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Abstract 

 

Results are presented for the in situ simultaneous determination of U-Pb and Sm-

Nd isotopes in monazite using the Laser Ablation Split-Stream (LASS) method. This 

method uses a laser ablation system coupled to both a magnetic-sector inductively 

coupled plasma mass spectrometer (HR) (ICP-MS) for measuring U-Pb isotopes and 

multicollector (MC) ICP-MS for measuring Sm-Nd isotopes. The ablated material is split 

using a glass Y-connector and transported simultaneously to both mass spectrometers.  In 

addition to Sm and Nd isotopes, the MC-ICP-MS is configured also acquire Ce, Nd, Sm, 

Gd, and Eu elemental abundances. This approach provides age, tracer isotope, and trace 

element data in the same ablation volume, thus reducing but not eliminating sampling 

problems associated with fine-scale zoning in accessory minerals. The precision and 

accuracy of the U-Pb method (along with the precision of the Sm-Nd method) is 

demonstrated by analysis of six well-characterized monazite reference materials. The 

LASS results agree within uncertainty with previously determined isotope dilution 

thermal ionization mass spectrometry (ID-TIMS) ages.  Accuracy of the Sm-Nd method 

is assessed by comparing the LA-MC-ICP-MS results with ID-TIMS determinations on a 

well-characterized, in-house monazite reference material. The LASS method is then 

applied to monazite from the Birch Creek Pluton (BCP) in the White Mountains of 

southeastern California as a case study to illustrate the utility of this method for solving 

geologic problems. The U-Pb ages and Sm-Nd isotopic data determined using the LASS 

method support the conclusions drawn from previous results that monazite can record 

both timing and potential sources of hydrothermal fluids. 
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Chapter 1. Introduction 

1.1 Monazite 

Monazite-(Ce) is a relatively common rare earth element (REE) monoclinic 

orthophosphate (nominally CePO4, with other REEs, Y, Th, and U substituting for Ce) 

accessory mineral found in a wide range of rock types [Harrison et al., 2002]. It occurs in 

igneous and metamorphic rocks, as a detrital mineral in sedimentary rocks, and in REE 

mineral deposits. Owing to high concentrations of U and Th (typically in the thousands of 

ppm U, and Th concentrations typically in the tens of thousands of ppm, and often > 

50,000 ppm)  [Parrish, 1990; Heaman and Parrish, 1991], high concentrations of 

radiogenic Pb (given the grain is not too young) and negligible amounts of common Pb, 

monazite has proven useful for constraining the timing of geologic events using U-Th-Pb 

isotopes [Gebauer and Grünenfelder, 1979; Hawkins and Bowring, 1997; Harrison et al., 

2002; Košler et al., 2001; Kohn et al., 2008; Warren et al., 2011]. Monazite is also useful 

for tracer isotope investigations using Sm-Nd isotopes, due to high concentrations of Sm 

and Nd (e.g., ~10
4
 to 10

5
 ppm) [Tomascak et al., 1998; McFarlane and McCulloch, 

2007]. Similar to the combination of U-Pb age and Lu-Hf isotopic analyses in zircon 

[Kemp et al., 2006; Hawkesworth and Kemp, 2006; Yuan et al., 2007; Xie et al., 2008], 

the Sm-Nd isotopic composition of monazite provides complementary information to the 

U-Th-Pb system, provided ages can be correctly assigned to measured Nd isotope 

compositions such that accurate initial 
143

Nd/
144

Nd can be obtained. As discussed in detail 

below, this may not always be possible in complexly zoned grains when different sample 

volumes are used for independent in situ U-Pb and Sm-Nd measurements, as has been 

done previously [McFarlane and McCulloch, 2007; Iizuka et al., 2011a]. For this reason, 
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the utility of the Laser Ablation Split-Stream (LASS) technique will be evaluated for 

simultaneously determining age and Sm-Nd isotope composition in monazite.  

Though not as widely used as zircon, monazite has proven to be a very useful U-

Th-Pb geochronometer for many geologic applications [Parrish, 1990; Heaman and 

Parrish, 1991; Košler et al., 2001; Kohn et al., 2008; Warren et al., 2011]. The high 

concentrations of U, Th, and Pb in monazite allow for the determination of three 

independent ages, based on three distinct decay schemes: 
208

Pb/
232

Th, 
206

Pb/
238

U, and 

207
Pb/

235
U and also the dependant 

207
Pb/

206
Pb age [Parrish, 1990; Košler et al., 2001]. 

Monazite also has a relatively high closure temperature for Pb (i.e., ~700–900º C). 

[Cherniak, 2010] and is less prone to radiation damage than zircon due to self-annealing 

at low T [Parrish, 1990; Harrison et al., 2002]. Further, because the growth of monazite 

can often be linked to metamorphic processes (i.e., as inclusions in minerals such as 

garnet), U-Th-Pb dating of monazite is a powerful tool for constraining the timing of 

metamorphic events [Foster et al., 2000; Košler et al., 2001; Williams et al., 2007; 

Moecher et al., 2011]. One disadvantage with U-Th-Pb dating of monazite, however, its 

ability to recrystallize under the influence of fluid related alteration causing its U-Th-Pb 

system to be reset [Harlov et al., 2011; Williams et al., 2011]. However, this tendency to 

recrystallize can sometimes help date fluid events, so in some cases it is not a 

disadvantage. 

The Sm-Nd isotopic system in monazite has been used as an isotopic tracer 

[Tomascak et al., 1998; McFarlane and McCulloch, 2007; Iizuka et al., 2011b] but it can 

also be used in tandem with a mineral with contrasting Sm-Nd as a geochronometer by 

producing improved isochrons [Evans and Zalasiewicz, 1996]. The Sm-Nd isotopic 
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system is particularly useful for source region investigations, as both Sm and Nd are 

relatively immobile elements [DePaolo, 1988], are part of the monazite structure (N.B. 

monazite is nominally CePO4 but always has other REEs present in the structure in 

descending concentrations from LREEs to HREEs) and would not be expected to readily 

diffuse out of the crystal during a thermal event, [Cherniak et al., 2010] and large scale 

fractionation of Sm and Nd during most crustal processes is not expected.  

Traditionally, high-precision Sm-Nd isotopic measurements in monazite were 

done by isotope dilution thermal ionization mass spectrometry (ID-TIMS) [e.g., Hawkins 

and Bowring, 1997; Tomascak et al., 1998] using whole grains or pieces of grains. More 

recently, isotopic analyses of monazite have been successfully done in situ using laser 

ablation multicollector inductively coupled plasma mass spectroscopy (LA-MC-ICP-MS) 

with sub-Nd unit reproducibility [McFarlane and McCulloch, 2007; Yang et al., 2009; 

Fisher et al., 2011; Iizuka et al., 2011a] (an Nd unit is a measure of relative deviation 

from the CHondritic Uniform Reservior (CHUR)) [Bouvier et al., 2008], thereby allowing 

for Sm-Nd isotopic analysis of individual regions in monazite grains. 

Combining U-Pb dating and Sm-Nd isotopes in monazite can be a powerful 

geochemical tool. Coupling these systems enables the determination of initial Nd isotopic 

compositions, and thus allows constraints to be placed on source region, material and age 

of the monazite.   

In addition to age and Sm-Nd isotope data, this technique can also provide Ce-Nd-

Eu-Gd, which are complementary to the U-Pb and Sm-Nd data and can be used in various 

geochemical applications. The most widely used application of these REE data is the 
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determination of the europium anomaly or Eu/Eu*, which is a measure of the relative 

abundance of Eu compared to Sm and Gd is related to the oxygen fugacity of the source 

magma [Trail et al., 2012] and is often used to constrain the crystallization of plagioclase 

in melts [Fowler and Doig, 1983; McFarlane and McCulloch, 2007; Fisher et al, 2011]. 

Additionally, as presented by McFarlane and McCulloch [2007], calculating initial 

143
Nd/

144
Nd ratios using corresponding U-Pb or Pb-Pb ages, rather than Sm-Nd isochron 

ages, greatly reduces uncertainties, as the relatively small values and ranges of Sm/Nd in 

monazite preclude precise Sm-Nd age determination in Sm-Nd isochron dating. 

 

1.2 Advantages of Laser Ablation Split-Stream 

Monazite grains often have complex, fine-scale patchy zoning in addition to 

growth zoning, which can be highlighted when viewed with BSE imaging or elemental X-

ray mapping [e.g., Hawkins and Bowring, 1997; Williams et al., 2007; Williams and 

Jercinovic, 2012]. These zones can be distinct in both composition and age within a 

single grain, leading to the need for in situ analysis in either thin section or grain mounts, 

with a spatial resolution suitable for the problem being addressed [Williams et al., 2007; 

Williams and Jercinovic, 2012].  

To overcome these obstacles related to analyzing monazite, a method is presented 

that allows for the simultaneous measurement of U-Pb and Sm-Nd isotopes along with 

elemental concentrations of Ce, Nd, Sm, Gd, and Eu in monazite. Simultaneously 

sampling the same ablation volume for multiple geochemical systems at a single ablation 

site yields an excellent solution to the sampling limitations discussed above. Additionally, 

the relatively small (i.e., 20 m) laser spot used in this study helps avoid, but does not 
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completely eliminate, the internal zoning problem in monazite mentioned above 

[Hawkins and Bowring, 1997; Williams et al., 2007]. Previously, non-split-stream LA-

ICP-MS measurements of U-Pb and Sm-Nd in monazite would have been collected using 

different laser spots typically with the U-Pb first and the Sm-Nd placed on top of or near 

the pre-existing laser crater ideally in the same growth-zone region. However, this 

increases the level of sampling uncertainty because of the differences in the ablation 

volumes, ablation depths, and ablation locations. 

The LASS approach maximizes the amount of data that can be obtained from a 

single analysis by using two mass spectrometers simultaneously. This is ideal for U-Pb 

detrital monazite studies, in which a large number of grains need to be analyzed in order 

to obtain a statistically valid data set [Hietpas et al., 2010; Hietpas et al., 2011; Moecher 

et al., 2011]. In detrital studies, Sm-Nd isotopes can be used as a tracer of the source 

rocks in which the monazite originally crystallized, and the compositional zoning can 

reveal information about the metamorphic or igneous history of the monazite [Ross et al., 

1991; Iizuka et al., 2011B]. Recently, Hietpas et al. [2010] showed that detrital monazite 

results could be used to constrain the metamorphic history of an area more reliably and 

more effectively than zircon, as monazite grows more readily in politic schist than zircon, 

and thus is able to better record low temperature metamorphic events. This makes 

monazite potentially more useful in detrital studies in areas that have substantial low-

grade metamorphic materials.  

The main limitation of a LASS configuration is that the signal strength to each 

ICP-MS is reduced when compared to measuring U-Pb or Sm-Nd separately because the 

total flux of ablated material is divided between the two ICP-MS instruments. The 
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ablation process and the throughput into the ICP-MS to the detector is already highly 

inefficient, with only ~1% of the ablated material making it to the detector [Košler and 

Sylvester, 2003]. By splitting the ablated material between the two ICP-MS instruments, 

the amount of material reaching each ICP-MS is slightly reduced, which ultimately 

reduces the precision of each analysis. This reduction will be discussed further in Chapter 

4. 

The precision and accuracy of U-Pb ages measured using the LASS method is 

assessed using six well-characterized (i.e., using ID-TIMS) monazite samples from the 

Geologic Survey of Canada (GSC), some of which have been used as U-Pb reference 

materials for the sensitive high-resolution ion microprobe (SHRIMP II) [Stern and 

Berman, 2000]. Two in-house monazite samples [MacLachlan et al., 2004; G. Dunning, 

pers. comm., 2012] were dated by ID-TIMS at Memorial University of Newfoundland 

and used to further assess the accuracy and precision of the U-Pb ages provided by the 

LASS method discussed in this paper. Additionally, five ID-TIMS Sm-Nd analyses were 

done on individual grains of one of the in-house samples (KMO3-72) and used to further 

assess the precision and accuracy of the Sm-Nd isotopic measurements conducted in 

LASS mode.  This method is then applied in a case study using monazite grains from the 

Birch Creek Pluton (BCP), and surrounding rocks in which the BCP intruded, in the 

White Mountains of southeastern California [Barton, 2000; Ayers et al., 2006]. The 

results from this case study demonstrate how the simultaneous in situ determination of U-

Pb isotopes, Sm-Nd isotopes, and REE concentrations in monazite using the LASS 

method can constrain the timing of the intrusion and source of the magma, and provide 
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information about the timing and nature of hydrothermal fluid interaction in surrounding 

rocks. 

 

1.3 Previous work 

The first simultaneous determination of age and tracer isotope data was done by 

Woodhead et al., [2004] who used a single LA-MC-ICP-MS to measure both Pb and Hf 

isotopes. 
207

Pb/
206

Pb ages were measured using a MC-ICP-MS instrument with a zoom 

lens. Harrison et al. [2008] and Kemp et al., [2009] completed similar studies and used 

the zoom optics feature on ThermoScientific NEPTUNE instruments. This approach uses 

depth profiling to help ensure that the Hf data that were coupled with 
207

Pb/
206

Pb ages 

were obtained from the same ablation volume and were unaffected by age mixing of 

multiple growth zones preserved in the zircon. Woodhead et al. [2004] demonstrated 

acceptable accuracy and only slightly degraded precision compared to individual 

analyses, using the zircon reference materials 91500 and BR266. The main drawback of 

the method, however, is that with only 
207

Pb/
206

Pb ages and no U-Pb or Th-Pb ages, there 

is no way to detect Pb loss or mixing of different age components.  

Yuan et al. [2008] reported the first LASS measurements of U-Pb isotopes, Lu-Hf 

isotopes, and trace elements in well-characterized zircon reference materials using a 

quadrupole (Q) ICP-MS and a MC-ICP-MS. These authors demonstrated the potential of 

this technique, and their studies yielded results for both Lu-Hf and U-Pb, which was only 

slightly degraded from separate analyses of U-Pb and Lu-Hf. 

Xie et al. [2008] also did LASS in situ measurements of U-Pb isotopes, Lu-Hf 

isotopes, and trace elements, in well-characterized zircon and baddeleyite reference 
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materials.  Similar to Yuan et al. [2007], their setup utilized a Q-ICP-MS coupled with a 

MC-ICP-MS. Their U-Pb and Lu-Hf data agree with the reference values for the zircon 

and baddeleyite samples used in their study. They also found no evidence of any 

increased elemental fractionation when the aerosol is split in different proportions, which 

is a key result in support of LASS analyses. 

Tollstrup et al. [2012] also completed simultaneous measurements of both U-Pb 

ages and Lu-Hf isotopes in zircon, using an HR-ICP-MS (ELEMENT) and a MC-ICP-

MS (NEPTUNE Plus) coupled to a 193 nm laser ablation system. This is similar to what 

was used in our instrumental configuration discussed below, except our MC-ICP-MS is a 

NEPTUNE, not a NEPTUNE Plus, and our HR-ICP-MS is an ELEMENT XR. In that 

study, the U-Pb data were obtained from individual laser pulses, at a depth of 60 nm each, 

which allowed for depth profiling of the zircon. They found that LASS U-Pb ages of 

various reference materials were accurate to within 0.3–2.5% relative uncertainty (2) 

when compared with accepted values for those materials, and Lu-Hf isotopic 

compositions were accurate to within 1 Hf unit relative to solution MC-ICP-MS analyses 

for the same reference materials. The authors then applied this method to discordant 

zircon grains from previous work in an attempt to resolve ages from previously 

unresolvable U-Pb data. 

Kylander-Clark et al. [2013] did LASS “petrochronology” on reference zircon 

and monazite samples using both an HR-ICP-MS and a MC-ICP-MS coupled to a 193 nm 

excimer laser with spot sizes of 10 μm for monazite and 20 or 30 μm for zircon. In their 

setup, U-Th-Pb isotopes were measured on the MC-ICP-MS (Nu Plasma HR) and 
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elemental abundances were measured on the HR-ICP-MS (Nu AttoM). They measured U-

Pb on the HR-ICP-MS and REE abundances on the MC-ICP-MS. Additionally, their laser 

was a 193 nm excimer laser and used spot sizes of 10μm for monazite and 20 or 30 μm 

for zircon. The LASS results for analyzed zircon reference materials (e.g., 91500, 

Plesovice) agreed with previously published values, except for Plesovice which was ~1% 

too old even within uncertainty, likely due to measured uncorrected Pb-U down-hole 

fractionation [Kylander-Clark et al., 2013]. Weighted average 
206

Pb/
238

U dates for 

monazite reference materials analyzed (e.g., 44609, Bananeira, FC1, Manangotry, 

Trebilcock, and 554) agreed within 1% of accepted high precision TIMS values, except 

for Manangotry.  

