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ABSTRACT 

The world container transportation industry has grown significantly over the past few 

decades. Large numbers of containers are transported everyday over long distances via a 

single or combinations of different modes of transportation (road, rail, water and air). 

Many of these containers contain hazardous materials (hazmat) whose transportation is 

regulated by governments due to the related risks. In contrast to other areas of 

transportation, operations-research-based models for intermodal transportation of 

containers, specifically hazmat ones, is still a young domain. 

The purpose of the thesis is to provide analytical approaches to planning intermodal 

transportation for regular and hazmat freights. Planning of intermodal transportation can 

be addressed at the strategic, tactical or operational level. In this regard, this thesis 

contributes to the current literature in the following three ways. First, at the operational 

level, we study crane scheduling at an intermodal terminal, such that the unloading of 

inbound vessels and the loading of outbound vehicles could be completed in minimum 

weighted time. The approach calls for a multi-processor multi-stage scheduling 

methodology, where each crane has availability time windows. Second, at the tactical 

level, we propose a routing framework for transportation of hazmat and regular containers 

in a congested network to minimize two objectives: total cost and total risk. The model 

considers congestion as a source of exposure and makes a trade-off between congestion 

exposures and capacity costs. Third, at the strategic level, we study the regulation of 

intermodal transportation for hazardous materials. A bi-level network design model and a 
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bi-level bi-objective toll-setting policy model, which consider government and carrier at 

two levels of administration, are proposed to mitigate the transportation risk.  

The thesis concludes with comprehensive remarks. We summarize the contributions of 

this thesis, show the overall results obtained, and present the possible directions that this 

research may take in the future. 
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1. Introduction 

1.1. Intermodal Transportation 

Intermodal transportation can be defined as the synchronized sequential use of multiple 

modes of transportation (e.g., rail, truck and ocean shipping). It consists of a chain which 

links the initial shipper to the final receiver and takes place over long distances. An 

important component of this chain is the intermodal terminal, in which the mode of 

transportation changes and the freights are transferred from one mode to the next one 

using handling equipment. 

As the principal part of intermodal transportation, container transportation has grown 

significantly over the past few decades. Higher cargo safety and accessibility to different 

modes of transportation, as well as the lower handling costs are the main reasons for 

containerization. According to United Nations Conference on Trade and 

Development (UNCTAD, 2012), world container throughput increased by an estimated 

5.9 percent during 2011 to 572.8 million TEUs (twenty foot equivalent units), which was 

its highest level ever. Different modes of transportation (truck, rail, ocean shipping) are 

used to carry the containers from shippers to receivers.  

In addition to the regular freights, large volumes of hazardous materials (hazmat) are 

transported through the intermodal networks every day. Hazmat (such as explosives, 

gases, flammable liquids) is harmful to health, safety and property, but their 

transportation is crucial for the industrial lifestyle. In 2009, Industry Canada indicated 



2 

 

that about $40 billion of chemical products were shipped in Canada annually, 

representing more than 8% of all manufacturing shipments in the country (Transport 

Canada, 2011). Similarly in United States, 2.2 billion tons of hazardous materials, with 

the value of $1,448 billion, were transported in 2007 (US Commodity Flow Survey, 

2007). 

Planning of intermodal transportation can be addressed from strategic, tactical or 

operational levels. The strategic level decisions concern the design of the physical 

network, such as where to locate the terminals, and how much handling equipment to 

install at each terminal; while the tactical planning problems deal with optimally utilizing 

the given infrastructure, such as what routes to service, how to route the freights through 

the networks, and how to distribute the work amongst the terminals. Day to day decisions, 

such as fleet management and scheduling, are made at the operational level (Crainic and 

Kim, 2007).  

Planning of intermodal transportation systems provides interesting areas in operations 

research and has gained more attention during the past decade. Crainic and Kim (2007), 

Christiansen et al. (2007) and Bektas and Crainic (2008) are the review papers and 

chapters emphasizing intermodal transportation problems. More recently, Steadieseifi et 

al. (2013) presented a structured overview of the multimodal transportation literature, 

focusing on the traditional strategic, tactical, and operational levels of planning. This 

thesis aims to provide analytical approaches for intermodal transportation of regular and 

hazmat freights at different levels of planning. The motivation and objectives of each 

approach are discussed in detail in the following section. 
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1.2. Motivation and Objectives 

The importance of studying intermodal transportation planning problems is due to the fact 

that there are few accepted models and techniques. This is mainly because the research in 

this area requires a good knowledge of probabilistic programming in addition to 

optimization methods, specifically when it comes to hazmat transportation. Therefore, 

within this research, we focus on three important problems: one, crane scheduling at 

intermodal terminals; two, capacity planning and routing of containers considering the 

congestion; and three, regulating hazmat intermodal network. 

At the operational level, we suggest a scheduling model for the sequencing of cranes at 

intermodal terminals. The trend towards container trade and larger container vessels has 

increased the demand for efficient terminal handling operations. How to achieve greater 

crane productivity becomes exceptionally important in improving port performance, in 

terms of shorter turnaround time of container ships, trucks and intermodal trains. A brief 

description of the problem is provided in section 1.3.1.  

At the tactical level, we aim to develop a framework for capacity planning and routing of 

regular hazardous materials in congested networks. The hazmat transportation problems 

are highly uncertain in nature and involve multiple criteria, however there is no paper that 

takes uncertainty into account and considers multiple objectives. Particularly, the 

increasing risk of train disasters, because of the shipment of high concentrations of 

hazardous materials, calls for more research and exploration. Section 1.3.2 discusses the 

problem briefly. 
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Finally, at the strategic level, we wish to formulate models to regulate an intermodal 

network of hazmat. The importance of the problem is due to the mounting instances of 

hazmat derailments which necessitates a tighter regulation by the governments. Despite 

the exponential growth of hazmat shipments, the regulatory supervision and safety 

measures have not been updated very much. The problem is stated in more detail in 

section 1.3.3. The hierarchical relation among the three problems studied is presented in 

Figure 1-1. 
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Figure 1-1: The relation between problems studied 
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1.2.1. Crane Scheduling at Intermodal Terminals 

In the first contribution, we aim to improve the productivity of handling equipment (quay 

cranes and yard cranes) at container port terminals. Maritime container terminal handling 

operations can be divided into two parts: discharging or loading of containers from or 

onto a vessel, and transferring containers to or from outside trucks. Loading and 

unloading of containers into and from ships are provided by quay cranes, while yard 

cranes are used to transfer containers between stacks and outside trucks. Because of the 

high service cost of container ships, delays experienced at a port generate high costs (e.g. 

demurrage and wharf storage charges) to the ship’s operators and final customers, and 

consequently lead to serious problems, such as high level of congestion and low shipping 

reliability (Crainic and Kim, 2007).  

Chapter 2 aims to answer the research question: how to sequence the quay and yard 

cranes such that the total weighted completion time of unloading and loading containers 

at a terminal is minimized, where the cranes are not always available. To find the answer, 

a mixed integer programming model for scheduling cranes, in the presence of availability 

time-windows, is developed. Since there are two stages and each vehicle at each stage 

may require to be served by multiple cranes, the model combines multiprocessor task 

scheduling with cross-docking scheduling. 

To solve the model, a genetic algorithm equipped with a novel decoding procedure is 

developed and tested by a series of problems generated based on the information of 

container ports. In addition, in an effort to demonstrate the effectiveness of the proposed 
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meta-heuristic solution, we also provide results using another meta-heuristic technique: 

Elitist Evolutionary Strategy (EES). The computational results are compared and 

discussed. While Chapter 2 aims to schedule the cranes available at intermodal terminals, 

the capacity planning of those terminals, i.e. how many equipment items each terminal 

should choose, is the subject of Chapter 3. 

1.2.2. Capacity Planning and Routing of Containers Considering the 

Congestion 

In Chapter 3, we study the capacity planning and routing of regular and hazmat freights 

considering two criteria: cost and risk. More specifically, we consider a rail-truck 

intermodal network, where the containers are transported from shippers to receivers 

through drayage and rail segments. Transportation of containers from truck/train to 

train/truck is performed by handling equipment (e.g. cranes) at intermodal terminals. 

When the demand is uncertain, congestion may arise at those terminals.  

In such a context, Chapter 3 seeks answers for the following three questions: 1) how 

many intermodal train services should be maintained? 2) How to route hazmat and regular 

containers to their destinations through the origin and destination terminals? and 3) What 

should the capacity of each intermodal terminal be with regard to congestion? To answer 

these questions, we propose a bi-objective nonlinear programming model for managing 

rail-truck intermodal transportation. The novel feature of the suggested model is the 

consideration of congestion as a source of exposure and delay when making equipment 

acquisition and routing decisions. 
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To solve the model, an iterative solution procedure incorporating a heuristic and a multi-

objective genetic algorithm to generate a linear model that can be solved by CPLEX. A 

realistic problem instance is then employed to illustrate the practicality of the model. 

This research helps decision makers identify the risky terminals and adopt appropriate 

reactive policies for risk management. To reduce the consequence of hazmat incidents a 

priori, proactive risk mitigation policies could be adopted. Chapter 3 focuses on the 

proactive policies regulating the use of intermodal terminals by hazmat carriers. 

1.2.3. Regulating Hazmat Intermodal Network 

Chapter 4 studies the regulation of a rail-truck intermodal network of hazardous 

materials, where the government controls the network to mitigate the transportation risk, 

and the carrier determines the routing of shipments. Unlike Chapter 3, which considers 

only one decision maker, here we (realistically) assume that there are two decision 

makers (government and carrier) at two levels of administration. The decision makers 

make their decisions sequentially, i.e. the government executes its decision prior to the 

carrier. More specifically, the government prohibits the carrier’s choice of certain 

terminal(s) by applying network design and toll policies.  

Based upon the hierarchical decision-making, Chapter 4 aims to answer the following 

question at the upper level (government): 

How to choose the terminals to be closed for hazmat transportation, and how to use tolls 

in the toll setting policy, to minimize the population exposure? 

And, to answer the following two questions at the lower level (carrier): 
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What is the best shipment plan for both hazardous and regular freights in an RTIM 

network, such that total transportation cost is minimized? 

To answer the questions, we formulate two bi-level models for the network design and 

toll setting policies. The main contributions of Chapter 4 are considering an intermodal 

network, combining location and routing model development and comparing two 

regulating policies. The models are solved using a single objective and a multi-objective 

Particle Swarm Optimization (PSO).  

1.3. Co-authorship Statement 

I, Ghazal Assadipour, hold a principal author status for all the manuscript chapters 

(Chapter 2-4) in my thesis. However, each of the manuscripts is co-authored by my 

supervisors, Dr. Manish Verma and Dr. Ginger Y. Ke, whose contributions have greatly 

facilitated the development of the ideas in the manuscripts, the practical aspects of the 

computational experiments and the manuscript writing. The contributions, for each 

manuscript, are listed in the followings: 

Manuscript 1, “An analytical framework for integrated maritime terminal scheduling 

problems with time windows”:  

Located in chapter 2 

 Presented at INFORMS 2013, Minneapolis, US  

 Presented at CORS 2014, Ottawa, Canada  

 Accepted for publication in the ISERC 2014 proceedings, Montreal, Canada 
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 Accepted for publication in  Expert Systems with Applications 

Manuscript 2, “Planning and managing intermodal transportation of hazardous materials 

with capacity selection and congestion”:  

Located in chapter 3 

 Winner of the second place in a worldwide interactive poster competition at 

INFORMS 2013, Minneapolis, US  

 Accepted for presentation at CORS 2014, Ottawa, Canada  

 Selected to be one of the 5 finalists of the student paper competition at CORS 

2014, Ottawa, Canada 

 Under 2
nd

 review at Transportation Research Part E 

Manuscript 3, “Regulating Intermodal Transportation of Hazardous Materials”:  

Located in chapter 4 

 Accepted for presentation at CORS 2014, Ottawa, Canada  

 Accepted for presentation at IFORS 2014, Barcelona, Spain 

 Accepted for presentation at INFORMS 2014, San Francisco, US 

 To be submitted 

1.4. Organization of the Thesis 

Figure 1-2 outlines the organization of this thesis. Chapter 1 began with a brief 

introduction of this research, including problem statement, motivation and objectives, and 
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finally the co-authorship statement. Then the focal research was classified into three 

models, which study three problems related to different levels of planning. Chapters 2 

through 4 report our research contributions. Three problems related to the operational, 

tactical and strategic level of planning are investigated and applied to real problem 

instances. Finally, Chapter 5 reemphasizes the finding of this research and summarizes 

the work that we have done and drafts a blueprint for future research. 
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Chapter 1: Introduction 

Chapter 2: Operational 

level problem of crane 

scheduling 

Chapter 3: Tactical level 

problem of routing and 

capacity planning 

Chapter 4: Strategic level 

problem of regulating the 

network of hazmat 

Chapter 5: Conclusion and Future Work 

 Considers 
unavailability time 
windows 

 Combines 
multiprocessor task 
scheduling with cross-
docking scheduling  

 

 Considers the congestion 
as a source of exposure 

 Combines capacity 
planning with routing 

 Assesses the trade-off 

between total 

transportation cost and 

total risk 

 

 Considers an 
intermodal network 

 Combines location and 
routing 

 Compares network 
design and toll setting 
policies 



11 

 

2. An Analytical Framework for Integrated Maritime 

Terminal Scheduling Problems with Time Windows 

 

Abstract: This research studies the sequencing of quay and yard cranes to minimize the 

total weighted completion time of unloading and loading containers at a terminal. A 

mixed integer programming model is developed in considering multiple cranes, each with 

its individual time windows, in the two stages. A meta-heuristic approach is designed and 

implemented to solve the proposed model. Detailed computational tests illustrate the 

applicability and effectiveness of this study.  

Keywords: container transport; maritime terminal; crane scheduling; genetic algorithm. 

2.1. Introduction 

Intercontinental trade, primarily conducted through container transport on ships, has 

steadily grown in size over the past few decades. In 2013, global container trade is 

projected to grow by 5 per cent, and global container supply, by 6 per cent (UNCTAD, 

2013). In line with the increasing global trend, around 45mn containers were handled by 

the major ports in North America (Colliers, 2012). The statistic was equally impressive 

for Canadian ports, which collectively handled 4.8mn containers in 2010, almost a two-

third increase from the volume a decade ago (CIY, 2012). For example, the port of 

Montreal processed around 1.4mn containers in 2011, which showed a 34 percent 

increase over the volume in 2000. The increased need for outsourcing and the existence 
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of supply chain partners in different parts of the world imply continued reliance on 

intercontinental trade (and container transport), and calls for effective allocation of 

resources to both improve the lead-time and also make the chain more competitive. 

Efficient operations in a marine terminal, one of the transshipment points in 

intercontinental freight movement, are crucial to realizing the two objectives.  

Marine container terminal operations can be broadly divided into container 

loading/unloading performed by quay cranes and yard cranes, where the former attend to 

the ships, and the latter is responsible for moving containers from dockside stacks 

(storage) to the intermodal trains and trucks. Note that any port related delays could entail 

much higher costs for the container ship operators and the final customers, not to mention 

the unanticipated congestion at the terminal and the associated questions about reliability 

(Crainic and Kim, 2007). It should be clear that the efficient allocation of the two types of 

cranes could significantly impact the turnaround time (the time spent to make a transport 

vehicle ready for departure after its arrival) of container ships, trucks and intermodal 

trains, thereby improving port productivity, primarily achieved through increased 

container throughput and/or decreased processing time.  

This chapter investigates the scheduling of quay cranes for seaside and yard cranes for 

landside operations, and proposes a two-stage multi-processor scheduling model with 

time windows (TMSTW). More specifically, in the first stage, containers from n1 ships 

are unloaded by m1 quay cranes and stacked. Each quay crane is available in certain time 

windows during the twenty-four hour period, and is offline for maintenance the remaining 

time. For this stage, a job is defined as the unloading of all containers from a berthed ship. 
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In the second stage, the unloaded containers would be retrieved from the temporary stacks 

(storage) by m2 yard cranes, and placed on the intermodal trains and trucks to be 

transported to n2 customers. Since more than one container may be destined to a single 

customer, a job in the second stage is defined as the loading of all containers belonging to 

one shipment. Finally, each yard crane has an availability time window, and the loading 

operation can start only after the unloading of the relevant containers from the ship. 

Hence, the objective of this study is to schedule the operations in the two stages so that 

the (total) weighted completion time is minimized.  

The rest of this chapter is organized as follows. Section 2.2 reviews the related research, 

while a formal problem definition is outlined in Section 2.3. Section 2.4 outlines the sets 

and indices before presenting the mixed-integer programming model, which is NP-hard. 

Section 2.5 develops a genetic algorithm, equipped with a novel decoding procedure, to 

solve the proposed model. Section 2.6 discusses the results and analysis of numerous 

problem instances of varying size, and compares the performance of the proposed 

solution technique with another meta-heuristic technique. Finally, Section 2.7 contains 

the conclusion and highlights the contribution of the proposed work.  

2.2. Literature Review  

The relevant literature can be organized under three threads: seaside, landside, and 

integrated operations. One issue of the seaside operation is quay crane scheduling 

problem that deals with determining the service sequence for each crane, and the 

associated schedule. Tasks in the crane scheduling problem are defined based on single 
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bays (one quay crane serves a particular bay), or container groups (the cranes can share 

the workload of bays) (Bierwirth and Meisel (2010)). Daganzo (1989), one of the first 

studies in the group of single bays, assumed that ships are divided into holds (a ship’s 

hold is a space for carrying cargo), and only one crane can work on a hold at a time. The 

paper developed solution methods for both dynamic and static schedules, such that the 

aggregate cost of delay is minimized. Subsequently, Peterkofsky and Daganzo (1990) 

considered the problem as an open shop scheduling problem with parallel and identical 

machines, where jobs consist of independent single-stage preemptable tasks (running job 

can be interrupted for some time and resumed later). They developed a branch and bound 

algorithm for the static crane scheduling problem, such that the cost incurred by ships at 

the port was minimized. More recently, Lee et al. (2008a) provided a model to determine 

a handling sequence of holds for quay cranes assigned to a container vessel, considering 

interference between quay cranes, i.e., a crane cannot overreach any other cranes because 

they are on the same track. A genetic algorithm was employed to solve the model. The 

same authors (Lee et al., 2008b) studied another quay crane scheduling problem, which 

considers the handling priority of every ship bay, and also solved it using a genetic 

algorithm.  

In the second class of papers the task is defined based on container groups, Kim and Park 

(2004) modeled a quay crane scheduling problem, assuming that there may be multiple 

tasks involved in a ship-bay, and thus, a task is divided into smaller sizes. To minimize 

the makespan, they proposed a heuristic search algorithm to find near optimal solutions. 

More recently, Bierwirth and Meisel (2009) considered the quay crane scheduling 
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problem with container groups that can be assigned to different quay cranes. Taking crane 

interference into account, they developed a mixed integer model and then solved it using 

a heuristic procedure with a branch-and-bound algorithm at its core for searching a subset 

of above average quality schedules. Kaveshgar et al. (2012) designed a genetic algorithm 

to solve a quay crane scheduling problem which minimizes the summation of makespan 

and completion time of each quay crane. Quay cranes in this study are allowed to move in 

a different direction, independent of one another. Chung and Choy (2012) also proposed a 

genetic algorithm for a similar problem; however the applied components, such as 

chromosome representation and fitness evaluation, were different. Considering 

congestions in the yard, Jung et al. (2006) proposed a heuristic search algorithm to 

construct a schedule for quay cranes, so that the makespan is minimized. They considered 

a time window for each crane, but did not delineate it in detail. Assuming cranes can be 

temporarily removed from a vessel during the service, Meisel (2011) developed a mixed 

integer model for scheduling of cranes on the basis of container groups. They revised the 

heuristic suggested by Bierwirth and Meisel (2009) to solve the model. Legato et al. 

(2012) studied independent unidirectional quay crane scheduling under time windows, 

and unlike Bierwirth and Meisel (2009), assumed that cranes can move in different 

directions. They solved the model by a branch and bound method. Please note that the 

literature related to other seaside operations, such as berth allocation and stowage 

planning, are not addressed here because the focus of this research is on the integration of 

operations as a whole in cross docking scheduling rather than the berth planning and 

operations inside the terminal. For comprehensive overviews on the quay crane 
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scheduling, we invite readers to refer to Bierwirth and Meisel (2010) and Carlo et al. 

(2013). 

The yard crane scheduling problem entails removing containers from storage (or 

temporary stacks) and loading them onto the flatbed of the intermodal trains and trucks on 

the landside. Kim and Kim (2003) studied the routing of yard equipment during loading 

operations, such that the total container handling time in a yard is minimized. The 

proposed model was solved using both genetic and beam search algorithms. Li et al. 

(2009) developed a model for yard crane scheduling, which considered crane interference 

and separation distances, as well as simultaneous storage/retrievals. The resulting model 

was solved by a rolling horizon heuristic. Most recently, Chen and Langevin (2011) 

developed a mixed integer programming model to solve the multi-crane scheduling 

problem. The proposed model determined the movement of yard cranes among container 

blocks, and the sequence for the cranes within each block. Both genetic algorithm and 

tabu search based meta-heuristic solution techniques were proposed.  

Finally, the integration of seaside and landside operations has been studied by a few 

researchers. Chen et al. (2007) investigated the scheduling of different types of terminal 

equipment, such as quay cranes, yard cranes, and yard vehicles. A hybrid flow shop 

scheduling approach with precedence and blocking constraints was used to formulate the 

problem, which was solved using a tabu search solution technique. On the other hand, 

Chen and Lee (2009) attempted to minimize the makespan involving unpacking 

operations of inbound carriers and collection operations of outbound carriers. The 

problem was formulated as a cross docking flow shop problem, in which there were 
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exactly two stages with one machine and a set of jobs in each stage. It was assumed that 

jobs in the second stage can be processed only after all their corresponding precedent jobs 

have been completed in the first stage. This model was extended by Chen and Song 

(2009), who considered the problem with more than one parallel machine in at least one 

of the two stages.  

