88 0.39 4.99 15.1 400 2 < 2 10.6 5.67 19 

B19 290 103 0.17 5.88 17.7 540 2 < 2 6.3 5.12 21 

B20 300 99 0.14 5.77 13.5 550 2 < 2 9.0 4.94 20 

B21 310 98 0.20 5.68 19.2 580 2 < 2 6.4 4.95 24 

B22 320 97 0.15 5.61 15.2 590 2 < 2 6.5 4.95 19 

B23 330 92 0.26 5.43 19.2 630 2 < 2 6.5 4.76 20 

B24 340 90 0.29 5.42 28.8 510 2 < 2 9.4 4.03 22 

B25 350 84 0.20 4.42 18.1 410 2 < 2 5.2 4.41 17 

B26 360 78 0.16 4.45 23.8 300 2 < 2 6.8 4.06 19 

B27 370 88 0.15 5.00 16.3 420 2 < 2 5.9 3.91 17 

B28 380 105 0.15 5.70 19.1 520 3 < 2 7.0 3.99 18 

B29 390 94 0.20 5.06 18.8 570 2 < 2 5.9 4.42 18 

B30 400 89 0.36 5.54 19.9 510 2 < 2 5.4 4.46 17 

B31 410 93 0.13 5.54 12.4 420 2 < 2 < 0.5 5.74 18 

B32 420 82 0.17 4.98 14.3 420 2 < 2 4.0 5.23 17 

B33 430 83 0.16 5.20 20.3 480 2 < 2 5.1 5.21 20 

B34 440 91 0.21 5.57 14.5 680 2 < 2 5.1 5.11 17 

B35 450 86 0.17 4.92 14.2 450 2 < 2 7.6 4.73 17 

B36 460 83 0.22 4.80 14.3 590 2 < 2 9.0 5.34 17 

B37 470 85 0.36 4.98 12.6 550 2 < 2 11.4 6.01 18 

B38 480 63 0.12 4.24 13.3 < 50 2 < 2 2.7 6.39 14 

B39 490 65 0.19 4.22 14.4 410 2 < 2 < 0.5 9.61 13 

B40 500 57 0.15 4.08 12.6 270 2 < 2 2.7 6.73 13 

B41 510 76 0.18 4.81 6.0 340 2 < 2 3.1 8.40 13 

B42 520 70 0.10 4.78 8.5 280 2 < 2 2.7 7.05 14 

B43 530 76 0.08 5.15 5.9 350 2 < 2 2.0 6.44 15 

B44 540 66 0.10 4.53 6.2 350 2 < 2 1.8 5.68 13 

B45 550 64 0.06 4.19 5.9 350 2 < 2 < 0.5 5.46 13 

B46 560 70 0.09 4.40 6.0 380 2 < 2 2.5 6.01 13 
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Table A3.2 Continued. 

  Zn S Al As Ba Be Bi Br Ca Co 

  ppm % % ppm ppm ppm ppm ppm % ppm 

  1 0.01 0.01 0.5 50 1 2 0.5 0.01 1 

Act# 

CC 

(cm) M ICP ICP IN IN ICP ICP IN ICP IN 

B47 570 68 0.12 4.29 7.4 420 2 < 2 2.2 6.75 13 

B48 580 74 0.20 4.54 7.4 280 2 < 2 < 0.5 6.99 14 

B49 590 59 0.25 4.08 9.1 360 2 < 2 2.2 6.28 13 

B50 600 69 0.16 4.50 6.2 360 2 < 2 2.3 7.17 16 

B51 610 71 0.22 4.55 5.5 320 2 < 2 5.5 7.78 16 

B52 620 72 0.03 4.36 4.6 450 2 < 2 2.8 7.84 15 

B53 630 65 0.03 3.95 5.5 450 2 < 2 < 0.5 7.36 15 

B54 640 66 0.03 4.24 5.2 280 2 < 2 < 0.5 8.02 15 

B55 650 73 0.02 4.50 6.1 410 2 < 2 < 0.5 8.24 15 

B56 660 72 0.03 4.57 10.0 450 2 < 2 < 0.5 8.89 13 

B57 670 64 0.02 3.90 7.7 < 50 2 < 2 < 0.5 8.48 15 

B58 680 70 0.04 4.58 8.7 350 2 < 2 2.3 8.77 15 

B59 690 64 0.03 4.39 5.9 390 2 < 2 2.3 8.98 15 

B60 700 66 0.03 4.34 6.6 < 50 2 < 2 2.0 9.38 14 

B61 710 67 0.04 4.45 6.0 430 2 < 2 < 0.5 10.10 14 

B62 720 60 0.05 4.23 10.6 490 2 < 2 2.1 10.10 16 

B63 730 59 0.03 3.89 6.0 290 2 < 2 1.1 9.47 11 

B64 740 62 0.03 4.06 5.0 360 2 < 2 1.9 9.78 13 

B65 750 68 0.02 4.21 8.2 370 2 < 2 < 0.5 10.80 16 

B66 760 65 0.02 4.06 6.3 370 2 < 2 2.4 10.80 16 

B67 770 57 0.03 3.88 6.4 370 2 < 2 1.9 9.84 14 

B68 780 62 0.04 4.16 8.7 290 2 < 2 < 0.5 10.80 16 

B69 790 62 0.04 4.26 6.3 340 2 < 2 2.1 10.90 14 

B70 800 65 0.04 4.20 10.0 390 2 < 2 < 0.5 11.60 17 

B71 810 67 0.03 4.35 7.4 500 2 < 2 2.6 11.70 17 

B72 820 66 0.02 4.08 6.0 270 2 < 2 < 0.5 10.40 14 

B73 830 60 0.03 3.89 4.9 270 2 < 2 2.1 11.00 14 

B74 840 66 0.02 3.80 5.9 360 2 < 2 < 0.5 10.90 13 

B75 850 64 0.03 4.07 8.0 340 2 < 2 3.3 11.30 14 

B76 860 41 < 0.01 3.41 4.4 290 1 < 2 1.9 8.28 10 

B77 870 57 0.01 3.78 7.6 460 2 < 2 < 0.5 11.00 13 

B78 880 66 0.02 4.12 10.7 290 2 < 2 < 0.5 10.90 13 

B79 890 64 0.07 4.10 18.2 270 2 < 2 2.1 9.94 14 

B80 900 54 0.02 3.84 6.3 370 2 < 2 < 0.5 8.64 14 

B81 910 65 0.02 4.35 5.7 430 2 < 2 2.4 10.10 13 

B82 920 59 0.03 4.23 7.0 190 2 < 2 < 0.5 9.71 12 

B83 930 96 0.10 4.64 16.7 440 2 < 2 1.8 10.20 16 

B84 940 49 0.01 3.75 5.8 360 2 < 2 < 0.5 7.67 11 



 

 XII 

Table A3.2 Continued. 

  Zn S Al As Ba Be Bi Br Ca Co 

  ppm % % ppm ppm ppm ppm ppm % ppm 

  1 0.01 0.01 0.5 50 1 2 0.5 0.01 1 

Act# 

CC 

(cm) M ICP ICP IN IN ICP ICP IN ICP IN 

C1  117 0.13 6.59 12.7 400 2 < 2 11.3 1.82 18 

C2  101 0.14 5.53 13.4 410 2 < 2 12.9 2.01 19 

C3  101 0.11 4.86 12.1 460 2 < 2 16.2 2.81 17 

D1  181 0.08 9.17 19.8 570 3 < 2 3.2 3.33 21 

D2  93 0.04 4.4 12.2 340 2 < 2 2.3 4.03 17 

D3  100 0.04 3.84 9.1 340 2 < 2 3.8 4.91 15 

D4  170 0.04 5.21 10.7 530 2 < 2 6.4 4.21 19 

D5  120 0.05 5.86 12 380 3 < 2 1 2.81 20 

E1  73 0.02 4.16 6.1 550 2 < 2 4.6 5.04 10 

E2  92 < 0.01 4.24 11 470 3 < 2 1.9 0.23 13 

 

 

Table A3.3 Raw data for Cr, Cs, Eu, Fe, Hf, Hg, Ir, K,, Mg, and Mn. 