A LASS study using monazite was done by Liu et al., [2012], who measured both 

Sm-Nd and U-Th-Pb data (as well as trace element concentrations) in situ using a 

quadrupole ICP-MS and a MC-ICP-MS. Analyses were done on several monazite 

reference materials (some of which have been previously characterized for U-Th-Pb ages) 

in order to determine if any of them were sufficiently homogenous (in both U-Pb and Sm-

Nd) to be used as a monazite reference material for LASS studies. The robustness of the 

method was demonstrated by comparing LASS obtained values with previously accepted 

values (where available) or by doing additional ID-TIMS analyses for verification. To 

ensure the precision and accuracy of their MC-ICP-MS data, they also did a series of 

analyses on well characterized synthetic glasses; including JNdi-1 and a LREE-doped 

glass [Fisher et al., 2011], and showed that their Sm-Nd values obtained agreed well with 

the ID-TIMS accepted values for those glasses. They concluded that the LASS method 
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for monazite can provide reliable U-Th-Pb ages and Sm-Nd isotopic information, and 

suggested Manangoutry and Namaqualand as potential LASS monazite standards. 
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Chapter 2. Methods 

2.1 ICP-MS instrumentation 

The simultaneous analyses presented in this study were done at Memorial 

University of Newfoundland in the MicroAnalysis Facility of the Bruneau Centre for 

Research and Innovation. The method used a ThermoFinnigan NEPTUNE MC-ICP-MS 

and a ThermoFinnigan ELEMENT XR high-resolution magnetic sector inductively 

coupled plasma mass spectrometer (HR-ICP-MS). The cup configuration (Table 2-1) for 

the NEPTUNE was identical to that used by Fisher et al. [2011]. This cup configuration 

allowed the determination of not only Sm-Nd isotopes but also Ce, Eu, and Gd isotopes. 

The NEPTUNE was run in static mode with an integration time of 2 seconds for each 

cycle with 15 cycles for background, 35 cycles for analysis and 15 cycles for washout. 

For the ELEMENT XR, time resolved intensity data were acquired by peak-hopping 

mode in a combination of pulse-counting for masses 
204

Pb, 
206

Pb, 
207

Pb, 
238

U and analog 

modes for 
208

Pb, 
232

Th, all at one point measured per peak. Dwell time per mass was 

10ms except for 
206

Pb (20ms) and 
207

Pb (30ms). Operating parameters of the two ICP-MS 

instruments are reported in Table 2-2.  

 

2.2 Laser ablation instrumentation 

The samples in this study were ablated using a GeoLas 193 nm excimer laser. All 

unknowns and the U-Pb reference material were ablated with a laser spot size of 20 m, 

which allowed for a relatively high degree of spatial resolution but at the same time 

maintaining sufficient signal intensity for precise isotopic measurements, which are only 

slightly degraded in comparison to separate U-Pb or Sm-Nd analyses of the same 
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material. The LREE glass described by Fisher et al. [2011], which was used as a Sm-Nd 

reference material, required an 89 m spot due to lower concentrations of target elements 

present within the glass relative to natural monazite (e.g., wt. % Nd2O3 = 1.52 ±0.09 and 

wt. % Sm2O3 = 0.62±0.04). If possible, it is best to use the same spot size for both 

sample and standard; to eliminate any differences in possible laser induced fractionation 

of Sm-Nd during ablation; however this was not possible with the lower Sm and Nd 

concentrations of the LREE glass. As discussed by Fisher et al. [2011], Sm-Nd 

fractionation was very low (typically <1%), and thus the difference in laser-spot size 

between unknown and reference material does not introduce significant additional 

uncertainty. The laser operated  at a frequency of 4 Hz and an energy density of 4 J/cm
2 

(Table 2-3), compared to 10 Hz and an energy density of 3 J/cm
2 
used in the study of Liu 

et al. [2012]. The laser power also represents a reduction compared to the parameters 

used in Fisher et al. [2011] (6 Hz and 6 J/cm
2
) in an attempt to reduce the elemental 

fractionation of U and Pb and minimize the amount of sample consumed, while 

maintaining acceptable precision. An in-house built reduced-volume laser ablation cell 

(Fig. 2-1) was used to reduce bias that could be attributed to sampling position and to 

greatly reduce the “washout” times between analyses. All analyses consisted of 30 

seconds of background followed by 70 seconds of ablation. 

 

2.3 Laser Ablation Split-Stream analytical setup 

The LASS method developed for this study used the laser ablation system 

described above interfaced to both a HR-ICP-MS and a MC-ICP-MS (Fig. 2-2). U-Pb 
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isotopes were measured on the HR-ICP-MS (Element XR), whereas the Sm-Nd isotopes 

and Ce, Eu, and Gd relative elemental concentrations were measured on the MC-ICP-MS 

(NEPTUNE). The ablated material is transported from the laser cell and then split using 

an in-house built baffled glass Y-connector (Fig. 2-3) and simultaneously transported to 

both mass spectrometers via Tygon tubing with an inner diameter of 4 mm. Tube lengths 

used in this study were ~90cm from the laser cell to the Y-connector, ~80cm from the Y-

connector to the MC-ICP-MS and ~ 200cm from the Y-connector to the HR-ICP-MS. 

Various tube lengths were tested, and it was empirically determined that the length of the 

tubing used in this study, within reason, had little effect on signal intensity or quality of 

the data. The baffled Y-connector helps promote mixing of the aerosol particles after 

ablation and before the ablated material is introduced into each ICP-MS instrument. 

Helium was used as a carrier gas to transport the ablated material toward the ICP-

MS instruments. Nitrogen (N2) gas was added to the argon sample gas inlet tube on the 

MC-ICP-MS for increased sensitivity for the Sm-Nd isotopes of interest. One would 

expect a similar increase in sensitivity if N2 were added to the HR-ICPMS, however it has 

never been part of the lab practice at MUN and there was sufficient sensitivity without it 

adding the N2. The gas flow rates used in this study are presented in Table 2-2. 

 

2.4 Data-reduction methodology 

To facilitate the data-acquisition process of using two ICP-MS instruments 

simultaneously, the MC-ICP-MS was set up with long acquisition times (combining 

multiple analyses in one large file with acquisition times typically ~2 hours)  so that it 

would continuously acquire data whereas the user interacts predominately with the laser 
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ablation and HR-ICP-MS computer systems. All data for this study were reduced using 

Iolite v. 1.4, a non-commercial program designed specifically for processing mass 

spectrometer data and developed by the Melbourne Isotope Group at Melbourne 

University (www.iolite.org.au) [Paton et al., 2011], that runs in the IgorPro software 

package (www.wavemetrics.com). The U-Pb data used the Iolite data-reduction scheme 

“U_Pb_Geochronology2,” with a smoothed-cubic spline down-hole correction model, 

one of several U-Pb down-hole correction model options available within Iolite [Paton et 

al., 2010]. Other U-Pb down-hole correction models (e.g. linear, exponential) were also 

tested, however the smoothed-cubic spline best corrected the data.  

The Sm-Nd data were reduced using a custom data-reduction scheme written in 

Iolite (available upon request from D.J. Goudie [d.goudie@mun.ca] or C.M. Fisher 

[chris.fisher@wsu.edu]). Care was used when selecting which portion of the ablation 

signal to integrate, as the signal must be checked for any abnormal spikes at mass 204 

(i.e., common Pb) or other problems such as inclusions of other minerals. Contamination 

from common Pb typically happens when the ablation area overlaps a crack, inclusion, or 

incorporated in the mineral. While monazite commonly contains a small proportion of 

common Pb, no attempt was made to correct for common Pb. However, in the few cases 

where it was detected (based on elevated signal intensities at 204 amu), only the portion 

of the U-Pb signal with no contamination was selected. The complete Sm-Nd signal was 

still selected, as it is unaffected by this contamination. 

The data reduction involved the use of two different reference materials: one for 

calibrating the U-Pb data; and one for calibrating the 
147

Sm/
144

Nd and other REE inter-

elemental ratios. Trebilcock monazite (270 Ma) was used as the U-Pb calibration 

http://www.iolite.org.au/
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material, as well as to correct 
143

Nd/
144

Nd  as described in detail elsewhere [Tomascak et 

al., 1996; McFarlane and McCulloch, 2007; Fisher et al., 2011]. The 
147

Sm/
144

Nd 

calibration material was a synthetic LREE doped haploandesite glass [Fisher et al., 

2011]. 

The customized Sm-Nd data-reduction scheme follows the data-reduction scheme 

discussed in Fisher et al. [2011], with the following exceptions: 1) baselines were 

corrected by using the automatic cubic spline function available in Iolite and were 

selected between each analysis, with typical integration times ~30 seconds. Our approach 

of selecting baselines between each sample ensured thorough washout between samples 

and still allowed for robust background correction. However, given the extremely high 

Nd concentrations, background corrections proved to be negligible provided there was 

thorough (~30 seconds) sample washout (e.g., 
146

Nd signal/noise ratios are typically > 

1,000,000); 2) the inter-elemental ratios 
147

Sm/
144

Nd, Eu/Eu*, and Ce/Gd require 

calibration relative to an external standard (LREE Glass in this study), as described by 

Fisher et al. [2011]. In the original study, a standard-sample bracketing approach was 

employed using a linear fit between standards. A similar standard-sample bracketing 

approach was used here; however, the Iolite software offers numerous equations to define 

the behavior of standards including mean, linear, exponential, and various spline fits. In 

this study, an automatic spline was found to best define the drift of the standards and was 

therefore used to correct all of the data for this study; and 3) in the study of Fisher et al. 

[2011], the calculation of the Ce/Gd ratio was not discussed; however, the Ce/Gd ratio 

was calculated using the Ce and Gd abundance normalized voltages obtained from Iolite. 

This normalization procedure theoretically corrects for both instrumental drift and for 
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differential ablation yields of the individual elements using the LREE glass as the 

standard. The LREE glass has been characterized by solution ICP-MS for Ce (23,200 ± 

1160 ppm) and Gd (3470 ± 174 ppm) content, and therefore the Ce/Gd ratio is 6.69 ± 

0.70 [Fisher et al., 2011].  

In the present study, the isobaric interference of 
142

Nd on 
142

Ce was corrected 

using the measured 
146

Nd and a 
142

Nd/
146

Nd reference value of 1.5782, and the ßNd 

determined for each sample (Eqs. 1 and 2) where, total142(v) is the total volts measured 

on the MC-ICP-MS at mass 142, 
146

Nd(v)measured is the volts for 
146

Nd measured on the 

MC-ICP-MS for the sample,  
   

   

    
         

 is the natural ratio of 
142

Nd to 
146

Nd, and ßNd is 

the mass bias correction factor . 

   
                                             

                         (1) 

                    
   

 
                

   
   

    
       

   
    

    
                   (2) 

As discussed in McFarlane and McCulloch [2007] and Fisher et al. [2011], LA-

MC-ICP-MS Nd isotopic measurements typically yield lower 
143

Nd/
144

Nd than those 

reported by TIMS for the same materials by ~0.5 to ~1 εNd unit. To facilitate direct 

comparison of TIMS and LA-MC-ICP-MS data, a further normalization of 
143

Nd/
144

Nd 

data was done relative to the ID-TIMS value of Trebilcock monazite interspersed between 

unknowns. This correction factor varies based on the measured Trebilcock values for that 

day, but it was typically ~1.000055 (~0.55 εNd units). The mean 
143

Nd/
144

Nd for 

Trebilcock monazite for the GSC analyses was 0.512585 ± 0.000037 (2SD) (Fig. 2-4), 

and the mean 
147

Sm/
144

Nd was 0.2180 ± 0.0096 (2SD). These data can be seen in 



17 

 

appendix Table B-1. Concordia diagrams, weighted mean plots, and Sm-Nd isochrons 

presented in this study were produced using Isoplot v. 3.34 [Ludwig, 2003]. The initial 

143
Nd/

144
Nd is calculated for these samples using the measured 

143
Nd/

144
Nd, 

147
Sm/

144
Nd, 

and 
207

Pb/
206

Pb age (for each GSC sample), and using 6.54 *10-12/year as the 
147

Sm 

decay constant [Lugamir and Marti, 1978]. The Sm-Nd results for the GSC monazites are 

presented in Table 3-1. 

 

2.5 Verifying the 
144

Sm-
144

Nd correction 

Since
 144

Nd is the reference isotope for
143

Nd/
144

Nd and 
146

Nd/
144

Nd, as well as 

147
Sm/

144
Nd, it is very important that it is measured accurately. Due to potential for 

percent level of isobaric interference from 
144

Sm on the reference isotope 
144

Nd (e.g., 

~3% for a monazite with 
147

Sm/
144

Nd of 0.14), an interference correction must be made in 

order to ensure accurate results. The correction applied in this study is made based on 

Fisher et al. [2011] and Iizuka et al. [2011a]. The corrected 
144

Nd is determined by 

subtracting the calculated 
144

Sm from the total 144 a.m.u. signal (Eq. 3), where the 
144

Sm 

is calculated using the measured intensity of 
149

Sm and an assumed reference value for 

144
Sm/

149
Sm and simultaneously being corrected for mass bias (Eq. 4):  

   
                          

                                             (3) 

       
   

 
     

   
   

   
         

    

    
                           (4) 

Where 
    

    
 represents the ratio of the atomic masses 

149
Sm and 

144
Sm, and βSm 

is the mass bias factor, which is calculated using measured 
147

Sm/
149

Sm values as is 
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detailed by Fisher et al. [2011]. The reference value for 
144

Sm/
149

Sm used in this study, as 

in Fisher et al. [2011], is that of Isnard et al. [2005] and is 0.22332. 

In order to test the accuracy of this correction, analyses were done on synthetic 

REE +Y doped apatite (both "10x" apatite, which is synthetically grown apatite doped 

with ~10,000 ppm of individual REEs and Y, and "100x" apatite which is doped with ~10 

wt % of individual REEs and Y), and synthetic REE + Y-oxide crystals [Moore et al., 

2013], which have much higher Sm-Nd than monazite and other natural minerals suitable 

for in situ Sm-Nd isotopic analysis and thus have higher interference of 
144

Sm on 
144

Nd 

than is typically seen in natural minerals. TIMS Nd analyses were done on a 100x apatite 

sample and a REE+Y-oxide sample, giving 
143

Nd/
144

Nd compositions of 0.512456 ± 

0.000007 and 0.512460 ± 0.000006, respectively. TIMS Nd analyses were also done on 

the Nd oxide powder used to make these synthetic minerals, giving a 
143

Nd/
144

Nd 

composition of 0.512440 ± 0.000007.  The TIMS method for these analyses follows the 

methodology presented in Fisher et al., [2011]. Even with these unnaturally high Sm 

concentrations, the interference correction accurately corrected the isobaric interference 

of 
144

Sm on 
144

Nd (Fig. 2-5), although the LA-ICP-MS 
143

Nd/
144

Nd values are 

systematically lower than the ID-TIMS values, consistent with results from previous 

studies (e.g., Fisher et al., 2011). These synthetic apatite crystals are available from J.M. 

Hanchar [jhanchar@mun.ca; jmhanchar@gmail.com] upon request.  

 

2.6 Uncertainty propagation 

Given the relatively high parent-daughter ratio (i.e., Sm-Nd) of LREE-rich 

minerals like monazite, substantial correction for the in-growth of 
143

Nd is required for 
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more ancient material, and the magnitude of this correction increases with age and Sm-

Nd. As this correction can potentially be large, and subject to much larger uncertainty 

than the measured present day values, propagation of the uncertainty in a number of 

variables is necessary.  

 

2.6.1 
147

Sm/
144

Nd uncertainty propagation 

The internal uncertainties (2SE) for 
147

Sm/
144

Nd are generally considered to be 

underestimates of the uncertainty in the 
147

Sm/
144

Nd; therefore, for this study a method is 

described for propagating the 
147

Sm/
144

Nd uncertainty in the calibration material in that of 

the unknown to give a more reasonable uncertainty estimate (Eq. 5). This is required of 

most inter-element ratio determinations by LA-ICPMS, LA-MC-ICPMS and other 

methods, most notably U-Pb in zircon [Jackson et al., 2004]. This estimate (σp) includes 

the internal uncertainty (σ1) in 
147

Sm/
144

Nd of the individual spot analyses of the sample, 

as well as the 2SD (σ2) of the mean 
147

Sm/
144

Nd analysis of the standard, for the run in 

question.  

    
   

   

   
               

  

 
      

               

    
  

 
      

             

   
 

             (5) 

 For any run where the 2SD of the 
147

Sm/
144

Nd of the standard was <0.5%, an uncertainty 

of 0.5% was assigned. 

 

2.6.2 Initial 
143

Nd/
144

Nd uncertainty propagation 

A propagated uncertainty (σ) must also be determined for the initial 
143

Nd/
144

Nd, 

and includes uncertainty in the measured 
143

Nd/
144

Nd, 
147

Sm/
144

Nd, and age. The equation 
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for this uncertainty propagation is adopted from Iizuka et al. [2011a] (Eq. 6). 

     
    

       
   

   

   
      (     )           

   
   

   
                   (6) 

In this equation σa represents the internal uncertainty (2SE) of the 
143

Nd/
144

Nd value for 

each spot analysis, whereas σb represents the mean standard uncertainty (2SE) of the 

reference material (Trebilcock in this case) used to normalize the Nd isotopic data for 

each run. Also, σf  represents the uncertainty in the fractionation factor (fm) for 

147
Sm/

144
Nd estimated as the 2SD (from Iolite) of the mean correction factor from the 

standard (LREE glass) for each particular run, where fm is the fractionation correction 

factor for each spot analysis. Additionally,  
   

   

   
     represents the mean 

147
Sm/

144
Nd for 

each spot analysis. The uncertainty in the age is given as    and is in Ma, as is t whereas 

λ is in Ma
-1

. 