The model we study in Chapter 2, like the cross dock scheduling problem discussed 

above, examines a two-stage problem with precedence constraints. However, two distinct 

characteristics make our model unique from the previous studies. First, multiple cranes 

with their own availability time windows are available in each stage. As indicated earlier, 

these time windows enable us to incorporate unavailability, which could be for 

maintenance, adherence to labor regulations, and so on. Second, our model allows 

multiprocessor tasks, i.e., each job may require several cranes simultaneously. To the best 

of our knowledge, Guan et al. (2002) is the only study that considered the multiprocessor 

scheduling problem in container terminals. The authors investigated the ship berth 

allocation problem where the objective was to minimize the total weighted completion 

time of ships. The model proposed in Chapter 2 is distinct from earlier studies, since it 

considers both time windows and multi-processors in both stages to investigate the 

scheduling of cranes in a marine terminal. More specifically, the goal of our model is to 

schedule the quay cranes to unload inbound ships and the yard cranes to load outbound 

intermodal trains and trucks. 
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However we have considered container port terminals as the context of our first study, 

scheduling of key resources is an issue in all types of intermodal terminals and our 

developed approach can be applied to other transportation modes too.  

2.3. Problem Statement 

The proposed model focuses on the terminal level operations and seeks to answer the 

following question: what is the most efficient way to schedule a given set of quay cranes 

on the berthed vessels and the yard cranes to load the containers for outbound movement, 

such that the total weighted completion time is minimized?  

To make this explicit, consider a marine terminal in which four container ships are 

berthed concurrently, waiting to be unloaded. There are four jobs in the first stage, and 

each job has three attributes: processing time, required number of cranes, and priority (or 

weight). Furthermore, let us assume that the unloaded containers have to be loaded on 

trucks and intermodal trains for outbound movement to six different destinations. Finally, 

the loading of containers cannot start until all the predecessor jobs are completed. For 

example, loading of containers for destination 5 cannot be started before both vessels 1 

and 2 have been completely unloaded (Table 2-1). Table 2-2 depicts the number of cranes 

in each stage, and their respective availabilities. For example, assuming a 24 hour clock, 

the fifth yard crane (i.e., YC5) is not available until 8 am in the morning, and then again 

from 4 pm to midnight. On the other hand, there is no maintenance or scheduled breaks 

for YC1 and YC4. 



19 

 

Table 2-1: Jobs and relevant attributes 

Stage Vessels/ 

Destinations 

Processing 

time (hour) 

Number of 

cranes 

Priority Predecessors 

1
st
 

1 2 3 1  

2 5 2 1  

3 4 2 1  

4 2 3 1  

2
nd

 

5 2 2 1 {1, 2} 

6 3 1 1 {1, 2} 

7 2 2 1 {3} 

8 1 3 1 {3} 

9 2 2 1 {4} 

10 2 2 1 {4} 

 

Table 2-2: Availability time window for cranes 

Stage Cranes From To 

1
st
 

QC1 
0 5 

10 24 

QC2 
0 10 

15 24 

QC3 0 15 

QC4 5 24 

2
nd

 

YC1 0 24 

YC2 
0 8 

16 24 

YC3 0 16 

YC4 0 24 

YC5 8 16 

 

Figure 2-1 depicts a feasible schedule for the nine machines. Each machine is used only 

during the available time windows (shaded areas illustrate the unavailable periods). For 

example, vessels 1 and 4 require three quay cranes each; and the first three quay cranes 

are available until 5 am, and hence can be employed concurrently to unload each of the 

two vessels. In the 2
nd

 stage, we have to consider the predecessor constraints, and hence 

loading for destinations 9 and 10 can start as soon as vessel 4 has been unloaded. On the 

other hand, loading for destinations 5 and 6 cannot start even if vessel 1 has been 
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unloaded, since vessel 2 is not unloaded until 1 pm (i.e., end of the 13
th

 hour). As such, 

other completion times can be interpreted similarly. The total completion time for this 

schedule is 86 hours. 

 

Figure 2-1: A scheduling plan for the jobs of the same priority 

Note that the priority of a job, which is determined by the freight type, due date, and so 

on, affects the entire sequencing, given the available resources. To show the effect of the 

jobs’ priority on the scheduling plan, we present another feasible schedule (Figure 2-2), in 

which jobs 3, 7 and 8 have higher priority and need to be processed as early as possible. 

We can see from the figure that, under this circumstance, the sequence of jobs is 

rearranged according to the priority, but the total completion time increases to 105 hours. 

In the next section, we develop a mixed-integer program to tackle realistic size 

managerial problems as outlined above, so that the total weighted completion time is 

minimized. 
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Figure 2-2: A scheduling plan where jobs are of different priorities 

2.4. Mathematical Model 

This section outlines major assumptions behind the proposed TMSTW problem, and then 

develops the mathematical formulation. There are seven major assumptions: first, pre-

emption of jobs is not permitted. i.e., a running job cannot be interrupted until its 

completion; second, each job is processed simultaneously by the required number of 

cranes; third, the number of jobs, their processing times, weights and the required number 

of cranes at each stage are given; fourth, there are only two stages, and the number of 

cranes in each stage is given; fifth, each job in the second stage can start only after the 

completion of the precedent jobs in the first stage; sixth, for each crane in each stage a set 

of availability time windows is given; and finally, because this study focuses on 

operations as a whole in cross docking scheduling, additional crane’s attributes, such as 

interference between cranes, are not considered here. We next define the sets, parameters 

and variables for the mathematical model.  
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Sets 

  Set of stages, indexed by i. 

   Set of cranes in stage i, indexed by   {        }  

   Set of jobs in stage i, indexed by   {        }  

    Set of availability time windows for crane v in stage i, indexed by   

{         }  

   Set of precedent jobs in    for job j in stage 2, indexed by s. 

 

Decision Variables 

    Completion time of job j in stage i.  

    
 {

   if job   is assigned to the time window u of crane   in stage  

  otherwise
 

    {
   if job   precedes job f in stage  
  otherwise

 

Parameters 

  A large positive integer.  

    Processing time of job j in stage i. 

    Weight of job j in stage i.  

    Size of job j in stage i (i.e., number of cranes required).  

   
  End of time window u for crane v in stage i.  

   
  Start of time window u for crane v in stage i.  

   Number of cranes at stage i  
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   Number of jobs at stage i  

    Number of available time windows for crane v at stage i 

TMSTW 

    ∑ ∑                       (2-1) 

Subject to 

∑ ∑     
              

               (2-2) 

∑     
        

                     (2-3) 

                      (2-4) 

                             (2-5) 

     (      
 )     

                          (2-6) 

             
    

                           (2-7) 

     (           
      

 )           

                           (2-8) 

     (           
      

 )              

                           (2-9) 

                                (2-10) 

    
  {   }                          (2-11) 

     {   }                     (2-12) 

    is a positive number               (2-13) 
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TMSTW is a mixed integer programming model, where (2-1) aims to minimize the 

weighted completion time of all jobs. The job weight is a subjective or objective attribute, 

which is determined by the decision maker to represent the priority of each job. 

Constraint set (2-2) ensures that, in each stage, each job is assigned to exactly the 

required number of cranes. Constraint set (2-3) guarantees that each job is performed in at 

most one time window of a crane. Constraint set (2-4) shows that each job is processed in 

the first stage, while (2-5) makes sure that precedence requirements are met. For example, 

job j in the second stage will start only after completing all the precedent jobs in the first 

stage, which are contained in set Sj. Constraints (2-6) and (2-7) ensure that each job is 

both started and finished within the available time windows i.e. the jobs would be 

assigned to cranes only if they could be started and finished within the respective time 

windows. The next three constraint sets indicate that no two jobs can be processed on the 

same crane simultaneously. For any given sequence of jobs, either (2-8) or (2-9) is active. 

For example, if job j is processed earlier than job f on the same crane, we have       , 

           , and     
      

   . Furthermore, constraint set (2-10), together with 

(2-8) and (2-9), ensures that only one of the two jobs can be processed in that time 

window by a given crane. Constraint sets (2-11)-(2-13) represent the sign restrictions on 

the decision variables.  

2.5. Solution Method 

If the size of each job in the first and the second stage is 1 and the cranes are always 

available, then TMSTW will lead to the two-stage hybrid cross docking scheduling 
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problem. Since two-stage hybrid cross docking scheduling problem has been shown to be 

NP-hard by Chen and Song (2009), it is not difficult to see that TMSTW is NP-hard too 

and cannot be solved completely and exactly within tolerable resource bounds using 

common optimization software. 

Since TMSTW typically contains a huge number of variables and relatively fewer 

constraints, a genetic algorithm (GA) based solution methodology would be effective and 

efficient (Holland, 1975). Moreover, GA has been successfully applied to many 

combinatorial optimization problems. 

2.5.1. Chromosome Coding and Decoding 

In GA, a proposed solution is defined as a set of values represented as a simple string 

called a chromosome (or genome). Given the nature of TMSTW, we determine the length 

of the chromosome by the number of jobs and use a non-binary encoding scheme. For 

example, consider the illustrative case in Section 2.3, Figure 2-3 shows a sample 

chromosome.  

 

 

 

Please note that, by our definition, we do not require the first-stage jobs to be listed before 

those in the second stage. In fact, when a second-stage job shows beforehand, the 

chromosome is repaired and thus its validity is maintained. Consider an initial 

chromosome of {10, 4, 9, 1, 3, 2, 8, 7, 5, 6} and assume that jobs 1 to 4 and jobs 5 to 10 

4 1 3 2 10 9 8 7 6 5 

Figure 2-3: A sample chromosome 



26 

 

belong to the first and second stages respectively. Since jobs belonging to the second 

stage precede those in the first stage (for example job 10 precedes job 4 in the 

chromosome), the chromosome needs to be repaired. Through a repair mechanism, jobs 

{4, 1, 3, 2} are brought prior to {10, 9, 8, 7, 5, 6}. The repaired chromosome would be 

{4, 1, 3, 2, 10, 9, 8, 7, 5, 6}. It should also be emphasized that the repair mechanism 

preserves the order of the jobs within each stage, and only shifts those belonging to the 

first stage to the left. The repair is performed at the beginning of a decoding procedure 

that is presented next. 

To decode the chromosome, we propose a unique decoding procedure, which derives the 

individual completion time for each job as well as the total completion time. The 

developed decoding procedure converts each chromosome to a full schedule by iteratively 

assigning the jobs to the cranes in their order in the chromosome. It is important to note 

that, the feasibility of a solution is preserved during the process. More specifically to 

conserve the precedence constraint (constraint 2-5), the procedure first assigns the jobs in 

the first stage and computes their completion times. For a job in the second stage, the 

procedure considers the completion time of its predecessors in the first stage (assumption 

5 in Section 2.4). In other words, the starting time of a job in the second stage cannot be 

less than the maximum completion times of its predecessors in the first stage. To preserve 

the resource availability constraint (constraints 2-2, 2-6 and 2-7) when assigning a job, 

the procedure checks if an adequate number of cranes is available to serve. Figure 2-4 

presents the decoding flowchart. To have a better understanding of how this procedure 

works, we outline it for the given chromosome. 
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Start

Determine the sequence of the 
jobs using GA

Repair the chromosome if 
needed

i = 1

tnow = 0

Current job belongs to 
the 1st stage

End

tnow = 0

Calculate the number of cranes 

available (a) at tnow

tnow = max (tnow , 

min(completion time of 
precedent jobs in the 1st stage 

if greater than tnow))

tnow = max (tnow , min(begin 

of time windows of available 

cranes if greater than tnow))

Assign the resources to the 
current job
Update time windows
Evaluate the completion time

No

No
Current job is the first 

job of the 2nd stage

Yes

No

Yes

i <= number of jobs

Yes

a < required number of 
cranes

Yes No

 

Figure 2-4: Decoding flowchart 

In the 1
st
 stage, the current time (i.e., tnow is set to 0, and the number of available resources 

are determined. Recall from Section 3 (Table 2-2) that 3 quay cranes are available for the 

first 5 hours, and hence all of them could be assigned to vessel 4 that needs 3 cranes for 2 

hours. Since vessel 4 would be completely unloaded at the end of hour 2, the availability 
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of each crane is updated accordingly. For example, QC1 will now be available at the 

beginning of hour 2 and until the end of hour 5 (i.e., [2-5]). The next vessel is 1, which 

also requires 3 quay cranes for 2 hours. Note that the number of quay cranes at tnow = 0 is 

not enough to service 1, and hence the procedure updates tnow to the maximum of current 

tnow and the minimum of the beginning of the earliest time window for all quay cranes if 

greater than tnow. More explicitly, the updated tnow = max {0, min (2, 2, 2, 5)} = 2, where 

the four elements inside the inner parenthesis represent the availabilities of the four quay 

cranes after completing unloading vessel 4 and are all greater than tnow. Note that QC4 is 

never used to service 4; it is unavailable until the end of hour 5. Since there are adequate 

numbers of cranes available at the end of hour 2, vessel 1 could be serviced in hours 3 

and 4. 

Now consider a different case: vessel 1 requires 4 quay cranes instead of 3, and QC1 is 

always available. The steps will be as follows: after updating tnow to 2, since there are only 

3 quay canes available, vessel 1 cannot be served. Thus tnow is updated again: tnow = max 

{2, min (24, 15, 24, 5)} = 5, where 24, 15 24, 5 are respectively the beginnings of the 

next time windows of all the cranes. Because quay crane 1 and 3 have only one time 

window, the beginning of their next time window is set to 24 (the maximum value 

possible). This procedure continues until all the jobs have been scheduled. 

Scheduling in the 2
nd

 stage is similar to what discussed above, except that precedence 

constraints need to be incorporated when tnow is initialized. More explicitly, after tnow is 

reset by the first job in the 2
nd

 stage, it is updated to the maximum of the current tnow and 

the maximum completion time of precedent jobs in the 1
st
 stage. For example, the first job 
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in the 2
nd

 stage is destination 10 whose predecessor is vessel 4 in the 1
st
 stage, which 

requires 2 hours to compete; hence tnow = max(0,2) = 2. It is important to notice that more 

than one chromosome sequence may result in the same objective function value, although 

each would be decoded into a distinct sequence of jobs.  

2.5.2. Initial Solutions 

The initialization of GA requires answers for two questions. First, how many starting 

solutions should we have? For this study, we applied TMSTW to model the problem at 

the Port of Montreal, and then solved it using the proposed GA. Thirty independent runs, 

ten for each of three different population sizes (80, 100 and 120), were conducted. We 

noticed that a population with 100 starting solutions yields the best results with lowest 

computation time, and hence is preferred over population sizes of 80 and 120. Second, 

how are these solutions generated? Although most GAs generates initial population 

randomly, there is some argument for using a heuristic for the same (Chen et al., 1995; 

Etiler et al., 2004). We experimented with two cases: the first instance contains only 

random starting solutions; and the second instance includes a single heuristic solution that 

sorted jobs in the 1
st
 stage in increasing order of size, and precedent job completion time 

in the 2
nd

 stage. Table 2-3 is a higher level snapshot of the computational results of the 

problem instance generated using the parameters for the port of Montreal, which is 

discussed in detail in Section 2.6.2.  

It was noticed that although using heuristic for seeding the algorithm resulted in good 

initial chromosomes, however each resulted in premature convergence. On the contrary, 
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random initialization makes it possible to generate the critical features of the final 

solution by search and recombination mechanism of the algorithm. Hence we performed 

the remaining experiments with completely random starting solutions. 

Table 2-3: GA with two different initialization techniques 

#Run 

OFV(minutes) 

Random Heuristic 

1 44170 45842 

2 44995 45739 

3 45083 46297 

4 44987 47472 

5 45832 46272 

6 44987 45271 

7 44296 45418 

8 44910 46332 

9 44296 45134 

10 45052 46500 

Avg 44861 46028 

 

2.5.3. Selection and Crossover 

A binary-tournament selection method is implemented to choose the parents for 

generating offsprings, where two parents are randomly chosen and the one with the lower 

objective function value is selected as a parent. This method allows each member in the 

population the same chance of being chosen as a parent. The selected chromosomes are 

subjected to a two-point crossover operator to generate offsprings (children). In this 

scheme, two random points are generated and everything outside the points is swapped 

between the parents. Two-point crossover is less likely to disrupt schemas with large 

defining lengths (Mitchell, 1997), which is an important consideration for our problem 

given the chromosome structure.  
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Figure 2-5 depicts an example, in which two crossover points, # and *, are employed. 

Child 1 is generated by preserving the jobs between the two crossover points in Parent 1, 

and populating the remaining chromosome bit positions with the sequence in which jobs 

are contained in Parent 2. More specifically: jobs 1, 5 and 9 are preserved; jobs 2, 4 and 7 

are copied into the three bit positions to the left of the # crossover point; job 3 is the next 

one for assignment, and occupies the first slot to the right of the * crossover point, 

followed by job 8 and then finally by job 6. Child 2 can be generated similarly.  

2.5.4. Mutation 

A mutation operator is used to maintain variation between individuals from one 

generation to the next, and we have used swap mutation where bit values of two randomly 

selected chromosomes are swapped. We believe that this operator is suitable for our 

problem since it will not introduce any duplicate values in the chromosome sequence, and 

hence the resulting chromosome is always feasible. For example, the bit values of the 

third and eight slots are swapped in Figure 2-6, giving two distinct solutions, both of 

which are feasible. Please note that we do not consider the jobs’ precedence in the 

mutation process. However it is guaranteed by the decoding procedure: when sequencing 

the jobs in the second stage, the decoding procedure checks to make sure that all the 

precedent jobs have been done in the first stage. 
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Figure 2-5: Illustration of a two-point crossover 

 

 

Figure 2-6: Swap mutation 

Furthermore, not every chromosome in the pool is selected for crossover and mutation. 

For our problem instances, a probability of 0.95 was implemented for crossover, and 0.2 

for mutation. This implies that the probability of a selected chromosome surviving to the 

next generation unchanged (apart from any changes caused by the other operator) is 0.05 

for crossover and 0.80 for the mutation.  

2.5.5. Elitism 

To preserve the best solutions encountered during the computational runs, we 

implemented the elitism scheme proposed by De Jong (1975). We chose to preserve the 

top 2% of the solutions, i.e., two individual chromosomes with the best fitness values 

were preserved and moved to the next generation. The proposed GA stops if 1000 

consecutive iterations do not produce better solutions.  
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2.6. Computational Experiments 

TMSTW and the GA-based solution methodology were used to solve a number of 

problem instances of varying size and attributes. In addition, in an effort to demonstrate 

the effectiveness of the proposed meta-heuristic solution, we also provide results using 

another meta-heuristic technique: Elitist Evolutionary Strategy (EES). For expositional 

reasons, we do not discuss EES here and invite the reader to refer to Appendix A for 

relevant details. The results and analysis are organized into four subsections: small size 

random problem instances; port of Montreal, containing the characteristics of a medium 

size problem; port of Singapore, one of the largest ports in the world; and large scale 

random problem instances.  

2.6.1. Small Size Random Problem Instances 

The nine random problem instances (Table 2-4) were solved using CPLEX and the two 

meta-heuristic solution techniques. The results are depicted in Table 2-5. The solution 

methodologies were coded in C# and all numerical experiments were performed on an 

Intel Core 2 Duo 2.50GHz computer with 4 GB ram. Note that for all these problem 

instances, the processing time varied between 1 and 8 hours, and the number of cranes 

varied between 1 and one-third of the number of jobs in a particular stage (i.e.,    
  

 
 ). 

Furthermore, the objective function value (OFV) is in minutes, solution time (ST) is in 

seconds and refers to the CPLEX CPU time, best-solution time (BT) is in seconds and 

refers to the time that the meta-heuristic takes to reach the final best solution for the first 

time.  
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Table 2-4: Random problem instances 

Problem 

instances 

1
st
 stage 2

nd
 stage 

Vessels Cranes Destinations Cranes 

1 

3 4 

3 5 

2 4 6 

3 5 7 

4 6 8 

5 

6 9 

3 5 

6 4 6 

7 5 7 

8 6 8 

9 3 5 16 10 
 

Table 2-5: Comparing the two meta-heuristic techniques 

# 
CPLEX GA EES 

OFV ST OFV BT OFV BT 

1 59 0.09 59 0.10 59 0.04 

2 75 1.92 75 0.11 77 0.05 

3 84 0.64 84 0.35 84 0.18 

4 94 1.23 94 0.36 94 0.16 

5 109 37.6 109 0.57 109 0.10 

6 115 78.8 115 0.60 115 0.18 

7 120 133.9 120 0.40 122 0.20 

8 137 128.2 137 0.64 137 1.55 

9 261 5580 245 65.70 245 54.20 
 

It is clear from Table 2-5 that, for problems 1 to 8 (i.e., small problem instances), both of 

the techniques can find the optimum solution rather quickly –and in some instances 

quicker than CPLEX 12.1. Problem set #9 was generated to both highlight the limited 

effectiveness of the standard optimization package, and also to motivate the relevance of 

developing solution methodologies for solving even larger problems. For instance, 

CPLEX could solve #9 to only within 9% of the optimal solution even when allowed to 
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run for over an hour –whereas each of the two meta-heuristics found better solutions in 

much shorter computational time. Note that although EES is faster than GA, it does not 

guarantee optimum solution in all instances. For example, problem sets 2 and 7 could not 

be solved to optimality using EES, because the algorithm was trapped in a local 

minimum. In the next three subsections, we make use of the two solution techniques to 

solve larger problem instances.  

2.6.2. Port of Montreal 

The Port of Montreal, one of the major container ports on the eastern seaboard of North 

America, is connected to the Atlantic Ocean through the St. Lawrence River and has a 

well-developed railways and intermodal connectedness. CPLEX and the two meta-

heuristic techniques, i.e., GA and EES, were used to solve a problem instance generated 

using the following parameters for this port.  

According to publicly available information (PoM, 2013), the port has eleven berths 

(i.e.,     ); fifteen dockside gantry (quay) cranes (i.e.,     ); and, twenty-six yard 

(mobile) cranes (i.e.,     ). Other parameters for TMSTW are estimated as follows: 

the number of jobs in the 2
nd

 stage, is randomly selected and is set to 19; the number of 

quay cranes needed in the 1
st
 stage is a random integer selected from      ; the number of 

yard cranes needed in the 2
nd

 stage is a random integer selected from              ; the 

processing time (in minutes) for each job in the 1
st
 stage is randomly selected from the 

interval          ; and, the processing time for jobs in the 2
nd

 stage is 
         

   
, where 

0.6 is the ratio of the handling capacity of a quay crane to that of a yard crane (i.e., 25 lifts 
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per hour to 40 lifts per hour). Finally, the weights are assumed to be the same for all jobs, 

and the availability time windows are selected randomly so that each quay crane has an 

eight hour rest period between two shifts, and four hours for yard cranes.  