 

 Cr Cs Eu Fe Hf Hg Ir K Mg Mn 

 

 ppm ppm ppm % ppm ppm ppb % % ppm 

 

 2 1 0.2 0.01 1 1 5 0.01 0.01 1 

Act# 

CC 

(cm) IN IN IN IN IN IN IN ICP ICP ICP 

A1 0 137 9 1.5 4.20 7 < 1 < 5 2.24 1.66 444 

A2 10 146 10 1.6 4.57 5 < 1 < 5 2.44 1.72 484 

A3 20 144 9 1.6 4.38 7 < 1 < 5 2.21 1.62 454 

A4 30 148 10 1.5 4.53 7 < 1 < 5 2.14 1.57 450 

A5 40 148 10 1.8 4.61 7 < 1 < 5 2.12 1.66 506 

A6 50 150 10 1.8 4.83 6 < 1 < 5 2.29 1.68 474 

A7 60 132 10 1.4 4.55 7 < 1 < 5 2.26 1.69 518 

A8 70 134 9 1.7 4.40 8 < 1 < 5 2.17 1.68 478 

A9 80 134 9 1.7 4.53 7 < 1 < 5 2.37 1.81 528 

A10 90 137 8 1.6 4.26 8 < 1 < 5 2.23 1.81 539 

A11 100 140 9 1.4 4.14 7 < 1 < 5 2.31 1.92 517 

A12  131 9 1.6 4.19 7 < 1 < 5 2.22 1.84 526 

A13  140 9 1.7 4.63 7 < 1 < 5 2.16 1.77 526 

A14  135 8 1.5 4.09 7 < 1 < 5 2.01 1.68 496 

A15  134 8 1.5 4.02 7 < 1 < 5 2.02 1.71 512 

A16  136 10 1.6 4.50 7 < 1 < 5 2.25 1.83 502 

A17  137 10 1.6 4.54 7 < 1 < 5 2.20 1.85 516 

A18  133 9 1.6 4.02 7 < 1 < 5 2.18 1.87 518 

B1 110 139 9 1.5 4.21 7 < 1 < 5 2.36 1.79 516 

 



 

 XIII 

Table A3.3 Continued. 

  Cr Cs Eu Fe Hf Hg Ir K Mg Mn 

  ppm ppm ppm % ppm ppm ppb % % ppm 

  2 1 0.2 0.01 1 1 5 0.01 0.01 1 

Act# 

CC 

(cm) IN IN IN IN IN IN IN ICP ICP ICP 

B2 120 142 10 1.6 4.56 6 < 1 < 5 2.42 1.94 543 

B3 130 141 8 1.7 4.51 7 < 1 < 5 2.27 1.87 602 

B4 140 136 9 1.7 4.38 7 < 1 < 5 2.23 1.88 532 

B5 150 132 9 1.5 4.18 7 < 1 < 5 2.20 1.90 536 

B6 160 133 9 1.6 4.33 7 < 1 < 5 2.17 1.77 507 

B7 170 142 9 1.5 4.58 6 < 1 < 5 2.26 1.65 551 

B8 180 136 9 1.7 4.17 7 < 1 < 5 2.07 1.71 495 

B9 190 149 10 1.5 4.36 6 < 1 < 5 2.18 1.80 523 

B10 200 131 8 1.5 3.83 7 < 1 < 5 2.17 1.92 501 

B11 210 137 9 1.6 4.20 7 < 1 < 5 2.36 1.94 530 

B12 220 127 9 1.5 4.20 6 < 1 < 5 2.34 1.96 530 

B13 230 128 10 1.5 4.18 7 < 1 < 5 2.28 1.94 530 

B14 240 135 9 1.5 4.24 6 < 1 < 5 2.28 1.93 541 

B15 250 142 9 1.6 4.34 6 < 1 < 5 2.29 1.86 488 

B16 260 183 11 2.0 5.44 6 < 1 < 5 2.14 1.64 477 

B17 270 177 9 1.8 5.06 8 < 1 < 5 1.85 1.86 577 

B18 280 183 11 1.8 5.75 8 < 1 < 5 2.01 1.83 743 

B19 290 172 12 1.8 5.66 6 < 1 < 5 2.40 1.98 861 

B20 300 178 11 1.8 5.36 7 < 1 < 5 2.41 2.01 682 

B21 310 182 11 1.8 5.40 7 < 1 < 5 2.43 2.09 637 

B22 320 182 11 1.9 5.07 8 < 1 < 5 2.41 2.01 545 

B23 330 185 12 1.9 5.58 7 < 1 < 5 2.30 1.89 734 

B24 340 182 11 1.9 6.66 8 < 1 < 5 2.13 1.74 654 

B25 350 144 9 1.5 4.87 6 < 1 < 5 2.04 1.69 577 

B26 360 165 9 1.5 5.09 6 < 1 < 5 1.78 1.74 451 

B27 370 155 8 1.5 4.64 6 < 1 < 5 2.08 1.74 485 

B28 380 160 9 1.8 5.10 7 < 1 < 5 2.46 1.95 529 

B29 390 157 7 1.8 4.76 8 < 1 < 5 2.18 1.87 565 

B30 400 159 8 1.3 4.79 7 < 1 < 5 2.25 1.85 526 

B31 410 146 8 1.7 4.22 7 < 1 < 5 2.25 1.99 588 

B32 420 155 7 1.4 4.05 7 < 1 < 5 2.16 1.95 581 

B33 430 163 9 1.8 4.72 7 < 1 < 5 2.15 1.96 573 

B34 440 157 9 1.5 4.64 6 < 1 < 5 2.26 1.88 617 

B35 450 155 8 1.7 4.58 7 < 1 < 5 2.14 1.72 603 

B36 460 151 8 1.8 4.50 7 < 1 < 5 2.10 1.74 587 

B37 470 171 9 1.9 4.47 7 < 1 < 5 2.24 1.85 659 

 



 

 XIV 

Table A3.3 Continued. 

