
Experimental Investigation of the Effect of Axial Vibration Generated By 

Pressure Pulses on Drilling Performance 

 

By 

© Ahmed Elnahas 

A Thesis submitted to the 

School of Graduate Studies 

in partial fulfillment of the requirements for the degree of 

 

 

 

 

Master of Engineering 

Faculty of Engineering and Applied Sciences 

Memorial University of Newfoundland 

 

 

 

 

October 2014 

 

St. John’s   Newfoundland



ii 

 

ABSTRACT 

Considering the fact that improving drilling efficiency contributes to the industry success, 

many academic organizations, industrial research organizations and companies have 

invested in research that leads to better drilling experience, time wise and efficiency wise. 

This thesis is a research based study that aims to find new methods to improve drilling 

efficiency. The study investigates the effect of vibration generated using periodic 

pressure pulses created at the bit by a down-hole tool on the drilling efficiency, and in 

fact demonstrates  that the technology can improve drilling efficiency. The study is based 

on various sets of laboratory experiments, which were conducted to characterize the 

functionality of a Pressure Pulses Generating (PPG) down-hole tool, and to test the effect 

of the down-hole tool output on actual drilling experiments. Two different setups were 

used to conduct the experiments in laboratory environment. In the drilling experiments 

synthetic rock was used as test specimens with highly controlled properties and strength. 

The drilling experiments were conducted at different simulated down-hole condition, 

including bottom hole pressures, and different fluid flow rates. 

The study also highlighted the effect of varying the drill string compliance on the overall 

effect of induced down-hole axial vibration. Finally the study sets base for further 

investigation and experiment that will be conducted using a bigger scale setup similar to 

land drill rigs.     
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Two measurement unit systems were used in this thesis: S.I. and traditional (Imperial and 

American). In some cases traditional units were chosen due to several reasons: 

- This study is oriented to the drilling engineering branch of the petroleum industry 

in North America, where imperial units are commonly used by engineers;   

- many American Petroleum Institute (API) standards contain non-S.I. units, as 

well as industrial drilling equipment specifications presented in imperial units, such 

as drill string components and drill bits; 

- the majority of reviewed publications in the drilling engineering field present 

results in imperial units.  

 

Considering mentioned points, it was decided to give preference to imperial units; 

however, in some cases S.I. units were used, where this system was more applicable. The 

table of conversion presents conversion factors for non-S.I. units used. 

 

Table of conversion: imperial to metric 

Imperial Multiplying factor Metric 
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3
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lbs (mass) 0.4536 Kg 
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1 Introduction 

1.1 Introduction  

Oil and gas have been indispensible sources of energy for centuries. The first oil wells 

were drilled in China in the 4th century, they used oil to evaporate brine and produce salt. 

The Chinese drilled wells that had depths up to 243 meters by using bamboo poles and 

bits attached to them. In the modern era, the first oil well was drilled in 1848 by the 

Russian engineer F.N Semoyonov, on the Aspheron peninsula north-east of Baku, 

followed by Poland's Ignacy Lukasiewicz who discovered a means of refining kerosene 

from petroleum oil in 1852. 

These discoveries spread all over the world; consequently the first commercial oil well 

was drilled in North America in Oil Springs, Ontario, Canada in 1858, dug by James 

Miller Williams. 

The Americans started their petroleum industry with Edwin Drake's discovery of oil near 

Titusville, Pennsylvania. The oil industry grew slowly in the 19th century driven by the 

need of kerosene to operate kerosene lamps. However, when the internal combustion 

engine was introduced in the early 1900s, the oil industry started growing rapidly to 

provide the world with the fuel and industrial materials that develop the modern 

civilization [1].  
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British Petroleum (BP) published a recent report named  'Energy outlook 2030' describing 

the current and future demand for oil and gas products, they expected a 36% increase of 

world need of oil and gas between 2011 and 2030 [2]. 

Major players in the industry keep trying to enhance the current technologies and 

introduce new technologies in different fields to fulfill the growing demand, that includes 

efforts such as increasing the volume of hydrocarbon recovered from reservoirs using 

Enhanced Oil Recovery methods (EOR), investing in infrastructure for Liquefied Natural 

Gas (LNG) and certainly increasing the drilling efficiency to produce more hydrocarbons 

using the same available resources. 

By taking a closer look on the drilling operation, it's easy to realize how costly it is and 

just like any industry, cost is the main factor that drives operations and sets their limits. 

Rigzone [3] gives an idea about the daily rate of offshore drilling rigs, which is so far the 

biggest part of the overall cost associated with drilling operations. The source indicated 

that the daily rate of a small jack up rig capable of drilling in water depth of 200' ranges 

between $75,000 to $100,000 per day, while the average rate of a semisubmersible rig 

capable of drilling in water depth of 4000' is about $440,000 a day. It's clear that reducing 

drilling time consequently decreases the overall drilling cost and a better understanding of 

managing rig time leads to a better drilling efficiency. 

Rig Time can be classified into three main times, drilling time which is the time 

consumed when the bit is penetrating the formation to intersect a geological target at a 

certain depth, non drilling time which is the time consumed while tripping in or out of the 

well or when performing an operation like cementing or casing as an example, and Non 
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Productive Time (NPT) which is the time creditable to events in drilling that delay the 

progress of the planned activities, that includes unnecessary trips to change bits , failed 

down-hole tools, a rig mechanical failure or other events that are not supposed to happen 

in the first place. 

Non productive time can be unnoticeable sometimes and hard to recognize, in such case 

it's called Invisible Non Productive Time (INPT), an example for INPT is the time lost 

when drilling extremely abrasive formation using an improper drilling method, using a 

wrong type of drill bits or applying improper drilling parameters which lead to excessive 

wear of the bit and bit failure. 

 As shown if Figure 1.1, Vieira [4] explained the effect of INPT on the drilling time and 

the overall drilling cost of a well drilled in the Middle East. Clearly, identifying NPT and 

introducing methods to eliminate it serves reducing the overall cost of wells and 

consequently directing the extra spending to develop other wells or exploring other fields.  

 

Figure 1.1- Effect of INPT on drilling Time and Well cost after Vieira [4] 
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Research has been done and is currently on going in many countries to optimize drilling 

time and eliminate NPT. One way of optimizing drilling time is to develop technologies 

and theories to enhance the rate of penetration in the drilling phase of the well.  

This thesis is a contribution from the author to the efforts done in that field of research as 

a part of a group that has several publications and work done in the drilling optimization 

area of research, these publications are discussed in Chapter 2 of the thesis. 

1.2 Research Scope and objective 

In 2008, the Memorial University of Newfoundland started a project under the 

supervision of Prof. Stephen Butt to study the promising technology of utilizing 

vibrations to increase drilling rate of penetration. 

Prof. Butt formed the Advanced Drilling Group (ADG) to investigate and introduce the 

Vibration Assisted Rotary Drilling (VARD) Technology, and several publications were 

published by graduate students from the group under the supervision of Prof. Butt. 

This thesis investigates the effect of pressure pulses generated by a down-hole tool as a 

source of vibration when integrated to the drilling assembly right behind the drill bit. 

Tools similar to the Pressure Pulse Generator (PPG) have been used in other applications 

to reduce the friction within the Bottom Hole Assembly (BHA), but for the first time the 

PPG is used as a source of vibration, utilizing the generated sinusoidal forces from the 

pressure pulses coupled with a compliant element in the BHA to convert the axial force 

into  axial displacement.  
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Previous work done by the ADG and others has shown that axial vibration displacement 

has had a positive effect on increasing the drilling efficiency in general.  

The objective of this thesis is to investigate the effect of the vibrations generated by the 

PPG on the drilling performance by conducting laboratory experiments using a 

sophisticated experimental setup which can help to clearly observe the effect of the tool 

on drilling performance. 

1.3 Significance of Research 

As mentioned earlier, the research mainly benefits the efforts to minimize drilling time 

and in turn minimize the overall cost of drilling.  

The work presented in this thesis shows that the existent pressure pulses generating 

technology could be used to introduce new applications and benefits to the drilling 

operation. Also, the laboratory drilling experiments consider and verify the role of a very 

important drilling parameter which is the near bit drill-string compliance, a parameter that 

was extensively studied by the ADG in past literature and experiments  but never been 

addressed to the author's knowledge in research or literature before the VARD project 

was launched. 
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1.4 Thesis Outline 

The thesis consists of 6 chapters in which all the work done by the author is presented. 

In Chapter 2, the research done in areas related to the thesis topic is discussed to give the 

reader an overall view of the objective of this study. Also the existent down-hole systems 

that utilize vibration and dynamic forces are presented to give the reader an idea about the 

progress of the technology, and both the positive and negative sides of each concept. 

In Chapter 3, The Pressure Pulse Generator (PPG) concept and operational mechanism 

are presented. The chapter also includes details about an experimental setup that was used 

to analyse the tool's performance and the forces generated at different modes of operation, 

in addition to the experiments matrix and procedures followed . 

In Chapter 4, the results of the experiments done to characterize the PPG are discussed 

thoroughly. In Chapter 5, Laboratory drilling experiments are discussed in details, 

including the experimental setup, sensors, the synthetic rock used for drilling, variable 

parameters like WOB, flow rate, BHP and compliance levels and also the constant 

parameters used in the experiments. In Chapter 6, the results of the drilling experiments 

are discussed in detail showing the contribution of each parameter to the drilling process. 

In Chapter 7, a summary of the whole study is presented, showing conclusions and the 

positive and negative impressions about the experimental results, and the recommended 

future work to achieve a full awareness of the effect of the pressure pulses as a source of 

vibration to enhance the drilling experience.  



 

 

7 

 

 

2 Literature Review 

In this chapter, publications from different sources are briefly presented to help the reader 

get a full picture of the thesis topic and objectives. At first the relationship between the 

drilling efficiency and the Rate of Penetration (ROP) is defined, and then the factors that 

affect ROP are discussed. Literature related to the area of vibration drilling that involve 

the use of axial forces to enhance drilling efficiency are summarized, that includes 

research done by the ADG of the Memorial University of Newfoundland. In the last 

section of the chapter, some of the existing down-hole systems that utilize vibration 

energy to enhance ROP are presented to give the reader an idea about the technology 

progression. 

2.1 The Relationship between Drilling Efficiency and ROP 

In most cases as shown by Taylor et al [5], discussions relating to drilling efficiency have 

focused on ROP. As a result, ROP is either equated to drilling efficiency, or considered as 

the parameter that establishes drilling efficiency. These assumptions are highly 

inconsistent with several field results. ROP must not be equated to drilling efficiency. 

Rather, ROP should be seen as one of various parameters that influence drilling 

efficiency. Wilmot et al [6], addressed the distinction between ROP and drilling 

efficiency; they stated that drilling efficiency depends on a set critical operational 

parameters, referred to as Performance Qualifiers (PQ) that include footage drilled per 

BHA, down-hole tool life, vibration control, durability, steering efficiency, directional 

responsiveness, borehole quality and ROP. Although important, ROP improvement must 

not compromise other PQs. 
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 ROP is defined as drilling advancement per unit time, while the drill bit is on bottom and 

drilling ahead. Most of the factors that affect ROP have influencing effects on the other 

PQs. These factors can be grouped into categories such as planning, environment, and 

execution. 

a) Hole size, casing depths, well profile, bit drive mechanism, BHA, drilling fluid type 

and rheological properties, flow rate, hydraulic horse power per square inch (HSI), and 

hole cleaning belong to the planning group.  

b) Lithology types, formation drillability (hardness, abrasiveness), pressure conditions 

and deviation tendencies are the environmental factors. 

c) Weight on bit (WOB), RPM, and drilling dynamics belong to the execution category. 

There are also two main types of ROP, instantaneous (ROPi) and average (ROPav). 

Instantaneous ROP is measured over a finite time or distance, while drilling is still in 

progress. Average ROP is measured over the total interval drilled, from Running In Hole 

(RIH) to Pull Out Of Hole (POOH). 

Wilmot et al, stated that by increasing the magnitude of some of the factors that affect 

ROP, the effect can be noticeably positive on instantaneous ROPi but not necessarily 

positive on Average ROPav and the effect might have negative influence on the 

equipment instead. Figure 2.1, shows an example of possible effects of WOB on ROP. 

Well A (green line), with less WOB, drilled slower initially but remained consistent to 

TD. Well B (red line), With more WOB, drilled faster initially but required a BHA trip 

for a bit change.  
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Figure 2.1- Effects of WOB on ROP in two different wells [6] 

 

Wilmot et al, considered the industry’s most common performance quantifying metrics 

for drilling efficiency  including Cost Per Foot (CPF), Feet Per Day (FPD), Mechanical 

Specific Energy (MSE) that are strongly influenced by ROP as shown in the equations 

governing these metrics. 