 

2.7 ID-TIMS Method – Boise State University  

Four to seven monazite grains from three samples from the Birch Creek Pluton 

were dated by the ID-TIMS at Boise State University. These analyses were performed on 

an Isotopx Isoprobe-T multicollector thermal ionization mass spectrometer equipped with 

an ion-counting Daly detector. Detailed ID-TIMS methodology is presented as Appendix 

A. 
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Figure 2-1: Custom laser ablation cell used in this study. Paper clip for scale. 
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Figure 2-2: LASS analytical setup. MFC= Mass flow controller. 
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Figure 2-3: Glass Y-connecter for splitting aerosol. Paper clip for scale, OD = outer diameter, ID = inner 

diameter.  
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Figure 2-4: LASS Trebilcock monazite 
143

Nd/
144

Nd results. 
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Figure 2-5: Sm-Nd in synthetic apatites and REE+Y oxide. Green line represents ID-TIMS Nd value for 

the REE+Y oxide, blue line represents ID-TIMS Nd value for 100x apatite. 
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Table 2-1: MC-ICP-MS cup configuration and interferences. 

Cup configuration and interferences

L4 L3 L2 L1 Axial H1 H2 H3 H4

Analyte
142

Nd
143

Nd
144

Nd
145

Nd
146

Nd
147

Sm
149

Sm
153

Eu
157

Gd

Interferences
142

Ce
144

Sm
141

Pr
16

O  

Table 2-2: Operating parameters for the two mass spectrometers. 

Operating Parameters HR-ICP-MS MC-ICP-MS

Model Element XR Neptune

Forward Power 1150-1200W 1200W

Mass Resolution Low Low

Gas Flows:

    Cool/Plasma (Ar) 16 L/min 16 L/min

    Auxiliary (Ar) 1.00 L/min 0.80 L/min

    Sample Makeup (Ar) 1.20 L/min 0.980 L/min

    Carrier Gas (He) 1.00 L/min N/A*

    Nitrogen (N2) N/A 6 mL/min

Sampler Cone Nickel Nickel

Skimmer Cone Nickel "H" Nickel "H"
*carrier gas was controlled from the HR-ICP-MS

 

Table 2-3: Laser ablation operating parameters. 

Laser Ablation

  Type 193 nm Ar-F excimer laser

  Model Geolas Pro

  Repetition Rate 4 Hz

  Energy Density 4 J/cm^2

  Spot Size 20-89 microns  
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Chapter 3. Results 

We selected eight monazite samples that are well characterized and have been 

previously used as primary or secondary U-Pb standards. We used the LASS method 

described in Chapter 2 to measure both U-Pb ages and Sm-Nd isotopic data and compare 

our results with previously published high precision ID-TIMS where available. 

 

3.1 KMO3-72  

The KMO3-72 monazite grains are from a high-grade gneiss terrane in the Trans-

Hudson Orogen [MacLachlan et al., 2004]. This sample is used as an in-house quality 

control reference material and was provided by Dr. G. Dunning of Memorial University. 

Previous ID-TIMS work on this sample by MacLachlan et al., [2004] gives a 
207

Pb/
206

Pb 

weighted average age of 1822 ± 1.5 Ma (MSWD=0.63) (Fig. 3-1A), which is in 

agreement with the LASS 
207

Pb/
206

Pb weighted average age of 1828.5 ± 9.9 (2σ, 

MSWD=3.0) (Fig. 3-1B). A high MSWD suggest that the sample is complex geologically 

or that uncertainties have been underestimated. A backscattered electron(BSE) image of a 

representative KMO3-72 grain can be seen as Figure 3-10B showing that the sample is 

not overly complex, suggesting that this high MSWD is due to an underestimation of the 

uncertainties.   

ID-TIMS analyses were done on 5 individual grains of KMO3-72 monazite to 

determine their Sm-Nd isotopic compositions, following the ID-TIMS methodology 

reported by Fisher et al., [2011]. The results of both LASS and ID-TIMS can be seen in 

Figure 3-1C, along with an 1822 Ma reference isochron. Data points from both the LASS 

and ID-TIMS results follow the trend of the reference isochron and are therefore in 
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agreement with each other, demonstrating the accuracy of LASS Sm-Nd isotopic 

measurements. The inset on Figure 2C shows a weighted mean initial 
143

Nd/
144

Nd plot for 

this sample with both the LASS and ID-TIMS data giving a mean of 0.510119 ± 

0.000004. The LASS data have the larger error bars, while the ID-TIMS data have the 

smaller error bars. The LASS method also provided REE data for KMO3-72, giving a 

range of Eu
*
 values, 0.031-0.042, and a range in Ce/Gd of 12.98-14.85. Detailed results 

for KMO3-72 can be seen in Table B-2 in Appendix. 

 

3.2 Sample 93-GD-12 

The monazite grains for this sample (93-GD-12) originated in a garnet-staurolite-

kyanite migmatite within the Port-aux-Basques Gneiss Complex, southwestern 

Newfoundland. This sample was chosen to test the accuracy and precision of the LASS 

method when analyzing young samples. Previous work on this sample gives an ID-TIMS 

206
Pb/

238
U date of 416 ± 1.2 Ma [G. Dunning, pers. comm. 2012]. A BSE image of a 93-

GD-12 grain is displayed as Figure 3-10A. The LASS results for this sample are 

presented in Figure 3-2 as a U-Pb Tera-Wasserburg (TW) concordia (Fig. 3-2A) with a 

weighted mean 
206

Pb/
238

U age of 407.4 ± 6.5 Ma (2σ, MSWD = 3.9) and a Sm-Nd 

isochron (Fig. 3-2B) with an age of 348 ± 700 Ma (2σ, MSWD = 2.7). The high MSWD 

value for the 
206

Pb/
238

U age this sample represents an underestimation of the internal 

uncertainties. This isochron age has a very large uncertainty because of the small spread 

in the Sm-Nd ratio in this sample. 93-GD-12 showed a range of 
147

Sm/
144

Nd values of 

0.1130-0.1285, and has a mean present day 
143

Nd/
144

Nd value of 0.511990 ± 0.000052 
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(2SD) and a mean 
145

Nd/
144

Nd value of 0.348425 ± 0.000035 (2SD). Detailed results for 

sample 93-GD-12 are presented in appendix Table B-2. 

 

3.3 GSC monazite samples 

A number of the monazite samples used in this study were supplied by the 

Geologic Survey of Canada, some of which are used as in-house SHRIMP II standards 

[Stern and Sanborn, 1998; Davis et al., 1998; Stern and Berman, 2001]. These samples 

have been previously dated by ID-TIMS (both 
207

Pb/
206

Pb
 
and 

208
Pb/

232
Th ages) and are 

used in assessing the accuracy of the U-Pb age results obtained by the LASS method in 

this study. The 
207

Pb/
206

Pb
 
ID-TIMS ages presented by Stern and Berman [2001] are more 

precise (i.e., lower analytical uncertainty) than the 
208

Pb/
232

Th ID-TIMS ages and thus are 

used as the ages to compare with our LASS results. The LASS Sm-Nd results for the six 

GSC samples are reported in Table 3-1 and the LASS U-Pb results for the GSC samples 

are reported in Table 3-2. BSE images of representative grains from each GSC sample are 

seen in Figure 3-11. These samples have not been previously characterized for Sm-Nd 

isotopic composition.  A compilation of our LASS results for the six GSC samples are 

reported in Tables 3-1 and 3-2. These samples have not been previously characterized for 

Sm-Nd isotopic composition.  

Additionally, a compilation of 
145

Nd/
144

Nd results for the GSC monazites, KMO3-

72, 93-GD-12, Trebilcock monazites, and LREE Glass are shown in Figure 3-9A. Sm-Nd 

data for the reference materials, Trebilcock monazite and LREE Glass, are presented as 

appendix Tables B-1 and B-3 respectively.  
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3.3.1 GSC-1859 

Sample GSC-1859 is a diatexite from the Asuanipi Complex of  the Superior 

Province [Stern and Sanborn, 1998] and has ID-TIMS ages of 2662 ± 1 Ma for 

207
Pb/

206
Pb

 
and 2676 ± 13 Ma for 

208
Pb/

232
Th [Stern and Berman, 2001]. The LASS U-Pb 

analyses for this sample are shown in Figure 3-3A and 3-3B, and yield a weighted mean 

207
Pb/

206
Pb

 
 age 2669 ± 11 Ma (2σ, MSWD = 0.23), which agrees within uncertainty with 

the reported ID-TIMS ages. 

In addition to the U-Pb data mentioned above, the LASS method allowed for the 

simultaneous acquisition of Sm-Nd isotope data. The mean measured (present day) 

143
Nd/

144
Nd obtained from this sample was 0.510302 ± 0.000043 (2SD), with a mean 

145
Nd/

144
Nd ratio of 0.348431 ± 0.000029 (2SD). Sample GSC-1859 showed a very 

narrow range of 
147

Sm/
144

Nd from 0.0594 to 0.0619, causing very large uncertainties on 

the Sm-Nd isochron (Fig. 3-3C). A weighted mean initial 
143

Nd/
144

Nd of 0.509227 ± 

0.000045 (2SD) was obtained (Fig. 3-3D). Eu* values for this sample ranged from 0.217 

to 0.234, and Ce/Gd ranged from 55.27 to 62.49. An example of a monazite grain from 

this sample is shown in the BSE images in Figure 3-11A. 

 

3.3.2 GSC-1861 

Sample GSC-1861 is a leucosome in a paragneiss, also from the Ashuanipi 

Complex, Superior Province [Stern and Sanborn, 1998] and has ID-TIMS ages of 2666 ± 

1.0 Ma for 
207

Pb/
206

Pb
 
and 2667 ± 13 Ma for 

208
Pb/

232
Th [Stern and Berman, 2001]. The 

LASS U-Pb analyses for this sample are presented in Figure 3-4A and 3-4B, and give a 

207
Pb/

206
Pb

 
weighted average age of 2676.2 ± 9.8 Ma (2σ, MSWD = 0.33), which is in 
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agreement, within uncertainty, with the reported ID-TIMS ages. 

The mean measured (present day) 
143

Nd/
144

Nd was 0.510558 ± 0.000306 (2SD). 

The standard deviation is relatively high due to the large range in Sm and Nd seen in this 

sample. The mean 
145

Nd/
144

Nd for this sample was 0.348426 ± 0.000022 (2SD). The 

measured 
147

Sm/
144

Nd for this sample ranged from 0.0619 to 0.0874 based on 14 

analyses. A Sm-Nd isochron for sample 1861 (Fig. 3-4C) gives an isochron age of 2547 ± 

150 Ma (2σ, MSWD = 0.96), which overlaps both the LASS 
207

Pb/
206

Pb
 
age and the ID-

TIMS ages for this sample. A weighted mean initial 
143

Nd/
144

Nd of 0.509215 ± 0.000031 

(2SD) was obtained (Fig. 3-4D). This sample showed a large range in Ce/Gd values, 

23.71 to 52.70, and displayed a Eu* range from 0.074 to 0.256. An example of a monazite 

grain from this sample is shown in the BSE images in Figure 3-11B. 

 

3.3.3 GSC-2775 

Sample GSC-2775 is a granulite facies orthogneiss from the Grenville Province in 

Quebec [Stern and Sanborn, 1998] and has monazite ID-TIMS ages of 1166 ± 3 Ma for 

207
Pb/

206
Pb

 
and 1169 ± 6 Ma for 

208
Pb/

232
Th [Stern and Berman, 2001]. The LASS U-Pb 

results for this sample (Figs. 3-5A and 3-5B), give a weighted average 
207

Pb/
206

Pb
 
age of 

1190 ± 21 Ma (2σ, MSWD = 0.98), which agrees within uncertainty with the reported ID-

TIMS ages. However, the relative uncertainty is high (~2%) and the mean age is ~2% 

higher than the ID-TIMS value. 

The mean measured (present day) 
143

Nd/
144

Nd was 0.511852 ± 0.000047 (2SD) 

and the mean 
145

Nd/
144

Nd was 0.348426 ± 0.000017 (2SD). The measured 
147

Sm/
144

Nd 

ranged from 0.083885 to 0.091241 based on 11 analyses. A Sm-Nd isochron (Fig. 3-5C) 
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for this sample gives a highly inaccurate isochron age of 1530 ± 530 Ma (2σ, MSWD = 

0.58), owing to the small spread in Sm-Nd and relatively young age. A weighted mean 

initial 
143

Nd/
144

Nd of 0.511180 ± 0.000039 (2SD) was obtained (Fig. 3-5D). The MC-

ICP-MS also provided Eu* and Ce/Gd values, which ranged from 0.019-0.049 and 16.82-

25.49, respectively. An example of a monazite grain from this sample is shown in the 

BSE images in Figure 3-11C. 

 

3.3.4 GSC-2908 

Sample GSC-2908 is a deformed muscovite granite within the East Athabasca 

Mylonite Zone [Stern and Sanborn, 1998] and is used as the low-Th standard for the GSC 

SHRIMP II lab. It has ID-TIMS ages of 1795.2 ± 0.7 Ma for 
207

Pb/
208

Pb
 
and 1787 ± 9 Ma 

for 
208

Pb/
232

Th [Stern and Berman, 2001]. The LASS U-Pb results for this sample (Figs. 

3-6A and 3-6B) provides a 
207

Pb/
206

Pb
 
weighted average age of 1794 ± 11 Ma (2σ, 

MSWD = 0.32), which agrees within uncertainty with the reported ID-TIMS ages. 

The mean measured (present day) 
143

Nd/
144

Nd was 0.512023 ± 0.000489 (2SD), 

with this large SD being caused by the large variation seen in Sm and Nd for this sample. 

The mean measured 
145

Nd/
144

Nd for this sample was 0.348431 ± 0.000023 (2SD). The 

range of values for 
147

Sm/
144

Nd was 0.1658-0.2628 based on 19 analyses. A Sm-Nd 

isochron (Fig. 3-6C) yields an age of 1773 ± 110 Ma (2σ, MSWD = 2.0), which is 

consistent with LASS 
207

Pb/
206

Pb
 
age and previous ID-TIMS ages. A weighted mean 

initial 
143

Nd/
144

Nd of 0.509803 ± 0.000060 (2SD) (Fig. 3-6D) was also determined using 

the parameters outlined in section 3.3. This sample shows very small Eu* values, ranging 

from 0.0001 to 0.003, and also showed relatively low Ce/Gd values, ranging from 5.04 to 
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9.89. An example of a monazite grain from this sample is shown in the BSE images in 

Figure 3-11D. 

 

3.3.5 GSC-3345 

Sample GSC-3345 is a migmatite paragneiss from Baffin Island [Stern and 

Sanborn, 1998], and has ID-TIMS ages of 1821.0 ± 0.6 Ma for 
207

Pb/
206

Pb
 
and 1822 ± 9 

Ma for 
208

Pb/
232

Th [Stern and Berman, 2001]. This particular sample is currently used as 

the ‘medium-Th’ standard for the GSC SHRIMP II lab. The LASS U-Pb results for this 

sample (Figs. 3-7A and 3-7B) gives a 
207

Pb/
206

Pb
 
weighted average age of 1831 ± 10 Ma 

(2σ, MSWD = 0.35) which agrees within 2 uncertainty with the ID-TIMS ages from 

previous work. 

The mean measured (present day) 
143

Nd/
144

Nd obtained through LASS for sample 

GSC-3345 is 0.510759 ± 0.000178 (2SD), which is an inflated external reproducibility 

due to the variation in Sm and Nd measured in this sample. The mean 
145

Nd/
144

Nd was 

0.348429 ± 0.000021 (2SD). The range of 
147

Sm/
144

Nd in this sample is from 0.0683 to 

0.1053, consisting of 21 analyses which yielded a Sm-Nd isochron with an age of 1592 ± 

190 Ma (2σ, MSWD=1.9) (Fig. 3-7C). A weighted mean initial 
143

Nd/
144

Nd 0.509684 ± 

0.000054 (2SD) (Fig. 3-7D) was determined using the measured 
143

Nd/
144

Nd, 

147
Sm/

144
Nd, and 

207
Pb/

206
Pb age. Eu* values for this sample ranged from 0.046 to 0.070, 

whereas Ce/Gd values showed a large range, from 16.98 to 83.81. An example of a 

monazite grain from this sample is shown in the BSE images in Figure 3-11E. 
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3.3.6 GSC-4170 

Sample GSC-4170 is a monzogranite from South Baffin Island [Stern and 

Sanborn, 1998] and has previously determined monazite ID-TIMS ages of 1836.0 ± 0.5 

Ma for 
207

Pb/
206

Pb
 
and 1832 ± 11 Ma for 

208
Pb/

232
Th [Stern and Berman, 2001]. Sample 

4170 is currently used as the ‘high-Th’ standard for the GSC SHRIMP II lab. The LASS 

U-Pb results for this sample (Figs. 3-8A and 3-8B) give a weighted average 
207

Pb/
206

Pb
 

age of 1857 ± 13 Ma (2σ, MSWD=0.36). The LASS 
207

Pb/
206

Pb age is ~1.2% larger than 

the ID-TIMS age, and falls just outside of the analytical uncertainty. 