  Cr Cs Eu Fe Hf Hg Ir K Mg Mn 

  ppm ppm ppm % ppm ppm ppb % % ppm 

  2 1 0.2 0.01 1 1 5 0.01 0.01 1 

Act# 

CC 

(cm) IN IN IN IN IN IN IN ICP ICP ICP 

B38 480 109 6 1.4 3.26 10 < 1 < 5 1.83 1.57 458 

B39 490 108 7 1.3 3.63 7 < 1 < 5 1.85 1.57 480 

B40 500 108 6 1.5 3.08 10 < 1 < 5 1.69 1.53 502 

B41 510 113 6 1.3 3.28 6 < 1 < 5 2.16 1.81 600 

B42 520 115 7 1.7 3.25 8 < 1 < 5 2.02 1.67 559 

B43 530 120 6 1.7 3.57 7 < 1 < 5 2.23 1.76 523 

B44 540 108 4 1.7 3.18 10 < 1 < 5 1.98 1.58 506 

B45 550 104 7 1.5 3.15 8 < 1 < 5 1.91 1.52 527 

B46 560 99 7 1.5 3.35 8 < 1 < 5 2.00 1.57 550 

B47 570 104 7 1.7 3.46 7 < 1 < 5 1.95 1.57 570 

B48 580 118 7 1.5 3.85 7 < 1 < 5 2.07 1.67 618 

B49 590 104 6 1.5 3.29 9 < 1 < 5 1.85 1.54 490 

B50 600 115 7 1.5 3.70 7 < 1 < 5 2.06 1.71 570 

B51 610 107 7 1.7 3.64 6 < 1 < 5 2.04 1.74 608 

B52 620 97 9 1.6 3.39 6 < 1 < 5 2.01 1.73 589 

B53 630 104 7 1.6 3.48 7 < 1 < 5 1.74 1.57 568 

B54 640 110 6 1.5 3.32 7 < 1 < 5 1.81 1.67 559 

B55 650 113 7 1.6 3.71 6 < 1 < 5 1.94 1.76 616 

B56 660 110 7 1.5 3.70 6 < 1 < 5 1.94 1.81 582 

B57 670 100 6 1.5 3.34 9 < 1 < 5 1.72 1.78 559 

B58 680 116 7 1.5 3.77 6 < 1 < 5 1.87 1.82 610 

B59 690 113 6 1.6 3.28 7 < 1 < 5 1.89 1.92 569 

B60 700 146 9 1.4 3.72 7 < 1 < 5 1.90 1.83 602 

B61 710 163 7 1.1 3.52 6 < 1 < 5 1.99 1.89 619 

B62 720 143 7 1.4 3.79 6 < 1 < 5 1.83 1.87 603 

B63 730 149 6 1.6 3.17 7 < 1 < 5 1.74 1.81 615 

B64 740 146 7 1.4 3.37 6 < 1 < 5 1.75 1.75 594 

B65 750 153 7 1.3 3.72 4 < 1 < 5 1.81 1.77 680 

B66 760 153 7 1.1 3.75 6 < 1 < 5 1.82 1.78 678 

B67 770 142 6 1.4 2.97 7 < 1 < 5 1.74 1.77 589 

B68 780 149 7 1.4 3.60 4 < 1 < 5 1.82 1.85 711 

B69 790 140 7 1.6 3.68 6 < 1 < 5 1.83 1.80 632 

B70 800 156 7 1.4 3.68 6 < 1 < 5 1.85 1.88 761 

B71 810 107 7 1.6 3.68 6 < 1 < 5 1.93 1.94 720 

B72 820 102 7 1.6 3.60 7 < 1 < 5 1.81 1.90 713 

B73 830 99 7 1.4 3.09 6 < 1 < 5 1.73 1.86 654 

B74 840 106 7 1.6 3.27 6 < 1 < 5 1.71 1.78 719 

 



 

 XV 

Table A3.3 Continued. 

  Cr Cs Eu Fe Hf Hg Ir K Mg Mn 

  ppm ppm ppm % ppm ppm ppb % % ppm 

  2 1 0.2 0.01 1 1 5 0.01 0.01 1 

 

CC 

(cm) IN IN IN IN IN IN IN ICP ICP ICP 

B75 850 110 7 1.3 3.52 4 < 1 < 5 1.82 1.81 679 

B76 860 106 3 1.9 2.36 13 < 1 < 5 1.44 1.83 542 

B77 870 96 6 1.4 2.95 6 < 1 < 5 1.65 1.79 642 

B78 880 110 6 1.3 3.70 6 < 1 < 5 1.81 1.84 655 

B79 890 114 6 1.6 4.29 4 < 1 < 5 1.80 1.80 696 

B80 900 103 4 1.6 3.02 9 < 1 < 5 1.66 1.88 708 

B81 910 104 7 1.4 3.46 6 < 1 < 5 1.91 1.97 788 

B82 920 107 7 1.2 3.51 7 < 1 < 5 1.85 1.99 730 

B83 930 118 8 1.5 4.08 5 < 1 < 5 1.96 1.95 665 

B84 940 104 4 1.2 2.47 8 < 1 < 5 1.50 1.73 577 

C1  209 7 1.6 3.87 6 < 1 < 5 2.06 1.22 578 

C2  209 6 1.6 3.76 7 < 1 < 5 1.8 1.02 648 

C3  220 6 1.4 3.7 7 < 1 < 5 1.7 0.96 656 

D1  149 9 1.4 5.14 4 < 1 < 5 2.64 2 1110 

D2  115 6 1.2 3.62 6 < 1 < 5 2.03 1.41 744 

D3  150 4 1.9 3.6 21 < 1 < 5 1.57 1.52 734 

D4  131 7 1.5 4.08 9 < 1 < 5 2.74 1.6 874 

D5  143 10 1.3 4.92 4 < 1 < 5 3.92 1.67 839 

E1  58 4 1.5 2.79 19 < 1 < 5 1.96 0.58 564 

E2  85 5 1.4 3.23 11 < 1 < 5 1.73 0.34 460 

 

 

Table A3.4 Raw data for Na, P, Rb, Sb, Sc, Se, Sr, Ta, Ti, and Th. 

 

 Na P Rb Sb Sc Se Sr Ta Ti Th 

 

 % % ppm ppm ppm ppm ppm ppm % ppm 

 

 0.01 0.001 15 0.1 0.1 3 1 0.5 0.01 0.2 

Act# 

CC 

(cm) IN ICP IN IN IN IN ICP IN ICP IN 

A1 0 0.96 0.252 144 1.9 16.3 < 3 163 < 0.5 0.39 13.9 

A2 10 0.85 0.238 170 2.0 16.6 < 3 173 1.9 0.40 14.7 

A3 20 0.90 0.205 154 1.6 16.1 < 3 168 2.1 0.30 14.6 

A4 30 0.81 0.169 127 1.7 16.4 < 3 147 < 0.5 0.39 14.5 

A5 40 0.86 0.213 151 1.5 16.6 < 3 143 3.2 0.39 15.0 

A6 50 0.87 0.193 153 1.9 16.9 < 3 157 2.0 0.29 15.7 

A7 60 0.78 0.165 137 1.5 16.2 < 3 157 2.7 0.26 13.9 

A8 70 0.92 0.190 142 1.5 16.0 < 3 152 < 0.5 0.40 14.1 

A9 80 0.82 0.236 112 1.5 15.8 < 3 165 1.9 0.42 15.0 

 



 

 XVI 

Table A3.4 Contiuned. 

  Na P Rb Sb Sc Se Sr Ta Ti Th 

  % % ppm ppm ppm ppm ppm ppm % ppm 

  0.01 0.001 15 0.1 0.1 3 1 0.5 0.01 0.2 

Act# 

CC 

(cm) IN ICP IN IN IN IN ICP IN ICP IN 

A10 90 0.93 0.212 162 1.5 15.4 < 3 169 2.0 0.44 14.8 

A11 100 0.95 0.238 142 1.5 14.6 < 3 175 3.4 0.47 13.6 

A12  0.90 0.264 154 1.5 15.0 < 3 170 2.8 0.44 14.0 

A13  0.84 0.211 154 1.6 15.9 < 3 177 2.0 0.34 14.9 

A14  0.91 0.193 164 1.4 14.6 < 3 163 1.9 0.32 13.9 

A15  0.90 0.153 142 1.6 14.6 < 3 158 1.3 0.33 13.9 

A16  0.84 0.164 124 1.5 15.7 < 3 160 3.6 0.25 14.3 

A17  0.86 0.192 171 1.6 15.7 < 3 167 < 0.5 0.32 14.2 

A18  0.88 0.195 129 1.5 14.5 < 3 165 2.4 0.43 13.8 

B1 110 0.86 0.224 127 1.4 15.4 < 3 170 1.7 0.47 14.2 

B2 120 0.81 0.253 135 1.5 16.1 < 3 181 3.2 0.47 14.0 

B3 130 0.87 0.285 139 1.7 15.4 < 3 178 < 0.5 0.39 14.4 

B4 140 0.84 0.280 161 1.9 15.4 < 3 172 2.1 0.44 13.9 

B5 150 0.87 0.223 175 1.5 14.3 < 3 170 2.0 0.45 13.4 

B6 160 0.83 0.219 122 1.6 15.2 < 3 156 < 0.5 0.36 14.4 

B7 170 0.79 0.179 136 1.6 15.5 < 3 151 2.8 0.26 14.0 

B8 180 0.84 0.158 139 1.8 14.6 < 3 162 1.7 0.28 13.7 

B9 190 0.79 0.164 155 1.8 15.7 < 3 163 2.0 0.22 13.9 

B10 200 0.89 0.183 139 1.5 13.9 < 3 169 1.8 0.40 13.6 

B11 210 0.77 0.228 169 1.9 15.4 < 3 178 2.9 0.42 14.2 

B12 220 0.79 0.201 136 1.4 15.0 < 3 180 1.6 0.41 13.9 

B13 230 0.86 0.207 139 1.4 14.7 < 3 174 2.9 0.35 13.7 

B14 240 0.79 0.187 169 1.4 15.2 < 3 170 1.9 0.37 13.3 

B15 250 0.78 0.185 140 1.6 15.5 < 3 160 2.8 0.30 14.3 

B16 260 0.90 0.161 209 1.8 18.2 < 3 157 2.5 0.23 15.9 

B17 270 0.96 0.135 151 1.4 18.1 < 3 154 1.4 0.32 16.3 

B18 280 0.81 0.230 166 1.4 17.3 < 3 179 2.6 0.26 16.2 

B19 290 0.74 0.226 191 1.7 19.2 < 3 152 1.7 0.29 15.5 

B20 300 0.79 0.200 173 1.5 19.0 < 3 149 3.5 0.33 16.8 

B21 310 0.86 0.207 192 1.3 18.2 < 3 146 1.5 0.34 16.8 

B22 320 0.91 0.173 164 1.3 17.9 < 3 152 3.8 0.35 15.9 

B23 330 0.80 0.232 183 1.7 18.4 < 3 152 1.8 0.28 16.3 

B24 340 0.83 0.231 157 1.3 18.1 < 3 139 3.3 0.24 17.6 

B25 350 0.88 0.170 160 0.7 16.6 < 3 136 < 0.5 0.22 13.3 

B26 360 0.83 0.129 163 1.2 17.8 < 3 124 < 0.5 0.25 14.4 

B27 370 0.85 0.165 181 0.9 15.8 < 3 125 < 0.5 0.22 12.7 

B28 380 0.72 0.243 164 1.1 15.8 < 3 137 < 0.5 0.17 12.3 

B29 390 0.87 0.220 135 0.9 15.5 < 3 137 < 0.5 0.21 13.5 



 

