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Abstract

The main components of steel offshore structures, whether fixed or loating, are

generally tubular membey

Large stre

concentrations arise due to the abrupt
geometric discontinuities at the intersections of these welded tubular members.

called joints or nodes. The varying environmental loads acting o these joints

cause fatigne crack initiation. growth and their final catastrophic failure. This
thesis presents a nnmerical stdy of the total fatige life of offshore tuliar welded
joints wnder the action of axial. in-plane and ont-of-plane bending loads. using loral
strossestrain and linear elastic fracture mechanies approaches. The study inchdes

the development of a compnter program for the i ntomatic generation of meshes for

tubular joints and a contact program for the prevention of erack surface penetration.

Stress analysis 1o determine the possible tion of ti

crack initiation on the
tubular joint has been carried out using eight noded degenerate isoparametric shell
elements. The influence of geometric parameters on the stress distribution around
the joint as well as throngh the joint thickness has been investigated, and the resnits
obtained therein compared with experimental results: they alio have been compared
with established parametric equations. Good comparisons have been obtained with

the experimental values,

The local stress

train approach. using the Manson-Coffin rale, is utilized for the
study of the crack initiation. Using experimental investigations on crack initiation
life of tubular welded T-joints. fatigne strength exponent b and fatigne ductility

exponent ¢ have been determined empirically and used to compute crack initiation



life of the tubular joints analyzed in this study.

The weld toe crack influence on the through thickness ay d surface stress distribution
has been studied using the lin spring element in conjunetion with the degenerate
eight node shell elements to model the crack. The stress intensity factors deter-

mined, from this

study. were compared with available theoretical studies and fonnd

to give good results.

Using the stre:

intensity factors obtained from the line spring model. the through-

thickne:

< crick propagation i

s of the tubular joint nnder consideration were
predicted using Paris crack growth law. The propagation lives for each loading
conditions were predicted. on an incremental cycle basis, np to 90% of the chord

Vhickness cracking. The estimated fatigne lives wete compared with experimental

investigations carried out at Memorial Univers

ty of Newfoundland St. Juhn's (for

axial loading) and Uni

ersity of Waterloo (for in-plane loading) under the (anadian

Cooperative Offshore Tubular Joint Program and found to give good results.
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Chapter 1
Fatigue of Tubular Welded Joints

1.1 Introduction

For more than a century it has been well understood that metal components and
structures subjected to variable or repeated loads would fail in service, even though
they are usnally capable of withstanding considerably higher loads if the loads were
of a static nature. This type of failure, which consists of the formation of a crack or
cracks. under the action of varying loads. arorind highly stressed critical areas has
come to be recognized and known as fatigue. It is however, virtually impossible to
produce a complete list of the types of structures which may suffer from this type

of failure.

Considering structures which are fabricated by welding in nich fatigue cracking
have caused failure. thosc in the following list spring immediately to mind. They
are conveniently classified under some of the typical forms of loading which may

cause fatigue failure.

1. Fluctuating live loads : Bridges.cranes, gantry girders. diesel engine frames,

locomotive underframes. lorry chassis, frames and axles, ships. earth-moving

1



equipment, farm machinery. rock crushers. presses etc,

Pressure fluctuations : Pressure vessels. pipework, containers etc.

. Temperature fluctuations : Process equipment involved with hot or cold

materials. liquid and gases.

=

Vibrations : Rotating machinery. grading equipment and conveyor.

. Environmental loadings : Marine platforms and rigs.

The last item in the list forms the subject of this research. The active search for
gas and petroleum has re ulted in extensive offshore producing activities world-
wide. Most of the rigs currently in operations are of the jacket type construction.
comprising of a steel platform supported by a steel framework. These steel frame
type structures are fabricated from tubular members that are joined together by
welding the end of one tube (brace) to the undisturbed exterior surface of another
tube (chord) at discrete points called the intersections. Figure 1.1 shows the sketch
of a typical jacket type platform. Because of the abrupt discontinuity or change
in geometry at these points coupled with the complex environmental loadings such
as wind. wave and current loadings. as shown in Figure 1.2, they become sources
of stress concentration and hence potential candidates for fatigue crack initiation
and propagation sites (Figure 1.3). If fatigue cracks occur, they are initiated at
these zones of large stress concentrations, and in fact the fatigue behaviour of these
tubular structures depends primarily on the severity of these stress concentrations

and reversals. It is thercfore appatent, that in designing structures with welded



Figure 1" A jacket type platform.
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Figure 1.2: Environmental loadings on an offshore structure.






tubular joints. minimization of the number of joints should be of paramount im-
portance from the fatigue point of view: in addition. an optimal joint configuration
giving a large joint fatigue life should be determined. In the past. majority of
criteria governing tubular welded structures dealt mainly with the static strength
(load bearing) canabilities, because most operational and design experience of these
type of structures had been gained in the relatively shallow and calm waters of the

Persian Gulf and the Gulf of Mexico.

Tubular sections have high priority over open sections for structural use in offshore
platform design becanse of their high-torsional rigidity. symmetry of sectional prop-
erties, simplicity of shape. and pleasing appearance. They possess great structural
advantages as structural elements, but their use was for many years hampered by
the difficulties in joining the members. This problem has been overcome in re-
cent years by directly welding the contoured end of one tube onto the undisturbed

outside of the other tube.

There are innumerable configurations for offshore tubular joints. if three-dimensional
geometry is considered. Even restricting consideration to in-plane connections
(where the axes of all the tubes lie in the same plane), there are still many con-
figurations. In-plane offshore tubular joints are designated as T, double T. Y, K.
N, ctc., depending on the positions of the braces. Figure 1.4 shows some of the
possible geometries of typical tubular joints. Regardless of the loading transmitted
through the brace, large stress concentrations are produced at certain points along
the brace/chord intersection. This effect can be attributed to two main reasons; (i)

the presence of the weld and (ii) the abrupt change in geometry at intersection.
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The stresses at these critical locztions can be several times higher than they would
be if such effects as weld and change in geometry are not present. Cracks initiate
first at these highly stressed regions. and depending on which side of the joint
(chord or brace) this highly stressed region is located, the cracks first spread as
multiple cracks along the weld and soon coalesce to form a single crack. and start

growing through the thickness of the brace or chord.

Leng before an all-out effort was made in the late 1960s to develop relevant offshore
tubular joint desig: riteria. many design configurations have been implemented
to strengthen the jacket joints. Gusset plates. welded in-between the brace ends
and chords. were first tried. Sometimes pass-through gussets [Figure 1.5 (a)] were
used. But it was not too long before it was discovered tiiat gusset plates produced
undesirable stress concentrations which shortened the fatigue life characteristics of
the joint. and the general trend was towards the reinforcing of joints with external
ring stiffencrs (Figure 1.5 (b)]. These ring stiffeners were placed on the chord to
strengthen the chord wall against collapse: sometimes they were added at intervals
along the lengths of the brace to preclude ovalization of the cross section of the
brace and subsequent buckling if the brace was loaded in compression. Use of
interndl ring stiffeners [Figure 1.5 (c)] has recently gained wide acceptance as one

of the effective methods of reducing the stress ion around the i

of tubular joints, provided the tube is large enough to allow their placement.
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Figure 1.5: Types of stiffeners used in offshore tubular joints.
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1.2 Crack Initiation and Growth in Fatigue Anal-
ysis

The fatigue strength of a structure, for general engincering purposes. is described
as the number of stress cycles of a particular amplitude that a given component will
withstand. before complete failure occurs. Fatigue failures are divided arbitrarily
into two groups, viz.. low cycle and high cycle fatigue failures. Where a component
fails within 103 to 10% cycles or less, the failure is termed as a low cycle fatigue
failure. If components survive more than 106 cycles then the process is termed high
cycle fatigue. Structures such as submarines, pressure vessels. steam turbines etc..
that are subjected to very low frequencies of loading are normally associated with

low cycle fatigue failure. On the other hand. offshore structures such as oil rigs,

are subjected to relatively high loading frequencies due to the passage of waves.
Because of this, the stresses in oil rig structural members. have to be designed for
the high cycle region ( lives in the region of 108 cycles and above). Fatigue failure.

whether of low or high cycle . consists of three distinct stages:

Stage | : crack initiation and nucleation:
Stage Il : crack propagation: and
Stage Il : ultimate failure.

For most practical design purposes. particularly for offshore steel structures, the last
phase is ignored. In these cases, the desigr against fatigue does not allow cracks
to propagate to a critical size where rapid brittle fracture can occur. Materials
used in offshore structures are ductile enough to cause separation of the brace from

the chord before brittle fract ‘re can occur in the structure; thus brittle fracture is



prevented in offshore structures..

The evaluation of the crack initiation life by the local strain approach concept

(strain life) is based on the observation that in many components the response of the

material in critical locations is strain or deformation dependent. This approach to
crack initiation recognizes the fact that fatigue is a localized process and. therefore,

focuses on the regions of stress concentration in the structure where crack initiation

is most likely to occur. Since these regions experience local plastic deformations.
plasticity effects are explicitly treated. The fatigue resistance of the structure at
the critical point is characterized by a straiu-life curve obtained from the log-log

plot of the total strain amplitude Az/2, versus reversals to failure,

V7., which is

given in the form:

N+ g (2N (L)

where

o

= Elastic modnius.

= Fatigue strength coefficient.

= Fatigue ductility coefficient,
fatigue strength exponent,
fatigue ductility exponent, and
Ny = fatigue life of the specimen

0.9
4 s
i

and is schematically shown in Figure 1.6,

Assessment of the crack propagation life is generally based on linear elastic fracture

mechanics principle which has received increasing attention during recent years in
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the fatigue analysis of tubular joints. Parameters such as nominal hot spot stress

and crack size are used by this approach in characterizi beh

g the fracture of

structures. Linear elastic fracture mechanics (LEFM) methodology uses an analyti-
cal procedure that relates the stress field magnitude (Figure 1.7) and its distribution
in the vicinity of a crack tip to (i) the nominal stress applied to the structure. (ii)
the size. shape. and orientation of the crack or crack-like discontinuity and (iii) the
material properties. Any loading on a cracked body is accompanied by inelastic
deformations in the neighbourhood of the crack tip due to stress concentration,
Depending on the mode of loading on a cracked component, the relative movement
of a crack surface is characterized by three basic rodes of deformation and these

are distinguished as:

1. The opening mode (Mode ). characterized by local displacements that are

symmetric with respect to the ry - and rz-planes. The two fracture surfaces

are displaced perpendicular to each other in opposite directions [Fig.1.3 (a)].

I

The sliding or shear mode (Mode 1), characterized by local displacements
that are symmetric with respect to the r —y plane and skew symmetric with
respect to the r — = plane. The two [racture surfaces slide over each other in

a direction perpendicular to the line of the crack tip [Fig.1.8 (b)].

. The tearing mode (Mode I11). is associated with local displacements that are
skew symmetric with respect to both z —y and z — = planes. The two fracture
surfaces slide over each other in a direction that is parallel to the line of the

crack front [Figure 1.8 (c)).

Each of these modes of deformation corresponds to a basic type of stress field (see
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Figure 1.7) in the vicinity of the crack tip. Depending on the geometry and loading
conditions. the deformations and stresses at the crack tip can be treated as one or
a combination (mixed mode) of these local displacement modes. Tigure 1.7 shows
that the distribution of stresses and strains around the crack tip can be described
by a single parameter K. designated as the stress intensity factor. Based on the

Griffith’s original analysis (1%43) and the subsequent extension of that work to

ductile materials. it has been established that the stress intensity factor in general

is related to crack length and applied nominal stress as follows:

K = Youm (L2)
where A is the stress intensity factor. oum the applied nominal stress. Y a geomet-
ric factor and athe crack size. The geometric factor Y depends on the configuration
of joint and the crack geometry and has been the subject of extensive investigations,
As a result. various relationships for stress intensity factors of simple crack config-
urations with various crack sizes. orientations. shapes, and loading conditions have
been published. Unfortunately limited number of studies have been made in this
directic: for welded tubular joints. Existing studies have always been carried out
experimentally with the argument that the complexities of the geometry and the
three dimensional stress distributions around the welded intersections have made
it very difficult to determine, analytically, the function Y for tubular joints. Since
present investigation is analytical, an attempt is made to study this problem in

detail.



Many theories and empirical equations relating fatigue propagation rate (da/d\)
to stress intensity factor range (AA') have been proposed: the most commonly used

i the Paris power law:

du R 3
—_ = 1.
i~ CIARN) 1.3y

where (* and m are material constants

From Eqn. (13) the propagation 1ife (Np) can be calenlated by integrating from

the initial flaw size depth (a,) to critical faw size (ac) as:

. L du
Np o= /mm (A81)

In conelusion it is apparent that the fracture mechanics methodology offers the most
comprehensive approach to fatigue life determination of offshore tubular joints. This
merhadology is used in this investigation to determine the fatigue crack propagation

life of unstiffened tubular joints.
1.3 Scope of the Thesis

The purposes of this study is to estimate by numerical analysis the fatigue life
of tubular joints which have been tested in the Strength Laboratory of Memorial
University of Newfoundland. St. John's. The influence of various geometric param-
eters on the stress distribution around the intersection is examined and the results

compared with the available parameu: ¢ equations. The through thickness stress
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distributions have been investigated by using a simple lincar relationship between
the through thickness bending stress and hot spot stress (degree of bending). The
relative proportion of bending stress in the wall of the tube is investigated and its
importance in fatigue life evaluation emphasized. The behaviour of the stiffened
tubular joints with internal ring stiffener is investigated with a view to obtain the

size and positions for which they are most efficient from fatigue point of view.

A numerically officient method for determining the combined crack initiation and
crack propagation life of offshore welded tubular joints is developed nsing finite el-
ement method. Fatigue life of offshore welded tubular joints have been determined
from an entirely numerical point of view and compared with the experimental re-

sults obtained for tubular welded joints at the Faculty of Engineering and Applied

Science. Memorial University of Newfoundland.

1.4 Organization of the Thesis

The following provides a brief description of the material covered in this thesis. The
study mainly emphasizes the use of numerical methods for fatigue life assessment
of full scale offshore welded steel tubular joints under the action of brace axial.

in-plane and out-of-plane bending loads.