  CPF=  
 

   
 [ 

  

 
 + RR  (1+ 

  

 
) ]   (2.1) 
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Where "BC" is the bit cost, "RR" is the rig rate, "t" is time and "Tt" is the Trip Time. 

  MSE= 
   

  
 + [ 

                 

        
 ]   (2.2) 

Where "AB" is the Bit area, "RPM" is rev/min of the bit and "T" is the Torque. 

   FBD= ROPav x 24     (2.3) 

However, as it's clear in the equations, ROP is not the only factor and other factors should 

be considered when aiming for a better drilling efficiency. 

Pessier et al [7], studied the strong interdependence among ROP, MSE and power at the 

surface and at the bit. They stated that "It is the magnitude of mechanical power delivered 

to the bit that defines the capacity of the drilling system and directly affects efficiencies, 

operating practices and performance". 

In many cases it is shocking how little power is left for the drill bit that in the end controls 

the ROP. The oil industry, unlike others, rarely focuses on the power requirements for the 

rotating drilling system and its effect on drilling performance. An explanation might be 

the fact that for more than 100 years roller cone bits have been the preferred drilling bits. 

Roller cone bits require little torque due to their low aggressiveness and due to the limited 

load capacity of their bearings; in fact they act as perfect torque limiters. The rotating 

power system therefore utilizes only a small fraction of the total applied power of a rotary 

drill rig and lack of power has not been considered a limiting factor. This has gradually 

changed with the introduction of Polycrystalline Diamond Compact (PDC) bits which 

have now replaced roller cone bits in many applications.  
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On average, PDC bits have three times the ROP numbers, resulting in a step change in 

drilling performance and lower CPF. However, this step change did not come because 

PDC bits are more efficient than roller cone bits.  PDC bits are simply more aggressive, 

drag type tools which draw more power to fracture and disintegrate the rock at a faster 

rate. Pessier et al, introduced a graphical method to analyze the relationship between 

ROP, MSE and power (P) called the power graph. 

They showed the relationship between ROP, MSE and P by plotting them in a single 

graph that covers a whole drilled section. 

The distribution of the data suggests a simple mathematical relationship in the form of: 

  ROP = c / MSE       (2.4) 

The constant "c" is the product of ROP and MSE. The product of ROP x MSE represents 

the area specific mechanical power MPSI which is the total available power (P) divided 

by the borehole area (A) 

  MPSI = ROP x MSE / 1.98 x 106 = P / A / 1.98 x 106  (2.5) 

The unit for MPSI is horsepower per square inch. It is obtained by dividing the product of 

MSE x ROP by the constant 1.98 x 106 to convert [ft-lb/hr] to [HP]. 

  P = MPSI x A [HP]      (2.6) 

Then they used a large data set from a field research facility to explore and validate the 

effectiveness of the Power Graph .The data was generated in a project to study stick slip 

as a function of PDC bit design and therefore covered a broad range of operating 

parameters. 
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Their study covered the effect of changing drilling parameters like WOB and RPM and 

variables like bit type, lithology change and bit wear conditions. 

The Power Graph gave an overview of the performance and capacity of an entire drilling 

system and its individual components. Also it displayed the complex relationship between 

ROP, MSE and available power. 

Figure 2.2 shows The Power Graph of a well and the effect of varying WOB while 

keeping rotational speed of the bit at 60 RPM and the effect of that on the power 

transmitted to the bit. 

 

Figure 2.2- Power Graph of a Well with constant 60 RPM and Variable WOB [7] 
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Figure 2.3, shows the Power Graph of a well with varying both the RPM and WOB and 

the effect of that on the power transmitted to the bit. 

 

Figure 2.3- Power Graph of a well With Varying Both the RPM and WOB [7] 

2.2 Factors Affecting the Rate of Penetration (ROP) 

Known as the most important factor affecting drilling efficiency for decades, ROP and the 

factors affecting it have been studied by several researchers. Some of their work is 

summarized in the next few pages showing factors affecting ROP like varying surface 

drilling parameters and bottom hole parameters like Bottom Hole Pressure (BHP) and 

Bottom Hole Cleaning (BHC). 
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2.2.1 Surface Drilling Parameters 

Brantly et al [8], studied four factors controlling ROP, which they thought were the most 

effective. They conducted a study using data from 500 wells drilled in several states 

across the United States of America in the late 1930s. 

The factors they studied were Personnel and Equipment, WOB, Rotary Speed and 

Circulation Fluid Volume. For Personnel and Equipment, Brantley used the data from 14 

wells drilled over a period of 3 years by the same drilling practice. The average pressure, 

fluid volume, drill-pipe size, mud characteristic, WOB, rotating speed, size of bits and 

formations were the same for each of the 14 wells. However, it was noticed that the wells 

although drilled using the same drilling practice, varied in their ROP records. The 

analysis showed a noticed trend of "penetration rate increase" over the period of 36 

months. The conclusion was that the increased ROP was due to increased efficiency of 

personnel and equipment.  Another analysis of data coming from the records of a 

different number of wells tracking the Rotary Speed of the String showed a trend of ROP 

increase with the increase of rotary table speed when all the other variables were constant.   

The third group of wells was studied to determine the effect of fluid volume upon the 

ROP, wells from four fields were selected which showed constant table speeds and 

weight on the bit for each field, but which had been drilled with varying fluid volumes. 

The resulting analysis accounted for a direct relationship between ROP and fluid volume 

increase. 
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The fourth set of data was selected to represent wells drilled by constant parameters 

except for varying WOB. It was noted that increased WOB was more effective in hard 

formations than in soft ones. In one field in which experimental work was carried on, it 

was observed that increased WOB at the same rotating speed resulted in no noticeable 

increase in ROP, but, by increasing the speed of rotation, the ROP increased almost 

directly in proportion to increased speed for twice the usual WOB. 

2.2.2 Bottom Hole Pressure (BHP) 

Garnier and Van Lingen [9] studied the effect of Bottom Hole Pressure (BHP) on the 

ROP of different types of rocks. They observed that when drilling permeable rocks like 

Obernkirchener Sandstone and Vaurian Limestone, the change in BHP caused no 

significant effect on ROP when using water as the drilling fluid. However, increasing 

BHP when drilling a low permeable rock like Belgian Limestone with water and mud a 

the drilling fluids decreased the ROP. It was also observed that increasing BHP could 

decrease the ROP to a specific reduction factor after which it could no longer influence 

the ROP. 

Garnier and Van Lingen claimed that in permeable rocks, due to negligible difference 

between BHP and pore pressure, the chip hold-down effect which tends to reduce ROP is 

less significant. However, ROP is likely to slow down in less permeable rocks due to the 

pressure difference between the BHP and the formation pressure, which can be noticed 

obviously when drilling deep wells. 
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Figure 2.4 shows the results of the experiment for the influence of BHP on ROP done by 

Garnier and Van Lingen [9]. 

 

Figure 2.4- The results of the experiment for the influence of BHP on ROP [9] 

Garner [10] studied the performance of a diamond cutter bit in the penetration of shale 

and limestone, under increased BHP with no fluid circulation. The results showed that the 

volume of the cut was significantly reduced by an increase in BHP. Black et al. [11] 

studied the effect of mud filtration on ROP. The study was conducted to observe the 

effect of the rate of filtration on the reduction of the nominal effective stress which is 

defined as the difference between the pore pressure and the BHP. 

The results showed an increases of ROP when the nominal effective strength was 

minimum. 
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2.2.3 Bottom Hole Cleaning (BHC) 

Maurer [12] studied the effect of Bottom Hole Cleaning (BHC) on ROP. In this study, 

ROP was considered a function of WOB, rotary speed (RPM), bit diameter and the rock 

strength. However while drilling with high WOB and rotary speed, the increasing trend of 

ROP was stopped eventually. Maurer suggested that the phenomenon was due to 

decreasing BHC which caused bit tumbling in surrounding rock cuttings which decrease 

the interaction area between the bit and the rock. 

Figure 2.5 shows the results of Maurer's study on the relation between rate of penetration 

(R), Weight on Bit (W), Rotary Speed (N) and Bottom Hole Cleaning (BHC). 

 

 

Figure 2.5- Response of ROP Bottom-hole Cleaning condition [12] 

Wells et al. [13] studied another aspect of BHC when they studied the effect of increasing 

WOB when drilling shale with a PDC Bit. They observed that an increase in WOB under 

a constant bit hydraulic horsepower caused the balling of junk slots on the sides of the bit 

resulting in a significant drop in ROP and an increase in the torque of the bit.  
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2.3 The Role of Vibration in Rock Penetration 

It's been common understanding in the drilling industry that down-hole vibrations are 

usually not desirable and have destructive influence on the bit and the Bottom Hole 

Assembly (BHA). That is certainly true when considering some forms of down-hole 

vibrations like lateral vibration (most destructive) or torsional vibration, but in fact not all 

vibrations are harmful to the drilling process. Researchers have shown that in some cases, 

axial vibrations can be useful and boost the ROP, and some of their work is presented in 

this section. 

2.3.1 Definition of Down-Hole Vibration 

Feenstra et al [14], defined 4 known forms of Down-Hole vibrations which are: 

1- Axial Vibrations (also known as “Bit Bounce"): Generally caused by large variations in 

weight on bit (WOB). The bit repeatedly lifts off bottom and impacts the formation. Axial 

Vibrations are characterized by up and down motion of the drill string/BHA. The surface 

indicators could be top drive or kelly shaking axially and fluctuating WOB on the weight 

gauge. This can result in premature bit and BHA component failure and reduced ROP 

when the amplitude of bouncing is high ,as shown by Yaveri et al [15]. 

2- Torsional Vibrations (also known as "Stick-Slip"): they can be observed at the surface 

as fluctuations in the current through the electric motor that drives the rotating table/ top 

drive. When the rock can no longer withstand the building up torque, the energy is 

suddenly released and the bit starts spinning. The bit spins so fast that the drill string 

unwinds and the torque drops. As a result, the bit slows down again until it finally stops 

completely, after which the entire process of winding and unwinding is repeated. 
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3- Lateral Vibrations: Are widely recognized as the leading cause of drill string and BHA 

failures. Whirls are severe forms of lateral vibrations; and is defined as an eccentric 

rotation of the bit. Instead of rotating around its center, the bit rotates eccentrically as a 

result of its interaction with the wellbore. It generally occurs in vertical wells, in 

laminated layers of soft and hard formations, and with PDC bits with aggressive side 

cutters. Surface detection is nearly impossible but the bit will have noticeable 

characteristics when it's pulled out. 

4- Eccentered Vibration: is the motion that a bit makes when it does not rotate about its 

center. This may manifest itself in out of round holes and severe bit damage. Generally a 

poor drilling performance. Figure 2.6 after Ashley et al [16], shows the variable major 

forms of vibration that occur down-hole. 

 

Figure 2.6- Forms of Vibration after Ashley et al [16] 
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2.3.2 Initial Research on Vibration effect on ROP 

All forms of vibrations have been extensively studied by researchers to eliminate the 

harm and use the energy gone to vibration to help increase drilling efficiency.  

Eskin et al [17] showed that the Russians took the lead when they started studying the 

effect of vibration on ROP in the 1950s and introduced methods to utilize vibration, 

before others get satisfactory results to rely on vibration in enhancing ROP. 

Barkap et al. [18] in 1957, presented the results of experimental studies which were 

conducted while drilling in red granite in a laboratory environment with the drill bit 

rotating at speeds of 37 to 254 rpm and with the superposition of mechanical axial 

vibrations at frequencies of 4000 to 5000 per minute. These experiments demonstrated 

the possibility of increasing the drilling rate while reducing the rotary speed of the drill 

bit and the axial static load (WOB) in presence of vibration. 

In 1979, the All Union Drilling Institute (VNII) in Moscow conducted bench studies of 

drilling using cutter drill bits with superposition of additional dynamic forces, as 

mentiond by baidyuk et al [19]. Drilling was carried out in Urals "Koelga'' Marble which 

has a uniaxial compressive strength of 79 MPa with a 33-mm diameter cutter drill bit. The 

drill bit was rotated at a rotary speed of 42 rpm. Extra forces of both pulsed and vibration 

types with various combinations of frequency and amplitude were superimposed on the 

drill bit. The applied force amplitude to static load ratio was ranged from 0 to 0.6, and the 

ratio of the introduced vibration frequency to the rotation frequency ranged changed from 

1 to 24. The results demonstrated that pulsed loading always gives a positive effect, with 
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the biggest increase in penetration rate obtained when load pulse frequency coincides 

with the frequency of contact between the bottom hole and the peripheral cutter rim teeth. 