 XVII 

Table A3.4 Contiuned. 

  Na P Rb Sb Sc Se Sr Ta Ti Th 

  % % ppm ppm ppm ppm ppm ppm % ppm 

  0.01 0.001 15 0.1 0.1 3 1 0.5 0.01 0.2 

Act# 

CC 

(cm) IN ICP IN IN IN IN ICP IN ICP IN 

B30 400 0.77 0.157 158 0.8 15.3 < 3 135 < 0.5 0.39 13.2 

B31 410 0.80 0.288 132 0.7 14.4 < 3 169 1.9 0.29 11.3 

B32 420 0.91 0.229 119 1.1 14.0 < 3 147 < 0.5 0.34 12.2 

B33 430 0.84 0.218 152 1.2 15.2 < 3 149 < 0.5 0.32 13.1 

B34 440 0.71 0.198 162 0.8 15.7 < 3 149 2.6 0.31 13.2 

B35 450 0.76 0.160 114 1.1 15.1 < 3 142 < 0.5 0.24 13.0 

B36 460 0.79 0.212 151 0.7 14.6 < 3 187 < 0.5 0.24 12.0 

B37 470 0.72 0.164 < 15 0.8 15.3 < 3 211 < 0.5 0.29 13.1 

B38 480 0.94 0.140 97 0.8 12.6 < 3 347 3.1 0.26 9.8 

B39 490 0.76 0.244 98 1.0 13.3 < 3 828 < 0.5 0.21 9.9 

B40 500 0.97 0.209 99 0.8 11.8 < 3 231 3.5 0.28 9.7 

B41 510 0.77 0.213 81 1.0 13.9 < 3 254 < 0.5 0.39 9.9 

B42 520 0.84 0.207 78 1.1 13.4 < 3 210 2.9 0.32 11.2 

B43 530 0.81 0.256 101 0.8 14.3 < 3 192 2.1 0.40 10.8 

B44 540 0.91 0.180 102 0.7 13.0 < 3 175 3.6 0.33 9.2 

B45 550 0.90 0.167 102 0.6 12.9 < 3 158 3.1 0.26 11.2 

B46 560 0.84 0.127 109 0.8 13.9 < 3 173 2.4 0.24 9.8 

B47 570 0.83 0.135 99 1.0 13.9 < 3 186 2.2 0.23 10.9 

B48 580 0.76 0.154 105 1.1 14.0 < 3 188 < 0.5 0.23 10.5 

B49 590 0.93 0.194 93 0.7 12.2 < 3 179 3.6 0.27 9.7 

B50 600 0.83 0.214 91 0.9 13.9 < 3 194 2.5 0.36 10.6 

B51 610 0.80 0.230 102 1.0 13.9 < 3 210 2.8 0.34 10.9 

B52 620 0.83 0.140 112 0.7 14.4 < 3 213 2.9 0.38 10.4 

B53 630 0.86 0.199 135 1.0 13.3 < 3 194 < 0.5 0.35 10.6 

B54 640 0.84 0.164 65 0.9 12.8 < 3 210 < 0.5 0.31 9.3 

B55 650 0.80 0.159 77 1.0 13.5 < 3 224 2.9 0.31 10.6 

B56 660 0.78 0.202 64 1.0 13.9 < 3 229 3.3 0.37 10.0 

B57 670 0.93 0.181 74 0.7 12.8 < 3 217 < 0.5 0.32 9.6 

B58 680 0.83 0.207 73 0.9 14.2 < 3 226 2.8 0.35 9.9 

B59 690 0.88 0.165 102 0.7 13.2 < 3 231 2.9 0.40 10.1 

B60 700 0.80 0.160 94 0.6 14.0 < 3 237 4.4 0.36 9.9 

B61 710 0.80 0.179 74 0.7 13.7 < 3 256 2.4 0.39 10.2 

B62 720 0.84 0.176 104 0.9 13.0 < 3 253 3.0 0.37 9.3 

B63 730 0.89 0.186 83 0.7 12.3 < 3 234 < 0.5 0.33 9.7 

B64 740 0.82 0.179 99 1.1 12.9 < 3 228 3.0 0.32 9.9 

B65 750 0.66 0.165 72 0.9 13.9 < 3 253 1.9 0.27 10.3 

B66 760 0.66 0.116 97 1.0 14.0 < 3 250 4.4 0.21 10.2 

 



 

 XVIII 

Table A3.4 Continued. 

  Na P Rb Sb Sc Se Sr Ta Ti Th 

  % % ppm ppm ppm ppm ppm ppm % ppm 

  0.01 0.001 15 0.1 0.1 3 1 0.5 0.01 0.2 

Act# 

CC 

(cm) IN ICP IN IN IN IN ICP IN ICP IN 

B67 770 0.80 0.126 79 1.0 12.4 < 3 232 2.4 0.35 9.3 

B68 780 0.74 0.200 90 0.9 13.7 < 3 252 2.0 0.33 9.9 

B69 790 0.73 0.204 89 0.9 13.9 < 3 252 3.4 0.33 9.9 

B70 800 0.67 0.255 96 1.0 13.7 < 3 263 3.3 0.32 10.3 

B71 810 0.74 0.230 114 1.0 13.9 < 3 268 3.1 0.34 10.2 

B72 820 0.79 0.267 86 0.6 13.4 < 3 238 4.1 0.30 10.9 

B73 830 0.82 0.204 59 0.6 12.4 < 3 243 2.3 0.33 9.6 

B74 840 0.70 0.200 56 0.9 13.0 < 3 242 3.3 0.32 9.3 

B75 850 0.76 0.169 73 0.9 13.7 < 3 248 2.6 0.23 9.7 

B76 860 1.13 0.067 47 0.7 10.9 < 3 198 3.4 0.34 11.0 

B77 870 0.82 0.105 102 0.7 11.7 < 3 240 3.9 0.22 8.4 

B78 880 0.70 0.175 124 0.9 13.4 < 3 241 4.3 0.26 9.7 

B79 890 0.77 0.264 93 1.1 13.4 < 3 225 < 0.5 0.33 9.2 

B80 900 1.00 0.124 63 0.9 11.6 < 3 202 3.0 0.38 10.3 

B81 910 0.90 0.217 82 0.7 13.4 < 3 231 2.6 0.38 9.3 

B82 920 0.99 0.176 77 0.8 12.5 < 3 235 4.1 0.39 9.9 

B83 930 0.73 0.163 111 1.0 14.7 < 3 233 4.5 0.37 10.0 

B84 940 1.18 0.103 67 0.7 10.3 < 3 198 < 0.5 0.32 8.8 

C1  0.8 0.114 95 1.2 19 < 3 132 0.8 0.41 14.5 

C2  0.98 0.116 86 1.2 17.3 < 3 126 0.8 0.38 13 

C3  0.97 0.101 75 1.1 15.3 < 3 160 < 0.5 0.29 11.8 

D1  0.63 0.423 133 3.8 18.7 < 3 154 1.4 0.61 13.3 

D2  0.99 0.116 107 1.4 13.2 < 3 146 1.5 0.35 11.3 

D3  1.16 0.095 55 1.1 12.1 < 3 155 0.7 0.34 17.5 

D4  0.86 0.241 99 1.4 15.1 < 3 146 1.7 0.24 13.8 

D5  0.47 0.221 142 1.4 18.8 < 3 127 1.5 0.41 12.6 

E1  1.7 0.127 129 0.7 11.2 < 3 255 2 0.4 10.3 

E2  1.01 0.104 107 1.3 11.7 < 3 69 3.1 0.19 14.1 

 

 

 

 

 

 

 

 

 

 



 

 XIX 

Table A3.5 Raw data for U, V, W, Y, La, Ce, Nd, Sm, Sn, and Tb. 