A problem instance using the above set of parameters has been generated and solved 

using CPLEX and the two techniques. CPLEX was run until the optimality was proven, 

or an out of memory error condition was encountered. Using the best-bound search, 

CPLEX ran for slightly more than two hours before the search tree exhausted our 

imposed memory limit of 128 megabytes. The results for the CPLEX and the two meta-

heuristics are shown in Table 2-6, where execution time (ET) is in seconds and refers to 

the total time the meta-heuristic takes before termination. The percentage gap (GAP (%)) 

is computed as (best OFV – Best Bound) / (best OFV). In minimization problems, such as 

ours, the Best Bound represents a lower bound on the objective function value of an 

optimal solution. 

According to Table 2-6, the meta-heuristics beat CPLEX in terms of both GAP and 

computation time. Based on the results, CPLEX found a non-optimal objective function 

value of 47,344 after exploring 892,957 nodes and performing 8,705,130 (dual simplex) 

iterations, which is worse than the best solution obtained by both meta-heuristics. The 

best solutions achieved by GA and EES improve the CPLEX GAP for 2% and 0.6% 

respectively. In addition, our approaches improved upon the solution provided by CPLEX 

in significantly shorter time. The average ETs for GA and EES are only 2% and 0.1% of 

the CPLEX time. 



37 

 

Comparing the two meta-heuristics, it is clear that, EES does not guarantee a superior 

solution although it reaches the best possible solution much quicker than the proposed 

GA. On the other hand, the proposed GA beat the EES solution in nine of the ten runs. 

The proposed GA returned the best encountered solution with an OFV of 44170 minutes, 

within comparable computing time, and we decode it next. 

Table 2-6: Snapshot of ten runs for Port of Montreal 

Instances 

GA EES CPLEX 

OFV ET GAP OFV ET GAP 
Best 

Bound 
GAP OFV ST 

Average 44861 

149.2 31.8 

45732 

14.5 33.2 30098 33.8 48410 7,430 Best 44170 45070 

Std. Dev. 494 394 

 

Table 2-7 depicts the job sequence and the associated completion time (CT) in minutes 

for the best solution using the proposed GA. Jobs 1 to 11 belong to the 1
st
 stage while 

jobs 12 to 30 belong to the 2
nd

 stage. Since a chromosome represents a feasible sequence 

of jobs for our problem instance, job 11 precedes job 9, and hence the available cranes 

would be assigned to the former and only then go to the latter. The decoding procedure 

explained earlier, is used to determine the completion time for each job in the sequence. 

For instance, the completion time for job 11 is 444, which implies that the total waiting 

and unloading time for vessel 11 is equal to 7 hours and 24 minutes. Note that the 1st 

stage is completed after 1408 minutes when job 3, with the maximum completion time, is 

done. Similarly, the second stage finishes as soon as job 18 is serviced (i.e., 3354 
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minutes). Since all the jobs have equal priority, the sum of completion time for all the 30 

jobs in the given chromosome (i.e., Table 2-7) is the OFV, 44170 minutes. 

Table 2-7: Decoded best solution with proposed GA 

Jobs CT Jobs CT Jobs CT 

1 910 11 444 21 930 

2 406 12 3062 22 808 

3 1408 13 3064 23 730 

4 846 14 3064 24 2381 

5 1358 15 731 25 2381 

6 409 16 731 26 602 

7 405 17 2874 27 2033 

8 924 18 3354 28 1679 

9 413 19 1198 29 1668 

10 1287 20 2392 30 1678 

 

2.6.3. Port of Singapore 

In an effort to test the effectiveness of the proposed analytical framework, we consider 

the characteristics of the port of Singapore, one of the busiest ports in the world with the 

container traffic of over 29mn in 2011 (CIY, 2012). Seven problem instances based on 

realistic parameters have been generated, and they are presented in Table 2-8. The 

remaining parameters such as processing time, number of cranes, and their availability 

time windows are derived using the technique for the port of Montreal in Section 2.6.2.  

Each of the seven problem instances has been run once by CPLEX and 10 times using the 

two meta-heuristics (Table 2-9). According to Table 2-9, except Problems 1 and 3, 

CPLEX terminated with a memory fault and no solution. Comparing the results of 

CPLEX and the best solutions achieved by the two meta-heuristics for the two 

aforementioned problems proves the superiority of the meta-heuristics in terms of both 



39 

 

GAP and time. For example, for Problem 1, the GAPs reported by GA and EES are 

approximately 7.5% better than CPLEX, and the solution was obtained in considerably 

lower time. For the rest of the problems, CPLEX was unable to find a feasible integer 

solution; hence, the GAP is infinite. However, our developed approaches found relatively 

good solutions, with GAPs between 26% and 49%. 

Table 2-8: Problem parameters for Port of Singapore 

Problem 

Instances 

1
st
 stage 2

nd
 stage 

Jobs Cranes Jobs Cranes 

1 6 22 13 59 

2 7 25 15 72 

3 8 27 17 85 

4 9 29 17 107 

5 10 31 25 109 

6 12 33 24 112 

7 14 36 26 114 
 

We also compared the two meta-heuristics. It is clear that the proposed GA-based 

solution method returns the best solution in six problems, while is tied for the best in 

another. Once again, it is clear that EES is faster than GA, but it is less likely to return the 

best solution since it has a tendency to be trapped in local optimums.  

Table 2-9: Problem instances for the Port of Singapore solved by CPLEX, GA and EES 

# 

CPLEX GA EES 

Best 

Bound¤ 

OFV GAP ST Avg.* Best§ GAP ET Avg. Best GAP ET 

1 18,310 29,791 38.54 4,667 26,901.8 26,702 31 117.8 27,740.6 26,702 31 15.3 

2 18,888 - ∞ 6,699 27,124.4 26,977 30 142.6 28,622.9 27,356 31 30.1 

3 18,043 28,919 37.61 17,505 24,394.8 24,300 26 185.2 24,649.1 24,385 26 26.0 

4 19,064 - ∞ 15,614 26,891.4 26,734 29 199.8 28,474.4 26,938 29 51.3 

5 23,216 - ∞ 24,764 37,131.7 35,849 35 292.5 38,584.4 35,889 35 32.8 

6 28,028 - ∞ 55,430 48,037.6 47,367 41 303.3 51,342.6 47,669 41 39.6 

7 32,429 - ∞ 112,255 63,404.6 61,534 47 436.0 67,854.6 64,826 49 47.2 
¤Best OFV among all the remaining node subproblems; *Average OFV; §Best OFV;  
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2.6.4. Large Scale Random Problem Instances 

To reach more accurate conclusions, a set of large scale instances, has been randomly 

generated (Table 2-10). Because of the complexity, the generated problems could not be 

solved by CPLEX in a reasonable time. Thus, only the results obtained by GA and EES 

are compared here (Table 2-11).  

Table 2-10: Random large scale problem instances 

Problem 

Instances 

1
st
 stage 2

nd
 stage 

Jobs Cranes Jobs Cranes 

1 30 90 51 270 

2 40 120 87 360 

3 50 150 101 450 

4 60 180 117 540 

5 70 210 141 630 

6 80 240 161 720 

7 90 270 185 810 

8 100 300 205 900 

 

Table 2-11: OFV (minutes) for the large problem instances 

# 

GA EES 

Avg. Best S.D. ET  Avg. Best S.D. ET 

1 196,986 196,179 1,141 1,142 269,060 231,141 53,625 848 

2 447,011 444,775 3,162 2,392 616,414 600,030 23,170 2,108 

3 583,589 575,518 11,413 3,458 962,379 859,509 145,480 2,099 

4 850,665 828,790 30,935 4,735 1,240,296 1,220,882 27,456 4,204 

5 1,209,115 1,203,520 7,912 7,069 1,874,642 1,789,766 120,032 6,456 

6 1,685,925 1,559,875 178,261 7,440 3,012,273 2,423,186 64,401 8,079 

7 2,172,178 2,056,653 163,376 10,558 3,012,273 2,933,780 111,005 5,219 

8 2,727,264 2,721,673 7,906 11,166 4,213,178 3,950,470 371,525 12,122 

9 3,067,782 3,048,280 27,580 13,499 5,005,429 4,969,501 50,809 14,431 

10 

 

3,942,918 3,883,914 83,444 14,590 5,898,315 5,779,429 168,129 14,874 
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Each of the ten random problem instances was solved for ten times using the two meta-

heuristics. Please note that the stopping criterion to solve this set of problems is either 

1000 consecutive iterations with no better solution or reaching a maximum number of 

iterations of 100,000. Figure 2-7 presents the relative performance of the two meta-

heuristics in terms of ET. It can be observed that GA outperforms EES for all problem 

instances. It is observed in Figure 2-7 that GA requires more computation time for six 

problems out of 10. 

 

Figure 2-7: ET for GA and EES with the large size problem instances 

2.6.5. Managerial Insights 

In this section, we ascertain solution sensitivity to perturbation in cranes’ time windows, 

number of cranes, and weights of jobs for the port of Montreal as the base case.  
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2.6.5.1. Time Windows 

To decrease the turnaround times of container ships, trucks and intermodal trains, either 

the availability time windows or the number of the cranes could be increased. To 

determine the impact of variations in the availability time windows of cranes on the total 

weighted completion time (OFV), the current unavailability time spans were halved and 

doubled. When the unavailability times are doubled, the jobs have to be completed in 

longer time, with an OFV of 47702 minutes. However, when the unavailability times are 

halved, the OFV decreases to 43707 minutes (Figure 2-8). 

 

 

Figure 2-8: Impact of unavailability time windows on OFV 

It was interesting to note that in addition to the duration, the distribution of unavailability 

times had a direct bearing on the completion time. This implied that the unavailability 

time windows could be arranged so as to ensure smooth flow of jobs –without changing 

the actual unavailability duration. This was done by moving the unavailability times for 
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the quay cranes in the first stage to the end of their schedule, which ensured that the 

waiting times of the jobs was minimized. On the other hand, the unavailability times for 

the yard cranes in the second stage were moved to the beginning of the schedule, which in 

turn guaranteed their availability to serve jobs released from the first stage. TMSTW was 

solved using the rearranged unavailability time windows, and the total completion time 

decreased to 42877 –which is the lowest of all the computed instances (Figure 2-8). 

Hence, port management interested in quick turnaround of containers should consider the 

processing time of jobs and the related interdependencies when designing unavailability 

time windows for the cranes. For example, if, in a container port terminal, the total 

amount of unavailability should not exceed 15 percent of the total available time, one 

could search for the optimal occurrence of the unavailability time spans, so that the 

waiting times of the jobs are minimized. 

2.6.5.2. Number of Cranes 

We also investigated the impact of variations in number of cranes on the solution. When 

we increase the number of quay and yard cranes to 29 and 44 respectively, the OFV 

decreases to 35073 minutes, however, the decrease of the number of quay and yard cranes 

respectively to 11 and 19, worsen the OFV to 54460 minutes (Figure 2-9). Based on the 

results, acquiring additional resources (cranes in this study) can considerably reduce the 

turnaround time, by decreasing the waiting times. It is important to note that, the results 

may be different when we take the interferences among cranes into account. According to 

Bierwith and Meisel (2009), interferences among cranes alter their overall performance. 
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Figure 2-9: Impact of number of cranes on OFV 

2.6.5.3. Job Weights 

In an effort to ascertain the impact of variations in weights on the solution, we assigned 

higher priority to three jobs: 3 in the 1
st
 stage; and, 17 and 18 in the 2

nd
 stage, assuming 

they are related to the similar type of hazmat containers, e.g. containers of propane. After 

solving the model, we notice that these jobs were completed much earlier (Table 2-12) 

than when all jobs had equal weight (Table 2-7), although the total completion time 

increased to 44 856 minutes. This implies that in general attaching higher priority would 

ensure earlier completion of the given task provided that there are available resources, 

although that may not necessarily result in better overall completion time, and indeed 

might make it worse.  

In the next experiment, we assumed that there are two types of hazmat containers, i.e. in 

addition to the jobs related to the containers of propane (job 3 in the 1
st
 stage; and jobs 17 

and 18 in the 2
nd

 stage) with priority of 2, we considered jobs associated with radioactive 
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containers (job 11 in the 1
st
 stage; and jobs 28, 29 and 30 in the 2

nd
 stage) with higher 

priority of 3. The total completion time increased to 45645 minutes; however, the 

completion time of jobs 11, 28, 29 and 30 considerably decreased to 444, 1392, 1392 and 

1392. 

Table 2-12: Impact of weights 

Jobs CT Jobs CT Jobs CT 

1 924 11 1291 21 3313 

2 888 12 669 22 3313 

3 406 13 1200 23 994 

4 405 14 2628 24 2712 

5 847 15 1449 25 772 

6 1426 16 1882 26 1882 

7 1336 17 1097 27 2279 

8 413 18 3313 28 1908 

9 448 19 776 29 776 

10 409 20 2388 30 2712 
 

2.7. Conclusion 

High operating costs of container ships imply that any delay at the ports could result in 

huge loss to the ship operators, as well as the final customers in terms of delayed 

deliveries and higher price. This study proposed an analytical approach that can be used 

to schedule the cranes at maritime terminals, such that the unloading of inbound vessels 

and the loading of outbound vehicles could be completed in minimum time. The 

methodology calls for a multi-processor multi-stage scheduling approach to the 

managerial problem, where each processor has an availability time window. Hence, this 

work contributes to the area of scheduling available resources at a cross docking facility.  
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Since the proposed model is NP-hard, only small size problem instances can be solved 

using the exact methods. Hence, we have outlined a solution method based on a genetic 

algorithm (GA) equipped with a novel decoding procedure. This method has been tested 

on problem sets generated using realistic parameters from the Port of Montreal and the 

Port of Singapore, as well as a set of large scale problems. In order to demonstrate the 

efficiency of the proposed technique, we compared its performance to CPLEX and 

another meta-heuristic technique (Evolutionary Strategy). The computational results 

showed that the proposed GA quickly finds known optimal solutions for small size 

problems. For the larger instances for which optimal solutions are not known, GA 

improved upon the best solutions provided by CPLEX but in a fraction of the time. It also 

outperforms EES in most instances, and within a reasonable amount of computing time.  

The limitation of this study is that a job in the second stage is forced to wait for the entire 

vessel to be unloaded before it can proceed with its operation. In the future research, we 

will redefine the job in the first stage as a smaller size construct, with consideration of the 

corresponding successor in the second stage. Additionally, it would be interesting to 

investigate the effect of increasing the number of cranes assigned to the jobs and the level 

of interference between the cranes on the completion time. Furthermore, the situation in 

which each vessel has dynamic arrival time will be investigated in the future to evaluate 

the efficiency of the port in terms of average waiting turnaround times. 

This chapter aims to schedule the cranes available in intermodal terminals, while the 

capacity planning of those terminals, i.e. how many cranes each terminal should choose, 

is the subject of the next Chapter. In other words, unlike this chapter where the number of 
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cranes available in the terminal was regarded as a parameter of the model, in the next 

chapter it will be considered as a decision variable. Chapter 3 studies a tactical level 

problem of routing and capacity planning in an intermodal network. 

2.8. Appendix A 

2.8.1. Elitist Evolutionary Strategy 

An alternative to GAs are evolutionary strategies that were founded by Rechenberg 

(1973) to solve real valued problems, in which chromosomes are represented as arrays of 

real valued numbers instead of bit strings. These algorithms are mainly used for empirical 

experiments. In comparison to GA, mutation plays a more important role to evolve the 

individuals in evolutionary strategies. 

In this research we use the elitist evolutionary strategy which enjoys elitism and ranking 

selection. Elitism makes it possible for the parents to survive an infinitely long time-span 

and guarantees the global convergence of evolutionary strategy (Beyer and Schewefel, 

2002). The two main parameters of this algorithm are (1) μ, the number of parents used to 

produce children, and (2) λ, the number of children produced in each iteration. After 

creating μ solutions as the initial population, λ offsprings are generated by mutation. 

Combining and sorting the μ parents and λ offsprings, the μ fittest individuals are chosen 

and preserved for the next generation. Evolutionary strategies are fast and can readily find 

local optima, yet they may not be able to achieve the global optimum. The pseudo code of 

elitist evolutionary strategy is presented in Figure 2-10.  

Other considerations for the implemented evolutionary strategies are as follows. 
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 μ: 1 

 λ: 10 

 Probability of mutation: 0.2 

 

  

 

 

Create the parentPop of μ solutions 

while not Termination Condition() do 

for individual: 1 to μ do 

for count: 1 to λ/μ do 

offspring =Mutation (individual); 

offspringPop.add (offspring); 

end for 

end for 

for individual: 1 to μ do 

offspringPop.add (individual); 

end for 

Sort offspringPop; 

 Clear parentPop;  

for count: 1 to μ do 

parentPop.add (offspring); 

end for 

end while 

Figure 2-10: Elitist evolutionary strategy 
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3. Managing Rail-truck Intermodal Transportation for 

Hazardous Materials with Congestion Considerations 

 

Abstract: The current literature in the rail-truck intermodal transportation of hazardous 

materials (hazmat) domain ignores congestion at intermodal yards. We attempt to close 

that gap by proposing a bi-objective optimization framework for managing hazmat freight 

that not only considers congestion at intermodal yards, but also determines the 

appropriate equipment capacity. The proposed framework, i.e., a non-linear MIP and a 

multi-objective genetic algorithm based solution methodology, is applied to a realistic 

size problem instance from existing literature. Our analysis indicates that terminal 

congestion risk is a significant portion of the network risk; and, that policies and tools 

involving number of cranes, shorter maximum waiting times, and tighter delivery times 

could have a positive bearing on risk. 

Keywords: Rail-truck Intermodal; Congestion Effect; Hazardous Material; Capacity 

Planning; Nonlinear Integer Program 

3.1. Introduction  

Hazardous material (hazmat) is a substance or material that is capable of posing an 

unreasonable risk to health, safety, and property when transported in commerce (U.S. 

Environmental Protection Agency, 2013). Examples of hazmat include gases, 

flammables, explosives, and radioactive materials (Verter, 2011). Although hazardous 
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materials are source of potential of harm, they cannot be eliminated from our lives, as 

they are essential to our economies and our technology dependent societies. Large 

volumes of hazardous materials are transported every day. According to the Office of 

Hazardous Materials Safety (OHMS) of the US DOT, 800,000 hazardous material 

shipments were carried out daily in United States in 1998 (US DOT, 2010). With a 

conservative estimate, production and shipment of hazardous material tend to increase by 

2% annually, and the total number of shipments every year in America has been over one 

million since 2005 (Erkut et al., 2007). With 99.97% of the 1.7 million carloads of 

hazardous materials successfully reaching their final destination without incident (AAR, 

2012), rail is by far claimed to be the safest way to move hazardous materials. However, 

recent train disasters, such as Lac-Mégantic, Alabama and Louisiana derailments, show 

that rail transportation is not as safe as it was, especially when it comes to shipment of 

high concentrations of hazardous materials via tracks passing through populated areas. 

Hence, active measures should be taken by relevant stakeholders to mitigate the risks 

caused by hazmat transportation. 

Intermodal transportation refers to transporting a shipment from a shipper to a receiver 

through multiple transportation modes (Crainic and Kim, 2007). Among all the hazmat 

shipments reported in the US, 111 million tons of hazmat were carried through multiple 

modes, which accounts for around 13.3% of all modes of hazmat transportation by ton-

miles (US DOT, 2010). In the past few decades, intermodal transportation, especially rail-

truck intermodal transportation (RTIM), has grown exponentially. Due to its advantages 
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in reducing the uncertainties and lead times (Nozick and Morlok, 1997), RTIM has been 

employed to ship both regular freight and hazmat. 

Figure 3-1 depicts a typical rail-train intermodal transportation chain. As shown, 

transporting a container from the shipper to receiver must pass through three portions: 1) 

inbound drayage by trucks from the shipper to the origin terminal, 2) rail-haul from the 

origin intermodal terminal to the destination terminal, and 3) outbound drayage by trucks 

from the destination terminal to the receiver. The double connections from one member to 

the other indicate that alternative routes are available in each portion of this chain. More 

particularly, although the number of rail routes between the origin and destination 

terminals is limited, multiple train services can be maintained in terms of speed, departure 

time, intermediate stops, and routes (Verma and Verter, 2010). Please also note that the 

rail-haul service for shipping hazmat usually operates on a fixed-schedule, non-stop from 

the origin to the destination terminal.  

 

Figure 3-1: A rail-truck intermodal transportation chain 

As shown in Figure 3-1, intermodal terminals are the key components of any intermodal 

transportation network. Unloading containers from trucks and loading them into trains are 

provided by special equipment at origin terminals, while unloading of containers from 

trains and loading of them into trucks are done in destination terminals. When transported 
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to the terminal by truck/ train, the containers are either directly transferred to a rail 

car/truck or are stacked temporarily in a waiting area. As discussed in the literature 

review (Section 3.2), most existing research ignored the operations within an intermodal 

terminal from hazmat perspective. When the demand is uncertain, this ignorance may 

result in many serious issues related to intermodal transportation, especially the hazmat 

transportation, such as the underestimation of delivery time and the possible exposure risk 

caused by congested hazmat shipments.  

In dealing with these issues, we propose a bi-objective nonlinear programming model for 

managing rail-truck intermodal transportation of hazardous materials. The issue of cost is 

always the main concern of every decision making process, and thus is addressed as our 

first objective. This research considers three costs: 1) the transportation cost of the three 

portions of the intermodal transportation chain; 2) the fixed cost of opening and 

maintaining a certain train service; and 3) the purchase cost of handling equipment at 

each terminal. Among the aforementioned costs, the drayage cost is a function of time the 

crew is engaged and the estimated consumed fuel, while the rail-haul cost depends on the 

type of the service, in our case, either regular or priority. In addition to the rail-haul cost 

and regardless of the number of cars assigned to a train, there is a fixed cost for operating 

a train service that mainly consists of the wages of the train crews. Inside each intermodal 

terminal, the equipment used for moving containers from trucks to trains (or trains to 

trucks) can be expensive. Also the number of these equipment items has direct effect on 

the level of congestion at an intermodal terminal. Therefore, it is necessary for the 
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decision maker to ensure the right number of equipment items that should be purchased, 

such that the congestion of the transportation flow is limited, but with the lowest cost.  

Because of the associated environmental risks, planning and decision-making in the 

context of hazmat shipments is different from the regular ones. Here we formulate the 

total risk as the second objective. As one of the most applied risk measures, population 

exposure refers to the total number of people exposed to the undesirable consequence due 

to the movement and opening of hazardous facilities (such as gas stations and hazardous 

waste treatment centers). In our research, besides the population exposure caused by the 

inbound and outbound drayage, as well as the rail-haul, we further investigate the 

possible risk resulting from the hazmat containers staying (waiting for service) in the 

intermodal terminals. The larger the number of hazmat containers staying in the system, 

the higher the exposure risk to surrounding population. To model the exposure risk due to 

congestion of hazmat containers, we consider each piece of equipment as a server of a 

non-preemptive priority queuing system, where hazmat containers have non-preemptive 

priority over regular containers. Details about the evaluation of this risk will be discussed 

in Section 3.3.  

