FATIGUE STRENGTH ANALYSIS OF OFFSHORE TUBULAR
WELDED JOINTS UNDER CONSTANT AMPLITUDE LOADING:
LOCAL STRAIN AND FRACTURE MECHANICS APPROACH

DANIEL IHEANACHO NWOSU







FATIGUE STRENGTH ANALYSIS OF OFFSHORE TUBULAR
WELDED JOINTS UNDER CONSTANT AMPLITUDE LOADING:
LOCAL STRAIN AND FRACTURE MECHANICS APPROACH

by

© Daniel Theanacho Nwosu, B.Sc. (Hon.), M.Sec.

A thesis submitted to the School of Graduate
Studies in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Faculty of Engineering and Applied Science
Memorial University of Newfoundland

February 1993

St. John’s Newfoundland Canada



To my wife and daughters,
Opry. Roisin and Andrea.



Acknowledgements

Fam mueh indebied to my supervisor Dr. AS. Swamidas for his gidance and
enconragement thronghout the course of ihis study. His active support and con-

ation to Assoriation of

timned interest is highly appreciated. My sincere appre
Cniversities and Colloges of Canada for the award of a Canadian Commonwealih

Seholarship during the entire period of this research.  Additional support from

Malpas. Dean of

my snpervisor Dr. AS.) Swamidas from his grants and Dr.

Gradnate studies are gratefully acknowledged.

My sineere gratitide 1o Dr. R.T. Dempster. Chairman Department of Mechanical

sis course to teach and

Engincering. for giving me a term eight finite element a

my sincere gratitnde to Dr. J.). Sharp, Associate Dean of Engineering who allowed

me to teach this conrse while [ was still in the graduate program.

My special thanks to Dr. K. Munaswamy and Dr. R.E. Baddour. members of the
supervisory committee, for their constructive criticisms and nseful snggestions after
reading the mannscript. Sincere appreciation are due to Dr. (i.R. Peters, former

Associate Dean and Dr. T.R. Clari, former Associate Dean.

Dean, Dr. J.J Sharp.

Faculty of Engineering and Applied Science for providing the facilities.

1would like to extend my sincere appreciation to Mr. D. Press. Manager. Centre for

t. Johu's,

Computer Aided Engineering Memorial University of Newfoundland.
who helped me with an ever increasing computer core space and thus assisted in

the completion of this research. I also would like to acknowledge Mr. L. little, Mr.

iii



T. Galway and Ms. V. Fortier, {or their patience, cooperation and attention to

many of my complaints in the Centre for Computer Aided Engincering.

Finally. my tenly nubounded thanks to my wife Opry and my two danghters. Roisin

and Andrea. for their understanding. love and patience throngheat the conrse of

this study.



Abstract

The main components of steel offshore structures, whether fixed or loating, are

generally tubular membey

Large stre

concentrations arise due to the abrupt
geometric discontinuities at the intersections of these welded tubular members.

called joints or nodes. The varying environmental loads acting o these joints

cause fatigne crack initiation. growth and their final catastrophic failure. This
thesis presents a nnmerical stdy of the total fatige life of offshore tuliar welded
joints wnder the action of axial. in-plane and ont-of-plane bending loads. using loral
strossestrain and linear elastic fracture mechanies approaches. The study inchdes

the development of a compnter program for the i ntomatic generation of meshes for

tubular joints and a contact program for the prevention of erack surface penetration.

Stress analysis 1o determine the possible tion of ti

crack initiation on the
tubular joint has been carried out using eight noded degenerate isoparametric shell
elements. The influence of geometric parameters on the stress distribution around
the joint as well as throngh the joint thickness has been investigated, and the resnits
obtained therein compared with experimental results: they alio have been compared
with established parametric equations. Good comparisons have been obtained with

the experimental values,

The local stress

train approach. using the Manson-Coffin rale, is utilized for the
study of the crack initiation. Using experimental investigations on crack initiation
life of tubular welded T-joints. fatigne strength exponent b and fatigne ductility

exponent ¢ have been determined empirically and used to compute crack initiation



life of the tubular joints analyzed in this study.

The weld toe crack influence on the through thickness ay d surface stress distribution
has been studied using the lin spring element in conjunetion with the degenerate
eight node shell elements to model the crack. The stress intensity factors deter-

mined, from this

study. were compared with available theoretical studies and fonnd

to give good results.

Using the stre:

intensity factors obtained from the line spring model. the through-

thickne:

< crick propagation i

s of the tubular joint nnder consideration were
predicted using Paris crack growth law. The propagation lives for each loading
conditions were predicted. on an incremental cycle basis, np to 90% of the chord

Vhickness cracking. The estimated fatigne lives wete compared with experimental

investigations carried out at Memorial Univers

ty of Newfoundland St. Juhn's (for

axial loading) and Uni

ersity of Waterloo (for in-plane loading) under the (anadian

Cooperative Offshore Tubular Joint Program and found to give good results.
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Chapter 1
Fatigue of Tubular Welded Joints

1.1 Introduction

For more than a century it has been well understood that metal components and
structures subjected to variable or repeated loads would fail in service, even though
they are usnally capable of withstanding considerably higher loads if the loads were
of a static nature. This type of failure, which consists of the formation of a crack or
cracks. under the action of varying loads. arorind highly stressed critical areas has
come to be recognized and known as fatigue. It is however, virtually impossible to
produce a complete list of the types of structures which may suffer from this type

of failure.

Considering structures which are fabricated by welding in nich fatigue cracking
have caused failure. thosc in the following list spring immediately to mind. They
are conveniently classified under some of the typical forms of loading which may

cause fatigue failure.

1. Fluctuating live loads : Bridges.cranes, gantry girders. diesel engine frames,

locomotive underframes. lorry chassis, frames and axles, ships. earth-moving

1



equipment, farm machinery. rock crushers. presses etc,

Pressure fluctuations : Pressure vessels. pipework, containers etc.

. Temperature fluctuations : Process equipment involved with hot or cold

materials. liquid and gases.

=

Vibrations : Rotating machinery. grading equipment and conveyor.

. Environmental loadings : Marine platforms and rigs.

The last item in the list forms the subject of this research. The active search for
gas and petroleum has re ulted in extensive offshore producing activities world-
wide. Most of the rigs currently in operations are of the jacket type construction.
comprising of a steel platform supported by a steel framework. These steel frame
type structures are fabricated from tubular members that are joined together by
welding the end of one tube (brace) to the undisturbed exterior surface of another
tube (chord) at discrete points called the intersections. Figure 1.1 shows the sketch
of a typical jacket type platform. Because of the abrupt discontinuity or change
in geometry at these points coupled with the complex environmental loadings such
as wind. wave and current loadings. as shown in Figure 1.2, they become sources
of stress concentration and hence potential candidates for fatigue crack initiation
and propagation sites (Figure 1.3). If fatigue cracks occur, they are initiated at
these zones of large stress concentrations, and in fact the fatigue behaviour of these
tubular structures depends primarily on the severity of these stress concentrations

and reversals. It is thercfore appatent, that in designing structures with welded



Figure 1" A jacket type platform.
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Figure 1.2: Environmental loadings on an offshore structure.






tubular joints. minimization of the number of joints should be of paramount im-
portance from the fatigue point of view: in addition. an optimal joint configuration
giving a large joint fatigue life should be determined. In the past. majority of
criteria governing tubular welded structures dealt mainly with the static strength
(load bearing) canabilities, because most operational and design experience of these
type of structures had been gained in the relatively shallow and calm waters of the

Persian Gulf and the Gulf of Mexico.

Tubular sections have high priority over open sections for structural use in offshore
platform design becanse of their high-torsional rigidity. symmetry of sectional prop-
erties, simplicity of shape. and pleasing appearance. They possess great structural
advantages as structural elements, but their use was for many years hampered by
the difficulties in joining the members. This problem has been overcome in re-
cent years by directly welding the contoured end of one tube onto the undisturbed

outside of the other tube.

There are innumerable configurations for offshore tubular joints. if three-dimensional
geometry is considered. Even restricting consideration to in-plane connections
(where the axes of all the tubes lie in the same plane), there are still many con-
figurations. In-plane offshore tubular joints are designated as T, double T. Y, K.
N, ctc., depending on the positions of the braces. Figure 1.4 shows some of the
possible geometries of typical tubular joints. Regardless of the loading transmitted
through the brace, large stress concentrations are produced at certain points along
the brace/chord intersection. This effect can be attributed to two main reasons; (i)

the presence of the weld and (ii) the abrupt change in geometry at intersection.
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The stresses at these critical locztions can be several times higher than they would
be if such effects as weld and change in geometry are not present. Cracks initiate
first at these highly stressed regions. and depending on which side of the joint
(chord or brace) this highly stressed region is located, the cracks first spread as
multiple cracks along the weld and soon coalesce to form a single crack. and start

growing through the thickness of the brace or chord.

Leng before an all-out effort was made in the late 1960s to develop relevant offshore
tubular joint desig: riteria. many design configurations have been implemented
to strengthen the jacket joints. Gusset plates. welded in-between the brace ends
and chords. were first tried. Sometimes pass-through gussets [Figure 1.5 (a)] were
used. But it was not too long before it was discovered tiiat gusset plates produced
undesirable stress concentrations which shortened the fatigue life characteristics of
the joint. and the general trend was towards the reinforcing of joints with external
ring stiffencrs (Figure 1.5 (b)]. These ring stiffeners were placed on the chord to
strengthen the chord wall against collapse: sometimes they were added at intervals
along the lengths of the brace to preclude ovalization of the cross section of the
brace and subsequent buckling if the brace was loaded in compression. Use of
interndl ring stiffeners [Figure 1.5 (c)] has recently gained wide acceptance as one

of the effective methods of reducing the stress ion around the i

of tubular joints, provided the tube is large enough to allow their placement.
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Figure 1.5: Types of stiffeners used in offshore tubular joints.
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1.2 Crack Initiation and Growth in Fatigue Anal-
ysis

The fatigue strength of a structure, for general engincering purposes. is described
as the number of stress cycles of a particular amplitude that a given component will
withstand. before complete failure occurs. Fatigue failures are divided arbitrarily
into two groups, viz.. low cycle and high cycle fatigue failures. Where a component
fails within 103 to 10% cycles or less, the failure is termed as a low cycle fatigue
failure. If components survive more than 106 cycles then the process is termed high
cycle fatigue. Structures such as submarines, pressure vessels. steam turbines etc..
that are subjected to very low frequencies of loading are normally associated with

low cycle fatigue failure. On the other hand. offshore structures such as oil rigs,

are subjected to relatively high loading frequencies due to the passage of waves.
Because of this, the stresses in oil rig structural members. have to be designed for
the high cycle region ( lives in the region of 108 cycles and above). Fatigue failure.

whether of low or high cycle . consists of three distinct stages:

Stage | : crack initiation and nucleation:
Stage Il : crack propagation: and
Stage Il : ultimate failure.

For most practical design purposes. particularly for offshore steel structures, the last
phase is ignored. In these cases, the desigr against fatigue does not allow cracks
to propagate to a critical size where rapid brittle fracture can occur. Materials
used in offshore structures are ductile enough to cause separation of the brace from

the chord before brittle fract ‘re can occur in the structure; thus brittle fracture is



prevented in offshore structures..

The evaluation of the crack initiation life by the local strain approach concept

(strain life) is based on the observation that in many components the response of the

material in critical locations is strain or deformation dependent. This approach to
crack initiation recognizes the fact that fatigue is a localized process and. therefore,

focuses on the regions of stress concentration in the structure where crack initiation

is most likely to occur. Since these regions experience local plastic deformations.
plasticity effects are explicitly treated. The fatigue resistance of the structure at
the critical point is characterized by a straiu-life curve obtained from the log-log

plot of the total strain amplitude Az/2, versus reversals to failure,

V7., which is

given in the form:

N+ g (2N (L)

where

o

= Elastic modnius.

= Fatigue strength coefficient.

= Fatigue ductility coefficient,
fatigue strength exponent,
fatigue ductility exponent, and
Ny = fatigue life of the specimen

0.9
4 s
i

and is schematically shown in Figure 1.6,

Assessment of the crack propagation life is generally based on linear elastic fracture

mechanics principle which has received increasing attention during recent years in
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the fatigue analysis of tubular joints. Parameters such as nominal hot spot stress

and crack size are used by this approach in characterizi beh

g the fracture of

structures. Linear elastic fracture mechanics (LEFM) methodology uses an analyti-
cal procedure that relates the stress field magnitude (Figure 1.7) and its distribution
in the vicinity of a crack tip to (i) the nominal stress applied to the structure. (ii)
the size. shape. and orientation of the crack or crack-like discontinuity and (iii) the
material properties. Any loading on a cracked body is accompanied by inelastic
deformations in the neighbourhood of the crack tip due to stress concentration,
Depending on the mode of loading on a cracked component, the relative movement
of a crack surface is characterized by three basic rodes of deformation and these

are distinguished as:

1. The opening mode (Mode ). characterized by local displacements that are

symmetric with respect to the ry - and rz-planes. The two fracture surfaces

are displaced perpendicular to each other in opposite directions [Fig.1.3 (a)].

I

The sliding or shear mode (Mode 1), characterized by local displacements
that are symmetric with respect to the r —y plane and skew symmetric with
respect to the r — = plane. The two [racture surfaces slide over each other in

a direction perpendicular to the line of the crack tip [Fig.1.8 (b)].

. The tearing mode (Mode I11). is associated with local displacements that are
skew symmetric with respect to both z —y and z — = planes. The two fracture
surfaces slide over each other in a direction that is parallel to the line of the

crack front [Figure 1.8 (c)).

Each of these modes of deformation corresponds to a basic type of stress field (see
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Figure 1.7) in the vicinity of the crack tip. Depending on the geometry and loading
conditions. the deformations and stresses at the crack tip can be treated as one or
a combination (mixed mode) of these local displacement modes. Tigure 1.7 shows
that the distribution of stresses and strains around the crack tip can be described
by a single parameter K. designated as the stress intensity factor. Based on the

Griffith’s original analysis (1%43) and the subsequent extension of that work to

ductile materials. it has been established that the stress intensity factor in general

is related to crack length and applied nominal stress as follows:

K = Youm (L2)
where A is the stress intensity factor. oum the applied nominal stress. Y a geomet-
ric factor and athe crack size. The geometric factor Y depends on the configuration
of joint and the crack geometry and has been the subject of extensive investigations,
As a result. various relationships for stress intensity factors of simple crack config-
urations with various crack sizes. orientations. shapes, and loading conditions have
been published. Unfortunately limited number of studies have been made in this
directic: for welded tubular joints. Existing studies have always been carried out
experimentally with the argument that the complexities of the geometry and the
three dimensional stress distributions around the welded intersections have made
it very difficult to determine, analytically, the function Y for tubular joints. Since
present investigation is analytical, an attempt is made to study this problem in

detail.



Many theories and empirical equations relating fatigue propagation rate (da/d\)
to stress intensity factor range (AA') have been proposed: the most commonly used

i the Paris power law:

du R 3
—_ = 1.
i~ CIARN) 1.3y

where (* and m are material constants

From Eqn. (13) the propagation 1ife (Np) can be calenlated by integrating from

the initial flaw size depth (a,) to critical faw size (ac) as:

. L du
Np o= /mm (A81)

In conelusion it is apparent that the fracture mechanics methodology offers the most
comprehensive approach to fatigue life determination of offshore tubular joints. This
merhadology is used in this investigation to determine the fatigue crack propagation

life of unstiffened tubular joints.
1.3 Scope of the Thesis

The purposes of this study is to estimate by numerical analysis the fatigue life
of tubular joints which have been tested in the Strength Laboratory of Memorial
University of Newfoundland. St. John's. The influence of various geometric param-
eters on the stress distribution around the intersection is examined and the results

compared with the available parameu: ¢ equations. The through thickness stress
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distributions have been investigated by using a simple lincar relationship between
the through thickness bending stress and hot spot stress (degree of bending). The
relative proportion of bending stress in the wall of the tube is investigated and its
importance in fatigue life evaluation emphasized. The behaviour of the stiffened
tubular joints with internal ring stiffener is investigated with a view to obtain the

size and positions for which they are most efficient from fatigue point of view.

A numerically officient method for determining the combined crack initiation and
crack propagation life of offshore welded tubular joints is developed nsing finite el-
ement method. Fatigue life of offshore welded tubular joints have been determined
from an entirely numerical point of view and compared with the experimental re-

sults obtained for tubular welded joints at the Faculty of Engineering and Applied

Science. Memorial University of Newfoundland.

1.4 Organization of the Thesis

The following provides a brief description of the material covered in this thesis. The
study mainly emphasizes the use of numerical methods for fatigue life assessment
of full scale offshore welded steel tubular joints under the action of brace axial.

in-plane and out-of-plane bending loads.

Chapter 2 covers the past, present and related review of literature concerning off-
shore welded tubular joints. Various numerical and theoretical backgrounds utilized
in fatigue strength analysis are presented in Chapter 3. The formulation of the el-
ement (degenerate isoparametric shell element - 8-node serendipity and 9-node

Lagrangian) used for the stress analysis of stiffened and unstiffened tubular joints,
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in the present study, is given in this chapter. The ‘line spring element formulation
developed by Parks et. al. (1931) have been utilized to model the crack and for
SIF evaluation along the crack front. The basic concept of this element is also

presented in Chaptes

Finally the formulation of the local strain approach for
crack initiation life and the integration technique of the Paris power law, for fatigue

crack propagation are presented.

In order 1o predict the fatigue crack initiation life of any component susceptible
to fatigue failure. the knewledge of the stress distribution in the vicinity of the
stress concentration areas is required. The initiation life computation therefore,

depends on the accuracy with which the stresses can be evaluated. Chapter 4,

explicitly presents a comprehensive stress analysis of unstiffened tubular joints and

the evaluation of the stress concentration factors for the determination of hot spot

location where the crack is likely to initiate. Comparison of results obtained from

the present study and experimental studies is also presented in this chapter.

In Chapter 5 the stress analysis and the behaviour of the tubular joints with in-

ternal ring stiffeners, under the action of the three loading ( brace axial, in-plane
and out-of-plane bending) cases. are given. The influence of stiffener locations.

number (1v3), height (HS) and thickness (TS) of stiffeners on the stress distribu-

tiou around the intersection is provided: also comparisons with known

and analytical results have been made.

The crack initiation life prediction using the local stress approach is presented in

Chapter 6 and Chapter 7 presents the application of linear elastic fracture mechanics
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(LEFM) concept to fatigue crack propagation (FCP) life estimation of unstiffencd

tubular joints. Chapter 7 concludes with the evaluation of the total life of the joint

(i.e.,the sum of crack initiation life and the propagation life V7 = N7 + Vp) and

the comparison with both experimentai and analytical investigations.

Chapter 8 presents the summary, conclusions and the contribution of the present
study. It also provides recommendations for future theoretical studies on offshore

tubular joints.



Chapter 2

Literature Review

2.1 General

The state of deformation. stress and cracking in welded tubular joints. with complex
geometric configurations. has been of great concern to the offshore engineers for

These

many years and this has resulted in
have given rise to both analytical and experimental studies with many significant

contributions made in the past few years.

The relative complexity of the geometrical configuration of the tubular joints, as
well as the thin-shell theory governing their behaviour, have contributed immensely
to the unreliable prediction of the stresses in such joints by analytical techniques.
Hence numerical technigues such as the finite element metho. , have offered an al-
ternative acceptable and reliable procedure for handling complex geometries and
boundary conditions. Early attempts to apply the finite element method to the
stress analysis of tubular joints were somewhat hindered by the computational de-
mands generated by too many elements. The advances in the computer technology.

with a larger central memory and faster computers in the recent years. have made

21
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it possible to apply this powerful numerical technique not only to the stress analysis
of tubular intersections. but also for studying the elastic behaviour of these inter-
sections when they contain crack-like defects. However. some problems arise in
modelling the near crack tip stress field using finite elements due to the singularity
at the crack tip: the regular finite element shape functions when used for the anal-

5 of a crack are unable to represent this crack tip singularity. and thus produce

poor results when applied to fracture problems. Many attempts have been made to
overcome the inability of the finite elements to represent the crack tip singularity by
developing special elements which incorporate the required stress singularity in their
formulation. The relevant literature pertaining to these developments are reviewed
below to understand the state-of-the-art developments of fatigue and fracture of off-
shore tubular joints. While reviewing the state-of-the-art. a conscious decision has
been made to neglect the large amount of experimental studies that are available on
all types of tubular and other joints (T-joints, butt-welded joints. cruciform joints,
etc.): in addition, the earlier numerical developments have also been left out for the
major part except where it is found to be necessary to understand the thematic

development of the topic.

Most analytical and experimental investigations. carried out to date on welded
joints, have been done with a view to acquire significant information as to the life
expectancy and fatigue performance of typical joints used in offshore construction.
Two lines of approaches have been followed: the traditional S-N curve approach
(stress-life) and the recent fracture mechanics approach (used in estimating the
fatigue life spent in crack propagation), with the fracture mechanics approach re-

ceiving greater attention recently in the fatigue analysis of tubular joints.
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2.2 Stress Analysis of Stiffened and Unstiffened
Tubular Welded Joints

Offshore structures such as fixed platforms that are generally of tubular construc-
tion. experience high local stresses at the intersection of the chord and the brace
adjacent 1o the connecting weld. where atigue damage will generally occur. There-
fore. fatigue analysis is highly dependent on the accuracy with which this high local

stress at the hot spot can be calculated. The life determination is related to the

nominal hot spot stress in the S-N diagram. Hence the first part of any fatigue
study is the determination of the stress distribution. along the intersection as well
as through the joint thickness. obtained experimentally, by strain gauging and. an-
alytically by finite element method (FEM). For unstiffened tubular welded joints
studies have shown that depending on the loading type (axial, in- and out-of-plane
bending loads). geometry of the joint and the joint parameters (J. 7. a. 7. etc.)
the hot spot may be located either on the chord side or the brace side. In addition.
it may be at the crown or the saddle or in between the two points depending on
the joint geometry. type of load and its combination. It is therefore apparent that
a good design of offshore unstiffened tubular welded joints, from the fatigue crack-
ing point of view. depends on the effort spent in the early stage to determine the

magnitude and the location of the hot spot stress.

I'wo early methods, both very approximate, which have been summarized by Toprac
ct al.(1966) are usually referred to as the ring beam analogy and the Kellog (1936)
method. Kellog method is based on the equations for a beam on elastic foundation.

However. neither of these methods is now used. Of the theoretical techniques
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thin shell finite elements have been used by several investigators, notably Dundrova
(1965) and Scordelis (1970). but this method suffers from considerable limitations
from the point of cost and of computational time. The finite element method.
though suffering from the major disadvantage of being costly, particularly for com-
plex joints. is really the only method which is capable of giving the local stress levels
to the necessary degree of accuracy for fatigue strength calculations. Here, the as-
sumption that members can be represented as thin shells is invoked and several

types of shell elements have been used by different investigators.

Three distinct approaches, to the finite element representation of gencrally curved
thin shells. have been employed based on (i) flat triangular or quadrilateral cle-

ments (ii) curved elements. formulated on the basis of various shell theories and

(iti) three-di ric elements ialized to handle thin shells (de-

generated isoparametric three-dimensional clements). These elemenis have been
used by several investigators with reasonable results. notably among them being
the studies of Rashid and Prince (1965) (flat triangular elements for the stress
analysis of shell intersection), Greste (1970), Johnson (1967) (quadrilateral ele-
ments for the analysis of tubular K-joints), Yoshida et al. (1977) and Zienkiewicz
(1977) (three-dimensional isoparametric elements for crack initiation prediction of

tubular T-joints).

Kuang et al. (1975, 1977) carried out extensive and detailed studies on the stress
concentration factors in welded tubular joints. Empirical formulae for estimating
stress concentration factors for simple joints, commonly used in offshore structures,

were derived from the results of this parametric study. Three types of simple non-



reinforced joints. viz K. and TK-joints were considered. The finite element pro-

gram used was that developed at the University of California. Berkeley. by Greste
and Clongh (1970). They modified existing stress analysis program to broaden the
scope of its application and improved its efficiency and called it TKJOINT. They
concluded that the parametric formulae presented by them would provide design-
ers with sufficient information regarding the magnitude of hot spot stress in simple

non-reinforced joints.

Welded tubular connections were analyzed by Liaw ef al. (1976) using 20 noded
three-dimensional isoparametric elements. The elements were found to provide
more accurate modelling of the joints. The results of PMBSHELL and TKJOINT
programmes were compared for an ungrouted K-joint and were found to give good
agreement with their work except for some differences in the hot spot regions. They
concluded that the small deviation was due to the assumptions made for using flat

plate elements.

Gurney (1979) demoustrated that the stress concentration in tubular members can
be reduced by controlling the weld shape: he observed that by increasing the weld
leg length the fatigue strength of the joint could be increased. but found that this
was relatively a minor effect. In his parametric study. Berge (1983) modelled the
weld shape using the parameter . the weld toe angle. and p. the notch radius, and
argued that the proper modelling of the radius p gave a more realistic model to

the stress distribution at the weld toe and therefore had a significant effect on the

fatigue strength of the joint.
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The study by Hoffman and Sharifi (1980) have given a deeper insight into the
stress concentration along the weld toe of the tubular T-joints. Two types of
three-dimensional isoparametric elements were used in their studies (8-noded brick
element and 16-noded thick shell element). with various “incompatible” modes
introduced into the stiffness formulations to improve the flexural behaviour of the

elements.

Gulati ef al. (1982) conducted an analytical study of stress concentration effects

in a multi-brace joint. Also studied were the simple T, K and TK joints subjected

to isolated axial or in-plane bending loads. Loadings selected were only those that
could lead to direct comparisons with stress concentration factors estimated by ex-
:sting parametric equations. The comparisons showed good agreement between the
computed and estimated values of the stress concentration factors. Majority of the
finite element analyses were conducted by using MSC/NASTRAN computer pro-
gram. The element types used included QUADd, TRIA3, and BEAM elements and
-ome analyses were conducted using the STARDYNE program. They concluded
from their investigations that restricting attention to crown and saddle points for
fatigue life evaluation can lead to erroneous results; hence they stated that fatigue
life evaluation of a tubular joint should be carried out at eight points equally spaced
at the chord-brace intersection. They argued that in computing stress concentra-
tion factors by using parametric equations for K and TK joints, both the joint

geometry and the direction of loading should be properly considered.

Panagiotopoulos (1986) used a solid, incompatible element, at the intersection re-

gion of the T- and Y-joint connections, while using Ahmad et al's (1970) shell



element to model the rest of the structure. The transition between the two ele-
ments was accomplished by appropriately transforming the degrees-of-freedom of
nodes. located on the mid-surface of the shell element, to be connected to the solid
elements. Comparison between the numerical and experimental results demon-
strated the efficiency of this type of idealization for predicting the stress gradients
at the intersection region. It was concluded that this structural modelling leads to

reliable results with no loss of essential features of the structural behaviour.

Dharmarvasan and Aaghaakouchak (1988) presented a finite clement stress analysis
of tubular joints stiffened by internal ring stiffeners of different sizes and at differ-
ent locations in the chord. In order to stud' the behaviour of these set of tubular
joints. a finite element parametric study was conducted. Semi-loof shell elements
were used throughout the study with the explanation that these elements have a
general curved shape and therefore model the geometry of the structure correctly.
In their study. a T-joint with 15 different states of stiffening was analyzed under
three loading cases: axial. in-plane bending and out-of-plane bending. Results of
their analyses showed that in the case of axial and out-of-plane bending loading.
adding the stiffeners to the chord at certain positions greatly reduced the stress
concentration factors and gave a more uniform stress distribution around the in-
tersection, especially on the chord side. The effect was found to be less significant
in the case of in-plane bending. From the stiffener size point of view. it was ob-
served that under the axial and out-of-plane bending loads, the stiffener heiglit had
the stronger effect in reducing the stress concentration factors (SCFs) compared to
stiffener width. From the foregoing observations, they concluded that the moment

of inertia of the stiffener is the main factor in controlling the level of SCFs, They



proposed that for the axial and out-of-plane bending cases the two quarters of the
plug were the optimum positions. On the effect of the number of stiffeners, it
was observed that as long as the stiffeners were located at the correct positions.
increasing the number of the stiffeners resulted in increasing the chord moment of
inertia and consequently in reducing the chord SCFs; but they have a smaller effect
on the brace SCFs. They finally concluded: stiffening tubular joints at the middle
half of the plug gives the optimum position for axial and out-of-plane bending
(OPB) load cases. For the in-plane bending situation. adding the stiffeners to the
two outer quarters of the plug was mo: efficient; the brace side may experience
high SCFs aue to the introduction of stiffeners. Stiffening reduces the ratios of
bending to membrane stresses and produces a more uniform distribution of the
stresses around the joint of the tubes. In this case it was stated that once the crack
starts growing there may be a faster rate of crack growth through the thickness:
hence if the existing definition of fatigue life in tubular joints is used it may not be

sale to use the existing $-N curves for stiffened joints.

Aaghaakouchak and Dharmavasan (1990) presented an improved finite element
technique for the determination of stress distribution around the welded intersection
of stiffened and unstiffened tubular joints: a combined model of three dimensional
and shell elements was considered in their study. Three dimensional isoparametric
elements were used to model the welded intersection of the tubular joint and semi-
loof thin shell elements were used for the rest of the joint. The results of the
stress analysis obtained from both stiffened and unstiffened tubular joints, using
the combined model., was compared with the results obtained from experiments and

other types of finite element analyses. For the unstiffened joints, it was observed
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that the model gave the result very close to the experimental stress concentration
factors obtained for steel tubular joints. For the stiffened joints. they concluded
that the distribution of available experimental SCFs were in general agreement
with the finite element analysis using shell elements; close to the stiffencr posi-
tion. finite element analysis. with shell clements, showed an increase on the brace
and a decrease on the saddle. The reduction of the SCFs at these positions on
the chord. obtained experimentally, were found to be more significant than that
predicted by finite element results. For the combined model of brick and shell el-
ements. it was observed that around the stiffencr positions due to the presence of
significant shear and through-the-chord-thickness stresses, the direction of the prin-

cipal stresses

changed. The maximum difference between the principal and normal
stresses were found to occur in the vicinity of the stiffener position on the chord.
Comparing with available experimental results. they suggested that for the case of
heavier stiffeners. a higher percentage of the loads were transferred to the chord
around the stiffener position. They finally concluded. that. the through-the-chord-
thickness transfer of loads may be a factor in this more significant reduction. and
therefore. the strain measurements carried out on the tubular surfaces during the
experiments on stiffened joints may not be able to represent the maximum princi-
pal stress at the chord weld toe and that care should be taken in interpreting the

results,

2.2.1 Parametric Equations

Based on the results of numerical and experimental analyses. by several researchers,

have been developed, for determining the stress

parametric eq
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factors along the intersection of offshore tubular joints. and presented, in the famil-

iar form of paraiaetric equations

SCF = Ca™3™r™y™("sing"® (2.1)

where C'is a constant. a = 2L/D. 3 = d/D, v = D/2T, r = /T, { = g/ are the
non-dimensional joint parameters. and nl, n2, n3, nd. n3. 6 are exponents and 0

is the intersection angle between members.

In addition to the work of Kuang et al’s (1975. 1977) mentioned carlier, Gibstein

(1978, 1981) also carried out parametric stress analysis of T and K (non-overlap

and stiffecned) joints using the finite element program NV332. In the first study.
seventeen T-joints were analyzed with both chord ends rigidly fixed. To investigate
the effect of fixity. additional analysis of a T-joint with the chord ends simply
supported was carried out. All the three loading cases — axial. in-plane and out-of-
plane br.ding loads — were investigated. It was stated that there was a difference
of 5% for axial loads and no difference in the bending ones. for the two boundary
conditions. The influence of a. which was not investigated, was taken from the
Kuang analysis. The SCF formulae for the brace had to be modified, by a factor
of 0.8, to allow for differences between the predicted and experimental SCFs. In
the second study nineteen models of K-joints, with 3 = 1.0, were analyzed and

parametric equations presented for the chord and brace.

Wordsworth and $medley (1978) presented empirical formulae for SCFs in T, Y,

KT and X-joints, based on acrylic model test results. It was suggested that a
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correction factor for the weld he applied "Fs obtained for T

multiplier to the
and DT joints for the chord side. Due to lack of data. no correction factor was given
for Y and N-joints. The performance of the two semi-empicical equations given
above (Kuang's and Wordsworth and Smedley) was compared by Irvine (1981). It

was conclided that the stre

concentration factors obtained using Wordsworth and

Smedloy’s oquation were more conservative than those of Kuang,

A set of equations. 1o predict these stress distribntions for simple joints (T and
). was proposed by Dhamarvasan and Dover (1951) and has been used to predict
mixed mode stress concentration factors. The resnlts obtained from a complex K
Juint was also examined in detail and the importance of the stress state, when pre-
dicting the mixed mode stress concentration factors. demonstrated. Three methods

were used for their studies, viz., finite clement analysis. strain-gauged steel models

and strained-ganged

viie models, The results fom these techmiques and the
formulae obrained from them were compared with the available analytical. exper-

imental and stress distribution equations. In conclusion it was abs

ved that only

the parametric equations by Wordsworth and Smedley (1978) could be assessed
from the data base. They stated that these equations were on an average 7%

% and 1550 the a

ligher and fall within a scatter band of crvlic model gave
comparable accuraey to the Wordsworth and Smedley equations. It was also shown
that Dharmavasan and Dover's (1981) new stress distribution formulae were more

accurate than previous tormulations. It was shown that these new formulae can be

used Lo predict mixed mode SCF's to within +20%%.