Figure 2.7, shows the experimental results of the penetration per drill bit turn "h" obtained 

with several values of static load “Gc", when superimposing an extra vibration load of 

amplitude ΔG.  

 

Figure 2.7- Experimental drilling results when applying extra vibration load [19] 

 

The Russians also introduced several special mechanical vibrators developed to increase 

drill string vibrations and thereby increase the power delivered to the drill bit, drilling 

rate, and drilling efficiency. 
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 Some were surface mechanical vibrators acting at the top of the drill string, like the 

Vibropercussion device  which was proposed for spudding in wells with hard rock in the 

year 1980 as shown by Izosimov et al [20].  Others were Down hole Vibrators, like the 

drilling shock wave device which was proposed by Sintsov et al [21] in 1985 which 

focuses shock waves on the drill bit edge to increase bit efficiency in blast holes and deep 

wells. Western researchers also conducted major investigations by an industry consortium 

in the 1950s, Drilling Research Investigation Ltd (DRI). Pennington [22] released some 

of the results in 1953. The DRI project was looking into possible improvement in ROP by 

utilizing vibration and percussion drilling techniques. The researchers assumed that 

drilling could be greatly accelerated by these means; however, they also observed a 

decrease in ROP enhancement with the increase of down-hole pressure and depth. 

Eventually, the researchers abandoned the project as they could not obtain drilling 

improvement at greater depths.  

2.3.3 Recent Research on Vibration effect on ROP 

Li et al [23],  investigated the effect of vibration on the bit performance and on the 

improvement of ROP. They used a VARD laboratory scale experimental setup to monitor 

and record the effects. This setup was an electrical coring drill rig that underwent some 

modifications by Li [24] to meet the experimental requirements. During the experiments, 

coring and full face drilling were done at various combinations of rotary speed and 

vibration amplitude. Vibration frequency was kept constant and a sufficient fluid flow 

rate for each rotary speed was maintained. Figure 2.8 shows the experimental results of 

the coring bit. 
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Figure 2.8- Li's coring experimental results [24] 

They concluded that vibration amplitude has a non-linear relationship with ROP and 

some optimum performance could be achieved by varying the amplitude.  However, it 

was found a linear trend of ROP in relation to amplitude when drilling with constant 

WOB and rotary speed. Figure 2.9 shows Li's results when drilling with constant WOB 

and rotary speed, and the observed linear relationship between ROP and Vibration 

amplitude. 
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Figure 2.9- Li's coring results with constant WOB and RPM [24] 

 

Li et al, observed similar results with drilling experiments using a full face bit and 

concluded that ROP was enhanced when vibrations were introduced to the system.   

In the end, the following was concluded: 

- The Vibration Assisted Rotary Drilling technology (VARD) could significantly 

enhance the ROP; 

- As vibration amplitude increases, the ROP, WOB relationship curves are shifted, 

meaning that less WOB can be applied to  achieve a higher ROP; 

- ROP significantly increases with the increase of vibration amplitude until the 

founder point is reached, after which the increase of WOB doesn't lead a 

proportional increase of ROP; 

- Vibration amplitude is proportional to the increase in ROP. 
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Figure 2.10, shows the drilling results of the experiments with a full face diamond 

impregnated  bit. 

 

Figure 2.10- Li's drilling experimental results with the full face bit [24] 

 

Yusuf Babatunde et al [25], used a modified vibration table from Li’s experimental setup 

in order to be able to control the vibration frequency. and the second round of 

experiments utilized a PDC Bit with two cutters to drill through synthetic concrete in 

addition to the full face diamond drag bit. they used three levels of vibration amplitude 

(low, medium and high) and three levels of frequency (45, 55 and 65 Hz) for the 

experiments. First experimental runs were conducted with full face diamond drag bit. 
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They observed improvement in ROP up to more than 100% at any mode of vibration. 

These results lead to the following conclusions: 

 - ROP can be significantly increased with the use of vibrations; 

 - ROP increase range varies from 25% to more than 100%; 

 - Amplitude of vibration is proportional to ROP. 

A second series of experiments was conducted using a PDC with two cutters and two 

nozzles. The results were similar and the experiments data showed ROP improvement in 

all runs where vibration assisted drilling was utilized compared to conventional drilling. 

This second series of experiments made Babatunde conclude that: 

 - ROP was improved more by vibration in the PDC bit case; 

 - Optimum frequency of vibration was 65 Hz for lower WOB and 55 Hz for  

    higher WOB. 

Another conclusion was made by Babatunde [26], when the spectral analysis of the load 

cell data were conducted, which was that frequency peak of the vibration was achieved at 

9 Hz, that was assumed as the mechanical interaction of rock and the two cutter PDC bit 

at the motor speed. Optimum frequencies were harmonics of the 9 Hz, so it was assumed 

that maximum ROP increase occurs at some resonance of excited and natural vibrations. 

Khorshidian et al [27] from the ADG studied the influence of vibrations on the 

penetration mechanism of a PDC Single cutter using the Distinct Element Method 

(DEM). They adjusted the DEM parameters to match the macro properties of Carthage 

Limestone which were obtained from calibrations done according to real UCS tests. 

Based on the results it was found that there are two effects of the cutter vertical vibration 
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on the penetration mechanism. The first one is the positive effect that can be significant 

when the cutter imposes a sufficient impact on the rock for cratering. On the other hand, 

exceeding the optimal point of vibration increases the required MSE which is the second 

and negative effect . Also it was observed that excessive fluctuations in vertical position 

of the cutter can result in no penetration in direction of the cut, as the cutter tends to slide 

instead of chipping or crushing. Therefore, he concluded that there is an optimal 

condition for vertical oscillations which should be controlled with respect to the other 

drilling parameters such as the horizontal velocity and rock strength. 

They, also concluded that the main reasons of the improvement in the penetration 

mechanism of the PDC cutter due to vertical oscillation are both the reduction of the 

required horizontal force for cutter advancement and the generation of larger chips after 

imposing an impact. Figure 2.11 shows the generation of the cutting in front of the PDC 

cutter under a low vertical force oscillation (normal chipping). Figure 2.12 shows the 

generation of the cutting under a high amplitude vertical force oscillation. 

 

Figure 2.11 - Normal chipping in front of the PDC cutter [27] 
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Figure 2.12- Combination of chipping and cratering after impact of PDC cutter [27] 

 

In Figure 2.13, the vertical crack underneath the cutter is due to introducing a high energy 

impact to the rock. In addition to above conclusions, Khorshidian considered that the 

effect of a cutter vertical oscillation on the penetration mechanism can be dependent on 

drilling conditions such as rock strength, rock elasticity, bottom-hole pressure, cutter 

geometry, DOC, bit wear and specifically, the drill string stiffness. 

Therefore, by considering all conditions of a drilling operation, optimizing the vertical 

Oscillations can provide enhancements in the performance of PDC bits. 
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Gharibiyamchi [28] studied and characterized two types of hydraulic pulse tools that 

generate down-hole vibrations, the Axial oscillation Generating Tool (AGT) and the 

Hydropulse tool. He designed a simulation scenario to simulate these tools in a DEM 

environment, and then this scenario was combined with simulations of drilling operations 

to simulate the drilling process with both tools.  

For the simulations of the AGT and Hydropulse tool, Gharibiyamchi used the rock that 

was developed and calibrated by Ledgerwood [29] (UCS= 55MPa) and considered a 6” 

diameter (150 mm) bit in the simulations. Overall 20 runs were conducted to investigate 

the performance of the AGT in drilling with different down-hole hydrostatic pressures 

and 9 runs were conducted for the Hydropulse tool. 

Gharibiyamchi evaluated the drilling performance of the two tools using three indicators 

which are the Material Removal Rate (MRR), ROP, and the MSE based on the simulation 

results. In the AGT simulations, the MRR values were much lower with conventional 

drilling than that of drilling with vibrations. Particularly at higher pressures, a more than 

100 % increase was obtained when using the AGT in the drilling process.  

Figure 2.13 shows the graphical results of MRR values obtained from the simulations at 

same BHP with best results obtained when applying high amplitude dynamic force of 

19250 N and worst results observed when not using the AGT at all. 
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Figure 2.13- Graphical illustration of MRR results for the simulation of the AGT [28] 

Considering ROP, the results showed the best ROP when using a high amplitude 

vibration force of 19250 N and worst when drilling with no AGT. 

Figure 2.14, shows the graphical results of ROP obtained from simulations    

 

Figure 2.14- Graphical illustration of ROP results for the simulation of the AGT [28] 
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Analyzing the MSE results from the AGT simulations, Gharibiyamchi found that high 

amplitude vibrations also increase drilling performance from the MSE prospective. In 

other words, through the analyses of MSE results, it was found that the high amplitude of 

vibrations consumes less energy to drill a unit volume of rock among the other drilling 

scenarios. An approximately 50 % decrease in MSE value was found in the bottom-hole 

pressure of 2000 psi by using the AGT and accompanying shock tool. Figure 2.15, shows 

the Graphical illustration of MSE results for the simulation of the AGT 

 

Figure 2.15- Graphical illustration of MSE results for the simulation of the AGT [28] 

Considering the Hydropulse simulations and according to the calculations, high amplitude 

suction pulses which correspond to the flow rate (250 GPM) and causes a 198.5 KN 

dynamic vibration force could result in an MRR increase of 55 to 65 % depending on the 

BHP. Figure 2.16, shows the graphical illustration of MRR results of the Hydropulse 

simulations 
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Figure 2.16- Graphical illustration of MRR results of the Hydropulse simulations [28]. 

The ROP values were also calculated for the simulation runs. These values are shown 

graphically in Figure 2.17. 

 

Figure 2.17- Graphical illustration of ROP results of the Hydropulse tool simulations [28]. 
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The ROP results were consistent with the results obtained by calculating MRR values and 

show the same trend. It can be seen that high amplitude of pulsation has the best 

performance. For MSE analysis, high amplitude of pulsation had better performance 

compared to others. It causes the MSE values to be decreased by 50 %. However, similar 

to the MRR and ROP results, the medium and low amplitudes of pulsations do not have 

significant effect on drilling performance. Figure 2.18, shows Graphical illustration of 

MSE results of the Hydropulse tool simulations 

 

 

Figure 2.18- Graphical illustration of MSE results of the Hydropulse tool simulations [28] 
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high amplitude impact force of the Hydropulse tool at the bottom-hole pressure of 1000 

psi was about 2.28× 10
-3

m
3
/s while at the same condition with shock tool, the MRR value 

of 4.88 × 10
-3

m
3
/s was obtained. The effect of shock tool is even more significant for the 

AGT because of the nature of its force profile. Negative forces applied by the tool to the 

cutter are normally damped by the shock tool but in the absence of the shock tool, these 

forces caused the whole assembly to bounce. Finally Gharibiyamchi conclusions can be 

listed as follows; 

- Results of the simulations showed great increase in drilling performance when the 

AGT was used.  

- The results showed that the AGT tool with shock tool above it had better 

performance than the integrated Hydropulse tool and drilling bit.  

- Results of additional simulations revealed the effect of compliance introduced by 

the shock tool on drilling performance. These results showed that when the AGT 

is deployed without the shock tool, it could affect the drilling rate negatively.  

- The simulations suggested the use of shock tool with the Hydropulse assembly as 

the drilling performance was significantly improved when the shock tool was used 

in combination with the Hydropulse tool. It was observed from the simulation 

results that the drilling performance of the Hydropulse tool was increased by more 

than 100 % when shock tool was used in the assembly.  
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Another approach by the ADG members was to design a down-hole source of vibration to 

make use of the good results that were achieved in the previous experiments and 

simulations, and to validate the results in down-hole conditions. Babapour et al [30], 

studied a method to enhance drill cuttings cleaning and ROP  using cavitation pressure 

pulses. The study is based on previous research done by Pronin [31] utilizing the fact that 

a fluid passing a convergent or a divergent venturi, demonstrates significant pressure 

fluctuations due to the cavitation phenomenon. As the fluid passes the vena-contracta, 

according to the Bernoulli’s principle, the fluid velocity increases and hence the pressure 

decreases. If pressure drops below the fluid vapor pressure, cavitation occurs and bubbles 

are created.  Babapour et al, used CFD Simulation software packages such as Flow3D and 

Autodesk CFD to choose the proper sizes of venturis to be used in a cavitation tool 

prototype. The simulations resulted in 3 selections of venturi sizes (4, 8 and 12 mm 

diameter venturis) that could generate cavitation pulses compatible with the range of flow 

used and the prototype dimensions. Figure 2.19, shows the formation of a cavitation 

pulses during simulations flow passes through the venturi. 
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Figure 2.19- 2D presentation of fluid passing venturi and initiation of bubbles growth [30]. 