Chapter 2 covers the past, present and related review of literature concerning off-
shore welded tubular joints. Various numerical and theoretical backgrounds utilized
in fatigue strength analysis are presented in Chapter 3. The formulation of the el-
ement (degenerate isoparametric shell element - 8-node serendipity and 9-node

Lagrangian) used for the stress analysis of stiffened and unstiffened tubular joints,
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in the present study, is given in this chapter. The ‘line spring element formulation
developed by Parks et. al. (1931) have been utilized to model the crack and for
SIF evaluation along the crack front. The basic concept of this element is also

presented in Chaptes

Finally the formulation of the local strain approach for
crack initiation life and the integration technique of the Paris power law, for fatigue

crack propagation are presented.

In order 1o predict the fatigue crack initiation life of any component susceptible
to fatigue failure. the knewledge of the stress distribution in the vicinity of the
stress concentration areas is required. The initiation life computation therefore,

depends on the accuracy with which the stresses can be evaluated. Chapter 4,

explicitly presents a comprehensive stress analysis of unstiffened tubular joints and

the evaluation of the stress concentration factors for the determination of hot spot

location where the crack is likely to initiate. Comparison of results obtained from

the present study and experimental studies is also presented in this chapter.

In Chapter 5 the stress analysis and the behaviour of the tubular joints with in-

ternal ring stiffeners, under the action of the three loading ( brace axial, in-plane
and out-of-plane bending) cases. are given. The influence of stiffener locations.

number (1v3), height (HS) and thickness (TS) of stiffeners on the stress distribu-

tiou around the intersection is provided: also comparisons with known

and analytical results have been made.

The crack initiation life prediction using the local stress approach is presented in

Chapter 6 and Chapter 7 presents the application of linear elastic fracture mechanics
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(LEFM) concept to fatigue crack propagation (FCP) life estimation of unstiffencd

tubular joints. Chapter 7 concludes with the evaluation of the total life of the joint

(i.e.,the sum of crack initiation life and the propagation life V7 = N7 + Vp) and

the comparison with both experimentai and analytical investigations.

Chapter 8 presents the summary, conclusions and the contribution of the present
study. It also provides recommendations for future theoretical studies on offshore

tubular joints.



Chapter 2

Literature Review

2.1 General

The state of deformation. stress and cracking in welded tubular joints. with complex
geometric configurations. has been of great concern to the offshore engineers for

These

many years and this has resulted in
have given rise to both analytical and experimental studies with many significant

contributions made in the past few years.

The relative complexity of the geometrical configuration of the tubular joints, as
well as the thin-shell theory governing their behaviour, have contributed immensely
to the unreliable prediction of the stresses in such joints by analytical techniques.
Hence numerical technigues such as the finite element metho. , have offered an al-
ternative acceptable and reliable procedure for handling complex geometries and
boundary conditions. Early attempts to apply the finite element method to the
stress analysis of tubular joints were somewhat hindered by the computational de-
mands generated by too many elements. The advances in the computer technology.

with a larger central memory and faster computers in the recent years. have made

21
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it possible to apply this powerful numerical technique not only to the stress analysis
of tubular intersections. but also for studying the elastic behaviour of these inter-
sections when they contain crack-like defects. However. some problems arise in
modelling the near crack tip stress field using finite elements due to the singularity
at the crack tip: the regular finite element shape functions when used for the anal-

5 of a crack are unable to represent this crack tip singularity. and thus produce

poor results when applied to fracture problems. Many attempts have been made to
overcome the inability of the finite elements to represent the crack tip singularity by
developing special elements which incorporate the required stress singularity in their
formulation. The relevant literature pertaining to these developments are reviewed
below to understand the state-of-the-art developments of fatigue and fracture of off-
shore tubular joints. While reviewing the state-of-the-art. a conscious decision has
been made to neglect the large amount of experimental studies that are available on
all types of tubular and other joints (T-joints, butt-welded joints. cruciform joints,
etc.): in addition, the earlier numerical developments have also been left out for the
major part except where it is found to be necessary to understand the thematic

development of the topic.

Most analytical and experimental investigations. carried out to date on welded
joints, have been done with a view to acquire significant information as to the life
expectancy and fatigue performance of typical joints used in offshore construction.
Two lines of approaches have been followed: the traditional S-N curve approach
(stress-life) and the recent fracture mechanics approach (used in estimating the
fatigue life spent in crack propagation), with the fracture mechanics approach re-

ceiving greater attention recently in the fatigue analysis of tubular joints.



23

2.2 Stress Analysis of Stiffened and Unstiffened
Tubular Welded Joints

Offshore structures such as fixed platforms that are generally of tubular construc-
tion. experience high local stresses at the intersection of the chord and the brace
adjacent 1o the connecting weld. where atigue damage will generally occur. There-
fore. fatigue analysis is highly dependent on the accuracy with which this high local

stress at the hot spot can be calculated. The life determination is related to the

nominal hot spot stress in the S-N diagram. Hence the first part of any fatigue
study is the determination of the stress distribution. along the intersection as well
as through the joint thickness. obtained experimentally, by strain gauging and. an-
alytically by finite element method (FEM). For unstiffened tubular welded joints
studies have shown that depending on the loading type (axial, in- and out-of-plane
bending loads). geometry of the joint and the joint parameters (J. 7. a. 7. etc.)
the hot spot may be located either on the chord side or the brace side. In addition.
it may be at the crown or the saddle or in between the two points depending on
the joint geometry. type of load and its combination. It is therefore apparent that
a good design of offshore unstiffened tubular welded joints, from the fatigue crack-
ing point of view. depends on the effort spent in the early stage to determine the

magnitude and the location of the hot spot stress.

I'wo early methods, both very approximate, which have been summarized by Toprac
ct al.(1966) are usually referred to as the ring beam analogy and the Kellog (1936)
method. Kellog method is based on the equations for a beam on elastic foundation.

However. neither of these methods is now used. Of the theoretical techniques
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thin shell finite elements have been used by several investigators, notably Dundrova
(1965) and Scordelis (1970). but this method suffers from considerable limitations
from the point of cost and of computational time. The finite element method.
though suffering from the major disadvantage of being costly, particularly for com-
plex joints. is really the only method which is capable of giving the local stress levels
to the necessary degree of accuracy for fatigue strength calculations. Here, the as-
sumption that members can be represented as thin shells is invoked and several

types of shell elements have been used by different investigators.

Three distinct approaches, to the finite element representation of gencrally curved
thin shells. have been employed based on (i) flat triangular or quadrilateral cle-

ments (ii) curved elements. formulated on the basis of various shell theories and

(iti) three-di ric elements ialized to handle thin shells (de-

generated isoparametric three-dimensional clements). These elemenis have been
used by several investigators with reasonable results. notably among them being
the studies of Rashid and Prince (1965) (flat triangular elements for the stress
analysis of shell intersection), Greste (1970), Johnson (1967) (quadrilateral ele-
ments for the analysis of tubular K-joints), Yoshida et al. (1977) and Zienkiewicz
(1977) (three-dimensional isoparametric elements for crack initiation prediction of

tubular T-joints).

Kuang et al. (1975, 1977) carried out extensive and detailed studies on the stress
concentration factors in welded tubular joints. Empirical formulae for estimating
stress concentration factors for simple joints, commonly used in offshore structures,

were derived from the results of this parametric study. Three types of simple non-



reinforced joints. viz K. and TK-joints were considered. The finite element pro-

gram used was that developed at the University of California. Berkeley. by Greste
and Clongh (1970). They modified existing stress analysis program to broaden the
scope of its application and improved its efficiency and called it TKJOINT. They
concluded that the parametric formulae presented by them would provide design-
ers with sufficient information regarding the magnitude of hot spot stress in simple

non-reinforced joints.

Welded tubular connections were analyzed by Liaw ef al. (1976) using 20 noded
three-dimensional isoparametric elements. The elements were found to provide
more accurate modelling of the joints. The results of PMBSHELL and TKJOINT
programmes were compared for an ungrouted K-joint and were found to give good
agreement with their work except for some differences in the hot spot regions. They
concluded that the small deviation was due to the assumptions made for using flat

plate elements.

Gurney (1979) demoustrated that the stress concentration in tubular members can
be reduced by controlling the weld shape: he observed that by increasing the weld
leg length the fatigue strength of the joint could be increased. but found that this
was relatively a minor effect. In his parametric study. Berge (1983) modelled the
weld shape using the parameter . the weld toe angle. and p. the notch radius, and
argued that the proper modelling of the radius p gave a more realistic model to

the stress distribution at the weld toe and therefore had a significant effect on the

fatigue strength of the joint.



26

The study by Hoffman and Sharifi (1980) have given a deeper insight into the
stress concentration along the weld toe of the tubular T-joints. Two types of
three-dimensional isoparametric elements were used in their studies (8-noded brick
element and 16-noded thick shell element). with various “incompatible” modes
introduced into the stiffness formulations to improve the flexural behaviour of the

elements.

Gulati ef al. (1982) conducted an analytical study of stress concentration effects

in a multi-brace joint. Also studied were the simple T, K and TK joints subjected

to isolated axial or in-plane bending loads. Loadings selected were only those that
could lead to direct comparisons with stress concentration factors estimated by ex-
:sting parametric equations. The comparisons showed good agreement between the
computed and estimated values of the stress concentration factors. Majority of the
finite element analyses were conducted by using MSC/NASTRAN computer pro-
gram. The element types used included QUADd, TRIA3, and BEAM elements and
-ome analyses were conducted using the STARDYNE program. They concluded
from their investigations that restricting attention to crown and saddle points for
fatigue life evaluation can lead to erroneous results; hence they stated that fatigue
life evaluation of a tubular joint should be carried out at eight points equally spaced
at the chord-brace intersection. They argued that in computing stress concentra-
tion factors by using parametric equations for K and TK joints, both the joint

geometry and the direction of loading should be properly considered.

Panagiotopoulos (1986) used a solid, incompatible element, at the intersection re-

gion of the T- and Y-joint connections, while using Ahmad et al's (1970) shell



element to model the rest of the structure. The transition between the two ele-
ments was accomplished by appropriately transforming the degrees-of-freedom of
nodes. located on the mid-surface of the shell element, to be connected to the solid
elements. Comparison between the numerical and experimental results demon-
strated the efficiency of this type of idealization for predicting the stress gradients
at the intersection region. It was concluded that this structural modelling leads to

reliable results with no loss of essential features of the structural behaviour.

Dharmarvasan and Aaghaakouchak (1988) presented a finite clement stress analysis
of tubular joints stiffened by internal ring stiffeners of different sizes and at differ-
ent locations in the chord. In order to stud' the behaviour of these set of tubular
joints. a finite element parametric study was conducted. Semi-loof shell elements
were used throughout the study with the explanation that these elements have a
general curved shape and therefore model the geometry of the structure correctly.
In their study. a T-joint with 15 different states of stiffening was analyzed under
three loading cases: axial. in-plane bending and out-of-plane bending. Results of
their analyses showed that in the case of axial and out-of-plane bending loading.
adding the stiffeners to the chord at certain positions greatly reduced the stress
concentration factors and gave a more uniform stress distribution around the in-
tersection, especially on the chord side. The effect was found to be less significant
in the case of in-plane bending. From the stiffener size point of view. it was ob-
served that under the axial and out-of-plane bending loads, the stiffener heiglit had
the stronger effect in reducing the stress concentration factors (SCFs) compared to
stiffener width. From the foregoing observations, they concluded that the moment

of inertia of the stiffener is the main factor in controlling the level of SCFs, They



proposed that for the axial and out-of-plane bending cases the two quarters of the
plug were the optimum positions. On the effect of the number of stiffeners, it
was observed that as long as the stiffeners were located at the correct positions.
increasing the number of the stiffeners resulted in increasing the chord moment of
inertia and consequently in reducing the chord SCFs; but they have a smaller effect
on the brace SCFs. They finally concluded: stiffening tubular joints at the middle
half of the plug gives the optimum position for axial and out-of-plane bending
(OPB) load cases. For the in-plane bending situation. adding the stiffeners to the
two outer quarters of the plug was mo: efficient; the brace side may experience
high SCFs aue to the introduction of stiffeners. Stiffening reduces the ratios of
bending to membrane stresses and produces a more uniform distribution of the
stresses around the joint of the tubes. In this case it was stated that once the crack
starts growing there may be a faster rate of crack growth through the thickness:
hence if the existing definition of fatigue life in tubular joints is used it may not be

sale to use the existing $-N curves for stiffened joints.

Aaghaakouchak and Dharmavasan (1990) presented an improved finite element
technique for the determination of stress distribution around the welded intersection
of stiffened and unstiffened tubular joints: a combined model of three dimensional
and shell elements was considered in their study. Three dimensional isoparametric
elements were used to model the welded intersection of the tubular joint and semi-
loof thin shell elements were used for the rest of the joint. The results of the
stress analysis obtained from both stiffened and unstiffened tubular joints, using
the combined model., was compared with the results obtained from experiments and

other types of finite element analyses. For the unstiffened joints, it was observed
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that the model gave the result very close to the experimental stress concentration
factors obtained for steel tubular joints. For the stiffened joints. they concluded
that the distribution of available experimental SCFs were in general agreement
with the finite element analysis using shell elements; close to the stiffencr posi-
tion. finite element analysis. with shell clements, showed an increase on the brace
and a decrease on the saddle. The reduction of the SCFs at these positions on
the chord. obtained experimentally, were found to be more significant than that
predicted by finite element results. For the combined model of brick and shell el-
ements. it was observed that around the stiffencr positions due to the presence of
significant shear and through-the-chord-thickness stresses, the direction of the prin-

cipal stresses

changed. The maximum difference between the principal and normal
stresses were found to occur in the vicinity of the stiffener position on the chord.
Comparing with available experimental results. they suggested that for the case of
heavier stiffeners. a higher percentage of the loads were transferred to the chord
around the stiffener position. They finally concluded. that. the through-the-chord-
thickness transfer of loads may be a factor in this more significant reduction. and
therefore. the strain measurements carried out on the tubular surfaces during the
experiments on stiffened joints may not be able to represent the maximum princi-
pal stress at the chord weld toe and that care should be taken in interpreting the

results,

2.2.1 Parametric Equations

Based on the results of numerical and experimental analyses. by several researchers,

have been developed, for determining the stress

parametric eq
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factors along the intersection of offshore tubular joints. and presented, in the famil-

iar form of paraiaetric equations

SCF = Ca™3™r™y™("sing"® (2.1)

where C'is a constant. a = 2L/D. 3 = d/D, v = D/2T, r = /T, { = g/ are the
non-dimensional joint parameters. and nl, n2, n3, nd. n3. 6 are exponents and 0

is the intersection angle between members.