Connolly et al. (1990) carried ont a thin shell finite finite element parametric
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study of the through-thickness bending to membrane stress ratios in tubular Y-
and T-joints. In their study. nearly 900 finite element runs were performed for a
wide range of joint geometries for axial. in-plane bending and out-of-plane bending
loads. The validity of their approach was demonstrated by comparing the thin
shell finite element results with data obtained from strain-gauged acrylic model tests
and other finite element analyses utilizing thick shell or brick clements to model the
intersection. The results were then used to construct semi empirical 2quations which
related the relative proportions of bending and membrane stresses to a parametric
equation of the joint. They concluded that the only important feature of the raw
results which could not be directly incorporated into the pararnetric equations was
that for small values of the brace angle 8 (typically below 15°) together with either

small 3 (= d/D) orsmall = (= t/T): the proportion of membrane stress was typically

much higher than would be expected from trends in the rest of the data. They
suggested that in such cases it was probably wise to assume conservatively that the

through thickness stresses are wholly tensile.

A statistical method for identifying the probable SC'F regimes was developed by
Dover et al. (1991): they compared five sets of SC F parametric equations that gave
various levels of prediction and determined the best parametric equations that could
be used for design purposes. The five parametric equations used in their study were
those due to Kuang et al. (1977), Wordsworth and Smedley (1978), modified UEG
(1985). Efthymiou and Durkin (1088), and Hillier et al. (1990). They concluded
that the currently available steel SC'F' database was adequate for some categories
(particularly. crown and saddle of T-joints) but insufficient for many. They also

observed that some equations have normalized mean values close to unity, whereas
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others give conscrvative values and hence advocated accountability in overall safety

assessment where mean values were close to one.

R handra et al. (1991) conducted an analytical and i al i

on internally stiffened steel tubular joints. Based on finite element analysis of T and
Y stiffened joints, optimum stiffener positions were proposed for reducing the stress
concentration factor. Parametric equations for calculating the maximum stress

concentration factors (SCFs) for these joints under different loading conditions

were also developed. The i I and analytical results were d. On
assessing the influence of stiffener parameters (stiffener width/chord diameter ratio,
X = B/D; stiffener thickness/chord thickness ratio, w = T,/T), it was observed
that there was a reduction in SCFs when the stiffener width/chord diameter ratio
increased. However, they found that the reduction in SCF was not significant when
the stiffener width/chord diameter ratio increase beyond 0.2. A reduction in the
SCF was similarly obscrved when the value of stiffener thickness/chord thickness
ratio increased. It was, however, . Userved again that the reduction in SCF was
not significant when the stiffener thickness/chord thickness ratio increased beyond
0.75. The error in estimating the maximum stress concentration factor using the

parametric formulae was given to be between +24% and —16.8%.

2.3 Fatigue of Tubular Welded Joints

From an engineering point of view, the total fatigue life of offshore tubular joints
compri~e of cycles required for crack to initiation (fatigue crack initiation life) as

well as those required for crack pr fon (fatigue crack ion life); that




where

Nt = total cycles to failure;

Ny = cycles to crack initiation; and

cycles for crack in propagation.

The relative magnitudes of .V and .V, in Eqn. (2.2) can vary greatly from structure
to structure. depending on the fabrication history. nagnitude of applied loads.

and severity of stress concentrations. It has generally been viewed that for large

complex structures fabricated by welding. .Vy. is relatively small compared to V.
For example -esults from a full scale test of welded tubular joint. typical of that
in an offshore structure. carried out by Wylde and McDonald (1981) demonstrated
that engineering-sized cracks of | to 3 mm were present at less than 10% of the total
life of the welded tubular joint. The results of recent experimental investigations
reported by Pates et al., (1989) have shown that the concept of neglecting the crack
initiation life of large scale structures, fabricated by welding may lead to erronous
determination of the total fatigue life of such structures. For axial loading, it was
observed that the crack initiation life was about 34.6% of the total life, in air at
250.0 MPa (hot spot nominal stress) and 46.6% in synthetic seawater at 160.0 MPa

(Swamidas et al., 1988)
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The local stress-strain approach have been applied successfully in the evaluation of

A

rack mitiation of welded joints. The procedure is based upon the earlier

atigue
pionecring work in fatigue of notched members by Neuber (1969) and Peterson
19741 and later investigations by Lawrence (1978, 1980) and Fuchs (1950). The
initiation life of the welded joint. which is assumed to contain a small notch, is

related to the life of small unnotched specimens cycled to the same strains as the

material ai the weld notch root. The initiation period is defined as the time (in

terms of cveles) required for a small. but detectable, fatigue crack to develop. For

many veurs. this definition has heen of great concern to many researchers. It has

been difficult to quantitatively define the size of a crack to the end of the initiation
and the beginning of propagation periods. For the crack propagation stage the
fracture mechanics approach has proven to be an efficient and powerful tool for this

aspect of fatigue life evaluation.

2.3.1 Fatigue Crack Initiation

Dowling 11979} and Lawrence (1979) have shown. in their respective studies. that
reasonable success can be achieved by combining the local stress-strain approach
to crack initiation and the fracture mechanics approach to crack propagation. Al-

though this combined initiation and propagation approach to fatigue life prediction

ix both physically correct and generally applicable, the relative magnitudes of .Vy.
and Ny in Eqn. (2.2) can vary from structure to structure, depending on fabrication
history. magnitude of applied loads. severity of stress concentration and environ-

mental influence (corrosion). During the past. since the introduction of fracture

mechanics approach for evaluating the fatigue life of offshore tubular welded joints,
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it has been argued  nerally that lor large complex structures like the tubular joints.

fabricated by welding. .V} is relatively small compared to ;.

Socie et al. (1979 presented a model for combining strain cycle fatigue and frac-
ture mechanics concepts to estimate the total fatigue life of notched and cracked
members. In their study the strain-life approach was employed by using the rela-

. and reversals to failure. 2.V, which was

tionship between strain amplitude,

expressed in the form:

where o = fatigue strength coefficient. b = fatigue strength exponent. < = fa-
tigue ductility cocfficient. ¢ = fatigue ductility exponent and E = elastic modulus.
[heir model provided  nonarbitrary definition of fatigue crack initiation length.

A working definition for crack initiation length was proposed as the depth of the

initiated fatigue crack when the fatigue damage due to crack propagation mech-
anisms exceeded that due to crack initiation or strain cycle fatigue mechanisms.
('rack initiation fength. and the total fatigue life, for center notched aluminium
plates subjected from zero to maximum tensile loading were determined using their
model. Theoretical elastic stress range, AS;. at a distance r from a notched root
was employed in conjunction with Neuber's rule (1969) to approximate the product

ol actual stress range. Ao, and the strain range. Az, along the potential crack

path part as:



From the various combinations of stress levels and notch acuity analyzed in their
tests. 1o show the validity of their model. it was observed that the relative portion
of the life spent in crack propagation increased with decreasing stress levels as also
ubserved caclier by Hunter and Fricke (1957) and Dowling (1968). They concluded
that crack initiation lengths, in typical engineering materials. appeared to be be-
tween 0,001 and 0.010 in. It was also ubserved that the greater the notch acuity.

the larger is the portion of life spent in propagation.

An energy based method of calculating elastic-plastic strain and stresses near
notches and cracks was presented by Glinka (1985). [t was assumed that the strain
encrgy density in the plastic zone. ahead of a notch. can be calculated on the basis

of the elastic stress-strain solution. The application of this method for notches un-

der tension and bending, including the effect of stress multiaxiality near the notch
lip. was also presented. The concept developed by Hutchinson (1968). for cracks,
and Walker (1971), for deep sharp notches (that in the case of localized plastic

vielding the energy density distribution in the plastic zone is almost the same as

iu lincar clastic material) was used in his study. For plane stress condition, using
Ramberg-Osgood stress-strain relationship. he proposed that the energy density

should be calculated as in the presence of localized yielding at the notch tip.
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and that if the nominal stress S, is beyond the proportionality limit. then the

energy density should take the form
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For plane strain conditions. a biaxial state of stress exists at the notch tip. But it
was however, stated that the energy density was made up of o, only because the
components .. ozy. <. vanish. Consequently expressions analogous to Eqns (2.5)
and (2.6) were presented. for this case, by using the suggestions and relationships
given by Dowling et. al. (1979) for the translation of the uniaxial stress-strain
curve into the biaxial “plane-strain™ relationship. It was pointed out that in the
case of sharp. deep notches and cracks. the stress components o, and o. were
relatively higher than ahead of the blunt notches, and that the stress distribution
was also larger owing to the more intensive plastic yielding ahead of the crack tip.
It was demonstrated that the method. which was based on the assumption that the
strain energy density distribution (we will call it as Glinka’s method) in the plastic
zone ahead of a notch is the same as that determined on the basis of the pure
elastic stress-strain solution, was the same as the Neuber’s equations. Therefore,
the difference between these two methods was higher for materials with large plastic

zones and higher stress concentration factors. It was observed that in all analyse:
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performed the difference between calculated (using Glinka's method) and measured

notch strains were smaller than 10%.

The predicted fatigue crack initiation lives of welded plated T-joints in air and
seawater environment, was reported by Bhuyan and Vosikovsky (1987). Their ap-
proach was based on the local stress-strain approach. The effects of plate thickness
on predicted fat’s - -ack initiation lives were also presented. The predicted lives
were compared witn tne experimental data from Canadian offshore steel research

program (Vosikovsky ct. al.. 1985/1987: Mohaupt et. al 1987).

2.3.2 Linear Elastic Fracture Mechanics

Linecar Elastic Fracture Mechanics (LEFM) is a branch of applied mathematics
which has developed as a result of studies into the phenomenon of brittle fracture.
Itis the field of analysis that deals with the stress and strain distributions at the tips
of cracks in ideally elastic solids. The approach is based on the fact that the crack-
tip stress intensity factor. A, defined by linear elasticity. uniquely characterizes the
stress-strain field at the crack tip and thereby provides a measure of the “driving

force™ for crack propagation.

Inglis (1913) published the earliest theoretical work on the elastic stress distribu-
tion surrounding a crack in a stressed plate. but Griffith (1920) in a classic paper.
for the first time, identified the weakening effect of cracks in materials. The results
of both Inglis and Griffith show that stress gradients in the vicinity of tue crack tip

are quite steep with the stresses ultimately tending to infinity as the crack tip is ap-
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proached. In order to ascertain why most materials fail well Lelow their theoretical
cohesive strengths, Griffith carried out further investigations. and concluded that
the weakening effect was due to the existence of sharp ended flaws or cracks within
the material leading to high local stress concentrations. His work with glass fibre
shownd the sensitivity of brittle materials to the presence of surface flaws. Applying
the theoretical results due to Inglis, Griffith then attempted to quantifv the weak-
ening effect of the surface cracks. Using the results from Inglis work, he showed
that for a given crack size. there is a critical value of stress g ny. above which
unstable fracturing of the material will occur. To complete the energy balance.
Griffith made the assumption. that the energy required to create new surfaces in
the material is proportional to the fracture area from which energy is released. This
energy balance theory is known as the Griffith fracture criterion and is normally

written in the form

(27)

which indicates that the extension of a crack. in ideally brittle materials, is governed
by the product of the applied nominal stress ¢ and the square root of the crack
length, a. The right handside of Eqn. (2.7) is equal to a constant value that
is characteristic of a given brittle material. Consequently, Eqn. (2.7) indicates
that crack extension in such materials will occur when the product o/a attains a

constant critical value. Eqn. (2.7) has been expressed in another form as

o

E

a

=2 (28)
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where the left-hand side has become known as the energy-release rate, 7. and repre-
sents the elastic energy per unit crack surface area that is avaliable for infinitesimal
crack extension. The right-hand side of Eqn. (2.3) represents the material's resis-
tance R to crack extension. In general the Griffith criterion has been formulated

for both plane stress and plane strain situations as

Plane stress

Tt = /m“ ) Plane strain

where £ is the Young's Modulus. 4, is the surface energy per unit crack area. v is

Tert. =

(2.9)

the Poissons ratio and a is the half crack length.

Trwin (19:18) suggested that the Griffith fracture criterion. for ideally brittle materi-
als, could be modified and applied to brittle materials and to metals that exhibited

plastic deformation. Consequen*ly Eqn. (2.8) was modified to

=2(1 + ) (2.10)

and Eqn. (2.9) became

Ocpit. = | —m——= Plane stress

(2.11)

Oerit, = o Plane strain
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where v, was the plastic work per unit crack area.

The inability of the Griffith fracture criterion to determine the surface energy terms.
~e and 7,. when applied to ductile materials, lead to the recasting of the Griffith
equations in terms of parameters that were more readily measurable. Irwin (1957)
therefore introduced the concept of fracture toughness, given the symbol G, and
defined it as the energy released from the surrounding stress field per unit increase

of the crack area which would be required just to maintain the propagation of the

unstable crack. By using the semi-inverse method of We d (1939), Irwin
(1957) showed that the primary stress components in the crack region correspond
to the three displacement modes (Opening Mode I Shearing Mode 11, Tearing Mode

TII: see Figure. 1.7. in Chapter 1), could be expressed in the following form:

Ty
ory = (2.12)
K
o = 0
Ty (Zm%/( )

In the above expression. r. is the radial distance from the crack tip and the terms
7(8) are the functions of the polar angle 0. From this Irwin observed that the stress
field possessed a singularity of strength 1/y/7 at the crack tip. The parameters Kj,
Ryr.and Kypp were called the * stress intensity factors” (SIFs) corresponding to the

three cracking modes. He further luded that these h ize the

magnitudes of the crack tip stress field.
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From the foregoing review it is evident the linear elastic fracture mechanics is an
immensely powerful tool for crack analysis. It is also clear that, provided a fracture
mechanics solution can be obtained for a structure or component. a safe prediction
for fatigue life can be made for that structure based on data from simple specimen
tests and from numerical /analytical results. This methodology. if well developed.

would tend to climinate the expensive and time consuming large scale tests.

2.3.3 Finite Element Crack Modelling for SIF Evaluation

For the past decade or so, the finite element method has become firmly established
as the standard technique for the solution of practical fatigue fracture problems.
Several techniques have been suggested for evalualing stress intensity factors from
finite element results but adequate representation of the crack tip singularity is a
problem common to most of the proposed methods. From the very outset. the most
appealing approach to finite element fatigue fracture mechanics analysis was that
which took explicit account of the crack tip singularity. Initial efforts with the use of
conventional clements [e.g.. Chan et al. (1970) and Kobayashi (1969)] demonstrated
clearly that hundreds. or perhaps thonsands, of simple elements were required to
achieve a solution accuracy within 5%. In line with the importance of adequately
representing the crack tip stress singularity. both in linear elastic and elastic-plastic
fracture mechanics. special two and three dimensional elements were developed.
Different approaches were utilized by several investigators to determine the stress

intensity factors along the crack front in a structural component containing a flaw.

i i L i & ;
One of the earliest attempts at introducing a —= singularity into a finite element

was presented by Tracey (1971). This approach, employing a simple polynomial
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displacement field within a triangular element. was subscquently generalized by
Tracey and Cook (1977) to give a family of elements. A singularity of order r—P
(where r is the radial distance from node 1, Figure 2.1) was achieved when the

displacement field within the element was interpolated as

u = (1=€P) 6 +€P (1-n) &y + EPnéy (2.13)

The local coordinates £ and 1§ were defined such that £ = 1 along the edge 2-3 of
the element and § = 0 at node 1. The radial edges 1-2 and 1-3 correspond to n =
0 and 1 respectively. The element that resulted from this technique was. however.

unable to represent the constant strain conditions.

Henshell and Shaw (1975) recognized that by placing the mid-side node at the quar-
ter point in a quadratic isoparametric quadrilateral or triangular two dimensional
element. a singularity in strain results at the nearest corner node. The singularity
was found to be of order 1/y/7 as required by the Westergaard solution (1939) for

stress distribution around a sharp crack.

A different approach to crack tip singularity modelling by finite element methods
was introduced by Barsoum (1976). The idea proposed used the 8 noded isopara-
metric element for plane strain. plane stress and axisymmetric analyses and the 20

noded i: ic for three I crack tip analyses. The singularity in

all the element was achieved by placing the mid-side node near the crack tip at the
quarter point. For the two and three dimensional elements studied, four cases of

crack tip singularity were investigated, viz., (a) Eight noded quadrilateral



Figure 2.1: Triangular element with singularity at node 1.
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with midside nodes of the two sides at quarter points (Figure 2.2): (b) Six noded
triangle with mid-side nodes at the quarter points (Figure 2.3). This triangle was
gencrated by collapsing the side 1-1 of the quadrilateral in Figure 2.3: (c) Three
dimensional Lenty noded cubic element with four midside nodes at the quarter
points (Figure 2.4); and (d) Three dimensional prism with four midside nodes at
the quarter points (Figure %5). This was achieved by degenerating a cube with
one face collapsed. It was observed that the collapsed elements [cases (+) and (d)]

were easier to use in generating mesh and they gave somewhat better results.

For a semi-elliptical surface crack. in a plate of finite thickness. Smith and Alavi
(1971). Smith and Sorensen (1974) and Kobayashi el al. (1973), used the alter-
nating finite element method to obtain the stress intensity factor variations along
the crack front for various crack shapes. The same information was obtained by
Iathiresan (1976) and Raju and Newman (1977, 1970) by using the finite-element
method. Raju and Newman (1981) went further in presenting an empirical stress
intensity factor equations for a surface crack as a function of parametric angle. crack
depth. crack length. plate thickness and plate width for tension and bending loads.

The stress-intensity factors. used to develop the equation. were obtained from their

previous three-dimensional finite-cl analysis of semi-elliptical surface cracks,

in finite elastic plates. subjected to tension and/or bending loads.

The simplicity of the line spring element, developed earlier by Rice and Levy (1972
ab). in effectively reducing a three-dimensional problem to onc in a plate and shell
theory was demonstrated by Parks et al. (1981a). Results for a number of plates

and axially cracked cylindrical shells were presented; these compared favorably with
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Figure 2.5: 3-D prism with midside nodes at quarter points.
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the existing. detailed thre

limensional solutions. They observed that the results
were generally somewhat better for plates than for the shells. In conclusion they
argued that the above phenomenon may be a general feature of the line spring
clement as independently explained by Parks (1981b). Line-spring model results
were obtained by Delale and Erdogan (1981} by embedding the model within sin-
gular integral equation formulations of isotropic elastic plate or shell theory. It
was observed that the computational efficiency of the (one-dimensional) singular
integral equations. when applied to structural components. greatly exceeded even
that obtained with the line-springs embedded in a finite element model of the (two-
dimensional) shell middle surface. In a recent paper Fréhling (1992) has used the
line s -ring elements and weight function approach to verify the SIFs obtained for

an X-joint,

Nin and Glinka (1937) presented a method for the determination of weight funec-
tions relevant to welded joints and the subsequent calculation of stress intensity
factors. The weight function for edge cracks emanating from the weld toe in a
T-butt welded joint was derived using the Petroski and Achenbach (1978) crack
opening displacement function. Parametric equations were derived for the weight
functions: these equations make it possible to calculate stress intensity factors for a
variety of tension and bending combinations. The stress analyses and the stress in-
tensity factor calculations revealed that the geometric parameters such as the weld
toe radius o affect the stress intensity factors more than the stress distributions
ay(r). Finally their comparison of the stress intensity factors. calculated using the
derived approximate weight function with the finite element calculations. revealed

the satisfactory accuracy of the weight function.
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A procedure was developed by Rhee (1939a.b) to calculate the stress intensity
factors from the displacements along any arbitrary crack tip radial line on a quarter-
point singular finite element boundary. The developed procedure was validated by
analysing an angled edge crack in a flat plate under tension and a weld toe surface
flaw in an X-shaped tubular joimt under tension and bending loxdz. He stated
that. depending on the objective of an analysis (deterministic or probabihstic). the
most suitable stress intensity factor solutions can be selected from those given for
various locations. e concluded that the method developed herein. could provide
analvsts with a means to assess the accuracy of the stress intensity factor solution
of complex geometries without resorting to other means. such as experiments. [n
a later paper Rhee (1991) presented a reliable method for the calculation of stress
intensity factor solutions for weld toe surface crack. Two topics were explicitly dealt

with in study: (i) identification of a reliable approach to fracture mechanics

defect assessment: and (ii) the use of fracture mechanics method for design analyses.
Empirical stress intensity factor formulas for T-joints. which were developed from
the solution obtained by the identificd method. were presented: these formulae were
developed from the SIF results obtained for. 40 different T-joints with cracks. Three
type of loading were considered; axial . in- and out-of-plane bending loads. It was
recommended that for SIF empirical formulas to be applicable to general problems
of fracture mechanics and in-service structural integrity assessment, many sets of
SIF formulas have to be developed; the SIF empirical formulas presented by him

were only a starting point of such a development.

Haswell (1992) presented a general fracture mechanics model for tubular joints

based on the results of extensive parametric finite element studies of a range of
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uncracked and cracked joint geometries. The finite element study included over 70
tubular joints containing chord saddle cracks subjected to axial and out-of-plane
bending loads. The fracture mechanics model related. in a general sense. the crack
tip parameter (SIF) to the uncracked stress ficld parameters (degree of hending
(DoB). and stress concentration factor (SCF) ); Parametric study was conducted
to investigate a range of tubular joint conditions. The finite element models were
constructed using 8 noded shell elements. The PATRAN graphics software (PDA
Engincering. 1989) was utilized for the mesh generation, while the model analysis
was performed with ABAQUS finite eleraent software (Hibbitt et al. 1939). Part-
through wall cracks were modelled by including the line spring elements of Parks
and White (1982) along the weld toe position, which was assumed to be radially
offset 25 mm from the brace mid-shell surface. Cracks of constant aspect ratio
(af2c = 0.1) were modelled by mapping a planar semi-elliptical crack front shape
onto the weld toe curve. A simple model relating the stress intensity factor (SIF),
stross concentration factor (SCF) and the degree of bending (DoB) at each discrete

crack depth was proposed as

b fal
—— = A-DB. 2,14
SCFommn 1 - B.DoB (2:14)
where
SIF = N at the deepest point on the crack front.
Tuon = Nominal stress in brace,

SCF Maximum principal stress at weld toe

Tnom



[t was observed that the absolute scatter in the data varied from 8% at crack depth
a/T =02 to 16% at crack depth a/T = 0.3. It was finally concluded that (i) the
model required only a stress analysis of the uncracked joint, as it used the linear
relationships between SIF and SCF. and SIF and DoB at discrete crack depths
between 2% and 80% of wall thickness: (i) the model could be applied to any
tubular joint within the limits of the parametric study using only the results of
an uncracked shell analysis: and (iii) that the effect of complexity and structural
restraints can be quantified in terms of the recuction in crack site SCF and DoB

due to the addition and restraint of in- and out-of-plane braces.

2.3.4 Application of Linear Elastic Fracture Mechanics to
Fatigue Crack Propagation

Safety of structural components that contain cracks. or that develop cracks early

in their lives such as offshore welded tubular joints, may be governed by the rate

of subritical crack propagation. Many attempts were made in the 60's to quantify

the growth stage of fatigue crack by means of fatigue crack propagation laws.

Paris and Erdogan (1963) suggested that the crack propagation depended on the
crack tip stress intensity factor range, A K. which is a proper measureof the “driving
force” for the rate of fatigue crack growth, da/dN. Furthermore, an analysis of
available fatigue crack growth rate data at that time suggested that the functional

relationship between da/d.N and [(AK) could be expressed in the form
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When the experimental results were plotted in the form of log( A ) versus log(da/d.V')
a straight line was obtained suggesting a power law relationship. The slope of the

line m was found to be 4 and they suggested a law of the form

% z ol (2.16)

In the 20 years since Eqn. (2.10) was established. extensive studies of the fatigue

crack growth resistance of a wide range of materials have established that da/d.V
is also sensitive to load ratio and environment. the latter giving rise to additional
loading and environmental variables. It also became clear during this time that. in
general. Eqn. (2.16) was only valid over two to three orders of magnitude in growth
rate. For example, da/dN vs AN in inert environments, examined over a broad
range of growth rates, generally exhibited the sigmoidal shape with thiee distinct
regions shown in Figure 2.6. Following this realization. da/dN vs AR relationships

have been in a state of continual evolution.

The results from Paris law Eqn. (2.16) show that at all values of A a positive
growth rate will occur. However the results due to Liu (1964) demonstrated that
below a certain minimum value of A" no growth occurs. This value of A was referred
1o as the threshold value K. Liu thercfore introduced the fatigue crack growth
threshold. A K. to create a lower asymptote to the da/dN vs. AR curve, thereby
representing rates in region I by:

da

= CAR = AKy)™ (210
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Figure 2.6: Schematic growth rate curve showing the sigmoidal varia-
tion of fatigue crack propagation rate da/dN with stiess intensity factor
range (AK).
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Figure 2.7 provides a graphical representation of Eqn. (2.17) and serves to define

the parameters of this equation and illustrate its asymptotic nature.

An attempt to model the transition from stable to unstable crack growth was
presented by Forman et al. (1967). They proposed the following modification to
Equation (2.16) to account for the upturn in the (AR) curve in Region 11l as Kmaz

approaches the fracture tonghness (A¢) of the material.

da K .18)
IN T =M. -3k

where R is the stress or load ratio (gmn/@maz).

Numerous equations uf added complexity followed the above simple representations.
Several of these utilized common mathematical functions which possess the char-
acteristic sigmoidal shay. 2 of the da/d.N vs. AK curve: for example. the hyperbolic

sine and inverse hyperbolic tangent functions of Miller and Gallagher (1981).

Saxena et al. (1979) pointed out that the equations which are asymptotic in Re-
gion [ tend to select asymptotes which are about 10% below the lowest AR value
contained in a data set, regardless of the fact that cracks could propagate sig-
nificantly below this value. In order to avoid the above problem. the so-called

“th p model” was developed which does not contain an asymptote in

Region 1. This model is based on adding the material's resistance to fatigue growth.
that is (da/dN)*, in the three commonly observed regions of crack growth, Figure

2.3. The characteristic equation describing da/dN as a function of AX is given by:
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Figure 2.7: Schemalic representation of asymptotic crack growth equa-
tion [Liu, 1964)].
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where 4. my. s my and K. are empirical constants which are defined as illus-
trated in Figure 2.3, Each term in Eqn. (2.19) was represented by a given region

shown in Figure 2.8: for transition regions, combination of adjacent terms are used.

The exponents m; and m are slopes in Regions [ and I1, respectively; the constants
v -nd Ajg are the reciprocals of the intercepts (at AA = 1) in Regions [ and II.
respectively. It was argued that the form of the three-component model facilitates
the representation of load ratio effects by expressing +A; and A, as functions of R

since these effects are known to be specific to Regious [ and I1.

In conclusion it is evident that fatigue crack growth rates can be characterized and
predicted using elastic stress intensity factor. This implies that as long as a stress
intensity factor solutic * can be obtained for a cracked body or structure. the life of

the structure can be predicted using fracture mechanics concepts.

2.3.5 Thickness, Size and Geometry Effect

It had 1ung been known that plate thickness was likely to be a relevant variable for
fatigue cracking under bending stresses. This was due to the fact that the stress
gradient through the thickness of a ‘thin’ specimen would be steeper, and as such
will be less damaging than in a "thick’ specimen. However only in the recent past
numerous tests and theoretical investigations have been carried out on welded joiats

under bending loads consideiing thickness effects.



Gurney (1977). on the basis of theoretical fracture mechanics calculations. observed
that the fatigue strength of welded joints could be affected by plate thickness, even

when they were subjected to axial loading.

Gurney (1989) reviewed the research work carried out in Britain on the influence of
thickness on the fatigue strength of welded joints by using both theoretical fracture
mechanics and experimental approach. The results of tests under axial loading
carried ont by Johnston (1973). on spacimens with transverse nonload-carrying
fillet welds fabricated from piates of various thicknesses. indicated that there was a
general tendency for fatigne stzength to decrease as the plate thickness increased.
Several investigators such as Booth (1987). Haibach et al. (1978) and Dijkstra
and Hartog (1978). in their combined Furopean Offshore Faugue Programs. also
found a tendeney for fatigue strength to decrease as the thickness increased. Booth
(1983) investigated bending fatigue life of transverse K butt welds. Haibach et al.
(1
Di

the bending fatigue resistance of transverse nonload-carrying fillet welds. and

kstra and Iartog (1973) the axial fatigue strength of tubular T joints. Reported
at the same time was the work of Wildschut (1978): but surprisingly the tests on 40

mm and 70 mm thick

nsverse nonload-carrying fillet welds in bending exhibited

no ohvious effect of thickness. The results obtained and expressed in terms of
relative fatigue strength normalized to a thickness of 32 mm. were summarized by
Gurney (1989). On the basis of these data. he proposed an empirical thickness

correction for fatigue strength as follows:



where § is the fatigue strength of the joint under consideration. T its thickness.

S the fatigue strength of the joint using the basic S-N curve and T the thickness

corresponding to the basic S-N eurve. with the S-N relationship given by:

N(S)™ = constant (2.21)

The corresponding thickness correction for fatigue life (with m = 3) was giv n by

CGurney as:

L

N o= Np(%e) (2.22)

On the basis of Gurney’s work. the thickness correction was included in the revised

1934 UK Department of Energy Guidance notes for offshore structures (1934). The

reference plate thickness Tp for plate joints was taken as 22 mm. and 32 mm for
tubular joints. Below the reference thickness Ty, the fatigue strength was to be
taken as the strength at Ts. No upper limit existed on the range of the thickness

correction.

2.4 Analytical and Numerical Studies on Fatigue
Life Estimation

The present design method for offshore jacket employs the S-N design curve ap-
proach. These curves are derived from experimental tests carried out on small and
large scale tubular joints. Although this approach will continue to remain the pri-

mary method of design for some time, the effort, geared towards finding analytical
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and numerical approaches to fatigue crack evaluation is rapidly increasing among
many investigators. It is beginning to be clear. that development of an efficient
and reliable analytical /numerical approach to fatigue assessment of offshore tubu-

lar joints may alleviate the costly and time consuming exercise encountered when

tubular joints are to be tested for this purpose. Some analytical and numerical stud-
ies have already heen conducted in this arca and (rom the comparison of results
obtained with experimental approach. it looks that analytical/numerical approach
has a promising future for fatigue evaluation and consequently for the design of

offshore welded tubuar joints.

Becker et al. (1970) compared their theoretical and experimental studies on the
fatigne behaviour of tubular welded joints. Theoretical fracture mechanics ana-
Iytical crack models. using two-dimensional notch cracks and three-dimensional
semi-elliptical cracks were utilized. In order to check the analytical crack models
against their experimental results, fracture mechanics coupons from actual tubu-
lar joints, used in the study. were tested. The material constants obtained were
numerically different: however when they applied it to failure prediction of the ana-
Ivtical notch crack. comparative results in the low range of 4x10% to 10* cycles was
obtained. In their final summation they concluded that linear elastic fracture me-
chanics approach may be used to approximate fatigue crack propagation behaviour
of structural steels and proposed that effective stress be utilized in interpreting the
range of the stress intensity factor when macro-plasticity occurred around the crack

tip.

Dover and Dharmavasan (1982) carried vut random load fatigue tests on T- and
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Y- joints using an ‘Inherent Flaw" model. capable of using fracture mechanics in
a simple way. to predict the fatigue life of tubular welded joints. Observations
during the studies suggested that fatigue cracks present in the tubular joints grew
steadily through the wall thickness at a fairly constant rate. and fatigne crack depth
during the tests on the Y joints was found to be similar to that measured in the
T plate joints. Experimental stress intensity factor AK,., was determined using
the following crack growth expression obtained from specimen tests by Dover and

Holdbrook (1970):

dafdN = 15 < 10THAK.

and the stress intensity factor expression was taken as

K = Y, Y, cumV7a

2.24)

where Y is a factor dependent on crack shape and Yy is dependent on the loading.

joint geometry and local geometry. Yy was assumed as unity and since the two

factors

ill vary during the course of the life. in the early stages ¥s would dominate
whereas for most of remaining life Y5 would control the crack growth. With the

assumption that Y was unity. Y7 was given by.

AR,
Yo = :_‘fﬂi_a (2.25)
nom V/7
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The plot of this factor against a/t for the Y joint was compared with the results
of T joints and a K joint tested by Gibstein (1981) and Gibstein and Moe (1981):

(his exhibited good agreement.

Bhuyan (1936) presented the results of an analytical and experimental investiga-
tion on the fatigue behaviour of welded tubular T-joints. Linear fracture mechanics
approach was used. Analytical study included the development of a finite clement
computer program for tubular joints with or without weld toe crack. while the
experimental investigation consisted of quantification of sea water. temperature.
frequency. load ratio and wave form effects on fatigue crack growth rates in the
base steel material (CT tests) that has been proposed for the Canadian offshore.
The fatigue crack growth rates for tubular joints were determined using the stress
intensity factors corresponding to a 50% of thickness crack and the material coeffi-
cients C' and m were obtained from small scale specimen CT tests. It was observed
that at higher hot spot stress ranges. the estimated lives showed good agreement

with experimental results available in the literature.

Rhee (1986) and Rhee and Tyson (1937) presented analytical solutions that explic-
itly considered the effects of both flaw depth and length near the saddle point of
X- and K-joints under brace tension and in-plane bending loads using TUSTRA
(1985). In the analysis the warped crack surfaces, along the brace-chord intersec-
tion, were modelled using quarter-point crack tip singularity elements. For crack
growth simulation. the three component crack growth model by Saxena (1975)
was used. He concluded in his studies (using axial. in-plane/out-of-plane bending

loads) that depending on the loading conditions, the crack tip behaviour of a weld
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toe surface flaw can be predominantly mixed-mode. even for a simple tubular joint
geometry. It was observed that under a brace tension loading condition. the crack
growth rate on the surface decreased as the crack grew. This he stated was due
to the stress reduction along the crack growing path. Comparison with laboratory

results showed good agreement with his analytical solutions.