They then conducted a set of experiments using an experimental setup consisting of two 

pressure sensors at upstream and downstream locations, 3 load cells in a triangular 

combination, and a flow meter to study the output of each venturi and the force output of 

the generated pulses. The flow rate ranged from 10 to 70 USGPM. 

The 12 mm venturi showed a better performance in the preliminary flow tests and was 

producing larger bubble clusters compared to the other sizes.  The force output of the 

system agreed with the calculations done based on theories of fluid jet impacting on a 

plane with an average of 103 lbs at 60 USGPM. Also the pressure pulses patterns were in 
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agreement with the simulations. By applying back pressure, the intensity of the cavitation 

was reduced and the tool stopped performing efficiently. 

The last set of experiments was conducted to study the effect of venturi and axial 

compliance in drilling through synthetic rock made to simulate a formation of medium 

strength (UCS=50MPa). The compliant element used in these experiments consisted of 

two plates with rubber mounts embedded between these two plates in an equilateral 

configuration. The rubber mounts enabled the displacement of the upper plate on the 

lower plate. An 8 mm venturi was also mounted on the drill string behind the bit as the 

cavitation pulses source that is compatible with the available flow rate generated by the 

test pump.  

The experiments results showed that the tool started to cavitate and produced vibrations 

with maximum performance at 22.6 USGPM within a flow rate ranged from 8 to 30 

USGPM. The tool was operated with compliance and without compliance to observe the 

effects of the compliant element. Results showed that when the rigid setup was used, the 

vibrations produced, did not have any significant effect on the ROP. However, with the 

addition of the complaint element, the vibrations produced by the tool, intensified the 

natural vibration of the compliant element and the penetration rate was increased.  

Figure 2.20, shows the effect of compliance on ROP obtained from the experiments. 
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Figure 2.20- ROP for venturi with and without compliant element at different flow rates [30]. 

Figure 2.21 shows the effect of compliance on transforming cavitation pulses into axial 

forces. 

 

Figure 2.21-- ROP of venturi insert with and without compliance [30] 
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Finally the following results were concluded: 

- Cavitation phenomenon could be used to generate pressure pulses that help 

enhance the ROP 

- Vibration Forces are only useful when a compliant element is integrated to the 

drill string to transform the forces into an effective displacement 

- The tested prototype did not perform efficiently in the existence of high back 

pressure 

- The cavitation tool needs a combination of certain flow rate and BHP to perform 

well which limits its use in the field conditions 

2.3.4 Percussion Drilling Impact forces 

Other forms of utilizing axial impact forces and the accompanying generated axial 

vibration are used to penetrate through rock, these are percussion drilling and its 

derivative "Rotary Percussion Drilling", which were found very useful especially in hard 

rock drilling and shallow wells, where applying high WOB is practically difficult due to 

the limited drill string length. 

In early 1970’s, significant research and investigation on percussion drilling was done by 

Hustrulid and Fairhurst [32]. They studied percussion drilling theoretically and 

experimentally. They also studied the energy transfer, drill steel-piston interface, thrust 

force requirements.  Han et al. [33] described the rock failure mechanisms under both 

conventional rotary drilling and percussion drilling conditions. The basic differences 

between these two drilling methods in terms of rock defragmentation are shown in Figure 

2.22. 
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The figure shows that in conventional rotary drilling the rock fails because of axial load 

(WOB) and drill bit rotation. The bit penetrates the rock in the axial direction then shears 

a conchoidal chip as it rotates. In percussion drilling a hammer tool produces a short 

duration high amplitude impact longitudinal  force along the direction of bit movement. 

When the impact force exceeds the compressive strength of the rock, it crushes the rock 

below the bit and creates fractures forming a narrow wedge along the outer boundaries of 

the bit inserts. 

 

Figure 2.22- Rock failure process in rotary and percussion drilling [33] 

Rotary Percussion simply combines both mechanisms to suit the drilling environment in 

deep oil and gas wells where hard formations are encountered and drilling further with 

conventional methods is considered INPT. 
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2.4 Existing Down-hole Vibration and Percussive Systems 

Many research and development teams, companies and industry corporations have made 

an approach to develop down-hole vibration or pressure pulsating systems that can 

enhance Drilling efficiency and drilling speed in challenging down-hole conditions. In 

this section, the discussed tools are powered by drilling fluids, which are pumped into the 

drill string from the surface all the way to the bottom hole. 

2.4.1 Self-oscillation Pulse Percussive Rotary Tool 

The self-oscillation Pulse Rotary Percussive Tool is a hydraulic pulsing tool that 

generates high frequency and low amplitude pulses by using a two-stage self-oscillator 

[34]. Figure 2.23 shows a schematic view of the tool. From the figure, the tool consists of 

two stage self-oscillators that create pressure waves using the acoustic theory concept. 

These pressure waves travel down and act on the effective area of bit driving a piston and 

cause axial force behind the bit. Hydraulic compliance is used in order to convert 

mechanical forces into the displacement. The pressure profile produced by this tool along 

time is shown in Figure 2.24. 

The Self-oscillation Pulse Percussive Rotary tool has been evaluated in various wells in 

China. It was tested for the first time in Songoliao Basin (North China) which is known as 

one of the most challenging zone in Northern China. Results showed a 20 % increase in 

ROP compared to offset wells.  The tool was deployed in the Sichuan and Tarim basins 

and ROP improved by 20 % to 36 % was compared to the offset wells. 
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Figure 2.23- Schematic of the Self-Oscillating Tool [34] 

 

 

Figure 2.24- The pressure profile produced by Self-Oscillating Tool along time [34] 
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2.4.2 Hydro Pulse Tool by Tempress 

The Hydropulse tool is a down-hole drilling vibrator which is used in over-pressurized 

formations to enhance ROP. Introduced by Tempress Technology Inc, this tool works by 

producing suction pulses behind the bit that are converted into impact forces when they 

act on the bit interaction area with the rock. Figure 2.25 shows the schematics of the 

Hydropulse tool and the generated suction pulses. 

 

 

Figure 2.25- Hydropulse Schematic Drawing [35] 

Figure 2.25 shows a poppet valve which periodically stops the flow through the flow 

path. That generates intense suction pulses behind the bit that go through the nozzles and 
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cause sudden pressure drop instantly for a very short time. This pressure drop causes 

upward tensile stresses in the rock surface which helps weaken the rock and eventually 

helps breaking it. Also, the suction pulses can be converted into percussive mechanical 

forces if proper compliance between the tool and the bit is installed, These percussive 

forces can create significant displacement below the bit and can also be used as seismic 

pulses for Seismic While Drilling (SWD) applications as indicated by Kolle [35]. 

Figure 2.26 shows the typical pressure profiles generated by the Hydropulse tool. The 

pulse width is proportional to the length of the flow path. The two way travel time of the 

acoustic wave within the flow path is normally about 3 milliseconds at most of the 

applications but it can vary by varying the length of the flow path, which depends on the 

tool size .   

 

Figure 2.26- Pressure profile generatedbyHydropulse(Flowrate:400GPM,water,83/4”tool)[37] 
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 Full field scale experiments were conducted by Tempress Technology Inc. at Terra Tek 

facilities in the USA, using Mancos shale and Crab Orchard sandstone to evaluate the tool 

performance. An 8 1/8” insert bit along with the first tool were used in the experiments. 

The results of the experiments showed 50 % to 200 % increase in ROP in Mancos shale 

when the Hydropulse tool was deployed. Figure 2.29 shows the drilling performance of 

the Hydropulse tool in comparison with baseline conventional drilling in Mancos shale. 

 

Figure 2.272.26- Mancos shale ROP comparison [35] 
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2.4.3 NOV Agitator Tool 

The Agitator tool was basically designed and introduced to reduce the friction between 

the drill string and the borehole by means of axial vibration oscillations. NOV stated that 

the agitator provides BHA excitement to improve weight transfer to the bit while drilling, 

especially in highly deviated well profiles, which consequently leads to an increase in 

ROP, as shown by McCarthy et al [36]. 

The Agitator tool is driven by a positive displacement power section similar to that of a 

PDM mud motor, the rotor is connected to a valve assembly which creates a cyclic 

motion that produces pressure pulses within the tool by restricting the mud flow path. The 

frequency of the pulses is related to rotor speed which in turns depends on the mud flow 

rate. The Agitator itself only creates pressure pulses; so in order to transform this 

hydraulic energy into a mechanical force, a shock tool is placed above the Agitator tool in 

the BHA when traditional drill pipes are used. In coiled tubing operations only the 

Agitator is required; the coiled tubing expands and contracts as the pressure pulses act on 

it due to its low stiffness.  

The shock tool which is made of a series of compliant elements designed as separate discs 

contains a sealed mandrel that is spring loaded axially, when internal pressure is applied 

to the shock tool the mandrel extends due to pressure acting on the sealing area within the 

tool. When the pressure is removed, the springs return the mandrel to its original position.  

When used directly above the Agitator, the pressure pulses cause the shock tool to extend 

and retract, thus producing axial oscillations.  
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The agitator tool has advantages such as, being fully compatible with MWD/LWD tools; 

significantly decreases stick slip severity and can fit on several types of BHA and suit 

different well profiles. 

One disadvantage of the Agitator tool is that it has a number of mechanical components 

that are rotating and sliding; this could lead to a short lifetime of the tool.  

Several case studies have been done over the last few years to investigate the Agitator 

role in reducing friction and enhancing drilling performance. Skyles et al [37] conducted 

a case study using the Agitator in the drilling of Barnett shale in Tarrant County, Texas. 

They observed a 20 % increase in ROP when the Agitator was used in the curve section 

and more than 60 % improvement when the tool was deployed in the curve, lateral and 

build sections of the well. Robertson et al [38] conducted a series of field tests in the 

Ullrig test facilities in Norway. The results showed an improvement of 70 to 90 % in 

weight transfer. Rasheed [39] conducted a case study on the effect of the agitator in 

maintaining stable tool face orientation, increasing weight transfer, and reducing motor 

stalling. He observed that there was an increase in ROP from 1.5 m/hr to 4.5 m/hr as well 

as improvement in the  steer ability of  motor. Figure 2.28 shows a schematic of the 

Agitator Tool made by NOV. 

 

 

Figure 2.28- Agitator tool by NOV [39] 
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After reviewing the research done since the 1950s, in the area of enhancing the ROP and 

the drilling efficiency in general, using vibration. It is clear that there's a window to invest 

more time and effort in order to utilize the VARD technology to boost the drilling speed 

and efficiency. In the next chapters, a new VARD mechanism is introduced and tested to 

show that the axial vibration can be used in a new way to enhance drilling efficiency. 
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3 Pressure Pulses Generator (PPG) 

In order to investigate the effect of vibration introduced by periodic pressure pulses on 

drilling performance, a source of pressure pulses was needed. A selection was then made 

to use a pressure pulse generating down-hole tool that uses periodic restriction of fluid 

flow passing through it to generate cyclic pulses of pressure. The tool was designed and 

manufactured by a sponsoring company, as a friction reducing down-hole tool used in 

highly deviated wells, and installed in the upper part of the BHA hundreds of feet above 

the bit. However, in this study the purpose is to use the generated pressure pulses right at 

the bit by installing the PPG directly above the bit. In this chapter, a description of the 

Pressure Pulses Generator (PPG) operational mechanism along with an experimental 

setup to test its performance are presented. The testing results will be then presented in 

Chapter 4. 

3.1 The PPG Description 

In this study, the idea is to use the design of the PPG to fluctuate the forces at the bit-rock 

interface by fluctuating the fluid pressure acting on a fixed area. The main interest to 

fluctuate the forces generated at the bit in order to generate axial vibration when a 

compliant element is added above the bit or the PPG in the BHA. 

The  PPG consists of two sections, the power section and the valve assembly section. The 

power section is mainly similar to that of the Positive Displacement Mud Motor; it 

essentially converts hydraulic power from the drilling fluid into mechanical power to 

drive the valve. The power section is comprised of two components; the stator and the 

rotor. The stator consists of a steel tube that contains a bonded elastomer insert with a 
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lobed, helical pattern bore through the centre. The rotor is a lobed, helical steel rod. When 

the rotor is installed into the stator, the combination of the helical shapes and lobes form 

sealed cavities between the two components. When drilling fluid is forced through the 

power section, the pressure drop across the cavities causes the rotor to turn inside the 

stator. This is how the valve inside the valve assembly is turned. By the nature of the 

design, the stator always has one more lobe than the rotor and in the PPG case, the stator 

has two lobes and the rotor is made up of only 1 lobe. Figure 3.1, shows a schematic of 

the PPG power section with the flow passing through it, where Figure 3.1 A is a 2D side 

view section and Figure 3.1 B is a 3D Top view section through the power section of the 

PPG 

 

Figure 3.1- A schematic figure for the PPG power section 

It is also shown in the figure that the one lobe rotor has three possible positions to move 

to within the two lobes stator. The rotor is connected to the fluid control valve through a 

set of bearings which convert the erratic movements of the rotor into a steady cyclic 

motion that is then used to drive the fluid control valve. 
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Inside the valve section there is a fixed plate that has an inside diameter similar to the 

valve's diameter, and is used a partial fluid restrictor when the centers are not coincided. 