In addition to the work of Kuang et al’s (1975. 1977) mentioned carlier, Gibstein

(1978, 1981) also carried out parametric stress analysis of T and K (non-overlap

and stiffecned) joints using the finite element program NV332. In the first study.
seventeen T-joints were analyzed with both chord ends rigidly fixed. To investigate
the effect of fixity. additional analysis of a T-joint with the chord ends simply
supported was carried out. All the three loading cases — axial. in-plane and out-of-
plane br.ding loads — were investigated. It was stated that there was a difference
of 5% for axial loads and no difference in the bending ones. for the two boundary
conditions. The influence of a. which was not investigated, was taken from the
Kuang analysis. The SCF formulae for the brace had to be modified, by a factor
of 0.8, to allow for differences between the predicted and experimental SCFs. In
the second study nineteen models of K-joints, with 3 = 1.0, were analyzed and

parametric equations presented for the chord and brace.

Wordsworth and $medley (1978) presented empirical formulae for SCFs in T, Y,

KT and X-joints, based on acrylic model test results. It was suggested that a
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correction factor for the weld he applied "Fs obtained for T

multiplier to the
and DT joints for the chord side. Due to lack of data. no correction factor was given
for Y and N-joints. The performance of the two semi-empicical equations given
above (Kuang's and Wordsworth and Smedley) was compared by Irvine (1981). It

was conclided that the stre

concentration factors obtained using Wordsworth and

Smedloy’s oquation were more conservative than those of Kuang,

A set of equations. 1o predict these stress distribntions for simple joints (T and
). was proposed by Dhamarvasan and Dover (1951) and has been used to predict
mixed mode stress concentration factors. The resnlts obtained from a complex K
Juint was also examined in detail and the importance of the stress state, when pre-
dicting the mixed mode stress concentration factors. demonstrated. Three methods

were used for their studies, viz., finite clement analysis. strain-gauged steel models

and strained-ganged

viie models, The results fom these techmiques and the
formulae obrained from them were compared with the available analytical. exper-

imental and stress distribution equations. In conclusion it was abs

ved that only

the parametric equations by Wordsworth and Smedley (1978) could be assessed
from the data base. They stated that these equations were on an average 7%

% and 1550 the a

ligher and fall within a scatter band of crvlic model gave
comparable accuraey to the Wordsworth and Smedley equations. It was also shown
that Dharmavasan and Dover's (1981) new stress distribution formulae were more

accurate than previous tormulations. It was shown that these new formulae can be

used Lo predict mixed mode SCF's to within +20%%.

Connolly et al. (1990) carried ont a thin shell finite finite element parametric
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study of the through-thickness bending to membrane stress ratios in tubular Y-
and T-joints. In their study. nearly 900 finite element runs were performed for a
wide range of joint geometries for axial. in-plane bending and out-of-plane bending
loads. The validity of their approach was demonstrated by comparing the thin
shell finite element results with data obtained from strain-gauged acrylic model tests
and other finite element analyses utilizing thick shell or brick clements to model the
intersection. The results were then used to construct semi empirical 2quations which
related the relative proportions of bending and membrane stresses to a parametric
equation of the joint. They concluded that the only important feature of the raw
results which could not be directly incorporated into the pararnetric equations was
that for small values of the brace angle 8 (typically below 15°) together with either

small 3 (= d/D) orsmall = (= t/T): the proportion of membrane stress was typically

much higher than would be expected from trends in the rest of the data. They
suggested that in such cases it was probably wise to assume conservatively that the

through thickness stresses are wholly tensile.

A statistical method for identifying the probable SC'F regimes was developed by
Dover et al. (1991): they compared five sets of SC F parametric equations that gave
various levels of prediction and determined the best parametric equations that could
be used for design purposes. The five parametric equations used in their study were
those due to Kuang et al. (1977), Wordsworth and Smedley (1978), modified UEG
(1985). Efthymiou and Durkin (1088), and Hillier et al. (1990). They concluded
that the currently available steel SC'F' database was adequate for some categories
(particularly. crown and saddle of T-joints) but insufficient for many. They also

observed that some equations have normalized mean values close to unity, whereas
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others give conscrvative values and hence advocated accountability in overall safety

assessment where mean values were close to one.

R handra et al. (1991) conducted an analytical and i al i

on internally stiffened steel tubular joints. Based on finite element analysis of T and
Y stiffened joints, optimum stiffener positions were proposed for reducing the stress
concentration factor. Parametric equations for calculating the maximum stress

concentration factors (SCFs) for these joints under different loading conditions

were also developed. The i I and analytical results were d. On
assessing the influence of stiffener parameters (stiffener width/chord diameter ratio,
X = B/D; stiffener thickness/chord thickness ratio, w = T,/T), it was observed
that there was a reduction in SCFs when the stiffener width/chord diameter ratio
increased. However, they found that the reduction in SCF was not significant when
the stiffener width/chord diameter ratio increase beyond 0.2. A reduction in the
SCF was similarly obscrved when the value of stiffener thickness/chord thickness
ratio increased. It was, however, . Userved again that the reduction in SCF was
not significant when the stiffener thickness/chord thickness ratio increased beyond
0.75. The error in estimating the maximum stress concentration factor using the

parametric formulae was given to be between +24% and —16.8%.

2.3 Fatigue of Tubular Welded Joints

From an engineering point of view, the total fatigue life of offshore tubular joints
compri~e of cycles required for crack to initiation (fatigue crack initiation life) as

well as those required for crack pr fon (fatigue crack ion life); that




where

Nt = total cycles to failure;

Ny = cycles to crack initiation; and

cycles for crack in propagation.

The relative magnitudes of .V and .V, in Eqn. (2.2) can vary greatly from structure
to structure. depending on the fabrication history. nagnitude of applied loads.

and severity of stress concentrations. It has generally been viewed that for large

complex structures fabricated by welding. .Vy. is relatively small compared to V.
For example -esults from a full scale test of welded tubular joint. typical of that
in an offshore structure. carried out by Wylde and McDonald (1981) demonstrated
that engineering-sized cracks of | to 3 mm were present at less than 10% of the total
life of the welded tubular joint. The results of recent experimental investigations
reported by Pates et al., (1989) have shown that the concept of neglecting the crack
initiation life of large scale structures, fabricated by welding may lead to erronous
determination of the total fatigue life of such structures. For axial loading, it was
observed that the crack initiation life was about 34.6% of the total life, in air at
250.0 MPa (hot spot nominal stress) and 46.6% in synthetic seawater at 160.0 MPa

(Swamidas et al., 1988)
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The local stress-strain approach have been applied successfully in the evaluation of

A

rack mitiation of welded joints. The procedure is based upon the earlier

atigue
pionecring work in fatigue of notched members by Neuber (1969) and Peterson
19741 and later investigations by Lawrence (1978, 1980) and Fuchs (1950). The
initiation life of the welded joint. which is assumed to contain a small notch, is

related to the life of small unnotched specimens cycled to the same strains as the

material ai the weld notch root. The initiation period is defined as the time (in

terms of cveles) required for a small. but detectable, fatigue crack to develop. For

many veurs. this definition has heen of great concern to many researchers. It has

been difficult to quantitatively define the size of a crack to the end of the initiation
and the beginning of propagation periods. For the crack propagation stage the
fracture mechanics approach has proven to be an efficient and powerful tool for this

aspect of fatigue life evaluation.

2.3.1 Fatigue Crack Initiation

Dowling 11979} and Lawrence (1979) have shown. in their respective studies. that
reasonable success can be achieved by combining the local stress-strain approach
to crack initiation and the fracture mechanics approach to crack propagation. Al-

though this combined initiation and propagation approach to fatigue life prediction

ix both physically correct and generally applicable, the relative magnitudes of .Vy.
and Ny in Eqn. (2.2) can vary from structure to structure, depending on fabrication
history. magnitude of applied loads. severity of stress concentration and environ-

mental influence (corrosion). During the past. since the introduction of fracture

mechanics approach for evaluating the fatigue life of offshore tubular welded joints,
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it has been argued  nerally that lor large complex structures like the tubular joints.

fabricated by welding. .V} is relatively small compared to ;.

Socie et al. (1979 presented a model for combining strain cycle fatigue and frac-
ture mechanics concepts to estimate the total fatigue life of notched and cracked
members. In their study the strain-life approach was employed by using the rela-

. and reversals to failure. 2.V, which was

tionship between strain amplitude,

expressed in the form:

where o = fatigue strength coefficient. b = fatigue strength exponent. < = fa-
tigue ductility cocfficient. ¢ = fatigue ductility exponent and E = elastic modulus.
[heir model provided  nonarbitrary definition of fatigue crack initiation length.

A working definition for crack initiation length was proposed as the depth of the

initiated fatigue crack when the fatigue damage due to crack propagation mech-
anisms exceeded that due to crack initiation or strain cycle fatigue mechanisms.
('rack initiation fength. and the total fatigue life, for center notched aluminium
plates subjected from zero to maximum tensile loading were determined using their
model. Theoretical elastic stress range, AS;. at a distance r from a notched root
was employed in conjunction with Neuber's rule (1969) to approximate the product

ol actual stress range. Ao, and the strain range. Az, along the potential crack

path part as:



From the various combinations of stress levels and notch acuity analyzed in their
tests. 1o show the validity of their model. it was observed that the relative portion
of the life spent in crack propagation increased with decreasing stress levels as also
ubserved caclier by Hunter and Fricke (1957) and Dowling (1968). They concluded
that crack initiation lengths, in typical engineering materials. appeared to be be-
tween 0,001 and 0.010 in. It was also ubserved that the greater the notch acuity.

the larger is the portion of life spent in propagation.

An energy based method of calculating elastic-plastic strain and stresses near
notches and cracks was presented by Glinka (1985). [t was assumed that the strain
encrgy density in the plastic zone. ahead of a notch. can be calculated on the basis

of the elastic stress-strain solution. The application of this method for notches un-

der tension and bending, including the effect of stress multiaxiality near the notch
lip. was also presented. The concept developed by Hutchinson (1968). for cracks,
and Walker (1971), for deep sharp notches (that in the case of localized plastic

vielding the energy density distribution in the plastic zone is almost the same as

iu lincar clastic material) was used in his study. For plane stress condition, using
Ramberg-Osgood stress-strain relationship. he proposed that the energy density

should be calculated as in the presence of localized yielding at the notch tip.
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and that if the nominal stress S, is beyond the proportionality limit. then the

energy density should take the form
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For plane strain conditions. a biaxial state of stress exists at the notch tip. But it
was however, stated that the energy density was made up of o, only because the
components .. ozy. <. vanish. Consequently expressions analogous to Eqns (2.5)
and (2.6) were presented. for this case, by using the suggestions and relationships
given by Dowling et. al. (1979) for the translation of the uniaxial stress-strain
curve into the biaxial “plane-strain™ relationship. It was pointed out that in the
case of sharp. deep notches and cracks. the stress components o, and o. were
relatively higher than ahead of the blunt notches, and that the stress distribution
was also larger owing to the more intensive plastic yielding ahead of the crack tip.
It was demonstrated that the method. which was based on the assumption that the
strain energy density distribution (we will call it as Glinka’s method) in the plastic
zone ahead of a notch is the same as that determined on the basis of the pure
elastic stress-strain solution, was the same as the Neuber’s equations. Therefore,
the difference between these two methods was higher for materials with large plastic

zones and higher stress concentration factors. It was observed that in all analyse:
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performed the difference between calculated (using Glinka's method) and measured

notch strains were smaller than 10%.

The predicted fatigue crack initiation lives of welded plated T-joints in air and
seawater environment, was reported by Bhuyan and Vosikovsky (1987). Their ap-
proach was based on the local stress-strain approach. The effects of plate thickness
on predicted fat’s - -ack initiation lives were also presented. The predicted lives
were compared witn tne experimental data from Canadian offshore steel research

program (Vosikovsky ct. al.. 1985/1987: Mohaupt et. al 1987).

2.3.2 Linear Elastic Fracture Mechanics

Linecar Elastic Fracture Mechanics (LEFM) is a branch of applied mathematics
which has developed as a result of studies into the phenomenon of brittle fracture.
Itis the field of analysis that deals with the stress and strain distributions at the tips
of cracks in ideally elastic solids. The approach is based on the fact that the crack-
tip stress intensity factor. A, defined by linear elasticity. uniquely characterizes the
stress-strain field at the crack tip and thereby provides a measure of the “driving

force™ for crack propagation.

Inglis (1913) published the earliest theoretical work on the elastic stress distribu-
tion surrounding a crack in a stressed plate. but Griffith (1920) in a classic paper.
for the first time, identified the weakening effect of cracks in materials. The results
of both Inglis and Griffith show that stress gradients in the vicinity of tue crack tip

are quite steep with the stresses ultimately tending to infinity as the crack tip is ap-
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proached. In order to ascertain why most materials fail well Lelow their theoretical
cohesive strengths, Griffith carried out further investigations. and concluded that
the weakening effect was due to the existence of sharp ended flaws or cracks within
the material leading to high local stress concentrations. His work with glass fibre
shownd the sensitivity of brittle materials to the presence of surface flaws. Applying
the theoretical results due to Inglis, Griffith then attempted to quantifv the weak-
ening effect of the surface cracks. Using the results from Inglis work, he showed
that for a given crack size. there is a critical value of stress g ny. above which
unstable fracturing of the material will occur. To complete the energy balance.
Griffith made the assumption. that the energy required to create new surfaces in
the material is proportional to the fracture area from which energy is released. This
energy balance theory is known as the Griffith fracture criterion and is normally

written in the form

(27)

which indicates that the extension of a crack. in ideally brittle materials, is governed
by the product of the applied nominal stress ¢ and the square root of the crack
length, a. The right handside of Eqn. (2.7) is equal to a constant value that
is characteristic of a given brittle material. Consequently, Eqn. (2.7) indicates
that crack extension in such materials will occur when the product o/a attains a

constant critical value. Eqn. (2.7) has been expressed in another form as

o

E

a

=2 (28)
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where the left-hand side has become known as the energy-release rate, 7. and repre-
sents the elastic energy per unit crack surface area that is avaliable for infinitesimal
crack extension. The right-hand side of Eqn. (2.3) represents the material's resis-
tance R to crack extension. In general the Griffith criterion has been formulated

for both plane stress and plane strain situations as

Plane stress

Tt = /m“ ) Plane strain

where £ is the Young's Modulus. 4, is the surface energy per unit crack area. v is

Tert. =

(2.9)

the Poissons ratio and a is the half crack length.