Bell et al. (1987) presented the de.elopment and testing of a fracture mechanics
model for prediction of the fatigue growth life of welded plate joints. The finite

element technique was adoptd for the stress intensi

- factor evaluation using both
two and three dimensional analyses. The joints were modelled using quadratic
isoparametric elements, with singular clements around the crack tip. The crack
shape development was achieved throngh the assumption that initially the small
cracks were semi-circular: then the crack shape development could be described by

an exponential relationship

the parameter & according to their study decribed the variation of mean aspect
ratio of the crack with the depth. and was shown to be described by an equation
having the same form as that of Gurney (1979a) for fatigue strength. With the
above explanation they presented the equation relating the parameter k to the

stress range and plate thickness as

2
Ac)® reql/? -
¢ = wlza] 3] a1
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where tg is a reference thickness and Aag is the associated stress range, ¢ is any
thickness and Ag is its stress range. The number of cycles V. to propagate an

initial size , to final size ay. was computed using Runge-Kutta numerical integra-

tion technique on a excle by cycle basis. From the three crack growth procedures

examined, viz.. single crack (SC') solution. straight fronted crack (SFC') solution

and multiple erack (MC). the multiple crack case. which accounted for the multi-

ple nucleation and coalescence of cracks. gave a good prediction. while the straight

fronted crack (SCF) and single crack (SC') solutions were, respectively. conservative

and over predicted the life.

2.5 Summary

The relevant literature pertaining to the stress analysis. development of paramet-

cquations. fatigue crack initiation. linear elastic fracture mechanies principles.

developments in finite element modelling for stress intensity factor evaluation, ap-
plication of linear elastic fracture mechanics principles to fatigue crack propagation.

al/analyticai studies

thickness/size and geometry effect and the available numeri
un fatigue life estimation of stiffened and unstiffened tubular joints have been re-
viewed in this chapter. Inspite of the numerous developments available fu the area.

itiation

1ot a single study has examined the whole range of stress analysis, crack i
and crack propagation in a detailed manner and tied together these results with
the results of experimental investigations. Since a detailed experimental investiga-

lion was carried out in the Faculty of Engincering and Applied Science. Memorial

ewfoundland. on tubular T-joints it was felt necessary and

University. St. John's, )

relevant to carry out a detailed theoretical investigation of tubular T-joints with a
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view to compare the results. The subsequent chapters outline the efforts made in

this direction and the results obtained in the process.



Chapter 3

Theoretical Background

The results of the stress analysis. reported in this thesis, was obtained using the
general purpose computer program ABAQUS marketed by Hibbit, Karlsson and
Sorensen (1989): certain smaller programs were written for the purpose of gener-
ating the proper data input to ABAQUS. In order to clarify the essential issues
involved in the modelling and analysis of the problem and to appreciate the valid-
ity and applicability of the results given herein. relevant theoretical background is

given in this chapter.

3.1 Finite Element Formulation

The complex geometrical configurations of tubular joints coupled with their be-
haviour as shell structures, have created increasing difficulties in finding a univer-
sally accepted approach for _va'uating the stress distribution along the intersection,
when they are subjected to simple or complex loads. Analytical solution to shell
structures are limited in scope, and in general, are not applicable to arbitrary
shapes. load conditions. irregular stiffening and support conditions as would be en-

countered in welded tubular joints. In addition, if the thickness of the shell structure

67
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is sufficiently large so that shear deformation is significant. then the applicability
of classical approaches hecomes questionable. Two approaches are at present possi-

ble, viz

(i) testing of structural models of smaller/medium/large scale size and (ii)

numerical finite

lement analysis using computers. Although both of these methods
present their own difficulties. clearly the latter is more convenient for design and

evaluation of structural integrity.

For a displacement method of analysis, wherein displacements are chosen as the
primary unkrowns. the finite element technique is based on the assumption that
a structure cap be divided into a finite number of clements tied together at a
finite number of points so that continnity can be maintained between neighbouring

elements. A simple power series displacement is considered in order to compute

the element stiffness matrix and the cor ding loads and di for

cach node. The stiffness matrix and load vector of the individual elements are
transformed from their respective local coordinate systems into the global structural
system by appropriate transformation matrices. Finally they are assembled into

the structural stiffness matrix by superposition and solved to obtain the structural

displacements and member forees,

In the past three types of elements have been used for the finite element analysis of
welded tubular joints, viz.. (i) flat triangular or quadrilateral elements. (ii) curved
clements formulated on the basis of various shell theories. and (iii) elements derived

from three-dimensional clements t

he degencration concept.

The first approach involves replacing the curved shell by an assembly of flat tri-
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angular or quadrilateral clements. This simplification leads to the use of a large
number of elements, and any advantage that could be gained by more sophisticated
elements (which despite reduction in number could yield improved sccuracy) is 1ost
( Zienkiewicz and Cheung, 1967 Zienkiewicz et al.. 1968; Clough and Johnson.
1068). The earliest numerical studies of shell problems involved discretizing the
shell by plane triangular plate bending elements. onto which the membrane stiff-
ness was added. The results obtained were found to be satisfactory. A number of
difficulties and shortcomings arise when these flat elements are applied to cusved
shells such as the presence of discontinuons bending moments. which do not appear
in the actual continuous curved structure (Gallagher. 1976). Thus the need for

elements which can take up curved shapes becomes obvious.

The second approach uses a classical concept. whereby a shell tucory is used as the
starting point in the finite element formulation. Using the variety of classical shell
theories that have been developed in the past, a number of finite clements with dif-
ferent degrees of complexity have been formulated for both deep and shallow shells.
Although these curved dlements based on the Kirchhoff-Love hypothesis, guarantes
a high solution accuracy, their usage in finite element analysis is complicated by

convergence and compatibility requirements.

The third approach. derived from a three dimensional finite element analysis con-
cept (Figure 3.1), makes it possible to circumvent the difficuities outlined in the
first two approaches; in addition the shear deformation. neglected in the first two

approaches on the assumption of thin shell theory, can easily be incorporated.
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Figure 3.1: Three-dimensional hexahedral elements of parabolic and
cubic types.



Isoparametric elements ! of the type shown in Figure 3.1, have been used for some
years with success for three-dimensional analysis purposes. The starting point for

the development of the third approach (i.e.. shell finite elements obtained from

three-dimensional formulation) was the realization by many investigators that the
three-dimensional elements could be made thinner by the degeneration process so

that they represented shell segments.

This degeneration concept originally introduced by Ahmad ¢t al. (1970). for linear

analysis of moderately thick shells. avoids the Kirchhoff-Love assumptions, which

limit the range of applicability to thin shells, and at the same time permits the rep-
resentation of enrved geometries with no extra computational effort. It therefore
appeared to be a very attractive candidate for use in finite element procedure for a
general shell structure. Although the element seemed promising when it was intro-
duced. difficulties later arose. due to the degenera ion procedure. as the thickness
of the clement was reduced. Taese difficulties were due to the presence of large
hending stiffness. which may be traced to the fact that the assumed displacement
interpolation functions impose large amounts of shearing strain in the development
of simple bending deformation. The phenomenon has been referred to by many
investigators as ‘shear lockiing” (Doherty et al.. 1969, Zienkiewicz et al.. 1971 and
Pawsey and Clough, 1971). They have pointed out that the element performance

could be improved greatly by evaluating the shear strain energy in the element by

a lower order i i dure (reduced i ion) than was used for the

normal strain energy. This lower order integration neglects the large extraneous

VElements in which the number of nodes used to define the element shape is equal to the
number of nodes used to define the interpolation function,



shear strain introdueed by the assumed displacement functions. and tends to relax

the overstifiness of the element

3.2 Degenerated Isoparametric Elements

3.2.1 General

Figure 3:2a) shows a solid three-dimensional element based on a quadratic (i

placement field and Figures 3.2(b) and (r) illustrate the corresponding quadratic

degenerated shell eloment. Two basic assumptions are adopted in the degeneration
process: First it is assumed that, ‘normals” 1o the middle surface remain straight
after deformation (this also includes thick <hells). Secondly., the <train energy cor-
responding to the stresses perpendicular to the middle surface is degenerated. that
ix. the stress components normal to the shell middle plane are constrained 1o be
zeto in the constitntive equations. For each nodal point of the element. five degrees
of freedom are specified. viz.. three displacements and two rotations of the ‘nor-
mal® at the node. It is important to note at this point. that. the two assumptions
introduced correspond only to part of the usnal assumptions of the shell theory:
also the nse of independent rotational and displacement degrees of freedom permits
transverse shear deformation 1o be taken into account. since rotations are not tied

to the slope of the mid-surface.
3.2.2 Coordinate Systems

In order to understand the basic concept of the type of finite element employed in

the coor

the present stid; to start by i ate systeins

used. Different coordinate system have to be used when formulating the degener-




three-dimensional
clement

mid-surface

Figure 3.2: (a) Quadratic solid three-dimensional element, (b) and (c) the corre-
sponding degenerated shell elements.
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ated curved shell clements. For the presented study, four different coorcinates have

been chosen in order to adequately describe the general characteristics of these type

of elements. These coordinate systems are schematically shown in Figures 3.3(a)

and 3.3(h) and are briefly described below.

L

=

Global coordinate set - r, yand
A cartesian coordinate system. freely chosen in relation to the structure ge-

ometry

in space. Nodal coordinates and displacements. as well as the global

stiffness matrix and the applied load vectors are referred to this system.

Nodal coordinate set -~V ;. Vo and Vs

A nodal coordinate system defined at each nodal point with origin at the

reference surface (mid-surface). For node i in the mid-surface. it is convenient
to construct a vector Vs, connecting the upper and the lower points (i.c.. a
veetor of length equal to the shell thickness. t) through the mid-surface co-

ordinates. This vector is achieved in the present study as follows:

e %
Ui -\ (3.1)
s Jtop “ Jbottom

The usefulness of this vector will be shown later in the element geometry

formulation.

. Curvilinear coordinate st - &, nand ¢

In this coordinate system. £, 5 are two curvilinear coordinates in the middle



v
/) M Nodal coordinate system at node i

Surface n = constant

Surface ¢ = constant

Local coordinate system

Figure 3.3: Coordinate system: () nodal and curvilinear systems, (b) local system
of axes.
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plane of the shell element and ¢ is a linear coordinate in the thickness direc-
tion. It is assumed that €. 5 and ¢ vary between -1 and +1 on the respective
faces of the element. The relationship between the curvilinear coordinates (¢.
yand ¢) and the global coordinates (z, y and z) are given later while defining
the element geometry. The direction of ¢ is only approximately perpendicular

to the shell mid-surface. since ¢ is defined as a fnaction of the unit vector ¥3,

. Local coordinate set - z'. ' and '

“This is a Cartesian coordinate system defined at the sampling points where
the stresses and strains are to be computed. A point is taken on the shell
surface 1o construct three orthogonal axes 2. y'. =" [Figure 3.3(h)]. such that
"isnormal 10 the surface ¢ = constant. and axes r’ and y’ liein the tangent
plane.  The dircction ' is obtained by the cross product of the ¢ and n

directions as

Y (o oy
%| | i
L R (2)
% an andE  dan
7% o %an e

The direction z is taken to be tangent to the ¢-direction at the sampling

point. This can be expressed as



XK= = (3.3)

§'= Zx% (3.4)

‘The local coordinate system varies along the thickness for any normal depending
on the shell curvature and variable thickness. The direction cosine matrix (0], that
relates the transformations between the local and global system. is obtained by
following the process which defines uniquely two orthogonal vectors, and is given

as

[0] = [Vi,¥0,¥3] (3.5)

where ¥y, V;. and V3 are unit vectors in the r', y’, and 2" directions, respectively.
3.2.3 Element Geometry Definition

The global coordinates of pairs of points on the top and bottom surface at each

node [Figure 3.3(a)] prescribes the shape of the element. Alternatively, the mid-

di and the ding directional thick can be used

surface nodal p



to define the clement geometry. Using the curvilinear coordinate set (€, n. ¢) with
the curvilinear £ and n in the middle plane. rectilinear ¢ in the thickness direction
and further remembering that €, n, ¢ vary between -1 and 1 on the respective faces

Af the element. the coordinates of any point within the clement are :

E z, I

Y (3.6)

top battom

or alternatively. using the mid-surface nodal co-ordinates and the corresponding

directional thickness (;.

x e I,

LI o .
v =N w + (&mig 4 ma (3.7

2 L ni

The interpolation functions , appearing in these equations together with their
derivatives are given in Table A.1 of Appendix I and Figure A.1 shows the system-
atic generation of these shape functions. The terms la,, ma,. and ny; are the direction
cosine of the vector V, normal to the middle surface and spans the thickness f,
of the shell element at node i (Figure 3.4): this can obtained from the following

expression:



Figure 3.4: Nodal vectors.



Top= Thottom Iy}
Vo=9 Yop= Yowom (={ ma (3.8)
Ztop ™ Thottom may;

The subscripts top and bottom in Eqn. (3.6) represent the top and bottom surfaces
of thesshell, respectively. In the fortran subprogram written for this purpose, either
the coordinates of the top and bottom points or the direction cosine for V, are

given as data.

The rectangular parent and the isoparametric counterpart of the nodal configu-
ration for the two kinds of elements used in the present study (%node serendipity
and 9-node Lagrange) are shown in Figures 3.5(a) and 3.5(b). Since an isoparamet-
ric concept was adopted throughout the entire element formulation, the geometric
interpolation functions were taken to be the same as the displacement shape func-
tions. Physically, this means that the natural co-ordinates & and n are curvilinear.
and all sides of the element become quadratic curves for the 8-node seren..ipity and

9-node Lagrange elements.
3.2.4 Displacement Field

Taking into consideration the thin shell assumptions of the degenerated element, the
displacement throughout the element is taken to be uniquely described by the five

degrees of freedom of a ‘normal’ at the node. viz., the three Cartesian components

of the nodal displacements (u,, v, ) and two rotations (a,, 3;) of the nodal vector

Vs, about orthogonal directions normal toit (see Figure 3.4). Gaznric displacement



8-Node Serendipity l 9"—Nnde Lagrange

Ni<i=l-8) 1 Ni( i=1-9)
3 4 7 3
]
L J———;—a——— yL '_B__ 8
1 1
1 5 2 1 5 2
X + X +

(a) Rectangular Parent

2

(b) Isoparametric Counterpart

Figure 3.5: Nodal configuration of the two quadratic shell elements used: (a) rect-
angular parent, (b) isoparametric counterpart.
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at any point in the shell element are taken to be in the directions of global axes.

Thus,

u = (3.9)

On the other hand the nodal displacements consist of these same translations (in
global directions) as well as two rotations «, and 3, about the two local tangential
axes r, and y, as indicated in Figure 3.3(a). Hence. the generic displacements in

terms of nodal displacements are given as

u u
" n ' a,

v EYNED] w o+ TNEN GG (3.10)
=1 =1 & 3

w w,

where 4, denotes the following matrix:

—li b
=4 —ma my, (3.11)
—Na M

Column 1 in this array contains negative values of the direction cosines of the second

vector Vi, and column 2 has the direction cosines for the first vector Vy; (Figure
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3.4). These vectors are orthogonal to the vector Vy,, and to each other, but the

choice for the direction of one of themi is arbitrary. In order to settle the choice. we

ume the following steps iu this study. We let:

V=8, x Va

In this €, is a unit vecior in the direction of the y a

Then the last vector to the
other two is simply

3% Vi

(I for exatmple Vi is parallel to &, the above scheme breaks down: this source is
checked by a fortran subprogram incorporated into the finite clement program used
for this study. Whenever such break down of the scheme occurs, &, is replaced by

€. which is a unit vector in the = direction).

Eqn. (3.10) can also be expressed more explicitly as

i W R
. N a

P S ST IR A ) AT % S (0.1)
=1 1=l = i

i, —

The local generic translations are depicted in Figure 3.4 as «’ and v/ (in the direc-
tions of V', and V,) which are due to the nodal rotations 3, and a;, respectively;

these are evaluated using the following expressions:



The contribution of these terms to the generic displacements at any point is given by
the second summation in Eqn. {3.10). The contribution tothe global displacements

from a given node 1 is given by

N0 o0
u u,
4
v = 0 0 w (3.13)
a
w 3
0 0N
or
u =N, (3.14)
For the complete element we have
u=ME& (3.13)

u=(wow). N = [Ny

.. Nl is the shape function matrix of the degenerate
clement. and [§] = [67.....,87......6T] is the vector of the element nodal variables.
i X

Here n represents the number of nodes per element.



3.2.5 Definition of Strains and Stresses

The solution to basic properties of any finite clement analysis is achieved by ap-
propriate derivation of the strains and stresses. The components in the directions
of orthogonal axes related to the surface ¢ = constant are essential: this is true
if the bLasic shell assurnptions are to be accounted for. Hence, to deal easily with

the shell assumption of zero normal stress in the local =’ direction (). the strain

components are expressed in terms of the local system of aes &', y'. and This
local system of axes somewhat offers the most convenient and attractive system

for expressing the stress components and their resultants for shell analysis. If at a

point on the surface ¢ = constant. we erect a normal 2 with two other orthogonal

axes ¢’ and y' tangent toit. then the five strain components of interest are:

u'

ar’

v’
'

v 1= G 5w (3.16)

Yars o
FERE ]
' T ay

where u', v’ and w' are the displacement components in the local z', y' and z’ axes,
respectively. The strain in the =’ direction is neglected in order to be consistent

with the shell assumption. It must be noted that in general none of these directions
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coincide with those of the curvilinear co-orinates §. 7. ¢. although 1’ and y' are in

the & = p plane (¢ = constant).

The stresses corrasponding to these strains are defined by a local matrix {o'} and

are related by the elasticity matrix [D'] which is given as

(o} = { 1y } =D (3.17)

where [D']is 4 5 <3 elasticity matrix whose specific form varies depending on the

material hehaviour, namely isotropic, orthotropic or anisotropic material.

In the ecarlier portion of this chapter it was pointed out that the ‘degenerated” shell
element is a specialized form of the 20-node three dimensional element to handle
the problems of thick. moderately thick and thin shell elements by curved finite
elements. Furthermore. it was pointed ont that in their thin shell form, the element
exhibits some problem due to shear locking phenomena and that this problem
conld be rectified by either reduced integration and/or selective integration. The
reduced integration is achieved by reducing the number of gauss points for numerical
integration on the transverse shear strains, as well as on membrane strains: in the

selective integration technique. bending (ot bending and membrane) energies are



integrated using the normal rule, and the shear and membrane (or only shear)
terms are computed using the reduced integration rule. It is to be noted that one
major advantage of this element over the classical thin shell theory formulation.
is the inclusion of the shear deformation terms. Most offshore tubular joints are

fabricated with members whose thicknesses compared to the other dimensions are

very small and ¢ 1 ly the shear along the tube thickness is
small compared to those due to bending; but in some situations. thick sections are
nsed and in such cases the shear deformation need to be considered in addition to
bending. Because of the foregoing explanation and the presence of the shear tcrm
in the 5 «5 elasticity matrix [D’]. shear correction factors are applied to the last

1wo shear terms in the {D'] matrix defined as follows

(3.18)

in which £ and v are Young's modulus and Poisson’s ratio. respectively. The fac-
tor « is taken as 1.2. to improve the shear displacement approximation, which from
the displacement definition given in Eqn. (3.10), shows that the shear distribution

through the thickness is approximately constant, whereas in reality the shear dis-



@
&

tribution is approximately parabolic. Detailed derivation of the [D'} matrix s given

in Appendix B.

3.2.6 Element Properties and Transformations

The stiffness matrix. and indeed all other element property matrices. involve. inte-

grals over the volume of the element, which are generally of the form

/ My drdyds (3.19)

where the matrix [M] is a function of the coordinates. In the expression for stiffness

matrix. the matrix [M] is given as

[M] = [B]"[D][B] (3.20)

where the matrix [B] relates the strains to the nodal parameters in the form

{} =[B] {8} (3.21)

Thus in the preseat formulation. if the matrix [M] is expressed as an explicit func-
tion of the curvilinear coordinates (€, 1. ¢) and the infinitesimal volume drdyd:
is also transformed accordingly. then a straightforward (numerical) integration will

allow the properties to be evaluated. Hence. we require two sets of transformations
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before the element can be integrated with respect to the curvilinear co-ordinates ¢,

7. and ¢

Firstly. from Eqn. (3.10) which relates the global displacements u, v and « to
the curvilinear co-ordinates, we obtain the derivatives of these displacements with

respect to the global r. y and = using the standard expression. viz.,

dr dr Oz a9 05 d¢
Ou O Ow | | Ou B Bw 2
Eri il vl AU =i =i - 322
ou o Ou v dw
d= dz ¢ A I
where the Jacobian matris [J] is defined by the expression
0r By 0=
¢ 9§ 0
0z oy o=
=28 % gz 3.2
M=% & & (3.23)
0z By 0:
a9 a¢

The elements of the Jacobian matrix can be found from the definition of the co-

ordinates, Eqn. (3.7).

Secondly, the global derivatives of displacements are now transformed to the local
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derivatives of the local orthogonal displacements, that is

ar’ dr’ dr dr Oz

o g || dn e ow )
o oy oy =l dy dy Iy e @2t
P u! du v A

P e 9: 9z 9=

Substituting Eqn (3.24) into Eqn. (3.26). we have

oo o du e e

ar dr ox a0 0§

ow o gw | | an dv dw ,
o oy =0 5 5 oy |9 (3.25)
dul du Jul Gu &

PE ' ¢ A

In order to compute the strains. as defined by Eqns. (3.21) and (3.25). the evalu-
ation of the inverse of the Jacobian matrix given by Eqn. (3.23) is necessary. It is
observed that by definition. this can in fact be written in terms of three vectors as

follows

wn

H

)= (3.26)



91

In the above equation, the first two vectors are tangential to the reference surface
(the mid-plane) while the vector V3 is in the direction of the normal to the reference

surface ( it is considered that ¢ is normal to the midside surfac

The inverse of the Jacobian matrix can now be written explicitly as

T V. VxS, §x7)
IR

where the first two columns in the numerator of the adjoint of the Jacobian matrix
are again vectors of the tangents to the reference plane and the third column is

normal to it. and ||J|| represents the determinant of the Jacobian matrix [J].

In the expression for the direction cosine {0] defined in Eqn. (3.5). that is

0] = (e 2. 0s] (3.23)

the third vector in the direction cosine expression [ Eqn. (3.28)], has the same
sense as the third vector in the Jacobian inverse expression [Eqn. (3.27) . Asa

consequence of normal vector operations we can write



A

= [

= | v |[Bx Vs Vsx8 §xT|+yy)

V3 (3.29)
Ay Ap 0
= | Ay An 0
0 0 Ay

By taking advantage of this special form of A. Eqn. (3.26) is uncoupled into two

parts:

An A 9 9 O

fei]

An Ap ]| du 9 Ow

% a—” E (3.30)
= du e ol
[ed) = Ax % % A ]W]

The above technique is used during this study to reduce the number of operations
in the program used in the study. The multiplications of zero terms are avoided
during any run; this saves a substantial amount of computation time and computer

CPU time.

It is also important to note that the elastic properties [D'} and the strain vector
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{¢'} can be decomposed into two parts. viz.. in-planc and transverse components,

as

i
R
—

(3.31)
D, 0

I

()

0 D,

The energy expressions for an isotropic material are related to cquations (3.13) to
(3.21); hence after decomposing both the elastic properties D' and the strain vector

< into two parts as shown in Eqn. (3.30). the strain energy can be expressed as

G AT CARY AR CATRA (3.32)

where the strain vector {'} is obtained from Eqn. (3.25) and takes the following

form:



[/
i)_?r' 0 0
d
{<'} = ()%/ a—il 0 vy =(G)q o (3.33)
b w' w
0

Transforming the local displacement vector to global displacement vector we have

{(}=(G1[o7]¢ v

(3.34)
w
Expanc:ug this equation using Eqn. (3.10) and (3.29) we have
uw
1 T a
(<} = BIPT]] o +5 KB+ (GO (=¥, %11 s (3.35)
wy

where i denotes the nodal number of an element, and



B 0 0 0 00

0 B 0 0 00
Bl=|B B 0 |:[C]=|0 0 0 (3.36)
0 0 B [
0 0 B 0C o
N, A
B = Angg +4n'0n ]

ay, (3.37)

.y,
By = Ay—r e + An—— o

Cro= AnN,

Finally by minimizing the strain energy of the element domain with respect to
nodal displacement parameters. the element stiffness matrix is obtained. From Eqn.

(3.19), the infinitesimal volume is given in terms of the curvilinear co-ordinates as
drdyd: = ||J|| dé dydc (3.38)

and

+1 4l p4l T
L [ BT e (339)
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Two special features of Eqns. (3.31) and (3.35). i.e.. identical terms and sparseness
of the matrices. ‘vere taken into account in performing the matrix multiplication

during the construction of the element stiffness matrix Eqn. (3.39).

3.2.7 Element Assembly and Equation Solution Pro-ze-
dure

The direct stiffness method approach was essentially employed in the present study

to assemble the stiffness matrix contributions from each element to form the global

stiffness matrix and global load vector. The element stiffness matrices were as-

sembled in their own i

systems (local 1i system) and later trans-
formed to the tubular joint coordinate system. This results in a set of simultaneous
equat;ons. The frontal solution technique was used for the direct solution of the
equations. The main idea of this solution technique is to assemble the equations
clement by element and eliminate the variables at the same time. Although the
frontal solution technique was used in preference to the banded solution. however.
just as the banded technique demands a good node numbering system for keep-
ing the computational costs down. the frontal technique needs a good ordering of
the clements. Indeed, if the elements are not numbered carefully. the latter can
even lose out to the former. Hence at every stage of the tubular joint generation
in this investigation an attempt was made to minimize the frontwidth. by pass-
ing the mesh element numbers and their corresponding nodes through a fortran

subprogram developed for this purpose.

In conclusion. by simply reducing the order of the integration for all stress com-
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ponents the degenerate shell element concept has proved to yield accurate results
for both thick and thin shells. The aspect ratio of the elements can be increased
almost to any value without introducing stiffness effects. This elen:ent indeed is
amongst the most accurate ones known and. by being aki. to render correctly shear

deformations within the element, may be termed the most general shell element.

3.3 Life Prediction Formulation

Recent investigations into the constant amplitude load fatigue of welded tubular
joints have clearly indicated that the assumption of the total fatigue life (which is
the sum of the cycles required for crack initiation. V., and crack propagation, V,)
being controlled purely by the crack propagation life. may be misleading. Recent
experimental investigation on the fatigue life of offshore welded iubular joints by
Pates et al.. (1939) have shown that the crack initiation life may be of the order
of 25 to 30 percent of the total fatigue life in air tests and more for corrosion
fatigue tests in water. Consequently estimation of fatigue life using only the crack
propagation life for the entire life of the joint would be unrealistic. A realistic and
better life estimation technique should. therefore, include both the initiation and

the propagation lives of the joint.

The following techniques are combined in the present study to determine the total

fatigue life:

1. The local stress-strain approach to crack initiation, and

2. The fracture mechanics approach to crack propagation.
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Though reasonable success has been demonstrated in combining the local stress-

strain appruach and the fracture mechanics approach for prediction of the initiation

and propagation lives, for small and large scale test specirmens and relatively simple

structures, little or no analytical /numerical literature is available for this combined
approach in dealing with complex and large structures like offshore welded tubular

s of this inve:

joints. One of the main objective stigation was to explore the use of

purely numerical techniques for combining these different approaches in arriving at

the total fatigue life of the joint. In what follows the formulation used for crack

initiation is given first followed by that for crack propagation.
3.3.1 Crack Initiation Life Prediction

The local stress-strain approach, also known as the strain cyele fatigue concept.
is wserd fur deterining the erack initiation life in this investigation. The basic

-strain approach to fatigue is that if the stresses and

hypothesis of the noteh stres:
strains at a critical location of a component are known. then the life to crack
inttiation at this position can be related to the fatigue life of strain-controlled
unnotched laboratory specimens. Hence. the analysis reduces to one of determining
the local stresses and strains and relating these to the known strain-life fatigue

behaviour

I e procedure for crack initiation. as used in this study, is briefly outl* .ed below:

for stress and strain computation was first performed in

Finite clement analysi
wrder to lucate the possible location for crack initiation. The stress and strain

concentrations were also determined.
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For a nominal loading in the elastic range. the local stress and strain ranges are

related to the nominal stress range by using the modified Neuber's rule given as

Ry Aopom = (Ao As E)'V? (3.40)

where A and s are the weld toe stress and strain ranges, Aomom the nominal
stress range applied to brace, E the elastic modulus and K is the fatigue notch

factor. One can also express Eqn. (3.40) as

Ky Aguom)?

Ao Ap im0 ) (3.41)
E

Also required in the crack initiation life prediction. are the material's fatigue prop-

erties. which can be computed from (a) cyclic stress-strain relationship, and (b)

strain-life relationship. The cyclic stress-strain relationship for a material is ex-

pressed as

where Az and Ao are the weld toe strain and stress ranges, respectively, k' the

cyelic strength coefficient and n' the cyclic strain hardening coefficient.
By combining Eqn. (3.41) with Eqn. (3.42), we have

Ag? Aa)”"' _ Ky Adwm)?
= ieiopenl

3+ (3 E (3:49)
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The values of Mo and Az are determined in this by solving Equ. 3431 using

nnmerical techniques,

Finally the prediction method involves solving the Manson-Cotfin equation for
crack-initiation life. Ny, This equation which takes into account contributions of

both plastic and elastic weld toe strain ranges. is expressed as

Z’La\',»*
E(—» n

2N 3

where Az, and Az, are the weld toe elastic and plastic strain ranges, 7, and

the fatigue strength and ductility coefficients. and b and ¢ the fatigue strength and

Auetility expunents, respectively
3.3.2 Fatigue Crack Growth Formulation

cture mechanies method s recently become an important ool for offshore

steuctural design. fabrication and integrity assessment. For tubnlar joints. surface
flaws initiate at the weld toe of the tubular intersection areas and propagate under
environmental loads along the weld toe and through the joint thickness (Figure
$.60. The shape of this propagating flaw is influenced both by the local stress
~tate and material properties near the tubular intersection area. The sensitivity
of mspection techniques used i recent times for in-service mspections has made
possible the earlier detection of fatigne cracks in offshore welded tubular joints.
The increasing requirements for longer service lives of these joints coupled with the

current move by industries toward limit state design. has necessitated fitness for

purpose assessment to evaluate the significance of this cracking phenomena in
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alx) 1

Figure 3.6: (a) Schematic cross-section of a surface crack with varying depth a(x)
and projected length 2c in a shell of thickness t, (b) Schematic idealization of
through-cut shell (plate) mid-surface with distributed stiffnesses along the crack
line
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tubular welded joints (TW.J). Such assessment requires the application of frac-
ture mechanics analysis. in which crack tip conditions are characterised using the
stress intensity factors (SIF). Ilence it is apparent that the fatigue crack growth life
assessment of cracked components require information about the stress intensity

factor.

Due to the nature of the special elements (line spring elements) employed in this

study for stress intensity factor evaluation, which is an essential aspect for crack

propagation life prediction. this section is divided into two parts: (i) Line spring

element formulation and its implementation and (ii) Fatigue crack growth model.

3.3.3 Line Spring Model for Stress Intensity Factor Eval-
uation

Renewed interest has been shown recently in the use of simplified models for three-

dimensional erack configurations which may be broadly termed “surface cracked

plates and shells”. The model termed the “line spring element” was originally
introduced by Rice and Levy (1972) to estimate stress intensity factors for part-
through surface cracks in large plates subjected to bending and tension. Extension

of the simplified model to analysis of surface crack problems in cylindrical shells

have been achieved by Rice and Levy (1972) and Parks (1930. 1981).

In order to determine the additional compliance introduced into the structure by a
part-throngh crack. we start the formulation of this special model by considering a
surface crack of length 2c and varying depth a(r) in a shell wall thickness t as shown

in Figure 3.6(a). By following the usual procedures of shell theory. the surface-
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cracked structure is modelled by its midplane surface as a two-dimensional contin-
uum, and the surface crack location is accordingly idealized as a one-dimensional

cut as depicted in Figure 3.6(b).

If it is assumed that the surface crack is not present at the considered location.
then the cut will carry a certain (uncracked) distribution of the shell generalized
forces (the term “generalized force™ is taken in this context to mean both forces
and moments). If for example we assume now that the cut lies in a symmetry plane
(this condition is assumed here to illustrate the line spring model development in
it simplest form. a more general case is discussed later during the course of this
formulation). the distr'bution of the shell forces will consist of a normal membrane
force N°(r) and bending moment M°(z). These forces are sufficient to ensure
that there is no discontinuity along the cut in the shell generalized displacements
(translational and rotational) work-conjugate to these forces. These displacements
consist of the jump in shell midsurface displacement. é(). in the shell tangent
plane and normal to the cut and the small rotation. f(z), of the tangent to the cut

of the material line elements initially normal to the shell mid-surface.

The uncracked force and deformation distribution on the cut can thus be given by
NL M) = [Nz). Mz)] (3.45)

{8(x).0(z)) = (0,0) (3.46)

Note that V°, and M® are determined from the solution of the uncracked (a(z)=0)
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problem.

Now consider the opposite extreme case where the crack has fully gone through
the plate thickness (through crack), that is {a(x)]=t case, and denoting this case
by superscript “t”, we find that the discontinuous field terms. analogous to Eqns.

(3.45) and (3.46). are

[N M) = (0.0) (3.47)

(8(x).0(z)) = (6(x).0'(x)) (3.48)

where again 8. 8¢ are the opening and rotation discontinuities across the sides of

the force-free “through-crack™ cut.