Figure 3.2, shows a drawing that describes the fixed plate and the valve dimensions. 

 

Figure 3.2- A drawing for the rotating valve and the fixed plate inside the valve section 

 

As mentioned earlier the rotor drives the rotating valve into three different positions, the 

flow area is maximized when both the centers of the rotating valve and the fixed plate 

coincide, meaning the pressure drop across the tool is minimum. On the other hand when 

the rotating valve is located in the other two positions, extreme right or extreme left the 

flow area is minimized leading to an increase in the pressure drop across the tool. The 

fluctuation in pressure values can be then seen as pressure pulses with a frequency that 

depends on the rate of the flow passing through the tool. 
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Figure 3.3, shows a schematic of the pressure fluctuations when the rotating valve 

position varies relative to the fixed plate, where P is the pressure drop across the tool in 

psi and t is time in seconds. 

 

Figure 3.3- A Schematic of the pressure drop fluctuation in response to the valve position 
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3.2 The PPG Tool Testing 

Prior to conducting any drilling tests to evaluate the effect of the generated pressure 

pulses on drilling performance when the pulses act as vibration forces, it was necessary to 

understand the tool's performance at various flow rates. A set of experiments was 

conducted to evaluate the pressure pulses generated at different flow rates along with the 

forces generated when those pulses acted on a fixed area. In this section the experimental 

testing setup and the experimental procedures used to test the PPG are presented, while 

the results are discussed in Chapter 4. 

3.2.1 Experimental Setup  

The experimental setup consisted mainly of a testing frame, a mobile Data AcQuisition 

(DAQ) system, a group of sensors and a pumping unit. Each of the setup components is 

described thoroughly as follows; 

3.2.1.1 Testing Frame      

The testing frame was built to install the 6 feet long PPG tool (OD= 2 1/8") on one side of 

the frame and provide a network of pipes and valves to control the flow passing through 

the PPG tool and attach some of the required sensors on the other side of the frame. As 

shown in Figure 3.4, the PPG was installed vertically in a position at which the flow 

travels upward through the tool. The lateral motion of the PPG tool was restricted by 

three V-shaped restraints on both sides of the tool. Beneath the PPG a triangular plate was 

installed as shown in figure to ensure the forces exerted by the PPG are equally 

transferred to the load cells used to record these forces. At the outlet of the tool a T-Piece 
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pipe was installed, which represents an area upon which the pressure pulses act when the 

pulses leave the PPG tool. 

 

Figure 3.4- Testing Frame for the PPG evaluation experiments 

The pipes network also contained a pressure relief valve to release the pressure by 

diverting the flow directly to the outlet pipe if the pressure exceeded a pre-set value for 

safety reasons, a Y strainer to filter the water prior passing the PPG tool, a manual bypass 

valve to divert flow to the outlet pipe if needed and an analogue pressure gauge to 

monitor pressure. 
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3.2.1.2 Data Acquisition (DAQ) system 

Sensors on  the testing frame were connected to a multi-channel DAQ system, which was 

designed to be portable in order to operate outside the laboratory and tough in order to 

withstand tough weather conditions and possible harsh transportation. The power supply 

system for the DAQ is waterproof when sealed and water resistant when open. The DAQ 

system has a custom cable to plug in to the power supply of 110 V input as well as three 

different voltage outputs from the system. These three outputs are 24, 9-12 and 5 Volts. 

This DAQ has a NI9188 Chassis built in with 16 channels and a NI9237 card for 

acquiring the data . The DAQ is connected to a laptop using an Ethernet connection. 

Figure 3.5, shows a photograph taken for the DAQ system in operation. 

 

Figure 3.5- Mobile DAQ system and its power supply. 
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3.2.1.3 Sensors 

To conduct  the experiments, 6 sensors were required. Two pressure sensors to measure 

the inlet or the upstream pressure and outlet or downstream pressure fluctuations. Three 

load cells in a triangular configuration were used to monitor and record the forces 

generated by the tool, and a flow meter was also used to measure and control the flow rate 

according to the experimental plan. To measure the outlet pressure, a pressure transducer 

with operating range of 0 to 1500 psi was used. For the inlet pressure fluctuations, 

operating range of the pressure transducer was from 0 to 4000 psi. Each load cell had a 

capacity range of 5000 lbs. Therefore, when they were added together, the load capacity 

of the system became 15000 lbs. As shown in Figure 3.6, the PPG tool is placed in the 

center of the plate and the generated force is divided among three load cells. Adding 

measured loads from each load cell, the total force generated by the tool was calculated.  

 

Figure 3.6- Triangular configuration for load cells. 
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3.2.1.4 Pumping Unit 

Input flow was supplied by a mobile pumping unit as shown in Figure 3.6. The unit has 

the capability to deliver up to 70 USGPM with a maximum pressure of 2500 psi. It 

utilizes a jet Rodder water pump with a jack hammer action. This water pump is designed 

to be driven hydraulically and has a one-to-one hydraulic to water ratio. For every gallon 

of hydraulic oil pumped, one gallon of water is pumped 

 

 

Figure 3.7- Pumping Unit 

 

The pump is simple to operate and requires only five moving parts. It has a hydraulic 

cylinder on one side of a sealed center block and a water cylinder on the other side, as 

shown in Figure 3.8. 
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 A single shaft with specially constructed piston heads is slowly driven back and forth. 

Hydraulic oil is pumped into the hydraulic section, driving the piston the length of the 

water barrel. As that occurs, water enters the water barrel behind the moving piston 

through a check valve. When the piston reaches the end of its stroke, a sensing device 

reverses the piston, sending it back to its original position and at the same time expelling 

the water through the directional check valve. As this occurs, water is being introduced 

into the water barrel on the other side of the piston. The pump is constantly loading and 

expelling hydraulic oil and is constantly loading and expelling an equal amount of water. 

 

 

Figure 3.8- Jet Rodder Water Pump as sketched using SolidWorks 
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3.2.2 Experimental Plan and Procedures 

In order to evaluate the performance of the PPG tool, which in the frame of these testing 

experiments refers to the ability of the tool to generate pressure pulses and consequently 

vibration forces, it was necessary to test it with a range of fluid flow rates upon which the 

magnitude and frequency of the generated pressure pulses are dependant. Water was used 

as the testing fluid, because the pump used was not designed to handle other fluids. Using 

only water would not affect the experimental results, considering that similar behavior 

could be obtained with heavier fluids if a more powerful pump is used. Ten runs 

including five repeats were conducted to test the PPG, the maximum flow rate was 70 

US-GPM considering the maximum pumping capacity of the pumping unit, while the 

minimum was considered 30 GPM to investigate the tool's output at a slightly lower flow 

rate than the recommended 40 US-GPM by the PPG manufacturer. Prior to  conducting 

the runs, the PPG tool was replaced by an empty pipe to measure the influence of the 

pumping unit on the recorded readings,  also ten runs were conducted on the empty pipe, 

including five repeats to ensure the accuracy of the recorded data. 

After taking into account the effect of the pumping unit the PPG was then installed on the 

frame. prior to recording data, flow was bypassed to the outlet directly using the manual 

bypass valve to ensure the desired flow rate was reached and the flow was steady enough, 

Then the inlet and outlet valves of the frame were opened and the bypass valve was 

closed to let the water pass through the tool. After the tool operated for about one minute, 

recording started for 20 seconds with sampling rate of 3000 Hz.  
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Once the desired time for the recording was reached and enough data was recorded, the 

bypass valve was opened and the tool was isolated again. For the next flow rate level, the 

same procedures were repeated. Table 3.1, shows the summary of the conducted runs on 

both the empty pipe and the PPG tool. 

 

Table 3.1- Experimental runs for  testing the PPG tool 
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4 The PPG Testing Results  

In this chapter the results obtained from the experiments conducted to test the PPG are 

presented. As mentioned in Chapter 3, the purpose was primarily to measure the 

amplitude and frequency of the pressure pulses generated by the PPG tool, and measure 

the forces generated when these pulses act on a fixed area within the BHA. The results 

are presented in two sections, the pressure data analysis section, and the forces data 

analysis section. Both sections also contain the spectral analysis of the pressure pulses 

and the generated forces. The results from the empty pipe runs are presented first, then 

followed by the results from the PPG tool runs. 

4.1 Pressure Data analysis   

The first task in the pressure analysis job was to determine the effect of the pumping unit 

on the recorded data. It was found that the pump caused short time fluctuations in 

pressure due to its mechanism, these pressure fluctuations were dependant on the flow 

rate used, and the back pressure applied to the pump when the PPG tool was installed. As 

a result the pump effect was similar in the empty pipe case and the PPG tool case trend 

wise, but the amplitude and the duration of these effects differed in each case. These 

effects are described thoroughly in the next section. The other tasks included analyzing 

the amplitude and frequency of the pressure pulses generated when the PPG was operated 

at the flow rate range used, and finding a relationship between the flow rate, amplitude 

and the frequency of the pressure pulses. 
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4.1.1 Empty Pipe Pressure Data Analysis 

Starting with 113 Liters Per Minute (LPM) flow rate the pumping unit effect  was clearly 

seen in the pressure data as shown in Figure 4.1. A pressure drop of 8.5 psi occurred for 

0.4 second before the pressure stabilized and got back to normal, this effect was repeated 

in the pressure data every 4.35 seconds. 

 

Figure 4.1- Empty pipe pressure data at 113 LPM 

 

At 151 LPM, the pumping unit caused a 9.6 psi pressure drop for a duration of 0.38 

second before the pressure stabilizes and went back to normal, the effect was encountered 

every 3.15 seconds, as shown in Figure 4.2. 
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Figure 4.2- Empty pipe pressure data at 151 LPM 

At 190 LPM the pumping unit caused a 13.4 psi pressure drop for a duration of 0.34 

seconds, and the effect could be seen every 3.1 seconds as shown in Figure 4.3. 

 

Figure 4.3- Empty pipe pressure data at 190 LPM 
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At 227 LPM the pumping unit caused a 16 psi pressure drop for a duration of 0.29 

seconds, and the effect could be seen every 2.3 seconds as shown in Figure 4.4. 

Figure 4.4- Empty pipe pressure data at 227 LPM 

At 265 LPM the pumping unit caused a 18 psi pressure drop for a duration of 0.25 

seconds, and the effect could be seen every 2 seconds as shown in Figure 4.5.

 

Figure 4.5- Empty pipe pressure data at 265 LPM 
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The spectral analysis for the pressure data using all the flow rates is shown in Figure 4.6. 

The data shows a signal with a frequency of 462 Hz. That signal was believed to be a 

high frequency cavitation occurring in the system.  

 

Figure 4.6- Spectral analysis for the empty pipe signal at 5 different flow rates 

The summary of the pumping unit effects encountered are summarized in Table 4.1, 

shown below. 

Table 4.1- Summary of the pumping unit effect on the empty pipe pressure data 

Flow Rate Pressure Drop  Duration Occurrence time 

LPM psi sec sec 

113 8.5 0.4 4.35 

151 9.6 0.38 3.15 

190 13.4 0.34 3.10 

227 16 0.29 2.3 

265 18 0.25 2 
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4.1.2 PPG Pressure Data Analysis 

When the PPG was installed, it was observed that the outlet pressure sensor was reading 

lower pressure values than the inlet pressure although the frequency and the pressure 

behaviors were quite similar. Three reasons could explain the difference, the first is that 

the outlet pressure sensor was installed on the side of the T-Piece upon which the pressure 

pulses act and the pressure pulses were dispersed once they act on the front area. The 

second is that the outlet on the side of the T-Piece was connected directly to atmospheric 

pressure, which could effectively weaken the pressure pulses as they leave the tool, and 

the third was that in order to connect the T-Piece a cross-over connection was installed, 

which changed the diameter of the flow path from 1 inch to 2 inches, contributing to 

weakening the pressure pulses at the outlet. 

The experiments started with 113 LPM flow rate, and the PPG tool started pulsing once 

the system pressure became stable. By analyzing the inlet pressure sensor data it was 

observed that the pressure pulses amplitude was 180 psi as shown in Figure 4.7, the 

pumping unit effect was also encountered with a pressure drop of 44 psi for a duration of 

0.32 second, and this effect occurred every 5 seconds. 