 

 U V W Y La Ce Nd Sm Sn Tb 

 

 ppm ppm ppm ppm ppm ppm ppm ppm % ppm 

 

 0.5 2 1 1 0.5 3 5 0.1 0.01 0.5 

Act# 

CC 

(cm) IN ICP IN ICP IN IN IN IN IN IN 

A1 0 4.3 108 < 1 18 39.4 93 33 7.0 < 0.01 < 0.5 

A2 10 5.1 114 < 1 19 37.2 86 31 6.6 < 0.01 < 0.5 

A3 20 5.0 106 < 1 17 37.6 90 25 6.6 < 0.01 0.8 

A4 30 6.2 110 7 15 37.5 87 31 6.4 < 0.01 0.7 

A5 40 4.7 117 < 1 17 39.8 91 37 6.9 < 0.01 < 0.5 

A6 50 3.8 117 < 1 18 38.5 88 30 6.8 < 0.01 < 0.5 

A7 60 4.4 113 < 1 18 37.5 87 26 6.6 < 0.01 < 0.5 

A8 70 5.4 109 6 18 38.5 90 23 6.8 < 0.01 1.2 

A9 80 4.7 117 8 19 38.2 88 36 6.7 < 0.01 0.8 

A10 90 5.6 113 < 1 18 37.9 85 28 6.8 < 0.01 < 0.5 

A11 100 4.8 115 < 1 18 35.4 87 29 6.2 < 0.01 < 0.5 

A12  4.3 113 < 1 18 37.2 85 35 6.4 < 0.01 0.9 

A13  4.9 101 5 17 37.8 87 32 6.6 < 0.01 1.2 

A14  4.4 101 < 1 17 36.3 86 32 6.4 < 0.01 < 0.5 

A15  3.8 99 < 1 17 36.9 87 33 6.5 < 0.01 < 0.5 

A16  4.7 109 < 1 17 37.7 86 32 6.6 < 0.01 0.9 

A17  4.2 107 7 17 38.1 88 31 6.7 < 0.01 1 

A18  4.4 109 < 1 18 36.2 87 32 6.4 < 0.01 < 0.5 

B1 110 4.4 123 < 1 19 36.9 81 30 6.4 < 0.01 0.8 

B2 120 4.7 124 < 1 19 37.7 91 35 6.6 0.05 0.9 

B3 130 5.2 113 < 1 18 37.8 89 34 6.9 < 0.01 0.8 

B4 140 4.2 112 < 1 18 37.1 89 28 6.5 < 0.01 0.9 

B5 150 3.8 110 < 1 18 36.7 86 29 6.5 < 0.01 < 0.5 

B6 160 4.3 106 < 1 17 37.2 82 29 6.6 < 0.01 0.9 

B7 170 4.1 108 < 1 13 37.4 86 30 6.5 < 0.01 < 0.5 

B8 180 4.6 98 < 1 17 36.3 87 32 6.4 < 0.01 < 0.5 

B9 190 4.6 109 5 17 36.5 82 24 6.4 < 0.01 1 

B10 200 4.0 103 < 1 18 35.2 78 27 6.1 < 0.01 0.9 

B11 210 5.6 121 < 1 19 36.6 87 27 6.5 < 0.01 < 0.5 

B12 220 4.3 115 < 1 18 34.8 83 29 6.2 < 0.01 1 

B13 230 4.4 108 < 1 18 35.5 77 30 6.2 < 0.01 < 0.5 

B14 240 3.8 113 < 1 18 34.9 84 28 6.2 < 0.01 < 0.5 

B15 250 5.1 113 < 1 18 36.8 89 28 6.6 < 0.01 1 

B16 260 7.1 110 < 1 14 42.2 98 30 7.6 < 0.01 0.8 

B17 270 5.9 105 7 17 42.4 98 33 7.6 < 0.01 0.8 

B18 280 7.1 98 < 1 16 42.2 93 30 7.2 < 0.01 0.8 

B19 290 5.2 118 < 1 18 41.4 96 39 7.2 < 0.01 0.8 
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Table A3.5 Continued. 

  U V W Y La Ce Nd Sm Sn Tb 

  ppm ppm ppm ppm ppm ppm ppm ppm % ppm 

  0.5 2 1 1 0.5 3 5 0.1 0.01 0.5 

Act# 

CC 

(cm) IN ICP IN ICP IN IN IN IN IN IN 

B20 300 5.5 119 < 1 18 43.4 103 35 7.4 < 0.01 < 0.5 

B21 310 5.0 118 < 1 18 42.4 96 35 7.4 < 0.01 < 0.5 

B22 320 5.0 116 < 1 19 43.3 98 37 7.6 < 0.01 0.8 

B23 330 4.4 116 < 1 18 42.7 97 34 7.6 < 0.01 < 0.5 

B24 340 5.4 107 7 17 43.2 103 39 7.7 < 0.01 < 0.5 

B25 350 4.8 100 < 1 16 38.6 79 27 7.3 < 0.01 < 0.5 

B26 360 4.0 87 < 1 17 40.5 85 35 7.6 < 0.01 0.9 

B27 370 2.6 105 < 1 17 39.5 98 34 5.8 < 0.01 < 0.5 

B28 380 2.8 121 < 1 18 38.1 89 27 5.5 < 0.01 < 0.5 

B29 390 5.0 108 < 1 17 39.8 96 27 5.5 < 0.01 < 0.5 

B30 400 2.0 111 < 1 18 37.8 90 30 5.5 < 0.01 < 0.5 

B31 410 3.8 106 < 1 17 36.5 85 28 5.2 < 0.01 1.2 

B32 420 3.4 101 < 1 18 39.3 94 24 5.5 < 0.01 1.4 

B33 430 2.7 99 < 1 18 39.8 94 26 5.7 < 0.01 < 0.5 

B34 440 3.5 110 < 1 18 39.1 94 32 5.5 < 0.01 1.3 

B35 450 4.0 100 < 1 17 39.1 94 30 5.5 < 0.01 0.9 

B36 460 5.2 98 < 1 17 38.1 86 31 5.4 < 0.01 < 0.5 

B37 470 3.8 102 < 1 18 39.3 93 27 5.5 < 0.01 < 0.5 

B38 480 3.5 78 < 1 17 37.7 78 24 6.0 < 0.01 < 0.5 

B39 490 5.3 81 < 1 16 35.1 66 31 5.7 < 0.01 < 0.5 

B40 500 2.9 75 < 1 17 38.6 77 28 6.3 < 0.01 < 0.5 

B41 510 3.9 100 < 1 20 36.7 74 27 5.9 < 0.01 < 0.5 

B42 520 3.4 91 < 1 19 38.4 83 28 6.2 < 0.01 < 0.5 

B43 530 3.2 101 < 1 20 38.2 78 28 6.2 < 0.01 < 0.5 

B44 540 3.5 85 < 1 18 37.8 74 32 6.2 < 0.01 < 0.5 

B45 550 3.2 81 < 1 18 37.7 69 28 6.2 < 0.01 < 0.5 

B46 560 3.4 86 < 1 18 38.1 73 36 5.9 < 0.01 1.4 

B47 570 3.1 85 < 1 18 38.1 76 36 6.0 < 0.01 < 0.5 

B48 580 1.8 91 5 19 37.7 71 39 6.0 < 0.01 1.3 

B49 590 2.0 77 < 1 17 36.8 73 23 5.9 < 0.01 < 0.5 

B50 600 3.0 91 < 1 18 37.1 74 26 6.1 < 0.01 < 0.5 

B51 610 2.3 93 < 1 18 38.0 73 32 5.8 < 0.01 < 0.5 

B52 620 2.2 92 < 1 18 38.6 75 33 6.1 < 0.01 1.2 

B53 630 2.5 82 < 1 16 37.3 77 36 6.1 < 0.01 < 0.5 

B54 640 3.0 82 < 1 17 37.7 73 29 6.1 < 0.01 0.9 

B55 650 3.5 90 < 1 17 36.0 71 33 5.8 < 0.01 < 0.5 

B56 660 2.3 89 < 1 17 36.3 70 36 5.8 < 0.01 < 0.5 

B57 670 3.9 76 < 1 16 37.0 74 30 5.7 < 0.01 < 0.5 
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Table A3.5 Continued. 