If we now consider the true surface crack as having a surface depth distribution
a(x) intermediate between the two previous limiting cases, that is 0 < a(z)
< 1 through most of the cut. then for this case, solution fields [.V'(z). M(z)] and
[6(x).0(x)] which are intermediate in some sense to the uncracked and through-
cracked limits are oxpected. Using the well known fact in engineering mechanics.
that the extreme boundary conditions of zero displacement and zero traction can
be conceptually considered as limiting cases of infinitely stiff and soft elastic foun-
dations. respectively. we can then represent the intermediate part-through surface
~rack by some kind of gencralized elastic foundation along the cut. with stiffness
varying according to local crack depth a(r). This foundation, then, consists of

generalized springs distributed alang the line of the cut.
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For linear elastic behaviour, the constitutive relation for the springs which relates
local loads (.V..M) at each position r along the cut to their local work-conjugate

displacements, (6.0). is symbolically expressed as

6(r)
[”(r) } B

The above expression can be stated in an equivalent manner as

N(z) [ Kn R 5(z)
B (3.50)
M(x) Ka K o(r)

The matrices [C] and [K] = [C]" are the clastic compliances and stiffnesses, re-

Cn Cn

N(z)
] (3.49)

Ca Cnl | M)

spectively. The model for choosing the above local compliances, [C] is shown in
Figure 3.7. If. in the far field. the axial force .V and bending moment A per unit
depth are simultaneously applied to the specimen, then the additional displacement

é. and rotation 0. at the load points due to the presence of the crack are expressed

&1 [P Pl [V
”c_i Py P M

By using the energy compliance relations noted by Rice (1972), the matrix [P]

as

(3.51)

is determined from stress intensity factor calibration of the single-edge notched

specimen. For plane strain condition, the elements of matrix [P] are given as
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Figure 3.7: Single-edge notched i subject to d tension and bending.
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2 B
Py = - T (3.52)
12r i
Pia= Py = E o (3.53)
Pn= FaomE ™ (3.51)
where
W = (3.55)

with £ = a/t. The assumed calibration for stress intensity factor of this specimen

is
Ky = (7a)'? -(F.(u/z)‘li+ma/ust#1 (3.36)

Tada et al. (1973) has given approximate formulae for Fis.

lly i d idal rule in

The integrals for 7, are usually using trap

steps of AE = 0.01. These values are stored for subsequent evaluation of ¥; values
for any particular local crack depth ratio. a/t. which can be obtained by interpola-

tion between tabulated values.
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‘The stiffness of the line spring foundation model is finally obtained by taking (@]
= [P], and hence evaluating [K]. It is important to note that in arriving at this
result, we have assumed that the additional displacement and rotation. due to the
presence of the crack in Figure 3.7, are obtained right on the surface of the crack

line and it is lumped there as discontinuities across the cut.

The most important feature of the line spring model comes into play after the
compliances have been obtained. If we now consider the surface cracked shell to

be sectioned by a pla

: normal to the cut and containing the shell midsurface
normal at some position r along the cut. it will locally bear a similar resemblance
to the single-edge cracked specimen of Figure 3.7, with the interpretation that the
crack length “a” is the local depth. a(r). and the loads (.V. M) are the local loads
transmitted across the cut, [N(x). M(r)]. Then the line spring can be conveniently
conceptualized as providing an estimate of the local stress intensity factor in the

surface flaw from direct implementation of Eqn. (3.56).

Figure 3.3 shows the above situation now integrated into the present study. From
this figure it is apparent that the concept employed for stress intensity factor eval-
uation in the case of the single-edge notcued crack by employing the line spring
model can be extended to the complex tubular joint case (which is the subject of

this research) with some modifications. Some of the obvious modifications. in order

to use the line spring model for the present study. are discussed in chapter 7.
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Crack Depth 1
Crack Half Length ’ 1
Brace Thickness

= Chord Thickness

[

Figure 3.8: Schematic representation of surface crack in a tubular joint.
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3.3.4 Finite Element Impiementation of the Line Spring
Model :
The stress intensity factors. used in the evaluation of fatigue crack growth life in
the present study. were obtained by incorporating the line spring element across
the faces of the finite element model used in the study at the crack locations (see

chapter 7).

Figure 3.y schematically shows a shell/line-spring interface. in a particular local

coordinate system (x.v.z). The 3-node shell element (nodes 1. 5. 2. 6. 3, 7. 4.

3) joins a 6-node line spring element (1. 3. 2. 10, 50, 20) along their common
intersection of nodes 1.3 and 2. As an input the line spring crack depth is specified
at nodal locations along the cut. and interpolated to integration points. The crack

depth contains a sign flag indicating whether the surface crack emanates from the

positive or negative side of the shell (see Figure 3.10).

The line spring generalized displacements variables [6(z).0(z)] along the cut. are

given in local (x.y.2) coordinates by

§(r) = uy(r.y=0*

R) = u ey =0".5=R) (3.57)

0z) = pelry=0* R) = pr(r.y=0".2=R) (3.58)

where the field u, and ¢ are interpolated from the nodal values. The sign of the

right hand side of Eqn. (3.58) is changed if the crack emanated from the negative



SBELL ELEMENT

POSITIVE SHELL NORKAL

LINE-SPRING ELEMENT

Figure 3.9: Schematic illustration of the intersection of an 3-node shell and a 6-node
line-spring element in a cylindrical shell.
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Figure 3.10: Line spring models showing flags for positive and negative cracks
[ABAQUS (1989)].
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shell surface.

By using the above equations and the matrix relationship given in Eqn.(3.50). the

virtual work of the line spring element is given as:

- N(z)
v = ] (67(2),0°(2))] dz (3.59)
4 M(z)
where the virtual quantities &°. and 0" are related to virtual nodal displacements
in the standard manner. and r; and r; are the x coordinates of the two ends
of the element. In the element stiffness matrix formulation obtained from Eqn.
(:3.39). a two point Gaussian integration is employed. After solution, the generalized

displacements (8.9) and forces (V. M) are recovered at the integration points. and

the stress intensity factors obtained from Eqn. (3.56).

In order to justify the use of this model for stress intensity factor evaluation in this
study. the results obtained are compared with the results from recent line spring
element application to tubular joints. Most of the available literature give stress
intensity factors for the deepest part of the crack. The results presented in this
study have been extc *ded to compute all the stress intensity factors values along
the crack front. In some instances a curve have been fitted to the data obtained

from the finite element analysis. Details of this procedure are given in chapter 7.

3.3.5 Fatigue Crack Growth model

Once the stress intensity factors along the crack front have been obtained as outlined

above, with the use of line spring element, they are then introduced into the crack
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growth law for life calculation. The form of fatigue crack growth correlation for
constant amplitude loading employed in this study is a log-log plot of fatigue crack
growth rate, da/dN_ in m/cycle. versus the stress intensity factor range AR, in

M Pay/mi. The stress intensity factor range AR is obtained from

AR = Kpar = Koun

= Yoy

£

0 = YT, VT 13.60)
The crack growth law. nsed in this study. is based on a linear relationship i on
a Ing-log basis) developed by Paris f al. 119611, which is now known as Paris
law. The growth law corresponds to region 11 istraight line) of the sigmoidal shape
curve obtained when the crack growth rates. da/d.N are plotted against the stress
intensity factor ranges on a log-log plot. [n it's simplest form this power law is

expressed as

= CAN" (3.61)

d.N

where da/d.\ is the change in the crack length or depth. a. per cycle. V. and €

and m are constants determined from compact tension tests of the material of the

tubulac joint. The life can then be determined by integrating Eqn. (3.61

\ % da

by C(SR™




115

where a, is the initial flaw size and ay is the final flaw size. The above integration was
carried out numerically in the present study. This numerical approach is discussed

in greater detail in chapter 7.

In conclusion it can be seen. from the last three equations. that the fracture me-
chanics approach is considerably more complex than the $-N approach. since it
requires knowledge of initial flaw sizes as well as that of the stress intensity factor
solution. However. it must be emphasized. that in its simplest form. the fracture
mechanics approach is consistent with the SN approach. as both rely on a power

law relationship between stress range and the propagation life.



Chapter 4

Stress Analysis of Unstiffened
Tubular Joints

4.1 General

Owing to the cyclic wave loadings to which offshore welded tubular joints are sub-
jected to. they becoine susceptible to fatigue damage. In the present study. interest
is focused on the determination of total fatigue life of tubular welded joints. which
meludes the life spent in initiating cracks and the remaining life due to crack prop-
agation. The strain life approach was employed in evaluating the former. while the
latter was obtained through fracture mechanics technique. Conceptually it is evi-
dent that the first stage of the life predictions requires the knowledge of stress and
strain distribution along the intersection without a crack. where the stresses are
expected to be high. while the second stage requires both stress distribution along
the intersection and through the thickness (with crack). Determination of stress
and strain distribution along the intersection is aimed at finding the magnit «de and
the location of the problem stress level (hot spot stress). which invariably gives an

insight as to where the crack(s) is (are) likely to initiate and also to determine the

16
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stress concentration factors (SCFs) which are the measures of the amplification of
the nominal brace stress as a result of member discontinuity and wall bending; the
through thickness stress distribution on the other hand, is directed toward deter-
mining the relative proportion of the bending stress to the total stress (degree of
bending DOB),

o oy

m+ ) Ottt

(4.1)

This in fact gives an indication of the proportion of the stress (bending or meni-
brane) that controls the fatigue life propagation as the crack grows throngh the

joint thickness.

In order to carry out fracture mechanics calculations of the fatigue life it is neces-
sary to determine the crack tip stress intensity factors and the corresponding crack
growth rates. These calculations require information on the magnitude and distri-
bution of the stress acting in the anticipated crack region. For most situations this
means the computation of the magnitude and distribution of stresses through the

thickness and around the intersection of the tubular members.

An extensive finite clement analysis of tubula -joins, covering varions geometric
joint parameters (see Figure 4.1), has been carried out to address the two aspects of
stress distributions mentioned above. The range of the joint parameters investigated
is shown in Table 4.1. The finite element study was carried out for three different
type of loading cases, viz., axial tension, in-plane bending (IPB) and out-of-plane

bending (OPB) loads. The three load cases are illustrated in Figure 4.2.



Figure 4.1: Geometric notations for tubular T-joints.
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Table 4.1: Joint parameters

Type of D T

Joint | (mm) | (mm)

@
"

[SIEN

02-08[02-1.0

14-32 | 6.05- 13.0
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Saddle
Crown

Qwu
un

Figure 4.2: Modes of loading used for the finite element analysis: (a) Axial, (b)
IPB and () OPB.



4.1.1 Stresses in Tubular Joints

Before any attempt can be made to determine the stress levels, it is important to
have an understanding of the behaviour of joints and the factors which give rise to

the complex nature of the stress distribution.

Stresses in tubular joints arise from three main causes classified as follow

1. Basic structural response of the joint to the applied load on the structure is
termed the nominal stress: generally this is referred to the stress level acting

in the brace,

Deformation stresses. caused by the deformation of the tubular walls, while

trying to maintain continuity at the intersection.

. Notch stresses caused by the geometrical discontinuity due to the presence of

the weld.

Nominal stresses are due to the framing action of the structure under apnlied ex-
ternal loads. Global analysis of the structure is required in order to compute these
stresses. The deformation stresses are due to the deformation of the chord and
brace while trying to maintain compatibility at the intersection of the brace and
chord. For example Figure 4.3 shows how deformation stresses are developed in a
T-joint under brace tension loading. Point 1 and 2 displace along the brace axis by
similar amounts due to constant stiffness of the brace. The chord deforms in order
to maintain compatibility, thereby introducing bending and membrane stresses in

the chord wall. Since chord stiffness at the saddle (point 2) is greater than that at



Original

-~~~ Shape under load

Section A-A

Figure 4.3: Deformation stresses in a T joint under brace tension load.
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the crown (point 1). a larger force will be required at the saddle than at the crown.
This results in maldistribution of the nominal stress near the intersection. Figure
4.4 illustrates this maldistribution. The bending and membrane stresses in con-
junction with the maldistribution of the stress give rise to the deformation stresses.
The notch stresses are the result of geometrical discontinuity of the tubular walls

at the weld toes where an abrupt change of sections occur,
Mesh Generation

In order to carry ont finite element stress analysis for the tubular joints investigated
in this study. some form of automatic mesh generation is virtually essential. Any
program that is developed for the purpose of tubular joint mesh generation should
be cable of producing relatively fine elements in the vicinity of the brace/chord
intersection where the stress gradients are large. Converscly., away from the inter-
section, for example. near the ends of the chord and the brace, where the stresses
are more evenly distributed. the program should generate coarse elements in or-
der to avoid unnecessary computational effort. In addition, for the best numerical
conditioning of the stiffness equations and to ensure maximum numerical accuracy.
the element aspect ratios. that is, the ratios between the lengths of element sides
should be as close to unity as possible. and element sides should not be excessively
distorted. Transition {rom the finer element region to the coarse element region

should be gradual.

Generation of mesh for this study, to be consistent with the objectives mentioned
above, necessitated dividing the chord and the brace into basic regions as shown in

Figure 4.5.
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Nominal stress distribution
avay from intersection

Maldistribution of
nominal stress

\
Saddle

Figure 4.4: Maldistribution of nominal stress at the intersection.



CHORD

L - Left
R - Right

Figure 1.5 Subdivision of the tubular joint into a number of regions suitable for
mesh generation
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A Fortran subroutine that could be incorporated into any finite element mesh gen-
cration package was developed for the mesh generation of the tubular joints inves-
tigated in this study. Some of the powerful feature of this subroutine are; (i) ability
to generate clement nodal coordinates reliably for a wide range of geometrical pa-
rameters o, 4, 7 and 0 with minimum cffort, (ii) ability to make adjacent clements
hiave a certain aspect ratio, such that the elements in the vicinity of the crack are
finer and increase gradually away from the intersection. This cusures a smooth
transition between the maldistribution stress area and the evenly distributed stress
area and (iii) ability to generate the element nodal coordinates on a planar surface
and then, using a mapping function, to map all the nodes onto the curved surface
of the tube. This last feature was viewed in this study as one of the most powerful

feature of this program, from the fracture mechanics stress intensity factor model

(Line spring model) point of view. It was used extensively in the mesh generation

for the tubular joint crack analvsis.

It is important to note here that each of the subregions, shown Figure 4.5, repre-

sents a different level of mesh refinement in the program; the mesh could be refined

anytime in the ion process whenever a I mesh produced an unde-
sirable shape. The subroutine has been written efficiently to have more flexibility
and minimum user input. The sequence of steps executed in the generation of the
mesh is summarized as follows. The intersection coordinates of the brace and chord
junction (computed separately by another subroutine) were first used to generate
region 1 of the brace with adjacent element aspect ratio (BIAS) of 0.75 and with
flag direction from the intersection to the brace end. In a similar manner, regions

2L/2R, 3L/3R and 4L/4R were generated with the intersection coordinates. The



only difference here is that the nodes were first generated along the chord circum-
ferential direction and then tiansferred to their appropriate locations on the tube

surface. Next. coordinates of the plug region 5 were generated. Because of reasons

of geometrical compatibility in this region (plug) the gencration was performed in
such a manner that from the intersection to a substantial distance away from it.
quadrilateral elements were used and the remaining part of the plug was filled with
triangular elements. Finally the remaining chord regions 6L./6R and 7L/7TR were

generated. A typical mesh. used for this study is shown Figure 4.6.
4.1.2 Boundary Conditions

Due to symmetry in axial loading and in-plane bending loading, only half of the joint
geometry was modelled. Although no symmetry exists for the out-of-plane bending
situation, it was however found that satisfactory results conld be obtained with the
same meshes used for the other two loads cases. if appropriate boundary condition

can be found. All the degrees of freedom (ug, uy, . 6.) were restrained

at the chord ends, where u-. uy, and u, correspond to the displacements in the x.

¥ and z directions, respectively, and o,

y and o, the rotations about x, y and
2. During preliminary modelling of the problem, separate analysis was performed
for the axial and in-plane bending load cases using different joint meshes (quarter-
and half-joint meshes, respectively). This led to large storage and computational
requirements. Modeling the two load cases by a quarter-joint would have required
two separate analyses with differing boundary conditions. It was later realized
that modelling the two load cases with a half-joint mesh, using the same boundary

conditions but as two separate load cases, resulted in computational and



(a)

Figure 4.6: Typical computer mesh generation for unstiffened tubular T-joints: 1a)
half joints. (b) detail showing the brace. chord and plug




Figure 4.6 (continue)
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storage economy. Hence for these two modes of loading, the joints were analyzed
as two load cases of the same finite-element run. Figure 4.7 illustrates the quarter-
and half- joint cases with alphabetic notations for the locations where boundary
conditions are app'ied. Details of the boundary conditions. as applied in this study.

are given in Table 4.2,

For the axial and in-plane bending load cases the xy plane constitutes a plane of
symmetry (with the half-joint model). on which the displacements u. and rotations
o, and and o, must be restrained to correctly model the behaviour of the full joint.
Using the half-joint mesh. the selection of the boundary conditions was not straight
forward for the the out-of-plane bending case. because the symmetry about the xy
plane throngh the origin no longer exists. Instead the problem beomes somehow
close to skew symmetry and in order to simulate the full joint behaviour by the
haif joint mesh. the displacement components u and uy and rotational component
o of all the nodes lying on the xy plane were restrained. The feasibility of this
approach was demonstrated in this study by con_ucting aralyses using the half- and
full-joint meshes and comparison made hetween these two analyses. The stresses
obtained and expressed in terms of the stress concentration factors. as a function
of the angle around the intersection are given i1 Table 4.3 and Figures 4.3(a) and
(b). The maximum difference between the half- and full-joint meshes. respectively

were 2.2% ( for both brace and chord) at the saddle. 4.5% (for chord) and 3.2% (for

brace) at 45° and around 5.3% (for brace and chord) at 10° from the crown. Hence
the use of the same half-joint modelling for out-of-plane bending was considered to

be sufficient.



Half-joint

Quarter—joint

Ko

Figure 4.7: Structural configuration considered for analysis: (a) quarter-joint, (b)
half-joint (see Table 4.2 for boundary conditions).
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Table 4.3: Comparison of SCF for half- and full-mesh for two
T-joints under out-of-plane bending load

Joint Geometry

=10, 8=05a=702%7=24

Chord SCF Brace SCF
Angle around | Half-Joint | Full-Joint | Half-Joint | Full Joint
intersection
4 (Deg.)
0.00 -0.7135 -1.0452 -0.3741 -0.3122
11.25 1.1019 1.1610 0.9075 0.9531
22.50 1.7230 1.9118 1.6977 1.8192
33.75 3.4438 3.7732 3.0615 3.2422
45.00 6.7107 7.0580 5.1638 5.3380
56.25 11.1174 11.3389 7.9135 8.3380
67.50 15.9966 15.9969 10.9737 10.9486
78.75 20.0163 19.7596 13.5300 13.3340
90.00 21.5671 21.1268 14.5191 14.2076
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BRACESIDE

12

o QUT-0F -PLANE EENDING:
—- HALF-JOINT
v —- FULL-MESH dnlN\‘
o] 20 40 60 lDO 120 140 160 _ 180
croun ddl crown

ANGLE AROUND INTERSECTION. ® (Deg.)

(a)

CHORDSIDE /7 = 1.0
d/0 = 0.5

QUT-QF -PLANE BENDING:

—- HALF-JOINT MESH
@ —- FULL-MESH JOINT
craoun 20 40 80 8 ddl‘oo 120 140 160“01“8'9

ANGLE AROUND INTERSECTION. O (Deg.)
(b)

Figure 4.8: SCF comparison between half- and full-joint meshes:
(a) brace, (b) chord. (OPB) (a = 7.02,7 = 24)



4.1.3 Processing of Results

The stress analyses performed in this study was conducted for tubular T-joints
with various joint parameters (a. 3. 7. 7). The range of these parameters are
already given in Table 4.1. At this stage of the study. a post processing program
was developed. This program reads the stress output file from the analysis and
automatically computes the maximum and the minimum principal stresses as well
as the stress concentration factors around the intersection. The principal stresses
at the inner and outer tube surfaces were used to determine the relative amounts of
through-thickness bending and membrane stress. This choice was based on the fact
that stress concentration factors (SCFs) are usually defined in terms of the principal
stresses and thus the two sets of results should be compatible. Furthermore, from
the c.acking point of view, there is a considerable cvidence that cracks, at their
initial stage of development. are subjected to high shear stresses: hence at the initial
stage. the initiated cracks open at an angle other than 90° to the tensile load. but
they soon tend to grow perpendicular to the direction of the maximnum tension.
According to the reasons given above. the numerically greatest principal stresses
on the outer tube wall was always chosen. even where this did not lie perpendicular
to the intersection. The results of typical deformed shapes of tubular joints under

these loads are shown in Figures 4.9 through 4.11.

In conducting analyses for the through-thickness stress distribution along the tubu-
lar joint intersection. a simple interpolation between the stresses on the inner and
outer surfaces of the tubular joint chord wall was adopted. The simple linear inter-

polation was represented in terms of the ratio of the bending stress to the total
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DEFORMED
MESH

AXIAL TENSION

Figure 1.9: Original and deformed mesh for axial loading.
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ORIGINAL

PLANE BENDING

IN:

Figure 4.10: Original and deformed mesh for IPB loading,



DEFORMED
MESH

ORIGINAL

OUT-OF-PLANE BENDING

Figure 4.11: Original and deformed mesh for OPB loading.



stress as follows

LI TR (4.2)

or (o5 +ay)
where o5 and oy are the bending and membrane components of the total stress
or. respectively. The total stress corresponds to the total stress calculated on
the outer surface of the tube. The membrane stress corresponds to the difference
between the total stress and the bending stress on the outer surface. From the linear
interpolation function Eqn. (4.2) it is evident that in cases where the membrane
stresses are tensile the ratio /o7 is less than one and greater than zero. For

the other case where the b is pressive the ratio og/o7 is

greater than one. This equation is normally well behaved except where oy = —o.
when it becomes infinite. However. throughout this study. the latter result was not

encountered,

4.1.4 Convergence Test

A convergence study was performed to check that the meshes used for this study
were sufficienily fine to predict the stresses around the intersection and through
the wall thickness with reasonable accuracy. For this part of the study the T-joint
having 24 elements around half of the (weld toe) intersection (180°) was chosen. A

coarse mesh of 16 elements around the i jon (180°) and a iderably finer

mesh of 48 elements around the intersection (180°) were then analysed. The results
of these three analyses are compared in Table 4.4. It can be seen that the SCF and

the 75/a7 values obtained from the meshes agree to within 0.25 - 0.98% in the
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chord saddle, 4.3 - 13.56 % in the cltord crown. 10.2 - 12.2% in the brace crown and

0.8 - 8.3% in the brace saddle between the 24 and 48 elements cases. Since chord
stresses dominate the cracking behaviour. these differences were considered to be

acceptable.
4.1.5 Results and Discussion

Since the discretization of the joint was done carefully, at the intersection and its
Vicinity. eping the elements small and properly shaped. good results were an-
ticipated. There is a gradual and smooth transition from the smaller and regular
clements. concentrated around the intersection to those elements away from it. In
order to reduce the complexities of the modelling procedure and also to save the
computational time. different multi-point constraints were used. These constraints
which are enforced bonndary conditions in some sense reduce the number of un-
wanted, smaller sized, second order elements in the mesh zones that are not affected

by the intersection behaviour.

Table 4.5 shows the comparison of the stress concentration factors, obtained from
the present study. with the experimental values obtained at the University of Water-
loo (UW). Memorial University (MUN) and the National Engincering Laboratory,
Cngland (NEL). While there is an excellent agreement for the axial loading be-
tween the experiments and analyses. the agreement is not so good for the bending
situations. While there is a very good agreement between the Memorial and NEL
results. the Waterloo results scem to underestimate the SCF values. NEL results

% lower than the present analytical results while the

for in-plane bending is 1

Waterloo University results are lower by 35.4%. The probable reason for this may



Table 4.5: Comparison of SCFs obtained at Waterlo

versities and National Engineering Laboratory? with 4
chord side (8 = 0.5. - = 1.0)
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o/Memorial Uni-
he present study:

Mode of

Unstiffened
loading T-joint
tw MUN NEL PS
(Exp.) (Exp.) (Expt) Tem)
side 1 | side 2 | side | | side 2 side 1 | side 2
IPB 43 42 - - 6.5 6.5
CROWN
Av.(42) o Av.(5.7) Av.(6.5)
OPR 172 | 170 S 2 212 | 212
SADDLE
Av.(171) - Av.(220) | Av.(21.2)
AXIAL 240 | 220 | 248 | 23.3 4.8 | 48
SADDLE
Av.(23.0) 240 Av.(23.4) | Av.(248)

¥ Pates et al., 1988
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be due to the weld thickness effect at the crown. The ratios of the membrane
and bending stresses to the total stress. and the ratio of the strain concentration
factor to ths stress concentration factor. obtained in this study, are compared with
those of the Canadian Cooperative Tubular Fatigue Studies Program. carried out
at Memorial and Waterloo Universities (1989). in Table 4.6. The agreement seems
to be very good. except in the case of the membrane to total stress of in-plane
bending tests where the difference is around 36.8% (Waterloo University results).
Once again the difference could be attributed to the effect of weld thickness at the
crown. The weld thickness could not be modelled by the plate clements used in

this study due to the varying thickness of the weld around the intersection.

Figure 112 through 4.17 show the results obtained when additional analyses were
performed to investigate the effect of chord end support . under the three loading
conditions studied. on the stress distribution around the intersection on both chord
and brace side. While the effect is obvious for the axial load case at the saddle
point location (a difference of 10% was ohserved for chord stresses). very little
difference was observed at the crown location (approx. 2%). The in-plane loading
case exhibits a smaller influence (8%) while very little (approx. 2%) difference was
nbserved for the out-of-plane loading case. Hence the length considered in the study

was found to be insufficient for the case of the axial and in-plane loads.

Figures 1.18 through 4.20 compare the variation of SC'F along the joint intersection

for the three loading cases, viz.. axial, and in-plane/out-of-plane (bending) loads.
While there is a drastic decrease in the SCF values around the saddle region for the

out-of-plane bending, the SC I¥ changes for the in-plane bending are less prominent;
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the axial SC'F values come in between. For the in-plane bending case the maximum
SCF occurs at an angular distance of 37° from the crown; the percentage difference

between the chord crown SCF and the maximum value (at 37° from the crown) is

13.8%. This gives the possibility for the initiation of the fatigue cracking to occur
carly around this region rather than the crown. In actual experiments on in-plane

bending cases. the cracking initiated first at an angular distance of 30 - 35° from

the crown (Pates et al., 1989). validating th~ above conclusions.

Figure 1.21 shows the results obtained from the finite element model of the present
study compared with the results of the experiment performed on a tubular T-joint
at MUN under brace axial loading. Included also in this figure are the variations
of SC'F along the intersection for the other two loading cases (IPB and OPB).
This shows that the finite element models used are of acceptable accuracy. with a
difference between the two methods (experiment and analysis) of less than 2%. at
the saddle. The figure also shows the nature of SC'F drop around the hot spot for
the three loading cases. It is observed that the in-plane bending load situation has a
much flatter SC'F distribution. around the weld toe. than the other two situations:
this creates a plane strain condition over a larger region around the crown for the
in-plane hending load. Probably this may be one of the primary reasons for the
in-ptane bending fatigue life of the joint being much lower than the ocher two. The
out-of-plane bending has the sharpest drop in the SCF variation around the weld
toe and often has the highest fatigue life for the joint. Similar results for the brace

the results show that the

side for the three loading cases are shown in Figure 4.

nature of the stress distribution. between the chord and the brace. are similar.
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Figures 4.23 through 4.25 show the comparison between the SC F distribution along
the intersection for the case when the brace thickness was kept constant at 19 mm.
and the chord thickness was varied to ac’ ieve the various 7 ratios. and the case
when the the chord thickness was kept constant at 19 mm (standard situation. as
per this study) with brace thickness varied to obtain various 7 ratios. It can be
seen that the effect of increasing the chord thickness with constant brace thickness
(of 19 mm) is more beneficial to the axial and out-of-plane bending load cases and
results in the reduction of the SC'F at the saddle positions: a 16% reduction was
observed for these load cases at their respective hot spot positions. This reduction

is an indication of the thickness effect in welded tubular joints.

“The variation of the S as a function of diametral (J = d/D). thickness (7 =
t/T) and thinness (v = D/2T) ratios are given in Figures 4.26 through .34, for
axial and in-plane/out-of-plane bending load cases. Figures 4.26 to 4.28 show the
influence of the diametral ratio (d/D" for the various loading cases. Three distinct
characteristic behaviour patterns are observed for the three load cases. For the

axial (brace) tensile loads. the chord SCF tends to level off for 3 < 0.3: the curve

seems to be asymptotic at a SCF level of 2

For the in-plane bending load.
the chord SCF seems to be almost a constant, varying between 6.0 to 7.0. This is
probably due to the fact that the stiffness to in-plane bending is mainly dependent
on the stiffness present in the brace diametral plane. For the case of out-of-plane
bending, the maximum SCF of the intersection seems to occur when 3 = 0.3, for

0.5 < 3 < 0.5, the SCF tends to be reduce.

From Figures 4.29 to 4.31 it can be stated that when 3 = 0.5, for 7 less than 0.6,
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there is a possibility for the peak stress at the weld toe 1o ocenr in the brace sid

lienee there is a possibilit

¢ that the cracks may initiate on the brace side, since the

brace SC'F is higher than the chord SC£. This was observed to be the same for the

axial. in-plane and out-of-plane load cases. Figures 1.32 to 434 give the influence

of the thinness ratio [~

D/2T) on the stress concentration factors of tubular

joints. The SCFs in th

chord tend to increase almost linearly as the thinness (or
=y ratios increase. The results of Figures 1.32 to 4.34 validate the results given in

Figures £.23 10 1.25 since larger SCF values are obtained for larger thinness (chord

diameter to thickness) ratios and viee versa,

The maximmum principal stress versus distance along the chord snriace from the
<addle and erown positions, for the three load rases, are given in Figures 435 to
110, In the computation of the SCF values, the extrapola‘ion to the weld toe from
standard distances were not carried out since (i) the weld was not modelled in the

analysis by the shell elements and the stresses obtained were at the outer surface

of the two intersecting shell elements: and (i1) even if extrapolation was used the
SCF values would be affected only marginally since the variation of the stress is
almost lincar in this extrapolation region as could be seen from Figures 4.35 to
1.10. The region under the influence of joint discontinuity seems to be much larger
in the brace than in the chord. for all the three load cases. While there is a zone
of compression in the chord under axial and out-of-plane bending loads. for the
in-plane bending cases. the zone of influence on the tensile stress region (of chord)

is always tensile.

Comparing Figures .23 to 4.25 with Figures 4.35 to 4.40, it could be seen that
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for the same stress level more work is done around the critical region for the in-
plane bending load than for the axial and out-of-plane bending load cases. This
may also be a reason for the lower fatigue life of the tubular T-joints subjected to
in-plane bending loads. Also since the ont-of-plane bending load would spend the
lowest amount of energy around the weld toe during deformation this would have

the largest [atigue life for the joint with the same stress level.

The variation of the ratios of the membrane/bending to total stresses. along the

intersection. are given in Figares 4,41 and 116, for the axial in-plane and out-of-

plane bending load cases. The results presented in these figures are those for the

diametral ratio . and thickness ratio = of 0.5 and 1.0. respectively. The same trend
was observed for other ratios used in the present study. For the cases where the
membrane stress is computed to be compressive, the bending stress to total stress
ratio (degree of bending) is greater than one. In Figures 1.11 and 1.42 compari-
son between the results of the present study and the experimental data obtained

at Memorial University of Newfoundland (Munaswamy et al.. 1987) for a medium

steel tubular joint under axial load ‘s also presented. It is observed that the
experimental values tend to fall away from the analytical values as the angle o
around the joint decreases from 90° to 0% it must be stated that the MUN exper-
imental results plotted radial stress values along the weld toe intersection, while
the analytical values have plotted the principal stress values. It is also important
to note that for in-plane bending, the ratio of bending to total stress could not
be satisfactorily determined at locations between 60° and 90°. This is due to the

difficulty

in choosing the correct values of the principal stresses near the saddle: this

might be due to the fact that this portion of the joint corresponds to the minimum
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or zero stress position in the tubular joint.

The comparison of the present study. with some of the well established empiri-

cal parametric equations. available in the literature. are presented in Figures 4,47
throngh 4.50 for the case of axial tensile loads. The differences in the predicted
equations and the finite element results of this study are evident. especially for the
Wordsworth and Smedley equation. Good agreement is observed between the finite
clement resnlts of the present investigation and Kuang's and Gibstein's equation for

most of the thickness ratios shown in Figures L. 17 to 4.5

0. The experimental results
obtained from the tests carried out at Memorial University are in good agreement

with the results of this finite element anal

5. As discussed by Dover et al. (1991)
more effort needs to be put into the reliability of prediction by varions parametric
«quations: also more efforts shonld be put in standardizing the mesh configuration
for the SCF studies as well as in specifying the correct tubular length/diameter

ratios to minimize the effect of end conditions in the chord.

Figures .51 1o .54 show the stress distribution for the axially loaded tubular
T-joints along the brace/chord intersection for various thickness ratios at 3=0.5.
These fignres exhibit an important observation made in this study. The importance
of the 7 ratio of 0.6 for the alternation of the peak stress. between the chord and
brace weld toe hot spot (saddle). is highlighted through these figures. This value
of r is observed to have an influence on whether the joint failure will initiate at the
chord or brace side. It appears that for a value of 7 less than 0.6, the failure would
initiate on the brace side while for 7 greater than 0.6. the failure would be on the

chord side. with a 50% chance that it may either occur in the brace or the
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chord side when 7 is 0.6. [t must be emphasized here that the stress distribution
may change depending on the local variation of the weld toe at the intersection. A
<imilar behaviour is observed for in-plane and out-of-plane bending loads on tubular

T-joints.