To the best of our knowledge, this is the first study that considers congestion of hazmat 

freights as a source of exposure. Our suggested model would help decision makers 

identify the risky terminals and adopt appropriate policies for risk management. The 

remainder of this chapter is organized as follows. Section 3.2 provides a thorough review 

of the relevant literature. Section 3.3 shows the problem statement and discusses model 

assumptions. A bi-objective nonlinear programming model is developed and investigated 
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in Section 3.4. Section 3.5 discusses the solution procedure, while Section 3.6 presents a 

numerical experiment conducted with real-world data. Through our computational 

experiments a number of problem instances will be solved and analyzed to determine the 

factors affecting congestion risk and gain managerial insights. Section 3.7 concludes this 

Chapter with managerial insights and contributions.  

3.2. Literature Review 

In the following, we conduct a comprehensive literature review regarding: 1) risk 

modeling in location routing problems, 2) intermodal transportation for hazardous 

materials, 3) consideration of congestion effects and 4) terminal operations.  

The first group of papers models the risk in location routing problems. A lot of effort has 

been made to capture the transportation risk using operations research models. Among 

various risk measurement methods, three prominent models of measuring the path risk are 

traditional risk, population exposure, and incident probability. Traveling on a P consists 

of multiple edges which can be viewed as a probabilistic experiment. In other words, a 

hazmat vehicle will travel the ith edge of P only if there is no accident on the previous (i 

− 1) edges of P. Assuming that the probability of accident on edge i is pi, the risk 

associated with travel along path P consists of n edges has the linear form of ∑     
 
   , 

where ci denotes the total population in the rectangle shape impact area that stretches 

along edge i. Because of using the expected consequence definition of risk, this method is 

called the traditional risk model, which has been applied by Batta and Chiu (1988), Alp 

(1995) and Zhang et al. (2000). In addition to the traditional risk, Batta and Chiu (1988) 



55 

 

used population exposure to measure the path risk. In this method, the population 

exposure is approximated by∑   
 
   , where ci denotes the total population in the rectangle 

shape impact area that stretches along edge i. The third model takes the probability of 

incident when measuring the risk: ∑   
 
   . Saccomanno and Chan (1985) and Abkowitz 

et al. (1992) used the incident probability in their researches. 

In the following, we review a number of papers that studied location routing problems 

with regard to hazmat risks. Revelle et al. (1991) suggested an optimization model to find 

the location of waste disposal facilities and to choose routes for the shipment of 

hazardous waste, so that the transportation costs and perceived risks are minimized. They 

accounted the perceived risk in terms of the number of people who are most likely to 

suffer risks associated with shipment along the arc from the origin to the destination. List 

and Mirchandani (1991) captured the transport and facility risk in a waste treatment 

network. They defined the transportation risk as a function of external impact due to the 

shipment. They also indicated that the impact to a specific point from a vehicle incident is 

inversely proportional to the square of the distance between the vehicle and that point, 

and is directly proportional to the volume being shipped. The facility risk was determined 

in a same way. Stowers and Palekar (1993) developed a bi-objective model of locating 

hazardous waste repositories. Aiming to minimize the total and the maximum exposure, 

this model quantifies the total exposure of the population during the transportation and 

long term storage. Similar to Revelle et al. (1991), this study assumed that the presence of 

hazardous waste at any point on the network exposes a circular region of constant 
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diameter to risk. The total exposure to a node or to an arc of the network was defined as a 

convex combination of location exposure and travel exposure. Giannikos (1998) defined 

the total perceived risk as the summation of risk perceived by individuals at different 

centers. A multi-objective model was developed to determine the location of disposal 

facilities and transportation of hazmat waste, considering four objectives: 1) minimization 

of total operating cost; 2) minimization of total perceived risk; 3) equitable distribution of 

risk among population centers to minimize the maximum individual perceived risk; and 

4) equitable distribution of the disutility to minimize the maximum individual disutility 

caused by the operation of the treatment facilities. Cappanera et al. (2004) studied the 

problem of locating obnoxious facilities (e.g. dump sites) and routing obnoxious materials 

between communities and facilities. Their model minimizes the opening cost of facilities 

and the transportation cost of the obnoxious flow, while restricting the location and 

routing exposures caused by settling facilities near a built-up area (affected site) to a 

predetermined level. That is, the total transportation and opening exposures must not 

exceed the thresholds, knowing the exposure by a unitary flow along the arcs and the 

exposure caused by the opening of a facility at a specific location. A multi-objective 

model for hazardous waste location routing problem was suggested by Alumur and Kara 

(2007). The model aims to determine the location of treatment and disposal centers, as 

well as the routing of different types of hazardous wastes and waste residue to those 

centers. The first objective minimizes the total cost of transportation and the fixed annual 

cost of opening a treatment technology and a disposal facility. The second objective 

minimizes the total risk of transportation, which is measured with population exposure. A 
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similar multi-objective location-routing model was presented by Samanlioglu (2013) who 

considered the recycling centers besides the treatment and disposal centers. In addition to 

the minimization of the total cost and the total transportation risk, the developed model 

minimizes the total risk for the population living near the centers (treatment, disposal and 

recycling centers). 

Despite the efforts having been put into the risk evaluation related to location routing 

problems for hazmat transportation, only few studies have considered the transportation 

through intermodal networks. Our next Section reviews existing literature in dealing with 

intermodal transportation for hazardous materials.  

The second class of papers studies the intermodal transportation for hazardous materials. 

More specifically, we consider rail-truck intermodal transportation network. The rail-

truck intermodal transportation is a safe way of shipping hazmat cargoes. It is not simply 

the combination of two modes of rail and truck, but also includes the division of tasks and 

the synchronization of schedules (Bontekoning et al., 2004). However, very limited 

research has been done in the area of rail-truck intermodal transportation for hazmat. 

Verma and Verter (2010) are the first authors who studied the rail-truck intermodal 

network for transportation of hazardous materials. They developed a multi-objective 

model to determine the best shipment plan for hazardous and regular freights, so that a set 

of predetermined lead times are satisfied, and the total cost and risk are minimized. A 

nonlinear risk function was defined to calculate the population exposure caused by the 

operations of trains between each single pair of intermodal terminals. The model was then 

generalized by Verma et al. (2012) to consider multiple intermodal terminals. Xie et al. 
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(2012) combined the facility location and routing problems for multimodal transportation 

of hazardous materials. They considered a network of highways and railways, where 

hazmat can be transferred between trucks and rail cars only at transfer yards. To optimize 

transfer yard locations and routing plans, they developed a multi-objective model which 

minimizes the cost, including total link cost, the transfer yard’s capital and operating 

costs, as well as risks, including the link risk and the risk during the transfer process. 

Although the risk exposure has been considered in the strategic and tactical planning of 

intermodal transportation of hazardous materials, the sources of this exposure have been 

limited to the moving of hazardous materials and the location of intermodal terminals. 

Assuming deterministic demand as well as sufficient capacity and equipment, the existing 

literature overlooked the possibility of congestion at any point in the intermodal chain, 

not to mention the exposure caused by the congestion of hazmat shipments, especially the 

congestion at the intermodal terminals. 

The third class of papers considers the congestion effects. In traditional optimization 

problems, demand is assumed to be constant and deterministic over the time, and capacity 

constraints are usually used to avoid the effects of congestion. In contrast, the 

probabilistic models define the demand as a stochastic process and use Markovian 

queuing to deal with the congestion. Some of the recent stochastic models considering the 

congestion effects are reviewed as follows. As the first work that studied location 

problems with stochastic demands and congestion, Marianov and Serra (1998) assumed a 

Poisson arrival of service requests and exponential service time. Multiple maximal 

covering location allocation problems were developed subject to a predetermined waiting 
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time, i.e. congestion time. Both M/M/1 and M/M/m queuing systems were examined in 

this paper. Marianov and Serra (2001) further studied the hierarchical version of the 

location allocation problem in presence of congestion. They considered low and high 

level service centers that respectively employ the M/M/1 and M/M/m queuing systems. 

Capacity planning with regard to congestion effects was studied by Rajagopalan and Yu 

(2001). They considered a multi-product and multi-machine production system, where 

each product can be produced on a single machine, and each machine was modeled as an 

M/G/1 queue. The equipment acquisition model was formulated as a nonlinear integer 

program, which minimizes the total cost while the targeted service level at each machine 

is met. Congestion effects in airline network were investigated by Marianov and Serra 

(2003) who modeled the airports as M/D/c queuing systems. They developed a model to 

determine the location of airports, so that the transportation cost and fixed cost of locating 

the airports are minimized, while the probability of more than a certain number of 

airplanes waiting in the queue is kept less than a predetermined value. The purchasing 

cost was first incorporated in the objective function by Elhedhli and Hu (2005). They 

studied a hub-and-spoke network design problem, in which the purchasing cost at a hub is 

defined as a convex function, so that the cost increases exponentially as more flows are 

routed through that hub. Elhedhli and Wu (2010) embedded congestion in the design of a 

hub-and-spoke system which was viewed as a network of M/M/1 queues. They suggested 

a nonlinear mixed integer model to minimize the congestion, capacity acquisition and 

transportation cost. The congestion at hubs was calculated as the ratio of total flow to 

surplus capacity. 
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Most literature discussed in this section examined the congestion effects in the 

constraints, ensuring that the congestion time or the number of waiting units is lower than 

a specific level. The last two papers investigated congestion at the objective stage, but 

only regular freights have been addressed. With consideration of the hazmat 

transportation, congestion effects become more important yet challenging. 

Finally, the fourth group of papers is related to the operations inside the terminal. In a 

rail-truck intermodal network containers arrive at the terminal by truck/train and are 

either directly transferred to a rail car/truck or are stacked temporarily in a waiting area. 

As far as we know, there are only a few papers that study inland terminal operations. 

Gambardella et al. (2001) studied resource allocation and scheduling of loading and 

unloading operations in an intermodal container terminal. At the allocation level, their 

suggested approach aims to determine the best allocation of resources at the yard so that 

the costs are minimized, while at the scheduling level, the objective is to schedule the 

unloading and loading operations so that the resource usage is optimized. An optimization 

model for a rail-rail container terminal was developed by Alicke (2005). Alicke 

developed a framework based on constraint programming to determine the sequence of 

transshipments and the size of the crane areas. In another study, an assignment model to 

dynamically assign containers to slots on intermodal trains was presented by Corry and 

Kozan (2006). The model aimed to minimize the excess handling time and to optimize 

the weight distribution of the train. A literature review on container terminal operations 

was provided by Stahlbock and Voß (2008). 
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However few papers scrutinize operations in inland terminals, a significant number of 

papers study similar issues at container port terminals. Quay-crane scheduling, stowage 

planning and sequencing and storage space planning are the main problems related to 

container port terminal operations. For comprehensive overviews on the operations in sea 

terminals, we invite readers to refer to Crainic and Kim (2007). 

3.3. Problem Description  

This section provides a comprehensive description of the problem focused in our 

research. Based upon the intermodal chain illustrated in Figure 3-1, our research aims to 

answer the following three questions so as to minimize the total cost and risk.  

1) How many intermodal train services should be maintained? 

2) How to route hazmat and regular containers to their destinations through the 

origin and destination terminals? 

3) What should the capacity of each intermodal terminal be? That is, how many 

equipment items each terminal should choose considering the congestion effects? 

The first and second questions are tactical level decisions related to the number of train 

services and the routing aspect of the model. As Figure 3-1 shows, in a typical rail-truck 

intermodal transportation network, there are multiple route choices connecting one part to 

the other, each of which has particular travel time, cost and exposure. There are also 

multiple train services with different intermediate stops, speeds, routes and departure 

time. Findings of Verma et al. (2012) for a congestion-free network with deterministic 
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demand show that the use of non-stop train services and selection of longer but less risky 

paths can minimize the transportation risk of hazmat containers. 

The third question is a strategic decision and concerns the the relationship between the 

capacity of an intermodal terminal and congestion, which is considered as a source of 

exposure in our model. We assume that decision maker has selected Mj (Mk) pieces of 

equipment of the same type for possible acquisition at each origin (destination) terminal j 

(k). Each piece of equipment is considered as a server in a non-preemptive priority 

queuing system, in which members of the queue are selected for service based on their 

assigned priorities. More specifically, hazmat containers have non-preemptive priority 

over regular containers, i.e. the arrived hazmat containers move to the head of the queue, 

but the regular containers in service are not interrupted. Further information on priority 

queue disciplines can be found in Gross and Harris (1998). 

A Poisson process is a random process used in queuing theory. It is described by its rate 

parameter, λ, which is the expected number of events or arrivals that occur per unit time. 

We model arrivals of the requests for transportation of the hazmat and regular containers 

in a certain time period as independently distributed Poisson processes. By a “request”, 

we mean the request for transportation of a hazmat or regular container from a shipper to 

a receiver in a certain time period. It is interchangeable with the term “demand” in this 

research.  

We assume that the requests for handling the hazmat and regular containers arrive 

independently and both follow Poisson processes in a certain time period, and the service 

time of the equipment is exponentially distributed. These assumptions are very common 
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in the modeling environments that consider congestion (Rajagopalan and Yu, 2001). 

Since all the containers transported from shippers enter the origin terminals, the input 

process to the equipment in these terminals is a Poisson process. It is easy to prove that 

the input process to the equipment in the destination terminals is also a Poisson process: 

according to the equivalence property, an infinite queue with a Poisson input described by 

parameter λmj and exponential service time μ (λmj < μ) has a Poisson output with parameter 

λmj. Since the containers leaving the origin terminals are entirely transported to the 

equipment in one or more corresponding destination terminals, these equipment items in 

the destination terminals also have a Poisson input. This property makes no assumption 

about the type of queue discipline, so it can be applied to priority queues in our case too.  

A sample queuing diagram of origin terminal j and destination terminal k with 

respectively three and two pieces of equipment is presented in Figure 3-2.     and  ̅   

(m = 1, 2, 3) are, respectively, the hazmat and regular arrival rates of containers to 

equipment m in origin terminal j (for terminal k, m = 1, 2). The service rate of equipment 

at origin terminal j is μj and at destination terminal k is μk. Given the aforesaid 

assumptions, we formulate the congestion risk as the average number of hazmat 

containers waiting in the queue. 
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3.4. A Bi-objective Model 

In this section, we present a bi-objective nonlinear programming model (P) for managing 

rail-truck intermodal transportation of hazardous materials.  

Sets: 

  Set of shippers, indexed by i 

  Set of origin terminals, indexed by j 

  Set of destination terminals, indexed by k 

  Set of receivers, indexed by l 

    Set of traffic-classes, indexed by z. The elements of this set are derived from 

pairing every shipper i∊ I = {1, 2, . . . ,a} with the receiver l∊ L = {1, 2, . . . , f} 

Figure 3-2: A view of queuing at origin terminal j and destination terminal k with 

respectively three and two pieces of equipment 

 

 

 

 

 

 

Origin terminal j 

𝜆̅ 𝑗,𝜆 𝑗 

𝜆̅ 𝑗,𝜆 𝑗 

𝜆̅ 𝑗,𝜆 𝑗 

𝜆̅ 𝑘,𝜆 𝑘 

𝜆̅ 𝑘,𝜆 𝑘 

Destination terminal k 
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it supplies. 

    Set of inbound drayage between each shipper i∊ I = {1, 2, . . . ,a} and each 

origin terminal j∊ J = {1, 2, . . . ,b}, indexed by p. 

    Set of outbound drayage between each destination terminal k∊ K = {1, 2, . . . ,e} 

and each receiver l∊ L= {1, 2, . . . , f}, indexed by q. 

    Set of intermodal train services between each terminal pair j-k, where j∊ J = {1, 

2, . . . ,b}and k∊ K = {1, 2, . . . ,e}, indexed by v. 

   
  Set of train service legs for intermodal train service type v operating between 

terminals j∊ J= {1, 2, . . . ,b} and k∊ K = {1, 2, . . . ,e}, indexed by s 

   Set of equipment under consideration at origin terminal j, indexed by m 

   Set of equipment under consideration at destination terminal k, indexed by m′ 

Input parameters:  

  A large number 

   Cost of moving one hazmat container on path p for inbound drayage 

 ̅  Cost of moving one regular container on path p for inbound drayage 

   Cost of moving one hazmat container using intermodal train service of type v 

 ̅  Cost of moving one regular container using intermodal train service of type v 

   Cost of moving one hazmat container on path q for outbound drayage 
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 ̅  Cost of moving one regular container on path q for outbound drayage 

   Purchase cost of an equipment at origin terminal j 

   Purchase cost of an equipment at origin terminal k 

    Fixed cost of operating intermodal train service of type v 

   

Population exposure due to moving one hazmat container on path p for inbound 

drayage. 

   

Population exposure due to moving one hazmat container on intermodal train 

service of type v. 

   

Population exposure due to moving one hazmat container on path q for 

outbound drayage. 

   

The exposure caused by a unit of hazmat container in the queue of an 

equipment in origin terminal j 

   

The exposure caused by a unit of hazmat request in the queue of an equipment 

in destination terminal k 

   Inbound drayage time using path p 

   Travel time of intermodal train service of type v 

   Outbound drayage time using path q 

    Delivery time associated with traffic-class z 
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Maximum number of containers that can be loaded on intermodal train service 

of 

type v 

   Service rate at each equipment at origin terminal j 

   Service rate at each equipment at origin terminal k 

   Expected demand for hazmat containers in traffic-class z  

 ̅  Expected demand for regular containers in traffic-class z  

Decision variables: 

  
 
 Expected hazmat containers of traffic-class z using path p for inbound drayage 

 ̅ 
 
 Expected regular containers of traffic-class z using path p for inbound drayage 

  
  Expected hazmat containers of traffic-class z on train service of type v. 

 ̅ 
  Expected regular containers of traffic-class z on train service of type v. 

  
  Expected hazmat containers of traffic-class z using path q for outbound drayage 

 ̅ 
  Expected regular containers of traffic-class z using path q for outbound drayage 

  
  1 if   

    ; 0 otherwise 

  
  1 if   

    ; 0 otherwise 

  
  1 if   

    ; 0 otherwise 
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 ̅ 
  1 if  ̅ 

   ; 0 otherwise 

 ̅ 
  1 if  ̅ 

   ; 0 otherwise 

 ̅ 
  1 if  ̅ 

   ; 0 otherwise 

   Number of intermodal train service of type v 

    1 if new equipment m in origin terminal j is acquired; 0 otherwise 

  ́  1 if new equipment m′ in destination terminal k is acquired; 0 otherwise 

    Arrival rate of hazmat containers to equipment m in origin terminal j 

 ̅   Arrival rate of regular containers to equipment m in origin terminal j 

    Arrival rate of hazmat containers to equipment  ́ in destination terminal k 

 ̅ ́  Arrival rate of regular containers to equipment  ́ in destination terminal k 
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This bi-objective model aims to minimize the total cost and the total risk. The cost 

objective (3-1) contains inbound and outbound drayage costs, rail-haul cost, the fixed cost 

to operate different types of train services, and the equipment acquisition cost at 

multimodal terminals. The risk objective (3-2) represents the population exposure due to 

inbound and outbound drayage, intermodal trains in the network, and congestion of 

hazmat containers at intermodal terminals. To evaluate the congestion risk, we have used 

average number of hazmat containers waiting to be served, which is equal to hazmat 

arrival rate multiplied by average hazmat waiting time. Constraint (3-3) represents the 

transshipment function being performed by different terminals, while accounting for 

different types of intermodal train service in the network. Constraint (3-4) guarantees that 

each receiver’s demands are satisfied. Constraint (3-5) evaluates the number of each train 

service needed. U
v
N

v
 represents the capacity of a service type v, which is equal to the 

maximum number of containers hauled over each of its legs. For example, if a service has 
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one intermediate stop, and therefore, is composed of two legs, each carrying 50 and 100 

containers respectively, then U
v
N

v
 = max (50, 100) = 100. Assuming the maximum length 

for each train (U
v
) is 20 containers, five trains for that service are required to carry the 

containers. In other words, the number of trains for a particular service is determined by 

the service leg on which maximum number of railcars would have to be moved. 

Constraint (3-6) sets the indicator variables associated with different links, and this 

information is used in (3-8) to evaluate the feasibility of including that link in forming an 

intermodal chain. Constraint (3-7) ensures that the sum of the rates of hazmat and regular 

containers served on all equipment at each terminal are equal to related arrival rate. The 

nonlinear constraint (3-8) ensures that all shipments arrive at the customer location by the 

specified delivery-times. The travel time for a shipment is composed of inbound and 

outbound drayage time, travel time of intermodal train, average waiting and service time 

in terminals. Constraint (3-9) ensures that a request (hazmat or regular) can be allocated 

to a piece of equipment only if that equipment is purchased, while constraint (3-10) 

enforces queue steady-state conditions. The feasible domains of the decision variables are 

defined in (3-11). 

3.5. Solution Procedure 

As delineated in Section 3.4, because of the existence of the bilinear and trilinear terms in 

the objective function (average number of hazmat containers waiting in the queue) and 

the delivery time constraint (average waiting time of containers in terminals), the model is 

nonlinear and cannot be solved by classical optimization techniques. To handle the 



72 

 

problem, we developed a hybrid recursive solution procedure and label it RTIM-heuristic 

(Figure 3-3).  

Step 1: Randomly generate input traffic at each terminal (ITG).   

Step 2: Each terminal: Non-dominated sorting genetic algorithm (NSGA II).  

Initial Solutions 

a) Randomly assign input traffic to available equipment & build chromosome. 

b) Repeat a) until 100 chromosomes have been built. 

 Evaluate each chromosome “number of equipment” v/s “congestion 

exposure”. 

c) Selection and crossover.   

 Use binary-tournament selection method. 

 Use one-point crossover for generating offsprings. 

Offsprings 

d) Mutation operation on the offspring. 

e) Evaluate the offspring through “number of equipment” v/s “congestion exposure”e.   

Stopping Criteria 

f) 1000 iterations.  

Step 3: Update (P) and solve it using CPLEX 

Step 4: Repeat steps 1, 2 and 3. 

g) Until 500 consecutive iterations do not produce better solution.  