The mean measured (present day) 
143

Nd/
144

Nd was 0.510796 ± 0.000143 (2SD), 

with a mean 
145

Nd/
144

Nd of 0.348431 ± 0.000028 (2SD). The range for 
147

Sm/
144

Nd in 

this sample was 0.0854–0.1191, based on 17 analyses. A weighted mean initial 

143
Nd/

144
Nd of 0.509610 ± 0.000195 (2SD) (Fig. 3-8D) was also calculated based on the 

parameters outlined in Chapter 2.6. Additional REE data was also provided by the LASS 

method, giving Eu* values ranging between 0.006 and 0.022, and Ce/Gd values ranging 

from 14.40 to 30.35. An example of a monazite grain from this sample is shown in the 

BSE images in Figure 3-11F. 
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Figure 3-1: A) ID-TIMS U-Pb TW concordia for KMO3-72 with displayed 
207

Pb/
206

Pb weighted mean age 

(G. Dunning, pers. comm.). B) LASS U-Pb TW concordia for KMO3-72 with 
207

Pb/
206

Pb weighted mean 

age. C) Sm-Nd results for KMO3-72, with an 1822 Ma reference isochron. The inset on this figure shows a 

weighted average initial 
143

Nd/
144

Nd for this sample. 
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Figure 3-2: LASS results for 93-GD-12: A) U-Pb TW concordia for 93-GD-12 with displayed 
206

Pb/
238

U 

weighted mean age. B) Sm-Nd isochron for 93-GD-12. 
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Figure 3-3: LASS results for sample GSC 1859. A) U-Pb TW concordia with displayed 
207

Pb/
206

Pb 

weighted mean age. B) Weighted mean 
207

Pb/
206

Pb age (Ma) diagram. C) Sm-Nd isochron. D) Weighted 

mean initial 
143

Nd/
144

Nd isotopic composition. Blue lines represent measured 2 S.E., whereas red lines 

represent propagated uncertainty. 
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Figure 3-4: LASS results for sample GSC 1861. A) U-Pb TW concordia with displayed 
207

Pb/
206

Pb 

weighted mean age. B) Weighted mean 
207

Pb/
206

Pb age (Ma) diagram. C) Sm-Nd isochron. D) Weighted 

mean initial 
143

Nd/
144

Nd isotopic composition. Blue lines represent measured 2 S.E., whereas red lines 

represent propagated uncertainty. 
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Figure 3-5: LASS results for sample GSC 2775. A) U-Pb TW concordia with displayed 
207

Pb/
206

Pb 

weighted mean age. B) Weighted mean 
207

Pb/
206

Pb age (Ma) diagram. C) Sm-Nd isochron. D) Weighted 

mean initial 
143

Nd/
144

Nd isotopic composition. Blue lines represent measured 2 S.E., whereas red lines 

represent propagated uncertainty. 
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Figure 3-6: LASS results for sample GSC 2908. A) U-Pb TW concordia with displayed 
207

Pb/
206

Pb 

weighted mean age. B) Weighted mean 
207

Pb/
206

Pb age (Ma) diagram. C) Sm-Nd isochron. D) Weighted 

mean initial 
143

Nd/
144

Nd isotopic composition. Blue lines represent measured 2 S.E., whereas red lines 

represent propagated uncertainty. 
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Figure 3-7: LASS results for sample GSC 3345. A) U-Pb TW concordia with displayed 
207

Pb/
206

Pb 

weighted mean age. B) Weighted mean 
207

Pb/
206

Pb age (Ma) diagram. C) Sm-Nd isochron. D) Weighted 

mean initial 
143

Nd/
144

Nd isotopic composition. Blue lines represent measured 2 S.E., whereas red lines 

represent propagated uncertainty. 
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Figure 3-8: LASS results for sample GSC 4170. A) U-Pb TW concordia with displayed 
207

Pb/
206

Pb 

weighted mean age. B) Weighted mean 
207

Pb/
206

Pb age (Ma) diagram. C) Sm-Nd isochron. D) Weighted 

mean initial 
143

Nd/
144

Nd isotopic composition. Blue lines represent measured 2 S.E., whereas red lines 

represent propagated uncertainty. 
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Figure 3-9: A) 
145

Nd/
144

Nd LASS results for various samples and reference materials. B) Rare Earth 

Element pattern for GSC samples and Trebilcock monazite 
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Figure 3-10: BSE images of A) 93-GD-12 B) KM03-72 and C) Trebilcock. 
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Figure 3-11: BSE images of A) GSC-1859 B) GSC-1861 C) GSC-2775 D) GSC-2908 E) GSC-3345 and 

F) GSC-4170
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Table 3-1: LASS Sm-Nd and REE results for GSC Samples 

  
143

Nd/   
147

Sm/   
145

Nd/   
143

Nd/
144

Nd             

Grain 
144

Nd 2SE 
144

Nd Prop 

Uncertainty
1
 

144
Nd 2SE Initial Prop 

Uncertainty 

εNd(i) Eu* 2SE Ce/Gd 2SE 

GSC 

1859 
                          

2 0.510294 0.000032 0.0611 0.0003 0.348422 0.000028 0.509220 0.000045 0.9 0.225 0.0004 58.79 0.20 

3 0.510330 0.000030 0.0603 0.0001 0.348433 0.000028 0.509276 0.000045 1.7 0.217 0.0003 61.48 0.24 

3 0.510306 0.000029 0.0621 0.0003 0.348424 0.000025 0.509213 0.000042 0.9 0.217 0.0003 56.71 0.21 

4 0.510332 0.000028 0.0610 0.0001 0.348440 0.000021 0.509259 0.000044 1.7 0.228 0.0003 58.72 0.07 

4 0.510264 0.000028 0.0599 0.0003 0.348461 0.000024 0.509203 0.000041 1.1 0.228 0.0004 62.49 0.28 

5 0.510295 0.000030 0.0608 0.0001 0.348405 0.000027 0.509221 0.000045 1.3 0.233 0.0002 59.30 0.10 

5 0.510292 0.000039 0.0612 0.0002 0.348442 0.000018 0.509214 0.000051 1.0 0.234 0.0003 58.96 0.08 

5 0.510275 0.000036 0.0594 0.0002 0.348421 0.000028 0.509224 0.000048 1.4 0.232 0.0004 62.36 0.19 

6 0.510332 0.000034 0.0614 0.0001 0.348424 0.000021 0.509257 0.000048 1.5 0.227 0.0002 57.97 0.23 

6 0.510311 0.000039 0.0610 0.0002 0.348438 0.000025 0.509239 0.000051 1.3 0.231 0.0004 60.22 0.27 

6 0.510312 0.000036 0.0619 0.0002 0.348415 0.000023 0.509224 0.000049 1.0 0.221 0.0002 55.27 0.12 

7 0.510300 0.000031 0.0612 0.0002 0.348439 0.000022 0.509218 0.000045 1.3 0.228 0.0003 59.36 0.16 

7 0.510285 0.000024 0.0616 0.0002 0.348442 0.000027 0.509202 0.000041 0.6 0.225 0.0002 56.46 0.13 

                            

 

GSC 

1861 

                          

1 0.510321 0.000039 0.0631 0.0007 0.348422 0.000038 0.509216 0.000052 0.6 0.256 0.003 52.70 1.20 

2 0.510725 0.000036 0.0839 0.0010 0.348407 0.000024 0.509238 0.000051 1.9 0.074 0.009 26.53 0.77 

3 0.510750 0.000039 0.0862 0.0006 0.348419 0.000019 0.509224 0.000054 1.5 0.080 0.014 25.20 0.36 

4 0.510649 0.000037 0.0817 0.0002 0.348427 0.000025 0.509204 0.000052 1.1 0.146 0.0003 28.09 0.05 

4 0.510636 0.000019 0.0818 0.0002 0.348423 0.000021 0.509194 0.000040 0.6 0.147 0.0002 28.50 0.05 
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  143
Nd/   

147
Sm/   

145
Nd/   

143
Nd/

144
Nd             

Grain 
144

Nd 2SE 
144

Nd Prop 

Uncertainty
1
 

144
Nd 2SE Initial Prop 

Uncertainty 

εNd(i) Eu* 2SE Ce/Gd 2SE 

GSC-

1861 

(cont.) 

             

5 0.510525 0.000054 0.0745 0.0030 0.348446 0.000021 0.509215 0.000064 0.9 0.168 0.011 35.80 3.50 

 

5 0.510365 0.000023 0.0635 0.0004 0.348433 0.000022 0.509245 0.000040 1.7 0.197 0.001 50.97 0.69 

6 0.510505 0.000045 0.0723 0.0021 0.348442 0.000024 0.509229 0.000056 1.4 0.147 0.003 38.60 2.50 

7 0.510535 0.000034 0.0753 0.0009 0.348440 0.000029 0.509215 0.000048 0.7 0.183 0.006 35.14 0.95 

8 0.510690 0.000035 0.0844 0.0010 0.348433 0.000026 0.509191 0.000050 1.0 0.144 0.006 26.74 0.64 

9 0.510457 0.000074 0.0703 0.0042 0.348437 0.000029 0.509214 0.000082 1.2 0.195 0.015 44.90 5.90 

9 0.510751 0.000033 0.0874 0.0003 0.348424 0.000020 0.509208 0.000049 1.0 0.148 0.0005 23.71 0.15 

10 0.510311 0.000028 0.0619 0.0005 0.348420 0.000013 0.509213 0.000044 1.5 0.159 0.012 51.25 0.83 

12 0.510588 0.000033 0.0785 0.0004 0.348436 0.000023 0.509201 0.000046 0.9 0.151 0.004 30.70 1.20 

                            

GSC 

2775 

                          

1 0.511854 0.000030 0.0839 0.0002 0.348422 0.000017 0.511203 0.000056 2.0 0.022 0.0001 21.51 0.04 

4 0.511843 0.000021 0.0849 0.0002 0.348431 0.000018 0.511160 0.000051 2.2 0.022 0.0001 21.04 0.08 

5 0.511839 0.000026 0.0841 0.0002 0.348424 0.000025 0.511176 0.000052 1.9 0.049 0.0001 25.49 0.02 

5 0.511845 0.000027 0.0852 0.0003 0.348433 0.000022 0.511194 0.000055 1.3 0.023 0.0002 20.55 0.17 

6 0.511846 0.000032 0.0854 0.0003 0.348409 0.000026 0.511187 0.000056 1.5 0.021 0.0001 19.27 0.15 

7 0.511829 0.000027 0.0840 0.0003 0.348433 0.000028 0.511202 0.000055 0.8 0.022 0.0001 20.74 0.05 

8 0.511820 0.000026 0.0842 0.0007 0.348414 0.000028 0.511152 0.000059 1.6 0.022 0.0002 20.33 0.37 

9 0.511848 0.000025 0.0868 0.0003 0.348428 0.000021 0.511195 0.000048 0.9 0.044 0.0009 23.33 0.12 

10 0.511882 0.000021 0.0879 0.0004 0.348433 0.000020 0.511178 0.000051 2.4 0.020 0.0001 17.83 0.15 

11 0.511857 0.000028 0.0865 0.0004 0.348433 0.000023 0.511148 0.000055 2.5 0.022 0.0001 19.52 0.05 
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  143
Nd/   

147
Sm/   

145
Nd/   

143
Nd/

144
Nd             

Grain 
144

Nd 2SE 
144

Nd Prop 

Uncertainty
1
 

144
Nd 2SE Initial Prop 

Uncertainty 

εNd(i) Eu* 2SE Ce/Gd 2SE 

GSC 

2908 

                          

12 0.511905 0.000022 0.0912 0.0005 0.348430 0.000015 0.511183 0.000053 2.1 0.019 0.00004 16.82 0.03 

28 0.512010 0.000031 0.1845 0.0009 0.348438 0.000014 0.509822 0.000062 -9.3 0.0001 0.00003 8.17 0.26 

29 0.511857 0.000031 0.1720 0.0009 0.348418 0.000019 0.509851 0.000062 -9.5 0.0002 0.00003 8.88 0.11 

30 0.512124 0.000059 0.1970 0.0010 0.348444 0.000035 0.509783 0.000083 -10.0 0.0001 0.00003 6.67 0.07 

34 0.512896 0.000045 0.2628 0.0013 0.348425 0.000016 0.509817 0.000086 -10.0 0.0003 0.00001 5.04 0.15 

37 0.511999 0.000032 0.1838 0.0018 0.348427 0.000025 0.509838 0.000065 -9.4 0.0012 0.0002 8.83 0.21 

38 0.511978 0.000033 0.1818 0.0016 0.348423 0.000018 0.509838 0.000065 -9.3 0.0007 0.0001 8.23 0.16 

39 0.511821 0.000087 0.1666 0.0007 0.348452 0.000098 0.509841 0.000103 -8.8 0.0001 0.00004 9.89 0.07 

1b 0.512008 0.000028 0.1912 0.0005 0.348442 0.000019 0.509779 0.000080 -10.9 0.0004 0.00005 6.36 0.03 

1b 0.512059 0.000042 0.1935 0.0006 0.348443 0.000020 0.509787 0.000086 -10.5 0.0003 0.00003 6.16 0.01 

2b 0.511989 0.000026 0.1846 0.0003 0.348440 0.000015 0.509812 0.000078 -9.8 0.0031 0.0002 7.24 0.02 

2b 0.511992 0.000033 0.1873 0.0003 0.348422 0.000015 0.509787 0.000082 -10.3 0.0013 0.0002 7.02 0.01 

3b 0.511891 0.000029 0.1764 0.0009 0.348430 0.000034 0.509787 0.000081 -9.7 0.0029 0.0002 8.09 0.10 

3b 0.511778 0.000022 0.1697 0.0007 0.348426 0.000024 0.509749 0.000073 -10.4 0.0028 0.0001 8.74 0.02 

4b 0.512141 0.000029 0.2005 0.0011 0.348407 0.000040 0.509808 0.000085 -10.4 0.0004 0.00005 6.35 0.10 

4b 0.512054 0.000032 0.1933 0.0028 0.348421 0.000018 0.509766 0.000086 -10.5 0.0007 0.0001 6.98 0.28 

5b 0.511718 0.000035 0.1658 0.0015 0.348421 0.000017 0.509750 0.000075 -10.7 0.0004 0.00004 7.63 0.16 

5b 0.511924 0.000040 0.1820 0.0002 0.348433 0.000018 0.509774 0.000083 -10.4 0.0005 0.00004 7.73 0.01 

6b 0.512206 0.000038 0.2037 0.0008 0.348434 0.000017 0.509811 0.000087 -9.9 0.0004 0.0001 5.85 0.07 

6b 0.511994 0.000025 0.1886 0.0002 0.348447 0.000023 0.509793 0.000080 -10.6 0.0004 0.0001 7.40 0.02 
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  143
Nd/   

147
Sm/   

145
Nd/   

143
Nd/

144
Nd             

Grain 
144

Nd 2SE 
144

Nd Prop 

Uncertainty
1
 

144
Nd 2SE Initial Prop 

Uncertainty 

εNd(i) Eu* 2SE Ce/Gd 2SE 

GSC 

3345 

 
 

 
 

 
        

1 0.510847 0.000029 0.0933 0.0004 0.348441 0.000016 0.509737 0.000048 -10.8 0.0575 0.0005 31.77 0.28 

2 0.510511 0.000026 0.0683 0.0002 0.348435 0.000014 0.509679 0.000042 -10.9 0.0500 0.0002 83.81 0.11 

3 0.510804 0.000037 0.0932 0.0009 0.348440 0.000025 0.509676 0.000055 -11.2 0.0572 0.0004 28.20 1.20 

3 0.510691 0.000032 0.0832 0.0005 0.348429 0.000019 0.509693 0.000047 -11.3 0.0586 0.0003 43.58 0.85 

4 0.510715 0.000027 0.0829 0.0002 0.348415 0.000020 0.509725 0.000047 -10.9 0.0588 0.0001 45.75 0.14 

4 0.510669 0.000027 0.0795 0.0004 0.348436 0.000015 0.509712 0.000043 -10.8 0.0596 0.0002 51.22 0.35 

5 0.510671 0.000040 0.0805 0.0004 0.348431 0.000021 0.509692 0.000052 -10.7 0.0611 0.0027 46.55 0.68 

6 0.510706 0.000043 0.0824 0.0004 0.348415 0.000039 0.509706 0.000055 -10.6 0.0586 0.0005 46.00 1.50 

7 0.510871 0.000035 0.1009 0.0002 0.348427 0.000022 0.509665 0.000060 -12.0 0.0638 0.0003 29.97 0.68 

7 0.510929 0.000028 0.1053 0.0001 0.348429 0.000023 0.509670 0.000057 -11.9 0.0696 0.0002 21.97 0.15 

7 0.510796 0.000034 0.0906 0.0005 0.348421 0.000026 0.509694 0.000049 -10.7 0.0511 0.0003 16.98 0.04 

1b 0.510788 0.000030 0.0947 0.0002 0.348441 0.000023 0.509653 0.000056 -12.2 0.0557 0.0001 36.69 0.10 

1b 0.510757 0.000035 0.0946 0.0001 0.348411 0.000029 0.509622 0.000059 -12.7 0.0558 0.0002 37.07 0.19 

2b 0.510779 0.000037 0.0920 0.0001 0.348435 0.000026 0.509657 0.000060 -11.3 0.0456 0.0002 35.07 0.08 

2b 0.510770 0.000041 0.0930 0.0001 0.348417 0.000034 0.509654 0.000063 -12.1 0.0458 0.0001 32.63 0.07 