The results of the present study have also been compared with the most resent
study on the stress distribution around the intersection and through thickness of
a tubular T-joint. One such comparison was made between the present study and

and

the results obtained by Burdekin ct al. (1992) and is shown in Figures .
4.56. It is observed that the SCF results of Burdekin et al. tend to be lower than
those given by the present finite clement study for the chord: but the trend is found

to be the same. The results of the degree-of-bending seem to be agreeing very well.

Additional analyses were performed in this study to investigate the effect of the
absence of the plug area on the stress concentration factor around the intersection:
the results of these analyses are shown from Figures 4.57 through 4.62 for the three
load cases investigated. Under axial tension loading there is a substantial difference
between the stress concentration factors for the joint with plug and without plug
on the brace side while no difference is observed on the chord side. The absence
of the plug redistributed the loads so that the stiffness ratios for the axial tensile
loads were almost the same for the chord and the brace. The same was true for the
in-plane bending load except that on the chord side SCF reduced all around the
weld toe. These results show that the failure may be catastrophic, especially on
the brace side if the plug is eliminated from the joint. For the out-of-plane bending

the absence of the plug redistributes the stresses at the joint between the
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chord and the brace; the SCFs in the chord and the brace tend to reduce rather

than increase, as in the previous cases.

Finally a comparison between the finitc element. model (degenerated shell element)
nsed in this study and the semi-loof finite-clement (and parametric equations) study
of the University College, London (UCL) (Hellier et al., 1990), was made. The
results of these comparisons are presented in Figures 4.63 to 4.68. The results of
the finite analysis show very good agreement between the MUN and UCL results
for all the three loading cases. The results show a maximum difference between
the two methods of less than 8% on the brace side. Hence the lower SCF obtained
for in-plane bending cases in the University of Waterloo tests (Table 4.5) may be
due to the presence of a thicker weld toe at the crown and due to the extrapolation

errors of the experimental values to the weld toe region.

As mentioned carlier both the principal stress SCFs and radial stress SCFs have
been used in the existing literature. Since crack initiation occurs on crystallographic
slip planes in a shear mode (which depends on the principal planes), initially the
cracks arc oriented 45° to the maximum principal stress direction. Thereafter the
initiated crack changes the mode of cracking and the growth direction is perpen-
dicular to the largest principal cyclic stress. Hence the present researcher believes
that only the principal stress SCFs must be used in the documentation of SCFs.
The following conclusions are drawn from the finite element stress analysis of the

welded tubular joints considered in this study:

1. From the numerical results, the location of the hot spot stress under axial and
out-of-planc bending load cases is at the saddle position and is independent of
the ratio of the diameters of the brace and the chord. However under in-plane

bending this location shifts away from the crown position (away from crown
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at an angular distance of 25 - 37" as d/D increases and remains constant

beyond a certain value of d/D.

o

The slight differences observed between the experimental and numerical ro-
sults (of MUN, UW and NEL) are due to fabrication defects and the dif-
ferences in the method of SCF computations between the experimental and

unmerical stresses (radial and principal stresses).

It is observed that when the 7 ratio is less than 0.6, the brace hot spot stress
is higher than the chord hot spot stress for all the three loading cases, Hence
there is a possibility of the brace cracking ocenrring first below this = ratio.
The thickness elfect of the tubular joint intersection tends to reduce the SCF

values at the junction.

The nature of the stress distribution around the intersection and the amount

of work done around the joint seems to determine the total life of

Since the in-plane load scems to spend the largest work during deformation.
it wonld tend to have the lowest fatigne life and the ont-of-plane load the

highest fatigue life.

The absence of the plug tends to make the joint fail catastrophically and the

failure may occur in the brace than in the chord.

6.

The SCF values predicted by the Memorial University analytical computa-

tions match well with those given by the University College, London.

Since large amounts of data were available, the comparative results of $-node
serendipity elements and 9-node Lagragian elements are not given in this thesis.
However it could be stated that both elements gave good results and the author

opted for the 8-node serendipity clements because of their wider usage.



Chapter 5

Stress Analysis of Stiffened
Tubular T-Joints

5.1 General

The stress field in the walls of intersecting tubes is one of .he main factors which
influences the fatigue life of the unstiffened tubular T-joints. The main governing
parameter controlling the level of the stress concent ration. around the intersection of
the tubes. is the radial flexibility of the chord: hence it is of paramount importance
that this parameter be controlled such that the stress distnbution around and
through the thickness of the joint be 2 minimum in order to improve the life of
the joint. One of the methods. for decreasing the hending stresses in the tube
walls. is by means of stiffening the chord by different types of stiffeners: the use of
internal ring stiffeners is the most commonly employed technique. Hence. to design
a tubular joint for a longer life. it is obvious that the primary task should be to
find a method that will reduce the stress concentration factors, around the joint
intersection. and the bending of the tube wall that induces high through thickness

stress distribution.



[t is generally accepted that the conventional S-N fatigue curve procedure can be

used for stiffened tubnlar join

however, results concerning the values for stress
concentration factors for stiffened joints are few. Most of the available literature
on this subject have investigated this experimentally: very few studies have been
done to present analytical or numerical results. The prese it study has been carried
out to evaluate the stress distribution in complex ring stiffened tubular joints and

10 validate them by comparing with available experimental results.

The geometric parameters of the tubular joints considered in this study are shown

in Figure 5.1. Figure 3.2 shows how the stiffener positions were varied for the -ase of

two stiffencrs. while Figure 53 shows the positions for one. two and three stiffeners

used for comparison purposes.

5.2 Joint Modelling for the Stiffeners

Typical mesh used for the analysis of the stiffened joint is shown in Figure 5.4, 2

can be seen from this figure. it is obvious that the discretization used in the unstiff-
ened joint case has to be modified in order to use it for the stiffened joint study. In
order to examine the usefulness of the above joint modelling. for stiffener placement.
and, at the same time. to carry out a reasonable comparison between stiffened and
unstiffened joints results. a convergence study was conducted. The convergence
study involved the carrying out of a stress analysis on the joint discretization. to

be used for stiffener study without the stiffeners in place. Figure

shows the
typical mesh developed for the stiffened tubular joints: the figure illustrates the

mesh without the stiffener in place. The results of the stress analysis.



TUBULAR JOINT DETAILS J

ds/D = 0.5
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L = 3200 mu

Figure 5.1: Details of the tubular T-joint used for stiffened joint analysis.
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Figure 5.4: Typical computer generated mesh for stiffened tubular joint (without
the stiffeners).



Table 5.4: Comparison of SCFs obtained at Waterloo/Memorial
Universities and National Engineering Lab vy} with the present
study: Chord side

r Mode of Stiffened
loading T-joints
uw MUN NEL | PS
(Exp) (Exp.) | (Exp.) | (Fem)
crack | other | side 1 | side 2
side | side
In-plane | 3.0 29
Bending | I | 3.1 [ 31
CROWN | i | 37 | 36 | - - | 43 | 49
Av. (32) -
SCFunal /SCF,S 131 o 133 | 133
Out-of-plane { | 4.7 | 47
Bending | Il | 44 | 45 | - - | 52 | 51
Saddle
Av. (4.6) -
SCRml/SCRE| 372 - 423 | 416
Axial 1| 61| 61| 64 | 59
Saddle | Il | 64 | 61 | 70 | 63
I | 56 (63|60 (63 (70 (73
IV | 54 | 60| 67
Av.(6.0) Av.(6.3)
| SCFunut/SCF,8 383 381 334 | 340

!Pates et al., 1988
= SCF\nut = Unstiffened joint SCF
§ - SCF, = stiffened joint SCF

197



Table 5.1: Comparison between two mesh types: (i) Unstiffened joint
mesh; (ii) stiffened joint mesh. Axial loading

188

Joint Geometry
7 =10; 8= 0.5 a = 7.02; v = 24;; Axial Loading
Brace SCF Chord SCF
Angle around | Unstiffened | Stiffened | Unstiffened | Stiffened
intersection | joint mesh | joint mesh | joint mesh | joint mesh
6 (Deg.)
0.00 2.55 2.54 6.22 6.25
7.50 2.68 2.68 6.37 6.40
15.00 3.12 3.12 6.86 6.88
22.50 3.19 3.84 7.67 7.63
30.00 4.74 4.80 8.84 8.77
37.50 597 5.97 10.47 10.45
45.00 744 7.49 1245 12.39
52.50 9.18 9.49 14.88 14.86
60.00 1104 10.77 17.55 17.29
67.50 12.87 12.68 20.19 19.99
75.00 14.55 14.41 22.58 22.46
82.50 15.60 15.50 24,15 24.04
90.00 16.10 16.01 24.75 24.70




Table 5.2: Comparison between two mesh types; (i) Unstiffened joint

mesh; (ii) stiffened joint mesh. In-plane bending loading
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Joint Geometry

=10; 8 =05 a =702 v =24; IPB Loading

Brace SCF Chord SCF
Angle around | Unstiffened | Stiffened | Unstiffened | Stiffened
intersection | joint mesh | joint mesh | joint mesh | joint mesh
¢ (Deg.)

0.00 4.02 4.24 6.56 6.97
7.50 4.06 429 6.63 1.04
15.00 4.23 4.48 6.83 7.25
22.50 4.42 4.73 7.08 747
30.00 4.62 4.96 7.32 7.69
37.50 4.78 5.09 747 7.90
45.00 4.80 5.14 7.39 7.80
52.50 4.68 5.14 712 7.58
60.00 4.31 4.44 6.46 6.83
67.50 3.64 3.81 5.40 5.74
75.00 2.71 2.86 4.00 4.27
82.50 1.55 1.65 2.30 2.46
90.00 0.00 0.00 0.00 0.00
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Table 5.3: Comparison between two mesh types: (i) Unstiffened joint
mesh; (ii) stiffened joint mesh.Out-of-plane bending loading
Joint Geometry
7=1.0; 8 =0.5; a= 7.0 y = 24;; OPB Loading
Brace SCF Chord SCF
Angle around | Unstiffened | Stiffened | Unstiffened | Stiffened
intersection | joint mesh | joint mesh | joint mesh | joint mesh
6 (Deg.)

0.00 -0.33 -0.42 -0.81 -0.75
7.50 0.72 0.73 0.96 0.97
15.00 112 L13 1.23 1.25
22.50 L72 L72 L72 L75
30.00 2.56 2.56 2.7 275
37.50 an 3.70 4.41 4.44
45.00 5.19 5.20 6.74 6.75
52.50 6.97 T.14 9.58 9.65
60.00 8.95 8.78 12.78 12.56
67.50 10.95 10.79 15.95 15.74
75.00 12.79 1264 18.81 18.63
82.50 13.97 13.97 20.70 20.52
90.00 14.52 14.52 21.44 21.28
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5.4 Results and Discussion

This section describes the results obtained for the stiffened joints in the present

study. As it is common in the context of tubular joints. the stress concentration

factors (SCF) were calculated by dividing the principal stresses with the nominal

stress in brace. The results from the stiffened joints analysis show that for the
rcase of axial and out-of-plane hending load cases. addition of the stiffener to the
chord at certain locations greatly reduces the stress concentration factors and gives
a more uniform distribution of stresses on the chord side. No appreciable reduction
in the SCFs was observed for the case of in-plane loading. On the brace side
although the magnitudes of stress concentration factors were reduced at the saddle
and the crown positions. generally it was observed that there was a sharp increase
in the stress concentration factors at the stiffener locations. This sharp increase
was more pronounced in the case of a single stiffener. This is especially so because
of the stiffener location at the regions of high stress concentration (e.g.. saddle for
axial and out-of-plane bending loads). In the analysis. the maximum stress in the
tubular joint was always found to be on the exterior surface of the tubes. However.
it may be anticipated that there could be occasions when the maximum stress in
the structure could occur in the stiffiener: this case will be explored in a s osequent

section.

5.4.1 Effect of the Stiffener Location

The comparison of the SCF results obtained in this stuay for two stiffeners at

positions 2. with the experimental results of steel tubular T-joints carried out at the
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University of Waterloo, Memorial University and National Engineering Laboratories
are presented in Table 5.4. These values are at the saddle point location for the
axial and out-of-plane bending loads cases and al the crown for the in-plane bending
loads. It must be noted that in the MUN and Waterloo University SCF comparison
results, the ratio of radial (radii emanating from the centre of the brace) tensile
stresses to brace nominal stress was taken as SCFs. whereas in the finite element
study, the SCFs were compnted from the principal stresses. The results seem
to indicate that in stiffened joints. even at the crown and saddle positions large
tangential stresses are present which increase the principal stresses considerably

above the radial stresses (around the chord intersection).

A steel tubular T-joint tested, as part of a study on stiffened joints. at the National
Engineering Laboratory was analyzed using semi-loof shell elements and combi-
nation of shell elements and 3-dimensional brick elements by Aaghaakouchak and
Dharmavasan (1990): this same tubular joint was analyzed in this study for com-
parison purposes. The joint was a T-joint stiffened by two ring stiffeners having
the geometric data as shown in Table 3.5. The comparison of results obtained in

the present study with the experimental and analytical studies using semi-loof shell

elements and combined shell and brick elements are shown in Tables 5.6 and 5.7.
It is observed that the results of the present study compare more favorably with

the results of the experiments than the other two studies mentioned above.

Since the results presented by the MUN and University of Waterloo experimental
studies on stiffened joints gave only the radial SCF values (radii emanating from

the centre of the brace). detailed comparisons could not be made with the present



Table 5.4: Comparison of SCFs obtained at Waterloo/Memorial

Universities and National Engineering Laboratory} with the present
study: Chord side

f 1
Mode of Stiffened |
loading T-joints A

uw MUN NeL | ps
(Exp.) (Exp.) (Exp.) | (Fem)
crack | other | side 1 | side 2
side | side
In-plane 1 | 30 29 |
Bending 1} 31 3
CRQWN I 37 36 - - 43 49
Av. (3.2) -
SCFRal/SCRS| 131 = 133 | 133
Out-of-plane | 1 | 47 | 47
Bending i} 44 45 - - 52 5%
Saddle |
Av. (4.6) - |
SCFuu!/SCEE| 372 5 423 | 416
Axial | 6.1 6.1 6.4 5.9
Saddle i 6.4 6.1 7.0 6.3
1] 5.6 6.3 6.0 6.3 70 73
I\ 54 6.0 6.7
Av.(6.0) Av.(6.3)
SCFl/SCRS 383 381 334 | 340
IPates et al., 1088
! = SCPFunu = Unstiffened joint SCF

8 SCFy = stiffened joint SCF
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Table 5.5: Geometric data of the stiffened model used for
comparison between the present study and the National Eo-
gineering Laboratory experimental results and UCL semi-
loof sbell element and combined shell and orick elements.

RE

l Joint

| dimensions | 914 | 457
‘mm)

HS - stiffeaer beight.
TS - stiffener thickness.
DS - Distance between stifieners.

Table 5.6: Comparison between SCFs obtained in the present
study, National Engineering Laboratory experimental results and
UCL semi-loof shell element and combined shell and brick elements.
- crown position {Axal).

STIFFENED JOINT: BRACE

CROWN ‘V SADDLE

NEL | pst |uctt|ucee| NEL | st |ucLt

ueL
(exp.) | (fem) | (fem) | (fem) | (exp.)

(fem) | (fem) | (fem)

183 | 267 | 310 | 226 | 425 | 4.20 [ 450 | 342 ‘
il
1 - Present study (Degenerated Shell Element)
1 - Aaghaakouchak et al., 1990 {Semi-Loof Shell Element)

- Aaghaakouchak et al., 1990 (Shell + 3-D Elemeats )
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Table 5.7: Comparison between SCFs obtained in the present
study, National Engi ing Lab 'y experi I results and
UCL semi-loof shell element and combined shell and brick elements

- crown position (Axial)

STIFFENED JOINT: CHORD

CROWN SADDLE

NEL | pst |uctt |uces | NEL | st | ucLt | uct
(exp.) | (fem) | (fem) | (fem) | (exp.) | (fem) | (fem) | (fem)

4.43 | 4.00 | 402 | 3.69 | 7.30 | 7.30 | 7.92 | 6.69

1 - Present study (Degenerated Shell Element)
t - Aaghaakouchak et al., 1990 (Semi-Loof Shell Element)
* - Aaghaakouchak et al., 1990 (Shell + 3-D Elements )
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investigation which computed the principal stresses rather than radial stress

Hence except the SCF comparisons no other detatled comparisons are made as in
the case of unstiffened tubular T-joints. Morcover the presence of radial (to the
weld tee) and tangential (to the weld toe) stresses at the intersection makes the
fatigue cracking to be multimodal; hence no effort is made in correlating the fatigue
lives of stiffened tubular T-joints in Chapters 6 and 7. The presence of significant
mode [ and/or mode III cracking would make the fracture mechanics analysis
«uite complex. Hence a conscious decision is made to exclude all stiffened tubular

experimental results from fra. .ure mechanics investigations.

The stress analysis results of one of the stiffened T-joints, under axial, in-plane
and out-of-plane bending loads, with two stiffeners located at different positions
(positions | to 4, Figures 5.2 and 5.3) are shown in Figures 5.12, 5.13 and 5.14.
These figures show that the best positions for the stiffeners are the regions around
the high stress concentration zones of stiffened tubular joints; the region is located
near the saddle for the axial and out-of-plane bending cases and close to the crown
for the case of in-plane bending load. It was observed in the final analysis that, for
the four positions investigated in this study, position 2 and 3 gave the most optimum
location for axial and ont-of-plane bending load cases, with position | being the
most favourable in the stress concentration reduction for the in-plane bending load.
It can there be concluded that, as long as the stiffeners are located in these regions
of high stress concentration (of unstiffened tubular joints), the maximum stress
concentration values of stiffened tubular joints are not too sensitive to the exact
location of the stiffener. The middle half of the plug scems to be the optimum

positions for the axial and out-of plane bending loads; the remaining outer two
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quarters of the plug are recommended as optimum positions for in-plane bending

case.

5.4.2 Effect of the Number of Stiffeners

Figures 5.15 to 5.20 illustrate the effect of the nunber of stiffeners on the stress
distribution aronnd the intersection. It is evident from these figures that as long as
the stiffeners are located at the correct positions. increasing the number of stiffeners

results in increasing the chord moment of inertia and consequently reduces the chord

radial flexibili

this in turn reduces the stress concentration factor on the chord

side. Their effect on the brace side is less than that on the chord side. It is also
observed from these figures that when only one stiffener is used (at the saddle), there
is a relatively higher stress concentration factor in the brace at the saddle and in the

stiffener than in the chord. The cause of this i

xplained as follows: at locations
around the single stiffener (saddle) the local chord stiffness is high and this causes

« high proportion of the load 1o be transferred from the brace to the chord in this

region. These results probably explain the experimental observations of Sawada et
al. (1979). on the static and fatigne tests of T-joints stiffened by one internal ring at
the saddle position. in which they reported crack initiation and growth in the brace

and stiffener. This also confirms the finding of Dharmavasan and Aaghaakouchak

(1988) using semi-loof shell element and combined shell and three dimensional brick

clements.

wherein similar results were given. Figures 5.21 to 524 show the above
results put in another form to illustrate the effect of number of stiffeners on the
stress conceniration factors at the saddle and crown locations. For the axial and

out-of-plane loads, the increase in the number of stiffeners progressively reduces the
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stre:

concentration factor at the saddle and crovn. For the in-plane bending the
results of (0.1) and (2.3) stiffeners seems to be clustered in two separate groups:
this is due to the fact of the stiffener located at the saddle being ineffective against
bending loads. The single stiffener (located at the saddle) exhibits a sharp increase
of the brace stress concentration factor at the brace saddle for both axial and ont-

of-plane bending load cases: for the in-plane loading. a single stiffener located at

the saddle does not show any change from the no stiffener case.

5.4.3 Effect of the Stiffener Size

The effect of stiffener size was investigated by adding stiffeners of different sizes

for

to the joint at position 2 (A2 see Figure The results of this analy
three different stiffener heights (HS) of 100mm. 120mm and 140mm and three

different stiffener thicknesses (TS) of 19mm. 2lmm and 24mm are shown in Figure

through 5.28 for the axial load case. These figures show that the change in the
stiffener height has the stronger influence in reducing the stress concentration factor
compared to the stiffener thickness. Similar results were obtained for out-of-plane
and in-plane bending load cases. The conclusion that can be drawn from these
results is that the moment of inertia of the stiffener. in the radial directions of the
chord, is one of the main parameter which zontrols the level of stress concentration
factor in a stiffened joint. These results at first glance miay suggest that using
thin tall stiffeners would lead to optimum SCF values: but this is not true. When

the stress concentration of the stiffener is examined. it shows that this results in

high stress concentratiou factors in the stiffener. The increase in the stiffener SCFs

because of small thickness is significant, and it may therefore be wise to avoid the
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use of relatively thin stiffeners for stiffening tubular welded joints. One question
that must be asked then is . what is the possible limit on mininum stiffener thick-

! Other studies on this aspect have shown that the minimum thickness of the

ne:
<tiffener could be the same as the brace thickness when only few stiffeners are used

(Dharmavasan and Aaghaakouchak. 1933},

5.4.4 Effect of the Thickness (7) and Thinness (7) Ratios

Fignres 3.2 10 5,34 show the effect of the ratio of the brace thickness to that
of the chord on the stress concentration factor. around the stiffencd joint. under
asial. in-plane and out-of-plane bending load cases. It is shown in these figures
that for a constant stiffener thickness. increase in the chord thickness or a decrease

in brace thickness. smaller 7 (= t/T) ratio results in the reduction of the stress

concentration factor. This resnlt validates one of the methods that has often been
«sed to stiffened tubnlar joints in which the thickness of the chord. for a given

length termed “joint can’. is increased.

The results of the parametric study on the influence of the thickness ratios r ( =

1/T) and the thinness ratios v ( = D/2T) are presented in Figures 5.35 through
5.10. Figures 5.35 to 5.38 show that depending on the placement of the stiffener
and the 7 value. the maximum stress concentration factor can occur either in the
brace or the chord. For instance when 3 = 0.5. and 7 < 0.54. the mavimum SCF
occurs in the brace under axial load (Figure 5.36). Similarly these ratios change
o 7 < 0.62 for in-plane bending and r < 0.48 for out-of-plane bending cases. It is

also evident fromn Figures 5.39 and 5.40. that the SCF of the stiffened joint is



@
w | AXIAL LOAD: (BRACE)
-~ /T = 0.4
w| e t/T = 0.8
~{ % T =0.8
- T = 1.0
@

STRESS CONCENTRATION FACTOR

& BETA RATIO (d/D) = 0.5

a 10 20 30 40 50 60 70 683 _$C
crown saddle

ANGLE AROUND INTERSECTION, ¢ (Deg.)

: Variation of brace SCF with angle 5. showing the effect of = ratio

02. = = 24, Position No. 2. = 19mm. HS = 120mm)

w | AXTAL LOAD: (CHORD)

-~ T = 0.4
| —— /T = 0l6
~{ -~ T = 0.8
— /T = 1.0

«
S
o
-
«
=
-1
@
<
E
z
&
g
o
w
@
W
&
=
@

o
PP erdain 4
o BETA RATIO (4/0) = 0.5

Q 10 20 30 40 50 60 70 80 30
craown saddle

ANGLE AROUND [MTERSECTION, ®(Deg.)

Figuce 5.30: Variation of chord SCF with angle @, showing the effect of 7 ratio
(Axial) (a = 7.02, v = 24, Position No. 2, TS = 19mm, HS = 120mm)




STRESS CONCENTRATION FACTOR

Figure 3.31:

(IPB) (a =

STRESS CONCENTRATION FACTOR

Figure 5.32:
(IPB) (a =

~
o | IN-PLANE BENDING: (BRACE)

o= /T = 0.4

~ T =08
@] 4+ T = 0.8

- /T = 1.0
©
-
~ E
QLBETH RATIO (d/0) = 0.5

20 30 40 50 &0 70

a 0 30
craown saddle

ANGLE RROUND INTERSECTION, ® CDeg.)

Variation of brace SCF with angle o, showing the effect of 7 ratio
= 24, Position No. 2. TS = 19mm, HS = 120mm)

7.02

IN-PLANE BENDING: (CHORD)

e
Tk kA= R =k N

* O\,

SN
~ \*-\t‘
) BETA RATIO (4/0) = 0.5 =
0 10 20 30 40 S0 s0 70 0 ks)

crown saddle

ANGLE AROUND INTERSECTION. ® (Deg.)

Variation of chord SCF with angle ¢, showing the effect of r ratio
7.02. v = 24, Position No. 2, TS = 19mm, HS = 120mm)



2 215
&
S o | OUT-OF-PLANE BENDING: (BRACE)
T
= - 1T = 0.4
z ~ /T = 0.6
S ©1 - vT=0.8
P - /T = 1.0
&
W - \w,
g 1 =%y
8
o
2 o
&
% | BETA RATIO (d/D) = 0.5

Q 10 20 30 40 S0 €0 70 80 390
cravn soddle

ANGLE AROUND INTERSECTIGON, ® (Dsg.)

Figure 5.33: Variation of brace SCF with angle o, showing the effect of  ratio

(OPBJ ia = 7.02. 3 = M. Position No. 2. TS = [9mm. HS = 120mm)
)
o OUT-0F-PLANE BENDING: (CHORD)
- 1T = 0.4
~ /T = 0.6
@{ 4 t/T = 0.8
-~ MT = 1.0

STRESS CONCENTRATION FACTOR

&

BETAR RAATIO (d/0) = 0.5

0 10 20 30 40 50 60 70 80 99
crown soddle

ANGLE AROUND INTERSECTION, @ (Deg.)

Figure 5.34: Variation of chord SCF with angle 6, showing the effect of 7 ratio
(OPB) (a = 7.02. = 24, Position No. 2, TS = 19mm, HS = 120mm)



AX[AL LORD: (CRAWN)
BRACE

CHORD

d4/0 = 0.5

STRESS CONCENTRATION FACTOR
3

E
0.00 0.12 0.24 0.36 0.48 0.60 0.72 0.84 0.96 L.08

TRU RATIO (#/T)

: SCF vs. 7 ratio at the crown (3
19mm, HS = 120mm)

ial) (@ = 7.02. ¥ = 24, Position No.

b
«
2 o AXIAL LOAD: (SAOOLE)
g - - BRACE
« — CHORD
z o a0 = 0.5
=}
z
E o
s
g
-
8
2
~
£
I3

o
0.00 0.12 0.24 0.36 0.48 0.60 0.72 0.84 0.96 1.08

TAU RATIO (t/T)

Figure 5.36: SCF vs.  ratio at the saddle (Axial) (a = 7.02, v = 24, Position No.
2, TS = 19mm, HS = 120mm)



[N-PLANE SENDING: (CROWN)

©
- gRACE
CHORD
% d/D = 0.5
@
~

STRESS CONCENTRATION FACTOR

o
0.00 0.13 0.26 0.33 0.52 0.65 0.78 0.91 1.04 1.17

TAU RATIO (/1)

Figure 5.37: SCF vs. 7 ratio at the crown (IPB) (a = 7.02, 7 = 24, Position No
2.T$ = 19mm. HS = 120mm)

OUT-0F -PLANE BENDING: (SRDOLE)

‘STRESS CONCENTRATION FACTOR

°
0.00 0.13 0.26 0.33 0.52 0.65 0.78 0.9l 1.04 1.17

TAU RATIO Ct/T)

Figure 5.38: SCF vs. 7 ratio at the saddle (OPB) (a = 7.02, v = 24, Position No.
2, TS = 19mm, HS = 120mm)



23

o

8
«
o
5 | AXIAL LaAD:
e — UNSTIFFENED JOINT

=~ = STIFFENED JOINT
z i=]
o N
=
T
o =
£
z
B o
g 2
(=} - — -
o W
2w
&
= CHORD: SADDLE (/T = 1.0, 4/D = 0.5)
o 4 8 12 18 20 24 28 32 3B

GAMMA RATIO (D/2T)

Figure 5.30: Effect of thinness ratio (+) on chord SCFs in stiffened and unstiffened

tubular joints at the saddle (Axial) (a = 7.0

7 = 24. Position No. 2. TS = 19mm.

HS = 120mm)

%

3
o
o
G o | AXIAL LORD:
SR
w —— UNSTIFFENED JOINT

- = STIFFENED JOINT
z w0
g8
£
g o
€
z
w
[}
Z o
o
Q
[ T e
&
B BRACE: SADOLE (t/T = 1.0, d4/0 = 0.5)
0 4 8 12 16 20 24 28 32 36

GAMMA RATIO (D/2T)

Figure 5.40: Effect of thinness ratio (v) on brace SCFs in stiffened and unstiffened
tubular joints at the saddle (Axixl) (a = 7.02, v = 24, Position No. 2, TS = 19mm,

HS = 120mm)



219

not very sensitive to the thinness ratio 4 of the ring stiffened joints; the decrease

in SCF is not significant when 4 increases by a factor of 2.

5.4.5 Stress Concentration in the Stiffener

From the results obtained for the stress concentration in the stiffener. four regions
were found to be susceptible to high stress concentration values as illustrated in
Fignre 5.11. The values of the stress concentration factor at these four locations. for

asingle stiffener, located a1 the saddle position for axial. in-plane bending and out-

of-plane bending load cases are shown in Table 5.3. These regions may give some
guidance Lo periodic non-destructive examination of the stiffened joints when they

are in service, The stre

s in regions B and D are compressive when the stiffener

is subjected to tensile or out-of-plane loading in the brace: they will become tensile

when the load is reversed (the brace load becomes compressive). From Table 5.8, it

can be seen that all cases of axial loading exhibit maximum stress concentration in
region (" and all cases of the out-of-plane hending the maximum stress concentration
factor occurs in region B. From a practical point of view. it may be concluded that

Figure 5.41 and Table 5.3 suggest that positioning of welding lines of stiffeners in

these regions. when stiffencrs are fabricated by welding different pieces together.

should be avoided. A comparison of the SCF values in stiffeners shows that they are
comparable (but less than) the stress concentration factors in the brace and chord
and as such they should be checked against fatigue failure. Since no large stress
concentration points are present in the inner circumference of the ring stiffeners.

the possibility of catastrophic development of fatigue cracks in stiffeners is rather

rare,



Al+ve)

CHORD

Figure 5.41: Four critical stress regions in the stiffener
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Table 5.8: Stress analysis results of stiffened tubular joints
subject to axial and out of plane bending loads; showing
the values of SCF's at four critical point in the stiffener (a
=702 8=05+=20,7=10)

No. of | Stiffener | Location of | Axial OPB
Stiffener | Position® | the point on | Loading | Loading
Stiffener”

1 saddle A 645 (417
1 saddle B 579 |-5.37f
1 saddle c 83st | 169
1 saddle D 630 |-0.02
g 1 A 428 |om
2 1 B 474|420t
2 1 (& 5200|118
2 1 D 405 [-0.02
) 2 A 424|269
2 2 B 431 | -4.20f
2 2 o sast | 119
2 2 D 400 | -0.02
2 3 A 422|266
2 3 B 400 |-41t
2 3 (5 suat 120
2 3 D 397 |-003
] 4 A 410 1.66
2 4 B 365 | -2.501
3 4 o 518t | 078
2 4 D 407 |-0.02

@ - Figure 5.2

* - Figure 5.42

t - High stress region



5.5 Summary

Fatigue cracks in stiffencd tubular joints which often initiate at the weld toe of
the joints. close to the hot spot location, are the result of inherent welding defects
resulting in high stress concentration factors around the intersection of the tubes.
From the results of the foregoing analysis, it is shown that stiffening tends to
reduce the hot spot stresses to a third or less of the original values, which may
imply a significant increase in the fatigue life of the joint (for the same brace load).
Reasoning from another point of view. the stiffener: 1ay Ie used to reduce the
thickness of the tubes and consequently reduce the total weight of the structure.
However. in order to achieve the maximum benefit from the stiffening and thereby
avoid the crack initiation and growth in undesired parts of a tubular joint. it could

be seen that the position of the stiffener is of great importance.

Stiffening resnlts in a more uniform stress distribution around the intersection of the
tubes. especially on the chord side. This is due to the reduction of the local bending
in the tube walls and changes in the local stiffness of the chord. As a consequence,
stiffened tubulars support very large applied loads. Stiffening may introduce a
higher SCF on the brace side depending on the 7 and 7y ratios. It is also observed
that the SCFs in stiffeners are comparable to the chord or brace SCF (but less)
and as such care should be taken to avoid the presence of stifferer weld lines in the
zones of high SCFs: as a consequence of these results, there is a possibility that
fatigue cracks could start in the stiffener and they must be periodically checked for

fatigue cracks.



The following conclusions conld he presented from the above study:

o The ratio of SCFs between unstiffened and stiffened joints were found to be
3.4 for axial, 1.33 for in-planc bending and 4.23 for out-of-plane bending load

cases (@ = T.02. 3= 05. 7 = L.0and 7 =

o The optimum positions of the stiffener locations were found 10 be the middle
half of the plug region for axial and out-of-plane loads: for in-plane ioads
the onter quarters of the plug region were optimum positions for the stiffener

locations.

o The increase in the number of stiffeners used reduces the SCF of the chord.
[t is observed that for in-plane loads. the stiffeners effects were found to be

arouped in pairs of (0.1) and (2.3) stiffencrs.