Trwin (19:18) suggested that the Griffith fracture criterion. for ideally brittle materi-
als, could be modified and applied to brittle materials and to metals that exhibited

plastic deformation. Consequen*ly Eqn. (2.8) was modified to

=2(1 + ) (2.10)

and Eqn. (2.9) became

Ocpit. = | —m——= Plane stress

(2.11)

Oerit, = o Plane strain
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where v, was the plastic work per unit crack area.

The inability of the Griffith fracture criterion to determine the surface energy terms.
~e and 7,. when applied to ductile materials, lead to the recasting of the Griffith
equations in terms of parameters that were more readily measurable. Irwin (1957)
therefore introduced the concept of fracture toughness, given the symbol G, and
defined it as the energy released from the surrounding stress field per unit increase

of the crack area which would be required just to maintain the propagation of the

unstable crack. By using the semi-inverse method of We d (1939), Irwin
(1957) showed that the primary stress components in the crack region correspond
to the three displacement modes (Opening Mode I Shearing Mode 11, Tearing Mode

TII: see Figure. 1.7. in Chapter 1), could be expressed in the following form:

Ty
ory = (2.12)
K
o = 0
Ty (Zm%/( )

In the above expression. r. is the radial distance from the crack tip and the terms
7(8) are the functions of the polar angle 0. From this Irwin observed that the stress
field possessed a singularity of strength 1/y/7 at the crack tip. The parameters Kj,
Ryr.and Kypp were called the * stress intensity factors” (SIFs) corresponding to the

three cracking modes. He further luded that these h ize the

magnitudes of the crack tip stress field.
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From the foregoing review it is evident the linear elastic fracture mechanics is an
immensely powerful tool for crack analysis. It is also clear that, provided a fracture
mechanics solution can be obtained for a structure or component. a safe prediction
for fatigue life can be made for that structure based on data from simple specimen
tests and from numerical /analytical results. This methodology. if well developed.

would tend to climinate the expensive and time consuming large scale tests.

2.3.3 Finite Element Crack Modelling for SIF Evaluation

For the past decade or so, the finite element method has become firmly established
as the standard technique for the solution of practical fatigue fracture problems.
Several techniques have been suggested for evalualing stress intensity factors from
finite element results but adequate representation of the crack tip singularity is a
problem common to most of the proposed methods. From the very outset. the most
appealing approach to finite element fatigue fracture mechanics analysis was that
which took explicit account of the crack tip singularity. Initial efforts with the use of
conventional clements [e.g.. Chan et al. (1970) and Kobayashi (1969)] demonstrated
clearly that hundreds. or perhaps thonsands, of simple elements were required to
achieve a solution accuracy within 5%. In line with the importance of adequately
representing the crack tip stress singularity. both in linear elastic and elastic-plastic
fracture mechanics. special two and three dimensional elements were developed.
Different approaches were utilized by several investigators to determine the stress

intensity factors along the crack front in a structural component containing a flaw.

i i L i & ;
One of the earliest attempts at introducing a —= singularity into a finite element

was presented by Tracey (1971). This approach, employing a simple polynomial



44

displacement field within a triangular element. was subscquently generalized by
Tracey and Cook (1977) to give a family of elements. A singularity of order r—P
(where r is the radial distance from node 1, Figure 2.1) was achieved when the

displacement field within the element was interpolated as

u = (1=€P) 6 +€P (1-n) &y + EPnéy (2.13)

The local coordinates £ and 1§ were defined such that £ = 1 along the edge 2-3 of
the element and § = 0 at node 1. The radial edges 1-2 and 1-3 correspond to n =
0 and 1 respectively. The element that resulted from this technique was. however.

unable to represent the constant strain conditions.

Henshell and Shaw (1975) recognized that by placing the mid-side node at the quar-
ter point in a quadratic isoparametric quadrilateral or triangular two dimensional
element. a singularity in strain results at the nearest corner node. The singularity
was found to be of order 1/y/7 as required by the Westergaard solution (1939) for

stress distribution around a sharp crack.

A different approach to crack tip singularity modelling by finite element methods
was introduced by Barsoum (1976). The idea proposed used the 8 noded isopara-
metric element for plane strain. plane stress and axisymmetric analyses and the 20

noded i: ic for three I crack tip analyses. The singularity in

all the element was achieved by placing the mid-side node near the crack tip at the
quarter point. For the two and three dimensional elements studied, four cases of

crack tip singularity were investigated, viz., (a) Eight noded quadrilateral



Figure 2.1: Triangular element with singularity at node 1.
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with midside nodes of the two sides at quarter points (Figure 2.2): (b) Six noded
triangle with mid-side nodes at the quarter points (Figure 2.3). This triangle was
gencrated by collapsing the side 1-1 of the quadrilateral in Figure 2.3: (c) Three
dimensional Lenty noded cubic element with four midside nodes at the quarter
points (Figure 2.4); and (d) Three dimensional prism with four midside nodes at
the quarter points (Figure %5). This was achieved by degenerating a cube with
one face collapsed. It was observed that the collapsed elements [cases (+) and (d)]

were easier to use in generating mesh and they gave somewhat better results.

For a semi-elliptical surface crack. in a plate of finite thickness. Smith and Alavi
(1971). Smith and Sorensen (1974) and Kobayashi el al. (1973), used the alter-
nating finite element method to obtain the stress intensity factor variations along
the crack front for various crack shapes. The same information was obtained by
Iathiresan (1976) and Raju and Newman (1977, 1970) by using the finite-element
method. Raju and Newman (1981) went further in presenting an empirical stress
intensity factor equations for a surface crack as a function of parametric angle. crack
depth. crack length. plate thickness and plate width for tension and bending loads.

The stress-intensity factors. used to develop the equation. were obtained from their

previous three-dimensional finite-cl analysis of semi-elliptical surface cracks,

in finite elastic plates. subjected to tension and/or bending loads.

The simplicity of the line spring element, developed earlier by Rice and Levy (1972
ab). in effectively reducing a three-dimensional problem to onc in a plate and shell
theory was demonstrated by Parks et al. (1981a). Results for a number of plates

and axially cracked cylindrical shells were presented; these compared favorably with
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Figure 2.5: 3-D prism with midside nodes at quarter points.
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the existing. detailed thre

limensional solutions. They observed that the results
were generally somewhat better for plates than for the shells. In conclusion they
argued that the above phenomenon may be a general feature of the line spring
clement as independently explained by Parks (1981b). Line-spring model results
were obtained by Delale and Erdogan (1981} by embedding the model within sin-
gular integral equation formulations of isotropic elastic plate or shell theory. It
was observed that the computational efficiency of the (one-dimensional) singular
integral equations. when applied to structural components. greatly exceeded even
that obtained with the line-springs embedded in a finite element model of the (two-
dimensional) shell middle surface. In a recent paper Fréhling (1992) has used the
line s -ring elements and weight function approach to verify the SIFs obtained for

an X-joint,

Nin and Glinka (1937) presented a method for the determination of weight funec-
tions relevant to welded joints and the subsequent calculation of stress intensity
factors. The weight function for edge cracks emanating from the weld toe in a
T-butt welded joint was derived using the Petroski and Achenbach (1978) crack
opening displacement function. Parametric equations were derived for the weight
functions: these equations make it possible to calculate stress intensity factors for a
variety of tension and bending combinations. The stress analyses and the stress in-
tensity factor calculations revealed that the geometric parameters such as the weld
toe radius o affect the stress intensity factors more than the stress distributions
ay(r). Finally their comparison of the stress intensity factors. calculated using the
derived approximate weight function with the finite element calculations. revealed

the satisfactory accuracy of the weight function.
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A procedure was developed by Rhee (1939a.b) to calculate the stress intensity
factors from the displacements along any arbitrary crack tip radial line on a quarter-
point singular finite element boundary. The developed procedure was validated by
analysing an angled edge crack in a flat plate under tension and a weld toe surface
flaw in an X-shaped tubular joimt under tension and bending loxdz. He stated
that. depending on the objective of an analysis (deterministic or probabihstic). the
most suitable stress intensity factor solutions can be selected from those given for
various locations. e concluded that the method developed herein. could provide
analvsts with a means to assess the accuracy of the stress intensity factor solution
of complex geometries without resorting to other means. such as experiments. [n
a later paper Rhee (1991) presented a reliable method for the calculation of stress
intensity factor solutions for weld toe surface crack. Two topics were explicitly dealt

with in study: (i) identification of a reliable approach to fracture mechanics

defect assessment: and (ii) the use of fracture mechanics method for design analyses.
Empirical stress intensity factor formulas for T-joints. which were developed from
the solution obtained by the identificd method. were presented: these formulae were
developed from the SIF results obtained for. 40 different T-joints with cracks. Three
type of loading were considered; axial . in- and out-of-plane bending loads. It was
recommended that for SIF empirical formulas to be applicable to general problems
of fracture mechanics and in-service structural integrity assessment, many sets of
SIF formulas have to be developed; the SIF empirical formulas presented by him

were only a starting point of such a development.

Haswell (1992) presented a general fracture mechanics model for tubular joints

based on the results of extensive parametric finite element studies of a range of
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uncracked and cracked joint geometries. The finite element study included over 70
tubular joints containing chord saddle cracks subjected to axial and out-of-plane
bending loads. The fracture mechanics model related. in a general sense. the crack
tip parameter (SIF) to the uncracked stress ficld parameters (degree of hending
(DoB). and stress concentration factor (SCF) ); Parametric study was conducted
to investigate a range of tubular joint conditions. The finite element models were
constructed using 8 noded shell elements. The PATRAN graphics software (PDA
Engincering. 1989) was utilized for the mesh generation, while the model analysis
was performed with ABAQUS finite eleraent software (Hibbitt et al. 1939). Part-
through wall cracks were modelled by including the line spring elements of Parks
and White (1982) along the weld toe position, which was assumed to be radially
offset 25 mm from the brace mid-shell surface. Cracks of constant aspect ratio
(af2c = 0.1) were modelled by mapping a planar semi-elliptical crack front shape
onto the weld toe curve. A simple model relating the stress intensity factor (SIF),
stross concentration factor (SCF) and the degree of bending (DoB) at each discrete

crack depth was proposed as

b fal
—— = A-DB. 2,14
SCFommn 1 - B.DoB (2:14)
where
SIF = N at the deepest point on the crack front.
Tuon = Nominal stress in brace,

SCF Maximum principal stress at weld toe

Tnom



[t was observed that the absolute scatter in the data varied from 8% at crack depth
a/T =02 to 16% at crack depth a/T = 0.3. It was finally concluded that (i) the
model required only a stress analysis of the uncracked joint, as it used the linear
relationships between SIF and SCF. and SIF and DoB at discrete crack depths
between 2% and 80% of wall thickness: (i) the model could be applied to any
tubular joint within the limits of the parametric study using only the results of
an uncracked shell analysis: and (iii) that the effect of complexity and structural
restraints can be quantified in terms of the recuction in crack site SCF and DoB

due to the addition and restraint of in- and out-of-plane braces.

2.3.4 Application of Linear Elastic Fracture Mechanics to
Fatigue Crack Propagation

Safety of structural components that contain cracks. or that develop cracks early

in their lives such as offshore welded tubular joints, may be governed by the rate

of subritical crack propagation. Many attempts were made in the 60's to quantify

the growth stage of fatigue crack by means of fatigue crack propagation laws.

Paris and Erdogan (1963) suggested that the crack propagation depended on the
crack tip stress intensity factor range, A K. which is a proper measureof the “driving
force” for the rate of fatigue crack growth, da/dN. Furthermore, an analysis of
available fatigue crack growth rate data at that time suggested that the functional

relationship between da/d.N and [(AK) could be expressed in the form
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When the experimental results were plotted in the form of log( A ) versus log(da/d.V')
a straight line was obtained suggesting a power law relationship. The slope of the

line m was found to be 4 and they suggested a law of the form

% z ol (2.16)

In the 20 years since Eqn. (2.10) was established. extensive studies of the fatigue

crack growth resistance of a wide range of materials have established that da/d.V
is also sensitive to load ratio and environment. the latter giving rise to additional
loading and environmental variables. It also became clear during this time that. in
general. Eqn. (2.16) was only valid over two to three orders of magnitude in growth
rate. For example, da/dN vs AN in inert environments, examined over a broad
range of growth rates, generally exhibited the sigmoidal shape with thiee distinct
regions shown in Figure 2.6. Following this realization. da/dN vs AR relationships

have been in a state of continual evolution.

The results from Paris law Eqn. (2.16) show that at all values of A a positive
growth rate will occur. However the results due to Liu (1964) demonstrated that
below a certain minimum value of A" no growth occurs. This value of A was referred
1o as the threshold value K. Liu thercfore introduced the fatigue crack growth
threshold. A K. to create a lower asymptote to the da/dN vs. AR curve, thereby
representing rates in region I by:

da

= CAR = AKy)™ (210
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Figure 2.6: Schematic growth rate curve showing the sigmoidal varia-
tion of fatigue crack propagation rate da/dN with stiess intensity factor
range (AK).
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Figure 2.7 provides a graphical representation of Eqn. (2.17) and serves to define

the parameters of this equation and illustrate its asymptotic nature.

An attempt to model the transition from stable to unstable crack growth was
presented by Forman et al. (1967). They proposed the following modification to
Equation (2.16) to account for the upturn in the (AR) curve in Region 11l as Kmaz

approaches the fracture tonghness (A¢) of the material.

da K .18)
IN T =M. -3k

where R is the stress or load ratio (gmn/@maz).

Numerous equations uf added complexity followed the above simple representations.
Several of these utilized common mathematical functions which possess the char-
acteristic sigmoidal shay. 2 of the da/d.N vs. AK curve: for example. the hyperbolic

sine and inverse hyperbolic tangent functions of Miller and Gallagher (1981).

Saxena et al. (1979) pointed out that the equations which are asymptotic in Re-
gion [ tend to select asymptotes which are about 10% below the lowest AR value
contained in a data set, regardless of the fact that cracks could propagate sig-
nificantly below this value. In order to avoid the above problem. the so-called

“th p model” was developed which does not contain an asymptote in

Region 1. This model is based on adding the material's resistance to fatigue growth.
that is (da/dN)*, in the three commonly observed regions of crack growth, Figure

2.3. The characteristic equation describing da/dN as a function of AX is given by:
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Figure 2.7: Schemalic representation of asymptotic crack growth equa-
tion [Liu, 1964)].
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where 4. my. s my and K. are empirical constants which are defined as illus-
trated in Figure 2.3, Each term in Eqn. (2.19) was represented by a given region

shown in Figure 2.8: for transition regions, combination of adjacent terms are used.