3b 0.510828 0.000035 0.0951 0.0002 0.348438 0.000023 0.509690 0.000060 -11.5 0.0533 0.0001 25.81 0.08 

3b 0.510848 0.000042 0.0990 0.0001 0.348429 0.000020 0.509662 0.000064 -12.0 0.0554 0.0003 22.29 0.04 

5b 0.510713 0.000048 0.0861 0.0003 0.348415 0.000024 0.509676 0.000067 -11.4 0.0515 0.0002 39.62 0.32 

5b 0.510713 0.000042 0.0865 0.0001 0.348447 0.000015 0.509656 0.000063 -11.2 0.0541 0.0007 38.59 0.07 

6b 0.510766 0.000034 0.0914 0.0002 0.348433 0.000015 0.509670 0.000058 -11.8 0.0475 0.0004 31.29 0.18 

6b 0.510774 0.000047 0.0898 0.0002 0.348417 0.000023 0.509697 0.000066 -11.2 0.0461 0.0007 33.91 0.45 
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  143
Nd/   

147
Sm/   

145
Nd/   

143
Nd/

144
Nd             

Grain 
144

Nd 2SE 
144

Nd Prop 

Uncertainty
1
 

144
Nd 2SE Initial Prop 

Uncertainty 

εNd(i) Eu* 2SE Ce/Gd 2SE 

GSC 

4170 

                          

1 0.510801 0.000026 0.1058 0.0004 0.348429 0.000026 0.509507 0.000058 -14.0 0.0073 0.0001 30.35 0.09 

3 0.510800 0.000065 0.0855 0.0002 0.348428 0.000035 0.509756 0.000076 -9.2 0.0126 0.0005 29.57 0.26 

5 0.510813 0.000028 0.0863 0.0003 0.348421 0.000019 0.509768 0.000048 -9.4 0.0141 0.0002 28.69 0.25 

5 0.510790 0.000029 0.0870 0.0004 0.348443 0.000017 0.509718 0.000046 -9.6 0.0126 0.0005 27.25 0.66 

6 0.510784 0.000033 0.0886 0.0004 0.348421 0.000028 0.509701 0.000050 -10.3 0.0143 0.0002 29.65 0.46 

7 0.510743 0.000032 0.0860 0.0004 0.348447 0.000027 0.509681 0.000048 -10.2 0.0103 0.0006 19.14 0.08 

1b 0.510761 0.000033 0.1016 0.0006 0.348423 0.000018 0.509526 0.000059 -14.0 0.0057 0.0002 20.89 0.16 

3b 0.510933 0.000040 0.1183 0.0002 0.348445 0.000025 0.509492 0.000067 -14.5 0.0131 0.0002 14.50 0.03 

3b 0.510937 0.000039 0.1191 0.0003 0.348420 0.000019 0.509495 0.000066 -14.8 0.0144 0.0002 14.40 0.09 

4b 0.510703 0.000026 0.0957 0.0017 0.348443 0.000020 0.509537 0.000056 -13.7 0.0217 0.0049 21.20 1.20 

4b 0.510755 0.000042 0.1003 0.0025 0.348449 0.000020 0.509532 0.000065 -13.7 0.0104 0.0009 20.20 1.20 

5b 0.510770 0.000032 0.0898 0.0002 0.348413 0.000017 0.509653 0.000058 -10.4 0.0129 0.0006 25.80 0.19 

5b 0.510727 0.000029 0.0888 0.0002 0.348454 0.000021 0.509627 0.000055 -11.1 0.0142 0.0007 26.64 0.18 

6b 0.510893 0.000044 0.1105 0.0015 0.348420 0.000026 0.509555 0.000068 -13.6 0.0097 0.0001 16.12 0.48 

6b 0.510737 0.000039 0.0941 0.0003 0.348413 0.000031 0.509598 0.000063 -12.8 0.0098 0.0001 24.14 0.13 

1
 Uncertainties that were <0.5% are displayed as 0.5% 

b indicates grains from a different mount 
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Table 3-2: LASS U-Pb results for GSC samples (ages in Ma) 

Grain 
206

Pb-
 

238
U Age 

Prop 

2SE 

207
Pb-

 

235
U 

Age 

Prop 

2SE 

207
Pb-

206
Pb 

Age 

Prop 

2SE 

238
U/ 

206
Pb 

Prop 

2SE 

207
Pb/ 

206
Pb  

Prop 

2SE 

207
Pb/ 

235
U 

Prop 

2SE 

206
Pb/ 

238
U 

Prop 

2SE 

GSC 

1859 

                    

2 2676 46 2664 36 2663 41 1.94 0.04 0.1811 0.0045 12.77 0.50 0.515 0.011 

3 2659 52 2645 44 2653 41 1.96 0.05 0.1800 0.0044 12.55 0.60 0.510 0.012 

3 2692 45 2675 36 2668 38 1.93 0.04 0.1816 0.0042 12.95 0.50 0.518 0.010 

4 2561 51 2597 44 2665 40 2.05 0.05 0.1813 0.0044 11.93 0.57 0.487 0.012 

4 2687 45 2677 36 2684 39 1.93 0.04 0.1834 0.0043 13.01 0.50 0.517 0.011 

5 2529 50 2615 44 2678 40 2.08 0.05 0.1827 0.0044 12.18 0.58 0.481 0.012 

5 2608 44 2639 36 2672 38 2.00 0.04 0.1821 0.0042 12.47 0.48 0.499 0.010 

5 2733 46 2703 36 2681 39 1.89 0.04 0.1831 0.0043 13.33 0.51 0.528 0.011 

6 2659 53 2657 45 2657 40 1.96 0.05 0.1804 0.0044 12.72 0.61 0.511 0.012 

6 2678 45 2665 36 2665 38 1.94 0.04 0.1813 0.0042 12.79 0.49 0.515 0.011 

6 2680 45 2675 35 2665 38 1.94 0.04 0.1813 0.0042 12.97 0.50 0.516 0.011 

7 2724 47 2693 36 2679 40 1.90 0.04 0.1829 0.0044 13.24 0.51 0.526 0.011 

7 2623 45 2652 36 2666 39 1.99 0.04 0.1814 0.0043 12.67 0.49 0.502 0.010 

                      

GSC 

1861 

                    

1 2624 53 2653 44 2654 40 1.99 0.05 0.1801 0.0043 12.64 0.60 0.503 0.012 

2 2539 50 2634 44 2687 38 2.07 0.05 0.1838 0.0042 12.42 0.59 0.483 0.012 

3 2678 53 2690 45 2683 39 1.94 0.05 0.1833 0.0043 13.17 0.62 0.515 0.012 

4 2832 54 2736 45 2681 39 1.81 0.04 0.1831 0.0043 13.79 0.65 0.552 0.013 

4 2662 44 2663 35 2672 37 1.96 0.04 0.1821 0.0041 12.76 0.49 0.511 0.010 

5 2770 53 2704 45 2667 38 1.86 0.05 0.1815 0.0042 13.34 0.63 0.537 0.013 
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cont. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

5 2697 43 2682 35 2677 35 1.92 0.04 0.1826 0.0039 13.02 0.49 0.520 0.010 

6 2715 45 2688 36 2675 36 1.91 0.04 0.1824 0.0040 13.16 0.50 0.524 0.011 

7 2627 43 2659 35 2658 36 1.99 0.04 0.1806 0.0039 12.72 0.48 0.503 0.010 

8 2661 43 2688 35 2690 36 1.96 0.04 0.1841 0.0040 13.12 0.49 0.511 0.010 

9 2600 53 2631 47 2680 39 2.01 0.05 0.1830 0.0043 12.37 0.60 0.497 0.012 

9 2696 43 2699 36 2676 37 1.92 0.04 0.1825 0.0041 13.24 0.50 0.520 0.010 

10 2494 52 2596 38 2690 40 2.11 0.06 0.1841 0.0045 11.93 0.59 0.475 0.013 

12 2562 43 2621 34 2678 37 2.05 0.04 0.1827 0.0041 12.18 0.46 0.488 0.010 

                      

GSC 

2775 

                    

1 1156 27 1161 37 1182 72 5.09 0.13 0.0794 0.0029 2.16 0.12 0.197 0.005 

4 1171 24 1180 32 1226 70 5.03 0.11 0.0812 0.0029 2.21 0.10 0.199 0.004 

5 1157 27 1161 36 1202 66 5.09 0.13 0.0802 0.0027 2.14 0.11 0.197 0.005 

5 1199 24 1178 33 1165 73 4.89 0.11 0.0787 0.0029 2.21 0.10 0.205 0.005 

6 1206 24 1190 33 1175 70 4.86 0.11 0.0791 0.0028 2.24 0.10 0.206 0.005 

7 1148 24 1138 33 1137 74 5.12 0.12 0.0776 0.0029 2.09 0.10 0.195 0.005 

8 1173 25 1188 37 1209 88 5.01 0.12 0.0805 0.0036 2.20 0.12 0.200 0.005 

9 1150 22 1158 28 1147 56 5.12 0.10 0.0780 0.0022 2.13 0.09 0.195 0.004 

10 1167 24 1178 33 1219 70 5.04 0.11 0.0809 0.0029 2.21 0.10 0.199 0.004 

11 1169 24 1183 34 1248 74 5.03 0.11 0.0821 0.0031 2.24 0.11 0.199 0.005 

12 1155 24 1149 32 1204 71 5.10 0.11 0.0803 0.0029 2.10 0.10 0.196 0.004 



53 

 

Grain 
206

Pb-
 

238
U Age 

Prop 

2SE 

207
Pb-

 

235
U 

Age 

Prop 

2SE 

207
Pb-

206
Pb 

Age 

Prop 

2SE 

238
U/ 

206
Pb 

Prop 

2SE 

207
Pb/ 

206
Pb  

Prop 

2SE 

207
Pb/ 

235
U 

Prop 

2SE 

206
Pb/ 

238
U 

Prop 

2SE 

GSC 

2908 

              

28 1775 30 1780 31 1803 41 3.15 0.06 0.1102 0.0025 4.78 0.18 0.317 0.006 

29 1723 30 1737 32 1773 44 3.26 0.06 0.1084 0.0026 4.55 0.18 0.307 0.006 

30 1766 31 1781 32 1806 43 3.17 0.06 0.1104 0.0026 4.79 0.18 0.315 0.006 

34 1789 31 1780 33 1781 42 3.13 0.06 0.1089 0.0025 4.76 0.18 0.320 0.006 

37 1785 31 1779 32 1788 42 3.13 0.06 0.1093 0.0025 4.77 0.18 0.319 0.006 

38 1772 31 1772 32 1789 42 3.16 0.06 0.1094 0.0025 4.74 0.18 0.317 0.006 

39 1769 32 1773 33 1806 44 3.17 0.07 0.1104 0.0027 4.74 0.18 0.316 0.007 

1b 1736 33 1760 32 1773 56 3.24 0.07 0.1084 0.0033 4.66 0.18 0.309 0.007 

1b 1686 33 1739 31 1784 55 3.34 0.07 0.1091 0.0033 4.55 0.17 0.299 0.007 

2b 1582 31 1681 32 1793 56 3.60 0.08 0.1096 0.0034 4.24 0.17 0.278 0.006 

2b 1664 32 1735 32 1789 57 3.40 0.07 0.1094 0.0034 4.51 0.17 0.295 0.006 

3b 1744 35 1768 34 1813 61 3.22 0.07 0.1108 0.0037 4.72 0.19 0.311 0.007 

3b 1638 32 1728 32 1817 57 3.45 0.08 0.1111 0.0035 4.49 0.17 0.290 0.006 

4b 1893 41 1836 36 1769 57 2.93 0.07 0.1082 0.0034 5.11 0.21 0.341 0.009 

4b 1799 36 1811 34 1799 60 3.11 0.07 0.1100 0.0036 4.96 0.20 0.322 0.007 

5b 1796 34 1795 31 1804 54 3.11 0.07 0.1103 0.0033 4.87 0.18 0.322 0.007 

5b 1753 33 1765 32 1796 56 3.20 0.07 0.1098 0.0034 4.71 0.18 0.313 0.007 

6b 1725 32 1754 31 1787 55 3.26 0.07 0.1093 0.0033 4.65 0.18 0.307 0.007 

6b 1756 36 1761 32 1774 57 3.19 0.07 0.1085 0.0034 4.68 0.18 0.313 0.007 
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1 1802 39 1807 41 1809 43 3.10 0.08 0.1106 0.0026 4.90 0.23 0.323 0.008 

2 1847 32 1847 32 1851 42 3.01 0.06 0.1132 0.0026 5.17 0.20 0.332 0.007 

3 1828 42 1826 40 1840 47 3.10 0.08 0.1106 0.0026 4.90 0.23 0.323 0.008 

3 1846 31 1830 32 1824 39 3.01 0.06 0.1132 0.0026 5.17 0.20 0.332 0.007 

4 1777 42 1761 40 1816 49 3.15 0.09 0.1110 0.0030 4.67 0.23 0.318 0.009 

4 1840 32 1827 32 1828 41 3.03 0.06 0.1118 0.0025 5.06 0.19 0.330 0.007 

5 1767 31 1795 33 1848 42 3.17 0.06 0.1130 0.0026 4.85 0.19 0.315 0.006 

6 1810 32 1811 32 1843 42 3.08 0.06 0.1127 0.0026 4.96 0.19 0.324 0.007 

7 1750 32 1792 32 1818 54 3.21 0.07 0.1111 0.0033 4.85 0.18 0.312 0.007 

7 1686 32 1760 31 1818 54 3.34 0.07 0.1112 0.0033 4.67 0.18 0.299 0.007 

7 1844 32 1839 32 1847 42 3.02 0.06 0.1129 0.0026 5.13 0.19 0.331 0.007 

1b 1722 32 1767 32 1821 54 3.26 0.07 0.1113 0.0033 4.70 0.18 0.306 0.007 

1b 1741 33 1790 32 1824 55 3.22 0.07 0.1115 0.0034 4.83 0.18 0.310 0.007 

2b 1815 34 1835 31 1853 56 3.07 0.07 0.1133 0.0035 5.08 0.19 0.325 0.007 

2b 1750 34 1795 32 1824 55 3.20 0.07 0.1115 0.0034 4.87 0.19 0.312 0.007 

3b 1780 34 1790 31 1819 56 3.14 0.07 0.1112 0.0034 4.84 0.18 0.318 0.007 

3b 1772 33 1792 31 1821 54 3.16 0.07 0.1113 0.0033 4.85 0.18 0.317 0.007 

5b 1812 34 1824 32 1832 57 3.08 0.07 0.1120 0.0035 5.04 0.19 0.325 0.007 

5b 1810 34 1826 31 1858 56 3.09 0.07 0.1136 0.0035 5.07 0.20 0.324 0.007 

6b 1738 33 1791 32 1822 55 3.23 0.07 0.1114 0.0034 4.84 0.19 0.310 0.007 

6b 1785 34 1797 31 1824 55 3.14 0.07 0.1115 0.0034 4.90 0.19 0.319 0.007 
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1 1823 36 1837 33 1859 57 3.06 0.07 0.1137 0.0036 5.11 0.20 0.327 0.007 

3 1786 40 1821 42 1856 51 3.13 0.08 0.1135 0.0032 5.04 0.25 0.320 0.008 

5 1821 38 1828 40 1840 47 3.06 0.07 0.1125 0.0029 5.05 0.24 0.327 0.008 

5 1849 33 1852 33 1872 44 3.01 0.06 0.1145 0.0028 5.19 0.20 0.332 0.007 

6 1833 34 1839 34 1856 48 3.04 0.06 0.1135 0.0030 5.13 0.20 0.329 0.007 

7 1823 32 1840 33 1875 46 3.06 0.06 0.1147 0.0029 5.13 0.20 0.327 0.007 

1b 1821 34 1838 33 1847 54 3.06 0.07 0.1129 0.0034 5.12 0.19 0.327 0.007 

3b 1821 34 1827 32 1851 54 3.06 0.06 0.1132 0.0034 5.05 0.19 0.327 0.007 

3b 1762 33 1801 31 1840 55 3.18 0.07 0.1125 0.0034 4.91 0.19 0.315 0.007 

4b 1858 35 1855 33 1851 57 2.99 0.06 0.1132 0.0036 5.21 0.20 0.334 0.007 

4b 1817 35 1836 31 1853 56 3.07 0.07 0.1133 0.0035 5.12 0.20 0.326 0.007 

5b 1833 35 1874 34 1889 58 3.04 0.07 0.1156 0.0037 5.34 0.21 0.329 0.007 

5b 1843 35 1852 33 1883 56 3.02 0.07 0.1152 0.0036 5.20 0.20 0.331 0.007 

6b 1803 34 1827 32 1841 55 3.10 0.07 0.1125 0.0034 5.06 0.19 0.323 0.007 

6b 1842 37 1830 34 1840 60 3.03 0.07 0.1125 0.0037 5.08 0.20 0.330 0.008 

               

               

               

               

               

b indicates grains from a different mount 
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Chapter 4. Discussion 

4.1 Signal loss during LASS  

In order to quantify the proportion of ablated material sent to each mass 

spectrometer, we attempted to use the Nd signal intensities of a LREE glass of known Nd 

concentration [Fisher et al., 2011] measured simultaneously on both the Element and 

Neptune.  However, attempts have demonstrated a complicated inter-play of gas 

flows/tuning conditions during LASS analyses which precluded an accurate 

quantification of the proportion of material sent to each mass spectrometer. In order to 

overcome this, we compare the signal intensity for LASS mode and “Nd only” mode 

analyses, each optimally tuned for maximum Nd signal intensity.  The results of this 

comparison are shown in Figure 4-1, and demonstrate that even with optimal tuning there 

appears to be little signal loss (~14%) between LASS and “Nd only” mode, despite the 

fact that material is split between the two mass spectrometers.  Similar observations have 

been made for LASS Lu-Hf+ U-Pb analyses [pers. comm., C. Fisher]. This experiment 

was carried out by C. Fisher at Washington State University using similar equipment to 

the setup presented in this thesis, due to instrument maintenance at Memorial at the time. 