» The height (HS) of the stiffener has a greater influence on reducing the SCFs
than the thickness (TS) of the stiffencrs. Relatively deeper and thicker stiff-

eners are found to be better than deeper and slender stiffeners.

o Smaller thickness (r) ratios (with unchanging HS and TS values for the stiff-
eners) give lower SCFs than larger thickness ratios. For 7 < 054 (3 = 0.5, @
= 7.07. 9 = 24) the SCF is larger in the brace than chord for axial load: for
in-plane load the ratio is T < 0.62 and for out-of-plane load the ratio is r <

0.48.

o Larger thinness ratio (1 = D/2T) tend to reduce the chord and brace SCFs.



Chapter 6

Fatigue Crack Initiation Life
Prediction

6.1 General

The knowledge of the local stress and strain distribution around the welded tubular
joint. is one of the common requirements to any fatigue life estimation. In addi-
tion. the accurate estimation of the local stress and strain, around intersection. is
an important step towards the location of the problem sites at the intersection.
These problem sites give a1 indication as to where the crack will start to initiate.
The fatigue life of offshore welded tubular joints. consists of two parts: the crack
initiation and the crack propagation lives. In this chapter. the estimation of the
crack initiation life using strain-life concept. for offshore tubular welded joints. is

presented.

The strain-life concept is based on the observation. that in many components,
the response of the material in critical locations (notches) is strain or deformation
dependent. Most engineering structurcs, such as the tubular joints dealt with in

this study, are designed such that for nominal loads, the structure remains elastic,
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but the presence of stress concentrations will often cause plastic strains to develop
in the vicinity of the notches. The constraints imposed by the elastically stressed
material surrounding the plastic region at the hot spot. make the deformation
in this region (notch root) to he considered as strain-controlled. The strain-life
method has often been considered ‘initiation” life estimate. because crack growth is
not explicitly accounted for: failure is assumed to occur when the equally stressed

volume of material fails.

The strain-life approach in its simplest term assumes that the fatigue crack initia-
tion. at a noteh root, is due to the fracture of a fatigue clement located at the notch
root (in case of a tubular joint, this notch root region is located all aronnd the weld
toe region). The number of cycles required for a crack to initiate. at the notch root.
can be related to the fatigue of strain-controlled unnotched laboratory specimens.
In welded tubular joints. small crack initiating defects are always present at the
weld toe. and as a result of this. fatigue life of welded tubular joints have been
determined for several vears with the notion that the fatigue life of the joints is
dominated by the crack propagation: however. recent experimental studies. have
shown that the number of cycles required to initiate a crack. large enough to be
detected and treated by the modern linear fracture mechanics approach. is of the
order of 10 to 10% of the total fatigue life. Hence estimation of the total life of a
tubular welded joint. employing both crack initiation and and crack propagation
aspects, seems to provide the most accurate estimate for the fatigue life of tubular

joints,



6.2 Initiation Life Prediction Procedure

In the present study the first step was to calculate the stresses and strains. along
the welded toe. in order to compute the theoretical stress concentration factor A’
for the joints. This process was essential to identify the likely crack initiation
locations: also required is the fatigue stress concentration factor K'y. These stresses
and strains and the corresponding SCFs. K, for unstiffened and stiffened joints.
have already been obtained in the analyses and resulis given earlier in Chapters 4

and 5.

6.2.1  Weld Toe Strain Analysis

The relation between the far-field stress AS. tur-field strain Ae. the weld toe stress
g, and weld toe strain ranges were obtained using the Neuber's rule in its modified

form:

k. = K, K, (6.1)

where I, and K, are the local stress (5! and strain (SNCF) concentration factors
obtained from the stress analysis of the joint (Chapters 4 and 5). Considerable
effort has been spent. in trying to relate the theoretical stress concentration, K, to
the fatigue stress concentration factor, K ;. Whereas the theoretical concentration
factor. K. is dependent on the joint geometry and the mode of loading, the fatigue

stress concentration factor. Ay, is also dependent on material type. In order to

account for these additional effects. a sensitivity factor, g, which relates the stress



concentration i, fatigue to the theoretical stress value is used. This relation is ¢

as

6.2
Ki—1 (©2)

The sensitivity factor. ¢, ranges from zero ( for no noteh effect. Ky=1) to unity
(for full theoretical effect, Ky=K.). In the present study, a full theoretical elfect

is assumed. hence K, in Eqn. (6.1) is taken equal to K7. When Eqn. (6.1} is

expressed in terms of ranges of stresses and strains, the modified Nenber's rule is

obtained:

K7AS = (Ao de B2 (6.3)

6.2.2 Stress-Strain and Manson-Coffin Equations

The information needed for erack initiation life estimation also consists of the mate-

rial’s fatigne properties. i.c.. (a) cyelic stross-strain relationship. and (h) strain-life
relationship or Manson-Coffin curves. The eyclie stres- strain relationship is given

by:

(6.4)

In the present study, the non-lincar Eqns. (6.3) and (6.4) were combined together

10 give



(K AS)?

2

Ao was determined by solving Eqn, (6.5) using an iterative technique (Newton®
iterative technique) and then A& was obtained from Eqn. (6.4). The final step in
this prediction used the values, obtained from the above calculation, in the Manson-
Coffin equation given below to arrive at the crack-initiation life. V. This equation
takes into account. the contributions from both elastic and plastic weld toe strain

ranges and obtains the crack initiation life as.

1l
LIS
=

>

N+ (2N (6.6)

where 2.\ gives the crack initiating life of the joint. Eqn. (6.6) is the basis of the
strain-life method and is termed the strain-life relation. It contains hotu the elastic
and the plastic portions. These portions can be plotted on  log-log plot separately

and the total strain amplitude, Az/2. obtained by summing the elastic and the

plastic portion values. The transition fatigue life. 2.V, which represents the life at

which the elastic and the plastic curves intersect could be obtained by equating the

clastic and plastic terms as

oz ¥ e .
FRNP = NS aN =




3 1/(b=c)
2V, = (_,_) (6.7)
L

6.2.3 Determination of Fatigue Properties

From Eqn. (6.6) it is evident that the crack initiation prediction requires four empir-

ical constants 1h.c.77.2). Extensive studies related to these constants have shown

that the exponent ¢ ranges from about -0.5 to -0.7, with -0.6 as a representative
value and the exponent b ranges from about -0.06 to -0.14. with -0.1 as the represen-
tative value (Bannantine et al.. 1990), Initial computations were performed using
the range of constants from the numerous experimental studies. From these initial
computations. it was observed that the exponents b and ¢ play an important role
in the initiation life. The range of initiation lives. obtained from this preliminary
compntation, nsing these published constants of b and ¢, showed no correlation to

the experimental crack initiation life values. Hence. as a starting point. the values

K" 11,500 MPa) and n' (0.19) reported by Bhuyan and Vosikovsky (1987) due to

Lienrade et al. (1932, for HAZ of E

steel {chemical and mechanical proper-
ties are equivalent to those of Canadian Grade 330 offshore steel). were assumed.
Then from the experimental values of lida (1937). who has given the range of crack
initiation lives for different types of tubular welded joints at different strain levels.
the plastic and the elastic portions of the Manson-Coffin’s equation were solved
iteratively to obtain b and c. In addition Eqns. (6.4) and (6.6) were combined to

obtain the following relationships ( Bannantine. 1990):
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(6.3)

n== (6.9)

which were in turn used to obtain suitable combinations for b and c.

6.3 Results and Discussion

The crack initiation lives have been evaluated, for all the three loading cases. viz.,

iation

axial. in-plane bending and out-of-plane bending loads. The fatigue crack ini
life. was defined in this study. as the total number of cycles (2.V7) spent in generat-
ing an approximate initial crack depth. a,. of 0.5 mm. A computer program. based
on Newton's iterative technique was written. to solve the nonlincar Manson-Coffin
equation [Eqn. (6.6)]. From this the initiation life was obtained for stress levels
ranging from 160 MPa to 260 MPa. The total strain life was separated into the

elastic and plastic components.

The summary of the results of the initiation lives, obtained for the three load cases,
Viz.. axial. in-plane and out-of-plane bending loading, is given in Table 6.1. for dif-
ferent stress levels. The values within the brackets, in the tabular column for stress
ranges, indicate the actual stress range at the weld toe due to the development
of plastic strains at the weld toe region. Table 6.2 shows comparison of the lives
obtained from the present study and the experimental results on tubular T-joints at

the Memorial University of Newfoundland and the University of Waterloo laborato-



231

rivs. U is obvious from the table that the values of initiation life obtained from the

local stre

strain approach employed in this study compares favorably with these

experimental values. The elastic and plastic components of the initiation lives are

hown in Tables 6.3, 6.4 and 6.5 for the three load cases.

The

ariation of strain amplitude at different st

s range with the number of cycles

to erack initiation. are given in Figures 6.1. 6.2 and 6.3 for 4

sial. in-plane and out-
of-plane bending load cases. From this figure, it is obvious. that the contribution

of the plastic components to the total initiation life could be neglected.

Figu 1. shows the variation of the strain amplitude with the crack initiation
life for three values of the fatigue strength exponent. b, and the fatigue ductility
exponent, ri these valies were obtained from the ranges of crack initiation lives

given for tubular joints by lida (1987). The figure illustrates the upper and the

lower bounds of the erack initiation life obtained in this study. Proper care was

exercised in selecting the coeflicients b and e required for crack initiation analysis.

Since the crack initiation lives were scattered over a band of strain and life ranges.

the pair of values that satisfied Eqn. (6.9) was chosen. In addition, the computed

initiation life obtained using those coefiicients was also checked to see whether it

lies within the feasible experimental range.
6.3.1 Summary

he results presented herein. along with the information gathered from full-scale

tubular tests on the erack initiation life and failure characteristics of actual offshore

tubulac joints (lidao 1987). supports the use of the local strain approach to the



Table 6.

loads: K’ = 1,500 MPa, o = 1,262 MPa, €} = 1.28, n’ = 0.19, b = -0.209, ¢ = -1.10

: Fatigue crack initiation life of tubular T-joints under Axial, In-plane and OQut-of plane bending

Joint Geometry
7=10; =05 a="7029=24
Axial Loading IPB Loading OPB Loading
Stress Strain Initiation | Stress Strain Initiation | Stress Strain Initiation
Range | Amplitude Life Range | Amplitude Life Range | Amplitude Life
(MPa) (Ae/2) k.cycles | (MPa) (Ae/2) k.ycles | (MPa) (Ae/2) k.cycles
x 10* x 10* % 10¢

160(148) | 3.52 787 [ 160(145) | 3.6 859 [160(150) |  3.58 730
170(157) | 3.74 590 | 170(154) |  3.68 643 | 170(160) |  3.80 547
180(166) |  3.97 450 | 180(163) |  3.89 490 | 180(169) |  4.03 a7
1900176) | 4.19 348 [1900173) | 41 319 | 190(178) | 4.25 323
200(185) 4.41 213 200(182) 4.33 297 200(188) 4.48 253
210(194) | 4.63 217 |2100191) | 4.54 236 [ 2100198) | 4.70 201
220(203) | 4.85 174 |220(200) | 4.76 189 | 220(207) | 4.93 161
230(213) | 5.07 141 | 230(209) | 4.98 154 |230(216) | 5.15 131
240222) | 529 16 |210(218) | 520 126 |240(225) | 538 107
250(231) 5.51 96 250(227) 5.41 104 250(235) 5.60 89
260(240) 5.73 80 260(236) 5.63 87 260(245) 5.83 74

[4:4



Table 6.2: C

between

al results

of University of Waterloo and Memorial University
with the present study (Pates et al., 1989)

uw MUN PS
(Expt.) (Expt.) (FEM)
Loading | Initiati Initiati Initiati
mode Ny Ny Ny
k.cycles k.cycles k.cycles
(Apparent | (Apparent | (Assumed
crack depth | crack depth | crack depth
a~0.5mm) | a = 0.5mm) | a = 0.5mm)
Axial = 103 96
Saddle) (250 MPa) | (250 MPa)
IPB 99 - 104
Crown) | (248 MPa) (250 MPa)
OPB 86 89
Saddle) | (256 MPa) (250 MPa)
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Table 6.3: Elastic and plastic strain amplitudes: K’ = 1,500 MPa,
oy = 1,262 MPa, ¢} = 1.28, o’ = 0.19, b = -0.209, c= -1.10 (Axial).

Joint geometry
T=10; =05 a="7.02 y=24.
Axial loading
Stress | Initiation | Total strain | Elastic strain | Plastic strain
range life litud, litud lituds
(MPa) | k.cycles (Ae/2) (Ac./2) (Aep/2)
x 10¢ x 10 x 104
160 787 3.5242 3.5200 0.0042
170 590 3.7446 3.7389 0.0057
180 450 3.9652 3.9574 0.0077
190 348 4.1858 4.1755 0.0103
200 273 4.4065 4.3931 0.0134
210 217 4.6274 4.6101 0.0173
220 174 4.8483 4.8263 0.0220
230 141 5.0695 5.0418 0.0277
240 116 5.2908 5.2563 0.0345
250 96 5.5124 5.4698 0.0426
260 80 5.7342 5.6822 0.0520
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Table 6.4: Elastic and plastic strain amplitudes: K’ = 1,500 MPa,
o = 1,262 MPa, ¢} = 1.28, o’ = 0.19, b = -0.209, c= -1.10 (IPB).

Joint geometry
T=10; =05 a="7029=24

IPB loading
Stress | Initiation | Total strain | Elastic strain | Plastic strain
range life itud litud
(MPa) | k.cycles (Aef2) (Ae/2) (Aey/2)
x 104 x 104 x 10
160 859 3.4600 3.4565 0.0038
170 643 3.6800 3.6722 0.0052
180 490 3.8900 3.8868 0.0070
190 | 379 4.1100 4.1011 0.0093
200 297 4.3200 4.3155 0.0122
210 236 4.5400 4.5279 0.0157
220 189 4.7600 4.7431 0.0201
230 154 4.9800 4.9505 0.0252
240 126 5.2000 5.1625 0.0314
250 104 5.4100 5.3738 0.0388
260 87 5.6300 5.5780 0.0472




Table 6.5: Elastic and plastic strain amplitudes: K’ = 1,500 MPa,
o =1,262 MPa, ¢} = 1.28, o’ = 0.19, b = -0.209, c= -1.10 (OPB).

Joint geometry
T=10; =05 a="7.027v=24

OPB loading
Stress | Initiation | Total strain | Elastic strain | Plastic Strain
range life litud litud litud
(MPa) | k.cycles (Ae/2) (Ae./2) (A&,/2)
x 104 x 104 x 104
160. 729. 3.5800 3.5771 0.0046
170. 547. 3.8000 3.7984 0.0062
180. 417, 4.0300 4.0201 0.0084
190. 323. 4.2500 4.2405 0.0111
200. 253. 4.4800 4.4626 0.0146
210. 201. 4.7000 4.6824 0.0188
220. 161. 4.9300 4.9047 0.0240
230. 131. 5.1500 5.1207 0.0301
240. 107. 5.3800 5.3419 0.0376
250. 89. 5.6000 5.5516 0.0460
260 4. 5.8300 5.7699 0.0564
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RIS

prediction of fatigne crack initiation life of offshore tnbular welded joints. On the

average, the results obtained conlirms the trends ubserved in experimental studies.

However lack of adoquate dats corcerning the fatigne sength exponent. b and

ed toan

Fatiwne ductility exponent. o Tor tubular joints laving large SCF or SNC

overly large fatigne crack initiation life during the preliminary computations. using

aliaddy available vales for these exponents. Furthermore. it appears that the use of

these vahues for tubular joints do not compare favourably with experimental results.

[t does not seenn cealistie to assume that these exponents (b and ei, obtained from

F and large strain amplitudes,

vl labotators spreimens having smaller S

could be nsed for tnbular welded joints having very large SCF and SNCF and
~tnaller strain amplivndes. fn addition. the mode of tubular juint response to applied
Toad s quite different from these of the <small laboratory specimens from which the

results and the

vantlicunts wer obtamed, Beeause of the preliminary analyse

vere obtained

forezoing discnssion, the exponents (b and e} utilized in this stud,

ale

wving the experimental data from fatigne crack initiation lives given for larg

tubular welded joints (lida. 1987). Using this empirically computed exponents b
and e the analytically computed crack initiation life scems to give a very close fit
to the experimental erack initiation life, It must be pointed out that this close fit of
analvtical vabues to experimental values is only an arbitrary one since the coefficients
b and ¢ were selected from the obtained range (Figure 6.4) 1o give values close to
the experimental ones. More stndies and experiments need to be carried out to

ental erack initiation lives of tubular joints.

correlte the analytical and experi



Chapter 7

Fatigue Crack Growth Life
Prediction

7.1 General

Fatigue as already emphasized in previous chapters, has been established as a pri-
mary cause of {ailure of offshore jacket structures used for the extraction of oil and
gas in the major seas of the world. Majority of them are fabricated from tubular
welded joints which experience fatigue damage. primarily due to the combination
of high stress concentrations at the welded joint. small defects that result from
welding and the variations in the load caused by sea wave or structural resonance.
Conventionally structures of this type have been designed on the basis of the exper-
imnental stress-life curves (S-N curves). This curve relates the hot-spot stress range
Aoyrs. to the number of cycles that cause failure. In the context of tubular joints.

this is generally taken to be the throngh thickness cracking life. Although the S-N

curve approach could be used to predict the total fatigue life of tubular joints, this
approach ignores the mechanics of fatigue failures in addition, it also requires a

large experimental data base. Morcover, the applicability of the experimental
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results obtained from tests on small or medium scale tubular joints, to larger pro-
totype tubular joints may not be correct or useful. Hence, an analytical procedure
that can estimate the fatigue crack propagation life would be of great advantage.
This could be important for tubular joints where much of the fatigue life may be
taken up by crack growth. Hence an appropriate model that can explicitly take

acconnt of all influencing factors and at the same time separate the effect of each

of these factors is needed. A model based on fracture mechanics would be more

appropriate to meet such need

he advent of Linear Fracture Mechanies (LEFM) has made it possible for all

variables (loading. geometrical properties, ete.) to be scparated out and analyzed
independently to determine their influence on the fatigue process. Thus complex

stress fields such as those present aronnd the intersection of tubular joints could

M.

be eas

v handled by LF

he resistance of the intersection. against fatigue

cracking. i< wubstantially affected by the presence of defects. One obvious and
reasonable way to madel the surface defects. that initiate at the weld toe of tubular
joint intersection area and propagate under the influence of loading through the
thickness and along the surface. is to represent them as cracks. In addition. the
stress intensity factor. AL is introduced. to characterize the stress field in a small
region around the leading edge of these cracks. However. the use of a full fracture
mechanics approach would require the solution to a three dimensional problem
which incorporates all the effects of the complex tubular joint stress distribution

on the local stresses and strains ahead of the crack tip.

This chapter illustrates a numerical procedure to predict the crack growth rates of



tubular joints using fracture mechanics approach. A comprehensive crack anal

is carried out to determine the stress intensity factors along the crack front and
these values are used in a crack growth law to compute the fatigue crack growth

life.

7.1.1 Finite element Model of the Cracked Joint

2) for inclusion of the

The finite clement idealization of the joint (Figures 7.1 and
erack, follows a modification of the previous mesh to accommodate a larger number
of clements at the critical regions where the cracks are expected to initiate and grow.
The mesh for the shell stress analysis given in Chapter 4 was modified. The mesh
consists mainly of isoparametric 8-noded. reduced integration shell clements. The
modification to the mesh in Chapter 4. for use in the crack analysis, was achieved
by using multi-point constraints to refine the elements. The multi-point constraints
represent forced honundary conditions and as such were not used in the regions with
high stress and defo.mation gradients and near positions where local quantities
(stresses and stress intensity factors for example) are of interest. In the generated

mesh. as shown in Figures 7.1 and

the multi-point constraints were not used
nearer than three rows of elements from the intersection in the present study. This
procedure allows a relatively fine mesh with 72 elements around the chord-brace
intersection. to be used in the investigation; for axial and out-of-plane load cases.
the finer mesh was concentrated around the saddle point (Figure 7.1), and for

in-planc bending the finer mesh was used around the crown (Figure 7.2). These

meshes were tested for convergence before the cracks were introduced



Figure 7.1: Typical computer generated mesh for crack growth analysis of the
tubular joint under the action of brace axial and out-of-plane bending loads.



Figure 7.2: Typical computer gererated mesh for crack growth analysis of the
tubular joint under the action of brace in-plane bending load.



7.1.2 Joint Modelling for Crack

Specifically at this stage of the study, more attention was focused on the fatigue
life of tubular joints under axial loading. Nonetheless. the essential results for
other loading conditions, that is in-planc and out-of-plane bending loads. are given
whenever necossary for comparison purposes. From the results presented in Chapter
{ and from related literature reviewed in Chapter 2. it is clear that for axial load
and out-plane bending load cases the critical region (hot spot) for a tubular T-
joint is the saddle point. For in-plane bending load. though most of the literature
reported the eritical region to be at the crown. contrary result was observed from

this study. The eriti

ion was observed to oceur some distance away from the

crown point (37.5°). To make comparisons on a common basis with experimental
observations. the crack is assumed to initiate and grow at the crown position for
in-plane bending load in the present study. Hence. the cracks are modelled at the
saddle point for axial and out-of-plane bending loads and at the crown for m-plane

bending load.

7.1.3 Tubular Joint Crack Shape

Previous studies have shown that fatigue crack growth. in tubular joints. generally
oceurs at the weld toe. For these class of joints. especially when they are employed
in an environment that generates a fluctuating load. the shape of a growing weld toe
surface flaw, under fatigue loading. is governed both by the loading conditions and
by the geometrical configuration of the growing crack. In general. the flaw tends

to grow along the brace-chord intersection along the surface and into the chord
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thickness. Based on field and laboratory results the crack shape. of this type in
tubular joints. has been described as a semi-elliptical one (Figure 7.3). Based on the
above observations. the crack shape was accordingly, modelled as a semi-clliptical

part-through thickness crack. It has also been observed during fatigue testing of

tubular joints | Dover and Holbrook 1979, Dover and Dharmavasan 1988, Gowda

1983. Bhuyan 1936) that the part-through-thickness ~rack growth rate was almost
constant. This observation. had led to the assumption. by some investigators. that
the stress intensity factor for part-through-thickness crack growth rate could be
obtainerd by modelling a 50% deep weld toe crack. This assumption was not made
in this study. Rather. the part-through-thickness weld toe crack was modelled as a
crack having a maximum depth equal to 90% of the chord thickness. Starting from
an initial crack depth of about 0.3 mm to the final crack depth of 17.10 mm. five
crack lengths. (= 2¢). (from 62 to 138 mm) were investigated. For the crack length
(2c) values. one symmetrical half of the crack extends over four, six. eight. ten and

twelve elements. respectively.

7.2 Stress Intensity Factor Evaluation

The fatigue cracks. that develop at the weld toe of tubular joints. usually arc of
a semi-elliptical shape. A detailed fatigue life prediction of these tubular joints.
on the basis of fracture mechanics. require the stress intensity factors for different
crack sizes. crack shapes and crack front positions. The three dimensional stress
state that exists around the crack front dictates that a solid (3-D) finite element
model, which also incorporates the stress singularity at the crack tip. should be

used in tne study. The effective mesh generation for such elements, is laborious
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Figure 7.3: Schematic illustration of a semi-elliptical surface crack. A point P on
the semi-elliptical crack front is located by the angle v on the inscribed circle,
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and cnmbersome: also computationally according to the present state of computer

facilities in the Faculty of Fngineering Memorial University, St. John's. this is

beyond onr capabilities.

Pl ise of line spring elements i Parks, 19310, which can be incorporated i the shell

modols. for the analysis of the surface cracks is less expensive and computation,
feasible from the point of view of input data generation and analysis. In this study,
the stress intensity factor calenlation is based on the line spring model. The stiffness

mulation for this element bas already been given in Chapter 3.

Ihe hine spring elements (see Figare 7.4). representing the surface crack. were ar

ranged at a position representative of the weld toe at the chord-brace intersection.
This was chosen in this study to be one brace wall thickness away from the center-*
line intersection, Calenlations by Huang (1987a). and Huang and Hancock (1987h)
on eracked two-dimensional joints, under plane strain conditions. have shown that
this placement of the line spring elements gives a good agreement between calcu-
lations using plane strain continuum elements and shell analysis with a line spring

d for tubular

representation of the erack. This assumption has also been u
by Du and Handcock (1989). in the finite ele.nent calculations of stress intensity
factors for emi-elliptical cracks in a tubular welded joint using line springs and

three-dimensional elements. In this sindy a Fortran program was written, to de-

<eribe the semielliptical shape of the surface flaw. A mapping technique was used
to ensure that the crack front points, in planar rectangular coordinates of the semi-
ellipse. mateh with those of the curvilinear coordinates of the tubular joint surface

where they will actually be located. The Fortran program uses the coordinates of



Figure 7.4: Location of the line spring elements in the tubular joint



two points at which the crack front meets the tubular surface (A and B. Figure
7.3).and the deepest flaw depth (point (). located at the middle point of the crack

front. These three pomts (1wo surface points and the deepest point. Figure 7.3) are

thers smapped aito the planar semi-ollipse whose major and minor axes are defined

by tiiese theee points, Onee the semi-elliptical law is defined. it is then mapped back

onto the tube surface throueh a coordinate transformation between the rectangular

coordinaies of the semi-ellipse and the curvilinear body coordinates of the tube.

The enrvilinear hody coordinates are defined by the path of the erack tip on the

Vb sueface,  hich i determined by the previously mentioned 1wo surface points.

and a courdinate along the depth ichord thickness) direction

7.3 Fatigue Crack Growth Life Prediction

From the finite clement line spring and shell element analysis results. the stress
intensity factor range. is now available for fracture mechanics fatigue crack growth

valeulations nsing the Paris Law:

CLAR)™ (7.1)

The crack propagation life of the joint is obtained by carrving out an integration

of the above expression as follows:

fw = [ e




where N is the number of cycles to grow the crack from the initial crack

size a,

to final crack size ay. and (' and m are material constants. [u the present study,

a numerical integration technigue based on incremental erack growth was adopted

for the computation of .he joint fatigue crack propagation life.

7.3.1 Fatigue Crack Growth Rate (da/dN) and the SIF
Range (AR)

The derivation of relationship between the rate of propagation (dajdN| and the

corresponding valie of stress intensity factor range (AR in this study was per-

formed in two stages after the stress intensity factors were obtained. The first

stage consists of obtaining the selation between the crack depih and the number of

eycles applicd. The second stage involves calculating the corresponding valies of

dafdN at w0

eral values of the crack depth.

From numerous investigations available to date. it has been shown that. although
a law of the type defined by Eqn.(7.1) is applicable to a wide range of the vaiues
of AR this does not represent the complete relationship. If for example the in-
stantaneous rate of fatigue crack propagation is plotted against the corresponding
value of AR an a log-log scale. the curve of the general form. shown in Figure 1.5

(repeated hete for the sake of clarity

sce Chapter 2). is obtained. The need for
AR to excecd a threshold value AR, before any propagation can occur at all, has
resulted in the presence of the lower point of inflection in this figure. Because of

the presence of this threshold. it is possible. that. given the right combination of

crack size and applied stres

some cracks may not propagate under fatigue loading.

The transition from the threshold to the central region of the curve of log (da/dN)
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Figure 7.6: Typical crack growth rate (da/dN) vs. stress intensity factur range
(AK) for thin specimens, (log-log scale)



against log MK is usually very steep: a very small increase in AN above AR, will
give rise 10 a very large increase in the values of da/dN. At the upper end of a curve
the second point of inflection occurs representing maximum stress intensity reached.
Koz to the critical value (A7) at which fast fracture would occur. The fatigue

crack growth rate (da/dN) and stress intensity factor range (AK) relationship arc in

fact slightly more complicated than the idealized one shown in . in that

igure T
the “linear” region can be composed of inflection points. as shown in Figure 7.6.
The first linear portion (BC) corresponds to crack propagation under plane strain
conditions. while the second linear portion (CD) is that of plane stress fracture. [t
has been reported by Gurney (1979). that this type of relation is obtained only if the
specimen is <ufficiently thin to permit relaxation to plane stress conditions before

final rupture. However, in practical situations. the plane stress region is normally

jgnored. Becanse in welded joints, at least. fatigue cracks are usually cither partly
or fully embedded and grow in a plane strain mode for most of their lives. The
percentage life which occurs under plane stress conditions is extremely limited. In
addition. it can be seen from Figure 7.6. that it is sale. [rom calculation point of
view. to assume that the plane strain relation also applies in the plane stress region,
because extrapolation of the plane strain relation (BC) results in a faster rate of
propagation for a given value of A& than the plane stress relation (CD). Also it will
be safe to extrapolate the plane strain condition back into the threshold region of

the curve. In conclusion

it is therefore apparent, that the Paris crack propagation
law. Eqn. (7.1). can be applied with considerable confidence. However, this implies
that the values of C" and rn must be known in order to use this equation successfully

for fatigue crack growth life prediction. Some of the general trends in the available
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data concerning (" and m are briefly reviewed in the next section.

7.3.2 Material Constants C and m

sen obtained for tests inair

Crack propugation data for wirle range of aterial hav
under pulsating tension loading. Gueney (197901 has shown tht log (s liuarly
related to m (see Figure 7.7) for steels undec plane conditions. The relationship

between €% and me was given as

CLALS < 1074 /im0 400y 173

I this i inserted into Equ. (.07 the following expression is obtained

The above relationship. implies that da/dN versus MK relations for all steels pass

54107 (when AR = 895,100 N/mm*/?) as shown

throngh the point da/d.N = 1.3

in Figure 7.8, It has sinee been the foens of attention of numerous investigators

as to what defines the value of m (and henee of () for any particular material.
Barsom (1971) suggested that m should be taken as 2,25 for martensitic steels,
3.00 for ferrite pearlite steels and 3.23 for anstenitic steels. Oue thing that does

is that there is a tendeney for m to decrease as the yield strength

seem obvious

increases (Gurney. 1979b). Gurnes suggested, a range of 2.40 to 3.60 for structural

steels, with the value of m = 3.0 being frequently assumed for design purposes.
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Based on the foregoing vbservations by the mentioned investigators, the value of 1

and ronsequently (" used in this stue

based on that given by

ey (19790,

A value of i = 3.0 was adopted for this study.
7.3.3 Fatigue Life Prediction

Although theoretical calenlations seegest that Ky Ky, and Ky shonld be ac-

count 4 for in the full fatigne life computations (Rhee, 1986). stress intensity fac-

tors obtained in the present study for all loading cases investigated, show that the

weld toe rrack propagation would be predominantly in the opening mode (mode

[} Henee the o

K prop

gation through the thickness was model ed using only the
opening mode (mode 1) stress intensity factors. The values for the deepest point

alone the erack front of a 94 mum erack half lenath (¢) for all the three loading ¢

<oy
taxial, in-plane and out-of-plane hending loads) are given in the Tables 7.1 and 7.2

for two stress ranges (160 and 2

0 MPa). To illnstrate ihe kind of results obtamed
at the surface of the tubilar juint using line the spring element. stress intensity
factors for the deepest and surface points of a saddle crack (inder axial load) have
heen tabnlated for different crack half lengths (¢} and for different stress ranges:

these tables are given in appendix C. It is worthwhile to point ont at this stage.that

hecanse of the discrepancies obtained (in the SIF caleulations) due to the inability
of the line spring element to give meaningful results at the surface of the tube, the
surface values (SIFY quoted in these tables are those obtained as a result of enrve

fitting. In order to incorporate the effect of load ratio. R. the stress intensity factor

range (AAK') was expressi-. in terms of the values of the stress intensity factors
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Table 7.1: Stress intensity factors for the deepest points of saddle and crown

cracks (160 MPa)

SIF's at the deepest point on crack front
Hot spot stress range = 160 MPa
Crack half length (c) = 94 mm

Crack depth SIF (KI) SIF (KI) SIF (KI)
i N N N
(deepest point) m] m m
a, (mm) Axial load | In-plane bending || Out-of-plane bending

1.00 252.12 311.85 262.40
2.50 377.40 462.98 389.87
3.80 444.69 531.14 472.62
5.70 506.99 597.25 527.03
7.60 545.46 642.62 575.74
9.50 557.79 668.35 573.91
11.40 537.68 667.71 577.52
12.54 508.15 651.33 546.92
14.25 432.83 598.21 464.71
16.00 314.78 501.50 321.59
17.10 206.68 513.54 189.42
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Table 7.2: Stress intensity factors for the deepest points of saddle and crown

cracks (250 MPa)

SIFs at the deepest point on crack front
Hot spot stress range = 250 MPa
Crack half length (¢) = 94 mm

Crack depth SIF (KI) SIF (KI) SIF (KI)
; N N N
(deepest point) | [—] — —
a, (mm) Axial load || In-plane bending || Out-of-plane bending

1.00 393.94 487.27 410.00
2.50 589.69 723.40 609.17
3.80 694.83 829.90 738.47
5.70 792.17 933.20 823.48
7.60 852.28 1004.10 899.59
9.50 871.54 1044.30 896.73
11.40 840.12 1043.30 902.38
12.54 793.98 1017.70 854.56
14.25 676.30 934.70 726.11
16.00 491.85 783.60 502.49
17.10 322.94 802.40 295.97
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obtained from the line spring finite element results of the bular joint as

AN =(1-R) Ay (7.3)

where R is the stress (or load) ratio. which is often introduced to indicate the

relative proportions of the masimum and minimum stress and definid as

T

Tonar

Fqn. (7.3 is valid for positive R only. which implies a tensile to tensile loading.
The value of R negative implies that the loading is tensile to compressive. and this
inevitably causes the crack to close during the compressive part of the loading cycle.
Hence in this case only the tensile to tensile loading. which is resporsible for the

crack growth. is considered.
7.3.4 Propagation Life Calculation

The fatigue crack propagation life has been obtained in this study for the 94 mm
crack half length (c) for all the three load cases. on an incremeutal crack growth
intesration of the Paris Law. The fatigue constants have been determined under
condit.ons where only the applied load ratio. R, is known. The constants ' and m
used in the Paris law, for the present study are those developed by Gurney (1979b)
for a variety of steels and weldment tested in air at R 2 0. For any value of R, the
stress intensity factor range. MK, will automatically correct the crack growth rate

to reflect this R-ratio effect using Eqn. (7.5).