 

Figure 3-3: Summery of RTIM heuristic 

Based on this procedure, at each iteration the input traffic of each intermodal terminal is 

first assigned using a ITG Heuristic. Then, a multi-objective genetic algorithm, NSGA-II, 

generates a set of possible arrival rates of equipment inside each terminal. Finally, for 

each possible case of arrival rates, the mathematical model discussed in section 3.4 is 

updated with the values of λmj to a linear model, and solved by using CPLEX. This 

procedure is repeated at each iteration until 500 consecutive iterations do not produce 

better solutions. Please note that, scenario generated at an iteration leads to tens of 

different LP files (feasible solutions) which should be run by CPLEX. Hence, in 

generating hundreds of scenarios, thousands of feasible solutions are investigated to 

achieve the final solution. Details of the main components are brought next. 
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3.5.1. Step 1: Input Traffic Generator (ITG) 

ITG aims to calculate the input traffic of each intermodal terminal. Knowing all possible 

paths for each pair of shipment, the heuristic randomly selects one for each container and 

increases the input traffic of the terminals involved in the selected path by one unit. For 

example, assume there are three paths from Origin to Destination (Figure 3-4).  

Path 1: Origin→B→C→D→Destination 

Path 2: Origin→A→ D→Destination 

Path 3: Origin→A→E→F→Destination 

Based on ITG, for each hazmat (regular) container, we randomly select between path 1, 2 

and 3. If path1 is selected, the hazmat (regular) traffic at terminals B and D increase by 

one unit (C is an intermediate with no handling operation inside); If path2 is selected, the 

input traffic of terminals A and D increase; otherwise, the input traffic of terminals A and 

F increases. 

  

Figure 3-4: A sample network for ITG 

Besides the scenarios generated using ITG, we consider an additional scenario achieved 

by solving our model without considering the operations inside the terminals. Ignoring 

Origin DestinationA D

E F

B C
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the capacity planning part of the model, this scenario only makes routing decisions and 

thus determines the input traffic of the terminals.  

3.5.2. Step 2: NSGA-II 

To distribute the input traffic of each terminal among equipment and to determine the 

equipment arrival rates, we use Non-dominated Sorting Genetic Algorithm-II (NSGA-II) 

(Deb et al., 2002). NSGA-II is one of the most popular elitist multi-objective evolutionary 

algorithms (MOEAs), and is well known because of its good performance in solving large 

scale optimization problems.  

NSGA-II functions as follows. First of all, an initial population P0 of size N is created at 

random; and then the individuals in the population are ranked based on non-domination 

by using the following two steps. Please note that a solution is non-dominated if none of 

the objective function can be improved without worsening some of the other objective 

functions.  

1. For each solution two things are calculated: the number of solutions that dominate the 

current solution (np) and a set of solutions that current solution dominates (Sp). The 

first non-dominated rank, which is also considered as the best rank, contains solutions 

with np equal to zero.  

2. For every solution belonging to the first rank, we go to each member of its Sp and 

reduce its np by one. If np becomes zero, we add it to the second non-dominated rank. 

This process continues until all ranks are identified.  
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To acquire the related descendant populations Q0, the primary population is undergone by 

crossover and mutation. For the generation t, a combined population of          is 

formed, and is then also sorted based on non-domination. Since Rt contains all the best 

non-dominated solutions from the beginning, elitism is ensured. In the next step, N best 

non-dominated solutions are selected from Rt for the new population Pt+1. If the number 

of the best solutions is less than N, the rest of individuals are selected from subsequent 

non-dominated ranks. In other words, to choose exactly N individuals, the solutions in the 

last accepted rank are sorted using crowding comparison operator in descending order and 

the best N individuals are selected. This procedure is repeated in each generation, until the 

best possible solution can be obtained based on a specific stopping criterion. In this study, 

maximum number of generations is considered the termination criterion and is set to 

1,000. 

3.5.2.1. Solution Representation and Initialization 

In this study, we apply NSGA-II to determine the equipment arrival rates based on two 

conflicting objectives: “number of equipment” and “congestion exposure”. Given the 

nature of our problem, we present each solution as a simple string, whose length is two 

times the total number of available equipment in the network (see Figure 3-5).  

Terminal j a b c Terminal k 

  
   ̅ 

    
   ̅ 

  .. ..   
   ̅ 

  …. …. ….   
   ̅ 

    
   ̅ 

  .. ..   
   ̅ 

  

 

Figure 3-5: Individual representation 
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In many meta-heuristics, the population of strings is initialized randomly at the beginning. 

However, for constrained problems, specific methods need to be applied to handle the 

constraints. In our case, three sets of constraints are preserved during the generation of 

individuals: the steady state constraint, the input traffic constraint, and the delivery time 

constraint. For the steady state constraint, the total sum of the hazmat and regular arrival 

rate of each piece of equipment has to be less than the service rate, e.g.
 
     ̅       . 

Secondly, the total sum of the hazmat/regular arrival rates of equipment inside each 

terminal should be equal to the hazmat/regular input traffic achieved by ITG, e.g.
 

 ̅     ̅ ́      , (α is the set of terminals’ input traffics calculated by ITG). Finally, 

we restrict the waiting time of the containers at the terminals to a specific time period 

(here we assumed one hour).  

To handle the constraints in this study, we use a repair technique, which checks the 

individual chromosome for the violation of the constraints, and if necessary adjusts it. 

The repair method randomly assigns each container of the input traffic to an available 

crane and updates the free capacity of the selected crane by decreasing one unit. If the 

waiting time of the containers exceeds one hour, another piece of equipment will be 

selected. The population size is set to 100 in this research. 

3.5.2.2. Selection Method and Reproduction Operators 

To choose the parents for generating offsprings, we implement a binary-tournament 

selection method, where two individuals are randomly chosen and the fitter of the two is 

selected based on crowding comparison operator as a parent. This operator maintains 
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diversity in the Pareto front. The selected chromosomes are subjected to a one-point 

crossover operator to generate offsprings. Here, we choose a terminal randomly. The 

starting point of the selected terminal in the array is the crossover point. All data beyond 

that point in either chromosome is swapped between the two parent organisms. The 

resulting chromosomes are the offsprings. Consider a network with two terminals, each of 

which has three pieces of equipment (Figure 3-6). Assuming the crossover point is 2, data 

belonging to terminal 2 (both hazmat and regular arrival rates) is swapped between the 

two parents. 

 Terminal 1 Terminal 2 

Parent 1 8 7 6 10 5 6 2 3 5 6 9 11 

Parent 2 12 5 7 6 0 12 0 3 5 9 12 7 

Offspring 1 8 7 6 10 5 6 0 3 5 9 12 7 

Offspring 2 12 5 7 6 0 12 2 3 5 6 9 11 

Figure 3-6: Crossover 

To maintain diversity from one generation of population to the next, a local search is 

used, in which a terminal is randomly selected, and its required number of equipment is 

changed. As illustrated in Figure 3-7, the selected terminal is terminal 1 with two pieces 

of equipment. The number of equipment is mutated to two, and the input traffic of this 

terminal is then randomly assigned to the three pieces of equipment. We choose the 

crossover probability of 0.8, which implies that the probability of a selected chromosome 

surviving to the next generation unchanged is 0.2. The mutation probability is set to 0.01. 

 Terminal 1 Terminal 2 

Parent  15 15 0 0 5 6 2 3 5 6 9 11 

Offspring  6 8 10 6 4 7 2 3 5 6 9 11 

Figure 3-7: Mutation 
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3.5.3. Step 3: CPLEX 

After NSGA-II determines the arrival rate of each piece of equipment, the mathematical 

model developed in Section 3.4 is updated. Since the arrival rates are known, the bilinear 

and trilinear terms in the objective function and the delivery time constraint are linearized 

and the model can be solved by CPLEX. To call CPLEX in our C# application, we used 

ILOG CPLEX and ILOG Concert Technology for .NET users. 

3.6. Computational Experiments  

In this section, we discuss the estimation of the basic parameters of the model and then 

present the details of a real size problem to be solved by the proposed solution procedure 

in Section 3.6.2. Finally, we analyze the solution and provide detailed managerial 

insights. 

Here we consider the intermodal service chain of Norfolk Southern in the US (Figure 3-

8), including 19 intermodal terminals and 31 types of intermodal train services 

differentiated by route and intermediate stops. These train services connect 37 pairs of 

shipper/receivers distributed in different parts of the US. There are two types of train 

services, regular and priority, where the latter train type is 25% faster than the former one. 

The demand is randomly generated demand data utilizing the fuel oil consumption figures 

as compiled by the Department of Energy (2013) (http://www.eia.gov). To ensure each 

shipment to use both the road and rail, the generated demand data does not include a 

shipper and a receiver with access to the same terminal. We also consider the delivery 

time of 42 hours for each shipment and assume that there are 120 equipment items, with a 

http://www.tonto.eia.doe.gov/
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service rate of 96 containers per day, for possible acquisition at each terminal. The 

solution methodology was coded in C# and numerical experiments were performed on 

Intel Core i5 CPU 1.80 GHz with 8 GB ram. 

 

Figure 3-8: Intermodal rail services chain of Norfolk Southern (Adopted from Verma et 

al. (2012)) 
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3.6.1. Parameter Estimation 

3.6.1.1. Cost  

The inbound drayage cost, intermodal rail-haul cost, fixed cost of operating intermodal 

train service, and outbound drayage cost are adopted from Verma et al. (2012). Detailed 

data is listed in Table 3-1. Based on the examination of current prices, we further assume 

$35,000 to be the purchase cost of each piece of equipment.  

3.6.1.2. Risk  

To assess the population exposure caused by transportation through the inbound and 

outbound drayage and the rail-haul, we apply the traditional fixed bandwidth approach 

proposed by Batta and Chiu (1988) and ReVelle et al. (1991). In this approach, the 

population exposure is approximated by the total population in the rectangle shape impact 

area with a certain bandwidth that stretches along edge. 

Table 3-1: Parameters 

Drayage fuel charge $250/hour 

Average drayage speed 40 miles/hour 

Intermodal rail-haul cost (regular) 0.875/mile 

Intermodal rail-haul cost (priority) 1.164/mile 

Fixed cost of running a intermodal train (regular) $500/hour 

Fixed cost of running a intermodal train (priority) $750/hour 

 



81 

 

In evaluating the congestion exposure, we employ the method proposed by Erkut and 

Verter (1998), modeling the impact area as a danger circle with a radius centered at a 

terminal. Congestion exposure, regardless of type of hazmat, is the population inside a 

danger circle with a radius of 1 mile. 

3.6.2. Solution and Discussion 

To solve our suggested bi-objective model, we use the weighted sum method in which 

weights are attached to different objectives. This real-sized problem is first solved in a 

base case, where both objectives are equally important, i.e. each with a weight of 0.5. 

Further discussions regarding the trade-off between costs and risks can be found in 

Section 3.6.3.1. Please note that, for each problem we followed the procedure discussed 

in Section 3.5 and examined thousands of feasible solutions. 

Table 3-2 provides the objective function values for the base case solution. The specified 

demand can be met by spending around $54.9 million, and exposing approximately 11.5 

million individuals. Figure 3-9 presents the break-down of the costs and the risks. The 

major part of both cost and risk emerges from drayage operations. However, it is still 

necessary to consider the operations inside the intermodal terminals, as nearly 2.6 million 

people are exposed to the congestion risk at intermodal terminals, while totally $15.6 

million is spent to purchase handling equipment. According to the base case solution, 

saving each extra individual from rail-haul, drayage and congestion risks costs $2.9, $5 

and $6 respectively. 
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Table 3-2: Base case solution 

Cost = $54,973,452  Risk = 11,503,674 people 

Rail-haul Drayage Purchase  Rail-haul Drayage Congestion 

7,377,165 31,916,288 15,680,000  2,531,482 6,365,150 2,607,042 

 

 

  

 

Figure 3-9: Proportions of costs and risks 

Table 3-3 provides the relevant details on the 31 intermodal train services, where the 

maximum length for each train is 120 containers. For example, the first row refers to the 

intermodal train service that originates in Atlanta and terminates in Detroit, and has one 

stop in Knoxville.  

A total of three regular trains are needed to move the specified containers, which would 

incur a fixed train cost of $188,491 and expose 46,391 people. Notice that four trains with 

origin or destination in New York and one train with destination in Memphis are not used, 

and the relevant traffic transited through Philadelphia and Atlanta respectively.  
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Table 3-3: Attributes of intermodal trains 

From To Stops Regular Priority Train Cost Risk 

Atlanta Detroit 1 3 0 188,491 46,391 

Atlanta New York 1 1 0 84,848 20,125 

Atlanta Philadelphia 2 17 0 1,193,086 596,817 

Atlanta New York 1 0 0 0 0 

Charlotte Chicago 1 4 0 232,995 113,259 

Charlotte Detroit 1 4 0 233,184 66,934 

Chicago Philadelphia 1 2 0 106,971 50,337 

Chicago New York 0 0 0 0 0 

Chicago Charlotte 2 5 0 324,587 156,366 

Chicago Jacksonville 2 3 1 270,845 96,022 

Cincinnati Jacksonville 3 3 0 161,385 34,860 

Columbus Norfolk 1 5 0 204,242 74,723 

Detroit Philadelphia 2 2 0 112,567 38,587 

Detroit New York 1 1 0 5,730 5,060 

Indianapolis Philadelphia 2 4 0 239,106 107,704 

Indianapolis New York 1 1 0 31,080 12,160 

Indianapolis Atlanta 0 2 0 111,300 9,684 

Jacksonville Chicago 2 4 1 369,356 97,841 

Jacksonville Philadelphia 1 2 0 170,415 82,990 

Memphis Philadelphia 2 2 0 227,763 58,233 

New York Chicago 2 2 0 78,915 24,935 

New York Detroit 1 0 0 0 0 

New York Indianapolis 2 2 0 96,263 40,315 

New York Charlotte 1 4 0 112,980 96,348 

New York Atlanta 2 0 0 0 0 

Philadelphia Chicago 2 3 0 214,543 139,321 

Philadelphia Detroit 2 2 0 98,158 45,580 

Philadelphia Indianapolis 2 2 0 148,127 61,591 

Philadelphia Atlanta 2 12 0 722,363 351,554 

Philadelphia Jacksonville 1 5 0 243,600 103,745 

Philadelphia Memphis 1 0 0 0 0 

       

Intermodal terminals Regular 97    

  Priority  2   

  Fixed cost  1,394,265  

  Risk    2,531,482 

       

Container routing    5,982,900  

Total   97 2 7,377,165  
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Finally, Philadelphia, Atlanta and Charlotte are the busiest terminals, which in turn can be 

explained by the fact that twelve of the 31 train services originate at these yards and 

another fourteen transit them. 

The capacity and congestion levels at intermodal terminals are presented in Table 3-4. 

This Table contains information about the number of purchased cranes, total purchasing 

cost, congestion risk and the average waiting time for the hazmat and regular containers. 

Figure 3-10 presents the congestion risk at different intermodal terminals. Among all the 

intermodal terminals, Philadelphia is of the highest congestion risks. According to 

Wikipedia, Philadelphia is the fifth most populated city in the United States with the 

population density of 11,380 mi
2
. Moreover, it has the highest input traffic among all the 

intermodal terminals in the network, and keeps the hazmat containers waiting for 16.63 

minutes on average. High population density besides the high service time makes 

Philadelphia the riskiest intermodal terminal.  

The second place, Chicago, is the third most populated city in the United States with 

population density of 11,865/ mi
2
, but because of its significantly lower input traffic, it is 

positioned after Philadelphia. Identifying factors affecting the congestion risk at 

intermodal terminals can help us avoid tragic events. This issue is discussed thoroughly in 

3.6.3.2. 

The average waiting times for hazmat and regular containers at intermodal terminals are 

presented in Figure 3-11. As we expected, since the priority queue is used to capture the 

congestion at terminals, the average waiting time of hazmat containers are considerably 

lower than that of regular containers. As the terminals are usually located in population 
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centers in North America, the waiting time of containers (and consequently the average 

number of containers waiting in the queue) becomes more critical, when one considers 

hazmat freight. Improving a terminal’s capacity by purchasing more or faster cranes 

decreases the waiting time and thus the congestion risk, significantly. 

Table 3-4: Capacity and congestion at intermodal terminals 

Intermodal 

Terminals 

Crane

s 

Purchasing 

Cost 

Congestion 

Risk 

Avg Haz Wait 

(min) 

Avg Reg Wait 

(min) 

New York 4 140,000 306 12.53 55.91 

Norfolk 8 280,000 3,690 15.32 51.85 

Memphis 4 140,000 7,521 13.08 45.77 

Jacksonville 11 385,000 13,162 15.12 53.21 

Macon 5 175,000 13,584 17.13 51.76 

Fort Wayne 8 280,000 24,122 16.57 54.63 

Cincinnati 9 315,000 42,832 16.14 54.03 

Roanoke 16 560,000 47,155 16.38 55.02 

Cleveland 12 420,000 58,866 14.94 53.73 

Detroit 10 350,000 63,841 15.98 53.41 

Knoxville 26 910,000 66,521 17.19 57.4 

Columbus 22 770,000 102,158 16.47 55.76 

Indianapolis 39 1,365,000 106,797 16.4 56.85 

Charlotte 50 1,750,000 146,652 16.09 55.91 

Pittsburgh 24 840,000 167,612 16.46 56.26 

Richmond 46 1,610,000 179,186 16.22 55.92 

Atlanta 60 2,100,000 224,162 16.32 57.35 

Chicago 22 770,000 285,347 15.69 55.54 

Philadelphia 72 2,520,000 1,053,527 16.63 56.93 

      

Total 448 15,680,000 2,607,041   
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Figure 3-10: Congestion risk at intermodal terminals 

 

 

Figure 3-11: Average waiting time for hazmat containers at intermodal terminals 
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3.6.3. Managerial Insights 

In this section, we approximate the Pareto optimal set by applying weighting method and 

iteratively varying the weights. We also investigate the congestion related issues inside 

intermodal terminals and analyze the system sensitivity as a function of delivery time and 

maximum waiting time parameters.  

3.6.3.1. Risk-cost Trade-off 

 A base case (both of the weights are equal to 0.5) and several sensitivity analysis have 

been computed to better understand the tradeoff between the cost and the risk using our 

suggested multi-objective optimization model. Table 3-5 and Figure 3-12 present the 

results obtained by solving the model successively with varying weights.  

Table 3-5: Alternative optimal solutions 

 Cost ($) Risk (people) Cranes Regular trains Priority trains 

Min cost 54,108,639 15,463,489 446 95 2 

A = [Cost = 0.9, risk = 0.1] 54,356,576 13,226,310 450 95 2 

B = [Cost = 0.8, risk = 0.2] 54,403,445 12,451,869 448 96 2 

C = [Cost = 0.7, risk = 0.3] 54,609,014 12,263,181 452 96 2 

D = [Cost = 0.6, risk = 0.4] 54,889,406 11,777,849 452 96 2 

Base case 54,973,452 11,503,674 448 97 2 

E = [Cost = 0.4, risk = 0.6] 55,553,671 11,024,551 448 98 2 

F = [Cost = 0.3, risk = 0.7] 56,048,674 10,785,142 451 99 3 

G = [Cost = 0.2, risk = 0.8] 56,522,751 10,629,767 451 101 3 

H = [Cost = 0.1, risk = 0.9] 56,866,494 10,561,465 448 100 4 

I = [Cost = 0.075, risk = 0.925] 56,965,014 10,554,690 450 102 3 

J = [Cost = 0.05, risk = 0.95] 64,767,135 9,923,359 671 103 3 

K = [Cost = 0.025, risk = 0.975] 72,977,475 9,524,539 905 102 4 

L = [Cost = 0.02, risk = 0.98] 83,649,258 8,989,963 1,209 

 

103 4 

M = [Cost = 0.01, risk = 0.99] 102,222,454 8,912,949 1,738 103 7 

Min risk 122,783,352 

 

8,763,151 

 

2,280 

 

116 12 
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The min cost solution is 1.5% less expensive than the base case solution, but 34% more 

risky. The increment in risk is because of forcing drayage operations through shorter but 

more risky paths. On the other hand, the min risk solution is 100% more expensive but 

23% less risky because of significantly less congestion at terminals and more priority 

trains. To minimize the congestion risk, all the terminals purchase all the 120 available 

cranes. In addition, the use of faster trains enables us to take longer but less risky 

drayages. 

 

Figure 3-12: Weight based solutions 

With regard to Figure 3-12, it is easy to see that risk reductions are achieved at small cost 

when moving from min cost to I, while risk reductions entails large costs for the rest of 

the solutions. The details of alternative solutions are presented in Table 3-6. Moving from 

min cost to min risk, rail and drayage risks decrease for 252,161 and 4,715,122 people 

respectively. The reductions in the risks are offset by 11% increase in both rail and 
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drayage costs. In contrast to rail and drayage costs, the increases in the purchasing costs 

are significant, specifically when the risk coefficient exceeds 90%. Moving from I to min 

risk decreases the exposure for approximately 1.7 million people, however increases the 

cost for nearly $65.8 million, which means that the cost of exposing one fewer individual 

is $38. 

Table 3-6: Solutions in detail 

 
Rail cost  

($) 

Drayage cost  

($) 

Purchasing cost  

($) 

Rail risk  

(people) 

Drayage risk  

(people) 

Congestion risk  

(people) 

Min cost 7,390,589 31,108,050 15,610,000 2,751,923 10,169,604 2,541,962 

A 7,365,707 31,240,869 15,750,000 2,615,082 8,024,127 2,587,101 

B 7,372,602 31,350,844 15,680,000 2,577,283 7,276,046 2,598,540 

C 7,366,402 31,422,613 15,820,000 2,543,650 7,110,230 2,609,301 

D 7,361,400 31,708,006 15,820,000 2,537,027 6,651,368 2,589,454 

Base case 7,377,165 31,916,288 15,680,000 2,531,482 6,365,150 2,607,042 

E 7,388,352 32,485,319 15,680,000 2,500,414 5,928,101 2,596,036 

F 7,477,992 32,785,681 15,785,000 2,481,513 5,720,313 2,583,316 

G 7,529,844 33,207,906 15,785,000 2,478,889 5,575,511 2,575,367 

H 7,588,625 33,597,869 15,680,000 2,473,751 5,490,359 2,597,355 

I 7,598,827 33,616,188 15,750,000 2,487,840 5,473,003 2,593,847 

J 7,614,666 33,667,469 23,485,000 2,490,873 5,466,227 1,966,259 

K 7,629,675 33,672,800 31,675,000 2,492,337 5,463,563 1,568,639 

L 7,643,252 

 

33,691,006 

 

42,315,000 

 

2,496,827 

 

5,457,457 

 

1,035,679 

 
M 7,713,948 33,678,506 60,830,000 2,499,762 5,455,314 957,873 

Min risk 8,237,508 34,745,844 79,800,000 2,499,762 5,454,482 808,907 

 

3.6.3.2. Congestion inside a Terminal 

In an effort to get an insight into the congestion inside a specific terminal, we conducted 

two experiments. The first experiment investigates the impact of the number of cranes 

(capacity level) on the utilization rate and the service time, when the input traffic is 

constant. For this analysis, we considered the Norfolk terminal in the base case, min cost 



90 

 

and min risk solutions. We chose Norfolk because its input traffic remained the same in 

the three aforementioned solutions. From Table 3-7, one sees that, as the risk coefficient 

increases from 0 (in min cost) to 1 (in min risk), the number of cranes increases 

significantly, which is balanced by the decrease in the congestion risk. 