On the other hand it was found that the outlet pressure sensor data showed a pulse 

amplitude of 40 psi and the pumping unit effect was much weaker than its effect on the 

inlet sensor pressure data. The pressure data from the outlet pressure sensor are shown in 

Figure 4.8, followed by the spectral analysis of the signal of both sensors in Figure 4.9. 

For the rest of the analysis the inlet pressure sensor data will be presented as a more 

accurate source for the reasons mentioned above. 
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Figure 4.7- Inlet Pressure Data for the PPG tool at 113 LPM 

 

Figure 4.8- Outlet Pressure Data for the PPG tool at 113 LPM 
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The spectral analysis of the pressure data at 113 LPM showed that the dominant 

frequency of the pulses was 7.3 Hz while other frequencies were harmonics of the 

dominant frequency. Signals from both sensors had the same frequency response as 

shown in Figure 4.9 

Figure 4.9- Spectral analysis of the pressure signals at 113 LPM 

  

At 151 LPM, the pulse pressure increase was 250 psi peak to peak pressure as shown in 

Figure 4.10, the pumping unit effect was encountered with a pressure drop of 100 psi for 

a duration of 0.31 second and this effect occurred every 3.84 seconds. 
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Figure 4.10-  Inlet Pressure Data for the PPG tool at 151 LPM 

The spectral analysis showed that the dominant frequency was 10.4 Hz while the other 

frequencies were harmonics of the dominant frequency, as shown in Figure 4.11.  

 

Figure 4.11- Spectral analysis of the pressure signals at 151 LPM 
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At 190 LPM, the pulse pressure increase was 300 psi peak to peak pressure as shown in 

Figure 4.12, the pumping unit effect was encountered with a pressure drop of 163 psi for 

a duration of 0.30 second and this effect occurred every 3.06 seconds. 

Figure 4.12- Inlet Pressure Data for the PPG tool at 190 LPM 

The spectral analysis showed that the dominant frequency of the pulses was 14.5 Hz 

while the other frequencies were harmonics of the dominant frequency as shown in 

Figure 4.13.  

 

Figure 4.13- Spectral analysis of the pressure signals at 190 LPM 
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At 227 LPM, the pulse pressure increase was 410 psi peak to peak pressure as shown in 

Figure 4.14, the pumping unit effect was encountered with a pressure drop of 231 psi for 

a duration of 0.25 second and this effect occurred every 2.45 seconds. 

Figure 4.14- Inlet Pressure Data for the PPG tool at 227 LPM 

In Figure 4.15, the spectral analysis showed that the dominant frequency of the pulses 

was 17.64 Hz while the other frequencies were harmonics of the dominant frequency. 

 

Figure 4.15- Spectral analysis of the pressure signals at 227 LPM 
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At 265 LPM, the pulse pressure increase was 570 psi peak to peak pressure as shown in 

Figure 4.16, the pumping unit effect was encountered with a pressure drop of 185 psi for 

a duration of 0.23 second and this effect occurred every 2.2 seconds. 

 

Figure 4.16- Inlet Pressure Data for the PPG tool 265 LPM 

In Figure 4.15, the spectral analysis showed that the dominant frequency of the pulses 

was 20.5 Hz while the other frequencies were harmonics of the dominant frequency. 

 

Figure 4.17- Spectral analysis of the pressure signals at 265 LPM 
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From the obtained data which is summarized in Table 4.2, a relationship among the 

pressure pulses frequency, pressure magnitude and the flow rate value could be derived. 

It was found that the pulsing frequency had a linear relationship with the flow rate used, 

as shown in Figure 4.18. while the pressure pulse magnitude was found to have a direct 

proportionality with the square value of the flow rate as shown in Figure 4.19. 

Table 4.2- Summary of pressure and frequency data of the PPG 

Flow Rate Pressure pulse amplitude Frequency of pulsation 

LPM psi Hz 

113 180 7.3 

151 250 10.4 

190 300 14.5 

227 410 17.64 

265 570 20.5 

 

 

Figure 4.18- Relationship between pulsing frequency and flow rate used 
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Figure 4.19- Relationship between the pressure drop and the flow rate used 

4.2 Force Data analysis   

When the empty pipe was installed there was practically no force encountered, even with 

the pump effect as the low frequency pulses coming from the pump did not introduce 

enough force to move the pipe or show any response on the data recorder. when the PPG 

was installed, at 113 LPM the pulses acting on a 1 square inch area applied forces on the 

load cells immediately. as mentioned in Chapter 3 the sum forces on the 3 load cells 

represented the overall value of force applied by the pressure pulse generated by the PPG. 

At 113 LPM the force generated was  about 175 N considering the average 75% of peak 

values  shown in Figure 4.20. While the spectral analysis of the 3 load cells showed that 

the forces dominant frequency totally agreed with the dominant frequency of the pulses at 

7.3 Hz as shown in Figure 4.21. 
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Figure 4.20- Forces generated by the PPG at 113 LPM 

 

Figure 4.21- Spectral analysis of the forces encountered by the load cells at 113 LPM 
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At 151 LPM the force generated was  about 330 N as shown in Figure 4.22. While the 

Spectral analysis of the 3 load cells showed that the forces dominant frequency totally 

agreed with the dominant frequency of the pulses at 10.4 Hz as shown in figure 4.23. 

 

Figure 4.22- Forces generated by the PPG at 151 LPM 

 

Figure 4.23- Spectral analysis of the forces encountered by the load cells at 151 LPM 
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At 190 LPM the force generated was  about 660 N as shown in Figure 4.24. While the 

spectral analysis of the 3 load cells showed that the forces dominant frequency totally 

agreed with the dominant frequency of the pulses at 14.5 Hz as shown in Figure 4.25. 

 

Figure 4.24- Forces generated by the PPG at 190 LPM 

 

Figure 4.25- Spectral analysis of the forces encountered by the load cells at 190 LPM 

0 50 100 150 200
0

5

10

15

20

 

 

X: 14.5

Y: 19.4

Frequency (Hz)

|F
o
rc

e
 (

N
) 

|

Load Cell # 1

Load Cell # 2

Load Cell # 3



 

 

78 

 

 

At 227 LPM the force generated was  about 1000 N as shown in Figure 4.26. While the 

spectral analysis of the 3 load cells showed that the forces dominant frequency totally 

agreed with the dominant frequency of the pulses at 17.64 Hz as shown in Figure 4.27. 

 

Figure 4.26- Forces generated by the PPG at 227 LPM 

 

Figure 4.27- Spectral analysis of the forces encountered by the load cells at 227 LPM 
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At 265 LPM the force generated was  about 1700 N as shown in Figure 4.28. While the 

spectral analysis of the 3 load cells showed that the forces dominant frequency totally 

agreed with the dominant frequency of the pulses at 20.5 Hz as shown in figure 4.29. 

 

Figure 4.28- Forces generated by the PPG at 265 LPM 

 

 Figure 4.29- Spectral analysis of the forces encountered by the load cells at 265 LPM 
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The pump effect was seen for the same duration encountered with the pressure data with a 

magnitude similar to the pressure reduction. However the values mentioned for forces, 

(which are summarized in Table 4.3) were taken from the stable signal after the pump 

effect vanished.  

Table 4.3- Summary of the forces data for the PPG 

Flow Rate Total Force  Frequency of forces 

LPM N HZ 

113 175 7.3 

151 330 10.4 

190 660 14.5 

227 1000 17.64 

265 1700 20.5 

 

 

After conducting several characterization experiments, it was found that the PPG 

managed to introduce fluctuating forces by restricting the fluid flow through the tool.  

The frequency and intensity of the pressure pulses and forces were found proportional to 

one variable, which is fluid flow rate. 
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5 Experimental Setup and Plan for Drilling Experiments 

After characterizing the PPG tool, and understanding the output pressures and forces 

introduced by the PPG. The next step was to investigate the effect of the generated pulses on 

drilling using PDC bits. In this chapter the setup used to conduct the laboratory drilling 

experiments is presented, along with the experimental plan designed to study the overall 

performance effect when using the PPG and when no PPG tool is introduced to the setup. In 

these drilling experiments, synthetic rock materials were used, which are also described in 

this Chapter. 

5.1 Drilling Setup 

The setup mainly consists of three main components, the pumping unit, the drill rig that 

has the drill motor and all the sensors mounted on, and the data acquisition system that 

collects all the information while drilling. The drill rig also has the capability of varying 

its system compliance from completely rigid into highly compliant. Each of these 

components is described thoroughly in the next few pages. 

5.1.1 Pumping unit 

The pumping unit includes a 20 kW motor installed on a triplex pump that can pump 

water with a maximum flow rate of 163 LPM  and maximum pressure of 6900 kPa. which 

was considered sufficient enough to provide flow to operate the tool. 

 The pump  also includes a Variable Frequency Drive (VFD) to control the flow rate by 

adjusting the rotary speed of the motor. A water tank, with a capacity of 1000 L, is put on 

top of the pump assembly to provide drilling fluid. The pumping unit is equipped with 
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sensors such as flow meter, and water tank level meter to control and record the flow 

conditions. Figure 5.1 shows the pump assembly which is connected to the rig by a flow 

line.  

 

 

Figure 5.1- Pumping Unit 
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5.1.2 Drill Rig 

The drill rig used for the experiments is shown in Figure 5.2. and as shown in the figure, 

the rig dimensions are relatively small (2m in height) and the PPG tool could not be 

mounted on the rig, but the pulses it generated were transferred to the bit through a 

flexible hose. The PPG was mounted on the ground with flexible hoses connecting it to 

the pump and the drill rig. 

 Detailed descriptions of each part of the rig is presented in this section, with figures to 

illustrate each component. 

 

 

Figure 5.2- Drill Rig used for drilling experiments 
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As shown in Figure 5.3, the drill rig has a motor as a rotary head which can provide a 

maximum bit power of 4 kW. The maximum thrust and torque of the motor are 3500 N 

and 80 Nm respectively. The motor can provide two different  rotary speeds, 300 and 600 

RPM, the RPM can be chosen using a switch located on the side of the motor.  

A current meter is attached to the motor to show the current drawn by the motor at all 

times. the rig has a wheel on which suspended load is placed to provide weight on bit 

required for drilling, providing a linear relationship between the suspended weight and 

the actual weight on bit given in Kg as: 

WOB= 11.20 X (Weight Suspended) + 59.42.    (5-1) 

 

 

Figure 5.3- Drill Rig Motor 
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In Figure 5.4, the swivel that connects the drill motor to the drill string, and provides a 

connection to the triplex pump via a rubber hose is shown. The swivel also has a slot to 

mount a pressure sensor  to record the inlet pressure of fluid before it  goes to the bit. 

Water flows from the pump to a rubber hose then through the swivel then to the drill 

string and the PDC bit connected to its end. 

 

Figure 5.4- Swivel assembly 

The drilling specimen is placed inside the pressure cell, which is used to control BHP. The 

length of the pressure cell is 12 inches and it can take 8 inches long rock specimens, the bit 

and drill string rotate inside the cell and the cell is sealed by a rotary seal installed at the top 

of the cell. Inside the pressure cell there are 3 metal bars to keep the rock centered and a disk 

that holds the rock in place. 
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Water and cuttings leave the cell through a flexible hose at its outlet then through a filter to 

collect the cuttings, the filter is equipped with pressure gauges to detect any clog. The 

pressure cell is connected to a pressure relief valve, which is pre-set to 300 psi, at which the 

valve opens to release the excess pressure.  

The cell is also connected to a needle valve to control the bottom hole pressure value, and a 

slot for a pressure sensor to record the cell's pressure. Figure 5.5, shows the pressure cell, the 

drill string inside the cell, the flexible hose outlet, the way the sample is placed inside the 

pressure cell, and the water filter. In Figure 5.6, the valves connected to cell are shown as 

well as the system outlet from which the water is re-circulated back to the water tank. 

 

Figure 5.5- Pressure cell assembly 
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Figure 5.6- Pressure Cell Valves 

In Figure 5.7, The direction of flow is illustrated by a simple diagram, starting from the 

triplex pump, flow travels to the swivel first and ends at the pump after the water is 

filtered. As shown in the figure, there are two pressure check points in the system at 

which clogs or higher pressure could be encountered. In case of clogged filter, the filter 

was disassembled and cleaned. while in the case of pressures higher than 300 psi, the 

relief valve would be opened to release the cell pressure. 
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Figure 5.7- Flow Direction through the drilling setup 

5.1.3 Drill Bit 

A two cutter PDC bit with diameter of 35 mm was used for the drilling experiments. 