7.3.5 Results and Discussions

The stress intensity factors used in the crack growth rate law. for the calculation of

the fatigue crack growth life of the joint. have been obtained using the combination

of line-spring clements and 3-node reduced integration degenerate shell elements.
One important aspect of the modification to this approach. in the present study.
was the prevention of crack surfaces from penetrating each other. which give rise
to negative stress intensity factors. This modification was accomplished in the
present study by writing a contact program that prevented the crack surfaces from
penetrating each other. The essential aspects of this program consist of the inclusion
of appropriate multi-point. constraints applied in the form of linear equations on
those nodes that lie along the erack fron'. It is worthwhile to mention at this point.
that though this contact program gave promising results for most of the crack

depths (1) and crack lengths considered the present study. it was observed that the

prevention of the crack faces from penetrating each other (negative stress intensity

factor) for the shortest crack length (¢ = 31.30 mm) and deepest crack depth (@
= 17.10 mm. 90% of chord thickness) was somehow not possible. This suggests
the probable dependence of stress intensity factor on the aspect ratio (a/2c) of the

erack {Appendix C).

Figures 7.9 through 7.19 show normalized stress intensity factor (A7) with respect
to the brace nominal stress and crack depth versus the normalized crack front angle
(1)) for relative depths a,/T ranging from 0 03 to 0.9 for a crack half length (c) of
62.71 mm (axially load tubular T-joint). These figures illustrate the validity of the

line spring elements in evaluating the stress intensity factors along the crack
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front of = semi-clliptical surface crack in tubular joints. The results obtained from
the finite element analysis, along with the fitted curves, are shown in these figures.
It is observed that the line spring element results for S1F oscillate as the free surface
is approached, especially for the shallow crack depths. The percentage deviation

of the fitted curve from the individual results are given in Table 7.3, The largest

deviation of the line spring values from the fitted curve is 7.

5% and this happens
to be for the shallowest crack depth. From this table. it is observed that the line
spring element gwves a good result for deeper cracks than shallower cracks, The
fitted curves have been extended to the intersection of the elliptical crack front
with the tubular joint surface. based on the equation of the curve obtained for
individual crack depth profile (from regresssion analysis). But it is important to
state here, that the results obtained from the line spring elements closer to the
surface of the tube, show that there is no physical basis for the line-spring model at
the intersection of the crack front and the free surface. Although the fitted curve

is extended to the surface of the tubular joint, it must be emphasized, that curve

fitting utilizing the resnlts of the line spring elements in this study, were performed
using the values of stress intensity factors for 9/(7/2) equal to 0.3 to the deepest

point (9/(x/2) = 1.0).

Figure 7.20 shows the comparison of the stress intensity factor distribution around
the crack front of the present study with the 3-dimensional FE model and combined
equation due to Burdekin et al. (1992). From this figurc it is evident, that apart
from the near surface SIF values, the results from the line spring clement model
show a good correlation with the SIF's obtained from three dimensional model and

combined equation. The SIFs obtained from the present study seems to be a



Table 7.

Normalized stress intensity factors at the deepest
point of a saddle crack (¢ = 62.71 mm) under brace axial load

Actual
a (mm] | a/T | Normalized | Fitted Deviation
SIF curve
K Ki
il |l %
[am m] ey | I
.69 | 0.05 23.958 22.378 -1.05
2.50 |0.13 21.870 21.121 -3.55
3.80 0.20 20.239 20.151 -0.59
5.70 | 0.30 18.137 18.089 -0.27
T.60 |0.40 16.162 15.967 -1.22
950 |050| 14073 13.941 -0.99
1140 [060| 11730 11.307 0.65
12.54 | 0.66 10.174 10.255 0.79
14.25 | 0.75 7.597 7.663 0.86
16.00 |0.84 4,529 4.569 0.88
17.10 | 0.90 2.201 2.192 -0.41
g

} - Deviation of the fitted curve from the individual results
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little lower than those given by Burdekin et al. (1992): thus the fatigue crack
propagation life obtained from this study should tend to a higher value than those
given by Burdekin et al.. It is important to note that the line spring element does
not reflect both the weld toe effect and undershoot effect phenomena that have
been observed in SIF's determined for both welded T-plates and tubular joints (
Rhee 1938, Huang and Du et al. 1988 and Fu 1990) and also exhibited by Burdekin
etal. in this figure. The probable absence of these phenomena in the present study
may be due to (i) the line spring element being unable to give good results at the
surface of the tube and (ii) the line-spring element is used in this context with a

shell element and as such the weld toe is not modeled.

The results of the mode [ stress intensity factors for the three load cases. viz.,
axial. in-plane and out-of-plane bending loads. normalized by the brace nominal
sLress (qom ). brace nominal stress (onom) and /7@, and hot spot stress. oyys and
/7@, respectively. plotted against the normalized crack depth (a,/T), are shown in

Figures 7.21. 7.22 and 7.23. Figure 7.21 shows that the normalized stress intensity

factor increases as the crack depth increases. up to about 50% of tube wall thickness,
and then decreases. Figures 7.22 and 7.23 show that the normalized SIF decreases
as the crack depth increases. In Figure 7.22. the in-plane load curve gives much
lower values than the out-of- plane or axial load cases since the SCF for in-plane
loads is much lower than the axial or out-of-plane loads. Figure 7.23 gives the
reason for the lower fatigue life of tubular joints subjected to in-plane loads since
the normalized SIF for in-plane load is much higher than the axial or out-of-plane

loads.
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Figures 7.24 through 7.2 show the effect of the crack depth on the stress concen-
Aration around the brace/chord intersection (on the surface, near the erack) wnd
along the crack line (along tne crack front) for axial, in-plane and out-of-plane
bending loads. The presence of the crack changes the SCF distribution around the

intersection and the crack line. From all these figires, for all load cases. the SCF

decreases as the crack depth increases at the location of the hot spot regions. But

the decrease of the stress at these hot spot locations seems to cause a sharp rise in

the SCT at the end of the crack front, near the surface.

The comparison of the fatigue life obtained in this study with the experimental
study of an unstiffened tnbular T-joint, carried out at Memorial University of New-
foundland (/7 vs. N) [Pates et al.. (1989)]. is shown in Figure 7.30. Although
the present study overestimated the fatigue life, the trend of the present study is
consistent with the experimental results. It appears that the crack growth during
the earlier part of its penetration through the tubular wall thickuess has a lower

da/dN value due to its lower SIF value, as stated carlier in the discussions concern-

ing Figure 7.20. Figure 7.31 shows the effect of stress range on the fatigue life of

tubular T-joints nsed in this study.

Figure 7.32 shows the variation of the crack growth rate with crack depth. A
comparison between the present study and MUN (axial loading) and UW (in-plane
bending) experimental results is presented in this figure. There is a good agreement

between the present study and the

but for

perimental values for decper crac
smaller crack depths the agreement s not good. This can again be explained by

the inability of the line spring element to give good results at shallower depths.
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Figure 7.25: SCF variation along the crack line at various crack depth. (axial load)
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Also for in-plane bending at large /T values the experimental da/dN values
of University Waterloo are much higher than the analytical da/d.N values. This

intensity factors at

be due to coutribution from mode [1 and mode T str

may
devper erack depths, @ phenomenon that has been observed in many experimental

tudy indicated that

investigations. However, the resuits of SIFs obtained in thi

che erack growth was governed by mode [ SIF.

Figure 7.3 shows influence of the load type on the fatigue life of the tubular joint

ial load will

nnder consideration. [t iy clear that for the same stress level, the a

have the highest life and rhe in-plane bending load the lowest with the out-of-

plane bending load giving in between values, These rosults are consistent with the
experimental results obtained in the fatigue strength study carried ont under the

Canadian Cooperation Fatigue Study program between Memorial and Waterloo

Universities (Pates et al.. 1939), The results of the fatigue life computation of the

.75 and 7.6 with

tubular T-juints (all three load cases) are shown in Tables 7.

the percentage of erack initiation life for different stress ranges. The percentage

ges seems to

crack initiation life for in-plane bending load case at lower stress rar
be overestimated by the present calculations. but at higher stress ranges the results

For the other two load cases. viz., axial

are consistent with e;

perimental values

and out-of-plane bending loads, the computed crack initiation lives exhibit good

agreement with experimental values of MUN test. At 250 MPa, the axial load gives
a crack initiation life of 14.07. in-plane load gives an initiation life of 36.0% and

an initiation life of 12.6%. From these results it

the out-of-plane bending load gi
appears that the load type is one of the important governing factors for the relative

proportion of the crack initiation life to total life.
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Figure 7.33: Comparison between the fatigue lives for axial, in-plane and out-of-
plane bending loads for the present study (Note: University of Waterloo experi-
mental results for in-plane bending load is also included).



Table 7.4: Fatigue lives at 90% chord thickness cracking (Axial
tension).

Axial Tension (¢ = 94 mm)
Sheess| | N N, Nr [ﬁ]
Nr
range | Kilo cycles | Kilo cycles | Kilo cycles %
MPa
160 87 2254 3041 25.9 | T4.1
170 590 1879 2469 239 | 76.1
180 450 1583 2033 22.1 7.9
190 348 1346 1694 209 | 79.5
200 273 1154 1427 19.1 80.9
210 217 997 1214 17.9 | 82.1
220 174 867 1041 16.7 | 83.3
230 141 759 900 15.7 | 84.3
240 116 668 84 14.8 | 85.2
250 96 591 687 14.0 | 86.0
260 80 525 605 13.2 | 86.8

N = Initiation life
N, = Propagation life
Nr = Total life



Table 7.5: Fatigue lives at 90% chord thickness cracking (IPB)

In-Plae Bending (c = 94 mm)

. Ny N,
Steesst| Ny N, Nr N;] [/V_‘r]
range | Kilo cycles | Kilo cycles | Kilo cycles | % %
MPa

160 859 706 54.9

170 643 589 52.2

180 490 496 49.7

190 379 422 47.3

200 297 362 45.1

210 236 312 43.1

220 189 272 41.0

230 154 238 39.3

240 126 209 37.6

250 104 185 36.0

260 86 165 34.3

Ny = Initiation life
N, = Propagation life
Nr = Total life



Table 7.6: Fatigue lives at 90% chord thickness cracking (OPB).

Out-of-Plane (¢ = 94 mm)

Stress [ N, N, Ny Nr] [NT]

range | Kilo cycles | Kilo cycles | Kilo cycles | % %
MPa
160 730 2362 3092 23.6 | 76.4
170 547 1969 2516 21.7 | 78.3
180 417 1959 2076 20.1 79.9
190 323 1410 1733 18.6 | 81.4
200 253 1209 1462 17.3 | 827
210 201 1049 1254 16.1 | 83.9
220 161 909 1070 15.0 | 85.0
230 131 795 926 14.1 | 859
240 107 700 807 13.3 | 86.7
250 89 619 708 126 | 874
260 T4 550 624 11.9 | 88.1

Ny = Initiation life
N, = Propagation life
Nt = Total life



7.4 Summary

The estimation of the crack propagation and tatal fatigue lives of the unstiffened
tubular joints for axial. in-plane and out-of-plane loads has been presented in this
chapter and compared with the experimental values obtained from the Memorial

University and Waterloo University Cooperative Fatigue Testing programs. The

comparison has been found to be good for the two types of loads considered by the

. axial and in-plane bending loads. In addition to the

respective Universities, vi

fatigne lives the da/dN vs. normalized erack depth (a,/T) curves and the stress

variations along the surface of the intersection and along the crack front have been

The stress (and strain) relief

determined as the erack grows through the thickue
that vcenrs on the surface, 1he stress reduction along the crack depth and the
tress concentration that veeurs around the tip of the crack are clearly portrayed
by these curves, The hegaviour of the erack front is similar to the one expected as
the erack arows throngh the thickness. The integration of the strain life procedure
and the fracture mechanies convepts to arrive at the total crack-through life of an
unstiffened tubular joint and the closeness of the numerically predicted values to
the experimental ones could be claimed as the unique contribution from this study.
It must be mentioned here that the method of using isoparametric shell elements.
in conjuction with the line spring elements. for SIF computations did not consider
the influence of the weld thickness at the toe. From an analysis (not included in
the thesis) carried out earlier to determine the influence of the weld on the SCFs at
the toe (by increasing the thickness of the corresponding two bottom layers of the

ved that the difference was marginal on the chord side where

brace), it was ob
the line spring elements were used in the present study. Hence it was felt that there

was 1o need for modelling the weld.



Chapter 8

Conclusions and
Recommendations

8.1 Conclusions

In search for a possible numerical approach to solve the complex problem of the
fatigue behaviour of offshore tubular welded joints, under the constant action of
the cyelic wave loading, numerical studies were carried out using finite cloment
imethod. The results were to be correlated with experimental results obtained carlier
on unstiffened and stiffened tubular T-joints, fabricated from CSA G 10.2 M 350
WT steel, used in the Canadian Cooperative Offshore tublar joint experimental

program carried out jointly at Memorial University of Newfoundland, St. John's.

and the University of Waterlao, Waterloo, Three loading conditions, viz., axial, in-
planc and out-of-plane bending loads were investigated. The axial load was applicd
as a tensile load on the brace, and the in-plane and out-plane bending loads were

applied as transverse shear bending loads on the brace.

Extensive stress analysis was performed for both stiffened and unstiffened joints

for different geometric parameters, using eight node degenerate isoparametric shell
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elements with reduced Gaussian integration points. The choice of the element and

the type of integration was designed to minimize the shear locking phenomenon

hell thickness became smaller. The

encomntered in the degeneration process as the

compntation of stress and strain distribution around the intersection of chord and

brace, and throngh the thickness of the joints was carried out for estimating their
magnitudes and the locations of hot spot. which in turn gave an indication as to

where the eracks were 1i

The local strain approach was nsed o estimate the fatigne crack initiation life. The

intensity factors

Tine spring element was employed in the calealation of the stres

and the Paris erack growth law for the fatigne crack growth life estimation.

The results obtained from the entive analyses show that:

1. For the three loading cases of nnstitfened tubular T-joints the maximum stres
coneentration factor (SCF) oeenrred at the saddle for the axial and out-of-

plane bending loads, and at an angular distance of about 30 to 10 degrees.

from the erown position. for the in-plane bending loads. There was an ex-
cellent correlation between experimental and analytical stress concentration
factors for axial and vnt-of-plane bending loadss for in-plane bending loads
the difference was significant. The maximum stress concentration location
thot sput location) could oceur either in the brace or in the chord for the

tiree loading cases. depending on the value of the thickness ratio 7. This

ratio was observed (o be smaller than 0.6 (3 = 0.5, a = 7.02 and 7 = 24.0)

ot cracking to ocenr in the brace.
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The differences between the present study and the experimental studies of
Memorial University of Newfoundland (MUN) and the University of Water-
loo (W) could be attributed to the fact that the present study used a de-
generate shell e...1ent and as such the weld was not modelled. Also the weld
configuration at the crown, for the Waterloo University in-plane bending load
tests. seems to exert a significant influence on the crown SCF. In addition the
method of stress concentration computation could also have contributed to
this difference since the experimental results (of MUN and UW) used ra-
dial stresses while the analytical study use” the principal stresses for SCF

computation.

. The effect of chord end support was more obvious for the axial load case at the

saddle point (10% difference between fixed and simply supported end cases).
with very little difference at the crown location. For the in-plane bending
loads a difference of 8% was observed at the crown: very little difference was

observed for the out-of-plane bending loads.

The hot spot SCFs. for the unstiffened and stiffened tubular T-joints. varied
considerably. The ratio of the SCF. for a specific unstiffened and stiffened
tubular joint case study (3 = 0.5, 7 = 1.0, o = 7.02 and 5 = 24.0), was
obtained as 3.40 for axial loads. 4.16 for out-plane bending load and 1.33 for
in-plane bending load. Hence the tubular joint could carry much higher axial

and out-of-plane bending loads in the stiffened mode.

The results of the stress analysis in stiffened tubular joints suggest that the

mechanism of the load transfer from the brace to chord is different when
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compared with unstiffencd joints. The load transmussion from the brace to
chord is better resisted by the greater in-plane stiffness of the ring stiffeners.
Consequently the SCF of ring stiffened tubular joints is reduced considerably
from that of unstiffened ones. In general, the higher the SCF distribution
around the intersection (in unstiffened joints). the larger will be the effect of

the ring stiffeners.

. SCF was effectively reduced in stiffened joints by increasing the moment of

inertia of the cross section of the ring stiffener. However, the hot spot would
change from the chord or brace to the stiffener, if the sectional moment of

inertia of the stiffener is large enough.

Althongh the location of the stiffener for effective reduction of SCF depended

on the loading condition. results from the present study suggest the optimum
locations to be middle half of the plug region for axial and out-plane loads

and the outer quarters of the plug for in-plane bending loads.

['he results presented in the present study show that the local strain approach
can he successfully used to predict the fatigue crack initiation life of tubular

welded joints

. The use of fatigue strength exponent. b, and fatigue ductility exponent. c,

obtained from small laboratory specimens having smaller SCF. SNCF and
larger strain amplitudes. to tubular welded joints having very large SCF.
SNCF and smaller strain amplitudes could lead to inaccurate and misleading

results,
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Empirically computed exponents b and ¢ (from eatlier experimental crack
initiation life results for tubular T-joints) employed in this study. for crack
initiation life computation. gave a very close fit to the experimental crack

initiation life.

. For semi-elliptical cracks at the weld toe of a tubular joint. it is possible

to determine the correct stress intensity factors using full three-dimensional
finite element analysis. This was achieved in this study by combining the line

spring model with shell elements,

. With suitable modifications and the correct contact algorithm, to prevent the

crack surfaces from penetrating each other. the use of line spring elements was
found to be suitable for evaluating the correct stress intensity factors along

the crack front in complex structures like tubular welded joints.

. Glood comparison was obtained between the fatigue crack growth results of

the present study and the experimental fatigue life results of MUN and UW.

. The slight difference observed between the fatigue crack growth Jife estimation

of the present study and that of MUN experimental results, for axial loads

at shallower depths. is attributed to the inability of the line spring element
to give accurate results at the intersection of the crack front and the tube

surface.

. The total life of tubular welded joints can be accurately predicted by combin-

ing the local stress-strain approach (to estimate the initiation life) with the

fracture mechanics approach (to estimate the propagation life).
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16. The assumption made by earlier researchers that the total fatigue life of tubu-
lar welded joints is governed primarily by the crack propagation life, can lead

to inaccurate estimation of the fatigue life of tubular joints as shown in Tables

5 and 7.6, It is observed that the ratios of the crack initiation life to

total life range from 13

26% for axially loaded unstiffened tubnlars. from 34

- 3% for in-plane bending loads and from 12 to 24% for out-of-plane bending

loads.

8.2 Recommendations

As & consequence of the above study, many other areas that could be fruitfuily
explored have been opened up for subsequent researchers in this area, Even though
extensive numerical studies have been reported on tubular joints by earlier re-
searchers. the tying in together of the experiment and analysis starting from crack
initiation to crack break-through has not been reported earlier (to the author's
knowledge). As a result of the effort made in this study. the limitations present

in the various methodologies suggested for this purpose have become evident. If

greater attention is focused in this direction by other researchers, this would almost
climinate the need for expensive experimental testing of complex tubular joints (ex-
cept in the case of a new design). Some studies that could assist in this process

are:

(i) The conflict between the use of principal stress and the radial (to the brace)
stress to compute the stress concentration factor in tubular joints should be re-

solved. Primarily this would be dependent on the question whether the crack



initiation and propagation are dependent on the principal stress or radial (to the

brace) s.ress.

(i) The accuracy of the SCis obtained using 8-node degenerate isoparametric

shell elements and 20-noded isoparametric three-dimensional elements (to raodel

the tubular joint and intersection) should be ined and a j made on

whether extrapolation to the weld toe is essential while using shell elements alone

in the analysis. This becomes essential since the results obtained using the shell ele-
ments seems to lie very close to the experimental ones obtained using extrapolation

to the weld toe.

(i} More studies need to be carried out on the detailed stress analysis of un-

Y. X. K and

stiffened and stiffened tubular joints of other configurations. viz.
three-dimensional joints with a view to determine the hot spots. SCF distributions,
principal plane orientations around the intersection (at the chord and brace - inside

and outside - and in the stiffener) and the membrane and bending stress variations.

(iv) The nonlinear nature of the stress variation around the tubular joint inter-

section and the suitability of linear interpolation of the through-thickness bending

and membrane stresces need be examined.

(v) Parametric equations should be developed for SCF distributions around the
joint intersection taking into consideration the brace. chord and stiffener(s). Also
parametric equations for SCF distribution for combination of various loads, viz.,
axial, in-plane bending and out-of-plane bending loads should be developed. The

reliability of prediction. guidelines for mesh sizing around the intersection and size
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of chord and brace lengths for proper SCF prediction need be examined and stan-

dardized.

(vi)  The development of a suitable small-scale test to determine the straia-life

material constants for high SCF/ F and low strain prototype structures should

be examined.

(vii)  The suitability of extending the line spring model SIF computations for
surface penetration by considering the contiguity effects through small-scale CTS

tests should be explored.

(viii) The suitability and a

of applying the results of the line spring elements

to Ky and Kygq cracking shonld be examined.

(ix) SIF computations, fatigue life ralculations and comparison with experimental

results should be extended to stiffened tubular joints.

(x)  The detailed stress relief (on either side of crack) and stress concentration
(around the tip of surface crack) ohserved in the numerical computations. reported
above, should be suitably verified by experiments o validate the line spring ele-

ments,



293

REFERENCES

Aaghaakouchak.
and .I:j)' ned tubular
B of the Ninth International Conference
- PP

and Dharma
Joints using improv

n
gincering. Vol. 11, Part A. Houston,

5 User’s Manual. 1989, Hibbitt. Karlsson and Sorensen Inc. Providence,

2. 0.C.. 1970, Analysis of thick and thin shell
International Journal for Numerical Methods

Almad. S.. fron. B.M. . and Zicuki
Mtructures by cureed finite el ment
in Engineering. 2: pp. 119151,

acture analysis of
m

Barsonmn. RS 1976, A degenerated solid «liment for liniar
plate bonding and general s International Journal for Numerical Method:
Engincering. Vol. 10, No. 1.

1976 On the use of isoparametyee finite «lements in linear
sational Journal for Numerical Methods in Engincering,

Barsoum. R.S
mechanics, In
No. L. pp. 25

W .md Bouwkwamp. J.G. 1970.. Fatigue fuilure of welded
of Second Offshore I\xlumlnj.,\ Conference, Paper No.
Cpp. 1122 10 1129,

Becker. )
tubular join y
OTC 1925, Dailas,

Burns, D.J and Mohaupt, U.H.. 1987, A fracturc me-
[uuhz'lmn of welded plate joints. Proceedings of the Third
teel in Marine Structures (SIMS). Delft. The
pp. 901 910,

Bell, K. Vosikoy
chanics model for
Tuternational Offshore Conference on
Netherlands, June 13 18, Paper TS

Berge. Effeet of plate thikness in fatigue of eruciform welded joints,
Report MK/R 7. Department of Marine Technology. Norwesian Institute of Tech-
nology. University of Trondheim,

L1986, Fatigue hﬁ [:lulhlmu of offshore tubulur T-joints using frac-
ture mechanies approach, N Ph. D, thesis, Faculty o gineering and Applied
oo Mosmorial nivensts of Newhundlaid, Canada. ppe 182 189,

ikovsky. O.. 1987, Prediction of Fatigue crack indiation lives
lded ,,m, T-joints, buscd on loca struin appronch. Phsal Metallugy
rch Laboratories Report: PARL S7-51 (J). pp. 1-15.




204

Constant amplitude fatigue bests porformed on welded steel joints
rdings of the Enropean Olfshore Steels Rescarch Seminar., Cambridge.
Paper 1. Session 3.

Nauta, Poand Wilte, F.Cude, 1985, DIANA -

tem, Finite Element System Handbook.

Borst. Rude. Kustres, GLA
.uuan/ulwrr bt flesible fimite olement
e AL Brebbia, Springer Verlag, Berlin.

Chan, SR Tuba, LS. and Wilson. W

1970. On the finte :h ment e thod i
lincar fracture mechanies, Enginecring Fra .

tre Mechaies, Vol 2, pp. 1 17.

DL Ene 1980 Offshore nstallations: Guedaver on design and corveeton, Thind
Fdition. UK. Departient of Enerag, Her Majesty Stationars Office, London

Delale, F.and Erdogan, . 1981, Lane-sprang modid for sarface cracks i a Ressnor
1340

plate. Tnternational Jowrnal of Engineerine Seienee, Vol T pp. 311310,

Dharmavasan, S and Naghaakonchak AL\ T9SS. Stress coneentration factors m
Hubalar by stifJoned internal g stffine s, Provodings of e Seventh Inlr'nmr
tional Conference of Offshore Mechanies amd Aretie wering, Vol L Part AL
Homston, Tesas, pp. 111 1,

Dinarvasan, Seoand Dovers WD WSE0 Streas distedbution formulae and compar-
wson of three stress analysis techugues Jor tubular joints. Procecdings of the third
weon Otfshore Mechanies and Arene Bugineering, Louisiana.

Difkstra. O, and Hartog, Jo. 197~ Duteh part of the large ~cale tubular jomt
Satigue test programme. Procecding-. European Offhore steely Rescarch Seminar.
aper 33, Session 10

Cambri

Ditkstia, Q.. Suijder, HLHL Overbeeke, JUL and Wildshehur, B 98T The caleu-
latian of fatique crack growth for welded rulnmu Jounts using ~tress atensity factors
determancd by fimte doment wectiod caleulations, Proceedings of the Conference on
Steel in Marine Stractures. Delft, The Netherlands, pp. 885 Ss0.

Dijkstra. O.D. Snijder. WAL and van Steaalem, LI 1950 Fatigue erack growth
caleulations sy stress ulensity factors for welded doe grometris. Proceedings
of Eighth International Conference on Offshore Mechanies and Aretic Engineering.
The Hagne, The Netherlands, Mareh 19-23, pp. 137 113,

Dover. WD and Holdbrook, SULS. 1979, Fatigue crack growth m tubular wdded
connections, roceediz s of Seeond International Conferenee on the behaviour of
Otfshore Strnetnres, London




L 1982, Fatigue fracture mechanics analysis of
utteenth Offshore Technology Conference. Paper
Mav 3-6. pp. 315-310.

Dover. W.D. and Dharn;
Tand Y jomnta, Procecdin,
No. QT HO4. Houston,

Dover. W.D.. Kare, R and Hall. M 1991, The rcdiability of SCI7 predic-
fons ustng parametric cquations: A statistical analysis, Proceedings of the tenth
International Conference on Offshore Mechanies and Arctic Fugineering. Stavenger.,
Norway, pp. 453154,

Dowling. N.E.. 1979, Futugue at notches and the tocal strain and fracture mechanics
appronchis, NS TMCSTE G77. pp. 217-273.

Notelidd mnby e fligue [

Dowling, N.E.. Brose, W.R. and Wilson. W.K
Vol. 6 (Edited by

prodietions by local stram approach, In Advances
ML Wetzehl, Sucieny of Antomotive Engineer

Aol and Handeack, )WL 1989, Shres antensity factors of semi-elliptical
o tubdar welded joint using line springs and 3D finite elements, Journal
of Pressure Vessel Technology. Vol. T pp. 247 -251

VL I9T6. Strsa af mterscetion of Tubes: eross and T-joints, Stene. Fat.
- Report 55025, University of Texas.

o, Mo and Durkin, Foo 1938 Development of stress concentration fac-
¢ formulac and generalized intluence functions for use fatigne analysis. Offshore
Tubnlar Joint Conference, London.

Num vival analysis of erack
Jousmal of Basic Engineer-

Forman. R Kearney, VUE and
propagateon i eyelie-londsd sbructares,
i Vol N pp. 130161

le. R 196
T

rans. ASME.

Frost, NJE and Dugdale, DS, 1958, The propagation of faligue crach: a sheet
sprenmi . Jonrnat of the Mechanies and Physics of Solids. Vol 6. No. 2. pp.
ol

e Bo, 1990, e dlastie Sinite lement analysis of shallow crack in vLLthI T-butt
plates. British Gas Engineering Research Station Report. ERS R.434

Fuchs, 11.0. and Stephens, R 1980, Metal fatigue in Engineering, John Wi
and Sons. p. 76.




2496

hling. W.. 1!
~ily /m(m al the deepest
Jonts, Procecdings of the
and Aretie ,uglnl-l-lilu.’,. Vol

\ weight function procedun for the caleulation of stress inten-
poinl of semi- m.,,nml surface n welded tubular

venth International ¢ un[«-nnu on Offshore Mechanics
NI Part B. pp.

Gibstein, M.B.. 1978, Parametr
Steels Researelt Seminar, Paper &

is of T-joints. Enropean Offshore
ambridge. UK.

Gibstein, MB.. 1951, Fatigue strongth of welded tubular joints tested at Del Norske
Virtas Laboralaric . international Conference on Steelin Marine Structures, Paper
No. L3, Paris.

Gibstein, M8 and Moe, ETL 1981 Numerical nml:z[mirmnln[ stress analysis
of tubular jounts with wmelined hruces, Tnternational Conference on Steel in Marine
Stenetnres, paper No, 6.3, Paris.

sibstein, MU,
cqual to ont, Ine
15 10, Delft, The Netherlands, pp

1957, Stress coneentration in tubular K-joints with diamneter ratio
ational Offshore Conferencean Steelin Marine Structures. Paper
3TT-393

Glinka, G, 19
mear notehes and cracks,
185 508,

Snergy density approach to caleulation of inclastic strai)
Engincering Fracture Mechanies. Vol.

b the weld trans
6. NO. 4. pp. 40

Gurey, TR Fode eloment analyses of some jomis
tothe derection of siress, Welding Rescarel International. Vol,

Gurney. T Theore teeal analysis of the influcnec of tor defict on 1t ftigue
strongilh w/ﬂ//'/ welded jormts, Welding Institute Rescareh Report

Gurnev. TR 1975, Influcnce of thickness on the fatigue strength of welded
fomis. The Second Taternational Conference on behaviour of Offshore Structures.
BOSS 7. Landon.

Gurnev, T.R..
Lodon

Gurney.

ore Slruclures.

S inpossuion Tiaer1yor0
rce Publishers.

ng and P.A. Frieze. Applied Sc
1.




207

Gurney. T.R.. 1989, The influcnec of thickness on fatigue of welded joints—- 10 years
on (A Review of British Work), Proceedings of the Eighth International Confer-
ence on Offshore \hrlmn and Arct neering, The Hague. The Netherlands.
March 19-23, pp. 1-8

Greste, Q.. 1970, Findde cloment analysi
PBILY3-560. University of California No. ¢

of tubular K-joints, Clearing Iouse No.
SM 7011

1920, The phenomena nf!upl:u( and flaw in solids. Transactions.
Roval Society of London, Ser. A. Vol. 221. p. 16

Gulati. K C.. Wang. W.J. and Kan. D.K.Y".. 1982, An analytical study of stress con-
centrativ effecls race joints under combined loading. Proceedings of Fou
teenth \umml Offshore Technology Conference. Paper No. 1107, Houston. Tex

pp-

Haibach, E.. Oliver. . and Ritter, W.. 1978, Fatiguc strength of angled specimens
with fillet weld produccl Jrom 30 mon pl.m Proceedings. Faropean Offshore Steels
Rescarch Bulletin. Vol. [3. No. 1. pp. 15-17

1 R o |

red fmm the results of a finite clement paramelri
Eleventh International Conference on Offshore Mechanics an

\ol 111, Part B, Calgary, Canada, pp. 267-271

A gencral fracture mechanics model for a cracked tubular joint
tudy, Proceedings of the
Arctic Engineering.

Hellier ALK.. Connolly. M.P.. and Dover, W.D.. 1990. Stress (unr('nll ation factors
for tubular Y and T joints. International Journal of Fatigue. Vol. 13-23.

K.G.. 1975, C

“ack tip clements are unnceessary, Inter-
Methods in

gincering, Vol. Y. 1975, pp. 195-509.

Henshell. R.D.. and Shaw
national Jonrnal for Numeri

Hibbitt. Karlson and Sorensen Ine, 1989, ABAQUS User Manual

Holfman. R.E.. and Sharifi. P. 1930. On the accuracy of differcnt finite clement
Lypes for the analysis of compler, welded tubular joints, Proceedings, Offshore Tech-
wology Conference. Paper 2353, Houston. Texas. pp. 127-140

and Du. Z-Z. and Hancock. J.W.. 1988, A finite element cvaluation
intensity factors of the surfuce cracks in a fubular joint, OTC Paper

Huang.
of the stre
5665. pp.

. and Hancock. J.W.. 1987, The stress intensity factors of semi-elliptical
moa tubular “joint under azial loading, Fngincering Fracture Me-
chanies. Vol. 30. pp.

Huang




298

Hunter. LS. and Fic

P, \\' G..

Cracking of notched utigus qm‘m\rm Pro-
ot Testing and Materials. Vol. 57, pp. 6

. " Siiigains belinoious af the sni af o (e emck e
lardning maleril, Jonrnal of Applied Mechanics and Physics of Solids. Vol 16.
PP

Tnglis. (... 1913, Str
cornars, Prococdings. |

ses i a plate due to the presence of cracks and shurp
litte of Naval Architects. Vol, 60.