 

4.2 Assessment of precision and accuracy of measured Pb-Pb ages of the monazite 

standards 

 In general, an assessment of the monazite U-Pb data demonstrated that the LASS 

method presented in this study provides an accurate method for determining 
207

Pb/
206

Pb 

ages. Six of the seven samples have weighted mean 
207

Pb/
206

Pb LASS ages agree within 

2σ uncertainty of the high precision ID-TIMS ages. The sample that is not in agreement is 
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GSC-4170 which is ~1.2% greater than the ID-TIMS age, plotting just outside of the 

analytical uncertainty. A BSE image of a selected GSC 4170 grain (Figure 3-11F) shows 

that these grains have complex internal zoning, which was likely the cause for inaccurate 

LASS age for this sample. Data are generally presented as 
207

Pb/
206

Pb ages rather than 

206
Pb/

238
U or 

207
Pb/

235
U ages as there remains uncorrected elemental fractionation in the 

majority of these samples, as 
207

Pb/
206

Pb ages are less impacted by elemental 

fractionation. This fractionation is seen as the horizontal trend of the ellipses on a TW 

concordia diagram (e.g. Figure 3-3A). The LASS setup requires a higher laser power than 

dedicated U-Pb work to ensure enough sensitivity for precise Sm-Nd results. The 

206
Pb/

238
U LASS age for the younger sample 93-GD-12 falls just outside the analytical 

uncertainty of the ID-TIMS age. This is likely due to elemental fractionation affecting the 

U-Pb age as this sample is too young for the accurate determination of a 
207

Pb/
206

Pb age. 

  While 
232

Th-
208

Pb ages were also obtained from the LASS analyses, there was no 

reliable Th-Pb age for the U-Pb standard used (Trebilcock) and therefore the accuracy of 

these ages could not be corrected or verified. Liu et al., [2012] discussed problems 

associated with Th-Pb ages, as their Th-Pb ages were generally older than the associated 

U-Pb ages. They suggested discordance in the U-Th-Pb system and false assumption of 

the Th-Pb age of the standard as likely causes of Th-Pb age bias. 

 Additionally, four of the six GSC samples had Sm-Nd LASS isochron ages 

(although with very large uncertainties) that overlapped the ID-TIMS Pb/Pb ages 

presented by Stern and Berman [2001], with one sample (GSC-3345) having an age just 

outside the ID-TIMS age. The Sm-Nd isochron for sample GSC-4170; however, gives an 

age that is far too young when compared to the U-Pb LASS ages or ID-TIMS ages. The 
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Sm-Nd isochron for this sample (Fig. 3-8D) shows an abnormal pattern, which was likely 

the cause of the inaccurate isochron age for this sample. The monazite grains in GSC-

4170 displayed a great deal of patchy zoning (Fig. 3-11F) that was the likely cause of this 

abnormal pattern. While Sm-Nd isochron ages can help verify U-Pb ages, it is important 

to consider that isochron ages often have very large uncertainties due to the typically 

small spread of Sm-Nd values seen naturally in monazite. However it is important to note 

that while a portion of these samples did not show much spread in Sm-Nd, they were not 

entirely homogenous in Sm-Nd ratios. It is also important to note that while monazite 

Sm-Nd isochrons yield highly imprecise ages, additional analyses of cogenetic minerals 

with higher or lower Sm/Nd (e.g., apatite, titanite) are expected to greatly improve the 

precision of Sm-Nd isochrons [McFarlane and McCulloch, 2007]. 

 The Eu* and Ce/Gd LASS results for the GSC monazites and Trebilcock standard 

are shown in Figure 3-9B. As displayed in this Figure, Eu* and Ce/Gd can exhibit high 

variance from sample to sample, while having low variance within an individual sample. 

These tendencies in REE values can make Eu* and Ce/Gd useful tools when investigating 

sample variation and source tracing. 

 

4.3 Assessment of Sm-Nd in KMO3-72 

As discussed in section 3.1 ID-TIMS analyses were done on KMO3-72, an in-

house reference material, to assess the accuracy of the Sm-Nd results provided by the 

LASS study. KMO3-72 was chosen for these analyses rather than a GSC sample because 

there was more available material. These ID-TIMS results provide a means of comparing 

our LASS Sm-Nd data with more precise ID-TIMS data. A comparison of the ID-TIMS 



59 

 

Sm-Nd data with the LASS data is shown in Figure 3-1C, which shows that both the 

LASS points and the ID-TIMS points fall in one cluster of data, and the majority of the 

data points lie along the 1822 Ma reference isochron within uncertainty. The inset on 

Figure 3-1C shows a weighted mean initial 
143

Nd/
144

Nd plot for the LASS and ID-TIMS 

data. All data points from the LASS and all ID-TIMS points minus one agree with the 

weighted mean initial 
143

Nd/
144

Nd value within uncertainty. These two observations help 

reinforce the accuracy of the LASS method for Sm-Nd analyses. 

 

4.4 Possibilities for future work 

Further efforts in optimizing the LASS methodology and data reduction in order 

to reduce or eliminate any elemental fractionation are vital for obtaining more precise and 

accurate U-Pb ages in future studies.  

Currently available monazite reference materials (e.g., Trebilcock; [Tomascak et 

al., 1996; McFarlane and McCulloch, 2007; Fisher et al., 2011].) are not as well-studied 

as some of the widely used zircon reference materials  (e.g., 91500; [Wiedenbeck et al., 

2004]) as there has been less work done on monazite than zircon, so future work on 

developing better reference materials for monazite would improve data quality and our 

ability to evaluate the precision and accuracy of U-Pb and Sm-Nd monazite data. Also, 

this study required two distinct reference materials: one for reducing the U-Pb data; and 

one for reducing the Sm-Nd data. If a reference material could be found that works for 

both systems, it would simplify data acquisition and processing. Recently, Liu et al., 

[2012] showed that both the Manantagoutry monazite and Namaqualand monazite are 

relatively homogenous in both the U-Th-Pb and Sm-Nd systems, and suggested that they 
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could potentially be used effectively as standards for LASS monazite studies. However, 

Manantagoutry monazite appears to be complex and its homogeneity varies in different 

pieces, as seen in the study of Kylander-Clark et al., [2013] where Manantagoutry was 

the only standard analyzed whose laser ablation U-Pb ages differed from ID-TIMS values 

by >1%. Any potential monazite reference material would have to be abundant and 

widely available for distribution, and be thoroughly characterized using BSE imaging, 

elemental X-ray maps, as well as ID-TIMS and in situ Sm-Nd and U-Pb isotopic 

measurements. 

The LASS method presented here could potentially be extended to other minerals 

which have high REE and U content, such as allanite, titanite or apatite provided they are 

old enough to have produced enough measurable radiogenic Pb to yield precise ages. 

However these minerals generally contain high amounts of common Pb, so any analyses 

of these minerals would require an accurate common Pb correction. A recent study, 

[Chew et al., 2014], presents a general approach to common Pb corrections for U-Pb LA-

ICP-MS analyses of minerals like those mentioned above.  
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Figure 4-1: Comparison of total Nd voltage of LASS analyses and Nd Only analyses 
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Chapter 5. Birch Creek Pluton case study  

5.1 Birch Creek Pluton 

Monazite grains from the Birch Creek Pluton (BCP) were included in this study to 

demonstrate, as a case study, a potential application of LASS U-Pb, Sm-Nd, and REE 

measurements in monazite. The BCP is located in the White Mountains in southeastern 

California and is a two-mica granite [Barton, 2000; Ayers et al., 2006]. By combining Th-

Pb dating with O isotope data in monazite, Ayers et al. [2006] were able to identify 

hydrothermal alteration of the monazite in nearby country rocks, caused by the intrusion 

of the BCP, by demonstrating that the altered country rock monazite had the same age 

and O isotope signature as the BCP samples. They also suggested that monazite could be 

useful for mapping the extent of hydrothermal alteration. The main objective of applying 

the LASS method to this case study was to test the response of Sm-Nd in monazite to 

hydrothermal alteration. Additionally, some of the BCP monazite grains underwent high-

precision ID-TIMS U-Pb dating at Boise State University for this study. 

The BCP is Cretaceous age and is composed of two large units, the Border Suite 

(BS) and Central Suite (CS), which intruded into Late Proterozoic and Early Cambrian 

metasedimentary rocks (Figure 5-1). Samples from the Deep Springs Formation included 

a sandstone (DU-1) and a quartzite (Dma-1). For this case study, monazite grains from 

each of BS1 and 2, CS1 and 2, DU-1, and Dma-1 were analyzed using the LASS setup. 

Ayers et al. [2006] showed that monazite from the BCP (i.e., BS and CS) had an average 

Th-Pb age of 78.0 ± 0.7 Ma and 
18

O value of 8.7 ± 0.2‰, which is identical within 

uncertainty to monazite found in country rock within the hydrothermal aureole (sample 
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Dma-1). Conversely, monazite sample DU-1 collected from just outside the hydrothermal 

aureole was apparently unaffected by any hydrothermal alteration and retained an age 

range of ~820–1070 Ma and 
18

O values of ~3.5–6.5‰. Based on these finding, the 

authors suggested that the intrusion of the BCP also caused partial dissolution-

precipitation of the monazite from Dma-1, resulting in a complete resetting of the U-Th-

Pb system. Most of the monazite grains in Dma-1 showed similar ages and 
18

O values to 

BS and CS; however, a small population of monazite from Dma-1 had Th-Pb ages of 

approximately 340 Ma and intermediate 
18

O values of around 7.0‰, which they 

suggested was the result of incomplete recrystallization and resetting of the U-Th-Pb 

system [Ayers et al., 2006]. 

 

5.2.1 Birch Creek Pluton results 

Grains from BS, CS, DU-1, and Dma-1 were analyzed using the LASS method for 

Sm-Nd and U-Pb; full results are presented in Tables 5-1 and 5-2. Figure 5-2A shows a 

U-Pb TW concordia diagram of all BCP samples (BS1, BS2, CS1, and CS2) with the blue 

uncertainty ellipses representing samples BS1 and BS2 and the green uncertainty ellipses 

representing samples CS1 and CS2. The weighted mean 207corrected 
206

Pb/
238

U age for 

the BS samples is 89.1 ± 2.3Ma, (2σ, MSWD=1.5, based on 9 of 11 analyses) and the 

weighted mean 207corrected 
206

Pb/
238

U age for the CS samples is 89.6 ± 3.2Ma, (2σ, 

MSWD=2.5, based on 9 of 10 analyses). 

The altered quartzite sample, Dma-1, shows two distinct age populations, as 

previously shown by Ayers et al. [2006]. The U-Pb concordia diagram for the young 
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population of Dma-1 can be seen as Figure 5-2C, with a weighted mean 
206

Pb/
238

U age of 

87.4 ± 1.7 Ma (2σ, MSWD = 2.0), consistent with LASS U-Pb results for BS and CS. The 

older population of Dma-1 and gives concordant ages (Fig. 5-2B) ranging from ~330-380 

Ma, comprised of 4 analyses on 3 separate grains. The unaltered sandstone sample, DU-1, 

has LASS 
207

Pb/
206

Pb ages ranging from 803.2 Ma to 1174.6 Ma (Figure 5-2D). The high 

MSWDs for samples BS, CS and Dma-1 (young) likely represent an underestimation of 

the errors for these samples. 

The BCP samples (BS-1, BS-2, CS-1, CS-2) has a mean 
143

Nd/
144

Nd (present day) 

value of 0.511604 ± 0.000092 (2 S.D.). The 
147

Sm/
144

Nd ranges from 0.0595 to 0.0859, 

and Eu* ranges from 0.148 to 0.494 and Ce/Gd ranges from 28.20 to 64.38.  

The young population of Dma-1 has a mean 
143

Nd/
144

Nd (present day) value of 

0.511536 ± 0.000043 (2 S.D.) and has a 
147

Sm/
144

Nd range of 0.0640 to 0.1128. The Eu* 

ranges from 0.187 to 0.540, and the Ce/Gd ranged from 14.34 to 49.10 for the young 

population of Dma-1. The small older population of Dma-1 has mean 
143

Nd/
144

Nd and 

145
Nd/

144
Nd values of 0.512288 ± 0.000065 (2 S.D.) and 0.348443 ± 0.000054 (2 S.D.), 

respectively. The Sm-Nd for this population ranges from 0.0920 to 0.1236, and the Eu* 

ranges from 0.103 to 0.161 while the Ce/Gd ranges from 13.26 to 26.70. 

The sandstone sample, DU-1, has 
143

Nd/
144

Nd values ranging from 0.511249 to 

0.511486. The 
147

Sm/
144

Nd in this sample ranges from 0.0682 to 0.1063, the Eu* values 

range from 0.028 to 0.135 and the Ce/Gd ranges from 16.48 to 40.70.  

A compilation of the Sm-Nd results for the various Birch Creek samples (Figure 

5-3A) shows the general trend of present 
147

Sm/
144

Nd and 
143

Nd/
144

Nd values for each 

sample whereas Figure 5-3B shows a compilation of initial Nd isotopic values for each 
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BCP sample. Figure 5-3C shows REE behaviour for the BCP samples and both 

populations of Dma-1. The LASS results for these samples are reported in Tables 5-1 and 

5-2. 

 

5.2.2 Birch Creek Pluton ID-TIMS results 

Methodology for these ID-TIMS analyses is outlined in Appendix A. The 

207
Pb/

235
U date is the best estimate for crystallization age in Phanerozoic monazite due to 

initial Th-U disequilibrium that causes the 
206

Pb/
238

U date to be older than crystallization 

by up to several million years [Schärer, 1984; Parrish, 1990]. Uncertainty on the 

207
Pb/

235
U date is given as ± x / y / z Ma, where x is the internal uncertainty, y includes 

the uncertainty in the tracer calibration, and z includes the uncertainties in the tracer 

calibration and 
235

U decay constant. Four grains from sample BS1 yielded a weighted 

mean 
207

Pb/
235

U date of 82.99 ± 0.22 / 0.24 / 0.26 Ma (MSWD = 1.1) (Fig. 5-4, appendix 

Table B-4). Three grains from sample BS2 yielded a weighted mean 
207

Pb/
235

U date of 

83.04 ± 0.26 / 0.27 / 0.29 Ma (MSWD = 0.5). One other grain is older with 
207

Pb/
235

U 

date of 83.80 ± 0.19 Ma. The seven youngest grains from BS1 and BS2 yielded a 

weighted mean 
207

Pb/
235

U date of 83.01 ± 0.17 / 0.19 / 0.22 Ma (MSWD = 0.8). Six 

grains from sample Dma-1 yielded a weighted mean 
207

Pb/
235

U date of 83.54 ± 0.16 / 0.18 

/ 0.21 Ma (MSWD = 0.9). One other grain is older with 
207

Pb/
235

U date of 110.7 ± 0.6 

Ma.  The 
207

Pb/
235

U dates from LASS are not used because they are too inaccurate. The 

LASS 
206

Pb/
238

U dates are older than the ID-TIMS 
207

Pb/
235

U dates by ~5%, which is 

likely due to a combination of the analytical uncertainty associated with LASS dates 

(typically ~2-3%) and initial Th-U disequilibrium in the 
206

Pb/
238

U system.  
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5.3 Birch Creek case study discussion 

The purpose of this case study was to determine the utility of the LASS method on 

well-studied samples, to evaluate its ability to determine the in situ response of the Sm-

Nd and U-Pb systems in monazite to hydrothermal fluid alteration. As such, monazite 

grains from BCP (samples BS1-2, CS1-2) were compared with the altered country rock 

monazite from sample Dma-1.  LASS U-Pb results for Dma-1 (Figs. 5-2B and 5-2C) 

identified two distinct age populations within Dma-1: one with a weighted mean 

206
Pb/

238
U age of 87.4 ± 1.7 Ma (2σ), which overlap the BCP age, and an older population 

composed of 3 grains (4 analyses) with concordant ages ranging from ~330Ma to 

~380Ma. Ayers et al. [2006] linked the younger monazite population of Dma-1 to the 

BCP based on similar Th-Pb ages and 
18

O values. This connection is now strengthened 

by the very similar initial Nd isotope compositions for monazite from the pluton and the 

younger population of Dma-1. The hypothesis of Ayers et al. [2006] is that the younger 

population of Dma-1 monazite underwent simultaneous dissolution-reprecipitation under 

the influence of hydrothermal fluids from the BCP, resetting their Th-Pb as the older 

population of Dma-1 underwent incomplete resetting of the Th-Pb system. However, new 

LASS U-Pb and Sm-Nd data suggests that that the young population of monazite in the 

altered sample (Dma-1) could be newly grown via precipitation from the pluton derived 

fluid.  