  U V W Y La Ce Nd Sm Sn Tb 

  ppm ppm ppm ppm ppm ppm ppm ppm % ppm 

  0.5 2 1 1 0.5 3 5 0.1 0.01 0.5 

Act# 

CC 

(cm) IN ICP IN ICP IN IN IN IN IN IN 

B58 680 3.2 88 < 1 17 36.0 73 22 5.8 < 0.01 < 0.5 

B59 690 3.0 82 4 17 37.6 75 22 6.2 < 0.01 < 0.5 

B60 700 3.1 88 < 1 16 37.2 72 24 5.9 < 0.01 < 0.5 

B61 710 2.1 91 < 1 17 35.6 76 34 5.9 < 0.01 < 0.5 

B62 720 3.1 84 < 1 16 36.2 73 27 5.9 < 0.01 < 0.5 

B63 730 3.3 76 < 1 16 36.5 72 36 5.9 < 0.01 < 0.5 

B64 740 3.3 79 < 1 16 35.2 74 33 5.6 < 0.01 1.3 

B65 750 2.6 88 < 1 16 34.6 70 24 5.6 < 0.01 < 0.5 

B66 760 2.7 83 < 1 16 35.5 66 37 5.4 < 0.01 < 0.5 

B67 770 2.6 79 < 1 16 35.0 70 26 5.4 < 0.01 1.1 

B68 780 2.3 86 < 1 16 34.3 70 30 5.7 < 0.01 < 0.5 

B69 790 2.0 87 < 1 16 35.9 67 26 5.7 < 0.01 < 0.5 

B70 800 2.4 90 < 1 16 34.7 67 26 5.6 < 0.01 < 0.5 

B71 810 3.0 94 < 1 17 34.0 73 29 5.4 < 0.01 < 0.5 

B72 820 2.4 84 < 1 17 38.8 76 27 6.1 < 0.01 1.4 

B73 830 3.3 81 < 1 16 33.7 66 26 5.3 < 0.01 < 0.5 

B74 840 2.3 82 < 1 16 34.3 69 27 5.7 < 0.01 < 0.5 

B75 850 2.1 87 < 1 16 34.6 69 26 5.4 < 0.01 < 0.5 

B76 860 3.3 58 < 1 17 44.3 82 36 7.0 < 0.01 < 0.5 

B77 870 2.9 74 5 15 31.6 66 23 5.1 < 0.01 0.9 

B78 880 2.4 83 < 1 16 34.0 70 21 5.6 < 0.01 < 0.5 

B79 890 2.7 90 < 1 16 34.2 70 37 5.3 < 0.01 < 0.5 

B80 900 2.6 75 < 1 16 37.6 76 34 6.1 < 0.01 < 0.5 

B81 910 1.6 92 < 1 16 34.0 66 31 5.4 < 0.01 < 0.5 

B82 920 < 0.5 85 < 1 16 34.7 70 26 5.8 < 0.01 1.2 

B83 930 3.0 98 < 1 17 35.3 67 33 5.8 < 0.01 < 0.5 

B84 940 3.4 62 < 1 14 34.0 64 25 5.5 < 0.01 1.2 

C1  4 117 146 < 1 22 28 41.8 73 28 5.7 

C2  4.4 107 134 2 21 26 41.7 75 34 5.6 

C3  4 75 94 < 1 20 25 39.5 70 26 5.2 

D1  3.6 129 161 < 1 35 44 42.8 80 31 5.9 

D2  2.8 84 105 2 18 23 37.5 70 23 5.4 

D3  5 73 91 4 23 29 59.6 114 40 8.3 

D4  3 112 140 < 1 22 28 45.2 84 33 6.5 

D5  2.1 144 180 < 1 19 24 38.5 68 24 5.4 

E1  4.3 59 74 < 1 20 25 43.2 79 28 6.2 

E2  5.2 47 59 3 17 21 44.2 85 30 5.8 
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Table A3.6 Raw data for Yb, Lu, sample mass, TS, TOC, Terr. Toc, and silicate total 

 

 

Yb Lu Mass TS TOC 

 Terrigenous  

fraction of TOC  

Silicate  

Tot. 

 

 ppm ppm g % % (x/1) 

 

 

 0.2 0.05 

     

Act# 

CC 

(cm) IN IN IN CE 

 

Method in  

Hiscott et al. (2007b) 

 A1 0 3.8 0.43 1.31 0.14 1.43 0.48 92.9 

A2 10 3.8 0.42 1.22 0.16 1.25 0.59 92.7 

A3 20 3.9 0.44 1.27 0.19 1.05 0.63 92.3 

A4 30 3.8 0.37 1.34 0.15 0.90 0.63 92.6 

A5 40 3.8 0.40 1.23 0.21 0.99 0.70 92.8 

A6 50 3.8 0.44 1.15 0.18 0.95 0.69 91.2 

A7 60 3.8 0.41 1.33 0.14 0.82 0.71 92.0 

A8 70 4.2 0.43 1.16 0.18 0.90 0.74 91.2 

A9 80 3.8 0.48 1.27 0.17 0.85 0.74 90.7 

A10 90 4.0 0.44 1.14 0.12 0.91 0.81 90.8 

A11 100 3.5 0.40 1.25 0.24 1.02 0.74 89.2 

A12  3.5 0.40 1.35 

   

89.4 

A13  3.8 0.37 1.13 

   

89.1 

A14  3.7 0.38 1.34 

   

89.8 

A15  4.1 0.45 1.23 

   

90.2 

A16  3.7 0.37 1.27 

   

90.2 

A17  4.0 0.56 1.18 

   

89.4 

A18  3.7 0.37 1.25 

   

89.6 

B1 110 3.9 0.40 1.27 0.22 0.90 0.77 87.8 

B2 120 3.7 0.35 1.20 0.13 1.10 0.76 88.9 

B3 130 4.1 0.41 1.26 0.21 0.86 0.79 89.4 

B4 140 3.9 0.39 1.18 0.28 0.84 0.79 89.6 

B5 150 3.6 0.36 1.20 0.22 0.82 0.72 90.1 

B6 160 3.7 0.34 1.26 0.29 1.00 0.75 91.1 

B7 170 3.4 0.42 1.14 0.20 0.97 0.78 91.1 

B8 180 3.8 0.36 1.15 0.34 1.07 0.76 90.1 

B9 190 3.7 0.39 1.22 0.35 1.15 0.77 90.2 

B10 200 3.6 0.39 1.35 0.35 0.98 0.76 88.8 

B11 210 3.8 0.39 1.15 0.32 1.05 0.76 89.2 

B12 220 3.5 0.41 1.33 0.32 1.10 0.80 89.1 

B13 230 3.8 0.33 1.37 0.42 0.92 0.66 89.2 

B14 240 3.3 0.34 1.22 0.41 1.07 0.77 89.4 

B15 250 3.7 0.40 1.21 0.51 1.07 0.73 89.8 

B16 260 4.2 0.46 1.13 0.73 0.91 0.72 90.4 

B17 270 4.1 0.45 1.26 1.22 1.09 0.69 89.9 

B18 280 3.9 0.40 1.14 1.69 0.85 0.74 87.5 

B19 290 3.9 0.38 1.20 1.80 1.62 0.55 89.4 
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Table A3.6 

 

 

Yb Lu Mass TS TOC 

 Terrigenous  

fraction of TOC  

Silicate  

Tot. 

  ppm ppm g % % (x/1)  