The exponents m; and m are slopes in Regions [ and I1, respectively; the constants
v -nd Ajg are the reciprocals of the intercepts (at AA = 1) in Regions [ and II.
respectively. It was argued that the form of the three-component model facilitates
the representation of load ratio effects by expressing +A; and A, as functions of R

since these effects are known to be specific to Regious [ and I1.

In conclusion it is evident that fatigue crack growth rates can be characterized and
predicted using elastic stress intensity factor. This implies that as long as a stress
intensity factor solutic * can be obtained for a cracked body or structure. the life of

the structure can be predicted using fracture mechanics concepts.

2.3.5 Thickness, Size and Geometry Effect

It had 1ung been known that plate thickness was likely to be a relevant variable for
fatigue cracking under bending stresses. This was due to the fact that the stress
gradient through the thickness of a ‘thin’ specimen would be steeper, and as such
will be less damaging than in a "thick’ specimen. However only in the recent past
numerous tests and theoretical investigations have been carried out on welded joiats

under bending loads consideiing thickness effects.



Gurney (1977). on the basis of theoretical fracture mechanics calculations. observed
that the fatigue strength of welded joints could be affected by plate thickness, even

when they were subjected to axial loading.

Gurney (1989) reviewed the research work carried out in Britain on the influence of
thickness on the fatigue strength of welded joints by using both theoretical fracture
mechanics and experimental approach. The results of tests under axial loading
carried ont by Johnston (1973). on spacimens with transverse nonload-carrying
fillet welds fabricated from piates of various thicknesses. indicated that there was a
general tendency for fatigne stzength to decrease as the plate thickness increased.
Several investigators such as Booth (1987). Haibach et al. (1978) and Dijkstra
and Hartog (1978). in their combined Furopean Offshore Faugue Programs. also
found a tendeney for fatigue strength to decrease as the thickness increased. Booth
(1983) investigated bending fatigue life of transverse K butt welds. Haibach et al.
(1
Di

the bending fatigue resistance of transverse nonload-carrying fillet welds. and

kstra and Iartog (1973) the axial fatigue strength of tubular T joints. Reported
at the same time was the work of Wildschut (1978): but surprisingly the tests on 40

mm and 70 mm thick

nsverse nonload-carrying fillet welds in bending exhibited

no ohvious effect of thickness. The results obtained and expressed in terms of
relative fatigue strength normalized to a thickness of 32 mm. were summarized by
Gurney (1989). On the basis of these data. he proposed an empirical thickness

correction for fatigue strength as follows:



where § is the fatigue strength of the joint under consideration. T its thickness.

S the fatigue strength of the joint using the basic S-N curve and T the thickness

corresponding to the basic S-N eurve. with the S-N relationship given by:

N(S)™ = constant (2.21)

The corresponding thickness correction for fatigue life (with m = 3) was giv n by

CGurney as:

L

N o= Np(%e) (2.22)

On the basis of Gurney’s work. the thickness correction was included in the revised

1934 UK Department of Energy Guidance notes for offshore structures (1934). The

reference plate thickness Tp for plate joints was taken as 22 mm. and 32 mm for
tubular joints. Below the reference thickness Ty, the fatigue strength was to be
taken as the strength at Ts. No upper limit existed on the range of the thickness

correction.

2.4 Analytical and Numerical Studies on Fatigue
Life Estimation

The present design method for offshore jacket employs the S-N design curve ap-
proach. These curves are derived from experimental tests carried out on small and
large scale tubular joints. Although this approach will continue to remain the pri-

mary method of design for some time, the effort, geared towards finding analytical
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and numerical approaches to fatigue crack evaluation is rapidly increasing among
many investigators. It is beginning to be clear. that development of an efficient
and reliable analytical /numerical approach to fatigue assessment of offshore tubu-

lar joints may alleviate the costly and time consuming exercise encountered when

tubular joints are to be tested for this purpose. Some analytical and numerical stud-
ies have already heen conducted in this arca and (rom the comparison of results
obtained with experimental approach. it looks that analytical/numerical approach
has a promising future for fatigue evaluation and consequently for the design of

offshore welded tubuar joints.

Becker et al. (1970) compared their theoretical and experimental studies on the
fatigne behaviour of tubular welded joints. Theoretical fracture mechanics ana-
Iytical crack models. using two-dimensional notch cracks and three-dimensional
semi-elliptical cracks were utilized. In order to check the analytical crack models
against their experimental results, fracture mechanics coupons from actual tubu-
lar joints, used in the study. were tested. The material constants obtained were
numerically different: however when they applied it to failure prediction of the ana-
Ivtical notch crack. comparative results in the low range of 4x10% to 10* cycles was
obtained. In their final summation they concluded that linear elastic fracture me-
chanics approach may be used to approximate fatigue crack propagation behaviour
of structural steels and proposed that effective stress be utilized in interpreting the
range of the stress intensity factor when macro-plasticity occurred around the crack

tip.

Dover and Dharmavasan (1982) carried vut random load fatigue tests on T- and
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Y- joints using an ‘Inherent Flaw" model. capable of using fracture mechanics in
a simple way. to predict the fatigue life of tubular welded joints. Observations
during the studies suggested that fatigue cracks present in the tubular joints grew
steadily through the wall thickness at a fairly constant rate. and fatigne crack depth
during the tests on the Y joints was found to be similar to that measured in the
T plate joints. Experimental stress intensity factor AK,., was determined using
the following crack growth expression obtained from specimen tests by Dover and

Holdbrook (1970):

dafdN = 15 < 10THAK.

and the stress intensity factor expression was taken as

K = Y, Y, cumV7a

2.24)

where Y is a factor dependent on crack shape and Yy is dependent on the loading.

joint geometry and local geometry. Yy was assumed as unity and since the two

factors

ill vary during the course of the life. in the early stages ¥s would dominate
whereas for most of remaining life Y5 would control the crack growth. With the

assumption that Y was unity. Y7 was given by.

AR,
Yo = :_‘fﬂi_a (2.25)
nom V/7
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The plot of this factor against a/t for the Y joint was compared with the results
of T joints and a K joint tested by Gibstein (1981) and Gibstein and Moe (1981):

(his exhibited good agreement.

Bhuyan (1936) presented the results of an analytical and experimental investiga-
tion on the fatigue behaviour of welded tubular T-joints. Linear fracture mechanics
approach was used. Analytical study included the development of a finite clement
computer program for tubular joints with or without weld toe crack. while the
experimental investigation consisted of quantification of sea water. temperature.
frequency. load ratio and wave form effects on fatigue crack growth rates in the
base steel material (CT tests) that has been proposed for the Canadian offshore.
The fatigue crack growth rates for tubular joints were determined using the stress
intensity factors corresponding to a 50% of thickness crack and the material coeffi-
cients C' and m were obtained from small scale specimen CT tests. It was observed
that at higher hot spot stress ranges. the estimated lives showed good agreement

with experimental results available in the literature.

Rhee (1986) and Rhee and Tyson (1937) presented analytical solutions that explic-
itly considered the effects of both flaw depth and length near the saddle point of
X- and K-joints under brace tension and in-plane bending loads using TUSTRA
(1985). In the analysis the warped crack surfaces, along the brace-chord intersec-
tion, were modelled using quarter-point crack tip singularity elements. For crack
growth simulation. the three component crack growth model by Saxena (1975)
was used. He concluded in his studies (using axial. in-plane/out-of-plane bending

loads) that depending on the loading conditions, the crack tip behaviour of a weld
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toe surface flaw can be predominantly mixed-mode. even for a simple tubular joint
geometry. It was observed that under a brace tension loading condition. the crack
growth rate on the surface decreased as the crack grew. This he stated was due
to the stress reduction along the crack growing path. Comparison with laboratory

results showed good agreement with his analytical solutions.

Bell et al. (1987) presented the de.elopment and testing of a fracture mechanics
model for prediction of the fatigue growth life of welded plate joints. The finite

element technique was adoptd for the stress intensi

- factor evaluation using both
two and three dimensional analyses. The joints were modelled using quadratic
isoparametric elements, with singular clements around the crack tip. The crack
shape development was achieved throngh the assumption that initially the small
cracks were semi-circular: then the crack shape development could be described by

an exponential relationship

the parameter & according to their study decribed the variation of mean aspect
ratio of the crack with the depth. and was shown to be described by an equation
having the same form as that of Gurney (1979a) for fatigue strength. With the
above explanation they presented the equation relating the parameter k to the

stress range and plate thickness as

2
Ac)® reql/? -
¢ = wlza] 3] a1



65

where tg is a reference thickness and Aag is the associated stress range, ¢ is any
thickness and Ag is its stress range. The number of cycles V. to propagate an

initial size , to final size ay. was computed using Runge-Kutta numerical integra-

tion technique on a excle by cycle basis. From the three crack growth procedures

examined, viz.. single crack (SC') solution. straight fronted crack (SFC') solution

and multiple erack (MC). the multiple crack case. which accounted for the multi-

ple nucleation and coalescence of cracks. gave a good prediction. while the straight

fronted crack (SCF) and single crack (SC') solutions were, respectively. conservative

and over predicted the life.

2.5 Summary

The relevant literature pertaining to the stress analysis. development of paramet-

cquations. fatigue crack initiation. linear elastic fracture mechanies principles.

developments in finite element modelling for stress intensity factor evaluation, ap-
plication of linear elastic fracture mechanics principles to fatigue crack propagation.

al/analyticai studies

thickness/size and geometry effect and the available numeri
un fatigue life estimation of stiffened and unstiffened tubular joints have been re-
viewed in this chapter. Inspite of the numerous developments available fu the area.

itiation

1ot a single study has examined the whole range of stress analysis, crack i
and crack propagation in a detailed manner and tied together these results with
the results of experimental investigations. Since a detailed experimental investiga-

lion was carried out in the Faculty of Engincering and Applied Science. Memorial

ewfoundland. on tubular T-joints it was felt necessary and

University. St. John's, )

relevant to carry out a detailed theoretical investigation of tubular T-joints with a
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view to compare the results. The subsequent chapters outline the efforts made in

this direction and the results obtained in the process.



Chapter 3

Theoretical Background

The results of the stress analysis. reported in this thesis, was obtained using the
general purpose computer program ABAQUS marketed by Hibbit, Karlsson and
Sorensen (1989): certain smaller programs were written for the purpose of gener-
ating the proper data input to ABAQUS. In order to clarify the essential issues
involved in the modelling and analysis of the problem and to appreciate the valid-
ity and applicability of the results given herein. relevant theoretical background is

given in this chapter.

3.1 Finite Element Formulation

The complex geometrical configurations of tubular joints coupled with their be-
haviour as shell structures, have created increasing difficulties in finding a univer-
sally accepted approach for _va'uating the stress distribution along the intersection,
when they are subjected to simple or complex loads. Analytical solution to shell
structures are limited in scope, and in general, are not applicable to arbitrary
shapes. load conditions. irregular stiffening and support conditions as would be en-

countered in welded tubular joints. In addition, if the thickness of the shell structure

67



63

is sufficiently large so that shear deformation is significant. then the applicability
of classical approaches hecomes questionable. Two approaches are at present possi-

ble, viz

(i) testing of structural models of smaller/medium/large scale size and (ii)

numerical finite

lement analysis using computers. Although both of these methods
present their own difficulties. clearly the latter is more convenient for design and

evaluation of structural integrity.

For a displacement method of analysis, wherein displacements are chosen as the
primary unkrowns. the finite element technique is based on the assumption that
a structure cap be divided into a finite number of clements tied together at a
finite number of points so that continnity can be maintained between neighbouring

elements. A simple power series displacement is considered in order to compute

the element stiffness matrix and the cor ding loads and di for

cach node. The stiffness matrix and load vector of the individual elements are
transformed from their respective local coordinate systems into the global structural
system by appropriate transformation matrices. Finally they are assembled into

the structural stiffness matrix by superposition and solved to obtain the structural

displacements and member forees,

In the past three types of elements have been used for the finite element analysis of
welded tubular joints, viz.. (i) flat triangular or quadrilateral elements. (ii) curved
clements formulated on the basis of various shell theories. and (iii) elements derived

from three-dimensional clements t

he degencration concept.

The first approach involves replacing the curved shell by an assembly of flat tri-
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angular or quadrilateral clements. This simplification leads to the use of a large
number of elements, and any advantage that could be gained by more sophisticated
elements (which despite reduction in number could yield improved sccuracy) is 1ost
( Zienkiewicz and Cheung, 1967 Zienkiewicz et al.. 1968; Clough and Johnson.
1068). The earliest numerical studies of shell problems involved discretizing the
shell by plane triangular plate bending elements. onto which the membrane stiff-
ness was added. The results obtained were found to be satisfactory. A number of
difficulties and shortcomings arise when these flat elements are applied to cusved
shells such as the presence of discontinuons bending moments. which do not appear
in the actual continuous curved structure (Gallagher. 1976). Thus the need for

elements which can take up curved shapes becomes obvious.

The second approach uses a classical concept. whereby a shell tucory is used as the
starting point in the finite element formulation. Using the variety of classical shell
theories that have been developed in the past, a number of finite clements with dif-
ferent degrees of complexity have been formulated for both deep and shallow shells.
Although these curved dlements based on the Kirchhoff-Love hypothesis, guarantes
a high solution accuracy, their usage in finite element analysis is complicated by

convergence and compatibility requirements.

The third approach. derived from a three dimensional finite element analysis con-
cept (Figure 3.1), makes it possible to circumvent the difficuities outlined in the
first two approaches; in addition the shear deformation. neglected in the first two

approaches on the assumption of thin shell theory, can easily be incorporated.
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Figure 3.1: Three-dimensional hexahedral elements of parabolic and
cubic types.



Isoparametric elements ! of the type shown in Figure 3.1, have been used for some
years with success for three-dimensional analysis purposes. The starting point for

the development of the third approach (i.e.. shell finite elements obtained from

three-dimensional formulation) was the realization by many investigators that the
three-dimensional elements could be made thinner by the degeneration process so

that they represented shell segments.