Table 3-7: Congestion at Norfolk terminal 

 Cranes Average hazmat waiting time 

(min) 

Congestion 

risk 

Average utilization 

rate 

Min cost 7 17.42 3,705 0.75 

Base case 8 15.32 3,690 0.65 

Min risk 120 0.80 171 0.05 

Another observation is the significant increase in the average utilization rate of cranes 

when the weight attached to the cost increases. Increasing the utilization rate of 

equipment (cranes) could be considered as a relevant goal for raising the terminal’s 

productivity. However, as the utilization rate goes up, the service time goes up too. This 

means that there is a trade-off between reducing the service time and increasing the 

equipment’s utilization. Finding a compromised solution might be of interest of the 

decision makers. 

The second experiment aims to study the impact of increase in congestion exposure rate 

on the solution. We scaled the congestion exposure rate by 10 and compared the base 

case, min cost and min risk solutions. To mitigate the intensified congestion risk, two 

factors play important roles: input traffic (routing) and average hazmat waiting time 

(service time) (Table 3-8).  
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Table 3-8: Congestion at Philadelphia terminal 

 
Average hazmat waiting time 

(min) 

Input hazmat 

traffic 

Congestion Risk 

(people) 

Min cost 16.51 2,313 8,794,197 

Base case 5.54 1,424 2,031,124 

Min risk 4.38 1,424 1,627,014 

 

As the weight assigned to risk increases, the containers are routed away from the riskiest 

terminal (Philadelphia) and the relevant traffic transits through the nearest terminal, i.e. 

New York. Thus the number of train services originating at or transiting New York 

increases from 12 to 24 units. This observation implies that, routing regulations or even 

closing the routes that pass through the population centers can significantly improve 

public safety.  

Hazmat waiting time is the second factor affecting the congestion risk. Comparing the 

min risk with the base case, we can see that the average hazmat waiting time directly 

influences the congestion risk. Decreasing the service time, fewer people are exposed to 

congestion risk (note that, the input traffics in these two solutions are equal). It is 

reasonable to conclude that improving the service time, by adding more or faster (higher 

service time) cranes, can significantly mitigate the public and environmental risk, 

specifically when there is no concern over budget.  

3.6.3.3. Variation in Delivery Time 

We also investigated the impact of variations in delivery time on the solution (Table 3-9). 

First, with T = 36, a larger number of cranes and priority trains are required, which 
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increases purchasing and rail costs. The increment in the purchasing cost is compensated 

by reduction in the congestion risk. Second, with T = 48, fewer premium trains and cranes 

are needed, thereby resulting in lower rail and purchasing costs. The increase in the 

drayage risk in both cases of T = 36 and T = 48, is reimbursed by less drayage cost 

through taking more risky but shorter roads.  

Table 3-9: Impact of delivery time (DTz) 

Delivery 

Time 
 (hr) 

Cranes Train  Cost (1000 $)  Risk (1000 people) 

 Regular  Premium  Rail Drayage Purchasing  Rail Drayage Congestion 

T = 36 1,873 92 10  7,615 31,887 65,555  2,532 6,390 1,054 

Base case (T = 42) 448 97 2  7,377 31,916 15,680  2,531 6,365 2,607 

T = 48 447 99 0  7,369 31,892 15,645  2,497 6,389 2,587 

3.6.3.4. Variation in Maximum Waiting Time 

As we mentioned previously, we restrict the waiting time (WT) of the containers at the 

terminals to one hour. To examine the effect of increasing the maximum waiting time on 

the solution, we further considered two additional cases: WT = 3 hours and WT = 5 

hours. According to Table 3-10, when we increase the maximum WT, fewer cranes but 

more premium trains are needed to serve. Purchasing fewer cranes leads to lower service 

level and consequently higher congestion risk. To compensate for the longer waiting time 

at intermodal terminals and preserve the delivery time, more premium trains are needed, 

resulting in higher rail cost. 
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Table 3-10: Impact of maximum waiting time (WT) 

Waiting 

Time 
 (hr) 

Cranes Train  Cost (1000 $)  Risk (1000 people) 

 Regular  Premium  Rail Drayage Purchasing  Rail Drayage Congestion 

Base case (WT = 1) 448 97 2  7,377 31,916 15,680  2,531 6,365 2,607 

WT = 3 374 97 3  7,409 31,911 13,090  2,530 6,364 3,607 

WT = 5 358 95 6  7,472 31,922 12,530  2,524 6,365 3,908 

3.7. Conclusion  

In this study, a bi-objective model is suggested for transportation of regular and hazmat 

containers through the rail-truck intermodal network. With regard to stochastic nature of 

transportation, we present congestion as a source of population exposure caused by delays 

during the transportation of hazmat containers, more specifically, the waiting due to 

limited service capacity at intermodal terminals. To capture the congestion, each piece of 

equipment at intermodal terminals is modeled as a non-preemptive priority queue, where 

the hazmat containers are of higher priority than the regular ones. Because of the 

computational difficulties caused by non-linear terms, we further employ an iterative 

solution procedure incorporating a heuristic and a multi-objective genetic algorithm, to 

generate a linear model which could be solved by CPLEX. The model is then applied to a 

realistic problem instance.  

This work contributes to the literature by the following aspects. First of all, this is the first 

work that incorporates uncertainty resulting from the uncertain nature of the hazmat 

transportation problems. Secondly, this research explicitly considers the congestion at 

intermodal terminals as a source of exposure in hazmat transportation problem, and 

applies the priority based queuing to handle the possible congestions. Furthermore, the 
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suggested model incorporates capacity planning with the routing of hazardous materials 

in the congested networks. Finally, we study the tradeoff associated with the cost and the 

risk. 

Our computational experiments show that besides the drayage and rail-haul, congestion at 

intermodal terminals is a main source of population exposure. Especially in the networks 

where the intermodal terminals are located in population centers, the transportation of 

hazmat freight can be very problematic. Improving the service time at busy terminals 

using more or faster handling equipment (e.g. cranes) and applying tighter routing 

regulations, or even closing the rail/road segments that pass through populated centers, 

can considerably mitigate the potential risk. In addition, the installation of adequate 

emergency response facilities in the bottlenecks of the network, and application of 

information technology to identify the contents involved in an accident should be the 

priorities of railroad industries. Finally, since the delivery time is a major concern for 

many companies, it is important to consider the impact of congestion (or capacity) of 

intermodal terminals on the supply (delivery) time. 

The location of the intermodal terminals can considerably affect the transportation of 

hazardous materials, especially the total risk. One area for future research is to integrate 

the location problem with routing in the context of hazardous materials. Also, in this 

study, we modeled the congestion at each piece of equipment as a single server priority 

queue. For the future research, we can model the entire terminal, including multiple 

equipment items, as a multiple server priority queue.  
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This research helps decision makers identify the risky terminals and adopt appropriate 

reactive policies for risk management. To reduce the consequence of hazmat incidents a 

priori, proactive risk mitigation policies could be adopted. The next chapter focuses on 

the proactive policies regulating the use of intermodal terminals by hazmat carriers. 
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4. Regulating Intermodal Transportation of Hazardous 

Materials 

 

Abstract: This research employs the bi-level programming approach to assist the 

government in regulating the usage of intermodal terminals for hazardous material 

transportation. A bi-level network design model and a bi-level bi-objective toll-setting 

policy model are proposed to mitigate the transportation risk. The application of our 

models is illustrated by a real problem instance based on the intermodal service chain of 

Norfolk Southern in the US. Computational experiments provide detailed managerial 

insights for different shareholders. 

 Keywords: Bi-level Programming; Network Design; Toll Policy; Rail-truck Intermodal; 

Hazardous Material; Particle Swarm Algorithm; 

4.1. Introduction 

Major part of hazmat freights are transported via road and rail, especially for long-

distance shipments. For example, in the United States and Canada, rail carries 

approximately 1.8 million and 500,000 carloads of hazmat annually respectively (AAR, 

2006 and TSB, 2004). The trend of transporting hazmat by rail is expected to continue in 

the future, due to the development of rail-truck intermodal transportation (RTIM) 

networks and the claims that rail is the safest way to move hazmat. According to the US 

Department of Transportation, within the 12 years from 1994 through 2005, hazardous 
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materials released in railroad accidents resulted in a total of 14 fatalities, while in the 

same period, hazardous materials released in highway accidents resulted in a total of 116 

fatalities (Federal Railroad Administration, 2014). However, recent railroad incidents in 

Canada and the United States shattered rail industries’ claims about safety and reignited 

debates about risks. In the fourth deadliest rail accident in Canadian history in July 

2013, a 74-car freight train carrying crude oil ran away and derailed. Forty-seven people 

were confirmed dead, 2000 people were evacuated, and $50 million was claimed to 

insurance companies (CBC, 2013). In 2013, there were more than 16,000 incidents 

related to hazmat transportation in the United States, most of which involved flammable-

combustible liquid and corrosive materials  

Because of the health and environmental risks associated with transportation of hazmat, 

this domain is regulated by the government. In the United States, the Pipeline and 

Hazardous Materials Safety Administration (PHMSA) is responsible for the safe and 

secure movement of shipments of hazardous materials by all modes of transportation. In 

Canada, this is Transport Canada’s responsibility to develop safety standards and 

regulations in the transportation of dangerous goods. Despite extraordinary growth of 

hazmat shipments, the regulatory oversights and safety measures have not been changed 

very much. Mounting instances of hazmat derailments necessitates a tighter regulation by 

the governments.  

In this study, we consider two intermodal network design and toll-setting regulations 

which restrict the usage of certain terminals such that the overall system risks are 
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minimized. The importance of utilizing a new regulation for the location of intermodal 

terminals is due to the substantial impact of those locations on the routing decisions, and 

hence on the risk issues. Based on these regulations, the carrier company makes routing 

decision in a RTIM network (for discussion on RTIM networks see Section 3.1).  

The carrier’s problem is to identify the routes between the origins and destinations for 

hazmat shipments in an RTIM network that minimizes the costs and satisfies the 

customer specified delivery times. This research considers two costs: 1) the transportation 

cost of the three portions of the intermodal transportation chain, and 2) the fixed cost of 

opening and maintaining a certain train service. Among the aforementioned costs, the 

drayage cost is a function of time the crew is engaged and the estimated consumed fuel. 

The rail-haul cost depends on the type of the service, in our case, either regular or 

priority. In addition to the rail-haul cost and regardless of the number of cars assigned to a 

train, there is a fixed cost for operating a train service that mainly consists of the wages of 

the train crews. 

The concern of government is different from the carrier company when it comes to the 

transportation of hazmat freights. The government aims to identify ways to manage and 

reduce the risk of a hazmat transportation operation by designing a network or imposing 

tolls on terminals, such that the total risk resulting from the carriers’ route choices is 

minimized. Herein, the total risk is measured in terms of population exposure and consists 

of the transportation risk through the inbound drayage, rail-haul and outbound drayage. 
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The population exposure refers to the total number of people exposed to the undesirable 

consequence due to the movement of hazmat containers. 

Because the decision makers in our problem belong to two different levels of hierarchy 

and have conflicting objectives, the traditional single level optimization model is no 

longer applicable. One of the common methods to solve decentralized planning problems 

is the bi-level programming approach, which contains two levels of optimization, the 

upper level (leader) and the lower level (follower). The feasible region of upper level 

problem is determined by its own constraints and the lower problem.  

In this research, we develop an intermodal network design approach (INDA), where, at 

the upper level, the government designs the rail-truck intermodal network by making 

decision about the terminals that should be closed, and carrier then selects among 

available route choices at the lower level and in turn determines the transportation risk. 

More specifically, the government restricts the amount of hazmat freights transporting 

through the intermodal network, without imposing certain routes to the carrier. Please 

note that, due to the closure of some terminals, a number of demands may remain 

unsatisfied, thus we consider a set of inbound and outbound drayage segments for 

possible construction by the government.  

Despite the effectiveness in mitigating risks, the network design approach is considered to 

be rigid due to its ignorance of carrier’s priorities and the waste of available infrastructure 

resources (Wang et al., 2012). Therefore, we further propose a bi-level bi-objective toll-

setting policy model (BOTP), in which the government deters the carrier from using 
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certain terminals via assigning a toll to each hazmat container passing through those 

terminals. The carrier’s concern, i.e. the lower level, is still a routing problem to minimize 

the total transportation cost; while the government’s perspective, i.e. the upper level, is 

formulated as a bi-objective optimization model, where the first objective is to minimize 

the overall system risk, and the second objective is to minimize the total toll value. Please 

note that, in spite of being revenue to the government, the total toll value is minimized 

because the government essentially aims to reduce the hazmat transportation risk, and 

thus would like to encourage the carrier to cooperate with this policy.  

The main contribution of this study is the proposed bi-level models for the design and 

management of rail-truck intermodal network. As far as we know, this is the first time 

that the bi-level programming approach has been developed for the regulation of an 

intermodal network. In general, the problem that we study in this research has the 

following characteristics: first, there are two decision makers (government and carrier) at 

two levels of administration. Second, the two decision makers make their decisions 

sequentially, i.e. the government executes its decision prior to the carrier. Third, although 

government and carrier optimize their objective functions independently of each other, 

their objective functions and feasible regions are affected by the decisions made by the 

other side.  

The remainder of this chapter is organized as follows. Section 4.2 provides a thorough 

review of the relevant literature. Section 4.3 proposes INDA and discusses the solution 

procedure. A numerical experiment is conducted with real-world data. Section 4.4 



101 

 

presents BOTP, and introduces a multi-objective PSO solution method. The two 

approaches are compared, and managerial insights are provided in Section 4.5. Finally, 

section 4.6 concludes this chapter with contributions and possible future research 

directions. 

4.2. Literature Review 

In the following we review the literature in multi-level hazmat transportation. Hazmat 

transport network design is a young domain of research that began to be seen as a 

separate field of study after the seminal paper of Kara and Verter (2004), which was the 

first paper that addressed the relationship between the government and the carriers in 

designing a road network for hazmat transportation. At the upper level, government aims 

to identify the road segments that should be closed to minimize the risk of transportation, 

while, at the lower level, the carrier company chooses the cheapest routes among those 

available to move the shipments. The bi-level model was converted to a single-level 

model by replacing the lower level problem by the KKT conditions of its LP relaxation. 

Erkut and Gzara (2008) generalized the model developed by Kara and Verter (2004) with 

the consideration of undirected road segments, and extended the problem to a bi-objective 

bi-level model by including cost in the objective function of upper level problem. They 

proposed a heuristic solution method to solve the problem. Another bi-level hazmat 

network design model was developed by Bianco et al. (2009). At the outer level problem, 

the government minimizes the maximum link risk over populated links of the whole 

network, i.e. risk equity, and, at the lower level, there is the regional area authority that 
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minimizes the total risk over the network. Applying KKT conditions, the model was 

solved by transforming to a single-level problem. Since the achieved optimal solution 

may not be stable, they also suggested a heuristic algorithm to ensure a stable solution. 

More recently, Gzara (2013) suggested a method to solve bi-level hazardous material 

transport network design problems. Based on infeasible solutions, the method first 

constructs bi-level feasible solutions, and then a set of valid cuts is identified and 

incorporated within an exact cutting plane algorithm. Toll setting was suggested by 

Marcotte et al (2009) as an alternative policy tool to regulate the use of roads for hazmat 

freight. They developed a bi-level model, in which, at the upper level, the government 

sets tolls on network links to minimize the total risk and the total carriers’ transportation 

cost, while the carrier selects the routes to minimize the transportation cost at the lower 

level. To solve the model, the bi-level problem was reduced to a single level mixed 

integer model using primal-dual constraints. Assuming both hazmat traffic and regular 

traffic affect population safety, Wang et al. (2 12) suggested a dual toll setting model to 

mitigate the risk. The formulated bi-level model was then reduced to a two-stage problem 

in which the first stage problem was solved by the branch and bound and the null space 

active set method, and the second stage problem was solved using linear programming 

techniques. More recently, Bianco et al. (2012) developed a toll setting policy that 

minimizes the network total risk and achieves the risk equity. They also assumed that the 

toll paid by a carrier on a segment depends on the usage of that link by all carriers, and 

thus formulated the lower level problem as a Nash game. To solve the problem, a local 
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search algorithm was proposed to heuristically explore the leader’s search space in order 

to evaluate the effectiveness of the leader’s choice. 

All existing multi-level hazmat network design studies consider exclusively road 

networks, which are very different from intermodal rail-truck networks in terms of 

infrastructure, operations, and level of administration. First, from the infrastructure 

perspective, rail-truck intermodal networks consist of drayages, rail-haul, and intermodal 

terminals in which freights are transferred between two modes. The location of the 

terminals affects the routing decisions and the risk of transportation, thus combined 

location routing models are more demanded in such networks. Secondly, the operations of 

a road network and a rail network have significant differences due to the properties of the 

two transportation modes. As a combination of the two, a rail-truck intermodal network 

requires more comprehensive operations. This fact causes the lower level problem to be 

more complicated than a model involves only the road mode.  

Finally, as to the level of administration, unlike the single mode road networks, the rail-

truck intermodal networks have stakeholders, i.e., the intermodal carrier, in addition to 

the government. The interests of both stakeholders definitely should be taken into account 

when making decisions.  

Because of these fundamental differences between these two types of the networks, the 

existing models cannot be effectively applied to our setting. Thus, here we propose bi-

level models for regulation of a rail-truck intermodal network for hazmat transportation, 

with regard to the characteristic features of the rail-truck intermodal networks. 
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4.3. The Intermodal Network Design Approach (INDA) 

4.3.1. Problem Description 

Based upon the hierarchical decision making, our research aims to answer the following 

question at the upper level (government): 

Which intermodal terminal should be closed to mitigate the transportation risk? 

The following two questions at the lower level (carrier): 

1) How many intermodal train services should be maintained between the available 

terminals? 

2) How to route hazmat containers to their destinations through the available 

terminals at the lowest cost? 

The facility location and routing decisions are strictly interrelated, especially when 

hazmat freights are concerned. The selection of terminal locations implies the selection of 

routes, and thus affects the transportation risk.  

Under this policy, the government selects the intermodal terminals that should be closed 

to mitigate the human and environmental risk associated with the transportation of hazmat 

containers. The amount of hazmat flowing through the network is thus restricted by not 

imposing specific terminals and routes to the carrier. After the available terminals are 

identified by the government as the leader, the carrier executes its policies in light of the 

government’s decision and determines the number of train services and the routing of the 

containers. Figure 4-1 presents the schematic view of our network design problem. Note 

that, differently from the model of Kara and Verter (2004), in our model, the leader (the 
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government) selects the intermodal terminals that should be closed to hazmat freights, 

rather than the road segments. It is obvious that the rail and road segments originating 

from or terminating in a closed terminal are considered closed too. In addition, at the 

lower level, the carrier not only makes the routing decisions on the available network, but 

also determines the number of different types of train services needed. 

 

 

 

 

 

 

 

 

Since closing some terminals makes a number of existing intermodal routes infeasible, we 

consider a set of inbound and outbound drayage links for possible construction, and 

therefore preserve the connectivity of the network. In addition, it is assumed that, closing 

an origin or destination terminal of a train service does not make the entire service 

unavailable, unless there is no intermediate stop. If the origin (terminal) of the service is 

closed, then the first intermediate stop is considered as the origin, and if the destination 

(terminal) of the service is closed, then the last intermediate stop is considered as the 

min TotalRisk (Selected Terminals) 

Intermodal Network Design 

min TotalCost (Selected Routes) 

Selection of Routes/Terminals over the Designed Intermodal Network 

Government 

Carrier 
 

 

Figure 4-1: Schematic view of INDA 
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destination. For example, consider a service that originates in A and terminates in D, and 

has two stops in B and C. If A is closed, then B is regarded as the origin of the service; 

and if D is closed, then C is regarded as the destination of the service. 

4.3.2. Model Formulation 

We formulate the INDA model based on the following notation.  

Sets: 

  Set of shippers, indexed by i 

  Set of origin terminals, indexed by j 

  Set of destination terminals, indexed by k 

  Set of receivers, indexed by l 

    Set of traffic-classes, indexed by z. The elements of this set are derived from 

pairing every shipper i ∊I = {1, 2, . . . ,a} with the receiver l ∊L = {1, 2, . . . , f} 

it supplies 

    Set of inbound drayage between each shipper i ∊I = {1, 2, . . . ,a} and each 

origin terminal j ∊J = {1, 2, . . . ,b}, indexed by p 

    Set of outbound drayage between each destination terminal k ∊K = {1, 2, . . . ,e} 

and each receiver l ∊L= {1, 2, . . . , f}, indexed by q 

    Set of intermodal train services between each terminal pair j-k, where j ∊J = {1, 

2, . . . ,b}and k ∊ K = {1, 2, . . . ,e}, indexed by v 
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  Set of train service legs for intermodal train service type v operating between 

terminals j ∊J= {1, 2, . . . ,b} and k ∊K = {1, 2, . . . ,e}, indexed by s 

Input parameters:  

  A large number 

   Cost of moving one hazmat container on path p for inbound drayage 

   Cost of moving one hazmat container using intermodal train service of type v 

   Cost of moving one hazmat container on path q for outbound drayage 

    Fixed cost of operating intermodal train service of type v 

   

Population exposure due to moving one hazmat container on path p for inbound 

drayage 

   

Population exposure due to moving one hazmat container on intermodal train 

service of type v 

   

Population exposure due to moving one hazmat container on path q for 

outbound drayage 

   Inbound drayage time using path p 

   Travel time of intermodal train service of type v 

   Outbound drayage time using path q 

    Delivery time associated with traffic-class z 

   Maximum number of containers that can be loaded on intermodal train service 
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of type v 

   Number of hazmat containers demanded in traffic-class z 

Decision variables: 

  
 
 Hazmat containers of traffic-class z using path p for inbound drayage 

  
  Hazmat containers of traffic-class z on train service of type v 

  
 
 Hazmat containers of traffic-class z using path q for outbound drayage 

  
  1 if   

 
   ; 0 otherwise 

  
  1 if   

    ; 0 otherwise 

  
 
 1 if   

    ; 0 otherwise 

   1 if origin terminal j is open; 0 otherwise 

   1 if destination terminal k is open ; 0 otherwise 

   Number of intermodal train service of type v 

         {   } ∑ ∑     
  

          

∑ ∑     
  ∑ ∑     

 

                    

 (4-1) 

where   
 
,   

 
 and   

  solve:  

   ∑ ∑     
  

          

∑ ∑     
  ∑ ∑     

  ∑      

                         

 (4-2) 

s.t.  
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  ∑   

 

     

      

     

     (4-3.a) 

∑   
  ∑   

 

     

      

     

     (4-3.b) 

∑   
 

     

          (4-4) 

∑   
         

     

   
      (4-5) 

      
              (4-6.a) 

      
              (4-6.b) 

   
    

              (4-7.a) 

   
    

              (4-7.b) 

   
    

              (4-7.c) 

    
      

      
                                  (4-8) 

  
    

    
        (4-9) 

  
    

    
  {   }  

Equation (4-1) is the government’s problem which aims to minimize the population 

exposure caused by the inbound and outbound drayages and intermodal trains in the 

network. Decision variables hj and hk are passed to the lower level problem as inputs. 