  0.2 0.05      

Act# 

CC 

(cm) IN IN IN CE CE 

Method in  

Hiscott et al. (2007b)  

B20 300 4.2 0.40 1.29 1.85 1.41 0.59 90.0 

B21 310 4.2 0.38 1.20 1.18 1.54 0.55 90.0 

B22 320 4.2 0.45 1.21 1.40 1.97 0.68 90.0 

B23 330 4.2 0.41 1.31 1.05 1.23 0.63 89.0 

B24 340 4.5 0.48 1.06 1.17 1.16 0.67 93.2 

B25 350 3.4 0.54 1.19 1.62 1.63 0.48 88.7 

B26 360 3.8 0.42 1.39 1.54 1.29 0.50 93.1 

B27 370 3.0 0.55 1.31 1.34 1.52 0.59 91.5 

B28 380 2.8 0.55 1.30 1.37 1.18 0.60 93.4 

B29 390 3.4 0.59 1.18 2.13 1.30 0.54 91.9 

B30 400 3.1 0.51 1.14 2.05 2.43 0.43 91.7 

B31 410 2.8 0.54 1.42 2.27 1.52 0.60 87.3 

B32 420 3.4 0.63 1.35 1.33 1.39 0.57 87.0 

B33 430 3.3 0.52 1.23 1.46 1.40 0.78 89.1 

B34 440 3.2 0.52 1.30 1.95 1.22 0.73 86.0 

B35 450 3.0 0.48 1.45 1.55 1.32 0.75 90.8 

B36 460 3.2 0.52 1.43 1.71 1.63 0.86 88.7 

B37 470 3.3 0.59 1.25 1.55 1.35 0.73 86.3 

B38 480 3.2 0.34 1.56 1.44 1.28 0.65 85.6 

B39 490 2.5 0.22 1.38 1.21 0.54 0.75 73.7 

B40 500 3.4 0.35 1.60 1.13 0.97 0.82 87.1 

B41 510 3.1 0.50 1.44 1.09 0.53 0.85 78.0 

B42 520 2.9 0.32 1.38 0.91 0.78 0.85 82.6 

B43 530 3.4 0.50 1.60 0.93 0.60 0.88 84.8 

B44 540 3.6 0.32 1.44 0.76 0.48 0.79 89.2 

B45 550 3.2 0.29 1.45 1.05 0.54 0.86 88.2 

B46 560 3.2 0.31 1.40 0.88 0.58 0.86 85.0 

B47 570 3.2 0.31 1.37 1.07 0.76 0.92 83.7 

B48 580 2.8 0.28 1.52 1.34 0.61 0.88 83.5 

B49 590 3.3 0.35 1.61 1.67 0.61 0.91 85.4 

B50 600 3.2 0.36 1.44 1.31 0.53 0.90 84.8 

B51 610 3.0 0.46 1.49 0.91 0.51 0.88 80.1 

B52 620 2.9 0.29 1.29 1.17 0.49 0.87 82.9 

B53 630 3.3 0.25 1.32 0.14 0.75 0.87 81.6 

B54 640 3.2 0.51 1.53 0.19 0.60 0.87 79.7 

B55 650 2.9 0.25 1.29 0.34 0.70 0.88 78.5 

B56 660 3.3 0.29 1.23 0.41 0.79 0.87 80.1 
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Table A3.6 Continued. 

 

 

Yb Lu Mass TS TOC 

 Terrigenous  

fraction of TOC  

Silicate  

Tot. 

  ppm ppm g % % (x/1)  

  0.2 0.05      

Act# 

CC 

(cm) IN IN IN CE CE 

Method in  

Hiscott et al. (2007b)  

B57 670 2.9 0.23 1.40 0.38 0.81 0.92 77.7 

B58 680 3.0 0.42 1.25 0.21 0.50 0.92 82.0 

B59 690 3.2 0.23 1.23 0.32 0.95 0.93 75.9 

B60 700 2.9 0.44 1.20 0.19 0.91 0.92 77.8 

B61 710 3.1 0.20 1.17 0.17 0.70 0.93 72.0 

B62 720 2.9 0.14 1.12 0.33 0.92 0.96 72.8 

B63 730 2.9 0.17 1.26 0.37 0.72 0.95 74.2 

B64 740 3.1 0.19 1.25 0.12 0.65 0.90 76.1 

B65 750 2.6 0.44 1.27 0.24 0.85 0.99 69.6 

B66 760 2.9 0.41 1.18 0.27 0.84 0.93 67.6 

B67 770 2.9 0.17 1.25 0.17 0.75 0.94 72.9 

B68 780 2.9 0.14 1.20 0.13 0.76 0.95 70.8 

B69 790 3.0 0.19 1.35 0.14 0.71 0.97 69.2 

B70 800 2.9 0.09 1.15 0.16 0.82 0.93 68.1 

B71 810 2.6 0.13 1.36 0.12 0.97 0.96 66.5 

B72 820 3.0 0.47 1.20 0.16 0.72 0.93 68.5 

B73 830 2.9 0.17 1.40 0.12 0.53 0.92 68.9 

B74 840 2.9 0.16 1.29 0.12 0.65 0.96 65.4 

B75 850 2.7 0.41 1.23 0.08 0.84 0.93 67.8 

B76 860 4.0 0.33 1.33 0.28 0.83 0.93 65.4 

B77 870 2.6 0.16 1.30 0.06 0.65 0.90 68.9 

B78 880 2.9 0.44 1.15 0.12 0.78 0.90 67.1 

B79 890 2.9 0.39 1.26 0.16 0.62 0.93 72.6 

B80 900 3.3 0.47 1.38 0.71 0.83 0.95 70.1 

B81 910 2.7 0.17 1.14 0.04 0.51 0.90 72.0 

B82 920 3.0 0.18 1.22 0.10 0.79 0.97 72.1 

B83 930 2.7 0.08 1.28 0.04 0.57 0.94 71.7 

B84 940 3.0 0.29 1.40 0.10 1.00 0.99 69.8 

C1  < 0.01 < 0.5 3.3 

   

86.7 

C2  < 0.01 0.5 3.6 

   

100.0 

C3  < 0.01 0.7 3.4 

   

97.0 
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Table A3.6 Continued. 

 

 

Yb Lu Mass TS TOC 

 Terrigenous  

fraction of TOC  

Silicate  

Tot. 

  ppm ppm g % % (x/1)  

  0.2 0.05      

Act# 

CC 

(cm) IN IN IN CE CE 

Method in  

Hiscott et al. (2007b)  

D1  < 0.01 1.1 3.7    96.5 

D2  < 0.01 0.7 3.5    95.1 

D3  < 0.01 1.1 5.7    90.8 

D4  < 0.01 0.7 3.8    91.5 

D5  < 0.01 0.9 3.1    84.2 

E1  < 0.01 0.7 5 

   

84.0 

E2  < 0.01 < 0.5 4.3 

   

87.7 
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Appendix 4 XRD Standards Analysis 

Measured and certified values for elements analyzed during 2011 and 2014 for this thesis. 
a represents standards run during 2011, b represents standards run during 2014.  

 

 

Table A4.1 Measured and certified values for elements analyzed using INAA.  Only 

elements analyzed during both (2011 and 2014) runs are included. 

 Detection  

Limit 

 

Method 
DMMAs 112a DMMAs 112a DMMAs 116b 

  Meas Cert Meas Cert Meas Cert 

Au 2 ppb INAA 1830 1721 1810 1721 1830 1610 

As 0.5 ppm INAA 1790 1862 1770 1862 1460 1560 

Ba 50 ppm INAA 1400 1288 1290 1288 1240 1190 

Co 1 ppm INAA 46 43 45 43 44 41 

Cr 2 ppm INAA 90 80 86 80 80 77 

Fe 0.01 % INAA 3.54 3.34 3.45 3.34 3.28 3.12 

Na 0.01 % INAA 2.12 2.05 2.04 2.05 2.04 1.98 

Sc 0.1 ppm INAA 7.30 7.17 7.00 7.17 5.90 6.30 

U 0.5 ppm INAA 17.80 17.84 17.90 17.84 10.40 11.20 

La 0.5 ppm INAA 18.3 15.92 18.2 15.92 15.5 15.9 

Ce 3 ppm INAA 30.00 26.56 28.00 26.56 30.00 30.00 

Sm 0.1 ppm INAA 2.70 2.34 2.50 2.34 2.30 2.40 



 

 

X
X
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Table A4.2 Measured and certified values for elements run using ICP analysis for the GXR-1, GXR-4, SDC-1, and OREAS 13b 

standards.  Only elements analyzed during both (2011 and 2014) runs are included. 