This degeneration concept originally introduced by Ahmad ¢t al. (1970). for linear

analysis of moderately thick shells. avoids the Kirchhoff-Love assumptions, which

limit the range of applicability to thin shells, and at the same time permits the rep-
resentation of enrved geometries with no extra computational effort. It therefore
appeared to be a very attractive candidate for use in finite element procedure for a
general shell structure. Although the element seemed promising when it was intro-
duced. difficulties later arose. due to the degenera ion procedure. as the thickness
of the clement was reduced. Taese difficulties were due to the presence of large
hending stiffness. which may be traced to the fact that the assumed displacement
interpolation functions impose large amounts of shearing strain in the development
of simple bending deformation. The phenomenon has been referred to by many
investigators as ‘shear lockiing” (Doherty et al.. 1969, Zienkiewicz et al.. 1971 and
Pawsey and Clough, 1971). They have pointed out that the element performance

could be improved greatly by evaluating the shear strain energy in the element by

a lower order i i dure (reduced i ion) than was used for the

normal strain energy. This lower order integration neglects the large extraneous

VElements in which the number of nodes used to define the element shape is equal to the
number of nodes used to define the interpolation function,



shear strain introdueed by the assumed displacement functions. and tends to relax

the overstifiness of the element

3.2 Degenerated Isoparametric Elements

3.2.1 General

Figure 3:2a) shows a solid three-dimensional element based on a quadratic (i

placement field and Figures 3.2(b) and (r) illustrate the corresponding quadratic

degenerated shell eloment. Two basic assumptions are adopted in the degeneration
process: First it is assumed that, ‘normals” 1o the middle surface remain straight
after deformation (this also includes thick <hells). Secondly., the <train energy cor-
responding to the stresses perpendicular to the middle surface is degenerated. that
ix. the stress components normal to the shell middle plane are constrained 1o be
zeto in the constitntive equations. For each nodal point of the element. five degrees
of freedom are specified. viz.. three displacements and two rotations of the ‘nor-
mal® at the node. It is important to note at this point. that. the two assumptions
introduced correspond only to part of the usnal assumptions of the shell theory:
also the nse of independent rotational and displacement degrees of freedom permits
transverse shear deformation 1o be taken into account. since rotations are not tied

to the slope of the mid-surface.
3.2.2 Coordinate Systems

In order to understand the basic concept of the type of finite element employed in

the coor

the present stid; to start by i ate systeins

used. Different coordinate system have to be used when formulating the degener-




three-dimensional
clement

mid-surface

Figure 3.2: (a) Quadratic solid three-dimensional element, (b) and (c) the corre-
sponding degenerated shell elements.
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ated curved shell clements. For the presented study, four different coorcinates have

been chosen in order to adequately describe the general characteristics of these type

of elements. These coordinate systems are schematically shown in Figures 3.3(a)

and 3.3(h) and are briefly described below.

L

=

Global coordinate set - r, yand
A cartesian coordinate system. freely chosen in relation to the structure ge-

ometry

in space. Nodal coordinates and displacements. as well as the global

stiffness matrix and the applied load vectors are referred to this system.

Nodal coordinate set -~V ;. Vo and Vs

A nodal coordinate system defined at each nodal point with origin at the

reference surface (mid-surface). For node i in the mid-surface. it is convenient
to construct a vector Vs, connecting the upper and the lower points (i.c.. a
veetor of length equal to the shell thickness. t) through the mid-surface co-

ordinates. This vector is achieved in the present study as follows:

e %
Ui -\ (3.1)
s Jtop “ Jbottom

The usefulness of this vector will be shown later in the element geometry

formulation.

. Curvilinear coordinate st - &, nand ¢

In this coordinate system. £, 5 are two curvilinear coordinates in the middle



v
/) M Nodal coordinate system at node i

Surface n = constant

Surface ¢ = constant

Local coordinate system

Figure 3.3: Coordinate system: () nodal and curvilinear systems, (b) local system
of axes.
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plane of the shell element and ¢ is a linear coordinate in the thickness direc-
tion. It is assumed that €. 5 and ¢ vary between -1 and +1 on the respective
faces of the element. The relationship between the curvilinear coordinates (¢.
yand ¢) and the global coordinates (z, y and z) are given later while defining
the element geometry. The direction of ¢ is only approximately perpendicular

to the shell mid-surface. since ¢ is defined as a fnaction of the unit vector ¥3,

. Local coordinate set - z'. ' and '

“This is a Cartesian coordinate system defined at the sampling points where
the stresses and strains are to be computed. A point is taken on the shell
surface 1o construct three orthogonal axes 2. y'. =" [Figure 3.3(h)]. such that
"isnormal 10 the surface ¢ = constant. and axes r’ and y’ liein the tangent
plane.  The dircction ' is obtained by the cross product of the ¢ and n

directions as

Y (o oy
%| | i
L R (2)
% an andE  dan
7% o %an e

The direction z is taken to be tangent to the ¢-direction at the sampling

point. This can be expressed as



XK= = (3.3)

§'= Zx% (3.4)

‘The local coordinate system varies along the thickness for any normal depending
on the shell curvature and variable thickness. The direction cosine matrix (0], that
relates the transformations between the local and global system. is obtained by
following the process which defines uniquely two orthogonal vectors, and is given

as

[0] = [Vi,¥0,¥3] (3.5)

where ¥y, V;. and V3 are unit vectors in the r', y’, and 2" directions, respectively.
3.2.3 Element Geometry Definition

The global coordinates of pairs of points on the top and bottom surface at each

node [Figure 3.3(a)] prescribes the shape of the element. Alternatively, the mid-

di and the ding directional thick can be used

surface nodal p



to define the clement geometry. Using the curvilinear coordinate set (€, n. ¢) with
the curvilinear £ and n in the middle plane. rectilinear ¢ in the thickness direction
and further remembering that €, n, ¢ vary between -1 and 1 on the respective faces

Af the element. the coordinates of any point within the clement are :

E z, I

Y (3.6)

top battom

or alternatively. using the mid-surface nodal co-ordinates and the corresponding

directional thickness (;.

x e I,

LI o .
v =N w + (&mig 4 ma (3.7

2 L ni

The interpolation functions , appearing in these equations together with their
derivatives are given in Table A.1 of Appendix I and Figure A.1 shows the system-
atic generation of these shape functions. The terms la,, ma,. and ny; are the direction
cosine of the vector V, normal to the middle surface and spans the thickness f,
of the shell element at node i (Figure 3.4): this can obtained from the following

expression:



Figure 3.4: Nodal vectors.



Top= Thottom Iy}
Vo=9 Yop= Yowom (={ ma (3.8)
Ztop ™ Thottom may;

The subscripts top and bottom in Eqn. (3.6) represent the top and bottom surfaces
of thesshell, respectively. In the fortran subprogram written for this purpose, either
the coordinates of the top and bottom points or the direction cosine for V, are

given as data.

The rectangular parent and the isoparametric counterpart of the nodal configu-
ration for the two kinds of elements used in the present study (%node serendipity
and 9-node Lagrange) are shown in Figures 3.5(a) and 3.5(b). Since an isoparamet-
ric concept was adopted throughout the entire element formulation, the geometric
interpolation functions were taken to be the same as the displacement shape func-
tions. Physically, this means that the natural co-ordinates & and n are curvilinear.
and all sides of the element become quadratic curves for the 8-node seren..ipity and

9-node Lagrange elements.
3.2.4 Displacement Field

Taking into consideration the thin shell assumptions of the degenerated element, the
displacement throughout the element is taken to be uniquely described by the five

degrees of freedom of a ‘normal’ at the node. viz., the three Cartesian components

of the nodal displacements (u,, v, ) and two rotations (a,, 3;) of the nodal vector

Vs, about orthogonal directions normal toit (see Figure 3.4). Gaznric displacement



8-Node Serendipity l 9"—Nnde Lagrange

Ni<i=l-8) 1 Ni( i=1-9)
3 4 7 3
]
L J———;—a——— yL '_B__ 8
1 1
1 5 2 1 5 2
X + X +

(a) Rectangular Parent

2

(b) Isoparametric Counterpart

Figure 3.5: Nodal configuration of the two quadratic shell elements used: (a) rect-
angular parent, (b) isoparametric counterpart.
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at any point in the shell element are taken to be in the directions of global axes.

Thus,

u = (3.9)

On the other hand the nodal displacements consist of these same translations (in
global directions) as well as two rotations «, and 3, about the two local tangential
axes r, and y, as indicated in Figure 3.3(a). Hence. the generic displacements in

terms of nodal displacements are given as

u u
" n ' a,

v EYNED] w o+ TNEN GG (3.10)
=1 =1 & 3

w w,

where 4, denotes the following matrix:

—li b
=4 —ma my, (3.11)
—Na M

Column 1 in this array contains negative values of the direction cosines of the second

vector Vi, and column 2 has the direction cosines for the first vector Vy; (Figure
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3.4). These vectors are orthogonal to the vector Vy,, and to each other, but the

choice for the direction of one of themi is arbitrary. In order to settle the choice. we

ume the following steps iu this study. We let:

V=8, x Va

In this €, is a unit vecior in the direction of the y a

Then the last vector to the
other two is simply

3% Vi

(I for exatmple Vi is parallel to &, the above scheme breaks down: this source is
checked by a fortran subprogram incorporated into the finite clement program used
for this study. Whenever such break down of the scheme occurs, &, is replaced by

€. which is a unit vector in the = direction).

Eqn. (3.10) can also be expressed more explicitly as

i W R
. N a

P S ST IR A ) AT % S (0.1)
=1 1=l = i

i, —

The local generic translations are depicted in Figure 3.4 as «’ and v/ (in the direc-
tions of V', and V,) which are due to the nodal rotations 3, and a;, respectively;

these are evaluated using the following expressions:



The contribution of these terms to the generic displacements at any point is given by
the second summation in Eqn. {3.10). The contribution tothe global displacements

from a given node 1 is given by

N0 o0
u u,
4
v = 0 0 w (3.13)
a
w 3
0 0N
or
u =N, (3.14)
For the complete element we have
u=ME& (3.13)

u=(wow). N = [Ny

.. Nl is the shape function matrix of the degenerate
clement. and [§] = [67.....,87......6T] is the vector of the element nodal variables.
i X

Here n represents the number of nodes per element.



3.2.5 Definition of Strains and Stresses

The solution to basic properties of any finite clement analysis is achieved by ap-
propriate derivation of the strains and stresses. The components in the directions
of orthogonal axes related to the surface ¢ = constant are essential: this is true
if the bLasic shell assurnptions are to be accounted for. Hence, to deal easily with

the shell assumption of zero normal stress in the local =’ direction (). the strain

components are expressed in terms of the local system of aes &', y'. and This
local system of axes somewhat offers the most convenient and attractive system

for expressing the stress components and their resultants for shell analysis. If at a

point on the surface ¢ = constant. we erect a normal 2 with two other orthogonal

axes ¢’ and y' tangent toit. then the five strain components of interest are:

u'

ar’

v’
'

v 1= G 5w (3.16)

Yars o
FERE ]
' T ay

where u', v’ and w' are the displacement components in the local z', y' and z’ axes,
respectively. The strain in the =’ direction is neglected in order to be consistent

with the shell assumption. It must be noted that in general none of these directions
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coincide with those of the curvilinear co-orinates §. 7. ¢. although 1’ and y' are in

the & = p plane (¢ = constant).

The stresses corrasponding to these strains are defined by a local matrix {o'} and

are related by the elasticity matrix [D'] which is given as

(o} = { 1y } =D (3.17)

where [D']is 4 5 <3 elasticity matrix whose specific form varies depending on the

material hehaviour, namely isotropic, orthotropic or anisotropic material.

In the ecarlier portion of this chapter it was pointed out that the ‘degenerated” shell
element is a specialized form of the 20-node three dimensional element to handle
the problems of thick. moderately thick and thin shell elements by curved finite
elements. Furthermore. it was pointed ont that in their thin shell form, the element
exhibits some problem due to shear locking phenomena and that this problem
conld be rectified by either reduced integration and/or selective integration. The
reduced integration is achieved by reducing the number of gauss points for numerical
integration on the transverse shear strains, as well as on membrane strains: in the

selective integration technique. bending (ot bending and membrane) energies are



integrated using the normal rule, and the shear and membrane (or only shear)
terms are computed using the reduced integration rule. It is to be noted that one
major advantage of this element over the classical thin shell theory formulation.
is the inclusion of the shear deformation terms. Most offshore tubular joints are

fabricated with members whose thicknesses compared to the other dimensions are

very small and ¢ 1 ly the shear along the tube thickness is
small compared to those due to bending; but in some situations. thick sections are
nsed and in such cases the shear deformation need to be considered in addition to
bending. Because of the foregoing explanation and the presence of the shear tcrm
in the 5 «5 elasticity matrix [D’]. shear correction factors are applied to the last

1wo shear terms in the {D'] matrix defined as follows

(3.18)

in which £ and v are Young's modulus and Poisson’s ratio. respectively. The fac-
tor « is taken as 1.2. to improve the shear displacement approximation, which from
the displacement definition given in Eqn. (3.10), shows that the shear distribution

through the thickness is approximately constant, whereas in reality the shear dis-



@
&

tribution is approximately parabolic. Detailed derivation of the [D'} matrix s given

in Appendix B.

3.2.6 Element Properties and Transformations

The stiffness matrix. and indeed all other element property matrices. involve. inte-

grals over the volume of the element, which are generally of the form

/ My drdyds (3.19)

where the matrix [M] is a function of the coordinates. In the expression for stiffness

matrix. the matrix [M] is given as

[M] = [B]"[D][B] (3.20)

where the matrix [B] relates the strains to the nodal parameters in the form

{} =[B] {8} (3.21)

Thus in the preseat formulation. if the matrix [M] is expressed as an explicit func-
tion of the curvilinear coordinates (€, 1. ¢) and the infinitesimal volume drdyd:
is also transformed accordingly. then a straightforward (numerical) integration will

allow the properties to be evaluated. Hence. we require two sets of transformations
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before the element can be integrated with respect to the curvilinear co-ordinates ¢,

7. and ¢

Firstly. from Eqn. (3.10) which relates the global displacements u, v and « to
the curvilinear co-ordinates, we obtain the derivatives of these displacements with

respect to the global r. y and = using the standard expression. viz.,

dr dr Oz a9 05 d¢
Ou O Ow | | Ou B Bw 2
Eri il vl AU =i =i - 322
ou o Ou v dw
d= dz ¢ A I
where the Jacobian matris [J] is defined by the expression
0r By 0=
¢ 9§ 0
0z oy o=
=28 % gz 3.2
M=% & & (3.23)
0z By 0:
a9 a¢

The elements of the Jacobian matrix can be found from the definition of the co-

ordinates, Eqn. (3.7).