Equations (4-2)-(4-9) represent the carrier’s problem which determines the routing of the 

containers through available intermodal terminals, such that the total cost is minimized. 
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The cost objective (4-2) contains inbound and outbound drayage costs, rail-haul cost and 

the fixed cost to operate different types of train services. Constraint (4-3) represents the 

transshipment function being performed by different terminals, while accounting for 

different types of intermodal train service in the network. Constraint (4-4) guarantees that 

each receiver’s demands are satisfied. Constraint (4-5) evaluates the number of train 

services needed. U
v
N

v
 represents the capacity of a service type v, which is equal to the 

maximum number of containers hauled over each of its legs. For example, if a service has 

one intermediate stop, and therefore, is composed of two legs, each carrying 50 and 100 

containers respectively, then U
v
N

v
 = max (50, 100) = 100. Assuming the maximum length 

for each train (U
v
) is 20 containers, five trains for that service are required to carry the 

containers. In other words, the number of trains for a particular service is determined by 

the service leg on which maximum number of railcars would have to be moved. 

Constraint (4-6) guarantees that a container can enter a terminal only if that terminal is 

open. Constraint (4-7) sets the indicator variables associated with different links, and this 

information is used in (4-8) to evaluate the feasibility of including that link in forming an 

intermodal chain. Constraint (4-8) ensures that all shipments arrive at the customer 

location by the specified delivery-times and is composed of inbound and outbound 

drayage time and the travel time of intermodal train. The feasible domains of the decision 

variables are defined in (4-9). 
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4.3.3. Solution Procedure 

Finding a global solution to a bi-level model may not be easy since solving the upper 

level objective function requires evaluation of the lower level problem. Here, we discuss 

three common solution methods used to solve bi-level problems.  

Enumeration method: this method is based on the fact that the extreme point of the high 

level decision maker’s solution space is also an extreme point of the lower level feasible 

region (Wen and Hsu, 1991). There is a wide class of methods for solving linear bi-level 

optimization work based on enumeration technique. One of the first solution procedures 

built on enumeration was suggested by Candler and Townsley (1982). They showed that, 

when an optimal solution for the lower level problem is reached, changing the leader’s 

decision variable would not affect the solution’s optimality, but only impact its feasibility. 

Based on this finding, they developed an algorithm that evaluates the extreme points in 

search for the global optimal solution. The main drawback of the algorithm is that it 

cannot well solve a linear bi-level programming problem when the upper level’s 

constraints are in the arbitrary linear form. In addition, occasionally an unacceptably long 

time may be needed before a solution is found. 

Karush–Kuhn–Tucker method: in this method, the lower level problem is replaced with 

its Karush–Kuhn–Tucker (KKT) conditions . As the result, the bi-level programming 

model is transformed into a single-level problem. The resulting problem falls into a group 

of very hard problems, called mathematical programs with complementarity constraints. 

Kara and Verter (2004) and Bianco et al. (2012) are two of the papers applying KKT for 
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hazmat transportation. It is important to note that KKT is not an appropriate solution for 

bi-level problems with integer or binary variables, which is exactly the case in our 

research. 

Heuristic method: different heuristic methods have been suggested to solve bi-level 

models in the literature. There are two major groups of heuristic methods. The first group 

is those approximating the reaction function. Reaction function can be defined as the user 

equilibrium
1
 with the decisions made by the leader. An example of this group of heuristic 

methods is sensitivity analysis based (SAB) algorithms, which has been used for solving 

bi-level transportation models (Yang and Yagar, 1994). Using the derivative information 

obtained from sensitivity analysis, SAB formulates a local linear approximation of the 

upper level objective function and the implicit, nonlinear constraints. The resulting linear 

model can be solved using simplex. Thus, SAB is a sequence of linear approximations to 

the original problem (Yang et al., 1994). The weakness of this algorithm is that the 

resultant converged solution might not be a global optimum. 

The second group is the meta-heuristics approaches that have generated  interest in the 

research community as an alternative for solving bi-level problems. Mathieu et al. (1994), 

Yin (2000) and Marinakis and Marinaki (2008, 2013) are some of the papers using meta-

heuristics to solve bi-level problems. Since our model is mixed integer, the exact solution 

methods either cannot find the global optimum or are computationally inefficient for 

solving real size problems. So we employ a particle swarm optimization (PSO) to solve 

                                                           
1
 For a fixed vector of leader’s decision, we consider a state as equilibrium if no follower can improve his or 

her utility by unilateral deviation. 
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our bi-level model. We chose PSO, because it is easy to implement while is capable of 

finding near optimal solutions within a reasonable time. The influence of particles on 

each other in their evolution enables PSO to handle high dimensional problems. 

4.3.3.1. Particle Swarm Optimization Algorithm  

Particle swarm optimization simulates the movement of bird flocking or fish schooling as 

a search method. As a population-based search technique, PSO enjoys rapid convergence 

while being computationally simple. It was first introduced by Kennedy and Eberhart 

(1995), and since then has been successfully applied to combinatorial optimization 

problems. According to the procedure suggested by Kennedy and Eberhart, particles, each 

representing a feasible solution, collaborate in finding the best solution/position. 

Searching for the best position, each particle adjusts its position according to the velocity. 

Scientists found that the synchrony of flocking behavior was through maintaining optimal 

distances between individual members and their neighbors. Thus, velocity plays the 

important role of adjusting each other for the optimal distance (Liao et al., 2007). A 

particle’s velocity is a function of the particle’s best previous position (pbest) and the 

whole swarm’s previous best position (gbest) (details see Section 4.3.3.4). Thus, the 

shared information among particles, that are neighbors of each other, leads them to the 

best position in the search space.  

The algorithm starts with creating a set of particles, whose positions and velocities are 

randomly initialized. Then, through a number of iterations, the velocities and the 

positions are updated. The personal best (pbest) and global best (gbest) positions are used 
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for updating each particle’s velocity. To enhance the global search capability of the 

particles, we equip PSO with a mutation operator. After mutating the particles, their 

fitness values are evaluated. The fitness of each particle (the total cost) and the total risk 

of transportation are determined by solving the lower level problem. The lower the total 

cost is, the better the corresponding position is. Based on the new fitness values, pbests 

and gbest are updated. In this research, the maximum number of iterations is considered 

as the termination criterion and is set to 500.  

4.3.3.2. Particle Representation and Initialization 

The PSO that we develop for INDA codes the decision variables of the upper level 

problem as a particle and evaluates the fitness of each particle by solving the lower level. 

The search space for our problem is n-dimensional, where n is equal to the total number 

of origin and destination intermodal terminals in the network. Thus, our developed PSO is 

based on a binary representation, in which the solution structure is a one-dimension array 

of 0 and 1, which shows the availability of terminals (see Figure 4-2). The initialization of 

the population is made by randomly generating the particles with the primary velocities of 

0, as much as the population size 20.  

         Origin terminals    Destination terminals 

h1 h2 … hb h1 h2 ... he 

Figure 4-2: Individual representation 

 

 



115 

 

4.3.3.3. Fitness Function 

In this research, the fitness of each particle is evaluated by optimally solving the lower 

level problem. Based on the values of the upper level decision variables (hj and hk), the 

linear programming (LP) file of the lower level problem is updated (constraint 4-6) and 

solved by ILOG CPLEX. The fitness of each particle is equal to the total risk of 

transportation of the hazmat containers through the available terminals. Please note that, 

where ties occur amongst lower level solutions, we assume that the carrier chooses the 

routes that are favorable to the government. To call CPLEX in our C# application, we 

used ILOG CPLEX and ILOG Concert Technology for .NET users. 

4.3.3.4. Particle Velocity and Position 

During the iterations of PSO, a particle adjusts its position according to the velocity. The 

search space for our problem is n-dimensional, so rth particle can be presented by an n-

dimensional vector Posr = {posr1, posr2… posrn} and Velr = {velr1, velr2… velrn}. The 

velocity and positions of particles are calculated as follows: 

      
 

        
   

              
   

       
   

               
   

       
   

  (4-10) 

      
 

       
   

       
 

        (4-11) 

                        (4-12) 

where m, n and k are the number of particles in the swarm, the dimension of search space 

and the maximum number of iterations, respectively. b1 and b2 are two random numbers 

between (0, 1), while c1 and c2 are the acceleration coefficients that lead the particle 

toward pbest and gbest. w stands for the inertia weight which controls the effect of 
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previous velocity on the current velocity. The smaller values of w achieve the local 

exploitation, while the global exploration is attained by its larger values. Having run our 

algorithm multiple times, values of parameters have been set. m, n and k are set to 20, 19 

and 500 respectively. c1, c2 and w are calculated for each particle at each iteration as 

follows: 

c1 = c1Min + rand () * (c1Max - c1Min), c1Min = 1.5, c1Max = 2.5    (4-13) 

c2 = c2Min + rand () * (c2Max - c2Min), c2Min = 1.5, c2Max = 2.5    (4-14) 

w = wMin + rand () * (wMax - wMin), wMin = 0.1, wMax = 1.0    (4-15) 

 

4.3.3.5. Mutation Operator 

A mutation operator is used to improve the performance of the algorithm by avoiding 

local convergence. We use bitflip mutation where the value of a randomly selected bit is 

inverted (0 changes to 1, and 1 changes to 0). The mutation probability is set to 0.01, 

which implies that the probability of a selected particle surviving to the next iteration 

unchanged is 99%. Figure 4-3 shows the pseudocode of the developed PSO.  
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4.3.4. Computational Experiments 

In this section, we discuss the estimation of basic parameters of the model, and then 

present an application of the proposed methodology to determine the intermodal terminals 

that should be closed to hazmat freights. Finally we analyze the solution and provide 

managerial insights. 

Here we continue to employ the intermodal service chain of Norfolk Southern in US, 

including 19 intermodal terminals and 31 types of intermodal train services differentiated 

by route and intermediate stops. These train services connect 37 pairs of shipper/receivers 

distributed in different parts of US. There are two types of train services, regular and 

priority, where the latter train type is 25% faster than the former one. To ensure each 

shipment using both the road and rail, the generated demand data does not include the 

shipper and receiver with access to the same terminal. We also consider the delivery time 

Initialize swarm 

while iteration < maxIteration 

Update velocity of particle r 

Update position of particle r 

Apply bitflip mutation  

Evaluate the fitness function using CPLEX 

Update pbest and gbest 

end while 

Figure 4-3: Pseudocode of the developed PSO 
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of 42 hours for each shipment (discussions about the delivery time can be found in the 

previous chapter). The estimation of other parameters, such as drayage fuel charge, 

average drayage speed, regular and priority intermodal rail-haul costs and fixed costs, and 

the risk parameters, follows the previous chapter as well. The solution methodology was 

coded in C# and numerical experiments were performed on Intel Core i5 CPU 1.80 GHz 

with 8 GB ram. The recorded CPU time for this experiment is approximately 135 minutes 

with 500 iterations. 

4.3.4.1. Solution and Discussion 

We ran the algorithm multiple times, and the best solution was the same each time. The 

best solution indicates that three terminals, including New York, Chicago and Detroit, 

should be closed to hazmat containers. The resulting total cost is $19,169,010, while 

11,415,670 people are exposed to risk. Tables 4-1 and 4-2 provide the cost and risks for 

the non-regulated and INDA solutions, respectively. The non-regulated case is the one in 

which the government does not interfere on the use of the network by hazmat vehicles, 

and the carrier is the only decision maker. Thus, the lower level problem is regarded as 

the non-regulated model. As we see, government can reduce the total population exposure 

for 1,668,415 people and even carrier’s total cost for $8,543 by regulating hazmat 

shipments, and hence, both sides are better off with the network design policy. Please 

note that, the reduction in the carrier’s total cost after regulating the network is due to 

consideration of new inbound and outbound drayage segments. It was also noticed that, 

closing New York and Chicago terminals forces the relevant traffic transited through 
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Philadelphia and Indianapolis respectively. The traffic of Detroit was transited through 

both Indianapolis and Fort Wayne. 

Table 4-1: Non-regulated 

Cost = $19,177,553  Risk = 13,084,085 people 

Rail-haul Drayage  Rail-haul Drayage 

3,706,015 15,471,538  2,748,027 10,336,058 

 

Table 4-2: INDA 

Cost = $19,169,010  Risk = 11,415,670 people  New segments = 5,127 miles 

Rail-haul Drayage  Rail-haul Drayage  Inbound Outbound 

3,472,310 15,696,700  2,540,800 8,874,870  3,038 2,089 

Table 4-3 provides the relevant details on the 31 intermodal train services, where the 

maximum length for each train is 120 containers. For example, the first row refers to the 

intermodal train service that originates in Atlanta and terminates in Detroit, and has one 

stop in Knoxville. A total of one regular train is needed to move the specified containers, 

which would incur a fixed train cost of $21,243 and expose 4,896 people. Please note 

that, Detroit is closed to hazmat containers, so the second leg of the service (Knoxville to 

Detroit) could not be used, and only the first leg (Atlanta to Knoxville) is utilized. 

According to Table 4-3, eight trains are not used. It was noticed that, the relevant traffic 

transited through three services of Jacksonville-Chicago, Atlanta-Philadelphia and 

Memphis-Philadelphia. Finally, Philadelphia, Charlotte and Indianapolis are the busiest 

terminals, which in turn can be explained by the fact that twelve of the 31 train services 
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originate at these yards and another fourteen transit them. In addition, Philadelphia and 

Indianapolis handle additional traffic due to the closure of New York, Chicago and 

Detroit terminals. 

To preserve the connectivity of the network after closing the terminals, respectively 3,038 

and 2,089 miles of inbound and outbound drayage segments need to be constructed. 

While the intermodal network requires 5,127 miles of additional drayage to be built, 

6,284 miles of inbound and outbound drayage are never used due to the terminal closure. 

Tables 4-4 and 4-5 present the list of the new drayage segments selected to be added to 

the network. The cost of building drayage segments varies considerably according to 

degree of urbanization, roadway width, number of lanes, etc. According to the Florida 

Department of Transportation (FDT, 2013), construction cost of a new 2-lane undivided 

road is $2,196,229 per mile in rural areas. Therefore, the total construction cost of 

drayage segments for INDA is approximately $11 billion. 
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Table 4-3: Attributes of intermodal trains 

From To Stop Regular Priority Train Cost Risk 

Atlanta Detroit 1 1 0 21,243 4,896 

Atlanta New York 1 0 0 0 0 

Atlanta Philadelphia 2 9 0 710,749 583,926 

Charlotte New York 1 3 0 179,428 155,344 

Charlotte Chicago 1 2 0 139,071 63,840 

Charlotte Detroit 1 0 0 0 0 

Chicago Philadelphia 1 0 0 0 0 

Chicago New York 0 0 0 0 0 

Chicago Charlotte 2 3 0 207,298 172,440 

Chicago Jacksonville 2 1 0 74,683 36,838 

Cincinnati Jacksonville 3 1 0 65,691 17,144 

Columbus Norfolk 1 2 0 114,263 70,840 

Detroit Philadelphia 2 1 0 56,046 53,520 

Detroit New York 1 0 0 0 0 

Indianapolis Philadelphia 2 3 0 186,439 151,508 

Indianapolis New York 1 1 0 47,542 38,400 

Indianapolis Atlanta 0 2 0 115,594 55,952 

Jacksonville Chicago 2 3 0 233,926 103,800 

Jacksonville Philadelphia 1 1 0 96,144 69,550 

Memphis Philadelphia 2 1 0 118,334 38,580 

New York Chicago 2 1 0 33,299 31,978 

New York Detroit 1 0 0 0 0 

New York Indianapolis 2 1 0 47,406 64,737 

New York Charlotte 1 3 0 118,478 141,050 

New York Atlanta 2 0 0 0 0 

Philadelphia Chicago 2 2 0 158,599 145,712 

Philadelphia Detroit 2 1 0 50,236 21,990 

Philadelphia Indianapolis 2 1 0 88,288 65,880 

Philadelphia Atlanta 2 6 0 432,079 341,780 

Philadelphia Jacksonville 1 3 0 177,474 111,095 

Philadelphia Memphis 1 0 0 0 0 

       

Intermodal terminals Regular 52    

  Priority  0   

  Fixed cost  722,997  

  Risk    2,540,800 

       

Container routing    2,749,313  

Total   52 2 3,472,310  
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Table 4-4: New inbound drayage segments 

Shipper Source terminal Distance (miles) 

Richmond Columbus 210 

Annapolis Richmond 136 

Battle Creek Cincinnati 283 

Battle Creek Indianapolis 220 

Battle Creek Columbus 242 

Gadsden Memphis 264 

Fremont Pittsburgh 24 

Van Wert Columbus 123 

State College Cleveland 238 

State College Philadelphia 193 

York Pittsburgh 214 

York Richmond 202 

Hendersonville Charlotte 104 

Douglas Atlanta 199 

La Porte Indianapolis 144 

Muncie Cincinnati 107 

Muncie Columbus 135 

Total  3,038 

Table 4-5: New outbound drayage segments 

Destination terminal Receiver Distance (miles) 

Indianapolis La Porte 144 

Richmond Annapolis 136 

Pittsburgh Fremont 24 

Cleveland Battle Creek 241 

Fort Wayne Xenia 143 

Indianapolis Battle Creek 220 

Indianapolis Xenia 134 

Columbus Battle Creek 242 

Indianapolis Fremont 237 

Charlotte Hendersonville 104 

Cincinnati Muncie 107 

Fort Wayne La Porte 101 

Cincinnati La Porte 256 

Total  2,089 
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Different from the single mode road networks, where the government is the only 

stakeholder, the rail-truck intermodal networks have other important stakeholders (i.e., 

private carrier companies) which need to be coordinated with the government when 

adopting regulating policies. Although the network design policy could be an applicable 

approach to mitigate the risk in a road network, it does not seem to be an attractive choice 

to the private sector involved in an intermodal network due to the rigid government’s 

restrictions. Hence, we propose a more flexible policy that employs tolls at certain 

terminals in the next section.  

4.4. Bi-objective Toll-setting Policy (BOTP) 

Toll-setting policy discourages carriers from using certain intermodal terminals by 

assigning tolls to those terminals. As we mentioned in the literature review section, 

Marcotte et al. (2009) were the first who applied a bi-level toll policy to hazmat 

transportation. Assuming both hazmat traffic and regular traffic affect population safety, 

Wang et al. (2012) suggested a dual toll setting model to mitigate the risk. They 

formulated a two-stage model in which the first stage problem was solved by the branch 

and bound and the null space active set method, and the second stage problem was solved 

using linear programming techniques. Different from these studies, we impose tolls on 

facilities, rather than the links; while similar to their approach, at the upper level of the 

toll setting problem, the government sets tolls such that total transportation risk is 

minimized. To find a set of minimum tolls, we consider minimization of toll costs besides 

the transportation risk as the objective functions (equations 4-16 and 4-17). In other 
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words, although the government’s main concern is to minimize the population exposure, 

they also take the toll costs imposed on carriers into account to make the policy more 

attractive and assure its successful execution. 

4.4.1. Model Formulation 

Let tollj and tollk represent the tolls for origin terminal j and destination terminal k 

respectively. Based on the previously introduced notation, we formulation BOTP as 

follows.  

              ∑ ∑     
  

          

∑ ∑     
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As shown, the lower level problem is the same as the network design problem except that 

it has two extra terms related to the toll costs in the objective function. Also, we set the 

maximum value of tolls to $1000. Further discussions about this value are provided in 

Section 4.5. To solve the developed bi-objective bi-level model, we use the speed-

constrained multi-objective PSO (SMPSO) (Nebro et al., 2009) since it obtains 

remarkable results in terms of both, accuracy and speed. Section 4.4.1 discusses the 

developed SMPSO in detail. 
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4.4.2. SMPSO 

SMPSO starts with creating the initial population and setting the positions and the 

velocities of the particles with random values. For the toll setting problem we use a real 

coding. Each particle consists of upper level’s decision variables which represent the tolls 

assigned to each intermodal terminal (see Figure 4-4). After initializing the population, an 

archive of leaders is formed consisting of non-dominated solutions (the archive size is set 

to 20 in this research). Then, similar to the single objective PSO, the main loop of the 

algorithm starts (see Figure 4-5). First, the positions and the velocities of the particles are 

updated and a polynomial mutation is applied. Then, solving the lower level problem 

using ILOG CPLEX, the fitness functions are evaluated, and pbests, gbest and the 

leader’s archive are updated subsequently. To choose the particles for the leader’s 

archive, the crowding distance of NSGA-II (Deb et al., 2002) is used (for more details on 

NSGA-II, please see Section 3.5.2). Application of both mutation and crowding distance 

operators preserves the diversity of non-dominated solutions in the archive of leaders.  

       Origin terminals     Destination terminals  

toll1 toll2 … tollb toll1 toll2 ... tolle 

Figure 4-4: Individual representation 

4.4.2.1. Polynomial Mutation 

Polynomial mutation was first proposed by Deb and Goyal (2006). Applying this operator 

the new particle    ́     is generated as follows: 

   ́                   
      

          (4-26) 
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where     
  and     

  are the upper and lower limit values, and η is the mutation index 

which is set to 20.
 