 Detection  

Limit 

 GXR-1a GXR-1b 
GXR-4a GXR-4b 

SDC-1a SDC-1b OREAS 13ba 

  

Meas Cert Meas Cert Meas Cert Meas Cert Meas Cert Meas Cert Meas Cert 

Ag 0.3 ppm ICP 28.3 31.0 31.2 31.0 2.9 4.0 3.7 4.0 < 0.3 0.041 < 0.3 0.041 0.70 0.86 

Cu 1 ppm ICP 1230 1110 1110 1110 6410 6520 6420 6520 29 30 41 30   

Cd 0.3 ppm ICP 3.3 3.3 2.7 3.3 0.50 0.86 0.40 0.86 < 0.3 0.08 < 0.3 0.08 2210 2327 

Mo 1 ppm ICP 15 18 17 18 313 310 308 310 < 1 0.25 < 1 0.25 9 9 

Pb 3 ppm ICP 691 730 737 730 40 52 54 52 20 25 20 25   

Ni 1 ppm ICP 46 41 41 41 43 42 55 42 37 38 36 38 2010 2247 

Zn 1 ppm ICP 722 760 799 760 73 73 95 73 96 103 105 103 94 133 

S 0.01 % ICP 0.230 0.257 0.240 0.257 1.80 1.77 1.78 1.77 0.060 0.065 0.070 0.065 1.05 1.20 

Al 0.01 % ICP 1.68 3.52 2.71 3.52 4.87 7.20 7.04 7.20 5.93 8.34 8.32 8.34   

Be 1 ppm ICP 1.00 1.22 1.00 1.22 2.0 1.9 2.0 1.9 3 3 3 3   

Bi 2 ppm ICP 1390 1380 1370 1380 12 19 10 19 < 2 2.6 < 2 2.6   

Ca 0.01 % ICP 0.96 0.96 0.88 0.96 1.17 1.01 1.08 1.01 1.16 1.00 1.10 1.00   

K 0.01 % ICP 0.05 0.05 0.05 0.05 3.45 4.01 2.68 4.01 2.68 2.72 2.49 2.72   

Mg 0.01 % ICP 0.220 0.217 0.230 0.217 1.70 1.66 1.70 1.66 0.99 1.02 1.00 1.02   

Mn 1 ppm ICP 926 852 910 852 151 155 161 155 830 883 905 880   

P 0.001 % ICP 0.060 0.065 0.058 0.065 0.134 0.120 0.131 0.120 0.053 0.069 0.055 0.069   

Sr 1 ppm ICP 296 275 287 275 202 221 220 221 166 183 174 180   

Ti 0.01 % ICP 

  

0.03 0.036     0.29 0.29 0.130 0.606 0.210 0.606   

V 2 ppm ICP 96 80 87 80 95 87 89 87 44 102 50 102   

Y 1 ppm ICP 27 32 27 32 13 14 13 14 30 40 32 40   

 

 

 



 

 

X
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Table A4.3 Measured and certified values for elements run using ICP analysis for the SCO-1, GXR-6, DNC-1a, SAR-M, and SBC-1 

standards.  Only elements analyzed during both (2011 and 2014) runs are included. 

 Detection 

Limit 

 SCO-1a GXR-6a GXR-6b DNC-1aa DNC-1ab SAR-Mb SNC-1b 

  Meas Cert Meas Cert Meas Cert Meas Cert Meas Cert Meas Cert Meas Cert 

Ag 0.3 ppm ICP < 0.3 0.134 0.5 1.3 0.4 1.3         3.30 3.64      

Cu 1 ppm ICP 27.0 28.7 61 66 70 66 89 100 97 100 307 331 34 31 

Cd 0.3 ppm ICP 0.40 0.14 0.40 0.10  < 0.3 1          4.90  5.27  0.3  0.4 

Mo 1 ppm ICP < 1 1.37 < 1 2.4  3  2.4          8.0  13.1  4.0  2.4 

Pb 3 ppm ICP 27 31 81 101  91  101          983  982  25  35 

Ni 1 ppm ICP 30 27 26 27 27 27 241 247 238 247 48 41.5 86.0 82.8 

Zn 1 ppm ICP 97 103 117 118 132 118 48 70 60 70 911 930 191 186 

S 0.01 % ICP     0.010 0.016  0.020 0.016          6.29  6.30     

Al 0.01 % ICP 5.01 7.24 10.6 17.7  14.5  17.7                 

Be 1 ppm ICP 2.00 1.84 1.0 1.4  1.0  1.4          3.0  2.2 3.0   3.2 

Bi 2 ppm ICP < 2 0.37 < 2 0.29  < 2  0.29          < 2  1.084 < 2   0.7 

Ca 0.01 % ICP 2.13 1.87 0.27 0.18  0.21  0.18          0.67  0.61     

K 0.01 % ICP 2.27 2.3 1.67 1.87  1.84  1.87          2.91  2.94     

Mg 0.01 % ICP 1.60 1.64 0.680 0.609  0.640  0.609          0.5  0.5     

Mn 1 ppm ICP 394 410 999 1010  1060  1010          4800  5220     

P 0.001 % ICP 0.082 0.090 0.032 0.035  0.034  0.035          0.061  0.070     

Sr 1 ppm ICP 159 174 48 35 45 35 121 144 129 144 152 151 182 178 

Ti 0.01 % ICP 0.31 0.38 

  

         0.27 0.29  0.30  0.38  0.52 0.51 

V 2 ppm ICP 130 131 137 186 128 186 141 148 137 148 52.0 67.2 224 220 

Y 1 ppm ICP 18 26 10 14 11 14 14 18 14 18 37 28 30.0 36.5 
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Appendix 5 XRF Data for Elements Analysed by XRF and ActLabs 

 

Table A5.1 Raw data for elements analysed using the XRF at Memorial University.  

Only elements which were analysed by both ActLabs and Memorial are presented in the 

table.  Table 3.15 shows the ratios of the results for the two analytical techniques. 

  Lab # 

 

 M36670D M36671W M36672Q M36673K 

 

 M02–45p 60  M02–45p 370  M02–45p 530  M02–45p 730  

Na2O % 0.87 0.68 0.54 0.76 

MgO % 4.14 3.44 3.71 4.03 

K2O  % 2.47 2.10 2.25 1.98 

CaO  % 7.42 8.86 11.87 15.84 

Sc  ppm 16 13 17 17 

V ppm 104 73 95 81 

Cr ppm 133 117 122 111 

MnO % 0.07 0.07 0.09 0.10 

Fe2O3T % 5.68 4.96 5.38 4.50 

Ni ppm 53 40 44 39 

Cu ppm 31 26 28 28 

Zn ppm 42 30 33 28 

Sr ppm 171.0 366.8 229.3 240.5 

Y ppm 24.3 24.0 24.5 24.0 

Ce ppm 52 113 104 89 

Pb ppm 32 14 17 16 

Th ppm 12 11 9 8 
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Appendix 6 Calcite-free Downcore Plots 

 

Figure A6.1 Caption can be found on the  following page.
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Figure A6.1 Caption.  Downcore plots of calcite-free abundances for elements not 

presented in Fig. 3.13 and Fig. 4.2.  These plots are considered to be the best estimate of 

actual trends in elemental composition in the silicate and organic fractions. Calcite-free 

abundances are determined as set out in §3.5.4.  Mg, Mn and Sr are not included because 

they have moderate to strong cross-correlations with Ca and are therefore interpreted to 

occur mainly in detrital and biogenic calcite; presenting these elements on a calcite-free 

basis would only exaggerate the abundances in calcite-rich samples because of an invalid 

assumption that the elements are in the silicate and organic fractions.  Fig. 3.13 presents 

equivalent plots for Sc, Ni, Cr, Zn and K; Fig. 4.2 for Co, Ce, Sc, La, Sm, Th, Fe and  Y. 