Secondly, the global derivatives of displacements are now transformed to the local
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derivatives of the local orthogonal displacements, that is

ar’ dr’ dr dr Oz

o g || dn e ow )
o oy oy =l dy dy Iy e @2t
P u! du v A

P e 9: 9z 9=

Substituting Eqn (3.24) into Eqn. (3.26). we have

oo o du e e

ar dr ox a0 0§

ow o gw | | an dv dw ,
o oy =0 5 5 oy |9 (3.25)
dul du Jul Gu &

PE ' ¢ A

In order to compute the strains. as defined by Eqns. (3.21) and (3.25). the evalu-
ation of the inverse of the Jacobian matrix given by Eqn. (3.23) is necessary. It is
observed that by definition. this can in fact be written in terms of three vectors as

follows

wn

H

)= (3.26)
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In the above equation, the first two vectors are tangential to the reference surface
(the mid-plane) while the vector V3 is in the direction of the normal to the reference

surface ( it is considered that ¢ is normal to the midside surfac

The inverse of the Jacobian matrix can now be written explicitly as

T V. VxS, §x7)
IR

where the first two columns in the numerator of the adjoint of the Jacobian matrix
are again vectors of the tangents to the reference plane and the third column is

normal to it. and ||J|| represents the determinant of the Jacobian matrix [J].

In the expression for the direction cosine {0] defined in Eqn. (3.5). that is

0] = (e 2. 0s] (3.23)

the third vector in the direction cosine expression [ Eqn. (3.28)], has the same
sense as the third vector in the Jacobian inverse expression [Eqn. (3.27) . Asa

consequence of normal vector operations we can write



A

= [

= | v |[Bx Vs Vsx8 §xT|+yy)

V3 (3.29)
Ay Ap 0
= | Ay An 0
0 0 Ay

By taking advantage of this special form of A. Eqn. (3.26) is uncoupled into two

parts:

An A 9 9 O

fei]

An Ap ]| du 9 Ow

% a—” E (3.30)
= du e ol
[ed) = Ax % % A ]W]

The above technique is used during this study to reduce the number of operations
in the program used in the study. The multiplications of zero terms are avoided
during any run; this saves a substantial amount of computation time and computer

CPU time.

It is also important to note that the elastic properties [D'} and the strain vector
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{¢'} can be decomposed into two parts. viz.. in-planc and transverse components,

as

i
R
—

(3.31)
D, 0

I

()

0 D,

The energy expressions for an isotropic material are related to cquations (3.13) to
(3.21); hence after decomposing both the elastic properties D' and the strain vector

< into two parts as shown in Eqn. (3.30). the strain energy can be expressed as

G AT CARY AR CATRA (3.32)

where the strain vector {'} is obtained from Eqn. (3.25) and takes the following

form:



[/
i)_?r' 0 0
d
{<'} = ()%/ a—il 0 vy =(G)q o (3.33)
b w' w
0

Transforming the local displacement vector to global displacement vector we have

{(}=(G1[o7]¢ v

(3.34)
w
Expanc:ug this equation using Eqn. (3.10) and (3.29) we have
uw
1 T a
(<} = BIPT]] o +5 KB+ (GO (=¥, %11 s (3.35)
wy

where i denotes the nodal number of an element, and



B 0 0 0 00

0 B 0 0 00
Bl=|B B 0 |:[C]=|0 0 0 (3.36)
0 0 B [
0 0 B 0C o
N, A
B = Angg +4n'0n ]

ay, (3.37)

.y,
By = Ay—r e + An—— o

Cro= AnN,

Finally by minimizing the strain energy of the element domain with respect to
nodal displacement parameters. the element stiffness matrix is obtained. From Eqn.

(3.19), the infinitesimal volume is given in terms of the curvilinear co-ordinates as
drdyd: = ||J|| dé dydc (3.38)

and

+1 4l p4l T
L [ BT e (339)
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Two special features of Eqns. (3.31) and (3.35). i.e.. identical terms and sparseness
of the matrices. ‘vere taken into account in performing the matrix multiplication

during the construction of the element stiffness matrix Eqn. (3.39).

3.2.7 Element Assembly and Equation Solution Pro-ze-
dure

The direct stiffness method approach was essentially employed in the present study

to assemble the stiffness matrix contributions from each element to form the global

stiffness matrix and global load vector. The element stiffness matrices were as-

sembled in their own i

systems (local 1i system) and later trans-
formed to the tubular joint coordinate system. This results in a set of simultaneous
equat;ons. The frontal solution technique was used for the direct solution of the
equations. The main idea of this solution technique is to assemble the equations
clement by element and eliminate the variables at the same time. Although the
frontal solution technique was used in preference to the banded solution. however.
just as the banded technique demands a good node numbering system for keep-
ing the computational costs down. the frontal technique needs a good ordering of
the clements. Indeed, if the elements are not numbered carefully. the latter can
even lose out to the former. Hence at every stage of the tubular joint generation
in this investigation an attempt was made to minimize the frontwidth. by pass-
ing the mesh element numbers and their corresponding nodes through a fortran

subprogram developed for this purpose.

In conclusion. by simply reducing the order of the integration for all stress com-
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ponents the degenerate shell element concept has proved to yield accurate results
for both thick and thin shells. The aspect ratio of the elements can be increased
almost to any value without introducing stiffness effects. This elen:ent indeed is
amongst the most accurate ones known and. by being aki. to render correctly shear

deformations within the element, may be termed the most general shell element.

3.3 Life Prediction Formulation

Recent investigations into the constant amplitude load fatigue of welded tubular
joints have clearly indicated that the assumption of the total fatigue life (which is
the sum of the cycles required for crack initiation. V., and crack propagation, V,)
being controlled purely by the crack propagation life. may be misleading. Recent
experimental investigation on the fatigue life of offshore welded iubular joints by
Pates et al.. (1939) have shown that the crack initiation life may be of the order
of 25 to 30 percent of the total fatigue life in air tests and more for corrosion
fatigue tests in water. Consequently estimation of fatigue life using only the crack
propagation life for the entire life of the joint would be unrealistic. A realistic and
better life estimation technique should. therefore, include both the initiation and

the propagation lives of the joint.

The following techniques are combined in the present study to determine the total

fatigue life:

1. The local stress-strain approach to crack initiation, and

2. The fracture mechanics approach to crack propagation.
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Though reasonable success has been demonstrated in combining the local stress-

strain appruach and the fracture mechanics approach for prediction of the initiation

and propagation lives, for small and large scale test specirmens and relatively simple

structures, little or no analytical /numerical literature is available for this combined
approach in dealing with complex and large structures like offshore welded tubular

s of this inve:

joints. One of the main objective stigation was to explore the use of

purely numerical techniques for combining these different approaches in arriving at

the total fatigue life of the joint. In what follows the formulation used for crack

initiation is given first followed by that for crack propagation.
3.3.1 Crack Initiation Life Prediction

The local stress-strain approach, also known as the strain cyele fatigue concept.
is wserd fur deterining the erack initiation life in this investigation. The basic

-strain approach to fatigue is that if the stresses and

hypothesis of the noteh stres:
strains at a critical location of a component are known. then the life to crack
inttiation at this position can be related to the fatigue life of strain-controlled
unnotched laboratory specimens. Hence. the analysis reduces to one of determining
the local stresses and strains and relating these to the known strain-life fatigue

behaviour

I e procedure for crack initiation. as used in this study, is briefly outl* .ed below:

for stress and strain computation was first performed in

Finite clement analysi
wrder to lucate the possible location for crack initiation. The stress and strain

concentrations were also determined.
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For a nominal loading in the elastic range. the local stress and strain ranges are

related to the nominal stress range by using the modified Neuber's rule given as

Ry Aopom = (Ao As E)'V? (3.40)

where A and s are the weld toe stress and strain ranges, Aomom the nominal
stress range applied to brace, E the elastic modulus and K is the fatigue notch

factor. One can also express Eqn. (3.40) as

Ky Aguom)?

Ao Ap im0 ) (3.41)
E

Also required in the crack initiation life prediction. are the material's fatigue prop-

erties. which can be computed from (a) cyclic stress-strain relationship, and (b)

strain-life relationship. The cyclic stress-strain relationship for a material is ex-

pressed as

where Az and Ao are the weld toe strain and stress ranges, respectively, k' the

cyelic strength coefficient and n' the cyclic strain hardening coefficient.
By combining Eqn. (3.41) with Eqn. (3.42), we have

Ag? Aa)”"' _ Ky Adwm)?
= ieiopenl

3+ (3 E (3:49)



i

The values of Mo and Az are determined in this by solving Equ. 3431 using

nnmerical techniques,

Finally the prediction method involves solving the Manson-Cotfin equation for
crack-initiation life. Ny, This equation which takes into account contributions of

both plastic and elastic weld toe strain ranges. is expressed as

Z’La\',»*
E(—» n

2N 3

where Az, and Az, are the weld toe elastic and plastic strain ranges, 7, and

the fatigue strength and ductility coefficients. and b and ¢ the fatigue strength and

Auetility expunents, respectively
3.3.2 Fatigue Crack Growth Formulation

cture mechanies method s recently become an important ool for offshore

steuctural design. fabrication and integrity assessment. For tubnlar joints. surface
flaws initiate at the weld toe of the tubular intersection areas and propagate under
environmental loads along the weld toe and through the joint thickness (Figure
$.60. The shape of this propagating flaw is influenced both by the local stress
~tate and material properties near the tubular intersection area. The sensitivity
of mspection techniques used i recent times for in-service mspections has made
possible the earlier detection of fatigne cracks in offshore welded tubular joints.
The increasing requirements for longer service lives of these joints coupled with the

current move by industries toward limit state design. has necessitated fitness for

purpose assessment to evaluate the significance of this cracking phenomena in
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alx) 1

Figure 3.6: (a) Schematic cross-section of a surface crack with varying depth a(x)
and projected length 2c in a shell of thickness t, (b) Schematic idealization of
through-cut shell (plate) mid-surface with distributed stiffnesses along the crack
line
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tubular welded joints (TW.J). Such assessment requires the application of frac-
ture mechanics analysis. in which crack tip conditions are characterised using the
stress intensity factors (SIF). Ilence it is apparent that the fatigue crack growth life
assessment of cracked components require information about the stress intensity

factor.

Due to the nature of the special elements (line spring elements) employed in this

study for stress intensity factor evaluation, which is an essential aspect for crack

propagation life prediction. this section is divided into two parts: (i) Line spring

element formulation and its implementation and (ii) Fatigue crack growth model.

3.3.3 Line Spring Model for Stress Intensity Factor Eval-
uation

Renewed interest has been shown recently in the use of simplified models for three-

dimensional erack configurations which may be broadly termed “surface cracked

plates and shells”. The model termed the “line spring element” was originally
introduced by Rice and Levy (1972) to estimate stress intensity factors for part-
through surface cracks in large plates subjected to bending and tension. Extension

of the simplified model to analysis of surface crack problems in cylindrical shells

have been achieved by Rice and Levy (1972) and Parks (1930. 1981).

In order to determine the additional compliance introduced into the structure by a
part-throngh crack. we start the formulation of this special model by considering a
surface crack of length 2c and varying depth a(r) in a shell wall thickness t as shown

in Figure 3.6(a). By following the usual procedures of shell theory. the surface-
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cracked structure is modelled by its midplane surface as a two-dimensional contin-
uum, and the surface crack location is accordingly idealized as a one-dimensional

cut as depicted in Figure 3.6(b).

If it is assumed that the surface crack is not present at the considered location.
then the cut will carry a certain (uncracked) distribution of the shell generalized
forces (the term “generalized force™ is taken in this context to mean both forces
and moments). If for example we assume now that the cut lies in a symmetry plane
(this condition is assumed here to illustrate the line spring model development in
it simplest form. a more general case is discussed later during the course of this
formulation). the distr'bution of the shell forces will consist of a normal membrane
force N°(r) and bending moment M°(z). These forces are sufficient to ensure
that there is no discontinuity along the cut in the shell generalized displacements
(translational and rotational) work-conjugate to these forces. These displacements
consist of the jump in shell midsurface displacement. é(). in the shell tangent
plane and normal to the cut and the small rotation. f(z), of the tangent to the cut

of the material line elements initially normal to the shell mid-surface.

The uncracked force and deformation distribution on the cut can thus be given by
NL M) = [Nz). Mz)] (3.45)

{8(x).0(z)) = (0,0) (3.46)

Note that V°, and M® are determined from the solution of the uncracked (a(z)=0)
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problem.

Now consider the opposite extreme case where the crack has fully gone through
the plate thickness (through crack), that is {a(x)]=t case, and denoting this case
by superscript “t”, we find that the discontinuous field terms. analogous to Eqns.

(3.45) and (3.46). are

[N M) = (0.0) (3.47)

(8(x).0(z)) = (6(x).0'(x)) (3.48)

where again 8. 8¢ are the opening and rotation discontinuities across the sides of

the force-free “through-crack™ cut.

If we now consider the true surface crack as having a surface depth distribution
a(x) intermediate between the two previous limiting cases, that is 0 < a(z)
< 1 through most of the cut. then for this case, solution fields [.V'(z). M(z)] and
[6(x).0(x)] which are intermediate in some sense to the uncracked and through-
cracked limits are oxpected. Using the well known fact in engineering mechanics.
that the extreme boundary conditions of zero displacement and zero traction can
be conceptually considered as limiting cases of infinitely stiff and soft elastic foun-
dations. respectively. we can then represent the intermediate part-through surface
~rack by some kind of gencralized elastic foundation along the cut. with stiffness
varying according to local crack depth a(r). This foundation, then, consists of

generalized springs distributed alang the line of the cut.
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For linear elastic behaviour, the constitutive relation for the springs which relates
local loads (.V..M) at each position r along the cut to their local work-conjugate

displacements, (6.0). is symbolically expressed as

6(r)
[”(r) } B

The above expression can be stated in an equivalent manner as

N(z) [ Kn R 5(z)
B (3.50)
M(x) Ka K o(r)

The matrices [C] and [K] = [C]" are the clastic compliances and stiffnesses, re-

Cn Cn

N(z)
] (3.49)

Ca Cnl | M)

spectively. The model for choosing the above local compliances, [C] is shown in
Figure 3.7. If. in the far field. the axial force .V and bending moment A per unit
depth are simultaneously applied to the specimen, then the additional displacement

é. and rotation 0. at the load points due to the presence of the crack are expressed

&1 [P Pl [V
”c_i Py P M

By using the energy compliance relations noted by Rice (1972), the matrix [P]

as

(3.51)

is determined from stress intensity factor calibration of the single-edge notched

specimen. For plane strain condition, the elements of matrix [P] are given as
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Figure 3.7: Single-edge notched i subject to d tension and bending.
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2 B
Py = - T (3.52)
12r i
Pia= Py = E o (3.53)
Pn= FaomE ™ (3.51)
where
W = (3.55)

with £ = a/t. The assumed calibration for stress intensity factor of this specimen

is
Ky = (7a)'? -(F.(u/z)‘li+ma/ust#1 (3.36)

Tada et al. (1973) has given approximate formulae for Fis.

lly i d idal rule in

The integrals for 7, are usually using trap

steps of AE = 0.01. These values are stored for subsequent evaluation of ¥; values
for any particular local crack depth ratio. a/t. which can be obtained by interpola-

tion between tabulated values.
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‘The stiffness of the line spring foundation model is finally obtained by taking (@]
= [P], and hence evaluating [K]. It is important to note that in arriving at this
result, we have assumed that the additional displacement and rotation. due to the
presence of the crack in Figure 3.7, are obtained right on the surface of the crack

line and it is lumped there as discontinuities across the cut.