The formation of these monazites by new growth is supported by their Sm-Nd 

isotopic composition and initial Nd values being nearly identical to the BCP in addition to 

LASS U-Pb data showing that the older grains of Dma-1 are concordant, indicating that 
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they could not have undergone partial resetting of their U-Th-Pb system. The fact that this 

older age population of Dma-1 is concordant is important, as it means this is likely a true 

age and not the result of partial lead loss. Ayers et al., [2006] could not check for 

concordance, as they only had a single geochronometer, Th-Pb ages. This ~330-380 Ma 

population of Dma-1 also has unique Sm-Nd isotopic composition when compared with 

the younger monazite from Dma-1 (Figure 5-3A), and thus distinct initial 
143

Nd/
144

Nd 

(Figure 5-3B). However, this population has a small sample size, with only 4 analyses so 

it is difficult to draw any definitive conclusions. It is possible that a combination of both 

mechanisms (dissolution-reprecipitation and new growth) influenced the formation of 

these monazites. 
206

Pb/
238

U LASS ages for the BCP samples (BS and CS) and the young 

population of Dma-1 are still ~4-5% higher than the high precision ID-TIMS ages for 

these samples. This is likely due to a combination of the analytical uncertainty of the 

LASS method and remaining uncorrected elemental fractionation as these samples are too 

young for accurate determinations of 
207

Pb/
206

Pb ages. 

U-Pb ages for the DU-1 sandstone represent partially reset detrital ages. The slight 

overlap in Sm-Nd isotope composition of monazite from this unaltered sample and the 

other BCP samples (Figure 5-3A) suggests a similar source for some of the monazite in 

these samples. 

Figure 5-3C shows Ce/Gd plotted against Eu* for both BCP samples and both 

populations of Dma-1. This figure shows a general linear pattern of the REE in these 

samples. The REE data for the young population of monazites from Dma-1 generally 

overlap the BCP samples, whereas the older population of Dma-1 plot have lower Ce/Gd 

and Eu*. These REE data reaffirms the existence of two distinct populations of Dma-1 
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and support the conclusions drawn from the Sm-Nd and initial Nd data. The REE 

concentrations provided by the LASS method can be another useful tool when studying 

the effects of hydrothermal fluids on monazites. 
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Figure 5-1: Map of the Birch Creek Pluton and surrounding rock units, after Ayers et al., [2006]. 
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Figure 5-2: LASS results for BCP and related samples. A) U-Pb TW concordia for BS-1, BS-2, CS-1 and 

CS-2, with displayed 
206

Pb/
238

U weighted mean age. Blue ellipses represent BS-1 and BS-2 while green 

ellipses represent CS-1 and CS-2. Red circles display ID-TIMS data for these samples. B) U-Pb concordia 

for the older unaltered population of Dm-1. C) U-Pb TW concordia for the young altered population of 

Dma-1, with displayed 
206

Pb/
238

U weighted mean age. Red circles represent ID-TIMS data. D) U-Pb TW 

concordia for unaltered DU-1. 
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Figure 5-3: A) Sm-Nd (present day) for the BCP and related samples. B) Initial Nd isotopic concentration 

for the BCP and related samples. C) LASS REE data for the BCP and related samples. ID-TIMS U-Pb 

results for BCP samples (BS1, BS2 and Dma-1). 
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Figure 5-4: ID-TIMS ranked age plot for BCP and related samples (BS1, BS2 and Dma-1). Grey areas 

represent the mean values and uncertainties for each sample. The white bar for BS2 represents analysis 

which falls outside of this mean value, even within uncertainties. 
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Table 5-1: LASS Sm-Nd results for BCP and related samples 

  
143

Nd/   
147Sm/   

145
Nd/   

143Nd/144Nd               

Grain 144
Nd 2SE 

144
Nd Prop 

uncertainty 

144
Nd 2SE Initial Prop 

uncertainty 

εNd(i) Eu* 2SE Ce/Gd 2SE δ
18

O
1
 

BS-1                             

1 0.511601 0.000028 0.0671 0.0002 0.348423 0.000018 0.511562 0.000050 -18.6 0.494 0.002 48.31 0.45 8.4 

1 0.511649 0.000034 0.0820 0.0015 0.348439 0.000017 0.511600 0.000046 -17.8 0.411 0.007 30.70 1.10 8.4 

9 0.511554 0.000027 0.0711 0.0020 0.348442 0.000024 0.511509 0.000050 -19.5 0.444 0.010 43.90 2.90 9.1 

9 0.511517 0.000034 0.0595 0.0001 0.348421 0.000024 0.511483 0.000045 -20.2 0.475 0.0006 64.38 0.46 9.1 

15 0.511621 0.000025 0.0769 0.0010 0.348432 0.000021 0.511575 0.000048 -18.3 0.427 0.002 35.78 0.72 9.5 

16 0.511634 0.000031 0.0782 0.0066 0.348449 0.000022 0.511599 0.000046 -18.4 0.353 0.029 40.50 4.90 8.8 

20 0.511523 0.000027 0.0726 0.0001 0.348421 0.000020 0.511481 0.000051 -20.2 0.239 0.0003 40.23 0.19 9.4 

               

BS-2                             

1 0.511660 0.000036 0.0656 0.0012 0.348437 0.000017 0.511623 0.000043 -17.5 0.396 0.005 53.30 1.90 8.8 

2 0.511560 0.000022 0.0826 0.0016 0.348433 0.000017 0.511513 0.000047 -19.6 0.413 0.004 31.30 1.10 8.6 

3 0.511618 0.000029 0.0747 0.0007 0.348445 0.000022 0.511573 0.000045 -18.3 0.431 0.005 38.22 0.86 9.1 

7 0.511885 0.000026 0.0789 0.0003 0.348440 0.000022 0.511840 0.000044 -13.2 0.257 0.005 30.43 0.27 8.5 

               

CS-1                             

1 0.511624 0.000025 0.0777 0.0006 0.348436 0.000013 0.511577 0.000048 -18.2 0.424 0.003 35.38 0.83 8.7 

2 0.511564 0.000031 0.0827 0.0008 0.348444 0.000014 0.511516 0.000049 -19.5 0.379 0.002 29.26 0.64 8.2 

4 0.511632 0.000032 0.0753 0.0005 0.348431 0.000020 0.511585 0.000047 -18.0 0.393 0.008 37.61 0.58 8.5 

7 0.511672 0.000030 0.0839 0.0004 0.348441 0.000017 0.511626 0.000045 -17.5 0.148 0.007 28.20 0.42 10.1 

8 0.511568 0.000026 0.0596 0.0001 0.348437 0.000017 0.511529 0.000043 -19.0 0.470 0.0005 61.84 0.15 8.9 
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143

Nd/   
147Sm/   

145
Nd/   

143Nd/144Nd               

Grain 144
Nd 2SE 

144Nd Prop 

Uncertainty 

144
Nd 2SE Initial Prop 

Uncertainty 

εNd(i) Eu* 2SE Ce/Gd 2SE δ18O1 

CS-2                             

1 0.511597 0.000022 0.0792 0.0002 0.348442 0.000014 0.511546 0.000046 -18.7 0.394 0.003 34.08 0.14 8.7 

2 0.511544 0.000027 0.0859 0.0020 0.348433 0.000020 0.511492 0.000042 -19.9 0.361 0.010 29.00 1.20 8.3 

3 0.511553 0.000020 0.0631 0.0003 0.348443 0.000021 0.511520 0.000040 -19.7 0.456 0.0007 57.16 0.62 8.6 

4 0.511567 0.000017 0.0835 0.0003 0.348422 0.000022 0.511519 0.000046 -19.5 0.382 0.003 29.20 0.20 9.1 

5 0.511557 0.000028 0.0740 0.0003 0.348445 0.000020 0.511514 0.000037 -19.6 0.455 0.003 40.25 0.41 8.8 

               

Dma-1 

(young) 
              

4 0.511547 0.000027 0.0719 0.0002 0.348421 0.000024 0.511505 0.000042 -19.7 0.408 0.002 39.46 0.13 10.5 

5 0.511502 0.000030 0.0927 0.0006 0.348433 0.000019 0.511448 0.000044 -20.8 0.287 0.001 22.24 0.25 9.7 

6 0.511554 0.000058 0.0750 0.0008 0.348461 0.000074 0.511513 0.000066 -19.7 0.426 0.001 36.10 1.10 9.3 

7 0.511502 0.000032 0.0823 0.0004 0.348436 0.000025 0.511457 0.000045 -20.8 0.375 0.002 28.09 0.30 8.9 

8 0.511538 0.000028 0.0864 0.0023 0.348430 0.000038 0.511489 0.000042 -20.1 0.317 0.007 27.80 1.80 9.3 

9 0.511546 0.000039 0.0788 0.0006 0.348431 0.000026 0.511501 0.000050 -19.8 0.407 0.003 31.58 0.66 7.9 

13 0.511510 0.000042 0.0744 0.0003 0.348426 0.000029 0.511466 0.000053 -20.4 0.411 0.004 36.39 0.31 9.8 

14 0.511577 0.000057 0.0640 0.0010 0.348459 0.000020 0.511542 0.000065 -19.2 0.530 0.013 47.80 1.10 7.8 

14 0.511554 0.000037 0.0665 0.0007 0.348440 0.000023 0.511517 0.000049 -19.6 0.540 0.007 49.10 1.60 7.8 

15 0.511535 0.000029 0.1026 0.0011 0.348448 0.000016 0.511478 0.000043 -20.4 0.254 0.001 17.32 0.38 8.9 

15 0.511554 0.000024 0.1128 0.0005 0.348441 0.000022 0.511488 0.000040 -20.0 0.218 0.002 14.34 0.13 8.9 

16 0.511537 0.000018 0.1045 0.0009 0.348453 0.000017 0.511479 0.000037 -20.3 0.254 0.001 17.06 0.33 9.0 

16 0.511521 0.000031 0.0993 0.0003 0.348423 0.000025 0.511465 0.000045 -20.6 0.187 0.004 19.85 0.17 9.0 

17 0.511549 0.000019 0.0920 0.0009 0.348419 0.000018 0.511496 0.000037 -19.9 0.235 0.001 23.94 0.66 8.9 

17 0.511524 0.000031 0.0899 0.0012 0.348445 0.000023 0.511468 0.000044 -20.3 0.257 0.008 24.82 0.79 8.9 
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143

Nd/   
147Sm/   

145
Nd/   

143Nd/144Nd               

Grain 144
Nd 2SE 

144Nd Prop 

Uncertainty 

144
Nd 2SE Initial Prop 

Uncertainty 

εNd(i) Eu* 2SE Ce/Gd 2SE δ18O1 

Dma-1 

(old) 

              

1 0.512255 0.000034 0.0920 0.0015 0.348420 0.000017 0.512053 0.000047 -2.8 0.141 0.002 26.70 0.91 8.7 

12 0.512274 0.000050 0.0953 0.0013 0.348481 0.000032 0.512069 0.000059 -2.7 0.157 0.012 25.63 0.73 6.5 

19 0.512331 0.000050 0.1236 0.0010 0.348443 0.000034 0.512059 0.000060 -2.7 0.161 0.003 13.26 0.13 7.3 

19 0.512293 0.000036 0.1069 0.0068 0.348428 0.000012 0.512025 0.000048 -2.2 0.103 0.005 19.10 2.20 7.3 

               

DU-1                             

1 0.511402 0.000028 0.0840 0.0033 0.348420 0.000028 0.510874 0.000047 -10.2 0.077 0.016 28.10 2.30 5.5 

1 0.511301 0.000033 0.0763 0.0009 0.348440 0.000044 0.510900 0.000048 -13.6 0.076 0.002 33.23 0.73 5.5 

2 0.511486 0.000023 0.1051 0.0005 0.348451 0.000018 0.510693 0.000050 -8.9 0.108 0.003 16.48 0.23 5.3 

4 0.511427 0.000016 0.0875 0.0010 0.348437 0.000023 0.510810 0.000043 -8.5 0.083 0.005 24.80 0.80 4.4 

5 0.511296 0.000019 0.0713 0.0008 0.348436 0.000029 0.510781 0.000044 -8.4 0.036 0.001 40.70 1.10 4.9 

5 0.511249 0.000022 0.0682 0.0001 0.348422 0.000030 0.510766 0.000045 -9.2 0.034 0.0003 33.28 0.25 4.9 

6 0.511395 0.000040 0.0853 0.0009 0.348468 0.000037 0.510813 0.000062 -9.3 0.043 0.0008 26.92 0.40 N/A 

19 0.511484 0.000029 0.1063 0.0015 0.348429 0.000025 0.511040 0.000047 -15.0 0.072 0.007 18.74 0.40 4.8 

20 0.511425 0.000041 0.0736 0.0039 0.348430 0.000030 0.510928 0.000056 -7.3 0.057 0.007 35.10 4.60 5.4 

21 0.511382 0.000029 0.0896 0.0005 0.348437 0.000015 0.510731 0.000053 -9.2 0.043 0.0002 25.62 0.33 6.2 

22 0.511355 0.000027 0.0847 0.0002 0.348428 0.000019 0.510763 0.000049 -9.6 0.070 0.002 25.70 0.07 5.5 

23 0.511427 0.000030 0.0974 0.0029 0.348446 0.000018 0.510776 0.000058 -10.6 0.028 0.0006 21.70 1.60 5.8 

2 0.511445 0.000044 0.0922 0.0005 0.348449 0.000043 0.510818 0.000070 -9.3 0.099 0.0008 22.13 0.27 5.3 

4 0.511454 0.000023 0.0859 0.0004 0.348440 0.000018 0.510858 0.000058 -8.0 0.053 0.0008 26.85 0.26 4.4 

5 0.511327 0.000032 0.0766 0.0003 0.348450 0.000037 0.510840 0.000060 -10.6 0.035 0.002 35.51 0.62 4.9 

19 0.511484
 

0.000028 0.1045
 

0.0022 0.348430
 

0.000031 0.510804 0.000062 -10.7 0.048 0.002 18.99 0.78 4.8 
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143

Nd/   
147Sm/   

145
Nd/   

143Nd/144Nd               

Grain 144
Nd 2SE 

144Nd Prop 

Uncertainty 

144
Nd 2SE Initial Prop 

Uncertainty 

εNd(i) Eu* 2SE Ce/Gd 2SE δ18O1
 

DU-1 

(cont.) 
              

20 0.511443 0.000033 0.0769 0.0024 0.348466 0.000035 0.510967 0.000060 -8.7 0.082 0.008 32.30 2.30 5.4 

21 0.511441
 

0.000041 0.1000
 

0.0034 0.348437
 

0.000016 0.510664 0.000072 -8.6 0.039 0.001 21.60 1.20 6.2 

22 0.511335 0.000027 0.0838 0.0002 0.348437 0.000024 0.510828 0.000058 -12.0 0.056 0.002 26.17 0.14 5.5 

23 0.511357 0.000027 0.0820 0.0011 0.348433 0.000018 0.510807 0.000059 -9.9 0.033 0.0006 31.00 1.00 5.8 

24 0.511415 0.000024 0.0985 0.0012 0.348452 0.000023 0.510805 0.000058 -11.9 0.135 0.015 18.55 0.40 5.1 

26 0.511420 0.000026 0.0974 0.0022 0.348443 0.000020 0.510822 0.000059 -11.8 0.110 0.011 20.00 1.00 5.6 

28 0.511448 0.000024 0.0938 0.0040 0.348446 0.000021 0.510847 0.000059 -10.2 0.055 0.003 22.50 2.60 4.4 

29 0.511411 0.000025 0.0925 0.0019 0.348449 0.000019 0.510784 0.000059 -10.0 0.100 0.017 22.30 1.10 3.5 

1
From Ayers et al., (2006). Mean value of nearest spots 
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Table 5-2: LASS U-Pb results for BCP and related samples (ages in  Ma) 

Grain 206Pb- 

238U 

Age 

Prop 

2SE 

207Pb- 

235U 

Age 

Prop 

2SE 

207Pb-
206Pb 

Age 

Prop 

2SE 

238U/206

Pb 

Prop 

2SE 

207Pb/206 

Pb  

Prop 2SE 207Pb/235U Prop 

2SE 

206Pb/238

U 

Prop 

2SE 

BS-1               

1 102.9 6.1 230 21 89 5.7 62.23 3.72 0.1570 0.0170 0.28 0.03 0.016 0.001 

1 91.7 4.3 111.6 6.6 90 4.3 69.78 3.31 0.0604 0.0031 0.12 0.01 0.014 0.001 

9 97.4 5.3 108 12 96 5.3 65.62 3.62 0.0597 0.0067 0.12 0.01 0.015 0.001 

9 94.5 4.9 202 15 87 4.6 67.66 3.48 0.1132 0.0087 0.22 0.02 0.015 0.001 

15 94.8 8.2 148 40 91 8.5 67.57 5.93 0.0790 0.0240 0.16 0.05 0.015 0.001 

16 100.6 7.1 353 37 68 7.4 63.45 4.43 0.3060 0.0440 0.49 0.06 0.016 0.001 

20 88.7 4.6 87.1 8.2 88 4.6 72.15 3.75 0.0508 0.0047 0.09 0.01 0.014 0.001 

               