The cutters are brazed to a shank that contains a single nozzle of 7 mm in diameter.  

Each cutter has the face angle of 25° and back-rake angle of 25°. The cutters also 

constitute a chamfer with a back-rake angle of 70° and a depth of cut equals to 0.15 mm. 

A schematic  of the cutter is shown in Figure 5.8 

Also from the figure each cutter has two regions of penetration with respect to the 

geometry of a rock-bit interface. The first region is the DOC1 when the chamfer is 

penetrating, and the second region is the DOC2 when the face of the cutter is penetrating. 
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Figure 5.8- Bit, cutter schematic and shank design 

5.1.4 Sensors and Data Acquisition System 

In order to be able to analyze the drilling performance of the PPG, many parameters were 

needed to be recorded, including, ROP, WOB, inlet and outlet pressures, drill motor 

power consumption, BHP, and vibration magnitude and frequency. These parameters 

were measured using various sensors, as described below. To measure ROP, a tension 

cable Linear Variable Displacement Transducer (LVDT) was used to measure the 

displacement of the drill head downwards while penetrating the rock. WOB was 

measured by a pan cake load cell located beneath the pressure cell where the rock is set.  
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Inlet and outlet pressures were measured using two identical pressure sensors rated at 

1500 psig. The drill motor power consumption was measured using a current meter which 

also had a gauge to show the current consumption at all times. The vibration of the whole 

setup was measured by an accelerometer attached above the drill motor. The rock 

vibration was measured by another LVDT placed beneath the plate to which the drill cell 

is attached. Figure 5.9, Shows all sensors used for the drilling experiments, while Figure 

5.10, shows the computer/DAQ assembly used to record all data. 

The DAQ used was a sophisticated multi channel DAQ with sampling frequency of 1000 

Hz. The software used to record and monitor the measurements was Lab View V2.2. 

 

 

Figure 5.9- Sensors 
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Figure 5.10- DAQ system and computer systems used for data recording 

5.1.5 Compliance  

While designing the drilling experiments and the setup to conduct them, it was necessary 

to give the system the axial compliance to vibrate responding to the axial forces 

introduced by PPG. The rig dimensions and limitations did not allow installing a 

compliant element behind the bit to transform the forces into axial vibrations. that lead to 

design a vibrating system beneath the rock to vibrate the rock instead of the bit.  
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The system is made up of two plates, one of them is fixed while the other is free to move. 

Between the two plates are  rubber sandwich mounts used to connect the two plates, in 

other words the mounts act as springs that get compressed when loaded and are stretched 

when subjected to tension. The number of mounts and the design of each compliance 

pattern is based on the fact that parallel springs can be assumed as a single spring with 

higher stiffness.  

The following formula shows how the total stiffness of each pattern is calculated. 

K total = K1 + K2 + …+ Kn (5-2) 

Where n, and K are the number of mount in each pattern and stiffness respectively. Since 

all used mounts in each pattern are identical, the above formula can be rewritten as  

K total = n × K (5-3) 

In order to calculate the K value of a single rubber mount, an experiment using a loading 

INSTRON Machine-Model 5585H was conducted to measure the amount of reduction in 

the mount height (displacement) when subjected to increasing load force. The setup used 

is shown in Figure 5.11, while the results of the test are shown in Figure 5.12 .  

The K value which is the slope of the curve obtained when plotting the load Vs 

displacement values was found to be 0.1877 KN/mm. 



 

 

93 

 

 

 

Figure 5.11- INSTRON Machine-Model 5585H 

 

Figure 5.12- Load versus Displacement Curve 
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During the drilling experiments, a rigid pattern and two different compliance patterns 

were used. the compliance patterns were 6 mounts and 8 mounts with a total K values of 

1.1262 KN/mm and 1.5016 KN/mm respectively. Figure 5.13, shows the different 

compliance element patterns used in the drilling experiments. 

 

 

Figure 5.13- Different compliance patterns used. 
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5.1.6 Synthetic Rock Specimens 

In order to prepare a rock sample for drilling tests, concrete slurry was molded in 

cylinders with a diameter of 100 mm. The concrete slurry included aggregates, cement, 

super plasticizer and water. The ratio of each component is mass based and is determined 

from unpublished study done by ADG member Zhen Zhang. The samples were left to 

cure in custom tanks submerged in water for about 45 days before the experiments, as 

shown in Figure 5.14 The physical properties of the rock were determined  using core 

plugs with a diameter of 46 mm, which were extracted from the center of the prepared 

rock specimen using an NQ diamond coring bit. The elastic moduli and strength of the 

intact specimen were measured according to the ASTM standard D7012-10 [40]. 

Table 5.1 shows properties of the rock specimens tested. Figure 5.15 the surface of the 

rock after surface grinding. The surface represents the distribution of the aggregates in the 

matrix of the specimen. On the day of the experiments a rock sample was tested under 

unconfined compression in a stiff loading frame, and provided a UCS of 51 MPa. 

 

 

Figure 5.14- 4" drilling specimens curing in water tanks 
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Table 5.1- Physical Properties of the rock samples 

Property  Value 

UCS 51 MPa 

Tensile Strength 5.4 MPa 

Young's Modulus  29 GPa 

Poisson Ratio 0.15 

Effective Porosity 29% 

Internal Friction Angle  40° 

 

 

Figure 5.15- Rock surface after grinding 
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5.2 Experimental Plan 

The drilling experiments were designed to investigate the effect of the pressure pulses on 

drilling, by varying drilling parameters and by comparing the performance data with and 

without utilizing the PPG tool. All drilling parameters were varied during the experiments 

except for the Motor RPM, considering that the PPG mechanism doesn't depend on RPM 

in all cases, it was assumed that the motor RPM is not directly related to the effect of the 

pressure pulses. Three rounds of experiments were conducted to study the effect of 

pressure pulses. The first round was designed to study the PPG performance with no 

system compliance introduced, at both atmospheric pressure and 150 psig BHP. Table 5.2 

shows the matrix of the 28 runs conducted in the first round. 

In the second round, 27 runs were conducted to study the effect of the two different 

compliance setups with 6 and 8 rubber mounts installed, these are shown in Table 5.3. 

Table 5.2- First round of drilling Experiments 

Run Number Flow Rate(LPM) 
WOB 
(N) 

Tool Compliance (mm/KN) Back Pressure (psi) 

1 
160 1152 

PPG Rigid Minimum 

2 
160 1428 

PPG Rigid Minimum 

3 
160 1481 

PPG Rigid Minimum 

4 
160 1650 

PPG Rigid Minimum 

5 
160 1802 

PPG Rigid Minimum 

6 
160 1966 

PPG Rigid Minimum 

7 
160 2295 

PPG Rigid Minimum 
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8 
160 1152 

PPG Rigid 150 

9 
160 1428 

PPG Rigid 150 

10 
160 1481 

PPG Rigid 150 

11 
160 1650 

PPG Rigid 150 

12 
160 1802 

PPG Rigid 150 

13 
160 1966 

PPG Rigid 150 

14 
160 2295 

PPG Rigid 150 

15 
160 1152 

None Rigid Minimum 

16 
160 1428 

None Rigid Minimum 

17 
160 1481 

None Rigid Minimum 

18 
160 1650 

None Rigid Minimum 

19 
160 1802 

None Rigid Minimum 

20 
160 1966 

None Rigid Minimum 

21 
160 2295 

None Rigid Minimum 

22 
160 1152 

None Rigid 150 

23 
160 1428 

None Rigid 150 

24 
160 1481 

None Rigid 150 

25 
160 1650 

None Rigid 150 

26 
160 1802 

None Rigid 150 

27 
160 1966 

None Rigid 150 

28 
160 2295 

None Rigid 150 
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Table 5.3- Second round of drilling experiments 

Run 
Number 

Flow 
Rate(LPM) 

WOB 
(N) 

Tool 
Compliance 

(mm/KN) 
Back Pressure 

(psi)  

29 
160 1152 

PPG 0.888 Minimum 

C
o

m
p

lia
n

ce
 e

ff
ec

t 
- 

6
 M

o
u

n
ts

 

30 
160 1428 

PPG 0.888 Minimum 

31 
160 1481 

PPG 0.888 Minimum 

32 
160 1650 

PPG 0.888 Minimum 

33 
160 1802 

PPG 0.888 Minimum 

34 
160 1966 

PPG 0.888 Minimum 

35 
160 2295 

PPG 0.888 Minimum 

36 
160 1152 

None 0.888 Minimum 

37 
160 1428 

None 0.888 Minimum 

38 
160 1481 

None 0.888 Minimum 

39 
160 1650 

None 0.888 Minimum 

40 
160 1802 

None 0.888 Minimum 

41 
160 1966 

None 0.888 Minimum 

42 
160 2295 

None 0.888 Minimum 

43 
160 1152 

PPG 0.666 Minimum 
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44 
160 1428 

PPG 0.666 Minimum 

45 
160 1481 

PPG 0.666 Minimum 

46 
160 1650 

PPG 0.666 Minimum 

47 
160 1802 

PPG 0.666 Minimum 
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48 
160 1966 

PPG 0.666 Minimum 

49 
160 2295 

PPG 0.666 Minimum 

50 
160 1152 

None 0.666 Minimum 

51 
160 1428 

None 0.666 Minimum 

52 
160 1481 

None 0.666 Minimum 

53 
160 1650 

None 0.666 Minimum 

54 
160 1802 

None 0.666 Minimum 

55 
160 1966 

None 0.666 Minimum 

56 
160 2295 

None 0.666 Minimum 
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For the third round, 15 runs were conducted to study the effect of changing the flow rate 

and the bottom hole pressure bringing the total number of runs to 70 runs with some 

repetition in between, these are shown in Table 5.4. 

Table 5.4- Third round of drilling experiments 

Run 
Number 

Flow 
Rate(LPM) 

WOB 
(N) 

Tool Compliance 
(mm/KN) 

Back Pressure 
(psi) 

 

57 113 1966 PPG 0.666 Minimum 
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58 129 1966 PPG 0.666 Minimum 

59 144 1966 PPG 0.666 Minimum 

60 113 1966 None 0.666 Minimum 

61 129 1966 None 0.666 Minimum 

62 144 1966 None 0.666 Minimum 

63 160 1966 PPG 0.666 100 

B
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ff
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64 160 1966 PPG 0.666 150 

65 160 1966 PPG 0.666 200 

66 160 1966 PPG 0.666 250 

67 160 1966 None 0.666 100 

68 160 1966 None 0.666 150 

69 160 1966 None 0.666 200 

70 160 1966 None 0.666 250 
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6 Analysis of the Drilling Experiments 

In this chapter, the overall results of the experiments are thoroughly discussed. As 

mentioned earlier in Chapter 2, the drilling performance parameters are not only limited 

to ROP and MSE results, but other parameters like CPF, bore-hole quality and overall 

FPD cannot be determined in the laboratory environment. That made the analysis of the 

experiments data focused on ROP and MSE trends. the formulas used for the analysis are 

explained before the results are discussed.  

6.1 Formulas used in Data Analysis 

For ROP calculations, the slope of the LVDT sensor displacement curve with time was 

used directly as the ROP value. For qualitative MSE, the formula mentioned earlier in 

Chapter 2 was used to calculate MSE. where; 

Total MSE (Pa) =  
                                 

  

 
 

                    
 

 
 

 + 
       

              
 (6.1) 

The power consumption of the drill head was directly acquired from the current sensor 

data by subtracting the RMS value of the off-bottom current consumption from the RMS 

value of the on-bottom current consumption. 

For some data analysis, the hydraulic horse power per square inch (HSI) was calculated 

based on the formula below; 

HSI=  
                      

                 
                    (6.2) 

Where the Horse power (HP) =  
                                            

    
  (6.3) 
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6.2 The Effect of PPG with No Compliance  

In the 1st round, the effect of the PPG was investigated based on its ability to create 

pressure pulses only, which only affects the hydraulic horse power at the bit and the hole 

cleaning. In other words, no compliance was introduced to the setup to transform the 

sinusoidal forces generated by the pressure pulses into impact forces and vibration 

displacement. It can be seen in Figure 6.1, that the PPG did not affect the ROP positively. 

On the contrary the ROP acquired when no tool was placed, was better in particular at 

higher WOB provided that the BHP was kept at minimum of 30 psi. 

 

 

Figure 6.1- ROP curves with minimum BHP of 30 psi applied. 

It can be observed as well, that for the 1st four weights applied on bit, ROP was almost 

identical. The explanation for that can be seen in Table 6.1, showing the Depth Of Cut 

(DOC) for the 1st four points. 
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 It was observed that the depth of cut was either less than 0.15 mm or close to it, which 

means that at these low WOB, the cutter was not fully engaged with the rock sample and 

only the chamfer was interacting with the rock.  