The most important feature of the line spring model comes into play after the
compliances have been obtained. If we now consider the surface cracked shell to

be sectioned by a pla

: normal to the cut and containing the shell midsurface
normal at some position r along the cut. it will locally bear a similar resemblance
to the single-edge cracked specimen of Figure 3.7, with the interpretation that the
crack length “a” is the local depth. a(r). and the loads (.V. M) are the local loads
transmitted across the cut, [N(x). M(r)]. Then the line spring can be conveniently
conceptualized as providing an estimate of the local stress intensity factor in the

surface flaw from direct implementation of Eqn. (3.56).

Figure 3.3 shows the above situation now integrated into the present study. From
this figure it is apparent that the concept employed for stress intensity factor eval-
uation in the case of the single-edge notcued crack by employing the line spring
model can be extended to the complex tubular joint case (which is the subject of

this research) with some modifications. Some of the obvious modifications. in order

to use the line spring model for the present study. are discussed in chapter 7.
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Crack Depth 1
Crack Half Length ’ 1
Brace Thickness

= Chord Thickness

[

Figure 3.8: Schematic representation of surface crack in a tubular joint.
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3.3.4 Finite Element Impiementation of the Line Spring
Model :
The stress intensity factors. used in the evaluation of fatigue crack growth life in
the present study. were obtained by incorporating the line spring element across
the faces of the finite element model used in the study at the crack locations (see

chapter 7).

Figure 3.y schematically shows a shell/line-spring interface. in a particular local

coordinate system (x.v.z). The 3-node shell element (nodes 1. 5. 2. 6. 3, 7. 4.

3) joins a 6-node line spring element (1. 3. 2. 10, 50, 20) along their common
intersection of nodes 1.3 and 2. As an input the line spring crack depth is specified
at nodal locations along the cut. and interpolated to integration points. The crack

depth contains a sign flag indicating whether the surface crack emanates from the

positive or negative side of the shell (see Figure 3.10).

The line spring generalized displacements variables [6(z).0(z)] along the cut. are

given in local (x.y.2) coordinates by

§(r) = uy(r.y=0*

R) = u ey =0".5=R) (3.57)

0z) = pelry=0* R) = pr(r.y=0".2=R) (3.58)

where the field u, and ¢ are interpolated from the nodal values. The sign of the

right hand side of Eqn. (3.58) is changed if the crack emanated from the negative
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Figure 3.9: Schematic illustration of the intersection of an 3-node shell and a 6-node
line-spring element in a cylindrical shell.
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Figure 3.10: Line spring models showing flags for positive and negative cracks
[ABAQUS (1989)].
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shell surface.

By using the above equations and the matrix relationship given in Eqn.(3.50). the

virtual work of the line spring element is given as:

- N(z)
v = ] (67(2),0°(2))] dz (3.59)
4 M(z)
where the virtual quantities &°. and 0" are related to virtual nodal displacements
in the standard manner. and r; and r; are the x coordinates of the two ends
of the element. In the element stiffness matrix formulation obtained from Eqn.
(:3.39). a two point Gaussian integration is employed. After solution, the generalized

displacements (8.9) and forces (V. M) are recovered at the integration points. and

the stress intensity factors obtained from Eqn. (3.56).

In order to justify the use of this model for stress intensity factor evaluation in this
study. the results obtained are compared with the results from recent line spring
element application to tubular joints. Most of the available literature give stress
intensity factors for the deepest part of the crack. The results presented in this
study have been extc *ded to compute all the stress intensity factors values along
the crack front. In some instances a curve have been fitted to the data obtained

from the finite element analysis. Details of this procedure are given in chapter 7.

3.3.5 Fatigue Crack Growth model

Once the stress intensity factors along the crack front have been obtained as outlined

above, with the use of line spring element, they are then introduced into the crack
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growth law for life calculation. The form of fatigue crack growth correlation for
constant amplitude loading employed in this study is a log-log plot of fatigue crack
growth rate, da/dN_ in m/cycle. versus the stress intensity factor range AR, in

M Pay/mi. The stress intensity factor range AR is obtained from

AR = Kpar = Koun

= Yoy

£

0 = YT, VT 13.60)
The crack growth law. nsed in this study. is based on a linear relationship i on
a Ing-log basis) developed by Paris f al. 119611, which is now known as Paris
law. The growth law corresponds to region 11 istraight line) of the sigmoidal shape
curve obtained when the crack growth rates. da/d.N are plotted against the stress
intensity factor ranges on a log-log plot. [n it's simplest form this power law is

expressed as

= CAN" (3.61)

d.N

where da/d.\ is the change in the crack length or depth. a. per cycle. V. and €

and m are constants determined from compact tension tests of the material of the

tubulac joint. The life can then be determined by integrating Eqn. (3.61

\ % da

by C(SR™
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where a, is the initial flaw size and ay is the final flaw size. The above integration was
carried out numerically in the present study. This numerical approach is discussed

in greater detail in chapter 7.

In conclusion it can be seen. from the last three equations. that the fracture me-
chanics approach is considerably more complex than the $-N approach. since it
requires knowledge of initial flaw sizes as well as that of the stress intensity factor
solution. However. it must be emphasized. that in its simplest form. the fracture
mechanics approach is consistent with the SN approach. as both rely on a power

law relationship between stress range and the propagation life.



Chapter 4

Stress Analysis of Unstiffened
Tubular Joints

4.1 General

Owing to the cyclic wave loadings to which offshore welded tubular joints are sub-
jected to. they becoine susceptible to fatigue damage. In the present study. interest
is focused on the determination of total fatigue life of tubular welded joints. which
meludes the life spent in initiating cracks and the remaining life due to crack prop-
agation. The strain life approach was employed in evaluating the former. while the
latter was obtained through fracture mechanics technique. Conceptually it is evi-
dent that the first stage of the life predictions requires the knowledge of stress and
strain distribution along the intersection without a crack. where the stresses are
expected to be high. while the second stage requires both stress distribution along
the intersection and through the thickness (with crack). Determination of stress
and strain distribution along the intersection is aimed at finding the magnit «de and
the location of the problem stress level (hot spot stress). which invariably gives an

insight as to where the crack(s) is (are) likely to initiate and also to determine the

16
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stress concentration factors (SCFs) which are the measures of the amplification of
the nominal brace stress as a result of member discontinuity and wall bending; the
through thickness stress distribution on the other hand, is directed toward deter-
mining the relative proportion of the bending stress to the total stress (degree of
bending DOB),

o oy

m+ ) Ottt

(4.1)

This in fact gives an indication of the proportion of the stress (bending or meni-
brane) that controls the fatigue life propagation as the crack grows throngh the

joint thickness.

In order to carry out fracture mechanics calculations of the fatigue life it is neces-
sary to determine the crack tip stress intensity factors and the corresponding crack
growth rates. These calculations require information on the magnitude and distri-
bution of the stress acting in the anticipated crack region. For most situations this
means the computation of the magnitude and distribution of stresses through the

thickness and around the intersection of the tubular members.

An extensive finite clement analysis of tubula -joins, covering varions geometric
joint parameters (see Figure 4.1), has been carried out to address the two aspects of
stress distributions mentioned above. The range of the joint parameters investigated
is shown in Table 4.1. The finite element study was carried out for three different
type of loading cases, viz., axial tension, in-plane bending (IPB) and out-of-plane

bending (OPB) loads. The three load cases are illustrated in Figure 4.2.



Figure 4.1: Geometric notations for tubular T-joints.



119

Table 4.1: Joint parameters

Type of D T

Joint | (mm) | (mm)

@
"

[SIEN

02-08[02-1.0

14-32 | 6.05- 13.0
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Saddle
Crown
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un

Figure 4.2: Modes of loading used for the finite element analysis: (a) Axial, (b)
IPB and () OPB.



4.1.1 Stresses in Tubular Joints

Before any attempt can be made to determine the stress levels, it is important to
have an understanding of the behaviour of joints and the factors which give rise to

the complex nature of the stress distribution.

Stresses in tubular joints arise from three main causes classified as follow

1. Basic structural response of the joint to the applied load on the structure is
termed the nominal stress: generally this is referred to the stress level acting

in the brace,

Deformation stresses. caused by the deformation of the tubular walls, while

trying to maintain continuity at the intersection.

. Notch stresses caused by the geometrical discontinuity due to the presence of

the weld.

Nominal stresses are due to the framing action of the structure under apnlied ex-
ternal loads. Global analysis of the structure is required in order to compute these
stresses. The deformation stresses are due to the deformation of the chord and
brace while trying to maintain compatibility at the intersection of the brace and
chord. For example Figure 4.3 shows how deformation stresses are developed in a
T-joint under brace tension loading. Point 1 and 2 displace along the brace axis by
similar amounts due to constant stiffness of the brace. The chord deforms in order
to maintain compatibility, thereby introducing bending and membrane stresses in

the chord wall. Since chord stiffness at the saddle (point 2) is greater than that at



Original

-~~~ Shape under load

Section A-A

Figure 4.3: Deformation stresses in a T joint under brace tension load.
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the crown (point 1). a larger force will be required at the saddle than at the crown.
This results in maldistribution of the nominal stress near the intersection. Figure
4.4 illustrates this maldistribution. The bending and membrane stresses in con-
junction with the maldistribution of the stress give rise to the deformation stresses.
The notch stresses are the result of geometrical discontinuity of the tubular walls

at the weld toes where an abrupt change of sections occur,
Mesh Generation

In order to carry ont finite element stress analysis for the tubular joints investigated
in this study. some form of automatic mesh generation is virtually essential. Any
program that is developed for the purpose of tubular joint mesh generation should
be cable of producing relatively fine elements in the vicinity of the brace/chord
intersection where the stress gradients are large. Converscly., away from the inter-
section, for example. near the ends of the chord and the brace, where the stresses
are more evenly distributed. the program should generate coarse elements in or-
der to avoid unnecessary computational effort. In addition, for the best numerical
conditioning of the stiffness equations and to ensure maximum numerical accuracy.
the element aspect ratios. that is, the ratios between the lengths of element sides
should be as close to unity as possible. and element sides should not be excessively
distorted. Transition {rom the finer element region to the coarse element region

should be gradual.

Generation of mesh for this study, to be consistent with the objectives mentioned
above, necessitated dividing the chord and the brace into basic regions as shown in

Figure 4.5.
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Figure 4.4: Maldistribution of nominal stress at the intersection.
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L - Left
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Figure 1.5 Subdivision of the tubular joint into a number of regions suitable for
mesh generation
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A Fortran subroutine that could be incorporated into any finite element mesh gen-
cration package was developed for the mesh generation of the tubular joints inves-
tigated in this study. Some of the powerful feature of this subroutine are; (i) ability
to generate clement nodal coordinates reliably for a wide range of geometrical pa-
rameters o, 4, 7 and 0 with minimum cffort, (ii) ability to make adjacent clements
hiave a certain aspect ratio, such that the elements in the vicinity of the crack are
finer and increase gradually away from the intersection. This cusures a smooth
transition between the maldistribution stress area and the evenly distributed stress
area and (iii) ability to generate the element nodal coordinates on a planar surface
and then, using a mapping function, to map all the nodes onto the curved surface
of the tube. This last feature was viewed in this study as one of the most powerful

feature of this program, from the fracture mechanics stress intensity factor model

(Line spring model) point of view. It was used extensively in the mesh generation

for the tubular joint crack analvsis.

It is important to note here that each of the subregions, shown Figure 4.5, repre-

sents a different level of mesh refinement in the program; the mesh could be refined

anytime in the ion process whenever a I mesh produced an unde-
sirable shape. The subroutine has been written efficiently to have more flexibility
and minimum user input. The sequence of steps executed in the generation of the
mesh is summarized as follows. The intersection coordinates of the brace and chord
junction (computed separately by another subroutine) were first used to generate
region 1 of the brace with adjacent element aspect ratio (BIAS) of 0.75 and with
flag direction from the intersection to the brace end. In a similar manner, regions

2L/2R, 3L/3R and 4L/4R were generated with the intersection coordinates. The



only difference here is that the nodes were first generated along the chord circum-
ferential direction and then tiansferred to their appropriate locations on the tube

surface. Next. coordinates of the plug region 5 were generated. Because of reasons

of geometrical compatibility in this region (plug) the gencration was performed in
such a manner that from the intersection to a substantial distance away from it.
quadrilateral elements were used and the remaining part of the plug was filled with
triangular elements. Finally the remaining chord regions 6L./6R and 7L/7TR were

generated. A typical mesh. used for this study is shown Figure 4.6.
4.1.2 Boundary Conditions

Due to symmetry in axial loading and in-plane bending loading, only half of the joint
geometry was modelled. Although no symmetry exists for the out-of-plane bending
situation, it was however found that satisfactory results conld be obtained with the
same meshes used for the other two loads cases. if appropriate boundary condition

can be found. All the degrees of freedom (ug, uy, . 6.) were restrained

at the chord ends, where u-. uy, and u, correspond to the displacements in the x.

¥ and z directions, respectively, and o,

y and o, the rotations about x, y and
2. During preliminary modelling of the problem, separate analysis was performed
for the axial and in-plane bending load cases using different joint meshes (quarter-
and half-joint 