 

 

 

4.4.2.2. Crowding Distance Operator 

The crowding distance value of a solution provides an estimate of the density of solutions 

surrounding that solution (Deb et al., 2002). The crowding distance of solution i is equal 

to the size of the largest rectangle containing i but not any other solution (see Figure 4-6). 

Initialize swarm 

Initialize leader’s archive 

while iteration < maxIteration 

Update velocity of particle r 

Update position of particle r 

Apply polynomial mutation  

Evaluate the fitness function using CPLEX 

Update leader’s archive 

Update pbest and gbest 

end while 

Return leader’s archive 

Figure 4-5: Pseudocode of the developed SMPSO 
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Figure 4-6: Crowding distance calculation (Adopted from Deb et al. (2002)) 

To calculate the crowding distance, the following procedure is repeated for each objective 

function. First the solutions are sorted ascendingly based on their objective function 

values. Then, the crowding distance of each solution, which is the average distance of its 

nearby solutions, is estimated. The total crowding distance value of a solution is the sum 

of the crowding distances of this solution for both objective functions. 

4.4.3. Solution and Discussion 

Table 4-6 and Figure 4-7 present a Pareto frontier with solution A and Q constituting the 

two extremes. A is the least risky solution, with the total toll value of $1,047,107 and total 

risk of exposing 11,898,610 individuals. On the other hand, Q has the lowest toll cost of 

zero, which is compensated by the total risk of approximately 13 million individuals. 

With regard to Figure 4-7, it is easy to see that risk reductions entails larger toll costs 

when moving from A to O, whereas it is achieved at small cost for the rest of the 

solutions. Moving from O to Q decreases the exposure for approximately 869,167 people, 

while increases the toll cost for nearly $8,181, which means that the cost of exposing one 

fewer individual is $0.009. 
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Mitigating the exposure risk is the key concern of the government, therefore our study 

emphasizes on the min risk solution (solution A). To have a better understanding of this 

solution, the corresponding breakdown information is provided in Table 4-8. The 

specified demand can be met by spending around $19.8 million, and exposing 

approximately 11.8 million individuals. 

Table 4-6: Alternative optimal solutions 

 Risk (people) Toll cost ($) 

A 11,898,610 1,047,107 

B 11,926,720 963,685 

C 11,940,028 695,466 

D 11,947,109 521,117 

E 11,950,035 515,530 

F 11,950,941 376,892 

G 11,963,005 296,895 

H 11,969,207 204,729 

I 12,015,443 195,953 

J 12,019,545 108,975 

K 12,065,485 74,765 

L 12,081,450 35,814 

M 12,100,251 22,609 

N 12,145,332 15,135 

O 12,214,918 8,181 

P 13,069,061 2,615 

Q 13,084,085 0 
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Figure 4-7: Pareto frontier 

Table 4-7: Solution A 

Cost = $19,827,592   Risk = 11,898,610 people 

Rail-haul Drayage Toll  Rail-haul Drayage 

3,743,202 15,510,312 1,047,107  2,654,156 9,244,454 

 

The optimal set of tolls is presented in Table 4-8. As shown, New York, Charlotte and 

Indianapolis have the highest tolls, while Philadelphia, Knoxville, Cincinnati and Fort 

Wayne are toll free. Please note that, even though the Philadelphia terminal is located at a 

highly populated area, it is still toll free. This is because our model minimizes the overall 

system risk by assigning tolls, rather than focusing on each single terminal.  
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Table 4-8: Tolls for intermodal terminals 

Terminal Toll ($) Terminal Toll ($) 

New York 976.88 

 
Memphis 141.52 

 Philadelphia 0 Cincinnati 0 

Richmond 5.65 

 
Indianapolis 188.78 

 
Norfolk 59.53 

 
Columbus 18.57 

 
Roanoke 153.94 

 
Fort Wayne 0 

Charlotte 227.61 

 
Chicago 106.11 

 
Knoxville 0 Detroit 119.84 

 
Atlanta 94.50 

 
Cleveland 72.89 

 
Macon 6.08 

 
Pittsburgh 1.28 

 
Jacksonville 1.40 

 

  

Table 4-9 provides the relevant details on the intermodal train services. Notice that six 

trains with origin or destination in New York, one train with origin in Indianapolis and 

another train with destination in Memphis are not used. The relevant traffic transited 

through Philadelphia, Cincinnati and Knoxville respectively. Finally, Philadelphia and 

Atlanta are the busiest terminals, which in turn can be explained by the fact that nine of 

the 31 train services originate at these yards and another eleven transit them. In addition, 

Philadelphia handles additional traffic due to high toll of New York. 
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Table 4-9: Attributes of intermodal trains 

From To Stops Regular Priority Train Cost Risk 

Atlanta Detroit 1 2 0 93,466 46,391 

Atlanta New York 1 1 0 15,557 20,125 

Atlanta Philadelphia 2 9 0 622,632 628,488 

Charlotte Chicago 1 2 0 109,900 121,144 

Charlotte Detroit 1 2 0 117,609 66,934 

Charlotte New York 0 0 0 0 0 

Chicago Charlotte 2 3 0 174,572 178,619 

Chicago Jacksonville 2 2 1 182,110 109,804 

Chicago New York 0 0 0 0 0 

Chicago Philadelphia 1 1 0 61,894 76,111 

Cincinnati Jacksonville 3 2 0 92,369 30,432 

Columbus Norfolk 1 2 0 94,308 71,951 

Detroit New York 1 0 0 0 0 

Detroit Philadelphia 2 1 0 60,480 71,340 

Indianapolis Atlanta 0 0 0 0 0 

Indianapolis New York 1 0 0 0 0 

Indianapolis Philadelphia 2 3 0 117,409 117,748 

Jacksonville Chicago 2 2 1 194,474 105,451 

Jacksonville Philadelphia 1 1 0 81,270 69,550 

Memphis Philadelphia 2 1 0 105,546 41,306 

New York Atlanta 2 0 0 0 0 

New York Charlotte 1 2 0 54,101 99,386 

New York Chicago 2 1 0 20,325 34,378 

New York Detroit 1 0 0 0 0 

New York Indianapolis 2 1 0 28,998 54,875 

Philadelphia Atlanta 2 7 0 358,072 349,874 

Philadelphia Chicago 2 2 0 150,679 168,442 

Philadelphia Detroit 2 1 0 44,404 27,697 

Philadelphia Indianapolis 2 1 0 61,581 54,039 

Philadelphia Jacksonville 1 3 0 131,262 110,395 

Philadelphia Memphis 1 0 0 0 0 

       

Intermodal terminals Regular 52    

  Priority  2   

  Fixed cost  770,186  

  Risk    2,654,480 

       

Container routing    2,973,016  

Total   52 2 3,743,202  
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4.4.4. Managerial Insights 

4.4.4.1. Variation in Maximum Toll Cost 

As we mentioned in the BOTP formulation, we restrict the maximum toll costs to $1000. 

To examine the effect of changing the maximum toll cost on the min risk solutions, we 

further considered two additional cases: maximum toll = $500 (Case 1) and maximum toll 

= $1500 (Case 2). Table 4-10 lists the tolls for relevant intermodal terminals. Not only the 

toll amounts varies from case to case, but also the share of terminals changes. In Case 1, 

New York, Detroit and Roanoke have the highest tolls, while in Case 2, New York, 

Atlanta and Norfolk have the highest tolls.  

Table 4-10: Tolls for intermodal terminals 

Terminal 
Max toll  

$500 

Max toll  

$1000 

Max toll  

$1500 
Terminal 

Max toll  

$500 

Max toll  

$1000 

Max toll  

$1500 

New York 464.54 

 

976.88 

 

1371.08 

 

Memphis 324.00 

 

141.52 

 

33.10 

 Philadelphia 15.960 

 

0 0.23 

 

Cincinnati 259.49 

 

0 102.68 

 Richmond 29.34 

 

5.65 

 

179.20 

 

Indianapolis 379.04 

 

188.78 

 

307.02 

 Norfolk 58.28 

 

59.53 

 

1076.64 

 

Columbus 111.01 

 

18.57 

 

45.00 

 Roanoke 384.59 153.94 

 

0.11 

 

Fort Wayne 25.45 

 

0 0.10 

 Charlotte 340.55 

 

227.61 

 

0 

 

Chicago 54.33 

 

 

106.11 

 

225.53 

 Knoxville 2.26 

 

0 50.41 

 

Detroit 445.79 

 

119.84 

 

1.47 

 Atlanta 20.86 

 

94.50 

 

1083.64 

 

Cleveland 374.41 

 

72.89 

 

166.05 

 Macon 0.13 

 

6.08 

 

16.14 

 

Pittsburgh 143.63 

 

1.28 

 

326.68 

 Jacksonville 242.45 1.40 

 

481.57 

 

    

 

Table 4-11 compares the min risk solutions for the three cases. When we decrease the 

maximum toll cost, total risk increases to 11,988,818 people. On the other hand, 
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increasing the maximum toll cost would decrease the total risk to 11,847,953 people, but 

increase the carrier’s total costs to $22,864,751. We have also experimented with several 

amounts greater than $1500, but saw no improvement in the overall result. With regard to 

minor variation in the total risk value, we can conclude that the base solution (maximum 

toll = $1000) is rather robust to minor variations in maximum toll amount. 

Table 4-11: Impact of maximum toll cost 

Max toll cost ($) Cost ($)  Risk (people) 

Rail-haul Drayage Toll  Rail-haul Drayage 

500 3,812,949 15,552,045 1,798,767  2,736,872 9,251,946 

1000 3,743,202 15,510,312 1,047,107  2,654,156 9,244,454 

1500 3,826,401 15,521,100 3,517,250  2,667,846 9,180,107 

4.4.4.2. Network Design vs. Toll Setting 

Table 4-12 gathers the information for the three cases of non-regulated, BOTP (min risk 

solution) and INDA. Based on this table, INDA exposes fewer individuals than the min 

risk solution achieved by BOTP. Both BOTP and INDA incur fewer exposures than the 

non-regulated case. Comparing INDA and BOTP, we see that the former leads to a lower 

transportation risk, and in return charges the government to construct 5,127 miles of new 

drayage segments to avoid infeasibility. In addition, applying strictly the INDA policy, a 

part of the infrastructure, including closed intermodal terminals and their connected rail 

and road segments, would be underutilized. On the other hand, despite the higher risk, 

BOTP benefits the government by over 1 million dollars, which can be used to help 

recuperate the cost of road construction and maintenance. Furthermore, applying INDA, 



135 

 

New York, Chicago and Detroit are closed; while under BOTP, a different set of 

terminals, i.e. New York, Charlotte and Indianapolis, have the highest tolls. This 

difference can be justified by the fact that, due to closure of a number of terminals and 

addition of a set of inbound and outbound drayage segments in INDA, the networks of the 

two policies are different. 

The government could consider using the two policies as a two-stage plan, with BOTP at 

the first stage and INDA at the second. In the first stage, and with the tolls income, the 

government can extend the network by constructing additional drayage segments. Then, 

through the second stage, the carriers are suggested to close certain terminals, only to the 

hazmat transportation. Given extra road connections and lower transportation costs of 

INDA, the scenario could be attractive to the carrier, and thus be implemented. 

Table 4-12: Three scenarios 

 Cost ($)  Risk (people)  

Rail-haul Drayage  Rail-haul Drayage 

Non-regulated 3,706,015 15,471,538  2,748,027 10,336,058  

BOTP 3,743,202 15,510,312  1,047,108 2,654,480 Toll costs: $1,047,107 

INDA 3,472,310 15,696,700  2,540,800 8,874,870 New segments = 5,127 miles 

 

4.5. Conclusion 

This study suggests two bi-level models for regulating a rail-truck intermodal network of 

hazmat. The models consider government and carrier at two levels of administration, and 

formulate their interaction to regulate the shipment of hazardous materials. For the 

intermodal network design model, at the higher level, the government aims to select the 
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intermodal terminals to close such that the total transportation risk is minimized; while, at 

the lower level, the carrier makes routing decisions and thus determines the transportation 

risk. Based on this formulation, a PSO algorithm was proposed for solving realistic 

problem instances. 

As an improved policy to INDA, we further developed a toll setting approach and 

formulated a bi-objective bi-level model to regulate the use of intermodal terminals for 

hazmat. In the new model, the government determines the tolls to discourage the carrier 

from using certain terminals. The model is then solved by a multi-objective PSO, and a 

set of non-dominated solutions are approximated. Comparing the min risk solution 

achieved by the toll setting policy and the one achieved by the network design policy 

shows that INDA can find better solution in terms of transportation risk, however incurs 

the government construct 5,127 miles of new drayage segments, which would cost 

approximately $11 billion. 

This work contributes to the literature by following aspects. First of all, unlike all the 

studies in this area that focus exclusively on single mode, we consider a rail-truck 

intermodal network which is completely different from the single-mode network in terms 

of infrastructure and operations done. Secondly, unlike most of the approaches in the 

literature that seem to concentrate only on one aspect, we focus on the combined location 

and routing model development. Furthermore, two bi-level mixed-integer program 

reformulations of the proposed policies are provided, and accordingly, two hybrid 

solution procedures based on the PSO algorithm is proposed for real size problems. 

Finally, the chapter compares the two proposed regulating policies, i.e. network design 
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and toll setting policies, and discusses the advantages and disadvantages of each. For the 

future research, beside the transportation risk we will consider the total risk during the 

transfer process at intermodal terminals. Additionally, it would be interesting to 

incorporate risk equity into the proposed model to further enhance its applicability. 
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5. Conclusion and Future Research 

5.1. Conclusion 

In contrast to many other application domains, the use of operations research models and 

methods for intermodal transportation is still a very young area. In this dissertation, we 

proposed a set of three compatible approaches towards operational, tactical and strategic 

planning of intermodal transportation. 

In Chapter 2 and at the operational level, we considered a container port terminal and 

proposed an analytical approach to schedule the cranes, such that the unloading of 

inbound vessels and the loading of outbound vehicles could be completed in minimum 

time. Since the problem is NP-hard, a genetic algorithm (GA) equipped with a novel 

decoding procedure was proposed. This method was tested on problem sets generated 

using the realistic parameters from the Port of Montreal and the Port of Singapore and 

results were compared with another meta-heuristic technique (Elitist Evolutionary 

Strategy). The key features of this framework are the formulation of the problem as a 

multi-processor two-stage model, the consideration of the availability time windows for 

cranes and the solution procedure applied.  

Our computational experiments showed that the distribution of unavailability times has a 

direct bearing on the completion time. This implies that the unavailable time windows 

could be arranged so as to ensure smooth flow of jobs without changing the actual 

unavailability duration. Also, according to the results, the proposed GA outperforms the 
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other two techniques in most instances, and within a reasonable amount of computing 

time. 

In Chapter 3, we studied the tactical level problem of capacity planning and routing of 

regular and hazardous goods in a rail-truck intermodal network when the demand for 

transportation is uncertain, and therefore, congestion may arise at the intermodal 

terminals. The problem was solved using an iterative solution procedure incorporating a 

heuristic and a multi-objective genetic algorithm to generate a model that could be solved 

by CPLEX. The application of the model was illustrated using a real problem instance 

based on the intermodal service chain of Norfolk Southern in the US. The key features of 

this framework are incorporating uncertainty resulting from the uncertain nature of the 

hazmat transportation problems, considering the congestion at intermodal terminals as a 

source of exposure in hazmat transportation problem and combining capacity planning 

with the routing of hazardous materials in the congested networks.  

Our computational experiments showed that besides the drayage and rail-haul, congestion 

at intermodal terminals is a main source of population exposure. Improving the service 

time at busy terminals using more or faster handling equipment (e.g. cranes) and applying 

tighter routing regulations, or even closing the rail/road segments that pass through 

populated centers, can considerably mitigate the potential risk. Finally, since the delivery 

time is a major concern for many companies, it is important to consider the impact of 

congestion (or capacity) of intermodal terminals on the supply (delivery) time. 

In Chapter 4, we studied the strategic level problem of regulating intermodal 

transportation of hazardous materials. This chapter aimed to assist the government in 
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regulating the usage of intermodal terminals for hazardous material transportation using 

the bi-level programming approach. A bi-level network design model (INDA) and a bi-

level bi-objective toll-setting policy model (BOTP) were proposed to mitigate the 

transportation risk. We developed two hybrid particle swarm optimizations that integrate 

CPLEX optimization to solve the models. The application of our models was illustrated 

by a real problem instance based on the intermodal service chain of Norfolk Southern in 

the US. The key features of this framework are the consideration of a rail-truck 

intermodal network, the combination of location and routing model development, the 

reformulation of two bi-level mixed-integer program for the proposed policies, and 

accordingly, the development of two hybrid solution procedures based on the PSO 

algorithm for real size problems.  

Based on our computational experiments, the government could use the two policies as a 

two-stage plan, with BOTP at the first stage and INDA at the second. In the first stage, 

and with the toll income, the government could extend the network by constructing 

additional drayage segments. Then, through the second stage, the carriers were suggested 

to close certain terminals, only to the hazmat transportation. Given extra road connections 

and lower transportation costs of INDA, the scenario could be attractive to the carrier, and 

thus be implemented. 
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5.2. Future Directions 

Specific extensions related to each of the three contributions were elaborated in the 

respective chapters i.e. Chapters 2-4. In the following, we point out other directions for 

the future research.  

5.2.1. Time-dependent Stochastic Network 

Routing of hazmat shipments in the networks that have time-dependent stochastic 

attributes (such as travel times) is an interesting and challenging operations research 

problem that has not yet been studied adequately. The results from fixed travel time 

models may produce schedules which lead to longer journeys, and hence give rise to 

further congestion and associated costs. Hence, in situations where travel times are 

uncertain and the probability distributions vary with the time of day, the transport 

network should be modeled as a stochastic time-dependent network. In such a network, 

the link attributes (such as travel times, incident probabilities, and population exposure) 

are represented as random variables with a priori probability distributions that vary with 

time (Erkut et al., 2007). 

In deterministic networks, there is only one minimum time path connecting a shipper to a 

receiver. However, in stochastic time-dependent networks, multiple paths may have 

positive probability of having the least time, as the arc times are stochastic. Therefore, a 

set of non-dominated solutions can be estimated. The major concern to solve the routing 

problems in stochastic time-dependent networks is the collection and processing of the 

data required to assess the probability distribution used as input to the model. Time-
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dependent stochastic networks have been studied during the past two decades, but only 

very few of them consider hazmat transportation (e.g., Bowler and Mahmassani, 1998; 

Miller-Hooks and Mahmassani, 1998). Among these few papers, none of them take 

multiple objectives or multiple modes into account. In addition, they are all about local 

route planning, rather than global routing. Unlike the local routing, which focuses on a 

single commodity and a single origin-destination route plan, the global routing problem 

involves multi-commodity and multiple origin-destination routing decisions. In the future, 

we can study the global routing of hazmat freights in a time-dependent stochastic 

network. 

5.2.2. Terrorist Attack 

Another future research direction is to consider the potential for a terrorist attack on a 

hazmat vehicle. Traditionally, traffic accidents or human error were regarded as factors 

affecting risk. However, the hazmat vehicles could be the desirable targets for terrorists, 

specifically because of the corresponding exposure risks. This fact should be considered 

when modeling the risk in the problems similar to ours in Chapters 3 and 4. To assess the 

risk of terrorist attack involving hazardous materials, the tiered approach used to 

designate varying levels of highway/rail security-sensitive materials
2

, frequency of 

shipment of hazmat freights and the consequence of attack should be considered (Reniers 

and Zamparini, 2012).  

                                                           
2
 Security-sensitive materials have legitimate industrial use but can be exploited by terrorists and be 

weaponised (e.g. certain explosive materials and ammonium nitrate). 



143 

 

In addition to the risk assessment, the routing of hazmat freight could be affected by 

probability of terrorist attack. Besides the minimization of cost, minimizing the 

probability of a successful terrorist attack could also be regarded as objective functions. 

Applying game theory to model the interaction between a carrier and a terrorist would 

help the carrier make decisions of which routes to use with what frequencies with regard 

to threat of the terrorism. Reilly et al. (2012) is one of the few studies which model the 

possible role of a terrorist when designing a network of hazmat. They developed a 

Stackelberg game in which the government acts as a leader to maximize the carriers’ 

payoff and limit the terrorist’s payoff by restricting specific facilities. The main drawback 

of the developed model is that only one carrier is considered. The model can be extended 

to address multiple carriers, each with several origins and destinations. Furthermore, it 

would be interesting to study a similar problem in an intermodal network with multiple 

stakeholders. Unlike the road network, where the government has the options of 

restricting specific facilities or closing the links, the rail-truck intermodal networks have 

other important stakeholders (i.e., private carrier companies) which are important to be 

coordinated with the government when making restricting decisions.  

5.2.3. Risk Equity 

Finally, equity in distribution of risk should be taken into account when designing hazmat 

management strategies acceptable to the public. Since carriers’ decisions are usually 

made without considering the general setting, it may happen that some parts of the 

transportation network are overloaded with hazmat freights. This may cause considerable 
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increase of accident rates in those parts, resulting in inequity on distribution of the risk. In 

traditional approaches, different paths would be generated to alternate the route among 

them and hence distribute the risk. Recently, bi-level optimization is used to tackle risk 

equity. Since the government cannot impose specific routes on carriers, policies could be 

adopted to regulate the use of the network links and therefore promote equity in the 

spatial distribution of risk. Although several studies have focused on risk equity (e.g. List 

and Mirchandani, 1991; Current and Ratick, 1995; Kang et al., 2014), very few of them 

have presented a bi-level formulation (e.g. Bianco et al., 2009), which is a more 

appropriate methodology to study an uncooperative situation where different authorities 

act as multiple decision makers. All available models consider only one mode of 

transportation; however risk equity in an intermodal network is different from a single 

mode network. Different studies showed that equity can be enhanced using alternate 

routes for a shipment. Though this is possible in a road network, the scarcity of railroad in 

different areas does not present many routing options. In a rail network, train make-up, 

i.e., the composition of the train, is the major factor affecting the risk equity. For a certain 

amount of demand, the use of fewer trains would lead to an increase in the exposure zone 

while reducing the number of times people close to the tracks are exposed. Verma and 

Verter (2007) showed that, when the train passes through a populated area, with a 

uniform population density, the exposure will spread over large number of people, and 

hence improve the equity. Studying the risk equity in a rail truck network of hazmat 

would be a significant contribution. 
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