Tewin, CLR.. 1998 Fracture dynamies, in Fracturing of Metals. American Society
of Metals. Cleveland.

L1957, Anal)
nsactions.

Irwin. G
o plate.

stiesses and strains near the end of a crack traversing
. Journal of Applicd Mechanics. Vol.

M

e N 1OSL. Comparison of tubular joint stress analysis methods in the near
egion. Proceedings of International Conference on Steel in Marine Structures,
Paper 1.2, Paris.

Johnson
Report 3
aratory..,

C.P. 1967, The analysis of thin shells by a finite clement procedure.
iT University of California. Structures and Material Research Lab-

Johnston, G.O.. 1975 The influcnee of plate thickness on the fatigue strength of
welded jonts. Welding Institute Report’ 3349/3,78 (unpublished).

Kathiresan, K., 1976, Threo-dimensional linear astic fracture mechanics analysis
by a displacms ut hybrd finite clement model. PiD. Thesis, Georgia Institute of
Technology.

Kellog. MWL 1956, Disign of piping systoms.. Second Edition. Wile

Kobayashi. A.S.. Polvanicl, N.. Emery, A.F.. and Love. W.. 1975, Surface flaus in
- pitalecincbedbag Viodod St Aital Mot Soc; Egng, Seec AuelirtToxss,

Kobayashi. A.. Maide
of fimile el muu analy
69 WA-PVP-12, AS

12.. Simon, B. and Tida. S.. 1969, Application of the method
i~ 10 Lwo-dimensional problems in fracturc mechanics. Paper
Vinter Anmial Meeting.

R.D... and Kahlich. J.
gincering Journal. pp.

Kuang, J.G., Potvin, A.B.. Lei

Stress concenlra-
tion tn tubular joints, Petroleum 99.




299

B. and Leick. R.D.. 1975. Stress concentration in tubular
ulh \unlml ()!Nmrv T('rhvml()g\ Conference. Paper No.

b futigue cquck iniiaion U of welds
STP . Hocppner. Ed., pp. 131

Fracture
of llinois

tance of weld
g, University

Lawrence, F\'.. Jr.. 1980, Predicting the fatigue r
Control Program Report No. 36. College of Engince
at Urbana-Champaign.

G.. 1963, The theory of clusticity of an anisotropic body, Holder-Day.
sco.

Litton, R, and Reimer, RB.. 1976, fmproved finile elements for
of wilded tubular Proceedings of Eighth Offshore Technology Con-
Paper No. OTC 2 uston, Texas, pp. 267274

ferenc

lin. C.. 1982, Low-cyclc fatique behaviour of welded
ASTM STP 770, pp. 311-336.

Licurade. I.. and Maillard-
Joints in high-strength st

Lin, BV 1961, Fatigne ek propagation and stresses und stains in the vicinity
of crack. Applicd Material Rescarch, October, pp. 2

Miller, M.S. and Callagher An analysis of several faliguc crack growth

rate (FCGR) deseriptions,

.. 1981,
"M 738,

gz

Mohaupt. U.IL. Buras. D.J.. Kalbfleisch. J.G. and Bell, R.. 1987. Fatigue erack
tl(leawuznl lickncss and corrosion cffects in welded platc to plate joints, Inter-
national Conference on Steel in Marine Structures. Paper TS 3. The Netherlands,
pp. 269-230.

Munaswamy. K.. Bhuyan, G.S.. and Swamidas. A.S.J.. 1986, Experimental and an-
alytical studics on the fatigur of stiffened and unstiffencd tubular t-joints, Procced-
ings Offshore Technology Conference. Paper 5303, Houston, Texas. pp. 153-161.

Munaswamy. K.. Williams, P.. and Swamidas, A.S.J.. 1987, Fatigue tests of unstifJ-
ed tublus. T-joints. Progress Report AMCA-DSS Project DS6 File No. 233Q.23440-
6 Serial No. 05Q34-00431, Submitted to Material Technology Centre, AMCA,

Ottawa, 122 p.

Neuber, H.. 1969. Theory of stress concentration for shear-strained prismatic bodies
with arbitrary nonlinear stress-strain law, Journal of Applied Mechanics, Vol. 28,
1

pp- 3M-551.




300

Niu, Xo and Glinka, G., 1937, The weld profile effcet on aera intensity factors
weldments, International Journal of Fracture, Vol. 35, pp. 3~2

Panagiotoponlos. (... 1986, A finilc element procedure for the stress analysis of
tubular joint connection. Tnternational Journal for Numerical Methods in Engincer-
pp. 318320,

P.C. and Erdogan.

1963 4 ritical aalysis of crack grouth las, Trans.
Fi. Jowrnal of Bisic

igneering. Vol 85. Docember, pp.

Parks, DAL, Lockett, R.R.. and Brockenbrough J.R.. 1981a. Stress-intensity fac-
tors for surfuci-cracked plates and cylindrical shells using linc-spring finite “ele-
menfs., Advances in Aerospace Strnctures and Materials. pp. 279-285.

aticois, Vol 5 Peygatfan.

s, DML and White, O, 1982, El
racked plates and shells., Tr
wgineering, Jonrnal of Pressure \

stic plastic linc-spring finite elements for sur-
tions of the American SHCIU.V of \Icchamcal
el Technology. Vol. 104, pp. 2

Pates, M., Burns, D)L, Mohaupt, UL, Swamidas. . and Munaswamy K.,
1989, Fubricateon and jatigus Hn[(mlmu of welded t-joints /m tructures in marine
cnvironment, Project Report DSS Contract No. 5Q.23440-4-9276. Contract
al No. 05Q84 00431, Fabrication and Fleet Tech. (Kanata) - MTL (CANMET.
IR Ottawa) Project: 166 p

PDA Engineering. 1989, PATRAN Plus User Manual, Vols. [ and 11,

Peter:

York.

son. R 1974 Stress coneentration factors, John Wiley and Sons. New

Petroski, 1L, and Achenbach, 1LO.. 1978, Computation of the lmymju
stress intensity factor, Engineering Fracture Mechanics, Vol. 10.. pp. 2

3G 9T Improved method of o
wrteked plates with varions haped boundumes,

Raju. LS.. and Newman, Je 1977 Improved s
scnmi-clliptical surface el /...m thickness plates.




301

. Jr.. 1979, Stress intensily Juctors for a wide range
 in finite thickness plates. Engineering Fracture Me-
1. pp. S17-829.

chanies, Vol. 11.

and Newman, J.C.. Jr.. 1981 An empirical

y intensity factors
Jor surfuce erack. Engineering Fracture Mechan y

Vol. 1 2. pp.

185192,

lement_alternating method for two

Raju. LS. and Feichter, W.B.. 1989,
ering Fracture Mechanics, Vol. 33,

/lunrn»mrm/ mm[{ ItHnA configurations.
No. L pp.

Ramachandra. Madhava, R.A.G.. Gandhi, P., Thandavamoorthy. T.5.,

Pant. P.K. and Murt .R.. 1991. Analytical and crperimental investigaiions on

internally ving stiffened steel tubular joinls, International Symposium on Fatigue
5.

and Fracture in Steel and Conerete Structures. Vol. 2. Mandras. India, pp. 7
713

Rhee, H.C.. 1986, The behaviour of stress intensity Juctors of welded toe surface
Jlaw of tubular X-jount. Proceedings of Eighteenth Offshore Technology Conference,
Paper No. OTC 3136, Houston, Texas, pp. 161-164.

Rhee. 11.C. and Tyson, J.A
wsing fracturc mechanics crack growth ana
Technology Conference. Paper No, OTC

1987, Fatiguc life caleulation for offshore tubular joint
s Proceedings of Nincicenth Ofhore
Houston. Texas. pp. 1-7.

37,

Rhee, H.C.. 1939, Fra e nm/mnm investigation of thickness cffect on fatigue
life. Proceedings of the ational Conference on ()lMlorv Mechanics and

igh y
Arctic Engineering. The ”ngm' Hu Netherlands. March 19-23, pp. 127-131.

Rhiee, 1O 1989, Stress mtensity factor evaluation from displacement along arbi-
trary f.m tip radal lines for warped surface flaws, Engincering Fracture mechan-
ies, Vol.

Rhee. H.C.. 1991, Reliability of solution mcthod and empirical formulas of stress
wnlensity factors for weld toc cracks of tubular joints. Proceedings of the Tenth
!nlcnmlxoual Conlerence on Offshore Mechanies and Arctic Engincering, Vol. 111,
Part B. pp. 441

on elastic_crac
L Vol 8, pp.

Rice. J.R.. 1972a. Some remard
Jonrnal of Solids and Structur

tip stress fields, International
3.

. Jhe partthrough susjace erack in a elastic plate,
. pp-

R.. and Loy
of Applied

°_

Vechian




302

A

{ fraclure [ and

Rice. J. and Tracey, D.. 19 2
enves et al., Eds.. \c:\dcmlc Press.

¢ "
u;ml/ulu methods i structural ml(lunuu S
New York. pp. 5

Saxena, A Hudal, S.J
representing widc-range fatigue
Meehanies. Vol 12, pp. 1037115,

G 1979, A three component model for
rowth rate behaviour. Engineering Fracture

Analytical study of tubular T-joints.
). No. 1070, pp. 65-5T

Scordelis.
Proe. ASC

Smith, F.AV A
cracked o a hq[j space.,
251

1971,

Stress intensity faclo
cture Mechanics, Vol.

R shaped
3.

3. No.

Socie. D.F.. Morrow. J. and Chen. W.CL. 1979, A procedure fur estimating the
total Jutigue np u/ uulrlnll and eracked mimbers, Journal of Engincering Fracture
Meehanics, Vol 11, N0, 1 pp. 831-360

Tada. 1. P

aris. PO and Irwing. G.R. The stress analuysis of cracks hand-
ook, Del Re:

1
eli Corporation, Hellertown. Pennsylvania.

Wirded tubular connections: an

Foprac. . A.. Johnston. L2 and Nocl.
Suppl.. Vol. 31, No. L. pp. 1-12s.

wmrcstigution of stresses e T-joints, Weld.

Toprac. A\ and Lonis. B,
SR echical Report.

1970, The fatigue behaviour of tubular conncetions.
13,

Tracey. D.M.

intensity facto

971 Finde dements for delcrmmation of
gineering Fracture Mechanics, Vol. 3. pp.

ack tip elastic stress
66.

Tt

N6

R Tubular joint structural analysis module A. User’s Manual. RN
0. Veritee, Osl Norway,

Underwater Fuginee

fures, UEG Publication VR

Deswyn of tubular jowts for offshore struc-
3. 1 pp. A9

Visser, W.. 1971 On the structural design of tubular joints. Proceedings. Offshore

Technology Conference, OTC Paper 2117, pp. 831 - 504

- Bell, R.. Burus. D.J. and Mohaupt. U.1L. 1985. Fracture mechan-
Joints. including thickncss effect..
164,

Behaviour of Ollshore Structural Steels, pp. |




303

Vosikovsky. O.. Bell, R.. Burns. D.J. and Mohaupt, UH.. 1987, Effects of cathodic
protection” and thickness on corrosion of fatiguc life of welded plate T-joints, In-
ternational Offshore Conferonce on Steel in Marine Structures. Paper TS 44, The
Netherlands. pp. 787- 795,

Walker, Tl T4 A quanitufee strain-undstyss stute criferion for filurc in
the vicinity of sharp cracks. Nuclear Technology, Vol. 23, pp. 189-2

Westergaard. HAL, 1939, Braring pressures and cracks. Transactions. ASME,
Journal of Applicd Mechanics.

ischut. .. 1978, Futigue behaviour of welded joints in air und sea water, Pro-
. European Offshore Stecls Research Seminar, Cambridge. Paper 3. Session

and Smedley. G.P.. 1978 s concentration at unstiffened

Wordsworth. A.C Stre
ropean Offshore Steels Research Seminar. Paper 31, Cambridge.

tubular joints.
UK.

i.and McDonald. A.. 1981, Modes of fatiguc crack development and stiff-

Wlde,
Structural Stecl,

ness measoecments in welded tubular joints, Fatigue in Offshor
Institution of Civil Engineers, Westminster, London. pp. 65-T.

Vamamoto, Y. and Tokuda. N.. 1973, Delermination of sivess infensity factor
ot eracked plates by finite climent method. International Journal for Nunierical
Methods in Engineering, Vol. 6. No, 3. pp. (27 130,

Yamamoto. Y.. Tokuda, N. and Sumi. Y.. 1983, curacy considerations for finile
dement caleulations of the stress intensity Jactor by the method of superposition.
in Hybrid and Mixed Finite nent Methods. Ex 3.\ \llun R.IL Gallagher,
and 0.C. Zienki CFRS. \\\lu New York, pp.

G1-379.

Yoshida. K. lnui. T.. and lida, K.. 1977, behaviour analysis and crack initia-
tion prediction of tubular T-connections, Proccedings Offshore Technology Confer-
ence.Paper No. 2854, Houston. Texas.

0.0 1977, The Finite Element Method., Third ed. McGraw-Hill,

aylor. RuL. and Too. J.M.. 1971 Reduced integration technique
and shells. International Journal for Numerical Methods
pp 275-290.

Zienkiewic
in general anal
in Engincering.




Appendix A

Shape Function Generation

b aN, an,

i N; - %

T[40 =80 = n)(=€-n—1) [ 1/4Q2€ +n)(1 —n) [ 1/4(1 - £)(2n + &)
2] 140 +0 —n)(E-n—1) [1/42¢ —n)(1—n) | 1/4(1+&(2n—¢)
3 140+ +n)(E+n—1) [1/42E+n)(1+n) | 1/4(1 +£)(2n +¢)
4140 -0 +n)(=E+n—1) [1/426 —n)(1 + 1) | 1/4(1 —£)(2n — &)
5 17201 = &)(1 —n) -1 —-n) =1/31 =%

[ 1/2(1+ 861 —n) 172(1 — %) —(1+&n

1 1/2(0 — €)(1 +1n) —¢&(1+1n) 1/2(1-¢€%)

8 1 =a—g —1/2(1 —7°) —(1=8&n

9 1=-&)1=n7) 21 -7 —2(1 - ¢)

Introducing new variables

the form

bo=&  mo=1mi

No= 10+ &)1+ )
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allows all shape functions to be written down in one expression as follows:

1. Corner nodes with & = =1 and 5, = %1

L
= I1l+\‘u)(1+ﬂu)1&+no—l} (A3)

Mid-side nodes with (&, 1,) equate to (0.1) and (£1.0)

1
S+ &)= (A)

and the shape function for the central ninth node is the bubble function.

=)= (A3)

The systematic generation of these shape functions is illustrated in Figur» A.1 for
the serendipity family. As a starting point it is observed that for the mid-side nodes
a Lagrange interpolation of a quadratic by linear type suffices to determine .V, at
nodes 5 and 8. 5 and Ny are shown at Figures A.l (a) and (b). For a corner
node. such as Figure A.1 (c). a bilincar .V; is employed as a staring point. and it
is immediately noted that while .V} = 1 at node 1. it is not zero at nodes 5 or 8.
violating the finite element rule for shape function (Step 1). Successive subtraction
of %Ns (Step 2) and é-.\'g (Step 3) ensures that a zero value is obtained at this
node. By using an identical process the shape functions for other corner nodes are

generated.



Ne= 1201 - €)1 —n%)

, o L.
e A

Figure A.l: Systematic generation of ‘serendipity’ shape functions
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Appendix B

Elastic Constitutive
Relationships

B.1 The Generalized Hooke’s law

For the general cases of anisotropy the number of independent elastic constants in
the [D] matrix is 21: this number is reduced considerably if the internal composition
of the material possesses symmetry of any kind (Lekhnitskii. 1963) . If a state of
anisotropy possessing three mutually orthogonal planes of symmetry is assumed.
with the mid-surface being a symmetric plane at each point and i the reference
system of orthogonal axes (x). y. =!) being parallel to the principal material axes

(" 2.4). one obtains the following strain-stess relationships:
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& = Cnoi + Cnoz + Cuos
&2 = Cuoy + Cnoy + Cnos
e3 = Cuon + Cnoy + Caxos
(B.1)
2 = Cumna
s = Cssmia
Y23 = CesTzs

where the nine components of C;; can be expressed as functions of Young’s moduli,
Poisson’s ratios and the shear moduli. Noting the zero normal stress assumption

o, = o3 = 0, we obtain the elasticity matrix relating stresses and strains for

a plate/shell element to be

{s} = [D){e} (B2)

where
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{7} = {on.onmans )’

g} = {evezmne )’

Dy Dy 0 0 0

D2 D, 0 0 0 (B3
B] = |0 0o Dyo o

and

F1 = viaray) Dy = Gu

D: = E/(1 = viaum) Dy = Ki+Gy (B.1)

Dy = Ewnfll=vpun)  Ds = hyeGy
The terms Ay and K, are the shear correction factors in the T3 and 23 planes.

In the case where the principal axes of anisotropy 1.2 do not coincide with the
reference axes z', y'. but are rotated by a certain angle, say 0. the new elasticity

matrix (D] is determined by using the transformation as follows:

{7} = [T}{o}
(s} = [T}

where



in which

and

in which

[Ti]

T o0
[T)=
0 [T
costl sin?0
sinl) cos*0

~sinfrost  cosbsind (cosf

cos0  sinf) }

—sinfl cosd

[T}
(T)=
0
cos*
sin0 cos*0

~2sinlcosd 2sinfcosd (cos*d — sin*0)

[T,]

sin

2sinfcosl)

=2sinfcost

in*0)

sinfcosf

—sinf os0

From Eqns. (B.2) and (B.5 ) it is possible to write

310

(B.6)

(B.8)

(B.9)



{a}
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where [D] is the general elasticity matrix and [T]™ = [T, hence

(D)= [T]" [B] (1] =

= [Dl{e} (B.10)
Dy Dz Dy 0 0

Dy Dy Dy O 0

Dy Du Dy 0 0 (B.11)
0 0 0 Dy Dy

a0 0 0 Dys Dss



Appendix C

Stress Intensity Factors

[n order to show the values of the stress ‘ntensity factor obtained using the line
spring element. the complete values of mode I behaviour are given in the following
tables for axial tension load. SIF values for five crack lengths. considered in the
present study. are given. The values are tabulated for the deepest and the surface

points on the crack line. Note that these surface values were obtained by fitting a

curve to the rest of values at points located below the surface of the tute. The unit

. . N
of stress intensity factor is —
mm”



Table C.1: Stress Intesity Factors at Deepest and Surface points (Axial Load)

SIFs at Deepest and Surface Points

Stress Level = 160 MPa

(N/mm??)

¢ = 31.30mm ¢ = 47.06mm ¢ = 62.7lmm ¢ = 78.57Tmm ¢ = 94.42mm

o | Kiler. | B T | K | K hae | St | B | B | e | ¥
1.00 |f 271.49 | 196.28 || 275.14 8.50 268.62 | 311.04 || 264.56 | 190.72 || 252.12 | 142.08
2.50 | 388.89 | 238.78 || 378.21 | 31.36 || 394.47 | 190.72 || 381.61 | 98.56 | 377.40 | 123.52
3.80 |f 434.32 | 290.50 || 441.20 | 90.69 |l 445.59 | 121.60 || 445.04 | 163.84 || 444.69 | 166.40
5.70 |l 449.56 | 368.00 || 472.22 | 197.12 || 489.89 | 214.40 || 493.14 | 236.80 || 506.99 | 233.60
7.60 | 422.37 | 425.60 || 466.47 | 374.40 | 499.32 | 316.64 || 524.63 | 314.24 || 545.46 | 302.72
9.50 |l 371.17 | 425.60 | 442.17 | 443.52 || 487.44 | 437.83 || 531.03 | 391.04 || 557.79 | 370.56
11.40 (| 353.84 | 478.08 || 420.25 | 506.56 || 452.22 | 513.05 || 497.36 | 463.36 || 537.68 | 435.84
12.54 || 267.25 | 559.28 || 342.06 | 548.79 || 411.94 | 427.58 || 465.41 | 503.68 || 508.15 | 472.96
14.25 (| 178.09 | 646.40 || 257.31 | 591.36 || 328.16 | 606.49 || 382.36 | 553.60 || 432.83 | 520.96
16.00 || 121.87 | 696.96 || 137.69 | 607.36 || 207.32 | 637.31 || 263.83 | 589.44 || 314.78 | 558.72
17.10 || -39.20 | 705.28 || 39.31 | 595.84 || 102.82 | 638.56 || 154.87 | 597.76 || 206.68 | 571.52

414



Table C.2: Stress Intesity Factors at Deepest and Surface Points (Axial Load)

ao

SIFs at deepest and surface points
Stress Level = 170 MPa
(N/mm®'2)

¢ = 31.30mm ¢=47.06mm [ c=627lmm | c=78.57mm

¢ = 94.42mm

Ko | Bl | Blges [ e | Bl | K, | Kl

L.

K e

Ky,

spt.

1.00
2.50
3.80
5.70
7.60
9.50
11.40
12.54
14.25
16.00
17.10

288.46 | 208.54 | 292.33 | 9.03 | 285.41 | 330.48 || 281.10
413.20 | 253.71 | 401.85 | 33.32 | 419.12 | 202.64 | 405.46
461.47 | 308.65 || 468.78 | 96.36 | 473.44 | 129.20 | 472.86
477.66 | 391.00 |{ 501.73 | 209.44 (| 520.51 | 227.80 | 523.96
448.77 | 452.20 || 495.62 | 397.80 || 530.53 | 336.43 || 557.42
394.37 | 452.20 || 469.81 | 471.24 || 517.90 | 465.19 | 564.22
375.95 | 507.96 || 446.52 | 538.22 || 480.48 | 545.12 || 528.45
283.95 | 594.23 (| 363.44 | 583.09 || 437.69 | 454.30 | 494.50
189.22 | 686.80 || 273.39 | 628.32 | 348.67 | 644.40 [ 406.25
129.49 | 740.52 || 146.30 | 645.32 | 220.28 | 677.14 | 280.32
-41.65 | 749.36 || 41.77 | 633.08 || 109.24 | 678.47 [ 164.55

202.64
104.72
174.08
251.60
333.88
415.48
492.32
535.16
588.20
626.28
635.12

267.88
400.99
472.48
538.68
579.55
592.65
571.28
539.91
459.88
334.46
219.60

150.96
131.24
176.80
248.20
321.64
393.72
463.08
502.52
553.52
593.64
607.24

—

jats
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Table C.4: Stress Intesity Factors at Deepest and Surface Points (Axial Load)

SIFs at Deepest and Surface Points

Stress Level = 190 MPa
(N/mm®'?)

¢ = 31.30mm

¢ = 47.06mm

¢ = 62.7lmm

¢ = 78.57Tmm

¢ = 94.42mm

KIJ’:L

K

spt.

K Lape.

ki

L

K,

apt.

K.

K

pt.

5199

ki

pt.

1.00
2.50
3.80
5.70
7.60
9.50
11.40
12.54
14.25
16.00
17.10

322.39
461.81
515.76
533.85
501.57
440.77
420.18
317.36
211.48
144.72
-46.55

233.08
283.56
344.96
4317.00
505.40
505.40
567.72
664.14
767.60
8217.64
837.52

326.72
449.12
523.93
560.76
553.93
525.08
499.05
406.20
305.56
163.51
46.68

10.09
31.24
107.69
234.08
444.60
526.68
601.54
651.68
702.24
721.24
707.56

318.99
468.43
529.13
581.75
592.94
578.83
537.01
489.18
389.69
246.19
122.09

369.36
226.48
144.40
254.60
376.01
519.92
609.25
507.75
720.21
756.80
758.29

31417
453.16
528.49
585.60
622.99
630.59
590.62
552.68
454.05
313.29
183.91

226.48
117.04
194.56
281.20
373.16
464.36
550.24
598.12
657.40
699.96
709.84

299.39
448.16
528.07
602.05
647.73
662.37
638.49
603.42
513.99
373.81
245.43

168.72
146.68
197.60
277.40
359.48
440.04
517.56
561.64
618.64
663.48
678.68

91¢



lable C.5: Stress Intesity Factors at Deepest and Surface Points (Axial Load)

SIFs at Deepest and Purface Points

Stress Level = 200 MPa
(N/mm**)

¢ = 31.30mm

¢ = 47.06mm

¢ = 62.7lmm

¢ = 78.5Tmm

¢ = 94.42mm

L3

Ky

pt.

K e,

Kp,

apt

L

Kp,

pt.

Kla,u.

K,

spt.

B

Ky

apt.

1.00
2.50
3.80
5.70
7.60
9.50
11.40
12.54
14.25
16.00
17.10

339.36
486.11
542.90
561.95
527.97
463.97
442.30
334.06
222.61
152.34
-49.00

245.34
298.48
363.12
460.00
532.00
532.00
597.60
699.10
808.00
871.20
881.60

343.92
472.76
551.50
590.27
583.09
552.71
525.31
427.58
321.64
172.11
49.14

10.62
39.20
113.36
246.40
468.00
554.40
633.20
685.98
739.20
759.20
744.80

335.78
493.09
556.98
612.37
624.15
609.30
565.27
514.93
410.20
259.15
120.02

388.80
238.40
152.00
268.00
395.80
547.29
641.31
534.47
758.11
796.63
798.20

330.70
477.01
556.30
616.42
655.78
663.78
621.70
581.77
477.94
329.78
193.59

238.40
123.20
204.80
296.00
392.80
488.80
579.20
629.60
692.00
736.80
747.20

315.15
471.75
555.86
633.74
681.82
697.23
672.10
635.18
541.04
393.48
258.35

177.60
154.40
208.00
292.00
378.40
463.20
544.80
591.20
651.20
698.40
714.40

L1g



Table C.6: Stress Intesity Factors at Deepest and Surface Points (Axial Load)

SIFs at deepest and surface points

Stress Level = 210 MPa
(N/mm®/?)

¢ = 31.30mm

¢ = 47.06mm

¢ = 62.7lmm

¢ = 78.57Tmm

¢ = 94.42mm

K

Ky

apt.

KL,

K]

spt.

K i

K

apt.

Ky,

K,

spt.

Kla,u.

K

spt.

1.00
2.50
3.80
5.70
7.60
9.50
11.40
12.54
14.25
16.00
17.10

356.33
510.42
570.05
590.05
554.37
487.17
464.41
350.77
233.74
159.95
-51.45

257.61
313.40
381.28
483.00
558.60
558.60
627.48
734.05
848.40
914.76
925.68

361.12
496.40
579.08
619.79
612.24
580.35
551.58
448.95
337.72
180.72
51.59

11.16
41.16
119.03
258.72
491.40
582.12
664.86
720.28
776.16
797.16
782.04

352.56
517.74
584.83
642.99
655.36
639.76
593.54
540.67
430.71
272.11
134.95

408.24
250.32
159.60
281.40
415.59
574.65
673.38
561.20
796.02
836.46
838.11

347.24
500.86
584.12
647.25
688.57
696.97
652.79
610.86
501.84
346.27
203.27

250.32
129.36
215.04
310.80
412.44
513.24
608.16
661.08
726.60
773.64
784.56

330.91
495.34
583.66
665.42
715.92
732.09
705.70
666.94
568.09
413.15
2711.27

186.48W

162.12
218.40
306.60
397.32
486.36
572.04
620.76
683.76
733.32
750.12

81¢
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Table C.8: Stress Intesity Factors at Deepest and Surface Points (Axial Load)

SIFs at deepest and surface points
Stress Level = 230 MPa
(N/mm®?)

¢ = 31.30mm ¢=47.06mm | ¢=627lmm | ¢=7857Tmm | c=9442mm

@ | K | Kl § Kr | Kt | Kl | Ko | Kl | Kl | Kl | Xl

1.00 [ 390.26 | 282.15 |{ 395.51 | 12.22 || 386.14 | 447.12 || 380.31 | 274.16 [ 362.42 | 204.24
2.50 || 559.03 | 343.25 | 543.67 | 45.08 || 567.05 | 274.16 || 548.56 | 141.68 || 542.51 | 177.56
3.80 [ 624.34 | 417.59 || 634.23 | 130.36 || 640.53 | 174.80 || 639.75 | 235.52 || 639.24 | 239.20
5.70 || 646.24 | 529.00 || 678.81 | 283.36 || 704.22 | 308.20 || 708.89 | 340.40 || 728.80 | 335.80
7.60 | 607.16 | 611.80 | 670.55 | 538.20 || 717.77 | 455.17 || 754.15 | 451.72 || 784.10 | 435.16
9.50 | 533.56 | 611.80 | 635.62 | 637.56 || 700.69 | 629.38 || 763.35 | 562.12 || 801.82 | 532.68
11.40 || 508.64 | 687.24 | 604.11 | 728.18 || 650.06 | 737.51 || 714.96 | 666.08 || 772.91 | 626.52
12.54 |{ 384.17 | 803.96 | 491.71 | 788.88 || 592.17 | 614.64 || 669.03 | 724.04 || 730.46 | 679.88
14.25 | 256.00 | 929.20 | 369.89 | 850.08 || 471.73 | 871.83 || 549.64 | 795.80 || 622.20 | 748.88
16.00 || 175.19 | 1001.88 | 197.93 | 873.08 || 298.02 | 916.13 || 379.25 | 847.32 (| 452.50 | 803.16
17.10 || -56.35 | 1013.84 || 56.51 | 856.52 || 147.80 | 917.93 || 222.63 | 859.28 [ 297.10 | 821.56

0z¢



Table C.9: Stress Intesity actors at Deepest and Surface Points (Axial Load)

SIFs at deepest and surface points
Stress Level = 240 MPa

(N/mm??)

¢ = 31.30mm ¢ = 47.06mm ¢ = 62.7lmm c = 78.57Tmm ¢ = 94.42mm
O (s =R 8 = (29, (O Pl e il 99 A9l (9700 oo B P [ 8
1.00 [ 407.23 | 204.41 |[412.70 | 12.75 || 402.93 | 466.56 || 396.84 | 286.08 || 378.18 | 213.12
2.50 || 583.33 | 358.18 | 567.31 | 47.04 | 591.71 | 286.08 || 572.41 | 147.84 || 566.10 | 185.28
3.80 || 651.48 | 435.74 | 661.80 | 136.03 || 668.38 | 182.40 || 667.56 | 245.76 | 667.04 | 249.60
5.70 [ 674.34 | 552.00 || 708.33 | 205.68 || 734.84 | 321.60 || 739.71 | 355.20 | 760.48 | 350.40
7.60 | 633.56 | 638.40 [ 699.71 | 561.60 || 748.98 | 474.96 | 786.94 | 471.36 [ 818.19 | 454.08
9.50 | 556.76 | 638.40 | 663.25 | 665.28 || 731.16 | 656.75 || 796.54 | 586.56 || 836.68 | 555.84
11.40 [ 530.76 | 717.12 || 630.37 | 759.84 || 678.33 | 769.57 || 746.04 | 695.04 | 806.52 | 653.76
12.54 || 400.88 | 838.92 | 513.09 | 823.18 || 617.91 | 641.37 || 698.12 | 755.52 || 762.22 | 709.44
14.25 | 267.13 | 969.60 || 385.97 | 887.04 || 492.24 | 909.73 || 573.53 | 830.40 | 649.25 | 781.44
16.00 || 182.80 | 1045.44 || 206.53 | 911.04 [ 310.98 | 955.96 || 395.74 | 884.16 || 472.18 | 838.08
17.10 | -58.80 | 1057.92 || 58.96 | 893.76 [ 154.22 | 957.84 || 232.31 | 896.64 || 310.02 | 857.28

12¢



Table C.10: Stress Intesity Factors at Deepest and Surface Points (Axial Load)

SIFs at deepest and surface points

Stress Level = 250 MPa

(Nfmm?®?)

¢ = 31.30mm ¢ = 47.06mm ¢ = 62.7lmm ¢ = 78.5Tmm ¢ = 94.42mm

o | Kl | Kl | Kl | Klipu | Kl | Elis. | K. | Kl | Kl | Kb
1.00 || 424.20 | 306.68 [ 429.90 | 13.28 || 419.72 | 486.00 (| 413.38 | 298.00 || 393.94 | 222.00
2.50 [ 607.64 | 373.10 [ 590.95 | 49.00 } 616.36 | 298.00 || 596.26 | 154.00 || 589.69 | 193.00
3.80 || 678.63 | 453.90 | 689.38 | 141.70 || 696.23 | 190.00 || 695.38 | 256.00 || 694.83 | 260.00
5.70 || 702.44 | 575.00 | 737.84 | 308.00 || 765.46 | 335.00 || 770.53 | 370.00 || 792.17 | 365.00
7.60 || 659.96 | 665.00 || 728.86 | 585.00 || 780.19 | 494.75 || 819.73 | 491.00 || 852.28 | 473.00
9.50 || 579.96 | 665.00 | 690.89 | 693.00 || 761.62 | 684.11 || 829.73 | 611.00 |( 871.54 | 579.00
11.40 || 552.87 | 747.00 || 656.64 | 791.50 |( 706.59 | 801.64 || 777.13 | 724.00 || 840.12 | 681.00
12.54 | 417.58 | 873.87 | 534.47 | 857.48 || 643.66 | 668.09 || 727.21 | 787.00 (| 793.98 | 739.00
14.25 || 278.26 | 1010.00 || 402.05 | 924.00 || 512.75 | 947.64 || 597.43 | 865.00 || 676.30 | 814.00
16.00 || 190.42 | 1089.00 || 215.14 | 949.00 (| 323.94 | 995.79 || 412.23 | 921.00 (| 491.85 | 873.00
17.10 || -61.25 | 1102.00 || 61.42 | 931.00 || 160.65 | 997.75 || 241.99 | 934.00 || 322.94 | 893.00

aze
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