BS-2               

1 88.3 6.3 123 28 86 6.4 72.46 5.20 0.0680 0.0170 0.14 0.03 0.014 0.001 

2 89 4.8 112 13 87 4.8 71.94 3.93 0.0653 0.0077 0.12 0.01 0.014 0.001 

3 93.9 5.5 110 14 91 5.5 68.07 4.03 0.0697 0.0090 0.12 0.02 0.015 0.001 

7 87.6 4.1 89.2 5.3 87 4.1 73.10 3.42 0.0489 0.0025 0.09 0.01 0.014 0.001 

               

CS-1               

1 92.9 4.9 108.2 10 91 4.9 68.87 3.65 0.0614 0.0057 0.12 0.01 0.015 0.001 

2 93.2 4.8 157 12 89 4.7 68.63 3.58 0.0870 0.0067 0.17 0.01 0.015 0.001 

4 100 6.2 129 16 94 6.1 63.90 3.96 0.0970 0.0150 0.15 0.02 0.016 0.001 

7 84.5 4.4 94.9 8.8 84 4.5 75.76 4.02 0.0554 0.0050 0.10 0.01 0.013 0.001 

8 96.8 9.5 240 42 98 15.3 65.79 6.49 0.0400 0.0960 0.38 0.07 0.015 0.002 
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Grain 206Pb- 

238U 

Age 

Prop 

2SE 

207Pb- 

235U 

Age 

Prop 

2SE 

207Pb-
206Pb 

Age 

Prop 

2SE 

238U/206

Pb 

Prop 

2SE 

207Pb/206 

Pb  

Prop 2SE 207Pb/235U Prop 

2SE 

206Pb/238

U 

Prop 

2SE 

CS-2               

1 98.8 5.9 107 15 97 5.9 64.72 3.85 0.0610 0.0090 0.12 0.02 0.015 0.001 

2 92.9 4.8 105.5 10 92 4.8 68.97 3.61 0.0580 0.0055 0.11 0.01 0.015 0.001 

3 104.7 8.1 249 31 80 8.3 60.98 4.83 0.2340 0.0400 0.32 0.04 0.016 0.001 

4 87.8 4.5 100.8 8.3 86 4.5 72.89 3.77 0.0600 0.0049 0.11 0.01 0.014 0.001 

5 93.1 5.3 133 14 89 5.2 68.73 3.97 0.0840 0.0092 0.15 0.02 0.015 0.001 

               

Dma-1 

(young) 

              

4 89.1 3.3 80.3 9.9 89 3.4 71.79 2.68 0.0479 0.0061 0.09 0.01 0.014 0.001 

5 87.7 3.4 77 11 88 3.5 72.99 2.88 0.0437 0.0066 0.08 0.01 0.014 0.001 

6 85.5 5.7 120 22 83 5.8 74.91 5.05 0.0740 0.0150 0.13 0.03 0.013 0.001 

7 84.5 3 92 12 84 3.1 75.76 2.70 0.0534 0.0071 0.10 0.01 0.013 0.001 

8 87 3.6 80 11 87 3.7 73.53 3.03 0.0489 0.0074 0.09 0.01 0.014 0.001 

9 87.3 2.9 85.2 8.3 87 3.0 73.31 2.47 0.0502 0.0051 0.09 0.01 0.014 0.001 

13 91.1 3.5 94 13 90 3.6 70.22 2.71 0.0549 0.0079 0.10 0.01 0.014 0.001 

14 108 4.6 436 21 82 4.2 59.14 2.52 0.2380 0.0170 0.54 0.03 0.017 0.001 

14 101.7 3.9 326 17 85 3.6 62.85 2.45 0.1770 0.0120 0.39 0.02 0.016 0.001 

15 85.5 3 89.5 8.8 85 3.0 74.85 2.63 0.0540 0.0057 0.09 0.01 0.013 0.001 

15 89.2 2.9 81.1 8.7 89 3.0 71.79 2.37 0.0462 0.0051 0.09 0.01 0.014 0.001 

16 86 4.3 104 16 85 4.4 74.35 3.76 0.0596 0.0099 0.11 0.02 0.013 0.001 

16 85.8 5.1 73 16 85 5.3 74.52 4.50 0.0550 0.0120 0.08 0.02 0.013 0.001 

17 88.1 3.8 87 11 88 3.9 72.62 3.16 0.0507 0.0073 0.09 0.01 0.014 0.001 

17 94.5 4.3 78 13 95 4.4 67.70 3.12 0.0434 0.0076 0.08 0.01 0.015 0.001 
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Grain 206Pb- 

238U 

Age 

Prop 

2SE 

207Pb- 

235U 

Age 

Prop 

2SE 

207Pb-
206Pb 

Age 

Prop 

2SE 

238U/206

Pb 

Prop 

2SE 

207Pb/206 

Pb  

Prop 2SE 207Pb/235U Prop 

2SE 

206Pb/238

U 

Prop 

2SE 

Dma-1 

(old) 

              

1 334.9 7.2 332.6 6.9 335 7.5 18.75 0.42 0.0528 0.0016 0.39 0.01 0.053 0.001 

12 329.6 8.9 348 14 328 9.3 19.05 0.54 0.0570 0.0028 0.41 0.02 0.053 0.002 

19 335 11 332 10 335 10.6 18.73 0.60 0.0533 0.0025 0.39 0.01 0.053 0.002 

19 383 8.3 378.5 9.2 383 8.7 16.33 0.37 0.0542 0.0019 0.45 0.01 0.061 0.001 

               

DU-1               

1 955 38 935 40 957 41.3 6.25 0.28 0.0710 0.0028 1.56 0.11 0.160 0.007 

1 800 33 793 38 800 34.2 7.56 0.33 0.0659 0.0028 1.19 0.08 0.132 0.006 

2 1149 45 1144 42 1149 49.8 5.12 0.23 0.0787 0.0027 2.10 0.14 0.195 0.009 

4 1070 42 1049 43 1074 46.1 5.52 0.24 0.0750 0.0026 1.82 0.13 0.181 0.008 

5 1092 53 1027 50 1099 56.7 5.41 0.29 0.0720 0.0038 1.76 0.14 0.185 0.010 

5 1081 50 1031 43 1078 55.3 5.50 0.29 0.0750 0.0034 1.77 0.13 0.182 0.010 

6 1026 62 1020 50 1040 69.2 5.71 0.39 0.0748 0.0044 1.78 0.15 0.175 0.012 

19 640 30 645 36 637 30.9 9.57 0.48 0.0660 0.0026 0.90 0.07 0.105 0.005 

20 1023 45 1002 49 1029 47.7 5.80 0.28 0.0708 0.0040 1.70 0.14 0.172 0.008 

21 1087 50 1067 48 1107 57.1 5.35 0.28 0.0745 0.0040 1.88 0.15 0.187 0.010 

22 1070 46 1056 51 1066 50.0 5.54 0.27 0.0785 0.0040 1.91 0.15 0.181 0.009 

23 1013 59 1033 54 1018 63.6 5.84 0.38 0.0739 0.0046 1.80 0.16 0.171 0.011 

                

1 927 47 974 41 924 49.3 6.46 0.35 0.0735 0.0036 1.61 0.10 0.155 0.009 

2 1038 52 1045 39 1036 54.7 5.72 0.31 0.0754 0.0028 1.78 0.10 0.175 0.010 

4 1056 52 1053 38 1056 54.8 5.62 0.30 0.0739 0.0026 1.82 0.10 0.178 0.010 

5 969.3 47 994 35 968 49.8 6.16 0.33 0.0726 0.0023 1.66 0.09 0.162 0.009 
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Grain 
206

Pb-
 

238
U 

Age 

Prop 

2SE 

207
Pb-

 

235
U 

Age 

Prop 

2SE 

207
Pb-

206
Pb 

Age 

Prop 

2SE 

238
U/

206

Pb 

Prop 

2SE 

207
Pb/

206

Pb  

Prop 

2SE 

207
Pb/

235

U 

Prop 

2SE 

206
Pb/

23

8
U 

Prop 

2SE 

DU-1 

(cont.) 

              

19 989.9 48 973.5 34 991 50.4 6.03 0.32 0.0711 0.0022 1.61 0.09 0.166 0.009 

20 944 47 944 39 942 50.0 6.35 0.35 0.0716 0.0032 1.54 0.10 0.158 0.009 

21 1178 57 1141 37 1184 63.1 4.99 0.27 0.0755 0.0025 2.07 0.11 0.201 0.011 

22 934 46 998 39 923 48.4 6.42 0.35 0.0791 0.0035 1.69 0.11 0.156 0.008 

23 1020.6 50 1014 36 1022 52.6 5.82 0.31 0.0727 0.0024 1.71 0.10 0.172 0.009 

24 945 46 947.9 33 944 48.2 6.34 0.33 0.0712 0.0021 1.55 0.08 0.158 0.008 

26 933.5 46 925 33 935 47.7 6.41 0.34 0.0693 0.0022 1.49 0.08 0.156 0.008 

28 981 50 1015 38 976 51.4 6.09 0.33 0.0752 0.0031 1.74 0.11 0.164 0.009 

29 1027.8 50 990 35 1033 52.7 5.78 0.30 0.0698 0.0022 1.65 0.09 0.173 0.009 
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Chapter 6. Conclusions 

The Sm-Nd isotope and U-Pb age data obtained on monazite by the LASS method 

are shown to have geological useful accuracy and precision based on comparison with 

ID-TIMS data from the same samples. The LASS ages for 6 of 8 samples analyzed in this 

study agree within 2σ uncertainty with high precision ID-TIMS ages. Importantly, the 

LASS method provides a robust way to measure U-Pb age and Sm-Nd isotopes 

simultaneously from the same ablation volume, thus eliminating any uncertainties 

associated with correlating data from two different ablation volumes, while still 

maintaining useful accuracy and precision. This advantage is most useful in studies 

involving grains with complex fine-scaled zoning in age and isotopic composition. In 

addition, this method is potentially useful in detrital monazite studies, where a large 

number of grains need to be analyzed. However, there are still some issues with laser 

induced elemental fractionation of U/Pb in some of the samples analyzed in this study, 

due to the laser parameters required for precise Sm-Nd. Further refinement of the LASS 

ablation parameters and on down-hole fractionation corrections will help improve the 

quality of the U-Pb data in future studies. 

New LASS U-Pb and Sm-Nd data show that monazite from the Birch Creek 

Pluton (BCP) and altered country rock adjacent to the pluton have homogenous and 

overlapping initial Nd isotope compositions, strengthening the hypothesis of Ayers et al. 

[2006] that monazite in the hydrothermal aureole was affected by hydrothermal fluids 

sourced from the BCP. The data suggest that the mechanism behind the formation of 

pluton-aged monazite in a nearby altered sedimentary unit could have been new growth 

alone, although some contribution from dissolution-reprecipitation cannot yet be ruled 
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out. The LASS U-Pb ages are ~4-5% higher than new high-precision ID-TIMS U-Pb ages 

from the same monazite grains, likely due to analytical uncertainty of the LASS 

methodology combined with uncorrected elemental fractionation of U/Pb in these young 

grains. These results demonstrate how monazite age and Sm-Nd isotopic data, coupled 

with oxygen isotopic data, can be used to identify hydrothermal monazite, constrain the 

timing of fluid events and map the potential sources of hydrothermal fluids. 
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A.1 ID-TIMS methodology 

 Four to seven monazite grains from three samples from the Birch Creek Pluton 

were dated by the isotope dilution thermal ionization mass spectrometry method (ID-

TIMS) at Boise State University. These grains were the same grains that were used for 

LASS measurements. Monazite was mounted in epoxy and polished until the grain 

centers were exposed. Backscattered electron images were obtained using a scanning 

electron microscope. Grains that exhibited the least complex zoning patterns were chosen 

for analysis. Single monazite grains were put in 3 ml Teflon PFA beakers, ultrasonically 

cleaned for an hour in ultrapure H2O, fluxed on a hotplate at 80°C for 15 minutes in 3.5 

M HNO3, and loaded into 300 μl Teflon PFA microcapsules and spiked with the mixed 

Boise State 
233

U-
235

U-
205

Pb tracer solution. Fifteen microcapsules were placed in a large-

capacity Parr vessel. Grains were dissolved in 120 μl of 6 M HCl  at 180°C for 48 hours, 

dried to fluorides, and then re-dissolved in 6 M HCl at 180°C overnight. U and Pb were 

separated from the zircon matrix using an HCl-based anion-exchange chromatographic 

procedure [Krogh, 1973], eluted together and dried with 2 µl of 0.05 N H3PO4.  

Pb and U were loaded on a single outgassed Re filament in 2 µl of a silica-

gel/phosphoric acid mixture [Gerstenberger and Haase, 1997], and U and Pb isotopic 

measurements made on an Isotopx Isoprobe-T multicollector thermal ionization mass 

spectrometer equipped with an ion-counting Daly detector. Pb isotopes were measured by 

peak-jumping all isotopes on the Daly detector for 100 to 150 cycles, and corrected for 

0.18 ± 0.03%/a.m.u. (1 sigma) mass fractionation. Transitory isobaric interferences due to 

high-molecular weight organics, particularly on 
204

Pb and 
207

Pb, disappeared within 

approximately 30 cycles, whereas ionization efficiency averaged 10
4
 cps/pg of each Pb 
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isotope. Linearity (to ≥1.4 x 10
6
 cps) and the associated deadtime correction of the Daly 

detector were monitored by repeated analyses of NBS982, and have been constant since 

installation. Uranium was analyzed as UO2
+
 ions in static Faraday mode on 10

11
 ohm 

resistors for 150 to 200 cycles, and corrected for isobaric interference of 
233

U
18

O
16

O on 

235
U

16
O

16
O with an 

18
O/

16
O of 0.00206. Ionization efficiency averaged 20 mV/ng of each 

U isotope. U mass fractionation was corrected using the known 
233

U/
235

U ratio of the 

tracer solution.  

The 
207

Pb/
235

U dates are used rather than 
206

Pb/
238

U dates due to initial Th-U 

disequilibrium. Weighted mean 
207

Pb/
235

U dates were calculated from 3-6 equivalent 

dates using Isoplot 3.0 [Ludwig, 2003] and are interpreted as being the igneous 

crystallization age. Uncertainties on the weighted mean 
207

Pb/
235

U dates are the internal 

uncertainties based on analytical uncertainties only, including counting statistics, 

subtraction of tracer solution, and blank and initial common Pb subtraction. They are 

given at the 2σ confidence interval. These uncertainties should be considered when 

comparing our dates with 
207

Pb/
235

U dates from other laboratories that used the same 

Boise State University tracer solution or a tracer solution that was cross-calibrated using 

EARTHTIME gravimetric standards. When comparing our dates with those derived from 

laboratories that did not use the same tracer solution or a tracer solution that was not 

cross-calibrated using EARTHTIME gravimetric standards, a systematic uncertainty in 

the tracer calibration of 0.05% should be added to the internal uncertainties in quadrature. 

When comparing our dates with those derived from other decay schemes (e.g., 
206

Pb/
238

U, 

40
Ar/

39
Ar, 

187
Re-

187
Os), systematic uncertainties in the tracer calibration and 

235
U decay 

constant [Jaffey et al., 1971] should be added to the internal error in quadrature. These 
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uncertainties are given as 
207

Pb/
235

U date ± x / y / z Ma, where x is the internal error, y 

includes the uncertainty in the tracer calibration, and z includes the uncertainties in the 

tracer calibration and 
235

U decay constant. Uncertainties on the 
207

Pb/
235

U dates from 

individual grains are also given at the 2σ confidence interval. 

U-Pb dates and uncertainties were calculated using the algorithms of Schmitz and 

Schoene [2007], 
235

U/
205

Pb of 77.93 and 
233

U/
235

U of 1.007066 for the Boise State 

University tracer solution, and U decay constants recommended by Jaffey et al. [1971]. 

All common Pb in analyses was assigned to the monazite with a composition determined 

by Stacey and Kramers [1975], except for 0.4 pg that was assigned to laboratory blank 

and subtracted based on the measured laboratory Pb isotopic composition and associated 

uncertainty. U blanks are difficult to precisely measure, but are estimated at 0.07 pg.  

Seven aliquots of the EARTHTIME 100 Ma synthetic solution were measured 

during this experiment using the Boise State University tracer solution and the same mass 

spectrometry methods described above. Each aliquot was 4-6 pg of radiogenic Pb, slightly 

smaller than the average analysis measured during the experiment. The weighted mean 

206
Pb/

238
U and 

207
Pb/

235
U dates are 100.08 ± 0.03 / 0.10 and 100.04 ± 0.13 / 0.16 Ma, 

respectively. These dates agree with the known dates determined by analysis of large 

aliquots measured with the EARTHTIME mixed 
233

U-
235

U-
202

Pb-
205

Pb tracer solution [D. 

Condon, unpublished data]. 
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APPENDIX B: 

See supplementary data for appendix tables: 

Table B-1: Trebilcock monazite Sm-Nd results 

Table B-2: KMO3-72 and 93-GD-12 LASS results 

Table B-3: LREE glass Sm-Nd results 

 Table B-4: BCP ID-TIMS U-Pb results 

 

 

 

 