Table 6.1- Depth of Cut vs. WOB 

WOB (N) DOC (mm) using PPG DOC (mm) without PPG 

1152 0.009 0.007 

1428 0.012 0.013 

1481 0.011 0.014 

1650 0.017 0.017 

1802 0.017 0.023 

1966 0.024 0.027 

2295 0.027 0.038 

 

For the higher three weights, the decrease in ROP when using the PPG could be explained 

by studying the pressure profile for both cases. It was observed that, when using the PPG, 

the pressure fluctuated between 440 psi to 520 psi as shown in Figure 6.2. Which means 

the HSI fluctuated between 6.884 and 8.136. while in the case of drilling without the PPG 

tool connected, the pressure was averaging 515 psi as shown in Figure 6.3, leading to an 

HSI value of 8.058. That means, the overall hydraulic power was higher when not using 

the PPG, providing that the hole cleaning was sufficient in both cases, and the pressure 

pulses could not introduce any effective force due to the lack of compliance that converts 

the force into vibration displacement. In Figure 6.4, the spectral analysis of the pressure 

data shows the pulsing frequency of the tool, which was about 9 Hz. The spectral analysis 

of the load cell data shows the same frequency when the tool was used, as shown in 

Figure 6.5. 
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Figure 6.2- Pressure profile of the PPG 

 

Figure 6.3- Pressure Profile for drilling without the PPG 
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Figure 6.4-Spectral analysis of the Pressure Data while drilling with the PPG 

 

 

Figure 6.5- Spectral analysis for Load Cell 
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 From the spectral analysis figures shown, it can be seen that there are several signal 

frequencies showing the rock bit interaction and the pulses. it can be seen that the 

interaction done by one cutter is shown at 4 Hz, and the interaction between the rock and 

both cutters is shown at 8 Hz, while the tool pulsing is shown at 9 Hz. Given that the 

actual RPM is not constant at 300 RPM, the actual RPM could be estimated from the 

spectral analysis as 240 RPM, although the measurement was not made. 

For the MSE analysis, the output curves agreed with the pattern in the ROP data. 

Practically the 1st four runs had the close power consumption, while the last 3 runs 

showed that the No-Tool configuration consumed less motor power and had lower MSE 

as shown in Figure 6.6. 

 

Figure 6.6- MSE Curves for Rigid (no compliance) configuration 
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When the same experiments were repeated while applying a constant BHP, the results 

showed that the effect of the pulses on HSI was almost negligible. Which could be 

explained  as a negligible change of pressure as an effect of the added BHP. The ROP 

curves for drilling with the PPG and without the PPG at minimum BHP and applied 150 

BHP are shown in Figure 6.7, showing also the decrease of ROP when the 150 psi was 

applied. 

 

 

Figure 6.7-Combined ROP curves for Rigid Configuration 
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6.3 The Effect of PPG with Compliance 

As mentioned earlier, two different compliances were introduced to the system, as 

described in Chapter 5. Some experiments were done with 8 mounts, with an equivalent 

compliance of 0.666 mm/KN, while other experiments were done using 6 rubber mounts, 

with an equivalent compliance of 0.888 mm/KN. The results were quite opposite to the 

results shown with the rigid configuration. As shown in Figure 6.8 when 8 mounts were 

used, it was observed that the PPG affected the ROP positively when the forces generated 

by the PPG were transformed into vibration displacements and acted on the rock as a 

result of having compliance, except for one point at which using the tool lead to a slower 

ROP compared to no-tool when the WOB was 1650 N. 

 

Figure 6.8- ROP results with 8 mounts configuration 
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To explain the better results and the unique behavior at 1650 N, the data from the LVDT 

vibration sensor and the load cell were thoroughly analyzed. It was observed as shown in 

Figure 6.9, that the vibration displacement when using the PPG tool was actually higher. 

However, for that single point at 1650 N applied WOB, the displacement was higher 

when no PPG was attached, the reason for that couldn't be accurately determined but an 

assumption was made that at that particular WOB the combination of drilling parameters 

lead to more vibration without using the PPG. From the results, it was clear that within a 

particular compliance configuration, the ROP had a direct proportional relationship with 

the magnitude of displacement, which practically increases with adding more force on the 

bit. However, it's assumed that the direct proportional relationship is functional until a 

maximum vibration displacement is reached, after which the bit cutters have less contact 

with the rock surface, leading to less cutting area and slower ROP. 

 

Figure 6.9- Vibration displacement vs. WOB for the 8 mounts configuration 
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The data from the load cell was analyzed as mentioned before, to see the role of the PPG 

that lead to a higher vibration displacement. In Figures 6.10 and 6.11, the force profiles 

recorded by the load cell when drilling with and without the PPG are shown. The applied 

WOB was 1802 N in both cases. 

Figure 6.10- Force Profile at 1802 N when no PPG was attached 

Figure 6.11- Force profile at 1802 N when the PPG was attached 
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Figure 6.10 shows that the average force is 2250 N with peaks reaching 2900 N and a 

deviation of ±200 N from the average value at different points. Considering that the load 

cell reads an extra WOB due to the weight of the pressure cell, the movable plate and the 

rock sample. Where in Figure 6.11, the forces increase with pulses to reach peaks of 3250 

N, the overall average was 2600N with a deviation of ±400N from the average value at 

different points. That means that the PPG actually introduced an addition force of about 

400 N, which contributed to the higher displacement and the higher ROP. The spectral 

analysis of the LVDT shown in Figure 6.12, also shows the presence of the PPG force 

signal at 9 Hz. 

 

PPG Applied Forces 

(9 Hz) 

 

 

Figure 6.12- Spectrum analysis of vibration displacement with 8 mounts configuration 
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The MSE analysis also agreed with the ROP results as shown in Figure 6.13, where 

drilling with the PPG showed less power consumption and less MSE, except at the 

anomaly where 1650 N were applied. 

 

Figure 6.13- MSE vs. WOB for 8 mounts configuration 
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when 442 Lbs WOB was applied. The displacement data is shown in Figure 6.15, 
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Figure 6.14- ROP vs. WOB for 6 mounts configuration 

 

Figure 6.15-Vibration displacement vs. WOB for the 6 mounts configuration 
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The forces generated by the PPG are similar to the forces shown with the 8 mounts, 

considering that the only parameter that changes the forces of the PPG is varying the flow 

rate. The spectral analysis of the LVDT data shows the contribution of the PPG pulses in 

generating the observed vibration displacement, as shown in Figure 6.16. 

 

 

 

 

 

PPG Applied Forces (9 Hz) 

 

 

Figure 6.16- Spectral analysis of vibration displacement with the 6 mounts configuration 
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The MSE results also agreed with the ROP results as shown in Figure 6.17, showing that 

the PPG used less power and less MSE while drilling except for one point when 442 Lbs 

were applied on the bit. 

 

Figure 6.17- MSE vs. WOB for the 6 mounts configuration 
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Figure 6.18- An illustration of the relationship between cutting area and displacement range 

 

Figure 6.19- ROP of the different compliance configuration  of the PPG 

0.00 

1.00 

2.00 

3.00 

4.00 

5.00 

6.00 

7.00 

8.00 

9.00 

10.00 

1100 1600 2100 2600 

R
O

P
 (

m
/h

r)
 

WOB (N) 

PPG- Rigid 

PPG-6 Mounts 

PPG-8 Mounts 



 

 

118 

 

 

Additional experiments were done to investigate the effect of varying the BHP and the 

flow rate on the effect of the pressure pulses while maintaining 0.666 mm/KN compliance 

(8 Mounts) and a constant WOB of 1966 N. The results were quite as expected, when the 

flow rate was reduced, the forces applied by the PPG were weakened as well as the BHC 

efficiency when using the PPG and when not using it. Figure 6.20 shows the reduction of 

ROP as a result of reducing the flow rate. When the BHP was increased, the ROP 

dropped  in both cases, which is explained as a gradual reduction in the BHC efficiency 

as well as a reduction of the HSI at the bit. These results are shown in Figure 6.21. 

 

 

Figure 6.20- Effect of varying the flow rate on ROP 
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Figure 6.21- The Effect of Varying BHP on ROP 

The MSE results also agreed with the results from the ROP curves and are shown in 

Figures 6.22, and 6.23 respectively. 

 

Figure 6.22- MSE vs. Flow Rate for the 8 mounts configuration 
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Figure 6.23- MSE vs. BHP for the 8 Mounts configuration 

After conducting all sets of experiments, several significant conclusions were made, and 

the effect of the pressure pulses on drilling efficiency became understandable. 

The conclusions are all mentioned in the next chapter. 
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7 Summary, Conclusion and Future Work Recommendations 

In this chapter, a summary of the study is presented, including the research done on both 

phases of experiments, namely the characterization of the PPG and the drilling 

experiments. followed by the conclusion for the obtained results. Finally the issues that 

need to be investigated and focused on in future in that area of research are addressed and 

highlighted. 

7.1 Research summary   

The research started as an approach to widen the study of the vibration assisted rotary 

drilling (VARD) technology, as a part of the research done by the Advanced Drilling 

Group (ADG) of the Memorial University of Newfoundland. Using an existing 

technology to create down-hole pressure pulses, the pressure pulse generating tool was 

considered a potential vibration source when placed above the bit. Several sets of 

experiments were conducted to characterize the PPG tool given by a sponsor company to 

support the undergoing research in the related area.  

For these experiments, the ADG developed a sophisticated experimental setup to 

accurately monitor the outputs from the PPG at different operational conditions. That 

included a reaction frame, and a comprehensive Data Acquisition and sensor setup. 

It was found from the characterization experiments that the PPG introduced enough 

hydraulic impact forces to be an efficient VARD tool candidate. 
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Based on that conclusion, drilling experiments were designed to see the effect of the 

created pressure pulses on simulated down-hole conditions. For these experiments, the 

work done by the ADG to develop a laboratory scale drilling rig, experimental setup and 

reliable synthetic rock highly contributed to the efficiency of the conducted experiments .   

The data acquired from the drilling experiments was thoroughly analyzed and the 

research then came to several conclusions, and given below     

7.2 Conclusion 

After conducting several characterization and drilling experiments,  it was found that the 

pressure pulses and the vibration they create do affect the drilling performance. The 

frequency and amplitude of the pressure pulses were found proportional to one variable, 

which is flow rate. 

In drilling, it was found that compliance played a major role in drilling performance. In 

other words, the pressure pulses had no effect when the system was rigid and the forces 

they generated were unable to create vibration by displacing the bit from the rock surface.  

In fact, the variation in pressure at the bit reduced the overall hydraulic horse power, 

which in turn affected the rate of penetration negatively, meaning that the use of the PPG 

without compliance actually reduced drilling performance compared to when no tool was 

used. When compliance was introduced to the drilling setup to match the real drilling 

conditions (where no rigid system exist due to the drill string flexibility), it was found that 

the pressure pulses positively affected the ROP and reduced the MSE used. 
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 It was also found that when the displacement was high enough to reduce the contact 

between the cutter and the rock surface, the cutting area became smaller, and the effect 

was negative on the drilling performance. 

It was also observed, that within the same compliance system, the ROP is directly 

proportional to the rock displacement. The result of varying flow rates, showed that the 

performance effect of the pressure pulses is directly proportional to the flow rate, where 

the frequency and amplitude of pulses are directly related to the flow rate used to operate 

the tool. Increasing BHP negatively affected the performance in all cases. However, the 

drilling performance when the pressure pulses were generated was still higher than when 

no pressure pulses existed. After all, the overall conclusion is that whenever there was 

axial compliance within the drilling system, the pressure pulses lead to better 

performance. 

7.3 Future Work Recommendations 

Due to the limitations of the drilling setup used, including the capacity of the pump and 

the range of weights that could be applied on the drilling bit, the experiments could not 

reflect the effect of the pressure pulses at higher flow rates and higher weights on bit. 

Further laboratory experiments can be carried on to study the effect of the pressure pulses 

at these high end conditions, to see the effect of higher dynamic to static load ratio which 

could not be achieved with the current setup. Also, it's highly recommended to use the 

PPG tool as a VARD tool coupled to a full scale bottom-hole assembly to test it under 

actual field conditions to move the technology to a higher readiness level, and prove the 

technology as an industry performance improvement. 
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Appendix A: Drill Bit Shank Design 
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Appendix B: Petro-graphic Information of the Aggregates in Rock 

Specimens 

The following table, shows the petro-graphic information of the aggregates, which were 

used for the preparation of the rock specimens. 

 

 

Table - Petro-graphic Information of rock aggregates 


